Wed Dec 16 16:17:22 1998 Dave Brolley <brolley@cygnus.com>
[binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2 Copyright 1986, 87, 88, 89, 90, 91, 93, 94, 95, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "frame.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "language.h"
28 #include "expression.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "breakpoint.h"
33 #include "demangle.h"
34 #include "valprint.h"
35 #include "annotate.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38
39 extern int asm_demangle; /* Whether to demangle syms in asm printouts */
40 extern int addressprint; /* Whether to print hex addresses in HLL " */
41
42 struct format_data
43 {
44 int count;
45 char format;
46 char size;
47 };
48
49 /* Last specified output format. */
50
51 static char last_format = 'x';
52
53 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
54
55 static char last_size = 'w';
56
57 /* Default address to examine next. */
58
59 static CORE_ADDR next_address;
60
61 /* Default section to examine next. */
62
63 static asection *next_section;
64
65 /* Last address examined. */
66
67 static CORE_ADDR last_examine_address;
68
69 /* Contents of last address examined.
70 This is not valid past the end of the `x' command! */
71
72 static value_ptr last_examine_value;
73
74 /* Largest offset between a symbolic value and an address, that will be
75 printed as `0x1234 <symbol+offset>'. */
76
77 static unsigned int max_symbolic_offset = UINT_MAX;
78
79 /* Append the source filename and linenumber of the symbol when
80 printing a symbolic value as `<symbol at filename:linenum>' if set. */
81 static int print_symbol_filename = 0;
82
83 /* Number of auto-display expression currently being displayed.
84 So that we can disable it if we get an error or a signal within it.
85 -1 when not doing one. */
86
87 int current_display_number;
88
89 /* Flag to low-level print routines that this value is being printed
90 in an epoch window. We'd like to pass this as a parameter, but
91 every routine would need to take it. Perhaps we can encapsulate
92 this in the I/O stream once we have GNU stdio. */
93
94 int inspect_it = 0;
95
96 struct display
97 {
98 /* Chain link to next auto-display item. */
99 struct display *next;
100 /* Expression to be evaluated and displayed. */
101 struct expression *exp;
102 /* Item number of this auto-display item. */
103 int number;
104 /* Display format specified. */
105 struct format_data format;
106 /* Innermost block required by this expression when evaluated */
107 struct block *block;
108 /* Status of this display (enabled or disabled) */
109 enum enable status;
110 };
111
112 /* Chain of expressions whose values should be displayed
113 automatically each time the program stops. */
114
115 static struct display *display_chain;
116
117 static int display_number;
118
119 /* Pointer to the target-dependent disassembly function. */
120
121 int (*tm_print_insn) PARAMS ((bfd_vma, disassemble_info *));
122 disassemble_info tm_print_insn_info;
123
124 /* Prototypes for exported functions. */
125
126 void output_command PARAMS ((char *, int));
127
128 void _initialize_printcmd PARAMS ((void));
129
130 /* Prototypes for local functions. */
131
132 static void delete_display PARAMS ((int));
133
134 static void enable_display PARAMS ((char *, int));
135
136 static void disable_display_command PARAMS ((char *, int));
137
138 static void disassemble_command PARAMS ((char *, int));
139
140 static void printf_command PARAMS ((char *, int));
141
142 static void print_frame_nameless_args PARAMS ((struct frame_info *, long,
143 int, int, GDB_FILE *));
144
145 static void display_info PARAMS ((char *, int));
146
147 static void do_one_display PARAMS ((struct display *));
148
149 static void undisplay_command PARAMS ((char *, int));
150
151 static void free_display PARAMS ((struct display *));
152
153 static void display_command PARAMS ((char *, int));
154
155 void x_command PARAMS ((char *, int));
156
157 static void address_info PARAMS ((char *, int));
158
159 static void set_command PARAMS ((char *, int));
160
161 static void call_command PARAMS ((char *, int));
162
163 static void inspect_command PARAMS ((char *, int));
164
165 static void print_command PARAMS ((char *, int));
166
167 static void print_command_1 PARAMS ((char *, int, int));
168
169 static void validate_format PARAMS ((struct format_data, char *));
170
171 static void do_examine PARAMS ((struct format_data, CORE_ADDR addr, asection *section));
172
173 static void print_formatted PARAMS ((value_ptr, int, int));
174
175 static struct format_data decode_format PARAMS ((char **, int, int));
176
177 static int print_insn PARAMS ((CORE_ADDR, GDB_FILE *));
178
179 static void sym_info PARAMS ((char *, int));
180
181 \f
182 /* Decode a format specification. *STRING_PTR should point to it.
183 OFORMAT and OSIZE are used as defaults for the format and size
184 if none are given in the format specification.
185 If OSIZE is zero, then the size field of the returned value
186 should be set only if a size is explicitly specified by the
187 user.
188 The structure returned describes all the data
189 found in the specification. In addition, *STRING_PTR is advanced
190 past the specification and past all whitespace following it. */
191
192 static struct format_data
193 decode_format (string_ptr, oformat, osize)
194 char **string_ptr;
195 int oformat;
196 int osize;
197 {
198 struct format_data val;
199 register char *p = *string_ptr;
200
201 val.format = '?';
202 val.size = '?';
203 val.count = 1;
204
205 if (*p >= '0' && *p <= '9')
206 val.count = atoi (p);
207 while (*p >= '0' && *p <= '9') p++;
208
209 /* Now process size or format letters that follow. */
210
211 while (1)
212 {
213 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
214 val.size = *p++;
215 else if (*p >= 'a' && *p <= 'z')
216 val.format = *p++;
217 else
218 break;
219 }
220
221 while (*p == ' ' || *p == '\t') p++;
222 *string_ptr = p;
223
224 /* Set defaults for format and size if not specified. */
225 if (val.format == '?')
226 {
227 if (val.size == '?')
228 {
229 /* Neither has been specified. */
230 val.format = oformat;
231 val.size = osize;
232 }
233 else
234 /* If a size is specified, any format makes a reasonable
235 default except 'i'. */
236 val.format = oformat == 'i' ? 'x' : oformat;
237 }
238 else if (val.size == '?')
239 switch (val.format)
240 {
241 case 'a':
242 case 's':
243 /* Pick the appropriate size for an address. */
244 if (TARGET_PTR_BIT == 64)
245 val.size = osize ? 'g' : osize;
246 else if (TARGET_PTR_BIT == 32)
247 val.size = osize ? 'w' : osize;
248 else if (TARGET_PTR_BIT == 16)
249 val.size = osize ? 'h' : osize;
250 else
251 /* Bad value for TARGET_PTR_BIT */
252 abort ();
253 break;
254 case 'f':
255 /* Floating point has to be word or giantword. */
256 if (osize == 'w' || osize == 'g')
257 val.size = osize;
258 else
259 /* Default it to giantword if the last used size is not
260 appropriate. */
261 val.size = osize ? 'g' : osize;
262 break;
263 case 'c':
264 /* Characters default to one byte. */
265 val.size = osize ? 'b' : osize;
266 break;
267 default:
268 /* The default is the size most recently specified. */
269 val.size = osize;
270 }
271
272 return val;
273 }
274 \f
275 /* Print value VAL on gdb_stdout according to FORMAT, a letter or 0.
276 Do not end with a newline.
277 0 means print VAL according to its own type.
278 SIZE is the letter for the size of datum being printed.
279 This is used to pad hex numbers so they line up. */
280
281 static void
282 print_formatted (val, format, size)
283 register value_ptr val;
284 register int format;
285 int size;
286 {
287 struct type *type = check_typedef (VALUE_TYPE (val));
288 int len = TYPE_LENGTH (type);
289
290 if (VALUE_LVAL (val) == lval_memory)
291 {
292 next_address = VALUE_ADDRESS (val) + len;
293 next_section = VALUE_BFD_SECTION (val);
294 }
295
296 switch (format)
297 {
298 case 's':
299 /* FIXME: Need to handle wchar_t's here... */
300 next_address = VALUE_ADDRESS (val)
301 + val_print_string (VALUE_ADDRESS (val), -1, 1, gdb_stdout);
302 next_section = VALUE_BFD_SECTION (val);
303 break;
304
305 case 'i':
306 /* The old comment says
307 "Force output out, print_insn not using _filtered".
308 I'm not completely sure what that means, I suspect most print_insn
309 now do use _filtered, so I guess it's obsolete. */
310 /* We often wrap here if there are long symbolic names. */
311 wrap_here (" ");
312 next_address = VALUE_ADDRESS (val)
313 + print_insn (VALUE_ADDRESS (val), gdb_stdout);
314 next_section = VALUE_BFD_SECTION (val);
315 break;
316
317 default:
318 if (format == 0
319 || TYPE_CODE (type) == TYPE_CODE_ARRAY
320 || TYPE_CODE (type) == TYPE_CODE_STRING
321 || TYPE_CODE (type) == TYPE_CODE_STRUCT
322 || TYPE_CODE (type) == TYPE_CODE_UNION)
323 value_print (val, gdb_stdout, format, Val_pretty_default);
324 else
325 print_scalar_formatted (VALUE_CONTENTS (val), type,
326 format, size, gdb_stdout);
327 }
328 }
329
330 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
331 according to letters FORMAT and SIZE on STREAM.
332 FORMAT may not be zero. Formats s and i are not supported at this level.
333
334 This is how the elements of an array or structure are printed
335 with a format. */
336
337 void
338 print_scalar_formatted (valaddr, type, format, size, stream)
339 char *valaddr;
340 struct type *type;
341 int format;
342 int size;
343 GDB_FILE *stream;
344 {
345 LONGEST val_long;
346 unsigned int len = TYPE_LENGTH (type);
347
348 if (len > sizeof (LONGEST)
349 && (format == 't'
350 || format == 'c'
351 || format == 'o'
352 || format == 'u'
353 || format == 'd'
354 || format == 'x'))
355 {
356 if (! TYPE_UNSIGNED (type)
357 || ! extract_long_unsigned_integer (valaddr, len, &val_long))
358 {
359 /* We can't print it normally, but we can print it in hex.
