* ppc-linux-tdep.c (ppc_linux_init_abi): Do not install
[binutils-gdb.git] / gdb / ppc-linux-tdep.c
1 /* Target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "target.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "regcache.h"
32 #include "value.h"
33 #include "osabi.h"
34 #include "regset.h"
35 #include "solib-svr4.h"
36 #include "ppc-tdep.h"
37 #include "ppc-linux-tdep.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "tramp-frame.h"
41
42 #include "features/rs6000/powerpc-32l.c"
43 #include "features/rs6000/powerpc-altivec32l.c"
44 #include "features/rs6000/powerpc-64l.c"
45 #include "features/rs6000/powerpc-altivec64l.c"
46 #include "features/rs6000/powerpc-e500l.c"
47
48
49 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
50 in much the same fashion as memory_remove_breakpoint in mem-break.c,
51 but is careful not to write back the previous contents if the code
52 in question has changed in between inserting the breakpoint and
53 removing it.
54
55 Here is the problem that we're trying to solve...
56
57 Once upon a time, before introducing this function to remove
58 breakpoints from the inferior, setting a breakpoint on a shared
59 library function prior to running the program would not work
60 properly. In order to understand the problem, it is first
61 necessary to understand a little bit about dynamic linking on
62 this platform.
63
64 A call to a shared library function is accomplished via a bl
65 (branch-and-link) instruction whose branch target is an entry
66 in the procedure linkage table (PLT). The PLT in the object
67 file is uninitialized. To gdb, prior to running the program, the
68 entries in the PLT are all zeros.
69
70 Once the program starts running, the shared libraries are loaded
71 and the procedure linkage table is initialized, but the entries in
72 the table are not (necessarily) resolved. Once a function is
73 actually called, the code in the PLT is hit and the function is
74 resolved. In order to better illustrate this, an example is in
75 order; the following example is from the gdb testsuite.
76
77 We start the program shmain.
78
79 [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
80 [...]
81
82 We place two breakpoints, one on shr1 and the other on main.
83
84 (gdb) b shr1
85 Breakpoint 1 at 0x100409d4
86 (gdb) b main
87 Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
88
89 Examine the instruction (and the immediatly following instruction)
90 upon which the breakpoint was placed. Note that the PLT entry
91 for shr1 contains zeros.
92
93 (gdb) x/2i 0x100409d4
94 0x100409d4 <shr1>: .long 0x0
95 0x100409d8 <shr1+4>: .long 0x0
96
97 Now run 'til main.
98
99 (gdb) r
100 Starting program: gdb.base/shmain
101 Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
102
103 Breakpoint 2, main ()
104 at gdb.base/shmain.c:44
105 44 g = 1;
106
107 Examine the PLT again. Note that the loading of the shared
108 library has initialized the PLT to code which loads a constant
109 (which I think is an index into the GOT) into r11 and then
110 branchs a short distance to the code which actually does the
111 resolving.
112
113 (gdb) x/2i 0x100409d4
114 0x100409d4 <shr1>: li r11,4
115 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
116 (gdb) c
117 Continuing.
118
119 Breakpoint 1, shr1 (x=1)
120 at gdb.base/shr1.c:19
121 19 l = 1;
122
123 Now we've hit the breakpoint at shr1. (The breakpoint was
124 reset from the PLT entry to the actual shr1 function after the
125 shared library was loaded.) Note that the PLT entry has been
126 resolved to contain a branch that takes us directly to shr1.
127 (The real one, not the PLT entry.)
128
129 (gdb) x/2i 0x100409d4
130 0x100409d4 <shr1>: b 0xffaf76c <shr1>
131 0x100409d8 <shr1+4>: b 0x10040984 <sg+4>
132
133 The thing to note here is that the PLT entry for shr1 has been
134 changed twice.
135
136 Now the problem should be obvious. GDB places a breakpoint (a
137 trap instruction) on the zero value of the PLT entry for shr1.
138 Later on, after the shared library had been loaded and the PLT
139 initialized, GDB gets a signal indicating this fact and attempts
140 (as it always does when it stops) to remove all the breakpoints.
141
142 The breakpoint removal was causing the former contents (a zero
143 word) to be written back to the now initialized PLT entry thus
144 destroying a portion of the initialization that had occurred only a
145 short time ago. When execution continued, the zero word would be
146 executed as an instruction an an illegal instruction trap was
147 generated instead. (0 is not a legal instruction.)
