4580c771f97ab18d03cab5610eac530c94003f7c
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
83 int forever);
84
85 static void handle_remote_sigint (int);
86 static void handle_remote_sigint_twice (int);
87 static void async_remote_interrupt (gdb_client_data);
88 void async_remote_interrupt_twice (gdb_client_data);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_fetch_registers (struct regcache *regcache, int regno);
95
96 static void remote_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_open (char *name, int from_tty);
99
100 static void extended_remote_open (char *name, int from_tty);
101
102 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
103
104 static void remote_close (int quitting);
105
106 static void remote_store_registers (struct regcache *regcache, int regno);
107
108 static void remote_mourn (struct target_ops *ops);
109
110 static void extended_remote_restart (void);
111
112 static void extended_remote_mourn (struct target_ops *);
113
114 static void remote_mourn_1 (struct target_ops *);
115
116 static void remote_send (char **buf, long *sizeof_buf_p);
117
118 static int readchar (int timeout);
119
120 static ptid_t remote_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122
123 static void remote_kill (void);
124
125 static int tohex (int nib);
126
127 static int remote_can_async_p (void);
128
129 static int remote_is_async_p (void);
130
131 static void remote_async (void (*callback) (enum inferior_event_type event_type,
132 void *context), void *context);
133
134 static int remote_async_mask (int new_mask);
135
136 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_general_thread (struct ptid ptid);
145 static void set_continue_thread (struct ptid ptid);
146
147 static int remote_thread_alive (ptid_t);
148
149 static void get_offsets (void);
150
151 static void skip_frame (void);
152
153 static long read_frame (char **buf_p, long *sizeof_buf);
154
155 static int hexnumlen (ULONGEST num);
156
157 static void init_remote_ops (void);
158
159 static void init_extended_remote_ops (void);
160
161 static void remote_stop (ptid_t);
162
163 static int ishex (int ch, int *val);
164
165 static int stubhex (int ch);
166
167 static int hexnumstr (char *, ULONGEST);
168
169 static int hexnumnstr (char *, ULONGEST, int);
170
171 static CORE_ADDR remote_address_masked (CORE_ADDR);
172
173 static void print_packet (char *);
174
175 static unsigned long crc32 (unsigned char *, int, unsigned int);
176
177 static void compare_sections_command (char *, int);
178
179 static void packet_command (char *, int);
180
181 static int stub_unpack_int (char *buff, int fieldlength);
182
183 static ptid_t remote_current_thread (ptid_t oldptid);
184
185 static void remote_find_new_threads (void);
186
187 static void record_currthread (ptid_t currthread);
188
189 static int fromhex (int a);
190
191 static int hex2bin (const char *hex, gdb_byte *bin, int count);
192
193 static int bin2hex (const gdb_byte *bin, char *hex, int count);
194
195 static int putpkt_binary (char *buf, int cnt);
196
197 static void check_binary_download (CORE_ADDR addr);
198
199 struct packet_config;
200
201 static void show_packet_config_cmd (struct packet_config *config);
202
203 static void update_packet_config (struct packet_config *config);
204
205 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
206 struct cmd_list_element *c);
207
208 static void show_remote_protocol_packet_cmd (struct ui_file *file,
209 int from_tty,
210 struct cmd_list_element *c,
211 const char *value);
212
213 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
214 static ptid_t read_ptid (char *buf, char **obuf);
215
216 static void remote_query_supported (void);
217
218 static void remote_check_symbols (struct objfile *objfile);
219
220 void _initialize_remote (void);
221
222 struct stop_reply;
223 static struct stop_reply *stop_reply_xmalloc (void);
224 static void stop_reply_xfree (struct stop_reply *);
225 static void do_stop_reply_xfree (void *arg);
226 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
227 static void push_stop_reply (struct stop_reply *);
228 static void remote_get_pending_stop_replies (void);
229 static void discard_pending_stop_replies (int pid);
230 static int peek_stop_reply (ptid_t ptid);
231
232 static void remote_async_inferior_event_handler (gdb_client_data);
233 static void remote_async_get_pending_events_handler (gdb_client_data);
234
235 static void remote_terminal_ours (void);
236
237 /* The non-stop remote protocol provisions for one pending stop reply.
238 This is where we keep it until it is acknowledged. */
239
240 static struct stop_reply *pending_stop_reply = NULL;
241
242 /* For "remote". */
243
244 static struct cmd_list_element *remote_cmdlist;
245
246 /* For "set remote" and "show remote". */
247
248 static struct cmd_list_element *remote_set_cmdlist;
249 static struct cmd_list_element *remote_show_cmdlist;
250
251 /* Description of the remote protocol state for the currently
252 connected target. This is per-target state, and independent of the
253 selected architecture. */
254
255 struct remote_state
256 {
257 /* A buffer to use for incoming packets, and its current size. The
258 buffer is grown dynamically for larger incoming packets.
259 Outgoing packets may also be constructed in this buffer.
260 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
261 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
262 packets. */
263 char *buf;
264 long buf_size;
265
266 /* If we negotiated packet size explicitly (and thus can bypass
267 heuristics for the largest packet size that will not overflow
268 a buffer in the stub), this will be set to that packet size.
269 Otherwise zero, meaning to use the guessed size. */
270 long explicit_packet_size;
271
272 /* remote_wait is normally called when the target is running and
273 waits for a stop reply packet. But sometimes we need to call it
274 when the target is already stopped. We can send a "?" packet
275 and have remote_wait read the response. Or, if we already have
276 the response, we can stash it in BUF and tell remote_wait to
277 skip calling getpkt. This flag is set when BUF contains a
278 stop reply packet and the target is not waiting. */
279 int cached_wait_status;
280
281 /* True, if in no ack mode. That is, neither GDB nor the stub will
282 expect acks from each other. The connection is assumed to be
283 reliable. */
284 int noack_mode;
285
286 /* True if we're connected in extended remote mode. */
287 int extended;
288
289 /* True if the stub reported support for multi-process
290 extensions. */
291 int multi_process_aware;
292
293 /* True if we resumed the target and we're waiting for the target to
294 stop. In the mean time, we can't start another command/query.
295 The remote server wouldn't be ready to process it, so we'd
296 timeout waiting for a reply that would never come and eventually
297 we'd close the connection. This can happen in asynchronous mode
298 because we allow GDB commands while the target is running. */
299 int waiting_for_stop_reply;
300
301 /* True if the stub reports support for non-stop mode. */
302 int non_stop_aware;
303
304 /* True if the stub reports support for vCont;t. */
305 int support_vCont_t;
306 };
307
308 /* Returns true if the multi-process extensions are in effect. */
309 static int
310 remote_multi_process_p (struct remote_state *rs)
311 {
312 return rs->extended && rs->multi_process_aware;
313 }
314
315 /* This data could be associated with a target, but we do not always
316 have access to the current target when we need it, so for now it is
317 static. This will be fine for as long as only one target is in use
318 at a time. */
319 static struct remote_state remote_state;
320
321 static struct remote_state *
322 get_remote_state_raw (void)
323 {
324 return &remote_state;
325 }
326
327 /* Description of the remote protocol for a given architecture. */
328
329 struct packet_reg
330 {
331 long offset; /* Offset into G packet. */
332 long regnum; /* GDB's internal register number. */
333 LONGEST pnum; /* Remote protocol register number. */
334 int in_g_packet; /* Always part of G packet. */
335 /* long size in bytes; == register_size (target_gdbarch, regnum);
336 at present. */
337 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
338 at present. */
339 };
340
341 struct remote_arch_state
342 {
343 /* Description of the remote protocol registers. */
344 long sizeof_g_packet;
345
346 /* Description of the remote protocol registers indexed by REGNUM
347 (making an array gdbarch_num_regs in size). */
348 struct packet_reg *regs;
349
350 /* This is the size (in chars) of the first response to the ``g''
351 packet. It is used as a heuristic when determining the maximum
352 size of memory-read and memory-write packets. A target will
353 typically only reserve a buffer large enough to hold the ``g''
354 packet. The size does not include packet overhead (headers and
355 trailers). */
356 long actual_register_packet_size;
357
358 /* This is the maximum size (in chars) of a non read/write packet.
359 It is also used as a cap on the size of read/write packets. */
360 long remote_packet_size;
361 };
362
363
364 /* Handle for retreving the remote protocol data from gdbarch. */
365 static struct gdbarch_data *remote_gdbarch_data_handle;
366
367 static struct remote_arch_state *
368 get_remote_arch_state (void)
369 {
370 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
371 }
372
373 /* Fetch the global remote target state. */
374
375 static struct remote_state *
376 get_remote_state (void)
377 {
378 /* Make sure that the remote architecture state has been
379 initialized, because doing so might reallocate rs->buf. Any
380 function which calls getpkt also needs to be mindful of changes
381 to rs->buf, but this call limits the number of places which run
382 into trouble. */
383 get_remote_arch_state ();
384
385 return get_remote_state_raw ();
386 }
387
388 static int
389 compare_pnums (const void *lhs_, const void *rhs_)
390 {
391 const struct packet_reg * const *lhs = lhs_;
392 const struct packet_reg * const *rhs = rhs_;
393
394 if ((*lhs)->pnum < (*rhs)->pnum)
395 return -1;
396 else if ((*lhs)->pnum == (*rhs)->pnum)
397 return 0;
398 else
399 return 1;
400 }
401
402 static void *
403 init_remote_state (struct gdbarch *gdbarch)
404 {
405 int regnum, num_remote_regs, offset;
406 struct remote_state *rs = get_remote_state_raw ();
407 struct remote_arch_state *rsa;
408 struct packet_reg **remote_regs;
409
410 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
411
412 /* Use the architecture to build a regnum<->pnum table, which will be
413 1:1 unless a feature set specifies otherwise. */
414 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
415 gdbarch_num_regs (gdbarch),
416 struct packet_reg);
417 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
418 {
419 struct packet_reg *r = &rsa->regs[regnum];
420
421 if (register_size (gdbarch, regnum) == 0)
422 /* Do not try to fetch zero-sized (placeholder) registers. */
423 r->pnum = -1;
424 else
425 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
426
427 r->regnum = regnum;
428 }
429
430 /* Define the g/G packet format as the contents of each register
431 with a remote protocol number, in order of ascending protocol
432 number. */
433
434 remote_regs = alloca (gdbarch_num_regs (gdbarch)
435 * sizeof (struct packet_reg *));
436 for (num_remote_regs = 0, regnum = 0;
437 regnum < gdbarch_num_regs (gdbarch);
438 regnum++)
439 if (rsa->regs[regnum].pnum != -1)
440 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
441
442 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
443 compare_pnums);
444
445 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
446 {
447 remote_regs[regnum]->in_g_packet = 1;
448 remote_regs[regnum]->offset = offset;
449 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
450 }
451
452 /* Record the maximum possible size of the g packet - it may turn out
453 to be smaller. */
454 rsa->sizeof_g_packet = offset;
455
456 /* Default maximum number of characters in a packet body. Many
457 remote stubs have a hardwired buffer size of 400 bytes
458 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
459 as the maximum packet-size to ensure that the packet and an extra
460 NUL character can always fit in the buffer. This stops GDB
461 trashing stubs that try to squeeze an extra NUL into what is
462 already a full buffer (As of 1999-12-04 that was most stubs). */
463 rsa->remote_packet_size = 400 - 1;
464
465 /* This one is filled in when a ``g'' packet is received. */
466 rsa->actual_register_packet_size = 0;
467
468 /* Should rsa->sizeof_g_packet needs more space than the
469 default, adjust the size accordingly. Remember that each byte is
470 encoded as two characters. 32 is the overhead for the packet
471 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
472 (``$NN:G...#NN'') is a better guess, the below has been padded a
473 little. */
474 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
475 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
476
477 /* Make sure that the packet buffer is plenty big enough for
478 this architecture. */
479 if (rs->buf_size < rsa->remote_packet_size)
480 {
481 rs->buf_size = 2 * rsa->remote_packet_size;
482 rs->buf = xrealloc (rs->buf, rs->buf_size);
483 }
484
485 return rsa;
486 }
487
488 /* Return the current allowed size of a remote packet. This is
489 inferred from the current architecture, and should be used to
490 limit the length of outgoing packets. */
491 static long
492 get_remote_packet_size (void)
493 {
494 struct remote_state *rs = get_remote_state ();
495 struct remote_arch_state *rsa = get_remote_arch_state ();
496
497 if (rs->explicit_packet_size)
498 return rs->explicit_packet_size;
499
500 return rsa->remote_packet_size;
501 }
502
503 static struct packet_reg *
504 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
505 {
506 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
507 return NULL;
508 else
509 {
510 struct packet_reg *r = &rsa->regs[regnum];
511 gdb_assert (r->regnum == regnum);
512 return r;
513 }
514 }
515
516 static struct packet_reg *
517 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
518 {
519 int i;
520 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
521 {
522 struct packet_reg *r = &rsa->regs[i];
523 if (r->pnum == pnum)
524 return r;
525 }
526 return NULL;
527 }
528
529 /* FIXME: graces/2002-08-08: These variables should eventually be
530 bound to an instance of the target object (as in gdbarch-tdep()),
531 when such a thing exists. */
532
533 /* This is set to the data address of the access causing the target
534 to stop for a watchpoint. */
535 static CORE_ADDR remote_watch_data_address;
536
537 /* This is non-zero if target stopped for a watchpoint. */
538 static int remote_stopped_by_watchpoint_p;
539
540 static struct target_ops remote_ops;
541
542 static struct target_ops extended_remote_ops;
543
544 static int remote_async_mask_value = 1;
545
546 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
547 ``forever'' still use the normal timeout mechanism. This is
548 currently used by the ASYNC code to guarentee that target reads
549 during the initial connect always time-out. Once getpkt has been
550 modified to return a timeout indication and, in turn
551 remote_wait()/wait_for_inferior() have gained a timeout parameter
552 this can go away. */
553 static int wait_forever_enabled_p = 1;
554
555
556 /* This variable chooses whether to send a ^C or a break when the user
557 requests program interruption. Although ^C is usually what remote
558 systems expect, and that is the default here, sometimes a break is
559 preferable instead. */
560
561 static int remote_break;
562
563 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
564 remote_open knows that we don't have a file open when the program
565 starts. */
566 static struct serial *remote_desc = NULL;
567
568 /* This variable sets the number of bits in an address that are to be
569 sent in a memory ("M" or "m") packet. Normally, after stripping
570 leading zeros, the entire address would be sent. This variable
571 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
572 initial implementation of remote.c restricted the address sent in
573 memory packets to ``host::sizeof long'' bytes - (typically 32
574 bits). Consequently, for 64 bit targets, the upper 32 bits of an
575 address was never sent. Since fixing this bug may cause a break in
576 some remote targets this variable is principly provided to
577 facilitate backward compatibility. */
578
579 static int remote_address_size;
580
581 /* Temporary to track who currently owns the terminal. See
582 remote_terminal_* for more details. */
583
584 static int remote_async_terminal_ours_p;
585
586 /* The executable file to use for "run" on the remote side. */
587
588 static char *remote_exec_file = "";
589
590 \f
591 /* User configurable variables for the number of characters in a
592 memory read/write packet. MIN (rsa->remote_packet_size,
593 rsa->sizeof_g_packet) is the default. Some targets need smaller
594 values (fifo overruns, et.al.) and some users need larger values
595 (speed up transfers). The variables ``preferred_*'' (the user
596 request), ``current_*'' (what was actually set) and ``forced_*''
597 (Positive - a soft limit, negative - a hard limit). */
598
599 struct memory_packet_config
600 {
601 char *name;
602 long size;
603 int fixed_p;
604 };
605
606 /* Compute the current size of a read/write packet. Since this makes
607 use of ``actual_register_packet_size'' the computation is dynamic. */
608
609 static long
610 get_memory_packet_size (struct memory_packet_config *config)
611 {
612 struct remote_state *rs = get_remote_state ();
613 struct remote_arch_state *rsa = get_remote_arch_state ();
614
615 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
616 law?) that some hosts don't cope very well with large alloca()
617 calls. Eventually the alloca() code will be replaced by calls to
618 xmalloc() and make_cleanups() allowing this restriction to either
619 be lifted or removed. */
620 #ifndef MAX_REMOTE_PACKET_SIZE
621 #define MAX_REMOTE_PACKET_SIZE 16384
622 #endif
623 /* NOTE: 20 ensures we can write at least one byte. */
624 #ifndef MIN_REMOTE_PACKET_SIZE
625 #define MIN_REMOTE_PACKET_SIZE 20
626 #endif
627 long what_they_get;
628 if (config->fixed_p)
629 {
630 if (config->size <= 0)
631 what_they_get = MAX_REMOTE_PACKET_SIZE;
632 else
633 what_they_get = config->size;
634 }
635 else
636 {
637 what_they_get = get_remote_packet_size ();
638 /* Limit the packet to the size specified by the user. */
639 if (config->size > 0
640 && what_they_get > config->size)
641 what_they_get = config->size;
642
643 /* Limit it to the size of the targets ``g'' response unless we have
644 permission from the stub to use a larger packet size. */
645 if (rs->explicit_packet_size == 0
646 && rsa->actual_register_packet_size > 0
647 && what_they_get > rsa->actual_register_packet_size)
648 what_they_get = rsa->actual_register_packet_size;
649 }
650 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
651 what_they_get = MAX_REMOTE_PACKET_SIZE;
652 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
653 what_they_get = MIN_REMOTE_PACKET_SIZE;
654
655 /* Make sure there is room in the global buffer for this packet
656 (including its trailing NUL byte). */
657 if (rs->buf_size < what_they_get + 1)
658 {
659 rs->buf_size = 2 * what_they_get;
660 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
661 }
662
663 return what_they_get;
664 }
665
666 /* Update the size of a read/write packet. If they user wants
667 something really big then do a sanity check. */
668
669 static void
670 set_memory_packet_size (char *args, struct memory_packet_config *config)
671 {
672 int fixed_p = config->fixed_p;
673 long size = config->size;
674 if (args == NULL)
675 error (_("Argument required (integer, `fixed' or `limited')."));
676 else if (strcmp (args, "hard") == 0
677 || strcmp (args, "fixed") == 0)
678 fixed_p = 1;
679 else if (strcmp (args, "soft") == 0
680 || strcmp (args, "limit") == 0)
681 fixed_p = 0;
682 else
683 {
684 char *end;
685 size = strtoul (args, &end, 0);
686 if (args == end)
687 error (_("Invalid %s (bad syntax)."), config->name);
688 #if 0
689 /* Instead of explicitly capping the size of a packet to
690 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
691 instead allowed to set the size to something arbitrarily
692 large. */
693 if (size > MAX_REMOTE_PACKET_SIZE)
694 error (_("Invalid %s (too large)."), config->name);
695 #endif
696 }
697 /* Extra checks? */
698 if (fixed_p && !config->fixed_p)
699 {
700 if (! query (_("The target may not be able to correctly handle a %s\n"
701 "of %ld bytes. Change the packet size? "),
702 config->name, size))
703 error (_("Packet size not changed."));
704 }
705 /* Update the config. */
706 config->fixed_p = fixed_p;
707 config->size = size;
708 }
709
710 static void
711 show_memory_packet_size (struct memory_packet_config *config)
712 {
713 printf_filtered (_("The %s is %ld. "), config->name, config->size);
714 if (config->fixed_p)
715 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
716 get_memory_packet_size (config));
717 else
718 printf_filtered (_("Packets are limited to %ld bytes.\n"),
719 get_memory_packet_size (config));
720 }
721
722 static struct memory_packet_config memory_write_packet_config =
723 {
724 "memory-write-packet-size",
725 };
726
727 static void
728 set_memory_write_packet_size (char *args, int from_tty)
729 {
730 set_memory_packet_size (args, &memory_write_packet_config);
731 }
732
733 static void
734 show_memory_write_packet_size (char *args, int from_tty)
735 {
736 show_memory_packet_size (&memory_write_packet_config);
737 }
738
739 static long
740 get_memory_write_packet_size (void)
741 {
742 return get_memory_packet_size (&memory_write_packet_config);
743 }
744
745 static struct memory_packet_config memory_read_packet_config =
746 {
747 "memory-read-packet-size",
748 };
749
750 static void
751 set_memory_read_packet_size (char *args, int from_tty)
752 {
753 set_memory_packet_size (args, &memory_read_packet_config);
754 }
755
756 static void
757 show_memory_read_packet_size (char *args, int from_tty)
758 {
759 show_memory_packet_size (&memory_read_packet_config);
760 }
761
762 static long
763 get_memory_read_packet_size (void)
764 {
765 long size = get_memory_packet_size (&memory_read_packet_config);
766 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
767 extra buffer size argument before the memory read size can be
768 increased beyond this. */
769 if (size > get_remote_packet_size ())
770 size = get_remote_packet_size ();
771 return size;
772 }
773
774 \f
775 /* Generic configuration support for packets the stub optionally
776 supports. Allows the user to specify the use of the packet as well
777 as allowing GDB to auto-detect support in the remote stub. */
778
779 enum packet_support
780 {
781 PACKET_SUPPORT_UNKNOWN = 0,
782 PACKET_ENABLE,
783 PACKET_DISABLE
784 };
785
786 struct packet_config
787 {
788 const char *name;
789 const char *title;
790 enum auto_boolean detect;
791 enum packet_support support;
792 };
793
794 /* Analyze a packet's return value and update the packet config
795 accordingly. */
796
797 enum packet_result
798 {
799 PACKET_ERROR,
800 PACKET_OK,
801 PACKET_UNKNOWN
802 };
803
804 static void
805 update_packet_config (struct packet_config *config)
806 {
807 switch (config->detect)
808 {
809 case AUTO_BOOLEAN_TRUE:
810 config->support = PACKET_ENABLE;
811 break;
812 case AUTO_BOOLEAN_FALSE:
813 config->support = PACKET_DISABLE;
814 break;
815 case AUTO_BOOLEAN_AUTO:
816 config->support = PACKET_SUPPORT_UNKNOWN;
817 break;
818 }
819 }
820
821 static void
822 show_packet_config_cmd (struct packet_config *config)
823 {
824 char *support = "internal-error";
825 switch (config->support)
826 {
827 case PACKET_ENABLE:
828 support = "enabled";
829 break;
830 case PACKET_DISABLE:
831 support = "disabled";
832 break;
833 case PACKET_SUPPORT_UNKNOWN:
834 support = "unknown";
835 break;
836 }
837 switch (config->detect)
838 {
839 case AUTO_BOOLEAN_AUTO:
840 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
841 config->name, support);
842 break;
843 case AUTO_BOOLEAN_TRUE:
844 case AUTO_BOOLEAN_FALSE:
845 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
846 config->name, support);
847 break;
848 }
849 }
850
851 static void
852 add_packet_config_cmd (struct packet_config *config, const char *name,
853 const char *title, int legacy)
854 {
855 char *set_doc;
856 char *show_doc;
857 char *cmd_name;
858
859 config->name = name;
860 config->title = title;
861 config->detect = AUTO_BOOLEAN_AUTO;
862 config->support = PACKET_SUPPORT_UNKNOWN;
863 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
864 name, title);
865 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
866 name, title);
867 /* set/show TITLE-packet {auto,on,off} */
868 cmd_name = xstrprintf ("%s-packet", title);
869 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
870 &config->detect, set_doc, show_doc, NULL, /* help_doc */
871 set_remote_protocol_packet_cmd,
872 show_remote_protocol_packet_cmd,
873 &remote_set_cmdlist, &remote_show_cmdlist);
874 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
875 if (legacy)
876 {
877 char *legacy_name;
878 legacy_name = xstrprintf ("%s-packet", name);
879 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
880 &remote_set_cmdlist);
881 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
882 &remote_show_cmdlist);
883 }
884 }
885
886 static enum packet_result
887 packet_check_result (const char *buf)
888 {
889 if (buf[0] != '\0')
890 {
891 /* The stub recognized the packet request. Check that the
892 operation succeeded. */
893 if (buf[0] == 'E'
894 && isxdigit (buf[1]) && isxdigit (buf[2])
895 && buf[3] == '\0')
896 /* "Enn" - definitly an error. */
897 return PACKET_ERROR;
898
899 /* Always treat "E." as an error. This will be used for
900 more verbose error messages, such as E.memtypes. */
901 if (buf[0] == 'E' && buf[1] == '.')
902 return PACKET_ERROR;
903
904 /* The packet may or may not be OK. Just assume it is. */
905 return PACKET_OK;
906 }
907 else
908 /* The stub does not support the packet. */
909 return PACKET_UNKNOWN;
910 }
911
912 static enum packet_result
913 packet_ok (const char *buf, struct packet_config *config)
914 {
915 enum packet_result result;
916
917 result = packet_check_result (buf);
918 switch (result)
919 {
920 case PACKET_OK:
921 case PACKET_ERROR:
922 /* The stub recognized the packet request. */
923 switch (config->support)
924 {
925 case PACKET_SUPPORT_UNKNOWN:
926 if (remote_debug)
927 fprintf_unfiltered (gdb_stdlog,
928 "Packet %s (%s) is supported\n",
929 config->name, config->title);
930 config->support = PACKET_ENABLE;
931 break;
932 case PACKET_DISABLE:
933 internal_error (__FILE__, __LINE__,
934 _("packet_ok: attempt to use a disabled packet"));
935 break;
936 case PACKET_ENABLE:
937 break;
938 }
939 break;
940 case PACKET_UNKNOWN:
941 /* The stub does not support the packet. */
942 switch (config->support)
943 {
944 case PACKET_ENABLE:
945 if (config->detect == AUTO_BOOLEAN_AUTO)
946 /* If the stub previously indicated that the packet was
947 supported then there is a protocol error.. */
948 error (_("Protocol error: %s (%s) conflicting enabled responses."),
949 config->name, config->title);
950 else
951 /* The user set it wrong. */
952 error (_("Enabled packet %s (%s) not recognized by stub"),
953 config->name, config->title);
954 break;
955 case PACKET_SUPPORT_UNKNOWN:
956 if (remote_debug)
957 fprintf_unfiltered (gdb_stdlog,
958 "Packet %s (%s) is NOT supported\n",
959 config->name, config->title);
960 config->support = PACKET_DISABLE;
961 break;
962 case PACKET_DISABLE:
963 break;
964 }
965 break;
966 }
967
968 return result;
969 }
970
971 enum {
972 PACKET_vCont = 0,
973 PACKET_X,
974 PACKET_qSymbol,
975 PACKET_P,
976 PACKET_p,
977 PACKET_Z0,
978 PACKET_Z1,
979 PACKET_Z2,
980 PACKET_Z3,
981 PACKET_Z4,
982 PACKET_vFile_open,
983 PACKET_vFile_pread,
984 PACKET_vFile_pwrite,
985 PACKET_vFile_close,
986 PACKET_vFile_unlink,
987 PACKET_qXfer_auxv,
988 PACKET_qXfer_features,
989 PACKET_qXfer_libraries,
990 PACKET_qXfer_memory_map,
991 PACKET_qXfer_spu_read,
992 PACKET_qXfer_spu_write,
993 PACKET_qGetTLSAddr,
994 PACKET_qSupported,
995 PACKET_QPassSignals,
996 PACKET_qSearch_memory,
997 PACKET_vAttach,
998 PACKET_vRun,
999 PACKET_QStartNoAckMode,
1000 PACKET_vKill,
1001 PACKET_MAX
1002 };
1003
1004 static struct packet_config remote_protocol_packets[PACKET_MAX];
1005
1006 static void
1007 set_remote_protocol_packet_cmd (char *args, int from_tty,
1008 struct cmd_list_element *c)
1009 {
1010 struct packet_config *packet;
1011
1012 for (packet = remote_protocol_packets;
1013 packet < &remote_protocol_packets[PACKET_MAX];
1014 packet++)
1015 {
1016 if (&packet->detect == c->var)
1017 {
1018 update_packet_config (packet);
1019 return;
1020 }
1021 }
1022 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1023 c->name);
1024 }
1025
1026 static void
1027 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1028 struct cmd_list_element *c,
1029 const char *value)
1030 {
1031 struct packet_config *packet;
1032
1033 for (packet = remote_protocol_packets;
1034 packet < &remote_protocol_packets[PACKET_MAX];
1035 packet++)
1036 {
1037 if (&packet->detect == c->var)
1038 {
1039 show_packet_config_cmd (packet);
1040 return;
1041 }
1042 }
1043 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1044 c->name);
1045 }
1046
1047 /* Should we try one of the 'Z' requests? */
1048
1049 enum Z_packet_type
1050 {
1051 Z_PACKET_SOFTWARE_BP,
1052 Z_PACKET_HARDWARE_BP,
1053 Z_PACKET_WRITE_WP,
1054 Z_PACKET_READ_WP,
1055 Z_PACKET_ACCESS_WP,
1056 NR_Z_PACKET_TYPES
1057 };
1058
1059 /* For compatibility with older distributions. Provide a ``set remote
1060 Z-packet ...'' command that updates all the Z packet types. */
1061
1062 static enum auto_boolean remote_Z_packet_detect;
1063
1064 static void
1065 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1066 struct cmd_list_element *c)
1067 {
1068 int i;
1069 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1070 {
1071 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1072 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1073 }
1074 }
1075
1076 static void
1077 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1078 struct cmd_list_element *c,
1079 const char *value)
1080 {
1081 int i;
1082 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1083 {
1084 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1085 }
1086 }
1087
1088 /* Should we try the 'ThreadInfo' query packet?
1089
1090 This variable (NOT available to the user: auto-detect only!)
1091 determines whether GDB will use the new, simpler "ThreadInfo"
1092 query or the older, more complex syntax for thread queries.
1093 This is an auto-detect variable (set to true at each connect,
1094 and set to false when the target fails to recognize it). */
1095
1096 static int use_threadinfo_query;
1097 static int use_threadextra_query;
1098
1099 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1100 static struct async_signal_handler *sigint_remote_twice_token;
1101 static struct async_signal_handler *sigint_remote_token;
1102
1103 \f
1104 /* Asynchronous signal handle registered as event loop source for
1105 when we have pending events ready to be passed to the core. */
1106
1107 static struct async_event_handler *remote_async_inferior_event_token;
1108
1109 /* Asynchronous signal handle registered as event loop source for when
1110 the remote sent us a %Stop notification. The registered callback
1111 will do a vStopped sequence to pull the rest of the events out of
1112 the remote side into our event queue. */
1113
1114 static struct async_event_handler *remote_async_get_pending_events_token;
1115 \f
1116
1117 static ptid_t magic_null_ptid;
1118 static ptid_t not_sent_ptid;
1119 static ptid_t any_thread_ptid;
1120
1121 /* These are the threads which we last sent to the remote system. The
1122 TID member will be -1 for all or -2 for not sent yet. */
1123
1124 static ptid_t general_thread;
1125 static ptid_t continue_thread;
1126
1127 static void
1128 notice_new_inferiors (ptid_t currthread)
1129 {
1130 /* If this is a new thread, add it to GDB's thread list.
1131 If we leave it up to WFI to do this, bad things will happen. */
1132
1133 if (in_thread_list (currthread) && is_exited (currthread))
1134 {
1135 /* We're seeing an event on a thread id we knew had exited.
