gdb/testsuite: Remove duplicates from gdb.base/stack-checking.exp
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82 #include "gdbsupport/selftest.h"
83
84 /* The remote target. */
85
86 static const char remote_doc[] = N_("\
87 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
88 Specify the serial device it is connected to\n\
89 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
90
91 /* See remote.h */
92
93 bool remote_debug = false;
94
95 #define OPAQUETHREADBYTES 8
96
97 /* a 64 bit opaque identifier */
98 typedef unsigned char threadref[OPAQUETHREADBYTES];
99
100 struct gdb_ext_thread_info;
101 struct threads_listing_context;
102 typedef int (*rmt_thread_action) (threadref *ref, void *context);
103 struct protocol_feature;
104 struct packet_reg;
105
106 struct stop_reply;
107 typedef std::unique_ptr<stop_reply> stop_reply_up;
108
109 /* Generic configuration support for packets the stub optionally
110 supports. Allows the user to specify the use of the packet as well
111 as allowing GDB to auto-detect support in the remote stub. */
112
113 enum packet_support
114 {
115 PACKET_SUPPORT_UNKNOWN = 0,
116 PACKET_ENABLE,
117 PACKET_DISABLE
118 };
119
120 /* Analyze a packet's return value and update the packet config
121 accordingly. */
122
123 enum packet_result
124 {
125 PACKET_ERROR,
126 PACKET_OK,
127 PACKET_UNKNOWN
128 };
129
130 struct threads_listing_context;
131
132 /* Stub vCont actions support.
133
134 Each field is a boolean flag indicating whether the stub reports
135 support for the corresponding action. */
136
137 struct vCont_action_support
138 {
139 /* vCont;t */
140 bool t = false;
141
142 /* vCont;r */
143 bool r = false;
144
145 /* vCont;s */
146 bool s = false;
147
148 /* vCont;S */
149 bool S = false;
150 };
151
152 /* About this many threadids fit in a packet. */
153
154 #define MAXTHREADLISTRESULTS 32
155
156 /* Data for the vFile:pread readahead cache. */
157
158 struct readahead_cache
159 {
160 /* Invalidate the readahead cache. */
161 void invalidate ();
162
163 /* Invalidate the readahead cache if it is holding data for FD. */
164 void invalidate_fd (int fd);
165
166 /* Serve pread from the readahead cache. Returns number of bytes
167 read, or 0 if the request can't be served from the cache. */
168 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
169
170 /* The file descriptor for the file that is being cached. -1 if the
171 cache is invalid. */
172 int fd = -1;
173
174 /* The offset into the file that the cache buffer corresponds
175 to. */
176 ULONGEST offset = 0;
177
178 /* The buffer holding the cache contents. */
179 gdb_byte *buf = nullptr;
180 /* The buffer's size. We try to read as much as fits into a packet
181 at a time. */
182 size_t bufsize = 0;
183
184 /* Cache hit and miss counters. */
185 ULONGEST hit_count = 0;
186 ULONGEST miss_count = 0;
187 };
188
189 /* Description of the remote protocol for a given architecture. */
190
191 struct packet_reg
192 {
193 long offset; /* Offset into G packet. */
194 long regnum; /* GDB's internal register number. */
195 LONGEST pnum; /* Remote protocol register number. */
196 int in_g_packet; /* Always part of G packet. */
197 /* long size in bytes; == register_size (target_gdbarch (), regnum);
198 at present. */
199 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
200 at present. */
201 };
202
203 struct remote_arch_state
204 {
205 explicit remote_arch_state (struct gdbarch *gdbarch);
206
207 /* Description of the remote protocol registers. */
208 long sizeof_g_packet;
209
210 /* Description of the remote protocol registers indexed by REGNUM
211 (making an array gdbarch_num_regs in size). */
212 std::unique_ptr<packet_reg[]> regs;
213
214 /* This is the size (in chars) of the first response to the ``g''
215 packet. It is used as a heuristic when determining the maximum
216 size of memory-read and memory-write packets. A target will
217 typically only reserve a buffer large enough to hold the ``g''
218 packet. The size does not include packet overhead (headers and
219 trailers). */
220 long actual_register_packet_size;
221
222 /* This is the maximum size (in chars) of a non read/write packet.
223 It is also used as a cap on the size of read/write packets. */
224 long remote_packet_size;
225 };
226
227 /* Description of the remote protocol state for the currently
228 connected target. This is per-target state, and independent of the
229 selected architecture. */
230
231 class remote_state
232 {
233 public:
234
235 remote_state ();
236 ~remote_state ();
237
238 /* Get the remote arch state for GDBARCH. */
239 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
240
241 public: /* data */
242
243 /* A buffer to use for incoming packets, and its current size. The
244 buffer is grown dynamically for larger incoming packets.
245 Outgoing packets may also be constructed in this buffer.
246 The size of the buffer is always at least REMOTE_PACKET_SIZE;
247 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
248 packets. */
249 gdb::char_vector buf;
250
251 /* True if we're going through initial connection setup (finding out
252 about the remote side's threads, relocating symbols, etc.). */
253 bool starting_up = false;
254
255 /* If we negotiated packet size explicitly (and thus can bypass
256 heuristics for the largest packet size that will not overflow
257 a buffer in the stub), this will be set to that packet size.
258 Otherwise zero, meaning to use the guessed size. */
259 long explicit_packet_size = 0;
260
261 /* True, if in no ack mode. That is, neither GDB nor the stub will
262 expect acks from each other. The connection is assumed to be
263 reliable. */
264 bool noack_mode = false;
265
266 /* True if we're connected in extended remote mode. */
267 bool extended = false;
268
269 /* True if we resumed the target and we're waiting for the target to
270 stop. In the mean time, we can't start another command/query.
271 The remote server wouldn't be ready to process it, so we'd
272 timeout waiting for a reply that would never come and eventually
273 we'd close the connection. This can happen in asynchronous mode
274 because we allow GDB commands while the target is running. */
275 bool waiting_for_stop_reply = false;
276
277 /* The status of the stub support for the various vCont actions. */
278 vCont_action_support supports_vCont;
279 /* Whether vCont support was probed already. This is a workaround
280 until packet_support is per-connection. */
281 bool supports_vCont_probed;
282
283 /* True if the user has pressed Ctrl-C, but the target hasn't
284 responded to that. */
285 bool ctrlc_pending_p = false;
286
287 /* True if we saw a Ctrl-C while reading or writing from/to the
288 remote descriptor. At that point it is not safe to send a remote
289 interrupt packet, so we instead remember we saw the Ctrl-C and
290 process it once we're done with sending/receiving the current
291 packet, which should be shortly. If however that takes too long,
292 and the user presses Ctrl-C again, we offer to disconnect. */
293 bool got_ctrlc_during_io = false;
294
295 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
296 remote_open knows that we don't have a file open when the program
297 starts. */
298 struct serial *remote_desc = nullptr;
299
300 /* These are the threads which we last sent to the remote system. The
301 TID member will be -1 for all or -2 for not sent yet. */
302 ptid_t general_thread = null_ptid;
303 ptid_t continue_thread = null_ptid;
304
305 /* This is the traceframe which we last selected on the remote system.
306 It will be -1 if no traceframe is selected. */
307 int remote_traceframe_number = -1;
308
309 char *last_pass_packet = nullptr;
310
311 /* The last QProgramSignals packet sent to the target. We bypass
312 sending a new program signals list down to the target if the new
313 packet is exactly the same as the last we sent. IOW, we only let
314 the target know about program signals list changes. */
315 char *last_program_signals_packet = nullptr;
316
317 gdb_signal last_sent_signal = GDB_SIGNAL_0;
318
319 bool last_sent_step = false;
320
321 /* The execution direction of the last resume we got. */
322 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
323
324 char *finished_object = nullptr;
325 char *finished_annex = nullptr;
326 ULONGEST finished_offset = 0;
327
328 /* Should we try the 'ThreadInfo' query packet?
329
330 This variable (NOT available to the user: auto-detect only!)
331 determines whether GDB will use the new, simpler "ThreadInfo"
332 query or the older, more complex syntax for thread queries.
333 This is an auto-detect variable (set to true at each connect,
334 and set to false when the target fails to recognize it). */
335 bool use_threadinfo_query = false;
336 bool use_threadextra_query = false;
337
338 threadref echo_nextthread {};
339 threadref nextthread {};
340 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
341
342 /* The state of remote notification. */
343 struct remote_notif_state *notif_state = nullptr;
344
345 /* The branch trace configuration. */
346 struct btrace_config btrace_config {};
347
348 /* The argument to the last "vFile:setfs:" packet we sent, used
349 to avoid sending repeated unnecessary "vFile:setfs:" packets.
350 Initialized to -1 to indicate that no "vFile:setfs:" packet
351 has yet been sent. */
352 int fs_pid = -1;
353
354 /* A readahead cache for vFile:pread. Often, reading a binary
355 involves a sequence of small reads. E.g., when parsing an ELF
356 file. A readahead cache helps mostly the case of remote
357 debugging on a connection with higher latency, due to the
358 request/reply nature of the RSP. We only cache data for a single
359 file descriptor at a time. */
360 struct readahead_cache readahead_cache;
361
362 /* The list of already fetched and acknowledged stop events. This
363 queue is used for notification Stop, and other notifications
364 don't need queue for their events, because the notification
365 events of Stop can't be consumed immediately, so that events
366 should be queued first, and be consumed by remote_wait_{ns,as}
367 one per time. Other notifications can consume their events
368 immediately, so queue is not needed for them. */
369 std::vector<stop_reply_up> stop_reply_queue;
370
371 /* Asynchronous signal handle registered as event loop source for
372 when we have pending events ready to be passed to the core. */
373 struct async_event_handler *remote_async_inferior_event_token = nullptr;
374
375 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
376 ``forever'' still use the normal timeout mechanism. This is
377 currently used by the ASYNC code to guarentee that target reads
378 during the initial connect always time-out. Once getpkt has been
379 modified to return a timeout indication and, in turn
380 remote_wait()/wait_for_inferior() have gained a timeout parameter
381 this can go away. */
382 int wait_forever_enabled_p = 1;
383
384 private:
385 /* Mapping of remote protocol data for each gdbarch. Usually there
386 is only one entry here, though we may see more with stubs that
387 support multi-process. */
388 std::unordered_map<struct gdbarch *, remote_arch_state>
389 m_arch_states;
390 };
391
392 static const target_info remote_target_info = {
393 "remote",
394 N_("Remote serial target in gdb-specific protocol"),
395 remote_doc
396 };
397
398 class remote_target : public process_stratum_target
399 {
400 public:
401 remote_target () = default;
402 ~remote_target () override;
403
404 const target_info &info () const override
405 { return remote_target_info; }
406
407 const char *connection_string () override;
408
409 thread_control_capabilities get_thread_control_capabilities () override
410 { return tc_schedlock; }
411
412 /* Open a remote connection. */
413 static void open (const char *, int);
414
415 void close () override;
416
417 void detach (inferior *, int) override;
418 void disconnect (const char *, int) override;
419
420 void commit_resumed () override;
421 void resume (ptid_t, int, enum gdb_signal) override;
422 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
423 bool has_pending_events () override;
424
425 void fetch_registers (struct regcache *, int) override;
426 void store_registers (struct regcache *, int) override;
427 void prepare_to_store (struct regcache *) override;
428
429 void files_info () override;
430
431 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
432
433 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
434 enum remove_bp_reason) override;
435
436
437 bool stopped_by_sw_breakpoint () override;
438 bool supports_stopped_by_sw_breakpoint () override;
439
440 bool stopped_by_hw_breakpoint () override;
441
442 bool supports_stopped_by_hw_breakpoint () override;
443
444 bool stopped_by_watchpoint () override;
445
446 bool stopped_data_address (CORE_ADDR *) override;
447
448 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
449
450 int can_use_hw_breakpoint (enum bptype, int, int) override;
451
452 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
453
454 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
455
456 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
457
458 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
459 struct expression *) override;
460
461 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
462 struct expression *) override;
463
464 void kill () override;
465
466 void load (const char *, int) override;
467
468 void mourn_inferior () override;
469
470 void pass_signals (gdb::array_view<const unsigned char>) override;
471
472 int set_syscall_catchpoint (int, bool, int,
473 gdb::array_view<const int>) override;
474
475 void program_signals (gdb::array_view<const unsigned char>) override;
476
477 bool thread_alive (ptid_t ptid) override;
478
479 const char *thread_name (struct thread_info *) override;
480
481 void update_thread_list () override;
482
483 std::string pid_to_str (ptid_t) override;
484
485 const char *extra_thread_info (struct thread_info *) override;
486
487 ptid_t get_ada_task_ptid (long lwp, ULONGEST thread) override;
488
489 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
490 int handle_len,
491 inferior *inf) override;
492
493 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
494 override;
495
496 void stop (ptid_t) override;
497
498 void interrupt () override;
499
500 void pass_ctrlc () override;
501
502 enum target_xfer_status xfer_partial (enum target_object object,
503 const char *annex,
504 gdb_byte *readbuf,
505 const gdb_byte *writebuf,
506 ULONGEST offset, ULONGEST len,
507 ULONGEST *xfered_len) override;
508
509 ULONGEST get_memory_xfer_limit () override;
510
511 void rcmd (const char *command, struct ui_file *output) override;
512
513 char *pid_to_exec_file (int pid) override;
514
515 void log_command (const char *cmd) override
516 {
517 serial_log_command (this, cmd);
518 }
519
520 CORE_ADDR get_thread_local_address (ptid_t ptid,
521 CORE_ADDR load_module_addr,
522 CORE_ADDR offset) override;
523
524 bool can_execute_reverse () override;
525
526 std::vector<mem_region> memory_map () override;
527
528 void flash_erase (ULONGEST address, LONGEST length) override;
529
530 void flash_done () override;
531
532 const struct target_desc *read_description () override;
533
534 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
535 const gdb_byte *pattern, ULONGEST pattern_len,
536 CORE_ADDR *found_addrp) override;
537
538 bool can_async_p () override;
539
540 bool is_async_p () override;
541
542 void async (int) override;
543
544 int async_wait_fd () override;
545
546 void thread_events (int) override;
547
548 int can_do_single_step () override;
549
550 void terminal_inferior () override;
551
552 void terminal_ours () override;
553
554 bool supports_non_stop () override;
555
556 bool supports_multi_process () override;
557
558 bool supports_disable_randomization () override;
559
560 bool filesystem_is_local () override;
561
562
563 int fileio_open (struct inferior *inf, const char *filename,
564 int flags, int mode, int warn_if_slow,
565 int *target_errno) override;
566
567 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
568 ULONGEST offset, int *target_errno) override;
569
570 int fileio_pread (int fd, gdb_byte *read_buf, int len,
571 ULONGEST offset, int *target_errno) override;
572
573 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
574
575 int fileio_close (int fd, int *target_errno) override;
576
577 int fileio_unlink (struct inferior *inf,
578 const char *filename,
579 int *target_errno) override;
580
581 gdb::optional<std::string>
582 fileio_readlink (struct inferior *inf,
583 const char *filename,
584 int *target_errno) override;
585
586 bool supports_enable_disable_tracepoint () override;
587
588 bool supports_string_tracing () override;
589
590 bool supports_evaluation_of_breakpoint_conditions () override;
591
592 bool can_run_breakpoint_commands () override;
593
594 void trace_init () override;
595
596 void download_tracepoint (struct bp_location *location) override;
597
598 bool can_download_tracepoint () override;
599
600 void download_trace_state_variable (const trace_state_variable &tsv) override;
601
602 void enable_tracepoint (struct bp_location *location) override;
603
604 void disable_tracepoint (struct bp_location *location) override;
605
606 void trace_set_readonly_regions () override;
607
608 void trace_start () override;
609
610 int get_trace_status (struct trace_status *ts) override;
611
612 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
613 override;
614
615 void trace_stop () override;
616
617 int trace_find (enum trace_find_type type, int num,
618 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
619
620 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
621
622 int save_trace_data (const char *filename) override;
623
624 int upload_tracepoints (struct uploaded_tp **utpp) override;
625
626 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
627
628 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
629
630 int get_min_fast_tracepoint_insn_len () override;
631
632 void set_disconnected_tracing (int val) override;
633
634 void set_circular_trace_buffer (int val) override;
635
636 void set_trace_buffer_size (LONGEST val) override;
637
638 bool set_trace_notes (const char *user, const char *notes,
639 const char *stopnotes) override;
640
641 int core_of_thread (ptid_t ptid) override;
642
643 int verify_memory (const gdb_byte *data,
644 CORE_ADDR memaddr, ULONGEST size) override;
645
646
647 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
648
649 void set_permissions () override;
650
651 bool static_tracepoint_marker_at (CORE_ADDR,
652 struct static_tracepoint_marker *marker)
653 override;
654
655 std::vector<static_tracepoint_marker>
656 static_tracepoint_markers_by_strid (const char *id) override;
657
658 traceframe_info_up traceframe_info () override;
659
660 bool use_agent (bool use) override;
661 bool can_use_agent () override;
662
663 struct btrace_target_info *enable_btrace (ptid_t ptid,
664 const struct btrace_config *conf) override;
665
666 void disable_btrace (struct btrace_target_info *tinfo) override;
667
668 void teardown_btrace (struct btrace_target_info *tinfo) override;
669
670 enum btrace_error read_btrace (struct btrace_data *data,
671 struct btrace_target_info *btinfo,
672 enum btrace_read_type type) override;
673
674 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
675 bool augmented_libraries_svr4_read () override;
676 void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool) override;
677 void follow_exec (inferior *, ptid_t, const char *) override;
678 int insert_fork_catchpoint (int) override;
679 int remove_fork_catchpoint (int) override;
680 int insert_vfork_catchpoint (int) override;
681 int remove_vfork_catchpoint (int) override;
682 int insert_exec_catchpoint (int) override;
683 int remove_exec_catchpoint (int) override;
684 enum exec_direction_kind execution_direction () override;
685
686 bool supports_memory_tagging () override;
687
688 bool fetch_memtags (CORE_ADDR address, size_t len,
689 gdb::byte_vector &tags, int type) override;
690
691 bool store_memtags (CORE_ADDR address, size_t len,
692 const gdb::byte_vector &tags, int type) override;
693
694 public: /* Remote specific methods. */
695
696 void remote_download_command_source (int num, ULONGEST addr,
697 struct command_line *cmds);
698
699 void remote_file_put (const char *local_file, const char *remote_file,
700 int from_tty);
701 void remote_file_get (const char *remote_file, const char *local_file,
702 int from_tty);
703 void remote_file_delete (const char *remote_file, int from_tty);
704
705 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
706 ULONGEST offset, int *remote_errno);
707 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
708 ULONGEST offset, int *remote_errno);
709 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
710 ULONGEST offset, int *remote_errno);
711
712 int remote_hostio_send_command (int command_bytes, int which_packet,
713 int *remote_errno, const char **attachment,
714 int *attachment_len);
715 int remote_hostio_set_filesystem (struct inferior *inf,
716 int *remote_errno);
717 /* We should get rid of this and use fileio_open directly. */
718 int remote_hostio_open (struct inferior *inf, const char *filename,
719 int flags, int mode, int warn_if_slow,
720 int *remote_errno);
721 int remote_hostio_close (int fd, int *remote_errno);
722
723 int remote_hostio_unlink (inferior *inf, const char *filename,
724 int *remote_errno);
725
726 struct remote_state *get_remote_state ();
727
728 long get_remote_packet_size (void);
729 long get_memory_packet_size (struct memory_packet_config *config);
730
731 long get_memory_write_packet_size ();
732 long get_memory_read_packet_size ();
733
734 char *append_pending_thread_resumptions (char *p, char *endp,
735 ptid_t ptid);
736 static void open_1 (const char *name, int from_tty, int extended_p);
737 void start_remote (int from_tty, int extended_p);
738 void remote_detach_1 (struct inferior *inf, int from_tty);
739
740 char *append_resumption (char *p, char *endp,
741 ptid_t ptid, int step, gdb_signal siggnal);
742 int remote_resume_with_vcont (ptid_t ptid, int step,
743 gdb_signal siggnal);
744
745 thread_info *add_current_inferior_and_thread (const char *wait_status);
746
747 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
748 target_wait_flags options);
749 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
750 target_wait_flags options);
751
752 ptid_t process_stop_reply (struct stop_reply *stop_reply,
753 target_waitstatus *status);
754
755 ptid_t select_thread_for_ambiguous_stop_reply
756 (const struct target_waitstatus &status);
757
758 void remote_notice_new_inferior (ptid_t currthread, bool executing);
759
760 void print_one_stopped_thread (thread_info *thread);
761 void process_initial_stop_replies (int from_tty);
762
763 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing,
764 bool silent_p);
765
766 void btrace_sync_conf (const btrace_config *conf);
767
768 void remote_btrace_maybe_reopen ();
769
770 void remove_new_fork_children (threads_listing_context *context);
771 void kill_new_fork_children (inferior *inf);
772 void discard_pending_stop_replies (struct inferior *inf);
773 int stop_reply_queue_length ();
774
775 void check_pending_events_prevent_wildcard_vcont
776 (bool *may_global_wildcard_vcont);
777
778 void discard_pending_stop_replies_in_queue ();
779 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
780 struct stop_reply *queued_stop_reply (ptid_t ptid);
781 int peek_stop_reply (ptid_t ptid);
782 void remote_parse_stop_reply (const char *buf, stop_reply *event);
783
784 void remote_stop_ns (ptid_t ptid);
785 void remote_interrupt_as ();
786 void remote_interrupt_ns ();
787
788 char *remote_get_noisy_reply ();
789 int remote_query_attached (int pid);
790 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
791 int try_open_exec);
792
793 ptid_t remote_current_thread (ptid_t oldpid);
794 ptid_t get_current_thread (const char *wait_status);
795
796 void set_thread (ptid_t ptid, int gen);
797 void set_general_thread (ptid_t ptid);
798 void set_continue_thread (ptid_t ptid);
799 void set_general_process ();
800
801 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
802
803 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
804 gdb_ext_thread_info *info);
805 int remote_get_threadinfo (threadref *threadid, int fieldset,
806 gdb_ext_thread_info *info);
807
808 int parse_threadlist_response (const char *pkt, int result_limit,
809 threadref *original_echo,
810 threadref *resultlist,
811 int *doneflag);
812 int remote_get_threadlist (int startflag, threadref *nextthread,
813 int result_limit, int *done, int *result_count,
814 threadref *threadlist);
815
816 int remote_threadlist_iterator (rmt_thread_action stepfunction,
817 void *context, int looplimit);
818
819 int remote_get_threads_with_ql (threads_listing_context *context);
820 int remote_get_threads_with_qxfer (threads_listing_context *context);
821 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
822
823 void extended_remote_restart ();
824
825 void get_offsets ();
826
827 void remote_check_symbols ();
828
829 void remote_supported_packet (const struct protocol_feature *feature,
830 enum packet_support support,
831 const char *argument);
832
833 void remote_query_supported ();
834
835 void remote_packet_size (const protocol_feature *feature,
836 packet_support support, const char *value);
837
838 void remote_serial_quit_handler ();
839
840 void remote_detach_pid (int pid);
841
842 void remote_vcont_probe ();
843
844 void remote_resume_with_hc (ptid_t ptid, int step,
845 gdb_signal siggnal);
846
847 void send_interrupt_sequence ();
848 void interrupt_query ();
849
850 void remote_notif_get_pending_events (notif_client *nc);
851
852 int fetch_register_using_p (struct regcache *regcache,
853 packet_reg *reg);
854 int send_g_packet ();
855 void process_g_packet (struct regcache *regcache);
856 void fetch_registers_using_g (struct regcache *regcache);
857 int store_register_using_P (const struct regcache *regcache,
858 packet_reg *reg);
859 void store_registers_using_G (const struct regcache *regcache);
860
861 void set_remote_traceframe ();
862
863 void check_binary_download (CORE_ADDR addr);
864
865 target_xfer_status remote_write_bytes_aux (const char *header,
866 CORE_ADDR memaddr,
867 const gdb_byte *myaddr,
868 ULONGEST len_units,
869 int unit_size,
870 ULONGEST *xfered_len_units,
871 char packet_format,
872 int use_length);
873
874 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
875 const gdb_byte *myaddr, ULONGEST len,
876 int unit_size, ULONGEST *xfered_len);
877
878 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
879 ULONGEST len_units,
880 int unit_size, ULONGEST *xfered_len_units);
881
882 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
883 ULONGEST memaddr,
884 ULONGEST len,
885 int unit_size,
886 ULONGEST *xfered_len);
887
888 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
889 gdb_byte *myaddr, ULONGEST len,
890 int unit_size,
891 ULONGEST *xfered_len);
892
893 packet_result remote_send_printf (const char *format, ...)
894 ATTRIBUTE_PRINTF (2, 3);
895
896 target_xfer_status remote_flash_write (ULONGEST address,
897 ULONGEST length, ULONGEST *xfered_len,
898 const gdb_byte *data);
899
900 int readchar (int timeout);
901
902 void remote_serial_write (const char *str, int len);
903
904 int putpkt (const char *buf);
905 int putpkt_binary (const char *buf, int cnt);
906
907 int putpkt (const gdb::char_vector &buf)
908 {
909 return putpkt (buf.data ());
910 }
911
912 void skip_frame ();
913 long read_frame (gdb::char_vector *buf_p);
914 void getpkt (gdb::char_vector *buf, int forever);
915 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
916 int expecting_notif, int *is_notif);
917 int getpkt_sane (gdb::char_vector *buf, int forever);
918 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
919 int *is_notif);
920 int remote_vkill (int pid);
921 void remote_kill_k ();
922
923 void extended_remote_disable_randomization (int val);
924 int extended_remote_run (const std::string &args);
925
926 void send_environment_packet (const char *action,
927 const char *packet,
928 const char *value);
929
930 void extended_remote_environment_support ();
931 void extended_remote_set_inferior_cwd ();
932
933 target_xfer_status remote_write_qxfer (const char *object_name,
934 const char *annex,
935 const gdb_byte *writebuf,
936 ULONGEST offset, LONGEST len,
937 ULONGEST *xfered_len,
938 struct packet_config *packet);
939
940 target_xfer_status remote_read_qxfer (const char *object_name,
941 const char *annex,
942 gdb_byte *readbuf, ULONGEST offset,
943 LONGEST len,
944 ULONGEST *xfered_len,
945 struct packet_config *packet);
946
947 void push_stop_reply (struct stop_reply *new_event);
948
949 bool vcont_r_supported ();
950
951 private:
952
953 bool start_remote_1 (int from_tty, int extended_p);
954
955 /* The remote state. Don't reference this directly. Use the
956 get_remote_state method instead. */
957 remote_state m_remote_state;
958 };
959
960 static const target_info extended_remote_target_info = {
961 "extended-remote",
962 N_("Extended remote serial target in gdb-specific protocol"),
963 remote_doc
964 };
965
966 /* Set up the extended remote target by extending the standard remote
967 target and adding to it. */
968
969 class extended_remote_target final : public remote_target
970 {
971 public:
972 const target_info &info () const override
973 { return extended_remote_target_info; }
974
975 /* Open an extended-remote connection. */
976 static void open (const char *, int);
977
978 bool can_create_inferior () override { return true; }
979 void create_inferior (const char *, const std::string &,
980 char **, int) override;
981
982 void detach (inferior *, int) override;
983
984 bool can_attach () override { return true; }
985 void attach (const char *, int) override;
986
987 void post_attach (int) override;
988 bool supports_disable_randomization () override;
989 };
990
991 struct stop_reply : public notif_event
992 {
993 ~stop_reply ();
994
995 /* The identifier of the thread about this event */
996 ptid_t ptid;
997
998 /* The remote state this event is associated with. When the remote
999 connection, represented by a remote_state object, is closed,
1000 all the associated stop_reply events should be released. */
1001 struct remote_state *rs;
1002
1003 struct target_waitstatus ws;
1004
1005 /* The architecture associated with the expedited registers. */
1006 gdbarch *arch;
1007
1008 /* Expedited registers. This makes remote debugging a bit more
1009 efficient for those targets that provide critical registers as
1010 part of their normal status mechanism (as another roundtrip to
1011 fetch them is avoided). */
1012 std::vector<cached_reg_t> regcache;
1013
1014 enum target_stop_reason stop_reason;
1015
1016 CORE_ADDR watch_data_address;
1017
1018 int core;
1019 };
1020
1021 /* See remote.h. */
1022
1023 bool
1024 is_remote_target (process_stratum_target *target)
1025 {
1026 remote_target *rt = dynamic_cast<remote_target *> (target);
1027 return rt != nullptr;
1028 }
1029
1030 /* Per-program-space data key. */
1031 static const struct program_space_key<char, gdb::xfree_deleter<char>>
1032 remote_pspace_data;
1033
1034 /* The variable registered as the control variable used by the
1035 remote exec-file commands. While the remote exec-file setting is
1036 per-program-space, the set/show machinery uses this as the
1037 location of the remote exec-file value. */
1038 static std::string remote_exec_file_var;
1039
1040 /* The size to align memory write packets, when practical. The protocol
1041 does not guarantee any alignment, and gdb will generate short
1042 writes and unaligned writes, but even as a best-effort attempt this
1043 can improve bulk transfers. For instance, if a write is misaligned
1044 relative to the target's data bus, the stub may need to make an extra
1045 round trip fetching data from the target. This doesn't make a
1046 huge difference, but it's easy to do, so we try to be helpful.
1047
1048 The alignment chosen is arbitrary; usually data bus width is
1049 important here, not the possibly larger cache line size. */
1050 enum { REMOTE_ALIGN_WRITES = 16 };
1051
1052 /* Prototypes for local functions. */
1053
1054 static int hexnumlen (ULONGEST num);
1055
1056 static int stubhex (int ch);
1057
1058 static int hexnumstr (char *, ULONGEST);
1059
1060 static int hexnumnstr (char *, ULONGEST, int);
1061
1062 static CORE_ADDR remote_address_masked (CORE_ADDR);
1063
1064 static int stub_unpack_int (const char *buff, int fieldlength);
1065
1066 struct packet_config;
1067
1068 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1069 int from_tty,
1070 struct cmd_list_element *c,
1071 const char *value);
1072
1073 static ptid_t read_ptid (const char *buf, const char **obuf);
1074
1075 static void remote_async_inferior_event_handler (gdb_client_data);
1076
1077 static bool remote_read_description_p (struct target_ops *target);
1078
1079 static void remote_console_output (const char *msg);
1080
1081 static void remote_btrace_reset (remote_state *rs);
1082
1083 static void remote_unpush_and_throw (remote_target *target);
1084
1085 /* For "remote". */
1086
1087 static struct cmd_list_element *remote_cmdlist;
1088
1089 /* For "set remote" and "show remote". */
1090
1091 static struct cmd_list_element *remote_set_cmdlist;
1092 static struct cmd_list_element *remote_show_cmdlist;
1093
1094 /* Controls whether GDB is willing to use range stepping. */
1095
1096 static bool use_range_stepping = true;
1097
1098 /* From the remote target's point of view, each thread is in one of these three
1099 states. */
1100 enum class resume_state
1101 {
1102 /* Not resumed - we haven't been asked to resume this thread. */
1103 NOT_RESUMED,
1104
1105 /* We have been asked to resume this thread, but haven't sent a vCont action
1106 for it yet. We'll need to consider it next time commit_resume is
1107 called. */
1108 RESUMED_PENDING_VCONT,
1109
1110 /* We have been asked to resume this thread, and we have sent a vCont action
1111 for it. */
1112 RESUMED,
1113 };
1114
1115 /* Information about a thread's pending vCont-resume. Used when a thread is in
1116 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1117 stores this information which is then picked up by
1118 remote_target::commit_resume to know which is the proper action for this
1119 thread to include in the vCont packet. */
1120 struct resumed_pending_vcont_info
1121 {
1122 /* True if the last resume call for this thread was a step request, false
1123 if a continue request. */
1124 bool step;
1125
1126 /* The signal specified in the last resume call for this thread. */
1127 gdb_signal sig;
1128 };
1129
1130 /* Private data that we'll store in (struct thread_info)->priv. */
1131 struct remote_thread_info : public private_thread_info
1132 {
1133 std::string extra;
1134 std::string name;
1135 int core = -1;
1136
1137 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1138 sequence of bytes. */
1139 gdb::byte_vector thread_handle;
1140
1141 /* Whether the target stopped for a breakpoint/watchpoint. */
1142 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1143
1144 /* This is set to the data address of the access causing the target
1145 to stop for a watchpoint. */
1146 CORE_ADDR watch_data_address = 0;
1147
1148 /* Get the thread's resume state. */
1149 enum resume_state get_resume_state () const
1150 {
1151 return m_resume_state;
1152 }
1153
1154 /* Put the thread in the NOT_RESUMED state. */
1155 void set_not_resumed ()
1156 {
1157 m_resume_state = resume_state::NOT_RESUMED;
1158 }
1159
1160 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1161 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1162 {
1163 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1164 m_resumed_pending_vcont_info.step = step;
1165 m_resumed_pending_vcont_info.sig = sig;
1166 }
1167
1168 /* Get the information this thread's pending vCont-resumption.
1169
1170 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1171 state. */
1172 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1173 {
1174 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1175
1176 return m_resumed_pending_vcont_info;
1177 }
1178
1179 /* Put the thread in the VCONT_RESUMED state. */
1180 void set_resumed ()
1181 {
1182 m_resume_state = resume_state::RESUMED;
1183 }
1184
1185 private:
1186 /* Resume state for this thread. This is used to implement vCont action
1187 coalescing (only when the target operates in non-stop mode).
1188
1189 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1190 which notes that this thread must be considered in the next commit_resume
1191 call.
1192
1193 remote_target::commit_resume sends a vCont packet with actions for the
1194 threads in the RESUMED_PENDING_VCONT state and moves them to the
1195 VCONT_RESUMED state.
1196
1197 When reporting a stop to the core for a thread, that thread is moved back
1198 to the NOT_RESUMED state. */
1199 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1200
1201 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1202 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1203 };
1204
1205 remote_state::remote_state ()
1206 : buf (400)
1207 {
1208 }
1209
1210 remote_state::~remote_state ()
1211 {
1212 xfree (this->last_pass_packet);
1213 xfree (this->last_program_signals_packet);
1214 xfree (this->finished_object);
1215 xfree (this->finished_annex);
1216 }
1217
1218 /* Utility: generate error from an incoming stub packet. */
1219 static void
1220 trace_error (char *buf)
1221 {
1222 if (*buf++ != 'E')
1223 return; /* not an error msg */
1224 switch (*buf)
1225 {
1226 case '1': /* malformed packet error */
1227 if (*++buf == '0') /* general case: */
1228 error (_("remote.c: error in outgoing packet."));
1229 else
1230 error (_("remote.c: error in outgoing packet at field #%ld."),
1231 strtol (buf, NULL, 16));
1232 default:
1233 error (_("Target returns error code '%s'."), buf);
1234 }
1235 }
1236
1237 /* Utility: wait for reply from stub, while accepting "O" packets. */
1238
1239 char *
1240 remote_target::remote_get_noisy_reply ()
1241 {
1242 struct remote_state *rs = get_remote_state ();
1243
1244 do /* Loop on reply from remote stub. */
1245 {
1246 char *buf;
1247
1248 QUIT; /* Allow user to bail out with ^C. */
1249 getpkt (&rs->buf, 0);
1250 buf = rs->buf.data ();
1251 if (buf[0] == 'E')
1252 trace_error (buf);
1253 else if (startswith (buf, "qRelocInsn:"))
1254 {
1255 ULONGEST ul;
1256 CORE_ADDR from, to, org_to;
1257 const char *p, *pp;
1258 int adjusted_size = 0;
1259 int relocated = 0;
1260
1261 p = buf + strlen ("qRelocInsn:");
1262 pp = unpack_varlen_hex (p, &ul);
1263 if (*pp != ';')
1264 error (_("invalid qRelocInsn packet: %s"), buf);
1265 from = ul;
1266
1267 p = pp + 1;
1268 unpack_varlen_hex (p, &ul);
1269 to = ul;
1270
1271 org_to = to;
1272
1273 try
1274 {
1275 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1276 relocated = 1;
1277 }
1278 catch (const gdb_exception &ex)
1279 {
1280 if (ex.error == MEMORY_ERROR)
1281 {
1282 /* Propagate memory errors silently back to the
1283 target. The stub may have limited the range of
1284 addresses we can write to, for example. */
1285 }
1286 else
1287 {
1288 /* Something unexpectedly bad happened. Be verbose
1289 so we can tell what, and propagate the error back
1290 to the stub, so it doesn't get stuck waiting for
1291 a response. */
1292 exception_fprintf (gdb_stderr, ex,
1293 _("warning: relocating instruction: "));
1294 }
1295 putpkt ("E01");
1296 }
1297
1298 if (relocated)
1299 {
1300 adjusted_size = to - org_to;
1301
1302 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1303 putpkt (buf);
1304 }
1305 }
1306 else if (buf[0] == 'O' && buf[1] != 'K')
1307 remote_console_output (buf + 1); /* 'O' message from stub */
1308 else
1309 return buf; /* Here's the actual reply. */
1310 }
1311 while (1);
1312 }
1313
1314 struct remote_arch_state *
1315 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1316 {
1317 remote_arch_state *rsa;
1318
1319 auto it = this->m_arch_states.find (gdbarch);
1320 if (it == this->m_arch_states.end ())
1321 {
1322 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1323 std::forward_as_tuple (gdbarch),
1324 std::forward_as_tuple (gdbarch));
1325 rsa = &p.first->second;
1326
1327 /* Make sure that the packet buffer is plenty big enough for
1328 this architecture. */
1329 if (this->buf.size () < rsa->remote_packet_size)
1330 this->buf.resize (2 * rsa->remote_packet_size);
1331 }
1332 else
1333 rsa = &it->second;
1334
1335 return rsa;
1336 }
1337
1338 /* Fetch the global remote target state. */
1339
1340 remote_state *
1341 remote_target::get_remote_state ()
1342 {
1343 /* Make sure that the remote architecture state has been
1344 initialized, because doing so might reallocate rs->buf. Any
1345 function which calls getpkt also needs to be mindful of changes
1346 to rs->buf, but this call limits the number of places which run
1347 into trouble. */
1348 m_remote_state.get_remote_arch_state (target_gdbarch ());
1349
1350 return &m_remote_state;
1351 }
1352
1353 /* Fetch the remote exec-file from the current program space. */
1354
1355 static const char *
1356 get_remote_exec_file (void)
1357 {
1358 char *remote_exec_file;
1359
1360 remote_exec_file = remote_pspace_data.get (current_program_space);
1361 if (remote_exec_file == NULL)
1362 return "";
1363
1364 return remote_exec_file;
1365 }
1366
1367 /* Set the remote exec file for PSPACE. */
1368
1369 static void
1370 set_pspace_remote_exec_file (struct program_space *pspace,
1371 const char *remote_exec_file)
1372 {
1373 char *old_file = remote_pspace_data.get (pspace);
1374
1375 xfree (old_file);
1376 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1377 }
1378
1379 /* The "set/show remote exec-file" set command hook. */
1380
1381 static void
1382 set_remote_exec_file (const char *ignored, int from_tty,
1383 struct cmd_list_element *c)
1384 {
1385 set_pspace_remote_exec_file (current_program_space,
1386 remote_exec_file_var.c_str ());
1387 }
1388
1389 /* The "set/show remote exec-file" show command hook. */
1390
1391 static void
1392 show_remote_exec_file (struct ui_file *file, int from_tty,
1393 struct cmd_list_element *cmd, const char *value)
1394 {
1395 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1396 }
1397
1398 static int
1399 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1400 {
1401 int regnum, num_remote_regs, offset;
1402 struct packet_reg **remote_regs;
1403
1404 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1405 {
1406 struct packet_reg *r = &regs[regnum];
1407
1408 if (register_size (gdbarch, regnum) == 0)
1409 /* Do not try to fetch zero-sized (placeholder) registers. */
1410 r->pnum = -1;
1411 else
1412 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1413
1414 r->regnum = regnum;
1415 }
1416
1417 /* Define the g/G packet format as the contents of each register
1418 with a remote protocol number, in order of ascending protocol
1419 number. */
1420
1421 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1422 for (num_remote_regs = 0, regnum = 0;
1423 regnum < gdbarch_num_regs (gdbarch);
1424 regnum++)
1425 if (regs[regnum].pnum != -1)
1426 remote_regs[num_remote_regs++] = &regs[regnum];
1427
1428 std::sort (remote_regs, remote_regs + num_remote_regs,
1429 [] (const packet_reg *a, const packet_reg *b)
1430 { return a->pnum < b->pnum; });
1431
1432 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1433 {
1434 remote_regs[regnum]->in_g_packet = 1;
1435 remote_regs[regnum]->offset = offset;
1436 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1437 }
1438
1439 return offset;
1440 }
1441
1442 /* Given the architecture described by GDBARCH, return the remote
1443 protocol register's number and the register's offset in the g/G
1444 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1445 If the target does not have a mapping for REGNUM, return false,
1446 otherwise, return true. */
1447
1448 int
1449 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1450 int *pnum, int *poffset)
1451 {
1452 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1453
1454 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1455
1456 map_regcache_remote_table (gdbarch, regs.data ());
1457
1458 *pnum = regs[regnum].pnum;
1459 *poffset = regs[regnum].offset;
1460
1461 return *pnum != -1;
1462 }
1463
1464 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1465 {
1466 /* Use the architecture to build a regnum<->pnum table, which will be
1467 1:1 unless a feature set specifies otherwise. */
1468 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1469
1470 /* Record the maximum possible size of the g packet - it may turn out
1471 to be smaller. */
1472 this->sizeof_g_packet
1473 = map_regcache_remote_table (gdbarch, this->regs.get ());
1474
1475 /* Default maximum number of characters in a packet body. Many
1476 remote stubs have a hardwired buffer size of 400 bytes
1477 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1478 as the maximum packet-size to ensure that the packet and an extra
1479 NUL character can always fit in the buffer. This stops GDB
1480 trashing stubs that try to squeeze an extra NUL into what is
1481 already a full buffer (As of 1999-12-04 that was most stubs). */
1482 this->remote_packet_size = 400 - 1;
1483
1484 /* This one is filled in when a ``g'' packet is received. */
1485 this->actual_register_packet_size = 0;
1486
1487 /* Should rsa->sizeof_g_packet needs more space than the
1488 default, adjust the size accordingly. Remember that each byte is
1489 encoded as two characters. 32 is the overhead for the packet
1490 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1491 (``$NN:G...#NN'') is a better guess, the below has been padded a
1492 little. */
1493 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1494 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1495 }
1496
1497 /* Get a pointer to the current remote target. If not connected to a
1498 remote target, return NULL. */
1499
1500 static remote_target *
1501 get_current_remote_target ()
1502 {
1503 target_ops *proc_target = current_inferior ()->process_target ();
1504 return dynamic_cast<remote_target *> (proc_target);
1505 }
1506
1507 /* Return the current allowed size of a remote packet. This is
1508 inferred from the current architecture, and should be used to
1509 limit the length of outgoing packets. */
1510 long
1511 remote_target::get_remote_packet_size ()
1512 {
1513 struct remote_state *rs = get_remote_state ();
1514 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1515
1516 if (rs->explicit_packet_size)
1517 return rs->explicit_packet_size;
1518
1519 return rsa->remote_packet_size;
1520 }
1521
1522 static struct packet_reg *
1523 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1524 long regnum)
1525 {
1526 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1527 return NULL;
1528 else
1529 {
1530 struct packet_reg *r = &rsa->regs[regnum];
1531
1532 gdb_assert (r->regnum == regnum);
1533 return r;
1534 }
1535 }
1536
1537 static struct packet_reg *
1538 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1539 LONGEST pnum)
1540 {
1541 int i;
1542
1543 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1544 {
1545 struct packet_reg *r = &rsa->regs[i];
1546
1547 if (r->pnum == pnum)
1548 return r;
1549 }
1550 return NULL;
1551 }
1552
1553 /* Allow the user to specify what sequence to send to the remote
1554 when he requests a program interruption: Although ^C is usually
1555 what remote systems expect (this is the default, here), it is
1556 sometimes preferable to send a break. On other systems such
1557 as the Linux kernel, a break followed by g, which is Magic SysRq g
1558 is required in order to interrupt the execution. */
1559 const char interrupt_sequence_control_c[] = "Ctrl-C";
1560 const char interrupt_sequence_break[] = "BREAK";
1561 const char interrupt_sequence_break_g[] = "BREAK-g";
1562 static const char *const interrupt_sequence_modes[] =
1563 {
1564 interrupt_sequence_control_c,
1565 interrupt_sequence_break,
1566 interrupt_sequence_break_g,
1567 NULL
1568 };
1569 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1570
1571 static void
1572 show_interrupt_sequence (struct ui_file *file, int from_tty,
1573 struct cmd_list_element *c,
1574 const char *value)
1575 {
1576 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1577 fprintf_filtered (file,
1578 _("Send the ASCII ETX character (Ctrl-c) "
1579 "to the remote target to interrupt the "
1580 "execution of the program.\n"));
1581 else if (interrupt_sequence_mode == interrupt_sequence_break)
1582 fprintf_filtered (file,
1583 _("send a break signal to the remote target "
1584 "to interrupt the execution of the program.\n"));
1585 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1586 fprintf_filtered (file,
1587 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1588 "the remote target to interrupt the execution "
1589 "of Linux kernel.\n"));
1590 else
1591 internal_error (__FILE__, __LINE__,
1592 _("Invalid value for interrupt_sequence_mode: %s."),
1593 interrupt_sequence_mode);
1594 }
1595
1596 /* This boolean variable specifies whether interrupt_sequence is sent
1597 to the remote target when gdb connects to it.
1598 This is mostly needed when you debug the Linux kernel: The Linux kernel
1599 expects BREAK g which is Magic SysRq g for connecting gdb. */
1600 static bool interrupt_on_connect = false;
1601
1602 /* This variable is used to implement the "set/show remotebreak" commands.
1603 Since these commands are now deprecated in favor of "set/show remote
1604 interrupt-sequence", it no longer has any effect on the code. */
1605 static bool remote_break;
1606
1607 static void
1608 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1609 {
1610 if (remote_break)
1611 interrupt_sequence_mode = interrupt_sequence_break;
1612 else
1613 interrupt_sequence_mode = interrupt_sequence_control_c;
1614 }
1615
1616 static void
1617 show_remotebreak (struct ui_file *file, int from_tty,
1618 struct cmd_list_element *c,
1619 const char *value)
1620 {
1621 }
1622
1623 /* This variable sets the number of bits in an address that are to be
1624 sent in a memory ("M" or "m") packet. Normally, after stripping
1625 leading zeros, the entire address would be sent. This variable
1626 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1627 initial implementation of remote.c restricted the address sent in
1628 memory packets to ``host::sizeof long'' bytes - (typically 32
1629 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1630 address was never sent. Since fixing this bug may cause a break in
1631 some remote targets this variable is principally provided to
1632 facilitate backward compatibility. */
1633
1634 static unsigned int remote_address_size;
1635
1636 \f
1637 /* User configurable variables for the number of characters in a
1638 memory read/write packet. MIN (rsa->remote_packet_size,
1639 rsa->sizeof_g_packet) is the default. Some targets need smaller
1640 values (fifo overruns, et.al.) and some users need larger values
1641 (speed up transfers). The variables ``preferred_*'' (the user
1642 request), ``current_*'' (what was actually set) and ``forced_*''
1643 (Positive - a soft limit, negative - a hard limit). */
1644
1645 struct memory_packet_config
1646 {
1647 const char *name;
1648 long size;
1649 int fixed_p;
1650 };
1651
1652 /* The default max memory-write-packet-size, when the setting is
1653 "fixed". The 16k is historical. (It came from older GDB's using
1654 alloca for buffers and the knowledge (folklore?) that some hosts
1655 don't cope very well with large alloca calls.) */
1656 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1657
1658 /* The minimum remote packet size for memory transfers. Ensures we
1659 can write at least one byte. */
1660 #define MIN_MEMORY_PACKET_SIZE 20
1661
1662 /* Get the memory packet size, assuming it is fixed. */
1663
1664 static long
1665 get_fixed_memory_packet_size (struct memory_packet_config *config)
1666 {
1667 gdb_assert (config->fixed_p);
1668
1669 if (config->size <= 0)
1670 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1671 else
1672 return config->size;
1673 }
1674
1675 /* Compute the current size of a read/write packet. Since this makes
1676 use of ``actual_register_packet_size'' the computation is dynamic. */
1677
1678 long
1679 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1680 {
1681 struct remote_state *rs = get_remote_state ();
1682 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1683
1684 long what_they_get;
1685 if (config->fixed_p)
1686 what_they_get = get_fixed_memory_packet_size (config);
1687 else
1688 {
1689 what_they_get = get_remote_packet_size ();
1690 /* Limit the packet to the size specified by the user. */
1691 if (config->size > 0
1692 && what_they_get > config->size)
1693 what_they_get = config->size;
1694
1695 /* Limit it to the size of the targets ``g'' response unless we have
1696 permission from the stub to use a larger packet size. */
1697 if (rs->explicit_packet_size == 0
1698 && rsa->actual_register_packet_size > 0
1699 && what_they_get > rsa->actual_register_packet_size)
1700 what_they_get = rsa->actual_register_packet_size;
1701 }
1702 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1703 what_they_get = MIN_MEMORY_PACKET_SIZE;
1704
1705 /* Make sure there is room in the global buffer for this packet
1706 (including its trailing NUL byte). */
1707 if (rs->buf.size () < what_they_get + 1)
1708 rs->buf.resize (2 * what_they_get);
1709
1710 return what_they_get;
1711 }
1712
1713 /* Update the size of a read/write packet. If they user wants
1714 something really big then do a sanity check. */
1715
1716 static void
1717 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1718 {
1719 int fixed_p = config->fixed_p;
1720 long size = config->size;
1721
1722 if (args == NULL)
1723 error (_("Argument required (integer, `fixed' or `limited')."));
1724 else if (strcmp (args, "hard") == 0
1725 || strcmp (args, "fixed") == 0)
1726 fixed_p = 1;
1727 else if (strcmp (args, "soft") == 0
1728 || strcmp (args, "limit") == 0)
1729 fixed_p = 0;
1730 else
1731 {
1732 char *end;
1733
1734 size = strtoul (args, &end, 0);
1735 if (args == end)
1736 error (_("Invalid %s (bad syntax)."), config->name);
1737
1738 /* Instead of explicitly capping the size of a packet to or
1739 disallowing it, the user is allowed to set the size to
1740 something arbitrarily large. */
1741 }
1742
1743 /* Extra checks? */
1744 if (fixed_p && !config->fixed_p)
1745 {
1746 /* So that the query shows the correct value. */
1747 long query_size = (size <= 0
1748 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1749 : size);
1750
1751 if (! query (_("The target may not be able to correctly handle a %s\n"
1752 "of %ld bytes. Change the packet size? "),
1753 config->name, query_size))
1754 error (_("Packet size not changed."));
1755 }
1756 /* Update the config. */
1757 config->fixed_p = fixed_p;
1758 config->size = size;
1759 }
1760
1761 static void
1762 show_memory_packet_size (struct memory_packet_config *config)
1763 {
1764 if (config->size == 0)
1765 printf_filtered (_("The %s is 0 (default). "), config->name);
1766 else
1767 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1768 if (config->fixed_p)
1769 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1770 get_fixed_memory_packet_size (config));
1771 else
1772 {
1773 remote_target *remote = get_current_remote_target ();
1774
1775 if (remote != NULL)
1776 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1777 remote->get_memory_packet_size (config));
1778 else
1779 puts_filtered ("The actual limit will be further reduced "
1780 "dependent on the target.\n");
1781 }
1782 }
1783
1784 /* FIXME: needs to be per-remote-target. */
1785 static struct memory_packet_config memory_write_packet_config =
1786 {
1787 "memory-write-packet-size",
1788 };
1789
1790 static void
1791 set_memory_write_packet_size (const char *args, int from_tty)
1792 {
1793 set_memory_packet_size (args, &memory_write_packet_config);
1794 }
1795
1796 static void
1797 show_memory_write_packet_size (const char *args, int from_tty)
1798 {
1799 show_memory_packet_size (&memory_write_packet_config);
1800 }
1801
1802 /* Show the number of hardware watchpoints that can be used. */
1803
1804 static void
1805 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1806 struct cmd_list_element *c,
1807 const char *value)
1808 {
1809 fprintf_filtered (file, _("The maximum number of target hardware "
1810 "watchpoints is %s.\n"), value);
1811 }
1812
1813 /* Show the length limit (in bytes) for hardware watchpoints. */
1814
1815 static void
1816 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1817 struct cmd_list_element *c,
1818 const char *value)
1819 {
1820 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1821 "hardware watchpoint is %s.\n"), value);
1822 }
1823
1824 /* Show the number of hardware breakpoints that can be used. */
1825
1826 static void
1827 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1828 struct cmd_list_element *c,
1829 const char *value)
1830 {
1831 fprintf_filtered (file, _("The maximum number of target hardware "
1832 "breakpoints is %s.\n"), value);
1833 }
1834
1835 /* Controls the maximum number of characters to display in the debug output
1836 for each remote packet. The remaining characters are omitted. */
1837
1838 static int remote_packet_max_chars = 512;
1839
1840 /* Show the maximum number of characters to display for each remote packet
1841 when remote debugging is enabled. */
1842
1843 static void
1844 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1845 struct cmd_list_element *c,
1846 const char *value)
1847 {
1848 fprintf_filtered (file, _("Number of remote packet characters to "
1849 "display is %s.\n"), value);
1850 }
1851
1852 long
1853 remote_target::get_memory_write_packet_size ()
1854 {
1855 return get_memory_packet_size (&memory_write_packet_config);
1856 }
1857
1858 /* FIXME: needs to be per-remote-target. */
1859 static struct memory_packet_config memory_read_packet_config =
1860 {
1861 "memory-read-packet-size",
1862 };
1863
1864 static void
1865 set_memory_read_packet_size (const char *args, int from_tty)
1866 {
1867 set_memory_packet_size (args, &memory_read_packet_config);
1868 }
1869
1870 static void
1871 show_memory_read_packet_size (const char *args, int from_tty)
1872 {
1873 show_memory_packet_size (&memory_read_packet_config);
1874 }
1875
1876 long
1877 remote_target::get_memory_read_packet_size ()
1878 {
1879 long size = get_memory_packet_size (&memory_read_packet_config);
1880
1881 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1882 extra buffer size argument before the memory read size can be
1883 increased beyond this. */
1884 if (size > get_remote_packet_size ())
1885 size = get_remote_packet_size ();
1886 return size;
1887 }
1888
1889 \f
1890
1891 struct packet_config
1892 {
1893 const char *name;
1894 const char *title;
1895
1896 /* If auto, GDB auto-detects support for this packet or feature,
1897 either through qSupported, or by trying the packet and looking
1898 at the response. If true, GDB assumes the target supports this
1899 packet. If false, the packet is disabled. Configs that don't
1900 have an associated command always have this set to auto. */
1901 enum auto_boolean detect;
1902
1903 /* The "show remote foo-packet" command created for this packet. */
1904 cmd_list_element *show_cmd;
1905
1906 /* Does the target support this packet? */
1907 enum packet_support support;
1908 };
1909
1910 static enum packet_support packet_config_support (struct packet_config *config);
1911 static enum packet_support packet_support (int packet);
1912
1913 static void
1914 show_packet_config_cmd (ui_file *file, struct packet_config *config)
1915 {
1916 const char *support = "internal-error";
1917
1918 switch (packet_config_support (config))
1919 {
1920 case PACKET_ENABLE:
1921 support = "enabled";
1922 break;
1923 case PACKET_DISABLE:
1924 support = "disabled";
1925 break;
1926 case PACKET_SUPPORT_UNKNOWN:
1927 support = "unknown";
1928 break;
1929 }
1930 switch (config->detect)
1931 {
1932 case AUTO_BOOLEAN_AUTO:
1933 fprintf_filtered (file,
1934 _("Support for the `%s' packet "
1935 "is auto-detected, currently %s.\n"),
1936 config->name, support);
1937 break;
1938 case AUTO_BOOLEAN_TRUE:
1939 case AUTO_BOOLEAN_FALSE:
1940 fprintf_filtered (file,
1941 _("Support for the `%s' packet is currently %s.\n"),
1942 config->name, support);
1943 break;
1944 }
1945 }
1946
1947 static void
1948 add_packet_config_cmd (struct packet_config *config, const char *name,
1949 const char *title, int legacy)
1950 {
1951 config->name = name;
1952 config->title = title;
1953 gdb::unique_xmalloc_ptr<char> set_doc
1954 = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1955 name, title);
1956 gdb::unique_xmalloc_ptr<char> show_doc
1957 = xstrprintf ("Show current use of remote protocol `%s' (%s) packet.",
1958 name, title);
1959 /* set/show TITLE-packet {auto,on,off} */
1960 gdb::unique_xmalloc_ptr<char> cmd_name = xstrprintf ("%s-packet", title);
1961 set_show_commands cmds
1962 = add_setshow_auto_boolean_cmd (cmd_name.release (), class_obscure,
1963 &config->detect, set_doc.get (),
1964 show_doc.get (), NULL, /* help_doc */
1965 NULL,
1966 show_remote_protocol_packet_cmd,
1967 &remote_set_cmdlist, &remote_show_cmdlist);
1968 config->show_cmd = cmds.show;
1969
1970 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1971 if (legacy)
1972 {
1973 /* It's not clear who should take ownership of this string, so, for
1974 now, make it static, and give copies to each of the add_alias_cmd
1975 calls below. */
1976 static gdb::unique_xmalloc_ptr<char> legacy_name
1977 = xstrprintf ("%s-packet", name);
1978 add_alias_cmd (legacy_name.get (), cmds.set, class_obscure, 0,
1979 &remote_set_cmdlist);
1980 add_alias_cmd (legacy_name.get (), cmds.show, class_obscure, 0,
1981 &remote_show_cmdlist);
1982 }
1983 }
1984
1985 static enum packet_result
1986 packet_check_result (const char *buf)
1987 {
1988 if (buf[0] != '\0')
1989 {
1990 /* The stub recognized the packet request. Check that the
1991 operation succeeded. */
1992 if (buf[0] == 'E'
1993 && isxdigit (buf[1]) && isxdigit (buf[2])
1994 && buf[3] == '\0')
1995 /* "Enn" - definitely an error. */
1996 return PACKET_ERROR;
1997
1998 /* Always treat "E." as an error. This will be used for
1999 more verbose error messages, such as E.memtypes. */
2000 if (buf[0] == 'E' && buf[1] == '.')
