Rename to allow_rust_tests
[binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "inferior.h"
25 #include "event-top.h"
26 #include "completer.h"
27 #include "arch-utils.h"
28 #include "gdbcore.h"
29 #include "exec.h"
30 #include "record.h"
31 #include "record-full.h"
32 #include "elf-bfd.h"
33 #include "gcore.h"
34 #include "gdbsupport/event-loop.h"
35 #include "inf-loop.h"
36 #include "gdb_bfd.h"
37 #include "observable.h"
38 #include "infrun.h"
39 #include "gdbsupport/gdb_unlinker.h"
40 #include "gdbsupport/byte-vector.h"
41 #include "async-event.h"
42 #include "valprint.h"
43
44 #include <signal.h>
45
46 /* This module implements "target record-full", also known as "process
47 record and replay". This target sits on top of a "normal" target
48 (a target that "has execution"), and provides a record and replay
49 functionality, including reverse debugging.
50
51 Target record has two modes: recording, and replaying.
52
53 In record mode, we intercept the resume and wait methods.
54 Whenever gdb resumes the target, we run the target in single step
55 mode, and we build up an execution log in which, for each executed
56 instruction, we record all changes in memory and register state.
57 This is invisible to the user, to whom it just looks like an
58 ordinary debugging session (except for performance degradation).
59
60 In replay mode, instead of actually letting the inferior run as a
61 process, we simulate its execution by playing back the recorded
62 execution log. For each instruction in the log, we simulate the
63 instruction's side effects by duplicating the changes that it would
64 have made on memory and registers. */
65
66 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
67
68 #define RECORD_FULL_IS_REPLAY \
69 (record_full_list->next || ::execution_direction == EXEC_REVERSE)
70
71 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
72
73 /* These are the core structs of the process record functionality.
74
75 A record_full_entry is a record of the value change of a register
76 ("record_full_reg") or a part of memory ("record_full_mem"). And each
77 instruction must have a struct record_full_entry ("record_full_end")
78 that indicates that this is the last struct record_full_entry of this
79 instruction.
80
81 Each struct record_full_entry is linked to "record_full_list" by "prev"
82 and "next" pointers. */
83
84 struct record_full_mem_entry
85 {
86 CORE_ADDR addr;
87 int len;
88 /* Set this flag if target memory for this entry
89 can no longer be accessed. */
90 int mem_entry_not_accessible;
91 union
92 {
93 gdb_byte *ptr;
94 gdb_byte buf[sizeof (gdb_byte *)];
95 } u;
96 };
97
98 struct record_full_reg_entry
99 {
100 unsigned short num;
101 unsigned short len;
102 union
103 {
104 gdb_byte *ptr;
105 gdb_byte buf[2 * sizeof (gdb_byte *)];
106 } u;
107 };
108
109 struct record_full_end_entry
110 {
111 enum gdb_signal sigval;
112 ULONGEST insn_num;
113 };
114
115 enum record_full_type
116 {
117 record_full_end = 0,
118 record_full_reg,
119 record_full_mem
120 };
121
122 /* This is the data structure that makes up the execution log.
123
124 The execution log consists of a single linked list of entries
125 of type "struct record_full_entry". It is doubly linked so that it
126 can be traversed in either direction.
127
128 The start of the list is anchored by a struct called
129 "record_full_first". The pointer "record_full_list" either points
130 to the last entry that was added to the list (in record mode), or to
131 the next entry in the list that will be executed (in replay mode).
132
133 Each list element (struct record_full_entry), in addition to next
134 and prev pointers, consists of a union of three entry types: mem,
135 reg, and end. A field called "type" determines which entry type is
136 represented by a given list element.
137
138 Each instruction that is added to the execution log is represented
139 by a variable number of list elements ('entries'). The instruction
140 will have one "reg" entry for each register that is changed by
141 executing the instruction (including the PC in every case). It
142 will also have one "mem" entry for each memory change. Finally,
143 each instruction will have an "end" entry that separates it from
144 the changes associated with the next instruction. */
145
146 struct record_full_entry
147 {
148 struct record_full_entry *prev;
149 struct record_full_entry *next;
150 enum record_full_type type;
151 union
152 {
153 /* reg */
154 struct record_full_reg_entry reg;
155 /* mem */
156 struct record_full_mem_entry mem;
157 /* end */
158 struct record_full_end_entry end;
159 } u;
160 };
161
162 /* If true, query if PREC cannot record memory
163 change of next instruction. */
164 bool record_full_memory_query = false;
165
166 struct record_full_core_buf_entry
167 {
168 struct record_full_core_buf_entry *prev;
169 struct target_section *p;
170 bfd_byte *buf;
171 };
172
173 /* Record buf with core target. */
174 static detached_regcache *record_full_core_regbuf = NULL;
175 static target_section_table record_full_core_sections;
176 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
177
178 /* The following variables are used for managing the linked list that
179 represents the execution log.
180
181 record_full_first is the anchor that holds down the beginning of
182 the list.
183
184 record_full_list serves two functions:
185 1) In record mode, it anchors the end of the list.
186 2) In replay mode, it traverses the list and points to
187 the next instruction that must be emulated.
188
189 record_full_arch_list_head and record_full_arch_list_tail are used
190 to manage a separate list, which is used to build up the change
191 elements of the currently executing instruction during record mode.
192 When this instruction has been completely annotated in the "arch
193 list", it will be appended to the main execution log. */
194
195 static struct record_full_entry record_full_first;
196 static struct record_full_entry *record_full_list = &record_full_first;
197 static struct record_full_entry *record_full_arch_list_head = NULL;
198 static struct record_full_entry *record_full_arch_list_tail = NULL;
199
200 /* true ask user. false auto delete the last struct record_full_entry. */
201 static bool record_full_stop_at_limit = true;
202 /* Maximum allowed number of insns in execution log. */
203 static unsigned int record_full_insn_max_num
204 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
205 /* Actual count of insns presently in execution log. */
206 static unsigned int record_full_insn_num = 0;
207 /* Count of insns logged so far (may be larger
208 than count of insns presently in execution log). */
209 static ULONGEST record_full_insn_count;
210
211 static const char record_longname[]
212 = N_("Process record and replay target");
213 static const char record_doc[]
214 = N_("Log program while executing and replay execution from log.");
215
216 /* Base class implementing functionality common to both the
217 "record-full" and "record-core" targets. */
218
219 class record_full_base_target : public target_ops
220 {
221 public:
222 const target_info &info () const override = 0;
223
224 strata stratum () const override { return record_stratum; }
225
226 void close () override;
227 void async (bool) override;
228 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
229 bool stopped_by_watchpoint () override;
230 bool stopped_data_address (CORE_ADDR *) override;
231
232 bool stopped_by_sw_breakpoint () override;
233 bool supports_stopped_by_sw_breakpoint () override;
234
235 bool stopped_by_hw_breakpoint () override;
236 bool supports_stopped_by_hw_breakpoint () override;
237
238 bool can_execute_reverse () override;
239
240 /* Add bookmark target methods. */
241 gdb_byte *get_bookmark (const char *, int) override;
242 void goto_bookmark (const gdb_byte *, int) override;
243 enum exec_direction_kind execution_direction () override;
244 enum record_method record_method (ptid_t ptid) override;
245 void info_record () override;
246 void save_record (const char *filename) override;
247 bool supports_delete_record () override;
248 void delete_record () override;
249 bool record_is_replaying (ptid_t ptid) override;
250 bool record_will_replay (ptid_t ptid, int dir) override;
251 void record_stop_replaying () override;
252 void goto_record_begin () override;
253 void goto_record_end () override;
254 void goto_record (ULONGEST insn) override;
255 };
256
257 /* The "record-full" target. */
258
259 static const target_info record_full_target_info = {
260 "record-full",
261 record_longname,
262 record_doc,
263 };
264
265 class record_full_target final : public record_full_base_target
266 {
267 public:
268 const target_info &info () const override
269 { return record_full_target_info; }
270
271 void resume (ptid_t, int, enum gdb_signal) override;
272 void disconnect (const char *, int) override;
273 void detach (inferior *, int) override;
274 void mourn_inferior () override;
275 void kill () override;
276 void store_registers (struct regcache *, int) override;
277 enum target_xfer_status xfer_partial (enum target_object object,
278 const char *annex,
279 gdb_byte *readbuf,
280 const gdb_byte *writebuf,
281 ULONGEST offset, ULONGEST len,
282 ULONGEST *xfered_len) override;
283 int insert_breakpoint (struct gdbarch *,
284 struct bp_target_info *) override;
285 int remove_breakpoint (struct gdbarch *,
286 struct bp_target_info *,
287 enum remove_bp_reason) override;
288 };
289
290 /* The "record-core" target. */
291
292 static const target_info record_full_core_target_info = {
293 "record-core",
294 record_longname,
295 record_doc,
296 };
297
298 class record_full_core_target final : public record_full_base_target
299 {
300 public:
301 const target_info &info () const override
302 { return record_full_core_target_info; }
303
304 void resume (ptid_t, int, enum gdb_signal) override;
305 void disconnect (const char *, int) override;
306 void kill () override;
307 void fetch_registers (struct regcache *regcache, int regno) override;
308 void prepare_to_store (struct regcache *regcache) override;
309 void store_registers (struct regcache *, int) override;
310 enum target_xfer_status xfer_partial (enum target_object object,
311 const char *annex,
312 gdb_byte *readbuf,
313 const gdb_byte *writebuf,
314 ULONGEST offset, ULONGEST len,
315 ULONGEST *xfered_len) override;
316 int insert_breakpoint (struct gdbarch *,
317 struct bp_target_info *) override;
318 int remove_breakpoint (struct gdbarch *,
319 struct bp_target_info *,
320 enum remove_bp_reason) override;
321
322 bool has_execution (inferior *inf) override;
323 };
324
325 static record_full_target record_full_ops;
326 static record_full_core_target record_full_core_ops;
327
328 void
329 record_full_target::detach (inferior *inf, int from_tty)
330 {
331 record_detach (this, inf, from_tty);
332 }
333
334 void
335 record_full_target::disconnect (const char *args, int from_tty)
336 {
337 record_disconnect (this, args, from_tty);
338 }
339
340 void
341 record_full_core_target::disconnect (const char *args, int from_tty)
342 {
343 record_disconnect (this, args, from_tty);
344 }
345
346 void
347 record_full_target::mourn_inferior ()
348 {
349 record_mourn_inferior (this);
350 }
351
352 void
353 record_full_target::kill ()
354 {
355 record_kill (this);
356 }
357
358 /* See record-full.h. */
359
360 int
361 record_full_is_used (void)
362 {
363 struct target_ops *t;
364
365 t = find_record_target ();
366 return (t == &record_full_ops
367 || t == &record_full_core_ops);
368 }
369
370
371 /* Command lists for "set/show record full". */
372 static struct cmd_list_element *set_record_full_cmdlist;
373 static struct cmd_list_element *show_record_full_cmdlist;
374
375 /* Command list for "record full". */
376 static struct cmd_list_element *record_full_cmdlist;
377
378 static void record_full_goto_insn (struct record_full_entry *entry,
379 enum exec_direction_kind dir);
380
381 /* Alloc and free functions for record_full_reg, record_full_mem, and
382 record_full_end entries. */
383
384 /* Alloc a record_full_reg record entry. */
385
386 static inline struct record_full_entry *
387 record_full_reg_alloc (struct regcache *regcache, int regnum)
388 {
389 struct record_full_entry *rec;
390 struct gdbarch *gdbarch = regcache->arch ();
391
392 rec = XCNEW (struct record_full_entry);
393 rec->type = record_full_reg;
394 rec->u.reg.num = regnum;
395 rec->u.reg.len = register_size (gdbarch, regnum);
396 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
397 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
398
399 return rec;
400 }
401
402 /* Free a record_full_reg record entry. */
403
404 static inline void
405 record_full_reg_release (struct record_full_entry *rec)
406 {
407 gdb_assert (rec->type == record_full_reg);
408 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
409 xfree (rec->u.reg.u.ptr);
410 xfree (rec);
411 }
412
413 /* Alloc a record_full_mem record entry. */
414
415 static inline struct record_full_entry *
416 record_full_mem_alloc (CORE_ADDR addr, int len)
417 {
418 struct record_full_entry *rec;
419
420 rec = XCNEW (struct record_full_entry);
421 rec->type = record_full_mem;
422 rec->u.mem.addr = addr;
423 rec->u.mem.len = len;
424 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
425 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
426
427 return rec;
428 }
429
430 /* Free a record_full_mem record entry. */
431
432 static inline void
433 record_full_mem_release (struct record_full_entry *rec)
434 {
435 gdb_assert (rec->type == record_full_mem);
436 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
437 xfree (rec->u.mem.u.ptr);
438 xfree (rec);
439 }
440
441 /* Alloc a record_full_end record entry. */
442
443 static inline struct record_full_entry *
444 record_full_end_alloc (void)
445 {
446 struct record_full_entry *rec;
447
448 rec = XCNEW (struct record_full_entry);
449 rec->type = record_full_end;
450
451 return rec;
452 }
453
454 /* Free a record_full_end record entry. */
455
456 static inline void
457 record_full_end_release (struct record_full_entry *rec)
458 {
459 xfree (rec);
460 }
461
462 /* Free one record entry, any type.
