ODR warnings for "struct coff_symbol"
[binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbthread.h"
23 #include "target.h"
24 #include "test-target.h"
25 #include "scoped-mock-context.h"
26 #include "gdbarch.h"
27 #include "gdbcmd.h"
28 #include "regcache.h"
29 #include "reggroups.h"
30 #include "observable.h"
31 #include "regset.h"
32 #include <unordered_map>
33 #include "cli/cli-cmds.h"
34
35 /*
36 * DATA STRUCTURE
37 *
38 * Here is the actual register cache.
39 */
40
41 /* Per-architecture object describing the layout of a register cache.
42 Computed once when the architecture is created. */
43
44 static struct gdbarch_data *regcache_descr_handle;
45
46 struct regcache_descr
47 {
48 /* The architecture this descriptor belongs to. */
49 struct gdbarch *gdbarch;
50
51 /* The raw register cache. Each raw (or hard) register is supplied
52 by the target interface. The raw cache should not contain
53 redundant information - if the PC is constructed from two
54 registers then those registers and not the PC lives in the raw
55 cache. */
56 long sizeof_raw_registers;
57
58 /* The cooked register space. Each cooked register in the range
59 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
60 register. The remaining [NR_RAW_REGISTERS
61 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
62 both raw registers and memory by the architecture methods
63 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
64 int nr_cooked_registers;
65 long sizeof_cooked_registers;
66
67 /* Offset and size (in 8 bit bytes), of each register in the
68 register cache. All registers (including those in the range
69 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
70 offset. */
71 long *register_offset;
72 long *sizeof_register;
73
74 /* Cached table containing the type of each register. */
75 struct type **register_type;
76 };
77
78 static void *
79 init_regcache_descr (struct gdbarch *gdbarch)
80 {
81 int i;
82 struct regcache_descr *descr;
83 gdb_assert (gdbarch != NULL);
84
85 /* Create an initial, zero filled, table. */
86 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
87 descr->gdbarch = gdbarch;
88
89 /* Total size of the register space. The raw registers are mapped
90 directly onto the raw register cache while the pseudo's are
91 either mapped onto raw-registers or memory. */
92 descr->nr_cooked_registers = gdbarch_num_cooked_regs (gdbarch);
93
94 /* Fill in a table of register types. */
95 descr->register_type
96 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
97 struct type *);
98 for (i = 0; i < descr->nr_cooked_registers; i++)
99 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
100
101 /* Construct a strictly RAW register cache. Don't allow pseudo's
102 into the register cache. */
103
104 /* Lay out the register cache.
105
106 NOTE: cagney/2002-05-22: Only register_type () is used when
107 constructing the register cache. It is assumed that the
108 register's raw size, virtual size and type length are all the
109 same. */
110
111 {
112 long offset = 0;
113
114 descr->sizeof_register
115 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
116 descr->register_offset
117 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
118 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
119 {
120 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
121 descr->register_offset[i] = offset;
122 offset += descr->sizeof_register[i];
123 }
124 /* Set the real size of the raw register cache buffer. */
125 descr->sizeof_raw_registers = offset;
126
127 for (; i < descr->nr_cooked_registers; i++)
128 {
129 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
130 descr->register_offset[i] = offset;
131 offset += descr->sizeof_register[i];
132 }
133 /* Set the real size of the readonly register cache buffer. */
134 descr->sizeof_cooked_registers = offset;
135 }
136
137 return descr;
138 }
139
140 static struct regcache_descr *
141 regcache_descr (struct gdbarch *gdbarch)
142 {
143 return (struct regcache_descr *) gdbarch_data (gdbarch,
144 regcache_descr_handle);
145 }
146
147 /* Utility functions returning useful register attributes stored in
148 the regcache descr. */
149
150 struct type *
151 register_type (struct gdbarch *gdbarch, int regnum)
152 {
153 struct regcache_descr *descr = regcache_descr (gdbarch);
154
155 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
156 return descr->register_type[regnum];
157 }
158
159 /* Utility functions returning useful register attributes stored in
160 the regcache descr. */
161
162 int
163 register_size (struct gdbarch *gdbarch, int regnum)
164 {
165 struct regcache_descr *descr = regcache_descr (gdbarch);
166 int size;
167
168 gdb_assert (regnum >= 0 && regnum < gdbarch_num_cooked_regs (gdbarch));
169 size = descr->sizeof_register[regnum];
170 return size;
171 }
172
173 /* See gdbsupport/common-regcache.h. */
174
175 int
176 regcache_register_size (const struct regcache *regcache, int n)
177 {
178 return register_size (regcache->arch (), n);
179 }
180
181 reg_buffer::reg_buffer (gdbarch *gdbarch, bool has_pseudo)
182 : m_has_pseudo (has_pseudo)
183 {
184 gdb_assert (gdbarch != NULL);
185 m_descr = regcache_descr (gdbarch);
186
187 /* We don't zero-initialize the M_REGISTERS array, as the bytes it contains
188 aren't meaningful as long as the corresponding register status is not
189 REG_VALID. */
190 if (has_pseudo)
191 {
192 m_registers.reset (new gdb_byte[m_descr->sizeof_cooked_registers]);
193 m_register_status.reset
194 (new register_status[m_descr->nr_cooked_registers] ());
195 }
196 else
197 {
198 m_registers.reset (new gdb_byte[m_descr->sizeof_raw_registers]);
199 m_register_status.reset
200 (new register_status[gdbarch_num_regs (gdbarch)] ());
201 }
202 }
203
204 regcache::regcache (process_stratum_target *target, gdbarch *gdbarch,
205 const address_space *aspace_)
206 /* The register buffers. A read/write register cache can only hold
207 [0 .. gdbarch_num_regs). */
208 : detached_regcache (gdbarch, false), m_aspace (aspace_), m_target (target)
209 {
210 m_ptid = minus_one_ptid;
211 }
212
213 readonly_detached_regcache::readonly_detached_regcache (regcache &src)
214 : readonly_detached_regcache (src.arch (),
215 [&src] (int regnum, gdb_byte *buf)
216 {
217 return src.cooked_read (regnum, buf);
218 })
219 {
220 }
221
222 gdbarch *
223 reg_buffer::arch () const
224 {
225 return m_descr->gdbarch;
226 }
227
228 /* Return a pointer to register REGNUM's buffer cache. */
229
230 gdb_byte *
231 reg_buffer::register_buffer (int regnum) const
232 {
233 return m_registers.get () + m_descr->register_offset[regnum];
234 }
235
236 void
237 reg_buffer::save (register_read_ftype cooked_read)
238 {
239 struct gdbarch *gdbarch = m_descr->gdbarch;
240 int regnum;
241
242 /* It should have pseudo registers. */
243 gdb_assert (m_has_pseudo);
244 /* Clear the dest. */
245 memset (m_registers.get (), 0, m_descr->sizeof_cooked_registers);
246 memset (m_register_status.get (), REG_UNKNOWN, m_descr->nr_cooked_registers);
247 /* Copy over any registers (identified by their membership in the
248 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
249 gdbarch_num_pseudo_regs) range is checked since some architectures need
250 to save/restore `cooked' registers that live in memory. */
251 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
252 {
253 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
254 {
255 gdb_byte *dst_buf = register_buffer (regnum);
256 enum register_status status = cooked_read (regnum, dst_buf);
257
258 gdb_assert (status != REG_UNKNOWN);
259
260 if (status != REG_VALID)
261 memset (dst_buf, 0, register_size (gdbarch, regnum));
262
263 m_register_status[regnum] = status;
264 }
265 }
266 }
267
268 void
269 regcache::restore (readonly_detached_regcache *src)
270 {
271 struct gdbarch *gdbarch = m_descr->gdbarch;
272 int regnum;
273
274 gdb_assert (src != NULL);
275 gdb_assert (src->m_has_pseudo);
276
277 gdb_assert (gdbarch == src->arch ());
278
279 /* Copy over any registers, being careful to only restore those that
280 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
281 + gdbarch_num_pseudo_regs) range is checked since some architectures need
282 to save/restore `cooked' registers that live in memory. */
283 for (regnum = 0; regnum < m_descr->nr_cooked_registers; regnum++)
284 {
285 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
286 {
287 if (src->m_register_status[regnum] == REG_VALID)
288 cooked_write (regnum, src->register_buffer (regnum));
289 }
290 }
291 }
292
293 /* See gdbsupport/common-regcache.h. */
294
295 enum register_status
296 reg_buffer::get_register_status (int regnum) const
297 {
298 assert_regnum (regnum);
299
300 return m_register_status[regnum];
301 }
302
303 void
