Add `set print repeats' tests for C/C++ arrays
[binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "inferior.h"
25 #include "event-top.h"
26 #include "completer.h"
27 #include "arch-utils.h"
28 #include "gdbcore.h"
29 #include "exec.h"
30 #include "record.h"
31 #include "record-full.h"
32 #include "elf-bfd.h"
33 #include "gcore.h"
34 #include "gdbsupport/event-loop.h"
35 #include "inf-loop.h"
36 #include "gdb_bfd.h"
37 #include "observable.h"
38 #include "infrun.h"
39 #include "gdbsupport/gdb_unlinker.h"
40 #include "gdbsupport/byte-vector.h"
41 #include "async-event.h"
42
43 #include <signal.h>
44
45 /* This module implements "target record-full", also known as "process
46 record and replay". This target sits on top of a "normal" target
47 (a target that "has execution"), and provides a record and replay
48 functionality, including reverse debugging.
49
50 Target record has two modes: recording, and replaying.
51
52 In record mode, we intercept the resume and wait methods.
53 Whenever gdb resumes the target, we run the target in single step
54 mode, and we build up an execution log in which, for each executed
55 instruction, we record all changes in memory and register state.
56 This is invisible to the user, to whom it just looks like an
57 ordinary debugging session (except for performance degradation).
58
59 In replay mode, instead of actually letting the inferior run as a
60 process, we simulate its execution by playing back the recorded
61 execution log. For each instruction in the log, we simulate the
62 instruction's side effects by duplicating the changes that it would
63 have made on memory and registers. */
64
65 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
66
67 #define RECORD_FULL_IS_REPLAY \
68 (record_full_list->next || ::execution_direction == EXEC_REVERSE)
69
70 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
71
72 /* These are the core structs of the process record functionality.
73
74 A record_full_entry is a record of the value change of a register
75 ("record_full_reg") or a part of memory ("record_full_mem"). And each
76 instruction must have a struct record_full_entry ("record_full_end")
77 that indicates that this is the last struct record_full_entry of this
78 instruction.
79
80 Each struct record_full_entry is linked to "record_full_list" by "prev"
81 and "next" pointers. */
82
83 struct record_full_mem_entry
84 {
85 CORE_ADDR addr;
86 int len;
87 /* Set this flag if target memory for this entry
88 can no longer be accessed. */
89 int mem_entry_not_accessible;
90 union
91 {
92 gdb_byte *ptr;
93 gdb_byte buf[sizeof (gdb_byte *)];
94 } u;
95 };
96
97 struct record_full_reg_entry
98 {
99 unsigned short num;
100 unsigned short len;
101 union
102 {
103 gdb_byte *ptr;
104 gdb_byte buf[2 * sizeof (gdb_byte *)];
105 } u;
106 };
107
108 struct record_full_end_entry
109 {
110 enum gdb_signal sigval;
111 ULONGEST insn_num;
112 };
113
114 enum record_full_type
115 {
116 record_full_end = 0,
117 record_full_reg,
118 record_full_mem
119 };
120
121 /* This is the data structure that makes up the execution log.
122
123 The execution log consists of a single linked list of entries
124 of type "struct record_full_entry". It is doubly linked so that it
125 can be traversed in either direction.
126
127 The start of the list is anchored by a struct called
128 "record_full_first". The pointer "record_full_list" either points
129 to the last entry that was added to the list (in record mode), or to
130 the next entry in the list that will be executed (in replay mode).
131
132 Each list element (struct record_full_entry), in addition to next
133 and prev pointers, consists of a union of three entry types: mem,
134 reg, and end. A field called "type" determines which entry type is
135 represented by a given list element.
136
137 Each instruction that is added to the execution log is represented
138 by a variable number of list elements ('entries'). The instruction
139 will have one "reg" entry for each register that is changed by
140 executing the instruction (including the PC in every case). It
141 will also have one "mem" entry for each memory change. Finally,
142 each instruction will have an "end" entry that separates it from
143 the changes associated with the next instruction. */
144
145 struct record_full_entry
146 {
147 struct record_full_entry *prev;
148 struct record_full_entry *next;
149 enum record_full_type type;
150 union
151 {
152 /* reg */
153 struct record_full_reg_entry reg;
154 /* mem */
155 struct record_full_mem_entry mem;
156 /* end */
157 struct record_full_end_entry end;
158 } u;
159 };
160
161 /* If true, query if PREC cannot record memory
162 change of next instruction. */
163 bool record_full_memory_query = false;
164
165 struct record_full_core_buf_entry
166 {
167 struct record_full_core_buf_entry *prev;
168 struct target_section *p;
169 bfd_byte *buf;
170 };
171
172 /* Record buf with core target. */
173 static detached_regcache *record_full_core_regbuf = NULL;
174 static target_section_table record_full_core_sections;
175 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
176
177 /* The following variables are used for managing the linked list that
178 represents the execution log.
179
180 record_full_first is the anchor that holds down the beginning of
181 the list.
182
183 record_full_list serves two functions:
184 1) In record mode, it anchors the end of the list.
185 2) In replay mode, it traverses the list and points to
186 the next instruction that must be emulated.
187
188 record_full_arch_list_head and record_full_arch_list_tail are used
189 to manage a separate list, which is used to build up the change
190 elements of the currently executing instruction during record mode.
191 When this instruction has been completely annotated in the "arch
192 list", it will be appended to the main execution log. */
193
194 static struct record_full_entry record_full_first;
195 static struct record_full_entry *record_full_list = &record_full_first;
196 static struct record_full_entry *record_full_arch_list_head = NULL;
197 static struct record_full_entry *record_full_arch_list_tail = NULL;
198
199 /* true ask user. false auto delete the last struct record_full_entry. */
200 static bool record_full_stop_at_limit = true;
201 /* Maximum allowed number of insns in execution log. */
202 static unsigned int record_full_insn_max_num
203 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
204 /* Actual count of insns presently in execution log. */
205 static unsigned int record_full_insn_num = 0;
206 /* Count of insns logged so far (may be larger
207 than count of insns presently in execution log). */
208 static ULONGEST record_full_insn_count;
209
210 static const char record_longname[]
211 = N_("Process record and replay target");
212 static const char record_doc[]
213 = N_("Log program while executing and replay execution from log.");
214
215 /* Base class implementing functionality common to both the
216 "record-full" and "record-core" targets. */
217
218 class record_full_base_target : public target_ops
219 {
220 public:
221 const target_info &info () const override = 0;
222
223 strata stratum () const override { return record_stratum; }
224
225 void close () override;
226 void async (int) override;
227 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
228 bool stopped_by_watchpoint () override;
229 bool stopped_data_address (CORE_ADDR *) override;
230
231 bool stopped_by_sw_breakpoint () override;
232 bool supports_stopped_by_sw_breakpoint () override;
233
234 bool stopped_by_hw_breakpoint () override;
235 bool supports_stopped_by_hw_breakpoint () override;
236
237 bool can_execute_reverse () override;
238
239 /* Add bookmark target methods. */
240 gdb_byte *get_bookmark (const char *, int) override;
241 void goto_bookmark (const gdb_byte *, int) override;
242 enum exec_direction_kind execution_direction () override;
243 enum record_method record_method (ptid_t ptid) override;
244 void info_record () override;
245 void save_record (const char *filename) override;
246 bool supports_delete_record () override;
247 void delete_record () override;
248 bool record_is_replaying (ptid_t ptid) override;
249 bool record_will_replay (ptid_t ptid, int dir) override;
250 void record_stop_replaying () override;
251 void goto_record_begin () override;
252 void goto_record_end () override;
253 void goto_record (ULONGEST insn) override;
254 };
255
256 /* The "record-full" target. */
257
258 static const target_info record_full_target_info = {
259 "record-full",
260 record_longname,
261 record_doc,
262 };
263
264 class record_full_target final : public record_full_base_target
265 {
266 public:
267 const target_info &info () const override
268 { return record_full_target_info; }
269
270 void resume (ptid_t, int, enum gdb_signal) override;
271 void disconnect (const char *, int) override;
272 void detach (inferior *, int) override;
273 void mourn_inferior () override;
274 void kill () override;
275 void store_registers (struct regcache *, int) override;
276 enum target_xfer_status xfer_partial (enum target_object object,
277 const char *annex,
278 gdb_byte *readbuf,
279 const gdb_byte *writebuf,
280 ULONGEST offset, ULONGEST len,
281 ULONGEST *xfered_len) override;
282 int insert_breakpoint (struct gdbarch *,
283 struct bp_target_info *) override;
284 int remove_breakpoint (struct gdbarch *,
285 struct bp_target_info *,
286 enum remove_bp_reason) override;
287 };
288
289 /* The "record-core" target. */
290
291 static const target_info record_full_core_target_info = {
292 "record-core",
293 record_longname,
294 record_doc,
295 };
296
297 class record_full_core_target final : public record_full_base_target
298 {
299 public:
300 const target_info &info () const override
301 { return record_full_core_target_info; }
302
303 void resume (ptid_t, int, enum gdb_signal) override;
304 void disconnect (const char *, int) override;
305 void kill () override;
306 void fetch_registers (struct regcache *regcache, int regno) override;
307 void prepare_to_store (struct regcache *regcache) override;
308 void store_registers (struct regcache *, int) override;
309 enum target_xfer_status xfer_partial (enum target_object object,
310 const char *annex,
311 gdb_byte *readbuf,
312 const gdb_byte *writebuf,
313 ULONGEST offset, ULONGEST len,
314 ULONGEST *xfered_len) override;
315 int insert_breakpoint (struct gdbarch *,
316 struct bp_target_info *) override;
317 int remove_breakpoint (struct gdbarch *,
318 struct bp_target_info *,
319 enum remove_bp_reason) override;
320
321 bool has_execution (inferior *inf) override;
322 };
323
324 static record_full_target record_full_ops;
325 static record_full_core_target record_full_core_ops;
326
327 void
328 record_full_target::detach (inferior *inf, int from_tty)
329 {
330 record_detach (this, inf, from_tty);
331 }
332
333 void
334 record_full_target::disconnect (const char *args, int from_tty)
335 {
336 record_disconnect (this, args, from_tty);
337 }
338
339 void
340 record_full_core_target::disconnect (const char *args, int from_tty)
341 {
342 record_disconnect (this, args, from_tty);
343 }
344
345 void
346 record_full_target::mourn_inferior ()
347 {
348 record_mourn_inferior (this);
349 }
350
351 void
352 record_full_target::kill ()
353 {
354 record_kill (this);
355 }
356
357 /* See record-full.h. */
358
359 int
360 record_full_is_used (void)
361 {
362 struct target_ops *t;
363
364 t = find_record_target ();
365 return (t == &record_full_ops
366 || t == &record_full_core_ops);
367 }
368
369
370 /* Command lists for "set/show record full". */
371 static struct cmd_list_element *set_record_full_cmdlist;
372 static struct cmd_list_element *show_record_full_cmdlist;
373
374 /* Command list for "record full". */
375 static struct cmd_list_element *record_full_cmdlist;
376
377 static void record_full_goto_insn (struct record_full_entry *entry,
378 enum exec_direction_kind dir);
379
380 /* Alloc and free functions for record_full_reg, record_full_mem, and
381 record_full_end entries. */
382
383 /* Alloc a record_full_reg record entry. */
384
385 static inline struct record_full_entry *
386 record_full_reg_alloc (struct regcache *regcache, int regnum)
387 {
388 struct record_full_entry *rec;
389 struct gdbarch *gdbarch = regcache->arch ();
390
391 rec = XCNEW (struct record_full_entry);
392 rec->type = record_full_reg;
393 rec->u.reg.num = regnum;
394 rec->u.reg.len = register_size (gdbarch, regnum);
395 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
396 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
397
398 return rec;
399 }
400
401 /* Free a record_full_reg record entry. */
402
403 static inline void
404 record_full_reg_release (struct record_full_entry *rec)
405 {
406 gdb_assert (rec->type == record_full_reg);
407 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
408 xfree (rec->u.reg.u.ptr);
409 xfree (rec);
410 }
411
412 /* Alloc a record_full_mem record entry. */
413
414 static inline struct record_full_entry *
415 record_full_mem_alloc (CORE_ADDR addr, int len)
416 {
417 struct record_full_entry *rec;
418
419 rec = XCNEW (struct record_full_entry);
420 rec->type = record_full_mem;
421 rec->u.mem.addr = addr;
422 rec->u.mem.len = len;
423 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
424 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
425
426 return rec;
427 }
428
429 /* Free a record_full_mem record entry. */
430
431 static inline void
432 record_full_mem_release (struct record_full_entry *rec)
433 {
434 gdb_assert (rec->type == record_full_mem);
435 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
436 xfree (rec->u.mem.u.ptr);
437 xfree (rec);
438 }
439
440 /* Alloc a record_full_end record entry. */
441
442 static inline struct record_full_entry *
443 record_full_end_alloc (void)
444 {
445 struct record_full_entry *rec;
446
447 rec = XCNEW (struct record_full_entry);
448 rec->type = record_full_end;
449
450 return rec;
451 }
452
453 /* Free a record_full_end record entry. */
454
455 static inline void
456 record_full_end_release (struct record_full_entry *rec)
457 {
458 xfree (rec);
459 }
460
461 /* Free one record entry, any type.
