[gdb/testsuite] Fix ERROR in gdb.dwarf2/dw2-out-of-range-end-of-seq.exp
[binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "inferior.h"
25 #include "event-top.h"
26 #include "completer.h"
27 #include "arch-utils.h"
28 #include "gdbcore.h"
29 #include "exec.h"
30 #include "record.h"
31 #include "record-full.h"
32 #include "elf-bfd.h"
33 #include "gcore.h"
34 #include "gdbsupport/event-loop.h"
35 #include "inf-loop.h"
36 #include "gdb_bfd.h"
37 #include "observable.h"
38 #include "infrun.h"
39 #include "gdbsupport/gdb_unlinker.h"
40 #include "gdbsupport/byte-vector.h"
41 #include "async-event.h"
42
43 #include <signal.h>
44
45 /* This module implements "target record-full", also known as "process
46 record and replay". This target sits on top of a "normal" target
47 (a target that "has execution"), and provides a record and replay
48 functionality, including reverse debugging.
49
50 Target record has two modes: recording, and replaying.
51
52 In record mode, we intercept the resume and wait methods.
53 Whenever gdb resumes the target, we run the target in single step
54 mode, and we build up an execution log in which, for each executed
55 instruction, we record all changes in memory and register state.
56 This is invisible to the user, to whom it just looks like an
57 ordinary debugging session (except for performance degradation).
58
59 In replay mode, instead of actually letting the inferior run as a
60 process, we simulate its execution by playing back the recorded
61 execution log. For each instruction in the log, we simulate the
62 instruction's side effects by duplicating the changes that it would
63 have made on memory and registers. */
64
65 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
66
67 #define RECORD_FULL_IS_REPLAY \
68 (record_full_list->next || ::execution_direction == EXEC_REVERSE)
69
70 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
71
72 /* These are the core structs of the process record functionality.
73
74 A record_full_entry is a record of the value change of a register
75 ("record_full_reg") or a part of memory ("record_full_mem"). And each
76 instruction must have a struct record_full_entry ("record_full_end")
77 that indicates that this is the last struct record_full_entry of this
78 instruction.
79
80 Each struct record_full_entry is linked to "record_full_list" by "prev"
81 and "next" pointers. */
82
83 struct record_full_mem_entry
84 {
85 CORE_ADDR addr;
86 int len;
87 /* Set this flag if target memory for this entry
88 can no longer be accessed. */
89 int mem_entry_not_accessible;
90 union
91 {
92 gdb_byte *ptr;
93 gdb_byte buf[sizeof (gdb_byte *)];
94 } u;
95 };
96
97 struct record_full_reg_entry
98 {
99 unsigned short num;
100 unsigned short len;
101 union
102 {
103 gdb_byte *ptr;
104 gdb_byte buf[2 * sizeof (gdb_byte *)];
105 } u;
106 };
107
108 struct record_full_end_entry
109 {
110 enum gdb_signal sigval;
111 ULONGEST insn_num;
112 };
113
114 enum record_full_type
115 {
116 record_full_end = 0,
117 record_full_reg,
118 record_full_mem
119 };
120
121 /* This is the data structure that makes up the execution log.
122
123 The execution log consists of a single linked list of entries
124 of type "struct record_full_entry". It is doubly linked so that it
125 can be traversed in either direction.
126
127 The start of the list is anchored by a struct called
128 "record_full_first". The pointer "record_full_list" either points
129 to the last entry that was added to the list (in record mode), or to
130 the next entry in the list that will be executed (in replay mode).
131
132 Each list element (struct record_full_entry), in addition to next
133 and prev pointers, consists of a union of three entry types: mem,
134 reg, and end. A field called "type" determines which entry type is
135 represented by a given list element.
136
137 Each instruction that is added to the execution log is represented
138 by a variable number of list elements ('entries'). The instruction
139 will have one "reg" entry for each register that is changed by
140 executing the instruction (including the PC in every case). It
141 will also have one "mem" entry for each memory change. Finally,
142 each instruction will have an "end" entry that separates it from
143 the changes associated with the next instruction. */
144
145 struct record_full_entry
146 {
147 struct record_full_entry *prev;
148 struct record_full_entry *next;
149 enum record_full_type type;
150 union
151 {
152 /* reg */
153 struct record_full_reg_entry reg;
154 /* mem */
155 struct record_full_mem_entry mem;
156 /* end */
157 struct record_full_end_entry end;
158 } u;
159 };
160
161 /* If true, query if PREC cannot record memory
162 change of next instruction. */
163 bool record_full_memory_query = false;
164
165 struct record_full_core_buf_entry
166 {
167 struct record_full_core_buf_entry *prev;
168 struct target_section *p;
169 bfd_byte *buf;
170 };
171
172 /* Record buf with core target. */
173 static detached_regcache *record_full_core_regbuf = NULL;
174 static target_section_table record_full_core_sections;
175 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
176
177 /* The following variables are used for managing the linked list that
178 represents the execution log.
179
180 record_full_first is the anchor that holds down the beginning of
181 the list.
182
183 record_full_list serves two functions:
184 1) In record mode, it anchors the end of the list.
185 2) In replay mode, it traverses the list and points to
186 the next instruction that must be emulated.
187
188 record_full_arch_list_head and record_full_arch_list_tail are used
189 to manage a separate list, which is used to build up the change
190 elements of the currently executing instruction during record mode.
191 When this instruction has been completely annotated in the "arch
192 list", it will be appended to the main execution log. */
193
194 static struct record_full_entry record_full_first;
195 static struct record_full_entry *record_full_list = &record_full_first;
196 static struct record_full_entry *record_full_arch_list_head = NULL;
197 static struct record_full_entry *record_full_arch_list_tail = NULL;
198
199 /* true ask user. false auto delete the last struct record_full_entry. */
200 static bool record_full_stop_at_limit = true;
201 /* Maximum allowed number of insns in execution log. */
202 static unsigned int record_full_insn_max_num
203 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
204 /* Actual count of insns presently in execution log. */
205 static unsigned int record_full_insn_num = 0;
206 /* Count of insns logged so far (may be larger
207 than count of insns presently in execution log). */
208 static ULONGEST record_full_insn_count;
209
210 static const char record_longname[]
211 = N_("Process record and replay target");
212 static const char record_doc[]
213 = N_("Log program while executing and replay execution from log.");
214
215 /* Base class implementing functionality common to both the
216 "record-full" and "record-core" targets. */
217
218 class record_full_base_target : public target_ops
219 {
220 public:
221 const target_info &info () const override = 0;
222
223 strata stratum () const override { return record_stratum; }
224
225 void close () override;
226 void async (int) override;
227 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
228 bool stopped_by_watchpoint () override;
229 bool stopped_data_address (CORE_ADDR *) override;
230
231 bool stopped_by_sw_breakpoint () override;
232 bool supports_stopped_by_sw_breakpoint () override;
233
234 bool stopped_by_hw_breakpoint () override;
235 bool supports_stopped_by_hw_breakpoint () override;
236
237 bool can_execute_reverse () override;
238
239 /* Add bookmark target methods. */
240 gdb_byte *get_bookmark (const char *, int) override;
241 void goto_bookmark (const gdb_byte *, int) override;
242 enum exec_direction_kind execution_direction () override;
243 enum record_method record_method (ptid_t ptid) override;
244 void info_record () override;
245 void save_record (const char *filename) override;
246 bool supports_delete_record () override;
247 void delete_record () override;
248 bool record_is_replaying (ptid_t ptid) override;
249 bool record_will_replay (ptid_t ptid, int dir) override;
250 void record_stop_replaying () override;
251 void goto_record_begin () override;
252 void goto_record_end () override;
253 void goto_record (ULONGEST insn) override;
254 };
255
256 /* The "record-full" target. */
257
258 static const target_info record_full_target_info = {
259 "record-full",
260 record_longname,
261 record_doc,
262 };
263
264 class record_full_target final : public record_full_base_target
265 {
266 public:
267 const target_info &info () const override
268 { return record_full_target_info; }
269
270 void resume (ptid_t, int, enum gdb_signal) override;
271 void disconnect (const char *, int) override;
272 void detach (inferior *, int) override;
273 void mourn_inferior () override;
274 void kill () override;
275 void store_registers (struct regcache *, int) override;
276 enum target_xfer_status xfer_partial (enum target_object object,
277 const char *annex,
278 gdb_byte *readbuf,
279 const gdb_byte *writebuf,
280 ULONGEST offset, ULONGEST len,
281 ULONGEST *xfered_len) override;
282 int insert_breakpoint (struct gdbarch *,
283 struct bp_target_info *) override;
284 int remove_breakpoint (struct gdbarch *,
285 struct bp_target_info *,
286 enum remove_bp_reason) override;
287 };
288
289 /* The "record-core" target. */
290
291 static const target_info record_full_core_target_info = {
292 "record-core",
293 record_longname,
294 record_doc,
295 };
296
297 class record_full_core_target final : public record_full_base_target
298 {
299 public:
300 const target_info &info () const override
301 { return record_full_core_target_info; }
302
303 void resume (ptid_t, int, enum gdb_signal) override;
304 void disconnect (const char *, int) override;
305 void kill () override;
306 void fetch_registers (struct regcache *regcache, int regno) override;
307 void prepare_to_store (struct regcache *regcache) override;
308 void store_registers (struct regcache *, int) override;
309 enum target_xfer_status xfer_partial (enum target_object object,
310 const char *annex,
311 gdb_byte *readbuf,
312 const gdb_byte *writebuf,
313 ULONGEST offset, ULONGEST len,
314 ULONGEST *xfered_len) override;
315 int insert_breakpoint (struct gdbarch *,
316 struct bp_target_info *) override;
317 int remove_breakpoint (struct gdbarch *,
318 struct bp_target_info *,
319 enum remove_bp_reason) override;
320
321 bool has_execution (inferior *inf) override;
322 };
323
324 static record_full_target record_full_ops;
325 static record_full_core_target record_full_core_ops;
326
327 void
328 record_full_target::detach (inferior *inf, int from_tty)
329 {
330 record_detach (this, inf, from_tty);
331 }
332
333 void
334 record_full_target::disconnect (const char *args, int from_tty)
335 {
336 record_disconnect (this, args, from_tty);
337 }
338
339 void
340 record_full_core_target::disconnect (const char *args, int from_tty)
341 {
342 record_disconnect (this, args, from_tty);
343 }
344
345 void
346 record_full_target::mourn_inferior ()
347 {
348 record_mourn_inferior (this);
349 }
350
351 void
352 record_full_target::kill ()
353 {
354 record_kill (this);
355 }
356
357 /* See record-full.h. */
358
359 int
360 record_full_is_used (void)
361 {
362 struct target_ops *t;
363
364 t = find_record_target ();
365 return (t == &record_full_ops
366 || t == &record_full_core_ops);
367 }
368
369
370 /* Command lists for "set/show record full". */
371 static struct cmd_list_element *set_record_full_cmdlist;
372 static struct cmd_list_element *show_record_full_cmdlist;
373
374 /* Command list for "record full". */
375 static struct cmd_list_element *record_full_cmdlist;
376
377 static void record_full_goto_insn (struct record_full_entry *entry,
378 enum exec_direction_kind dir);
379
380 /* Alloc and free functions for record_full_reg, record_full_mem, and
381 record_full_end entries. */
382
383 /* Alloc a record_full_reg record entry. */
384
385 static inline struct record_full_entry *
386 record_full_reg_alloc (struct regcache *regcache, int regnum)
387 {
388 struct record_full_entry *rec;
389 struct gdbarch *gdbarch = regcache->arch ();
390
391 rec = XCNEW (struct record_full_entry);
392 rec->type = record_full_reg;
393 rec->u.reg.num = regnum;
394 rec->u.reg.len = register_size (gdbarch, regnum);
395 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
396 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
397
398 return rec;
399 }
400
401 /* Free a record_full_reg record entry. */
402
403 static inline void
404 record_full_reg_release (struct record_full_entry *rec)
405 {
406 gdb_assert (rec->type == record_full_reg);
407 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
408 xfree (rec->u.reg.u.ptr);
409 xfree (rec);
410 }
411
412 /* Alloc a record_full_mem record entry. */
413
414 static inline struct record_full_entry *
415 record_full_mem_alloc (CORE_ADDR addr, int len)
416 {
417 struct record_full_entry *rec;
418
419 rec = XCNEW (struct record_full_entry);
420 rec->type = record_full_mem;
421 rec->u.mem.addr = addr;
422 rec->u.mem.len = len;
423 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
424 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
425
426 return rec;
427 }
428
429 /* Free a record_full_mem record entry. */
430
431 static inline void
432 record_full_mem_release (struct record_full_entry *rec)
433 {
434 gdb_assert (rec->type == record_full_mem);
435 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
436 xfree (rec->u.mem.u.ptr);
437 xfree (rec);
438 }
439
440 /* Alloc a record_full_end record entry. */
441
442 static inline struct record_full_entry *
443 record_full_end_alloc (void)
444 {
445 struct record_full_entry *rec;
446
447 rec = XCNEW (struct record_full_entry);
448 rec->type = record_full_end;
449
450 return rec;
451 }
452
453 /* Free a record_full_end record entry. */
454
455 static inline void
456 record_full_end_release (struct record_full_entry *rec)
457 {
458 xfree (rec);
459 }
460
461 /* Free one record entry, any type.