1136 This has to be a new thread reusing the old id. Add it. */
1137 add_thread (currthread);
1138 return;
1139 }
1140
1141 if (!in_thread_list (currthread))
1142 {
1143 if (ptid_equal (pid_to_ptid (ptid_get_pid (currthread)), inferior_ptid))
1144 {
1145 /* inferior_ptid has no thread member yet. This can happen
1146 with the vAttach -> remote_wait,"TAAthread:" path if the
1147 stub doesn't support qC. This is the first stop reported
1148 after an attach, so this is the main thread. Update the
1149 ptid in the thread list. */
1150 thread_change_ptid (inferior_ptid, currthread);
1151 return;
1152 }
1153
1154 if (ptid_equal (magic_null_ptid, inferior_ptid))
1155 {
1156 /* inferior_ptid is not set yet. This can happen with the
1157 vRun -> remote_wait,"TAAthread:" path if the stub
1158 doesn't support qC. This is the first stop reported
1159 after an attach, so this is the main thread. Update the
1160 ptid in the thread list. */
1161 thread_change_ptid (inferior_ptid, currthread);
1162 return;
1163 }
1164
1165 /* When connecting to a target remote, or to a target
1166 extended-remote which already was debugging an inferior, we
1167 may not know about it yet. Add it before adding its child
1168 thread, so notifications are emitted in a sensible order. */
1169 if (!in_inferior_list (ptid_get_pid (currthread)))
1170 add_inferior (ptid_get_pid (currthread));
1171
1172 /* This is really a new thread. Add it. */
1173 add_thread (currthread);
1174 }
1175 }
1176
1177 /* Call this function as a result of
1178 1) A halt indication (T packet) containing a thread id
1179 2) A direct query of currthread
1180 3) Successful execution of set thread
1181 */
1182
1183 static void
1184 record_currthread (ptid_t currthread)
1185 {
1186 general_thread = currthread;
1187
1188 if (ptid_equal (currthread, minus_one_ptid))
1189 /* We're just invalidating the local thread mirror. */
1190 return;
1191
1192 notice_new_inferiors (currthread);
1193 }
1194
1195 static char *last_pass_packet;
1196
1197 /* If 'QPassSignals' is supported, tell the remote stub what signals
1198 it can simply pass through to the inferior without reporting. */
1199
1200 static void
1201 remote_pass_signals (void)
1202 {
1203 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1204 {
1205 char *pass_packet, *p;
1206 int numsigs = (int) TARGET_SIGNAL_LAST;
1207 int count = 0, i;
1208
1209 gdb_assert (numsigs < 256);
1210 for (i = 0; i < numsigs; i++)
1211 {
1212 if (signal_stop_state (i) == 0
1213 && signal_print_state (i) == 0
1214 && signal_pass_state (i) == 1)
1215 count++;
1216 }
1217 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1218 strcpy (pass_packet, "QPassSignals:");
1219 p = pass_packet + strlen (pass_packet);
1220 for (i = 0; i < numsigs; i++)
1221 {
1222 if (signal_stop_state (i) == 0
1223 && signal_print_state (i) == 0
1224 && signal_pass_state (i) == 1)
1225 {
1226 if (i >= 16)
1227 *p++ = tohex (i >> 4);
1228 *p++ = tohex (i & 15);
1229 if (count)
1230 *p++ = ';';
1231 else
1232 break;
1233 count--;
1234 }
1235 }
1236 *p = 0;
1237 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1238 {
1239 struct remote_state *rs = get_remote_state ();
1240 char *buf = rs->buf;
1241
1242 putpkt (pass_packet);
1243 getpkt (&rs->buf, &rs->buf_size, 0);
1244 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1245 if (last_pass_packet)
1246 xfree (last_pass_packet);
1247 last_pass_packet = pass_packet;
1248 }
1249 else
1250 xfree (pass_packet);
1251 }
1252 }
1253
1254 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1255 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1256 thread. If GEN is set, set the general thread, if not, then set
1257 the step/continue thread. */
1258 static void
1259 set_thread (struct ptid ptid, int gen)
1260 {
1261 struct remote_state *rs = get_remote_state ();
1262 ptid_t state = gen ? general_thread : continue_thread;
1263 char *buf = rs->buf;
1264 char *endbuf = rs->buf + get_remote_packet_size ();
1265
1266 if (ptid_equal (state, ptid))
1267 return;
1268
1269 *buf++ = 'H';
1270 *buf++ = gen ? 'g' : 'c';
1271 if (ptid_equal (ptid, magic_null_ptid))
1272 xsnprintf (buf, endbuf - buf, "0");
1273 else if (ptid_equal (ptid, any_thread_ptid))
1274 xsnprintf (buf, endbuf - buf, "0");
1275 else if (ptid_equal (ptid, minus_one_ptid))
1276 xsnprintf (buf, endbuf - buf, "-1");
1277 else
1278 write_ptid (buf, endbuf, ptid);
1279 putpkt (rs->buf);
1280 getpkt (&rs->buf, &rs->buf_size, 0);
1281 if (gen)
1282 general_thread = ptid;
1283 else
1284 continue_thread = ptid;
1285 }
1286
1287 static void
1288 set_general_thread (struct ptid ptid)
1289 {
1290 set_thread (ptid, 1);
1291 }
1292
1293 static void
1294 set_continue_thread (struct ptid ptid)
1295 {
1296 set_thread (ptid, 0);
1297 }
1298
1299 /* Change the remote current process. Which thread within the process
1300 ends up selected isn't important, as long as it is the same process
1301 as what INFERIOR_PTID points to.
1302
1303 This comes from that fact that there is no explicit notion of
1304 "selected process" in the protocol. The selected process for
1305 general operations is the process the selected general thread
1306 belongs to. */
1307
1308 static void
1309 set_general_process (void)
1310 {
1311 struct remote_state *rs = get_remote_state ();
1312
1313 /* If the remote can't handle multiple processes, don't bother. */
1314 if (!remote_multi_process_p (rs))
1315 return;
1316
1317 /* We only need to change the remote current thread if it's pointing
1318 at some other process. */
1319 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1320 set_general_thread (inferior_ptid);
1321 }
1322
1323 \f
1324 /* Return nonzero if the thread PTID is still alive on the remote
1325 system. */
1326
1327 static int
1328 remote_thread_alive (ptid_t ptid)
1329 {
1330 struct remote_state *rs = get_remote_state ();
1331 int tid = ptid_get_tid (ptid);
1332 char *p, *endp;
1333
1334 if (ptid_equal (ptid, magic_null_ptid))
1335 /* The main thread is always alive. */
1336 return 1;
1337
1338 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1339 /* The main thread is always alive. This can happen after a
1340 vAttach, if the remote side doesn't support
1341 multi-threading. */
1342 return 1;
1343
1344 p = rs->buf;
1345 endp = rs->buf + get_remote_packet_size ();
1346
1347 *p++ = 'T';
1348 write_ptid (p, endp, ptid);
1349
1350 putpkt (rs->buf);
1351 getpkt (&rs->buf, &rs->buf_size, 0);
1352 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1353 }
1354
1355 /* About these extended threadlist and threadinfo packets. They are
1356 variable length packets but, the fields within them are often fixed
1357 length. They are redundent enough to send over UDP as is the
1358 remote protocol in general. There is a matching unit test module
1359 in libstub. */
1360
1361 #define OPAQUETHREADBYTES 8
1362
1363 /* a 64 bit opaque identifier */
1364 typedef unsigned char threadref[OPAQUETHREADBYTES];
1365
1366 /* WARNING: This threadref data structure comes from the remote O.S.,
1367 libstub protocol encoding, and remote.c. it is not particularly
1368 changable. */
1369
1370 /* Right now, the internal structure is int. We want it to be bigger.
1371 Plan to fix this.
1372 */
1373
1374 typedef int gdb_threadref; /* Internal GDB thread reference. */
1375
1376 /* gdb_ext_thread_info is an internal GDB data structure which is
1377 equivalent to the reply of the remote threadinfo packet. */
1378
1379 struct gdb_ext_thread_info
1380 {
1381 threadref threadid; /* External form of thread reference. */
1382 int active; /* Has state interesting to GDB?
1383 regs, stack. */
1384 char display[256]; /* Brief state display, name,
1385 blocked/suspended. */
1386 char shortname[32]; /* To be used to name threads. */
1387 char more_display[256]; /* Long info, statistics, queue depth,
1388 whatever. */
1389 };
1390
1391 /* The volume of remote transfers can be limited by submitting
1392 a mask containing bits specifying the desired information.
1393 Use a union of these values as the 'selection' parameter to
1394 get_thread_info. FIXME: Make these TAG names more thread specific.
1395 */
1396
1397 #define TAG_THREADID 1
1398 #define TAG_EXISTS 2
1399 #define TAG_DISPLAY 4
1400 #define TAG_THREADNAME 8
1401 #define TAG_MOREDISPLAY 16
1402
1403 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1404
1405 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1406
1407 static char *unpack_nibble (char *buf, int *val);
1408
1409 static char *pack_nibble (char *buf, int nibble);
1410
1411 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1412
1413 static char *unpack_byte (char *buf, int *value);
1414
1415 static char *pack_int (char *buf, int value);
1416
1417 static char *unpack_int (char *buf, int *value);
1418
1419 static char *unpack_string (char *src, char *dest, int length);
1420
1421 static char *pack_threadid (char *pkt, threadref *id);
1422
1423 static char *unpack_threadid (char *inbuf, threadref *id);
1424
1425 void int_to_threadref (threadref *id, int value);
1426
1427 static int threadref_to_int (threadref *ref);
1428
1429 static void copy_threadref (threadref *dest, threadref *src);
1430
1431 static int threadmatch (threadref *dest, threadref *src);
1432
1433 static char *pack_threadinfo_request (char *pkt, int mode,
1434 threadref *id);
1435
1436 static int remote_unpack_thread_info_response (char *pkt,
1437 threadref *expectedref,
1438 struct gdb_ext_thread_info
1439 *info);
1440
1441
1442 static int remote_get_threadinfo (threadref *threadid,
1443 int fieldset, /*TAG mask */
1444 struct gdb_ext_thread_info *info);
1445
1446 static char *pack_threadlist_request (char *pkt, int startflag,
1447 int threadcount,
1448 threadref *nextthread);
1449
1450 static int parse_threadlist_response (char *pkt,
1451 int result_limit,
1452 threadref *original_echo,
1453 threadref *resultlist,
1454 int *doneflag);
1455
1456 static int remote_get_threadlist (int startflag,
1457 threadref *nextthread,
1458 int result_limit,
1459 int *done,
1460 int *result_count,
1461 threadref *threadlist);
1462
1463 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1464
1465 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1466 void *context, int looplimit);
1467
1468 static int remote_newthread_step (threadref *ref, void *context);
1469
1470
1471 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1472 buffer we're allowed to write to. Returns
1473 BUF+CHARACTERS_WRITTEN. */
1474
1475 static char *
1476 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1477 {
1478 int pid, tid;
1479 struct remote_state *rs = get_remote_state ();
1480
1481 if (remote_multi_process_p (rs))
1482 {
1483 pid = ptid_get_pid (ptid);
1484 if (pid < 0)
1485 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1486 else
1487 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1488 }
1489 tid = ptid_get_tid (ptid);
1490 if (tid < 0)
1491 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1492 else
1493 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1494
1495 return buf;
1496 }
1497
1498 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1499 passed the last parsed char. Returns null_ptid on error. */
1500
1501 static ptid_t
1502 read_ptid (char *buf, char **obuf)
1503 {
1504 char *p = buf;
1505 char *pp;
1506 ULONGEST pid = 0, tid = 0;
1507 ptid_t ptid;
1508
1509 if (*p == 'p')
1510 {
1511 /* Multi-process ptid. */
1512 pp = unpack_varlen_hex (p + 1, &pid);
1513 if (*pp != '.')
1514 error (_("invalid remote ptid: %s\n"), p);
1515
1516 p = pp;
1517 pp = unpack_varlen_hex (p + 1, &tid);
1518 if (obuf)
1519 *obuf = pp;
1520 return ptid_build (pid, 0, tid);
1521 }
1522
1523 /* No multi-process. Just a tid. */
1524 pp = unpack_varlen_hex (p, &tid);
1525
1526 /* Since the stub is not sending a process id, then default to
1527 what's in inferior_ptid. */
1528 pid = ptid_get_pid (inferior_ptid);
1529
1530 if (obuf)
1531 *obuf = pp;
1532 return ptid_build (pid, 0, tid);
1533 }
1534
1535 /* Encode 64 bits in 16 chars of hex. */
1536
1537 static const char hexchars[] = "0123456789abcdef";
1538
1539 static int
1540 ishex (int ch, int *val)
1541 {
1542 if ((ch >= 'a') && (ch <= 'f'))
1543 {
1544 *val = ch - 'a' + 10;
1545 return 1;
1546 }
1547 if ((ch >= 'A') && (ch <= 'F'))
1548 {
1549 *val = ch - 'A' + 10;
1550 return 1;
1551 }
1552 if ((ch >= '0') && (ch <= '9'))
1553 {
1554 *val = ch - '0';
1555 return 1;
1556 }
1557 return 0;
1558 }
1559
1560 static int
1561 stubhex (int ch)
1562 {
1563 if (ch >= 'a' && ch <= 'f')
1564 return ch - 'a' + 10;
1565 if (ch >= '0' && ch <= '9')
1566 return ch - '0';
1567 if (ch >= 'A' && ch <= 'F')
1568 return ch - 'A' + 10;
1569 return -1;
1570 }
1571
1572 static int
1573 stub_unpack_int (char *buff, int fieldlength)
1574 {
1575 int nibble;
1576 int retval = 0;
1577
1578 while (fieldlength)
1579 {
1580 nibble = stubhex (*buff++);
1581 retval |= nibble;
1582 fieldlength--;
1583 if (fieldlength)
1584 retval = retval << 4;
1585 }
1586 return retval;
1587 }
1588
1589 char *
1590 unpack_varlen_hex (char *buff, /* packet to parse */
1591 ULONGEST *result)
1592 {
1593 int nibble;
1594 ULONGEST retval = 0;
1595
1596 while (ishex (*buff, &nibble))
1597 {
1598 buff++;
1599 retval = retval << 4;
1600 retval |= nibble & 0x0f;
1601 }
1602 *result = retval;
1603 return buff;
1604 }
1605
1606 static char *
1607 unpack_nibble (char *buf, int *val)
1608 {
1609 *val = fromhex (*buf++);
1610 return buf;
1611 }
1612
1613 static char *
1614 pack_nibble (char *buf, int nibble)
1615 {
1616 *buf++ = hexchars[(nibble & 0x0f)];
1617 return buf;
1618 }
1619
1620 static char *
1621 pack_hex_byte (char *pkt, int byte)
1622 {
1623 *pkt++ = hexchars[(byte >> 4) & 0xf];
1624 *pkt++ = hexchars[(byte & 0xf)];
1625 return pkt;
1626 }
1627
1628 static char *
1629 unpack_byte (char *buf, int *value)
1630 {
1631 *value = stub_unpack_int (buf, 2);
1632 return buf + 2;
1633 }
1634
1635 static char *
1636 pack_int (char *buf, int value)
1637 {
1638 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1639 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1640 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1641 buf = pack_hex_byte (buf, (value & 0xff));
1642 return buf;
1643 }
1644
1645 static char *
1646 unpack_int (char *buf, int *value)
1647 {
1648 *value = stub_unpack_int (buf, 8);
1649 return buf + 8;
1650 }
1651
1652 #if 0 /* Currently unused, uncomment when needed. */
1653 static char *pack_string (char *pkt, char *string);
1654
1655 static char *
1656 pack_string (char *pkt, char *string)
1657 {
1658 char ch;
1659 int len;
1660
1661 len = strlen (string);
1662 if (len > 200)
1663 len = 200; /* Bigger than most GDB packets, junk??? */
1664 pkt = pack_hex_byte (pkt, len);
1665 while (len-- > 0)
1666 {
1667 ch = *string++;
1668 if ((ch == '\0') || (ch == '#'))
1669 ch = '*'; /* Protect encapsulation. */
1670 *pkt++ = ch;
1671 }
1672 return pkt;
1673 }
1674 #endif /* 0 (unused) */
1675
1676 static char *
1677 unpack_string (char *src, char *dest, int length)
1678 {
1679 while (length--)
1680 *dest++ = *src++;
1681 *dest = '\0';
1682 return src;
1683 }
1684
1685 static char *
1686 pack_threadid (char *pkt, threadref *id)
1687 {
1688 char *limit;
1689 unsigned char *altid;
1690
1691 altid = (unsigned char *) id;
1692 limit = pkt + BUF_THREAD_ID_SIZE;
1693 while (pkt < limit)
1694 pkt = pack_hex_byte (pkt, *altid++);
1695 return pkt;
1696 }
1697
1698
1699 static char *
1700 unpack_threadid (char *inbuf, threadref *id)
1701 {
1702 char *altref;
1703 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1704 int x, y;
1705
1706 altref = (char *) id;
1707
1708 while (inbuf < limit)
1709 {
1710 x = stubhex (*inbuf++);
1711 y = stubhex (*inbuf++);
1712 *altref++ = (x << 4) | y;
1713 }
1714 return inbuf;
1715 }
1716
1717 /* Externally, threadrefs are 64 bits but internally, they are still
1718 ints. This is due to a mismatch of specifications. We would like
1719 to use 64bit thread references internally. This is an adapter
1720 function. */
1721
1722 void
1723 int_to_threadref (threadref *id, int value)
1724 {
1725 unsigned char *scan;
1726
1727 scan = (unsigned char *) id;
1728 {
1729 int i = 4;
1730 while (i--)
1731 *scan++ = 0;
1732 }
1733 *scan++ = (value >> 24) & 0xff;
1734 *scan++ = (value >> 16) & 0xff;
1735 *scan++ = (value >> 8) & 0xff;
1736 *scan++ = (value & 0xff);
1737 }
1738
1739 static int
1740 threadref_to_int (threadref *ref)
1741 {
1742 int i, value = 0;
1743 unsigned char *scan;
1744
1745 scan = *ref;
1746 scan += 4;
1747 i = 4;
1748 while (i-- > 0)
1749 value = (value << 8) | ((*scan++) & 0xff);
1750 return value;
1751 }
1752
1753 static void
1754 copy_threadref (threadref *dest, threadref *src)
1755 {
1756 int i;
1757 unsigned char *csrc, *cdest;
1758
1759 csrc = (unsigned char *) src;
1760 cdest = (unsigned char *) dest;
1761 i = 8;
1762 while (i--)
1763 *cdest++ = *csrc++;
1764 }
1765
1766 static int
1767 threadmatch (threadref *dest, threadref *src)
1768 {
1769 /* Things are broken right now, so just assume we got a match. */
1770 #if 0
1771 unsigned char *srcp, *destp;
1772 int i, result;
1773 srcp = (char *) src;
1774 destp = (char *) dest;
1775
1776 result = 1;
1777 while (i-- > 0)
1778 result &= (*srcp++ == *destp++) ? 1 : 0;
1779 return result;
1780 #endif
1781 return 1;
1782 }
1783
1784 /*
1785 threadid:1, # always request threadid
1786 context_exists:2,
1787 display:4,
1788 unique_name:8,
1789 more_display:16
1790 */
1791
1792 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1793
1794 static char *
1795 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1796 {
1797 *pkt++ = 'q'; /* Info Query */
1798 *pkt++ = 'P'; /* process or thread info */
1799 pkt = pack_int (pkt, mode); /* mode */
1800 pkt = pack_threadid (pkt, id); /* threadid */
1801 *pkt = '\0'; /* terminate */
1802 return pkt;
1803 }
1804
1805 /* These values tag the fields in a thread info response packet. */
1806 /* Tagging the fields allows us to request specific fields and to
1807 add more fields as time goes by. */
1808
1809 #define TAG_THREADID 1 /* Echo the thread identifier. */
1810 #define TAG_EXISTS 2 /* Is this process defined enough to
1811 fetch registers and its stack? */
1812 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1813 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1814 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1815 the process. */
1816
1817 static int
1818 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1819 struct gdb_ext_thread_info *info)
1820 {
1821 struct remote_state *rs = get_remote_state ();
1822 int mask, length;
1823 int tag;
1824 threadref ref;
1825 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1826 int retval = 1;
1827
1828 /* info->threadid = 0; FIXME: implement zero_threadref. */
1829 info->active = 0;
1830 info->display[0] = '\0';
1831 info->shortname[0] = '\0';
1832 info->more_display[0] = '\0';
1833
1834 /* Assume the characters indicating the packet type have been
1835 stripped. */
1836 pkt = unpack_int (pkt, &mask); /* arg mask */
1837 pkt = unpack_threadid (pkt, &ref);
1838
1839 if (mask == 0)
1840 warning (_("Incomplete response to threadinfo request."));
1841 if (!threadmatch (&ref, expectedref))
1842 { /* This is an answer to a different request. */
1843 warning (_("ERROR RMT Thread info mismatch."));
1844 return 0;
1845 }
1846 copy_threadref (&info->threadid, &ref);
1847
1848 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1849
1850 /* Packets are terminated with nulls. */
1851 while ((pkt < limit) && mask && *pkt)
1852 {
1853 pkt = unpack_int (pkt, &tag); /* tag */
1854 pkt = unpack_byte (pkt, &length); /* length */
1855 if (!(tag & mask)) /* Tags out of synch with mask. */
1856 {
1857 warning (_("ERROR RMT: threadinfo tag mismatch."));
1858 retval = 0;
1859 break;
1860 }
1861 if (tag == TAG_THREADID)
1862 {
1863 if (length != 16)
1864 {
1865 warning (_("ERROR RMT: length of threadid is not 16."));
1866 retval = 0;
1867 break;
1868 }
1869 pkt = unpack_threadid (pkt, &ref);
1870 mask = mask & ~TAG_THREADID;
1871 continue;
1872 }
1873 if (tag == TAG_EXISTS)
1874 {
1875 info->active = stub_unpack_int (pkt, length);
1876 pkt += length;
1877 mask = mask & ~(TAG_EXISTS);
1878 if (length > 8)
1879 {
1880 warning (_("ERROR RMT: 'exists' length too long."));
1881 retval = 0;
1882 break;
1883 }
1884 continue;
1885 }
1886 if (tag == TAG_THREADNAME)
1887 {
1888 pkt = unpack_string (pkt, &info->shortname[0], length);
1889 mask = mask & ~TAG_THREADNAME;
1890 continue;
1891 }
1892 if (tag == TAG_DISPLAY)
1893 {
1894 pkt = unpack_string (pkt, &info->display[0], length);
1895 mask = mask & ~TAG_DISPLAY;
1896 continue;
1897 }
1898 if (tag == TAG_MOREDISPLAY)
1899 {
1900 pkt = unpack_string (pkt, &info->more_display[0], length);
1901 mask = mask & ~TAG_MOREDISPLAY;
1902 continue;
1903 }
1904 warning (_("ERROR RMT: unknown thread info tag."));
1905 break; /* Not a tag we know about. */
1906 }
1907 return retval;
1908 }
1909
1910 static int
1911 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1912 struct gdb_ext_thread_info *info)
1913 {
1914 struct remote_state *rs = get_remote_state ();
1915 int result;
1916
1917 pack_threadinfo_request (rs->buf, fieldset, threadid);
1918 putpkt (rs->buf);
1919 getpkt (&rs->buf, &rs->buf_size, 0);
1920
1921 if (rs->buf[0] == '\0')
1922 return 0;
1923
1924 result = remote_unpack_thread_info_response (rs->buf + 2,
1925 threadid, info);
1926 return result;
1927 }
1928
1929 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1930
1931 static char *
1932 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1933 threadref *nextthread)
1934 {
1935 *pkt++ = 'q'; /* info query packet */
1936 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1937 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1938 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1939 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1940 *pkt = '\0';
1941 return pkt;
1942 }
1943
1944 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1945
1946 static int
1947 parse_threadlist_response (char *pkt, int result_limit,
1948 threadref *original_echo, threadref *resultlist,
1949 int *doneflag)
1950 {
1951 struct remote_state *rs = get_remote_state ();
1952 char *limit;
1953 int count, resultcount, done;
1954
1955 resultcount = 0;
1956 /* Assume the 'q' and 'M chars have been stripped. */
1957 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1958 /* done parse past here */
1959 pkt = unpack_byte (pkt, &count); /* count field */
1960 pkt = unpack_nibble (pkt, &done);
1961 /* The first threadid is the argument threadid. */
1962 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1963 while ((count-- > 0) && (pkt < limit))
1964 {
1965 pkt = unpack_threadid (pkt, resultlist++);
1966 if (resultcount++ >= result_limit)
1967 break;
1968 }
1969 if (doneflag)
1970 *doneflag = done;
1971 return resultcount;
1972 }
1973
1974 static int
1975 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1976 int *done, int *result_count, threadref *threadlist)
1977 {
1978 struct remote_state *rs = get_remote_state ();
1979 static threadref echo_nextthread;
1980 int result = 1;
1981
1982 /* Trancate result limit to be smaller than the packet size. */
1983 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1984 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1985
1986 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1987 putpkt (rs->buf);
1988 getpkt (&rs->buf, &rs->buf_size, 0);
1989
1990 if (*rs->buf == '\0')
1991 *result_count = 0;
1992 else
1993 *result_count =
1994 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1995 threadlist, done);
1996
1997 if (!threadmatch (&echo_nextthread, nextthread))
1998 {
1999 /* FIXME: This is a good reason to drop the packet. */
2000 /* Possably, there is a duplicate response. */
2001 /* Possabilities :
2002 retransmit immediatly - race conditions
2003 retransmit after timeout - yes
2004 exit
2005 wait for packet, then exit
2006 */
2007 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2008 return 0; /* I choose simply exiting. */
2009 }
2010 if (*result_count <= 0)
2011 {
2012 if (*done != 1)
2013 {
2014 warning (_("RMT ERROR : failed to get remote thread list."));
2015 result = 0;
2016 }
2017 return result; /* break; */
2018 }
2019 if (*result_count > result_limit)
2020 {
2021 *result_count = 0;
2022 warning (_("RMT ERROR: threadlist response longer than requested."));
2023 return 0;
2024 }
2025 return result;
2026 }
2027
2028 /* This is the interface between remote and threads, remotes upper
2029 interface. */
2030
2031 /* remote_find_new_threads retrieves the thread list and for each
2032 thread in the list, looks up the thread in GDB's internal list,
2033 adding the thread if it does not already exist. This involves
2034 getting partial thread lists from the remote target so, polling the
2035 quit_flag is required. */
2036
2037
2038 /* About this many threadisds fit in a packet. */
2039
2040 #define MAXTHREADLISTRESULTS 32
2041
2042 static int
2043 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2044 int looplimit)
2045 {
2046 int done, i, result_count;
2047 int startflag = 1;
2048 int result = 1;
2049 int loopcount = 0;
2050 static threadref nextthread;
2051 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2052
2053 done = 0;
2054 while (!done)
2055 {
2056 if (loopcount++ > looplimit)
2057 {
2058 result = 0;
2059 warning (_("Remote fetch threadlist -infinite loop-."));
2060 break;
2061 }
2062 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2063 &done, &result_count, resultthreadlist))
2064 {
2065 result = 0;
2066 break;
2067 }
2068 /* Clear for later iterations. */
2069 startflag = 0;
2070 /* Setup to resume next batch of thread references, set nextthread. */
2071 if (result_count >= 1)
2072 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2073 i = 0;
2074 while (result_count--)
2075 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2076 break;
2077 }
2078 return result;
2079 }
2080
2081 static int
2082 remote_newthread_step (threadref *ref, void *context)
2083 {
2084 int pid = ptid_get_pid (inferior_ptid);
2085 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2086
2087 if (!in_thread_list (ptid))
2088 add_thread (ptid);
2089 return 1; /* continue iterator */
2090 }
2091
2092 #define CRAZY_MAX_THREADS 1000
2093
2094 static ptid_t
2095 remote_current_thread (ptid_t oldpid)
2096 {
2097 struct remote_state *rs = get_remote_state ();
2098 char *p = rs->buf;
2099 int tid;
2100 int pid;
2101
2102 putpkt ("qC");
2103 getpkt (&rs->buf, &rs->buf_size, 0);
2104 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2105 return read_ptid (&rs->buf[2], NULL);
2106 else
2107 return oldpid;
2108 }
2109
2110 /* Find new threads for info threads command.
2111 * Original version, using John Metzler's thread protocol.
2112 */
2113
2114 static void
2115 remote_find_new_threads (void)
2116 {
2117 remote_threadlist_iterator (remote_newthread_step, 0,
2118 CRAZY_MAX_THREADS);
2119 }
2120
2121 /*
2122 * Find all threads for info threads command.
2123 * Uses new thread protocol contributed by Cisco.
2124 * Falls back and attempts to use the older method (above)
2125 * if the target doesn't respond to the new method.
2126 */
2127
2128 static void
2129 remote_threads_info (void)
2130 {
2131 struct remote_state *rs = get_remote_state ();
2132 char *bufp;
2133 ptid_t new_thread;
2134
2135 if (remote_desc == 0) /* paranoia */
2136 error (_("Command can only be used when connected to the remote target."));
2137
2138 if (use_threadinfo_query)
2139 {
2140 putpkt ("qfThreadInfo");
2141 getpkt (&rs->buf, &rs->buf_size, 0);
2142 bufp = rs->buf;
2143 if (bufp[0] != '\0') /* q packet recognized */
2144 {
2145 while (*bufp++ == 'm') /* reply contains one or more TID */
2146 {
2147 do
2148 {
2149 new_thread = read_ptid (bufp, &bufp);
2150 if (!ptid_equal (new_thread, null_ptid)
2151 && (!in_thread_list (new_thread)
2152 || is_exited (new_thread)))
2153 {
2154 /* When connected to a multi-process aware stub,
2155 "info threads" may show up threads of
2156 inferiors we didn't know about yet. Add them
2157 now, and before adding any of its child
2158 threads, so notifications are emitted in a
2159 sensible order. */
2160 if (!in_inferior_list (ptid_get_pid (new_thread)))
2161 add_inferior (ptid_get_pid (new_thread));
2162
2163 add_thread (new_thread);
2164
2165 /* In non-stop mode, we assume new found threads
2166 are running until we proven otherwise with a
2167 stop reply. In all-stop, we can only get
2168 here if all threads are stopped. */
2169 set_executing (new_thread, non_stop ? 1 : 0);
2170 set_running (new_thread, non_stop ? 1 : 0);
2171 }
2172 }
2173 while (*bufp++ == ','); /* comma-separated list */
2174 putpkt ("qsThreadInfo");
2175 getpkt (&rs->buf, &rs->buf_size, 0);
2176 bufp = rs->buf;
2177 }
2178 return; /* done */
2179 }
2180 }
2181
2182 /* Only qfThreadInfo is supported in non-stop mode. */
2183 if (non_stop)
2184 return;
2185
2186 /* Else fall back to old method based on jmetzler protocol. */
2187 use_threadinfo_query = 0;
2188 remote_find_new_threads ();
2189 return;
2190 }
2191
2192 /*
2193 * Collect a descriptive string about the given thread.
2194 * The target may say anything it wants to about the thread
2195 * (typically info about its blocked / runnable state, name, etc.).
2196 * This string will appear in the info threads display.
2197 *
2198 * Optional: targets are not required to implement this function.
2199 */
2200
2201 static char *
2202 remote_threads_extra_info (struct thread_info *tp)
2203 {
2204 struct remote_state *rs = get_remote_state ();
2205 int result;
2206 int set;
2207 threadref id;
2208 struct gdb_ext_thread_info threadinfo;
2209 static char display_buf[100]; /* arbitrary... */
2210 int n = 0; /* position in display_buf */
2211
2212 if (remote_desc == 0) /* paranoia */
2213 internal_error (__FILE__, __LINE__,
2214 _("remote_threads_extra_info"));
2215
2216 if (ptid_equal (tp->ptid, magic_null_ptid)
2217 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2218 /* This is the main thread which was added by GDB. The remote
2219 server doesn't know about it. */
2220 return NULL;
2221
2222 if (use_threadextra_query)
2223 {
2224 char *b = rs->buf;
2225 char *endb = rs->buf + get_remote_packet_size ();
2226
2227 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2228 b += strlen (b);
2229 write_ptid (b, endb, tp->ptid);
2230
2231 putpkt (rs->buf);
2232 getpkt (&rs->buf, &rs->buf_size, 0);
2233 if (rs->buf[0] != 0)
2234 {
2235 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2236 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2237 display_buf [result] = '\0';
2238 return display_buf;
2239 }
2240 }
2241
2242 /* If the above query fails, fall back to the old method. */
2243 use_threadextra_query = 0;
2244 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2245 | TAG_MOREDISPLAY | TAG_DISPLAY;
2246 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2247 if (remote_get_threadinfo (&id, set, &threadinfo))
2248 if (threadinfo.active)
2249 {
2250 if (*threadinfo.shortname)
2251 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2252 " Name: %s,", threadinfo.shortname);
2253 if (*threadinfo.display)
2254 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2255 " State: %s,", threadinfo.display);
2256 if (*threadinfo.more_display)
2257 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2258 " Priority: %s", threadinfo.more_display);
2259
2260 if (n > 0)
2261 {
2262 /* For purely cosmetic reasons, clear up trailing commas. */
2263 if (',' == display_buf[n-1])
2264 display_buf[n-1] = ' ';
2265 return display_buf;
2266 }
2267 }
2268 return NULL;
2269 }
2270 \f
2271
2272 /* Restart the remote side; this is an extended protocol operation. */
2273
2274 static void
2275 extended_remote_restart (void)
2276 {
2277 struct remote_state *rs = get_remote_state ();
2278
2279 /* Send the restart command; for reasons I don't understand the
2280 remote side really expects a number after the "R". */
2281 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2282 putpkt (rs->buf);
2283
2284 remote_fileio_reset ();
2285 }
2286 \f
2287 /* Clean up connection to a remote debugger. */
2288
2289 static void
2290 remote_close (int quitting)
2291 {
2292 if (remote_desc == NULL)
2293 return; /* already closed */
2294
2295 /* Make sure we leave stdin registered in the event loop, and we
2296 don't leave the async SIGINT signal handler installed. */
2297 remote_terminal_ours ();
2298
2299 serial_close (remote_desc);
2300 remote_desc = NULL;
2301
2302 /* We don't have a connection to the remote stub anymore. Get rid
2303 of all the inferiors and their threads we were controlling. */
2304 discard_all_inferiors ();
2305
2306 /* We're no longer interested in any of these events. */
2307 discard_pending_stop_replies (-1);
2308
2309 if (remote_async_inferior_event_token)
2310 delete_async_event_handler (&remote_async_inferior_event_token);
2311 if (remote_async_get_pending_events_token)
2312 delete_async_event_handler (&remote_async_get_pending_events_token);
2313
2314 generic_mourn_inferior ();
2315 }
2316
2317 /* Query the remote side for the text, data and bss offsets. */
2318
2319 static void
2320 get_offsets (void)
2321 {
2322 struct remote_state *rs = get_remote_state ();
2323 char *buf;
2324 char *ptr;
2325 int lose, num_segments = 0, do_sections, do_segments;
2326 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2327 struct section_offsets *offs;
2328 struct symfile_segment_data *data;
2329
2330 if (symfile_objfile == NULL)
2331 return;
2332
2333 putpkt ("qOffsets");
2334 getpkt (&rs->buf, &rs->buf_size, 0);
2335 buf = rs->buf;
2336
2337 if (buf[0] == '\000')
2338 return; /* Return silently. Stub doesn't support
2339 this command. */
2340 if (buf[0] == 'E')
2341 {
2342 warning (_("Remote failure reply: %s"), buf);
2343 return;
2344 }
2345
2346 /* Pick up each field in turn. This used to be done with scanf, but
2347 scanf will make trouble if CORE_ADDR size doesn't match
2348 conversion directives correctly. The following code will work
2349 with any size of CORE_ADDR. */
2350 text_addr = data_addr = bss_addr = 0;
2351 ptr = buf;
2352 lose = 0;
2353
2354 if (strncmp (ptr, "Text=", 5) == 0)
2355 {
2356 ptr += 5;
2357 /* Don't use strtol, could lose on big values. */
2358 while (*ptr && *ptr != ';')
2359 text_addr = (text_addr << 4) + fromhex (*ptr++);
2360
2361 if (strncmp (ptr, ";Data=", 6) == 0)
2362 {
2363 ptr += 6;
2364 while (*ptr && *ptr != ';')
2365 data_addr = (data_addr << 4) + fromhex (*ptr++);
2366 }
2367 else
2368 lose = 1;
2369
2370 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2371 {
2372 ptr += 5;
2373 while (*ptr && *ptr != ';')
2374 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2375
2376 if (bss_addr != data_addr)
2377 warning (_("Target reported unsupported offsets: %s"), buf);
2378 }
2379 else
2380 lose = 1;
2381 }
2382 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2383 {
2384 ptr += 8;
2385 /* Don't use strtol, could lose on big values. */
2386 while (*ptr && *ptr != ';')
2387 text_addr = (text_addr << 4) + fromhex (*ptr++);
2388 num_segments = 1;
2389
2390 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2391 {
2392 ptr += 9;
2393 while (*ptr && *ptr != ';')
2394 data_addr = (data_addr << 4) + fromhex (*ptr++);
2395 num_segments++;
2396 }
2397 }
2398 else
2399 lose = 1;
2400
2401 if (lose)
2402 error (_("Malformed response to offset query, %s"), buf);
2403 else if (*ptr != '\0')
2404 warning (_("Target reported unsupported offsets: %s"), buf);
2405
2406 offs = ((struct section_offsets *)
2407 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2408 memcpy (offs, symfile_objfile->section_offsets,
2409 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2410
2411 data = get_symfile_segment_data (symfile_objfile->obfd);
2412 do_segments = (data != NULL);
2413 do_sections = num_segments == 0;
2414
2415 if (num_segments > 0)
2416 {
2417 segments[0] = text_addr;
2418 segments[1] = data_addr;
2419 }
2420 /* If we have two segments, we can still try to relocate everything
2421 by assuming that the .text and .data offsets apply to the whole
2422 text and data segments. Convert the offsets given in the packet
2423 to base addresses for symfile_map_offsets_to_segments. */
2424 else if (data && data->num_segments == 2)
2425 {
2426 segments[0] = data->segment_bases[0] + text_addr;
2427 segments[1] = data->segment_bases[1] + data_addr;
2428 num_segments = 2;
2429 }
2430 /* If the object file has only one segment, assume that it is text
2431 rather than data; main programs with no writable data are rare,
2432 but programs with no code are useless. Of course the code might
2433 have ended up in the data segment... to detect that we would need
2434 the permissions here. */
2435 else if (data && data->num_segments == 1)
2436 {
2437 segments[0] = data->segment_bases[0] + text_addr;
2438 num_segments = 1;
2439 }
2440 /* There's no way to relocate by segment. */
2441 else
2442 do_segments = 0;
2443
2444 if (do_segments)
2445 {
2446 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2447 offs, num_segments, segments);
2448
2449 if (ret == 0 && !do_sections)
2450 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2451
2452 if (ret > 0)
2453 do_sections = 0;
2454 }
2455
2456 if (data)
2457 free_symfile_segment_data (data);
2458
2459 if (do_sections)
2460 {
2461 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2462
2463 /* This is a temporary kludge to force data and bss to use the same offsets
2464 because that's what nlmconv does now. The real solution requires changes
2465 to the stub and remote.c that I don't have time to do right now. */
2466
2467 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2468 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2469 }
2470
2471 objfile_relocate (symfile_objfile, offs);
2472 }
2473
2474 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2475 threads we know are stopped already. This is used during the
2476 initial remote connection in non-stop mode --- threads that are
2477 reported as already being stopped are left stopped. */
2478
2479 static int
2480 set_stop_requested_callback (struct thread_info *thread, void *data)
2481 {
2482 /* If we have a stop reply for this thread, it must be stopped. */
2483 if (peek_stop_reply (thread->ptid))
2484 set_stop_requested (thread->ptid, 1);
2485
2486 return 0;
2487 }
2488
2489 /* Stub for catch_exception. */
2490
2491 struct start_remote_args
2492 {
2493 int from_tty;
2494
2495 /* The current target. */
2496 struct target_ops *target;
2497
2498 /* Non-zero if this is an extended-remote target. */
2499 int extended_p;
2500 };
2501
2502 static void
2503 remote_start_remote (struct ui_out *uiout, void *opaque)
2504 {
2505 struct start_remote_args *args = opaque;
2506 struct remote_state *rs = get_remote_state ();
2507 struct packet_config *noack_config;
2508 char *wait_status = NULL;
2509
2510 immediate_quit++; /* Allow user to interrupt it. */
2511
2512 /* Ack any packet which the remote side has already sent. */
2513 serial_write (remote_desc, "+", 1);
2514
2515 /* The first packet we send to the target is the optional "supported
2516 packets" request. If the target can answer this, it will tell us
2517 which later probes to skip. */
2518 remote_query_supported ();
2519
2520 /* Next, we possibly activate noack mode.
