0dfe36acec7517d4601b4ace7cb23d651ce004d5
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82 #include "gdbsupport/selftest.h"
83
84 /* The remote target. */
85
86 static const char remote_doc[] = N_("\
87 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
88 Specify the serial device it is connected to\n\
89 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
90
91 /* See remote.h */
92
93 bool remote_debug = false;
94
95 #define OPAQUETHREADBYTES 8
96
97 /* a 64 bit opaque identifier */
98 typedef unsigned char threadref[OPAQUETHREADBYTES];
99
100 struct gdb_ext_thread_info;
101 struct threads_listing_context;
102 typedef int (*rmt_thread_action) (threadref *ref, void *context);
103 struct protocol_feature;
104 struct packet_reg;
105
106 struct stop_reply;
107 typedef std::unique_ptr<stop_reply> stop_reply_up;
108
109 /* Generic configuration support for packets the stub optionally
110 supports. Allows the user to specify the use of the packet as well
111 as allowing GDB to auto-detect support in the remote stub. */
112
113 enum packet_support
114 {
115 PACKET_SUPPORT_UNKNOWN = 0,
116 PACKET_ENABLE,
117 PACKET_DISABLE
118 };
119
120 /* Analyze a packet's return value and update the packet config
121 accordingly. */
122
123 enum packet_result
124 {
125 PACKET_ERROR,
126 PACKET_OK,
127 PACKET_UNKNOWN
128 };
129
130 struct threads_listing_context;
131
132 /* Stub vCont actions support.
133
134 Each field is a boolean flag indicating whether the stub reports
135 support for the corresponding action. */
136
137 struct vCont_action_support
138 {
139 /* vCont;t */
140 bool t = false;
141
142 /* vCont;r */
143 bool r = false;
144
145 /* vCont;s */
146 bool s = false;
147
148 /* vCont;S */
149 bool S = false;
150 };
151
152 /* About this many threadids fit in a packet. */
153
154 #define MAXTHREADLISTRESULTS 32
155
156 /* Data for the vFile:pread readahead cache. */
157
158 struct readahead_cache
159 {
160 /* Invalidate the readahead cache. */
161 void invalidate ();
162
163 /* Invalidate the readahead cache if it is holding data for FD. */
164 void invalidate_fd (int fd);
165
166 /* Serve pread from the readahead cache. Returns number of bytes
167 read, or 0 if the request can't be served from the cache. */
168 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
169
170 /* The file descriptor for the file that is being cached. -1 if the
171 cache is invalid. */
172 int fd = -1;
173
174 /* The offset into the file that the cache buffer corresponds
175 to. */
176 ULONGEST offset = 0;
177
178 /* The buffer holding the cache contents. */
179 gdb_byte *buf = nullptr;
180 /* The buffer's size. We try to read as much as fits into a packet
181 at a time. */
182 size_t bufsize = 0;
183
184 /* Cache hit and miss counters. */
185 ULONGEST hit_count = 0;
186 ULONGEST miss_count = 0;
187 };
188
189 /* Description of the remote protocol for a given architecture. */
190
191 struct packet_reg
192 {
193 long offset; /* Offset into G packet. */
194 long regnum; /* GDB's internal register number. */
195 LONGEST pnum; /* Remote protocol register number. */
196 int in_g_packet; /* Always part of G packet. */
197 /* long size in bytes; == register_size (target_gdbarch (), regnum);
198 at present. */
199 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
200 at present. */
201 };
202
203 struct remote_arch_state
204 {
205 explicit remote_arch_state (struct gdbarch *gdbarch);
206
207 /* Description of the remote protocol registers. */
208 long sizeof_g_packet;
209
210 /* Description of the remote protocol registers indexed by REGNUM
211 (making an array gdbarch_num_regs in size). */
212 std::unique_ptr<packet_reg[]> regs;
213
214 /* This is the size (in chars) of the first response to the ``g''
215 packet. It is used as a heuristic when determining the maximum
216 size of memory-read and memory-write packets. A target will
217 typically only reserve a buffer large enough to hold the ``g''
218 packet. The size does not include packet overhead (headers and
219 trailers). */
220 long actual_register_packet_size;
221
222 /* This is the maximum size (in chars) of a non read/write packet.
223 It is also used as a cap on the size of read/write packets. */
224 long remote_packet_size;
225 };
226
227 /* Description of the remote protocol state for the currently
228 connected target. This is per-target state, and independent of the
229 selected architecture. */
230
231 class remote_state
232 {
233 public:
234
235 remote_state ();
236 ~remote_state ();
237
238 /* Get the remote arch state for GDBARCH. */
239 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
240
241 public: /* data */
242
243 /* A buffer to use for incoming packets, and its current size. The
244 buffer is grown dynamically for larger incoming packets.
245 Outgoing packets may also be constructed in this buffer.
246 The size of the buffer is always at least REMOTE_PACKET_SIZE;
247 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
248 packets. */
249 gdb::char_vector buf;
250
251 /* True if we're going through initial connection setup (finding out
252 about the remote side's threads, relocating symbols, etc.). */
253 bool starting_up = false;
254
255 /* If we negotiated packet size explicitly (and thus can bypass
256 heuristics for the largest packet size that will not overflow
257 a buffer in the stub), this will be set to that packet size.
258 Otherwise zero, meaning to use the guessed size. */
259 long explicit_packet_size = 0;
260
261 /* remote_wait is normally called when the target is running and
262 waits for a stop reply packet. But sometimes we need to call it
263 when the target is already stopped. We can send a "?" packet
264 and have remote_wait read the response. Or, if we already have
265 the response, we can stash it in BUF and tell remote_wait to
266 skip calling getpkt. This flag is set when BUF contains a
267 stop reply packet and the target is not waiting. */
268 int cached_wait_status = 0;
269
270 /* True, if in no ack mode. That is, neither GDB nor the stub will
271 expect acks from each other. The connection is assumed to be
272 reliable. */
273 bool noack_mode = false;
274
275 /* True if we're connected in extended remote mode. */
276 bool extended = false;
277
278 /* True if we resumed the target and we're waiting for the target to
279 stop. In the mean time, we can't start another command/query.
280 The remote server wouldn't be ready to process it, so we'd
281 timeout waiting for a reply that would never come and eventually
282 we'd close the connection. This can happen in asynchronous mode
283 because we allow GDB commands while the target is running. */
284 bool waiting_for_stop_reply = false;
285
286 /* The status of the stub support for the various vCont actions. */
287 vCont_action_support supports_vCont;
288 /* Whether vCont support was probed already. This is a workaround
289 until packet_support is per-connection. */
290 bool supports_vCont_probed;
291
292 /* True if the user has pressed Ctrl-C, but the target hasn't
293 responded to that. */
294 bool ctrlc_pending_p = false;
295
296 /* True if we saw a Ctrl-C while reading or writing from/to the
297 remote descriptor. At that point it is not safe to send a remote
298 interrupt packet, so we instead remember we saw the Ctrl-C and
299 process it once we're done with sending/receiving the current
300 packet, which should be shortly. If however that takes too long,
301 and the user presses Ctrl-C again, we offer to disconnect. */
302 bool got_ctrlc_during_io = false;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 struct serial *remote_desc = nullptr;
308
309 /* These are the threads which we last sent to the remote system. The
310 TID member will be -1 for all or -2 for not sent yet. */
311 ptid_t general_thread = null_ptid;
312 ptid_t continue_thread = null_ptid;
313
314 /* This is the traceframe which we last selected on the remote system.
315 It will be -1 if no traceframe is selected. */
316 int remote_traceframe_number = -1;
317
318 char *last_pass_packet = nullptr;
319
320 /* The last QProgramSignals packet sent to the target. We bypass
321 sending a new program signals list down to the target if the new
322 packet is exactly the same as the last we sent. IOW, we only let
323 the target know about program signals list changes. */
324 char *last_program_signals_packet = nullptr;
325
326 gdb_signal last_sent_signal = GDB_SIGNAL_0;
327
328 bool last_sent_step = false;
329
330 /* The execution direction of the last resume we got. */
331 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
332
333 char *finished_object = nullptr;
334 char *finished_annex = nullptr;
335 ULONGEST finished_offset = 0;
336
337 /* Should we try the 'ThreadInfo' query packet?
338
339 This variable (NOT available to the user: auto-detect only!)
340 determines whether GDB will use the new, simpler "ThreadInfo"
341 query or the older, more complex syntax for thread queries.
342 This is an auto-detect variable (set to true at each connect,
343 and set to false when the target fails to recognize it). */
344 bool use_threadinfo_query = false;
345 bool use_threadextra_query = false;
346
347 threadref echo_nextthread {};
348 threadref nextthread {};
349 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
350
351 /* The state of remote notification. */
352 struct remote_notif_state *notif_state = nullptr;
353
354 /* The branch trace configuration. */
355 struct btrace_config btrace_config {};
356
357 /* The argument to the last "vFile:setfs:" packet we sent, used
358 to avoid sending repeated unnecessary "vFile:setfs:" packets.
359 Initialized to -1 to indicate that no "vFile:setfs:" packet
360 has yet been sent. */
361 int fs_pid = -1;
362
363 /* A readahead cache for vFile:pread. Often, reading a binary
364 involves a sequence of small reads. E.g., when parsing an ELF
365 file. A readahead cache helps mostly the case of remote
366 debugging on a connection with higher latency, due to the
367 request/reply nature of the RSP. We only cache data for a single
368 file descriptor at a time. */
369 struct readahead_cache readahead_cache;
370
371 /* The list of already fetched and acknowledged stop events. This
372 queue is used for notification Stop, and other notifications
373 don't need queue for their events, because the notification
374 events of Stop can't be consumed immediately, so that events
375 should be queued first, and be consumed by remote_wait_{ns,as}
376 one per time. Other notifications can consume their events
377 immediately, so queue is not needed for them. */
378 std::vector<stop_reply_up> stop_reply_queue;
379
380 /* Asynchronous signal handle registered as event loop source for
381 when we have pending events ready to be passed to the core. */
382 struct async_event_handler *remote_async_inferior_event_token = nullptr;
383
384 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
385 ``forever'' still use the normal timeout mechanism. This is
386 currently used by the ASYNC code to guarentee that target reads
387 during the initial connect always time-out. Once getpkt has been
388 modified to return a timeout indication and, in turn
389 remote_wait()/wait_for_inferior() have gained a timeout parameter
390 this can go away. */
391 int wait_forever_enabled_p = 1;
392
393 private:
394 /* Mapping of remote protocol data for each gdbarch. Usually there
395 is only one entry here, though we may see more with stubs that
396 support multi-process. */
397 std::unordered_map<struct gdbarch *, remote_arch_state>
398 m_arch_states;
399 };
400
401 static const target_info remote_target_info = {
402 "remote",
403 N_("Remote serial target in gdb-specific protocol"),
404 remote_doc
405 };
406
407 class remote_target : public process_stratum_target
408 {
409 public:
410 remote_target () = default;
411 ~remote_target () override;
412
413 const target_info &info () const override
414 { return remote_target_info; }
415
416 const char *connection_string () override;
417
418 thread_control_capabilities get_thread_control_capabilities () override
419 { return tc_schedlock; }
420
421 /* Open a remote connection. */
422 static void open (const char *, int);
423
424 void close () override;
425
426 void detach (inferior *, int) override;
427 void disconnect (const char *, int) override;
428
429 void commit_resumed () override;
430 void resume (ptid_t, int, enum gdb_signal) override;
431 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
432 bool has_pending_events () override;
433
434 void fetch_registers (struct regcache *, int) override;
435 void store_registers (struct regcache *, int) override;
436 void prepare_to_store (struct regcache *) override;
437
438 void files_info () override;
439
440 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
441
442 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
443 enum remove_bp_reason) override;
444
445
446 bool stopped_by_sw_breakpoint () override;
447 bool supports_stopped_by_sw_breakpoint () override;
448
449 bool stopped_by_hw_breakpoint () override;
450
451 bool supports_stopped_by_hw_breakpoint () override;
452
453 bool stopped_by_watchpoint () override;
454
455 bool stopped_data_address (CORE_ADDR *) override;
456
457 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
458
459 int can_use_hw_breakpoint (enum bptype, int, int) override;
460
461 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
464
465 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
466
467 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
468 struct expression *) override;
469
470 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
471 struct expression *) override;
472
473 void kill () override;
474
475 void load (const char *, int) override;
476
477 void mourn_inferior () override;
478
479 void pass_signals (gdb::array_view<const unsigned char>) override;
480
481 int set_syscall_catchpoint (int, bool, int,
482 gdb::array_view<const int>) override;
483
484 void program_signals (gdb::array_view<const unsigned char>) override;
485
486 bool thread_alive (ptid_t ptid) override;
487
488 const char *thread_name (struct thread_info *) override;
489
490 void update_thread_list () override;
491
492 std::string pid_to_str (ptid_t) override;
493
494 const char *extra_thread_info (struct thread_info *) override;
495
496 ptid_t get_ada_task_ptid (long lwp, ULONGEST thread) override;
497
498 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
499 int handle_len,
500 inferior *inf) override;
501
502 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
503 override;
504
505 void stop (ptid_t) override;
506
507 void interrupt () override;
508
509 void pass_ctrlc () override;
510
511 enum target_xfer_status xfer_partial (enum target_object object,
512 const char *annex,
513 gdb_byte *readbuf,
514 const gdb_byte *writebuf,
515 ULONGEST offset, ULONGEST len,
516 ULONGEST *xfered_len) override;
517
518 ULONGEST get_memory_xfer_limit () override;
519
520 void rcmd (const char *command, struct ui_file *output) override;
521
522 char *pid_to_exec_file (int pid) override;
523
524 void log_command (const char *cmd) override
525 {
526 serial_log_command (this, cmd);
527 }
528
529 CORE_ADDR get_thread_local_address (ptid_t ptid,
530 CORE_ADDR load_module_addr,
531 CORE_ADDR offset) override;
532
533 bool can_execute_reverse () override;
534
535 std::vector<mem_region> memory_map () override;
536
537 void flash_erase (ULONGEST address, LONGEST length) override;
538
539 void flash_done () override;
540
541 const struct target_desc *read_description () override;
542
543 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
544 const gdb_byte *pattern, ULONGEST pattern_len,
545 CORE_ADDR *found_addrp) override;
546
547 bool can_async_p () override;
548
549 bool is_async_p () override;
550
551 void async (int) override;
552
553 int async_wait_fd () override;
554
555 void thread_events (int) override;
556
557 int can_do_single_step () override;
558
559 void terminal_inferior () override;
560
561 void terminal_ours () override;
562
563 bool supports_non_stop () override;
564
565 bool supports_multi_process () override;
566
567 bool supports_disable_randomization () override;
568
569 bool filesystem_is_local () override;
570
571
572 int fileio_open (struct inferior *inf, const char *filename,
573 int flags, int mode, int warn_if_slow,
574 int *target_errno) override;
575
576 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
577 ULONGEST offset, int *target_errno) override;
578
579 int fileio_pread (int fd, gdb_byte *read_buf, int len,
580 ULONGEST offset, int *target_errno) override;
581
582 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
583
584 int fileio_close (int fd, int *target_errno) override;
585
586 int fileio_unlink (struct inferior *inf,
587 const char *filename,
588 int *target_errno) override;
589
590 gdb::optional<std::string>
591 fileio_readlink (struct inferior *inf,
592 const char *filename,
593 int *target_errno) override;
594
595 bool supports_enable_disable_tracepoint () override;
596
597 bool supports_string_tracing () override;
598
599 bool supports_evaluation_of_breakpoint_conditions () override;
600
601 bool can_run_breakpoint_commands () override;
602
603 void trace_init () override;
604
605 void download_tracepoint (struct bp_location *location) override;
606
607 bool can_download_tracepoint () override;
608
609 void download_trace_state_variable (const trace_state_variable &tsv) override;
610
611 void enable_tracepoint (struct bp_location *location) override;
612
613 void disable_tracepoint (struct bp_location *location) override;
614
615 void trace_set_readonly_regions () override;
616
617 void trace_start () override;
618
619 int get_trace_status (struct trace_status *ts) override;
620
621 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
622 override;
623
624 void trace_stop () override;
625
626 int trace_find (enum trace_find_type type, int num,
627 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
628
629 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
630
631 int save_trace_data (const char *filename) override;
632
633 int upload_tracepoints (struct uploaded_tp **utpp) override;
634
635 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
636
637 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
638
639 int get_min_fast_tracepoint_insn_len () override;
640
641 void set_disconnected_tracing (int val) override;
642
643 void set_circular_trace_buffer (int val) override;
644
645 void set_trace_buffer_size (LONGEST val) override;
646
647 bool set_trace_notes (const char *user, const char *notes,
648 const char *stopnotes) override;
649
650 int core_of_thread (ptid_t ptid) override;
651
652 int verify_memory (const gdb_byte *data,
653 CORE_ADDR memaddr, ULONGEST size) override;
654
655
656 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
657
658 void set_permissions () override;
659
660 bool static_tracepoint_marker_at (CORE_ADDR,
661 struct static_tracepoint_marker *marker)
662 override;
663
664 std::vector<static_tracepoint_marker>
665 static_tracepoint_markers_by_strid (const char *id) override;
666
667 traceframe_info_up traceframe_info () override;
668
669 bool use_agent (bool use) override;
670 bool can_use_agent () override;
671
672 struct btrace_target_info *enable_btrace (ptid_t ptid,
673 const struct btrace_config *conf) override;
674
675 void disable_btrace (struct btrace_target_info *tinfo) override;
676
677 void teardown_btrace (struct btrace_target_info *tinfo) override;
678
679 enum btrace_error read_btrace (struct btrace_data *data,
680 struct btrace_target_info *btinfo,
681 enum btrace_read_type type) override;
682
683 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
684 bool augmented_libraries_svr4_read () override;
685 void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool) override;
686 void follow_exec (inferior *, ptid_t, const char *) override;
687 int insert_fork_catchpoint (int) override;
688 int remove_fork_catchpoint (int) override;
689 int insert_vfork_catchpoint (int) override;
690 int remove_vfork_catchpoint (int) override;
691 int insert_exec_catchpoint (int) override;
692 int remove_exec_catchpoint (int) override;
693 enum exec_direction_kind execution_direction () override;
694
695 bool supports_memory_tagging () override;
696
697 bool fetch_memtags (CORE_ADDR address, size_t len,
698 gdb::byte_vector &tags, int type) override;
699
700 bool store_memtags (CORE_ADDR address, size_t len,
701 const gdb::byte_vector &tags, int type) override;
702
703 public: /* Remote specific methods. */
704
705 void remote_download_command_source (int num, ULONGEST addr,
706 struct command_line *cmds);
707
708 void remote_file_put (const char *local_file, const char *remote_file,
709 int from_tty);
710 void remote_file_get (const char *remote_file, const char *local_file,
711 int from_tty);
712 void remote_file_delete (const char *remote_file, int from_tty);
713
714 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
715 ULONGEST offset, int *remote_errno);
716 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
717 ULONGEST offset, int *remote_errno);
718 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
719 ULONGEST offset, int *remote_errno);
720
721 int remote_hostio_send_command (int command_bytes, int which_packet,
722 int *remote_errno, const char **attachment,
723 int *attachment_len);
724 int remote_hostio_set_filesystem (struct inferior *inf,
725 int *remote_errno);
726 /* We should get rid of this and use fileio_open directly. */
727 int remote_hostio_open (struct inferior *inf, const char *filename,
728 int flags, int mode, int warn_if_slow,
729 int *remote_errno);
730 int remote_hostio_close (int fd, int *remote_errno);
731
732 int remote_hostio_unlink (inferior *inf, const char *filename,
733 int *remote_errno);
734
735 struct remote_state *get_remote_state ();
736
737 long get_remote_packet_size (void);
738 long get_memory_packet_size (struct memory_packet_config *config);
739
740 long get_memory_write_packet_size ();
741 long get_memory_read_packet_size ();
742
743 char *append_pending_thread_resumptions (char *p, char *endp,
744 ptid_t ptid);
745 static void open_1 (const char *name, int from_tty, int extended_p);
746 void start_remote (int from_tty, int extended_p);
747 void remote_detach_1 (struct inferior *inf, int from_tty);
748
749 char *append_resumption (char *p, char *endp,
750 ptid_t ptid, int step, gdb_signal siggnal);
751 int remote_resume_with_vcont (ptid_t ptid, int step,
752 gdb_signal siggnal);
753
754 thread_info *add_current_inferior_and_thread (const char *wait_status);
755
756 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
757 target_wait_flags options);
758 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
759 target_wait_flags options);
760
761 ptid_t process_stop_reply (struct stop_reply *stop_reply,
762 target_waitstatus *status);
763
764 ptid_t select_thread_for_ambiguous_stop_reply
765 (const struct target_waitstatus *status);
766
767 void remote_notice_new_inferior (ptid_t currthread, bool executing);
768
769 void print_one_stopped_thread (thread_info *thread);
770 void process_initial_stop_replies (int from_tty);
771
772 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
773
774 void btrace_sync_conf (const btrace_config *conf);
775
776 void remote_btrace_maybe_reopen ();
777
778 void remove_new_fork_children (threads_listing_context *context);
779 void kill_new_fork_children (int pid);
780 void discard_pending_stop_replies (struct inferior *inf);
781 int stop_reply_queue_length ();
782
783 void check_pending_events_prevent_wildcard_vcont
784 (bool *may_global_wildcard_vcont);
785
786 void discard_pending_stop_replies_in_queue ();
787 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
788 struct stop_reply *queued_stop_reply (ptid_t ptid);
789 int peek_stop_reply (ptid_t ptid);
790 void remote_parse_stop_reply (const char *buf, stop_reply *event);
791
792 void remote_stop_ns (ptid_t ptid);
793 void remote_interrupt_as ();
794 void remote_interrupt_ns ();
795
796 char *remote_get_noisy_reply ();
797 int remote_query_attached (int pid);
798 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
799 int try_open_exec);
800
801 ptid_t remote_current_thread (ptid_t oldpid);
802 ptid_t get_current_thread (const char *wait_status);
803
804 void set_thread (ptid_t ptid, int gen);
805 void set_general_thread (ptid_t ptid);
806 void set_continue_thread (ptid_t ptid);
807 void set_general_process ();
808
809 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
810
811 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
812 gdb_ext_thread_info *info);
813 int remote_get_threadinfo (threadref *threadid, int fieldset,
814 gdb_ext_thread_info *info);
815
816 int parse_threadlist_response (const char *pkt, int result_limit,
817 threadref *original_echo,
818 threadref *resultlist,
819 int *doneflag);
820 int remote_get_threadlist (int startflag, threadref *nextthread,
821 int result_limit, int *done, int *result_count,
822 threadref *threadlist);
823
824 int remote_threadlist_iterator (rmt_thread_action stepfunction,
825 void *context, int looplimit);
826
827 int remote_get_threads_with_ql (threads_listing_context *context);
828 int remote_get_threads_with_qxfer (threads_listing_context *context);
829 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
830
831 void extended_remote_restart ();
832
833 void get_offsets ();
834
835 void remote_check_symbols ();
836
837 void remote_supported_packet (const struct protocol_feature *feature,
838 enum packet_support support,
839 const char *argument);
840
841 void remote_query_supported ();
842
843 void remote_packet_size (const protocol_feature *feature,
844 packet_support support, const char *value);
845
846 void remote_serial_quit_handler ();
847
848 void remote_detach_pid (int pid);
849
850 void remote_vcont_probe ();
851
852 void remote_resume_with_hc (ptid_t ptid, int step,
853 gdb_signal siggnal);
854
855 void send_interrupt_sequence ();
856 void interrupt_query ();
857
858 void remote_notif_get_pending_events (notif_client *nc);
859
860 int fetch_register_using_p (struct regcache *regcache,
861 packet_reg *reg);
862 int send_g_packet ();
863 void process_g_packet (struct regcache *regcache);
864 void fetch_registers_using_g (struct regcache *regcache);
865 int store_register_using_P (const struct regcache *regcache,
866 packet_reg *reg);
867 void store_registers_using_G (const struct regcache *regcache);
868
869 void set_remote_traceframe ();
870
871 void check_binary_download (CORE_ADDR addr);
872
873 target_xfer_status remote_write_bytes_aux (const char *header,
874 CORE_ADDR memaddr,
875 const gdb_byte *myaddr,
876 ULONGEST len_units,
877 int unit_size,
878 ULONGEST *xfered_len_units,
879 char packet_format,
880 int use_length);
881
882 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
883 const gdb_byte *myaddr, ULONGEST len,
884 int unit_size, ULONGEST *xfered_len);
885
886 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
887 ULONGEST len_units,
888 int unit_size, ULONGEST *xfered_len_units);
889
890 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
891 ULONGEST memaddr,
892 ULONGEST len,
893 int unit_size,
894 ULONGEST *xfered_len);
895
896 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
897 gdb_byte *myaddr, ULONGEST len,
898 int unit_size,
899 ULONGEST *xfered_len);
900
901 packet_result remote_send_printf (const char *format, ...)
902 ATTRIBUTE_PRINTF (2, 3);
903
904 target_xfer_status remote_flash_write (ULONGEST address,
905 ULONGEST length, ULONGEST *xfered_len,
906 const gdb_byte *data);
907
908 int readchar (int timeout);
909
910 void remote_serial_write (const char *str, int len);
911
912 int putpkt (const char *buf);
913 int putpkt_binary (const char *buf, int cnt);
914
915 int putpkt (const gdb::char_vector &buf)
916 {
917 return putpkt (buf.data ());
918 }
919
920 void skip_frame ();
921 long read_frame (gdb::char_vector *buf_p);
922 void getpkt (gdb::char_vector *buf, int forever);
923 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
924 int expecting_notif, int *is_notif);
925 int getpkt_sane (gdb::char_vector *buf, int forever);
926 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
927 int *is_notif);
928 int remote_vkill (int pid);
929 void remote_kill_k ();
930
931 void extended_remote_disable_randomization (int val);
932 int extended_remote_run (const std::string &args);
933
934 void send_environment_packet (const char *action,
935 const char *packet,
936 const char *value);
937
938 void extended_remote_environment_support ();
939 void extended_remote_set_inferior_cwd ();
940
941 target_xfer_status remote_write_qxfer (const char *object_name,
942 const char *annex,
943 const gdb_byte *writebuf,
944 ULONGEST offset, LONGEST len,
945 ULONGEST *xfered_len,
946 struct packet_config *packet);
947
948 target_xfer_status remote_read_qxfer (const char *object_name,
949 const char *annex,
950 gdb_byte *readbuf, ULONGEST offset,
951 LONGEST len,
952 ULONGEST *xfered_len,
953 struct packet_config *packet);
954
955 void push_stop_reply (struct stop_reply *new_event);
956
957 bool vcont_r_supported ();
958
959 void packet_command (const char *args, int from_tty);
960
961 private: /* data fields */
962
963 /* The remote state. Don't reference this directly. Use the
964 get_remote_state method instead. */
965 remote_state m_remote_state;
966 };
967
968 static const target_info extended_remote_target_info = {
969 "extended-remote",
970 N_("Extended remote serial target in gdb-specific protocol"),
971 remote_doc
972 };
973
974 /* Set up the extended remote target by extending the standard remote
975 target and adding to it. */
976
977 class extended_remote_target final : public remote_target
978 {
979 public:
980 const target_info &info () const override
981 { return extended_remote_target_info; }
982
983 /* Open an extended-remote connection. */
984 static void open (const char *, int);
985
986 bool can_create_inferior () override { return true; }
987 void create_inferior (const char *, const std::string &,
988 char **, int) override;
989
990 void detach (inferior *, int) override;
991
992 bool can_attach () override { return true; }
993 void attach (const char *, int) override;
994
995 void post_attach (int) override;
996 bool supports_disable_randomization () override;
997 };
998
999 /* Per-program-space data key. */
1000 static const struct program_space_key<char, gdb::xfree_deleter<char>>
1001 remote_pspace_data;
1002
1003 /* The variable registered as the control variable used by the
1004 remote exec-file commands. While the remote exec-file setting is
1005 per-program-space, the set/show machinery uses this as the
1006 location of the remote exec-file value. */
1007 static char *remote_exec_file_var;
1008
1009 /* The size to align memory write packets, when practical. The protocol
1010 does not guarantee any alignment, and gdb will generate short
1011 writes and unaligned writes, but even as a best-effort attempt this
1012 can improve bulk transfers. For instance, if a write is misaligned
1013 relative to the target's data bus, the stub may need to make an extra
1014 round trip fetching data from the target. This doesn't make a
1015 huge difference, but it's easy to do, so we try to be helpful.
1016
1017 The alignment chosen is arbitrary; usually data bus width is
1018 important here, not the possibly larger cache line size. */
1019 enum { REMOTE_ALIGN_WRITES = 16 };
1020
1021 /* Prototypes for local functions. */
1022
1023 static int hexnumlen (ULONGEST num);
1024
1025 static int stubhex (int ch);
1026
1027 static int hexnumstr (char *, ULONGEST);
1028
1029 static int hexnumnstr (char *, ULONGEST, int);
1030
1031 static CORE_ADDR remote_address_masked (CORE_ADDR);
1032
1033 static void print_packet (const char *);
1034
1035 static int stub_unpack_int (const char *buff, int fieldlength);
1036
1037 struct packet_config;
1038
1039 static void show_packet_config_cmd (struct packet_config *config);
1040
1041 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1042 int from_tty,
1043 struct cmd_list_element *c,
1044 const char *value);
1045
1046 static ptid_t read_ptid (const char *buf, const char **obuf);
1047
1048 static void remote_async_inferior_event_handler (gdb_client_data);
1049
1050 static bool remote_read_description_p (struct target_ops *target);
1051
1052 static void remote_console_output (const char *msg);
1053
1054 static void remote_btrace_reset (remote_state *rs);
1055
1056 static void remote_unpush_and_throw (remote_target *target);
1057
1058 /* For "remote". */
1059
1060 static struct cmd_list_element *remote_cmdlist;
1061
1062 /* For "set remote" and "show remote". */
1063
1064 static struct cmd_list_element *remote_set_cmdlist;
1065 static struct cmd_list_element *remote_show_cmdlist;
1066
1067 /* Controls whether GDB is willing to use range stepping. */
1068
1069 static bool use_range_stepping = true;
1070
1071 /* From the remote target's point of view, each thread is in one of these three
1072 states. */
1073 enum class resume_state
1074 {
1075 /* Not resumed - we haven't been asked to resume this thread. */
1076 NOT_RESUMED,
1077
1078 /* We have been asked to resume this thread, but haven't sent a vCont action
1079 for it yet. We'll need to consider it next time commit_resume is
1080 called. */
1081 RESUMED_PENDING_VCONT,
1082
1083 /* We have been asked to resume this thread, and we have sent a vCont action
1084 for it. */
1085 RESUMED,
1086 };
1087
1088 /* Information about a thread's pending vCont-resume. Used when a thread is in
1089 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1090 stores this information which is then picked up by
1091 remote_target::commit_resume to know which is the proper action for this
1092 thread to include in the vCont packet. */
1093 struct resumed_pending_vcont_info
1094 {
1095 /* True if the last resume call for this thread was a step request, false
1096 if a continue request. */
1097 bool step;
1098
1099 /* The signal specified in the last resume call for this thread. */
1100 gdb_signal sig;
1101 };
1102
1103 /* Private data that we'll store in (struct thread_info)->priv. */
1104 struct remote_thread_info : public private_thread_info
1105 {
1106 std::string extra;
1107 std::string name;
1108 int core = -1;
1109
1110 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1111 sequence of bytes. */
1112 gdb::byte_vector thread_handle;
1113
1114 /* Whether the target stopped for a breakpoint/watchpoint. */
1115 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1116
1117 /* This is set to the data address of the access causing the target
1118 to stop for a watchpoint. */
1119 CORE_ADDR watch_data_address = 0;
1120
1121 /* Get the thread's resume state. */
1122 enum resume_state get_resume_state () const
1123 {
1124 return m_resume_state;
1125 }
1126
1127 /* Put the thread in the NOT_RESUMED state. */
1128 void set_not_resumed ()
1129 {
1130 m_resume_state = resume_state::NOT_RESUMED;
1131 }
1132
1133 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1134 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1135 {
1136 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1137 m_resumed_pending_vcont_info.step = step;
1138 m_resumed_pending_vcont_info.sig = sig;
1139 }
1140
1141 /* Get the information this thread's pending vCont-resumption.
1142
1143 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1144 state. */
1145 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1146 {
1147 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1148
1149 return m_resumed_pending_vcont_info;
1150 }
1151
1152 /* Put the thread in the VCONT_RESUMED state. */
1153 void set_resumed ()
1154 {
1155 m_resume_state = resume_state::RESUMED;
1156 }
1157
1158 private:
1159 /* Resume state for this thread. This is used to implement vCont action
1160 coalescing (only when the target operates in non-stop mode).
1161
1162 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1163 which notes that this thread must be considered in the next commit_resume
1164 call.
1165
1166 remote_target::commit_resume sends a vCont packet with actions for the
1167 threads in the RESUMED_PENDING_VCONT state and moves them to the
1168 VCONT_RESUMED state.
1169
1170 When reporting a stop to the core for a thread, that thread is moved back
1171 to the NOT_RESUMED state. */
1172 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1173
1174 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1175 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1176 };
1177
1178 remote_state::remote_state ()
1179 : buf (400)
1180 {
1181 }
1182
1183 remote_state::~remote_state ()
1184 {
1185 xfree (this->last_pass_packet);
1186 xfree (this->last_program_signals_packet);
1187 xfree (this->finished_object);
1188 xfree (this->finished_annex);
1189 }
1190
1191 /* Utility: generate error from an incoming stub packet. */
1192 static void
1193 trace_error (char *buf)
1194 {
1195 if (*buf++ != 'E')
1196 return; /* not an error msg */
1197 switch (*buf)
1198 {
1199 case '1': /* malformed packet error */
1200 if (*++buf == '0') /* general case: */
1201 error (_("remote.c: error in outgoing packet."));
1202 else
1203 error (_("remote.c: error in outgoing packet at field #%ld."),
1204 strtol (buf, NULL, 16));
1205 default:
1206 error (_("Target returns error code '%s'."), buf);
1207 }
1208 }
1209
1210 /* Utility: wait for reply from stub, while accepting "O" packets. */
1211
1212 char *
1213 remote_target::remote_get_noisy_reply ()
1214 {
1215 struct remote_state *rs = get_remote_state ();
1216
1217 do /* Loop on reply from remote stub. */
1218 {
1219 char *buf;
1220
1221 QUIT; /* Allow user to bail out with ^C. */
1222 getpkt (&rs->buf, 0);
1223 buf = rs->buf.data ();
1224 if (buf[0] == 'E')
1225 trace_error (buf);
1226 else if (startswith (buf, "qRelocInsn:"))
1227 {
1228 ULONGEST ul;
1229 CORE_ADDR from, to, org_to;
1230 const char *p, *pp;
1231 int adjusted_size = 0;
1232 int relocated = 0;
1233
1234 p = buf + strlen ("qRelocInsn:");
1235 pp = unpack_varlen_hex (p, &ul);
1236 if (*pp != ';')
1237 error (_("invalid qRelocInsn packet: %s"), buf);
1238 from = ul;
1239
1240 p = pp + 1;
1241 unpack_varlen_hex (p, &ul);
1242 to = ul;
1243
1244 org_to = to;
1245
1246 try
1247 {
1248 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1249 relocated = 1;
1250 }
1251 catch (const gdb_exception &ex)
1252 {
1253 if (ex.error == MEMORY_ERROR)
1254 {
1255 /* Propagate memory errors silently back to the
1256 target. The stub may have limited the range of
1257 addresses we can write to, for example. */
1258 }
1259 else
1260 {
1261 /* Something unexpectedly bad happened. Be verbose
1262 so we can tell what, and propagate the error back
1263 to the stub, so it doesn't get stuck waiting for
1264 a response. */
1265 exception_fprintf (gdb_stderr, ex,
1266 _("warning: relocating instruction: "));
1267 }
1268 putpkt ("E01");
1269 }
1270
1271 if (relocated)
1272 {
1273 adjusted_size = to - org_to;
1274
1275 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1276 putpkt (buf);
1277 }
1278 }
1279 else if (buf[0] == 'O' && buf[1] != 'K')
1280 remote_console_output (buf + 1); /* 'O' message from stub */
1281 else
1282 return buf; /* Here's the actual reply. */
1283 }
1284 while (1);
1285 }
1286
1287 struct remote_arch_state *
1288 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1289 {
1290 remote_arch_state *rsa;
1291
1292 auto it = this->m_arch_states.find (gdbarch);
1293 if (it == this->m_arch_states.end ())
1294 {
1295 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1296 std::forward_as_tuple (gdbarch),
1297 std::forward_as_tuple (gdbarch));
1298 rsa = &p.first->second;
1299
1300 /* Make sure that the packet buffer is plenty big enough for
1301 this architecture. */
1302 if (this->buf.size () < rsa->remote_packet_size)
1303 this->buf.resize (2 * rsa->remote_packet_size);
1304 }
1305 else
1306 rsa = &it->second;
1307
1308 return rsa;
1309 }
1310
1311 /* Fetch the global remote target state. */
1312
1313 remote_state *
1314 remote_target::get_remote_state ()
1315 {
1316 /* Make sure that the remote architecture state has been
1317 initialized, because doing so might reallocate rs->buf. Any
1318 function which calls getpkt also needs to be mindful of changes
1319 to rs->buf, but this call limits the number of places which run
1320 into trouble. */
1321 m_remote_state.get_remote_arch_state (target_gdbarch ());
1322
1323 return &m_remote_state;
1324 }
1325
1326 /* Fetch the remote exec-file from the current program space. */
1327
1328 static const char *
1329 get_remote_exec_file (void)
1330 {
1331 char *remote_exec_file;
1332
1333 remote_exec_file = remote_pspace_data.get (current_program_space);
1334 if (remote_exec_file == NULL)
1335 return "";
1336
1337 return remote_exec_file;
1338 }
1339
1340 /* Set the remote exec file for PSPACE. */
1341
1342 static void
1343 set_pspace_remote_exec_file (struct program_space *pspace,
1344 const char *remote_exec_file)
1345 {
1346 char *old_file = remote_pspace_data.get (pspace);
1347
1348 xfree (old_file);
1349 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1350 }
1351
1352 /* The "set/show remote exec-file" set command hook. */
1353
1354 static void
1355 set_remote_exec_file (const char *ignored, int from_tty,
1356 struct cmd_list_element *c)
1357 {
1358 gdb_assert (remote_exec_file_var != NULL);
1359 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1360 }
1361
1362 /* The "set/show remote exec-file" show command hook. */
1363
1364 static void
1365 show_remote_exec_file (struct ui_file *file, int from_tty,
1366 struct cmd_list_element *cmd, const char *value)
1367 {
1368 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1369 }
1370
1371 static int
1372 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1373 {
1374 int regnum, num_remote_regs, offset;
1375 struct packet_reg **remote_regs;
1376
1377 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1378 {
1379 struct packet_reg *r = &regs[regnum];
1380
1381 if (register_size (gdbarch, regnum) == 0)
1382 /* Do not try to fetch zero-sized (placeholder) registers. */
1383 r->pnum = -1;
1384 else
1385 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1386
1387 r->regnum = regnum;
1388 }
1389
1390 /* Define the g/G packet format as the contents of each register
1391 with a remote protocol number, in order of ascending protocol
1392 number. */
1393
1394 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1395 for (num_remote_regs = 0, regnum = 0;
1396 regnum < gdbarch_num_regs (gdbarch);
1397 regnum++)
1398 if (regs[regnum].pnum != -1)
1399 remote_regs[num_remote_regs++] = &regs[regnum];
1400
1401 std::sort (remote_regs, remote_regs + num_remote_regs,
1402 [] (const packet_reg *a, const packet_reg *b)
1403 { return a->pnum < b->pnum; });
1404
1405 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1406 {
1407 remote_regs[regnum]->in_g_packet = 1;
1408 remote_regs[regnum]->offset = offset;
1409 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1410 }
1411
1412 return offset;
1413 }
1414
1415 /* Given the architecture described by GDBARCH, return the remote
1416 protocol register's number and the register's offset in the g/G
1417 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1418 If the target does not have a mapping for REGNUM, return false,
1419 otherwise, return true. */
1420
1421 int
1422 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1423 int *pnum, int *poffset)
1424 {
1425 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1426
1427 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1428
1429 map_regcache_remote_table (gdbarch, regs.data ());
1430
1431 *pnum = regs[regnum].pnum;
1432 *poffset = regs[regnum].offset;
1433
1434 return *pnum != -1;
1435 }
1436
1437 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1438 {
1439 /* Use the architecture to build a regnum<->pnum table, which will be
1440 1:1 unless a feature set specifies otherwise. */
1441 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1442
1443 /* Record the maximum possible size of the g packet - it may turn out
1444 to be smaller. */
1445 this->sizeof_g_packet
1446 = map_regcache_remote_table (gdbarch, this->regs.get ());
1447
1448 /* Default maximum number of characters in a packet body. Many
1449 remote stubs have a hardwired buffer size of 400 bytes
1450 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1451 as the maximum packet-size to ensure that the packet and an extra
1452 NUL character can always fit in the buffer. This stops GDB
1453 trashing stubs that try to squeeze an extra NUL into what is
1454 already a full buffer (As of 1999-12-04 that was most stubs). */
1455 this->remote_packet_size = 400 - 1;
1456
1457 /* This one is filled in when a ``g'' packet is received. */
1458 this->actual_register_packet_size = 0;
1459
1460 /* Should rsa->sizeof_g_packet needs more space than the
1461 default, adjust the size accordingly. Remember that each byte is
1462 encoded as two characters. 32 is the overhead for the packet
1463 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1464 (``$NN:G...#NN'') is a better guess, the below has been padded a
1465 little. */
1466 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1467 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1468 }
1469
1470 /* Get a pointer to the current remote target. If not connected to a
1471 remote target, return NULL. */
1472
1473 static remote_target *
1474 get_current_remote_target ()
1475 {
1476 target_ops *proc_target = current_inferior ()->process_target ();
1477 return dynamic_cast<remote_target *> (proc_target);
1478 }
1479
1480 /* Return the current allowed size of a remote packet. This is
1481 inferred from the current architecture, and should be used to
1482 limit the length of outgoing packets. */
1483 long
1484 remote_target::get_remote_packet_size ()
1485 {
1486 struct remote_state *rs = get_remote_state ();
1487 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1488
1489 if (rs->explicit_packet_size)
1490 return rs->explicit_packet_size;
1491
1492 return rsa->remote_packet_size;
1493 }
1494
1495 static struct packet_reg *
1496 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1497 long regnum)
1498 {
1499 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1500 return NULL;
1501 else
1502 {
1503 struct packet_reg *r = &rsa->regs[regnum];
1504
1505 gdb_assert (r->regnum == regnum);
1506 return r;
1507 }
1508 }
1509
1510 static struct packet_reg *
1511 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1512 LONGEST pnum)
1513 {
1514 int i;
1515
1516 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1517 {
1518 struct packet_reg *r = &rsa->regs[i];
1519
1520 if (r->pnum == pnum)
1521 return r;
1522 }
1523 return NULL;
1524 }
1525
1526 /* Allow the user to specify what sequence to send to the remote
1527 when he requests a program interruption: Although ^C is usually
1528 what remote systems expect (this is the default, here), it is
1529 sometimes preferable to send a break. On other systems such
1530 as the Linux kernel, a break followed by g, which is Magic SysRq g
1531 is required in order to interrupt the execution. */
1532 const char interrupt_sequence_control_c[] = "Ctrl-C";
1533 const char interrupt_sequence_break[] = "BREAK";
1534 const char interrupt_sequence_break_g[] = "BREAK-g";
1535 static const char *const interrupt_sequence_modes[] =
1536 {
1537 interrupt_sequence_control_c,
1538 interrupt_sequence_break,
1539 interrupt_sequence_break_g,
1540 NULL
1541 };
1542 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1543
1544 static void
1545 show_interrupt_sequence (struct ui_file *file, int from_tty,
1546 struct cmd_list_element *c,
1547 const char *value)
1548 {
1549 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1550 fprintf_filtered (file,
1551 _("Send the ASCII ETX character (Ctrl-c) "
1552 "to the remote target to interrupt the "
1553 "execution of the program.\n"));
1554 else if (interrupt_sequence_mode == interrupt_sequence_break)
1555 fprintf_filtered (file,
1556 _("send a break signal to the remote target "
1557 "to interrupt the execution of the program.\n"));
1558 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1559 fprintf_filtered (file,
1560 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1561 "the remote target to interrupt the execution "
1562 "of Linux kernel.\n"));
1563 else
1564 internal_error (__FILE__, __LINE__,
1565 _("Invalid value for interrupt_sequence_mode: %s."),
1566 interrupt_sequence_mode);
1567 }
1568
1569 /* This boolean variable specifies whether interrupt_sequence is sent
1570 to the remote target when gdb connects to it.
1571 This is mostly needed when you debug the Linux kernel: The Linux kernel
1572 expects BREAK g which is Magic SysRq g for connecting gdb. */
1573 static bool interrupt_on_connect = false;
1574
1575 /* This variable is used to implement the "set/show remotebreak" commands.
1576 Since these commands are now deprecated in favor of "set/show remote
1577 interrupt-sequence", it no longer has any effect on the code. */
1578 static bool remote_break;
1579
1580 static void
1581 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1582 {
1583 if (remote_break)
1584 interrupt_sequence_mode = interrupt_sequence_break;
1585 else
1586 interrupt_sequence_mode = interrupt_sequence_control_c;
1587 }
1588
1589 static void
1590 show_remotebreak (struct ui_file *file, int from_tty,
1591 struct cmd_list_element *c,
1592 const char *value)
1593 {
1594 }
1595
1596 /* This variable sets the number of bits in an address that are to be
1597 sent in a memory ("M" or "m") packet. Normally, after stripping
1598 leading zeros, the entire address would be sent. This variable
1599 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1600 initial implementation of remote.c restricted the address sent in
1601 memory packets to ``host::sizeof long'' bytes - (typically 32
1602 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1603 address was never sent. Since fixing this bug may cause a break in
1604 some remote targets this variable is principally provided to
1605 facilitate backward compatibility. */
1606
1607 static unsigned int remote_address_size;
1608
1609 \f
1610 /* User configurable variables for the number of characters in a
1611 memory read/write packet. MIN (rsa->remote_packet_size,
1612 rsa->sizeof_g_packet) is the default. Some targets need smaller
1613 values (fifo overruns, et.al.) and some users need larger values
1614 (speed up transfers). The variables ``preferred_*'' (the user
1615 request), ``current_*'' (what was actually set) and ``forced_*''
1616 (Positive - a soft limit, negative - a hard limit). */
1617
1618 struct memory_packet_config
1619 {
1620 const char *name;
1621 long size;
1622 int fixed_p;
1623 };
1624
1625 /* The default max memory-write-packet-size, when the setting is
1626 "fixed". The 16k is historical. (It came from older GDB's using
1627 alloca for buffers and the knowledge (folklore?) that some hosts
1628 don't cope very well with large alloca calls.) */
1629 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1630
1631 /* The minimum remote packet size for memory transfers. Ensures we
1632 can write at least one byte. */
1633 #define MIN_MEMORY_PACKET_SIZE 20
1634
1635 /* Get the memory packet size, assuming it is fixed. */
1636
1637 static long
1638 get_fixed_memory_packet_size (struct memory_packet_config *config)
1639 {
1640 gdb_assert (config->fixed_p);
1641
1642 if (config->size <= 0)
1643 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1644 else
1645 return config->size;
1646 }
1647
1648 /* Compute the current size of a read/write packet. Since this makes
1649 use of ``actual_register_packet_size'' the computation is dynamic. */
1650
1651 long
1652 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1653 {
1654 struct remote_state *rs = get_remote_state ();
1655 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1656
1657 long what_they_get;
1658 if (config->fixed_p)
1659 what_they_get = get_fixed_memory_packet_size (config);
1660 else
1661 {
1662 what_they_get = get_remote_packet_size ();
1663 /* Limit the packet to the size specified by the user. */
1664 if (config->size > 0
1665 && what_they_get > config->size)
1666 what_they_get = config->size;
1667
1668 /* Limit it to the size of the targets ``g'' response unless we have
1669 permission from the stub to use a larger packet size. */
1670 if (rs->explicit_packet_size == 0
1671 && rsa->actual_register_packet_size > 0
1672 && what_they_get > rsa->actual_register_packet_size)
1673 what_they_get = rsa->actual_register_packet_size;
1674 }
1675 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1676 what_they_get = MIN_MEMORY_PACKET_SIZE;
1677
1678 /* Make sure there is room in the global buffer for this packet
1679 (including its trailing NUL byte). */
1680 if (rs->buf.size () < what_they_get + 1)
1681 rs->buf.resize (2 * what_they_get);
1682
1683 return what_they_get;
1684 }
1685
1686 /* Update the size of a read/write packet. If they user wants
1687 something really big then do a sanity check. */
1688
1689 static void
1690 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1691 {
1692 int fixed_p = config->fixed_p;
1693 long size = config->size;
1694
1695 if (args == NULL)
1696 error (_("Argument required (integer, `fixed' or `limited')."));
1697 else if (strcmp (args, "hard") == 0
1698 || strcmp (args, "fixed") == 0)
1699 fixed_p = 1;
1700 else if (strcmp (args, "soft") == 0
1701 || strcmp (args, "limit") == 0)
1702 fixed_p = 0;
1703 else
1704 {
1705 char *end;
1706
1707 size = strtoul (args, &end, 0);
1708 if (args == end)
1709 error (_("Invalid %s (bad syntax)."), config->name);
1710
1711 /* Instead of explicitly capping the size of a packet to or
1712 disallowing it, the user is allowed to set the size to
1713 something arbitrarily large. */
1714 }
1715
1716 /* Extra checks? */
1717 if (fixed_p && !config->fixed_p)
1718 {
1719 /* So that the query shows the correct value. */
1720 long query_size = (size <= 0
1721 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1722 : size);
1723
1724 if (! query (_("The target may not be able to correctly handle a %s\n"
1725 "of %ld bytes. Change the packet size? "),
1726 config->name, query_size))
1727 error (_("Packet size not changed."));
1728 }
1729 /* Update the config. */
1730 config->fixed_p = fixed_p;
1731 config->size = size;
1732 }
1733
1734 static void
1735 show_memory_packet_size (struct memory_packet_config *config)
1736 {
1737 if (config->size == 0)
1738 printf_filtered (_("The %s is 0 (default). "), config->name);
1739 else
1740 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1741 if (config->fixed_p)
1742 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1743 get_fixed_memory_packet_size (config));
1744 else
1745 {
1746 remote_target *remote = get_current_remote_target ();
1747
1748 if (remote != NULL)
1749 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1750 remote->get_memory_packet_size (config));
1751 else
1752 puts_filtered ("The actual limit will be further reduced "
1753 "dependent on the target.\n");
1754 }
1755 }
1756
1757 /* FIXME: needs to be per-remote-target. */
1758 static struct memory_packet_config memory_write_packet_config =
1759 {
1760 "memory-write-packet-size",
1761 };
1762
1763 static void
1764 set_memory_write_packet_size (const char *args, int from_tty)
1765 {
1766 set_memory_packet_size (args, &memory_write_packet_config);
1767 }
1768
1769 static void
1770 show_memory_write_packet_size (const char *args, int from_tty)
1771 {
1772 show_memory_packet_size (&memory_write_packet_config);
1773 }
1774
1775 /* Show the number of hardware watchpoints that can be used. */
1776
1777 static void
1778 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1779 struct cmd_list_element *c,
1780 const char *value)
1781 {
1782 fprintf_filtered (file, _("The maximum number of target hardware "
1783 "watchpoints is %s.\n"), value);
1784 }
1785
1786 /* Show the length limit (in bytes) for hardware watchpoints. */
1787
1788 static void
1789 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1790 struct cmd_list_element *c,
1791 const char *value)
1792 {
1793 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1794 "hardware watchpoint is %s.\n"), value);
1795 }
1796
1797 /* Show the number of hardware breakpoints that can be used. */
1798
1799 static void
1800 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1801 struct cmd_list_element *c,
1802 const char *value)
1803 {
1804 fprintf_filtered (file, _("The maximum number of target hardware "
1805 "breakpoints is %s.\n"), value);
1806 }
1807
1808 /* Controls the maximum number of characters to display in the debug output
1809 for each remote packet. The remaining characters are omitted. */
1810
1811 static int remote_packet_max_chars = 512;
1812
1813 /* Show the maximum number of characters to display for each remote packet
1814 when remote debugging is enabled. */
1815
1816 static void
1817 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1818 struct cmd_list_element *c,
1819 const char *value)
1820 {
1821 fprintf_filtered (file, _("Number of remote packet characters to "
1822 "display is %s.\n"), value);
1823 }
1824
1825 long
1826 remote_target::get_memory_write_packet_size ()
1827 {
1828 return get_memory_packet_size (&memory_write_packet_config);
1829 }
1830
1831 /* FIXME: needs to be per-remote-target. */
1832 static struct memory_packet_config memory_read_packet_config =
1833 {
1834 "memory-read-packet-size",
1835 };
1836
1837 static void
1838 set_memory_read_packet_size (const char *args, int from_tty)
1839 {
1840 set_memory_packet_size (args, &memory_read_packet_config);
1841 }
1842
1843 static void
1844 show_memory_read_packet_size (const char *args, int from_tty)
1845 {
1846 show_memory_packet_size (&memory_read_packet_config);
1847 }
1848
1849 long
1850 remote_target::get_memory_read_packet_size ()
1851 {
1852 long size = get_memory_packet_size (&memory_read_packet_config);
1853
1854 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1855 extra buffer size argument before the memory read size can be
1856 increased beyond this. */
1857 if (size > get_remote_packet_size ())
1858 size = get_remote_packet_size ();
1859 return size;
1860 }
1861
1862 \f
1863
1864 struct packet_config
1865 {
1866 const char *name;
1867 const char *title;
1868
1869 /* If auto, GDB auto-detects support for this packet or feature,
1870 either through qSupported, or by trying the packet and looking
1871 at the response. If true, GDB assumes the target supports this
1872 packet. If false, the packet is disabled. Configs that don't
1873 have an associated command always have this set to auto. */
1874 enum auto_boolean detect;
1875
1876 /* Does the target support this packet? */
1877 enum packet_support support;
1878 };
1879
1880 static enum packet_support packet_config_support (struct packet_config *config);
1881 static enum packet_support packet_support (int packet);
1882
1883 static void
1884 show_packet_config_cmd (struct packet_config *config)
1885 {
1886 const char *support = "internal-error";
1887
1888 switch (packet_config_support (config))
1889 {
1890 case PACKET_ENABLE:
1891 support = "enabled";
1892 break;
1893 case PACKET_DISABLE:
1894 support = "disabled";
1895 break;
1896 case PACKET_SUPPORT_UNKNOWN:
1897 support = "unknown";
1898 break;
1899 }
1900 switch (config->detect)
1901 {
1902 case AUTO_BOOLEAN_AUTO:
1903 printf_filtered (_("Support for the `%s' packet "
1904 "is auto-detected, currently %s.\n"),
1905 config->name, support);
1906 break;
1907 case AUTO_BOOLEAN_TRUE:
1908 case AUTO_BOOLEAN_FALSE:
1909 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1910 config->name, support);
1911 break;
1912 }
1913 }
1914
1915 static void
1916 add_packet_config_cmd (struct packet_config *config, const char *name,
1917 const char *title, int legacy)
1918 {
1919 char *set_doc;
1920 char *show_doc;
1921 char *cmd_name;
1922
1923 config->name = name;
1924 config->title = title;
1925 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1926 name, title);
1927 show_doc = xstrprintf ("Show current use of remote "
1928 "protocol `%s' (%s) packet.",
1929 name, title);
1930 /* set/show TITLE-packet {auto,on,off} */
1931 cmd_name = xstrprintf ("%s-packet", title);
1932 set_show_commands cmds
1933 = add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1934 &config->detect, set_doc,
1935 show_doc, NULL, /* help_doc */
1936 NULL,
1937 show_remote_protocol_packet_cmd,
1938 &remote_set_cmdlist, &remote_show_cmdlist);
1939
1940 /* The command code copies the documentation strings. */
1941 xfree (set_doc);
1942 xfree (show_doc);
1943
1944 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1945 if (legacy)
1946 {
1947 char *legacy_name;
1948
1949 legacy_name = xstrprintf ("%s-packet", name);
1950 add_alias_cmd (legacy_name, cmds.set, class_obscure, 0,
1951 &remote_set_cmdlist);
1952 add_alias_cmd (legacy_name, cmds.show, class_obscure, 0,
1953 &remote_show_cmdlist);
1954 }
1955 }
1956
1957 static enum packet_result
1958 packet_check_result (const char *buf)
1959 {
1960 if (buf[0] != '\0')
1961 {
1962 /* The stub recognized the packet request. Check that the
1963 operation succeeded. */
1964 if (buf[0] == 'E'
1965 && isxdigit (buf[1]) && isxdigit (buf[2])
1966 && buf[3] == '\0')
1967 /* "Enn" - definitely an error. */
1968 return PACKET_ERROR;
1969
1970 /* Always treat "E." as an error. This will be used for
1971 more verbose error messages, such as E.memtypes. */
1972 if (buf[0] == 'E' && buf[1] == '.')