463 Return entry->type, in case caller wants to know. */
464
465 static inline enum record_full_type
466 record_full_entry_release (struct record_full_entry *rec)
467 {
468 enum record_full_type type = rec->type;
469
470 switch (type) {
471 case record_full_reg:
472 record_full_reg_release (rec);
473 break;
474 case record_full_mem:
475 record_full_mem_release (rec);
476 break;
477 case record_full_end:
478 record_full_end_release (rec);
479 break;
480 }
481 return type;
482 }
483
484 /* Free all record entries in list pointed to by REC. */
485
486 static void
487 record_full_list_release (struct record_full_entry *rec)
488 {
489 if (!rec)
490 return;
491
492 while (rec->next)
493 rec = rec->next;
494
495 while (rec->prev)
496 {
497 rec = rec->prev;
498 record_full_entry_release (rec->next);
499 }
500
501 if (rec == &record_full_first)
502 {
503 record_full_insn_num = 0;
504 record_full_first.next = NULL;
505 }
506 else
507 record_full_entry_release (rec);
508 }
509
510 /* Free all record entries forward of the given list position. */
511
512 static void
513 record_full_list_release_following (struct record_full_entry *rec)
514 {
515 struct record_full_entry *tmp = rec->next;
516
517 rec->next = NULL;
518 while (tmp)
519 {
520 rec = tmp->next;
521 if (record_full_entry_release (tmp) == record_full_end)
522 {
523 record_full_insn_num--;
524 record_full_insn_count--;
525 }
526 tmp = rec;
527 }
528 }
529
530 /* Delete the first instruction from the beginning of the log, to make
531 room for adding a new instruction at the end of the log.
532
533 Note -- this function does not modify record_full_insn_num. */
534
535 static void
536 record_full_list_release_first (void)
537 {
538 struct record_full_entry *tmp;
539
540 if (!record_full_first.next)
541 return;
542
543 /* Loop until a record_full_end. */
544 while (1)
545 {
546 /* Cut record_full_first.next out of the linked list. */
547 tmp = record_full_first.next;
548 record_full_first.next = tmp->next;
549 tmp->next->prev = &record_full_first;
550
551 /* tmp is now isolated, and can be deleted. */
552 if (record_full_entry_release (tmp) == record_full_end)
553 break; /* End loop at first record_full_end. */
554
555 if (!record_full_first.next)
556 {
557 gdb_assert (record_full_insn_num == 1);
558 break; /* End loop when list is empty. */
559 }
560 }
561 }
562
563 /* Add a struct record_full_entry to record_full_arch_list. */
564
565 static void
566 record_full_arch_list_add (struct record_full_entry *rec)
567 {
568 if (record_debug > 1)
569 gdb_printf (gdb_stdlog,
570 "Process record: record_full_arch_list_add %s.\n",
571 host_address_to_string (rec));
572
573 if (record_full_arch_list_tail)
574 {
575 record_full_arch_list_tail->next = rec;
576 rec->prev = record_full_arch_list_tail;
577 record_full_arch_list_tail = rec;
578 }
579 else
580 {
581 record_full_arch_list_head = rec;
582 record_full_arch_list_tail = rec;
583 }
584 }
585
586 /* Return the value storage location of a record entry. */
587 static inline gdb_byte *
588 record_full_get_loc (struct record_full_entry *rec)
589 {
590 switch (rec->type) {
591 case record_full_mem:
592 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
593 return rec->u.mem.u.ptr;
594 else
595 return rec->u.mem.u.buf;
596 case record_full_reg:
597 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
598 return rec->u.reg.u.ptr;
599 else
600 return rec->u.reg.u.buf;
601 case record_full_end:
602 default:
603 gdb_assert_not_reached ("unexpected record_full_entry type");
604 return NULL;
605 }
606 }
607
608 /* Record the value of a register NUM to record_full_arch_list. */
609
610 int
611 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
612 {
613 struct record_full_entry *rec;
614
615 if (record_debug > 1)
616 gdb_printf (gdb_stdlog,
617 "Process record: add register num = %d to "
618 "record list.\n",
619 regnum);
620
621 rec = record_full_reg_alloc (regcache, regnum);
622
623 regcache->raw_read (regnum, record_full_get_loc (rec));
624
625 record_full_arch_list_add (rec);
626
627 return 0;
628 }
629
630 /* Record the value of a region of memory whose address is ADDR and
631 length is LEN to record_full_arch_list. */
632
633 int
634 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
635 {
636 struct record_full_entry *rec;
637
638 if (record_debug > 1)
639 gdb_printf (gdb_stdlog,
640 "Process record: add mem addr = %s len = %d to "
641 "record list.\n",
642 paddress (target_gdbarch (), addr), len);
643
644 if (!addr) /* FIXME: Why? Some arch must permit it... */
645 return 0;
646
647 rec = record_full_mem_alloc (addr, len);
648
649 if (record_read_memory (target_gdbarch (), addr,
650 record_full_get_loc (rec), len))
651 {
652 record_full_mem_release (rec);
653 return -1;
654 }
655
656 record_full_arch_list_add (rec);
657
658 return 0;
659 }
660
661 /* Add a record_full_end type struct record_full_entry to
662 record_full_arch_list. */
663
664 int
665 record_full_arch_list_add_end (void)
666 {
667 struct record_full_entry *rec;
668
669 if (record_debug > 1)
670 gdb_printf (gdb_stdlog,
671 "Process record: add end to arch list.\n");
672
673 rec = record_full_end_alloc ();
674 rec->u.end.sigval = GDB_SIGNAL_0;
675 rec->u.end.insn_num = ++record_full_insn_count;
676
677 record_full_arch_list_add (rec);
678
679 return 0;
680 }
681
682 static void
683 record_full_check_insn_num (void)
684 {
685 if (record_full_insn_num == record_full_insn_max_num)
686 {
687 /* Ask user what to do. */
688 if (record_full_stop_at_limit)
689 {
690 if (!yquery (_("Do you want to auto delete previous execution "
691 "log entries when record/replay buffer becomes "
692 "full (record full stop-at-limit)?")))
693 error (_("Process record: stopped by user."));
694 record_full_stop_at_limit = 0;
695 }
696 }
697 }
698
699 /* Before inferior step (when GDB record the running message, inferior
700 only can step), GDB will call this function to record the values to
701 record_full_list. This function will call gdbarch_process_record to
702 record the running message of inferior and set them to
703 record_full_arch_list, and add it to record_full_list. */
704
705 static void
706 record_full_message (struct regcache *regcache, enum gdb_signal signal)
707 {
708 int ret;
709 struct gdbarch *gdbarch = regcache->arch ();
710
711 try
712 {
713 record_full_arch_list_head = NULL;
714 record_full_arch_list_tail = NULL;
715
716 /* Check record_full_insn_num. */
717 record_full_check_insn_num ();
718
719 /* If gdb sends a signal value to target_resume,
720 save it in the 'end' field of the previous instruction.
721
722 Maybe process record should record what really happened,
723 rather than what gdb pretends has happened.
724
725 So if Linux delivered the signal to the child process during
726 the record mode, we will record it and deliver it again in
727 the replay mode.
728
729 If user says "ignore this signal" during the record mode, then
730 it will be ignored again during the replay mode (no matter if
731 the user says something different, like "deliver this signal"
732 during the replay mode).
733
734 User should understand that nothing he does during the replay
735 mode will change the behavior of the child. If he tries,
736 then that is a user error.
