Change clear_program_space_solib_cache to method on program_space
[binutils-gdb.git] / gdb / progspace.c
1 /* Program and address space management, for GDB, the GNU debugger.
2
3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "objfiles.h"
23 #include "arch-utils.h"
24 #include "gdbcore.h"
25 #include "solib.h"
26 #include "solist.h"
27 #include "gdbthread.h"
28 #include "inferior.h"
29 #include <algorithm>
30
31 /* The last program space number assigned. */
32 int last_program_space_num = 0;
33
34 /* The head of the program spaces list. */
35 std::vector<struct program_space *> program_spaces;
36
37 /* Pointer to the current program space. */
38 struct program_space *current_program_space;
39
40 /* The last address space number assigned. */
41 static int highest_address_space_num;
42
43 \f
44
45 /* Keep a registry of per-program_space data-pointers required by other GDB
46 modules. */
47
48 DEFINE_REGISTRY (program_space, REGISTRY_ACCESS_FIELD)
49
50 /* Keep a registry of per-address_space data-pointers required by other GDB
51 modules. */
52
53 DEFINE_REGISTRY (address_space, REGISTRY_ACCESS_FIELD)
54
55 \f
56
57 /* Create a new address space object, and add it to the list. */
58
59 struct address_space *
60 new_address_space (void)
61 {
62 struct address_space *aspace;
63
64 aspace = XCNEW (struct address_space);
65 aspace->num = ++highest_address_space_num;
66 address_space_alloc_data (aspace);
67
68 return aspace;
69 }
70
71 /* Maybe create a new address space object, and add it to the list, or
72 return a pointer to an existing address space, in case inferiors
73 share an address space on this target system. */
74
75 struct address_space *
76 maybe_new_address_space (void)
77 {
78 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
79
80 if (shared_aspace)
81 {
82 /* Just return the first in the list. */
83 return program_spaces[0]->aspace;
84 }
85
86 return new_address_space ();
87 }
88
89 static void
90 free_address_space (struct address_space *aspace)
91 {
92 address_space_free_data (aspace);
93 xfree (aspace);
94 }
95
96 int
97 address_space_num (struct address_space *aspace)
98 {
99 return aspace->num;
100 }
101
102 /* Start counting over from scratch. */
103
104 static void
105 init_address_spaces (void)
106 {
107 highest_address_space_num = 0;
108 }
109
110 \f
111
112 /* Remove a program space from the program spaces list. */
113
114 static void
115 remove_program_space (program_space *pspace)
116 {
117 gdb_assert (pspace != NULL);
118
119 auto iter = std::find (program_spaces.begin (), program_spaces.end (),
120 pspace);
121 gdb_assert (iter != program_spaces.end ());
122 program_spaces.erase (iter);
123 }
124
125 /* See progspace.h. */
126
127 program_space::program_space (address_space *aspace_)
128 : num (++last_program_space_num),
129 aspace (aspace_)
130 {
131 program_space_alloc_data (this);
132
133 program_spaces.push_back (this);
134 }
135
136 /* See progspace.h. */
137
138 program_space::~program_space ()
139 {
140 gdb_assert (this != current_program_space);
141
142 remove_program_space (this);
143
144 scoped_restore_current_program_space restore_pspace;
145
146 set_current_program_space (this);
147
148 breakpoint_program_space_exit (this);
149 no_shared_libraries (NULL, 0);
150 exec_close ();
151 free_all_objfiles ();
152 /* Defer breakpoint re-set because we don't want to create new
153 locations for this pspace which we're tearing down. */
154 clear_symtab_users (SYMFILE_DEFER_BP_RESET);
155 if (!gdbarch_has_shared_address_space (target_gdbarch ()))
156 free_address_space (this->aspace);
157 /* Discard any data modules have associated with the PSPACE. */
158 program_space_free_data (this);
159 }
160
161 /* See progspace.h. */
162
163 void
164 program_space::free_all_objfiles ()
165 {
166 /* Any objfile reference would become stale. */
167 for (struct so_list *so : current_program_space->solibs ())
168 gdb_assert (so->objfile == NULL);
169
170 while (!objfiles_list.empty ())
171 objfiles_list.front ()->unlink ();
172 }
173
174 /* See progspace.h. */
175
176 void
177 program_space::add_objfile (std::shared_ptr<objfile> &&objfile,
178 struct objfile *before)
179 {
180 if (before == nullptr)
181 objfiles_list.push_back (std::move (objfile));
182 else
183 {
184 auto iter = std::find_if (objfiles_list.begin (), objfiles_list.end (),