1973 return PACKET_ERROR;
1974
1975 /* The packet may or may not be OK. Just assume it is. */
1976 return PACKET_OK;
1977 }
1978 else
1979 /* The stub does not support the packet. */
1980 return PACKET_UNKNOWN;
1981 }
1982
1983 static enum packet_result
1984 packet_check_result (const gdb::char_vector &buf)
1985 {
1986 return packet_check_result (buf.data ());
1987 }
1988
1989 static enum packet_result
1990 packet_ok (const char *buf, struct packet_config *config)
1991 {
1992 enum packet_result result;
1993
1994 if (config->detect != AUTO_BOOLEAN_TRUE
1995 && config->support == PACKET_DISABLE)
1996 internal_error (__FILE__, __LINE__,
1997 _("packet_ok: attempt to use a disabled packet"));
1998
1999 result = packet_check_result (buf);
2000 switch (result)
2001 {
2002 case PACKET_OK:
2003 case PACKET_ERROR:
2004 /* The stub recognized the packet request. */
2005 if (config->support == PACKET_SUPPORT_UNKNOWN)
2006 {
2007 remote_debug_printf ("Packet %s (%s) is supported",
2008 config->name, config->title);
2009 config->support = PACKET_ENABLE;
2010 }
2011 break;
2012 case PACKET_UNKNOWN:
2013 /* The stub does not support the packet. */
2014 if (config->detect == AUTO_BOOLEAN_AUTO
2015 && config->support == PACKET_ENABLE)
2016 {
2017 /* If the stub previously indicated that the packet was
2018 supported then there is a protocol error. */
2019 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2020 config->name, config->title);
2021 }
2022 else if (config->detect == AUTO_BOOLEAN_TRUE)
2023 {
2024 /* The user set it wrong. */
2025 error (_("Enabled packet %s (%s) not recognized by stub"),
2026 config->name, config->title);
2027 }
2028
2029 remote_debug_printf ("Packet %s (%s) is NOT supported",
2030 config->name, config->title);
2031 config->support = PACKET_DISABLE;
2032 break;
2033 }
2034
2035 return result;
2036 }
2037
2038 static enum packet_result
2039 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2040 {
2041 return packet_ok (buf.data (), config);
2042 }
2043
2044 enum {
2045 PACKET_vCont = 0,
2046 PACKET_X,
2047 PACKET_qSymbol,
2048 PACKET_P,
2049 PACKET_p,
2050 PACKET_Z0,
2051 PACKET_Z1,
2052 PACKET_Z2,
2053 PACKET_Z3,
2054 PACKET_Z4,
2055 PACKET_vFile_setfs,
2056 PACKET_vFile_open,
2057 PACKET_vFile_pread,
2058 PACKET_vFile_pwrite,
2059 PACKET_vFile_close,
2060 PACKET_vFile_unlink,
2061 PACKET_vFile_readlink,
2062 PACKET_vFile_fstat,
2063 PACKET_qXfer_auxv,
2064 PACKET_qXfer_features,
2065 PACKET_qXfer_exec_file,
2066 PACKET_qXfer_libraries,
2067 PACKET_qXfer_libraries_svr4,
2068 PACKET_qXfer_memory_map,
2069 PACKET_qXfer_osdata,
2070 PACKET_qXfer_threads,
2071 PACKET_qXfer_statictrace_read,
2072 PACKET_qXfer_traceframe_info,
2073 PACKET_qXfer_uib,
2074 PACKET_qGetTIBAddr,
2075 PACKET_qGetTLSAddr,
2076 PACKET_qSupported,
2077 PACKET_qTStatus,
2078 PACKET_QPassSignals,
2079 PACKET_QCatchSyscalls,
2080 PACKET_QProgramSignals,
2081 PACKET_QSetWorkingDir,
2082 PACKET_QStartupWithShell,
2083 PACKET_QEnvironmentHexEncoded,
2084 PACKET_QEnvironmentReset,
2085 PACKET_QEnvironmentUnset,
2086 PACKET_qCRC,
2087 PACKET_qSearch_memory,
2088 PACKET_vAttach,
2089 PACKET_vRun,
2090 PACKET_QStartNoAckMode,
2091 PACKET_vKill,
2092 PACKET_qXfer_siginfo_read,
2093 PACKET_qXfer_siginfo_write,
2094 PACKET_qAttached,
2095
2096 /* Support for conditional tracepoints. */
2097 PACKET_ConditionalTracepoints,
2098
2099 /* Support for target-side breakpoint conditions. */
2100 PACKET_ConditionalBreakpoints,
2101
2102 /* Support for target-side breakpoint commands. */
2103 PACKET_BreakpointCommands,
2104
2105 /* Support for fast tracepoints. */
2106 PACKET_FastTracepoints,
2107
2108 /* Support for static tracepoints. */
2109 PACKET_StaticTracepoints,
2110
2111 /* Support for installing tracepoints while a trace experiment is
2112 running. */
2113 PACKET_InstallInTrace,
2114
2115 PACKET_bc,
2116 PACKET_bs,
2117 PACKET_TracepointSource,
2118 PACKET_QAllow,
2119 PACKET_qXfer_fdpic,
2120 PACKET_QDisableRandomization,
2121 PACKET_QAgent,
2122 PACKET_QTBuffer_size,
2123 PACKET_Qbtrace_off,
2124 PACKET_Qbtrace_bts,
2125 PACKET_Qbtrace_pt,
2126 PACKET_qXfer_btrace,
2127
2128 /* Support for the QNonStop packet. */
2129 PACKET_QNonStop,
2130
2131 /* Support for the QThreadEvents packet. */
2132 PACKET_QThreadEvents,
2133
2134 /* Support for multi-process extensions. */
2135 PACKET_multiprocess_feature,
2136
2137 /* Support for enabling and disabling tracepoints while a trace
2138 experiment is running. */
2139 PACKET_EnableDisableTracepoints_feature,
2140
2141 /* Support for collecting strings using the tracenz bytecode. */
2142 PACKET_tracenz_feature,
2143
2144 /* Support for continuing to run a trace experiment while GDB is
2145 disconnected. */
2146 PACKET_DisconnectedTracing_feature,
2147
2148 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2149 PACKET_augmented_libraries_svr4_read_feature,
2150
2151 /* Support for the qXfer:btrace-conf:read packet. */
2152 PACKET_qXfer_btrace_conf,
2153
2154 /* Support for the Qbtrace-conf:bts:size packet. */
2155 PACKET_Qbtrace_conf_bts_size,
2156
2157 /* Support for swbreak+ feature. */
2158 PACKET_swbreak_feature,
2159
2160 /* Support for hwbreak+ feature. */
2161 PACKET_hwbreak_feature,
2162
2163 /* Support for fork events. */
2164 PACKET_fork_event_feature,
2165
2166 /* Support for vfork events. */
2167 PACKET_vfork_event_feature,
2168
2169 /* Support for the Qbtrace-conf:pt:size packet. */
2170 PACKET_Qbtrace_conf_pt_size,
2171
2172 /* Support for exec events. */
2173 PACKET_exec_event_feature,
2174
2175 /* Support for query supported vCont actions. */
2176 PACKET_vContSupported,
2177
2178 /* Support remote CTRL-C. */
2179 PACKET_vCtrlC,
2180
2181 /* Support TARGET_WAITKIND_NO_RESUMED. */
2182 PACKET_no_resumed,
2183
2184 /* Support for memory tagging, allocation tag fetch/store
2185 packets and the tag violation stop replies. */
2186 PACKET_memory_tagging_feature,
2187
2188 PACKET_MAX
2189 };
2190
2191 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2192 assuming all remote targets are the same server (thus all support
2193 the same packets). */
2194 static struct packet_config remote_protocol_packets[PACKET_MAX];
2195
2196 /* Returns the packet's corresponding "set remote foo-packet" command
2197 state. See struct packet_config for more details. */
2198
2199 static enum auto_boolean
2200 packet_set_cmd_state (int packet)
2201 {
2202 return remote_protocol_packets[packet].detect;
2203 }
2204
2205 /* Returns whether a given packet or feature is supported. This takes
2206 into account the state of the corresponding "set remote foo-packet"
2207 command, which may be used to bypass auto-detection. */
2208
2209 static enum packet_support
2210 packet_config_support (struct packet_config *config)
2211 {
2212 switch (config->detect)
2213 {
2214 case AUTO_BOOLEAN_TRUE:
2215 return PACKET_ENABLE;
2216 case AUTO_BOOLEAN_FALSE:
2217 return PACKET_DISABLE;
2218 case AUTO_BOOLEAN_AUTO:
2219 return config->support;
2220 default:
2221 gdb_assert_not_reached (_("bad switch"));
2222 }
2223 }
2224
2225 /* Same as packet_config_support, but takes the packet's enum value as
2226 argument. */
2227
2228 static enum packet_support
2229 packet_support (int packet)
2230 {
2231 struct packet_config *config = &remote_protocol_packets[packet];
2232
2233 return packet_config_support (config);
2234 }
2235
2236 static void
2237 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2238 struct cmd_list_element *c,
2239 const char *value)
2240 {
2241 struct packet_config *packet;
2242
2243 for (packet = remote_protocol_packets;
2244 packet < &remote_protocol_packets[PACKET_MAX];
2245 packet++)
2246 {
2247 if (&packet->detect == c->var)
2248 {
2249 show_packet_config_cmd (packet);
2250 return;
2251 }
2252 }
2253 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2254 c->name);
2255 }
2256
2257 /* Should we try one of the 'Z' requests? */
2258
2259 enum Z_packet_type
2260 {
2261 Z_PACKET_SOFTWARE_BP,
2262 Z_PACKET_HARDWARE_BP,
2263 Z_PACKET_WRITE_WP,
2264 Z_PACKET_READ_WP,
2265 Z_PACKET_ACCESS_WP,
2266 NR_Z_PACKET_TYPES
2267 };
2268
2269 /* For compatibility with older distributions. Provide a ``set remote
2270 Z-packet ...'' command that updates all the Z packet types. */
2271
2272 static enum auto_boolean remote_Z_packet_detect;
2273
2274 static void
2275 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2276 struct cmd_list_element *c)
2277 {
2278 int i;
2279
2280 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2281 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2282 }
2283
2284 static void
2285 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2286 struct cmd_list_element *c,
2287 const char *value)
2288 {
2289 int i;
2290
2291 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2292 {
2293 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2294 }
2295 }
2296
2297 /* Returns true if the multi-process extensions are in effect. */
2298
2299 static int
2300 remote_multi_process_p (struct remote_state *rs)
2301 {
2302 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2303 }
2304
2305 /* Returns true if fork events are supported. */
2306
2307 static int
2308 remote_fork_event_p (struct remote_state *rs)
2309 {
2310 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2311 }
2312
2313 /* Returns true if vfork events are supported. */
2314
2315 static int
2316 remote_vfork_event_p (struct remote_state *rs)
2317 {
2318 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2319 }
2320
2321 /* Returns true if exec events are supported. */
2322
2323 static int
2324 remote_exec_event_p (struct remote_state *rs)
2325 {
2326 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2327 }
2328
2329 /* Returns true if memory tagging is supported, false otherwise. */
2330
2331 static bool
2332 remote_memory_tagging_p ()
2333 {
2334 return packet_support (PACKET_memory_tagging_feature) == PACKET_ENABLE;
2335 }
2336
2337 /* Insert fork catchpoint target routine. If fork events are enabled
2338 then return success, nothing more to do. */
2339
2340 int
2341 remote_target::insert_fork_catchpoint (int pid)
2342 {
2343 struct remote_state *rs = get_remote_state ();
2344
2345 return !remote_fork_event_p (rs);
2346 }
2347
2348 /* Remove fork catchpoint target routine. Nothing to do, just
2349 return success. */
2350
2351 int
2352 remote_target::remove_fork_catchpoint (int pid)
2353 {
2354 return 0;
2355 }
2356
2357 /* Insert vfork catchpoint target routine. If vfork events are enabled
2358 then return success, nothing more to do. */
2359
2360 int
2361 remote_target::insert_vfork_catchpoint (int pid)
2362 {
2363 struct remote_state *rs = get_remote_state ();
2364
2365 return !remote_vfork_event_p (rs);
2366 }
2367
2368 /* Remove vfork catchpoint target routine. Nothing to do, just
2369 return success. */
2370
2371 int
2372 remote_target::remove_vfork_catchpoint (int pid)
2373 {
2374 return 0;
2375 }
2376
2377 /* Insert exec catchpoint target routine. If exec events are
2378 enabled, just return success. */
2379
2380 int
2381 remote_target::insert_exec_catchpoint (int pid)
2382 {
2383 struct remote_state *rs = get_remote_state ();
2384
2385 return !remote_exec_event_p (rs);
2386 }
2387
2388 /* Remove exec catchpoint target routine. Nothing to do, just
2389 return success. */
2390
2391 int
2392 remote_target::remove_exec_catchpoint (int pid)
2393 {
2394 return 0;
2395 }
2396
2397 \f
2398
2399 /* Take advantage of the fact that the TID field is not used, to tag
2400 special ptids with it set to != 0. */
2401 static const ptid_t magic_null_ptid (42000, -1, 1);
2402 static const ptid_t not_sent_ptid (42000, -2, 1);
2403 static const ptid_t any_thread_ptid (42000, 0, 1);
2404
2405 /* Find out if the stub attached to PID (and hence GDB should offer to
2406 detach instead of killing it when bailing out). */
2407
2408 int
2409 remote_target::remote_query_attached (int pid)
2410 {
2411 struct remote_state *rs = get_remote_state ();
2412 size_t size = get_remote_packet_size ();
2413
2414 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2415 return 0;
2416
2417 if (remote_multi_process_p (rs))
2418 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2419 else
2420 xsnprintf (rs->buf.data (), size, "qAttached");
2421
2422 putpkt (rs->buf);
2423 getpkt (&rs->buf, 0);
2424
2425 switch (packet_ok (rs->buf,
2426 &remote_protocol_packets[PACKET_qAttached]))
2427 {
2428 case PACKET_OK:
2429 if (strcmp (rs->buf.data (), "1") == 0)
2430 return 1;
2431 break;
2432 case PACKET_ERROR:
2433 warning (_("Remote failure reply: %s"), rs->buf.data ());
2434 break;
2435 case PACKET_UNKNOWN:
2436 break;
2437 }
2438
2439 return 0;
2440 }
2441
2442 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2443 has been invented by GDB, instead of reported by the target. Since
2444 we can be connected to a remote system before before knowing about
2445 any inferior, mark the target with execution when we find the first
2446 inferior. If ATTACHED is 1, then we had just attached to this
2447 inferior. If it is 0, then we just created this inferior. If it
2448 is -1, then try querying the remote stub to find out if it had
2449 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2450 attempt to open this inferior's executable as the main executable
2451 if no main executable is open already. */
2452
2453 inferior *
2454 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2455 int try_open_exec)
2456 {
2457 struct inferior *inf;
2458
2459 /* Check whether this process we're learning about is to be
2460 considered attached, or if is to be considered to have been
2461 spawned by the stub. */
2462 if (attached == -1)
2463 attached = remote_query_attached (pid);
2464
2465 if (gdbarch_has_global_solist (target_gdbarch ()))
2466 {
2467 /* If the target shares code across all inferiors, then every
2468 attach adds a new inferior. */
2469 inf = add_inferior (pid);
2470
2471 /* ... and every inferior is bound to the same program space.
2472 However, each inferior may still have its own address
2473 space. */
2474 inf->aspace = maybe_new_address_space ();
2475 inf->pspace = current_program_space;
2476 }
2477 else
2478 {
2479 /* In the traditional debugging scenario, there's a 1-1 match
2480 between program/address spaces. We simply bind the inferior
2481 to the program space's address space. */
2482 inf = current_inferior ();
2483
2484 /* However, if the current inferior is already bound to a
2485 process, find some other empty inferior. */
2486 if (inf->pid != 0)
2487 {
2488 inf = nullptr;
2489 for (inferior *it : all_inferiors ())
2490 if (it->pid == 0)
2491 {
2492 inf = it;
2493 break;
2494 }
2495 }
2496 if (inf == nullptr)
2497 {
2498 /* Since all inferiors were already bound to a process, add
2499 a new inferior. */
2500 inf = add_inferior_with_spaces ();
2501 }
2502 switch_to_inferior_no_thread (inf);
2503 inf->push_target (this);
2504 inferior_appeared (inf, pid);
2505 }
2506
2507 inf->attach_flag = attached;
2508 inf->fake_pid_p = fake_pid_p;
2509
2510 /* If no main executable is currently open then attempt to
2511 open the file that was executed to create this inferior. */
2512 if (try_open_exec && get_exec_file (0) == NULL)
2513 exec_file_locate_attach (pid, 0, 1);
2514
2515 /* Check for exec file mismatch, and let the user solve it. */
2516 validate_exec_file (1);
2517
2518 return inf;
2519 }
2520
2521 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2522 static remote_thread_info *get_remote_thread_info (remote_target *target,
2523 ptid_t ptid);
2524
2525 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2526 according to RUNNING. */
2527
2528 thread_info *
2529 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2530 {
2531 struct remote_state *rs = get_remote_state ();
2532 struct thread_info *thread;
2533
2534 /* GDB historically didn't pull threads in the initial connection
2535 setup. If the remote target doesn't even have a concept of
2536 threads (e.g., a bare-metal target), even if internally we
2537 consider that a single-threaded target, mentioning a new thread
2538 might be confusing to the user. Be silent then, preserving the
2539 age old behavior. */
2540 if (rs->starting_up)
2541 thread = add_thread_silent (this, ptid);
2542 else
2543 thread = add_thread (this, ptid);
2544
2545 /* We start by assuming threads are resumed. That state then gets updated
2546 when we process a matching stop reply. */
2547 get_remote_thread_info (thread)->set_resumed ();
2548
2549 set_executing (this, ptid, executing);
2550 set_running (this, ptid, running);
2551
2552 return thread;
2553 }
2554
2555 /* Come here when we learn about a thread id from the remote target.
2556 It may be the first time we hear about such thread, so take the
2557 opportunity to add it to GDB's thread list. In case this is the
2558 first time we're noticing its corresponding inferior, add it to
2559 GDB's inferior list as well. EXECUTING indicates whether the
2560 thread is (internally) executing or stopped. */
2561
2562 void
2563 remote_target::remote_notice_new_inferior (ptid_t currthread, bool executing)
2564 {
2565 /* In non-stop mode, we assume new found threads are (externally)
2566 running until proven otherwise with a stop reply. In all-stop,
2567 we can only get here if all threads are stopped. */
2568 bool running = target_is_non_stop_p ();
2569
2570 /* If this is a new thread, add it to GDB's thread list.
2571 If we leave it up to WFI to do this, bad things will happen. */
2572
2573 thread_info *tp = find_thread_ptid (this, currthread);
2574 if (tp != NULL && tp->state == THREAD_EXITED)
2575 {
2576 /* We're seeing an event on a thread id we knew had exited.
2577 This has to be a new thread reusing the old id. Add it. */
2578 remote_add_thread (currthread, running, executing);
2579 return;
2580 }
2581
2582 if (!in_thread_list (this, currthread))
2583 {
2584 struct inferior *inf = NULL;
2585 int pid = currthread.pid ();
2586
2587 if (inferior_ptid.is_pid ()
2588 && pid == inferior_ptid.pid ())
2589 {
2590 /* inferior_ptid has no thread member yet. This can happen
2591 with the vAttach -> remote_wait,"TAAthread:" path if the
2592 stub doesn't support qC. This is the first stop reported
2593 after an attach, so this is the main thread. Update the
2594 ptid in the thread list. */
2595 if (in_thread_list (this, ptid_t (pid)))
2596 thread_change_ptid (this, inferior_ptid, currthread);
2597 else
2598 {
2599 thread_info *thr
2600 = remote_add_thread (currthread, running, executing);
2601 switch_to_thread (thr);
2602 }
2603 return;
2604 }
2605
2606 if (magic_null_ptid == inferior_ptid)
2607 {
2608 /* inferior_ptid is not set yet. This can happen with the
2609 vRun -> remote_wait,"TAAthread:" path if the stub
2610 doesn't support qC. This is the first stop reported
2611 after an attach, so this is the main thread. Update the
2612 ptid in the thread list. */
2613 thread_change_ptid (this, inferior_ptid, currthread);
2614 return;
2615 }
2616
2617 /* When connecting to a target remote, or to a target
2618 extended-remote which already was debugging an inferior, we
2619 may not know about it yet. Add it before adding its child
2620 thread, so notifications are emitted in a sensible order. */
2621 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2622 {
2623 struct remote_state *rs = get_remote_state ();
2624 bool fake_pid_p = !remote_multi_process_p (rs);
2625
2626 inf = remote_add_inferior (fake_pid_p,
2627 currthread.pid (), -1, 1);
2628 }
2629
2630 /* This is really a new thread. Add it. */
2631 thread_info *new_thr
2632 = remote_add_thread (currthread, running, executing);
2633
2634 /* If we found a new inferior, let the common code do whatever
2635 it needs to with it (e.g., read shared libraries, insert
2636 breakpoints), unless we're just setting up an all-stop
2637 connection. */
2638 if (inf != NULL)
2639 {
2640 struct remote_state *rs = get_remote_state ();
2641
2642 if (!rs->starting_up)
2643 notice_new_inferior (new_thr, executing, 0);
2644 }
2645 }
2646 }
2647
2648 /* Return THREAD's private thread data, creating it if necessary. */
2649
2650 static remote_thread_info *
2651 get_remote_thread_info (thread_info *thread)
2652 {
2653 gdb_assert (thread != NULL);
2654
2655 if (thread->priv == NULL)
2656 thread->priv.reset (new remote_thread_info);
2657
2658 return static_cast<remote_thread_info *> (thread->priv.get ());
2659 }
2660
2661 /* Return PTID's private thread data, creating it if necessary. */
2662
2663 static remote_thread_info *
2664 get_remote_thread_info (remote_target *target, ptid_t ptid)
2665 {
2666 thread_info *thr = find_thread_ptid (target, ptid);
2667 return get_remote_thread_info (thr);
2668 }
2669
2670 /* Call this function as a result of
2671 1) A halt indication (T packet) containing a thread id
2672 2) A direct query of currthread
2673 3) Successful execution of set thread */
2674
2675 static void
2676 record_currthread (struct remote_state *rs, ptid_t currthread)
2677 {
2678 rs->general_thread = currthread;
2679 }
2680
2681 /* If 'QPassSignals' is supported, tell the remote stub what signals
2682 it can simply pass through to the inferior without reporting. */
2683
2684 void
2685 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2686 {
2687 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2688 {
2689 char *pass_packet, *p;
2690 int count = 0;
2691 struct remote_state *rs = get_remote_state ();
2692
2693 gdb_assert (pass_signals.size () < 256);
2694 for (size_t i = 0; i < pass_signals.size (); i++)
2695 {
2696 if (pass_signals[i])
2697 count++;
2698 }
2699 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2700 strcpy (pass_packet, "QPassSignals:");
2701 p = pass_packet + strlen (pass_packet);
2702 for (size_t i = 0; i < pass_signals.size (); i++)
2703 {
2704 if (pass_signals[i])
2705 {
2706 if (i >= 16)
2707 *p++ = tohex (i >> 4);
2708 *p++ = tohex (i & 15);
2709 if (count)
2710 *p++ = ';';
2711 else
2712 break;
2713 count--;
2714 }
2715 }
2716 *p = 0;
2717 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2718 {
2719 putpkt (pass_packet);
2720 getpkt (&rs->buf, 0);
2721 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2722 xfree (rs->last_pass_packet);
2723 rs->last_pass_packet = pass_packet;
2724 }
2725 else
2726 xfree (pass_packet);
2727 }
2728 }
2729
2730 /* If 'QCatchSyscalls' is supported, tell the remote stub
2731 to report syscalls to GDB. */
2732
2733 int
2734 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2735 gdb::array_view<const int> syscall_counts)
2736 {
2737 const char *catch_packet;
2738 enum packet_result result;
2739 int n_sysno = 0;
2740
2741 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2742 {
2743 /* Not supported. */
2744 return 1;
2745 }
2746
2747 if (needed && any_count == 0)
2748 {
2749 /* Count how many syscalls are to be caught. */
2750 for (size_t i = 0; i < syscall_counts.size (); i++)
2751 {
2752 if (syscall_counts[i] != 0)
2753 n_sysno++;
2754 }
2755 }
2756
2757 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2758 pid, needed, any_count, n_sysno);
2759
2760 std::string built_packet;
2761 if (needed)
2762 {
2763 /* Prepare a packet with the sysno list, assuming max 8+1
2764 characters for a sysno. If the resulting packet size is too
2765 big, fallback on the non-selective packet. */
2766 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2767 built_packet.reserve (maxpktsz);
2768 built_packet = "QCatchSyscalls:1";
2769 if (any_count == 0)
2770 {
2771 /* Add in each syscall to be caught. */
2772 for (size_t i = 0; i < syscall_counts.size (); i++)
2773 {
2774 if (syscall_counts[i] != 0)
2775 string_appendf (built_packet, ";%zx", i);
2776 }
2777 }
2778 if (built_packet.size () > get_remote_packet_size ())
2779 {
2780 /* catch_packet too big. Fallback to less efficient
2781 non selective mode, with GDB doing the filtering. */
2782 catch_packet = "QCatchSyscalls:1";
2783 }
2784 else
2785 catch_packet = built_packet.c_str ();
2786 }
2787 else
2788 catch_packet = "QCatchSyscalls:0";
2789
2790 struct remote_state *rs = get_remote_state ();
2791
2792 putpkt (catch_packet);
2793 getpkt (&rs->buf, 0);
2794 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2795 if (result == PACKET_OK)
2796 return 0;
2797 else
2798 return -1;
2799 }
2800
2801 /* If 'QProgramSignals' is supported, tell the remote stub what
2802 signals it should pass through to the inferior when detaching. */
2803
2804 void
2805 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2806 {
2807 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2808 {
2809 char *packet, *p;
2810 int count = 0;
2811 struct remote_state *rs = get_remote_state ();
2812
2813 gdb_assert (signals.size () < 256);
2814 for (size_t i = 0; i < signals.size (); i++)
2815 {
2816 if (signals[i])
2817 count++;
2818 }
2819 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2820 strcpy (packet, "QProgramSignals:");
2821 p = packet + strlen (packet);
2822 for (size_t i = 0; i < signals.size (); i++)
2823 {
2824 if (signal_pass_state (i))
2825 {
2826 if (i >= 16)
2827 *p++ = tohex (i >> 4);
2828 *p++ = tohex (i & 15);
2829 if (count)
2830 *p++ = ';';
2831 else
2832 break;
2833 count--;
2834 }
2835 }
2836 *p = 0;
2837 if (!rs->last_program_signals_packet
2838 || strcmp (rs->last_program_signals_packet, packet) != 0)
2839 {
2840 putpkt (packet);
2841 getpkt (&rs->buf, 0);
2842 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2843 xfree (rs->last_program_signals_packet);
2844 rs->last_program_signals_packet = packet;
2845 }
2846 else
2847 xfree (packet);
2848 }
2849 }
2850
2851 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2852 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2853 thread. If GEN is set, set the general thread, if not, then set
2854 the step/continue thread. */
2855 void
2856 remote_target::set_thread (ptid_t ptid, int gen)
2857 {
2858 struct remote_state *rs = get_remote_state ();
2859 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2860 char *buf = rs->buf.data ();
2861 char *endbuf = buf + get_remote_packet_size ();
2862
2863 if (state == ptid)
2864 return;
2865
2866 *buf++ = 'H';
2867 *buf++ = gen ? 'g' : 'c';
2868 if (ptid == magic_null_ptid)
2869 xsnprintf (buf, endbuf - buf, "0");
2870 else if (ptid == any_thread_ptid)
2871 xsnprintf (buf, endbuf - buf, "0");
2872 else if (ptid == minus_one_ptid)
2873 xsnprintf (buf, endbuf - buf, "-1");
2874 else
2875 write_ptid (buf, endbuf, ptid);
2876 putpkt (rs->buf);
2877 getpkt (&rs->buf, 0);
2878 if (gen)
2879 rs->general_thread = ptid;
2880 else
2881 rs->continue_thread = ptid;
2882 }
2883
2884 void
2885 remote_target::set_general_thread (ptid_t ptid)
2886 {
2887 set_thread (ptid, 1);
2888 }
2889
2890 void
2891 remote_target::set_continue_thread (ptid_t ptid)
2892 {
2893 set_thread (ptid, 0);
2894 }
2895
2896 /* Change the remote current process. Which thread within the process
2897 ends up selected isn't important, as long as it is the same process
2898 as what INFERIOR_PTID points to.
2899
2900 This comes from that fact that there is no explicit notion of
2901 "selected process" in the protocol. The selected process for
2902 general operations is the process the selected general thread
2903 belongs to. */
2904
2905 void
2906 remote_target::set_general_process ()
2907 {
2908 struct remote_state *rs = get_remote_state ();
2909
2910 /* If the remote can't handle multiple processes, don't bother. */
2911 if (!remote_multi_process_p (rs))
2912 return;
2913
2914 /* We only need to change the remote current thread if it's pointing
2915 at some other process. */
2916 if (rs->general_thread.pid () != inferior_ptid.pid ())
2917 set_general_thread (inferior_ptid);
2918 }
2919
2920 \f
2921 /* Return nonzero if this is the main thread that we made up ourselves
2922 to model non-threaded targets as single-threaded. */
2923
2924 static int
2925 remote_thread_always_alive (ptid_t ptid)
2926 {
2927 if (ptid == magic_null_ptid)
2928 /* The main thread is always alive. */
2929 return 1;
2930
2931 if (ptid.pid () != 0 && ptid.lwp () == 0)
2932 /* The main thread is always alive. This can happen after a
2933 vAttach, if the remote side doesn't support
2934 multi-threading. */
2935 return 1;
2936
2937 return 0;
2938 }
2939
2940 /* Return nonzero if the thread PTID is still alive on the remote
2941 system. */
2942
2943 bool
2944 remote_target::thread_alive (ptid_t ptid)
2945 {
2946 struct remote_state *rs = get_remote_state ();
2947 char *p, *endp;
2948
2949 /* Check if this is a thread that we made up ourselves to model
2950 non-threaded targets as single-threaded. */
2951 if (remote_thread_always_alive (ptid))
2952 return 1;
2953
2954 p = rs->buf.data ();
2955 endp = p + get_remote_packet_size ();
2956
2957 *p++ = 'T';
2958 write_ptid (p, endp, ptid);
2959
2960 putpkt (rs->buf);
2961 getpkt (&rs->buf, 0);
2962 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2963 }
2964
2965 /* Return a pointer to a thread name if we know it and NULL otherwise.
2966 The thread_info object owns the memory for the name. */
2967
2968 const char *
2969 remote_target::thread_name (struct thread_info *info)
2970 {
2971 if (info->priv != NULL)
2972 {
2973 const std::string &name = get_remote_thread_info (info)->name;
2974 return !name.empty () ? name.c_str () : NULL;
2975 }
2976
2977 return NULL;
2978 }
2979
2980 /* About these extended threadlist and threadinfo packets. They are
2981 variable length packets but, the fields within them are often fixed
2982 length. They are redundant enough to send over UDP as is the
2983 remote protocol in general. There is a matching unit test module
2984 in libstub. */
2985
2986 /* WARNING: This threadref data structure comes from the remote O.S.,
2987 libstub protocol encoding, and remote.c. It is not particularly
2988 changable. */
2989
2990 /* Right now, the internal structure is int. We want it to be bigger.
2991 Plan to fix this. */
2992
2993 typedef int gdb_threadref; /* Internal GDB thread reference. */
2994
2995 /* gdb_ext_thread_info is an internal GDB data structure which is
2996 equivalent to the reply of the remote threadinfo packet. */
2997
2998 struct gdb_ext_thread_info
2999 {
3000 threadref threadid; /* External form of thread reference. */
3001 int active; /* Has state interesting to GDB?
3002 regs, stack. */
3003 char display[256]; /* Brief state display, name,
3004 blocked/suspended. */
3005 char shortname[32]; /* To be used to name threads. */
3006 char more_display[256]; /* Long info, statistics, queue depth,
3007 whatever. */
3008 };
3009
3010 /* The volume of remote transfers can be limited by submitting
3011 a mask containing bits specifying the desired information.
3012 Use a union of these values as the 'selection' parameter to
3013 get_thread_info. FIXME: Make these TAG names more thread specific. */
3014
3015 #define TAG_THREADID 1
3016 #define TAG_EXISTS 2
3017 #define TAG_DISPLAY 4
3018 #define TAG_THREADNAME 8
3019 #define TAG_MOREDISPLAY 16
3020
3021 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3022
3023 static const char *unpack_nibble (const char *buf, int *val);
3024
3025 static const char *unpack_byte (const char *buf, int *value);
3026
3027 static char *pack_int (char *buf, int value);
3028
3029 static const char *unpack_int (const char *buf, int *value);
3030
3031 static const char *unpack_string (const char *src, char *dest, int length);
3032
3033 static char *pack_threadid (char *pkt, threadref *id);
3034
3035 static const char *unpack_threadid (const char *inbuf, threadref *id);
3036
3037 void int_to_threadref (threadref *id, int value);
3038
3039 static int threadref_to_int (threadref *ref);
3040
3041 static void copy_threadref (threadref *dest, threadref *src);
3042
3043 static int threadmatch (threadref *dest, threadref *src);
3044
3045 static char *pack_threadinfo_request (char *pkt, int mode,
3046 threadref *id);
3047
3048 static char *pack_threadlist_request (char *pkt, int startflag,
3049 int threadcount,
3050 threadref *nextthread);
3051
3052 static int remote_newthread_step (threadref *ref, void *context);
3053
3054
3055 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3056 buffer we're allowed to write to. Returns
3057 BUF+CHARACTERS_WRITTEN. */
3058
3059 char *
3060 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3061 {
3062 int pid, tid;
3063 struct remote_state *rs = get_remote_state ();
3064
3065 if (remote_multi_process_p (rs))
3066 {
3067 pid = ptid.pid ();
3068 if (pid < 0)
3069 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3070 else
3071 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3072 }
3073 tid = ptid.lwp ();
3074 if (tid < 0)
3075 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3076 else
3077 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3078
3079 return buf;
3080 }
3081
3082 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3083 last parsed char. Returns null_ptid if no thread id is found, and
3084 throws an error if the thread id has an invalid format. */
3085
3086 static ptid_t
3087 read_ptid (const char *buf, const char **obuf)
3088 {
3089 const char *p = buf;
3090 const char *pp;
3091 ULONGEST pid = 0, tid = 0;
3092
3093 if (*p == 'p')
3094 {
3095 /* Multi-process ptid. */
3096 pp = unpack_varlen_hex (p + 1, &pid);
3097 if (*pp != '.')
3098 error (_("invalid remote ptid: %s"), p);
3099
3100 p = pp;
3101 pp = unpack_varlen_hex (p + 1, &tid);
3102 if (obuf)
3103 *obuf = pp;
3104 return ptid_t (pid, tid);
3105 }
3106
3107 /* No multi-process. Just a tid. */
3108 pp = unpack_varlen_hex (p, &tid);
3109
3110 /* Return null_ptid when no thread id is found. */
3111 if (p == pp)
3112 {
3113 if (obuf)
3114 *obuf = pp;
3115 return null_ptid;
3116 }
3117
3118 /* Since the stub is not sending a process id, then default to
3119 what's in inferior_ptid, unless it's null at this point. If so,
3120 then since there's no way to know the pid of the reported
3121 threads, use the magic number. */
3122 if (inferior_ptid == null_ptid)
3123 pid = magic_null_ptid.pid ();
3124 else
3125 pid = inferior_ptid.pid ();
3126
3127 if (obuf)
3128 *obuf = pp;
3129 return ptid_t (pid, tid);
3130 }
3131
3132 static int
3133 stubhex (int ch)
3134 {
3135 if (ch >= 'a' && ch <= 'f')
3136 return ch - 'a' + 10;
3137 if (ch >= '0' && ch <= '9')
3138 return ch - '0';
3139 if (ch >= 'A' && ch <= 'F')
3140 return ch - 'A' + 10;
3141 return -1;
3142 }
3143
3144 static int
3145 stub_unpack_int (const char *buff, int fieldlength)
3146 {
3147 int nibble;
3148 int retval = 0;
3149
3150 while (fieldlength)
3151 {
3152 nibble = stubhex (*buff++);
3153 retval |= nibble;
3154 fieldlength--;
3155 if (fieldlength)
3156 retval = retval << 4;
3157 }
3158 return retval;
3159 }
3160
3161 static const char *
3162 unpack_nibble (const char *buf, int *val)
3163 {
3164 *val = fromhex (*buf++);
3165 return buf;
3166 }
3167
3168 static const char *
3169 unpack_byte (const char *buf, int *value)
3170 {
3171 *value = stub_unpack_int (buf, 2);
3172 return buf + 2;
3173 }
3174
3175 static char *
3176 pack_int (char *buf, int value)
3177 {
3178 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3179 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3180 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3181 buf = pack_hex_byte (buf, (value & 0xff));
3182 return buf;
3183 }
3184
3185 static const char *
3186 unpack_int (const char *buf, int *value)
3187 {
3188 *value = stub_unpack_int (buf, 8);
3189 return buf + 8;
3190 }
3191
3192 #if 0 /* Currently unused, uncomment when needed. */
3193 static char *pack_string (char *pkt, char *string);
3194
3195 static char *
3196 pack_string (char *pkt, char *string)
3197 {
3198 char ch;
3199 int len;
3200
3201 len = strlen (string);
3202 if (len > 200)
3203 len = 200; /* Bigger than most GDB packets, junk??? */
3204 pkt = pack_hex_byte (pkt, len);
3205 while (len-- > 0)
3206 {
3207 ch = *string++;
3208 if ((ch == '\0') || (ch == '#'))
3209 ch = '*'; /* Protect encapsulation. */
3210 *pkt++ = ch;
3211 }
3212 return pkt;
3213 }
3214 #endif /* 0 (unused) */
3215
3216 static const char *
3217 unpack_string (const char *src, char *dest, int length)
3218 {
3219 while (length--)
3220 *dest++ = *src++;
3221 *dest = '\0';
3222 return src;
3223 }
3224
3225 static char *
3226 pack_threadid (char *pkt, threadref *id)
3227 {
3228 char *limit;
3229 unsigned char *altid;
3230
3231 altid = (unsigned char *) id;
3232 limit = pkt + BUF_THREAD_ID_SIZE;
3233 while (pkt < limit)
3234 pkt = pack_hex_byte (pkt, *altid++);
3235 return pkt;
3236 }
3237
3238
3239 static const char *
3240 unpack_threadid (const char *inbuf, threadref *id)
3241 {
3242 char *altref;
3243 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3244 int x, y;
3245
3246 altref = (char *) id;
3247
3248 while (inbuf < limit)
3249 {
3250 x = stubhex (*inbuf++);
3251 y = stubhex (*inbuf++);
3252 *altref++ = (x << 4) | y;
3253 }
3254 return inbuf;
3255 }
3256
3257 /* Externally, threadrefs are 64 bits but internally, they are still
3258 ints. This is due to a mismatch of specifications. We would like
3259 to use 64bit thread references internally. This is an adapter
3260 function. */
3261
3262 void
3263 int_to_threadref (threadref *id, int value)
3264 {
3265 unsigned char *scan;
3266
3267 scan = (unsigned char *) id;
3268 {
3269 int i = 4;
3270 while (i--)
3271 *scan++ = 0;
3272 }
3273 *scan++ = (value >> 24) & 0xff;
3274 *scan++ = (value >> 16) & 0xff;
3275 *scan++ = (value >> 8) & 0xff;
3276 *scan++ = (value & 0xff);
3277 }
3278
3279 static int
3280 threadref_to_int (threadref *ref)
3281 {
3282 int i, value = 0;
3283 unsigned char *scan;
3284
3285 scan = *ref;
3286 scan += 4;
3287 i = 4;
3288 while (i-- > 0)
3289 value = (value << 8) | ((*scan++) & 0xff);
3290 return value;
3291 }
3292
3293 static void
3294 copy_threadref (threadref *dest, threadref *src)
3295 {
3296 int i;
3297 unsigned char *csrc, *cdest;
3298
3299 csrc = (unsigned char *) src;
3300 cdest = (unsigned char *) dest;
3301 i = 8;
3302 while (i--)
3303 *cdest++ = *csrc++;
3304 }
3305
3306 static int
3307 threadmatch (threadref *dest, threadref *src)
3308 {
3309 /* Things are broken right now, so just assume we got a match. */
3310 #if 0
3311 unsigned char *srcp, *destp;
3312 int i, result;
3313 srcp = (char *) src;
3314 destp = (char *) dest;
3315
3316 result = 1;
3317 while (i-- > 0)
3318 result &= (*srcp++ == *destp++) ? 1 : 0;
3319 return result;
3320 #endif
3321 return 1;
3322 }
3323
3324 /*
3325 threadid:1, # always request threadid
3326 context_exists:2,
3327 display:4,
3328 unique_name:8,
3329 more_display:16
3330 */
3331
3332 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3333
3334 static char *
3335 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3336 {
3337 *pkt++ = 'q'; /* Info Query */
3338 *pkt++ = 'P'; /* process or thread info */
3339 pkt = pack_int (pkt, mode); /* mode */
3340 pkt = pack_threadid (pkt, id); /* threadid */
3341 *pkt = '\0'; /* terminate */
3342 return pkt;
3343 }
3344
3345 /* These values tag the fields in a thread info response packet. */
3346 /* Tagging the fields allows us to request specific fields and to
3347 add more fields as time goes by. */
3348
3349 #define TAG_THREADID 1 /* Echo the thread identifier. */
3350 #define TAG_EXISTS 2 /* Is this process defined enough to
3351 fetch registers and its stack? */
3352 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3353 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3354 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3355 the process. */
3356
3357 int
3358 remote_target::remote_unpack_thread_info_response (const char *pkt,
3359 threadref *expectedref,
3360 gdb_ext_thread_info *info)
3361 {
3362 struct remote_state *rs = get_remote_state ();
3363 int mask, length;
3364 int tag;
3365 threadref ref;
3366 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3367 int retval = 1;
3368
3369 /* info->threadid = 0; FIXME: implement zero_threadref. */
3370 info->active = 0;
3371 info->display[0] = '\0';
3372 info->shortname[0] = '\0';
3373 info->more_display[0] = '\0';
3374
3375 /* Assume the characters indicating the packet type have been
3376 stripped. */
3377 pkt = unpack_int (pkt, &mask); /* arg mask */
3378 pkt = unpack_threadid (pkt, &ref);
3379
3380 if (mask == 0)
3381 warning (_("Incomplete response to threadinfo request."));
3382 if (!threadmatch (&ref, expectedref))
3383 { /* This is an answer to a different request. */
3384 warning (_("ERROR RMT Thread info mismatch."));
3385 return 0;
3386 }
3387 copy_threadref (&info->threadid, &ref);
3388
3389 /* Loop on tagged fields , try to bail if something goes wrong. */
3390
3391 /* Packets are terminated with nulls. */
3392 while ((pkt < limit) && mask && *pkt)
3393 {
3394 pkt = unpack_int (pkt, &tag); /* tag */
3395 pkt = unpack_byte (pkt, &length); /* length */
3396 if (!(tag & mask)) /* Tags out of synch with mask. */
3397 {
3398 warning (_("ERROR RMT: threadinfo tag mismatch."));
3399 retval = 0;
3400 break;
3401 }
3402 if (tag == TAG_THREADID)
3403 {
3404 if (length != 16)
3405 {
3406 warning (_("ERROR RMT: length of threadid is not 16."));
3407 retval = 0;
3408 break;
3409 }
3410 pkt = unpack_threadid (pkt, &ref);
3411 mask = mask & ~TAG_THREADID;
3412 continue;
3413 }
3414 if (tag == TAG_EXISTS)
3415 {
3416 info->active = stub_unpack_int (pkt, length);
3417 pkt += length;
3418 mask = mask & ~(TAG_EXISTS);
3419 if (length > 8)
3420 {
3421 warning (_("ERROR RMT: 'exists' length too long."));
3422 retval = 0;
3423 break;
3424 }
3425 continue;
3426 }
3427 if (tag == TAG_THREADNAME)
3428 {
3429 pkt = unpack_string (pkt, &info->shortname[0], length);
3430 mask = mask & ~TAG_THREADNAME;
3431 continue;
3432 }
3433 if (tag == TAG_DISPLAY)
3434 {
3435 pkt = unpack_string (pkt, &info->display[0], length);
3436 mask = mask & ~TAG_DISPLAY;
3437 continue;
3438 }
3439 if (tag == TAG_MOREDISPLAY)
3440 {
3441 pkt = unpack_string (pkt, &info->more_display[0], length);
3442 mask = mask & ~TAG_MOREDISPLAY;
3443 continue;
3444 }
3445 warning (_("ERROR RMT: unknown thread info tag."));
3446 break; /* Not a tag we know about. */
3447 }
3448 return retval;
3449 }
3450
3451 int
3452 remote_target::remote_get_threadinfo (threadref *threadid,
3453 int fieldset,
3454 gdb_ext_thread_info *info)
3455 {
3456 struct remote_state *rs = get_remote_state ();
3457 int result;
3458
3459 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3460 putpkt (rs->buf);
3461 getpkt (&rs->buf, 0);
3462
3463 if (rs->buf[0] == '\0')
3464 return 0;
3465
3466 result = remote_unpack_thread_info_response (&rs->buf[2],
3467 threadid, info);
3468 return result;
3469 }
3470
3471 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3472
3473 static char *
3474 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3475 threadref *nextthread)
3476 {
3477 *pkt++ = 'q'; /* info query packet */
3478 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3479 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3480 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3481 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3482 *pkt = '\0';
3483 return pkt;
3484 }
3485
3486 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3487
3488 int
3489 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3490 threadref *original_echo,
3491 threadref *resultlist,
3492 int *doneflag)
3493 {
3494 struct remote_state *rs = get_remote_state ();
3495 int count, resultcount, done;
3496
3497 resultcount = 0;
3498 /* Assume the 'q' and 'M chars have been stripped. */
3499 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3500 /* done parse past here */
3501 pkt = unpack_byte (pkt, &count); /* count field */
3502 pkt = unpack_nibble (pkt, &done);
3503 /* The first threadid is the argument threadid. */
3504 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3505 while ((count-- > 0) && (pkt < limit))
3506 {
3507 pkt = unpack_threadid (pkt, resultlist++);
3508 if (resultcount++ >= result_limit)
3509 break;
3510 }
3511 if (doneflag)
3512 *doneflag = done;
3513 return resultcount;
3514 }
3515
3516 /* Fetch the next batch of threads from the remote. Returns -1 if the
3517 qL packet is not supported, 0 on error and 1 on success. */
3518
3519 int
3520 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3521 int result_limit, int *done, int *result_count,
3522 threadref *threadlist)
3523 {
3524 struct remote_state *rs = get_remote_state ();
3525 int result = 1;
3526
3527 /* Truncate result limit to be smaller than the packet size. */
3528 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3529 >= get_remote_packet_size ())
3530 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3531
3532 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3533 nextthread);
3534 putpkt (rs->buf);
3535 getpkt (&rs->buf, 0);
3536 if (rs->buf[0] == '\0')
3537 {
3538 /* Packet not supported. */
3539 return -1;
3540 }
3541
3542 *result_count =
3543 parse_threadlist_response (&rs->buf[2], result_limit,
3544 &rs->echo_nextthread, threadlist, done);
3545
3546 if (!threadmatch (&rs->echo_nextthread, nextthread))
3547 {
3548 /* FIXME: This is a good reason to drop the packet. */
3549 /* Possibly, there is a duplicate response. */
3550 /* Possibilities :
3551 retransmit immediatly - race conditions
3552 retransmit after timeout - yes
3553 exit
3554 wait for packet, then exit
3555 */
3556 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3557 return 0; /* I choose simply exiting. */
3558 }
3559 if (*result_count <= 0)
3560 {
3561 if (*done != 1)
3562 {
3563 warning (_("RMT ERROR : failed to get remote thread list."));
3564 result = 0;
3565 }
3566 return result; /* break; */
3567 }
3568 if (*result_count > result_limit)
3569 {
3570 *result_count = 0;
3571 warning (_("RMT ERROR: threadlist response longer than requested."));
3572 return 0;
3573 }
3574 return result;
3575 }
3576
3577 /* Fetch the list of remote threads, with the qL packet, and call
3578 STEPFUNCTION for each thread found. Stops iterating and returns 1
3579 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3580 STEPFUNCTION returns false. If the packet is not supported,
3581 returns -1. */
3582
3583 int
3584 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3585 void *context, int looplimit)
3586 {
3587 struct remote_state *rs = get_remote_state ();
3588 int done, i, result_count;
3589 int startflag = 1;
3590 int result = 1;
3591 int loopcount = 0;
3592
3593 done = 0;
3594 while (!done)
3595 {
3596 if (loopcount++ > looplimit)
3597 {
3598 result = 0;
3599 warning (_("Remote fetch threadlist -infinite loop-."));
3600 break;
3601 }
3602 result = remote_get_threadlist (startflag, &rs->nextthread,
3603 MAXTHREADLISTRESULTS,
3604 &done, &result_count,
3605 rs->resultthreadlist);
3606 if (result <= 0)
3607 break;
3608 /* Clear for later iterations. */
3609 startflag = 0;
3610 /* Setup to resume next batch of thread references, set nextthread. */
3611 if (result_count >= 1)
3612 copy_threadref (&rs->nextthread,
3613 &rs->resultthreadlist[result_count - 1]);
3614 i = 0;
3615 while (result_count--)
3616 {
3617 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3618 {
3619 result = 0;
3620 break;
3621 }
3622 }
3623 }
3624 return result;
3625 }
3626
3627 /* A thread found on the remote target. */
3628
3629 struct thread_item
3630 {
3631 explicit thread_item (ptid_t ptid_)
3632 : ptid (ptid_)
3633 {}
3634
3635 thread_item (thread_item &&other) = default;
3636 thread_item &operator= (thread_item &&other) = default;
3637
3638 DISABLE_COPY_AND_ASSIGN (thread_item);
3639
3640 /* The thread's PTID. */
3641 ptid_t ptid;
3642
3643 /* The thread's extra info. */
3644 std::string extra;
3645
3646 /* The thread's name. */
3647 std::string name;
3648
3649 /* The core the thread was running on. -1 if not known. */
3650 int core = -1;
3651
3652 /* The thread handle associated with the thread. */
3653 gdb::byte_vector thread_handle;
3654 };
3655
3656 /* Context passed around to the various methods listing remote
3657 threads. As new threads are found, they're added to the ITEMS
3658 vector. */
3659
3660 struct threads_listing_context
3661 {
3662 /* Return true if this object contains an entry for a thread with ptid
3663 PTID. */
3664
3665 bool contains_thread (ptid_t ptid) const
3666 {
3667 auto match_ptid = [&] (const thread_item &item)
3668 {
3669 return item.ptid == ptid;
3670 };
3671
3672 auto it = std::find_if (this->items.begin (),
3673 this->items.end (),
3674 match_ptid);
3675
3676 return it != this->items.end ();
3677 }
3678
3679 /* Remove the thread with ptid PTID. */
3680
3681 void remove_thread (ptid_t ptid)
3682 {
3683 auto match_ptid = [&] (const thread_item &item)
3684 {
3685 return item.ptid == ptid;
3686 };
3687
3688 auto it = std::remove_if (this->items.begin (),
3689 this->items.end (),
3690 match_ptid);
3691
3692 if (it != this->items.end ())
3693 this->items.erase (it);
3694 }
3695
3696 /* The threads found on the remote target. */
3697 std::vector<thread_item> items;
3698 };
3699
3700 static int
3701 remote_newthread_step (threadref *ref, void *data)
3702 {
3703 struct threads_listing_context *context
3704 = (struct threads_listing_context *) data;
3705 int pid = inferior_ptid.pid ();
3706 int lwp = threadref_to_int (ref);
3707 ptid_t ptid (pid, lwp);
3708
3709 context->items.emplace_back (ptid);
3710
3711 return 1; /* continue iterator */
3712 }
3713
3714 #define CRAZY_MAX_THREADS 1000
3715
3716 ptid_t
3717 remote_target::remote_current_thread (ptid_t oldpid)
3718 {
3719 struct remote_state *rs = get_remote_state ();
3720
3721 putpkt ("qC");
3722 getpkt (&rs->buf, 0);
3723 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3724 {
3725 const char *obuf;
3726 ptid_t result;
3727
3728 result = read_ptid (&rs->buf[2], &obuf);
3729 if (*obuf != '\0')
3730 remote_debug_printf ("warning: garbage in qC reply");
3731
3732 return result;
3733 }
3734 else
3735 return oldpid;
3736 }
3737
3738 /* List remote threads using the deprecated qL packet. */
3739
3740 int
3741 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3742 {
3743 if (remote_threadlist_iterator (remote_newthread_step, context,
3744 CRAZY_MAX_THREADS) >= 0)
3745 return 1;
3746
3747 return 0;
3748 }
3749
3750 #if defined(HAVE_LIBEXPAT)
3751
3752 static void
3753 start_thread (struct gdb_xml_parser *parser,
3754 const struct gdb_xml_element *element,
3755 void *user_data,
3756 std::vector<gdb_xml_value> &attributes)
3757 {
3758 struct threads_listing_context *data
3759 = (struct threads_listing_context *) user_data;
3760 struct gdb_xml_value *attr;
3761
3762 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3763 ptid_t ptid = read_ptid (id, NULL);
3764
3765 data->items.emplace_back (ptid);
3766 thread_item &item = data->items.back ();
3767
3768 attr = xml_find_attribute (attributes, "core");
3769 if (attr != NULL)
3770 item.core = *(ULONGEST *) attr->value.get ();
3771
3772 attr = xml_find_attribute (attributes, "name");
3773 if (attr != NULL)
3774 item.name = (const char *) attr->value.get ();
3775
3776 attr = xml_find_attribute (attributes, "handle");
3777 if (attr != NULL)
3778 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3779 }
3780
3781 static void
3782 end_thread (struct gdb_xml_parser *parser,
3783 const struct gdb_xml_element *element,
3784 void *user_data, const char *body_text)
3785 {
3786 struct threads_listing_context *data
3787 = (struct threads_listing_context *) user_data;
3788
3789 if (body_text != NULL && *body_text != '\0')
3790 data->items.back ().extra = body_text;
3791 }
3792
3793 const struct gdb_xml_attribute thread_attributes[] = {
3794 { "id", GDB_XML_AF_NONE, NULL, NULL },
3795 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3796 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3797 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3798 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3799 };
3800
3801 const struct gdb_xml_element thread_children[] = {
3802 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3803 };
3804
3805 const struct gdb_xml_element threads_children[] = {
3806 { "thread", thread_attributes, thread_children,
3807 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3808 start_thread, end_thread },
3809 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3810 };
3811
3812 const struct gdb_xml_element threads_elements[] = {
3813 { "threads", NULL, threads_children,
3814 GDB_XML_EF_NONE, NULL, NULL },
3815 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3816 };
3817
3818 #endif
3819
3820 /* List remote threads using qXfer:threads:read. */
3821
3822 int
3823 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3824 {
3825 #if defined(HAVE_LIBEXPAT)
3826 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3827 {
3828 gdb::optional<gdb::char_vector> xml
3829 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3830
3831 if (xml && (*xml)[0] != '\0')
3832 {
3833 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3834 threads_elements, xml->data (), context);
3835 }
3836
3837 return 1;
3838 }
3839 #endif
3840
3841 return 0;
3842 }
3843
3844 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3845
3846 int
3847 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3848 {
3849 struct remote_state *rs = get_remote_state ();
3850
3851 if (rs->use_threadinfo_query)
3852 {
3853 const char *bufp;
3854
3855 putpkt ("qfThreadInfo");
3856 getpkt (&rs->buf, 0);
3857 bufp = rs->buf.data ();
3858 if (bufp[0] != '\0') /* q packet recognized */
3859 {
3860 while (*bufp++ == 'm') /* reply contains one or more TID */
3861 {
3862 do
3863 {
3864 ptid_t ptid = read_ptid (bufp, &bufp);
3865 context->items.emplace_back (ptid);
3866 }
3867 while (*bufp++ == ','); /* comma-separated list */
3868 putpkt ("qsThreadInfo");
3869 getpkt (&rs->buf, 0);
3870 bufp = rs->buf.data ();
3871 }
3872 return 1;
3873 }
3874 else
3875 {
3876 /* Packet not recognized. */
3877 rs->use_threadinfo_query = 0;
3878 }
3879 }
3880
3881 return 0;
3882 }
3883
3884 /* Return true if INF only has one non-exited thread. */
3885
3886 static bool
3887 has_single_non_exited_thread (inferior *inf)
3888 {
3889 int count = 0;
3890 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3891 if (++count > 1)
3892 break;
3893 return count == 1;
3894 }
3895
3896 /* Implement the to_update_thread_list function for the remote
3897 targets. */
3898
3899 void
3900 remote_target::update_thread_list ()
3901 {
3902 struct threads_listing_context context;
3903 int got_list = 0;
3904
3905 /* We have a few different mechanisms to fetch the thread list. Try
3906 them all, starting with the most preferred one first, falling
3907 back to older methods. */
3908 if (remote_get_threads_with_qxfer (&context)
3909 || remote_get_threads_with_qthreadinfo (&context)
3910 || remote_get_threads_with_ql (&context))
3911 {
3912 got_list = 1;
3913
3914 if (context.items.empty ()
3915 && remote_thread_always_alive (inferior_ptid))
3916 {
3917 /* Some targets don't really support threads, but still
3918 reply an (empty) thread list in response to the thread
3919 listing packets, instead of replying "packet not
3920 supported". Exit early so we don't delete the main
3921 thread. */
3922 return;
3923 }
3924
3925 /* CONTEXT now holds the current thread list on the remote
3926 target end. Delete GDB-side threads no longer found on the
3927 target. */
3928 for (thread_info *tp : all_threads_safe ())
3929 {
3930 if (tp->inf->process_target () != this)
3931 continue;
3932
3933 if (!context.contains_thread (tp->ptid))
3934 {
3935 /* Do not remove the thread if it is the last thread in
3936 the inferior. This situation happens when we have a
3937 pending exit process status to process. Otherwise we
3938 may end up with a seemingly live inferior (i.e. pid
3939 != 0) that has no threads. */
3940 if (has_single_non_exited_thread (tp->inf))
3941 continue;
3942
3943 /* Not found. */
3944 delete_thread (tp);
3945 }
3946 }
3947
3948 /* Remove any unreported fork child threads from CONTEXT so
3949 that we don't interfere with follow fork, which is where
3950 creation of such threads is handled. */
3951 remove_new_fork_children (&context);
3952
3953 /* And now add threads we don't know about yet to our list. */
3954 for (thread_item &item : context.items)
3955 {
3956 if (item.ptid != null_ptid)
3957 {
3958 /* In non-stop mode, we assume new found threads are
3959 executing until proven otherwise with a stop reply.