737
738 But we should still deliver the signal to gdb during the replay,
739 if we delivered it during the recording. Therefore we should
740 record the signal during record_full_wait, not
741 record_full_resume. */
742 if (record_full_list != &record_full_first) /* FIXME better way
743 to check */
744 {
745 gdb_assert (record_full_list->type == record_full_end);
746 record_full_list->u.end.sigval = signal;
747 }
748
749 if (signal == GDB_SIGNAL_0
750 || !gdbarch_process_record_signal_p (gdbarch))
751 ret = gdbarch_process_record (gdbarch,
752 regcache,
753 regcache_read_pc (regcache));
754 else
755 ret = gdbarch_process_record_signal (gdbarch,
756 regcache,
757 signal);
758
759 if (ret > 0)
760 error (_("Process record: inferior program stopped."));
761 if (ret < 0)
762 error (_("Process record: failed to record execution log."));
763 }
764 catch (const gdb_exception &ex)
765 {
766 record_full_list_release (record_full_arch_list_tail);
767 throw;
768 }
769
770 record_full_list->next = record_full_arch_list_head;
771 record_full_arch_list_head->prev = record_full_list;
772 record_full_list = record_full_arch_list_tail;
773
774 if (record_full_insn_num == record_full_insn_max_num)
775 record_full_list_release_first ();
776 else
777 record_full_insn_num++;
778 }
779
780 static bool
781 record_full_message_wrapper_safe (struct regcache *regcache,
782 enum gdb_signal signal)
783 {
784 try
785 {
786 record_full_message (regcache, signal);
787 }
788 catch (const gdb_exception &ex)
789 {
790 exception_print (gdb_stderr, ex);
791 return false;
792 }
793
794 return true;
795 }
796
797 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
798 doesn't need record. */
799
800 static int record_full_gdb_operation_disable = 0;
801
802 scoped_restore_tmpl<int>
803 record_full_gdb_operation_disable_set (void)
804 {
805 return make_scoped_restore (&record_full_gdb_operation_disable, 1);
806 }
807
808 /* Flag set to TRUE for target_stopped_by_watchpoint. */
809 static enum target_stop_reason record_full_stop_reason
810 = TARGET_STOPPED_BY_NO_REASON;
811
812 /* Execute one instruction from the record log. Each instruction in
813 the log will be represented by an arbitrary sequence of register
814 entries and memory entries, followed by an 'end' entry. */
815
816 static inline void
817 record_full_exec_insn (struct regcache *regcache,
818 struct gdbarch *gdbarch,
819 struct record_full_entry *entry)
820 {
821 switch (entry->type)
822 {
823 case record_full_reg: /* reg */
824 {
825 gdb::byte_vector reg (entry->u.reg.len);
826
827 if (record_debug > 1)
828 gdb_printf (gdb_stdlog,
829 "Process record: record_full_reg %s to "
830 "inferior num = %d.\n",
831 host_address_to_string (entry),
832 entry->u.reg.num);
833
834 regcache->cooked_read (entry->u.reg.num, reg.data ());
835 regcache->cooked_write (entry->u.reg.num, record_full_get_loc (entry));
836 memcpy (record_full_get_loc (entry), reg.data (), entry->u.reg.len);
837 }
838 break;
839
840 case record_full_mem: /* mem */
841 {
842 /* Nothing to do if the entry is flagged not_accessible. */
843 if (!entry->u.mem.mem_entry_not_accessible)
844 {
845 gdb::byte_vector mem (entry->u.mem.len);
846
847 if (record_debug > 1)
848 gdb_printf (gdb_stdlog,
849 "Process record: record_full_mem %s to "
850 "inferior addr = %s len = %d.\n",
851 host_address_to_string (entry),
852 paddress (gdbarch, entry->u.mem.addr),
853 entry->u.mem.len);
854
855 if (record_read_memory (gdbarch,
856 entry->u.mem.addr, mem.data (),
857 entry->u.mem.len))
858 entry->u.mem.mem_entry_not_accessible = 1;
859 else
860 {
861 if (target_write_memory (entry->u.mem.addr,
862 record_full_get_loc (entry),
863 entry->u.mem.len))
864 {
865 entry->u.mem.mem_entry_not_accessible = 1;
866 if (record_debug)
867 warning (_("Process record: error writing memory at "
868 "addr = %s len = %d."),
869 paddress (gdbarch, entry->u.mem.addr),
870 entry->u.mem.len);
871 }
872 else
873 {
874 memcpy (record_full_get_loc (entry), mem.data (),
875 entry->u.mem.len);
876
877 /* We've changed memory --- check if a hardware
878 watchpoint should trap. Note that this
879 presently assumes the target beneath supports
880 continuable watchpoints. On non-continuable
881 watchpoints target, we'll want to check this
882 _before_ actually doing the memory change, and
883 not doing the change at all if the watchpoint
884 traps. */
885 if (hardware_watchpoint_inserted_in_range
886 (regcache->aspace (),
887 entry->u.mem.addr, entry->u.mem.len))
888 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
889 }
890 }
891 }
892 }
893 break;
894 }
895 }
896
897 static void record_full_restore (void);
898
899 /* Asynchronous signal handle registered as event loop source for when
900 we have pending events ready to be passed to the core. */
901
902 static struct async_event_handler *record_full_async_inferior_event_token;
903
904 static void
905 record_full_async_inferior_event_handler (gdb_client_data data)
906 {
907 inferior_event_handler (INF_REG_EVENT);
908 }
909
910 /* Open the process record target for 'core' files. */
911
912 static void
913 record_full_core_open_1 (const char *name, int from_tty)
914 {
915 struct regcache *regcache = get_current_regcache ();
916 int regnum = gdbarch_num_regs (regcache->arch ());
917 int i;
918
919 /* Get record_full_core_regbuf. */
920 target_fetch_registers (regcache, -1);
921 record_full_core_regbuf = new detached_regcache (regcache->arch (), false);
922
923 for (i = 0; i < regnum; i ++)
924 record_full_core_regbuf->raw_supply (i, *regcache);
925
926 record_full_core_sections = build_section_table (core_bfd);
927
928 current_inferior ()->push_target (&record_full_core_ops);
929 record_full_restore ();
930 }
931
932 /* Open the process record target for 'live' processes. */
933
934 static void
935 record_full_open_1 (const char *name, int from_tty)
936 {
937 if (record_debug)
938 gdb_printf (gdb_stdlog, "Process record: record_full_open_1\n");
939
940 /* check exec */
941 if (!target_has_execution ())
942 error (_("Process record: the program is not being run."));
943 if (non_stop)
944 error (_("Process record target can't debug inferior in non-stop mode "
945 "(non-stop)."));
946
947 if (!gdbarch_process_record_p (target_gdbarch ()))
948 error (_("Process record: the current architecture doesn't support "
949 "record function."));
950
951 current_inferior ()->push_target (&record_full_ops);
952 }
953
954 static void record_full_init_record_breakpoints (void);
955
956 /* Open the process record target. */
957
958 static void
959 record_full_open (const char *name, int from_tty)
960 {
961 if (record_debug)
962 gdb_printf (gdb_stdlog, "Process record: record_full_open\n");
963
964 record_preopen ();
965
966 /* Reset */
967 record_full_insn_num = 0;
968 record_full_insn_count = 0;
969 record_full_list = &record_full_first;
970 record_full_list->next = NULL;
971
972 if (core_bfd)
973 record_full_core_open_1 (name, from_tty);
974 else
975 record_full_open_1 (name, from_tty);
976
977 /* Register extra event sources in the event loop. */
978 record_full_async_inferior_event_token
979 = create_async_event_handler (record_full_async_inferior_event_handler,
980 NULL, "record-full");
981
982 record_full_init_record_breakpoints ();
983
984 gdb::observers::record_changed.notify (current_inferior (), 1, "full", NULL);
985 }
986
987 /* "close" target method. Close the process record target. */
988
989 void
990 record_full_base_target::close ()
991 {
992 struct record_full_core_buf_entry *entry;
993
994 if (record_debug)
995 gdb_printf (gdb_stdlog, "Process record: record_full_close\n");
996
997 record_full_list_release (record_full_list);
998
999 /* Release record_full_core_regbuf. */
1000 if (record_full_core_regbuf)
1001 {
1002 delete record_full_core_regbuf;
1003 record_full_core_regbuf = NULL;
1004 }
1005
1006 /* Release record_full_core_buf_list. */
1007 while (record_full_core_buf_list)
1008 {
1009 entry = record_full_core_buf_list;
1010 record_full_core_buf_list = record_full_core_buf_list->prev;
1011 xfree (entry);
1012 }
1013
1014 if (record_full_async_inferior_event_token)
1015 delete_async_event_handler (&record_full_async_inferior_event_token);
1016 }
1017
1018 /* "async" target method. */
1019
1020 void
1021 record_full_base_target::async (bool enable)
1022 {
1023 if (enable)
1024 mark_async_event_handler (record_full_async_inferior_event_token);
1025 else
1026 clear_async_event_handler (record_full_async_inferior_event_token);
1027
1028 beneath ()->async (enable);
1029 }
1030
1031 /* The PTID and STEP arguments last passed to
1032 record_full_target::resume. */
1033 static ptid_t record_full_resume_ptid = null_ptid;
1034 static int record_full_resume_step = 0;
1035
1036 /* True if we've been resumed, and so each record_full_wait call should
1037 advance execution. If this is false, record_full_wait will return a
1038 TARGET_WAITKIND_IGNORE. */
1039 static int record_full_resumed = 0;
1040
1041 /* The execution direction of the last resume we got. This is
1042 necessary for async mode. Vis (order is not strictly accurate):
1043
1044 1. user has the global execution direction set to forward
1045 2. user does a reverse-step command
1046 3. record_full_resume is called with global execution direction
1047 temporarily switched to reverse
1048 4. GDB's execution direction is reverted back to forward
1049 5. target record notifies event loop there's an event to handle
1050 6. infrun asks the target which direction was it going, and switches
1051 the global execution direction accordingly (to reverse)
1052 7. infrun polls an event out of the record target, and handles it
1053 8. GDB goes back to the event loop, and goto #4.
1054 */
1055 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
1056
1057 /* "resume" target method. Resume the process record target. */
1058
1059 void
1060 record_full_target::resume (ptid_t ptid, int step, enum gdb_signal signal)
1061 {
1062 record_full_resume_ptid = inferior_ptid;
1063 record_full_resume_step = step;
1064 record_full_resumed = 1;
1065 record_full_execution_dir = ::execution_direction;
1066
1067 if (!RECORD_FULL_IS_REPLAY)
1068 {
1069 struct gdbarch *gdbarch = target_thread_architecture (ptid);
1070
1071 record_full_message (get_current_regcache (), signal);
1072
1073 if (!step)
1074 {
1075 /* This is not hard single step. */
1076 if (!gdbarch_software_single_step_p (gdbarch))
1077 {
1078 /* This is a normal continue. */
1079 step = 1;
1080 }
1081 else
1082 {
1083 /* This arch supports soft single step. */
1084 if (thread_has_single_step_breakpoints_set (inferior_thread ()))
1085 {
1086 /* This is a soft single step. */
1087 record_full_resume_step = 1;
1088 }
1089 else
1090 step = !insert_single_step_breakpoints (gdbarch);
1091 }
1092 }
1093
1094 /* Make sure the target beneath reports all signals. */
1095 target_pass_signals ({});
1096
1097 this->beneath ()->resume (ptid, step, signal);
1098 }
1099 }
1100
1101 static int record_full_get_sig = 0;
1102
1103 /* SIGINT signal handler, registered by "wait" method. */
1104
1105 static void
1106 record_full_sig_handler (int signo)
1107 {
1108 if (record_debug)
1109 gdb_printf (gdb_stdlog, "Process record: get a signal\n");
1110
1111 /* It will break the running inferior in replay mode. */
1112 record_full_resume_step = 1;
1113
1114 /* It will let record_full_wait set inferior status to get the signal
1115 SIGINT. */
1116 record_full_get_sig = 1;
1117 }
1118
1119 /* "wait" target method for process record target.
1120
1121 In record mode, the target is always run in singlestep mode
1122 (even when gdb says to continue). The wait method intercepts
1123 the stop events and determines which ones are to be passed on to
1124 gdb. Most stop events are just singlestep events that gdb is not
1125 to know about, so the wait method just records them and keeps
1126 singlestepping.
1127
1128 In replay mode, this function emulates the recorded execution log,
1129 one instruction at a time (forward or backward), and determines
1130 where to stop. */
1131
1132 static ptid_t
1133 record_full_wait_1 (struct target_ops *ops,
1134 ptid_t ptid, struct target_waitstatus *status,
1135 target_wait_flags options)
1136 {
1137 scoped_restore restore_operation_disable
1138 = record_full_gdb_operation_disable_set ();
1139
1140 if (record_debug)
1141 gdb_printf (gdb_stdlog,
1142 "Process record: record_full_wait "
1143 "record_full_resume_step = %d, "
1144 "record_full_resumed = %d, direction=%s\n",
1145 record_full_resume_step, record_full_resumed,
1146 record_full_execution_dir == EXEC_FORWARD
1147 ? "forward" : "reverse");
1148
1149 if (!record_full_resumed)
1150 {
1151 gdb_assert ((options & TARGET_WNOHANG) != 0);
1152
1153 /* No interesting event. */
1154 status->set_ignore ();
1155 return minus_one_ptid;
1156 }
1157
1158 record_full_get_sig = 0;
1159 signal (SIGINT, record_full_sig_handler);
1160
1161 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1162
1163 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1164 {
1165 if (record_full_resume_step)
1166 {
1167 /* This is a single step. */
1168 return ops->beneath ()->wait (ptid, status, options);
1169 }
1170 else
1171 {
1172 /* This is not a single step. */
1173 ptid_t ret;
1174 CORE_ADDR tmp_pc;
1175 struct gdbarch *gdbarch
1176 = target_thread_architecture (record_full_resume_ptid);
1177
1178 while (1)
1179 {
1180 ret = ops->beneath ()->wait (ptid, status, options);
1181 if (status->kind () == TARGET_WAITKIND_IGNORE)
1182 {
1183 if (record_debug)
1184 gdb_printf (gdb_stdlog,
1185 "Process record: record_full_wait "
1186 "target beneath not done yet\n");
1187 return ret;
1188 }
1189
1190 for (thread_info *tp : all_non_exited_threads ())
1191 delete_single_step_breakpoints (tp);
1192
1193 if (record_full_resume_step)
1194 return ret;
1195
1196 /* Is this a SIGTRAP? */
1197 if (status->kind () == TARGET_WAITKIND_STOPPED
1198 && status->sig () == GDB_SIGNAL_TRAP)
1199 {
1200 struct regcache *regcache;
1201 enum target_stop_reason *stop_reason_p
1202 = &record_full_stop_reason;
1203
1204 /* Yes -- this is likely our single-step finishing,
1205 but check if there's any reason the core would be
1206 interested in the event. */
1207
1208 registers_changed ();
1209 switch_to_thread (current_inferior ()->process_target (),
1210 ret);
1211 regcache = get_current_regcache ();
1212 tmp_pc = regcache_read_pc (regcache);
1213 const struct address_space *aspace = regcache->aspace ();
1214
1215 if (target_stopped_by_watchpoint ())
1216 {
1217 /* Always interested in watchpoints. */
1218 }
1219 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1220 stop_reason_p))
1221 {
1222 /* There is a breakpoint here. Let the core
1223 handle it. */
1224 }
1225 else
1226 {
1227 /* This is a single-step trap. Record the
1228 insn and issue another step.