462 Return entry->type, in case caller wants to know. */
463
464 static inline enum record_full_type
465 record_full_entry_release (struct record_full_entry *rec)
466 {
467 enum record_full_type type = rec->type;
468
469 switch (type) {
470 case record_full_reg:
471 record_full_reg_release (rec);
472 break;
473 case record_full_mem:
474 record_full_mem_release (rec);
475 break;
476 case record_full_end:
477 record_full_end_release (rec);
478 break;
479 }
480 return type;
481 }
482
483 /* Free all record entries in list pointed to by REC. */
484
485 static void
486 record_full_list_release (struct record_full_entry *rec)
487 {
488 if (!rec)
489 return;
490
491 while (rec->next)
492 rec = rec->next;
493
494 while (rec->prev)
495 {
496 rec = rec->prev;
497 record_full_entry_release (rec->next);
498 }
499
500 if (rec == &record_full_first)
501 {
502 record_full_insn_num = 0;
503 record_full_first.next = NULL;
504 }
505 else
506 record_full_entry_release (rec);
507 }
508
509 /* Free all record entries forward of the given list position. */
510
511 static void
512 record_full_list_release_following (struct record_full_entry *rec)
513 {
514 struct record_full_entry *tmp = rec->next;
515
516 rec->next = NULL;
517 while (tmp)
518 {
519 rec = tmp->next;
520 if (record_full_entry_release (tmp) == record_full_end)
521 {
522 record_full_insn_num--;
523 record_full_insn_count--;
524 }
525 tmp = rec;
526 }
527 }
528
529 /* Delete the first instruction from the beginning of the log, to make
530 room for adding a new instruction at the end of the log.
531
532 Note -- this function does not modify record_full_insn_num. */
533
534 static void
535 record_full_list_release_first (void)
536 {
537 struct record_full_entry *tmp;
538
539 if (!record_full_first.next)
540 return;
541
542 /* Loop until a record_full_end. */
543 while (1)
544 {
545 /* Cut record_full_first.next out of the linked list. */
546 tmp = record_full_first.next;
547 record_full_first.next = tmp->next;
548 tmp->next->prev = &record_full_first;
549
550 /* tmp is now isolated, and can be deleted. */
551 if (record_full_entry_release (tmp) == record_full_end)
552 break; /* End loop at first record_full_end. */
553
554 if (!record_full_first.next)
555 {
556 gdb_assert (record_full_insn_num == 1);
557 break; /* End loop when list is empty. */
558 }
559 }
560 }
561
562 /* Add a struct record_full_entry to record_full_arch_list. */
563
564 static void
565 record_full_arch_list_add (struct record_full_entry *rec)
566 {
567 if (record_debug > 1)
568 fprintf_unfiltered (gdb_stdlog,
569 "Process record: record_full_arch_list_add %s.\n",
570 host_address_to_string (rec));
571
572 if (record_full_arch_list_tail)
573 {
574 record_full_arch_list_tail->next = rec;
575 rec->prev = record_full_arch_list_tail;
576 record_full_arch_list_tail = rec;
577 }
578 else
579 {
580 record_full_arch_list_head = rec;
581 record_full_arch_list_tail = rec;
582 }
583 }
584
585 /* Return the value storage location of a record entry. */
586 static inline gdb_byte *
587 record_full_get_loc (struct record_full_entry *rec)
588 {
589 switch (rec->type) {
590 case record_full_mem:
591 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
592 return rec->u.mem.u.ptr;
593 else
594 return rec->u.mem.u.buf;
595 case record_full_reg:
596 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
597 return rec->u.reg.u.ptr;
598 else
599 return rec->u.reg.u.buf;
600 case record_full_end:
601 default:
602 gdb_assert_not_reached ("unexpected record_full_entry type");
603 return NULL;
604 }
605 }
606
607 /* Record the value of a register NUM to record_full_arch_list. */
608
609 int
610 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
611 {
612 struct record_full_entry *rec;
613
614 if (record_debug > 1)
615 fprintf_unfiltered (gdb_stdlog,
616 "Process record: add register num = %d to "
617 "record list.\n",
618 regnum);
619
620 rec = record_full_reg_alloc (regcache, regnum);
621
622 regcache->raw_read (regnum, record_full_get_loc (rec));
623
624 record_full_arch_list_add (rec);
625
626 return 0;
627 }
628
629 /* Record the value of a region of memory whose address is ADDR and
630 length is LEN to record_full_arch_list. */
631
632 int
633 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
634 {
635 struct record_full_entry *rec;
636
637 if (record_debug > 1)
638 fprintf_unfiltered (gdb_stdlog,
639 "Process record: add mem addr = %s len = %d to "
640 "record list.\n",
641 paddress (target_gdbarch (), addr), len);
642
643 if (!addr) /* FIXME: Why? Some arch must permit it... */
644 return 0;
645
646 rec = record_full_mem_alloc (addr, len);
647
648 if (record_read_memory (target_gdbarch (), addr,
649 record_full_get_loc (rec), len))
650 {
651 record_full_mem_release (rec);
652 return -1;
653 }
654
655 record_full_arch_list_add (rec);
656
657 return 0;
658 }
659
660 /* Add a record_full_end type struct record_full_entry to
661 record_full_arch_list. */
662
663 int
664 record_full_arch_list_add_end (void)
665 {
666 struct record_full_entry *rec;
667
668 if (record_debug > 1)
669 fprintf_unfiltered (gdb_stdlog,
670 "Process record: add end to arch list.\n");
671
672 rec = record_full_end_alloc ();
673 rec->u.end.sigval = GDB_SIGNAL_0;
674 rec->u.end.insn_num = ++record_full_insn_count;
675
676 record_full_arch_list_add (rec);
677
678 return 0;
679 }
680
681 static void
682 record_full_check_insn_num (void)
683 {
684 if (record_full_insn_num == record_full_insn_max_num)
685 {
686 /* Ask user what to do. */
687 if (record_full_stop_at_limit)
688 {
689 if (!yquery (_("Do you want to auto delete previous execution "
690 "log entries when record/replay buffer becomes "
691 "full (record full stop-at-limit)?")))
692 error (_("Process record: stopped by user."));
693 record_full_stop_at_limit = 0;
694 }
695 }
696 }
697
698 /* Before inferior step (when GDB record the running message, inferior
699 only can step), GDB will call this function to record the values to
700 record_full_list. This function will call gdbarch_process_record to
701 record the running message of inferior and set them to
702 record_full_arch_list, and add it to record_full_list. */
703
704 static void
705 record_full_message (struct regcache *regcache, enum gdb_signal signal)
706 {
707 int ret;
708 struct gdbarch *gdbarch = regcache->arch ();
709
710 try
711 {
712 record_full_arch_list_head = NULL;
713 record_full_arch_list_tail = NULL;
714
715 /* Check record_full_insn_num. */
716 record_full_check_insn_num ();
717
718 /* If gdb sends a signal value to target_resume,
719 save it in the 'end' field of the previous instruction.
720
721 Maybe process record should record what really happened,
722 rather than what gdb pretends has happened.
723
724 So if Linux delivered the signal to the child process during
725 the record mode, we will record it and deliver it again in
726 the replay mode.
727
728 If user says "ignore this signal" during the record mode, then
729 it will be ignored again during the replay mode (no matter if
730 the user says something different, like "deliver this signal"
731 during the replay mode).
732
733 User should understand that nothing he does during the replay
734 mode will change the behavior of the child. If he tries,
735 then that is a user error.