2001 return PACKET_ERROR;
2002
2003 /* The packet may or may not be OK. Just assume it is. */
2004 return PACKET_OK;
2005 }
2006 else
2007 /* The stub does not support the packet. */
2008 return PACKET_UNKNOWN;
2009 }
2010
2011 static enum packet_result
2012 packet_check_result (const gdb::char_vector &buf)
2013 {
2014 return packet_check_result (buf.data ());
2015 }
2016
2017 static enum packet_result
2018 packet_ok (const char *buf, struct packet_config *config)
2019 {
2020 enum packet_result result;
2021
2022 if (config->detect != AUTO_BOOLEAN_TRUE
2023 && config->support == PACKET_DISABLE)
2024 internal_error (__FILE__, __LINE__,
2025 _("packet_ok: attempt to use a disabled packet"));
2026
2027 result = packet_check_result (buf);
2028 switch (result)
2029 {
2030 case PACKET_OK:
2031 case PACKET_ERROR:
2032 /* The stub recognized the packet request. */
2033 if (config->support == PACKET_SUPPORT_UNKNOWN)
2034 {
2035 remote_debug_printf ("Packet %s (%s) is supported",
2036 config->name, config->title);
2037 config->support = PACKET_ENABLE;
2038 }
2039 break;
2040 case PACKET_UNKNOWN:
2041 /* The stub does not support the packet. */
2042 if (config->detect == AUTO_BOOLEAN_AUTO
2043 && config->support == PACKET_ENABLE)
2044 {
2045 /* If the stub previously indicated that the packet was
2046 supported then there is a protocol error. */
2047 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2048 config->name, config->title);
2049 }
2050 else if (config->detect == AUTO_BOOLEAN_TRUE)
2051 {
2052 /* The user set it wrong. */
2053 error (_("Enabled packet %s (%s) not recognized by stub"),
2054 config->name, config->title);
2055 }
2056
2057 remote_debug_printf ("Packet %s (%s) is NOT supported",
2058 config->name, config->title);
2059 config->support = PACKET_DISABLE;
2060 break;
2061 }
2062
2063 return result;
2064 }
2065
2066 static enum packet_result
2067 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2068 {
2069 return packet_ok (buf.data (), config);
2070 }
2071
2072 enum {
2073 PACKET_vCont = 0,
2074 PACKET_X,
2075 PACKET_qSymbol,
2076 PACKET_P,
2077 PACKET_p,
2078 PACKET_Z0,
2079 PACKET_Z1,
2080 PACKET_Z2,
2081 PACKET_Z3,
2082 PACKET_Z4,
2083 PACKET_vFile_setfs,
2084 PACKET_vFile_open,
2085 PACKET_vFile_pread,
2086 PACKET_vFile_pwrite,
2087 PACKET_vFile_close,
2088 PACKET_vFile_unlink,
2089 PACKET_vFile_readlink,
2090 PACKET_vFile_fstat,
2091 PACKET_qXfer_auxv,
2092 PACKET_qXfer_features,
2093 PACKET_qXfer_exec_file,
2094 PACKET_qXfer_libraries,
2095 PACKET_qXfer_libraries_svr4,
2096 PACKET_qXfer_memory_map,
2097 PACKET_qXfer_osdata,
2098 PACKET_qXfer_threads,
2099 PACKET_qXfer_statictrace_read,
2100 PACKET_qXfer_traceframe_info,
2101 PACKET_qXfer_uib,
2102 PACKET_qGetTIBAddr,
2103 PACKET_qGetTLSAddr,
2104 PACKET_qSupported,
2105 PACKET_qTStatus,
2106 PACKET_QPassSignals,
2107 PACKET_QCatchSyscalls,
2108 PACKET_QProgramSignals,
2109 PACKET_QSetWorkingDir,
2110 PACKET_QStartupWithShell,
2111 PACKET_QEnvironmentHexEncoded,
2112 PACKET_QEnvironmentReset,
2113 PACKET_QEnvironmentUnset,
2114 PACKET_qCRC,
2115 PACKET_qSearch_memory,
2116 PACKET_vAttach,
2117 PACKET_vRun,
2118 PACKET_QStartNoAckMode,
2119 PACKET_vKill,
2120 PACKET_qXfer_siginfo_read,
2121 PACKET_qXfer_siginfo_write,
2122 PACKET_qAttached,
2123
2124 /* Support for conditional tracepoints. */
2125 PACKET_ConditionalTracepoints,
2126
2127 /* Support for target-side breakpoint conditions. */
2128 PACKET_ConditionalBreakpoints,
2129
2130 /* Support for target-side breakpoint commands. */
2131 PACKET_BreakpointCommands,
2132
2133 /* Support for fast tracepoints. */
2134 PACKET_FastTracepoints,
2135
2136 /* Support for static tracepoints. */
2137 PACKET_StaticTracepoints,
2138
2139 /* Support for installing tracepoints while a trace experiment is
2140 running. */
2141 PACKET_InstallInTrace,
2142
2143 PACKET_bc,
2144 PACKET_bs,
2145 PACKET_TracepointSource,
2146 PACKET_QAllow,
2147 PACKET_qXfer_fdpic,
2148 PACKET_QDisableRandomization,
2149 PACKET_QAgent,
2150 PACKET_QTBuffer_size,
2151 PACKET_Qbtrace_off,
2152 PACKET_Qbtrace_bts,
2153 PACKET_Qbtrace_pt,
2154 PACKET_qXfer_btrace,
2155
2156 /* Support for the QNonStop packet. */
2157 PACKET_QNonStop,
2158
2159 /* Support for the QThreadEvents packet. */
2160 PACKET_QThreadEvents,
2161
2162 /* Support for multi-process extensions. */
2163 PACKET_multiprocess_feature,
2164
2165 /* Support for enabling and disabling tracepoints while a trace
2166 experiment is running. */
2167 PACKET_EnableDisableTracepoints_feature,
2168
2169 /* Support for collecting strings using the tracenz bytecode. */
2170 PACKET_tracenz_feature,
2171
2172 /* Support for continuing to run a trace experiment while GDB is
2173 disconnected. */
2174 PACKET_DisconnectedTracing_feature,
2175
2176 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2177 PACKET_augmented_libraries_svr4_read_feature,
2178
2179 /* Support for the qXfer:btrace-conf:read packet. */
2180 PACKET_qXfer_btrace_conf,
2181
2182 /* Support for the Qbtrace-conf:bts:size packet. */
2183 PACKET_Qbtrace_conf_bts_size,
2184
2185 /* Support for swbreak+ feature. */
2186 PACKET_swbreak_feature,
2187
2188 /* Support for hwbreak+ feature. */
2189 PACKET_hwbreak_feature,
2190
2191 /* Support for fork events. */
2192 PACKET_fork_event_feature,
2193
2194 /* Support for vfork events. */
2195 PACKET_vfork_event_feature,
2196
2197 /* Support for the Qbtrace-conf:pt:size packet. */
2198 PACKET_Qbtrace_conf_pt_size,
2199
2200 /* Support for exec events. */
2201 PACKET_exec_event_feature,
2202
2203 /* Support for query supported vCont actions. */
2204 PACKET_vContSupported,
2205
2206 /* Support remote CTRL-C. */
2207 PACKET_vCtrlC,
2208
2209 /* Support TARGET_WAITKIND_NO_RESUMED. */
2210 PACKET_no_resumed,
2211
2212 /* Support for memory tagging, allocation tag fetch/store
2213 packets and the tag violation stop replies. */
2214 PACKET_memory_tagging_feature,
2215
2216 PACKET_MAX
2217 };
2218
2219 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2220 assuming all remote targets are the same server (thus all support
2221 the same packets). */
2222 static struct packet_config remote_protocol_packets[PACKET_MAX];
2223
2224 /* Returns the packet's corresponding "set remote foo-packet" command
2225 state. See struct packet_config for more details. */
2226
2227 static enum auto_boolean
2228 packet_set_cmd_state (int packet)
2229 {
2230 return remote_protocol_packets[packet].detect;
2231 }
2232
2233 /* Returns whether a given packet or feature is supported. This takes
2234 into account the state of the corresponding "set remote foo-packet"
2235 command, which may be used to bypass auto-detection. */
2236
2237 static enum packet_support
2238 packet_config_support (struct packet_config *config)
2239 {
2240 switch (config->detect)
2241 {
2242 case AUTO_BOOLEAN_TRUE:
2243 return PACKET_ENABLE;
2244 case AUTO_BOOLEAN_FALSE:
2245 return PACKET_DISABLE;
2246 case AUTO_BOOLEAN_AUTO:
2247 return config->support;
2248 default:
2249 gdb_assert_not_reached ("bad switch");
2250 }
2251 }
2252
2253 /* Same as packet_config_support, but takes the packet's enum value as
2254 argument. */
2255
2256 static enum packet_support
2257 packet_support (int packet)
2258 {
2259 struct packet_config *config = &remote_protocol_packets[packet];
2260
2261 return packet_config_support (config);
2262 }
2263
2264 static void
2265 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2266 struct cmd_list_element *c,
2267 const char *value)
2268 {
2269 struct packet_config *packet;
2270 gdb_assert (c->var.has_value ());
2271
2272 for (packet = remote_protocol_packets;
2273 packet < &remote_protocol_packets[PACKET_MAX];
2274 packet++)
2275 {
2276 if (c == packet->show_cmd)
2277 {
2278 show_packet_config_cmd (file, packet);
2279 return;
2280 }
2281 }
2282 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2283 c->name);
2284 }
2285
2286 /* Should we try one of the 'Z' requests? */
2287
2288 enum Z_packet_type
2289 {
2290 Z_PACKET_SOFTWARE_BP,
2291 Z_PACKET_HARDWARE_BP,
2292 Z_PACKET_WRITE_WP,
2293 Z_PACKET_READ_WP,
2294 Z_PACKET_ACCESS_WP,
2295 NR_Z_PACKET_TYPES
2296 };
2297
2298 /* For compatibility with older distributions. Provide a ``set remote
2299 Z-packet ...'' command that updates all the Z packet types. */
2300
2301 static enum auto_boolean remote_Z_packet_detect;
2302
2303 static void
2304 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2305 struct cmd_list_element *c)
2306 {
2307 int i;
2308
2309 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2310 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2311 }
2312
2313 static void
2314 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2315 struct cmd_list_element *c,
2316 const char *value)
2317 {
2318 int i;
2319
2320 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2321 {
2322 show_packet_config_cmd (file, &remote_protocol_packets[PACKET_Z0 + i]);
2323 }
2324 }
2325
2326 /* Returns true if the multi-process extensions are in effect. */
2327
2328 static int
2329 remote_multi_process_p (struct remote_state *rs)
2330 {
2331 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2332 }
2333
2334 /* Returns true if fork events are supported. */
2335
2336 static int
2337 remote_fork_event_p (struct remote_state *rs)
2338 {
2339 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2340 }
2341
2342 /* Returns true if vfork events are supported. */
2343
2344 static int
2345 remote_vfork_event_p (struct remote_state *rs)
2346 {
2347 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2348 }
2349
2350 /* Returns true if exec events are supported. */
2351
2352 static int
2353 remote_exec_event_p (struct remote_state *rs)
2354 {
2355 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2356 }
2357
2358 /* Returns true if memory tagging is supported, false otherwise. */
2359
2360 static bool
2361 remote_memory_tagging_p ()
2362 {
2363 return packet_support (PACKET_memory_tagging_feature) == PACKET_ENABLE;
2364 }
2365
2366 /* Insert fork catchpoint target routine. If fork events are enabled
2367 then return success, nothing more to do. */
2368
2369 int
2370 remote_target::insert_fork_catchpoint (int pid)
2371 {
2372 struct remote_state *rs = get_remote_state ();
2373
2374 return !remote_fork_event_p (rs);
2375 }
2376
2377 /* Remove fork catchpoint target routine. Nothing to do, just
2378 return success. */
2379
2380 int
2381 remote_target::remove_fork_catchpoint (int pid)
2382 {
2383 return 0;
2384 }
2385
2386 /* Insert vfork catchpoint target routine. If vfork events are enabled
2387 then return success, nothing more to do. */
2388
2389 int
2390 remote_target::insert_vfork_catchpoint (int pid)
2391 {
2392 struct remote_state *rs = get_remote_state ();
2393
2394 return !remote_vfork_event_p (rs);
2395 }
2396
2397 /* Remove vfork catchpoint target routine. Nothing to do, just
2398 return success. */
2399
2400 int
2401 remote_target::remove_vfork_catchpoint (int pid)
2402 {
2403 return 0;
2404 }
2405
2406 /* Insert exec catchpoint target routine. If exec events are
2407 enabled, just return success. */
2408
2409 int
2410 remote_target::insert_exec_catchpoint (int pid)
2411 {
2412 struct remote_state *rs = get_remote_state ();
2413
2414 return !remote_exec_event_p (rs);
2415 }
2416
2417 /* Remove exec catchpoint target routine. Nothing to do, just
2418 return success. */
2419
2420 int
2421 remote_target::remove_exec_catchpoint (int pid)
2422 {
2423 return 0;
2424 }
2425
2426 \f
2427
2428 /* Take advantage of the fact that the TID field is not used, to tag
2429 special ptids with it set to != 0. */
2430 static const ptid_t magic_null_ptid (42000, -1, 1);
2431 static const ptid_t not_sent_ptid (42000, -2, 1);
2432 static const ptid_t any_thread_ptid (42000, 0, 1);
2433
2434 /* Find out if the stub attached to PID (and hence GDB should offer to
2435 detach instead of killing it when bailing out). */
2436
2437 int
2438 remote_target::remote_query_attached (int pid)
2439 {
2440 struct remote_state *rs = get_remote_state ();
2441 size_t size = get_remote_packet_size ();
2442
2443 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2444 return 0;
2445
2446 if (remote_multi_process_p (rs))
2447 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2448 else
2449 xsnprintf (rs->buf.data (), size, "qAttached");
2450
2451 putpkt (rs->buf);
2452 getpkt (&rs->buf, 0);
2453
2454 switch (packet_ok (rs->buf,
2455 &remote_protocol_packets[PACKET_qAttached]))
2456 {
2457 case PACKET_OK:
2458 if (strcmp (rs->buf.data (), "1") == 0)
2459 return 1;
2460 break;
2461 case PACKET_ERROR:
2462 warning (_("Remote failure reply: %s"), rs->buf.data ());
2463 break;
2464 case PACKET_UNKNOWN:
2465 break;
2466 }
2467
2468 return 0;
2469 }
2470
2471 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2472 has been invented by GDB, instead of reported by the target. Since
2473 we can be connected to a remote system before before knowing about
2474 any inferior, mark the target with execution when we find the first
2475 inferior. If ATTACHED is 1, then we had just attached to this
2476 inferior. If it is 0, then we just created this inferior. If it
2477 is -1, then try querying the remote stub to find out if it had
2478 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2479 attempt to open this inferior's executable as the main executable
2480 if no main executable is open already. */
2481
2482 inferior *
2483 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2484 int try_open_exec)
2485 {
2486 struct inferior *inf;
2487
2488 /* Check whether this process we're learning about is to be
2489 considered attached, or if is to be considered to have been
2490 spawned by the stub. */
2491 if (attached == -1)
2492 attached = remote_query_attached (pid);
2493
2494 if (gdbarch_has_global_solist (target_gdbarch ()))
2495 {
2496 /* If the target shares code across all inferiors, then every
2497 attach adds a new inferior. */
2498 inf = add_inferior (pid);
2499
2500 /* ... and every inferior is bound to the same program space.
2501 However, each inferior may still have its own address
2502 space. */
2503 inf->aspace = maybe_new_address_space ();
2504 inf->pspace = current_program_space;
2505 }
2506 else
2507 {
2508 /* In the traditional debugging scenario, there's a 1-1 match
2509 between program/address spaces. We simply bind the inferior
2510 to the program space's address space. */
2511 inf = current_inferior ();
2512
2513 /* However, if the current inferior is already bound to a
2514 process, find some other empty inferior. */
2515 if (inf->pid != 0)
2516 {
2517 inf = nullptr;
2518 for (inferior *it : all_inferiors ())
2519 if (it->pid == 0)
2520 {
2521 inf = it;
2522 break;
2523 }
2524 }
2525 if (inf == nullptr)
2526 {
2527 /* Since all inferiors were already bound to a process, add
2528 a new inferior. */
2529 inf = add_inferior_with_spaces ();
2530 }
2531 switch_to_inferior_no_thread (inf);
2532 inf->push_target (this);
2533 inferior_appeared (inf, pid);
2534 }
2535
2536 inf->attach_flag = attached;
2537 inf->fake_pid_p = fake_pid_p;
2538
2539 /* If no main executable is currently open then attempt to
2540 open the file that was executed to create this inferior. */
2541 if (try_open_exec && get_exec_file (0) == NULL)
2542 exec_file_locate_attach (pid, 0, 1);
2543
2544 /* Check for exec file mismatch, and let the user solve it. */
2545 validate_exec_file (1);
2546
2547 return inf;
2548 }
2549
2550 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2551 static remote_thread_info *get_remote_thread_info (remote_target *target,
2552 ptid_t ptid);
2553
2554 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2555 according to EXECUTING and RUNNING respectively. If SILENT_P (or the
2556 remote_state::starting_up flag) is true then the new thread is added
2557 silently, otherwise the new thread will be announced to the user. */
2558
2559 thread_info *
2560 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing,
2561 bool silent_p)
2562 {
2563 struct remote_state *rs = get_remote_state ();
2564 struct thread_info *thread;
2565
2566 /* GDB historically didn't pull threads in the initial connection
2567 setup. If the remote target doesn't even have a concept of
2568 threads (e.g., a bare-metal target), even if internally we
2569 consider that a single-threaded target, mentioning a new thread
2570 might be confusing to the user. Be silent then, preserving the
2571 age old behavior. */
2572 if (rs->starting_up || silent_p)
2573 thread = add_thread_silent (this, ptid);
2574 else
2575 thread = add_thread (this, ptid);
2576
2577 /* We start by assuming threads are resumed. That state then gets updated
2578 when we process a matching stop reply. */
2579 get_remote_thread_info (thread)->set_resumed ();
2580
2581 set_executing (this, ptid, executing);
2582 set_running (this, ptid, running);
2583
2584 return thread;
2585 }
2586
2587 /* Come here when we learn about a thread id from the remote target.
2588 It may be the first time we hear about such thread, so take the
2589 opportunity to add it to GDB's thread list. In case this is the
2590 first time we're noticing its corresponding inferior, add it to
2591 GDB's inferior list as well. EXECUTING indicates whether the
2592 thread is (internally) executing or stopped. */
2593
2594 void
2595 remote_target::remote_notice_new_inferior (ptid_t currthread, bool executing)
2596 {
2597 /* In non-stop mode, we assume new found threads are (externally)
2598 running until proven otherwise with a stop reply. In all-stop,
2599 we can only get here if all threads are stopped. */
2600 bool running = target_is_non_stop_p ();
2601
2602 /* If this is a new thread, add it to GDB's thread list.
2603 If we leave it up to WFI to do this, bad things will happen. */
2604
2605 thread_info *tp = find_thread_ptid (this, currthread);
2606 if (tp != NULL && tp->state == THREAD_EXITED)
2607 {
2608 /* We're seeing an event on a thread id we knew had exited.
2609 This has to be a new thread reusing the old id. Add it. */
2610 remote_add_thread (currthread, running, executing, false);
2611 return;
2612 }
2613
2614 if (!in_thread_list (this, currthread))
2615 {
2616 struct inferior *inf = NULL;
2617 int pid = currthread.pid ();
2618
2619 if (inferior_ptid.is_pid ()
2620 && pid == inferior_ptid.pid ())
2621 {
2622 /* inferior_ptid has no thread member yet. This can happen
2623 with the vAttach -> remote_wait,"TAAthread:" path if the
2624 stub doesn't support qC. This is the first stop reported
2625 after an attach, so this is the main thread. Update the
2626 ptid in the thread list. */
2627 if (in_thread_list (this, ptid_t (pid)))
2628 thread_change_ptid (this, inferior_ptid, currthread);
2629 else
2630 {
2631 thread_info *thr
2632 = remote_add_thread (currthread, running, executing, false);
2633 switch_to_thread (thr);
2634 }
2635 return;
2636 }
2637
2638 if (magic_null_ptid == inferior_ptid)
2639 {
2640 /* inferior_ptid is not set yet. This can happen with the
2641 vRun -> remote_wait,"TAAthread:" path if the stub
2642 doesn't support qC. This is the first stop reported
2643 after an attach, so this is the main thread. Update the
2644 ptid in the thread list. */
2645 thread_change_ptid (this, inferior_ptid, currthread);
2646 return;
2647 }
2648
2649 /* When connecting to a target remote, or to a target
2650 extended-remote which already was debugging an inferior, we
2651 may not know about it yet. Add it before adding its child
2652 thread, so notifications are emitted in a sensible order. */
2653 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2654 {
2655 struct remote_state *rs = get_remote_state ();
2656 bool fake_pid_p = !remote_multi_process_p (rs);
2657
2658 inf = remote_add_inferior (fake_pid_p,
2659 currthread.pid (), -1, 1);
2660 }
2661
2662 /* This is really a new thread. Add it. */
2663 thread_info *new_thr
2664 = remote_add_thread (currthread, running, executing, false);
2665
2666 /* If we found a new inferior, let the common code do whatever
2667 it needs to with it (e.g., read shared libraries, insert
2668 breakpoints), unless we're just setting up an all-stop
2669 connection. */
2670 if (inf != NULL)
2671 {
2672 struct remote_state *rs = get_remote_state ();
2673
2674 if (!rs->starting_up)
2675 notice_new_inferior (new_thr, executing, 0);
2676 }
2677 }
2678 }
2679
2680 /* Return THREAD's private thread data, creating it if necessary. */
2681
2682 static remote_thread_info *
2683 get_remote_thread_info (thread_info *thread)
2684 {
2685 gdb_assert (thread != NULL);
2686
2687 if (thread->priv == NULL)
2688 thread->priv.reset (new remote_thread_info);
2689
2690 return static_cast<remote_thread_info *> (thread->priv.get ());
2691 }
2692
2693 /* Return PTID's private thread data, creating it if necessary. */
2694
2695 static remote_thread_info *
2696 get_remote_thread_info (remote_target *target, ptid_t ptid)
2697 {
2698 thread_info *thr = find_thread_ptid (target, ptid);
2699 return get_remote_thread_info (thr);
2700 }
2701
2702 /* Call this function as a result of
2703 1) A halt indication (T packet) containing a thread id
2704 2) A direct query of currthread
2705 3) Successful execution of set thread */
2706
2707 static void
2708 record_currthread (struct remote_state *rs, ptid_t currthread)
2709 {
2710 rs->general_thread = currthread;
2711 }
2712
2713 /* If 'QPassSignals' is supported, tell the remote stub what signals
2714 it can simply pass through to the inferior without reporting. */
2715
2716 void
2717 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2718 {
2719 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2720 {
2721 char *pass_packet, *p;
2722 int count = 0;
2723 struct remote_state *rs = get_remote_state ();
2724
2725 gdb_assert (pass_signals.size () < 256);
2726 for (size_t i = 0; i < pass_signals.size (); i++)
2727 {
2728 if (pass_signals[i])
2729 count++;
2730 }
2731 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2732 strcpy (pass_packet, "QPassSignals:");
2733 p = pass_packet + strlen (pass_packet);
2734 for (size_t i = 0; i < pass_signals.size (); i++)
2735 {
2736 if (pass_signals[i])
2737 {
2738 if (i >= 16)
2739 *p++ = tohex (i >> 4);
2740 *p++ = tohex (i & 15);
2741 if (count)
2742 *p++ = ';';
2743 else
2744 break;
2745 count--;
2746 }
2747 }
2748 *p = 0;
2749 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2750 {
2751 putpkt (pass_packet);
2752 getpkt (&rs->buf, 0);
2753 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2754 xfree (rs->last_pass_packet);
2755 rs->last_pass_packet = pass_packet;
2756 }
2757 else
2758 xfree (pass_packet);
2759 }
2760 }
2761
2762 /* If 'QCatchSyscalls' is supported, tell the remote stub
2763 to report syscalls to GDB. */
2764
2765 int
2766 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2767 gdb::array_view<const int> syscall_counts)
2768 {
2769 const char *catch_packet;
2770 enum packet_result result;
2771 int n_sysno = 0;
2772
2773 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2774 {
2775 /* Not supported. */
2776 return 1;
2777 }
2778
2779 if (needed && any_count == 0)
2780 {
2781 /* Count how many syscalls are to be caught. */
2782 for (size_t i = 0; i < syscall_counts.size (); i++)
2783 {
2784 if (syscall_counts[i] != 0)
2785 n_sysno++;
2786 }
2787 }
2788
2789 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2790 pid, needed, any_count, n_sysno);
2791
2792 std::string built_packet;
2793 if (needed)
2794 {
2795 /* Prepare a packet with the sysno list, assuming max 8+1
2796 characters for a sysno. If the resulting packet size is too
2797 big, fallback on the non-selective packet. */
2798 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2799 built_packet.reserve (maxpktsz);
2800 built_packet = "QCatchSyscalls:1";
2801 if (any_count == 0)
2802 {
2803 /* Add in each syscall to be caught. */
2804 for (size_t i = 0; i < syscall_counts.size (); i++)
2805 {
2806 if (syscall_counts[i] != 0)
2807 string_appendf (built_packet, ";%zx", i);
2808 }
2809 }
2810 if (built_packet.size () > get_remote_packet_size ())
2811 {
2812 /* catch_packet too big. Fallback to less efficient
2813 non selective mode, with GDB doing the filtering. */
2814 catch_packet = "QCatchSyscalls:1";
2815 }
2816 else
2817 catch_packet = built_packet.c_str ();
2818 }
2819 else
2820 catch_packet = "QCatchSyscalls:0";
2821
2822 struct remote_state *rs = get_remote_state ();
2823
2824 putpkt (catch_packet);
2825 getpkt (&rs->buf, 0);
2826 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2827 if (result == PACKET_OK)
2828 return 0;
2829 else
2830 return -1;
2831 }
2832
2833 /* If 'QProgramSignals' is supported, tell the remote stub what
2834 signals it should pass through to the inferior when detaching. */
2835
2836 void
2837 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2838 {
2839 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2840 {
2841 char *packet, *p;
2842 int count = 0;
2843 struct remote_state *rs = get_remote_state ();
2844
2845 gdb_assert (signals.size () < 256);
2846 for (size_t i = 0; i < signals.size (); i++)
2847 {
2848 if (signals[i])
2849 count++;
2850 }
2851 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2852 strcpy (packet, "QProgramSignals:");
2853 p = packet + strlen (packet);
2854 for (size_t i = 0; i < signals.size (); i++)
2855 {
2856 if (signal_pass_state (i))
2857 {
2858 if (i >= 16)
2859 *p++ = tohex (i >> 4);
2860 *p++ = tohex (i & 15);
2861 if (count)
2862 *p++ = ';';
2863 else
2864 break;
2865 count--;
2866 }
2867 }
2868 *p = 0;
2869 if (!rs->last_program_signals_packet
2870 || strcmp (rs->last_program_signals_packet, packet) != 0)
2871 {
2872 putpkt (packet);
2873 getpkt (&rs->buf, 0);
2874 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2875 xfree (rs->last_program_signals_packet);
2876 rs->last_program_signals_packet = packet;
2877 }
2878 else
2879 xfree (packet);
2880 }
2881 }
2882
2883 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2884 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2885 thread. If GEN is set, set the general thread, if not, then set
2886 the step/continue thread. */
2887 void
2888 remote_target::set_thread (ptid_t ptid, int gen)
2889 {
2890 struct remote_state *rs = get_remote_state ();
2891 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2892 char *buf = rs->buf.data ();
2893 char *endbuf = buf + get_remote_packet_size ();
2894
2895 if (state == ptid)
2896 return;
2897
2898 *buf++ = 'H';
2899 *buf++ = gen ? 'g' : 'c';
2900 if (ptid == magic_null_ptid)
2901 xsnprintf (buf, endbuf - buf, "0");
2902 else if (ptid == any_thread_ptid)
2903 xsnprintf (buf, endbuf - buf, "0");
2904 else if (ptid == minus_one_ptid)
2905 xsnprintf (buf, endbuf - buf, "-1");
2906 else
2907 write_ptid (buf, endbuf, ptid);
2908 putpkt (rs->buf);
2909 getpkt (&rs->buf, 0);
2910 if (gen)
2911 rs->general_thread = ptid;
2912 else
2913 rs->continue_thread = ptid;
2914 }
2915
2916 void
2917 remote_target::set_general_thread (ptid_t ptid)
2918 {
2919 set_thread (ptid, 1);
2920 }
2921
2922 void
2923 remote_target::set_continue_thread (ptid_t ptid)
2924 {
2925 set_thread (ptid, 0);
2926 }
2927
2928 /* Change the remote current process. Which thread within the process
2929 ends up selected isn't important, as long as it is the same process
2930 as what INFERIOR_PTID points to.
2931
2932 This comes from that fact that there is no explicit notion of
2933 "selected process" in the protocol. The selected process for
2934 general operations is the process the selected general thread
2935 belongs to. */
2936
2937 void
2938 remote_target::set_general_process ()
2939 {
2940 struct remote_state *rs = get_remote_state ();
2941
2942 /* If the remote can't handle multiple processes, don't bother. */
2943 if (!remote_multi_process_p (rs))
2944 return;
2945
2946 /* We only need to change the remote current thread if it's pointing
2947 at some other process. */
2948 if (rs->general_thread.pid () != inferior_ptid.pid ())
2949 set_general_thread (inferior_ptid);
2950 }
2951
2952 \f
2953 /* Return nonzero if this is the main thread that we made up ourselves
2954 to model non-threaded targets as single-threaded. */
2955
2956 static int
2957 remote_thread_always_alive (ptid_t ptid)
2958 {
2959 if (ptid == magic_null_ptid)
2960 /* The main thread is always alive. */
2961 return 1;
2962
2963 if (ptid.pid () != 0 && ptid.lwp () == 0)
2964 /* The main thread is always alive. This can happen after a
2965 vAttach, if the remote side doesn't support
2966 multi-threading. */
2967 return 1;
2968
2969 return 0;
2970 }
2971
2972 /* Return nonzero if the thread PTID is still alive on the remote
2973 system. */
2974
2975 bool
2976 remote_target::thread_alive (ptid_t ptid)
2977 {
2978 struct remote_state *rs = get_remote_state ();
2979 char *p, *endp;
2980
2981 /* Check if this is a thread that we made up ourselves to model
2982 non-threaded targets as single-threaded. */
2983 if (remote_thread_always_alive (ptid))
2984 return 1;
2985
2986 p = rs->buf.data ();
2987 endp = p + get_remote_packet_size ();
2988
2989 *p++ = 'T';
2990 write_ptid (p, endp, ptid);
2991
2992 putpkt (rs->buf);
2993 getpkt (&rs->buf, 0);
2994 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2995 }
2996
2997 /* Return a pointer to a thread name if we know it and NULL otherwise.
2998 The thread_info object owns the memory for the name. */
2999
3000 const char *
3001 remote_target::thread_name (struct thread_info *info)
3002 {
3003 if (info->priv != NULL)
3004 {
3005 const std::string &name = get_remote_thread_info (info)->name;
3006 return !name.empty () ? name.c_str () : NULL;
3007 }
3008
3009 return NULL;
3010 }
3011
3012 /* About these extended threadlist and threadinfo packets. They are
3013 variable length packets but, the fields within them are often fixed
3014 length. They are redundant enough to send over UDP as is the
3015 remote protocol in general. There is a matching unit test module
3016 in libstub. */
3017
3018 /* WARNING: This threadref data structure comes from the remote O.S.,
3019 libstub protocol encoding, and remote.c. It is not particularly
3020 changable. */
3021
3022 /* Right now, the internal structure is int. We want it to be bigger.
3023 Plan to fix this. */
3024
3025 typedef int gdb_threadref; /* Internal GDB thread reference. */
3026
3027 /* gdb_ext_thread_info is an internal GDB data structure which is
3028 equivalent to the reply of the remote threadinfo packet. */
3029
3030 struct gdb_ext_thread_info
3031 {
3032 threadref threadid; /* External form of thread reference. */
3033 int active; /* Has state interesting to GDB?
3034 regs, stack. */
3035 char display[256]; /* Brief state display, name,
3036 blocked/suspended. */
3037 char shortname[32]; /* To be used to name threads. */
3038 char more_display[256]; /* Long info, statistics, queue depth,
3039 whatever. */
3040 };
3041
3042 /* The volume of remote transfers can be limited by submitting
3043 a mask containing bits specifying the desired information.
3044 Use a union of these values as the 'selection' parameter to
3045 get_thread_info. FIXME: Make these TAG names more thread specific. */
3046
3047 #define TAG_THREADID 1
3048 #define TAG_EXISTS 2
3049 #define TAG_DISPLAY 4
3050 #define TAG_THREADNAME 8
3051 #define TAG_MOREDISPLAY 16
3052
3053 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3054
3055 static const char *unpack_nibble (const char *buf, int *val);
3056
3057 static const char *unpack_byte (const char *buf, int *value);
3058
3059 static char *pack_int (char *buf, int value);
3060
3061 static const char *unpack_int (const char *buf, int *value);
3062
3063 static const char *unpack_string (const char *src, char *dest, int length);
3064
3065 static char *pack_threadid (char *pkt, threadref *id);
3066
3067 static const char *unpack_threadid (const char *inbuf, threadref *id);
3068
3069 void int_to_threadref (threadref *id, int value);
3070
3071 static int threadref_to_int (threadref *ref);
3072
3073 static void copy_threadref (threadref *dest, threadref *src);
3074
3075 static int threadmatch (threadref *dest, threadref *src);
3076
3077 static char *pack_threadinfo_request (char *pkt, int mode,
3078 threadref *id);
3079
3080 static char *pack_threadlist_request (char *pkt, int startflag,
3081 int threadcount,
3082 threadref *nextthread);
3083
3084 static int remote_newthread_step (threadref *ref, void *context);
3085
3086
3087 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3088 buffer we're allowed to write to. Returns
3089 BUF+CHARACTERS_WRITTEN. */
3090
3091 char *
3092 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3093 {
3094 int pid, tid;
3095 struct remote_state *rs = get_remote_state ();
3096
3097 if (remote_multi_process_p (rs))
3098 {
3099 pid = ptid.pid ();
3100 if (pid < 0)
3101 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3102 else
3103 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3104 }
3105 tid = ptid.lwp ();
3106 if (tid < 0)
3107 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3108 else
3109 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3110
3111 return buf;
3112 }
3113
3114 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3115 last parsed char. Returns null_ptid if no thread id is found, and
3116 throws an error if the thread id has an invalid format. */
3117
3118 static ptid_t
3119 read_ptid (const char *buf, const char **obuf)
3120 {
3121 const char *p = buf;
3122 const char *pp;
3123 ULONGEST pid = 0, tid = 0;
3124
3125 if (*p == 'p')
3126 {
3127 /* Multi-process ptid. */
3128 pp = unpack_varlen_hex (p + 1, &pid);
3129 if (*pp != '.')
3130 error (_("invalid remote ptid: %s"), p);
3131
3132 p = pp;
3133 pp = unpack_varlen_hex (p + 1, &tid);
3134 if (obuf)
3135 *obuf = pp;
3136 return ptid_t (pid, tid);
3137 }
3138
3139 /* No multi-process. Just a tid. */
3140 pp = unpack_varlen_hex (p, &tid);
3141
3142 /* Return null_ptid when no thread id is found. */
3143 if (p == pp)
3144 {
3145 if (obuf)
3146 *obuf = pp;
3147 return null_ptid;
3148 }
3149
3150 /* Since the stub is not sending a process id, then default to
3151 what's in inferior_ptid, unless it's null at this point. If so,
3152 then since there's no way to know the pid of the reported
3153 threads, use the magic number. */
3154 if (inferior_ptid == null_ptid)
3155 pid = magic_null_ptid.pid ();
3156 else
3157 pid = inferior_ptid.pid ();
3158
3159 if (obuf)
3160 *obuf = pp;
3161 return ptid_t (pid, tid);
3162 }
3163
3164 static int
3165 stubhex (int ch)
3166 {
3167 if (ch >= 'a' && ch <= 'f')
3168 return ch - 'a' + 10;
3169 if (ch >= '0' && ch <= '9')
3170 return ch - '0';
3171 if (ch >= 'A' && ch <= 'F')
3172 return ch - 'A' + 10;
3173 return -1;
3174 }
3175
3176 static int
3177 stub_unpack_int (const char *buff, int fieldlength)
3178 {
3179 int nibble;
3180 int retval = 0;
3181
3182 while (fieldlength)
3183 {
3184 nibble = stubhex (*buff++);
3185 retval |= nibble;
3186 fieldlength--;
3187 if (fieldlength)
3188 retval = retval << 4;
3189 }
3190 return retval;
3191 }
3192
3193 static const char *
3194 unpack_nibble (const char *buf, int *val)
3195 {
3196 *val = fromhex (*buf++);
3197 return buf;
3198 }
3199
3200 static const char *
3201 unpack_byte (const char *buf, int *value)
3202 {
3203 *value = stub_unpack_int (buf, 2);
3204 return buf + 2;
3205 }
3206
3207 static char *
3208 pack_int (char *buf, int value)
3209 {
3210 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3211 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3212 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3213 buf = pack_hex_byte (buf, (value & 0xff));
3214 return buf;
3215 }
3216
3217 static const char *
3218 unpack_int (const char *buf, int *value)
3219 {
3220 *value = stub_unpack_int (buf, 8);
3221 return buf + 8;
3222 }
3223
3224 #if 0 /* Currently unused, uncomment when needed. */
3225 static char *pack_string (char *pkt, char *string);
3226
3227 static char *
3228 pack_string (char *pkt, char *string)
3229 {
3230 char ch;
3231 int len;
3232
3233 len = strlen (string);
3234 if (len > 200)
3235 len = 200; /* Bigger than most GDB packets, junk??? */
3236 pkt = pack_hex_byte (pkt, len);
3237 while (len-- > 0)
3238 {
3239 ch = *string++;
3240 if ((ch == '\0') || (ch == '#'))
3241 ch = '*'; /* Protect encapsulation. */
3242 *pkt++ = ch;
3243 }
3244 return pkt;
3245 }
3246 #endif /* 0 (unused) */
3247
3248 static const char *
3249 unpack_string (const char *src, char *dest, int length)
3250 {
3251 while (length--)
3252 *dest++ = *src++;
3253 *dest = '\0';
3254 return src;
3255 }
3256
3257 static char *
3258 pack_threadid (char *pkt, threadref *id)
3259 {
3260 char *limit;
3261 unsigned char *altid;
3262
3263 altid = (unsigned char *) id;
3264 limit = pkt + BUF_THREAD_ID_SIZE;
3265 while (pkt < limit)
3266 pkt = pack_hex_byte (pkt, *altid++);
3267 return pkt;
3268 }
3269
3270
3271 static const char *
3272 unpack_threadid (const char *inbuf, threadref *id)
3273 {
3274 char *altref;
3275 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3276 int x, y;
3277
3278 altref = (char *) id;
3279
3280 while (inbuf < limit)
3281 {
3282 x = stubhex (*inbuf++);
3283 y = stubhex (*inbuf++);
3284 *altref++ = (x << 4) | y;
3285 }
3286 return inbuf;
3287 }
3288
3289 /* Externally, threadrefs are 64 bits but internally, they are still
3290 ints. This is due to a mismatch of specifications. We would like
3291 to use 64bit thread references internally. This is an adapter
3292 function. */
3293
3294 void
3295 int_to_threadref (threadref *id, int value)
3296 {
3297 unsigned char *scan;
3298
3299 scan = (unsigned char *) id;
3300 {
3301 int i = 4;
3302 while (i--)
3303 *scan++ = 0;
3304 }
3305 *scan++ = (value >> 24) & 0xff;
3306 *scan++ = (value >> 16) & 0xff;
3307 *scan++ = (value >> 8) & 0xff;
3308 *scan++ = (value & 0xff);
3309 }
3310
3311 static int
3312 threadref_to_int (threadref *ref)
3313 {
3314 int i, value = 0;
3315 unsigned char *scan;
3316
3317 scan = *ref;
3318 scan += 4;
3319 i = 4;
3320 while (i-- > 0)
3321 value = (value << 8) | ((*scan++) & 0xff);
3322 return value;
3323 }
3324
3325 static void
3326 copy_threadref (threadref *dest, threadref *src)
3327 {
3328 int i;
3329 unsigned char *csrc, *cdest;
3330
3331 csrc = (unsigned char *) src;
3332 cdest = (unsigned char *) dest;
3333 i = 8;
3334 while (i--)
3335 *cdest++ = *csrc++;
3336 }
3337
3338 static int
3339 threadmatch (threadref *dest, threadref *src)
3340 {
3341 /* Things are broken right now, so just assume we got a match. */
3342 #if 0
3343 unsigned char *srcp, *destp;
3344 int i, result;
3345 srcp = (char *) src;
3346 destp = (char *) dest;
3347
3348 result = 1;
3349 while (i-- > 0)
3350 result &= (*srcp++ == *destp++) ? 1 : 0;
3351 return result;
3352 #endif
3353 return 1;
3354 }
3355
3356 /*
3357 threadid:1, # always request threadid
3358 context_exists:2,
3359 display:4,
3360 unique_name:8,
3361 more_display:16
3362 */
3363
3364 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3365
3366 static char *
3367 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3368 {
3369 *pkt++ = 'q'; /* Info Query */
3370 *pkt++ = 'P'; /* process or thread info */
3371 pkt = pack_int (pkt, mode); /* mode */
3372 pkt = pack_threadid (pkt, id); /* threadid */
3373 *pkt = '\0'; /* terminate */
3374 return pkt;
3375 }
3376
3377 /* These values tag the fields in a thread info response packet. */
3378 /* Tagging the fields allows us to request specific fields and to
3379 add more fields as time goes by. */
3380
3381 #define TAG_THREADID 1 /* Echo the thread identifier. */
3382 #define TAG_EXISTS 2 /* Is this process defined enough to
3383 fetch registers and its stack? */
3384 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3385 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3386 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3387 the process. */
3388
3389 int
3390 remote_target::remote_unpack_thread_info_response (const char *pkt,
3391 threadref *expectedref,
3392 gdb_ext_thread_info *info)
3393 {
3394 struct remote_state *rs = get_remote_state ();
3395 int mask, length;
3396 int tag;
3397 threadref ref;
3398 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3399 int retval = 1;
3400
3401 /* info->threadid = 0; FIXME: implement zero_threadref. */
3402 info->active = 0;
3403 info->display[0] = '\0';
3404 info->shortname[0] = '\0';
3405 info->more_display[0] = '\0';
3406
3407 /* Assume the characters indicating the packet type have been
3408 stripped. */
3409 pkt = unpack_int (pkt, &mask); /* arg mask */
3410 pkt = unpack_threadid (pkt, &ref);
3411
3412 if (mask == 0)
3413 warning (_("Incomplete response to threadinfo request."));
3414 if (!threadmatch (&ref, expectedref))
3415 { /* This is an answer to a different request. */
3416 warning (_("ERROR RMT Thread info mismatch."));
3417 return 0;
3418 }
3419 copy_threadref (&info->threadid, &ref);
3420
3421 /* Loop on tagged fields , try to bail if something goes wrong. */
3422
3423 /* Packets are terminated with nulls. */
3424 while ((pkt < limit) && mask && *pkt)
3425 {
3426 pkt = unpack_int (pkt, &tag); /* tag */
3427 pkt = unpack_byte (pkt, &length); /* length */
3428 if (!(tag & mask)) /* Tags out of synch with mask. */
3429 {
3430 warning (_("ERROR RMT: threadinfo tag mismatch."));
3431 retval = 0;
3432 break;
3433 }
3434 if (tag == TAG_THREADID)
3435 {
3436 if (length != 16)
3437 {
3438 warning (_("ERROR RMT: length of threadid is not 16."));
3439 retval = 0;
3440 break;
3441 }
3442 pkt = unpack_threadid (pkt, &ref);
3443 mask = mask & ~TAG_THREADID;
3444 continue;
3445 }
3446 if (tag == TAG_EXISTS)
3447 {
3448 info->active = stub_unpack_int (pkt, length);
3449 pkt += length;
3450 mask = mask & ~(TAG_EXISTS);
3451 if (length > 8)
3452 {
3453 warning (_("ERROR RMT: 'exists' length too long."));
3454 retval = 0;
3455 break;
3456 }
3457 continue;
3458 }
3459 if (tag == TAG_THREADNAME)
3460 {
3461 pkt = unpack_string (pkt, &info->shortname[0], length);
3462 mask = mask & ~TAG_THREADNAME;
3463 continue;
3464 }
3465 if (tag == TAG_DISPLAY)
3466 {
3467 pkt = unpack_string (pkt, &info->display[0], length);
3468 mask = mask & ~TAG_DISPLAY;
3469 continue;
3470 }
3471 if (tag == TAG_MOREDISPLAY)
3472 {
3473 pkt = unpack_string (pkt, &info->more_display[0], length);
3474 mask = mask & ~TAG_MOREDISPLAY;
3475 continue;
3476 }
3477 warning (_("ERROR RMT: unknown thread info tag."));
3478 break; /* Not a tag we know about. */
3479 }
3480 return retval;
3481 }
3482
3483 int
3484 remote_target::remote_get_threadinfo (threadref *threadid,
3485 int fieldset,
3486 gdb_ext_thread_info *info)
3487 {
3488 struct remote_state *rs = get_remote_state ();
3489 int result;
3490
3491 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3492 putpkt (rs->buf);
3493 getpkt (&rs->buf, 0);
3494
3495 if (rs->buf[0] == '\0')
3496 return 0;
3497
3498 result = remote_unpack_thread_info_response (&rs->buf[2],
3499 threadid, info);
3500 return result;
3501 }
3502
3503 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3504
3505 static char *
3506 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3507 threadref *nextthread)
3508 {
3509 *pkt++ = 'q'; /* info query packet */
3510 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3511 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3512 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3513 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3514 *pkt = '\0';
3515 return pkt;
3516 }
3517
3518 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3519
3520 int
3521 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3522 threadref *original_echo,
3523 threadref *resultlist,
3524 int *doneflag)
3525 {
3526 struct remote_state *rs = get_remote_state ();
3527 int count, resultcount, done;
3528
3529 resultcount = 0;
3530 /* Assume the 'q' and 'M chars have been stripped. */
3531 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3532 /* done parse past here */
3533 pkt = unpack_byte (pkt, &count); /* count field */
3534 pkt = unpack_nibble (pkt, &done);
3535 /* The first threadid is the argument threadid. */
3536 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3537 while ((count-- > 0) && (pkt < limit))
3538 {
3539 pkt = unpack_threadid (pkt, resultlist++);
3540 if (resultcount++ >= result_limit)
3541 break;
3542 }
3543 if (doneflag)
3544 *doneflag = done;
3545 return resultcount;
3546 }
3547
3548 /* Fetch the next batch of threads from the remote. Returns -1 if the
3549 qL packet is not supported, 0 on error and 1 on success. */
3550
3551 int
3552 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3553 int result_limit, int *done, int *result_count,
3554 threadref *threadlist)
3555 {
3556 struct remote_state *rs = get_remote_state ();
3557 int result = 1;
3558
3559 /* Truncate result limit to be smaller than the packet size. */
3560 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3561 >= get_remote_packet_size ())
3562 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3563
3564 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3565 nextthread);
3566 putpkt (rs->buf);
3567 getpkt (&rs->buf, 0);
3568 if (rs->buf[0] == '\0')
3569 {
3570 /* Packet not supported. */
3571 return -1;
3572 }
3573
3574 *result_count =
3575 parse_threadlist_response (&rs->buf[2], result_limit,
3576 &rs->echo_nextthread, threadlist, done);
3577
3578 if (!threadmatch (&rs->echo_nextthread, nextthread))
3579 {
3580 /* FIXME: This is a good reason to drop the packet. */
3581 /* Possibly, there is a duplicate response. */
3582 /* Possibilities :
3583 retransmit immediatly - race conditions
3584 retransmit after timeout - yes
3585 exit
3586 wait for packet, then exit
3587 */
3588 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3589 return 0; /* I choose simply exiting. */
3590 }
3591 if (*result_count <= 0)
3592 {
3593 if (*done != 1)
3594 {
3595 warning (_("RMT ERROR : failed to get remote thread list."));
3596 result = 0;
3597 }
3598 return result; /* break; */
3599 }
3600 if (*result_count > result_limit)
3601 {
3602 *result_count = 0;
3603 warning (_("RMT ERROR: threadlist response longer than requested."));
3604 return 0;
3605 }
3606 return result;
3607 }
3608
3609 /* Fetch the list of remote threads, with the qL packet, and call
3610 STEPFUNCTION for each thread found. Stops iterating and returns 1
3611 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3612 STEPFUNCTION returns false. If the packet is not supported,
3613 returns -1. */
3614
3615 int
3616 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3617 void *context, int looplimit)
3618 {
3619 struct remote_state *rs = get_remote_state ();
3620 int done, i, result_count;
3621 int startflag = 1;
3622 int result = 1;
3623 int loopcount = 0;
3624
3625 done = 0;
3626 while (!done)
3627 {
3628 if (loopcount++ > looplimit)
3629 {
3630 result = 0;
3631 warning (_("Remote fetch threadlist -infinite loop-."));
3632 break;
3633 }
3634 result = remote_get_threadlist (startflag, &rs->nextthread,
3635 MAXTHREADLISTRESULTS,
3636 &done, &result_count,
3637 rs->resultthreadlist);
3638 if (result <= 0)
3639 break;
3640 /* Clear for later iterations. */
3641 startflag = 0;
3642 /* Setup to resume next batch of thread references, set nextthread. */
3643 if (result_count >= 1)
3644 copy_threadref (&rs->nextthread,
3645 &rs->resultthreadlist[result_count - 1]);
3646 i = 0;
3647 while (result_count--)
3648 {
3649 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3650 {
3651 result = 0;
3652 break;
3653 }
3654 }
3655 }
3656 return result;
3657 }
3658
3659 /* A thread found on the remote target. */
3660
3661 struct thread_item
3662 {
3663 explicit thread_item (ptid_t ptid_)
3664 : ptid (ptid_)
3665 {}
3666
3667 thread_item (thread_item &&other) = default;
3668 thread_item &operator= (thread_item &&other) = default;
3669
3670 DISABLE_COPY_AND_ASSIGN (thread_item);
3671
3672 /* The thread's PTID. */
3673 ptid_t ptid;
3674
3675 /* The thread's extra info. */
3676 std::string extra;
3677
3678 /* The thread's name. */
3679 std::string name;
3680
3681 /* The core the thread was running on. -1 if not known. */
3682 int core = -1;
3683
3684 /* The thread handle associated with the thread. */
3685 gdb::byte_vector thread_handle;
3686 };
3687
3688 /* Context passed around to the various methods listing remote
3689 threads. As new threads are found, they're added to the ITEMS
3690 vector. */
3691
3692 struct threads_listing_context
3693 {
3694 /* Return true if this object contains an entry for a thread with ptid
3695 PTID. */
3696
3697 bool contains_thread (ptid_t ptid) const
3698 {
3699 auto match_ptid = [&] (const thread_item &item)
3700 {
3701 return item.ptid == ptid;
3702 };
3703
3704 auto it = std::find_if (this->items.begin (),
3705 this->items.end (),
3706 match_ptid);
3707
3708 return it != this->items.end ();
3709 }
3710
3711 /* Remove the thread with ptid PTID. */
3712
3713 void remove_thread (ptid_t ptid)
3714 {
3715 auto match_ptid = [&] (const thread_item &item)
3716 {
3717 return item.ptid == ptid;
3718 };
3719
3720 auto it = std::remove_if (this->items.begin (),
3721 this->items.end (),
3722 match_ptid);
3723
3724 if (it != this->items.end ())
3725 this->items.erase (it);
3726 }
3727
3728 /* The threads found on the remote target. */
3729 std::vector<thread_item> items;
3730 };
3731
3732 static int
3733 remote_newthread_step (threadref *ref, void *data)
3734 {
3735 struct threads_listing_context *context
3736 = (struct threads_listing_context *) data;
3737 int pid = inferior_ptid.pid ();
3738 int lwp = threadref_to_int (ref);
3739 ptid_t ptid (pid, lwp);
3740
3741 context->items.emplace_back (ptid);
3742
3743 return 1; /* continue iterator */
3744 }
3745
3746 #define CRAZY_MAX_THREADS 1000
3747
3748 ptid_t
3749 remote_target::remote_current_thread (ptid_t oldpid)
3750 {
3751 struct remote_state *rs = get_remote_state ();
3752
3753 putpkt ("qC");
3754 getpkt (&rs->buf, 0);
3755 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3756 {
3757 const char *obuf;
3758 ptid_t result;
3759
3760 result = read_ptid (&rs->buf[2], &obuf);
3761 if (*obuf != '\0')
3762 remote_debug_printf ("warning: garbage in qC reply");
3763
3764 return result;
3765 }
3766 else
3767 return oldpid;
3768 }
3769
3770 /* List remote threads using the deprecated qL packet. */
3771
3772 int
3773 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3774 {
3775 if (remote_threadlist_iterator (remote_newthread_step, context,
3776 CRAZY_MAX_THREADS) >= 0)
3777 return 1;
3778
3779 return 0;
3780 }
3781
3782 #if defined(HAVE_LIBEXPAT)
3783
3784 static void
3785 start_thread (struct gdb_xml_parser *parser,
3786 const struct gdb_xml_element *element,
3787 void *user_data,
3788 std::vector<gdb_xml_value> &attributes)
3789 {
3790 struct threads_listing_context *data
3791 = (struct threads_listing_context *) user_data;
3792 struct gdb_xml_value *attr;
3793
3794 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3795 ptid_t ptid = read_ptid (id, NULL);
3796
3797 data->items.emplace_back (ptid);
3798 thread_item &item = data->items.back ();
3799
3800 attr = xml_find_attribute (attributes, "core");
3801 if (attr != NULL)
3802 item.core = *(ULONGEST *) attr->value.get ();
3803
3804 attr = xml_find_attribute (attributes, "name");
3805 if (attr != NULL)
3806 item.name = (const char *) attr->value.get ();
3807
3808 attr = xml_find_attribute (attributes, "handle");
3809 if (attr != NULL)
3810 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3811 }
3812
3813 static void
3814 end_thread (struct gdb_xml_parser *parser,
3815 const struct gdb_xml_element *element,
3816 void *user_data, const char *body_text)
3817 {
3818 struct threads_listing_context *data
3819 = (struct threads_listing_context *) user_data;
3820
3821 if (body_text != NULL && *body_text != '\0')
3822 data->items.back ().extra = body_text;
3823 }
3824
3825 const struct gdb_xml_attribute thread_attributes[] = {
3826 { "id", GDB_XML_AF_NONE, NULL, NULL },
3827 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3828 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3829 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3830 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3831 };
3832
3833 const struct gdb_xml_element thread_children[] = {
3834 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3835 };
3836
3837 const struct gdb_xml_element threads_children[] = {
3838 { "thread", thread_attributes, thread_children,
3839 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3840 start_thread, end_thread },
3841 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3842 };
3843
3844 const struct gdb_xml_element threads_elements[] = {
3845 { "threads", NULL, threads_children,
3846 GDB_XML_EF_NONE, NULL, NULL },
3847 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3848 };
3849
3850 #endif
3851
3852 /* List remote threads using qXfer:threads:read. */
3853
3854 int
3855 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3856 {
3857 #if defined(HAVE_LIBEXPAT)
3858 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3859 {
3860 gdb::optional<gdb::char_vector> xml
3861 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3862
3863 if (xml && (*xml)[0] != '\0')
3864 {
3865 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3866 threads_elements, xml->data (), context);
3867 }
3868
3869 return 1;
3870 }
3871 #endif
3872
3873 return 0;
3874 }
3875
3876 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3877
3878 int
3879 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3880 {
3881 struct remote_state *rs = get_remote_state ();
3882
3883 if (rs->use_threadinfo_query)
3884 {
3885 const char *bufp;
3886
3887 putpkt ("qfThreadInfo");
3888 getpkt (&rs->buf, 0);
3889 bufp = rs->buf.data ();
3890 if (bufp[0] != '\0') /* q packet recognized */
3891 {
3892 while (*bufp++ == 'm') /* reply contains one or more TID */
3893 {
3894 do
3895 {
3896 ptid_t ptid = read_ptid (bufp, &bufp);
3897 context->items.emplace_back (ptid);
3898 }
3899 while (*bufp++ == ','); /* comma-separated list */
3900 putpkt ("qsThreadInfo");
3901 getpkt (&rs->buf, 0);
3902 bufp = rs->buf.data ();
3903 }
3904 return 1;
3905 }
3906 else
3907 {
3908 /* Packet not recognized. */
3909 rs->use_threadinfo_query = 0;
3910 }
3911 }
3912
3913 return 0;
3914 }
3915
3916 /* Return true if INF only has one non-exited thread. */
3917
3918 static bool
3919 has_single_non_exited_thread (inferior *inf)
3920 {
3921 int count = 0;
3922 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3923 if (++count > 1)
3924 break;
3925 return count == 1;
3926 }
3927
3928 /* Implement the to_update_thread_list function for the remote
3929 targets. */
3930
3931 void
3932 remote_target::update_thread_list ()
3933 {
3934 struct threads_listing_context context;
3935 int got_list = 0;
3936
3937 /* We have a few different mechanisms to fetch the thread list. Try
3938 them all, starting with the most preferred one first, falling
3939 back to older methods. */
3940 if (remote_get_threads_with_qxfer (&context)
3941 || remote_get_threads_with_qthreadinfo (&context)
3942 || remote_get_threads_with_ql (&context))
3943 {
3944 got_list = 1;
3945
3946 if (context.items.empty ()
3947 && remote_thread_always_alive (inferior_ptid))
3948 {
3949 /* Some targets don't really support threads, but still
3950 reply an (empty) thread list in response to the thread
3951 listing packets, instead of replying "packet not
3952 supported". Exit early so we don't delete the main
3953 thread. */
3954 return;
3955 }
3956
3957 /* CONTEXT now holds the current thread list on the remote
3958 target end. Delete GDB-side threads no longer found on the
3959 target. */
3960 for (thread_info *tp : all_threads_safe ())
3961 {
3962 if (tp->inf->process_target () != this)
3963 continue;
3964
3965 if (!context.contains_thread (tp->ptid))
3966 {
3967 /* Do not remove the thread if it is the last thread in
3968 the inferior. This situation happens when we have a
3969 pending exit process status to process. Otherwise we
3970 may end up with a seemingly live inferior (i.e. pid
3971 != 0) that has no threads. */
3972 if (has_single_non_exited_thread (tp->inf))
3973 continue;
3974
3975 /* Not found. */
3976 delete_thread (tp);
3977 }
3978 }
3979
3980 /* Remove any unreported fork child threads from CONTEXT so
3981 that we don't interfere with follow fork, which is where
3982 creation of such threads is handled. */
3983 remove_new_fork_children (&context);
3984
3985 /* And now add threads we don't know about yet to our list. */
3986 for (thread_item &item : context.items)
3987 {
3988 if (item.ptid != null_ptid)
3989 {
3990 /* In non-stop mode, we assume new found threads are
3991 executing until proven otherwise with a stop reply.