3960 In all-stop, we can only get here if all threads are
3961 stopped. */
3962 bool executing = target_is_non_stop_p ();
3963
3964 remote_notice_new_inferior (item.ptid, executing);
3965
3966 thread_info *tp = find_thread_ptid (this, item.ptid);
3967 remote_thread_info *info = get_remote_thread_info (tp);
3968 info->core = item.core;
3969 info->extra = std::move (item.extra);
3970 info->name = std::move (item.name);
3971 info->thread_handle = std::move (item.thread_handle);
3972 }
3973 }
3974 }
3975
3976 if (!got_list)
3977 {
3978 /* If no thread listing method is supported, then query whether
3979 each known thread is alive, one by one, with the T packet.
3980 If the target doesn't support threads at all, then this is a
3981 no-op. See remote_thread_alive. */
3982 prune_threads ();
3983 }
3984 }
3985
3986 /*
3987 * Collect a descriptive string about the given thread.
3988 * The target may say anything it wants to about the thread
3989 * (typically info about its blocked / runnable state, name, etc.).
3990 * This string will appear in the info threads display.
3991 *
3992 * Optional: targets are not required to implement this function.
3993 */
3994
3995 const char *
3996 remote_target::extra_thread_info (thread_info *tp)
3997 {
3998 struct remote_state *rs = get_remote_state ();
3999 int set;
4000 threadref id;
4001 struct gdb_ext_thread_info threadinfo;
4002
4003 if (rs->remote_desc == 0) /* paranoia */
4004 internal_error (__FILE__, __LINE__,
4005 _("remote_threads_extra_info"));
4006
4007 if (tp->ptid == magic_null_ptid
4008 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
4009 /* This is the main thread which was added by GDB. The remote
4010 server doesn't know about it. */
4011 return NULL;
4012
4013 std::string &extra = get_remote_thread_info (tp)->extra;
4014
4015 /* If already have cached info, use it. */
4016 if (!extra.empty ())
4017 return extra.c_str ();
4018
4019 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4020 {
4021 /* If we're using qXfer:threads:read, then the extra info is
4022 included in the XML. So if we didn't have anything cached,
4023 it's because there's really no extra info. */
4024 return NULL;
4025 }
4026
4027 if (rs->use_threadextra_query)
4028 {
4029 char *b = rs->buf.data ();
4030 char *endb = b + get_remote_packet_size ();
4031
4032 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4033 b += strlen (b);
4034 write_ptid (b, endb, tp->ptid);
4035
4036 putpkt (rs->buf);
4037 getpkt (&rs->buf, 0);
4038 if (rs->buf[0] != 0)
4039 {
4040 extra.resize (strlen (rs->buf.data ()) / 2);
4041 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4042 return extra.c_str ();
4043 }
4044 }
4045
4046 /* If the above query fails, fall back to the old method. */
4047 rs->use_threadextra_query = 0;
4048 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4049 | TAG_MOREDISPLAY | TAG_DISPLAY;
4050 int_to_threadref (&id, tp->ptid.lwp ());
4051 if (remote_get_threadinfo (&id, set, &threadinfo))
4052 if (threadinfo.active)
4053 {
4054 if (*threadinfo.shortname)
4055 string_appendf (extra, " Name: %s", threadinfo.shortname);
4056 if (*threadinfo.display)
4057 {
4058 if (!extra.empty ())
4059 extra += ',';
4060 string_appendf (extra, " State: %s", threadinfo.display);
4061 }
4062 if (*threadinfo.more_display)
4063 {
4064 if (!extra.empty ())
4065 extra += ',';
4066 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4067 }
4068 return extra.c_str ();
4069 }
4070 return NULL;
4071 }
4072 \f
4073
4074 bool
4075 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4076 struct static_tracepoint_marker *marker)
4077 {
4078 struct remote_state *rs = get_remote_state ();
4079 char *p = rs->buf.data ();
4080
4081 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4082 p += strlen (p);
4083 p += hexnumstr (p, addr);
4084 putpkt (rs->buf);
4085 getpkt (&rs->buf, 0);
4086 p = rs->buf.data ();
4087
4088 if (*p == 'E')
4089 error (_("Remote failure reply: %s"), p);
4090
4091 if (*p++ == 'm')
4092 {
4093 parse_static_tracepoint_marker_definition (p, NULL, marker);
4094 return true;
4095 }
4096
4097 return false;
4098 }
4099
4100 std::vector<static_tracepoint_marker>
4101 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4102 {
4103 struct remote_state *rs = get_remote_state ();
4104 std::vector<static_tracepoint_marker> markers;
4105 const char *p;
4106 static_tracepoint_marker marker;
4107
4108 /* Ask for a first packet of static tracepoint marker
4109 definition. */
4110 putpkt ("qTfSTM");
4111 getpkt (&rs->buf, 0);
4112 p = rs->buf.data ();
4113 if (*p == 'E')
4114 error (_("Remote failure reply: %s"), p);
4115
4116 while (*p++ == 'm')
4117 {
4118 do
4119 {
4120 parse_static_tracepoint_marker_definition (p, &p, &marker);
4121
4122 if (strid == NULL || marker.str_id == strid)
4123 markers.push_back (std::move (marker));
4124 }
4125 while (*p++ == ','); /* comma-separated list */
4126 /* Ask for another packet of static tracepoint definition. */
4127 putpkt ("qTsSTM");
4128 getpkt (&rs->buf, 0);
4129 p = rs->buf.data ();
4130 }
4131
4132 return markers;
4133 }
4134
4135 \f
4136 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4137
4138 ptid_t
4139 remote_target::get_ada_task_ptid (long lwp, ULONGEST thread)
4140 {
4141 return ptid_t (inferior_ptid.pid (), lwp);
4142 }
4143 \f
4144
4145 /* Restart the remote side; this is an extended protocol operation. */
4146
4147 void
4148 remote_target::extended_remote_restart ()
4149 {
4150 struct remote_state *rs = get_remote_state ();
4151
4152 /* Send the restart command; for reasons I don't understand the
4153 remote side really expects a number after the "R". */
4154 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4155 putpkt (rs->buf);
4156
4157 remote_fileio_reset ();
4158 }
4159 \f
4160 /* Clean up connection to a remote debugger. */
4161
4162 void
4163 remote_target::close ()
4164 {
4165 /* Make sure we leave stdin registered in the event loop. */
4166 terminal_ours ();
4167
4168 trace_reset_local_state ();
4169
4170 delete this;
4171 }
4172
4173 remote_target::~remote_target ()
4174 {
4175 struct remote_state *rs = get_remote_state ();
4176
4177 /* Check for NULL because we may get here with a partially
4178 constructed target/connection. */
4179 if (rs->remote_desc == nullptr)
4180 return;
4181
4182 serial_close (rs->remote_desc);
4183
4184 /* We are destroying the remote target, so we should discard
4185 everything of this target. */
4186 discard_pending_stop_replies_in_queue ();
4187
4188 if (rs->remote_async_inferior_event_token)
4189 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4190
4191 delete rs->notif_state;
4192 }
4193
4194 /* Query the remote side for the text, data and bss offsets. */
4195
4196 void
4197 remote_target::get_offsets ()
4198 {
4199 struct remote_state *rs = get_remote_state ();
4200 char *buf;
4201 char *ptr;
4202 int lose, num_segments = 0, do_sections, do_segments;
4203 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4204
4205 if (current_program_space->symfile_object_file == NULL)
4206 return;
4207
4208 putpkt ("qOffsets");
4209 getpkt (&rs->buf, 0);
4210 buf = rs->buf.data ();
4211
4212 if (buf[0] == '\000')
4213 return; /* Return silently. Stub doesn't support
4214 this command. */
4215 if (buf[0] == 'E')
4216 {
4217 warning (_("Remote failure reply: %s"), buf);
4218 return;
4219 }
4220
4221 /* Pick up each field in turn. This used to be done with scanf, but
4222 scanf will make trouble if CORE_ADDR size doesn't match
4223 conversion directives correctly. The following code will work
4224 with any size of CORE_ADDR. */
4225 text_addr = data_addr = bss_addr = 0;
4226 ptr = buf;
4227 lose = 0;
4228
4229 if (startswith (ptr, "Text="))
4230 {
4231 ptr += 5;
4232 /* Don't use strtol, could lose on big values. */
4233 while (*ptr && *ptr != ';')
4234 text_addr = (text_addr << 4) + fromhex (*ptr++);
4235
4236 if (startswith (ptr, ";Data="))
4237 {
4238 ptr += 6;
4239 while (*ptr && *ptr != ';')
4240 data_addr = (data_addr << 4) + fromhex (*ptr++);
4241 }
4242 else
4243 lose = 1;
4244
4245 if (!lose && startswith (ptr, ";Bss="))
4246 {
4247 ptr += 5;
4248 while (*ptr && *ptr != ';')
4249 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4250
4251 if (bss_addr != data_addr)
4252 warning (_("Target reported unsupported offsets: %s"), buf);
4253 }
4254 else
4255 lose = 1;
4256 }
4257 else if (startswith (ptr, "TextSeg="))
4258 {
4259 ptr += 8;
4260 /* Don't use strtol, could lose on big values. */
4261 while (*ptr && *ptr != ';')
4262 text_addr = (text_addr << 4) + fromhex (*ptr++);
4263 num_segments = 1;
4264
4265 if (startswith (ptr, ";DataSeg="))
4266 {
4267 ptr += 9;
4268 while (*ptr && *ptr != ';')
4269 data_addr = (data_addr << 4) + fromhex (*ptr++);
4270 num_segments++;
4271 }
4272 }
4273 else
4274 lose = 1;
4275
4276 if (lose)
4277 error (_("Malformed response to offset query, %s"), buf);
4278 else if (*ptr != '\0')
4279 warning (_("Target reported unsupported offsets: %s"), buf);
4280
4281 objfile *objf = current_program_space->symfile_object_file;
4282 section_offsets offs = objf->section_offsets;
4283
4284 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4285 do_segments = (data != NULL);
4286 do_sections = num_segments == 0;
4287
4288 if (num_segments > 0)
4289 {
4290 segments[0] = text_addr;
4291 segments[1] = data_addr;
4292 }
4293 /* If we have two segments, we can still try to relocate everything
4294 by assuming that the .text and .data offsets apply to the whole
4295 text and data segments. Convert the offsets given in the packet
4296 to base addresses for symfile_map_offsets_to_segments. */
4297 else if (data != nullptr && data->segments.size () == 2)
4298 {
4299 segments[0] = data->segments[0].base + text_addr;
4300 segments[1] = data->segments[1].base + data_addr;
4301 num_segments = 2;
4302 }
4303 /* If the object file has only one segment, assume that it is text
4304 rather than data; main programs with no writable data are rare,
4305 but programs with no code are useless. Of course the code might
4306 have ended up in the data segment... to detect that we would need
4307 the permissions here. */
4308 else if (data && data->segments.size () == 1)
4309 {
4310 segments[0] = data->segments[0].base + text_addr;
4311 num_segments = 1;
4312 }
4313 /* There's no way to relocate by segment. */
4314 else
4315 do_segments = 0;
4316
4317 if (do_segments)
4318 {
4319 int ret = symfile_map_offsets_to_segments (objf->obfd,
4320 data.get (), offs,
4321 num_segments, segments);
4322
4323 if (ret == 0 && !do_sections)
4324 error (_("Can not handle qOffsets TextSeg "
4325 "response with this symbol file"));
4326
4327 if (ret > 0)
4328 do_sections = 0;
4329 }
4330
4331 if (do_sections)
4332 {
4333 offs[SECT_OFF_TEXT (objf)] = text_addr;
4334
4335 /* This is a temporary kludge to force data and bss to use the
4336 same offsets because that's what nlmconv does now. The real
4337 solution requires changes to the stub and remote.c that I
4338 don't have time to do right now. */
4339
4340 offs[SECT_OFF_DATA (objf)] = data_addr;
4341 offs[SECT_OFF_BSS (objf)] = data_addr;
4342 }
4343
4344 objfile_relocate (objf, offs);
4345 }
4346
4347 /* Send interrupt_sequence to remote target. */
4348
4349 void
4350 remote_target::send_interrupt_sequence ()
4351 {
4352 struct remote_state *rs = get_remote_state ();
4353
4354 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4355 remote_serial_write ("\x03", 1);
4356 else if (interrupt_sequence_mode == interrupt_sequence_break)
4357 serial_send_break (rs->remote_desc);
4358 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4359 {
4360 serial_send_break (rs->remote_desc);
4361 remote_serial_write ("g", 1);
4362 }
4363 else
4364 internal_error (__FILE__, __LINE__,
4365 _("Invalid value for interrupt_sequence_mode: %s."),
4366 interrupt_sequence_mode);
4367 }
4368
4369
4370 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4371 and extract the PTID. Returns NULL_PTID if not found. */
4372
4373 static ptid_t
4374 stop_reply_extract_thread (const char *stop_reply)
4375 {
4376 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4377 {
4378 const char *p;
4379
4380 /* Txx r:val ; r:val (...) */
4381 p = &stop_reply[3];
4382
4383 /* Look for "register" named "thread". */
4384 while (*p != '\0')
4385 {
4386 const char *p1;
4387
4388 p1 = strchr (p, ':');
4389 if (p1 == NULL)
4390 return null_ptid;
4391
4392 if (strncmp (p, "thread", p1 - p) == 0)
4393 return read_ptid (++p1, &p);
4394
4395 p1 = strchr (p, ';');
4396 if (p1 == NULL)
4397 return null_ptid;
4398 p1++;
4399
4400 p = p1;
4401 }
4402 }
4403
4404 return null_ptid;
4405 }
4406
4407 /* Determine the remote side's current thread. If we have a stop
4408 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4409 "thread" register we can extract the current thread from. If not,
4410 ask the remote which is the current thread with qC. The former
4411 method avoids a roundtrip. */
4412
4413 ptid_t
4414 remote_target::get_current_thread (const char *wait_status)
4415 {
4416 ptid_t ptid = null_ptid;
4417
4418 /* Note we don't use remote_parse_stop_reply as that makes use of
4419 the target architecture, which we haven't yet fully determined at
4420 this point. */
4421 if (wait_status != NULL)
4422 ptid = stop_reply_extract_thread (wait_status);
4423 if (ptid == null_ptid)
4424 ptid = remote_current_thread (inferior_ptid);
4425
4426 return ptid;
4427 }
4428
4429 /* Query the remote target for which is the current thread/process,
4430 add it to our tables, and update INFERIOR_PTID. The caller is
4431 responsible for setting the state such that the remote end is ready
4432 to return the current thread.
4433
4434 This function is called after handling the '?' or 'vRun' packets,
4435 whose response is a stop reply from which we can also try
4436 extracting the thread. If the target doesn't support the explicit
4437 qC query, we infer the current thread from that stop reply, passed
4438 in in WAIT_STATUS, which may be NULL.
4439
4440 The function returns pointer to the main thread of the inferior. */
4441
4442 thread_info *
4443 remote_target::add_current_inferior_and_thread (const char *wait_status)
4444 {
4445 struct remote_state *rs = get_remote_state ();
4446 bool fake_pid_p = false;
4447
4448 switch_to_no_thread ();
4449
4450 /* Now, if we have thread information, update the current thread's
4451 ptid. */
4452 ptid_t curr_ptid = get_current_thread (wait_status);
4453
4454 if (curr_ptid != null_ptid)
4455 {
4456 if (!remote_multi_process_p (rs))
4457 fake_pid_p = true;
4458 }
4459 else
4460 {
4461 /* Without this, some commands which require an active target
4462 (such as kill) won't work. This variable serves (at least)
4463 double duty as both the pid of the target process (if it has
4464 such), and as a flag indicating that a target is active. */
4465 curr_ptid = magic_null_ptid;
4466 fake_pid_p = true;
4467 }
4468
4469 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4470
4471 /* Add the main thread and switch to it. Don't try reading
4472 registers yet, since we haven't fetched the target description
4473 yet. */
4474 thread_info *tp = add_thread_silent (this, curr_ptid);
4475 switch_to_thread_no_regs (tp);
4476
4477 return tp;
4478 }
4479
4480 /* Print info about a thread that was found already stopped on
4481 connection. */
4482
4483 void
4484 remote_target::print_one_stopped_thread (thread_info *thread)
4485 {
4486 target_waitstatus ws;
4487
4488 /* If there is a pending waitstatus, use it. If there isn't it's because
4489 the thread's stop was reported with TARGET_WAITKIND_STOPPED / GDB_SIGNAL_0
4490 and process_initial_stop_replies decided it wasn't interesting to save
4491 and report to the core. */
4492 if (thread->has_pending_waitstatus ())
4493 {
4494 ws = thread->pending_waitstatus ();
4495 thread->clear_pending_waitstatus ();
4496 }
4497 else
4498 {
4499 ws.kind = TARGET_WAITKIND_STOPPED;
4500 ws.value.sig = GDB_SIGNAL_0;
4501 }
4502
4503 switch_to_thread (thread);
4504 thread->set_stop_pc (get_frame_pc (get_current_frame ()));
4505 set_current_sal_from_frame (get_current_frame ());
4506
4507 /* For "info program". */
4508 set_last_target_status (this, thread->ptid, ws);
4509
4510 if (ws.kind == TARGET_WAITKIND_STOPPED)
4511 {
4512 enum gdb_signal sig = ws.value.sig;
4513
4514 if (signal_print_state (sig))
4515 gdb::observers::signal_received.notify (sig);
4516 }
4517 gdb::observers::normal_stop.notify (NULL, 1);
4518 }
4519
4520 /* Process all initial stop replies the remote side sent in response
4521 to the ? packet. These indicate threads that were already stopped
4522 on initial connection. We mark these threads as stopped and print
4523 their current frame before giving the user the prompt. */
4524
4525 void
4526 remote_target::process_initial_stop_replies (int from_tty)
4527 {
4528 int pending_stop_replies = stop_reply_queue_length ();
4529 struct thread_info *selected = NULL;
4530 struct thread_info *lowest_stopped = NULL;
4531 struct thread_info *first = NULL;
4532
4533 /* This is only used when the target is non-stop. */
4534 gdb_assert (target_is_non_stop_p ());
4535
4536 /* Consume the initial pending events. */
4537 while (pending_stop_replies-- > 0)
4538 {
4539 ptid_t waiton_ptid = minus_one_ptid;
4540 ptid_t event_ptid;
4541 struct target_waitstatus ws;
4542 int ignore_event = 0;
4543
4544 memset (&ws, 0, sizeof (ws));
4545 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4546 if (remote_debug)
4547 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4548
4549 switch (ws.kind)
4550 {
4551 case TARGET_WAITKIND_IGNORE:
4552 case TARGET_WAITKIND_NO_RESUMED:
4553 case TARGET_WAITKIND_SIGNALLED:
4554 case TARGET_WAITKIND_EXITED:
4555 /* We shouldn't see these, but if we do, just ignore. */
4556 remote_debug_printf ("event ignored");
4557 ignore_event = 1;
4558 break;
4559
4560 case TARGET_WAITKIND_EXECD:
4561 xfree (ws.value.execd_pathname);
4562 break;
4563 default:
4564 break;
4565 }
4566
4567 if (ignore_event)
4568 continue;
4569
4570 thread_info *evthread = find_thread_ptid (this, event_ptid);
4571
4572 if (ws.kind == TARGET_WAITKIND_STOPPED)
4573 {
4574 enum gdb_signal sig = ws.value.sig;
4575
4576 /* Stubs traditionally report SIGTRAP as initial signal,
4577 instead of signal 0. Suppress it. */
4578 if (sig == GDB_SIGNAL_TRAP)
4579 sig = GDB_SIGNAL_0;
4580 evthread->set_stop_signal (sig);
4581 ws.value.sig = sig;
4582 }
4583
4584 if (ws.kind != TARGET_WAITKIND_STOPPED
4585 || ws.value.sig != GDB_SIGNAL_0)
4586 evthread->set_pending_waitstatus (ws);
4587
4588 set_executing (this, event_ptid, false);
4589 set_running (this, event_ptid, false);
4590 get_remote_thread_info (evthread)->set_not_resumed ();
4591 }
4592
4593 /* "Notice" the new inferiors before anything related to
4594 registers/memory. */
4595 for (inferior *inf : all_non_exited_inferiors (this))
4596 {
4597 inf->needs_setup = 1;
4598
4599 if (non_stop)
4600 {
4601 thread_info *thread = any_live_thread_of_inferior (inf);
4602 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4603 from_tty);
4604 }
4605 }
4606
4607 /* If all-stop on top of non-stop, pause all threads. Note this
4608 records the threads' stop pc, so must be done after "noticing"
4609 the inferiors. */
4610 if (!non_stop)
4611 {
4612 stop_all_threads ();
4613
4614 /* If all threads of an inferior were already stopped, we
4615 haven't setup the inferior yet. */
4616 for (inferior *inf : all_non_exited_inferiors (this))
4617 {
4618 if (inf->needs_setup)
4619 {
4620 thread_info *thread = any_live_thread_of_inferior (inf);
4621 switch_to_thread_no_regs (thread);
4622 setup_inferior (0);
4623 }
4624 }
4625 }
4626
4627 /* Now go over all threads that are stopped, and print their current
4628 frame. If all-stop, then if there's a signalled thread, pick
4629 that as current. */
4630 for (thread_info *thread : all_non_exited_threads (this))
4631 {
4632 if (first == NULL)
4633 first = thread;
4634
4635 if (!non_stop)
4636 thread->set_running (false);
4637 else if (thread->state != THREAD_STOPPED)
4638 continue;
4639
4640 if (selected == nullptr && thread->has_pending_waitstatus ())
4641 selected = thread;
4642
4643 if (lowest_stopped == NULL
4644 || thread->inf->num < lowest_stopped->inf->num
4645 || thread->per_inf_num < lowest_stopped->per_inf_num)
4646 lowest_stopped = thread;
4647
4648 if (non_stop)
4649 print_one_stopped_thread (thread);
4650 }
4651
4652 /* In all-stop, we only print the status of one thread, and leave
4653 others with their status pending. */
4654 if (!non_stop)
4655 {
4656 thread_info *thread = selected;
4657 if (thread == NULL)
4658 thread = lowest_stopped;
4659 if (thread == NULL)
4660 thread = first;
4661
4662 print_one_stopped_thread (thread);
4663 }
4664 }
4665
4666 /* Start the remote connection and sync state. */
4667
4668 void
4669 remote_target::start_remote (int from_tty, int extended_p)
4670 {
4671 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4672
4673 struct remote_state *rs = get_remote_state ();
4674 struct packet_config *noack_config;
4675
4676 /* Signal other parts that we're going through the initial setup,
4677 and so things may not be stable yet. E.g., we don't try to
4678 install tracepoints until we've relocated symbols. Also, a
4679 Ctrl-C before we're connected and synced up can't interrupt the
4680 target. Instead, it offers to drop the (potentially wedged)
4681 connection. */
4682 rs->starting_up = true;
4683
4684 QUIT;
4685
4686 if (interrupt_on_connect)
4687 send_interrupt_sequence ();
4688
4689 /* Ack any packet which the remote side has already sent. */
4690 remote_serial_write ("+", 1);
4691
4692 /* The first packet we send to the target is the optional "supported
4693 packets" request. If the target can answer this, it will tell us
4694 which later probes to skip. */
4695 remote_query_supported ();
4696
4697 /* If the stub wants to get a QAllow, compose one and send it. */
4698 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4699 set_permissions ();
4700
4701 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4702 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4703 as a reply to known packet. For packet "vFile:setfs:" it is an
4704 invalid reply and GDB would return error in
4705 remote_hostio_set_filesystem, making remote files access impossible.
4706 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4707 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4708 {
4709 const char v_mustreplyempty[] = "vMustReplyEmpty";
4710
4711 putpkt (v_mustreplyempty);
4712 getpkt (&rs->buf, 0);
4713 if (strcmp (rs->buf.data (), "OK") == 0)
4714 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4715 else if (strcmp (rs->buf.data (), "") != 0)
4716 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4717 rs->buf.data ());
4718 }
4719
4720 /* Next, we possibly activate noack mode.
4721
4722 If the QStartNoAckMode packet configuration is set to AUTO,
4723 enable noack mode if the stub reported a wish for it with
4724 qSupported.
4725
4726 If set to TRUE, then enable noack mode even if the stub didn't
4727 report it in qSupported. If the stub doesn't reply OK, the
4728 session ends with an error.
4729
4730 If FALSE, then don't activate noack mode, regardless of what the
4731 stub claimed should be the default with qSupported. */
4732
4733 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4734 if (packet_config_support (noack_config) != PACKET_DISABLE)
4735 {
4736 putpkt ("QStartNoAckMode");
4737 getpkt (&rs->buf, 0);
4738 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4739 rs->noack_mode = 1;
4740 }
4741
4742 if (extended_p)
4743 {
4744 /* Tell the remote that we are using the extended protocol. */
4745 putpkt ("!");
4746 getpkt (&rs->buf, 0);
4747 }
4748
4749 /* Let the target know which signals it is allowed to pass down to
4750 the program. */
4751 update_signals_program_target ();
4752
4753 /* Next, if the target can specify a description, read it. We do
4754 this before anything involving memory or registers. */
4755 target_find_description ();
4756
4757 /* Next, now that we know something about the target, update the
4758 address spaces in the program spaces. */
4759 update_address_spaces ();
4760
4761 /* On OSs where the list of libraries is global to all
4762 processes, we fetch them early. */
4763 if (gdbarch_has_global_solist (target_gdbarch ()))
4764 solib_add (NULL, from_tty, auto_solib_add);
4765
4766 if (target_is_non_stop_p ())
4767 {
4768 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4769 error (_("Non-stop mode requested, but remote "
4770 "does not support non-stop"));
4771
4772 putpkt ("QNonStop:1");
4773 getpkt (&rs->buf, 0);
4774
4775 if (strcmp (rs->buf.data (), "OK") != 0)
4776 error (_("Remote refused setting non-stop mode with: %s"),
4777 rs->buf.data ());
4778
4779 /* Find about threads and processes the stub is already
4780 controlling. We default to adding them in the running state.
4781 The '?' query below will then tell us about which threads are
4782 stopped. */
4783 this->update_thread_list ();
4784 }
4785 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4786 {
4787 /* Don't assume that the stub can operate in all-stop mode.
4788 Request it explicitly. */
4789 putpkt ("QNonStop:0");
4790 getpkt (&rs->buf, 0);
4791
4792 if (strcmp (rs->buf.data (), "OK") != 0)
4793 error (_("Remote refused setting all-stop mode with: %s"),
4794 rs->buf.data ());
4795 }
4796
4797 /* Upload TSVs regardless of whether the target is running or not. The
4798 remote stub, such as GDBserver, may have some predefined or builtin
4799 TSVs, even if the target is not running. */
4800 if (get_trace_status (current_trace_status ()) != -1)
4801 {
4802 struct uploaded_tsv *uploaded_tsvs = NULL;
4803
4804 upload_trace_state_variables (&uploaded_tsvs);
4805 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4806 }
4807
4808 /* Check whether the target is running now. */
4809 putpkt ("?");
4810 getpkt (&rs->buf, 0);
4811
4812 if (!target_is_non_stop_p ())
4813 {
4814 char *wait_status = NULL;
4815
4816 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4817 {
4818 if (!extended_p)
4819 error (_("The target is not running (try extended-remote?)"));
4820
4821 /* We're connected, but not running. Drop out before we
4822 call start_remote. */
4823 rs->starting_up = false;
4824 return;
4825 }
4826 else
4827 {
4828 /* Save the reply for later. */
4829 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4830 strcpy (wait_status, rs->buf.data ());
4831 }
4832
4833 /* Fetch thread list. */
4834 target_update_thread_list ();
4835
4836 /* Let the stub know that we want it to return the thread. */
4837 set_continue_thread (minus_one_ptid);
4838
4839 if (thread_count (this) == 0)
4840 {
4841 /* Target has no concept of threads at all. GDB treats
4842 non-threaded target as single-threaded; add a main
4843 thread. */
4844 thread_info *tp = add_current_inferior_and_thread (wait_status);
4845 get_remote_thread_info (tp)->set_resumed ();
4846 }
4847 else
4848 {
4849 /* We have thread information; select the thread the target
4850 says should be current. If we're reconnecting to a
4851 multi-threaded program, this will ideally be the thread
4852 that last reported an event before GDB disconnected. */
4853 ptid_t curr_thread = get_current_thread (wait_status);
4854 if (curr_thread == null_ptid)
4855 {
4856 /* Odd... The target was able to list threads, but not
4857 tell us which thread was current (no "thread"
4858 register in T stop reply?). Just pick the first
4859 thread in the thread list then. */
4860
4861 remote_debug_printf ("warning: couldn't determine remote "
4862 "current thread; picking first in list.");
4863
4864 for (thread_info *tp : all_non_exited_threads (this,
4865 minus_one_ptid))
4866 {
4867 switch_to_thread (tp);
4868 break;
4869 }
4870 }
4871 else
4872 switch_to_thread (find_thread_ptid (this, curr_thread));
4873 }
4874
4875 /* init_wait_for_inferior should be called before get_offsets in order
4876 to manage `inserted' flag in bp loc in a correct state.
4877 breakpoint_init_inferior, called from init_wait_for_inferior, set
4878 `inserted' flag to 0, while before breakpoint_re_set, called from
4879 start_remote, set `inserted' flag to 1. In the initialization of
4880 inferior, breakpoint_init_inferior should be called first, and then
4881 breakpoint_re_set can be called. If this order is broken, state of
4882 `inserted' flag is wrong, and cause some problems on breakpoint
4883 manipulation. */
4884 init_wait_for_inferior ();
4885
4886 get_offsets (); /* Get text, data & bss offsets. */
4887
4888 /* If we could not find a description using qXfer, and we know
4889 how to do it some other way, try again. This is not
4890 supported for non-stop; it could be, but it is tricky if
4891 there are no stopped threads when we connect. */
4892 if (remote_read_description_p (this)
4893 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4894 {
4895 target_clear_description ();
4896 target_find_description ();
4897 }
4898
4899 /* Use the previously fetched status. */
4900 gdb_assert (wait_status != NULL);
4901 strcpy (rs->buf.data (), wait_status);
4902 rs->cached_wait_status = 1;
4903
4904 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4905 }
4906 else
4907 {
4908 /* Clear WFI global state. Do this before finding about new
4909 threads and inferiors, and setting the current inferior.
4910 Otherwise we would clear the proceed status of the current
4911 inferior when we want its stop_soon state to be preserved
4912 (see notice_new_inferior). */
4913 init_wait_for_inferior ();
4914
4915 /* In non-stop, we will either get an "OK", meaning that there
4916 are no stopped threads at this time; or, a regular stop
4917 reply. In the latter case, there may be more than one thread
4918 stopped --- we pull them all out using the vStopped
4919 mechanism. */
4920 if (strcmp (rs->buf.data (), "OK") != 0)
4921 {
4922 struct notif_client *notif = &notif_client_stop;
4923
4924 /* remote_notif_get_pending_replies acks this one, and gets
4925 the rest out. */
4926 rs->notif_state->pending_event[notif_client_stop.id]
4927 = remote_notif_parse (this, notif, rs->buf.data ());
4928 remote_notif_get_pending_events (notif);
4929 }
4930
4931 if (thread_count (this) == 0)
4932 {
4933 if (!extended_p)
4934 error (_("The target is not running (try extended-remote?)"));
4935
4936 /* We're connected, but not running. Drop out before we
4937 call start_remote. */
4938 rs->starting_up = false;
4939 return;
4940 }
4941
4942 /* Report all signals during attach/startup. */
4943 pass_signals ({});
4944
4945 /* If there are already stopped threads, mark them stopped and
4946 report their stops before giving the prompt to the user. */
4947 process_initial_stop_replies (from_tty);
4948
4949 if (target_can_async_p ())
4950 target_async (1);
4951 }
4952
4953 /* If we connected to a live target, do some additional setup. */
4954 if (target_has_execution ())
4955 {
4956 /* No use without a symbol-file. */
4957 if (current_program_space->symfile_object_file)
4958 remote_check_symbols ();
4959 }
4960
4961 /* Possibly the target has been engaged in a trace run started
4962 previously; find out where things are at. */
4963 if (get_trace_status (current_trace_status ()) != -1)
4964 {
4965 struct uploaded_tp *uploaded_tps = NULL;
4966
4967 if (current_trace_status ()->running)
4968 printf_filtered (_("Trace is already running on the target.\n"));
4969
4970 upload_tracepoints (&uploaded_tps);
4971
4972 merge_uploaded_tracepoints (&uploaded_tps);
4973 }
4974
4975 /* Possibly the target has been engaged in a btrace record started
4976 previously; find out where things are at. */
4977 remote_btrace_maybe_reopen ();
4978
4979 /* The thread and inferior lists are now synchronized with the
4980 target, our symbols have been relocated, and we're merged the
4981 target's tracepoints with ours. We're done with basic start
4982 up. */
4983 rs->starting_up = false;
4984
4985 /* Maybe breakpoints are global and need to be inserted now. */
4986 if (breakpoints_should_be_inserted_now ())
4987 insert_breakpoints ();
4988 }
4989
4990 const char *
4991 remote_target::connection_string ()
4992 {
4993 remote_state *rs = get_remote_state ();
4994
4995 if (rs->remote_desc->name != NULL)
4996 return rs->remote_desc->name;
4997 else
4998 return NULL;
4999 }
5000
5001 /* Open a connection to a remote debugger.
5002 NAME is the filename used for communication. */
5003
5004 void
5005 remote_target::open (const char *name, int from_tty)
5006 {
5007 open_1 (name, from_tty, 0);
5008 }
5009
5010 /* Open a connection to a remote debugger using the extended
5011 remote gdb protocol. NAME is the filename used for communication. */
5012
5013 void
5014 extended_remote_target::open (const char *name, int from_tty)
5015 {
5016 open_1 (name, from_tty, 1 /*extended_p */);
5017 }
5018
5019 /* Reset all packets back to "unknown support". Called when opening a
5020 new connection to a remote target. */
5021
5022 static void
5023 reset_all_packet_configs_support (void)
5024 {
5025 int i;
5026
5027 for (i = 0; i < PACKET_MAX; i++)
5028 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5029 }
5030
5031 /* Initialize all packet configs. */
5032
5033 static void
5034 init_all_packet_configs (void)
5035 {
5036 int i;
5037
5038 for (i = 0; i < PACKET_MAX; i++)
5039 {
5040 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5041 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5042 }
5043 }
5044
5045 /* Symbol look-up. */
5046
5047 void
5048 remote_target::remote_check_symbols ()
5049 {
5050 char *tmp;
5051 int end;
5052
5053 /* The remote side has no concept of inferiors that aren't running
5054 yet, it only knows about running processes. If we're connected
5055 but our current inferior is not running, we should not invite the
5056 remote target to request symbol lookups related to its
5057 (unrelated) current process. */
5058 if (!target_has_execution ())
5059 return;
5060
5061 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5062 return;
5063
5064 /* Make sure the remote is pointing at the right process. Note
5065 there's no way to select "no process". */
5066 set_general_process ();
5067
5068 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5069 because we need both at the same time. */
5070 gdb::char_vector msg (get_remote_packet_size ());
5071 gdb::char_vector reply (get_remote_packet_size ());
5072
5073 /* Invite target to request symbol lookups. */
5074
5075 putpkt ("qSymbol::");
5076 getpkt (&reply, 0);
5077 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5078
5079 while (startswith (reply.data (), "qSymbol:"))
5080 {
5081 struct bound_minimal_symbol sym;
5082
5083 tmp = &reply[8];
5084 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5085 strlen (tmp) / 2);
5086 msg[end] = '\0';
5087 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5088 if (sym.minsym == NULL)
5089 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5090 &reply[8]);
5091 else
5092 {
5093 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5094 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5095
5096 /* If this is a function address, return the start of code
5097 instead of any data function descriptor. */
5098 sym_addr = gdbarch_convert_from_func_ptr_addr
5099 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
5100
5101 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5102 phex_nz (sym_addr, addr_size), &reply[8]);
5103 }
5104
5105 putpkt (msg.data ());
5106 getpkt (&reply, 0);
5107 }
5108 }
5109
5110 static struct serial *
5111 remote_serial_open (const char *name)
5112 {
5113 static int udp_warning = 0;
5114
5115 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5116 of in ser-tcp.c, because it is the remote protocol assuming that the
5117 serial connection is reliable and not the serial connection promising
5118 to be. */
5119 if (!udp_warning && startswith (name, "udp:"))
5120 {
5121 warning (_("The remote protocol may be unreliable over UDP.\n"
5122 "Some events may be lost, rendering further debugging "
5123 "impossible."));
5124 udp_warning = 1;
5125 }
5126
5127 return serial_open (name);
5128 }
5129
5130 /* Inform the target of our permission settings. The permission flags
5131 work without this, but if the target knows the settings, it can do
5132 a couple things. First, it can add its own check, to catch cases
5133 that somehow manage to get by the permissions checks in target
5134 methods. Second, if the target is wired to disallow particular
5135 settings (for instance, a system in the field that is not set up to
5136 be able to stop at a breakpoint), it can object to any unavailable
5137 permissions. */
5138
5139 void
5140 remote_target::set_permissions ()
5141 {
5142 struct remote_state *rs = get_remote_state ();
5143
5144 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5145 "WriteReg:%x;WriteMem:%x;"
5146 "InsertBreak:%x;InsertTrace:%x;"
5147 "InsertFastTrace:%x;Stop:%x",
5148 may_write_registers, may_write_memory,
5149 may_insert_breakpoints, may_insert_tracepoints,
5150 may_insert_fast_tracepoints, may_stop);
5151 putpkt (rs->buf);
5152 getpkt (&rs->buf, 0);
5153
5154 /* If the target didn't like the packet, warn the user. Do not try
5155 to undo the user's settings, that would just be maddening. */
5156 if (strcmp (rs->buf.data (), "OK") != 0)
5157 warning (_("Remote refused setting permissions with: %s"),
5158 rs->buf.data ());
5159 }
5160
5161 /* This type describes each known response to the qSupported
5162 packet. */
5163 struct protocol_feature
5164 {
5165 /* The name of this protocol feature. */
5166 const char *name;
5167
5168 /* The default for this protocol feature. */
5169 enum packet_support default_support;
5170
5171 /* The function to call when this feature is reported, or after
5172 qSupported processing if the feature is not supported.
5173 The first argument points to this structure. The second
5174 argument indicates whether the packet requested support be
5175 enabled, disabled, or probed (or the default, if this function
5176 is being called at the end of processing and this feature was
5177 not reported). The third argument may be NULL; if not NULL, it
5178 is a NUL-terminated string taken from the packet following
5179 this feature's name and an equals sign. */
5180 void (*func) (remote_target *remote, const struct protocol_feature *,
5181 enum packet_support, const char *);
5182
5183 /* The corresponding packet for this feature. Only used if
5184 FUNC is remote_supported_packet. */
5185 int packet;
5186 };
5187
5188 static void
5189 remote_supported_packet (remote_target *remote,
5190 const struct protocol_feature *feature,
5191 enum packet_support support,
5192 const char *argument)
5193 {
5194 if (argument)
5195 {
5196 warning (_("Remote qSupported response supplied an unexpected value for"
5197 " \"%s\"."), feature->name);
5198 return;
5199 }
5200
5201 remote_protocol_packets[feature->packet].support = support;
5202 }
5203
5204 void
5205 remote_target::remote_packet_size (const protocol_feature *feature,
5206 enum packet_support support, const char *value)
5207 {
5208 struct remote_state *rs = get_remote_state ();
5209
5210 int packet_size;
5211 char *value_end;
5212
5213 if (support != PACKET_ENABLE)
5214 return;
5215
5216 if (value == NULL || *value == '\0')
5217 {
5218 warning (_("Remote target reported \"%s\" without a size."),
5219 feature->name);
5220 return;
5221 }
5222
5223 errno = 0;
5224 packet_size = strtol (value, &value_end, 16);
5225 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5226 {
5227 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5228 feature->name, value);
5229 return;
5230 }
5231
5232 /* Record the new maximum packet size. */
5233 rs->explicit_packet_size = packet_size;
5234 }
5235
5236 static void
5237 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5238 enum packet_support support, const char *value)
5239 {
5240 remote->remote_packet_size (feature, support, value);
5241 }
5242
5243 static const struct protocol_feature remote_protocol_features[] = {
5244 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5245 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5246 PACKET_qXfer_auxv },
5247 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5248 PACKET_qXfer_exec_file },
5249 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5250 PACKET_qXfer_features },
5251 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5252 PACKET_qXfer_libraries },
5253 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5254 PACKET_qXfer_libraries_svr4 },
5255 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5256 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5257 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5258 PACKET_qXfer_memory_map },
5259 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5260 PACKET_qXfer_osdata },
5261 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5262 PACKET_qXfer_threads },
5263 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5264 PACKET_qXfer_traceframe_info },
5265 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5266 PACKET_QPassSignals },
5267 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5268 PACKET_QCatchSyscalls },
5269 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5270 PACKET_QProgramSignals },
5271 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5272 PACKET_QSetWorkingDir },
5273 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5274 PACKET_QStartupWithShell },
5275 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5276 PACKET_QEnvironmentHexEncoded },
5277 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5278 PACKET_QEnvironmentReset },
5279 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5280 PACKET_QEnvironmentUnset },
5281 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5282 PACKET_QStartNoAckMode },
5283 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5284 PACKET_multiprocess_feature },
5285 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5286 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5287 PACKET_qXfer_siginfo_read },
5288 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5289 PACKET_qXfer_siginfo_write },
5290 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5291 PACKET_ConditionalTracepoints },
5292 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5293 PACKET_ConditionalBreakpoints },
5294 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5295 PACKET_BreakpointCommands },
5296 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5297 PACKET_FastTracepoints },
5298 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5299 PACKET_StaticTracepoints },
5300 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5301 PACKET_InstallInTrace},
5302 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5303 PACKET_DisconnectedTracing_feature },
5304 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5305 PACKET_bc },
5306 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5307 PACKET_bs },
5308 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5309 PACKET_TracepointSource },
5310 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5311 PACKET_QAllow },
5312 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5313 PACKET_EnableDisableTracepoints_feature },
5314 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5315 PACKET_qXfer_fdpic },
5316 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5317 PACKET_qXfer_uib },
5318 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5319 PACKET_QDisableRandomization },
5320 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5321 { "QTBuffer:size", PACKET_DISABLE,
5322 remote_supported_packet, PACKET_QTBuffer_size},
5323 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5324 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5325 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5326 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5327 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5328 PACKET_qXfer_btrace },
5329 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5330 PACKET_qXfer_btrace_conf },
5331 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5332 PACKET_Qbtrace_conf_bts_size },
5333 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5334 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5335 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5336 PACKET_fork_event_feature },
5337 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5338 PACKET_vfork_event_feature },
5339 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5340 PACKET_exec_event_feature },
5341 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5342 PACKET_Qbtrace_conf_pt_size },
5343 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5344 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5345 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5346 { "memory-tagging", PACKET_DISABLE, remote_supported_packet,
5347 PACKET_memory_tagging_feature },
5348 };
5349
5350 static char *remote_support_xml;
5351
5352 /* Register string appended to "xmlRegisters=" in qSupported query. */
5353
5354 void
5355 register_remote_support_xml (const char *xml)
5356 {
5357 #if defined(HAVE_LIBEXPAT)
5358 if (remote_support_xml == NULL)
5359 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5360 else
5361 {
5362 char *copy = xstrdup (remote_support_xml + 13);
5363 char *saveptr;
5364 char *p = strtok_r (copy, ",", &saveptr);
5365
5366 do
5367 {
5368 if (strcmp (p, xml) == 0)
5369 {
5370 /* already there */
5371 xfree (copy);
5372 return;
5373 }
5374 }
5375 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5376 xfree (copy);
5377
5378 remote_support_xml = reconcat (remote_support_xml,
5379 remote_support_xml, ",", xml,
5380 (char *) NULL);
5381 }
5382 #endif
5383 }
5384
5385 static void
5386 remote_query_supported_append (std::string *msg, const char *append)
5387 {
5388 if (!msg->empty ())
5389 msg->append (";");
5390 msg->append (append);
5391 }
5392
5393 void
5394 remote_target::remote_query_supported ()
5395 {
5396 struct remote_state *rs = get_remote_state ();
5397 char *next;
5398 int i;
5399 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5400
5401 /* The packet support flags are handled differently for this packet
5402 than for most others. We treat an error, a disabled packet, and
5403 an empty response identically: any features which must be reported
5404 to be used will be automatically disabled. An empty buffer
5405 accomplishes this, since that is also the representation for a list
5406 containing no features. */
5407
5408 rs->buf[0] = 0;
5409 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5410 {
5411 std::string q;
5412
5413 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5414 remote_query_supported_append (&q, "multiprocess+");
5415
5416 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5417 remote_query_supported_append (&q, "swbreak+");
5418 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5419 remote_query_supported_append (&q, "hwbreak+");
5420
5421 remote_query_supported_append (&q, "qRelocInsn+");
5422
5423 if (packet_set_cmd_state (PACKET_fork_event_feature)
5424 != AUTO_BOOLEAN_FALSE)
5425 remote_query_supported_append (&q, "fork-events+");
5426 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5427 != AUTO_BOOLEAN_FALSE)
5428 remote_query_supported_append (&q, "vfork-events+");
5429 if (packet_set_cmd_state (PACKET_exec_event_feature)
5430 != AUTO_BOOLEAN_FALSE)
5431 remote_query_supported_append (&q, "exec-events+");
5432
5433 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5434 remote_query_supported_append (&q, "vContSupported+");
5435
5436 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5437 remote_query_supported_append (&q, "QThreadEvents+");
5438
5439 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5440 remote_query_supported_append (&q, "no-resumed+");
5441
5442 if (packet_set_cmd_state (PACKET_memory_tagging_feature)
5443 != AUTO_BOOLEAN_FALSE)
5444 remote_query_supported_append (&q, "memory-tagging+");
5445
5446 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5447 the qSupported:xmlRegisters=i386 handling. */
5448 if (remote_support_xml != NULL
5449 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5450 remote_query_supported_append (&q, remote_support_xml);
5451
5452 q = "qSupported:" + q;
5453 putpkt (q.c_str ());
5454
5455 getpkt (&rs->buf, 0);
5456
5457 /* If an error occured, warn, but do not return - just reset the
5458 buffer to empty and go on to disable features. */
5459 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5460 == PACKET_ERROR)
5461 {
5462 warning (_("Remote failure reply: %s"), rs->buf.data ());
5463 rs->buf[0] = 0;
5464 }
5465 }
5466
5467 memset (seen, 0, sizeof (seen));
5468
5469 next = rs->buf.data ();
5470 while (*next)
5471 {
5472 enum packet_support is_supported;
5473 char *p, *end, *name_end, *value;
5474
5475 /* First separate out this item from the rest of the packet. If
5476 there's another item after this, we overwrite the separator
5477 (terminated strings are much easier to work with). */
5478 p = next;
5479 end = strchr (p, ';');
5480 if (end == NULL)
5481 {
5482 end = p + strlen (p);
5483 next = end;
5484 }
5485 else
5486 {
5487 *end = '\0';
5488 next = end + 1;
5489
5490 if (end == p)
5491 {
5492 warning (_("empty item in \"qSupported\" response"));
5493 continue;
5494 }
5495 }
5496
5497 name_end = strchr (p, '=');
5498 if (name_end)
5499 {
5500 /* This is a name=value entry. */
5501 is_supported = PACKET_ENABLE;
5502 value = name_end + 1;
5503 *name_end = '\0';
5504 }
5505 else
5506 {
5507 value = NULL;
5508 switch (end[-1])
5509 {
5510 case '+':
5511 is_supported = PACKET_ENABLE;
5512 break;
5513
5514 case '-':
5515 is_supported = PACKET_DISABLE;
5516 break;
5517
5518 case '?':
5519 is_supported = PACKET_SUPPORT_UNKNOWN;
5520 break;
5521
5522 default:
5523 warning (_("unrecognized item \"%s\" "
5524 "in \"qSupported\" response"), p);
5525 continue;
5526 }
5527 end[-1] = '\0';
5528 }
5529
5530 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5531 if (strcmp (remote_protocol_features[i].name, p) == 0)
5532 {
5533 const struct protocol_feature *feature;
5534
5535 seen[i] = 1;
5536 feature = &remote_protocol_features[i];
5537 feature->func (this, feature, is_supported, value);
5538 break;
5539 }
5540 }
5541
5542 /* If we increased the packet size, make sure to increase the global
5543 buffer size also. We delay this until after parsing the entire
5544 qSupported packet, because this is the same buffer we were
5545 parsing. */
5546 if (rs->buf.size () < rs->explicit_packet_size)
5547 rs->buf.resize (rs->explicit_packet_size);
5548
5549 /* Handle the defaults for unmentioned features. */
5550 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5551 if (!seen[i])
5552 {
5553 const struct protocol_feature *feature;
5554
5555 feature = &remote_protocol_features[i];
5556 feature->func (this, feature, feature->default_support, NULL);
5557 }
5558 }
5559
5560 /* Serial QUIT handler for the remote serial descriptor.
5561
5562 Defers handling a Ctrl-C until we're done with the current
5563 command/response packet sequence, unless:
5564
5565 - We're setting up the connection. Don't send a remote interrupt
5566 request, as we're not fully synced yet. Quit immediately
5567 instead.
5568
5569 - The target has been resumed in the foreground
5570 (target_terminal::is_ours is false) with a synchronous resume
5571 packet, and we're blocked waiting for the stop reply, thus a
5572 Ctrl-C should be immediately sent to the target.
5573
5574 - We get a second Ctrl-C while still within the same serial read or
5575 write. In that case the serial is seemingly wedged --- offer to
5576 quit/disconnect.
5577
5578 - We see a second Ctrl-C without target response, after having
5579 previously interrupted the target. In that case the target/stub
5580 is probably wedged --- offer to quit/disconnect.
5581 */
5582
5583 void
5584 remote_target::remote_serial_quit_handler ()
5585 {
5586 struct remote_state *rs = get_remote_state ();
5587
5588 if (check_quit_flag ())
5589 {
5590 /* If we're starting up, we're not fully synced yet. Quit
5591 immediately. */
5592 if (rs->starting_up)
5593 quit ();
5594 else if (rs->got_ctrlc_during_io)
5595 {
5596 if (query (_("The target is not responding to GDB commands.\n"
5597 "Stop debugging it? ")))
5598 remote_unpush_and_throw (this);
5599 }
5600 /* If ^C has already been sent once, offer to disconnect. */
5601 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5602 interrupt_query ();
5603 /* All-stop protocol, and blocked waiting for stop reply. Send
5604 an interrupt request. */
5605 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5606 target_interrupt ();
5607 else
5608 rs->got_ctrlc_during_io = 1;
5609 }
5610 }
5611
5612 /* The remote_target that is current while the quit handler is
5613 overridden with remote_serial_quit_handler. */
5614 static remote_target *curr_quit_handler_target;
5615
5616 static void
5617 remote_serial_quit_handler ()
5618 {
5619 curr_quit_handler_target->remote_serial_quit_handler ();
5620 }
5621
5622 /* Remove the remote target from the target stack of each inferior
5623 that is using it. Upper targets depend on it so remove them
5624 first. */
5625
5626 static void
5627 remote_unpush_target (remote_target *target)
5628 {
5629 /* We have to unpush the target from all inferiors, even those that
5630 aren't running. */
5631 scoped_restore_current_inferior restore_current_inferior;
5632
5633 for (inferior *inf : all_inferiors (target))
5634 {
5635 switch_to_inferior_no_thread (inf);
5636 pop_all_targets_at_and_above (process_stratum);
5637 generic_mourn_inferior ();
5638 }
5639
5640 /* Don't rely on target_close doing this when the target is popped
5641 from the last remote inferior above, because something may be
5642 holding a reference to the target higher up on the stack, meaning
5643 target_close won't be called yet. We lost the connection to the
5644 target, so clear these now, otherwise we may later throw
5645 TARGET_CLOSE_ERROR while trying to tell the remote target to
5646 close the file. */
5647 fileio_handles_invalidate_target (target);
5648 }
5649
5650 static void
5651 remote_unpush_and_throw (remote_target *target)
5652 {
5653 remote_unpush_target (target);
5654 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5655 }
5656
5657 void
5658 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5659 {
5660 remote_target *curr_remote = get_current_remote_target ();
5661
5662 if (name == 0)
5663 error (_("To open a remote debug connection, you need to specify what\n"
5664 "serial device is attached to the remote system\n"
5665 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5666
5667 /* If we're connected to a running target, target_preopen will kill it.
5668 Ask this question first, before target_preopen has a chance to kill
5669 anything. */
5670 if (curr_remote != NULL && !target_has_execution ())
5671 {
5672 if (from_tty
5673 && !query (_("Already connected to a remote target. Disconnect? ")))
5674 error (_("Still connected."));
5675 }
5676
5677 /* Here the possibly existing remote target gets unpushed. */
5678 target_preopen (from_tty);
5679
5680 remote_fileio_reset ();
5681 reopen_exec_file ();
5682 reread_symbols ();
5683
5684 remote_target *remote
5685 = (extended_p ? new extended_remote_target () : new remote_target ());
5686 target_ops_up target_holder (remote);
5687
5688 remote_state *rs = remote->get_remote_state ();
5689
5690 /* See FIXME above. */
5691 if (!target_async_permitted)
5692 rs->wait_forever_enabled_p = 1;
5693
5694 rs->remote_desc = remote_serial_open (name);
5695 if (!rs->remote_desc)
5696 perror_with_name (name);
5697
5698 if (baud_rate != -1)
5699 {
5700 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5701 {
5702 /* The requested speed could not be set. Error out to
5703 top level after closing remote_desc. Take care to
5704 set remote_desc to NULL to avoid closing remote_desc
5705 more than once. */
5706 serial_close (rs->remote_desc);
5707 rs->remote_desc = NULL;
5708 perror_with_name (name);
5709 }
5710 }
5711
5712 serial_setparity (rs->remote_desc, serial_parity);
5713 serial_raw (rs->remote_desc);
5714
5715 /* If there is something sitting in the buffer we might take it as a
5716 response to a command, which would be bad. */
5717 serial_flush_input (rs->remote_desc);
5718
5719 if (from_tty)
5720 {
5721 puts_filtered ("Remote debugging using ");
5722 puts_filtered (name);
5723 puts_filtered ("\n");
5724 }
5725
5726 /* Switch to using the remote target now. */
5727 current_inferior ()->push_target (std::move (target_holder));
5728
5729 /* Register extra event sources in the event loop. */
5730 rs->remote_async_inferior_event_token
5731 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5732 "remote");
5733 rs->notif_state = remote_notif_state_allocate (remote);
5734
5735 /* Reset the target state; these things will be queried either by
5736 remote_query_supported or as they are needed. */
5737 reset_all_packet_configs_support ();
5738 rs->cached_wait_status = 0;
5739 rs->explicit_packet_size = 0;
5740 rs->noack_mode = 0;
5741 rs->extended = extended_p;
5742 rs->waiting_for_stop_reply = 0;
5743 rs->ctrlc_pending_p = 0;
5744 rs->got_ctrlc_during_io = 0;
5745
5746 rs->general_thread = not_sent_ptid;
5747 rs->continue_thread = not_sent_ptid;
5748 rs->remote_traceframe_number = -1;
5749
5750 rs->last_resume_exec_dir = EXEC_FORWARD;
5751
5752 /* Probe for ability to use "ThreadInfo" query, as required. */
5753 rs->use_threadinfo_query = 1;
5754 rs->use_threadextra_query = 1;
5755
5756 rs->readahead_cache.invalidate ();
5757
5758 if (target_async_permitted)
5759 {
5760 /* FIXME: cagney/1999-09-23: During the initial connection it is
5761 assumed that the target is already ready and able to respond to
5762 requests. Unfortunately remote_start_remote() eventually calls
5763 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5764 around this. Eventually a mechanism that allows
5765 wait_for_inferior() to expect/get timeouts will be
5766 implemented. */
5767 rs->wait_forever_enabled_p = 0;
5768 }
5769
5770 /* First delete any symbols previously loaded from shared libraries. */
5771 no_shared_libraries (NULL, 0);
5772
5773 /* Start the remote connection. If error() or QUIT, discard this
5774 target (we'd otherwise be in an inconsistent state) and then
5775 propogate the error on up the exception chain. This ensures that
5776 the caller doesn't stumble along blindly assuming that the
5777 function succeeded. The CLI doesn't have this problem but other
5778 UI's, such as MI do.
5779
5780 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5781 this function should return an error indication letting the
5782 caller restore the previous state. Unfortunately the command
5783 ``target remote'' is directly wired to this function making that
5784 impossible. On a positive note, the CLI side of this problem has
5785 been fixed - the function set_cmd_context() makes it possible for
5786 all the ``target ....'' commands to share a common callback
5787 function. See cli-dump.c. */
5788 {
5789
5790 try
5791 {
5792 remote->start_remote (from_tty, extended_p);
5793 }
5794 catch (const gdb_exception &ex)
5795 {
5796 /* Pop the partially set up target - unless something else did
5797 already before throwing the exception. */
5798 if (ex.error != TARGET_CLOSE_ERROR)
5799 remote_unpush_target (remote);
5800 throw;
5801 }
5802 }
5803
5804 remote_btrace_reset (rs);
5805
5806 if (target_async_permitted)
5807 rs->wait_forever_enabled_p = 1;
5808 }
5809
5810 /* Detach the specified process. */
5811
5812 void
5813 remote_target::remote_detach_pid (int pid)
5814 {
5815 struct remote_state *rs = get_remote_state ();
5816
5817 /* This should not be necessary, but the handling for D;PID in
5818 GDBserver versions prior to 8.2 incorrectly assumes that the
5819 selected process points to the same process we're detaching,
5820 leading to misbehavior (and possibly GDBserver crashing) when it
5821 does not. Since it's easy and cheap, work around it by forcing
5822 GDBserver to select GDB's current process. */
5823 set_general_process ();
5824
5825 if (remote_multi_process_p (rs))
5826 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5827 else
5828 strcpy (rs->buf.data (), "D");
5829
5830 putpkt (rs->buf);
5831 getpkt (&rs->buf, 0);
5832
5833 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5834 ;
5835 else if (rs->buf[0] == '\0')
5836 error (_("Remote doesn't know how to detach"));
5837 else
5838 error (_("Can't detach process."));
5839 }
5840
5841 /* This detaches a program to which we previously attached, using
5842 inferior_ptid to identify the process. After this is done, GDB
5843 can be used to debug some other program. We better not have left
5844 any breakpoints in the target program or it'll die when it hits
5845 one. */
5846
5847 void
5848 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5849 {
5850 int pid = inferior_ptid.pid ();
5851 struct remote_state *rs = get_remote_state ();
5852 int is_fork_parent;
5853
5854 if (!target_has_execution ())
5855 error (_("No process to detach from."));
5856
5857 target_announce_detach (from_tty);
5858
5859 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5860 {
5861 /* If we're in breakpoints-always-inserted mode, or the inferior
5862 is running, we have to remove breakpoints before detaching.