148
149 The fix for this problem was fairly straightforward. The function
150 memory_remove_breakpoint from mem-break.c was copied to this file,
151 modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
152 In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
153 function.
154
155 The differences between ppc_linux_memory_remove_breakpoint () and
156 memory_remove_breakpoint () are minor. All that the former does
157 that the latter does not is check to make sure that the breakpoint
158 location actually contains a breakpoint (trap instruction) prior
159 to attempting to write back the old contents. If it does contain
160 a trap instruction, we allow the old contents to be written back.
161 Otherwise, we silently do nothing.
162
163 The big question is whether memory_remove_breakpoint () should be
164 changed to have the same functionality. The downside is that more
165 traffic is generated for remote targets since we'll have an extra
166 fetch of a memory word each time a breakpoint is removed.
167
168 For the time being, we'll leave this self-modifying-code-friendly
169 version in ppc-linux-tdep.c, but it ought to be migrated somewhere
170 else in the event that some other platform has similar needs with
171 regard to removing breakpoints in some potentially self modifying
172 code. */
173 int
174 ppc_linux_memory_remove_breakpoint (struct gdbarch *gdbarch,
175 struct bp_target_info *bp_tgt)
176 {
177 CORE_ADDR addr = bp_tgt->placed_address;
178 const unsigned char *bp;
179 int val;
180 int bplen;
181 gdb_byte old_contents[BREAKPOINT_MAX];
182 struct cleanup *cleanup;
183
184 /* Determine appropriate breakpoint contents and size for this address. */
185 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &bplen);
186 if (bp == NULL)
187 error (_("Software breakpoints not implemented for this target."));
188
189 /* Make sure we see the memory breakpoints. */
190 cleanup = make_show_memory_breakpoints_cleanup (1);
191 val = target_read_memory (addr, old_contents, bplen);
192
193 /* If our breakpoint is no longer at the address, this means that the
194 program modified the code on us, so it is wrong to put back the
195 old value */
196 if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
197 val = target_write_memory (addr, bp_tgt->shadow_contents, bplen);
198
199 do_cleanups (cleanup);
200 return val;
201 }
202
203 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
204 than the 32 bit SYSV R4 ABI structure return convention - all
205 structures, no matter their size, are put in memory. Vectors,
206 which were added later, do get returned in a register though. */
207
208 static enum return_value_convention
209 ppc_linux_return_value (struct gdbarch *gdbarch, struct type *func_type,
210 struct type *valtype, struct regcache *regcache,
211 gdb_byte *readbuf, const gdb_byte *writebuf)
212 {
213 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
214 || TYPE_CODE (valtype) == TYPE_CODE_UNION)
215 && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
216 && TYPE_VECTOR (valtype)))
217 return RETURN_VALUE_STRUCT_CONVENTION;
218 else
219 return ppc_sysv_abi_return_value (gdbarch, func_type, valtype, regcache,
220 readbuf, writebuf);
221 }
222
223 /* Macros for matching instructions. Note that, since all the
224 operands are masked off before they're or-ed into the instruction,
225 you can use -1 to make masks. */
226
227 #define insn_d(opcd, rts, ra, d) \
228 ((((opcd) & 0x3f) << 26) \
229 | (((rts) & 0x1f) << 21) \
230 | (((ra) & 0x1f) << 16) \
231 | ((d) & 0xffff))
232
233 #define insn_ds(opcd, rts, ra, d, xo) \
234 ((((opcd) & 0x3f) << 26) \
235 | (((rts) & 0x1f) << 21) \
236 | (((ra) & 0x1f) << 16) \
237 | ((d) & 0xfffc) \
238 | ((xo) & 0x3))
239
240 #define insn_xfx(opcd, rts, spr, xo) \
241 ((((opcd) & 0x3f) << 26) \
242 | (((rts) & 0x1f) << 21) \
243 | (((spr) & 0x1f) << 16) \
244 | (((spr) & 0x3e0) << 6) \
245 | (((xo) & 0x3ff) << 1))
246
247 /* Read a PPC instruction from memory. PPC instructions are always
248 big-endian, no matter what endianness the program is running in, so
249 we can't use read_memory_integer or one of its friends here. */
250 static unsigned int
251 read_insn (CORE_ADDR pc)
252 {
253 unsigned char buf[4];
254
255 read_memory (pc, buf, 4);
256 return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
257 }
258
259
260 /* An instruction to match. */
261 struct insn_pattern
262 {
263 unsigned int mask; /* mask the insn with this... */
264 unsigned int data; /* ...and see if it matches this. */
265 int optional; /* If non-zero, this insn may be absent. */
266 };
267
268 /* Return non-zero if the instructions at PC match the series
269 described in PATTERN, or zero otherwise. PATTERN is an array of
270 'struct insn_pattern' objects, terminated by an entry whose mask is
271 zero.