736
737 But we should still deliver the signal to gdb during the replay,
738 if we delivered it during the recording. Therefore we should
739 record the signal during record_full_wait, not
740 record_full_resume. */
741 if (record_full_list != &record_full_first) /* FIXME better way
742 to check */
743 {
744 gdb_assert (record_full_list->type == record_full_end);
745 record_full_list->u.end.sigval = signal;
746 }
747
748 if (signal == GDB_SIGNAL_0
749 || !gdbarch_process_record_signal_p (gdbarch))
750 ret = gdbarch_process_record (gdbarch,
751 regcache,
752 regcache_read_pc (regcache));
753 else
754 ret = gdbarch_process_record_signal (gdbarch,
755 regcache,
756 signal);
757
758 if (ret > 0)
759 error (_("Process record: inferior program stopped."));
760 if (ret < 0)
761 error (_("Process record: failed to record execution log."));
762 }
763 catch (const gdb_exception &ex)
764 {
765 record_full_list_release (record_full_arch_list_tail);
766 throw;
767 }
768
769 record_full_list->next = record_full_arch_list_head;
770 record_full_arch_list_head->prev = record_full_list;
771 record_full_list = record_full_arch_list_tail;
772
773 if (record_full_insn_num == record_full_insn_max_num)
774 record_full_list_release_first ();
775 else
776 record_full_insn_num++;
777 }
778
779 static bool
780 record_full_message_wrapper_safe (struct regcache *regcache,
781 enum gdb_signal signal)
782 {
783 try
784 {
785 record_full_message (regcache, signal);
786 }
787 catch (const gdb_exception &ex)
788 {
789 exception_print (gdb_stderr, ex);
790 return false;
791 }
792
793 return true;
794 }
795
796 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
797 doesn't need record. */
798
799 static int record_full_gdb_operation_disable = 0;
800
801 scoped_restore_tmpl<int>
802 record_full_gdb_operation_disable_set (void)
803 {
804 return make_scoped_restore (&record_full_gdb_operation_disable, 1);
805 }
806
807 /* Flag set to TRUE for target_stopped_by_watchpoint. */
808 static enum target_stop_reason record_full_stop_reason
809 = TARGET_STOPPED_BY_NO_REASON;
810
811 /* Execute one instruction from the record log. Each instruction in
812 the log will be represented by an arbitrary sequence of register
813 entries and memory entries, followed by an 'end' entry. */
814
815 static inline void
816 record_full_exec_insn (struct regcache *regcache,
817 struct gdbarch *gdbarch,
818 struct record_full_entry *entry)
819 {
820 switch (entry->type)
821 {
822 case record_full_reg: /* reg */
823 {
824 gdb::byte_vector reg (entry->u.reg.len);
825
826 if (record_debug > 1)
827 fprintf_unfiltered (gdb_stdlog,
828 "Process record: record_full_reg %s to "
829 "inferior num = %d.\n",
830 host_address_to_string (entry),
831 entry->u.reg.num);
832
833 regcache->cooked_read (entry->u.reg.num, reg.data ());
834 regcache->cooked_write (entry->u.reg.num, record_full_get_loc (entry));
835 memcpy (record_full_get_loc (entry), reg.data (), entry->u.reg.len);
836 }
837 break;
838
839 case record_full_mem: /* mem */
840 {
841 /* Nothing to do if the entry is flagged not_accessible. */
842 if (!entry->u.mem.mem_entry_not_accessible)
843 {
844 gdb::byte_vector mem (entry->u.mem.len);
845
846 if (record_debug > 1)
847 fprintf_unfiltered (gdb_stdlog,
848 "Process record: record_full_mem %s to "
849 "inferior addr = %s len = %d.\n",
850 host_address_to_string (entry),
851 paddress (gdbarch, entry->u.mem.addr),
852 entry->u.mem.len);
853
854 if (record_read_memory (gdbarch,
855 entry->u.mem.addr, mem.data (),
856 entry->u.mem.len))
857 entry->u.mem.mem_entry_not_accessible = 1;
858 else
859 {
860 if (target_write_memory (entry->u.mem.addr,
861 record_full_get_loc (entry),
862 entry->u.mem.len))
863 {
864 entry->u.mem.mem_entry_not_accessible = 1;
865 if (record_debug)
866 warning (_("Process record: error writing memory at "
867 "addr = %s len = %d."),
868 paddress (gdbarch, entry->u.mem.addr),
869 entry->u.mem.len);
870 }
871 else
872 {
873 memcpy (record_full_get_loc (entry), mem.data (),
874 entry->u.mem.len);
875
876 /* We've changed memory --- check if a hardware
877 watchpoint should trap. Note that this
878 presently assumes the target beneath supports
879 continuable watchpoints. On non-continuable
880 watchpoints target, we'll want to check this
881 _before_ actually doing the memory change, and
882 not doing the change at all if the watchpoint
883 traps. */
884 if (hardware_watchpoint_inserted_in_range
885 (regcache->aspace (),
886 entry->u.mem.addr, entry->u.mem.len))
887 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
888 }
889 }
890 }
891 }
892 break;
893 }
894 }
895
896 static void record_full_restore (void);
897
898 /* Asynchronous signal handle registered as event loop source for when
899 we have pending events ready to be passed to the core. */
900
901 static struct async_event_handler *record_full_async_inferior_event_token;
902
903 static void
904 record_full_async_inferior_event_handler (gdb_client_data data)
905 {
906 inferior_event_handler (INF_REG_EVENT);
907 }
908
909 /* Open the process record target for 'core' files. */
910
911 static void
912 record_full_core_open_1 (const char *name, int from_tty)
913 {
914 struct regcache *regcache = get_current_regcache ();
915 int regnum = gdbarch_num_regs (regcache->arch ());
916 int i;
917
918 /* Get record_full_core_regbuf. */
919 target_fetch_registers (regcache, -1);
920 record_full_core_regbuf = new detached_regcache (regcache->arch (), false);
921
922 for (i = 0; i < regnum; i ++)
923 record_full_core_regbuf->raw_supply (i, *regcache);
924
925 record_full_core_sections = build_section_table (core_bfd);
926
927 push_target (&record_full_core_ops);
928 record_full_restore ();
929 }
930
931 /* Open the process record target for 'live' processes. */
932
933 static void
934 record_full_open_1 (const char *name, int from_tty)
935 {
936 if (record_debug)
937 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open_1\n");
938
939 /* check exec */
940 if (!target_has_execution ())
941 error (_("Process record: the program is not being run."));
942 if (non_stop)
943 error (_("Process record target can't debug inferior in non-stop mode "
944 "(non-stop)."));
945
946 if (!gdbarch_process_record_p (target_gdbarch ()))
947 error (_("Process record: the current architecture doesn't support "
948 "record function."));
949
950 push_target (&record_full_ops);
951 }
952
953 static void record_full_init_record_breakpoints (void);
954
955 /* Open the process record target. */
956
957 static void
958 record_full_open (const char *name, int from_tty)
959 {
960 if (record_debug)
961 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
962
963 record_preopen ();
964
965 /* Reset */
966 record_full_insn_num = 0;
967 record_full_insn_count = 0;
968 record_full_list = &record_full_first;
969 record_full_list->next = NULL;
970
971 if (core_bfd)
972 record_full_core_open_1 (name, from_tty);
973 else
974 record_full_open_1 (name, from_tty);
975
976 /* Register extra event sources in the event loop. */
977 record_full_async_inferior_event_token
978 = create_async_event_handler (record_full_async_inferior_event_handler,
979 NULL, "record-full");
980
981 record_full_init_record_breakpoints ();
982
983 gdb::observers::record_changed.notify (current_inferior (), 1, "full", NULL);
984 }
985
986 /* "close" target method. Close the process record target. */
987
988 void
989 record_full_base_target::close ()
990 {
991 struct record_full_core_buf_entry *entry;
992
993 if (record_debug)
994 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n");
995
996 record_full_list_release (record_full_list);
997
998 /* Release record_full_core_regbuf. */
999 if (record_full_core_regbuf)
1000 {
1001 delete record_full_core_regbuf;
1002 record_full_core_regbuf = NULL;
1003 }
1004
1005 /* Release record_full_core_buf_list. */
1006 while (record_full_core_buf_list)
1007 {
1008 entry = record_full_core_buf_list;
1009 record_full_core_buf_list = record_full_core_buf_list->prev;
1010 xfree (entry);
1011 }
1012
1013 if (record_full_async_inferior_event_token)
1014 delete_async_event_handler (&record_full_async_inferior_event_token);
1015 }
1016
1017 /* "async" target method. */
1018
1019 void
1020 record_full_base_target::async (int enable)
1021 {
1022 if (enable)
1023 mark_async_event_handler (record_full_async_inferior_event_token);
1024 else
1025 clear_async_event_handler (record_full_async_inferior_event_token);
1026
1027 beneath ()->async (enable);
1028 }
1029
1030 /* The PTID and STEP arguments last passed to
1031 record_full_target::resume. */
1032 static ptid_t record_full_resume_ptid = null_ptid;
1033 static int record_full_resume_step = 0;
1034
1035 /* True if we've been resumed, and so each record_full_wait call should
1036 advance execution. If this is false, record_full_wait will return a
1037 TARGET_WAITKIND_IGNORE. */
1038 static int record_full_resumed = 0;
1039
1040 /* The execution direction of the last resume we got. This is
1041 necessary for async mode. Vis (order is not strictly accurate):
1042
1043 1. user has the global execution direction set to forward
1044 2. user does a reverse-step command
1045 3. record_full_resume is called with global execution direction
1046 temporarily switched to reverse
1047 4. GDB's execution direction is reverted back to forward
1048 5. target record notifies event loop there's an event to handle
1049 6. infrun asks the target which direction was it going, and switches
1050 the global execution direction accordingly (to reverse)
1051 7. infrun polls an event out of the record target, and handles it
1052 8. GDB goes back to the event loop, and goto #4.
1053 */
1054 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
1055
1056 /* "resume" target method. Resume the process record target. */
1057
1058 void
1059 record_full_target::resume (ptid_t ptid, int step, enum gdb_signal signal)
1060 {
1061 record_full_resume_ptid = inferior_ptid;
1062 record_full_resume_step = step;
1063 record_full_resumed = 1;
1064 record_full_execution_dir = ::execution_direction;
1065
1066 if (!RECORD_FULL_IS_REPLAY)
1067 {
1068 struct gdbarch *gdbarch = target_thread_architecture (ptid);
1069
1070 record_full_message (get_current_regcache (), signal);
1071
1072 if (!step)
1073 {
1074 /* This is not hard single step. */
1075 if (!gdbarch_software_single_step_p (gdbarch))
1076 {
1077 /* This is a normal continue. */
1078 step = 1;
1079 }
1080 else
1081 {
1082 /* This arch supports soft single step. */
1083 if (thread_has_single_step_breakpoints_set (inferior_thread ()))
1084 {
1085 /* This is a soft single step. */
1086 record_full_resume_step = 1;
1087 }
1088 else
1089 step = !insert_single_step_breakpoints (gdbarch);
1090 }
1091 }
1092
1093 /* Make sure the target beneath reports all signals. */
1094 target_pass_signals ({});
1095
1096 this->beneath ()->resume (ptid, step, signal);
1097 }
1098
1099 /* We are about to start executing the inferior (or simulate it),
1100 let's register it with the event loop. */
1101 if (target_can_async_p ())
1102 target_async (1);
1103 }
1104
1105 static int record_full_get_sig = 0;
1106
1107 /* SIGINT signal handler, registered by "wait" method. */
1108
1109 static void
1110 record_full_sig_handler (int signo)
1111 {
1112 if (record_debug)
1113 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n");
1114
1115 /* It will break the running inferior in replay mode. */
1116 record_full_resume_step = 1;
1117
1118 /* It will let record_full_wait set inferior status to get the signal
1119 SIGINT. */
1120 record_full_get_sig = 1;
1121 }
1122
1123 /* "wait" target method for process record target.
1124
1125 In record mode, the target is always run in singlestep mode
1126 (even when gdb says to continue). The wait method intercepts
1127 the stop events and determines which ones are to be passed on to
1128 gdb. Most stop events are just singlestep events that gdb is not
1129 to know about, so the wait method just records them and keeps
1130 singlestepping.