5863 We don't do this in common code instead because not all
5864 targets support removing breakpoints while the target is
5865 running. The remote target / gdbserver does, though. */
5866 remove_breakpoints_inf (current_inferior ());
5867 }
5868
5869 /* Tell the remote target to detach. */
5870 remote_detach_pid (pid);
5871
5872 /* Exit only if this is the only active inferior. */
5873 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5874 puts_filtered (_("Ending remote debugging.\n"));
5875
5876 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5877
5878 /* Check to see if we are detaching a fork parent. Note that if we
5879 are detaching a fork child, tp == NULL. */
5880 is_fork_parent = (tp != NULL
5881 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5882
5883 /* If doing detach-on-fork, we don't mourn, because that will delete
5884 breakpoints that should be available for the followed inferior. */
5885 if (!is_fork_parent)
5886 {
5887 /* Save the pid as a string before mourning, since that will
5888 unpush the remote target, and we need the string after. */
5889 std::string infpid = target_pid_to_str (ptid_t (pid));
5890
5891 target_mourn_inferior (inferior_ptid);
5892 if (print_inferior_events)
5893 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5894 inf->num, infpid.c_str ());
5895 }
5896 else
5897 {
5898 switch_to_no_thread ();
5899 detach_inferior (current_inferior ());
5900 }
5901 }
5902
5903 void
5904 remote_target::detach (inferior *inf, int from_tty)
5905 {
5906 remote_detach_1 (inf, from_tty);
5907 }
5908
5909 void
5910 extended_remote_target::detach (inferior *inf, int from_tty)
5911 {
5912 remote_detach_1 (inf, from_tty);
5913 }
5914
5915 /* Target follow-fork function for remote targets. On entry, and
5916 at return, the current inferior is the fork parent.
5917
5918 Note that although this is currently only used for extended-remote,
5919 it is named remote_follow_fork in anticipation of using it for the
5920 remote target as well. */
5921
5922 void
5923 remote_target::follow_fork (inferior *child_inf, ptid_t child_ptid,
5924 target_waitkind fork_kind, bool follow_child,
5925 bool detach_fork)
5926 {
5927 process_stratum_target::follow_fork (child_inf, child_ptid,
5928 fork_kind, follow_child, detach_fork);
5929
5930 struct remote_state *rs = get_remote_state ();
5931
5932 if ((fork_kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5933 || (fork_kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5934 {
5935 /* When following the parent and detaching the child, we detach
5936 the child here. For the case of following the child and
5937 detaching the parent, the detach is done in the target-
5938 independent follow fork code in infrun.c. We can't use
5939 target_detach when detaching an unfollowed child because
5940 the client side doesn't know anything about the child. */
5941 if (detach_fork && !follow_child)
5942 {
5943 /* Detach the fork child. */
5944 remote_detach_pid (child_ptid.pid ());
5945 }
5946 }
5947 }
5948
5949 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5950 in the program space of the new inferior. */
5951
5952 void
5953 remote_target::follow_exec (inferior *follow_inf, ptid_t ptid,
5954 const char *execd_pathname)
5955 {
5956 process_stratum_target::follow_exec (follow_inf, ptid, execd_pathname);
5957
5958 /* We know that this is a target file name, so if it has the "target:"
5959 prefix we strip it off before saving it in the program space. */
5960 if (is_target_filename (execd_pathname))
5961 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5962
5963 set_pspace_remote_exec_file (follow_inf->pspace, execd_pathname);
5964 }
5965
5966 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5967
5968 void
5969 remote_target::disconnect (const char *args, int from_tty)
5970 {
5971 if (args)
5972 error (_("Argument given to \"disconnect\" when remotely debugging."));
5973
5974 /* Make sure we unpush even the extended remote targets. Calling
5975 target_mourn_inferior won't unpush, and
5976 remote_target::mourn_inferior won't unpush if there is more than
5977 one inferior left. */
5978 remote_unpush_target (this);
5979
5980 if (from_tty)
5981 puts_filtered ("Ending remote debugging.\n");
5982 }
5983
5984 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5985 be chatty about it. */
5986
5987 void
5988 extended_remote_target::attach (const char *args, int from_tty)
5989 {
5990 struct remote_state *rs = get_remote_state ();
5991 int pid;
5992 char *wait_status = NULL;
5993
5994 pid = parse_pid_to_attach (args);
5995
5996 /* Remote PID can be freely equal to getpid, do not check it here the same
5997 way as in other targets. */
5998
5999 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
6000 error (_("This target does not support attaching to a process"));
6001
6002 if (from_tty)
6003 {
6004 const char *exec_file = get_exec_file (0);
6005
6006 if (exec_file)
6007 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
6008 target_pid_to_str (ptid_t (pid)).c_str ());
6009 else
6010 printf_unfiltered (_("Attaching to %s\n"),
6011 target_pid_to_str (ptid_t (pid)).c_str ());
6012 }
6013
6014 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
6015 putpkt (rs->buf);
6016 getpkt (&rs->buf, 0);
6017
6018 switch (packet_ok (rs->buf,
6019 &remote_protocol_packets[PACKET_vAttach]))
6020 {
6021 case PACKET_OK:
6022 if (!target_is_non_stop_p ())
6023 {
6024 /* Save the reply for later. */
6025 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
6026 strcpy (wait_status, rs->buf.data ());
6027 }
6028 else if (strcmp (rs->buf.data (), "OK") != 0)
6029 error (_("Attaching to %s failed with: %s"),
6030 target_pid_to_str (ptid_t (pid)).c_str (),
6031 rs->buf.data ());
6032 break;
6033 case PACKET_UNKNOWN:
6034 error (_("This target does not support attaching to a process"));
6035 default:
6036 error (_("Attaching to %s failed"),
6037 target_pid_to_str (ptid_t (pid)).c_str ());
6038 }
6039
6040 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
6041
6042 inferior_ptid = ptid_t (pid);
6043
6044 if (target_is_non_stop_p ())
6045 {
6046 /* Get list of threads. */
6047 update_thread_list ();
6048
6049 thread_info *thread = first_thread_of_inferior (current_inferior ());
6050 if (thread != nullptr)
6051 switch_to_thread (thread);
6052
6053 /* Invalidate our notion of the remote current thread. */
6054 record_currthread (rs, minus_one_ptid);
6055 }
6056 else
6057 {
6058 /* Now, if we have thread information, update the main thread's
6059 ptid. */
6060 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6061
6062 /* Add the main thread to the thread list. */
6063 thread_info *thr = add_thread_silent (this, curr_ptid);
6064
6065 switch_to_thread (thr);
6066
6067 /* Don't consider the thread stopped until we've processed the
6068 saved stop reply. */
6069 set_executing (this, thr->ptid, true);
6070 }
6071
6072 /* Next, if the target can specify a description, read it. We do
6073 this before anything involving memory or registers. */
6074 target_find_description ();
6075
6076 if (!target_is_non_stop_p ())
6077 {
6078 /* Use the previously fetched status. */
6079 gdb_assert (wait_status != NULL);
6080
6081 if (target_can_async_p ())
6082 {
6083 struct notif_event *reply
6084 = remote_notif_parse (this, &notif_client_stop, wait_status);
6085
6086 push_stop_reply ((struct stop_reply *) reply);
6087
6088 target_async (1);
6089 }
6090 else
6091 {
6092 gdb_assert (wait_status != NULL);
6093 strcpy (rs->buf.data (), wait_status);
6094 rs->cached_wait_status = 1;
6095 }
6096 }
6097 else
6098 {
6099 gdb_assert (wait_status == NULL);
6100
6101 gdb_assert (target_can_async_p ());
6102 target_async (1);
6103 }
6104 }
6105
6106 /* Implementation of the to_post_attach method. */
6107
6108 void
6109 extended_remote_target::post_attach (int pid)
6110 {
6111 /* Get text, data & bss offsets. */
6112 get_offsets ();
6113
6114 /* In certain cases GDB might not have had the chance to start
6115 symbol lookup up until now. This could happen if the debugged
6116 binary is not using shared libraries, the vsyscall page is not
6117 present (on Linux) and the binary itself hadn't changed since the
6118 debugging process was started. */
6119 if (current_program_space->symfile_object_file != NULL)
6120 remote_check_symbols();
6121 }
6122
6123 \f
6124 /* Check for the availability of vCont. This function should also check
6125 the response. */
6126
6127 void
6128 remote_target::remote_vcont_probe ()
6129 {
6130 remote_state *rs = get_remote_state ();
6131 char *buf;
6132
6133 strcpy (rs->buf.data (), "vCont?");
6134 putpkt (rs->buf);
6135 getpkt (&rs->buf, 0);
6136 buf = rs->buf.data ();
6137
6138 /* Make sure that the features we assume are supported. */
6139 if (startswith (buf, "vCont"))
6140 {
6141 char *p = &buf[5];
6142 int support_c, support_C;
6143
6144 rs->supports_vCont.s = 0;
6145 rs->supports_vCont.S = 0;
6146 support_c = 0;
6147 support_C = 0;
6148 rs->supports_vCont.t = 0;
6149 rs->supports_vCont.r = 0;
6150 while (p && *p == ';')
6151 {
6152 p++;
6153 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6154 rs->supports_vCont.s = 1;
6155 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6156 rs->supports_vCont.S = 1;
6157 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6158 support_c = 1;
6159 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6160 support_C = 1;
6161 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6162 rs->supports_vCont.t = 1;
6163 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6164 rs->supports_vCont.r = 1;
6165
6166 p = strchr (p, ';');
6167 }
6168
6169 /* If c, and C are not all supported, we can't use vCont. Clearing
6170 BUF will make packet_ok disable the packet. */
6171 if (!support_c || !support_C)
6172 buf[0] = 0;
6173 }
6174
6175 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6176 rs->supports_vCont_probed = true;
6177 }
6178
6179 /* Helper function for building "vCont" resumptions. Write a
6180 resumption to P. ENDP points to one-passed-the-end of the buffer
6181 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6182 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6183 resumed thread should be single-stepped and/or signalled. If PTID
6184 equals minus_one_ptid, then all threads are resumed; if PTID
6185 represents a process, then all threads of the process are resumed;
6186 the thread to be stepped and/or signalled is given in the global
6187 INFERIOR_PTID. */
6188
6189 char *
6190 remote_target::append_resumption (char *p, char *endp,
6191 ptid_t ptid, int step, gdb_signal siggnal)
6192 {
6193 struct remote_state *rs = get_remote_state ();
6194
6195 if (step && siggnal != GDB_SIGNAL_0)
6196 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6197 else if (step
6198 /* GDB is willing to range step. */
6199 && use_range_stepping
6200 /* Target supports range stepping. */
6201 && rs->supports_vCont.r
6202 /* We don't currently support range stepping multiple
6203 threads with a wildcard (though the protocol allows it,
6204 so stubs shouldn't make an active effort to forbid
6205 it). */
6206 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6207 {
6208 struct thread_info *tp;
6209
6210 if (ptid == minus_one_ptid)
6211 {
6212 /* If we don't know about the target thread's tid, then
6213 we're resuming magic_null_ptid (see caller). */
6214 tp = find_thread_ptid (this, magic_null_ptid);
6215 }
6216 else
6217 tp = find_thread_ptid (this, ptid);
6218 gdb_assert (tp != NULL);
6219
6220 if (tp->control.may_range_step)
6221 {
6222 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6223
6224 p += xsnprintf (p, endp - p, ";r%s,%s",
6225 phex_nz (tp->control.step_range_start,
6226 addr_size),
6227 phex_nz (tp->control.step_range_end,
6228 addr_size));
6229 }
6230 else
6231 p += xsnprintf (p, endp - p, ";s");
6232 }
6233 else if (step)
6234 p += xsnprintf (p, endp - p, ";s");
6235 else if (siggnal != GDB_SIGNAL_0)
6236 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6237 else
6238 p += xsnprintf (p, endp - p, ";c");
6239
6240 if (remote_multi_process_p (rs) && ptid.is_pid ())
6241 {
6242 ptid_t nptid;
6243
6244 /* All (-1) threads of process. */
6245 nptid = ptid_t (ptid.pid (), -1);
6246
6247 p += xsnprintf (p, endp - p, ":");
6248 p = write_ptid (p, endp, nptid);
6249 }
6250 else if (ptid != minus_one_ptid)
6251 {
6252 p += xsnprintf (p, endp - p, ":");
6253 p = write_ptid (p, endp, ptid);
6254 }
6255
6256 return p;
6257 }
6258
6259 /* Clear the thread's private info on resume. */
6260
6261 static void
6262 resume_clear_thread_private_info (struct thread_info *thread)
6263 {
6264 if (thread->priv != NULL)
6265 {
6266 remote_thread_info *priv = get_remote_thread_info (thread);
6267
6268 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6269 priv->watch_data_address = 0;
6270 }
6271 }
6272
6273 /* Append a vCont continue-with-signal action for threads that have a
6274 non-zero stop signal. */
6275
6276 char *
6277 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6278 ptid_t ptid)
6279 {
6280 for (thread_info *thread : all_non_exited_threads (this, ptid))
6281 if (inferior_ptid != thread->ptid
6282 && thread->stop_signal () != GDB_SIGNAL_0)
6283 {
6284 p = append_resumption (p, endp, thread->ptid,
6285 0, thread->stop_signal ());
6286 thread->set_stop_signal (GDB_SIGNAL_0);
6287 resume_clear_thread_private_info (thread);
6288 }
6289
6290 return p;
6291 }
6292
6293 /* Set the target running, using the packets that use Hc
6294 (c/s/C/S). */
6295
6296 void
6297 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6298 gdb_signal siggnal)
6299 {
6300 struct remote_state *rs = get_remote_state ();
6301 char *buf;
6302
6303 rs->last_sent_signal = siggnal;
6304 rs->last_sent_step = step;
6305
6306 /* The c/s/C/S resume packets use Hc, so set the continue
6307 thread. */
6308 if (ptid == minus_one_ptid)
6309 set_continue_thread (any_thread_ptid);
6310 else
6311 set_continue_thread (ptid);
6312
6313 for (thread_info *thread : all_non_exited_threads (this))
6314 resume_clear_thread_private_info (thread);
6315
6316 buf = rs->buf.data ();
6317 if (::execution_direction == EXEC_REVERSE)
6318 {
6319 /* We don't pass signals to the target in reverse exec mode. */
6320 if (info_verbose && siggnal != GDB_SIGNAL_0)
6321 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6322 siggnal);
6323
6324 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6325 error (_("Remote reverse-step not supported."));
6326 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6327 error (_("Remote reverse-continue not supported."));
6328
6329 strcpy (buf, step ? "bs" : "bc");
6330 }
6331 else if (siggnal != GDB_SIGNAL_0)
6332 {
6333 buf[0] = step ? 'S' : 'C';
6334 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6335 buf[2] = tohex (((int) siggnal) & 0xf);
6336 buf[3] = '\0';
6337 }
6338 else
6339 strcpy (buf, step ? "s" : "c");
6340
6341 putpkt (buf);
6342 }
6343
6344 /* Resume the remote inferior by using a "vCont" packet. The thread
6345 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6346 resumed thread should be single-stepped and/or signalled. If PTID
6347 equals minus_one_ptid, then all threads are resumed; the thread to
6348 be stepped and/or signalled is given in the global INFERIOR_PTID.
6349 This function returns non-zero iff it resumes the inferior.
6350
6351 This function issues a strict subset of all possible vCont commands
6352 at the moment. */
6353
6354 int
6355 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6356 enum gdb_signal siggnal)
6357 {
6358 struct remote_state *rs = get_remote_state ();
6359 char *p;
6360 char *endp;
6361
6362 /* No reverse execution actions defined for vCont. */
6363 if (::execution_direction == EXEC_REVERSE)
6364 return 0;
6365
6366 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6367 remote_vcont_probe ();
6368
6369 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6370 return 0;
6371
6372 p = rs->buf.data ();
6373 endp = p + get_remote_packet_size ();
6374
6375 /* If we could generate a wider range of packets, we'd have to worry
6376 about overflowing BUF. Should there be a generic
6377 "multi-part-packet" packet? */
6378
6379 p += xsnprintf (p, endp - p, "vCont");
6380
6381 if (ptid == magic_null_ptid)
6382 {
6383 /* MAGIC_NULL_PTID means that we don't have any active threads,
6384 so we don't have any TID numbers the inferior will
6385 understand. Make sure to only send forms that do not specify
6386 a TID. */
6387 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6388 }
6389 else if (ptid == minus_one_ptid || ptid.is_pid ())
6390 {
6391 /* Resume all threads (of all processes, or of a single
6392 process), with preference for INFERIOR_PTID. This assumes
6393 inferior_ptid belongs to the set of all threads we are about
6394 to resume. */
6395 if (step || siggnal != GDB_SIGNAL_0)
6396 {
6397 /* Step inferior_ptid, with or without signal. */
6398 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6399 }
6400
6401 /* Also pass down any pending signaled resumption for other
6402 threads not the current. */
6403 p = append_pending_thread_resumptions (p, endp, ptid);
6404
6405 /* And continue others without a signal. */
6406 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6407 }
6408 else
6409 {
6410 /* Scheduler locking; resume only PTID. */
6411 append_resumption (p, endp, ptid, step, siggnal);
6412 }
6413
6414 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6415 putpkt (rs->buf);
6416
6417 if (target_is_non_stop_p ())
6418 {
6419 /* In non-stop, the stub replies to vCont with "OK". The stop
6420 reply will be reported asynchronously by means of a `%Stop'
6421 notification. */
6422 getpkt (&rs->buf, 0);
6423 if (strcmp (rs->buf.data (), "OK") != 0)
6424 error (_("Unexpected vCont reply in non-stop mode: %s"),
6425 rs->buf.data ());
6426 }
6427
6428 return 1;
6429 }
6430
6431 /* Tell the remote machine to resume. */
6432
6433 void
6434 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6435 {
6436 struct remote_state *rs = get_remote_state ();
6437
6438 /* When connected in non-stop mode, the core resumes threads
6439 individually. Resuming remote threads directly in target_resume
6440 would thus result in sending one packet per thread. Instead, to
6441 minimize roundtrip latency, here we just store the resume
6442 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6443 resumption will be done in remote_target::commit_resume, where we'll be
6444 able to do vCont action coalescing. */
6445 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6446 {
6447 remote_thread_info *remote_thr;
6448
6449 if (minus_one_ptid == ptid || ptid.is_pid ())
6450 remote_thr = get_remote_thread_info (this, inferior_ptid);
6451 else
6452 remote_thr = get_remote_thread_info (this, ptid);
6453
6454 /* We don't expect the core to ask to resume an already resumed (from
6455 its point of view) thread. */
6456 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6457
6458 remote_thr->set_resumed_pending_vcont (step, siggnal);
6459 return;
6460 }
6461
6462 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6463 (explained in remote-notif.c:handle_notification) so
6464 remote_notif_process is not called. We need find a place where
6465 it is safe to start a 'vNotif' sequence. It is good to do it
6466 before resuming inferior, because inferior was stopped and no RSP
6467 traffic at that moment. */
6468 if (!target_is_non_stop_p ())
6469 remote_notif_process (rs->notif_state, &notif_client_stop);
6470
6471 rs->last_resume_exec_dir = ::execution_direction;
6472
6473 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6474 if (!remote_resume_with_vcont (ptid, step, siggnal))
6475 remote_resume_with_hc (ptid, step, siggnal);
6476
6477 /* Update resumed state tracked by the remote target. */
6478 for (thread_info *tp : all_non_exited_threads (this, ptid))
6479 get_remote_thread_info (tp)->set_resumed ();
6480
6481 /* We are about to start executing the inferior, let's register it
6482 with the event loop. NOTE: this is the one place where all the
6483 execution commands end up. We could alternatively do this in each
6484 of the execution commands in infcmd.c. */
6485 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6486 into infcmd.c in order to allow inferior function calls to work
6487 NOT asynchronously. */
6488 if (target_can_async_p ())
6489 target_async (1);
6490
6491 /* We've just told the target to resume. The remote server will
6492 wait for the inferior to stop, and then send a stop reply. In
6493 the mean time, we can't start another command/query ourselves
6494 because the stub wouldn't be ready to process it. This applies
6495 only to the base all-stop protocol, however. In non-stop (which
6496 only supports vCont), the stub replies with an "OK", and is
6497 immediate able to process further serial input. */
6498 if (!target_is_non_stop_p ())
6499 rs->waiting_for_stop_reply = 1;
6500 }
6501
6502 static int is_pending_fork_parent_thread (struct thread_info *thread);
6503
6504 /* Private per-inferior info for target remote processes. */
6505
6506 struct remote_inferior : public private_inferior
6507 {
6508 /* Whether we can send a wildcard vCont for this process. */
6509 bool may_wildcard_vcont = true;
6510 };
6511
6512 /* Get the remote private inferior data associated to INF. */
6513
6514 static remote_inferior *
6515 get_remote_inferior (inferior *inf)
6516 {
6517 if (inf->priv == NULL)
6518 inf->priv.reset (new remote_inferior);
6519
6520 return static_cast<remote_inferior *> (inf->priv.get ());
6521 }
6522
6523 struct stop_reply : public notif_event
6524 {
6525 ~stop_reply ();
6526
6527 /* The identifier of the thread about this event */
6528 ptid_t ptid;
6529
6530 /* The remote state this event is associated with. When the remote
6531 connection, represented by a remote_state object, is closed,
6532 all the associated stop_reply events should be released. */
6533 struct remote_state *rs;
6534
6535 struct target_waitstatus ws;
6536
6537 /* The architecture associated with the expedited registers. */
6538 gdbarch *arch;
6539
6540 /* Expedited registers. This makes remote debugging a bit more
6541 efficient for those targets that provide critical registers as
6542 part of their normal status mechanism (as another roundtrip to
6543 fetch them is avoided). */
6544 std::vector<cached_reg_t> regcache;
6545
6546 enum target_stop_reason stop_reason;
6547
6548 CORE_ADDR watch_data_address;
6549
6550 int core;
6551 };
6552
6553 /* Class used to track the construction of a vCont packet in the
6554 outgoing packet buffer. This is used to send multiple vCont
6555 packets if we have more actions than would fit a single packet. */
6556
6557 class vcont_builder
6558 {
6559 public:
6560 explicit vcont_builder (remote_target *remote)
6561 : m_remote (remote)
6562 {
6563 restart ();
6564 }
6565
6566 void flush ();
6567 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6568
6569 private:
6570 void restart ();
6571
6572 /* The remote target. */
6573 remote_target *m_remote;
6574
6575 /* Pointer to the first action. P points here if no action has been
6576 appended yet. */
6577 char *m_first_action;
6578
6579 /* Where the next action will be appended. */
6580 char *m_p;
6581
6582 /* The end of the buffer. Must never write past this. */
6583 char *m_endp;
6584 };
6585
6586 /* Prepare the outgoing buffer for a new vCont packet. */
6587
6588 void
6589 vcont_builder::restart ()
6590 {
6591 struct remote_state *rs = m_remote->get_remote_state ();
6592
6593 m_p = rs->buf.data ();
6594 m_endp = m_p + m_remote->get_remote_packet_size ();
6595 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6596 m_first_action = m_p;
6597 }
6598
6599 /* If the vCont packet being built has any action, send it to the
6600 remote end. */
6601
6602 void
6603 vcont_builder::flush ()
6604 {
6605 struct remote_state *rs;
6606
6607 if (m_p == m_first_action)
6608 return;
6609
6610 rs = m_remote->get_remote_state ();
6611 m_remote->putpkt (rs->buf);
6612 m_remote->getpkt (&rs->buf, 0);
6613 if (strcmp (rs->buf.data (), "OK") != 0)
6614 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6615 }
6616
6617 /* The largest action is range-stepping, with its two addresses. This
6618 is more than sufficient. If a new, bigger action is created, it'll
6619 quickly trigger a failed assertion in append_resumption (and we'll
6620 just bump this). */
6621 #define MAX_ACTION_SIZE 200
6622
6623 /* Append a new vCont action in the outgoing packet being built. If
6624 the action doesn't fit the packet along with previous actions, push
6625 what we've got so far to the remote end and start over a new vCont
6626 packet (with the new action). */
6627
6628 void
6629 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6630 {
6631 char buf[MAX_ACTION_SIZE + 1];
6632
6633 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6634 ptid, step, siggnal);
6635
6636 /* Check whether this new action would fit in the vCont packet along
6637 with previous actions. If not, send what we've got so far and
6638 start a new vCont packet. */
6639 size_t rsize = endp - buf;
6640 if (rsize > m_endp - m_p)
6641 {
6642 flush ();
6643 restart ();
6644
6645 /* Should now fit. */
6646 gdb_assert (rsize <= m_endp - m_p);
6647 }
6648
6649 memcpy (m_p, buf, rsize);
6650 m_p += rsize;
6651 *m_p = '\0';
6652 }
6653
6654 /* to_commit_resume implementation. */
6655
6656 void
6657 remote_target::commit_resumed ()
6658 {
6659 /* If connected in all-stop mode, we'd send the remote resume
6660 request directly from remote_resume. Likewise if
6661 reverse-debugging, as there are no defined vCont actions for
6662 reverse execution. */
6663 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6664 return;
6665
6666 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6667 instead of resuming all threads of each process individually.
6668 However, if any thread of a process must remain halted, we can't
6669 send wildcard resumes and must send one action per thread.
6670
6671 Care must be taken to not resume threads/processes the server
6672 side already told us are stopped, but the core doesn't know about
6673 yet, because the events are still in the vStopped notification
6674 queue. For example:
6675
6676 #1 => vCont s:p1.1;c
6677 #2 <= OK
6678 #3 <= %Stopped T05 p1.1
6679 #4 => vStopped
6680 #5 <= T05 p1.2
6681 #6 => vStopped
6682 #7 <= OK
6683 #8 (infrun handles the stop for p1.1 and continues stepping)
6684 #9 => vCont s:p1.1;c
6685
6686 The last vCont above would resume thread p1.2 by mistake, because
6687 the server has no idea that the event for p1.2 had not been
6688 handled yet.
6689
6690 The server side must similarly ignore resume actions for the
6691 thread that has a pending %Stopped notification (and any other
6692 threads with events pending), until GDB acks the notification
6693 with vStopped. Otherwise, e.g., the following case is
6694 mishandled:
6695
6696 #1 => g (or any other packet)
6697 #2 <= [registers]
6698 #3 <= %Stopped T05 p1.2
6699 #4 => vCont s:p1.1;c
6700 #5 <= OK
6701
6702 Above, the server must not resume thread p1.2. GDB can't know
6703 that p1.2 stopped until it acks the %Stopped notification, and
6704 since from GDB's perspective all threads should be running, it
6705 sends a "c" action.
6706
6707 Finally, special care must also be given to handling fork/vfork
6708 events. A (v)fork event actually tells us that two processes
6709 stopped -- the parent and the child. Until we follow the fork,
6710 we must not resume the child. Therefore, if we have a pending
6711 fork follow, we must not send a global wildcard resume action
6712 (vCont;c). We can still send process-wide wildcards though. */
6713
6714 /* Start by assuming a global wildcard (vCont;c) is possible. */
6715 bool may_global_wildcard_vcont = true;
6716
6717 /* And assume every process is individually wildcard-able too. */
6718 for (inferior *inf : all_non_exited_inferiors (this))
6719 {
6720 remote_inferior *priv = get_remote_inferior (inf);
6721
6722 priv->may_wildcard_vcont = true;
6723 }
6724
6725 /* Check for any pending events (not reported or processed yet) and
6726 disable process and global wildcard resumes appropriately. */
6727 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6728
6729 bool any_pending_vcont_resume = false;
6730
6731 for (thread_info *tp : all_non_exited_threads (this))
6732 {
6733 remote_thread_info *priv = get_remote_thread_info (tp);
6734
6735 /* If a thread of a process is not meant to be resumed, then we
6736 can't wildcard that process. */
6737 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6738 {
6739 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6740
6741 /* And if we can't wildcard a process, we can't wildcard
6742 everything either. */
6743 may_global_wildcard_vcont = false;
6744 continue;
6745 }
6746
6747 if (priv->get_resume_state () == resume_state::RESUMED_PENDING_VCONT)
6748 any_pending_vcont_resume = true;
6749
6750 /* If a thread is the parent of an unfollowed fork, then we
6751 can't do a global wildcard, as that would resume the fork
6752 child. */
6753 if (is_pending_fork_parent_thread (tp))
6754 may_global_wildcard_vcont = false;
6755 }
6756
6757 /* We didn't have any resumed thread pending a vCont resume, so nothing to
6758 do. */
6759 if (!any_pending_vcont_resume)
6760 return;
6761
6762 /* Now let's build the vCont packet(s). Actions must be appended
6763 from narrower to wider scopes (thread -> process -> global). If
6764 we end up with too many actions for a single packet vcont_builder
6765 flushes the current vCont packet to the remote side and starts a
6766 new one. */
6767 struct vcont_builder vcont_builder (this);
6768
6769 /* Threads first. */
6770 for (thread_info *tp : all_non_exited_threads (this))
6771 {
6772 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6773
6774 /* If the thread was previously vCont-resumed, no need to send a specific
6775 action for it. If we didn't receive a resume request for it, don't
6776 send an action for it either. */
6777 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6778 continue;
6779
6780 gdb_assert (!thread_is_in_step_over_chain (tp));
6781
6782 /* We should never be commit-resuming a thread that has a stop reply.
6783 Otherwise, we would end up reporting a stop event for a thread while
6784 it is running on the remote target. */
6785 remote_state *rs = get_remote_state ();
6786 for (const auto &stop_reply : rs->stop_reply_queue)
6787 gdb_assert (stop_reply->ptid != tp->ptid);
6788
6789 const resumed_pending_vcont_info &info
6790 = remote_thr->resumed_pending_vcont_info ();
6791
6792 /* Check if we need to send a specific action for this thread. If not,
6793 it will be included in a wildcard resume instead. */
6794 if (info.step || info.sig != GDB_SIGNAL_0
6795 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6796 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6797
6798 remote_thr->set_resumed ();
6799 }
6800
6801 /* Now check whether we can send any process-wide wildcard. This is
6802 to avoid sending a global wildcard in the case nothing is
6803 supposed to be resumed. */
6804 bool any_process_wildcard = false;
6805
6806 for (inferior *inf : all_non_exited_inferiors (this))
6807 {
6808 if (get_remote_inferior (inf)->may_wildcard_vcont)
6809 {
6810 any_process_wildcard = true;
6811 break;
6812 }
6813 }
6814
6815 if (any_process_wildcard)
6816 {
6817 /* If all processes are wildcard-able, then send a single "c"
6818 action, otherwise, send an "all (-1) threads of process"
6819 continue action for each running process, if any. */
6820 if (may_global_wildcard_vcont)
6821 {
6822 vcont_builder.push_action (minus_one_ptid,
6823 false, GDB_SIGNAL_0);
6824 }
6825 else
6826 {
6827 for (inferior *inf : all_non_exited_inferiors (this))
6828 {
6829 if (get_remote_inferior (inf)->may_wildcard_vcont)
6830 {
6831 vcont_builder.push_action (ptid_t (inf->pid),
6832 false, GDB_SIGNAL_0);
6833 }
6834 }
6835 }
6836 }
6837
6838 vcont_builder.flush ();
6839 }
6840
6841 /* Implementation of target_has_pending_events. */
6842
6843 bool
6844 remote_target::has_pending_events ()
6845 {
6846 if (target_can_async_p ())
6847 {
6848 remote_state *rs = get_remote_state ();
6849
6850 if (async_event_handler_marked (rs->remote_async_inferior_event_token))
6851 return true;
6852
6853 /* Note that BUFCNT can be negative, indicating sticky
6854 error. */
6855 if (rs->remote_desc->bufcnt != 0)
6856 return true;
6857 }
6858 return false;
6859 }
6860
6861 \f
6862
6863 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6864 thread, all threads of a remote process, or all threads of all
6865 processes. */
6866
6867 void
6868 remote_target::remote_stop_ns (ptid_t ptid)
6869 {
6870 struct remote_state *rs = get_remote_state ();
6871 char *p = rs->buf.data ();
6872 char *endp = p + get_remote_packet_size ();
6873
6874 /* If any thread that needs to stop was resumed but pending a vCont
6875 resume, generate a phony stop_reply. However, first check
6876 whether the thread wasn't resumed with a signal. Generating a
6877 phony stop in that case would result in losing the signal. */
6878 bool needs_commit = false;
6879 for (thread_info *tp : all_non_exited_threads (this, ptid))
6880 {
6881 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6882
6883 if (remote_thr->get_resume_state ()
6884 == resume_state::RESUMED_PENDING_VCONT)
6885 {
6886 const resumed_pending_vcont_info &info
6887 = remote_thr->resumed_pending_vcont_info ();
6888 if (info.sig != GDB_SIGNAL_0)
6889 {
6890 /* This signal must be forwarded to the inferior. We
6891 could commit-resume just this thread, but its simpler
6892 to just commit-resume everything. */
6893 needs_commit = true;
6894 break;
6895 }
6896 }
6897 }
6898
6899 if (needs_commit)
6900 commit_resumed ();
6901 else
6902 for (thread_info *tp : all_non_exited_threads (this, ptid))
6903 {
6904 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6905
6906 if (remote_thr->get_resume_state ()
6907 == resume_state::RESUMED_PENDING_VCONT)
6908 {
6909 remote_debug_printf ("Enqueueing phony stop reply for thread pending "
6910 "vCont-resume (%d, %ld, %s)", tp->ptid.pid(),
6911 tp->ptid.lwp (),
6912 pulongest (tp->ptid.tid ()));
6913
6914 /* Check that the thread wasn't resumed with a signal.
6915 Generating a phony stop would result in losing the
6916 signal. */
6917 const resumed_pending_vcont_info &info
6918 = remote_thr->resumed_pending_vcont_info ();
6919 gdb_assert (info.sig == GDB_SIGNAL_0);
6920
6921 stop_reply *sr = new stop_reply ();
6922 sr->ptid = tp->ptid;
6923 sr->rs = rs;
6924 sr->ws.kind = TARGET_WAITKIND_STOPPED;
6925 sr->ws.value.sig = GDB_SIGNAL_0;
6926 sr->arch = tp->inf->gdbarch;
6927 sr->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6928 sr->watch_data_address = 0;
6929 sr->core = 0;
6930 this->push_stop_reply (sr);
6931
6932 /* Pretend that this thread was actually resumed on the
6933 remote target, then stopped. If we leave it in the
6934 RESUMED_PENDING_VCONT state and the commit_resumed
6935 method is called while the stop reply is still in the
6936 queue, we'll end up reporting a stop event to the core
6937 for that thread while it is running on the remote
6938 target... that would be bad. */
6939 remote_thr->set_resumed ();
6940 }
6941 }
6942
6943 /* FIXME: This supports_vCont_probed check is a workaround until
6944 packet_support is per-connection. */
6945 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6946 || !rs->supports_vCont_probed)
6947 remote_vcont_probe ();
6948
6949 if (!rs->supports_vCont.t)
6950 error (_("Remote server does not support stopping threads"));
6951
6952 if (ptid == minus_one_ptid
6953 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6954 p += xsnprintf (p, endp - p, "vCont;t");
6955 else
6956 {
6957 ptid_t nptid;
6958
6959 p += xsnprintf (p, endp - p, "vCont;t:");
6960
6961 if (ptid.is_pid ())
6962 /* All (-1) threads of process. */
6963 nptid = ptid_t (ptid.pid (), -1);
6964 else
6965 {
6966 /* Small optimization: if we already have a stop reply for
6967 this thread, no use in telling the stub we want this
6968 stopped. */
6969 if (peek_stop_reply (ptid))
6970 return;
6971
6972 nptid = ptid;
6973 }
6974
6975 write_ptid (p, endp, nptid);
6976 }
6977
6978 /* In non-stop, we get an immediate OK reply. The stop reply will
6979 come in asynchronously by notification. */
6980 putpkt (rs->buf);
6981 getpkt (&rs->buf, 0);
6982 if (strcmp (rs->buf.data (), "OK") != 0)
6983 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6984 rs->buf.data ());
6985 }
6986
6987 /* All-stop version of target_interrupt. Sends a break or a ^C to
6988 interrupt the remote target. It is undefined which thread of which
6989 process reports the interrupt. */
6990
6991 void
6992 remote_target::remote_interrupt_as ()
6993 {
6994 struct remote_state *rs = get_remote_state ();
6995
6996 rs->ctrlc_pending_p = 1;
6997
6998 /* If the inferior is stopped already, but the core didn't know
6999 about it yet, just ignore the request. The cached wait status
7000 will be collected in remote_wait. */
7001 if (rs->cached_wait_status)
7002 return;
7003
7004 /* Send interrupt_sequence to remote target. */
7005 send_interrupt_sequence ();
7006 }
7007
7008 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
7009 the remote target. It is undefined which thread of which process
7010 reports the interrupt. Throws an error if the packet is not
7011 supported by the server. */
7012
7013 void
7014 remote_target::remote_interrupt_ns ()
7015 {
7016 struct remote_state *rs = get_remote_state ();
7017 char *p = rs->buf.data ();
7018 char *endp = p + get_remote_packet_size ();
7019
7020 xsnprintf (p, endp - p, "vCtrlC");
7021
7022 /* In non-stop, we get an immediate OK reply. The stop reply will
7023 come in asynchronously by notification. */
7024 putpkt (rs->buf);
7025 getpkt (&rs->buf, 0);
7026
7027 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
7028 {
7029 case PACKET_OK:
7030 break;
7031 case PACKET_UNKNOWN:
7032 error (_("No support for interrupting the remote target."));
7033 case PACKET_ERROR:
7034 error (_("Interrupting target failed: %s"), rs->buf.data ());
7035 }
7036 }
7037
7038 /* Implement the to_stop function for the remote targets. */
7039
7040 void
7041 remote_target::stop (ptid_t ptid)
7042 {
7043 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7044
7045 if (target_is_non_stop_p ())
7046 remote_stop_ns (ptid);
7047 else
7048 {
7049 /* We don't currently have a way to transparently pause the
7050 remote target in all-stop mode. Interrupt it instead. */
7051 remote_interrupt_as ();
7052 }
7053 }
7054
7055 /* Implement the to_interrupt function for the remote targets. */
7056
7057 void
7058 remote_target::interrupt ()
7059 {
7060 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7061
7062 if (target_is_non_stop_p ())
7063 remote_interrupt_ns ();
7064 else
7065 remote_interrupt_as ();
7066 }
7067
7068 /* Implement the to_pass_ctrlc function for the remote targets. */
7069
7070 void
7071 remote_target::pass_ctrlc ()
7072 {
7073 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7074
7075 struct remote_state *rs = get_remote_state ();
7076
7077 /* If we're starting up, we're not fully synced yet. Quit
7078 immediately. */
7079 if (rs->starting_up)
7080 quit ();
7081 /* If ^C has already been sent once, offer to disconnect. */
7082 else if (rs->ctrlc_pending_p)
7083 interrupt_query ();
7084 else
7085 target_interrupt ();
7086 }
7087
7088 /* Ask the user what to do when an interrupt is received. */
7089
7090 void
7091 remote_target::interrupt_query ()
7092 {
7093 struct remote_state *rs = get_remote_state ();
7094
7095 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
7096 {
7097 if (query (_("The target is not responding to interrupt requests.\n"
7098 "Stop debugging it? ")))
7099 {
7100 remote_unpush_target (this);
7101 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
7102 }
7103 }
7104 else
7105 {
7106 if (query (_("Interrupted while waiting for the program.\n"
7107 "Give up waiting? ")))
7108 quit ();
7109 }
7110 }
7111
7112 /* Enable/disable target terminal ownership. Most targets can use
7113 terminal groups to control terminal ownership. Remote targets are
7114 different in that explicit transfer of ownership to/from GDB/target
7115 is required. */
7116
7117 void
7118 remote_target::terminal_inferior ()
7119 {
7120 /* NOTE: At this point we could also register our selves as the
7121 recipient of all input. Any characters typed could then be
7122 passed on down to the target. */
7123 }
7124
7125 void
7126 remote_target::terminal_ours ()
7127 {
7128 }
7129
7130 static void
7131 remote_console_output (const char *msg)
7132 {
7133 const char *p;
7134
7135 for (p = msg; p[0] && p[1]; p += 2)
7136 {
7137 char tb[2];
7138 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
7139
7140 tb[0] = c;
7141 tb[1] = 0;
7142 gdb_stdtarg->puts (tb);
7143 }
7144 gdb_stdtarg->flush ();
7145 }
7146
7147 /* Return the length of the stop reply queue. */
7148
7149 int
7150 remote_target::stop_reply_queue_length ()
7151 {
7152 remote_state *rs = get_remote_state ();
7153 return rs->stop_reply_queue.size ();
7154 }
7155
7156 static void
7157 remote_notif_stop_parse (remote_target *remote,
7158 struct notif_client *self, const char *buf,
7159 struct notif_event *event)
7160 {
7161 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7162 }
7163
7164 static void
7165 remote_notif_stop_ack (remote_target *remote,
7166 struct notif_client *self, const char *buf,
7167 struct notif_event *event)
7168 {
7169 struct stop_reply *stop_reply = (struct stop_reply *) event;
7170
7171 /* acknowledge */
7172 putpkt (remote, self->ack_command);
7173
7174 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7175 the notification. It was left in the queue because we need to
7176 acknowledge it and pull the rest of the notifications out. */
7177 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
7178 remote->push_stop_reply (stop_reply);
7179 }
7180
7181 static int
7182 remote_notif_stop_can_get_pending_events (remote_target *remote,
7183 struct notif_client *self)
7184 {
7185 /* We can't get pending events in remote_notif_process for
7186 notification stop, and we have to do this in remote_wait_ns
7187 instead. If we fetch all queued events from stub, remote stub
7188 may exit and we have no chance to process them back in
7189 remote_wait_ns. */
7190 remote_state *rs = remote->get_remote_state ();
7191 mark_async_event_handler (rs->remote_async_inferior_event_token);
7192 return 0;
7193 }
7194
7195 stop_reply::~stop_reply ()
7196 {
7197 for (cached_reg_t &reg : regcache)
7198 xfree (reg.data);
7199 }
7200
7201 static notif_event_up
7202 remote_notif_stop_alloc_reply ()
7203 {
7204 return notif_event_up (new struct stop_reply ());
7205 }
7206
7207 /* A client of notification Stop. */
7208
7209 struct notif_client notif_client_stop =
7210 {
7211 "Stop",
7212 "vStopped",
7213 remote_notif_stop_parse,
7214 remote_notif_stop_ack,
7215 remote_notif_stop_can_get_pending_events,
7216 remote_notif_stop_alloc_reply,
7217 REMOTE_NOTIF_STOP,
7218 };
7219
7220 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7221 the pid of the process that owns the threads we want to check, or
7222 -1 if we want to check all threads. */
7223
7224 static int
7225 is_pending_fork_parent (const target_waitstatus *ws, int event_pid,
7226 ptid_t thread_ptid)
7227 {
7228 if (ws->kind == TARGET_WAITKIND_FORKED
7229 || ws->kind == TARGET_WAITKIND_VFORKED)
7230 {
7231 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7232 return 1;
7233 }
7234
7235 return 0;
7236 }
7237
7238 /* Return the thread's pending status used to determine whether the
7239 thread is a fork parent stopped at a fork event. */
7240
7241 static const target_waitstatus *
7242 thread_pending_fork_status (struct thread_info *thread)
7243 {
7244 if (thread->has_pending_waitstatus ())
7245 return &thread->pending_waitstatus ();
7246 else
7247 return &thread->pending_follow;
7248 }
7249
7250 /* Determine if THREAD is a pending fork parent thread. */
7251
7252 static int
7253 is_pending_fork_parent_thread (struct thread_info *thread)
7254 {
7255 const target_waitstatus *ws = thread_pending_fork_status (thread);
7256 int pid = -1;
7257
7258 return is_pending_fork_parent (ws, pid, thread->ptid);
7259 }
7260
7261 /* If CONTEXT contains any fork child threads that have not been
7262 reported yet, remove them from the CONTEXT list. If such a
7263 thread exists it is because we are stopped at a fork catchpoint
7264 and have not yet called follow_fork, which will set up the
7265 host-side data structures for the new process. */
7266
7267 void
7268 remote_target::remove_new_fork_children (threads_listing_context *context)
7269 {
7270 int pid = -1;
7271 struct notif_client *notif = &notif_client_stop;
7272
7273 /* For any threads stopped at a fork event, remove the corresponding
7274 fork child threads from the CONTEXT list. */
7275 for (thread_info *thread : all_non_exited_threads (this))
7276 {
7277 const target_waitstatus *ws = thread_pending_fork_status (thread);
7278
7279 if (is_pending_fork_parent (ws, pid, thread->ptid))
7280 context->remove_thread (ws->value.related_pid);
7281 }
7282
7283 /* Check for any pending fork events (not reported or processed yet)
7284 in process PID and remove those fork child threads from the
7285 CONTEXT list as well. */
7286 remote_notif_get_pending_events (notif);
7287 for (auto &event : get_remote_state ()->stop_reply_queue)
7288 if (event->ws.kind == TARGET_WAITKIND_FORKED
7289 || event->ws.kind == TARGET_WAITKIND_VFORKED
7290 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7291 context->remove_thread (event->ws.value.related_pid);
7292 }
7293
7294 /* Check whether any event pending in the vStopped queue would prevent a
7295 global or process wildcard vCont action. Set *may_global_wildcard to
7296 false if we can't do a global wildcard (vCont;c), and clear the event
7297 inferior's may_wildcard_vcont flag if we can't do a process-wide
7298 wildcard resume (vCont;c:pPID.-1). */
7299
7300 void
7301 remote_target::check_pending_events_prevent_wildcard_vcont
7302 (bool *may_global_wildcard)
7303 {
7304 struct notif_client *notif = &notif_client_stop;
7305
7306 remote_notif_get_pending_events (notif);
7307 for (auto &event : get_remote_state ()->stop_reply_queue)
7308 {
7309 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7310 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7311 continue;
7312
7313 if (event->ws.kind == TARGET_WAITKIND_FORKED
7314 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7315 *may_global_wildcard = false;
7316
7317 /* This may be the first time we heard about this process.
7318 Regardless, we must not do a global wildcard resume, otherwise
7319 we'd resume this process too. */
7320 *may_global_wildcard = false;
7321 if (event->ptid != null_ptid)
7322 {
7323 inferior *inf = find_inferior_ptid (this, event->ptid);
7324 if (inf != NULL)
7325 get_remote_inferior (inf)->may_wildcard_vcont = false;
7326 }
7327 }
7328 }
7329
7330 /* Discard all pending stop replies of inferior INF. */
7331
7332 void
7333 remote_target::discard_pending_stop_replies (struct inferior *inf)
7334 {
7335 struct stop_reply *reply;
7336 struct remote_state *rs = get_remote_state ();
7337 struct remote_notif_state *rns = rs->notif_state;
7338
7339 /* This function can be notified when an inferior exists. When the
7340 target is not remote, the notification state is NULL. */
7341 if (rs->remote_desc == NULL)
7342 return;
7343
7344 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7345
7346 /* Discard the in-flight notification. */
7347 if (reply != NULL && reply->ptid.pid () == inf->pid)
7348 {
7349 /* Leave the notification pending, since the server expects that
7350 we acknowledge it with vStopped. But clear its contents, so
7351 that later on when we acknowledge it, we also discard it. */
7352 reply->ws.kind = TARGET_WAITKIND_IGNORE;
7353
7354 if (remote_debug)
7355 fprintf_unfiltered (gdb_stdlog,
7356 "discarded in-flight notification\n");
7357 }
7358
7359 /* Discard the stop replies we have already pulled with
7360 vStopped. */
7361 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7362 rs->stop_reply_queue.end (),
7363 [=] (const stop_reply_up &event)
7364 {
7365 return event->ptid.pid () == inf->pid;
7366 });
7367 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7368 }
7369
7370 /* Discard the stop replies for RS in stop_reply_queue. */
7371
7372 void
7373 remote_target::discard_pending_stop_replies_in_queue ()
7374 {
7375 remote_state *rs = get_remote_state ();
7376
7377 /* Discard the stop replies we have already pulled with
7378 vStopped. */
7379 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7380 rs->stop_reply_queue.end (),
7381 [=] (const stop_reply_up &event)
7382 {
7383 return event->rs == rs;
7384 });
7385 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7386 }
7387
7388 /* Remove the first reply in 'stop_reply_queue' which matches
7389 PTID. */
7390
7391 struct stop_reply *
7392 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7393 {
7394 remote_state *rs = get_remote_state ();
7395
7396 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7397 rs->stop_reply_queue.end (),
7398 [=] (const stop_reply_up &event)
7399 {
7400 return event->ptid.matches (ptid);
7401 });
7402 struct stop_reply *result;
7403 if (iter == rs->stop_reply_queue.end ())
7404 result = nullptr;
7405 else
7406 {
7407 result = iter->release ();
7408 rs->stop_reply_queue.erase (iter);
7409 }
7410
7411 if (notif_debug)
7412 fprintf_unfiltered (gdb_stdlog,
7413 "notif: discard queued event: 'Stop' in %s\n",
7414 target_pid_to_str (ptid).c_str ());
7415
7416 return result;
7417 }
7418
7419 /* Look for a queued stop reply belonging to PTID. If one is found,
7420 remove it from the queue, and return it. Returns NULL if none is
7421 found. If there are still queued events left to process, tell the
7422 event loop to get back to target_wait soon. */
7423
7424 struct stop_reply *
7425 remote_target::queued_stop_reply (ptid_t ptid)
7426 {
7427 remote_state *rs = get_remote_state ();
7428 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7429
7430 if (!rs->stop_reply_queue.empty ())
7431 {
7432 /* There's still at least an event left. */
7433 mark_async_event_handler (rs->remote_async_inferior_event_token);
7434 }
7435
7436 return r;
7437 }
7438
7439 /* Push a fully parsed stop reply in the stop reply queue. Since we
7440 know that we now have at least one queued event left to pass to the
7441 core side, tell the event loop to get back to target_wait soon. */
7442
7443 void
7444 remote_target::push_stop_reply (struct stop_reply *new_event)
7445 {
7446 remote_state *rs = get_remote_state ();
7447 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7448
7449 if (notif_debug)
7450 fprintf_unfiltered (gdb_stdlog,
7451 "notif: push 'Stop' %s to queue %d\n",
7452 target_pid_to_str (new_event->ptid).c_str (),
7453 int (rs->stop_reply_queue.size ()));
7454
7455 mark_async_event_handler (rs->remote_async_inferior_event_token);
7456 }
7457
7458 /* Returns true if we have a stop reply for PTID. */
7459
7460 int
7461 remote_target::peek_stop_reply (ptid_t ptid)
7462 {
7463 remote_state *rs = get_remote_state ();
7464 for (auto &event : rs->stop_reply_queue)
7465 if (ptid == event->ptid
7466 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7467 return 1;
7468 return 0;
7469 }
7470
7471 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7472 starting with P and ending with PEND matches PREFIX. */
7473
7474 static int
7475 strprefix (const char *p, const char *pend, const char *prefix)
7476 {
7477 for ( ; p < pend; p++, prefix++)
7478 if (*p != *prefix)
7479 return 0;
7480 return *prefix == '\0';
7481 }
7482
7483 /* Parse the stop reply in BUF. Either the function succeeds, and the
7484 result is stored in EVENT, or throws an error. */
7485
7486 void
7487 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7488 {
7489 remote_arch_state *rsa = NULL;
7490 ULONGEST addr;
7491 const char *p;
7492 int skipregs = 0;
7493
7494 event->ptid = null_ptid;
7495 event->rs = get_remote_state ();
7496 event->ws.kind = TARGET_WAITKIND_IGNORE;
7497 event->ws.value.integer = 0;
7498 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7499 event->regcache.clear ();
7500 event->core = -1;
7501
7502 switch (buf[0])
7503 {
7504 case 'T': /* Status with PC, SP, FP, ... */
7505 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7506 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7507 ss = signal number
7508 n... = register number
7509 r... = register contents
7510 */
7511
7512 p = &buf[3]; /* after Txx */
7513 while (*p)
7514 {
7515 const char *p1;
7516 int fieldsize;
7517
7518 p1 = strchr (p, ':');
7519 if (p1 == NULL)
7520 error (_("Malformed packet(a) (missing colon): %s\n\
7521 Packet: '%s'\n"),
7522 p, buf);
7523 if (p == p1)
7524 error (_("Malformed packet(a) (missing register number): %s\n\
7525 Packet: '%s'\n"),
7526 p, buf);
7527
7528 /* Some "registers" are actually extended stop information.
7529 Note if you're adding a new entry here: GDB 7.9 and
7530 earlier assume that all register "numbers" that start
7531 with an hex digit are real register numbers. Make sure
7532 the server only sends such a packet if it knows the
7533 client understands it. */
7534
7535 if (strprefix (p, p1, "thread"))
7536 event->ptid = read_ptid (++p1, &p);
7537 else if (strprefix (p, p1, "syscall_entry"))
7538 {
7539 ULONGEST sysno;
7540
7541 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7542 p = unpack_varlen_hex (++p1, &sysno);
7543 event->ws.value.syscall_number = (int) sysno;
7544 }
7545 else if (strprefix (p, p1, "syscall_return"))
7546 {
7547 ULONGEST sysno;
7548
7549 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7550 p = unpack_varlen_hex (++p1, &sysno);
7551 event->ws.value.syscall_number = (int) sysno;
7552 }
7553 else if (strprefix (p, p1, "watch")
7554 || strprefix (p, p1, "rwatch")
7555 || strprefix (p, p1, "awatch"))
7556 {
7557 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7558 p = unpack_varlen_hex (++p1, &addr);
7559 event->watch_data_address = (CORE_ADDR) addr;
7560 }
7561 else if (strprefix (p, p1, "swbreak"))
7562 {
7563 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7564
7565 /* Make sure the stub doesn't forget to indicate support
7566 with qSupported. */
7567 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7568 error (_("Unexpected swbreak stop reason"));
7569
7570 /* The value part is documented as "must be empty",
7571 though we ignore it, in case we ever decide to make
7572 use of it in a backward compatible way. */
7573 p = strchrnul (p1 + 1, ';');
7574 }
7575 else if (strprefix (p, p1, "hwbreak"))
7576 {
7577 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7578
7579 /* Make sure the stub doesn't forget to indicate support
7580 with qSupported. */
7581 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7582 error (_("Unexpected hwbreak stop reason"));
7583
7584 /* See above. */
7585 p = strchrnul (p1 + 1, ';');
7586 }
7587 else if (strprefix (p, p1, "library"))
7588 {
7589 event->ws.kind = TARGET_WAITKIND_LOADED;
7590 p = strchrnul (p1 + 1, ';');
7591 }
7592 else if (strprefix (p, p1, "replaylog"))
7593 {
7594 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7595 /* p1 will indicate "begin" or "end", but it makes
7596 no difference for now, so ignore it. */
7597 p = strchrnul (p1 + 1, ';');
7598 }
7599 else if (strprefix (p, p1, "core"))
7600 {
7601 ULONGEST c;
7602
7603 p = unpack_varlen_hex (++p1, &c);
7604 event->core = c;
7605 }
7606 else if (strprefix (p, p1, "fork"))
7607 {
7608 event->ws.value.related_pid = read_ptid (++p1, &p);
7609 event->ws.kind = TARGET_WAITKIND_FORKED;
7610 }
7611 else if (strprefix (p, p1, "vfork"))
7612 {
7613 event->ws.value.related_pid = read_ptid (++p1, &p);
7614 event->ws.kind = TARGET_WAITKIND_VFORKED;
7615 }
7616 else if (strprefix (p, p1, "vforkdone"))
7617 {
7618 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7619 p = strchrnul (p1 + 1, ';');
7620 }
7621 else if (strprefix (p, p1, "exec"))
7622 {
7623 ULONGEST ignored;
7624 int pathlen;
7625
7626 /* Determine the length of the execd pathname. */
7627 p = unpack_varlen_hex (++p1, &ignored);
7628 pathlen = (p - p1) / 2;
7629
7630 /* Save the pathname for event reporting and for
7631 the next run command. */
7632 gdb::unique_xmalloc_ptr<char[]> pathname
7633 ((char *) xmalloc (pathlen + 1));
7634 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7635 pathname[pathlen] = '\0';
7636
7637 /* This is freed during event handling. */
7638 event->ws.value.execd_pathname = pathname.release ();
7639 event->ws.kind = TARGET_WAITKIND_EXECD;
7640
7641 /* Skip the registers included in this packet, since
7642 they may be for an architecture different from the
7643 one used by the original program. */
7644 skipregs = 1;
7645 }
7646 else if (strprefix (p, p1, "create"))
7647 {
7648 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7649 p = strchrnul (p1 + 1, ';');
7650 }
7651 else
7652 {
7653 ULONGEST pnum;
7654 const char *p_temp;
7655
7656 if (skipregs)
7657 {
7658 p = strchrnul (p1 + 1, ';');
7659 p++;
7660 continue;
7661 }
7662
7663 /* Maybe a real ``P'' register number. */
7664 p_temp = unpack_varlen_hex (p, &pnum);
7665 /* If the first invalid character is the colon, we got a
7666 register number. Otherwise, it's an unknown stop
7667 reason. */
7668 if (p_temp == p1)
7669 {
7670 /* If we haven't parsed the event's thread yet, find
7671 it now, in order to find the architecture of the
7672 reported expedited registers. */
7673 if (event->ptid == null_ptid)
7674 {
7675 /* If there is no thread-id information then leave
7676 the event->ptid as null_ptid. Later in
7677 process_stop_reply we will pick a suitable
7678 thread. */
7679 const char *thr = strstr (p1 + 1, ";thread:");
7680 if (thr != NULL)
7681 event->ptid = read_ptid (thr + strlen (";thread:"),
7682 NULL);
7683 }
7684
7685 if (rsa == NULL)
7686 {
7687 inferior *inf
7688 = (event->ptid == null_ptid
7689 ? NULL
7690 : find_inferior_ptid (this, event->ptid));
7691 /* If this is the first time we learn anything
7692 about this process, skip the registers
7693 included in this packet, since we don't yet
7694 know which architecture to use to parse them.