304 reg_buffer::invalidate (int regnum)
305 {
306 assert_regnum (regnum);
307 m_register_status[regnum] = REG_UNKNOWN;
308 }
309
310 void
311 reg_buffer::assert_regnum (int regnum) const
312 {
313 gdb_assert (regnum >= 0);
314 if (m_has_pseudo)
315 gdb_assert (regnum < m_descr->nr_cooked_registers);
316 else
317 gdb_assert (regnum < gdbarch_num_regs (arch ()));
318 }
319
320 /* Type to map a ptid to a list of regcaches (one thread may have multiple
321 regcaches, associated to different gdbarches). */
322
323 using ptid_regcache_map
324 = std::unordered_multimap<ptid_t, regcache_up, hash_ptid>;
325
326 /* Type holding regcaches for a given pid. */
327
328 using pid_ptid_regcache_map = std::unordered_map<int, ptid_regcache_map>;
329
330 /* Type holding regcaches for a given target. */
331
332 using target_pid_ptid_regcache_map
333 = std::unordered_map<process_stratum_target *, pid_ptid_regcache_map>;
334
335 /* Global structure containing the existing regcaches. */
336
337 /* NOTE: this is a write-through cache. There is no "dirty" bit for
338 recording if the register values have been changed (eg. by the
339 user). Therefore all registers must be written back to the
340 target when appropriate. */
341 static target_pid_ptid_regcache_map regcaches;
342
343 struct regcache *
344 get_thread_arch_aspace_regcache (process_stratum_target *target,
345 ptid_t ptid, gdbarch *arch,
346 struct address_space *aspace)
347 {
348 gdb_assert (target != nullptr);
349
350 /* Find the map for this target. */
351 pid_ptid_regcache_map &pid_ptid_regc_map = regcaches[target];
352
353 /* Find the map for this pid. */
354 ptid_regcache_map &ptid_regc_map = pid_ptid_regc_map[ptid.pid ()];
355
356 /* Check first if a regcache for this arch already exists. */
357 auto range = ptid_regc_map.equal_range (ptid);
358 for (auto it = range.first; it != range.second; ++it)
359 {
360 if (it->second->arch () == arch)
361 return it->second.get ();
362 }
363
364 /* It does not exist, create it. */
365 regcache *new_regcache = new regcache (target, arch, aspace);
366 new_regcache->set_ptid (ptid);
367 /* Work around a problem with g++ 4.8 (PR96537): Call the regcache_up
368 constructor explictly instead of implicitly. */
369 ptid_regc_map.insert (std::make_pair (ptid, regcache_up (new_regcache)));
370
371 return new_regcache;
372 }
373
374 struct regcache *
375 get_thread_arch_regcache (process_stratum_target *target, ptid_t ptid,
376 struct gdbarch *gdbarch)
377 {
378 scoped_restore_current_inferior restore_current_inferior;
379 set_current_inferior (find_inferior_ptid (target, ptid));
380 address_space *aspace = target_thread_address_space (ptid);
381
382 return get_thread_arch_aspace_regcache (target, ptid, gdbarch, aspace);
383 }
384
385 static process_stratum_target *current_thread_target;
386 static ptid_t current_thread_ptid;
387 static struct gdbarch *current_thread_arch;
388
389 struct regcache *
390 get_thread_regcache (process_stratum_target *target, ptid_t ptid)
391 {
392 if (!current_thread_arch
393 || target != current_thread_target
394 || current_thread_ptid != ptid)
395 {
396 gdb_assert (ptid != null_ptid);
397
398 current_thread_ptid = ptid;
399 current_thread_target = target;
400
401 scoped_restore_current_inferior restore_current_inferior;
402 set_current_inferior (find_inferior_ptid (target, ptid));
403 current_thread_arch = target_thread_architecture (ptid);
404 }
405
406 return get_thread_arch_regcache (target, ptid, current_thread_arch);
407 }
408
409 /* See regcache.h. */
410
411 struct regcache *
412 get_thread_regcache (thread_info *thread)
413 {
414 return get_thread_regcache (thread->inf->process_target (),
415 thread->ptid);
416 }
417
418 struct regcache *
419 get_current_regcache (void)
420 {
421 return get_thread_regcache (inferior_thread ());
422 }
423
424 /* See gdbsupport/common-regcache.h. */
425
426 struct regcache *
427 get_thread_regcache_for_ptid (ptid_t ptid)
428 {
429 /* This function doesn't take a process_stratum_target parameter
430 because it's a gdbsupport/ routine implemented by both gdb and
431 gdbserver. It always refers to a ptid of the current target. */
432 process_stratum_target *proc_target = current_inferior ()->process_target ();
433 return get_thread_regcache (proc_target, ptid);
434 }
435
436 /* Observer for the target_changed event. */
437
438 static void
439 regcache_observer_target_changed (struct target_ops *target)
440 {
441 registers_changed ();
442 }
443
444 /* Update regcaches related to OLD_PTID to now use NEW_PTID. */
445 static void
446 regcache_thread_ptid_changed (process_stratum_target *target,
447 ptid_t old_ptid, ptid_t new_ptid)
448 {
449 /* Look up map for target. */
450 auto pid_ptid_regc_map_it = regcaches.find (target);
451 if (pid_ptid_regc_map_it == regcaches.end ())
452 return;
453
454 /* Look up map for pid. */
455 pid_ptid_regcache_map &pid_ptid_regc_map = pid_ptid_regc_map_it->second;
456 auto ptid_regc_map_it = pid_ptid_regc_map.find (old_ptid.pid ());
457 if (ptid_regc_map_it == pid_ptid_regc_map.end ())
458 return;
459
460 /* Update all regcaches belonging to old_ptid. */
461 ptid_regcache_map &ptid_regc_map = ptid_regc_map_it->second;
462 auto range = ptid_regc_map.equal_range (old_ptid);
463 for (auto it = range.first; it != range.second;)
464 {
465 regcache_up rc = std::move (it->second);
466 rc->set_ptid (new_ptid);
467
468 /* Remove old before inserting new, to avoid rehashing,
469 which would invalidate iterators. */
470 it = ptid_regc_map.erase (it);
471 ptid_regc_map.insert (std::make_pair (new_ptid, std::move (rc)));
472 }
473 }
474
475 /* Low level examining and depositing of registers.
476
477 The caller is responsible for making sure that the inferior is
478 stopped before calling the fetching routines, or it will get
479 garbage. (a change from GDB version 3, in which the caller got the
480 value from the last stop). */
481
482 /* REGISTERS_CHANGED ()
483
484 Indicate that registers may have changed, so invalidate the cache. */
485
486 void
487 registers_changed_ptid (process_stratum_target *target, ptid_t ptid)
488 {
489 if (target == nullptr)
490 {
491 /* Since there can be ptid clashes between targets, it's not valid to
492 pass a ptid without saying to which target it belongs. */
493 gdb_assert (ptid == minus_one_ptid);
494
495 /* Delete all the regcaches of all targets. */
496 regcaches.clear ();
497 }
498 else if (ptid.is_pid ())
499 {
500 /* Non-NULL target and pid ptid, delete all regcaches belonging
501 to this (TARGET, PID). */
502
503 /* Look up map for target. */
504 auto pid_ptid_regc_map_it = regcaches.find (target);
505 if (pid_ptid_regc_map_it != regcaches.end ())
506 {
507 pid_ptid_regcache_map &pid_ptid_regc_map
508 = pid_ptid_regc_map_it->second;
509
510 pid_ptid_regc_map.erase (ptid.pid ());
511 }
512 }
513 else if (ptid != minus_one_ptid)
514 {
515 /* Non-NULL target and non-minus_one_ptid, delete all regcaches belonging
516 to this (TARGET, PTID). */
517
518 /* Look up map for target. */
519 auto pid_ptid_regc_map_it = regcaches.find (target);
520 if (pid_ptid_regc_map_it != regcaches.end ())
521 {
522 pid_ptid_regcache_map &pid_ptid_regc_map
523 = pid_ptid_regc_map_it->second;
524
525 /* Look up map for pid. */
526 auto ptid_regc_map_it
527 = pid_ptid_regc_map.find (ptid.pid ());
528 if (ptid_regc_map_it != pid_ptid_regc_map.end ())
529 {
530 ptid_regcache_map &ptid_regc_map
531 = ptid_regc_map_it->second;
532
533 ptid_regc_map.erase (ptid);
534 }
535 }
536 }
537 else
538 {
539 /* Non-NULL target and minus_one_ptid, delete all regcaches
540 associated to this target. */
541 regcaches.erase (target);
542 }
543
544 if ((target == nullptr || current_thread_target == target)
545 && current_thread_ptid.matches (ptid))
546 {
547 current_thread_target = NULL;
548 current_thread_ptid = null_ptid;
549 current_thread_arch = NULL;
550 }
551
552 if ((target == nullptr || current_inferior ()->process_target () == target)
553 && inferior_ptid.matches (ptid))
554 {
555 /* We just deleted the regcache of the current thread. Need to
556 forget about any frames we have cached, too. */
557 reinit_frame_cache ();
558 }
559 }
560
561 /* See regcache.h. */
562
563 void
564 registers_changed_thread (thread_info *thread)
565 {
566 registers_changed_ptid (thread->inf->process_target (), thread->ptid);
567 }
568
569 void
570 registers_changed (void)
571 {
572 registers_changed_ptid (nullptr, minus_one_ptid);
573 }
574
575 void
576 regcache::raw_update (int regnum)
577 {
578 assert_regnum (regnum);
579
580 /* Make certain that the register cache is up-to-date with respect
581 to the current thread. This switching shouldn't be necessary
582 only there is still only one target side register cache. Sigh!