360 Printing it in the wrong radix is more useful than saying
361 "use /x, you dummy". */
362 /* FIXME: we could also do octal or binary if that was the
363 desired format. */
364 /* FIXME: we should be using the size field to give us a
365 minimum field width to print. */
366 val_print_type_code_int (type, valaddr, stream);
367 return;
368 }
369
370 /* If we get here, extract_long_unsigned_integer set val_long. */
371 }
372 else if (format != 'f')
373 val_long = unpack_long (type, valaddr);
374
375 /* If we are printing it as unsigned, truncate it in case it is actually
376 a negative signed value (e.g. "print/u (short)-1" should print 65535
377 (if shorts are 16 bits) instead of 4294967295). */
378 if (format != 'd')
379 {
380 if (len < sizeof (LONGEST))
381 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
382 }
383
384 switch (format)
385 {
386 case 'x':
387 if (!size)
388 {
389 /* no size specified, like in print. Print varying # of digits. */
390 print_longest (stream, 'x', 1, val_long);
391 }
392 else
393 switch (size)
394 {
395 case 'b':
396 case 'h':
397 case 'w':
398 case 'g':
399 print_longest (stream, size, 1, val_long);
400 break;
401 default:
402 error ("Undefined output size \"%c\".", size);
403 }
404 break;
405
406 case 'd':
407 print_longest (stream, 'd', 1, val_long);
408 break;
409
410 case 'u':
411 print_longest (stream, 'u', 0, val_long);
412 break;
413
414 case 'o':
415 if (val_long)
416 print_longest (stream, 'o', 1, val_long);
417 else
418 fprintf_filtered (stream, "0");
419 break;
420
421 case 'a':
422 print_address (unpack_pointer (type, valaddr), stream);
423 break;
424
425 case 'c':
426 value_print (value_from_longest (builtin_type_char, val_long), stream, 0,
427 Val_pretty_default);
428 break;
429
430 case 'f':
431 if (len == sizeof (float))
432 type = builtin_type_float;
433 else if (len == sizeof (double))
434 type = builtin_type_double;
435 print_floating (valaddr, type, stream);
436 break;
437
438 case 0:
439 abort ();
440
441 case 't':
442 /* Binary; 't' stands for "two". */
443 {
444 char bits[8*(sizeof val_long) + 1];
445 char *cp = bits;
446 int width;
447
448 if (!size)
449 width = 8*(sizeof val_long);
450 else
451 switch (size)
452 {
453 case 'b':
454 width = 8;
455 break;
456 case 'h':
457 width = 16;
458 break;
459 case 'w':
460 width = 32;
461 break;
462 case 'g':
463 width = 64;
464 break;
465 default:
466 error ("Undefined output size \"%c\".", size);
467 }
468
469 bits[width] = '\0';
470 while (width-- > 0)
471 {
472 bits[width] = (val_long & 1) ? '1' : '0';
473 val_long >>= 1;
474 }
475 if (!size)
476 {
477 while (*cp && *cp == '0')
478 cp++;
479 if (*cp == '\0')
480 cp--;
481 }
482 fprintf_filtered (stream, local_binary_format_prefix());
483 fprintf_filtered (stream, cp);
484 fprintf_filtered (stream, local_binary_format_suffix());
485 }
486 break;
487
488 default:
489 error ("Undefined output format \"%c\".", format);
490 }
491 }
492
493 /* Specify default address for `x' command.
494 `info lines' uses this. */
495
496 void
497 set_next_address (addr)
498 CORE_ADDR addr;
499 {
500 next_address = addr;
501
502 /* Make address available to the user as $_. */
503 set_internalvar (lookup_internalvar ("_"),
504 value_from_longest (lookup_pointer_type (builtin_type_void),
505 (LONGEST) addr));
506 }
507
508 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
509 after LEADIN. Print nothing if no symbolic name is found nearby.
510 Optionally also print source file and line number, if available.
511 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
512 or to interpret it as a possible C++ name and convert it back to source
513 form. However note that DO_DEMANGLE can be overridden by the specific
514 settings of the demangle and asm_demangle variables. */
515
516 void
517 print_address_symbolic (addr, stream, do_demangle, leadin)
518 CORE_ADDR addr;
519 GDB_FILE *stream;
520 int do_demangle;
521 char *leadin;
522 {
523 struct minimal_symbol *msymbol;
524 struct symbol *symbol;
525 struct symtab *symtab = 0;
526 CORE_ADDR name_location = 0;
527 char *name = "";
528 asection *section = 0;
529 int unmapped = 0;
530
531 /* Determine if the address is in an overlay, and whether it is mapped. */
532 if (overlay_debugging)
533 {
534 section = find_pc_overlay (addr);
535 if (pc_in_unmapped_range (addr, section))
536 {
537 unmapped = 1;
538 addr = overlay_mapped_address (addr, section);
539 }
540 }
541
542 /* On some targets, add in extra "flag" bits to PC for
543 disassembly. This should ensure that "rounding errors" in
544 symbol addresses that are masked for disassembly favour the
545 the correct symbol. */
546
547 #ifdef GDB_TARGET_UNMASK_DISAS_PC
548 addr = GDB_TARGET_UNMASK_DISAS_PC (addr);
549 #endif
550
551 /* First try to find the address in the symbol table, then
552 in the minsyms. Take the closest one. */
553
554 /* This is defective in the sense that it only finds text symbols. So
555 really this is kind of pointless--we should make sure that the
556 minimal symbols have everything we need (by changing that we could
557 save some memory, but for many debug format--ELF/DWARF or
558 anything/stabs--it would be inconvenient to eliminate those minimal
559 symbols anyway). */
560 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
561 symbol = find_pc_sect_function (addr, section);
562
563 if (symbol)
564 {
565 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
566 if (do_demangle)
567 name = SYMBOL_SOURCE_NAME (symbol);
568 else
569 name = SYMBOL_LINKAGE_NAME (symbol);
570 }
571
572 if (msymbol != NULL)
573 {
574 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
575 {
576 /* The msymbol is closer to the address than the symbol;
577 use the msymbol instead. */
578 symbol = 0;
579 symtab = 0;
580 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
581 if (do_demangle)
582 name = SYMBOL_SOURCE_NAME (msymbol);
583 else
584 name = SYMBOL_LINKAGE_NAME (msymbol);
585 }
586 }
587 if (symbol == NULL && msymbol == NULL)
588 return;
589
590 /* On some targets, mask out extra "flag" bits from PC for handsome
591 disassembly. */
592
593 #ifdef GDB_TARGET_MASK_DISAS_PC
594 name_location = GDB_TARGET_MASK_DISAS_PC (name_location);
595 addr = GDB_TARGET_MASK_DISAS_PC (addr);
596 #endif
597
598 /* If the nearest symbol is too far away, don't print anything symbolic. */
599
600 /* For when CORE_ADDR is larger than unsigned int, we do math in
601 CORE_ADDR. But when we detect unsigned wraparound in the
602 CORE_ADDR math, we ignore this test and print the offset,
603 because addr+max_symbolic_offset has wrapped through the end
604 of the address space back to the beginning, giving bogus comparison. */
605 if (addr > name_location + max_symbolic_offset
606 && name_location + max_symbolic_offset > name_location)
607 return;
608
609 fputs_filtered (leadin, stream);
610 if (unmapped)
611 fputs_filtered ("<*", stream);
612 else
613 fputs_filtered ("<", stream);
614 fputs_filtered (name, stream);
615 if (addr != name_location)
616 fprintf_filtered (stream, "+%u", (unsigned int)(addr - name_location));
617
618 /* Append source filename and line number if desired. Give specific
619 line # of this addr, if we have it; else line # of the nearest symbol. */
620 if (print_symbol_filename)
621 {
622 struct symtab_and_line sal;
623
624 sal = find_pc_sect_line (addr, section, 0);
625
626 if (sal.symtab)
627 fprintf_filtered (stream, " at %s:%d", sal.symtab->filename, sal.line);
628 else if (symtab && symbol && symbol->line)
629 fprintf_filtered (stream, " at %s:%d", symtab->filename, symbol->line);
630 else if (symtab)
631 fprintf_filtered (stream, " in %s", symtab->filename);
632 }
633 if (unmapped)
634 fputs_filtered ("*>", stream);
635 else
636 fputs_filtered (">", stream);
637 }
638
639 /* Print address ADDR on STREAM. USE_LOCAL means the same thing as for
640 print_longest. */
641 void
642 print_address_numeric (addr, use_local, stream)
643 CORE_ADDR addr;
644 int use_local;
645 GDB_FILE *stream;
646 {
647 /* This assumes a CORE_ADDR can fit in a LONGEST. Probably a safe
648 assumption. */
649 print_longest (stream, 'x', use_local, (ULONGEST) addr);
650 }
651
652 /* Print address ADDR symbolically on STREAM.
653 First print it as a number. Then perhaps print
654 <SYMBOL + OFFSET> after the number. */
655
656 void
657 print_address (addr, stream)
658 CORE_ADDR addr;
659 GDB_FILE *stream;
660 {
661 print_address_numeric (addr, 1, stream);
662 print_address_symbolic (addr, stream, asm_demangle, " ");
663 }
664
665 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
666 controls whether to print the symbolic name "raw" or demangled.