3992 In all-stop, we can only get here if all threads are
3993 stopped. */
3994 bool executing = target_is_non_stop_p ();
3995
3996 remote_notice_new_inferior (item.ptid, executing);
3997
3998 thread_info *tp = find_thread_ptid (this, item.ptid);
3999 remote_thread_info *info = get_remote_thread_info (tp);
4000 info->core = item.core;
4001 info->extra = std::move (item.extra);
4002 info->name = std::move (item.name);
4003 info->thread_handle = std::move (item.thread_handle);
4004 }
4005 }
4006 }
4007
4008 if (!got_list)
4009 {
4010 /* If no thread listing method is supported, then query whether
4011 each known thread is alive, one by one, with the T packet.
4012 If the target doesn't support threads at all, then this is a
4013 no-op. See remote_thread_alive. */
4014 prune_threads ();
4015 }
4016 }
4017
4018 /*
4019 * Collect a descriptive string about the given thread.
4020 * The target may say anything it wants to about the thread
4021 * (typically info about its blocked / runnable state, name, etc.).
4022 * This string will appear in the info threads display.
4023 *
4024 * Optional: targets are not required to implement this function.
4025 */
4026
4027 const char *
4028 remote_target::extra_thread_info (thread_info *tp)
4029 {
4030 struct remote_state *rs = get_remote_state ();
4031 int set;
4032 threadref id;
4033 struct gdb_ext_thread_info threadinfo;
4034
4035 if (rs->remote_desc == 0) /* paranoia */
4036 internal_error (__FILE__, __LINE__,
4037 _("remote_threads_extra_info"));
4038
4039 if (tp->ptid == magic_null_ptid
4040 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
4041 /* This is the main thread which was added by GDB. The remote
4042 server doesn't know about it. */
4043 return NULL;
4044
4045 std::string &extra = get_remote_thread_info (tp)->extra;
4046
4047 /* If already have cached info, use it. */
4048 if (!extra.empty ())
4049 return extra.c_str ();
4050
4051 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4052 {
4053 /* If we're using qXfer:threads:read, then the extra info is
4054 included in the XML. So if we didn't have anything cached,
4055 it's because there's really no extra info. */
4056 return NULL;
4057 }
4058
4059 if (rs->use_threadextra_query)
4060 {
4061 char *b = rs->buf.data ();
4062 char *endb = b + get_remote_packet_size ();
4063
4064 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4065 b += strlen (b);
4066 write_ptid (b, endb, tp->ptid);
4067
4068 putpkt (rs->buf);
4069 getpkt (&rs->buf, 0);
4070 if (rs->buf[0] != 0)
4071 {
4072 extra.resize (strlen (rs->buf.data ()) / 2);
4073 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4074 return extra.c_str ();
4075 }
4076 }
4077
4078 /* If the above query fails, fall back to the old method. */
4079 rs->use_threadextra_query = 0;
4080 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4081 | TAG_MOREDISPLAY | TAG_DISPLAY;
4082 int_to_threadref (&id, tp->ptid.lwp ());
4083 if (remote_get_threadinfo (&id, set, &threadinfo))
4084 if (threadinfo.active)
4085 {
4086 if (*threadinfo.shortname)
4087 string_appendf (extra, " Name: %s", threadinfo.shortname);
4088 if (*threadinfo.display)
4089 {
4090 if (!extra.empty ())
4091 extra += ',';
4092 string_appendf (extra, " State: %s", threadinfo.display);
4093 }
4094 if (*threadinfo.more_display)
4095 {
4096 if (!extra.empty ())
4097 extra += ',';
4098 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4099 }
4100 return extra.c_str ();
4101 }
4102 return NULL;
4103 }
4104 \f
4105
4106 bool
4107 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4108 struct static_tracepoint_marker *marker)
4109 {
4110 struct remote_state *rs = get_remote_state ();
4111 char *p = rs->buf.data ();
4112
4113 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4114 p += strlen (p);
4115 p += hexnumstr (p, addr);
4116 putpkt (rs->buf);
4117 getpkt (&rs->buf, 0);
4118 p = rs->buf.data ();
4119
4120 if (*p == 'E')
4121 error (_("Remote failure reply: %s"), p);
4122
4123 if (*p++ == 'm')
4124 {
4125 parse_static_tracepoint_marker_definition (p, NULL, marker);
4126 return true;
4127 }
4128
4129 return false;
4130 }
4131
4132 std::vector<static_tracepoint_marker>
4133 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4134 {
4135 struct remote_state *rs = get_remote_state ();
4136 std::vector<static_tracepoint_marker> markers;
4137 const char *p;
4138 static_tracepoint_marker marker;
4139
4140 /* Ask for a first packet of static tracepoint marker
4141 definition. */
4142 putpkt ("qTfSTM");
4143 getpkt (&rs->buf, 0);
4144 p = rs->buf.data ();
4145 if (*p == 'E')
4146 error (_("Remote failure reply: %s"), p);
4147
4148 while (*p++ == 'm')
4149 {
4150 do
4151 {
4152 parse_static_tracepoint_marker_definition (p, &p, &marker);
4153
4154 if (strid == NULL || marker.str_id == strid)
4155 markers.push_back (std::move (marker));
4156 }
4157 while (*p++ == ','); /* comma-separated list */
4158 /* Ask for another packet of static tracepoint definition. */
4159 putpkt ("qTsSTM");
4160 getpkt (&rs->buf, 0);
4161 p = rs->buf.data ();
4162 }
4163
4164 return markers;
4165 }
4166
4167 \f
4168 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4169
4170 ptid_t
4171 remote_target::get_ada_task_ptid (long lwp, ULONGEST thread)
4172 {
4173 return ptid_t (inferior_ptid.pid (), lwp);
4174 }
4175 \f
4176
4177 /* Restart the remote side; this is an extended protocol operation. */
4178
4179 void
4180 remote_target::extended_remote_restart ()
4181 {
4182 struct remote_state *rs = get_remote_state ();
4183
4184 /* Send the restart command; for reasons I don't understand the
4185 remote side really expects a number after the "R". */
4186 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4187 putpkt (rs->buf);
4188
4189 remote_fileio_reset ();
4190 }
4191 \f
4192 /* Clean up connection to a remote debugger. */
4193
4194 void
4195 remote_target::close ()
4196 {
4197 /* Make sure we leave stdin registered in the event loop. */
4198 terminal_ours ();
4199
4200 trace_reset_local_state ();
4201
4202 delete this;
4203 }
4204
4205 remote_target::~remote_target ()
4206 {
4207 struct remote_state *rs = get_remote_state ();
4208
4209 /* Check for NULL because we may get here with a partially
4210 constructed target/connection. */
4211 if (rs->remote_desc == nullptr)
4212 return;
4213
4214 serial_close (rs->remote_desc);
4215
4216 /* We are destroying the remote target, so we should discard
4217 everything of this target. */
4218 discard_pending_stop_replies_in_queue ();
4219
4220 if (rs->remote_async_inferior_event_token)
4221 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4222
4223 delete rs->notif_state;
4224 }
4225
4226 /* Query the remote side for the text, data and bss offsets. */
4227
4228 void
4229 remote_target::get_offsets ()
4230 {
4231 struct remote_state *rs = get_remote_state ();
4232 char *buf;
4233 char *ptr;
4234 int lose, num_segments = 0, do_sections, do_segments;
4235 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4236
4237 if (current_program_space->symfile_object_file == NULL)
4238 return;
4239
4240 putpkt ("qOffsets");
4241 getpkt (&rs->buf, 0);
4242 buf = rs->buf.data ();
4243
4244 if (buf[0] == '\000')
4245 return; /* Return silently. Stub doesn't support
4246 this command. */
4247 if (buf[0] == 'E')
4248 {
4249 warning (_("Remote failure reply: %s"), buf);
4250 return;
4251 }
4252
4253 /* Pick up each field in turn. This used to be done with scanf, but
4254 scanf will make trouble if CORE_ADDR size doesn't match
4255 conversion directives correctly. The following code will work
4256 with any size of CORE_ADDR. */
4257 text_addr = data_addr = bss_addr = 0;
4258 ptr = buf;
4259 lose = 0;
4260
4261 if (startswith (ptr, "Text="))
4262 {
4263 ptr += 5;
4264 /* Don't use strtol, could lose on big values. */
4265 while (*ptr && *ptr != ';')
4266 text_addr = (text_addr << 4) + fromhex (*ptr++);
4267
4268 if (startswith (ptr, ";Data="))
4269 {
4270 ptr += 6;
4271 while (*ptr && *ptr != ';')
4272 data_addr = (data_addr << 4) + fromhex (*ptr++);
4273 }
4274 else
4275 lose = 1;
4276
4277 if (!lose && startswith (ptr, ";Bss="))
4278 {
4279 ptr += 5;
4280 while (*ptr && *ptr != ';')
4281 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4282
4283 if (bss_addr != data_addr)
4284 warning (_("Target reported unsupported offsets: %s"), buf);
4285 }
4286 else
4287 lose = 1;
4288 }
4289 else if (startswith (ptr, "TextSeg="))
4290 {
4291 ptr += 8;
4292 /* Don't use strtol, could lose on big values. */
4293 while (*ptr && *ptr != ';')
4294 text_addr = (text_addr << 4) + fromhex (*ptr++);
4295 num_segments = 1;
4296
4297 if (startswith (ptr, ";DataSeg="))
4298 {
4299 ptr += 9;
4300 while (*ptr && *ptr != ';')
4301 data_addr = (data_addr << 4) + fromhex (*ptr++);
4302 num_segments++;
4303 }
4304 }
4305 else
4306 lose = 1;
4307
4308 if (lose)
4309 error (_("Malformed response to offset query, %s"), buf);
4310 else if (*ptr != '\0')
4311 warning (_("Target reported unsupported offsets: %s"), buf);
4312
4313 objfile *objf = current_program_space->symfile_object_file;
4314 section_offsets offs = objf->section_offsets;
4315
4316 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4317 do_segments = (data != NULL);
4318 do_sections = num_segments == 0;
4319
4320 if (num_segments > 0)
4321 {
4322 segments[0] = text_addr;
4323 segments[1] = data_addr;
4324 }
4325 /* If we have two segments, we can still try to relocate everything
4326 by assuming that the .text and .data offsets apply to the whole
4327 text and data segments. Convert the offsets given in the packet
4328 to base addresses for symfile_map_offsets_to_segments. */
4329 else if (data != nullptr && data->segments.size () == 2)
4330 {
4331 segments[0] = data->segments[0].base + text_addr;
4332 segments[1] = data->segments[1].base + data_addr;
4333 num_segments = 2;
4334 }
4335 /* If the object file has only one segment, assume that it is text
4336 rather than data; main programs with no writable data are rare,
4337 but programs with no code are useless. Of course the code might
4338 have ended up in the data segment... to detect that we would need
4339 the permissions here. */
4340 else if (data && data->segments.size () == 1)
4341 {
4342 segments[0] = data->segments[0].base + text_addr;
4343 num_segments = 1;
4344 }
4345 /* There's no way to relocate by segment. */
4346 else
4347 do_segments = 0;
4348
4349 if (do_segments)
4350 {
4351 int ret = symfile_map_offsets_to_segments (objf->obfd,
4352 data.get (), offs,
4353 num_segments, segments);
4354
4355 if (ret == 0 && !do_sections)
4356 error (_("Can not handle qOffsets TextSeg "
4357 "response with this symbol file"));
4358
4359 if (ret > 0)
4360 do_sections = 0;
4361 }
4362
4363 if (do_sections)
4364 {
4365 offs[SECT_OFF_TEXT (objf)] = text_addr;
4366
4367 /* This is a temporary kludge to force data and bss to use the
4368 same offsets because that's what nlmconv does now. The real
4369 solution requires changes to the stub and remote.c that I
4370 don't have time to do right now. */
4371
4372 offs[SECT_OFF_DATA (objf)] = data_addr;
4373 offs[SECT_OFF_BSS (objf)] = data_addr;
4374 }
4375
4376 objfile_relocate (objf, offs);
4377 }
4378
4379 /* Send interrupt_sequence to remote target. */
4380
4381 void
4382 remote_target::send_interrupt_sequence ()
4383 {
4384 struct remote_state *rs = get_remote_state ();
4385
4386 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4387 remote_serial_write ("\x03", 1);
4388 else if (interrupt_sequence_mode == interrupt_sequence_break)
4389 serial_send_break (rs->remote_desc);
4390 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4391 {
4392 serial_send_break (rs->remote_desc);
4393 remote_serial_write ("g", 1);
4394 }
4395 else
4396 internal_error (__FILE__, __LINE__,
4397 _("Invalid value for interrupt_sequence_mode: %s."),
4398 interrupt_sequence_mode);
4399 }
4400
4401
4402 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4403 and extract the PTID. Returns NULL_PTID if not found. */
4404
4405 static ptid_t
4406 stop_reply_extract_thread (const char *stop_reply)
4407 {
4408 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4409 {
4410 const char *p;
4411
4412 /* Txx r:val ; r:val (...) */
4413 p = &stop_reply[3];
4414
4415 /* Look for "register" named "thread". */
4416 while (*p != '\0')
4417 {
4418 const char *p1;
4419
4420 p1 = strchr (p, ':');
4421 if (p1 == NULL)
4422 return null_ptid;
4423
4424 if (strncmp (p, "thread", p1 - p) == 0)
4425 return read_ptid (++p1, &p);
4426
4427 p1 = strchr (p, ';');
4428 if (p1 == NULL)
4429 return null_ptid;
4430 p1++;
4431
4432 p = p1;
4433 }
4434 }
4435
4436 return null_ptid;
4437 }
4438
4439 /* Determine the remote side's current thread. If we have a stop
4440 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4441 "thread" register we can extract the current thread from. If not,
4442 ask the remote which is the current thread with qC. The former
4443 method avoids a roundtrip. */
4444
4445 ptid_t
4446 remote_target::get_current_thread (const char *wait_status)
4447 {
4448 ptid_t ptid = null_ptid;
4449
4450 /* Note we don't use remote_parse_stop_reply as that makes use of
4451 the target architecture, which we haven't yet fully determined at
4452 this point. */
4453 if (wait_status != NULL)
4454 ptid = stop_reply_extract_thread (wait_status);
4455 if (ptid == null_ptid)
4456 ptid = remote_current_thread (inferior_ptid);
4457
4458 return ptid;
4459 }
4460
4461 /* Query the remote target for which is the current thread/process,
4462 add it to our tables, and update INFERIOR_PTID. The caller is
4463 responsible for setting the state such that the remote end is ready
4464 to return the current thread.
4465
4466 This function is called after handling the '?' or 'vRun' packets,
4467 whose response is a stop reply from which we can also try
4468 extracting the thread. If the target doesn't support the explicit
4469 qC query, we infer the current thread from that stop reply, passed
4470 in in WAIT_STATUS, which may be NULL.
4471
4472 The function returns pointer to the main thread of the inferior. */
4473
4474 thread_info *
4475 remote_target::add_current_inferior_and_thread (const char *wait_status)
4476 {
4477 struct remote_state *rs = get_remote_state ();
4478 bool fake_pid_p = false;
4479
4480 switch_to_no_thread ();
4481
4482 /* Now, if we have thread information, update the current thread's
4483 ptid. */
4484 ptid_t curr_ptid = get_current_thread (wait_status);
4485
4486 if (curr_ptid != null_ptid)
4487 {
4488 if (!remote_multi_process_p (rs))
4489 fake_pid_p = true;
4490 }
4491 else
4492 {
4493 /* Without this, some commands which require an active target
4494 (such as kill) won't work. This variable serves (at least)
4495 double duty as both the pid of the target process (if it has
4496 such), and as a flag indicating that a target is active. */
4497 curr_ptid = magic_null_ptid;
4498 fake_pid_p = true;
4499 }
4500
4501 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4502
4503 /* Add the main thread and switch to it. Don't try reading
4504 registers yet, since we haven't fetched the target description
4505 yet. */
4506 thread_info *tp = add_thread_silent (this, curr_ptid);
4507 switch_to_thread_no_regs (tp);
4508
4509 return tp;
4510 }
4511
4512 /* Print info about a thread that was found already stopped on
4513 connection. */
4514
4515 void
4516 remote_target::print_one_stopped_thread (thread_info *thread)
4517 {
4518 target_waitstatus ws;
4519
4520 /* If there is a pending waitstatus, use it. If there isn't it's because
4521 the thread's stop was reported with TARGET_WAITKIND_STOPPED / GDB_SIGNAL_0
4522 and process_initial_stop_replies decided it wasn't interesting to save
4523 and report to the core. */
4524 if (thread->has_pending_waitstatus ())
4525 {
4526 ws = thread->pending_waitstatus ();
4527 thread->clear_pending_waitstatus ();
4528 }
4529 else
4530 {
4531 ws.set_stopped (GDB_SIGNAL_0);
4532 }
4533
4534 switch_to_thread (thread);
4535 thread->set_stop_pc (get_frame_pc (get_current_frame ()));
4536 set_current_sal_from_frame (get_current_frame ());
4537
4538 /* For "info program". */
4539 set_last_target_status (this, thread->ptid, ws);
4540
4541 if (ws.kind () == TARGET_WAITKIND_STOPPED)
4542 {
4543 enum gdb_signal sig = ws.sig ();
4544
4545 if (signal_print_state (sig))
4546 gdb::observers::signal_received.notify (sig);
4547 }
4548 gdb::observers::normal_stop.notify (NULL, 1);
4549 }
4550
4551 /* Process all initial stop replies the remote side sent in response
4552 to the ? packet. These indicate threads that were already stopped
4553 on initial connection. We mark these threads as stopped and print
4554 their current frame before giving the user the prompt. */
4555
4556 void
4557 remote_target::process_initial_stop_replies (int from_tty)
4558 {
4559 int pending_stop_replies = stop_reply_queue_length ();
4560 struct thread_info *selected = NULL;
4561 struct thread_info *lowest_stopped = NULL;
4562 struct thread_info *first = NULL;
4563
4564 /* This is only used when the target is non-stop. */
4565 gdb_assert (target_is_non_stop_p ());
4566
4567 /* Consume the initial pending events. */
4568 while (pending_stop_replies-- > 0)
4569 {
4570 ptid_t waiton_ptid = minus_one_ptid;
4571 ptid_t event_ptid;
4572 struct target_waitstatus ws;
4573 int ignore_event = 0;
4574
4575 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4576 if (remote_debug)
4577 print_target_wait_results (waiton_ptid, event_ptid, ws);
4578
4579 switch (ws.kind ())
4580 {
4581 case TARGET_WAITKIND_IGNORE:
4582 case TARGET_WAITKIND_NO_RESUMED:
4583 case TARGET_WAITKIND_SIGNALLED:
4584 case TARGET_WAITKIND_EXITED:
4585 /* We shouldn't see these, but if we do, just ignore. */
4586 remote_debug_printf ("event ignored");
4587 ignore_event = 1;
4588 break;
4589
4590 default:
4591 break;
4592 }
4593
4594 if (ignore_event)
4595 continue;
4596
4597 thread_info *evthread = find_thread_ptid (this, event_ptid);
4598
4599 if (ws.kind () == TARGET_WAITKIND_STOPPED)
4600 {
4601 enum gdb_signal sig = ws.sig ();
4602
4603 /* Stubs traditionally report SIGTRAP as initial signal,
4604 instead of signal 0. Suppress it. */
4605 if (sig == GDB_SIGNAL_TRAP)
4606 sig = GDB_SIGNAL_0;
4607 evthread->set_stop_signal (sig);
4608 ws.set_stopped (sig);
4609 }
4610
4611 if (ws.kind () != TARGET_WAITKIND_STOPPED
4612 || ws.sig () != GDB_SIGNAL_0)
4613 evthread->set_pending_waitstatus (ws);
4614
4615 set_executing (this, event_ptid, false);
4616 set_running (this, event_ptid, false);
4617 get_remote_thread_info (evthread)->set_not_resumed ();
4618 }
4619
4620 /* "Notice" the new inferiors before anything related to
4621 registers/memory. */
4622 for (inferior *inf : all_non_exited_inferiors (this))
4623 {
4624 inf->needs_setup = 1;
4625
4626 if (non_stop)
4627 {
4628 thread_info *thread = any_live_thread_of_inferior (inf);
4629 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4630 from_tty);
4631 }
4632 }
4633
4634 /* If all-stop on top of non-stop, pause all threads. Note this
4635 records the threads' stop pc, so must be done after "noticing"
4636 the inferiors. */
4637 if (!non_stop)
4638 {
4639 {
4640 /* At this point, the remote target is not async. It needs to be for
4641 the poll in stop_all_threads to consider events from it, so enable
4642 it temporarily. */
4643 gdb_assert (!this->is_async_p ());
4644 SCOPE_EXIT { target_async (0); };
4645 target_async (1);
4646 stop_all_threads ();
4647 }
4648
4649 /* If all threads of an inferior were already stopped, we
4650 haven't setup the inferior yet. */
4651 for (inferior *inf : all_non_exited_inferiors (this))
4652 {
4653 if (inf->needs_setup)
4654 {
4655 thread_info *thread = any_live_thread_of_inferior (inf);
4656 switch_to_thread_no_regs (thread);
4657 setup_inferior (0);
4658 }
4659 }
4660 }
4661
4662 /* Now go over all threads that are stopped, and print their current
4663 frame. If all-stop, then if there's a signalled thread, pick
4664 that as current. */
4665 for (thread_info *thread : all_non_exited_threads (this))
4666 {
4667 if (first == NULL)
4668 first = thread;
4669
4670 if (!non_stop)
4671 thread->set_running (false);
4672 else if (thread->state != THREAD_STOPPED)
4673 continue;
4674
4675 if (selected == nullptr && thread->has_pending_waitstatus ())
4676 selected = thread;
4677
4678 if (lowest_stopped == NULL
4679 || thread->inf->num < lowest_stopped->inf->num
4680 || thread->per_inf_num < lowest_stopped->per_inf_num)
4681 lowest_stopped = thread;
4682
4683 if (non_stop)
4684 print_one_stopped_thread (thread);
4685 }
4686
4687 /* In all-stop, we only print the status of one thread, and leave
4688 others with their status pending. */
4689 if (!non_stop)
4690 {
4691 thread_info *thread = selected;
4692 if (thread == NULL)
4693 thread = lowest_stopped;
4694 if (thread == NULL)
4695 thread = first;
4696
4697 print_one_stopped_thread (thread);
4698 }
4699 }
4700
4701 /* Mark a remote_target as marking (by setting the starting_up flag within
4702 its remote_state) for the lifetime of this object. The reference count
4703 on the remote target is temporarily incremented, to prevent the target
4704 being deleted under our feet. */
4705
4706 struct scoped_mark_target_starting
4707 {
4708 /* Constructor, TARGET is the target to be marked as starting, its
4709 reference count will be incremented. */
4710 scoped_mark_target_starting (remote_target *target)
4711 : m_remote_target (target)
4712 {
4713 m_remote_target->incref ();
4714 remote_state *rs = m_remote_target->get_remote_state ();
4715 rs->starting_up = true;
4716 }
4717
4718 /* Destructor, mark the target being worked on as no longer starting, and
4719 decrement the reference count. */
4720 ~scoped_mark_target_starting ()
4721 {
4722 remote_state *rs = m_remote_target->get_remote_state ();
4723 rs->starting_up = false;
4724 decref_target (m_remote_target);
4725 }
4726
4727 private:
4728
4729 /* The target on which we are operating. */
4730 remote_target *m_remote_target;
4731 };
4732
4733 /* Helper for remote_target::start_remote, start the remote connection and
4734 sync state. Return true if everything goes OK, otherwise, return false.
4735 This function exists so that the scoped_restore created within it will
4736 expire before we return to remote_target::start_remote. */
4737
4738 bool
4739 remote_target::start_remote_1 (int from_tty, int extended_p)
4740 {
4741 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4742
4743 struct remote_state *rs = get_remote_state ();
4744 struct packet_config *noack_config;
4745
4746 /* Signal other parts that we're going through the initial setup,
4747 and so things may not be stable yet. E.g., we don't try to
4748 install tracepoints until we've relocated symbols. Also, a
4749 Ctrl-C before we're connected and synced up can't interrupt the
4750 target. Instead, it offers to drop the (potentially wedged)
4751 connection. */
4752 scoped_mark_target_starting target_is_starting (this);
4753
4754 QUIT;
4755
4756 if (interrupt_on_connect)
4757 send_interrupt_sequence ();
4758
4759 /* Ack any packet which the remote side has already sent. */
4760 remote_serial_write ("+", 1);
4761
4762 /* The first packet we send to the target is the optional "supported
4763 packets" request. If the target can answer this, it will tell us
4764 which later probes to skip. */
4765 remote_query_supported ();
4766
4767 /* If the stub wants to get a QAllow, compose one and send it. */
4768 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4769 set_permissions ();
4770
4771 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4772 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4773 as a reply to known packet. For packet "vFile:setfs:" it is an
4774 invalid reply and GDB would return error in
4775 remote_hostio_set_filesystem, making remote files access impossible.
4776 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4777 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4778 {
4779 const char v_mustreplyempty[] = "vMustReplyEmpty";
4780
4781 putpkt (v_mustreplyempty);
4782 getpkt (&rs->buf, 0);
4783 if (strcmp (rs->buf.data (), "OK") == 0)
4784 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4785 else if (strcmp (rs->buf.data (), "") != 0)
4786 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4787 rs->buf.data ());
4788 }
4789
4790 /* Next, we possibly activate noack mode.
4791
4792 If the QStartNoAckMode packet configuration is set to AUTO,
4793 enable noack mode if the stub reported a wish for it with
4794 qSupported.
4795
4796 If set to TRUE, then enable noack mode even if the stub didn't
4797 report it in qSupported. If the stub doesn't reply OK, the
4798 session ends with an error.
4799
4800 If FALSE, then don't activate noack mode, regardless of what the
4801 stub claimed should be the default with qSupported. */
4802
4803 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4804 if (packet_config_support (noack_config) != PACKET_DISABLE)
4805 {
4806 putpkt ("QStartNoAckMode");
4807 getpkt (&rs->buf, 0);
4808 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4809 rs->noack_mode = 1;
4810 }
4811
4812 if (extended_p)
4813 {
4814 /* Tell the remote that we are using the extended protocol. */
4815 putpkt ("!");
4816 getpkt (&rs->buf, 0);
4817 }
4818
4819 /* Let the target know which signals it is allowed to pass down to
4820 the program. */
4821 update_signals_program_target ();
4822
4823 /* Next, if the target can specify a description, read it. We do
4824 this before anything involving memory or registers. */
4825 target_find_description ();
4826
4827 /* Next, now that we know something about the target, update the
4828 address spaces in the program spaces. */
4829 update_address_spaces ();
4830
4831 /* On OSs where the list of libraries is global to all
4832 processes, we fetch them early. */
4833 if (gdbarch_has_global_solist (target_gdbarch ()))
4834 solib_add (NULL, from_tty, auto_solib_add);
4835
4836 if (target_is_non_stop_p ())
4837 {
4838 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4839 error (_("Non-stop mode requested, but remote "
4840 "does not support non-stop"));
4841
4842 putpkt ("QNonStop:1");
4843 getpkt (&rs->buf, 0);
4844
4845 if (strcmp (rs->buf.data (), "OK") != 0)
4846 error (_("Remote refused setting non-stop mode with: %s"),
4847 rs->buf.data ());
4848
4849 /* Find about threads and processes the stub is already
4850 controlling. We default to adding them in the running state.
4851 The '?' query below will then tell us about which threads are
4852 stopped. */
4853 this->update_thread_list ();
4854 }
4855 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4856 {
4857 /* Don't assume that the stub can operate in all-stop mode.
4858 Request it explicitly. */
4859 putpkt ("QNonStop:0");
4860 getpkt (&rs->buf, 0);
4861
4862 if (strcmp (rs->buf.data (), "OK") != 0)
4863 error (_("Remote refused setting all-stop mode with: %s"),
4864 rs->buf.data ());
4865 }
4866
4867 /* Upload TSVs regardless of whether the target is running or not. The
4868 remote stub, such as GDBserver, may have some predefined or builtin
4869 TSVs, even if the target is not running. */
4870 if (get_trace_status (current_trace_status ()) != -1)
4871 {
4872 struct uploaded_tsv *uploaded_tsvs = NULL;
4873
4874 upload_trace_state_variables (&uploaded_tsvs);
4875 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4876 }
4877
4878 /* Check whether the target is running now. */
4879 putpkt ("?");
4880 getpkt (&rs->buf, 0);
4881
4882 if (!target_is_non_stop_p ())
4883 {
4884 char *wait_status = NULL;
4885
4886 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4887 {
4888 if (!extended_p)
4889 error (_("The target is not running (try extended-remote?)"));
4890 return false;
4891 }
4892 else
4893 {
4894 /* Save the reply for later. */
4895 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4896 strcpy (wait_status, rs->buf.data ());
4897 }
4898
4899 /* Fetch thread list. */
4900 target_update_thread_list ();
4901
4902 /* Let the stub know that we want it to return the thread. */
4903 set_continue_thread (minus_one_ptid);
4904
4905 if (thread_count (this) == 0)
4906 {
4907 /* Target has no concept of threads at all. GDB treats
4908 non-threaded target as single-threaded; add a main
4909 thread. */
4910 thread_info *tp = add_current_inferior_and_thread (wait_status);
4911 get_remote_thread_info (tp)->set_resumed ();
4912 }
4913 else
4914 {
4915 /* We have thread information; select the thread the target
4916 says should be current. If we're reconnecting to a
4917 multi-threaded program, this will ideally be the thread
4918 that last reported an event before GDB disconnected. */
4919 ptid_t curr_thread = get_current_thread (wait_status);
4920 if (curr_thread == null_ptid)
4921 {
4922 /* Odd... The target was able to list threads, but not
4923 tell us which thread was current (no "thread"
4924 register in T stop reply?). Just pick the first
4925 thread in the thread list then. */
4926
4927 remote_debug_printf ("warning: couldn't determine remote "
4928 "current thread; picking first in list.");
4929
4930 for (thread_info *tp : all_non_exited_threads (this,
4931 minus_one_ptid))
4932 {
4933 switch_to_thread (tp);
4934 break;
4935 }
4936 }
4937 else
4938 switch_to_thread (find_thread_ptid (this, curr_thread));
4939 }
4940
4941 /* init_wait_for_inferior should be called before get_offsets in order
4942 to manage `inserted' flag in bp loc in a correct state.
4943 breakpoint_init_inferior, called from init_wait_for_inferior, set
4944 `inserted' flag to 0, while before breakpoint_re_set, called from
4945 start_remote, set `inserted' flag to 1. In the initialization of
4946 inferior, breakpoint_init_inferior should be called first, and then
4947 breakpoint_re_set can be called. If this order is broken, state of
4948 `inserted' flag is wrong, and cause some problems on breakpoint
4949 manipulation. */
4950 init_wait_for_inferior ();
4951
4952 get_offsets (); /* Get text, data & bss offsets. */
4953
4954 /* If we could not find a description using qXfer, and we know
4955 how to do it some other way, try again. This is not
4956 supported for non-stop; it could be, but it is tricky if
4957 there are no stopped threads when we connect. */
4958 if (remote_read_description_p (this)
4959 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4960 {
4961 target_clear_description ();
4962 target_find_description ();
4963 }
4964
4965 /* Use the previously fetched status. */
4966 gdb_assert (wait_status != NULL);
4967 struct notif_event *reply
4968 = remote_notif_parse (this, &notif_client_stop, wait_status);
4969 push_stop_reply ((struct stop_reply *) reply);
4970
4971 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4972 }
4973 else
4974 {
4975 /* Clear WFI global state. Do this before finding about new
4976 threads and inferiors, and setting the current inferior.
4977 Otherwise we would clear the proceed status of the current
4978 inferior when we want its stop_soon state to be preserved
4979 (see notice_new_inferior). */
4980 init_wait_for_inferior ();
4981
4982 /* In non-stop, we will either get an "OK", meaning that there
4983 are no stopped threads at this time; or, a regular stop
4984 reply. In the latter case, there may be more than one thread
4985 stopped --- we pull them all out using the vStopped
4986 mechanism. */
4987 if (strcmp (rs->buf.data (), "OK") != 0)
4988 {
4989 struct notif_client *notif = &notif_client_stop;
4990
4991 /* remote_notif_get_pending_replies acks this one, and gets
4992 the rest out. */
4993 rs->notif_state->pending_event[notif_client_stop.id]
4994 = remote_notif_parse (this, notif, rs->buf.data ());
4995 remote_notif_get_pending_events (notif);
4996 }
4997
4998 if (thread_count (this) == 0)
4999 {
5000 if (!extended_p)
5001 error (_("The target is not running (try extended-remote?)"));
5002 return false;
5003 }
5004
5005 /* Report all signals during attach/startup. */
5006 pass_signals ({});
5007
5008 /* If there are already stopped threads, mark them stopped and
5009 report their stops before giving the prompt to the user. */
5010 process_initial_stop_replies (from_tty);
5011
5012 if (target_can_async_p ())
5013 target_async (1);
5014 }
5015
5016 /* If we connected to a live target, do some additional setup. */
5017 if (target_has_execution ())
5018 {
5019 /* No use without a symbol-file. */
5020 if (current_program_space->symfile_object_file)
5021 remote_check_symbols ();
5022 }
5023
5024 /* Possibly the target has been engaged in a trace run started
5025 previously; find out where things are at. */
5026 if (get_trace_status (current_trace_status ()) != -1)
5027 {
5028 struct uploaded_tp *uploaded_tps = NULL;
5029
5030 if (current_trace_status ()->running)
5031 printf_filtered (_("Trace is already running on the target.\n"));
5032
5033 upload_tracepoints (&uploaded_tps);
5034
5035 merge_uploaded_tracepoints (&uploaded_tps);
5036 }
5037
5038 /* Possibly the target has been engaged in a btrace record started
5039 previously; find out where things are at. */
5040 remote_btrace_maybe_reopen ();
5041
5042 return true;
5043 }
5044
5045 /* Start the remote connection and sync state. */
5046
5047 void
5048 remote_target::start_remote (int from_tty, int extended_p)
5049 {
5050 if (start_remote_1 (from_tty, extended_p)
5051 && breakpoints_should_be_inserted_now ())
5052 insert_breakpoints ();
5053 }
5054
5055 const char *
5056 remote_target::connection_string ()
5057 {
5058 remote_state *rs = get_remote_state ();
5059
5060 if (rs->remote_desc->name != NULL)
5061 return rs->remote_desc->name;
5062 else
5063 return NULL;
5064 }
5065
5066 /* Open a connection to a remote debugger.
5067 NAME is the filename used for communication. */
5068
5069 void
5070 remote_target::open (const char *name, int from_tty)
5071 {
5072 open_1 (name, from_tty, 0);
5073 }
5074
5075 /* Open a connection to a remote debugger using the extended
5076 remote gdb protocol. NAME is the filename used for communication. */
5077
5078 void
5079 extended_remote_target::open (const char *name, int from_tty)
5080 {
5081 open_1 (name, from_tty, 1 /*extended_p */);
5082 }
5083
5084 /* Reset all packets back to "unknown support". Called when opening a
5085 new connection to a remote target. */
5086
5087 static void
5088 reset_all_packet_configs_support (void)
5089 {
5090 int i;
5091
5092 for (i = 0; i < PACKET_MAX; i++)
5093 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5094 }
5095
5096 /* Initialize all packet configs. */
5097
5098 static void
5099 init_all_packet_configs (void)
5100 {
5101 int i;
5102
5103 for (i = 0; i < PACKET_MAX; i++)
5104 {
5105 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5106 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5107 }
5108 }
5109
5110 /* Symbol look-up. */
5111
5112 void
5113 remote_target::remote_check_symbols ()
5114 {
5115 char *tmp;
5116 int end;
5117
5118 /* The remote side has no concept of inferiors that aren't running
5119 yet, it only knows about running processes. If we're connected
5120 but our current inferior is not running, we should not invite the
5121 remote target to request symbol lookups related to its
5122 (unrelated) current process. */
5123 if (!target_has_execution ())
5124 return;
5125
5126 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5127 return;
5128
5129 /* Make sure the remote is pointing at the right process. Note
5130 there's no way to select "no process". */
5131 set_general_process ();
5132
5133 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5134 because we need both at the same time. */
5135 gdb::char_vector msg (get_remote_packet_size ());
5136 gdb::char_vector reply (get_remote_packet_size ());
5137
5138 /* Invite target to request symbol lookups. */
5139
5140 putpkt ("qSymbol::");
5141 getpkt (&reply, 0);
5142 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5143
5144 while (startswith (reply.data (), "qSymbol:"))
5145 {
5146 struct bound_minimal_symbol sym;
5147
5148 tmp = &reply[8];
5149 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5150 strlen (tmp) / 2);
5151 msg[end] = '\0';
5152 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5153 if (sym.minsym == NULL)
5154 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5155 &reply[8]);
5156 else
5157 {
5158 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5159 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5160
5161 /* If this is a function address, return the start of code
5162 instead of any data function descriptor. */
5163 sym_addr = gdbarch_convert_from_func_ptr_addr
5164 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
5165
5166 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5167 phex_nz (sym_addr, addr_size), &reply[8]);
5168 }
5169
5170 putpkt (msg.data ());
5171 getpkt (&reply, 0);
5172 }
5173 }
5174
5175 static struct serial *
5176 remote_serial_open (const char *name)
5177 {
5178 static int udp_warning = 0;
5179
5180 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5181 of in ser-tcp.c, because it is the remote protocol assuming that the
5182 serial connection is reliable and not the serial connection promising
5183 to be. */
5184 if (!udp_warning && startswith (name, "udp:"))
5185 {
5186 warning (_("The remote protocol may be unreliable over UDP.\n"
5187 "Some events may be lost, rendering further debugging "
5188 "impossible."));
5189 udp_warning = 1;
5190 }
5191
5192 return serial_open (name);
5193 }
5194
5195 /* Inform the target of our permission settings. The permission flags
5196 work without this, but if the target knows the settings, it can do
5197 a couple things. First, it can add its own check, to catch cases
5198 that somehow manage to get by the permissions checks in target
5199 methods. Second, if the target is wired to disallow particular
5200 settings (for instance, a system in the field that is not set up to
5201 be able to stop at a breakpoint), it can object to any unavailable
5202 permissions. */
5203
5204 void
5205 remote_target::set_permissions ()
5206 {
5207 struct remote_state *rs = get_remote_state ();
5208
5209 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5210 "WriteReg:%x;WriteMem:%x;"
5211 "InsertBreak:%x;InsertTrace:%x;"
5212 "InsertFastTrace:%x;Stop:%x",
5213 may_write_registers, may_write_memory,
5214 may_insert_breakpoints, may_insert_tracepoints,
5215 may_insert_fast_tracepoints, may_stop);
5216 putpkt (rs->buf);
5217 getpkt (&rs->buf, 0);
5218
5219 /* If the target didn't like the packet, warn the user. Do not try
5220 to undo the user's settings, that would just be maddening. */
5221 if (strcmp (rs->buf.data (), "OK") != 0)
5222 warning (_("Remote refused setting permissions with: %s"),
5223 rs->buf.data ());
5224 }
5225
5226 /* This type describes each known response to the qSupported
5227 packet. */
5228 struct protocol_feature
5229 {
5230 /* The name of this protocol feature. */
5231 const char *name;
5232
5233 /* The default for this protocol feature. */
5234 enum packet_support default_support;
5235
5236 /* The function to call when this feature is reported, or after
5237 qSupported processing if the feature is not supported.
5238 The first argument points to this structure. The second
5239 argument indicates whether the packet requested support be
5240 enabled, disabled, or probed (or the default, if this function
5241 is being called at the end of processing and this feature was
5242 not reported). The third argument may be NULL; if not NULL, it
5243 is a NUL-terminated string taken from the packet following
5244 this feature's name and an equals sign. */
5245 void (*func) (remote_target *remote, const struct protocol_feature *,
5246 enum packet_support, const char *);
5247
5248 /* The corresponding packet for this feature. Only used if
5249 FUNC is remote_supported_packet. */
5250 int packet;
5251 };
5252
5253 static void
5254 remote_supported_packet (remote_target *remote,
5255 const struct protocol_feature *feature,
5256 enum packet_support support,
5257 const char *argument)
5258 {
5259 if (argument)
5260 {
5261 warning (_("Remote qSupported response supplied an unexpected value for"
5262 " \"%s\"."), feature->name);
5263 return;
5264 }
5265
5266 remote_protocol_packets[feature->packet].support = support;
5267 }
5268
5269 void
5270 remote_target::remote_packet_size (const protocol_feature *feature,
5271 enum packet_support support, const char *value)
5272 {
5273 struct remote_state *rs = get_remote_state ();
5274
5275 int packet_size;
5276 char *value_end;
5277
5278 if (support != PACKET_ENABLE)
5279 return;
5280
5281 if (value == NULL || *value == '\0')
5282 {
5283 warning (_("Remote target reported \"%s\" without a size."),
5284 feature->name);
5285 return;
5286 }
5287
5288 errno = 0;
5289 packet_size = strtol (value, &value_end, 16);
5290 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5291 {
5292 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5293 feature->name, value);
5294 return;
5295 }
5296
5297 /* Record the new maximum packet size. */
5298 rs->explicit_packet_size = packet_size;
5299 }
5300
5301 static void
5302 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5303 enum packet_support support, const char *value)
5304 {
5305 remote->remote_packet_size (feature, support, value);
5306 }
5307
5308 static const struct protocol_feature remote_protocol_features[] = {
5309 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5310 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5311 PACKET_qXfer_auxv },
5312 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5313 PACKET_qXfer_exec_file },
5314 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5315 PACKET_qXfer_features },
5316 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5317 PACKET_qXfer_libraries },
5318 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5319 PACKET_qXfer_libraries_svr4 },
5320 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5321 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5322 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5323 PACKET_qXfer_memory_map },
5324 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5325 PACKET_qXfer_osdata },
5326 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5327 PACKET_qXfer_threads },
5328 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5329 PACKET_qXfer_traceframe_info },
5330 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5331 PACKET_QPassSignals },
5332 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5333 PACKET_QCatchSyscalls },
5334 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5335 PACKET_QProgramSignals },
5336 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5337 PACKET_QSetWorkingDir },
5338 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5339 PACKET_QStartupWithShell },
5340 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5341 PACKET_QEnvironmentHexEncoded },
5342 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5343 PACKET_QEnvironmentReset },
5344 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5345 PACKET_QEnvironmentUnset },
5346 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5347 PACKET_QStartNoAckMode },
5348 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5349 PACKET_multiprocess_feature },
5350 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5351 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5352 PACKET_qXfer_siginfo_read },
5353 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5354 PACKET_qXfer_siginfo_write },
5355 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5356 PACKET_ConditionalTracepoints },
5357 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5358 PACKET_ConditionalBreakpoints },
5359 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5360 PACKET_BreakpointCommands },
5361 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5362 PACKET_FastTracepoints },
5363 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5364 PACKET_StaticTracepoints },
5365 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5366 PACKET_InstallInTrace},
5367 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5368 PACKET_DisconnectedTracing_feature },
5369 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5370 PACKET_bc },
5371 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5372 PACKET_bs },
5373 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5374 PACKET_TracepointSource },
5375 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5376 PACKET_QAllow },
5377 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5378 PACKET_EnableDisableTracepoints_feature },
5379 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5380 PACKET_qXfer_fdpic },
5381 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5382 PACKET_qXfer_uib },
5383 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5384 PACKET_QDisableRandomization },
5385 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5386 { "QTBuffer:size", PACKET_DISABLE,
5387 remote_supported_packet, PACKET_QTBuffer_size},
5388 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5389 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5390 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5391 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5392 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5393 PACKET_qXfer_btrace },
5394 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5395 PACKET_qXfer_btrace_conf },
5396 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5397 PACKET_Qbtrace_conf_bts_size },
5398 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5399 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5400 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5401 PACKET_fork_event_feature },
5402 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5403 PACKET_vfork_event_feature },
5404 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5405 PACKET_exec_event_feature },
5406 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5407 PACKET_Qbtrace_conf_pt_size },
5408 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5409 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5410 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5411 { "memory-tagging", PACKET_DISABLE, remote_supported_packet,
5412 PACKET_memory_tagging_feature },
5413 };
5414
5415 static char *remote_support_xml;
5416
5417 /* Register string appended to "xmlRegisters=" in qSupported query. */
5418
5419 void
5420 register_remote_support_xml (const char *xml)
5421 {
5422 #if defined(HAVE_LIBEXPAT)
5423 if (remote_support_xml == NULL)
5424 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5425 else
5426 {
5427 char *copy = xstrdup (remote_support_xml + 13);
5428 char *saveptr;
5429 char *p = strtok_r (copy, ",", &saveptr);
5430
5431 do
5432 {
5433 if (strcmp (p, xml) == 0)
5434 {
5435 /* already there */
5436 xfree (copy);
5437 return;
5438 }
5439 }
5440 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5441 xfree (copy);
5442
5443 remote_support_xml = reconcat (remote_support_xml,
5444 remote_support_xml, ",", xml,
5445 (char *) NULL);
5446 }
5447 #endif
5448 }
5449
5450 static void
5451 remote_query_supported_append (std::string *msg, const char *append)
5452 {
5453 if (!msg->empty ())
5454 msg->append (";");
5455 msg->append (append);
5456 }
5457
5458 void
5459 remote_target::remote_query_supported ()
5460 {
5461 struct remote_state *rs = get_remote_state ();
5462 char *next;
5463 int i;
5464 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5465
5466 /* The packet support flags are handled differently for this packet
5467 than for most others. We treat an error, a disabled packet, and
5468 an empty response identically: any features which must be reported
5469 to be used will be automatically disabled. An empty buffer
5470 accomplishes this, since that is also the representation for a list
5471 containing no features. */
5472
5473 rs->buf[0] = 0;
5474 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5475 {
5476 std::string q;
5477
5478 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5479 remote_query_supported_append (&q, "multiprocess+");
5480
5481 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5482 remote_query_supported_append (&q, "swbreak+");
5483 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5484 remote_query_supported_append (&q, "hwbreak+");
5485
5486 remote_query_supported_append (&q, "qRelocInsn+");
5487
5488 if (packet_set_cmd_state (PACKET_fork_event_feature)
5489 != AUTO_BOOLEAN_FALSE)
5490 remote_query_supported_append (&q, "fork-events+");
5491 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5492 != AUTO_BOOLEAN_FALSE)
5493 remote_query_supported_append (&q, "vfork-events+");
5494 if (packet_set_cmd_state (PACKET_exec_event_feature)
5495 != AUTO_BOOLEAN_FALSE)
5496 remote_query_supported_append (&q, "exec-events+");
5497
5498 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5499 remote_query_supported_append (&q, "vContSupported+");
5500
5501 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5502 remote_query_supported_append (&q, "QThreadEvents+");
5503
5504 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5505 remote_query_supported_append (&q, "no-resumed+");
5506
5507 if (packet_set_cmd_state (PACKET_memory_tagging_feature)
5508 != AUTO_BOOLEAN_FALSE)
5509 remote_query_supported_append (&q, "memory-tagging+");
5510
5511 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5512 the qSupported:xmlRegisters=i386 handling. */
5513 if (remote_support_xml != NULL
5514 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5515 remote_query_supported_append (&q, remote_support_xml);
5516
5517 q = "qSupported:" + q;
5518 putpkt (q.c_str ());
5519
5520 getpkt (&rs->buf, 0);
5521
5522 /* If an error occured, warn, but do not return - just reset the
5523 buffer to empty and go on to disable features. */
5524 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5525 == PACKET_ERROR)
5526 {
5527 warning (_("Remote failure reply: %s"), rs->buf.data ());
5528 rs->buf[0] = 0;
5529 }
5530 }
5531
5532 memset (seen, 0, sizeof (seen));
5533
5534 next = rs->buf.data ();
5535 while (*next)
5536 {
5537 enum packet_support is_supported;
5538 char *p, *end, *name_end, *value;
5539
5540 /* First separate out this item from the rest of the packet. If
5541 there's another item after this, we overwrite the separator
5542 (terminated strings are much easier to work with). */
5543 p = next;
5544 end = strchr (p, ';');
5545 if (end == NULL)
5546 {
5547 end = p + strlen (p);
5548 next = end;
5549 }
5550 else
5551 {
5552 *end = '\0';
5553 next = end + 1;
5554
5555 if (end == p)
5556 {
5557 warning (_("empty item in \"qSupported\" response"));
5558 continue;
5559 }
5560 }
5561
5562 name_end = strchr (p, '=');
5563 if (name_end)
5564 {
5565 /* This is a name=value entry. */
5566 is_supported = PACKET_ENABLE;
5567 value = name_end + 1;
5568 *name_end = '\0';
5569 }
5570 else
5571 {
5572 value = NULL;
5573 switch (end[-1])
5574 {
5575 case '+':
5576 is_supported = PACKET_ENABLE;
5577 break;
5578
5579 case '-':
5580 is_supported = PACKET_DISABLE;
5581 break;
5582
5583 case '?':
5584 is_supported = PACKET_SUPPORT_UNKNOWN;
5585 break;
5586
5587 default:
5588 warning (_("unrecognized item \"%s\" "
5589 "in \"qSupported\" response"), p);
5590 continue;
5591 }
5592 end[-1] = '\0';
5593 }
5594
5595 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5596 if (strcmp (remote_protocol_features[i].name, p) == 0)
5597 {
5598 const struct protocol_feature *feature;
5599
5600 seen[i] = 1;
5601 feature = &remote_protocol_features[i];
5602 feature->func (this, feature, is_supported, value);
5603 break;
5604 }
5605 }
5606
5607 /* If we increased the packet size, make sure to increase the global
5608 buffer size also. We delay this until after parsing the entire
5609 qSupported packet, because this is the same buffer we were
5610 parsing. */
5611 if (rs->buf.size () < rs->explicit_packet_size)
5612 rs->buf.resize (rs->explicit_packet_size);
5613
5614 /* Handle the defaults for unmentioned features. */
5615 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5616 if (!seen[i])
5617 {
5618 const struct protocol_feature *feature;
5619
5620 feature = &remote_protocol_features[i];
5621 feature->func (this, feature, feature->default_support, NULL);
5622 }
5623 }
5624
5625 /* Serial QUIT handler for the remote serial descriptor.
5626
5627 Defers handling a Ctrl-C until we're done with the current
5628 command/response packet sequence, unless:
5629
5630 - We're setting up the connection. Don't send a remote interrupt
5631 request, as we're not fully synced yet. Quit immediately
5632 instead.
5633
5634 - The target has been resumed in the foreground
5635 (target_terminal::is_ours is false) with a synchronous resume
5636 packet, and we're blocked waiting for the stop reply, thus a
5637 Ctrl-C should be immediately sent to the target.
5638
5639 - We get a second Ctrl-C while still within the same serial read or
5640 write. In that case the serial is seemingly wedged --- offer to
5641 quit/disconnect.
5642
5643 - We see a second Ctrl-C without target response, after having
5644 previously interrupted the target. In that case the target/stub
5645 is probably wedged --- offer to quit/disconnect.
5646 */
5647
5648 void
5649 remote_target::remote_serial_quit_handler ()
5650 {
5651 struct remote_state *rs = get_remote_state ();
5652
5653 if (check_quit_flag ())
5654 {
5655 /* If we're starting up, we're not fully synced yet. Quit
5656 immediately. */
5657 if (rs->starting_up)
5658 quit ();
5659 else if (rs->got_ctrlc_during_io)
5660 {
5661 if (query (_("The target is not responding to GDB commands.\n"
5662 "Stop debugging it? ")))
5663 remote_unpush_and_throw (this);
5664 }
5665 /* If ^C has already been sent once, offer to disconnect. */
5666 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5667 interrupt_query ();
5668 /* All-stop protocol, and blocked waiting for stop reply. Send
5669 an interrupt request. */
5670 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5671 target_interrupt ();
5672 else
5673 rs->got_ctrlc_during_io = 1;
5674 }
5675 }
5676
5677 /* The remote_target that is current while the quit handler is
5678 overridden with remote_serial_quit_handler. */
5679 static remote_target *curr_quit_handler_target;
5680
5681 static void
5682 remote_serial_quit_handler ()
5683 {
5684 curr_quit_handler_target->remote_serial_quit_handler ();
5685 }
5686
5687 /* Remove the remote target from the target stack of each inferior
5688 that is using it. Upper targets depend on it so remove them
5689 first. */
5690
5691 static void
5692 remote_unpush_target (remote_target *target)
5693 {
5694 /* We have to unpush the target from all inferiors, even those that
5695 aren't running. */
5696 scoped_restore_current_inferior restore_current_inferior;
5697
5698 for (inferior *inf : all_inferiors (target))
5699 {
5700 switch_to_inferior_no_thread (inf);
5701 pop_all_targets_at_and_above (process_stratum);
5702 generic_mourn_inferior ();
5703 }
5704
5705 /* Don't rely on target_close doing this when the target is popped
5706 from the last remote inferior above, because something may be
5707 holding a reference to the target higher up on the stack, meaning
5708 target_close won't be called yet. We lost the connection to the
5709 target, so clear these now, otherwise we may later throw
5710 TARGET_CLOSE_ERROR while trying to tell the remote target to
5711 close the file. */
5712 fileio_handles_invalidate_target (target);
5713 }
5714
5715 static void
5716 remote_unpush_and_throw (remote_target *target)
5717 {
5718 remote_unpush_target (target);
5719 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5720 }
5721
5722 void
5723 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5724 {
5725 remote_target *curr_remote = get_current_remote_target ();
5726
5727 if (name == 0)
5728 error (_("To open a remote debug connection, you need to specify what\n"
5729 "serial device is attached to the remote system\n"
5730 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5731
5732 /* If we're connected to a running target, target_preopen will kill it.
5733 Ask this question first, before target_preopen has a chance to kill
5734 anything. */
5735 if (curr_remote != NULL && !target_has_execution ())
5736 {
5737 if (from_tty
5738 && !query (_("Already connected to a remote target. Disconnect? ")))
5739 error (_("Still connected."));
5740 }
5741
5742 /* Here the possibly existing remote target gets unpushed. */
5743 target_preopen (from_tty);
5744
5745 remote_fileio_reset ();
5746 reopen_exec_file ();
5747 reread_symbols (from_tty);
5748
5749 remote_target *remote
5750 = (extended_p ? new extended_remote_target () : new remote_target ());
5751 target_ops_up target_holder (remote);
5752
5753 remote_state *rs = remote->get_remote_state ();
5754
5755 /* See FIXME above. */
5756 if (!target_async_permitted)
5757 rs->wait_forever_enabled_p = 1;
5758
5759 rs->remote_desc = remote_serial_open (name);
5760 if (!rs->remote_desc)
5761 perror_with_name (name);
5762
5763 if (baud_rate != -1)
5764 {
5765 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5766 {
5767 /* The requested speed could not be set. Error out to
5768 top level after closing remote_desc. Take care to
5769 set remote_desc to NULL to avoid closing remote_desc
5770 more than once. */
5771 serial_close (rs->remote_desc);
5772 rs->remote_desc = NULL;
5773 perror_with_name (name);
5774 }
5775 }
5776
5777 serial_setparity (rs->remote_desc, serial_parity);
5778 serial_raw (rs->remote_desc);
5779
5780 /* If there is something sitting in the buffer we might take it as a
5781 response to a command, which would be bad. */
5782 serial_flush_input (rs->remote_desc);
5783
5784 if (from_tty)
5785 {
5786 puts_filtered ("Remote debugging using ");
5787 puts_filtered (name);
5788 puts_filtered ("\n");
5789 }
5790
5791 /* Switch to using the remote target now. */
5792 current_inferior ()->push_target (std::move (target_holder));
5793
5794 /* Register extra event sources in the event loop. */
5795 rs->remote_async_inferior_event_token
5796 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5797 "remote");
5798 rs->notif_state = remote_notif_state_allocate (remote);
5799
5800 /* Reset the target state; these things will be queried either by
5801 remote_query_supported or as they are needed. */
5802 reset_all_packet_configs_support ();
5803 rs->explicit_packet_size = 0;
5804 rs->noack_mode = 0;
5805 rs->extended = extended_p;
5806 rs->waiting_for_stop_reply = 0;
5807 rs->ctrlc_pending_p = 0;
5808 rs->got_ctrlc_during_io = 0;
5809
5810 rs->general_thread = not_sent_ptid;
5811 rs->continue_thread = not_sent_ptid;
5812 rs->remote_traceframe_number = -1;
5813
5814 rs->last_resume_exec_dir = EXEC_FORWARD;
5815
5816 /* Probe for ability to use "ThreadInfo" query, as required. */
5817 rs->use_threadinfo_query = 1;
5818 rs->use_threadextra_query = 1;
5819
5820 rs->readahead_cache.invalidate ();
5821
5822 if (target_async_permitted)
5823 {
5824 /* FIXME: cagney/1999-09-23: During the initial connection it is
5825 assumed that the target is already ready and able to respond to
5826 requests. Unfortunately remote_start_remote() eventually calls
5827 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5828 around this. Eventually a mechanism that allows
5829 wait_for_inferior() to expect/get timeouts will be
5830 implemented. */
5831 rs->wait_forever_enabled_p = 0;
5832 }
5833
5834 /* First delete any symbols previously loaded from shared libraries. */
5835 no_shared_libraries (NULL, 0);
5836
5837 /* Start the remote connection. If error() or QUIT, discard this
5838 target (we'd otherwise be in an inconsistent state) and then
5839 propogate the error on up the exception chain. This ensures that
5840 the caller doesn't stumble along blindly assuming that the
5841 function succeeded. The CLI doesn't have this problem but other
5842 UI's, such as MI do.
5843
5844 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5845 this function should return an error indication letting the
5846 caller restore the previous state. Unfortunately the command
5847 ``target remote'' is directly wired to this function making that
5848 impossible. On a positive note, the CLI side of this problem has
5849 been fixed - the function set_cmd_context() makes it possible for
5850 all the ``target ....'' commands to share a common callback
5851 function. See cli-dump.c. */
5852 {
5853
5854 try
5855 {
5856 remote->start_remote (from_tty, extended_p);
5857 }
5858 catch (const gdb_exception &ex)
5859 {
5860 /* Pop the partially set up target - unless something else did
5861 already before throwing the exception. */
5862 if (ex.error != TARGET_CLOSE_ERROR)
5863 remote_unpush_target (remote);
5864 throw;
5865 }
5866 }
5867
5868 remote_btrace_reset (rs);
5869
5870 if (target_async_permitted)
5871 rs->wait_forever_enabled_p = 1;
5872 }
5873
5874 /* Determine if WS represents a fork status. */
5875
5876 static bool
5877 is_fork_status (target_waitkind kind)
5878 {
5879 return (kind == TARGET_WAITKIND_FORKED
5880 || kind == TARGET_WAITKIND_VFORKED);
5881 }
5882
5883 /* Return THREAD's pending status if it is a pending fork parent, else
5884 return nullptr. */
5885
5886 static const target_waitstatus *
5887 thread_pending_fork_status (struct thread_info *thread)
5888 {
5889 const target_waitstatus &ws
5890 = (thread->has_pending_waitstatus ()
5891 ? thread->pending_waitstatus ()
5892 : thread->pending_follow);
5893
5894 if (!is_fork_status (ws.kind ()))
5895 return nullptr;
5896
5897 return &ws;
5898 }
5899
5900 /* Detach the specified process. */
5901
5902 void
5903 remote_target::remote_detach_pid (int pid)
5904 {
5905 struct remote_state *rs = get_remote_state ();
5906
5907 /* This should not be necessary, but the handling for D;PID in
5908 GDBserver versions prior to 8.2 incorrectly assumes that the
5909 selected process points to the same process we're detaching,
5910 leading to misbehavior (and possibly GDBserver crashing) when it
5911 does not. Since it's easy and cheap, work around it by forcing
5912 GDBserver to select GDB's current process. */
5913 set_general_process ();
5914
5915 if (remote_multi_process_p (rs))
5916 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5917 else
5918 strcpy (rs->buf.data (), "D");
5919
5920 putpkt (rs->buf);
5921 getpkt (&rs->buf, 0);
5922
5923 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5924 ;
5925 else if (rs->buf[0] == '\0')
5926 error (_("Remote doesn't know how to detach"));
5927 else
5928 error (_("Can't detach process."));
5929 }
5930
5931 /* This detaches a program to which we previously attached, using
5932 inferior_ptid to identify the process. After this is done, GDB
5933 can be used to debug some other program. We better not have left
5934 any breakpoints in the target program or it'll die when it hits
5935 one. */
5936
5937 void
5938 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5939 {
5940 int pid = inferior_ptid.pid ();
5941 struct remote_state *rs = get_remote_state ();
5942 int is_fork_parent;
5943
5944 if (!target_has_execution ())
5945 error (_("No process to detach from."));
5946
5947 target_announce_detach (from_tty);
5948
5949 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5950 {
5951 /* If we're in breakpoints-always-inserted mode, or the inferior
5952 is running, we have to remove breakpoints before detaching.