2521
2522 If the QStartNoAckMode packet configuration is set to AUTO,
2523 enable noack mode if the stub reported a wish for it with
2524 qSupported.
2525
2526 If set to TRUE, then enable noack mode even if the stub didn't
2527 report it in qSupported. If the stub doesn't reply OK, the
2528 session ends with an error.
2529
2530 If FALSE, then don't activate noack mode, regardless of what the
2531 stub claimed should be the default with qSupported. */
2532
2533 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2534
2535 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2536 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2537 && noack_config->support == PACKET_ENABLE))
2538 {
2539 putpkt ("QStartNoAckMode");
2540 getpkt (&rs->buf, &rs->buf_size, 0);
2541 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2542 rs->noack_mode = 1;
2543 }
2544
2545 if (args->extended_p)
2546 {
2547 /* Tell the remote that we are using the extended protocol. */
2548 putpkt ("!");
2549 getpkt (&rs->buf, &rs->buf_size, 0);
2550 }
2551
2552 /* On OSs where the list of libraries is global to all
2553 processes, we fetch them early. */
2554 if (gdbarch_has_global_solist (target_gdbarch))
2555 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2556
2557 /* Next, if the target can specify a description, read it. We do
2558 this before anything involving memory or registers. */
2559 target_find_description ();
2560
2561 if (non_stop)
2562 {
2563 if (!rs->non_stop_aware)
2564 error (_("Non-stop mode requested, but remote does not support non-stop"));
2565
2566 putpkt ("QNonStop:1");
2567 getpkt (&rs->buf, &rs->buf_size, 0);
2568
2569 if (strcmp (rs->buf, "OK") != 0)
2570 error ("Remote refused setting non-stop mode with: %s", rs->buf);
2571
2572 /* Find about threads and processes the stub is already
2573 controlling. We default to adding them in the running state.
2574 The '?' query below will then tell us about which threads are
2575 stopped. */
2576
2577 /* If we're not using the multi-process extensions, there's no
2578 way to know the pid of the reported threads; use the magic
2579 number. */
2580 if (!remote_multi_process_p (rs))
2581 inferior_ptid = magic_null_ptid;
2582
2583 remote_threads_info ();
2584 }
2585 else if (rs->non_stop_aware)
2586 {
2587 /* Don't assume that the stub can operate in all-stop mode.
2588 Request it explicitely. */
2589 putpkt ("QNonStop:0");
2590 getpkt (&rs->buf, &rs->buf_size, 0);
2591
2592 if (strcmp (rs->buf, "OK") != 0)
2593 error ("Remote refused setting all-stop mode with: %s", rs->buf);
2594 }
2595
2596 /* Check whether the target is running now. */
2597 putpkt ("?");
2598 getpkt (&rs->buf, &rs->buf_size, 0);
2599
2600 if (!non_stop)
2601 {
2602 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2603 {
2604 if (args->extended_p)
2605 {
2606 /* We're connected, but not running. Drop out before we
2607 call start_remote. */
2608 target_mark_exited (args->target);
2609 return;
2610 }
2611 else
2612 error (_("The target is not running (try extended-remote?)"));
2613 }
2614 else
2615 {
2616 if (args->extended_p)
2617 target_mark_running (args->target);
2618
2619 /* Save the reply for later. */
2620 wait_status = alloca (strlen (rs->buf) + 1);
2621 strcpy (wait_status, rs->buf);
2622 }
2623
2624 /* Let the stub know that we want it to return the thread. */
2625 set_continue_thread (minus_one_ptid);
2626
2627 /* Without this, some commands which require an active target
2628 (such as kill) won't work. This variable serves (at least)
2629 double duty as both the pid of the target process (if it has
2630 such), and as a flag indicating that a target is active.
2631 These functions should be split out into seperate variables,
2632 especially since GDB will someday have a notion of debugging
2633 several processes. */
2634 inferior_ptid = magic_null_ptid;
2635
2636 /* Now, if we have thread information, update inferior_ptid. */
2637 inferior_ptid = remote_current_thread (inferior_ptid);
2638
2639 add_inferior (ptid_get_pid (inferior_ptid));
2640
2641 /* Always add the main thread. */
2642 add_thread_silent (inferior_ptid);
2643
2644 get_offsets (); /* Get text, data & bss offsets. */
2645
2646 /* Use the previously fetched status. */
2647 gdb_assert (wait_status != NULL);
2648 strcpy (rs->buf, wait_status);
2649 rs->cached_wait_status = 1;
2650
2651 immediate_quit--;
2652 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2653 }
2654 else
2655 {
2656 /* In non-stop, we will either get an "OK", meaning that there
2657 are no stopped threads at this time; or, a regular stop
2658 reply. In the latter case, there may be more than one thread
2659 stopped --- we pull them all out using the vStopped
2660 mechanism. */
2661 if (strcmp (rs->buf, "OK") != 0)
2662 {
2663 struct stop_reply *stop_reply;
2664 struct cleanup *old_chain;
2665
2666 stop_reply = stop_reply_xmalloc ();
2667 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
2668
2669 remote_parse_stop_reply (rs->buf, stop_reply);
2670 discard_cleanups (old_chain);
2671
2672 /* get_pending_stop_replies acks this one, and gets the rest
2673 out. */
2674 pending_stop_reply = stop_reply;
2675 remote_get_pending_stop_replies ();
2676
2677 /* Make sure that threads that were stopped remain
2678 stopped. */
2679 iterate_over_threads (set_stop_requested_callback, NULL);
2680 }
2681
2682 if (target_can_async_p ())
2683 target_async (inferior_event_handler, 0);
2684
2685 if (thread_count () == 0)
2686 {
2687 if (args->extended_p)
2688 {
2689 /* We're connected, but not running. Drop out before we
2690 call start_remote. */
2691 target_mark_exited (args->target);
2692 return;
2693 }
2694 else
2695 error (_("The target is not running (try extended-remote?)"));
2696 }
2697
2698 if (args->extended_p)
2699 target_mark_running (args->target);
2700
2701 /* Let the stub know that we want it to return the thread. */
2702
2703 /* Force the stub to choose a thread. */
2704 set_general_thread (null_ptid);
2705
2706 /* Query it. */
2707 inferior_ptid = remote_current_thread (minus_one_ptid);
2708 if (ptid_equal (inferior_ptid, minus_one_ptid))
2709 error (_("remote didn't report the current thread in non-stop mode"));
2710
2711 get_offsets (); /* Get text, data & bss offsets. */
2712
2713 /* In non-stop mode, any cached wait status will be stored in
2714 the stop reply queue. */
2715 gdb_assert (wait_status == NULL);
2716 }
2717
2718 /* If we connected to a live target, do some additional setup. */
2719 if (target_has_execution)
2720 {
2721 if (exec_bfd) /* No use without an exec file. */
2722 remote_check_symbols (symfile_objfile);
2723 }
2724
2725 /* If code is shared between processes, then breakpoints are global
2726 too; Insert them now. */
2727 if (gdbarch_has_global_solist (target_gdbarch)
2728 && breakpoints_always_inserted_mode ())
2729 insert_breakpoints ();
2730 }
2731
2732 /* Open a connection to a remote debugger.
2733 NAME is the filename used for communication. */
2734
2735 static void
2736 remote_open (char *name, int from_tty)
2737 {
2738 remote_open_1 (name, from_tty, &remote_ops, 0);
2739 }
2740
2741 /* Open a connection to a remote debugger using the extended
2742 remote gdb protocol. NAME is the filename used for communication. */
2743
2744 static void
2745 extended_remote_open (char *name, int from_tty)
2746 {
2747 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2748 }
2749
2750 /* Generic code for opening a connection to a remote target. */
2751
2752 static void
2753 init_all_packet_configs (void)
2754 {
2755 int i;
2756 for (i = 0; i < PACKET_MAX; i++)
2757 update_packet_config (&remote_protocol_packets[i]);
2758 }
2759
2760 /* Symbol look-up. */
2761
2762 static void
2763 remote_check_symbols (struct objfile *objfile)
2764 {
2765 struct remote_state *rs = get_remote_state ();
2766 char *msg, *reply, *tmp;
2767 struct minimal_symbol *sym;
2768 int end;
2769
2770 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2771 return;
2772
2773 /* Make sure the remote is pointing at the right process. */
2774 set_general_process ();
2775
2776 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2777 because we need both at the same time. */
2778 msg = alloca (get_remote_packet_size ());
2779
2780 /* Invite target to request symbol lookups. */
2781
2782 putpkt ("qSymbol::");
2783 getpkt (&rs->buf, &rs->buf_size, 0);
2784 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2785 reply = rs->buf;
2786
2787 while (strncmp (reply, "qSymbol:", 8) == 0)
2788 {
2789 tmp = &reply[8];
2790 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2791 msg[end] = '\0';
2792 sym = lookup_minimal_symbol (msg, NULL, NULL);
2793 if (sym == NULL)
2794 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2795 else
2796 {
2797 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2798
2799 /* If this is a function address, return the start of code
2800 instead of any data function descriptor. */
2801 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2802 sym_addr,
2803 &current_target);
2804
2805 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2806 paddr_nz (sym_addr), &reply[8]);
2807 }
2808
2809 putpkt (msg);
2810 getpkt (&rs->buf, &rs->buf_size, 0);
2811 reply = rs->buf;
2812 }
2813 }
2814
2815 static struct serial *
2816 remote_serial_open (char *name)
2817 {
2818 static int udp_warning = 0;
2819
2820 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2821 of in ser-tcp.c, because it is the remote protocol assuming that the
2822 serial connection is reliable and not the serial connection promising
2823 to be. */
2824 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2825 {
2826 warning (_("\
2827 The remote protocol may be unreliable over UDP.\n\
2828 Some events may be lost, rendering further debugging impossible."));
2829 udp_warning = 1;
2830 }
2831
2832 return serial_open (name);
2833 }
2834
2835 /* This type describes each known response to the qSupported
2836 packet. */
2837 struct protocol_feature
2838 {
2839 /* The name of this protocol feature. */
2840 const char *name;
2841
2842 /* The default for this protocol feature. */
2843 enum packet_support default_support;
2844
2845 /* The function to call when this feature is reported, or after
2846 qSupported processing if the feature is not supported.
2847 The first argument points to this structure. The second
2848 argument indicates whether the packet requested support be
2849 enabled, disabled, or probed (or the default, if this function
2850 is being called at the end of processing and this feature was
2851 not reported). The third argument may be NULL; if not NULL, it
2852 is a NUL-terminated string taken from the packet following
2853 this feature's name and an equals sign. */
2854 void (*func) (const struct protocol_feature *, enum packet_support,
2855 const char *);
2856
2857 /* The corresponding packet for this feature. Only used if
2858 FUNC is remote_supported_packet. */
2859 int packet;
2860 };
2861
2862 static void
2863 remote_supported_packet (const struct protocol_feature *feature,
2864 enum packet_support support,
2865 const char *argument)
2866 {
2867 if (argument)
2868 {
2869 warning (_("Remote qSupported response supplied an unexpected value for"
2870 " \"%s\"."), feature->name);
2871 return;
2872 }
2873
2874 if (remote_protocol_packets[feature->packet].support
2875 == PACKET_SUPPORT_UNKNOWN)
2876 remote_protocol_packets[feature->packet].support = support;
2877 }
2878
2879 static void
2880 remote_packet_size (const struct protocol_feature *feature,
2881 enum packet_support support, const char *value)
2882 {
2883 struct remote_state *rs = get_remote_state ();
2884
2885 int packet_size;
2886 char *value_end;
2887
2888 if (support != PACKET_ENABLE)
2889 return;
2890
2891 if (value == NULL || *value == '\0')
2892 {
2893 warning (_("Remote target reported \"%s\" without a size."),
2894 feature->name);
2895 return;
2896 }
2897
2898 errno = 0;
2899 packet_size = strtol (value, &value_end, 16);
2900 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2901 {
2902 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2903 feature->name, value);
2904 return;
2905 }
2906
2907 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2908 {
2909 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2910 packet_size, MAX_REMOTE_PACKET_SIZE);
2911 packet_size = MAX_REMOTE_PACKET_SIZE;
2912 }
2913
2914 /* Record the new maximum packet size. */
2915 rs->explicit_packet_size = packet_size;
2916 }
2917
2918 static void
2919 remote_multi_process_feature (const struct protocol_feature *feature,
2920 enum packet_support support, const char *value)
2921 {
2922 struct remote_state *rs = get_remote_state ();
2923 rs->multi_process_aware = (support == PACKET_ENABLE);
2924 }
2925
2926 static void
2927 remote_non_stop_feature (const struct protocol_feature *feature,
2928 enum packet_support support, const char *value)
2929 {
2930 struct remote_state *rs = get_remote_state ();
2931 rs->non_stop_aware = (support == PACKET_ENABLE);
2932 }
2933
2934 static struct protocol_feature remote_protocol_features[] = {
2935 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2936 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2937 PACKET_qXfer_auxv },
2938 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2939 PACKET_qXfer_features },
2940 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2941 PACKET_qXfer_libraries },
2942 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2943 PACKET_qXfer_memory_map },
2944 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2945 PACKET_qXfer_spu_read },
2946 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2947 PACKET_qXfer_spu_write },
2948 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2949 PACKET_QPassSignals },
2950 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
2951 PACKET_QStartNoAckMode },
2952 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
2953 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
2954 };
2955
2956 static void
2957 remote_query_supported (void)
2958 {
2959 struct remote_state *rs = get_remote_state ();
2960 char *next;
2961 int i;
2962 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2963
2964 /* The packet support flags are handled differently for this packet
2965 than for most others. We treat an error, a disabled packet, and
2966 an empty response identically: any features which must be reported
2967 to be used will be automatically disabled. An empty buffer
2968 accomplishes this, since that is also the representation for a list
2969 containing no features. */
2970
2971 rs->buf[0] = 0;
2972 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2973 {
2974 if (rs->extended)
2975 putpkt ("qSupported:multiprocess+");
2976 else
2977 putpkt ("qSupported");
2978
2979 getpkt (&rs->buf, &rs->buf_size, 0);
2980
2981 /* If an error occured, warn, but do not return - just reset the
2982 buffer to empty and go on to disable features. */
2983 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2984 == PACKET_ERROR)
2985 {
2986 warning (_("Remote failure reply: %s"), rs->buf);
2987 rs->buf[0] = 0;
2988 }
2989 }
2990
2991 memset (seen, 0, sizeof (seen));
2992
2993 next = rs->buf;
2994 while (*next)
2995 {
2996 enum packet_support is_supported;
2997 char *p, *end, *name_end, *value;
2998
2999 /* First separate out this item from the rest of the packet. If
3000 there's another item after this, we overwrite the separator
3001 (terminated strings are much easier to work with). */
3002 p = next;
3003 end = strchr (p, ';');
3004 if (end == NULL)
3005 {
3006 end = p + strlen (p);
3007 next = end;
3008 }
3009 else
3010 {
3011 *end = '\0';
3012 next = end + 1;
3013
3014 if (end == p)
3015 {
3016 warning (_("empty item in \"qSupported\" response"));
3017 continue;
3018 }
3019 }
3020
3021 name_end = strchr (p, '=');
3022 if (name_end)
3023 {
3024 /* This is a name=value entry. */
3025 is_supported = PACKET_ENABLE;
3026 value = name_end + 1;
3027 *name_end = '\0';
3028 }
3029 else
3030 {
3031 value = NULL;
3032 switch (end[-1])
3033 {
3034 case '+':
3035 is_supported = PACKET_ENABLE;
3036 break;
3037
3038 case '-':
3039 is_supported = PACKET_DISABLE;
3040 break;
3041
3042 case '?':
3043 is_supported = PACKET_SUPPORT_UNKNOWN;
3044 break;
3045
3046 default:
3047 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3048 continue;
3049 }
3050 end[-1] = '\0';
3051 }
3052
3053 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3054 if (strcmp (remote_protocol_features[i].name, p) == 0)
3055 {
3056 const struct protocol_feature *feature;
3057
3058 seen[i] = 1;
3059 feature = &remote_protocol_features[i];
3060 feature->func (feature, is_supported, value);
3061 break;
3062 }
3063 }
3064
3065 /* If we increased the packet size, make sure to increase the global
3066 buffer size also. We delay this until after parsing the entire
3067 qSupported packet, because this is the same buffer we were
3068 parsing. */
3069 if (rs->buf_size < rs->explicit_packet_size)
3070 {
3071 rs->buf_size = rs->explicit_packet_size;
3072 rs->buf = xrealloc (rs->buf, rs->buf_size);
3073 }
3074
3075 /* Handle the defaults for unmentioned features. */
3076 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3077 if (!seen[i])
3078 {
3079 const struct protocol_feature *feature;
3080
3081 feature = &remote_protocol_features[i];
3082 feature->func (feature, feature->default_support, NULL);
3083 }
3084 }
3085
3086
3087 static void
3088 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3089 {
3090 struct remote_state *rs = get_remote_state ();
3091
3092 if (name == 0)
3093 error (_("To open a remote debug connection, you need to specify what\n"
3094 "serial device is attached to the remote system\n"
3095 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3096
3097 /* See FIXME above. */
3098 if (!target_async_permitted)
3099 wait_forever_enabled_p = 1;
3100
3101 /* If we're connected to a running target, target_preopen will kill it.
3102 But if we're connected to a target system with no running process,
3103 then we will still be connected when it returns. Ask this question
3104 first, before target_preopen has a chance to kill anything. */
3105 if (remote_desc != NULL && !target_has_execution)
3106 {
3107 if (!from_tty
3108 || query (_("Already connected to a remote target. Disconnect? ")))
3109 pop_target ();
3110 else
3111 error (_("Still connected."));
3112 }
3113
3114 target_preopen (from_tty);
3115
3116 unpush_target (target);
3117
3118 /* This time without a query. If we were connected to an
3119 extended-remote target and target_preopen killed the running
3120 process, we may still be connected. If we are starting "target
3121 remote" now, the extended-remote target will not have been
3122 removed by unpush_target. */
3123 if (remote_desc != NULL && !target_has_execution)
3124 pop_target ();
3125
3126 /* Make sure we send the passed signals list the next time we resume. */
3127 xfree (last_pass_packet);
3128 last_pass_packet = NULL;
3129
3130 remote_fileio_reset ();
3131 reopen_exec_file ();
3132 reread_symbols ();
3133
3134 remote_desc = remote_serial_open (name);
3135 if (!remote_desc)
3136 perror_with_name (name);
3137
3138 if (baud_rate != -1)
3139 {
3140 if (serial_setbaudrate (remote_desc, baud_rate))
3141 {
3142 /* The requested speed could not be set. Error out to
3143 top level after closing remote_desc. Take care to
3144 set remote_desc to NULL to avoid closing remote_desc
3145 more than once. */
3146 serial_close (remote_desc);
3147 remote_desc = NULL;
3148 perror_with_name (name);
3149 }
3150 }
3151
3152 serial_raw (remote_desc);
3153
3154 /* If there is something sitting in the buffer we might take it as a
3155 response to a command, which would be bad. */
3156 serial_flush_input (remote_desc);
3157
3158 if (from_tty)
3159 {
3160 puts_filtered ("Remote debugging using ");
3161 puts_filtered (name);
3162 puts_filtered ("\n");
3163 }
3164 push_target (target); /* Switch to using remote target now. */
3165
3166 /* Assume that the target is running, unless we learn otherwise. */
3167 target_mark_running (target);
3168
3169 /* Register extra event sources in the event loop. */
3170 remote_async_inferior_event_token
3171 = create_async_event_handler (remote_async_inferior_event_handler,
3172 NULL);
3173 remote_async_get_pending_events_token
3174 = create_async_event_handler (remote_async_get_pending_events_handler,
3175 NULL);
3176
3177 /* Reset the target state; these things will be queried either by
3178 remote_query_supported or as they are needed. */
3179 init_all_packet_configs ();
3180 rs->cached_wait_status = 0;
3181 rs->explicit_packet_size = 0;
3182 rs->noack_mode = 0;
3183 rs->multi_process_aware = 0;
3184 rs->extended = extended_p;
3185 rs->non_stop_aware = 0;
3186 rs->waiting_for_stop_reply = 0;
3187
3188 general_thread = not_sent_ptid;
3189 continue_thread = not_sent_ptid;
3190
3191 /* Probe for ability to use "ThreadInfo" query, as required. */
3192 use_threadinfo_query = 1;
3193 use_threadextra_query = 1;
3194
3195 if (target_async_permitted)
3196 {
3197 /* With this target we start out by owning the terminal. */
3198 remote_async_terminal_ours_p = 1;
3199
3200 /* FIXME: cagney/1999-09-23: During the initial connection it is
3201 assumed that the target is already ready and able to respond to
3202 requests. Unfortunately remote_start_remote() eventually calls
3203 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3204 around this. Eventually a mechanism that allows
3205 wait_for_inferior() to expect/get timeouts will be
3206 implemented. */
3207 wait_forever_enabled_p = 0;
3208 }
3209
3210 /* First delete any symbols previously loaded from shared libraries. */
3211 no_shared_libraries (NULL, 0);
3212
3213 /* Start afresh. */
3214 init_thread_list ();
3215
3216 /* Start the remote connection. If error() or QUIT, discard this
3217 target (we'd otherwise be in an inconsistent state) and then
3218 propogate the error on up the exception chain. This ensures that
3219 the caller doesn't stumble along blindly assuming that the
3220 function succeeded. The CLI doesn't have this problem but other
3221 UI's, such as MI do.
3222
3223 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3224 this function should return an error indication letting the
3225 caller restore the previous state. Unfortunately the command
3226 ``target remote'' is directly wired to this function making that
3227 impossible. On a positive note, the CLI side of this problem has
3228 been fixed - the function set_cmd_context() makes it possible for
3229 all the ``target ....'' commands to share a common callback
3230 function. See cli-dump.c. */
3231 {
3232 struct gdb_exception ex;
3233 struct start_remote_args args;
3234
3235 args.from_tty = from_tty;
3236 args.target = target;
3237 args.extended_p = extended_p;
3238
3239 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3240 if (ex.reason < 0)
3241 {
3242 /* Pop the partially set up target - unless something else did
3243 already before throwing the exception. */
3244 if (remote_desc != NULL)
3245 pop_target ();
3246 if (target_async_permitted)
3247 wait_forever_enabled_p = 1;
3248 throw_exception (ex);
3249 }
3250 }
3251
3252 if (target_async_permitted)
3253 wait_forever_enabled_p = 1;
3254 }
3255
3256 /* This takes a program previously attached to and detaches it. After
3257 this is done, GDB can be used to debug some other program. We
3258 better not have left any breakpoints in the target program or it'll
3259 die when it hits one. */
3260
3261 static void
3262 remote_detach_1 (char *args, int from_tty, int extended)
3263 {
3264 int pid = ptid_get_pid (inferior_ptid);
3265 struct remote_state *rs = get_remote_state ();
3266
3267 if (args)
3268 error (_("Argument given to \"detach\" when remotely debugging."));
3269
3270 if (!target_has_execution)
3271 error (_("No process to detach from."));
3272
3273 /* Tell the remote target to detach. */
3274 if (remote_multi_process_p (rs))
3275 sprintf (rs->buf, "D;%x", pid);
3276 else
3277 strcpy (rs->buf, "D");
3278
3279 putpkt (rs->buf);
3280 getpkt (&rs->buf, &rs->buf_size, 0);
3281
3282 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3283 ;
3284 else if (rs->buf[0] == '\0')
3285 error (_("Remote doesn't know how to detach"));
3286 else
3287 error (_("Can't detach process."));
3288
3289 if (from_tty)
3290 {
3291 if (remote_multi_process_p (rs))
3292 printf_filtered (_("Detached from remote %s.\n"),
3293 target_pid_to_str (pid_to_ptid (pid)));
3294 else
3295 {
3296 if (extended)
3297 puts_filtered (_("Detached from remote process.\n"));
3298 else
3299 puts_filtered (_("Ending remote debugging.\n"));
3300 }
3301 }
3302
3303 discard_pending_stop_replies (pid);
3304 detach_inferior (pid);
3305 target_mourn_inferior ();
3306 }
3307
3308 static void
3309 remote_detach (struct target_ops *ops, char *args, int from_tty)
3310 {
3311 remote_detach_1 (args, from_tty, 0);
3312 }
3313
3314 static void
3315 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3316 {
3317 remote_detach_1 (args, from_tty, 1);
3318 }
3319
3320 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3321
3322 static void
3323 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3324 {
3325 if (args)
3326 error (_("Argument given to \"disconnect\" when remotely debugging."));
3327
3328 /* Make sure we unpush even the extended remote targets; mourn
3329 won't do it. So call remote_mourn_1 directly instead of
3330 target_mourn_inferior. */
3331 remote_mourn_1 (target);
3332
3333 if (from_tty)
3334 puts_filtered ("Ending remote debugging.\n");
3335 }
3336
3337 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3338 be chatty about it. */
3339
3340 static void
3341 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3342 {
3343 struct remote_state *rs = get_remote_state ();
3344 int pid;
3345 char *dummy;
3346 char *wait_status = NULL;
3347 struct inferior *inf;
3348
3349 if (!args)
3350 error_no_arg (_("process-id to attach"));
3351
3352 dummy = args;
3353 pid = strtol (args, &dummy, 0);
3354 /* Some targets don't set errno on errors, grrr! */
3355 if (pid == 0 && args == dummy)
3356 error (_("Illegal process-id: %s."), args);
3357
3358 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3359 error (_("This target does not support attaching to a process"));
3360
3361 sprintf (rs->buf, "vAttach;%x", pid);
3362 putpkt (rs->buf);
3363 getpkt (&rs->buf, &rs->buf_size, 0);
3364
3365 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3366 {
3367 if (from_tty)
3368 printf_unfiltered (_("Attached to %s\n"),
3369 target_pid_to_str (pid_to_ptid (pid)));
3370
3371 if (!non_stop)
3372 {
3373 /* Save the reply for later. */
3374 wait_status = alloca (strlen (rs->buf) + 1);
3375 strcpy (wait_status, rs->buf);
3376 }
3377 else if (strcmp (rs->buf, "OK") != 0)
3378 error (_("Attaching to %s failed with: %s"),
3379 target_pid_to_str (pid_to_ptid (pid)),
3380 rs->buf);
3381 }
3382 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3383 error (_("This target does not support attaching to a process"));
3384 else
3385 error (_("Attaching to %s failed"),
3386 target_pid_to_str (pid_to_ptid (pid)));
3387
3388 target_mark_running (target);
3389 inferior_ptid = pid_to_ptid (pid);
3390
3391 /* Now, if we have thread information, update inferior_ptid. */
3392 inferior_ptid = remote_current_thread (inferior_ptid);
3393
3394 inf = add_inferior (pid);
3395 inf->attach_flag = 1;
3396
3397 if (non_stop)
3398 /* Get list of threads. */
3399 remote_threads_info ();
3400 else
3401 /* Add the main thread to the thread list. */
3402 add_thread_silent (inferior_ptid);
3403
3404 /* Next, if the target can specify a description, read it. We do
3405 this before anything involving memory or registers. */
3406 target_find_description ();
3407
3408 if (!non_stop)
3409 {
3410 /* Use the previously fetched status. */
3411 gdb_assert (wait_status != NULL);
3412
3413 if (target_can_async_p ())
3414 {
3415 struct stop_reply *stop_reply;
3416 struct cleanup *old_chain;
3417
3418 stop_reply = stop_reply_xmalloc ();
3419 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3420 remote_parse_stop_reply (wait_status, stop_reply);
3421 discard_cleanups (old_chain);
3422 push_stop_reply (stop_reply);
3423
3424 target_async (inferior_event_handler, 0);
3425 }
3426 else
3427 {
3428 gdb_assert (wait_status != NULL);
3429 strcpy (rs->buf, wait_status);
3430 rs->cached_wait_status = 1;
3431 }
3432 }
3433 else
3434 gdb_assert (wait_status == NULL);
3435 }
3436
3437 static void
3438 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3439 {
3440 extended_remote_attach_1 (ops, args, from_tty);
3441 }
3442
3443 /* Convert hex digit A to a number. */
3444
3445 static int
3446 fromhex (int a)
3447 {
3448 if (a >= '0' && a <= '9')
3449 return a - '0';
3450 else if (a >= 'a' && a <= 'f')
3451 return a - 'a' + 10;
3452 else if (a >= 'A' && a <= 'F')
3453 return a - 'A' + 10;
3454 else
3455 error (_("Reply contains invalid hex digit %d"), a);
3456 }
3457
3458 static int
3459 hex2bin (const char *hex, gdb_byte *bin, int count)
3460 {
3461 int i;
3462
3463 for (i = 0; i < count; i++)
3464 {
3465 if (hex[0] == 0 || hex[1] == 0)
3466 {
3467 /* Hex string is short, or of uneven length.
