PR symtab/8424:
[binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdb_string.h"
22 #include "frame.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "language.h"
27 #include "expression.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "breakpoint.h"
32 #include "demangle.h"
33 #include "gdb-demangle.h"
34 #include "valprint.h"
35 #include "annotate.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38 #include "completer.h" /* for completion functions */
39 #include "ui-out.h"
40 #include "gdb_assert.h"
41 #include "block.h"
42 #include "disasm.h"
43 #include "dfp.h"
44 #include "valprint.h"
45 #include "exceptions.h"
46 #include "observer.h"
47 #include "solist.h"
48 #include "parser-defs.h"
49 #include "charset.h"
50 #include "arch-utils.h"
51 #include "cli/cli-utils.h"
52 #include "format.h"
53 #include "source.h"
54
55 #ifdef TUI
56 #include "tui/tui.h" /* For tui_active et al. */
57 #endif
58
59 struct format_data
60 {
61 int count;
62 char format;
63 char size;
64
65 /* True if the value should be printed raw -- that is, bypassing
66 python-based formatters. */
67 unsigned char raw;
68 };
69
70 /* Last specified output format. */
71
72 static char last_format = 0;
73
74 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
75
76 static char last_size = 'w';
77
78 /* Default address to examine next, and associated architecture. */
79
80 static struct gdbarch *next_gdbarch;
81 static CORE_ADDR next_address;
82
83 /* Number of delay instructions following current disassembled insn. */
84
85 static int branch_delay_insns;
86
87 /* Last address examined. */
88
89 static CORE_ADDR last_examine_address;
90
91 /* Contents of last address examined.
92 This is not valid past the end of the `x' command! */
93
94 static struct value *last_examine_value;
95
96 /* Largest offset between a symbolic value and an address, that will be
97 printed as `0x1234 <symbol+offset>'. */
98
99 static unsigned int max_symbolic_offset = UINT_MAX;
100 static void
101 show_max_symbolic_offset (struct ui_file *file, int from_tty,
102 struct cmd_list_element *c, const char *value)
103 {
104 fprintf_filtered (file,
105 _("The largest offset that will be "
106 "printed in <symbol+1234> form is %s.\n"),
107 value);
108 }
109
110 /* Append the source filename and linenumber of the symbol when
111 printing a symbolic value as `<symbol at filename:linenum>' if set. */
112 static int print_symbol_filename = 0;
113 static void
114 show_print_symbol_filename (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116 {
117 fprintf_filtered (file, _("Printing of source filename and "
118 "line number with <symbol> is %s.\n"),
119 value);
120 }
121
122 /* Number of auto-display expression currently being displayed.
123 So that we can disable it if we get a signal within it.
124 -1 when not doing one. */
125
126 static int current_display_number;
127
128 struct display
129 {
130 /* Chain link to next auto-display item. */
131 struct display *next;
132
133 /* The expression as the user typed it. */
134 char *exp_string;
135
136 /* Expression to be evaluated and displayed. */
137 struct expression *exp;
138
139 /* Item number of this auto-display item. */
140 int number;
141
142 /* Display format specified. */
143 struct format_data format;
144
145 /* Program space associated with `block'. */
146 struct program_space *pspace;
147
148 /* Innermost block required by this expression when evaluated. */
149 const struct block *block;
150
151 /* Status of this display (enabled or disabled). */
152 int enabled_p;
153 };
154
155 /* Chain of expressions whose values should be displayed
156 automatically each time the program stops. */
157
158 static struct display *display_chain;
159
160 static int display_number;
161
162 /* Walk the following statement or block through all displays.
163 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
164 display. */
165
166 #define ALL_DISPLAYS(B) \
167 for (B = display_chain; B; B = B->next)
168
169 #define ALL_DISPLAYS_SAFE(B,TMP) \
170 for (B = display_chain; \
171 B ? (TMP = B->next, 1): 0; \
172 B = TMP)
173
174 /* Prototypes for exported functions. */
175
176 void _initialize_printcmd (void);
177
178 /* Prototypes for local functions. */
179
180 static void do_one_display (struct display *);
181 \f
182
183 /* Decode a format specification. *STRING_PTR should point to it.
184 OFORMAT and OSIZE are used as defaults for the format and size
185 if none are given in the format specification.
186 If OSIZE is zero, then the size field of the returned value
187 should be set only if a size is explicitly specified by the
188 user.
189 The structure returned describes all the data
190 found in the specification. In addition, *STRING_PTR is advanced
191 past the specification and past all whitespace following it. */
192
193 static struct format_data
194 decode_format (const char **string_ptr, int oformat, int osize)
195 {
196 struct format_data val;
197 const char *p = *string_ptr;
198
199 val.format = '?';
200 val.size = '?';
201 val.count = 1;
202 val.raw = 0;
203
204 if (*p >= '0' && *p <= '9')
205 val.count = atoi (p);
206 while (*p >= '0' && *p <= '9')
207 p++;
208
209 /* Now process size or format letters that follow. */
210
211 while (1)
212 {
213 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
214 val.size = *p++;
215 else if (*p == 'r')
216 {
217 val.raw = 1;
218 p++;
219 }
220 else if (*p >= 'a' && *p <= 'z')
221 val.format = *p++;
222 else
223 break;
224 }
225
226 while (*p == ' ' || *p == '\t')
227 p++;
228 *string_ptr = p;
229
230 /* Set defaults for format and size if not specified. */
231 if (val.format == '?')
232 {
233 if (val.size == '?')
234 {
235 /* Neither has been specified. */
236 val.format = oformat;
237 val.size = osize;
238 }
239 else
240 /* If a size is specified, any format makes a reasonable
241 default except 'i'. */
242 val.format = oformat == 'i' ? 'x' : oformat;
243 }
244 else if (val.size == '?')
245 switch (val.format)
246 {
247 case 'a':
248 /* Pick the appropriate size for an address. This is deferred
249 until do_examine when we know the actual architecture to use.
250 A special size value of 'a' is used to indicate this case. */
251 val.size = osize ? 'a' : osize;
252 break;
253 case 'f':
254 /* Floating point has to be word or giantword. */
255 if (osize == 'w' || osize == 'g')
256 val.size = osize;
257 else
258 /* Default it to giantword if the last used size is not
259 appropriate. */
260 val.size = osize ? 'g' : osize;
261 break;
262 case 'c':
263 /* Characters default to one byte. */
264 val.size = osize ? 'b' : osize;
265 break;
266 case 's':
267 /* Display strings with byte size chars unless explicitly
268 specified. */
269 val.size = '\0';
270 break;
271
272 default:
273 /* The default is the size most recently specified. */
274 val.size = osize;
275 }
276
277 return val;
278 }
279 \f
280 /* Print value VAL on stream according to OPTIONS.
281 Do not end with a newline.
282 SIZE is the letter for the size of datum being printed.
283 This is used to pad hex numbers so they line up. SIZE is 0
284 for print / output and set for examine. */
285
286 static void
287 print_formatted (struct value *val, int size,
288 const struct value_print_options *options,
289 struct ui_file *stream)
290 {
291 struct type *type = check_typedef (value_type (val));
292 int len = TYPE_LENGTH (type);
293
294 if (VALUE_LVAL (val) == lval_memory)
295 next_address = value_address (val) + len;
296
297 if (size)
298 {
299 switch (options->format)
300 {
301 case 's':
302 {
303 struct type *elttype = value_type (val);
304
305 next_address = (value_address (val)
306 + val_print_string (elttype, NULL,
307 value_address (val), -1,
308 stream, options) * len);
309 }
310 return;
311
312 case 'i':
313 /* We often wrap here if there are long symbolic names. */
314 wrap_here (" ");
315 next_address = (value_address (val)
316 + gdb_print_insn (get_type_arch (type),
317 value_address (val), stream,
318 &branch_delay_insns));
319 return;
320 }
321 }
322
323 if (options->format == 0 || options->format == 's'
324 || TYPE_CODE (type) == TYPE_CODE_REF
325 || TYPE_CODE (type) == TYPE_CODE_ARRAY
326 || TYPE_CODE (type) == TYPE_CODE_STRING
327 || TYPE_CODE (type) == TYPE_CODE_STRUCT
328 || TYPE_CODE (type) == TYPE_CODE_UNION
329 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
330 value_print (val, stream, options);
331 else
332 /* User specified format, so don't look to the type to tell us
333 what to do. */
334 val_print_scalar_formatted (type,
335 value_contents_for_printing (val),
336 value_embedded_offset (val),
337 val,
338 options, size, stream);
339 }
340
341 /* Return builtin floating point type of same length as TYPE.