5953 We don't do this in common code instead because not all
5954 targets support removing breakpoints while the target is
5955 running. The remote target / gdbserver does, though. */
5956 remove_breakpoints_inf (current_inferior ());
5957 }
5958
5959 /* Tell the remote target to detach. */
5960 remote_detach_pid (pid);
5961
5962 /* Exit only if this is the only active inferior. */
5963 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5964 puts_filtered (_("Ending remote debugging.\n"));
5965
5966 /* See if any thread of the inferior we are detaching has a pending fork
5967 status. In that case, we must detach from the child resulting from
5968 that fork. */
5969 for (thread_info *thread : inf->non_exited_threads ())
5970 {
5971 const target_waitstatus *ws = thread_pending_fork_status (thread);
5972
5973 if (ws == nullptr)
5974 continue;
5975
5976 remote_detach_pid (ws->child_ptid ().pid ());
5977 }
5978
5979 /* Check also for any pending fork events in the stop reply queue. */
5980 remote_notif_get_pending_events (&notif_client_stop);
5981 for (stop_reply_up &reply : rs->stop_reply_queue)
5982 {
5983 if (reply->ptid.pid () != pid)
5984 continue;
5985
5986 if (!is_fork_status (reply->ws.kind ()))
5987 continue;
5988
5989 remote_detach_pid (reply->ws.child_ptid ().pid ());
5990 }
5991
5992 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5993
5994 /* Check to see if we are detaching a fork parent. Note that if we
5995 are detaching a fork child, tp == NULL. */
5996 is_fork_parent = (tp != NULL
5997 && tp->pending_follow.kind () == TARGET_WAITKIND_FORKED);
5998
5999 /* If doing detach-on-fork, we don't mourn, because that will delete
6000 breakpoints that should be available for the followed inferior. */
6001 if (!is_fork_parent)
6002 {
6003 /* Save the pid as a string before mourning, since that will
6004 unpush the remote target, and we need the string after. */
6005 std::string infpid = target_pid_to_str (ptid_t (pid));
6006
6007 target_mourn_inferior (inferior_ptid);
6008 if (print_inferior_events)
6009 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
6010 inf->num, infpid.c_str ());
6011 }
6012 else
6013 {
6014 switch_to_no_thread ();
6015 detach_inferior (current_inferior ());
6016 }
6017 }
6018
6019 void
6020 remote_target::detach (inferior *inf, int from_tty)
6021 {
6022 remote_detach_1 (inf, from_tty);
6023 }
6024
6025 void
6026 extended_remote_target::detach (inferior *inf, int from_tty)
6027 {
6028 remote_detach_1 (inf, from_tty);
6029 }
6030
6031 /* Target follow-fork function for remote targets. On entry, and
6032 at return, the current inferior is the fork parent.
6033
6034 Note that although this is currently only used for extended-remote,
6035 it is named remote_follow_fork in anticipation of using it for the
6036 remote target as well. */
6037
6038 void
6039 remote_target::follow_fork (inferior *child_inf, ptid_t child_ptid,
6040 target_waitkind fork_kind, bool follow_child,
6041 bool detach_fork)
6042 {
6043 process_stratum_target::follow_fork (child_inf, child_ptid,
6044 fork_kind, follow_child, detach_fork);
6045
6046 struct remote_state *rs = get_remote_state ();
6047
6048 if ((fork_kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
6049 || (fork_kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
6050 {
6051 /* When following the parent and detaching the child, we detach
6052 the child here. For the case of following the child and
6053 detaching the parent, the detach is done in the target-
6054 independent follow fork code in infrun.c. We can't use
6055 target_detach when detaching an unfollowed child because
6056 the client side doesn't know anything about the child. */
6057 if (detach_fork && !follow_child)
6058 {
6059 /* Detach the fork child. */
6060 remote_detach_pid (child_ptid.pid ());
6061 }
6062 }
6063 }
6064
6065 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
6066 in the program space of the new inferior. */
6067
6068 void
6069 remote_target::follow_exec (inferior *follow_inf, ptid_t ptid,
6070 const char *execd_pathname)
6071 {
6072 process_stratum_target::follow_exec (follow_inf, ptid, execd_pathname);
6073
6074 /* We know that this is a target file name, so if it has the "target:"
6075 prefix we strip it off before saving it in the program space. */
6076 if (is_target_filename (execd_pathname))
6077 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
6078
6079 set_pspace_remote_exec_file (follow_inf->pspace, execd_pathname);
6080 }
6081
6082 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
6083
6084 void
6085 remote_target::disconnect (const char *args, int from_tty)
6086 {
6087 if (args)
6088 error (_("Argument given to \"disconnect\" when remotely debugging."));
6089
6090 /* Make sure we unpush even the extended remote targets. Calling
6091 target_mourn_inferior won't unpush, and
6092 remote_target::mourn_inferior won't unpush if there is more than
6093 one inferior left. */
6094 remote_unpush_target (this);
6095
6096 if (from_tty)
6097 puts_filtered ("Ending remote debugging.\n");
6098 }
6099
6100 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
6101 be chatty about it. */
6102
6103 void
6104 extended_remote_target::attach (const char *args, int from_tty)
6105 {
6106 struct remote_state *rs = get_remote_state ();
6107 int pid;
6108 char *wait_status = NULL;
6109
6110 pid = parse_pid_to_attach (args);
6111
6112 /* Remote PID can be freely equal to getpid, do not check it here the same
6113 way as in other targets. */
6114
6115 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
6116 error (_("This target does not support attaching to a process"));
6117
6118 target_announce_attach (from_tty, pid);
6119
6120 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
6121 putpkt (rs->buf);
6122 getpkt (&rs->buf, 0);
6123
6124 switch (packet_ok (rs->buf,
6125 &remote_protocol_packets[PACKET_vAttach]))
6126 {
6127 case PACKET_OK:
6128 if (!target_is_non_stop_p ())
6129 {
6130 /* Save the reply for later. */
6131 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
6132 strcpy (wait_status, rs->buf.data ());
6133 }
6134 else if (strcmp (rs->buf.data (), "OK") != 0)
6135 error (_("Attaching to %s failed with: %s"),
6136 target_pid_to_str (ptid_t (pid)).c_str (),
6137 rs->buf.data ());
6138 break;
6139 case PACKET_UNKNOWN:
6140 error (_("This target does not support attaching to a process"));
6141 default:
6142 error (_("Attaching to %s failed"),
6143 target_pid_to_str (ptid_t (pid)).c_str ());
6144 }
6145
6146 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
6147
6148 inferior_ptid = ptid_t (pid);
6149
6150 if (target_is_non_stop_p ())
6151 {
6152 /* Get list of threads. */
6153 update_thread_list ();
6154
6155 thread_info *thread = first_thread_of_inferior (current_inferior ());
6156 if (thread != nullptr)
6157 switch_to_thread (thread);
6158
6159 /* Invalidate our notion of the remote current thread. */
6160 record_currthread (rs, minus_one_ptid);
6161 }
6162 else
6163 {
6164 /* Now, if we have thread information, update the main thread's
6165 ptid. */
6166 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6167
6168 /* Add the main thread to the thread list. We add the thread
6169 silently in this case (the final true parameter). */
6170 thread_info *thr = remote_add_thread (curr_ptid, true, true, true);
6171
6172 switch_to_thread (thr);
6173 }
6174
6175 /* Next, if the target can specify a description, read it. We do
6176 this before anything involving memory or registers. */
6177 target_find_description ();
6178
6179 if (!target_is_non_stop_p ())
6180 {
6181 /* Use the previously fetched status. */
6182 gdb_assert (wait_status != NULL);
6183
6184 struct notif_event *reply
6185 = remote_notif_parse (this, &notif_client_stop, wait_status);
6186
6187 push_stop_reply ((struct stop_reply *) reply);
6188
6189 if (target_can_async_p ())
6190 target_async (1);
6191 }
6192 else
6193 {
6194 gdb_assert (wait_status == NULL);
6195
6196 gdb_assert (target_can_async_p ());
6197 target_async (1);
6198 }
6199 }
6200
6201 /* Implementation of the to_post_attach method. */
6202
6203 void
6204 extended_remote_target::post_attach (int pid)
6205 {
6206 /* Get text, data & bss offsets. */
6207 get_offsets ();
6208
6209 /* In certain cases GDB might not have had the chance to start
6210 symbol lookup up until now. This could happen if the debugged
6211 binary is not using shared libraries, the vsyscall page is not
6212 present (on Linux) and the binary itself hadn't changed since the
6213 debugging process was started. */
6214 if (current_program_space->symfile_object_file != NULL)
6215 remote_check_symbols();
6216 }
6217
6218 \f
6219 /* Check for the availability of vCont. This function should also check
6220 the response. */
6221
6222 void
6223 remote_target::remote_vcont_probe ()
6224 {
6225 remote_state *rs = get_remote_state ();
6226 char *buf;
6227
6228 strcpy (rs->buf.data (), "vCont?");
6229 putpkt (rs->buf);
6230 getpkt (&rs->buf, 0);
6231 buf = rs->buf.data ();
6232
6233 /* Make sure that the features we assume are supported. */
6234 if (startswith (buf, "vCont"))
6235 {
6236 char *p = &buf[5];
6237 int support_c, support_C;
6238
6239 rs->supports_vCont.s = 0;
6240 rs->supports_vCont.S = 0;
6241 support_c = 0;
6242 support_C = 0;
6243 rs->supports_vCont.t = 0;
6244 rs->supports_vCont.r = 0;
6245 while (p && *p == ';')
6246 {
6247 p++;
6248 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6249 rs->supports_vCont.s = 1;
6250 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6251 rs->supports_vCont.S = 1;
6252 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6253 support_c = 1;
6254 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6255 support_C = 1;
6256 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6257 rs->supports_vCont.t = 1;
6258 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6259 rs->supports_vCont.r = 1;
6260
6261 p = strchr (p, ';');
6262 }
6263
6264 /* If c, and C are not all supported, we can't use vCont. Clearing
6265 BUF will make packet_ok disable the packet. */
6266 if (!support_c || !support_C)
6267 buf[0] = 0;
6268 }
6269
6270 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6271 rs->supports_vCont_probed = true;
6272 }
6273
6274 /* Helper function for building "vCont" resumptions. Write a
6275 resumption to P. ENDP points to one-passed-the-end of the buffer
6276 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6277 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6278 resumed thread should be single-stepped and/or signalled. If PTID
6279 equals minus_one_ptid, then all threads are resumed; if PTID
6280 represents a process, then all threads of the process are resumed;
6281 the thread to be stepped and/or signalled is given in the global
6282 INFERIOR_PTID. */
6283
6284 char *
6285 remote_target::append_resumption (char *p, char *endp,
6286 ptid_t ptid, int step, gdb_signal siggnal)
6287 {
6288 struct remote_state *rs = get_remote_state ();
6289
6290 if (step && siggnal != GDB_SIGNAL_0)
6291 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6292 else if (step
6293 /* GDB is willing to range step. */
6294 && use_range_stepping
6295 /* Target supports range stepping. */
6296 && rs->supports_vCont.r
6297 /* We don't currently support range stepping multiple
6298 threads with a wildcard (though the protocol allows it,
6299 so stubs shouldn't make an active effort to forbid
6300 it). */
6301 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6302 {
6303 struct thread_info *tp;
6304
6305 if (ptid == minus_one_ptid)
6306 {
6307 /* If we don't know about the target thread's tid, then
6308 we're resuming magic_null_ptid (see caller). */
6309 tp = find_thread_ptid (this, magic_null_ptid);
6310 }
6311 else
6312 tp = find_thread_ptid (this, ptid);
6313 gdb_assert (tp != NULL);
6314
6315 if (tp->control.may_range_step)
6316 {
6317 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6318
6319 p += xsnprintf (p, endp - p, ";r%s,%s",
6320 phex_nz (tp->control.step_range_start,
6321 addr_size),
6322 phex_nz (tp->control.step_range_end,
6323 addr_size));
6324 }
6325 else
6326 p += xsnprintf (p, endp - p, ";s");
6327 }
6328 else if (step)
6329 p += xsnprintf (p, endp - p, ";s");
6330 else if (siggnal != GDB_SIGNAL_0)
6331 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6332 else
6333 p += xsnprintf (p, endp - p, ";c");
6334
6335 if (remote_multi_process_p (rs) && ptid.is_pid ())
6336 {
6337 ptid_t nptid;
6338
6339 /* All (-1) threads of process. */
6340 nptid = ptid_t (ptid.pid (), -1);
6341
6342 p += xsnprintf (p, endp - p, ":");
6343 p = write_ptid (p, endp, nptid);
6344 }
6345 else if (ptid != minus_one_ptid)
6346 {
6347 p += xsnprintf (p, endp - p, ":");
6348 p = write_ptid (p, endp, ptid);
6349 }
6350
6351 return p;
6352 }
6353
6354 /* Clear the thread's private info on resume. */
6355
6356 static void
6357 resume_clear_thread_private_info (struct thread_info *thread)
6358 {
6359 if (thread->priv != NULL)
6360 {
6361 remote_thread_info *priv = get_remote_thread_info (thread);
6362
6363 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6364 priv->watch_data_address = 0;
6365 }
6366 }
6367
6368 /* Append a vCont continue-with-signal action for threads that have a
6369 non-zero stop signal. */
6370
6371 char *
6372 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6373 ptid_t ptid)
6374 {
6375 for (thread_info *thread : all_non_exited_threads (this, ptid))
6376 if (inferior_ptid != thread->ptid
6377 && thread->stop_signal () != GDB_SIGNAL_0)
6378 {
6379 p = append_resumption (p, endp, thread->ptid,
6380 0, thread->stop_signal ());
6381 thread->set_stop_signal (GDB_SIGNAL_0);
6382 resume_clear_thread_private_info (thread);
6383 }
6384
6385 return p;
6386 }
6387
6388 /* Set the target running, using the packets that use Hc
6389 (c/s/C/S). */
6390
6391 void
6392 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6393 gdb_signal siggnal)
6394 {
6395 struct remote_state *rs = get_remote_state ();
6396 char *buf;
6397
6398 rs->last_sent_signal = siggnal;
6399 rs->last_sent_step = step;
6400
6401 /* The c/s/C/S resume packets use Hc, so set the continue
6402 thread. */
6403 if (ptid == minus_one_ptid)
6404 set_continue_thread (any_thread_ptid);
6405 else
6406 set_continue_thread (ptid);
6407
6408 for (thread_info *thread : all_non_exited_threads (this))
6409 resume_clear_thread_private_info (thread);
6410
6411 buf = rs->buf.data ();
6412 if (::execution_direction == EXEC_REVERSE)
6413 {
6414 /* We don't pass signals to the target in reverse exec mode. */
6415 if (info_verbose && siggnal != GDB_SIGNAL_0)
6416 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6417 siggnal);
6418
6419 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6420 error (_("Remote reverse-step not supported."));
6421 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6422 error (_("Remote reverse-continue not supported."));
6423
6424 strcpy (buf, step ? "bs" : "bc");
6425 }
6426 else if (siggnal != GDB_SIGNAL_0)
6427 {
6428 buf[0] = step ? 'S' : 'C';
6429 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6430 buf[2] = tohex (((int) siggnal) & 0xf);
6431 buf[3] = '\0';
6432 }
6433 else
6434 strcpy (buf, step ? "s" : "c");
6435
6436 putpkt (buf);
6437 }
6438
6439 /* Resume the remote inferior by using a "vCont" packet. The thread
6440 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6441 resumed thread should be single-stepped and/or signalled. If PTID
6442 equals minus_one_ptid, then all threads are resumed; the thread to
6443 be stepped and/or signalled is given in the global INFERIOR_PTID.
6444 This function returns non-zero iff it resumes the inferior.
6445
6446 This function issues a strict subset of all possible vCont commands
6447 at the moment. */
6448
6449 int
6450 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6451 enum gdb_signal siggnal)
6452 {
6453 struct remote_state *rs = get_remote_state ();
6454 char *p;
6455 char *endp;
6456
6457 /* No reverse execution actions defined for vCont. */
6458 if (::execution_direction == EXEC_REVERSE)
6459 return 0;
6460
6461 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6462 remote_vcont_probe ();
6463
6464 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6465 return 0;
6466
6467 p = rs->buf.data ();
6468 endp = p + get_remote_packet_size ();
6469
6470 /* If we could generate a wider range of packets, we'd have to worry
6471 about overflowing BUF. Should there be a generic
6472 "multi-part-packet" packet? */
6473
6474 p += xsnprintf (p, endp - p, "vCont");
6475
6476 if (ptid == magic_null_ptid)
6477 {
6478 /* MAGIC_NULL_PTID means that we don't have any active threads,
6479 so we don't have any TID numbers the inferior will
6480 understand. Make sure to only send forms that do not specify
6481 a TID. */
6482 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6483 }
6484 else if (ptid == minus_one_ptid || ptid.is_pid ())
6485 {
6486 /* Resume all threads (of all processes, or of a single
6487 process), with preference for INFERIOR_PTID. This assumes
6488 inferior_ptid belongs to the set of all threads we are about
6489 to resume. */
6490 if (step || siggnal != GDB_SIGNAL_0)
6491 {
6492 /* Step inferior_ptid, with or without signal. */
6493 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6494 }
6495
6496 /* Also pass down any pending signaled resumption for other
6497 threads not the current. */
6498 p = append_pending_thread_resumptions (p, endp, ptid);
6499
6500 /* And continue others without a signal. */
6501 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6502 }
6503 else
6504 {
6505 /* Scheduler locking; resume only PTID. */
6506 append_resumption (p, endp, ptid, step, siggnal);
6507 }
6508
6509 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6510 putpkt (rs->buf);
6511
6512 if (target_is_non_stop_p ())
6513 {
6514 /* In non-stop, the stub replies to vCont with "OK". The stop
6515 reply will be reported asynchronously by means of a `%Stop'
6516 notification. */
6517 getpkt (&rs->buf, 0);
6518 if (strcmp (rs->buf.data (), "OK") != 0)
6519 error (_("Unexpected vCont reply in non-stop mode: %s"),
6520 rs->buf.data ());
6521 }
6522
6523 return 1;
6524 }
6525
6526 /* Tell the remote machine to resume. */
6527
6528 void
6529 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6530 {
6531 struct remote_state *rs = get_remote_state ();
6532
6533 /* When connected in non-stop mode, the core resumes threads
6534 individually. Resuming remote threads directly in target_resume
6535 would thus result in sending one packet per thread. Instead, to
6536 minimize roundtrip latency, here we just store the resume
6537 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6538 resumption will be done in remote_target::commit_resume, where we'll be
6539 able to do vCont action coalescing. */
6540 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6541 {
6542 remote_thread_info *remote_thr;
6543
6544 if (minus_one_ptid == ptid || ptid.is_pid ())
6545 remote_thr = get_remote_thread_info (this, inferior_ptid);
6546 else
6547 remote_thr = get_remote_thread_info (this, ptid);
6548
6549 /* We don't expect the core to ask to resume an already resumed (from
6550 its point of view) thread. */
6551 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6552
6553 remote_thr->set_resumed_pending_vcont (step, siggnal);
6554 return;
6555 }
6556
6557 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6558 (explained in remote-notif.c:handle_notification) so
6559 remote_notif_process is not called. We need find a place where
6560 it is safe to start a 'vNotif' sequence. It is good to do it
6561 before resuming inferior, because inferior was stopped and no RSP
6562 traffic at that moment. */
6563 if (!target_is_non_stop_p ())
6564 remote_notif_process (rs->notif_state, &notif_client_stop);
6565
6566 rs->last_resume_exec_dir = ::execution_direction;
6567
6568 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6569 if (!remote_resume_with_vcont (ptid, step, siggnal))
6570 remote_resume_with_hc (ptid, step, siggnal);
6571
6572 /* Update resumed state tracked by the remote target. */
6573 for (thread_info *tp : all_non_exited_threads (this, ptid))
6574 get_remote_thread_info (tp)->set_resumed ();
6575
6576 /* We are about to start executing the inferior, let's register it
6577 with the event loop. NOTE: this is the one place where all the
6578 execution commands end up. We could alternatively do this in each
6579 of the execution commands in infcmd.c. */
6580 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6581 into infcmd.c in order to allow inferior function calls to work
6582 NOT asynchronously. */
6583 if (target_can_async_p ())
6584 target_async (1);
6585
6586 /* We've just told the target to resume. The remote server will
6587 wait for the inferior to stop, and then send a stop reply. In
6588 the mean time, we can't start another command/query ourselves
6589 because the stub wouldn't be ready to process it. This applies
6590 only to the base all-stop protocol, however. In non-stop (which
6591 only supports vCont), the stub replies with an "OK", and is
6592 immediate able to process further serial input. */
6593 if (!target_is_non_stop_p ())
6594 rs->waiting_for_stop_reply = 1;
6595 }
6596
6597 /* Private per-inferior info for target remote processes. */
6598
6599 struct remote_inferior : public private_inferior
6600 {
6601 /* Whether we can send a wildcard vCont for this process. */
6602 bool may_wildcard_vcont = true;
6603 };
6604
6605 /* Get the remote private inferior data associated to INF. */
6606
6607 static remote_inferior *
6608 get_remote_inferior (inferior *inf)
6609 {
6610 if (inf->priv == NULL)
6611 inf->priv.reset (new remote_inferior);
6612
6613 return static_cast<remote_inferior *> (inf->priv.get ());
6614 }
6615
6616 /* Class used to track the construction of a vCont packet in the
6617 outgoing packet buffer. This is used to send multiple vCont
6618 packets if we have more actions than would fit a single packet. */
6619
6620 class vcont_builder
6621 {
6622 public:
6623 explicit vcont_builder (remote_target *remote)
6624 : m_remote (remote)
6625 {
6626 restart ();
6627 }
6628
6629 void flush ();
6630 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6631
6632 private:
6633 void restart ();
6634
6635 /* The remote target. */
6636 remote_target *m_remote;
6637
6638 /* Pointer to the first action. P points here if no action has been
6639 appended yet. */
6640 char *m_first_action;
6641
6642 /* Where the next action will be appended. */
6643 char *m_p;
6644
6645 /* The end of the buffer. Must never write past this. */
6646 char *m_endp;
6647 };
6648
6649 /* Prepare the outgoing buffer for a new vCont packet. */
6650
6651 void
6652 vcont_builder::restart ()
6653 {
6654 struct remote_state *rs = m_remote->get_remote_state ();
6655
6656 m_p = rs->buf.data ();
6657 m_endp = m_p + m_remote->get_remote_packet_size ();
6658 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6659 m_first_action = m_p;
6660 }
6661
6662 /* If the vCont packet being built has any action, send it to the
6663 remote end. */
6664
6665 void
6666 vcont_builder::flush ()
6667 {
6668 struct remote_state *rs;
6669
6670 if (m_p == m_first_action)
6671 return;
6672
6673 rs = m_remote->get_remote_state ();
6674 m_remote->putpkt (rs->buf);
6675 m_remote->getpkt (&rs->buf, 0);
6676 if (strcmp (rs->buf.data (), "OK") != 0)
6677 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6678 }
6679
6680 /* The largest action is range-stepping, with its two addresses. This
6681 is more than sufficient. If a new, bigger action is created, it'll
6682 quickly trigger a failed assertion in append_resumption (and we'll
6683 just bump this). */
6684 #define MAX_ACTION_SIZE 200
6685
6686 /* Append a new vCont action in the outgoing packet being built. If
6687 the action doesn't fit the packet along with previous actions, push
6688 what we've got so far to the remote end and start over a new vCont
6689 packet (with the new action). */
6690
6691 void
6692 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6693 {
6694 char buf[MAX_ACTION_SIZE + 1];
6695
6696 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6697 ptid, step, siggnal);
6698
6699 /* Check whether this new action would fit in the vCont packet along
6700 with previous actions. If not, send what we've got so far and
6701 start a new vCont packet. */
6702 size_t rsize = endp - buf;
6703 if (rsize > m_endp - m_p)
6704 {
6705 flush ();
6706 restart ();
6707
6708 /* Should now fit. */
6709 gdb_assert (rsize <= m_endp - m_p);
6710 }
6711
6712 memcpy (m_p, buf, rsize);
6713 m_p += rsize;
6714 *m_p = '\0';
6715 }
6716
6717 /* to_commit_resume implementation. */
6718
6719 void
6720 remote_target::commit_resumed ()
6721 {
6722 /* If connected in all-stop mode, we'd send the remote resume
6723 request directly from remote_resume. Likewise if
6724 reverse-debugging, as there are no defined vCont actions for
6725 reverse execution. */
6726 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6727 return;
6728
6729 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6730 instead of resuming all threads of each process individually.
6731 However, if any thread of a process must remain halted, we can't
6732 send wildcard resumes and must send one action per thread.
6733
6734 Care must be taken to not resume threads/processes the server
6735 side already told us are stopped, but the core doesn't know about
6736 yet, because the events are still in the vStopped notification
6737 queue. For example:
6738
6739 #1 => vCont s:p1.1;c
6740 #2 <= OK
6741 #3 <= %Stopped T05 p1.1
6742 #4 => vStopped
6743 #5 <= T05 p1.2
6744 #6 => vStopped
6745 #7 <= OK
6746 #8 (infrun handles the stop for p1.1 and continues stepping)
6747 #9 => vCont s:p1.1;c
6748
6749 The last vCont above would resume thread p1.2 by mistake, because
6750 the server has no idea that the event for p1.2 had not been
6751 handled yet.
6752
6753 The server side must similarly ignore resume actions for the
6754 thread that has a pending %Stopped notification (and any other
6755 threads with events pending), until GDB acks the notification
6756 with vStopped. Otherwise, e.g., the following case is
6757 mishandled:
6758
6759 #1 => g (or any other packet)
6760 #2 <= [registers]
6761 #3 <= %Stopped T05 p1.2
6762 #4 => vCont s:p1.1;c
6763 #5 <= OK
6764
6765 Above, the server must not resume thread p1.2. GDB can't know
6766 that p1.2 stopped until it acks the %Stopped notification, and
6767 since from GDB's perspective all threads should be running, it
6768 sends a "c" action.
6769
6770 Finally, special care must also be given to handling fork/vfork
6771 events. A (v)fork event actually tells us that two processes
6772 stopped -- the parent and the child. Until we follow the fork,
6773 we must not resume the child. Therefore, if we have a pending
6774 fork follow, we must not send a global wildcard resume action
6775 (vCont;c). We can still send process-wide wildcards though. */
6776
6777 /* Start by assuming a global wildcard (vCont;c) is possible. */
6778 bool may_global_wildcard_vcont = true;
6779
6780 /* And assume every process is individually wildcard-able too. */
6781 for (inferior *inf : all_non_exited_inferiors (this))
6782 {
6783 remote_inferior *priv = get_remote_inferior (inf);
6784
6785 priv->may_wildcard_vcont = true;
6786 }
6787
6788 /* Check for any pending events (not reported or processed yet) and
6789 disable process and global wildcard resumes appropriately. */
6790 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6791
6792 bool any_pending_vcont_resume = false;
6793
6794 for (thread_info *tp : all_non_exited_threads (this))
6795 {
6796 remote_thread_info *priv = get_remote_thread_info (tp);
6797
6798 /* If a thread of a process is not meant to be resumed, then we
6799 can't wildcard that process. */
6800 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6801 {
6802 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6803
6804 /* And if we can't wildcard a process, we can't wildcard
6805 everything either. */
6806 may_global_wildcard_vcont = false;
6807 continue;
6808 }
6809
6810 if (priv->get_resume_state () == resume_state::RESUMED_PENDING_VCONT)
6811 any_pending_vcont_resume = true;
6812
6813 /* If a thread is the parent of an unfollowed fork, then we
6814 can't do a global wildcard, as that would resume the fork
6815 child. */
6816 if (thread_pending_fork_status (tp) != nullptr)
6817 may_global_wildcard_vcont = false;
6818 }
6819
6820 /* We didn't have any resumed thread pending a vCont resume, so nothing to
6821 do. */
6822 if (!any_pending_vcont_resume)
6823 return;
6824
6825 /* Now let's build the vCont packet(s). Actions must be appended
6826 from narrower to wider scopes (thread -> process -> global). If
6827 we end up with too many actions for a single packet vcont_builder
6828 flushes the current vCont packet to the remote side and starts a
6829 new one. */
6830 struct vcont_builder vcont_builder (this);
6831
6832 /* Threads first. */
6833 for (thread_info *tp : all_non_exited_threads (this))
6834 {
6835 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6836
6837 /* If the thread was previously vCont-resumed, no need to send a specific
6838 action for it. If we didn't receive a resume request for it, don't
6839 send an action for it either. */
6840 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6841 continue;
6842
6843 gdb_assert (!thread_is_in_step_over_chain (tp));
6844
6845 /* We should never be commit-resuming a thread that has a stop reply.
6846 Otherwise, we would end up reporting a stop event for a thread while
6847 it is running on the remote target. */
6848 remote_state *rs = get_remote_state ();
6849 for (const auto &stop_reply : rs->stop_reply_queue)
6850 gdb_assert (stop_reply->ptid != tp->ptid);
6851
6852 const resumed_pending_vcont_info &info
6853 = remote_thr->resumed_pending_vcont_info ();
6854
6855 /* Check if we need to send a specific action for this thread. If not,
6856 it will be included in a wildcard resume instead. */
6857 if (info.step || info.sig != GDB_SIGNAL_0
6858 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6859 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6860
6861 remote_thr->set_resumed ();
6862 }
6863
6864 /* Now check whether we can send any process-wide wildcard. This is
6865 to avoid sending a global wildcard in the case nothing is
6866 supposed to be resumed. */
6867 bool any_process_wildcard = false;
6868
6869 for (inferior *inf : all_non_exited_inferiors (this))
6870 {
6871 if (get_remote_inferior (inf)->may_wildcard_vcont)
6872 {
6873 any_process_wildcard = true;
6874 break;
6875 }
6876 }
6877
6878 if (any_process_wildcard)
6879 {
6880 /* If all processes are wildcard-able, then send a single "c"
6881 action, otherwise, send an "all (-1) threads of process"
6882 continue action for each running process, if any. */
6883 if (may_global_wildcard_vcont)
6884 {
6885 vcont_builder.push_action (minus_one_ptid,
6886 false, GDB_SIGNAL_0);
6887 }
6888 else
6889 {
6890 for (inferior *inf : all_non_exited_inferiors (this))
6891 {
6892 if (get_remote_inferior (inf)->may_wildcard_vcont)
6893 {
6894 vcont_builder.push_action (ptid_t (inf->pid),
6895 false, GDB_SIGNAL_0);
6896 }
6897 }
6898 }
6899 }
6900
6901 vcont_builder.flush ();
6902 }
6903
6904 /* Implementation of target_has_pending_events. */
6905
6906 bool
6907 remote_target::has_pending_events ()
6908 {
6909 if (target_can_async_p ())
6910 {
6911 remote_state *rs = get_remote_state ();
6912
6913 if (async_event_handler_marked (rs->remote_async_inferior_event_token))
6914 return true;
6915
6916 /* Note that BUFCNT can be negative, indicating sticky
6917 error. */
6918 if (rs->remote_desc->bufcnt != 0)
6919 return true;
6920 }
6921 return false;
6922 }
6923
6924 \f
6925
6926 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6927 thread, all threads of a remote process, or all threads of all
6928 processes. */
6929
6930 void
6931 remote_target::remote_stop_ns (ptid_t ptid)
6932 {
6933 struct remote_state *rs = get_remote_state ();
6934 char *p = rs->buf.data ();
6935 char *endp = p + get_remote_packet_size ();
6936
6937 /* If any thread that needs to stop was resumed but pending a vCont
6938 resume, generate a phony stop_reply. However, first check
6939 whether the thread wasn't resumed with a signal. Generating a
6940 phony stop in that case would result in losing the signal. */
6941 bool needs_commit = false;
6942 for (thread_info *tp : all_non_exited_threads (this, ptid))
6943 {
6944 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6945
6946 if (remote_thr->get_resume_state ()
6947 == resume_state::RESUMED_PENDING_VCONT)
6948 {
6949 const resumed_pending_vcont_info &info
6950 = remote_thr->resumed_pending_vcont_info ();
6951 if (info.sig != GDB_SIGNAL_0)
6952 {
6953 /* This signal must be forwarded to the inferior. We
6954 could commit-resume just this thread, but its simpler
6955 to just commit-resume everything. */
6956 needs_commit = true;
6957 break;
6958 }
6959 }
6960 }
6961
6962 if (needs_commit)
6963 commit_resumed ();
6964 else
6965 for (thread_info *tp : all_non_exited_threads (this, ptid))
6966 {
6967 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6968
6969 if (remote_thr->get_resume_state ()
6970 == resume_state::RESUMED_PENDING_VCONT)
6971 {
6972 remote_debug_printf ("Enqueueing phony stop reply for thread pending "
6973 "vCont-resume (%d, %ld, %s)", tp->ptid.pid(),
6974 tp->ptid.lwp (),
6975 pulongest (tp->ptid.tid ()));
6976
6977 /* Check that the thread wasn't resumed with a signal.
6978 Generating a phony stop would result in losing the
6979 signal. */
6980 const resumed_pending_vcont_info &info
6981 = remote_thr->resumed_pending_vcont_info ();
6982 gdb_assert (info.sig == GDB_SIGNAL_0);
6983
6984 stop_reply *sr = new stop_reply ();
6985 sr->ptid = tp->ptid;
6986 sr->rs = rs;
6987 sr->ws.set_stopped (GDB_SIGNAL_0);
6988 sr->arch = tp->inf->gdbarch;
6989 sr->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6990 sr->watch_data_address = 0;
6991 sr->core = 0;
6992 this->push_stop_reply (sr);
6993
6994 /* Pretend that this thread was actually resumed on the
6995 remote target, then stopped. If we leave it in the
6996 RESUMED_PENDING_VCONT state and the commit_resumed
6997 method is called while the stop reply is still in the
6998 queue, we'll end up reporting a stop event to the core
6999 for that thread while it is running on the remote
7000 target... that would be bad. */
7001 remote_thr->set_resumed ();
7002 }
7003 }
7004
7005 /* FIXME: This supports_vCont_probed check is a workaround until
7006 packet_support is per-connection. */
7007 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
7008 || !rs->supports_vCont_probed)
7009 remote_vcont_probe ();
7010
7011 if (!rs->supports_vCont.t)
7012 error (_("Remote server does not support stopping threads"));
7013
7014 if (ptid == minus_one_ptid
7015 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
7016 p += xsnprintf (p, endp - p, "vCont;t");
7017 else
7018 {
7019 ptid_t nptid;
7020
7021 p += xsnprintf (p, endp - p, "vCont;t:");
7022
7023 if (ptid.is_pid ())
7024 /* All (-1) threads of process. */
7025 nptid = ptid_t (ptid.pid (), -1);
7026 else
7027 {
7028 /* Small optimization: if we already have a stop reply for
7029 this thread, no use in telling the stub we want this
7030 stopped. */
7031 if (peek_stop_reply (ptid))
7032 return;
7033
7034 nptid = ptid;
7035 }
7036
7037 write_ptid (p, endp, nptid);
7038 }
7039
7040 /* In non-stop, we get an immediate OK reply. The stop reply will
7041 come in asynchronously by notification. */
7042 putpkt (rs->buf);
7043 getpkt (&rs->buf, 0);
7044 if (strcmp (rs->buf.data (), "OK") != 0)
7045 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
7046 rs->buf.data ());
7047 }
7048
7049 /* All-stop version of target_interrupt. Sends a break or a ^C to
7050 interrupt the remote target. It is undefined which thread of which
7051 process reports the interrupt. */
7052
7053 void
7054 remote_target::remote_interrupt_as ()
7055 {
7056 struct remote_state *rs = get_remote_state ();
7057
7058 rs->ctrlc_pending_p = 1;
7059
7060 /* If the inferior is stopped already, but the core didn't know
7061 about it yet, just ignore the request. The pending stop events
7062 will be collected in remote_wait. */
7063 if (stop_reply_queue_length () > 0)
7064 return;
7065
7066 /* Send interrupt_sequence to remote target. */
7067 send_interrupt_sequence ();
7068 }
7069
7070 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
7071 the remote target. It is undefined which thread of which process
7072 reports the interrupt. Throws an error if the packet is not
7073 supported by the server. */
7074
7075 void
7076 remote_target::remote_interrupt_ns ()
7077 {
7078 struct remote_state *rs = get_remote_state ();
7079 char *p = rs->buf.data ();
7080 char *endp = p + get_remote_packet_size ();
7081
7082 xsnprintf (p, endp - p, "vCtrlC");
7083
7084 /* In non-stop, we get an immediate OK reply. The stop reply will
7085 come in asynchronously by notification. */
7086 putpkt (rs->buf);
7087 getpkt (&rs->buf, 0);
7088
7089 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
7090 {
7091 case PACKET_OK:
7092 break;
7093 case PACKET_UNKNOWN:
7094 error (_("No support for interrupting the remote target."));
7095 case PACKET_ERROR:
7096 error (_("Interrupting target failed: %s"), rs->buf.data ());
7097 }
7098 }
7099
7100 /* Implement the to_stop function for the remote targets. */
7101
7102 void
7103 remote_target::stop (ptid_t ptid)
7104 {
7105 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7106
7107 if (target_is_non_stop_p ())
7108 remote_stop_ns (ptid);
7109 else
7110 {
7111 /* We don't currently have a way to transparently pause the
7112 remote target in all-stop mode. Interrupt it instead. */
7113 remote_interrupt_as ();
7114 }
7115 }
7116
7117 /* Implement the to_interrupt function for the remote targets. */
7118
7119 void
7120 remote_target::interrupt ()
7121 {
7122 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7123
7124 if (target_is_non_stop_p ())
7125 remote_interrupt_ns ();
7126 else
7127 remote_interrupt_as ();
7128 }
7129
7130 /* Implement the to_pass_ctrlc function for the remote targets. */
7131
7132 void
7133 remote_target::pass_ctrlc ()
7134 {
7135 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7136
7137 struct remote_state *rs = get_remote_state ();
7138
7139 /* If we're starting up, we're not fully synced yet. Quit
7140 immediately. */
7141 if (rs->starting_up)
7142 quit ();
7143 /* If ^C has already been sent once, offer to disconnect. */
7144 else if (rs->ctrlc_pending_p)
7145 interrupt_query ();
7146 else
7147 target_interrupt ();
7148 }
7149
7150 /* Ask the user what to do when an interrupt is received. */
7151
7152 void
7153 remote_target::interrupt_query ()
7154 {
7155 struct remote_state *rs = get_remote_state ();
7156
7157 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
7158 {
7159 if (query (_("The target is not responding to interrupt requests.\n"
7160 "Stop debugging it? ")))
7161 {
7162 remote_unpush_target (this);
7163 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
7164 }
7165 }
7166 else
7167 {
7168 if (query (_("Interrupted while waiting for the program.\n"
7169 "Give up waiting? ")))
7170 quit ();
7171 }
7172 }
7173
7174 /* Enable/disable target terminal ownership. Most targets can use
7175 terminal groups to control terminal ownership. Remote targets are
7176 different in that explicit transfer of ownership to/from GDB/target
7177 is required. */
7178
7179 void
7180 remote_target::terminal_inferior ()
7181 {
7182 /* NOTE: At this point we could also register our selves as the
7183 recipient of all input. Any characters typed could then be
7184 passed on down to the target. */
7185 }
7186
7187 void
7188 remote_target::terminal_ours ()
7189 {
7190 }
7191
7192 static void
7193 remote_console_output (const char *msg)
7194 {
7195 const char *p;
7196
7197 for (p = msg; p[0] && p[1]; p += 2)
7198 {
7199 char tb[2];
7200 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
7201
7202 tb[0] = c;
7203 tb[1] = 0;
7204 gdb_stdtarg->puts (tb);
7205 }
7206 gdb_stdtarg->flush ();
7207 }
7208
7209 /* Return the length of the stop reply queue. */
7210
7211 int
7212 remote_target::stop_reply_queue_length ()
7213 {
7214 remote_state *rs = get_remote_state ();
7215 return rs->stop_reply_queue.size ();
7216 }
7217
7218 static void
7219 remote_notif_stop_parse (remote_target *remote,
7220 struct notif_client *self, const char *buf,
7221 struct notif_event *event)
7222 {
7223 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7224 }
7225
7226 static void
7227 remote_notif_stop_ack (remote_target *remote,
7228 struct notif_client *self, const char *buf,
7229 struct notif_event *event)
7230 {
7231 struct stop_reply *stop_reply = (struct stop_reply *) event;
7232
7233 /* acknowledge */
7234 putpkt (remote, self->ack_command);
7235
7236 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7237 the notification. It was left in the queue because we need to
7238 acknowledge it and pull the rest of the notifications out. */
7239 if (stop_reply->ws.kind () != TARGET_WAITKIND_IGNORE)
7240 remote->push_stop_reply (stop_reply);
7241 }
7242
7243 static int
7244 remote_notif_stop_can_get_pending_events (remote_target *remote,
7245 struct notif_client *self)
7246 {
7247 /* We can't get pending events in remote_notif_process for
7248 notification stop, and we have to do this in remote_wait_ns
7249 instead. If we fetch all queued events from stub, remote stub
7250 may exit and we have no chance to process them back in
7251 remote_wait_ns. */
7252 remote_state *rs = remote->get_remote_state ();
7253 mark_async_event_handler (rs->remote_async_inferior_event_token);
7254 return 0;
7255 }
7256
7257 stop_reply::~stop_reply ()
7258 {
7259 for (cached_reg_t &reg : regcache)
7260 xfree (reg.data);
7261 }
7262
7263 static notif_event_up
7264 remote_notif_stop_alloc_reply ()
7265 {
7266 return notif_event_up (new struct stop_reply ());
7267 }
7268
7269 /* A client of notification Stop. */
7270
7271 struct notif_client notif_client_stop =
7272 {
7273 "Stop",
7274 "vStopped",
7275 remote_notif_stop_parse,
7276 remote_notif_stop_ack,
7277 remote_notif_stop_can_get_pending_events,
7278 remote_notif_stop_alloc_reply,
7279 REMOTE_NOTIF_STOP,
7280 };
7281
7282 /* If CONTEXT contains any fork child threads that have not been
7283 reported yet, remove them from the CONTEXT list. If such a
7284 thread exists it is because we are stopped at a fork catchpoint
7285 and have not yet called follow_fork, which will set up the
7286 host-side data structures for the new process. */
7287
7288 void
7289 remote_target::remove_new_fork_children (threads_listing_context *context)
7290 {
7291 struct notif_client *notif = &notif_client_stop;
7292
7293 /* For any threads stopped at a fork event, remove the corresponding
7294 fork child threads from the CONTEXT list. */
7295 for (thread_info *thread : all_non_exited_threads (this))
7296 {
7297 const target_waitstatus *ws = thread_pending_fork_status (thread);
7298
7299 if (ws == nullptr)
7300 continue;
7301
7302 context->remove_thread (ws->child_ptid ());
7303 }
7304
7305 /* Check for any pending fork events (not reported or processed yet)
7306 in process PID and remove those fork child threads from the
7307 CONTEXT list as well. */
7308 remote_notif_get_pending_events (notif);
7309 for (auto &event : get_remote_state ()->stop_reply_queue)
7310 if (event->ws.kind () == TARGET_WAITKIND_FORKED
7311 || event->ws.kind () == TARGET_WAITKIND_VFORKED
7312 || event->ws.kind () == TARGET_WAITKIND_THREAD_EXITED)
7313 context->remove_thread (event->ws.child_ptid ());
7314 }
7315
7316 /* Check whether any event pending in the vStopped queue would prevent a
7317 global or process wildcard vCont action. Set *may_global_wildcard to
7318 false if we can't do a global wildcard (vCont;c), and clear the event
7319 inferior's may_wildcard_vcont flag if we can't do a process-wide
7320 wildcard resume (vCont;c:pPID.-1). */
7321
7322 void
7323 remote_target::check_pending_events_prevent_wildcard_vcont
7324 (bool *may_global_wildcard)
7325 {
7326 struct notif_client *notif = &notif_client_stop;
7327
7328 remote_notif_get_pending_events (notif);
7329 for (auto &event : get_remote_state ()->stop_reply_queue)
7330 {
7331 if (event->ws.kind () == TARGET_WAITKIND_NO_RESUMED
7332 || event->ws.kind () == TARGET_WAITKIND_NO_HISTORY)
7333 continue;
7334
7335 if (event->ws.kind () == TARGET_WAITKIND_FORKED
7336 || event->ws.kind () == TARGET_WAITKIND_VFORKED)
7337 *may_global_wildcard = false;
7338
7339 /* This may be the first time we heard about this process.
7340 Regardless, we must not do a global wildcard resume, otherwise
7341 we'd resume this process too. */
7342 *may_global_wildcard = false;
7343 if (event->ptid != null_ptid)
7344 {
7345 inferior *inf = find_inferior_ptid (this, event->ptid);
7346 if (inf != NULL)
7347 get_remote_inferior (inf)->may_wildcard_vcont = false;
7348 }
7349 }
7350 }
7351
7352 /* Discard all pending stop replies of inferior INF. */
7353
7354 void
7355 remote_target::discard_pending_stop_replies (struct inferior *inf)
7356 {
7357 struct stop_reply *reply;
7358 struct remote_state *rs = get_remote_state ();
7359 struct remote_notif_state *rns = rs->notif_state;
7360
7361 /* This function can be notified when an inferior exists. When the
7362 target is not remote, the notification state is NULL. */
7363 if (rs->remote_desc == NULL)
7364 return;
7365
7366 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7367
7368 /* Discard the in-flight notification. */
7369 if (reply != NULL && reply->ptid.pid () == inf->pid)
7370 {
7371 /* Leave the notification pending, since the server expects that
7372 we acknowledge it with vStopped. But clear its contents, so
7373 that later on when we acknowledge it, we also discard it. */
7374 remote_debug_printf
7375 ("discarding in-flight notification: ptid: %s, ws: %s\n",
7376 reply->ptid.to_string().c_str(),
7377 reply->ws.to_string ().c_str ());
7378 reply->ws.set_ignore ();
7379 }
7380
7381 /* Discard the stop replies we have already pulled with
7382 vStopped. */
7383 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7384 rs->stop_reply_queue.end (),
7385 [=] (const stop_reply_up &event)
7386 {
7387 return event->ptid.pid () == inf->pid;
7388 });
7389 for (auto it = iter; it != rs->stop_reply_queue.end (); ++it)
7390 remote_debug_printf
7391 ("discarding queued stop reply: ptid: %s, ws: %s\n",
7392 reply->ptid.to_string().c_str(),
7393 reply->ws.to_string ().c_str ());
7394 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7395 }
7396
7397 /* Discard the stop replies for RS in stop_reply_queue. */
7398
7399 void
7400 remote_target::discard_pending_stop_replies_in_queue ()
7401 {
7402 remote_state *rs = get_remote_state ();
7403
7404 /* Discard the stop replies we have already pulled with
7405 vStopped. */
7406 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7407 rs->stop_reply_queue.end (),
7408 [=] (const stop_reply_up &event)
7409 {
7410 return event->rs == rs;
7411 });
7412 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7413 }
7414
7415 /* Remove the first reply in 'stop_reply_queue' which matches
7416 PTID. */
7417
7418 struct stop_reply *
7419 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7420 {
7421 remote_state *rs = get_remote_state ();
7422
7423 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7424 rs->stop_reply_queue.end (),
7425 [=] (const stop_reply_up &event)
7426 {
7427 return event->ptid.matches (ptid);
7428 });
7429 struct stop_reply *result;
7430 if (iter == rs->stop_reply_queue.end ())
7431 result = nullptr;
7432 else
7433 {
7434 result = iter->release ();
7435 rs->stop_reply_queue.erase (iter);
7436 }
7437
7438 if (notif_debug)
7439 fprintf_unfiltered (gdb_stdlog,
7440 "notif: discard queued event: 'Stop' in %s\n",
7441 target_pid_to_str (ptid).c_str ());
7442
7443 return result;
7444 }
7445
7446 /* Look for a queued stop reply belonging to PTID. If one is found,
7447 remove it from the queue, and return it. Returns NULL if none is
7448 found. If there are still queued events left to process, tell the
7449 event loop to get back to target_wait soon. */
7450
7451 struct stop_reply *
7452 remote_target::queued_stop_reply (ptid_t ptid)
7453 {
7454 remote_state *rs = get_remote_state ();
7455 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7456
7457 if (!rs->stop_reply_queue.empty () && target_can_async_p ())
7458 {
7459 /* There's still at least an event left. */
7460 mark_async_event_handler (rs->remote_async_inferior_event_token);
7461 }
7462
7463 return r;
7464 }
7465
7466 /* Push a fully parsed stop reply in the stop reply queue. Since we
7467 know that we now have at least one queued event left to pass to the
7468 core side, tell the event loop to get back to target_wait soon. */
7469
7470 void
7471 remote_target::push_stop_reply (struct stop_reply *new_event)
7472 {
7473 remote_state *rs = get_remote_state ();
7474 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7475
7476 if (notif_debug)
7477 fprintf_unfiltered (gdb_stdlog,
7478 "notif: push 'Stop' %s to queue %d\n",
7479 target_pid_to_str (new_event->ptid).c_str (),
7480 int (rs->stop_reply_queue.size ()));
7481
7482 /* Mark the pending event queue only if async mode is currently enabled.
7483 If async mode is not currently enabled, then, if it later becomes
7484 enabled, and there are events in this queue, we will mark the event
7485 token at that point, see remote_target::async. */
7486 if (target_is_async_p ())
7487 mark_async_event_handler (rs->remote_async_inferior_event_token);
7488 }
7489
7490 /* Returns true if we have a stop reply for PTID. */
7491
7492 int
7493 remote_target::peek_stop_reply (ptid_t ptid)
7494 {
7495 remote_state *rs = get_remote_state ();
7496 for (auto &event : rs->stop_reply_queue)
7497 if (ptid == event->ptid
7498 && event->ws.kind () == TARGET_WAITKIND_STOPPED)
7499 return 1;
7500 return 0;
7501 }
7502
7503 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7504 starting with P and ending with PEND matches PREFIX. */
7505
7506 static int
7507 strprefix (const char *p, const char *pend, const char *prefix)
7508 {
7509 for ( ; p < pend; p++, prefix++)
7510 if (*p != *prefix)
7511 return 0;
7512 return *prefix == '\0';
7513 }
7514
7515 /* Parse the stop reply in BUF. Either the function succeeds, and the
7516 result is stored in EVENT, or throws an error. */
7517
7518 void
7519 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7520 {
7521 remote_arch_state *rsa = NULL;
7522 ULONGEST addr;
7523 const char *p;
7524 int skipregs = 0;
7525
7526 event->ptid = null_ptid;
7527 event->rs = get_remote_state ();
7528 event->ws.set_ignore ();
7529 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7530 event->regcache.clear ();
7531 event->core = -1;
7532
7533 switch (buf[0])
7534 {
7535 case 'T': /* Status with PC, SP, FP, ... */
7536 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7537 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7538 ss = signal number
7539 n... = register number
7540 r... = register contents
7541 */
7542
7543 p = &buf[3]; /* after Txx */
7544 while (*p)
7545 {
7546 const char *p1;
7547 int fieldsize;
7548
7549 p1 = strchr (p, ':');
7550 if (p1 == NULL)
7551 error (_("Malformed packet(a) (missing colon): %s\n\
7552 Packet: '%s'\n"),
7553 p, buf);
7554 if (p == p1)
7555 error (_("Malformed packet(a) (missing register number): %s\n\
7556 Packet: '%s'\n"),
7557 p, buf);
7558
7559 /* Some "registers" are actually extended stop information.
7560 Note if you're adding a new entry here: GDB 7.9 and
7561 earlier assume that all register "numbers" that start
7562 with an hex digit are real register numbers. Make sure
7563 the server only sends such a packet if it knows the
7564 client understands it. */
7565
7566 if (strprefix (p, p1, "thread"))
7567 event->ptid = read_ptid (++p1, &p);
7568 else if (strprefix (p, p1, "syscall_entry"))
7569 {
7570 ULONGEST sysno;
7571
7572 p = unpack_varlen_hex (++p1, &sysno);
7573 event->ws.set_syscall_entry ((int) sysno);
7574 }
7575 else if (strprefix (p, p1, "syscall_return"))
7576 {
7577 ULONGEST sysno;
7578
7579 p = unpack_varlen_hex (++p1, &sysno);
7580 event->ws.set_syscall_return ((int) sysno);
7581 }
7582 else if (strprefix (p, p1, "watch")
7583 || strprefix (p, p1, "rwatch")
7584 || strprefix (p, p1, "awatch"))
7585 {
7586 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7587 p = unpack_varlen_hex (++p1, &addr);
7588 event->watch_data_address = (CORE_ADDR) addr;
7589 }
7590 else if (strprefix (p, p1, "swbreak"))
7591 {
7592 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7593
7594 /* Make sure the stub doesn't forget to indicate support
7595 with qSupported. */
7596 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7597 error (_("Unexpected swbreak stop reason"));
7598
7599 /* The value part is documented as "must be empty",
7600 though we ignore it, in case we ever decide to make
7601 use of it in a backward compatible way. */
7602 p = strchrnul (p1 + 1, ';');
7603 }
7604 else if (strprefix (p, p1, "hwbreak"))
7605 {
7606 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7607
7608 /* Make sure the stub doesn't forget to indicate support
7609 with qSupported. */
7610 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7611 error (_("Unexpected hwbreak stop reason"));
7612
7613 /* See above. */
7614 p = strchrnul (p1 + 1, ';');
7615 }
7616 else if (strprefix (p, p1, "library"))
7617 {
7618 event->ws.set_loaded ();
7619 p = strchrnul (p1 + 1, ';');
7620 }
7621 else if (strprefix (p, p1, "replaylog"))
7622 {
7623 event->ws.set_no_history ();
7624 /* p1 will indicate "begin" or "end", but it makes
7625 no difference for now, so ignore it. */
7626 p = strchrnul (p1 + 1, ';');
7627 }
7628 else if (strprefix (p, p1, "core"))
7629 {
7630 ULONGEST c;
7631
7632 p = unpack_varlen_hex (++p1, &c);
7633 event->core = c;
7634 }
7635 else if (strprefix (p, p1, "fork"))
7636 event->ws.set_forked (read_ptid (++p1, &p));
7637 else if (strprefix (p, p1, "vfork"))
7638 event->ws.set_vforked (read_ptid (++p1, &p));
7639 else if (strprefix (p, p1, "vforkdone"))
7640 {
7641 event->ws.set_vfork_done ();
7642 p = strchrnul (p1 + 1, ';');
7643 }
7644 else if (strprefix (p, p1, "exec"))
7645 {
7646 ULONGEST ignored;
7647 int pathlen;
7648
7649 /* Determine the length of the execd pathname. */
7650 p = unpack_varlen_hex (++p1, &ignored);
7651 pathlen = (p - p1) / 2;
7652
7653 /* Save the pathname for event reporting and for
7654 the next run command. */
7655 gdb::unique_xmalloc_ptr<char> pathname
7656 ((char *) xmalloc (pathlen + 1));
7657 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7658 pathname.get ()[pathlen] = '\0';
7659
7660 /* This is freed during event handling. */
7661 event->ws.set_execd (std::move (pathname));
7662
7663 /* Skip the registers included in this packet, since
7664 they may be for an architecture different from the
7665 one used by the original program. */
7666 skipregs = 1;
7667 }
7668 else if (strprefix (p, p1, "create"))
7669 {
7670 event->ws.set_thread_created ();
7671 p = strchrnul (p1 + 1, ';');
7672 }
7673 else
7674 {
7675 ULONGEST pnum;
7676 const char *p_temp;
7677
7678 if (skipregs)
7679 {
7680 p = strchrnul (p1 + 1, ';');
7681 p++;
7682 continue;
7683 }
7684
7685 /* Maybe a real ``P'' register number. */
7686 p_temp = unpack_varlen_hex (p, &pnum);
7687 /* If the first invalid character is the colon, we got a
7688 register number. Otherwise, it's an unknown stop
7689 reason. */
7690 if (p_temp == p1)
7691 {
7692 /* If we haven't parsed the event's thread yet, find
7693 it now, in order to find the architecture of the
7694 reported expedited registers. */
7695 if (event->ptid == null_ptid)
7696 {
7697 /* If there is no thread-id information then leave
7698 the event->ptid as null_ptid. Later in
7699 process_stop_reply we will pick a suitable
7700 thread. */
7701 const char *thr = strstr (p1 + 1, ";thread:");
7702 if (thr != NULL)
7703 event->ptid = read_ptid (thr + strlen (";thread:"),
7704 NULL);
7705 }
7706
7707 if (rsa == NULL)
7708 {
7709 inferior *inf
7710 = (event->ptid == null_ptid
7711 ? NULL
7712 : find_inferior_ptid (this, event->ptid));
7713 /* If this is the first time we learn anything
7714 about this process, skip the registers
7715 included in this packet, since we don't yet
7716 know which architecture to use to parse them.