3468 Return the count that has been converted so far. */
3469 return i;
3470 }
3471 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3472 hex += 2;
3473 }
3474 return i;
3475 }
3476
3477 /* Convert number NIB to a hex digit. */
3478
3479 static int
3480 tohex (int nib)
3481 {
3482 if (nib < 10)
3483 return '0' + nib;
3484 else
3485 return 'a' + nib - 10;
3486 }
3487
3488 static int
3489 bin2hex (const gdb_byte *bin, char *hex, int count)
3490 {
3491 int i;
3492 /* May use a length, or a nul-terminated string as input. */
3493 if (count == 0)
3494 count = strlen ((char *) bin);
3495
3496 for (i = 0; i < count; i++)
3497 {
3498 *hex++ = tohex ((*bin >> 4) & 0xf);
3499 *hex++ = tohex (*bin++ & 0xf);
3500 }
3501 *hex = 0;
3502 return i;
3503 }
3504 \f
3505 /* Check for the availability of vCont. This function should also check
3506 the response. */
3507
3508 static void
3509 remote_vcont_probe (struct remote_state *rs)
3510 {
3511 char *buf;
3512
3513 strcpy (rs->buf, "vCont?");
3514 putpkt (rs->buf);
3515 getpkt (&rs->buf, &rs->buf_size, 0);
3516 buf = rs->buf;
3517
3518 /* Make sure that the features we assume are supported. */
3519 if (strncmp (buf, "vCont", 5) == 0)
3520 {
3521 char *p = &buf[5];
3522 int support_s, support_S, support_c, support_C;
3523
3524 support_s = 0;
3525 support_S = 0;
3526 support_c = 0;
3527 support_C = 0;
3528 rs->support_vCont_t = 0;
3529 while (p && *p == ';')
3530 {
3531 p++;
3532 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3533 support_s = 1;
3534 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3535 support_S = 1;
3536 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3537 support_c = 1;
3538 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3539 support_C = 1;
3540 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
3541 rs->support_vCont_t = 1;
3542
3543 p = strchr (p, ';');
3544 }
3545
3546 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3547 BUF will make packet_ok disable the packet. */
3548 if (!support_s || !support_S || !support_c || !support_C)
3549 buf[0] = 0;
3550 }
3551
3552 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3553 }
3554
3555 /* Resume the remote inferior by using a "vCont" packet. The thread
3556 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3557 resumed thread should be single-stepped and/or signalled. If PTID
3558 equals minus_one_ptid, then all threads are resumed; the thread to
3559 be stepped and/or signalled is given in the global INFERIOR_PTID.
3560 This function returns non-zero iff it resumes the inferior.
3561
3562 This function issues a strict subset of all possible vCont commands at the
3563 moment. */
3564
3565 static int
3566 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3567 {
3568 struct remote_state *rs = get_remote_state ();
3569 char *p;
3570 char *endp;
3571
3572 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3573 remote_vcont_probe (rs);
3574
3575 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3576 return 0;
3577
3578 p = rs->buf;
3579 endp = rs->buf + get_remote_packet_size ();
3580
3581 /* If we could generate a wider range of packets, we'd have to worry
3582 about overflowing BUF. Should there be a generic
3583 "multi-part-packet" packet? */
3584
3585 if (ptid_equal (ptid, magic_null_ptid))
3586 {
3587 /* MAGIC_NULL_PTID means that we don't have any active threads,
3588 so we don't have any TID numbers the inferior will
3589 understand. Make sure to only send forms that do not specify
3590 a TID. */
3591 if (step && siggnal != TARGET_SIGNAL_0)
3592 xsnprintf (p, endp - p, "vCont;S%02x", siggnal);
3593 else if (step)
3594 xsnprintf (p, endp - p, "vCont;s");
3595 else if (siggnal != TARGET_SIGNAL_0)
3596 xsnprintf (p, endp - p, "vCont;C%02x", siggnal);
3597 else
3598 xsnprintf (p, endp - p, "vCont;c");
3599 }
3600 else if (ptid_equal (ptid, minus_one_ptid))
3601 {
3602 /* Resume all threads, with preference for INFERIOR_PTID. */
3603 if (step && siggnal != TARGET_SIGNAL_0)
3604 {
3605 /* Step inferior_ptid with signal. */
3606 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3607 p = write_ptid (p, endp, inferior_ptid);
3608 /* And continue others. */
3609 p += xsnprintf (p, endp - p, ";c");
3610 }
3611 else if (step)
3612 {
3613 /* Step inferior_ptid. */
3614 p += xsnprintf (p, endp - p, "vCont;s:");
3615 p = write_ptid (p, endp, inferior_ptid);
3616 /* And continue others. */
3617 p += xsnprintf (p, endp - p, ";c");
3618 }
3619 else if (siggnal != TARGET_SIGNAL_0)
3620 {
3621 /* Continue inferior_ptid with signal. */
3622 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3623 p = write_ptid (p, endp, inferior_ptid);
3624 /* And continue others. */
3625 p += xsnprintf (p, endp - p, ";c");
3626 }
3627 else
3628 xsnprintf (p, endp - p, "vCont;c");
3629 }
3630 else
3631 {
3632 /* Scheduler locking; resume only PTID. */
3633 if (step && siggnal != TARGET_SIGNAL_0)
3634 {
3635 /* Step ptid with signal. */
3636 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3637 p = write_ptid (p, endp, ptid);
3638 }
3639 else if (step)
3640 {
3641 /* Step ptid. */
3642 p += xsnprintf (p, endp - p, "vCont;s:");
3643 p = write_ptid (p, endp, ptid);
3644 }
3645 else if (siggnal != TARGET_SIGNAL_0)
3646 {
3647 /* Continue ptid with signal. */
3648 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3649 p = write_ptid (p, endp, ptid);
3650 }
3651 else
3652 {
3653 /* Continue ptid. */
3654 p += xsnprintf (p, endp - p, "vCont;c:");
3655 p = write_ptid (p, endp, ptid);
3656 }
3657 }
3658
3659 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3660 putpkt (rs->buf);
3661
3662 if (non_stop)
3663 {
3664 /* In non-stop, the stub replies to vCont with "OK". The stop
3665 reply will be reported asynchronously by means of a `%Stop'
3666 notification. */
3667 getpkt (&rs->buf, &rs->buf_size, 0);
3668 if (strcmp (rs->buf, "OK") != 0)
3669 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
3670 }
3671
3672 return 1;
3673 }
3674
3675 /* Tell the remote machine to resume. */
3676
3677 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3678
3679 static int last_sent_step;
3680
3681 static void
3682 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3683 {
3684 struct remote_state *rs = get_remote_state ();
3685 char *buf;
3686
3687 last_sent_signal = siggnal;
3688 last_sent_step = step;
3689
3690 /* Update the inferior on signals to silently pass, if they've changed. */
3691 remote_pass_signals ();
3692
3693 /* The vCont packet doesn't need to specify threads via Hc. */
3694 if (remote_vcont_resume (ptid, step, siggnal))
3695 goto done;
3696
3697 /* All other supported resume packets do use Hc, so set the continue
3698 thread. */
3699 if (ptid_equal (ptid, minus_one_ptid))
3700 set_continue_thread (any_thread_ptid);
3701 else
3702 set_continue_thread (ptid);
3703
3704 buf = rs->buf;
3705 if (execution_direction == EXEC_REVERSE)
3706 {
3707 /* We don't pass signals to the target in reverse exec mode. */
3708 if (info_verbose && siggnal != TARGET_SIGNAL_0)
3709 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
3710 siggnal);
3711 strcpy (buf, step ? "bs" : "bc");
3712 }
3713 else if (siggnal != TARGET_SIGNAL_0)
3714 {
3715 buf[0] = step ? 'S' : 'C';
3716 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3717 buf[2] = tohex (((int) siggnal) & 0xf);
3718 buf[3] = '\0';
3719 }
3720 else
3721 strcpy (buf, step ? "s" : "c");
3722
3723 putpkt (buf);
3724
3725 done:
3726 /* We are about to start executing the inferior, let's register it
3727 with the event loop. NOTE: this is the one place where all the
3728 execution commands end up. We could alternatively do this in each
3729 of the execution commands in infcmd.c. */
3730 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3731 into infcmd.c in order to allow inferior function calls to work
3732 NOT asynchronously. */
3733 if (target_can_async_p ())
3734 target_async (inferior_event_handler, 0);
3735
3736 /* We've just told the target to resume. The remote server will
3737 wait for the inferior to stop, and then send a stop reply. In
3738 the mean time, we can't start another command/query ourselves
3739 because the stub wouldn't be ready to process it. This applies
3740 only to the base all-stop protocol, however. In non-stop (which
3741 only supports vCont), the stub replies with an "OK", and is
3742 immediate able to process further serial input. */
3743 if (!non_stop)
3744 rs->waiting_for_stop_reply = 1;
3745 }
3746 \f
3747
3748 /* Set up the signal handler for SIGINT, while the target is
3749 executing, ovewriting the 'regular' SIGINT signal handler. */
3750 static void
3751 initialize_sigint_signal_handler (void)
3752 {
3753 signal (SIGINT, handle_remote_sigint);
3754 }
3755
3756 /* Signal handler for SIGINT, while the target is executing. */
3757 static void
3758 handle_remote_sigint (int sig)
3759 {
3760 signal (sig, handle_remote_sigint_twice);
3761 mark_async_signal_handler_wrapper (sigint_remote_token);
3762 }
3763
3764 /* Signal handler for SIGINT, installed after SIGINT has already been
3765 sent once. It will take effect the second time that the user sends
3766 a ^C. */
3767 static void
3768 handle_remote_sigint_twice (int sig)
3769 {
3770 signal (sig, handle_remote_sigint);
3771 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3772 }
3773
3774 /* Perform the real interruption of the target execution, in response
3775 to a ^C. */
3776 static void
3777 async_remote_interrupt (gdb_client_data arg)
3778 {
3779 if (remote_debug)
3780 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3781
3782 target_stop (inferior_ptid);
3783 }
3784
3785 /* Perform interrupt, if the first attempt did not succeed. Just give
3786 up on the target alltogether. */
3787 void
3788 async_remote_interrupt_twice (gdb_client_data arg)
3789 {
3790 if (remote_debug)
3791 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3792
3793 interrupt_query ();
3794 }
3795
3796 /* Reinstall the usual SIGINT handlers, after the target has
3797 stopped. */
3798 static void
3799 cleanup_sigint_signal_handler (void *dummy)
3800 {
3801 signal (SIGINT, handle_sigint);
3802 }
3803
3804 /* Send ^C to target to halt it. Target will respond, and send us a
3805 packet. */
3806 static void (*ofunc) (int);
3807
3808 /* The command line interface's stop routine. This function is installed
3809 as a signal handler for SIGINT. The first time a user requests a
3810 stop, we call remote_stop to send a break or ^C. If there is no
3811 response from the target (it didn't stop when the user requested it),
3812 we ask the user if he'd like to detach from the target. */
3813 static void
3814 remote_interrupt (int signo)
3815 {
3816 /* If this doesn't work, try more severe steps. */
3817 signal (signo, remote_interrupt_twice);
3818
3819 gdb_call_async_signal_handler (sigint_remote_token, 1);
3820 }
3821
3822 /* The user typed ^C twice. */
3823
3824 static void
3825 remote_interrupt_twice (int signo)
3826 {
3827 signal (signo, ofunc);
3828 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3829 signal (signo, remote_interrupt);
3830 }
3831
3832 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
3833 thread, all threads of a remote process, or all threads of all
3834 processes. */
3835
3836 static void
3837 remote_stop_ns (ptid_t ptid)
3838 {
3839 struct remote_state *rs = get_remote_state ();
3840 char *p = rs->buf;
3841 char *endp = rs->buf + get_remote_packet_size ();
3842 struct stop_reply *reply, *next;
3843
3844 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3845 remote_vcont_probe (rs);
3846
3847 if (!rs->support_vCont_t)
3848 error (_("Remote server does not support stopping threads"));
3849
3850 if (ptid_equal (ptid, minus_one_ptid))
3851 p += xsnprintf (p, endp - p, "vCont;t");
3852 else
3853 {
3854 ptid_t nptid;
3855
3856 /* Step inferior_ptid. */
3857 p += xsnprintf (p, endp - p, "vCont;t:");
3858
3859 if (ptid_is_pid (ptid))
3860 /* All (-1) threads of process. */
3861 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3862 else
3863 {
3864 /* Small optimization: if we already have a stop reply for
3865 this thread, no use in telling the stub we want this
3866 stopped. */
3867 if (peek_stop_reply (ptid))
3868 return;
3869
3870 nptid = ptid;
3871 }
3872
3873 p = write_ptid (p, endp, nptid);
3874 }
3875
3876 /* In non-stop, we get an immediate OK reply. The stop reply will
3877 come in asynchronously by notification. */
3878 putpkt (rs->buf);
3879 getpkt (&rs->buf, &rs->buf_size, 0);
3880 if (strcmp (rs->buf, "OK") != 0)
3881 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
3882 }
3883
3884 /* All-stop version of target_stop. Sends a break or a ^C to stop the
3885 remote target. It is undefined which thread of which process
3886 reports the stop. */
3887
3888 static void
3889 remote_stop_as (ptid_t ptid)
3890 {
3891 struct remote_state *rs = get_remote_state ();
3892
3893 /* If the inferior is stopped already, but the core didn't know
3894 about it yet, just ignore the request. The cached wait status
3895 will be collected in remote_wait. */
3896 if (rs->cached_wait_status)
3897 return;
3898
3899 /* Send a break or a ^C, depending on user preference. */
3900
3901 if (remote_break)
3902 serial_send_break (remote_desc);
3903 else
3904 serial_write (remote_desc, "\003", 1);
3905 }
3906
3907 /* This is the generic stop called via the target vector. When a target
3908 interrupt is requested, either by the command line or the GUI, we
3909 will eventually end up here. */
3910
3911 static void
3912 remote_stop (ptid_t ptid)
3913 {
3914 if (remote_debug)
3915 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3916
3917 if (non_stop)
3918 remote_stop_ns (ptid);
3919 else
3920 remote_stop_as (ptid);
3921 }
3922
3923 /* Ask the user what to do when an interrupt is received. */
3924
3925 static void
3926 interrupt_query (void)
3927 {
3928 target_terminal_ours ();
3929
3930 if (target_can_async_p ())
3931 {
3932 signal (SIGINT, handle_sigint);
3933 deprecated_throw_reason (RETURN_QUIT);
3934 }
3935 else
3936 {
3937 if (query ("Interrupted while waiting for the program.\n\
3938 Give up (and stop debugging it)? "))
3939 {
3940 pop_target ();
3941 deprecated_throw_reason (RETURN_QUIT);
3942 }
3943 }
3944
3945 target_terminal_inferior ();
3946 }
3947
3948 /* Enable/disable target terminal ownership. Most targets can use
3949 terminal groups to control terminal ownership. Remote targets are
3950 different in that explicit transfer of ownership to/from GDB/target
3951 is required. */
3952
3953 static void
3954 remote_terminal_inferior (void)
3955 {
3956 if (!target_async_permitted)
3957 /* Nothing to do. */
3958 return;
3959
3960 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3961 sync_execution here. This function should only be called when
3962 GDB is resuming the inferior in the forground. A background
3963 resume (``run&'') should leave GDB in control of the terminal and
3964 consequently should not call this code. */
3965 if (!sync_execution)
3966 return;
3967 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3968 calls target_terminal_*() idenpotent. The event-loop GDB talking
3969 to an asynchronous target with a synchronous command calls this
3970 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3971 stops trying to transfer the terminal to the target when it
3972 shouldn't this guard can go away. */
3973 if (!remote_async_terminal_ours_p)
3974 return;
3975 delete_file_handler (input_fd);
3976 remote_async_terminal_ours_p = 0;
3977 initialize_sigint_signal_handler ();
3978 /* NOTE: At this point we could also register our selves as the
3979 recipient of all input. Any characters typed could then be
3980 passed on down to the target. */
3981 }
3982
3983 static void
3984 remote_terminal_ours (void)
3985 {
3986 if (!target_async_permitted)
3987 /* Nothing to do. */
3988 return;
3989
3990 /* See FIXME in remote_terminal_inferior. */
3991 if (!sync_execution)
3992 return;
3993 /* See FIXME in remote_terminal_inferior. */
3994 if (remote_async_terminal_ours_p)
3995 return;
3996 cleanup_sigint_signal_handler (NULL);
3997 add_file_handler (input_fd, stdin_event_handler, 0);
3998 remote_async_terminal_ours_p = 1;
3999 }
4000
4001 void
4002 remote_console_output (char *msg)
4003 {
4004 char *p;
4005
4006 for (p = msg; p[0] && p[1]; p += 2)
4007 {
4008 char tb[2];
4009 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4010 tb[0] = c;
4011 tb[1] = 0;
4012 fputs_unfiltered (tb, gdb_stdtarg);
4013 }
4014 gdb_flush (gdb_stdtarg);
4015 }
4016
4017 typedef struct cached_reg
4018 {
4019 int num;
4020 gdb_byte data[MAX_REGISTER_SIZE];
4021 } cached_reg_t;
4022
4023 DEF_VEC_O(cached_reg_t);
4024
4025 struct stop_reply
4026 {
4027 struct stop_reply *next;
4028
4029 ptid_t ptid;
4030
4031 struct target_waitstatus ws;
4032
4033 VEC(cached_reg_t) *regcache;
4034
4035 int stopped_by_watchpoint_p;
4036 CORE_ADDR watch_data_address;
4037
4038 int solibs_changed;
4039 int replay_event;
4040 };
4041
4042 /* The list of already fetched and acknowledged stop events. */
4043 static struct stop_reply *stop_reply_queue;
4044
4045 static struct stop_reply *
4046 stop_reply_xmalloc (void)
4047 {
4048 struct stop_reply *r = XMALLOC (struct stop_reply);
4049 r->next = NULL;
4050 return r;
4051 }
4052
4053 static void
4054 stop_reply_xfree (struct stop_reply *r)
4055 {
4056 if (r != NULL)
4057 {
4058 VEC_free (cached_reg_t, r->regcache);
4059 xfree (r);
4060 }
4061 }
4062
4063 /* Discard all pending stop replies of inferior PID. If PID is -1,
4064 discard everything. */
4065
4066 static void
4067 discard_pending_stop_replies (int pid)
4068 {
4069 struct stop_reply *prev = NULL, *reply, *next;
4070
4071 /* Discard the in-flight notification. */
4072 if (pending_stop_reply != NULL
4073 && (pid == -1
4074 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4075 {
4076 stop_reply_xfree (pending_stop_reply);
4077 pending_stop_reply = NULL;
4078 }
4079
4080 /* Discard the stop replies we have already pulled with
4081 vStopped. */
4082 for (reply = stop_reply_queue; reply; reply = next)
4083 {
4084 next = reply->next;
4085 if (pid == -1
4086 || ptid_get_pid (reply->ptid) == pid)
4087 {
4088 if (reply == stop_reply_queue)
4089 stop_reply_queue = reply->next;
4090 else
4091 prev->next = reply->next;
4092
4093 stop_reply_xfree (reply);
4094 }
4095 else
4096 prev = reply;
4097 }
4098 }
4099
4100 /* Cleanup wrapper. */
4101
4102 static void
4103 do_stop_reply_xfree (void *arg)
4104 {
4105 struct stop_reply *r = arg;
4106 stop_reply_xfree (r);
4107 }
4108
4109 /* Look for a queued stop reply belonging to PTID. If one is found,
4110 remove it from the queue, and return it. Returns NULL if none is
4111 found. If there are still queued events left to process, tell the
4112 event loop to get back to target_wait soon. */
4113
4114 static struct stop_reply *
4115 queued_stop_reply (ptid_t ptid)
4116 {
4117 struct stop_reply *it, *prev;
4118 struct stop_reply head;
4119
4120 head.next = stop_reply_queue;
4121 prev = &head;
4122
4123 it = head.next;
4124
4125 if (!ptid_equal (ptid, minus_one_ptid))
4126 for (; it; prev = it, it = it->next)
4127 if (ptid_equal (ptid, it->ptid))
4128 break;
4129
4130 if (it)
4131 {
4132 prev->next = it->next;
4133 it->next = NULL;
4134 }
4135
4136 stop_reply_queue = head.next;
4137
4138 if (stop_reply_queue)
4139 /* There's still at least an event left. */
4140 mark_async_event_handler (remote_async_inferior_event_token);
4141
4142 return it;
4143 }
4144
4145 /* Push a fully parsed stop reply in the stop reply queue. Since we
4146 know that we now have at least one queued event left to pass to the
4147 core side, tell the event loop to get back to target_wait soon. */
4148
4149 static void
4150 push_stop_reply (struct stop_reply *new_event)
4151 {
4152 struct stop_reply *event;
4153
4154 if (stop_reply_queue)
4155 {
4156 for (event = stop_reply_queue;
4157 event && event->next;
4158 event = event->next)
4159 ;
4160
4161 event->next = new_event;
4162 }
4163 else
4164 stop_reply_queue = new_event;
4165
4166 mark_async_event_handler (remote_async_inferior_event_token);
4167 }
4168
4169 /* Returns true if we have a stop reply for PTID. */
4170
4171 static int
4172 peek_stop_reply (ptid_t ptid)
4173 {
4174 struct stop_reply *it;
4175
4176 for (it = stop_reply_queue; it; it = it->next)
4177 if (ptid_equal (ptid, it->ptid))
4178 {
4179 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4180 return 1;
4181 }
4182
4183 return 0;
4184 }
4185
4186 /* Parse the stop reply in BUF. Either the function succeeds, and the
4187 result is stored in EVENT, or throws an error. */
4188
4189 static void
4190 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4191 {
4192 struct remote_arch_state *rsa = get_remote_arch_state ();
4193 ULONGEST addr;
4194 char *p;
4195
4196 event->ptid = null_ptid;
4197 event->ws.kind = TARGET_WAITKIND_IGNORE;
4198 event->ws.value.integer = 0;
4199 event->solibs_changed = 0;
4200 event->replay_event = 0;
4201 event->stopped_by_watchpoint_p = 0;
4202 event->regcache = NULL;
4203
4204 switch (buf[0])
4205 {
4206 case 'T': /* Status with PC, SP, FP, ... */
4207 {
4208 gdb_byte regs[MAX_REGISTER_SIZE];
4209
4210 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4211 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4212 ss = signal number
4213 n... = register number
4214 r... = register contents
4215 */
4216
4217 p = &buf[3]; /* after Txx */
4218 while (*p)
4219 {
4220 char *p1;
4221 char *p_temp;
4222 int fieldsize;
4223 LONGEST pnum = 0;
4224
4225 /* If the packet contains a register number, save it in
4226 pnum and set p1 to point to the character following it.
4227 Otherwise p1 points to p. */
4228
4229 /* If this packet is an awatch packet, don't parse the 'a'
4230 as a register number. */
4231
4232 if (strncmp (p, "awatch", strlen("awatch")) != 0)
4233 {
4234 /* Read the ``P'' register number. */
4235 pnum = strtol (p, &p_temp, 16);
4236 p1 = p_temp;
4237 }
4238 else
4239 p1 = p;
4240
4241 if (p1 == p) /* No register number present here. */
4242 {
4243 p1 = strchr (p, ':');
4244 if (p1 == NULL)
4245 error (_("Malformed packet(a) (missing colon): %s\n\
4246 Packet: '%s'\n"),
4247 p, buf);
4248 if (strncmp (p, "thread", p1 - p) == 0)
4249 event->ptid = read_ptid (++p1, &p);
4250 else if ((strncmp (p, "watch", p1 - p) == 0)
4251 || (strncmp (p, "rwatch", p1 - p) == 0)
4252 || (strncmp (p, "awatch", p1 - p) == 0))
4253 {
4254 event->stopped_by_watchpoint_p = 1;
4255 p = unpack_varlen_hex (++p1, &addr);
4256 event->watch_data_address = (CORE_ADDR) addr;
4257 }
4258 else if (strncmp (p, "library", p1 - p) == 0)
4259 {
4260 p1++;
4261 p_temp = p1;
4262 while (*p_temp && *p_temp != ';')
4263 p_temp++;
4264
4265 event->solibs_changed = 1;
4266 p = p_temp;
4267 }
4268 else if (strncmp (p, "replaylog", p1 - p) == 0)
4269 {
4270 /* NO_HISTORY event.
4271 p1 will indicate "begin" or "end", but
4272 it makes no difference for now, so ignore it. */
4273 event->replay_event = 1;
4274 p_temp = strchr (p1 + 1, ';');
4275 if (p_temp)
4276 p = p_temp;
4277 }
4278 else
4279 {
4280 /* Silently skip unknown optional info. */
4281 p_temp = strchr (p1 + 1, ';');
4282 if (p_temp)
4283 p = p_temp;
4284 }
4285 }
4286 else
4287 {
4288 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4289 cached_reg_t cached_reg;
4290
4291 cached_reg.num = reg->regnum;
4292
4293 p = p1;
4294
4295 if (*p != ':')
4296 error (_("Malformed packet(b) (missing colon): %s\n\
4297 Packet: '%s'\n"),
4298 p, buf);
4299 ++p;
4300
4301 if (reg == NULL)
4302 error (_("Remote sent bad register number %s: %s\n\
4303 Packet: '%s'\n"),
4304 phex_nz (pnum, 0), p, buf);
4305
4306 fieldsize = hex2bin (p, cached_reg.data,
4307 register_size (target_gdbarch,
4308 reg->regnum));
4309 p += 2 * fieldsize;
4310 if (fieldsize < register_size (target_gdbarch,
4311 reg->regnum))
4312 warning (_("Remote reply is too short: %s"), buf);
4313
4314 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4315 }
4316
4317 if (*p != ';')
4318 error (_("Remote register badly formatted: %s\nhere: %s"),
4319 buf, p);
4320 ++p;
4321 }
4322 }
4323 /* fall through */
4324 case 'S': /* Old style status, just signal only. */
4325 if (event->solibs_changed)
4326 event->ws.kind = TARGET_WAITKIND_LOADED;
4327 else if (event->replay_event)
4328 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4329 else
4330 {
4331 event->ws.kind = TARGET_WAITKIND_STOPPED;
4332 event->ws.value.sig = (enum target_signal)
4333 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4334 }
4335 break;
4336 case 'W': /* Target exited. */
4337 case 'X':
4338 {
4339 char *p;
4340 int pid;
4341 ULONGEST value;
4342
4343 /* GDB used to accept only 2 hex chars here. Stubs should
4344 only send more if they detect GDB supports multi-process
4345 support. */
4346 p = unpack_varlen_hex (&buf[1], &value);
4347
4348 if (buf[0] == 'W')
4349 {
4350 /* The remote process exited. */
4351 event->ws.kind = TARGET_WAITKIND_EXITED;
4352 event->ws.value.integer = value;
4353 }
4354 else
4355 {
4356 /* The remote process exited with a signal. */
4357 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4358 event->ws.value.sig = (enum target_signal) value;
4359 }
4360
4361 /* If no process is specified, assume inferior_ptid. */
4362 pid = ptid_get_pid (inferior_ptid);
4363 if (*p == '\0')
4364 ;
4365 else if (*p == ';')
4366 {
4367 p++;
4368
4369 if (p == '\0')
4370 ;
4371 else if (strncmp (p,
4372 "process:", sizeof ("process:") - 1) == 0)
4373 {
4374 ULONGEST upid;
4375 p += sizeof ("process:") - 1;
4376 unpack_varlen_hex (p, &upid);
4377 pid = upid;
4378 }
4379 else
4380 error (_("unknown stop reply packet: %s"), buf);
4381 }
4382 else
4383 error (_("unknown stop reply packet: %s"), buf);
4384 event->ptid = pid_to_ptid (pid);
4385 }
4386 break;
4387 }
4388
4389 if (non_stop && ptid_equal (event->ptid, null_ptid))
4390 error (_("No process or thread specified in stop reply: %s"), buf);
4391 }
4392
4393 /* When the stub wants to tell GDB about a new stop reply, it sends a
4394 stop notification (%Stop). Those can come it at any time, hence,
4395 we have to make sure that any pending putpkt/getpkt sequence we're
4396 making is finished, before querying the stub for more events with
4397 vStopped. E.g., if we started a vStopped sequence immediatelly
4398 upon receiving the %Stop notification, something like this could
4399 happen:
4400
4401 1.1) --> Hg 1
4402 1.2) <-- OK
4403 1.3) --> g
4404 1.4) <-- %Stop
4405 1.5) --> vStopped
4406 1.6) <-- (registers reply to step #1.3)
4407
4408 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4409 query.
4410
4411 To solve this, whenever we parse a %Stop notification sucessfully,
4412 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4413 doing whatever we were doing:
4414
4415 2.1) --> Hg 1
4416 2.2) <-- OK
4417 2.3) --> g
4418 2.4) <-- %Stop
4419 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4420 2.5) <-- (registers reply to step #2.3)
4421
4422 Eventualy after step #2.5, we return to the event loop, which
4423 notices there's an event on the
4424 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4425 associated callback --- the function below. At this point, we're
4426 always safe to start a vStopped sequence. :
4427
4428 2.6) --> vStopped
4429 2.7) <-- T05 thread:2
4430 2.8) --> vStopped
4431 2.9) --> OK
4432 */
4433
4434 static void
4435 remote_get_pending_stop_replies (void)
4436 {
4437 struct remote_state *rs = get_remote_state ();
4438 int ret;
4439
4440 if (pending_stop_reply)
4441 {
4442 /* acknowledge */
4443 putpkt ("vStopped");
4444
4445 /* Now we can rely on it. */
4446 push_stop_reply (pending_stop_reply);
4447 pending_stop_reply = NULL;
4448
4449 while (1)
4450 {
4451 getpkt (&rs->buf, &rs->buf_size, 0);
4452 if (strcmp (rs->buf, "OK") == 0)
4453 break;
4454 else
4455 {
4456 struct cleanup *old_chain;
4457 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4458
4459 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4460 remote_parse_stop_reply (rs->buf, stop_reply);
4461
4462 /* acknowledge */
4463 putpkt ("vStopped");
4464
4465 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4466 {
4467 /* Now we can rely on it. */
4468 discard_cleanups (old_chain);
4469 push_stop_reply (stop_reply);
4470 }
4471 else
4472 /* We got an unknown stop reply. */
4473 do_cleanups (old_chain);
4474 }
4475 }
4476 }
4477 }
4478
4479
4480 /* Called when it is decided that STOP_REPLY holds the info of the
4481 event that is to be returned to the core. This function always
4482 destroys STOP_REPLY. */
4483
4484 static ptid_t
4485 process_stop_reply (struct stop_reply *stop_reply,
4486 struct target_waitstatus *status)
4487 {
4488 ptid_t ptid;
4489
4490 *status = stop_reply->ws;
4491 ptid = stop_reply->ptid;
4492
4493 /* If no thread/process was reported by the stub, assume the current
4494 inferior. */
4495 if (ptid_equal (ptid, null_ptid))
4496 ptid = inferior_ptid;
4497
4498 if (status->kind == TARGET_WAITKIND_EXITED
4499 || status->kind == TARGET_WAITKIND_SIGNALLED)
4500 {
4501 int pid = ptid_get_pid (ptid);
4502 delete_inferior (pid);
4503 }
4504 else
4505 notice_new_inferiors (ptid);
4506
4507 /* Expedited registers. */
4508 if (stop_reply->regcache)
4509 {
4510 cached_reg_t *reg;
4511 int ix;
4512
4513 for (ix = 0;
4514 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
4515 ix++)
4516 regcache_raw_supply (get_thread_regcache (ptid),
4517 reg->num, reg->data);
4518 VEC_free (cached_reg_t, stop_reply->regcache);
4519 }
4520
4521 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
4522 remote_watch_data_address = stop_reply->watch_data_address;
4523
4524 stop_reply_xfree (stop_reply);
4525 return ptid;
4526 }
4527
4528 /* The non-stop mode version of target_wait. */
4529
4530 static ptid_t
4531 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status)
4532 {
4533 struct remote_state *rs = get_remote_state ();
4534 struct remote_arch_state *rsa = get_remote_arch_state ();
4535 ptid_t event_ptid = null_ptid;
4536 struct stop_reply *stop_reply;
4537 int ret;
4538
4539 /* If in non-stop mode, get out of getpkt even if a
4540 notification is received. */
4541
4542 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4543 0 /* forever */);
4544 while (1)
4545 {
4546 if (ret != -1)
4547 switch (rs->buf[0])
4548 {
4549 case 'E': /* Error of some sort. */
4550 /* We're out of sync with the target now. Did it continue
4551 or not? We can't tell which thread it was in non-stop,
4552 so just ignore this. */
4553 warning (_("Remote failure reply: %s"), rs->buf);
4554 break;
4555 case 'O': /* Console output. */
4556 remote_console_output (rs->buf + 1);
4557 break;
4558 default:
4559 warning (_("Invalid remote reply: %s"), rs->buf);
4560 break;
4561 }
4562
4563 /* Acknowledge a pending stop reply that may have arrived in the
4564 mean time. */
4565 if (pending_stop_reply != NULL)
4566 remote_get_pending_stop_replies ();
4567
4568 /* If indeed we noticed a stop reply, we're done. */
4569 stop_reply = queued_stop_reply (ptid);
4570 if (stop_reply != NULL)
4571 return process_stop_reply (stop_reply, status);
4572
4573 /* Still no event. If we're in asynchronous mode, then just
4574 return to the event loop. */
4575 if (remote_is_async_p ())
4576 {
4577 status->kind = TARGET_WAITKIND_IGNORE;
4578 return minus_one_ptid;
4579 }
4580
4581 /* Otherwise, asynchronous mode is masked, so do a blocking
4582 wait. */
4583 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4584 1 /* forever */);
4585 }
4586 }
4587
4588 /* Wait until the remote machine stops, then return, storing status in
4589 STATUS just as `wait' would. */
4590
4591 static ptid_t
4592 remote_wait_as (ptid_t ptid, struct target_waitstatus *status)
4593 {
4594 struct remote_state *rs = get_remote_state ();
4595 struct remote_arch_state *rsa = get_remote_arch_state ();
4596 ptid_t event_ptid = null_ptid;
4597 ULONGEST addr;
4598 int solibs_changed = 0;
4599 char *buf, *p;
4600 struct stop_reply *stop_reply;
4601
4602 status->kind = TARGET_WAITKIND_IGNORE;
4603 status->value.integer = 0;
4604
4605 stop_reply = queued_stop_reply (ptid);
4606 if (stop_reply != NULL)
4607 return process_stop_reply (stop_reply, status);
4608
4609 if (rs->cached_wait_status)
4610 /* Use the cached wait status, but only once. */
4611 rs->cached_wait_status = 0;
4612 else
4613 {
4614 int ret;
4615
4616 if (!target_is_async_p ())
4617 {
4618 ofunc = signal (SIGINT, remote_interrupt);
4619 /* If the user hit C-c before this packet, or between packets,
4620 pretend that it was hit right here. */
4621 if (quit_flag)
4622 {
4623 quit_flag = 0;
4624 remote_interrupt (SIGINT);
4625 }
4626 }
4627
4628 /* FIXME: cagney/1999-09-27: If we're in async mode we should
4629 _never_ wait for ever -> test on target_is_async_p().