1229 FIXME: this part can be a random SIGTRAP too.
1230 But GDB cannot handle it. */
1231 int step = 1;
1232
1233 if (!record_full_message_wrapper_safe (regcache,
1234 GDB_SIGNAL_0))
1235 {
1236 status->set_stopped (GDB_SIGNAL_0);
1237 break;
1238 }
1239
1240 process_stratum_target *proc_target
1241 = current_inferior ()->process_target ();
1242
1243 if (gdbarch_software_single_step_p (gdbarch))
1244 {
1245 /* Try to insert the software single step breakpoint.
1246 If insert success, set step to 0. */
1247 set_executing (proc_target, inferior_ptid, false);
1248 SCOPE_EXIT
1249 {
1250 set_executing (proc_target, inferior_ptid, true);
1251 };
1252
1253 reinit_frame_cache ();
1254 step = !insert_single_step_breakpoints (gdbarch);
1255 }
1256
1257 if (record_debug)
1258 gdb_printf (gdb_stdlog,
1259 "Process record: record_full_wait "
1260 "issuing one more step in the "
1261 "target beneath\n");
1262 ops->beneath ()->resume (ptid, step, GDB_SIGNAL_0);
1263 proc_target->commit_resumed_state = true;
1264 proc_target->commit_resumed ();
1265 proc_target->commit_resumed_state = false;
1266 continue;
1267 }
1268 }
1269
1270 /* The inferior is broken by a breakpoint or a signal. */
1271 break;
1272 }
1273
1274 return ret;
1275 }
1276 }
1277 else
1278 {
1279 switch_to_thread (current_inferior ()->process_target (),
1280 record_full_resume_ptid);
1281 struct regcache *regcache = get_current_regcache ();
1282 struct gdbarch *gdbarch = regcache->arch ();
1283 const struct address_space *aspace = regcache->aspace ();
1284 int continue_flag = 1;
1285 int first_record_full_end = 1;
1286
1287 try
1288 {
1289 CORE_ADDR tmp_pc;
1290
1291 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1292 status->set_stopped (GDB_SIGNAL_0);
1293
1294 /* Check breakpoint when forward execute. */
1295 if (execution_direction == EXEC_FORWARD)
1296 {
1297 tmp_pc = regcache_read_pc (regcache);
1298 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1299 &record_full_stop_reason))
1300 {
1301 if (record_debug)
1302 gdb_printf (gdb_stdlog,
1303 "Process record: break at %s.\n",
1304 paddress (gdbarch, tmp_pc));
1305 goto replay_out;
1306 }
1307 }
1308
1309 /* If GDB is in terminal_inferior mode, it will not get the
1310 signal. And in GDB replay mode, GDB doesn't need to be
1311 in terminal_inferior mode, because inferior will not
1312 executed. Then set it to terminal_ours to make GDB get
1313 the signal. */
1314 target_terminal::ours ();
1315
1316 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1317 instruction. */
1318 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1319 record_full_list = record_full_list->next;
1320
1321 /* Loop over the record_full_list, looking for the next place to
1322 stop. */
1323 do
1324 {
1325 /* Check for beginning and end of log. */
1326 if (execution_direction == EXEC_REVERSE
1327 && record_full_list == &record_full_first)
1328 {
1329 /* Hit beginning of record log in reverse. */
1330 status->set_no_history ();
1331 break;
1332 }
1333 if (execution_direction != EXEC_REVERSE
1334 && !record_full_list->next)
1335 {
1336 /* Hit end of record log going forward. */
1337 status->set_no_history ();
1338 break;
1339 }
1340
1341 record_full_exec_insn (regcache, gdbarch, record_full_list);
1342
1343 if (record_full_list->type == record_full_end)
1344 {
1345 if (record_debug > 1)
1346 gdb_printf
1347 (gdb_stdlog,
1348 "Process record: record_full_end %s to "
1349 "inferior.\n",
1350 host_address_to_string (record_full_list));
1351
1352 if (first_record_full_end
1353 && execution_direction == EXEC_REVERSE)
1354 {
1355 /* When reverse execute, the first
1356 record_full_end is the part of current
1357 instruction. */
1358 first_record_full_end = 0;
1359 }
1360 else
1361 {
1362 /* In EXEC_REVERSE mode, this is the
1363 record_full_end of prev instruction. In
1364 EXEC_FORWARD mode, this is the
1365 record_full_end of current instruction. */
1366 /* step */
1367 if (record_full_resume_step)
1368 {
1369 if (record_debug > 1)
1370 gdb_printf (gdb_stdlog,
1371 "Process record: step.\n");
1372 continue_flag = 0;
1373 }
1374
1375 /* check breakpoint */
1376 tmp_pc = regcache_read_pc (regcache);
1377 if (record_check_stopped_by_breakpoint
1378 (aspace, tmp_pc, &record_full_stop_reason))
1379 {
1380 if (record_debug)
1381 gdb_printf (gdb_stdlog,
1382 "Process record: break "
1383 "at %s.\n",
1384 paddress (gdbarch, tmp_pc));
1385
1386 continue_flag = 0;
1387 }
1388
1389 if (record_full_stop_reason
1390 == TARGET_STOPPED_BY_WATCHPOINT)
1391 {
1392 if (record_debug)
1393 gdb_printf (gdb_stdlog,
1394 "Process record: hit hw "
1395 "watchpoint.\n");
1396 continue_flag = 0;
1397 }
1398 /* Check target signal */
1399 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1400 /* FIXME: better way to check */
1401 continue_flag = 0;
1402 }
1403 }
1404
1405 if (continue_flag)
1406 {
1407 if (execution_direction == EXEC_REVERSE)
1408 {
1409 if (record_full_list->prev)
1410 record_full_list = record_full_list->prev;
1411 }
1412 else
1413 {
1414 if (record_full_list->next)
1415 record_full_list = record_full_list->next;
1416 }
1417 }
1418 }
1419 while (continue_flag);
1420
1421 replay_out:
1422 if (status->kind () == TARGET_WAITKIND_STOPPED)
1423 {
1424 if (record_full_get_sig)
1425 status->set_stopped (GDB_SIGNAL_INT);
1426 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1427 /* FIXME: better way to check */
1428 status->set_stopped (record_full_list->u.end.sigval);
1429 else
1430 status->set_stopped (GDB_SIGNAL_TRAP);
1431 }
1432 }
1433 catch (const gdb_exception &ex)
1434 {
1435 if (execution_direction == EXEC_REVERSE)
1436 {
1437 if (record_full_list->next)
1438 record_full_list = record_full_list->next;
1439 }
1440 else
1441 record_full_list = record_full_list->prev;
1442
1443 throw;
1444 }
1445 }
1446
1447 signal (SIGINT, handle_sigint);
1448
1449 return inferior_ptid;
1450 }
1451
1452 ptid_t
1453 record_full_base_target::wait (ptid_t ptid, struct target_waitstatus *status,
1454 target_wait_flags options)
1455 {
1456 ptid_t return_ptid;
1457
1458 clear_async_event_handler (record_full_async_inferior_event_token);
1459
1460 return_ptid = record_full_wait_1 (this, ptid, status, options);
1461 if (status->kind () != TARGET_WAITKIND_IGNORE)
1462 {
1463 /* We're reporting a stop. Make sure any spurious
1464 target_wait(WNOHANG) doesn't advance the target until the
1465 core wants us resumed again. */
1466 record_full_resumed = 0;
1467 }
1468 return return_ptid;
1469 }
1470
1471 bool
1472 record_full_base_target::stopped_by_watchpoint ()
1473 {
1474 if (RECORD_FULL_IS_REPLAY)
1475 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1476 else
1477 return beneath ()->stopped_by_watchpoint ();
1478 }
1479
1480 bool
1481 record_full_base_target::stopped_data_address (CORE_ADDR *addr_p)
1482 {
1483 if (RECORD_FULL_IS_REPLAY)
1484 return false;
1485 else
1486 return this->beneath ()->stopped_data_address (addr_p);
1487 }
1488
1489 /* The stopped_by_sw_breakpoint method of target record-full. */
1490
1491 bool
1492 record_full_base_target::stopped_by_sw_breakpoint ()
1493 {
1494 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
1495 }
1496
1497 /* The supports_stopped_by_sw_breakpoint method of target
1498 record-full. */
1499
1500 bool
1501 record_full_base_target::supports_stopped_by_sw_breakpoint ()
1502 {
1503 return true;
1504 }
1505
1506 /* The stopped_by_hw_breakpoint method of target record-full. */
1507
1508 bool
1509 record_full_base_target::stopped_by_hw_breakpoint ()
1510 {
1511 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
1512 }
1513
1514 /* The supports_stopped_by_sw_breakpoint method of target
1515 record-full. */
1516
1517 bool
1518 record_full_base_target::supports_stopped_by_hw_breakpoint ()
1519 {
1520 return true;
1521 }
1522
1523 /* Record registers change (by user or by GDB) to list as an instruction. */
1524
1525 static void
1526 record_full_registers_change (struct regcache *regcache, int regnum)
1527 {
1528 /* Check record_full_insn_num. */
1529 record_full_check_insn_num ();
1530
1531 record_full_arch_list_head = NULL;
1532 record_full_arch_list_tail = NULL;
1533
1534 if (regnum < 0)
1535 {
1536 int i;
1537
1538 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
1539 {
1540 if (record_full_arch_list_add_reg (regcache, i))
1541 {
1542 record_full_list_release (record_full_arch_list_tail);
1543 error (_("Process record: failed to record execution log."));
1544 }
1545 }
1546 }
1547 else
1548 {
1549 if (record_full_arch_list_add_reg (regcache, regnum))
1550 {
1551 record_full_list_release (record_full_arch_list_tail);
1552 error (_("Process record: failed to record execution log."));
1553 }
1554 }
1555 if (record_full_arch_list_add_end ())
1556 {
1557 record_full_list_release (record_full_arch_list_tail);
1558 error (_("Process record: failed to record execution log."));
1559 }
1560 record_full_list->next = record_full_arch_list_head;
1561 record_full_arch_list_head->prev = record_full_list;
1562 record_full_list = record_full_arch_list_tail;
1563
1564 if (record_full_insn_num == record_full_insn_max_num)
1565 record_full_list_release_first ();
1566 else
1567 record_full_insn_num++;
1568 }
1569
1570 /* "store_registers" method for process record target. */
1571
1572 void
1573 record_full_target::store_registers (struct regcache *regcache, int regno)
1574 {
1575 if (!record_full_gdb_operation_disable)
1576 {
1577 if (RECORD_FULL_IS_REPLAY)
1578 {
1579 int n;
1580
1581 /* Let user choose if he wants to write register or not. */
1582 if (regno < 0)
1583 n =
1584 query (_("Because GDB is in replay mode, changing the "
1585 "value of a register will make the execution "
1586 "log unusable from this point onward. "
1587 "Change all registers?"));
1588 else
1589 n =
1590 query (_("Because GDB is in replay mode, changing the value "
1591 "of a register will make the execution log unusable "
1592 "from this point onward. Change register %s?"),
1593 gdbarch_register_name (regcache->arch (),
1594 regno));
1595
1596 if (!n)
1597 {
1598 /* Invalidate the value of regcache that was set in function
1599 "regcache_raw_write". */
1600 if (regno < 0)
1601 {
1602 int i;
1603
1604 for (i = 0;
1605 i < gdbarch_num_regs (regcache->arch ());
1606 i++)
1607 regcache->invalidate (i);
1608 }
1609 else
1610 regcache->invalidate (regno);
1611
1612 error (_("Process record canceled the operation."));
1613 }
1614
1615 /* Destroy the record from here forward. */
1616 record_full_list_release_following (record_full_list);
1617 }
1618
1619 record_full_registers_change (regcache, regno);
1620 }
1621 this->beneath ()->store_registers (regcache, regno);