667 Global setting "addressprint" controls whether to print hex address
668 or not. */
669
670 void
671 print_address_demangle (addr, stream, do_demangle)
672 CORE_ADDR addr;
673 GDB_FILE *stream;
674 int do_demangle;
675 {
676 if (addr == 0)
677 {
678 fprintf_filtered (stream, "0");
679 }
680 else if (addressprint)
681 {
682 print_address_numeric (addr, 1, stream);
683 print_address_symbolic (addr, stream, do_demangle, " ");
684 }
685 else
686 {
687 print_address_symbolic (addr, stream, do_demangle, "");
688 }
689 }
690 \f
691
692 /* These are the types that $__ will get after an examine command of one
693 of these sizes. */
694
695 static struct type *examine_i_type;
696
697 static struct type *examine_b_type;
698 static struct type *examine_h_type;
699 static struct type *examine_w_type;
700 static struct type *examine_g_type;
701
702 /* Examine data at address ADDR in format FMT.
703 Fetch it from memory and print on gdb_stdout. */
704
705 static void
706 do_examine (fmt, addr, sect)
707 struct format_data fmt;
708 CORE_ADDR addr;
709 asection *sect;
710 {
711 register char format = 0;
712 register char size;
713 register int count = 1;
714 struct type *val_type = NULL;
715 register int i;
716 register int maxelts;
717
718 format = fmt.format;
719 size = fmt.size;
720 count = fmt.count;
721 next_address = addr;
722 next_section = sect;
723
724 /* String or instruction format implies fetch single bytes
725 regardless of the specified size. */
726 if (format == 's' || format == 'i')
727 size = 'b';
728
729 if (format == 'i')
730 val_type = examine_i_type;
731 else if (size == 'b')
732 val_type = examine_b_type;
733 else if (size == 'h')
734 val_type = examine_h_type;
735 else if (size == 'w')
736 val_type = examine_w_type;
737 else if (size == 'g')
738 val_type = examine_g_type;
739
740 maxelts = 8;
741 if (size == 'w')
742 maxelts = 4;
743 if (size == 'g')
744 maxelts = 2;
745 if (format == 's' || format == 'i')
746 maxelts = 1;
747
748 /* Print as many objects as specified in COUNT, at most maxelts per line,
749 with the address of the next one at the start of each line. */
750
751 while (count > 0)
752 {
753 QUIT;
754 print_address (next_address, gdb_stdout);
755 printf_filtered (":");
756 for (i = maxelts;
757 i > 0 && count > 0;
758 i--, count--)
759 {
760 printf_filtered ("\t");
761 /* Note that print_formatted sets next_address for the next
762 object. */
763 last_examine_address = next_address;
764 /* The value to be displayed is not fetched greedily.
765 Instead, to avoid the posibility of a fetched value not
766 being used, its retreval is delayed until the print code
767 uses it. When examining an instruction stream, the
768 disassembler will perform its own memory fetch using just
769 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
770 the disassembler be modified so that LAST_EXAMINE_VALUE
771 is left with the byte sequence from the last complete
772 instruction fetched from memory? */
773 last_examine_value = value_at_lazy (val_type, next_address, sect);
774 print_formatted (last_examine_value, format, size);
775 }
776 printf_filtered ("\n");
777 gdb_flush (gdb_stdout);
778 }
779 }
780 \f
781 static void
782 validate_format (fmt, cmdname)
783 struct format_data fmt;
784 char *cmdname;
785 {
786 if (fmt.size != 0)
787 error ("Size letters are meaningless in \"%s\" command.", cmdname);
788 if (fmt.count != 1)
789 error ("Item count other than 1 is meaningless in \"%s\" command.",
790 cmdname);
791 if (fmt.format == 'i' || fmt.format == 's')
792 error ("Format letter \"%c\" is meaningless in \"%s\" command.",
793 fmt.format, cmdname);
794 }
795
796 /* Evaluate string EXP as an expression in the current language and
797 print the resulting value. EXP may contain a format specifier as the
798 first argument ("/x myvar" for example, to print myvar in hex).
799 */
800
801 static void
802 print_command_1 (exp, inspect, voidprint)
803 char *exp;
804 int inspect;
805 int voidprint;
806 {
807 struct expression *expr;
808 register struct cleanup *old_chain = 0;
809 register char format = 0;
810 register value_ptr val;
811 struct format_data fmt;
812 int cleanup = 0;
813
814 /* Pass inspect flag to the rest of the print routines in a global (sigh). */
815 inspect_it = inspect;
816
817 if (exp && *exp == '/')
818 {
819 exp++;
820 fmt = decode_format (&exp, last_format, 0);
821 validate_format (fmt, "print");
822 last_format = format = fmt.format;
823 }
824 else
825 {
826 fmt.count = 1;
827 fmt.format = 0;
828 fmt.size = 0;
829 }
830
831 if (exp && *exp)
832 {
833 extern int objectprint;
834 struct type *type;
835 expr = parse_expression (exp);
836 old_chain = make_cleanup ((make_cleanup_func) free_current_contents,
837 &expr);
838 cleanup = 1;
839 val = evaluate_expression (expr);
840
841 /* C++: figure out what type we actually want to print it as. */
842 type = VALUE_TYPE (val);
843
844 if (objectprint
845 && ( TYPE_CODE (type) == TYPE_CODE_PTR
846 || TYPE_CODE (type) == TYPE_CODE_REF)
847 && ( TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_STRUCT
848 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_UNION))
849 {
850 value_ptr v;
851
852 v = value_from_vtable_info (val, TYPE_TARGET_TYPE (type));
853 if (v != 0)
854 {
855 val = v;
856 type = VALUE_TYPE (val);
857 }
858 }
859 }
860 else
861 val = access_value_history (0);
862
863 if (voidprint || (val && VALUE_TYPE (val) &&
864 TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_VOID))
865 {
866 int histindex = record_latest_value (val);
867
868 if (histindex >= 0)
869 annotate_value_history_begin (histindex, VALUE_TYPE (val));
870 else
871 annotate_value_begin (VALUE_TYPE (val));
872
873 if (inspect)
874 printf_unfiltered ("\031(gdb-makebuffer \"%s\" %d '(\"", exp, histindex);
875 else
876 if (histindex >= 0) printf_filtered ("$%d = ", histindex);
877
878 if (histindex >= 0)
879 annotate_value_history_value ();
880
881 print_formatted (val, format, fmt.size);
882 printf_filtered ("\n");
883
884 if (histindex >= 0)
885 annotate_value_history_end ();
886 else
887 annotate_value_end ();
888
889 if (inspect)
890 printf_unfiltered("\") )\030");
891 }
892
893 if (cleanup)
894 do_cleanups (old_chain);
895 inspect_it = 0; /* Reset print routines to normal */
896 }
897
898 /* ARGSUSED */
899 static void
900 print_command (exp, from_tty)
901 char *exp;
902 int from_tty;
903 {
904 print_command_1 (exp, 0, 1);
905 }
906
907 /* Same as print, except in epoch, it gets its own window */
908 /* ARGSUSED */
909 static void
910 inspect_command (exp, from_tty)
911 char *exp;
912 int from_tty;
913 {
914 extern int epoch_interface;
915
916 print_command_1 (exp, epoch_interface, 1);
917 }
918
919 /* Same as print, except it doesn't print void results. */
920 /* ARGSUSED */
921 static void
922 call_command (exp, from_tty)
923 char *exp;
924 int from_tty;
925 {
926 print_command_1 (exp, 0, 0);
927 }
928
929 /* ARGSUSED */
930 void
931 output_command (exp, from_tty)
932 char *exp;
933 int from_tty;
934 {
935 struct expression *expr;
936 register struct cleanup *old_chain;
937 register char format = 0;
938 register value_ptr val;
939 struct format_data fmt;
940
941 if (exp && *exp == '/')
942 {
943 exp++;
944 fmt = decode_format (&exp, 0, 0);
945 validate_format (fmt, "output");
946 format = fmt.format;
947 }
948
949 expr = parse_expression (exp);
950 old_chain = make_cleanup ((make_cleanup_func) free_current_contents, &expr);
951
952 val = evaluate_expression (expr);
953
954 annotate_value_begin (VALUE_TYPE (val));
955
956 print_formatted (val, format, fmt.size);
957
958 annotate_value_end ();
959
960 do_cleanups (old_chain);
961 }
962
963 /* ARGSUSED */
964 static void
965 set_command (exp, from_tty)
966 char *exp;
967 int from_tty;
968 {
969 struct expression *expr = parse_expression (exp);
970 register struct cleanup *old_chain
971 = make_cleanup ((make_cleanup_func) free_current_contents, &expr);
972 evaluate_expression (expr);
973 do_cleanups (old_chain);
974 }
975
976 /* ARGSUSED */
977 static void
978 sym_info (arg, from_tty)
979 char *arg;
980 int from_tty;
981 {
982 struct minimal_symbol *msymbol;
983 struct objfile *objfile;
984 struct obj_section *osect;
985 asection *sect;
986 CORE_ADDR addr, sect_addr;
987 int matches = 0;
988 unsigned int offset;
989
990 if (!arg)
991 error_no_arg ("address");
992
993 addr = parse_and_eval_address (arg);
994 ALL_OBJSECTIONS (objfile, osect)
995 {
996 sect = osect->the_bfd_section;
997 sect_addr = overlay_mapped_address (addr, sect);
998
999 if (osect->addr <= sect_addr && sect_addr < osect->endaddr &&
1000 (msymbol = lookup_minimal_symbol_by_pc_section (sect_addr, sect)))
1001 {
1002 matches = 1;
1003 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
1004 if (offset)
1005 printf_filtered ("%s + %u in ",
1006 SYMBOL_SOURCE_NAME (msymbol), offset);
1007 else