4630 However, before we do that we need to ensure that the caller
4631 knows how to take the target into/out of async mode. */
4632 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
4633 if (!target_is_async_p ())
4634 signal (SIGINT, ofunc);
4635 }
4636
4637 buf = rs->buf;
4638
4639 remote_stopped_by_watchpoint_p = 0;
4640
4641 /* We got something. */
4642 rs->waiting_for_stop_reply = 0;
4643
4644 switch (buf[0])
4645 {
4646 case 'E': /* Error of some sort. */
4647 /* We're out of sync with the target now. Did it continue or
4648 not? Not is more likely, so report a stop. */
4649 warning (_("Remote failure reply: %s"), buf);
4650 status->kind = TARGET_WAITKIND_STOPPED;
4651 status->value.sig = TARGET_SIGNAL_0;
4652 break;
4653 case 'F': /* File-I/O request. */
4654 remote_fileio_request (buf);
4655 break;
4656 case 'T': case 'S': case 'X': case 'W':
4657 {
4658 struct stop_reply *stop_reply;
4659 struct cleanup *old_chain;
4660
4661 stop_reply = stop_reply_xmalloc ();
4662 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4663 remote_parse_stop_reply (buf, stop_reply);
4664 discard_cleanups (old_chain);
4665 event_ptid = process_stop_reply (stop_reply, status);
4666 break;
4667 }
4668 case 'O': /* Console output. */
4669 remote_console_output (buf + 1);
4670
4671 /* The target didn't really stop; keep waiting. */
4672 rs->waiting_for_stop_reply = 1;
4673
4674 break;
4675 case '\0':
4676 if (last_sent_signal != TARGET_SIGNAL_0)
4677 {
4678 /* Zero length reply means that we tried 'S' or 'C' and the
4679 remote system doesn't support it. */
4680 target_terminal_ours_for_output ();
4681 printf_filtered
4682 ("Can't send signals to this remote system. %s not sent.\n",
4683 target_signal_to_name (last_sent_signal));
4684 last_sent_signal = TARGET_SIGNAL_0;
4685 target_terminal_inferior ();
4686
4687 strcpy ((char *) buf, last_sent_step ? "s" : "c");
4688 putpkt ((char *) buf);
4689
4690 /* We just told the target to resume, so a stop reply is in
4691 order. */
4692 rs->waiting_for_stop_reply = 1;
4693 break;
4694 }
4695 /* else fallthrough */
4696 default:
4697 warning (_("Invalid remote reply: %s"), buf);
4698 /* Keep waiting. */
4699 rs->waiting_for_stop_reply = 1;
4700 break;
4701 }
4702
4703 if (status->kind == TARGET_WAITKIND_IGNORE)
4704 /* Nothing interesting happened. */
4705 return minus_one_ptid;
4706 else if (status->kind != TARGET_WAITKIND_EXITED
4707 && status->kind != TARGET_WAITKIND_SIGNALLED)
4708 {
4709 if (!ptid_equal (event_ptid, null_ptid))
4710 record_currthread (event_ptid);
4711 else
4712 event_ptid = inferior_ptid;
4713 }
4714 else
4715 /* A process exit. Invalidate our notion of current thread. */
4716 record_currthread (minus_one_ptid);
4717
4718 return event_ptid;
4719 }
4720
4721 /* Wait until the remote machine stops, then return, storing status in
4722 STATUS just as `wait' would. */
4723
4724 static ptid_t
4725 remote_wait (ptid_t ptid, struct target_waitstatus *status)
4726 {
4727 ptid_t event_ptid;
4728
4729 if (non_stop)
4730 event_ptid = remote_wait_ns (ptid, status);
4731 else
4732 {
4733 /* In synchronous mode, keep waiting until the target stops. In
4734 asynchronous mode, always return to the event loop. */
4735
4736 do
4737 {
4738 event_ptid = remote_wait_as (ptid, status);
4739 }
4740 while (status->kind == TARGET_WAITKIND_IGNORE
4741 && !target_can_async_p ());
4742 }
4743
4744 if (target_can_async_p ())
4745 {
4746 /* If there are are events left in the queue tell the event loop
4747 to return here. */
4748 if (stop_reply_queue)
4749 mark_async_event_handler (remote_async_inferior_event_token);
4750 }
4751
4752 return event_ptid;
4753 }
4754
4755 /* Fetch a single register using a 'p' packet. */
4756
4757 static int
4758 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
4759 {
4760 struct remote_state *rs = get_remote_state ();
4761 char *buf, *p;
4762 char regp[MAX_REGISTER_SIZE];
4763 int i;
4764
4765 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
4766 return 0;
4767
4768 if (reg->pnum == -1)
4769 return 0;
4770
4771 p = rs->buf;
4772 *p++ = 'p';
4773 p += hexnumstr (p, reg->pnum);
4774 *p++ = '\0';
4775 remote_send (&rs->buf, &rs->buf_size);
4776
4777 buf = rs->buf;
4778
4779 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
4780 {
4781 case PACKET_OK:
4782 break;
4783 case PACKET_UNKNOWN:
4784 return 0;
4785 case PACKET_ERROR:
4786 error (_("Could not fetch register \"%s\""),
4787 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
4788 }
4789
4790 /* If this register is unfetchable, tell the regcache. */
4791 if (buf[0] == 'x')
4792 {
4793 regcache_raw_supply (regcache, reg->regnum, NULL);
4794 return 1;
4795 }
4796
4797 /* Otherwise, parse and supply the value. */
4798 p = buf;
4799 i = 0;
4800 while (p[0] != 0)
4801 {
4802 if (p[1] == 0)
4803 error (_("fetch_register_using_p: early buf termination"));
4804
4805 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
4806 p += 2;
4807 }
4808 regcache_raw_supply (regcache, reg->regnum, regp);
4809 return 1;
4810 }
4811
4812 /* Fetch the registers included in the target's 'g' packet. */
4813
4814 static int
4815 send_g_packet (void)
4816 {
4817 struct remote_state *rs = get_remote_state ();
4818 int i, buf_len;
4819 char *p;
4820 char *regs;
4821
4822 sprintf (rs->buf, "g");
4823 remote_send (&rs->buf, &rs->buf_size);
4824
4825 /* We can get out of synch in various cases. If the first character
4826 in the buffer is not a hex character, assume that has happened
4827 and try to fetch another packet to read. */
4828 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
4829 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
4830 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
4831 && rs->buf[0] != 'x') /* New: unavailable register value. */
4832 {
4833 if (remote_debug)
4834 fprintf_unfiltered (gdb_stdlog,
4835 "Bad register packet; fetching a new packet\n");
4836 getpkt (&rs->buf, &rs->buf_size, 0);
4837 }
4838
4839 buf_len = strlen (rs->buf);
4840
4841 /* Sanity check the received packet. */
4842 if (buf_len % 2 != 0)
4843 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4844
4845 return buf_len / 2;
4846 }
4847
4848 static void
4849 process_g_packet (struct regcache *regcache)
4850 {
4851 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4852 struct remote_state *rs = get_remote_state ();
4853 struct remote_arch_state *rsa = get_remote_arch_state ();
4854 int i, buf_len;
4855 char *p;
4856 char *regs;
4857
4858 buf_len = strlen (rs->buf);
4859
4860 /* Further sanity checks, with knowledge of the architecture. */
4861 if (buf_len > 2 * rsa->sizeof_g_packet)
4862 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4863
4864 /* Save the size of the packet sent to us by the target. It is used
4865 as a heuristic when determining the max size of packets that the
4866 target can safely receive. */
4867 if (rsa->actual_register_packet_size == 0)
4868 rsa->actual_register_packet_size = buf_len;
4869
4870 /* If this is smaller than we guessed the 'g' packet would be,
4871 update our records. A 'g' reply that doesn't include a register's
4872 value implies either that the register is not available, or that
4873 the 'p' packet must be used. */
4874 if (buf_len < 2 * rsa->sizeof_g_packet)
4875 {
4876 rsa->sizeof_g_packet = buf_len / 2;
4877
4878 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4879 {
4880 if (rsa->regs[i].pnum == -1)
4881 continue;
4882
4883 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
4884 rsa->regs[i].in_g_packet = 0;
4885 else
4886 rsa->regs[i].in_g_packet = 1;
4887 }
4888 }
4889
4890 regs = alloca (rsa->sizeof_g_packet);
4891
4892 /* Unimplemented registers read as all bits zero. */
4893 memset (regs, 0, rsa->sizeof_g_packet);
4894
4895 /* Reply describes registers byte by byte, each byte encoded as two
4896 hex characters. Suck them all up, then supply them to the
4897 register cacheing/storage mechanism. */
4898
4899 p = rs->buf;
4900 for (i = 0; i < rsa->sizeof_g_packet; i++)
4901 {
4902 if (p[0] == 0 || p[1] == 0)
4903 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
4904 internal_error (__FILE__, __LINE__,
4905 "unexpected end of 'g' packet reply");
4906
4907 if (p[0] == 'x' && p[1] == 'x')
4908 regs[i] = 0; /* 'x' */
4909 else
4910 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
4911 p += 2;
4912 }
4913
4914 {
4915 int i;
4916 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4917 {
4918 struct packet_reg *r = &rsa->regs[i];
4919 if (r->in_g_packet)
4920 {
4921 if (r->offset * 2 >= strlen (rs->buf))
4922 /* This shouldn't happen - we adjusted in_g_packet above. */
4923 internal_error (__FILE__, __LINE__,
4924 "unexpected end of 'g' packet reply");
4925 else if (rs->buf[r->offset * 2] == 'x')
4926 {
4927 gdb_assert (r->offset * 2 < strlen (rs->buf));
4928 /* The register isn't available, mark it as such (at
4929 the same time setting the value to zero). */
4930 regcache_raw_supply (regcache, r->regnum, NULL);
4931 }
4932 else
4933 regcache_raw_supply (regcache, r->regnum,
4934 regs + r->offset);
4935 }
4936 }
4937 }
4938 }
4939
4940 static void
4941 fetch_registers_using_g (struct regcache *regcache)
4942 {
4943 send_g_packet ();
4944 process_g_packet (regcache);
4945 }
4946
4947 static void
4948 remote_fetch_registers (struct regcache *regcache, int regnum)
4949 {
4950 struct remote_state *rs = get_remote_state ();
4951 struct remote_arch_state *rsa = get_remote_arch_state ();
4952 int i;
4953
4954 set_general_thread (inferior_ptid);
4955
4956 if (regnum >= 0)
4957 {
4958 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4959 gdb_assert (reg != NULL);
4960
4961 /* If this register might be in the 'g' packet, try that first -
4962 we are likely to read more than one register. If this is the
4963 first 'g' packet, we might be overly optimistic about its
4964 contents, so fall back to 'p'. */
4965 if (reg->in_g_packet)
4966 {
4967 fetch_registers_using_g (regcache);
4968 if (reg->in_g_packet)
4969 return;
4970 }
4971
4972 if (fetch_register_using_p (regcache, reg))
4973 return;
4974
4975 /* This register is not available. */
4976 regcache_raw_supply (regcache, reg->regnum, NULL);
4977
4978 return;
4979 }
4980
4981 fetch_registers_using_g (regcache);
4982
4983 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4984 if (!rsa->regs[i].in_g_packet)
4985 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
4986 {
4987 /* This register is not available. */
4988 regcache_raw_supply (regcache, i, NULL);
4989 }
4990 }
4991
4992 /* Prepare to store registers. Since we may send them all (using a
4993 'G' request), we have to read out the ones we don't want to change
4994 first. */
4995
4996 static void
4997 remote_prepare_to_store (struct regcache *regcache)
4998 {
4999 struct remote_arch_state *rsa = get_remote_arch_state ();
5000 int i;
5001 gdb_byte buf[MAX_REGISTER_SIZE];
5002
5003 /* Make sure the entire registers array is valid. */
5004 switch (remote_protocol_packets[PACKET_P].support)
5005 {
5006 case PACKET_DISABLE:
5007 case PACKET_SUPPORT_UNKNOWN:
5008 /* Make sure all the necessary registers are cached. */
5009 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5010 if (rsa->regs[i].in_g_packet)
5011 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5012 break;
5013 case PACKET_ENABLE:
5014 break;
5015 }
5016 }
5017
5018 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5019 packet was not recognized. */
5020
5021 static int
5022 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
5023 {
5024 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5025 struct remote_state *rs = get_remote_state ();
5026 struct remote_arch_state *rsa = get_remote_arch_state ();
5027 /* Try storing a single register. */
5028 char *buf = rs->buf;
5029 gdb_byte regp[MAX_REGISTER_SIZE];
5030 char *p;
5031
5032 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5033 return 0;
5034
5035 if (reg->pnum == -1)
5036 return 0;
5037
5038 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5039 p = buf + strlen (buf);
5040 regcache_raw_collect (regcache, reg->regnum, regp);
5041 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5042 remote_send (&rs->buf, &rs->buf_size);
5043
5044 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5045 {
5046 case PACKET_OK:
5047 return 1;
5048 case PACKET_ERROR:
5049 error (_("Could not write register \"%s\""),
5050 gdbarch_register_name (gdbarch, reg->regnum));
5051 case PACKET_UNKNOWN:
5052 return 0;
5053 default:
5054 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5055 }
5056 }
5057
5058 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5059 contents of the register cache buffer. FIXME: ignores errors. */
5060
5061 static void
5062 store_registers_using_G (const struct regcache *regcache)
5063 {
5064 struct remote_state *rs = get_remote_state ();
5065 struct remote_arch_state *rsa = get_remote_arch_state ();
5066 gdb_byte *regs;
5067 char *p;
5068
5069 /* Extract all the registers in the regcache copying them into a
5070 local buffer. */
5071 {
5072 int i;
5073 regs = alloca (rsa->sizeof_g_packet);
5074 memset (regs, 0, rsa->sizeof_g_packet);
5075 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5076 {
5077 struct packet_reg *r = &rsa->regs[i];
5078 if (r->in_g_packet)
5079 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5080 }
5081 }
5082
5083 /* Command describes registers byte by byte,
5084 each byte encoded as two hex characters. */
5085 p = rs->buf;
5086 *p++ = 'G';
5087 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5088 updated. */
5089 bin2hex (regs, p, rsa->sizeof_g_packet);
5090 remote_send (&rs->buf, &rs->buf_size);
5091 }
5092
5093 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5094 of the register cache buffer. FIXME: ignores errors. */
5095
5096 static void
5097 remote_store_registers (struct regcache *regcache, int regnum)
5098 {
5099 struct remote_state *rs = get_remote_state ();
5100 struct remote_arch_state *rsa = get_remote_arch_state ();
5101 int i;
5102
5103 set_general_thread (inferior_ptid);
5104
5105 if (regnum >= 0)
5106 {
5107 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5108 gdb_assert (reg != NULL);
5109
5110 /* Always prefer to store registers using the 'P' packet if
5111 possible; we often change only a small number of registers.
5112 Sometimes we change a larger number; we'd need help from a
5113 higher layer to know to use 'G'. */
5114 if (store_register_using_P (regcache, reg))
5115 return;
5116
5117 /* For now, don't complain if we have no way to write the
5118 register. GDB loses track of unavailable registers too
5119 easily. Some day, this may be an error. We don't have
5120 any way to read the register, either... */
5121 if (!reg->in_g_packet)
5122 return;
5123
5124 store_registers_using_G (regcache);
5125 return;
5126 }
5127
5128 store_registers_using_G (regcache);
5129
5130 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5131 if (!rsa->regs[i].in_g_packet)
5132 if (!store_register_using_P (regcache, &rsa->regs[i]))
5133 /* See above for why we do not issue an error here. */
5134 continue;
5135 }
5136 \f
5137
5138 /* Return the number of hex digits in num. */
5139
5140 static int
5141 hexnumlen (ULONGEST num)
5142 {
5143 int i;
5144
5145 for (i = 0; num != 0; i++)
5146 num >>= 4;
5147
5148 return max (i, 1);
5149 }
5150
5151 /* Set BUF to the minimum number of hex digits representing NUM. */
5152
5153 static int
5154 hexnumstr (char *buf, ULONGEST num)
5155 {
5156 int len = hexnumlen (num);
5157 return hexnumnstr (buf, num, len);
5158 }
5159
5160
5161 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5162
5163 static int
5164 hexnumnstr (char *buf, ULONGEST num, int width)
5165 {
5166 int i;
5167
5168 buf[width] = '\0';
5169
5170 for (i = width - 1; i >= 0; i--)
5171 {
5172 buf[i] = "0123456789abcdef"[(num & 0xf)];
5173 num >>= 4;
5174 }
5175
5176 return width;
5177 }
5178
5179 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5180
5181 static CORE_ADDR
5182 remote_address_masked (CORE_ADDR addr)
5183 {
5184 int address_size = remote_address_size;
5185 /* If "remoteaddresssize" was not set, default to target address size. */
5186 if (!address_size)
5187 address_size = gdbarch_addr_bit (target_gdbarch);
5188
5189 if (address_size > 0
5190 && address_size < (sizeof (ULONGEST) * 8))
5191 {
5192 /* Only create a mask when that mask can safely be constructed
5193 in a ULONGEST variable. */
5194 ULONGEST mask = 1;
5195 mask = (mask << address_size) - 1;
5196 addr &= mask;
5197 }
5198 return addr;
5199 }
5200
5201 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5202 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5203 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5204 (which may be more than *OUT_LEN due to escape characters). The
5205 total number of bytes in the output buffer will be at most
5206 OUT_MAXLEN. */
5207
5208 static int
5209 remote_escape_output (const gdb_byte *buffer, int len,
5210 gdb_byte *out_buf, int *out_len,
5211 int out_maxlen)
5212 {
5213 int input_index, output_index;
5214
5215 output_index = 0;
5216 for (input_index = 0; input_index < len; input_index++)
5217 {
5218 gdb_byte b = buffer[input_index];
5219
5220 if (b == '$' || b == '#' || b == '}')
5221 {
5222 /* These must be escaped. */
5223 if (output_index + 2 > out_maxlen)
5224 break;
5225 out_buf[output_index++] = '}';
5226 out_buf[output_index++] = b ^ 0x20;
5227 }
5228 else
5229 {
5230 if (output_index + 1 > out_maxlen)
5231 break;
5232 out_buf[output_index++] = b;
5233 }
5234 }
5235
5236 *out_len = input_index;
5237 return output_index;
5238 }
5239
5240 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5241 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5242 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5243
5244 This function reverses remote_escape_output. It allows more
5245 escaped characters than that function does, in particular because
5246 '*' must be escaped to avoid the run-length encoding processing
5247 in reading packets. */
5248
5249 static int
5250 remote_unescape_input (const gdb_byte *buffer, int len,
5251 gdb_byte *out_buf, int out_maxlen)
5252 {
5253 int input_index, output_index;
5254 int escaped;
5255
5256 output_index = 0;
5257 escaped = 0;
5258 for (input_index = 0; input_index < len; input_index++)
5259 {
5260 gdb_byte b = buffer[input_index];
5261
5262 if (output_index + 1 > out_maxlen)
5263 {
5264 warning (_("Received too much data from remote target;"
5265 " ignoring overflow."));
5266 return output_index;
5267 }
5268
5269 if (escaped)
5270 {
5271 out_buf[output_index++] = b ^ 0x20;
5272 escaped = 0;
5273 }
5274 else if (b == '}')
5275 escaped = 1;
5276 else
5277 out_buf[output_index++] = b;
5278 }
5279
5280 if (escaped)
5281 error (_("Unmatched escape character in target response."));
5282
5283 return output_index;
5284 }
5285
5286 /* Determine whether the remote target supports binary downloading.
5287 This is accomplished by sending a no-op memory write of zero length
5288 to the target at the specified address. It does not suffice to send
5289 the whole packet, since many stubs strip the eighth bit and
5290 subsequently compute a wrong checksum, which causes real havoc with
5291 remote_write_bytes.
5292
5293 NOTE: This can still lose if the serial line is not eight-bit
5294 clean. In cases like this, the user should clear "remote
5295 X-packet". */
5296
5297 static void
5298 check_binary_download (CORE_ADDR addr)
5299 {
5300 struct remote_state *rs = get_remote_state ();
5301
5302 switch (remote_protocol_packets[PACKET_X].support)
5303 {
5304 case PACKET_DISABLE:
5305 break;
5306 case PACKET_ENABLE:
5307 break;
5308 case PACKET_SUPPORT_UNKNOWN:
5309 {
5310 char *p;
5311
5312 p = rs->buf;
5313 *p++ = 'X';
5314 p += hexnumstr (p, (ULONGEST) addr);
5315 *p++ = ',';
5316 p += hexnumstr (p, (ULONGEST) 0);
5317 *p++ = ':';
5318 *p = '\0';
5319
5320 putpkt_binary (rs->buf, (int) (p - rs->buf));
5321 getpkt (&rs->buf, &rs->buf_size, 0);
5322
5323 if (rs->buf[0] == '\0')
5324 {
5325 if (remote_debug)
5326 fprintf_unfiltered (gdb_stdlog,
5327 "binary downloading NOT suppported by target\n");
5328 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5329 }
5330 else
5331 {
5332 if (remote_debug)
5333 fprintf_unfiltered (gdb_stdlog,
5334 "binary downloading suppported by target\n");
5335 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5336 }
5337 break;
5338 }
5339 }
5340 }
5341
5342 /* Write memory data directly to the remote machine.
5343 This does not inform the data cache; the data cache uses this.
5344 HEADER is the starting part of the packet.
5345 MEMADDR is the address in the remote memory space.
5346 MYADDR is the address of the buffer in our space.
5347 LEN is the number of bytes.
5348 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5349 should send data as binary ('X'), or hex-encoded ('M').
5350
5351 The function creates packet of the form
5352 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5353
5354 where encoding of <DATA> is termined by PACKET_FORMAT.
5355
5356 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5357 are omitted.
5358
5359 Returns the number of bytes transferred, or 0 (setting errno) for
5360 error. Only transfer a single packet. */
5361
5362 static int
5363 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5364 const gdb_byte *myaddr, int len,
5365 char packet_format, int use_length)
5366 {
5367 struct remote_state *rs = get_remote_state ();
5368 char *p;
5369 char *plen = NULL;
5370 int plenlen = 0;
5371 int todo;
5372 int nr_bytes;
5373 int payload_size;
5374 int payload_length;
5375 int header_length;
5376
5377 if (packet_format != 'X' && packet_format != 'M')
5378 internal_error (__FILE__, __LINE__,
5379 "remote_write_bytes_aux: bad packet format");
5380
5381 if (len <= 0)
5382 return 0;
5383
5384 payload_size = get_memory_write_packet_size ();
5385
5386 /* The packet buffer will be large enough for the payload;
5387 get_memory_packet_size ensures this. */
5388 rs->buf[0] = '\0';
5389
5390 /* Compute the size of the actual payload by subtracting out the
5391 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5392 */
5393 payload_size -= strlen ("$,:#NN");
5394 if (!use_length)
5395 /* The comma won't be used. */
5396 payload_size += 1;
5397 header_length = strlen (header);
5398 payload_size -= header_length;
5399 payload_size -= hexnumlen (memaddr);
5400
5401 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5402
5403 strcat (rs->buf, header);
5404 p = rs->buf + strlen (header);
5405
5406 /* Compute a best guess of the number of bytes actually transfered. */
5407 if (packet_format == 'X')
5408 {
5409 /* Best guess at number of bytes that will fit. */
5410 todo = min (len, payload_size);
5411 if (use_length)
5412 payload_size -= hexnumlen (todo);
5413 todo = min (todo, payload_size);
5414 }
5415 else
5416 {
5417 /* Num bytes that will fit. */
5418 todo = min (len, payload_size / 2);
5419 if (use_length)
5420 payload_size -= hexnumlen (todo);
5421 todo = min (todo, payload_size / 2);
5422 }
5423
5424 if (todo <= 0)
5425 internal_error (__FILE__, __LINE__,
5426 _("minumum packet size too small to write data"));
5427
5428 /* If we already need another packet, then try to align the end
5429 of this packet to a useful boundary. */
5430 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5431 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5432
5433 /* Append "<memaddr>". */
5434 memaddr = remote_address_masked (memaddr);
5435 p += hexnumstr (p, (ULONGEST) memaddr);
5436
5437 if (use_length)
5438 {
5439 /* Append ",". */
5440 *p++ = ',';
5441
5442 /* Append <len>. Retain the location/size of <len>. It may need to
5443 be adjusted once the packet body has been created. */
5444 plen = p;
5445 plenlen = hexnumstr (p, (ULONGEST) todo);
5446 p += plenlen;
5447 }
5448
5449 /* Append ":". */
5450 *p++ = ':';
5451 *p = '\0';
5452
5453 /* Append the packet body. */
5454 if (packet_format == 'X')
5455 {
5456 /* Binary mode. Send target system values byte by byte, in
5457 increasing byte addresses. Only escape certain critical
5458 characters. */
5459 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5460 payload_size);
5461
5462 /* If not all TODO bytes fit, then we'll need another packet. Make
5463 a second try to keep the end of the packet aligned. Don't do
5464 this if the packet is tiny. */
5465 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5466 {
5467 int new_nr_bytes;
5468
5469 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5470 - memaddr);
5471 if (new_nr_bytes != nr_bytes)
5472 payload_length = remote_escape_output (myaddr, new_nr_bytes,
5473 p, &nr_bytes,
5474 payload_size);
5475 }
5476
5477 p += payload_length;
5478 if (use_length && nr_bytes < todo)
5479 {
5480 /* Escape chars have filled up the buffer prematurely,
5481 and we have actually sent fewer bytes than planned.
5482 Fix-up the length field of the packet. Use the same
5483 number of characters as before. */
5484 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
5485 *plen = ':'; /* overwrite \0 from hexnumnstr() */
5486 }
5487 }
5488 else
5489 {
5490 /* Normal mode: Send target system values byte by byte, in
5491 increasing byte addresses. Each byte is encoded as a two hex
5492 value. */
5493 nr_bytes = bin2hex (myaddr, p, todo);
5494 p += 2 * nr_bytes;
5495 }
5496
5497 putpkt_binary (rs->buf, (int) (p - rs->buf));
5498 getpkt (&rs->buf, &rs->buf_size, 0);
5499
5500 if (rs->buf[0] == 'E')
5501 {
5502 /* There is no correspondance between what the remote protocol
5503 uses for errors and errno codes. We would like a cleaner way
5504 of representing errors (big enough to include errno codes,
5505 bfd_error codes, and others). But for now just return EIO. */
5506 errno = EIO;
5507 return 0;
5508 }
5509
5510 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
5511 fewer bytes than we'd planned. */
5512 return nr_bytes;
5513 }
5514
5515 /* Write memory data directly to the remote machine.
5516 This does not inform the data cache; the data cache uses this.
5517 MEMADDR is the address in the remote memory space.
5518 MYADDR is the address of the buffer in our space.
5519 LEN is the number of bytes.
5520
5521 Returns number of bytes transferred, or 0 (setting errno) for
5522 error. Only transfer a single packet. */
5523
5524 int
5525 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
5526 {
5527 char *packet_format = 0;
5528
5529 /* Check whether the target supports binary download. */
5530 check_binary_download (memaddr);
5531
5532 switch (remote_protocol_packets[PACKET_X].support)
5533 {
5534 case PACKET_ENABLE:
5535 packet_format = "X";
5536 break;
5537 case PACKET_DISABLE:
5538 packet_format = "M";
5539 break;
5540 case PACKET_SUPPORT_UNKNOWN:
5541 internal_error (__FILE__, __LINE__,
5542 _("remote_write_bytes: bad internal state"));
5543 default:
5544 internal_error (__FILE__, __LINE__, _("bad switch"));
5545 }
5546
5547 return remote_write_bytes_aux (packet_format,
5548 memaddr, myaddr, len, packet_format[0], 1);
5549 }
5550
5551 /* Read memory data directly from the remote machine.
5552 This does not use the data cache; the data cache uses this.
5553 MEMADDR is the address in the remote memory space.
5554 MYADDR is the address of the buffer in our space.
5555 LEN is the number of bytes.
5556
5557 Returns number of bytes transferred, or 0 for error. */
5558
5559 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
5560 remote targets) shouldn't attempt to read the entire buffer.
5561 Instead it should read a single packet worth of data and then
5562 return the byte size of that packet to the caller. The caller (its
5563 caller and its callers caller ;-) already contains code for
5564 handling partial reads. */
5565
5566 int
5567 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
5568 {
5569 struct remote_state *rs = get_remote_state ();
5570 int max_buf_size; /* Max size of packet output buffer. */
5571 int origlen;
5572
5573 if (len <= 0)
5574 return 0;
5575
5576 max_buf_size = get_memory_read_packet_size ();
5577 /* The packet buffer will be large enough for the payload;
5578 get_memory_packet_size ensures this. */
5579
5580 origlen = len;
5581 while (len > 0)
5582 {
5583 char *p;
5584 int todo;
5585 int i;
5586
5587 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
5588
5589 /* construct "m"<memaddr>","<len>" */
5590 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
5591 memaddr = remote_address_masked (memaddr);
5592 p = rs->buf;
5593 *p++ = 'm';
5594 p += hexnumstr (p, (ULONGEST) memaddr);
5595 *p++ = ',';
5596 p += hexnumstr (p, (ULONGEST) todo);
5597 *p = '\0';
5598
5599 putpkt (rs->buf);
5600 getpkt (&rs->buf, &rs->buf_size, 0);
5601
5602 if (rs->buf[0] == 'E'
5603 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
5604 && rs->buf[3] == '\0')
5605 {
5606 /* There is no correspondance between what the remote
5607 protocol uses for errors and errno codes. We would like
5608 a cleaner way of representing errors (big enough to
5609 include errno codes, bfd_error codes, and others). But
5610 for now just return EIO. */
5611 errno = EIO;
5612 return 0;
5613 }
5614
5615 /* Reply describes memory byte by byte,
5616 each byte encoded as two hex characters. */
5617
5618 p = rs->buf;
5619 if ((i = hex2bin (p, myaddr, todo)) < todo)
5620 {
5621 /* Reply is short. This means that we were able to read
5622 only part of what we wanted to. */
5623 return i + (origlen - len);
5624 }
5625 myaddr += todo;
5626 memaddr += todo;
5627 len -= todo;
5628 }
5629 return origlen;
5630 }
5631 \f
5632
5633 /* Remote notification handler. */
5634
5635 static void
5636 handle_notification (char *buf, size_t length)
5637 {
5638 if (strncmp (buf, "Stop:", 5) == 0)
5639 {
5640 if (pending_stop_reply)
5641 /* We've already parsed the in-flight stop-reply, but the stub
5642 for some reason thought we didn't, possibly due to timeout
5643 on its side. Just ignore it. */
5644 ;
5645 else
5646 {
5647 struct cleanup *old_chain;
5648 struct stop_reply *reply = stop_reply_xmalloc ();
5649 old_chain = make_cleanup (do_stop_reply_xfree, reply);
5650
5651 remote_parse_stop_reply (buf + 5, reply);
5652
5653 discard_cleanups (old_chain);
5654
5655 /* Be careful to only set it after parsing, since an error
5656 may be thrown then. */
5657 pending_stop_reply = reply;
5658
5659 /* Notify the event loop there's a stop reply to acknowledge
5660 and that there may be more events to fetch. */
5661 mark_async_event_handler (remote_async_get_pending_events_token);
5662 }
5663 }
5664 else
5665 /* We ignore notifications we don't recognize, for compatibility
5666 with newer stubs. */
5667 ;
5668 }
5669
5670 \f
5671 /* Read or write LEN bytes from inferior memory at MEMADDR,
5672 transferring to or from debugger address BUFFER. Write to inferior
5673 if SHOULD_WRITE is nonzero. Returns length of data written or
5674 read; 0 for error. TARGET is unused. */
5675
5676 static int
5677 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
5678 int should_write, struct mem_attrib *attrib,
5679 struct target_ops *target)
5680 {
5681 int res;
5682
5683 set_general_thread (inferior_ptid);
5684
5685 if (should_write)
5686 res = remote_write_bytes (mem_addr, buffer, mem_len);
5687 else
5688 res = remote_read_bytes (mem_addr, buffer, mem_len);
5689
5690 return res;
5691 }
5692
5693 /* Sends a packet with content determined by the printf format string
5694 FORMAT and the remaining arguments, then gets the reply. Returns
5695 whether the packet was a success, a failure, or unknown. */
5696
5697 enum packet_result
5698 remote_send_printf (const char *format, ...)