272
273 When the match is successful, fill INSN[i] with what PATTERN[i]
274 matched. If PATTERN[i] is optional, and the instruction wasn't
275 present, set INSN[i] to 0 (which is not a valid PPC instruction).
276 INSN should have as many elements as PATTERN. Note that, if
277 PATTERN contains optional instructions which aren't present in
278 memory, then INSN will have holes, so INSN[i] isn't necessarily the
279 i'th instruction in memory. */
280 static int
281 insns_match_pattern (CORE_ADDR pc,
282 struct insn_pattern *pattern,
283 unsigned int *insn)
284 {
285 int i;
286
287 for (i = 0; pattern[i].mask; i++)
288 {
289 insn[i] = read_insn (pc);
290 if ((insn[i] & pattern[i].mask) == pattern[i].data)
291 pc += 4;
292 else if (pattern[i].optional)
293 insn[i] = 0;
294 else
295 return 0;
296 }
297
298 return 1;
299 }
300
301
302 /* Return the 'd' field of the d-form instruction INSN, properly
303 sign-extended. */
304 static CORE_ADDR
305 insn_d_field (unsigned int insn)
306 {
307 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
308 }
309
310
311 /* Return the 'ds' field of the ds-form instruction INSN, with the two
312 zero bits concatenated at the right, and properly
313 sign-extended. */
314 static CORE_ADDR
315 insn_ds_field (unsigned int insn)
316 {
317 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
318 }
319
320
321 /* If DESC is the address of a 64-bit PowerPC GNU/Linux function
322 descriptor, return the descriptor's entry point. */
323 static CORE_ADDR
324 ppc64_desc_entry_point (CORE_ADDR desc)
325 {
326 /* The first word of the descriptor is the entry point. */
327 return (CORE_ADDR) read_memory_unsigned_integer (desc, 8);
328 }
329
330
331 /* Pattern for the standard linkage function. These are built by
332 build_plt_stub in elf64-ppc.c, whose GLINK argument is always
333 zero. */
334 static struct insn_pattern ppc64_standard_linkage[] =
335 {
336 /* addis r12, r2, <any> */
337 { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
338
339 /* std r2, 40(r1) */
340 { -1, insn_ds (62, 2, 1, 40, 0), 0 },
341
342 /* ld r11, <any>(r12) */
343 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
344
345 /* addis r12, r12, 1 <optional> */
346 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
347
348 /* ld r2, <any>(r12) */
349 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
350
351 /* addis r12, r12, 1 <optional> */
352 { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
353
354 /* mtctr r11 */
355 { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467),
356 0 },
357
358 /* ld r11, <any>(r12) */
359 { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
360
361 /* bctr */
362 { -1, 0x4e800420, 0 },
363
364 { 0, 0, 0 }
365 };
366 #define PPC64_STANDARD_LINKAGE_LEN \
367 (sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0]))
368
369 /* When the dynamic linker is doing lazy symbol resolution, the first
370 call to a function in another object will go like this:
371
372 - The user's function calls the linkage function:
373
374 100007c4: 4b ff fc d5 bl 10000498
375 100007c8: e8 41 00 28 ld r2,40(r1)
376
377 - The linkage function loads the entry point (and other stuff) from
378 the function descriptor in the PLT, and jumps to it:
379
380 10000498: 3d 82 00 00 addis r12,r2,0
381 1000049c: f8 41 00 28 std r2,40(r1)
382 100004a0: e9 6c 80 98 ld r11,-32616(r12)
383 100004a4: e8 4c 80 a0 ld r2,-32608(r12)