1131
1132 In replay mode, this function emulates the recorded execution log,
1133 one instruction at a time (forward or backward), and determines
1134 where to stop. */
1135
1136 static ptid_t
1137 record_full_wait_1 (struct target_ops *ops,
1138 ptid_t ptid, struct target_waitstatus *status,
1139 target_wait_flags options)
1140 {
1141 scoped_restore restore_operation_disable
1142 = record_full_gdb_operation_disable_set ();
1143
1144 if (record_debug)
1145 fprintf_unfiltered (gdb_stdlog,
1146 "Process record: record_full_wait "
1147 "record_full_resume_step = %d, "
1148 "record_full_resumed = %d, direction=%s\n",
1149 record_full_resume_step, record_full_resumed,
1150 record_full_execution_dir == EXEC_FORWARD
1151 ? "forward" : "reverse");
1152
1153 if (!record_full_resumed)
1154 {
1155 gdb_assert ((options & TARGET_WNOHANG) != 0);
1156
1157 /* No interesting event. */
1158 status->kind = TARGET_WAITKIND_IGNORE;
1159 return minus_one_ptid;
1160 }
1161
1162 record_full_get_sig = 0;
1163 signal (SIGINT, record_full_sig_handler);
1164
1165 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1166
1167 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1168 {
1169 if (record_full_resume_step)
1170 {
1171 /* This is a single step. */
1172 return ops->beneath ()->wait (ptid, status, options);
1173 }
1174 else
1175 {
1176 /* This is not a single step. */
1177 ptid_t ret;
1178 CORE_ADDR tmp_pc;
1179 struct gdbarch *gdbarch
1180 = target_thread_architecture (record_full_resume_ptid);
1181
1182 while (1)
1183 {
1184 ret = ops->beneath ()->wait (ptid, status, options);
1185 if (status->kind == TARGET_WAITKIND_IGNORE)
1186 {
1187 if (record_debug)
1188 fprintf_unfiltered (gdb_stdlog,
1189 "Process record: record_full_wait "
1190 "target beneath not done yet\n");
1191 return ret;
1192 }
1193
1194 for (thread_info *tp : all_non_exited_threads ())
1195 delete_single_step_breakpoints (tp);
1196
1197 if (record_full_resume_step)
1198 return ret;
1199
1200 /* Is this a SIGTRAP? */
1201 if (status->kind == TARGET_WAITKIND_STOPPED
1202 && status->value.sig == GDB_SIGNAL_TRAP)
1203 {
1204 struct regcache *regcache;
1205 enum target_stop_reason *stop_reason_p
1206 = &record_full_stop_reason;
1207
1208 /* Yes -- this is likely our single-step finishing,
1209 but check if there's any reason the core would be
1210 interested in the event. */
1211
1212 registers_changed ();
1213 switch_to_thread (current_inferior ()->process_target (),
1214 ret);
1215 regcache = get_current_regcache ();
1216 tmp_pc = regcache_read_pc (regcache);
1217 const struct address_space *aspace = regcache->aspace ();
1218
1219 if (target_stopped_by_watchpoint ())
1220 {
1221 /* Always interested in watchpoints. */
1222 }
1223 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1224 stop_reason_p))
1225 {
1226 /* There is a breakpoint here. Let the core
1227 handle it. */
1228 }
1229 else
1230 {
1231 /* This is a single-step trap. Record the
1232 insn and issue another step.
1233 FIXME: this part can be a random SIGTRAP too.
1234 But GDB cannot handle it. */
1235 int step = 1;
1236
1237 if (!record_full_message_wrapper_safe (regcache,
1238 GDB_SIGNAL_0))
1239 {
1240 status->kind = TARGET_WAITKIND_STOPPED;
1241 status->value.sig = GDB_SIGNAL_0;
1242 break;
1243 }
1244
1245 if (gdbarch_software_single_step_p (gdbarch))
1246 {
1247 process_stratum_target *proc_target
1248 = current_inferior ()->process_target ();
1249
1250 /* Try to insert the software single step breakpoint.
1251 If insert success, set step to 0. */
1252 set_executing (proc_target, inferior_ptid, false);
1253 reinit_frame_cache ();
1254
1255 step = !insert_single_step_breakpoints (gdbarch);
1256
1257 set_executing (proc_target, inferior_ptid, true);
1258 }
1259
1260 if (record_debug)
1261 fprintf_unfiltered (gdb_stdlog,
1262 "Process record: record_full_wait "
1263 "issuing one more step in the "
1264 "target beneath\n");
1265 ops->beneath ()->resume (ptid, step, GDB_SIGNAL_0);
1266 ops->beneath ()->commit_resume ();
1267 continue;
1268 }
1269 }
1270
1271 /* The inferior is broken by a breakpoint or a signal. */
1272 break;
1273 }
1274
1275 return ret;
1276 }
1277 }
1278 else
1279 {
1280 switch_to_thread (current_inferior ()->process_target (),
1281 record_full_resume_ptid);
1282 struct regcache *regcache = get_current_regcache ();
1283 struct gdbarch *gdbarch = regcache->arch ();
1284 const struct address_space *aspace = regcache->aspace ();
1285 int continue_flag = 1;
1286 int first_record_full_end = 1;
1287
1288 try
1289 {
1290 CORE_ADDR tmp_pc;
1291
1292 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1293 status->kind = TARGET_WAITKIND_STOPPED;
1294
1295 /* Check breakpoint when forward execute. */
1296 if (execution_direction == EXEC_FORWARD)
1297 {
1298 tmp_pc = regcache_read_pc (regcache);
1299 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1300 &record_full_stop_reason))
1301 {
1302 if (record_debug)
1303 fprintf_unfiltered (gdb_stdlog,
1304 "Process record: break at %s.\n",
1305 paddress (gdbarch, tmp_pc));
1306 goto replay_out;
1307 }
1308 }
1309
1310 /* If GDB is in terminal_inferior mode, it will not get the
1311 signal. And in GDB replay mode, GDB doesn't need to be
1312 in terminal_inferior mode, because inferior will not
1313 executed. Then set it to terminal_ours to make GDB get
1314 the signal. */
1315 target_terminal::ours ();
1316
1317 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1318 instruction. */
1319 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1320 record_full_list = record_full_list->next;
1321
1322 /* Loop over the record_full_list, looking for the next place to
1323 stop. */
1324 do
1325 {
1326 /* Check for beginning and end of log. */
1327 if (execution_direction == EXEC_REVERSE
1328 && record_full_list == &record_full_first)
1329 {
1330 /* Hit beginning of record log in reverse. */
1331 status->kind = TARGET_WAITKIND_NO_HISTORY;
1332 break;
1333 }
1334 if (execution_direction != EXEC_REVERSE
1335 && !record_full_list->next)
1336 {
1337 /* Hit end of record log going forward. */
1338 status->kind = TARGET_WAITKIND_NO_HISTORY;
1339 break;
1340 }
1341
1342 record_full_exec_insn (regcache, gdbarch, record_full_list);
1343
1344 if (record_full_list->type == record_full_end)
1345 {
1346 if (record_debug > 1)
1347 fprintf_unfiltered
1348 (gdb_stdlog,
1349 "Process record: record_full_end %s to "
1350 "inferior.\n",
1351 host_address_to_string (record_full_list));
1352
1353 if (first_record_full_end
1354 && execution_direction == EXEC_REVERSE)
1355 {
1356 /* When reverse execute, the first
1357 record_full_end is the part of current
1358 instruction. */
1359 first_record_full_end = 0;
1360 }
1361 else
1362 {
1363 /* In EXEC_REVERSE mode, this is the
1364 record_full_end of prev instruction. In
1365 EXEC_FORWARD mode, this is the
1366 record_full_end of current instruction. */
1367 /* step */
1368 if (record_full_resume_step)
1369 {
1370 if (record_debug > 1)
1371 fprintf_unfiltered (gdb_stdlog,
1372 "Process record: step.\n");
1373 continue_flag = 0;
1374 }
1375
1376 /* check breakpoint */
1377 tmp_pc = regcache_read_pc (regcache);
1378 if (record_check_stopped_by_breakpoint
1379 (aspace, tmp_pc, &record_full_stop_reason))
1380 {
1381 if (record_debug)
1382 fprintf_unfiltered (gdb_stdlog,
1383 "Process record: break "
1384 "at %s.\n",
1385 paddress (gdbarch, tmp_pc));
1386
1387 continue_flag = 0;
1388 }
1389
1390 if (record_full_stop_reason
1391 == TARGET_STOPPED_BY_WATCHPOINT)
1392 {
1393 if (record_debug)
1394 fprintf_unfiltered (gdb_stdlog,
1395 "Process record: hit hw "
1396 "watchpoint.\n");
1397 continue_flag = 0;
1398 }
1399 /* Check target signal */
1400 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1401 /* FIXME: better way to check */
1402 continue_flag = 0;
1403 }
1404 }
1405
1406 if (continue_flag)
1407 {
1408 if (execution_direction == EXEC_REVERSE)
1409 {
1410 if (record_full_list->prev)
1411 record_full_list = record_full_list->prev;
1412 }
1413 else
1414 {
1415 if (record_full_list->next)
1416 record_full_list = record_full_list->next;
1417 }
1418 }
1419 }
1420 while (continue_flag);
1421
1422 replay_out:
1423 if (record_full_get_sig)
1424 status->value.sig = GDB_SIGNAL_INT;
1425 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1426 /* FIXME: better way to check */
1427 status->value.sig = record_full_list->u.end.sigval;
1428 else
1429 status->value.sig = GDB_SIGNAL_TRAP;
1430 }
1431 catch (const gdb_exception &ex)
1432 {
1433 if (execution_direction == EXEC_REVERSE)
1434 {
1435 if (record_full_list->next)
1436 record_full_list = record_full_list->next;
1437 }
1438 else
1439 record_full_list = record_full_list->prev;
1440
1441 throw;
1442 }
1443 }
1444
1445 signal (SIGINT, handle_sigint);
1446
1447 return inferior_ptid;
1448 }
1449
1450 ptid_t
1451 record_full_base_target::wait (ptid_t ptid, struct target_waitstatus *status,
1452 target_wait_flags options)
1453 {
1454 ptid_t return_ptid;
1455
1456 return_ptid = record_full_wait_1 (this, ptid, status, options);
1457 if (status->kind != TARGET_WAITKIND_IGNORE)