1622 }
1623
1624 /* "xfer_partial" method. Behavior is conditional on
1625 RECORD_FULL_IS_REPLAY.
1626 In replay mode, we cannot write memory unles we are willing to
1627 invalidate the record/replay log from this point forward. */
1628
1629 enum target_xfer_status
1630 record_full_target::xfer_partial (enum target_object object,
1631 const char *annex, gdb_byte *readbuf,
1632 const gdb_byte *writebuf, ULONGEST offset,
1633 ULONGEST len, ULONGEST *xfered_len)
1634 {
1635 if (!record_full_gdb_operation_disable
1636 && (object == TARGET_OBJECT_MEMORY
1637 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1638 {
1639 if (RECORD_FULL_IS_REPLAY)
1640 {
1641 /* Let user choose if he wants to write memory or not. */
1642 if (!query (_("Because GDB is in replay mode, writing to memory "
1643 "will make the execution log unusable from this "
1644 "point onward. Write memory at address %s?"),
1645 paddress (target_gdbarch (), offset)))
1646 error (_("Process record canceled the operation."));
1647
1648 /* Destroy the record from here forward. */
1649 record_full_list_release_following (record_full_list);
1650 }
1651
1652 /* Check record_full_insn_num */
1653 record_full_check_insn_num ();
1654
1655 /* Record registers change to list as an instruction. */
1656 record_full_arch_list_head = NULL;
1657 record_full_arch_list_tail = NULL;
1658 if (record_full_arch_list_add_mem (offset, len))
1659 {
1660 record_full_list_release (record_full_arch_list_tail);
1661 if (record_debug)
1662 gdb_printf (gdb_stdlog,
1663 "Process record: failed to record "
1664 "execution log.");
1665 return TARGET_XFER_E_IO;
1666 }
1667 if (record_full_arch_list_add_end ())
1668 {
1669 record_full_list_release (record_full_arch_list_tail);
1670 if (record_debug)
1671 gdb_printf (gdb_stdlog,
1672 "Process record: failed to record "
1673 "execution log.");
1674 return TARGET_XFER_E_IO;
1675 }
1676 record_full_list->next = record_full_arch_list_head;
1677 record_full_arch_list_head->prev = record_full_list;
1678 record_full_list = record_full_arch_list_tail;
1679
1680 if (record_full_insn_num == record_full_insn_max_num)
1681 record_full_list_release_first ();
1682 else
1683 record_full_insn_num++;
1684 }
1685
1686 return this->beneath ()->xfer_partial (object, annex, readbuf, writebuf,
1687 offset, len, xfered_len);
1688 }
1689
1690 /* This structure represents a breakpoint inserted while the record
1691 target is active. We use this to know when to install/remove
1692 breakpoints in/from the target beneath. For example, a breakpoint
1693 may be inserted while recording, but removed when not replaying nor
1694 recording. In that case, the breakpoint had not been inserted on
1695 the target beneath, so we should not try to remove it there. */
1696
1697 struct record_full_breakpoint
1698 {
1699 record_full_breakpoint (struct address_space *address_space_,
1700 CORE_ADDR addr_,
1701 bool in_target_beneath_)
1702 : address_space (address_space_),
1703 addr (addr_),
1704 in_target_beneath (in_target_beneath_)
1705 {
1706 }
1707
1708 /* The address and address space the breakpoint was set at. */
1709 struct address_space *address_space;
1710 CORE_ADDR addr;
1711
1712 /* True when the breakpoint has been also installed in the target
1713 beneath. This will be false for breakpoints set during replay or
1714 when recording. */
1715 bool in_target_beneath;
1716 };
1717
1718 /* The list of breakpoints inserted while the record target is
1719 active. */
1720 static std::vector<record_full_breakpoint> record_full_breakpoints;
1721
1722 /* Sync existing breakpoints to record_full_breakpoints. */
1723
1724 static void
1725 record_full_init_record_breakpoints (void)
1726 {
1727 record_full_breakpoints.clear ();
1728
1729 for (bp_location *loc : all_bp_locations ())
1730 {
1731 if (loc->loc_type != bp_loc_software_breakpoint)
1732 continue;
1733
1734 if (loc->inserted)
1735 record_full_breakpoints.emplace_back
1736 (loc->target_info.placed_address_space,
1737 loc->target_info.placed_address, 1);
1738 }
1739 }
1740
1741 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1742 insert or remove breakpoints in the real target when replaying, nor
1743 when recording. */
1744
1745 int
1746 record_full_target::insert_breakpoint (struct gdbarch *gdbarch,
1747 struct bp_target_info *bp_tgt)
1748 {
1749 bool in_target_beneath = false;
1750
1751 if (!RECORD_FULL_IS_REPLAY)
1752 {
1753 /* When recording, we currently always single-step, so we don't
1754 really need to install regular breakpoints in the inferior.
1755 However, we do have to insert software single-step
1756 breakpoints, in case the target can't hardware step. To keep
1757 things simple, we always insert. */
1758
1759 scoped_restore restore_operation_disable
1760 = record_full_gdb_operation_disable_set ();
1761
1762 int ret = this->beneath ()->insert_breakpoint (gdbarch, bp_tgt);
1763 if (ret != 0)
1764 return ret;
1765
1766 in_target_beneath = true;
1767 }
1768
1769 /* Use the existing entries if found in order to avoid duplication
1770 in record_full_breakpoints. */
1771
1772 for (const record_full_breakpoint &bp : record_full_breakpoints)
1773 {
1774 if (bp.addr == bp_tgt->placed_address
1775 && bp.address_space == bp_tgt->placed_address_space)
1776 {
1777 gdb_assert (bp.in_target_beneath == in_target_beneath);
1778 return 0;
1779 }
1780 }
1781
1782 record_full_breakpoints.emplace_back (bp_tgt->placed_address_space,
1783 bp_tgt->placed_address,
1784 in_target_beneath);
1785 return 0;
1786 }
1787
1788 /* "remove_breakpoint" method for process record target. */
1789
1790 int
1791 record_full_target::remove_breakpoint (struct gdbarch *gdbarch,
1792 struct bp_target_info *bp_tgt,
1793 enum remove_bp_reason reason)
1794 {
1795 for (auto iter = record_full_breakpoints.begin ();
1796 iter != record_full_breakpoints.end ();
1797 ++iter)
1798 {
1799 struct record_full_breakpoint &bp = *iter;
1800
1801 if (bp.addr == bp_tgt->placed_address
1802 && bp.address_space == bp_tgt->placed_address_space)
1803 {
1804 if (bp.in_target_beneath)
1805 {
1806 scoped_restore restore_operation_disable
1807 = record_full_gdb_operation_disable_set ();
1808
1809 int ret = this->beneath ()->remove_breakpoint (gdbarch, bp_tgt,
1810 reason);
1811 if (ret != 0)
1812 return ret;
1813 }
1814
1815 if (reason == REMOVE_BREAKPOINT)
1816 unordered_remove (record_full_breakpoints, iter);
1817 return 0;
1818 }
1819 }
1820
1821 gdb_assert_not_reached ("removing unknown breakpoint");
1822 }
1823
1824 /* "can_execute_reverse" method for process record target. */
1825
1826 bool
1827 record_full_base_target::can_execute_reverse ()
1828 {
1829 return true;
1830 }
1831
1832 /* "get_bookmark" method for process record and prec over core. */
1833
1834 gdb_byte *
1835 record_full_base_target::get_bookmark (const char *args, int from_tty)
1836 {
1837 char *ret = NULL;
1838
1839 /* Return stringified form of instruction count. */
1840 if (record_full_list && record_full_list->type == record_full_end)
1841 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1842
1843 if (record_debug)
1844 {
1845 if (ret)
1846 gdb_printf (gdb_stdlog,
1847 "record_full_get_bookmark returns %s\n", ret);
1848 else
1849 gdb_printf (gdb_stdlog,
1850 "record_full_get_bookmark returns NULL\n");
1851 }
1852 return (gdb_byte *) ret;
1853 }
1854
1855 /* "goto_bookmark" method for process record and prec over core. */
1856
1857 void
1858 record_full_base_target::goto_bookmark (const gdb_byte *raw_bookmark,
1859 int from_tty)
1860 {
1861 const char *bookmark = (const char *) raw_bookmark;
1862
1863 if (record_debug)
1864 gdb_printf (gdb_stdlog,
1865 "record_full_goto_bookmark receives %s\n", bookmark);
1866
1867 std::string name_holder;
1868 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1869 {
1870 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1871 error (_("Unbalanced quotes: %s"), bookmark);
1872
1873 name_holder = std::string (bookmark + 1, strlen (bookmark) - 2);
1874 bookmark = name_holder.c_str ();
1875 }
1876
1877 record_goto (bookmark);
1878 }
1879
1880 enum exec_direction_kind
1881 record_full_base_target::execution_direction ()
1882 {
1883 return record_full_execution_dir;
1884 }
1885
1886 /* The record_method method of target record-full. */
1887
1888 enum record_method
1889 record_full_base_target::record_method (ptid_t ptid)
1890 {
1891 return RECORD_METHOD_FULL;
1892 }
1893
1894 void
1895 record_full_base_target::info_record ()
1896 {
1897 struct record_full_entry *p;
1898
1899 if (RECORD_FULL_IS_REPLAY)
1900 gdb_printf (_("Replay mode:\n"));
1901 else
1902 gdb_printf (_("Record mode:\n"));
1903
1904 /* Find entry for first actual instruction in the log. */
1905 for (p = record_full_first.next;
1906 p != NULL && p->type != record_full_end;
1907 p = p->next)
1908 ;
1909
1910 /* Do we have a log at all? */
1911 if (p != NULL && p->type == record_full_end)
1912 {
1913 /* Display instruction number for first instruction in the log. */
1914 gdb_printf (_("Lowest recorded instruction number is %s.\n"),
1915 pulongest (p->u.end.insn_num));
1916
1917 /* If in replay mode, display where we are in the log. */
1918 if (RECORD_FULL_IS_REPLAY)
1919 gdb_printf (_("Current instruction number is %s.\n"),
1920 pulongest (record_full_list->u.end.insn_num));
1921
1922 /* Display instruction number for last instruction in the log. */
1923 gdb_printf (_("Highest recorded instruction number is %s.\n"),
