552481fc551b624355caab9f4ba81f1953d6de8e
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82 #include "gdbsupport/selftest.h"
83
84 /* The remote target. */
85
86 static const char remote_doc[] = N_("\
87 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
88 Specify the serial device it is connected to\n\
89 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
90
91 /* See remote.h */
92
93 bool remote_debug = false;
94
95 #define OPAQUETHREADBYTES 8
96
97 /* a 64 bit opaque identifier */
98 typedef unsigned char threadref[OPAQUETHREADBYTES];
99
100 struct gdb_ext_thread_info;
101 struct threads_listing_context;
102 typedef int (*rmt_thread_action) (threadref *ref, void *context);
103 struct protocol_feature;
104 struct packet_reg;
105
106 struct stop_reply;
107 typedef std::unique_ptr<stop_reply> stop_reply_up;
108
109 /* Generic configuration support for packets the stub optionally
110 supports. Allows the user to specify the use of the packet as well
111 as allowing GDB to auto-detect support in the remote stub. */
112
113 enum packet_support
114 {
115 PACKET_SUPPORT_UNKNOWN = 0,
116 PACKET_ENABLE,
117 PACKET_DISABLE
118 };
119
120 /* Analyze a packet's return value and update the packet config
121 accordingly. */
122
123 enum packet_result
124 {
125 PACKET_ERROR,
126 PACKET_OK,
127 PACKET_UNKNOWN
128 };
129
130 struct threads_listing_context;
131
132 /* Stub vCont actions support.
133
134 Each field is a boolean flag indicating whether the stub reports
135 support for the corresponding action. */
136
137 struct vCont_action_support
138 {
139 /* vCont;t */
140 bool t = false;
141
142 /* vCont;r */
143 bool r = false;
144
145 /* vCont;s */
146 bool s = false;
147
148 /* vCont;S */
149 bool S = false;
150 };
151
152 /* About this many threadids fit in a packet. */
153
154 #define MAXTHREADLISTRESULTS 32
155
156 /* Data for the vFile:pread readahead cache. */
157
158 struct readahead_cache
159 {
160 /* Invalidate the readahead cache. */
161 void invalidate ();
162
163 /* Invalidate the readahead cache if it is holding data for FD. */
164 void invalidate_fd (int fd);
165
166 /* Serve pread from the readahead cache. Returns number of bytes
167 read, or 0 if the request can't be served from the cache. */
168 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
169
170 /* The file descriptor for the file that is being cached. -1 if the
171 cache is invalid. */
172 int fd = -1;
173
174 /* The offset into the file that the cache buffer corresponds
175 to. */
176 ULONGEST offset = 0;
177
178 /* The buffer holding the cache contents. */
179 gdb_byte *buf = nullptr;
180 /* The buffer's size. We try to read as much as fits into a packet
181 at a time. */
182 size_t bufsize = 0;
183
184 /* Cache hit and miss counters. */
185 ULONGEST hit_count = 0;
186 ULONGEST miss_count = 0;
187 };
188
189 /* Description of the remote protocol for a given architecture. */
190
191 struct packet_reg
192 {
193 long offset; /* Offset into G packet. */
194 long regnum; /* GDB's internal register number. */
195 LONGEST pnum; /* Remote protocol register number. */
196 int in_g_packet; /* Always part of G packet. */
197 /* long size in bytes; == register_size (target_gdbarch (), regnum);
198 at present. */
199 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
200 at present. */
201 };
202
203 struct remote_arch_state
204 {
205 explicit remote_arch_state (struct gdbarch *gdbarch);
206
207 /* Description of the remote protocol registers. */
208 long sizeof_g_packet;
209
210 /* Description of the remote protocol registers indexed by REGNUM
211 (making an array gdbarch_num_regs in size). */
212 std::unique_ptr<packet_reg[]> regs;
213
214 /* This is the size (in chars) of the first response to the ``g''
215 packet. It is used as a heuristic when determining the maximum
216 size of memory-read and memory-write packets. A target will
217 typically only reserve a buffer large enough to hold the ``g''
218 packet. The size does not include packet overhead (headers and
219 trailers). */
220 long actual_register_packet_size;
221
222 /* This is the maximum size (in chars) of a non read/write packet.
223 It is also used as a cap on the size of read/write packets. */
224 long remote_packet_size;
225 };
226
227 /* Description of the remote protocol state for the currently
228 connected target. This is per-target state, and independent of the
229 selected architecture. */
230
231 class remote_state
232 {
233 public:
234
235 remote_state ();
236 ~remote_state ();
237
238 /* Get the remote arch state for GDBARCH. */
239 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
240
241 public: /* data */
242
243 /* A buffer to use for incoming packets, and its current size. The
244 buffer is grown dynamically for larger incoming packets.
245 Outgoing packets may also be constructed in this buffer.
246 The size of the buffer is always at least REMOTE_PACKET_SIZE;
247 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
248 packets. */
249 gdb::char_vector buf;
250
251 /* True if we're going through initial connection setup (finding out
252 about the remote side's threads, relocating symbols, etc.). */
253 bool starting_up = false;
254
255 /* If we negotiated packet size explicitly (and thus can bypass
256 heuristics for the largest packet size that will not overflow
257 a buffer in the stub), this will be set to that packet size.
258 Otherwise zero, meaning to use the guessed size. */
259 long explicit_packet_size = 0;
260
261 /* remote_wait is normally called when the target is running and
262 waits for a stop reply packet. But sometimes we need to call it
263 when the target is already stopped. We can send a "?" packet
264 and have remote_wait read the response. Or, if we already have
265 the response, we can stash it in BUF and tell remote_wait to
266 skip calling getpkt. This flag is set when BUF contains a
267 stop reply packet and the target is not waiting. */
268 int cached_wait_status = 0;
269
270 /* True, if in no ack mode. That is, neither GDB nor the stub will
271 expect acks from each other. The connection is assumed to be
272 reliable. */
273 bool noack_mode = false;
274
275 /* True if we're connected in extended remote mode. */
276 bool extended = false;
277
278 /* True if we resumed the target and we're waiting for the target to
279 stop. In the mean time, we can't start another command/query.
280 The remote server wouldn't be ready to process it, so we'd
281 timeout waiting for a reply that would never come and eventually
282 we'd close the connection. This can happen in asynchronous mode
283 because we allow GDB commands while the target is running. */
284 bool waiting_for_stop_reply = false;
285
286 /* The status of the stub support for the various vCont actions. */
287 vCont_action_support supports_vCont;
288 /* Whether vCont support was probed already. This is a workaround
289 until packet_support is per-connection. */
290 bool supports_vCont_probed;
291
292 /* True if the user has pressed Ctrl-C, but the target hasn't
293 responded to that. */
294 bool ctrlc_pending_p = false;
295
296 /* True if we saw a Ctrl-C while reading or writing from/to the
297 remote descriptor. At that point it is not safe to send a remote
298 interrupt packet, so we instead remember we saw the Ctrl-C and
299 process it once we're done with sending/receiving the current
300 packet, which should be shortly. If however that takes too long,
301 and the user presses Ctrl-C again, we offer to disconnect. */
302 bool got_ctrlc_during_io = false;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 struct serial *remote_desc = nullptr;
308
309 /* These are the threads which we last sent to the remote system. The
310 TID member will be -1 for all or -2 for not sent yet. */
311 ptid_t general_thread = null_ptid;
312 ptid_t continue_thread = null_ptid;
313
314 /* This is the traceframe which we last selected on the remote system.
315 It will be -1 if no traceframe is selected. */
316 int remote_traceframe_number = -1;
317
318 char *last_pass_packet = nullptr;
319
320 /* The last QProgramSignals packet sent to the target. We bypass
321 sending a new program signals list down to the target if the new
322 packet is exactly the same as the last we sent. IOW, we only let
323 the target know about program signals list changes. */
324 char *last_program_signals_packet = nullptr;
325
326 gdb_signal last_sent_signal = GDB_SIGNAL_0;
327
328 bool last_sent_step = false;
329
330 /* The execution direction of the last resume we got. */
331 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
332
333 char *finished_object = nullptr;
334 char *finished_annex = nullptr;
335 ULONGEST finished_offset = 0;
336
337 /* Should we try the 'ThreadInfo' query packet?
338
339 This variable (NOT available to the user: auto-detect only!)
340 determines whether GDB will use the new, simpler "ThreadInfo"
341 query or the older, more complex syntax for thread queries.
342 This is an auto-detect variable (set to true at each connect,
343 and set to false when the target fails to recognize it). */
344 bool use_threadinfo_query = false;
345 bool use_threadextra_query = false;
346
347 threadref echo_nextthread {};
348 threadref nextthread {};
349 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
350
351 /* The state of remote notification. */
352 struct remote_notif_state *notif_state = nullptr;
353
354 /* The branch trace configuration. */
355 struct btrace_config btrace_config {};
356
357 /* The argument to the last "vFile:setfs:" packet we sent, used
358 to avoid sending repeated unnecessary "vFile:setfs:" packets.
359 Initialized to -1 to indicate that no "vFile:setfs:" packet
360 has yet been sent. */
361 int fs_pid = -1;
362
363 /* A readahead cache for vFile:pread. Often, reading a binary
364 involves a sequence of small reads. E.g., when parsing an ELF
365 file. A readahead cache helps mostly the case of remote
366 debugging on a connection with higher latency, due to the
367 request/reply nature of the RSP. We only cache data for a single
368 file descriptor at a time. */
369 struct readahead_cache readahead_cache;
370
371 /* The list of already fetched and acknowledged stop events. This
372 queue is used for notification Stop, and other notifications
373 don't need queue for their events, because the notification
374 events of Stop can't be consumed immediately, so that events
375 should be queued first, and be consumed by remote_wait_{ns,as}
376 one per time. Other notifications can consume their events
377 immediately, so queue is not needed for them. */
378 std::vector<stop_reply_up> stop_reply_queue;
379
380 /* Asynchronous signal handle registered as event loop source for
381 when we have pending events ready to be passed to the core. */
382 struct async_event_handler *remote_async_inferior_event_token = nullptr;
383
384 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
385 ``forever'' still use the normal timeout mechanism. This is
386 currently used by the ASYNC code to guarentee that target reads
387 during the initial connect always time-out. Once getpkt has been
388 modified to return a timeout indication and, in turn
389 remote_wait()/wait_for_inferior() have gained a timeout parameter
390 this can go away. */
391 int wait_forever_enabled_p = 1;
392
393 private:
394 /* Mapping of remote protocol data for each gdbarch. Usually there
395 is only one entry here, though we may see more with stubs that
396 support multi-process. */
397 std::unordered_map<struct gdbarch *, remote_arch_state>
398 m_arch_states;
399 };
400
401 static const target_info remote_target_info = {
402 "remote",
403 N_("Remote serial target in gdb-specific protocol"),
404 remote_doc
405 };
406
407 class remote_target : public process_stratum_target
408 {
409 public:
410 remote_target () = default;
411 ~remote_target () override;
412
413 const target_info &info () const override
414 { return remote_target_info; }
415
416 const char *connection_string () override;
417
418 thread_control_capabilities get_thread_control_capabilities () override
419 { return tc_schedlock; }
420
421 /* Open a remote connection. */
422 static void open (const char *, int);
423
424 void close () override;
425
426 void detach (inferior *, int) override;
427 void disconnect (const char *, int) override;
428
429 void commit_resumed () override;
430 void resume (ptid_t, int, enum gdb_signal) override;
431 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
432 bool has_pending_events () override;
433
434 void fetch_registers (struct regcache *, int) override;
435 void store_registers (struct regcache *, int) override;
436 void prepare_to_store (struct regcache *) override;
437
438 void files_info () override;
439
440 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
441
442 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
443 enum remove_bp_reason) override;
444
445
446 bool stopped_by_sw_breakpoint () override;
447 bool supports_stopped_by_sw_breakpoint () override;
448
449 bool stopped_by_hw_breakpoint () override;
450
451 bool supports_stopped_by_hw_breakpoint () override;
452
453 bool stopped_by_watchpoint () override;
454
455 bool stopped_data_address (CORE_ADDR *) override;
456
457 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
458
459 int can_use_hw_breakpoint (enum bptype, int, int) override;
460
461 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
464
465 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
466
467 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
468 struct expression *) override;
469
470 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
471 struct expression *) override;
472
473 void kill () override;
474
475 void load (const char *, int) override;
476
477 void mourn_inferior () override;
478
479 void pass_signals (gdb::array_view<const unsigned char>) override;
480
481 int set_syscall_catchpoint (int, bool, int,
482 gdb::array_view<const int>) override;
483
484 void program_signals (gdb::array_view<const unsigned char>) override;
485
486 bool thread_alive (ptid_t ptid) override;
487
488 const char *thread_name (struct thread_info *) override;
489
490 void update_thread_list () override;
491
492 std::string pid_to_str (ptid_t) override;
493
494 const char *extra_thread_info (struct thread_info *) override;
495
496 ptid_t get_ada_task_ptid (long lwp, long thread) override;
497
498 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
499 int handle_len,
500 inferior *inf) override;
501
502 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
503 override;
504
505 void stop (ptid_t) override;
506
507 void interrupt () override;
508
509 void pass_ctrlc () override;
510
511 enum target_xfer_status xfer_partial (enum target_object object,
512 const char *annex,
513 gdb_byte *readbuf,
514 const gdb_byte *writebuf,
515 ULONGEST offset, ULONGEST len,
516 ULONGEST *xfered_len) override;
517
518 ULONGEST get_memory_xfer_limit () override;
519
520 void rcmd (const char *command, struct ui_file *output) override;
521
522 char *pid_to_exec_file (int pid) override;
523
524 void log_command (const char *cmd) override
525 {
526 serial_log_command (this, cmd);
527 }
528
529 CORE_ADDR get_thread_local_address (ptid_t ptid,
530 CORE_ADDR load_module_addr,
531 CORE_ADDR offset) override;
532
533 bool can_execute_reverse () override;
534
535 std::vector<mem_region> memory_map () override;
536
537 void flash_erase (ULONGEST address, LONGEST length) override;
538
539 void flash_done () override;
540
541 const struct target_desc *read_description () override;
542
543 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
544 const gdb_byte *pattern, ULONGEST pattern_len,
545 CORE_ADDR *found_addrp) override;
546
547 bool can_async_p () override;
548
549 bool is_async_p () override;
550
551 void async (int) override;
552
553 int async_wait_fd () override;
554
555 void thread_events (int) override;
556
557 int can_do_single_step () override;
558
559 void terminal_inferior () override;
560
561 void terminal_ours () override;
562
563 bool supports_non_stop () override;
564
565 bool supports_multi_process () override;
566
567 bool supports_disable_randomization () override;
568
569 bool filesystem_is_local () override;
570
571
572 int fileio_open (struct inferior *inf, const char *filename,
573 int flags, int mode, int warn_if_slow,
574 int *target_errno) override;
575
576 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
577 ULONGEST offset, int *target_errno) override;
578
579 int fileio_pread (int fd, gdb_byte *read_buf, int len,
580 ULONGEST offset, int *target_errno) override;
581
582 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
583
584 int fileio_close (int fd, int *target_errno) override;
585
586 int fileio_unlink (struct inferior *inf,
587 const char *filename,
588 int *target_errno) override;
589
590 gdb::optional<std::string>
591 fileio_readlink (struct inferior *inf,
592 const char *filename,
593 int *target_errno) override;
594
595 bool supports_enable_disable_tracepoint () override;
596
597 bool supports_string_tracing () override;
598
599 bool supports_evaluation_of_breakpoint_conditions () override;
600
601 bool can_run_breakpoint_commands () override;
602
603 void trace_init () override;
604
605 void download_tracepoint (struct bp_location *location) override;
606
607 bool can_download_tracepoint () override;
608
609 void download_trace_state_variable (const trace_state_variable &tsv) override;
610
611 void enable_tracepoint (struct bp_location *location) override;
612
613 void disable_tracepoint (struct bp_location *location) override;
614
615 void trace_set_readonly_regions () override;
616
617 void trace_start () override;
618
619 int get_trace_status (struct trace_status *ts) override;
620
621 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
622 override;
623
624 void trace_stop () override;
625
626 int trace_find (enum trace_find_type type, int num,
627 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
628
629 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
630
631 int save_trace_data (const char *filename) override;
632
633 int upload_tracepoints (struct uploaded_tp **utpp) override;
634
635 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
636
637 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
638
639 int get_min_fast_tracepoint_insn_len () override;
640
641 void set_disconnected_tracing (int val) override;
642
643 void set_circular_trace_buffer (int val) override;
644
645 void set_trace_buffer_size (LONGEST val) override;
646
647 bool set_trace_notes (const char *user, const char *notes,
648 const char *stopnotes) override;
649
650 int core_of_thread (ptid_t ptid) override;
651
652 int verify_memory (const gdb_byte *data,
653 CORE_ADDR memaddr, ULONGEST size) override;
654
655
656 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
657
658 void set_permissions () override;
659
660 bool static_tracepoint_marker_at (CORE_ADDR,
661 struct static_tracepoint_marker *marker)
662 override;
663
664 std::vector<static_tracepoint_marker>
665 static_tracepoint_markers_by_strid (const char *id) override;
666
667 traceframe_info_up traceframe_info () override;
668
669 bool use_agent (bool use) override;
670 bool can_use_agent () override;
671
672 struct btrace_target_info *enable_btrace (ptid_t ptid,
673 const struct btrace_config *conf) override;
674
675 void disable_btrace (struct btrace_target_info *tinfo) override;
676
677 void teardown_btrace (struct btrace_target_info *tinfo) override;
678
679 enum btrace_error read_btrace (struct btrace_data *data,
680 struct btrace_target_info *btinfo,
681 enum btrace_read_type type) override;
682
683 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
684 bool augmented_libraries_svr4_read () override;
685 void follow_fork (ptid_t, target_waitkind, bool, bool) override;
686 void follow_exec (inferior *, ptid_t, const char *) override;
687 int insert_fork_catchpoint (int) override;
688 int remove_fork_catchpoint (int) override;
689 int insert_vfork_catchpoint (int) override;
690 int remove_vfork_catchpoint (int) override;
691 int insert_exec_catchpoint (int) override;
692 int remove_exec_catchpoint (int) override;
693 enum exec_direction_kind execution_direction () override;
694
695 bool supports_memory_tagging () override;
696
697 bool fetch_memtags (CORE_ADDR address, size_t len,
698 gdb::byte_vector &tags, int type) override;
699
700 bool store_memtags (CORE_ADDR address, size_t len,
701 const gdb::byte_vector &tags, int type) override;
702
703 public: /* Remote specific methods. */
704
705 void remote_download_command_source (int num, ULONGEST addr,
706 struct command_line *cmds);
707
708 void remote_file_put (const char *local_file, const char *remote_file,
709 int from_tty);
710 void remote_file_get (const char *remote_file, const char *local_file,
711 int from_tty);
712 void remote_file_delete (const char *remote_file, int from_tty);
713
714 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
715 ULONGEST offset, int *remote_errno);
716 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
717 ULONGEST offset, int *remote_errno);
718 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
719 ULONGEST offset, int *remote_errno);
720
721 int remote_hostio_send_command (int command_bytes, int which_packet,
722 int *remote_errno, const char **attachment,
723 int *attachment_len);
724 int remote_hostio_set_filesystem (struct inferior *inf,
725 int *remote_errno);
726 /* We should get rid of this and use fileio_open directly. */
727 int remote_hostio_open (struct inferior *inf, const char *filename,
728 int flags, int mode, int warn_if_slow,
729 int *remote_errno);
730 int remote_hostio_close (int fd, int *remote_errno);
731
732 int remote_hostio_unlink (inferior *inf, const char *filename,
733 int *remote_errno);
734
735 struct remote_state *get_remote_state ();
736
737 long get_remote_packet_size (void);
738 long get_memory_packet_size (struct memory_packet_config *config);
739
740 long get_memory_write_packet_size ();
741 long get_memory_read_packet_size ();
742
743 char *append_pending_thread_resumptions (char *p, char *endp,
744 ptid_t ptid);
745 static void open_1 (const char *name, int from_tty, int extended_p);
746 void start_remote (int from_tty, int extended_p);
747 void remote_detach_1 (struct inferior *inf, int from_tty);
748
749 char *append_resumption (char *p, char *endp,
750 ptid_t ptid, int step, gdb_signal siggnal);
751 int remote_resume_with_vcont (ptid_t ptid, int step,
752 gdb_signal siggnal);
753
754 thread_info *add_current_inferior_and_thread (const char *wait_status);
755
756 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
757 target_wait_flags options);
758 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
759 target_wait_flags options);
760
761 ptid_t process_stop_reply (struct stop_reply *stop_reply,
762 target_waitstatus *status);
763
764 ptid_t select_thread_for_ambiguous_stop_reply
765 (const struct target_waitstatus *status);
766
767 void remote_notice_new_inferior (ptid_t currthread, bool executing);
768
769 void print_one_stopped_thread (thread_info *thread);
770 void process_initial_stop_replies (int from_tty);
771
772 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
773
774 void btrace_sync_conf (const btrace_config *conf);
775
776 void remote_btrace_maybe_reopen ();
777
778 void remove_new_fork_children (threads_listing_context *context);
779 void kill_new_fork_children (int pid);
780 void discard_pending_stop_replies (struct inferior *inf);
781 int stop_reply_queue_length ();
782
783 void check_pending_events_prevent_wildcard_vcont
784 (bool *may_global_wildcard_vcont);
785
786 void discard_pending_stop_replies_in_queue ();
787 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
788 struct stop_reply *queued_stop_reply (ptid_t ptid);
789 int peek_stop_reply (ptid_t ptid);
790 void remote_parse_stop_reply (const char *buf, stop_reply *event);
791
792 void remote_stop_ns (ptid_t ptid);
793 void remote_interrupt_as ();
794 void remote_interrupt_ns ();
795
796 char *remote_get_noisy_reply ();
797 int remote_query_attached (int pid);
798 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
799 int try_open_exec);
800
801 ptid_t remote_current_thread (ptid_t oldpid);
802 ptid_t get_current_thread (const char *wait_status);
803
804 void set_thread (ptid_t ptid, int gen);
805 void set_general_thread (ptid_t ptid);
806 void set_continue_thread (ptid_t ptid);
807 void set_general_process ();
808
809 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
810
811 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
812 gdb_ext_thread_info *info);
813 int remote_get_threadinfo (threadref *threadid, int fieldset,
814 gdb_ext_thread_info *info);
815
816 int parse_threadlist_response (const char *pkt, int result_limit,
817 threadref *original_echo,
818 threadref *resultlist,
819 int *doneflag);
820 int remote_get_threadlist (int startflag, threadref *nextthread,
821 int result_limit, int *done, int *result_count,
822 threadref *threadlist);
823
824 int remote_threadlist_iterator (rmt_thread_action stepfunction,
825 void *context, int looplimit);
826
827 int remote_get_threads_with_ql (threads_listing_context *context);
828 int remote_get_threads_with_qxfer (threads_listing_context *context);
829 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
830
831 void extended_remote_restart ();
832
833 void get_offsets ();
834
835 void remote_check_symbols ();
836
837 void remote_supported_packet (const struct protocol_feature *feature,
838 enum packet_support support,
839 const char *argument);
840
841 void remote_query_supported ();
842
843 void remote_packet_size (const protocol_feature *feature,
844 packet_support support, const char *value);
845
846 void remote_serial_quit_handler ();
847
848 void remote_detach_pid (int pid);
849
850 void remote_vcont_probe ();
851
852 void remote_resume_with_hc (ptid_t ptid, int step,
853 gdb_signal siggnal);
854
855 void send_interrupt_sequence ();
856 void interrupt_query ();
857
858 void remote_notif_get_pending_events (notif_client *nc);
859
860 int fetch_register_using_p (struct regcache *regcache,
861 packet_reg *reg);
862 int send_g_packet ();
863 void process_g_packet (struct regcache *regcache);
864 void fetch_registers_using_g (struct regcache *regcache);
865 int store_register_using_P (const struct regcache *regcache,
866 packet_reg *reg);
867 void store_registers_using_G (const struct regcache *regcache);
868
869 void set_remote_traceframe ();
870
871 void check_binary_download (CORE_ADDR addr);
872
873 target_xfer_status remote_write_bytes_aux (const char *header,
874 CORE_ADDR memaddr,
875 const gdb_byte *myaddr,
876 ULONGEST len_units,
877 int unit_size,
878 ULONGEST *xfered_len_units,
879 char packet_format,
880 int use_length);
881
882 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
883 const gdb_byte *myaddr, ULONGEST len,
884 int unit_size, ULONGEST *xfered_len);
885
886 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
887 ULONGEST len_units,
888 int unit_size, ULONGEST *xfered_len_units);
889
890 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
891 ULONGEST memaddr,
892 ULONGEST len,
893 int unit_size,
894 ULONGEST *xfered_len);
895
896 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
897 gdb_byte *myaddr, ULONGEST len,
898 int unit_size,
899 ULONGEST *xfered_len);
900
901 packet_result remote_send_printf (const char *format, ...)
902 ATTRIBUTE_PRINTF (2, 3);
903
904 target_xfer_status remote_flash_write (ULONGEST address,
905 ULONGEST length, ULONGEST *xfered_len,
906 const gdb_byte *data);
907
908 int readchar (int timeout);
909
910 void remote_serial_write (const char *str, int len);
911
912 int putpkt (const char *buf);
913 int putpkt_binary (const char *buf, int cnt);
914
915 int putpkt (const gdb::char_vector &buf)
916 {
917 return putpkt (buf.data ());
918 }
919
920 void skip_frame ();
921 long read_frame (gdb::char_vector *buf_p);
922 void getpkt (gdb::char_vector *buf, int forever);
923 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
924 int expecting_notif, int *is_notif);
925 int getpkt_sane (gdb::char_vector *buf, int forever);
926 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
927 int *is_notif);
928 int remote_vkill (int pid);
929 void remote_kill_k ();
930
931 void extended_remote_disable_randomization (int val);
932 int extended_remote_run (const std::string &args);
933
934 void send_environment_packet (const char *action,
935 const char *packet,
936 const char *value);
937
938 void extended_remote_environment_support ();
939 void extended_remote_set_inferior_cwd ();
940
941 target_xfer_status remote_write_qxfer (const char *object_name,
942 const char *annex,
943 const gdb_byte *writebuf,
944 ULONGEST offset, LONGEST len,
945 ULONGEST *xfered_len,
946 struct packet_config *packet);
947
948 target_xfer_status remote_read_qxfer (const char *object_name,
949 const char *annex,
950 gdb_byte *readbuf, ULONGEST offset,
951 LONGEST len,
952 ULONGEST *xfered_len,
953 struct packet_config *packet);
954
955 void push_stop_reply (struct stop_reply *new_event);
956
957 bool vcont_r_supported ();
958
959 void packet_command (const char *args, int from_tty);
960
961 private: /* data fields */
962
963 /* The remote state. Don't reference this directly. Use the
964 get_remote_state method instead. */
965 remote_state m_remote_state;
966 };
967
968 static const target_info extended_remote_target_info = {
969 "extended-remote",
970 N_("Extended remote serial target in gdb-specific protocol"),
971 remote_doc
972 };
973
974 /* Set up the extended remote target by extending the standard remote
975 target and adding to it. */
976
977 class extended_remote_target final : public remote_target
978 {
979 public:
980 const target_info &info () const override
981 { return extended_remote_target_info; }
982
983 /* Open an extended-remote connection. */
984 static void open (const char *, int);
985
986 bool can_create_inferior () override { return true; }
987 void create_inferior (const char *, const std::string &,
988 char **, int) override;
989
990 void detach (inferior *, int) override;
991
992 bool can_attach () override { return true; }
993 void attach (const char *, int) override;
994
995 void post_attach (int) override;
996 bool supports_disable_randomization () override;
997 };
998
999 /* Per-program-space data key. */
1000 static const struct program_space_key<char, gdb::xfree_deleter<char>>
1001 remote_pspace_data;
1002
1003 /* The variable registered as the control variable used by the
1004 remote exec-file commands. While the remote exec-file setting is
1005 per-program-space, the set/show machinery uses this as the
1006 location of the remote exec-file value. */
1007 static char *remote_exec_file_var;
1008
1009 /* The size to align memory write packets, when practical. The protocol
1010 does not guarantee any alignment, and gdb will generate short
1011 writes and unaligned writes, but even as a best-effort attempt this
1012 can improve bulk transfers. For instance, if a write is misaligned
1013 relative to the target's data bus, the stub may need to make an extra
1014 round trip fetching data from the target. This doesn't make a
1015 huge difference, but it's easy to do, so we try to be helpful.
1016
1017 The alignment chosen is arbitrary; usually data bus width is
1018 important here, not the possibly larger cache line size. */
1019 enum { REMOTE_ALIGN_WRITES = 16 };
1020
1021 /* Prototypes for local functions. */
1022
1023 static int hexnumlen (ULONGEST num);
1024
1025 static int stubhex (int ch);
1026
1027 static int hexnumstr (char *, ULONGEST);
1028
1029 static int hexnumnstr (char *, ULONGEST, int);
1030
1031 static CORE_ADDR remote_address_masked (CORE_ADDR);
1032
1033 static void print_packet (const char *);
1034
1035 static int stub_unpack_int (const char *buff, int fieldlength);
1036
1037 struct packet_config;
1038
1039 static void show_packet_config_cmd (struct packet_config *config);
1040
1041 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1042 int from_tty,
1043 struct cmd_list_element *c,
1044 const char *value);
1045
1046 static ptid_t read_ptid (const char *buf, const char **obuf);
1047
1048 static void remote_async_inferior_event_handler (gdb_client_data);
1049
1050 static bool remote_read_description_p (struct target_ops *target);
1051
1052 static void remote_console_output (const char *msg);
1053
1054 static void remote_btrace_reset (remote_state *rs);
1055
1056 static void remote_unpush_and_throw (remote_target *target);
1057
1058 /* For "remote". */
1059
1060 static struct cmd_list_element *remote_cmdlist;
1061
1062 /* For "set remote" and "show remote". */
1063
1064 static struct cmd_list_element *remote_set_cmdlist;
1065 static struct cmd_list_element *remote_show_cmdlist;
1066
1067 /* Controls whether GDB is willing to use range stepping. */
1068
1069 static bool use_range_stepping = true;
1070
1071 /* From the remote target's point of view, each thread is in one of these three
1072 states. */
1073 enum class resume_state
1074 {
1075 /* Not resumed - we haven't been asked to resume this thread. */
1076 NOT_RESUMED,
1077
1078 /* We have been asked to resume this thread, but haven't sent a vCont action
1079 for it yet. We'll need to consider it next time commit_resume is
1080 called. */
1081 RESUMED_PENDING_VCONT,
1082
1083 /* We have been asked to resume this thread, and we have sent a vCont action
1084 for it. */
1085 RESUMED,
1086 };
1087
1088 /* Information about a thread's pending vCont-resume. Used when a thread is in
1089 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1090 stores this information which is then picked up by
1091 remote_target::commit_resume to know which is the proper action for this
1092 thread to include in the vCont packet. */
1093 struct resumed_pending_vcont_info
1094 {
1095 /* True if the last resume call for this thread was a step request, false
1096 if a continue request. */
1097 bool step;
1098
1099 /* The signal specified in the last resume call for this thread. */
1100 gdb_signal sig;
1101 };
1102
1103 /* Private data that we'll store in (struct thread_info)->priv. */
1104 struct remote_thread_info : public private_thread_info
1105 {
1106 std::string extra;
1107 std::string name;
1108 int core = -1;
1109
1110 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1111 sequence of bytes. */
1112 gdb::byte_vector thread_handle;
1113
1114 /* Whether the target stopped for a breakpoint/watchpoint. */
1115 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1116
1117 /* This is set to the data address of the access causing the target
1118 to stop for a watchpoint. */
1119 CORE_ADDR watch_data_address = 0;
1120
1121 /* Get the thread's resume state. */
1122 enum resume_state get_resume_state () const
1123 {
1124 return m_resume_state;
1125 }
1126
1127 /* Put the thread in the NOT_RESUMED state. */
1128 void set_not_resumed ()
1129 {
1130 m_resume_state = resume_state::NOT_RESUMED;
1131 }
1132
1133 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1134 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1135 {
1136 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1137 m_resumed_pending_vcont_info.step = step;
1138 m_resumed_pending_vcont_info.sig = sig;
1139 }
1140
1141 /* Get the information this thread's pending vCont-resumption.
1142
1143 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1144 state. */
1145 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1146 {
1147 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1148
1149 return m_resumed_pending_vcont_info;
1150 }
1151
1152 /* Put the thread in the VCONT_RESUMED state. */
1153 void set_resumed ()
1154 {
1155 m_resume_state = resume_state::RESUMED;
1156 }
1157
1158 private:
1159 /* Resume state for this thread. This is used to implement vCont action
1160 coalescing (only when the target operates in non-stop mode).
1161
1162 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1163 which notes that this thread must be considered in the next commit_resume
1164 call.
1165
1166 remote_target::commit_resume sends a vCont packet with actions for the
1167 threads in the RESUMED_PENDING_VCONT state and moves them to the
1168 VCONT_RESUMED state.
1169
1170 When reporting a stop to the core for a thread, that thread is moved back
1171 to the NOT_RESUMED state. */
1172 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1173
1174 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1175 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1176 };
1177
1178 remote_state::remote_state ()
1179 : buf (400)
1180 {
1181 }
1182
1183 remote_state::~remote_state ()
1184 {
1185 xfree (this->last_pass_packet);
1186 xfree (this->last_program_signals_packet);
1187 xfree (this->finished_object);
1188 xfree (this->finished_annex);
1189 }
1190
1191 /* Utility: generate error from an incoming stub packet. */
1192 static void
1193 trace_error (char *buf)
1194 {
1195 if (*buf++ != 'E')
1196 return; /* not an error msg */
1197 switch (*buf)
1198 {
1199 case '1': /* malformed packet error */
1200 if (*++buf == '0') /* general case: */
1201 error (_("remote.c: error in outgoing packet."));
1202 else
1203 error (_("remote.c: error in outgoing packet at field #%ld."),
1204 strtol (buf, NULL, 16));
1205 default:
1206 error (_("Target returns error code '%s'."), buf);
1207 }
1208 }
1209
1210 /* Utility: wait for reply from stub, while accepting "O" packets. */
1211
1212 char *
1213 remote_target::remote_get_noisy_reply ()
1214 {
1215 struct remote_state *rs = get_remote_state ();
1216
1217 do /* Loop on reply from remote stub. */
1218 {
1219 char *buf;
1220
1221 QUIT; /* Allow user to bail out with ^C. */
1222 getpkt (&rs->buf, 0);
1223 buf = rs->buf.data ();
1224 if (buf[0] == 'E')
1225 trace_error (buf);
1226 else if (startswith (buf, "qRelocInsn:"))
1227 {
1228 ULONGEST ul;
1229 CORE_ADDR from, to, org_to;
1230 const char *p, *pp;
1231 int adjusted_size = 0;
1232 int relocated = 0;
1233
1234 p = buf + strlen ("qRelocInsn:");
1235 pp = unpack_varlen_hex (p, &ul);
1236 if (*pp != ';')
1237 error (_("invalid qRelocInsn packet: %s"), buf);
1238 from = ul;
1239
1240 p = pp + 1;
1241 unpack_varlen_hex (p, &ul);
1242 to = ul;
1243
1244 org_to = to;
1245
1246 try
1247 {
1248 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1249 relocated = 1;
1250 }
1251 catch (const gdb_exception &ex)
1252 {
1253 if (ex.error == MEMORY_ERROR)
1254 {
1255 /* Propagate memory errors silently back to the
1256 target. The stub may have limited the range of
1257 addresses we can write to, for example. */
1258 }
1259 else
1260 {
1261 /* Something unexpectedly bad happened. Be verbose
1262 so we can tell what, and propagate the error back
1263 to the stub, so it doesn't get stuck waiting for
1264 a response. */
1265 exception_fprintf (gdb_stderr, ex,
1266 _("warning: relocating instruction: "));
1267 }
1268 putpkt ("E01");
1269 }
1270
1271 if (relocated)
1272 {
1273 adjusted_size = to - org_to;
1274
1275 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1276 putpkt (buf);
1277 }
1278 }
1279 else if (buf[0] == 'O' && buf[1] != 'K')
1280 remote_console_output (buf + 1); /* 'O' message from stub */
1281 else
1282 return buf; /* Here's the actual reply. */
1283 }
1284 while (1);
1285 }
1286
1287 struct remote_arch_state *
1288 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1289 {
1290 remote_arch_state *rsa;
1291
1292 auto it = this->m_arch_states.find (gdbarch);
1293 if (it == this->m_arch_states.end ())
1294 {
1295 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1296 std::forward_as_tuple (gdbarch),
1297 std::forward_as_tuple (gdbarch));
1298 rsa = &p.first->second;
1299
1300 /* Make sure that the packet buffer is plenty big enough for
1301 this architecture. */
1302 if (this->buf.size () < rsa->remote_packet_size)
1303 this->buf.resize (2 * rsa->remote_packet_size);
1304 }
1305 else
1306 rsa = &it->second;
1307
1308 return rsa;
1309 }
1310
1311 /* Fetch the global remote target state. */
1312
1313 remote_state *
1314 remote_target::get_remote_state ()
1315 {
1316 /* Make sure that the remote architecture state has been
1317 initialized, because doing so might reallocate rs->buf. Any
1318 function which calls getpkt also needs to be mindful of changes
1319 to rs->buf, but this call limits the number of places which run
1320 into trouble. */
1321 m_remote_state.get_remote_arch_state (target_gdbarch ());
1322
1323 return &m_remote_state;
1324 }
1325
1326 /* Fetch the remote exec-file from the current program space. */
1327
1328 static const char *
1329 get_remote_exec_file (void)
1330 {
1331 char *remote_exec_file;
1332
1333 remote_exec_file = remote_pspace_data.get (current_program_space);
1334 if (remote_exec_file == NULL)
1335 return "";
1336
1337 return remote_exec_file;
1338 }
1339
1340 /* Set the remote exec file for PSPACE. */
1341
1342 static void
1343 set_pspace_remote_exec_file (struct program_space *pspace,
1344 const char *remote_exec_file)
1345 {
1346 char *old_file = remote_pspace_data.get (pspace);
1347
1348 xfree (old_file);
1349 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1350 }
1351
1352 /* The "set/show remote exec-file" set command hook. */
1353
1354 static void
1355 set_remote_exec_file (const char *ignored, int from_tty,
1356 struct cmd_list_element *c)
1357 {
1358 gdb_assert (remote_exec_file_var != NULL);
1359 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1360 }
1361
1362 /* The "set/show remote exec-file" show command hook. */
1363
1364 static void
1365 show_remote_exec_file (struct ui_file *file, int from_tty,
1366 struct cmd_list_element *cmd, const char *value)
1367 {
1368 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1369 }
1370
1371 static int
1372 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1373 {
1374 int regnum, num_remote_regs, offset;
1375 struct packet_reg **remote_regs;
1376
1377 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1378 {
1379 struct packet_reg *r = &regs[regnum];
1380
1381 if (register_size (gdbarch, regnum) == 0)
1382 /* Do not try to fetch zero-sized (placeholder) registers. */
1383 r->pnum = -1;
1384 else
1385 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1386
1387 r->regnum = regnum;
1388 }
1389
1390 /* Define the g/G packet format as the contents of each register
1391 with a remote protocol number, in order of ascending protocol
1392 number. */
1393
1394 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1395 for (num_remote_regs = 0, regnum = 0;
1396 regnum < gdbarch_num_regs (gdbarch);
1397 regnum++)
1398 if (regs[regnum].pnum != -1)
1399 remote_regs[num_remote_regs++] = &regs[regnum];
1400
1401 std::sort (remote_regs, remote_regs + num_remote_regs,
1402 [] (const packet_reg *a, const packet_reg *b)
1403 { return a->pnum < b->pnum; });
1404
1405 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1406 {
1407 remote_regs[regnum]->in_g_packet = 1;
1408 remote_regs[regnum]->offset = offset;
1409 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1410 }
1411
1412 return offset;
1413 }
1414
1415 /* Given the architecture described by GDBARCH, return the remote
1416 protocol register's number and the register's offset in the g/G
1417 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1418 If the target does not have a mapping for REGNUM, return false,
1419 otherwise, return true. */
1420
1421 int
1422 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1423 int *pnum, int *poffset)
1424 {
1425 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1426
1427 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1428
1429 map_regcache_remote_table (gdbarch, regs.data ());
1430
1431 *pnum = regs[regnum].pnum;
1432 *poffset = regs[regnum].offset;
1433
1434 return *pnum != -1;
1435 }
1436
1437 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1438 {
1439 /* Use the architecture to build a regnum<->pnum table, which will be
1440 1:1 unless a feature set specifies otherwise. */
1441 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1442
1443 /* Record the maximum possible size of the g packet - it may turn out
1444 to be smaller. */
1445 this->sizeof_g_packet
1446 = map_regcache_remote_table (gdbarch, this->regs.get ());
1447
1448 /* Default maximum number of characters in a packet body. Many
1449 remote stubs have a hardwired buffer size of 400 bytes
1450 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1451 as the maximum packet-size to ensure that the packet and an extra
1452 NUL character can always fit in the buffer. This stops GDB
1453 trashing stubs that try to squeeze an extra NUL into what is
1454 already a full buffer (As of 1999-12-04 that was most stubs). */
1455 this->remote_packet_size = 400 - 1;
1456
1457 /* This one is filled in when a ``g'' packet is received. */
1458 this->actual_register_packet_size = 0;
1459
1460 /* Should rsa->sizeof_g_packet needs more space than the
1461 default, adjust the size accordingly. Remember that each byte is
1462 encoded as two characters. 32 is the overhead for the packet
1463 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1464 (``$NN:G...#NN'') is a better guess, the below has been padded a
1465 little. */
1466 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1467 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1468 }
1469
1470 /* Get a pointer to the current remote target. If not connected to a
1471 remote target, return NULL. */
1472
1473 static remote_target *
1474 get_current_remote_target ()
1475 {
1476 target_ops *proc_target = current_inferior ()->process_target ();
1477 return dynamic_cast<remote_target *> (proc_target);
1478 }
1479
1480 /* Return the current allowed size of a remote packet. This is
1481 inferred from the current architecture, and should be used to
1482 limit the length of outgoing packets. */
1483 long
1484 remote_target::get_remote_packet_size ()
1485 {
1486 struct remote_state *rs = get_remote_state ();
1487 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1488
1489 if (rs->explicit_packet_size)
1490 return rs->explicit_packet_size;
1491
1492 return rsa->remote_packet_size;
1493 }
1494
1495 static struct packet_reg *
1496 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1497 long regnum)
1498 {
1499 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1500 return NULL;
1501 else
1502 {
1503 struct packet_reg *r = &rsa->regs[regnum];
1504
1505 gdb_assert (r->regnum == regnum);
1506 return r;
1507 }
1508 }
1509
1510 static struct packet_reg *
1511 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1512 LONGEST pnum)
1513 {
1514 int i;
1515
1516 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1517 {
1518 struct packet_reg *r = &rsa->regs[i];
1519
1520 if (r->pnum == pnum)
1521 return r;
1522 }
1523 return NULL;
1524 }
1525
1526 /* Allow the user to specify what sequence to send to the remote
1527 when he requests a program interruption: Although ^C is usually
1528 what remote systems expect (this is the default, here), it is
1529 sometimes preferable to send a break. On other systems such
1530 as the Linux kernel, a break followed by g, which is Magic SysRq g
1531 is required in order to interrupt the execution. */
1532 const char interrupt_sequence_control_c[] = "Ctrl-C";
1533 const char interrupt_sequence_break[] = "BREAK";
1534 const char interrupt_sequence_break_g[] = "BREAK-g";
1535 static const char *const interrupt_sequence_modes[] =
1536 {
1537 interrupt_sequence_control_c,
1538 interrupt_sequence_break,
1539 interrupt_sequence_break_g,
1540 NULL
1541 };
1542 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1543
1544 static void
1545 show_interrupt_sequence (struct ui_file *file, int from_tty,
1546 struct cmd_list_element *c,
1547 const char *value)
1548 {
1549 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1550 fprintf_filtered (file,
1551 _("Send the ASCII ETX character (Ctrl-c) "
1552 "to the remote target to interrupt the "
1553 "execution of the program.\n"));
1554 else if (interrupt_sequence_mode == interrupt_sequence_break)
1555 fprintf_filtered (file,
1556 _("send a break signal to the remote target "
1557 "to interrupt the execution of the program.\n"));
1558 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1559 fprintf_filtered (file,
1560 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1561 "the remote target to interrupt the execution "
1562 "of Linux kernel.\n"));
1563 else
1564 internal_error (__FILE__, __LINE__,
1565 _("Invalid value for interrupt_sequence_mode: %s."),
1566 interrupt_sequence_mode);
1567 }
1568
1569 /* This boolean variable specifies whether interrupt_sequence is sent
1570 to the remote target when gdb connects to it.
1571 This is mostly needed when you debug the Linux kernel: The Linux kernel
1572 expects BREAK g which is Magic SysRq g for connecting gdb. */
1573 static bool interrupt_on_connect = false;
1574
1575 /* This variable is used to implement the "set/show remotebreak" commands.
1576 Since these commands are now deprecated in favor of "set/show remote
1577 interrupt-sequence", it no longer has any effect on the code. */
1578 static bool remote_break;
1579
1580 static void
1581 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1582 {
1583 if (remote_break)
1584 interrupt_sequence_mode = interrupt_sequence_break;
1585 else
1586 interrupt_sequence_mode = interrupt_sequence_control_c;
1587 }
1588
1589 static void
1590 show_remotebreak (struct ui_file *file, int from_tty,
1591 struct cmd_list_element *c,
1592 const char *value)
1593 {
1594 }
1595
1596 /* This variable sets the number of bits in an address that are to be
1597 sent in a memory ("M" or "m") packet. Normally, after stripping
1598 leading zeros, the entire address would be sent. This variable
1599 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1600 initial implementation of remote.c restricted the address sent in
1601 memory packets to ``host::sizeof long'' bytes - (typically 32
1602 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1603 address was never sent. Since fixing this bug may cause a break in
1604 some remote targets this variable is principally provided to
1605 facilitate backward compatibility. */
1606
1607 static unsigned int remote_address_size;
1608
1609 \f
1610 /* User configurable variables for the number of characters in a
1611 memory read/write packet. MIN (rsa->remote_packet_size,
1612 rsa->sizeof_g_packet) is the default. Some targets need smaller
1613 values (fifo overruns, et.al.) and some users need larger values
1614 (speed up transfers). The variables ``preferred_*'' (the user
1615 request), ``current_*'' (what was actually set) and ``forced_*''
1616 (Positive - a soft limit, negative - a hard limit). */
1617
1618 struct memory_packet_config
1619 {
1620 const char *name;
1621 long size;
1622 int fixed_p;
1623 };
1624
1625 /* The default max memory-write-packet-size, when the setting is
1626 "fixed". The 16k is historical. (It came from older GDB's using
1627 alloca for buffers and the knowledge (folklore?) that some hosts
1628 don't cope very well with large alloca calls.) */
1629 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1630
1631 /* The minimum remote packet size for memory transfers. Ensures we
1632 can write at least one byte. */
1633 #define MIN_MEMORY_PACKET_SIZE 20
1634
1635 /* Get the memory packet size, assuming it is fixed. */
1636
1637 static long
1638 get_fixed_memory_packet_size (struct memory_packet_config *config)
1639 {
1640 gdb_assert (config->fixed_p);
1641
1642 if (config->size <= 0)
1643 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1644 else
1645 return config->size;
1646 }
1647
1648 /* Compute the current size of a read/write packet. Since this makes
1649 use of ``actual_register_packet_size'' the computation is dynamic. */
1650
1651 long
1652 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1653 {
1654 struct remote_state *rs = get_remote_state ();
1655 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1656
1657 long what_they_get;
1658 if (config->fixed_p)
1659 what_they_get = get_fixed_memory_packet_size (config);
1660 else
1661 {
1662 what_they_get = get_remote_packet_size ();
1663 /* Limit the packet to the size specified by the user. */
1664 if (config->size > 0
1665 && what_they_get > config->size)
1666 what_they_get = config->size;
1667
1668 /* Limit it to the size of the targets ``g'' response unless we have
1669 permission from the stub to use a larger packet size. */
1670 if (rs->explicit_packet_size == 0
1671 && rsa->actual_register_packet_size > 0
1672 && what_they_get > rsa->actual_register_packet_size)
1673 what_they_get = rsa->actual_register_packet_size;
1674 }
1675 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1676 what_they_get = MIN_MEMORY_PACKET_SIZE;
1677
1678 /* Make sure there is room in the global buffer for this packet
1679 (including its trailing NUL byte). */
1680 if (rs->buf.size () < what_they_get + 1)
1681 rs->buf.resize (2 * what_they_get);
1682
1683 return what_they_get;
1684 }
1685
1686 /* Update the size of a read/write packet. If they user wants
1687 something really big then do a sanity check. */
1688
1689 static void
1690 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1691 {
1692 int fixed_p = config->fixed_p;
1693 long size = config->size;
1694
1695 if (args == NULL)
1696 error (_("Argument required (integer, `fixed' or `limited')."));
1697 else if (strcmp (args, "hard") == 0
1698 || strcmp (args, "fixed") == 0)
1699 fixed_p = 1;
1700 else if (strcmp (args, "soft") == 0
1701 || strcmp (args, "limit") == 0)
1702 fixed_p = 0;
1703 else
1704 {
1705 char *end;
1706
1707 size = strtoul (args, &end, 0);
1708 if (args == end)
1709 error (_("Invalid %s (bad syntax)."), config->name);
1710
1711 /* Instead of explicitly capping the size of a packet to or
1712 disallowing it, the user is allowed to set the size to
1713 something arbitrarily large. */
1714 }
1715
1716 /* Extra checks? */
1717 if (fixed_p && !config->fixed_p)
1718 {
1719 /* So that the query shows the correct value. */
1720 long query_size = (size <= 0
1721 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1722 : size);
1723
1724 if (! query (_("The target may not be able to correctly handle a %s\n"
1725 "of %ld bytes. Change the packet size? "),
1726 config->name, query_size))
1727 error (_("Packet size not changed."));
1728 }
1729 /* Update the config. */
1730 config->fixed_p = fixed_p;
1731 config->size = size;
1732 }
1733
1734 static void
1735 show_memory_packet_size (struct memory_packet_config *config)
1736 {
1737 if (config->size == 0)
1738 printf_filtered (_("The %s is 0 (default). "), config->name);
1739 else
1740 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1741 if (config->fixed_p)
1742 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1743 get_fixed_memory_packet_size (config));
1744 else
1745 {
1746 remote_target *remote = get_current_remote_target ();
1747
1748 if (remote != NULL)
1749 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1750 remote->get_memory_packet_size (config));
1751 else
1752 puts_filtered ("The actual limit will be further reduced "
1753 "dependent on the target.\n");
1754 }
1755 }
1756
1757 /* FIXME: needs to be per-remote-target. */
1758 static struct memory_packet_config memory_write_packet_config =
1759 {
1760 "memory-write-packet-size",
1761 };
1762
1763 static void
1764 set_memory_write_packet_size (const char *args, int from_tty)
1765 {
1766 set_memory_packet_size (args, &memory_write_packet_config);
1767 }
1768
1769 static void
1770 show_memory_write_packet_size (const char *args, int from_tty)
1771 {
1772 show_memory_packet_size (&memory_write_packet_config);
1773 }
1774
1775 /* Show the number of hardware watchpoints that can be used. */
1776
1777 static void
1778 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1779 struct cmd_list_element *c,
1780 const char *value)
1781 {
1782 fprintf_filtered (file, _("The maximum number of target hardware "
1783 "watchpoints is %s.\n"), value);
1784 }
1785
1786 /* Show the length limit (in bytes) for hardware watchpoints. */
1787
1788 static void
1789 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1790 struct cmd_list_element *c,
1791 const char *value)
1792 {
1793 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1794 "hardware watchpoint is %s.\n"), value);
1795 }
1796
1797 /* Show the number of hardware breakpoints that can be used. */
1798
1799 static void
1800 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1801 struct cmd_list_element *c,
1802 const char *value)
1803 {
1804 fprintf_filtered (file, _("The maximum number of target hardware "
1805 "breakpoints is %s.\n"), value);
1806 }
1807
1808 /* Controls the maximum number of characters to display in the debug output
1809 for each remote packet. The remaining characters are omitted. */
1810
1811 static int remote_packet_max_chars = 512;
1812
1813 /* Show the maximum number of characters to display for each remote packet
1814 when remote debugging is enabled. */
1815
1816 static void
1817 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1818 struct cmd_list_element *c,
1819 const char *value)
1820 {
1821 fprintf_filtered (file, _("Number of remote packet characters to "
1822 "display is %s.\n"), value);
1823 }
1824
1825 long
1826 remote_target::get_memory_write_packet_size ()
1827 {
1828 return get_memory_packet_size (&memory_write_packet_config);
1829 }
1830
1831 /* FIXME: needs to be per-remote-target. */
1832 static struct memory_packet_config memory_read_packet_config =
1833 {
1834 "memory-read-packet-size",
1835 };
1836
1837 static void
1838 set_memory_read_packet_size (const char *args, int from_tty)
1839 {
1840 set_memory_packet_size (args, &memory_read_packet_config);
1841 }
1842
1843 static void
1844 show_memory_read_packet_size (const char *args, int from_tty)
1845 {
1846 show_memory_packet_size (&memory_read_packet_config);
1847 }
1848
1849 long
1850 remote_target::get_memory_read_packet_size ()
1851 {
1852 long size = get_memory_packet_size (&memory_read_packet_config);
1853
1854 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1855 extra buffer size argument before the memory read size can be
1856 increased beyond this. */
1857 if (size > get_remote_packet_size ())
1858 size = get_remote_packet_size ();
1859 return size;
1860 }
1861
1862 \f
1863
1864 struct packet_config
1865 {
1866 const char *name;
1867 const char *title;
1868
1869 /* If auto, GDB auto-detects support for this packet or feature,
1870 either through qSupported, or by trying the packet and looking
1871 at the response. If true, GDB assumes the target supports this
1872 packet. If false, the packet is disabled. Configs that don't
1873 have an associated command always have this set to auto. */
1874 enum auto_boolean detect;
1875
1876 /* Does the target support this packet? */
1877 enum packet_support support;
1878 };
1879
1880 static enum packet_support packet_config_support (struct packet_config *config);
1881 static enum packet_support packet_support (int packet);
1882
1883 static void
1884 show_packet_config_cmd (struct packet_config *config)
1885 {
1886 const char *support = "internal-error";
1887
1888 switch (packet_config_support (config))
1889 {
1890 case PACKET_ENABLE:
1891 support = "enabled";
1892 break;
1893 case PACKET_DISABLE:
1894 support = "disabled";
1895 break;
1896 case PACKET_SUPPORT_UNKNOWN:
1897 support = "unknown";
1898 break;
1899 }
1900 switch (config->detect)
1901 {
1902 case AUTO_BOOLEAN_AUTO:
1903 printf_filtered (_("Support for the `%s' packet "
1904 "is auto-detected, currently %s.\n"),
1905 config->name, support);
1906 break;
1907 case AUTO_BOOLEAN_TRUE:
1908 case AUTO_BOOLEAN_FALSE:
1909 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1910 config->name, support);
1911 break;
1912 }
1913 }
1914
1915 static void
1916 add_packet_config_cmd (struct packet_config *config, const char *name,
1917 const char *title, int legacy)
1918 {
1919 char *set_doc;
1920 char *show_doc;
1921 char *cmd_name;
1922
1923 config->name = name;
1924 config->title = title;
1925 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1926 name, title);
1927 show_doc = xstrprintf ("Show current use of remote "
1928 "protocol `%s' (%s) packet.",
1929 name, title);
1930 /* set/show TITLE-packet {auto,on,off} */
1931 cmd_name = xstrprintf ("%s-packet", title);
1932 set_show_commands cmds
1933 = add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1934 &config->detect, set_doc,
1935 show_doc, NULL, /* help_doc */
1936 NULL,
1937 show_remote_protocol_packet_cmd,
1938 &remote_set_cmdlist, &remote_show_cmdlist);
1939
1940 /* The command code copies the documentation strings. */
1941 xfree (set_doc);
1942 xfree (show_doc);
1943
1944 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1945 if (legacy)
1946 {
1947 char *legacy_name;
1948
1949 legacy_name = xstrprintf ("%s-packet", name);
1950 add_alias_cmd (legacy_name, cmds.set, class_obscure, 0,
1951 &remote_set_cmdlist);
1952 add_alias_cmd (legacy_name, cmds.show, class_obscure, 0,
1953 &remote_show_cmdlist);
1954 }
1955 }
1956
1957 static enum packet_result
1958 packet_check_result (const char *buf)
1959 {
1960 if (buf[0] != '\0')
1961 {
1962 /* The stub recognized the packet request. Check that the
1963 operation succeeded. */
1964 if (buf[0] == 'E'
1965 && isxdigit (buf[1]) && isxdigit (buf[2])
1966 && buf[3] == '\0')
1967 /* "Enn" - definitely an error. */
1968 return PACKET_ERROR;
1969
1970 /* Always treat "E." as an error. This will be used for
1971 more verbose error messages, such as E.memtypes. */
1972 if (buf[0] == 'E' && buf[1] == '.')