583 On the bright side, at least there is a regcache object. */
584
585 if (get_register_status (regnum) == REG_UNKNOWN)
586 {
587 target_fetch_registers (this, regnum);
588
589 /* A number of targets can't access the whole set of raw
590 registers (because the debug API provides no means to get at
591 them). */
592 if (m_register_status[regnum] == REG_UNKNOWN)
593 m_register_status[regnum] = REG_UNAVAILABLE;
594 }
595 }
596
597 enum register_status
598 readable_regcache::raw_read (int regnum, gdb_byte *buf)
599 {
600 gdb_assert (buf != NULL);
601 raw_update (regnum);
602
603 if (m_register_status[regnum] != REG_VALID)
604 memset (buf, 0, m_descr->sizeof_register[regnum]);
605 else
606 memcpy (buf, register_buffer (regnum),
607 m_descr->sizeof_register[regnum]);
608
609 return m_register_status[regnum];
610 }
611
612 enum register_status
613 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
614 {
615 gdb_assert (regcache != NULL);
616 return regcache->raw_read (regnum, val);
617 }
618
619 template<typename T, typename>
620 enum register_status
621 readable_regcache::raw_read (int regnum, T *val)
622 {
623 assert_regnum (regnum);
624 size_t len = m_descr->sizeof_register[regnum];
625 gdb_byte *buf = (gdb_byte *) alloca (len);
626 register_status status = raw_read (regnum, buf);
627 if (status == REG_VALID)
628 *val = extract_integer<T> ({buf, len},
629 gdbarch_byte_order (m_descr->gdbarch));
630 else
631 *val = 0;
632 return status;
633 }
634
635 enum register_status
636 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
637 ULONGEST *val)
638 {
639 gdb_assert (regcache != NULL);
640 return regcache->raw_read (regnum, val);
641 }
642
643 void
644 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
645 {
646 gdb_assert (regcache != NULL);
647 regcache->raw_write (regnum, val);
648 }
649
650 template<typename T, typename>
651 void
652 regcache::raw_write (int regnum, T val)
653 {
654 gdb_byte *buf;
655
656 assert_regnum (regnum);
657 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
658 store_integer (buf, m_descr->sizeof_register[regnum],
659 gdbarch_byte_order (m_descr->gdbarch), val);
660 raw_write (regnum, buf);
661 }
662
663 void
664 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
665 ULONGEST val)
666 {
667 gdb_assert (regcache != NULL);
668 regcache->raw_write (regnum, val);
669 }
670
671 LONGEST
672 regcache_raw_get_signed (struct regcache *regcache, int regnum)
673 {
674 LONGEST value;
675 enum register_status status;
676
677 status = regcache_raw_read_signed (regcache, regnum, &value);
678 if (status == REG_UNAVAILABLE)
679 throw_error (NOT_AVAILABLE_ERROR,
680 _("Register %d is not available"), regnum);
681 return value;
682 }
683
684 enum register_status
685 readable_regcache::cooked_read (int regnum, gdb_byte *buf)
686 {
687 gdb_assert (regnum >= 0);
688 gdb_assert (regnum < m_descr->nr_cooked_registers);
689 if (regnum < num_raw_registers ())
690 return raw_read (regnum, buf);
691 else if (m_has_pseudo
692 && m_register_status[regnum] != REG_UNKNOWN)
693 {
694 if (m_register_status[regnum] == REG_VALID)
695 memcpy (buf, register_buffer (regnum),
696 m_descr->sizeof_register[regnum]);
697 else
698 memset (buf, 0, m_descr->sizeof_register[regnum]);
699
700 return m_register_status[regnum];
701 }
702 else if (gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
703 {
704 struct value *mark, *computed;
705 enum register_status result = REG_VALID;
706
707 mark = value_mark ();
708
709 computed = gdbarch_pseudo_register_read_value (m_descr->gdbarch,
710 this, regnum);
711 if (value_entirely_available (computed))
712 memcpy (buf, value_contents_raw (computed).data (),
713 m_descr->sizeof_register[regnum]);
714 else
715 {
716 memset (buf, 0, m_descr->sizeof_register[regnum]);
717 result = REG_UNAVAILABLE;
718 }
719
720 value_free_to_mark (mark);
721
722 return result;
723 }
724 else
725 return gdbarch_pseudo_register_read (m_descr->gdbarch, this,
726 regnum, buf);
727 }
728
729 struct value *
730 readable_regcache::cooked_read_value (int regnum)
731 {
732 gdb_assert (regnum >= 0);
733 gdb_assert (regnum < m_descr->nr_cooked_registers);
734
735 if (regnum < num_raw_registers ()
736 || (m_has_pseudo && m_register_status[regnum] != REG_UNKNOWN)
737 || !gdbarch_pseudo_register_read_value_p (m_descr->gdbarch))
738 {
739 struct value *result;
740
741 result = allocate_value (register_type (m_descr->gdbarch, regnum));
742 VALUE_LVAL (result) = lval_register;
743 VALUE_REGNUM (result) = regnum;
744
745 /* It is more efficient in general to do this delegation in this
746 direction than in the other one, even though the value-based
747 API is preferred. */
748 if (cooked_read (regnum,
749 value_contents_raw (result).data ()) == REG_UNAVAILABLE)
750 mark_value_bytes_unavailable (result, 0,
751 TYPE_LENGTH (value_type (result)));
752
753 return result;
754 }
755 else
756 return gdbarch_pseudo_register_read_value (m_descr->gdbarch,
757 this, regnum);
758 }
759
760 enum register_status
761 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
762 LONGEST *val)
763 {
764 gdb_assert (regcache != NULL);
765 return regcache->cooked_read (regnum, val);
766 }
767
768 template<typename T, typename>
769 enum register_status
770 readable_regcache::cooked_read (int regnum, T *val)
771 {
772 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
773 size_t len = m_descr->sizeof_register[regnum];
774 gdb_byte *buf = (gdb_byte *) alloca (len);
775 register_status status = cooked_read (regnum, buf);
776 if (status == REG_VALID)
777 *val = extract_integer<T> ({buf, len},
778 gdbarch_byte_order (m_descr->gdbarch));
779 else
780 *val = 0;
781 return status;
782 }
783
784 enum register_status
785 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
786 ULONGEST *val)
787 {
788 gdb_assert (regcache != NULL);
789 return regcache->cooked_read (regnum, val);
790 }
791
792 void
793 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
794 LONGEST val)
795 {
796 gdb_assert (regcache != NULL);
797 regcache->cooked_write (regnum, val);
798 }
799
800 template<typename T, typename>
801 void
802 regcache::cooked_write (int regnum, T val)
803 {
804 gdb_byte *buf;
805
806 gdb_assert (regnum >=0 && regnum < m_descr->nr_cooked_registers);
807 buf = (gdb_byte *) alloca (m_descr->sizeof_register[regnum]);
808 store_integer (buf, m_descr->sizeof_register[regnum],
809 gdbarch_byte_order (m_descr->gdbarch), val);
810 cooked_write (regnum, buf);
811 }
812
813 void
814 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
815 ULONGEST val)
816 {
817 gdb_assert (regcache != NULL);
818 regcache->cooked_write (regnum, val);
819 }
820
821 void
822 regcache::raw_write (int regnum, const gdb_byte *buf)
823 {
824
825 gdb_assert (buf != NULL);
826 assert_regnum (regnum);
827
828 /* On the sparc, writing %g0 is a no-op, so we don't even want to
829 change the registers array if something writes to this register. */
830 if (gdbarch_cannot_store_register (arch (), regnum))
831 return;
832
833 /* If we have a valid copy of the register, and new value == old
834 value, then don't bother doing the actual store. */
835 if (get_register_status (regnum) == REG_VALID
836 && (memcmp (register_buffer (regnum), buf,
837 m_descr->sizeof_register[regnum]) == 0))
838 return;
839
840 target_prepare_to_store (this);
841 raw_supply (regnum, buf);
842
843 /* Invalidate the register after it is written, in case of a
844 failure. */
845 auto invalidator
846 = make_scope_exit ([&] { this->invalidate (regnum); });
847
848 target_store_registers (this, regnum);
849
850 /* The target did not throw an error so we can discard invalidating
851 the register. */
852 invalidator.release ();
853 }
854
855 void
856 regcache::cooked_write (int regnum, const gdb_byte *buf)
857 {
858 gdb_assert (regnum >= 0);
859 gdb_assert (regnum < m_descr->nr_cooked_registers);
860 if (regnum < num_raw_registers ())
861 raw_write (regnum, buf);
862 else
863 gdbarch_pseudo_register_write (m_descr->gdbarch, this,
864 regnum, buf);
865 }
866
867 /* See regcache.h. */
868
869 enum register_status
870 readable_regcache::read_part (int regnum, int offset, int len,
871 gdb_byte *out, bool is_raw)
872 {
873 int reg_size = register_size (arch (), regnum);
874
875 gdb_assert (out != NULL);
876 gdb_assert (offset >= 0 && offset <= reg_size);
877 gdb_assert (len >= 0 && offset + len <= reg_size);
878
879 if (offset == 0 && len == 0)
880 {
881 /* Nothing to do. */
882 return REG_VALID;
883 }
884
885 if (offset == 0 && len == reg_size)
886 {
887 /* Read the full register. */
888 return (is_raw) ? raw_read (regnum, out) : cooked_read (regnum, out);
889 }
890
891 enum register_status status;
892 gdb_byte *reg = (gdb_byte *) alloca (reg_size);
893
894 /* Read full register to buffer. */
895 status = (is_raw) ? raw_read (regnum, reg) : cooked_read (regnum, reg);