185 [=] (const std::shared_ptr<::objfile> &objf)
186 {
187 return objf.get () == before;
188 });
189 gdb_assert (iter != objfiles_list.end ());
190 objfiles_list.insert (iter, std::move (objfile));
191 }
192 }
193
194 /* See progspace.h. */
195
196 void
197 program_space::remove_objfile (struct objfile *objfile)
198 {
199 /* Removing an objfile from the objfile list invalidates any frame
200 that was built using frame info found in the objfile. Reinit the
201 frame cache to get rid of any frame that might otherwise
202 reference stale info. */
203 reinit_frame_cache ();
204
205 auto iter = std::find_if (objfiles_list.begin (), objfiles_list.end (),
206 [=] (const std::shared_ptr<::objfile> &objf)
207 {
208 return objf.get () == objfile;
209 });
210 gdb_assert (iter != objfiles_list.end ());
211 objfiles_list.erase (iter);
212
213 if (objfile == symfile_object_file)
214 symfile_object_file = NULL;
215 }
216
217 /* See progspace.h. */
218
219 next_adapter<struct so_list>
220 program_space::solibs () const
221 {
222 return next_adapter<struct so_list> (this->so_list);
223 }
224
225 /* See progspace.h. */
226
227 void
228 program_space::exec_close ()
229 {
230 if (ebfd != nullptr)
231 {
232 /* Removing target sections may close the exec_ops target.
233 Clear ebfd before doing so to prevent recursion. */
234 ebfd.reset (nullptr);
235 ebfd_mtime = 0;
236
237 remove_target_sections (&ebfd);
238
239 exec_filename.reset (nullptr);
240 }
241 }
242
243 /* Copies program space SRC to DEST. Copies the main executable file,
244 and the main symbol file. Returns DEST. */
245
246 struct program_space *
247 clone_program_space (struct program_space *dest, struct program_space *src)
248 {
249 scoped_restore_current_program_space restore_pspace;
250
251 set_current_program_space (dest);
252
253 if (src->exec_filename != NULL)
254 exec_file_attach (src->exec_filename.get (), 0);
255
256 if (src->symfile_object_file != NULL)
257 symbol_file_add_main (objfile_name (src->symfile_object_file),
258 SYMFILE_DEFER_BP_RESET);
259
260 return dest;
261 }
262
263 /* Sets PSPACE as the current program space. It is the caller's
264 responsibility to make sure that the currently selected
265 inferior/thread matches the selected program space. */
266
267 void
268 set_current_program_space (struct program_space *pspace)
269 {
270 if (current_program_space == pspace)
271 return;
272
273 gdb_assert (pspace != NULL);
274
275 current_program_space = pspace;
276
277 /* Different symbols change our view of the frame chain. */
278 reinit_frame_cache ();
279 }
280
281 /* Returns true iff there's no inferior bound to PSPACE. */
282
283 int
284 program_space_empty_p (struct program_space *pspace)
285 {
286 if (find_inferior_for_program_space (pspace) != NULL)
287 return 0;
288
289 return 1;
290 }
291
292 /* Prints the list of program spaces and their details on UIOUT. If
293 REQUESTED is not -1, it's the ID of the pspace that should be
294 printed. Otherwise, all spaces are printed. */
295
296 static void
297 print_program_space (struct ui_out *uiout, int requested)
298 {
299 int count = 0;
300
301 /* Compute number of pspaces we will print. */
302 for (struct program_space *pspace : program_spaces)
303 {
304 if (requested != -1 && pspace->num != requested)
305 continue;
306
307 ++count;
308 }
309
310 /* There should always be at least one. */
311 gdb_assert (count > 0);
312
313 ui_out_emit_table table_emitter (uiout, 3, count, "pspaces");
314 uiout->table_header (1, ui_left, "current", "");
315 uiout->table_header (4, ui_left, "id", "Id");
316 uiout->table_header (17, ui_left, "exec", "Executable");
317 uiout->table_body ();
318
319 for (struct program_space *pspace : program_spaces)
320 {
321 int printed_header;
322
323 if (requested != -1 && requested != pspace->num)
324 continue;
325
326 ui_out_emit_tuple tuple_emitter (uiout, NULL);
327
328 if (pspace == current_program_space)
329 uiout->field_string ("current", "*");
330 else
331 uiout->field_skip ("current");
332
333 uiout->field_signed ("id", pspace->num);
334
335 if (pspace->exec_filename != nullptr)
336 uiout->field_string ("exec", pspace->exec_filename.get ());
337 else
338 uiout->field_skip ("exec");
339
340 /* Print extra info that doesn't really fit in tabular form.