342 If no such type is found, return TYPE itself. */
343 static struct type *
344 float_type_from_length (struct type *type)
345 {
346 struct gdbarch *gdbarch = get_type_arch (type);
347 const struct builtin_type *builtin = builtin_type (gdbarch);
348
349 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
350 type = builtin->builtin_float;
351 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
352 type = builtin->builtin_double;
353 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
354 type = builtin->builtin_long_double;
355
356 return type;
357 }
358
359 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
360 according to OPTIONS and SIZE on STREAM. Formats s and i are not
361 supported at this level. */
362
363 void
364 print_scalar_formatted (const void *valaddr, struct type *type,
365 const struct value_print_options *options,
366 int size, struct ui_file *stream)
367 {
368 struct gdbarch *gdbarch = get_type_arch (type);
369 LONGEST val_long = 0;
370 unsigned int len = TYPE_LENGTH (type);
371 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
372
373 /* String printing should go through val_print_scalar_formatted. */
374 gdb_assert (options->format != 's');
375
376 if (len > sizeof(LONGEST) &&
377 (TYPE_CODE (type) == TYPE_CODE_INT
378 || TYPE_CODE (type) == TYPE_CODE_ENUM))
379 {
380 switch (options->format)
381 {
382 case 'o':
383 print_octal_chars (stream, valaddr, len, byte_order);
384 return;
385 case 'u':
386 case 'd':
387 print_decimal_chars (stream, valaddr, len, byte_order);
388 return;
389 case 't':
390 print_binary_chars (stream, valaddr, len, byte_order);
391 return;
392 case 'x':
393 print_hex_chars (stream, valaddr, len, byte_order);
394 return;
395 case 'c':
396 print_char_chars (stream, type, valaddr, len, byte_order);
397 return;
398 default:
399 break;
400 };
401 }
402
403 if (options->format != 'f')
404 val_long = unpack_long (type, valaddr);
405
406 /* If the value is a pointer, and pointers and addresses are not the
407 same, then at this point, the value's length (in target bytes) is
408 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
409 if (TYPE_CODE (type) == TYPE_CODE_PTR)
410 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
411
412 /* If we are printing it as unsigned, truncate it in case it is actually
413 a negative signed value (e.g. "print/u (short)-1" should print 65535
414 (if shorts are 16 bits) instead of 4294967295). */
415 if (options->format != 'd' || TYPE_UNSIGNED (type))
416 {
417 if (len < sizeof (LONGEST))
418 val_long &= ((LONGEST) 1 << HOST_CHAR_BIT * len) - 1;
419 }
420
421 switch (options->format)
422 {
423 case 'x':
424 if (!size)
425 {
426 /* No size specified, like in print. Print varying # of digits. */
427 print_longest (stream, 'x', 1, val_long);
428 }
429 else
430 switch (size)
431 {
432 case 'b':
433 case 'h':
434 case 'w':
435 case 'g':
436 print_longest (stream, size, 1, val_long);
437 break;
438 default:
439 error (_("Undefined output size \"%c\"."), size);
440 }
441 break;
442
443 case 'd':
444 print_longest (stream, 'd', 1, val_long);
445 break;
446
447 case 'u':
448 print_longest (stream, 'u', 0, val_long);
449 break;
450
451 case 'o':
452 if (val_long)
453 print_longest (stream, 'o', 1, val_long);
454 else
455 fprintf_filtered (stream, "0");
456 break;
457
458 case 'a':
459 {
460 CORE_ADDR addr = unpack_pointer (type, valaddr);
461
462 print_address (gdbarch, addr, stream);
463 }
464 break;
465
466 case 'c':
467 {
468 struct value_print_options opts = *options;
469
470 opts.format = 0;
471 if (TYPE_UNSIGNED (type))
472 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
473 else
474 type = builtin_type (gdbarch)->builtin_true_char;
475
476 value_print (value_from_longest (type, val_long), stream, &opts);
477 }
478 break;
479
480 case 'f':
481 type = float_type_from_length (type);
482 print_floating (valaddr, type, stream);
483 break;
484
485 case 0:
486 internal_error (__FILE__, __LINE__,
487 _("failed internal consistency check"));
488
489 case 't':
490 /* Binary; 't' stands for "two". */
491 {
492 char bits[8 * (sizeof val_long) + 1];
493 char buf[8 * (sizeof val_long) + 32];
494 char *cp = bits;
495 int width;
496
497 if (!size)
498 width = 8 * (sizeof val_long);
499 else
500 switch (size)
501 {
502 case 'b':
503 width = 8;
504 break;
505 case 'h':
506 width = 16;
507 break;
508 case 'w':
509 width = 32;
510 break;
511 case 'g':
512 width = 64;
513 break;
514 default:
515 error (_("Undefined output size \"%c\"."), size);
516 }
517
518 bits[width] = '\0';
519 while (width-- > 0)
520 {
521 bits[width] = (val_long & 1) ? '1' : '0';
522 val_long >>= 1;
523 }
524 if (!size)
525 {
526 while (*cp && *cp == '0')
527 cp++;
528 if (*cp == '\0')
529 cp--;
530 }
531 strncpy (buf, cp, sizeof (bits));
532 fputs_filtered (buf, stream);
533 }
534 break;
535
536 default:
537 error (_("Undefined output format \"%c\"."), options->format);
538 }
539 }
540
541 /* Specify default address for `x' command.
542 The `info lines' command uses this. */
543
544 void
545 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
546 {
547 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
548
549 next_gdbarch = gdbarch;
550 next_address = addr;
551
552 /* Make address available to the user as $_. */
553 set_internalvar (lookup_internalvar ("_"),
554 value_from_pointer (ptr_type, addr));
555 }
556
557 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
558 after LEADIN. Print nothing if no symbolic name is found nearby.
559 Optionally also print source file and line number, if available.
560 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
561 or to interpret it as a possible C++ name and convert it back to source
562 form. However note that DO_DEMANGLE can be overridden by the specific
563 settings of the demangle and asm_demangle variables. Returns
564 non-zero if anything was printed; zero otherwise. */
565
566 int
567 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
568 struct ui_file *stream,
569 int do_demangle, char *leadin)
570 {
571 char *name = NULL;
572 char *filename = NULL;
573 int unmapped = 0;
574 int offset = 0;
575 int line = 0;
576
577 /* Throw away both name and filename. */
578 struct cleanup *cleanup_chain = make_cleanup (free_current_contents, &name);
579 make_cleanup (free_current_contents, &filename);
580
581 if (build_address_symbolic (gdbarch, addr, do_demangle, &name, &offset,
582 &filename, &line, &unmapped))
583 {
584 do_cleanups (cleanup_chain);
585 return 0;
586 }
587
588 fputs_filtered (leadin, stream);
589 if (unmapped)
590 fputs_filtered ("<*", stream);
591 else
592 fputs_filtered ("<", stream);
593 fputs_filtered (name, stream);
594 if (offset != 0)
595 fprintf_filtered (stream, "+%u", (unsigned int) offset);
596
597 /* Append source filename and line number if desired. Give specific
598 line # of this addr, if we have it; else line # of the nearest symbol. */
599 if (print_symbol_filename && filename != NULL)
600 {
601 if (line != -1)
602 fprintf_filtered (stream, " at %s:%d", filename, line);
603 else
604 fprintf_filtered (stream, " in %s", filename);
605 }
606 if (unmapped)
607 fputs_filtered ("*>", stream);
608 else
609 fputs_filtered (">", stream);
610
611 do_cleanups (cleanup_chain);
612 return 1;
613 }
614
615 /* Given an address ADDR return all the elements needed to print the
616 address in a symbolic form. NAME can be mangled or not depending
617 on DO_DEMANGLE (and also on the asm_demangle global variable,
618 manipulated via ''set print asm-demangle''). Return 0 in case of
619 success, when all the info in the OUT paramters is valid. Return 1
620 otherwise. */
621 int
622 build_address_symbolic (struct gdbarch *gdbarch,
623 CORE_ADDR addr, /* IN */
624 int do_demangle, /* IN */
625 char **name, /* OUT */
626 int *offset, /* OUT */
627 char **filename, /* OUT */
628 int *line, /* OUT */
629 int *unmapped) /* OUT */
630 {
631 struct minimal_symbol *msymbol;
632 struct symbol *symbol;
633 CORE_ADDR name_location = 0;
634 struct obj_section *section = NULL;
635 const char *name_temp = "";
636
637 /* Let's say it is mapped (not unmapped). */
638 *unmapped = 0;
639
640 /* Determine if the address is in an overlay, and whether it is
641 mapped. */
642 if (overlay_debugging)
643 {
644 section = find_pc_overlay (addr);
645 if (pc_in_unmapped_range (addr, section))
646 {
647 *unmapped = 1;
648 addr = overlay_mapped_address (addr, section);
649 }
650 }
651
652 /* First try to find the address in the symbol table, then
653 in the minsyms. Take the closest one. */
654
655 /* This is defective in the sense that it only finds text symbols. So
656 really this is kind of pointless--we should make sure that the
657 minimal symbols have everything we need (by changing that we could
658 save some memory, but for many debug format--ELF/DWARF or
659 anything/stabs--it would be inconvenient to eliminate those minimal
660 symbols anyway). */
661 msymbol = lookup_minimal_symbol_by_pc_section (addr, section).minsym;
662 symbol = find_pc_sect_function (addr, section);
663
664 if (symbol)
665 {
666 /* If this is a function (i.e. a code address), strip out any
667 non-address bits. For instance, display a pointer to the
668 first instruction of a Thumb function as <function>; the
669 second instruction will be <function+2>, even though the
670 pointer is <function+3>. This matches the ISA behavior. */
671 addr = gdbarch_addr_bits_remove (gdbarch, addr);
672
673 name_location = BLOCK_START (SYMBOL_BLOCK_VALUE (symbol));
674 if (do_demangle || asm_demangle)
675 name_temp = SYMBOL_PRINT_NAME (symbol);
676 else
677 name_temp = SYMBOL_LINKAGE_NAME (symbol);
678 }
679
680 if (msymbol != NULL
681 && MSYMBOL_HAS_SIZE (msymbol)
682 && MSYMBOL_SIZE (msymbol) == 0
683 && MSYMBOL_TYPE (msymbol) != mst_text
684 && MSYMBOL_TYPE (msymbol) != mst_text_gnu_ifunc
685 && MSYMBOL_TYPE (msymbol) != mst_file_text)
686 msymbol = NULL;
687
688 if (msymbol != NULL)
689 {
690 if (SYMBOL_VALUE_ADDRESS (msymbol) > name_location || symbol == NULL)
691 {
692 /* The msymbol is closer to the address than the symbol;
693 use the msymbol instead. */
694 symbol = 0;
695 name_location = SYMBOL_VALUE_ADDRESS (msymbol);
696 if (do_demangle || asm_demangle)
697 name_temp = SYMBOL_PRINT_NAME (msymbol);
698 else
699 name_temp = SYMBOL_LINKAGE_NAME (msymbol);
700 }
701 }
702 if (symbol == NULL && msymbol == NULL)
703 return 1;
704
705 /* If the nearest symbol is too far away, don't print anything symbolic. */
706
707 /* For when CORE_ADDR is larger than unsigned int, we do math in
708 CORE_ADDR. But when we detect unsigned wraparound in the
709 CORE_ADDR math, we ignore this test and print the offset,
710 because addr+max_symbolic_offset has wrapped through the end
711 of the address space back to the beginning, giving bogus comparison. */
712 if (addr > name_location + max_symbolic_offset
713 && name_location + max_symbolic_offset > name_location)
714 return 1;
715
716 *offset = addr - name_location;
717
718 *name = xstrdup (name_temp);
719
720 if (print_symbol_filename)
721 {
722 struct symtab_and_line sal;
723
724 sal = find_pc_sect_line (addr, section, 0);
725
726 if (sal.symtab)
727 {
728 *filename = xstrdup (symtab_to_filename_for_display (sal.symtab));
729 *line = sal.line;
730 }
731 }
732 return 0;
733 }
734
735
736 /* Print address ADDR symbolically on STREAM.