1458 {
1459 /* We're reporting a stop. Make sure any spurious
1460 target_wait(WNOHANG) doesn't advance the target until the
1461 core wants us resumed again. */
1462 record_full_resumed = 0;
1463 }
1464 return return_ptid;
1465 }
1466
1467 bool
1468 record_full_base_target::stopped_by_watchpoint ()
1469 {
1470 if (RECORD_FULL_IS_REPLAY)
1471 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1472 else
1473 return beneath ()->stopped_by_watchpoint ();
1474 }
1475
1476 bool
1477 record_full_base_target::stopped_data_address (CORE_ADDR *addr_p)
1478 {
1479 if (RECORD_FULL_IS_REPLAY)
1480 return false;
1481 else
1482 return this->beneath ()->stopped_data_address (addr_p);
1483 }
1484
1485 /* The stopped_by_sw_breakpoint method of target record-full. */
1486
1487 bool
1488 record_full_base_target::stopped_by_sw_breakpoint ()
1489 {
1490 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
1491 }
1492
1493 /* The supports_stopped_by_sw_breakpoint method of target
1494 record-full. */
1495
1496 bool
1497 record_full_base_target::supports_stopped_by_sw_breakpoint ()
1498 {
1499 return true;
1500 }
1501
1502 /* The stopped_by_hw_breakpoint method of target record-full. */
1503
1504 bool
1505 record_full_base_target::stopped_by_hw_breakpoint ()
1506 {
1507 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
1508 }
1509
1510 /* The supports_stopped_by_sw_breakpoint method of target
1511 record-full. */
1512
1513 bool
1514 record_full_base_target::supports_stopped_by_hw_breakpoint ()
1515 {
1516 return true;
1517 }
1518
1519 /* Record registers change (by user or by GDB) to list as an instruction. */
1520
1521 static void
1522 record_full_registers_change (struct regcache *regcache, int regnum)
1523 {
1524 /* Check record_full_insn_num. */
1525 record_full_check_insn_num ();
1526
1527 record_full_arch_list_head = NULL;
1528 record_full_arch_list_tail = NULL;
1529
1530 if (regnum < 0)
1531 {
1532 int i;
1533
1534 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
1535 {
1536 if (record_full_arch_list_add_reg (regcache, i))
1537 {
1538 record_full_list_release (record_full_arch_list_tail);
1539 error (_("Process record: failed to record execution log."));
1540 }
1541 }
1542 }
1543 else
1544 {
1545 if (record_full_arch_list_add_reg (regcache, regnum))
1546 {
1547 record_full_list_release (record_full_arch_list_tail);
1548 error (_("Process record: failed to record execution log."));
1549 }
1550 }
1551 if (record_full_arch_list_add_end ())
1552 {
1553 record_full_list_release (record_full_arch_list_tail);
1554 error (_("Process record: failed to record execution log."));
1555 }
1556 record_full_list->next = record_full_arch_list_head;
1557 record_full_arch_list_head->prev = record_full_list;
1558 record_full_list = record_full_arch_list_tail;
1559
1560 if (record_full_insn_num == record_full_insn_max_num)
1561 record_full_list_release_first ();
1562 else
1563 record_full_insn_num++;
1564 }
1565
1566 /* "store_registers" method for process record target. */
1567
1568 void
1569 record_full_target::store_registers (struct regcache *regcache, int regno)
1570 {
1571 if (!record_full_gdb_operation_disable)
1572 {
1573 if (RECORD_FULL_IS_REPLAY)
1574 {
1575 int n;
1576
1577 /* Let user choose if he wants to write register or not. */
1578 if (regno < 0)
1579 n =
1580 query (_("Because GDB is in replay mode, changing the "
1581 "value of a register will make the execution "
1582 "log unusable from this point onward. "
1583 "Change all registers?"));
1584 else
1585 n =
1586 query (_("Because GDB is in replay mode, changing the value "
1587 "of a register will make the execution log unusable "
1588 "from this point onward. Change register %s?"),
1589 gdbarch_register_name (regcache->arch (),
1590 regno));
1591
1592 if (!n)
1593 {
1594 /* Invalidate the value of regcache that was set in function
1595 "regcache_raw_write". */
1596 if (regno < 0)
1597 {
1598 int i;
1599
1600 for (i = 0;
1601 i < gdbarch_num_regs (regcache->arch ());
1602 i++)
1603 regcache->invalidate (i);
1604 }
1605 else
1606 regcache->invalidate (regno);
1607
1608 error (_("Process record canceled the operation."));
1609 }
1610
1611 /* Destroy the record from here forward. */
1612 record_full_list_release_following (record_full_list);
1613 }
1614
1615 record_full_registers_change (regcache, regno);
1616 }
1617 this->beneath ()->store_registers (regcache, regno);
1618 }
1619
1620 /* "xfer_partial" method. Behavior is conditional on
1621 RECORD_FULL_IS_REPLAY.
1622 In replay mode, we cannot write memory unles we are willing to
1623 invalidate the record/replay log from this point forward. */
1624
1625 enum target_xfer_status
1626 record_full_target::xfer_partial (enum target_object object,
1627 const char *annex, gdb_byte *readbuf,
1628 const gdb_byte *writebuf, ULONGEST offset,
1629 ULONGEST len, ULONGEST *xfered_len)
1630 {
1631 if (!record_full_gdb_operation_disable
1632 && (object == TARGET_OBJECT_MEMORY
1633 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1634 {
1635 if (RECORD_FULL_IS_REPLAY)
1636 {
1637 /* Let user choose if he wants to write memory or not. */
1638 if (!query (_("Because GDB is in replay mode, writing to memory "
1639 "will make the execution log unusable from this "
1640 "point onward. Write memory at address %s?"),
1641 paddress (target_gdbarch (), offset)))
1642 error (_("Process record canceled the operation."));
1643
1644 /* Destroy the record from here forward. */
1645 record_full_list_release_following (record_full_list);
1646 }
1647
1648 /* Check record_full_insn_num */
1649 record_full_check_insn_num ();
1650
1651 /* Record registers change to list as an instruction. */
1652 record_full_arch_list_head = NULL;
1653 record_full_arch_list_tail = NULL;
1654 if (record_full_arch_list_add_mem (offset, len))
1655 {
1656 record_full_list_release (record_full_arch_list_tail);
1657 if (record_debug)
1658 fprintf_unfiltered (gdb_stdlog,
1659 "Process record: failed to record "
1660 "execution log.");
1661 return TARGET_XFER_E_IO;
1662 }
1663 if (record_full_arch_list_add_end ())
1664 {
1665 record_full_list_release (record_full_arch_list_tail);
1666 if (record_debug)
1667 fprintf_unfiltered (gdb_stdlog,
1668 "Process record: failed to record "
1669 "execution log.");
1670 return TARGET_XFER_E_IO;
1671 }
1672 record_full_list->next = record_full_arch_list_head;
1673 record_full_arch_list_head->prev = record_full_list;
1674 record_full_list = record_full_arch_list_tail;
1675
1676 if (record_full_insn_num == record_full_insn_max_num)
1677 record_full_list_release_first ();
1678 else
1679 record_full_insn_num++;
1680 }
1681
1682 return this->beneath ()->xfer_partial (object, annex, readbuf, writebuf,
1683 offset, len, xfered_len);
1684 }
1685
1686 /* This structure represents a breakpoint inserted while the record
1687 target is active. We use this to know when to install/remove
1688 breakpoints in/from the target beneath. For example, a breakpoint
1689 may be inserted while recording, but removed when not replaying nor
1690 recording. In that case, the breakpoint had not been inserted on
1691 the target beneath, so we should not try to remove it there. */
1692
1693 struct record_full_breakpoint
1694 {
1695 record_full_breakpoint (struct address_space *address_space_,
1696 CORE_ADDR addr_,
1697 bool in_target_beneath_)
1698 : address_space (address_space_),
1699 addr (addr_),
1700 in_target_beneath (in_target_beneath_)
1701 {
1702 }
1703
1704 /* The address and address space the breakpoint was set at. */
1705 struct address_space *address_space;
1706 CORE_ADDR addr;
1707
1708 /* True when the breakpoint has been also installed in the target
1709 beneath. This will be false for breakpoints set during replay or
1710 when recording. */
1711 bool in_target_beneath;
1712 };
1713
1714 /* The list of breakpoints inserted while the record target is
1715 active. */
1716 static std::vector<record_full_breakpoint> record_full_breakpoints;
1717
1718 static void
1719 record_full_sync_record_breakpoints (struct bp_location *loc, void *data)
1720 {
1721 if (loc->loc_type != bp_loc_software_breakpoint)
1722 return;
1723
1724 if (loc->inserted)
1725 {
1726 record_full_breakpoints.emplace_back
1727 (loc->target_info.placed_address_space,
1728 loc->target_info.placed_address,
1729 1);
1730 }
1731 }
1732
1733 /* Sync existing breakpoints to record_full_breakpoints. */
1734
1735 static void
1736 record_full_init_record_breakpoints (void)
1737 {
1738 record_full_breakpoints.clear ();
1739
1740 iterate_over_bp_locations (record_full_sync_record_breakpoints);
1741 }
1742
1743 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1744 insert or remove breakpoints in the real target when replaying, nor
1745 when recording. */
1746
1747 int
1748 record_full_target::insert_breakpoint (struct gdbarch *gdbarch,
1749 struct bp_target_info *bp_tgt)
1750 {
1751 bool in_target_beneath = false;
1752
1753 if (!RECORD_FULL_IS_REPLAY)
1754 {
1755 /* When recording, we currently always single-step, so we don't
1756 really need to install regular breakpoints in the inferior.