341 Currently, we print the list of inferiors bound to a pspace.
342 There can be more than one inferior bound to the same pspace,
343 e.g., both parent/child inferiors in a vfork, or, on targets
344 that share pspaces between inferiors. */
345 printed_header = 0;
346
347 /* We're going to switch inferiors. */
348 scoped_restore_current_thread restore_thread;
349
350 for (inferior *inf : all_inferiors ())
351 if (inf->pspace == pspace)
352 {
353 /* Switch to inferior in order to call target methods. */
354 switch_to_inferior_no_thread (inf);
355
356 if (!printed_header)
357 {
358 printed_header = 1;
359 printf_filtered ("\n\tBound inferiors: ID %d (%s)",
360 inf->num,
361 target_pid_to_str (ptid_t (inf->pid)).c_str ());
362 }
363 else
364 printf_filtered (", ID %d (%s)",
365 inf->num,
366 target_pid_to_str (ptid_t (inf->pid)).c_str ());
367 }
368
369 uiout->text ("\n");
370 }
371 }
372
373 /* Boolean test for an already-known program space id. */
374
375 static int
376 valid_program_space_id (int num)
377 {
378 for (struct program_space *pspace : program_spaces)
379 if (pspace->num == num)
380 return 1;
381
382 return 0;
383 }
384
385 /* If ARGS is NULL or empty, print information about all program
386 spaces. Otherwise, ARGS is a text representation of a LONG
387 indicating which the program space to print information about. */
388
389 static void
390 maintenance_info_program_spaces_command (const char *args, int from_tty)
391 {
392 int requested = -1;
393
394 if (args && *args)
395 {
396 requested = parse_and_eval_long (args);
397 if (!valid_program_space_id (requested))
398 error (_("program space ID %d not known."), requested);
399 }
400
401 print_program_space (current_uiout, requested);
402 }
403
404 /* Update all program spaces matching to address spaces. The user may
405 have created several program spaces, and loaded executables into
406 them before connecting to the target interface that will create the
407 inferiors. All that happens before GDB has a chance to know if the
408 inferiors will share an address space or not. Call this after
409 having connected to the target interface and having fetched the
410 target description, to fixup the program/address spaces mappings.
411
412 It is assumed that there are no bound inferiors yet, otherwise,
413 they'd be left with stale referenced to released aspaces. */
414
415 void
416 update_address_spaces (void)
417 {
418 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
419 struct inferior *inf;
420
421 init_address_spaces ();
422
423 if (shared_aspace)
424 {
425 struct address_space *aspace = new_address_space ();
426
427 free_address_space (current_program_space->aspace);
428 for (struct program_space *pspace : program_spaces)
429 pspace->aspace = aspace;
430 }
431 else
432 for (struct program_space *pspace : program_spaces)
433 {
434 free_address_space (pspace->aspace);
435 pspace->aspace = new_address_space ();
436 }
437
438 for (inf = inferior_list; inf; inf = inf->next)
439 if (gdbarch_has_global_solist (target_gdbarch ()))
440 inf->aspace = maybe_new_address_space ();
441 else
442 inf->aspace = inf->pspace->aspace;
443 }
444
445 \f
446
447 /* See progspace.h. */
448
449 void
450 program_space::clear_solib_cache ()
451 {
452 added_solibs.clear ();
453 deleted_solibs.clear ();
454 }
455
456 \f
457
458 void
459 initialize_progspace (void)
460 {
461 add_cmd ("program-spaces", class_maintenance,
462 maintenance_info_program_spaces_command,
463 _("Info about currently known program spaces."),
464 &maintenanceinfolist);
465
466 /* There's always one program space. Note that this function isn't
467 an automatic _initialize_foo function, since other
468 _initialize_foo routines may need to install their per-pspace
469 data keys. We can only allocate a progspace when all those
470 modules have done that. Do this before
471 initialize_current_architecture, because that accesses the ebfd
472 of current_program_space. */
473 current_program_space = new program_space (new_address_space ());
474 }