1973 return PACKET_ERROR;
1974
1975 /* The packet may or may not be OK. Just assume it is. */
1976 return PACKET_OK;
1977 }
1978 else
1979 /* The stub does not support the packet. */
1980 return PACKET_UNKNOWN;
1981 }
1982
1983 static enum packet_result
1984 packet_check_result (const gdb::char_vector &buf)
1985 {
1986 return packet_check_result (buf.data ());
1987 }
1988
1989 static enum packet_result
1990 packet_ok (const char *buf, struct packet_config *config)
1991 {
1992 enum packet_result result;
1993
1994 if (config->detect != AUTO_BOOLEAN_TRUE
1995 && config->support == PACKET_DISABLE)
1996 internal_error (__FILE__, __LINE__,
1997 _("packet_ok: attempt to use a disabled packet"));
1998
1999 result = packet_check_result (buf);
2000 switch (result)
2001 {
2002 case PACKET_OK:
2003 case PACKET_ERROR:
2004 /* The stub recognized the packet request. */
2005 if (config->support == PACKET_SUPPORT_UNKNOWN)
2006 {
2007 remote_debug_printf ("Packet %s (%s) is supported",
2008 config->name, config->title);
2009 config->support = PACKET_ENABLE;
2010 }
2011 break;
2012 case PACKET_UNKNOWN:
2013 /* The stub does not support the packet. */
2014 if (config->detect == AUTO_BOOLEAN_AUTO
2015 && config->support == PACKET_ENABLE)
2016 {
2017 /* If the stub previously indicated that the packet was
2018 supported then there is a protocol error. */
2019 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2020 config->name, config->title);
2021 }
2022 else if (config->detect == AUTO_BOOLEAN_TRUE)
2023 {
2024 /* The user set it wrong. */
2025 error (_("Enabled packet %s (%s) not recognized by stub"),
2026 config->name, config->title);
2027 }
2028
2029 remote_debug_printf ("Packet %s (%s) is NOT supported",
2030 config->name, config->title);
2031 config->support = PACKET_DISABLE;
2032 break;
2033 }
2034
2035 return result;
2036 }
2037
2038 static enum packet_result
2039 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2040 {
2041 return packet_ok (buf.data (), config);
2042 }
2043
2044 enum {
2045 PACKET_vCont = 0,
2046 PACKET_X,
2047 PACKET_qSymbol,
2048 PACKET_P,
2049 PACKET_p,
2050 PACKET_Z0,
2051 PACKET_Z1,
2052 PACKET_Z2,
2053 PACKET_Z3,
2054 PACKET_Z4,
2055 PACKET_vFile_setfs,
2056 PACKET_vFile_open,
2057 PACKET_vFile_pread,
2058 PACKET_vFile_pwrite,
2059 PACKET_vFile_close,
2060 PACKET_vFile_unlink,
2061 PACKET_vFile_readlink,
2062 PACKET_vFile_fstat,
2063 PACKET_qXfer_auxv,
2064 PACKET_qXfer_features,
2065 PACKET_qXfer_exec_file,
2066 PACKET_qXfer_libraries,
2067 PACKET_qXfer_libraries_svr4,
2068 PACKET_qXfer_memory_map,
2069 PACKET_qXfer_osdata,
2070 PACKET_qXfer_threads,
2071 PACKET_qXfer_statictrace_read,
2072 PACKET_qXfer_traceframe_info,
2073 PACKET_qXfer_uib,
2074 PACKET_qGetTIBAddr,
2075 PACKET_qGetTLSAddr,
2076 PACKET_qSupported,
2077 PACKET_qTStatus,
2078 PACKET_QPassSignals,
2079 PACKET_QCatchSyscalls,
2080 PACKET_QProgramSignals,
2081 PACKET_QSetWorkingDir,
2082 PACKET_QStartupWithShell,
2083 PACKET_QEnvironmentHexEncoded,
2084 PACKET_QEnvironmentReset,
2085 PACKET_QEnvironmentUnset,
2086 PACKET_qCRC,
2087 PACKET_qSearch_memory,
2088 PACKET_vAttach,
2089 PACKET_vRun,
2090 PACKET_QStartNoAckMode,
2091 PACKET_vKill,
2092 PACKET_qXfer_siginfo_read,
2093 PACKET_qXfer_siginfo_write,
2094 PACKET_qAttached,
2095
2096 /* Support for conditional tracepoints. */
2097 PACKET_ConditionalTracepoints,
2098
2099 /* Support for target-side breakpoint conditions. */
2100 PACKET_ConditionalBreakpoints,
2101
2102 /* Support for target-side breakpoint commands. */
2103 PACKET_BreakpointCommands,
2104
2105 /* Support for fast tracepoints. */
2106 PACKET_FastTracepoints,
2107
2108 /* Support for static tracepoints. */
2109 PACKET_StaticTracepoints,
2110
2111 /* Support for installing tracepoints while a trace experiment is
2112 running. */
2113 PACKET_InstallInTrace,
2114
2115 PACKET_bc,
2116 PACKET_bs,
2117 PACKET_TracepointSource,
2118 PACKET_QAllow,
2119 PACKET_qXfer_fdpic,
2120 PACKET_QDisableRandomization,
2121 PACKET_QAgent,
2122 PACKET_QTBuffer_size,
2123 PACKET_Qbtrace_off,
2124 PACKET_Qbtrace_bts,
2125 PACKET_Qbtrace_pt,
2126 PACKET_qXfer_btrace,
2127
2128 /* Support for the QNonStop packet. */
2129 PACKET_QNonStop,
2130
2131 /* Support for the QThreadEvents packet. */
2132 PACKET_QThreadEvents,
2133
2134 /* Support for multi-process extensions. */
2135 PACKET_multiprocess_feature,
2136
2137 /* Support for enabling and disabling tracepoints while a trace
2138 experiment is running. */
2139 PACKET_EnableDisableTracepoints_feature,
2140
2141 /* Support for collecting strings using the tracenz bytecode. */
2142 PACKET_tracenz_feature,
2143
2144 /* Support for continuing to run a trace experiment while GDB is
2145 disconnected. */
2146 PACKET_DisconnectedTracing_feature,
2147
2148 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2149 PACKET_augmented_libraries_svr4_read_feature,
2150
2151 /* Support for the qXfer:btrace-conf:read packet. */
2152 PACKET_qXfer_btrace_conf,
2153
2154 /* Support for the Qbtrace-conf:bts:size packet. */
2155 PACKET_Qbtrace_conf_bts_size,
2156
2157 /* Support for swbreak+ feature. */
2158 PACKET_swbreak_feature,
2159
2160 /* Support for hwbreak+ feature. */
2161 PACKET_hwbreak_feature,
2162
2163 /* Support for fork events. */
2164 PACKET_fork_event_feature,
2165
2166 /* Support for vfork events. */
2167 PACKET_vfork_event_feature,
2168
2169 /* Support for the Qbtrace-conf:pt:size packet. */
2170 PACKET_Qbtrace_conf_pt_size,
2171
2172 /* Support for exec events. */
2173 PACKET_exec_event_feature,
2174
2175 /* Support for query supported vCont actions. */
2176 PACKET_vContSupported,
2177
2178 /* Support remote CTRL-C. */
2179 PACKET_vCtrlC,
2180
2181 /* Support TARGET_WAITKIND_NO_RESUMED. */
2182 PACKET_no_resumed,
2183
2184 /* Support for memory tagging, allocation tag fetch/store
2185 packets and the tag violation stop replies. */
2186 PACKET_memory_tagging_feature,
2187
2188 PACKET_MAX
2189 };
2190
2191 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2192 assuming all remote targets are the same server (thus all support
2193 the same packets). */
2194 static struct packet_config remote_protocol_packets[PACKET_MAX];
2195
2196 /* Returns the packet's corresponding "set remote foo-packet" command
2197 state. See struct packet_config for more details. */
2198
2199 static enum auto_boolean
2200 packet_set_cmd_state (int packet)
2201 {
2202 return remote_protocol_packets[packet].detect;
2203 }
2204
2205 /* Returns whether a given packet or feature is supported. This takes
2206 into account the state of the corresponding "set remote foo-packet"
2207 command, which may be used to bypass auto-detection. */
2208
2209 static enum packet_support
2210 packet_config_support (struct packet_config *config)
2211 {
2212 switch (config->detect)
2213 {
2214 case AUTO_BOOLEAN_TRUE:
2215 return PACKET_ENABLE;
2216 case AUTO_BOOLEAN_FALSE:
2217 return PACKET_DISABLE;
2218 case AUTO_BOOLEAN_AUTO:
2219 return config->support;
2220 default:
2221 gdb_assert_not_reached (_("bad switch"));
2222 }
2223 }
2224
2225 /* Same as packet_config_support, but takes the packet's enum value as
2226 argument. */
2227
2228 static enum packet_support
2229 packet_support (int packet)
2230 {
2231 struct packet_config *config = &remote_protocol_packets[packet];
2232
2233 return packet_config_support (config);
2234 }
2235
2236 static void
2237 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2238 struct cmd_list_element *c,
2239 const char *value)
2240 {
2241 struct packet_config *packet;
2242
2243 for (packet = remote_protocol_packets;
2244 packet < &remote_protocol_packets[PACKET_MAX];
2245 packet++)
2246 {
2247 if (&packet->detect == c->var)
2248 {
2249 show_packet_config_cmd (packet);
2250 return;
2251 }
2252 }
2253 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2254 c->name);
2255 }
2256
2257 /* Should we try one of the 'Z' requests? */
2258
2259 enum Z_packet_type
2260 {
2261 Z_PACKET_SOFTWARE_BP,
2262 Z_PACKET_HARDWARE_BP,
2263 Z_PACKET_WRITE_WP,
2264 Z_PACKET_READ_WP,
2265 Z_PACKET_ACCESS_WP,
2266 NR_Z_PACKET_TYPES
2267 };
2268
2269 /* For compatibility with older distributions. Provide a ``set remote
2270 Z-packet ...'' command that updates all the Z packet types. */
2271
2272 static enum auto_boolean remote_Z_packet_detect;
2273
2274 static void
2275 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2276 struct cmd_list_element *c)
2277 {
2278 int i;
2279
2280 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2281 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2282 }
2283
2284 static void
2285 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2286 struct cmd_list_element *c,
2287 const char *value)
2288 {
2289 int i;
2290
2291 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2292 {
2293 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2294 }
2295 }
2296
2297 /* Returns true if the multi-process extensions are in effect. */
2298
2299 static int
2300 remote_multi_process_p (struct remote_state *rs)
2301 {
2302 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2303 }
2304
2305 /* Returns true if fork events are supported. */
2306
2307 static int
2308 remote_fork_event_p (struct remote_state *rs)
2309 {
2310 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2311 }
2312
2313 /* Returns true if vfork events are supported. */
2314
2315 static int
2316 remote_vfork_event_p (struct remote_state *rs)
2317 {
2318 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2319 }
2320
2321 /* Returns true if exec events are supported. */
2322
2323 static int
2324 remote_exec_event_p (struct remote_state *rs)
2325 {
2326 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2327 }
2328
2329 /* Returns true if memory tagging is supported, false otherwise. */
2330
2331 static bool
2332 remote_memory_tagging_p ()
2333 {
2334 return packet_support (PACKET_memory_tagging_feature) == PACKET_ENABLE;
2335 }
2336
2337 /* Insert fork catchpoint target routine. If fork events are enabled
2338 then return success, nothing more to do. */
2339
2340 int
2341 remote_target::insert_fork_catchpoint (int pid)
2342 {
2343 struct remote_state *rs = get_remote_state ();
2344
2345 return !remote_fork_event_p (rs);
2346 }
2347
2348 /* Remove fork catchpoint target routine. Nothing to do, just
2349 return success. */
2350
2351 int
2352 remote_target::remove_fork_catchpoint (int pid)
2353 {
2354 return 0;
2355 }
2356
2357 /* Insert vfork catchpoint target routine. If vfork events are enabled
2358 then return success, nothing more to do. */
2359
2360 int
2361 remote_target::insert_vfork_catchpoint (int pid)
2362 {
2363 struct remote_state *rs = get_remote_state ();
2364
2365 return !remote_vfork_event_p (rs);
2366 }
2367
2368 /* Remove vfork catchpoint target routine. Nothing to do, just
2369 return success. */
2370
2371 int
2372 remote_target::remove_vfork_catchpoint (int pid)
2373 {
2374 return 0;
2375 }
2376
2377 /* Insert exec catchpoint target routine. If exec events are
2378 enabled, just return success. */
2379
2380 int
2381 remote_target::insert_exec_catchpoint (int pid)
2382 {
2383 struct remote_state *rs = get_remote_state ();
2384
2385 return !remote_exec_event_p (rs);
2386 }
2387
2388 /* Remove exec catchpoint target routine. Nothing to do, just
2389 return success. */
2390
2391 int
2392 remote_target::remove_exec_catchpoint (int pid)
2393 {
2394 return 0;
2395 }
2396
2397 \f
2398
2399 /* Take advantage of the fact that the TID field is not used, to tag
2400 special ptids with it set to != 0. */
2401 static const ptid_t magic_null_ptid (42000, -1, 1);
2402 static const ptid_t not_sent_ptid (42000, -2, 1);
2403 static const ptid_t any_thread_ptid (42000, 0, 1);
2404
2405 /* Find out if the stub attached to PID (and hence GDB should offer to
2406 detach instead of killing it when bailing out). */
2407
2408 int
2409 remote_target::remote_query_attached (int pid)
2410 {
2411 struct remote_state *rs = get_remote_state ();
2412 size_t size = get_remote_packet_size ();
2413
2414 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2415 return 0;
2416
2417 if (remote_multi_process_p (rs))
2418 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2419 else
2420 xsnprintf (rs->buf.data (), size, "qAttached");
2421
2422 putpkt (rs->buf);
2423 getpkt (&rs->buf, 0);
2424
2425 switch (packet_ok (rs->buf,
2426 &remote_protocol_packets[PACKET_qAttached]))
2427 {
2428 case PACKET_OK:
2429 if (strcmp (rs->buf.data (), "1") == 0)
2430 return 1;
2431 break;
2432 case PACKET_ERROR:
2433 warning (_("Remote failure reply: %s"), rs->buf.data ());
2434 break;
2435 case PACKET_UNKNOWN:
2436 break;
2437 }
2438
2439 return 0;
2440 }
2441
2442 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2443 has been invented by GDB, instead of reported by the target. Since
2444 we can be connected to a remote system before before knowing about
2445 any inferior, mark the target with execution when we find the first
2446 inferior. If ATTACHED is 1, then we had just attached to this
2447 inferior. If it is 0, then we just created this inferior. If it
2448 is -1, then try querying the remote stub to find out if it had
2449 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2450 attempt to open this inferior's executable as the main executable
2451 if no main executable is open already. */
2452
2453 inferior *
2454 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2455 int try_open_exec)
2456 {
2457 struct inferior *inf;
2458
2459 /* Check whether this process we're learning about is to be
2460 considered attached, or if is to be considered to have been
2461 spawned by the stub. */
2462 if (attached == -1)
2463 attached = remote_query_attached (pid);
2464
2465 if (gdbarch_has_global_solist (target_gdbarch ()))
2466 {
2467 /* If the target shares code across all inferiors, then every
2468 attach adds a new inferior. */
2469 inf = add_inferior (pid);
2470
2471 /* ... and every inferior is bound to the same program space.
2472 However, each inferior may still have its own address
2473 space. */
2474 inf->aspace = maybe_new_address_space ();
2475 inf->pspace = current_program_space;
2476 }
2477 else
2478 {
2479 /* In the traditional debugging scenario, there's a 1-1 match
2480 between program/address spaces. We simply bind the inferior
2481 to the program space's address space. */
2482 inf = current_inferior ();
2483
2484 /* However, if the current inferior is already bound to a
2485 process, find some other empty inferior. */
2486 if (inf->pid != 0)
2487 {
2488 inf = nullptr;
2489 for (inferior *it : all_inferiors ())
2490 if (it->pid == 0)
2491 {
2492 inf = it;
2493 break;
2494 }
2495 }
2496 if (inf == nullptr)
2497 {
2498 /* Since all inferiors were already bound to a process, add
2499 a new inferior. */
2500 inf = add_inferior_with_spaces ();
2501 }
2502 switch_to_inferior_no_thread (inf);
2503 inf->push_target (this);
2504 inferior_appeared (inf, pid);
2505 }
2506
2507 inf->attach_flag = attached;
2508 inf->fake_pid_p = fake_pid_p;
2509
2510 /* If no main executable is currently open then attempt to
2511 open the file that was executed to create this inferior. */
2512 if (try_open_exec && get_exec_file (0) == NULL)
2513 exec_file_locate_attach (pid, 0, 1);
2514
2515 /* Check for exec file mismatch, and let the user solve it. */
2516 validate_exec_file (1);
2517
2518 return inf;
2519 }
2520
2521 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2522 static remote_thread_info *get_remote_thread_info (remote_target *target,
2523 ptid_t ptid);
2524
2525 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2526 according to RUNNING. */
2527
2528 thread_info *
2529 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2530 {
2531 struct remote_state *rs = get_remote_state ();
2532 struct thread_info *thread;
2533
2534 /* GDB historically didn't pull threads in the initial connection
2535 setup. If the remote target doesn't even have a concept of
2536 threads (e.g., a bare-metal target), even if internally we
2537 consider that a single-threaded target, mentioning a new thread
2538 might be confusing to the user. Be silent then, preserving the
2539 age old behavior. */
2540 if (rs->starting_up)
2541 thread = add_thread_silent (this, ptid);
2542 else
2543 thread = add_thread (this, ptid);
2544
2545 /* We start by assuming threads are resumed. That state then gets updated
2546 when we process a matching stop reply. */
2547 get_remote_thread_info (thread)->set_resumed ();
2548
2549 set_executing (this, ptid, executing);
2550 set_running (this, ptid, running);
2551
2552 return thread;
2553 }
2554
2555 /* Come here when we learn about a thread id from the remote target.
2556 It may be the first time we hear about such thread, so take the
2557 opportunity to add it to GDB's thread list. In case this is the
2558 first time we're noticing its corresponding inferior, add it to
2559 GDB's inferior list as well. EXECUTING indicates whether the
2560 thread is (internally) executing or stopped. */
2561
2562 void
2563 remote_target::remote_notice_new_inferior (ptid_t currthread, bool executing)
2564 {
2565 /* In non-stop mode, we assume new found threads are (externally)
2566 running until proven otherwise with a stop reply. In all-stop,
2567 we can only get here if all threads are stopped. */
2568 bool running = target_is_non_stop_p ();
2569
2570 /* If this is a new thread, add it to GDB's thread list.
2571 If we leave it up to WFI to do this, bad things will happen. */
2572
2573 thread_info *tp = find_thread_ptid (this, currthread);
2574 if (tp != NULL && tp->state == THREAD_EXITED)
2575 {
2576 /* We're seeing an event on a thread id we knew had exited.
2577 This has to be a new thread reusing the old id. Add it. */
2578 remote_add_thread (currthread, running, executing);
2579 return;
2580 }
2581
2582 if (!in_thread_list (this, currthread))
2583 {
2584 struct inferior *inf = NULL;
2585 int pid = currthread.pid ();
2586
2587 if (inferior_ptid.is_pid ()
2588 && pid == inferior_ptid.pid ())
2589 {
2590 /* inferior_ptid has no thread member yet. This can happen
2591 with the vAttach -> remote_wait,"TAAthread:" path if the
2592 stub doesn't support qC. This is the first stop reported
2593 after an attach, so this is the main thread. Update the
2594 ptid in the thread list. */
2595 if (in_thread_list (this, ptid_t (pid)))
2596 thread_change_ptid (this, inferior_ptid, currthread);
2597 else
2598 {
2599 thread_info *thr
2600 = remote_add_thread (currthread, running, executing);
2601 switch_to_thread (thr);
2602 }
2603 return;
2604 }
2605
2606 if (magic_null_ptid == inferior_ptid)
2607 {
2608 /* inferior_ptid is not set yet. This can happen with the
2609 vRun -> remote_wait,"TAAthread:" path if the stub
2610 doesn't support qC. This is the first stop reported
2611 after an attach, so this is the main thread. Update the
2612 ptid in the thread list. */
2613 thread_change_ptid (this, inferior_ptid, currthread);
2614 return;
2615 }
2616
2617 /* When connecting to a target remote, or to a target
2618 extended-remote which already was debugging an inferior, we
2619 may not know about it yet. Add it before adding its child
2620 thread, so notifications are emitted in a sensible order. */
2621 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2622 {
2623 struct remote_state *rs = get_remote_state ();
2624 bool fake_pid_p = !remote_multi_process_p (rs);
2625
2626 inf = remote_add_inferior (fake_pid_p,
2627 currthread.pid (), -1, 1);
2628 }
2629
2630 /* This is really a new thread. Add it. */
2631 thread_info *new_thr
2632 = remote_add_thread (currthread, running, executing);
2633
2634 /* If we found a new inferior, let the common code do whatever
2635 it needs to with it (e.g., read shared libraries, insert
2636 breakpoints), unless we're just setting up an all-stop
2637 connection. */
2638 if (inf != NULL)
2639 {
2640 struct remote_state *rs = get_remote_state ();
2641
2642 if (!rs->starting_up)
2643 notice_new_inferior (new_thr, executing, 0);
2644 }
2645 }
2646 }
2647
2648 /* Return THREAD's private thread data, creating it if necessary. */
2649
2650 static remote_thread_info *
2651 get_remote_thread_info (thread_info *thread)
2652 {
2653 gdb_assert (thread != NULL);
2654
2655 if (thread->priv == NULL)
2656 thread->priv.reset (new remote_thread_info);
2657
2658 return static_cast<remote_thread_info *> (thread->priv.get ());
2659 }
2660
2661 /* Return PTID's private thread data, creating it if necessary. */
2662
2663 static remote_thread_info *
2664 get_remote_thread_info (remote_target *target, ptid_t ptid)
2665 {
2666 thread_info *thr = find_thread_ptid (target, ptid);
2667 return get_remote_thread_info (thr);
2668 }
2669
2670 /* Call this function as a result of
2671 1) A halt indication (T packet) containing a thread id
2672 2) A direct query of currthread
2673 3) Successful execution of set thread */
2674
2675 static void
2676 record_currthread (struct remote_state *rs, ptid_t currthread)
2677 {
2678 rs->general_thread = currthread;
2679 }
2680
2681 /* If 'QPassSignals' is supported, tell the remote stub what signals
2682 it can simply pass through to the inferior without reporting. */
2683
2684 void
2685 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2686 {
2687 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2688 {
2689 char *pass_packet, *p;
2690 int count = 0;
2691 struct remote_state *rs = get_remote_state ();
2692
2693 gdb_assert (pass_signals.size () < 256);
2694 for (size_t i = 0; i < pass_signals.size (); i++)
2695 {
2696 if (pass_signals[i])
2697 count++;
2698 }
2699 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2700 strcpy (pass_packet, "QPassSignals:");
2701 p = pass_packet + strlen (pass_packet);
2702 for (size_t i = 0; i < pass_signals.size (); i++)
2703 {
2704 if (pass_signals[i])
2705 {
2706 if (i >= 16)
2707 *p++ = tohex (i >> 4);
2708 *p++ = tohex (i & 15);
2709 if (count)
2710 *p++ = ';';
2711 else
2712 break;
2713 count--;
2714 }
2715 }
2716 *p = 0;
2717 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2718 {
2719 putpkt (pass_packet);
2720 getpkt (&rs->buf, 0);
2721 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2722 xfree (rs->last_pass_packet);
2723 rs->last_pass_packet = pass_packet;
2724 }
2725 else
2726 xfree (pass_packet);
2727 }
2728 }
2729
2730 /* If 'QCatchSyscalls' is supported, tell the remote stub
2731 to report syscalls to GDB. */
2732
2733 int
2734 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2735 gdb::array_view<const int> syscall_counts)
2736 {
2737 const char *catch_packet;
2738 enum packet_result result;
2739 int n_sysno = 0;
2740
2741 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2742 {
2743 /* Not supported. */
2744 return 1;
2745 }
2746
2747 if (needed && any_count == 0)
2748 {
2749 /* Count how many syscalls are to be caught. */
2750 for (size_t i = 0; i < syscall_counts.size (); i++)
2751 {
2752 if (syscall_counts[i] != 0)
2753 n_sysno++;
2754 }
2755 }
2756
2757 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2758 pid, needed, any_count, n_sysno);
2759
2760 std::string built_packet;
2761 if (needed)
2762 {
2763 /* Prepare a packet with the sysno list, assuming max 8+1
2764 characters for a sysno. If the resulting packet size is too
2765 big, fallback on the non-selective packet. */
2766 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2767 built_packet.reserve (maxpktsz);
2768 built_packet = "QCatchSyscalls:1";
2769 if (any_count == 0)
2770 {
2771 /* Add in each syscall to be caught. */
2772 for (size_t i = 0; i < syscall_counts.size (); i++)
2773 {
2774 if (syscall_counts[i] != 0)
2775 string_appendf (built_packet, ";%zx", i);
2776 }
2777 }
2778 if (built_packet.size () > get_remote_packet_size ())
2779 {
2780 /* catch_packet too big. Fallback to less efficient
2781 non selective mode, with GDB doing the filtering. */
2782 catch_packet = "QCatchSyscalls:1";
2783 }
2784 else
2785 catch_packet = built_packet.c_str ();
2786 }
2787 else
2788 catch_packet = "QCatchSyscalls:0";
2789
2790 struct remote_state *rs = get_remote_state ();
2791
2792 putpkt (catch_packet);
2793 getpkt (&rs->buf, 0);
2794 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2795 if (result == PACKET_OK)
2796 return 0;
2797 else
2798 return -1;
2799 }
2800
2801 /* If 'QProgramSignals' is supported, tell the remote stub what
2802 signals it should pass through to the inferior when detaching. */
2803
2804 void
2805 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2806 {
2807 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2808 {
2809 char *packet, *p;
2810 int count = 0;
2811 struct remote_state *rs = get_remote_state ();
2812
2813 gdb_assert (signals.size () < 256);
2814 for (size_t i = 0; i < signals.size (); i++)
2815 {
2816 if (signals[i])
2817 count++;
2818 }
2819 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2820 strcpy (packet, "QProgramSignals:");
2821 p = packet + strlen (packet);
2822 for (size_t i = 0; i < signals.size (); i++)
2823 {
2824 if (signal_pass_state (i))
2825 {
2826 if (i >= 16)
2827 *p++ = tohex (i >> 4);
2828 *p++ = tohex (i & 15);
2829 if (count)
2830 *p++ = ';';
2831 else
2832 break;
2833 count--;
2834 }
2835 }
2836 *p = 0;
2837 if (!rs->last_program_signals_packet
2838 || strcmp (rs->last_program_signals_packet, packet) != 0)
2839 {
2840 putpkt (packet);
2841 getpkt (&rs->buf, 0);
2842 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2843 xfree (rs->last_program_signals_packet);
2844 rs->last_program_signals_packet = packet;
2845 }
2846 else
2847 xfree (packet);
2848 }
2849 }
2850
2851 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2852 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2853 thread. If GEN is set, set the general thread, if not, then set
2854 the step/continue thread. */
2855 void
2856 remote_target::set_thread (ptid_t ptid, int gen)
2857 {
2858 struct remote_state *rs = get_remote_state ();
2859 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2860 char *buf = rs->buf.data ();
2861 char *endbuf = buf + get_remote_packet_size ();
2862
2863 if (state == ptid)
2864 return;
2865
2866 *buf++ = 'H';
2867 *buf++ = gen ? 'g' : 'c';
2868 if (ptid == magic_null_ptid)
2869 xsnprintf (buf, endbuf - buf, "0");
2870 else if (ptid == any_thread_ptid)
2871 xsnprintf (buf, endbuf - buf, "0");
2872 else if (ptid == minus_one_ptid)
2873 xsnprintf (buf, endbuf - buf, "-1");
2874 else
2875 write_ptid (buf, endbuf, ptid);
2876 putpkt (rs->buf);
2877 getpkt (&rs->buf, 0);
2878 if (gen)
2879 rs->general_thread = ptid;
2880 else
2881 rs->continue_thread = ptid;
2882 }
2883
2884 void
2885 remote_target::set_general_thread (ptid_t ptid)
2886 {
2887 set_thread (ptid, 1);
2888 }
2889
2890 void
2891 remote_target::set_continue_thread (ptid_t ptid)
2892 {
2893 set_thread (ptid, 0);
2894 }
2895
2896 /* Change the remote current process. Which thread within the process
2897 ends up selected isn't important, as long as it is the same process
2898 as what INFERIOR_PTID points to.
2899
2900 This comes from that fact that there is no explicit notion of
2901 "selected process" in the protocol. The selected process for
2902 general operations is the process the selected general thread
2903 belongs to. */
2904
2905 void
2906 remote_target::set_general_process ()
2907 {
2908 struct remote_state *rs = get_remote_state ();
2909
2910 /* If the remote can't handle multiple processes, don't bother. */
2911 if (!remote_multi_process_p (rs))
2912 return;
2913
2914 /* We only need to change the remote current thread if it's pointing
2915 at some other process. */
2916 if (rs->general_thread.pid () != inferior_ptid.pid ())
2917 set_general_thread (inferior_ptid);
2918 }
2919
2920 \f
2921 /* Return nonzero if this is the main thread that we made up ourselves
2922 to model non-threaded targets as single-threaded. */
2923
2924 static int
2925 remote_thread_always_alive (ptid_t ptid)
2926 {
2927 if (ptid == magic_null_ptid)
2928 /* The main thread is always alive. */
2929 return 1;
2930
2931 if (ptid.pid () != 0 && ptid.lwp () == 0)
2932 /* The main thread is always alive. This can happen after a
2933 vAttach, if the remote side doesn't support
2934 multi-threading. */
2935 return 1;
2936
2937 return 0;
2938 }
2939
2940 /* Return nonzero if the thread PTID is still alive on the remote
2941 system. */
2942
2943 bool
2944 remote_target::thread_alive (ptid_t ptid)
2945 {
2946 struct remote_state *rs = get_remote_state ();
2947 char *p, *endp;
2948
2949 /* Check if this is a thread that we made up ourselves to model
2950 non-threaded targets as single-threaded. */
2951 if (remote_thread_always_alive (ptid))
2952 return 1;
2953
2954 p = rs->buf.data ();
2955 endp = p + get_remote_packet_size ();
2956
2957 *p++ = 'T';
2958 write_ptid (p, endp, ptid);
2959
2960 putpkt (rs->buf);
2961 getpkt (&rs->buf, 0);
2962 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2963 }
2964
2965 /* Return a pointer to a thread name if we know it and NULL otherwise.
2966 The thread_info object owns the memory for the name. */
2967
2968 const char *
2969 remote_target::thread_name (struct thread_info *info)
2970 {
2971 if (info->priv != NULL)
2972 {
2973 const std::string &name = get_remote_thread_info (info)->name;
2974 return !name.empty () ? name.c_str () : NULL;
2975 }
2976
2977 return NULL;
2978 }
2979
2980 /* About these extended threadlist and threadinfo packets. They are
2981 variable length packets but, the fields within them are often fixed
2982 length. They are redundant enough to send over UDP as is the
2983 remote protocol in general. There is a matching unit test module
2984 in libstub. */
2985
2986 /* WARNING: This threadref data structure comes from the remote O.S.,
2987 libstub protocol encoding, and remote.c. It is not particularly
2988 changable. */
2989
2990 /* Right now, the internal structure is int. We want it to be bigger.
2991 Plan to fix this. */
2992
2993 typedef int gdb_threadref; /* Internal GDB thread reference. */
2994
2995 /* gdb_ext_thread_info is an internal GDB data structure which is
2996 equivalent to the reply of the remote threadinfo packet. */
2997
2998 struct gdb_ext_thread_info
2999 {
3000 threadref threadid; /* External form of thread reference. */
3001 int active; /* Has state interesting to GDB?
3002 regs, stack. */
3003 char display[256]; /* Brief state display, name,
3004 blocked/suspended. */
3005 char shortname[32]; /* To be used to name threads. */
3006 char more_display[256]; /* Long info, statistics, queue depth,
3007 whatever. */
3008 };
3009
3010 /* The volume of remote transfers can be limited by submitting
3011 a mask containing bits specifying the desired information.
3012 Use a union of these values as the 'selection' parameter to
3013 get_thread_info. FIXME: Make these TAG names more thread specific. */
3014
3015 #define TAG_THREADID 1
3016 #define TAG_EXISTS 2
3017 #define TAG_DISPLAY 4
3018 #define TAG_THREADNAME 8
3019 #define TAG_MOREDISPLAY 16
3020
3021 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3022
3023 static const char *unpack_nibble (const char *buf, int *val);
3024
3025 static const char *unpack_byte (const char *buf, int *value);
3026
3027 static char *pack_int (char *buf, int value);
3028
3029 static const char *unpack_int (const char *buf, int *value);
3030
3031 static const char *unpack_string (const char *src, char *dest, int length);
3032
3033 static char *pack_threadid (char *pkt, threadref *id);
3034
3035 static const char *unpack_threadid (const char *inbuf, threadref *id);
3036
3037 void int_to_threadref (threadref *id, int value);
3038
3039 static int threadref_to_int (threadref *ref);
3040
3041 static void copy_threadref (threadref *dest, threadref *src);
3042
3043 static int threadmatch (threadref *dest, threadref *src);
3044
3045 static char *pack_threadinfo_request (char *pkt, int mode,
3046 threadref *id);
3047
3048 static char *pack_threadlist_request (char *pkt, int startflag,
3049 int threadcount,
3050 threadref *nextthread);
3051
3052 static int remote_newthread_step (threadref *ref, void *context);
3053
3054
3055 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3056 buffer we're allowed to write to. Returns
3057 BUF+CHARACTERS_WRITTEN. */
3058
3059 char *
3060 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3061 {
3062 int pid, tid;
3063 struct remote_state *rs = get_remote_state ();
3064
3065 if (remote_multi_process_p (rs))
3066 {
3067 pid = ptid.pid ();
3068 if (pid < 0)
3069 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3070 else
3071 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3072 }
3073 tid = ptid.lwp ();
3074 if (tid < 0)
3075 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3076 else
3077 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3078
3079 return buf;
3080 }
3081
3082 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3083 last parsed char. Returns null_ptid if no thread id is found, and
3084 throws an error if the thread id has an invalid format. */
3085
3086 static ptid_t
3087 read_ptid (const char *buf, const char **obuf)
3088 {
3089 const char *p = buf;
3090 const char *pp;
3091 ULONGEST pid = 0, tid = 0;
3092
3093 if (*p == 'p')
3094 {
3095 /* Multi-process ptid. */
3096 pp = unpack_varlen_hex (p + 1, &pid);
3097 if (*pp != '.')
3098 error (_("invalid remote ptid: %s"), p);
3099
3100 p = pp;
3101 pp = unpack_varlen_hex (p + 1, &tid);
3102 if (obuf)
3103 *obuf = pp;
3104 return ptid_t (pid, tid, 0);
3105 }
3106
3107 /* No multi-process. Just a tid. */
3108 pp = unpack_varlen_hex (p, &tid);
3109
3110 /* Return null_ptid when no thread id is found. */
3111 if (p == pp)
3112 {
3113 if (obuf)
3114 *obuf = pp;
3115 return null_ptid;
3116 }
3117
3118 /* Since the stub is not sending a process id, then default to
3119 what's in inferior_ptid, unless it's null at this point. If so,
3120 then since there's no way to know the pid of the reported
3121 threads, use the magic number. */
3122 if (inferior_ptid == null_ptid)
3123 pid = magic_null_ptid.pid ();
3124 else
3125 pid = inferior_ptid.pid ();
3126
3127 if (obuf)
3128 *obuf = pp;
3129 return ptid_t (pid, tid, 0);
3130 }
3131
3132 static int
3133 stubhex (int ch)
3134 {
3135 if (ch >= 'a' && ch <= 'f')
3136 return ch - 'a' + 10;
3137 if (ch >= '0' && ch <= '9')
3138 return ch - '0';
3139 if (ch >= 'A' && ch <= 'F')
3140 return ch - 'A' + 10;
3141 return -1;
3142 }
3143
3144 static int
3145 stub_unpack_int (const char *buff, int fieldlength)
3146 {
3147 int nibble;
3148 int retval = 0;
3149
3150 while (fieldlength)
3151 {
3152 nibble = stubhex (*buff++);
3153 retval |= nibble;
3154 fieldlength--;
3155 if (fieldlength)
3156 retval = retval << 4;
3157 }
3158 return retval;
3159 }
3160
3161 static const char *
3162 unpack_nibble (const char *buf, int *val)
3163 {
3164 *val = fromhex (*buf++);
3165 return buf;
3166 }
3167
3168 static const char *
3169 unpack_byte (const char *buf, int *value)
3170 {
3171 *value = stub_unpack_int (buf, 2);
3172 return buf + 2;
3173 }
3174
3175 static char *
3176 pack_int (char *buf, int value)
3177 {
3178 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3179 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3180 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3181 buf = pack_hex_byte (buf, (value & 0xff));
3182 return buf;
3183 }
3184
3185 static const char *
3186 unpack_int (const char *buf, int *value)
3187 {
3188 *value = stub_unpack_int (buf, 8);
3189 return buf + 8;
3190 }
3191
3192 #if 0 /* Currently unused, uncomment when needed. */
3193 static char *pack_string (char *pkt, char *string);
3194
3195 static char *
3196 pack_string (char *pkt, char *string)
3197 {
3198 char ch;
3199 int len;
3200
3201 len = strlen (string);
3202 if (len > 200)
3203 len = 200; /* Bigger than most GDB packets, junk??? */
3204 pkt = pack_hex_byte (pkt, len);
3205 while (len-- > 0)
3206 {
3207 ch = *string++;
3208 if ((ch == '\0') || (ch == '#'))
3209 ch = '*'; /* Protect encapsulation. */
3210 *pkt++ = ch;
3211 }
3212 return pkt;
3213 }
3214 #endif /* 0 (unused) */
3215
3216 static const char *
3217 unpack_string (const char *src, char *dest, int length)
3218 {
3219 while (length--)
3220 *dest++ = *src++;
3221 *dest = '\0';
3222 return src;
3223 }
3224
3225 static char *
3226 pack_threadid (char *pkt, threadref *id)
3227 {
3228 char *limit;
3229 unsigned char *altid;
3230
3231 altid = (unsigned char *) id;
3232 limit = pkt + BUF_THREAD_ID_SIZE;
3233 while (pkt < limit)
3234 pkt = pack_hex_byte (pkt, *altid++);
3235 return pkt;
3236 }
3237
3238
3239 static const char *
3240 unpack_threadid (const char *inbuf, threadref *id)
3241 {
3242 char *altref;
3243 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3244 int x, y;
3245
3246 altref = (char *) id;
3247
3248 while (inbuf < limit)
3249 {
3250 x = stubhex (*inbuf++);
3251 y = stubhex (*inbuf++);
3252 *altref++ = (x << 4) | y;
3253 }
3254 return inbuf;
3255 }
3256
3257 /* Externally, threadrefs are 64 bits but internally, they are still
3258 ints. This is due to a mismatch of specifications. We would like
3259 to use 64bit thread references internally. This is an adapter
3260 function. */
3261
3262 void
3263 int_to_threadref (threadref *id, int value)
3264 {
3265 unsigned char *scan;
3266
3267 scan = (unsigned char *) id;
3268 {
3269 int i = 4;
3270 while (i--)
3271 *scan++ = 0;
3272 }
3273 *scan++ = (value >> 24) & 0xff;
3274 *scan++ = (value >> 16) & 0xff;
3275 *scan++ = (value >> 8) & 0xff;
3276 *scan++ = (value & 0xff);
3277 }
3278
3279 static int
3280 threadref_to_int (threadref *ref)
3281 {
3282 int i, value = 0;
3283 unsigned char *scan;
3284
3285 scan = *ref;
3286 scan += 4;
3287 i = 4;
3288 while (i-- > 0)
3289 value = (value << 8) | ((*scan++) & 0xff);
3290 return value;
3291 }
3292
3293 static void
3294 copy_threadref (threadref *dest, threadref *src)
3295 {
3296 int i;
3297 unsigned char *csrc, *cdest;
3298
3299 csrc = (unsigned char *) src;
3300 cdest = (unsigned char *) dest;
3301 i = 8;
3302 while (i--)
3303 *cdest++ = *csrc++;
3304 }
3305
3306 static int
3307 threadmatch (threadref *dest, threadref *src)
3308 {
3309 /* Things are broken right now, so just assume we got a match. */
3310 #if 0
3311 unsigned char *srcp, *destp;
3312 int i, result;
3313 srcp = (char *) src;
3314 destp = (char *) dest;
3315
3316 result = 1;
3317 while (i-- > 0)
3318 result &= (*srcp++ == *destp++) ? 1 : 0;
3319 return result;
3320 #endif
3321 return 1;
3322 }
3323
3324 /*
3325 threadid:1, # always request threadid
3326 context_exists:2,
3327 display:4,
3328 unique_name:8,
3329 more_display:16
3330 */
3331
3332 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3333
3334 static char *
3335 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3336 {
3337 *pkt++ = 'q'; /* Info Query */
3338 *pkt++ = 'P'; /* process or thread info */
3339 pkt = pack_int (pkt, mode); /* mode */
3340 pkt = pack_threadid (pkt, id); /* threadid */
3341 *pkt = '\0'; /* terminate */
3342 return pkt;
3343 }
3344
3345 /* These values tag the fields in a thread info response packet. */
3346 /* Tagging the fields allows us to request specific fields and to
3347 add more fields as time goes by. */
3348
3349 #define TAG_THREADID 1 /* Echo the thread identifier. */
3350 #define TAG_EXISTS 2 /* Is this process defined enough to
3351 fetch registers and its stack? */
3352 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3353 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3354 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3355 the process. */
3356
3357 int
3358 remote_target::remote_unpack_thread_info_response (const char *pkt,
3359 threadref *expectedref,
3360 gdb_ext_thread_info *info)
3361 {
3362 struct remote_state *rs = get_remote_state ();
3363 int mask, length;
3364 int tag;
3365 threadref ref;
3366 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3367 int retval = 1;
3368
3369 /* info->threadid = 0; FIXME: implement zero_threadref. */
3370 info->active = 0;
3371 info->display[0] = '\0';
3372 info->shortname[0] = '\0';
3373 info->more_display[0] = '\0';
3374
3375 /* Assume the characters indicating the packet type have been
3376 stripped. */
3377 pkt = unpack_int (pkt, &mask); /* arg mask */
3378 pkt = unpack_threadid (pkt, &ref);
3379
3380 if (mask == 0)
3381 warning (_("Incomplete response to threadinfo request."));
3382 if (!threadmatch (&ref, expectedref))
3383 { /* This is an answer to a different request. */
3384 warning (_("ERROR RMT Thread info mismatch."));
3385 return 0;
3386 }
3387 copy_threadref (&info->threadid, &ref);
3388
3389 /* Loop on tagged fields , try to bail if something goes wrong. */
3390
3391 /* Packets are terminated with nulls. */
3392 while ((pkt < limit) && mask && *pkt)
3393 {
3394 pkt = unpack_int (pkt, &tag); /* tag */
3395 pkt = unpack_byte (pkt, &length); /* length */
3396 if (!(tag & mask)) /* Tags out of synch with mask. */
3397 {
3398 warning (_("ERROR RMT: threadinfo tag mismatch."));
3399 retval = 0;
3400 break;
3401 }
3402 if (tag == TAG_THREADID)
3403 {
3404 if (length != 16)
3405 {
3406 warning (_("ERROR RMT: length of threadid is not 16."));
3407 retval = 0;
3408 break;
3409 }
3410 pkt = unpack_threadid (pkt, &ref);
3411 mask = mask & ~TAG_THREADID;
3412 continue;
3413 }
3414 if (tag == TAG_EXISTS)
3415 {
3416 info->active = stub_unpack_int (pkt, length);
3417 pkt += length;
3418 mask = mask & ~(TAG_EXISTS);
3419 if (length > 8)
3420 {
3421 warning (_("ERROR RMT: 'exists' length too long."));
3422 retval = 0;
3423 break;
3424 }
3425 continue;
3426 }
3427 if (tag == TAG_THREADNAME)
3428 {
3429 pkt = unpack_string (pkt, &info->shortname[0], length);
3430 mask = mask & ~TAG_THREADNAME;
3431 continue;
3432 }
3433 if (tag == TAG_DISPLAY)
3434 {
3435 pkt = unpack_string (pkt, &info->display[0], length);
3436 mask = mask & ~TAG_DISPLAY;
3437 continue;
3438 }
3439 if (tag == TAG_MOREDISPLAY)
3440 {
3441 pkt = unpack_string (pkt, &info->more_display[0], length);
3442 mask = mask & ~TAG_MOREDISPLAY;
3443 continue;
3444 }
3445 warning (_("ERROR RMT: unknown thread info tag."));
3446 break; /* Not a tag we know about. */
3447 }
3448 return retval;
3449 }
3450
3451 int
3452 remote_target::remote_get_threadinfo (threadref *threadid,
3453 int fieldset,
3454 gdb_ext_thread_info *info)
3455 {
3456 struct remote_state *rs = get_remote_state ();
3457 int result;
3458
3459 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3460 putpkt (rs->buf);
3461 getpkt (&rs->buf, 0);
3462
3463 if (rs->buf[0] == '\0')
3464 return 0;
3465
3466 result = remote_unpack_thread_info_response (&rs->buf[2],
3467 threadid, info);
3468 return result;
3469 }
3470
3471 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3472
3473 static char *
3474 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3475 threadref *nextthread)
3476 {
3477 *pkt++ = 'q'; /* info query packet */
3478 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3479 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3480 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3481 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3482 *pkt = '\0';
3483 return pkt;
3484 }
3485
3486 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3487
3488 int
3489 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3490 threadref *original_echo,
3491 threadref *resultlist,
3492 int *doneflag)
3493 {
3494 struct remote_state *rs = get_remote_state ();
3495 int count, resultcount, done;
3496
3497 resultcount = 0;
3498 /* Assume the 'q' and 'M chars have been stripped. */
3499 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3500 /* done parse past here */
3501 pkt = unpack_byte (pkt, &count); /* count field */
3502 pkt = unpack_nibble (pkt, &done);
3503 /* The first threadid is the argument threadid. */
3504 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3505 while ((count-- > 0) && (pkt < limit))
3506 {
3507 pkt = unpack_threadid (pkt, resultlist++);
3508 if (resultcount++ >= result_limit)
3509 break;
3510 }
3511 if (doneflag)
3512 *doneflag = done;
3513 return resultcount;
3514 }
3515
3516 /* Fetch the next batch of threads from the remote. Returns -1 if the
3517 qL packet is not supported, 0 on error and 1 on success. */
3518
3519 int
3520 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3521 int result_limit, int *done, int *result_count,
3522 threadref *threadlist)
3523 {
3524 struct remote_state *rs = get_remote_state ();
3525 int result = 1;
3526
3527 /* Truncate result limit to be smaller than the packet size. */
3528 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3529 >= get_remote_packet_size ())
3530 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3531
3532 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3533 nextthread);
3534 putpkt (rs->buf);
3535 getpkt (&rs->buf, 0);
3536 if (rs->buf[0] == '\0')
3537 {
3538 /* Packet not supported. */
3539 return -1;
3540 }
3541
3542 *result_count =
3543 parse_threadlist_response (&rs->buf[2], result_limit,
3544 &rs->echo_nextthread, threadlist, done);
3545
3546 if (!threadmatch (&rs->echo_nextthread, nextthread))
3547 {
3548 /* FIXME: This is a good reason to drop the packet. */
3549 /* Possibly, there is a duplicate response. */
3550 /* Possibilities :
3551 retransmit immediatly - race conditions
3552 retransmit after timeout - yes
3553 exit
3554 wait for packet, then exit
3555 */
3556 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3557 return 0; /* I choose simply exiting. */
3558 }
3559 if (*result_count <= 0)
3560 {
3561 if (*done != 1)
3562 {
3563 warning (_("RMT ERROR : failed to get remote thread list."));
3564 result = 0;
3565 }
3566 return result; /* break; */
3567 }
3568 if (*result_count > result_limit)
3569 {
3570 *result_count = 0;
3571 warning (_("RMT ERROR: threadlist response longer than requested."));
3572 return 0;
3573 }
3574 return result;
3575 }
3576
3577 /* Fetch the list of remote threads, with the qL packet, and call
3578 STEPFUNCTION for each thread found. Stops iterating and returns 1
3579 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3580 STEPFUNCTION returns false. If the packet is not supported,
3581 returns -1. */
3582
3583 int
3584 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3585 void *context, int looplimit)
3586 {
3587 struct remote_state *rs = get_remote_state ();
3588 int done, i, result_count;
3589 int startflag = 1;
3590 int result = 1;
3591 int loopcount = 0;
3592
3593 done = 0;
3594 while (!done)
3595 {
3596 if (loopcount++ > looplimit)
3597 {
3598 result = 0;
3599 warning (_("Remote fetch threadlist -infinite loop-."));
3600 break;
3601 }
3602 result = remote_get_threadlist (startflag, &rs->nextthread,
3603 MAXTHREADLISTRESULTS,
3604 &done, &result_count,
3605 rs->resultthreadlist);
3606 if (result <= 0)
3607 break;
3608 /* Clear for later iterations. */
3609 startflag = 0;
3610 /* Setup to resume next batch of thread references, set nextthread. */
3611 if (result_count >= 1)
3612 copy_threadref (&rs->nextthread,
3613 &rs->resultthreadlist[result_count - 1]);
3614 i = 0;
3615 while (result_count--)
3616 {
3617 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3618 {
3619 result = 0;
3620 break;
3621 }
3622 }
3623 }
3624 return result;
3625 }
3626
3627 /* A thread found on the remote target. */
3628
3629 struct thread_item
3630 {
3631 explicit thread_item (ptid_t ptid_)
3632 : ptid (ptid_)
3633 {}
3634
3635 thread_item (thread_item &&other) = default;
3636 thread_item &operator= (thread_item &&other) = default;
3637
3638 DISABLE_COPY_AND_ASSIGN (thread_item);
3639
3640 /* The thread's PTID. */
3641 ptid_t ptid;
3642
3643 /* The thread's extra info. */
3644 std::string extra;
3645
3646 /* The thread's name. */
3647 std::string name;
3648
3649 /* The core the thread was running on. -1 if not known. */
3650 int core = -1;
3651
3652 /* The thread handle associated with the thread. */
3653 gdb::byte_vector thread_handle;
3654 };
3655
3656 /* Context passed around to the various methods listing remote
3657 threads. As new threads are found, they're added to the ITEMS
3658 vector. */
3659
3660 struct threads_listing_context
3661 {
3662 /* Return true if this object contains an entry for a thread with ptid
3663 PTID. */
3664
3665 bool contains_thread (ptid_t ptid) const
3666 {
3667 auto match_ptid = [&] (const thread_item &item)
3668 {
3669 return item.ptid == ptid;
3670 };
3671
3672 auto it = std::find_if (this->items.begin (),
3673 this->items.end (),
3674 match_ptid);
3675
3676 return it != this->items.end ();
3677 }
3678
3679 /* Remove the thread with ptid PTID. */
3680
3681 void remove_thread (ptid_t ptid)
3682 {
3683 auto match_ptid = [&] (const thread_item &item)
3684 {
3685 return item.ptid == ptid;
3686 };
3687
3688 auto it = std::remove_if (this->items.begin (),
3689 this->items.end (),
3690 match_ptid);
3691
3692 if (it != this->items.end ())
3693 this->items.erase (it);
3694 }
3695
3696 /* The threads found on the remote target. */
3697 std::vector<thread_item> items;
3698 };
3699
3700 static int
3701 remote_newthread_step (threadref *ref, void *data)
3702 {
3703 struct threads_listing_context *context
3704 = (struct threads_listing_context *) data;
3705 int pid = inferior_ptid.pid ();
3706 int lwp = threadref_to_int (ref);
3707 ptid_t ptid (pid, lwp);
3708
3709 context->items.emplace_back (ptid);
3710
3711 return 1; /* continue iterator */
3712 }
3713
3714 #define CRAZY_MAX_THREADS 1000
3715
3716 ptid_t
3717 remote_target::remote_current_thread (ptid_t oldpid)
3718 {
3719 struct remote_state *rs = get_remote_state ();
3720
3721 putpkt ("qC");
3722 getpkt (&rs->buf, 0);
3723 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3724 {
3725 const char *obuf;
3726 ptid_t result;
3727
3728 result = read_ptid (&rs->buf[2], &obuf);
3729 if (*obuf != '\0')
3730 remote_debug_printf ("warning: garbage in qC reply");
3731
3732 return result;
3733 }
3734 else
3735 return oldpid;
3736 }
3737
3738 /* List remote threads using the deprecated qL packet. */
3739
3740 int
3741 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3742 {
3743 if (remote_threadlist_iterator (remote_newthread_step, context,
3744 CRAZY_MAX_THREADS) >= 0)
3745 return 1;
3746
3747 return 0;
3748 }
3749
3750 #if defined(HAVE_LIBEXPAT)
3751
3752 static void
3753 start_thread (struct gdb_xml_parser *parser,
3754 const struct gdb_xml_element *element,
3755 void *user_data,
3756 std::vector<gdb_xml_value> &attributes)
3757 {
3758 struct threads_listing_context *data
3759 = (struct threads_listing_context *) user_data;
3760 struct gdb_xml_value *attr;
3761
3762 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3763 ptid_t ptid = read_ptid (id, NULL);
3764
3765 data->items.emplace_back (ptid);
3766 thread_item &item = data->items.back ();
3767
3768 attr = xml_find_attribute (attributes, "core");
3769 if (attr != NULL)
3770 item.core = *(ULONGEST *) attr->value.get ();
3771
3772 attr = xml_find_attribute (attributes, "name");
3773 if (attr != NULL)
3774 item.name = (const char *) attr->value.get ();
3775
3776 attr = xml_find_attribute (attributes, "handle");
3777 if (attr != NULL)
3778 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3779 }
3780
3781 static void
3782 end_thread (struct gdb_xml_parser *parser,
3783 const struct gdb_xml_element *element,
3784 void *user_data, const char *body_text)
3785 {
3786 struct threads_listing_context *data
3787 = (struct threads_listing_context *) user_data;
3788
3789 if (body_text != NULL && *body_text != '\0')
3790 data->items.back ().extra = body_text;
3791 }
3792
3793 const struct gdb_xml_attribute thread_attributes[] = {
3794 { "id", GDB_XML_AF_NONE, NULL, NULL },
3795 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3796 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3797 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3798 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3799 };
3800
3801 const struct gdb_xml_element thread_children[] = {
3802 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3803 };
3804
3805 const struct gdb_xml_element threads_children[] = {
3806 { "thread", thread_attributes, thread_children,
3807 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3808 start_thread, end_thread },
3809 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3810 };
3811
3812 const struct gdb_xml_element threads_elements[] = {
3813 { "threads", NULL, threads_children,
3814 GDB_XML_EF_NONE, NULL, NULL },
3815 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3816 };
3817
3818 #endif
3819
3820 /* List remote threads using qXfer:threads:read. */
3821
3822 int
3823 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3824 {
3825 #if defined(HAVE_LIBEXPAT)
3826 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3827 {
3828 gdb::optional<gdb::char_vector> xml
3829 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3830
3831 if (xml && (*xml)[0] != '\0')
3832 {
3833 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3834 threads_elements, xml->data (), context);
3835 }
3836
3837 return 1;
3838 }
3839 #endif
3840
3841 return 0;
3842 }
3843
3844 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3845
3846 int
3847 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3848 {
3849 struct remote_state *rs = get_remote_state ();
3850
3851 if (rs->use_threadinfo_query)
3852 {
3853 const char *bufp;
3854
3855 putpkt ("qfThreadInfo");
3856 getpkt (&rs->buf, 0);
3857 bufp = rs->buf.data ();
3858 if (bufp[0] != '\0') /* q packet recognized */
3859 {
3860 while (*bufp++ == 'm') /* reply contains one or more TID */
3861 {
3862 do
3863 {
3864 ptid_t ptid = read_ptid (bufp, &bufp);
3865 context->items.emplace_back (ptid);
3866 }
3867 while (*bufp++ == ','); /* comma-separated list */
3868 putpkt ("qsThreadInfo");
3869 getpkt (&rs->buf, 0);
3870 bufp = rs->buf.data ();
3871 }
3872 return 1;
3873 }
3874 else
3875 {
3876 /* Packet not recognized. */
3877 rs->use_threadinfo_query = 0;
3878 }
3879 }
3880
3881 return 0;
3882 }
3883
3884 /* Return true if INF only has one non-exited thread. */
3885
3886 static bool
3887 has_single_non_exited_thread (inferior *inf)
3888 {
3889 int count = 0;
3890 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3891 if (++count > 1)
3892 break;
3893 return count == 1;
3894 }
3895
3896 /* Implement the to_update_thread_list function for the remote
3897 targets. */
3898
3899 void
3900 remote_target::update_thread_list ()
3901 {
3902 struct threads_listing_context context;
3903 int got_list = 0;
3904
3905 /* We have a few different mechanisms to fetch the thread list. Try
3906 them all, starting with the most preferred one first, falling
3907 back to older methods. */
3908 if (remote_get_threads_with_qxfer (&context)
3909 || remote_get_threads_with_qthreadinfo (&context)
3910 || remote_get_threads_with_ql (&context))
3911 {
3912 got_list = 1;
3913
3914 if (context.items.empty ()
3915 && remote_thread_always_alive (inferior_ptid))
3916 {
3917 /* Some targets don't really support threads, but still
3918 reply an (empty) thread list in response to the thread
3919 listing packets, instead of replying "packet not
3920 supported". Exit early so we don't delete the main
3921 thread. */
3922 return;
3923 }
3924
3925 /* CONTEXT now holds the current thread list on the remote
3926 target end. Delete GDB-side threads no longer found on the
3927 target. */
3928 for (thread_info *tp : all_threads_safe ())
3929 {
3930 if (tp->inf->process_target () != this)
3931 continue;
3932
3933 if (!context.contains_thread (tp->ptid))
3934 {
3935 /* Do not remove the thread if it is the last thread in
3936 the inferior. This situation happens when we have a
3937 pending exit process status to process. Otherwise we
3938 may end up with a seemingly live inferior (i.e. pid
3939 != 0) that has no threads. */
3940 if (has_single_non_exited_thread (tp->inf))
3941 continue;
3942
3943 /* Not found. */
3944 delete_thread (tp);
3945 }
3946 }
3947
3948 /* Remove any unreported fork child threads from CONTEXT so
3949 that we don't interfere with follow fork, which is where
3950 creation of such threads is handled. */
3951 remove_new_fork_children (&context);
3952
3953 /* And now add threads we don't know about yet to our list. */
3954 for (thread_item &item : context.items)
3955 {
3956 if (item.ptid != null_ptid)
3957 {
3958 /* In non-stop mode, we assume new found threads are
3959 executing until proven otherwise with a stop reply.