1757 However, we do have to insert software single-step
1758 breakpoints, in case the target can't hardware step. To keep
1759 things simple, we always insert. */
1760
1761 scoped_restore restore_operation_disable
1762 = record_full_gdb_operation_disable_set ();
1763
1764 int ret = this->beneath ()->insert_breakpoint (gdbarch, bp_tgt);
1765 if (ret != 0)
1766 return ret;
1767
1768 in_target_beneath = true;
1769 }
1770
1771 /* Use the existing entries if found in order to avoid duplication
1772 in record_full_breakpoints. */
1773
1774 for (const record_full_breakpoint &bp : record_full_breakpoints)
1775 {
1776 if (bp.addr == bp_tgt->placed_address
1777 && bp.address_space == bp_tgt->placed_address_space)
1778 {
1779 gdb_assert (bp.in_target_beneath == in_target_beneath);
1780 return 0;
1781 }
1782 }
1783
1784 record_full_breakpoints.emplace_back (bp_tgt->placed_address_space,
1785 bp_tgt->placed_address,
1786 in_target_beneath);
1787 return 0;
1788 }
1789
1790 /* "remove_breakpoint" method for process record target. */
1791
1792 int
1793 record_full_target::remove_breakpoint (struct gdbarch *gdbarch,
1794 struct bp_target_info *bp_tgt,
1795 enum remove_bp_reason reason)
1796 {
1797 for (auto iter = record_full_breakpoints.begin ();
1798 iter != record_full_breakpoints.end ();
1799 ++iter)
1800 {
1801 struct record_full_breakpoint &bp = *iter;
1802
1803 if (bp.addr == bp_tgt->placed_address
1804 && bp.address_space == bp_tgt->placed_address_space)
1805 {
1806 if (bp.in_target_beneath)
1807 {
1808 scoped_restore restore_operation_disable
1809 = record_full_gdb_operation_disable_set ();
1810
1811 int ret = this->beneath ()->remove_breakpoint (gdbarch, bp_tgt,
1812 reason);
1813 if (ret != 0)
1814 return ret;
1815 }
1816
1817 if (reason == REMOVE_BREAKPOINT)
1818 unordered_remove (record_full_breakpoints, iter);
1819 return 0;
1820 }
1821 }
1822
1823 gdb_assert_not_reached ("removing unknown breakpoint");
1824 }
1825
1826 /* "can_execute_reverse" method for process record target. */
1827
1828 bool
1829 record_full_base_target::can_execute_reverse ()
1830 {
1831 return true;
1832 }
1833
1834 /* "get_bookmark" method for process record and prec over core. */
1835
1836 gdb_byte *
1837 record_full_base_target::get_bookmark (const char *args, int from_tty)
1838 {
1839 char *ret = NULL;
1840
1841 /* Return stringified form of instruction count. */
1842 if (record_full_list && record_full_list->type == record_full_end)
1843 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1844
1845 if (record_debug)
1846 {
1847 if (ret)
1848 fprintf_unfiltered (gdb_stdlog,
1849 "record_full_get_bookmark returns %s\n", ret);
1850 else
1851 fprintf_unfiltered (gdb_stdlog,
1852 "record_full_get_bookmark returns NULL\n");
1853 }
1854 return (gdb_byte *) ret;
1855 }
1856
1857 /* "goto_bookmark" method for process record and prec over core. */
1858
1859 void
1860 record_full_base_target::goto_bookmark (const gdb_byte *raw_bookmark,
1861 int from_tty)
1862 {
1863 const char *bookmark = (const char *) raw_bookmark;
1864
1865 if (record_debug)
1866 fprintf_unfiltered (gdb_stdlog,
1867 "record_full_goto_bookmark receives %s\n", bookmark);
1868
1869 std::string name_holder;
1870 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1871 {
1872 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1873 error (_("Unbalanced quotes: %s"), bookmark);
1874
1875 name_holder = std::string (bookmark + 1, strlen (bookmark) - 2);
1876 bookmark = name_holder.c_str ();
1877 }
1878
1879 record_goto (bookmark);
1880 }
1881
1882 enum exec_direction_kind
1883 record_full_base_target::execution_direction ()
1884 {
1885 return record_full_execution_dir;
1886 }
1887
1888 /* The record_method method of target record-full. */
1889
1890 enum record_method
1891 record_full_base_target::record_method (ptid_t ptid)
1892 {
1893 return RECORD_METHOD_FULL;
1894 }
1895
1896 void
1897 record_full_base_target::info_record ()
1898 {
1899 struct record_full_entry *p;
1900
1901 if (RECORD_FULL_IS_REPLAY)
1902 printf_filtered (_("Replay mode:\n"));
1903 else
1904 printf_filtered (_("Record mode:\n"));
1905
1906 /* Find entry for first actual instruction in the log. */
1907 for (p = record_full_first.next;
1908 p != NULL && p->type != record_full_end;
1909 p = p->next)
1910 ;
1911
1912 /* Do we have a log at all? */
1913 if (p != NULL && p->type == record_full_end)
1914 {
1915 /* Display instruction number for first instruction in the log. */
1916 printf_filtered (_("Lowest recorded instruction number is %s.\n"),
1917 pulongest (p->u.end.insn_num));
1918
1919 /* If in replay mode, display where we are in the log. */
1920 if (RECORD_FULL_IS_REPLAY)
1921 printf_filtered (_("Current instruction number is %s.\n"),
1922 pulongest (record_full_list->u.end.insn_num));
1923
1924 /* Display instruction number for last instruction in the log. */
1925 printf_filtered (_("Highest recorded instruction number is %s.\n"),
1926 pulongest (record_full_insn_count));
1927
1928 /* Display log count. */
1929 printf_filtered (_("Log contains %u instructions.\n"),
1930 record_full_insn_num);
1931 }
1932 else
1933 printf_filtered (_("No instructions have been logged.\n"));
1934
1935 /* Display max log size. */
1936 printf_filtered (_("Max logged instructions is %u.\n"),
1937 record_full_insn_max_num);
1938 }
1939
1940 bool
1941 record_full_base_target::supports_delete_record ()
1942 {
1943 return true;
1944 }
1945
1946 /* The "delete_record" target method. */
1947
1948 void
1949 record_full_base_target::delete_record ()
1950 {
1951 record_full_list_release_following (record_full_list);
1952 }
1953
1954 /* The "record_is_replaying" target method. */
1955
1956 bool
1957 record_full_base_target::record_is_replaying (ptid_t ptid)
1958 {
1959 return RECORD_FULL_IS_REPLAY;
1960 }
1961
1962 /* The "record_will_replay" target method. */
1963
1964 bool
1965 record_full_base_target::record_will_replay (ptid_t ptid, int dir)
1966 {
1967 /* We can currently only record when executing forwards. Should we be able
1968 to record when executing backwards on targets that support reverse
1969 execution, this needs to be changed. */
1970
1971 return RECORD_FULL_IS_REPLAY || dir == EXEC_REVERSE;
1972 }
1973
1974 /* Go to a specific entry. */
1975
1976 static void
1977 record_full_goto_entry (struct record_full_entry *p)
1978 {
1979 if (p == NULL)
1980 error (_("Target insn not found."));
1981 else if (p == record_full_list)
1982 error (_("Already at target insn."));
1983 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
1984 {
1985 printf_filtered (_("Go forward to insn number %s\n"),
1986 pulongest (p->u.end.insn_num));
1987 record_full_goto_insn (p, EXEC_FORWARD);
1988 }
1989 else
1990 {
1991 printf_filtered (_("Go backward to insn number %s\n"),
1992 pulongest (p->u.end.insn_num));
1993 record_full_goto_insn (p, EXEC_REVERSE);
1994 }
1995
1996 registers_changed ();
1997 reinit_frame_cache ();
1998 inferior_thread ()->suspend.stop_pc
1999 = regcache_read_pc (get_current_regcache ());
2000 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2001 }
2002
2003 /* The "goto_record_begin" target method. */
2004
2005 void
2006 record_full_base_target::goto_record_begin ()
2007 {
2008 struct record_full_entry *p = NULL;
2009
2010 for (p = &record_full_first; p != NULL; p = p->next)
2011 if (p->type == record_full_end)
2012 break;
2013
2014 record_full_goto_entry (p);
2015 }
2016
2017 /* The "goto_record_end" target method. */
2018
2019 void
2020 record_full_base_target::goto_record_end ()
2021 {
2022 struct record_full_entry *p = NULL;
2023
2024 for (p = record_full_list; p->next != NULL; p = p->next)
2025 ;
2026 for (; p!= NULL; p = p->prev)
2027 if (p->type == record_full_end)
2028 break;
2029
2030 record_full_goto_entry (p);
2031 }
2032
2033 /* The "goto_record" target method. */
2034
2035 void
2036 record_full_base_target::goto_record (ULONGEST target_insn)
2037 {
2038 struct record_full_entry *p = NULL;
2039
2040 for (p = &record_full_first; p != NULL; p = p->next)
2041 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
2042 break;
2043
2044 record_full_goto_entry (p);
2045 }
2046
2047 /* The "record_stop_replaying" target method. */
2048
2049 void
2050 record_full_base_target::record_stop_replaying ()
2051 {
2052 goto_record_end ();
2053 }
2054
2055 /* "resume" method for prec over corefile. */
2056
2057 void
2058 record_full_core_target::resume (ptid_t ptid, int step,
2059 enum gdb_signal signal)
2060 {
2061 record_full_resume_step = step;
2062 record_full_resumed = 1;
2063 record_full_execution_dir = ::execution_direction;
2064
2065 /* We are about to start executing the inferior (or simulate it),
2066 let's register it with the event loop. */
2067 if (target_can_async_p ())
2068 target_async (1);
2069 }
2070
2071 /* "kill" method for prec over corefile. */
2072
2073 void
2074 record_full_core_target::kill ()
2075 {
2076 if (record_debug)
2077 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n");
2078
2079 unpush_target (this);
2080 }
2081
2082 /* "fetch_registers" method for prec over corefile. */
2083
2084 void
2085 record_full_core_target::fetch_registers (struct regcache *regcache,
2086 int regno)
2087 {
2088 if (regno < 0)
2089 {
2090 int num = gdbarch_num_regs (regcache->arch ());
2091 int i;
2092
2093 for (i = 0; i < num; i ++)
2094 regcache->raw_supply (i, *record_full_core_regbuf);
2095 }
2096 else
2097 regcache->raw_supply (regno, *record_full_core_regbuf);
2098 }
2099
2100 /* "prepare_to_store" method for prec over corefile. */
2101
2102 void
2103 record_full_core_target::prepare_to_store (struct regcache *regcache)
2104 {
2105 }
2106
2107 /* "store_registers" method for prec over corefile. */
2108
2109 void
2110 record_full_core_target::store_registers (struct regcache *regcache,
2111 int regno)
2112 {
2113 if (record_full_gdb_operation_disable)
2114 record_full_core_regbuf->raw_supply (regno, *regcache);
2115 else
2116 error (_("You can't do that without a process to debug."));
2117 }
2118
2119 /* "xfer_partial" method for prec over corefile. */
2120
2121 enum target_xfer_status
2122 record_full_core_target::xfer_partial (enum target_object object,
2123 const char *annex, gdb_byte *readbuf,
2124 const gdb_byte *writebuf, ULONGEST offset,
2125 ULONGEST len, ULONGEST *xfered_len)
2126 {
2127 if (object == TARGET_OBJECT_MEMORY)
2128 {
2129 if (record_full_gdb_operation_disable || !writebuf)
2130 {
2131 for (target_section &p : record_full_core_sections)
2132 {
2133 if (offset >= p.addr)
2134 {
2135 struct record_full_core_buf_entry *entry;
2136 ULONGEST sec_offset;
2137
2138 if (offset >= p.endaddr)
2139 continue;
2140
2141 if (offset + len > p.endaddr)
2142 len = p.endaddr - offset;
2143
2144 sec_offset = offset - p.addr;
2145
2146 /* Read readbuf or write writebuf p, offset, len. */
2147 /* Check flags. */
2148 if (p.the_bfd_section->flags & SEC_CONSTRUCTOR
2149 || (p.the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2150 {
2151 if (readbuf)
2152 memset (readbuf, 0, len);
2153
2154 *xfered_len = len;
2155 return TARGET_XFER_OK;
2156 }
2157 /* Get record_full_core_buf_entry. */
2158 for (entry = record_full_core_buf_list; entry;
2159 entry = entry->prev)
2160 if (entry->p == &p)
2161 break;
2162 if (writebuf)
2163 {
2164 if (!entry)
2165 {
2166 /* Add a new entry. */
2167 entry = XNEW (struct record_full_core_buf_entry);
2168 entry->p = &p;
2169 if (!bfd_malloc_and_get_section
2170 (p.the_bfd_section->owner,
2171 p.the_bfd_section,
2172 &entry->buf))
2173 {
2174 xfree (entry);
2175 return TARGET_XFER_EOF;
2176 }
2177 entry->prev = record_full_core_buf_list;
2178 record_full_core_buf_list = entry;
2179 }
2180
2181 memcpy (entry->buf + sec_offset, writebuf,
2182 (size_t) len);
2183 }
2184 else
2185 {
2186 if (!entry)
2187 return this->beneath ()->xfer_partial (object, annex,
2188 readbuf, writebuf,
2189 offset, len,
2190 xfered_len);
2191
2192 memcpy (readbuf, entry->buf + sec_offset,
2193 (size_t) len);
2194 }
2195
2196 *xfered_len = len;
2197 return TARGET_XFER_OK;
2198 }
2199 }
2200
2201 return TARGET_XFER_E_IO;
2202 }
2203 else
2204 error (_("You can't do that without a process to debug."));
2205 }
2206
2207 return this->beneath ()->xfer_partial (object, annex,
2208 readbuf, writebuf, offset, len,
2209 xfered_len);
2210 }
2211
2212 /* "insert_breakpoint" method for prec over corefile. */
2213
2214 int
2215 record_full_core_target::insert_breakpoint (struct gdbarch *gdbarch,
2216 struct bp_target_info *bp_tgt)
2217 {
2218 return 0;
2219 }
2220
2221 /* "remove_breakpoint" method for prec over corefile. */
2222
2223 int
2224 record_full_core_target::remove_breakpoint (struct gdbarch *gdbarch,
2225 struct bp_target_info *bp_tgt,
2226 enum remove_bp_reason reason)
2227 {
2228 return 0;
2229 }
2230
2231 /* "has_execution" method for prec over corefile. */
2232
2233 bool
2234 record_full_core_target::has_execution (inferior *inf)
2235 {
2236 return true;
2237 }
2238
2239 /* Record log save-file format
2240 Version 1 (never released)
2241
2242 Header:
2243 4 bytes: magic number htonl(0x20090829).