5699 {
5700 struct remote_state *rs = get_remote_state ();
5701 int max_size = get_remote_packet_size ();
5702
5703 va_list ap;
5704 va_start (ap, format);
5705
5706 rs->buf[0] = '\0';
5707 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
5708 internal_error (__FILE__, __LINE__, "Too long remote packet.");
5709
5710 if (putpkt (rs->buf) < 0)
5711 error (_("Communication problem with target."));
5712
5713 rs->buf[0] = '\0';
5714 getpkt (&rs->buf, &rs->buf_size, 0);
5715
5716 return packet_check_result (rs->buf);
5717 }
5718
5719 static void
5720 restore_remote_timeout (void *p)
5721 {
5722 int value = *(int *)p;
5723 remote_timeout = value;
5724 }
5725
5726 /* Flash writing can take quite some time. We'll set
5727 effectively infinite timeout for flash operations.
5728 In future, we'll need to decide on a better approach. */
5729 static const int remote_flash_timeout = 1000;
5730
5731 static void
5732 remote_flash_erase (struct target_ops *ops,
5733 ULONGEST address, LONGEST length)
5734 {
5735 int saved_remote_timeout = remote_timeout;
5736 enum packet_result ret;
5737
5738 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5739 &saved_remote_timeout);
5740 remote_timeout = remote_flash_timeout;
5741
5742 ret = remote_send_printf ("vFlashErase:%s,%s",
5743 paddr (address),
5744 phex (length, 4));
5745 switch (ret)
5746 {
5747 case PACKET_UNKNOWN:
5748 error (_("Remote target does not support flash erase"));
5749 case PACKET_ERROR:
5750 error (_("Error erasing flash with vFlashErase packet"));
5751 default:
5752 break;
5753 }
5754
5755 do_cleanups (back_to);
5756 }
5757
5758 static LONGEST
5759 remote_flash_write (struct target_ops *ops,
5760 ULONGEST address, LONGEST length,
5761 const gdb_byte *data)
5762 {
5763 int saved_remote_timeout = remote_timeout;
5764 int ret;
5765 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5766 &saved_remote_timeout);
5767
5768 remote_timeout = remote_flash_timeout;
5769 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
5770 do_cleanups (back_to);
5771
5772 return ret;
5773 }
5774
5775 static void
5776 remote_flash_done (struct target_ops *ops)
5777 {
5778 int saved_remote_timeout = remote_timeout;
5779 int ret;
5780 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5781 &saved_remote_timeout);
5782
5783 remote_timeout = remote_flash_timeout;
5784 ret = remote_send_printf ("vFlashDone");
5785 do_cleanups (back_to);
5786
5787 switch (ret)
5788 {
5789 case PACKET_UNKNOWN:
5790 error (_("Remote target does not support vFlashDone"));
5791 case PACKET_ERROR:
5792 error (_("Error finishing flash operation"));
5793 default:
5794 break;
5795 }
5796 }
5797
5798 static void
5799 remote_files_info (struct target_ops *ignore)
5800 {
5801 puts_filtered ("Debugging a target over a serial line.\n");
5802 }
5803 \f
5804 /* Stuff for dealing with the packets which are part of this protocol.
5805 See comment at top of file for details. */
5806
5807 /* Read a single character from the remote end. */
5808
5809 static int
5810 readchar (int timeout)
5811 {
5812 int ch;
5813
5814 ch = serial_readchar (remote_desc, timeout);
5815
5816 if (ch >= 0)
5817 return ch;
5818
5819 switch ((enum serial_rc) ch)
5820 {
5821 case SERIAL_EOF:
5822 pop_target ();
5823 error (_("Remote connection closed"));
5824 /* no return */
5825 case SERIAL_ERROR:
5826 perror_with_name (_("Remote communication error"));
5827 /* no return */
5828 case SERIAL_TIMEOUT:
5829 break;
5830 }
5831 return ch;
5832 }
5833
5834 /* Send the command in *BUF to the remote machine, and read the reply
5835 into *BUF. Report an error if we get an error reply. Resize
5836 *BUF using xrealloc if necessary to hold the result, and update
5837 *SIZEOF_BUF. */
5838
5839 static void
5840 remote_send (char **buf,
5841 long *sizeof_buf)
5842 {
5843 putpkt (*buf);
5844 getpkt (buf, sizeof_buf, 0);
5845
5846 if ((*buf)[0] == 'E')
5847 error (_("Remote failure reply: %s"), *buf);
5848 }
5849
5850 /* Return a pointer to an xmalloc'ed string representing an escaped
5851 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
5852 etc. The caller is responsible for releasing the returned
5853 memory. */
5854
5855 static char *
5856 escape_buffer (const char *buf, int n)
5857 {
5858 struct cleanup *old_chain;
5859 struct ui_file *stb;
5860 char *str;
5861 long length;
5862
5863 stb = mem_fileopen ();
5864 old_chain = make_cleanup_ui_file_delete (stb);
5865
5866 fputstrn_unfiltered (buf, n, 0, stb);
5867 str = ui_file_xstrdup (stb, &length);
5868 do_cleanups (old_chain);
5869 return str;
5870 }
5871
5872 /* Display a null-terminated packet on stdout, for debugging, using C
5873 string notation. */
5874
5875 static void
5876 print_packet (char *buf)
5877 {
5878 puts_filtered ("\"");
5879 fputstr_filtered (buf, '"', gdb_stdout);
5880 puts_filtered ("\"");
5881 }
5882
5883 int
5884 putpkt (char *buf)
5885 {
5886 return putpkt_binary (buf, strlen (buf));
5887 }
5888
5889 /* Send a packet to the remote machine, with error checking. The data
5890 of the packet is in BUF. The string in BUF can be at most
5891 get_remote_packet_size () - 5 to account for the $, # and checksum,
5892 and for a possible /0 if we are debugging (remote_debug) and want
5893 to print the sent packet as a string. */
5894
5895 static int
5896 putpkt_binary (char *buf, int cnt)
5897 {
5898 struct remote_state *rs = get_remote_state ();
5899 int i;
5900 unsigned char csum = 0;
5901 char *buf2 = alloca (cnt + 6);
5902
5903 int ch;
5904 int tcount = 0;
5905 char *p;
5906
5907 /* Catch cases like trying to read memory or listing threads while
5908 we're waiting for a stop reply. The remote server wouldn't be
5909 ready to handle this request, so we'd hang and timeout. We don't
5910 have to worry about this in synchronous mode, because in that
5911 case it's not possible to issue a command while the target is
5912 running. This is not a problem in non-stop mode, because in that
5913 case, the stub is always ready to process serial input. */
5914 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
5915 error (_("Cannot execute this command while the target is running."));
5916
5917 /* We're sending out a new packet. Make sure we don't look at a
5918 stale cached response. */
5919 rs->cached_wait_status = 0;
5920
5921 /* Copy the packet into buffer BUF2, encapsulating it
5922 and giving it a checksum. */
5923
5924 p = buf2;
5925 *p++ = '$';
5926
5927 for (i = 0; i < cnt; i++)
5928 {
5929 csum += buf[i];
5930 *p++ = buf[i];
5931 }
5932 *p++ = '#';
5933 *p++ = tohex ((csum >> 4) & 0xf);
5934 *p++ = tohex (csum & 0xf);
5935
5936 /* Send it over and over until we get a positive ack. */
5937
5938 while (1)
5939 {
5940 int started_error_output = 0;
5941
5942 if (remote_debug)
5943 {
5944 struct cleanup *old_chain;
5945 char *str;
5946
5947 *p = '\0';
5948 str = escape_buffer (buf2, p - buf2);
5949 old_chain = make_cleanup (xfree, str);
5950 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
5951 gdb_flush (gdb_stdlog);
5952 do_cleanups (old_chain);
5953 }
5954 if (serial_write (remote_desc, buf2, p - buf2))
5955 perror_with_name (_("putpkt: write failed"));
5956
5957 /* If this is a no acks version of the remote protocol, send the
5958 packet and move on. */
5959 if (rs->noack_mode)
5960 break;
5961
5962 /* Read until either a timeout occurs (-2) or '+' is read.
5963 Handle any notification that arrives in the mean time. */
5964 while (1)
5965 {
5966 ch = readchar (remote_timeout);
5967
5968 if (remote_debug)
5969 {
5970 switch (ch)
5971 {
5972 case '+':
5973 case '-':
5974 case SERIAL_TIMEOUT:
5975 case '$':
5976 case '%':
5977 if (started_error_output)
5978 {
5979 putchar_unfiltered ('\n');
5980 started_error_output = 0;
5981 }
5982 }
5983 }
5984
5985 switch (ch)
5986 {
5987 case '+':
5988 if (remote_debug)
5989 fprintf_unfiltered (gdb_stdlog, "Ack\n");
5990 return 1;
5991 case '-':
5992 if (remote_debug)
5993 fprintf_unfiltered (gdb_stdlog, "Nak\n");
5994 case SERIAL_TIMEOUT:
5995 tcount++;
5996 if (tcount > 3)
5997 return 0;
5998 break; /* Retransmit buffer. */
5999 case '$':
6000 {
6001 if (remote_debug)
6002 fprintf_unfiltered (gdb_stdlog,
6003 "Packet instead of Ack, ignoring it\n");
6004 /* It's probably an old response sent because an ACK
6005 was lost. Gobble up the packet and ack it so it
6006 doesn't get retransmitted when we resend this
6007 packet. */
6008 skip_frame ();
6009 serial_write (remote_desc, "+", 1);
6010 continue; /* Now, go look for +. */
6011 }
6012
6013 case '%':
6014 {
6015 int val;
6016
6017 /* If we got a notification, handle it, and go back to looking
6018 for an ack. */
6019 /* We've found the start of a notification. Now
6020 collect the data. */
6021 val = read_frame (&rs->buf, &rs->buf_size);
6022 if (val >= 0)
6023 {
6024 if (remote_debug)
6025 {
6026 struct cleanup *old_chain;
6027 char *str;
6028
6029 str = escape_buffer (rs->buf, val);
6030 old_chain = make_cleanup (xfree, str);
6031 fprintf_unfiltered (gdb_stdlog,
6032 " Notification received: %s\n",
6033 str);
6034 do_cleanups (old_chain);
6035 }
6036 handle_notification (rs->buf, val);
6037 /* We're in sync now, rewait for the ack. */
6038 tcount = 0;
6039 }
6040 else
6041 {
6042 if (remote_debug)
6043 {
6044 if (!started_error_output)
6045 {
6046 started_error_output = 1;
6047 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6048 }
6049 fputc_unfiltered (ch & 0177, gdb_stdlog);
6050 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6051 }
6052 }
6053 continue;
6054 }
6055 /* fall-through */
6056 default:
6057 if (remote_debug)
6058 {
6059 if (!started_error_output)
6060 {
6061 started_error_output = 1;
6062 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6063 }
6064 fputc_unfiltered (ch & 0177, gdb_stdlog);
6065 }
6066 continue;
6067 }
6068 break; /* Here to retransmit. */
6069 }
6070
6071 #if 0
6072 /* This is wrong. If doing a long backtrace, the user should be
6073 able to get out next time we call QUIT, without anything as
6074 violent as interrupt_query. If we want to provide a way out of
6075 here without getting to the next QUIT, it should be based on
6076 hitting ^C twice as in remote_wait. */
6077 if (quit_flag)
6078 {
6079 quit_flag = 0;
6080 interrupt_query ();
6081 }
6082 #endif
6083 }
6084 return 0;
6085 }
6086
6087 /* Come here after finding the start of a frame when we expected an
6088 ack. Do our best to discard the rest of this packet. */
6089
6090 static void
6091 skip_frame (void)
6092 {
6093 int c;
6094
6095 while (1)
6096 {
6097 c = readchar (remote_timeout);
6098 switch (c)
6099 {
6100 case SERIAL_TIMEOUT:
6101 /* Nothing we can do. */
6102 return;
6103 case '#':
6104 /* Discard the two bytes of checksum and stop. */
6105 c = readchar (remote_timeout);
6106 if (c >= 0)
6107 c = readchar (remote_timeout);
6108
6109 return;
6110 case '*': /* Run length encoding. */
6111 /* Discard the repeat count. */
6112 c = readchar (remote_timeout);
6113 if (c < 0)
6114 return;
6115 break;
6116 default:
6117 /* A regular character. */
6118 break;
6119 }
6120 }
6121 }
6122
6123 /* Come here after finding the start of the frame. Collect the rest
6124 into *BUF, verifying the checksum, length, and handling run-length
6125 compression. NUL terminate the buffer. If there is not enough room,
6126 expand *BUF using xrealloc.
6127
6128 Returns -1 on error, number of characters in buffer (ignoring the
6129 trailing NULL) on success. (could be extended to return one of the
6130 SERIAL status indications). */
6131
6132 static long
6133 read_frame (char **buf_p,
6134 long *sizeof_buf)
6135 {
6136 unsigned char csum;
6137 long bc;
6138 int c;
6139 char *buf = *buf_p;
6140 struct remote_state *rs = get_remote_state ();
6141
6142 csum = 0;
6143 bc = 0;
6144
6145 while (1)
6146 {
6147 c = readchar (remote_timeout);
6148 switch (c)
6149 {
6150 case SERIAL_TIMEOUT:
6151 if (remote_debug)
6152 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6153 return -1;
6154 case '$':
6155 if (remote_debug)
6156 fputs_filtered ("Saw new packet start in middle of old one\n",
6157 gdb_stdlog);
6158 return -1; /* Start a new packet, count retries. */
6159 case '#':
6160 {
6161 unsigned char pktcsum;
6162 int check_0 = 0;
6163 int check_1 = 0;
6164
6165 buf[bc] = '\0';
6166
6167 check_0 = readchar (remote_timeout);
6168 if (check_0 >= 0)
6169 check_1 = readchar (remote_timeout);
6170
6171 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6172 {
6173 if (remote_debug)
6174 fputs_filtered ("Timeout in checksum, retrying\n",
6175 gdb_stdlog);
6176 return -1;
6177 }
6178 else if (check_0 < 0 || check_1 < 0)
6179 {
6180 if (remote_debug)
6181 fputs_filtered ("Communication error in checksum\n",
6182 gdb_stdlog);
6183 return -1;
6184 }
6185
6186 /* Don't recompute the checksum; with no ack packets we
6187 don't have any way to indicate a packet retransmission
6188 is necessary. */
6189 if (rs->noack_mode)
6190 return bc;
6191
6192 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6193 if (csum == pktcsum)
6194 return bc;
6195
6196 if (remote_debug)
6197 {
6198 struct cleanup *old_chain;
6199 char *str;
6200
6201 str = escape_buffer (buf, bc);
6202 old_chain = make_cleanup (xfree, str);
6203 fprintf_unfiltered (gdb_stdlog,
6204 "\
6205 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6206 pktcsum, csum, str);
6207 do_cleanups (old_chain);
6208 }
6209 /* Number of characters in buffer ignoring trailing
6210 NULL. */
6211 return -1;
6212 }
6213 case '*': /* Run length encoding. */
6214 {
6215 int repeat;
6216 csum += c;
6217
6218 c = readchar (remote_timeout);
6219 csum += c;
6220 repeat = c - ' ' + 3; /* Compute repeat count. */
6221
6222 /* The character before ``*'' is repeated. */
6223
6224 if (repeat > 0 && repeat <= 255 && bc > 0)
6225 {
6226 if (bc + repeat - 1 >= *sizeof_buf - 1)
6227 {
6228 /* Make some more room in the buffer. */
6229 *sizeof_buf += repeat;
6230 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6231 buf = *buf_p;
6232 }
6233
6234 memset (&buf[bc], buf[bc - 1], repeat);
6235 bc += repeat;
6236 continue;
6237 }
6238
6239 buf[bc] = '\0';
6240 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6241 return -1;
6242 }
6243 default:
6244 if (bc >= *sizeof_buf - 1)
6245 {
6246 /* Make some more room in the buffer. */
6247 *sizeof_buf *= 2;
6248 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6249 buf = *buf_p;
6250 }
6251
6252 buf[bc++] = c;
6253 csum += c;
6254 continue;
6255 }
6256 }
6257 }
6258
6259 /* Read a packet from the remote machine, with error checking, and
6260 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6261 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6262 rather than timing out; this is used (in synchronous mode) to wait
6263 for a target that is is executing user code to stop. */
6264 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6265 don't have to change all the calls to getpkt to deal with the
6266 return value, because at the moment I don't know what the right
6267 thing to do it for those. */
6268 void
6269 getpkt (char **buf,
6270 long *sizeof_buf,
6271 int forever)
6272 {
6273 int timed_out;
6274
6275 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6276 }
6277
6278
6279 /* Read a packet from the remote machine, with error checking, and
6280 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6281 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6282 rather than timing out; this is used (in synchronous mode) to wait
6283 for a target that is is executing user code to stop. If FOREVER ==
6284 0, this function is allowed to time out gracefully and return an
6285 indication of this to the caller. Otherwise return the number of
6286 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6287 enough reason to return to the caller. */
6288
6289 static int
6290 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6291 int expecting_notif)
6292 {
6293 struct remote_state *rs = get_remote_state ();
6294 int c;
6295 int tries;
6296 int timeout;
6297 int val;
6298
6299 /* We're reading a new response. Make sure we don't look at a
6300 previously cached response. */
6301 rs->cached_wait_status = 0;
6302
6303 strcpy (*buf, "timeout");
6304
6305 if (forever)
6306 timeout = watchdog > 0 ? watchdog : -1;
6307 else if (expecting_notif)
6308 timeout = 0; /* There should already be a char in the buffer. If
6309 not, bail out. */
6310 else
6311 timeout = remote_timeout;
6312
6313 #define MAX_TRIES 3
6314
6315 /* Process any number of notifications, and then return when
6316 we get a packet. */
6317 for (;;)
6318 {
6319 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6320 times. */
6321 for (tries = 1; tries <= MAX_TRIES; tries++)
6322 {
6323 /* This can loop forever if the remote side sends us
6324 characters continuously, but if it pauses, we'll get
6325 SERIAL_TIMEOUT from readchar because of timeout. Then
6326 we'll count that as a retry.
6327
6328 Note that even when forever is set, we will only wait
6329 forever prior to the start of a packet. After that, we
6330 expect characters to arrive at a brisk pace. They should
6331 show up within remote_timeout intervals. */
6332 do
6333 c = readchar (timeout);
6334 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6335
6336 if (c == SERIAL_TIMEOUT)
6337 {
6338 if (expecting_notif)
6339 return -1; /* Don't complain, it's normal to not get
6340 anything in this case. */
6341
6342 if (forever) /* Watchdog went off? Kill the target. */
6343 {
6344 QUIT;
6345 pop_target ();
6346 error (_("Watchdog timeout has expired. Target detached."));
6347 }
6348 if (remote_debug)
6349 fputs_filtered ("Timed out.\n", gdb_stdlog);
6350 }
6351 else
6352 {
6353 /* We've found the start of a packet or notification.
6354 Now collect the data. */
6355 val = read_frame (buf, sizeof_buf);
6356 if (val >= 0)
6357 break;
6358 }
6359
6360 serial_write (remote_desc, "-", 1);
6361 }
6362
6363 if (tries > MAX_TRIES)
6364 {
6365 /* We have tried hard enough, and just can't receive the
6366 packet/notification. Give up. */
6367 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6368
6369 /* Skip the ack char if we're in no-ack mode. */
6370 if (!rs->noack_mode)
6371 serial_write (remote_desc, "+", 1);
6372 return -1;
6373 }
6374
6375 /* If we got an ordinary packet, return that to our caller. */
6376 if (c == '$')
6377 {
6378 if (remote_debug)
6379 {
6380 struct cleanup *old_chain;
6381 char *str;
6382
6383 str = escape_buffer (*buf, val);
6384 old_chain = make_cleanup (xfree, str);
6385 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6386 do_cleanups (old_chain);
6387 }
6388
6389 /* Skip the ack char if we're in no-ack mode. */
6390 if (!rs->noack_mode)
6391 serial_write (remote_desc, "+", 1);
6392 return val;
6393 }
6394
6395 /* If we got a notification, handle it, and go back to looking
6396 for a packet. */
6397 else
6398 {
6399 gdb_assert (c == '%');
6400
6401 if (remote_debug)
6402 {
6403 struct cleanup *old_chain;
6404 char *str;
6405
6406 str = escape_buffer (*buf, val);
6407 old_chain = make_cleanup (xfree, str);
6408 fprintf_unfiltered (gdb_stdlog,
6409 " Notification received: %s\n",
6410 str);
6411 do_cleanups (old_chain);
6412 }
6413
6414 handle_notification (*buf, val);
6415
6416 /* Notifications require no acknowledgement. */
6417
6418 if (expecting_notif)
6419 return -1;
6420 }
6421 }
6422 }
6423
6424 static int
6425 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6426 {
6427 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6428 }
6429
6430 static int
6431 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6432 {
6433 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6434 }
6435
6436 \f
6437 static void
6438 remote_kill (void)
6439 {
6440 /* Use catch_errors so the user can quit from gdb even when we
6441 aren't on speaking terms with the remote system. */
6442 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6443
6444 /* Don't wait for it to die. I'm not really sure it matters whether
6445 we do or not. For the existing stubs, kill is a noop. */
6446 target_mourn_inferior ();
6447 }
6448
6449 static int
6450 remote_vkill (int pid, struct remote_state *rs)
6451 {
6452 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6453 return -1;
6454
6455 /* Tell the remote target to detach. */
6456 sprintf (rs->buf, "vKill;%x", pid);
6457 putpkt (rs->buf);
6458 getpkt (&rs->buf, &rs->buf_size, 0);
6459
6460 if (packet_ok (rs->buf,
6461 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6462 return 0;
6463 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6464 return -1;
6465 else
6466 return 1;
6467 }
6468
6469 static void
6470 extended_remote_kill (void)
6471 {
6472 int res;
6473 int pid = ptid_get_pid (inferior_ptid);
6474 struct remote_state *rs = get_remote_state ();
6475
6476 res = remote_vkill (pid, rs);
6477 if (res == -1 && !remote_multi_process_p (rs))
6478 {
6479 /* Don't try 'k' on a multi-process aware stub -- it has no way
6480 to specify the pid. */
6481
6482 putpkt ("k");
6483 #if 0
6484 getpkt (&rs->buf, &rs->buf_size, 0);
6485 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
6486 res = 1;
6487 #else
6488 /* Don't wait for it to die. I'm not really sure it matters whether
6489 we do or not. For the existing stubs, kill is a noop. */
6490 res = 0;
6491 #endif
6492 }
6493
6494 if (res != 0)
6495 error (_("Can't kill process"));
6496
6497 delete_inferior (pid);
6498 target_mourn_inferior ();
6499 }
6500
6501 static void
6502 remote_mourn (struct target_ops *ops)
6503 {
6504 remote_mourn_1 (ops);
6505 }
6506
6507 /* Worker function for remote_mourn. */
6508 static void
6509 remote_mourn_1 (struct target_ops *target)
6510 {
6511 unpush_target (target);
6512
6513 /* remote_close takes care of cleaning up. */
6514 }
6515
6516 static int
6517 select_new_thread_callback (struct thread_info *th, void* data)
6518 {
6519 if (!is_exited (th->ptid))
6520 {
6521 switch_to_thread (th->ptid);
6522 printf_filtered (_("[Switching to %s]\n"),
6523 target_pid_to_str (inferior_ptid));
6524 return 1;
6525 }
6526 return 0;
6527 }
6528
6529 static void
6530 extended_remote_mourn_1 (struct target_ops *target)
6531 {
6532 struct remote_state *rs = get_remote_state ();
6533
6534 /* In case we got here due to an error, but we're going to stay
6535 connected. */
6536 rs->waiting_for_stop_reply = 0;
6537
6538 /* We're no longer interested in these events. */
6539 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
6540
6541 /* Unlike "target remote", we do not want to unpush the target; then
6542 the next time the user says "run", we won't be connected. */
6543
6544 if (have_inferiors ())
6545 {
6546 extern void nullify_last_target_wait_ptid ();
6547 /* Multi-process case. The current process has exited, but
6548 there are other processes to debug. Switch to the first
6549 available. */
6550 iterate_over_threads (select_new_thread_callback, NULL);
6551 nullify_last_target_wait_ptid ();
6552 }
6553 else
6554 {
6555 struct remote_state *rs = get_remote_state ();
6556
6557 /* Call common code to mark the inferior as not running. */
6558 generic_mourn_inferior ();
6559 if (!remote_multi_process_p (rs))
6560 {
6561 /* Check whether the target is running now - some remote stubs
6562 automatically restart after kill. */
6563 putpkt ("?");
6564 getpkt (&rs->buf, &rs->buf_size, 0);
6565
6566 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
6567 {
6568 /* Assume that the target has been restarted. Set inferior_ptid
6569 so that bits of core GDB realizes there's something here, e.g.,
6570 so that the user can say "kill" again. */
6571 inferior_ptid = magic_null_ptid;
6572 }
6573 else
6574 {
6575 /* Mark this (still pushed) target as not executable until we
6576 restart it. */
6577 target_mark_exited (target);
6578 }
6579 }
6580 else
6581 /* Always remove execution if this was the last process. */
6582 target_mark_exited (target);
6583 }
6584 }
6585
6586 static void
6587 extended_remote_mourn (struct target_ops *ops)
6588 {
6589 extended_remote_mourn_1 (ops);
6590 }
6591
6592 static int
6593 extended_remote_run (char *args)
6594 {
6595 struct remote_state *rs = get_remote_state ();
6596 char *p;
6597 int len;
6598
6599 /* If the user has disabled vRun support, or we have detected that
6600 support is not available, do not try it. */
6601 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6602 return -1;
6603
6604 strcpy (rs->buf, "vRun;");
6605 len = strlen (rs->buf);
6606
6607 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
6608 error (_("Remote file name too long for run packet"));
6609 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
6610
6611 gdb_assert (args != NULL);
6612 if (*args)
6613 {
6614 struct cleanup *back_to;
6615 int i;
6616 char **argv;
6617
6618 argv = gdb_buildargv (args);
6619 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
6620 for (i = 0; argv[i] != NULL; i++)
6621 {
6622 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
6623 error (_("Argument list too long for run packet"));
6624 rs->buf[len++] = ';';
6625 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
6626 }
6627 do_cleanups (back_to);
6628 }
6629
6630 rs->buf[len++] = '\0';
6631
6632 putpkt (rs->buf);
6633 getpkt (&rs->buf, &rs->buf_size, 0);
6634
6635 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
6636 {
6637 /* We have a wait response; we don't need it, though. All is well. */
6638 return 0;
6639 }
6640 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6641 /* It wasn't disabled before, but it is now. */
6642 return -1;
6643 else
6644 {
6645 if (remote_exec_file[0] == '\0')
6646 error (_("Running the default executable on the remote target failed; "
6647 "try \"set remote exec-file\"?"));
6648 else
6649 error (_("Running \"%s\" on the remote target failed"),
6650 remote_exec_file);
6651 }
6652 }
6653
6654 /* In the extended protocol we want to be able to do things like
6655 "run" and have them basically work as expected. So we need
6656 a special create_inferior function. We support changing the
6657 executable file and the command line arguments, but not the
6658 environment. */
6659
6660 static void
6661 extended_remote_create_inferior_1 (char *exec_file, char *args,
6662 char **env, int from_tty)
6663 {
6664 /* If running asynchronously, register the target file descriptor
6665 with the event loop. */
6666 if (target_can_async_p ())
6667 target_async (inferior_event_handler, 0);
6668
6669 /* Now restart the remote server. */
6670 if (extended_remote_run (args) == -1)
6671 {
6672 /* vRun was not supported. Fail if we need it to do what the
6673 user requested. */
6674 if (remote_exec_file[0])
6675 error (_("Remote target does not support \"set remote exec-file\""));
6676 if (args[0])
6677 error (_("Remote target does not support \"set args\" or run <ARGS>"));
6678
6679 /* Fall back to "R". */
6680 extended_remote_restart ();
6681 }
6682
6683 /* Clean up from the last time we ran, before we mark the target
6684 running again. This will mark breakpoints uninserted, and
6685 get_offsets may insert breakpoints. */
6686 init_thread_list ();
6687 init_wait_for_inferior ();
6688
6689 /* Now mark the inferior as running before we do anything else. */
6690 inferior_ptid = magic_null_ptid;
6691
6692 /* Now, if we have thread information, update inferior_ptid. */
6693 inferior_ptid = remote_current_thread (inferior_ptid);
6694
6695 add_inferior (ptid_get_pid (inferior_ptid));
6696 add_thread_silent (inferior_ptid);
6697
6698 target_mark_running (&extended_remote_ops);
6699
6700 /* Get updated offsets, if the stub uses qOffsets. */
6701 get_offsets ();
6702 }
6703
6704 static void
6705 extended_remote_create_inferior (struct target_ops *ops,
6706 char *exec_file, char *args,
6707 char **env, int from_tty)
6708 {
6709 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
6710 }
6711 \f
6712
6713 /* Insert a breakpoint. On targets that have software breakpoint
6714 support, we ask the remote target to do the work; on targets
6715 which don't, we insert a traditional memory breakpoint. */
6716
6717 static int
6718 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
6719 {
6720 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
6721 If it succeeds, then set the support to PACKET_ENABLE. If it
6722 fails, and the user has explicitly requested the Z support then
6723 report an error, otherwise, mark it disabled and go on. */
6724
6725 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6726 {
6727 CORE_ADDR addr = bp_tgt->placed_address;
6728 struct remote_state *rs;
6729 char *p;
6730 int bpsize;
6731
6732 gdbarch_breakpoint_from_pc (target_gdbarch, &addr, &bpsize);
6733
6734 rs = get_remote_state ();
6735 p = rs->buf;
6736
6737 *(p++) = 'Z';
6738 *(p++) = '0';
6739 *(p++) = ',';
6740 addr = (ULONGEST) remote_address_masked (addr);
6741 p += hexnumstr (p, addr);
6742 sprintf (p, ",%d", bpsize);
6743
6744 putpkt (rs->buf);
6745 getpkt (&rs->buf, &rs->buf_size, 0);
6746
6747 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
6748 {
6749 case PACKET_ERROR:
6750 return -1;
6751 case PACKET_OK:
6752 bp_tgt->placed_address = addr;
6753 bp_tgt->placed_size = bpsize;
6754 return 0;
6755 case PACKET_UNKNOWN:
6756 break;
6757 }
6758 }
6759
6760 return memory_insert_breakpoint (bp_tgt);
6761 }
6762
6763 static int
6764 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
6765 {
6766 CORE_ADDR addr = bp_tgt->placed_address;
6767 struct remote_state *rs = get_remote_state ();
6768 int bp_size;
6769
6770 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6771 {
6772 char *p = rs->buf;
6773
6774 *(p++) = 'z';
6775 *(p++) = '0';
6776 *(p++) = ',';
6777
6778 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
6779 p += hexnumstr (p, addr);
6780 sprintf (p, ",%d", bp_tgt->placed_size);
6781
6782 putpkt (rs->buf);
6783 getpkt (&rs->buf, &rs->buf_size, 0);
6784
6785 return (rs->buf[0] == 'E');
6786 }
6787
6788 return memory_remove_breakpoint (bp_tgt);
6789 }
6790
6791 static int
6792 watchpoint_to_Z_packet (int type)
6793 {
6794 switch (type)
6795 {
6796 case hw_write:
6797 return Z_PACKET_WRITE_WP;
6798 break;
6799 case hw_read:
6800 return Z_PACKET_READ_WP;
6801 break;
6802 case hw_access:
6803 return Z_PACKET_ACCESS_WP;
6804 break;
6805 default:
6806 internal_error (__FILE__, __LINE__,
6807 _("hw_bp_to_z: bad watchpoint type %d"), type);
6808 }
6809 }
6810
6811 static int
6812 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
6813 {
6814 struct remote_state *rs = get_remote_state ();
6815 char *p;
6816 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6817
6818 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6819 return -1;
6820
6821 sprintf (rs->buf, "Z%x,", packet);
6822 p = strchr (rs->buf, '\0');
6823 addr = remote_address_masked (addr);
6824 p += hexnumstr (p, (ULONGEST) addr);
6825 sprintf (p, ",%x", len);
6826
6827 putpkt (rs->buf);
6828 getpkt (&rs->buf, &rs->buf_size, 0);
6829
6830 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6831 {
6832 case PACKET_ERROR:
6833 case PACKET_UNKNOWN:
6834 return -1;
6835 case PACKET_OK:
6836 return 0;
6837 }
6838 internal_error (__FILE__, __LINE__,
6839 _("remote_insert_watchpoint: reached end of function"));
6840 }
6841
6842
6843 static int
6844 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
6845 {
6846 struct remote_state *rs = get_remote_state ();
6847 char *p;
6848 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6849
6850 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6851 return -1;
6852
6853 sprintf (rs->buf, "z%x,", packet);
6854 p = strchr (rs->buf, '\0');
6855 addr = remote_address_masked (addr);
6856 p += hexnumstr (p, (ULONGEST) addr);
6857 sprintf (p, ",%x", len);
6858 putpkt (rs->buf);
6859 getpkt (&rs->buf, &rs->buf_size, 0);
6860
6861 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6862 {
6863 case PACKET_ERROR:
6864 case PACKET_UNKNOWN:
6865 return -1;
6866 case PACKET_OK:
6867 return 0;
6868 }
6869 internal_error (__FILE__, __LINE__,
6870 _("remote_remove_watchpoint: reached end of function"));
6871 }
6872
6873
6874 int remote_hw_watchpoint_limit = -1;
6875 int remote_hw_breakpoint_limit = -1;
6876
6877 static int
6878 remote_check_watch_resources (int type, int cnt, int ot)
6879 {
6880 if (type == bp_hardware_breakpoint)
6881 {
6882 if (remote_hw_breakpoint_limit == 0)
6883 return 0;
6884 else if (remote_hw_breakpoint_limit < 0)
6885 return 1;
6886 else if (cnt <= remote_hw_breakpoint_limit)
6887 return 1;
6888 }
6889 else
6890 {
6891 if (remote_hw_watchpoint_limit == 0)
6892 return 0;
6893 else if (remote_hw_watchpoint_limit < 0)
6894 return 1;
6895 else if (ot)
6896 return -1;
6897 else if (cnt <= remote_hw_watchpoint_limit)
6898 return 1;
6899 }
6900 return -1;
6901 }
6902
6903 static int
6904 remote_stopped_by_watchpoint (void)
6905 {
6906 return remote_stopped_by_watchpoint_p;
6907 }
6908
6909 static int
6910 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
6911 {
6912 int rc = 0;
6913 if (remote_stopped_by_watchpoint ())
6914 {
6915 *addr_p = remote_watch_data_address;
6916 rc = 1;
6917 }
6918
6919 return rc;
6920 }
6921
6922
6923 static int
6924 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
6925 {
6926 CORE_ADDR addr;
6927 struct remote_state *rs;
6928 char *p;
6929
6930 /* The length field should be set to the size of a breakpoint
6931 instruction, even though we aren't inserting one ourselves. */
6932
6933 gdbarch_breakpoint_from_pc
6934 (target_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
6935
6936 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
6937 return -1;
6938
6939 rs = get_remote_state ();
6940 p = rs->buf;
6941
6942 *(p++) = 'Z';
6943 *(p++) = '1';
6944 *(p++) = ',';
6945
6946 addr = remote_address_masked (bp_tgt->placed_address);
6947 p += hexnumstr (p, (ULONGEST) addr);
6948 sprintf (p, ",%x", bp_tgt->placed_size);
6949
6950 putpkt (rs->buf);
6951 getpkt (&rs->buf, &rs->buf_size, 0);
6952
6953 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
6954 {
6955 case PACKET_ERROR:
6956 case PACKET_UNKNOWN:
6957 return -1;
6958 case PACKET_OK:
6959 return 0;
6960 }
6961 internal_error (__FILE__, __LINE__,
6962 _("remote_insert_hw_breakpoint: reached end of function"));
6963 }
6964
6965
6966 static int
6967 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
6968 {
6969 CORE_ADDR addr;
6970 struct remote_state *rs = get_remote_state ();
6971 char *p = rs->buf;
6972
6973 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
6974 return -1;
6975
6976 *(p++) = 'z';
6977 *(p++) = '1';
6978 *(p++) = ',';
6979
6980 addr = remote_address_masked (bp_tgt->placed_address);
6981 p += hexnumstr (p, (ULONGEST) addr);
6982 sprintf (p, ",%x", bp_tgt->placed_size);
6983
6984 putpkt (rs->buf);
6985 getpkt (&rs->buf, &rs->buf_size, 0);
6986
6987 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
6988 {
6989 case PACKET_ERROR:
6990 case PACKET_UNKNOWN:
6991 return -1;
6992 case PACKET_OK:
6993 return 0;
6994 }
6995 internal_error (__FILE__, __LINE__,
6996 _("remote_remove_hw_breakpoint: reached end of function"));
6997 }
6998
6999 /* Table used by the crc32 function to calcuate the checksum. */
7000
7001 static unsigned long crc32_table[256] =
7002 {0, 0};
7003
7004 static unsigned long
7005 crc32 (unsigned char *buf, int len, unsigned int crc)
7006 {
7007 if (!crc32_table[1])
7008 {
7009 /* Initialize the CRC table and the decoding table. */
7010 int i, j;
7011 unsigned int c;
7012
7013 for (i = 0; i < 256; i++)
7014 {
7015 for (c = i << 24, j = 8; j > 0; --j)
7016 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7017 crc32_table[i] = c;
7018 }
7019 }
7020
7021 while (len--)
7022 {
7023 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7024 buf++;
7025 }
7026 return crc;
7027 }
7028
7029 /* compare-sections command
7030
7031 With no arguments, compares each loadable section in the exec bfd
7032 with the same memory range on the target, and reports mismatches.