462 Return entry->type, in case caller wants to know. */
463
464 static inline enum record_full_type
465 record_full_entry_release (struct record_full_entry *rec)
466 {
467 enum record_full_type type = rec->type;
468
469 switch (type) {
470 case record_full_reg:
471 record_full_reg_release (rec);
472 break;
473 case record_full_mem:
474 record_full_mem_release (rec);
475 break;
476 case record_full_end:
477 record_full_end_release (rec);
478 break;
479 }
480 return type;
481 }
482
483 /* Free all record entries in list pointed to by REC. */
484
485 static void
486 record_full_list_release (struct record_full_entry *rec)
487 {
488 if (!rec)
489 return;
490
491 while (rec->next)
492 rec = rec->next;
493
494 while (rec->prev)
495 {
496 rec = rec->prev;
497 record_full_entry_release (rec->next);
498 }
499
500 if (rec == &record_full_first)
501 {
502 record_full_insn_num = 0;
503 record_full_first.next = NULL;
504 }
505 else
506 record_full_entry_release (rec);
507 }
508
509 /* Free all record entries forward of the given list position. */
510
511 static void
512 record_full_list_release_following (struct record_full_entry *rec)
513 {
514 struct record_full_entry *tmp = rec->next;
515
516 rec->next = NULL;
517 while (tmp)
518 {
519 rec = tmp->next;
520 if (record_full_entry_release (tmp) == record_full_end)
521 {
522 record_full_insn_num--;
523 record_full_insn_count--;
524 }
525 tmp = rec;
526 }
527 }
528
529 /* Delete the first instruction from the beginning of the log, to make
530 room for adding a new instruction at the end of the log.
531
532 Note -- this function does not modify record_full_insn_num. */
533
534 static void
535 record_full_list_release_first (void)
536 {
537 struct record_full_entry *tmp;
538
539 if (!record_full_first.next)
540 return;
541
542 /* Loop until a record_full_end. */
543 while (1)
544 {
545 /* Cut record_full_first.next out of the linked list. */
546 tmp = record_full_first.next;
547 record_full_first.next = tmp->next;
548 tmp->next->prev = &record_full_first;
549
550 /* tmp is now isolated, and can be deleted. */
551 if (record_full_entry_release (tmp) == record_full_end)
552 break; /* End loop at first record_full_end. */
553
554 if (!record_full_first.next)
555 {
556 gdb_assert (record_full_insn_num == 1);
557 break; /* End loop when list is empty. */
558 }
559 }
560 }
561
562 /* Add a struct record_full_entry to record_full_arch_list. */
563
564 static void
565 record_full_arch_list_add (struct record_full_entry *rec)
566 {
567 if (record_debug > 1)
568 fprintf_unfiltered (gdb_stdlog,
569 "Process record: record_full_arch_list_add %s.\n",
570 host_address_to_string (rec));
571
572 if (record_full_arch_list_tail)
573 {
574 record_full_arch_list_tail->next = rec;
575 rec->prev = record_full_arch_list_tail;
576 record_full_arch_list_tail = rec;
577 }
578 else
579 {
580 record_full_arch_list_head = rec;
581 record_full_arch_list_tail = rec;
582 }
583 }
584
585 /* Return the value storage location of a record entry. */
586 static inline gdb_byte *
587 record_full_get_loc (struct record_full_entry *rec)
588 {
589 switch (rec->type) {
590 case record_full_mem:
591 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
592 return rec->u.mem.u.ptr;
593 else
594 return rec->u.mem.u.buf;
595 case record_full_reg:
596 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
597 return rec->u.reg.u.ptr;
598 else
599 return rec->u.reg.u.buf;
600 case record_full_end:
601 default:
602 gdb_assert_not_reached ("unexpected record_full_entry type");
603 return NULL;
604 }
605 }
606
607 /* Record the value of a register NUM to record_full_arch_list. */
608
609 int
610 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
611 {
612 struct record_full_entry *rec;
613
614 if (record_debug > 1)
615 fprintf_unfiltered (gdb_stdlog,
616 "Process record: add register num = %d to "
617 "record list.\n",
618 regnum);
619
620 rec = record_full_reg_alloc (regcache, regnum);
621
622 regcache->raw_read (regnum, record_full_get_loc (rec));
623
624 record_full_arch_list_add (rec);
625
626 return 0;
627 }
628
629 /* Record the value of a region of memory whose address is ADDR and
630 length is LEN to record_full_arch_list. */
631
632 int
633 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
634 {
635 struct record_full_entry *rec;
636
637 if (record_debug > 1)
638 fprintf_unfiltered (gdb_stdlog,
639 "Process record: add mem addr = %s len = %d to "
640 "record list.\n",
641 paddress (target_gdbarch (), addr), len);
642
643 if (!addr) /* FIXME: Why? Some arch must permit it... */
644 return 0;
645
646 rec = record_full_mem_alloc (addr, len);
647
648 if (record_read_memory (target_gdbarch (), addr,
649 record_full_get_loc (rec), len))
650 {
651 record_full_mem_release (rec);
652 return -1;
653 }
654
655 record_full_arch_list_add (rec);
656
657 return 0;
658 }
659
660 /* Add a record_full_end type struct record_full_entry to
661 record_full_arch_list. */
662
663 int
664 record_full_arch_list_add_end (void)
665 {
666 struct record_full_entry *rec;
667
668 if (record_debug > 1)
669 fprintf_unfiltered (gdb_stdlog,
670 "Process record: add end to arch list.\n");
671
672 rec = record_full_end_alloc ();
673 rec->u.end.sigval = GDB_SIGNAL_0;
674 rec->u.end.insn_num = ++record_full_insn_count;
675
676 record_full_arch_list_add (rec);
677
678 return 0;
679 }
680
681 static void
682 record_full_check_insn_num (void)
683 {
684 if (record_full_insn_num == record_full_insn_max_num)
685 {
686 /* Ask user what to do. */
687 if (record_full_stop_at_limit)
688 {
689 if (!yquery (_("Do you want to auto delete previous execution "
690 "log entries when record/replay buffer becomes "
691 "full (record full stop-at-limit)?")))
692 error (_("Process record: stopped by user."));
693 record_full_stop_at_limit = 0;
694 }
695 }
696 }
697
698 /* Before inferior step (when GDB record the running message, inferior
699 only can step), GDB will call this function to record the values to
700 record_full_list. This function will call gdbarch_process_record to
701 record the running message of inferior and set them to
702 record_full_arch_list, and add it to record_full_list. */
703
704 static void
705 record_full_message (struct regcache *regcache, enum gdb_signal signal)
706 {
707 int ret;
708 struct gdbarch *gdbarch = regcache->arch ();
709
710 try
711 {
712 record_full_arch_list_head = NULL;
713 record_full_arch_list_tail = NULL;
714
715 /* Check record_full_insn_num. */
716 record_full_check_insn_num ();
717
718 /* If gdb sends a signal value to target_resume,
719 save it in the 'end' field of the previous instruction.
720
721 Maybe process record should record what really happened,
722 rather than what gdb pretends has happened.
723
724 So if Linux delivered the signal to the child process during
725 the record mode, we will record it and deliver it again in
726 the replay mode.
727
728 If user says "ignore this signal" during the record mode, then
729 it will be ignored again during the replay mode (no matter if
730 the user says something different, like "deliver this signal"
731 during the replay mode).
732
733 User should understand that nothing he does during the replay
734 mode will change the behavior of the child. If he tries,
735 then that is a user error.