1008 printf_filtered ("%s in ",
1009 SYMBOL_SOURCE_NAME (msymbol));
1010 if (pc_in_unmapped_range (addr, sect))
1011 printf_filtered ("load address range of ");
1012 if (section_is_overlay (sect))
1013 printf_filtered ("%s overlay ",
1014 section_is_mapped (sect) ? "mapped" : "unmapped");
1015 printf_filtered ("section %s", sect->name);
1016 printf_filtered ("\n");
1017 }
1018 }
1019 if (matches == 0)
1020 printf_filtered ("No symbol matches %s.\n", arg);
1021 }
1022
1023 /* ARGSUSED */
1024 static void
1025 address_info (exp, from_tty)
1026 char *exp;
1027 int from_tty;
1028 {
1029 register struct symbol *sym;
1030 register struct minimal_symbol *msymbol;
1031 register long val;
1032 register long basereg;
1033 asection *section;
1034 CORE_ADDR load_addr;
1035 int is_a_field_of_this; /* C++: lookup_symbol sets this to nonzero
1036 if exp is a field of `this'. */
1037
1038 if (exp == 0)
1039 error ("Argument required.");
1040
1041 sym = lookup_symbol (exp, get_selected_block (), VAR_NAMESPACE,
1042 &is_a_field_of_this, (struct symtab **)NULL);
1043 if (sym == NULL)
1044 {
1045 if (is_a_field_of_this)
1046 {
1047 printf_filtered ("Symbol \"");
1048 fprintf_symbol_filtered (gdb_stdout, exp,
1049 current_language->la_language, DMGL_ANSI);
1050 printf_filtered ("\" is a field of the local class variable `this'\n");
1051 return;
1052 }
1053
1054 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1055
1056 if (msymbol != NULL)
1057 {
1058 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1059
1060 printf_filtered ("Symbol \"");
1061 fprintf_symbol_filtered (gdb_stdout, exp,
1062 current_language->la_language, DMGL_ANSI);
1063 printf_filtered ("\" is at ");
1064 print_address_numeric (load_addr, 1, gdb_stdout);
1065 printf_filtered (" in a file compiled without debugging");
1066 section = SYMBOL_BFD_SECTION (msymbol);
1067 if (section_is_overlay (section))
1068 {
1069 load_addr = overlay_unmapped_address (load_addr, section);
1070 printf_filtered (",\n -- loaded at ");
1071 print_address_numeric (load_addr, 1, gdb_stdout);
1072 printf_filtered (" in overlay section %s", section->name);
1073 }
1074 printf_filtered (".\n");
1075 }
1076 else
1077 error ("No symbol \"%s\" in current context.", exp);
1078 return;
1079 }
1080
1081 printf_filtered ("Symbol \"");
1082 fprintf_symbol_filtered (gdb_stdout, SYMBOL_NAME (sym),
1083 current_language->la_language, DMGL_ANSI);
1084 printf_filtered ("\" is ");
1085 val = SYMBOL_VALUE (sym);
1086 basereg = SYMBOL_BASEREG (sym);
1087 section = SYMBOL_BFD_SECTION (sym);
1088
1089 switch (SYMBOL_CLASS (sym))
1090 {
1091 case LOC_CONST:
1092 case LOC_CONST_BYTES:
1093 printf_filtered ("constant");
1094 break;
1095
1096 case LOC_LABEL:
1097 printf_filtered ("a label at address ");
1098 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1099 1, gdb_stdout);
1100 if (section_is_overlay (section))
1101 {
1102 load_addr = overlay_unmapped_address (load_addr, section);
1103 printf_filtered (",\n -- loaded at ");
1104 print_address_numeric (load_addr, 1, gdb_stdout);
1105 printf_filtered (" in overlay section %s", section->name);
1106 }
1107 break;
1108
1109 case LOC_REGISTER:
1110 printf_filtered ("a variable in register %s", REGISTER_NAME (val));
1111 break;
1112
1113 case LOC_STATIC:
1114 printf_filtered ("static storage at address ");
1115 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (sym),
1116 1, gdb_stdout);
1117 if (section_is_overlay (section))
1118 {
1119 load_addr = overlay_unmapped_address (load_addr, section);
1120 printf_filtered (",\n -- loaded at ");
1121 print_address_numeric (load_addr, 1, gdb_stdout);
1122 printf_filtered (" in overlay section %s", section->name);
1123 }
1124 break;
1125
1126 case LOC_REGPARM:
1127 printf_filtered ("an argument in register %s", REGISTER_NAME (val));
1128 break;
1129
1130 case LOC_REGPARM_ADDR:
1131 printf_filtered ("address of an argument in register %s", REGISTER_NAME (val));
1132 break;
1133
1134 case LOC_ARG:
1135 printf_filtered ("an argument at offset %ld", val);
1136 break;
1137
1138 case LOC_LOCAL_ARG:
1139 printf_filtered ("an argument at frame offset %ld", val);
1140 break;
1141
1142 case LOC_LOCAL:
1143 printf_filtered ("a local variable at frame offset %ld", val);
1144 break;
1145
1146 case LOC_REF_ARG:
1147 printf_filtered ("a reference argument at offset %ld", val);
1148 break;
1149
1150 case LOC_BASEREG:
1151 printf_filtered ("a variable at offset %ld from register %s",
1152 val, REGISTER_NAME (basereg));
1153 break;
1154
1155 case LOC_BASEREG_ARG:
1156 printf_filtered ("an argument at offset %ld from register %s",
1157 val, REGISTER_NAME (basereg));
1158 break;
1159
1160 case LOC_TYPEDEF:
1161 printf_filtered ("a typedef");
1162 break;
1163
1164 case LOC_BLOCK:
1165 printf_filtered ("a function at address ");
1166 #ifdef GDB_TARGET_MASK_DISAS_PC
1167 print_address_numeric
1168 (load_addr= GDB_TARGET_MASK_DISAS_PC (BLOCK_START (SYMBOL_BLOCK_VALUE (sym))),
1169 1, gdb_stdout);
1170 #else
1171 print_address_numeric (load_addr=BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
1172 1, gdb_stdout);
1173 #endif
1174 if (section_is_overlay (section))
1175 {
1176 load_addr = overlay_unmapped_address (load_addr, section);
1177 printf_filtered (",\n -- loaded at ");
1178 print_address_numeric (load_addr, 1, gdb_stdout);
1179 printf_filtered (" in overlay section %s", section->name);
1180 }
1181 break;
1182
1183 case LOC_UNRESOLVED:
1184 {
1185 struct minimal_symbol *msym;
1186
1187 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, NULL);
1188 if (msym == NULL)
1189 printf_filtered ("unresolved");
1190 else
1191 {
1192 section = SYMBOL_BFD_SECTION (msym);
1193 printf_filtered ("static storage at address ");
1194 print_address_numeric (load_addr = SYMBOL_VALUE_ADDRESS (msym),
1195 1, gdb_stdout);
1196 if (section_is_overlay (section))
1197 {
1198 load_addr = overlay_unmapped_address (load_addr, section);
1199 printf_filtered (",\n -- loaded at ");
1200 print_address_numeric (load_addr, 1, gdb_stdout);
1201 printf_filtered (" in overlay section %s", section->name);
1202 }
1203 }
1204 }
1205 break;
1206
1207 case LOC_OPTIMIZED_OUT:
1208 printf_filtered ("optimized out");
1209 break;
1210
1211 default:
1212 printf_filtered ("of unknown (botched) type");
1213 break;
1214 }
1215 printf_filtered (".\n");
1216 }
1217 \f
1218 void
1219 x_command (exp, from_tty)
1220 char *exp;
1221 int from_tty;
1222 {
1223 struct expression *expr;
1224 struct format_data fmt;
1225 struct cleanup *old_chain;
1226 struct value *val;
1227
1228 fmt.format = last_format;
1229 fmt.size = last_size;
1230 fmt.count = 1;
1231
1232 if (exp && *exp == '/')
1233 {
1234 exp++;
1235 fmt = decode_format (&exp, last_format, last_size);
1236 }
1237
1238 /* If we have an expression, evaluate it and use it as the address. */
1239
1240 if (exp != 0 && *exp != 0)
1241 {
1242 expr = parse_expression (exp);
1243 /* Cause expression not to be there any more
1244 if this command is repeated with Newline.
1245 But don't clobber a user-defined command's definition. */
1246 if (from_tty)
1247 *exp = 0;
1248 old_chain = make_cleanup ((make_cleanup_func) free_current_contents,
1249 &expr);
1250 val = evaluate_expression (expr);
1251 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_REF)
1252 val = value_ind (val);
1253 /* In rvalue contexts, such as this, functions are coerced into
1254 pointers to functions. This makes "x/i main" work. */
1255 if (/* last_format == 'i'
1256 && */ TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
1257 && VALUE_LVAL (val) == lval_memory)
1258 next_address = VALUE_ADDRESS (val);
1259 else
1260 next_address = value_as_pointer (val);
1261 if (VALUE_BFD_SECTION (val))
1262 next_section = VALUE_BFD_SECTION (val);
1263 do_cleanups (old_chain);
1264 }
1265
1266 do_examine (fmt, next_address, next_section);
1267
1268 /* If the examine succeeds, we remember its size and format for next time. */
1269 last_size = fmt.size;
1270 last_format = fmt.format;
1271
1272 /* Set a couple of internal variables if appropriate. */
1273 if (last_examine_value)
1274 {
1275 /* Make last address examined available to the user as $_. Use
1276 the correct pointer type. */
1277 set_internalvar (lookup_internalvar ("_"),
1278 value_from_longest (
1279 lookup_pointer_type (VALUE_TYPE (last_examine_value)),
1280 (LONGEST) last_examine_address));
1281
1282 /* Make contents of last address examined available to the user as $__.*/
1283 /* If the last value has not been fetched from memory then don't
1284 fetch it now - instead mark it by voiding the $__ variable. */
1285 if (VALUE_LAZY (last_examine_value))
1286 set_internalvar (lookup_internalvar ("__"),
1287 allocate_value (builtin_type_void));
1288 else
1289 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1290 }
1291 }
1292
1293 \f
1294 /* Add an expression to the auto-display chain.