896 if (status != REG_VALID)
897 return status;
898
899 /* Copy out. */
900 memcpy (out, reg + offset, len);
901 return REG_VALID;
902 }
903
904 /* See regcache.h. */
905
906 void
907 reg_buffer::raw_collect_part (int regnum, int offset, int len,
908 gdb_byte *out) const
909 {
910 int reg_size = register_size (arch (), regnum);
911
912 gdb_assert (out != nullptr);
913 gdb_assert (offset >= 0 && offset <= reg_size);
914 gdb_assert (len >= 0 && offset + len <= reg_size);
915
916 if (offset == 0 && len == 0)
917 {
918 /* Nothing to do. */
919 return;
920 }
921
922 if (offset == 0 && len == reg_size)
923 {
924 /* Collect the full register. */
925 return raw_collect (regnum, out);
926 }
927
928 /* Read to buffer, then write out. */
929 gdb_byte *reg = (gdb_byte *) alloca (reg_size);
930 raw_collect (regnum, reg);
931 memcpy (out, reg + offset, len);
932 }
933
934 /* See regcache.h. */
935
936 enum register_status
937 regcache::write_part (int regnum, int offset, int len,
938 const gdb_byte *in, bool is_raw)
939 {
940 int reg_size = register_size (arch (), regnum);
941
942 gdb_assert (in != NULL);
943 gdb_assert (offset >= 0 && offset <= reg_size);
944 gdb_assert (len >= 0 && offset + len <= reg_size);
945
946 if (offset == 0 && len == 0)
947 {
948 /* Nothing to do. */
949 return REG_VALID;
950 }
951
952 if (offset == 0 && len == reg_size)
953 {
954 /* Write the full register. */
955 (is_raw) ? raw_write (regnum, in) : cooked_write (regnum, in);
956 return REG_VALID;
957 }
958
959 enum register_status status;
960 gdb_byte *reg = (gdb_byte *) alloca (reg_size);
961
962 /* Read existing register to buffer. */
963 status = (is_raw) ? raw_read (regnum, reg) : cooked_read (regnum, reg);
964 if (status != REG_VALID)
965 return status;
966
967 /* Update buffer, then write back to regcache. */
968 memcpy (reg + offset, in, len);
969 is_raw ? raw_write (regnum, reg) : cooked_write (regnum, reg);
970 return REG_VALID;
971 }
972
973 /* See regcache.h. */
974
975 void
976 reg_buffer::raw_supply_part (int regnum, int offset, int len,
977 const gdb_byte *in)
978 {
979 int reg_size = register_size (arch (), regnum);
980
981 gdb_assert (in != nullptr);
982 gdb_assert (offset >= 0 && offset <= reg_size);
983 gdb_assert (len >= 0 && offset + len <= reg_size);
984
985 if (offset == 0 && len == 0)
986 {
987 /* Nothing to do. */
988 return;
989 }
990
991 if (offset == 0 && len == reg_size)
992 {
993 /* Supply the full register. */
994 return raw_supply (regnum, in);
995 }
996
997 gdb_byte *reg = (gdb_byte *) alloca (reg_size);
998
999 /* Read existing value to buffer. */
1000 raw_collect (regnum, reg);
1001
1002 /* Write to buffer, then write out. */
1003 memcpy (reg + offset, in, len);
1004 raw_supply (regnum, reg);
1005 }
1006
1007 enum register_status
1008 readable_regcache::raw_read_part (int regnum, int offset, int len,
1009 gdb_byte *buf)
1010 {
1011 assert_regnum (regnum);
1012 return read_part (regnum, offset, len, buf, true);
1013 }
1014
1015 /* See regcache.h. */
1016
1017 void
1018 regcache::raw_write_part (int regnum, int offset, int len,
1019 const gdb_byte *buf)
1020 {
1021 assert_regnum (regnum);
1022 write_part (regnum, offset, len, buf, true);
1023 }
1024
1025 /* See regcache.h. */
1026
1027 enum register_status
1028 readable_regcache::cooked_read_part (int regnum, int offset, int len,
1029 gdb_byte *buf)
1030 {
1031 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
1032 return read_part (regnum, offset, len, buf, false);
1033 }
1034
1035 /* See regcache.h. */
1036
1037 void
1038 regcache::cooked_write_part (int regnum, int offset, int len,
1039 const gdb_byte *buf)
1040 {
1041 gdb_assert (regnum >= 0 && regnum < m_descr->nr_cooked_registers);
1042 write_part (regnum, offset, len, buf, false);
1043 }
1044
1045 /* See gdbsupport/common-regcache.h. */
1046
1047 void
1048 reg_buffer::raw_supply (int regnum, const void *buf)
1049 {
1050 void *regbuf;
1051 size_t size;
1052
1053 assert_regnum (regnum);
1054
1055 regbuf = register_buffer (regnum);
1056 size = m_descr->sizeof_register[regnum];
1057
1058 if (buf)
1059 {
1060 memcpy (regbuf, buf, size);
1061 m_register_status[regnum] = REG_VALID;
1062 }
1063 else
1064 {
1065 /* This memset not strictly necessary, but better than garbage
1066 in case the register value manages to escape somewhere (due
1067 to a bug, no less). */
1068 memset (regbuf, 0, size);
1069 m_register_status[regnum] = REG_UNAVAILABLE;
1070 }
1071 }
1072
1073 /* See regcache.h. */
1074
1075 void
1076 reg_buffer::raw_supply_integer (int regnum, const gdb_byte *addr,
1077 int addr_len, bool is_signed)
1078 {
1079 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
1080 gdb_byte *regbuf;
1081 size_t regsize;
1082
1083 assert_regnum (regnum);
1084
1085 regbuf = register_buffer (regnum);
1086 regsize = m_descr->sizeof_register[regnum];
1087
1088 copy_integer_to_size (regbuf, regsize, addr, addr_len, is_signed,
1089 byte_order);
1090 m_register_status[regnum] = REG_VALID;
1091 }
1092
1093 /* See regcache.h. */
1094
1095 void
1096 reg_buffer::raw_supply_zeroed (int regnum)
1097 {
1098 void *regbuf;
1099 size_t size;
1100
1101 assert_regnum (regnum);
1102
1103 regbuf = register_buffer (regnum);
1104 size = m_descr->sizeof_register[regnum];
1105
1106 memset (regbuf, 0, size);
1107 m_register_status[regnum] = REG_VALID;
1108 }
1109
1110 /* See gdbsupport/common-regcache.h. */
1111
1112 void
1113 reg_buffer::raw_collect (int regnum, void *buf) const
1114 {
1115 const void *regbuf;
1116 size_t size;
1117
1118 gdb_assert (buf != NULL);
1119 assert_regnum (regnum);
1120
1121 regbuf = register_buffer (regnum);
1122 size = m_descr->sizeof_register[regnum];
1123 memcpy (buf, regbuf, size);
1124 }
1125
1126 /* See regcache.h. */
1127
1128 void
1129 reg_buffer::raw_collect_integer (int regnum, gdb_byte *addr, int addr_len,
1130 bool is_signed) const
1131 {
1132 enum bfd_endian byte_order = gdbarch_byte_order (m_descr->gdbarch);
1133 const gdb_byte *regbuf;
1134 size_t regsize;
1135
1136 assert_regnum (regnum);
1137
1138 regbuf = register_buffer (regnum);
1139 regsize = m_descr->sizeof_register[regnum];
1140
1141 copy_integer_to_size (addr, addr_len, regbuf, regsize, is_signed,
1142 byte_order);
1143 }
1144
1145 /* See regcache.h. */
1146
1147 void
1148 regcache::transfer_regset_register (struct regcache *out_regcache, int regnum,
1149 const gdb_byte *in_buf, gdb_byte *out_buf,
1150 int slot_size, int offs) const
1151 {
1152 struct gdbarch *gdbarch = arch ();
1153 int reg_size = std::min (register_size (gdbarch, regnum), slot_size);
1154
1155 /* Use part versions and reg_size to prevent possible buffer overflows when
1156 accessing the regcache. */
1157
1158 if (out_buf != nullptr)
1159 {
1160 raw_collect_part (regnum, 0, reg_size, out_buf + offs);
1161
1162 /* Ensure any additional space is cleared. */
1163 if (slot_size > reg_size)
1164 memset (out_buf + offs + reg_size, 0, slot_size - reg_size);
1165 }
1166 else if (in_buf != nullptr)
1167 {
1168 /* Zero-extend the register value if the slot is smaller than the register. */
1169 if (slot_size < register_size (gdbarch, regnum))
1170 out_regcache->raw_supply_zeroed (regnum);
1171 out_regcache->raw_supply_part (regnum, 0, reg_size, in_buf + offs);
1172 }
1173 else
1174 {
1175 /* Invalidate the register. */
1176 out_regcache->raw_supply (regnum, nullptr);
1177 }
1178 }
1179
1180 /* See regcache.h. */
1181
1182 void
1183 regcache::transfer_regset (const struct regset *regset,
1184 struct regcache *out_regcache,
1185 int regnum, const gdb_byte *in_buf,
1186 gdb_byte *out_buf, size_t size) const
1187 {
1188 const struct regcache_map_entry *map;
1189 int offs = 0, count;
1190
1191 for (map = (const struct regcache_map_entry *) regset->regmap;
1192 (count = map->count) != 0;
1193 map++)
1194 {
1195 int regno = map->regno;
1196 int slot_size = map->size;
1197
1198 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
1199 slot_size = m_descr->sizeof_register[regno];
1200
1201 if (regno == REGCACHE_MAP_SKIP
1202 || (regnum != -1
1203 && (regnum < regno || regnum >= regno + count)))
1204 offs += count * slot_size;
1205
1206 else if (regnum == -1)
1207 for (; count--; regno++, offs += slot_size)
1208 {
1209 if (offs + slot_size > size)
1210 break;
1211
1212 transfer_regset_register (out_regcache, regno, in_buf, out_buf,
1213 slot_size, offs);
1214 }
1215 else
1216 {
1217 /* Transfer a single register and return. */
1218 offs += (regnum - regno) * slot_size;
1219 if (offs + slot_size > size)
1220 return;
1221
1222 transfer_regset_register (out_regcache, regnum, in_buf, out_buf,
1223 slot_size, offs);
1224 return;
1225 }
1226 }
1227 }
1228
1229 /* Supply register REGNUM from BUF to REGCACHE, using the register map
1230 in REGSET. If REGNUM is -1, do this for all registers in REGSET.