7695 We'll determine the architecture later when
7696 we process the stop reply and retrieve the
7697 target description, via
7698 remote_notice_new_inferior ->
7699 post_create_inferior. */
7700 if (inf == NULL)
7701 {
7702 p = strchrnul (p1 + 1, ';');
7703 p++;
7704 continue;
7705 }
7706
7707 event->arch = inf->gdbarch;
7708 rsa = event->rs->get_remote_arch_state (event->arch);
7709 }
7710
7711 packet_reg *reg
7712 = packet_reg_from_pnum (event->arch, rsa, pnum);
7713 cached_reg_t cached_reg;
7714
7715 if (reg == NULL)
7716 error (_("Remote sent bad register number %s: %s\n\
7717 Packet: '%s'\n"),
7718 hex_string (pnum), p, buf);
7719
7720 cached_reg.num = reg->regnum;
7721 cached_reg.data = (gdb_byte *)
7722 xmalloc (register_size (event->arch, reg->regnum));
7723
7724 p = p1 + 1;
7725 fieldsize = hex2bin (p, cached_reg.data,
7726 register_size (event->arch, reg->regnum));
7727 p += 2 * fieldsize;
7728 if (fieldsize < register_size (event->arch, reg->regnum))
7729 warning (_("Remote reply is too short: %s"), buf);
7730
7731 event->regcache.push_back (cached_reg);
7732 }
7733 else
7734 {
7735 /* Not a number. Silently skip unknown optional
7736 info. */
7737 p = strchrnul (p1 + 1, ';');
7738 }
7739 }
7740
7741 if (*p != ';')
7742 error (_("Remote register badly formatted: %s\nhere: %s"),
7743 buf, p);
7744 ++p;
7745 }
7746
7747 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7748 break;
7749
7750 /* fall through */
7751 case 'S': /* Old style status, just signal only. */
7752 {
7753 int sig;
7754
7755 event->ws.kind = TARGET_WAITKIND_STOPPED;
7756 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7757 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7758 event->ws.value.sig = (enum gdb_signal) sig;
7759 else
7760 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7761 }
7762 break;
7763 case 'w': /* Thread exited. */
7764 {
7765 ULONGEST value;
7766
7767 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7768 p = unpack_varlen_hex (&buf[1], &value);
7769 event->ws.value.integer = value;
7770 if (*p != ';')
7771 error (_("stop reply packet badly formatted: %s"), buf);
7772 event->ptid = read_ptid (++p, NULL);
7773 break;
7774 }
7775 case 'W': /* Target exited. */
7776 case 'X':
7777 {
7778 ULONGEST value;
7779
7780 /* GDB used to accept only 2 hex chars here. Stubs should
7781 only send more if they detect GDB supports multi-process
7782 support. */
7783 p = unpack_varlen_hex (&buf[1], &value);
7784
7785 if (buf[0] == 'W')
7786 {
7787 /* The remote process exited. */
7788 event->ws.kind = TARGET_WAITKIND_EXITED;
7789 event->ws.value.integer = value;
7790 }
7791 else
7792 {
7793 /* The remote process exited with a signal. */
7794 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7795 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7796 event->ws.value.sig = (enum gdb_signal) value;
7797 else
7798 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7799 }
7800
7801 /* If no process is specified, return null_ptid, and let the
7802 caller figure out the right process to use. */
7803 int pid = 0;
7804 if (*p == '\0')
7805 ;
7806 else if (*p == ';')
7807 {
7808 p++;
7809
7810 if (*p == '\0')
7811 ;
7812 else if (startswith (p, "process:"))
7813 {
7814 ULONGEST upid;
7815
7816 p += sizeof ("process:") - 1;
7817 unpack_varlen_hex (p, &upid);
7818 pid = upid;
7819 }
7820 else
7821 error (_("unknown stop reply packet: %s"), buf);
7822 }
7823 else
7824 error (_("unknown stop reply packet: %s"), buf);
7825 event->ptid = ptid_t (pid);
7826 }
7827 break;
7828 case 'N':
7829 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7830 event->ptid = minus_one_ptid;
7831 break;
7832 }
7833 }
7834
7835 /* When the stub wants to tell GDB about a new notification reply, it
7836 sends a notification (%Stop, for example). Those can come it at
7837 any time, hence, we have to make sure that any pending
7838 putpkt/getpkt sequence we're making is finished, before querying
7839 the stub for more events with the corresponding ack command
7840 (vStopped, for example). E.g., if we started a vStopped sequence
7841 immediately upon receiving the notification, something like this
7842 could happen:
7843
7844 1.1) --> Hg 1
7845 1.2) <-- OK
7846 1.3) --> g
7847 1.4) <-- %Stop
7848 1.5) --> vStopped
7849 1.6) <-- (registers reply to step #1.3)
7850
7851 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7852 query.
7853
7854 To solve this, whenever we parse a %Stop notification successfully,
7855 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7856 doing whatever we were doing:
7857
7858 2.1) --> Hg 1
7859 2.2) <-- OK
7860 2.3) --> g
7861 2.4) <-- %Stop
7862 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7863 2.5) <-- (registers reply to step #2.3)
7864
7865 Eventually after step #2.5, we return to the event loop, which
7866 notices there's an event on the
7867 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7868 associated callback --- the function below. At this point, we're
7869 always safe to start a vStopped sequence. :
7870
7871 2.6) --> vStopped
7872 2.7) <-- T05 thread:2
7873 2.8) --> vStopped
7874 2.9) --> OK
7875 */
7876
7877 void
7878 remote_target::remote_notif_get_pending_events (notif_client *nc)
7879 {
7880 struct remote_state *rs = get_remote_state ();
7881
7882 if (rs->notif_state->pending_event[nc->id] != NULL)
7883 {
7884 if (notif_debug)
7885 fprintf_unfiltered (gdb_stdlog,
7886 "notif: process: '%s' ack pending event\n",
7887 nc->name);
7888
7889 /* acknowledge */
7890 nc->ack (this, nc, rs->buf.data (),
7891 rs->notif_state->pending_event[nc->id]);
7892 rs->notif_state->pending_event[nc->id] = NULL;
7893
7894 while (1)
7895 {
7896 getpkt (&rs->buf, 0);
7897 if (strcmp (rs->buf.data (), "OK") == 0)
7898 break;
7899 else
7900 remote_notif_ack (this, nc, rs->buf.data ());
7901 }
7902 }
7903 else
7904 {
7905 if (notif_debug)
7906 fprintf_unfiltered (gdb_stdlog,
7907 "notif: process: '%s' no pending reply\n",
7908 nc->name);
7909 }
7910 }
7911
7912 /* Wrapper around remote_target::remote_notif_get_pending_events to
7913 avoid having to export the whole remote_target class. */
7914
7915 void
7916 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7917 {
7918 remote->remote_notif_get_pending_events (nc);
7919 }
7920
7921 /* Called from process_stop_reply when the stop packet we are responding
7922 to didn't include a process-id or thread-id. STATUS is the stop event
7923 we are responding to.
7924
7925 It is the task of this function to select a suitable thread (or process)
7926 and return its ptid, this is the thread (or process) we will assume the
7927 stop event came from.
7928
7929 In some cases there isn't really any choice about which thread (or
7930 process) is selected, a basic remote with a single process containing a
7931 single thread might choose not to send any process-id or thread-id in
7932 its stop packets, this function will select and return the one and only
7933 thread.
7934
7935 However, if a target supports multiple threads (or processes) and still
7936 doesn't include a thread-id (or process-id) in its stop packet then
7937 first, this is a badly behaving target, and second, we're going to have
7938 to select a thread (or process) at random and use that. This function
7939 will print a warning to the user if it detects that there is the
7940 possibility that GDB is guessing which thread (or process) to
7941 report.
7942
7943 Note that this is called before GDB fetches the updated thread list from the
7944 target. So it's possible for the stop reply to be ambiguous and for GDB to
7945 not realize it. For example, if there's initially one thread, the target
7946 spawns a second thread, and then sends a stop reply without an id that
7947 concerns the first thread. GDB will assume the stop reply is about the
7948 first thread - the only thread it knows about - without printing a warning.
7949 Anyway, if the remote meant for the stop reply to be about the second thread,
7950 then it would be really broken, because GDB doesn't know about that thread
7951 yet. */
7952
7953 ptid_t
7954 remote_target::select_thread_for_ambiguous_stop_reply
7955 (const struct target_waitstatus *status)
7956 {
7957 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7958
7959 /* Some stop events apply to all threads in an inferior, while others
7960 only apply to a single thread. */
7961 bool process_wide_stop
7962 = (status->kind == TARGET_WAITKIND_EXITED
7963 || status->kind == TARGET_WAITKIND_SIGNALLED);
7964
7965 remote_debug_printf ("process_wide_stop = %d", process_wide_stop);
7966
7967 thread_info *first_resumed_thread = nullptr;
7968 bool ambiguous = false;
7969
7970 /* Consider all non-exited threads of the target, find the first resumed
7971 one. */
7972 for (thread_info *thr : all_non_exited_threads (this))
7973 {
7974 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7975
7976 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7977 continue;
7978
7979 if (first_resumed_thread == nullptr)
7980 first_resumed_thread = thr;
7981 else if (!process_wide_stop
7982 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7983 ambiguous = true;
7984 }
7985
7986 remote_debug_printf ("first resumed thread is %s",
7987 pid_to_str (first_resumed_thread->ptid).c_str ());
7988 remote_debug_printf ("is this guess ambiguous? = %d", ambiguous);
7989
7990 gdb_assert (first_resumed_thread != nullptr);
7991
7992 /* Warn if the remote target is sending ambiguous stop replies. */
7993 if (ambiguous)
7994 {
7995 static bool warned = false;
7996
7997 if (!warned)
7998 {
7999 /* If you are seeing this warning then the remote target has
8000 stopped without specifying a thread-id, but the target
8001 does have multiple threads (or inferiors), and so GDB is
8002 having to guess which thread stopped.
8003
8004 Examples of what might cause this are the target sending
8005 and 'S' stop packet, or a 'T' stop packet and not
8006 including a thread-id.
8007
8008 Additionally, the target might send a 'W' or 'X packet
8009 without including a process-id, when the target has
8010 multiple running inferiors. */
8011 if (process_wide_stop)
8012 warning (_("multi-inferior target stopped without "
8013 "sending a process-id, using first "
8014 "non-exited inferior"));
8015 else
8016 warning (_("multi-threaded target stopped without "
8017 "sending a thread-id, using first "
8018 "non-exited thread"));
8019 warned = true;
8020 }
8021 }
8022
8023 /* If this is a stop for all threads then don't use a particular threads
8024 ptid, instead create a new ptid where only the pid field is set. */
8025 if (process_wide_stop)
8026 return ptid_t (first_resumed_thread->ptid.pid ());
8027 else
8028 return first_resumed_thread->ptid;
8029 }
8030
8031 /* Called when it is decided that STOP_REPLY holds the info of the
8032 event that is to be returned to the core. This function always
8033 destroys STOP_REPLY. */
8034
8035 ptid_t
8036 remote_target::process_stop_reply (struct stop_reply *stop_reply,
8037 struct target_waitstatus *status)
8038 {
8039 *status = stop_reply->ws;
8040 ptid_t ptid = stop_reply->ptid;
8041
8042 /* If no thread/process was reported by the stub then select a suitable
8043 thread/process. */
8044 if (ptid == null_ptid)
8045 ptid = select_thread_for_ambiguous_stop_reply (status);
8046 gdb_assert (ptid != null_ptid);
8047
8048 if (status->kind != TARGET_WAITKIND_EXITED
8049 && status->kind != TARGET_WAITKIND_SIGNALLED
8050 && status->kind != TARGET_WAITKIND_NO_RESUMED)
8051 {
8052 /* Expedited registers. */
8053 if (!stop_reply->regcache.empty ())
8054 {
8055 struct regcache *regcache
8056 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
8057
8058 for (cached_reg_t &reg : stop_reply->regcache)
8059 {
8060 regcache->raw_supply (reg.num, reg.data);
8061 xfree (reg.data);
8062 }
8063
8064 stop_reply->regcache.clear ();
8065 }
8066
8067 remote_notice_new_inferior (ptid, false);
8068 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
8069 remote_thr->core = stop_reply->core;
8070 remote_thr->stop_reason = stop_reply->stop_reason;
8071 remote_thr->watch_data_address = stop_reply->watch_data_address;
8072
8073 if (target_is_non_stop_p ())
8074 {
8075 /* If the target works in non-stop mode, a stop-reply indicates that
8076 only this thread stopped. */
8077 remote_thr->set_not_resumed ();
8078 }
8079 else
8080 {
8081 /* If the target works in all-stop mode, a stop-reply indicates that
8082 all the target's threads stopped. */
8083 for (thread_info *tp : all_non_exited_threads (this))
8084 get_remote_thread_info (tp)->set_not_resumed ();
8085 }
8086 }
8087
8088 delete stop_reply;
8089 return ptid;
8090 }
8091
8092 /* The non-stop mode version of target_wait. */
8093
8094 ptid_t
8095 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
8096 target_wait_flags options)
8097 {
8098 struct remote_state *rs = get_remote_state ();
8099 struct stop_reply *stop_reply;
8100 int ret;
8101 int is_notif = 0;
8102
8103 /* If in non-stop mode, get out of getpkt even if a
8104 notification is received. */
8105
8106 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
8107 while (1)
8108 {
8109 if (ret != -1 && !is_notif)
8110 switch (rs->buf[0])
8111 {
8112 case 'E': /* Error of some sort. */
8113 /* We're out of sync with the target now. Did it continue
8114 or not? We can't tell which thread it was in non-stop,
8115 so just ignore this. */
8116 warning (_("Remote failure reply: %s"), rs->buf.data ());
8117 break;
8118 case 'O': /* Console output. */
8119 remote_console_output (&rs->buf[1]);
8120 break;
8121 default:
8122 warning (_("Invalid remote reply: %s"), rs->buf.data ());
8123 break;
8124 }
8125
8126 /* Acknowledge a pending stop reply that may have arrived in the
8127 mean time. */
8128 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
8129 remote_notif_get_pending_events (&notif_client_stop);
8130
8131 /* If indeed we noticed a stop reply, we're done. */
8132 stop_reply = queued_stop_reply (ptid);
8133 if (stop_reply != NULL)
8134 return process_stop_reply (stop_reply, status);
8135
8136 /* Still no event. If we're just polling for an event, then
8137 return to the event loop. */
8138 if (options & TARGET_WNOHANG)
8139 {
8140 status->kind = TARGET_WAITKIND_IGNORE;
8141 return minus_one_ptid;
8142 }
8143
8144 /* Otherwise do a blocking wait. */
8145 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
8146 }
8147 }
8148
8149 /* Return the first resumed thread. */
8150
8151 static ptid_t
8152 first_remote_resumed_thread (remote_target *target)
8153 {
8154 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
8155 if (tp->resumed ())
8156 return tp->ptid;
8157 return null_ptid;
8158 }
8159
8160 /* Wait until the remote machine stops, then return, storing status in
8161 STATUS just as `wait' would. */
8162
8163 ptid_t
8164 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8165 target_wait_flags options)
8166 {
8167 struct remote_state *rs = get_remote_state ();
8168 ptid_t event_ptid = null_ptid;
8169 char *buf;
8170 struct stop_reply *stop_reply;
8171
8172 again:
8173
8174 status->kind = TARGET_WAITKIND_IGNORE;
8175 status->value.integer = 0;
8176
8177 stop_reply = queued_stop_reply (ptid);
8178 if (stop_reply != NULL)
8179 return process_stop_reply (stop_reply, status);
8180
8181 if (rs->cached_wait_status)
8182 /* Use the cached wait status, but only once. */
8183 rs->cached_wait_status = 0;
8184 else
8185 {
8186 int ret;
8187 int is_notif;
8188 int forever = ((options & TARGET_WNOHANG) == 0
8189 && rs->wait_forever_enabled_p);
8190
8191 if (!rs->waiting_for_stop_reply)
8192 {
8193 status->kind = TARGET_WAITKIND_NO_RESUMED;
8194 return minus_one_ptid;
8195 }
8196
8197 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8198 _never_ wait for ever -> test on target_is_async_p().
8199 However, before we do that we need to ensure that the caller
8200 knows how to take the target into/out of async mode. */
8201 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8202
8203 /* GDB gets a notification. Return to core as this event is
8204 not interesting. */
8205 if (ret != -1 && is_notif)
8206 return minus_one_ptid;
8207
8208 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8209 return minus_one_ptid;
8210 }
8211
8212 buf = rs->buf.data ();
8213
8214 /* Assume that the target has acknowledged Ctrl-C unless we receive
8215 an 'F' or 'O' packet. */
8216 if (buf[0] != 'F' && buf[0] != 'O')
8217 rs->ctrlc_pending_p = 0;
8218
8219 switch (buf[0])
8220 {
8221 case 'E': /* Error of some sort. */
8222 /* We're out of sync with the target now. Did it continue or
8223 not? Not is more likely, so report a stop. */
8224 rs->waiting_for_stop_reply = 0;
8225
8226 warning (_("Remote failure reply: %s"), buf);
8227 status->kind = TARGET_WAITKIND_STOPPED;
8228 status->value.sig = GDB_SIGNAL_0;
8229 break;
8230 case 'F': /* File-I/O request. */
8231 /* GDB may access the inferior memory while handling the File-I/O
8232 request, but we don't want GDB accessing memory while waiting
8233 for a stop reply. See the comments in putpkt_binary. Set
8234 waiting_for_stop_reply to 0 temporarily. */
8235 rs->waiting_for_stop_reply = 0;
8236 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8237 rs->ctrlc_pending_p = 0;
8238 /* GDB handled the File-I/O request, and the target is running
8239 again. Keep waiting for events. */
8240 rs->waiting_for_stop_reply = 1;
8241 break;
8242 case 'N': case 'T': case 'S': case 'X': case 'W':
8243 {
8244 /* There is a stop reply to handle. */
8245 rs->waiting_for_stop_reply = 0;
8246
8247 stop_reply
8248 = (struct stop_reply *) remote_notif_parse (this,
8249 &notif_client_stop,
8250 rs->buf.data ());
8251
8252 event_ptid = process_stop_reply (stop_reply, status);
8253 break;
8254 }
8255 case 'O': /* Console output. */
8256 remote_console_output (buf + 1);
8257 break;
8258 case '\0':
8259 if (rs->last_sent_signal != GDB_SIGNAL_0)
8260 {
8261 /* Zero length reply means that we tried 'S' or 'C' and the
8262 remote system doesn't support it. */
8263 target_terminal::ours_for_output ();
8264 printf_filtered
8265 ("Can't send signals to this remote system. %s not sent.\n",
8266 gdb_signal_to_name (rs->last_sent_signal));
8267 rs->last_sent_signal = GDB_SIGNAL_0;
8268 target_terminal::inferior ();
8269
8270 strcpy (buf, rs->last_sent_step ? "s" : "c");
8271 putpkt (buf);
8272 break;
8273 }
8274 /* fallthrough */
8275 default:
8276 warning (_("Invalid remote reply: %s"), buf);
8277 break;
8278 }
8279
8280 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
8281 return minus_one_ptid;
8282 else if (status->kind == TARGET_WAITKIND_IGNORE)
8283 {
8284 /* Nothing interesting happened. If we're doing a non-blocking
8285 poll, we're done. Otherwise, go back to waiting. */
8286 if (options & TARGET_WNOHANG)
8287 return minus_one_ptid;
8288 else
8289 goto again;
8290 }
8291 else if (status->kind != TARGET_WAITKIND_EXITED
8292 && status->kind != TARGET_WAITKIND_SIGNALLED)
8293 {
8294 if (event_ptid != null_ptid)
8295 record_currthread (rs, event_ptid);
8296 else
8297 event_ptid = first_remote_resumed_thread (this);
8298 }
8299 else
8300 {
8301 /* A process exit. Invalidate our notion of current thread. */
8302 record_currthread (rs, minus_one_ptid);
8303 /* It's possible that the packet did not include a pid. */
8304 if (event_ptid == null_ptid)
8305 event_ptid = first_remote_resumed_thread (this);
8306 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8307 if (event_ptid == null_ptid)
8308 event_ptid = magic_null_ptid;
8309 }
8310
8311 return event_ptid;
8312 }
8313
8314 /* Wait until the remote machine stops, then return, storing status in
8315 STATUS just as `wait' would. */
8316
8317 ptid_t
8318 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8319 target_wait_flags options)
8320 {
8321 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8322
8323 remote_state *rs = get_remote_state ();
8324
8325 /* Start by clearing the flag that asks for our wait method to be called,
8326 we'll mark it again at the end if needed. */
8327 if (target_is_async_p ())
8328 clear_async_event_handler (rs->remote_async_inferior_event_token);
8329
8330 ptid_t event_ptid;
8331
8332 if (target_is_non_stop_p ())
8333 event_ptid = wait_ns (ptid, status, options);
8334 else
8335 event_ptid = wait_as (ptid, status, options);
8336
8337 if (target_is_async_p ())
8338 {
8339 /* If there are events left in the queue, or unacknowledged
8340 notifications, then tell the event loop to call us again. */
8341 if (!rs->stop_reply_queue.empty ()
8342 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8343 mark_async_event_handler (rs->remote_async_inferior_event_token);
8344 }
8345
8346 return event_ptid;
8347 }
8348
8349 /* Fetch a single register using a 'p' packet. */
8350
8351 int
8352 remote_target::fetch_register_using_p (struct regcache *regcache,
8353 packet_reg *reg)
8354 {
8355 struct gdbarch *gdbarch = regcache->arch ();
8356 struct remote_state *rs = get_remote_state ();
8357 char *buf, *p;
8358 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8359 int i;
8360
8361 if (packet_support (PACKET_p) == PACKET_DISABLE)
8362 return 0;
8363
8364 if (reg->pnum == -1)
8365 return 0;
8366
8367 p = rs->buf.data ();
8368 *p++ = 'p';
8369 p += hexnumstr (p, reg->pnum);
8370 *p++ = '\0';
8371 putpkt (rs->buf);
8372 getpkt (&rs->buf, 0);
8373
8374 buf = rs->buf.data ();
8375
8376 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8377 {
8378 case PACKET_OK:
8379 break;
8380 case PACKET_UNKNOWN:
8381 return 0;
8382 case PACKET_ERROR:
8383 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8384 gdbarch_register_name (regcache->arch (),
8385 reg->regnum),
8386 buf);
8387 }
8388
8389 /* If this register is unfetchable, tell the regcache. */
8390 if (buf[0] == 'x')
8391 {
8392 regcache->raw_supply (reg->regnum, NULL);
8393 return 1;
8394 }
8395
8396 /* Otherwise, parse and supply the value. */
8397 p = buf;
8398 i = 0;
8399 while (p[0] != 0)
8400 {
8401 if (p[1] == 0)
8402 error (_("fetch_register_using_p: early buf termination"));
8403
8404 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8405 p += 2;
8406 }
8407 regcache->raw_supply (reg->regnum, regp);
8408 return 1;
8409 }
8410
8411 /* Fetch the registers included in the target's 'g' packet. */
8412
8413 int
8414 remote_target::send_g_packet ()
8415 {
8416 struct remote_state *rs = get_remote_state ();
8417 int buf_len;
8418
8419 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8420 putpkt (rs->buf);
8421 getpkt (&rs->buf, 0);
8422 if (packet_check_result (rs->buf) == PACKET_ERROR)
8423 error (_("Could not read registers; remote failure reply '%s'"),
8424 rs->buf.data ());
8425
8426 /* We can get out of synch in various cases. If the first character
8427 in the buffer is not a hex character, assume that has happened
8428 and try to fetch another packet to read. */
8429 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8430 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8431 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8432 && rs->buf[0] != 'x') /* New: unavailable register value. */
8433 {
8434 remote_debug_printf ("Bad register packet; fetching a new packet");
8435 getpkt (&rs->buf, 0);
8436 }
8437
8438 buf_len = strlen (rs->buf.data ());
8439
8440 /* Sanity check the received packet. */
8441 if (buf_len % 2 != 0)
8442 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8443
8444 return buf_len / 2;
8445 }
8446
8447 void
8448 remote_target::process_g_packet (struct regcache *regcache)
8449 {
8450 struct gdbarch *gdbarch = regcache->arch ();
8451 struct remote_state *rs = get_remote_state ();
8452 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8453 int i, buf_len;
8454 char *p;
8455 char *regs;
8456
8457 buf_len = strlen (rs->buf.data ());
8458
8459 /* Further sanity checks, with knowledge of the architecture. */
8460 if (buf_len > 2 * rsa->sizeof_g_packet)
8461 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8462 "bytes): %s"),
8463 rsa->sizeof_g_packet, buf_len / 2,
8464 rs->buf.data ());
8465
8466 /* Save the size of the packet sent to us by the target. It is used
8467 as a heuristic when determining the max size of packets that the
8468 target can safely receive. */
8469 if (rsa->actual_register_packet_size == 0)
8470 rsa->actual_register_packet_size = buf_len;
8471
8472 /* If this is smaller than we guessed the 'g' packet would be,
8473 update our records. A 'g' reply that doesn't include a register's
8474 value implies either that the register is not available, or that
8475 the 'p' packet must be used. */
8476 if (buf_len < 2 * rsa->sizeof_g_packet)
8477 {
8478 long sizeof_g_packet = buf_len / 2;
8479
8480 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8481 {
8482 long offset = rsa->regs[i].offset;
8483 long reg_size = register_size (gdbarch, i);
8484
8485 if (rsa->regs[i].pnum == -1)
8486 continue;
8487
8488 if (offset >= sizeof_g_packet)
8489 rsa->regs[i].in_g_packet = 0;
8490 else if (offset + reg_size > sizeof_g_packet)
8491 error (_("Truncated register %d in remote 'g' packet"), i);
8492 else
8493 rsa->regs[i].in_g_packet = 1;
8494 }
8495
8496 /* Looks valid enough, we can assume this is the correct length
8497 for a 'g' packet. It's important not to adjust
8498 rsa->sizeof_g_packet if we have truncated registers otherwise
8499 this "if" won't be run the next time the method is called
8500 with a packet of the same size and one of the internal errors
8501 below will trigger instead. */
8502 rsa->sizeof_g_packet = sizeof_g_packet;
8503 }
8504
8505 regs = (char *) alloca (rsa->sizeof_g_packet);
8506
8507 /* Unimplemented registers read as all bits zero. */
8508 memset (regs, 0, rsa->sizeof_g_packet);
8509
8510 /* Reply describes registers byte by byte, each byte encoded as two
8511 hex characters. Suck them all up, then supply them to the
8512 register cacheing/storage mechanism. */
8513
8514 p = rs->buf.data ();
8515 for (i = 0; i < rsa->sizeof_g_packet; i++)
8516 {
8517 if (p[0] == 0 || p[1] == 0)
8518 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8519 internal_error (__FILE__, __LINE__,
8520 _("unexpected end of 'g' packet reply"));
8521
8522 if (p[0] == 'x' && p[1] == 'x')
8523 regs[i] = 0; /* 'x' */
8524 else
8525 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8526 p += 2;
8527 }
8528
8529 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8530 {
8531 struct packet_reg *r = &rsa->regs[i];
8532 long reg_size = register_size (gdbarch, i);
8533
8534 if (r->in_g_packet)
8535 {
8536 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8537 /* This shouldn't happen - we adjusted in_g_packet above. */
8538 internal_error (__FILE__, __LINE__,
8539 _("unexpected end of 'g' packet reply"));
8540 else if (rs->buf[r->offset * 2] == 'x')
8541 {
8542 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8543 /* The register isn't available, mark it as such (at
8544 the same time setting the value to zero). */
8545 regcache->raw_supply (r->regnum, NULL);
8546 }
8547 else
8548 regcache->raw_supply (r->regnum, regs + r->offset);
8549 }
8550 }
8551 }
8552
8553 void
8554 remote_target::fetch_registers_using_g (struct regcache *regcache)
8555 {
8556 send_g_packet ();
8557 process_g_packet (regcache);
8558 }
8559
8560 /* Make the remote selected traceframe match GDB's selected
8561 traceframe. */
8562
8563 void
8564 remote_target::set_remote_traceframe ()
8565 {
8566 int newnum;
8567 struct remote_state *rs = get_remote_state ();
8568
8569 if (rs->remote_traceframe_number == get_traceframe_number ())
8570 return;
8571
8572 /* Avoid recursion, remote_trace_find calls us again. */
8573 rs->remote_traceframe_number = get_traceframe_number ();
8574
8575 newnum = target_trace_find (tfind_number,
8576 get_traceframe_number (), 0, 0, NULL);
8577
8578 /* Should not happen. If it does, all bets are off. */
8579 if (newnum != get_traceframe_number ())
8580 warning (_("could not set remote traceframe"));
8581 }
8582
8583 void
8584 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8585 {
8586 struct gdbarch *gdbarch = regcache->arch ();
8587 struct remote_state *rs = get_remote_state ();
8588 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8589 int i;
8590
8591 set_remote_traceframe ();
8592 set_general_thread (regcache->ptid ());
8593
8594 if (regnum >= 0)
8595 {
8596 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8597
8598 gdb_assert (reg != NULL);
8599
8600 /* If this register might be in the 'g' packet, try that first -
8601 we are likely to read more than one register. If this is the
8602 first 'g' packet, we might be overly optimistic about its
8603 contents, so fall back to 'p'. */
8604 if (reg->in_g_packet)
8605 {
8606 fetch_registers_using_g (regcache);
8607 if (reg->in_g_packet)
8608 return;
8609 }
8610
8611 if (fetch_register_using_p (regcache, reg))
8612 return;
8613
8614 /* This register is not available. */
8615 regcache->raw_supply (reg->regnum, NULL);
8616
8617 return;
8618 }
8619
8620 fetch_registers_using_g (regcache);
8621
8622 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8623 if (!rsa->regs[i].in_g_packet)
8624 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8625 {
8626 /* This register is not available. */
8627 regcache->raw_supply (i, NULL);
8628 }
8629 }
8630
8631 /* Prepare to store registers. Since we may send them all (using a
8632 'G' request), we have to read out the ones we don't want to change
8633 first. */
8634
8635 void
8636 remote_target::prepare_to_store (struct regcache *regcache)
8637 {
8638 struct remote_state *rs = get_remote_state ();
8639 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8640 int i;
8641
8642 /* Make sure the entire registers array is valid. */
8643 switch (packet_support (PACKET_P))
8644 {
8645 case PACKET_DISABLE:
8646 case PACKET_SUPPORT_UNKNOWN:
8647 /* Make sure all the necessary registers are cached. */
8648 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8649 if (rsa->regs[i].in_g_packet)
8650 regcache->raw_update (rsa->regs[i].regnum);
8651 break;
8652 case PACKET_ENABLE:
8653 break;
8654 }
8655 }
8656
8657 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8658 packet was not recognized. */
8659
8660 int
8661 remote_target::store_register_using_P (const struct regcache *regcache,
8662 packet_reg *reg)
8663 {
8664 struct gdbarch *gdbarch = regcache->arch ();
8665 struct remote_state *rs = get_remote_state ();
8666 /* Try storing a single register. */
8667 char *buf = rs->buf.data ();
8668 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8669 char *p;
8670
8671 if (packet_support (PACKET_P) == PACKET_DISABLE)
8672 return 0;
8673
8674 if (reg->pnum == -1)
8675 return 0;
8676
8677 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8678 p = buf + strlen (buf);
8679 regcache->raw_collect (reg->regnum, regp);
8680 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8681 putpkt (rs->buf);
8682 getpkt (&rs->buf, 0);
8683
8684 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8685 {
8686 case PACKET_OK:
8687 return 1;
8688 case PACKET_ERROR:
8689 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8690 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8691 case PACKET_UNKNOWN:
8692 return 0;
8693 default:
8694 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8695 }
8696 }
8697
8698 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8699 contents of the register cache buffer. FIXME: ignores errors. */
8700
8701 void
8702 remote_target::store_registers_using_G (const struct regcache *regcache)
8703 {
8704 struct remote_state *rs = get_remote_state ();
8705 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8706 gdb_byte *regs;
8707 char *p;
8708
8709 /* Extract all the registers in the regcache copying them into a
8710 local buffer. */
8711 {
8712 int i;
8713
8714 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8715 memset (regs, 0, rsa->sizeof_g_packet);
8716 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8717 {
8718 struct packet_reg *r = &rsa->regs[i];
8719
8720 if (r->in_g_packet)
8721 regcache->raw_collect (r->regnum, regs + r->offset);
8722 }
8723 }
8724
8725 /* Command describes registers byte by byte,
8726 each byte encoded as two hex characters. */
8727 p = rs->buf.data ();
8728 *p++ = 'G';
8729 bin2hex (regs, p, rsa->sizeof_g_packet);
8730 putpkt (rs->buf);
8731 getpkt (&rs->buf, 0);
8732 if (packet_check_result (rs->buf) == PACKET_ERROR)
8733 error (_("Could not write registers; remote failure reply '%s'"),
8734 rs->buf.data ());
8735 }
8736
8737 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8738 of the register cache buffer. FIXME: ignores errors. */
8739
8740 void
8741 remote_target::store_registers (struct regcache *regcache, int regnum)
8742 {
8743 struct gdbarch *gdbarch = regcache->arch ();
8744 struct remote_state *rs = get_remote_state ();
8745 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8746 int i;
8747
8748 set_remote_traceframe ();
8749 set_general_thread (regcache->ptid ());
8750
8751 if (regnum >= 0)
8752 {
8753 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8754
8755 gdb_assert (reg != NULL);
8756
8757 /* Always prefer to store registers using the 'P' packet if
8758 possible; we often change only a small number of registers.
8759 Sometimes we change a larger number; we'd need help from a
8760 higher layer to know to use 'G'. */
8761 if (store_register_using_P (regcache, reg))
8762 return;
8763
8764 /* For now, don't complain if we have no way to write the
8765 register. GDB loses track of unavailable registers too
8766 easily. Some day, this may be an error. We don't have
8767 any way to read the register, either... */
8768 if (!reg->in_g_packet)
8769 return;
8770
8771 store_registers_using_G (regcache);
8772 return;
8773 }
8774
8775 store_registers_using_G (regcache);
8776
8777 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8778 if (!rsa->regs[i].in_g_packet)
8779 if (!store_register_using_P (regcache, &rsa->regs[i]))
8780 /* See above for why we do not issue an error here. */
8781 continue;
8782 }
8783 \f
8784
8785 /* Return the number of hex digits in num. */
8786
8787 static int
8788 hexnumlen (ULONGEST num)
8789 {
8790 int i;
8791
8792 for (i = 0; num != 0; i++)
8793 num >>= 4;
8794
8795 return std::max (i, 1);
8796 }
8797
8798 /* Set BUF to the minimum number of hex digits representing NUM. */
8799
8800 static int
8801 hexnumstr (char *buf, ULONGEST num)
8802 {
8803 int len = hexnumlen (num);
8804
8805 return hexnumnstr (buf, num, len);
8806 }
8807
8808
8809 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8810
8811 static int
8812 hexnumnstr (char *buf, ULONGEST num, int width)
8813 {
8814 int i;
8815
8816 buf[width] = '\0';
8817
8818 for (i = width - 1; i >= 0; i--)
8819 {
8820 buf[i] = "0123456789abcdef"[(num & 0xf)];
8821 num >>= 4;
8822 }
8823
8824 return width;
8825 }
8826
8827 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8828
8829 static CORE_ADDR
8830 remote_address_masked (CORE_ADDR addr)
8831 {
8832 unsigned int address_size = remote_address_size;
8833
8834 /* If "remoteaddresssize" was not set, default to target address size. */
8835 if (!address_size)
8836 address_size = gdbarch_addr_bit (target_gdbarch ());
8837
8838 if (address_size > 0
8839 && address_size < (sizeof (ULONGEST) * 8))
8840 {
8841 /* Only create a mask when that mask can safely be constructed
8842 in a ULONGEST variable. */
8843 ULONGEST mask = 1;
8844
8845 mask = (mask << address_size) - 1;
8846 addr &= mask;
8847 }
8848 return addr;
8849 }
8850
8851 /* Determine whether the remote target supports binary downloading.
8852 This is accomplished by sending a no-op memory write of zero length
8853 to the target at the specified address. It does not suffice to send
8854 the whole packet, since many stubs strip the eighth bit and
8855 subsequently compute a wrong checksum, which causes real havoc with
8856 remote_write_bytes.
8857
8858 NOTE: This can still lose if the serial line is not eight-bit
8859 clean. In cases like this, the user should clear "remote
8860 X-packet". */
8861
8862 void
8863 remote_target::check_binary_download (CORE_ADDR addr)
8864 {
8865 struct remote_state *rs = get_remote_state ();
8866
8867 switch (packet_support (PACKET_X))
8868 {
8869 case PACKET_DISABLE:
8870 break;
8871 case PACKET_ENABLE:
8872 break;
8873 case PACKET_SUPPORT_UNKNOWN:
8874 {
8875 char *p;
8876
8877 p = rs->buf.data ();
8878 *p++ = 'X';
8879 p += hexnumstr (p, (ULONGEST) addr);
8880 *p++ = ',';
8881 p += hexnumstr (p, (ULONGEST) 0);
8882 *p++ = ':';
8883 *p = '\0';
8884
8885 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8886 getpkt (&rs->buf, 0);
8887
8888 if (rs->buf[0] == '\0')
8889 {
8890 remote_debug_printf ("binary downloading NOT supported by target");
8891 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8892 }
8893 else
8894 {
8895 remote_debug_printf ("binary downloading supported by target");
8896 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8897 }
8898 break;
8899 }
8900 }
8901 }
8902
8903 /* Helper function to resize the payload in order to try to get a good
8904 alignment. We try to write an amount of data such that the next write will
8905 start on an address aligned on REMOTE_ALIGN_WRITES. */
8906
8907 static int
8908 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8909 {
8910 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8911 }
8912
8913 /* Write memory data directly to the remote machine.
8914 This does not inform the data cache; the data cache uses this.
8915 HEADER is the starting part of the packet.
8916 MEMADDR is the address in the remote memory space.
8917 MYADDR is the address of the buffer in our space.
8918 LEN_UNITS is the number of addressable units to write.
8919 UNIT_SIZE is the length in bytes of an addressable unit.
8920 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8921 should send data as binary ('X'), or hex-encoded ('M').
8922
8923 The function creates packet of the form
8924 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8925
8926 where encoding of <DATA> is terminated by PACKET_FORMAT.
8927
8928 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8929 are omitted.
8930
8931 Return the transferred status, error or OK (an
8932 'enum target_xfer_status' value). Save the number of addressable units
8933 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8934
8935 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8936 exchange between gdb and the stub could look like (?? in place of the
8937 checksum):
8938
8939 -> $m1000,4#??
8940 <- aaaabbbbccccdddd
8941
8942 -> $M1000,3:eeeeffffeeee#??
8943 <- OK
8944
8945 -> $m1000,4#??
8946 <- eeeeffffeeeedddd */
8947
8948 target_xfer_status
8949 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8950 const gdb_byte *myaddr,
8951 ULONGEST len_units,
8952 int unit_size,
8953 ULONGEST *xfered_len_units,
8954 char packet_format, int use_length)
8955 {
8956 struct remote_state *rs = get_remote_state ();
8957 char *p;
8958 char *plen = NULL;
8959 int plenlen = 0;
8960 int todo_units;
8961 int units_written;
8962 int payload_capacity_bytes;
8963 int payload_length_bytes;
8964
8965 if (packet_format != 'X' && packet_format != 'M')
8966 internal_error (__FILE__, __LINE__,
8967 _("remote_write_bytes_aux: bad packet format"));
8968
8969 if (len_units == 0)
8970 return TARGET_XFER_EOF;
8971
8972 payload_capacity_bytes = get_memory_write_packet_size ();
8973
8974 /* The packet buffer will be large enough for the payload;
8975 get_memory_packet_size ensures this. */
8976 rs->buf[0] = '\0';
8977
8978 /* Compute the size of the actual payload by subtracting out the
8979 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8980
8981 payload_capacity_bytes -= strlen ("$,:#NN");
8982 if (!use_length)
8983 /* The comma won't be used. */
8984 payload_capacity_bytes += 1;
8985 payload_capacity_bytes -= strlen (header);
8986 payload_capacity_bytes -= hexnumlen (memaddr);
8987
8988 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8989
8990 strcat (rs->buf.data (), header);
8991 p = rs->buf.data () + strlen (header);
8992
8993 /* Compute a best guess of the number of bytes actually transfered. */
8994 if (packet_format == 'X')
8995 {
8996 /* Best guess at number of bytes that will fit. */
8997 todo_units = std::min (len_units,
8998 (ULONGEST) payload_capacity_bytes / unit_size);
8999 if (use_length)
9000 payload_capacity_bytes -= hexnumlen (todo_units);
9001 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
9002 }
9003 else
9004 {
9005 /* Number of bytes that will fit. */
9006 todo_units
9007 = std::min (len_units,
9008 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
9009 if (use_length)
9010 payload_capacity_bytes -= hexnumlen (todo_units);
9011 todo_units = std::min (todo_units,
9012 (payload_capacity_bytes / unit_size) / 2);
9013 }
9014
9015 if (todo_units <= 0)
9016 internal_error (__FILE__, __LINE__,
9017 _("minimum packet size too small to write data"));
9018
9019 /* If we already need another packet, then try to align the end
9020 of this packet to a useful boundary. */
9021 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
9022 todo_units = align_for_efficient_write (todo_units, memaddr);
9023
9024 /* Append "<memaddr>". */
9025 memaddr = remote_address_masked (memaddr);
9026 p += hexnumstr (p, (ULONGEST) memaddr);
9027
9028 if (use_length)
9029 {
9030 /* Append ",". */
9031 *p++ = ',';
9032
9033 /* Append the length and retain its location and size. It may need to be
9034 adjusted once the packet body has been created. */
9035 plen = p;
9036 plenlen = hexnumstr (p, (ULONGEST) todo_units);
9037 p += plenlen;
9038 }
9039
9040 /* Append ":". */
9041 *p++ = ':';
9042 *p = '\0';
9043
9044 /* Append the packet body. */
9045 if (packet_format == 'X')
9046 {
9047 /* Binary mode. Send target system values byte by byte, in
9048 increasing byte addresses. Only escape certain critical
9049 characters. */
9050 payload_length_bytes =
9051 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
9052 &units_written, payload_capacity_bytes);
9053
9054 /* If not all TODO units fit, then we'll need another packet. Make
9055 a second try to keep the end of the packet aligned. Don't do
9056 this if the packet is tiny. */
9057 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
9058 {
9059 int new_todo_units;
9060
9061 new_todo_units = align_for_efficient_write (units_written, memaddr);
9062
9063 if (new_todo_units != units_written)
9064 payload_length_bytes =
9065 remote_escape_output (myaddr, new_todo_units, unit_size,
9066 (gdb_byte *) p, &units_written,
9067 payload_capacity_bytes);
9068 }
9069
9070 p += payload_length_bytes;
9071 if (use_length && units_written < todo_units)
9072 {
9073 /* Escape chars have filled up the buffer prematurely,
9074 and we have actually sent fewer units than planned.
9075 Fix-up the length field of the packet. Use the same
9076 number of characters as before. */
9077 plen += hexnumnstr (plen, (ULONGEST) units_written,
9078 plenlen);
9079 *plen = ':'; /* overwrite \0 from hexnumnstr() */
9080 }
9081 }
9082 else
9083 {
9084 /* Normal mode: Send target system values byte by byte, in
9085 increasing byte addresses. Each byte is encoded as a two hex
9086 value. */
9087 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
9088 units_written = todo_units;
9089 }
9090
9091 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
9092 getpkt (&rs->buf, 0);
9093
9094 if (rs->buf[0] == 'E')
9095 return TARGET_XFER_E_IO;
9096
9097 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
9098 send fewer units than we'd planned. */
9099 *xfered_len_units = (ULONGEST) units_written;
9100 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9101 }
9102
9103 /* Write memory data directly to the remote machine.
9104 This does not inform the data cache; the data cache uses this.
9105 MEMADDR is the address in the remote memory space.
9106 MYADDR is the address of the buffer in our space.
9107 LEN is the number of bytes.
9108
9109 Return the transferred status, error or OK (an
9110 'enum target_xfer_status' value). Save the number of bytes
9111 transferred in *XFERED_LEN. Only transfer a single packet. */
9112
9113 target_xfer_status
9114 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
9115 ULONGEST len, int unit_size,
9116 ULONGEST *xfered_len)
9117 {
9118 const char *packet_format = NULL;
9119
9120 /* Check whether the target supports binary download. */
9121 check_binary_download (memaddr);
9122
9123 switch (packet_support (PACKET_X))
9124 {
9125 case PACKET_ENABLE:
9126 packet_format = "X";
9127 break;
9128 case PACKET_DISABLE:
9129 packet_format = "M";
9130 break;
9131 case PACKET_SUPPORT_UNKNOWN:
9132 internal_error (__FILE__, __LINE__,
9133 _("remote_write_bytes: bad internal state"));
9134 default:
9135 internal_error (__FILE__, __LINE__, _("bad switch"));
9136 }
9137
9138 return remote_write_bytes_aux (packet_format,
9139 memaddr, myaddr, len, unit_size, xfered_len,
9140 packet_format[0], 1);
9141 }
9142
9143 /* Read memory data directly from the remote machine.
9144 This does not use the data cache; the data cache uses this.
9145 MEMADDR is the address in the remote memory space.
9146 MYADDR is the address of the buffer in our space.
9147 LEN_UNITS is the number of addressable memory units to read..
9148 UNIT_SIZE is the length in bytes of an addressable unit.
9149
9150 Return the transferred status, error or OK (an
9151 'enum target_xfer_status' value). Save the number of bytes
9152 transferred in *XFERED_LEN_UNITS.
9153
9154 See the comment of remote_write_bytes_aux for an example of
9155 memory read/write exchange between gdb and the stub. */
9156
9157 target_xfer_status
9158 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
9159 ULONGEST len_units,
9160 int unit_size, ULONGEST *xfered_len_units)
9161 {
9162 struct remote_state *rs = get_remote_state ();
9163 int buf_size_bytes; /* Max size of packet output buffer. */
9164 char *p;
9165 int todo_units;
9166 int decoded_bytes;
9167
9168 buf_size_bytes = get_memory_read_packet_size ();
9169 /* The packet buffer will be large enough for the payload;
9170 get_memory_packet_size ensures this. */
9171
9172 /* Number of units that will fit. */
9173 todo_units = std::min (len_units,
9174 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9175
9176 /* Construct "m"<memaddr>","<len>". */
9177 memaddr = remote_address_masked (memaddr);
9178 p = rs->buf.data ();
9179 *p++ = 'm';
9180 p += hexnumstr (p, (ULONGEST) memaddr);
9181 *p++ = ',';
9182 p += hexnumstr (p, (ULONGEST) todo_units);
9183 *p = '\0';
9184 putpkt (rs->buf);
9185 getpkt (&rs->buf, 0);
9186 if (rs->buf[0] == 'E'
9187 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9188 && rs->buf[3] == '\0')
9189 return TARGET_XFER_E_IO;
9190 /* Reply describes memory byte by byte, each byte encoded as two hex
9191 characters. */
9192 p = rs->buf.data ();
9193 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9194 /* Return what we have. Let higher layers handle partial reads. */
9195 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9196 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9197 }
9198
9199 /* Using the set of read-only target sections of remote, read live
9200 read-only memory.
9201
9202 For interface/parameters/return description see target.h,
9203 to_xfer_partial. */
9204
9205 target_xfer_status
9206 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9207 ULONGEST memaddr,
9208 ULONGEST len,
9209 int unit_size,
9210 ULONGEST *xfered_len)
9211 {
9212 const struct target_section *secp;
9213
9214 secp = target_section_by_addr (this, memaddr);
9215 if (secp != NULL
9216 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9217 {
9218 ULONGEST memend = memaddr + len;
9219
9220 const target_section_table *table = target_get_section_table (this);
9221 for (const target_section &p : *table)
9222 {
9223 if (memaddr >= p.addr)
9224 {
9225 if (memend <= p.endaddr)
9226 {
9227 /* Entire transfer is within this section. */
9228 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9229 xfered_len);
9230 }
9231 else if (memaddr >= p.endaddr)
9232 {
9233 /* This section ends before the transfer starts. */
9234 continue;
9235 }
9236 else
9237 {
9238 /* This section overlaps the transfer. Just do half. */
9239 len = p.endaddr - memaddr;
9240 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9241 xfered_len);
9242 }
9243 }
9244 }
9245 }
9246
9247 return TARGET_XFER_EOF;
9248 }
9249
9250 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9251 first if the requested memory is unavailable in traceframe.
9252 Otherwise, fall back to remote_read_bytes_1. */
9253
9254 target_xfer_status
9255 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9256 gdb_byte *myaddr, ULONGEST len, int unit_size,
9257 ULONGEST *xfered_len)
9258 {
9259 if (len == 0)
9260 return TARGET_XFER_EOF;
9261
9262 if (get_traceframe_number () != -1)
9263 {
9264 std::vector<mem_range> available;
9265
9266 /* If we fail to get the set of available memory, then the
9267 target does not support querying traceframe info, and so we
9268 attempt reading from the traceframe anyway (assuming the
9269 target implements the old QTro packet then). */
9270 if (traceframe_available_memory (&available, memaddr, len))
9271 {
9272 if (available.empty () || available[0].start != memaddr)
9273 {
9274 enum target_xfer_status res;
9275
9276 /* Don't read into the traceframe's available
9277 memory. */
9278 if (!available.empty ())
9279 {
9280 LONGEST oldlen = len;
9281
9282 len = available[0].start - memaddr;
9283 gdb_assert (len <= oldlen);
9284 }
9285
9286 /* This goes through the topmost target again. */
9287 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9288 len, unit_size, xfered_len);
9289 if (res == TARGET_XFER_OK)
9290 return TARGET_XFER_OK;
9291 else
9292 {
9293 /* No use trying further, we know some memory starting
9294 at MEMADDR isn't available. */
9295 *xfered_len = len;
9296 return (*xfered_len != 0) ?
9297 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9298 }
9299 }
9300
9301 /* Don't try to read more than how much is available, in
9302 case the target implements the deprecated QTro packet to
9303 cater for older GDBs (the target's knowledge of read-only
9304 sections may be outdated by now). */
9305 len = available[0].length;
9306 }
9307 }
9308
9309 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9310 }
9311
9312 \f
9313
9314 /* Sends a packet with content determined by the printf format string
9315 FORMAT and the remaining arguments, then gets the reply. Returns
9316 whether the packet was a success, a failure, or unknown. */
9317
9318 packet_result
9319 remote_target::remote_send_printf (const char *format, ...)
9320 {
9321 struct remote_state *rs = get_remote_state ();
9322 int max_size = get_remote_packet_size ();
9323 va_list ap;
9324
9325 va_start (ap, format);
9326
9327 rs->buf[0] = '\0';
9328 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9329
9330 va_end (ap);
9331
9332 if (size >= max_size)
9333 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9334
9335 if (putpkt (rs->buf) < 0)
9336 error (_("Communication problem with target."));
9337
9338 rs->buf[0] = '\0';
9339 getpkt (&rs->buf, 0);
9340
9341 return packet_check_result (rs->buf);
9342 }
9343
9344 /* Flash writing can take quite some time. We'll set
9345 effectively infinite timeout for flash operations.
9346 In future, we'll need to decide on a better approach. */
9347 static const int remote_flash_timeout = 1000;
9348
9349 void
9350 remote_target::flash_erase (ULONGEST address, LONGEST length)
9351 {
9352 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9353 enum packet_result ret;
9354 scoped_restore restore_timeout
9355 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9356
9357 ret = remote_send_printf ("vFlashErase:%s,%s",
9358 phex (address, addr_size),
9359 phex (length, 4));
9360 switch (ret)
9361 {
9362 case PACKET_UNKNOWN:
9363 error (_("Remote target does not support flash erase"));
9364 case PACKET_ERROR:
9365 error (_("Error erasing flash with vFlashErase packet"));
9366 default:
9367 break;
9368 }
9369 }
9370
9371 target_xfer_status
9372 remote_target::remote_flash_write (ULONGEST address,
9373 ULONGEST length, ULONGEST *xfered_len,
9374 const gdb_byte *data)
9375 {
9376 scoped_restore restore_timeout
9377 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9378 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9379 xfered_len,'X', 0);
9380 }
9381
9382 void
9383 remote_target::flash_done ()
9384 {
9385 int ret;
9386
9387 scoped_restore restore_timeout
9388 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9389
9390 ret = remote_send_printf ("vFlashDone");
9391
9392 switch (ret)
9393 {
9394 case PACKET_UNKNOWN:
9395 error (_("Remote target does not support vFlashDone"));
9396 case PACKET_ERROR:
9397 error (_("Error finishing flash operation"));
9398 default:
9399 break;
9400 }
9401 }
9402
9403 void
9404 remote_target::files_info ()
9405 {
9406 puts_filtered ("Debugging a target over a serial line.\n");
9407 }
9408 \f
9409 /* Stuff for dealing with the packets which are part of this protocol.
9410 See comment at top of file for details. */
9411
9412 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9413 error to higher layers. Called when a serial error is detected.
9414 The exception message is STRING, followed by a colon and a blank,
9415 the system error message for errno at function entry and final dot
9416 for output compatibility with throw_perror_with_name. */
9417
9418 static void
9419 unpush_and_perror (remote_target *target, const char *string)
9420 {
9421 int saved_errno = errno;
9422
9423 remote_unpush_target (target);
9424 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9425 safe_strerror (saved_errno));
9426 }
9427
9428 /* Read a single character from the remote end. The current quit
9429 handler is overridden to avoid quitting in the middle of packet
9430 sequence, as that would break communication with the remote server.
9431 See remote_serial_quit_handler for more detail. */
9432
9433 int
9434 remote_target::readchar (int timeout)
9435 {
9436 int ch;
9437 struct remote_state *rs = get_remote_state ();
9438
9439 {
9440 scoped_restore restore_quit_target
9441 = make_scoped_restore (&curr_quit_handler_target, this);
9442 scoped_restore restore_quit
9443 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9444
9445 rs->got_ctrlc_during_io = 0;
9446
9447 ch = serial_readchar (rs->remote_desc, timeout);
9448
9449 if (rs->got_ctrlc_during_io)
9450 set_quit_flag ();
9451 }
9452
9453 if (ch >= 0)
9454 return ch;
9455
9456 switch ((enum serial_rc) ch)
9457 {
9458 case SERIAL_EOF:
9459 remote_unpush_target (this);
9460 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9461 /* no return */
9462 case SERIAL_ERROR:
9463 unpush_and_perror (this, _("Remote communication error. "
9464 "Target disconnected."));
9465 /* no return */
9466 case SERIAL_TIMEOUT:
9467 break;
9468 }
9469 return ch;
9470 }
9471
9472 /* Wrapper for serial_write that closes the target and throws if
9473 writing fails. The current quit handler is overridden to avoid
9474 quitting in the middle of packet sequence, as that would break
9475 communication with the remote server. See
9476 remote_serial_quit_handler for more detail. */
9477
9478 void
9479 remote_target::remote_serial_write (const char *str, int len)
9480 {
9481 struct remote_state *rs = get_remote_state ();
9482
9483 scoped_restore restore_quit_target
9484 = make_scoped_restore (&curr_quit_handler_target, this);
9485 scoped_restore restore_quit
9486 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9487
9488 rs->got_ctrlc_during_io = 0;
9489
9490 if (serial_write (rs->remote_desc, str, len))
9491 {
9492 unpush_and_perror (this, _("Remote communication error. "
9493 "Target disconnected."));
9494 }
9495
9496 if (rs->got_ctrlc_during_io)
9497 set_quit_flag ();
9498 }
9499
9500 /* Return a string representing an escaped version of BUF, of len N.