736
737 But we should still deliver the signal to gdb during the replay,
738 if we delivered it during the recording. Therefore we should
739 record the signal during record_full_wait, not
740 record_full_resume. */
741 if (record_full_list != &record_full_first) /* FIXME better way
742 to check */
743 {
744 gdb_assert (record_full_list->type == record_full_end);
745 record_full_list->u.end.sigval = signal;
746 }
747
748 if (signal == GDB_SIGNAL_0
749 || !gdbarch_process_record_signal_p (gdbarch))
750 ret = gdbarch_process_record (gdbarch,
751 regcache,
752 regcache_read_pc (regcache));
753 else
754 ret = gdbarch_process_record_signal (gdbarch,
755 regcache,
756 signal);
757
758 if (ret > 0)
759 error (_("Process record: inferior program stopped."));
760 if (ret < 0)
761 error (_("Process record: failed to record execution log."));
762 }
763 catch (const gdb_exception &ex)
764 {
765 record_full_list_release (record_full_arch_list_tail);
766 throw;
767 }
768
769 record_full_list->next = record_full_arch_list_head;
770 record_full_arch_list_head->prev = record_full_list;
771 record_full_list = record_full_arch_list_tail;
772
773 if (record_full_insn_num == record_full_insn_max_num)
774 record_full_list_release_first ();
775 else
776 record_full_insn_num++;
777 }
778
779 static bool
780 record_full_message_wrapper_safe (struct regcache *regcache,
781 enum gdb_signal signal)
782 {
783 try
784 {
785 record_full_message (regcache, signal);
786 }
787 catch (const gdb_exception &ex)
788 {
789 exception_print (gdb_stderr, ex);
790 return false;
791 }
792
793 return true;
794 }
795
796 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
797 doesn't need record. */
798
799 static int record_full_gdb_operation_disable = 0;
800
801 scoped_restore_tmpl<int>
802 record_full_gdb_operation_disable_set (void)
803 {
804 return make_scoped_restore (&record_full_gdb_operation_disable, 1);
805 }
806
807 /* Flag set to TRUE for target_stopped_by_watchpoint. */
808 static enum target_stop_reason record_full_stop_reason
809 = TARGET_STOPPED_BY_NO_REASON;
810
811 /* Execute one instruction from the record log. Each instruction in
812 the log will be represented by an arbitrary sequence of register
813 entries and memory entries, followed by an 'end' entry. */
814
815 static inline void
816 record_full_exec_insn (struct regcache *regcache,
817 struct gdbarch *gdbarch,
818 struct record_full_entry *entry)
819 {
820 switch (entry->type)
821 {
822 case record_full_reg: /* reg */
823 {
824 gdb::byte_vector reg (entry->u.reg.len);
825
826 if (record_debug > 1)
827 fprintf_unfiltered (gdb_stdlog,
828 "Process record: record_full_reg %s to "
829 "inferior num = %d.\n",
830 host_address_to_string (entry),
831 entry->u.reg.num);
832
833 regcache->cooked_read (entry->u.reg.num, reg.data ());
834 regcache->cooked_write (entry->u.reg.num, record_full_get_loc (entry));
835 memcpy (record_full_get_loc (entry), reg.data (), entry->u.reg.len);
836 }
837 break;
838
839 case record_full_mem: /* mem */
840 {
841 /* Nothing to do if the entry is flagged not_accessible. */
842 if (!entry->u.mem.mem_entry_not_accessible)
843 {
844 gdb::byte_vector mem (entry->u.mem.len);
845
846 if (record_debug > 1)
847 fprintf_unfiltered (gdb_stdlog,
848 "Process record: record_full_mem %s to "
849 "inferior addr = %s len = %d.\n",
850 host_address_to_string (entry),
851 paddress (gdbarch, entry->u.mem.addr),
852 entry->u.mem.len);
853
854 if (record_read_memory (gdbarch,
855 entry->u.mem.addr, mem.data (),
856 entry->u.mem.len))
857 entry->u.mem.mem_entry_not_accessible = 1;
858 else
859 {
860 if (target_write_memory (entry->u.mem.addr,
861 record_full_get_loc (entry),
862 entry->u.mem.len))
863 {
864 entry->u.mem.mem_entry_not_accessible = 1;
865 if (record_debug)
866 warning (_("Process record: error writing memory at "
867 "addr = %s len = %d."),
868 paddress (gdbarch, entry->u.mem.addr),
869 entry->u.mem.len);
870 }
871 else
872 {
873 memcpy (record_full_get_loc (entry), mem.data (),
874 entry->u.mem.len);
875
876 /* We've changed memory --- check if a hardware
877 watchpoint should trap. Note that this
878 presently assumes the target beneath supports
879 continuable watchpoints. On non-continuable
880 watchpoints target, we'll want to check this
881 _before_ actually doing the memory change, and
882 not doing the change at all if the watchpoint
883 traps. */
884 if (hardware_watchpoint_inserted_in_range
885 (regcache->aspace (),
886 entry->u.mem.addr, entry->u.mem.len))
887 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
888 }
889 }
890 }
891 }
892 break;
893 }
894 }
895
896 static void record_full_restore (void);
897
898 /* Asynchronous signal handle registered as event loop source for when
899 we have pending events ready to be passed to the core. */
900
901 static struct async_event_handler *record_full_async_inferior_event_token;
902
903 static void
904 record_full_async_inferior_event_handler (gdb_client_data data)
905 {
906 inferior_event_handler (INF_REG_EVENT);
907 }
908
909 /* Open the process record target for 'core' files. */
910
911 static void
912 record_full_core_open_1 (const char *name, int from_tty)
913 {
914 struct regcache *regcache = get_current_regcache ();
915 int regnum = gdbarch_num_regs (regcache->arch ());
916 int i;
917
918 /* Get record_full_core_regbuf. */
919 target_fetch_registers (regcache, -1);
920 record_full_core_regbuf = new detached_regcache (regcache->arch (), false);
921
922 for (i = 0; i < regnum; i ++)
923 record_full_core_regbuf->raw_supply (i, *regcache);
924
925 record_full_core_sections = build_section_table (core_bfd);
926
927 current_inferior ()->push_target (&record_full_core_ops);
928 record_full_restore ();
929 }
930
931 /* Open the process record target for 'live' processes. */
932
933 static void
934 record_full_open_1 (const char *name, int from_tty)
935 {
936 if (record_debug)
937 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open_1\n");
938
939 /* check exec */
940 if (!target_has_execution ())
941 error (_("Process record: the program is not being run."));
942 if (non_stop)
943 error (_("Process record target can't debug inferior in non-stop mode "
944 "(non-stop)."));
945
946 if (!gdbarch_process_record_p (target_gdbarch ()))
947 error (_("Process record: the current architecture doesn't support "
948 "record function."));
949
950 current_inferior ()->push_target (&record_full_ops);
951 }
952
953 static void record_full_init_record_breakpoints (void);
954
955 /* Open the process record target. */
956
957 static void
958 record_full_open (const char *name, int from_tty)
959 {
960 if (record_debug)
961 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
962
963 record_preopen ();
964
965 /* Reset */
966 record_full_insn_num = 0;
967 record_full_insn_count = 0;
968 record_full_list = &record_full_first;
969 record_full_list->next = NULL;
970
971 if (core_bfd)
972 record_full_core_open_1 (name, from_tty);
973 else
974 record_full_open_1 (name, from_tty);
975
976 /* Register extra event sources in the event loop. */
977 record_full_async_inferior_event_token
978 = create_async_event_handler (record_full_async_inferior_event_handler,
979 NULL, "record-full");
980
981 record_full_init_record_breakpoints ();
982
983 gdb::observers::record_changed.notify (current_inferior (), 1, "full", NULL);
984 }
985
986 /* "close" target method. Close the process record target. */
987
988 void
989 record_full_base_target::close ()
990 {
991 struct record_full_core_buf_entry *entry;
992
993 if (record_debug)
994 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n");
995
996 record_full_list_release (record_full_list);
997
998 /* Release record_full_core_regbuf. */
999 if (record_full_core_regbuf)
1000 {
1001 delete record_full_core_regbuf;
1002 record_full_core_regbuf = NULL;
1003 }
1004
1005 /* Release record_full_core_buf_list. */
1006 while (record_full_core_buf_list)
1007 {
1008 entry = record_full_core_buf_list;
1009 record_full_core_buf_list = record_full_core_buf_list->prev;
1010 xfree (entry);
1011 }
1012
1013 if (record_full_async_inferior_event_token)
1014 delete_async_event_handler (&record_full_async_inferior_event_token);
1015 }
1016
1017 /* "async" target method. */
1018
1019 void
1020 record_full_base_target::async (int enable)
1021 {
1022 if (enable)
1023 mark_async_event_handler (record_full_async_inferior_event_token);
1024 else
1025 clear_async_event_handler (record_full_async_inferior_event_token);
1026
1027 beneath ()->async (enable);
1028 }
1029
1030 /* The PTID and STEP arguments last passed to
1031 record_full_target::resume. */
1032 static ptid_t record_full_resume_ptid = null_ptid;
1033 static int record_full_resume_step = 0;
1034
1035 /* True if we've been resumed, and so each record_full_wait call should
1036 advance execution. If this is false, record_full_wait will return a
1037 TARGET_WAITKIND_IGNORE. */
1038 static int record_full_resumed = 0;
1039
1040 /* The execution direction of the last resume we got. This is
1041 necessary for async mode. Vis (order is not strictly accurate):
1042
1043 1. user has the global execution direction set to forward
1044 2. user does a reverse-step command
1045 3. record_full_resume is called with global execution direction
1046 temporarily switched to reverse
1047 4. GDB's execution direction is reverted back to forward
1048 5. target record notifies event loop there's an event to handle
1049 6. infrun asks the target which direction was it going, and switches
1050 the global execution direction accordingly (to reverse)
1051 7. infrun polls an event out of the record target, and handles it
1052 8. GDB goes back to the event loop, and goto #4.
1053 */
1054 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
1055
1056 /* "resume" target method. Resume the process record target. */
1057
1058 void
1059 record_full_target::resume (ptid_t ptid, int step, enum gdb_signal signal)
1060 {
1061 record_full_resume_ptid = inferior_ptid;
1062 record_full_resume_step = step;
1063 record_full_resumed = 1;
1064 record_full_execution_dir = ::execution_direction;
1065
1066 if (!RECORD_FULL_IS_REPLAY)
1067 {
1068 struct gdbarch *gdbarch = target_thread_architecture (ptid);
1069
1070 record_full_message (get_current_regcache (), signal);
1071
1072 if (!step)
1073 {
1074 /* This is not hard single step. */
1075 if (!gdbarch_software_single_step_p (gdbarch))
1076 {
1077 /* This is a normal continue. */
1078 step = 1;
1079 }
1080 else
1081 {
1082 /* This arch supports soft single step. */
1083 if (thread_has_single_step_breakpoints_set (inferior_thread ()))
1084 {
1085 /* This is a soft single step. */
1086 record_full_resume_step = 1;
1087 }
1088 else
1089 step = !insert_single_step_breakpoints (gdbarch);
1090 }
1091 }
1092
1093 /* Make sure the target beneath reports all signals. */
1094 target_pass_signals ({});
1095
1096 this->beneath ()->resume (ptid, step, signal);
1097 }
1098
1099 /* We are about to start executing the inferior (or simulate it),
1100 let's register it with the event loop. */
1101 if (target_can_async_p ())
1102 target_async (1);
1103 }
1104
1105 static int record_full_get_sig = 0;
1106
1107 /* SIGINT signal handler, registered by "wait" method. */
1108
1109 static void
1110 record_full_sig_handler (int signo)
1111 {
1112 if (record_debug)
1113 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n");
1114
1115 /* It will break the running inferior in replay mode. */
1116 record_full_resume_step = 1;
1117
1118 /* It will let record_full_wait set inferior status to get the signal
1119 SIGINT. */
1120 record_full_get_sig = 1;
1121 }
1122
1123 /* "wait" target method for process record target.
1124
1125 In record mode, the target is always run in singlestep mode
1126 (even when gdb says to continue). The wait method intercepts
1127 the stop events and determines which ones are to be passed on to
1128 gdb. Most stop events are just singlestep events that gdb is not
1129 to know about, so the wait method just records them and keeps
1130 singlestepping.