737 First print it as a number. Then perhaps print
738 <SYMBOL + OFFSET> after the number. */
739
740 void
741 print_address (struct gdbarch *gdbarch,
742 CORE_ADDR addr, struct ui_file *stream)
743 {
744 fputs_filtered (paddress (gdbarch, addr), stream);
745 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
746 }
747
748 /* Return a prefix for instruction address:
749 "=> " for current instruction, else " ". */
750
751 const char *
752 pc_prefix (CORE_ADDR addr)
753 {
754 if (has_stack_frames ())
755 {
756 struct frame_info *frame;
757 CORE_ADDR pc;
758
759 frame = get_selected_frame (NULL);
760 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
761 return "=> ";
762 }
763 return " ";
764 }
765
766 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
767 controls whether to print the symbolic name "raw" or demangled.
768 Return non-zero if anything was printed; zero otherwise. */
769
770 int
771 print_address_demangle (const struct value_print_options *opts,
772 struct gdbarch *gdbarch, CORE_ADDR addr,
773 struct ui_file *stream, int do_demangle)
774 {
775 if (opts->addressprint)
776 {
777 fputs_filtered (paddress (gdbarch, addr), stream);
778 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
779 }
780 else
781 {
782 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
783 }
784 return 1;
785 }
786 \f
787
788 /* Examine data at address ADDR in format FMT.
789 Fetch it from memory and print on gdb_stdout. */
790
791 static void
792 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
793 {
794 char format = 0;
795 char size;
796 int count = 1;
797 struct type *val_type = NULL;
798 int i;
799 int maxelts;
800 struct value_print_options opts;
801
802 format = fmt.format;
803 size = fmt.size;
804 count = fmt.count;
805 next_gdbarch = gdbarch;
806 next_address = addr;
807
808 /* Instruction format implies fetch single bytes
809 regardless of the specified size.
810 The case of strings is handled in decode_format, only explicit
811 size operator are not changed to 'b'. */
812 if (format == 'i')
813 size = 'b';
814
815 if (size == 'a')
816 {
817 /* Pick the appropriate size for an address. */
818 if (gdbarch_ptr_bit (next_gdbarch) == 64)
819 size = 'g';
820 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
821 size = 'w';
822 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
823 size = 'h';
824 else
825 /* Bad value for gdbarch_ptr_bit. */
826 internal_error (__FILE__, __LINE__,
827 _("failed internal consistency check"));
828 }
829
830 if (size == 'b')
831 val_type = builtin_type (next_gdbarch)->builtin_int8;
832 else if (size == 'h')
833 val_type = builtin_type (next_gdbarch)->builtin_int16;
834 else if (size == 'w')
835 val_type = builtin_type (next_gdbarch)->builtin_int32;
836 else if (size == 'g')
837 val_type = builtin_type (next_gdbarch)->builtin_int64;
838
839 if (format == 's')
840 {
841 struct type *char_type = NULL;
842
843 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
844 if type is not found. */
845 if (size == 'h')
846 char_type = builtin_type (next_gdbarch)->builtin_char16;
847 else if (size == 'w')
848 char_type = builtin_type (next_gdbarch)->builtin_char32;
849 if (char_type)
850 val_type = char_type;
851 else
852 {
853 if (size != '\0' && size != 'b')
854 warning (_("Unable to display strings with "
855 "size '%c', using 'b' instead."), size);
856 size = 'b';
857 val_type = builtin_type (next_gdbarch)->builtin_int8;
858 }
859 }
860
861 maxelts = 8;
862 if (size == 'w')
863 maxelts = 4;
864 if (size == 'g')
865 maxelts = 2;
866 if (format == 's' || format == 'i')
867 maxelts = 1;
868
869 get_formatted_print_options (&opts, format);
870
871 /* Print as many objects as specified in COUNT, at most maxelts per line,
872 with the address of the next one at the start of each line. */
873
874 while (count > 0)
875 {
876 QUIT;
877 if (format == 'i')
878 fputs_filtered (pc_prefix (next_address), gdb_stdout);
879 print_address (next_gdbarch, next_address, gdb_stdout);
880 printf_filtered (":");
881 for (i = maxelts;
882 i > 0 && count > 0;
883 i--, count--)
884 {
885 printf_filtered ("\t");
886 /* Note that print_formatted sets next_address for the next
887 object. */
888 last_examine_address = next_address;
889
890 if (last_examine_value)
891 value_free (last_examine_value);
892
893 /* The value to be displayed is not fetched greedily.
894 Instead, to avoid the possibility of a fetched value not
895 being used, its retrieval is delayed until the print code
896 uses it. When examining an instruction stream, the
897 disassembler will perform its own memory fetch using just
898 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
899 the disassembler be modified so that LAST_EXAMINE_VALUE
900 is left with the byte sequence from the last complete
901 instruction fetched from memory? */
902 last_examine_value = value_at_lazy (val_type, next_address);
903
904 if (last_examine_value)
905 release_value (last_examine_value);
906
907 print_formatted (last_examine_value, size, &opts, gdb_stdout);
908
909 /* Display any branch delay slots following the final insn. */
910 if (format == 'i' && count == 1)
911 count += branch_delay_insns;
912 }
913 printf_filtered ("\n");
914 gdb_flush (gdb_stdout);
915 }
916 }
917 \f
918 static void
919 validate_format (struct format_data fmt, char *cmdname)
920 {
921 if (fmt.size != 0)
922 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
923 if (fmt.count != 1)
924 error (_("Item count other than 1 is meaningless in \"%s\" command."),
925 cmdname);
926 if (fmt.format == 'i')
927 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
928 fmt.format, cmdname);
929 }
930
931 /* Evaluate string EXP as an expression in the current language and
932 print the resulting value. EXP may contain a format specifier as the
933 first argument ("/x myvar" for example, to print myvar in hex). */
934
935 static void
936 print_command_1 (const char *exp, int voidprint)
937 {
938 struct expression *expr;
939 struct cleanup *old_chain = 0;
940 char format = 0;
941 struct value *val;
942 struct format_data fmt;
943 int cleanup = 0;
944
945 if (exp && *exp == '/')
946 {
947 exp++;
948 fmt = decode_format (&exp, last_format, 0);
949 validate_format (fmt, "print");
950 last_format = format = fmt.format;
951 }
952 else
953 {
954 fmt.count = 1;
955 fmt.format = 0;
956 fmt.size = 0;
957 fmt.raw = 0;
958 }
959
960 if (exp && *exp)
961 {
962 expr = parse_expression (exp);
963 old_chain = make_cleanup (free_current_contents, &expr);
964 cleanup = 1;
965 val = evaluate_expression (expr);
966 }
967 else
968 val = access_value_history (0);
969
970 if (voidprint || (val && value_type (val) &&
971 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
972 {
973 struct value_print_options opts;
974 int histindex = record_latest_value (val);
975
976 if (histindex >= 0)
977 annotate_value_history_begin (histindex, value_type (val));
978 else
979 annotate_value_begin (value_type (val));
980
981 if (histindex >= 0)
982 printf_filtered ("$%d = ", histindex);
983
984 if (histindex >= 0)
985 annotate_value_history_value ();
986
987 get_formatted_print_options (&opts, format);
988 opts.raw = fmt.raw;
989
990 print_formatted (val, fmt.size, &opts, gdb_stdout);
991 printf_filtered ("\n");
992
993 if (histindex >= 0)
994 annotate_value_history_end ();
995 else
996 annotate_value_end ();
997 }
998
999 if (cleanup)
1000 do_cleanups (old_chain);
1001 }
1002
1003 static void
1004 print_command (char *exp, int from_tty)
1005 {
1006 print_command_1 (exp, 1);
1007 }
1008
1009 /* Same as print, except it doesn't print void results. */
1010 static void
1011 call_command (char *exp, int from_tty)
1012 {
1013 print_command_1 (exp, 0);
1014 }
1015
1016 /* Implementation of the "output" command. */
1017
1018 static void
1019 output_command (char *exp, int from_tty)
1020 {
1021 output_command_const (exp, from_tty);
1022 }
1023
1024 /* Like output_command, but takes a const string as argument. */
1025
1026 void
1027 output_command_const (const char *exp, int from_tty)
1028 {
1029 struct expression *expr;
1030 struct cleanup *old_chain;
1031 char format = 0;
1032 struct value *val;
1033 struct format_data fmt;
1034 struct value_print_options opts;
1035
1036 fmt.size = 0;
1037 fmt.raw = 0;
1038
1039 if (exp && *exp == '/')
1040 {
1041 exp++;
1042 fmt = decode_format (&exp, 0, 0);
1043 validate_format (fmt, "output");
1044 format = fmt.format;
1045 }
1046
1047 expr = parse_expression (exp);
1048 old_chain = make_cleanup (free_current_contents, &expr);
1049
1050 val = evaluate_expression (expr);
1051
1052 annotate_value_begin (value_type (val));
1053
1054 get_formatted_print_options (&opts, format);
1055 opts.raw = fmt.raw;
1056 print_formatted (val, fmt.size, &opts, gdb_stdout);
1057
1058 annotate_value_end ();
1059
1060 wrap_here ("");
1061 gdb_flush (gdb_stdout);
1062
1063 do_cleanups (old_chain);
1064 }
1065
1066 static void
1067 set_command (char *exp, int from_tty)
1068 {
1069 struct expression *expr = parse_expression (exp);
1070 struct cleanup *old_chain =
1071 make_cleanup (free_current_contents, &expr);
1072
1073 if (expr->nelts >= 1)
1074 switch (expr->elts[0].opcode)
1075 {
1076 case UNOP_PREINCREMENT:
1077 case UNOP_POSTINCREMENT:
1078 case UNOP_PREDECREMENT:
1079 case UNOP_POSTDECREMENT:
1080 case BINOP_ASSIGN:
1081 case BINOP_ASSIGN_MODIFY:
1082 case BINOP_COMMA:
1083 break;
1084 default:
1085 warning
1086 (_("Expression is not an assignment (and might have no effect)"));
1087 }
1088
1089 evaluate_expression (expr);
1090 do_cleanups (old_chain);
1091 }
1092
1093 static void
1094 sym_info (char *arg, int from_tty)
1095 {
1096 struct minimal_symbol *msymbol;
1097 struct objfile *objfile;
1098 struct obj_section *osect;
1099 CORE_ADDR addr, sect_addr;
1100 int matches = 0;
1101 unsigned int offset;
1102
1103 if (!arg)
1104 error_no_arg (_("address"));
1105
1106 addr = parse_and_eval_address (arg);
1107 ALL_OBJSECTIONS (objfile, osect)
1108 {
1109 /* Only process each object file once, even if there's a separate
1110 debug file. */
1111 if (objfile->separate_debug_objfile_backlink)
1112 continue;
1113
1114 sect_addr = overlay_mapped_address (addr, osect);
1115
1116 if (obj_section_addr (osect) <= sect_addr
1117 && sect_addr < obj_section_endaddr (osect)
1118 && (msymbol
1119 = lookup_minimal_symbol_by_pc_section (sect_addr, osect).minsym))
1120 {
1121 const char *obj_name, *mapped, *sec_name, *msym_name;
1122 char *loc_string;
1123 struct cleanup *old_chain;
1124
1125 matches = 1;
1126 offset = sect_addr - SYMBOL_VALUE_ADDRESS (msymbol);
1127 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1128 sec_name = osect->the_bfd_section->name;
1129 msym_name = SYMBOL_PRINT_NAME (msymbol);
1130
1131 /* Don't print the offset if it is zero.