9501 E.g. \n is converted to \\n, \t to \\t, etc. */
9502
9503 static std::string
9504 escape_buffer (const char *buf, int n)
9505 {
9506 string_file stb;
9507
9508 stb.putstrn (buf, n, '\\');
9509 return std::move (stb.string ());
9510 }
9511
9512 /* Display a null-terminated packet on stdout, for debugging, using C
9513 string notation. */
9514
9515 static void
9516 print_packet (const char *buf)
9517 {
9518 puts_filtered ("\"");
9519 fputstr_filtered (buf, '"', gdb_stdout);
9520 puts_filtered ("\"");
9521 }
9522
9523 int
9524 remote_target::putpkt (const char *buf)
9525 {
9526 return putpkt_binary (buf, strlen (buf));
9527 }
9528
9529 /* Wrapper around remote_target::putpkt to avoid exporting
9530 remote_target. */
9531
9532 int
9533 putpkt (remote_target *remote, const char *buf)
9534 {
9535 return remote->putpkt (buf);
9536 }
9537
9538 /* Send a packet to the remote machine, with error checking. The data
9539 of the packet is in BUF. The string in BUF can be at most
9540 get_remote_packet_size () - 5 to account for the $, # and checksum,
9541 and for a possible /0 if we are debugging (remote_debug) and want
9542 to print the sent packet as a string. */
9543
9544 int
9545 remote_target::putpkt_binary (const char *buf, int cnt)
9546 {
9547 struct remote_state *rs = get_remote_state ();
9548 int i;
9549 unsigned char csum = 0;
9550 gdb::def_vector<char> data (cnt + 6);
9551 char *buf2 = data.data ();
9552
9553 int ch;
9554 int tcount = 0;
9555 char *p;
9556
9557 /* Catch cases like trying to read memory or listing threads while
9558 we're waiting for a stop reply. The remote server wouldn't be
9559 ready to handle this request, so we'd hang and timeout. We don't
9560 have to worry about this in synchronous mode, because in that
9561 case it's not possible to issue a command while the target is
9562 running. This is not a problem in non-stop mode, because in that
9563 case, the stub is always ready to process serial input. */
9564 if (!target_is_non_stop_p ()
9565 && target_is_async_p ()
9566 && rs->waiting_for_stop_reply)
9567 {
9568 error (_("Cannot execute this command while the target is running.\n"
9569 "Use the \"interrupt\" command to stop the target\n"
9570 "and then try again."));
9571 }
9572
9573 /* We're sending out a new packet. Make sure we don't look at a
9574 stale cached response. */
9575 rs->cached_wait_status = 0;
9576
9577 /* Copy the packet into buffer BUF2, encapsulating it
9578 and giving it a checksum. */
9579
9580 p = buf2;
9581 *p++ = '$';
9582
9583 for (i = 0; i < cnt; i++)
9584 {
9585 csum += buf[i];
9586 *p++ = buf[i];
9587 }
9588 *p++ = '#';
9589 *p++ = tohex ((csum >> 4) & 0xf);
9590 *p++ = tohex (csum & 0xf);
9591
9592 /* Send it over and over until we get a positive ack. */
9593
9594 while (1)
9595 {
9596 if (remote_debug)
9597 {
9598 *p = '\0';
9599
9600 int len = (int) (p - buf2);
9601 int max_chars;
9602
9603 if (remote_packet_max_chars < 0)
9604 max_chars = len;
9605 else
9606 max_chars = remote_packet_max_chars;
9607
9608 std::string str
9609 = escape_buffer (buf2, std::min (len, max_chars));
9610
9611 if (len > max_chars)
9612 remote_debug_printf_nofunc
9613 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9614 len - max_chars);
9615 else
9616 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9617 }
9618 remote_serial_write (buf2, p - buf2);
9619
9620 /* If this is a no acks version of the remote protocol, send the
9621 packet and move on. */
9622 if (rs->noack_mode)
9623 break;
9624
9625 /* Read until either a timeout occurs (-2) or '+' is read.
9626 Handle any notification that arrives in the mean time. */
9627 while (1)
9628 {
9629 ch = readchar (remote_timeout);
9630
9631 switch (ch)
9632 {
9633 case '+':
9634 remote_debug_printf_nofunc ("Received Ack");
9635 return 1;
9636 case '-':
9637 remote_debug_printf_nofunc ("Received Nak");
9638 /* FALLTHROUGH */
9639 case SERIAL_TIMEOUT:
9640 tcount++;
9641 if (tcount > 3)
9642 return 0;
9643 break; /* Retransmit buffer. */
9644 case '$':
9645 {
9646 remote_debug_printf ("Packet instead of Ack, ignoring it");
9647 /* It's probably an old response sent because an ACK
9648 was lost. Gobble up the packet and ack it so it
9649 doesn't get retransmitted when we resend this
9650 packet. */
9651 skip_frame ();
9652 remote_serial_write ("+", 1);
9653 continue; /* Now, go look for +. */
9654 }
9655
9656 case '%':
9657 {
9658 int val;
9659
9660 /* If we got a notification, handle it, and go back to looking
9661 for an ack. */
9662 /* We've found the start of a notification. Now
9663 collect the data. */
9664 val = read_frame (&rs->buf);
9665 if (val >= 0)
9666 {
9667 remote_debug_printf_nofunc
9668 (" Notification received: %s",
9669 escape_buffer (rs->buf.data (), val).c_str ());
9670
9671 handle_notification (rs->notif_state, rs->buf.data ());
9672 /* We're in sync now, rewait for the ack. */
9673 tcount = 0;
9674 }
9675 else
9676 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9677 rs->buf.data ());
9678 continue;
9679 }
9680 /* fall-through */
9681 default:
9682 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9683 rs->buf.data ());
9684 continue;
9685 }
9686 break; /* Here to retransmit. */
9687 }
9688
9689 #if 0
9690 /* This is wrong. If doing a long backtrace, the user should be
9691 able to get out next time we call QUIT, without anything as
9692 violent as interrupt_query. If we want to provide a way out of
9693 here without getting to the next QUIT, it should be based on
9694 hitting ^C twice as in remote_wait. */
9695 if (quit_flag)
9696 {
9697 quit_flag = 0;
9698 interrupt_query ();
9699 }
9700 #endif
9701 }
9702
9703 return 0;
9704 }
9705
9706 /* Come here after finding the start of a frame when we expected an
9707 ack. Do our best to discard the rest of this packet. */
9708
9709 void
9710 remote_target::skip_frame ()
9711 {
9712 int c;
9713
9714 while (1)
9715 {
9716 c = readchar (remote_timeout);
9717 switch (c)
9718 {
9719 case SERIAL_TIMEOUT:
9720 /* Nothing we can do. */
9721 return;
9722 case '#':
9723 /* Discard the two bytes of checksum and stop. */
9724 c = readchar (remote_timeout);
9725 if (c >= 0)
9726 c = readchar (remote_timeout);
9727
9728 return;
9729 case '*': /* Run length encoding. */
9730 /* Discard the repeat count. */
9731 c = readchar (remote_timeout);
9732 if (c < 0)
9733 return;
9734 break;
9735 default:
9736 /* A regular character. */
9737 break;
9738 }
9739 }
9740 }
9741
9742 /* Come here after finding the start of the frame. Collect the rest
9743 into *BUF, verifying the checksum, length, and handling run-length
9744 compression. NUL terminate the buffer. If there is not enough room,
9745 expand *BUF.
9746
9747 Returns -1 on error, number of characters in buffer (ignoring the
9748 trailing NULL) on success. (could be extended to return one of the
9749 SERIAL status indications). */
9750
9751 long
9752 remote_target::read_frame (gdb::char_vector *buf_p)
9753 {
9754 unsigned char csum;
9755 long bc;
9756 int c;
9757 char *buf = buf_p->data ();
9758 struct remote_state *rs = get_remote_state ();
9759
9760 csum = 0;
9761 bc = 0;
9762
9763 while (1)
9764 {
9765 c = readchar (remote_timeout);
9766 switch (c)
9767 {
9768 case SERIAL_TIMEOUT:
9769 remote_debug_printf ("Timeout in mid-packet, retrying");
9770 return -1;
9771
9772 case '$':
9773 remote_debug_printf ("Saw new packet start in middle of old one");
9774 return -1; /* Start a new packet, count retries. */
9775
9776 case '#':
9777 {
9778 unsigned char pktcsum;
9779 int check_0 = 0;
9780 int check_1 = 0;
9781
9782 buf[bc] = '\0';
9783
9784 check_0 = readchar (remote_timeout);
9785 if (check_0 >= 0)
9786 check_1 = readchar (remote_timeout);
9787
9788 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9789 {
9790 remote_debug_printf ("Timeout in checksum, retrying");
9791 return -1;
9792 }
9793 else if (check_0 < 0 || check_1 < 0)
9794 {
9795 remote_debug_printf ("Communication error in checksum");
9796 return -1;
9797 }
9798
9799 /* Don't recompute the checksum; with no ack packets we
9800 don't have any way to indicate a packet retransmission
9801 is necessary. */
9802 if (rs->noack_mode)
9803 return bc;
9804
9805 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9806 if (csum == pktcsum)
9807 return bc;
9808
9809 remote_debug_printf
9810 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9811 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9812
9813 /* Number of characters in buffer ignoring trailing
9814 NULL. */
9815 return -1;
9816 }
9817 case '*': /* Run length encoding. */
9818 {
9819 int repeat;
9820
9821 csum += c;
9822 c = readchar (remote_timeout);
9823 csum += c;
9824 repeat = c - ' ' + 3; /* Compute repeat count. */
9825
9826 /* The character before ``*'' is repeated. */
9827
9828 if (repeat > 0 && repeat <= 255 && bc > 0)
9829 {
9830 if (bc + repeat - 1 >= buf_p->size () - 1)
9831 {
9832 /* Make some more room in the buffer. */
9833 buf_p->resize (buf_p->size () + repeat);
9834 buf = buf_p->data ();
9835 }
9836
9837 memset (&buf[bc], buf[bc - 1], repeat);
9838 bc += repeat;
9839 continue;
9840 }
9841
9842 buf[bc] = '\0';
9843 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9844 return -1;
9845 }
9846 default:
9847 if (bc >= buf_p->size () - 1)
9848 {
9849 /* Make some more room in the buffer. */
9850 buf_p->resize (buf_p->size () * 2);
9851 buf = buf_p->data ();
9852 }
9853
9854 buf[bc++] = c;
9855 csum += c;
9856 continue;
9857 }
9858 }
9859 }
9860
9861 /* Set this to the maximum number of seconds to wait instead of waiting forever
9862 in target_wait(). If this timer times out, then it generates an error and
9863 the command is aborted. This replaces most of the need for timeouts in the
9864 GDB test suite, and makes it possible to distinguish between a hung target
9865 and one with slow communications. */
9866
9867 static int watchdog = 0;
9868 static void
9869 show_watchdog (struct ui_file *file, int from_tty,
9870 struct cmd_list_element *c, const char *value)
9871 {
9872 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9873 }
9874
9875 /* Read a packet from the remote machine, with error checking, and
9876 store it in *BUF. Resize *BUF if necessary to hold the result. If
9877 FOREVER, wait forever rather than timing out; this is used (in
9878 synchronous mode) to wait for a target that is is executing user
9879 code to stop. */
9880 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9881 don't have to change all the calls to getpkt to deal with the
9882 return value, because at the moment I don't know what the right
9883 thing to do it for those. */
9884
9885 void
9886 remote_target::getpkt (gdb::char_vector *buf, int forever)
9887 {
9888 getpkt_sane (buf, forever);
9889 }
9890
9891
9892 /* Read a packet from the remote machine, with error checking, and
9893 store it in *BUF. Resize *BUF if necessary to hold the result. If
9894 FOREVER, wait forever rather than timing out; this is used (in
9895 synchronous mode) to wait for a target that is is executing user
9896 code to stop. If FOREVER == 0, this function is allowed to time
9897 out gracefully and return an indication of this to the caller.
9898 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9899 consider receiving a notification enough reason to return to the
9900 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9901 holds a notification or not (a regular packet). */
9902
9903 int
9904 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9905 int forever, int expecting_notif,
9906 int *is_notif)
9907 {
9908 struct remote_state *rs = get_remote_state ();
9909 int c;
9910 int tries;
9911 int timeout;
9912 int val = -1;
9913
9914 /* We're reading a new response. Make sure we don't look at a
9915 previously cached response. */
9916 rs->cached_wait_status = 0;
9917
9918 strcpy (buf->data (), "timeout");
9919
9920 if (forever)
9921 timeout = watchdog > 0 ? watchdog : -1;
9922 else if (expecting_notif)
9923 timeout = 0; /* There should already be a char in the buffer. If
9924 not, bail out. */
9925 else
9926 timeout = remote_timeout;
9927
9928 #define MAX_TRIES 3
9929
9930 /* Process any number of notifications, and then return when
9931 we get a packet. */
9932 for (;;)
9933 {
9934 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9935 times. */
9936 for (tries = 1; tries <= MAX_TRIES; tries++)
9937 {
9938 /* This can loop forever if the remote side sends us
9939 characters continuously, but if it pauses, we'll get
9940 SERIAL_TIMEOUT from readchar because of timeout. Then
9941 we'll count that as a retry.
9942
9943 Note that even when forever is set, we will only wait
9944 forever prior to the start of a packet. After that, we
9945 expect characters to arrive at a brisk pace. They should
9946 show up within remote_timeout intervals. */
9947 do
9948 c = readchar (timeout);
9949 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9950
9951 if (c == SERIAL_TIMEOUT)
9952 {
9953 if (expecting_notif)
9954 return -1; /* Don't complain, it's normal to not get
9955 anything in this case. */
9956
9957 if (forever) /* Watchdog went off? Kill the target. */
9958 {
9959 remote_unpush_target (this);
9960 throw_error (TARGET_CLOSE_ERROR,
9961 _("Watchdog timeout has expired. "
9962 "Target detached."));
9963 }
9964
9965 remote_debug_printf ("Timed out.");
9966 }
9967 else
9968 {
9969 /* We've found the start of a packet or notification.
9970 Now collect the data. */
9971 val = read_frame (buf);
9972 if (val >= 0)
9973 break;
9974 }
9975
9976 remote_serial_write ("-", 1);
9977 }
9978
9979 if (tries > MAX_TRIES)
9980 {
9981 /* We have tried hard enough, and just can't receive the
9982 packet/notification. Give up. */
9983 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9984
9985 /* Skip the ack char if we're in no-ack mode. */
9986 if (!rs->noack_mode)
9987 remote_serial_write ("+", 1);
9988 return -1;
9989 }
9990
9991 /* If we got an ordinary packet, return that to our caller. */
9992 if (c == '$')
9993 {
9994 if (remote_debug)
9995 {
9996 int max_chars;
9997
9998 if (remote_packet_max_chars < 0)
9999 max_chars = val;
10000 else
10001 max_chars = remote_packet_max_chars;
10002
10003 std::string str
10004 = escape_buffer (buf->data (),
10005 std::min (val, max_chars));
10006
10007 if (val > max_chars)
10008 remote_debug_printf_nofunc
10009 ("Packet received: %s [%d bytes omitted]", str.c_str (),
10010 val - max_chars);
10011 else
10012 remote_debug_printf_nofunc ("Packet received: %s",
10013 str.c_str ());
10014 }
10015
10016 /* Skip the ack char if we're in no-ack mode. */
10017 if (!rs->noack_mode)
10018 remote_serial_write ("+", 1);
10019 if (is_notif != NULL)
10020 *is_notif = 0;
10021 return val;
10022 }
10023
10024 /* If we got a notification, handle it, and go back to looking
10025 for a packet. */
10026 else
10027 {
10028 gdb_assert (c == '%');
10029
10030 remote_debug_printf_nofunc
10031 (" Notification received: %s",
10032 escape_buffer (buf->data (), val).c_str ());
10033
10034 if (is_notif != NULL)
10035 *is_notif = 1;
10036
10037 handle_notification (rs->notif_state, buf->data ());
10038
10039 /* Notifications require no acknowledgement. */
10040
10041 if (expecting_notif)
10042 return val;
10043 }
10044 }
10045 }
10046
10047 int
10048 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
10049 {
10050 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
10051 }
10052
10053 int
10054 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
10055 int *is_notif)
10056 {
10057 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
10058 }
10059
10060 /* Kill any new fork children of process PID that haven't been
10061 processed by follow_fork. */
10062
10063 void
10064 remote_target::kill_new_fork_children (int pid)
10065 {
10066 remote_state *rs = get_remote_state ();
10067 struct notif_client *notif = &notif_client_stop;
10068
10069 /* Kill the fork child threads of any threads in process PID
10070 that are stopped at a fork event. */
10071 for (thread_info *thread : all_non_exited_threads (this))
10072 {
10073 struct target_waitstatus *ws = &thread->pending_follow;
10074
10075 if (is_pending_fork_parent (ws, pid, thread->ptid))
10076 {
10077 int child_pid = ws->value.related_pid.pid ();
10078 int res;
10079
10080 res = remote_vkill (child_pid);
10081 if (res != 0)
10082 error (_("Can't kill fork child process %d"), child_pid);
10083 }
10084 }
10085
10086 /* Check for any pending fork events (not reported or processed yet)
10087 in process PID and kill those fork child threads as well. */
10088 remote_notif_get_pending_events (notif);
10089 for (auto &event : rs->stop_reply_queue)
10090 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
10091 {
10092 int child_pid = event->ws.value.related_pid.pid ();
10093 int res;
10094
10095 res = remote_vkill (child_pid);
10096 if (res != 0)
10097 error (_("Can't kill fork child process %d"), child_pid);
10098 }
10099 }
10100
10101 \f
10102 /* Target hook to kill the current inferior. */
10103
10104 void
10105 remote_target::kill ()
10106 {
10107 int res = -1;
10108 int pid = inferior_ptid.pid ();
10109 struct remote_state *rs = get_remote_state ();
10110
10111 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
10112 {
10113 /* If we're stopped while forking and we haven't followed yet,
10114 kill the child task. We need to do this before killing the
10115 parent task because if this is a vfork then the parent will
10116 be sleeping. */
10117 kill_new_fork_children (pid);
10118
10119 res = remote_vkill (pid);
10120 if (res == 0)
10121 {
10122 target_mourn_inferior (inferior_ptid);
10123 return;
10124 }
10125 }
10126
10127 /* If we are in 'target remote' mode and we are killing the only
10128 inferior, then we will tell gdbserver to exit and unpush the
10129 target. */
10130 if (res == -1 && !remote_multi_process_p (rs)
10131 && number_of_live_inferiors (this) == 1)
10132 {
10133 remote_kill_k ();
10134
10135 /* We've killed the remote end, we get to mourn it. If we are
10136 not in extended mode, mourning the inferior also unpushes
10137 remote_ops from the target stack, which closes the remote
10138 connection. */
10139 target_mourn_inferior (inferior_ptid);
10140
10141 return;
10142 }
10143
10144 error (_("Can't kill process"));
10145 }
10146
10147 /* Send a kill request to the target using the 'vKill' packet. */
10148
10149 int
10150 remote_target::remote_vkill (int pid)
10151 {
10152 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10153 return -1;
10154
10155 remote_state *rs = get_remote_state ();
10156
10157 /* Tell the remote target to detach. */
10158 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10159 putpkt (rs->buf);
10160 getpkt (&rs->buf, 0);
10161
10162 switch (packet_ok (rs->buf,
10163 &remote_protocol_packets[PACKET_vKill]))
10164 {
10165 case PACKET_OK:
10166 return 0;
10167 case PACKET_ERROR:
10168 return 1;
10169 case PACKET_UNKNOWN:
10170 return -1;
10171 default:
10172 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10173 }
10174 }
10175
10176 /* Send a kill request to the target using the 'k' packet. */
10177
10178 void
10179 remote_target::remote_kill_k ()
10180 {
10181 /* Catch errors so the user can quit from gdb even when we
10182 aren't on speaking terms with the remote system. */
10183 try
10184 {
10185 putpkt ("k");
10186 }
10187 catch (const gdb_exception_error &ex)
10188 {
10189 if (ex.error == TARGET_CLOSE_ERROR)
10190 {
10191 /* If we got an (EOF) error that caused the target
10192 to go away, then we're done, that's what we wanted.
10193 "k" is susceptible to cause a premature EOF, given
10194 that the remote server isn't actually required to
10195 reply to "k", and it can happen that it doesn't
10196 even get to reply ACK to the "k". */
10197 return;
10198 }
10199
10200 /* Otherwise, something went wrong. We didn't actually kill
10201 the target. Just propagate the exception, and let the
10202 user or higher layers decide what to do. */
10203 throw;
10204 }
10205 }
10206
10207 void
10208 remote_target::mourn_inferior ()
10209 {
10210 struct remote_state *rs = get_remote_state ();
10211
10212 /* We're no longer interested in notification events of an inferior
10213 that exited or was killed/detached. */
10214 discard_pending_stop_replies (current_inferior ());
10215
10216 /* In 'target remote' mode with one inferior, we close the connection. */
10217 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10218 {
10219 remote_unpush_target (this);
10220 return;
10221 }
10222
10223 /* In case we got here due to an error, but we're going to stay
10224 connected. */
10225 rs->waiting_for_stop_reply = 0;
10226
10227 /* If the current general thread belonged to the process we just
10228 detached from or has exited, the remote side current general
10229 thread becomes undefined. Considering a case like this:
10230
10231 - We just got here due to a detach.
10232 - The process that we're detaching from happens to immediately
10233 report a global breakpoint being hit in non-stop mode, in the
10234 same thread we had selected before.
10235 - GDB attaches to this process again.
10236 - This event happens to be the next event we handle.
10237
10238 GDB would consider that the current general thread didn't need to
10239 be set on the stub side (with Hg), since for all it knew,
10240 GENERAL_THREAD hadn't changed.
10241
10242 Notice that although in all-stop mode, the remote server always
10243 sets the current thread to the thread reporting the stop event,
10244 that doesn't happen in non-stop mode; in non-stop, the stub *must
10245 not* change the current thread when reporting a breakpoint hit,
10246 due to the decoupling of event reporting and event handling.
10247
10248 To keep things simple, we always invalidate our notion of the
10249 current thread. */
10250 record_currthread (rs, minus_one_ptid);
10251
10252 /* Call common code to mark the inferior as not running. */
10253 generic_mourn_inferior ();
10254 }
10255
10256 bool
10257 extended_remote_target::supports_disable_randomization ()
10258 {
10259 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10260 }
10261
10262 void
10263 remote_target::extended_remote_disable_randomization (int val)
10264 {
10265 struct remote_state *rs = get_remote_state ();
10266 char *reply;
10267
10268 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10269 "QDisableRandomization:%x", val);
10270 putpkt (rs->buf);
10271 reply = remote_get_noisy_reply ();
10272 if (*reply == '\0')
10273 error (_("Target does not support QDisableRandomization."));
10274 if (strcmp (reply, "OK") != 0)
10275 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10276 }
10277
10278 int
10279 remote_target::extended_remote_run (const std::string &args)
10280 {
10281 struct remote_state *rs = get_remote_state ();
10282 int len;
10283 const char *remote_exec_file = get_remote_exec_file ();
10284
10285 /* If the user has disabled vRun support, or we have detected that
10286 support is not available, do not try it. */
10287 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10288 return -1;
10289
10290 strcpy (rs->buf.data (), "vRun;");
10291 len = strlen (rs->buf.data ());
10292
10293 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10294 error (_("Remote file name too long for run packet"));
10295 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10296 strlen (remote_exec_file));
10297
10298 if (!args.empty ())
10299 {
10300 int i;
10301
10302 gdb_argv argv (args.c_str ());
10303 for (i = 0; argv[i] != NULL; i++)
10304 {
10305 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10306 error (_("Argument list too long for run packet"));
10307 rs->buf[len++] = ';';
10308 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10309 strlen (argv[i]));
10310 }
10311 }
10312
10313 rs->buf[len++] = '\0';
10314
10315 putpkt (rs->buf);
10316 getpkt (&rs->buf, 0);
10317
10318 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10319 {
10320 case PACKET_OK:
10321 /* We have a wait response. All is well. */
10322 return 0;
10323 case PACKET_UNKNOWN:
10324 return -1;
10325 case PACKET_ERROR:
10326 if (remote_exec_file[0] == '\0')
10327 error (_("Running the default executable on the remote target failed; "
10328 "try \"set remote exec-file\"?"));
10329 else
10330 error (_("Running \"%s\" on the remote target failed"),
10331 remote_exec_file);
10332 default:
10333 gdb_assert_not_reached (_("bad switch"));
10334 }
10335 }
10336
10337 /* Helper function to send set/unset environment packets. ACTION is
10338 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10339 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10340 sent. */
10341
10342 void
10343 remote_target::send_environment_packet (const char *action,
10344 const char *packet,
10345 const char *value)
10346 {
10347 remote_state *rs = get_remote_state ();
10348
10349 /* Convert the environment variable to an hex string, which
10350 is the best format to be transmitted over the wire. */
10351 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10352 strlen (value));
10353
10354 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10355 "%s:%s", packet, encoded_value.c_str ());
10356
10357 putpkt (rs->buf);
10358 getpkt (&rs->buf, 0);
10359 if (strcmp (rs->buf.data (), "OK") != 0)
10360 warning (_("Unable to %s environment variable '%s' on remote."),
10361 action, value);
10362 }
10363
10364 /* Helper function to handle the QEnvironment* packets. */
10365
10366 void
10367 remote_target::extended_remote_environment_support ()
10368 {
10369 remote_state *rs = get_remote_state ();
10370
10371 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10372 {
10373 putpkt ("QEnvironmentReset");
10374 getpkt (&rs->buf, 0);
10375 if (strcmp (rs->buf.data (), "OK") != 0)
10376 warning (_("Unable to reset environment on remote."));
10377 }
10378
10379 gdb_environ *e = &current_inferior ()->environment;
10380
10381 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10382 for (const std::string &el : e->user_set_env ())
10383 send_environment_packet ("set", "QEnvironmentHexEncoded",
10384 el.c_str ());
10385
10386 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10387 for (const std::string &el : e->user_unset_env ())
10388 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10389 }
10390
10391 /* Helper function to set the current working directory for the
10392 inferior in the remote target. */
10393
10394 void
10395 remote_target::extended_remote_set_inferior_cwd ()
10396 {
10397 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10398 {
10399 const std::string &inferior_cwd = current_inferior ()->cwd ();
10400 remote_state *rs = get_remote_state ();
10401
10402 if (!inferior_cwd.empty ())
10403 {
10404 std::string hexpath
10405 = bin2hex ((const gdb_byte *) inferior_cwd.data (),
10406 inferior_cwd.size ());
10407
10408 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10409 "QSetWorkingDir:%s", hexpath.c_str ());
10410 }
10411 else
10412 {
10413 /* An empty inferior_cwd means that the user wants us to
10414 reset the remote server's inferior's cwd. */
10415 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10416 "QSetWorkingDir:");
10417 }
10418
10419 putpkt (rs->buf);
10420 getpkt (&rs->buf, 0);
10421 if (packet_ok (rs->buf,
10422 &remote_protocol_packets[PACKET_QSetWorkingDir])
10423 != PACKET_OK)
10424 error (_("\
10425 Remote replied unexpectedly while setting the inferior's working\n\
10426 directory: %s"),
10427 rs->buf.data ());
10428
10429 }
10430 }
10431
10432 /* In the extended protocol we want to be able to do things like
10433 "run" and have them basically work as expected. So we need
10434 a special create_inferior function. We support changing the
10435 executable file and the command line arguments, but not the
10436 environment. */
10437
10438 void
10439 extended_remote_target::create_inferior (const char *exec_file,
10440 const std::string &args,
10441 char **env, int from_tty)
10442 {
10443 int run_worked;
10444 char *stop_reply;
10445 struct remote_state *rs = get_remote_state ();
10446 const char *remote_exec_file = get_remote_exec_file ();
10447
10448 /* If running asynchronously, register the target file descriptor
10449 with the event loop. */
10450 if (target_can_async_p ())
10451 target_async (1);
10452
10453 /* Disable address space randomization if requested (and supported). */
10454 if (supports_disable_randomization ())
10455 extended_remote_disable_randomization (disable_randomization);
10456
10457 /* If startup-with-shell is on, we inform gdbserver to start the
10458 remote inferior using a shell. */
10459 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10460 {
10461 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10462 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10463 putpkt (rs->buf);
10464 getpkt (&rs->buf, 0);
10465 if (strcmp (rs->buf.data (), "OK") != 0)
10466 error (_("\
10467 Remote replied unexpectedly while setting startup-with-shell: %s"),
10468 rs->buf.data ());
10469 }
10470
10471 extended_remote_environment_support ();
10472
10473 extended_remote_set_inferior_cwd ();
10474
10475 /* Now restart the remote server. */
10476 run_worked = extended_remote_run (args) != -1;
10477 if (!run_worked)
10478 {
10479 /* vRun was not supported. Fail if we need it to do what the
10480 user requested. */
10481 if (remote_exec_file[0])
10482 error (_("Remote target does not support \"set remote exec-file\""));
10483 if (!args.empty ())
10484 error (_("Remote target does not support \"set args\" or run ARGS"));
10485
10486 /* Fall back to "R". */
10487 extended_remote_restart ();
10488 }
10489
10490 /* vRun's success return is a stop reply. */
10491 stop_reply = run_worked ? rs->buf.data () : NULL;
10492 add_current_inferior_and_thread (stop_reply);
10493
10494 /* Get updated offsets, if the stub uses qOffsets. */
10495 get_offsets ();
10496 }
10497 \f
10498
10499 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10500 the list of conditions (in agent expression bytecode format), if any, the
10501 target needs to evaluate. The output is placed into the packet buffer
10502 started from BUF and ended at BUF_END. */
10503
10504 static int
10505 remote_add_target_side_condition (struct gdbarch *gdbarch,
10506 struct bp_target_info *bp_tgt, char *buf,
10507 char *buf_end)
10508 {
10509 if (bp_tgt->conditions.empty ())
10510 return 0;
10511
10512 buf += strlen (buf);
10513 xsnprintf (buf, buf_end - buf, "%s", ";");
10514 buf++;
10515
10516 /* Send conditions to the target. */
10517 for (agent_expr *aexpr : bp_tgt->conditions)
10518 {
10519 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10520 buf += strlen (buf);
10521 for (int i = 0; i < aexpr->len; ++i)
10522 buf = pack_hex_byte (buf, aexpr->buf[i]);
10523 *buf = '\0';
10524 }
10525 return 0;
10526 }
10527
10528 static void
10529 remote_add_target_side_commands (struct gdbarch *gdbarch,
10530 struct bp_target_info *bp_tgt, char *buf)
10531 {
10532 if (bp_tgt->tcommands.empty ())
10533 return;
10534
10535 buf += strlen (buf);
10536
10537 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10538 buf += strlen (buf);
10539
10540 /* Concatenate all the agent expressions that are commands into the
10541 cmds parameter. */
10542 for (agent_expr *aexpr : bp_tgt->tcommands)
10543 {
10544 sprintf (buf, "X%x,", aexpr->len);
10545 buf += strlen (buf);
10546 for (int i = 0; i < aexpr->len; ++i)
10547 buf = pack_hex_byte (buf, aexpr->buf[i]);
10548 *buf = '\0';
10549 }
10550 }
10551
10552 /* Insert a breakpoint. On targets that have software breakpoint
10553 support, we ask the remote target to do the work; on targets
10554 which don't, we insert a traditional memory breakpoint. */
10555
10556 int
10557 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10558 struct bp_target_info *bp_tgt)
10559 {
10560 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10561 If it succeeds, then set the support to PACKET_ENABLE. If it
10562 fails, and the user has explicitly requested the Z support then
10563 report an error, otherwise, mark it disabled and go on. */
10564
10565 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10566 {
10567 CORE_ADDR addr = bp_tgt->reqstd_address;
10568 struct remote_state *rs;
10569 char *p, *endbuf;
10570
10571 /* Make sure the remote is pointing at the right process, if
10572 necessary. */
10573 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10574 set_general_process ();
10575
10576 rs = get_remote_state ();
10577 p = rs->buf.data ();
10578 endbuf = p + get_remote_packet_size ();
10579
10580 *(p++) = 'Z';
10581 *(p++) = '0';
10582 *(p++) = ',';
10583 addr = (ULONGEST) remote_address_masked (addr);
10584 p += hexnumstr (p, addr);
10585 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10586
10587 if (supports_evaluation_of_breakpoint_conditions ())
10588 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10589
10590 if (can_run_breakpoint_commands ())
10591 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10592
10593 putpkt (rs->buf);
10594 getpkt (&rs->buf, 0);
10595
10596 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10597 {
10598 case PACKET_ERROR:
10599 return -1;
10600 case PACKET_OK:
10601 return 0;
10602 case PACKET_UNKNOWN:
10603 break;
10604 }
10605 }
10606
10607 /* If this breakpoint has target-side commands but this stub doesn't
10608 support Z0 packets, throw error. */
10609 if (!bp_tgt->tcommands.empty ())
10610 throw_error (NOT_SUPPORTED_ERROR, _("\
10611 Target doesn't support breakpoints that have target side commands."));
10612
10613 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10614 }
10615
10616 int
10617 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10618 struct bp_target_info *bp_tgt,
10619 enum remove_bp_reason reason)
10620 {
10621 CORE_ADDR addr = bp_tgt->placed_address;
10622 struct remote_state *rs = get_remote_state ();
10623
10624 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10625 {
10626 char *p = rs->buf.data ();
10627 char *endbuf = p + get_remote_packet_size ();
10628
10629 /* Make sure the remote is pointing at the right process, if
10630 necessary. */
10631 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10632 set_general_process ();
10633
10634 *(p++) = 'z';
10635 *(p++) = '0';
10636 *(p++) = ',';
10637
10638 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10639 p += hexnumstr (p, addr);
10640 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10641
10642 putpkt (rs->buf);
10643 getpkt (&rs->buf, 0);
10644
10645 return (rs->buf[0] == 'E');
10646 }
10647
10648 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10649 }
10650
10651 static enum Z_packet_type
10652 watchpoint_to_Z_packet (int type)
10653 {
10654 switch (type)
10655 {
10656 case hw_write:
10657 return Z_PACKET_WRITE_WP;
10658 break;
10659 case hw_read:
10660 return Z_PACKET_READ_WP;
10661 break;
10662 case hw_access:
10663 return Z_PACKET_ACCESS_WP;
10664 break;
10665 default:
10666 internal_error (__FILE__, __LINE__,
10667 _("hw_bp_to_z: bad watchpoint type %d"), type);
10668 }
10669 }
10670
10671 int
10672 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10673 enum target_hw_bp_type type, struct expression *cond)
10674 {
10675 struct remote_state *rs = get_remote_state ();
10676 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10677 char *p;
10678 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10679
10680 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10681 return 1;
10682
10683 /* Make sure the remote is pointing at the right process, if
10684 necessary. */
10685 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10686 set_general_process ();
10687
10688 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10689 p = strchr (rs->buf.data (), '\0');
10690 addr = remote_address_masked (addr);
10691 p += hexnumstr (p, (ULONGEST) addr);
10692 xsnprintf (p, endbuf - p, ",%x", len);
10693
10694 putpkt (rs->buf);
10695 getpkt (&rs->buf, 0);
10696
10697 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10698 {
10699 case PACKET_ERROR:
10700 return -1;
10701 case PACKET_UNKNOWN:
10702 return 1;
10703 case PACKET_OK:
10704 return 0;
10705 }
10706 internal_error (__FILE__, __LINE__,
10707 _("remote_insert_watchpoint: reached end of function"));
10708 }
10709
10710 bool
10711 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10712 CORE_ADDR start, int length)
10713 {
10714 CORE_ADDR diff = remote_address_masked (addr - start);
10715
10716 return diff < length;
10717 }
10718
10719
10720 int
10721 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10722 enum target_hw_bp_type type, struct expression *cond)
10723 {
10724 struct remote_state *rs = get_remote_state ();
10725 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10726 char *p;
10727 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10728
10729 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10730 return -1;
10731
10732 /* Make sure the remote is pointing at the right process, if
10733 necessary. */
10734 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10735 set_general_process ();
10736
10737 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10738 p = strchr (rs->buf.data (), '\0');
10739 addr = remote_address_masked (addr);
10740 p += hexnumstr (p, (ULONGEST) addr);
10741 xsnprintf (p, endbuf - p, ",%x", len);
10742 putpkt (rs->buf);
10743 getpkt (&rs->buf, 0);
10744
10745 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10746 {
10747 case PACKET_ERROR:
10748 case PACKET_UNKNOWN:
10749 return -1;
10750 case PACKET_OK:
10751 return 0;
10752 }
10753 internal_error (__FILE__, __LINE__,
10754 _("remote_remove_watchpoint: reached end of function"));
10755 }
10756
10757
10758 static int remote_hw_watchpoint_limit = -1;
10759 static int remote_hw_watchpoint_length_limit = -1;
10760 static int remote_hw_breakpoint_limit = -1;
10761
10762 int
10763 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10764 {
10765 if (remote_hw_watchpoint_length_limit == 0)
10766 return 0;
10767 else if (remote_hw_watchpoint_length_limit < 0)
10768 return 1;
10769 else if (len <= remote_hw_watchpoint_length_limit)
10770 return 1;
10771 else
10772 return 0;
10773 }
10774
10775 int
10776 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10777 {
10778 if (type == bp_hardware_breakpoint)
10779 {
10780 if (remote_hw_breakpoint_limit == 0)
10781 return 0;
10782 else if (remote_hw_breakpoint_limit < 0)
10783 return 1;
10784 else if (cnt <= remote_hw_breakpoint_limit)
10785 return 1;
10786 }
10787 else
10788 {
10789 if (remote_hw_watchpoint_limit == 0)
10790 return 0;
10791 else if (remote_hw_watchpoint_limit < 0)
10792 return 1;
10793 else if (ot)
10794 return -1;
10795 else if (cnt <= remote_hw_watchpoint_limit)
10796 return 1;
10797 }
10798 return -1;
10799 }
10800
10801 /* The to_stopped_by_sw_breakpoint method of target remote. */
10802
10803 bool
10804 remote_target::stopped_by_sw_breakpoint ()
10805 {
10806 struct thread_info *thread = inferior_thread ();
10807
10808 return (thread->priv != NULL
10809 && (get_remote_thread_info (thread)->stop_reason
10810 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10811 }
10812
10813 /* The to_supports_stopped_by_sw_breakpoint method of target
10814 remote. */
10815
10816 bool
10817 remote_target::supports_stopped_by_sw_breakpoint ()
10818 {
10819 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10820 }
10821
10822 /* The to_stopped_by_hw_breakpoint method of target remote. */
10823
10824 bool
10825 remote_target::stopped_by_hw_breakpoint ()
10826 {
10827 struct thread_info *thread = inferior_thread ();
10828
10829 return (thread->priv != NULL
10830 && (get_remote_thread_info (thread)->stop_reason
10831 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10832 }
10833
10834 /* The to_supports_stopped_by_hw_breakpoint method of target
10835 remote. */
10836
10837 bool
10838 remote_target::supports_stopped_by_hw_breakpoint ()
10839 {
10840 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10841 }
10842
10843 bool
10844 remote_target::stopped_by_watchpoint ()
10845 {
10846 struct thread_info *thread = inferior_thread ();
10847
10848 return (thread->priv != NULL
10849 && (get_remote_thread_info (thread)->stop_reason
10850 == TARGET_STOPPED_BY_WATCHPOINT));
10851 }
10852
10853 bool
10854 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10855 {
10856 struct thread_info *thread = inferior_thread ();
10857
10858 if (thread->priv != NULL
10859 && (get_remote_thread_info (thread)->stop_reason
10860 == TARGET_STOPPED_BY_WATCHPOINT))
10861 {
10862 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10863 return true;
10864 }
10865
10866 return false;
10867 }
10868
10869
10870 int
10871 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10872 struct bp_target_info *bp_tgt)
10873 {
10874 CORE_ADDR addr = bp_tgt->reqstd_address;
10875 struct remote_state *rs;
10876 char *p, *endbuf;
10877 char *message;
10878
10879 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10880 return -1;
10881
10882 /* Make sure the remote is pointing at the right process, if
10883 necessary. */
10884 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10885 set_general_process ();
10886
10887 rs = get_remote_state ();
10888 p = rs->buf.data ();
10889 endbuf = p + get_remote_packet_size ();
10890
10891 *(p++) = 'Z';
10892 *(p++) = '1';
10893 *(p++) = ',';
10894
10895 addr = remote_address_masked (addr);
10896 p += hexnumstr (p, (ULONGEST) addr);
10897 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10898
10899 if (supports_evaluation_of_breakpoint_conditions ())
10900 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10901
10902 if (can_run_breakpoint_commands ())
10903 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10904
10905 putpkt (rs->buf);
10906 getpkt (&rs->buf, 0);
10907
10908 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10909 {
10910 case PACKET_ERROR:
10911 if (rs->buf[1] == '.')
10912 {
10913 message = strchr (&rs->buf[2], '.');
10914 if (message)
10915 error (_("Remote failure reply: %s"), message + 1);
10916 }
10917 return -1;
10918 case PACKET_UNKNOWN:
10919 return -1;
10920 case PACKET_OK:
10921 return 0;
10922 }
10923 internal_error (__FILE__, __LINE__,
10924 _("remote_insert_hw_breakpoint: reached end of function"));
10925 }
10926
10927
10928 int
10929 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10930 struct bp_target_info *bp_tgt)
10931 {
10932 CORE_ADDR addr;
10933 struct remote_state *rs = get_remote_state ();
10934 char *p = rs->buf.data ();
10935 char *endbuf = p + get_remote_packet_size ();
10936
10937 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10938 return -1;
10939
10940 /* Make sure the remote is pointing at the right process, if
10941 necessary. */
10942 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10943 set_general_process ();
10944
10945 *(p++) = 'z';
10946 *(p++) = '1';
10947 *(p++) = ',';
10948
10949 addr = remote_address_masked (bp_tgt->placed_address);
10950 p += hexnumstr (p, (ULONGEST) addr);
10951 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10952
10953 putpkt (rs->buf);
10954 getpkt (&rs->buf, 0);
10955
10956 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10957 {
10958 case PACKET_ERROR:
10959 case PACKET_UNKNOWN:
10960 return -1;
10961 case PACKET_OK:
10962 return 0;
10963 }
10964 internal_error (__FILE__, __LINE__,
10965 _("remote_remove_hw_breakpoint: reached end of function"));
10966 }
10967
10968 /* Verify memory using the "qCRC:" request. */
10969
10970 int
10971 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10972 {
10973 struct remote_state *rs = get_remote_state ();
10974 unsigned long host_crc, target_crc;
10975 char *tmp;
10976
10977 /* It doesn't make sense to use qCRC if the remote target is
10978 connected but not running. */
10979 if (target_has_execution ()
10980 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10981 {
10982 enum packet_result result;
10983
10984 /* Make sure the remote is pointing at the right process. */
10985 set_general_process ();
10986
10987 /* FIXME: assumes lma can fit into long. */
10988 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10989 (long) lma, (long) size);
10990 putpkt (rs->buf);
10991
10992 /* Be clever; compute the host_crc before waiting for target
10993 reply. */
10994 host_crc = xcrc32 (data, size, 0xffffffff);
10995
10996 getpkt (&rs->buf, 0);
10997
10998 result = packet_ok (rs->buf,
10999 &remote_protocol_packets[PACKET_qCRC]);
11000 if (result == PACKET_ERROR)
11001 return -1;
11002 else if (result == PACKET_OK)
11003 {
11004 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
11005 target_crc = target_crc * 16 + fromhex (*tmp);
11006
11007 return (host_crc == target_crc);
11008 }
11009 }
11010
11011 return simple_verify_memory (this, data, lma, size);
11012 }
11013
11014 /* compare-sections command
11015
11016 With no arguments, compares each loadable section in the exec bfd
11017 with the same memory range on the target, and reports mismatches.
11018 Useful for verifying the image on the target against the exec file. */
11019
11020 static void
11021 compare_sections_command (const char *args, int from_tty)
11022 {
11023 asection *s;
11024 const char *sectname;
11025 bfd_size_type size;
11026 bfd_vma lma;
11027 int matched = 0;
11028 int mismatched = 0;
11029 int res;
11030 int read_only = 0;
11031
11032 if (!current_program_space->exec_bfd ())
11033 error (_("command cannot be used without an exec file"));
11034
11035 if (args != NULL && strcmp (args, "-r") == 0)
11036 {
11037 read_only = 1;
11038 args = NULL;
11039 }
11040
11041 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
11042 {
11043 if (!(s->flags & SEC_LOAD))
11044 continue; /* Skip non-loadable section. */
11045
11046 if (read_only && (s->flags & SEC_READONLY) == 0)
11047 continue; /* Skip writeable sections */
11048
11049 size = bfd_section_size (s);
11050 if (size == 0)
11051 continue; /* Skip zero-length section. */
11052
11053 sectname = bfd_section_name (s);
11054 if (args && strcmp (args, sectname) != 0)
11055 continue; /* Not the section selected by user. */
11056
11057 matched = 1; /* Do this section. */
11058 lma = s->lma;
11059
11060 gdb::byte_vector sectdata (size);
11061 bfd_get_section_contents (current_program_space->exec_bfd (), s,
11062 sectdata.data (), 0, size);
11063
11064 res = target_verify_memory (sectdata.data (), lma, size);
11065
11066 if (res == -1)
11067 error (_("target memory fault, section %s, range %s -- %s"), sectname,
11068 paddress (target_gdbarch (), lma),
11069 paddress (target_gdbarch (), lma + size));
11070
11071 printf_filtered ("Section %s, range %s -- %s: ", sectname,
11072 paddress (target_gdbarch (), lma),
11073 paddress (target_gdbarch (), lma + size));
11074 if (res)
11075 printf_filtered ("matched.\n");
11076 else
11077 {
11078 printf_filtered ("MIS-MATCHED!\n");
11079 mismatched++;
11080 }
11081 }
11082 if (mismatched > 0)
11083 warning (_("One or more sections of the target image does not match\n\
11084 the loaded file\n"));
11085 if (args && !matched)
11086 printf_filtered (_("No loaded section named '%s'.\n"), args);
11087 }
11088
11089 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
11090 into remote target. The number of bytes written to the remote
11091 target is returned, or -1 for error. */
11092
11093 target_xfer_status
11094 remote_target::remote_write_qxfer (const char *object_name,
11095 const char *annex, const gdb_byte *writebuf,
11096 ULONGEST offset, LONGEST len,
11097 ULONGEST *xfered_len,
11098 struct packet_config *packet)
11099 {
11100 int i, buf_len;
11101 ULONGEST n;
11102 struct remote_state *rs = get_remote_state ();
11103 int max_size = get_memory_write_packet_size ();
11104
11105 if (packet_config_support (packet) == PACKET_DISABLE)
11106 return TARGET_XFER_E_IO;
11107
11108 /* Insert header. */
11109 i = snprintf (rs->buf.data (), max_size,
11110 "qXfer:%s:write:%s:%s:",
11111 object_name, annex ? annex : "",
11112 phex_nz (offset, sizeof offset));
11113 max_size -= (i + 1);
11114
11115 /* Escape as much data as fits into rs->buf. */
11116 buf_len = remote_escape_output
11117 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
11118
11119 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
11120 || getpkt_sane (&rs->buf, 0) < 0
11121 || packet_ok (rs->buf, packet) != PACKET_OK)
11122 return TARGET_XFER_E_IO;
11123
11124 unpack_varlen_hex (rs->buf.data (), &n);
11125
11126 *xfered_len = n;
11127 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11128 }
11129
11130 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
11131 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
11132 number of bytes read is returned, or 0 for EOF, or -1 for error.
11133 The number of bytes read may be less than LEN without indicating an
11134 EOF. PACKET is checked and updated to indicate whether the remote
11135 target supports this object. */
11136
11137 target_xfer_status
11138 remote_target::remote_read_qxfer (const char *object_name,
11139 const char *annex,
11140 gdb_byte *readbuf, ULONGEST offset,
11141 LONGEST len,
11142 ULONGEST *xfered_len,
11143 struct packet_config *packet)
11144 {
11145 struct remote_state *rs = get_remote_state ();
11146 LONGEST i, n, packet_len;
11147
11148 if (packet_config_support (packet) == PACKET_DISABLE)
11149 return TARGET_XFER_E_IO;
11150
11151 /* Check whether we've cached an end-of-object packet that matches
11152 this request. */
11153 if (rs->finished_object)
11154 {
11155 if (strcmp (object_name, rs->finished_object) == 0
11156 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11157 && offset == rs->finished_offset)
11158 return TARGET_XFER_EOF;
11159
11160
11161 /* Otherwise, we're now reading something different. Discard
11162 the cache. */
11163 xfree (rs->finished_object);
11164 xfree (rs->finished_annex);
11165 rs->finished_object = NULL;
11166 rs->finished_annex = NULL;
11167 }
11168
11169 /* Request only enough to fit in a single packet. The actual data
11170 may not, since we don't know how much of it will need to be escaped;
11171 the target is free to respond with slightly less data. We subtract
11172 five to account for the response type and the protocol frame. */
11173 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11174 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11175 "qXfer:%s:read:%s:%s,%s",
11176 object_name, annex ? annex : "",
11177 phex_nz (offset, sizeof offset),
11178 phex_nz (n, sizeof n));
11179 i = putpkt (rs->buf);
11180 if (i < 0)
11181 return TARGET_XFER_E_IO;
11182
11183 rs->buf[0] = '\0';
11184 packet_len = getpkt_sane (&rs->buf, 0);
11185 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11186 return TARGET_XFER_E_IO;
11187
11188 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11189 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11190
11191 /* 'm' means there is (or at least might be) more data after this
11192 batch. That does not make sense unless there's at least one byte
11193 of data in this reply. */
11194 if (rs->buf[0] == 'm' && packet_len == 1)
11195 error (_("Remote qXfer reply contained no data."));
11196
11197 /* Got some data. */
11198 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11199 packet_len - 1, readbuf, n);
11200
11201 /* 'l' is an EOF marker, possibly including a final block of data,
11202 or possibly empty. If we have the final block of a non-empty
11203 object, record this fact to bypass a subsequent partial read. */
11204 if (rs->buf[0] == 'l' && offset + i > 0)
11205 {
11206 rs->finished_object = xstrdup (object_name);
11207 rs->finished_annex = xstrdup (annex ? annex : "");
11208 rs->finished_offset = offset + i;
11209 }
11210
11211 if (i == 0)
11212 return TARGET_XFER_EOF;
11213 else
11214 {
11215 *xfered_len = i;
11216 return TARGET_XFER_OK;
11217 }
11218 }
11219
11220 enum target_xfer_status
11221 remote_target::xfer_partial (enum target_object object,
11222 const char *annex, gdb_byte *readbuf,
11223 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11224 ULONGEST *xfered_len)
11225 {
11226 struct remote_state *rs;
11227 int i;
11228 char *p2;
11229 char query_type;
11230 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11231
11232 set_remote_traceframe ();
11233 set_general_thread (inferior_ptid);
11234
11235 rs = get_remote_state ();
11236
11237 /* Handle memory using the standard memory routines. */
11238 if (object == TARGET_OBJECT_MEMORY)
11239 {
11240 /* If the remote target is connected but not running, we should
11241 pass this request down to a lower stratum (e.g. the executable
11242 file). */
11243 if (!target_has_execution ())
11244 return TARGET_XFER_EOF;
11245
11246 if (writebuf != NULL)
11247 return remote_write_bytes (offset, writebuf, len, unit_size,
11248 xfered_len);
11249 else
11250 return remote_read_bytes (offset, readbuf, len, unit_size,
11251 xfered_len);
11252 }
11253
11254 /* Handle extra signal info using qxfer packets. */
11255 if (object == TARGET_OBJECT_SIGNAL_INFO)
11256 {
11257 if (readbuf)
11258 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11259 xfered_len, &remote_protocol_packets
11260 [PACKET_qXfer_siginfo_read]);
11261 else
11262 return remote_write_qxfer ("siginfo", annex,
11263 writebuf, offset, len, xfered_len,
11264 &remote_protocol_packets
11265 [PACKET_qXfer_siginfo_write]);
11266 }
11267
11268 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11269 {
11270 if (readbuf)
11271 return remote_read_qxfer ("statictrace", annex,
11272 readbuf, offset, len, xfered_len,
11273 &remote_protocol_packets
11274 [PACKET_qXfer_statictrace_read]);
11275 else
11276 return TARGET_XFER_E_IO;
11277 }
11278
11279 /* Only handle flash writes. */
11280 if (writebuf != NULL)
11281 {
11282 switch (object)
11283 {
11284 case TARGET_OBJECT_FLASH:
11285 return remote_flash_write (offset, len, xfered_len,
11286 writebuf);
11287
11288 default:
11289 return TARGET_XFER_E_IO;
11290 }
11291 }
11292
11293 /* Map pre-existing objects onto letters. DO NOT do this for new
11294 objects!!! Instead specify new query packets. */
11295 switch (object)
11296 {
11297 case TARGET_OBJECT_AVR:
11298 query_type = 'R';
11299 break;
11300
11301 case TARGET_OBJECT_AUXV:
11302 gdb_assert (annex == NULL);
11303 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11304 xfered_len,
11305 &remote_protocol_packets[PACKET_qXfer_auxv]);
11306
11307 case TARGET_OBJECT_AVAILABLE_FEATURES:
11308 return remote_read_qxfer
11309 ("features", annex, readbuf, offset, len, xfered_len,
11310 &remote_protocol_packets[PACKET_qXfer_features]);
11311
11312 case TARGET_OBJECT_LIBRARIES:
11313 return remote_read_qxfer
11314 ("libraries", annex, readbuf, offset, len, xfered_len,
11315 &remote_protocol_packets[PACKET_qXfer_libraries]);
11316
11317 case TARGET_OBJECT_LIBRARIES_SVR4:
11318 return remote_read_qxfer
11319 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11320 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11321
11322 case TARGET_OBJECT_MEMORY_MAP:
11323 gdb_assert (annex == NULL);
11324 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11325 xfered_len,
11326 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11327
11328 case TARGET_OBJECT_OSDATA:
11329 /* Should only get here if we're connected. */
11330 gdb_assert (rs->remote_desc);
11331 return remote_read_qxfer
11332 ("osdata", annex, readbuf, offset, len, xfered_len,
11333 &remote_protocol_packets[PACKET_qXfer_osdata]);
11334
11335 case TARGET_OBJECT_THREADS:
11336 gdb_assert (annex == NULL);
11337 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11338 xfered_len,
11339 &remote_protocol_packets[PACKET_qXfer_threads]);
11340
11341 case TARGET_OBJECT_TRACEFRAME_INFO:
11342 gdb_assert (annex == NULL);
11343 return remote_read_qxfer
11344 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11345 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11346
11347 case TARGET_OBJECT_FDPIC:
11348 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11349 xfered_len,
11350 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11351
11352 case TARGET_OBJECT_OPENVMS_UIB:
11353 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11354 xfered_len,
11355 &remote_protocol_packets[PACKET_qXfer_uib]);
11356
11357 case TARGET_OBJECT_BTRACE:
11358 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11359 xfered_len,
11360 &remote_protocol_packets[PACKET_qXfer_btrace]);
11361
11362 case TARGET_OBJECT_BTRACE_CONF:
11363 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11364 len, xfered_len,
11365 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11366
11367 case TARGET_OBJECT_EXEC_FILE:
11368 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11369 len, xfered_len,
11370 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11371
11372 default:
11373 return TARGET_XFER_E_IO;
11374 }
11375
11376 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11377 large enough let the caller deal with it. */
11378 if (len < get_remote_packet_size ())
11379 return TARGET_XFER_E_IO;
11380 len = get_remote_packet_size ();
11381
11382 /* Except for querying the minimum buffer size, target must be open. */
11383 if (!rs->remote_desc)
11384 error (_("remote query is only available after target open"));
11385
11386 gdb_assert (annex != NULL);
11387 gdb_assert (readbuf != NULL);
11388
11389 p2 = rs->buf.data ();
11390 *p2++ = 'q';
11391 *p2++ = query_type;
11392
11393 /* We used one buffer char for the remote protocol q command and
11394 another for the query type. As the remote protocol encapsulation
11395 uses 4 chars plus one extra in case we are debugging
11396 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11397 string. */
11398 i = 0;
11399 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11400 {
11401 /* Bad caller may have sent forbidden characters. */
11402 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11403 *p2++ = annex[i];
11404 i++;
11405 }
11406 *p2 = '\0';
11407 gdb_assert (annex[i] == '\0');
11408
11409 i = putpkt (rs->buf);
11410 if (i < 0)
11411 return TARGET_XFER_E_IO;
11412
11413 getpkt (&rs->buf, 0);
11414 strcpy ((char *) readbuf, rs->buf.data ());
11415
11416 *xfered_len = strlen ((char *) readbuf);
11417 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11418 }
11419
11420 /* Implementation of to_get_memory_xfer_limit. */
11421
11422 ULONGEST
11423 remote_target::get_memory_xfer_limit ()
11424 {
11425 return get_memory_write_packet_size ();
11426 }
11427
11428 int
11429 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11430 const gdb_byte *pattern, ULONGEST pattern_len,
11431 CORE_ADDR *found_addrp)
11432 {
11433 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11434 struct remote_state *rs = get_remote_state ();
11435 int max_size = get_memory_write_packet_size ();
11436 struct packet_config *packet =
11437 &remote_protocol_packets[PACKET_qSearch_memory];
11438 /* Number of packet bytes used to encode the pattern;
11439 this could be more than PATTERN_LEN due to escape characters. */
11440 int escaped_pattern_len;
11441 /* Amount of pattern that was encodable in the packet. */
11442 int used_pattern_len;
11443 int i;
11444 int found;
11445 ULONGEST found_addr;
11446
11447 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11448 {
11449 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11450 == len);
11451 };
11452
11453 /* Don't go to the target if we don't have to. This is done before
11454 checking packet_config_support to avoid the possibility that a
11455 success for this edge case means the facility works in
11456 general. */
11457 if (pattern_len > search_space_len)
11458 return 0;
11459 if (pattern_len == 0)
11460 {
11461 *found_addrp = start_addr;
11462 return 1;
11463 }
11464
11465 /* If we already know the packet isn't supported, fall back to the simple
11466 way of searching memory. */
11467
11468 if (packet_config_support (packet) == PACKET_DISABLE)
11469 {
11470 /* Target doesn't provided special support, fall back and use the
11471 standard support (copy memory and do the search here). */
11472 return simple_search_memory (read_memory, start_addr, search_space_len,
11473 pattern, pattern_len, found_addrp);
11474 }
11475
11476 /* Make sure the remote is pointing at the right process. */
11477 set_general_process ();
11478
11479 /* Insert header. */
11480 i = snprintf (rs->buf.data (), max_size,
11481 "qSearch:memory:%s;%s;",
11482 phex_nz (start_addr, addr_size),
11483 phex_nz (search_space_len, sizeof (search_space_len)));
11484 max_size -= (i + 1);
11485
11486 /* Escape as much data as fits into rs->buf. */
11487 escaped_pattern_len =
11488 remote_escape_output (pattern, pattern_len, 1,
11489 (gdb_byte *) rs->buf.data () + i,
11490 &used_pattern_len, max_size);
11491
11492 /* Bail if the pattern is too large. */
11493 if (used_pattern_len != pattern_len)
11494 error (_("Pattern is too large to transmit to remote target."));
11495
11496 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11497 || getpkt_sane (&rs->buf, 0) < 0
11498 || packet_ok (rs->buf, packet) != PACKET_OK)
11499 {
11500 /* The request may not have worked because the command is not
11501 supported. If so, fall back to the simple way. */
11502 if (packet_config_support (packet) == PACKET_DISABLE)
11503 {
11504 return simple_search_memory (read_memory, start_addr, search_space_len,
11505 pattern, pattern_len, found_addrp);
11506 }
11507 return -1;
11508 }
11509
11510 if (rs->buf[0] == '0')
11511 found = 0;
11512 else if (rs->buf[0] == '1')
11513 {
11514 found = 1;
11515 if (rs->buf[1] != ',')
11516 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11517 unpack_varlen_hex (&rs->buf[2], &found_addr);
11518 *found_addrp = found_addr;
11519 }
11520 else
11521 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11522
11523 return found;
11524 }
11525
11526 void
11527 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11528 {
11529 struct remote_state *rs = get_remote_state ();
11530 char *p = rs->buf.data ();
11531
11532 if (!rs->remote_desc)
11533 error (_("remote rcmd is only available after target open"));
11534
11535 /* Send a NULL command across as an empty command. */
11536 if (command == NULL)
11537 command = "";
11538
11539 /* The query prefix. */
11540 strcpy (rs->buf.data (), "qRcmd,");
11541 p = strchr (rs->buf.data (), '\0');
11542
11543 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11544 > get_remote_packet_size ())
11545 error (_("\"monitor\" command ``%s'' is too long."), command);
11546
11547 /* Encode the actual command. */
11548 bin2hex ((const gdb_byte *) command, p, strlen (command));
11549
11550 if (putpkt (rs->buf) < 0)
11551 error (_("Communication problem with target."));
11552
11553 /* get/display the response */
11554 while (1)
11555 {
11556 char *buf;
11557
11558 /* XXX - see also remote_get_noisy_reply(). */
11559 QUIT; /* Allow user to bail out with ^C. */
11560 rs->buf[0] = '\0';
11561 if (getpkt_sane (&rs->buf, 0) == -1)
11562 {
11563 /* Timeout. Continue to (try to) read responses.