7033 Useful for verifying the image on the target against the exec file.
7034 Depends on the target understanding the new "qCRC:" request. */
7035
7036 /* FIXME: cagney/1999-10-26: This command should be broken down into a
7037 target method (target verify memory) and generic version of the
7038 actual command. This will allow other high-level code (especially
7039 generic_load()) to make use of this target functionality. */
7040
7041 static void
7042 compare_sections_command (char *args, int from_tty)
7043 {
7044 struct remote_state *rs = get_remote_state ();
7045 asection *s;
7046 unsigned long host_crc, target_crc;
7047 extern bfd *exec_bfd;
7048 struct cleanup *old_chain;
7049 char *tmp;
7050 char *sectdata;
7051 const char *sectname;
7052 bfd_size_type size;
7053 bfd_vma lma;
7054 int matched = 0;
7055 int mismatched = 0;
7056
7057 if (!exec_bfd)
7058 error (_("command cannot be used without an exec file"));
7059 if (!current_target.to_shortname ||
7060 strcmp (current_target.to_shortname, "remote") != 0)
7061 error (_("command can only be used with remote target"));
7062
7063 for (s = exec_bfd->sections; s; s = s->next)
7064 {
7065 if (!(s->flags & SEC_LOAD))
7066 continue; /* skip non-loadable section */
7067
7068 size = bfd_get_section_size (s);
7069 if (size == 0)
7070 continue; /* skip zero-length section */
7071
7072 sectname = bfd_get_section_name (exec_bfd, s);
7073 if (args && strcmp (args, sectname) != 0)
7074 continue; /* not the section selected by user */
7075
7076 matched = 1; /* do this section */
7077 lma = s->lma;
7078 /* FIXME: assumes lma can fit into long. */
7079 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7080 (long) lma, (long) size);
7081 putpkt (rs->buf);
7082
7083 /* Be clever; compute the host_crc before waiting for target
7084 reply. */
7085 sectdata = xmalloc (size);
7086 old_chain = make_cleanup (xfree, sectdata);
7087 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7088 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7089
7090 getpkt (&rs->buf, &rs->buf_size, 0);
7091 if (rs->buf[0] == 'E')
7092 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
7093 sectname, paddr (lma), paddr (lma + size));
7094 if (rs->buf[0] != 'C')
7095 error (_("remote target does not support this operation"));
7096
7097 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7098 target_crc = target_crc * 16 + fromhex (*tmp);
7099
7100 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
7101 sectname, paddr (lma), paddr (lma + size));
7102 if (host_crc == target_crc)
7103 printf_filtered ("matched.\n");
7104 else
7105 {
7106 printf_filtered ("MIS-MATCHED!\n");
7107 mismatched++;
7108 }
7109
7110 do_cleanups (old_chain);
7111 }
7112 if (mismatched > 0)
7113 warning (_("One or more sections of the remote executable does not match\n\
7114 the loaded file\n"));
7115 if (args && !matched)
7116 printf_filtered (_("No loaded section named '%s'.\n"), args);
7117 }
7118
7119 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7120 into remote target. The number of bytes written to the remote
7121 target is returned, or -1 for error. */
7122
7123 static LONGEST
7124 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7125 const char *annex, const gdb_byte *writebuf,
7126 ULONGEST offset, LONGEST len,
7127 struct packet_config *packet)
7128 {
7129 int i, buf_len;
7130 ULONGEST n;
7131 gdb_byte *wbuf;
7132 struct remote_state *rs = get_remote_state ();
7133 int max_size = get_memory_write_packet_size ();
7134
7135 if (packet->support == PACKET_DISABLE)
7136 return -1;
7137
7138 /* Insert header. */
7139 i = snprintf (rs->buf, max_size,
7140 "qXfer:%s:write:%s:%s:",
7141 object_name, annex ? annex : "",
7142 phex_nz (offset, sizeof offset));
7143 max_size -= (i + 1);
7144
7145 /* Escape as much data as fits into rs->buf. */
7146 buf_len = remote_escape_output
7147 (writebuf, len, (rs->buf + i), &max_size, max_size);
7148
7149 if (putpkt_binary (rs->buf, i + buf_len) < 0
7150 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7151 || packet_ok (rs->buf, packet) != PACKET_OK)
7152 return -1;
7153
7154 unpack_varlen_hex (rs->buf, &n);
7155 return n;
7156 }
7157
7158 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7159 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7160 number of bytes read is returned, or 0 for EOF, or -1 for error.
7161 The number of bytes read may be less than LEN without indicating an
7162 EOF. PACKET is checked and updated to indicate whether the remote
7163 target supports this object. */
7164
7165 static LONGEST
7166 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7167 const char *annex,
7168 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7169 struct packet_config *packet)
7170 {
7171 static char *finished_object;
7172 static char *finished_annex;
7173 static ULONGEST finished_offset;
7174
7175 struct remote_state *rs = get_remote_state ();
7176 unsigned int total = 0;
7177 LONGEST i, n, packet_len;
7178
7179 if (packet->support == PACKET_DISABLE)
7180 return -1;
7181
7182 /* Check whether we've cached an end-of-object packet that matches
7183 this request. */
7184 if (finished_object)
7185 {
7186 if (strcmp (object_name, finished_object) == 0
7187 && strcmp (annex ? annex : "", finished_annex) == 0
7188 && offset == finished_offset)
7189 return 0;
7190
7191 /* Otherwise, we're now reading something different. Discard
7192 the cache. */
7193 xfree (finished_object);
7194 xfree (finished_annex);
7195 finished_object = NULL;
7196 finished_annex = NULL;
7197 }
7198
7199 /* Request only enough to fit in a single packet. The actual data
7200 may not, since we don't know how much of it will need to be escaped;
7201 the target is free to respond with slightly less data. We subtract
7202 five to account for the response type and the protocol frame. */
7203 n = min (get_remote_packet_size () - 5, len);
7204 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7205 object_name, annex ? annex : "",
7206 phex_nz (offset, sizeof offset),
7207 phex_nz (n, sizeof n));
7208 i = putpkt (rs->buf);
7209 if (i < 0)
7210 return -1;
7211
7212 rs->buf[0] = '\0';
7213 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7214 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7215 return -1;
7216
7217 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7218 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7219
7220 /* 'm' means there is (or at least might be) more data after this
7221 batch. That does not make sense unless there's at least one byte
7222 of data in this reply. */
7223 if (rs->buf[0] == 'm' && packet_len == 1)
7224 error (_("Remote qXfer reply contained no data."));
7225
7226 /* Got some data. */
7227 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7228
7229 /* 'l' is an EOF marker, possibly including a final block of data,
7230 or possibly empty. If we have the final block of a non-empty
7231 object, record this fact to bypass a subsequent partial read. */
7232 if (rs->buf[0] == 'l' && offset + i > 0)
7233 {
7234 finished_object = xstrdup (object_name);
7235 finished_annex = xstrdup (annex ? annex : "");
7236 finished_offset = offset + i;
7237 }
7238
7239 return i;
7240 }
7241
7242 static LONGEST
7243 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7244 const char *annex, gdb_byte *readbuf,
7245 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7246 {
7247 struct remote_state *rs;
7248 int i;
7249 char *p2;
7250 char query_type;
7251
7252 set_general_thread (inferior_ptid);
7253
7254 rs = get_remote_state ();
7255
7256 /* Handle memory using the standard memory routines. */
7257 if (object == TARGET_OBJECT_MEMORY)
7258 {
7259 int xfered;
7260 errno = 0;
7261
7262 /* If the remote target is connected but not running, we should
7263 pass this request down to a lower stratum (e.g. the executable
7264 file). */
7265 if (!target_has_execution)
7266 return 0;
7267
7268 if (writebuf != NULL)
7269 xfered = remote_write_bytes (offset, writebuf, len);
7270 else
7271 xfered = remote_read_bytes (offset, readbuf, len);
7272
7273 if (xfered > 0)
7274 return xfered;
7275 else if (xfered == 0 && errno == 0)
7276 return 0;
7277 else
7278 return -1;
7279 }
7280
7281 /* Handle SPU memory using qxfer packets. */
7282 if (object == TARGET_OBJECT_SPU)
7283 {
7284 if (readbuf)
7285 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7286 &remote_protocol_packets
7287 [PACKET_qXfer_spu_read]);
7288 else
7289 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7290 &remote_protocol_packets
7291 [PACKET_qXfer_spu_write]);
7292 }
7293
7294 /* Only handle flash writes. */
7295 if (writebuf != NULL)
7296 {
7297 LONGEST xfered;
7298
7299 switch (object)
7300 {
7301 case TARGET_OBJECT_FLASH:
7302 xfered = remote_flash_write (ops, offset, len, writebuf);
7303
7304 if (xfered > 0)
7305 return xfered;
7306 else if (xfered == 0 && errno == 0)
7307 return 0;
7308 else
7309 return -1;
7310
7311 default:
7312 return -1;
7313 }
7314 }
7315
7316 /* Map pre-existing objects onto letters. DO NOT do this for new
7317 objects!!! Instead specify new query packets. */
7318 switch (object)
7319 {
7320 case TARGET_OBJECT_AVR:
7321 query_type = 'R';
7322 break;
7323
7324 case TARGET_OBJECT_AUXV:
7325 gdb_assert (annex == NULL);
7326 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7327 &remote_protocol_packets[PACKET_qXfer_auxv]);
7328
7329 case TARGET_OBJECT_AVAILABLE_FEATURES:
7330 return remote_read_qxfer
7331 (ops, "features", annex, readbuf, offset, len,
7332 &remote_protocol_packets[PACKET_qXfer_features]);
7333
7334 case TARGET_OBJECT_LIBRARIES:
7335 return remote_read_qxfer
7336 (ops, "libraries", annex, readbuf, offset, len,
7337 &remote_protocol_packets[PACKET_qXfer_libraries]);
7338
7339 case TARGET_OBJECT_MEMORY_MAP:
7340 gdb_assert (annex == NULL);
7341 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7342 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7343
7344 default:
7345 return -1;
7346 }
7347
7348 /* Note: a zero OFFSET and LEN can be used to query the minimum
7349 buffer size. */
7350 if (offset == 0 && len == 0)
7351 return (get_remote_packet_size ());
7352 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7353 large enough let the caller deal with it. */
7354 if (len < get_remote_packet_size ())
7355 return -1;
7356 len = get_remote_packet_size ();
7357
7358 /* Except for querying the minimum buffer size, target must be open. */
7359 if (!remote_desc)
7360 error (_("remote query is only available after target open"));
7361
7362 gdb_assert (annex != NULL);
7363 gdb_assert (readbuf != NULL);
7364
7365 p2 = rs->buf;
7366 *p2++ = 'q';
7367 *p2++ = query_type;
7368
7369 /* We used one buffer char for the remote protocol q command and
7370 another for the query type. As the remote protocol encapsulation
7371 uses 4 chars plus one extra in case we are debugging
7372 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7373 string. */
7374 i = 0;
7375 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7376 {
7377 /* Bad caller may have sent forbidden characters. */
7378 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7379 *p2++ = annex[i];
7380 i++;
7381 }
7382 *p2 = '\0';
7383 gdb_assert (annex[i] == '\0');
7384
7385 i = putpkt (rs->buf);
7386 if (i < 0)
7387 return i;
7388
7389 getpkt (&rs->buf, &rs->buf_size, 0);
7390 strcpy ((char *) readbuf, rs->buf);
7391
7392 return strlen ((char *) readbuf);
7393 }
7394
7395 static int
7396 remote_search_memory (struct target_ops* ops,
7397 CORE_ADDR start_addr, ULONGEST search_space_len,
7398 const gdb_byte *pattern, ULONGEST pattern_len,
7399 CORE_ADDR *found_addrp)
7400 {
7401 struct remote_state *rs = get_remote_state ();
7402 int max_size = get_memory_write_packet_size ();
7403 struct packet_config *packet =
7404 &remote_protocol_packets[PACKET_qSearch_memory];
7405 /* number of packet bytes used to encode the pattern,
7406 this could be more than PATTERN_LEN due to escape characters */
7407 int escaped_pattern_len;
7408 /* amount of pattern that was encodable in the packet */
7409 int used_pattern_len;
7410 int i;
7411 int found;
7412 ULONGEST found_addr;
7413
7414 /* Don't go to the target if we don't have to.
7415 This is done before checking packet->support to avoid the possibility that
7416 a success for this edge case means the facility works in general. */
7417 if (pattern_len > search_space_len)
7418 return 0;
7419 if (pattern_len == 0)
7420 {
7421 *found_addrp = start_addr;
7422 return 1;
7423 }
7424
7425 /* If we already know the packet isn't supported, fall back to the simple
7426 way of searching memory. */
7427
7428 if (packet->support == PACKET_DISABLE)
7429 {
7430 /* Target doesn't provided special support, fall back and use the
7431 standard support (copy memory and do the search here). */
7432 return simple_search_memory (ops, start_addr, search_space_len,
7433 pattern, pattern_len, found_addrp);
7434 }
7435
7436 /* Insert header. */
7437 i = snprintf (rs->buf, max_size,
7438 "qSearch:memory:%s;%s;",
7439 paddr_nz (start_addr),
7440 phex_nz (search_space_len, sizeof (search_space_len)));
7441 max_size -= (i + 1);
7442
7443 /* Escape as much data as fits into rs->buf. */
7444 escaped_pattern_len =
7445 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7446 &used_pattern_len, max_size);
7447
7448 /* Bail if the pattern is too large. */
7449 if (used_pattern_len != pattern_len)
7450 error ("Pattern is too large to transmit to remote target.");
7451
7452 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
7453 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7454 || packet_ok (rs->buf, packet) != PACKET_OK)
7455 {
7456 /* The request may not have worked because the command is not
7457 supported. If so, fall back to the simple way. */
7458 if (packet->support == PACKET_DISABLE)
7459 {
7460 return simple_search_memory (ops, start_addr, search_space_len,
7461 pattern, pattern_len, found_addrp);
7462 }
7463 return -1;
7464 }
7465
7466 if (rs->buf[0] == '0')
7467 found = 0;
7468 else if (rs->buf[0] == '1')
7469 {
7470 found = 1;
7471 if (rs->buf[1] != ',')
7472 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7473 unpack_varlen_hex (rs->buf + 2, &found_addr);
7474 *found_addrp = found_addr;
7475 }
7476 else
7477 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7478
7479 return found;
7480 }
7481
7482 static void
7483 remote_rcmd (char *command,
7484 struct ui_file *outbuf)
7485 {
7486 struct remote_state *rs = get_remote_state ();
7487 char *p = rs->buf;
7488
7489 if (!remote_desc)
7490 error (_("remote rcmd is only available after target open"));
7491
7492 /* Send a NULL command across as an empty command. */
7493 if (command == NULL)
7494 command = "";
7495
7496 /* The query prefix. */
7497 strcpy (rs->buf, "qRcmd,");
7498 p = strchr (rs->buf, '\0');
7499
7500 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
7501 error (_("\"monitor\" command ``%s'' is too long."), command);
7502
7503 /* Encode the actual command. */
7504 bin2hex ((gdb_byte *) command, p, 0);
7505
7506 if (putpkt (rs->buf) < 0)
7507 error (_("Communication problem with target."));
7508
7509 /* get/display the response */
7510 while (1)
7511 {
7512 char *buf;
7513
7514 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
7515 rs->buf[0] = '\0';
7516 getpkt (&rs->buf, &rs->buf_size, 0);
7517 buf = rs->buf;
7518 if (buf[0] == '\0')
7519 error (_("Target does not support this command."));
7520 if (buf[0] == 'O' && buf[1] != 'K')
7521 {
7522 remote_console_output (buf + 1); /* 'O' message from stub. */
7523 continue;
7524 }
7525 if (strcmp (buf, "OK") == 0)
7526 break;
7527 if (strlen (buf) == 3 && buf[0] == 'E'
7528 && isdigit (buf[1]) && isdigit (buf[2]))
7529 {
7530 error (_("Protocol error with Rcmd"));
7531 }
7532 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
7533 {
7534 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
7535 fputc_unfiltered (c, outbuf);
7536 }
7537 break;
7538 }
7539 }
7540
7541 static VEC(mem_region_s) *
7542 remote_memory_map (struct target_ops *ops)
7543 {
7544 VEC(mem_region_s) *result = NULL;
7545 char *text = target_read_stralloc (&current_target,
7546 TARGET_OBJECT_MEMORY_MAP, NULL);
7547
7548 if (text)
7549 {
7550 struct cleanup *back_to = make_cleanup (xfree, text);
7551 result = parse_memory_map (text);
7552 do_cleanups (back_to);
7553 }
7554
7555 return result;
7556 }
7557
7558 static void
7559 packet_command (char *args, int from_tty)
7560 {
7561 struct remote_state *rs = get_remote_state ();
7562
7563 if (!remote_desc)
7564 error (_("command can only be used with remote target"));
7565
7566 if (!args)
7567 error (_("remote-packet command requires packet text as argument"));
7568
7569 puts_filtered ("sending: ");
7570 print_packet (args);
7571 puts_filtered ("\n");
7572 putpkt (args);
7573
7574 getpkt (&rs->buf, &rs->buf_size, 0);
7575 puts_filtered ("received: ");
7576 print_packet (rs->buf);
7577 puts_filtered ("\n");
7578 }
7579
7580 #if 0
7581 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
7582
7583 static void display_thread_info (struct gdb_ext_thread_info *info);
7584
7585 static void threadset_test_cmd (char *cmd, int tty);
7586
7587 static void threadalive_test (char *cmd, int tty);
7588
7589 static void threadlist_test_cmd (char *cmd, int tty);
7590
7591 int get_and_display_threadinfo (threadref *ref);
7592
7593 static void threadinfo_test_cmd (char *cmd, int tty);
7594
7595 static int thread_display_step (threadref *ref, void *context);
7596
7597 static void threadlist_update_test_cmd (char *cmd, int tty);
7598
7599 static void init_remote_threadtests (void);
7600
7601 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
7602
7603 static void
7604 threadset_test_cmd (char *cmd, int tty)
7605 {
7606 int sample_thread = SAMPLE_THREAD;
7607
7608 printf_filtered (_("Remote threadset test\n"));
7609 set_general_thread (sample_thread);
7610 }
7611
7612
7613 static void
7614 threadalive_test (char *cmd, int tty)
7615 {
7616 int sample_thread = SAMPLE_THREAD;
7617 int pid = ptid_get_pid (inferior_ptid);
7618 ptid_t ptid = ptid_build (pid, 0, sample_thread);
7619
7620 if (remote_thread_alive (ptid))
7621 printf_filtered ("PASS: Thread alive test\n");
7622 else
7623 printf_filtered ("FAIL: Thread alive test\n");
7624 }
7625
7626 void output_threadid (char *title, threadref *ref);
7627
7628 void
7629 output_threadid (char *title, threadref *ref)
7630 {
7631 char hexid[20];
7632
7633 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
7634 hexid[16] = 0;
7635 printf_filtered ("%s %s\n", title, (&hexid[0]));
7636 }
7637
7638 static void
7639 threadlist_test_cmd (char *cmd, int tty)
7640 {
7641 int startflag = 1;
7642 threadref nextthread;
7643 int done, result_count;
7644 threadref threadlist[3];
7645
7646 printf_filtered ("Remote Threadlist test\n");
7647 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
7648 &result_count, &threadlist[0]))
7649 printf_filtered ("FAIL: threadlist test\n");
7650 else
7651 {
7652 threadref *scan = threadlist;
7653 threadref *limit = scan + result_count;
7654
7655 while (scan < limit)
7656 output_threadid (" thread ", scan++);
7657 }
7658 }
7659
7660 void
7661 display_thread_info (struct gdb_ext_thread_info *info)
7662 {
7663 output_threadid ("Threadid: ", &info->threadid);
7664 printf_filtered ("Name: %s\n ", info->shortname);
7665 printf_filtered ("State: %s\n", info->display);
7666 printf_filtered ("other: %s\n\n", info->more_display);
7667 }
7668
7669 int
7670 get_and_display_threadinfo (threadref *ref)
7671 {
7672 int result;
7673 int set;
7674 struct gdb_ext_thread_info threadinfo;
7675
7676 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
7677 | TAG_MOREDISPLAY | TAG_DISPLAY;
7678 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
7679 display_thread_info (&threadinfo);
7680 return result;
7681 }
7682
7683 static void
7684 threadinfo_test_cmd (char *cmd, int tty)
7685 {
7686 int athread = SAMPLE_THREAD;
7687 threadref thread;
7688 int set;
7689
7690 int_to_threadref (&thread, athread);
7691 printf_filtered ("Remote Threadinfo test\n");
7692 if (!get_and_display_threadinfo (&thread))
7693 printf_filtered ("FAIL cannot get thread info\n");
7694 }
7695
7696 static int
7697 thread_display_step (threadref *ref, void *context)
7698 {
7699 /* output_threadid(" threadstep ",ref); *//* simple test */
7700 return get_and_display_threadinfo (ref);
7701 }
7702
7703 static void
7704 threadlist_update_test_cmd (char *cmd, int tty)
7705 {
7706 printf_filtered ("Remote Threadlist update test\n");
7707 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
7708 }
7709
7710 static void
7711 init_remote_threadtests (void)
7712 {
7713 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
7714 Fetch and print the remote list of thread identifiers, one pkt only"));
7715 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
7716 _("Fetch and display info about one thread"));
7717 add_com ("tset", class_obscure, threadset_test_cmd,
7718 _("Test setting to a different thread"));
7719 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
7720 _("Iterate through updating all remote thread info"));
7721 add_com ("talive", class_obscure, threadalive_test,
7722 _(" Remote thread alive test "));
7723 }
7724
7725 #endif /* 0 */
7726
7727 /* Convert a thread ID to a string. Returns the string in a static
7728 buffer. */
7729
7730 static char *
7731 remote_pid_to_str (ptid_t ptid)
7732 {
7733 static char buf[64];
7734 struct remote_state *rs = get_remote_state ();
7735
7736 if (ptid_equal (magic_null_ptid, ptid))
7737 {
7738 xsnprintf (buf, sizeof buf, "Thread <main>");
7739 return buf;
7740 }
7741 else if (remote_multi_process_p (rs)
7742 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
7743 {
7744 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
7745 ptid_get_pid (ptid), ptid_get_tid (ptid));
7746 return buf;
7747 }
7748 else if (ptid_get_tid (ptid) != 0)
7749 {
7750 xsnprintf (buf, sizeof buf, "Thread %ld",
7751 ptid_get_tid (ptid));
7752 return buf;
7753 }
7754
7755 return normal_pid_to_str (ptid);
7756 }
7757
7758 /* Get the address of the thread local variable in OBJFILE which is
7759 stored at OFFSET within the thread local storage for thread PTID. */
7760
7761 static CORE_ADDR
7762 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
7763 {
7764 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
7765 {
7766 struct remote_state *rs = get_remote_state ();
7767 char *p = rs->buf;
7768 char *endp = rs->buf + get_remote_packet_size ();
7769 enum packet_result result;
7770
7771 strcpy (p, "qGetTLSAddr:");
7772 p += strlen (p);
7773 p = write_ptid (p, endp, ptid);
7774 *p++ = ',';
7775 p += hexnumstr (p, offset);
7776 *p++ = ',';
7777 p += hexnumstr (p, lm);
7778 *p++ = '\0';
7779
7780 putpkt (rs->buf);
7781 getpkt (&rs->buf, &rs->buf_size, 0);
7782 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
7783 if (result == PACKET_OK)
7784 {
7785 ULONGEST result;
7786
7787 unpack_varlen_hex (rs->buf, &result);
7788 return result;
7789 }
7790 else if (result == PACKET_UNKNOWN)
7791 throw_error (TLS_GENERIC_ERROR,
7792 _("Remote target doesn't support qGetTLSAddr packet"));
7793 else
7794 throw_error (TLS_GENERIC_ERROR,
7795 _("Remote target failed to process qGetTLSAddr request"));
7796 }
7797 else
7798 throw_error (TLS_GENERIC_ERROR,
7799 _("TLS not supported or disabled on this target"));
7800 /* Not reached. */
7801 return 0;
7802 }
7803
7804 /* Support for inferring a target description based on the current
7805 architecture and the size of a 'g' packet. While the 'g' packet
7806 can have any size (since optional registers can be left off the
7807 end), some sizes are easily recognizable given knowledge of the
7808 approximate architecture. */
7809
7810 struct remote_g_packet_guess
7811 {
7812 int bytes;
7813 const struct target_desc *tdesc;
7814 };
7815 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
7816 DEF_VEC_O(remote_g_packet_guess_s);
7817
7818 struct remote_g_packet_data
7819 {
7820 VEC(remote_g_packet_guess_s) *guesses;
7821 };
7822
7823 static struct gdbarch_data *remote_g_packet_data_handle;
7824
7825 static void *
7826 remote_g_packet_data_init (struct obstack *obstack)
7827 {
7828 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
7829 }
7830
7831 void
7832 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
7833 const struct target_desc *tdesc)
7834 {
7835 struct remote_g_packet_data *data
7836 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
7837 struct remote_g_packet_guess new_guess, *guess;
7838 int ix;
7839
7840 gdb_assert (tdesc != NULL);
7841
7842 for (ix = 0;
7843 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7844 ix++)
7845 if (guess->bytes == bytes)
7846 internal_error (__FILE__, __LINE__,
7847 "Duplicate g packet description added for size %d",
7848 bytes);
7849
7850 new_guess.bytes = bytes;
7851 new_guess.tdesc = tdesc;
7852 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
7853 }
7854
7855 static const struct target_desc *
7856 remote_read_description (struct target_ops *target)
7857 {
7858 struct remote_g_packet_data *data
7859 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7860
7861 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
7862 {
7863 struct remote_g_packet_guess *guess;
7864 int ix;
7865 int bytes = send_g_packet ();
7866
7867 for (ix = 0;
7868 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7869 ix++)
7870 if (guess->bytes == bytes)
7871 return guess->tdesc;
7872
7873 /* We discard the g packet. A minor optimization would be to
7874 hold on to it, and fill the register cache once we have selected
7875 an architecture, but it's too tricky to do safely. */
7876 }
7877
7878 return NULL;
7879 }
7880
7881 /* Remote file transfer support. This is host-initiated I/O, not
7882 target-initiated; for target-initiated, see remote-fileio.c. */
7883
7884 /* If *LEFT is at least the length of STRING, copy STRING to
7885 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7886 decrease *LEFT. Otherwise raise an error. */
7887
7888 static void
7889 remote_buffer_add_string (char **buffer, int *left, char *string)
7890 {
7891 int len = strlen (string);
7892
7893 if (len > *left)
7894 error (_("Packet too long for target."));
7895
7896 memcpy (*buffer, string, len);
7897 *buffer += len;
7898 *left -= len;
7899
7900 /* NUL-terminate the buffer as a convenience, if there is
7901 room. */
7902 if (*left)
7903 **buffer = '\0';
7904 }
7905
7906 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
7907 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7908 decrease *LEFT. Otherwise raise an error. */
7909
7910 static void
7911 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
7912 int len)
7913 {
7914 if (2 * len > *left)
7915 error (_("Packet too long for target."));
7916
7917 bin2hex (bytes, *buffer, len);
7918 *buffer += 2 * len;
7919 *left -= 2 * len;
7920
7921 /* NUL-terminate the buffer as a convenience, if there is
7922 room. */
7923 if (*left)
7924 **buffer = '\0';
7925 }
7926
7927 /* If *LEFT is large enough, convert VALUE to hex and add it to
7928 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7929 decrease *LEFT. Otherwise raise an error. */
7930
7931 static void
7932 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
7933 {
7934 int len = hexnumlen (value);
7935
7936 if (len > *left)
7937 error (_("Packet too long for target."));
7938
7939 hexnumstr (*buffer, value);
7940 *buffer += len;
7941 *left -= len;
7942
7943 /* NUL-terminate the buffer as a convenience, if there is
7944 room. */
7945 if (*left)
7946 **buffer = '\0';
7947 }
7948
7949 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
7950 value, *REMOTE_ERRNO to the remote error number or zero if none
7951 was included, and *ATTACHMENT to point to the start of the annex
7952 if any. The length of the packet isn't needed here; there may
7953 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
7954
7955 Return 0 if the packet could be parsed, -1 if it could not. If
7956 -1 is returned, the other variables may not be initialized. */
7957
7958 static int
7959 remote_hostio_parse_result (char *buffer, int *retcode,
7960 int *remote_errno, char **attachment)
7961 {
7962 char *p, *p2;
7963
7964 *remote_errno = 0;
7965 *attachment = NULL;
7966
7967 if (buffer[0] != 'F')
7968 return -1;
7969
7970 errno = 0;
7971 *retcode = strtol (&buffer[1], &p, 16);
7972 if (errno != 0 || p == &buffer[1])
7973 return -1;
7974
7975 /* Check for ",errno". */
7976 if (*p == ',')
7977 {
7978 errno = 0;
7979 *remote_errno = strtol (p + 1, &p2, 16);
7980 if (errno != 0 || p + 1 == p2)
7981 return -1;
7982 p = p2;
7983 }
7984
7985 /* Check for ";attachment". If there is no attachment, the
7986 packet should end here. */
7987 if (*p == ';')
7988 {
7989 *attachment = p + 1;
7990 return 0;
7991 }
7992 else if (*p == '\0')
7993 return 0;
7994 else
7995 return -1;
7996 }
7997
7998 /* Send a prepared I/O packet to the target and read its response.
7999 The prepared packet is in the global RS->BUF before this function
8000 is called, and the answer is there when we return.
8001
8002 COMMAND_BYTES is the length of the request to send, which may include
8003 binary data. WHICH_PACKET is the packet configuration to check
8004 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8005 is set to the error number and -1 is returned. Otherwise the value
8006 returned by the function is returned.