1295 Specify the expression. */
1296
1297 static void
1298 display_command (exp, from_tty)
1299 char *exp;
1300 int from_tty;
1301 {
1302 struct format_data fmt;
1303 register struct expression *expr;
1304 register struct display *new;
1305
1306 if (exp == 0)
1307 {
1308 do_displays ();
1309 return;
1310 }
1311
1312 if (*exp == '/')
1313 {
1314 exp++;
1315 fmt = decode_format (&exp, 0, 0);
1316 if (fmt.size && fmt.format == 0)
1317 fmt.format = 'x';
1318 if (fmt.format == 'i' || fmt.format == 's')
1319 fmt.size = 'b';
1320 }
1321 else
1322 {
1323 fmt.format = 0;
1324 fmt.size = 0;
1325 fmt.count = 0;
1326 }
1327
1328 innermost_block = 0;
1329 expr = parse_expression (exp);
1330
1331 new = (struct display *) xmalloc (sizeof (struct display));
1332
1333 new->exp = expr;
1334 new->block = innermost_block;
1335 new->next = display_chain;
1336 new->number = ++display_number;
1337 new->format = fmt;
1338 new->status = enabled;
1339 display_chain = new;
1340
1341 if (from_tty && target_has_execution)
1342 do_one_display (new);
1343
1344 dont_repeat ();
1345 }
1346
1347 static void
1348 free_display (d)
1349 struct display *d;
1350 {
1351 free ((PTR)d->exp);
1352 free ((PTR)d);
1353 }
1354
1355 /* Clear out the display_chain.
1356 Done when new symtabs are loaded, since this invalidates
1357 the types stored in many expressions. */
1358
1359 void
1360 clear_displays ()
1361 {
1362 register struct display *d;
1363
1364 while ((d = display_chain) != NULL)
1365 {
1366 free ((PTR)d->exp);
1367 display_chain = d->next;
1368 free ((PTR)d);
1369 }
1370 }
1371
1372 /* Delete the auto-display number NUM. */
1373
1374 static void
1375 delete_display (num)
1376 int num;
1377 {
1378 register struct display *d1, *d;
1379
1380 if (!display_chain)
1381 error ("No display number %d.", num);
1382
1383 if (display_chain->number == num)
1384 {
1385 d1 = display_chain;
1386 display_chain = d1->next;
1387 free_display (d1);
1388 }
1389 else
1390 for (d = display_chain; ; d = d->next)
1391 {
1392 if (d->next == 0)
1393 error ("No display number %d.", num);
1394 if (d->next->number == num)
1395 {
1396 d1 = d->next;
1397 d->next = d1->next;
1398 free_display (d1);
1399 break;
1400 }
1401 }
1402 }
1403
1404 /* Delete some values from the auto-display chain.
1405 Specify the element numbers. */
1406
1407 static void
1408 undisplay_command (args, from_tty)
1409 char *args;
1410 int from_tty;
1411 {
1412 register char *p = args;
1413 register char *p1;
1414 register int num;
1415
1416 if (args == 0)
1417 {
1418 if (query ("Delete all auto-display expressions? "))
1419 clear_displays ();
1420 dont_repeat ();
1421 return;
1422 }
1423
1424 while (*p)
1425 {
1426 p1 = p;
1427 while (*p1 >= '0' && *p1 <= '9') p1++;
1428 if (*p1 && *p1 != ' ' && *p1 != '\t')
1429 error ("Arguments must be display numbers.");
1430
1431 num = atoi (p);
1432
1433 delete_display (num);
1434
1435 p = p1;
1436 while (*p == ' ' || *p == '\t') p++;
1437 }
1438 dont_repeat ();
1439 }
1440
1441 /* Display a single auto-display.
1442 Do nothing if the display cannot be printed in the current context,
1443 or if the display is disabled. */
1444
1445 static void
1446 do_one_display (d)
1447 struct display *d;
1448 {
1449 int within_current_scope;
1450
1451 if (d->status == disabled)
1452 return;
1453
1454 if (d->block)
1455 within_current_scope = contained_in (get_selected_block (), d->block);
1456 else
1457 within_current_scope = 1;
1458 if (!within_current_scope)
1459 return;
1460
1461 current_display_number = d->number;
1462
1463 annotate_display_begin ();
1464 printf_filtered ("%d", d->number);
1465 annotate_display_number_end ();
1466 printf_filtered (": ");
1467 if (d->format.size)
1468 {
1469 CORE_ADDR addr;
1470 value_ptr val;
1471
1472 annotate_display_format ();
1473
1474 printf_filtered ("x/");
1475 if (d->format.count != 1)
1476 printf_filtered ("%d", d->format.count);
1477 printf_filtered ("%c", d->format.format);
1478 if (d->format.format != 'i' && d->format.format != 's')
1479 printf_filtered ("%c", d->format.size);
1480 printf_filtered (" ");
1481
1482 annotate_display_expression ();
1483
1484 print_expression (d->exp, gdb_stdout);
1485 annotate_display_expression_end ();
1486
1487 if (d->format.count != 1)
1488 printf_filtered ("\n");
1489 else
1490 printf_filtered (" ");
1491
1492 val = evaluate_expression (d->exp);
1493 addr = value_as_pointer (val);
1494 if (d->format.format == 'i')
1495 addr = ADDR_BITS_REMOVE (addr);
1496
1497 annotate_display_value ();
1498
1499 do_examine (d->format, addr, VALUE_BFD_SECTION (val));
1500 }
1501 else
1502 {
1503 annotate_display_format ();
1504
1505 if (d->format.format)
1506 printf_filtered ("/%c ", d->format.format);
1507
1508 annotate_display_expression ();
1509
1510 print_expression (d->exp, gdb_stdout);
1511 annotate_display_expression_end ();
1512
1513 printf_filtered (" = ");
1514
1515 annotate_display_expression ();
1516
1517 print_formatted (evaluate_expression (d->exp),
1518 d->format.format, d->format.size);
1519 printf_filtered ("\n");
1520 }
1521
1522 annotate_display_end ();
1523
1524 gdb_flush (gdb_stdout);
1525 current_display_number = -1;
1526 }
1527
1528 /* Display all of the values on the auto-display chain which can be
1529 evaluated in the current scope. */
1530
1531 void
1532 do_displays ()
1533 {
1534 register struct display *d;
1535
1536 for (d = display_chain; d; d = d->next)
1537 do_one_display (d);
1538 }
1539
1540 /* Delete the auto-display which we were in the process of displaying.
1541 This is done when there is an error or a signal. */
1542
1543 void
1544 disable_display (num)
1545 int num;
1546 {
1547 register struct display *d;
1548
1549 for (d = display_chain; d; d = d->next)
1550 if (d->number == num)
1551 {
1552 d->status = disabled;
1553 return;
1554 }
1555 printf_unfiltered ("No display number %d.\n", num);
1556 }
1557
1558 void
1559 disable_current_display ()
1560 {
1561 if (current_display_number >= 0)
1562 {
1563 disable_display (current_display_number);
1564 fprintf_unfiltered (gdb_stderr, "Disabling display %d to avoid infinite recursion.\n",
1565 current_display_number);
1566 }
1567 current_display_number = -1;
1568 }
1569
1570 static void
1571 display_info (ignore, from_tty)
1572 char *ignore;
1573 int from_tty;
1574 {
1575 register struct display *d;
1576
1577 if (!display_chain)
1578 printf_unfiltered ("There are no auto-display expressions now.\n");
1579 else
1580 printf_filtered ("Auto-display expressions now in effect:\n\
1581 Num Enb Expression\n");
1582
1583 for (d = display_chain; d; d = d->next)
1584 {
1585 printf_filtered ("%d: %c ", d->number, "ny"[(int)d->status]);
1586 if (d->format.size)
1587 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1588 d->format.format);
1589 else if (d->format.format)
1590 printf_filtered ("/%c ", d->format.format);
1591 print_expression (d->exp, gdb_stdout);
1592 if (d->block && !contained_in (get_selected_block (), d->block))
1593 printf_filtered (" (cannot be evaluated in the current context)");
1594 printf_filtered ("\n");
1595 gdb_flush (gdb_stdout);
1596 }
1597 }
1598
1599 static void
1600 enable_display (args, from_tty)
1601 char *args;
1602 int from_tty;
1603 {
1604 register char *p = args;
1605 register char *p1;
1606 register int num;
1607 register struct display *d;
1608
1609 if (p == 0)
1610 {
1611 for (d = display_chain; d; d = d->next)
1612 d->status = enabled;
1613 }
1614 else
1615 while (*p)
1616 {
1617 p1 = p;
1618 while (*p1 >= '0' && *p1 <= '9')
1619 p1++;
1620 if (*p1 && *p1 != ' ' && *p1 != '\t')
1621 error ("Arguments must be display numbers.");
1622
1623 num = atoi (p);
1624
1625 for (d = display_chain; d; d = d->next)
1626 if (d->number == num)
1627 {
1628 d->status = enabled;
1629 goto win;
1630 }
1631 printf_unfiltered ("No display number %d.\n", num);
1632 win:
1633 p = p1;
1634 while (*p == ' ' || *p == '\t')
1635 p++;
1636 }
1637 }
1638
1639 /* ARGSUSED */
1640 static void
1641 disable_display_command (args, from_tty)
1642 char *args;
1643 int from_tty;
1644 {
1645 register char *p = args;
1646 register char *p1;
1647 register struct display *d;
1648
1649 if (p == 0)
1650 {
1651 for (d = display_chain; d; d = d->next)
1652 d->status = disabled;
1653 }
1654 else
1655 while (*p)
1656 {
1657 p1 = p;
1658 while (*p1 >= '0' && *p1 <= '9')
1659 p1++;
1660 if (*p1 && *p1 != ' ' && *p1 != '\t')
1661 error ("Arguments must be display numbers.");
1662
1663 disable_display (atoi (p));
1664
1665 p = p1;
1666 while (*p == ' ' || *p == '\t')
1667 p++;
1668 }
1669 }
1670
1671 \f
1672 /* Print the value in stack frame FRAME of a variable
1673 specified by a struct symbol. */
1674
1675 void
1676 print_variable_value (var, frame, stream)
1677 struct symbol *var;
1678 struct frame_info *frame;
1679 GDB_FILE *stream;
1680 {
1681 value_ptr val = read_var_value (var, frame);
1682
1683 value_print (val, stream, 0, Val_pretty_default);
1684 }
1685
1686 /* Print the arguments of a stack frame, given the function FUNC
1687 running in that frame (as a symbol), the info on the frame,
1688 and the number of args according to the stack frame (or -1 if unknown). */
1689
1690 /* References here and elsewhere to "number of args according to the
1691 stack frame" appear in all cases to refer to "number of ints of args
1692 according to the stack frame". At least for VAX, i386, isi. */
1693
1694 void
1695 print_frame_args (func, fi, num, stream)
1696 struct symbol *func;
1697 struct frame_info *fi;
1698 int num;
1699 GDB_FILE *stream;
1700 {
1701 struct block *b = NULL;
1702 int nsyms = 0;
1703 int first = 1;
1704 register int i;
1705 register struct symbol *sym;
1706 register value_ptr val;
1707 /* Offset of next stack argument beyond the one we have seen that is
1708 at the highest offset.