1231 If BUF is NULL, set the register(s) to "unavailable" status. */
1232
1233 void
1234 regcache_supply_regset (const struct regset *regset,
1235 struct regcache *regcache,
1236 int regnum, const void *buf, size_t size)
1237 {
1238 regcache->supply_regset (regset, regnum, (const gdb_byte *) buf, size);
1239 }
1240
1241 void
1242 regcache::supply_regset (const struct regset *regset,
1243 int regnum, const void *buf, size_t size)
1244 {
1245 transfer_regset (regset, this, regnum, (const gdb_byte *) buf, nullptr, size);
1246 }
1247
1248 /* Collect register REGNUM from REGCACHE to BUF, using the register
1249 map in REGSET. If REGNUM is -1, do this for all registers in
1250 REGSET. */
1251
1252 void
1253 regcache_collect_regset (const struct regset *regset,
1254 const struct regcache *regcache,
1255 int regnum, void *buf, size_t size)
1256 {
1257 regcache->collect_regset (regset, regnum, (gdb_byte *) buf, size);
1258 }
1259
1260 void
1261 regcache::collect_regset (const struct regset *regset,
1262 int regnum, void *buf, size_t size) const
1263 {
1264 transfer_regset (regset, nullptr, regnum, nullptr, (gdb_byte *) buf, size);
1265 }
1266
1267 /* See regcache.h */
1268
1269 bool
1270 regcache_map_supplies (const struct regcache_map_entry *map, int regnum,
1271 struct gdbarch *gdbarch, size_t size)
1272 {
1273 int offs = 0, count;
1274
1275 for (; (count = map->count) != 0; map++)
1276 {
1277 int regno = map->regno;
1278 int slot_size = map->size;
1279
1280 if (slot_size == 0 && regno != REGCACHE_MAP_SKIP)
1281 slot_size = register_size (gdbarch, regno);
1282
1283 if (regno != REGCACHE_MAP_SKIP && regnum >= regno
1284 && regnum < regno + count)
1285 return offs + (regnum - regno + 1) * slot_size <= size;
1286
1287 offs += count * slot_size;
1288 if (offs >= size)
1289 return false;
1290 }
1291 return false;
1292 }
1293
1294 /* See gdbsupport/common-regcache.h. */
1295
1296 bool
1297 reg_buffer::raw_compare (int regnum, const void *buf, int offset) const
1298 {
1299 gdb_assert (buf != NULL);
1300 assert_regnum (regnum);
1301
1302 const char *regbuf = (const char *) register_buffer (regnum);
1303 size_t size = m_descr->sizeof_register[regnum];
1304 gdb_assert (size >= offset);
1305
1306 return (memcmp (buf, regbuf + offset, size - offset) == 0);
1307 }
1308
1309 /* Special handling for register PC. */
1310
1311 CORE_ADDR
1312 regcache_read_pc (struct regcache *regcache)
1313 {
1314 struct gdbarch *gdbarch = regcache->arch ();
1315
1316 CORE_ADDR pc_val;
1317
1318 if (gdbarch_read_pc_p (gdbarch))
1319 pc_val = gdbarch_read_pc (gdbarch, regcache);
1320 /* Else use per-frame method on get_current_frame. */
1321 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1322 {
1323 ULONGEST raw_val;
1324
1325 if (regcache_cooked_read_unsigned (regcache,
1326 gdbarch_pc_regnum (gdbarch),
1327 &raw_val) == REG_UNAVAILABLE)
1328 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1329
1330 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1331 }
1332 else
1333 internal_error (__FILE__, __LINE__,
1334 _("regcache_read_pc: Unable to find PC"));
1335 return pc_val;
1336 }
1337
1338 /* See gdbsupport/common-regcache.h. */
1339
1340 CORE_ADDR
1341 regcache_read_pc_protected (regcache *regcache)
1342 {
1343 CORE_ADDR pc;
1344 try
1345 {
1346 pc = regcache_read_pc (regcache);
1347 }
1348 catch (const gdb_exception_error &ex)
1349 {
1350 pc = 0;
1351 }
1352
1353 return pc;
1354 }
1355
1356 void
1357 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1358 {
1359 struct gdbarch *gdbarch = regcache->arch ();
1360
1361 if (gdbarch_write_pc_p (gdbarch))
1362 gdbarch_write_pc (gdbarch, regcache, pc);
1363 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1364 regcache_cooked_write_unsigned (regcache,
1365 gdbarch_pc_regnum (gdbarch), pc);
1366 else
1367 internal_error (__FILE__, __LINE__,
1368 _("regcache_write_pc: Unable to update PC"));
1369
1370 /* Writing the PC (for instance, from "load") invalidates the
1371 current frame. */
1372 reinit_frame_cache ();
1373 }
1374
1375 int
1376 reg_buffer::num_raw_registers () const
1377 {
1378 return gdbarch_num_regs (arch ());
1379 }
1380
1381 void
1382 regcache::debug_print_register (const char *func, int regno)
1383 {
1384 struct gdbarch *gdbarch = arch ();
1385
1386 gdb_printf (gdb_stdlog, "%s ", func);
1387 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
1388 && gdbarch_register_name (gdbarch, regno) != NULL
1389 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
1390 gdb_printf (gdb_stdlog, "(%s)",
1391 gdbarch_register_name (gdbarch, regno));
1392 else
1393 gdb_printf (gdb_stdlog, "(%d)", regno);
1394 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
1395 {
1396 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1397 int size = register_size (gdbarch, regno);
1398 gdb_byte *buf = register_buffer (regno);
1399
1400 gdb_printf (gdb_stdlog, " = ");
1401 for (int i = 0; i < size; i++)
1402 {
1403 gdb_printf (gdb_stdlog, "%02x", buf[i]);
1404 }
1405 if (size <= sizeof (LONGEST))
1406 {
1407 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
1408
1409 gdb_printf (gdb_stdlog, " %s %s",
1410 core_addr_to_string_nz (val), plongest (val));
1411 }
1412 }
1413 gdb_printf (gdb_stdlog, "\n");
1414 }
1415
1416 /* Implement 'maint flush register-cache' command. */
1417
1418 static void
1419 reg_flush_command (const char *command, int from_tty)
1420 {
1421 /* Force-flush the register cache. */
1422 registers_changed ();
1423 if (from_tty)
1424 gdb_printf (_("Register cache flushed.\n"));
1425 }
1426
1427 void
1428 register_dump::dump (ui_file *file)
1429 {
1430 auto descr = regcache_descr (m_gdbarch);
1431 int regnum;
1432 int footnote_nr = 0;
1433 int footnote_register_offset = 0;
1434 int footnote_register_type_name_null = 0;
1435 long register_offset = 0;
1436
1437 gdb_assert (descr->nr_cooked_registers