8007
8008 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8009 attachment is expected; an error will be reported if there's a
8010 mismatch. If one is found, *ATTACHMENT will be set to point into
8011 the packet buffer and *ATTACHMENT_LEN will be set to the
8012 attachment's length. */
8013
8014 static int
8015 remote_hostio_send_command (int command_bytes, int which_packet,
8016 int *remote_errno, char **attachment,
8017 int *attachment_len)
8018 {
8019 struct remote_state *rs = get_remote_state ();
8020 int ret, bytes_read;
8021 char *attachment_tmp;
8022
8023 if (!remote_desc
8024 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8025 {
8026 *remote_errno = FILEIO_ENOSYS;
8027 return -1;
8028 }
8029
8030 putpkt_binary (rs->buf, command_bytes);
8031 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8032
8033 /* If it timed out, something is wrong. Don't try to parse the
8034 buffer. */
8035 if (bytes_read < 0)
8036 {
8037 *remote_errno = FILEIO_EINVAL;
8038 return -1;
8039 }
8040
8041 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8042 {
8043 case PACKET_ERROR:
8044 *remote_errno = FILEIO_EINVAL;
8045 return -1;
8046 case PACKET_UNKNOWN:
8047 *remote_errno = FILEIO_ENOSYS;
8048 return -1;
8049 case PACKET_OK:
8050 break;
8051 }
8052
8053 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8054 &attachment_tmp))
8055 {
8056 *remote_errno = FILEIO_EINVAL;
8057 return -1;
8058 }
8059
8060 /* Make sure we saw an attachment if and only if we expected one. */
8061 if ((attachment_tmp == NULL && attachment != NULL)
8062 || (attachment_tmp != NULL && attachment == NULL))
8063 {
8064 *remote_errno = FILEIO_EINVAL;
8065 return -1;
8066 }
8067
8068 /* If an attachment was found, it must point into the packet buffer;
8069 work out how many bytes there were. */
8070 if (attachment_tmp != NULL)
8071 {
8072 *attachment = attachment_tmp;
8073 *attachment_len = bytes_read - (*attachment - rs->buf);
8074 }
8075
8076 return ret;
8077 }
8078
8079 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8080 remote file descriptor, or -1 if an error occurs (and set
8081 *REMOTE_ERRNO). */
8082
8083 static int
8084 remote_hostio_open (const char *filename, int flags, int mode,
8085 int *remote_errno)
8086 {
8087 struct remote_state *rs = get_remote_state ();
8088 char *p = rs->buf;
8089 int left = get_remote_packet_size () - 1;
8090
8091 remote_buffer_add_string (&p, &left, "vFile:open:");
8092
8093 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8094 strlen (filename));
8095 remote_buffer_add_string (&p, &left, ",");
8096
8097 remote_buffer_add_int (&p, &left, flags);
8098 remote_buffer_add_string (&p, &left, ",");
8099
8100 remote_buffer_add_int (&p, &left, mode);
8101
8102 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8103 remote_errno, NULL, NULL);
8104 }
8105
8106 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8107 Return the number of bytes written, or -1 if an error occurs (and
8108 set *REMOTE_ERRNO). */
8109
8110 static int
8111 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8112 ULONGEST offset, int *remote_errno)
8113 {
8114 struct remote_state *rs = get_remote_state ();
8115 char *p = rs->buf;
8116 int left = get_remote_packet_size ();
8117 int out_len;
8118
8119 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8120
8121 remote_buffer_add_int (&p, &left, fd);
8122 remote_buffer_add_string (&p, &left, ",");
8123
8124 remote_buffer_add_int (&p, &left, offset);
8125 remote_buffer_add_string (&p, &left, ",");
8126
8127 p += remote_escape_output (write_buf, len, p, &out_len,
8128 get_remote_packet_size () - (p - rs->buf));
8129
8130 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8131 remote_errno, NULL, NULL);
8132 }
8133
8134 /* Read up to LEN bytes FD on the remote target into READ_BUF
8135 Return the number of bytes read, or -1 if an error occurs (and
8136 set *REMOTE_ERRNO). */
8137
8138 static int
8139 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8140 ULONGEST offset, int *remote_errno)
8141 {
8142 struct remote_state *rs = get_remote_state ();
8143 char *p = rs->buf;
8144 char *attachment;
8145 int left = get_remote_packet_size ();
8146 int ret, attachment_len;
8147 int read_len;
8148
8149 remote_buffer_add_string (&p, &left, "vFile:pread:");
8150
8151 remote_buffer_add_int (&p, &left, fd);
8152 remote_buffer_add_string (&p, &left, ",");
8153
8154 remote_buffer_add_int (&p, &left, len);
8155 remote_buffer_add_string (&p, &left, ",");
8156
8157 remote_buffer_add_int (&p, &left, offset);
8158
8159 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8160 remote_errno, &attachment,
8161 &attachment_len);
8162
8163 if (ret < 0)
8164 return ret;
8165
8166 read_len = remote_unescape_input (attachment, attachment_len,
8167 read_buf, len);
8168 if (read_len != ret)
8169 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8170
8171 return ret;
8172 }
8173
8174 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8175 (and set *REMOTE_ERRNO). */
8176
8177 static int
8178 remote_hostio_close (int fd, int *remote_errno)
8179 {
8180 struct remote_state *rs = get_remote_state ();
8181 char *p = rs->buf;
8182 int left = get_remote_packet_size () - 1;
8183
8184 remote_buffer_add_string (&p, &left, "vFile:close:");
8185
8186 remote_buffer_add_int (&p, &left, fd);
8187
8188 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8189 remote_errno, NULL, NULL);
8190 }
8191
8192 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8193 occurs (and set *REMOTE_ERRNO). */
8194
8195 static int
8196 remote_hostio_unlink (const char *filename, int *remote_errno)
8197 {
8198 struct remote_state *rs = get_remote_state ();
8199 char *p = rs->buf;
8200 int left = get_remote_packet_size () - 1;
8201
8202 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8203
8204 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8205 strlen (filename));
8206
8207 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8208 remote_errno, NULL, NULL);
8209 }
8210
8211 static int
8212 remote_fileio_errno_to_host (int errnum)
8213 {
8214 switch (errnum)
8215 {
8216 case FILEIO_EPERM:
8217 return EPERM;
8218 case FILEIO_ENOENT:
8219 return ENOENT;
8220 case FILEIO_EINTR:
8221 return EINTR;
8222 case FILEIO_EIO:
8223 return EIO;
8224 case FILEIO_EBADF:
8225 return EBADF;
8226 case FILEIO_EACCES:
8227 return EACCES;
8228 case FILEIO_EFAULT:
8229 return EFAULT;
8230 case FILEIO_EBUSY:
8231 return EBUSY;
8232 case FILEIO_EEXIST:
8233 return EEXIST;
8234 case FILEIO_ENODEV:
8235 return ENODEV;
8236 case FILEIO_ENOTDIR:
8237 return ENOTDIR;
8238 case FILEIO_EISDIR:
8239 return EISDIR;
8240 case FILEIO_EINVAL:
8241 return EINVAL;
8242 case FILEIO_ENFILE:
8243 return ENFILE;
8244 case FILEIO_EMFILE:
8245 return EMFILE;
8246 case FILEIO_EFBIG:
8247 return EFBIG;
8248 case FILEIO_ENOSPC:
8249 return ENOSPC;
8250 case FILEIO_ESPIPE:
8251 return ESPIPE;
8252 case FILEIO_EROFS:
8253 return EROFS;
8254 case FILEIO_ENOSYS:
8255 return ENOSYS;
8256 case FILEIO_ENAMETOOLONG:
8257 return ENAMETOOLONG;
8258 }
8259 return -1;
8260 }
8261
8262 static char *
8263 remote_hostio_error (int errnum)
8264 {
8265 int host_error = remote_fileio_errno_to_host (errnum);
8266
8267 if (host_error == -1)
8268 error (_("Unknown remote I/O error %d"), errnum);
8269 else
8270 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8271 }
8272
8273 static void
8274 remote_hostio_close_cleanup (void *opaque)
8275 {
8276 int fd = *(int *) opaque;
8277 int remote_errno;
8278
8279 remote_hostio_close (fd, &remote_errno);
8280 }
8281
8282
8283 static void *
8284 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8285 {
8286 const char *filename = bfd_get_filename (abfd);
8287 int fd, remote_errno;
8288 int *stream;
8289
8290 gdb_assert (remote_filename_p (filename));
8291
8292 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8293 if (fd == -1)
8294 {
8295 errno = remote_fileio_errno_to_host (remote_errno);
8296 bfd_set_error (bfd_error_system_call);
8297 return NULL;
8298 }
8299
8300 stream = xmalloc (sizeof (int));
8301 *stream = fd;
8302 return stream;
8303 }
8304
8305 static int
8306 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8307 {
8308 int fd = *(int *)stream;
8309 int remote_errno;
8310
8311 xfree (stream);
8312
8313 /* Ignore errors on close; these may happen if the remote
8314 connection was already torn down. */
8315 remote_hostio_close (fd, &remote_errno);
8316
8317 return 1;
8318 }
8319
8320 static file_ptr
8321 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8322 file_ptr nbytes, file_ptr offset)
8323 {
8324 int fd = *(int *)stream;
8325 int remote_errno;
8326 file_ptr pos, bytes;
8327
8328 pos = 0;
8329 while (nbytes > pos)
8330 {
8331 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8332 offset + pos, &remote_errno);
8333 if (bytes == 0)
8334 /* Success, but no bytes, means end-of-file. */
8335 break;
8336 if (bytes == -1)
8337 {
8338 errno = remote_fileio_errno_to_host (remote_errno);
8339 bfd_set_error (bfd_error_system_call);
8340 return -1;
8341 }
8342
8343 pos += bytes;
8344 }
8345
8346 return pos;
8347 }
8348
8349 static int
8350 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8351 {
8352 /* FIXME: We should probably implement remote_hostio_stat. */
8353 sb->st_size = INT_MAX;
8354 return 0;
8355 }
8356
8357 int
8358 remote_filename_p (const char *filename)
8359 {
8360 return strncmp (filename, "remote:", 7) == 0;
8361 }
8362
8363 bfd *
8364 remote_bfd_open (const char *remote_file, const char *target)
8365 {
8366 return bfd_openr_iovec (remote_file, target,
8367 remote_bfd_iovec_open, NULL,
8368 remote_bfd_iovec_pread,
8369 remote_bfd_iovec_close,
8370 remote_bfd_iovec_stat);
8371 }
8372
8373 void
8374 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8375 {
8376 struct cleanup *back_to, *close_cleanup;
8377 int retcode, fd, remote_errno, bytes, io_size;
8378 FILE *file;
8379 gdb_byte *buffer;
8380 int bytes_in_buffer;
8381 int saw_eof;
8382 ULONGEST offset;
8383
8384 if (!remote_desc)
8385 error (_("command can only be used with remote target"));
8386
8387 file = fopen (local_file, "rb");
8388 if (file == NULL)
8389 perror_with_name (local_file);
8390 back_to = make_cleanup_fclose (file);
8391
8392 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8393 | FILEIO_O_TRUNC),
8394 0700, &remote_errno);
8395 if (fd == -1)
8396 remote_hostio_error (remote_errno);
8397
8398 /* Send up to this many bytes at once. They won't all fit in the
8399 remote packet limit, so we'll transfer slightly fewer. */
8400 io_size = get_remote_packet_size ();
8401 buffer = xmalloc (io_size);
8402 make_cleanup (xfree, buffer);
8403
8404 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8405
8406 bytes_in_buffer = 0;
8407 saw_eof = 0;
8408 offset = 0;
8409 while (bytes_in_buffer || !saw_eof)
8410 {
8411 if (!saw_eof)
8412 {
8413 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
8414 file);
8415 if (bytes == 0)
8416 {
8417 if (ferror (file))
8418 error (_("Error reading %s."), local_file);
8419 else
8420 {
8421 /* EOF. Unless there is something still in the
8422 buffer from the last iteration, we are done. */
8423 saw_eof = 1;
8424 if (bytes_in_buffer == 0)
8425 break;
8426 }
8427 }
8428 }
8429 else
8430 bytes = 0;
8431
8432 bytes += bytes_in_buffer;
8433 bytes_in_buffer = 0;
8434
8435 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
8436
8437 if (retcode < 0)
8438 remote_hostio_error (remote_errno);
8439 else if (retcode == 0)
8440 error (_("Remote write of %d bytes returned 0!"), bytes);
8441 else if (retcode < bytes)
8442 {
8443 /* Short write. Save the rest of the read data for the next
8444 write. */
8445 bytes_in_buffer = bytes - retcode;
8446 memmove (buffer, buffer + retcode, bytes_in_buffer);
8447 }
8448
8449 offset += retcode;
8450 }
8451
8452 discard_cleanups (close_cleanup);
8453 if (remote_hostio_close (fd, &remote_errno))
8454 remote_hostio_error (remote_errno);
8455
8456 if (from_tty)
8457 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
8458 do_cleanups (back_to);
8459 }
8460
8461 void
8462 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
8463 {
8464 struct cleanup *back_to, *close_cleanup;
8465 int retcode, fd, remote_errno, bytes, io_size;
8466 FILE *file;
8467 gdb_byte *buffer;
8468 ULONGEST offset;
8469
8470 if (!remote_desc)
8471 error (_("command can only be used with remote target"));
8472
8473 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
8474 if (fd == -1)
8475 remote_hostio_error (remote_errno);
8476
8477 file = fopen (local_file, "wb");
8478 if (file == NULL)
8479 perror_with_name (local_file);
8480 back_to = make_cleanup_fclose (file);
8481
8482 /* Send up to this many bytes at once. They won't all fit in the
8483 remote packet limit, so we'll transfer slightly fewer. */
8484 io_size = get_remote_packet_size ();
8485 buffer = xmalloc (io_size);
8486 make_cleanup (xfree, buffer);
8487
8488 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8489
8490 offset = 0;
8491 while (1)
8492 {
8493 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
8494 if (bytes == 0)
8495 /* Success, but no bytes, means end-of-file. */
8496 break;
8497 if (bytes == -1)
8498 remote_hostio_error (remote_errno);
8499
8500 offset += bytes;
8501
8502 bytes = fwrite (buffer, 1, bytes, file);
8503 if (bytes == 0)
8504 perror_with_name (local_file);
8505 }
8506
8507 discard_cleanups (close_cleanup);
8508 if (remote_hostio_close (fd, &remote_errno))
8509 remote_hostio_error (remote_errno);
8510
8511 if (from_tty)
8512 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
8513 do_cleanups (back_to);
8514 }
8515
8516 void
8517 remote_file_delete (const char *remote_file, int from_tty)
8518 {
8519 int retcode, remote_errno;
8520
8521 if (!remote_desc)
8522 error (_("command can only be used with remote target"));
8523
8524 retcode = remote_hostio_unlink (remote_file, &remote_errno);
8525 if (retcode == -1)
8526 remote_hostio_error (remote_errno);
8527
8528 if (from_tty)
8529 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
8530 }
8531
8532 static void
8533 remote_put_command (char *args, int from_tty)
8534 {
8535 struct cleanup *back_to;
8536 char **argv;
8537
8538 if (args == NULL)
8539 error_no_arg (_("file to put"));
8540
8541 argv = gdb_buildargv (args);
8542 back_to = make_cleanup_freeargv (argv);
8543 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8544 error (_("Invalid parameters to remote put"));
8545
8546 remote_file_put (argv[0], argv[1], from_tty);
8547
8548 do_cleanups (back_to);
8549 }
8550
8551 static void
8552 remote_get_command (char *args, int from_tty)
8553 {
8554 struct cleanup *back_to;
8555 char **argv;
8556
8557 if (args == NULL)
8558 error_no_arg (_("file to get"));
8559
8560 argv = gdb_buildargv (args);
8561 back_to = make_cleanup_freeargv (argv);
8562 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8563 error (_("Invalid parameters to remote get"));
8564
8565 remote_file_get (argv[0], argv[1], from_tty);
8566
8567 do_cleanups (back_to);
8568 }
8569
8570 static void
8571 remote_delete_command (char *args, int from_tty)
8572 {
8573 struct cleanup *back_to;
8574 char **argv;
8575
8576 if (args == NULL)
8577 error_no_arg (_("file to delete"));
8578
8579 argv = gdb_buildargv (args);
8580 back_to = make_cleanup_freeargv (argv);
8581 if (argv[0] == NULL || argv[1] != NULL)
8582 error (_("Invalid parameters to remote delete"));
8583
8584 remote_file_delete (argv[0], from_tty);
8585
8586 do_cleanups (back_to);
8587 }
8588
8589 static void
8590 remote_command (char *args, int from_tty)
8591 {
8592 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
8593 }
8594
8595 static int remote_target_can_reverse = 1;
8596
8597 static int
8598 remote_can_execute_reverse (void)
8599 {
8600 return remote_target_can_reverse;
8601 }
8602
8603 static int
8604 remote_supports_non_stop (void)
8605 {
8606 return 1;
8607 }
8608
8609 static int
8610 remote_supports_multi_process (void)
8611 {
8612 struct remote_state *rs = get_remote_state ();
8613 return remote_multi_process_p (rs);
8614 }
8615
8616 static void
8617 init_remote_ops (void)
8618 {
8619 remote_ops.to_shortname = "remote";
8620 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
8621 remote_ops.to_doc =
8622 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8623 Specify the serial device it is connected to\n\
8624 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
8625 remote_ops.to_open = remote_open;
8626 remote_ops.to_close = remote_close;
8627 remote_ops.to_detach = remote_detach;
8628 remote_ops.to_disconnect = remote_disconnect;
8629 remote_ops.to_resume = remote_resume;
8630 remote_ops.to_wait = remote_wait;
8631 remote_ops.to_fetch_registers = remote_fetch_registers;
8632 remote_ops.to_store_registers = remote_store_registers;
8633 remote_ops.to_prepare_to_store = remote_prepare_to_store;
8634 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
8635 remote_ops.to_files_info = remote_files_info;
8636 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
8637 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
8638 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
8639 remote_ops.to_stopped_data_address = remote_stopped_data_address;
8640 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
8641 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
8642 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
8643 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
8644 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
8645 remote_ops.to_kill = remote_kill;
8646 remote_ops.to_load = generic_load;
8647 remote_ops.to_mourn_inferior = remote_mourn;
8648 remote_ops.to_thread_alive = remote_thread_alive;
8649 remote_ops.to_find_new_threads = remote_threads_info;
8650 remote_ops.to_pid_to_str = remote_pid_to_str;
8651 remote_ops.to_extra_thread_info = remote_threads_extra_info;
8652 remote_ops.to_stop = remote_stop;
8653 remote_ops.to_xfer_partial = remote_xfer_partial;
8654 remote_ops.to_rcmd = remote_rcmd;
8655 remote_ops.to_log_command = serial_log_command;
8656 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
8657 remote_ops.to_stratum = process_stratum;
8658 remote_ops.to_has_all_memory = 1;
8659 remote_ops.to_has_memory = 1;
8660 remote_ops.to_has_stack = 1;
8661 remote_ops.to_has_registers = 1;
8662 remote_ops.to_has_execution = 1;
8663 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
8664 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
8665 remote_ops.to_magic = OPS_MAGIC;
8666 remote_ops.to_memory_map = remote_memory_map;
8667 remote_ops.to_flash_erase = remote_flash_erase;
8668 remote_ops.to_flash_done = remote_flash_done;
8669 remote_ops.to_read_description = remote_read_description;
8670 remote_ops.to_search_memory = remote_search_memory;
8671 remote_ops.to_can_async_p = remote_can_async_p;
8672 remote_ops.to_is_async_p = remote_is_async_p;
8673 remote_ops.to_async = remote_async;
8674 remote_ops.to_async_mask = remote_async_mask;
8675 remote_ops.to_terminal_inferior = remote_terminal_inferior;
8676 remote_ops.to_terminal_ours = remote_terminal_ours;
8677 remote_ops.to_supports_non_stop = remote_supports_non_stop;
8678 remote_ops.to_supports_multi_process = remote_supports_multi_process;
8679 }
8680
8681 /* Set up the extended remote vector by making a copy of the standard
8682 remote vector and adding to it. */
8683
8684 static void
8685 init_extended_remote_ops (void)
8686 {
8687 extended_remote_ops = remote_ops;
8688
8689 extended_remote_ops.to_shortname = "extended-remote";
8690 extended_remote_ops.to_longname =
8691 "Extended remote serial target in gdb-specific protocol";
8692 extended_remote_ops.to_doc =
8693 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8694 Specify the serial device it is connected to (e.g. /dev/ttya).";
8695 extended_remote_ops.to_open = extended_remote_open;
8696 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
8697 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
8698 extended_remote_ops.to_detach = extended_remote_detach;
8699 extended_remote_ops.to_attach = extended_remote_attach;
8700 extended_remote_ops.to_kill = extended_remote_kill;
8701 }
8702
8703 static int
8704 remote_can_async_p (void)
8705 {
8706 if (!target_async_permitted)
8707 /* We only enable async when the user specifically asks for it. */
8708 return 0;
8709
8710 /* We're async whenever the serial device is. */
8711 return remote_async_mask_value && serial_can_async_p (remote_desc);
8712 }
8713
8714 static int
8715 remote_is_async_p (void)
8716 {
8717 if (!target_async_permitted)
8718 /* We only enable async when the user specifically asks for it. */
8719 return 0;
8720
8721 /* We're async whenever the serial device is. */
8722 return remote_async_mask_value && serial_is_async_p (remote_desc);
8723 }
8724
8725 /* Pass the SERIAL event on and up to the client. One day this code
8726 will be able to delay notifying the client of an event until the
8727 point where an entire packet has been received. */
8728
8729 static void (*async_client_callback) (enum inferior_event_type event_type,
8730 void *context);
8731 static void *async_client_context;
8732 static serial_event_ftype remote_async_serial_handler;
8733
8734 static void
8735 remote_async_serial_handler (struct serial *scb, void *context)
8736 {
8737 /* Don't propogate error information up to the client. Instead let
8738 the client find out about the error by querying the target. */
8739 async_client_callback (INF_REG_EVENT, async_client_context);
8740 }
8741
8742 static void
8743 remote_async_inferior_event_handler (gdb_client_data data)
8744 {
8745 inferior_event_handler (INF_REG_EVENT, NULL);
8746 }
8747
8748 static void
8749 remote_async_get_pending_events_handler (gdb_client_data data)
8750 {
8751 remote_get_pending_stop_replies ();
8752 }
8753
8754 static void
8755 remote_async (void (*callback) (enum inferior_event_type event_type,
8756 void *context), void *context)
8757 {
8758 if (remote_async_mask_value == 0)
8759 internal_error (__FILE__, __LINE__,
8760 _("Calling remote_async when async is masked"));
8761
8762 if (callback != NULL)
8763 {
8764 serial_async (remote_desc, remote_async_serial_handler, NULL);
8765 async_client_callback = callback;
8766 async_client_context = context;
8767 }
8768 else
8769 serial_async (remote_desc, NULL, NULL);
8770 }
8771
8772 static int
8773 remote_async_mask (int new_mask)
8774 {
8775 int curr_mask = remote_async_mask_value;
8776 remote_async_mask_value = new_mask;
8777 return curr_mask;
8778 }
8779
8780 static void
8781 set_remote_cmd (char *args, int from_tty)
8782 {
8783 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
8784 }
8785
8786 static void
8787 show_remote_cmd (char *args, int from_tty)
8788 {
8789 /* We can't just use cmd_show_list here, because we want to skip
8790 the redundant "show remote Z-packet" and the legacy aliases. */
8791 struct cleanup *showlist_chain;
8792 struct cmd_list_element *list = remote_show_cmdlist;
8793
8794 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
8795 for (; list != NULL; list = list->next)
8796 if (strcmp (list->name, "Z-packet") == 0)
8797 continue;
8798 else if (list->type == not_set_cmd)
8799 /* Alias commands are exactly like the original, except they
8800 don't have the normal type. */
8801 continue;
8802 else
8803 {
8804 struct cleanup *option_chain
8805 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
8806 ui_out_field_string (uiout, "name", list->name);
8807 ui_out_text (uiout, ": ");
8808 if (list->type == show_cmd)
8809 do_setshow_command ((char *) NULL, from_tty, list);
8810 else
8811 cmd_func (list, NULL, from_tty);
8812 /* Close the tuple. */
8813 do_cleanups (option_chain);
8814 }
8815
8816 /* Close the tuple. */
8817 do_cleanups (showlist_chain);
8818 }
8819
8820
8821 /* Function to be called whenever a new objfile (shlib) is detected. */
8822 static void
8823 remote_new_objfile (struct objfile *objfile)
8824 {
8825 if (remote_desc != 0) /* Have a remote connection. */
8826 remote_check_symbols (objfile);
8827 }
8828
8829 void
8830 _initialize_remote (void)
8831 {
8832 struct remote_state *rs;
8833
8834 /* architecture specific data */
8835 remote_gdbarch_data_handle =
8836 gdbarch_data_register_post_init (init_remote_state);
8837 remote_g_packet_data_handle =
8838 gdbarch_data_register_pre_init (remote_g_packet_data_init);
8839
8840 /* Initialize the per-target state. At the moment there is only one
8841 of these, not one per target. Only one target is active at a
8842 time. The default buffer size is unimportant; it will be expanded
8843 whenever a larger buffer is needed. */
8844 rs = get_remote_state_raw ();
8845 rs->buf_size = 400;
8846 rs->buf = xmalloc (rs->buf_size);
8847
8848 init_remote_ops ();
8849 add_target (&remote_ops);
8850
8851 init_extended_remote_ops ();
8852 add_target (&extended_remote_ops);
8853
8854 /* Hook into new objfile notification. */
8855 observer_attach_new_objfile (remote_new_objfile);
8856
8857 /* Set up signal handlers. */
8858 sigint_remote_token =
8859 create_async_signal_handler (async_remote_interrupt, NULL);
8860 sigint_remote_twice_token =
8861 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
8862
8863 #if 0
8864 init_remote_threadtests ();
8865 #endif
8866
8867 /* set/show remote ... */
8868
8869 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
8870 Remote protocol specific variables\n\
8871 Configure various remote-protocol specific variables such as\n\
8872 the packets being used"),
8873 &remote_set_cmdlist, "set remote ",
8874 0 /* allow-unknown */, &setlist);
8875 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
8876 Remote protocol specific variables\n\
8877 Configure various remote-protocol specific variables such as\n\
8878 the packets being used"),
8879 &remote_show_cmdlist, "show remote ",
8880 0 /* allow-unknown */, &showlist);
8881
8882 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
8883 Compare section data on target to the exec file.\n\
8884 Argument is a single section name (default: all loaded sections)."),
8885 &cmdlist);
8886
8887 add_cmd ("packet", class_maintenance, packet_command, _("\
8888 Send an arbitrary packet to a remote target.\n\
8889 maintenance packet TEXT\n\
8890 If GDB is talking to an inferior via the GDB serial protocol, then\n\
8891 this command sends the string TEXT to the inferior, and displays the\n\
8892 response packet. GDB supplies the initial `$' character, and the\n\
8893 terminating `#' character and checksum."),
8894 &maintenancelist);
8895
8896 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
8897 Set whether to send break if interrupted."), _("\
8898 Show whether to send break if interrupted."), _("\
8899 If set, a break, instead of a cntrl-c, is sent to the remote target."),
8900 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
8901 &setlist, &showlist);
8902
8903 /* Install commands for configuring memory read/write packets. */
8904
8905 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
8906 Set the maximum number of bytes per memory write packet (deprecated)."),
8907 &setlist);
8908 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
8909 Show the maximum number of bytes per memory write packet (deprecated)."),
8910 &showlist);
8911 add_cmd ("memory-write-packet-size", no_class,
8912 set_memory_write_packet_size, _("\
8913 Set the maximum number of bytes per memory-write packet.\n\
8914 Specify the number of bytes in a packet or 0 (zero) for the\n\
8915 default packet size. The actual limit is further reduced\n\
8916 dependent on the target. Specify ``fixed'' to disable the\n\
8917 further restriction and ``limit'' to enable that restriction."),
8918 &remote_set_cmdlist);
8919 add_cmd ("memory-read-packet-size", no_class,
8920 set_memory_read_packet_size, _("\
8921 Set the maximum number of bytes per memory-read packet.\n\
8922 Specify the number of bytes in a packet or 0 (zero) for the\n\
8923 default packet size. The actual limit is further reduced\n\
8924 dependent on the target. Specify ``fixed'' to disable the\n\
8925 further restriction and ``limit'' to enable that restriction."),
8926 &remote_set_cmdlist);
8927 add_cmd ("memory-write-packet-size", no_class,
8928 show_memory_write_packet_size,
8929 _("Show the maximum number of bytes per memory-write packet."),
8930 &remote_show_cmdlist);
8931 add_cmd ("memory-read-packet-size", no_class,
8932 show_memory_read_packet_size,
8933 _("Show the maximum number of bytes per memory-read packet."),
8934 &remote_show_cmdlist);
8935
8936 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
8937 &remote_hw_watchpoint_limit, _("\
8938 Set the maximum number of target hardware watchpoints."), _("\
8939 Show the maximum number of target hardware watchpoints."), _("\
8940 Specify a negative limit for unlimited."),
8941 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
8942 &remote_set_cmdlist, &remote_show_cmdlist);
8943 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
8944 &remote_hw_breakpoint_limit, _("\
8945 Set the maximum number of target hardware breakpoints."), _("\
8946 Show the maximum number of target hardware breakpoints."), _("\
8947 Specify a negative limit for unlimited."),
8948 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
8949 &remote_set_cmdlist, &remote_show_cmdlist);
8950
8951 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
8952 &remote_address_size, _("\
8953 Set the maximum size of the address (in bits) in a memory packet."), _("\
8954 Show the maximum size of the address (in bits) in a memory packet."), NULL,
8955 NULL,
8956 NULL, /* FIXME: i18n: */
8957 &setlist, &showlist);
8958
8959 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
8960 "X", "binary-download", 1);
8961
8962 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
8963 "vCont", "verbose-resume", 0);
8964
8965 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
8966 "QPassSignals", "pass-signals", 0);
8967
8968 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
8969 "qSymbol", "symbol-lookup", 0);
8970
8971 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
8972 "P", "set-register", 1);
8973
8974 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
8975 "p", "fetch-register", 1);
8976
8977 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
8978 "Z0", "software-breakpoint", 0);
8979
8980 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
8981 "Z1", "hardware-breakpoint", 0);
8982
8983 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
8984 "Z2", "write-watchpoint", 0);
8985
8986 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
8987 "Z3", "read-watchpoint", 0);
8988
8989 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
8990 "Z4", "access-watchpoint", 0);
8991
8992 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
8993 "qXfer:auxv:read", "read-aux-vector", 0);
8994
8995 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
8996 "qXfer:features:read", "target-features", 0);
8997
8998 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
8999 "qXfer:libraries:read", "library-info", 0);
9000
9001 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
9002 "qXfer:memory-map:read", "memory-map", 0);
9003
9004 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
9005 "qXfer:spu:read", "read-spu-object", 0);
9006
9007 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
9008 "qXfer:spu:write", "write-spu-object", 0);
9009
9010 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
9011 "qGetTLSAddr", "get-thread-local-storage-address",
9012 0);
9013
9014 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
9015 "qSupported", "supported-packets", 0);
9016
9017 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
9018 "qSearch:memory", "search-memory", 0);
9019
9020 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
9021 "vFile:open", "hostio-open", 0);
9022
9023 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
9024 "vFile:pread", "hostio-pread", 0);
9025
9026 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
9027 "vFile:pwrite", "hostio-pwrite", 0);
9028
9029 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
9030 "vFile:close", "hostio-close", 0);
9031
9032 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
9033 "vFile:unlink", "hostio-unlink", 0);
9034
9035 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
9036 "vAttach", "attach", 0);
9037
9038 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
9039 "vRun", "run", 0);
9040
9041 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
9042 "QStartNoAckMode", "noack", 0);
9043
9044 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
9045 "vKill", "kill", 0);
9046
9047 /* Keep the old ``set remote Z-packet ...'' working. Each individual
9048 Z sub-packet has its own set and show commands, but users may
9049 have sets to this variable in their .gdbinit files (or in their
9050 documentation). */
9051 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
9052 &remote_Z_packet_detect, _("\
9053 Set use of remote protocol `Z' packets"), _("\
9054 Show use of remote protocol `Z' packets "), _("\
9055 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
9056 packets."),
9057 set_remote_protocol_Z_packet_cmd,
9058 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
9059 &remote_set_cmdlist, &remote_show_cmdlist);
9060
9061 add_prefix_cmd ("remote", class_files, remote_command, _("\
9062 Manipulate files on the remote system\n\
9063 Transfer files to and from the remote target system."),
9064 &remote_cmdlist, "remote ",
9065 0 /* allow-unknown */, &cmdlist);
9066
9067 add_cmd ("put", class_files, remote_put_command,
9068 _("Copy a local file to the remote system."),
9069 &remote_cmdlist);
9070
9071 add_cmd ("get", class_files, remote_get_command,
9072 _("Copy a remote file to the local system."),
9073 &remote_cmdlist);
9074
9075 add_cmd ("delete", class_files, remote_delete_command,
9076 _("Delete a remote file."),
9077 &remote_cmdlist);
9078
9079 remote_exec_file = xstrdup ("");
9080 add_setshow_string_noescape_cmd ("exec-file", class_files,
9081 &remote_exec_file, _("\
9082 Set the remote pathname for \"run\""), _("\
9083 Show the remote pathname for \"run\""), NULL, NULL, NULL,
9084 &remote_set_cmdlist, &remote_show_cmdlist);
9085
9086 /* Eventually initialize fileio. See fileio.c */
9087 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
9088
9089 /* Take advantage of the fact that the LWP field is not used, to tag
9090 special ptids with it set to != 0. */
9091 magic_null_ptid = ptid_build (42000, 1, -1);
9092 not_sent_ptid = ptid_build (42000, 1, -2);
9093 any_thread_ptid = ptid_build (42000, 1, 0);
9094 }