1132 We assume there's no need to handle i18n of "sym + offset". */
1133 if (offset)
1134 loc_string = xstrprintf ("%s + %u", msym_name, offset);
1135 else
1136 loc_string = xstrprintf ("%s", msym_name);
1137
1138 /* Use a cleanup to free loc_string in case the user quits
1139 a pagination request inside printf_filtered. */
1140 old_chain = make_cleanup (xfree, loc_string);
1141
1142 gdb_assert (osect->objfile && osect->objfile->name);
1143 obj_name = osect->objfile->name;
1144
1145 if (MULTI_OBJFILE_P ())
1146 if (pc_in_unmapped_range (addr, osect))
1147 if (section_is_overlay (osect))
1148 printf_filtered (_("%s in load address range of "
1149 "%s overlay section %s of %s\n"),
1150 loc_string, mapped, sec_name, obj_name);
1151 else
1152 printf_filtered (_("%s in load address range of "
1153 "section %s of %s\n"),
1154 loc_string, sec_name, obj_name);
1155 else
1156 if (section_is_overlay (osect))
1157 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1158 loc_string, mapped, sec_name, obj_name);
1159 else
1160 printf_filtered (_("%s in section %s of %s\n"),
1161 loc_string, sec_name, obj_name);
1162 else
1163 if (pc_in_unmapped_range (addr, osect))
1164 if (section_is_overlay (osect))
1165 printf_filtered (_("%s in load address range of %s overlay "
1166 "section %s\n"),
1167 loc_string, mapped, sec_name);
1168 else
1169 printf_filtered (_("%s in load address range of section %s\n"),
1170 loc_string, sec_name);
1171 else
1172 if (section_is_overlay (osect))
1173 printf_filtered (_("%s in %s overlay section %s\n"),
1174 loc_string, mapped, sec_name);
1175 else
1176 printf_filtered (_("%s in section %s\n"),
1177 loc_string, sec_name);
1178
1179 do_cleanups (old_chain);
1180 }
1181 }
1182 if (matches == 0)
1183 printf_filtered (_("No symbol matches %s.\n"), arg);
1184 }
1185
1186 static void
1187 address_info (char *exp, int from_tty)
1188 {
1189 struct gdbarch *gdbarch;
1190 int regno;
1191 struct symbol *sym;
1192 struct minimal_symbol *msymbol;
1193 long val;
1194 struct obj_section *section;
1195 CORE_ADDR load_addr, context_pc = 0;
1196 struct field_of_this_result is_a_field_of_this;
1197
1198 if (exp == 0)
1199 error (_("Argument required."));
1200
1201 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1202 &is_a_field_of_this);
1203 if (sym == NULL)
1204 {
1205 if (is_a_field_of_this.type != NULL)
1206 {
1207 printf_filtered ("Symbol \"");
1208 fprintf_symbol_filtered (gdb_stdout, exp,
1209 current_language->la_language, DMGL_ANSI);
1210 printf_filtered ("\" is a field of the local class variable ");
1211 if (current_language->la_language == language_objc)
1212 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1213 else
1214 printf_filtered ("`this'\n");
1215 return;
1216 }
1217
1218 msymbol = lookup_minimal_symbol (exp, NULL, NULL);
1219
1220 if (msymbol != NULL)
1221 {
1222 struct objfile *objfile = msymbol_objfile (msymbol);
1223
1224 gdbarch = get_objfile_arch (objfile);
1225 load_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1226
1227 printf_filtered ("Symbol \"");
1228 fprintf_symbol_filtered (gdb_stdout, exp,
1229 current_language->la_language, DMGL_ANSI);
1230 printf_filtered ("\" is at ");
1231 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1232 printf_filtered (" in a file compiled without debugging");
1233 section = SYMBOL_OBJ_SECTION (objfile, msymbol);
1234 if (section_is_overlay (section))
1235 {
1236 load_addr = overlay_unmapped_address (load_addr, section);
1237 printf_filtered (",\n -- loaded at ");
1238 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1239 printf_filtered (" in overlay section %s",
1240 section->the_bfd_section->name);
1241 }
1242 printf_filtered (".\n");
1243 }
1244 else
1245 error (_("No symbol \"%s\" in current context."), exp);
1246 return;
1247 }
1248
1249 printf_filtered ("Symbol \"");
1250 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1251 current_language->la_language, DMGL_ANSI);
1252 printf_filtered ("\" is ");
1253 val = SYMBOL_VALUE (sym);
1254 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
1255 gdbarch = get_objfile_arch (SYMBOL_SYMTAB (sym)->objfile);
1256
1257 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1258 {
1259 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1260 gdb_stdout);
1261 printf_filtered (".\n");
1262 return;
1263 }
1264
1265 switch (SYMBOL_CLASS (sym))
1266 {
1267 case LOC_CONST:
1268 case LOC_CONST_BYTES:
1269 printf_filtered ("constant");
1270 break;
1271
1272 case LOC_LABEL:
1273 printf_filtered ("a label at address ");
1274 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1275 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1276 if (section_is_overlay (section))
1277 {
1278 load_addr = overlay_unmapped_address (load_addr, section);
1279 printf_filtered (",\n -- loaded at ");
1280 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1281 printf_filtered (" in overlay section %s",
1282 section->the_bfd_section->name);
1283 }
1284 break;
1285
1286 case LOC_COMPUTED:
1287 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1288
1289 case LOC_REGISTER:
1290 /* GDBARCH is the architecture associated with the objfile the symbol
1291 is defined in; the target architecture may be different, and may
1292 provide additional registers. However, we do not know the target
1293 architecture at this point. We assume the objfile architecture
1294 will contain all the standard registers that occur in debug info
1295 in that objfile. */
1296 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1297
1298 if (SYMBOL_IS_ARGUMENT (sym))
1299 printf_filtered (_("an argument in register %s"),
1300 gdbarch_register_name (gdbarch, regno));
1301 else
1302 printf_filtered (_("a variable in register %s"),
1303 gdbarch_register_name (gdbarch, regno));
1304 break;
1305
1306 case LOC_STATIC:
1307 printf_filtered (_("static storage at address "));
1308 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1309 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1310 if (section_is_overlay (section))
1311 {
1312 load_addr = overlay_unmapped_address (load_addr, section);
1313 printf_filtered (_(",\n -- loaded at "));
1314 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1315 printf_filtered (_(" in overlay section %s"),
1316 section->the_bfd_section->name);
1317 }
1318 break;
1319
1320 case LOC_REGPARM_ADDR:
1321 /* Note comment at LOC_REGISTER. */
1322 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1323 printf_filtered (_("address of an argument in register %s"),
1324 gdbarch_register_name (gdbarch, regno));
1325 break;
1326
1327 case LOC_ARG:
1328 printf_filtered (_("an argument at offset %ld"), val);
1329 break;
1330
1331 case LOC_LOCAL:
1332 printf_filtered (_("a local variable at frame offset %ld"), val);
1333 break;
1334
1335 case LOC_REF_ARG:
1336 printf_filtered (_("a reference argument at offset %ld"), val);
1337 break;
1338
1339 case LOC_TYPEDEF:
1340 printf_filtered (_("a typedef"));
1341 break;
1342
1343 case LOC_BLOCK:
1344 printf_filtered (_("a function at address "));
1345 load_addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1346 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1347 if (section_is_overlay (section))
1348 {
1349 load_addr = overlay_unmapped_address (load_addr, section);
1350 printf_filtered (_(",\n -- loaded at "));
1351 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1352 printf_filtered (_(" in overlay section %s"),
1353 section->the_bfd_section->name);
1354 }
1355 break;
1356
1357 case LOC_UNRESOLVED:
1358 {
1359 struct bound_minimal_symbol msym;
1360
1361 msym = lookup_minimal_symbol_and_objfile (SYMBOL_LINKAGE_NAME (sym));
1362 if (msym.minsym == NULL)
1363 printf_filtered ("unresolved");
1364 else
1365 {
1366 section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1367 load_addr = SYMBOL_VALUE_ADDRESS (msym.minsym);
1368
1369 if (section
1370 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1371 printf_filtered (_("a thread-local variable at offset %s "