1438 == gdbarch_num_cooked_regs (m_gdbarch));
1439
1440 for (regnum = -1; regnum < descr->nr_cooked_registers; regnum++)
1441 {
1442 /* Name. */
1443 if (regnum < 0)
1444 gdb_printf (file, " %-10s", "Name");
1445 else
1446 {
1447 const char *p = gdbarch_register_name (m_gdbarch, regnum);
1448
1449 if (p == NULL)
1450 p = "";
1451 else if (p[0] == '\0')
1452 p = "''";
1453 gdb_printf (file, " %-10s", p);
1454 }
1455
1456 /* Number. */
1457 if (regnum < 0)
1458 gdb_printf (file, " %4s", "Nr");
1459 else
1460 gdb_printf (file, " %4d", regnum);
1461
1462 /* Relative number. */
1463 if (regnum < 0)
1464 gdb_printf (file, " %4s", "Rel");
1465 else if (regnum < gdbarch_num_regs (m_gdbarch))
1466 gdb_printf (file, " %4d", regnum);
1467 else
1468 gdb_printf (file, " %4d",
1469 (regnum - gdbarch_num_regs (m_gdbarch)));
1470
1471 /* Offset. */
1472 if (regnum < 0)
1473 gdb_printf (file, " %6s ", "Offset");
1474 else
1475 {
1476 gdb_printf (file, " %6ld",
1477 descr->register_offset[regnum]);
1478 if (register_offset != descr->register_offset[regnum]
1479 || (regnum > 0
1480 && (descr->register_offset[regnum]
1481 != (descr->register_offset[regnum - 1]
1482 + descr->sizeof_register[regnum - 1])))
1483 )
1484 {
1485 if (!footnote_register_offset)
1486 footnote_register_offset = ++footnote_nr;
1487 gdb_printf (file, "*%d", footnote_register_offset);
1488 }
1489 else
1490 gdb_printf (file, " ");
1491 register_offset = (descr->register_offset[regnum]
1492 + descr->sizeof_register[regnum]);
1493 }
1494
1495 /* Size. */
1496 if (regnum < 0)
1497 gdb_printf (file, " %5s ", "Size");
1498 else
1499 gdb_printf (file, " %5ld", descr->sizeof_register[regnum]);
1500
1501 /* Type. */
1502 {
1503 const char *t;
1504 std::string name_holder;
1505
1506 if (regnum < 0)
1507 t = "Type";
1508 else
1509 {
1510 static const char blt[] = "builtin_type";
1511
1512 t = register_type (m_gdbarch, regnum)->name ();
1513 if (t == NULL)
1514 {
1515 if (!footnote_register_type_name_null)
1516 footnote_register_type_name_null = ++footnote_nr;
1517 name_holder = string_printf ("*%d",
1518 footnote_register_type_name_null);
1519 t = name_holder.c_str ();
1520 }
1521 /* Chop a leading builtin_type. */
1522 if (startswith (t, blt))
1523 t += strlen (blt);
1524 }
1525 gdb_printf (file, " %-15s", t);
1526 }
1527
1528 /* Leading space always present. */
1529 gdb_printf (file, " ");
1530
1531 dump_reg (file, regnum);
1532
1533 gdb_printf (file, "\n");
1534 }
1535
1536 if (footnote_register_offset)
1537 gdb_printf (file, "*%d: Inconsistent register offsets.\n",
1538 footnote_register_offset);
1539 if (footnote_register_type_name_null)
1540 gdb_printf (file,
1541 "*%d: Register type's name NULL.\n",
1542 footnote_register_type_name_null);
1543 }
1544
1545 #if GDB_SELF_TEST
1546 #include "gdbsupport/selftest.h"
1547 #include "selftest-arch.h"
1548 #include "target-float.h"
1549
1550 namespace selftests {
1551
1552 static size_t
1553 regcaches_size ()
1554 {
1555 size_t size = 0;
1556
1557 for (auto pid_ptid_regc_map_it = regcaches.cbegin ();
1558 pid_ptid_regc_map_it != regcaches.cend ();
1559 ++pid_ptid_regc_map_it)
1560 {
1561 const pid_ptid_regcache_map &pid_ptid_regc_map
1562 = pid_ptid_regc_map_it->second;
1563
1564 for (auto ptid_regc_map_it = pid_ptid_regc_map.cbegin ();
1565 ptid_regc_map_it != pid_ptid_regc_map.cend ();
1566 ++ptid_regc_map_it)
1567 {
1568 const ptid_regcache_map &ptid_regc_map
1569 = ptid_regc_map_it->second;
1570
1571 size += ptid_regc_map.size ();
1572 }
1573 }
1574
1575 return size;
1576 }
1577
1578 /* Return the count of regcaches for (TARGET, PTID) in REGCACHES. */
1579
1580 static int
1581 regcache_count (process_stratum_target *target, ptid_t ptid)
1582 {
1583 /* Look up map for target. */
1584 auto pid_ptid_regc_map_it = regcaches.find (target);
1585 if (pid_ptid_regc_map_it != regcaches.end ())
1586 {
1587 pid_ptid_regcache_map &pid_ptid_regc_map = pid_ptid_regc_map_it->second;
1588
1589 /* Look map for pid. */
1590 auto ptid_regc_map_it = pid_ptid_regc_map.find (ptid.pid ());
1591 if (ptid_regc_map_it != pid_ptid_regc_map.end ())
1592 {
1593 ptid_regcache_map &ptid_regc_map = ptid_regc_map_it->second;
1594 auto range = ptid_regc_map.equal_range (ptid);
1595
1596 return std::distance (range.first, range.second);
1597 }
1598 }
1599
1600 return 0;
1601 };
1602
1603 /* Wrapper around get_thread_arch_aspace_regcache that does some self checks. */
1604
1605 static void
1606 get_thread_arch_aspace_regcache_and_check (process_stratum_target *target,
1607 ptid_t ptid)
1608 {
1609 /* We currently only test with a single gdbarch. Any gdbarch will do, so use
1610 the current inferior's gdbarch. Also use the current inferior's address
1611 space. */
1612 gdbarch *arch = current_inferior ()->gdbarch;
1613 address_space *aspace = current_inferior ()->aspace;
1614 regcache *regcache
1615 = get_thread_arch_aspace_regcache (target, ptid, arch, aspace);
1616
1617 SELF_CHECK (regcache != NULL);
1618 SELF_CHECK (regcache->target () == target);
1619 SELF_CHECK (regcache->ptid () == ptid);
1620 SELF_CHECK (regcache->arch () == arch);
1621 SELF_CHECK (regcache->aspace () == aspace);
1622 }
1623
1624 /* The data that the regcaches selftests must hold onto for the duration of the
1625 test. */
1626
1627 struct regcache_test_data
1628 {
1629 regcache_test_data ()
1630 {
1631 /* Ensure the regcaches container is empty at the start. */
1632 registers_changed ();
1633 }
1634
1635 ~regcache_test_data ()
1636 {
1637 /* Make sure to leave the global regcaches container empty. */
1638 registers_changed ();
1639 }
1640
1641 test_target_ops test_target1;
1642 test_target_ops test_target2;
1643 };
1644
1645 using regcache_test_data_up = std::unique_ptr<regcache_test_data>;
1646
1647 /* Set up a few regcaches from two different targets, for use in
1648 regcache-management tests.