2244 NOTE: be sure to change whenever this file format changes!
2245
2246 Records:
2247 record_full_end:
2248 1 byte: record type (record_full_end, see enum record_full_type).
2249 record_full_reg:
2250 1 byte: record type (record_full_reg, see enum record_full_type).
2251 8 bytes: register id (network byte order).
2252 MAX_REGISTER_SIZE bytes: register value.
2253 record_full_mem:
2254 1 byte: record type (record_full_mem, see enum record_full_type).
2255 8 bytes: memory length (network byte order).
2256 8 bytes: memory address (network byte order).
2257 n bytes: memory value (n == memory length).
2258
2259 Version 2
2260 4 bytes: magic number netorder32(0x20091016).
2261 NOTE: be sure to change whenever this file format changes!
2262
2263 Records:
2264 record_full_end:
2265 1 byte: record type (record_full_end, see enum record_full_type).
2266 4 bytes: signal
2267 4 bytes: instruction count
2268 record_full_reg:
2269 1 byte: record type (record_full_reg, see enum record_full_type).
2270 4 bytes: register id (network byte order).
2271 n bytes: register value (n == actual register size).
2272 (eg. 4 bytes for x86 general registers).
2273 record_full_mem:
2274 1 byte: record type (record_full_mem, see enum record_full_type).
2275 4 bytes: memory length (network byte order).
2276 8 bytes: memory address (network byte order).
2277 n bytes: memory value (n == memory length).
2278
2279 */
2280
2281 /* bfdcore_read -- read bytes from a core file section. */
2282
2283 static inline void
2284 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2285 {
2286 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2287
2288 if (ret)
2289 *offset += len;
2290 else
2291 error (_("Failed to read %d bytes from core file %s ('%s')."),
2292 len, bfd_get_filename (obfd),
2293 bfd_errmsg (bfd_get_error ()));
2294 }
2295
2296 static inline uint64_t
2297 netorder64 (uint64_t input)
2298 {
2299 uint64_t ret;
2300
2301 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2302 BFD_ENDIAN_BIG, input);
2303 return ret;
2304 }
2305
2306 static inline uint32_t
2307 netorder32 (uint32_t input)
2308 {
2309 uint32_t ret;
2310
2311 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2312 BFD_ENDIAN_BIG, input);
2313 return ret;
2314 }
2315
2316 /* Restore the execution log from a core_bfd file. */
2317 static void
2318 record_full_restore (void)
2319 {
2320 uint32_t magic;
2321 struct record_full_entry *rec;
2322 asection *osec;
2323 uint32_t osec_size;
2324 int bfd_offset = 0;
2325 struct regcache *regcache;
2326
2327 /* We restore the execution log from the open core bfd,
2328 if there is one. */
2329 if (core_bfd == NULL)
2330 return;
2331
2332 /* "record_full_restore" can only be called when record list is empty. */
2333 gdb_assert (record_full_first.next == NULL);
2334
2335 if (record_debug)
2336 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n");
2337
2338 /* Now need to find our special note section. */
2339 osec = bfd_get_section_by_name (core_bfd, "null0");
2340 if (record_debug)
2341 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n",
2342 osec ? "succeeded" : "failed");
2343 if (osec == NULL)
2344 return;
2345 osec_size = bfd_section_size (osec);
2346 if (record_debug)
2347 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (osec));
2348
2349 /* Check the magic code. */
2350 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2351 if (magic != RECORD_FULL_FILE_MAGIC)
2352 error (_("Version mis-match or file format error in core file %s."),
2353 bfd_get_filename (core_bfd));
2354 if (record_debug)
2355 fprintf_unfiltered (gdb_stdlog,
2356 " Reading 4-byte magic cookie "
2357 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2358 phex_nz (netorder32 (magic), 4));
2359
2360 /* Restore the entries in recfd into record_full_arch_list_head and
2361 record_full_arch_list_tail. */
2362 record_full_arch_list_head = NULL;
2363 record_full_arch_list_tail = NULL;
2364 record_full_insn_num = 0;
2365
2366 try
2367 {
2368 regcache = get_current_regcache ();
2369
2370 while (1)
2371 {
2372 uint8_t rectype;
2373 uint32_t regnum, len, signal, count;
2374 uint64_t addr;
2375
2376 /* We are finished when offset reaches osec_size. */
2377 if (bfd_offset >= osec_size)
2378 break;
2379 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2380
2381 switch (rectype)
2382 {
2383 case record_full_reg: /* reg */
2384 /* Get register number to regnum. */
2385 bfdcore_read (core_bfd, osec, &regnum,
2386 sizeof (regnum), &bfd_offset);
2387 regnum = netorder32 (regnum);
2388
2389 rec = record_full_reg_alloc (regcache, regnum);
2390
2391 /* Get val. */
2392 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2393 rec->u.reg.len, &bfd_offset);
2394
2395 if (record_debug)
2396 fprintf_unfiltered (gdb_stdlog,
2397 " Reading register %d (1 "
2398 "plus %lu plus %d bytes)\n",
2399 rec->u.reg.num,
2400 (unsigned long) sizeof (regnum),
2401 rec->u.reg.len);
2402 break;
2403
2404 case record_full_mem: /* mem */
2405 /* Get len. */
2406 bfdcore_read (core_bfd, osec, &len,
2407 sizeof (len), &bfd_offset);
2408 len = netorder32 (len);
2409
2410 /* Get addr. */
2411 bfdcore_read (core_bfd, osec, &addr,
2412 sizeof (addr), &bfd_offset);
2413 addr = netorder64 (addr);
2414
2415 rec = record_full_mem_alloc (addr, len);
2416
2417 /* Get val. */
2418 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2419 rec->u.mem.len, &bfd_offset);
2420
2421 if (record_debug)
2422 fprintf_unfiltered (gdb_stdlog,
2423 " Reading memory %s (1 plus "
2424 "%lu plus %lu plus %d bytes)\n",
2425 paddress (get_current_arch (),
2426 rec->u.mem.addr),
2427 (unsigned long) sizeof (addr),
2428 (unsigned long) sizeof (len),
2429 rec->u.mem.len);
2430 break;
2431
2432 case record_full_end: /* end */
2433 rec = record_full_end_alloc ();
2434 record_full_insn_num ++;
2435
2436 /* Get signal value. */
2437 bfdcore_read (core_bfd, osec, &signal,
2438 sizeof (signal), &bfd_offset);
2439 signal = netorder32 (signal);
2440 rec->u.end.sigval = (enum gdb_signal) signal;
2441
2442 /* Get insn count. */
2443 bfdcore_read (core_bfd, osec, &count,
2444 sizeof (count), &bfd_offset);
2445 count = netorder32 (count);
2446 rec->u.end.insn_num = count;
2447 record_full_insn_count = count + 1;
2448 if (record_debug)
2449 fprintf_unfiltered (gdb_stdlog,
2450 " Reading record_full_end (1 + "
2451 "%lu + %lu bytes), offset == %s\n",
2452 (unsigned long) sizeof (signal),
2453 (unsigned long) sizeof (count),
2454 paddress (get_current_arch (),
2455 bfd_offset));
2456 break;
2457
2458 default:
2459 error (_("Bad entry type in core file %s."),
2460 bfd_get_filename (core_bfd));
2461 break;
2462 }
2463
2464 /* Add rec to record arch list. */
2465 record_full_arch_list_add (rec);
2466 }
2467 }
2468 catch (const gdb_exception &ex)
2469 {
2470 record_full_list_release (record_full_arch_list_tail);
2471 throw;
2472 }
2473
2474 /* Add record_full_arch_list_head to the end of record list. */
2475 record_full_first.next = record_full_arch_list_head;
2476 record_full_arch_list_head->prev = &record_full_first;
2477 record_full_arch_list_tail->next = NULL;
2478 record_full_list = &record_full_first;
2479
2480 /* Update record_full_insn_max_num. */
2481 if (record_full_insn_num > record_full_insn_max_num)
2482 {
2483 record_full_insn_max_num = record_full_insn_num;
2484 warning (_("Auto increase record/replay buffer limit to %u."),
2485 record_full_insn_max_num);
2486 }
2487
2488 /* Succeeded. */
2489 printf_filtered (_("Restored records from core file %s.\n"),
2490 bfd_get_filename (core_bfd));
2491
2492 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2493 }
2494
2495 /* bfdcore_write -- write bytes into a core file section. */
2496
2497 static inline void
2498 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2499 {
2500 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2501
2502 if (ret)
2503 *offset += len;
2504 else
2505 error (_("Failed to write %d bytes to core file %s ('%s')."),
2506 len, bfd_get_filename (obfd),
2507 bfd_errmsg (bfd_get_error ()));
2508 }
2509
2510 /* Restore the execution log from a file. We use a modified elf
2511 corefile format, with an extra section for our data. */
2512
2513 static void
2514 cmd_record_full_restore (const char *args, int from_tty)
2515 {
2516 core_file_command (args, from_tty);
2517 record_full_open (args, from_tty);
2518 }
2519
2520 /* Save the execution log to a file. We use a modified elf corefile
2521 format, with an extra section for our data. */
2522
2523 void
2524 record_full_base_target::save_record (const char *recfilename)
2525 {
2526 struct record_full_entry *cur_record_full_list;
2527 uint32_t magic;
2528 struct regcache *regcache;
2529 struct gdbarch *gdbarch;
2530 int save_size = 0;
2531 asection *osec = NULL;
2532 int bfd_offset = 0;
2533
2534 /* Open the save file. */
2535 if (record_debug)
2536 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n",
2537 recfilename);
2538
2539 /* Open the output file. */
2540 gdb_bfd_ref_ptr obfd (create_gcore_bfd (recfilename));
2541
2542 /* Arrange to remove the output file on failure. */
2543 gdb::unlinker unlink_file (recfilename);
2544
2545 /* Save the current record entry to "cur_record_full_list". */
2546 cur_record_full_list = record_full_list;
2547
2548 /* Get the values of regcache and gdbarch. */
2549 regcache = get_current_regcache ();
2550 gdbarch = regcache->arch ();
2551
2552 /* Disable the GDB operation record. */
2553 scoped_restore restore_operation_disable
2554 = record_full_gdb_operation_disable_set ();
2555
2556 /* Reverse execute to the begin of record list. */
2557 while (1)
2558 {
2559 /* Check for beginning and end of log. */
2560 if (record_full_list == &record_full_first)
2561 break;
2562
2563 record_full_exec_insn (regcache, gdbarch, record_full_list);
2564
2565 if (record_full_list->prev)
2566 record_full_list = record_full_list->prev;
2567 }
2568
2569 /* Compute the size needed for the extra bfd section. */
2570 save_size = 4; /* magic cookie */
2571 for (record_full_list = record_full_first.next; record_full_list;