1372 "in the thread-local storage for `%s'"),
1373 paddress (gdbarch, load_addr),
1374 section->objfile->name);
1375 else
1376 {
1377 printf_filtered (_("static storage at address "));
1378 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1379 if (section_is_overlay (section))
1380 {
1381 load_addr = overlay_unmapped_address (load_addr, section);
1382 printf_filtered (_(",\n -- loaded at "));
1383 fputs_filtered (paddress (gdbarch, load_addr), gdb_stdout);
1384 printf_filtered (_(" in overlay section %s"),
1385 section->the_bfd_section->name);
1386 }
1387 }
1388 }
1389 }
1390 break;
1391
1392 case LOC_OPTIMIZED_OUT:
1393 printf_filtered (_("optimized out"));
1394 break;
1395
1396 default:
1397 printf_filtered (_("of unknown (botched) type"));
1398 break;
1399 }
1400 printf_filtered (".\n");
1401 }
1402 \f
1403
1404 static void
1405 x_command (char *exp, int from_tty)
1406 {
1407 struct expression *expr;
1408 struct format_data fmt;
1409 struct cleanup *old_chain;
1410 struct value *val;
1411
1412 fmt.format = last_format ? last_format : 'x';
1413 fmt.size = last_size;
1414 fmt.count = 1;
1415 fmt.raw = 0;
1416
1417 if (exp && *exp == '/')
1418 {
1419 const char *tmp = exp + 1;
1420
1421 fmt = decode_format (&tmp, last_format, last_size);
1422 exp = (char *) tmp;
1423 }
1424
1425 /* If we have an expression, evaluate it and use it as the address. */
1426
1427 if (exp != 0 && *exp != 0)
1428 {
1429 expr = parse_expression (exp);
1430 /* Cause expression not to be there any more if this command is
1431 repeated with Newline. But don't clobber a user-defined
1432 command's definition. */
1433 if (from_tty)
1434 *exp = 0;
1435 old_chain = make_cleanup (free_current_contents, &expr);
1436 val = evaluate_expression (expr);
1437 if (TYPE_CODE (value_type (val)) == TYPE_CODE_REF)
1438 val = coerce_ref (val);
1439 /* In rvalue contexts, such as this, functions are coerced into
1440 pointers to functions. This makes "x/i main" work. */
1441 if (/* last_format == 'i' && */
1442 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1443 && VALUE_LVAL (val) == lval_memory)
1444 next_address = value_address (val);
1445 else
1446 next_address = value_as_address (val);
1447
1448 next_gdbarch = expr->gdbarch;
1449 do_cleanups (old_chain);
1450 }
1451
1452 if (!next_gdbarch)
1453 error_no_arg (_("starting display address"));
1454
1455 do_examine (fmt, next_gdbarch, next_address);
1456
1457 /* If the examine succeeds, we remember its size and format for next
1458 time. Set last_size to 'b' for strings. */
1459 if (fmt.format == 's')
1460 last_size = 'b';
1461 else
1462 last_size = fmt.size;
1463 last_format = fmt.format;
1464
1465 /* Set a couple of internal variables if appropriate. */
1466 if (last_examine_value)
1467 {
1468 /* Make last address examined available to the user as $_. Use
1469 the correct pointer type. */
1470 struct type *pointer_type
1471 = lookup_pointer_type (value_type (last_examine_value));
1472 set_internalvar (lookup_internalvar ("_"),
1473 value_from_pointer (pointer_type,
1474 last_examine_address));
1475
1476 /* Make contents of last address examined available to the user
1477 as $__. If the last value has not been fetched from memory
1478 then don't fetch it now; instead mark it by voiding the $__
1479 variable. */
1480 if (value_lazy (last_examine_value))
1481 clear_internalvar (lookup_internalvar ("__"));
1482 else
1483 set_internalvar (lookup_internalvar ("__"), last_examine_value);
1484 }
1485 }
1486 \f
1487
1488 /* Add an expression to the auto-display chain.
1489 Specify the expression. */
1490
1491 static void
1492 display_command (char *arg, int from_tty)
1493 {
1494 struct format_data fmt;
1495 struct expression *expr;
1496 struct display *new;
1497 int display_it = 1;
1498 const char *exp = arg;
1499
1500 #if defined(TUI)
1501 /* NOTE: cagney/2003-02-13 The `tui_active' was previously
1502 `tui_version'. */
1503 if (tui_active && exp != NULL && *exp == '$')
1504 display_it = (tui_set_layout_for_display_command (exp) == TUI_FAILURE);
1505 #endif
1506
1507 if (display_it)
1508 {
1509 if (exp == 0)
1510 {
1511 do_displays ();
1512 return;
1513 }
1514
1515 if (*exp == '/')
1516 {
1517 exp++;
1518 fmt = decode_format (&exp, 0, 0);
1519 if (fmt.size && fmt.format == 0)
1520 fmt.format = 'x';
1521 if (fmt.format == 'i' || fmt.format == 's')
1522 fmt.size = 'b';
1523 }
1524 else
1525 {
1526 fmt.format = 0;
1527 fmt.size = 0;
1528 fmt.count = 0;
1529 fmt.raw = 0;
1530 }
1531
1532 innermost_block = NULL;
1533 expr = parse_expression (exp);
1534
1535 new = (struct display *) xmalloc (sizeof (struct display));
1536
1537 new->exp_string = xstrdup (exp);
1538 new->exp = expr;
1539 new->block = innermost_block;
1540 new->pspace = current_program_space;
1541 new->next = display_chain;
1542 new->number = ++display_number;
1543 new->format = fmt;
1544 new->enabled_p = 1;
1545 display_chain = new;
1546
1547 if (from_tty && target_has_execution)
1548 do_one_display (new);
1549
1550 dont_repeat ();
1551 }
1552 }
1553
1554 static void
1555 free_display (struct display *d)
1556 {
1557 xfree (d->exp_string);
1558 xfree (d->exp);
1559 xfree (d);
1560 }
1561
1562 /* Clear out the display_chain. Done when new symtabs are loaded,
1563 since this invalidates the types stored in many expressions. */
1564
1565 void
1566 clear_displays (void)
1567 {
1568 struct display *d;
1569
1570 while ((d = display_chain) != NULL)
1571 {
1572 display_chain = d->next;
1573 free_display (d);
1574 }
1575 }
1576
1577 /* Delete the auto-display DISPLAY. */
1578
1579 static void
1580 delete_display (struct display *display)
1581 {
1582 struct display *d;
1583
1584 gdb_assert (display != NULL);
1585
1586 if (display_chain == display)
1587 display_chain = display->next;
1588
1589 ALL_DISPLAYS (d)
1590 if (d->next == display)
1591 {
1592 d->next = display->next;
1593 break;
1594 }
1595
1596 free_display (display);
1597 }
1598
1599 /* Call FUNCTION on each of the displays whose numbers are given in
1600 ARGS. DATA is passed unmodified to FUNCTION. */
1601
1602 static void
1603 map_display_numbers (char *args,
1604 void (*function) (struct display *,
1605 void *),
1606 void *data)
1607 {
1608 struct get_number_or_range_state state;
1609 int num;
1610
1611 if (args == NULL)
1612 error_no_arg (_("one or more display numbers"));
1613
1614 init_number_or_range (&state, args);
1615
1616 while (!state.finished)
1617 {
1618 char *p = state.string;
1619
1620 num = get_number_or_range (&state);
1621 if (num == 0)
1622 warning (_("bad display number at or near '%s'"), p);
1623 else
1624 {
1625 struct display *d, *tmp;
1626
1627 ALL_DISPLAYS_SAFE (d, tmp)
1628 if (d->number == num)
1629 break;
1630 if (d == NULL)
1631 printf_unfiltered (_("No display number %d.\n"), num);
1632 else
1633 function (d, data);
1634 }
1635 }
1636 }
1637
1638 /* Callback for map_display_numbers, that deletes a display. */
1639
1640 static void
1641 do_delete_display (struct display *d, void *data)
1642 {
1643 delete_display (d);
1644 }
1645
1646 /* "undisplay" command. */
1647
1648 static void
1649 undisplay_command (char *args, int from_tty)
1650 {
1651 if (args == NULL)
1652 {
1653 if (query (_("Delete all auto-display expressions? ")))
1654 clear_displays ();
1655 dont_repeat ();
1656 return;
1657 }
1658
1659 map_display_numbers (args, do_delete_display, NULL);
1660 dont_repeat ();
1661 }
1662
1663 /* Display a single auto-display.
1664 Do nothing if the display cannot be printed in the current context,
1665 or if the display is disabled. */
1666
1667 static void
1668 do_one_display (struct display *d)
1669 {
1670 struct cleanup *old_chain;
1671 int within_current_scope;
1672
1673 if (d->enabled_p == 0)
1674 return;
1675
1676 /* The expression carries the architecture that was used at parse time.
1677 This is a problem if the expression depends on architecture features
1678 (e.g. register numbers), and the current architecture is now different.