3960 In all-stop, we can only get here if all threads are
3961 stopped. */
3962 bool executing = target_is_non_stop_p ();
3963
3964 remote_notice_new_inferior (item.ptid, executing);
3965
3966 thread_info *tp = find_thread_ptid (this, item.ptid);
3967 remote_thread_info *info = get_remote_thread_info (tp);
3968 info->core = item.core;
3969 info->extra = std::move (item.extra);
3970 info->name = std::move (item.name);
3971 info->thread_handle = std::move (item.thread_handle);
3972 }
3973 }
3974 }
3975
3976 if (!got_list)
3977 {
3978 /* If no thread listing method is supported, then query whether
3979 each known thread is alive, one by one, with the T packet.
3980 If the target doesn't support threads at all, then this is a
3981 no-op. See remote_thread_alive. */
3982 prune_threads ();
3983 }
3984 }
3985
3986 /*
3987 * Collect a descriptive string about the given thread.
3988 * The target may say anything it wants to about the thread
3989 * (typically info about its blocked / runnable state, name, etc.).
3990 * This string will appear in the info threads display.
3991 *
3992 * Optional: targets are not required to implement this function.
3993 */
3994
3995 const char *
3996 remote_target::extra_thread_info (thread_info *tp)
3997 {
3998 struct remote_state *rs = get_remote_state ();
3999 int set;
4000 threadref id;
4001 struct gdb_ext_thread_info threadinfo;
4002
4003 if (rs->remote_desc == 0) /* paranoia */
4004 internal_error (__FILE__, __LINE__,
4005 _("remote_threads_extra_info"));
4006
4007 if (tp->ptid == magic_null_ptid
4008 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
4009 /* This is the main thread which was added by GDB. The remote
4010 server doesn't know about it. */
4011 return NULL;
4012
4013 std::string &extra = get_remote_thread_info (tp)->extra;
4014
4015 /* If already have cached info, use it. */
4016 if (!extra.empty ())
4017 return extra.c_str ();
4018
4019 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4020 {
4021 /* If we're using qXfer:threads:read, then the extra info is
4022 included in the XML. So if we didn't have anything cached,
4023 it's because there's really no extra info. */
4024 return NULL;
4025 }
4026
4027 if (rs->use_threadextra_query)
4028 {
4029 char *b = rs->buf.data ();
4030 char *endb = b + get_remote_packet_size ();
4031
4032 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4033 b += strlen (b);
4034 write_ptid (b, endb, tp->ptid);
4035
4036 putpkt (rs->buf);
4037 getpkt (&rs->buf, 0);
4038 if (rs->buf[0] != 0)
4039 {
4040 extra.resize (strlen (rs->buf.data ()) / 2);
4041 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4042 return extra.c_str ();
4043 }
4044 }
4045
4046 /* If the above query fails, fall back to the old method. */
4047 rs->use_threadextra_query = 0;
4048 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4049 | TAG_MOREDISPLAY | TAG_DISPLAY;
4050 int_to_threadref (&id, tp->ptid.lwp ());
4051 if (remote_get_threadinfo (&id, set, &threadinfo))
4052 if (threadinfo.active)
4053 {
4054 if (*threadinfo.shortname)
4055 string_appendf (extra, " Name: %s", threadinfo.shortname);
4056 if (*threadinfo.display)
4057 {
4058 if (!extra.empty ())
4059 extra += ',';
4060 string_appendf (extra, " State: %s", threadinfo.display);
4061 }
4062 if (*threadinfo.more_display)
4063 {
4064 if (!extra.empty ())
4065 extra += ',';
4066 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4067 }
4068 return extra.c_str ();
4069 }
4070 return NULL;
4071 }
4072 \f
4073
4074 bool
4075 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4076 struct static_tracepoint_marker *marker)
4077 {
4078 struct remote_state *rs = get_remote_state ();
4079 char *p = rs->buf.data ();
4080
4081 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4082 p += strlen (p);
4083 p += hexnumstr (p, addr);
4084 putpkt (rs->buf);
4085 getpkt (&rs->buf, 0);
4086 p = rs->buf.data ();
4087
4088 if (*p == 'E')
4089 error (_("Remote failure reply: %s"), p);
4090
4091 if (*p++ == 'm')
4092 {
4093 parse_static_tracepoint_marker_definition (p, NULL, marker);
4094 return true;
4095 }
4096
4097 return false;
4098 }
4099
4100 std::vector<static_tracepoint_marker>
4101 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4102 {
4103 struct remote_state *rs = get_remote_state ();
4104 std::vector<static_tracepoint_marker> markers;
4105 const char *p;
4106 static_tracepoint_marker marker;
4107
4108 /* Ask for a first packet of static tracepoint marker
4109 definition. */
4110 putpkt ("qTfSTM");
4111 getpkt (&rs->buf, 0);
4112 p = rs->buf.data ();
4113 if (*p == 'E')
4114 error (_("Remote failure reply: %s"), p);
4115
4116 while (*p++ == 'm')
4117 {
4118 do
4119 {
4120 parse_static_tracepoint_marker_definition (p, &p, &marker);
4121
4122 if (strid == NULL || marker.str_id == strid)
4123 markers.push_back (std::move (marker));
4124 }
4125 while (*p++ == ','); /* comma-separated list */
4126 /* Ask for another packet of static tracepoint definition. */
4127 putpkt ("qTsSTM");
4128 getpkt (&rs->buf, 0);
4129 p = rs->buf.data ();
4130 }
4131
4132 return markers;
4133 }
4134
4135 \f
4136 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4137
4138 ptid_t
4139 remote_target::get_ada_task_ptid (long lwp, long thread)
4140 {
4141 return ptid_t (inferior_ptid.pid (), lwp, 0);
4142 }
4143 \f
4144
4145 /* Restart the remote side; this is an extended protocol operation. */
4146
4147 void
4148 remote_target::extended_remote_restart ()
4149 {
4150 struct remote_state *rs = get_remote_state ();
4151
4152 /* Send the restart command; for reasons I don't understand the
4153 remote side really expects a number after the "R". */
4154 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4155 putpkt (rs->buf);
4156
4157 remote_fileio_reset ();
4158 }
4159 \f
4160 /* Clean up connection to a remote debugger. */
4161
4162 void
4163 remote_target::close ()
4164 {
4165 /* Make sure we leave stdin registered in the event loop. */
4166 terminal_ours ();
4167
4168 trace_reset_local_state ();
4169
4170 delete this;
4171 }
4172
4173 remote_target::~remote_target ()
4174 {
4175 struct remote_state *rs = get_remote_state ();
4176
4177 /* Check for NULL because we may get here with a partially
4178 constructed target/connection. */
4179 if (rs->remote_desc == nullptr)
4180 return;
4181
4182 serial_close (rs->remote_desc);
4183
4184 /* We are destroying the remote target, so we should discard
4185 everything of this target. */
4186 discard_pending_stop_replies_in_queue ();
4187
4188 if (rs->remote_async_inferior_event_token)
4189 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4190
4191 delete rs->notif_state;
4192 }
4193
4194 /* Query the remote side for the text, data and bss offsets. */
4195
4196 void
4197 remote_target::get_offsets ()
4198 {
4199 struct remote_state *rs = get_remote_state ();
4200 char *buf;
4201 char *ptr;
4202 int lose, num_segments = 0, do_sections, do_segments;
4203 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4204
4205 if (current_program_space->symfile_object_file == NULL)
4206 return;
4207
4208 putpkt ("qOffsets");
4209 getpkt (&rs->buf, 0);
4210 buf = rs->buf.data ();
4211
4212 if (buf[0] == '\000')
4213 return; /* Return silently. Stub doesn't support
4214 this command. */
4215 if (buf[0] == 'E')
4216 {
4217 warning (_("Remote failure reply: %s"), buf);
4218 return;
4219 }
4220
4221 /* Pick up each field in turn. This used to be done with scanf, but
4222 scanf will make trouble if CORE_ADDR size doesn't match
4223 conversion directives correctly. The following code will work
4224 with any size of CORE_ADDR. */
4225 text_addr = data_addr = bss_addr = 0;
4226 ptr = buf;
4227 lose = 0;
4228
4229 if (startswith (ptr, "Text="))
4230 {
4231 ptr += 5;
4232 /* Don't use strtol, could lose on big values. */
4233 while (*ptr && *ptr != ';')
4234 text_addr = (text_addr << 4) + fromhex (*ptr++);
4235
4236 if (startswith (ptr, ";Data="))
4237 {
4238 ptr += 6;
4239 while (*ptr && *ptr != ';')
4240 data_addr = (data_addr << 4) + fromhex (*ptr++);
4241 }
4242 else
4243 lose = 1;
4244
4245 if (!lose && startswith (ptr, ";Bss="))
4246 {
4247 ptr += 5;
4248 while (*ptr && *ptr != ';')
4249 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4250
4251 if (bss_addr != data_addr)
4252 warning (_("Target reported unsupported offsets: %s"), buf);
4253 }
4254 else
4255 lose = 1;
4256 }
4257 else if (startswith (ptr, "TextSeg="))
4258 {
4259 ptr += 8;
4260 /* Don't use strtol, could lose on big values. */
4261 while (*ptr && *ptr != ';')
4262 text_addr = (text_addr << 4) + fromhex (*ptr++);
4263 num_segments = 1;
4264
4265 if (startswith (ptr, ";DataSeg="))
4266 {
4267 ptr += 9;
4268 while (*ptr && *ptr != ';')
4269 data_addr = (data_addr << 4) + fromhex (*ptr++);
4270 num_segments++;
4271 }
4272 }
4273 else
4274 lose = 1;
4275
4276 if (lose)
4277 error (_("Malformed response to offset query, %s"), buf);
4278 else if (*ptr != '\0')
4279 warning (_("Target reported unsupported offsets: %s"), buf);
4280
4281 objfile *objf = current_program_space->symfile_object_file;
4282 section_offsets offs = objf->section_offsets;
4283
4284 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4285 do_segments = (data != NULL);
4286 do_sections = num_segments == 0;
4287
4288 if (num_segments > 0)
4289 {
4290 segments[0] = text_addr;
4291 segments[1] = data_addr;
4292 }
4293 /* If we have two segments, we can still try to relocate everything
4294 by assuming that the .text and .data offsets apply to the whole
4295 text and data segments. Convert the offsets given in the packet
4296 to base addresses for symfile_map_offsets_to_segments. */
4297 else if (data != nullptr && data->segments.size () == 2)
4298 {
4299 segments[0] = data->segments[0].base + text_addr;
4300 segments[1] = data->segments[1].base + data_addr;
4301 num_segments = 2;
4302 }
4303 /* If the object file has only one segment, assume that it is text
4304 rather than data; main programs with no writable data are rare,
4305 but programs with no code are useless. Of course the code might
4306 have ended up in the data segment... to detect that we would need
4307 the permissions here. */
4308 else if (data && data->segments.size () == 1)
4309 {
4310 segments[0] = data->segments[0].base + text_addr;
4311 num_segments = 1;
4312 }
4313 /* There's no way to relocate by segment. */
4314 else
4315 do_segments = 0;
4316
4317 if (do_segments)
4318 {
4319 int ret = symfile_map_offsets_to_segments (objf->obfd,
4320 data.get (), offs,
4321 num_segments, segments);
4322
4323 if (ret == 0 && !do_sections)
4324 error (_("Can not handle qOffsets TextSeg "
4325 "response with this symbol file"));
4326
4327 if (ret > 0)
4328 do_sections = 0;
4329 }
4330
4331 if (do_sections)
4332 {
4333 offs[SECT_OFF_TEXT (objf)] = text_addr;
4334
4335 /* This is a temporary kludge to force data and bss to use the
4336 same offsets because that's what nlmconv does now. The real
4337 solution requires changes to the stub and remote.c that I
4338 don't have time to do right now. */
4339
4340 offs[SECT_OFF_DATA (objf)] = data_addr;
4341 offs[SECT_OFF_BSS (objf)] = data_addr;
4342 }
4343
4344 objfile_relocate (objf, offs);
4345 }
4346
4347 /* Send interrupt_sequence to remote target. */
4348
4349 void
4350 remote_target::send_interrupt_sequence ()
4351 {
4352 struct remote_state *rs = get_remote_state ();
4353
4354 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4355 remote_serial_write ("\x03", 1);
4356 else if (interrupt_sequence_mode == interrupt_sequence_break)
4357 serial_send_break (rs->remote_desc);
4358 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4359 {
4360 serial_send_break (rs->remote_desc);
4361 remote_serial_write ("g", 1);
4362 }
4363 else
4364 internal_error (__FILE__, __LINE__,
4365 _("Invalid value for interrupt_sequence_mode: %s."),
4366 interrupt_sequence_mode);
4367 }
4368
4369
4370 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4371 and extract the PTID. Returns NULL_PTID if not found. */
4372
4373 static ptid_t
4374 stop_reply_extract_thread (const char *stop_reply)
4375 {
4376 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4377 {
4378 const char *p;
4379
4380 /* Txx r:val ; r:val (...) */
4381 p = &stop_reply[3];
4382
4383 /* Look for "register" named "thread". */
4384 while (*p != '\0')
4385 {
4386 const char *p1;
4387
4388 p1 = strchr (p, ':');
4389 if (p1 == NULL)
4390 return null_ptid;
4391
4392 if (strncmp (p, "thread", p1 - p) == 0)
4393 return read_ptid (++p1, &p);
4394
4395 p1 = strchr (p, ';');
4396 if (p1 == NULL)
4397 return null_ptid;
4398 p1++;
4399
4400 p = p1;
4401 }
4402 }
4403
4404 return null_ptid;
4405 }
4406
4407 /* Determine the remote side's current thread. If we have a stop
4408 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4409 "thread" register we can extract the current thread from. If not,
4410 ask the remote which is the current thread with qC. The former
4411 method avoids a roundtrip. */
4412
4413 ptid_t
4414 remote_target::get_current_thread (const char *wait_status)
4415 {
4416 ptid_t ptid = null_ptid;
4417
4418 /* Note we don't use remote_parse_stop_reply as that makes use of
4419 the target architecture, which we haven't yet fully determined at
4420 this point. */
4421 if (wait_status != NULL)
4422 ptid = stop_reply_extract_thread (wait_status);
4423 if (ptid == null_ptid)
4424 ptid = remote_current_thread (inferior_ptid);
4425
4426 return ptid;
4427 }
4428
4429 /* Query the remote target for which is the current thread/process,
4430 add it to our tables, and update INFERIOR_PTID. The caller is
4431 responsible for setting the state such that the remote end is ready
4432 to return the current thread.
4433
4434 This function is called after handling the '?' or 'vRun' packets,
4435 whose response is a stop reply from which we can also try
4436 extracting the thread. If the target doesn't support the explicit
4437 qC query, we infer the current thread from that stop reply, passed
4438 in in WAIT_STATUS, which may be NULL.
4439
4440 The function returns pointer to the main thread of the inferior. */
4441
4442 thread_info *
4443 remote_target::add_current_inferior_and_thread (const char *wait_status)
4444 {
4445 struct remote_state *rs = get_remote_state ();
4446 bool fake_pid_p = false;
4447
4448 switch_to_no_thread ();
4449
4450 /* Now, if we have thread information, update the current thread's
4451 ptid. */
4452 ptid_t curr_ptid = get_current_thread (wait_status);
4453
4454 if (curr_ptid != null_ptid)
4455 {
4456 if (!remote_multi_process_p (rs))
4457 fake_pid_p = true;
4458 }
4459 else
4460 {
4461 /* Without this, some commands which require an active target
4462 (such as kill) won't work. This variable serves (at least)
4463 double duty as both the pid of the target process (if it has
4464 such), and as a flag indicating that a target is active. */
4465 curr_ptid = magic_null_ptid;
4466 fake_pid_p = true;
4467 }
4468
4469 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4470
4471 /* Add the main thread and switch to it. Don't try reading
4472 registers yet, since we haven't fetched the target description
4473 yet. */
4474 thread_info *tp = add_thread_silent (this, curr_ptid);
4475 switch_to_thread_no_regs (tp);
4476
4477 return tp;
4478 }
4479
4480 /* Print info about a thread that was found already stopped on
4481 connection. */
4482
4483 void
4484 remote_target::print_one_stopped_thread (thread_info *thread)
4485 {
4486 target_waitstatus ws;
4487
4488 /* If there is a pending waitstatus, use it. If there isn't it's because
4489 the thread's stop was reported with TARGET_WAITKIND_STOPPED / GDB_SIGNAL_0
4490 and process_initial_stop_replies decided it wasn't interesting to save
4491 and report to the core. */
4492 if (thread->has_pending_waitstatus ())
4493 {
4494 ws = thread->pending_waitstatus ();
4495 thread->clear_pending_waitstatus ();
4496 }
4497 else
4498 {
4499 ws.kind = TARGET_WAITKIND_STOPPED;
4500 ws.value.sig = GDB_SIGNAL_0;
4501 }
4502
4503 switch_to_thread (thread);
4504 thread->set_stop_pc (get_frame_pc (get_current_frame ()));
4505 set_current_sal_from_frame (get_current_frame ());
4506
4507 /* For "info program". */
4508 set_last_target_status (this, thread->ptid, ws);
4509
4510 if (ws.kind == TARGET_WAITKIND_STOPPED)
4511 {
4512 enum gdb_signal sig = ws.value.sig;
4513
4514 if (signal_print_state (sig))
4515 gdb::observers::signal_received.notify (sig);
4516 }
4517 gdb::observers::normal_stop.notify (NULL, 1);
4518 }
4519
4520 /* Process all initial stop replies the remote side sent in response
4521 to the ? packet. These indicate threads that were already stopped
4522 on initial connection. We mark these threads as stopped and print
4523 their current frame before giving the user the prompt. */
4524
4525 void
4526 remote_target::process_initial_stop_replies (int from_tty)
4527 {
4528 int pending_stop_replies = stop_reply_queue_length ();
4529 struct thread_info *selected = NULL;
4530 struct thread_info *lowest_stopped = NULL;
4531 struct thread_info *first = NULL;
4532
4533 /* This is only used when the target is non-stop. */
4534 gdb_assert (target_is_non_stop_p ());
4535
4536 /* Consume the initial pending events. */
4537 while (pending_stop_replies-- > 0)
4538 {
4539 ptid_t waiton_ptid = minus_one_ptid;
4540 ptid_t event_ptid;
4541 struct target_waitstatus ws;
4542 int ignore_event = 0;
4543
4544 memset (&ws, 0, sizeof (ws));
4545 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4546 if (remote_debug)
4547 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4548
4549 switch (ws.kind)
4550 {
4551 case TARGET_WAITKIND_IGNORE:
4552 case TARGET_WAITKIND_NO_RESUMED:
4553 case TARGET_WAITKIND_SIGNALLED:
4554 case TARGET_WAITKIND_EXITED:
4555 /* We shouldn't see these, but if we do, just ignore. */
4556 remote_debug_printf ("event ignored");
4557 ignore_event = 1;
4558 break;
4559
4560 case TARGET_WAITKIND_EXECD:
4561 xfree (ws.value.execd_pathname);
4562 break;
4563 default:
4564 break;
4565 }
4566
4567 if (ignore_event)
4568 continue;
4569
4570 thread_info *evthread = find_thread_ptid (this, event_ptid);
4571
4572 if (ws.kind == TARGET_WAITKIND_STOPPED)
4573 {
4574 enum gdb_signal sig = ws.value.sig;
4575
4576 /* Stubs traditionally report SIGTRAP as initial signal,
4577 instead of signal 0. Suppress it. */
4578 if (sig == GDB_SIGNAL_TRAP)
4579 sig = GDB_SIGNAL_0;
4580 evthread->set_stop_signal (sig);
4581 ws.value.sig = sig;
4582 }
4583
4584 if (ws.kind != TARGET_WAITKIND_STOPPED
4585 || ws.value.sig != GDB_SIGNAL_0)
4586 evthread->set_pending_waitstatus (ws);
4587
4588 set_executing (this, event_ptid, false);
4589 set_running (this, event_ptid, false);
4590 get_remote_thread_info (evthread)->set_not_resumed ();
4591 }
4592
4593 /* "Notice" the new inferiors before anything related to
4594 registers/memory. */
4595 for (inferior *inf : all_non_exited_inferiors (this))
4596 {
4597 inf->needs_setup = 1;
4598
4599 if (non_stop)
4600 {
4601 thread_info *thread = any_live_thread_of_inferior (inf);
4602 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4603 from_tty);
4604 }
4605 }
4606
4607 /* If all-stop on top of non-stop, pause all threads. Note this
4608 records the threads' stop pc, so must be done after "noticing"
4609 the inferiors. */
4610 if (!non_stop)
4611 {
4612 stop_all_threads ();
4613
4614 /* If all threads of an inferior were already stopped, we
4615 haven't setup the inferior yet. */
4616 for (inferior *inf : all_non_exited_inferiors (this))
4617 {
4618 if (inf->needs_setup)
4619 {
4620 thread_info *thread = any_live_thread_of_inferior (inf);
4621 switch_to_thread_no_regs (thread);
4622 setup_inferior (0);
4623 }
4624 }
4625 }
4626
4627 /* Now go over all threads that are stopped, and print their current
4628 frame. If all-stop, then if there's a signalled thread, pick
4629 that as current. */
4630 for (thread_info *thread : all_non_exited_threads (this))
4631 {
4632 if (first == NULL)
4633 first = thread;
4634
4635 if (!non_stop)
4636 thread->set_running (false);
4637 else if (thread->state != THREAD_STOPPED)
4638 continue;
4639
4640 if (selected == nullptr && thread->has_pending_waitstatus ())
4641 selected = thread;
4642
4643 if (lowest_stopped == NULL
4644 || thread->inf->num < lowest_stopped->inf->num
4645 || thread->per_inf_num < lowest_stopped->per_inf_num)
4646 lowest_stopped = thread;
4647
4648 if (non_stop)
4649 print_one_stopped_thread (thread);
4650 }
4651
4652 /* In all-stop, we only print the status of one thread, and leave
4653 others with their status pending. */
4654 if (!non_stop)
4655 {
4656 thread_info *thread = selected;
4657 if (thread == NULL)
4658 thread = lowest_stopped;
4659 if (thread == NULL)
4660 thread = first;
4661
4662 print_one_stopped_thread (thread);
4663 }
4664 }
4665
4666 /* Start the remote connection and sync state. */
4667
4668 void
4669 remote_target::start_remote (int from_tty, int extended_p)
4670 {
4671 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4672
4673 struct remote_state *rs = get_remote_state ();
4674 struct packet_config *noack_config;
4675
4676 /* Signal other parts that we're going through the initial setup,
4677 and so things may not be stable yet. E.g., we don't try to
4678 install tracepoints until we've relocated symbols. Also, a
4679 Ctrl-C before we're connected and synced up can't interrupt the
4680 target. Instead, it offers to drop the (potentially wedged)
4681 connection. */
4682 rs->starting_up = true;
4683
4684 QUIT;
4685
4686 if (interrupt_on_connect)
4687 send_interrupt_sequence ();
4688
4689 /* Ack any packet which the remote side has already sent. */
4690 remote_serial_write ("+", 1);
4691
4692 /* The first packet we send to the target is the optional "supported
4693 packets" request. If the target can answer this, it will tell us
4694 which later probes to skip. */
4695 remote_query_supported ();
4696
4697 /* If the stub wants to get a QAllow, compose one and send it. */
4698 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4699 set_permissions ();
4700
4701 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4702 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4703 as a reply to known packet. For packet "vFile:setfs:" it is an
4704 invalid reply and GDB would return error in
4705 remote_hostio_set_filesystem, making remote files access impossible.
4706 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4707 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4708 {
4709 const char v_mustreplyempty[] = "vMustReplyEmpty";
4710
4711 putpkt (v_mustreplyempty);
4712 getpkt (&rs->buf, 0);
4713 if (strcmp (rs->buf.data (), "OK") == 0)
4714 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4715 else if (strcmp (rs->buf.data (), "") != 0)
4716 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4717 rs->buf.data ());
4718 }
4719
4720 /* Next, we possibly activate noack mode.
4721
4722 If the QStartNoAckMode packet configuration is set to AUTO,
4723 enable noack mode if the stub reported a wish for it with
4724 qSupported.
4725
4726 If set to TRUE, then enable noack mode even if the stub didn't
4727 report it in qSupported. If the stub doesn't reply OK, the
4728 session ends with an error.
4729
4730 If FALSE, then don't activate noack mode, regardless of what the
4731 stub claimed should be the default with qSupported. */
4732
4733 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4734 if (packet_config_support (noack_config) != PACKET_DISABLE)
4735 {
4736 putpkt ("QStartNoAckMode");
4737 getpkt (&rs->buf, 0);
4738 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4739 rs->noack_mode = 1;
4740 }
4741
4742 if (extended_p)
4743 {
4744 /* Tell the remote that we are using the extended protocol. */
4745 putpkt ("!");
4746 getpkt (&rs->buf, 0);
4747 }
4748
4749 /* Let the target know which signals it is allowed to pass down to
4750 the program. */
4751 update_signals_program_target ();
4752
4753 /* Next, if the target can specify a description, read it. We do
4754 this before anything involving memory or registers. */
4755 target_find_description ();
4756
4757 /* Next, now that we know something about the target, update the
4758 address spaces in the program spaces. */
4759 update_address_spaces ();
4760
4761 /* On OSs where the list of libraries is global to all
4762 processes, we fetch them early. */
4763 if (gdbarch_has_global_solist (target_gdbarch ()))
4764 solib_add (NULL, from_tty, auto_solib_add);
4765
4766 if (target_is_non_stop_p ())
4767 {
4768 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4769 error (_("Non-stop mode requested, but remote "
4770 "does not support non-stop"));
4771
4772 putpkt ("QNonStop:1");
4773 getpkt (&rs->buf, 0);
4774
4775 if (strcmp (rs->buf.data (), "OK") != 0)
4776 error (_("Remote refused setting non-stop mode with: %s"),
4777 rs->buf.data ());
4778
4779 /* Find about threads and processes the stub is already
4780 controlling. We default to adding them in the running state.
4781 The '?' query below will then tell us about which threads are
4782 stopped. */
4783 this->update_thread_list ();
4784 }
4785 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4786 {
4787 /* Don't assume that the stub can operate in all-stop mode.
4788 Request it explicitly. */
4789 putpkt ("QNonStop:0");
4790 getpkt (&rs->buf, 0);
4791
4792 if (strcmp (rs->buf.data (), "OK") != 0)
4793 error (_("Remote refused setting all-stop mode with: %s"),
4794 rs->buf.data ());
4795 }
4796
4797 /* Upload TSVs regardless of whether the target is running or not. The
4798 remote stub, such as GDBserver, may have some predefined or builtin
4799 TSVs, even if the target is not running. */
4800 if (get_trace_status (current_trace_status ()) != -1)
4801 {
4802 struct uploaded_tsv *uploaded_tsvs = NULL;
4803
4804 upload_trace_state_variables (&uploaded_tsvs);
4805 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4806 }
4807
4808 /* Check whether the target is running now. */
4809 putpkt ("?");
4810 getpkt (&rs->buf, 0);
4811
4812 if (!target_is_non_stop_p ())
4813 {
4814 char *wait_status = NULL;
4815
4816 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4817 {
4818 if (!extended_p)
4819 error (_("The target is not running (try extended-remote?)"));
4820
4821 /* We're connected, but not running. Drop out before we
4822 call start_remote. */
4823 rs->starting_up = false;
4824 return;
4825 }
4826 else
4827 {
4828 /* Save the reply for later. */
4829 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4830 strcpy (wait_status, rs->buf.data ());
4831 }
4832
4833 /* Fetch thread list. */
4834 target_update_thread_list ();
4835
4836 /* Let the stub know that we want it to return the thread. */
4837 set_continue_thread (minus_one_ptid);
4838
4839 if (thread_count (this) == 0)
4840 {
4841 /* Target has no concept of threads at all. GDB treats
4842 non-threaded target as single-threaded; add a main
4843 thread. */
4844 thread_info *tp = add_current_inferior_and_thread (wait_status);
4845 get_remote_thread_info (tp)->set_resumed ();
4846 }
4847 else
4848 {
4849 /* We have thread information; select the thread the target
4850 says should be current. If we're reconnecting to a
4851 multi-threaded program, this will ideally be the thread
4852 that last reported an event before GDB disconnected. */
4853 ptid_t curr_thread = get_current_thread (wait_status);
4854 if (curr_thread == null_ptid)
4855 {
4856 /* Odd... The target was able to list threads, but not
4857 tell us which thread was current (no "thread"
4858 register in T stop reply?). Just pick the first
4859 thread in the thread list then. */
4860
4861 remote_debug_printf ("warning: couldn't determine remote "
4862 "current thread; picking first in list.");
4863
4864 for (thread_info *tp : all_non_exited_threads (this,
4865 minus_one_ptid))
4866 {
4867 switch_to_thread (tp);
4868 break;
4869 }
4870 }
4871 else
4872 switch_to_thread (find_thread_ptid (this, curr_thread));
4873 }
4874
4875 /* init_wait_for_inferior should be called before get_offsets in order
4876 to manage `inserted' flag in bp loc in a correct state.
4877 breakpoint_init_inferior, called from init_wait_for_inferior, set
4878 `inserted' flag to 0, while before breakpoint_re_set, called from
4879 start_remote, set `inserted' flag to 1. In the initialization of
4880 inferior, breakpoint_init_inferior should be called first, and then
4881 breakpoint_re_set can be called. If this order is broken, state of
4882 `inserted' flag is wrong, and cause some problems on breakpoint
4883 manipulation. */
4884 init_wait_for_inferior ();
4885
4886 get_offsets (); /* Get text, data & bss offsets. */
4887
4888 /* If we could not find a description using qXfer, and we know
4889 how to do it some other way, try again. This is not
4890 supported for non-stop; it could be, but it is tricky if
4891 there are no stopped threads when we connect. */
4892 if (remote_read_description_p (this)
4893 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4894 {
4895 target_clear_description ();
4896 target_find_description ();
4897 }
4898
4899 /* Use the previously fetched status. */
4900 gdb_assert (wait_status != NULL);
4901 strcpy (rs->buf.data (), wait_status);
4902 rs->cached_wait_status = 1;
4903
4904 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4905 }
4906 else
4907 {
4908 /* Clear WFI global state. Do this before finding about new
4909 threads and inferiors, and setting the current inferior.
4910 Otherwise we would clear the proceed status of the current
4911 inferior when we want its stop_soon state to be preserved
4912 (see notice_new_inferior). */
4913 init_wait_for_inferior ();
4914
4915 /* In non-stop, we will either get an "OK", meaning that there
4916 are no stopped threads at this time; or, a regular stop
4917 reply. In the latter case, there may be more than one thread
4918 stopped --- we pull them all out using the vStopped
4919 mechanism. */
4920 if (strcmp (rs->buf.data (), "OK") != 0)
4921 {
4922 struct notif_client *notif = &notif_client_stop;
4923
4924 /* remote_notif_get_pending_replies acks this one, and gets
4925 the rest out. */
4926 rs->notif_state->pending_event[notif_client_stop.id]
4927 = remote_notif_parse (this, notif, rs->buf.data ());
4928 remote_notif_get_pending_events (notif);
4929 }
4930
4931 if (thread_count (this) == 0)
4932 {
4933 if (!extended_p)
4934 error (_("The target is not running (try extended-remote?)"));
4935
4936 /* We're connected, but not running. Drop out before we
4937 call start_remote. */
4938 rs->starting_up = false;
4939 return;
4940 }
4941
4942 /* Report all signals during attach/startup. */
4943 pass_signals ({});
4944
4945 /* If there are already stopped threads, mark them stopped and
4946 report their stops before giving the prompt to the user. */
4947 process_initial_stop_replies (from_tty);
4948
4949 if (target_can_async_p ())
4950 target_async (1);
4951 }
4952
4953 /* If we connected to a live target, do some additional setup. */
4954 if (target_has_execution ())
4955 {
4956 /* No use without a symbol-file. */
4957 if (current_program_space->symfile_object_file)
4958 remote_check_symbols ();
4959 }
4960
4961 /* Possibly the target has been engaged in a trace run started
4962 previously; find out where things are at. */
4963 if (get_trace_status (current_trace_status ()) != -1)
4964 {
4965 struct uploaded_tp *uploaded_tps = NULL;
4966
4967 if (current_trace_status ()->running)
4968 printf_filtered (_("Trace is already running on the target.\n"));
4969
4970 upload_tracepoints (&uploaded_tps);
4971
4972 merge_uploaded_tracepoints (&uploaded_tps);
4973 }
4974
4975 /* Possibly the target has been engaged in a btrace record started
4976 previously; find out where things are at. */
4977 remote_btrace_maybe_reopen ();
4978
4979 /* The thread and inferior lists are now synchronized with the
4980 target, our symbols have been relocated, and we're merged the
4981 target's tracepoints with ours. We're done with basic start
4982 up. */
4983 rs->starting_up = false;
4984
4985 /* Maybe breakpoints are global and need to be inserted now. */
4986 if (breakpoints_should_be_inserted_now ())
4987 insert_breakpoints ();
4988 }
4989
4990 const char *
4991 remote_target::connection_string ()
4992 {
4993 remote_state *rs = get_remote_state ();
4994
4995 if (rs->remote_desc->name != NULL)
4996 return rs->remote_desc->name;
4997 else
4998 return NULL;
4999 }
5000
5001 /* Open a connection to a remote debugger.
5002 NAME is the filename used for communication. */
5003
5004 void
5005 remote_target::open (const char *name, int from_tty)
5006 {
5007 open_1 (name, from_tty, 0);
5008 }
5009
5010 /* Open a connection to a remote debugger using the extended
5011 remote gdb protocol. NAME is the filename used for communication. */
5012
5013 void
5014 extended_remote_target::open (const char *name, int from_tty)
5015 {
5016 open_1 (name, from_tty, 1 /*extended_p */);
5017 }
5018
5019 /* Reset all packets back to "unknown support". Called when opening a
5020 new connection to a remote target. */
5021
5022 static void
5023 reset_all_packet_configs_support (void)
5024 {
5025 int i;
5026
5027 for (i = 0; i < PACKET_MAX; i++)
5028 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5029 }
5030
5031 /* Initialize all packet configs. */
5032
5033 static void
5034 init_all_packet_configs (void)
5035 {
5036 int i;
5037
5038 for (i = 0; i < PACKET_MAX; i++)
5039 {
5040 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5041 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5042 }
5043 }
5044
5045 /* Symbol look-up. */
5046
5047 void
5048 remote_target::remote_check_symbols ()
5049 {
5050 char *tmp;
5051 int end;
5052
5053 /* The remote side has no concept of inferiors that aren't running
5054 yet, it only knows about running processes. If we're connected
5055 but our current inferior is not running, we should not invite the
5056 remote target to request symbol lookups related to its
5057 (unrelated) current process. */
5058 if (!target_has_execution ())
5059 return;
5060
5061 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5062 return;
5063
5064 /* Make sure the remote is pointing at the right process. Note
5065 there's no way to select "no process". */
5066 set_general_process ();
5067
5068 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5069 because we need both at the same time. */
5070 gdb::char_vector msg (get_remote_packet_size ());
5071 gdb::char_vector reply (get_remote_packet_size ());
5072
5073 /* Invite target to request symbol lookups. */
5074
5075 putpkt ("qSymbol::");
5076 getpkt (&reply, 0);
5077 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5078
5079 while (startswith (reply.data (), "qSymbol:"))
5080 {
5081 struct bound_minimal_symbol sym;
5082
5083 tmp = &reply[8];
5084 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5085 strlen (tmp) / 2);
5086 msg[end] = '\0';
5087 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5088 if (sym.minsym == NULL)
5089 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5090 &reply[8]);
5091 else
5092 {
5093 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5094 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5095
5096 /* If this is a function address, return the start of code
5097 instead of any data function descriptor. */
5098 sym_addr = gdbarch_convert_from_func_ptr_addr
5099 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
5100
5101 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5102 phex_nz (sym_addr, addr_size), &reply[8]);
5103 }
5104
5105 putpkt (msg.data ());
5106 getpkt (&reply, 0);
5107 }
5108 }
5109
5110 static struct serial *
5111 remote_serial_open (const char *name)
5112 {
5113 static int udp_warning = 0;
5114
5115 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5116 of in ser-tcp.c, because it is the remote protocol assuming that the
5117 serial connection is reliable and not the serial connection promising
5118 to be. */
5119 if (!udp_warning && startswith (name, "udp:"))
5120 {
5121 warning (_("The remote protocol may be unreliable over UDP.\n"
5122 "Some events may be lost, rendering further debugging "
5123 "impossible."));
5124 udp_warning = 1;
5125 }
5126
5127 return serial_open (name);
5128 }
5129
5130 /* Inform the target of our permission settings. The permission flags
5131 work without this, but if the target knows the settings, it can do
5132 a couple things. First, it can add its own check, to catch cases
5133 that somehow manage to get by the permissions checks in target
5134 methods. Second, if the target is wired to disallow particular
5135 settings (for instance, a system in the field that is not set up to
5136 be able to stop at a breakpoint), it can object to any unavailable
5137 permissions. */
5138
5139 void
5140 remote_target::set_permissions ()
5141 {
5142 struct remote_state *rs = get_remote_state ();
5143
5144 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5145 "WriteReg:%x;WriteMem:%x;"
5146 "InsertBreak:%x;InsertTrace:%x;"
5147 "InsertFastTrace:%x;Stop:%x",
5148 may_write_registers, may_write_memory,
5149 may_insert_breakpoints, may_insert_tracepoints,
5150 may_insert_fast_tracepoints, may_stop);
5151 putpkt (rs->buf);
5152 getpkt (&rs->buf, 0);
5153
5154 /* If the target didn't like the packet, warn the user. Do not try
5155 to undo the user's settings, that would just be maddening. */
5156 if (strcmp (rs->buf.data (), "OK") != 0)
5157 warning (_("Remote refused setting permissions with: %s"),
5158 rs->buf.data ());
5159 }
5160
5161 /* This type describes each known response to the qSupported
5162 packet. */
5163 struct protocol_feature
5164 {
5165 /* The name of this protocol feature. */
5166 const char *name;
5167
5168 /* The default for this protocol feature. */
5169 enum packet_support default_support;
5170
5171 /* The function to call when this feature is reported, or after
5172 qSupported processing if the feature is not supported.
5173 The first argument points to this structure. The second
5174 argument indicates whether the packet requested support be
5175 enabled, disabled, or probed (or the default, if this function
5176 is being called at the end of processing and this feature was
5177 not reported). The third argument may be NULL; if not NULL, it
5178 is a NUL-terminated string taken from the packet following
5179 this feature's name and an equals sign. */
5180 void (*func) (remote_target *remote, const struct protocol_feature *,
5181 enum packet_support, const char *);
5182
5183 /* The corresponding packet for this feature. Only used if
5184 FUNC is remote_supported_packet. */
5185 int packet;
5186 };
5187
5188 static void
5189 remote_supported_packet (remote_target *remote,
5190 const struct protocol_feature *feature,
5191 enum packet_support support,
5192 const char *argument)
5193 {
5194 if (argument)
5195 {
5196 warning (_("Remote qSupported response supplied an unexpected value for"
5197 " \"%s\"."), feature->name);
5198 return;
5199 }
5200
5201 remote_protocol_packets[feature->packet].support = support;
5202 }
5203
5204 void
5205 remote_target::remote_packet_size (const protocol_feature *feature,
5206 enum packet_support support, const char *value)
5207 {
5208 struct remote_state *rs = get_remote_state ();
5209
5210 int packet_size;
5211 char *value_end;
5212
5213 if (support != PACKET_ENABLE)
5214 return;
5215
5216 if (value == NULL || *value == '\0')
5217 {
5218 warning (_("Remote target reported \"%s\" without a size."),
5219 feature->name);
5220 return;
5221 }
5222
5223 errno = 0;
5224 packet_size = strtol (value, &value_end, 16);
5225 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5226 {
5227 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5228 feature->name, value);
5229 return;
5230 }
5231
5232 /* Record the new maximum packet size. */
5233 rs->explicit_packet_size = packet_size;
5234 }
5235
5236 static void
5237 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5238 enum packet_support support, const char *value)
5239 {
5240 remote->remote_packet_size (feature, support, value);
5241 }
5242
5243 static const struct protocol_feature remote_protocol_features[] = {
5244 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5245 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5246 PACKET_qXfer_auxv },
5247 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5248 PACKET_qXfer_exec_file },
5249 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5250 PACKET_qXfer_features },
5251 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5252 PACKET_qXfer_libraries },
5253 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5254 PACKET_qXfer_libraries_svr4 },
5255 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5256 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5257 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5258 PACKET_qXfer_memory_map },
5259 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5260 PACKET_qXfer_osdata },
5261 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5262 PACKET_qXfer_threads },
5263 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5264 PACKET_qXfer_traceframe_info },
5265 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5266 PACKET_QPassSignals },
5267 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5268 PACKET_QCatchSyscalls },
5269 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5270 PACKET_QProgramSignals },
5271 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5272 PACKET_QSetWorkingDir },
5273 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5274 PACKET_QStartupWithShell },
5275 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5276 PACKET_QEnvironmentHexEncoded },
5277 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5278 PACKET_QEnvironmentReset },
5279 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5280 PACKET_QEnvironmentUnset },
5281 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5282 PACKET_QStartNoAckMode },
5283 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5284 PACKET_multiprocess_feature },
5285 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5286 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5287 PACKET_qXfer_siginfo_read },
5288 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5289 PACKET_qXfer_siginfo_write },
5290 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5291 PACKET_ConditionalTracepoints },
5292 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5293 PACKET_ConditionalBreakpoints },
5294 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5295 PACKET_BreakpointCommands },
5296 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5297 PACKET_FastTracepoints },
5298 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5299 PACKET_StaticTracepoints },
5300 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5301 PACKET_InstallInTrace},
5302 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5303 PACKET_DisconnectedTracing_feature },
5304 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5305 PACKET_bc },
5306 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5307 PACKET_bs },
5308 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5309 PACKET_TracepointSource },
5310 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5311 PACKET_QAllow },
5312 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5313 PACKET_EnableDisableTracepoints_feature },
5314 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5315 PACKET_qXfer_fdpic },
5316 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5317 PACKET_qXfer_uib },
5318 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5319 PACKET_QDisableRandomization },
5320 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5321 { "QTBuffer:size", PACKET_DISABLE,
5322 remote_supported_packet, PACKET_QTBuffer_size},
5323 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5324 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5325 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5326 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5327 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5328 PACKET_qXfer_btrace },
5329 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5330 PACKET_qXfer_btrace_conf },
5331 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5332 PACKET_Qbtrace_conf_bts_size },
5333 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5334 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5335 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5336 PACKET_fork_event_feature },
5337 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5338 PACKET_vfork_event_feature },
5339 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5340 PACKET_exec_event_feature },
5341 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5342 PACKET_Qbtrace_conf_pt_size },
5343 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5344 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5345 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5346 { "memory-tagging", PACKET_DISABLE, remote_supported_packet,
5347 PACKET_memory_tagging_feature },
5348 };
5349
5350 static char *remote_support_xml;
5351
5352 /* Register string appended to "xmlRegisters=" in qSupported query. */
5353
5354 void
5355 register_remote_support_xml (const char *xml)
5356 {
5357 #if defined(HAVE_LIBEXPAT)
5358 if (remote_support_xml == NULL)
5359 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5360 else
5361 {
5362 char *copy = xstrdup (remote_support_xml + 13);
5363 char *saveptr;
5364 char *p = strtok_r (copy, ",", &saveptr);
5365
5366 do
5367 {
5368 if (strcmp (p, xml) == 0)
5369 {
5370 /* already there */
5371 xfree (copy);
5372 return;
5373 }
5374 }
5375 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5376 xfree (copy);
5377
5378 remote_support_xml = reconcat (remote_support_xml,
5379 remote_support_xml, ",", xml,
5380 (char *) NULL);
5381 }
5382 #endif
5383 }
5384
5385 static void
5386 remote_query_supported_append (std::string *msg, const char *append)
5387 {
5388 if (!msg->empty ())
5389 msg->append (";");
5390 msg->append (append);
5391 }
5392
5393 void
5394 remote_target::remote_query_supported ()
5395 {
5396 struct remote_state *rs = get_remote_state ();
5397 char *next;
5398 int i;
5399 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5400
5401 /* The packet support flags are handled differently for this packet
5402 than for most others. We treat an error, a disabled packet, and
5403 an empty response identically: any features which must be reported
5404 to be used will be automatically disabled. An empty buffer
5405 accomplishes this, since that is also the representation for a list
5406 containing no features. */
5407
5408 rs->buf[0] = 0;
5409 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5410 {
5411 std::string q;
5412
5413 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5414 remote_query_supported_append (&q, "multiprocess+");
5415
5416 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5417 remote_query_supported_append (&q, "swbreak+");
5418 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5419 remote_query_supported_append (&q, "hwbreak+");
5420
5421 remote_query_supported_append (&q, "qRelocInsn+");
5422
5423 if (packet_set_cmd_state (PACKET_fork_event_feature)
5424 != AUTO_BOOLEAN_FALSE)
5425 remote_query_supported_append (&q, "fork-events+");
5426 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5427 != AUTO_BOOLEAN_FALSE)
5428 remote_query_supported_append (&q, "vfork-events+");
5429 if (packet_set_cmd_state (PACKET_exec_event_feature)
5430 != AUTO_BOOLEAN_FALSE)
5431 remote_query_supported_append (&q, "exec-events+");
5432
5433 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5434 remote_query_supported_append (&q, "vContSupported+");
5435
5436 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5437 remote_query_supported_append (&q, "QThreadEvents+");
5438
5439 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5440 remote_query_supported_append (&q, "no-resumed+");
5441
5442 if (packet_set_cmd_state (PACKET_memory_tagging_feature)
5443 != AUTO_BOOLEAN_FALSE)
5444 remote_query_supported_append (&q, "memory-tagging+");
5445
5446 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5447 the qSupported:xmlRegisters=i386 handling. */
5448 if (remote_support_xml != NULL
5449 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5450 remote_query_supported_append (&q, remote_support_xml);
5451
5452 q = "qSupported:" + q;
5453 putpkt (q.c_str ());
5454
5455 getpkt (&rs->buf, 0);
5456
5457 /* If an error occured, warn, but do not return - just reset the
5458 buffer to empty and go on to disable features. */
5459 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5460 == PACKET_ERROR)
5461 {
5462 warning (_("Remote failure reply: %s"), rs->buf.data ());
5463 rs->buf[0] = 0;
5464 }
5465 }
5466
5467 memset (seen, 0, sizeof (seen));
5468
5469 next = rs->buf.data ();
5470 while (*next)
5471 {
5472 enum packet_support is_supported;
5473 char *p, *end, *name_end, *value;
5474
5475 /* First separate out this item from the rest of the packet. If
5476 there's another item after this, we overwrite the separator
5477 (terminated strings are much easier to work with). */
5478 p = next;
5479 end = strchr (p, ';');
5480 if (end == NULL)
5481 {
5482 end = p + strlen (p);
5483 next = end;
5484 }
5485 else
5486 {
5487 *end = '\0';
5488 next = end + 1;
5489
5490 if (end == p)
5491 {
5492 warning (_("empty item in \"qSupported\" response"));
5493 continue;
5494 }
5495 }
5496
5497 name_end = strchr (p, '=');
5498 if (name_end)
5499 {
5500 /* This is a name=value entry. */
5501 is_supported = PACKET_ENABLE;
5502 value = name_end + 1;
5503 *name_end = '\0';
5504 }
5505 else
5506 {
5507 value = NULL;
5508 switch (end[-1])
5509 {
5510 case '+':
5511 is_supported = PACKET_ENABLE;
5512 break;
5513
5514 case '-':
5515 is_supported = PACKET_DISABLE;
5516 break;
5517
5518 case '?':
5519 is_supported = PACKET_SUPPORT_UNKNOWN;
5520 break;
5521
5522 default:
5523 warning (_("unrecognized item \"%s\" "
5524 "in \"qSupported\" response"), p);
5525 continue;
5526 }
5527 end[-1] = '\0';
5528 }
5529
5530 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5531 if (strcmp (remote_protocol_features[i].name, p) == 0)
5532 {
5533 const struct protocol_feature *feature;
5534
5535 seen[i] = 1;
5536 feature = &remote_protocol_features[i];
5537 feature->func (this, feature, is_supported, value);
5538 break;
5539 }
5540 }
5541
5542 /* If we increased the packet size, make sure to increase the global
5543 buffer size also. We delay this until after parsing the entire
5544 qSupported packet, because this is the same buffer we were
5545 parsing. */
5546 if (rs->buf.size () < rs->explicit_packet_size)
5547 rs->buf.resize (rs->explicit_packet_size);
5548
5549 /* Handle the defaults for unmentioned features. */
5550 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5551 if (!seen[i])
5552 {
5553 const struct protocol_feature *feature;
5554
5555 feature = &remote_protocol_features[i];
5556 feature->func (this, feature, feature->default_support, NULL);
5557 }
5558 }
5559
5560 /* Serial QUIT handler for the remote serial descriptor.