2572 record_full_list = record_full_list->next)
2573 switch (record_full_list->type)
2574 {
2575 case record_full_end:
2576 save_size += 1 + 4 + 4;
2577 break;
2578 case record_full_reg:
2579 save_size += 1 + 4 + record_full_list->u.reg.len;
2580 break;
2581 case record_full_mem:
2582 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2583 break;
2584 }
2585
2586 /* Make the new bfd section. */
2587 osec = bfd_make_section_anyway_with_flags (obfd.get (), "precord",
2588 SEC_HAS_CONTENTS
2589 | SEC_READONLY);
2590 if (osec == NULL)
2591 error (_("Failed to create 'precord' section for corefile %s: %s"),
2592 recfilename,
2593 bfd_errmsg (bfd_get_error ()));
2594 bfd_set_section_size (osec, save_size);
2595 bfd_set_section_vma (osec, 0);
2596 bfd_set_section_alignment (osec, 0);
2597
2598 /* Save corefile state. */
2599 write_gcore_file (obfd.get ());
2600
2601 /* Write out the record log. */
2602 /* Write the magic code. */
2603 magic = RECORD_FULL_FILE_MAGIC;
2604 if (record_debug)
2605 fprintf_unfiltered (gdb_stdlog,
2606 " Writing 4-byte magic cookie "
2607 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2608 phex_nz (magic, 4));
2609 bfdcore_write (obfd.get (), osec, &magic, sizeof (magic), &bfd_offset);
2610
2611 /* Save the entries to recfd and forward execute to the end of
2612 record list. */
2613 record_full_list = &record_full_first;
2614 while (1)
2615 {
2616 /* Save entry. */
2617 if (record_full_list != &record_full_first)
2618 {
2619 uint8_t type;
2620 uint32_t regnum, len, signal, count;
2621 uint64_t addr;
2622
2623 type = record_full_list->type;
2624 bfdcore_write (obfd.get (), osec, &type, sizeof (type), &bfd_offset);
2625
2626 switch (record_full_list->type)
2627 {
2628 case record_full_reg: /* reg */
2629 if (record_debug)
2630 fprintf_unfiltered (gdb_stdlog,
2631 " Writing register %d (1 "
2632 "plus %lu plus %d bytes)\n",
2633 record_full_list->u.reg.num,
2634 (unsigned long) sizeof (regnum),
2635 record_full_list->u.reg.len);
2636
2637 /* Write regnum. */
2638 regnum = netorder32 (record_full_list->u.reg.num);
2639 bfdcore_write (obfd.get (), osec, &regnum,
2640 sizeof (regnum), &bfd_offset);
2641
2642 /* Write regval. */
2643 bfdcore_write (obfd.get (), osec,
2644 record_full_get_loc (record_full_list),
2645 record_full_list->u.reg.len, &bfd_offset);
2646 break;
2647
2648 case record_full_mem: /* mem */
2649 if (record_debug)
2650 fprintf_unfiltered (gdb_stdlog,
2651 " Writing memory %s (1 plus "
2652 "%lu plus %lu plus %d bytes)\n",
2653 paddress (gdbarch,
2654 record_full_list->u.mem.addr),
2655 (unsigned long) sizeof (addr),
2656 (unsigned long) sizeof (len),
2657 record_full_list->u.mem.len);
2658
2659 /* Write memlen. */
2660 len = netorder32 (record_full_list->u.mem.len);
2661 bfdcore_write (obfd.get (), osec, &len, sizeof (len),
2662 &bfd_offset);
2663
2664 /* Write memaddr. */
2665 addr = netorder64 (record_full_list->u.mem.addr);
2666 bfdcore_write (obfd.get (), osec, &addr,
2667 sizeof (addr), &bfd_offset);
2668
2669 /* Write memval. */
2670 bfdcore_write (obfd.get (), osec,
2671 record_full_get_loc (record_full_list),
2672 record_full_list->u.mem.len, &bfd_offset);
2673 break;
2674
2675 case record_full_end:
2676 if (record_debug)
2677 fprintf_unfiltered (gdb_stdlog,
2678 " Writing record_full_end (1 + "
2679 "%lu + %lu bytes)\n",
2680 (unsigned long) sizeof (signal),
2681 (unsigned long) sizeof (count));
2682 /* Write signal value. */
2683 signal = netorder32 (record_full_list->u.end.sigval);
2684 bfdcore_write (obfd.get (), osec, &signal,
2685 sizeof (signal), &bfd_offset);
2686
2687 /* Write insn count. */
2688 count = netorder32 (record_full_list->u.end.insn_num);
2689 bfdcore_write (obfd.get (), osec, &count,
2690 sizeof (count), &bfd_offset);
2691 break;
2692 }
2693 }
2694
2695 /* Execute entry. */
2696 record_full_exec_insn (regcache, gdbarch, record_full_list);
2697
2698 if (record_full_list->next)
2699 record_full_list = record_full_list->next;
2700 else
2701 break;
2702 }
2703
2704 /* Reverse execute to cur_record_full_list. */
2705 while (1)
2706 {
2707 /* Check for beginning and end of log. */
2708 if (record_full_list == cur_record_full_list)
2709 break;
2710
2711 record_full_exec_insn (regcache, gdbarch, record_full_list);
2712
2713 if (record_full_list->prev)
2714 record_full_list = record_full_list->prev;
2715 }
2716
2717 unlink_file.keep ();
2718
2719 /* Succeeded. */
2720 printf_filtered (_("Saved core file %s with execution log.\n"),
2721 recfilename);
2722 }
2723
2724 /* record_full_goto_insn -- rewind the record log (forward or backward,
2725 depending on DIR) to the given entry, changing the program state
2726 correspondingly. */
2727
2728 static void
2729 record_full_goto_insn (struct record_full_entry *entry,
2730 enum exec_direction_kind dir)
2731 {
2732 scoped_restore restore_operation_disable
2733 = record_full_gdb_operation_disable_set ();
2734 struct regcache *regcache = get_current_regcache ();
2735 struct gdbarch *gdbarch = regcache->arch ();
2736
2737 /* Assume everything is valid: we will hit the entry,
2738 and we will not hit the end of the recording. */
2739
2740 if (dir == EXEC_FORWARD)
2741 record_full_list = record_full_list->next;
2742
2743 do
2744 {
2745 record_full_exec_insn (regcache, gdbarch, record_full_list);
2746 if (dir == EXEC_REVERSE)
2747 record_full_list = record_full_list->prev;
2748 else
2749 record_full_list = record_full_list->next;
2750 } while (record_full_list != entry);
2751 }
2752
2753 /* Alias for "target record-full". */
2754
2755 static void
2756 cmd_record_full_start (const char *args, int from_tty)
2757 {
2758 execute_command ("target record-full", from_tty);
2759 }
2760
2761 static void
2762 set_record_full_insn_max_num (const char *args, int from_tty,
2763 struct cmd_list_element *c)
2764 {
2765 if (record_full_insn_num > record_full_insn_max_num)
2766 {
2767 /* Count down record_full_insn_num while releasing records from list. */
2768 while (record_full_insn_num > record_full_insn_max_num)
2769 {
2770 record_full_list_release_first ();
2771 record_full_insn_num--;
2772 }
2773 }
2774 }
2775
2776 void _initialize_record_full ();
2777 void
2778 _initialize_record_full ()
2779 {
2780 struct cmd_list_element *c;
2781
2782 /* Init record_full_first. */
2783 record_full_first.prev = NULL;
2784 record_full_first.next = NULL;
2785 record_full_first.type = record_full_end;
2786
2787 add_target (record_full_target_info, record_full_open);
2788 add_deprecated_target_alias (record_full_target_info, "record");
2789 add_target (record_full_core_target_info, record_full_open);
2790
2791 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2792 _("Start full execution recording."), &record_full_cmdlist,
2793 "record full ", 0, &record_cmdlist);
2794
2795 c = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2796 _("Restore the execution log from a file.\n\
2797 Argument is filename. File must be created with 'record save'."),
2798 &record_full_cmdlist);
2799 set_cmd_completer (c, filename_completer);
2800
2801 /* Deprecate the old version without "full" prefix. */
2802 c = add_alias_cmd ("restore", "full restore", class_obscure, 1,
2803 &record_cmdlist);
2804 set_cmd_completer (c, filename_completer);
2805 deprecate_cmd (c, "record full restore");
2806
2807 add_basic_prefix_cmd ("full", class_support,
2808 _("Set record options."), &set_record_full_cmdlist,
2809 "set record full ", 0, &set_record_cmdlist);
2810
2811 add_show_prefix_cmd ("full", class_support,
2812 _("Show record options."), &show_record_full_cmdlist,
2813 "show record full ", 0, &show_record_cmdlist);
2814
2815 /* Record instructions number limit command. */
2816 add_setshow_boolean_cmd ("stop-at-limit", no_class,
2817 &record_full_stop_at_limit, _("\
2818 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2819 Show whether record/replay stops when record/replay buffer becomes full."),
2820 _("Default is ON.\n\
2821 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2822 When OFF, if the record/replay buffer becomes full,\n\
2823 delete the oldest recorded instruction to make room for each new one."),
2824 NULL, NULL,
2825 &set_record_full_cmdlist, &show_record_full_cmdlist);
2826
2827 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2828 &set_record_cmdlist);
2829 deprecate_cmd (c, "set record full stop-at-limit");
2830
2831 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2832 &show_record_cmdlist);
2833 deprecate_cmd (c, "show record full stop-at-limit");
2834
2835 add_setshow_uinteger_cmd ("insn-number-max", no_class,
2836 &record_full_insn_max_num,
2837 _("Set record/replay buffer limit."),
2838 _("Show record/replay buffer limit."), _("\
2839 Set the maximum number of instructions to be stored in the\n\
2840 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
2841 limit. Default is 200000."),
2842 set_record_full_insn_max_num,
2843 NULL, &set_record_full_cmdlist,
2844 &show_record_full_cmdlist);
2845
2846 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2847 &set_record_cmdlist);
2848 deprecate_cmd (c, "set record full insn-number-max");
2849
2850 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2851 &show_record_cmdlist);
2852 deprecate_cmd (c, "show record full insn-number-max");
2853
2854 add_setshow_boolean_cmd ("memory-query", no_class,
2855 &record_full_memory_query, _("\
2856 Set whether query if PREC cannot record memory change of next instruction."),
2857 _("\
2858 Show whether query if PREC cannot record memory change of next instruction."),
2859 _("\
2860 Default is OFF.\n\
2861 When ON, query if PREC cannot record memory change of next instruction."),
2862 NULL, NULL,
2863 &set_record_full_cmdlist,
2864 &show_record_full_cmdlist);
2865
2866 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2867 &set_record_cmdlist);
2868 deprecate_cmd (c, "set record full memory-query");
2869
2870 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2871 &show_record_cmdlist);
2872 deprecate_cmd (c, "show record full memory-query");
2873 }