384 100004a8: 7d 69 03 a6 mtctr r11
385 100004ac: e9 6c 80 a8 ld r11,-32600(r12)
386 100004b0: 4e 80 04 20 bctr
387
388 - But since this is the first time that PLT entry has been used, it
389 sends control to its glink entry. That loads the number of the
390 PLT entry and jumps to the common glink0 code:
391
392 10000c98: 38 00 00 00 li r0,0
393 10000c9c: 4b ff ff dc b 10000c78
394
395 - The common glink0 code then transfers control to the dynamic
396 linker's fixup code:
397
398 10000c78: e8 41 00 28 ld r2,40(r1)
399 10000c7c: 3d 82 00 00 addis r12,r2,0
400 10000c80: e9 6c 80 80 ld r11,-32640(r12)
401 10000c84: e8 4c 80 88 ld r2,-32632(r12)
402 10000c88: 7d 69 03 a6 mtctr r11
403 10000c8c: e9 6c 80 90 ld r11,-32624(r12)
404 10000c90: 4e 80 04 20 bctr
405
406 Eventually, this code will figure out how to skip all of this,
407 including the dynamic linker. At the moment, we just get through
408 the linkage function. */
409
410 /* If the current thread is about to execute a series of instructions
411 at PC matching the ppc64_standard_linkage pattern, and INSN is the result
412 from that pattern match, return the code address to which the
413 standard linkage function will send them. (This doesn't deal with
414 dynamic linker lazy symbol resolution stubs.) */
415 static CORE_ADDR
416 ppc64_standard_linkage_target (struct frame_info *frame,
417 CORE_ADDR pc, unsigned int *insn)
418 {
419 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
420
421 /* The address of the function descriptor this linkage function
422 references. */
423 CORE_ADDR desc
424 = ((CORE_ADDR) get_frame_register_unsigned (frame,
425 tdep->ppc_gp0_regnum + 2)
426 + (insn_d_field (insn[0]) << 16)
427 + insn_ds_field (insn[2]));
428
429 /* The first word of the descriptor is the entry point. Return that. */
430 return ppc64_desc_entry_point (desc);
431 }
432
433
434 /* Given that we've begun executing a call trampoline at PC, return
435 the entry point of the function the trampoline will go to. */
436 static CORE_ADDR
437 ppc64_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
438 {
439 unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN];
440
441 if (insns_match_pattern (pc, ppc64_standard_linkage,
442 ppc64_standard_linkage_insn))
443 return ppc64_standard_linkage_target (frame, pc,
444 ppc64_standard_linkage_insn);
445 else
446 return 0;
447 }
448
449
450 /* Support for convert_from_func_ptr_addr (ARCH, ADDR, TARG) on PPC64
451 GNU/Linux.
452
453 Usually a function pointer's representation is simply the address
454 of the function. On GNU/Linux on the PowerPC however, a function
455 pointer may be a pointer to a function descriptor.
456
457 For PPC64, a function descriptor is a TOC entry, in a data section,
458 which contains three words: the first word is the address of the
459 function, the second word is the TOC pointer (r2), and the third word
460 is the static chain value.
461
462 Throughout GDB it is currently assumed that a function pointer contains
463 the address of the function, which is not easy to fix. In addition, the
464 conversion of a function address to a function pointer would
465 require allocation of a TOC entry in the inferior's memory space,
466 with all its drawbacks. To be able to call C++ virtual methods in
467 the inferior (which are called via function pointers),
468 find_function_addr uses this function to get the function address
469 from a function pointer.