1131
1132 In replay mode, this function emulates the recorded execution log,
1133 one instruction at a time (forward or backward), and determines
1134 where to stop. */
1135
1136 static ptid_t
1137 record_full_wait_1 (struct target_ops *ops,
1138 ptid_t ptid, struct target_waitstatus *status,
1139 target_wait_flags options)
1140 {
1141 scoped_restore restore_operation_disable
1142 = record_full_gdb_operation_disable_set ();
1143
1144 if (record_debug)
1145 fprintf_unfiltered (gdb_stdlog,
1146 "Process record: record_full_wait "
1147 "record_full_resume_step = %d, "
1148 "record_full_resumed = %d, direction=%s\n",
1149 record_full_resume_step, record_full_resumed,
1150 record_full_execution_dir == EXEC_FORWARD
1151 ? "forward" : "reverse");
1152
1153 if (!record_full_resumed)
1154 {
1155 gdb_assert ((options & TARGET_WNOHANG) != 0);
1156
1157 /* No interesting event. */
1158 status->set_ignore ();
1159 return minus_one_ptid;
1160 }
1161
1162 record_full_get_sig = 0;
1163 signal (SIGINT, record_full_sig_handler);
1164
1165 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1166
1167 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1168 {
1169 if (record_full_resume_step)
1170 {
1171 /* This is a single step. */
1172 return ops->beneath ()->wait (ptid, status, options);
1173 }
1174 else
1175 {
1176 /* This is not a single step. */
1177 ptid_t ret;
1178 CORE_ADDR tmp_pc;
1179 struct gdbarch *gdbarch
1180 = target_thread_architecture (record_full_resume_ptid);
1181
1182 while (1)
1183 {
1184 ret = ops->beneath ()->wait (ptid, status, options);
1185 if (status->kind () == TARGET_WAITKIND_IGNORE)
1186 {
1187 if (record_debug)
1188 fprintf_unfiltered (gdb_stdlog,
1189 "Process record: record_full_wait "
1190 "target beneath not done yet\n");
1191 return ret;
1192 }
1193
1194 for (thread_info *tp : all_non_exited_threads ())
1195 delete_single_step_breakpoints (tp);
1196
1197 if (record_full_resume_step)
1198 return ret;
1199
1200 /* Is this a SIGTRAP? */
1201 if (status->kind () == TARGET_WAITKIND_STOPPED
1202 && status->sig () == GDB_SIGNAL_TRAP)
1203 {
1204 struct regcache *regcache;
1205 enum target_stop_reason *stop_reason_p
1206 = &record_full_stop_reason;
1207
1208 /* Yes -- this is likely our single-step finishing,
1209 but check if there's any reason the core would be
1210 interested in the event. */
1211
1212 registers_changed ();
1213 switch_to_thread (current_inferior ()->process_target (),
1214 ret);
1215 regcache = get_current_regcache ();
1216 tmp_pc = regcache_read_pc (regcache);
1217 const struct address_space *aspace = regcache->aspace ();
1218
1219 if (target_stopped_by_watchpoint ())
1220 {
1221 /* Always interested in watchpoints. */
1222 }
1223 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1224 stop_reason_p))
1225 {
1226 /* There is a breakpoint here. Let the core
1227 handle it. */
1228 }
1229 else
1230 {
1231 /* This is a single-step trap. Record the
1232 insn and issue another step.
1233 FIXME: this part can be a random SIGTRAP too.
1234 But GDB cannot handle it. */
1235 int step = 1;
1236
1237 if (!record_full_message_wrapper_safe (regcache,
1238 GDB_SIGNAL_0))
1239 {
1240 status->set_stopped (GDB_SIGNAL_0);
1241 break;
1242 }
1243
1244 process_stratum_target *proc_target
1245 = current_inferior ()->process_target ();
1246
1247 if (gdbarch_software_single_step_p (gdbarch))
1248 {
1249 /* Try to insert the software single step breakpoint.
1250 If insert success, set step to 0. */
1251 set_executing (proc_target, inferior_ptid, false);
1252 SCOPE_EXIT
1253 {
1254 set_executing (proc_target, inferior_ptid, true);
1255 };
1256
1257 reinit_frame_cache ();
1258 step = !insert_single_step_breakpoints (gdbarch);
1259 }
1260
1261 if (record_debug)
1262 fprintf_unfiltered (gdb_stdlog,
1263 "Process record: record_full_wait "
1264 "issuing one more step in the "
1265 "target beneath\n");
1266 ops->beneath ()->resume (ptid, step, GDB_SIGNAL_0);
1267 proc_target->commit_resumed_state = true;
1268 proc_target->commit_resumed ();
1269 proc_target->commit_resumed_state = false;
1270 continue;
1271 }
1272 }
1273
1274 /* The inferior is broken by a breakpoint or a signal. */
1275 break;
1276 }
1277
1278 return ret;
1279 }
1280 }
1281 else
1282 {
1283 switch_to_thread (current_inferior ()->process_target (),
1284 record_full_resume_ptid);
1285 struct regcache *regcache = get_current_regcache ();
1286 struct gdbarch *gdbarch = regcache->arch ();
1287 const struct address_space *aspace = regcache->aspace ();
1288 int continue_flag = 1;
1289 int first_record_full_end = 1;
1290
1291 try
1292 {
1293 CORE_ADDR tmp_pc;
1294
1295 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1296 status->set_stopped (GDB_SIGNAL_0);
1297
1298 /* Check breakpoint when forward execute. */
1299 if (execution_direction == EXEC_FORWARD)
1300 {
1301 tmp_pc = regcache_read_pc (regcache);
1302 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1303 &record_full_stop_reason))
1304 {
1305 if (record_debug)
1306 fprintf_unfiltered (gdb_stdlog,
1307 "Process record: break at %s.\n",
1308 paddress (gdbarch, tmp_pc));
1309 goto replay_out;
1310 }
1311 }
1312
1313 /* If GDB is in terminal_inferior mode, it will not get the
1314 signal. And in GDB replay mode, GDB doesn't need to be
1315 in terminal_inferior mode, because inferior will not
1316 executed. Then set it to terminal_ours to make GDB get
1317 the signal. */
1318 target_terminal::ours ();
1319
1320 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1321 instruction. */
1322 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1323 record_full_list = record_full_list->next;
1324
1325 /* Loop over the record_full_list, looking for the next place to
1326 stop. */
1327 do
1328 {
1329 /* Check for beginning and end of log. */
1330 if (execution_direction == EXEC_REVERSE
1331 && record_full_list == &record_full_first)
1332 {
1333 /* Hit beginning of record log in reverse. */
1334 status->set_no_history ();
1335 break;
1336 }
1337 if (execution_direction != EXEC_REVERSE
1338 && !record_full_list->next)
1339 {
1340 /* Hit end of record log going forward. */
1341 status->set_no_history ();
1342 break;
1343 }
1344
1345 record_full_exec_insn (regcache, gdbarch, record_full_list);
1346
1347 if (record_full_list->type == record_full_end)
1348 {
1349 if (record_debug > 1)
1350 fprintf_unfiltered
1351 (gdb_stdlog,
1352 "Process record: record_full_end %s to "
1353 "inferior.\n",
1354 host_address_to_string (record_full_list));
1355
1356 if (first_record_full_end
1357 && execution_direction == EXEC_REVERSE)
1358 {
1359 /* When reverse execute, the first
1360 record_full_end is the part of current
1361 instruction. */
1362 first_record_full_end = 0;
1363 }
1364 else
1365 {
1366 /* In EXEC_REVERSE mode, this is the
1367 record_full_end of prev instruction. In
1368 EXEC_FORWARD mode, this is the
1369 record_full_end of current instruction. */
1370 /* step */
1371 if (record_full_resume_step)
1372 {
1373 if (record_debug > 1)
1374 fprintf_unfiltered (gdb_stdlog,
1375 "Process record: step.\n");
1376 continue_flag = 0;
1377 }
1378
1379 /* check breakpoint */
1380 tmp_pc = regcache_read_pc (regcache);
1381 if (record_check_stopped_by_breakpoint
1382 (aspace, tmp_pc, &record_full_stop_reason))
1383 {
1384 if (record_debug)
1385 fprintf_unfiltered (gdb_stdlog,
1386 "Process record: break "
1387 "at %s.\n",
1388 paddress (gdbarch, tmp_pc));
1389
1390 continue_flag = 0;
1391 }
1392
1393 if (record_full_stop_reason
1394 == TARGET_STOPPED_BY_WATCHPOINT)
1395 {
1396 if (record_debug)
1397 fprintf_unfiltered (gdb_stdlog,
1398 "Process record: hit hw "
1399 "watchpoint.\n");
1400 continue_flag = 0;
1401 }
1402 /* Check target signal */
1403 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1404 /* FIXME: better way to check */
1405 continue_flag = 0;
1406 }
1407 }
1408
1409 if (continue_flag)
1410 {
1411 if (execution_direction == EXEC_REVERSE)
1412 {
1413 if (record_full_list->prev)
1414 record_full_list = record_full_list->prev;
1415 }
1416 else
1417 {
1418 if (record_full_list->next)
1419 record_full_list = record_full_list->next;
1420 }
1421 }
1422 }
1423 while (continue_flag);
1424
1425 replay_out:
1426 if (status->kind () == TARGET_WAITKIND_STOPPED)
1427 {
1428 if (record_full_get_sig)
1429 status->set_stopped (GDB_SIGNAL_INT);
1430 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1431 /* FIXME: better way to check */
1432 status->set_stopped (record_full_list->u.end.sigval);
1433 else
1434 status->set_stopped (GDB_SIGNAL_TRAP);
1435 }
1436 }
1437 catch (const gdb_exception &ex)
1438 {
1439 if (execution_direction == EXEC_REVERSE)
1440 {
1441 if (record_full_list->next)
1442 record_full_list = record_full_list->next;
1443 }
1444 else
1445 record_full_list = record_full_list->prev;
1446
1447 throw;
1448 }
1449 }
1450
1451 signal (SIGINT, handle_sigint);
1452
1453 return inferior_ptid;
1454 }
1455
1456 ptid_t
1457 record_full_base_target::wait (ptid_t ptid, struct target_waitstatus *status,
1458 target_wait_flags options)
1459 {
1460 ptid_t return_ptid;
1461
1462 clear_async_event_handler (record_full_async_inferior_event_token);
1463
1464 return_ptid = record_full_wait_1 (this, ptid, status, options);
1465 if (status->kind () != TARGET_WAITKIND_IGNORE)
1466 {
1467 /* We're reporting a stop. Make sure any spurious
1468 target_wait(WNOHANG) doesn't advance the target until the
1469 core wants us resumed again. */
1470 record_full_resumed = 0;
1471 }
1472 return return_ptid;
1473 }
1474
1475 bool
1476 record_full_base_target::stopped_by_watchpoint ()
1477 {
1478 if (RECORD_FULL_IS_REPLAY)
1479 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1480 else
1481 return beneath ()->stopped_by_watchpoint ();
1482 }
1483
1484 bool
1485 record_full_base_target::stopped_data_address (CORE_ADDR *addr_p)
1486 {
1487 if (RECORD_FULL_IS_REPLAY)
1488 return false;
1489 else
1490 return this->beneath ()->stopped_data_address (addr_p);
1491 }
1492
1493 /* The stopped_by_sw_breakpoint method of target record-full. */
1494
1495 bool
1496 record_full_base_target::stopped_by_sw_breakpoint ()
1497 {
1498 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
1499 }
1500
1501 /* The supports_stopped_by_sw_breakpoint method of target
1502 record-full. */
1503
1504 bool
1505 record_full_base_target::supports_stopped_by_sw_breakpoint ()
1506 {
1507 return true;
1508 }
1509
1510 /* The stopped_by_hw_breakpoint method of target record-full. */
1511
1512 bool
1513 record_full_base_target::stopped_by_hw_breakpoint ()
1514 {
1515 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
1516 }
1517
1518 /* The supports_stopped_by_sw_breakpoint method of target
1519 record-full. */
1520
1521 bool
1522 record_full_base_target::supports_stopped_by_hw_breakpoint ()
1523 {
1524 return true;
1525 }
1526
1527 /* Record registers change (by user or by GDB) to list as an instruction. */
1528
1529 static void
1530 record_full_registers_change (struct regcache *regcache, int regnum)
1531 {
1532 /* Check record_full_insn_num. */
1533 record_full_check_insn_num ();
1534
1535 record_full_arch_list_head = NULL;
1536 record_full_arch_list_tail = NULL;
1537
1538 if (regnum < 0)
1539 {
1540 int i;
1541
1542 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
1543 {
1544 if (record_full_arch_list_add_reg (regcache, i))
1545 {
1546 record_full_list_release (record_full_arch_list_tail);
1547 error (_("Process record: failed to record execution log."));
1548 }
1549 }
1550 }
1551 else
1552 {
1553 if (record_full_arch_list_add_reg (regcache, regnum))
1554 {
1555 record_full_list_release (record_full_arch_list_tail);
1556 error (_("Process record: failed to record execution log."));
1557 }
1558 }
1559 if (record_full_arch_list_add_end ())
1560 {
1561 record_full_list_release (record_full_arch_list_tail);
1562 error (_("Process record: failed to record execution log."));
1563 }
1564 record_full_list->next = record_full_arch_list_head;
1565 record_full_arch_list_head->prev = record_full_list;
1566 record_full_list = record_full_arch_list_tail;
1567
1568 if (record_full_insn_num == record_full_insn_max_num)
1569 record_full_list_release_first ();
1570 else
1571 record_full_insn_num++;
1572 }
1573
1574 /* "store_registers" method for process record target. */
1575
1576 void
1577 record_full_target::store_registers (struct regcache *regcache, int regno)
1578 {
1579 if (!record_full_gdb_operation_disable)
1580 {
1581 if (RECORD_FULL_IS_REPLAY)
1582 {
1583 int n;
1584
1585 /* Let user choose if he wants to write register or not. */
1586 if (regno < 0)
1587 n =
1588 query (_("Because GDB is in replay mode, changing the "
1589 "value of a register will make the execution "
1590 "log unusable from this point onward. "
1591 "Change all registers?"));
1592 else
1593 n =
1594 query (_("Because GDB is in replay mode, changing the value "
1595 "of a register will make the execution log unusable "
1596 "from this point onward. Change register %s?"),
1597 gdbarch_register_name (regcache->arch (),
1598 regno));
1599
1600 if (!n)
1601 {
1602 /* Invalidate the value of regcache that was set in function
1603 "regcache_raw_write". */
1604 if (regno < 0)
1605 {
1606 int i;
1607
1608 for (i = 0;
1609 i < gdbarch_num_regs (regcache->arch ());
1610 i++)
1611 regcache->invalidate (i);
1612 }
1613 else
1614 regcache->invalidate (regno);
1615
1616 error (_("Process record canceled the operation."));
1617 }
1618
1619 /* Destroy the record from here forward. */
1620 record_full_list_release_following (record_full_list);
1621 }
1622
1623 record_full_registers_change (regcache, regno);
1624 }
1625 this->beneath ()->store_registers (regcache, regno);