1679 For example, a display statement like "display/i $pc" is expected to
1680 display the PC register of the current architecture, not the arch at
1681 the time the display command was given. Therefore, we re-parse the
1682 expression if the current architecture has changed. */
1683 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1684 {
1685 xfree (d->exp);
1686 d->exp = NULL;
1687 d->block = NULL;
1688 }
1689
1690 if (d->exp == NULL)
1691 {
1692 volatile struct gdb_exception ex;
1693
1694 TRY_CATCH (ex, RETURN_MASK_ALL)
1695 {
1696 innermost_block = NULL;
1697 d->exp = parse_expression (d->exp_string);
1698 d->block = innermost_block;
1699 }
1700 if (ex.reason < 0)
1701 {
1702 /* Can't re-parse the expression. Disable this display item. */
1703 d->enabled_p = 0;
1704 warning (_("Unable to display \"%s\": %s"),
1705 d->exp_string, ex.message);
1706 return;
1707 }
1708 }
1709
1710 if (d->block)
1711 {
1712 if (d->pspace == current_program_space)
1713 within_current_scope = contained_in (get_selected_block (0), d->block);
1714 else
1715 within_current_scope = 0;
1716 }
1717 else
1718 within_current_scope = 1;
1719 if (!within_current_scope)
1720 return;
1721
1722 old_chain = make_cleanup_restore_integer (&current_display_number);
1723 current_display_number = d->number;
1724
1725 annotate_display_begin ();
1726 printf_filtered ("%d", d->number);
1727 annotate_display_number_end ();
1728 printf_filtered (": ");
1729 if (d->format.size)
1730 {
1731 volatile struct gdb_exception ex;
1732
1733 annotate_display_format ();
1734
1735 printf_filtered ("x/");
1736 if (d->format.count != 1)
1737 printf_filtered ("%d", d->format.count);
1738 printf_filtered ("%c", d->format.format);
1739 if (d->format.format != 'i' && d->format.format != 's')
1740 printf_filtered ("%c", d->format.size);
1741 printf_filtered (" ");
1742
1743 annotate_display_expression ();
1744
1745 puts_filtered (d->exp_string);
1746 annotate_display_expression_end ();
1747
1748 if (d->format.count != 1 || d->format.format == 'i')
1749 printf_filtered ("\n");
1750 else
1751 printf_filtered (" ");
1752
1753 annotate_display_value ();
1754
1755 TRY_CATCH (ex, RETURN_MASK_ERROR)
1756 {
1757 struct value *val;
1758 CORE_ADDR addr;
1759
1760 val = evaluate_expression (d->exp);
1761 addr = value_as_address (val);
1762 if (d->format.format == 'i')
1763 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1764 do_examine (d->format, d->exp->gdbarch, addr);
1765 }
1766 if (ex.reason < 0)
1767 fprintf_filtered (gdb_stdout, _("<error: %s>\n"), ex.message);
1768 }
1769 else
1770 {
1771 struct value_print_options opts;
1772 volatile struct gdb_exception ex;
1773
1774 annotate_display_format ();
1775
1776 if (d->format.format)
1777 printf_filtered ("/%c ", d->format.format);
1778
1779 annotate_display_expression ();
1780
1781 puts_filtered (d->exp_string);
1782 annotate_display_expression_end ();
1783
1784 printf_filtered (" = ");
1785
1786 annotate_display_expression ();
1787
1788 get_formatted_print_options (&opts, d->format.format);
1789 opts.raw = d->format.raw;
1790
1791 TRY_CATCH (ex, RETURN_MASK_ERROR)
1792 {
1793 struct value *val;
1794
1795 val = evaluate_expression (d->exp);
1796 print_formatted (val, d->format.size, &opts, gdb_stdout);
1797 }
1798 if (ex.reason < 0)
1799 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
1800 printf_filtered ("\n");
1801 }
1802
1803 annotate_display_end ();
1804
1805 gdb_flush (gdb_stdout);
1806 do_cleanups (old_chain);
1807 }
1808
1809 /* Display all of the values on the auto-display chain which can be
1810 evaluated in the current scope. */
1811
1812 void
1813 do_displays (void)
1814 {
1815 struct display *d;
1816
1817 for (d = display_chain; d; d = d->next)
1818 do_one_display (d);
1819 }
1820
1821 /* Delete the auto-display which we were in the process of displaying.
1822 This is done when there is an error or a signal. */
1823
1824 void
1825 disable_display (int num)
1826 {
1827 struct display *d;
1828
1829 for (d = display_chain; d; d = d->next)
1830 if (d->number == num)
1831 {
1832 d->enabled_p = 0;
1833 return;
1834 }
1835 printf_unfiltered (_("No display number %d.\n"), num);
1836 }
1837
1838 void
1839 disable_current_display (void)
1840 {
1841 if (current_display_number >= 0)
1842 {
1843 disable_display (current_display_number);
1844 fprintf_unfiltered (gdb_stderr,
1845 _("Disabling display %d to "
1846 "avoid infinite recursion.\n"),
1847 current_display_number);
1848 }
1849 current_display_number = -1;
1850 }
1851
1852 static void
1853 display_info (char *ignore, int from_tty)
1854 {
1855 struct display *d;
1856
1857 if (!display_chain)
1858 printf_unfiltered (_("There are no auto-display expressions now.\n"));
1859 else
1860 printf_filtered (_("Auto-display expressions now in effect:\n\
1861 Num Enb Expression\n"));
1862
1863 for (d = display_chain; d; d = d->next)
1864 {
1865 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
1866 if (d->format.size)
1867 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
1868 d->format.format);
1869 else if (d->format.format)
1870 printf_filtered ("/%c ", d->format.format);
1871 puts_filtered (d->exp_string);
1872 if (d->block && !contained_in (get_selected_block (0), d->block))
1873 printf_filtered (_(" (cannot be evaluated in the current context)"));
1874 printf_filtered ("\n");
1875 gdb_flush (gdb_stdout);
1876 }
1877 }
1878
1879 /* Callback fo map_display_numbers, that enables or disables the
1880 passed in display D. */
1881
1882 static void
1883 do_enable_disable_display (struct display *d, void *data)
1884 {
1885 d->enabled_p = *(int *) data;
1886 }
1887
1888 /* Implamentation of both the "disable display" and "enable display"
1889 commands. ENABLE decides what to do. */
1890
1891 static void
1892 enable_disable_display_command (char *args, int from_tty, int enable)
1893 {
1894 if (args == NULL)
1895 {
1896 struct display *d;
1897
1898 ALL_DISPLAYS (d)
1899 d->enabled_p = enable;
1900 return;
1901 }
1902
1903 map_display_numbers (args, do_enable_disable_display, &enable);
1904 }
1905
1906 /* The "enable display" command. */
1907
1908 static void
1909 enable_display_command (char *args, int from_tty)
1910 {
1911 enable_disable_display_command (args, from_tty, 1);
1912 }
1913
1914 /* The "disable display" command. */
1915
1916 static void
1917 disable_display_command (char *args, int from_tty)
1918 {
1919 enable_disable_display_command (args, from_tty, 0);
1920 }
1921
1922 /* display_chain items point to blocks and expressions. Some expressions in
1923 turn may point to symbols.
1924 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
1925 obstack_free'd when a shared library is unloaded.
1926 Clear pointers that are about to become dangling.
1927 Both .exp and .block fields will be restored next time we need to display
1928 an item by re-parsing .exp_string field in the new execution context. */
1929
1930 static void
1931 clear_dangling_display_expressions (struct so_list *solib)
1932 {
1933 struct objfile *objfile = solib->objfile;
1934 struct display *d;
1935
1936 /* With no symbol file we cannot have a block or expression from it. */
1937 if (objfile == NULL)
1938 return;
1939 if (objfile->separate_debug_objfile_backlink)
1940 objfile = objfile->separate_debug_objfile_backlink;
1941 gdb_assert (objfile->pspace == solib->pspace);
1942
1943 for (d = display_chain; d != NULL; d = d->next)
1944 {
1945 if (d->pspace != solib->pspace)
1946 continue;
1947
1948 if (lookup_objfile_from_block (d->block) == objfile
1949 || (d->exp && exp_uses_objfile (d->exp, objfile)))
1950 {
1951 xfree (d->exp);
1952 d->exp = NULL;
1953 d->block = NULL;
1954 }
1955 }
1956 }
1957 \f
1958
1959 /* Print the value in stack frame FRAME of a variable specified by a
1960 struct symbol. NAME is the name to print; if NULL then VAR's print
1961 name will be used. STREAM is the ui_file on which to print the
1962 value. INDENT specifies the number of indent levels to print
1963 before printing the variable name.
1964
1965 This function invalidates FRAME. */
1966
1967 void
1968 print_variable_and_value (const char *name, struct symbol *var,
1969 struct frame_info *frame,
1970 struct ui_file *stream, int indent)
1971 {
1972 volatile struct gdb_exception except;
1973
1974 if (!name)
1975 name = SYMBOL_PRINT_NAME (var);
1976
1977 fprintf_filtered (stream, "%s%s = ", n_spaces (2 * indent), name);
1978 TRY_CATCH (except, RETURN_MASK_ERROR)
1979 {
1980 struct value *val;
1981 struct value_print_options opts;
1982
1983 val = read_var_value (var, frame);
1984 get_user_print_options (&opts);
1985 opts.deref_ref = 1;
1986 common_val_print (val, stream, indent, &opts, current_language);
1987
1988 /* common_val_print invalidates FRAME when a pretty printer calls inferior
1989 function. */
1990 frame = NULL;
1991 }
1992 if (except.reason < 0)
1993 fprintf_filtered(stream, "<error reading variable %s (%s)>", name,
1994 except.message);
1995 fprintf_filtered (stream, "\n");
1996 }
1997
1998 /* Subroutine of ui_printf to simplify it.
1999 Print VALUE to STREAM using FORMAT.
2000 VALUE is a C-style string on the target. */
2001
2002 static void
2003 printf_c_string (struct ui_file *stream, const char *format,
2004 struct value *value)
2005 {
2006 gdb_byte *str;
2007 CORE_ADDR tem;
2008 int j;
2009
2010 tem = value_as_address (value);
2011
2012 /* This is a %s argument. Find the length of the string. */
2013 for (j = 0;; j++)
2014 {
2015 gdb_byte c;
2016
2017 QUIT;
2018 read_memory (tem + j, &c, 1);
2019 if (c == 0)
2020 break;
2021 }
2022
2023 /* Copy the string contents into a string inside GDB. */
2024 str = (gdb_byte *) alloca (j + 1);
2025 if (j != 0)
2026 read_memory (tem, str, j);
2027 str[j] = 0;
2028
2029 fprintf_filtered (stream, format, (char *) str);
2030 }
2031
2032 /* Subroutine of ui_printf to simplify it.
2033 Print VALUE to STREAM using FORMAT.
2034 VALUE is a wide C-style string on the target. */
2035
2036 static void
2037 printf_wide_c_string (struct ui_file *stream, const char *format,
2038 struct value *value)
2039 {
2040 gdb_byte *str;
2041 CORE_ADDR tem;
2042 int j;
2043 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2044 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2045 struct type *wctype = lookup_typename (current_language, gdbarch,
2046 "wchar_t", NULL, 0);
2047 int wcwidth = TYPE_LENGTH (wctype);
2048 gdb_byte *buf = alloca (wcwidth);
2049 struct obstack output;
2050 struct cleanup *inner_cleanup;
2051
2052 tem = value_as_address (value);
2053
2054 /* This is a %s argument. Find the length of the string. */
2055 for (j = 0;; j += wcwidth)
2056 {
2057 QUIT;
2058 read_memory (tem + j, buf, wcwidth);
2059 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2060 break;
2061 }
2062
2063 /* Copy the string contents into a string inside GDB. */
2064 str = (gdb_byte *) alloca (j + wcwidth);
2065 if (j != 0)
2066 read_memory (tem, str, j);
2067 memset (&str[j], 0, wcwidth);
2068
2069 obstack_init (&output);
2070 inner_cleanup = make_cleanup_obstack_free (&output);
2071
2072 convert_between_encodings (target_wide_charset (gdbarch),
2073 host_charset (),
2074 str, j, wcwidth,
2075 &output, translit_char);
2076 obstack_grow_str0 (&output, "");
2077
2078 fprintf_filtered (stream, format, obstack_base (&output));
2079 do_cleanups (inner_cleanup);
2080 }
2081
2082 /* Subroutine of ui_printf to simplify it.