5561
5562 Defers handling a Ctrl-C until we're done with the current
5563 command/response packet sequence, unless:
5564
5565 - We're setting up the connection. Don't send a remote interrupt
5566 request, as we're not fully synced yet. Quit immediately
5567 instead.
5568
5569 - The target has been resumed in the foreground
5570 (target_terminal::is_ours is false) with a synchronous resume
5571 packet, and we're blocked waiting for the stop reply, thus a
5572 Ctrl-C should be immediately sent to the target.
5573
5574 - We get a second Ctrl-C while still within the same serial read or
5575 write. In that case the serial is seemingly wedged --- offer to
5576 quit/disconnect.
5577
5578 - We see a second Ctrl-C without target response, after having
5579 previously interrupted the target. In that case the target/stub
5580 is probably wedged --- offer to quit/disconnect.
5581 */
5582
5583 void
5584 remote_target::remote_serial_quit_handler ()
5585 {
5586 struct remote_state *rs = get_remote_state ();
5587
5588 if (check_quit_flag ())
5589 {
5590 /* If we're starting up, we're not fully synced yet. Quit
5591 immediately. */
5592 if (rs->starting_up)
5593 quit ();
5594 else if (rs->got_ctrlc_during_io)
5595 {
5596 if (query (_("The target is not responding to GDB commands.\n"
5597 "Stop debugging it? ")))
5598 remote_unpush_and_throw (this);
5599 }
5600 /* If ^C has already been sent once, offer to disconnect. */
5601 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5602 interrupt_query ();
5603 /* All-stop protocol, and blocked waiting for stop reply. Send
5604 an interrupt request. */
5605 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5606 target_interrupt ();
5607 else
5608 rs->got_ctrlc_during_io = 1;
5609 }
5610 }
5611
5612 /* The remote_target that is current while the quit handler is
5613 overridden with remote_serial_quit_handler. */
5614 static remote_target *curr_quit_handler_target;
5615
5616 static void
5617 remote_serial_quit_handler ()
5618 {
5619 curr_quit_handler_target->remote_serial_quit_handler ();
5620 }
5621
5622 /* Remove the remote target from the target stack of each inferior
5623 that is using it. Upper targets depend on it so remove them
5624 first. */
5625
5626 static void
5627 remote_unpush_target (remote_target *target)
5628 {
5629 /* We have to unpush the target from all inferiors, even those that
5630 aren't running. */
5631 scoped_restore_current_inferior restore_current_inferior;
5632
5633 for (inferior *inf : all_inferiors (target))
5634 {
5635 switch_to_inferior_no_thread (inf);
5636 pop_all_targets_at_and_above (process_stratum);
5637 generic_mourn_inferior ();
5638 }
5639
5640 /* Don't rely on target_close doing this when the target is popped
5641 from the last remote inferior above, because something may be
5642 holding a reference to the target higher up on the stack, meaning
5643 target_close won't be called yet. We lost the connection to the
5644 target, so clear these now, otherwise we may later throw
5645 TARGET_CLOSE_ERROR while trying to tell the remote target to
5646 close the file. */
5647 fileio_handles_invalidate_target (target);
5648 }
5649
5650 static void
5651 remote_unpush_and_throw (remote_target *target)
5652 {
5653 remote_unpush_target (target);
5654 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5655 }
5656
5657 void
5658 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5659 {
5660 remote_target *curr_remote = get_current_remote_target ();
5661
5662 if (name == 0)
5663 error (_("To open a remote debug connection, you need to specify what\n"
5664 "serial device is attached to the remote system\n"
5665 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5666
5667 /* If we're connected to a running target, target_preopen will kill it.
5668 Ask this question first, before target_preopen has a chance to kill
5669 anything. */
5670 if (curr_remote != NULL && !target_has_execution ())
5671 {
5672 if (from_tty
5673 && !query (_("Already connected to a remote target. Disconnect? ")))
5674 error (_("Still connected."));
5675 }
5676
5677 /* Here the possibly existing remote target gets unpushed. */
5678 target_preopen (from_tty);
5679
5680 remote_fileio_reset ();
5681 reopen_exec_file ();
5682 reread_symbols ();
5683
5684 remote_target *remote
5685 = (extended_p ? new extended_remote_target () : new remote_target ());
5686 target_ops_up target_holder (remote);
5687
5688 remote_state *rs = remote->get_remote_state ();
5689
5690 /* See FIXME above. */
5691 if (!target_async_permitted)
5692 rs->wait_forever_enabled_p = 1;
5693
5694 rs->remote_desc = remote_serial_open (name);
5695 if (!rs->remote_desc)
5696 perror_with_name (name);
5697
5698 if (baud_rate != -1)
5699 {
5700 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5701 {
5702 /* The requested speed could not be set. Error out to
5703 top level after closing remote_desc. Take care to
5704 set remote_desc to NULL to avoid closing remote_desc
5705 more than once. */
5706 serial_close (rs->remote_desc);
5707 rs->remote_desc = NULL;
5708 perror_with_name (name);
5709 }
5710 }
5711
5712 serial_setparity (rs->remote_desc, serial_parity);
5713 serial_raw (rs->remote_desc);
5714
5715 /* If there is something sitting in the buffer we might take it as a
5716 response to a command, which would be bad. */
5717 serial_flush_input (rs->remote_desc);
5718
5719 if (from_tty)
5720 {
5721 puts_filtered ("Remote debugging using ");
5722 puts_filtered (name);
5723 puts_filtered ("\n");
5724 }
5725
5726 /* Switch to using the remote target now. */
5727 current_inferior ()->push_target (std::move (target_holder));
5728
5729 /* Register extra event sources in the event loop. */
5730 rs->remote_async_inferior_event_token
5731 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5732 "remote");
5733 rs->notif_state = remote_notif_state_allocate (remote);
5734
5735 /* Reset the target state; these things will be queried either by
5736 remote_query_supported or as they are needed. */
5737 reset_all_packet_configs_support ();
5738 rs->cached_wait_status = 0;
5739 rs->explicit_packet_size = 0;
5740 rs->noack_mode = 0;
5741 rs->extended = extended_p;
5742 rs->waiting_for_stop_reply = 0;
5743 rs->ctrlc_pending_p = 0;
5744 rs->got_ctrlc_during_io = 0;
5745
5746 rs->general_thread = not_sent_ptid;
5747 rs->continue_thread = not_sent_ptid;
5748 rs->remote_traceframe_number = -1;
5749
5750 rs->last_resume_exec_dir = EXEC_FORWARD;
5751
5752 /* Probe for ability to use "ThreadInfo" query, as required. */
5753 rs->use_threadinfo_query = 1;
5754 rs->use_threadextra_query = 1;
5755
5756 rs->readahead_cache.invalidate ();
5757
5758 if (target_async_permitted)
5759 {
5760 /* FIXME: cagney/1999-09-23: During the initial connection it is
5761 assumed that the target is already ready and able to respond to
5762 requests. Unfortunately remote_start_remote() eventually calls
5763 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5764 around this. Eventually a mechanism that allows
5765 wait_for_inferior() to expect/get timeouts will be
5766 implemented. */
5767 rs->wait_forever_enabled_p = 0;
5768 }
5769
5770 /* First delete any symbols previously loaded from shared libraries. */
5771 no_shared_libraries (NULL, 0);
5772
5773 /* Start the remote connection. If error() or QUIT, discard this
5774 target (we'd otherwise be in an inconsistent state) and then
5775 propogate the error on up the exception chain. This ensures that
5776 the caller doesn't stumble along blindly assuming that the
5777 function succeeded. The CLI doesn't have this problem but other
5778 UI's, such as MI do.
5779
5780 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5781 this function should return an error indication letting the
5782 caller restore the previous state. Unfortunately the command
5783 ``target remote'' is directly wired to this function making that
5784 impossible. On a positive note, the CLI side of this problem has
5785 been fixed - the function set_cmd_context() makes it possible for
5786 all the ``target ....'' commands to share a common callback
5787 function. See cli-dump.c. */
5788 {
5789
5790 try
5791 {
5792 remote->start_remote (from_tty, extended_p);
5793 }
5794 catch (const gdb_exception &ex)
5795 {
5796 /* Pop the partially set up target - unless something else did
5797 already before throwing the exception. */
5798 if (ex.error != TARGET_CLOSE_ERROR)
5799 remote_unpush_target (remote);
5800 throw;
5801 }
5802 }
5803
5804 remote_btrace_reset (rs);
5805
5806 if (target_async_permitted)
5807 rs->wait_forever_enabled_p = 1;
5808 }
5809
5810 /* Detach the specified process. */
5811
5812 void
5813 remote_target::remote_detach_pid (int pid)
5814 {
5815 struct remote_state *rs = get_remote_state ();
5816
5817 /* This should not be necessary, but the handling for D;PID in
5818 GDBserver versions prior to 8.2 incorrectly assumes that the
5819 selected process points to the same process we're detaching,
5820 leading to misbehavior (and possibly GDBserver crashing) when it
5821 does not. Since it's easy and cheap, work around it by forcing
5822 GDBserver to select GDB's current process. */
5823 set_general_process ();
5824
5825 if (remote_multi_process_p (rs))
5826 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5827 else
5828 strcpy (rs->buf.data (), "D");
5829
5830 putpkt (rs->buf);
5831 getpkt (&rs->buf, 0);
5832
5833 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5834 ;
5835 else if (rs->buf[0] == '\0')
5836 error (_("Remote doesn't know how to detach"));
5837 else
5838 error (_("Can't detach process."));
5839 }
5840
5841 /* This detaches a program to which we previously attached, using
5842 inferior_ptid to identify the process. After this is done, GDB
5843 can be used to debug some other program. We better not have left
5844 any breakpoints in the target program or it'll die when it hits
5845 one. */
5846
5847 void
5848 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5849 {
5850 int pid = inferior_ptid.pid ();
5851 struct remote_state *rs = get_remote_state ();
5852 int is_fork_parent;
5853
5854 if (!target_has_execution ())
5855 error (_("No process to detach from."));
5856
5857 target_announce_detach (from_tty);
5858
5859 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5860 {
5861 /* If we're in breakpoints-always-inserted mode, or the inferior
5862 is running, we have to remove breakpoints before detaching.
5863 We don't do this in common code instead because not all
5864 targets support removing breakpoints while the target is
5865 running. The remote target / gdbserver does, though. */
5866 remove_breakpoints_inf (current_inferior ());
5867 }
5868
5869 /* Tell the remote target to detach. */
5870 remote_detach_pid (pid);
5871
5872 /* Exit only if this is the only active inferior. */
5873 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5874 puts_filtered (_("Ending remote debugging.\n"));
5875
5876 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5877
5878 /* Check to see if we are detaching a fork parent. Note that if we
5879 are detaching a fork child, tp == NULL. */
5880 is_fork_parent = (tp != NULL
5881 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5882
5883 /* If doing detach-on-fork, we don't mourn, because that will delete
5884 breakpoints that should be available for the followed inferior. */
5885 if (!is_fork_parent)
5886 {
5887 /* Save the pid as a string before mourning, since that will
5888 unpush the remote target, and we need the string after. */
5889 std::string infpid = target_pid_to_str (ptid_t (pid));
5890
5891 target_mourn_inferior (inferior_ptid);
5892 if (print_inferior_events)
5893 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5894 inf->num, infpid.c_str ());
5895 }
5896 else
5897 {
5898 switch_to_no_thread ();
5899 detach_inferior (current_inferior ());
5900 }
5901 }
5902
5903 void
5904 remote_target::detach (inferior *inf, int from_tty)
5905 {
5906 remote_detach_1 (inf, from_tty);
5907 }
5908
5909 void
5910 extended_remote_target::detach (inferior *inf, int from_tty)
5911 {
5912 remote_detach_1 (inf, from_tty);
5913 }
5914
5915 /* Target follow-fork function for remote targets. On entry, and
5916 at return, the current inferior is the fork parent.
5917
5918 Note that although this is currently only used for extended-remote,
5919 it is named remote_follow_fork in anticipation of using it for the
5920 remote target as well. */
5921
5922 void
5923 remote_target::follow_fork (ptid_t child_ptid, target_waitkind fork_kind,
5924 bool follow_child, bool detach_fork)
5925 {
5926 struct remote_state *rs = get_remote_state ();
5927
5928 if ((fork_kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5929 || (fork_kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5930 {
5931 /* When following the parent and detaching the child, we detach
5932 the child here. For the case of following the child and
5933 detaching the parent, the detach is done in the target-
5934 independent follow fork code in infrun.c. We can't use
5935 target_detach when detaching an unfollowed child because
5936 the client side doesn't know anything about the child. */
5937 if (detach_fork && !follow_child)
5938 {
5939 /* Detach the fork child. */
5940 remote_detach_pid (child_ptid.pid ());
5941 }
5942 }
5943 }
5944
5945 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5946 in the program space of the new inferior. */
5947
5948 void
5949 remote_target::follow_exec (inferior *follow_inf, ptid_t ptid,
5950 const char *execd_pathname)
5951 {
5952 process_stratum_target::follow_exec (follow_inf, ptid, execd_pathname);
5953
5954 /* We know that this is a target file name, so if it has the "target:"
5955 prefix we strip it off before saving it in the program space. */
5956 if (is_target_filename (execd_pathname))
5957 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5958
5959 set_pspace_remote_exec_file (follow_inf->pspace, execd_pathname);
5960 }
5961
5962 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5963
5964 void
5965 remote_target::disconnect (const char *args, int from_tty)
5966 {
5967 if (args)
5968 error (_("Argument given to \"disconnect\" when remotely debugging."));
5969
5970 /* Make sure we unpush even the extended remote targets. Calling
5971 target_mourn_inferior won't unpush, and
5972 remote_target::mourn_inferior won't unpush if there is more than
5973 one inferior left. */
5974 remote_unpush_target (this);
5975
5976 if (from_tty)
5977 puts_filtered ("Ending remote debugging.\n");
5978 }
5979
5980 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5981 be chatty about it. */
5982
5983 void
5984 extended_remote_target::attach (const char *args, int from_tty)
5985 {
5986 struct remote_state *rs = get_remote_state ();
5987 int pid;
5988 char *wait_status = NULL;
5989
5990 pid = parse_pid_to_attach (args);
5991
5992 /* Remote PID can be freely equal to getpid, do not check it here the same
5993 way as in other targets. */
5994
5995 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5996 error (_("This target does not support attaching to a process"));
5997
5998 if (from_tty)
5999 {
6000 const char *exec_file = get_exec_file (0);
6001
6002 if (exec_file)
6003 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
6004 target_pid_to_str (ptid_t (pid)).c_str ());
6005 else
6006 printf_unfiltered (_("Attaching to %s\n"),
6007 target_pid_to_str (ptid_t (pid)).c_str ());
6008 }
6009
6010 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
6011 putpkt (rs->buf);
6012 getpkt (&rs->buf, 0);
6013
6014 switch (packet_ok (rs->buf,
6015 &remote_protocol_packets[PACKET_vAttach]))
6016 {
6017 case PACKET_OK:
6018 if (!target_is_non_stop_p ())
6019 {
6020 /* Save the reply for later. */
6021 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
6022 strcpy (wait_status, rs->buf.data ());
6023 }
6024 else if (strcmp (rs->buf.data (), "OK") != 0)
6025 error (_("Attaching to %s failed with: %s"),
6026 target_pid_to_str (ptid_t (pid)).c_str (),
6027 rs->buf.data ());
6028 break;
6029 case PACKET_UNKNOWN:
6030 error (_("This target does not support attaching to a process"));
6031 default:
6032 error (_("Attaching to %s failed"),
6033 target_pid_to_str (ptid_t (pid)).c_str ());
6034 }
6035
6036 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
6037
6038 inferior_ptid = ptid_t (pid);
6039
6040 if (target_is_non_stop_p ())
6041 {
6042 /* Get list of threads. */
6043 update_thread_list ();
6044
6045 thread_info *thread = first_thread_of_inferior (current_inferior ());
6046 if (thread != nullptr)
6047 switch_to_thread (thread);
6048
6049 /* Invalidate our notion of the remote current thread. */
6050 record_currthread (rs, minus_one_ptid);
6051 }
6052 else
6053 {
6054 /* Now, if we have thread information, update the main thread's
6055 ptid. */
6056 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6057
6058 /* Add the main thread to the thread list. */
6059 thread_info *thr = add_thread_silent (this, curr_ptid);
6060
6061 switch_to_thread (thr);
6062
6063 /* Don't consider the thread stopped until we've processed the
6064 saved stop reply. */
6065 set_executing (this, thr->ptid, true);
6066 }
6067
6068 /* Next, if the target can specify a description, read it. We do
6069 this before anything involving memory or registers. */
6070 target_find_description ();
6071
6072 if (!target_is_non_stop_p ())
6073 {
6074 /* Use the previously fetched status. */
6075 gdb_assert (wait_status != NULL);
6076
6077 if (target_can_async_p ())
6078 {
6079 struct notif_event *reply
6080 = remote_notif_parse (this, &notif_client_stop, wait_status);
6081
6082 push_stop_reply ((struct stop_reply *) reply);
6083
6084 target_async (1);
6085 }
6086 else
6087 {
6088 gdb_assert (wait_status != NULL);
6089 strcpy (rs->buf.data (), wait_status);
6090 rs->cached_wait_status = 1;
6091 }
6092 }
6093 else
6094 {
6095 gdb_assert (wait_status == NULL);
6096
6097 gdb_assert (target_can_async_p ());
6098 target_async (1);
6099 }
6100 }
6101
6102 /* Implementation of the to_post_attach method. */
6103
6104 void
6105 extended_remote_target::post_attach (int pid)
6106 {
6107 /* Get text, data & bss offsets. */
6108 get_offsets ();
6109
6110 /* In certain cases GDB might not have had the chance to start
6111 symbol lookup up until now. This could happen if the debugged
6112 binary is not using shared libraries, the vsyscall page is not
6113 present (on Linux) and the binary itself hadn't changed since the
6114 debugging process was started. */
6115 if (current_program_space->symfile_object_file != NULL)
6116 remote_check_symbols();
6117 }
6118
6119 \f
6120 /* Check for the availability of vCont. This function should also check
6121 the response. */
6122
6123 void
6124 remote_target::remote_vcont_probe ()
6125 {
6126 remote_state *rs = get_remote_state ();
6127 char *buf;
6128
6129 strcpy (rs->buf.data (), "vCont?");
6130 putpkt (rs->buf);
6131 getpkt (&rs->buf, 0);
6132 buf = rs->buf.data ();
6133
6134 /* Make sure that the features we assume are supported. */
6135 if (startswith (buf, "vCont"))
6136 {
6137 char *p = &buf[5];
6138 int support_c, support_C;
6139
6140 rs->supports_vCont.s = 0;
6141 rs->supports_vCont.S = 0;
6142 support_c = 0;
6143 support_C = 0;
6144 rs->supports_vCont.t = 0;
6145 rs->supports_vCont.r = 0;
6146 while (p && *p == ';')
6147 {
6148 p++;
6149 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6150 rs->supports_vCont.s = 1;
6151 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6152 rs->supports_vCont.S = 1;
6153 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6154 support_c = 1;
6155 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6156 support_C = 1;
6157 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6158 rs->supports_vCont.t = 1;
6159 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6160 rs->supports_vCont.r = 1;
6161
6162 p = strchr (p, ';');
6163 }
6164
6165 /* If c, and C are not all supported, we can't use vCont. Clearing
6166 BUF will make packet_ok disable the packet. */
6167 if (!support_c || !support_C)
6168 buf[0] = 0;
6169 }
6170
6171 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6172 rs->supports_vCont_probed = true;
6173 }
6174
6175 /* Helper function for building "vCont" resumptions. Write a
6176 resumption to P. ENDP points to one-passed-the-end of the buffer
6177 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6178 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6179 resumed thread should be single-stepped and/or signalled. If PTID
6180 equals minus_one_ptid, then all threads are resumed; if PTID
6181 represents a process, then all threads of the process are resumed;
6182 the thread to be stepped and/or signalled is given in the global
6183 INFERIOR_PTID. */
6184
6185 char *
6186 remote_target::append_resumption (char *p, char *endp,
6187 ptid_t ptid, int step, gdb_signal siggnal)
6188 {
6189 struct remote_state *rs = get_remote_state ();
6190
6191 if (step && siggnal != GDB_SIGNAL_0)
6192 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6193 else if (step
6194 /* GDB is willing to range step. */
6195 && use_range_stepping
6196 /* Target supports range stepping. */
6197 && rs->supports_vCont.r
6198 /* We don't currently support range stepping multiple
6199 threads with a wildcard (though the protocol allows it,
6200 so stubs shouldn't make an active effort to forbid
6201 it). */
6202 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6203 {
6204 struct thread_info *tp;
6205
6206 if (ptid == minus_one_ptid)
6207 {
6208 /* If we don't know about the target thread's tid, then
6209 we're resuming magic_null_ptid (see caller). */
6210 tp = find_thread_ptid (this, magic_null_ptid);
6211 }
6212 else
6213 tp = find_thread_ptid (this, ptid);
6214 gdb_assert (tp != NULL);
6215
6216 if (tp->control.may_range_step)
6217 {
6218 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6219
6220 p += xsnprintf (p, endp - p, ";r%s,%s",
6221 phex_nz (tp->control.step_range_start,
6222 addr_size),
6223 phex_nz (tp->control.step_range_end,
6224 addr_size));
6225 }
6226 else
6227 p += xsnprintf (p, endp - p, ";s");
6228 }
6229 else if (step)
6230 p += xsnprintf (p, endp - p, ";s");
6231 else if (siggnal != GDB_SIGNAL_0)
6232 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6233 else
6234 p += xsnprintf (p, endp - p, ";c");
6235
6236 if (remote_multi_process_p (rs) && ptid.is_pid ())
6237 {
6238 ptid_t nptid;
6239
6240 /* All (-1) threads of process. */
6241 nptid = ptid_t (ptid.pid (), -1, 0);
6242
6243 p += xsnprintf (p, endp - p, ":");
6244 p = write_ptid (p, endp, nptid);
6245 }
6246 else if (ptid != minus_one_ptid)
6247 {
6248 p += xsnprintf (p, endp - p, ":");
6249 p = write_ptid (p, endp, ptid);
6250 }
6251
6252 return p;
6253 }
6254
6255 /* Clear the thread's private info on resume. */
6256
6257 static void
6258 resume_clear_thread_private_info (struct thread_info *thread)
6259 {
6260 if (thread->priv != NULL)
6261 {
6262 remote_thread_info *priv = get_remote_thread_info (thread);
6263
6264 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6265 priv->watch_data_address = 0;
6266 }
6267 }
6268
6269 /* Append a vCont continue-with-signal action for threads that have a
6270 non-zero stop signal. */
6271
6272 char *
6273 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6274 ptid_t ptid)
6275 {
6276 for (thread_info *thread : all_non_exited_threads (this, ptid))
6277 if (inferior_ptid != thread->ptid
6278 && thread->stop_signal () != GDB_SIGNAL_0)
6279 {
6280 p = append_resumption (p, endp, thread->ptid,
6281 0, thread->stop_signal ());
6282 thread->set_stop_signal (GDB_SIGNAL_0);
6283 resume_clear_thread_private_info (thread);
6284 }
6285
6286 return p;
6287 }
6288
6289 /* Set the target running, using the packets that use Hc
6290 (c/s/C/S). */
6291
6292 void
6293 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6294 gdb_signal siggnal)
6295 {
6296 struct remote_state *rs = get_remote_state ();
6297 char *buf;
6298
6299 rs->last_sent_signal = siggnal;
6300 rs->last_sent_step = step;
6301
6302 /* The c/s/C/S resume packets use Hc, so set the continue
6303 thread. */
6304 if (ptid == minus_one_ptid)
6305 set_continue_thread (any_thread_ptid);
6306 else
6307 set_continue_thread (ptid);
6308
6309 for (thread_info *thread : all_non_exited_threads (this))
6310 resume_clear_thread_private_info (thread);
6311
6312 buf = rs->buf.data ();
6313 if (::execution_direction == EXEC_REVERSE)
6314 {
6315 /* We don't pass signals to the target in reverse exec mode. */
6316 if (info_verbose && siggnal != GDB_SIGNAL_0)
6317 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6318 siggnal);
6319
6320 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6321 error (_("Remote reverse-step not supported."));
6322 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6323 error (_("Remote reverse-continue not supported."));
6324
6325 strcpy (buf, step ? "bs" : "bc");
6326 }
6327 else if (siggnal != GDB_SIGNAL_0)
6328 {
6329 buf[0] = step ? 'S' : 'C';
6330 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6331 buf[2] = tohex (((int) siggnal) & 0xf);
6332 buf[3] = '\0';
6333 }
6334 else
6335 strcpy (buf, step ? "s" : "c");
6336
6337 putpkt (buf);
6338 }
6339
6340 /* Resume the remote inferior by using a "vCont" packet. The thread
6341 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6342 resumed thread should be single-stepped and/or signalled. If PTID
6343 equals minus_one_ptid, then all threads are resumed; the thread to
6344 be stepped and/or signalled is given in the global INFERIOR_PTID.
6345 This function returns non-zero iff it resumes the inferior.
6346
6347 This function issues a strict subset of all possible vCont commands
6348 at the moment. */
6349
6350 int
6351 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6352 enum gdb_signal siggnal)
6353 {
6354 struct remote_state *rs = get_remote_state ();
6355 char *p;
6356 char *endp;
6357
6358 /* No reverse execution actions defined for vCont. */
6359 if (::execution_direction == EXEC_REVERSE)
6360 return 0;
6361
6362 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6363 remote_vcont_probe ();
6364
6365 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6366 return 0;
6367
6368 p = rs->buf.data ();
6369 endp = p + get_remote_packet_size ();
6370
6371 /* If we could generate a wider range of packets, we'd have to worry
6372 about overflowing BUF. Should there be a generic
6373 "multi-part-packet" packet? */
6374
6375 p += xsnprintf (p, endp - p, "vCont");
6376
6377 if (ptid == magic_null_ptid)
6378 {
6379 /* MAGIC_NULL_PTID means that we don't have any active threads,
6380 so we don't have any TID numbers the inferior will
6381 understand. Make sure to only send forms that do not specify
6382 a TID. */
6383 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6384 }
6385 else if (ptid == minus_one_ptid || ptid.is_pid ())
6386 {
6387 /* Resume all threads (of all processes, or of a single
6388 process), with preference for INFERIOR_PTID. This assumes
6389 inferior_ptid belongs to the set of all threads we are about
6390 to resume. */
6391 if (step || siggnal != GDB_SIGNAL_0)
6392 {
6393 /* Step inferior_ptid, with or without signal. */
6394 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6395 }
6396
6397 /* Also pass down any pending signaled resumption for other
6398 threads not the current. */
6399 p = append_pending_thread_resumptions (p, endp, ptid);
6400
6401 /* And continue others without a signal. */
6402 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6403 }
6404 else
6405 {
6406 /* Scheduler locking; resume only PTID. */
6407 append_resumption (p, endp, ptid, step, siggnal);
6408 }
6409
6410 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6411 putpkt (rs->buf);
6412
6413 if (target_is_non_stop_p ())
6414 {
6415 /* In non-stop, the stub replies to vCont with "OK". The stop
6416 reply will be reported asynchronously by means of a `%Stop'
6417 notification. */
6418 getpkt (&rs->buf, 0);
6419 if (strcmp (rs->buf.data (), "OK") != 0)
6420 error (_("Unexpected vCont reply in non-stop mode: %s"),
6421 rs->buf.data ());
6422 }
6423
6424 return 1;
6425 }
6426
6427 /* Tell the remote machine to resume. */
6428
6429 void
6430 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6431 {
6432 struct remote_state *rs = get_remote_state ();
6433
6434 /* When connected in non-stop mode, the core resumes threads
6435 individually. Resuming remote threads directly in target_resume
6436 would thus result in sending one packet per thread. Instead, to
6437 minimize roundtrip latency, here we just store the resume
6438 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6439 resumption will be done in remote_target::commit_resume, where we'll be
6440 able to do vCont action coalescing. */
6441 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6442 {
6443 remote_thread_info *remote_thr;
6444
6445 if (minus_one_ptid == ptid || ptid.is_pid ())
6446 remote_thr = get_remote_thread_info (this, inferior_ptid);
6447 else
6448 remote_thr = get_remote_thread_info (this, ptid);
6449
6450 /* We don't expect the core to ask to resume an already resumed (from
6451 its point of view) thread. */
6452 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6453
6454 remote_thr->set_resumed_pending_vcont (step, siggnal);
6455 return;
6456 }
6457
6458 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6459 (explained in remote-notif.c:handle_notification) so
6460 remote_notif_process is not called. We need find a place where
6461 it is safe to start a 'vNotif' sequence. It is good to do it
6462 before resuming inferior, because inferior was stopped and no RSP
6463 traffic at that moment. */
6464 if (!target_is_non_stop_p ())
6465 remote_notif_process (rs->notif_state, &notif_client_stop);
6466
6467 rs->last_resume_exec_dir = ::execution_direction;
6468
6469 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6470 if (!remote_resume_with_vcont (ptid, step, siggnal))
6471 remote_resume_with_hc (ptid, step, siggnal);
6472
6473 /* Update resumed state tracked by the remote target. */
6474 for (thread_info *tp : all_non_exited_threads (this, ptid))
6475 get_remote_thread_info (tp)->set_resumed ();
6476
6477 /* We are about to start executing the inferior, let's register it
6478 with the event loop. NOTE: this is the one place where all the
6479 execution commands end up. We could alternatively do this in each
6480 of the execution commands in infcmd.c. */
6481 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6482 into infcmd.c in order to allow inferior function calls to work
6483 NOT asynchronously. */
6484 if (target_can_async_p ())
6485 target_async (1);
6486
6487 /* We've just told the target to resume. The remote server will
6488 wait for the inferior to stop, and then send a stop reply. In
6489 the mean time, we can't start another command/query ourselves
6490 because the stub wouldn't be ready to process it. This applies
6491 only to the base all-stop protocol, however. In non-stop (which
6492 only supports vCont), the stub replies with an "OK", and is
6493 immediate able to process further serial input. */
6494 if (!target_is_non_stop_p ())
6495 rs->waiting_for_stop_reply = 1;
6496 }
6497
6498 static int is_pending_fork_parent_thread (struct thread_info *thread);
6499
6500 /* Private per-inferior info for target remote processes. */
6501
6502 struct remote_inferior : public private_inferior
6503 {
6504 /* Whether we can send a wildcard vCont for this process. */
6505 bool may_wildcard_vcont = true;
6506 };
6507
6508 /* Get the remote private inferior data associated to INF. */
6509
6510 static remote_inferior *
6511 get_remote_inferior (inferior *inf)
6512 {
6513 if (inf->priv == NULL)
6514 inf->priv.reset (new remote_inferior);
6515
6516 return static_cast<remote_inferior *> (inf->priv.get ());
6517 }
6518
6519 struct stop_reply : public notif_event
6520 {
6521 ~stop_reply ();
6522
6523 /* The identifier of the thread about this event */
6524 ptid_t ptid;
6525
6526 /* The remote state this event is associated with. When the remote
6527 connection, represented by a remote_state object, is closed,
6528 all the associated stop_reply events should be released. */
6529 struct remote_state *rs;
6530
6531 struct target_waitstatus ws;
6532
6533 /* The architecture associated with the expedited registers. */
6534 gdbarch *arch;
6535
6536 /* Expedited registers. This makes remote debugging a bit more
6537 efficient for those targets that provide critical registers as
6538 part of their normal status mechanism (as another roundtrip to
6539 fetch them is avoided). */
6540 std::vector<cached_reg_t> regcache;
6541
6542 enum target_stop_reason stop_reason;
6543
6544 CORE_ADDR watch_data_address;
6545
6546 int core;
6547 };
6548
6549 /* Class used to track the construction of a vCont packet in the
6550 outgoing packet buffer. This is used to send multiple vCont
6551 packets if we have more actions than would fit a single packet. */
6552
6553 class vcont_builder
6554 {
6555 public:
6556 explicit vcont_builder (remote_target *remote)
6557 : m_remote (remote)
6558 {
6559 restart ();
6560 }
6561
6562 void flush ();
6563 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6564
6565 private:
6566 void restart ();
6567
6568 /* The remote target. */
6569 remote_target *m_remote;
6570
6571 /* Pointer to the first action. P points here if no action has been
6572 appended yet. */
6573 char *m_first_action;
6574
6575 /* Where the next action will be appended. */
6576 char *m_p;
6577
6578 /* The end of the buffer. Must never write past this. */
6579 char *m_endp;
6580 };
6581
6582 /* Prepare the outgoing buffer for a new vCont packet. */
6583
6584 void
6585 vcont_builder::restart ()
6586 {
6587 struct remote_state *rs = m_remote->get_remote_state ();
6588
6589 m_p = rs->buf.data ();
6590 m_endp = m_p + m_remote->get_remote_packet_size ();
6591 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6592 m_first_action = m_p;
6593 }
6594
6595 /* If the vCont packet being built has any action, send it to the
6596 remote end. */
6597
6598 void
6599 vcont_builder::flush ()
6600 {
6601 struct remote_state *rs;
6602
6603 if (m_p == m_first_action)
6604 return;
6605
6606 rs = m_remote->get_remote_state ();
6607 m_remote->putpkt (rs->buf);
6608 m_remote->getpkt (&rs->buf, 0);
6609 if (strcmp (rs->buf.data (), "OK") != 0)
6610 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6611 }
6612
6613 /* The largest action is range-stepping, with its two addresses. This
6614 is more than sufficient. If a new, bigger action is created, it'll
6615 quickly trigger a failed assertion in append_resumption (and we'll
6616 just bump this). */
6617 #define MAX_ACTION_SIZE 200
6618
6619 /* Append a new vCont action in the outgoing packet being built. If
6620 the action doesn't fit the packet along with previous actions, push
6621 what we've got so far to the remote end and start over a new vCont
6622 packet (with the new action). */
6623
6624 void
6625 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6626 {
6627 char buf[MAX_ACTION_SIZE + 1];
6628
6629 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6630 ptid, step, siggnal);
6631
6632 /* Check whether this new action would fit in the vCont packet along
6633 with previous actions. If not, send what we've got so far and
6634 start a new vCont packet. */
6635 size_t rsize = endp - buf;
6636 if (rsize > m_endp - m_p)
6637 {
6638 flush ();
6639 restart ();
6640
6641 /* Should now fit. */
6642 gdb_assert (rsize <= m_endp - m_p);
6643 }
6644
6645 memcpy (m_p, buf, rsize);
6646 m_p += rsize;
6647 *m_p = '\0';
6648 }
6649
6650 /* to_commit_resume implementation. */
6651
6652 void
6653 remote_target::commit_resumed ()
6654 {
6655 /* If connected in all-stop mode, we'd send the remote resume
6656 request directly from remote_resume. Likewise if
6657 reverse-debugging, as there are no defined vCont actions for
6658 reverse execution. */
6659 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6660 return;
6661
6662 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6663 instead of resuming all threads of each process individually.
6664 However, if any thread of a process must remain halted, we can't
6665 send wildcard resumes and must send one action per thread.
6666
6667 Care must be taken to not resume threads/processes the server
6668 side already told us are stopped, but the core doesn't know about
6669 yet, because the events are still in the vStopped notification
6670 queue. For example:
6671
6672 #1 => vCont s:p1.1;c
6673 #2 <= OK
6674 #3 <= %Stopped T05 p1.1
6675 #4 => vStopped
6676 #5 <= T05 p1.2
6677 #6 => vStopped
6678 #7 <= OK
6679 #8 (infrun handles the stop for p1.1 and continues stepping)
6680 #9 => vCont s:p1.1;c
6681
6682 The last vCont above would resume thread p1.2 by mistake, because
6683 the server has no idea that the event for p1.2 had not been
6684 handled yet.
6685
6686 The server side must similarly ignore resume actions for the
6687 thread that has a pending %Stopped notification (and any other
6688 threads with events pending), until GDB acks the notification
6689 with vStopped. Otherwise, e.g., the following case is
6690 mishandled:
6691
6692 #1 => g (or any other packet)
6693 #2 <= [registers]
6694 #3 <= %Stopped T05 p1.2
6695 #4 => vCont s:p1.1;c
6696 #5 <= OK
6697
6698 Above, the server must not resume thread p1.2. GDB can't know
6699 that p1.2 stopped until it acks the %Stopped notification, and
6700 since from GDB's perspective all threads should be running, it
6701 sends a "c" action.
6702
6703 Finally, special care must also be given to handling fork/vfork
6704 events. A (v)fork event actually tells us that two processes
6705 stopped -- the parent and the child. Until we follow the fork,
6706 we must not resume the child. Therefore, if we have a pending
6707 fork follow, we must not send a global wildcard resume action
6708 (vCont;c). We can still send process-wide wildcards though. */
6709
6710 /* Start by assuming a global wildcard (vCont;c) is possible. */
6711 bool may_global_wildcard_vcont = true;
6712
6713 /* And assume every process is individually wildcard-able too. */
6714 for (inferior *inf : all_non_exited_inferiors (this))
6715 {
6716 remote_inferior *priv = get_remote_inferior (inf);
6717
6718 priv->may_wildcard_vcont = true;
6719 }
6720
6721 /* Check for any pending events (not reported or processed yet) and
6722 disable process and global wildcard resumes appropriately. */
6723 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6724
6725 bool any_pending_vcont_resume = false;
6726
6727 for (thread_info *tp : all_non_exited_threads (this))
6728 {
6729 remote_thread_info *priv = get_remote_thread_info (tp);
6730
6731 /* If a thread of a process is not meant to be resumed, then we
6732 can't wildcard that process. */
6733 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6734 {
6735 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6736
6737 /* And if we can't wildcard a process, we can't wildcard
6738 everything either. */
6739 may_global_wildcard_vcont = false;
6740 continue;
6741 }
6742
6743 if (priv->get_resume_state () == resume_state::RESUMED_PENDING_VCONT)
6744 any_pending_vcont_resume = true;
6745
6746 /* If a thread is the parent of an unfollowed fork, then we
6747 can't do a global wildcard, as that would resume the fork
6748 child. */
6749 if (is_pending_fork_parent_thread (tp))
6750 may_global_wildcard_vcont = false;
6751 }
6752
6753 /* We didn't have any resumed thread pending a vCont resume, so nothing to
6754 do. */
6755 if (!any_pending_vcont_resume)
6756 return;
6757
6758 /* Now let's build the vCont packet(s). Actions must be appended
6759 from narrower to wider scopes (thread -> process -> global). If
6760 we end up with too many actions for a single packet vcont_builder
6761 flushes the current vCont packet to the remote side and starts a
6762 new one. */
6763 struct vcont_builder vcont_builder (this);
6764
6765 /* Threads first. */
6766 for (thread_info *tp : all_non_exited_threads (this))
6767 {
6768 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6769
6770 /* If the thread was previously vCont-resumed, no need to send a specific
6771 action for it. If we didn't receive a resume request for it, don't
6772 send an action for it either. */
6773 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6774 continue;
6775
6776 gdb_assert (!thread_is_in_step_over_chain (tp));
6777
6778 /* We should never be commit-resuming a thread that has a stop reply.
6779 Otherwise, we would end up reporting a stop event for a thread while
6780 it is running on the remote target. */
6781 remote_state *rs = get_remote_state ();
6782 for (const auto &stop_reply : rs->stop_reply_queue)
6783 gdb_assert (stop_reply->ptid != tp->ptid);
6784
6785 const resumed_pending_vcont_info &info
6786 = remote_thr->resumed_pending_vcont_info ();
6787
6788 /* Check if we need to send a specific action for this thread. If not,
6789 it will be included in a wildcard resume instead. */
6790 if (info.step || info.sig != GDB_SIGNAL_0
6791 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6792 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6793
6794 remote_thr->set_resumed ();
6795 }
6796
6797 /* Now check whether we can send any process-wide wildcard. This is
6798 to avoid sending a global wildcard in the case nothing is
6799 supposed to be resumed. */
6800 bool any_process_wildcard = false;
6801
6802 for (inferior *inf : all_non_exited_inferiors (this))
6803 {
6804 if (get_remote_inferior (inf)->may_wildcard_vcont)
6805 {
6806 any_process_wildcard = true;
6807 break;
6808 }
6809 }
6810
6811 if (any_process_wildcard)
6812 {
6813 /* If all processes are wildcard-able, then send a single "c"
6814 action, otherwise, send an "all (-1) threads of process"
6815 continue action for each running process, if any. */
6816 if (may_global_wildcard_vcont)
6817 {
6818 vcont_builder.push_action (minus_one_ptid,
6819 false, GDB_SIGNAL_0);
6820 }
6821 else
6822 {
6823 for (inferior *inf : all_non_exited_inferiors (this))
6824 {
6825 if (get_remote_inferior (inf)->may_wildcard_vcont)
6826 {
6827 vcont_builder.push_action (ptid_t (inf->pid),
6828 false, GDB_SIGNAL_0);
6829 }
6830 }
6831 }
6832 }
6833
6834 vcont_builder.flush ();
6835 }
6836
6837 /* Implementation of target_has_pending_events. */
6838
6839 bool
6840 remote_target::has_pending_events ()
6841 {
6842 if (target_can_async_p ())
6843 {
6844 remote_state *rs = get_remote_state ();
6845
6846 if (async_event_handler_marked (rs->remote_async_inferior_event_token))
6847 return true;
6848
6849 /* Note that BUFCNT can be negative, indicating sticky
6850 error. */
6851 if (rs->remote_desc->bufcnt != 0)
6852 return true;
6853 }
6854 return false;
6855 }
6856
6857 \f
6858
6859 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6860 thread, all threads of a remote process, or all threads of all
6861 processes. */
6862
6863 void
6864 remote_target::remote_stop_ns (ptid_t ptid)
6865 {
6866 struct remote_state *rs = get_remote_state ();
6867 char *p = rs->buf.data ();
6868 char *endp = p + get_remote_packet_size ();
6869
6870 /* If any thread that needs to stop was resumed but pending a vCont
6871 resume, generate a phony stop_reply. However, first check
6872 whether the thread wasn't resumed with a signal. Generating a
6873 phony stop in that case would result in losing the signal. */
6874 bool needs_commit = false;
6875 for (thread_info *tp : all_non_exited_threads (this, ptid))
6876 {
6877 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6878
6879 if (remote_thr->get_resume_state ()
6880 == resume_state::RESUMED_PENDING_VCONT)
6881 {
6882 const resumed_pending_vcont_info &info
6883 = remote_thr->resumed_pending_vcont_info ();
6884 if (info.sig != GDB_SIGNAL_0)
6885 {
6886 /* This signal must be forwarded to the inferior. We
6887 could commit-resume just this thread, but its simpler
6888 to just commit-resume everything. */
6889 needs_commit = true;
6890 break;
6891 }
6892 }
6893 }
6894
6895 if (needs_commit)
6896 commit_resumed ();
6897 else
6898 for (thread_info *tp : all_non_exited_threads (this, ptid))
6899 {
6900 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6901
6902 if (remote_thr->get_resume_state ()
6903 == resume_state::RESUMED_PENDING_VCONT)
6904 {
6905 remote_debug_printf ("Enqueueing phony stop reply for thread pending "
6906 "vCont-resume (%d, %ld, %ld)", tp->ptid.pid(),
6907 tp->ptid.lwp (), tp->ptid.tid ());
6908
6909 /* Check that the thread wasn't resumed with a signal.
6910 Generating a phony stop would result in losing the
6911 signal. */
6912 const resumed_pending_vcont_info &info
6913 = remote_thr->resumed_pending_vcont_info ();
6914 gdb_assert (info.sig == GDB_SIGNAL_0);
6915
6916 stop_reply *sr = new stop_reply ();
6917 sr->ptid = tp->ptid;
6918 sr->rs = rs;
6919 sr->ws.kind = TARGET_WAITKIND_STOPPED;
6920 sr->ws.value.sig = GDB_SIGNAL_0;
6921 sr->arch = tp->inf->gdbarch;
6922 sr->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6923 sr->watch_data_address = 0;
6924 sr->core = 0;
6925 this->push_stop_reply (sr);
6926
6927 /* Pretend that this thread was actually resumed on the
6928 remote target, then stopped. If we leave it in the
6929 RESUMED_PENDING_VCONT state and the commit_resumed
6930 method is called while the stop reply is still in the
6931 queue, we'll end up reporting a stop event to the core
6932 for that thread while it is running on the remote
6933 target... that would be bad. */
6934 remote_thr->set_resumed ();
6935 }
6936 }
6937
6938 /* FIXME: This supports_vCont_probed check is a workaround until
6939 packet_support is per-connection. */
6940 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6941 || !rs->supports_vCont_probed)
6942 remote_vcont_probe ();
6943
6944 if (!rs->supports_vCont.t)
6945 error (_("Remote server does not support stopping threads"));
6946
6947 if (ptid == minus_one_ptid
6948 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6949 p += xsnprintf (p, endp - p, "vCont;t");
6950 else
6951 {
6952 ptid_t nptid;
6953
6954 p += xsnprintf (p, endp - p, "vCont;t:");
6955
6956 if (ptid.is_pid ())
6957 /* All (-1) threads of process. */
6958 nptid = ptid_t (ptid.pid (), -1, 0);
6959 else
6960 {
6961 /* Small optimization: if we already have a stop reply for
6962 this thread, no use in telling the stub we want this
6963 stopped. */
6964 if (peek_stop_reply (ptid))
6965 return;
6966
6967 nptid = ptid;
6968 }
6969
6970 write_ptid (p, endp, nptid);
6971 }
6972
6973 /* In non-stop, we get an immediate OK reply. The stop reply will
6974 come in asynchronously by notification. */
6975 putpkt (rs->buf);
6976 getpkt (&rs->buf, 0);
6977 if (strcmp (rs->buf.data (), "OK") != 0)
6978 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6979 rs->buf.data ());
6980 }
6981
6982 /* All-stop version of target_interrupt. Sends a break or a ^C to
6983 interrupt the remote target. It is undefined which thread of which
6984 process reports the interrupt. */
6985
6986 void
6987 remote_target::remote_interrupt_as ()
6988 {
6989 struct remote_state *rs = get_remote_state ();
6990
6991 rs->ctrlc_pending_p = 1;
6992
6993 /* If the inferior is stopped already, but the core didn't know
6994 about it yet, just ignore the request. The cached wait status
6995 will be collected in remote_wait. */
6996 if (rs->cached_wait_status)
6997 return;
6998
6999 /* Send interrupt_sequence to remote target. */
7000 send_interrupt_sequence ();
7001 }
7002
7003 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
7004 the remote target. It is undefined which thread of which process
7005 reports the interrupt. Throws an error if the packet is not
7006 supported by the server. */
7007
7008 void
7009 remote_target::remote_interrupt_ns ()
7010 {
7011 struct remote_state *rs = get_remote_state ();
7012 char *p = rs->buf.data ();
7013 char *endp = p + get_remote_packet_size ();
7014
7015 xsnprintf (p, endp - p, "vCtrlC");
7016
7017 /* In non-stop, we get an immediate OK reply. The stop reply will
7018 come in asynchronously by notification. */
7019 putpkt (rs->buf);
7020 getpkt (&rs->buf, 0);
7021
7022 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
7023 {
7024 case PACKET_OK:
7025 break;
7026 case PACKET_UNKNOWN:
7027 error (_("No support for interrupting the remote target."));
7028 case PACKET_ERROR:
7029 error (_("Interrupting target failed: %s"), rs->buf.data ());
7030 }
7031 }
7032
7033 /* Implement the to_stop function for the remote targets. */
7034
7035 void
7036 remote_target::stop (ptid_t ptid)
7037 {
7038 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7039
7040 if (target_is_non_stop_p ())
7041 remote_stop_ns (ptid);
7042 else
7043 {
7044 /* We don't currently have a way to transparently pause the
7045 remote target in all-stop mode. Interrupt it instead. */
7046 remote_interrupt_as ();
7047 }
7048 }
7049
7050 /* Implement the to_interrupt function for the remote targets. */
7051
7052 void
7053 remote_target::interrupt ()
7054 {
7055 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7056
7057 if (target_is_non_stop_p ())
7058 remote_interrupt_ns ();
7059 else
7060 remote_interrupt_as ();
7061 }
7062
7063 /* Implement the to_pass_ctrlc function for the remote targets. */
7064
7065 void
7066 remote_target::pass_ctrlc ()
7067 {
7068 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7069
7070 struct remote_state *rs = get_remote_state ();
7071
7072 /* If we're starting up, we're not fully synced yet. Quit
7073 immediately. */
7074 if (rs->starting_up)
7075 quit ();
7076 /* If ^C has already been sent once, offer to disconnect. */
7077 else if (rs->ctrlc_pending_p)
7078 interrupt_query ();
7079 else
7080 target_interrupt ();
7081 }
7082
7083 /* Ask the user what to do when an interrupt is received. */
7084
7085 void
7086 remote_target::interrupt_query ()
7087 {
7088 struct remote_state *rs = get_remote_state ();
7089
7090 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
7091 {
7092 if (query (_("The target is not responding to interrupt requests.\n"
7093 "Stop debugging it? ")))
7094 {
7095 remote_unpush_target (this);
7096 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
7097 }
7098 }
7099 else
7100 {
7101 if (query (_("Interrupted while waiting for the program.\n"
7102 "Give up waiting? ")))
7103 quit ();
7104 }
7105 }
7106
7107 /* Enable/disable target terminal ownership. Most targets can use
7108 terminal groups to control terminal ownership. Remote targets are
7109 different in that explicit transfer of ownership to/from GDB/target
7110 is required. */
7111
7112 void
7113 remote_target::terminal_inferior ()
7114 {
7115 /* NOTE: At this point we could also register our selves as the
7116 recipient of all input. Any characters typed could then be
7117 passed on down to the target. */
7118 }
7119
7120 void
7121 remote_target::terminal_ours ()
7122 {
7123 }
7124
7125 static void
7126 remote_console_output (const char *msg)
7127 {
7128 const char *p;
7129
7130 for (p = msg; p[0] && p[1]; p += 2)
7131 {
7132 char tb[2];
7133 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
7134
7135 tb[0] = c;
7136 tb[1] = 0;
7137 gdb_stdtarg->puts (tb);
7138 }
7139 gdb_stdtarg->flush ();
7140 }
7141
7142 /* Return the length of the stop reply queue. */
7143
7144 int
7145 remote_target::stop_reply_queue_length ()
7146 {
7147 remote_state *rs = get_remote_state ();
7148 return rs->stop_reply_queue.size ();
7149 }
7150
7151 static void
7152 remote_notif_stop_parse (remote_target *remote,
7153 struct notif_client *self, const char *buf,
7154 struct notif_event *event)
7155 {
7156 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7157 }
7158
7159 static void
7160 remote_notif_stop_ack (remote_target *remote,
7161 struct notif_client *self, const char *buf,
7162 struct notif_event *event)
7163 {
7164 struct stop_reply *stop_reply = (struct stop_reply *) event;
7165
7166 /* acknowledge */
7167 putpkt (remote, self->ack_command);
7168
7169 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7170 the notification. It was left in the queue because we need to
7171 acknowledge it and pull the rest of the notifications out. */
7172 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
7173 remote->push_stop_reply (stop_reply);
7174 }
7175
7176 static int
7177 remote_notif_stop_can_get_pending_events (remote_target *remote,
7178 struct notif_client *self)
7179 {
7180 /* We can't get pending events in remote_notif_process for
7181 notification stop, and we have to do this in remote_wait_ns
7182 instead. If we fetch all queued events from stub, remote stub
7183 may exit and we have no chance to process them back in
7184 remote_wait_ns. */
7185 remote_state *rs = remote->get_remote_state ();
7186 mark_async_event_handler (rs->remote_async_inferior_event_token);
7187 return 0;
7188 }
7189
7190 stop_reply::~stop_reply ()
7191 {
7192 for (cached_reg_t &reg : regcache)
7193 xfree (reg.data);
7194 }
7195
7196 static notif_event_up
7197 remote_notif_stop_alloc_reply ()
7198 {
7199 return notif_event_up (new struct stop_reply ());
7200 }
7201
7202 /* A client of notification Stop. */
7203
7204 struct notif_client notif_client_stop =
7205 {
7206 "Stop",
7207 "vStopped",
7208 remote_notif_stop_parse,
7209 remote_notif_stop_ack,
7210 remote_notif_stop_can_get_pending_events,
7211 remote_notif_stop_alloc_reply,
7212 REMOTE_NOTIF_STOP,
7213 };
7214
7215 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7216 the pid of the process that owns the threads we want to check, or
7217 -1 if we want to check all threads. */
7218
7219 static int
7220 is_pending_fork_parent (const target_waitstatus *ws, int event_pid,
7221 ptid_t thread_ptid)
7222 {
7223 if (ws->kind == TARGET_WAITKIND_FORKED
7224 || ws->kind == TARGET_WAITKIND_VFORKED)
7225 {
7226 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7227 return 1;
7228 }
7229
7230 return 0;
7231 }
7232
7233 /* Return the thread's pending status used to determine whether the
7234 thread is a fork parent stopped at a fork event. */
7235
7236 static const target_waitstatus *
7237 thread_pending_fork_status (struct thread_info *thread)
7238 {
7239 if (thread->has_pending_waitstatus ())
7240 return &thread->pending_waitstatus ();
7241 else
7242 return &thread->pending_follow;
7243 }
7244
7245 /* Determine if THREAD is a pending fork parent thread. */
7246
7247 static int
7248 is_pending_fork_parent_thread (struct thread_info *thread)
7249 {
7250 const target_waitstatus *ws = thread_pending_fork_status (thread);
7251 int pid = -1;
7252
7253 return is_pending_fork_parent (ws, pid, thread->ptid);
7254 }
7255
7256 /* If CONTEXT contains any fork child threads that have not been
7257 reported yet, remove them from the CONTEXT list. If such a
7258 thread exists it is because we are stopped at a fork catchpoint
7259 and have not yet called follow_fork, which will set up the
7260 host-side data structures for the new process. */
7261
7262 void
7263 remote_target::remove_new_fork_children (threads_listing_context *context)
7264 {
7265 int pid = -1;
7266 struct notif_client *notif = &notif_client_stop;
7267
7268 /* For any threads stopped at a fork event, remove the corresponding
7269 fork child threads from the CONTEXT list. */
7270 for (thread_info *thread : all_non_exited_threads (this))
7271 {
7272 const target_waitstatus *ws = thread_pending_fork_status (thread);
7273
7274 if (is_pending_fork_parent (ws, pid, thread->ptid))
7275 context->remove_thread (ws->value.related_pid);
7276 }
7277
7278 /* Check for any pending fork events (not reported or processed yet)
7279 in process PID and remove those fork child threads from the
7280 CONTEXT list as well. */
7281 remote_notif_get_pending_events (notif);
7282 for (auto &event : get_remote_state ()->stop_reply_queue)
7283 if (event->ws.kind == TARGET_WAITKIND_FORKED
7284 || event->ws.kind == TARGET_WAITKIND_VFORKED
7285 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7286 context->remove_thread (event->ws.value.related_pid);
7287 }
7288
7289 /* Check whether any event pending in the vStopped queue would prevent a
7290 global or process wildcard vCont action. Set *may_global_wildcard to
7291 false if we can't do a global wildcard (vCont;c), and clear the event
7292 inferior's may_wildcard_vcont flag if we can't do a process-wide
7293 wildcard resume (vCont;c:pPID.-1). */
7294
7295 void
7296 remote_target::check_pending_events_prevent_wildcard_vcont
7297 (bool *may_global_wildcard)
7298 {
7299 struct notif_client *notif = &notif_client_stop;
7300
7301 remote_notif_get_pending_events (notif);
7302 for (auto &event : get_remote_state ()->stop_reply_queue)
7303 {
7304 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7305 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7306 continue;
7307
7308 if (event->ws.kind == TARGET_WAITKIND_FORKED
7309 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7310 *may_global_wildcard = false;
7311
7312 /* This may be the first time we heard about this process.