1649
1650 Return a pointer, because the `regcache_test_data` type is not moveable. */
1651
1652 static regcache_test_data_up
1653 populate_regcaches_for_test ()
1654 {
1655 regcache_test_data_up data (new regcache_test_data);
1656 size_t expected_regcache_size = 0;
1657
1658 SELF_CHECK (regcaches_size () == 0);
1659
1660 /* Populate the regcache container with a few regcaches for the two test
1661 targets. */
1662 for (int pid : { 1, 2 })
1663 {
1664 for (long lwp : { 1, 2, 3 })
1665 {
1666 get_thread_arch_aspace_regcache_and_check
1667 (&data->test_target1, ptid_t (pid, lwp));
1668 expected_regcache_size++;
1669 SELF_CHECK (regcaches_size () == expected_regcache_size);
1670
1671 get_thread_arch_aspace_regcache_and_check
1672 (&data->test_target2, ptid_t (pid, lwp));
1673 expected_regcache_size++;
1674 SELF_CHECK (regcaches_size () == expected_regcache_size);
1675 }
1676 }
1677
1678 return data;
1679 }
1680
1681 static void
1682 get_thread_arch_aspace_regcache_test ()
1683 {
1684 /* populate_regcaches_for_test already tests most of the
1685 get_thread_arch_aspace_regcache functionality. */
1686 regcache_test_data_up data = populate_regcaches_for_test ();
1687 size_t regcaches_size_before = regcaches_size ();
1688
1689 /* Test that getting an existing regcache doesn't create a new one. */
1690 get_thread_arch_aspace_regcache_and_check (&data->test_target1, ptid_t (2, 2));
1691 SELF_CHECK (regcaches_size () == regcaches_size_before);
1692 }
1693
1694 /* Test marking all regcaches of all targets as changed. */
1695
1696 static void
1697 registers_changed_ptid_all_test ()
1698 {
1699 regcache_test_data_up data = populate_regcaches_for_test ();
1700
1701 registers_changed_ptid (nullptr, minus_one_ptid);
1702 SELF_CHECK (regcaches_size () == 0);
1703 }
1704
1705 /* Test marking regcaches of a specific target as changed. */
1706
1707 static void
1708 registers_changed_ptid_target_test ()
1709 {
1710 regcache_test_data_up data = populate_regcaches_for_test ();
1711
1712 registers_changed_ptid (&data->test_target1, minus_one_ptid);
1713 SELF_CHECK (regcaches_size () == 6);
1714
1715 /* Check that we deleted the regcache for the right target. */
1716 SELF_CHECK (regcache_count (&data->test_target1, ptid_t (2, 2)) == 0);
1717 SELF_CHECK (regcache_count (&data->test_target2, ptid_t (2, 2)) == 1);
1718 }
1719
1720 /* Test marking regcaches of a specific (target, pid) as changed. */
1721
1722 static void
1723 registers_changed_ptid_target_pid_test ()
1724 {
1725 regcache_test_data_up data = populate_regcaches_for_test ();
1726
1727 registers_changed_ptid (&data->test_target1, ptid_t (2));
1728 SELF_CHECK (regcaches_size () == 9);
1729
1730 /* Regcaches from target1 should not exist, while regcaches from target2
1731 should exist. */
1732 SELF_CHECK (regcache_count (&data->test_target1, ptid_t (2, 2)) == 0);
1733 SELF_CHECK (regcache_count (&data->test_target2, ptid_t (2, 2)) == 1);
1734 }
1735
1736 /* Test marking regcaches of a specific (target, ptid) as changed. */
1737
1738 static void
1739 registers_changed_ptid_target_ptid_test ()
1740 {
1741 regcache_test_data_up data = populate_regcaches_for_test ();
1742
1743 registers_changed_ptid (&data->test_target1, ptid_t (2, 2));
1744 SELF_CHECK (regcaches_size () == 11);
1745
1746 /* Check that we deleted the regcache for the right target. */
1747 SELF_CHECK (regcache_count (&data->test_target1, ptid_t (2, 2)) == 0);
1748 SELF_CHECK (regcache_count (&data->test_target2, ptid_t (2, 2)) == 1);
1749 }
1750
1751 class target_ops_no_register : public test_target_ops
1752 {
1753 public:
1754 target_ops_no_register ()
1755 : test_target_ops {}
1756 {}
1757
1758 void reset ()
1759 {
1760 fetch_registers_called = 0;
1761 store_registers_called = 0;
1762 xfer_partial_called = 0;
1763 }
1764
1765 void fetch_registers (regcache *regs, int regno) override;
1766 void store_registers (regcache *regs, int regno) override;
1767
1768 enum target_xfer_status xfer_partial (enum target_object object,
1769 const char *annex, gdb_byte *readbuf,
1770 const gdb_byte *writebuf,
1771 ULONGEST offset, ULONGEST len,
1772 ULONGEST *xfered_len) override;
1773
1774 unsigned int fetch_registers_called = 0;
1775 unsigned int store_registers_called = 0;
1776 unsigned int xfer_partial_called = 0;
1777 };
1778
1779 void
1780 target_ops_no_register::fetch_registers (regcache *regs, int regno)
1781 {
1782 /* Mark register available. */
1783 regs->raw_supply_zeroed (regno);
1784 this->fetch_registers_called++;
1785 }
1786
1787 void
1788 target_ops_no_register::store_registers (regcache *regs, int regno)
1789 {
1790 this->store_registers_called++;
1791 }
1792
1793 enum target_xfer_status
1794 target_ops_no_register::xfer_partial (enum target_object object,
1795 const char *annex, gdb_byte *readbuf,
1796 const gdb_byte *writebuf,
1797 ULONGEST offset, ULONGEST len,
1798 ULONGEST *xfered_len)
1799 {
1800 this->xfer_partial_called++;
1801
1802 *xfered_len = len;
1803 return TARGET_XFER_OK;
1804 }
1805
1806 class readwrite_regcache : public regcache
1807 {
1808 public:
1809 readwrite_regcache (process_stratum_target *target,
1810 struct gdbarch *gdbarch)
1811 : regcache (target, gdbarch, nullptr)
1812 {}
1813 };
1814
1815 /* Test regcache::cooked_read gets registers from raw registers and
1816 memory instead of target to_{fetch,store}_registers. */
1817
1818 static void
1819 cooked_read_test (struct gdbarch *gdbarch)
1820 {
1821 scoped_mock_context<target_ops_no_register> mockctx (gdbarch);
1822
1823 /* Test that read one raw register from regcache_no_target will go
1824 to the target layer. */
1825
1826 /* Find a raw register which size isn't zero. */
1827 int nonzero_regnum;
1828 for (nonzero_regnum = 0;
1829 nonzero_regnum < gdbarch_num_regs (gdbarch);
1830 nonzero_regnum++)
1831 {
1832 if (register_size (gdbarch, nonzero_regnum) != 0)
1833 break;
1834 }
1835
1836 readwrite_regcache readwrite (&mockctx.mock_target, gdbarch);
1837 gdb::def_vector<gdb_byte> buf (register_size (gdbarch, nonzero_regnum));
1838
1839 readwrite.raw_read (nonzero_regnum, buf.data ());
1840
1841 /* raw_read calls target_fetch_registers. */
1842 SELF_CHECK (mockctx.mock_target.fetch_registers_called > 0);
1843 mockctx.mock_target.reset ();
1844
1845 /* Mark all raw registers valid, so the following raw registers
1846 accesses won't go to target. */
1847 for (auto i = 0; i < gdbarch_num_regs (gdbarch); i++)
1848 readwrite.raw_update (i);
1849
1850 mockctx.mock_target.reset ();
1851 /* Then, read all raw and pseudo registers, and don't expect calling
1852 to_{fetch,store}_registers. */
1853 for (int regnum = 0; regnum < gdbarch_num_cooked_regs (gdbarch); regnum++)
1854 {
1855 if (register_size (gdbarch, regnum) == 0)
1856 continue;
1857
1858 gdb::def_vector<gdb_byte> inner_buf (register_size (gdbarch, regnum));
1859
1860 SELF_CHECK (REG_VALID == readwrite.cooked_read (regnum,
1861 inner_buf.data ()));
1862
1863 SELF_CHECK (mockctx.mock_target.fetch_registers_called == 0);
1864 SELF_CHECK (mockctx.mock_target.store_registers_called == 0);
1865 SELF_CHECK (mockctx.mock_target.xfer_partial_called == 0);
1866
1867 mockctx.mock_target.reset ();
1868 }
1869
1870 readonly_detached_regcache readonly (readwrite);
1871
1872 /* GDB may go to target layer to fetch all registers and memory for
1873 readonly regcache. */
1874 mockctx.mock_target.reset ();
1875
1876 for (int regnum = 0; regnum < gdbarch_num_cooked_regs (gdbarch); regnum++)
1877 {
1878 if (register_size (gdbarch, regnum) == 0)
1879 continue;
1880
1881 gdb::def_vector<gdb_byte> inner_buf (register_size (gdbarch, regnum));
1882 enum register_status status = readonly.cooked_read (regnum,
1883 inner_buf.data ());
1884
1885 if (regnum < gdbarch_num_regs (gdbarch))
1886 {
1887 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1888
1889 if (bfd_arch == bfd_arch_frv || bfd_arch == bfd_arch_h8300
1890 || bfd_arch == bfd_arch_m32c || bfd_arch == bfd_arch_sh
1891 || bfd_arch == bfd_arch_alpha || bfd_arch == bfd_arch_v850
1892 || bfd_arch == bfd_arch_msp430 || bfd_arch == bfd_arch_mep
1893 || bfd_arch == bfd_arch_mips || bfd_arch == bfd_arch_v850_rh850
1894 || bfd_arch == bfd_arch_tic6x || bfd_arch == bfd_arch_mn10300
1895 || bfd_arch == bfd_arch_rl78 || bfd_arch == bfd_arch_score
1896 || bfd_arch == bfd_arch_riscv || bfd_arch == bfd_arch_csky)
1897 {
1898 /* Raw registers. If raw registers are not in save_reggroup,