2083 Print VALUE, a decimal floating point value, to STREAM using FORMAT. */
2084
2085 static void
2086 printf_decfloat (struct ui_file *stream, const char *format,
2087 struct value *value)
2088 {
2089 const gdb_byte *param_ptr = value_contents (value);
2090
2091 #if defined (PRINTF_HAS_DECFLOAT)
2092 /* If we have native support for Decimal floating
2093 printing, handle it here. */
2094 fprintf_filtered (stream, format, param_ptr);
2095 #else
2096 /* As a workaround until vasprintf has native support for DFP
2097 we convert the DFP values to string and print them using
2098 the %s format specifier. */
2099 const char *p;
2100
2101 /* Parameter data. */
2102 struct type *param_type = value_type (value);
2103 struct gdbarch *gdbarch = get_type_arch (param_type);
2104 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2105
2106 /* DFP output data. */
2107 struct value *dfp_value = NULL;
2108 gdb_byte *dfp_ptr;
2109 int dfp_len = 16;
2110 gdb_byte dec[16];
2111 struct type *dfp_type = NULL;
2112 char decstr[MAX_DECIMAL_STRING];
2113
2114 /* Points to the end of the string so that we can go back
2115 and check for DFP length modifiers. */
2116 p = format + strlen (format);
2117
2118 /* Look for the float/double format specifier. */
2119 while (*p != 'f' && *p != 'e' && *p != 'E'
2120 && *p != 'g' && *p != 'G')
2121 p--;
2122
2123 /* Search for the '%' char and extract the size and type of
2124 the output decimal value based on its modifiers
2125 (%Hf, %Df, %DDf). */
2126 while (*--p != '%')
2127 {
2128 if (*p == 'H')
2129 {
2130 dfp_len = 4;
2131 dfp_type = builtin_type (gdbarch)->builtin_decfloat;
2132 }
2133 else if (*p == 'D' && *(p - 1) == 'D')
2134 {
2135 dfp_len = 16;
2136 dfp_type = builtin_type (gdbarch)->builtin_declong;
2137 p--;
2138 }
2139 else
2140 {
2141 dfp_len = 8;
2142 dfp_type = builtin_type (gdbarch)->builtin_decdouble;
2143 }
2144 }
2145
2146 /* Conversion between different DFP types. */
2147 if (TYPE_CODE (param_type) == TYPE_CODE_DECFLOAT)
2148 decimal_convert (param_ptr, TYPE_LENGTH (param_type),
2149 byte_order, dec, dfp_len, byte_order);
2150 else
2151 /* If this is a non-trivial conversion, just output 0.
2152 A correct converted value can be displayed by explicitly
2153 casting to a DFP type. */
2154 decimal_from_string (dec, dfp_len, byte_order, "0");
2155
2156 dfp_value = value_from_decfloat (dfp_type, dec);
2157
2158 dfp_ptr = (gdb_byte *) value_contents (dfp_value);
2159
2160 decimal_to_string (dfp_ptr, dfp_len, byte_order, decstr);
2161
2162 /* Print the DFP value. */
2163 fprintf_filtered (stream, "%s", decstr);
2164 #endif
2165 }
2166
2167 /* Subroutine of ui_printf to simplify it.
2168 Print VALUE, a target pointer, to STREAM using FORMAT. */
2169
2170 static void
2171 printf_pointer (struct ui_file *stream, const char *format,
2172 struct value *value)
2173 {
2174 /* We avoid the host's %p because pointers are too
2175 likely to be the wrong size. The only interesting
2176 modifier for %p is a width; extract that, and then
2177 handle %p as glibc would: %#x or a literal "(nil)". */
2178
2179 const char *p;
2180 char *fmt, *fmt_p;
2181 #ifdef PRINTF_HAS_LONG_LONG
2182 long long val = value_as_long (value);
2183 #else
2184 long val = value_as_long (value);
2185 #endif
2186
2187 fmt = alloca (strlen (format) + 5);
2188
2189 /* Copy up to the leading %. */
2190 p = format;
2191 fmt_p = fmt;
2192 while (*p)
2193 {
2194 int is_percent = (*p == '%');
2195
2196 *fmt_p++ = *p++;
2197 if (is_percent)
2198 {
2199 if (*p == '%')
2200 *fmt_p++ = *p++;
2201 else
2202 break;
2203 }
2204 }
2205
2206 if (val != 0)
2207 *fmt_p++ = '#';
2208
2209 /* Copy any width. */
2210 while (*p >= '0' && *p < '9')
2211 *fmt_p++ = *p++;
2212
2213 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2214 if (val != 0)
2215 {
2216 #ifdef PRINTF_HAS_LONG_LONG
2217 *fmt_p++ = 'l';
2218 #endif
2219 *fmt_p++ = 'l';
2220 *fmt_p++ = 'x';
2221 *fmt_p++ = '\0';
2222 fprintf_filtered (stream, fmt, val);
2223 }
2224 else
2225 {
2226 *fmt_p++ = 's';
2227 *fmt_p++ = '\0';
2228 fprintf_filtered (stream, fmt, "(nil)");
2229 }
2230 }
2231
2232 /* printf "printf format string" ARG to STREAM. */
2233
2234 static void
2235 ui_printf (const char *arg, struct ui_file *stream)
2236 {
2237 struct format_piece *fpieces;
2238 const char *s = arg;
2239 struct value **val_args;
2240 int allocated_args = 20;
2241 struct cleanup *old_cleanups;
2242
2243 val_args = xmalloc (allocated_args * sizeof (struct value *));
2244 old_cleanups = make_cleanup (free_current_contents, &val_args);
2245
2246 if (s == 0)
2247 error_no_arg (_("format-control string and values to print"));
2248
2249 s = skip_spaces_const (s);
2250
2251 /* A format string should follow, enveloped in double quotes. */
2252 if (*s++ != '"')
2253 error (_("Bad format string, missing '\"'."));
2254
2255 fpieces = parse_format_string (&s);
2256
2257 make_cleanup (free_format_pieces_cleanup, &fpieces);
2258
2259 if (*s++ != '"')
2260 error (_("Bad format string, non-terminated '\"'."));
2261
2262 s = skip_spaces_const (s);
2263
2264 if (*s != ',' && *s != 0)
2265 error (_("Invalid argument syntax"));
2266
2267 if (*s == ',')
2268 s++;
2269 s = skip_spaces_const (s);
2270
2271 {
2272 int nargs = 0;
2273 int nargs_wanted;
2274 int i, fr;
2275 char *current_substring;
2276
2277 nargs_wanted = 0;
2278 for (fr = 0; fpieces[fr].string != NULL; fr++)
2279 if (fpieces[fr].argclass != literal_piece)
2280 ++nargs_wanted;
2281
2282 /* Now, parse all arguments and evaluate them.
2283 Store the VALUEs in VAL_ARGS. */
2284
2285 while (*s != '\0')
2286 {
2287 const char *s1;
2288
2289 if (nargs == allocated_args)
2290 val_args = (struct value **) xrealloc ((char *) val_args,
2291 (allocated_args *= 2)
2292 * sizeof (struct value *));
2293 s1 = s;
2294 val_args[nargs] = parse_to_comma_and_eval (&s1);
2295
2296 nargs++;
2297 s = s1;
2298 if (*s == ',')
2299 s++;
2300 }
2301
2302 if (nargs != nargs_wanted)
2303 error (_("Wrong number of arguments for specified format-string"));
2304
2305 /* Now actually print them. */
2306 i = 0;
2307 for (fr = 0; fpieces[fr].string != NULL; fr++)
2308 {
2309 current_substring = fpieces[fr].string;
2310 switch (fpieces[fr].argclass)
2311 {
2312 case string_arg:
2313 printf_c_string (stream, current_substring, val_args[i]);
2314 break;
2315 case wide_string_arg:
2316 printf_wide_c_string (stream, current_substring, val_args[i]);
2317 break;
2318 case wide_char_arg:
2319 {
2320 struct gdbarch *gdbarch
2321 = get_type_arch (value_type (val_args[i]));
2322 struct type *wctype = lookup_typename (current_language, gdbarch,
2323 "wchar_t", NULL, 0);
2324 struct type *valtype;
2325 struct obstack output;
2326 struct cleanup *inner_cleanup;
2327 const gdb_byte *bytes;
2328
2329 valtype = value_type (val_args[i]);
2330 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2331 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2332 error (_("expected wchar_t argument for %%lc"));
2333
2334 bytes = value_contents (val_args[i]);
2335
2336 obstack_init (&output);
2337 inner_cleanup = make_cleanup_obstack_free (&output);
2338
2339 convert_between_encodings (target_wide_charset (gdbarch),
2340 host_charset (),
2341 bytes, TYPE_LENGTH (valtype),
2342 TYPE_LENGTH (valtype),
2343 &output, translit_char);
2344 obstack_grow_str0 (&output, "");
2345
2346 fprintf_filtered (stream, current_substring,
2347 obstack_base (&output));
2348 do_cleanups (inner_cleanup);
2349 }
2350 break;
2351 case double_arg:
2352 {
2353 struct type *type = value_type (val_args[i]);
2354 DOUBLEST val;
2355 int inv;
2356
2357 /* If format string wants a float, unchecked-convert the value
2358 to floating point of the same size. */
2359 type = float_type_from_length (type);
2360 val = unpack_double (type, value_contents (val_args[i]), &inv);
2361 if (inv)
2362 error (_("Invalid floating value found in program."));
2363
2364 fprintf_filtered (stream, current_substring, (double) val);
2365 break;
2366 }
2367 case long_double_arg:
2368 #ifdef HAVE_LONG_DOUBLE
2369 {
2370 struct type *type = value_type (val_args[i]);
2371 DOUBLEST val;
2372 int inv;
2373
2374 /* If format string wants a float, unchecked-convert the value
2375 to floating point of the same size. */
2376 type = float_type_from_length (type);
2377 val = unpack_double (type, value_contents (val_args[i]), &inv);
2378 if (inv)
2379 error (_("Invalid floating value found in program."));
2380
2381 fprintf_filtered (stream, current_substring,
2382 (long double) val);
2383 break;
2384 }
2385 #else
2386 error (_("long double not supported in printf"));
2387 #endif
2388 case long_long_arg:
2389 #ifdef PRINTF_HAS_LONG_LONG
2390 {
2391 long long val = value_as_long (val_args[i]);
2392
2393 fprintf_filtered (stream, current_substring, val);
2394 break;
2395 }
2396 #else
2397 error (_("long long not supported in printf"));
2398 #endif
2399 case int_arg:
2400 {
2401 int val = value_as_long (val_args[i]);
2402
2403 fprintf_filtered (stream, current_substring, val);
2404 break;
2405 }
2406 case long_arg:
2407 {
2408 long val = value_as_long (val_args[i]);
2409
2410 fprintf_filtered (stream, current_substring, val);
2411 break;
2412 }
2413 /* Handles decimal floating values. */
2414 case decfloat_arg:
2415 printf_decfloat (stream, current_substring, val_args[i]);
2416 break;
2417 case ptr_arg:
2418 printf_pointer (stream, current_substring, val_args[i]);
2419 break;
2420 case literal_piece:
2421 /* Print a portion of the format string that has no
2422 directives. Note that this will not include any
2423 ordinary %-specs, but it might include "%%". That is
2424 why we use printf_filtered and not puts_filtered here.