1709 -1 if we haven't come to a stack argument yet. */
1710 long highest_offset = -1;
1711 int arg_size;
1712 /* Number of ints of arguments that we have printed so far. */
1713 int args_printed = 0;
1714
1715 if (func)
1716 {
1717 b = SYMBOL_BLOCK_VALUE (func);
1718 nsyms = BLOCK_NSYMS (b);
1719 }
1720
1721 for (i = 0; i < nsyms; i++)
1722 {
1723 QUIT;
1724 sym = BLOCK_SYM (b, i);
1725
1726 /* Keep track of the highest stack argument offset seen, and
1727 skip over any kinds of symbols we don't care about. */
1728
1729 switch (SYMBOL_CLASS (sym)) {
1730 case LOC_ARG:
1731 case LOC_REF_ARG:
1732 {
1733 long current_offset = SYMBOL_VALUE (sym);
1734 arg_size = TYPE_LENGTH (SYMBOL_TYPE (sym));
1735
1736 /* Compute address of next argument by adding the size of
1737 this argument and rounding to an int boundary. */
1738 current_offset
1739 = ((current_offset + arg_size + sizeof (int) - 1)
1740 & ~(sizeof (int) - 1));
1741
1742 /* If this is the highest offset seen yet, set highest_offset. */
1743 if (highest_offset == -1
1744 || (current_offset > highest_offset))
1745 highest_offset = current_offset;
1746
1747 /* Add the number of ints we're about to print to args_printed. */
1748 args_printed += (arg_size + sizeof (int) - 1) / sizeof (int);
1749 }
1750
1751 /* We care about types of symbols, but don't need to keep track of
1752 stack offsets in them. */
1753 case LOC_REGPARM:
1754 case LOC_REGPARM_ADDR:
1755 case LOC_LOCAL_ARG:
1756 case LOC_BASEREG_ARG:
1757 break;
1758
1759 /* Other types of symbols we just skip over. */
1760 default:
1761 continue;
1762 }
1763
1764 /* We have to look up the symbol because arguments can have
1765 two entries (one a parameter, one a local) and the one we
1766 want is the local, which lookup_symbol will find for us.
1767 This includes gcc1 (not gcc2) on the sparc when passing a
1768 small structure and gcc2 when the argument type is float
1769 and it is passed as a double and converted to float by
1770 the prologue (in the latter case the type of the LOC_ARG
1771 symbol is double and the type of the LOC_LOCAL symbol is
1772 float). */
1773 /* But if the parameter name is null, don't try it.
1774 Null parameter names occur on the RS/6000, for traceback tables.
1775 FIXME, should we even print them? */
1776
1777 if (*SYMBOL_NAME (sym))
1778 {
1779 struct symbol *nsym;
1780 nsym = lookup_symbol
1781 (SYMBOL_NAME (sym),
1782 b, VAR_NAMESPACE, (int *)NULL, (struct symtab **)NULL);
1783 if (SYMBOL_CLASS (nsym) == LOC_REGISTER)
1784 {
1785 /* There is a LOC_ARG/LOC_REGISTER pair. This means that
1786 it was passed on the stack and loaded into a register,
1787 or passed in a register and stored in a stack slot.
1788 GDB 3.x used the LOC_ARG; GDB 4.0-4.11 used the LOC_REGISTER.
1789
1790 Reasons for using the LOC_ARG:
1791 (1) because find_saved_registers may be slow for remote
1792 debugging,
1793 (2) because registers are often re-used and stack slots
1794 rarely (never?) are. Therefore using the stack slot is
1795 much less likely to print garbage.
1796
1797 Reasons why we might want to use the LOC_REGISTER:
1798 (1) So that the backtrace prints the same value as
1799 "print foo". I see no compelling reason why this needs
1800 to be the case; having the backtrace print the value which
1801 was passed in, and "print foo" print the value as modified
1802 within the called function, makes perfect sense to me.
1803
1804 Additional note: It might be nice if "info args" displayed
1805 both values.
1806 One more note: There is a case with sparc structure passing
1807 where we need to use the LOC_REGISTER, but this is dealt with
1808 by creating a single LOC_REGPARM in symbol reading. */
1809
1810 /* Leave sym (the LOC_ARG) alone. */
1811 ;
1812 }
1813 else
1814 sym = nsym;
1815 }
1816
1817 /* Print the current arg. */
1818 if (! first)
1819 fprintf_filtered (stream, ", ");
1820 wrap_here (" ");
1821
1822 annotate_arg_begin ();
1823
1824 fprintf_symbol_filtered (stream, SYMBOL_SOURCE_NAME (sym),
1825 SYMBOL_LANGUAGE (sym), DMGL_PARAMS | DMGL_ANSI);
1826 annotate_arg_name_end ();
1827 fputs_filtered ("=", stream);
1828
1829 /* Avoid value_print because it will deref ref parameters. We just
1830 want to print their addresses. Print ??? for args whose address
1831 we do not know. We pass 2 as "recurse" to val_print because our
1832 standard indentation here is 4 spaces, and val_print indents
1833 2 for each recurse. */
1834 val = read_var_value (sym, fi);
1835
1836 annotate_arg_value (val == NULL ? NULL : VALUE_TYPE (val));
1837
1838 if (val)
1839 {
1840 #ifdef GDB_TARGET_IS_D10V
1841 if (SYMBOL_CLASS(sym) == LOC_REGPARM && TYPE_CODE(VALUE_TYPE(val)) == TYPE_CODE_PTR)
1842 TYPE_LENGTH(VALUE_TYPE(val)) = 2;
1843 #endif
1844 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), VALUE_ADDRESS (val),
1845 stream, 0, 0, 2, Val_no_prettyprint);
1846 }
1847 else
1848 fputs_filtered ("???", stream);
1849
1850 annotate_arg_end ();
1851
1852 first = 0;
1853 }
1854
1855 /* Don't print nameless args in situations where we don't know
1856 enough about the stack to find them. */
1857 if (num != -1)
1858 {
1859 long start;
1860
1861 if (highest_offset == -1)
1862 start = FRAME_ARGS_SKIP;
1863 else
1864 start = highest_offset;
1865
1866 print_frame_nameless_args (fi, start, num - args_printed,
1867 first, stream);
1868 }
1869 }
1870
1871 /* Print nameless args on STREAM.