7717 We'll determine the architecture later when
7718 we process the stop reply and retrieve the
7719 target description, via
7720 remote_notice_new_inferior ->
7721 post_create_inferior. */
7722 if (inf == NULL)
7723 {
7724 p = strchrnul (p1 + 1, ';');
7725 p++;
7726 continue;
7727 }
7728
7729 event->arch = inf->gdbarch;
7730 rsa = event->rs->get_remote_arch_state (event->arch);
7731 }
7732
7733 packet_reg *reg
7734 = packet_reg_from_pnum (event->arch, rsa, pnum);
7735 cached_reg_t cached_reg;
7736
7737 if (reg == NULL)
7738 error (_("Remote sent bad register number %s: %s\n\
7739 Packet: '%s'\n"),
7740 hex_string (pnum), p, buf);
7741
7742 cached_reg.num = reg->regnum;
7743 cached_reg.data = (gdb_byte *)
7744 xmalloc (register_size (event->arch, reg->regnum));
7745
7746 p = p1 + 1;
7747 fieldsize = hex2bin (p, cached_reg.data,
7748 register_size (event->arch, reg->regnum));
7749 p += 2 * fieldsize;
7750 if (fieldsize < register_size (event->arch, reg->regnum))
7751 warning (_("Remote reply is too short: %s"), buf);
7752
7753 event->regcache.push_back (cached_reg);
7754 }
7755 else
7756 {
7757 /* Not a number. Silently skip unknown optional
7758 info. */
7759 p = strchrnul (p1 + 1, ';');
7760 }
7761 }
7762
7763 if (*p != ';')
7764 error (_("Remote register badly formatted: %s\nhere: %s"),
7765 buf, p);
7766 ++p;
7767 }
7768
7769 if (event->ws.kind () != TARGET_WAITKIND_IGNORE)
7770 break;
7771
7772 /* fall through */
7773 case 'S': /* Old style status, just signal only. */
7774 {
7775 int sig;
7776
7777 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7778 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7779 event->ws.set_stopped ((enum gdb_signal) sig);
7780 else
7781 event->ws.set_stopped (GDB_SIGNAL_UNKNOWN);
7782 }
7783 break;
7784 case 'w': /* Thread exited. */
7785 {
7786 ULONGEST value;
7787
7788 p = unpack_varlen_hex (&buf[1], &value);
7789 event->ws.set_thread_exited (value);
7790 if (*p != ';')
7791 error (_("stop reply packet badly formatted: %s"), buf);
7792 event->ptid = read_ptid (++p, NULL);
7793 break;
7794 }
7795 case 'W': /* Target exited. */
7796 case 'X':
7797 {
7798 ULONGEST value;
7799
7800 /* GDB used to accept only 2 hex chars here. Stubs should
7801 only send more if they detect GDB supports multi-process
7802 support. */
7803 p = unpack_varlen_hex (&buf[1], &value);
7804
7805 if (buf[0] == 'W')
7806 {
7807 /* The remote process exited. */
7808 event->ws.set_exited (value);
7809 }
7810 else
7811 {
7812 /* The remote process exited with a signal. */
7813 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7814 event->ws.set_signalled ((enum gdb_signal) value);
7815 else
7816 event->ws.set_signalled (GDB_SIGNAL_UNKNOWN);
7817 }
7818
7819 /* If no process is specified, return null_ptid, and let the
7820 caller figure out the right process to use. */
7821 int pid = 0;
7822 if (*p == '\0')
7823 ;
7824 else if (*p == ';')
7825 {
7826 p++;
7827
7828 if (*p == '\0')
7829 ;
7830 else if (startswith (p, "process:"))
7831 {
7832 ULONGEST upid;
7833
7834 p += sizeof ("process:") - 1;
7835 unpack_varlen_hex (p, &upid);
7836 pid = upid;
7837 }
7838 else
7839 error (_("unknown stop reply packet: %s"), buf);
7840 }
7841 else
7842 error (_("unknown stop reply packet: %s"), buf);
7843 event->ptid = ptid_t (pid);
7844 }
7845 break;
7846 case 'N':
7847 event->ws.set_no_resumed ();
7848 event->ptid = minus_one_ptid;
7849 break;
7850 }
7851 }
7852
7853 /* When the stub wants to tell GDB about a new notification reply, it
7854 sends a notification (%Stop, for example). Those can come it at
7855 any time, hence, we have to make sure that any pending
7856 putpkt/getpkt sequence we're making is finished, before querying
7857 the stub for more events with the corresponding ack command
7858 (vStopped, for example). E.g., if we started a vStopped sequence
7859 immediately upon receiving the notification, something like this
7860 could happen:
7861
7862 1.1) --> Hg 1
7863 1.2) <-- OK
7864 1.3) --> g
7865 1.4) <-- %Stop
7866 1.5) --> vStopped
7867 1.6) <-- (registers reply to step #1.3)
7868
7869 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7870 query.
7871
7872 To solve this, whenever we parse a %Stop notification successfully,
7873 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7874 doing whatever we were doing:
7875
7876 2.1) --> Hg 1
7877 2.2) <-- OK
7878 2.3) --> g
7879 2.4) <-- %Stop
7880 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7881 2.5) <-- (registers reply to step #2.3)
7882
7883 Eventually after step #2.5, we return to the event loop, which
7884 notices there's an event on the
7885 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7886 associated callback --- the function below. At this point, we're
7887 always safe to start a vStopped sequence. :
7888
7889 2.6) --> vStopped
7890 2.7) <-- T05 thread:2
7891 2.8) --> vStopped
7892 2.9) --> OK
7893 */
7894
7895 void
7896 remote_target::remote_notif_get_pending_events (notif_client *nc)
7897 {
7898 struct remote_state *rs = get_remote_state ();
7899
7900 if (rs->notif_state->pending_event[nc->id] != NULL)
7901 {
7902 if (notif_debug)
7903 fprintf_unfiltered (gdb_stdlog,
7904 "notif: process: '%s' ack pending event\n",
7905 nc->name);
7906
7907 /* acknowledge */
7908 nc->ack (this, nc, rs->buf.data (),
7909 rs->notif_state->pending_event[nc->id]);
7910 rs->notif_state->pending_event[nc->id] = NULL;
7911
7912 while (1)
7913 {
7914 getpkt (&rs->buf, 0);
7915 if (strcmp (rs->buf.data (), "OK") == 0)
7916 break;
7917 else
7918 remote_notif_ack (this, nc, rs->buf.data ());
7919 }
7920 }
7921 else
7922 {
7923 if (notif_debug)
7924 fprintf_unfiltered (gdb_stdlog,
7925 "notif: process: '%s' no pending reply\n",
7926 nc->name);
7927 }
7928 }
7929
7930 /* Wrapper around remote_target::remote_notif_get_pending_events to
7931 avoid having to export the whole remote_target class. */
7932
7933 void
7934 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7935 {
7936 remote->remote_notif_get_pending_events (nc);
7937 }
7938
7939 /* Called from process_stop_reply when the stop packet we are responding
7940 to didn't include a process-id or thread-id. STATUS is the stop event
7941 we are responding to.
7942
7943 It is the task of this function to select a suitable thread (or process)
7944 and return its ptid, this is the thread (or process) we will assume the
7945 stop event came from.
7946
7947 In some cases there isn't really any choice about which thread (or
7948 process) is selected, a basic remote with a single process containing a
7949 single thread might choose not to send any process-id or thread-id in
7950 its stop packets, this function will select and return the one and only
7951 thread.
7952
7953 However, if a target supports multiple threads (or processes) and still
7954 doesn't include a thread-id (or process-id) in its stop packet then
7955 first, this is a badly behaving target, and second, we're going to have
7956 to select a thread (or process) at random and use that. This function
7957 will print a warning to the user if it detects that there is the
7958 possibility that GDB is guessing which thread (or process) to
7959 report.
7960
7961 Note that this is called before GDB fetches the updated thread list from the
7962 target. So it's possible for the stop reply to be ambiguous and for GDB to
7963 not realize it. For example, if there's initially one thread, the target
7964 spawns a second thread, and then sends a stop reply without an id that
7965 concerns the first thread. GDB will assume the stop reply is about the
7966 first thread - the only thread it knows about - without printing a warning.
7967 Anyway, if the remote meant for the stop reply to be about the second thread,
7968 then it would be really broken, because GDB doesn't know about that thread
7969 yet. */
7970
7971 ptid_t
7972 remote_target::select_thread_for_ambiguous_stop_reply
7973 (const target_waitstatus &status)
7974 {
7975 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7976
7977 /* Some stop events apply to all threads in an inferior, while others
7978 only apply to a single thread. */
7979 bool process_wide_stop
7980 = (status.kind () == TARGET_WAITKIND_EXITED
7981 || status.kind () == TARGET_WAITKIND_SIGNALLED);
7982
7983 remote_debug_printf ("process_wide_stop = %d", process_wide_stop);
7984
7985 thread_info *first_resumed_thread = nullptr;
7986 bool ambiguous = false;
7987
7988 /* Consider all non-exited threads of the target, find the first resumed
7989 one. */
7990 for (thread_info *thr : all_non_exited_threads (this))
7991 {
7992 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7993
7994 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7995 continue;
7996
7997 if (first_resumed_thread == nullptr)
7998 first_resumed_thread = thr;
7999 else if (!process_wide_stop
8000 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
8001 ambiguous = true;
8002 }
8003
8004 gdb_assert (first_resumed_thread != nullptr);
8005
8006 remote_debug_printf ("first resumed thread is %s",
8007 pid_to_str (first_resumed_thread->ptid).c_str ());
8008 remote_debug_printf ("is this guess ambiguous? = %d", ambiguous);
8009
8010 /* Warn if the remote target is sending ambiguous stop replies. */
8011 if (ambiguous)
8012 {
8013 static bool warned = false;
8014
8015 if (!warned)
8016 {
8017 /* If you are seeing this warning then the remote target has
8018 stopped without specifying a thread-id, but the target
8019 does have multiple threads (or inferiors), and so GDB is
8020 having to guess which thread stopped.
8021
8022 Examples of what might cause this are the target sending
8023 and 'S' stop packet, or a 'T' stop packet and not
8024 including a thread-id.
8025
8026 Additionally, the target might send a 'W' or 'X packet
8027 without including a process-id, when the target has
8028 multiple running inferiors. */
8029 if (process_wide_stop)
8030 warning (_("multi-inferior target stopped without "
8031 "sending a process-id, using first "
8032 "non-exited inferior"));
8033 else
8034 warning (_("multi-threaded target stopped without "
8035 "sending a thread-id, using first "
8036 "non-exited thread"));
8037 warned = true;
8038 }
8039 }
8040
8041 /* If this is a stop for all threads then don't use a particular threads
8042 ptid, instead create a new ptid where only the pid field is set. */
8043 if (process_wide_stop)
8044 return ptid_t (first_resumed_thread->ptid.pid ());
8045 else
8046 return first_resumed_thread->ptid;
8047 }
8048
8049 /* Called when it is decided that STOP_REPLY holds the info of the
8050 event that is to be returned to the core. This function always
8051 destroys STOP_REPLY. */
8052
8053 ptid_t
8054 remote_target::process_stop_reply (struct stop_reply *stop_reply,
8055 struct target_waitstatus *status)
8056 {
8057 *status = stop_reply->ws;
8058 ptid_t ptid = stop_reply->ptid;
8059
8060 /* If no thread/process was reported by the stub then select a suitable
8061 thread/process. */
8062 if (ptid == null_ptid)
8063 ptid = select_thread_for_ambiguous_stop_reply (*status);
8064 gdb_assert (ptid != null_ptid);
8065
8066 if (status->kind () != TARGET_WAITKIND_EXITED
8067 && status->kind () != TARGET_WAITKIND_SIGNALLED
8068 && status->kind () != TARGET_WAITKIND_NO_RESUMED)
8069 {
8070 /* Expedited registers. */
8071 if (!stop_reply->regcache.empty ())
8072 {
8073 struct regcache *regcache
8074 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
8075
8076 for (cached_reg_t &reg : stop_reply->regcache)
8077 {
8078 regcache->raw_supply (reg.num, reg.data);
8079 xfree (reg.data);
8080 }
8081
8082 stop_reply->regcache.clear ();
8083 }
8084
8085 remote_notice_new_inferior (ptid, false);
8086 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
8087 remote_thr->core = stop_reply->core;
8088 remote_thr->stop_reason = stop_reply->stop_reason;
8089 remote_thr->watch_data_address = stop_reply->watch_data_address;
8090
8091 if (target_is_non_stop_p ())
8092 {
8093 /* If the target works in non-stop mode, a stop-reply indicates that
8094 only this thread stopped. */
8095 remote_thr->set_not_resumed ();
8096 }
8097 else
8098 {
8099 /* If the target works in all-stop mode, a stop-reply indicates that
8100 all the target's threads stopped. */
8101 for (thread_info *tp : all_non_exited_threads (this))
8102 get_remote_thread_info (tp)->set_not_resumed ();
8103 }
8104 }
8105
8106 delete stop_reply;
8107 return ptid;
8108 }
8109
8110 /* The non-stop mode version of target_wait. */
8111
8112 ptid_t
8113 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
8114 target_wait_flags options)
8115 {
8116 struct remote_state *rs = get_remote_state ();
8117 struct stop_reply *stop_reply;
8118 int ret;
8119 int is_notif = 0;
8120
8121 /* If in non-stop mode, get out of getpkt even if a
8122 notification is received. */
8123
8124 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
8125 while (1)
8126 {
8127 if (ret != -1 && !is_notif)
8128 switch (rs->buf[0])
8129 {
8130 case 'E': /* Error of some sort. */
8131 /* We're out of sync with the target now. Did it continue
8132 or not? We can't tell which thread it was in non-stop,
8133 so just ignore this. */
8134 warning (_("Remote failure reply: %s"), rs->buf.data ());
8135 break;
8136 case 'O': /* Console output. */
8137 remote_console_output (&rs->buf[1]);
8138 break;
8139 default:
8140 warning (_("Invalid remote reply: %s"), rs->buf.data ());
8141 break;
8142 }
8143
8144 /* Acknowledge a pending stop reply that may have arrived in the
8145 mean time. */
8146 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
8147 remote_notif_get_pending_events (&notif_client_stop);
8148
8149 /* If indeed we noticed a stop reply, we're done. */
8150 stop_reply = queued_stop_reply (ptid);
8151 if (stop_reply != NULL)
8152 return process_stop_reply (stop_reply, status);
8153
8154 /* Still no event. If we're just polling for an event, then
8155 return to the event loop. */
8156 if (options & TARGET_WNOHANG)
8157 {
8158 status->set_ignore ();
8159 return minus_one_ptid;
8160 }
8161
8162 /* Otherwise do a blocking wait. */
8163 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
8164 }
8165 }
8166
8167 /* Return the first resumed thread. */
8168
8169 static ptid_t
8170 first_remote_resumed_thread (remote_target *target)
8171 {
8172 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
8173 if (tp->resumed ())
8174 return tp->ptid;
8175 return null_ptid;
8176 }
8177
8178 /* Wait until the remote machine stops, then return, storing status in
8179 STATUS just as `wait' would. */
8180
8181 ptid_t
8182 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8183 target_wait_flags options)
8184 {
8185 struct remote_state *rs = get_remote_state ();
8186 ptid_t event_ptid = null_ptid;
8187 char *buf;
8188 struct stop_reply *stop_reply;
8189
8190 again:
8191
8192 status->set_ignore ();
8193
8194 stop_reply = queued_stop_reply (ptid);
8195 if (stop_reply != NULL)
8196 {
8197 /* None of the paths that push a stop reply onto the queue should
8198 have set the waiting_for_stop_reply flag. */
8199 gdb_assert (!rs->waiting_for_stop_reply);
8200 event_ptid = process_stop_reply (stop_reply, status);
8201 }
8202 else
8203 {
8204 int forever = ((options & TARGET_WNOHANG) == 0
8205 && rs->wait_forever_enabled_p);
8206
8207 if (!rs->waiting_for_stop_reply)
8208 {
8209 status->set_no_resumed ();
8210 return minus_one_ptid;
8211 }
8212
8213 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8214 _never_ wait for ever -> test on target_is_async_p().
8215 However, before we do that we need to ensure that the caller
8216 knows how to take the target into/out of async mode. */
8217 int is_notif;
8218 int ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8219
8220 /* GDB gets a notification. Return to core as this event is
8221 not interesting. */
8222 if (ret != -1 && is_notif)
8223 return minus_one_ptid;
8224
8225 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8226 return minus_one_ptid;
8227
8228 buf = rs->buf.data ();
8229
8230 /* Assume that the target has acknowledged Ctrl-C unless we receive
8231 an 'F' or 'O' packet. */
8232 if (buf[0] != 'F' && buf[0] != 'O')
8233 rs->ctrlc_pending_p = 0;
8234
8235 switch (buf[0])
8236 {
8237 case 'E': /* Error of some sort. */
8238 /* We're out of sync with the target now. Did it continue or
8239 not? Not is more likely, so report a stop. */
8240 rs->waiting_for_stop_reply = 0;
8241
8242 warning (_("Remote failure reply: %s"), buf);
8243 status->set_stopped (GDB_SIGNAL_0);
8244 break;
8245 case 'F': /* File-I/O request. */
8246 /* GDB may access the inferior memory while handling the File-I/O
8247 request, but we don't want GDB accessing memory while waiting
8248 for a stop reply. See the comments in putpkt_binary. Set
8249 waiting_for_stop_reply to 0 temporarily. */
8250 rs->waiting_for_stop_reply = 0;
8251 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8252 rs->ctrlc_pending_p = 0;
8253 /* GDB handled the File-I/O request, and the target is running
8254 again. Keep waiting for events. */
8255 rs->waiting_for_stop_reply = 1;
8256 break;
8257 case 'N': case 'T': case 'S': case 'X': case 'W':
8258 {
8259 /* There is a stop reply to handle. */
8260 rs->waiting_for_stop_reply = 0;
8261
8262 stop_reply
8263 = (struct stop_reply *) remote_notif_parse (this,
8264 &notif_client_stop,
8265 rs->buf.data ());
8266
8267 event_ptid = process_stop_reply (stop_reply, status);
8268 break;
8269 }
8270 case 'O': /* Console output. */
8271 remote_console_output (buf + 1);
8272 break;
8273 case '\0':
8274 if (rs->last_sent_signal != GDB_SIGNAL_0)
8275 {
8276 /* Zero length reply means that we tried 'S' or 'C' and the
8277 remote system doesn't support it. */
8278 target_terminal::ours_for_output ();
8279 printf_filtered
8280 ("Can't send signals to this remote system. %s not sent.\n",
8281 gdb_signal_to_name (rs->last_sent_signal));
8282 rs->last_sent_signal = GDB_SIGNAL_0;
8283 target_terminal::inferior ();
8284
8285 strcpy (buf, rs->last_sent_step ? "s" : "c");
8286 putpkt (buf);
8287 break;
8288 }
8289 /* fallthrough */
8290 default:
8291 warning (_("Invalid remote reply: %s"), buf);
8292 break;
8293 }
8294 }
8295
8296 if (status->kind () == TARGET_WAITKIND_NO_RESUMED)
8297 return minus_one_ptid;
8298 else if (status->kind () == TARGET_WAITKIND_IGNORE)
8299 {
8300 /* Nothing interesting happened. If we're doing a non-blocking
8301 poll, we're done. Otherwise, go back to waiting. */
8302 if (options & TARGET_WNOHANG)
8303 return minus_one_ptid;
8304 else
8305 goto again;
8306 }
8307 else if (status->kind () != TARGET_WAITKIND_EXITED
8308 && status->kind () != TARGET_WAITKIND_SIGNALLED)
8309 {
8310 if (event_ptid != null_ptid)
8311 record_currthread (rs, event_ptid);
8312 else
8313 event_ptid = first_remote_resumed_thread (this);
8314 }
8315 else
8316 {
8317 /* A process exit. Invalidate our notion of current thread. */
8318 record_currthread (rs, minus_one_ptid);
8319 /* It's possible that the packet did not include a pid. */
8320 if (event_ptid == null_ptid)
8321 event_ptid = first_remote_resumed_thread (this);
8322 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8323 if (event_ptid == null_ptid)
8324 event_ptid = magic_null_ptid;
8325 }
8326
8327 return event_ptid;
8328 }
8329
8330 /* Wait until the remote machine stops, then return, storing status in
8331 STATUS just as `wait' would. */
8332
8333 ptid_t
8334 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8335 target_wait_flags options)
8336 {
8337 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8338
8339 remote_state *rs = get_remote_state ();
8340
8341 /* Start by clearing the flag that asks for our wait method to be called,
8342 we'll mark it again at the end if needed. If the target is not in
8343 async mode then the async token should not be marked. */
8344 if (target_is_async_p ())
8345 clear_async_event_handler (rs->remote_async_inferior_event_token);
8346 else
8347 gdb_assert (!async_event_handler_marked
8348 (rs->remote_async_inferior_event_token));
8349
8350 ptid_t event_ptid;
8351
8352 if (target_is_non_stop_p ())
8353 event_ptid = wait_ns (ptid, status, options);
8354 else
8355 event_ptid = wait_as (ptid, status, options);
8356
8357 if (target_is_async_p ())
8358 {
8359 /* If there are events left in the queue, or unacknowledged
8360 notifications, then tell the event loop to call us again. */
8361 if (!rs->stop_reply_queue.empty ()
8362 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8363 mark_async_event_handler (rs->remote_async_inferior_event_token);
8364 }
8365
8366 return event_ptid;
8367 }
8368
8369 /* Fetch a single register using a 'p' packet. */
8370
8371 int
8372 remote_target::fetch_register_using_p (struct regcache *regcache,
8373 packet_reg *reg)
8374 {
8375 struct gdbarch *gdbarch = regcache->arch ();
8376 struct remote_state *rs = get_remote_state ();
8377 char *buf, *p;
8378 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8379 int i;
8380
8381 if (packet_support (PACKET_p) == PACKET_DISABLE)
8382 return 0;
8383
8384 if (reg->pnum == -1)
8385 return 0;
8386
8387 p = rs->buf.data ();
8388 *p++ = 'p';
8389 p += hexnumstr (p, reg->pnum);
8390 *p++ = '\0';
8391 putpkt (rs->buf);
8392 getpkt (&rs->buf, 0);
8393
8394 buf = rs->buf.data ();
8395
8396 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8397 {
8398 case PACKET_OK:
8399 break;
8400 case PACKET_UNKNOWN:
8401 return 0;
8402 case PACKET_ERROR:
8403 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8404 gdbarch_register_name (regcache->arch (),
8405 reg->regnum),
8406 buf);
8407 }
8408
8409 /* If this register is unfetchable, tell the regcache. */
8410 if (buf[0] == 'x')
8411 {
8412 regcache->raw_supply (reg->regnum, NULL);
8413 return 1;
8414 }
8415
8416 /* Otherwise, parse and supply the value. */
8417 p = buf;
8418 i = 0;
8419 while (p[0] != 0)
8420 {
8421 if (p[1] == 0)
8422 error (_("fetch_register_using_p: early buf termination"));
8423
8424 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8425 p += 2;
8426 }
8427 regcache->raw_supply (reg->regnum, regp);
8428 return 1;
8429 }
8430
8431 /* Fetch the registers included in the target's 'g' packet. */
8432
8433 int
8434 remote_target::send_g_packet ()
8435 {
8436 struct remote_state *rs = get_remote_state ();
8437 int buf_len;
8438
8439 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8440 putpkt (rs->buf);
8441 getpkt (&rs->buf, 0);
8442 if (packet_check_result (rs->buf) == PACKET_ERROR)
8443 error (_("Could not read registers; remote failure reply '%s'"),
8444 rs->buf.data ());
8445
8446 /* We can get out of synch in various cases. If the first character
8447 in the buffer is not a hex character, assume that has happened
8448 and try to fetch another packet to read. */
8449 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8450 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8451 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8452 && rs->buf[0] != 'x') /* New: unavailable register value. */
8453 {
8454 remote_debug_printf ("Bad register packet; fetching a new packet");
8455 getpkt (&rs->buf, 0);
8456 }
8457
8458 buf_len = strlen (rs->buf.data ());
8459
8460 /* Sanity check the received packet. */
8461 if (buf_len % 2 != 0)
8462 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8463
8464 return buf_len / 2;
8465 }
8466
8467 void
8468 remote_target::process_g_packet (struct regcache *regcache)
8469 {
8470 struct gdbarch *gdbarch = regcache->arch ();
8471 struct remote_state *rs = get_remote_state ();
8472 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8473 int i, buf_len;
8474 char *p;
8475 char *regs;
8476
8477 buf_len = strlen (rs->buf.data ());
8478
8479 /* Further sanity checks, with knowledge of the architecture. */
8480 if (buf_len > 2 * rsa->sizeof_g_packet)
8481 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8482 "bytes): %s"),
8483 rsa->sizeof_g_packet, buf_len / 2,
8484 rs->buf.data ());
8485
8486 /* Save the size of the packet sent to us by the target. It is used
8487 as a heuristic when determining the max size of packets that the
8488 target can safely receive. */
8489 if (rsa->actual_register_packet_size == 0)
8490 rsa->actual_register_packet_size = buf_len;
8491
8492 /* If this is smaller than we guessed the 'g' packet would be,
8493 update our records. A 'g' reply that doesn't include a register's
8494 value implies either that the register is not available, or that
8495 the 'p' packet must be used. */
8496 if (buf_len < 2 * rsa->sizeof_g_packet)
8497 {
8498 long sizeof_g_packet = buf_len / 2;
8499
8500 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8501 {
8502 long offset = rsa->regs[i].offset;
8503 long reg_size = register_size (gdbarch, i);
8504
8505 if (rsa->regs[i].pnum == -1)
8506 continue;
8507
8508 if (offset >= sizeof_g_packet)
8509 rsa->regs[i].in_g_packet = 0;
8510 else if (offset + reg_size > sizeof_g_packet)
8511 error (_("Truncated register %d in remote 'g' packet"), i);
8512 else
8513 rsa->regs[i].in_g_packet = 1;
8514 }
8515
8516 /* Looks valid enough, we can assume this is the correct length
8517 for a 'g' packet. It's important not to adjust
8518 rsa->sizeof_g_packet if we have truncated registers otherwise
8519 this "if" won't be run the next time the method is called
8520 with a packet of the same size and one of the internal errors
8521 below will trigger instead. */
8522 rsa->sizeof_g_packet = sizeof_g_packet;
8523 }
8524
8525 regs = (char *) alloca (rsa->sizeof_g_packet);
8526
8527 /* Unimplemented registers read as all bits zero. */
8528 memset (regs, 0, rsa->sizeof_g_packet);
8529
8530 /* Reply describes registers byte by byte, each byte encoded as two
8531 hex characters. Suck them all up, then supply them to the
8532 register cacheing/storage mechanism. */
8533
8534 p = rs->buf.data ();
8535 for (i = 0; i < rsa->sizeof_g_packet; i++)
8536 {
8537 if (p[0] == 0 || p[1] == 0)
8538 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8539 internal_error (__FILE__, __LINE__,
8540 _("unexpected end of 'g' packet reply"));
8541
8542 if (p[0] == 'x' && p[1] == 'x')
8543 regs[i] = 0; /* 'x' */
8544 else
8545 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8546 p += 2;
8547 }
8548
8549 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8550 {
8551 struct packet_reg *r = &rsa->regs[i];
8552 long reg_size = register_size (gdbarch, i);
8553
8554 if (r->in_g_packet)
8555 {
8556 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8557 /* This shouldn't happen - we adjusted in_g_packet above. */
8558 internal_error (__FILE__, __LINE__,
8559 _("unexpected end of 'g' packet reply"));
8560 else if (rs->buf[r->offset * 2] == 'x')
8561 {
8562 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8563 /* The register isn't available, mark it as such (at
8564 the same time setting the value to zero). */
8565 regcache->raw_supply (r->regnum, NULL);
8566 }
8567 else
8568 regcache->raw_supply (r->regnum, regs + r->offset);
8569 }
8570 }
8571 }
8572
8573 void
8574 remote_target::fetch_registers_using_g (struct regcache *regcache)
8575 {
8576 send_g_packet ();
8577 process_g_packet (regcache);
8578 }
8579
8580 /* Make the remote selected traceframe match GDB's selected
8581 traceframe. */
8582
8583 void
8584 remote_target::set_remote_traceframe ()
8585 {
8586 int newnum;
8587 struct remote_state *rs = get_remote_state ();
8588
8589 if (rs->remote_traceframe_number == get_traceframe_number ())
8590 return;
8591
8592 /* Avoid recursion, remote_trace_find calls us again. */
8593 rs->remote_traceframe_number = get_traceframe_number ();
8594
8595 newnum = target_trace_find (tfind_number,
8596 get_traceframe_number (), 0, 0, NULL);
8597
8598 /* Should not happen. If it does, all bets are off. */
8599 if (newnum != get_traceframe_number ())
8600 warning (_("could not set remote traceframe"));
8601 }
8602
8603 void
8604 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8605 {
8606 struct gdbarch *gdbarch = regcache->arch ();
8607 struct remote_state *rs = get_remote_state ();
8608 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8609 int i;
8610
8611 set_remote_traceframe ();
8612 set_general_thread (regcache->ptid ());
8613
8614 if (regnum >= 0)
8615 {
8616 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8617
8618 gdb_assert (reg != NULL);
8619
8620 /* If this register might be in the 'g' packet, try that first -
8621 we are likely to read more than one register. If this is the
8622 first 'g' packet, we might be overly optimistic about its
8623 contents, so fall back to 'p'. */
8624 if (reg->in_g_packet)
8625 {
8626 fetch_registers_using_g (regcache);
8627 if (reg->in_g_packet)
8628 return;
8629 }
8630
8631 if (fetch_register_using_p (regcache, reg))
8632 return;
8633
8634 /* This register is not available. */
8635 regcache->raw_supply (reg->regnum, NULL);
8636
8637 return;
8638 }
8639
8640 fetch_registers_using_g (regcache);
8641
8642 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8643 if (!rsa->regs[i].in_g_packet)
8644 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8645 {
8646 /* This register is not available. */
8647 regcache->raw_supply (i, NULL);
8648 }
8649 }
8650
8651 /* Prepare to store registers. Since we may send them all (using a
8652 'G' request), we have to read out the ones we don't want to change
8653 first. */
8654
8655 void
8656 remote_target::prepare_to_store (struct regcache *regcache)
8657 {
8658 struct remote_state *rs = get_remote_state ();
8659 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8660 int i;
8661
8662 /* Make sure the entire registers array is valid. */
8663 switch (packet_support (PACKET_P))
8664 {
8665 case PACKET_DISABLE:
8666 case PACKET_SUPPORT_UNKNOWN:
8667 /* Make sure all the necessary registers are cached. */
8668 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8669 if (rsa->regs[i].in_g_packet)
8670 regcache->raw_update (rsa->regs[i].regnum);
8671 break;
8672 case PACKET_ENABLE:
8673 break;
8674 }
8675 }
8676
8677 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8678 packet was not recognized. */
8679
8680 int
8681 remote_target::store_register_using_P (const struct regcache *regcache,
8682 packet_reg *reg)
8683 {
8684 struct gdbarch *gdbarch = regcache->arch ();
8685 struct remote_state *rs = get_remote_state ();
8686 /* Try storing a single register. */
8687 char *buf = rs->buf.data ();
8688 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8689 char *p;
8690
8691 if (packet_support (PACKET_P) == PACKET_DISABLE)
8692 return 0;
8693
8694 if (reg->pnum == -1)
8695 return 0;
8696
8697 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8698 p = buf + strlen (buf);
8699 regcache->raw_collect (reg->regnum, regp);
8700 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8701 putpkt (rs->buf);
8702 getpkt (&rs->buf, 0);
8703
8704 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8705 {
8706 case PACKET_OK:
8707 return 1;
8708 case PACKET_ERROR:
8709 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8710 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8711 case PACKET_UNKNOWN:
8712 return 0;
8713 default:
8714 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8715 }
8716 }
8717
8718 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8719 contents of the register cache buffer. FIXME: ignores errors. */
8720
8721 void
8722 remote_target::store_registers_using_G (const struct regcache *regcache)
8723 {
8724 struct remote_state *rs = get_remote_state ();
8725 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8726 gdb_byte *regs;
8727 char *p;
8728
8729 /* Extract all the registers in the regcache copying them into a
8730 local buffer. */
8731 {
8732 int i;
8733
8734 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8735 memset (regs, 0, rsa->sizeof_g_packet);
8736 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8737 {
8738 struct packet_reg *r = &rsa->regs[i];
8739
8740 if (r->in_g_packet)
8741 regcache->raw_collect (r->regnum, regs + r->offset);
8742 }
8743 }
8744
8745 /* Command describes registers byte by byte,
8746 each byte encoded as two hex characters. */
8747 p = rs->buf.data ();
8748 *p++ = 'G';
8749 bin2hex (regs, p, rsa->sizeof_g_packet);
8750 putpkt (rs->buf);
8751 getpkt (&rs->buf, 0);
8752 if (packet_check_result (rs->buf) == PACKET_ERROR)
8753 error (_("Could not write registers; remote failure reply '%s'"),
8754 rs->buf.data ());
8755 }
8756
8757 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8758 of the register cache buffer. FIXME: ignores errors. */
8759
8760 void
8761 remote_target::store_registers (struct regcache *regcache, int regnum)
8762 {
8763 struct gdbarch *gdbarch = regcache->arch ();
8764 struct remote_state *rs = get_remote_state ();
8765 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8766 int i;
8767
8768 set_remote_traceframe ();
8769 set_general_thread (regcache->ptid ());
8770
8771 if (regnum >= 0)
8772 {
8773 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8774
8775 gdb_assert (reg != NULL);
8776
8777 /* Always prefer to store registers using the 'P' packet if
8778 possible; we often change only a small number of registers.
8779 Sometimes we change a larger number; we'd need help from a
8780 higher layer to know to use 'G'. */
8781 if (store_register_using_P (regcache, reg))
8782 return;
8783
8784 /* For now, don't complain if we have no way to write the
8785 register. GDB loses track of unavailable registers too
8786 easily. Some day, this may be an error. We don't have
8787 any way to read the register, either... */
8788 if (!reg->in_g_packet)
8789 return;
8790
8791 store_registers_using_G (regcache);
8792 return;
8793 }
8794
8795 store_registers_using_G (regcache);
8796
8797 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8798 if (!rsa->regs[i].in_g_packet)
8799 if (!store_register_using_P (regcache, &rsa->regs[i]))
8800 /* See above for why we do not issue an error here. */
8801 continue;
8802 }
8803 \f
8804
8805 /* Return the number of hex digits in num. */
8806
8807 static int
8808 hexnumlen (ULONGEST num)
8809 {
8810 int i;
8811
8812 for (i = 0; num != 0; i++)
8813 num >>= 4;
8814
8815 return std::max (i, 1);
8816 }
8817
8818 /* Set BUF to the minimum number of hex digits representing NUM. */
8819
8820 static int
8821 hexnumstr (char *buf, ULONGEST num)
8822 {
8823 int len = hexnumlen (num);
8824
8825 return hexnumnstr (buf, num, len);
8826 }
8827
8828
8829 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8830
8831 static int
8832 hexnumnstr (char *buf, ULONGEST num, int width)
8833 {
8834 int i;
8835
8836 buf[width] = '\0';
8837
8838 for (i = width - 1; i >= 0; i--)
8839 {
8840 buf[i] = "0123456789abcdef"[(num & 0xf)];
8841 num >>= 4;
8842 }
8843
8844 return width;
8845 }
8846
8847 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8848
8849 static CORE_ADDR
8850 remote_address_masked (CORE_ADDR addr)
8851 {
8852 unsigned int address_size = remote_address_size;
8853
8854 /* If "remoteaddresssize" was not set, default to target address size. */
8855 if (!address_size)
8856 address_size = gdbarch_addr_bit (target_gdbarch ());
8857
8858 if (address_size > 0
8859 && address_size < (sizeof (ULONGEST) * 8))
8860 {
8861 /* Only create a mask when that mask can safely be constructed
8862 in a ULONGEST variable. */
8863 ULONGEST mask = 1;
8864
8865 mask = (mask << address_size) - 1;
8866 addr &= mask;
8867 }
8868 return addr;
8869 }
8870
8871 /* Determine whether the remote target supports binary downloading.
8872 This is accomplished by sending a no-op memory write of zero length
8873 to the target at the specified address. It does not suffice to send
8874 the whole packet, since many stubs strip the eighth bit and
8875 subsequently compute a wrong checksum, which causes real havoc with
8876 remote_write_bytes.
8877
8878 NOTE: This can still lose if the serial line is not eight-bit
8879 clean. In cases like this, the user should clear "remote
8880 X-packet". */
8881
8882 void
8883 remote_target::check_binary_download (CORE_ADDR addr)
8884 {
8885 struct remote_state *rs = get_remote_state ();
8886
8887 switch (packet_support (PACKET_X))
8888 {
8889 case PACKET_DISABLE:
8890 break;
8891 case PACKET_ENABLE:
8892 break;
8893 case PACKET_SUPPORT_UNKNOWN:
8894 {
8895 char *p;
8896
8897 p = rs->buf.data ();
8898 *p++ = 'X';
8899 p += hexnumstr (p, (ULONGEST) addr);
8900 *p++ = ',';
8901 p += hexnumstr (p, (ULONGEST) 0);
8902 *p++ = ':';
8903 *p = '\0';
8904
8905 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8906 getpkt (&rs->buf, 0);
8907
8908 if (rs->buf[0] == '\0')
8909 {
8910 remote_debug_printf ("binary downloading NOT supported by target");
8911 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8912 }
8913 else
8914 {
8915 remote_debug_printf ("binary downloading supported by target");
8916 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8917 }
8918 break;
8919 }
8920 }
8921 }
8922
8923 /* Helper function to resize the payload in order to try to get a good
8924 alignment. We try to write an amount of data such that the next write will
8925 start on an address aligned on REMOTE_ALIGN_WRITES. */
8926
8927 static int
8928 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8929 {
8930 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8931 }
8932
8933 /* Write memory data directly to the remote machine.
8934 This does not inform the data cache; the data cache uses this.
8935 HEADER is the starting part of the packet.
8936 MEMADDR is the address in the remote memory space.
8937 MYADDR is the address of the buffer in our space.
8938 LEN_UNITS is the number of addressable units to write.
8939 UNIT_SIZE is the length in bytes of an addressable unit.
8940 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8941 should send data as binary ('X'), or hex-encoded ('M').
8942
8943 The function creates packet of the form
8944 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8945
8946 where encoding of <DATA> is terminated by PACKET_FORMAT.
8947
8948 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8949 are omitted.
8950
8951 Return the transferred status, error or OK (an
8952 'enum target_xfer_status' value). Save the number of addressable units
8953 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8954
8955 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8956 exchange between gdb and the stub could look like (?? in place of the
8957 checksum):
8958
8959 -> $m1000,4#??
8960 <- aaaabbbbccccdddd
8961
8962 -> $M1000,3:eeeeffffeeee#??
8963 <- OK
8964
8965 -> $m1000,4#??
8966 <- eeeeffffeeeedddd */
8967
8968 target_xfer_status
8969 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8970 const gdb_byte *myaddr,
8971 ULONGEST len_units,
8972 int unit_size,
8973 ULONGEST *xfered_len_units,
8974 char packet_format, int use_length)
8975 {
8976 struct remote_state *rs = get_remote_state ();
8977 char *p;
8978 char *plen = NULL;
8979 int plenlen = 0;
8980 int todo_units;
8981 int units_written;
8982 int payload_capacity_bytes;
8983 int payload_length_bytes;
8984
8985 if (packet_format != 'X' && packet_format != 'M')
8986 internal_error (__FILE__, __LINE__,
8987 _("remote_write_bytes_aux: bad packet format"));
8988
8989 if (len_units == 0)
8990 return TARGET_XFER_EOF;
8991
8992 payload_capacity_bytes = get_memory_write_packet_size ();
8993
8994 /* The packet buffer will be large enough for the payload;
8995 get_memory_packet_size ensures this. */
8996 rs->buf[0] = '\0';
8997
8998 /* Compute the size of the actual payload by subtracting out the
8999 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
9000
9001 payload_capacity_bytes -= strlen ("$,:#NN");
9002 if (!use_length)
9003 /* The comma won't be used. */
9004 payload_capacity_bytes += 1;
9005 payload_capacity_bytes -= strlen (header);
9006 payload_capacity_bytes -= hexnumlen (memaddr);
9007
9008 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
9009
9010 strcat (rs->buf.data (), header);
9011 p = rs->buf.data () + strlen (header);
9012
9013 /* Compute a best guess of the number of bytes actually transfered. */
9014 if (packet_format == 'X')
9015 {
9016 /* Best guess at number of bytes that will fit. */
9017 todo_units = std::min (len_units,
9018 (ULONGEST) payload_capacity_bytes / unit_size);
9019 if (use_length)
9020 payload_capacity_bytes -= hexnumlen (todo_units);
9021 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
9022 }
9023 else
9024 {
9025 /* Number of bytes that will fit. */
9026 todo_units
9027 = std::min (len_units,
9028 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
9029 if (use_length)
9030 payload_capacity_bytes -= hexnumlen (todo_units);
9031 todo_units = std::min (todo_units,
9032 (payload_capacity_bytes / unit_size) / 2);
9033 }
9034
9035 if (todo_units <= 0)
9036 internal_error (__FILE__, __LINE__,
9037 _("minimum packet size too small to write data"));
9038
9039 /* If we already need another packet, then try to align the end
9040 of this packet to a useful boundary. */
9041 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
9042 todo_units = align_for_efficient_write (todo_units, memaddr);
9043
9044 /* Append "<memaddr>". */
9045 memaddr = remote_address_masked (memaddr);
9046 p += hexnumstr (p, (ULONGEST) memaddr);
9047
9048 if (use_length)
9049 {
9050 /* Append ",". */
9051 *p++ = ',';
9052
9053 /* Append the length and retain its location and size. It may need to be
9054 adjusted once the packet body has been created. */
9055 plen = p;
9056 plenlen = hexnumstr (p, (ULONGEST) todo_units);
9057 p += plenlen;
9058 }
9059
9060 /* Append ":". */
9061 *p++ = ':';
9062 *p = '\0';
9063
9064 /* Append the packet body. */
9065 if (packet_format == 'X')
9066 {
9067 /* Binary mode. Send target system values byte by byte, in
9068 increasing byte addresses. Only escape certain critical
9069 characters. */
9070 payload_length_bytes =
9071 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
9072 &units_written, payload_capacity_bytes);
9073
9074 /* If not all TODO units fit, then we'll need another packet. Make
9075 a second try to keep the end of the packet aligned. Don't do
9076 this if the packet is tiny. */
9077 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
9078 {
9079 int new_todo_units;
9080
9081 new_todo_units = align_for_efficient_write (units_written, memaddr);
9082
9083 if (new_todo_units != units_written)
9084 payload_length_bytes =
9085 remote_escape_output (myaddr, new_todo_units, unit_size,
9086 (gdb_byte *) p, &units_written,
9087 payload_capacity_bytes);
9088 }
9089
9090 p += payload_length_bytes;
9091 if (use_length && units_written < todo_units)
9092 {
9093 /* Escape chars have filled up the buffer prematurely,
9094 and we have actually sent fewer units than planned.
9095 Fix-up the length field of the packet. Use the same
9096 number of characters as before. */
9097 plen += hexnumnstr (plen, (ULONGEST) units_written,
9098 plenlen);
9099 *plen = ':'; /* overwrite \0 from hexnumnstr() */
9100 }
9101 }
9102 else
9103 {
9104 /* Normal mode: Send target system values byte by byte, in
9105 increasing byte addresses. Each byte is encoded as a two hex
9106 value. */
9107 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
9108 units_written = todo_units;
9109 }
9110
9111 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
9112 getpkt (&rs->buf, 0);
9113
9114 if (rs->buf[0] == 'E')
9115 return TARGET_XFER_E_IO;
9116
9117 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
9118 send fewer units than we'd planned. */
9119 *xfered_len_units = (ULONGEST) units_written;
9120 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9121 }
9122
9123 /* Write memory data directly to the remote machine.
9124 This does not inform the data cache; the data cache uses this.
9125 MEMADDR is the address in the remote memory space.
9126 MYADDR is the address of the buffer in our space.
9127 LEN is the number of bytes.
9128
9129 Return the transferred status, error or OK (an
9130 'enum target_xfer_status' value). Save the number of bytes
9131 transferred in *XFERED_LEN. Only transfer a single packet. */
9132
9133 target_xfer_status
9134 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
9135 ULONGEST len, int unit_size,
9136 ULONGEST *xfered_len)
9137 {
9138 const char *packet_format = NULL;
9139
9140 /* Check whether the target supports binary download. */
9141 check_binary_download (memaddr);
9142
9143 switch (packet_support (PACKET_X))
9144 {
9145 case PACKET_ENABLE:
9146 packet_format = "X";
9147 break;
9148 case PACKET_DISABLE:
9149 packet_format = "M";
9150 break;
9151 case PACKET_SUPPORT_UNKNOWN:
9152 internal_error (__FILE__, __LINE__,
9153 _("remote_write_bytes: bad internal state"));
9154 default:
9155 internal_error (__FILE__, __LINE__, _("bad switch"));
9156 }
9157
9158 return remote_write_bytes_aux (packet_format,
9159 memaddr, myaddr, len, unit_size, xfered_len,
9160 packet_format[0], 1);
9161 }
9162
9163 /* Read memory data directly from the remote machine.
9164 This does not use the data cache; the data cache uses this.
9165 MEMADDR is the address in the remote memory space.
9166 MYADDR is the address of the buffer in our space.
9167 LEN_UNITS is the number of addressable memory units to read..
9168 UNIT_SIZE is the length in bytes of an addressable unit.
9169
9170 Return the transferred status, error or OK (an
9171 'enum target_xfer_status' value). Save the number of bytes
9172 transferred in *XFERED_LEN_UNITS.
9173
9174 See the comment of remote_write_bytes_aux for an example of
9175 memory read/write exchange between gdb and the stub. */
9176
9177 target_xfer_status
9178 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
9179 ULONGEST len_units,
9180 int unit_size, ULONGEST *xfered_len_units)
9181 {
9182 struct remote_state *rs = get_remote_state ();
9183 int buf_size_bytes; /* Max size of packet output buffer. */
9184 char *p;
9185 int todo_units;
9186 int decoded_bytes;
9187
9188 buf_size_bytes = get_memory_read_packet_size ();
9189 /* The packet buffer will be large enough for the payload;
9190 get_memory_packet_size ensures this. */
9191
9192 /* Number of units that will fit. */
9193 todo_units = std::min (len_units,
9194 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9195
9196 /* Construct "m"<memaddr>","<len>". */
9197 memaddr = remote_address_masked (memaddr);
9198 p = rs->buf.data ();
9199 *p++ = 'm';
9200 p += hexnumstr (p, (ULONGEST) memaddr);
9201 *p++ = ',';
9202 p += hexnumstr (p, (ULONGEST) todo_units);
9203 *p = '\0';
9204 putpkt (rs->buf);
9205 getpkt (&rs->buf, 0);
9206 if (rs->buf[0] == 'E'
9207 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9208 && rs->buf[3] == '\0')
9209 return TARGET_XFER_E_IO;
9210 /* Reply describes memory byte by byte, each byte encoded as two hex
9211 characters. */
9212 p = rs->buf.data ();
9213 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9214 /* Return what we have. Let higher layers handle partial reads. */
9215 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9216 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9217 }
9218
9219 /* Using the set of read-only target sections of remote, read live
9220 read-only memory.
9221
9222 For interface/parameters/return description see target.h,
9223 to_xfer_partial. */
9224
9225 target_xfer_status
9226 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9227 ULONGEST memaddr,
9228 ULONGEST len,
9229 int unit_size,
9230 ULONGEST *xfered_len)
9231 {
9232 const struct target_section *secp;
9233
9234 secp = target_section_by_addr (this, memaddr);
9235 if (secp != NULL
9236 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9237 {
9238 ULONGEST memend = memaddr + len;
9239
9240 const target_section_table *table = target_get_section_table (this);
9241 for (const target_section &p : *table)
9242 {
9243 if (memaddr >= p.addr)
9244 {
9245 if (memend <= p.endaddr)
9246 {
9247 /* Entire transfer is within this section. */
9248 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9249 xfered_len);
9250 }
9251 else if (memaddr >= p.endaddr)
9252 {
9253 /* This section ends before the transfer starts. */
9254 continue;
9255 }
9256 else
9257 {
9258 /* This section overlaps the transfer. Just do half. */
9259 len = p.endaddr - memaddr;
9260 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9261 xfered_len);
9262 }
9263 }
9264 }
9265 }
9266
9267 return TARGET_XFER_EOF;
9268 }
9269
9270 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9271 first if the requested memory is unavailable in traceframe.
9272 Otherwise, fall back to remote_read_bytes_1. */
9273
9274 target_xfer_status
9275 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9276 gdb_byte *myaddr, ULONGEST len, int unit_size,
9277 ULONGEST *xfered_len)
9278 {
9279 if (len == 0)
9280 return TARGET_XFER_EOF;
9281
9282 if (get_traceframe_number () != -1)
9283 {
9284 std::vector<mem_range> available;
9285
9286 /* If we fail to get the set of available memory, then the
9287 target does not support querying traceframe info, and so we
9288 attempt reading from the traceframe anyway (assuming the
9289 target implements the old QTro packet then). */
9290 if (traceframe_available_memory (&available, memaddr, len))
9291 {
9292 if (available.empty () || available[0].start != memaddr)
9293 {
9294 enum target_xfer_status res;
9295
9296 /* Don't read into the traceframe's available
9297 memory. */
9298 if (!available.empty ())
9299 {
9300 LONGEST oldlen = len;
9301
9302 len = available[0].start - memaddr;
9303 gdb_assert (len <= oldlen);
9304 }
9305
9306 /* This goes through the topmost target again. */
9307 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9308 len, unit_size, xfered_len);
9309 if (res == TARGET_XFER_OK)
9310 return TARGET_XFER_OK;
9311 else
9312 {
9313 /* No use trying further, we know some memory starting
9314 at MEMADDR isn't available. */
9315 *xfered_len = len;
9316 return (*xfered_len != 0) ?
9317 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9318 }
9319 }
9320
9321 /* Don't try to read more than how much is available, in
9322 case the target implements the deprecated QTro packet to
9323 cater for older GDBs (the target's knowledge of read-only
9324 sections may be outdated by now). */
9325 len = available[0].length;
9326 }
9327 }
9328
9329 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9330 }
9331
9332 \f
9333
9334 /* Sends a packet with content determined by the printf format string
9335 FORMAT and the remaining arguments, then gets the reply. Returns
9336 whether the packet was a success, a failure, or unknown. */
9337
9338 packet_result
9339 remote_target::remote_send_printf (const char *format, ...)
9340 {
9341 struct remote_state *rs = get_remote_state ();
9342 int max_size = get_remote_packet_size ();
9343 va_list ap;
9344
9345 va_start (ap, format);
9346
9347 rs->buf[0] = '\0';
9348 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9349
9350 va_end (ap);
9351
9352 if (size >= max_size)
9353 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9354
9355 if (putpkt (rs->buf) < 0)
9356 error (_("Communication problem with target."));
9357
9358 rs->buf[0] = '\0';
9359 getpkt (&rs->buf, 0);
9360
9361 return packet_check_result (rs->buf);
9362 }
9363
9364 /* Flash writing can take quite some time. We'll set
9365 effectively infinite timeout for flash operations.
9366 In future, we'll need to decide on a better approach. */
9367 static const int remote_flash_timeout = 1000;
9368
9369 void
9370 remote_target::flash_erase (ULONGEST address, LONGEST length)
9371 {
9372 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9373 enum packet_result ret;
9374 scoped_restore restore_timeout
9375 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9376
9377 ret = remote_send_printf ("vFlashErase:%s,%s",
9378 phex (address, addr_size),
9379 phex (length, 4));
9380 switch (ret)
9381 {
9382 case PACKET_UNKNOWN:
9383 error (_("Remote target does not support flash erase"));
9384 case PACKET_ERROR:
9385 error (_("Error erasing flash with vFlashErase packet"));
9386 default:
9387 break;
9388 }
9389 }
9390
9391 target_xfer_status
9392 remote_target::remote_flash_write (ULONGEST address,
9393 ULONGEST length, ULONGEST *xfered_len,
9394 const gdb_byte *data)
9395 {
9396 scoped_restore restore_timeout
9397 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9398 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9399 xfered_len,'X', 0);
9400 }
9401
9402 void
9403 remote_target::flash_done ()
9404 {
9405 int ret;
9406
9407 scoped_restore restore_timeout
9408 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9409
9410 ret = remote_send_printf ("vFlashDone");
9411
9412 switch (ret)
9413 {
9414 case PACKET_UNKNOWN:
9415 error (_("Remote target does not support vFlashDone"));
9416 case PACKET_ERROR:
9417 error (_("Error finishing flash operation"));
9418 default:
9419 break;
9420 }
9421 }
9422
9423 void
9424 remote_target::files_info ()
9425 {
9426 puts_filtered ("Debugging a target over a serial line.\n");
9427 }
9428 \f
9429 /* Stuff for dealing with the packets which are part of this protocol.
9430 See comment at top of file for details. */
9431
9432 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9433 error to higher layers. Called when a serial error is detected.
9434 The exception message is STRING, followed by a colon and a blank,
9435 the system error message for errno at function entry and final dot
9436 for output compatibility with throw_perror_with_name. */
9437
9438 static void
9439 unpush_and_perror (remote_target *target, const char *string)
9440 {
9441 int saved_errno = errno;
9442
9443 remote_unpush_target (target);
9444 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9445 safe_strerror (saved_errno));
9446 }
9447
9448 /* Read a single character from the remote end. The current quit
9449 handler is overridden to avoid quitting in the middle of packet
9450 sequence, as that would break communication with the remote server.
9451 See remote_serial_quit_handler for more detail. */
9452
9453 int
9454 remote_target::readchar (int timeout)
9455 {
9456 int ch;
9457 struct remote_state *rs = get_remote_state ();
9458
9459 {
9460 scoped_restore restore_quit_target
9461 = make_scoped_restore (&curr_quit_handler_target, this);
9462 scoped_restore restore_quit
9463 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9464
9465 rs->got_ctrlc_during_io = 0;
9466
9467 ch = serial_readchar (rs->remote_desc, timeout);
9468
9469 if (rs->got_ctrlc_during_io)
9470 set_quit_flag ();
9471 }
9472
9473 if (ch >= 0)
9474 return ch;
9475
9476 switch ((enum serial_rc) ch)
9477 {
9478 case SERIAL_EOF:
9479 remote_unpush_target (this);
9480 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9481 /* no return */
9482 case SERIAL_ERROR:
9483 unpush_and_perror (this, _("Remote communication error. "
9484 "Target disconnected."));
9485 /* no return */
9486 case SERIAL_TIMEOUT:
9487 break;
9488 }
9489 return ch;
9490 }
9491
9492 /* Wrapper for serial_write that closes the target and throws if
9493 writing fails. The current quit handler is overridden to avoid
9494 quitting in the middle of packet sequence, as that would break
9495 communication with the remote server. See
9496 remote_serial_quit_handler for more detail. */
9497
9498 void
9499 remote_target::remote_serial_write (const char *str, int len)
9500 {
9501 struct remote_state *rs = get_remote_state ();
9502
9503 scoped_restore restore_quit_target
9504 = make_scoped_restore (&curr_quit_handler_target, this);
9505 scoped_restore restore_quit
9506 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9507
9508 rs->got_ctrlc_during_io = 0;
9509
9510 if (serial_write (rs->remote_desc, str, len))
9511 {
9512 unpush_and_perror (this, _("Remote communication error. "
9513 "Target disconnected."));
9514 }
9515
9516 if (rs->got_ctrlc_during_io)
9517 set_quit_flag ();
9518 }
9519
9520 /* Return a string representing an escaped version of BUF, of len N.