470
471 If ADDR points at what is clearly a function descriptor, transform
472 it into the address of the corresponding function, if needed. Be
473 conservative, otherwise GDB will do the transformation on any
474 random addresses such as occur when there is no symbol table. */
475
476 static CORE_ADDR
477 ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
478 CORE_ADDR addr,
479 struct target_ops *targ)
480 {
481 struct section_table *s = target_section_by_addr (targ, addr);
482
483 /* Check if ADDR points to a function descriptor. */
484 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
485 return get_target_memory_unsigned (targ, addr, 8);
486
487 return addr;
488 }
489
490 /* Wrappers to handle Linux-only registers. */
491
492 static void
493 ppc_linux_supply_gregset (const struct regset *regset,
494 struct regcache *regcache,
495 int regnum, const void *gregs, size_t len)
496 {
497 const struct ppc_reg_offsets *offsets = regset->descr;
498
499 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
500
501 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
502 {
503 /* "orig_r3" is stored 2 slots after "pc". */
504 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
505 ppc_supply_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
506 offsets->pc_offset + 2 * offsets->gpr_size,
507 offsets->gpr_size);
508
509 /* "trap" is stored 8 slots after "pc". */
510 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
511 ppc_supply_reg (regcache, PPC_TRAP_REGNUM, gregs,
512 offsets->pc_offset + 8 * offsets->gpr_size,
513 offsets->gpr_size);
514 }
515 }
516
517 static void
518 ppc_linux_collect_gregset (const struct regset *regset,
519 const struct regcache *regcache,
520 int regnum, void *gregs, size_t len)
521 {
522 const struct ppc_reg_offsets *offsets = regset->descr;
523
524 /* Clear areas in the linux gregset not written elsewhere. */
525 if (regnum == -1)
526 memset (gregs, 0, len);
527
528 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
529
530 if (ppc_linux_trap_reg_p (get_regcache_arch (regcache)))
531 {
532 /* "orig_r3" is stored 2 slots after "pc". */
533 if (regnum == -1 || regnum == PPC_ORIG_R3_REGNUM)
534 ppc_collect_reg (regcache, PPC_ORIG_R3_REGNUM, gregs,
535 offsets->pc_offset + 2 * offsets->gpr_size,
536 offsets->gpr_size);
537
538 /* "trap" is stored 8 slots after "pc". */
539 if (regnum == -1 || regnum == PPC_TRAP_REGNUM)
540 ppc_collect_reg (regcache, PPC_TRAP_REGNUM, gregs,
541 offsets->pc_offset + 8 * offsets->gpr_size,
542 offsets->gpr_size);
543 }
544 }
545
546 /* Regset descriptions. */
547 static const struct ppc_reg_offsets ppc32_linux_reg_offsets =
548 {
549 /* General-purpose registers. */
550 /* .r0_offset = */ 0,
551 /* .gpr_size = */ 4,
552 /* .xr_size = */ 4,
553 /* .pc_offset = */ 128,
554 /* .ps_offset = */ 132,
555 /* .cr_offset = */ 152,
556 /* .lr_offset = */ 144,
557 /* .ctr_offset = */ 140,
558 /* .xer_offset = */ 148,
559 /* .mq_offset = */ 156,
560
561 /* Floating-point registers. */
562 /* .f0_offset = */ 0,
563 /* .fpscr_offset = */ 256,
564 /* .fpscr_size = */ 8,
565
566 /* AltiVec registers. */
567 /* .vr0_offset = */ 0,
568 /* .vscr_offset = */ 512 + 12,
569 /* .vrsave_offset = */ 528
570 };
571
572 static const struct ppc_reg_offsets ppc64_linux_reg_offsets =
573 {
574 /* General-purpose registers. */
575 /* .r0_offset = */ 0,
576 /* .gpr_size = */ 8,
577 /* .xr_size = */ 8,
578 /* .pc_offset = */ 256,
579 /* .ps_offset = */ 264,
580 /* .cr_offset = */ 304,
581 /* .lr_offset = */ 288,
582 /* .ctr_offset = */ 280,
583 /* .xer_offset = */ 296,
584 /* .mq_offset = */ 312,
585
586 /* Floating-point registers. */
587 /* .f0_offset = */ 0,
588 /* .fpscr_offset = */ 256,