7313 Regardless, we must not do a global wildcard resume, otherwise
7314 we'd resume this process too. */
7315 *may_global_wildcard = false;
7316 if (event->ptid != null_ptid)
7317 {
7318 inferior *inf = find_inferior_ptid (this, event->ptid);
7319 if (inf != NULL)
7320 get_remote_inferior (inf)->may_wildcard_vcont = false;
7321 }
7322 }
7323 }
7324
7325 /* Discard all pending stop replies of inferior INF. */
7326
7327 void
7328 remote_target::discard_pending_stop_replies (struct inferior *inf)
7329 {
7330 struct stop_reply *reply;
7331 struct remote_state *rs = get_remote_state ();
7332 struct remote_notif_state *rns = rs->notif_state;
7333
7334 /* This function can be notified when an inferior exists. When the
7335 target is not remote, the notification state is NULL. */
7336 if (rs->remote_desc == NULL)
7337 return;
7338
7339 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7340
7341 /* Discard the in-flight notification. */
7342 if (reply != NULL && reply->ptid.pid () == inf->pid)
7343 {
7344 /* Leave the notification pending, since the server expects that
7345 we acknowledge it with vStopped. But clear its contents, so
7346 that later on when we acknowledge it, we also discard it. */
7347 reply->ws.kind = TARGET_WAITKIND_IGNORE;
7348
7349 if (remote_debug)
7350 fprintf_unfiltered (gdb_stdlog,
7351 "discarded in-flight notification\n");
7352 }
7353
7354 /* Discard the stop replies we have already pulled with
7355 vStopped. */
7356 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7357 rs->stop_reply_queue.end (),
7358 [=] (const stop_reply_up &event)
7359 {
7360 return event->ptid.pid () == inf->pid;
7361 });
7362 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7363 }
7364
7365 /* Discard the stop replies for RS in stop_reply_queue. */
7366
7367 void
7368 remote_target::discard_pending_stop_replies_in_queue ()
7369 {
7370 remote_state *rs = get_remote_state ();
7371
7372 /* Discard the stop replies we have already pulled with
7373 vStopped. */
7374 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7375 rs->stop_reply_queue.end (),
7376 [=] (const stop_reply_up &event)
7377 {
7378 return event->rs == rs;
7379 });
7380 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7381 }
7382
7383 /* Remove the first reply in 'stop_reply_queue' which matches
7384 PTID. */
7385
7386 struct stop_reply *
7387 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7388 {
7389 remote_state *rs = get_remote_state ();
7390
7391 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7392 rs->stop_reply_queue.end (),
7393 [=] (const stop_reply_up &event)
7394 {
7395 return event->ptid.matches (ptid);
7396 });
7397 struct stop_reply *result;
7398 if (iter == rs->stop_reply_queue.end ())
7399 result = nullptr;
7400 else
7401 {
7402 result = iter->release ();
7403 rs->stop_reply_queue.erase (iter);
7404 }
7405
7406 if (notif_debug)
7407 fprintf_unfiltered (gdb_stdlog,
7408 "notif: discard queued event: 'Stop' in %s\n",
7409 target_pid_to_str (ptid).c_str ());
7410
7411 return result;
7412 }
7413
7414 /* Look for a queued stop reply belonging to PTID. If one is found,
7415 remove it from the queue, and return it. Returns NULL if none is
7416 found. If there are still queued events left to process, tell the
7417 event loop to get back to target_wait soon. */
7418
7419 struct stop_reply *
7420 remote_target::queued_stop_reply (ptid_t ptid)
7421 {
7422 remote_state *rs = get_remote_state ();
7423 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7424
7425 if (!rs->stop_reply_queue.empty ())
7426 {
7427 /* There's still at least an event left. */
7428 mark_async_event_handler (rs->remote_async_inferior_event_token);
7429 }
7430
7431 return r;
7432 }
7433
7434 /* Push a fully parsed stop reply in the stop reply queue. Since we
7435 know that we now have at least one queued event left to pass to the
7436 core side, tell the event loop to get back to target_wait soon. */
7437
7438 void
7439 remote_target::push_stop_reply (struct stop_reply *new_event)
7440 {
7441 remote_state *rs = get_remote_state ();
7442 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7443
7444 if (notif_debug)
7445 fprintf_unfiltered (gdb_stdlog,
7446 "notif: push 'Stop' %s to queue %d\n",
7447 target_pid_to_str (new_event->ptid).c_str (),
7448 int (rs->stop_reply_queue.size ()));
7449
7450 mark_async_event_handler (rs->remote_async_inferior_event_token);
7451 }
7452
7453 /* Returns true if we have a stop reply for PTID. */
7454
7455 int
7456 remote_target::peek_stop_reply (ptid_t ptid)
7457 {
7458 remote_state *rs = get_remote_state ();
7459 for (auto &event : rs->stop_reply_queue)
7460 if (ptid == event->ptid
7461 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7462 return 1;
7463 return 0;
7464 }
7465
7466 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7467 starting with P and ending with PEND matches PREFIX. */
7468
7469 static int
7470 strprefix (const char *p, const char *pend, const char *prefix)
7471 {
7472 for ( ; p < pend; p++, prefix++)
7473 if (*p != *prefix)
7474 return 0;
7475 return *prefix == '\0';
7476 }
7477
7478 /* Parse the stop reply in BUF. Either the function succeeds, and the
7479 result is stored in EVENT, or throws an error. */
7480
7481 void
7482 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7483 {
7484 remote_arch_state *rsa = NULL;
7485 ULONGEST addr;
7486 const char *p;
7487 int skipregs = 0;
7488
7489 event->ptid = null_ptid;
7490 event->rs = get_remote_state ();
7491 event->ws.kind = TARGET_WAITKIND_IGNORE;
7492 event->ws.value.integer = 0;
7493 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7494 event->regcache.clear ();
7495 event->core = -1;
7496
7497 switch (buf[0])
7498 {
7499 case 'T': /* Status with PC, SP, FP, ... */
7500 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7501 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7502 ss = signal number
7503 n... = register number
7504 r... = register contents
7505 */
7506
7507 p = &buf[3]; /* after Txx */
7508 while (*p)
7509 {
7510 const char *p1;
7511 int fieldsize;
7512
7513 p1 = strchr (p, ':');
7514 if (p1 == NULL)
7515 error (_("Malformed packet(a) (missing colon): %s\n\
7516 Packet: '%s'\n"),
7517 p, buf);
7518 if (p == p1)
7519 error (_("Malformed packet(a) (missing register number): %s\n\
7520 Packet: '%s'\n"),
7521 p, buf);
7522
7523 /* Some "registers" are actually extended stop information.
7524 Note if you're adding a new entry here: GDB 7.9 and
7525 earlier assume that all register "numbers" that start
7526 with an hex digit are real register numbers. Make sure
7527 the server only sends such a packet if it knows the
7528 client understands it. */
7529
7530 if (strprefix (p, p1, "thread"))
7531 event->ptid = read_ptid (++p1, &p);
7532 else if (strprefix (p, p1, "syscall_entry"))
7533 {
7534 ULONGEST sysno;
7535
7536 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7537 p = unpack_varlen_hex (++p1, &sysno);
7538 event->ws.value.syscall_number = (int) sysno;
7539 }
7540 else if (strprefix (p, p1, "syscall_return"))
7541 {
7542 ULONGEST sysno;
7543
7544 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7545 p = unpack_varlen_hex (++p1, &sysno);
7546 event->ws.value.syscall_number = (int) sysno;
7547 }
7548 else if (strprefix (p, p1, "watch")
7549 || strprefix (p, p1, "rwatch")
7550 || strprefix (p, p1, "awatch"))
7551 {
7552 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7553 p = unpack_varlen_hex (++p1, &addr);
7554 event->watch_data_address = (CORE_ADDR) addr;
7555 }
7556 else if (strprefix (p, p1, "swbreak"))
7557 {
7558 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7559
7560 /* Make sure the stub doesn't forget to indicate support
7561 with qSupported. */
7562 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7563 error (_("Unexpected swbreak stop reason"));
7564
7565 /* The value part is documented as "must be empty",
7566 though we ignore it, in case we ever decide to make
7567 use of it in a backward compatible way. */
7568 p = strchrnul (p1 + 1, ';');
7569 }
7570 else if (strprefix (p, p1, "hwbreak"))
7571 {
7572 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7573
7574 /* Make sure the stub doesn't forget to indicate support
7575 with qSupported. */
7576 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7577 error (_("Unexpected hwbreak stop reason"));
7578
7579 /* See above. */
7580 p = strchrnul (p1 + 1, ';');
7581 }
7582 else if (strprefix (p, p1, "library"))
7583 {
7584 event->ws.kind = TARGET_WAITKIND_LOADED;
7585 p = strchrnul (p1 + 1, ';');
7586 }
7587 else if (strprefix (p, p1, "replaylog"))
7588 {
7589 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7590 /* p1 will indicate "begin" or "end", but it makes
7591 no difference for now, so ignore it. */
7592 p = strchrnul (p1 + 1, ';');
7593 }
7594 else if (strprefix (p, p1, "core"))
7595 {
7596 ULONGEST c;
7597
7598 p = unpack_varlen_hex (++p1, &c);
7599 event->core = c;
7600 }
7601 else if (strprefix (p, p1, "fork"))
7602 {
7603 event->ws.value.related_pid = read_ptid (++p1, &p);
7604 event->ws.kind = TARGET_WAITKIND_FORKED;
7605 }
7606 else if (strprefix (p, p1, "vfork"))
7607 {
7608 event->ws.value.related_pid = read_ptid (++p1, &p);
7609 event->ws.kind = TARGET_WAITKIND_VFORKED;
7610 }
7611 else if (strprefix (p, p1, "vforkdone"))
7612 {
7613 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7614 p = strchrnul (p1 + 1, ';');
7615 }
7616 else if (strprefix (p, p1, "exec"))
7617 {
7618 ULONGEST ignored;
7619 int pathlen;
7620
7621 /* Determine the length of the execd pathname. */
7622 p = unpack_varlen_hex (++p1, &ignored);
7623 pathlen = (p - p1) / 2;
7624
7625 /* Save the pathname for event reporting and for
7626 the next run command. */
7627 gdb::unique_xmalloc_ptr<char[]> pathname
7628 ((char *) xmalloc (pathlen + 1));
7629 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7630 pathname[pathlen] = '\0';
7631
7632 /* This is freed during event handling. */
7633 event->ws.value.execd_pathname = pathname.release ();
7634 event->ws.kind = TARGET_WAITKIND_EXECD;
7635
7636 /* Skip the registers included in this packet, since
7637 they may be for an architecture different from the
7638 one used by the original program. */
7639 skipregs = 1;
7640 }
7641 else if (strprefix (p, p1, "create"))
7642 {
7643 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7644 p = strchrnul (p1 + 1, ';');
7645 }
7646 else
7647 {
7648 ULONGEST pnum;
7649 const char *p_temp;
7650
7651 if (skipregs)
7652 {
7653 p = strchrnul (p1 + 1, ';');
7654 p++;
7655 continue;
7656 }
7657
7658 /* Maybe a real ``P'' register number. */
7659 p_temp = unpack_varlen_hex (p, &pnum);
7660 /* If the first invalid character is the colon, we got a
7661 register number. Otherwise, it's an unknown stop
7662 reason. */
7663 if (p_temp == p1)
7664 {
7665 /* If we haven't parsed the event's thread yet, find
7666 it now, in order to find the architecture of the
7667 reported expedited registers. */
7668 if (event->ptid == null_ptid)
7669 {
7670 /* If there is no thread-id information then leave
7671 the event->ptid as null_ptid. Later in
7672 process_stop_reply we will pick a suitable
7673 thread. */
7674 const char *thr = strstr (p1 + 1, ";thread:");
7675 if (thr != NULL)
7676 event->ptid = read_ptid (thr + strlen (";thread:"),
7677 NULL);
7678 }
7679
7680 if (rsa == NULL)
7681 {
7682 inferior *inf
7683 = (event->ptid == null_ptid
7684 ? NULL
7685 : find_inferior_ptid (this, event->ptid));
7686 /* If this is the first time we learn anything
7687 about this process, skip the registers
7688 included in this packet, since we don't yet
7689 know which architecture to use to parse them.
7690 We'll determine the architecture later when
7691 we process the stop reply and retrieve the
7692 target description, via
7693 remote_notice_new_inferior ->
7694 post_create_inferior. */
7695 if (inf == NULL)
7696 {
7697 p = strchrnul (p1 + 1, ';');
7698 p++;
7699 continue;
7700 }
7701
7702 event->arch = inf->gdbarch;
7703 rsa = event->rs->get_remote_arch_state (event->arch);
7704 }
7705
7706 packet_reg *reg
7707 = packet_reg_from_pnum (event->arch, rsa, pnum);
7708 cached_reg_t cached_reg;
7709
7710 if (reg == NULL)
7711 error (_("Remote sent bad register number %s: %s\n\
7712 Packet: '%s'\n"),
7713 hex_string (pnum), p, buf);
7714
7715 cached_reg.num = reg->regnum;
7716 cached_reg.data = (gdb_byte *)
7717 xmalloc (register_size (event->arch, reg->regnum));
7718
7719 p = p1 + 1;
7720 fieldsize = hex2bin (p, cached_reg.data,
7721 register_size (event->arch, reg->regnum));
7722 p += 2 * fieldsize;
7723 if (fieldsize < register_size (event->arch, reg->regnum))
7724 warning (_("Remote reply is too short: %s"), buf);
7725
7726 event->regcache.push_back (cached_reg);
7727 }
7728 else
7729 {
7730 /* Not a number. Silently skip unknown optional
7731 info. */
7732 p = strchrnul (p1 + 1, ';');
7733 }
7734 }
7735
7736 if (*p != ';')
7737 error (_("Remote register badly formatted: %s\nhere: %s"),
7738 buf, p);
7739 ++p;
7740 }
7741
7742 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7743 break;
7744
7745 /* fall through */
7746 case 'S': /* Old style status, just signal only. */
7747 {
7748 int sig;
7749
7750 event->ws.kind = TARGET_WAITKIND_STOPPED;
7751 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7752 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7753 event->ws.value.sig = (enum gdb_signal) sig;
7754 else
7755 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7756 }
7757 break;
7758 case 'w': /* Thread exited. */
7759 {
7760 ULONGEST value;
7761
7762 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7763 p = unpack_varlen_hex (&buf[1], &value);
7764 event->ws.value.integer = value;
7765 if (*p != ';')
7766 error (_("stop reply packet badly formatted: %s"), buf);
7767 event->ptid = read_ptid (++p, NULL);
7768 break;
7769 }
7770 case 'W': /* Target exited. */
7771 case 'X':
7772 {
7773 ULONGEST value;
7774
7775 /* GDB used to accept only 2 hex chars here. Stubs should
7776 only send more if they detect GDB supports multi-process
7777 support. */
7778 p = unpack_varlen_hex (&buf[1], &value);
7779
7780 if (buf[0] == 'W')
7781 {
7782 /* The remote process exited. */
7783 event->ws.kind = TARGET_WAITKIND_EXITED;
7784 event->ws.value.integer = value;
7785 }
7786 else
7787 {
7788 /* The remote process exited with a signal. */
7789 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7790 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7791 event->ws.value.sig = (enum gdb_signal) value;
7792 else
7793 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7794 }
7795
7796 /* If no process is specified, return null_ptid, and let the
7797 caller figure out the right process to use. */
7798 int pid = 0;
7799 if (*p == '\0')
7800 ;
7801 else if (*p == ';')
7802 {
7803 p++;
7804
7805 if (*p == '\0')
7806 ;
7807 else if (startswith (p, "process:"))
7808 {
7809 ULONGEST upid;
7810
7811 p += sizeof ("process:") - 1;
7812 unpack_varlen_hex (p, &upid);
7813 pid = upid;
7814 }
7815 else
7816 error (_("unknown stop reply packet: %s"), buf);
7817 }
7818 else
7819 error (_("unknown stop reply packet: %s"), buf);
7820 event->ptid = ptid_t (pid);
7821 }
7822 break;
7823 case 'N':
7824 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7825 event->ptid = minus_one_ptid;
7826 break;
7827 }
7828 }
7829
7830 /* When the stub wants to tell GDB about a new notification reply, it
7831 sends a notification (%Stop, for example). Those can come it at
7832 any time, hence, we have to make sure that any pending
7833 putpkt/getpkt sequence we're making is finished, before querying
7834 the stub for more events with the corresponding ack command
7835 (vStopped, for example). E.g., if we started a vStopped sequence
7836 immediately upon receiving the notification, something like this
7837 could happen:
7838
7839 1.1) --> Hg 1
7840 1.2) <-- OK
7841 1.3) --> g
7842 1.4) <-- %Stop
7843 1.5) --> vStopped
7844 1.6) <-- (registers reply to step #1.3)
7845
7846 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7847 query.
7848
7849 To solve this, whenever we parse a %Stop notification successfully,
7850 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7851 doing whatever we were doing:
7852
7853 2.1) --> Hg 1
7854 2.2) <-- OK
7855 2.3) --> g
7856 2.4) <-- %Stop
7857 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7858 2.5) <-- (registers reply to step #2.3)
7859
7860 Eventually after step #2.5, we return to the event loop, which
7861 notices there's an event on the
7862 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7863 associated callback --- the function below. At this point, we're
7864 always safe to start a vStopped sequence. :
7865
7866 2.6) --> vStopped
7867 2.7) <-- T05 thread:2
7868 2.8) --> vStopped
7869 2.9) --> OK
7870 */
7871
7872 void
7873 remote_target::remote_notif_get_pending_events (notif_client *nc)
7874 {
7875 struct remote_state *rs = get_remote_state ();
7876
7877 if (rs->notif_state->pending_event[nc->id] != NULL)
7878 {
7879 if (notif_debug)
7880 fprintf_unfiltered (gdb_stdlog,
7881 "notif: process: '%s' ack pending event\n",
7882 nc->name);
7883
7884 /* acknowledge */
7885 nc->ack (this, nc, rs->buf.data (),
7886 rs->notif_state->pending_event[nc->id]);
7887 rs->notif_state->pending_event[nc->id] = NULL;
7888
7889 while (1)
7890 {
7891 getpkt (&rs->buf, 0);
7892 if (strcmp (rs->buf.data (), "OK") == 0)
7893 break;
7894 else
7895 remote_notif_ack (this, nc, rs->buf.data ());
7896 }
7897 }
7898 else
7899 {
7900 if (notif_debug)
7901 fprintf_unfiltered (gdb_stdlog,
7902 "notif: process: '%s' no pending reply\n",
7903 nc->name);
7904 }
7905 }
7906
7907 /* Wrapper around remote_target::remote_notif_get_pending_events to
7908 avoid having to export the whole remote_target class. */
7909
7910 void
7911 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7912 {
7913 remote->remote_notif_get_pending_events (nc);
7914 }
7915
7916 /* Called from process_stop_reply when the stop packet we are responding
7917 to didn't include a process-id or thread-id. STATUS is the stop event
7918 we are responding to.
7919
7920 It is the task of this function to select a suitable thread (or process)
7921 and return its ptid, this is the thread (or process) we will assume the
7922 stop event came from.
7923
7924 In some cases there isn't really any choice about which thread (or
7925 process) is selected, a basic remote with a single process containing a
7926 single thread might choose not to send any process-id or thread-id in
7927 its stop packets, this function will select and return the one and only
7928 thread.
7929
7930 However, if a target supports multiple threads (or processes) and still
7931 doesn't include a thread-id (or process-id) in its stop packet then
7932 first, this is a badly behaving target, and second, we're going to have
7933 to select a thread (or process) at random and use that. This function
7934 will print a warning to the user if it detects that there is the
7935 possibility that GDB is guessing which thread (or process) to
7936 report.
7937
7938 Note that this is called before GDB fetches the updated thread list from the
7939 target. So it's possible for the stop reply to be ambiguous and for GDB to
7940 not realize it. For example, if there's initially one thread, the target
7941 spawns a second thread, and then sends a stop reply without an id that
7942 concerns the first thread. GDB will assume the stop reply is about the
7943 first thread - the only thread it knows about - without printing a warning.
7944 Anyway, if the remote meant for the stop reply to be about the second thread,
7945 then it would be really broken, because GDB doesn't know about that thread
7946 yet. */
7947
7948 ptid_t
7949 remote_target::select_thread_for_ambiguous_stop_reply
7950 (const struct target_waitstatus *status)
7951 {
7952 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7953
7954 /* Some stop events apply to all threads in an inferior, while others
7955 only apply to a single thread. */
7956 bool process_wide_stop
7957 = (status->kind == TARGET_WAITKIND_EXITED
7958 || status->kind == TARGET_WAITKIND_SIGNALLED);
7959
7960 remote_debug_printf ("process_wide_stop = %d", process_wide_stop);
7961
7962 thread_info *first_resumed_thread = nullptr;
7963 bool ambiguous = false;
7964
7965 /* Consider all non-exited threads of the target, find the first resumed
7966 one. */
7967 for (thread_info *thr : all_non_exited_threads (this))
7968 {
7969 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7970
7971 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7972 continue;
7973
7974 if (first_resumed_thread == nullptr)
7975 first_resumed_thread = thr;
7976 else if (!process_wide_stop
7977 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7978 ambiguous = true;
7979 }
7980
7981 remote_debug_printf ("first resumed thread is %s",
7982 pid_to_str (first_resumed_thread->ptid).c_str ());
7983 remote_debug_printf ("is this guess ambiguous? = %d", ambiguous);
7984
7985 gdb_assert (first_resumed_thread != nullptr);
7986
7987 /* Warn if the remote target is sending ambiguous stop replies. */
7988 if (ambiguous)
7989 {
7990 static bool warned = false;
7991
7992 if (!warned)
7993 {
7994 /* If you are seeing this warning then the remote target has
7995 stopped without specifying a thread-id, but the target
7996 does have multiple threads (or inferiors), and so GDB is
7997 having to guess which thread stopped.
7998
7999 Examples of what might cause this are the target sending
8000 and 'S' stop packet, or a 'T' stop packet and not
8001 including a thread-id.
8002
8003 Additionally, the target might send a 'W' or 'X packet
8004 without including a process-id, when the target has
8005 multiple running inferiors. */
8006 if (process_wide_stop)
8007 warning (_("multi-inferior target stopped without "
8008 "sending a process-id, using first "
8009 "non-exited inferior"));
8010 else
8011 warning (_("multi-threaded target stopped without "
8012 "sending a thread-id, using first "
8013 "non-exited thread"));
8014 warned = true;
8015 }
8016 }
8017
8018 /* If this is a stop for all threads then don't use a particular threads
8019 ptid, instead create a new ptid where only the pid field is set. */
8020 if (process_wide_stop)
8021 return ptid_t (first_resumed_thread->ptid.pid ());
8022 else
8023 return first_resumed_thread->ptid;
8024 }
8025
8026 /* Called when it is decided that STOP_REPLY holds the info of the
8027 event that is to be returned to the core. This function always
8028 destroys STOP_REPLY. */
8029
8030 ptid_t
8031 remote_target::process_stop_reply (struct stop_reply *stop_reply,
8032 struct target_waitstatus *status)
8033 {
8034 *status = stop_reply->ws;
8035 ptid_t ptid = stop_reply->ptid;
8036
8037 /* If no thread/process was reported by the stub then select a suitable
8038 thread/process. */
8039 if (ptid == null_ptid)
8040 ptid = select_thread_for_ambiguous_stop_reply (status);
8041 gdb_assert (ptid != null_ptid);
8042
8043 if (status->kind != TARGET_WAITKIND_EXITED
8044 && status->kind != TARGET_WAITKIND_SIGNALLED
8045 && status->kind != TARGET_WAITKIND_NO_RESUMED)
8046 {
8047 /* Expedited registers. */
8048 if (!stop_reply->regcache.empty ())
8049 {
8050 struct regcache *regcache
8051 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
8052
8053 for (cached_reg_t &reg : stop_reply->regcache)
8054 {
8055 regcache->raw_supply (reg.num, reg.data);
8056 xfree (reg.data);
8057 }
8058
8059 stop_reply->regcache.clear ();
8060 }
8061
8062 remote_notice_new_inferior (ptid, false);
8063 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
8064 remote_thr->core = stop_reply->core;
8065 remote_thr->stop_reason = stop_reply->stop_reason;
8066 remote_thr->watch_data_address = stop_reply->watch_data_address;
8067
8068 if (target_is_non_stop_p ())
8069 {
8070 /* If the target works in non-stop mode, a stop-reply indicates that
8071 only this thread stopped. */
8072 remote_thr->set_not_resumed ();
8073 }
8074 else
8075 {
8076 /* If the target works in all-stop mode, a stop-reply indicates that
8077 all the target's threads stopped. */
8078 for (thread_info *tp : all_non_exited_threads (this))
8079 get_remote_thread_info (tp)->set_not_resumed ();
8080 }
8081 }
8082
8083 delete stop_reply;
8084 return ptid;
8085 }
8086
8087 /* The non-stop mode version of target_wait. */
8088
8089 ptid_t
8090 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
8091 target_wait_flags options)
8092 {
8093 struct remote_state *rs = get_remote_state ();
8094 struct stop_reply *stop_reply;
8095 int ret;
8096 int is_notif = 0;
8097
8098 /* If in non-stop mode, get out of getpkt even if a
8099 notification is received. */
8100
8101 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
8102 while (1)
8103 {
8104 if (ret != -1 && !is_notif)
8105 switch (rs->buf[0])
8106 {
8107 case 'E': /* Error of some sort. */
8108 /* We're out of sync with the target now. Did it continue
8109 or not? We can't tell which thread it was in non-stop,
8110 so just ignore this. */
8111 warning (_("Remote failure reply: %s"), rs->buf.data ());
8112 break;
8113 case 'O': /* Console output. */
8114 remote_console_output (&rs->buf[1]);
8115 break;
8116 default:
8117 warning (_("Invalid remote reply: %s"), rs->buf.data ());
8118 break;
8119 }
8120
8121 /* Acknowledge a pending stop reply that may have arrived in the
8122 mean time. */
8123 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
8124 remote_notif_get_pending_events (&notif_client_stop);
8125
8126 /* If indeed we noticed a stop reply, we're done. */
8127 stop_reply = queued_stop_reply (ptid);
8128 if (stop_reply != NULL)
8129 return process_stop_reply (stop_reply, status);
8130
8131 /* Still no event. If we're just polling for an event, then
8132 return to the event loop. */
8133 if (options & TARGET_WNOHANG)
8134 {
8135 status->kind = TARGET_WAITKIND_IGNORE;
8136 return minus_one_ptid;
8137 }
8138
8139 /* Otherwise do a blocking wait. */
8140 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
8141 }
8142 }
8143
8144 /* Return the first resumed thread. */
8145
8146 static ptid_t
8147 first_remote_resumed_thread (remote_target *target)
8148 {
8149 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
8150 if (tp->resumed ())
8151 return tp->ptid;
8152 return null_ptid;
8153 }
8154
8155 /* Wait until the remote machine stops, then return, storing status in
8156 STATUS just as `wait' would. */
8157
8158 ptid_t
8159 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8160 target_wait_flags options)
8161 {
8162 struct remote_state *rs = get_remote_state ();
8163 ptid_t event_ptid = null_ptid;
8164 char *buf;
8165 struct stop_reply *stop_reply;
8166
8167 again:
8168
8169 status->kind = TARGET_WAITKIND_IGNORE;
8170 status->value.integer = 0;
8171
8172 stop_reply = queued_stop_reply (ptid);
8173 if (stop_reply != NULL)
8174 return process_stop_reply (stop_reply, status);
8175
8176 if (rs->cached_wait_status)
8177 /* Use the cached wait status, but only once. */
8178 rs->cached_wait_status = 0;
8179 else
8180 {
8181 int ret;
8182 int is_notif;
8183 int forever = ((options & TARGET_WNOHANG) == 0
8184 && rs->wait_forever_enabled_p);
8185
8186 if (!rs->waiting_for_stop_reply)
8187 {
8188 status->kind = TARGET_WAITKIND_NO_RESUMED;
8189 return minus_one_ptid;
8190 }
8191
8192 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8193 _never_ wait for ever -> test on target_is_async_p().
8194 However, before we do that we need to ensure that the caller
8195 knows how to take the target into/out of async mode. */
8196 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8197
8198 /* GDB gets a notification. Return to core as this event is
8199 not interesting. */
8200 if (ret != -1 && is_notif)
8201 return minus_one_ptid;
8202
8203 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8204 return minus_one_ptid;
8205 }
8206
8207 buf = rs->buf.data ();
8208
8209 /* Assume that the target has acknowledged Ctrl-C unless we receive
8210 an 'F' or 'O' packet. */
8211 if (buf[0] != 'F' && buf[0] != 'O')
8212 rs->ctrlc_pending_p = 0;
8213
8214 switch (buf[0])
8215 {
8216 case 'E': /* Error of some sort. */
8217 /* We're out of sync with the target now. Did it continue or
8218 not? Not is more likely, so report a stop. */
8219 rs->waiting_for_stop_reply = 0;
8220
8221 warning (_("Remote failure reply: %s"), buf);
8222 status->kind = TARGET_WAITKIND_STOPPED;
8223 status->value.sig = GDB_SIGNAL_0;
8224 break;
8225 case 'F': /* File-I/O request. */
8226 /* GDB may access the inferior memory while handling the File-I/O
8227 request, but we don't want GDB accessing memory while waiting
8228 for a stop reply. See the comments in putpkt_binary. Set
8229 waiting_for_stop_reply to 0 temporarily. */
8230 rs->waiting_for_stop_reply = 0;
8231 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8232 rs->ctrlc_pending_p = 0;
8233 /* GDB handled the File-I/O request, and the target is running
8234 again. Keep waiting for events. */
8235 rs->waiting_for_stop_reply = 1;
8236 break;
8237 case 'N': case 'T': case 'S': case 'X': case 'W':
8238 {
8239 /* There is a stop reply to handle. */
8240 rs->waiting_for_stop_reply = 0;
8241
8242 stop_reply
8243 = (struct stop_reply *) remote_notif_parse (this,
8244 &notif_client_stop,
8245 rs->buf.data ());
8246
8247 event_ptid = process_stop_reply (stop_reply, status);
8248 break;
8249 }
8250 case 'O': /* Console output. */
8251 remote_console_output (buf + 1);
8252 break;
8253 case '\0':
8254 if (rs->last_sent_signal != GDB_SIGNAL_0)
8255 {
8256 /* Zero length reply means that we tried 'S' or 'C' and the
8257 remote system doesn't support it. */
8258 target_terminal::ours_for_output ();
8259 printf_filtered
8260 ("Can't send signals to this remote system. %s not sent.\n",
8261 gdb_signal_to_name (rs->last_sent_signal));
8262 rs->last_sent_signal = GDB_SIGNAL_0;
8263 target_terminal::inferior ();
8264
8265 strcpy (buf, rs->last_sent_step ? "s" : "c");
8266 putpkt (buf);
8267 break;
8268 }
8269 /* fallthrough */
8270 default:
8271 warning (_("Invalid remote reply: %s"), buf);
8272 break;
8273 }
8274
8275 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
8276 return minus_one_ptid;
8277 else if (status->kind == TARGET_WAITKIND_IGNORE)
8278 {
8279 /* Nothing interesting happened. If we're doing a non-blocking
8280 poll, we're done. Otherwise, go back to waiting. */
8281 if (options & TARGET_WNOHANG)
8282 return minus_one_ptid;
8283 else
8284 goto again;
8285 }
8286 else if (status->kind != TARGET_WAITKIND_EXITED
8287 && status->kind != TARGET_WAITKIND_SIGNALLED)
8288 {
8289 if (event_ptid != null_ptid)
8290 record_currthread (rs, event_ptid);
8291 else
8292 event_ptid = first_remote_resumed_thread (this);
8293 }
8294 else
8295 {
8296 /* A process exit. Invalidate our notion of current thread. */
8297 record_currthread (rs, minus_one_ptid);
8298 /* It's possible that the packet did not include a pid. */
8299 if (event_ptid == null_ptid)
8300 event_ptid = first_remote_resumed_thread (this);
8301 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8302 if (event_ptid == null_ptid)
8303 event_ptid = magic_null_ptid;
8304 }
8305
8306 return event_ptid;
8307 }
8308
8309 /* Wait until the remote machine stops, then return, storing status in
8310 STATUS just as `wait' would. */
8311
8312 ptid_t
8313 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8314 target_wait_flags options)
8315 {
8316 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8317
8318 remote_state *rs = get_remote_state ();
8319
8320 /* Start by clearing the flag that asks for our wait method to be called,
8321 we'll mark it again at the end if needed. */
8322 if (target_is_async_p ())
8323 clear_async_event_handler (rs->remote_async_inferior_event_token);
8324
8325 ptid_t event_ptid;
8326
8327 if (target_is_non_stop_p ())
8328 event_ptid = wait_ns (ptid, status, options);
8329 else
8330 event_ptid = wait_as (ptid, status, options);
8331
8332 if (target_is_async_p ())
8333 {
8334 /* If there are events left in the queue, or unacknowledged
8335 notifications, then tell the event loop to call us again. */
8336 if (!rs->stop_reply_queue.empty ()
8337 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8338 mark_async_event_handler (rs->remote_async_inferior_event_token);
8339 }
8340
8341 return event_ptid;
8342 }
8343
8344 /* Fetch a single register using a 'p' packet. */
8345
8346 int
8347 remote_target::fetch_register_using_p (struct regcache *regcache,
8348 packet_reg *reg)
8349 {
8350 struct gdbarch *gdbarch = regcache->arch ();
8351 struct remote_state *rs = get_remote_state ();
8352 char *buf, *p;
8353 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8354 int i;
8355
8356 if (packet_support (PACKET_p) == PACKET_DISABLE)
8357 return 0;
8358
8359 if (reg->pnum == -1)
8360 return 0;
8361
8362 p = rs->buf.data ();
8363 *p++ = 'p';
8364 p += hexnumstr (p, reg->pnum);
8365 *p++ = '\0';
8366 putpkt (rs->buf);
8367 getpkt (&rs->buf, 0);
8368
8369 buf = rs->buf.data ();
8370
8371 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8372 {
8373 case PACKET_OK:
8374 break;
8375 case PACKET_UNKNOWN:
8376 return 0;
8377 case PACKET_ERROR:
8378 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8379 gdbarch_register_name (regcache->arch (),
8380 reg->regnum),
8381 buf);
8382 }
8383
8384 /* If this register is unfetchable, tell the regcache. */
8385 if (buf[0] == 'x')
8386 {
8387 regcache->raw_supply (reg->regnum, NULL);
8388 return 1;
8389 }
8390
8391 /* Otherwise, parse and supply the value. */
8392 p = buf;
8393 i = 0;
8394 while (p[0] != 0)
8395 {
8396 if (p[1] == 0)
8397 error (_("fetch_register_using_p: early buf termination"));
8398
8399 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8400 p += 2;
8401 }
8402 regcache->raw_supply (reg->regnum, regp);
8403 return 1;
8404 }
8405
8406 /* Fetch the registers included in the target's 'g' packet. */
8407
8408 int
8409 remote_target::send_g_packet ()
8410 {
8411 struct remote_state *rs = get_remote_state ();
8412 int buf_len;
8413
8414 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8415 putpkt (rs->buf);
8416 getpkt (&rs->buf, 0);
8417 if (packet_check_result (rs->buf) == PACKET_ERROR)
8418 error (_("Could not read registers; remote failure reply '%s'"),
8419 rs->buf.data ());
8420
8421 /* We can get out of synch in various cases. If the first character
8422 in the buffer is not a hex character, assume that has happened
8423 and try to fetch another packet to read. */
8424 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8425 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8426 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8427 && rs->buf[0] != 'x') /* New: unavailable register value. */
8428 {
8429 remote_debug_printf ("Bad register packet; fetching a new packet");
8430 getpkt (&rs->buf, 0);
8431 }
8432
8433 buf_len = strlen (rs->buf.data ());
8434
8435 /* Sanity check the received packet. */
8436 if (buf_len % 2 != 0)
8437 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8438
8439 return buf_len / 2;
8440 }
8441
8442 void
8443 remote_target::process_g_packet (struct regcache *regcache)
8444 {
8445 struct gdbarch *gdbarch = regcache->arch ();
8446 struct remote_state *rs = get_remote_state ();
8447 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8448 int i, buf_len;
8449 char *p;
8450 char *regs;
8451
8452 buf_len = strlen (rs->buf.data ());
8453
8454 /* Further sanity checks, with knowledge of the architecture. */
8455 if (buf_len > 2 * rsa->sizeof_g_packet)
8456 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8457 "bytes): %s"),
8458 rsa->sizeof_g_packet, buf_len / 2,
8459 rs->buf.data ());
8460
8461 /* Save the size of the packet sent to us by the target. It is used
8462 as a heuristic when determining the max size of packets that the
8463 target can safely receive. */
8464 if (rsa->actual_register_packet_size == 0)
8465 rsa->actual_register_packet_size = buf_len;
8466
8467 /* If this is smaller than we guessed the 'g' packet would be,
8468 update our records. A 'g' reply that doesn't include a register's
8469 value implies either that the register is not available, or that
8470 the 'p' packet must be used. */
8471 if (buf_len < 2 * rsa->sizeof_g_packet)
8472 {
8473 long sizeof_g_packet = buf_len / 2;
8474
8475 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8476 {
8477 long offset = rsa->regs[i].offset;
8478 long reg_size = register_size (gdbarch, i);
8479
8480 if (rsa->regs[i].pnum == -1)
8481 continue;
8482
8483 if (offset >= sizeof_g_packet)
8484 rsa->regs[i].in_g_packet = 0;
8485 else if (offset + reg_size > sizeof_g_packet)
8486 error (_("Truncated register %d in remote 'g' packet"), i);
8487 else
8488 rsa->regs[i].in_g_packet = 1;
8489 }
8490
8491 /* Looks valid enough, we can assume this is the correct length
8492 for a 'g' packet. It's important not to adjust
8493 rsa->sizeof_g_packet if we have truncated registers otherwise
8494 this "if" won't be run the next time the method is called
8495 with a packet of the same size and one of the internal errors
8496 below will trigger instead. */
8497 rsa->sizeof_g_packet = sizeof_g_packet;
8498 }
8499
8500 regs = (char *) alloca (rsa->sizeof_g_packet);
8501
8502 /* Unimplemented registers read as all bits zero. */
8503 memset (regs, 0, rsa->sizeof_g_packet);
8504
8505 /* Reply describes registers byte by byte, each byte encoded as two
8506 hex characters. Suck them all up, then supply them to the
8507 register cacheing/storage mechanism. */
8508
8509 p = rs->buf.data ();
8510 for (i = 0; i < rsa->sizeof_g_packet; i++)
8511 {
8512 if (p[0] == 0 || p[1] == 0)
8513 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8514 internal_error (__FILE__, __LINE__,
8515 _("unexpected end of 'g' packet reply"));
8516
8517 if (p[0] == 'x' && p[1] == 'x')
8518 regs[i] = 0; /* 'x' */
8519 else
8520 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8521 p += 2;
8522 }
8523
8524 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8525 {
8526 struct packet_reg *r = &rsa->regs[i];
8527 long reg_size = register_size (gdbarch, i);
8528
8529 if (r->in_g_packet)
8530 {
8531 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8532 /* This shouldn't happen - we adjusted in_g_packet above. */
8533 internal_error (__FILE__, __LINE__,
8534 _("unexpected end of 'g' packet reply"));
8535 else if (rs->buf[r->offset * 2] == 'x')
8536 {
8537 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8538 /* The register isn't available, mark it as such (at
8539 the same time setting the value to zero). */
8540 regcache->raw_supply (r->regnum, NULL);
8541 }
8542 else
8543 regcache->raw_supply (r->regnum, regs + r->offset);
8544 }
8545 }
8546 }
8547
8548 void
8549 remote_target::fetch_registers_using_g (struct regcache *regcache)
8550 {
8551 send_g_packet ();
8552 process_g_packet (regcache);
8553 }
8554
8555 /* Make the remote selected traceframe match GDB's selected
8556 traceframe. */
8557
8558 void
8559 remote_target::set_remote_traceframe ()
8560 {
8561 int newnum;
8562 struct remote_state *rs = get_remote_state ();
8563
8564 if (rs->remote_traceframe_number == get_traceframe_number ())
8565 return;
8566
8567 /* Avoid recursion, remote_trace_find calls us again. */
8568 rs->remote_traceframe_number = get_traceframe_number ();
8569
8570 newnum = target_trace_find (tfind_number,
8571 get_traceframe_number (), 0, 0, NULL);
8572
8573 /* Should not happen. If it does, all bets are off. */
8574 if (newnum != get_traceframe_number ())
8575 warning (_("could not set remote traceframe"));
8576 }
8577
8578 void
8579 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8580 {
8581 struct gdbarch *gdbarch = regcache->arch ();
8582 struct remote_state *rs = get_remote_state ();
8583 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8584 int i;
8585
8586 set_remote_traceframe ();
8587 set_general_thread (regcache->ptid ());
8588
8589 if (regnum >= 0)
8590 {
8591 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8592
8593 gdb_assert (reg != NULL);
8594
8595 /* If this register might be in the 'g' packet, try that first -
8596 we are likely to read more than one register. If this is the
8597 first 'g' packet, we might be overly optimistic about its
8598 contents, so fall back to 'p'. */
8599 if (reg->in_g_packet)
8600 {
8601 fetch_registers_using_g (regcache);
8602 if (reg->in_g_packet)
8603 return;
8604 }
8605
8606 if (fetch_register_using_p (regcache, reg))
8607 return;
8608
8609 /* This register is not available. */
8610 regcache->raw_supply (reg->regnum, NULL);
8611
8612 return;
8613 }
8614
8615 fetch_registers_using_g (regcache);
8616
8617 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8618 if (!rsa->regs[i].in_g_packet)
8619 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8620 {
8621 /* This register is not available. */
8622 regcache->raw_supply (i, NULL);
8623 }
8624 }
8625
8626 /* Prepare to store registers. Since we may send them all (using a
8627 'G' request), we have to read out the ones we don't want to change
8628 first. */
8629
8630 void
8631 remote_target::prepare_to_store (struct regcache *regcache)
8632 {
8633 struct remote_state *rs = get_remote_state ();
8634 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8635 int i;
8636
8637 /* Make sure the entire registers array is valid. */
8638 switch (packet_support (PACKET_P))
8639 {
8640 case PACKET_DISABLE:
8641 case PACKET_SUPPORT_UNKNOWN:
8642 /* Make sure all the necessary registers are cached. */
8643 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8644 if (rsa->regs[i].in_g_packet)
8645 regcache->raw_update (rsa->regs[i].regnum);
8646 break;
8647 case PACKET_ENABLE:
8648 break;
8649 }
8650 }
8651
8652 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8653 packet was not recognized. */
8654
8655 int
8656 remote_target::store_register_using_P (const struct regcache *regcache,
8657 packet_reg *reg)
8658 {
8659 struct gdbarch *gdbarch = regcache->arch ();
8660 struct remote_state *rs = get_remote_state ();
8661 /* Try storing a single register. */
8662 char *buf = rs->buf.data ();
8663 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8664 char *p;
8665
8666 if (packet_support (PACKET_P) == PACKET_DISABLE)
8667 return 0;
8668
8669 if (reg->pnum == -1)
8670 return 0;
8671
8672 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8673 p = buf + strlen (buf);
8674 regcache->raw_collect (reg->regnum, regp);
8675 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8676 putpkt (rs->buf);
8677 getpkt (&rs->buf, 0);
8678
8679 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8680 {
8681 case PACKET_OK:
8682 return 1;
8683 case PACKET_ERROR:
8684 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8685 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8686 case PACKET_UNKNOWN:
8687 return 0;
8688 default:
8689 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8690 }
8691 }
8692
8693 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8694 contents of the register cache buffer. FIXME: ignores errors. */
8695
8696 void
8697 remote_target::store_registers_using_G (const struct regcache *regcache)
8698 {
8699 struct remote_state *rs = get_remote_state ();
8700 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8701 gdb_byte *regs;
8702 char *p;
8703
8704 /* Extract all the registers in the regcache copying them into a
8705 local buffer. */
8706 {
8707 int i;
8708
8709 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8710 memset (regs, 0, rsa->sizeof_g_packet);
8711 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8712 {
8713 struct packet_reg *r = &rsa->regs[i];
8714
8715 if (r->in_g_packet)
8716 regcache->raw_collect (r->regnum, regs + r->offset);
8717 }
8718 }
8719
8720 /* Command describes registers byte by byte,
8721 each byte encoded as two hex characters. */
8722 p = rs->buf.data ();
8723 *p++ = 'G';
8724 bin2hex (regs, p, rsa->sizeof_g_packet);
8725 putpkt (rs->buf);
8726 getpkt (&rs->buf, 0);
8727 if (packet_check_result (rs->buf) == PACKET_ERROR)
8728 error (_("Could not write registers; remote failure reply '%s'"),
8729 rs->buf.data ());
8730 }
8731
8732 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8733 of the register cache buffer. FIXME: ignores errors. */
8734
8735 void
8736 remote_target::store_registers (struct regcache *regcache, int regnum)
8737 {
8738 struct gdbarch *gdbarch = regcache->arch ();
8739 struct remote_state *rs = get_remote_state ();
8740 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8741 int i;
8742
8743 set_remote_traceframe ();
8744 set_general_thread (regcache->ptid ());
8745
8746 if (regnum >= 0)
8747 {
8748 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8749
8750 gdb_assert (reg != NULL);
8751
8752 /* Always prefer to store registers using the 'P' packet if
8753 possible; we often change only a small number of registers.
8754 Sometimes we change a larger number; we'd need help from a
8755 higher layer to know to use 'G'. */
8756 if (store_register_using_P (regcache, reg))
8757 return;
8758
8759 /* For now, don't complain if we have no way to write the
8760 register. GDB loses track of unavailable registers too
8761 easily. Some day, this may be an error. We don't have
8762 any way to read the register, either... */
8763 if (!reg->in_g_packet)
8764 return;
8765
8766 store_registers_using_G (regcache);
8767 return;
8768 }
8769
8770 store_registers_using_G (regcache);
8771
8772 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8773 if (!rsa->regs[i].in_g_packet)
8774 if (!store_register_using_P (regcache, &rsa->regs[i]))
8775 /* See above for why we do not issue an error here. */
8776 continue;
8777 }
8778 \f
8779
8780 /* Return the number of hex digits in num. */
8781
8782 static int
8783 hexnumlen (ULONGEST num)
8784 {
8785 int i;
8786
8787 for (i = 0; num != 0; i++)
8788 num >>= 4;
8789
8790 return std::max (i, 1);
8791 }
8792
8793 /* Set BUF to the minimum number of hex digits representing NUM. */
8794
8795 static int
8796 hexnumstr (char *buf, ULONGEST num)
8797 {
8798 int len = hexnumlen (num);
8799
8800 return hexnumnstr (buf, num, len);
8801 }
8802
8803
8804 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8805
8806 static int
8807 hexnumnstr (char *buf, ULONGEST num, int width)
8808 {
8809 int i;
8810
8811 buf[width] = '\0';
8812
8813 for (i = width - 1; i >= 0; i--)
8814 {
8815 buf[i] = "0123456789abcdef"[(num & 0xf)];
8816 num >>= 4;
8817 }
8818
8819 return width;
8820 }
8821
8822 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8823
8824 static CORE_ADDR
8825 remote_address_masked (CORE_ADDR addr)
8826 {
8827 unsigned int address_size = remote_address_size;
8828
8829 /* If "remoteaddresssize" was not set, default to target address size. */
8830 if (!address_size)
8831 address_size = gdbarch_addr_bit (target_gdbarch ());
8832
8833 if (address_size > 0
8834 && address_size < (sizeof (ULONGEST) * 8))
8835 {
8836 /* Only create a mask when that mask can safely be constructed
8837 in a ULONGEST variable. */
8838 ULONGEST mask = 1;
8839
8840 mask = (mask << address_size) - 1;
8841 addr &= mask;
8842 }
8843 return addr;
8844 }
8845
8846 /* Determine whether the remote target supports binary downloading.
8847 This is accomplished by sending a no-op memory write of zero length
8848 to the target at the specified address. It does not suffice to send
8849 the whole packet, since many stubs strip the eighth bit and
8850 subsequently compute a wrong checksum, which causes real havoc with
8851 remote_write_bytes.
8852
8853 NOTE: This can still lose if the serial line is not eight-bit
8854 clean. In cases like this, the user should clear "remote
8855 X-packet". */
8856
8857 void
8858 remote_target::check_binary_download (CORE_ADDR addr)
8859 {
8860 struct remote_state *rs = get_remote_state ();
8861
8862 switch (packet_support (PACKET_X))
8863 {
8864 case PACKET_DISABLE:
8865 break;
8866 case PACKET_ENABLE:
8867 break;
8868 case PACKET_SUPPORT_UNKNOWN:
8869 {
8870 char *p;
8871
8872 p = rs->buf.data ();
8873 *p++ = 'X';
8874 p += hexnumstr (p, (ULONGEST) addr);
8875 *p++ = ',';
8876 p += hexnumstr (p, (ULONGEST) 0);
8877 *p++ = ':';
8878 *p = '\0';
8879
8880 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8881 getpkt (&rs->buf, 0);
8882
8883 if (rs->buf[0] == '\0')
8884 {
8885 remote_debug_printf ("binary downloading NOT supported by target");
8886 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8887 }
8888 else
8889 {
8890 remote_debug_printf ("binary downloading supported by target");
8891 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8892 }
8893 break;
8894 }
8895 }
8896 }
8897
8898 /* Helper function to resize the payload in order to try to get a good
8899 alignment. We try to write an amount of data such that the next write will
8900 start on an address aligned on REMOTE_ALIGN_WRITES. */
8901
8902 static int
8903 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8904 {
8905 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8906 }
8907
8908 /* Write memory data directly to the remote machine.