1626 }
1627
1628 /* "xfer_partial" method. Behavior is conditional on
1629 RECORD_FULL_IS_REPLAY.
1630 In replay mode, we cannot write memory unles we are willing to
1631 invalidate the record/replay log from this point forward. */
1632
1633 enum target_xfer_status
1634 record_full_target::xfer_partial (enum target_object object,
1635 const char *annex, gdb_byte *readbuf,
1636 const gdb_byte *writebuf, ULONGEST offset,
1637 ULONGEST len, ULONGEST *xfered_len)
1638 {
1639 if (!record_full_gdb_operation_disable
1640 && (object == TARGET_OBJECT_MEMORY
1641 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1642 {
1643 if (RECORD_FULL_IS_REPLAY)
1644 {
1645 /* Let user choose if he wants to write memory or not. */
1646 if (!query (_("Because GDB is in replay mode, writing to memory "
1647 "will make the execution log unusable from this "
1648 "point onward. Write memory at address %s?"),
1649 paddress (target_gdbarch (), offset)))
1650 error (_("Process record canceled the operation."));
1651
1652 /* Destroy the record from here forward. */
1653 record_full_list_release_following (record_full_list);
1654 }
1655
1656 /* Check record_full_insn_num */
1657 record_full_check_insn_num ();
1658
1659 /* Record registers change to list as an instruction. */
1660 record_full_arch_list_head = NULL;
1661 record_full_arch_list_tail = NULL;
1662 if (record_full_arch_list_add_mem (offset, len))
1663 {
1664 record_full_list_release (record_full_arch_list_tail);
1665 if (record_debug)
1666 fprintf_unfiltered (gdb_stdlog,
1667 "Process record: failed to record "
1668 "execution log.");
1669 return TARGET_XFER_E_IO;
1670 }
1671 if (record_full_arch_list_add_end ())
1672 {
1673 record_full_list_release (record_full_arch_list_tail);
1674 if (record_debug)
1675 fprintf_unfiltered (gdb_stdlog,
1676 "Process record: failed to record "
1677 "execution log.");
1678 return TARGET_XFER_E_IO;
1679 }
1680 record_full_list->next = record_full_arch_list_head;
1681 record_full_arch_list_head->prev = record_full_list;
1682 record_full_list = record_full_arch_list_tail;
1683
1684 if (record_full_insn_num == record_full_insn_max_num)
1685 record_full_list_release_first ();
1686 else
1687 record_full_insn_num++;
1688 }
1689
1690 return this->beneath ()->xfer_partial (object, annex, readbuf, writebuf,
1691 offset, len, xfered_len);
1692 }
1693
1694 /* This structure represents a breakpoint inserted while the record
1695 target is active. We use this to know when to install/remove
1696 breakpoints in/from the target beneath. For example, a breakpoint
1697 may be inserted while recording, but removed when not replaying nor
1698 recording. In that case, the breakpoint had not been inserted on
1699 the target beneath, so we should not try to remove it there. */
1700
1701 struct record_full_breakpoint
1702 {
1703 record_full_breakpoint (struct address_space *address_space_,
1704 CORE_ADDR addr_,
1705 bool in_target_beneath_)
1706 : address_space (address_space_),
1707 addr (addr_),
1708 in_target_beneath (in_target_beneath_)
1709 {
1710 }
1711
1712 /* The address and address space the breakpoint was set at. */
1713 struct address_space *address_space;
1714 CORE_ADDR addr;
1715
1716 /* True when the breakpoint has been also installed in the target
1717 beneath. This will be false for breakpoints set during replay or
1718 when recording. */
1719 bool in_target_beneath;
1720 };
1721
1722 /* The list of breakpoints inserted while the record target is
1723 active. */
1724 static std::vector<record_full_breakpoint> record_full_breakpoints;
1725
1726 /* Sync existing breakpoints to record_full_breakpoints. */
1727
1728 static void
1729 record_full_init_record_breakpoints (void)
1730 {
1731 record_full_breakpoints.clear ();
1732
1733 for (bp_location *loc : all_bp_locations ())
1734 {
1735 if (loc->loc_type != bp_loc_software_breakpoint)
1736 continue;
1737
1738 if (loc->inserted)
1739 record_full_breakpoints.emplace_back
1740 (loc->target_info.placed_address_space,
1741 loc->target_info.placed_address, 1);
1742 }
1743 }
1744
1745 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1746 insert or remove breakpoints in the real target when replaying, nor
1747 when recording. */
1748
1749 int
1750 record_full_target::insert_breakpoint (struct gdbarch *gdbarch,
1751 struct bp_target_info *bp_tgt)
1752 {
1753 bool in_target_beneath = false;
1754
1755 if (!RECORD_FULL_IS_REPLAY)
1756 {
1757 /* When recording, we currently always single-step, so we don't
1758 really need to install regular breakpoints in the inferior.
1759 However, we do have to insert software single-step
1760 breakpoints, in case the target can't hardware step. To keep
1761 things simple, we always insert. */
1762
1763 scoped_restore restore_operation_disable
1764 = record_full_gdb_operation_disable_set ();
1765
1766 int ret = this->beneath ()->insert_breakpoint (gdbarch, bp_tgt);
1767 if (ret != 0)
1768 return ret;
1769
1770 in_target_beneath = true;
1771 }
1772
1773 /* Use the existing entries if found in order to avoid duplication
1774 in record_full_breakpoints. */
1775
1776 for (const record_full_breakpoint &bp : record_full_breakpoints)
1777 {
1778 if (bp.addr == bp_tgt->placed_address
1779 && bp.address_space == bp_tgt->placed_address_space)
1780 {
1781 gdb_assert (bp.in_target_beneath == in_target_beneath);
1782 return 0;
1783 }
1784 }
1785
1786 record_full_breakpoints.emplace_back (bp_tgt->placed_address_space,
1787 bp_tgt->placed_address,
1788 in_target_beneath);
1789 return 0;
1790 }
1791
1792 /* "remove_breakpoint" method for process record target. */
1793
1794 int
1795 record_full_target::remove_breakpoint (struct gdbarch *gdbarch,
1796 struct bp_target_info *bp_tgt,
1797 enum remove_bp_reason reason)
1798 {
1799 for (auto iter = record_full_breakpoints.begin ();
1800 iter != record_full_breakpoints.end ();
1801 ++iter)
1802 {
1803 struct record_full_breakpoint &bp = *iter;
1804
1805 if (bp.addr == bp_tgt->placed_address
1806 && bp.address_space == bp_tgt->placed_address_space)
1807 {
1808 if (bp.in_target_beneath)
1809 {
1810 scoped_restore restore_operation_disable
1811 = record_full_gdb_operation_disable_set ();
1812
1813 int ret = this->beneath ()->remove_breakpoint (gdbarch, bp_tgt,
1814 reason);
1815 if (ret != 0)
1816 return ret;
1817 }
1818
1819 if (reason == REMOVE_BREAKPOINT)
1820 unordered_remove (record_full_breakpoints, iter);
1821 return 0;
1822 }
1823 }
1824
1825 gdb_assert_not_reached ("removing unknown breakpoint");
1826 }
1827
1828 /* "can_execute_reverse" method for process record target. */
1829
1830 bool
1831 record_full_base_target::can_execute_reverse ()
1832 {
1833 return true;
1834 }
1835
1836 /* "get_bookmark" method for process record and prec over core. */
1837
1838 gdb_byte *
1839 record_full_base_target::get_bookmark (const char *args, int from_tty)
1840 {
1841 char *ret = NULL;
1842
1843 /* Return stringified form of instruction count. */
1844 if (record_full_list && record_full_list->type == record_full_end)
1845 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1846
1847 if (record_debug)
1848 {
1849 if (ret)
1850 fprintf_unfiltered (gdb_stdlog,
1851 "record_full_get_bookmark returns %s\n", ret);
1852 else
1853 fprintf_unfiltered (gdb_stdlog,
1854 "record_full_get_bookmark returns NULL\n");
1855 }
1856 return (gdb_byte *) ret;
1857 }
1858
1859 /* "goto_bookmark" method for process record and prec over core. */
1860
1861 void
1862 record_full_base_target::goto_bookmark (const gdb_byte *raw_bookmark,
1863 int from_tty)
1864 {
1865 const char *bookmark = (const char *) raw_bookmark;
1866
1867 if (record_debug)
1868 fprintf_unfiltered (gdb_stdlog,
1869 "record_full_goto_bookmark receives %s\n", bookmark);
1870
1871 std::string name_holder;
1872 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1873 {
1874 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1875 error (_("Unbalanced quotes: %s"), bookmark);
1876
1877 name_holder = std::string (bookmark + 1, strlen (bookmark) - 2);
1878 bookmark = name_holder.c_str ();
1879 }
1880
1881 record_goto (bookmark);
1882 }
1883
1884 enum exec_direction_kind
1885 record_full_base_target::execution_direction ()
1886 {
1887 return record_full_execution_dir;
1888 }
1889
1890 /* The record_method method of target record-full. */
1891
1892 enum record_method
1893 record_full_base_target::record_method (ptid_t ptid)
1894 {
1895 return RECORD_METHOD_FULL;
1896 }
1897
1898 void
1899 record_full_base_target::info_record ()
1900 {
1901 struct record_full_entry *p;
1902
1903 if (RECORD_FULL_IS_REPLAY)
1904 printf_filtered (_("Replay mode:\n"));
1905 else
1906 printf_filtered (_("Record mode:\n"));
1907
1908 /* Find entry for first actual instruction in the log. */
1909 for (p = record_full_first.next;
1910 p != NULL && p->type != record_full_end;