589 /* .fpscr_size = */ 8,
590
591 /* AltiVec registers. */
592 /* .vr0_offset = */ 0,
593 /* .vscr_offset = */ 512 + 12,
594 /* .vrsave_offset = */ 528
595 };
596
597 static const struct regset ppc32_linux_gregset = {
598 &ppc32_linux_reg_offsets,
599 ppc_linux_supply_gregset,
600 ppc_linux_collect_gregset,
601 NULL
602 };
603
604 static const struct regset ppc64_linux_gregset = {
605 &ppc64_linux_reg_offsets,
606 ppc_linux_supply_gregset,
607 ppc_linux_collect_gregset,
608 NULL
609 };
610
611 static const struct regset ppc32_linux_fpregset = {
612 &ppc32_linux_reg_offsets,
613 ppc_supply_fpregset,
614 ppc_collect_fpregset,
615 NULL
616 };
617
618 static const struct regset ppc32_linux_vrregset = {
619 &ppc32_linux_reg_offsets,
620 ppc_supply_vrregset,
621 ppc_collect_vrregset,
622 NULL
623 };
624
625 const struct regset *
626 ppc_linux_gregset (int wordsize)
627 {
628 return wordsize == 8 ? &ppc64_linux_gregset : &ppc32_linux_gregset;
629 }
630
631 const struct regset *
632 ppc_linux_fpregset (void)
633 {
634 return &ppc32_linux_fpregset;
635 }
636
637 static const struct regset *
638 ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
639 const char *sect_name, size_t sect_size)
640 {
641 struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
642 if (strcmp (sect_name, ".reg") == 0)
643 {
644 if (tdep->wordsize == 4)
645 return &ppc32_linux_gregset;
646 else
647 return &ppc64_linux_gregset;
648 }
649 if (strcmp (sect_name, ".reg2") == 0)
650 return &ppc32_linux_fpregset;
651 if (strcmp (sect_name, ".reg-ppc-vmx") == 0)
652 return &ppc32_linux_vrregset;
653 return NULL;
654 }
655
656 static void
657 ppc_linux_sigtramp_cache (struct frame_info *this_frame,
658 struct trad_frame_cache *this_cache,
659 CORE_ADDR func, LONGEST offset,
660 int bias)
661 {
662 CORE_ADDR base;
663 CORE_ADDR regs;
664 CORE_ADDR gpregs;
665 CORE_ADDR fpregs;
666 int i;
667 struct gdbarch *gdbarch = get_frame_arch (this_frame);
668 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
669
670 base = get_frame_register_unsigned (this_frame,
671 gdbarch_sp_regnum (gdbarch));
672 if (bias > 0 && get_frame_pc (this_frame) != func)
673 /* See below, some signal trampolines increment the stack as their
674 first instruction, need to compensate for that. */
675 base -= bias;
676
677 /* Find the address of the register buffer pointer. */
678 regs = base + offset;
679 /* Use that to find the address of the corresponding register
680 buffers. */
681 gpregs = read_memory_unsigned_integer (regs, tdep->wordsize);
682 fpregs = gpregs + 48 * tdep->wordsize;
683
684 /* General purpose. */
685 for (i = 0; i < 32; i++)
686 {
687 int regnum = i + tdep->ppc_gp0_regnum;
688 trad_frame_set_reg_addr (this_cache, regnum, gpregs + i * tdep->wordsize);
689 }
690 trad_frame_set_reg_addr (this_cache,
691 gdbarch_pc_regnum (gdbarch),
692 gpregs + 32 * tdep->wordsize);
693 trad_frame_set_reg_addr (this_cache, tdep->ppc_ctr_regnum,
694 gpregs + 35 * tdep->wordsize);
695 trad_frame_set_reg_addr (this_cache, tdep->ppc_lr_regnum,
696 gpregs + 36 * tdep->wordsize);
697 trad_frame_set_reg_addr (this_cache, tdep->ppc_xer_regnum,
698 gpregs + 37 * tdep->wordsize);
699 trad_frame_set_reg_addr (this_cache, tdep->ppc_cr_regnum,
700 gpregs + 38 * tdep->wordsize);
701
702 if (ppc_linux_trap_reg_p (gdbarch))
703 {
704 trad_frame_set_reg_addr (this_cache, PPC_ORIG_R3_REGNUM,
705 gpregs + 34 * tdep->wordsize);
706 trad_frame_set_reg_addr (this_cache, PPC_TRAP_REGNUM,
707 gpregs + 40 * tdep->wordsize);
708 }
709
710 if (ppc_floating_point_unit_p (gdbarch))
711 {
712 /* Floating point registers. */
713 for (i = 0; i < 32; i++)
714 {
715 int regnum = i + gdbarch_fp0_regnum (gdbarch);