8909 This does not inform the data cache; the data cache uses this.
8910 HEADER is the starting part of the packet.
8911 MEMADDR is the address in the remote memory space.
8912 MYADDR is the address of the buffer in our space.
8913 LEN_UNITS is the number of addressable units to write.
8914 UNIT_SIZE is the length in bytes of an addressable unit.
8915 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8916 should send data as binary ('X'), or hex-encoded ('M').
8917
8918 The function creates packet of the form
8919 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8920
8921 where encoding of <DATA> is terminated by PACKET_FORMAT.
8922
8923 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8924 are omitted.
8925
8926 Return the transferred status, error or OK (an
8927 'enum target_xfer_status' value). Save the number of addressable units
8928 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8929
8930 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8931 exchange between gdb and the stub could look like (?? in place of the
8932 checksum):
8933
8934 -> $m1000,4#??
8935 <- aaaabbbbccccdddd
8936
8937 -> $M1000,3:eeeeffffeeee#??
8938 <- OK
8939
8940 -> $m1000,4#??
8941 <- eeeeffffeeeedddd */
8942
8943 target_xfer_status
8944 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8945 const gdb_byte *myaddr,
8946 ULONGEST len_units,
8947 int unit_size,
8948 ULONGEST *xfered_len_units,
8949 char packet_format, int use_length)
8950 {
8951 struct remote_state *rs = get_remote_state ();
8952 char *p;
8953 char *plen = NULL;
8954 int plenlen = 0;
8955 int todo_units;
8956 int units_written;
8957 int payload_capacity_bytes;
8958 int payload_length_bytes;
8959
8960 if (packet_format != 'X' && packet_format != 'M')
8961 internal_error (__FILE__, __LINE__,
8962 _("remote_write_bytes_aux: bad packet format"));
8963
8964 if (len_units == 0)
8965 return TARGET_XFER_EOF;
8966
8967 payload_capacity_bytes = get_memory_write_packet_size ();
8968
8969 /* The packet buffer will be large enough for the payload;
8970 get_memory_packet_size ensures this. */
8971 rs->buf[0] = '\0';
8972
8973 /* Compute the size of the actual payload by subtracting out the
8974 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8975
8976 payload_capacity_bytes -= strlen ("$,:#NN");
8977 if (!use_length)
8978 /* The comma won't be used. */
8979 payload_capacity_bytes += 1;
8980 payload_capacity_bytes -= strlen (header);
8981 payload_capacity_bytes -= hexnumlen (memaddr);
8982
8983 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8984
8985 strcat (rs->buf.data (), header);
8986 p = rs->buf.data () + strlen (header);
8987
8988 /* Compute a best guess of the number of bytes actually transfered. */
8989 if (packet_format == 'X')
8990 {
8991 /* Best guess at number of bytes that will fit. */
8992 todo_units = std::min (len_units,
8993 (ULONGEST) payload_capacity_bytes / unit_size);
8994 if (use_length)
8995 payload_capacity_bytes -= hexnumlen (todo_units);
8996 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8997 }
8998 else
8999 {
9000 /* Number of bytes that will fit. */
9001 todo_units
9002 = std::min (len_units,
9003 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
9004 if (use_length)
9005 payload_capacity_bytes -= hexnumlen (todo_units);
9006 todo_units = std::min (todo_units,
9007 (payload_capacity_bytes / unit_size) / 2);
9008 }
9009
9010 if (todo_units <= 0)
9011 internal_error (__FILE__, __LINE__,
9012 _("minimum packet size too small to write data"));
9013
9014 /* If we already need another packet, then try to align the end
9015 of this packet to a useful boundary. */
9016 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
9017 todo_units = align_for_efficient_write (todo_units, memaddr);
9018
9019 /* Append "<memaddr>". */
9020 memaddr = remote_address_masked (memaddr);
9021 p += hexnumstr (p, (ULONGEST) memaddr);
9022
9023 if (use_length)
9024 {
9025 /* Append ",". */
9026 *p++ = ',';
9027
9028 /* Append the length and retain its location and size. It may need to be
9029 adjusted once the packet body has been created. */
9030 plen = p;
9031 plenlen = hexnumstr (p, (ULONGEST) todo_units);
9032 p += plenlen;
9033 }
9034
9035 /* Append ":". */
9036 *p++ = ':';
9037 *p = '\0';
9038
9039 /* Append the packet body. */
9040 if (packet_format == 'X')
9041 {
9042 /* Binary mode. Send target system values byte by byte, in
9043 increasing byte addresses. Only escape certain critical
9044 characters. */
9045 payload_length_bytes =
9046 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
9047 &units_written, payload_capacity_bytes);
9048
9049 /* If not all TODO units fit, then we'll need another packet. Make
9050 a second try to keep the end of the packet aligned. Don't do
9051 this if the packet is tiny. */
9052 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
9053 {
9054 int new_todo_units;
9055
9056 new_todo_units = align_for_efficient_write (units_written, memaddr);
9057
9058 if (new_todo_units != units_written)
9059 payload_length_bytes =
9060 remote_escape_output (myaddr, new_todo_units, unit_size,
9061 (gdb_byte *) p, &units_written,
9062 payload_capacity_bytes);
9063 }
9064
9065 p += payload_length_bytes;
9066 if (use_length && units_written < todo_units)
9067 {
9068 /* Escape chars have filled up the buffer prematurely,
9069 and we have actually sent fewer units than planned.
9070 Fix-up the length field of the packet. Use the same
9071 number of characters as before. */
9072 plen += hexnumnstr (plen, (ULONGEST) units_written,
9073 plenlen);
9074 *plen = ':'; /* overwrite \0 from hexnumnstr() */
9075 }
9076 }
9077 else
9078 {
9079 /* Normal mode: Send target system values byte by byte, in
9080 increasing byte addresses. Each byte is encoded as a two hex
9081 value. */
9082 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
9083 units_written = todo_units;
9084 }
9085
9086 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
9087 getpkt (&rs->buf, 0);
9088
9089 if (rs->buf[0] == 'E')
9090 return TARGET_XFER_E_IO;
9091
9092 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
9093 send fewer units than we'd planned. */
9094 *xfered_len_units = (ULONGEST) units_written;
9095 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9096 }
9097
9098 /* Write memory data directly to the remote machine.
9099 This does not inform the data cache; the data cache uses this.
9100 MEMADDR is the address in the remote memory space.
9101 MYADDR is the address of the buffer in our space.
9102 LEN is the number of bytes.
9103
9104 Return the transferred status, error or OK (an
9105 'enum target_xfer_status' value). Save the number of bytes
9106 transferred in *XFERED_LEN. Only transfer a single packet. */
9107
9108 target_xfer_status
9109 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
9110 ULONGEST len, int unit_size,
9111 ULONGEST *xfered_len)
9112 {
9113 const char *packet_format = NULL;
9114
9115 /* Check whether the target supports binary download. */
9116 check_binary_download (memaddr);
9117
9118 switch (packet_support (PACKET_X))
9119 {
9120 case PACKET_ENABLE:
9121 packet_format = "X";
9122 break;
9123 case PACKET_DISABLE:
9124 packet_format = "M";
9125 break;
9126 case PACKET_SUPPORT_UNKNOWN:
9127 internal_error (__FILE__, __LINE__,
9128 _("remote_write_bytes: bad internal state"));
9129 default:
9130 internal_error (__FILE__, __LINE__, _("bad switch"));
9131 }
9132
9133 return remote_write_bytes_aux (packet_format,
9134 memaddr, myaddr, len, unit_size, xfered_len,
9135 packet_format[0], 1);
9136 }
9137
9138 /* Read memory data directly from the remote machine.
9139 This does not use the data cache; the data cache uses this.
9140 MEMADDR is the address in the remote memory space.
9141 MYADDR is the address of the buffer in our space.
9142 LEN_UNITS is the number of addressable memory units to read..
9143 UNIT_SIZE is the length in bytes of an addressable unit.
9144
9145 Return the transferred status, error or OK (an
9146 'enum target_xfer_status' value). Save the number of bytes
9147 transferred in *XFERED_LEN_UNITS.
9148
9149 See the comment of remote_write_bytes_aux for an example of
9150 memory read/write exchange between gdb and the stub. */
9151
9152 target_xfer_status
9153 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
9154 ULONGEST len_units,
9155 int unit_size, ULONGEST *xfered_len_units)
9156 {
9157 struct remote_state *rs = get_remote_state ();
9158 int buf_size_bytes; /* Max size of packet output buffer. */
9159 char *p;
9160 int todo_units;
9161 int decoded_bytes;
9162
9163 buf_size_bytes = get_memory_read_packet_size ();
9164 /* The packet buffer will be large enough for the payload;
9165 get_memory_packet_size ensures this. */
9166
9167 /* Number of units that will fit. */
9168 todo_units = std::min (len_units,
9169 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9170
9171 /* Construct "m"<memaddr>","<len>". */
9172 memaddr = remote_address_masked (memaddr);
9173 p = rs->buf.data ();
9174 *p++ = 'm';
9175 p += hexnumstr (p, (ULONGEST) memaddr);
9176 *p++ = ',';
9177 p += hexnumstr (p, (ULONGEST) todo_units);
9178 *p = '\0';
9179 putpkt (rs->buf);
9180 getpkt (&rs->buf, 0);
9181 if (rs->buf[0] == 'E'
9182 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9183 && rs->buf[3] == '\0')
9184 return TARGET_XFER_E_IO;
9185 /* Reply describes memory byte by byte, each byte encoded as two hex
9186 characters. */
9187 p = rs->buf.data ();
9188 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9189 /* Return what we have. Let higher layers handle partial reads. */
9190 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9191 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9192 }
9193
9194 /* Using the set of read-only target sections of remote, read live
9195 read-only memory.
9196
9197 For interface/parameters/return description see target.h,
9198 to_xfer_partial. */
9199
9200 target_xfer_status
9201 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9202 ULONGEST memaddr,
9203 ULONGEST len,
9204 int unit_size,
9205 ULONGEST *xfered_len)
9206 {
9207 const struct target_section *secp;
9208
9209 secp = target_section_by_addr (this, memaddr);
9210 if (secp != NULL
9211 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9212 {
9213 ULONGEST memend = memaddr + len;
9214
9215 const target_section_table *table = target_get_section_table (this);
9216 for (const target_section &p : *table)
9217 {
9218 if (memaddr >= p.addr)
9219 {
9220 if (memend <= p.endaddr)
9221 {
9222 /* Entire transfer is within this section. */
9223 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9224 xfered_len);
9225 }
9226 else if (memaddr >= p.endaddr)
9227 {
9228 /* This section ends before the transfer starts. */
9229 continue;
9230 }
9231 else
9232 {
9233 /* This section overlaps the transfer. Just do half. */
9234 len = p.endaddr - memaddr;
9235 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9236 xfered_len);
9237 }
9238 }
9239 }
9240 }
9241
9242 return TARGET_XFER_EOF;
9243 }
9244
9245 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9246 first if the requested memory is unavailable in traceframe.
9247 Otherwise, fall back to remote_read_bytes_1. */
9248
9249 target_xfer_status
9250 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9251 gdb_byte *myaddr, ULONGEST len, int unit_size,
9252 ULONGEST *xfered_len)
9253 {
9254 if (len == 0)
9255 return TARGET_XFER_EOF;
9256
9257 if (get_traceframe_number () != -1)
9258 {
9259 std::vector<mem_range> available;
9260
9261 /* If we fail to get the set of available memory, then the
9262 target does not support querying traceframe info, and so we
9263 attempt reading from the traceframe anyway (assuming the
9264 target implements the old QTro packet then). */
9265 if (traceframe_available_memory (&available, memaddr, len))
9266 {
9267 if (available.empty () || available[0].start != memaddr)
9268 {
9269 enum target_xfer_status res;
9270
9271 /* Don't read into the traceframe's available
9272 memory. */
9273 if (!available.empty ())
9274 {
9275 LONGEST oldlen = len;
9276
9277 len = available[0].start - memaddr;
9278 gdb_assert (len <= oldlen);
9279 }
9280
9281 /* This goes through the topmost target again. */
9282 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9283 len, unit_size, xfered_len);
9284 if (res == TARGET_XFER_OK)
9285 return TARGET_XFER_OK;
9286 else
9287 {
9288 /* No use trying further, we know some memory starting
9289 at MEMADDR isn't available. */
9290 *xfered_len = len;
9291 return (*xfered_len != 0) ?
9292 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9293 }
9294 }
9295
9296 /* Don't try to read more than how much is available, in
9297 case the target implements the deprecated QTro packet to
9298 cater for older GDBs (the target's knowledge of read-only
9299 sections may be outdated by now). */
9300 len = available[0].length;
9301 }
9302 }
9303
9304 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9305 }
9306
9307 \f
9308
9309 /* Sends a packet with content determined by the printf format string
9310 FORMAT and the remaining arguments, then gets the reply. Returns
9311 whether the packet was a success, a failure, or unknown. */
9312
9313 packet_result
9314 remote_target::remote_send_printf (const char *format, ...)
9315 {
9316 struct remote_state *rs = get_remote_state ();
9317 int max_size = get_remote_packet_size ();
9318 va_list ap;
9319
9320 va_start (ap, format);
9321
9322 rs->buf[0] = '\0';
9323 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9324
9325 va_end (ap);
9326
9327 if (size >= max_size)
9328 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9329
9330 if (putpkt (rs->buf) < 0)
9331 error (_("Communication problem with target."));
9332
9333 rs->buf[0] = '\0';
9334 getpkt (&rs->buf, 0);
9335
9336 return packet_check_result (rs->buf);
9337 }
9338
9339 /* Flash writing can take quite some time. We'll set
9340 effectively infinite timeout for flash operations.
9341 In future, we'll need to decide on a better approach. */
9342 static const int remote_flash_timeout = 1000;
9343
9344 void
9345 remote_target::flash_erase (ULONGEST address, LONGEST length)
9346 {
9347 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9348 enum packet_result ret;
9349 scoped_restore restore_timeout
9350 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9351
9352 ret = remote_send_printf ("vFlashErase:%s,%s",
9353 phex (address, addr_size),
9354 phex (length, 4));
9355 switch (ret)
9356 {
9357 case PACKET_UNKNOWN:
9358 error (_("Remote target does not support flash erase"));
9359 case PACKET_ERROR:
9360 error (_("Error erasing flash with vFlashErase packet"));
9361 default:
9362 break;
9363 }
9364 }
9365
9366 target_xfer_status
9367 remote_target::remote_flash_write (ULONGEST address,
9368 ULONGEST length, ULONGEST *xfered_len,
9369 const gdb_byte *data)
9370 {
9371 scoped_restore restore_timeout
9372 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9373 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9374 xfered_len,'X', 0);
9375 }
9376
9377 void
9378 remote_target::flash_done ()
9379 {
9380 int ret;
9381
9382 scoped_restore restore_timeout
9383 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9384
9385 ret = remote_send_printf ("vFlashDone");
9386
9387 switch (ret)
9388 {
9389 case PACKET_UNKNOWN:
9390 error (_("Remote target does not support vFlashDone"));
9391 case PACKET_ERROR:
9392 error (_("Error finishing flash operation"));
9393 default:
9394 break;
9395 }
9396 }
9397
9398 void
9399 remote_target::files_info ()
9400 {
9401 puts_filtered ("Debugging a target over a serial line.\n");
9402 }
9403 \f
9404 /* Stuff for dealing with the packets which are part of this protocol.
9405 See comment at top of file for details. */
9406
9407 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9408 error to higher layers. Called when a serial error is detected.
9409 The exception message is STRING, followed by a colon and a blank,
9410 the system error message for errno at function entry and final dot
9411 for output compatibility with throw_perror_with_name. */
9412
9413 static void
9414 unpush_and_perror (remote_target *target, const char *string)
9415 {
9416 int saved_errno = errno;
9417
9418 remote_unpush_target (target);
9419 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9420 safe_strerror (saved_errno));
9421 }
9422
9423 /* Read a single character from the remote end. The current quit
9424 handler is overridden to avoid quitting in the middle of packet
9425 sequence, as that would break communication with the remote server.
9426 See remote_serial_quit_handler for more detail. */
9427
9428 int
9429 remote_target::readchar (int timeout)
9430 {
9431 int ch;
9432 struct remote_state *rs = get_remote_state ();
9433
9434 {
9435 scoped_restore restore_quit_target
9436 = make_scoped_restore (&curr_quit_handler_target, this);
9437 scoped_restore restore_quit
9438 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9439
9440 rs->got_ctrlc_during_io = 0;
9441
9442 ch = serial_readchar (rs->remote_desc, timeout);
9443
9444 if (rs->got_ctrlc_during_io)
9445 set_quit_flag ();
9446 }
9447
9448 if (ch >= 0)
9449 return ch;
9450
9451 switch ((enum serial_rc) ch)
9452 {
9453 case SERIAL_EOF:
9454 remote_unpush_target (this);
9455 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9456 /* no return */
9457 case SERIAL_ERROR:
9458 unpush_and_perror (this, _("Remote communication error. "
9459 "Target disconnected."));
9460 /* no return */
9461 case SERIAL_TIMEOUT:
9462 break;
9463 }
9464 return ch;
9465 }
9466
9467 /* Wrapper for serial_write that closes the target and throws if
9468 writing fails. The current quit handler is overridden to avoid
9469 quitting in the middle of packet sequence, as that would break
9470 communication with the remote server. See
9471 remote_serial_quit_handler for more detail. */
9472
9473 void
9474 remote_target::remote_serial_write (const char *str, int len)
9475 {
9476 struct remote_state *rs = get_remote_state ();
9477
9478 scoped_restore restore_quit_target
9479 = make_scoped_restore (&curr_quit_handler_target, this);
9480 scoped_restore restore_quit
9481 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9482
9483 rs->got_ctrlc_during_io = 0;
9484
9485 if (serial_write (rs->remote_desc, str, len))
9486 {
9487 unpush_and_perror (this, _("Remote communication error. "
9488 "Target disconnected."));
9489 }
9490
9491 if (rs->got_ctrlc_during_io)
9492 set_quit_flag ();
9493 }
9494
9495 /* Return a string representing an escaped version of BUF, of len N.
9496 E.g. \n is converted to \\n, \t to \\t, etc. */
9497
9498 static std::string
9499 escape_buffer (const char *buf, int n)
9500 {
9501 string_file stb;
9502
9503 stb.putstrn (buf, n, '\\');
9504 return std::move (stb.string ());
9505 }
9506
9507 /* Display a null-terminated packet on stdout, for debugging, using C
9508 string notation. */
9509
9510 static void
9511 print_packet (const char *buf)
9512 {
9513 puts_filtered ("\"");
9514 fputstr_filtered (buf, '"', gdb_stdout);
9515 puts_filtered ("\"");
9516 }
9517
9518 int
9519 remote_target::putpkt (const char *buf)
9520 {
9521 return putpkt_binary (buf, strlen (buf));
9522 }
9523
9524 /* Wrapper around remote_target::putpkt to avoid exporting
9525 remote_target. */
9526
9527 int
9528 putpkt (remote_target *remote, const char *buf)
9529 {
9530 return remote->putpkt (buf);
9531 }
9532
9533 /* Send a packet to the remote machine, with error checking. The data
9534 of the packet is in BUF. The string in BUF can be at most
9535 get_remote_packet_size () - 5 to account for the $, # and checksum,
9536 and for a possible /0 if we are debugging (remote_debug) and want
9537 to print the sent packet as a string. */
9538
9539 int
9540 remote_target::putpkt_binary (const char *buf, int cnt)
9541 {
9542 struct remote_state *rs = get_remote_state ();
9543 int i;
9544 unsigned char csum = 0;
9545 gdb::def_vector<char> data (cnt + 6);
9546 char *buf2 = data.data ();
9547
9548 int ch;
9549 int tcount = 0;
9550 char *p;
9551
9552 /* Catch cases like trying to read memory or listing threads while
9553 we're waiting for a stop reply. The remote server wouldn't be
9554 ready to handle this request, so we'd hang and timeout. We don't
9555 have to worry about this in synchronous mode, because in that
9556 case it's not possible to issue a command while the target is
9557 running. This is not a problem in non-stop mode, because in that
9558 case, the stub is always ready to process serial input. */
9559 if (!target_is_non_stop_p ()
9560 && target_is_async_p ()
9561 && rs->waiting_for_stop_reply)
9562 {
9563 error (_("Cannot execute this command while the target is running.\n"
9564 "Use the \"interrupt\" command to stop the target\n"
9565 "and then try again."));
9566 }
9567
9568 /* We're sending out a new packet. Make sure we don't look at a
9569 stale cached response. */
9570 rs->cached_wait_status = 0;
9571
9572 /* Copy the packet into buffer BUF2, encapsulating it
9573 and giving it a checksum. */
9574
9575 p = buf2;
9576 *p++ = '$';
9577
9578 for (i = 0; i < cnt; i++)
9579 {
9580 csum += buf[i];
9581 *p++ = buf[i];
9582 }
9583 *p++ = '#';
9584 *p++ = tohex ((csum >> 4) & 0xf);
9585 *p++ = tohex (csum & 0xf);
9586
9587 /* Send it over and over until we get a positive ack. */
9588
9589 while (1)
9590 {
9591 if (remote_debug)
9592 {
9593 *p = '\0';
9594
9595 int len = (int) (p - buf2);
9596 int max_chars;
9597
9598 if (remote_packet_max_chars < 0)
9599 max_chars = len;
9600 else
9601 max_chars = remote_packet_max_chars;
9602
9603 std::string str
9604 = escape_buffer (buf2, std::min (len, max_chars));
9605
9606 if (len > max_chars)
9607 remote_debug_printf_nofunc
9608 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9609 len - max_chars);
9610 else
9611 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9612 }
9613 remote_serial_write (buf2, p - buf2);
9614
9615 /* If this is a no acks version of the remote protocol, send the
9616 packet and move on. */
9617 if (rs->noack_mode)
9618 break;
9619
9620 /* Read until either a timeout occurs (-2) or '+' is read.
9621 Handle any notification that arrives in the mean time. */
9622 while (1)
9623 {
9624 ch = readchar (remote_timeout);
9625
9626 switch (ch)
9627 {
9628 case '+':
9629 remote_debug_printf_nofunc ("Received Ack");
9630 return 1;
9631 case '-':
9632 remote_debug_printf_nofunc ("Received Nak");
9633 /* FALLTHROUGH */
9634 case SERIAL_TIMEOUT:
9635 tcount++;
9636 if (tcount > 3)
9637 return 0;
9638 break; /* Retransmit buffer. */
9639 case '$':
9640 {
9641 remote_debug_printf ("Packet instead of Ack, ignoring it");
9642 /* It's probably an old response sent because an ACK
9643 was lost. Gobble up the packet and ack it so it
9644 doesn't get retransmitted when we resend this
9645 packet. */
9646 skip_frame ();
9647 remote_serial_write ("+", 1);
9648 continue; /* Now, go look for +. */
9649 }
9650
9651 case '%':
9652 {
9653 int val;
9654
9655 /* If we got a notification, handle it, and go back to looking
9656 for an ack. */
9657 /* We've found the start of a notification. Now
9658 collect the data. */
9659 val = read_frame (&rs->buf);
9660 if (val >= 0)
9661 {
9662 remote_debug_printf_nofunc
9663 (" Notification received: %s",
9664 escape_buffer (rs->buf.data (), val).c_str ());
9665
9666 handle_notification (rs->notif_state, rs->buf.data ());
9667 /* We're in sync now, rewait for the ack. */
9668 tcount = 0;
9669 }
9670 else
9671 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9672 rs->buf.data ());
9673 continue;
9674 }
9675 /* fall-through */
9676 default:
9677 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9678 rs->buf.data ());
9679 continue;
9680 }
9681 break; /* Here to retransmit. */
9682 }
9683
9684 #if 0
9685 /* This is wrong. If doing a long backtrace, the user should be
9686 able to get out next time we call QUIT, without anything as
9687 violent as interrupt_query. If we want to provide a way out of
9688 here without getting to the next QUIT, it should be based on
9689 hitting ^C twice as in remote_wait. */
9690 if (quit_flag)
9691 {
9692 quit_flag = 0;
9693 interrupt_query ();
9694 }
9695 #endif
9696 }
9697
9698 return 0;
9699 }
9700
9701 /* Come here after finding the start of a frame when we expected an
9702 ack. Do our best to discard the rest of this packet. */
9703
9704 void
9705 remote_target::skip_frame ()
9706 {
9707 int c;
9708
9709 while (1)
9710 {
9711 c = readchar (remote_timeout);
9712 switch (c)
9713 {
9714 case SERIAL_TIMEOUT:
9715 /* Nothing we can do. */
9716 return;
9717 case '#':
9718 /* Discard the two bytes of checksum and stop. */
9719 c = readchar (remote_timeout);
9720 if (c >= 0)
9721 c = readchar (remote_timeout);
9722
9723 return;
9724 case '*': /* Run length encoding. */
9725 /* Discard the repeat count. */
9726 c = readchar (remote_timeout);
9727 if (c < 0)
9728 return;
9729 break;
9730 default:
9731 /* A regular character. */
9732 break;
9733 }
9734 }
9735 }
9736
9737 /* Come here after finding the start of the frame. Collect the rest
9738 into *BUF, verifying the checksum, length, and handling run-length
9739 compression. NUL terminate the buffer. If there is not enough room,
9740 expand *BUF.
9741
9742 Returns -1 on error, number of characters in buffer (ignoring the
9743 trailing NULL) on success. (could be extended to return one of the
9744 SERIAL status indications). */
9745
9746 long
9747 remote_target::read_frame (gdb::char_vector *buf_p)
9748 {
9749 unsigned char csum;
9750 long bc;
9751 int c;
9752 char *buf = buf_p->data ();
9753 struct remote_state *rs = get_remote_state ();
9754
9755 csum = 0;
9756 bc = 0;
9757
9758 while (1)
9759 {
9760 c = readchar (remote_timeout);
9761 switch (c)
9762 {
9763 case SERIAL_TIMEOUT:
9764 remote_debug_printf ("Timeout in mid-packet, retrying");
9765 return -1;
9766
9767 case '$':
9768 remote_debug_printf ("Saw new packet start in middle of old one");
9769 return -1; /* Start a new packet, count retries. */
9770
9771 case '#':
9772 {
9773 unsigned char pktcsum;
9774 int check_0 = 0;
9775 int check_1 = 0;
9776
9777 buf[bc] = '\0';
9778
9779 check_0 = readchar (remote_timeout);
9780 if (check_0 >= 0)
9781 check_1 = readchar (remote_timeout);
9782
9783 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9784 {
9785 remote_debug_printf ("Timeout in checksum, retrying");
9786 return -1;
9787 }
9788 else if (check_0 < 0 || check_1 < 0)
9789 {
9790 remote_debug_printf ("Communication error in checksum");
9791 return -1;
9792 }
9793
9794 /* Don't recompute the checksum; with no ack packets we
9795 don't have any way to indicate a packet retransmission
9796 is necessary. */
9797 if (rs->noack_mode)
9798 return bc;
9799
9800 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9801 if (csum == pktcsum)
9802 return bc;
9803
9804 remote_debug_printf
9805 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9806 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9807
9808 /* Number of characters in buffer ignoring trailing
9809 NULL. */
9810 return -1;
9811 }
9812 case '*': /* Run length encoding. */
9813 {
9814 int repeat;
9815
9816 csum += c;
9817 c = readchar (remote_timeout);
9818 csum += c;
9819 repeat = c - ' ' + 3; /* Compute repeat count. */
9820
9821 /* The character before ``*'' is repeated. */
9822
9823 if (repeat > 0 && repeat <= 255 && bc > 0)
9824 {
9825 if (bc + repeat - 1 >= buf_p->size () - 1)
9826 {
9827 /* Make some more room in the buffer. */
9828 buf_p->resize (buf_p->size () + repeat);
9829 buf = buf_p->data ();
9830 }
9831
9832 memset (&buf[bc], buf[bc - 1], repeat);
9833 bc += repeat;
9834 continue;
9835 }
9836
9837 buf[bc] = '\0';
9838 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9839 return -1;
9840 }
9841 default:
9842 if (bc >= buf_p->size () - 1)
9843 {
9844 /* Make some more room in the buffer. */
9845 buf_p->resize (buf_p->size () * 2);
9846 buf = buf_p->data ();
9847 }
9848
9849 buf[bc++] = c;
9850 csum += c;
9851 continue;
9852 }
9853 }
9854 }
9855
9856 /* Set this to the maximum number of seconds to wait instead of waiting forever
9857 in target_wait(). If this timer times out, then it generates an error and
9858 the command is aborted. This replaces most of the need for timeouts in the
9859 GDB test suite, and makes it possible to distinguish between a hung target
9860 and one with slow communications. */
9861
9862 static int watchdog = 0;
9863 static void
9864 show_watchdog (struct ui_file *file, int from_tty,
9865 struct cmd_list_element *c, const char *value)
9866 {
9867 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9868 }
9869
9870 /* Read a packet from the remote machine, with error checking, and
9871 store it in *BUF. Resize *BUF if necessary to hold the result. If
9872 FOREVER, wait forever rather than timing out; this is used (in
9873 synchronous mode) to wait for a target that is is executing user
9874 code to stop. */
9875 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9876 don't have to change all the calls to getpkt to deal with the
9877 return value, because at the moment I don't know what the right
9878 thing to do it for those. */
9879
9880 void
9881 remote_target::getpkt (gdb::char_vector *buf, int forever)
9882 {
9883 getpkt_sane (buf, forever);
9884 }
9885
9886
9887 /* Read a packet from the remote machine, with error checking, and
9888 store it in *BUF. Resize *BUF if necessary to hold the result. If
9889 FOREVER, wait forever rather than timing out; this is used (in
9890 synchronous mode) to wait for a target that is is executing user
9891 code to stop. If FOREVER == 0, this function is allowed to time
9892 out gracefully and return an indication of this to the caller.
9893 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9894 consider receiving a notification enough reason to return to the
9895 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9896 holds a notification or not (a regular packet). */
9897
9898 int
9899 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9900 int forever, int expecting_notif,
9901 int *is_notif)
9902 {
9903 struct remote_state *rs = get_remote_state ();
9904 int c;
9905 int tries;
9906 int timeout;
9907 int val = -1;
9908
9909 /* We're reading a new response. Make sure we don't look at a
9910 previously cached response. */
9911 rs->cached_wait_status = 0;
9912
9913 strcpy (buf->data (), "timeout");
9914
9915 if (forever)
9916 timeout = watchdog > 0 ? watchdog : -1;
9917 else if (expecting_notif)
9918 timeout = 0; /* There should already be a char in the buffer. If
9919 not, bail out. */
9920 else
9921 timeout = remote_timeout;
9922
9923 #define MAX_TRIES 3
9924
9925 /* Process any number of notifications, and then return when
9926 we get a packet. */
9927 for (;;)
9928 {
9929 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9930 times. */
9931 for (tries = 1; tries <= MAX_TRIES; tries++)
9932 {
9933 /* This can loop forever if the remote side sends us
9934 characters continuously, but if it pauses, we'll get
9935 SERIAL_TIMEOUT from readchar because of timeout. Then
9936 we'll count that as a retry.
9937
9938 Note that even when forever is set, we will only wait
9939 forever prior to the start of a packet. After that, we
9940 expect characters to arrive at a brisk pace. They should
9941 show up within remote_timeout intervals. */
9942 do
9943 c = readchar (timeout);
9944 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9945
9946 if (c == SERIAL_TIMEOUT)
9947 {
9948 if (expecting_notif)
9949 return -1; /* Don't complain, it's normal to not get
9950 anything in this case. */
9951
9952 if (forever) /* Watchdog went off? Kill the target. */
9953 {
9954 remote_unpush_target (this);
9955 throw_error (TARGET_CLOSE_ERROR,
9956 _("Watchdog timeout has expired. "
9957 "Target detached."));
9958 }
9959
9960 remote_debug_printf ("Timed out.");
9961 }
9962 else
9963 {
9964 /* We've found the start of a packet or notification.
9965 Now collect the data. */
9966 val = read_frame (buf);
9967 if (val >= 0)
9968 break;
9969 }
9970
9971 remote_serial_write ("-", 1);
9972 }
9973
9974 if (tries > MAX_TRIES)
9975 {
9976 /* We have tried hard enough, and just can't receive the
9977 packet/notification. Give up. */
9978 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9979
9980 /* Skip the ack char if we're in no-ack mode. */
9981 if (!rs->noack_mode)
9982 remote_serial_write ("+", 1);
9983 return -1;
9984 }
9985
9986 /* If we got an ordinary packet, return that to our caller. */
9987 if (c == '$')
9988 {
9989 if (remote_debug)
9990 {
9991 int max_chars;
9992
9993 if (remote_packet_max_chars < 0)
9994 max_chars = val;
9995 else
9996 max_chars = remote_packet_max_chars;
9997
9998 std::string str
9999 = escape_buffer (buf->data (),
10000 std::min (val, max_chars));
10001
10002 if (val > max_chars)
10003 remote_debug_printf_nofunc
10004 ("Packet received: %s [%d bytes omitted]", str.c_str (),
10005 val - max_chars);
10006 else
10007 remote_debug_printf_nofunc ("Packet received: %s",
10008 str.c_str ());
10009 }
10010
10011 /* Skip the ack char if we're in no-ack mode. */
10012 if (!rs->noack_mode)
10013 remote_serial_write ("+", 1);
10014 if (is_notif != NULL)
10015 *is_notif = 0;
10016 return val;
10017 }
10018
10019 /* If we got a notification, handle it, and go back to looking
10020 for a packet. */
10021 else
10022 {
10023 gdb_assert (c == '%');
10024
10025 remote_debug_printf_nofunc
10026 (" Notification received: %s",
10027 escape_buffer (buf->data (), val).c_str ());
10028
10029 if (is_notif != NULL)
10030 *is_notif = 1;
10031
10032 handle_notification (rs->notif_state, buf->data ());
10033
10034 /* Notifications require no acknowledgement. */
10035
10036 if (expecting_notif)
10037 return val;
10038 }
10039 }
10040 }
10041
10042 int
10043 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
10044 {
10045 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
10046 }
10047
10048 int
10049 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
10050 int *is_notif)
10051 {
10052 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
10053 }
10054
10055 /* Kill any new fork children of process PID that haven't been
10056 processed by follow_fork. */
10057
10058 void
10059 remote_target::kill_new_fork_children (int pid)
10060 {
10061 remote_state *rs = get_remote_state ();
10062 struct notif_client *notif = &notif_client_stop;
10063
10064 /* Kill the fork child threads of any threads in process PID
10065 that are stopped at a fork event. */
10066 for (thread_info *thread : all_non_exited_threads (this))
10067 {
10068 struct target_waitstatus *ws = &thread->pending_follow;
10069
10070 if (is_pending_fork_parent (ws, pid, thread->ptid))
10071 {
10072 int child_pid = ws->value.related_pid.pid ();
10073 int res;
10074
10075 res = remote_vkill (child_pid);
10076 if (res != 0)
10077 error (_("Can't kill fork child process %d"), child_pid);
10078 }
10079 }
10080
10081 /* Check for any pending fork events (not reported or processed yet)
10082 in process PID and kill those fork child threads as well. */
10083 remote_notif_get_pending_events (notif);
10084 for (auto &event : rs->stop_reply_queue)
10085 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
10086 {
10087 int child_pid = event->ws.value.related_pid.pid ();
10088 int res;
10089
10090 res = remote_vkill (child_pid);
10091 if (res != 0)
10092 error (_("Can't kill fork child process %d"), child_pid);
10093 }
10094 }
10095
10096 \f
10097 /* Target hook to kill the current inferior. */
10098
10099 void
10100 remote_target::kill ()
10101 {
10102 int res = -1;
10103 int pid = inferior_ptid.pid ();
10104 struct remote_state *rs = get_remote_state ();
10105
10106 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
10107 {
10108 /* If we're stopped while forking and we haven't followed yet,
10109 kill the child task. We need to do this before killing the
10110 parent task because if this is a vfork then the parent will
10111 be sleeping. */
10112 kill_new_fork_children (pid);
10113
10114 res = remote_vkill (pid);
10115 if (res == 0)
10116 {
10117 target_mourn_inferior (inferior_ptid);
10118 return;
10119 }
10120 }
10121
10122 /* If we are in 'target remote' mode and we are killing the only
10123 inferior, then we will tell gdbserver to exit and unpush the
10124 target. */
10125 if (res == -1 && !remote_multi_process_p (rs)
10126 && number_of_live_inferiors (this) == 1)
10127 {
10128 remote_kill_k ();
10129
10130 /* We've killed the remote end, we get to mourn it. If we are
10131 not in extended mode, mourning the inferior also unpushes
10132 remote_ops from the target stack, which closes the remote
10133 connection. */
10134 target_mourn_inferior (inferior_ptid);
10135
10136 return;
10137 }
10138
10139 error (_("Can't kill process"));
10140 }
10141
10142 /* Send a kill request to the target using the 'vKill' packet. */
10143
10144 int
10145 remote_target::remote_vkill (int pid)
10146 {
10147 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10148 return -1;
10149
10150 remote_state *rs = get_remote_state ();
10151
10152 /* Tell the remote target to detach. */
10153 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10154 putpkt (rs->buf);
10155 getpkt (&rs->buf, 0);
10156
10157 switch (packet_ok (rs->buf,
10158 &remote_protocol_packets[PACKET_vKill]))
10159 {
10160 case PACKET_OK:
10161 return 0;
10162 case PACKET_ERROR:
10163 return 1;
10164 case PACKET_UNKNOWN:
10165 return -1;
10166 default:
10167 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10168 }
10169 }
10170
10171 /* Send a kill request to the target using the 'k' packet. */
10172
10173 void
10174 remote_target::remote_kill_k ()
10175 {
10176 /* Catch errors so the user can quit from gdb even when we
10177 aren't on speaking terms with the remote system. */
10178 try
10179 {
10180 putpkt ("k");
10181 }
10182 catch (const gdb_exception_error &ex)
10183 {
10184 if (ex.error == TARGET_CLOSE_ERROR)
10185 {
10186 /* If we got an (EOF) error that caused the target
10187 to go away, then we're done, that's what we wanted.
10188 "k" is susceptible to cause a premature EOF, given
10189 that the remote server isn't actually required to
10190 reply to "k", and it can happen that it doesn't
10191 even get to reply ACK to the "k". */
10192 return;
10193 }
10194
10195 /* Otherwise, something went wrong. We didn't actually kill
10196 the target. Just propagate the exception, and let the
10197 user or higher layers decide what to do. */
10198 throw;
10199 }
10200 }
10201
10202 void
10203 remote_target::mourn_inferior ()
10204 {
10205 struct remote_state *rs = get_remote_state ();
10206
10207 /* We're no longer interested in notification events of an inferior
10208 that exited or was killed/detached. */
10209 discard_pending_stop_replies (current_inferior ());
10210
10211 /* In 'target remote' mode with one inferior, we close the connection. */
10212 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10213 {
10214 remote_unpush_target (this);
10215 return;
10216 }
10217
10218 /* In case we got here due to an error, but we're going to stay
10219 connected. */
10220 rs->waiting_for_stop_reply = 0;
10221
10222 /* If the current general thread belonged to the process we just
10223 detached from or has exited, the remote side current general
10224 thread becomes undefined. Considering a case like this:
10225
10226 - We just got here due to a detach.
10227 - The process that we're detaching from happens to immediately
10228 report a global breakpoint being hit in non-stop mode, in the
10229 same thread we had selected before.
10230 - GDB attaches to this process again.
10231 - This event happens to be the next event we handle.
10232
10233 GDB would consider that the current general thread didn't need to
10234 be set on the stub side (with Hg), since for all it knew,
10235 GENERAL_THREAD hadn't changed.
10236
10237 Notice that although in all-stop mode, the remote server always
10238 sets the current thread to the thread reporting the stop event,
10239 that doesn't happen in non-stop mode; in non-stop, the stub *must
10240 not* change the current thread when reporting a breakpoint hit,
10241 due to the decoupling of event reporting and event handling.
10242
10243 To keep things simple, we always invalidate our notion of the
10244 current thread. */
10245 record_currthread (rs, minus_one_ptid);
10246
10247 /* Call common code to mark the inferior as not running. */
10248 generic_mourn_inferior ();
10249 }
10250
10251 bool
10252 extended_remote_target::supports_disable_randomization ()
10253 {
10254 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10255 }
10256
10257 void
10258 remote_target::extended_remote_disable_randomization (int val)
10259 {
10260 struct remote_state *rs = get_remote_state ();
10261 char *reply;
10262
10263 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10264 "QDisableRandomization:%x", val);
10265 putpkt (rs->buf);
10266 reply = remote_get_noisy_reply ();
10267 if (*reply == '\0')
10268 error (_("Target does not support QDisableRandomization."));
10269 if (strcmp (reply, "OK") != 0)
10270 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10271 }
10272
10273 int
10274 remote_target::extended_remote_run (const std::string &args)
10275 {
10276 struct remote_state *rs = get_remote_state ();
10277 int len;
10278 const char *remote_exec_file = get_remote_exec_file ();
10279
10280 /* If the user has disabled vRun support, or we have detected that
10281 support is not available, do not try it. */
10282 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10283 return -1;
10284
10285 strcpy (rs->buf.data (), "vRun;");
10286 len = strlen (rs->buf.data ());
10287
10288 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10289 error (_("Remote file name too long for run packet"));
10290 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10291 strlen (remote_exec_file));
10292
10293 if (!args.empty ())
10294 {
10295 int i;
10296
10297 gdb_argv argv (args.c_str ());
10298 for (i = 0; argv[i] != NULL; i++)
10299 {
10300 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10301 error (_("Argument list too long for run packet"));
10302 rs->buf[len++] = ';';
10303 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10304 strlen (argv[i]));
10305 }
10306 }
10307
10308 rs->buf[len++] = '\0';
10309
10310 putpkt (rs->buf);
10311 getpkt (&rs->buf, 0);
10312
10313 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10314 {
10315 case PACKET_OK:
10316 /* We have a wait response. All is well. */
10317 return 0;
10318 case PACKET_UNKNOWN:
10319 return -1;
10320 case PACKET_ERROR:
10321 if (remote_exec_file[0] == '\0')
10322 error (_("Running the default executable on the remote target failed; "
10323 "try \"set remote exec-file\"?"));
10324 else
10325 error (_("Running \"%s\" on the remote target failed"),
10326 remote_exec_file);
10327 default:
10328 gdb_assert_not_reached (_("bad switch"));
10329 }
10330 }
10331
10332 /* Helper function to send set/unset environment packets. ACTION is
10333 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10334 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10335 sent. */
10336
10337 void
10338 remote_target::send_environment_packet (const char *action,
10339 const char *packet,
10340 const char *value)
10341 {
10342 remote_state *rs = get_remote_state ();
10343
10344 /* Convert the environment variable to an hex string, which
10345 is the best format to be transmitted over the wire. */
10346 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10347 strlen (value));
10348
10349 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10350 "%s:%s", packet, encoded_value.c_str ());
10351
10352 putpkt (rs->buf);
10353 getpkt (&rs->buf, 0);
10354 if (strcmp (rs->buf.data (), "OK") != 0)
10355 warning (_("Unable to %s environment variable '%s' on remote."),
10356 action, value);
10357 }
10358
10359 /* Helper function to handle the QEnvironment* packets. */
10360
10361 void
10362 remote_target::extended_remote_environment_support ()
10363 {
10364 remote_state *rs = get_remote_state ();
10365
10366 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10367 {
10368 putpkt ("QEnvironmentReset");
10369 getpkt (&rs->buf, 0);
10370 if (strcmp (rs->buf.data (), "OK") != 0)
10371 warning (_("Unable to reset environment on remote."));
10372 }
10373
10374 gdb_environ *e = &current_inferior ()->environment;
10375
10376 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10377 for (const std::string &el : e->user_set_env ())
10378 send_environment_packet ("set", "QEnvironmentHexEncoded",
10379 el.c_str ());
10380
10381 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10382 for (const std::string &el : e->user_unset_env ())
10383 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10384 }
10385
10386 /* Helper function to set the current working directory for the
10387 inferior in the remote target. */
10388
10389 void
10390 remote_target::extended_remote_set_inferior_cwd ()
10391 {
10392 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10393 {
10394 const std::string &inferior_cwd = current_inferior ()->cwd ();
10395 remote_state *rs = get_remote_state ();
10396
10397 if (!inferior_cwd.empty ())
10398 {
10399 std::string hexpath
10400 = bin2hex ((const gdb_byte *) inferior_cwd.data (),
10401 inferior_cwd.size ());
10402
10403 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10404 "QSetWorkingDir:%s", hexpath.c_str ());
10405 }
10406 else
10407 {
10408 /* An empty inferior_cwd means that the user wants us to
10409 reset the remote server's inferior's cwd. */
10410 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10411 "QSetWorkingDir:");
10412 }
10413
10414 putpkt (rs->buf);
10415 getpkt (&rs->buf, 0);
10416 if (packet_ok (rs->buf,
10417 &remote_protocol_packets[PACKET_QSetWorkingDir])
10418 != PACKET_OK)
10419 error (_("\
10420 Remote replied unexpectedly while setting the inferior's working\n\
10421 directory: %s"),
10422 rs->buf.data ());
10423
10424 }
10425 }
10426
10427 /* In the extended protocol we want to be able to do things like
10428 "run" and have them basically work as expected. So we need
10429 a special create_inferior function. We support changing the
10430 executable file and the command line arguments, but not the
10431 environment. */
10432
10433 void
10434 extended_remote_target::create_inferior (const char *exec_file,
10435 const std::string &args,
10436 char **env, int from_tty)
10437 {
10438 int run_worked;
10439 char *stop_reply;
10440 struct remote_state *rs = get_remote_state ();
10441 const char *remote_exec_file = get_remote_exec_file ();
10442
10443 /* If running asynchronously, register the target file descriptor
10444 with the event loop. */
10445 if (target_can_async_p ())
10446 target_async (1);
10447
10448 /* Disable address space randomization if requested (and supported). */
10449 if (supports_disable_randomization ())
10450 extended_remote_disable_randomization (disable_randomization);
10451
10452 /* If startup-with-shell is on, we inform gdbserver to start the
10453 remote inferior using a shell. */
10454 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10455 {
10456 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10457 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10458 putpkt (rs->buf);
10459 getpkt (&rs->buf, 0);
10460 if (strcmp (rs->buf.data (), "OK") != 0)
10461 error (_("\
10462 Remote replied unexpectedly while setting startup-with-shell: %s"),
10463 rs->buf.data ());
10464 }
10465
10466 extended_remote_environment_support ();
10467
10468 extended_remote_set_inferior_cwd ();
10469
10470 /* Now restart the remote server. */
10471 run_worked = extended_remote_run (args) != -1;
10472 if (!run_worked)
10473 {
10474 /* vRun was not supported. Fail if we need it to do what the
10475 user requested. */
10476 if (remote_exec_file[0])
10477 error (_("Remote target does not support \"set remote exec-file\""));
10478 if (!args.empty ())
10479 error (_("Remote target does not support \"set args\" or run ARGS"));
10480
10481 /* Fall back to "R". */
10482 extended_remote_restart ();
10483 }
10484
10485 /* vRun's success return is a stop reply. */
10486 stop_reply = run_worked ? rs->buf.data () : NULL;
10487 add_current_inferior_and_thread (stop_reply);
10488
10489 /* Get updated offsets, if the stub uses qOffsets. */
10490 get_offsets ();
10491 }
10492 \f
10493
10494 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10495 the list of conditions (in agent expression bytecode format), if any, the
10496 target needs to evaluate. The output is placed into the packet buffer
10497 started from BUF and ended at BUF_END. */
10498
10499 static int
10500 remote_add_target_side_condition (struct gdbarch *gdbarch,
10501 struct bp_target_info *bp_tgt, char *buf,
10502 char *buf_end)
10503 {
10504 if (bp_tgt->conditions.empty ())
10505 return 0;
10506
10507 buf += strlen (buf);
10508 xsnprintf (buf, buf_end - buf, "%s", ";");
10509 buf++;
10510
10511 /* Send conditions to the target. */
10512 for (agent_expr *aexpr : bp_tgt->conditions)
10513 {
10514 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10515 buf += strlen (buf);
10516 for (int i = 0; i < aexpr->len; ++i)
10517 buf = pack_hex_byte (buf, aexpr->buf[i]);
10518 *buf = '\0';
10519 }
10520 return 0;
10521 }
10522
10523 static void
10524 remote_add_target_side_commands (struct gdbarch *gdbarch,
10525 struct bp_target_info *bp_tgt, char *buf)
10526 {
10527 if (bp_tgt->tcommands.empty ())
10528 return;
10529
10530 buf += strlen (buf);
10531
10532 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10533 buf += strlen (buf);
10534
10535 /* Concatenate all the agent expressions that are commands into the
10536 cmds parameter. */
10537 for (agent_expr *aexpr : bp_tgt->tcommands)
10538 {
10539 sprintf (buf, "X%x,", aexpr->len);
10540 buf += strlen (buf);
10541 for (int i = 0; i < aexpr->len; ++i)
10542 buf = pack_hex_byte (buf, aexpr->buf[i]);
10543 *buf = '\0';
10544 }
10545 }
10546
10547 /* Insert a breakpoint. On targets that have software breakpoint
10548 support, we ask the remote target to do the work; on targets
10549 which don't, we insert a traditional memory breakpoint. */
10550
10551 int
10552 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10553 struct bp_target_info *bp_tgt)
10554 {
10555 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10556 If it succeeds, then set the support to PACKET_ENABLE. If it
10557 fails, and the user has explicitly requested the Z support then
10558 report an error, otherwise, mark it disabled and go on. */
10559
10560 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10561 {
10562 CORE_ADDR addr = bp_tgt->reqstd_address;
10563 struct remote_state *rs;
10564 char *p, *endbuf;
10565
10566 /* Make sure the remote is pointing at the right process, if
10567 necessary. */
10568 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10569 set_general_process ();
10570
10571 rs = get_remote_state ();
10572 p = rs->buf.data ();
10573 endbuf = p + get_remote_packet_size ();
10574
10575 *(p++) = 'Z';
10576 *(p++) = '0';
10577 *(p++) = ',';
10578 addr = (ULONGEST) remote_address_masked (addr);
10579 p += hexnumstr (p, addr);
10580 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10581
10582 if (supports_evaluation_of_breakpoint_conditions ())
10583 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10584
10585 if (can_run_breakpoint_commands ())
10586 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10587
10588 putpkt (rs->buf);
10589 getpkt (&rs->buf, 0);
10590
10591 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10592 {
10593 case PACKET_ERROR:
10594 return -1;
10595 case PACKET_OK:
10596 return 0;
10597 case PACKET_UNKNOWN:
10598 break;
10599 }
10600 }
10601
10602 /* If this breakpoint has target-side commands but this stub doesn't
10603 support Z0 packets, throw error. */
10604 if (!bp_tgt->tcommands.empty ())
10605 throw_error (NOT_SUPPORTED_ERROR, _("\
10606 Target doesn't support breakpoints that have target side commands."));
10607
10608 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10609 }
10610
10611 int
10612 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10613 struct bp_target_info *bp_tgt,
10614 enum remove_bp_reason reason)
10615 {
10616 CORE_ADDR addr = bp_tgt->placed_address;
10617 struct remote_state *rs = get_remote_state ();
10618
10619 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10620 {
10621 char *p = rs->buf.data ();
10622 char *endbuf = p + get_remote_packet_size ();
10623
10624 /* Make sure the remote is pointing at the right process, if
10625 necessary. */
10626 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10627 set_general_process ();
10628
10629 *(p++) = 'z';
10630 *(p++) = '0';
10631 *(p++) = ',';
10632
10633 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10634 p += hexnumstr (p, addr);
10635 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10636
10637 putpkt (rs->buf);
10638 getpkt (&rs->buf, 0);
10639
10640 return (rs->buf[0] == 'E');
10641 }
10642
10643 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10644 }
10645
10646 static enum Z_packet_type
10647 watchpoint_to_Z_packet (int type)
10648 {
10649 switch (type)
10650 {
10651 case hw_write:
10652 return Z_PACKET_WRITE_WP;
10653 break;
10654 case hw_read:
10655 return Z_PACKET_READ_WP;
10656 break;
10657 case hw_access:
10658 return Z_PACKET_ACCESS_WP;
10659 break;
10660 default:
10661 internal_error (__FILE__, __LINE__,
10662 _("hw_bp_to_z: bad watchpoint type %d"), type);
10663 }
10664 }
10665
10666 int
10667 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10668 enum target_hw_bp_type type, struct expression *cond)
10669 {
10670 struct remote_state *rs = get_remote_state ();
10671 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10672 char *p;
10673 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10674
10675 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10676 return 1;
10677
10678 /* Make sure the remote is pointing at the right process, if
10679 necessary. */
10680 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10681 set_general_process ();
10682
10683 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10684 p = strchr (rs->buf.data (), '\0');
10685 addr = remote_address_masked (addr);
10686 p += hexnumstr (p, (ULONGEST) addr);
10687 xsnprintf (p, endbuf - p, ",%x", len);
10688
10689 putpkt (rs->buf);
10690 getpkt (&rs->buf, 0);
10691
10692 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10693 {
10694 case PACKET_ERROR:
10695 return -1;
10696 case PACKET_UNKNOWN:
10697 return 1;
10698 case PACKET_OK:
10699 return 0;
10700 }
10701 internal_error (__FILE__, __LINE__,
10702 _("remote_insert_watchpoint: reached end of function"));
10703 }
10704
10705 bool
10706 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10707 CORE_ADDR start, int length)
10708 {
10709 CORE_ADDR diff = remote_address_masked (addr - start);
10710
10711 return diff < length;
10712 }
10713
10714
10715 int
10716 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10717 enum target_hw_bp_type type, struct expression *cond)
10718 {
10719 struct remote_state *rs = get_remote_state ();
10720 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10721 char *p;
10722 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10723
10724 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10725 return -1;
10726
10727 /* Make sure the remote is pointing at the right process, if
10728 necessary. */
10729 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10730 set_general_process ();
10731
10732 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10733 p = strchr (rs->buf.data (), '\0');
10734 addr = remote_address_masked (addr);
10735 p += hexnumstr (p, (ULONGEST) addr);
10736 xsnprintf (p, endbuf - p, ",%x", len);
10737 putpkt (rs->buf);
10738 getpkt (&rs->buf, 0);
10739
10740 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10741 {
10742 case PACKET_ERROR:
10743 case PACKET_UNKNOWN:
10744 return -1;
10745 case PACKET_OK:
10746 return 0;
10747 }
10748 internal_error (__FILE__, __LINE__,
10749 _("remote_remove_watchpoint: reached end of function"));
10750 }
10751
10752
10753 static int remote_hw_watchpoint_limit = -1;
10754 static int remote_hw_watchpoint_length_limit = -1;
10755 static int remote_hw_breakpoint_limit = -1;
10756
10757 int
10758 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10759 {
10760 if (remote_hw_watchpoint_length_limit == 0)
10761 return 0;
10762 else if (remote_hw_watchpoint_length_limit < 0)
10763 return 1;
10764 else if (len <= remote_hw_watchpoint_length_limit)
10765 return 1;
10766 else
10767 return 0;
10768 }
10769
10770 int
10771 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10772 {
10773 if (type == bp_hardware_breakpoint)
10774 {
10775 if (remote_hw_breakpoint_limit == 0)
10776 return 0;
10777 else if (remote_hw_breakpoint_limit < 0)
10778 return 1;
10779 else if (cnt <= remote_hw_breakpoint_limit)
10780 return 1;
10781 }
10782 else
10783 {
10784 if (remote_hw_watchpoint_limit == 0)
10785 return 0;
10786 else if (remote_hw_watchpoint_limit < 0)
10787 return 1;
10788 else if (ot)
10789 return -1;
10790 else if (cnt <= remote_hw_watchpoint_limit)
10791 return 1;
10792 }
10793 return -1;
10794 }
10795
10796 /* The to_stopped_by_sw_breakpoint method of target remote. */
10797
10798 bool
10799 remote_target::stopped_by_sw_breakpoint ()
10800 {
10801 struct thread_info *thread = inferior_thread ();
10802
10803 return (thread->priv != NULL
10804 && (get_remote_thread_info (thread)->stop_reason
10805 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10806 }
10807
10808 /* The to_supports_stopped_by_sw_breakpoint method of target
10809 remote. */
10810
10811 bool
10812 remote_target::supports_stopped_by_sw_breakpoint ()
10813 {
10814 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10815 }
10816
10817 /* The to_stopped_by_hw_breakpoint method of target remote. */
10818
10819 bool
10820 remote_target::stopped_by_hw_breakpoint ()
10821 {
10822 struct thread_info *thread = inferior_thread ();
10823
10824 return (thread->priv != NULL
10825 && (get_remote_thread_info (thread)->stop_reason
10826 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10827 }
10828
10829 /* The to_supports_stopped_by_hw_breakpoint method of target
10830 remote. */
10831
10832 bool
10833 remote_target::supports_stopped_by_hw_breakpoint ()
10834 {
10835 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10836 }
10837
10838 bool
10839 remote_target::stopped_by_watchpoint ()
10840 {
10841 struct thread_info *thread = inferior_thread ();
10842
10843 return (thread->priv != NULL
10844 && (get_remote_thread_info (thread)->stop_reason
10845 == TARGET_STOPPED_BY_WATCHPOINT));
10846 }
10847
10848 bool
10849 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10850 {
10851 struct thread_info *thread = inferior_thread ();
10852
10853 if (thread->priv != NULL
10854 && (get_remote_thread_info (thread)->stop_reason
10855 == TARGET_STOPPED_BY_WATCHPOINT))
10856 {
10857 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10858 return true;
10859 }
10860
10861 return false;
10862 }
10863
10864
10865 int
10866 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10867 struct bp_target_info *bp_tgt)
10868 {
10869 CORE_ADDR addr = bp_tgt->reqstd_address;
10870 struct remote_state *rs;
10871 char *p, *endbuf;
10872 char *message;
10873
10874 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10875 return -1;
10876
10877 /* Make sure the remote is pointing at the right process, if
10878 necessary. */
10879 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10880 set_general_process ();
10881
10882 rs = get_remote_state ();
10883 p = rs->buf.data ();
10884 endbuf = p + get_remote_packet_size ();
10885
10886 *(p++) = 'Z';
10887 *(p++) = '1';
10888 *(p++) = ',';
10889
10890 addr = remote_address_masked (addr);
10891 p += hexnumstr (p, (ULONGEST) addr);
10892 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10893
10894 if (supports_evaluation_of_breakpoint_conditions ())
10895 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10896
10897 if (can_run_breakpoint_commands ())
10898 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10899
10900 putpkt (rs->buf);
10901 getpkt (&rs->buf, 0);
10902
10903 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10904 {
10905 case PACKET_ERROR:
10906 if (rs->buf[1] == '.')