1911 p = p->next)
1912 ;
1913
1914 /* Do we have a log at all? */
1915 if (p != NULL && p->type == record_full_end)
1916 {
1917 /* Display instruction number for first instruction in the log. */
1918 printf_filtered (_("Lowest recorded instruction number is %s.\n"),
1919 pulongest (p->u.end.insn_num));
1920
1921 /* If in replay mode, display where we are in the log. */
1922 if (RECORD_FULL_IS_REPLAY)
1923 printf_filtered (_("Current instruction number is %s.\n"),
1924 pulongest (record_full_list->u.end.insn_num));
1925
1926 /* Display instruction number for last instruction in the log. */
1927 printf_filtered (_("Highest recorded instruction number is %s.\n"),
1928 pulongest (record_full_insn_count));
1929
1930 /* Display log count. */
1931 printf_filtered (_("Log contains %u instructions.\n"),
1932 record_full_insn_num);
1933 }
1934 else
1935 printf_filtered (_("No instructions have been logged.\n"));
1936
1937 /* Display max log size. */
1938 printf_filtered (_("Max logged instructions is %u.\n"),
1939 record_full_insn_max_num);
1940 }
1941
1942 bool
1943 record_full_base_target::supports_delete_record ()
1944 {
1945 return true;
1946 }
1947
1948 /* The "delete_record" target method. */
1949
1950 void
1951 record_full_base_target::delete_record ()
1952 {
1953 record_full_list_release_following (record_full_list);
1954 }
1955
1956 /* The "record_is_replaying" target method. */
1957
1958 bool
1959 record_full_base_target::record_is_replaying (ptid_t ptid)
1960 {
1961 return RECORD_FULL_IS_REPLAY;
1962 }
1963
1964 /* The "record_will_replay" target method. */
1965
1966 bool
1967 record_full_base_target::record_will_replay (ptid_t ptid, int dir)
1968 {
1969 /* We can currently only record when executing forwards. Should we be able
1970 to record when executing backwards on targets that support reverse
1971 execution, this needs to be changed. */
1972
1973 return RECORD_FULL_IS_REPLAY || dir == EXEC_REVERSE;
1974 }
1975
1976 /* Go to a specific entry. */
1977
1978 static void
1979 record_full_goto_entry (struct record_full_entry *p)
1980 {
1981 if (p == NULL)
1982 error (_("Target insn not found."));
1983 else if (p == record_full_list)
1984 error (_("Already at target insn."));
1985 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
1986 {
1987 printf_filtered (_("Go forward to insn number %s\n"),
1988 pulongest (p->u.end.insn_num));
1989 record_full_goto_insn (p, EXEC_FORWARD);
1990 }
1991 else
1992 {
1993 printf_filtered (_("Go backward to insn number %s\n"),
1994 pulongest (p->u.end.insn_num));
1995 record_full_goto_insn (p, EXEC_REVERSE);
1996 }
1997
1998 registers_changed ();
1999 reinit_frame_cache ();
2000 inferior_thread ()->set_stop_pc (regcache_read_pc (get_current_regcache ()));
2001 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2002 }
2003
2004 /* The "goto_record_begin" target method. */
2005
2006 void
2007 record_full_base_target::goto_record_begin ()
2008 {
2009 struct record_full_entry *p = NULL;
2010
2011 for (p = &record_full_first; p != NULL; p = p->next)
2012 if (p->type == record_full_end)
2013 break;
2014
2015 record_full_goto_entry (p);
2016 }
2017
2018 /* The "goto_record_end" target method. */
2019
2020 void
2021 record_full_base_target::goto_record_end ()
2022 {
2023 struct record_full_entry *p = NULL;
2024
2025 for (p = record_full_list; p->next != NULL; p = p->next)
2026 ;
2027 for (; p!= NULL; p = p->prev)
2028 if (p->type == record_full_end)
2029 break;
2030
2031 record_full_goto_entry (p);
2032 }
2033
2034 /* The "goto_record" target method. */
2035
2036 void
2037 record_full_base_target::goto_record (ULONGEST target_insn)
2038 {
2039 struct record_full_entry *p = NULL;
2040
2041 for (p = &record_full_first; p != NULL; p = p->next)
2042 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
2043 break;
2044
2045 record_full_goto_entry (p);
2046 }
2047
2048 /* The "record_stop_replaying" target method. */
2049
2050 void
2051 record_full_base_target::record_stop_replaying ()
2052 {
2053 goto_record_end ();
2054 }
2055
2056 /* "resume" method for prec over corefile. */
2057
2058 void
2059 record_full_core_target::resume (ptid_t ptid, int step,
2060 enum gdb_signal signal)
2061 {
2062 record_full_resume_step = step;
2063 record_full_resumed = 1;
2064 record_full_execution_dir = ::execution_direction;
2065
2066 /* We are about to start executing the inferior (or simulate it),
2067 let's register it with the event loop. */
2068 if (target_can_async_p ())
2069 target_async (1);
2070 }
2071
2072 /* "kill" method for prec over corefile. */
2073
2074 void
2075 record_full_core_target::kill ()
2076 {
2077 if (record_debug)
2078 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n");
2079
2080 current_inferior ()->unpush_target (this);
2081 }
2082
2083 /* "fetch_registers" method for prec over corefile. */
2084
2085 void
2086 record_full_core_target::fetch_registers (struct regcache *regcache,
2087 int regno)
2088 {
2089 if (regno < 0)
2090 {
2091 int num = gdbarch_num_regs (regcache->arch ());
2092 int i;
2093
2094 for (i = 0; i < num; i ++)
2095 regcache->raw_supply (i, *record_full_core_regbuf);
2096 }
2097 else
2098 regcache->raw_supply (regno, *record_full_core_regbuf);
2099 }
2100
2101 /* "prepare_to_store" method for prec over corefile. */
2102
2103 void
2104 record_full_core_target::prepare_to_store (struct regcache *regcache)
2105 {
2106 }
2107
2108 /* "store_registers" method for prec over corefile. */
2109
2110 void
2111 record_full_core_target::store_registers (struct regcache *regcache,
2112 int regno)
2113 {
2114 if (record_full_gdb_operation_disable)
2115 record_full_core_regbuf->raw_supply (regno, *regcache);
2116 else
2117 error (_("You can't do that without a process to debug."));
2118 }
2119
2120 /* "xfer_partial" method for prec over corefile. */
2121
2122 enum target_xfer_status
2123 record_full_core_target::xfer_partial (enum target_object object,
2124 const char *annex, gdb_byte *readbuf,
2125 const gdb_byte *writebuf, ULONGEST offset,
2126 ULONGEST len, ULONGEST *xfered_len)
2127 {
2128 if (object == TARGET_OBJECT_MEMORY)
2129 {
2130 if (record_full_gdb_operation_disable || !writebuf)
2131 {
2132 for (target_section &p : record_full_core_sections)
2133 {
2134 if (offset >= p.addr)
2135 {
2136 struct record_full_core_buf_entry *entry;
2137 ULONGEST sec_offset;
2138
2139 if (offset >= p.endaddr)
2140 continue;
2141
2142 if (offset + len > p.endaddr)
2143 len = p.endaddr - offset;
2144
2145 sec_offset = offset - p.addr;
2146
2147 /* Read readbuf or write writebuf p, offset, len. */
2148 /* Check flags. */
2149 if (p.the_bfd_section->flags & SEC_CONSTRUCTOR
2150 || (p.the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2151 {
2152 if (readbuf)
2153 memset (readbuf, 0, len);
2154
2155 *xfered_len = len;
2156 return TARGET_XFER_OK;
2157 }
2158 /* Get record_full_core_buf_entry. */
2159 for (entry = record_full_core_buf_list; entry;
2160 entry = entry->prev)
2161 if (entry->p == &p)
2162 break;
2163 if (writebuf)
2164 {
2165 if (!entry)
2166 {
2167 /* Add a new entry. */
2168 entry = XNEW (struct record_full_core_buf_entry);
2169 entry->p = &p;
2170 if (!bfd_malloc_and_get_section
2171 (p.the_bfd_section->owner,
2172 p.the_bfd_section,
2173 &entry->buf))
2174 {
2175 xfree (entry);
2176 return TARGET_XFER_EOF;
2177 }
2178 entry->prev = record_full_core_buf_list;
2179 record_full_core_buf_list = entry;
2180 }
2181
2182 memcpy (entry->buf + sec_offset, writebuf,
2183 (size_t) len);
2184 }
2185 else
2186 {
2187 if (!entry)
2188 return this->beneath ()->xfer_partial (object, annex,
2189 readbuf, writebuf,
2190 offset, len,
2191 xfered_len);
2192
2193 memcpy (readbuf, entry->buf + sec_offset,
2194 (size_t) len);
2195 }
2196
2197 *xfered_len = len;
2198 return TARGET_XFER_OK;
2199 }
2200 }
2201
2202 return TARGET_XFER_E_IO;
2203 }
2204 else
2205 error (_("You can't do that without a process to debug."));
2206 }
2207
2208 return this->beneath ()->xfer_partial (object, annex,
2209 readbuf, writebuf, offset, len,
2210 xfered_len);
2211 }
2212
2213 /* "insert_breakpoint" method for prec over corefile. */
2214
2215 int
2216 record_full_core_target::insert_breakpoint (struct gdbarch *gdbarch,
2217 struct bp_target_info *bp_tgt)
2218 {
2219 return 0;
2220 }
2221
2222 /* "remove_breakpoint" method for prec over corefile. */
2223
2224 int
2225 record_full_core_target::remove_breakpoint (struct gdbarch *gdbarch,
2226 struct bp_target_info *bp_tgt,
2227 enum remove_bp_reason reason)
2228 {
2229 return 0;
2230 }
2231
2232 /* "has_execution" method for prec over corefile. */
2233
2234 bool
2235 record_full_core_target::has_execution (inferior *inf)
2236 {
2237 return true;
2238 }
2239
2240 /* Record log save-file format
2241 Version 1 (never released)
2242
2243 Header:
2244 4 bytes: magic number htonl(0x20090829).