716 trad_frame_set_reg_addr (this_cache, regnum,
717 fpregs + i * tdep->wordsize);
718 }
719 trad_frame_set_reg_addr (this_cache, tdep->ppc_fpscr_regnum,
720 fpregs + 32 * tdep->wordsize);
721 }
722 trad_frame_set_id (this_cache, frame_id_build (base, func));
723 }
724
725 static void
726 ppc32_linux_sigaction_cache_init (const struct tramp_frame *self,
727 struct frame_info *this_frame,
728 struct trad_frame_cache *this_cache,
729 CORE_ADDR func)
730 {
731 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
732 0xd0 /* Offset to ucontext_t. */
733 + 0x30 /* Offset to .reg. */,
734 0);
735 }
736
737 static void
738 ppc64_linux_sigaction_cache_init (const struct tramp_frame *self,
739 struct frame_info *this_frame,
740 struct trad_frame_cache *this_cache,
741 CORE_ADDR func)
742 {
743 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
744 0x80 /* Offset to ucontext_t. */
745 + 0xe0 /* Offset to .reg. */,
746 128);
747 }
748
749 static void
750 ppc32_linux_sighandler_cache_init (const struct tramp_frame *self,
751 struct frame_info *this_frame,
752 struct trad_frame_cache *this_cache,
753 CORE_ADDR func)
754 {
755 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
756 0x40 /* Offset to ucontext_t. */
757 + 0x1c /* Offset to .reg. */,
758 0);
759 }
760
761 static void
762 ppc64_linux_sighandler_cache_init (const struct tramp_frame *self,
763 struct frame_info *this_frame,
764 struct trad_frame_cache *this_cache,
765 CORE_ADDR func)
766 {
767 ppc_linux_sigtramp_cache (this_frame, this_cache, func,
768 0x80 /* Offset to struct sigcontext. */
769 + 0x38 /* Offset to .reg. */,
770 128);
771 }
772
773 static struct tramp_frame ppc32_linux_sigaction_tramp_frame = {
774 SIGTRAMP_FRAME,
775 4,
776 {
777 { 0x380000ac, -1 }, /* li r0, 172 */
778 { 0x44000002, -1 }, /* sc */
779 { TRAMP_SENTINEL_INSN },
780 },
781 ppc32_linux_sigaction_cache_init
782 };
783 static struct tramp_frame ppc64_linux_sigaction_tramp_frame = {
784 SIGTRAMP_FRAME,
785 4,
786 {
787 { 0x38210080, -1 }, /* addi r1,r1,128 */
788 { 0x380000ac, -1 }, /* li r0, 172 */
789 { 0x44000002, -1 }, /* sc */
790 { TRAMP_SENTINEL_INSN },
791 },
792 ppc64_linux_sigaction_cache_init
793 };
794 static struct tramp_frame ppc32_linux_sighandler_tramp_frame = {
795 SIGTRAMP_FRAME,
796 4,
797 {
798 { 0x38000077, -1 }, /* li r0,119 */
799 { 0x44000002, -1 }, /* sc */
800 { TRAMP_SENTINEL_INSN },
801 },
802 ppc32_linux_sighandler_cache_init
803 };
804 static struct tramp_frame ppc64_linux_sighandler_tramp_frame = {
805 SIGTRAMP_FRAME,
806 4,
807 {
808 { 0x38210080, -1 }, /* addi r1,r1,128 */
809 { 0x38000077, -1 }, /* li r0,119 */
810 { 0x44000002, -1 }, /* sc */
811 { TRAMP_SENTINEL_INSN },
812 },
813 ppc64_linux_sighandler_cache_init
814 };
815
816
817 /* Return 1 if PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM are usable. */
818 int
819 ppc_linux_trap_reg_p (struct gdbarch *gdbarch)
820 {
821 /* If we do not have a target description with registers, then
822 the special registers will not be included in the register set. */
823 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
824 return 0;
825
826 /* If we do, then it is safe to check the size. */
827 return register_size (gdbarch, PPC_ORIG_R3_REGNUM) > 0
828 && register_size (gdbarch, PPC_TRAP_REGNUM) > 0;
829 }
830
831 static void
832 ppc_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
833 {
834 struct gdbarch *gdbarch = get_regcache_arch (regcache);
835
836 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
837
838 /* Set special TRAP register to -1 to prevent the kernel from
839 messing with the PC we just installed, if we happen to be
840 within an interrupted system call that the kernel wants to
841 restart.