11564 This is better than stopping with an error, assuming the stub
11565 is still executing the (long) monitor command.
11566 If needed, the user can interrupt gdb using C-c, obtaining
11567 an effect similar to stop on timeout. */
11568 continue;
11569 }
11570 buf = rs->buf.data ();
11571 if (buf[0] == '\0')
11572 error (_("Target does not support this command."));
11573 if (buf[0] == 'O' && buf[1] != 'K')
11574 {
11575 remote_console_output (buf + 1); /* 'O' message from stub. */
11576 continue;
11577 }
11578 if (strcmp (buf, "OK") == 0)
11579 break;
11580 if (strlen (buf) == 3 && buf[0] == 'E'
11581 && isdigit (buf[1]) && isdigit (buf[2]))
11582 {
11583 error (_("Protocol error with Rcmd"));
11584 }
11585 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11586 {
11587 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11588
11589 fputc_unfiltered (c, outbuf);
11590 }
11591 break;
11592 }
11593 }
11594
11595 std::vector<mem_region>
11596 remote_target::memory_map ()
11597 {
11598 std::vector<mem_region> result;
11599 gdb::optional<gdb::char_vector> text
11600 = target_read_stralloc (current_inferior ()->top_target (),
11601 TARGET_OBJECT_MEMORY_MAP, NULL);
11602
11603 if (text)
11604 result = parse_memory_map (text->data ());
11605
11606 return result;
11607 }
11608
11609 static void
11610 packet_command (const char *args, int from_tty)
11611 {
11612 remote_target *remote = get_current_remote_target ();
11613
11614 if (remote == nullptr)
11615 error (_("command can only be used with remote target"));
11616
11617 remote->packet_command (args, from_tty);
11618 }
11619
11620 void
11621 remote_target::packet_command (const char *args, int from_tty)
11622 {
11623 if (!args)
11624 error (_("remote-packet command requires packet text as argument"));
11625
11626 puts_filtered ("sending: ");
11627 print_packet (args);
11628 puts_filtered ("\n");
11629 putpkt (args);
11630
11631 remote_state *rs = get_remote_state ();
11632
11633 getpkt (&rs->buf, 0);
11634 puts_filtered ("received: ");
11635 print_packet (rs->buf.data ());
11636 puts_filtered ("\n");
11637 }
11638
11639 #if 0
11640 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11641
11642 static void display_thread_info (struct gdb_ext_thread_info *info);
11643
11644 static void threadset_test_cmd (char *cmd, int tty);
11645
11646 static void threadalive_test (char *cmd, int tty);
11647
11648 static void threadlist_test_cmd (char *cmd, int tty);
11649
11650 int get_and_display_threadinfo (threadref *ref);
11651
11652 static void threadinfo_test_cmd (char *cmd, int tty);
11653
11654 static int thread_display_step (threadref *ref, void *context);
11655
11656 static void threadlist_update_test_cmd (char *cmd, int tty);
11657
11658 static void init_remote_threadtests (void);
11659
11660 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11661
11662 static void
11663 threadset_test_cmd (const char *cmd, int tty)
11664 {
11665 int sample_thread = SAMPLE_THREAD;
11666
11667 printf_filtered (_("Remote threadset test\n"));
11668 set_general_thread (sample_thread);
11669 }
11670
11671
11672 static void
11673 threadalive_test (const char *cmd, int tty)
11674 {
11675 int sample_thread = SAMPLE_THREAD;
11676 int pid = inferior_ptid.pid ();
11677 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11678
11679 if (remote_thread_alive (ptid))
11680 printf_filtered ("PASS: Thread alive test\n");
11681 else
11682 printf_filtered ("FAIL: Thread alive test\n");
11683 }
11684
11685 void output_threadid (char *title, threadref *ref);
11686
11687 void
11688 output_threadid (char *title, threadref *ref)
11689 {
11690 char hexid[20];
11691
11692 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11693 hexid[16] = 0;
11694 printf_filtered ("%s %s\n", title, (&hexid[0]));
11695 }
11696
11697 static void
11698 threadlist_test_cmd (const char *cmd, int tty)
11699 {
11700 int startflag = 1;
11701 threadref nextthread;
11702 int done, result_count;
11703 threadref threadlist[3];
11704
11705 printf_filtered ("Remote Threadlist test\n");
11706 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11707 &result_count, &threadlist[0]))
11708 printf_filtered ("FAIL: threadlist test\n");
11709 else
11710 {
11711 threadref *scan = threadlist;
11712 threadref *limit = scan + result_count;
11713
11714 while (scan < limit)
11715 output_threadid (" thread ", scan++);
11716 }
11717 }
11718
11719 void
11720 display_thread_info (struct gdb_ext_thread_info *info)
11721 {
11722 output_threadid ("Threadid: ", &info->threadid);
11723 printf_filtered ("Name: %s\n ", info->shortname);
11724 printf_filtered ("State: %s\n", info->display);
11725 printf_filtered ("other: %s\n\n", info->more_display);
11726 }
11727
11728 int
11729 get_and_display_threadinfo (threadref *ref)
11730 {
11731 int result;
11732 int set;
11733 struct gdb_ext_thread_info threadinfo;
11734
11735 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11736 | TAG_MOREDISPLAY | TAG_DISPLAY;
11737 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11738 display_thread_info (&threadinfo);
11739 return result;
11740 }
11741
11742 static void
11743 threadinfo_test_cmd (const char *cmd, int tty)
11744 {
11745 int athread = SAMPLE_THREAD;
11746 threadref thread;
11747 int set;
11748
11749 int_to_threadref (&thread, athread);
11750 printf_filtered ("Remote Threadinfo test\n");
11751 if (!get_and_display_threadinfo (&thread))
11752 printf_filtered ("FAIL cannot get thread info\n");
11753 }
11754
11755 static int
11756 thread_display_step (threadref *ref, void *context)
11757 {
11758 /* output_threadid(" threadstep ",ref); *//* simple test */
11759 return get_and_display_threadinfo (ref);
11760 }
11761
11762 static void
11763 threadlist_update_test_cmd (const char *cmd, int tty)
11764 {
11765 printf_filtered ("Remote Threadlist update test\n");
11766 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11767 }
11768
11769 static void
11770 init_remote_threadtests (void)
11771 {
11772 add_com ("tlist", class_obscure, threadlist_test_cmd,
11773 _("Fetch and print the remote list of "
11774 "thread identifiers, one pkt only."));
11775 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11776 _("Fetch and display info about one thread."));
11777 add_com ("tset", class_obscure, threadset_test_cmd,
11778 _("Test setting to a different thread."));
11779 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11780 _("Iterate through updating all remote thread info."));
11781 add_com ("talive", class_obscure, threadalive_test,
11782 _("Remote thread alive test."));
11783 }
11784
11785 #endif /* 0 */
11786
11787 /* Convert a thread ID to a string. */
11788
11789 std::string
11790 remote_target::pid_to_str (ptid_t ptid)
11791 {
11792 struct remote_state *rs = get_remote_state ();
11793
11794 if (ptid == null_ptid)
11795 return normal_pid_to_str (ptid);
11796 else if (ptid.is_pid ())
11797 {
11798 /* Printing an inferior target id. */
11799
11800 /* When multi-process extensions are off, there's no way in the
11801 remote protocol to know the remote process id, if there's any
11802 at all. There's one exception --- when we're connected with
11803 target extended-remote, and we manually attached to a process
11804 with "attach PID". We don't record anywhere a flag that
11805 allows us to distinguish that case from the case of
11806 connecting with extended-remote and the stub already being
11807 attached to a process, and reporting yes to qAttached, hence
11808 no smart special casing here. */
11809 if (!remote_multi_process_p (rs))
11810 return "Remote target";
11811
11812 return normal_pid_to_str (ptid);
11813 }
11814 else
11815 {
11816 if (magic_null_ptid == ptid)
11817 return "Thread <main>";
11818 else if (remote_multi_process_p (rs))
11819 if (ptid.lwp () == 0)
11820 return normal_pid_to_str (ptid);
11821 else
11822 return string_printf ("Thread %d.%ld",
11823 ptid.pid (), ptid.lwp ());
11824 else
11825 return string_printf ("Thread %ld", ptid.lwp ());
11826 }
11827 }
11828
11829 /* Get the address of the thread local variable in OBJFILE which is
11830 stored at OFFSET within the thread local storage for thread PTID. */
11831
11832 CORE_ADDR
11833 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11834 CORE_ADDR offset)
11835 {
11836 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11837 {
11838 struct remote_state *rs = get_remote_state ();
11839 char *p = rs->buf.data ();
11840 char *endp = p + get_remote_packet_size ();
11841 enum packet_result result;
11842
11843 strcpy (p, "qGetTLSAddr:");
11844 p += strlen (p);
11845 p = write_ptid (p, endp, ptid);
11846 *p++ = ',';
11847 p += hexnumstr (p, offset);
11848 *p++ = ',';
11849 p += hexnumstr (p, lm);
11850 *p++ = '\0';
11851
11852 putpkt (rs->buf);
11853 getpkt (&rs->buf, 0);
11854 result = packet_ok (rs->buf,
11855 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11856 if (result == PACKET_OK)
11857 {
11858 ULONGEST addr;
11859
11860 unpack_varlen_hex (rs->buf.data (), &addr);
11861 return addr;
11862 }
11863 else if (result == PACKET_UNKNOWN)
11864 throw_error (TLS_GENERIC_ERROR,
11865 _("Remote target doesn't support qGetTLSAddr packet"));
11866 else
11867 throw_error (TLS_GENERIC_ERROR,
11868 _("Remote target failed to process qGetTLSAddr request"));
11869 }
11870 else
11871 throw_error (TLS_GENERIC_ERROR,
11872 _("TLS not supported or disabled on this target"));
11873 /* Not reached. */
11874 return 0;
11875 }
11876
11877 /* Provide thread local base, i.e. Thread Information Block address.
11878 Returns 1 if ptid is found and thread_local_base is non zero. */
11879
11880 bool
11881 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11882 {
11883 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11884 {
11885 struct remote_state *rs = get_remote_state ();
11886 char *p = rs->buf.data ();
11887 char *endp = p + get_remote_packet_size ();
11888 enum packet_result result;
11889
11890 strcpy (p, "qGetTIBAddr:");
11891 p += strlen (p);
11892 p = write_ptid (p, endp, ptid);
11893 *p++ = '\0';
11894
11895 putpkt (rs->buf);
11896 getpkt (&rs->buf, 0);
11897 result = packet_ok (rs->buf,
11898 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11899 if (result == PACKET_OK)
11900 {
11901 ULONGEST val;
11902 unpack_varlen_hex (rs->buf.data (), &val);
11903 if (addr)
11904 *addr = (CORE_ADDR) val;
11905 return true;
11906 }
11907 else if (result == PACKET_UNKNOWN)
11908 error (_("Remote target doesn't support qGetTIBAddr packet"));
11909 else
11910 error (_("Remote target failed to process qGetTIBAddr request"));
11911 }
11912 else
11913 error (_("qGetTIBAddr not supported or disabled on this target"));
11914 /* Not reached. */
11915 return false;
11916 }
11917
11918 /* Support for inferring a target description based on the current
11919 architecture and the size of a 'g' packet. While the 'g' packet
11920 can have any size (since optional registers can be left off the
11921 end), some sizes are easily recognizable given knowledge of the
11922 approximate architecture. */
11923
11924 struct remote_g_packet_guess
11925 {
11926 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11927 : bytes (bytes_),
11928 tdesc (tdesc_)
11929 {
11930 }
11931
11932 int bytes;
11933 const struct target_desc *tdesc;
11934 };
11935
11936 struct remote_g_packet_data : public allocate_on_obstack
11937 {
11938 std::vector<remote_g_packet_guess> guesses;
11939 };
11940
11941 static struct gdbarch_data *remote_g_packet_data_handle;
11942
11943 static void *
11944 remote_g_packet_data_init (struct obstack *obstack)
11945 {
11946 return new (obstack) remote_g_packet_data;
11947 }
11948
11949 void
11950 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11951 const struct target_desc *tdesc)
11952 {
11953 struct remote_g_packet_data *data
11954 = ((struct remote_g_packet_data *)
11955 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11956
11957 gdb_assert (tdesc != NULL);
11958
11959 for (const remote_g_packet_guess &guess : data->guesses)
11960 if (guess.bytes == bytes)
11961 internal_error (__FILE__, __LINE__,
11962 _("Duplicate g packet description added for size %d"),
11963 bytes);
11964
11965 data->guesses.emplace_back (bytes, tdesc);
11966 }
11967
11968 /* Return true if remote_read_description would do anything on this target
11969 and architecture, false otherwise. */
11970
11971 static bool
11972 remote_read_description_p (struct target_ops *target)
11973 {
11974 struct remote_g_packet_data *data
11975 = ((struct remote_g_packet_data *)
11976 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11977
11978 return !data->guesses.empty ();
11979 }
11980
11981 const struct target_desc *
11982 remote_target::read_description ()
11983 {
11984 struct remote_g_packet_data *data
11985 = ((struct remote_g_packet_data *)
11986 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11987
11988 /* Do not try this during initial connection, when we do not know
11989 whether there is a running but stopped thread. */
11990 if (!target_has_execution () || inferior_ptid == null_ptid)
11991 return beneath ()->read_description ();
11992
11993 if (!data->guesses.empty ())
11994 {
11995 int bytes = send_g_packet ();
11996
11997 for (const remote_g_packet_guess &guess : data->guesses)
11998 if (guess.bytes == bytes)
11999 return guess.tdesc;
12000
12001 /* We discard the g packet. A minor optimization would be to
12002 hold on to it, and fill the register cache once we have selected
12003 an architecture, but it's too tricky to do safely. */
12004 }
12005
12006 return beneath ()->read_description ();
12007 }
12008
12009 /* Remote file transfer support. This is host-initiated I/O, not
12010 target-initiated; for target-initiated, see remote-fileio.c. */
12011
12012 /* If *LEFT is at least the length of STRING, copy STRING to
12013 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12014 decrease *LEFT. Otherwise raise an error. */
12015
12016 static void
12017 remote_buffer_add_string (char **buffer, int *left, const char *string)
12018 {
12019 int len = strlen (string);
12020
12021 if (len > *left)
12022 error (_("Packet too long for target."));
12023
12024 memcpy (*buffer, string, len);
12025 *buffer += len;
12026 *left -= len;
12027
12028 /* NUL-terminate the buffer as a convenience, if there is
12029 room. */
12030 if (*left)
12031 **buffer = '\0';
12032 }
12033
12034 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
12035 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12036 decrease *LEFT. Otherwise raise an error. */
12037
12038 static void
12039 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
12040 int len)
12041 {
12042 if (2 * len > *left)
12043 error (_("Packet too long for target."));
12044
12045 bin2hex (bytes, *buffer, len);
12046 *buffer += 2 * len;
12047 *left -= 2 * len;
12048
12049 /* NUL-terminate the buffer as a convenience, if there is
12050 room. */
12051 if (*left)
12052 **buffer = '\0';
12053 }
12054
12055 /* If *LEFT is large enough, convert VALUE to hex and add it to
12056 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12057 decrease *LEFT. Otherwise raise an error. */
12058
12059 static void
12060 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
12061 {
12062 int len = hexnumlen (value);
12063
12064 if (len > *left)
12065 error (_("Packet too long for target."));
12066
12067 hexnumstr (*buffer, value);
12068 *buffer += len;
12069 *left -= len;
12070
12071 /* NUL-terminate the buffer as a convenience, if there is
12072 room. */
12073 if (*left)
12074 **buffer = '\0';
12075 }
12076
12077 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
12078 value, *REMOTE_ERRNO to the remote error number or zero if none
12079 was included, and *ATTACHMENT to point to the start of the annex
12080 if any. The length of the packet isn't needed here; there may
12081 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
12082
12083 Return 0 if the packet could be parsed, -1 if it could not. If
12084 -1 is returned, the other variables may not be initialized. */
12085
12086 static int
12087 remote_hostio_parse_result (const char *buffer, int *retcode,
12088 int *remote_errno, const char **attachment)
12089 {
12090 char *p, *p2;
12091
12092 *remote_errno = 0;
12093 *attachment = NULL;
12094
12095 if (buffer[0] != 'F')
12096 return -1;
12097
12098 errno = 0;
12099 *retcode = strtol (&buffer[1], &p, 16);
12100 if (errno != 0 || p == &buffer[1])
12101 return -1;
12102
12103 /* Check for ",errno". */
12104 if (*p == ',')
12105 {
12106 errno = 0;
12107 *remote_errno = strtol (p + 1, &p2, 16);
12108 if (errno != 0 || p + 1 == p2)
12109 return -1;
12110 p = p2;
12111 }
12112
12113 /* Check for ";attachment". If there is no attachment, the
12114 packet should end here. */
12115 if (*p == ';')
12116 {
12117 *attachment = p + 1;
12118 return 0;
12119 }
12120 else if (*p == '\0')
12121 return 0;
12122 else
12123 return -1;
12124 }
12125
12126 /* Send a prepared I/O packet to the target and read its response.
12127 The prepared packet is in the global RS->BUF before this function
12128 is called, and the answer is there when we return.
12129
12130 COMMAND_BYTES is the length of the request to send, which may include
12131 binary data. WHICH_PACKET is the packet configuration to check
12132 before attempting a packet. If an error occurs, *REMOTE_ERRNO
12133 is set to the error number and -1 is returned. Otherwise the value
12134 returned by the function is returned.
12135
12136 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12137 attachment is expected; an error will be reported if there's a
12138 mismatch. If one is found, *ATTACHMENT will be set to point into
12139 the packet buffer and *ATTACHMENT_LEN will be set to the
12140 attachment's length. */
12141
12142 int
12143 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12144 int *remote_errno, const char **attachment,
12145 int *attachment_len)
12146 {
12147 struct remote_state *rs = get_remote_state ();
12148 int ret, bytes_read;
12149 const char *attachment_tmp;
12150
12151 if (packet_support (which_packet) == PACKET_DISABLE)
12152 {
12153 *remote_errno = FILEIO_ENOSYS;
12154 return -1;
12155 }
12156
12157 putpkt_binary (rs->buf.data (), command_bytes);
12158 bytes_read = getpkt_sane (&rs->buf, 0);
12159
12160 /* If it timed out, something is wrong. Don't try to parse the
12161 buffer. */
12162 if (bytes_read < 0)
12163 {
12164 *remote_errno = FILEIO_EINVAL;
12165 return -1;
12166 }
12167
12168 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12169 {
12170 case PACKET_ERROR:
12171 *remote_errno = FILEIO_EINVAL;
12172 return -1;
12173 case PACKET_UNKNOWN:
12174 *remote_errno = FILEIO_ENOSYS;
12175 return -1;
12176 case PACKET_OK:
12177 break;
12178 }
12179
12180 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12181 &attachment_tmp))
12182 {
12183 *remote_errno = FILEIO_EINVAL;
12184 return -1;
12185 }
12186
12187 /* Make sure we saw an attachment if and only if we expected one. */
12188 if ((attachment_tmp == NULL && attachment != NULL)
12189 || (attachment_tmp != NULL && attachment == NULL))
12190 {
12191 *remote_errno = FILEIO_EINVAL;
12192 return -1;
12193 }
12194
12195 /* If an attachment was found, it must point into the packet buffer;
12196 work out how many bytes there were. */
12197 if (attachment_tmp != NULL)
12198 {
12199 *attachment = attachment_tmp;
12200 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12201 }
12202
12203 return ret;
12204 }
12205
12206 /* See declaration.h. */
12207
12208 void
12209 readahead_cache::invalidate ()
12210 {
12211 this->fd = -1;
12212 }
12213
12214 /* See declaration.h. */
12215
12216 void
12217 readahead_cache::invalidate_fd (int fd)
12218 {
12219 if (this->fd == fd)
12220 this->fd = -1;
12221 }
12222
12223 /* Set the filesystem remote_hostio functions that take FILENAME
12224 arguments will use. Return 0 on success, or -1 if an error
12225 occurs (and set *REMOTE_ERRNO). */
12226
12227 int
12228 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12229 int *remote_errno)
12230 {
12231 struct remote_state *rs = get_remote_state ();
12232 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12233 char *p = rs->buf.data ();
12234 int left = get_remote_packet_size () - 1;
12235 char arg[9];
12236 int ret;
12237
12238 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12239 return 0;
12240
12241 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12242 return 0;
12243
12244 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12245
12246 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12247 remote_buffer_add_string (&p, &left, arg);
12248
12249 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12250 remote_errno, NULL, NULL);
12251
12252 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12253 return 0;
12254
12255 if (ret == 0)
12256 rs->fs_pid = required_pid;
12257
12258 return ret;
12259 }
12260
12261 /* Implementation of to_fileio_open. */
12262
12263 int
12264 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12265 int flags, int mode, int warn_if_slow,
12266 int *remote_errno)
12267 {
12268 struct remote_state *rs = get_remote_state ();
12269 char *p = rs->buf.data ();
12270 int left = get_remote_packet_size () - 1;
12271
12272 if (warn_if_slow)
12273 {
12274 static int warning_issued = 0;
12275
12276 printf_unfiltered (_("Reading %s from remote target...\n"),
12277 filename);
12278
12279 if (!warning_issued)
12280 {
12281 warning (_("File transfers from remote targets can be slow."
12282 " Use \"set sysroot\" to access files locally"
12283 " instead."));
12284 warning_issued = 1;
12285 }
12286 }
12287
12288 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12289 return -1;
12290
12291 remote_buffer_add_string (&p, &left, "vFile:open:");
12292
12293 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12294 strlen (filename));
12295 remote_buffer_add_string (&p, &left, ",");
12296
12297 remote_buffer_add_int (&p, &left, flags);
12298 remote_buffer_add_string (&p, &left, ",");
12299
12300 remote_buffer_add_int (&p, &left, mode);
12301
12302 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12303 remote_errno, NULL, NULL);
12304 }
12305
12306 int
12307 remote_target::fileio_open (struct inferior *inf, const char *filename,
12308 int flags, int mode, int warn_if_slow,
12309 int *remote_errno)
12310 {
12311 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12312 remote_errno);
12313 }
12314
12315 /* Implementation of to_fileio_pwrite. */
12316
12317 int
12318 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12319 ULONGEST offset, int *remote_errno)
12320 {
12321 struct remote_state *rs = get_remote_state ();
12322 char *p = rs->buf.data ();
12323 int left = get_remote_packet_size ();
12324 int out_len;
12325
12326 rs->readahead_cache.invalidate_fd (fd);
12327
12328 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12329
12330 remote_buffer_add_int (&p, &left, fd);
12331 remote_buffer_add_string (&p, &left, ",");
12332
12333 remote_buffer_add_int (&p, &left, offset);
12334 remote_buffer_add_string (&p, &left, ",");
12335
12336 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12337 (get_remote_packet_size ()
12338 - (p - rs->buf.data ())));
12339
12340 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12341 remote_errno, NULL, NULL);
12342 }
12343
12344 int
12345 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12346 ULONGEST offset, int *remote_errno)
12347 {
12348 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12349 }
12350
12351 /* Helper for the implementation of to_fileio_pread. Read the file
12352 from the remote side with vFile:pread. */
12353
12354 int
12355 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12356 ULONGEST offset, int *remote_errno)
12357 {
12358 struct remote_state *rs = get_remote_state ();
12359 char *p = rs->buf.data ();
12360 const char *attachment;
12361 int left = get_remote_packet_size ();
12362 int ret, attachment_len;
12363 int read_len;
12364
12365 remote_buffer_add_string (&p, &left, "vFile:pread:");
12366
12367 remote_buffer_add_int (&p, &left, fd);
12368 remote_buffer_add_string (&p, &left, ",");
12369
12370 remote_buffer_add_int (&p, &left, len);
12371 remote_buffer_add_string (&p, &left, ",");
12372
12373 remote_buffer_add_int (&p, &left, offset);
12374
12375 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12376 remote_errno, &attachment,
12377 &attachment_len);
12378
12379 if (ret < 0)
12380 return ret;
12381
12382 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12383 read_buf, len);
12384 if (read_len != ret)
12385 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12386
12387 return ret;
12388 }
12389
12390 /* See declaration.h. */
12391
12392 int
12393 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12394 ULONGEST offset)
12395 {
12396 if (this->fd == fd
12397 && this->offset <= offset
12398 && offset < this->offset + this->bufsize)
12399 {
12400 ULONGEST max = this->offset + this->bufsize;
12401
12402 if (offset + len > max)
12403 len = max - offset;
12404
12405 memcpy (read_buf, this->buf + offset - this->offset, len);
12406 return len;
12407 }
12408
12409 return 0;
12410 }
12411
12412 /* Implementation of to_fileio_pread. */
12413
12414 int
12415 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12416 ULONGEST offset, int *remote_errno)
12417 {
12418 int ret;
12419 struct remote_state *rs = get_remote_state ();
12420 readahead_cache *cache = &rs->readahead_cache;
12421
12422 ret = cache->pread (fd, read_buf, len, offset);
12423 if (ret > 0)
12424 {
12425 cache->hit_count++;
12426
12427 remote_debug_printf ("readahead cache hit %s",
12428 pulongest (cache->hit_count));
12429 return ret;
12430 }
12431
12432 cache->miss_count++;
12433
12434 remote_debug_printf ("readahead cache miss %s",
12435 pulongest (cache->miss_count));
12436
12437 cache->fd = fd;
12438 cache->offset = offset;
12439 cache->bufsize = get_remote_packet_size ();
12440 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12441
12442 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12443 cache->offset, remote_errno);
12444 if (ret <= 0)
12445 {
12446 cache->invalidate_fd (fd);
12447 return ret;
12448 }
12449
12450 cache->bufsize = ret;
12451 return cache->pread (fd, read_buf, len, offset);
12452 }
12453
12454 int
12455 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12456 ULONGEST offset, int *remote_errno)
12457 {
12458 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12459 }
12460
12461 /* Implementation of to_fileio_close. */
12462
12463 int
12464 remote_target::remote_hostio_close (int fd, int *remote_errno)
12465 {
12466 struct remote_state *rs = get_remote_state ();
12467 char *p = rs->buf.data ();
12468 int left = get_remote_packet_size () - 1;
12469
12470 rs->readahead_cache.invalidate_fd (fd);
12471
12472 remote_buffer_add_string (&p, &left, "vFile:close:");
12473
12474 remote_buffer_add_int (&p, &left, fd);
12475
12476 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12477 remote_errno, NULL, NULL);
12478 }
12479
12480 int
12481 remote_target::fileio_close (int fd, int *remote_errno)
12482 {
12483 return remote_hostio_close (fd, remote_errno);
12484 }
12485
12486 /* Implementation of to_fileio_unlink. */
12487
12488 int
12489 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12490 int *remote_errno)
12491 {
12492 struct remote_state *rs = get_remote_state ();
12493 char *p = rs->buf.data ();
12494 int left = get_remote_packet_size () - 1;
12495
12496 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12497 return -1;
12498
12499 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12500
12501 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12502 strlen (filename));
12503
12504 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12505 remote_errno, NULL, NULL);
12506 }
12507
12508 int
12509 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12510 int *remote_errno)
12511 {
12512 return remote_hostio_unlink (inf, filename, remote_errno);
12513 }
12514
12515 /* Implementation of to_fileio_readlink. */
12516
12517 gdb::optional<std::string>
12518 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12519 int *remote_errno)
12520 {
12521 struct remote_state *rs = get_remote_state ();
12522 char *p = rs->buf.data ();
12523 const char *attachment;
12524 int left = get_remote_packet_size ();
12525 int len, attachment_len;
12526 int read_len;
12527
12528 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12529 return {};
12530
12531 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12532
12533 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12534 strlen (filename));
12535
12536 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12537 remote_errno, &attachment,
12538 &attachment_len);
12539
12540 if (len < 0)
12541 return {};
12542
12543 std::string ret (len, '\0');
12544
12545 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12546 (gdb_byte *) &ret[0], len);
12547 if (read_len != len)
12548 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12549
12550 return ret;
12551 }
12552
12553 /* Implementation of to_fileio_fstat. */
12554
12555 int
12556 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12557 {
12558 struct remote_state *rs = get_remote_state ();
12559 char *p = rs->buf.data ();
12560 int left = get_remote_packet_size ();
12561 int attachment_len, ret;
12562 const char *attachment;
12563 struct fio_stat fst;
12564 int read_len;
12565
12566 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12567
12568 remote_buffer_add_int (&p, &left, fd);
12569
12570 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12571 remote_errno, &attachment,
12572 &attachment_len);
12573 if (ret < 0)
12574 {
12575 if (*remote_errno != FILEIO_ENOSYS)
12576 return ret;
12577
12578 /* Strictly we should return -1, ENOSYS here, but when
12579 "set sysroot remote:" was implemented in August 2008
12580 BFD's need for a stat function was sidestepped with
12581 this hack. This was not remedied until March 2015
12582 so we retain the previous behavior to avoid breaking
12583 compatibility.
12584
12585 Note that the memset is a March 2015 addition; older
12586 GDBs set st_size *and nothing else* so the structure
12587 would have garbage in all other fields. This might
12588 break something but retaining the previous behavior
12589 here would be just too wrong. */
12590
12591 memset (st, 0, sizeof (struct stat));
12592 st->st_size = INT_MAX;
12593 return 0;
12594 }
12595
12596 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12597 (gdb_byte *) &fst, sizeof (fst));
12598
12599 if (read_len != ret)
12600 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12601
12602 if (read_len != sizeof (fst))
12603 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12604 read_len, (int) sizeof (fst));
12605
12606 remote_fileio_to_host_stat (&fst, st);
12607
12608 return 0;
12609 }
12610
12611 /* Implementation of to_filesystem_is_local. */
12612
12613 bool
12614 remote_target::filesystem_is_local ()
12615 {
12616 /* Valgrind GDB presents itself as a remote target but works
12617 on the local filesystem: it does not implement remote get
12618 and users are not expected to set a sysroot. To handle
12619 this case we treat the remote filesystem as local if the
12620 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12621 does not support vFile:open. */
12622 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12623 {
12624 enum packet_support ps = packet_support (PACKET_vFile_open);
12625
12626 if (ps == PACKET_SUPPORT_UNKNOWN)
12627 {
12628 int fd, remote_errno;
12629
12630 /* Try opening a file to probe support. The supplied
12631 filename is irrelevant, we only care about whether
12632 the stub recognizes the packet or not. */
12633 fd = remote_hostio_open (NULL, "just probing",
12634 FILEIO_O_RDONLY, 0700, 0,
12635 &remote_errno);
12636
12637 if (fd >= 0)
12638 remote_hostio_close (fd, &remote_errno);
12639
12640 ps = packet_support (PACKET_vFile_open);
12641 }
12642
12643 if (ps == PACKET_DISABLE)
12644 {
12645 static int warning_issued = 0;
12646
12647 if (!warning_issued)
12648 {
12649 warning (_("remote target does not support file"
12650 " transfer, attempting to access files"
12651 " from local filesystem."));
12652 warning_issued = 1;
12653 }
12654
12655 return true;
12656 }
12657 }
12658
12659 return false;
12660 }
12661
12662 static int
12663 remote_fileio_errno_to_host (int errnum)
12664 {
12665 switch (errnum)
12666 {
12667 case FILEIO_EPERM:
12668 return EPERM;
12669 case FILEIO_ENOENT:
12670 return ENOENT;
12671 case FILEIO_EINTR:
12672 return EINTR;
12673 case FILEIO_EIO:
12674 return EIO;
12675 case FILEIO_EBADF:
12676 return EBADF;
12677 case FILEIO_EACCES:
12678 return EACCES;
12679 case FILEIO_EFAULT:
12680 return EFAULT;
12681 case FILEIO_EBUSY:
12682 return EBUSY;
12683 case FILEIO_EEXIST:
12684 return EEXIST;
12685 case FILEIO_ENODEV:
12686 return ENODEV;
12687 case FILEIO_ENOTDIR:
12688 return ENOTDIR;
12689 case FILEIO_EISDIR:
12690 return EISDIR;
12691 case FILEIO_EINVAL:
12692 return EINVAL;
12693 case FILEIO_ENFILE:
12694 return ENFILE;
12695 case FILEIO_EMFILE:
12696 return EMFILE;
12697 case FILEIO_EFBIG:
12698 return EFBIG;
12699 case FILEIO_ENOSPC:
12700 return ENOSPC;
12701 case FILEIO_ESPIPE:
12702 return ESPIPE;
12703 case FILEIO_EROFS:
12704 return EROFS;
12705 case FILEIO_ENOSYS:
12706 return ENOSYS;
12707 case FILEIO_ENAMETOOLONG:
12708 return ENAMETOOLONG;
12709 }
12710 return -1;
12711 }
12712
12713 static char *
12714 remote_hostio_error (int errnum)
12715 {
12716 int host_error = remote_fileio_errno_to_host (errnum);
12717
12718 if (host_error == -1)
12719 error (_("Unknown remote I/O error %d"), errnum);
12720 else
12721 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12722 }
12723
12724 /* A RAII wrapper around a remote file descriptor. */
12725
12726 class scoped_remote_fd
12727 {
12728 public:
12729 scoped_remote_fd (remote_target *remote, int fd)
12730 : m_remote (remote), m_fd (fd)
12731 {
12732 }
12733
12734 ~scoped_remote_fd ()
12735 {
12736 if (m_fd != -1)
12737 {
12738 try
12739 {
12740 int remote_errno;
12741 m_remote->remote_hostio_close (m_fd, &remote_errno);
12742 }
12743 catch (...)
12744 {
12745 /* Swallow exception before it escapes the dtor. If
12746 something goes wrong, likely the connection is gone,
12747 and there's nothing else that can be done. */
12748 }
12749 }
12750 }
12751
12752 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12753
12754 /* Release ownership of the file descriptor, and return it. */
12755 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12756 {
12757 int fd = m_fd;
12758 m_fd = -1;
12759 return fd;
12760 }
12761
12762 /* Return the owned file descriptor. */
12763 int get () const noexcept
12764 {
12765 return m_fd;
12766 }
12767
12768 private:
12769 /* The remote target. */
12770 remote_target *m_remote;
12771
12772 /* The owned remote I/O file descriptor. */
12773 int m_fd;
12774 };
12775
12776 void
12777 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12778 {
12779 remote_target *remote = get_current_remote_target ();
12780
12781 if (remote == nullptr)
12782 error (_("command can only be used with remote target"));
12783
12784 remote->remote_file_put (local_file, remote_file, from_tty);
12785 }
12786
12787 void
12788 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12789 int from_tty)
12790 {
12791 int retcode, remote_errno, bytes, io_size;
12792 int bytes_in_buffer;
12793 int saw_eof;
12794 ULONGEST offset;
12795
12796 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12797 if (file == NULL)
12798 perror_with_name (local_file);
12799
12800 scoped_remote_fd fd
12801 (this, remote_hostio_open (NULL,
12802 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12803 | FILEIO_O_TRUNC),
12804 0700, 0, &remote_errno));
12805 if (fd.get () == -1)
12806 remote_hostio_error (remote_errno);
12807
12808 /* Send up to this many bytes at once. They won't all fit in the
12809 remote packet limit, so we'll transfer slightly fewer. */
12810 io_size = get_remote_packet_size ();
12811 gdb::byte_vector buffer (io_size);
12812
12813 bytes_in_buffer = 0;
12814 saw_eof = 0;
12815 offset = 0;
12816 while (bytes_in_buffer || !saw_eof)
12817 {
12818 if (!saw_eof)
12819 {
12820 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12821 io_size - bytes_in_buffer,
12822 file.get ());
12823 if (bytes == 0)
12824 {
12825 if (ferror (file.get ()))
12826 error (_("Error reading %s."), local_file);
12827 else
12828 {
12829 /* EOF. Unless there is something still in the
12830 buffer from the last iteration, we are done. */
12831 saw_eof = 1;
12832 if (bytes_in_buffer == 0)
12833 break;
12834 }
12835 }
12836 }
12837 else
12838 bytes = 0;
12839
12840 bytes += bytes_in_buffer;
12841 bytes_in_buffer = 0;
12842
12843 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12844 offset, &remote_errno);
12845
12846 if (retcode < 0)
12847 remote_hostio_error (remote_errno);
12848 else if (retcode == 0)
12849 error (_("Remote write of %d bytes returned 0!"), bytes);
12850 else if (retcode < bytes)
12851 {
12852 /* Short write. Save the rest of the read data for the next
12853 write. */
12854 bytes_in_buffer = bytes - retcode;
12855 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12856 }
12857
12858 offset += retcode;
12859 }
12860
12861 if (remote_hostio_close (fd.release (), &remote_errno))
12862 remote_hostio_error (remote_errno);
12863
12864 if (from_tty)
12865 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12866 }
12867
12868 void
12869 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12870 {
12871 remote_target *remote = get_current_remote_target ();
12872
12873 if (remote == nullptr)
12874 error (_("command can only be used with remote target"));
12875
12876 remote->remote_file_get (remote_file, local_file, from_tty);
12877 }
12878
12879 void
12880 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12881 int from_tty)
12882 {
12883 int remote_errno, bytes, io_size;
12884 ULONGEST offset;
12885
12886 scoped_remote_fd fd
12887 (this, remote_hostio_open (NULL,
12888 remote_file, FILEIO_O_RDONLY, 0, 0,
12889 &remote_errno));
12890 if (fd.get () == -1)
12891 remote_hostio_error (remote_errno);
12892
12893 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12894 if (file == NULL)
12895 perror_with_name (local_file);
12896
12897 /* Send up to this many bytes at once. They won't all fit in the
12898 remote packet limit, so we'll transfer slightly fewer. */
12899 io_size = get_remote_packet_size ();
12900 gdb::byte_vector buffer (io_size);
12901
12902 offset = 0;
12903 while (1)
12904 {
12905 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12906 &remote_errno);
12907 if (bytes == 0)
12908 /* Success, but no bytes, means end-of-file. */
12909 break;
12910 if (bytes == -1)
12911 remote_hostio_error (remote_errno);
12912
12913 offset += bytes;
12914
12915 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12916 if (bytes == 0)
12917 perror_with_name (local_file);
12918 }
12919
12920 if (remote_hostio_close (fd.release (), &remote_errno))
12921 remote_hostio_error (remote_errno);
12922
12923 if (from_tty)
12924 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12925 }
12926
12927 void
12928 remote_file_delete (const char *remote_file, int from_tty)
12929 {
12930 remote_target *remote = get_current_remote_target ();
12931
12932 if (remote == nullptr)
12933 error (_("command can only be used with remote target"));
12934
12935 remote->remote_file_delete (remote_file, from_tty);
12936 }
12937
12938 void
12939 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12940 {
12941 int retcode, remote_errno;
12942
12943 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12944 if (retcode == -1)
12945 remote_hostio_error (remote_errno);
12946
12947 if (from_tty)
12948 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12949 }
12950
12951 static void
12952 remote_put_command (const char *args, int from_tty)
12953 {
12954 if (args == NULL)
12955 error_no_arg (_("file to put"));
12956
12957 gdb_argv argv (args);
12958 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12959 error (_("Invalid parameters to remote put"));
12960
12961 remote_file_put (argv[0], argv[1], from_tty);
12962 }
12963
12964 static void
12965 remote_get_command (const char *args, int from_tty)
12966 {
12967 if (args == NULL)
12968 error_no_arg (_("file to get"));
12969
12970 gdb_argv argv (args);
12971 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12972 error (_("Invalid parameters to remote get"));
12973
12974 remote_file_get (argv[0], argv[1], from_tty);
12975 }
12976
12977 static void
12978 remote_delete_command (const char *args, int from_tty)
12979 {
12980 if (args == NULL)
12981 error_no_arg (_("file to delete"));
12982
12983 gdb_argv argv (args);
12984 if (argv[0] == NULL || argv[1] != NULL)
12985 error (_("Invalid parameters to remote delete"));
12986
12987 remote_file_delete (argv[0], from_tty);
12988 }
12989
12990 bool
12991 remote_target::can_execute_reverse ()
12992 {
12993 if (packet_support (PACKET_bs) == PACKET_ENABLE
12994 || packet_support (PACKET_bc) == PACKET_ENABLE)
12995 return true;
12996 else
12997 return false;
12998 }
12999
13000 bool
13001 remote_target::supports_non_stop ()
13002 {
13003 return true;
13004 }
13005
13006 bool
13007 remote_target::supports_disable_randomization ()
13008 {
13009 /* Only supported in extended mode. */
13010 return false;
13011 }
13012
13013 bool
13014 remote_target::supports_multi_process ()
13015 {
13016 struct remote_state *rs = get_remote_state ();
13017
13018 return remote_multi_process_p (rs);
13019 }
13020
13021 static int
13022 remote_supports_cond_tracepoints ()
13023 {
13024 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
13025 }
13026
13027 bool
13028 remote_target::supports_evaluation_of_breakpoint_conditions ()
13029 {
13030 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
13031 }
13032
13033 static int
13034 remote_supports_fast_tracepoints ()
13035 {
13036 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
13037 }
13038
13039 static int
13040 remote_supports_static_tracepoints ()
13041 {
13042 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
13043 }
13044
13045 static int
13046 remote_supports_install_in_trace ()
13047 {
13048 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
13049 }
13050
13051 bool
13052 remote_target::supports_enable_disable_tracepoint ()
13053 {
13054 return (packet_support (PACKET_EnableDisableTracepoints_feature)
13055 == PACKET_ENABLE);
13056 }
13057
13058 bool
13059 remote_target::supports_string_tracing ()
13060 {
13061 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
13062 }
13063
13064 bool
13065 remote_target::can_run_breakpoint_commands ()
13066 {
13067 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
13068 }
13069
13070 void
13071 remote_target::trace_init ()
13072 {
13073 struct remote_state *rs = get_remote_state ();
13074
13075 putpkt ("QTinit");
13076 remote_get_noisy_reply ();
13077 if (strcmp (rs->buf.data (), "OK") != 0)
13078 error (_("Target does not support this command."));
13079 }
13080
13081 /* Recursive routine to walk through command list including loops, and
13082 download packets for each command. */
13083
13084 void
13085 remote_target::remote_download_command_source (int num, ULONGEST addr,
13086 struct command_line *cmds)
13087 {
13088 struct remote_state *rs = get_remote_state ();
13089 struct command_line *cmd;
13090
13091 for (cmd = cmds; cmd; cmd = cmd->next)
13092 {
13093 QUIT; /* Allow user to bail out with ^C. */
13094 strcpy (rs->buf.data (), "QTDPsrc:");
13095 encode_source_string (num, addr, "cmd", cmd->line,
13096 rs->buf.data () + strlen (rs->buf.data ()),
13097 rs->buf.size () - strlen (rs->buf.data ()));
13098 putpkt (rs->buf);
13099 remote_get_noisy_reply ();
13100 if (strcmp (rs->buf.data (), "OK"))
13101 warning (_("Target does not support source download."));
13102
13103 if (cmd->control_type == while_control
13104 || cmd->control_type == while_stepping_control)
13105 {
13106 remote_download_command_source (num, addr, cmd->body_list_0.get ());
13107
13108 QUIT; /* Allow user to bail out with ^C. */
13109 strcpy (rs->buf.data (), "QTDPsrc:");
13110 encode_source_string (num, addr, "cmd", "end",
13111 rs->buf.data () + strlen (rs->buf.data ()),
13112 rs->buf.size () - strlen (rs->buf.data ()));
13113 putpkt (rs->buf);
13114 remote_get_noisy_reply ();
13115 if (strcmp (rs->buf.data (), "OK"))
13116 warning (_("Target does not support source download."));
13117 }
13118 }
13119 }
13120
13121 void
13122 remote_target::download_tracepoint (struct bp_location *loc)
13123 {
13124 CORE_ADDR tpaddr;
13125 char addrbuf[40];
13126 std::vector<std::string> tdp_actions;
13127 std::vector<std::string> stepping_actions;
13128 char *pkt;
13129 struct breakpoint *b = loc->owner;
13130 struct tracepoint *t = (struct tracepoint *) b;
13131 struct remote_state *rs = get_remote_state ();
13132 int ret;
13133 const char *err_msg = _("Tracepoint packet too large for target.");
13134 size_t size_left;
13135
13136 /* We use a buffer other than rs->buf because we'll build strings
13137 across multiple statements, and other statements in between could
13138 modify rs->buf. */
13139 gdb::char_vector buf (get_remote_packet_size ());
13140
13141 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13142
13143 tpaddr = loc->address;
13144 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13145 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13146 b->number, addrbuf, /* address */
13147 (b->enable_state == bp_enabled ? 'E' : 'D'),
13148 t->step_count, t->pass_count);
13149
13150 if (ret < 0 || ret >= buf.size ())
13151 error ("%s", err_msg);
13152
13153 /* Fast tracepoints are mostly handled by the target, but we can
13154 tell the target how big of an instruction block should be moved
13155 around. */
13156 if (b->type == bp_fast_tracepoint)
13157 {
13158 /* Only test for support at download time; we may not know
13159 target capabilities at definition time. */
13160 if (remote_supports_fast_tracepoints ())
13161 {
13162 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13163 NULL))
13164 {
13165 size_left = buf.size () - strlen (buf.data ());
13166 ret = snprintf (buf.data () + strlen (buf.data ()),
13167 size_left, ":F%x",
13168 gdb_insn_length (loc->gdbarch, tpaddr));
13169
13170 if (ret < 0 || ret >= size_left)
13171 error ("%s", err_msg);
13172 }
13173 else
13174 /* If it passed validation at definition but fails now,
13175 something is very wrong. */
13176 internal_error (__FILE__, __LINE__,
13177 _("Fast tracepoint not "
13178 "valid during download"));
13179 }
13180 else
13181 /* Fast tracepoints are functionally identical to regular
13182 tracepoints, so don't take lack of support as a reason to
13183 give up on the trace run. */
13184 warning (_("Target does not support fast tracepoints, "
13185 "downloading %d as regular tracepoint"), b->number);
13186 }
13187 else if (b->type == bp_static_tracepoint)
13188 {
13189 /* Only test for support at download time; we may not know
13190 target capabilities at definition time. */
13191 if (remote_supports_static_tracepoints ())
13192 {
13193 struct static_tracepoint_marker marker;
13194
13195 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13196 {
13197 size_left = buf.size () - strlen (buf.data ());
13198 ret = snprintf (buf.data () + strlen (buf.data ()),
13199 size_left, ":S");
13200
13201 if (ret < 0 || ret >= size_left)
13202 error ("%s", err_msg);
13203 }
13204 else
13205 error (_("Static tracepoint not valid during download"));
13206 }
13207 else
13208 /* Fast tracepoints are functionally identical to regular
13209 tracepoints, so don't take lack of support as a reason
13210 to give up on the trace run. */
13211 error (_("Target does not support static tracepoints"));
13212 }
13213 /* If the tracepoint has a conditional, make it into an agent
13214 expression and append to the definition. */
13215 if (loc->cond)
13216 {
13217 /* Only test support at download time, we may not know target
13218 capabilities at definition time. */
13219 if (remote_supports_cond_tracepoints ())
13220 {
13221 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13222 loc->cond.get ());
13223
13224 size_left = buf.size () - strlen (buf.data ());
13225
13226 ret = snprintf (buf.data () + strlen (buf.data ()),
13227 size_left, ":X%x,", aexpr->len);
13228
13229 if (ret < 0 || ret >= size_left)
13230 error ("%s", err_msg);
13231
13232 size_left = buf.size () - strlen (buf.data ());
13233
13234 /* Two bytes to encode each aexpr byte, plus the terminating
13235 null byte. */
13236 if (aexpr->len * 2 + 1 > size_left)
13237 error ("%s", err_msg);
13238
13239 pkt = buf.data () + strlen (buf.data ());
13240
13241 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13242 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13243 *pkt = '\0';
13244 }
13245 else
13246 warning (_("Target does not support conditional tracepoints, "
13247 "ignoring tp %d cond"), b->number);
13248 }
13249
13250 if (b->commands || *default_collect)
13251 {
13252 size_left = buf.size () - strlen (buf.data ());
13253
13254 ret = snprintf (buf.data () + strlen (buf.data ()),
13255 size_left, "-");
13256
13257 if (ret < 0 || ret >= size_left)
13258 error ("%s", err_msg);
13259 }
13260
13261 putpkt (buf.data ());
13262 remote_get_noisy_reply ();
13263 if (strcmp (rs->buf.data (), "OK"))
13264 error (_("Target does not support tracepoints."));
13265
13266 /* do_single_steps (t); */
13267 for (auto action_it = tdp_actions.begin ();
13268 action_it != tdp_actions.end (); action_it++)
13269 {
13270 QUIT; /* Allow user to bail out with ^C. */
13271
13272 bool has_more = ((action_it + 1) != tdp_actions.end ()
13273 || !stepping_actions.empty ());
13274
13275 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13276 b->number, addrbuf, /* address */
13277 action_it->c_str (),
13278 has_more ? '-' : 0);
13279
13280 if (ret < 0 || ret >= buf.size ())
13281 error ("%s", err_msg);
13282
13283 putpkt (buf.data ());
13284 remote_get_noisy_reply ();
13285 if (strcmp (rs->buf.data (), "OK"))
13286 error (_("Error on target while setting tracepoints."));
13287 }
13288
13289 for (auto action_it = stepping_actions.begin ();
13290 action_it != stepping_actions.end (); action_it++)
13291 {
13292 QUIT; /* Allow user to bail out with ^C. */
13293
13294 bool is_first = action_it == stepping_actions.begin ();
13295 bool has_more = (action_it + 1) != stepping_actions.end ();
13296
13297 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13298 b->number, addrbuf, /* address */
13299 is_first ? "S" : "",
13300 action_it->c_str (),
13301 has_more ? "-" : "");
13302
13303 if (ret < 0 || ret >= buf.size ())
13304 error ("%s", err_msg);
13305
13306 putpkt (buf.data ());
13307 remote_get_noisy_reply ();
13308 if (strcmp (rs->buf.data (), "OK"))
13309 error (_("Error on target while setting tracepoints."));
13310 }
13311
13312 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13313 {
13314 if (b->location != NULL)
13315 {
13316 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13317
13318 if (ret < 0 || ret >= buf.size ())
13319 error ("%s", err_msg);
13320
13321 encode_source_string (b->number, loc->address, "at",
13322 event_location_to_string (b->location.get ()),
13323 buf.data () + strlen (buf.data ()),
13324 buf.size () - strlen (buf.data ()));
13325 putpkt (buf.data ());
13326 remote_get_noisy_reply ();
13327 if (strcmp (rs->buf.data (), "OK"))
13328 warning (_("Target does not support source download."));
13329 }
13330 if (b->cond_string)
13331 {
13332 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13333
13334 if (ret < 0 || ret >= buf.size ())
13335 error ("%s", err_msg);
13336
13337 encode_source_string (b->number, loc->address,
13338 "cond", b->cond_string,
13339 buf.data () + strlen (buf.data ()),
13340 buf.size () - strlen (buf.data ()));
13341 putpkt (buf.data ());
13342 remote_get_noisy_reply ();
13343 if (strcmp (rs->buf.data (), "OK"))
13344 warning (_("Target does not support source download."));
13345 }
13346 remote_download_command_source (b->number, loc->address,
13347 breakpoint_commands (b));
13348 }
13349 }
13350
13351 bool
13352 remote_target::can_download_tracepoint ()
13353 {
13354 struct remote_state *rs = get_remote_state ();
13355 struct trace_status *ts;
13356 int status;
13357
13358 /* Don't try to install tracepoints until we've relocated our
13359 symbols, and fetched and merged the target's tracepoint list with
13360 ours. */
13361 if (rs->starting_up)
13362 return false;
13363
13364 ts = current_trace_status ();
13365 status = get_trace_status (ts);
13366
13367 if (status == -1 || !ts->running_known || !ts->running)
13368 return false;
13369
13370 /* If we are in a tracing experiment, but remote stub doesn't support
13371 installing tracepoint in trace, we have to return. */
13372 if (!remote_supports_install_in_trace ())
13373 return false;
13374
13375 return true;
13376 }
13377
13378
13379 void
13380 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13381 {
13382 struct remote_state *rs = get_remote_state ();
13383 char *p;
13384
13385 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13386 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13387 tsv.builtin);
13388 p = rs->buf.data () + strlen (rs->buf.data ());
13389 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13390 >= get_remote_packet_size ())
13391 error (_("Trace state variable name too long for tsv definition packet"));
13392 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13393 *p++ = '\0';
13394 putpkt (rs->buf);
13395 remote_get_noisy_reply ();
13396 if (rs->buf[0] == '\0')
13397 error (_("Target does not support this command."));
13398 if (strcmp (rs->buf.data (), "OK") != 0)
13399 error (_("Error on target while downloading trace state variable."));
13400 }
13401
13402 void
13403 remote_target::enable_tracepoint (struct bp_location *location)
13404 {
13405 struct remote_state *rs = get_remote_state ();
13406
13407 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13408 location->owner->number,
13409 phex (location->address, sizeof (CORE_ADDR)));
13410 putpkt (rs->buf);
13411 remote_get_noisy_reply ();
13412 if (rs->buf[0] == '\0')
13413 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13414 if (strcmp (rs->buf.data (), "OK") != 0)
13415 error (_("Error on target while enabling tracepoint."));
13416 }
13417
13418 void
13419 remote_target::disable_tracepoint (struct bp_location *location)
13420 {
13421 struct remote_state *rs = get_remote_state ();
13422
13423 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13424 location->owner->number,
13425 phex (location->address, sizeof (CORE_ADDR)));
13426 putpkt (rs->buf);
13427 remote_get_noisy_reply ();
13428 if (rs->buf[0] == '\0')
13429 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13430 if (strcmp (rs->buf.data (), "OK") != 0)
13431 error (_("Error on target while disabling tracepoint."));
13432 }
13433
13434 void
13435 remote_target::trace_set_readonly_regions ()
13436 {
13437 asection *s;
13438 bfd_size_type size;
13439 bfd_vma vma;
13440 int anysecs = 0;
13441 int offset = 0;
13442
13443 if (!current_program_space->exec_bfd ())
13444 return; /* No information to give. */
13445
13446 struct remote_state *rs = get_remote_state ();
13447
13448 strcpy (rs->buf.data (), "QTro");
13449 offset = strlen (rs->buf.data ());
13450 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13451 {
13452 char tmp1[40], tmp2[40];
13453 int sec_length;
13454
13455 if ((s->flags & SEC_LOAD) == 0 ||
13456 /* (s->flags & SEC_CODE) == 0 || */
13457 (s->flags & SEC_READONLY) == 0)
13458 continue;
13459
13460 anysecs = 1;
13461 vma = bfd_section_vma (s);
13462 size = bfd_section_size (s);
13463 sprintf_vma (tmp1, vma);
13464 sprintf_vma (tmp2, vma + size);
13465 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13466 if (offset + sec_length + 1 > rs->buf.size ())
13467 {
13468 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13469 warning (_("\
13470 Too many sections for read-only sections definition packet."));
13471 break;
13472 }
13473 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13474 tmp1, tmp2);
13475 offset += sec_length;
13476 }
13477 if (anysecs)
13478 {
13479 putpkt (rs->buf);
13480 getpkt (&rs->buf, 0);
13481 }
13482 }
13483
13484 void
13485 remote_target::trace_start ()
13486 {
13487 struct remote_state *rs = get_remote_state ();
13488
13489 putpkt ("QTStart");
13490 remote_get_noisy_reply ();
13491 if (rs->buf[0] == '\0')
13492 error (_("Target does not support this command."));
13493 if (strcmp (rs->buf.data (), "OK") != 0)
13494 error (_("Bogus reply from target: %s"), rs->buf.data ());
13495 }
13496
13497 int
13498 remote_target::get_trace_status (struct trace_status *ts)
13499 {
13500 /* Initialize it just to avoid a GCC false warning. */
13501 char *p = NULL;
13502 enum packet_result result;
13503 struct remote_state *rs = get_remote_state ();
13504
13505 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13506 return -1;
13507
13508 /* FIXME we need to get register block size some other way. */
13509 trace_regblock_size
13510 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13511
13512 putpkt ("qTStatus");
13513
13514 try
13515 {
13516 p = remote_get_noisy_reply ();
13517 }
13518 catch (const gdb_exception_error &ex)
13519 {
13520 if (ex.error != TARGET_CLOSE_ERROR)
13521 {
13522 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13523 return -1;
13524 }
13525 throw;
13526 }
13527
13528 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13529
13530 /* If the remote target doesn't do tracing, flag it. */
13531 if (result == PACKET_UNKNOWN)
13532 return -1;
13533
13534 /* We're working with a live target. */
13535 ts->filename = NULL;
13536
13537 if (*p++ != 'T')
13538 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13539
13540 /* Function 'parse_trace_status' sets default value of each field of
13541 'ts' at first, so we don't have to do it here. */
13542 parse_trace_status (p, ts);
13543
13544 return ts->running;
13545 }
13546
13547 void
13548 remote_target::get_tracepoint_status (struct breakpoint *bp,
13549 struct uploaded_tp *utp)
13550 {
13551 struct remote_state *rs = get_remote_state ();
13552 char *reply;
13553 struct tracepoint *tp = (struct tracepoint *) bp;
13554 size_t size = get_remote_packet_size ();
13555
13556 if (tp)
13557 {
13558 tp->hit_count = 0;
13559 tp->traceframe_usage = 0;
13560 for (bp_location *loc : tp->locations ())
13561 {
13562 /* If the tracepoint was never downloaded, don't go asking for
13563 any status. */
13564 if (tp->number_on_target == 0)
13565 continue;
13566 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13567 phex_nz (loc->address, 0));
13568 putpkt (rs->buf);
13569 reply = remote_get_noisy_reply ();
13570 if (reply && *reply)
13571 {
13572 if (*reply == 'V')
13573 parse_tracepoint_status (reply + 1, bp, utp);
13574 }
13575 }
13576 }
13577 else if (utp)
13578 {
13579 utp->hit_count = 0;
13580 utp->traceframe_usage = 0;
13581 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13582 phex_nz (utp->addr, 0));
13583 putpkt (rs->buf);
13584 reply = remote_get_noisy_reply ();
13585 if (reply && *reply)
13586 {
13587 if (*reply == 'V')
13588 parse_tracepoint_status (reply + 1, bp, utp);
13589 }
13590 }
13591 }
13592
13593 void
13594 remote_target::trace_stop ()
13595 {
13596 struct remote_state *rs = get_remote_state ();
13597
13598 putpkt ("QTStop");
13599 remote_get_noisy_reply ();
13600 if (rs->buf[0] == '\0')
13601 error (_("Target does not support this command."));
13602 if (strcmp (rs->buf.data (), "OK") != 0)
13603 error (_("Bogus reply from target: %s"), rs->buf.data ());
13604 }
13605
13606 int
13607 remote_target::trace_find (enum trace_find_type type, int num,
13608 CORE_ADDR addr1, CORE_ADDR addr2,
13609 int *tpp)
13610 {
13611 struct remote_state *rs = get_remote_state ();
13612 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13613 char *p, *reply;
13614 int target_frameno = -1, target_tracept = -1;
13615
13616 /* Lookups other than by absolute frame number depend on the current
13617 trace selected, so make sure it is correct on the remote end
13618 first. */
13619 if (type != tfind_number)
13620 set_remote_traceframe ();
13621
13622 p = rs->buf.data ();
13623 strcpy (p, "QTFrame:");
13624 p = strchr (p, '\0');
13625 switch (type)
13626 {
13627 case tfind_number:
13628 xsnprintf (p, endbuf - p, "%x", num);
13629 break;
13630 case tfind_pc:
13631 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13632 break;
13633 case tfind_tp:
13634 xsnprintf (p, endbuf - p, "tdp:%x", num);
13635 break;
13636 case tfind_range:
13637 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13638 phex_nz (addr2, 0));
13639 break;
13640 case tfind_outside:
13641 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13642 phex_nz (addr2, 0));
13643 break;
13644 default:
13645 error (_("Unknown trace find type %d"), type);
13646 }
13647
13648 putpkt (rs->buf);
13649 reply = remote_get_noisy_reply ();
13650 if (*reply == '\0')
13651 error (_("Target does not support this command."));
13652
13653 while (reply && *reply)
13654 switch (*reply)
13655 {
13656 case 'F':
13657 p = ++reply;
13658 target_frameno = (int) strtol (p, &reply, 16);
13659 if (reply == p)
13660 error (_("Unable to parse trace frame number"));
13661 /* Don't update our remote traceframe number cache on failure
13662 to select a remote traceframe. */
13663 if (target_frameno == -1)
13664 return -1;
13665 break;
13666 case 'T':
13667 p = ++reply;
13668 target_tracept = (int) strtol (p, &reply, 16);
13669 if (reply == p)
13670 error (_("Unable to parse tracepoint number"));
13671 break;
13672 case 'O': /* "OK"? */
13673 if (reply[1] == 'K' && reply[2] == '\0')
13674 reply += 2;
13675 else
13676 error (_("Bogus reply from target: %s"), reply);
13677 break;
13678 default:
13679 error (_("Bogus reply from target: %s"), reply);
13680 }
13681 if (tpp)
13682 *tpp = target_tracept;
13683
13684 rs->remote_traceframe_number = target_frameno;
13685 return target_frameno;
13686 }
13687
13688 bool
13689 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13690 {
13691 struct remote_state *rs = get_remote_state ();
13692 char *reply;
13693 ULONGEST uval;
13694
13695 set_remote_traceframe ();
13696
13697 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13698 putpkt (rs->buf);
13699 reply = remote_get_noisy_reply ();
13700 if (reply && *reply)
13701 {
13702 if (*reply == 'V')
13703 {
13704 unpack_varlen_hex (reply + 1, &uval);
13705 *val = (LONGEST) uval;
13706 return true;
13707 }
13708 }
13709 return false;
13710 }
13711
13712 int
13713 remote_target::save_trace_data (const char *filename)
13714 {
13715 struct remote_state *rs = get_remote_state ();
13716 char *p, *reply;
13717
13718 p = rs->buf.data ();
13719 strcpy (p, "QTSave:");
13720 p += strlen (p);
13721 if ((p - rs->buf.data ()) + strlen (filename) * 2
13722 >= get_remote_packet_size ())
13723 error (_("Remote file name too long for trace save packet"));
13724 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13725 *p++ = '\0';
13726 putpkt (rs->buf);
13727 reply = remote_get_noisy_reply ();
13728 if (*reply == '\0')
13729 error (_("Target does not support this command."));
13730 if (strcmp (reply, "OK") != 0)
13731 error (_("Bogus reply from target: %s"), reply);
13732 return 0;
13733 }
13734
13735 /* This is basically a memory transfer, but needs to be its own packet
13736 because we don't know how the target actually organizes its trace
13737 memory, plus we want to be able to ask for as much as possible, but
13738 not be unhappy if we don't get as much as we ask for. */
13739
13740 LONGEST
13741 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13742 {
13743 struct remote_state *rs = get_remote_state ();
13744 char *reply;
13745 char *p;
13746 int rslt;
13747
13748 p = rs->buf.data ();
13749 strcpy (p, "qTBuffer:");
13750 p += strlen (p);
13751 p += hexnumstr (p, offset);
13752 *p++ = ',';
13753 p += hexnumstr (p, len);
13754 *p++ = '\0';
13755
13756 putpkt (rs->buf);
13757 reply = remote_get_noisy_reply ();
13758 if (reply && *reply)
13759 {
13760 /* 'l' by itself means we're at the end of the buffer and
13761 there is nothing more to get. */
13762 if (*reply == 'l')
13763 return 0;
13764
13765 /* Convert the reply into binary. Limit the number of bytes to
13766 convert according to our passed-in buffer size, rather than
13767 what was returned in the packet; if the target is
13768 unexpectedly generous and gives us a bigger reply than we
13769 asked for, we don't want to crash. */
13770 rslt = hex2bin (reply, buf, len);
13771 return rslt;
13772 }
13773
13774 /* Something went wrong, flag as an error. */
13775 return -1;
13776 }
13777
13778 void
13779 remote_target::set_disconnected_tracing (int val)
13780 {
13781 struct remote_state *rs = get_remote_state ();
13782
13783 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13784 {
13785 char *reply;
13786
13787 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13788 "QTDisconnected:%x", val);
13789 putpkt (rs->buf);
13790 reply = remote_get_noisy_reply ();
13791 if (*reply == '\0')
13792 error (_("Target does not support this command."));
13793 if (strcmp (reply, "OK") != 0)
13794 error (_("Bogus reply from target: %s"), reply);
13795 }
13796 else if (val)
13797 warning (_("Target does not support disconnected tracing."));
13798 }
13799
13800 int
13801 remote_target::core_of_thread (ptid_t ptid)
13802 {
13803 thread_info *info = find_thread_ptid (this, ptid);
13804
13805 if (info != NULL && info->priv != NULL)
13806 return get_remote_thread_info (info)->core;
13807
13808 return -1;
13809 }
13810
13811 void
13812 remote_target::set_circular_trace_buffer (int val)
13813 {
13814 struct remote_state *rs = get_remote_state ();
13815 char *reply;
13816
13817 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13818 "QTBuffer:circular:%x", val);
13819 putpkt (rs->buf);
13820 reply = remote_get_noisy_reply ();
13821 if (*reply == '\0')
13822 error (_("Target does not support this command."));
13823 if (strcmp (reply, "OK") != 0)
13824 error (_("Bogus reply from target: %s"), reply);
13825 }
13826
13827 traceframe_info_up
13828 remote_target::traceframe_info ()
13829 {
13830 gdb::optional<gdb::char_vector> text
13831 = target_read_stralloc (current_inferior ()->top_target (),
13832 TARGET_OBJECT_TRACEFRAME_INFO,
13833 NULL);
13834 if (text)
13835 return parse_traceframe_info (text->data ());
13836
13837 return NULL;
13838 }
13839
13840 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13841 instruction on which a fast tracepoint may be placed. Returns -1
13842 if the packet is not supported, and 0 if the minimum instruction
13843 length is unknown. */
13844
13845 int
13846 remote_target::get_min_fast_tracepoint_insn_len ()
13847 {
13848 struct remote_state *rs = get_remote_state ();
13849 char *reply;
13850
13851 /* If we're not debugging a process yet, the IPA can't be
13852 loaded. */
13853 if (!target_has_execution ())
13854 return 0;
13855
13856 /* Make sure the remote is pointing at the right process. */
13857 set_general_process ();
13858
13859 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13860 putpkt (rs->buf);
13861 reply = remote_get_noisy_reply ();
13862 if (*reply == '\0')
13863 return -1;
13864 else
13865 {
13866 ULONGEST min_insn_len;
13867
13868 unpack_varlen_hex (reply, &min_insn_len);
13869
13870 return (int) min_insn_len;
13871 }
13872 }
13873
13874 void
13875 remote_target::set_trace_buffer_size (LONGEST val)
13876 {
13877 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13878 {
13879 struct remote_state *rs = get_remote_state ();
13880 char *buf = rs->buf.data ();
13881 char *endbuf = buf + get_remote_packet_size ();
13882 enum packet_result result;
13883
13884 gdb_assert (val >= 0 || val == -1);
13885 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13886 /* Send -1 as literal "-1" to avoid host size dependency. */
13887 if (val < 0)
13888 {
13889 *buf++ = '-';
13890 buf += hexnumstr (buf, (ULONGEST) -val);
13891 }
13892 else
13893 buf += hexnumstr (buf, (ULONGEST) val);
13894
13895 putpkt (rs->buf);
13896 remote_get_noisy_reply ();
13897 result = packet_ok (rs->buf,
13898 &remote_protocol_packets[PACKET_QTBuffer_size]);
13899
13900 if (result != PACKET_OK)
13901 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13902 }
13903 }
13904
13905 bool
13906 remote_target::set_trace_notes (const char *user, const char *notes,
13907 const char *stop_notes)
13908 {
13909 struct remote_state *rs = get_remote_state ();
13910 char *reply;
13911 char *buf = rs->buf.data ();
13912 char *endbuf = buf + get_remote_packet_size ();
13913 int nbytes;
13914
13915 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13916 if (user)
13917 {
13918 buf += xsnprintf (buf, endbuf - buf, "user:");
13919 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13920 buf += 2 * nbytes;
13921 *buf++ = ';';
13922 }
13923 if (notes)
13924 {
13925 buf += xsnprintf (buf, endbuf - buf, "notes:");
13926 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13927 buf += 2 * nbytes;
13928 *buf++ = ';';
13929 }
13930 if (stop_notes)
13931 {
13932 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13933 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13934 buf += 2 * nbytes;
13935 *buf++ = ';';
13936 }
13937 /* Ensure the buffer is terminated. */
13938 *buf = '\0';
13939
13940 putpkt (rs->buf);
13941 reply = remote_get_noisy_reply ();
13942 if (*reply == '\0')
13943 return false;
13944
13945 if (strcmp (reply, "OK") != 0)
13946 error (_("Bogus reply from target: %s"), reply);
13947
13948 return true;
13949 }
13950
13951 bool
13952 remote_target::use_agent (bool use)
13953 {
13954 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13955 {
13956 struct remote_state *rs = get_remote_state ();
13957
13958 /* If the stub supports QAgent. */
13959 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13960 putpkt (rs->buf);
13961 getpkt (&rs->buf, 0);
13962
13963 if (strcmp (rs->buf.data (), "OK") == 0)
13964 {
13965 ::use_agent = use;
13966 return true;
13967 }
13968 }
13969
13970 return false;
13971 }
13972
13973 bool
13974 remote_target::can_use_agent ()
13975 {
13976 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13977 }
13978
13979 struct btrace_target_info
13980 {
13981 /* The ptid of the traced thread. */
13982 ptid_t ptid;
13983
13984 /* The obtained branch trace configuration. */
13985 struct btrace_config conf;
13986 };
13987
13988 /* Reset our idea of our target's btrace configuration. */
13989
13990 static void
13991 remote_btrace_reset (remote_state *rs)
13992 {
13993 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13994 }
13995
13996 /* Synchronize the configuration with the target. */
13997
13998 void
13999 remote_target::btrace_sync_conf (const btrace_config *conf)
14000 {
14001 struct packet_config *packet;
14002 struct remote_state *rs;
14003 char *buf, *pos, *endbuf;
14004
14005 rs = get_remote_state ();
14006 buf = rs->buf.data ();
14007 endbuf = buf + get_remote_packet_size ();
14008
14009 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
14010 if (packet_config_support (packet) == PACKET_ENABLE
14011 && conf->bts.size != rs->btrace_config.bts.size)
14012 {
14013 pos = buf;
14014 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14015 conf->bts.size);
14016
14017 putpkt (buf);
14018 getpkt (&rs->buf, 0);
14019
14020 if (packet_ok (buf, packet) == PACKET_ERROR)
14021 {
14022 if (buf[0] == 'E' && buf[1] == '.')