1872 FI is the frameinfo for this frame, START is the offset
1873 of the first nameless arg, and NUM is the number of nameless args to
1874 print. FIRST is nonzero if this is the first argument (not just
1875 the first nameless arg). */
1876
1877 static void
1878 print_frame_nameless_args (fi, start, num, first, stream)
1879 struct frame_info *fi;
1880 long start;
1881 int num;
1882 int first;
1883 GDB_FILE *stream;
1884 {
1885 int i;
1886 CORE_ADDR argsaddr;
1887 long arg_value;
1888
1889 for (i = 0; i < num; i++)
1890 {
1891 QUIT;
1892 #ifdef NAMELESS_ARG_VALUE
1893 NAMELESS_ARG_VALUE (fi, start, &arg_value);
1894 #else
1895 argsaddr = FRAME_ARGS_ADDRESS (fi);
1896 if (!argsaddr)
1897 return;
1898
1899 arg_value = read_memory_integer (argsaddr + start, sizeof (int));
1900 #endif
1901
1902 if (!first)
1903 fprintf_filtered (stream, ", ");
1904
1905 #ifdef PRINT_NAMELESS_INTEGER
1906 PRINT_NAMELESS_INTEGER (stream, arg_value);
1907 #else
1908 #ifdef PRINT_TYPELESS_INTEGER
1909 PRINT_TYPELESS_INTEGER (stream, builtin_type_int, (LONGEST) arg_value);
1910 #else
1911 fprintf_filtered (stream, "%ld", arg_value);
1912 #endif /* PRINT_TYPELESS_INTEGER */
1913 #endif /* PRINT_NAMELESS_INTEGER */
1914 first = 0;
1915 start += sizeof (int);
1916 }
1917 }
1918 \f
1919 /* ARGSUSED */
1920 static void
1921 printf_command (arg, from_tty)
1922 char *arg;
1923 int from_tty;
1924 {
1925 register char *f = NULL;
1926 register char *s = arg;
1927 char *string = NULL;
1928 value_ptr *val_args;
1929 char *substrings;
1930 char *current_substring;
1931 int nargs = 0;
1932 int allocated_args = 20;
1933 struct cleanup *old_cleanups;
1934
1935 val_args = (value_ptr *) xmalloc (allocated_args * sizeof (value_ptr));
1936 old_cleanups = make_cleanup ((make_cleanup_func) free_current_contents,
1937 &val_args);
1938
1939 if (s == 0)
1940 error_no_arg ("format-control string and values to print");
1941
1942 /* Skip white space before format string */
1943 while (*s == ' ' || *s == '\t') s++;
1944
1945 /* A format string should follow, enveloped in double quotes */
1946 if (*s++ != '"')
1947 error ("Bad format string, missing '\"'.");
1948
1949 /* Parse the format-control string and copy it into the string STRING,
1950 processing some kinds of escape sequence. */
1951
1952 f = string = (char *) alloca (strlen (s) + 1);
1953
1954 while (*s != '"')
1955 {
1956 int c = *s++;
1957 switch (c)
1958 {
1959 case '\0':
1960 error ("Bad format string, non-terminated '\"'.");
1961
1962 case '\\':
1963 switch (c = *s++)
1964 {
1965 case '\\':
1966 *f++ = '\\';
1967 break;
1968 case 'a':
1969 #ifdef __STDC__
1970 *f++ = '\a';
1971 #else
1972 *f++ = '\007'; /* Bell */
1973 #endif
1974 break;
1975 case 'b':
1976 *f++ = '\b';
1977 break;
1978 case 'f':
1979 *f++ = '\f';
1980 break;
1981 case 'n':
1982 *f++ = '\n';
1983 break;
1984 case 'r':
1985 *f++ = '\r';
1986 break;
1987 case 't':
1988 *f++ = '\t';
1989 break;
1990 case 'v':
1991 *f++ = '\v';
1992 break;
1993 case '"':
1994 *f++ = '"';
1995 break;
1996 default:
1997 /* ??? TODO: handle other escape sequences */
1998 error ("Unrecognized escape character \\%c in format string.",
1999 c);
2000 }
2001 break;
2002
2003 default:
2004 *f++ = c;
2005 }
2006 }
2007
2008 /* Skip over " and following space and comma. */
2009 s++;
2010 *f++ = '\0';
2011 while (*s == ' ' || *s == '\t') s++;
2012
2013 if (*s != ',' && *s != 0)
2014 error ("Invalid argument syntax");
2015
2016 if (*s == ',') s++;
2017 while (*s == ' ' || *s == '\t') s++;
2018
2019 /* Need extra space for the '\0's. Doubling the size is sufficient. */
2020 substrings = alloca (strlen (string) * 2);
2021 current_substring = substrings;
2022
2023 {
2024 /* Now scan the string for %-specs and see what kinds of args they want.
2025 argclass[I] classifies the %-specs so we can give printf_filtered
2026 something of the right size. */
2027
2028 enum argclass {no_arg, int_arg, string_arg, double_arg, long_long_arg};
2029 enum argclass *argclass;
2030 enum argclass this_argclass;
2031 char *last_arg;
2032 int nargs_wanted;
2033 int lcount;
2034 int i;
2035
2036 argclass = (enum argclass *) alloca (strlen (s) * sizeof *argclass);
2037 nargs_wanted = 0;
2038 f = string;
2039 last_arg = string;
2040 while (*f)
2041 if (*f++ == '%')
2042 {
2043 lcount = 0;
2044 while (strchr ("0123456789.hlL-+ #", *f))
2045 {
2046 if (*f == 'l' || *f == 'L')
2047 lcount++;
2048 f++;
2049 }
2050 switch (*f)
2051 {
2052 case 's':
2053 this_argclass = string_arg;
2054 break;
2055
2056 case 'e':
2057 case 'f':
2058 case 'g':
2059 this_argclass = double_arg;
2060 break;
2061
2062 case '*':
2063 error ("`*' not supported for precision or width in printf");
2064
2065 case 'n':
2066 error ("Format specifier `n' not supported in printf");
2067
2068 case '%':
2069 this_argclass = no_arg;
2070 break;
2071
2072 default:
2073 if (lcount > 1)
2074 this_argclass = long_long_arg;
2075 else
2076 this_argclass = int_arg;
2077 break;
2078 }
2079 f++;
2080 if (this_argclass != no_arg)
2081 {
2082 strncpy (current_substring, last_arg, f - last_arg);
2083 current_substring += f - last_arg;
2084 *current_substring++ = '\0';
2085 last_arg = f;
2086 argclass[nargs_wanted++] = this_argclass;
2087 }
2088 }
2089
2090 /* Now, parse all arguments and evaluate them.
2091 Store the VALUEs in VAL_ARGS. */
2092
2093 while (*s != '\0')
2094 {
2095 char *s1;
2096 if (nargs == allocated_args)
2097 val_args = (value_ptr *) xrealloc ((char *) val_args,
2098 (allocated_args *= 2)
2099 * sizeof (value_ptr));
2100 s1 = s;
2101 val_args[nargs] = parse_to_comma_and_eval (&s1);
2102
2103 /* If format string wants a float, unchecked-convert the value to
2104 floating point of the same size */
2105
2106 if (argclass[nargs] == double_arg)
2107 {
2108 struct type *type = VALUE_TYPE (val_args[nargs]);
2109 if (TYPE_LENGTH (type) == sizeof (float))
2110 VALUE_TYPE (val_args[nargs]) = builtin_type_float;
2111 if (TYPE_LENGTH (type) == sizeof (double))
2112 VALUE_TYPE (val_args[nargs]) = builtin_type_double;
2113 }
2114 nargs++;
2115 s = s1;
2116 if (*s == ',')
2117 s++;
2118 }
2119
2120 if (nargs != nargs_wanted)
2121 error ("Wrong number of arguments for specified format-string");
2122
2123 /* Now actually print them. */
2124 current_substring = substrings;
2125 for (i = 0; i < nargs; i++)
2126 {
2127 switch (argclass[i])
2128 {
2129 case string_arg:
2130 {
2131 char *str;
2132 CORE_ADDR tem;
2133 int j;
2134 tem = value_as_pointer (val_args[i]);
2135
2136 /* This is a %s argument. Find the length of the string. */
2137 for (j = 0; ; j++)
2138 {
2139 char c;
2140 QUIT;
2141 read_memory_section (tem + j, &c, 1,
2142 VALUE_BFD_SECTION (val_args[i]));
2143 if (c == 0)
2144 break;
2145 }
2146
2147 /* Copy the string contents into a string inside GDB. */
2148 str = (char *) alloca (j + 1);
2149 read_memory_section (tem, str, j, VALUE_BFD_SECTION (val_args[i]));
2150 str[j] = 0;
2151
2152 printf_filtered (current_substring, str);
2153 }
2154 break;
2155 case double_arg:
2156 {
2157 double val = value_as_double (val_args[i]);
2158 printf_filtered (current_substring, val);
2159 break;
2160 }
2161 case long_long_arg:
2162 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
2163 {
2164 long long val = value_as_long (val_args[i]);
2165 printf_filtered (current_substring, val);
2166 break;
2167 }
2168 #else
2169 error ("long long not supported in printf");
2170 #endif
2171 case int_arg:
2172 {
2173 /* FIXME: there should be separate int_arg and long_arg. */
2174 long val = value_as_long (val_args[i]);
2175 printf_filtered (current_substring, val);
2176 break;
2177 }
2178 default:
2179 error ("internal error in printf_command");
2180 }
2181 /* Skip to the next substring. */
2182 current_substring += strlen (current_substring) + 1;
2183 }
2184 /* Print the portion of the format string after the last argument. */
2185 printf_filtered (last_arg);
2186 }
2187 do_cleanups (old_cleanups);
2188 }
2189 \f
2190 /* Dump a specified section of assembly code. With no command line
2191 arguments, this command will dump the assembly code for the
2192 function surrounding the pc value in the selected frame. With one
2193 argument, it will dump the assembly code surrounding that pc value.