1924 pulongest (record_full_insn_count));
1925
1926 /* Display log count. */
1927 gdb_printf (_("Log contains %u instructions.\n"),
1928 record_full_insn_num);
1929 }
1930 else
1931 gdb_printf (_("No instructions have been logged.\n"));
1932
1933 /* Display max log size. */
1934 gdb_printf (_("Max logged instructions is %u.\n"),
1935 record_full_insn_max_num);
1936 }
1937
1938 bool
1939 record_full_base_target::supports_delete_record ()
1940 {
1941 return true;
1942 }
1943
1944 /* The "delete_record" target method. */
1945
1946 void
1947 record_full_base_target::delete_record ()
1948 {
1949 record_full_list_release_following (record_full_list);
1950 }
1951
1952 /* The "record_is_replaying" target method. */
1953
1954 bool
1955 record_full_base_target::record_is_replaying (ptid_t ptid)
1956 {
1957 return RECORD_FULL_IS_REPLAY;
1958 }
1959
1960 /* The "record_will_replay" target method. */
1961
1962 bool
1963 record_full_base_target::record_will_replay (ptid_t ptid, int dir)
1964 {
1965 /* We can currently only record when executing forwards. Should we be able
1966 to record when executing backwards on targets that support reverse
1967 execution, this needs to be changed. */
1968
1969 return RECORD_FULL_IS_REPLAY || dir == EXEC_REVERSE;
1970 }
1971
1972 /* Go to a specific entry. */
1973
1974 static void
1975 record_full_goto_entry (struct record_full_entry *p)
1976 {
1977 if (p == NULL)
1978 error (_("Target insn not found."));
1979 else if (p == record_full_list)
1980 error (_("Already at target insn."));
1981 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
1982 {
1983 gdb_printf (_("Go forward to insn number %s\n"),
1984 pulongest (p->u.end.insn_num));
1985 record_full_goto_insn (p, EXEC_FORWARD);
1986 }
1987 else
1988 {
1989 gdb_printf (_("Go backward to insn number %s\n"),
1990 pulongest (p->u.end.insn_num));
1991 record_full_goto_insn (p, EXEC_REVERSE);
1992 }
1993
1994 registers_changed ();
1995 reinit_frame_cache ();
1996 inferior_thread ()->set_stop_pc (regcache_read_pc (get_current_regcache ()));
1997 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
1998 }
1999
2000 /* The "goto_record_begin" target method. */
2001
2002 void
2003 record_full_base_target::goto_record_begin ()
2004 {
2005 struct record_full_entry *p = NULL;
2006
2007 for (p = &record_full_first; p != NULL; p = p->next)
2008 if (p->type == record_full_end)
2009 break;
2010
2011 record_full_goto_entry (p);
2012 }
2013
2014 /* The "goto_record_end" target method. */
2015
2016 void
2017 record_full_base_target::goto_record_end ()
2018 {
2019 struct record_full_entry *p = NULL;
2020
2021 for (p = record_full_list; p->next != NULL; p = p->next)
2022 ;
2023 for (; p!= NULL; p = p->prev)
2024 if (p->type == record_full_end)
2025 break;
2026
2027 record_full_goto_entry (p);
2028 }
2029
2030 /* The "goto_record" target method. */
2031
2032 void
2033 record_full_base_target::goto_record (ULONGEST target_insn)
2034 {
2035 struct record_full_entry *p = NULL;
2036
2037 for (p = &record_full_first; p != NULL; p = p->next)
2038 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
2039 break;
2040
2041 record_full_goto_entry (p);
2042 }
2043
2044 /* The "record_stop_replaying" target method. */
2045
2046 void
2047 record_full_base_target::record_stop_replaying ()
2048 {
2049 goto_record_end ();
2050 }
2051
2052 /* "resume" method for prec over corefile. */
2053
2054 void
2055 record_full_core_target::resume (ptid_t ptid, int step,
2056 enum gdb_signal signal)
2057 {
2058 record_full_resume_step = step;
2059 record_full_resumed = 1;
2060 record_full_execution_dir = ::execution_direction;
2061 }
2062
2063 /* "kill" method for prec over corefile. */
2064
2065 void
2066 record_full_core_target::kill ()
2067 {
2068 if (record_debug)
2069 gdb_printf (gdb_stdlog, "Process record: record_full_core_kill\n");
2070
2071 current_inferior ()->unpush_target (this);
2072 }
2073
2074 /* "fetch_registers" method for prec over corefile. */
2075
2076 void
2077 record_full_core_target::fetch_registers (struct regcache *regcache,
2078 int regno)
2079 {
2080 if (regno < 0)
2081 {
2082 int num = gdbarch_num_regs (regcache->arch ());
2083 int i;
2084
2085 for (i = 0; i < num; i ++)
2086 regcache->raw_supply (i, *record_full_core_regbuf);
2087 }
2088 else
2089 regcache->raw_supply (regno, *record_full_core_regbuf);
2090 }
2091
2092 /* "prepare_to_store" method for prec over corefile. */
2093
2094 void
2095 record_full_core_target::prepare_to_store (struct regcache *regcache)
2096 {
2097 }
2098
2099 /* "store_registers" method for prec over corefile. */
2100
2101 void
2102 record_full_core_target::store_registers (struct regcache *regcache,
2103 int regno)
2104 {
2105 if (record_full_gdb_operation_disable)
2106 record_full_core_regbuf->raw_supply (regno, *regcache);
2107 else
2108 error (_("You can't do that without a process to debug."));
2109 }
2110
2111 /* "xfer_partial" method for prec over corefile. */
2112
2113 enum target_xfer_status
2114 record_full_core_target::xfer_partial (enum target_object object,
2115 const char *annex, gdb_byte *readbuf,
2116 const gdb_byte *writebuf, ULONGEST offset,
2117 ULONGEST len, ULONGEST *xfered_len)
2118 {
2119 if (object == TARGET_OBJECT_MEMORY)
2120 {
2121 if (record_full_gdb_operation_disable || !writebuf)
2122 {
2123 for (target_section &p : record_full_core_sections)
2124 {
2125 if (offset >= p.addr)
2126 {
2127 struct record_full_core_buf_entry *entry;
2128 ULONGEST sec_offset;
2129
2130 if (offset >= p.endaddr)
2131 continue;
2132
2133 if (offset + len > p.endaddr)
2134 len = p.endaddr - offset;
2135
2136 sec_offset = offset - p.addr;
2137
2138 /* Read readbuf or write writebuf p, offset, len. */
2139 /* Check flags. */
2140 if (p.the_bfd_section->flags & SEC_CONSTRUCTOR
2141 || (p.the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2142 {
2143 if (readbuf)
2144 memset (readbuf, 0, len);
2145
2146 *xfered_len = len;
2147 return TARGET_XFER_OK;
2148 }
2149 /* Get record_full_core_buf_entry. */
2150 for (entry = record_full_core_buf_list; entry;
2151 entry = entry->prev)
2152 if (entry->p == &p)
2153 break;
2154 if (writebuf)
2155 {
2156 if (!entry)
2157 {
2158 /* Add a new entry. */
2159 entry = XNEW (struct record_full_core_buf_entry);
2160 entry->p = &p;
2161 if (!bfd_malloc_and_get_section
2162 (p.the_bfd_section->owner,
2163 p.the_bfd_section,
2164 &entry->buf))
2165 {
2166 xfree (entry);
2167 return TARGET_XFER_EOF;
2168 }
2169 entry->prev = record_full_core_buf_list;
2170 record_full_core_buf_list = entry;
2171 }
2172
2173 memcpy (entry->buf + sec_offset, writebuf,
2174 (size_t) len);
2175 }
2176 else
2177 {
2178 if (!entry)
2179 return this->beneath ()->xfer_partial (object, annex,
2180 readbuf, writebuf,
2181 offset, len,
2182 xfered_len);
2183
2184 memcpy (readbuf, entry->buf + sec_offset,
2185 (size_t) len);
2186 }
2187
2188 *xfered_len = len;
2189 return TARGET_XFER_OK;
2190 }
2191 }
2192
2193 return TARGET_XFER_E_IO;
2194 }
2195 else
2196 error (_("You can't do that without a process to debug."));
2197 }
2198
2199 return this->beneath ()->xfer_partial (object, annex,
2200 readbuf, writebuf, offset, len,
2201 xfered_len);
2202 }
2203
2204 /* "insert_breakpoint" method for prec over corefile. */
2205
2206 int
2207 record_full_core_target::insert_breakpoint (struct gdbarch *gdbarch,
2208 struct bp_target_info *bp_tgt)
2209 {
2210 return 0;
2211 }
2212
2213 /* "remove_breakpoint" method for prec over corefile. */
2214
2215 int
2216 record_full_core_target::remove_breakpoint (struct gdbarch *gdbarch,
2217 struct bp_target_info *bp_tgt,
2218 enum remove_bp_reason reason)
2219 {
2220 return 0;
2221 }
2222
2223 /* "has_execution" method for prec over corefile. */
2224
2225 bool
2226 record_full_core_target::has_execution (inferior *inf)
2227 {
2228 return true;
2229 }
2230
2231 /* Record log save-file format
2232 Version 1 (never released)
2233
2234 Header:
2235 4 bytes: magic number htonl(0x20090829).
2236 NOTE: be sure to change whenever this file format changes!
2237
2238 Records:
2239 record_full_end:
2240 1 byte: record type (record_full_end, see enum record_full_type).
2241 record_full_reg:
2242 1 byte: record type (record_full_reg, see enum record_full_type).
2243 8 bytes: register id (network byte order).
2244 MAX_REGISTER_SIZE bytes: register value.
2245 record_full_mem:
2246 1 byte: record type (record_full_mem, see enum record_full_type).
2247 8 bytes: memory length (network byte order).
2248 8 bytes: memory address (network byte order).
2249 n bytes: memory value (n == memory length).
2250
2251 Version 2
2252 4 bytes: magic number netorder32(0x20091016).
2253 NOTE: be sure to change whenever this file format changes!
2254
2255 Records:
2256 record_full_end:
2257 1 byte: record type (record_full_end, see enum record_full_type).
2258 4 bytes: signal
2259 4 bytes: instruction count
2260 record_full_reg:
2261 1 byte: record type (record_full_reg, see enum record_full_type).
2262 4 bytes: register id (network byte order).
2263 n bytes: register value (n == actual register size).
2264 (eg. 4 bytes for x86 general registers).
2265 record_full_mem:
2266 1 byte: record type (record_full_mem, see enum record_full_type).
2267 4 bytes: memory length (network byte order).
2268 8 bytes: memory address (network byte order).
2269 n bytes: memory value (n == memory length).