1899 their status are unknown. */
1900 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1901 SELF_CHECK (status == REG_VALID);
1902 else
1903 SELF_CHECK (status == REG_UNKNOWN);
1904 }
1905 else
1906 SELF_CHECK (status == REG_VALID);
1907 }
1908 else
1909 {
1910 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
1911 SELF_CHECK (status == REG_VALID);
1912 else
1913 {
1914 /* If pseudo registers are not in save_reggroup, some of
1915 them can be computed from saved raw registers, but some
1916 of them are unknown. */
1917 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1918
1919 if (bfd_arch == bfd_arch_frv
1920 || bfd_arch == bfd_arch_m32c
1921 || bfd_arch == bfd_arch_mep
1922 || bfd_arch == bfd_arch_sh)
1923 SELF_CHECK (status == REG_VALID || status == REG_UNKNOWN);
1924 else if (bfd_arch == bfd_arch_mips
1925 || bfd_arch == bfd_arch_h8300)
1926 SELF_CHECK (status == REG_UNKNOWN);
1927 else
1928 SELF_CHECK (status == REG_VALID);
1929 }
1930 }
1931
1932 SELF_CHECK (mockctx.mock_target.fetch_registers_called == 0);
1933 SELF_CHECK (mockctx.mock_target.store_registers_called == 0);
1934 SELF_CHECK (mockctx.mock_target.xfer_partial_called == 0);
1935
1936 mockctx.mock_target.reset ();
1937 }
1938 }
1939
1940 /* Test regcache::cooked_write by writing some expected contents to
1941 registers, and checking that contents read from registers and the
1942 expected contents are the same. */
1943
1944 static void
1945 cooked_write_test (struct gdbarch *gdbarch)
1946 {
1947 /* Create a mock environment. A process_stratum target pushed. */
1948 scoped_mock_context<target_ops_no_register> ctx (gdbarch);
1949 readwrite_regcache readwrite (&ctx.mock_target, gdbarch);
1950 const int num_regs = gdbarch_num_cooked_regs (gdbarch);
1951
1952 for (auto regnum = 0; regnum < num_regs; regnum++)
1953 {
1954 if (register_size (gdbarch, regnum) == 0
1955 || gdbarch_cannot_store_register (gdbarch, regnum))
1956 continue;
1957
1958 auto bfd_arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1959
1960 if (bfd_arch == bfd_arch_sparc
1961 /* SPARC64_CWP_REGNUM, SPARC64_PSTATE_REGNUM,
1962 SPARC64_ASI_REGNUM and SPARC64_CCR_REGNUM are hard to test. */
1963 && gdbarch_ptr_bit (gdbarch) == 64
1964 && (regnum >= gdbarch_num_regs (gdbarch)
1965 && regnum <= gdbarch_num_regs (gdbarch) + 4))
1966 continue;
1967
1968 std::vector<gdb_byte> expected (register_size (gdbarch, regnum), 0);
1969 std::vector<gdb_byte> buf (register_size (gdbarch, regnum), 0);
1970 const auto type = register_type (gdbarch, regnum);
1971
1972 if (type->code () == TYPE_CODE_FLT
1973 || type->code () == TYPE_CODE_DECFLOAT)
1974 {
1975 /* Generate valid float format. */
1976 target_float_from_string (expected.data (), type, "1.25");
1977 }
1978 else if (type->code () == TYPE_CODE_INT
1979 || type->code () == TYPE_CODE_ARRAY
1980 || type->code () == TYPE_CODE_PTR
1981 || type->code () == TYPE_CODE_UNION
1982 || type->code () == TYPE_CODE_STRUCT)
1983 {
1984 if (bfd_arch == bfd_arch_ia64
1985 || (regnum >= gdbarch_num_regs (gdbarch)
1986 && (bfd_arch == bfd_arch_xtensa
1987 || bfd_arch == bfd_arch_bfin
1988 || bfd_arch == bfd_arch_m32c
1989 /* m68hc11 pseudo registers are in memory. */
1990 || bfd_arch == bfd_arch_m68hc11
1991 || bfd_arch == bfd_arch_m68hc12
1992 || bfd_arch == bfd_arch_s390))
1993 || (bfd_arch == bfd_arch_frv
1994 /* FRV pseudo registers except iacc0. */
1995 && regnum > gdbarch_num_regs (gdbarch)))
1996 {
1997 /* Skip setting the expected values for some architecture
1998 registers. */
1999 }
2000 else if (bfd_arch == bfd_arch_rl78 && regnum == 40)
2001 {
2002 /* RL78_PC_REGNUM */
2003 for (auto j = 0; j < register_size (gdbarch, regnum) - 1; j++)
2004 expected[j] = j;
2005 }
2006 else
2007 {
2008 for (auto j = 0; j < register_size (gdbarch, regnum); j++)
2009 expected[j] = j;
2010 }
2011 }
2012 else if (type->code () == TYPE_CODE_FLAGS)
2013 {
2014 /* No idea how to test flags. */
2015 continue;
2016 }
2017 else
2018 {
2019 /* If we don't know how to create the expected value for the
2020 this type, make it fail. */
2021 SELF_CHECK (0);
2022 }
2023
2024 readwrite.cooked_write (regnum, expected.data ());
2025
2026 SELF_CHECK (readwrite.cooked_read (regnum, buf.data ()) == REG_VALID);
2027 SELF_CHECK (expected == buf);
2028 }
2029 }
2030
2031 /* Verify that when two threads with the same ptid exist (from two different
2032 targets) and one of them changes ptid, we only update the appropriate
2033 regcaches. */
2034
2035 static void
2036 regcache_thread_ptid_changed ()
2037 {
2038 /* This test relies on the global regcache list to initially be empty. */
2039 registers_changed ();
2040
2041 /* Any arch will do. */
2042 gdbarch *arch = current_inferior ()->gdbarch;
2043
2044 /* Prepare two targets with one thread each, with the same ptid. */
2045 scoped_mock_context<test_target_ops> target1 (arch);
2046 scoped_mock_context<test_target_ops> target2 (arch);
2047
2048 ptid_t old_ptid (111, 222);
2049 ptid_t new_ptid (111, 333);
2050
2051 target1.mock_inferior.pid = old_ptid.pid ();
2052 target1.mock_thread.ptid = old_ptid;
2053 target1.mock_inferior.ptid_thread_map.clear ();
2054 target1.mock_inferior.ptid_thread_map[old_ptid] = &target1.mock_thread;
2055
2056 target2.mock_inferior.pid = old_ptid.pid ();
2057 target2.mock_thread.ptid = old_ptid;
2058 target2.mock_inferior.ptid_thread_map.clear ();
2059 target2.mock_inferior.ptid_thread_map[old_ptid] = &target2.mock_thread;
2060
2061 gdb_assert (regcaches.empty ());
2062
2063 /* Populate the regcaches container. */
2064 get_thread_arch_aspace_regcache (&target1.mock_target, old_ptid, arch,
2065 nullptr);
2066 get_thread_arch_aspace_regcache (&target2.mock_target, old_ptid, arch,
2067 nullptr);
2068
2069 gdb_assert (regcaches.size () == 2);
2070 gdb_assert (regcache_count (&target1.mock_target, old_ptid) == 1);
2071 gdb_assert (regcache_count (&target1.mock_target, new_ptid) == 0);
2072 gdb_assert (regcache_count (&target2.mock_target, old_ptid) == 1);
2073 gdb_assert (regcache_count (&target2.mock_target, new_ptid) == 0);
2074
2075 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
2076
2077 gdb_assert (regcaches.size () == 2);
2078 gdb_assert (regcache_count (&target1.mock_target, old_ptid) == 0);
2079 gdb_assert (regcache_count (&target1.mock_target, new_ptid) == 1);
2080 gdb_assert (regcache_count (&target2.mock_target, old_ptid) == 1);
2081 gdb_assert (regcache_count (&target2.mock_target, new_ptid) == 0);
2082
2083 /* Leave the regcache list empty. */
2084 registers_changed ();
2085 gdb_assert (regcaches.empty ());
2086 }
2087
2088 } // namespace selftests
2089 #endif /* GDB_SELF_TEST */
2090
2091 void _initialize_regcache ();
2092 void
2093 _initialize_regcache ()
2094 {
2095 struct cmd_list_element *c;
2096
2097 regcache_descr_handle
2098 = gdbarch_data_register_post_init (init_regcache_descr);
2099
2100 gdb::observers::target_changed.attach (regcache_observer_target_changed,
2101 "regcache");
2102 gdb::observers::thread_ptid_changed.attach (regcache_thread_ptid_changed,
2103 "regcache");
2104
2105 cmd_list_element *maintenance_flush_register_cache_cmd
2106 = add_cmd ("register-cache", class_maintenance, reg_flush_command,
2107 _("Force gdb to flush its register and frame cache."),
2108 &maintenanceflushlist);
2109 c = add_com_alias ("flushregs", maintenance_flush_register_cache_cmd,
2110 class_maintenance, 0);
2111 deprecate_cmd (c, "maintenance flush register-cache");
2112
2113 #if GDB_SELF_TEST
2114 selftests::register_test ("get_thread_arch_aspace_regcache",
2115 selftests::get_thread_arch_aspace_regcache_test);
2116 selftests::register_test ("registers_changed_ptid_all",
2117 selftests::registers_changed_ptid_all_test);
2118 selftests::register_test ("registers_changed_ptid_target",
2119 selftests::registers_changed_ptid_target_test);
2120 selftests::register_test ("registers_changed_ptid_target_pid",
2121 selftests::registers_changed_ptid_target_pid_test);
2122 selftests::register_test ("registers_changed_ptid_target_ptid",
2123 selftests::registers_changed_ptid_target_ptid_test);
2124
2125 selftests::register_test_foreach_arch ("regcache::cooked_read_test",
2126 selftests::cooked_read_test);
2127 selftests::register_test_foreach_arch ("regcache::cooked_write_test",
2128 selftests::cooked_write_test);
2129 selftests::register_test ("regcache_thread_ptid_changed",
2130 selftests::regcache_thread_ptid_changed);
2131 #endif
2132 }