9521 E.g. \n is converted to \\n, \t to \\t, etc. */
9522
9523 static std::string
9524 escape_buffer (const char *buf, int n)
9525 {
9526 string_file stb;
9527
9528 stb.putstrn (buf, n, '\\');
9529 return std::move (stb.string ());
9530 }
9531
9532 int
9533 remote_target::putpkt (const char *buf)
9534 {
9535 return putpkt_binary (buf, strlen (buf));
9536 }
9537
9538 /* Wrapper around remote_target::putpkt to avoid exporting
9539 remote_target. */
9540
9541 int
9542 putpkt (remote_target *remote, const char *buf)
9543 {
9544 return remote->putpkt (buf);
9545 }
9546
9547 /* Send a packet to the remote machine, with error checking. The data
9548 of the packet is in BUF. The string in BUF can be at most
9549 get_remote_packet_size () - 5 to account for the $, # and checksum,
9550 and for a possible /0 if we are debugging (remote_debug) and want
9551 to print the sent packet as a string. */
9552
9553 int
9554 remote_target::putpkt_binary (const char *buf, int cnt)
9555 {
9556 struct remote_state *rs = get_remote_state ();
9557 int i;
9558 unsigned char csum = 0;
9559 gdb::def_vector<char> data (cnt + 6);
9560 char *buf2 = data.data ();
9561
9562 int ch;
9563 int tcount = 0;
9564 char *p;
9565
9566 /* Catch cases like trying to read memory or listing threads while
9567 we're waiting for a stop reply. The remote server wouldn't be
9568 ready to handle this request, so we'd hang and timeout. We don't
9569 have to worry about this in synchronous mode, because in that
9570 case it's not possible to issue a command while the target is
9571 running. This is not a problem in non-stop mode, because in that
9572 case, the stub is always ready to process serial input. */
9573 if (!target_is_non_stop_p ()
9574 && target_is_async_p ()
9575 && rs->waiting_for_stop_reply)
9576 {
9577 error (_("Cannot execute this command while the target is running.\n"
9578 "Use the \"interrupt\" command to stop the target\n"
9579 "and then try again."));
9580 }
9581
9582 /* Copy the packet into buffer BUF2, encapsulating it
9583 and giving it a checksum. */
9584
9585 p = buf2;
9586 *p++ = '$';
9587
9588 for (i = 0; i < cnt; i++)
9589 {
9590 csum += buf[i];
9591 *p++ = buf[i];
9592 }
9593 *p++ = '#';
9594 *p++ = tohex ((csum >> 4) & 0xf);
9595 *p++ = tohex (csum & 0xf);
9596
9597 /* Send it over and over until we get a positive ack. */
9598
9599 while (1)
9600 {
9601 if (remote_debug)
9602 {
9603 *p = '\0';
9604
9605 int len = (int) (p - buf2);
9606 int max_chars;
9607
9608 if (remote_packet_max_chars < 0)
9609 max_chars = len;
9610 else
9611 max_chars = remote_packet_max_chars;
9612
9613 std::string str
9614 = escape_buffer (buf2, std::min (len, max_chars));
9615
9616 if (len > max_chars)
9617 remote_debug_printf_nofunc
9618 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9619 len - max_chars);
9620 else
9621 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9622 }
9623 remote_serial_write (buf2, p - buf2);
9624
9625 /* If this is a no acks version of the remote protocol, send the
9626 packet and move on. */
9627 if (rs->noack_mode)
9628 break;
9629
9630 /* Read until either a timeout occurs (-2) or '+' is read.
9631 Handle any notification that arrives in the mean time. */
9632 while (1)
9633 {
9634 ch = readchar (remote_timeout);
9635
9636 switch (ch)
9637 {
9638 case '+':
9639 remote_debug_printf_nofunc ("Received Ack");
9640 return 1;
9641 case '-':
9642 remote_debug_printf_nofunc ("Received Nak");
9643 /* FALLTHROUGH */
9644 case SERIAL_TIMEOUT:
9645 tcount++;
9646 if (tcount > 3)
9647 return 0;
9648 break; /* Retransmit buffer. */
9649 case '$':
9650 {
9651 remote_debug_printf ("Packet instead of Ack, ignoring it");
9652 /* It's probably an old response sent because an ACK
9653 was lost. Gobble up the packet and ack it so it
9654 doesn't get retransmitted when we resend this
9655 packet. */
9656 skip_frame ();
9657 remote_serial_write ("+", 1);
9658 continue; /* Now, go look for +. */
9659 }
9660
9661 case '%':
9662 {
9663 int val;
9664
9665 /* If we got a notification, handle it, and go back to looking
9666 for an ack. */
9667 /* We've found the start of a notification. Now
9668 collect the data. */
9669 val = read_frame (&rs->buf);
9670 if (val >= 0)
9671 {
9672 remote_debug_printf_nofunc
9673 (" Notification received: %s",
9674 escape_buffer (rs->buf.data (), val).c_str ());
9675
9676 handle_notification (rs->notif_state, rs->buf.data ());
9677 /* We're in sync now, rewait for the ack. */
9678 tcount = 0;
9679 }
9680 else
9681 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9682 rs->buf.data ());
9683 continue;
9684 }
9685 /* fall-through */
9686 default:
9687 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9688 rs->buf.data ());
9689 continue;
9690 }
9691 break; /* Here to retransmit. */
9692 }
9693
9694 #if 0
9695 /* This is wrong. If doing a long backtrace, the user should be
9696 able to get out next time we call QUIT, without anything as
9697 violent as interrupt_query. If we want to provide a way out of
9698 here without getting to the next QUIT, it should be based on
9699 hitting ^C twice as in remote_wait. */
9700 if (quit_flag)
9701 {
9702 quit_flag = 0;
9703 interrupt_query ();
9704 }
9705 #endif
9706 }
9707
9708 return 0;
9709 }
9710
9711 /* Come here after finding the start of a frame when we expected an
9712 ack. Do our best to discard the rest of this packet. */
9713
9714 void
9715 remote_target::skip_frame ()
9716 {
9717 int c;
9718
9719 while (1)
9720 {
9721 c = readchar (remote_timeout);
9722 switch (c)
9723 {
9724 case SERIAL_TIMEOUT:
9725 /* Nothing we can do. */
9726 return;
9727 case '#':
9728 /* Discard the two bytes of checksum and stop. */
9729 c = readchar (remote_timeout);
9730 if (c >= 0)
9731 c = readchar (remote_timeout);
9732
9733 return;
9734 case '*': /* Run length encoding. */
9735 /* Discard the repeat count. */
9736 c = readchar (remote_timeout);
9737 if (c < 0)
9738 return;
9739 break;
9740 default:
9741 /* A regular character. */
9742 break;
9743 }
9744 }
9745 }
9746
9747 /* Come here after finding the start of the frame. Collect the rest
9748 into *BUF, verifying the checksum, length, and handling run-length
9749 compression. NUL terminate the buffer. If there is not enough room,
9750 expand *BUF.
9751
9752 Returns -1 on error, number of characters in buffer (ignoring the
9753 trailing NULL) on success. (could be extended to return one of the
9754 SERIAL status indications). */
9755
9756 long
9757 remote_target::read_frame (gdb::char_vector *buf_p)
9758 {
9759 unsigned char csum;
9760 long bc;
9761 int c;
9762 char *buf = buf_p->data ();
9763 struct remote_state *rs = get_remote_state ();
9764
9765 csum = 0;
9766 bc = 0;
9767
9768 while (1)
9769 {
9770 c = readchar (remote_timeout);
9771 switch (c)
9772 {
9773 case SERIAL_TIMEOUT:
9774 remote_debug_printf ("Timeout in mid-packet, retrying");
9775 return -1;
9776
9777 case '$':
9778 remote_debug_printf ("Saw new packet start in middle of old one");
9779 return -1; /* Start a new packet, count retries. */
9780
9781 case '#':
9782 {
9783 unsigned char pktcsum;
9784 int check_0 = 0;
9785 int check_1 = 0;
9786
9787 buf[bc] = '\0';
9788
9789 check_0 = readchar (remote_timeout);
9790 if (check_0 >= 0)
9791 check_1 = readchar (remote_timeout);
9792
9793 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9794 {
9795 remote_debug_printf ("Timeout in checksum, retrying");
9796 return -1;
9797 }
9798 else if (check_0 < 0 || check_1 < 0)
9799 {
9800 remote_debug_printf ("Communication error in checksum");
9801 return -1;
9802 }
9803
9804 /* Don't recompute the checksum; with no ack packets we
9805 don't have any way to indicate a packet retransmission
9806 is necessary. */
9807 if (rs->noack_mode)
9808 return bc;
9809
9810 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9811 if (csum == pktcsum)
9812 return bc;
9813
9814 remote_debug_printf
9815 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9816 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9817
9818 /* Number of characters in buffer ignoring trailing
9819 NULL. */
9820 return -1;
9821 }
9822 case '*': /* Run length encoding. */
9823 {
9824 int repeat;
9825
9826 csum += c;
9827 c = readchar (remote_timeout);
9828 csum += c;
9829 repeat = c - ' ' + 3; /* Compute repeat count. */
9830
9831 /* The character before ``*'' is repeated. */
9832
9833 if (repeat > 0 && repeat <= 255 && bc > 0)
9834 {
9835 if (bc + repeat - 1 >= buf_p->size () - 1)
9836 {
9837 /* Make some more room in the buffer. */
9838 buf_p->resize (buf_p->size () + repeat);
9839 buf = buf_p->data ();
9840 }
9841
9842 memset (&buf[bc], buf[bc - 1], repeat);
9843 bc += repeat;
9844 continue;
9845 }
9846
9847 buf[bc] = '\0';
9848 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9849 return -1;
9850 }
9851 default:
9852 if (bc >= buf_p->size () - 1)
9853 {
9854 /* Make some more room in the buffer. */
9855 buf_p->resize (buf_p->size () * 2);
9856 buf = buf_p->data ();
9857 }
9858
9859 buf[bc++] = c;
9860 csum += c;
9861 continue;
9862 }
9863 }
9864 }
9865
9866 /* Set this to the maximum number of seconds to wait instead of waiting forever
9867 in target_wait(). If this timer times out, then it generates an error and
9868 the command is aborted. This replaces most of the need for timeouts in the
9869 GDB test suite, and makes it possible to distinguish between a hung target
9870 and one with slow communications. */
9871
9872 static int watchdog = 0;
9873 static void
9874 show_watchdog (struct ui_file *file, int from_tty,
9875 struct cmd_list_element *c, const char *value)
9876 {
9877 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9878 }
9879
9880 /* Read a packet from the remote machine, with error checking, and
9881 store it in *BUF. Resize *BUF if necessary to hold the result. If
9882 FOREVER, wait forever rather than timing out; this is used (in
9883 synchronous mode) to wait for a target that is is executing user
9884 code to stop. */
9885 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9886 don't have to change all the calls to getpkt to deal with the
9887 return value, because at the moment I don't know what the right
9888 thing to do it for those. */
9889
9890 void
9891 remote_target::getpkt (gdb::char_vector *buf, int forever)
9892 {
9893 getpkt_sane (buf, forever);
9894 }
9895
9896
9897 /* Read a packet from the remote machine, with error checking, and
9898 store it in *BUF. Resize *BUF if necessary to hold the result. If
9899 FOREVER, wait forever rather than timing out; this is used (in
9900 synchronous mode) to wait for a target that is is executing user
9901 code to stop. If FOREVER == 0, this function is allowed to time
9902 out gracefully and return an indication of this to the caller.
9903 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9904 consider receiving a notification enough reason to return to the
9905 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9906 holds a notification or not (a regular packet). */
9907
9908 int
9909 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9910 int forever, int expecting_notif,
9911 int *is_notif)
9912 {
9913 struct remote_state *rs = get_remote_state ();
9914 int c;
9915 int tries;
9916 int timeout;
9917 int val = -1;
9918
9919 strcpy (buf->data (), "timeout");
9920
9921 if (forever)
9922 timeout = watchdog > 0 ? watchdog : -1;
9923 else if (expecting_notif)
9924 timeout = 0; /* There should already be a char in the buffer. If
9925 not, bail out. */
9926 else
9927 timeout = remote_timeout;
9928
9929 #define MAX_TRIES 3
9930
9931 /* Process any number of notifications, and then return when
9932 we get a packet. */
9933 for (;;)
9934 {
9935 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9936 times. */
9937 for (tries = 1; tries <= MAX_TRIES; tries++)
9938 {
9939 /* This can loop forever if the remote side sends us
9940 characters continuously, but if it pauses, we'll get
9941 SERIAL_TIMEOUT from readchar because of timeout. Then
9942 we'll count that as a retry.
9943
9944 Note that even when forever is set, we will only wait
9945 forever prior to the start of a packet. After that, we
9946 expect characters to arrive at a brisk pace. They should
9947 show up within remote_timeout intervals. */
9948 do
9949 c = readchar (timeout);
9950 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9951
9952 if (c == SERIAL_TIMEOUT)
9953 {
9954 if (expecting_notif)
9955 return -1; /* Don't complain, it's normal to not get
9956 anything in this case. */
9957
9958 if (forever) /* Watchdog went off? Kill the target. */
9959 {
9960 remote_unpush_target (this);
9961 throw_error (TARGET_CLOSE_ERROR,
9962 _("Watchdog timeout has expired. "
9963 "Target detached."));
9964 }
9965
9966 remote_debug_printf ("Timed out.");
9967 }
9968 else
9969 {
9970 /* We've found the start of a packet or notification.
9971 Now collect the data. */
9972 val = read_frame (buf);
9973 if (val >= 0)
9974 break;
9975 }
9976
9977 remote_serial_write ("-", 1);
9978 }
9979
9980 if (tries > MAX_TRIES)
9981 {
9982 /* We have tried hard enough, and just can't receive the
9983 packet/notification. Give up. */
9984 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9985
9986 /* Skip the ack char if we're in no-ack mode. */
9987 if (!rs->noack_mode)
9988 remote_serial_write ("+", 1);
9989 return -1;
9990 }
9991
9992 /* If we got an ordinary packet, return that to our caller. */
9993 if (c == '$')
9994 {
9995 if (remote_debug)
9996 {
9997 int max_chars;
9998
9999 if (remote_packet_max_chars < 0)
10000 max_chars = val;
10001 else
10002 max_chars = remote_packet_max_chars;
10003
10004 std::string str
10005 = escape_buffer (buf->data (),
10006 std::min (val, max_chars));
10007
10008 if (val > max_chars)
10009 remote_debug_printf_nofunc
10010 ("Packet received: %s [%d bytes omitted]", str.c_str (),
10011 val - max_chars);
10012 else
10013 remote_debug_printf_nofunc ("Packet received: %s",
10014 str.c_str ());
10015 }
10016
10017 /* Skip the ack char if we're in no-ack mode. */
10018 if (!rs->noack_mode)
10019 remote_serial_write ("+", 1);
10020 if (is_notif != NULL)
10021 *is_notif = 0;
10022 return val;
10023 }
10024
10025 /* If we got a notification, handle it, and go back to looking
10026 for a packet. */
10027 else
10028 {
10029 gdb_assert (c == '%');
10030
10031 remote_debug_printf_nofunc
10032 (" Notification received: %s",
10033 escape_buffer (buf->data (), val).c_str ());
10034
10035 if (is_notif != NULL)
10036 *is_notif = 1;
10037
10038 handle_notification (rs->notif_state, buf->data ());
10039
10040 /* Notifications require no acknowledgement. */
10041
10042 if (expecting_notif)
10043 return val;
10044 }
10045 }
10046 }
10047
10048 int
10049 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
10050 {
10051 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
10052 }
10053
10054 int
10055 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
10056 int *is_notif)
10057 {
10058 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
10059 }
10060
10061 /* Kill any new fork children of inferior INF that haven't been
10062 processed by follow_fork. */
10063
10064 void
10065 remote_target::kill_new_fork_children (inferior *inf)
10066 {
10067 remote_state *rs = get_remote_state ();
10068 struct notif_client *notif = &notif_client_stop;
10069
10070 /* Kill the fork child threads of any threads in inferior INF that are stopped
10071 at a fork event. */
10072 for (thread_info *thread : inf->non_exited_threads ())
10073 {
10074 const target_waitstatus *ws = thread_pending_fork_status (thread);
10075
10076 if (ws == nullptr)
10077 continue;
10078
10079 int child_pid = ws->child_ptid ().pid ();
10080 int res = remote_vkill (child_pid);
10081
10082 if (res != 0)
10083 error (_("Can't kill fork child process %d"), child_pid);
10084 }
10085
10086 /* Check for any pending fork events (not reported or processed yet)
10087 in inferior INF and kill those fork child threads as well. */
10088 remote_notif_get_pending_events (notif);
10089 for (auto &event : rs->stop_reply_queue)
10090 {
10091 if (event->ptid.pid () != inf->pid)
10092 continue;
10093
10094 if (!is_fork_status (event->ws.kind ()))
10095 continue;
10096
10097 int child_pid = event->ws.child_ptid ().pid ();
10098 int res = remote_vkill (child_pid);
10099
10100 if (res != 0)
10101 error (_("Can't kill fork child process %d"), child_pid);
10102 }
10103 }
10104
10105 \f
10106 /* Target hook to kill the current inferior. */
10107
10108 void
10109 remote_target::kill ()
10110 {
10111 int res = -1;
10112 inferior *inf = find_inferior_pid (this, inferior_ptid.pid ());
10113 struct remote_state *rs = get_remote_state ();
10114
10115 gdb_assert (inf != nullptr);
10116
10117 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
10118 {
10119 /* If we're stopped while forking and we haven't followed yet,
10120 kill the child task. We need to do this before killing the
10121 parent task because if this is a vfork then the parent will
10122 be sleeping. */
10123 kill_new_fork_children (inf);
10124
10125 res = remote_vkill (inf->pid);
10126 if (res == 0)
10127 {
10128 target_mourn_inferior (inferior_ptid);
10129 return;
10130 }
10131 }
10132
10133 /* If we are in 'target remote' mode and we are killing the only
10134 inferior, then we will tell gdbserver to exit and unpush the
10135 target. */
10136 if (res == -1 && !remote_multi_process_p (rs)
10137 && number_of_live_inferiors (this) == 1)
10138 {
10139 remote_kill_k ();
10140
10141 /* We've killed the remote end, we get to mourn it. If we are
10142 not in extended mode, mourning the inferior also unpushes
10143 remote_ops from the target stack, which closes the remote
10144 connection. */
10145 target_mourn_inferior (inferior_ptid);
10146
10147 return;
10148 }
10149
10150 error (_("Can't kill process"));
10151 }
10152
10153 /* Send a kill request to the target using the 'vKill' packet. */
10154
10155 int
10156 remote_target::remote_vkill (int pid)
10157 {
10158 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10159 return -1;
10160
10161 remote_state *rs = get_remote_state ();
10162
10163 /* Tell the remote target to detach. */
10164 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10165 putpkt (rs->buf);
10166 getpkt (&rs->buf, 0);
10167
10168 switch (packet_ok (rs->buf,
10169 &remote_protocol_packets[PACKET_vKill]))
10170 {
10171 case PACKET_OK:
10172 return 0;
10173 case PACKET_ERROR:
10174 return 1;
10175 case PACKET_UNKNOWN:
10176 return -1;
10177 default:
10178 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10179 }
10180 }
10181
10182 /* Send a kill request to the target using the 'k' packet. */
10183
10184 void
10185 remote_target::remote_kill_k ()
10186 {
10187 /* Catch errors so the user can quit from gdb even when we
10188 aren't on speaking terms with the remote system. */
10189 try
10190 {
10191 putpkt ("k");
10192 }
10193 catch (const gdb_exception_error &ex)
10194 {
10195 if (ex.error == TARGET_CLOSE_ERROR)
10196 {
10197 /* If we got an (EOF) error that caused the target
10198 to go away, then we're done, that's what we wanted.
10199 "k" is susceptible to cause a premature EOF, given
10200 that the remote server isn't actually required to
10201 reply to "k", and it can happen that it doesn't
10202 even get to reply ACK to the "k". */
10203 return;
10204 }
10205
10206 /* Otherwise, something went wrong. We didn't actually kill
10207 the target. Just propagate the exception, and let the
10208 user or higher layers decide what to do. */
10209 throw;
10210 }
10211 }
10212
10213 void
10214 remote_target::mourn_inferior ()
10215 {
10216 struct remote_state *rs = get_remote_state ();
10217
10218 /* We're no longer interested in notification events of an inferior
10219 that exited or was killed/detached. */
10220 discard_pending_stop_replies (current_inferior ());
10221
10222 /* In 'target remote' mode with one inferior, we close the connection. */
10223 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10224 {
10225 remote_unpush_target (this);
10226 return;
10227 }
10228
10229 /* In case we got here due to an error, but we're going to stay
10230 connected. */
10231 rs->waiting_for_stop_reply = 0;
10232
10233 /* If the current general thread belonged to the process we just
10234 detached from or has exited, the remote side current general
10235 thread becomes undefined. Considering a case like this:
10236
10237 - We just got here due to a detach.
10238 - The process that we're detaching from happens to immediately
10239 report a global breakpoint being hit in non-stop mode, in the
10240 same thread we had selected before.
10241 - GDB attaches to this process again.
10242 - This event happens to be the next event we handle.
10243
10244 GDB would consider that the current general thread didn't need to
10245 be set on the stub side (with Hg), since for all it knew,
10246 GENERAL_THREAD hadn't changed.
10247
10248 Notice that although in all-stop mode, the remote server always
10249 sets the current thread to the thread reporting the stop event,
10250 that doesn't happen in non-stop mode; in non-stop, the stub *must
10251 not* change the current thread when reporting a breakpoint hit,
10252 due to the decoupling of event reporting and event handling.
10253
10254 To keep things simple, we always invalidate our notion of the
10255 current thread. */
10256 record_currthread (rs, minus_one_ptid);
10257
10258 /* Call common code to mark the inferior as not running. */
10259 generic_mourn_inferior ();
10260 }
10261
10262 bool
10263 extended_remote_target::supports_disable_randomization ()
10264 {
10265 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10266 }
10267
10268 void
10269 remote_target::extended_remote_disable_randomization (int val)
10270 {
10271 struct remote_state *rs = get_remote_state ();
10272 char *reply;
10273
10274 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10275 "QDisableRandomization:%x", val);
10276 putpkt (rs->buf);
10277 reply = remote_get_noisy_reply ();
10278 if (*reply == '\0')
10279 error (_("Target does not support QDisableRandomization."));
10280 if (strcmp (reply, "OK") != 0)
10281 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10282 }
10283
10284 int
10285 remote_target::extended_remote_run (const std::string &args)
10286 {
10287 struct remote_state *rs = get_remote_state ();
10288 int len;
10289 const char *remote_exec_file = get_remote_exec_file ();
10290
10291 /* If the user has disabled vRun support, or we have detected that
10292 support is not available, do not try it. */
10293 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10294 return -1;
10295
10296 strcpy (rs->buf.data (), "vRun;");
10297 len = strlen (rs->buf.data ());
10298
10299 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10300 error (_("Remote file name too long for run packet"));
10301 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10302 strlen (remote_exec_file));
10303
10304 if (!args.empty ())
10305 {
10306 int i;
10307
10308 gdb_argv argv (args.c_str ());
10309 for (i = 0; argv[i] != NULL; i++)
10310 {
10311 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10312 error (_("Argument list too long for run packet"));
10313 rs->buf[len++] = ';';
10314 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10315 strlen (argv[i]));
10316 }
10317 }
10318
10319 rs->buf[len++] = '\0';
10320
10321 putpkt (rs->buf);
10322 getpkt (&rs->buf, 0);
10323
10324 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10325 {
10326 case PACKET_OK:
10327 /* We have a wait response. All is well. */
10328 return 0;
10329 case PACKET_UNKNOWN:
10330 return -1;
10331 case PACKET_ERROR:
10332 if (remote_exec_file[0] == '\0')
10333 error (_("Running the default executable on the remote target failed; "
10334 "try \"set remote exec-file\"?"));
10335 else
10336 error (_("Running \"%s\" on the remote target failed"),
10337 remote_exec_file);
10338 default:
10339 gdb_assert_not_reached ("bad switch");
10340 }
10341 }
10342
10343 /* Helper function to send set/unset environment packets. ACTION is
10344 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10345 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10346 sent. */
10347
10348 void
10349 remote_target::send_environment_packet (const char *action,
10350 const char *packet,
10351 const char *value)
10352 {
10353 remote_state *rs = get_remote_state ();
10354
10355 /* Convert the environment variable to an hex string, which
10356 is the best format to be transmitted over the wire. */
10357 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10358 strlen (value));
10359
10360 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10361 "%s:%s", packet, encoded_value.c_str ());
10362
10363 putpkt (rs->buf);
10364 getpkt (&rs->buf, 0);
10365 if (strcmp (rs->buf.data (), "OK") != 0)
10366 warning (_("Unable to %s environment variable '%s' on remote."),
10367 action, value);
10368 }
10369
10370 /* Helper function to handle the QEnvironment* packets. */
10371
10372 void
10373 remote_target::extended_remote_environment_support ()
10374 {
10375 remote_state *rs = get_remote_state ();
10376
10377 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10378 {
10379 putpkt ("QEnvironmentReset");
10380 getpkt (&rs->buf, 0);
10381 if (strcmp (rs->buf.data (), "OK") != 0)
10382 warning (_("Unable to reset environment on remote."));
10383 }
10384
10385 gdb_environ *e = &current_inferior ()->environment;
10386
10387 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10388 for (const std::string &el : e->user_set_env ())
10389 send_environment_packet ("set", "QEnvironmentHexEncoded",
10390 el.c_str ());
10391
10392 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10393 for (const std::string &el : e->user_unset_env ())
10394 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10395 }
10396
10397 /* Helper function to set the current working directory for the
10398 inferior in the remote target. */
10399
10400 void
10401 remote_target::extended_remote_set_inferior_cwd ()
10402 {
10403 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10404 {
10405 const std::string &inferior_cwd = current_inferior ()->cwd ();
10406 remote_state *rs = get_remote_state ();
10407
10408 if (!inferior_cwd.empty ())
10409 {
10410 std::string hexpath
10411 = bin2hex ((const gdb_byte *) inferior_cwd.data (),
10412 inferior_cwd.size ());
10413
10414 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10415 "QSetWorkingDir:%s", hexpath.c_str ());
10416 }
10417 else
10418 {
10419 /* An empty inferior_cwd means that the user wants us to
10420 reset the remote server's inferior's cwd. */
10421 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10422 "QSetWorkingDir:");
10423 }
10424
10425 putpkt (rs->buf);
10426 getpkt (&rs->buf, 0);
10427 if (packet_ok (rs->buf,
10428 &remote_protocol_packets[PACKET_QSetWorkingDir])
10429 != PACKET_OK)
10430 error (_("\
10431 Remote replied unexpectedly while setting the inferior's working\n\
10432 directory: %s"),
10433 rs->buf.data ());
10434
10435 }
10436 }
10437
10438 /* In the extended protocol we want to be able to do things like
10439 "run" and have them basically work as expected. So we need
10440 a special create_inferior function. We support changing the
10441 executable file and the command line arguments, but not the
10442 environment. */
10443
10444 void
10445 extended_remote_target::create_inferior (const char *exec_file,
10446 const std::string &args,
10447 char **env, int from_tty)
10448 {
10449 int run_worked;
10450 char *stop_reply;
10451 struct remote_state *rs = get_remote_state ();
10452 const char *remote_exec_file = get_remote_exec_file ();
10453
10454 /* If running asynchronously, register the target file descriptor
10455 with the event loop. */
10456 if (target_can_async_p ())
10457 target_async (1);
10458
10459 /* Disable address space randomization if requested (and supported). */
10460 if (supports_disable_randomization ())
10461 extended_remote_disable_randomization (disable_randomization);
10462
10463 /* If startup-with-shell is on, we inform gdbserver to start the
10464 remote inferior using a shell. */
10465 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10466 {
10467 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10468 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10469 putpkt (rs->buf);
10470 getpkt (&rs->buf, 0);
10471 if (strcmp (rs->buf.data (), "OK") != 0)
10472 error (_("\
10473 Remote replied unexpectedly while setting startup-with-shell: %s"),
10474 rs->buf.data ());
10475 }
10476
10477 extended_remote_environment_support ();
10478
10479 extended_remote_set_inferior_cwd ();
10480
10481 /* Now restart the remote server. */
10482 run_worked = extended_remote_run (args) != -1;
10483 if (!run_worked)
10484 {
10485 /* vRun was not supported. Fail if we need it to do what the
10486 user requested. */
10487 if (remote_exec_file[0])
10488 error (_("Remote target does not support \"set remote exec-file\""));
10489 if (!args.empty ())
10490 error (_("Remote target does not support \"set args\" or run ARGS"));
10491
10492 /* Fall back to "R". */
10493 extended_remote_restart ();
10494 }
10495
10496 /* vRun's success return is a stop reply. */
10497 stop_reply = run_worked ? rs->buf.data () : NULL;
10498 add_current_inferior_and_thread (stop_reply);
10499
10500 /* Get updated offsets, if the stub uses qOffsets. */
10501 get_offsets ();
10502 }
10503 \f
10504
10505 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10506 the list of conditions (in agent expression bytecode format), if any, the
10507 target needs to evaluate. The output is placed into the packet buffer
10508 started from BUF and ended at BUF_END. */
10509
10510 static int
10511 remote_add_target_side_condition (struct gdbarch *gdbarch,
10512 struct bp_target_info *bp_tgt, char *buf,
10513 char *buf_end)
10514 {
10515 if (bp_tgt->conditions.empty ())
10516 return 0;
10517
10518 buf += strlen (buf);
10519 xsnprintf (buf, buf_end - buf, "%s", ";");
10520 buf++;
10521
10522 /* Send conditions to the target. */
10523 for (agent_expr *aexpr : bp_tgt->conditions)
10524 {
10525 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10526 buf += strlen (buf);
10527 for (int i = 0; i < aexpr->len; ++i)
10528 buf = pack_hex_byte (buf, aexpr->buf[i]);
10529 *buf = '\0';
10530 }
10531 return 0;
10532 }
10533
10534 static void
10535 remote_add_target_side_commands (struct gdbarch *gdbarch,
10536 struct bp_target_info *bp_tgt, char *buf)
10537 {
10538 if (bp_tgt->tcommands.empty ())
10539 return;
10540
10541 buf += strlen (buf);
10542
10543 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10544 buf += strlen (buf);
10545
10546 /* Concatenate all the agent expressions that are commands into the
10547 cmds parameter. */
10548 for (agent_expr *aexpr : bp_tgt->tcommands)
10549 {
10550 sprintf (buf, "X%x,", aexpr->len);
10551 buf += strlen (buf);
10552 for (int i = 0; i < aexpr->len; ++i)
10553 buf = pack_hex_byte (buf, aexpr->buf[i]);
10554 *buf = '\0';
10555 }
10556 }
10557
10558 /* Insert a breakpoint. On targets that have software breakpoint
10559 support, we ask the remote target to do the work; on targets
10560 which don't, we insert a traditional memory breakpoint. */
10561
10562 int
10563 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10564 struct bp_target_info *bp_tgt)
10565 {
10566 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10567 If it succeeds, then set the support to PACKET_ENABLE. If it
10568 fails, and the user has explicitly requested the Z support then
10569 report an error, otherwise, mark it disabled and go on. */
10570
10571 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10572 {
10573 CORE_ADDR addr = bp_tgt->reqstd_address;
10574 struct remote_state *rs;
10575 char *p, *endbuf;
10576
10577 /* Make sure the remote is pointing at the right process, if
10578 necessary. */
10579 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10580 set_general_process ();
10581
10582 rs = get_remote_state ();
10583 p = rs->buf.data ();
10584 endbuf = p + get_remote_packet_size ();
10585
10586 *(p++) = 'Z';
10587 *(p++) = '0';
10588 *(p++) = ',';
10589 addr = (ULONGEST) remote_address_masked (addr);
10590 p += hexnumstr (p, addr);
10591 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10592
10593 if (supports_evaluation_of_breakpoint_conditions ())
10594 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10595
10596 if (can_run_breakpoint_commands ())
10597 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10598
10599 putpkt (rs->buf);
10600 getpkt (&rs->buf, 0);
10601
10602 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10603 {
10604 case PACKET_ERROR:
10605 return -1;
10606 case PACKET_OK:
10607 return 0;
10608 case PACKET_UNKNOWN:
10609 break;
10610 }
10611 }
10612
10613 /* If this breakpoint has target-side commands but this stub doesn't
10614 support Z0 packets, throw error. */
10615 if (!bp_tgt->tcommands.empty ())
10616 throw_error (NOT_SUPPORTED_ERROR, _("\
10617 Target doesn't support breakpoints that have target side commands."));
10618
10619 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10620 }
10621
10622 int
10623 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10624 struct bp_target_info *bp_tgt,
10625 enum remove_bp_reason reason)
10626 {
10627 CORE_ADDR addr = bp_tgt->placed_address;
10628 struct remote_state *rs = get_remote_state ();
10629
10630 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10631 {
10632 char *p = rs->buf.data ();
10633 char *endbuf = p + get_remote_packet_size ();
10634
10635 /* Make sure the remote is pointing at the right process, if
10636 necessary. */
10637 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10638 set_general_process ();
10639
10640 *(p++) = 'z';
10641 *(p++) = '0';
10642 *(p++) = ',';
10643
10644 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10645 p += hexnumstr (p, addr);
10646 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10647
10648 putpkt (rs->buf);
10649 getpkt (&rs->buf, 0);
10650
10651 return (rs->buf[0] == 'E');
10652 }
10653
10654 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10655 }
10656
10657 static enum Z_packet_type
10658 watchpoint_to_Z_packet (int type)
10659 {
10660 switch (type)
10661 {
10662 case hw_write:
10663 return Z_PACKET_WRITE_WP;
10664 break;
10665 case hw_read:
10666 return Z_PACKET_READ_WP;
10667 break;
10668 case hw_access:
10669 return Z_PACKET_ACCESS_WP;
10670 break;
10671 default:
10672 internal_error (__FILE__, __LINE__,
10673 _("hw_bp_to_z: bad watchpoint type %d"), type);
10674 }
10675 }
10676
10677 int
10678 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10679 enum target_hw_bp_type type, struct expression *cond)
10680 {
10681 struct remote_state *rs = get_remote_state ();
10682 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10683 char *p;
10684 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10685
10686 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10687 return 1;
10688
10689 /* Make sure the remote is pointing at the right process, if
10690 necessary. */
10691 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10692 set_general_process ();
10693
10694 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10695 p = strchr (rs->buf.data (), '\0');
10696 addr = remote_address_masked (addr);
10697 p += hexnumstr (p, (ULONGEST) addr);
10698 xsnprintf (p, endbuf - p, ",%x", len);
10699
10700 putpkt (rs->buf);
10701 getpkt (&rs->buf, 0);
10702
10703 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10704 {
10705 case PACKET_ERROR:
10706 return -1;
10707 case PACKET_UNKNOWN:
10708 return 1;
10709 case PACKET_OK:
10710 return 0;
10711 }
10712 internal_error (__FILE__, __LINE__,
10713 _("remote_insert_watchpoint: reached end of function"));
10714 }
10715
10716 bool
10717 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10718 CORE_ADDR start, int length)
10719 {
10720 CORE_ADDR diff = remote_address_masked (addr - start);
10721
10722 return diff < length;
10723 }
10724
10725
10726 int
10727 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10728 enum target_hw_bp_type type, struct expression *cond)
10729 {
10730 struct remote_state *rs = get_remote_state ();
10731 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10732 char *p;
10733 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10734
10735 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10736 return -1;
10737
10738 /* Make sure the remote is pointing at the right process, if
10739 necessary. */
10740 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10741 set_general_process ();
10742
10743 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10744 p = strchr (rs->buf.data (), '\0');
10745 addr = remote_address_masked (addr);
10746 p += hexnumstr (p, (ULONGEST) addr);
10747 xsnprintf (p, endbuf - p, ",%x", len);
10748 putpkt (rs->buf);
10749 getpkt (&rs->buf, 0);
10750
10751 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10752 {
10753 case PACKET_ERROR:
10754 case PACKET_UNKNOWN:
10755 return -1;
10756 case PACKET_OK:
10757 return 0;
10758 }
10759 internal_error (__FILE__, __LINE__,
10760 _("remote_remove_watchpoint: reached end of function"));
10761 }
10762
10763
10764 static int remote_hw_watchpoint_limit = -1;
10765 static int remote_hw_watchpoint_length_limit = -1;
10766 static int remote_hw_breakpoint_limit = -1;
10767
10768 int
10769 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10770 {
10771 if (remote_hw_watchpoint_length_limit == 0)
10772 return 0;
10773 else if (remote_hw_watchpoint_length_limit < 0)
10774 return 1;
10775 else if (len <= remote_hw_watchpoint_length_limit)
10776 return 1;
10777 else
10778 return 0;
10779 }
10780
10781 int
10782 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10783 {
10784 if (type == bp_hardware_breakpoint)
10785 {
10786 if (remote_hw_breakpoint_limit == 0)
10787 return 0;
10788 else if (remote_hw_breakpoint_limit < 0)
10789 return 1;
10790 else if (cnt <= remote_hw_breakpoint_limit)
10791 return 1;
10792 }
10793 else
10794 {
10795 if (remote_hw_watchpoint_limit == 0)
10796 return 0;
10797 else if (remote_hw_watchpoint_limit < 0)
10798 return 1;
10799 else if (ot)
10800 return -1;
10801 else if (cnt <= remote_hw_watchpoint_limit)
10802 return 1;
10803 }
10804 return -1;
10805 }
10806
10807 /* The to_stopped_by_sw_breakpoint method of target remote. */
10808
10809 bool
10810 remote_target::stopped_by_sw_breakpoint ()
10811 {
10812 struct thread_info *thread = inferior_thread ();
10813
10814 return (thread->priv != NULL
10815 && (get_remote_thread_info (thread)->stop_reason
10816 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10817 }
10818
10819 /* The to_supports_stopped_by_sw_breakpoint method of target
10820 remote. */
10821
10822 bool
10823 remote_target::supports_stopped_by_sw_breakpoint ()
10824 {
10825 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10826 }
10827
10828 /* The to_stopped_by_hw_breakpoint method of target remote. */
10829
10830 bool
10831 remote_target::stopped_by_hw_breakpoint ()
10832 {
10833 struct thread_info *thread = inferior_thread ();
10834
10835 return (thread->priv != NULL
10836 && (get_remote_thread_info (thread)->stop_reason
10837 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10838 }
10839
10840 /* The to_supports_stopped_by_hw_breakpoint method of target
10841 remote. */
10842
10843 bool
10844 remote_target::supports_stopped_by_hw_breakpoint ()
10845 {
10846 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10847 }
10848
10849 bool
10850 remote_target::stopped_by_watchpoint ()
10851 {
10852 struct thread_info *thread = inferior_thread ();
10853
10854 return (thread->priv != NULL
10855 && (get_remote_thread_info (thread)->stop_reason
10856 == TARGET_STOPPED_BY_WATCHPOINT));
10857 }
10858
10859 bool
10860 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10861 {
10862 struct thread_info *thread = inferior_thread ();
10863
10864 if (thread->priv != NULL
10865 && (get_remote_thread_info (thread)->stop_reason
10866 == TARGET_STOPPED_BY_WATCHPOINT))
10867 {
10868 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10869 return true;
10870 }
10871
10872 return false;
10873 }
10874
10875
10876 int
10877 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10878 struct bp_target_info *bp_tgt)
10879 {
10880 CORE_ADDR addr = bp_tgt->reqstd_address;
10881 struct remote_state *rs;
10882 char *p, *endbuf;
10883 char *message;
10884
10885 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10886 return -1;
10887
10888 /* Make sure the remote is pointing at the right process, if
10889 necessary. */
10890 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10891 set_general_process ();
10892
10893 rs = get_remote_state ();
10894 p = rs->buf.data ();
10895 endbuf = p + get_remote_packet_size ();
10896
10897 *(p++) = 'Z';
10898 *(p++) = '1';
10899 *(p++) = ',';
10900
10901 addr = remote_address_masked (addr);
10902 p += hexnumstr (p, (ULONGEST) addr);
10903 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10904
10905 if (supports_evaluation_of_breakpoint_conditions ())
10906 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10907
10908 if (can_run_breakpoint_commands ())
10909 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10910
10911 putpkt (rs->buf);
10912 getpkt (&rs->buf, 0);
10913
10914 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10915 {
10916 case PACKET_ERROR:
10917 if (rs->buf[1] == '.')
10918 {
10919 message = strchr (&rs->buf[2], '.');
10920 if (message)
10921 error (_("Remote failure reply: %s"), message + 1);
10922 }
10923 return -1;
10924 case PACKET_UNKNOWN:
10925 return -1;
10926 case PACKET_OK:
10927 return 0;
10928 }
10929 internal_error (__FILE__, __LINE__,
10930 _("remote_insert_hw_breakpoint: reached end of function"));
10931 }
10932
10933
10934 int
10935 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10936 struct bp_target_info *bp_tgt)
10937 {
10938 CORE_ADDR addr;
10939 struct remote_state *rs = get_remote_state ();
10940 char *p = rs->buf.data ();
10941 char *endbuf = p + get_remote_packet_size ();
10942
10943 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10944 return -1;
10945
10946 /* Make sure the remote is pointing at the right process, if
10947 necessary. */
10948 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10949 set_general_process ();
10950
10951 *(p++) = 'z';
10952 *(p++) = '1';
10953 *(p++) = ',';
10954
10955 addr = remote_address_masked (bp_tgt->placed_address);
10956 p += hexnumstr (p, (ULONGEST) addr);
10957 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10958
10959 putpkt (rs->buf);
10960 getpkt (&rs->buf, 0);
10961
10962 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10963 {
10964 case PACKET_ERROR:
10965 case PACKET_UNKNOWN:
10966 return -1;
10967 case PACKET_OK:
10968 return 0;
10969 }
10970 internal_error (__FILE__, __LINE__,
10971 _("remote_remove_hw_breakpoint: reached end of function"));
10972 }
10973
10974 /* Verify memory using the "qCRC:" request. */
10975
10976 int
10977 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10978 {
10979 struct remote_state *rs = get_remote_state ();
10980 unsigned long host_crc, target_crc;
10981 char *tmp;
10982
10983 /* It doesn't make sense to use qCRC if the remote target is
10984 connected but not running. */
10985 if (target_has_execution ()
10986 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10987 {
10988 enum packet_result result;
10989
10990 /* Make sure the remote is pointing at the right process. */
10991 set_general_process ();
10992
10993 /* FIXME: assumes lma can fit into long. */
10994 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10995 (long) lma, (long) size);
10996 putpkt (rs->buf);
10997
10998 /* Be clever; compute the host_crc before waiting for target
10999 reply. */
11000 host_crc = xcrc32 (data, size, 0xffffffff);
11001
11002 getpkt (&rs->buf, 0);
11003
11004 result = packet_ok (rs->buf,
11005 &remote_protocol_packets[PACKET_qCRC]);
11006 if (result == PACKET_ERROR)
11007 return -1;
11008 else if (result == PACKET_OK)
11009 {
11010 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
11011 target_crc = target_crc * 16 + fromhex (*tmp);
11012
11013 return (host_crc == target_crc);
11014 }
11015 }
11016
11017 return simple_verify_memory (this, data, lma, size);
11018 }
11019
11020 /* compare-sections command
11021
11022 With no arguments, compares each loadable section in the exec bfd
11023 with the same memory range on the target, and reports mismatches.
11024 Useful for verifying the image on the target against the exec file. */
11025
11026 static void
11027 compare_sections_command (const char *args, int from_tty)
11028 {
11029 asection *s;
11030 const char *sectname;
11031 bfd_size_type size;
11032 bfd_vma lma;
11033 int matched = 0;
11034 int mismatched = 0;
11035 int res;
11036 int read_only = 0;
11037
11038 if (!current_program_space->exec_bfd ())
11039 error (_("command cannot be used without an exec file"));
11040
11041 if (args != NULL && strcmp (args, "-r") == 0)
11042 {
11043 read_only = 1;
11044 args = NULL;
11045 }
11046
11047 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
11048 {
11049 if (!(s->flags & SEC_LOAD))
11050 continue; /* Skip non-loadable section. */
11051
11052 if (read_only && (s->flags & SEC_READONLY) == 0)
11053 continue; /* Skip writeable sections */
11054
11055 size = bfd_section_size (s);
11056 if (size == 0)
11057 continue; /* Skip zero-length section. */
11058
11059 sectname = bfd_section_name (s);
11060 if (args && strcmp (args, sectname) != 0)
11061 continue; /* Not the section selected by user. */
11062
11063 matched = 1; /* Do this section. */
11064 lma = s->lma;
11065
11066 gdb::byte_vector sectdata (size);
11067 bfd_get_section_contents (current_program_space->exec_bfd (), s,
11068 sectdata.data (), 0, size);
11069
11070 res = target_verify_memory (sectdata.data (), lma, size);
11071
11072 if (res == -1)
11073 error (_("target memory fault, section %s, range %s -- %s"), sectname,
11074 paddress (target_gdbarch (), lma),
11075 paddress (target_gdbarch (), lma + size));
11076
11077 printf_filtered ("Section %s, range %s -- %s: ", sectname,
11078 paddress (target_gdbarch (), lma),
11079 paddress (target_gdbarch (), lma + size));
11080 if (res)
11081 printf_filtered ("matched.\n");
11082 else
11083 {
11084 printf_filtered ("MIS-MATCHED!\n");
11085 mismatched++;
11086 }
11087 }
11088 if (mismatched > 0)
11089 warning (_("One or more sections of the target image does not match\n\
11090 the loaded file\n"));
11091 if (args && !matched)
11092 printf_filtered (_("No loaded section named '%s'.\n"), args);
11093 }
11094
11095 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
11096 into remote target. The number of bytes written to the remote
11097 target is returned, or -1 for error. */
11098
11099 target_xfer_status
11100 remote_target::remote_write_qxfer (const char *object_name,
11101 const char *annex, const gdb_byte *writebuf,
11102 ULONGEST offset, LONGEST len,
11103 ULONGEST *xfered_len,
11104 struct packet_config *packet)
11105 {
11106 int i, buf_len;
11107 ULONGEST n;
11108 struct remote_state *rs = get_remote_state ();
11109 int max_size = get_memory_write_packet_size ();
11110
11111 if (packet_config_support (packet) == PACKET_DISABLE)
11112 return TARGET_XFER_E_IO;
11113
11114 /* Insert header. */
11115 i = snprintf (rs->buf.data (), max_size,
11116 "qXfer:%s:write:%s:%s:",
11117 object_name, annex ? annex : "",
11118 phex_nz (offset, sizeof offset));
11119 max_size -= (i + 1);
11120
11121 /* Escape as much data as fits into rs->buf. */
11122 buf_len = remote_escape_output
11123 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
11124
11125 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
11126 || getpkt_sane (&rs->buf, 0) < 0
11127 || packet_ok (rs->buf, packet) != PACKET_OK)
11128 return TARGET_XFER_E_IO;
11129
11130 unpack_varlen_hex (rs->buf.data (), &n);
11131
11132 *xfered_len = n;
11133 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11134 }
11135
11136 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
11137 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
11138 number of bytes read is returned, or 0 for EOF, or -1 for error.
11139 The number of bytes read may be less than LEN without indicating an
11140 EOF. PACKET is checked and updated to indicate whether the remote
11141 target supports this object. */
11142
11143 target_xfer_status
11144 remote_target::remote_read_qxfer (const char *object_name,
11145 const char *annex,
11146 gdb_byte *readbuf, ULONGEST offset,
11147 LONGEST len,
11148 ULONGEST *xfered_len,
11149 struct packet_config *packet)
11150 {
11151 struct remote_state *rs = get_remote_state ();
11152 LONGEST i, n, packet_len;
11153
11154 if (packet_config_support (packet) == PACKET_DISABLE)
11155 return TARGET_XFER_E_IO;
11156
11157 /* Check whether we've cached an end-of-object packet that matches
11158 this request. */
11159 if (rs->finished_object)
11160 {
11161 if (strcmp (object_name, rs->finished_object) == 0
11162 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11163 && offset == rs->finished_offset)
11164 return TARGET_XFER_EOF;
11165
11166
11167 /* Otherwise, we're now reading something different. Discard
11168 the cache. */
11169 xfree (rs->finished_object);
11170 xfree (rs->finished_annex);
11171 rs->finished_object = NULL;
11172 rs->finished_annex = NULL;
11173 }
11174
11175 /* Request only enough to fit in a single packet. The actual data
11176 may not, since we don't know how much of it will need to be escaped;
11177 the target is free to respond with slightly less data. We subtract
11178 five to account for the response type and the protocol frame. */
11179 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11180 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11181 "qXfer:%s:read:%s:%s,%s",
11182 object_name, annex ? annex : "",
11183 phex_nz (offset, sizeof offset),
11184 phex_nz (n, sizeof n));
11185 i = putpkt (rs->buf);
11186 if (i < 0)
11187 return TARGET_XFER_E_IO;
11188
11189 rs->buf[0] = '\0';
11190 packet_len = getpkt_sane (&rs->buf, 0);
11191 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11192 return TARGET_XFER_E_IO;
11193
11194 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11195 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11196
11197 /* 'm' means there is (or at least might be) more data after this
11198 batch. That does not make sense unless there's at least one byte
11199 of data in this reply. */
11200 if (rs->buf[0] == 'm' && packet_len == 1)
11201 error (_("Remote qXfer reply contained no data."));
11202
11203 /* Got some data. */
11204 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11205 packet_len - 1, readbuf, n);
11206
11207 /* 'l' is an EOF marker, possibly including a final block of data,
11208 or possibly empty. If we have the final block of a non-empty
11209 object, record this fact to bypass a subsequent partial read. */
11210 if (rs->buf[0] == 'l' && offset + i > 0)
11211 {
11212 rs->finished_object = xstrdup (object_name);
11213 rs->finished_annex = xstrdup (annex ? annex : "");
11214 rs->finished_offset = offset + i;
11215 }
11216
11217 if (i == 0)
11218 return TARGET_XFER_EOF;
11219 else
11220 {
11221 *xfered_len = i;
11222 return TARGET_XFER_OK;
11223 }
11224 }
11225
11226 enum target_xfer_status
11227 remote_target::xfer_partial (enum target_object object,
11228 const char *annex, gdb_byte *readbuf,
11229 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11230 ULONGEST *xfered_len)
11231 {
11232 struct remote_state *rs;
11233 int i;
11234 char *p2;
11235 char query_type;
11236 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11237
11238 set_remote_traceframe ();
11239 set_general_thread (inferior_ptid);
11240
11241 rs = get_remote_state ();
11242
11243 /* Handle memory using the standard memory routines. */
11244 if (object == TARGET_OBJECT_MEMORY)
11245 {
11246 /* If the remote target is connected but not running, we should
11247 pass this request down to a lower stratum (e.g. the executable
11248 file). */
11249 if (!target_has_execution ())
11250 return TARGET_XFER_EOF;
11251
11252 if (writebuf != NULL)
11253 return remote_write_bytes (offset, writebuf, len, unit_size,
11254 xfered_len);
11255 else
11256 return remote_read_bytes (offset, readbuf, len, unit_size,
11257 xfered_len);
11258 }
11259
11260 /* Handle extra signal info using qxfer packets. */
11261 if (object == TARGET_OBJECT_SIGNAL_INFO)
11262 {
11263 if (readbuf)
11264 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11265 xfered_len, &remote_protocol_packets
11266 [PACKET_qXfer_siginfo_read]);
11267 else
11268 return remote_write_qxfer ("siginfo", annex,
11269 writebuf, offset, len, xfered_len,
11270 &remote_protocol_packets
11271 [PACKET_qXfer_siginfo_write]);
11272 }
11273
11274 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11275 {
11276 if (readbuf)
11277 return remote_read_qxfer ("statictrace", annex,
11278 readbuf, offset, len, xfered_len,
11279 &remote_protocol_packets
11280 [PACKET_qXfer_statictrace_read]);
11281 else
11282 return TARGET_XFER_E_IO;
11283 }
11284
11285 /* Only handle flash writes. */
11286 if (writebuf != NULL)
11287 {
11288 switch (object)
11289 {
11290 case TARGET_OBJECT_FLASH:
11291 return remote_flash_write (offset, len, xfered_len,
11292 writebuf);
11293
11294 default:
11295 return TARGET_XFER_E_IO;
11296 }
11297 }
11298
11299 /* Map pre-existing objects onto letters. DO NOT do this for new
11300 objects!!! Instead specify new query packets. */
11301 switch (object)
11302 {
11303 case TARGET_OBJECT_AVR:
11304 query_type = 'R';
11305 break;
11306
11307 case TARGET_OBJECT_AUXV:
11308 gdb_assert (annex == NULL);
11309 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11310 xfered_len,
11311 &remote_protocol_packets[PACKET_qXfer_auxv]);
11312
11313 case TARGET_OBJECT_AVAILABLE_FEATURES:
11314 return remote_read_qxfer
11315 ("features", annex, readbuf, offset, len, xfered_len,
11316 &remote_protocol_packets[PACKET_qXfer_features]);
11317
11318 case TARGET_OBJECT_LIBRARIES:
11319 return remote_read_qxfer
11320 ("libraries", annex, readbuf, offset, len, xfered_len,
11321 &remote_protocol_packets[PACKET_qXfer_libraries]);
11322
11323 case TARGET_OBJECT_LIBRARIES_SVR4:
11324 return remote_read_qxfer
11325 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11326 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11327
11328 case TARGET_OBJECT_MEMORY_MAP:
11329 gdb_assert (annex == NULL);
11330 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11331 xfered_len,
11332 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11333
11334 case TARGET_OBJECT_OSDATA:
11335 /* Should only get here if we're connected. */
11336 gdb_assert (rs->remote_desc);
11337 return remote_read_qxfer
11338 ("osdata", annex, readbuf, offset, len, xfered_len,
11339 &remote_protocol_packets[PACKET_qXfer_osdata]);
11340
11341 case TARGET_OBJECT_THREADS:
11342 gdb_assert (annex == NULL);
11343 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11344 xfered_len,
11345 &remote_protocol_packets[PACKET_qXfer_threads]);
11346
11347 case TARGET_OBJECT_TRACEFRAME_INFO:
11348 gdb_assert (annex == NULL);
11349 return remote_read_qxfer
11350 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11351 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11352
11353 case TARGET_OBJECT_FDPIC:
11354 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11355 xfered_len,
11356 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11357
11358 case TARGET_OBJECT_OPENVMS_UIB:
11359 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11360 xfered_len,
11361 &remote_protocol_packets[PACKET_qXfer_uib]);
11362
11363 case TARGET_OBJECT_BTRACE:
11364 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11365 xfered_len,
11366 &remote_protocol_packets[PACKET_qXfer_btrace]);
11367
11368 case TARGET_OBJECT_BTRACE_CONF:
11369 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11370 len, xfered_len,
11371 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11372
11373 case TARGET_OBJECT_EXEC_FILE:
11374 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11375 len, xfered_len,
11376 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11377
11378 default:
11379 return TARGET_XFER_E_IO;
11380 }
11381
11382 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11383 large enough let the caller deal with it. */
11384 if (len < get_remote_packet_size ())
11385 return TARGET_XFER_E_IO;
11386 len = get_remote_packet_size ();
11387
11388 /* Except for querying the minimum buffer size, target must be open. */
11389 if (!rs->remote_desc)
11390 error (_("remote query is only available after target open"));
11391
11392 gdb_assert (annex != NULL);
11393 gdb_assert (readbuf != NULL);
11394
11395 p2 = rs->buf.data ();
11396 *p2++ = 'q';
11397 *p2++ = query_type;
11398
11399 /* We used one buffer char for the remote protocol q command and
11400 another for the query type. As the remote protocol encapsulation
11401 uses 4 chars plus one extra in case we are debugging
11402 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11403 string. */
11404 i = 0;
11405 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11406 {
11407 /* Bad caller may have sent forbidden characters. */
11408 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11409 *p2++ = annex[i];
11410 i++;
11411 }
11412 *p2 = '\0';
11413 gdb_assert (annex[i] == '\0');
11414
11415 i = putpkt (rs->buf);
11416 if (i < 0)
11417 return TARGET_XFER_E_IO;
11418
11419 getpkt (&rs->buf, 0);
11420 strcpy ((char *) readbuf, rs->buf.data ());
11421
11422 *xfered_len = strlen ((char *) readbuf);
11423 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11424 }
11425
11426 /* Implementation of to_get_memory_xfer_limit. */
11427
11428 ULONGEST
11429 remote_target::get_memory_xfer_limit ()
11430 {
11431 return get_memory_write_packet_size ();
11432 }
11433
11434 int
11435 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11436 const gdb_byte *pattern, ULONGEST pattern_len,
11437 CORE_ADDR *found_addrp)
11438 {
11439 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11440 struct remote_state *rs = get_remote_state ();
11441 int max_size = get_memory_write_packet_size ();
11442 struct packet_config *packet =
11443 &remote_protocol_packets[PACKET_qSearch_memory];
11444 /* Number of packet bytes used to encode the pattern;
11445 this could be more than PATTERN_LEN due to escape characters. */
11446 int escaped_pattern_len;
11447 /* Amount of pattern that was encodable in the packet. */
11448 int used_pattern_len;
11449 int i;
11450 int found;
11451 ULONGEST found_addr;
11452
11453 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11454 {
11455 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11456 == len);
11457 };
11458
11459 /* Don't go to the target if we don't have to. This is done before
11460 checking packet_config_support to avoid the possibility that a
11461 success for this edge case means the facility works in
11462 general. */
11463 if (pattern_len > search_space_len)
11464 return 0;
11465 if (pattern_len == 0)
11466 {
11467 *found_addrp = start_addr;
11468 return 1;
11469 }
11470
11471 /* If we already know the packet isn't supported, fall back to the simple
11472 way of searching memory. */
11473
11474 if (packet_config_support (packet) == PACKET_DISABLE)
11475 {
11476 /* Target doesn't provided special support, fall back and use the
11477 standard support (copy memory and do the search here). */
11478 return simple_search_memory (read_memory, start_addr, search_space_len,
11479 pattern, pattern_len, found_addrp);
11480 }
11481
11482 /* Make sure the remote is pointing at the right process. */
11483 set_general_process ();
11484
11485 /* Insert header. */
11486 i = snprintf (rs->buf.data (), max_size,
11487 "qSearch:memory:%s;%s;",
11488 phex_nz (start_addr, addr_size),
11489 phex_nz (search_space_len, sizeof (search_space_len)));
11490 max_size -= (i + 1);
11491
11492 /* Escape as much data as fits into rs->buf. */
11493 escaped_pattern_len =
11494 remote_escape_output (pattern, pattern_len, 1,
11495 (gdb_byte *) rs->buf.data () + i,
11496 &used_pattern_len, max_size);
11497
11498 /* Bail if the pattern is too large. */
11499 if (used_pattern_len != pattern_len)
11500 error (_("Pattern is too large to transmit to remote target."));
11501
11502 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11503 || getpkt_sane (&rs->buf, 0) < 0
11504 || packet_ok (rs->buf, packet) != PACKET_OK)
11505 {
11506 /* The request may not have worked because the command is not
11507 supported. If so, fall back to the simple way. */
11508 if (packet_config_support (packet) == PACKET_DISABLE)
11509 {
11510 return simple_search_memory (read_memory, start_addr, search_space_len,
11511 pattern, pattern_len, found_addrp);
11512 }
11513 return -1;
11514 }
11515
11516 if (rs->buf[0] == '0')
11517 found = 0;
11518 else if (rs->buf[0] == '1')
11519 {
11520 found = 1;
11521 if (rs->buf[1] != ',')
11522 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11523 unpack_varlen_hex (&rs->buf[2], &found_addr);
11524 *found_addrp = found_addr;
11525 }
11526 else
11527 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11528
11529 return found;
11530 }
11531
11532 void
11533 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11534 {
11535 struct remote_state *rs = get_remote_state ();
11536 char *p = rs->buf.data ();
11537
11538 if (!rs->remote_desc)
11539 error (_("remote rcmd is only available after target open"));
11540
11541 /* Send a NULL command across as an empty command. */
11542 if (command == NULL)
11543 command = "";
11544
11545 /* The query prefix. */
11546 strcpy (rs->buf.data (), "qRcmd,");
11547 p = strchr (rs->buf.data (), '\0');
11548
11549 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11550 > get_remote_packet_size ())
11551 error (_("\"monitor\" command ``%s'' is too long."), command);
11552
11553 /* Encode the actual command. */
11554 bin2hex ((const gdb_byte *) command, p, strlen (command));
11555
11556 if (putpkt (rs->buf) < 0)
11557 error (_("Communication problem with target."));
11558
11559 /* get/display the response */
11560 while (1)
11561 {
11562 char *buf;
11563
11564 /* XXX - see also remote_get_noisy_reply(). */
11565 QUIT; /* Allow user to bail out with ^C. */
11566 rs->buf[0] = '\0';
11567 if (getpkt_sane (&rs->buf, 0) == -1)
11568 {
11569 /* Timeout. Continue to (try to) read responses.