2270
2271 */
2272
2273 /* bfdcore_read -- read bytes from a core file section. */
2274
2275 static inline void
2276 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2277 {
2278 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2279
2280 if (ret)
2281 *offset += len;
2282 else
2283 error (_("Failed to read %d bytes from core file %s ('%s')."),
2284 len, bfd_get_filename (obfd),
2285 bfd_errmsg (bfd_get_error ()));
2286 }
2287
2288 static inline uint64_t
2289 netorder64 (uint64_t input)
2290 {
2291 uint64_t ret;
2292
2293 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2294 BFD_ENDIAN_BIG, input);
2295 return ret;
2296 }
2297
2298 static inline uint32_t
2299 netorder32 (uint32_t input)
2300 {
2301 uint32_t ret;
2302
2303 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2304 BFD_ENDIAN_BIG, input);
2305 return ret;
2306 }
2307
2308 /* Restore the execution log from a core_bfd file. */
2309 static void
2310 record_full_restore (void)
2311 {
2312 uint32_t magic;
2313 struct record_full_entry *rec;
2314 asection *osec;
2315 uint32_t osec_size;
2316 int bfd_offset = 0;
2317 struct regcache *regcache;
2318
2319 /* We restore the execution log from the open core bfd,
2320 if there is one. */
2321 if (core_bfd == NULL)
2322 return;
2323
2324 /* "record_full_restore" can only be called when record list is empty. */
2325 gdb_assert (record_full_first.next == NULL);
2326
2327 if (record_debug)
2328 gdb_printf (gdb_stdlog, "Restoring recording from core file.\n");
2329
2330 /* Now need to find our special note section. */
2331 osec = bfd_get_section_by_name (core_bfd, "null0");
2332 if (record_debug)
2333 gdb_printf (gdb_stdlog, "Find precord section %s.\n",
2334 osec ? "succeeded" : "failed");
2335 if (osec == NULL)
2336 return;
2337 osec_size = bfd_section_size (osec);
2338 if (record_debug)
2339 gdb_printf (gdb_stdlog, "%s", bfd_section_name (osec));
2340
2341 /* Check the magic code. */
2342 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2343 if (magic != RECORD_FULL_FILE_MAGIC)
2344 error (_("Version mis-match or file format error in core file %s."),
2345 bfd_get_filename (core_bfd));
2346 if (record_debug)
2347 gdb_printf (gdb_stdlog,
2348 " Reading 4-byte magic cookie "
2349 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2350 phex_nz (netorder32 (magic), 4));
2351
2352 /* Restore the entries in recfd into record_full_arch_list_head and
2353 record_full_arch_list_tail. */
2354 record_full_arch_list_head = NULL;
2355 record_full_arch_list_tail = NULL;
2356 record_full_insn_num = 0;
2357
2358 try
2359 {
2360 regcache = get_current_regcache ();
2361
2362 while (1)
2363 {
2364 uint8_t rectype;
2365 uint32_t regnum, len, signal, count;
2366 uint64_t addr;
2367
2368 /* We are finished when offset reaches osec_size. */
2369 if (bfd_offset >= osec_size)
2370 break;
2371 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2372
2373 switch (rectype)
2374 {
2375 case record_full_reg: /* reg */
2376 /* Get register number to regnum. */
2377 bfdcore_read (core_bfd, osec, &regnum,
2378 sizeof (regnum), &bfd_offset);
2379 regnum = netorder32 (regnum);
2380
2381 rec = record_full_reg_alloc (regcache, regnum);
2382
2383 /* Get val. */
2384 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2385 rec->u.reg.len, &bfd_offset);
2386
2387 if (record_debug)
2388 gdb_printf (gdb_stdlog,
2389 " Reading register %d (1 "
2390 "plus %lu plus %d bytes)\n",
2391 rec->u.reg.num,
2392 (unsigned long) sizeof (regnum),
2393 rec->u.reg.len);
2394 break;
2395
2396 case record_full_mem: /* mem */
2397 /* Get len. */
2398 bfdcore_read (core_bfd, osec, &len,
2399 sizeof (len), &bfd_offset);
2400 len = netorder32 (len);
2401
2402 /* Get addr. */
2403 bfdcore_read (core_bfd, osec, &addr,
2404 sizeof (addr), &bfd_offset);
2405 addr = netorder64 (addr);
2406
2407 rec = record_full_mem_alloc (addr, len);
2408
2409 /* Get val. */
2410 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2411 rec->u.mem.len, &bfd_offset);
2412
2413 if (record_debug)
2414 gdb_printf (gdb_stdlog,
2415 " Reading memory %s (1 plus "
2416 "%lu plus %lu plus %d bytes)\n",
2417 paddress (get_current_arch (),
2418 rec->u.mem.addr),
2419 (unsigned long) sizeof (addr),
2420 (unsigned long) sizeof (len),
2421 rec->u.mem.len);
2422 break;
2423
2424 case record_full_end: /* end */
2425 rec = record_full_end_alloc ();
2426 record_full_insn_num ++;
2427
2428 /* Get signal value. */
2429 bfdcore_read (core_bfd, osec, &signal,
2430 sizeof (signal), &bfd_offset);
2431 signal = netorder32 (signal);
2432 rec->u.end.sigval = (enum gdb_signal) signal;
2433
2434 /* Get insn count. */
2435 bfdcore_read (core_bfd, osec, &count,
2436 sizeof (count), &bfd_offset);
2437 count = netorder32 (count);
2438 rec->u.end.insn_num = count;
2439 record_full_insn_count = count + 1;
2440 if (record_debug)
2441 gdb_printf (gdb_stdlog,
2442 " Reading record_full_end (1 + "
2443 "%lu + %lu bytes), offset == %s\n",
2444 (unsigned long) sizeof (signal),
2445 (unsigned long) sizeof (count),
2446 paddress (get_current_arch (),
2447 bfd_offset));
2448 break;
2449
2450 default:
2451 error (_("Bad entry type in core file %s."),
2452 bfd_get_filename (core_bfd));
2453 break;
2454 }
2455
2456 /* Add rec to record arch list. */
2457 record_full_arch_list_add (rec);
2458 }
2459 }
2460 catch (const gdb_exception &ex)
2461 {
2462 record_full_list_release (record_full_arch_list_tail);
2463 throw;
2464 }
2465
2466 /* Add record_full_arch_list_head to the end of record list. */
2467 record_full_first.next = record_full_arch_list_head;
2468 record_full_arch_list_head->prev = &record_full_first;
2469 record_full_arch_list_tail->next = NULL;
2470 record_full_list = &record_full_first;
2471
2472 /* Update record_full_insn_max_num. */
2473 if (record_full_insn_num > record_full_insn_max_num)
2474 {
2475 record_full_insn_max_num = record_full_insn_num;
2476 warning (_("Auto increase record/replay buffer limit to %u."),
2477 record_full_insn_max_num);
2478 }
2479
2480 /* Succeeded. */
2481 gdb_printf (_("Restored records from core file %s.\n"),
2482 bfd_get_filename (core_bfd));
2483
2484 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2485 }
2486
2487 /* bfdcore_write -- write bytes into a core file section. */
2488
2489 static inline void
2490 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2491 {
2492 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2493
2494 if (ret)
2495 *offset += len;
2496 else
2497 error (_("Failed to write %d bytes to core file %s ('%s')."),
2498 len, bfd_get_filename (obfd),
2499 bfd_errmsg (bfd_get_error ()));
2500 }
2501
2502 /* Restore the execution log from a file. We use a modified elf
2503 corefile format, with an extra section for our data. */
2504
2505 static void
2506 cmd_record_full_restore (const char *args, int from_tty)
2507 {
2508 core_file_command (args, from_tty);
2509 record_full_open (args, from_tty);
2510 }
2511
2512 /* Save the execution log to a file. We use a modified elf corefile
2513 format, with an extra section for our data. */
2514
2515 void
2516 record_full_base_target::save_record (const char *recfilename)
2517 {
2518 struct record_full_entry *cur_record_full_list;
2519 uint32_t magic;
2520 struct regcache *regcache;
2521 struct gdbarch *gdbarch;
2522 int save_size = 0;
2523 asection *osec = NULL;
2524 int bfd_offset = 0;
2525
2526 /* Open the save file. */
2527 if (record_debug)
2528 gdb_printf (gdb_stdlog, "Saving execution log to core file '%s'\n",
2529 recfilename);
2530
2531 /* Open the output file. */
2532 gdb_bfd_ref_ptr obfd (create_gcore_bfd (recfilename));
2533
2534 /* Arrange to remove the output file on failure. */
2535 gdb::unlinker unlink_file (recfilename);
2536
2537 /* Save the current record entry to "cur_record_full_list". */
2538 cur_record_full_list = record_full_list;
2539
2540 /* Get the values of regcache and gdbarch. */
2541 regcache = get_current_regcache ();
2542 gdbarch = regcache->arch ();
2543
2544 /* Disable the GDB operation record. */
2545 scoped_restore restore_operation_disable
2546 = record_full_gdb_operation_disable_set ();
2547
2548 /* Reverse execute to the begin of record list. */
2549 while (1)
2550 {
2551 /* Check for beginning and end of log. */
2552 if (record_full_list == &record_full_first)
2553 break;
2554
2555 record_full_exec_insn (regcache, gdbarch, record_full_list);
2556
2557 if (record_full_list->prev)
2558 record_full_list = record_full_list->prev;
2559 }
2560
2561 /* Compute the size needed for the extra bfd section. */
2562 save_size = 4; /* magic cookie */
2563 for (record_full_list = record_full_first.next; record_full_list;
2564 record_full_list = record_full_list->next)
2565 switch (record_full_list->type)
2566 {
2567 case record_full_end:
2568 save_size += 1 + 4 + 4;
2569 break;
2570 case record_full_reg:
2571 save_size += 1 + 4 + record_full_list->u.reg.len;
2572 break;
2573 case record_full_mem:
2574 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2575 break;
2576 }
2577
2578 /* Make the new bfd section. */
2579 osec = bfd_make_section_anyway_with_flags (obfd.get (), "precord",
2580 SEC_HAS_CONTENTS
2581 | SEC_READONLY);
2582 if (osec == NULL)
2583 error (_("Failed to create 'precord' section for corefile %s: %s"),
2584 recfilename,
2585 bfd_errmsg (bfd_get_error ()));
2586 bfd_set_section_size (osec, save_size);
2587 bfd_set_section_vma (osec, 0);
2588 bfd_set_section_alignment (osec, 0);
2589
2590 /* Save corefile state. */
2591 write_gcore_file (obfd.get ());
2592
2593 /* Write out the record log. */
2594 /* Write the magic code. */
2595 magic = RECORD_FULL_FILE_MAGIC;
2596 if (record_debug)
2597 gdb_printf (gdb_stdlog,
2598 " Writing 4-byte magic cookie "
2599 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2600 phex_nz (magic, 4));
2601 bfdcore_write (obfd.get (), osec, &magic, sizeof (magic), &bfd_offset);
2602
2603 /* Save the entries to recfd and forward execute to the end of
2604 record list. */
2605 record_full_list = &record_full_first;
2606 while (1)
2607 {
2608 /* Save entry. */
2609 if (record_full_list != &record_full_first)
2610 {
2611 uint8_t type;
2612 uint32_t regnum, len, signal, count;
2613 uint64_t addr;
2614
2615 type = record_full_list->type;
2616 bfdcore_write (obfd.get (), osec, &type, sizeof (type), &bfd_offset);
2617
2618 switch (record_full_list->type)
2619 {
2620 case record_full_reg: /* reg */
2621 if (record_debug)
2622 gdb_printf (gdb_stdlog,
2623 " Writing register %d (1 "
2624 "plus %lu plus %d bytes)\n",
2625 record_full_list->u.reg.num,
2626 (unsigned long) sizeof (regnum),
2627 record_full_list->u.reg.len);
2628
2629 /* Write regnum. */
2630 regnum = netorder32 (record_full_list->u.reg.num);
2631 bfdcore_write (obfd.get (), osec, &regnum,
2632 sizeof (regnum), &bfd_offset);
2633
2634 /* Write regval. */
2635 bfdcore_write (obfd.get (), osec,
2636 record_full_get_loc (record_full_list),
2637 record_full_list->u.reg.len, &bfd_offset);
2638 break;