2425 Also, we pass a dummy argument because some platforms
2426 have modified GCC to include -Wformat-security by
2427 default, which will warn here if there is no
2428 argument. */
2429 fprintf_filtered (stream, current_substring, 0);
2430 break;
2431 default:
2432 internal_error (__FILE__, __LINE__,
2433 _("failed internal consistency check"));
2434 }
2435 /* Maybe advance to the next argument. */
2436 if (fpieces[fr].argclass != literal_piece)
2437 ++i;
2438 }
2439 }
2440 do_cleanups (old_cleanups);
2441 }
2442
2443 /* Implement the "printf" command. */
2444
2445 static void
2446 printf_command (char *arg, int from_tty)
2447 {
2448 ui_printf (arg, gdb_stdout);
2449 }
2450
2451 /* Implement the "eval" command. */
2452
2453 static void
2454 eval_command (char *arg, int from_tty)
2455 {
2456 struct ui_file *ui_out = mem_fileopen ();
2457 struct cleanup *cleanups = make_cleanup_ui_file_delete (ui_out);
2458 char *expanded;
2459
2460 ui_printf (arg, ui_out);
2461
2462 expanded = ui_file_xstrdup (ui_out, NULL);
2463 make_cleanup (xfree, expanded);
2464
2465 execute_command (expanded, from_tty);
2466
2467 do_cleanups (cleanups);
2468 }
2469
2470 void
2471 _initialize_printcmd (void)
2472 {
2473 struct cmd_list_element *c;
2474
2475 current_display_number = -1;
2476
2477 observer_attach_solib_unloaded (clear_dangling_display_expressions);
2478
2479 add_info ("address", address_info,
2480 _("Describe where symbol SYM is stored."));
2481
2482 add_info ("symbol", sym_info, _("\
2483 Describe what symbol is at location ADDR.\n\
2484 Only for symbols with fixed locations (global or static scope)."));
2485
2486 add_com ("x", class_vars, x_command, _("\
2487 Examine memory: x/FMT ADDRESS.\n\
2488 ADDRESS is an expression for the memory address to examine.\n\
2489 FMT is a repeat count followed by a format letter and a size letter.\n\
2490 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2491 t(binary), f(float), a(address), i(instruction), c(char) and s(string).\n\
2492 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2493 The specified number of objects of the specified size are printed\n\
2494 according to the format.\n\n\
2495 Defaults for format and size letters are those previously used.\n\
2496 Default count is 1. Default address is following last thing printed\n\
2497 with this command or \"print\"."));
2498
2499 #if 0
2500 add_com ("whereis", class_vars, whereis_command,
2501 _("Print line number and file of definition of variable."));
2502 #endif
2503
2504 add_info ("display", display_info, _("\
2505 Expressions to display when program stops, with code numbers."));
2506
2507 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2508 Cancel some expressions to be displayed when program stops.\n\
2509 Arguments are the code numbers of the expressions to stop displaying.\n\
2510 No argument means cancel all automatic-display expressions.\n\
2511 \"delete display\" has the same effect as this command.\n\
2512 Do \"info display\" to see current list of code numbers."),
2513 &cmdlist);
2514
2515 add_com ("display", class_vars, display_command, _("\
2516 Print value of expression EXP each time the program stops.\n\
2517 /FMT may be used before EXP as in the \"print\" command.\n\
2518 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2519 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2520 and examining is done as in the \"x\" command.\n\n\
2521 With no argument, display all currently requested auto-display expressions.\n\
2522 Use \"undisplay\" to cancel display requests previously made."));
2523
2524 add_cmd ("display", class_vars, enable_display_command, _("\
2525 Enable some expressions to be displayed when program stops.\n\
2526 Arguments are the code numbers of the expressions to resume displaying.\n\
2527 No argument means enable all automatic-display expressions.\n\
2528 Do \"info display\" to see current list of code numbers."), &enablelist);
2529
2530 add_cmd ("display", class_vars, disable_display_command, _("\
2531 Disable some expressions to be displayed when program stops.\n\
2532 Arguments are the code numbers of the expressions to stop displaying.\n\
2533 No argument means disable all automatic-display expressions.\n\
2534 Do \"info display\" to see current list of code numbers."), &disablelist);
2535
2536 add_cmd ("display", class_vars, undisplay_command, _("\
2537 Cancel some expressions to be displayed when program stops.\n\
2538 Arguments are the code numbers of the expressions to stop displaying.\n\
2539 No argument means cancel all automatic-display expressions.\n\
2540 Do \"info display\" to see current list of code numbers."), &deletelist);
2541
2542 add_com ("printf", class_vars, printf_command, _("\
2543 printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
2544 This is useful for formatted output in user-defined commands."));
2545
2546 add_com ("output", class_vars, output_command, _("\
2547 Like \"print\" but don't put in value history and don't print newline.\n\
2548 This is useful in user-defined commands."));
2549
2550 add_prefix_cmd ("set", class_vars, set_command, _("\
2551 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2552 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2553 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2554 with $), a register (a few standard names starting with $), or an actual\n\
2555 variable in the program being debugged. EXP is any valid expression.\n\
2556 Use \"set variable\" for variables with names identical to set subcommands.\n\
2557 \n\
2558 With a subcommand, this command modifies parts of the gdb environment.\n\
2559 You can see these environment settings with the \"show\" command."),
2560 &setlist, "set ", 1, &cmdlist);
2561 if (dbx_commands)
2562 add_com ("assign", class_vars, set_command, _("\
2563 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2564 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2565 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2566 with $), a register (a few standard names starting with $), or an actual\n\
2567 variable in the program being debugged. EXP is any valid expression.\n\
2568 Use \"set variable\" for variables with names identical to set subcommands.\n\
2569 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2570 You can see these environment settings with the \"show\" command."));
2571
2572 /* "call" is the same as "set", but handy for dbx users to call fns. */
2573 c = add_com ("call", class_vars, call_command, _("\
2574 Call a function in the program.\n\
2575 The argument is the function name and arguments, in the notation of the\n\
2576 current working language. The result is printed and saved in the value\n\
2577 history, if it is not void."));
2578 set_cmd_completer (c, expression_completer);
2579
2580 add_cmd ("variable", class_vars, set_command, _("\
2581 Evaluate expression EXP and assign result to variable VAR, using assignment\n\
2582 syntax appropriate for the current language (VAR = EXP or VAR := EXP for\n\
2583 example). VAR may be a debugger \"convenience\" variable (names starting\n\
2584 with $), a register (a few standard names starting with $), or an actual\n\
2585 variable in the program being debugged. EXP is any valid expression.\n\
2586 This may usually be abbreviated to simply \"set\"."),
2587 &setlist);
2588
2589 c = add_com ("print", class_vars, print_command, _("\
2590 Print value of expression EXP.\n\
2591 Variables accessible are those of the lexical environment of the selected\n\
2592 stack frame, plus all those whose scope is global or an entire file.\n\
2593 \n\
2594 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2595 $$NUM refers to NUM'th value back from the last one.\n\
2596 Names starting with $ refer to registers (with the values they would have\n\
2597 if the program were to return to the stack frame now selected, restoring\n\
2598 all registers saved by frames farther in) or else to debugger\n\
2599 \"convenience\" variables (any such name not a known register).\n\
2600 Use assignment expressions to give values to convenience variables.\n\
2601 \n\
2602 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2603 @ is a binary operator for treating consecutive data objects\n\
2604 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2605 element is FOO, whose second element is stored in the space following\n\
2606 where FOO is stored, etc. FOO must be an expression whose value\n\
2607 resides in memory.\n\
2608 \n\
2609 EXP may be preceded with /FMT, where FMT is a format letter\n\
2610 but no count or size letter (see \"x\" command)."));
2611 set_cmd_completer (c, expression_completer);
2612 add_com_alias ("p", "print", class_vars, 1);
2613 add_com_alias ("inspect", "print", class_vars, 1);
2614
2615 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2616 &max_symbolic_offset, _("\
2617 Set the largest offset that will be printed in <symbol+1234> form."), _("\
2618 Show the largest offset that will be printed in <symbol+1234> form."), NULL,
2619 NULL,
2620 show_max_symbolic_offset,
2621 &setprintlist, &showprintlist);
2622 add_setshow_boolean_cmd ("symbol-filename", no_class,
2623 &print_symbol_filename, _("\
2624 Set printing of source filename and line number with <symbol>."), _("\
2625 Show printing of source filename and line number with <symbol>."), NULL,
2626 NULL,
2627 show_print_symbol_filename,
2628 &setprintlist, &showprintlist);
2629
2630 add_com ("eval", no_class, eval_command, _("\
2631 Convert \"printf format string\", arg1, arg2, arg3, ..., argn to\n\
2632 a command line, and call it."));
2633 }