11570 This is better than stopping with an error, assuming the stub
11571 is still executing the (long) monitor command.
11572 If needed, the user can interrupt gdb using C-c, obtaining
11573 an effect similar to stop on timeout. */
11574 continue;
11575 }
11576 buf = rs->buf.data ();
11577 if (buf[0] == '\0')
11578 error (_("Target does not support this command."));
11579 if (buf[0] == 'O' && buf[1] != 'K')
11580 {
11581 remote_console_output (buf + 1); /* 'O' message from stub. */
11582 continue;
11583 }
11584 if (strcmp (buf, "OK") == 0)
11585 break;
11586 if (strlen (buf) == 3 && buf[0] == 'E'
11587 && isdigit (buf[1]) && isdigit (buf[2]))
11588 {
11589 error (_("Protocol error with Rcmd"));
11590 }
11591 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11592 {
11593 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11594
11595 fputc_unfiltered (c, outbuf);
11596 }
11597 break;
11598 }
11599 }
11600
11601 std::vector<mem_region>
11602 remote_target::memory_map ()
11603 {
11604 std::vector<mem_region> result;
11605 gdb::optional<gdb::char_vector> text
11606 = target_read_stralloc (current_inferior ()->top_target (),
11607 TARGET_OBJECT_MEMORY_MAP, NULL);
11608
11609 if (text)
11610 result = parse_memory_map (text->data ());
11611
11612 return result;
11613 }
11614
11615 /* Set of callbacks used to implement the 'maint packet' command. */
11616
11617 struct cli_packet_command_callbacks : public send_remote_packet_callbacks
11618 {
11619 /* Called before the packet is sent. BUF is the packet content before
11620 the protocol specific prefix, suffix, and escaping is added. */
11621
11622 void sending (gdb::array_view<const char> &buf) override
11623 {
11624 puts_filtered ("sending: ");
11625 print_packet (buf);
11626 puts_filtered ("\n");
11627 }
11628
11629 /* Called with BUF, the reply from the remote target. */
11630
11631 void received (gdb::array_view<const char> &buf) override
11632 {
11633 puts_filtered ("received: \"");
11634 print_packet (buf);
11635 puts_filtered ("\"\n");
11636 }
11637
11638 private:
11639
11640 /* Print BUF o gdb_stdout. Any non-printable bytes in BUF are printed as
11641 '\x??' with '??' replaced by the hexadecimal value of the byte. */
11642
11643 static void
11644 print_packet (gdb::array_view<const char> &buf)
11645 {
11646 string_file stb;
11647
11648 for (int i = 0; i < buf.size (); ++i)
11649 {
11650 gdb_byte c = buf[i];
11651 if (isprint (c))
11652 fputc_unfiltered (c, &stb);
11653 else
11654 fprintf_unfiltered (&stb, "\\x%02x", (unsigned char) c);
11655 }
11656
11657 puts_filtered (stb.string ().c_str ());
11658 }
11659 };
11660
11661 /* See remote.h. */
11662
11663 void
11664 send_remote_packet (gdb::array_view<const char> &buf,
11665 send_remote_packet_callbacks *callbacks)
11666 {
11667 if (buf.size () == 0 || buf.data ()[0] == '\0')
11668 error (_("a remote packet must not be empty"));
11669
11670 remote_target *remote = get_current_remote_target ();
11671 if (remote == nullptr)
11672 error (_("packets can only be sent to a remote target"));
11673
11674 callbacks->sending (buf);
11675
11676 remote->putpkt_binary (buf.data (), buf.size ());
11677 remote_state *rs = remote->get_remote_state ();
11678 int bytes = remote->getpkt_sane (&rs->buf, 0);
11679
11680 if (bytes < 0)
11681 error (_("error while fetching packet from remote target"));
11682
11683 gdb::array_view<const char> view (&rs->buf[0], bytes);
11684 callbacks->received (view);
11685 }
11686
11687 /* Entry point for the 'maint packet' command. */
11688
11689 static void
11690 cli_packet_command (const char *args, int from_tty)
11691 {
11692 cli_packet_command_callbacks cb;
11693 gdb::array_view<const char> view
11694 = gdb::make_array_view (args, args == nullptr ? 0 : strlen (args));
11695 send_remote_packet (view, &cb);
11696 }
11697
11698 #if 0
11699 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11700
11701 static void display_thread_info (struct gdb_ext_thread_info *info);
11702
11703 static void threadset_test_cmd (char *cmd, int tty);
11704
11705 static void threadalive_test (char *cmd, int tty);
11706
11707 static void threadlist_test_cmd (char *cmd, int tty);
11708
11709 int get_and_display_threadinfo (threadref *ref);
11710
11711 static void threadinfo_test_cmd (char *cmd, int tty);
11712
11713 static int thread_display_step (threadref *ref, void *context);
11714
11715 static void threadlist_update_test_cmd (char *cmd, int tty);
11716
11717 static void init_remote_threadtests (void);
11718
11719 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11720
11721 static void
11722 threadset_test_cmd (const char *cmd, int tty)
11723 {
11724 int sample_thread = SAMPLE_THREAD;
11725
11726 printf_filtered (_("Remote threadset test\n"));
11727 set_general_thread (sample_thread);
11728 }
11729
11730
11731 static void
11732 threadalive_test (const char *cmd, int tty)
11733 {
11734 int sample_thread = SAMPLE_THREAD;
11735 int pid = inferior_ptid.pid ();
11736 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11737
11738 if (remote_thread_alive (ptid))
11739 printf_filtered ("PASS: Thread alive test\n");
11740 else
11741 printf_filtered ("FAIL: Thread alive test\n");
11742 }
11743
11744 void output_threadid (char *title, threadref *ref);
11745
11746 void
11747 output_threadid (char *title, threadref *ref)
11748 {
11749 char hexid[20];
11750
11751 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11752 hexid[16] = 0;
11753 printf_filtered ("%s %s\n", title, (&hexid[0]));
11754 }
11755
11756 static void
11757 threadlist_test_cmd (const char *cmd, int tty)
11758 {
11759 int startflag = 1;
11760 threadref nextthread;
11761 int done, result_count;
11762 threadref threadlist[3];
11763
11764 printf_filtered ("Remote Threadlist test\n");
11765 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11766 &result_count, &threadlist[0]))
11767 printf_filtered ("FAIL: threadlist test\n");
11768 else
11769 {
11770 threadref *scan = threadlist;
11771 threadref *limit = scan + result_count;
11772
11773 while (scan < limit)
11774 output_threadid (" thread ", scan++);
11775 }
11776 }
11777
11778 void
11779 display_thread_info (struct gdb_ext_thread_info *info)
11780 {
11781 output_threadid ("Threadid: ", &info->threadid);
11782 printf_filtered ("Name: %s\n ", info->shortname);
11783 printf_filtered ("State: %s\n", info->display);
11784 printf_filtered ("other: %s\n\n", info->more_display);
11785 }
11786
11787 int
11788 get_and_display_threadinfo (threadref *ref)
11789 {
11790 int result;
11791 int set;
11792 struct gdb_ext_thread_info threadinfo;
11793
11794 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11795 | TAG_MOREDISPLAY | TAG_DISPLAY;
11796 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11797 display_thread_info (&threadinfo);
11798 return result;
11799 }
11800
11801 static void
11802 threadinfo_test_cmd (const char *cmd, int tty)
11803 {
11804 int athread = SAMPLE_THREAD;
11805 threadref thread;
11806 int set;
11807
11808 int_to_threadref (&thread, athread);
11809 printf_filtered ("Remote Threadinfo test\n");
11810 if (!get_and_display_threadinfo (&thread))
11811 printf_filtered ("FAIL cannot get thread info\n");
11812 }
11813
11814 static int
11815 thread_display_step (threadref *ref, void *context)
11816 {
11817 /* output_threadid(" threadstep ",ref); *//* simple test */
11818 return get_and_display_threadinfo (ref);
11819 }
11820
11821 static void
11822 threadlist_update_test_cmd (const char *cmd, int tty)
11823 {
11824 printf_filtered ("Remote Threadlist update test\n");
11825 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11826 }
11827
11828 static void
11829 init_remote_threadtests (void)
11830 {
11831 add_com ("tlist", class_obscure, threadlist_test_cmd,
11832 _("Fetch and print the remote list of "
11833 "thread identifiers, one pkt only."));
11834 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11835 _("Fetch and display info about one thread."));
11836 add_com ("tset", class_obscure, threadset_test_cmd,
11837 _("Test setting to a different thread."));
11838 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11839 _("Iterate through updating all remote thread info."));
11840 add_com ("talive", class_obscure, threadalive_test,
11841 _("Remote thread alive test."));
11842 }
11843
11844 #endif /* 0 */
11845
11846 /* Convert a thread ID to a string. */
11847
11848 std::string
11849 remote_target::pid_to_str (ptid_t ptid)
11850 {
11851 struct remote_state *rs = get_remote_state ();
11852
11853 if (ptid == null_ptid)
11854 return normal_pid_to_str (ptid);
11855 else if (ptid.is_pid ())
11856 {
11857 /* Printing an inferior target id. */
11858
11859 /* When multi-process extensions are off, there's no way in the
11860 remote protocol to know the remote process id, if there's any
11861 at all. There's one exception --- when we're connected with
11862 target extended-remote, and we manually attached to a process
11863 with "attach PID". We don't record anywhere a flag that
11864 allows us to distinguish that case from the case of
11865 connecting with extended-remote and the stub already being
11866 attached to a process, and reporting yes to qAttached, hence
11867 no smart special casing here. */
11868 if (!remote_multi_process_p (rs))
11869 return "Remote target";
11870
11871 return normal_pid_to_str (ptid);
11872 }
11873 else
11874 {
11875 if (magic_null_ptid == ptid)
11876 return "Thread <main>";
11877 else if (remote_multi_process_p (rs))
11878 if (ptid.lwp () == 0)
11879 return normal_pid_to_str (ptid);
11880 else
11881 return string_printf ("Thread %d.%ld",
11882 ptid.pid (), ptid.lwp ());
11883 else
11884 return string_printf ("Thread %ld", ptid.lwp ());
11885 }
11886 }
11887
11888 /* Get the address of the thread local variable in OBJFILE which is
11889 stored at OFFSET within the thread local storage for thread PTID. */
11890
11891 CORE_ADDR
11892 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11893 CORE_ADDR offset)
11894 {
11895 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11896 {
11897 struct remote_state *rs = get_remote_state ();
11898 char *p = rs->buf.data ();
11899 char *endp = p + get_remote_packet_size ();
11900 enum packet_result result;
11901
11902 strcpy (p, "qGetTLSAddr:");
11903 p += strlen (p);
11904 p = write_ptid (p, endp, ptid);
11905 *p++ = ',';
11906 p += hexnumstr (p, offset);
11907 *p++ = ',';
11908 p += hexnumstr (p, lm);
11909 *p++ = '\0';
11910
11911 putpkt (rs->buf);
11912 getpkt (&rs->buf, 0);
11913 result = packet_ok (rs->buf,
11914 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11915 if (result == PACKET_OK)
11916 {
11917 ULONGEST addr;
11918
11919 unpack_varlen_hex (rs->buf.data (), &addr);
11920 return addr;
11921 }
11922 else if (result == PACKET_UNKNOWN)
11923 throw_error (TLS_GENERIC_ERROR,
11924 _("Remote target doesn't support qGetTLSAddr packet"));
11925 else
11926 throw_error (TLS_GENERIC_ERROR,
11927 _("Remote target failed to process qGetTLSAddr request"));
11928 }
11929 else
11930 throw_error (TLS_GENERIC_ERROR,
11931 _("TLS not supported or disabled on this target"));
11932 /* Not reached. */
11933 return 0;
11934 }
11935
11936 /* Provide thread local base, i.e. Thread Information Block address.
11937 Returns 1 if ptid is found and thread_local_base is non zero. */
11938
11939 bool
11940 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11941 {
11942 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11943 {
11944 struct remote_state *rs = get_remote_state ();
11945 char *p = rs->buf.data ();
11946 char *endp = p + get_remote_packet_size ();
11947 enum packet_result result;
11948
11949 strcpy (p, "qGetTIBAddr:");
11950 p += strlen (p);
11951 p = write_ptid (p, endp, ptid);
11952 *p++ = '\0';
11953
11954 putpkt (rs->buf);
11955 getpkt (&rs->buf, 0);
11956 result = packet_ok (rs->buf,
11957 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11958 if (result == PACKET_OK)
11959 {
11960 ULONGEST val;
11961 unpack_varlen_hex (rs->buf.data (), &val);
11962 if (addr)
11963 *addr = (CORE_ADDR) val;
11964 return true;
11965 }
11966 else if (result == PACKET_UNKNOWN)
11967 error (_("Remote target doesn't support qGetTIBAddr packet"));
11968 else
11969 error (_("Remote target failed to process qGetTIBAddr request"));
11970 }
11971 else
11972 error (_("qGetTIBAddr not supported or disabled on this target"));
11973 /* Not reached. */
11974 return false;
11975 }
11976
11977 /* Support for inferring a target description based on the current
11978 architecture and the size of a 'g' packet. While the 'g' packet
11979 can have any size (since optional registers can be left off the
11980 end), some sizes are easily recognizable given knowledge of the
11981 approximate architecture. */
11982
11983 struct remote_g_packet_guess
11984 {
11985 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11986 : bytes (bytes_),
11987 tdesc (tdesc_)
11988 {
11989 }
11990
11991 int bytes;
11992 const struct target_desc *tdesc;
11993 };
11994
11995 struct remote_g_packet_data : public allocate_on_obstack
11996 {
11997 std::vector<remote_g_packet_guess> guesses;
11998 };
11999
12000 static struct gdbarch_data *remote_g_packet_data_handle;
12001
12002 static void *
12003 remote_g_packet_data_init (struct obstack *obstack)
12004 {
12005 return new (obstack) remote_g_packet_data;
12006 }
12007
12008 void
12009 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
12010 const struct target_desc *tdesc)
12011 {
12012 struct remote_g_packet_data *data
12013 = ((struct remote_g_packet_data *)
12014 gdbarch_data (gdbarch, remote_g_packet_data_handle));
12015
12016 gdb_assert (tdesc != NULL);
12017
12018 for (const remote_g_packet_guess &guess : data->guesses)
12019 if (guess.bytes == bytes)
12020 internal_error (__FILE__, __LINE__,
12021 _("Duplicate g packet description added for size %d"),
12022 bytes);
12023
12024 data->guesses.emplace_back (bytes, tdesc);
12025 }
12026
12027 /* Return true if remote_read_description would do anything on this target
12028 and architecture, false otherwise. */
12029
12030 static bool
12031 remote_read_description_p (struct target_ops *target)
12032 {
12033 struct remote_g_packet_data *data
12034 = ((struct remote_g_packet_data *)
12035 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
12036
12037 return !data->guesses.empty ();
12038 }
12039
12040 const struct target_desc *
12041 remote_target::read_description ()
12042 {
12043 struct remote_g_packet_data *data
12044 = ((struct remote_g_packet_data *)
12045 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
12046
12047 /* Do not try this during initial connection, when we do not know
12048 whether there is a running but stopped thread. */
12049 if (!target_has_execution () || inferior_ptid == null_ptid)
12050 return beneath ()->read_description ();
12051
12052 if (!data->guesses.empty ())
12053 {
12054 int bytes = send_g_packet ();
12055
12056 for (const remote_g_packet_guess &guess : data->guesses)
12057 if (guess.bytes == bytes)
12058 return guess.tdesc;
12059
12060 /* We discard the g packet. A minor optimization would be to
12061 hold on to it, and fill the register cache once we have selected
12062 an architecture, but it's too tricky to do safely. */
12063 }
12064
12065 return beneath ()->read_description ();
12066 }
12067
12068 /* Remote file transfer support. This is host-initiated I/O, not
12069 target-initiated; for target-initiated, see remote-fileio.c. */
12070
12071 /* If *LEFT is at least the length of STRING, copy STRING to
12072 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12073 decrease *LEFT. Otherwise raise an error. */
12074
12075 static void
12076 remote_buffer_add_string (char **buffer, int *left, const char *string)
12077 {
12078 int len = strlen (string);
12079
12080 if (len > *left)
12081 error (_("Packet too long for target."));
12082
12083 memcpy (*buffer, string, len);
12084 *buffer += len;
12085 *left -= len;
12086
12087 /* NUL-terminate the buffer as a convenience, if there is
12088 room. */
12089 if (*left)
12090 **buffer = '\0';
12091 }
12092
12093 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
12094 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12095 decrease *LEFT. Otherwise raise an error. */
12096
12097 static void
12098 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
12099 int len)
12100 {
12101 if (2 * len > *left)
12102 error (_("Packet too long for target."));
12103
12104 bin2hex (bytes, *buffer, len);
12105 *buffer += 2 * len;
12106 *left -= 2 * len;
12107
12108 /* NUL-terminate the buffer as a convenience, if there is
12109 room. */
12110 if (*left)
12111 **buffer = '\0';
12112 }
12113
12114 /* If *LEFT is large enough, convert VALUE to hex and add it to
12115 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12116 decrease *LEFT. Otherwise raise an error. */
12117
12118 static void
12119 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
12120 {
12121 int len = hexnumlen (value);
12122
12123 if (len > *left)
12124 error (_("Packet too long for target."));
12125
12126 hexnumstr (*buffer, value);
12127 *buffer += len;
12128 *left -= len;
12129
12130 /* NUL-terminate the buffer as a convenience, if there is
12131 room. */
12132 if (*left)
12133 **buffer = '\0';
12134 }
12135
12136 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
12137 value, *REMOTE_ERRNO to the remote error number or zero if none
12138 was included, and *ATTACHMENT to point to the start of the annex
12139 if any. The length of the packet isn't needed here; there may
12140 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
12141
12142 Return 0 if the packet could be parsed, -1 if it could not. If
12143 -1 is returned, the other variables may not be initialized. */
12144
12145 static int
12146 remote_hostio_parse_result (const char *buffer, int *retcode,
12147 int *remote_errno, const char **attachment)
12148 {
12149 char *p, *p2;
12150
12151 *remote_errno = 0;
12152 *attachment = NULL;
12153
12154 if (buffer[0] != 'F')
12155 return -1;
12156
12157 errno = 0;
12158 *retcode = strtol (&buffer[1], &p, 16);
12159 if (errno != 0 || p == &buffer[1])
12160 return -1;
12161
12162 /* Check for ",errno". */
12163 if (*p == ',')
12164 {
12165 errno = 0;
12166 *remote_errno = strtol (p + 1, &p2, 16);
12167 if (errno != 0 || p + 1 == p2)
12168 return -1;
12169 p = p2;
12170 }
12171
12172 /* Check for ";attachment". If there is no attachment, the
12173 packet should end here. */
12174 if (*p == ';')
12175 {
12176 *attachment = p + 1;
12177 return 0;
12178 }
12179 else if (*p == '\0')
12180 return 0;
12181 else
12182 return -1;
12183 }
12184
12185 /* Send a prepared I/O packet to the target and read its response.
12186 The prepared packet is in the global RS->BUF before this function
12187 is called, and the answer is there when we return.
12188
12189 COMMAND_BYTES is the length of the request to send, which may include
12190 binary data. WHICH_PACKET is the packet configuration to check
12191 before attempting a packet. If an error occurs, *REMOTE_ERRNO
12192 is set to the error number and -1 is returned. Otherwise the value
12193 returned by the function is returned.
12194
12195 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12196 attachment is expected; an error will be reported if there's a
12197 mismatch. If one is found, *ATTACHMENT will be set to point into
12198 the packet buffer and *ATTACHMENT_LEN will be set to the
12199 attachment's length. */
12200
12201 int
12202 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12203 int *remote_errno, const char **attachment,
12204 int *attachment_len)
12205 {
12206 struct remote_state *rs = get_remote_state ();
12207 int ret, bytes_read;
12208 const char *attachment_tmp;
12209
12210 if (packet_support (which_packet) == PACKET_DISABLE)
12211 {
12212 *remote_errno = FILEIO_ENOSYS;
12213 return -1;
12214 }
12215
12216 putpkt_binary (rs->buf.data (), command_bytes);
12217 bytes_read = getpkt_sane (&rs->buf, 0);
12218
12219 /* If it timed out, something is wrong. Don't try to parse the
12220 buffer. */
12221 if (bytes_read < 0)
12222 {
12223 *remote_errno = FILEIO_EINVAL;
12224 return -1;
12225 }
12226
12227 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12228 {
12229 case PACKET_ERROR:
12230 *remote_errno = FILEIO_EINVAL;
12231 return -1;
12232 case PACKET_UNKNOWN:
12233 *remote_errno = FILEIO_ENOSYS;
12234 return -1;
12235 case PACKET_OK:
12236 break;
12237 }
12238
12239 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12240 &attachment_tmp))
12241 {
12242 *remote_errno = FILEIO_EINVAL;
12243 return -1;
12244 }
12245
12246 /* Make sure we saw an attachment if and only if we expected one. */
12247 if ((attachment_tmp == NULL && attachment != NULL)
12248 || (attachment_tmp != NULL && attachment == NULL))
12249 {
12250 *remote_errno = FILEIO_EINVAL;
12251 return -1;
12252 }
12253
12254 /* If an attachment was found, it must point into the packet buffer;
12255 work out how many bytes there were. */
12256 if (attachment_tmp != NULL)
12257 {
12258 *attachment = attachment_tmp;
12259 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12260 }
12261
12262 return ret;
12263 }
12264
12265 /* See declaration.h. */
12266
12267 void
12268 readahead_cache::invalidate ()
12269 {
12270 this->fd = -1;
12271 }
12272
12273 /* See declaration.h. */
12274
12275 void
12276 readahead_cache::invalidate_fd (int fd)
12277 {
12278 if (this->fd == fd)
12279 this->fd = -1;
12280 }
12281
12282 /* Set the filesystem remote_hostio functions that take FILENAME
12283 arguments will use. Return 0 on success, or -1 if an error
12284 occurs (and set *REMOTE_ERRNO). */
12285
12286 int
12287 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12288 int *remote_errno)
12289 {
12290 struct remote_state *rs = get_remote_state ();
12291 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12292 char *p = rs->buf.data ();
12293 int left = get_remote_packet_size () - 1;
12294 char arg[9];
12295 int ret;
12296
12297 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12298 return 0;
12299
12300 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12301 return 0;
12302
12303 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12304
12305 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12306 remote_buffer_add_string (&p, &left, arg);
12307
12308 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12309 remote_errno, NULL, NULL);
12310
12311 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12312 return 0;
12313
12314 if (ret == 0)
12315 rs->fs_pid = required_pid;
12316
12317 return ret;
12318 }
12319
12320 /* Implementation of to_fileio_open. */
12321
12322 int
12323 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12324 int flags, int mode, int warn_if_slow,
12325 int *remote_errno)
12326 {
12327 struct remote_state *rs = get_remote_state ();
12328 char *p = rs->buf.data ();
12329 int left = get_remote_packet_size () - 1;
12330
12331 if (warn_if_slow)
12332 {
12333 static int warning_issued = 0;
12334
12335 printf_unfiltered (_("Reading %s from remote target...\n"),
12336 filename);
12337
12338 if (!warning_issued)
12339 {
12340 warning (_("File transfers from remote targets can be slow."
12341 " Use \"set sysroot\" to access files locally"
12342 " instead."));
12343 warning_issued = 1;
12344 }
12345 }
12346
12347 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12348 return -1;
12349
12350 remote_buffer_add_string (&p, &left, "vFile:open:");
12351
12352 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12353 strlen (filename));
12354 remote_buffer_add_string (&p, &left, ",");
12355
12356 remote_buffer_add_int (&p, &left, flags);
12357 remote_buffer_add_string (&p, &left, ",");
12358
12359 remote_buffer_add_int (&p, &left, mode);
12360
12361 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12362 remote_errno, NULL, NULL);
12363 }
12364
12365 int
12366 remote_target::fileio_open (struct inferior *inf, const char *filename,
12367 int flags, int mode, int warn_if_slow,
12368 int *remote_errno)
12369 {
12370 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12371 remote_errno);
12372 }
12373
12374 /* Implementation of to_fileio_pwrite. */
12375
12376 int
12377 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12378 ULONGEST offset, int *remote_errno)
12379 {
12380 struct remote_state *rs = get_remote_state ();
12381 char *p = rs->buf.data ();
12382 int left = get_remote_packet_size ();
12383 int out_len;
12384
12385 rs->readahead_cache.invalidate_fd (fd);
12386
12387 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12388
12389 remote_buffer_add_int (&p, &left, fd);
12390 remote_buffer_add_string (&p, &left, ",");
12391
12392 remote_buffer_add_int (&p, &left, offset);
12393 remote_buffer_add_string (&p, &left, ",");
12394
12395 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12396 (get_remote_packet_size ()
12397 - (p - rs->buf.data ())));
12398
12399 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12400 remote_errno, NULL, NULL);
12401 }
12402
12403 int
12404 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12405 ULONGEST offset, int *remote_errno)
12406 {
12407 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12408 }
12409
12410 /* Helper for the implementation of to_fileio_pread. Read the file
12411 from the remote side with vFile:pread. */
12412
12413 int
12414 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12415 ULONGEST offset, int *remote_errno)
12416 {
12417 struct remote_state *rs = get_remote_state ();
12418 char *p = rs->buf.data ();
12419 const char *attachment;
12420 int left = get_remote_packet_size ();
12421 int ret, attachment_len;
12422 int read_len;
12423
12424 remote_buffer_add_string (&p, &left, "vFile:pread:");
12425
12426 remote_buffer_add_int (&p, &left, fd);
12427 remote_buffer_add_string (&p, &left, ",");
12428
12429 remote_buffer_add_int (&p, &left, len);
12430 remote_buffer_add_string (&p, &left, ",");
12431
12432 remote_buffer_add_int (&p, &left, offset);
12433
12434 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12435 remote_errno, &attachment,
12436 &attachment_len);
12437
12438 if (ret < 0)
12439 return ret;
12440
12441 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12442 read_buf, len);
12443 if (read_len != ret)
12444 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12445
12446 return ret;
12447 }
12448
12449 /* See declaration.h. */
12450
12451 int
12452 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12453 ULONGEST offset)
12454 {
12455 if (this->fd == fd
12456 && this->offset <= offset
12457 && offset < this->offset + this->bufsize)
12458 {
12459 ULONGEST max = this->offset + this->bufsize;
12460
12461 if (offset + len > max)
12462 len = max - offset;
12463
12464 memcpy (read_buf, this->buf + offset - this->offset, len);
12465 return len;
12466 }
12467
12468 return 0;
12469 }
12470
12471 /* Implementation of to_fileio_pread. */
12472
12473 int
12474 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12475 ULONGEST offset, int *remote_errno)
12476 {
12477 int ret;
12478 struct remote_state *rs = get_remote_state ();
12479 readahead_cache *cache = &rs->readahead_cache;
12480
12481 ret = cache->pread (fd, read_buf, len, offset);
12482 if (ret > 0)
12483 {
12484 cache->hit_count++;
12485
12486 remote_debug_printf ("readahead cache hit %s",
12487 pulongest (cache->hit_count));
12488 return ret;
12489 }
12490
12491 cache->miss_count++;
12492
12493 remote_debug_printf ("readahead cache miss %s",
12494 pulongest (cache->miss_count));
12495
12496 cache->fd = fd;
12497 cache->offset = offset;
12498 cache->bufsize = get_remote_packet_size ();
12499 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12500
12501 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12502 cache->offset, remote_errno);
12503 if (ret <= 0)
12504 {
12505 cache->invalidate_fd (fd);
12506 return ret;
12507 }
12508
12509 cache->bufsize = ret;
12510 return cache->pread (fd, read_buf, len, offset);
12511 }
12512
12513 int
12514 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12515 ULONGEST offset, int *remote_errno)
12516 {
12517 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12518 }
12519
12520 /* Implementation of to_fileio_close. */
12521
12522 int
12523 remote_target::remote_hostio_close (int fd, int *remote_errno)
12524 {
12525 struct remote_state *rs = get_remote_state ();
12526 char *p = rs->buf.data ();
12527 int left = get_remote_packet_size () - 1;
12528
12529 rs->readahead_cache.invalidate_fd (fd);
12530
12531 remote_buffer_add_string (&p, &left, "vFile:close:");
12532
12533 remote_buffer_add_int (&p, &left, fd);
12534
12535 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12536 remote_errno, NULL, NULL);
12537 }
12538
12539 int
12540 remote_target::fileio_close (int fd, int *remote_errno)
12541 {
12542 return remote_hostio_close (fd, remote_errno);
12543 }
12544
12545 /* Implementation of to_fileio_unlink. */
12546
12547 int
12548 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12549 int *remote_errno)
12550 {
12551 struct remote_state *rs = get_remote_state ();
12552 char *p = rs->buf.data ();
12553 int left = get_remote_packet_size () - 1;
12554
12555 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12556 return -1;
12557
12558 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12559
12560 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12561 strlen (filename));
12562
12563 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12564 remote_errno, NULL, NULL);
12565 }
12566
12567 int
12568 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12569 int *remote_errno)
12570 {
12571 return remote_hostio_unlink (inf, filename, remote_errno);
12572 }
12573
12574 /* Implementation of to_fileio_readlink. */
12575
12576 gdb::optional<std::string>
12577 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12578 int *remote_errno)
12579 {
12580 struct remote_state *rs = get_remote_state ();
12581 char *p = rs->buf.data ();
12582 const char *attachment;
12583 int left = get_remote_packet_size ();
12584 int len, attachment_len;
12585 int read_len;
12586
12587 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12588 return {};
12589
12590 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12591
12592 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12593 strlen (filename));
12594
12595 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12596 remote_errno, &attachment,
12597 &attachment_len);
12598
12599 if (len < 0)
12600 return {};
12601
12602 std::string ret (len, '\0');
12603
12604 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12605 (gdb_byte *) &ret[0], len);
12606 if (read_len != len)
12607 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12608
12609 return ret;
12610 }
12611
12612 /* Implementation of to_fileio_fstat. */
12613
12614 int
12615 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12616 {
12617 struct remote_state *rs = get_remote_state ();
12618 char *p = rs->buf.data ();
12619 int left = get_remote_packet_size ();
12620 int attachment_len, ret;
12621 const char *attachment;
12622 struct fio_stat fst;
12623 int read_len;
12624
12625 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12626
12627 remote_buffer_add_int (&p, &left, fd);
12628
12629 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12630 remote_errno, &attachment,
12631 &attachment_len);
12632 if (ret < 0)
12633 {
12634 if (*remote_errno != FILEIO_ENOSYS)
12635 return ret;
12636
12637 /* Strictly we should return -1, ENOSYS here, but when
12638 "set sysroot remote:" was implemented in August 2008
12639 BFD's need for a stat function was sidestepped with
12640 this hack. This was not remedied until March 2015
12641 so we retain the previous behavior to avoid breaking
12642 compatibility.
12643
12644 Note that the memset is a March 2015 addition; older
12645 GDBs set st_size *and nothing else* so the structure
12646 would have garbage in all other fields. This might
12647 break something but retaining the previous behavior
12648 here would be just too wrong. */
12649
12650 memset (st, 0, sizeof (struct stat));
12651 st->st_size = INT_MAX;
12652 return 0;
12653 }
12654
12655 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12656 (gdb_byte *) &fst, sizeof (fst));
12657
12658 if (read_len != ret)
12659 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12660
12661 if (read_len != sizeof (fst))
12662 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12663 read_len, (int) sizeof (fst));
12664
12665 remote_fileio_to_host_stat (&fst, st);
12666
12667 return 0;
12668 }
12669
12670 /* Implementation of to_filesystem_is_local. */
12671
12672 bool
12673 remote_target::filesystem_is_local ()
12674 {
12675 /* Valgrind GDB presents itself as a remote target but works
12676 on the local filesystem: it does not implement remote get
12677 and users are not expected to set a sysroot. To handle
12678 this case we treat the remote filesystem as local if the
12679 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12680 does not support vFile:open. */
12681 if (gdb_sysroot == TARGET_SYSROOT_PREFIX)
12682 {
12683 enum packet_support ps = packet_support (PACKET_vFile_open);
12684
12685 if (ps == PACKET_SUPPORT_UNKNOWN)
12686 {
12687 int fd, remote_errno;
12688
12689 /* Try opening a file to probe support. The supplied
12690 filename is irrelevant, we only care about whether
12691 the stub recognizes the packet or not. */
12692 fd = remote_hostio_open (NULL, "just probing",
12693 FILEIO_O_RDONLY, 0700, 0,
12694 &remote_errno);
12695
12696 if (fd >= 0)
12697 remote_hostio_close (fd, &remote_errno);
12698
12699 ps = packet_support (PACKET_vFile_open);
12700 }
12701
12702 if (ps == PACKET_DISABLE)
12703 {
12704 static int warning_issued = 0;
12705
12706 if (!warning_issued)
12707 {
12708 warning (_("remote target does not support file"
12709 " transfer, attempting to access files"
12710 " from local filesystem."));
12711 warning_issued = 1;
12712 }
12713
12714 return true;
12715 }
12716 }
12717
12718 return false;
12719 }
12720
12721 static int
12722 remote_fileio_errno_to_host (int errnum)
12723 {
12724 switch (errnum)
12725 {
12726 case FILEIO_EPERM:
12727 return EPERM;
12728 case FILEIO_ENOENT:
12729 return ENOENT;
12730 case FILEIO_EINTR:
12731 return EINTR;
12732 case FILEIO_EIO:
12733 return EIO;
12734 case FILEIO_EBADF:
12735 return EBADF;
12736 case FILEIO_EACCES:
12737 return EACCES;
12738 case FILEIO_EFAULT:
12739 return EFAULT;
12740 case FILEIO_EBUSY:
12741 return EBUSY;
12742 case FILEIO_EEXIST:
12743 return EEXIST;
12744 case FILEIO_ENODEV:
12745 return ENODEV;
12746 case FILEIO_ENOTDIR:
12747 return ENOTDIR;
12748 case FILEIO_EISDIR:
12749 return EISDIR;
12750 case FILEIO_EINVAL:
12751 return EINVAL;
12752 case FILEIO_ENFILE:
12753 return ENFILE;
12754 case FILEIO_EMFILE:
12755 return EMFILE;
12756 case FILEIO_EFBIG:
12757 return EFBIG;
12758 case FILEIO_ENOSPC:
12759 return ENOSPC;
12760 case FILEIO_ESPIPE:
12761 return ESPIPE;
12762 case FILEIO_EROFS:
12763 return EROFS;
12764 case FILEIO_ENOSYS:
12765 return ENOSYS;
12766 case FILEIO_ENAMETOOLONG:
12767 return ENAMETOOLONG;
12768 }
12769 return -1;
12770 }
12771
12772 static char *
12773 remote_hostio_error (int errnum)
12774 {
12775 int host_error = remote_fileio_errno_to_host (errnum);
12776
12777 if (host_error == -1)
12778 error (_("Unknown remote I/O error %d"), errnum);
12779 else
12780 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12781 }
12782
12783 /* A RAII wrapper around a remote file descriptor. */
12784
12785 class scoped_remote_fd
12786 {
12787 public:
12788 scoped_remote_fd (remote_target *remote, int fd)
12789 : m_remote (remote), m_fd (fd)
12790 {
12791 }
12792
12793 ~scoped_remote_fd ()
12794 {
12795 if (m_fd != -1)
12796 {
12797 try
12798 {
12799 int remote_errno;
12800 m_remote->remote_hostio_close (m_fd, &remote_errno);
12801 }
12802 catch (...)
12803 {
12804 /* Swallow exception before it escapes the dtor. If
12805 something goes wrong, likely the connection is gone,
12806 and there's nothing else that can be done. */
12807 }
12808 }
12809 }
12810
12811 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12812
12813 /* Release ownership of the file descriptor, and return it. */
12814 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12815 {
12816 int fd = m_fd;
12817 m_fd = -1;
12818 return fd;
12819 }
12820
12821 /* Return the owned file descriptor. */
12822 int get () const noexcept
12823 {
12824 return m_fd;
12825 }
12826
12827 private:
12828 /* The remote target. */
12829 remote_target *m_remote;
12830
12831 /* The owned remote I/O file descriptor. */
12832 int m_fd;
12833 };
12834
12835 void
12836 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12837 {
12838 remote_target *remote = get_current_remote_target ();
12839
12840 if (remote == nullptr)
12841 error (_("command can only be used with remote target"));
12842
12843 remote->remote_file_put (local_file, remote_file, from_tty);
12844 }
12845
12846 void
12847 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12848 int from_tty)
12849 {
12850 int retcode, remote_errno, bytes, io_size;
12851 int bytes_in_buffer;
12852 int saw_eof;
12853 ULONGEST offset;
12854
12855 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12856 if (file == NULL)
12857 perror_with_name (local_file);
12858
12859 scoped_remote_fd fd
12860 (this, remote_hostio_open (NULL,
12861 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12862 | FILEIO_O_TRUNC),
12863 0700, 0, &remote_errno));
12864 if (fd.get () == -1)
12865 remote_hostio_error (remote_errno);
12866
12867 /* Send up to this many bytes at once. They won't all fit in the
12868 remote packet limit, so we'll transfer slightly fewer. */
12869 io_size = get_remote_packet_size ();
12870 gdb::byte_vector buffer (io_size);
12871
12872 bytes_in_buffer = 0;
12873 saw_eof = 0;
12874 offset = 0;
12875 while (bytes_in_buffer || !saw_eof)
12876 {
12877 if (!saw_eof)
12878 {
12879 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12880 io_size - bytes_in_buffer,
12881 file.get ());
12882 if (bytes == 0)
12883 {
12884 if (ferror (file.get ()))
12885 error (_("Error reading %s."), local_file);
12886 else
12887 {
12888 /* EOF. Unless there is something still in the
12889 buffer from the last iteration, we are done. */
12890 saw_eof = 1;
12891 if (bytes_in_buffer == 0)
12892 break;
12893 }
12894 }
12895 }
12896 else
12897 bytes = 0;
12898
12899 bytes += bytes_in_buffer;
12900 bytes_in_buffer = 0;
12901
12902 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12903 offset, &remote_errno);
12904
12905 if (retcode < 0)
12906 remote_hostio_error (remote_errno);
12907 else if (retcode == 0)
12908 error (_("Remote write of %d bytes returned 0!"), bytes);
12909 else if (retcode < bytes)
12910 {
12911 /* Short write. Save the rest of the read data for the next
12912 write. */
12913 bytes_in_buffer = bytes - retcode;
12914 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12915 }
12916
12917 offset += retcode;
12918 }
12919
12920 if (remote_hostio_close (fd.release (), &remote_errno))
12921 remote_hostio_error (remote_errno);
12922
12923 if (from_tty)
12924 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12925 }
12926
12927 void
12928 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12929 {
12930 remote_target *remote = get_current_remote_target ();
12931
12932 if (remote == nullptr)
12933 error (_("command can only be used with remote target"));
12934
12935 remote->remote_file_get (remote_file, local_file, from_tty);
12936 }
12937
12938 void
12939 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12940 int from_tty)
12941 {
12942 int remote_errno, bytes, io_size;
12943 ULONGEST offset;
12944
12945 scoped_remote_fd fd
12946 (this, remote_hostio_open (NULL,
12947 remote_file, FILEIO_O_RDONLY, 0, 0,
12948 &remote_errno));
12949 if (fd.get () == -1)
12950 remote_hostio_error (remote_errno);
12951
12952 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12953 if (file == NULL)
12954 perror_with_name (local_file);
12955
12956 /* Send up to this many bytes at once. They won't all fit in the
12957 remote packet limit, so we'll transfer slightly fewer. */
12958 io_size = get_remote_packet_size ();
12959 gdb::byte_vector buffer (io_size);
12960
12961 offset = 0;
12962 while (1)
12963 {
12964 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12965 &remote_errno);
12966 if (bytes == 0)
12967 /* Success, but no bytes, means end-of-file. */
12968 break;
12969 if (bytes == -1)
12970 remote_hostio_error (remote_errno);
12971
12972 offset += bytes;
12973
12974 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12975 if (bytes == 0)
12976 perror_with_name (local_file);
12977 }
12978
12979 if (remote_hostio_close (fd.release (), &remote_errno))
12980 remote_hostio_error (remote_errno);
12981
12982 if (from_tty)
12983 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12984 }
12985
12986 void
12987 remote_file_delete (const char *remote_file, int from_tty)
12988 {
12989 remote_target *remote = get_current_remote_target ();
12990
12991 if (remote == nullptr)
12992 error (_("command can only be used with remote target"));
12993
12994 remote->remote_file_delete (remote_file, from_tty);
12995 }
12996
12997 void
12998 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12999 {
13000 int retcode, remote_errno;
13001
13002 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
13003 if (retcode == -1)
13004 remote_hostio_error (remote_errno);
13005
13006 if (from_tty)
13007 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
13008 }
13009
13010 static void
13011 remote_put_command (const char *args, int from_tty)
13012 {
13013 if (args == NULL)
13014 error_no_arg (_("file to put"));
13015
13016 gdb_argv argv (args);
13017 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
13018 error (_("Invalid parameters to remote put"));
13019
13020 remote_file_put (argv[0], argv[1], from_tty);
13021 }
13022
13023 static void
13024 remote_get_command (const char *args, int from_tty)
13025 {
13026 if (args == NULL)
13027 error_no_arg (_("file to get"));
13028
13029 gdb_argv argv (args);
13030 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
13031 error (_("Invalid parameters to remote get"));
13032
13033 remote_file_get (argv[0], argv[1], from_tty);
13034 }
13035
13036 static void
13037 remote_delete_command (const char *args, int from_tty)
13038 {
13039 if (args == NULL)
13040 error_no_arg (_("file to delete"));
13041
13042 gdb_argv argv (args);
13043 if (argv[0] == NULL || argv[1] != NULL)
13044 error (_("Invalid parameters to remote delete"));
13045
13046 remote_file_delete (argv[0], from_tty);
13047 }
13048
13049 bool
13050 remote_target::can_execute_reverse ()
13051 {
13052 if (packet_support (PACKET_bs) == PACKET_ENABLE
13053 || packet_support (PACKET_bc) == PACKET_ENABLE)
13054 return true;
13055 else
13056 return false;
13057 }
13058
13059 bool
13060 remote_target::supports_non_stop ()
13061 {
13062 return true;
13063 }
13064
13065 bool
13066 remote_target::supports_disable_randomization ()
13067 {
13068 /* Only supported in extended mode. */
13069 return false;
13070 }
13071
13072 bool
13073 remote_target::supports_multi_process ()
13074 {
13075 struct remote_state *rs = get_remote_state ();
13076
13077 return remote_multi_process_p (rs);
13078 }
13079
13080 static int
13081 remote_supports_cond_tracepoints ()
13082 {
13083 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
13084 }
13085
13086 bool
13087 remote_target::supports_evaluation_of_breakpoint_conditions ()
13088 {
13089 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
13090 }
13091
13092 static int
13093 remote_supports_fast_tracepoints ()
13094 {
13095 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
13096 }
13097
13098 static int
13099 remote_supports_static_tracepoints ()
13100 {
13101 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
13102 }
13103
13104 static int
13105 remote_supports_install_in_trace ()
13106 {
13107 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
13108 }
13109
13110 bool
13111 remote_target::supports_enable_disable_tracepoint ()
13112 {
13113 return (packet_support (PACKET_EnableDisableTracepoints_feature)
13114 == PACKET_ENABLE);
13115 }
13116
13117 bool
13118 remote_target::supports_string_tracing ()
13119 {
13120 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
13121 }
13122
13123 bool
13124 remote_target::can_run_breakpoint_commands ()
13125 {
13126 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
13127 }
13128
13129 void
13130 remote_target::trace_init ()
13131 {
13132 struct remote_state *rs = get_remote_state ();
13133
13134 putpkt ("QTinit");
13135 remote_get_noisy_reply ();
13136 if (strcmp (rs->buf.data (), "OK") != 0)
13137 error (_("Target does not support this command."));
13138 }
13139
13140 /* Recursive routine to walk through command list including loops, and
13141 download packets for each command. */
13142
13143 void
13144 remote_target::remote_download_command_source (int num, ULONGEST addr,
13145 struct command_line *cmds)
13146 {
13147 struct remote_state *rs = get_remote_state ();
13148 struct command_line *cmd;
13149
13150 for (cmd = cmds; cmd; cmd = cmd->next)
13151 {
13152 QUIT; /* Allow user to bail out with ^C. */
13153 strcpy (rs->buf.data (), "QTDPsrc:");
13154 encode_source_string (num, addr, "cmd", cmd->line,
13155 rs->buf.data () + strlen (rs->buf.data ()),
13156 rs->buf.size () - strlen (rs->buf.data ()));
13157 putpkt (rs->buf);
13158 remote_get_noisy_reply ();
13159 if (strcmp (rs->buf.data (), "OK"))
13160 warning (_("Target does not support source download."));
13161
13162 if (cmd->control_type == while_control
13163 || cmd->control_type == while_stepping_control)
13164 {
13165 remote_download_command_source (num, addr, cmd->body_list_0.get ());
13166
13167 QUIT; /* Allow user to bail out with ^C. */
13168 strcpy (rs->buf.data (), "QTDPsrc:");
13169 encode_source_string (num, addr, "cmd", "end",
13170 rs->buf.data () + strlen (rs->buf.data ()),
13171 rs->buf.size () - strlen (rs->buf.data ()));
13172 putpkt (rs->buf);
13173 remote_get_noisy_reply ();
13174 if (strcmp (rs->buf.data (), "OK"))
13175 warning (_("Target does not support source download."));
13176 }
13177 }
13178 }
13179
13180 void
13181 remote_target::download_tracepoint (struct bp_location *loc)
13182 {
13183 CORE_ADDR tpaddr;
13184 char addrbuf[40];
13185 std::vector<std::string> tdp_actions;
13186 std::vector<std::string> stepping_actions;
13187 char *pkt;
13188 struct breakpoint *b = loc->owner;
13189 struct tracepoint *t = (struct tracepoint *) b;
13190 struct remote_state *rs = get_remote_state ();
13191 int ret;
13192 const char *err_msg = _("Tracepoint packet too large for target.");
13193 size_t size_left;
13194
13195 /* We use a buffer other than rs->buf because we'll build strings
13196 across multiple statements, and other statements in between could
13197 modify rs->buf. */
13198 gdb::char_vector buf (get_remote_packet_size ());
13199
13200 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13201
13202 tpaddr = loc->address;
13203 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13204 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13205 b->number, addrbuf, /* address */
13206 (b->enable_state == bp_enabled ? 'E' : 'D'),
13207 t->step_count, t->pass_count);
13208
13209 if (ret < 0 || ret >= buf.size ())
13210 error ("%s", err_msg);
13211
13212 /* Fast tracepoints are mostly handled by the target, but we can
13213 tell the target how big of an instruction block should be moved
13214 around. */
13215 if (b->type == bp_fast_tracepoint)
13216 {
13217 /* Only test for support at download time; we may not know
13218 target capabilities at definition time. */
13219 if (remote_supports_fast_tracepoints ())
13220 {
13221 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13222 NULL))
13223 {
13224 size_left = buf.size () - strlen (buf.data ());
13225 ret = snprintf (buf.data () + strlen (buf.data ()),
13226 size_left, ":F%x",
13227 gdb_insn_length (loc->gdbarch, tpaddr));
13228
13229 if (ret < 0 || ret >= size_left)
13230 error ("%s", err_msg);
13231 }
13232 else
13233 /* If it passed validation at definition but fails now,
13234 something is very wrong. */
13235 internal_error (__FILE__, __LINE__,
13236 _("Fast tracepoint not "
13237 "valid during download"));
13238 }
13239 else
13240 /* Fast tracepoints are functionally identical to regular
13241 tracepoints, so don't take lack of support as a reason to
13242 give up on the trace run. */
13243 warning (_("Target does not support fast tracepoints, "
13244 "downloading %d as regular tracepoint"), b->number);
13245 }
13246 else if (b->type == bp_static_tracepoint)
13247 {
13248 /* Only test for support at download time; we may not know
13249 target capabilities at definition time. */
13250 if (remote_supports_static_tracepoints ())
13251 {
13252 struct static_tracepoint_marker marker;
13253
13254 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13255 {
13256 size_left = buf.size () - strlen (buf.data ());
13257 ret = snprintf (buf.data () + strlen (buf.data ()),
13258 size_left, ":S");
13259
13260 if (ret < 0 || ret >= size_left)
13261 error ("%s", err_msg);
13262 }
13263 else
13264 error (_("Static tracepoint not valid during download"));
13265 }
13266 else
13267 /* Fast tracepoints are functionally identical to regular
13268 tracepoints, so don't take lack of support as a reason
13269 to give up on the trace run. */
13270 error (_("Target does not support static tracepoints"));
13271 }
13272 /* If the tracepoint has a conditional, make it into an agent
13273 expression and append to the definition. */
13274 if (loc->cond)
13275 {
13276 /* Only test support at download time, we may not know target
13277 capabilities at definition time. */
13278 if (remote_supports_cond_tracepoints ())
13279 {
13280 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13281 loc->cond.get ());
13282
13283 size_left = buf.size () - strlen (buf.data ());
13284
13285 ret = snprintf (buf.data () + strlen (buf.data ()),
13286 size_left, ":X%x,", aexpr->len);
13287
13288 if (ret < 0 || ret >= size_left)
13289 error ("%s", err_msg);
13290
13291 size_left = buf.size () - strlen (buf.data ());
13292
13293 /* Two bytes to encode each aexpr byte, plus the terminating
13294 null byte. */
13295 if (aexpr->len * 2 + 1 > size_left)
13296 error ("%s", err_msg);
13297
13298 pkt = buf.data () + strlen (buf.data ());
13299
13300 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13301 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13302 *pkt = '\0';
13303 }
13304 else
13305 warning (_("Target does not support conditional tracepoints, "
13306 "ignoring tp %d cond"), b->number);
13307 }
13308
13309 if (b->commands || !default_collect.empty ())
13310 {
13311 size_left = buf.size () - strlen (buf.data ());
13312
13313 ret = snprintf (buf.data () + strlen (buf.data ()),
13314 size_left, "-");
13315
13316 if (ret < 0 || ret >= size_left)
13317 error ("%s", err_msg);
13318 }
13319
13320 putpkt (buf.data ());
13321 remote_get_noisy_reply ();
13322 if (strcmp (rs->buf.data (), "OK"))
13323 error (_("Target does not support tracepoints."));
13324
13325 /* do_single_steps (t); */
13326 for (auto action_it = tdp_actions.begin ();
13327 action_it != tdp_actions.end (); action_it++)
13328 {
13329 QUIT; /* Allow user to bail out with ^C. */
13330
13331 bool has_more = ((action_it + 1) != tdp_actions.end ()
13332 || !stepping_actions.empty ());
13333
13334 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13335 b->number, addrbuf, /* address */
13336 action_it->c_str (),
13337 has_more ? '-' : 0);
13338
13339 if (ret < 0 || ret >= buf.size ())
13340 error ("%s", err_msg);
13341
13342 putpkt (buf.data ());
13343 remote_get_noisy_reply ();
13344 if (strcmp (rs->buf.data (), "OK"))
13345 error (_("Error on target while setting tracepoints."));
13346 }
13347
13348 for (auto action_it = stepping_actions.begin ();
13349 action_it != stepping_actions.end (); action_it++)
13350 {
13351 QUIT; /* Allow user to bail out with ^C. */
13352
13353 bool is_first = action_it == stepping_actions.begin ();
13354 bool has_more = (action_it + 1) != stepping_actions.end ();
13355
13356 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13357 b->number, addrbuf, /* address */
13358 is_first ? "S" : "",
13359 action_it->c_str (),
13360 has_more ? "-" : "");
13361
13362 if (ret < 0 || ret >= buf.size ())
13363 error ("%s", err_msg);
13364
13365 putpkt (buf.data ());
13366 remote_get_noisy_reply ();
13367 if (strcmp (rs->buf.data (), "OK"))
13368 error (_("Error on target while setting tracepoints."));
13369 }
13370
13371 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13372 {
13373 if (b->location != NULL)
13374 {
13375 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13376
13377 if (ret < 0 || ret >= buf.size ())
13378 error ("%s", err_msg);
13379
13380 encode_source_string (b->number, loc->address, "at",
13381 event_location_to_string (b->location.get ()),
13382 buf.data () + strlen (buf.data ()),
13383 buf.size () - strlen (buf.data ()));
13384 putpkt (buf.data ());
13385 remote_get_noisy_reply ();
13386 if (strcmp (rs->buf.data (), "OK"))
13387 warning (_("Target does not support source download."));
13388 }
13389 if (b->cond_string)
13390 {
13391 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13392
13393 if (ret < 0 || ret >= buf.size ())
13394 error ("%s", err_msg);
13395
13396 encode_source_string (b->number, loc->address,
13397 "cond", b->cond_string.get (),
13398 buf.data () + strlen (buf.data ()),
13399 buf.size () - strlen (buf.data ()));
13400 putpkt (buf.data ());
13401 remote_get_noisy_reply ();
13402 if (strcmp (rs->buf.data (), "OK"))
13403 warning (_("Target does not support source download."));
13404 }
13405 remote_download_command_source (b->number, loc->address,
13406 breakpoint_commands (b));
13407 }
13408 }
13409
13410 bool
13411 remote_target::can_download_tracepoint ()
13412 {
13413 struct remote_state *rs = get_remote_state ();
13414 struct trace_status *ts;
13415 int status;
13416
13417 /* Don't try to install tracepoints until we've relocated our
13418 symbols, and fetched and merged the target's tracepoint list with
13419 ours. */
13420 if (rs->starting_up)
13421 return false;
13422
13423 ts = current_trace_status ();
13424 status = get_trace_status (ts);
13425
13426 if (status == -1 || !ts->running_known || !ts->running)
13427 return false;
13428
13429 /* If we are in a tracing experiment, but remote stub doesn't support
13430 installing tracepoint in trace, we have to return. */
13431 if (!remote_supports_install_in_trace ())
13432 return false;
13433
13434 return true;
13435 }
13436
13437
13438 void
13439 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13440 {
13441 struct remote_state *rs = get_remote_state ();
13442 char *p;
13443
13444 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13445 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13446 tsv.builtin);
13447 p = rs->buf.data () + strlen (rs->buf.data ());
13448 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13449 >= get_remote_packet_size ())
13450 error (_("Trace state variable name too long for tsv definition packet"));
13451 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13452 *p++ = '\0';
13453 putpkt (rs->buf);
13454 remote_get_noisy_reply ();
13455 if (rs->buf[0] == '\0')
13456 error (_("Target does not support this command."));
13457 if (strcmp (rs->buf.data (), "OK") != 0)
13458 error (_("Error on target while downloading trace state variable."));
13459 }
13460
13461 void
13462 remote_target::enable_tracepoint (struct bp_location *location)
13463 {
13464 struct remote_state *rs = get_remote_state ();
13465
13466 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13467 location->owner->number,
13468 phex (location->address, sizeof (CORE_ADDR)));
13469 putpkt (rs->buf);
13470 remote_get_noisy_reply ();
13471 if (rs->buf[0] == '\0')
13472 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13473 if (strcmp (rs->buf.data (), "OK") != 0)
13474 error (_("Error on target while enabling tracepoint."));
13475 }
13476
13477 void
13478 remote_target::disable_tracepoint (struct bp_location *location)
13479 {
13480 struct remote_state *rs = get_remote_state ();
13481
13482 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13483 location->owner->number,
13484 phex (location->address, sizeof (CORE_ADDR)));
13485 putpkt (rs->buf);
13486 remote_get_noisy_reply ();
13487 if (rs->buf[0] == '\0')
13488 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13489 if (strcmp (rs->buf.data (), "OK") != 0)
13490 error (_("Error on target while disabling tracepoint."));
13491 }
13492
13493 void
13494 remote_target::trace_set_readonly_regions ()
13495 {
13496 asection *s;
13497 bfd_size_type size;
13498 bfd_vma vma;
13499 int anysecs = 0;
13500 int offset = 0;
13501
13502 if (!current_program_space->exec_bfd ())
13503 return; /* No information to give. */
13504
13505 struct remote_state *rs = get_remote_state ();
13506
13507 strcpy (rs->buf.data (), "QTro");
13508 offset = strlen (rs->buf.data ());
13509 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13510 {
13511 char tmp1[40], tmp2[40];
13512 int sec_length;
13513
13514 if ((s->flags & SEC_LOAD) == 0 ||
13515 /* (s->flags & SEC_CODE) == 0 || */
13516 (s->flags & SEC_READONLY) == 0)
13517 continue;
13518
13519 anysecs = 1;
13520 vma = bfd_section_vma (s);
13521 size = bfd_section_size (s);
13522 sprintf_vma (tmp1, vma);
13523 sprintf_vma (tmp2, vma + size);
13524 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13525 if (offset + sec_length + 1 > rs->buf.size ())
13526 {
13527 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13528 warning (_("\
13529 Too many sections for read-only sections definition packet."));
13530 break;
13531 }
13532 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13533 tmp1, tmp2);
13534 offset += sec_length;
13535 }
13536 if (anysecs)
13537 {
13538 putpkt (rs->buf);
13539 getpkt (&rs->buf, 0);
13540 }
13541 }
13542
13543 void
13544 remote_target::trace_start ()
13545 {
13546 struct remote_state *rs = get_remote_state ();
13547
13548 putpkt ("QTStart");
13549 remote_get_noisy_reply ();
13550 if (rs->buf[0] == '\0')
13551 error (_("Target does not support this command."));
13552 if (strcmp (rs->buf.data (), "OK") != 0)
13553 error (_("Bogus reply from target: %s"), rs->buf.data ());
13554 }
13555
13556 int
13557 remote_target::get_trace_status (struct trace_status *ts)
13558 {
13559 /* Initialize it just to avoid a GCC false warning. */
13560 char *p = NULL;
13561 enum packet_result result;
13562 struct remote_state *rs = get_remote_state ();
13563
13564 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13565 return -1;
13566
13567 /* FIXME we need to get register block size some other way. */
13568 trace_regblock_size
13569 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13570
13571 putpkt ("qTStatus");
13572
13573 try
13574 {
13575 p = remote_get_noisy_reply ();
13576 }
13577 catch (const gdb_exception_error &ex)
13578 {
13579 if (ex.error != TARGET_CLOSE_ERROR)
13580 {
13581 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13582 return -1;
13583 }
13584 throw;
13585 }
13586
13587 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13588
13589 /* If the remote target doesn't do tracing, flag it. */
13590 if (result == PACKET_UNKNOWN)
13591 return -1;
13592
13593 /* We're working with a live target. */
13594 ts->filename = NULL;
13595
13596 if (*p++ != 'T')
13597 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13598
13599 /* Function 'parse_trace_status' sets default value of each field of
13600 'ts' at first, so we don't have to do it here. */
13601 parse_trace_status (p, ts);
13602
13603 return ts->running;
13604 }
13605
13606 void
13607 remote_target::get_tracepoint_status (struct breakpoint *bp,
13608 struct uploaded_tp *utp)
13609 {
13610 struct remote_state *rs = get_remote_state ();
13611 char *reply;
13612 struct tracepoint *tp = (struct tracepoint *) bp;
13613 size_t size = get_remote_packet_size ();
13614
13615 if (tp)
13616 {
13617 tp->hit_count = 0;
13618 tp->traceframe_usage = 0;
13619 for (bp_location *loc : tp->locations ())
13620 {
13621 /* If the tracepoint was never downloaded, don't go asking for
13622 any status. */
13623 if (tp->number_on_target == 0)
13624 continue;
13625 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13626 phex_nz (loc->address, 0));
13627 putpkt (rs->buf);
13628 reply = remote_get_noisy_reply ();
13629 if (reply && *reply)
13630 {
13631 if (*reply == 'V')
13632 parse_tracepoint_status (reply + 1, bp, utp);
13633 }
13634 }
13635 }
13636 else if (utp)
13637 {
13638 utp->hit_count = 0;
13639 utp->traceframe_usage = 0;
13640 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13641 phex_nz (utp->addr, 0));
13642 putpkt (rs->buf);
13643 reply = remote_get_noisy_reply ();
13644 if (reply && *reply)
13645 {
13646 if (*reply == 'V')
13647 parse_tracepoint_status (reply + 1, bp, utp);
13648 }
13649 }
13650 }
13651
13652 void
13653 remote_target::trace_stop ()
13654 {
13655 struct remote_state *rs = get_remote_state ();
13656
13657 putpkt ("QTStop");
13658 remote_get_noisy_reply ();
13659 if (rs->buf[0] == '\0')
13660 error (_("Target does not support this command."));
13661 if (strcmp (rs->buf.data (), "OK") != 0)
13662 error (_("Bogus reply from target: %s"), rs->buf.data ());
13663 }
13664
13665 int
13666 remote_target::trace_find (enum trace_find_type type, int num,
13667 CORE_ADDR addr1, CORE_ADDR addr2,
13668 int *tpp)
13669 {
13670 struct remote_state *rs = get_remote_state ();
13671 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13672 char *p, *reply;
13673 int target_frameno = -1, target_tracept = -1;
13674
13675 /* Lookups other than by absolute frame number depend on the current
13676 trace selected, so make sure it is correct on the remote end
13677 first. */
13678 if (type != tfind_number)
13679 set_remote_traceframe ();
13680
13681 p = rs->buf.data ();
13682 strcpy (p, "QTFrame:");
13683 p = strchr (p, '\0');
13684 switch (type)
13685 {
13686 case tfind_number:
13687 xsnprintf (p, endbuf - p, "%x", num);
13688 break;
13689 case tfind_pc:
13690 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13691 break;
13692 case tfind_tp:
13693 xsnprintf (p, endbuf - p, "tdp:%x", num);
13694 break;
13695 case tfind_range:
13696 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13697 phex_nz (addr2, 0));
13698 break;
13699 case tfind_outside:
13700 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13701 phex_nz (addr2, 0));
13702 break;
13703 default:
13704 error (_("Unknown trace find type %d"), type);
13705 }
13706
13707 putpkt (rs->buf);
13708 reply = remote_get_noisy_reply ();
13709 if (*reply == '\0')
13710 error (_("Target does not support this command."));
13711
13712 while (reply && *reply)
13713 switch (*reply)
13714 {
13715 case 'F':
13716 p = ++reply;
13717 target_frameno = (int) strtol (p, &reply, 16);
13718 if (reply == p)
13719 error (_("Unable to parse trace frame number"));
13720 /* Don't update our remote traceframe number cache on failure
13721 to select a remote traceframe. */
13722 if (target_frameno == -1)
13723 return -1;
13724 break;
13725 case 'T':
13726 p = ++reply;
13727 target_tracept = (int) strtol (p, &reply, 16);
13728 if (reply == p)
13729 error (_("Unable to parse tracepoint number"));
13730 break;
13731 case 'O': /* "OK"? */
13732 if (reply[1] == 'K' && reply[2] == '\0')
13733 reply += 2;
13734 else
13735 error (_("Bogus reply from target: %s"), reply);
13736 break;
13737 default:
13738 error (_("Bogus reply from target: %s"), reply);
13739 }
13740 if (tpp)
13741 *tpp = target_tracept;
13742
13743 rs->remote_traceframe_number = target_frameno;
13744 return target_frameno;
13745 }
13746
13747 bool
13748 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13749 {
13750 struct remote_state *rs = get_remote_state ();
13751 char *reply;
13752 ULONGEST uval;
13753
13754 set_remote_traceframe ();
13755
13756 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13757 putpkt (rs->buf);
13758 reply = remote_get_noisy_reply ();
13759 if (reply && *reply)
13760 {
13761 if (*reply == 'V')
13762 {
13763 unpack_varlen_hex (reply + 1, &uval);
13764 *val = (LONGEST) uval;
13765 return true;
13766 }
13767 }
13768 return false;
13769 }
13770
13771 int
13772 remote_target::save_trace_data (const char *filename)
13773 {
13774 struct remote_state *rs = get_remote_state ();
13775 char *p, *reply;
13776
13777 p = rs->buf.data ();
13778 strcpy (p, "QTSave:");
13779 p += strlen (p);
13780 if ((p - rs->buf.data ()) + strlen (filename) * 2
13781 >= get_remote_packet_size ())
13782 error (_("Remote file name too long for trace save packet"));
13783 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13784 *p++ = '\0';
13785 putpkt (rs->buf);
13786 reply = remote_get_noisy_reply ();
13787 if (*reply == '\0')
13788 error (_("Target does not support this command."));
13789 if (strcmp (reply, "OK") != 0)
13790 error (_("Bogus reply from target: %s"), reply);
13791 return 0;
13792 }
13793
13794 /* This is basically a memory transfer, but needs to be its own packet
13795 because we don't know how the target actually organizes its trace
13796 memory, plus we want to be able to ask for as much as possible, but
13797 not be unhappy if we don't get as much as we ask for. */
13798
13799 LONGEST
13800 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13801 {
13802 struct remote_state *rs = get_remote_state ();
13803 char *reply;
13804 char *p;
13805 int rslt;
13806
13807 p = rs->buf.data ();
13808 strcpy (p, "qTBuffer:");
13809 p += strlen (p);
13810 p += hexnumstr (p, offset);
13811 *p++ = ',';
13812 p += hexnumstr (p, len);
13813 *p++ = '\0';
13814
13815 putpkt (rs->buf);
13816 reply = remote_get_noisy_reply ();
13817 if (reply && *reply)
13818 {
13819 /* 'l' by itself means we're at the end of the buffer and
13820 there is nothing more to get. */
13821 if (*reply == 'l')
13822 return 0;
13823
13824 /* Convert the reply into binary. Limit the number of bytes to
13825 convert according to our passed-in buffer size, rather than
13826 what was returned in the packet; if the target is
13827 unexpectedly generous and gives us a bigger reply than we
13828 asked for, we don't want to crash. */
13829 rslt = hex2bin (reply, buf, len);
13830 return rslt;
13831 }
13832
13833 /* Something went wrong, flag as an error. */
13834 return -1;
13835 }
13836
13837 void
13838 remote_target::set_disconnected_tracing (int val)
13839 {
13840 struct remote_state *rs = get_remote_state ();
13841
13842 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13843 {
13844 char *reply;
13845
13846 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13847 "QTDisconnected:%x", val);
13848 putpkt (rs->buf);
13849 reply = remote_get_noisy_reply ();
13850 if (*reply == '\0')
13851 error (_("Target does not support this command."));
13852 if (strcmp (reply, "OK") != 0)
13853 error (_("Bogus reply from target: %s"), reply);
13854 }
13855 else if (val)
13856 warning (_("Target does not support disconnected tracing."));
13857 }
13858
13859 int
13860 remote_target::core_of_thread (ptid_t ptid)
13861 {
13862 thread_info *info = find_thread_ptid (this, ptid);
13863
13864 if (info != NULL && info->priv != NULL)
13865 return get_remote_thread_info (info)->core;
13866
13867 return -1;
13868 }
13869
13870 void
13871 remote_target::set_circular_trace_buffer (int val)
13872 {
13873 struct remote_state *rs = get_remote_state ();
13874 char *reply;
13875
13876 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13877 "QTBuffer:circular:%x", val);
13878 putpkt (rs->buf);
13879 reply = remote_get_noisy_reply ();
13880 if (*reply == '\0')
13881 error (_("Target does not support this command."));
13882 if (strcmp (reply, "OK") != 0)
13883 error (_("Bogus reply from target: %s"), reply);
13884 }
13885
13886 traceframe_info_up
13887 remote_target::traceframe_info ()
13888 {
13889 gdb::optional<gdb::char_vector> text
13890 = target_read_stralloc (current_inferior ()->top_target (),
13891 TARGET_OBJECT_TRACEFRAME_INFO,
13892 NULL);
13893 if (text)
13894 return parse_traceframe_info (text->data ());
13895
13896 return NULL;
13897 }
13898
13899 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13900 instruction on which a fast tracepoint may be placed. Returns -1
13901 if the packet is not supported, and 0 if the minimum instruction
13902 length is unknown. */
13903
13904 int
13905 remote_target::get_min_fast_tracepoint_insn_len ()
13906 {
13907 struct remote_state *rs = get_remote_state ();
13908 char *reply;
13909
13910 /* If we're not debugging a process yet, the IPA can't be
13911 loaded. */
13912 if (!target_has_execution ())
13913 return 0;
13914
13915 /* Make sure the remote is pointing at the right process. */
13916 set_general_process ();
13917
13918 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13919 putpkt (rs->buf);
13920 reply = remote_get_noisy_reply ();
13921 if (*reply == '\0')
13922 return -1;
13923 else
13924 {
13925 ULONGEST min_insn_len;
13926
13927 unpack_varlen_hex (reply, &min_insn_len);
13928
13929 return (int) min_insn_len;
13930 }
13931 }
13932
13933 void
13934 remote_target::set_trace_buffer_size (LONGEST val)
13935 {
13936 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13937 {
13938 struct remote_state *rs = get_remote_state ();
13939 char *buf = rs->buf.data ();
13940 char *endbuf = buf + get_remote_packet_size ();
13941 enum packet_result result;
13942
13943 gdb_assert (val >= 0 || val == -1);
13944 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13945 /* Send -1 as literal "-1" to avoid host size dependency. */
13946 if (val < 0)
13947 {
13948 *buf++ = '-';
13949 buf += hexnumstr (buf, (ULONGEST) -val);
13950 }
13951 else
13952 buf += hexnumstr (buf, (ULONGEST) val);
13953
13954 putpkt (rs->buf);
13955 remote_get_noisy_reply ();
13956 result = packet_ok (rs->buf,
13957 &remote_protocol_packets[PACKET_QTBuffer_size]);
13958
13959 if (result != PACKET_OK)
13960 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13961 }
13962 }
13963
13964 bool
13965 remote_target::set_trace_notes (const char *user, const char *notes,
13966 const char *stop_notes)
13967 {
13968 struct remote_state *rs = get_remote_state ();
13969 char *reply;
13970 char *buf = rs->buf.data ();
13971 char *endbuf = buf + get_remote_packet_size ();
13972 int nbytes;
13973
13974 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13975 if (user)
13976 {
13977 buf += xsnprintf (buf, endbuf - buf, "user:");
13978 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13979 buf += 2 * nbytes;
13980 *buf++ = ';';
13981 }
13982 if (notes)
13983 {
13984 buf += xsnprintf (buf, endbuf - buf, "notes:");
13985 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13986 buf += 2 * nbytes;
13987 *buf++ = ';';
13988 }
13989 if (stop_notes)
13990 {
13991 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13992 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13993 buf += 2 * nbytes;
13994 *buf++ = ';';
13995 }
13996 /* Ensure the buffer is terminated. */
13997 *buf = '\0';
13998
13999 putpkt (rs->buf);
14000 reply = remote_get_noisy_reply ();
14001 if (*reply == '\0')
14002 return false;
14003
14004 if (strcmp (reply, "OK") != 0)
14005 error (_("Bogus reply from target: %s"), reply);
14006
14007 return true;
14008 }
14009
14010 bool
14011 remote_target::use_agent (bool use)
14012 {
14013 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
14014 {
14015 struct remote_state *rs = get_remote_state ();
14016
14017 /* If the stub supports QAgent. */
14018 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
14019 putpkt (rs->buf);
14020 getpkt (&rs->buf, 0);
14021
14022 if (strcmp (rs->buf.data (), "OK") == 0)
14023 {
14024 ::use_agent = use;
14025 return true;
14026 }
14027 }
14028
14029 return false;
14030 }
14031
14032 bool
14033 remote_target::can_use_agent ()
14034 {
14035 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
14036 }
14037
14038 struct btrace_target_info
14039 {
14040 /* The ptid of the traced thread. */
14041 ptid_t ptid;
14042
14043 /* The obtained branch trace configuration. */
14044 struct btrace_config conf;
14045 };
14046
14047 /* Reset our idea of our target's btrace configuration. */
14048
14049 static void
14050 remote_btrace_reset (remote_state *rs)
14051 {
14052 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
14053 }
14054
14055 /* Synchronize the configuration with the target. */
14056
14057 void
14058 remote_target::btrace_sync_conf (const btrace_config *conf)
14059 {
14060 struct packet_config *packet;
14061 struct remote_state *rs;
14062 char *buf, *pos, *endbuf;
14063
14064 rs = get_remote_state ();
14065 buf = rs->buf.data ();
14066 endbuf = buf + get_remote_packet_size ();
14067
14068 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
14069 if (packet_config_support (packet) == PACKET_ENABLE
14070 && conf->bts.size != rs->btrace_config.bts.size)
14071 {
14072 pos = buf;
14073 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14074 conf->bts.size);
14075
14076 putpkt (buf);
14077 getpkt (&rs->buf, 0);
14078
14079 if (packet_ok (buf, packet) == PACKET_ERROR)
14080 {
14081 if (buf[0] == 'E' && buf[1] == '.')