2639
2640 case record_full_mem: /* mem */
2641 if (record_debug)
2642 gdb_printf (gdb_stdlog,
2643 " Writing memory %s (1 plus "
2644 "%lu plus %lu plus %d bytes)\n",
2645 paddress (gdbarch,
2646 record_full_list->u.mem.addr),
2647 (unsigned long) sizeof (addr),
2648 (unsigned long) sizeof (len),
2649 record_full_list->u.mem.len);
2650
2651 /* Write memlen. */
2652 len = netorder32 (record_full_list->u.mem.len);
2653 bfdcore_write (obfd.get (), osec, &len, sizeof (len),
2654 &bfd_offset);
2655
2656 /* Write memaddr. */
2657 addr = netorder64 (record_full_list->u.mem.addr);
2658 bfdcore_write (obfd.get (), osec, &addr,
2659 sizeof (addr), &bfd_offset);
2660
2661 /* Write memval. */
2662 bfdcore_write (obfd.get (), osec,
2663 record_full_get_loc (record_full_list),
2664 record_full_list->u.mem.len, &bfd_offset);
2665 break;
2666
2667 case record_full_end:
2668 if (record_debug)
2669 gdb_printf (gdb_stdlog,
2670 " Writing record_full_end (1 + "
2671 "%lu + %lu bytes)\n",
2672 (unsigned long) sizeof (signal),
2673 (unsigned long) sizeof (count));
2674 /* Write signal value. */
2675 signal = netorder32 (record_full_list->u.end.sigval);
2676 bfdcore_write (obfd.get (), osec, &signal,
2677 sizeof (signal), &bfd_offset);
2678
2679 /* Write insn count. */
2680 count = netorder32 (record_full_list->u.end.insn_num);
2681 bfdcore_write (obfd.get (), osec, &count,
2682 sizeof (count), &bfd_offset);
2683 break;
2684 }
2685 }
2686
2687 /* Execute entry. */
2688 record_full_exec_insn (regcache, gdbarch, record_full_list);
2689
2690 if (record_full_list->next)
2691 record_full_list = record_full_list->next;
2692 else
2693 break;
2694 }
2695
2696 /* Reverse execute to cur_record_full_list. */
2697 while (1)
2698 {
2699 /* Check for beginning and end of log. */
2700 if (record_full_list == cur_record_full_list)
2701 break;
2702
2703 record_full_exec_insn (regcache, gdbarch, record_full_list);
2704
2705 if (record_full_list->prev)
2706 record_full_list = record_full_list->prev;
2707 }
2708
2709 unlink_file.keep ();
2710
2711 /* Succeeded. */
2712 gdb_printf (_("Saved core file %s with execution log.\n"),
2713 recfilename);
2714 }
2715
2716 /* record_full_goto_insn -- rewind the record log (forward or backward,
2717 depending on DIR) to the given entry, changing the program state
2718 correspondingly. */
2719
2720 static void
2721 record_full_goto_insn (struct record_full_entry *entry,
2722 enum exec_direction_kind dir)
2723 {
2724 scoped_restore restore_operation_disable
2725 = record_full_gdb_operation_disable_set ();
2726 struct regcache *regcache = get_current_regcache ();
2727 struct gdbarch *gdbarch = regcache->arch ();
2728
2729 /* Assume everything is valid: we will hit the entry,
2730 and we will not hit the end of the recording. */
2731
2732 if (dir == EXEC_FORWARD)
2733 record_full_list = record_full_list->next;
2734
2735 do
2736 {
2737 record_full_exec_insn (regcache, gdbarch, record_full_list);
2738 if (dir == EXEC_REVERSE)
2739 record_full_list = record_full_list->prev;
2740 else
2741 record_full_list = record_full_list->next;
2742 } while (record_full_list != entry);
2743 }
2744
2745 /* Alias for "target record-full". */
2746
2747 static void
2748 cmd_record_full_start (const char *args, int from_tty)
2749 {
2750 execute_command ("target record-full", from_tty);
2751 }
2752
2753 static void
2754 set_record_full_insn_max_num (const char *args, int from_tty,
2755 struct cmd_list_element *c)
2756 {
2757 if (record_full_insn_num > record_full_insn_max_num)
2758 {
2759 /* Count down record_full_insn_num while releasing records from list. */
2760 while (record_full_insn_num > record_full_insn_max_num)
2761 {
2762 record_full_list_release_first ();
2763 record_full_insn_num--;
2764 }
2765 }
2766 }
2767
2768 /* Implement the 'maintenance print record-instruction' command. */
2769
2770 static void
2771 maintenance_print_record_instruction (const char *args, int from_tty)
2772 {
2773 struct record_full_entry *to_print = record_full_list;
2774
2775 if (args != nullptr)
2776 {
2777 int offset = value_as_long (parse_and_eval (args));
2778 if (offset > 0)
2779 {
2780 /* Move forward OFFSET instructions. We know we found the
2781 end of an instruction when to_print->type is record_full_end. */
2782 while (to_print->next != nullptr && offset > 0)
2783 {
2784 to_print = to_print->next;
2785 if (to_print->type == record_full_end)
2786 offset--;
2787 }
2788 if (offset != 0)
2789 error (_("Not enough recorded history"));
2790 }
2791 else
2792 {
2793 while (to_print->prev != nullptr && offset < 0)
2794 {
2795 to_print = to_print->prev;
2796 if (to_print->type == record_full_end)
2797 offset++;
2798 }
2799 if (offset != 0)
2800 error (_("Not enough recorded history"));
2801 }
2802 }
2803 gdb_assert (to_print != nullptr);
2804
2805 /* Go back to the start of the instruction. */
2806 while (to_print->prev != nullptr && to_print->prev->type != record_full_end)
2807 to_print = to_print->prev;
2808
2809 /* if we're in the first record, there are no actual instructions
2810 recorded. Warn the user and leave. */
2811 if (to_print == &record_full_first)
2812 error (_("Not enough recorded history"));
2813
2814 while (to_print->type != record_full_end)
2815 {
2816 switch (to_print->type)
2817 {
2818 case record_full_reg:
2819 {
2820 type *regtype = gdbarch_register_type (target_gdbarch (),
2821 to_print->u.reg.num);
2822 value *val
2823 = value_from_contents (regtype,
2824 record_full_get_loc (to_print));
2825 gdb_printf ("Register %s changed: ",
2826 gdbarch_register_name (target_gdbarch (),
2827 to_print->u.reg.num));
2828 struct value_print_options opts;
2829 get_user_print_options (&opts);
2830 opts.raw = true;
2831 value_print (val, gdb_stdout, &opts);
2832 gdb_printf ("\n");
2833 break;
2834 }
2835 case record_full_mem:
2836 {
2837 gdb_byte *b = record_full_get_loc (to_print);
2838 gdb_printf ("%d bytes of memory at address %s changed from:",
2839 to_print->u.mem.len,
2840 print_core_address (target_gdbarch (),
2841 to_print->u.mem.addr));
2842 for (int i = 0; i < to_print->u.mem.len; i++)
2843 gdb_printf (" %02x", b[i]);
2844 gdb_printf ("\n");
2845 break;
2846 }
2847 }
2848 to_print = to_print->next;
2849 }
2850 }
2851
2852 void _initialize_record_full ();
2853 void
2854 _initialize_record_full ()
2855 {
2856 struct cmd_list_element *c;
2857
2858 /* Init record_full_first. */
2859 record_full_first.prev = NULL;
2860 record_full_first.next = NULL;
2861 record_full_first.type = record_full_end;
2862
2863 add_target (record_full_target_info, record_full_open);
2864 add_deprecated_target_alias (record_full_target_info, "record");
2865 add_target (record_full_core_target_info, record_full_open);
2866
2867 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2868 _("Start full execution recording."), &record_full_cmdlist,
2869 0, &record_cmdlist);
2870
2871 cmd_list_element *record_full_restore_cmd
2872 = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2873 _("Restore the execution log from a file.\n\
2874 Argument is filename. File must be created with 'record save'."),
2875 &record_full_cmdlist);
2876 set_cmd_completer (record_full_restore_cmd, filename_completer);
2877
2878 /* Deprecate the old version without "full" prefix. */
2879 c = add_alias_cmd ("restore", record_full_restore_cmd, class_obscure, 1,
2880 &record_cmdlist);
2881 set_cmd_completer (c, filename_completer);
2882 deprecate_cmd (c, "record full restore");
2883
2884 add_setshow_prefix_cmd ("full", class_support,
2885 _("Set record options."),
2886 _("Show record options."),
2887 &set_record_full_cmdlist,
2888 &show_record_full_cmdlist,
2889 &set_record_cmdlist,
2890 &show_record_cmdlist);
2891
2892 /* Record instructions number limit command. */
2893 set_show_commands set_record_full_stop_at_limit_cmds
2894 = add_setshow_boolean_cmd ("stop-at-limit", no_class,
2895 &record_full_stop_at_limit, _("\
2896 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2897 Show whether record/replay stops when record/replay buffer becomes full."),
2898 _("Default is ON.\n\
2899 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2900 When OFF, if the record/replay buffer becomes full,\n\
2901 delete the oldest recorded instruction to make room for each new one."),
2902 NULL, NULL,
2903 &set_record_full_cmdlist,
2904 &show_record_full_cmdlist);
2905
2906 c = add_alias_cmd ("stop-at-limit",
2907 set_record_full_stop_at_limit_cmds.set, no_class, 1,
2908 &set_record_cmdlist);
2909 deprecate_cmd (c, "set record full stop-at-limit");
2910
2911 c = add_alias_cmd ("stop-at-limit",
2912 set_record_full_stop_at_limit_cmds.show, no_class, 1,
2913 &show_record_cmdlist);
2914 deprecate_cmd (c, "show record full stop-at-limit");
2915
2916 set_show_commands record_full_insn_number_max_cmds
2917 = add_setshow_uinteger_cmd ("insn-number-max", no_class,
2918 &record_full_insn_max_num,
2919 _("Set record/replay buffer limit."),
2920 _("Show record/replay buffer limit."), _("\
2921 Set the maximum number of instructions to be stored in the\n\
2922 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
2923 limit. Default is 200000."),
2924 set_record_full_insn_max_num,
2925 NULL, &set_record_full_cmdlist,
2926 &show_record_full_cmdlist);
2927
2928 c = add_alias_cmd ("insn-number-max", record_full_insn_number_max_cmds.set,
2929 no_class, 1, &set_record_cmdlist);
2930 deprecate_cmd (c, "set record full insn-number-max");
2931
2932 c = add_alias_cmd ("insn-number-max", record_full_insn_number_max_cmds.show,
2933 no_class, 1, &show_record_cmdlist);
2934 deprecate_cmd (c, "show record full insn-number-max");
2935
2936 set_show_commands record_full_memory_query_cmds
2937 = add_setshow_boolean_cmd ("memory-query", no_class,
2938 &record_full_memory_query, _("\
2939 Set whether query if PREC cannot record memory change of next instruction."),
2940 _("\
2941 Show whether query if PREC cannot record memory change of next instruction."),
2942 _("\
2943 Default is OFF.\n\
2944 When ON, query if PREC cannot record memory change of next instruction."),
2945 NULL, NULL,
2946 &set_record_full_cmdlist,
2947 &show_record_full_cmdlist);
2948
2949 c = add_alias_cmd ("memory-query", record_full_memory_query_cmds.set,
2950 no_class, 1, &set_record_cmdlist);
2951 deprecate_cmd (c, "set record full memory-query");
2952
2953 c = add_alias_cmd ("memory-query", record_full_memory_query_cmds.show,
2954 no_class, 1,&show_record_cmdlist);
2955 deprecate_cmd (c, "show record full memory-query");
2956
2957 add_cmd ("record-instruction", class_maintenance,
2958 maintenance_print_record_instruction,
2959 _("\
2960 Print a recorded instruction.\n\
2961 If no argument is provided, print the last instruction recorded.\n\
2962 If a negative argument is given, prints how the nth previous \
2963 instruction will be undone.\n\
2964 If a positive argument is given, prints \
2965 how the nth following instruction will be redone."), &maintenanceprintlist);
2966 }