10907 {
10908 message = strchr (&rs->buf[2], '.');
10909 if (message)
10910 error (_("Remote failure reply: %s"), message + 1);
10911 }
10912 return -1;
10913 case PACKET_UNKNOWN:
10914 return -1;
10915 case PACKET_OK:
10916 return 0;
10917 }
10918 internal_error (__FILE__, __LINE__,
10919 _("remote_insert_hw_breakpoint: reached end of function"));
10920 }
10921
10922
10923 int
10924 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10925 struct bp_target_info *bp_tgt)
10926 {
10927 CORE_ADDR addr;
10928 struct remote_state *rs = get_remote_state ();
10929 char *p = rs->buf.data ();
10930 char *endbuf = p + get_remote_packet_size ();
10931
10932 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10933 return -1;
10934
10935 /* Make sure the remote is pointing at the right process, if
10936 necessary. */
10937 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10938 set_general_process ();
10939
10940 *(p++) = 'z';
10941 *(p++) = '1';
10942 *(p++) = ',';
10943
10944 addr = remote_address_masked (bp_tgt->placed_address);
10945 p += hexnumstr (p, (ULONGEST) addr);
10946 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10947
10948 putpkt (rs->buf);
10949 getpkt (&rs->buf, 0);
10950
10951 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10952 {
10953 case PACKET_ERROR:
10954 case PACKET_UNKNOWN:
10955 return -1;
10956 case PACKET_OK:
10957 return 0;
10958 }
10959 internal_error (__FILE__, __LINE__,
10960 _("remote_remove_hw_breakpoint: reached end of function"));
10961 }
10962
10963 /* Verify memory using the "qCRC:" request. */
10964
10965 int
10966 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10967 {
10968 struct remote_state *rs = get_remote_state ();
10969 unsigned long host_crc, target_crc;
10970 char *tmp;
10971
10972 /* It doesn't make sense to use qCRC if the remote target is
10973 connected but not running. */
10974 if (target_has_execution ()
10975 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10976 {
10977 enum packet_result result;
10978
10979 /* Make sure the remote is pointing at the right process. */
10980 set_general_process ();
10981
10982 /* FIXME: assumes lma can fit into long. */
10983 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10984 (long) lma, (long) size);
10985 putpkt (rs->buf);
10986
10987 /* Be clever; compute the host_crc before waiting for target
10988 reply. */
10989 host_crc = xcrc32 (data, size, 0xffffffff);
10990
10991 getpkt (&rs->buf, 0);
10992
10993 result = packet_ok (rs->buf,
10994 &remote_protocol_packets[PACKET_qCRC]);
10995 if (result == PACKET_ERROR)
10996 return -1;
10997 else if (result == PACKET_OK)
10998 {
10999 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
11000 target_crc = target_crc * 16 + fromhex (*tmp);
11001
11002 return (host_crc == target_crc);
11003 }
11004 }
11005
11006 return simple_verify_memory (this, data, lma, size);
11007 }
11008
11009 /* compare-sections command
11010
11011 With no arguments, compares each loadable section in the exec bfd
11012 with the same memory range on the target, and reports mismatches.
11013 Useful for verifying the image on the target against the exec file. */
11014
11015 static void
11016 compare_sections_command (const char *args, int from_tty)
11017 {
11018 asection *s;
11019 const char *sectname;
11020 bfd_size_type size;
11021 bfd_vma lma;
11022 int matched = 0;
11023 int mismatched = 0;
11024 int res;
11025 int read_only = 0;
11026
11027 if (!current_program_space->exec_bfd ())
11028 error (_("command cannot be used without an exec file"));
11029
11030 if (args != NULL && strcmp (args, "-r") == 0)
11031 {
11032 read_only = 1;
11033 args = NULL;
11034 }
11035
11036 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
11037 {
11038 if (!(s->flags & SEC_LOAD))
11039 continue; /* Skip non-loadable section. */
11040
11041 if (read_only && (s->flags & SEC_READONLY) == 0)
11042 continue; /* Skip writeable sections */
11043
11044 size = bfd_section_size (s);
11045 if (size == 0)
11046 continue; /* Skip zero-length section. */
11047
11048 sectname = bfd_section_name (s);
11049 if (args && strcmp (args, sectname) != 0)
11050 continue; /* Not the section selected by user. */
11051
11052 matched = 1; /* Do this section. */
11053 lma = s->lma;
11054
11055 gdb::byte_vector sectdata (size);
11056 bfd_get_section_contents (current_program_space->exec_bfd (), s,
11057 sectdata.data (), 0, size);
11058
11059 res = target_verify_memory (sectdata.data (), lma, size);
11060
11061 if (res == -1)
11062 error (_("target memory fault, section %s, range %s -- %s"), sectname,
11063 paddress (target_gdbarch (), lma),
11064 paddress (target_gdbarch (), lma + size));
11065
11066 printf_filtered ("Section %s, range %s -- %s: ", sectname,
11067 paddress (target_gdbarch (), lma),
11068 paddress (target_gdbarch (), lma + size));
11069 if (res)
11070 printf_filtered ("matched.\n");
11071 else
11072 {
11073 printf_filtered ("MIS-MATCHED!\n");
11074 mismatched++;
11075 }
11076 }
11077 if (mismatched > 0)
11078 warning (_("One or more sections of the target image does not match\n\
11079 the loaded file\n"));
11080 if (args && !matched)
11081 printf_filtered (_("No loaded section named '%s'.\n"), args);
11082 }
11083
11084 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
11085 into remote target. The number of bytes written to the remote
11086 target is returned, or -1 for error. */
11087
11088 target_xfer_status
11089 remote_target::remote_write_qxfer (const char *object_name,
11090 const char *annex, const gdb_byte *writebuf,
11091 ULONGEST offset, LONGEST len,
11092 ULONGEST *xfered_len,
11093 struct packet_config *packet)
11094 {
11095 int i, buf_len;
11096 ULONGEST n;
11097 struct remote_state *rs = get_remote_state ();
11098 int max_size = get_memory_write_packet_size ();
11099
11100 if (packet_config_support (packet) == PACKET_DISABLE)
11101 return TARGET_XFER_E_IO;
11102
11103 /* Insert header. */
11104 i = snprintf (rs->buf.data (), max_size,
11105 "qXfer:%s:write:%s:%s:",
11106 object_name, annex ? annex : "",
11107 phex_nz (offset, sizeof offset));
11108 max_size -= (i + 1);
11109
11110 /* Escape as much data as fits into rs->buf. */
11111 buf_len = remote_escape_output
11112 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
11113
11114 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
11115 || getpkt_sane (&rs->buf, 0) < 0
11116 || packet_ok (rs->buf, packet) != PACKET_OK)
11117 return TARGET_XFER_E_IO;
11118
11119 unpack_varlen_hex (rs->buf.data (), &n);
11120
11121 *xfered_len = n;
11122 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11123 }
11124
11125 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
11126 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
11127 number of bytes read is returned, or 0 for EOF, or -1 for error.
11128 The number of bytes read may be less than LEN without indicating an
11129 EOF. PACKET is checked and updated to indicate whether the remote
11130 target supports this object. */
11131
11132 target_xfer_status
11133 remote_target::remote_read_qxfer (const char *object_name,
11134 const char *annex,
11135 gdb_byte *readbuf, ULONGEST offset,
11136 LONGEST len,
11137 ULONGEST *xfered_len,
11138 struct packet_config *packet)
11139 {
11140 struct remote_state *rs = get_remote_state ();
11141 LONGEST i, n, packet_len;
11142
11143 if (packet_config_support (packet) == PACKET_DISABLE)
11144 return TARGET_XFER_E_IO;
11145
11146 /* Check whether we've cached an end-of-object packet that matches
11147 this request. */
11148 if (rs->finished_object)
11149 {
11150 if (strcmp (object_name, rs->finished_object) == 0
11151 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11152 && offset == rs->finished_offset)
11153 return TARGET_XFER_EOF;
11154
11155
11156 /* Otherwise, we're now reading something different. Discard
11157 the cache. */
11158 xfree (rs->finished_object);
11159 xfree (rs->finished_annex);
11160 rs->finished_object = NULL;
11161 rs->finished_annex = NULL;
11162 }
11163
11164 /* Request only enough to fit in a single packet. The actual data
11165 may not, since we don't know how much of it will need to be escaped;
11166 the target is free to respond with slightly less data. We subtract
11167 five to account for the response type and the protocol frame. */
11168 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11169 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11170 "qXfer:%s:read:%s:%s,%s",
11171 object_name, annex ? annex : "",
11172 phex_nz (offset, sizeof offset),
11173 phex_nz (n, sizeof n));
11174 i = putpkt (rs->buf);
11175 if (i < 0)
11176 return TARGET_XFER_E_IO;
11177
11178 rs->buf[0] = '\0';
11179 packet_len = getpkt_sane (&rs->buf, 0);
11180 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11181 return TARGET_XFER_E_IO;
11182
11183 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11184 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11185
11186 /* 'm' means there is (or at least might be) more data after this
11187 batch. That does not make sense unless there's at least one byte
11188 of data in this reply. */
11189 if (rs->buf[0] == 'm' && packet_len == 1)
11190 error (_("Remote qXfer reply contained no data."));
11191
11192 /* Got some data. */
11193 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11194 packet_len - 1, readbuf, n);
11195
11196 /* 'l' is an EOF marker, possibly including a final block of data,
11197 or possibly empty. If we have the final block of a non-empty
11198 object, record this fact to bypass a subsequent partial read. */
11199 if (rs->buf[0] == 'l' && offset + i > 0)
11200 {
11201 rs->finished_object = xstrdup (object_name);
11202 rs->finished_annex = xstrdup (annex ? annex : "");
11203 rs->finished_offset = offset + i;
11204 }
11205
11206 if (i == 0)
11207 return TARGET_XFER_EOF;
11208 else
11209 {
11210 *xfered_len = i;
11211 return TARGET_XFER_OK;
11212 }
11213 }
11214
11215 enum target_xfer_status
11216 remote_target::xfer_partial (enum target_object object,
11217 const char *annex, gdb_byte *readbuf,
11218 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11219 ULONGEST *xfered_len)
11220 {
11221 struct remote_state *rs;
11222 int i;
11223 char *p2;
11224 char query_type;
11225 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11226
11227 set_remote_traceframe ();
11228 set_general_thread (inferior_ptid);
11229
11230 rs = get_remote_state ();
11231
11232 /* Handle memory using the standard memory routines. */
11233 if (object == TARGET_OBJECT_MEMORY)
11234 {
11235 /* If the remote target is connected but not running, we should
11236 pass this request down to a lower stratum (e.g. the executable
11237 file). */
11238 if (!target_has_execution ())
11239 return TARGET_XFER_EOF;
11240
11241 if (writebuf != NULL)
11242 return remote_write_bytes (offset, writebuf, len, unit_size,
11243 xfered_len);
11244 else
11245 return remote_read_bytes (offset, readbuf, len, unit_size,
11246 xfered_len);
11247 }
11248
11249 /* Handle extra signal info using qxfer packets. */
11250 if (object == TARGET_OBJECT_SIGNAL_INFO)
11251 {
11252 if (readbuf)
11253 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11254 xfered_len, &remote_protocol_packets
11255 [PACKET_qXfer_siginfo_read]);
11256 else
11257 return remote_write_qxfer ("siginfo", annex,
11258 writebuf, offset, len, xfered_len,
11259 &remote_protocol_packets
11260 [PACKET_qXfer_siginfo_write]);
11261 }
11262
11263 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11264 {
11265 if (readbuf)
11266 return remote_read_qxfer ("statictrace", annex,
11267 readbuf, offset, len, xfered_len,
11268 &remote_protocol_packets
11269 [PACKET_qXfer_statictrace_read]);
11270 else
11271 return TARGET_XFER_E_IO;
11272 }
11273
11274 /* Only handle flash writes. */
11275 if (writebuf != NULL)
11276 {
11277 switch (object)
11278 {
11279 case TARGET_OBJECT_FLASH:
11280 return remote_flash_write (offset, len, xfered_len,
11281 writebuf);
11282
11283 default:
11284 return TARGET_XFER_E_IO;
11285 }
11286 }
11287
11288 /* Map pre-existing objects onto letters. DO NOT do this for new
11289 objects!!! Instead specify new query packets. */
11290 switch (object)
11291 {
11292 case TARGET_OBJECT_AVR:
11293 query_type = 'R';
11294 break;
11295
11296 case TARGET_OBJECT_AUXV:
11297 gdb_assert (annex == NULL);
11298 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11299 xfered_len,
11300 &remote_protocol_packets[PACKET_qXfer_auxv]);
11301
11302 case TARGET_OBJECT_AVAILABLE_FEATURES:
11303 return remote_read_qxfer
11304 ("features", annex, readbuf, offset, len, xfered_len,
11305 &remote_protocol_packets[PACKET_qXfer_features]);
11306
11307 case TARGET_OBJECT_LIBRARIES:
11308 return remote_read_qxfer
11309 ("libraries", annex, readbuf, offset, len, xfered_len,
11310 &remote_protocol_packets[PACKET_qXfer_libraries]);
11311
11312 case TARGET_OBJECT_LIBRARIES_SVR4:
11313 return remote_read_qxfer
11314 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11315 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11316
11317 case TARGET_OBJECT_MEMORY_MAP:
11318 gdb_assert (annex == NULL);
11319 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11320 xfered_len,
11321 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11322
11323 case TARGET_OBJECT_OSDATA:
11324 /* Should only get here if we're connected. */
11325 gdb_assert (rs->remote_desc);
11326 return remote_read_qxfer
11327 ("osdata", annex, readbuf, offset, len, xfered_len,
11328 &remote_protocol_packets[PACKET_qXfer_osdata]);
11329
11330 case TARGET_OBJECT_THREADS:
11331 gdb_assert (annex == NULL);
11332 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11333 xfered_len,
11334 &remote_protocol_packets[PACKET_qXfer_threads]);
11335
11336 case TARGET_OBJECT_TRACEFRAME_INFO:
11337 gdb_assert (annex == NULL);
11338 return remote_read_qxfer
11339 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11340 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11341
11342 case TARGET_OBJECT_FDPIC:
11343 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11344 xfered_len,
11345 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11346
11347 case TARGET_OBJECT_OPENVMS_UIB:
11348 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11349 xfered_len,
11350 &remote_protocol_packets[PACKET_qXfer_uib]);
11351
11352 case TARGET_OBJECT_BTRACE:
11353 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11354 xfered_len,
11355 &remote_protocol_packets[PACKET_qXfer_btrace]);
11356
11357 case TARGET_OBJECT_BTRACE_CONF:
11358 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11359 len, xfered_len,
11360 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11361
11362 case TARGET_OBJECT_EXEC_FILE:
11363 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11364 len, xfered_len,
11365 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11366
11367 default:
11368 return TARGET_XFER_E_IO;
11369 }
11370
11371 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11372 large enough let the caller deal with it. */
11373 if (len < get_remote_packet_size ())
11374 return TARGET_XFER_E_IO;
11375 len = get_remote_packet_size ();
11376
11377 /* Except for querying the minimum buffer size, target must be open. */
11378 if (!rs->remote_desc)
11379 error (_("remote query is only available after target open"));
11380
11381 gdb_assert (annex != NULL);
11382 gdb_assert (readbuf != NULL);
11383
11384 p2 = rs->buf.data ();
11385 *p2++ = 'q';
11386 *p2++ = query_type;
11387
11388 /* We used one buffer char for the remote protocol q command and
11389 another for the query type. As the remote protocol encapsulation
11390 uses 4 chars plus one extra in case we are debugging
11391 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11392 string. */
11393 i = 0;
11394 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11395 {
11396 /* Bad caller may have sent forbidden characters. */
11397 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11398 *p2++ = annex[i];
11399 i++;
11400 }
11401 *p2 = '\0';
11402 gdb_assert (annex[i] == '\0');
11403
11404 i = putpkt (rs->buf);
11405 if (i < 0)
11406 return TARGET_XFER_E_IO;
11407
11408 getpkt (&rs->buf, 0);
11409 strcpy ((char *) readbuf, rs->buf.data ());
11410
11411 *xfered_len = strlen ((char *) readbuf);
11412 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11413 }
11414
11415 /* Implementation of to_get_memory_xfer_limit. */
11416
11417 ULONGEST
11418 remote_target::get_memory_xfer_limit ()
11419 {
11420 return get_memory_write_packet_size ();
11421 }
11422
11423 int
11424 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11425 const gdb_byte *pattern, ULONGEST pattern_len,
11426 CORE_ADDR *found_addrp)
11427 {
11428 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11429 struct remote_state *rs = get_remote_state ();
11430 int max_size = get_memory_write_packet_size ();
11431 struct packet_config *packet =
11432 &remote_protocol_packets[PACKET_qSearch_memory];
11433 /* Number of packet bytes used to encode the pattern;
11434 this could be more than PATTERN_LEN due to escape characters. */
11435 int escaped_pattern_len;
11436 /* Amount of pattern that was encodable in the packet. */
11437 int used_pattern_len;
11438 int i;
11439 int found;
11440 ULONGEST found_addr;
11441
11442 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11443 {
11444 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11445 == len);
11446 };
11447
11448 /* Don't go to the target if we don't have to. This is done before
11449 checking packet_config_support to avoid the possibility that a
11450 success for this edge case means the facility works in
11451 general. */
11452 if (pattern_len > search_space_len)
11453 return 0;
11454 if (pattern_len == 0)
11455 {
11456 *found_addrp = start_addr;
11457 return 1;
11458 }
11459
11460 /* If we already know the packet isn't supported, fall back to the simple
11461 way of searching memory. */
11462
11463 if (packet_config_support (packet) == PACKET_DISABLE)
11464 {
11465 /* Target doesn't provided special support, fall back and use the
11466 standard support (copy memory and do the search here). */
11467 return simple_search_memory (read_memory, start_addr, search_space_len,
11468 pattern, pattern_len, found_addrp);
11469 }
11470
11471 /* Make sure the remote is pointing at the right process. */
11472 set_general_process ();
11473
11474 /* Insert header. */
11475 i = snprintf (rs->buf.data (), max_size,
11476 "qSearch:memory:%s;%s;",
11477 phex_nz (start_addr, addr_size),
11478 phex_nz (search_space_len, sizeof (search_space_len)));
11479 max_size -= (i + 1);
11480
11481 /* Escape as much data as fits into rs->buf. */
11482 escaped_pattern_len =
11483 remote_escape_output (pattern, pattern_len, 1,
11484 (gdb_byte *) rs->buf.data () + i,
11485 &used_pattern_len, max_size);
11486
11487 /* Bail if the pattern is too large. */
11488 if (used_pattern_len != pattern_len)
11489 error (_("Pattern is too large to transmit to remote target."));
11490
11491 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11492 || getpkt_sane (&rs->buf, 0) < 0
11493 || packet_ok (rs->buf, packet) != PACKET_OK)
11494 {
11495 /* The request may not have worked because the command is not
11496 supported. If so, fall back to the simple way. */
11497 if (packet_config_support (packet) == PACKET_DISABLE)
11498 {
11499 return simple_search_memory (read_memory, start_addr, search_space_len,
11500 pattern, pattern_len, found_addrp);
11501 }
11502 return -1;
11503 }
11504
11505 if (rs->buf[0] == '0')
11506 found = 0;
11507 else if (rs->buf[0] == '1')
11508 {
11509 found = 1;
11510 if (rs->buf[1] != ',')
11511 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11512 unpack_varlen_hex (&rs->buf[2], &found_addr);
11513 *found_addrp = found_addr;
11514 }
11515 else
11516 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11517
11518 return found;
11519 }
11520
11521 void
11522 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11523 {
11524 struct remote_state *rs = get_remote_state ();
11525 char *p = rs->buf.data ();
11526
11527 if (!rs->remote_desc)
11528 error (_("remote rcmd is only available after target open"));
11529
11530 /* Send a NULL command across as an empty command. */
11531 if (command == NULL)
11532 command = "";
11533
11534 /* The query prefix. */
11535 strcpy (rs->buf.data (), "qRcmd,");
11536 p = strchr (rs->buf.data (), '\0');
11537
11538 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11539 > get_remote_packet_size ())
11540 error (_("\"monitor\" command ``%s'' is too long."), command);
11541
11542 /* Encode the actual command. */
11543 bin2hex ((const gdb_byte *) command, p, strlen (command));
11544
11545 if (putpkt (rs->buf) < 0)
11546 error (_("Communication problem with target."));
11547
11548 /* get/display the response */
11549 while (1)
11550 {
11551 char *buf;
11552
11553 /* XXX - see also remote_get_noisy_reply(). */
11554 QUIT; /* Allow user to bail out with ^C. */
11555 rs->buf[0] = '\0';
11556 if (getpkt_sane (&rs->buf, 0) == -1)
11557 {
11558 /* Timeout. Continue to (try to) read responses.
11559 This is better than stopping with an error, assuming the stub
11560 is still executing the (long) monitor command.
11561 If needed, the user can interrupt gdb using C-c, obtaining
11562 an effect similar to stop on timeout. */
11563 continue;
11564 }
11565 buf = rs->buf.data ();
11566 if (buf[0] == '\0')
11567 error (_("Target does not support this command."));
11568 if (buf[0] == 'O' && buf[1] != 'K')
11569 {
11570 remote_console_output (buf + 1); /* 'O' message from stub. */
11571 continue;
11572 }
11573 if (strcmp (buf, "OK") == 0)
11574 break;
11575 if (strlen (buf) == 3 && buf[0] == 'E'
11576 && isdigit (buf[1]) && isdigit (buf[2]))
11577 {
11578 error (_("Protocol error with Rcmd"));
11579 }
11580 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11581 {
11582 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11583
11584 fputc_unfiltered (c, outbuf);
11585 }
11586 break;
11587 }
11588 }
11589
11590 std::vector<mem_region>
11591 remote_target::memory_map ()
11592 {
11593 std::vector<mem_region> result;
11594 gdb::optional<gdb::char_vector> text
11595 = target_read_stralloc (current_inferior ()->top_target (),
11596 TARGET_OBJECT_MEMORY_MAP, NULL);
11597
11598 if (text)
11599 result = parse_memory_map (text->data ());
11600
11601 return result;
11602 }
11603
11604 static void
11605 packet_command (const char *args, int from_tty)
11606 {
11607 remote_target *remote = get_current_remote_target ();
11608
11609 if (remote == nullptr)
11610 error (_("command can only be used with remote target"));
11611
11612 remote->packet_command (args, from_tty);
11613 }
11614
11615 void
11616 remote_target::packet_command (const char *args, int from_tty)
11617 {
11618 if (!args)
11619 error (_("remote-packet command requires packet text as argument"));
11620
11621 puts_filtered ("sending: ");
11622 print_packet (args);
11623 puts_filtered ("\n");
11624 putpkt (args);
11625
11626 remote_state *rs = get_remote_state ();
11627
11628 getpkt (&rs->buf, 0);
11629 puts_filtered ("received: ");
11630 print_packet (rs->buf.data ());
11631 puts_filtered ("\n");
11632 }
11633
11634 #if 0
11635 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11636
11637 static void display_thread_info (struct gdb_ext_thread_info *info);
11638
11639 static void threadset_test_cmd (char *cmd, int tty);
11640
11641 static void threadalive_test (char *cmd, int tty);
11642
11643 static void threadlist_test_cmd (char *cmd, int tty);
11644
11645 int get_and_display_threadinfo (threadref *ref);
11646
11647 static void threadinfo_test_cmd (char *cmd, int tty);
11648
11649 static int thread_display_step (threadref *ref, void *context);
11650
11651 static void threadlist_update_test_cmd (char *cmd, int tty);
11652
11653 static void init_remote_threadtests (void);
11654
11655 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11656
11657 static void
11658 threadset_test_cmd (const char *cmd, int tty)
11659 {
11660 int sample_thread = SAMPLE_THREAD;
11661
11662 printf_filtered (_("Remote threadset test\n"));
11663 set_general_thread (sample_thread);
11664 }
11665
11666
11667 static void
11668 threadalive_test (const char *cmd, int tty)
11669 {
11670 int sample_thread = SAMPLE_THREAD;
11671 int pid = inferior_ptid.pid ();
11672 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11673
11674 if (remote_thread_alive (ptid))
11675 printf_filtered ("PASS: Thread alive test\n");
11676 else
11677 printf_filtered ("FAIL: Thread alive test\n");
11678 }
11679
11680 void output_threadid (char *title, threadref *ref);
11681
11682 void
11683 output_threadid (char *title, threadref *ref)
11684 {
11685 char hexid[20];
11686
11687 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11688 hexid[16] = 0;
11689 printf_filtered ("%s %s\n", title, (&hexid[0]));
11690 }
11691
11692 static void
11693 threadlist_test_cmd (const char *cmd, int tty)
11694 {
11695 int startflag = 1;
11696 threadref nextthread;
11697 int done, result_count;
11698 threadref threadlist[3];
11699
11700 printf_filtered ("Remote Threadlist test\n");
11701 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11702 &result_count, &threadlist[0]))
11703 printf_filtered ("FAIL: threadlist test\n");
11704 else
11705 {
11706 threadref *scan = threadlist;
11707 threadref *limit = scan + result_count;
11708
11709 while (scan < limit)
11710 output_threadid (" thread ", scan++);
11711 }
11712 }
11713
11714 void
11715 display_thread_info (struct gdb_ext_thread_info *info)
11716 {
11717 output_threadid ("Threadid: ", &info->threadid);
11718 printf_filtered ("Name: %s\n ", info->shortname);
11719 printf_filtered ("State: %s\n", info->display);
11720 printf_filtered ("other: %s\n\n", info->more_display);
11721 }
11722
11723 int
11724 get_and_display_threadinfo (threadref *ref)
11725 {
11726 int result;
11727 int set;
11728 struct gdb_ext_thread_info threadinfo;
11729
11730 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11731 | TAG_MOREDISPLAY | TAG_DISPLAY;
11732 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11733 display_thread_info (&threadinfo);
11734 return result;
11735 }
11736
11737 static void
11738 threadinfo_test_cmd (const char *cmd, int tty)
11739 {
11740 int athread = SAMPLE_THREAD;
11741 threadref thread;
11742 int set;
11743
11744 int_to_threadref (&thread, athread);
11745 printf_filtered ("Remote Threadinfo test\n");
11746 if (!get_and_display_threadinfo (&thread))
11747 printf_filtered ("FAIL cannot get thread info\n");
11748 }
11749
11750 static int
11751 thread_display_step (threadref *ref, void *context)
11752 {
11753 /* output_threadid(" threadstep ",ref); *//* simple test */
11754 return get_and_display_threadinfo (ref);
11755 }
11756
11757 static void
11758 threadlist_update_test_cmd (const char *cmd, int tty)
11759 {
11760 printf_filtered ("Remote Threadlist update test\n");
11761 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11762 }
11763
11764 static void
11765 init_remote_threadtests (void)
11766 {
11767 add_com ("tlist", class_obscure, threadlist_test_cmd,
11768 _("Fetch and print the remote list of "
11769 "thread identifiers, one pkt only."));
11770 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11771 _("Fetch and display info about one thread."));
11772 add_com ("tset", class_obscure, threadset_test_cmd,
11773 _("Test setting to a different thread."));
11774 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11775 _("Iterate through updating all remote thread info."));
11776 add_com ("talive", class_obscure, threadalive_test,
11777 _("Remote thread alive test."));
11778 }
11779
11780 #endif /* 0 */
11781
11782 /* Convert a thread ID to a string. */
11783
11784 std::string
11785 remote_target::pid_to_str (ptid_t ptid)
11786 {
11787 struct remote_state *rs = get_remote_state ();
11788
11789 if (ptid == null_ptid)
11790 return normal_pid_to_str (ptid);
11791 else if (ptid.is_pid ())
11792 {
11793 /* Printing an inferior target id. */
11794
11795 /* When multi-process extensions are off, there's no way in the
11796 remote protocol to know the remote process id, if there's any
11797 at all. There's one exception --- when we're connected with
11798 target extended-remote, and we manually attached to a process
11799 with "attach PID". We don't record anywhere a flag that
11800 allows us to distinguish that case from the case of
11801 connecting with extended-remote and the stub already being
11802 attached to a process, and reporting yes to qAttached, hence
11803 no smart special casing here. */
11804 if (!remote_multi_process_p (rs))
11805 return "Remote target";
11806
11807 return normal_pid_to_str (ptid);
11808 }
11809 else
11810 {
11811 if (magic_null_ptid == ptid)
11812 return "Thread <main>";
11813 else if (remote_multi_process_p (rs))
11814 if (ptid.lwp () == 0)
11815 return normal_pid_to_str (ptid);
11816 else
11817 return string_printf ("Thread %d.%ld",
11818 ptid.pid (), ptid.lwp ());
11819 else
11820 return string_printf ("Thread %ld", ptid.lwp ());
11821 }
11822 }
11823
11824 /* Get the address of the thread local variable in OBJFILE which is
11825 stored at OFFSET within the thread local storage for thread PTID. */
11826
11827 CORE_ADDR
11828 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11829 CORE_ADDR offset)
11830 {
11831 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11832 {
11833 struct remote_state *rs = get_remote_state ();
11834 char *p = rs->buf.data ();
11835 char *endp = p + get_remote_packet_size ();
11836 enum packet_result result;
11837
11838 strcpy (p, "qGetTLSAddr:");
11839 p += strlen (p);
11840 p = write_ptid (p, endp, ptid);
11841 *p++ = ',';
11842 p += hexnumstr (p, offset);
11843 *p++ = ',';
11844 p += hexnumstr (p, lm);
11845 *p++ = '\0';
11846
11847 putpkt (rs->buf);
11848 getpkt (&rs->buf, 0);
11849 result = packet_ok (rs->buf,
11850 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11851 if (result == PACKET_OK)
11852 {
11853 ULONGEST addr;
11854
11855 unpack_varlen_hex (rs->buf.data (), &addr);
11856 return addr;
11857 }
11858 else if (result == PACKET_UNKNOWN)
11859 throw_error (TLS_GENERIC_ERROR,
11860 _("Remote target doesn't support qGetTLSAddr packet"));
11861 else
11862 throw_error (TLS_GENERIC_ERROR,
11863 _("Remote target failed to process qGetTLSAddr request"));
11864 }
11865 else
11866 throw_error (TLS_GENERIC_ERROR,
11867 _("TLS not supported or disabled on this target"));
11868 /* Not reached. */
11869 return 0;
11870 }
11871
11872 /* Provide thread local base, i.e. Thread Information Block address.
11873 Returns 1 if ptid is found and thread_local_base is non zero. */
11874
11875 bool
11876 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11877 {
11878 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11879 {
11880 struct remote_state *rs = get_remote_state ();
11881 char *p = rs->buf.data ();
11882 char *endp = p + get_remote_packet_size ();
11883 enum packet_result result;
11884
11885 strcpy (p, "qGetTIBAddr:");
11886 p += strlen (p);
11887 p = write_ptid (p, endp, ptid);
11888 *p++ = '\0';
11889
11890 putpkt (rs->buf);
11891 getpkt (&rs->buf, 0);
11892 result = packet_ok (rs->buf,
11893 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11894 if (result == PACKET_OK)
11895 {
11896 ULONGEST val;
11897 unpack_varlen_hex (rs->buf.data (), &val);
11898 if (addr)
11899 *addr = (CORE_ADDR) val;
11900 return true;
11901 }
11902 else if (result == PACKET_UNKNOWN)
11903 error (_("Remote target doesn't support qGetTIBAddr packet"));
11904 else
11905 error (_("Remote target failed to process qGetTIBAddr request"));
11906 }
11907 else
11908 error (_("qGetTIBAddr not supported or disabled on this target"));
11909 /* Not reached. */
11910 return false;
11911 }
11912
11913 /* Support for inferring a target description based on the current
11914 architecture and the size of a 'g' packet. While the 'g' packet
11915 can have any size (since optional registers can be left off the
11916 end), some sizes are easily recognizable given knowledge of the
11917 approximate architecture. */
11918
11919 struct remote_g_packet_guess
11920 {
11921 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11922 : bytes (bytes_),
11923 tdesc (tdesc_)
11924 {
11925 }
11926
11927 int bytes;
11928 const struct target_desc *tdesc;
11929 };
11930
11931 struct remote_g_packet_data : public allocate_on_obstack
11932 {
11933 std::vector<remote_g_packet_guess> guesses;
11934 };
11935
11936 static struct gdbarch_data *remote_g_packet_data_handle;
11937
11938 static void *
11939 remote_g_packet_data_init (struct obstack *obstack)
11940 {
11941 return new (obstack) remote_g_packet_data;
11942 }
11943
11944 void
11945 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11946 const struct target_desc *tdesc)
11947 {
11948 struct remote_g_packet_data *data
11949 = ((struct remote_g_packet_data *)
11950 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11951
11952 gdb_assert (tdesc != NULL);
11953
11954 for (const remote_g_packet_guess &guess : data->guesses)
11955 if (guess.bytes == bytes)
11956 internal_error (__FILE__, __LINE__,
11957 _("Duplicate g packet description added for size %d"),
11958 bytes);
11959
11960 data->guesses.emplace_back (bytes, tdesc);
11961 }
11962
11963 /* Return true if remote_read_description would do anything on this target
11964 and architecture, false otherwise. */
11965
11966 static bool
11967 remote_read_description_p (struct target_ops *target)
11968 {
11969 struct remote_g_packet_data *data
11970 = ((struct remote_g_packet_data *)
11971 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11972
11973 return !data->guesses.empty ();
11974 }
11975
11976 const struct target_desc *
11977 remote_target::read_description ()
11978 {
11979 struct remote_g_packet_data *data
11980 = ((struct remote_g_packet_data *)
11981 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11982
11983 /* Do not try this during initial connection, when we do not know
11984 whether there is a running but stopped thread. */
11985 if (!target_has_execution () || inferior_ptid == null_ptid)
11986 return beneath ()->read_description ();
11987
11988 if (!data->guesses.empty ())
11989 {
11990 int bytes = send_g_packet ();
11991
11992 for (const remote_g_packet_guess &guess : data->guesses)
11993 if (guess.bytes == bytes)
11994 return guess.tdesc;
11995
11996 /* We discard the g packet. A minor optimization would be to
11997 hold on to it, and fill the register cache once we have selected
11998 an architecture, but it's too tricky to do safely. */
11999 }
12000
12001 return beneath ()->read_description ();
12002 }
12003
12004 /* Remote file transfer support. This is host-initiated I/O, not
12005 target-initiated; for target-initiated, see remote-fileio.c. */
12006
12007 /* If *LEFT is at least the length of STRING, copy STRING to
12008 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12009 decrease *LEFT. Otherwise raise an error. */
12010
12011 static void
12012 remote_buffer_add_string (char **buffer, int *left, const char *string)
12013 {
12014 int len = strlen (string);
12015
12016 if (len > *left)
12017 error (_("Packet too long for target."));
12018
12019 memcpy (*buffer, string, len);
12020 *buffer += len;
12021 *left -= len;
12022
12023 /* NUL-terminate the buffer as a convenience, if there is
12024 room. */
12025 if (*left)
12026 **buffer = '\0';
12027 }
12028
12029 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
12030 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12031 decrease *LEFT. Otherwise raise an error. */
12032
12033 static void
12034 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
12035 int len)
12036 {
12037 if (2 * len > *left)
12038 error (_("Packet too long for target."));
12039
12040 bin2hex (bytes, *buffer, len);
12041 *buffer += 2 * len;
12042 *left -= 2 * len;
12043
12044 /* NUL-terminate the buffer as a convenience, if there is
12045 room. */
12046 if (*left)
12047 **buffer = '\0';
12048 }
12049
12050 /* If *LEFT is large enough, convert VALUE to hex and add it to
12051 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12052 decrease *LEFT. Otherwise raise an error. */
12053
12054 static void
12055 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
12056 {
12057 int len = hexnumlen (value);
12058
12059 if (len > *left)
12060 error (_("Packet too long for target."));
12061
12062 hexnumstr (*buffer, value);
12063 *buffer += len;
12064 *left -= len;
12065
12066 /* NUL-terminate the buffer as a convenience, if there is
12067 room. */
12068 if (*left)
12069 **buffer = '\0';
12070 }
12071
12072 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
12073 value, *REMOTE_ERRNO to the remote error number or zero if none
12074 was included, and *ATTACHMENT to point to the start of the annex
12075 if any. The length of the packet isn't needed here; there may
12076 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
12077
12078 Return 0 if the packet could be parsed, -1 if it could not. If
12079 -1 is returned, the other variables may not be initialized. */
12080
12081 static int
12082 remote_hostio_parse_result (const char *buffer, int *retcode,
12083 int *remote_errno, const char **attachment)
12084 {
12085 char *p, *p2;
12086
12087 *remote_errno = 0;
12088 *attachment = NULL;
12089
12090 if (buffer[0] != 'F')
12091 return -1;
12092
12093 errno = 0;
12094 *retcode = strtol (&buffer[1], &p, 16);
12095 if (errno != 0 || p == &buffer[1])
12096 return -1;
12097
12098 /* Check for ",errno". */
12099 if (*p == ',')
12100 {
12101 errno = 0;
12102 *remote_errno = strtol (p + 1, &p2, 16);
12103 if (errno != 0 || p + 1 == p2)
12104 return -1;
12105 p = p2;
12106 }
12107
12108 /* Check for ";attachment". If there is no attachment, the
12109 packet should end here. */
12110 if (*p == ';')
12111 {
12112 *attachment = p + 1;
12113 return 0;
12114 }
12115 else if (*p == '\0')
12116 return 0;
12117 else
12118 return -1;
12119 }
12120
12121 /* Send a prepared I/O packet to the target and read its response.
12122 The prepared packet is in the global RS->BUF before this function
12123 is called, and the answer is there when we return.
12124
12125 COMMAND_BYTES is the length of the request to send, which may include
12126 binary data. WHICH_PACKET is the packet configuration to check
12127 before attempting a packet. If an error occurs, *REMOTE_ERRNO
12128 is set to the error number and -1 is returned. Otherwise the value
12129 returned by the function is returned.
12130
12131 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12132 attachment is expected; an error will be reported if there's a
12133 mismatch. If one is found, *ATTACHMENT will be set to point into
12134 the packet buffer and *ATTACHMENT_LEN will be set to the
12135 attachment's length. */
12136
12137 int
12138 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12139 int *remote_errno, const char **attachment,
12140 int *attachment_len)
12141 {
12142 struct remote_state *rs = get_remote_state ();
12143 int ret, bytes_read;
12144 const char *attachment_tmp;
12145
12146 if (packet_support (which_packet) == PACKET_DISABLE)
12147 {
12148 *remote_errno = FILEIO_ENOSYS;
12149 return -1;
12150 }
12151
12152 putpkt_binary (rs->buf.data (), command_bytes);
12153 bytes_read = getpkt_sane (&rs->buf, 0);
12154
12155 /* If it timed out, something is wrong. Don't try to parse the
12156 buffer. */
12157 if (bytes_read < 0)
12158 {
12159 *remote_errno = FILEIO_EINVAL;
12160 return -1;
12161 }
12162
12163 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12164 {
12165 case PACKET_ERROR:
12166 *remote_errno = FILEIO_EINVAL;
12167 return -1;
12168 case PACKET_UNKNOWN:
12169 *remote_errno = FILEIO_ENOSYS;
12170 return -1;
12171 case PACKET_OK:
12172 break;
12173 }
12174
12175 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12176 &attachment_tmp))
12177 {
12178 *remote_errno = FILEIO_EINVAL;
12179 return -1;
12180 }
12181
12182 /* Make sure we saw an attachment if and only if we expected one. */
12183 if ((attachment_tmp == NULL && attachment != NULL)
12184 || (attachment_tmp != NULL && attachment == NULL))
12185 {
12186 *remote_errno = FILEIO_EINVAL;
12187 return -1;
12188 }
12189
12190 /* If an attachment was found, it must point into the packet buffer;
12191 work out how many bytes there were. */
12192 if (attachment_tmp != NULL)
12193 {
12194 *attachment = attachment_tmp;
12195 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12196 }
12197
12198 return ret;
12199 }
12200
12201 /* See declaration.h. */
12202
12203 void
12204 readahead_cache::invalidate ()
12205 {
12206 this->fd = -1;
12207 }
12208
12209 /* See declaration.h. */
12210
12211 void
12212 readahead_cache::invalidate_fd (int fd)
12213 {
12214 if (this->fd == fd)
12215 this->fd = -1;
12216 }
12217
12218 /* Set the filesystem remote_hostio functions that take FILENAME
12219 arguments will use. Return 0 on success, or -1 if an error
12220 occurs (and set *REMOTE_ERRNO). */
12221
12222 int
12223 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12224 int *remote_errno)
12225 {
12226 struct remote_state *rs = get_remote_state ();
12227 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12228 char *p = rs->buf.data ();
12229 int left = get_remote_packet_size () - 1;
12230 char arg[9];
12231 int ret;
12232
12233 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12234 return 0;
12235
12236 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12237 return 0;
12238
12239 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12240
12241 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12242 remote_buffer_add_string (&p, &left, arg);
12243
12244 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12245 remote_errno, NULL, NULL);
12246
12247 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12248 return 0;
12249
12250 if (ret == 0)
12251 rs->fs_pid = required_pid;
12252
12253 return ret;
12254 }
12255
12256 /* Implementation of to_fileio_open. */
12257
12258 int
12259 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12260 int flags, int mode, int warn_if_slow,
12261 int *remote_errno)
12262 {
12263 struct remote_state *rs = get_remote_state ();
12264 char *p = rs->buf.data ();
12265 int left = get_remote_packet_size () - 1;
12266
12267 if (warn_if_slow)
12268 {
12269 static int warning_issued = 0;
12270
12271 printf_unfiltered (_("Reading %s from remote target...\n"),
12272 filename);
12273
12274 if (!warning_issued)
12275 {
12276 warning (_("File transfers from remote targets can be slow."
12277 " Use \"set sysroot\" to access files locally"
12278 " instead."));
12279 warning_issued = 1;
12280 }
12281 }
12282
12283 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12284 return -1;
12285
12286 remote_buffer_add_string (&p, &left, "vFile:open:");
12287
12288 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12289 strlen (filename));
12290 remote_buffer_add_string (&p, &left, ",");
12291
12292 remote_buffer_add_int (&p, &left, flags);
12293 remote_buffer_add_string (&p, &left, ",");
12294
12295 remote_buffer_add_int (&p, &left, mode);
12296
12297 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12298 remote_errno, NULL, NULL);
12299 }
12300
12301 int
12302 remote_target::fileio_open (struct inferior *inf, const char *filename,
12303 int flags, int mode, int warn_if_slow,
12304 int *remote_errno)
12305 {
12306 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12307 remote_errno);
12308 }
12309
12310 /* Implementation of to_fileio_pwrite. */
12311
12312 int
12313 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12314 ULONGEST offset, int *remote_errno)
12315 {
12316 struct remote_state *rs = get_remote_state ();
12317 char *p = rs->buf.data ();
12318 int left = get_remote_packet_size ();
12319 int out_len;
12320
12321 rs->readahead_cache.invalidate_fd (fd);
12322
12323 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12324
12325 remote_buffer_add_int (&p, &left, fd);
12326 remote_buffer_add_string (&p, &left, ",");
12327
12328 remote_buffer_add_int (&p, &left, offset);
12329 remote_buffer_add_string (&p, &left, ",");
12330
12331 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12332 (get_remote_packet_size ()
12333 - (p - rs->buf.data ())));
12334
12335 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12336 remote_errno, NULL, NULL);
12337 }
12338
12339 int
12340 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12341 ULONGEST offset, int *remote_errno)
12342 {
12343 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12344 }
12345
12346 /* Helper for the implementation of to_fileio_pread. Read the file
12347 from the remote side with vFile:pread. */
12348
12349 int
12350 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12351 ULONGEST offset, int *remote_errno)
12352 {
12353 struct remote_state *rs = get_remote_state ();
12354 char *p = rs->buf.data ();
12355 const char *attachment;
12356 int left = get_remote_packet_size ();
12357 int ret, attachment_len;
12358 int read_len;
12359
12360 remote_buffer_add_string (&p, &left, "vFile:pread:");
12361
12362 remote_buffer_add_int (&p, &left, fd);
12363 remote_buffer_add_string (&p, &left, ",");
12364
12365 remote_buffer_add_int (&p, &left, len);
12366 remote_buffer_add_string (&p, &left, ",");
12367
12368 remote_buffer_add_int (&p, &left, offset);
12369
12370 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12371 remote_errno, &attachment,
12372 &attachment_len);
12373
12374 if (ret < 0)
12375 return ret;
12376
12377 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12378 read_buf, len);
12379 if (read_len != ret)
12380 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12381
12382 return ret;
12383 }
12384
12385 /* See declaration.h. */
12386
12387 int
12388 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12389 ULONGEST offset)
12390 {
12391 if (this->fd == fd
12392 && this->offset <= offset
12393 && offset < this->offset + this->bufsize)
12394 {
12395 ULONGEST max = this->offset + this->bufsize;
12396
12397 if (offset + len > max)
12398 len = max - offset;
12399
12400 memcpy (read_buf, this->buf + offset - this->offset, len);
12401 return len;
12402 }
12403
12404 return 0;
12405 }
12406
12407 /* Implementation of to_fileio_pread. */
12408
12409 int
12410 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12411 ULONGEST offset, int *remote_errno)
12412 {
12413 int ret;
12414 struct remote_state *rs = get_remote_state ();
12415 readahead_cache *cache = &rs->readahead_cache;
12416
12417 ret = cache->pread (fd, read_buf, len, offset);
12418 if (ret > 0)
12419 {
12420 cache->hit_count++;
12421
12422 remote_debug_printf ("readahead cache hit %s",
12423 pulongest (cache->hit_count));
12424 return ret;
12425 }
12426
12427 cache->miss_count++;
12428
12429 remote_debug_printf ("readahead cache miss %s",
12430 pulongest (cache->miss_count));
12431
12432 cache->fd = fd;
12433 cache->offset = offset;
12434 cache->bufsize = get_remote_packet_size ();
12435 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12436
12437 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12438 cache->offset, remote_errno);
12439 if (ret <= 0)
12440 {
12441 cache->invalidate_fd (fd);
12442 return ret;
12443 }
12444
12445 cache->bufsize = ret;
12446 return cache->pread (fd, read_buf, len, offset);
12447 }
12448
12449 int
12450 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12451 ULONGEST offset, int *remote_errno)
12452 {
12453 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12454 }
12455
12456 /* Implementation of to_fileio_close. */
12457
12458 int
12459 remote_target::remote_hostio_close (int fd, int *remote_errno)
12460 {
12461 struct remote_state *rs = get_remote_state ();
12462 char *p = rs->buf.data ();
12463 int left = get_remote_packet_size () - 1;
12464
12465 rs->readahead_cache.invalidate_fd (fd);
12466
12467 remote_buffer_add_string (&p, &left, "vFile:close:");
12468
12469 remote_buffer_add_int (&p, &left, fd);
12470
12471 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12472 remote_errno, NULL, NULL);
12473 }
12474
12475 int
12476 remote_target::fileio_close (int fd, int *remote_errno)
12477 {
12478 return remote_hostio_close (fd, remote_errno);
12479 }
12480
12481 /* Implementation of to_fileio_unlink. */
12482
12483 int
12484 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12485 int *remote_errno)
12486 {
12487 struct remote_state *rs = get_remote_state ();
12488 char *p = rs->buf.data ();
12489 int left = get_remote_packet_size () - 1;
12490
12491 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12492 return -1;
12493
12494 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12495
12496 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12497 strlen (filename));
12498
12499 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12500 remote_errno, NULL, NULL);
12501 }
12502
12503 int
12504 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12505 int *remote_errno)
12506 {
12507 return remote_hostio_unlink (inf, filename, remote_errno);
12508 }
12509
12510 /* Implementation of to_fileio_readlink. */
12511
12512 gdb::optional<std::string>
12513 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12514 int *remote_errno)
12515 {
12516 struct remote_state *rs = get_remote_state ();
12517 char *p = rs->buf.data ();
12518 const char *attachment;
12519 int left = get_remote_packet_size ();
12520 int len, attachment_len;
12521 int read_len;
12522
12523 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12524 return {};
12525
12526 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12527
12528 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12529 strlen (filename));
12530
12531 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12532 remote_errno, &attachment,
12533 &attachment_len);
12534
12535 if (len < 0)
12536 return {};
12537
12538 std::string ret (len, '\0');
12539
12540 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12541 (gdb_byte *) &ret[0], len);
12542 if (read_len != len)
12543 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12544
12545 return ret;
12546 }
12547
12548 /* Implementation of to_fileio_fstat. */
12549
12550 int
12551 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12552 {
12553 struct remote_state *rs = get_remote_state ();
12554 char *p = rs->buf.data ();
12555 int left = get_remote_packet_size ();
12556 int attachment_len, ret;
12557 const char *attachment;
12558 struct fio_stat fst;
12559 int read_len;
12560
12561 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12562
12563 remote_buffer_add_int (&p, &left, fd);
12564
12565 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12566 remote_errno, &attachment,
12567 &attachment_len);
12568 if (ret < 0)
12569 {
12570 if (*remote_errno != FILEIO_ENOSYS)
12571 return ret;
12572
12573 /* Strictly we should return -1, ENOSYS here, but when
12574 "set sysroot remote:" was implemented in August 2008
12575 BFD's need for a stat function was sidestepped with
12576 this hack. This was not remedied until March 2015
12577 so we retain the previous behavior to avoid breaking
12578 compatibility.