2194 Two arguments are interpeted as bounds within which to dump
2195 assembly. */
2196
2197 /* ARGSUSED */
2198 static void
2199 disassemble_command (arg, from_tty)
2200 char *arg;
2201 int from_tty;
2202 {
2203 CORE_ADDR low, high;
2204 char *name;
2205 CORE_ADDR pc, pc_masked;
2206 char *space_index;
2207
2208 name = NULL;
2209 if (!arg)
2210 {
2211 if (!selected_frame)
2212 error ("No frame selected.\n");
2213
2214 pc = get_frame_pc (selected_frame);
2215 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
2216 error ("No function contains program counter for selected frame.\n");
2217 low += FUNCTION_START_OFFSET;
2218 }
2219 else if (!(space_index = (char *) strchr (arg, ' ')))
2220 {
2221 /* One argument. */
2222 pc = parse_and_eval_address (arg);
2223 if (find_pc_partial_function (pc, &name, &low, &high) == 0)
2224 error ("No function contains specified address.\n");
2225 low += FUNCTION_START_OFFSET;
2226 }
2227 else
2228 {
2229 /* Two arguments. */
2230 *space_index = '\0';
2231 low = parse_and_eval_address (arg);
2232 high = parse_and_eval_address (space_index + 1);
2233 }
2234
2235 printf_filtered ("Dump of assembler code ");
2236 if (name != NULL)
2237 {
2238 printf_filtered ("for function %s:\n", name);
2239 }
2240 else
2241 {
2242 printf_filtered ("from ");
2243 print_address_numeric (low, 1, gdb_stdout);
2244 printf_filtered (" to ");
2245 print_address_numeric (high, 1, gdb_stdout);
2246 printf_filtered (":\n");
2247 }
2248
2249 /* Dump the specified range. */
2250 pc = low;
2251
2252 #ifdef GDB_TARGET_MASK_DISAS_PC
2253 pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
2254 #else
2255 pc_masked = pc;
2256 #endif
2257
2258 while (pc_masked < high)
2259 {
2260 QUIT;
2261 print_address (pc_masked, gdb_stdout);
2262 printf_filtered (":\t");
2263 /* We often wrap here if there are long symbolic names. */
2264 wrap_here (" ");
2265 pc += print_insn (pc, gdb_stdout);
2266 printf_filtered ("\n");
2267
2268 #ifdef GDB_TARGET_MASK_DISAS_PC
2269 pc_masked = GDB_TARGET_MASK_DISAS_PC (pc);
2270 #else
2271 pc_masked = pc;
2272 #endif
2273 }
2274 printf_filtered ("End of assembler dump.\n");
2275 gdb_flush (gdb_stdout);
2276 }
2277
2278 /* Print the instruction at address MEMADDR in debugged memory,
2279 on STREAM. Returns length of the instruction, in bytes. */
2280
2281 static int
2282 print_insn (memaddr, stream)
2283 CORE_ADDR memaddr;
2284 GDB_FILE *stream;
2285 {
2286 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
2287 TARGET_PRINT_INSN_INFO->endian = BFD_ENDIAN_BIG;
2288 else
2289 TARGET_PRINT_INSN_INFO->endian = BFD_ENDIAN_LITTLE;
2290
2291 if (TARGET_ARCHITECTURE != NULL)
2292 TARGET_PRINT_INSN_INFO->mach = TARGET_ARCHITECTURE->mach;
2293 /* else: should set .mach=0 but some disassemblers don't grok this */
2294
2295 return TARGET_PRINT_INSN (memaddr, TARGET_PRINT_INSN_INFO);
2296 }
2297
2298 \f
2299 void
2300 _initialize_printcmd ()
2301 {
2302 current_display_number = -1;
2303
2304 add_info ("address", address_info,
2305 "Describe where symbol SYM is stored.");
2306
2307 add_info ("symbol", sym_info,
2308 "Describe what symbol is at location ADDR.\n\
2309 Only for symbols with fixed locations (global or static scope).");
2310
2311 add_com ("x", class_vars, x_command,
2312 concat ("Examine memory: x/FMT ADDRESS.\n\
2313 ADDRESS is an expression for the memory address to examine.\n\
2314 FMT is a repeat count followed by a format letter and a size letter.\n\
2315 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2316 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n",
2317 "Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2318 The specified number of objects of the specified size are printed\n\
2319 according to the format.\n\n\
2320 Defaults for format and size letters are those previously used.\n\
2321 Default count is 1. Default address is following last thing printed\n\
2322 with this command or \"print\".", NULL));
2323
2324 add_com ("disassemble", class_vars, disassemble_command,
2325 "Disassemble a specified section of memory.\n\
2326 Default is the function surrounding the pc of the selected frame.\n\
2327 With a single argument, the function surrounding that address is dumped.\n\
2328 Two arguments are taken as a range of memory to dump.");
2329
2330 #if 0
2331 add_com ("whereis", class_vars, whereis_command,
2332 "Print line number and file of definition of variable.");
2333 #endif
2334
2335 add_info ("display", display_info,
2336 "Expressions to display when program stops, with code numbers.");
2337
2338 add_cmd ("undisplay", class_vars, undisplay_command,
2339 "Cancel some expressions to be displayed when program stops.\n\
2340 Arguments are the code numbers of the expressions to stop displaying.\n\
2341 No argument means cancel all automatic-display expressions.\n\
2342 \"delete display\" has the same effect as this command.\n\
2343 Do \"info display\" to see current list of code numbers.",
2344 &cmdlist);
2345
2346 add_com ("display", class_vars, display_command,
2347 "Print value of expression EXP each time the program stops.\n\
2348 /FMT may be used before EXP as in the \"print\" command.\n\
2349 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2350 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2351 and examining is done as in the \"x\" command.\n\n\
2352 With no argument, display all currently requested auto-display expressions.\n\
2353 Use \"undisplay\" to cancel display requests previously made."
2354 );
2355
2356 add_cmd ("display", class_vars, enable_display,
2357 "Enable some expressions to be displayed when program stops.\n\
2358 Arguments are the code numbers of the expressions to resume displaying.\n\
2359 No argument means enable all automatic-display expressions.\n\
2360 Do \"info display\" to see current list of code numbers.", &enablelist);
2361
2362 add_cmd ("display", class_vars, disable_display_command,
2363 "Disable some expressions to be displayed when program stops.\n\
2364 Arguments are the code numbers of the expressions to stop displaying.\n\
2365 No argument means disable all automatic-display expressions.\n\
2366 Do \"info display\" to see current list of code numbers.", &disablelist);
2367
2368 add_cmd ("display", class_vars, undisplay_command,
2369 "Cancel some expressions to be displayed when program stops.\n\
2370 Arguments are the code numbers of the expressions to stop displaying.\n\
2371 No argument means cancel all automatic-display expressions.\n\
2372 Do \"info display\" to see current list of code numbers.", &deletelist);
2373
2374 add_com ("printf", class_vars, printf_command,
2375 "printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2376 This is useful for formatted output in user-defined commands.");
2377
2378 add_com ("output", class_vars, output_command,
2379 "Like \"print\" but don't put in value history and don't print newline.\n\
2380 This is useful in user-defined commands.");
2381
2382 add_prefix_cmd ("set", class_vars, set_command,
2383 concat ("Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2384 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2385 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2386 with $), a register (a few standard names starting with $), or an actual\n\
2387 variable in the program being debugged. EXP is any valid expression.\n",
2388 "Use \"set variable\" for variables with names identical to set subcommands.\n\
2389 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2390 You can see these environment settings with the \"show\" command.", NULL),
2391 &setlist, "set ", 1, &cmdlist);
2392
2393 /* "call" is the same as "set", but handy for dbx users to call fns. */
2394 add_com ("call", class_vars, call_command,
2395 "Call a function in the program.\n\
2396 The argument is the function name and arguments, in the notation of the\n\
2397 current working language. The result is printed and saved in the value\n\
2398 history, if it is not void.");
2399
2400 add_cmd ("variable", class_vars, set_command,
2401 "Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2402 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2403 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2404 with $), a register (a few standard names starting with $), or an actual\n\
2405 variable in the program being debugged. EXP is any valid expression.\n\
2406 This may usually be abbreviated to simply \"set\".",
2407 &setlist);
2408
2409 add_com ("print", class_vars, print_command,
2410 concat ("Print value of expression EXP.\n\
2411 Variables accessible are those of the lexical environment of the selected\n\
2412 stack frame, plus all those whose scope is global or an entire file.\n\
2413 \n\
2414 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2415 $$NUM refers to NUM'th value back from the last one.\n\
2416 Names starting with $ refer to registers (with the values they would have\n",
2417 "if the program were to return to the stack frame now selected, restoring\n\
2418 all registers saved by frames farther in) or else to debugger\n\
2419 \"convenience\" variables (any such name not a known register).\n\
2420 Use assignment expressions to give values to convenience variables.\n",
2421 "\n\
2422 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2423 @ is a binary operator for treating consecutive data objects\n\
2424 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2425 element is FOO, whose second element is stored in the space following\n\
2426 where FOO is stored, etc. FOO must be an expression whose value\n\
2427 resides in memory.\n",
2428 "\n\
2429 EXP may be preceded with /FMT, where FMT is a format letter\n\
2430 but no count or size letter (see \"x\" command).", NULL));
2431 add_com_alias ("p", "print", class_vars, 1);
2432
2433 add_com ("inspect", class_vars, inspect_command,
2434 "Same as \"print\" command, except that if you are running in the epoch\n\
2435 environment, the value is printed in its own window.");
2436
2437 add_show_from_set (
2438 add_set_cmd ("max-symbolic-offset", no_class, var_uinteger,
2439 (char *)&max_symbolic_offset,
2440 "Set the largest offset that will be printed in <symbol+1234> form.",
2441 &setprintlist),
2442 &showprintlist);
2443 add_show_from_set (
2444 add_set_cmd ("symbol-filename", no_class, var_boolean,
2445 (char *)&print_symbol_filename,
2446 "Set printing of source filename and line number with <symbol>.",
2447 &setprintlist),
2448 &showprintlist);
2449
2450 /* For examine/instruction a single byte quantity is specified as
2451 the data. This avoids problems with value_at_lazy() requiring a
2452 valid data type (and rejecting VOID). */
2453 examine_i_type = init_type (TYPE_CODE_INT, 1, 0, "examine_i_type", NULL);
2454
2455 examine_b_type = init_type (TYPE_CODE_INT, 1, 0, "examine_b_type", NULL);
2456 examine_h_type = init_type (TYPE_CODE_INT, 2, 0, "examine_h_type", NULL);
2457 examine_w_type = init_type (TYPE_CODE_INT, 4, 0, "examine_w_type", NULL);
2458 examine_g_type = init_type (TYPE_CODE_INT, 8, 0, "examine_g_type", NULL);
2459
2460 INIT_DISASSEMBLE_INFO_NO_ARCH (tm_print_insn_info, gdb_stdout, (fprintf_ftype)fprintf_filtered);
2461 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
2462 tm_print_insn_info.read_memory_func = dis_asm_read_memory;
2463 tm_print_insn_info.memory_error_func = dis_asm_memory_error;
2464 tm_print_insn_info.print_address_func = dis_asm_print_address;
2465 }