842
843 Note that after we return from the dummy call, the TRAP and
844 ORIG_R3 registers will be automatically restored, and the
845 kernel continues to restart the system call at this point. */
846 if (ppc_linux_trap_reg_p (gdbarch))
847 regcache_cooked_write_unsigned (regcache, PPC_TRAP_REGNUM, -1);
848 }
849
850 static const struct target_desc *
851 ppc_linux_core_read_description (struct gdbarch *gdbarch,
852 struct target_ops *target,
853 bfd *abfd)
854 {
855 asection *altivec = bfd_get_section_by_name (abfd, ".reg-ppc-vmx");
856 asection *section = bfd_get_section_by_name (abfd, ".reg");
857 if (! section)
858 return NULL;
859
860 switch (bfd_section_size (abfd, section))
861 {
862 case 48 * 4:
863 return altivec? tdesc_powerpc_altivec32l : tdesc_powerpc_32l;
864
865 case 48 * 8:
866 return altivec? tdesc_powerpc_altivec64l : tdesc_powerpc_64l;
867
868 default:
869 return NULL;
870 }
871 }
872
873 static void
874 ppc_linux_init_abi (struct gdbarch_info info,
875 struct gdbarch *gdbarch)
876 {
877 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
878 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
879
880 /* PPC GNU/Linux uses either 64-bit or 128-bit long doubles; where
881 128-bit, they are IBM long double, not IEEE quad long double as
882 in the System V ABI PowerPC Processor Supplement. We can safely
883 let them default to 128-bit, since the debug info will give the
884 size of type actually used in each case. */
885 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
886 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
887
888 /* Handle inferior calls during interrupted system calls. */
889 set_gdbarch_write_pc (gdbarch, ppc_linux_write_pc);
890
891 if (tdep->wordsize == 4)
892 {
893 /* Until November 2001, gcc did not comply with the 32 bit SysV
894 R4 ABI requirement that structures less than or equal to 8
895 bytes should be returned in registers. Instead GCC was using
896 the the AIX/PowerOpen ABI - everything returned in memory
897 (well ignoring vectors that is). When this was corrected, it
898 wasn't fixed for GNU/Linux native platform. Use the
899 PowerOpen struct convention. */
900 set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
901
902 set_gdbarch_memory_remove_breakpoint (gdbarch,
903 ppc_linux_memory_remove_breakpoint);
904
905 /* Shared library handling. */
906 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
907 set_solib_svr4_fetch_link_map_offsets
908 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
909
910 /* Trampolines. */
911 tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sigaction_tramp_frame);
912 tramp_frame_prepend_unwinder (gdbarch, &ppc32_linux_sighandler_tramp_frame);
913 }
914
915 if (tdep->wordsize == 8)
916 {
917 /* Handle PPC GNU/Linux 64-bit function pointers (which are really
918 function descriptors). */
919 set_gdbarch_convert_from_func_ptr_addr
920 (gdbarch, ppc64_linux_convert_from_func_ptr_addr);
921
922 /* Shared library handling. */
923 set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
924 set_solib_svr4_fetch_link_map_offsets
925 (gdbarch, svr4_lp64_fetch_link_map_offsets);
926
927 /* Trampolines. */
928 tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sigaction_tramp_frame);
929 tramp_frame_prepend_unwinder (gdbarch, &ppc64_linux_sighandler_tramp_frame);
930 }
931 set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section);
932 set_gdbarch_core_read_description (gdbarch, ppc_linux_core_read_description);
933
934 /* Enable TLS support. */
935 set_gdbarch_fetch_tls_load_module_address (gdbarch,
936 svr4_fetch_objfile_link_map);
937
938 if (tdesc_data)
939 {
940 const struct tdesc_feature *feature;
941
942 /* If we have target-described registers, then we can safely
943 reserve a number for PPC_ORIG_R3_REGNUM and PPC_TRAP_REGNUM
944 (whether they are described or not). */
945 gdb_assert (gdbarch_num_regs (gdbarch) <= PPC_ORIG_R3_REGNUM);
946 set_gdbarch_num_regs (gdbarch, PPC_TRAP_REGNUM + 1);
947
948 /* If they are present, then assign them to the reserved number. */
949 feature = tdesc_find_feature (info.target_desc,
950 "org.gnu.gdb.power.linux");
951 if (feature != NULL)
952 {
953 tdesc_numbered_register (feature, tdesc_data,
954 PPC_ORIG_R3_REGNUM, "orig_r3");
955 tdesc_numbered_register (feature, tdesc_data,
956 PPC_TRAP_REGNUM, "trap");
957 }
958 }
959 }
960
961 void
962 _initialize_ppc_linux_tdep (void)
963 {
964 /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
965 64-bit PowerPC, and the older rs6k. */
966 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
967 ppc_linux_init_abi);
968 gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
969 ppc_linux_init_abi);
970 gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
971 ppc_linux_init_abi);
972
973 /* Initialize the Linux target descriptions. */
974 initialize_tdesc_powerpc_32l ();
975 initialize_tdesc_powerpc_altivec32l ();
976 initialize_tdesc_powerpc_64l ();
977 initialize_tdesc_powerpc_altivec64l ();
978 initialize_tdesc_powerpc_e500l ();
979 }