2245 NOTE: be sure to change whenever this file format changes!
2246
2247 Records:
2248 record_full_end:
2249 1 byte: record type (record_full_end, see enum record_full_type).
2250 record_full_reg:
2251 1 byte: record type (record_full_reg, see enum record_full_type).
2252 8 bytes: register id (network byte order).
2253 MAX_REGISTER_SIZE bytes: register value.
2254 record_full_mem:
2255 1 byte: record type (record_full_mem, see enum record_full_type).
2256 8 bytes: memory length (network byte order).
2257 8 bytes: memory address (network byte order).
2258 n bytes: memory value (n == memory length).
2259
2260 Version 2
2261 4 bytes: magic number netorder32(0x20091016).
2262 NOTE: be sure to change whenever this file format changes!
2263
2264 Records:
2265 record_full_end:
2266 1 byte: record type (record_full_end, see enum record_full_type).
2267 4 bytes: signal
2268 4 bytes: instruction count
2269 record_full_reg:
2270 1 byte: record type (record_full_reg, see enum record_full_type).
2271 4 bytes: register id (network byte order).
2272 n bytes: register value (n == actual register size).
2273 (eg. 4 bytes for x86 general registers).
2274 record_full_mem:
2275 1 byte: record type (record_full_mem, see enum record_full_type).
2276 4 bytes: memory length (network byte order).
2277 8 bytes: memory address (network byte order).
2278 n bytes: memory value (n == memory length).
2279
2280 */
2281
2282 /* bfdcore_read -- read bytes from a core file section. */
2283
2284 static inline void
2285 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2286 {
2287 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2288
2289 if (ret)
2290 *offset += len;
2291 else
2292 error (_("Failed to read %d bytes from core file %s ('%s')."),
2293 len, bfd_get_filename (obfd),
2294 bfd_errmsg (bfd_get_error ()));
2295 }
2296
2297 static inline uint64_t
2298 netorder64 (uint64_t input)
2299 {
2300 uint64_t ret;
2301
2302 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2303 BFD_ENDIAN_BIG, input);
2304 return ret;
2305 }
2306
2307 static inline uint32_t
2308 netorder32 (uint32_t input)
2309 {
2310 uint32_t ret;
2311
2312 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2313 BFD_ENDIAN_BIG, input);
2314 return ret;
2315 }
2316
2317 /* Restore the execution log from a core_bfd file. */
2318 static void
2319 record_full_restore (void)
2320 {
2321 uint32_t magic;
2322 struct record_full_entry *rec;
2323 asection *osec;
2324 uint32_t osec_size;
2325 int bfd_offset = 0;
2326 struct regcache *regcache;
2327
2328 /* We restore the execution log from the open core bfd,
2329 if there is one. */
2330 if (core_bfd == NULL)
2331 return;
2332
2333 /* "record_full_restore" can only be called when record list is empty. */
2334 gdb_assert (record_full_first.next == NULL);
2335
2336 if (record_debug)
2337 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n");
2338
2339 /* Now need to find our special note section. */
2340 osec = bfd_get_section_by_name (core_bfd, "null0");
2341 if (record_debug)
2342 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n",
2343 osec ? "succeeded" : "failed");
2344 if (osec == NULL)
2345 return;
2346 osec_size = bfd_section_size (osec);
2347 if (record_debug)
2348 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (osec));
2349
2350 /* Check the magic code. */
2351 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2352 if (magic != RECORD_FULL_FILE_MAGIC)
2353 error (_("Version mis-match or file format error in core file %s."),
2354 bfd_get_filename (core_bfd));
2355 if (record_debug)
2356 fprintf_unfiltered (gdb_stdlog,
2357 " Reading 4-byte magic cookie "
2358 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2359 phex_nz (netorder32 (magic), 4));
2360
2361 /* Restore the entries in recfd into record_full_arch_list_head and
2362 record_full_arch_list_tail. */
2363 record_full_arch_list_head = NULL;
2364 record_full_arch_list_tail = NULL;
2365 record_full_insn_num = 0;
2366
2367 try
2368 {
2369 regcache = get_current_regcache ();
2370
2371 while (1)
2372 {
2373 uint8_t rectype;
2374 uint32_t regnum, len, signal, count;
2375 uint64_t addr;
2376
2377 /* We are finished when offset reaches osec_size. */
2378 if (bfd_offset >= osec_size)
2379 break;
2380 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2381
2382 switch (rectype)
2383 {
2384 case record_full_reg: /* reg */
2385 /* Get register number to regnum. */
2386 bfdcore_read (core_bfd, osec, &regnum,
2387 sizeof (regnum), &bfd_offset);
2388 regnum = netorder32 (regnum);
2389
2390 rec = record_full_reg_alloc (regcache, regnum);
2391
2392 /* Get val. */
2393 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2394 rec->u.reg.len, &bfd_offset);
2395
2396 if (record_debug)
2397 fprintf_unfiltered (gdb_stdlog,
2398 " Reading register %d (1 "
2399 "plus %lu plus %d bytes)\n",
2400 rec->u.reg.num,
2401 (unsigned long) sizeof (regnum),
2402 rec->u.reg.len);
2403 break;
2404
2405 case record_full_mem: /* mem */
2406 /* Get len. */
2407 bfdcore_read (core_bfd, osec, &len,
2408 sizeof (len), &bfd_offset);
2409 len = netorder32 (len);
2410
2411 /* Get addr. */
2412 bfdcore_read (core_bfd, osec, &addr,
2413 sizeof (addr), &bfd_offset);
2414 addr = netorder64 (addr);
2415
2416 rec = record_full_mem_alloc (addr, len);
2417
2418 /* Get val. */
2419 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2420 rec->u.mem.len, &bfd_offset);
2421
2422 if (record_debug)
2423 fprintf_unfiltered (gdb_stdlog,
2424 " Reading memory %s (1 plus "
2425 "%lu plus %lu plus %d bytes)\n",
2426 paddress (get_current_arch (),
2427 rec->u.mem.addr),
2428 (unsigned long) sizeof (addr),
2429 (unsigned long) sizeof (len),
2430 rec->u.mem.len);
2431 break;
2432
2433 case record_full_end: /* end */
2434 rec = record_full_end_alloc ();
2435 record_full_insn_num ++;
2436
2437 /* Get signal value. */
2438 bfdcore_read (core_bfd, osec, &signal,
2439 sizeof (signal), &bfd_offset);
2440 signal = netorder32 (signal);
2441 rec->u.end.sigval = (enum gdb_signal) signal;
2442
2443 /* Get insn count. */
2444 bfdcore_read (core_bfd, osec, &count,
2445 sizeof (count), &bfd_offset);
2446 count = netorder32 (count);
2447 rec->u.end.insn_num = count;
2448 record_full_insn_count = count + 1;
2449 if (record_debug)
2450 fprintf_unfiltered (gdb_stdlog,
2451 " Reading record_full_end (1 + "
2452 "%lu + %lu bytes), offset == %s\n",
2453 (unsigned long) sizeof (signal),
2454 (unsigned long) sizeof (count),
2455 paddress (get_current_arch (),
2456 bfd_offset));
2457 break;
2458
2459 default:
2460 error (_("Bad entry type in core file %s."),
2461 bfd_get_filename (core_bfd));
2462 break;
2463 }
2464
2465 /* Add rec to record arch list. */
2466 record_full_arch_list_add (rec);
2467 }
2468 }
2469 catch (const gdb_exception &ex)
2470 {
2471 record_full_list_release (record_full_arch_list_tail);
2472 throw;
2473 }
2474
2475 /* Add record_full_arch_list_head to the end of record list. */
2476 record_full_first.next = record_full_arch_list_head;
2477 record_full_arch_list_head->prev = &record_full_first;
2478 record_full_arch_list_tail->next = NULL;
2479 record_full_list = &record_full_first;
2480
2481 /* Update record_full_insn_max_num. */
2482 if (record_full_insn_num > record_full_insn_max_num)
2483 {
2484 record_full_insn_max_num = record_full_insn_num;
2485 warning (_("Auto increase record/replay buffer limit to %u."),
2486 record_full_insn_max_num);
2487 }
2488
2489 /* Succeeded. */
2490 printf_filtered (_("Restored records from core file %s.\n"),
2491 bfd_get_filename (core_bfd));
2492
2493 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2494 }
2495
2496 /* bfdcore_write -- write bytes into a core file section. */
2497
2498 static inline void
2499 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2500 {
2501 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2502
2503 if (ret)
2504 *offset += len;
2505 else
2506 error (_("Failed to write %d bytes to core file %s ('%s')."),
2507 len, bfd_get_filename (obfd),
2508 bfd_errmsg (bfd_get_error ()));
2509 }
2510
2511 /* Restore the execution log from a file. We use a modified elf
2512 corefile format, with an extra section for our data. */
2513
2514 static void
2515 cmd_record_full_restore (const char *args, int from_tty)
2516 {
2517 core_file_command (args, from_tty);
2518 record_full_open (args, from_tty);
2519 }
2520
2521 /* Save the execution log to a file. We use a modified elf corefile
2522 format, with an extra section for our data. */
2523
2524 void
2525 record_full_base_target::save_record (const char *recfilename)
2526 {
2527 struct record_full_entry *cur_record_full_list;
2528 uint32_t magic;
2529 struct regcache *regcache;
2530 struct gdbarch *gdbarch;
2531 int save_size = 0;
2532 asection *osec = NULL;
2533 int bfd_offset = 0;
2534
2535 /* Open the save file. */
2536 if (record_debug)
2537 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n",
2538 recfilename);
2539
2540 /* Open the output file. */
2541 gdb_bfd_ref_ptr obfd (create_gcore_bfd (recfilename));
2542
2543 /* Arrange to remove the output file on failure. */
2544 gdb::unlinker unlink_file (recfilename);
2545
2546 /* Save the current record entry to "cur_record_full_list". */
2547 cur_record_full_list = record_full_list;
2548
2549 /* Get the values of regcache and gdbarch. */
2550 regcache = get_current_regcache ();
2551 gdbarch = regcache->arch ();
2552
2553 /* Disable the GDB operation record. */
2554 scoped_restore restore_operation_disable
2555 = record_full_gdb_operation_disable_set ();
2556
2557 /* Reverse execute to the begin of record list. */
2558 while (1)
2559 {
2560 /* Check for beginning and end of log. */
2561 if (record_full_list == &record_full_first)
2562 break;
2563
2564 record_full_exec_insn (regcache, gdbarch, record_full_list);
2565
2566 if (record_full_list->prev)
2567 record_full_list = record_full_list->prev;
2568 }
2569
2570 /* Compute the size needed for the extra bfd section. */
2571 save_size = 4; /* magic cookie */
2572 for (record_full_list = record_full_first.next; record_full_list;
2573 record_full_list = record_full_list->next)
2574 switch (record_full_list->type)
2575 {
2576 case record_full_end:
2577 save_size += 1 + 4 + 4;
2578 break;
2579 case record_full_reg:
2580 save_size += 1 + 4 + record_full_list->u.reg.len;
2581 break;
2582 case record_full_mem:
2583 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2584 break;
2585 }
2586
2587 /* Make the new bfd section. */
2588 osec = bfd_make_section_anyway_with_flags (obfd.get (), "precord",
2589 SEC_HAS_CONTENTS
2590 | SEC_READONLY);
2591 if (osec == NULL)
2592 error (_("Failed to create 'precord' section for corefile %s: %s"),
2593 recfilename,
2594 bfd_errmsg (bfd_get_error ()));
2595 bfd_set_section_size (osec, save_size);
2596 bfd_set_section_vma (osec, 0);
2597 bfd_set_section_alignment (osec, 0);
2598
2599 /* Save corefile state. */
2600 write_gcore_file (obfd.get ());
2601
2602 /* Write out the record log. */
2603 /* Write the magic code. */
2604 magic = RECORD_FULL_FILE_MAGIC;
2605 if (record_debug)
2606 fprintf_unfiltered (gdb_stdlog,
2607 " Writing 4-byte magic cookie "
2608 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2609 phex_nz (magic, 4));
2610 bfdcore_write (obfd.get (), osec, &magic, sizeof (magic), &bfd_offset);
2611
2612 /* Save the entries to recfd and forward execute to the end of
2613 record list. */
2614 record_full_list = &record_full_first;
2615 while (1)
2616 {
2617 /* Save entry. */
2618 if (record_full_list != &record_full_first)
2619 {
2620 uint8_t type;
2621 uint32_t regnum, len, signal, count;
2622 uint64_t addr;
2623
2624 type = record_full_list->type;
2625 bfdcore_write (obfd.get (), osec, &type, sizeof (type), &bfd_offset);
2626
2627 switch (record_full_list->type)
2628 {
2629 case record_full_reg: /* reg */
2630 if (record_debug)
2631 fprintf_unfiltered (gdb_stdlog,
2632 " Writing register %d (1 "
2633 "plus %lu plus %d bytes)\n",
2634 record_full_list->u.reg.num,
2635 (unsigned long) sizeof (regnum),
2636 record_full_list->u.reg.len);
2637
2638 /* Write regnum. */
2639 regnum = netorder32 (record_full_list->u.reg.num);
2640 bfdcore_write (obfd.get (), osec, &regnum,
2641 sizeof (regnum), &bfd_offset);
2642
2643 /* Write regval. */
2644 bfdcore_write (obfd.get (), osec,
2645 record_full_get_loc (record_full_list),
2646 record_full_list->u.reg.len, &bfd_offset);
2647 break;
2648
2649 case record_full_mem: /* mem */
2650 if (record_debug)
2651 fprintf_unfiltered (gdb_stdlog,
2652 " Writing memory %s (1 plus "
2653 "%lu plus %lu plus %d bytes)\n",
2654 paddress (gdbarch,
2655 record_full_list->u.mem.addr),
2656 (unsigned long) sizeof (addr),
2657 (unsigned long) sizeof (len),
2658 record_full_list->u.mem.len);
2659
2660 /* Write memlen. */
2661 len = netorder32 (record_full_list->u.mem.len);
2662 bfdcore_write (obfd.get (), osec, &len, sizeof (len),
2663 &bfd_offset);
2664
2665 /* Write memaddr. */
2666 addr = netorder64 (record_full_list->u.mem.addr);
2667 bfdcore_write (obfd.get (), osec, &addr,
2668 sizeof (addr), &bfd_offset);
2669
2670 /* Write memval. */
2671 bfdcore_write (obfd.get (), osec,
2672 record_full_get_loc (record_full_list),
2673 record_full_list->u.mem.len, &bfd_offset);
2674 break;
2675
2676 case record_full_end:
2677 if (record_debug)
2678 fprintf_unfiltered (gdb_stdlog,
2679 " Writing record_full_end (1 + "
2680 "%lu + %lu bytes)\n",
2681 (unsigned long) sizeof (signal),
2682 (unsigned long) sizeof (count));
2683 /* Write signal value. */
2684 signal = netorder32 (record_full_list->u.end.sigval);
2685 bfdcore_write (obfd.get (), osec, &signal,
2686 sizeof (signal), &bfd_offset);
2687
2688 /* Write insn count. */
2689 count = netorder32 (record_full_list->u.end.insn_num);
2690 bfdcore_write (obfd.get (), osec, &count,
2691 sizeof (count), &bfd_offset);
2692 break;
2693 }
2694 }
2695
2696 /* Execute entry. */
2697 record_full_exec_insn (regcache, gdbarch, record_full_list);
2698
2699 if (record_full_list->next)
2700 record_full_list = record_full_list->next;
2701 else
2702 break;
2703 }
2704
2705 /* Reverse execute to cur_record_full_list. */
2706 while (1)
2707 {
2708 /* Check for beginning and end of log. */
2709 if (record_full_list == cur_record_full_list)
2710 break;
2711
2712 record_full_exec_insn (regcache, gdbarch, record_full_list);
2713
2714 if (record_full_list->prev)
2715 record_full_list = record_full_list->prev;
2716 }
2717
2718 unlink_file.keep ();
2719
2720 /* Succeeded. */
2721 printf_filtered (_("Saved core file %s with execution log.\n"),
2722 recfilename);
2723 }
2724
2725 /* record_full_goto_insn -- rewind the record log (forward or backward,
2726 depending on DIR) to the given entry, changing the program state
2727 correspondingly. */
2728
2729 static void
2730 record_full_goto_insn (struct record_full_entry *entry,
2731 enum exec_direction_kind dir)
2732 {
2733 scoped_restore restore_operation_disable
2734 = record_full_gdb_operation_disable_set ();
2735 struct regcache *regcache = get_current_regcache ();
2736 struct gdbarch *gdbarch = regcache->arch ();
2737
2738 /* Assume everything is valid: we will hit the entry,
2739 and we will not hit the end of the recording. */
2740
2741 if (dir == EXEC_FORWARD)
2742 record_full_list = record_full_list->next;
2743
2744 do
2745 {
2746 record_full_exec_insn (regcache, gdbarch, record_full_list);
2747 if (dir == EXEC_REVERSE)
2748 record_full_list = record_full_list->prev;
2749 else
2750 record_full_list = record_full_list->next;
2751 } while (record_full_list != entry);
2752 }
2753
2754 /* Alias for "target record-full". */
2755
2756 static void
2757 cmd_record_full_start (const char *args, int from_tty)
2758 {
2759 execute_command ("target record-full", from_tty);
2760 }
2761
2762 static void
2763 set_record_full_insn_max_num (const char *args, int from_tty,
2764 struct cmd_list_element *c)
2765 {
2766 if (record_full_insn_num > record_full_insn_max_num)
2767 {
2768 /* Count down record_full_insn_num while releasing records from list. */
2769 while (record_full_insn_num > record_full_insn_max_num)
2770 {
2771 record_full_list_release_first ();
2772 record_full_insn_num--;
2773 }
2774 }
2775 }
2776
2777 void _initialize_record_full ();
2778 void
2779 _initialize_record_full ()
2780 {
2781 struct cmd_list_element *c;
2782
2783 /* Init record_full_first. */
2784 record_full_first.prev = NULL;
2785 record_full_first.next = NULL;
2786 record_full_first.type = record_full_end;
2787
2788 add_target (record_full_target_info, record_full_open);
2789 add_deprecated_target_alias (record_full_target_info, "record");
2790 add_target (record_full_core_target_info, record_full_open);
2791
2792 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2793 _("Start full execution recording."), &record_full_cmdlist,
2794 0, &record_cmdlist);
2795
2796 cmd_list_element *record_full_restore_cmd
2797 = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2798 _("Restore the execution log from a file.\n\
2799 Argument is filename. File must be created with 'record save'."),
2800 &record_full_cmdlist);
2801 set_cmd_completer (record_full_restore_cmd, filename_completer);
2802
2803 /* Deprecate the old version without "full" prefix. */
2804 c = add_alias_cmd ("restore", record_full_restore_cmd, class_obscure, 1,
2805 &record_cmdlist);
2806 set_cmd_completer (c, filename_completer);
2807 deprecate_cmd (c, "record full restore");
2808
2809 add_setshow_prefix_cmd ("full", class_support,
2810 _("Set record options."),
2811 _("Show record options."),
2812 &set_record_full_cmdlist,
2813 &show_record_full_cmdlist,
2814 &set_record_cmdlist,
2815 &show_record_cmdlist);
2816
2817 /* Record instructions number limit command. */
2818 set_show_commands set_record_full_stop_at_limit_cmds
2819 = add_setshow_boolean_cmd ("stop-at-limit", no_class,
2820 &record_full_stop_at_limit, _("\
2821 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2822 Show whether record/replay stops when record/replay buffer becomes full."),
2823 _("Default is ON.\n\
2824 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2825 When OFF, if the record/replay buffer becomes full,\n\
2826 delete the oldest recorded instruction to make room for each new one."),
2827 NULL, NULL,
2828 &set_record_full_cmdlist,
2829 &show_record_full_cmdlist);
2830
2831 c = add_alias_cmd ("stop-at-limit",
2832 set_record_full_stop_at_limit_cmds.set, no_class, 1,
2833 &set_record_cmdlist);
2834 deprecate_cmd (c, "set record full stop-at-limit");
2835
2836 c = add_alias_cmd ("stop-at-limit",
2837 set_record_full_stop_at_limit_cmds.show, no_class, 1,
2838 &show_record_cmdlist);
2839 deprecate_cmd (c, "show record full stop-at-limit");
2840
2841 set_show_commands record_full_insn_number_max_cmds
2842 = add_setshow_uinteger_cmd ("insn-number-max", no_class,
2843 &record_full_insn_max_num,
2844 _("Set record/replay buffer limit."),
2845 _("Show record/replay buffer limit."), _("\
2846 Set the maximum number of instructions to be stored in the\n\
2847 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
2848 limit. Default is 200000."),
2849 set_record_full_insn_max_num,
2850 NULL, &set_record_full_cmdlist,
2851 &show_record_full_cmdlist);
2852
2853 c = add_alias_cmd ("insn-number-max", record_full_insn_number_max_cmds.set,
2854 no_class, 1, &set_record_cmdlist);
2855 deprecate_cmd (c, "set record full insn-number-max");
2856
2857 c = add_alias_cmd ("insn-number-max", record_full_insn_number_max_cmds.show,
2858 no_class, 1, &show_record_cmdlist);
2859 deprecate_cmd (c, "show record full insn-number-max");
2860
2861 set_show_commands record_full_memory_query_cmds
2862 = add_setshow_boolean_cmd ("memory-query", no_class,
2863 &record_full_memory_query, _("\
2864 Set whether query if PREC cannot record memory change of next instruction."),
2865 _("\
2866 Show whether query if PREC cannot record memory change of next instruction."),
2867 _("\
2868 Default is OFF.\n\
2869 When ON, query if PREC cannot record memory change of next instruction."),
2870 NULL, NULL,
2871 &set_record_full_cmdlist,
2872 &show_record_full_cmdlist);
2873
2874 c = add_alias_cmd ("memory-query", record_full_memory_query_cmds.set,
2875 no_class, 1, &set_record_cmdlist);
2876 deprecate_cmd (c, "set record full memory-query");
2877
2878 c = add_alias_cmd ("memory-query", record_full_memory_query_cmds.show,
2879 no_class, 1,&show_record_cmdlist);
2880 deprecate_cmd (c, "show record full memory-query");
2881 }