14023 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
14024 else
14025 error (_("Failed to configure the BTS buffer size."));
14026 }
14027
14028 rs->btrace_config.bts.size = conf->bts.size;
14029 }
14030
14031 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
14032 if (packet_config_support (packet) == PACKET_ENABLE
14033 && conf->pt.size != rs->btrace_config.pt.size)
14034 {
14035 pos = buf;
14036 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14037 conf->pt.size);
14038
14039 putpkt (buf);
14040 getpkt (&rs->buf, 0);
14041
14042 if (packet_ok (buf, packet) == PACKET_ERROR)
14043 {
14044 if (buf[0] == 'E' && buf[1] == '.')
14045 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
14046 else
14047 error (_("Failed to configure the trace buffer size."));
14048 }
14049
14050 rs->btrace_config.pt.size = conf->pt.size;
14051 }
14052 }
14053
14054 /* Read the current thread's btrace configuration from the target and
14055 store it into CONF. */
14056
14057 static void
14058 btrace_read_config (struct btrace_config *conf)
14059 {
14060 gdb::optional<gdb::char_vector> xml
14061 = target_read_stralloc (current_inferior ()->top_target (),
14062 TARGET_OBJECT_BTRACE_CONF, "");
14063 if (xml)
14064 parse_xml_btrace_conf (conf, xml->data ());
14065 }
14066
14067 /* Maybe reopen target btrace. */
14068
14069 void
14070 remote_target::remote_btrace_maybe_reopen ()
14071 {
14072 struct remote_state *rs = get_remote_state ();
14073 int btrace_target_pushed = 0;
14074 #if !defined (HAVE_LIBIPT)
14075 int warned = 0;
14076 #endif
14077
14078 /* Don't bother walking the entirety of the remote thread list when
14079 we know the feature isn't supported by the remote. */
14080 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
14081 return;
14082
14083 scoped_restore_current_thread restore_thread;
14084
14085 for (thread_info *tp : all_non_exited_threads (this))
14086 {
14087 set_general_thread (tp->ptid);
14088
14089 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
14090 btrace_read_config (&rs->btrace_config);
14091
14092 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
14093 continue;
14094
14095 #if !defined (HAVE_LIBIPT)
14096 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
14097 {
14098 if (!warned)
14099 {
14100 warned = 1;
14101 warning (_("Target is recording using Intel Processor Trace "
14102 "but support was disabled at compile time."));
14103 }
14104
14105 continue;
14106 }
14107 #endif /* !defined (HAVE_LIBIPT) */
14108
14109 /* Push target, once, but before anything else happens. This way our
14110 changes to the threads will be cleaned up by unpushing the target
14111 in case btrace_read_config () throws. */
14112 if (!btrace_target_pushed)
14113 {
14114 btrace_target_pushed = 1;
14115 record_btrace_push_target ();
14116 printf_filtered (_("Target is recording using %s.\n"),
14117 btrace_format_string (rs->btrace_config.format));
14118 }
14119
14120 tp->btrace.target = XCNEW (struct btrace_target_info);
14121 tp->btrace.target->ptid = tp->ptid;
14122 tp->btrace.target->conf = rs->btrace_config;
14123 }
14124 }
14125
14126 /* Enable branch tracing. */
14127
14128 struct btrace_target_info *
14129 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
14130 {
14131 struct btrace_target_info *tinfo = NULL;
14132 struct packet_config *packet = NULL;
14133 struct remote_state *rs = get_remote_state ();
14134 char *buf = rs->buf.data ();
14135 char *endbuf = buf + get_remote_packet_size ();
14136
14137 switch (conf->format)
14138 {
14139 case BTRACE_FORMAT_BTS:
14140 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14141 break;
14142
14143 case BTRACE_FORMAT_PT:
14144 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14145 break;
14146 }
14147
14148 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14149 error (_("Target does not support branch tracing."));
14150
14151 btrace_sync_conf (conf);
14152
14153 set_general_thread (ptid);
14154
14155 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14156 putpkt (rs->buf);
14157 getpkt (&rs->buf, 0);
14158
14159 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14160 {
14161 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14162 error (_("Could not enable branch tracing for %s: %s"),
14163 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14164 else
14165 error (_("Could not enable branch tracing for %s."),
14166 target_pid_to_str (ptid).c_str ());
14167 }
14168
14169 tinfo = XCNEW (struct btrace_target_info);
14170 tinfo->ptid = ptid;
14171
14172 /* If we fail to read the configuration, we lose some information, but the
14173 tracing itself is not impacted. */
14174 try
14175 {
14176 btrace_read_config (&tinfo->conf);
14177 }
14178 catch (const gdb_exception_error &err)
14179 {
14180 if (err.message != NULL)
14181 warning ("%s", err.what ());
14182 }
14183
14184 return tinfo;
14185 }
14186
14187 /* Disable branch tracing. */
14188
14189 void
14190 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14191 {
14192 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14193 struct remote_state *rs = get_remote_state ();
14194 char *buf = rs->buf.data ();
14195 char *endbuf = buf + get_remote_packet_size ();
14196
14197 if (packet_config_support (packet) != PACKET_ENABLE)
14198 error (_("Target does not support branch tracing."));
14199
14200 set_general_thread (tinfo->ptid);
14201
14202 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14203 putpkt (rs->buf);
14204 getpkt (&rs->buf, 0);
14205
14206 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14207 {
14208 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14209 error (_("Could not disable branch tracing for %s: %s"),
14210 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14211 else
14212 error (_("Could not disable branch tracing for %s."),
14213 target_pid_to_str (tinfo->ptid).c_str ());
14214 }
14215
14216 xfree (tinfo);
14217 }
14218
14219 /* Teardown branch tracing. */
14220
14221 void
14222 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14223 {
14224 /* We must not talk to the target during teardown. */
14225 xfree (tinfo);
14226 }
14227
14228 /* Read the branch trace. */
14229
14230 enum btrace_error
14231 remote_target::read_btrace (struct btrace_data *btrace,
14232 struct btrace_target_info *tinfo,
14233 enum btrace_read_type type)
14234 {
14235 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14236 const char *annex;
14237
14238 if (packet_config_support (packet) != PACKET_ENABLE)
14239 error (_("Target does not support branch tracing."));
14240
14241 #if !defined(HAVE_LIBEXPAT)
14242 error (_("Cannot process branch tracing result. XML parsing not supported."));
14243 #endif
14244
14245 switch (type)
14246 {
14247 case BTRACE_READ_ALL:
14248 annex = "all";
14249 break;
14250 case BTRACE_READ_NEW:
14251 annex = "new";
14252 break;
14253 case BTRACE_READ_DELTA:
14254 annex = "delta";
14255 break;
14256 default:
14257 internal_error (__FILE__, __LINE__,
14258 _("Bad branch tracing read type: %u."),
14259 (unsigned int) type);
14260 }
14261
14262 gdb::optional<gdb::char_vector> xml
14263 = target_read_stralloc (current_inferior ()->top_target (),
14264 TARGET_OBJECT_BTRACE, annex);
14265 if (!xml)
14266 return BTRACE_ERR_UNKNOWN;
14267
14268 parse_xml_btrace (btrace, xml->data ());
14269
14270 return BTRACE_ERR_NONE;
14271 }
14272
14273 const struct btrace_config *
14274 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14275 {
14276 return &tinfo->conf;
14277 }
14278
14279 bool
14280 remote_target::augmented_libraries_svr4_read ()
14281 {
14282 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14283 == PACKET_ENABLE);
14284 }
14285
14286 /* Implementation of to_load. */
14287
14288 void
14289 remote_target::load (const char *name, int from_tty)
14290 {
14291 generic_load (name, from_tty);
14292 }
14293
14294 /* Accepts an integer PID; returns a string representing a file that
14295 can be opened on the remote side to get the symbols for the child
14296 process. Returns NULL if the operation is not supported. */
14297
14298 char *
14299 remote_target::pid_to_exec_file (int pid)
14300 {
14301 static gdb::optional<gdb::char_vector> filename;
14302 char *annex = NULL;
14303
14304 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14305 return NULL;
14306
14307 inferior *inf = find_inferior_pid (this, pid);
14308 if (inf == NULL)
14309 internal_error (__FILE__, __LINE__,
14310 _("not currently attached to process %d"), pid);
14311
14312 if (!inf->fake_pid_p)
14313 {
14314 const int annex_size = 9;
14315
14316 annex = (char *) alloca (annex_size);
14317 xsnprintf (annex, annex_size, "%x", pid);
14318 }
14319
14320 filename = target_read_stralloc (current_inferior ()->top_target (),
14321 TARGET_OBJECT_EXEC_FILE, annex);
14322
14323 return filename ? filename->data () : nullptr;
14324 }
14325
14326 /* Implement the to_can_do_single_step target_ops method. */
14327
14328 int
14329 remote_target::can_do_single_step ()
14330 {
14331 /* We can only tell whether target supports single step or not by
14332 supported s and S vCont actions if the stub supports vContSupported
14333 feature. If the stub doesn't support vContSupported feature,
14334 we have conservatively to think target doesn't supports single
14335 step. */
14336 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14337 {
14338 struct remote_state *rs = get_remote_state ();
14339
14340 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14341 remote_vcont_probe ();
14342
14343 return rs->supports_vCont.s && rs->supports_vCont.S;
14344 }
14345 else
14346 return 0;
14347 }
14348
14349 /* Implementation of the to_execution_direction method for the remote
14350 target. */
14351
14352 enum exec_direction_kind
14353 remote_target::execution_direction ()
14354 {
14355 struct remote_state *rs = get_remote_state ();
14356
14357 return rs->last_resume_exec_dir;
14358 }
14359
14360 /* Return pointer to the thread_info struct which corresponds to
14361 THREAD_HANDLE (having length HANDLE_LEN). */
14362
14363 thread_info *
14364 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14365 int handle_len,
14366 inferior *inf)
14367 {
14368 for (thread_info *tp : all_non_exited_threads (this))
14369 {
14370 remote_thread_info *priv = get_remote_thread_info (tp);
14371
14372 if (tp->inf == inf && priv != NULL)
14373 {
14374 if (handle_len != priv->thread_handle.size ())
14375 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14376 handle_len, priv->thread_handle.size ());
14377 if (memcmp (thread_handle, priv->thread_handle.data (),
14378 handle_len) == 0)
14379 return tp;
14380 }
14381 }
14382
14383 return NULL;
14384 }
14385
14386 gdb::byte_vector
14387 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14388 {
14389 remote_thread_info *priv = get_remote_thread_info (tp);
14390 return priv->thread_handle;
14391 }
14392
14393 bool
14394 remote_target::can_async_p ()
14395 {
14396 struct remote_state *rs = get_remote_state ();
14397
14398 /* We don't go async if the user has explicitly prevented it with the
14399 "maint set target-async" command. */
14400 if (!target_async_permitted)
14401 return false;
14402
14403 /* We're async whenever the serial device is. */
14404 return serial_can_async_p (rs->remote_desc);
14405 }
14406
14407 bool
14408 remote_target::is_async_p ()
14409 {
14410 struct remote_state *rs = get_remote_state ();
14411
14412 if (!target_async_permitted)
14413 /* We only enable async when the user specifically asks for it. */
14414 return false;
14415
14416 /* We're async whenever the serial device is. */
14417 return serial_is_async_p (rs->remote_desc);
14418 }
14419
14420 /* Pass the SERIAL event on and up to the client. One day this code
14421 will be able to delay notifying the client of an event until the
14422 point where an entire packet has been received. */
14423
14424 static serial_event_ftype remote_async_serial_handler;
14425
14426 static void
14427 remote_async_serial_handler (struct serial *scb, void *context)
14428 {
14429 /* Don't propogate error information up to the client. Instead let
14430 the client find out about the error by querying the target. */
14431 inferior_event_handler (INF_REG_EVENT);
14432 }
14433
14434 static void
14435 remote_async_inferior_event_handler (gdb_client_data data)
14436 {
14437 inferior_event_handler (INF_REG_EVENT);
14438 }
14439
14440 int
14441 remote_target::async_wait_fd ()
14442 {
14443 struct remote_state *rs = get_remote_state ();
14444 return rs->remote_desc->fd;
14445 }
14446
14447 void
14448 remote_target::async (int enable)
14449 {
14450 struct remote_state *rs = get_remote_state ();
14451
14452 if (enable)
14453 {
14454 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14455
14456 /* If there are pending events in the stop reply queue tell the
14457 event loop to process them. */
14458 if (!rs->stop_reply_queue.empty ())
14459 mark_async_event_handler (rs->remote_async_inferior_event_token);
14460 /* For simplicity, below we clear the pending events token
14461 without remembering whether it is marked, so here we always
14462 mark it. If there's actually no pending notification to
14463 process, this ends up being a no-op (other than a spurious
14464 event-loop wakeup). */
14465 if (target_is_non_stop_p ())
14466 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14467 }
14468 else
14469 {
14470 serial_async (rs->remote_desc, NULL, NULL);
14471 /* If the core is disabling async, it doesn't want to be
14472 disturbed with target events. Clear all async event sources
14473 too. */
14474 clear_async_event_handler (rs->remote_async_inferior_event_token);
14475 if (target_is_non_stop_p ())
14476 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14477 }
14478 }
14479
14480 /* Implementation of the to_thread_events method. */
14481
14482 void
14483 remote_target::thread_events (int enable)
14484 {
14485 struct remote_state *rs = get_remote_state ();
14486 size_t size = get_remote_packet_size ();
14487
14488 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14489 return;
14490
14491 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14492 putpkt (rs->buf);
14493 getpkt (&rs->buf, 0);
14494
14495 switch (packet_ok (rs->buf,
14496 &remote_protocol_packets[PACKET_QThreadEvents]))
14497 {
14498 case PACKET_OK:
14499 if (strcmp (rs->buf.data (), "OK") != 0)
14500 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14501 break;
14502 case PACKET_ERROR:
14503 warning (_("Remote failure reply: %s"), rs->buf.data ());
14504 break;
14505 case PACKET_UNKNOWN:
14506 break;
14507 }
14508 }
14509
14510 static void
14511 show_remote_cmd (const char *args, int from_tty)
14512 {
14513 /* We can't just use cmd_show_list here, because we want to skip
14514 the redundant "show remote Z-packet" and the legacy aliases. */
14515 struct cmd_list_element *list = remote_show_cmdlist;
14516 struct ui_out *uiout = current_uiout;
14517
14518 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14519 for (; list != NULL; list = list->next)
14520 if (strcmp (list->name, "Z-packet") == 0)
14521 continue;
14522 else if (list->type == not_set_cmd)
14523 /* Alias commands are exactly like the original, except they
14524 don't have the normal type. */
14525 continue;
14526 else
14527 {
14528 ui_out_emit_tuple option_emitter (uiout, "option");
14529
14530 uiout->field_string ("name", list->name);
14531 uiout->text (": ");
14532 if (list->type == show_cmd)
14533 do_show_command (NULL, from_tty, list);
14534 else
14535 cmd_func (list, NULL, from_tty);
14536 }
14537 }
14538
14539
14540 /* Function to be called whenever a new objfile (shlib) is detected. */
14541 static void
14542 remote_new_objfile (struct objfile *objfile)
14543 {
14544 remote_target *remote = get_current_remote_target ();
14545
14546 /* First, check whether the current inferior's process target is a remote
14547 target. */
14548 if (remote == nullptr)
14549 return;
14550
14551 /* When we are attaching or handling a fork child and the shared library
14552 subsystem reads the list of loaded libraries, we receive new objfile
14553 events in between each found library. The libraries are read in an
14554 undefined order, so if we gave the remote side a chance to look up
14555 symbols between each objfile, we might give it an inconsistent picture
14556 of the inferior. It could appear that a library A appears loaded but
14557 a library B does not, even though library A requires library B. That
14558 would present a state that couldn't normally exist in the inferior.
14559
14560 So, skip these events, we'll give the remote a chance to look up symbols
14561 once all the loaded libraries and their symbols are known to GDB. */
14562 if (current_inferior ()->in_initial_library_scan)
14563 return;
14564
14565 remote->remote_check_symbols ();
14566 }
14567
14568 /* Pull all the tracepoints defined on the target and create local
14569 data structures representing them. We don't want to create real
14570 tracepoints yet, we don't want to mess up the user's existing
14571 collection. */
14572
14573 int
14574 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14575 {
14576 struct remote_state *rs = get_remote_state ();
14577 char *p;
14578
14579 /* Ask for a first packet of tracepoint definition. */
14580 putpkt ("qTfP");
14581 getpkt (&rs->buf, 0);
14582 p = rs->buf.data ();
14583 while (*p && *p != 'l')
14584 {
14585 parse_tracepoint_definition (p, utpp);
14586 /* Ask for another packet of tracepoint definition. */
14587 putpkt ("qTsP");
14588 getpkt (&rs->buf, 0);
14589 p = rs->buf.data ();
14590 }
14591 return 0;
14592 }
14593
14594 int
14595 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14596 {
14597 struct remote_state *rs = get_remote_state ();
14598 char *p;
14599
14600 /* Ask for a first packet of variable definition. */
14601 putpkt ("qTfV");
14602 getpkt (&rs->buf, 0);
14603 p = rs->buf.data ();
14604 while (*p && *p != 'l')
14605 {
14606 parse_tsv_definition (p, utsvp);
14607 /* Ask for another packet of variable definition. */
14608 putpkt ("qTsV");
14609 getpkt (&rs->buf, 0);
14610 p = rs->buf.data ();
14611 }
14612 return 0;
14613 }
14614
14615 /* The "set/show range-stepping" show hook. */
14616
14617 static void
14618 show_range_stepping (struct ui_file *file, int from_tty,
14619 struct cmd_list_element *c,
14620 const char *value)
14621 {
14622 fprintf_filtered (file,
14623 _("Debugger's willingness to use range stepping "
14624 "is %s.\n"), value);
14625 }
14626
14627 /* Return true if the vCont;r action is supported by the remote
14628 stub. */
14629
14630 bool
14631 remote_target::vcont_r_supported ()
14632 {
14633 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14634 remote_vcont_probe ();
14635
14636 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14637 && get_remote_state ()->supports_vCont.r);
14638 }
14639
14640 /* The "set/show range-stepping" set hook. */
14641
14642 static void
14643 set_range_stepping (const char *ignore_args, int from_tty,
14644 struct cmd_list_element *c)
14645 {
14646 /* When enabling, check whether range stepping is actually supported
14647 by the target, and warn if not. */
14648 if (use_range_stepping)
14649 {
14650 remote_target *remote = get_current_remote_target ();
14651 if (remote == NULL
14652 || !remote->vcont_r_supported ())
14653 warning (_("Range stepping is not supported by the current target"));
14654 }
14655 }
14656
14657 static void
14658 show_remote_debug (struct ui_file *file, int from_tty,
14659 struct cmd_list_element *c, const char *value)
14660 {
14661 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14662 value);
14663 }
14664
14665 static void
14666 show_remote_timeout (struct ui_file *file, int from_tty,
14667 struct cmd_list_element *c, const char *value)
14668 {
14669 fprintf_filtered (file,
14670 _("Timeout limit to wait for target to respond is %s.\n"),
14671 value);
14672 }
14673
14674 /* Implement the "supports_memory_tagging" target_ops method. */
14675
14676 bool
14677 remote_target::supports_memory_tagging ()
14678 {
14679 return remote_memory_tagging_p ();
14680 }
14681
14682 /* Create the qMemTags packet given ADDRESS, LEN and TYPE. */
14683
14684 static void
14685 create_fetch_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14686 size_t len, int type)
14687 {
14688 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14689
14690 std::string request = string_printf ("qMemTags:%s,%s:%s",
14691 phex_nz (address, addr_size),
14692 phex_nz (len, sizeof (len)),
14693 phex_nz (type, sizeof (type)));
14694
14695 strcpy (packet.data (), request.c_str ());
14696 }
14697
14698 /* Parse the qMemTags packet reply into TAGS.
14699
14700 Return true if successful, false otherwise. */
14701
14702 static bool
14703 parse_fetch_memtags_reply (const gdb::char_vector &reply,
14704 gdb::byte_vector &tags)
14705 {
14706 if (reply.empty () || reply[0] == 'E' || reply[0] != 'm')
14707 return false;
14708
14709 /* Copy the tag data. */
14710 tags = hex2bin (reply.data () + 1);
14711
14712 return true;
14713 }
14714
14715 /* Create the QMemTags packet given ADDRESS, LEN, TYPE and TAGS. */
14716
14717 static void
14718 create_store_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14719 size_t len, int type,
14720 const gdb::byte_vector &tags)
14721 {
14722 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14723
14724 /* Put together the main packet, address and length. */
14725 std::string request = string_printf ("QMemTags:%s,%s:%s:",
14726 phex_nz (address, addr_size),
14727 phex_nz (len, sizeof (len)),
14728 phex_nz (type, sizeof (type)));
14729 request += bin2hex (tags.data (), tags.size ());
14730
14731 /* Check if we have exceeded the maximum packet size. */
14732 if (packet.size () < request.length ())
14733 error (_("Contents too big for packet QMemTags."));
14734
14735 strcpy (packet.data (), request.c_str ());
14736 }
14737
14738 /* Implement the "fetch_memtags" target_ops method. */
14739
14740 bool
14741 remote_target::fetch_memtags (CORE_ADDR address, size_t len,
14742 gdb::byte_vector &tags, int type)
14743 {
14744 /* Make sure the qMemTags packet is supported. */
14745 if (!remote_memory_tagging_p ())
14746 gdb_assert_not_reached ("remote fetch_memtags called with packet disabled");
14747
14748 struct remote_state *rs = get_remote_state ();
14749
14750 create_fetch_memtags_request (rs->buf, address, len, type);
14751
14752 putpkt (rs->buf);
14753 getpkt (&rs->buf, 0);
14754
14755 return parse_fetch_memtags_reply (rs->buf, tags);
14756 }
14757
14758 /* Implement the "store_memtags" target_ops method. */
14759
14760 bool
14761 remote_target::store_memtags (CORE_ADDR address, size_t len,
14762 const gdb::byte_vector &tags, int type)
14763 {
14764 /* Make sure the QMemTags packet is supported. */
14765 if (!remote_memory_tagging_p ())
14766 gdb_assert_not_reached ("remote store_memtags called with packet disabled");
14767
14768 struct remote_state *rs = get_remote_state ();
14769
14770 create_store_memtags_request (rs->buf, address, len, type, tags);
14771
14772 putpkt (rs->buf);
14773 getpkt (&rs->buf, 0);
14774
14775 /* Verify if the request was successful. */
14776 return packet_check_result (rs->buf.data ()) == PACKET_OK;
14777 }
14778
14779 /* Return true if remote target T is non-stop. */
14780
14781 bool
14782 remote_target_is_non_stop_p (remote_target *t)
14783 {
14784 scoped_restore_current_thread restore_thread;
14785 switch_to_target_no_thread (t);
14786
14787 return target_is_non_stop_p ();
14788 }
14789
14790 #if GDB_SELF_TEST
14791
14792 namespace selftests {
14793
14794 static void
14795 test_memory_tagging_functions ()
14796 {
14797 remote_target remote;
14798
14799 struct packet_config *config
14800 = &remote_protocol_packets[PACKET_memory_tagging_feature];
14801
14802 scoped_restore restore_memtag_support_
14803 = make_scoped_restore (&config->support);
14804
14805 /* Test memory tagging packet support. */
14806 config->support = PACKET_SUPPORT_UNKNOWN;
14807 SELF_CHECK (remote.supports_memory_tagging () == false);
14808 config->support = PACKET_DISABLE;
14809 SELF_CHECK (remote.supports_memory_tagging () == false);
14810 config->support = PACKET_ENABLE;
14811 SELF_CHECK (remote.supports_memory_tagging () == true);
14812
14813 /* Setup testing. */
14814 gdb::char_vector packet;
14815 gdb::byte_vector tags, bv;
14816 std::string expected, reply;
14817 packet.resize (32000);
14818
14819 /* Test creating a qMemTags request. */
14820
14821 expected = "qMemTags:0,0:0";
14822 create_fetch_memtags_request (packet, 0x0, 0x0, 0);
14823 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14824
14825 expected = "qMemTags:deadbeef,10:1";
14826 create_fetch_memtags_request (packet, 0xdeadbeef, 16, 1);
14827 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14828
14829 /* Test parsing a qMemTags reply. */
14830
14831 /* Error reply, tags vector unmodified. */
14832 reply = "E00";
14833 strcpy (packet.data (), reply.c_str ());
14834 tags.resize (0);
14835 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == false);
14836 SELF_CHECK (tags.size () == 0);
14837
14838 /* Valid reply, tags vector updated. */
14839 tags.resize (0);
14840 bv.resize (0);
14841
14842 for (int i = 0; i < 5; i++)
14843 bv.push_back (i);
14844
14845 reply = "m" + bin2hex (bv.data (), bv.size ());
14846 strcpy (packet.data (), reply.c_str ());
14847
14848 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == true);
14849 SELF_CHECK (tags.size () == 5);
14850
14851 for (int i = 0; i < 5; i++)
14852 SELF_CHECK (tags[i] == i);
14853
14854 /* Test creating a QMemTags request. */
14855
14856 /* Empty tag data. */
14857 tags.resize (0);
14858 expected = "QMemTags:0,0:0:";
14859 create_store_memtags_request (packet, 0x0, 0x0, 0, tags);
14860 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14861 expected.length ()) == 0);
14862
14863 /* Non-empty tag data. */
14864 tags.resize (0);
14865 for (int i = 0; i < 5; i++)
14866 tags.push_back (i);
14867 expected = "QMemTags:deadbeef,ff:1:0001020304";
14868 create_store_memtags_request (packet, 0xdeadbeef, 255, 1, tags);
14869 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14870 expected.length ()) == 0);
14871 }
14872
14873 } // namespace selftests
14874 #endif /* GDB_SELF_TEST */
14875
14876 void _initialize_remote ();
14877 void
14878 _initialize_remote ()
14879 {
14880 /* architecture specific data */
14881 remote_g_packet_data_handle =
14882 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14883
14884 add_target (remote_target_info, remote_target::open);
14885 add_target (extended_remote_target_info, extended_remote_target::open);
14886
14887 /* Hook into new objfile notification. */
14888 gdb::observers::new_objfile.attach (remote_new_objfile, "remote");
14889
14890 #if 0
14891 init_remote_threadtests ();
14892 #endif
14893
14894 /* set/show remote ... */
14895
14896 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14897 Remote protocol specific variables.\n\
14898 Configure various remote-protocol specific variables such as\n\
14899 the packets being used."),
14900 &remote_set_cmdlist,
14901 0 /* allow-unknown */, &setlist);
14902 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14903 Remote protocol specific variables.\n\
14904 Configure various remote-protocol specific variables such as\n\
14905 the packets being used."),
14906 &remote_show_cmdlist,
14907 0 /* allow-unknown */, &showlist);
14908
14909 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14910 Compare section data on target to the exec file.\n\
14911 Argument is a single section name (default: all loaded sections).\n\
14912 To compare only read-only loaded sections, specify the -r option."),
14913 &cmdlist);
14914
14915 add_cmd ("packet", class_maintenance, packet_command, _("\
14916 Send an arbitrary packet to a remote target.\n\
14917 maintenance packet TEXT\n\
14918 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14919 this command sends the string TEXT to the inferior, and displays the\n\
14920 response packet. GDB supplies the initial `$' character, and the\n\
14921 terminating `#' character and checksum."),
14922 &maintenancelist);
14923
14924 set_show_commands remotebreak_cmds
14925 = add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14926 Set whether to send break if interrupted."), _("\
14927 Show whether to send break if interrupted."), _("\
14928 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14929 set_remotebreak, show_remotebreak,
14930 &setlist, &showlist);
14931 deprecate_cmd (remotebreak_cmds.set, "set remote interrupt-sequence");
14932 deprecate_cmd (remotebreak_cmds.show, "show remote interrupt-sequence");
14933
14934 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14935 interrupt_sequence_modes, &interrupt_sequence_mode,
14936 _("\
14937 Set interrupt sequence to remote target."), _("\
14938 Show interrupt sequence to remote target."), _("\
14939 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14940 NULL, show_interrupt_sequence,
14941 &remote_set_cmdlist,
14942 &remote_show_cmdlist);
14943
14944 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14945 &interrupt_on_connect, _("\
14946 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14947 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14948 If set, interrupt sequence is sent to remote target."),
14949 NULL, NULL,
14950 &remote_set_cmdlist, &remote_show_cmdlist);
14951
14952 /* Install commands for configuring memory read/write packets. */
14953
14954 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14955 Set the maximum number of bytes per memory write packet (deprecated)."),
14956 &setlist);
14957 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14958 Show the maximum number of bytes per memory write packet (deprecated)."),
14959 &showlist);
14960 add_cmd ("memory-write-packet-size", no_class,
14961 set_memory_write_packet_size, _("\
14962 Set the maximum number of bytes per memory-write packet.\n\
14963 Specify the number of bytes in a packet or 0 (zero) for the\n\
14964 default packet size. The actual limit is further reduced\n\
14965 dependent on the target. Specify ``fixed'' to disable the\n\
14966 further restriction and ``limit'' to enable that restriction."),
14967 &remote_set_cmdlist);
14968 add_cmd ("memory-read-packet-size", no_class,
14969 set_memory_read_packet_size, _("\
14970 Set the maximum number of bytes per memory-read packet.\n\
14971 Specify the number of bytes in a packet or 0 (zero) for the\n\
14972 default packet size. The actual limit is further reduced\n\
14973 dependent on the target. Specify ``fixed'' to disable the\n\
14974 further restriction and ``limit'' to enable that restriction."),
14975 &remote_set_cmdlist);
14976 add_cmd ("memory-write-packet-size", no_class,
14977 show_memory_write_packet_size,
14978 _("Show the maximum number of bytes per memory-write packet."),
14979 &remote_show_cmdlist);
14980 add_cmd ("memory-read-packet-size", no_class,
14981 show_memory_read_packet_size,
14982 _("Show the maximum number of bytes per memory-read packet."),
14983 &remote_show_cmdlist);
14984
14985 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14986 &remote_hw_watchpoint_limit, _("\
14987 Set the maximum number of target hardware watchpoints."), _("\
14988 Show the maximum number of target hardware watchpoints."), _("\
14989 Specify \"unlimited\" for unlimited hardware watchpoints."),
14990 NULL, show_hardware_watchpoint_limit,
14991 &remote_set_cmdlist,
14992 &remote_show_cmdlist);
14993 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14994 no_class,
14995 &remote_hw_watchpoint_length_limit, _("\
14996 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14997 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14998 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14999 NULL, show_hardware_watchpoint_length_limit,
15000 &remote_set_cmdlist, &remote_show_cmdlist);
15001 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
15002 &remote_hw_breakpoint_limit, _("\
15003 Set the maximum number of target hardware breakpoints."), _("\
15004 Show the maximum number of target hardware breakpoints."), _("\
15005 Specify \"unlimited\" for unlimited hardware breakpoints."),
15006 NULL, show_hardware_breakpoint_limit,
15007 &remote_set_cmdlist, &remote_show_cmdlist);
15008
15009 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
15010 &remote_address_size, _("\
15011 Set the maximum size of the address (in bits) in a memory packet."), _("\
15012 Show the maximum size of the address (in bits) in a memory packet."), NULL,
15013 NULL,
15014 NULL, /* FIXME: i18n: */
15015 &setlist, &showlist);
15016
15017 init_all_packet_configs ();
15018
15019 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
15020 "X", "binary-download", 1);
15021
15022 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
15023 "vCont", "verbose-resume", 0);
15024
15025 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
15026 "QPassSignals", "pass-signals", 0);
15027
15028 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
15029 "QCatchSyscalls", "catch-syscalls", 0);
15030
15031 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
15032 "QProgramSignals", "program-signals", 0);
15033
15034 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
15035 "QSetWorkingDir", "set-working-dir", 0);
15036
15037 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
15038 "QStartupWithShell", "startup-with-shell", 0);
15039
15040 add_packet_config_cmd (&remote_protocol_packets
15041 [PACKET_QEnvironmentHexEncoded],
15042 "QEnvironmentHexEncoded", "environment-hex-encoded",
15043 0);
15044
15045 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
15046 "QEnvironmentReset", "environment-reset",
15047 0);
15048
15049 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
15050 "QEnvironmentUnset", "environment-unset",
15051 0);
15052
15053 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
15054 "qSymbol", "symbol-lookup", 0);
15055
15056 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
15057 "P", "set-register", 1);
15058
15059 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
15060 "p", "fetch-register", 1);
15061
15062 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
15063 "Z0", "software-breakpoint", 0);
15064
15065 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
15066 "Z1", "hardware-breakpoint", 0);
15067
15068 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
15069 "Z2", "write-watchpoint", 0);
15070
15071 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
15072 "Z3", "read-watchpoint", 0);
15073
15074 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
15075 "Z4", "access-watchpoint", 0);
15076
15077 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
15078 "qXfer:auxv:read", "read-aux-vector", 0);
15079
15080 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
15081 "qXfer:exec-file:read", "pid-to-exec-file", 0);
15082
15083 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
15084 "qXfer:features:read", "target-features", 0);
15085
15086 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
15087 "qXfer:libraries:read", "library-info", 0);
15088
15089 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
15090 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
15091
15092 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
15093 "qXfer:memory-map:read", "memory-map", 0);
15094
15095 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
15096 "qXfer:osdata:read", "osdata", 0);
15097
15098 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
15099 "qXfer:threads:read", "threads", 0);
15100
15101 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
15102 "qXfer:siginfo:read", "read-siginfo-object", 0);
15103
15104 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
15105 "qXfer:siginfo:write", "write-siginfo-object", 0);
15106
15107 add_packet_config_cmd
15108 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
15109 "qXfer:traceframe-info:read", "traceframe-info", 0);
15110
15111 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
15112 "qXfer:uib:read", "unwind-info-block", 0);
15113
15114 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
15115 "qGetTLSAddr", "get-thread-local-storage-address",
15116 0);
15117
15118 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
15119 "qGetTIBAddr", "get-thread-information-block-address",
15120 0);
15121
15122 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
15123 "bc", "reverse-continue", 0);
15124
15125 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
15126 "bs", "reverse-step", 0);
15127
15128 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
15129 "qSupported", "supported-packets", 0);
15130
15131 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
15132 "qSearch:memory", "search-memory", 0);
15133
15134 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
15135 "qTStatus", "trace-status", 0);
15136
15137 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
15138 "vFile:setfs", "hostio-setfs", 0);
15139
15140 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
15141 "vFile:open", "hostio-open", 0);
15142
15143 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
15144 "vFile:pread", "hostio-pread", 0);
15145
15146 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
15147 "vFile:pwrite", "hostio-pwrite", 0);
15148
15149 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
15150 "vFile:close", "hostio-close", 0);
15151
15152 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
15153 "vFile:unlink", "hostio-unlink", 0);
15154
15155 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
15156 "vFile:readlink", "hostio-readlink", 0);
15157
15158 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
15159 "vFile:fstat", "hostio-fstat", 0);
15160
15161 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
15162 "vAttach", "attach", 0);
15163
15164 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
15165 "vRun", "run", 0);
15166
15167 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
15168 "QStartNoAckMode", "noack", 0);
15169
15170 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
15171 "vKill", "kill", 0);
15172
15173 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
15174 "qAttached", "query-attached", 0);
15175
15176 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
15177 "ConditionalTracepoints",
15178 "conditional-tracepoints", 0);
15179
15180 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
15181 "ConditionalBreakpoints",
15182 "conditional-breakpoints", 0);
15183
15184 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
15185 "BreakpointCommands",
15186 "breakpoint-commands", 0);
15187
15188 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
15189 "FastTracepoints", "fast-tracepoints", 0);
15190
15191 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
15192 "TracepointSource", "TracepointSource", 0);
15193
15194 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
15195 "QAllow", "allow", 0);
15196
15197 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
15198 "StaticTracepoints", "static-tracepoints", 0);
15199
15200 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
15201 "InstallInTrace", "install-in-trace", 0);
15202
15203 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
15204 "qXfer:statictrace:read", "read-sdata-object", 0);
15205
15206 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
15207 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
15208
15209 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
15210 "QDisableRandomization", "disable-randomization", 0);
15211
15212 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
15213 "QAgent", "agent", 0);
15214
15215 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
15216 "QTBuffer:size", "trace-buffer-size", 0);
15217
15218 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
15219 "Qbtrace:off", "disable-btrace", 0);
15220
15221 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
15222 "Qbtrace:bts", "enable-btrace-bts", 0);
15223
15224 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
15225 "Qbtrace:pt", "enable-btrace-pt", 0);
15226
15227 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
15228 "qXfer:btrace", "read-btrace", 0);
15229
15230 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
15231 "qXfer:btrace-conf", "read-btrace-conf", 0);
15232
15233 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
15234 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
15235
15236 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
15237 "multiprocess-feature", "multiprocess-feature", 0);
15238
15239 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
15240 "swbreak-feature", "swbreak-feature", 0);
15241
15242 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
15243 "hwbreak-feature", "hwbreak-feature", 0);
15244
15245 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
15246 "fork-event-feature", "fork-event-feature", 0);
15247
15248 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
15249 "vfork-event-feature", "vfork-event-feature", 0);
15250
15251 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
15252 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
15253
15254 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
15255 "vContSupported", "verbose-resume-supported", 0);
15256
15257 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
15258 "exec-event-feature", "exec-event-feature", 0);
15259
15260 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
15261 "vCtrlC", "ctrl-c", 0);
15262
15263 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
15264 "QThreadEvents", "thread-events", 0);
15265
15266 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
15267 "N stop reply", "no-resumed-stop-reply", 0);
15268
15269 add_packet_config_cmd (&remote_protocol_packets[PACKET_memory_tagging_feature],
15270 "memory-tagging-feature", "memory-tagging-feature", 0);
15271
15272 /* Assert that we've registered "set remote foo-packet" commands
15273 for all packet configs. */
15274 {
15275 int i;
15276
15277 for (i = 0; i < PACKET_MAX; i++)
15278 {
15279 /* Ideally all configs would have a command associated. Some
15280 still don't though. */
15281 int excepted;
15282
15283 switch (i)
15284 {
15285 case PACKET_QNonStop:
15286 case PACKET_EnableDisableTracepoints_feature:
15287 case PACKET_tracenz_feature:
15288 case PACKET_DisconnectedTracing_feature:
15289 case PACKET_augmented_libraries_svr4_read_feature:
15290 case PACKET_qCRC:
15291 /* Additions to this list need to be well justified:
15292 pre-existing packets are OK; new packets are not. */
15293 excepted = 1;
15294 break;
15295 default:
15296 excepted = 0;
15297 break;
15298 }
15299
15300 /* This catches both forgetting to add a config command, and
15301 forgetting to remove a packet from the exception list. */
15302 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
15303 }
15304 }
15305
15306 /* Keep the old ``set remote Z-packet ...'' working. Each individual
15307 Z sub-packet has its own set and show commands, but users may
15308 have sets to this variable in their .gdbinit files (or in their
15309 documentation). */
15310 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
15311 &remote_Z_packet_detect, _("\
15312 Set use of remote protocol `Z' packets."), _("\
15313 Show use of remote protocol `Z' packets."), _("\
15314 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
15315 packets."),
15316 set_remote_protocol_Z_packet_cmd,
15317 show_remote_protocol_Z_packet_cmd,
15318 /* FIXME: i18n: Use of remote protocol
15319 `Z' packets is %s. */
15320 &remote_set_cmdlist, &remote_show_cmdlist);
15321
15322 add_basic_prefix_cmd ("remote", class_files, _("\
15323 Manipulate files on the remote system.\n\
15324 Transfer files to and from the remote target system."),
15325 &remote_cmdlist,
15326 0 /* allow-unknown */, &cmdlist);
15327
15328 add_cmd ("put", class_files, remote_put_command,
15329 _("Copy a local file to the remote system."),
15330 &remote_cmdlist);
15331
15332 add_cmd ("get", class_files, remote_get_command,
15333 _("Copy a remote file to the local system."),
15334 &remote_cmdlist);
15335
15336 add_cmd ("delete", class_files, remote_delete_command,
15337 _("Delete a remote file."),
15338 &remote_cmdlist);
15339
15340 add_setshow_string_noescape_cmd ("exec-file", class_files,
15341 &remote_exec_file_var, _("\
15342 Set the remote pathname for \"run\"."), _("\
15343 Show the remote pathname for \"run\"."), NULL,
15344 set_remote_exec_file,
15345 show_remote_exec_file,
15346 &remote_set_cmdlist,
15347 &remote_show_cmdlist);
15348
15349 add_setshow_boolean_cmd ("range-stepping", class_run,
15350 &use_range_stepping, _("\
15351 Enable or disable range stepping."), _("\
15352 Show whether target-assisted range stepping is enabled."), _("\
15353 If on, and the target supports it, when stepping a source line, GDB\n\
15354 tells the target to step the corresponding range of addresses itself instead\n\
15355 of issuing multiple single-steps. This speeds up source level\n\
15356 stepping. If off, GDB always issues single-steps, even if range\n\
15357 stepping is supported by the target. The default is on."),
15358 set_range_stepping,
15359 show_range_stepping,
15360 &setlist,
15361 &showlist);
15362
15363 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15364 Set watchdog timer."), _("\
15365 Show watchdog timer."), _("\
15366 When non-zero, this timeout is used instead of waiting forever for a target\n\
15367 to finish a low-level step or continue operation. If the specified amount\n\
15368 of time passes without a response from the target, an error occurs."),
15369 NULL,
15370 show_watchdog,
15371 &setlist, &showlist);
15372
15373 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15374 &remote_packet_max_chars, _("\
15375 Set the maximum number of characters to display for each remote packet."), _("\
15376 Show the maximum number of characters to display for each remote packet."), _("\
15377 Specify \"unlimited\" to display all the characters."),
15378 NULL, show_remote_packet_max_chars,
15379 &setdebuglist, &showdebuglist);
15380
15381 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
15382 _("Set debugging of remote protocol."),
15383 _("Show debugging of remote protocol."),
15384 _("\
15385 When enabled, each packet sent or received with the remote target\n\
15386 is displayed."),
15387 NULL,
15388 show_remote_debug,
15389 &setdebuglist, &showdebuglist);
15390
15391 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15392 &remote_timeout, _("\
15393 Set timeout limit to wait for target to respond."), _("\
15394 Show timeout limit to wait for target to respond."), _("\
15395 This value is used to set the time limit for gdb to wait for a response\n\
15396 from the target."),
15397 NULL,
15398 show_remote_timeout,
15399 &setlist, &showlist);
15400
15401 /* Eventually initialize fileio. See fileio.c */
15402 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15403
15404 #if GDB_SELF_TEST
15405 selftests::register_test ("remote_memory_tagging",
15406 selftests::test_memory_tagging_functions);
15407 #endif
15408 }