14082 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
14083 else
14084 error (_("Failed to configure the BTS buffer size."));
14085 }
14086
14087 rs->btrace_config.bts.size = conf->bts.size;
14088 }
14089
14090 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
14091 if (packet_config_support (packet) == PACKET_ENABLE
14092 && conf->pt.size != rs->btrace_config.pt.size)
14093 {
14094 pos = buf;
14095 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14096 conf->pt.size);
14097
14098 putpkt (buf);
14099 getpkt (&rs->buf, 0);
14100
14101 if (packet_ok (buf, packet) == PACKET_ERROR)
14102 {
14103 if (buf[0] == 'E' && buf[1] == '.')
14104 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
14105 else
14106 error (_("Failed to configure the trace buffer size."));
14107 }
14108
14109 rs->btrace_config.pt.size = conf->pt.size;
14110 }
14111 }
14112
14113 /* Read the current thread's btrace configuration from the target and
14114 store it into CONF. */
14115
14116 static void
14117 btrace_read_config (struct btrace_config *conf)
14118 {
14119 gdb::optional<gdb::char_vector> xml
14120 = target_read_stralloc (current_inferior ()->top_target (),
14121 TARGET_OBJECT_BTRACE_CONF, "");
14122 if (xml)
14123 parse_xml_btrace_conf (conf, xml->data ());
14124 }
14125
14126 /* Maybe reopen target btrace. */
14127
14128 void
14129 remote_target::remote_btrace_maybe_reopen ()
14130 {
14131 struct remote_state *rs = get_remote_state ();
14132 int btrace_target_pushed = 0;
14133 #if !defined (HAVE_LIBIPT)
14134 int warned = 0;
14135 #endif
14136
14137 /* Don't bother walking the entirety of the remote thread list when
14138 we know the feature isn't supported by the remote. */
14139 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
14140 return;
14141
14142 scoped_restore_current_thread restore_thread;
14143
14144 for (thread_info *tp : all_non_exited_threads (this))
14145 {
14146 set_general_thread (tp->ptid);
14147
14148 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
14149 btrace_read_config (&rs->btrace_config);
14150
14151 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
14152 continue;
14153
14154 #if !defined (HAVE_LIBIPT)
14155 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
14156 {
14157 if (!warned)
14158 {
14159 warned = 1;
14160 warning (_("Target is recording using Intel Processor Trace "
14161 "but support was disabled at compile time."));
14162 }
14163
14164 continue;
14165 }
14166 #endif /* !defined (HAVE_LIBIPT) */
14167
14168 /* Push target, once, but before anything else happens. This way our
14169 changes to the threads will be cleaned up by unpushing the target
14170 in case btrace_read_config () throws. */
14171 if (!btrace_target_pushed)
14172 {
14173 btrace_target_pushed = 1;
14174 record_btrace_push_target ();
14175 printf_filtered (_("Target is recording using %s.\n"),
14176 btrace_format_string (rs->btrace_config.format));
14177 }
14178
14179 tp->btrace.target = XCNEW (struct btrace_target_info);
14180 tp->btrace.target->ptid = tp->ptid;
14181 tp->btrace.target->conf = rs->btrace_config;
14182 }
14183 }
14184
14185 /* Enable branch tracing. */
14186
14187 struct btrace_target_info *
14188 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
14189 {
14190 struct btrace_target_info *tinfo = NULL;
14191 struct packet_config *packet = NULL;
14192 struct remote_state *rs = get_remote_state ();
14193 char *buf = rs->buf.data ();
14194 char *endbuf = buf + get_remote_packet_size ();
14195
14196 switch (conf->format)
14197 {
14198 case BTRACE_FORMAT_BTS:
14199 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14200 break;
14201
14202 case BTRACE_FORMAT_PT:
14203 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14204 break;
14205 }
14206
14207 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14208 error (_("Target does not support branch tracing."));
14209
14210 btrace_sync_conf (conf);
14211
14212 set_general_thread (ptid);
14213
14214 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14215 putpkt (rs->buf);
14216 getpkt (&rs->buf, 0);
14217
14218 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14219 {
14220 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14221 error (_("Could not enable branch tracing for %s: %s"),
14222 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14223 else
14224 error (_("Could not enable branch tracing for %s."),
14225 target_pid_to_str (ptid).c_str ());
14226 }
14227
14228 tinfo = XCNEW (struct btrace_target_info);
14229 tinfo->ptid = ptid;
14230
14231 /* If we fail to read the configuration, we lose some information, but the
14232 tracing itself is not impacted. */
14233 try
14234 {
14235 btrace_read_config (&tinfo->conf);
14236 }
14237 catch (const gdb_exception_error &err)
14238 {
14239 if (err.message != NULL)
14240 warning ("%s", err.what ());
14241 }
14242
14243 return tinfo;
14244 }
14245
14246 /* Disable branch tracing. */
14247
14248 void
14249 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14250 {
14251 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14252 struct remote_state *rs = get_remote_state ();
14253 char *buf = rs->buf.data ();
14254 char *endbuf = buf + get_remote_packet_size ();
14255
14256 if (packet_config_support (packet) != PACKET_ENABLE)
14257 error (_("Target does not support branch tracing."));
14258
14259 set_general_thread (tinfo->ptid);
14260
14261 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14262 putpkt (rs->buf);
14263 getpkt (&rs->buf, 0);
14264
14265 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14266 {
14267 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14268 error (_("Could not disable branch tracing for %s: %s"),
14269 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14270 else
14271 error (_("Could not disable branch tracing for %s."),
14272 target_pid_to_str (tinfo->ptid).c_str ());
14273 }
14274
14275 xfree (tinfo);
14276 }
14277
14278 /* Teardown branch tracing. */
14279
14280 void
14281 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14282 {
14283 /* We must not talk to the target during teardown. */
14284 xfree (tinfo);
14285 }
14286
14287 /* Read the branch trace. */
14288
14289 enum btrace_error
14290 remote_target::read_btrace (struct btrace_data *btrace,
14291 struct btrace_target_info *tinfo,
14292 enum btrace_read_type type)
14293 {
14294 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14295 const char *annex;
14296
14297 if (packet_config_support (packet) != PACKET_ENABLE)
14298 error (_("Target does not support branch tracing."));
14299
14300 #if !defined(HAVE_LIBEXPAT)
14301 error (_("Cannot process branch tracing result. XML parsing not supported."));
14302 #endif
14303
14304 switch (type)
14305 {
14306 case BTRACE_READ_ALL:
14307 annex = "all";
14308 break;
14309 case BTRACE_READ_NEW:
14310 annex = "new";
14311 break;
14312 case BTRACE_READ_DELTA:
14313 annex = "delta";
14314 break;
14315 default:
14316 internal_error (__FILE__, __LINE__,
14317 _("Bad branch tracing read type: %u."),
14318 (unsigned int) type);
14319 }
14320
14321 gdb::optional<gdb::char_vector> xml
14322 = target_read_stralloc (current_inferior ()->top_target (),
14323 TARGET_OBJECT_BTRACE, annex);
14324 if (!xml)
14325 return BTRACE_ERR_UNKNOWN;
14326
14327 parse_xml_btrace (btrace, xml->data ());
14328
14329 return BTRACE_ERR_NONE;
14330 }
14331
14332 const struct btrace_config *
14333 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14334 {
14335 return &tinfo->conf;
14336 }
14337
14338 bool
14339 remote_target::augmented_libraries_svr4_read ()
14340 {
14341 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14342 == PACKET_ENABLE);
14343 }
14344
14345 /* Implementation of to_load. */
14346
14347 void
14348 remote_target::load (const char *name, int from_tty)
14349 {
14350 generic_load (name, from_tty);
14351 }
14352
14353 /* Accepts an integer PID; returns a string representing a file that
14354 can be opened on the remote side to get the symbols for the child
14355 process. Returns NULL if the operation is not supported. */
14356
14357 char *
14358 remote_target::pid_to_exec_file (int pid)
14359 {
14360 static gdb::optional<gdb::char_vector> filename;
14361 char *annex = NULL;
14362
14363 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14364 return NULL;
14365
14366 inferior *inf = find_inferior_pid (this, pid);
14367 if (inf == NULL)
14368 internal_error (__FILE__, __LINE__,
14369 _("not currently attached to process %d"), pid);
14370
14371 if (!inf->fake_pid_p)
14372 {
14373 const int annex_size = 9;
14374
14375 annex = (char *) alloca (annex_size);
14376 xsnprintf (annex, annex_size, "%x", pid);
14377 }
14378
14379 filename = target_read_stralloc (current_inferior ()->top_target (),
14380 TARGET_OBJECT_EXEC_FILE, annex);
14381
14382 return filename ? filename->data () : nullptr;
14383 }
14384
14385 /* Implement the to_can_do_single_step target_ops method. */
14386
14387 int
14388 remote_target::can_do_single_step ()
14389 {
14390 /* We can only tell whether target supports single step or not by
14391 supported s and S vCont actions if the stub supports vContSupported
14392 feature. If the stub doesn't support vContSupported feature,
14393 we have conservatively to think target doesn't supports single
14394 step. */
14395 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14396 {
14397 struct remote_state *rs = get_remote_state ();
14398
14399 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14400 remote_vcont_probe ();
14401
14402 return rs->supports_vCont.s && rs->supports_vCont.S;
14403 }
14404 else
14405 return 0;
14406 }
14407
14408 /* Implementation of the to_execution_direction method for the remote
14409 target. */
14410
14411 enum exec_direction_kind
14412 remote_target::execution_direction ()
14413 {
14414 struct remote_state *rs = get_remote_state ();
14415
14416 return rs->last_resume_exec_dir;
14417 }
14418
14419 /* Return pointer to the thread_info struct which corresponds to
14420 THREAD_HANDLE (having length HANDLE_LEN). */
14421
14422 thread_info *
14423 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14424 int handle_len,
14425 inferior *inf)
14426 {
14427 for (thread_info *tp : all_non_exited_threads (this))
14428 {
14429 remote_thread_info *priv = get_remote_thread_info (tp);
14430
14431 if (tp->inf == inf && priv != NULL)
14432 {
14433 if (handle_len != priv->thread_handle.size ())
14434 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14435 handle_len, priv->thread_handle.size ());
14436 if (memcmp (thread_handle, priv->thread_handle.data (),
14437 handle_len) == 0)
14438 return tp;
14439 }
14440 }
14441
14442 return NULL;
14443 }
14444
14445 gdb::byte_vector
14446 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14447 {
14448 remote_thread_info *priv = get_remote_thread_info (tp);
14449 return priv->thread_handle;
14450 }
14451
14452 bool
14453 remote_target::can_async_p ()
14454 {
14455 /* This flag should be checked in the common target.c code. */
14456 gdb_assert (target_async_permitted);
14457
14458 /* We're async whenever the serial device can. */
14459 struct remote_state *rs = get_remote_state ();
14460 return serial_can_async_p (rs->remote_desc);
14461 }
14462
14463 bool
14464 remote_target::is_async_p ()
14465 {
14466 /* We're async whenever the serial device is. */
14467 struct remote_state *rs = get_remote_state ();
14468 return serial_is_async_p (rs->remote_desc);
14469 }
14470
14471 /* Pass the SERIAL event on and up to the client. One day this code
14472 will be able to delay notifying the client of an event until the
14473 point where an entire packet has been received. */
14474
14475 static serial_event_ftype remote_async_serial_handler;
14476
14477 static void
14478 remote_async_serial_handler (struct serial *scb, void *context)
14479 {
14480 /* Don't propogate error information up to the client. Instead let
14481 the client find out about the error by querying the target. */
14482 inferior_event_handler (INF_REG_EVENT);
14483 }
14484
14485 static void
14486 remote_async_inferior_event_handler (gdb_client_data data)
14487 {
14488 inferior_event_handler (INF_REG_EVENT);
14489 }
14490
14491 int
14492 remote_target::async_wait_fd ()
14493 {
14494 struct remote_state *rs = get_remote_state ();
14495 return rs->remote_desc->fd;
14496 }
14497
14498 void
14499 remote_target::async (int enable)
14500 {
14501 struct remote_state *rs = get_remote_state ();
14502
14503 if (enable)
14504 {
14505 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14506
14507 /* If there are pending events in the stop reply queue tell the
14508 event loop to process them. */
14509 if (!rs->stop_reply_queue.empty ())
14510 mark_async_event_handler (rs->remote_async_inferior_event_token);
14511 /* For simplicity, below we clear the pending events token
14512 without remembering whether it is marked, so here we always
14513 mark it. If there's actually no pending notification to
14514 process, this ends up being a no-op (other than a spurious
14515 event-loop wakeup). */
14516 if (target_is_non_stop_p ())
14517 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14518 }
14519 else
14520 {
14521 serial_async (rs->remote_desc, NULL, NULL);
14522 /* If the core is disabling async, it doesn't want to be
14523 disturbed with target events. Clear all async event sources
14524 too. */
14525 clear_async_event_handler (rs->remote_async_inferior_event_token);
14526 if (target_is_non_stop_p ())
14527 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14528 }
14529 }
14530
14531 /* Implementation of the to_thread_events method. */
14532
14533 void
14534 remote_target::thread_events (int enable)
14535 {
14536 struct remote_state *rs = get_remote_state ();
14537 size_t size = get_remote_packet_size ();
14538
14539 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14540 return;
14541
14542 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14543 putpkt (rs->buf);
14544 getpkt (&rs->buf, 0);
14545
14546 switch (packet_ok (rs->buf,
14547 &remote_protocol_packets[PACKET_QThreadEvents]))
14548 {
14549 case PACKET_OK:
14550 if (strcmp (rs->buf.data (), "OK") != 0)
14551 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14552 break;
14553 case PACKET_ERROR:
14554 warning (_("Remote failure reply: %s"), rs->buf.data ());
14555 break;
14556 case PACKET_UNKNOWN:
14557 break;
14558 }
14559 }
14560
14561 static void
14562 show_remote_cmd (const char *args, int from_tty)
14563 {
14564 /* We can't just use cmd_show_list here, because we want to skip
14565 the redundant "show remote Z-packet" and the legacy aliases. */
14566 struct cmd_list_element *list = remote_show_cmdlist;
14567 struct ui_out *uiout = current_uiout;
14568
14569 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14570 for (; list != NULL; list = list->next)
14571 if (strcmp (list->name, "Z-packet") == 0)
14572 continue;
14573 else if (list->type == not_set_cmd)
14574 /* Alias commands are exactly like the original, except they
14575 don't have the normal type. */
14576 continue;
14577 else
14578 {
14579 ui_out_emit_tuple option_emitter (uiout, "option");
14580
14581 uiout->field_string ("name", list->name);
14582 uiout->text (": ");
14583 if (list->type == show_cmd)
14584 do_show_command (NULL, from_tty, list);
14585 else
14586 cmd_func (list, NULL, from_tty);
14587 }
14588 }
14589
14590
14591 /* Function to be called whenever a new objfile (shlib) is detected. */
14592 static void
14593 remote_new_objfile (struct objfile *objfile)
14594 {
14595 remote_target *remote = get_current_remote_target ();
14596
14597 /* First, check whether the current inferior's process target is a remote
14598 target. */
14599 if (remote == nullptr)
14600 return;
14601
14602 /* When we are attaching or handling a fork child and the shared library
14603 subsystem reads the list of loaded libraries, we receive new objfile
14604 events in between each found library. The libraries are read in an
14605 undefined order, so if we gave the remote side a chance to look up
14606 symbols between each objfile, we might give it an inconsistent picture
14607 of the inferior. It could appear that a library A appears loaded but
14608 a library B does not, even though library A requires library B. That
14609 would present a state that couldn't normally exist in the inferior.
14610
14611 So, skip these events, we'll give the remote a chance to look up symbols
14612 once all the loaded libraries and their symbols are known to GDB. */
14613 if (current_inferior ()->in_initial_library_scan)
14614 return;
14615
14616 remote->remote_check_symbols ();
14617 }
14618
14619 /* Pull all the tracepoints defined on the target and create local
14620 data structures representing them. We don't want to create real
14621 tracepoints yet, we don't want to mess up the user's existing
14622 collection. */
14623
14624 int
14625 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14626 {
14627 struct remote_state *rs = get_remote_state ();
14628 char *p;
14629
14630 /* Ask for a first packet of tracepoint definition. */
14631 putpkt ("qTfP");
14632 getpkt (&rs->buf, 0);
14633 p = rs->buf.data ();
14634 while (*p && *p != 'l')
14635 {
14636 parse_tracepoint_definition (p, utpp);
14637 /* Ask for another packet of tracepoint definition. */
14638 putpkt ("qTsP");
14639 getpkt (&rs->buf, 0);
14640 p = rs->buf.data ();
14641 }
14642 return 0;
14643 }
14644
14645 int
14646 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14647 {
14648 struct remote_state *rs = get_remote_state ();
14649 char *p;
14650
14651 /* Ask for a first packet of variable definition. */
14652 putpkt ("qTfV");
14653 getpkt (&rs->buf, 0);
14654 p = rs->buf.data ();
14655 while (*p && *p != 'l')
14656 {
14657 parse_tsv_definition (p, utsvp);
14658 /* Ask for another packet of variable definition. */
14659 putpkt ("qTsV");
14660 getpkt (&rs->buf, 0);
14661 p = rs->buf.data ();
14662 }
14663 return 0;
14664 }
14665
14666 /* The "set/show range-stepping" show hook. */
14667
14668 static void
14669 show_range_stepping (struct ui_file *file, int from_tty,
14670 struct cmd_list_element *c,
14671 const char *value)
14672 {
14673 fprintf_filtered (file,
14674 _("Debugger's willingness to use range stepping "
14675 "is %s.\n"), value);
14676 }
14677
14678 /* Return true if the vCont;r action is supported by the remote
14679 stub. */
14680
14681 bool
14682 remote_target::vcont_r_supported ()
14683 {
14684 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14685 remote_vcont_probe ();
14686
14687 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14688 && get_remote_state ()->supports_vCont.r);
14689 }
14690
14691 /* The "set/show range-stepping" set hook. */
14692
14693 static void
14694 set_range_stepping (const char *ignore_args, int from_tty,
14695 struct cmd_list_element *c)
14696 {
14697 /* When enabling, check whether range stepping is actually supported
14698 by the target, and warn if not. */
14699 if (use_range_stepping)
14700 {
14701 remote_target *remote = get_current_remote_target ();
14702 if (remote == NULL
14703 || !remote->vcont_r_supported ())
14704 warning (_("Range stepping is not supported by the current target"));
14705 }
14706 }
14707
14708 static void
14709 show_remote_debug (struct ui_file *file, int from_tty,
14710 struct cmd_list_element *c, const char *value)
14711 {
14712 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14713 value);
14714 }
14715
14716 static void
14717 show_remote_timeout (struct ui_file *file, int from_tty,
14718 struct cmd_list_element *c, const char *value)
14719 {
14720 fprintf_filtered (file,
14721 _("Timeout limit to wait for target to respond is %s.\n"),
14722 value);
14723 }
14724
14725 /* Implement the "supports_memory_tagging" target_ops method. */
14726
14727 bool
14728 remote_target::supports_memory_tagging ()
14729 {
14730 return remote_memory_tagging_p ();
14731 }
14732
14733 /* Create the qMemTags packet given ADDRESS, LEN and TYPE. */
14734
14735 static void
14736 create_fetch_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14737 size_t len, int type)
14738 {
14739 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14740
14741 std::string request = string_printf ("qMemTags:%s,%s:%s",
14742 phex_nz (address, addr_size),
14743 phex_nz (len, sizeof (len)),
14744 phex_nz (type, sizeof (type)));
14745
14746 strcpy (packet.data (), request.c_str ());
14747 }
14748
14749 /* Parse the qMemTags packet reply into TAGS.
14750
14751 Return true if successful, false otherwise. */
14752
14753 static bool
14754 parse_fetch_memtags_reply (const gdb::char_vector &reply,
14755 gdb::byte_vector &tags)
14756 {
14757 if (reply.empty () || reply[0] == 'E' || reply[0] != 'm')
14758 return false;
14759
14760 /* Copy the tag data. */
14761 tags = hex2bin (reply.data () + 1);
14762
14763 return true;
14764 }
14765
14766 /* Create the QMemTags packet given ADDRESS, LEN, TYPE and TAGS. */
14767
14768 static void
14769 create_store_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14770 size_t len, int type,
14771 const gdb::byte_vector &tags)
14772 {
14773 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14774
14775 /* Put together the main packet, address and length. */
14776 std::string request = string_printf ("QMemTags:%s,%s:%s:",
14777 phex_nz (address, addr_size),
14778 phex_nz (len, sizeof (len)),
14779 phex_nz (type, sizeof (type)));
14780 request += bin2hex (tags.data (), tags.size ());
14781
14782 /* Check if we have exceeded the maximum packet size. */
14783 if (packet.size () < request.length ())
14784 error (_("Contents too big for packet QMemTags."));
14785
14786 strcpy (packet.data (), request.c_str ());
14787 }
14788
14789 /* Implement the "fetch_memtags" target_ops method. */
14790
14791 bool
14792 remote_target::fetch_memtags (CORE_ADDR address, size_t len,
14793 gdb::byte_vector &tags, int type)
14794 {
14795 /* Make sure the qMemTags packet is supported. */
14796 if (!remote_memory_tagging_p ())
14797 gdb_assert_not_reached ("remote fetch_memtags called with packet disabled");
14798
14799 struct remote_state *rs = get_remote_state ();
14800
14801 create_fetch_memtags_request (rs->buf, address, len, type);
14802
14803 putpkt (rs->buf);
14804 getpkt (&rs->buf, 0);
14805
14806 return parse_fetch_memtags_reply (rs->buf, tags);
14807 }
14808
14809 /* Implement the "store_memtags" target_ops method. */
14810
14811 bool
14812 remote_target::store_memtags (CORE_ADDR address, size_t len,
14813 const gdb::byte_vector &tags, int type)
14814 {
14815 /* Make sure the QMemTags packet is supported. */
14816 if (!remote_memory_tagging_p ())
14817 gdb_assert_not_reached ("remote store_memtags called with packet disabled");
14818
14819 struct remote_state *rs = get_remote_state ();
14820
14821 create_store_memtags_request (rs->buf, address, len, type, tags);
14822
14823 putpkt (rs->buf);
14824 getpkt (&rs->buf, 0);
14825
14826 /* Verify if the request was successful. */
14827 return packet_check_result (rs->buf.data ()) == PACKET_OK;
14828 }
14829
14830 /* Return true if remote target T is non-stop. */
14831
14832 bool
14833 remote_target_is_non_stop_p (remote_target *t)
14834 {
14835 scoped_restore_current_thread restore_thread;
14836 switch_to_target_no_thread (t);
14837
14838 return target_is_non_stop_p ();
14839 }
14840
14841 #if GDB_SELF_TEST
14842
14843 namespace selftests {
14844
14845 static void
14846 test_memory_tagging_functions ()
14847 {
14848 remote_target remote;
14849
14850 struct packet_config *config
14851 = &remote_protocol_packets[PACKET_memory_tagging_feature];
14852
14853 scoped_restore restore_memtag_support_
14854 = make_scoped_restore (&config->support);
14855
14856 /* Test memory tagging packet support. */
14857 config->support = PACKET_SUPPORT_UNKNOWN;
14858 SELF_CHECK (remote.supports_memory_tagging () == false);
14859 config->support = PACKET_DISABLE;
14860 SELF_CHECK (remote.supports_memory_tagging () == false);
14861 config->support = PACKET_ENABLE;
14862 SELF_CHECK (remote.supports_memory_tagging () == true);
14863
14864 /* Setup testing. */
14865 gdb::char_vector packet;
14866 gdb::byte_vector tags, bv;
14867 std::string expected, reply;
14868 packet.resize (32000);
14869
14870 /* Test creating a qMemTags request. */
14871
14872 expected = "qMemTags:0,0:0";
14873 create_fetch_memtags_request (packet, 0x0, 0x0, 0);
14874 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14875
14876 expected = "qMemTags:deadbeef,10:1";
14877 create_fetch_memtags_request (packet, 0xdeadbeef, 16, 1);
14878 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14879
14880 /* Test parsing a qMemTags reply. */
14881
14882 /* Error reply, tags vector unmodified. */
14883 reply = "E00";
14884 strcpy (packet.data (), reply.c_str ());
14885 tags.resize (0);
14886 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == false);
14887 SELF_CHECK (tags.size () == 0);
14888
14889 /* Valid reply, tags vector updated. */
14890 tags.resize (0);
14891 bv.resize (0);
14892
14893 for (int i = 0; i < 5; i++)
14894 bv.push_back (i);
14895
14896 reply = "m" + bin2hex (bv.data (), bv.size ());
14897 strcpy (packet.data (), reply.c_str ());
14898
14899 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == true);
14900 SELF_CHECK (tags.size () == 5);
14901
14902 for (int i = 0; i < 5; i++)
14903 SELF_CHECK (tags[i] == i);
14904
14905 /* Test creating a QMemTags request. */
14906
14907 /* Empty tag data. */
14908 tags.resize (0);
14909 expected = "QMemTags:0,0:0:";
14910 create_store_memtags_request (packet, 0x0, 0x0, 0, tags);
14911 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14912 expected.length ()) == 0);
14913
14914 /* Non-empty tag data. */
14915 tags.resize (0);
14916 for (int i = 0; i < 5; i++)
14917 tags.push_back (i);
14918 expected = "QMemTags:deadbeef,ff:1:0001020304";
14919 create_store_memtags_request (packet, 0xdeadbeef, 255, 1, tags);
14920 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14921 expected.length ()) == 0);
14922 }
14923
14924 } // namespace selftests
14925 #endif /* GDB_SELF_TEST */
14926
14927 void _initialize_remote ();
14928 void
14929 _initialize_remote ()
14930 {
14931 /* architecture specific data */
14932 remote_g_packet_data_handle =
14933 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14934
14935 add_target (remote_target_info, remote_target::open);
14936 add_target (extended_remote_target_info, extended_remote_target::open);
14937
14938 /* Hook into new objfile notification. */
14939 gdb::observers::new_objfile.attach (remote_new_objfile, "remote");
14940
14941 #if 0
14942 init_remote_threadtests ();
14943 #endif
14944
14945 /* set/show remote ... */
14946
14947 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14948 Remote protocol specific variables.\n\
14949 Configure various remote-protocol specific variables such as\n\
14950 the packets being used."),
14951 &remote_set_cmdlist,
14952 0 /* allow-unknown */, &setlist);
14953 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14954 Remote protocol specific variables.\n\
14955 Configure various remote-protocol specific variables such as\n\
14956 the packets being used."),
14957 &remote_show_cmdlist,
14958 0 /* allow-unknown */, &showlist);
14959
14960 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14961 Compare section data on target to the exec file.\n\
14962 Argument is a single section name (default: all loaded sections).\n\
14963 To compare only read-only loaded sections, specify the -r option."),
14964 &cmdlist);
14965
14966 add_cmd ("packet", class_maintenance, cli_packet_command, _("\
14967 Send an arbitrary packet to a remote target.\n\
14968 maintenance packet TEXT\n\
14969 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14970 this command sends the string TEXT to the inferior, and displays the\n\
14971 response packet. GDB supplies the initial `$' character, and the\n\
14972 terminating `#' character and checksum."),
14973 &maintenancelist);
14974
14975 set_show_commands remotebreak_cmds
14976 = add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14977 Set whether to send break if interrupted."), _("\
14978 Show whether to send break if interrupted."), _("\
14979 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14980 set_remotebreak, show_remotebreak,
14981 &setlist, &showlist);
14982 deprecate_cmd (remotebreak_cmds.set, "set remote interrupt-sequence");
14983 deprecate_cmd (remotebreak_cmds.show, "show remote interrupt-sequence");
14984
14985 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14986 interrupt_sequence_modes, &interrupt_sequence_mode,
14987 _("\
14988 Set interrupt sequence to remote target."), _("\
14989 Show interrupt sequence to remote target."), _("\
14990 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14991 NULL, show_interrupt_sequence,
14992 &remote_set_cmdlist,
14993 &remote_show_cmdlist);
14994
14995 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14996 &interrupt_on_connect, _("\
14997 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14998 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14999 If set, interrupt sequence is sent to remote target."),
15000 NULL, NULL,
15001 &remote_set_cmdlist, &remote_show_cmdlist);
15002
15003 /* Install commands for configuring memory read/write packets. */
15004
15005 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
15006 Set the maximum number of bytes per memory write packet (deprecated)."),
15007 &setlist);
15008 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
15009 Show the maximum number of bytes per memory write packet (deprecated)."),
15010 &showlist);
15011 add_cmd ("memory-write-packet-size", no_class,
15012 set_memory_write_packet_size, _("\
15013 Set the maximum number of bytes per memory-write packet.\n\
15014 Specify the number of bytes in a packet or 0 (zero) for the\n\
15015 default packet size. The actual limit is further reduced\n\
15016 dependent on the target. Specify ``fixed'' to disable the\n\
15017 further restriction and ``limit'' to enable that restriction."),
15018 &remote_set_cmdlist);
15019 add_cmd ("memory-read-packet-size", no_class,
15020 set_memory_read_packet_size, _("\
15021 Set the maximum number of bytes per memory-read packet.\n\
15022 Specify the number of bytes in a packet or 0 (zero) for the\n\
15023 default packet size. The actual limit is further reduced\n\
15024 dependent on the target. Specify ``fixed'' to disable the\n\
15025 further restriction and ``limit'' to enable that restriction."),
15026 &remote_set_cmdlist);
15027 add_cmd ("memory-write-packet-size", no_class,
15028 show_memory_write_packet_size,
15029 _("Show the maximum number of bytes per memory-write packet."),
15030 &remote_show_cmdlist);
15031 add_cmd ("memory-read-packet-size", no_class,
15032 show_memory_read_packet_size,
15033 _("Show the maximum number of bytes per memory-read packet."),
15034 &remote_show_cmdlist);
15035
15036 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
15037 &remote_hw_watchpoint_limit, _("\
15038 Set the maximum number of target hardware watchpoints."), _("\
15039 Show the maximum number of target hardware watchpoints."), _("\
15040 Specify \"unlimited\" for unlimited hardware watchpoints."),
15041 NULL, show_hardware_watchpoint_limit,
15042 &remote_set_cmdlist,
15043 &remote_show_cmdlist);
15044 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
15045 no_class,
15046 &remote_hw_watchpoint_length_limit, _("\
15047 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
15048 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
15049 Specify \"unlimited\" to allow watchpoints of unlimited size."),
15050 NULL, show_hardware_watchpoint_length_limit,
15051 &remote_set_cmdlist, &remote_show_cmdlist);
15052 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
15053 &remote_hw_breakpoint_limit, _("\
15054 Set the maximum number of target hardware breakpoints."), _("\
15055 Show the maximum number of target hardware breakpoints."), _("\
15056 Specify \"unlimited\" for unlimited hardware breakpoints."),
15057 NULL, show_hardware_breakpoint_limit,
15058 &remote_set_cmdlist, &remote_show_cmdlist);
15059
15060 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
15061 &remote_address_size, _("\
15062 Set the maximum size of the address (in bits) in a memory packet."), _("\
15063 Show the maximum size of the address (in bits) in a memory packet."), NULL,
15064 NULL,
15065 NULL, /* FIXME: i18n: */
15066 &setlist, &showlist);
15067
15068 init_all_packet_configs ();
15069
15070 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
15071 "X", "binary-download", 1);
15072
15073 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
15074 "vCont", "verbose-resume", 0);
15075
15076 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
15077 "QPassSignals", "pass-signals", 0);
15078
15079 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
15080 "QCatchSyscalls", "catch-syscalls", 0);
15081
15082 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
15083 "QProgramSignals", "program-signals", 0);
15084
15085 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
15086 "QSetWorkingDir", "set-working-dir", 0);
15087
15088 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
15089 "QStartupWithShell", "startup-with-shell", 0);
15090
15091 add_packet_config_cmd (&remote_protocol_packets
15092 [PACKET_QEnvironmentHexEncoded],
15093 "QEnvironmentHexEncoded", "environment-hex-encoded",
15094 0);
15095
15096 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
15097 "QEnvironmentReset", "environment-reset",
15098 0);
15099
15100 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
15101 "QEnvironmentUnset", "environment-unset",
15102 0);
15103
15104 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
15105 "qSymbol", "symbol-lookup", 0);
15106
15107 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
15108 "P", "set-register", 1);
15109
15110 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
15111 "p", "fetch-register", 1);
15112
15113 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
15114 "Z0", "software-breakpoint", 0);
15115
15116 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
15117 "Z1", "hardware-breakpoint", 0);
15118
15119 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
15120 "Z2", "write-watchpoint", 0);
15121
15122 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
15123 "Z3", "read-watchpoint", 0);
15124
15125 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
15126 "Z4", "access-watchpoint", 0);
15127
15128 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
15129 "qXfer:auxv:read", "read-aux-vector", 0);
15130
15131 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
15132 "qXfer:exec-file:read", "pid-to-exec-file", 0);
15133
15134 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
15135 "qXfer:features:read", "target-features", 0);
15136
15137 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
15138 "qXfer:libraries:read", "library-info", 0);
15139
15140 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
15141 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
15142
15143 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
15144 "qXfer:memory-map:read", "memory-map", 0);
15145
15146 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
15147 "qXfer:osdata:read", "osdata", 0);
15148
15149 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
15150 "qXfer:threads:read", "threads", 0);
15151
15152 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
15153 "qXfer:siginfo:read", "read-siginfo-object", 0);
15154
15155 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
15156 "qXfer:siginfo:write", "write-siginfo-object", 0);
15157
15158 add_packet_config_cmd
15159 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
15160 "qXfer:traceframe-info:read", "traceframe-info", 0);
15161
15162 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
15163 "qXfer:uib:read", "unwind-info-block", 0);
15164
15165 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
15166 "qGetTLSAddr", "get-thread-local-storage-address",
15167 0);
15168
15169 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
15170 "qGetTIBAddr", "get-thread-information-block-address",
15171 0);
15172
15173 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
15174 "bc", "reverse-continue", 0);
15175
15176 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
15177 "bs", "reverse-step", 0);
15178
15179 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
15180 "qSupported", "supported-packets", 0);
15181
15182 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
15183 "qSearch:memory", "search-memory", 0);
15184
15185 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
15186 "qTStatus", "trace-status", 0);
15187
15188 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
15189 "vFile:setfs", "hostio-setfs", 0);
15190
15191 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
15192 "vFile:open", "hostio-open", 0);
15193
15194 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
15195 "vFile:pread", "hostio-pread", 0);
15196
15197 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
15198 "vFile:pwrite", "hostio-pwrite", 0);
15199
15200 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
15201 "vFile:close", "hostio-close", 0);
15202
15203 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
15204 "vFile:unlink", "hostio-unlink", 0);
15205
15206 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
15207 "vFile:readlink", "hostio-readlink", 0);
15208
15209 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
15210 "vFile:fstat", "hostio-fstat", 0);
15211
15212 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
15213 "vAttach", "attach", 0);
15214
15215 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
15216 "vRun", "run", 0);
15217
15218 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
15219 "QStartNoAckMode", "noack", 0);
15220
15221 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
15222 "vKill", "kill", 0);
15223
15224 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
15225 "qAttached", "query-attached", 0);
15226
15227 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
15228 "ConditionalTracepoints",
15229 "conditional-tracepoints", 0);
15230
15231 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
15232 "ConditionalBreakpoints",
15233 "conditional-breakpoints", 0);
15234
15235 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
15236 "BreakpointCommands",
15237 "breakpoint-commands", 0);
15238
15239 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
15240 "FastTracepoints", "fast-tracepoints", 0);
15241
15242 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
15243 "TracepointSource", "TracepointSource", 0);
15244
15245 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
15246 "QAllow", "allow", 0);
15247
15248 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
15249 "StaticTracepoints", "static-tracepoints", 0);
15250
15251 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
15252 "InstallInTrace", "install-in-trace", 0);
15253
15254 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
15255 "qXfer:statictrace:read", "read-sdata-object", 0);
15256
15257 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
15258 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
15259
15260 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
15261 "QDisableRandomization", "disable-randomization", 0);
15262
15263 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
15264 "QAgent", "agent", 0);
15265
15266 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
15267 "QTBuffer:size", "trace-buffer-size", 0);
15268
15269 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
15270 "Qbtrace:off", "disable-btrace", 0);
15271
15272 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
15273 "Qbtrace:bts", "enable-btrace-bts", 0);
15274
15275 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
15276 "Qbtrace:pt", "enable-btrace-pt", 0);
15277
15278 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
15279 "qXfer:btrace", "read-btrace", 0);
15280
15281 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
15282 "qXfer:btrace-conf", "read-btrace-conf", 0);
15283
15284 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
15285 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
15286
15287 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
15288 "multiprocess-feature", "multiprocess-feature", 0);
15289
15290 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
15291 "swbreak-feature", "swbreak-feature", 0);
15292
15293 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
15294 "hwbreak-feature", "hwbreak-feature", 0);
15295
15296 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
15297 "fork-event-feature", "fork-event-feature", 0);
15298
15299 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
15300 "vfork-event-feature", "vfork-event-feature", 0);
15301
15302 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
15303 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
15304
15305 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
15306 "vContSupported", "verbose-resume-supported", 0);
15307
15308 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
15309 "exec-event-feature", "exec-event-feature", 0);
15310
15311 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
15312 "vCtrlC", "ctrl-c", 0);
15313
15314 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
15315 "QThreadEvents", "thread-events", 0);
15316
15317 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
15318 "N stop reply", "no-resumed-stop-reply", 0);
15319
15320 add_packet_config_cmd (&remote_protocol_packets[PACKET_memory_tagging_feature],
15321 "memory-tagging-feature", "memory-tagging-feature", 0);
15322
15323 /* Assert that we've registered "set remote foo-packet" commands
15324 for all packet configs. */
15325 {
15326 int i;
15327
15328 for (i = 0; i < PACKET_MAX; i++)
15329 {
15330 /* Ideally all configs would have a command associated. Some
15331 still don't though. */
15332 int excepted;
15333
15334 switch (i)
15335 {
15336 case PACKET_QNonStop:
15337 case PACKET_EnableDisableTracepoints_feature:
15338 case PACKET_tracenz_feature:
15339 case PACKET_DisconnectedTracing_feature:
15340 case PACKET_augmented_libraries_svr4_read_feature:
15341 case PACKET_qCRC:
15342 /* Additions to this list need to be well justified:
15343 pre-existing packets are OK; new packets are not. */
15344 excepted = 1;
15345 break;
15346 default:
15347 excepted = 0;
15348 break;
15349 }
15350
15351 /* This catches both forgetting to add a config command, and
15352 forgetting to remove a packet from the exception list. */
15353 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
15354 }
15355 }
15356
15357 /* Keep the old ``set remote Z-packet ...'' working. Each individual
15358 Z sub-packet has its own set and show commands, but users may
15359 have sets to this variable in their .gdbinit files (or in their
15360 documentation). */
15361 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
15362 &remote_Z_packet_detect, _("\
15363 Set use of remote protocol `Z' packets."), _("\
15364 Show use of remote protocol `Z' packets."), _("\
15365 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
15366 packets."),
15367 set_remote_protocol_Z_packet_cmd,
15368 show_remote_protocol_Z_packet_cmd,
15369 /* FIXME: i18n: Use of remote protocol
15370 `Z' packets is %s. */
15371 &remote_set_cmdlist, &remote_show_cmdlist);
15372
15373 add_basic_prefix_cmd ("remote", class_files, _("\
15374 Manipulate files on the remote system.\n\
15375 Transfer files to and from the remote target system."),
15376 &remote_cmdlist,
15377 0 /* allow-unknown */, &cmdlist);
15378
15379 add_cmd ("put", class_files, remote_put_command,
15380 _("Copy a local file to the remote system."),
15381 &remote_cmdlist);
15382
15383 add_cmd ("get", class_files, remote_get_command,
15384 _("Copy a remote file to the local system."),
15385 &remote_cmdlist);
15386
15387 add_cmd ("delete", class_files, remote_delete_command,
15388 _("Delete a remote file."),
15389 &remote_cmdlist);
15390
15391 add_setshow_string_noescape_cmd ("exec-file", class_files,
15392 &remote_exec_file_var, _("\
15393 Set the remote pathname for \"run\"."), _("\
15394 Show the remote pathname for \"run\"."), NULL,
15395 set_remote_exec_file,
15396 show_remote_exec_file,
15397 &remote_set_cmdlist,
15398 &remote_show_cmdlist);
15399
15400 add_setshow_boolean_cmd ("range-stepping", class_run,
15401 &use_range_stepping, _("\
15402 Enable or disable range stepping."), _("\
15403 Show whether target-assisted range stepping is enabled."), _("\
15404 If on, and the target supports it, when stepping a source line, GDB\n\
15405 tells the target to step the corresponding range of addresses itself instead\n\
15406 of issuing multiple single-steps. This speeds up source level\n\
15407 stepping. If off, GDB always issues single-steps, even if range\n\
15408 stepping is supported by the target. The default is on."),
15409 set_range_stepping,
15410 show_range_stepping,
15411 &setlist,
15412 &showlist);
15413
15414 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15415 Set watchdog timer."), _("\
15416 Show watchdog timer."), _("\
15417 When non-zero, this timeout is used instead of waiting forever for a target\n\
15418 to finish a low-level step or continue operation. If the specified amount\n\
15419 of time passes without a response from the target, an error occurs."),
15420 NULL,
15421 show_watchdog,
15422 &setlist, &showlist);
15423
15424 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15425 &remote_packet_max_chars, _("\
15426 Set the maximum number of characters to display for each remote packet."), _("\
15427 Show the maximum number of characters to display for each remote packet."), _("\
15428 Specify \"unlimited\" to display all the characters."),
15429 NULL, show_remote_packet_max_chars,
15430 &setdebuglist, &showdebuglist);
15431
15432 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
15433 _("Set debugging of remote protocol."),
15434 _("Show debugging of remote protocol."),
15435 _("\
15436 When enabled, each packet sent or received with the remote target\n\
15437 is displayed."),
15438 NULL,
15439 show_remote_debug,
15440 &setdebuglist, &showdebuglist);
15441
15442 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15443 &remote_timeout, _("\
15444 Set timeout limit to wait for target to respond."), _("\
15445 Show timeout limit to wait for target to respond."), _("\
15446 This value is used to set the time limit for gdb to wait for a response\n\
15447 from the target."),
15448 NULL,
15449 show_remote_timeout,
15450 &setlist, &showlist);
15451
15452 /* Eventually initialize fileio. See fileio.c */
15453 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15454
15455 #if GDB_SELF_TEST
15456 selftests::register_test ("remote_memory_tagging",
15457 selftests::test_memory_tagging_functions);
15458 #endif
15459 }