12579
12580 Note that the memset is a March 2015 addition; older
12581 GDBs set st_size *and nothing else* so the structure
12582 would have garbage in all other fields. This might
12583 break something but retaining the previous behavior
12584 here would be just too wrong. */
12585
12586 memset (st, 0, sizeof (struct stat));
12587 st->st_size = INT_MAX;
12588 return 0;
12589 }
12590
12591 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12592 (gdb_byte *) &fst, sizeof (fst));
12593
12594 if (read_len != ret)
12595 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12596
12597 if (read_len != sizeof (fst))
12598 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12599 read_len, (int) sizeof (fst));
12600
12601 remote_fileio_to_host_stat (&fst, st);
12602
12603 return 0;
12604 }
12605
12606 /* Implementation of to_filesystem_is_local. */
12607
12608 bool
12609 remote_target::filesystem_is_local ()
12610 {
12611 /* Valgrind GDB presents itself as a remote target but works
12612 on the local filesystem: it does not implement remote get
12613 and users are not expected to set a sysroot. To handle
12614 this case we treat the remote filesystem as local if the
12615 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12616 does not support vFile:open. */
12617 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12618 {
12619 enum packet_support ps = packet_support (PACKET_vFile_open);
12620
12621 if (ps == PACKET_SUPPORT_UNKNOWN)
12622 {
12623 int fd, remote_errno;
12624
12625 /* Try opening a file to probe support. The supplied
12626 filename is irrelevant, we only care about whether
12627 the stub recognizes the packet or not. */
12628 fd = remote_hostio_open (NULL, "just probing",
12629 FILEIO_O_RDONLY, 0700, 0,
12630 &remote_errno);
12631
12632 if (fd >= 0)
12633 remote_hostio_close (fd, &remote_errno);
12634
12635 ps = packet_support (PACKET_vFile_open);
12636 }
12637
12638 if (ps == PACKET_DISABLE)
12639 {
12640 static int warning_issued = 0;
12641
12642 if (!warning_issued)
12643 {
12644 warning (_("remote target does not support file"
12645 " transfer, attempting to access files"
12646 " from local filesystem."));
12647 warning_issued = 1;
12648 }
12649
12650 return true;
12651 }
12652 }
12653
12654 return false;
12655 }
12656
12657 static int
12658 remote_fileio_errno_to_host (int errnum)
12659 {
12660 switch (errnum)
12661 {
12662 case FILEIO_EPERM:
12663 return EPERM;
12664 case FILEIO_ENOENT:
12665 return ENOENT;
12666 case FILEIO_EINTR:
12667 return EINTR;
12668 case FILEIO_EIO:
12669 return EIO;
12670 case FILEIO_EBADF:
12671 return EBADF;
12672 case FILEIO_EACCES:
12673 return EACCES;
12674 case FILEIO_EFAULT:
12675 return EFAULT;
12676 case FILEIO_EBUSY:
12677 return EBUSY;
12678 case FILEIO_EEXIST:
12679 return EEXIST;
12680 case FILEIO_ENODEV:
12681 return ENODEV;
12682 case FILEIO_ENOTDIR:
12683 return ENOTDIR;
12684 case FILEIO_EISDIR:
12685 return EISDIR;
12686 case FILEIO_EINVAL:
12687 return EINVAL;
12688 case FILEIO_ENFILE:
12689 return ENFILE;
12690 case FILEIO_EMFILE:
12691 return EMFILE;
12692 case FILEIO_EFBIG:
12693 return EFBIG;
12694 case FILEIO_ENOSPC:
12695 return ENOSPC;
12696 case FILEIO_ESPIPE:
12697 return ESPIPE;
12698 case FILEIO_EROFS:
12699 return EROFS;
12700 case FILEIO_ENOSYS:
12701 return ENOSYS;
12702 case FILEIO_ENAMETOOLONG:
12703 return ENAMETOOLONG;
12704 }
12705 return -1;
12706 }
12707
12708 static char *
12709 remote_hostio_error (int errnum)
12710 {
12711 int host_error = remote_fileio_errno_to_host (errnum);
12712
12713 if (host_error == -1)
12714 error (_("Unknown remote I/O error %d"), errnum);
12715 else
12716 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12717 }
12718
12719 /* A RAII wrapper around a remote file descriptor. */
12720
12721 class scoped_remote_fd
12722 {
12723 public:
12724 scoped_remote_fd (remote_target *remote, int fd)
12725 : m_remote (remote), m_fd (fd)
12726 {
12727 }
12728
12729 ~scoped_remote_fd ()
12730 {
12731 if (m_fd != -1)
12732 {
12733 try
12734 {
12735 int remote_errno;
12736 m_remote->remote_hostio_close (m_fd, &remote_errno);
12737 }
12738 catch (...)
12739 {
12740 /* Swallow exception before it escapes the dtor. If
12741 something goes wrong, likely the connection is gone,
12742 and there's nothing else that can be done. */
12743 }
12744 }
12745 }
12746
12747 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12748
12749 /* Release ownership of the file descriptor, and return it. */
12750 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12751 {
12752 int fd = m_fd;
12753 m_fd = -1;
12754 return fd;
12755 }
12756
12757 /* Return the owned file descriptor. */
12758 int get () const noexcept
12759 {
12760 return m_fd;
12761 }
12762
12763 private:
12764 /* The remote target. */
12765 remote_target *m_remote;
12766
12767 /* The owned remote I/O file descriptor. */
12768 int m_fd;
12769 };
12770
12771 void
12772 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12773 {
12774 remote_target *remote = get_current_remote_target ();
12775
12776 if (remote == nullptr)
12777 error (_("command can only be used with remote target"));
12778
12779 remote->remote_file_put (local_file, remote_file, from_tty);
12780 }
12781
12782 void
12783 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12784 int from_tty)
12785 {
12786 int retcode, remote_errno, bytes, io_size;
12787 int bytes_in_buffer;
12788 int saw_eof;
12789 ULONGEST offset;
12790
12791 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12792 if (file == NULL)
12793 perror_with_name (local_file);
12794
12795 scoped_remote_fd fd
12796 (this, remote_hostio_open (NULL,
12797 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12798 | FILEIO_O_TRUNC),
12799 0700, 0, &remote_errno));
12800 if (fd.get () == -1)
12801 remote_hostio_error (remote_errno);
12802
12803 /* Send up to this many bytes at once. They won't all fit in the
12804 remote packet limit, so we'll transfer slightly fewer. */
12805 io_size = get_remote_packet_size ();
12806 gdb::byte_vector buffer (io_size);
12807
12808 bytes_in_buffer = 0;
12809 saw_eof = 0;
12810 offset = 0;
12811 while (bytes_in_buffer || !saw_eof)
12812 {
12813 if (!saw_eof)
12814 {
12815 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12816 io_size - bytes_in_buffer,
12817 file.get ());
12818 if (bytes == 0)
12819 {
12820 if (ferror (file.get ()))
12821 error (_("Error reading %s."), local_file);
12822 else
12823 {
12824 /* EOF. Unless there is something still in the
12825 buffer from the last iteration, we are done. */
12826 saw_eof = 1;
12827 if (bytes_in_buffer == 0)
12828 break;
12829 }
12830 }
12831 }
12832 else
12833 bytes = 0;
12834
12835 bytes += bytes_in_buffer;
12836 bytes_in_buffer = 0;
12837
12838 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12839 offset, &remote_errno);
12840
12841 if (retcode < 0)
12842 remote_hostio_error (remote_errno);
12843 else if (retcode == 0)
12844 error (_("Remote write of %d bytes returned 0!"), bytes);
12845 else if (retcode < bytes)
12846 {
12847 /* Short write. Save the rest of the read data for the next
12848 write. */
12849 bytes_in_buffer = bytes - retcode;
12850 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12851 }
12852
12853 offset += retcode;
12854 }
12855
12856 if (remote_hostio_close (fd.release (), &remote_errno))
12857 remote_hostio_error (remote_errno);
12858
12859 if (from_tty)
12860 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12861 }
12862
12863 void
12864 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12865 {
12866 remote_target *remote = get_current_remote_target ();
12867
12868 if (remote == nullptr)
12869 error (_("command can only be used with remote target"));
12870
12871 remote->remote_file_get (remote_file, local_file, from_tty);
12872 }
12873
12874 void
12875 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12876 int from_tty)
12877 {
12878 int remote_errno, bytes, io_size;
12879 ULONGEST offset;
12880
12881 scoped_remote_fd fd
12882 (this, remote_hostio_open (NULL,
12883 remote_file, FILEIO_O_RDONLY, 0, 0,
12884 &remote_errno));
12885 if (fd.get () == -1)
12886 remote_hostio_error (remote_errno);
12887
12888 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12889 if (file == NULL)
12890 perror_with_name (local_file);
12891
12892 /* Send up to this many bytes at once. They won't all fit in the
12893 remote packet limit, so we'll transfer slightly fewer. */
12894 io_size = get_remote_packet_size ();
12895 gdb::byte_vector buffer (io_size);
12896
12897 offset = 0;
12898 while (1)
12899 {
12900 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12901 &remote_errno);
12902 if (bytes == 0)
12903 /* Success, but no bytes, means end-of-file. */
12904 break;
12905 if (bytes == -1)
12906 remote_hostio_error (remote_errno);
12907
12908 offset += bytes;
12909
12910 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12911 if (bytes == 0)
12912 perror_with_name (local_file);
12913 }
12914
12915 if (remote_hostio_close (fd.release (), &remote_errno))
12916 remote_hostio_error (remote_errno);
12917
12918 if (from_tty)
12919 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12920 }
12921
12922 void
12923 remote_file_delete (const char *remote_file, int from_tty)
12924 {
12925 remote_target *remote = get_current_remote_target ();
12926
12927 if (remote == nullptr)
12928 error (_("command can only be used with remote target"));
12929
12930 remote->remote_file_delete (remote_file, from_tty);
12931 }
12932
12933 void
12934 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12935 {
12936 int retcode, remote_errno;
12937
12938 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12939 if (retcode == -1)
12940 remote_hostio_error (remote_errno);
12941
12942 if (from_tty)
12943 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12944 }
12945
12946 static void
12947 remote_put_command (const char *args, int from_tty)
12948 {
12949 if (args == NULL)
12950 error_no_arg (_("file to put"));
12951
12952 gdb_argv argv (args);
12953 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12954 error (_("Invalid parameters to remote put"));
12955
12956 remote_file_put (argv[0], argv[1], from_tty);
12957 }
12958
12959 static void
12960 remote_get_command (const char *args, int from_tty)
12961 {
12962 if (args == NULL)
12963 error_no_arg (_("file to get"));
12964
12965 gdb_argv argv (args);
12966 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12967 error (_("Invalid parameters to remote get"));
12968
12969 remote_file_get (argv[0], argv[1], from_tty);
12970 }
12971
12972 static void
12973 remote_delete_command (const char *args, int from_tty)
12974 {
12975 if (args == NULL)
12976 error_no_arg (_("file to delete"));
12977
12978 gdb_argv argv (args);
12979 if (argv[0] == NULL || argv[1] != NULL)
12980 error (_("Invalid parameters to remote delete"));
12981
12982 remote_file_delete (argv[0], from_tty);
12983 }
12984
12985 bool
12986 remote_target::can_execute_reverse ()
12987 {
12988 if (packet_support (PACKET_bs) == PACKET_ENABLE
12989 || packet_support (PACKET_bc) == PACKET_ENABLE)
12990 return true;
12991 else
12992 return false;
12993 }
12994
12995 bool
12996 remote_target::supports_non_stop ()
12997 {
12998 return true;
12999 }
13000
13001 bool
13002 remote_target::supports_disable_randomization ()
13003 {
13004 /* Only supported in extended mode. */
13005 return false;
13006 }
13007
13008 bool
13009 remote_target::supports_multi_process ()
13010 {
13011 struct remote_state *rs = get_remote_state ();
13012
13013 return remote_multi_process_p (rs);
13014 }
13015
13016 static int
13017 remote_supports_cond_tracepoints ()
13018 {
13019 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
13020 }
13021
13022 bool
13023 remote_target::supports_evaluation_of_breakpoint_conditions ()
13024 {
13025 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
13026 }
13027
13028 static int
13029 remote_supports_fast_tracepoints ()
13030 {
13031 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
13032 }
13033
13034 static int
13035 remote_supports_static_tracepoints ()
13036 {
13037 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
13038 }
13039
13040 static int
13041 remote_supports_install_in_trace ()
13042 {
13043 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
13044 }
13045
13046 bool
13047 remote_target::supports_enable_disable_tracepoint ()
13048 {
13049 return (packet_support (PACKET_EnableDisableTracepoints_feature)
13050 == PACKET_ENABLE);
13051 }
13052
13053 bool
13054 remote_target::supports_string_tracing ()
13055 {
13056 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
13057 }
13058
13059 bool
13060 remote_target::can_run_breakpoint_commands ()
13061 {
13062 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
13063 }
13064
13065 void
13066 remote_target::trace_init ()
13067 {
13068 struct remote_state *rs = get_remote_state ();
13069
13070 putpkt ("QTinit");
13071 remote_get_noisy_reply ();
13072 if (strcmp (rs->buf.data (), "OK") != 0)
13073 error (_("Target does not support this command."));
13074 }
13075
13076 /* Recursive routine to walk through command list including loops, and
13077 download packets for each command. */
13078
13079 void
13080 remote_target::remote_download_command_source (int num, ULONGEST addr,
13081 struct command_line *cmds)
13082 {
13083 struct remote_state *rs = get_remote_state ();
13084 struct command_line *cmd;
13085
13086 for (cmd = cmds; cmd; cmd = cmd->next)
13087 {
13088 QUIT; /* Allow user to bail out with ^C. */
13089 strcpy (rs->buf.data (), "QTDPsrc:");
13090 encode_source_string (num, addr, "cmd", cmd->line,
13091 rs->buf.data () + strlen (rs->buf.data ()),
13092 rs->buf.size () - strlen (rs->buf.data ()));
13093 putpkt (rs->buf);
13094 remote_get_noisy_reply ();
13095 if (strcmp (rs->buf.data (), "OK"))
13096 warning (_("Target does not support source download."));
13097
13098 if (cmd->control_type == while_control
13099 || cmd->control_type == while_stepping_control)
13100 {
13101 remote_download_command_source (num, addr, cmd->body_list_0.get ());
13102
13103 QUIT; /* Allow user to bail out with ^C. */
13104 strcpy (rs->buf.data (), "QTDPsrc:");
13105 encode_source_string (num, addr, "cmd", "end",
13106 rs->buf.data () + strlen (rs->buf.data ()),
13107 rs->buf.size () - strlen (rs->buf.data ()));
13108 putpkt (rs->buf);
13109 remote_get_noisy_reply ();
13110 if (strcmp (rs->buf.data (), "OK"))
13111 warning (_("Target does not support source download."));
13112 }
13113 }
13114 }
13115
13116 void
13117 remote_target::download_tracepoint (struct bp_location *loc)
13118 {
13119 CORE_ADDR tpaddr;
13120 char addrbuf[40];
13121 std::vector<std::string> tdp_actions;
13122 std::vector<std::string> stepping_actions;
13123 char *pkt;
13124 struct breakpoint *b = loc->owner;
13125 struct tracepoint *t = (struct tracepoint *) b;
13126 struct remote_state *rs = get_remote_state ();
13127 int ret;
13128 const char *err_msg = _("Tracepoint packet too large for target.");
13129 size_t size_left;
13130
13131 /* We use a buffer other than rs->buf because we'll build strings
13132 across multiple statements, and other statements in between could
13133 modify rs->buf. */
13134 gdb::char_vector buf (get_remote_packet_size ());
13135
13136 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13137
13138 tpaddr = loc->address;
13139 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13140 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13141 b->number, addrbuf, /* address */
13142 (b->enable_state == bp_enabled ? 'E' : 'D'),
13143 t->step_count, t->pass_count);
13144
13145 if (ret < 0 || ret >= buf.size ())
13146 error ("%s", err_msg);
13147
13148 /* Fast tracepoints are mostly handled by the target, but we can
13149 tell the target how big of an instruction block should be moved
13150 around. */
13151 if (b->type == bp_fast_tracepoint)
13152 {
13153 /* Only test for support at download time; we may not know
13154 target capabilities at definition time. */
13155 if (remote_supports_fast_tracepoints ())
13156 {
13157 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13158 NULL))
13159 {
13160 size_left = buf.size () - strlen (buf.data ());
13161 ret = snprintf (buf.data () + strlen (buf.data ()),
13162 size_left, ":F%x",
13163 gdb_insn_length (loc->gdbarch, tpaddr));
13164
13165 if (ret < 0 || ret >= size_left)
13166 error ("%s", err_msg);
13167 }
13168 else
13169 /* If it passed validation at definition but fails now,
13170 something is very wrong. */
13171 internal_error (__FILE__, __LINE__,
13172 _("Fast tracepoint not "
13173 "valid during download"));
13174 }
13175 else
13176 /* Fast tracepoints are functionally identical to regular
13177 tracepoints, so don't take lack of support as a reason to
13178 give up on the trace run. */
13179 warning (_("Target does not support fast tracepoints, "
13180 "downloading %d as regular tracepoint"), b->number);
13181 }
13182 else if (b->type == bp_static_tracepoint)
13183 {
13184 /* Only test for support at download time; we may not know
13185 target capabilities at definition time. */
13186 if (remote_supports_static_tracepoints ())
13187 {
13188 struct static_tracepoint_marker marker;
13189
13190 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13191 {
13192 size_left = buf.size () - strlen (buf.data ());
13193 ret = snprintf (buf.data () + strlen (buf.data ()),
13194 size_left, ":S");
13195
13196 if (ret < 0 || ret >= size_left)
13197 error ("%s", err_msg);
13198 }
13199 else
13200 error (_("Static tracepoint not valid during download"));
13201 }
13202 else
13203 /* Fast tracepoints are functionally identical to regular
13204 tracepoints, so don't take lack of support as a reason
13205 to give up on the trace run. */
13206 error (_("Target does not support static tracepoints"));
13207 }
13208 /* If the tracepoint has a conditional, make it into an agent
13209 expression and append to the definition. */
13210 if (loc->cond)
13211 {
13212 /* Only test support at download time, we may not know target
13213 capabilities at definition time. */
13214 if (remote_supports_cond_tracepoints ())
13215 {
13216 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13217 loc->cond.get ());
13218
13219 size_left = buf.size () - strlen (buf.data ());
13220
13221 ret = snprintf (buf.data () + strlen (buf.data ()),
13222 size_left, ":X%x,", aexpr->len);
13223
13224 if (ret < 0 || ret >= size_left)
13225 error ("%s", err_msg);
13226
13227 size_left = buf.size () - strlen (buf.data ());
13228
13229 /* Two bytes to encode each aexpr byte, plus the terminating
13230 null byte. */
13231 if (aexpr->len * 2 + 1 > size_left)
13232 error ("%s", err_msg);
13233
13234 pkt = buf.data () + strlen (buf.data ());
13235
13236 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13237 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13238 *pkt = '\0';
13239 }
13240 else
13241 warning (_("Target does not support conditional tracepoints, "
13242 "ignoring tp %d cond"), b->number);
13243 }
13244
13245 if (b->commands || *default_collect)
13246 {
13247 size_left = buf.size () - strlen (buf.data ());
13248
13249 ret = snprintf (buf.data () + strlen (buf.data ()),
13250 size_left, "-");
13251
13252 if (ret < 0 || ret >= size_left)
13253 error ("%s", err_msg);
13254 }
13255
13256 putpkt (buf.data ());
13257 remote_get_noisy_reply ();
13258 if (strcmp (rs->buf.data (), "OK"))
13259 error (_("Target does not support tracepoints."));
13260
13261 /* do_single_steps (t); */
13262 for (auto action_it = tdp_actions.begin ();
13263 action_it != tdp_actions.end (); action_it++)
13264 {
13265 QUIT; /* Allow user to bail out with ^C. */
13266
13267 bool has_more = ((action_it + 1) != tdp_actions.end ()
13268 || !stepping_actions.empty ());
13269
13270 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13271 b->number, addrbuf, /* address */
13272 action_it->c_str (),
13273 has_more ? '-' : 0);
13274
13275 if (ret < 0 || ret >= buf.size ())
13276 error ("%s", err_msg);
13277
13278 putpkt (buf.data ());
13279 remote_get_noisy_reply ();
13280 if (strcmp (rs->buf.data (), "OK"))
13281 error (_("Error on target while setting tracepoints."));
13282 }
13283
13284 for (auto action_it = stepping_actions.begin ();
13285 action_it != stepping_actions.end (); action_it++)
13286 {
13287 QUIT; /* Allow user to bail out with ^C. */
13288
13289 bool is_first = action_it == stepping_actions.begin ();
13290 bool has_more = (action_it + 1) != stepping_actions.end ();
13291
13292 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13293 b->number, addrbuf, /* address */
13294 is_first ? "S" : "",
13295 action_it->c_str (),
13296 has_more ? "-" : "");
13297
13298 if (ret < 0 || ret >= buf.size ())
13299 error ("%s", err_msg);
13300
13301 putpkt (buf.data ());
13302 remote_get_noisy_reply ();
13303 if (strcmp (rs->buf.data (), "OK"))
13304 error (_("Error on target while setting tracepoints."));
13305 }
13306
13307 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13308 {
13309 if (b->location != NULL)
13310 {
13311 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13312
13313 if (ret < 0 || ret >= buf.size ())
13314 error ("%s", err_msg);
13315
13316 encode_source_string (b->number, loc->address, "at",
13317 event_location_to_string (b->location.get ()),
13318 buf.data () + strlen (buf.data ()),
13319 buf.size () - strlen (buf.data ()));
13320 putpkt (buf.data ());
13321 remote_get_noisy_reply ();
13322 if (strcmp (rs->buf.data (), "OK"))
13323 warning (_("Target does not support source download."));
13324 }
13325 if (b->cond_string)
13326 {
13327 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13328
13329 if (ret < 0 || ret >= buf.size ())
13330 error ("%s", err_msg);
13331
13332 encode_source_string (b->number, loc->address,
13333 "cond", b->cond_string,
13334 buf.data () + strlen (buf.data ()),
13335 buf.size () - strlen (buf.data ()));
13336 putpkt (buf.data ());
13337 remote_get_noisy_reply ();
13338 if (strcmp (rs->buf.data (), "OK"))
13339 warning (_("Target does not support source download."));
13340 }
13341 remote_download_command_source (b->number, loc->address,
13342 breakpoint_commands (b));
13343 }
13344 }
13345
13346 bool
13347 remote_target::can_download_tracepoint ()
13348 {
13349 struct remote_state *rs = get_remote_state ();
13350 struct trace_status *ts;
13351 int status;
13352
13353 /* Don't try to install tracepoints until we've relocated our
13354 symbols, and fetched and merged the target's tracepoint list with
13355 ours. */
13356 if (rs->starting_up)
13357 return false;
13358
13359 ts = current_trace_status ();
13360 status = get_trace_status (ts);
13361
13362 if (status == -1 || !ts->running_known || !ts->running)
13363 return false;
13364
13365 /* If we are in a tracing experiment, but remote stub doesn't support
13366 installing tracepoint in trace, we have to return. */
13367 if (!remote_supports_install_in_trace ())
13368 return false;
13369
13370 return true;
13371 }
13372
13373
13374 void
13375 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13376 {
13377 struct remote_state *rs = get_remote_state ();
13378 char *p;
13379
13380 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13381 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13382 tsv.builtin);
13383 p = rs->buf.data () + strlen (rs->buf.data ());
13384 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13385 >= get_remote_packet_size ())
13386 error (_("Trace state variable name too long for tsv definition packet"));
13387 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13388 *p++ = '\0';
13389 putpkt (rs->buf);
13390 remote_get_noisy_reply ();
13391 if (rs->buf[0] == '\0')
13392 error (_("Target does not support this command."));
13393 if (strcmp (rs->buf.data (), "OK") != 0)
13394 error (_("Error on target while downloading trace state variable."));
13395 }
13396
13397 void
13398 remote_target::enable_tracepoint (struct bp_location *location)
13399 {
13400 struct remote_state *rs = get_remote_state ();
13401
13402 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13403 location->owner->number,
13404 phex (location->address, sizeof (CORE_ADDR)));
13405 putpkt (rs->buf);
13406 remote_get_noisy_reply ();
13407 if (rs->buf[0] == '\0')
13408 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13409 if (strcmp (rs->buf.data (), "OK") != 0)
13410 error (_("Error on target while enabling tracepoint."));
13411 }
13412
13413 void
13414 remote_target::disable_tracepoint (struct bp_location *location)
13415 {
13416 struct remote_state *rs = get_remote_state ();
13417
13418 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13419 location->owner->number,
13420 phex (location->address, sizeof (CORE_ADDR)));
13421 putpkt (rs->buf);
13422 remote_get_noisy_reply ();
13423 if (rs->buf[0] == '\0')
13424 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13425 if (strcmp (rs->buf.data (), "OK") != 0)
13426 error (_("Error on target while disabling tracepoint."));
13427 }
13428
13429 void
13430 remote_target::trace_set_readonly_regions ()
13431 {
13432 asection *s;
13433 bfd_size_type size;
13434 bfd_vma vma;
13435 int anysecs = 0;
13436 int offset = 0;
13437
13438 if (!current_program_space->exec_bfd ())
13439 return; /* No information to give. */
13440
13441 struct remote_state *rs = get_remote_state ();
13442
13443 strcpy (rs->buf.data (), "QTro");
13444 offset = strlen (rs->buf.data ());
13445 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13446 {
13447 char tmp1[40], tmp2[40];
13448 int sec_length;
13449
13450 if ((s->flags & SEC_LOAD) == 0 ||
13451 /* (s->flags & SEC_CODE) == 0 || */
13452 (s->flags & SEC_READONLY) == 0)
13453 continue;
13454
13455 anysecs = 1;
13456 vma = bfd_section_vma (s);
13457 size = bfd_section_size (s);
13458 sprintf_vma (tmp1, vma);
13459 sprintf_vma (tmp2, vma + size);
13460 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13461 if (offset + sec_length + 1 > rs->buf.size ())
13462 {
13463 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13464 warning (_("\
13465 Too many sections for read-only sections definition packet."));
13466 break;
13467 }
13468 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13469 tmp1, tmp2);
13470 offset += sec_length;
13471 }
13472 if (anysecs)
13473 {
13474 putpkt (rs->buf);
13475 getpkt (&rs->buf, 0);
13476 }
13477 }
13478
13479 void
13480 remote_target::trace_start ()
13481 {
13482 struct remote_state *rs = get_remote_state ();
13483
13484 putpkt ("QTStart");
13485 remote_get_noisy_reply ();
13486 if (rs->buf[0] == '\0')
13487 error (_("Target does not support this command."));
13488 if (strcmp (rs->buf.data (), "OK") != 0)
13489 error (_("Bogus reply from target: %s"), rs->buf.data ());
13490 }
13491
13492 int
13493 remote_target::get_trace_status (struct trace_status *ts)
13494 {
13495 /* Initialize it just to avoid a GCC false warning. */
13496 char *p = NULL;
13497 enum packet_result result;
13498 struct remote_state *rs = get_remote_state ();
13499
13500 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13501 return -1;
13502
13503 /* FIXME we need to get register block size some other way. */
13504 trace_regblock_size
13505 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13506
13507 putpkt ("qTStatus");
13508
13509 try
13510 {
13511 p = remote_get_noisy_reply ();
13512 }
13513 catch (const gdb_exception_error &ex)
13514 {
13515 if (ex.error != TARGET_CLOSE_ERROR)
13516 {
13517 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13518 return -1;
13519 }
13520 throw;
13521 }
13522
13523 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13524
13525 /* If the remote target doesn't do tracing, flag it. */
13526 if (result == PACKET_UNKNOWN)
13527 return -1;
13528
13529 /* We're working with a live target. */
13530 ts->filename = NULL;
13531
13532 if (*p++ != 'T')
13533 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13534
13535 /* Function 'parse_trace_status' sets default value of each field of
13536 'ts' at first, so we don't have to do it here. */
13537 parse_trace_status (p, ts);
13538
13539 return ts->running;
13540 }
13541
13542 void
13543 remote_target::get_tracepoint_status (struct breakpoint *bp,
13544 struct uploaded_tp *utp)
13545 {
13546 struct remote_state *rs = get_remote_state ();
13547 char *reply;
13548 struct tracepoint *tp = (struct tracepoint *) bp;
13549 size_t size = get_remote_packet_size ();
13550
13551 if (tp)
13552 {
13553 tp->hit_count = 0;
13554 tp->traceframe_usage = 0;
13555 for (bp_location *loc : tp->locations ())
13556 {
13557 /* If the tracepoint was never downloaded, don't go asking for
13558 any status. */
13559 if (tp->number_on_target == 0)
13560 continue;
13561 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13562 phex_nz (loc->address, 0));
13563 putpkt (rs->buf);
13564 reply = remote_get_noisy_reply ();
13565 if (reply && *reply)
13566 {
13567 if (*reply == 'V')
13568 parse_tracepoint_status (reply + 1, bp, utp);
13569 }
13570 }
13571 }
13572 else if (utp)
13573 {
13574 utp->hit_count = 0;
13575 utp->traceframe_usage = 0;
13576 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13577 phex_nz (utp->addr, 0));
13578 putpkt (rs->buf);
13579 reply = remote_get_noisy_reply ();
13580 if (reply && *reply)
13581 {
13582 if (*reply == 'V')
13583 parse_tracepoint_status (reply + 1, bp, utp);
13584 }
13585 }
13586 }
13587
13588 void
13589 remote_target::trace_stop ()
13590 {
13591 struct remote_state *rs = get_remote_state ();
13592
13593 putpkt ("QTStop");
13594 remote_get_noisy_reply ();
13595 if (rs->buf[0] == '\0')
13596 error (_("Target does not support this command."));
13597 if (strcmp (rs->buf.data (), "OK") != 0)
13598 error (_("Bogus reply from target: %s"), rs->buf.data ());
13599 }
13600
13601 int
13602 remote_target::trace_find (enum trace_find_type type, int num,
13603 CORE_ADDR addr1, CORE_ADDR addr2,
13604 int *tpp)
13605 {
13606 struct remote_state *rs = get_remote_state ();
13607 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13608 char *p, *reply;
13609 int target_frameno = -1, target_tracept = -1;
13610
13611 /* Lookups other than by absolute frame number depend on the current
13612 trace selected, so make sure it is correct on the remote end
13613 first. */
13614 if (type != tfind_number)
13615 set_remote_traceframe ();
13616
13617 p = rs->buf.data ();
13618 strcpy (p, "QTFrame:");
13619 p = strchr (p, '\0');
13620 switch (type)
13621 {
13622 case tfind_number:
13623 xsnprintf (p, endbuf - p, "%x", num);
13624 break;
13625 case tfind_pc:
13626 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13627 break;
13628 case tfind_tp:
13629 xsnprintf (p, endbuf - p, "tdp:%x", num);
13630 break;
13631 case tfind_range:
13632 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13633 phex_nz (addr2, 0));
13634 break;
13635 case tfind_outside:
13636 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13637 phex_nz (addr2, 0));
13638 break;
13639 default:
13640 error (_("Unknown trace find type %d"), type);
13641 }
13642
13643 putpkt (rs->buf);
13644 reply = remote_get_noisy_reply ();
13645 if (*reply == '\0')
13646 error (_("Target does not support this command."));
13647
13648 while (reply && *reply)
13649 switch (*reply)
13650 {
13651 case 'F':
13652 p = ++reply;
13653 target_frameno = (int) strtol (p, &reply, 16);
13654 if (reply == p)
13655 error (_("Unable to parse trace frame number"));
13656 /* Don't update our remote traceframe number cache on failure
13657 to select a remote traceframe. */
13658 if (target_frameno == -1)
13659 return -1;
13660 break;
13661 case 'T':
13662 p = ++reply;
13663 target_tracept = (int) strtol (p, &reply, 16);
13664 if (reply == p)
13665 error (_("Unable to parse tracepoint number"));
13666 break;
13667 case 'O': /* "OK"? */
13668 if (reply[1] == 'K' && reply[2] == '\0')
13669 reply += 2;
13670 else
13671 error (_("Bogus reply from target: %s"), reply);
13672 break;
13673 default:
13674 error (_("Bogus reply from target: %s"), reply);
13675 }
13676 if (tpp)
13677 *tpp = target_tracept;
13678
13679 rs->remote_traceframe_number = target_frameno;
13680 return target_frameno;
13681 }
13682
13683 bool
13684 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13685 {
13686 struct remote_state *rs = get_remote_state ();
13687 char *reply;
13688 ULONGEST uval;
13689
13690 set_remote_traceframe ();
13691
13692 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13693 putpkt (rs->buf);
13694 reply = remote_get_noisy_reply ();
13695 if (reply && *reply)
13696 {
13697 if (*reply == 'V')
13698 {
13699 unpack_varlen_hex (reply + 1, &uval);
13700 *val = (LONGEST) uval;
13701 return true;
13702 }
13703 }
13704 return false;
13705 }
13706
13707 int
13708 remote_target::save_trace_data (const char *filename)
13709 {
13710 struct remote_state *rs = get_remote_state ();
13711 char *p, *reply;
13712
13713 p = rs->buf.data ();
13714 strcpy (p, "QTSave:");
13715 p += strlen (p);
13716 if ((p - rs->buf.data ()) + strlen (filename) * 2
13717 >= get_remote_packet_size ())
13718 error (_("Remote file name too long for trace save packet"));
13719 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13720 *p++ = '\0';
13721 putpkt (rs->buf);
13722 reply = remote_get_noisy_reply ();
13723 if (*reply == '\0')
13724 error (_("Target does not support this command."));
13725 if (strcmp (reply, "OK") != 0)
13726 error (_("Bogus reply from target: %s"), reply);
13727 return 0;
13728 }
13729
13730 /* This is basically a memory transfer, but needs to be its own packet
13731 because we don't know how the target actually organizes its trace
13732 memory, plus we want to be able to ask for as much as possible, but
13733 not be unhappy if we don't get as much as we ask for. */
13734
13735 LONGEST
13736 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13737 {
13738 struct remote_state *rs = get_remote_state ();
13739 char *reply;
13740 char *p;
13741 int rslt;
13742
13743 p = rs->buf.data ();
13744 strcpy (p, "qTBuffer:");
13745 p += strlen (p);
13746 p += hexnumstr (p, offset);
13747 *p++ = ',';
13748 p += hexnumstr (p, len);
13749 *p++ = '\0';
13750
13751 putpkt (rs->buf);
13752 reply = remote_get_noisy_reply ();
13753 if (reply && *reply)
13754 {
13755 /* 'l' by itself means we're at the end of the buffer and
13756 there is nothing more to get. */
13757 if (*reply == 'l')
13758 return 0;
13759
13760 /* Convert the reply into binary. Limit the number of bytes to
13761 convert according to our passed-in buffer size, rather than
13762 what was returned in the packet; if the target is
13763 unexpectedly generous and gives us a bigger reply than we
13764 asked for, we don't want to crash. */
13765 rslt = hex2bin (reply, buf, len);
13766 return rslt;
13767 }
13768
13769 /* Something went wrong, flag as an error. */
13770 return -1;
13771 }
13772
13773 void
13774 remote_target::set_disconnected_tracing (int val)
13775 {
13776 struct remote_state *rs = get_remote_state ();
13777
13778 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13779 {
13780 char *reply;
13781
13782 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13783 "QTDisconnected:%x", val);
13784 putpkt (rs->buf);
13785 reply = remote_get_noisy_reply ();
13786 if (*reply == '\0')
13787 error (_("Target does not support this command."));
13788 if (strcmp (reply, "OK") != 0)
13789 error (_("Bogus reply from target: %s"), reply);
13790 }
13791 else if (val)
13792 warning (_("Target does not support disconnected tracing."));
13793 }
13794
13795 int
13796 remote_target::core_of_thread (ptid_t ptid)
13797 {
13798 thread_info *info = find_thread_ptid (this, ptid);
13799
13800 if (info != NULL && info->priv != NULL)
13801 return get_remote_thread_info (info)->core;
13802
13803 return -1;
13804 }
13805
13806 void
13807 remote_target::set_circular_trace_buffer (int val)
13808 {
13809 struct remote_state *rs = get_remote_state ();
13810 char *reply;
13811
13812 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13813 "QTBuffer:circular:%x", val);
13814 putpkt (rs->buf);
13815 reply = remote_get_noisy_reply ();
13816 if (*reply == '\0')
13817 error (_("Target does not support this command."));
13818 if (strcmp (reply, "OK") != 0)
13819 error (_("Bogus reply from target: %s"), reply);
13820 }
13821
13822 traceframe_info_up
13823 remote_target::traceframe_info ()
13824 {
13825 gdb::optional<gdb::char_vector> text
13826 = target_read_stralloc (current_inferior ()->top_target (),
13827 TARGET_OBJECT_TRACEFRAME_INFO,
13828 NULL);
13829 if (text)
13830 return parse_traceframe_info (text->data ());
13831
13832 return NULL;
13833 }
13834
13835 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13836 instruction on which a fast tracepoint may be placed. Returns -1
13837 if the packet is not supported, and 0 if the minimum instruction
13838 length is unknown. */
13839
13840 int
13841 remote_target::get_min_fast_tracepoint_insn_len ()
13842 {
13843 struct remote_state *rs = get_remote_state ();
13844 char *reply;
13845
13846 /* If we're not debugging a process yet, the IPA can't be
13847 loaded. */
13848 if (!target_has_execution ())
13849 return 0;
13850
13851 /* Make sure the remote is pointing at the right process. */
13852 set_general_process ();
13853
13854 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13855 putpkt (rs->buf);
13856 reply = remote_get_noisy_reply ();
13857 if (*reply == '\0')
13858 return -1;
13859 else
13860 {
13861 ULONGEST min_insn_len;
13862
13863 unpack_varlen_hex (reply, &min_insn_len);
13864
13865 return (int) min_insn_len;
13866 }
13867 }
13868
13869 void
13870 remote_target::set_trace_buffer_size (LONGEST val)
13871 {
13872 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13873 {
13874 struct remote_state *rs = get_remote_state ();
13875 char *buf = rs->buf.data ();
13876 char *endbuf = buf + get_remote_packet_size ();
13877 enum packet_result result;
13878
13879 gdb_assert (val >= 0 || val == -1);
13880 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13881 /* Send -1 as literal "-1" to avoid host size dependency. */
13882 if (val < 0)
13883 {
13884 *buf++ = '-';
13885 buf += hexnumstr (buf, (ULONGEST) -val);
13886 }
13887 else
13888 buf += hexnumstr (buf, (ULONGEST) val);
13889
13890 putpkt (rs->buf);
13891 remote_get_noisy_reply ();
13892 result = packet_ok (rs->buf,
13893 &remote_protocol_packets[PACKET_QTBuffer_size]);
13894
13895 if (result != PACKET_OK)
13896 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13897 }
13898 }
13899
13900 bool
13901 remote_target::set_trace_notes (const char *user, const char *notes,
13902 const char *stop_notes)
13903 {
13904 struct remote_state *rs = get_remote_state ();
13905 char *reply;
13906 char *buf = rs->buf.data ();
13907 char *endbuf = buf + get_remote_packet_size ();
13908 int nbytes;
13909
13910 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13911 if (user)
13912 {
13913 buf += xsnprintf (buf, endbuf - buf, "user:");
13914 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13915 buf += 2 * nbytes;
13916 *buf++ = ';';
13917 }
13918 if (notes)
13919 {
13920 buf += xsnprintf (buf, endbuf - buf, "notes:");
13921 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13922 buf += 2 * nbytes;
13923 *buf++ = ';';
13924 }
13925 if (stop_notes)
13926 {
13927 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13928 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13929 buf += 2 * nbytes;
13930 *buf++ = ';';
13931 }
13932 /* Ensure the buffer is terminated. */
13933 *buf = '\0';
13934
13935 putpkt (rs->buf);
13936 reply = remote_get_noisy_reply ();
13937 if (*reply == '\0')
13938 return false;
13939
13940 if (strcmp (reply, "OK") != 0)
13941 error (_("Bogus reply from target: %s"), reply);
13942
13943 return true;
13944 }
13945
13946 bool
13947 remote_target::use_agent (bool use)
13948 {
13949 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13950 {
13951 struct remote_state *rs = get_remote_state ();
13952
13953 /* If the stub supports QAgent. */
13954 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13955 putpkt (rs->buf);
13956 getpkt (&rs->buf, 0);
13957
13958 if (strcmp (rs->buf.data (), "OK") == 0)
13959 {
13960 ::use_agent = use;
13961 return true;
13962 }
13963 }
13964
13965 return false;
13966 }
13967
13968 bool
13969 remote_target::can_use_agent ()
13970 {
13971 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13972 }
13973
13974 struct btrace_target_info
13975 {
13976 /* The ptid of the traced thread. */
13977 ptid_t ptid;
13978
13979 /* The obtained branch trace configuration. */
13980 struct btrace_config conf;
13981 };
13982
13983 /* Reset our idea of our target's btrace configuration. */
13984
13985 static void
13986 remote_btrace_reset (remote_state *rs)
13987 {
13988 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13989 }
13990
13991 /* Synchronize the configuration with the target. */
13992
13993 void
13994 remote_target::btrace_sync_conf (const btrace_config *conf)
13995 {
13996 struct packet_config *packet;
13997 struct remote_state *rs;
13998 char *buf, *pos, *endbuf;
13999
14000 rs = get_remote_state ();
14001 buf = rs->buf.data ();
14002 endbuf = buf + get_remote_packet_size ();
14003
14004 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
14005 if (packet_config_support (packet) == PACKET_ENABLE
14006 && conf->bts.size != rs->btrace_config.bts.size)
14007 {
14008 pos = buf;
14009 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14010 conf->bts.size);
14011
14012 putpkt (buf);
14013 getpkt (&rs->buf, 0);
14014
14015 if (packet_ok (buf, packet) == PACKET_ERROR)
14016 {
14017 if (buf[0] == 'E' && buf[1] == '.')
14018 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
14019 else
14020 error (_("Failed to configure the BTS buffer size."));
14021 }
14022
14023 rs->btrace_config.bts.size = conf->bts.size;
14024 }
14025
14026 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
14027 if (packet_config_support (packet) == PACKET_ENABLE
14028 && conf->pt.size != rs->btrace_config.pt.size)
14029 {
14030 pos = buf;
14031 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14032 conf->pt.size);
14033
14034 putpkt (buf);
14035 getpkt (&rs->buf, 0);
14036
14037 if (packet_ok (buf, packet) == PACKET_ERROR)
14038 {
14039 if (buf[0] == 'E' && buf[1] == '.')
14040 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
14041 else
14042 error (_("Failed to configure the trace buffer size."));
14043 }
14044
14045 rs->btrace_config.pt.size = conf->pt.size;
14046 }
14047 }
14048
14049 /* Read the current thread's btrace configuration from the target and
14050 store it into CONF. */
14051
14052 static void
14053 btrace_read_config (struct btrace_config *conf)
14054 {
14055 gdb::optional<gdb::char_vector> xml
14056 = target_read_stralloc (current_inferior ()->top_target (),
14057 TARGET_OBJECT_BTRACE_CONF, "");
14058 if (xml)
14059 parse_xml_btrace_conf (conf, xml->data ());
14060 }
14061
14062 /* Maybe reopen target btrace. */
14063
14064 void
14065 remote_target::remote_btrace_maybe_reopen ()
14066 {
14067 struct remote_state *rs = get_remote_state ();
14068 int btrace_target_pushed = 0;
14069 #if !defined (HAVE_LIBIPT)
14070 int warned = 0;
14071 #endif
14072
14073 /* Don't bother walking the entirety of the remote thread list when
14074 we know the feature isn't supported by the remote. */
14075 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
14076 return;
14077
14078 scoped_restore_current_thread restore_thread;
14079
14080 for (thread_info *tp : all_non_exited_threads (this))
14081 {
14082 set_general_thread (tp->ptid);
14083
14084 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
14085 btrace_read_config (&rs->btrace_config);
14086
14087 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
14088 continue;
14089
14090 #if !defined (HAVE_LIBIPT)
14091 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
14092 {
14093 if (!warned)
14094 {
14095 warned = 1;
14096 warning (_("Target is recording using Intel Processor Trace "
14097 "but support was disabled at compile time."));
14098 }
14099
14100 continue;
14101 }
14102 #endif /* !defined (HAVE_LIBIPT) */
14103
14104 /* Push target, once, but before anything else happens. This way our
14105 changes to the threads will be cleaned up by unpushing the target
14106 in case btrace_read_config () throws. */
14107 if (!btrace_target_pushed)
14108 {
14109 btrace_target_pushed = 1;
14110 record_btrace_push_target ();
14111 printf_filtered (_("Target is recording using %s.\n"),
14112 btrace_format_string (rs->btrace_config.format));
14113 }
14114
14115 tp->btrace.target = XCNEW (struct btrace_target_info);
14116 tp->btrace.target->ptid = tp->ptid;
14117 tp->btrace.target->conf = rs->btrace_config;
14118 }
14119 }
14120
14121 /* Enable branch tracing. */
14122
14123 struct btrace_target_info *
14124 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
14125 {
14126 struct btrace_target_info *tinfo = NULL;
14127 struct packet_config *packet = NULL;
14128 struct remote_state *rs = get_remote_state ();
14129 char *buf = rs->buf.data ();
14130 char *endbuf = buf + get_remote_packet_size ();
14131
14132 switch (conf->format)
14133 {
14134 case BTRACE_FORMAT_BTS:
14135 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14136 break;
14137
14138 case BTRACE_FORMAT_PT:
14139 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14140 break;
14141 }
14142
14143 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14144 error (_("Target does not support branch tracing."));
14145
14146 btrace_sync_conf (conf);
14147
14148 set_general_thread (ptid);
14149
14150 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14151 putpkt (rs->buf);
14152 getpkt (&rs->buf, 0);
14153
14154 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14155 {
14156 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14157 error (_("Could not enable branch tracing for %s: %s"),
14158 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14159 else
14160 error (_("Could not enable branch tracing for %s."),
14161 target_pid_to_str (ptid).c_str ());
14162 }
14163
14164 tinfo = XCNEW (struct btrace_target_info);
14165 tinfo->ptid = ptid;
14166
14167 /* If we fail to read the configuration, we lose some information, but the
14168 tracing itself is not impacted. */
14169 try
14170 {
14171 btrace_read_config (&tinfo->conf);
14172 }
14173 catch (const gdb_exception_error &err)
14174 {
14175 if (err.message != NULL)
14176 warning ("%s", err.what ());
14177 }
14178
14179 return tinfo;
14180 }
14181
14182 /* Disable branch tracing. */
14183
14184 void
14185 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14186 {
14187 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14188 struct remote_state *rs = get_remote_state ();
14189 char *buf = rs->buf.data ();
14190 char *endbuf = buf + get_remote_packet_size ();
14191
14192 if (packet_config_support (packet) != PACKET_ENABLE)
14193 error (_("Target does not support branch tracing."));
14194
14195 set_general_thread (tinfo->ptid);
14196
14197 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14198 putpkt (rs->buf);
14199 getpkt (&rs->buf, 0);
14200
14201 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14202 {
14203 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14204 error (_("Could not disable branch tracing for %s: %s"),
14205 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14206 else
14207 error (_("Could not disable branch tracing for %s."),
14208 target_pid_to_str (tinfo->ptid).c_str ());
14209 }
14210
14211 xfree (tinfo);
14212 }
14213
14214 /* Teardown branch tracing. */
14215
14216 void
14217 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14218 {
14219 /* We must not talk to the target during teardown. */
14220 xfree (tinfo);
14221 }
14222
14223 /* Read the branch trace. */
14224
14225 enum btrace_error
14226 remote_target::read_btrace (struct btrace_data *btrace,
14227 struct btrace_target_info *tinfo,
14228 enum btrace_read_type type)
14229 {
14230 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14231 const char *annex;
14232
14233 if (packet_config_support (packet) != PACKET_ENABLE)
14234 error (_("Target does not support branch tracing."));
14235
14236 #if !defined(HAVE_LIBEXPAT)
14237 error (_("Cannot process branch tracing result. XML parsing not supported."));
14238 #endif
14239
14240 switch (type)
14241 {
14242 case BTRACE_READ_ALL:
14243 annex = "all";
14244 break;
14245 case BTRACE_READ_NEW:
14246 annex = "new";
14247 break;
14248 case BTRACE_READ_DELTA:
14249 annex = "delta";
14250 break;
14251 default:
14252 internal_error (__FILE__, __LINE__,
14253 _("Bad branch tracing read type: %u."),
14254 (unsigned int) type);
14255 }
14256
14257 gdb::optional<gdb::char_vector> xml
14258 = target_read_stralloc (current_inferior ()->top_target (),
14259 TARGET_OBJECT_BTRACE, annex);
14260 if (!xml)
14261 return BTRACE_ERR_UNKNOWN;
14262
14263 parse_xml_btrace (btrace, xml->data ());
14264
14265 return BTRACE_ERR_NONE;
14266 }
14267
14268 const struct btrace_config *
14269 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14270 {
14271 return &tinfo->conf;
14272 }
14273
14274 bool
14275 remote_target::augmented_libraries_svr4_read ()
14276 {
14277 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14278 == PACKET_ENABLE);
14279 }
14280
14281 /* Implementation of to_load. */
14282
14283 void
14284 remote_target::load (const char *name, int from_tty)
14285 {
14286 generic_load (name, from_tty);
14287 }
14288
14289 /* Accepts an integer PID; returns a string representing a file that
14290 can be opened on the remote side to get the symbols for the child
14291 process. Returns NULL if the operation is not supported. */
14292
14293 char *
14294 remote_target::pid_to_exec_file (int pid)
14295 {
14296 static gdb::optional<gdb::char_vector> filename;
14297 char *annex = NULL;
14298
14299 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14300 return NULL;
14301
14302 inferior *inf = find_inferior_pid (this, pid);
14303 if (inf == NULL)
14304 internal_error (__FILE__, __LINE__,
14305 _("not currently attached to process %d"), pid);
14306
14307 if (!inf->fake_pid_p)
14308 {
14309 const int annex_size = 9;
14310
14311 annex = (char *) alloca (annex_size);
14312 xsnprintf (annex, annex_size, "%x", pid);
14313 }
14314
14315 filename = target_read_stralloc (current_inferior ()->top_target (),
14316 TARGET_OBJECT_EXEC_FILE, annex);
14317
14318 return filename ? filename->data () : nullptr;
14319 }
14320
14321 /* Implement the to_can_do_single_step target_ops method. */
14322
14323 int
14324 remote_target::can_do_single_step ()
14325 {
14326 /* We can only tell whether target supports single step or not by
14327 supported s and S vCont actions if the stub supports vContSupported
14328 feature. If the stub doesn't support vContSupported feature,
14329 we have conservatively to think target doesn't supports single
14330 step. */
14331 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14332 {
14333 struct remote_state *rs = get_remote_state ();
14334
14335 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14336 remote_vcont_probe ();
14337
14338 return rs->supports_vCont.s && rs->supports_vCont.S;
14339 }
14340 else
14341 return 0;
14342 }
14343
14344 /* Implementation of the to_execution_direction method for the remote
14345 target. */
14346
14347 enum exec_direction_kind
14348 remote_target::execution_direction ()
14349 {
14350 struct remote_state *rs = get_remote_state ();
14351
14352 return rs->last_resume_exec_dir;
14353 }
14354
14355 /* Return pointer to the thread_info struct which corresponds to
14356 THREAD_HANDLE (having length HANDLE_LEN). */
14357
14358 thread_info *
14359 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14360 int handle_len,
14361 inferior *inf)
14362 {
14363 for (thread_info *tp : all_non_exited_threads (this))
14364 {
14365 remote_thread_info *priv = get_remote_thread_info (tp);
14366
14367 if (tp->inf == inf && priv != NULL)
14368 {
14369 if (handle_len != priv->thread_handle.size ())
14370 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14371 handle_len, priv->thread_handle.size ());
14372 if (memcmp (thread_handle, priv->thread_handle.data (),
14373 handle_len) == 0)
14374 return tp;
14375 }
14376 }
14377
14378 return NULL;
14379 }
14380
14381 gdb::byte_vector
14382 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14383 {
14384 remote_thread_info *priv = get_remote_thread_info (tp);
14385 return priv->thread_handle;
14386 }
14387
14388 bool
14389 remote_target::can_async_p ()
14390 {
14391 struct remote_state *rs = get_remote_state ();
14392
14393 /* We don't go async if the user has explicitly prevented it with the
14394 "maint set target-async" command. */
14395 if (!target_async_permitted)
14396 return false;
14397
14398 /* We're async whenever the serial device is. */
14399 return serial_can_async_p (rs->remote_desc);
14400 }
14401
14402 bool
14403 remote_target::is_async_p ()
14404 {
14405 struct remote_state *rs = get_remote_state ();
14406
14407 if (!target_async_permitted)
14408 /* We only enable async when the user specifically asks for it. */
14409 return false;
14410
14411 /* We're async whenever the serial device is. */
14412 return serial_is_async_p (rs->remote_desc);
14413 }
14414
14415 /* Pass the SERIAL event on and up to the client. One day this code
14416 will be able to delay notifying the client of an event until the
14417 point where an entire packet has been received. */
14418
14419 static serial_event_ftype remote_async_serial_handler;
14420
14421 static void
14422 remote_async_serial_handler (struct serial *scb, void *context)
14423 {
14424 /* Don't propogate error information up to the client. Instead let
14425 the client find out about the error by querying the target. */
14426 inferior_event_handler (INF_REG_EVENT);
14427 }
14428
14429 static void
14430 remote_async_inferior_event_handler (gdb_client_data data)
14431 {
14432 inferior_event_handler (INF_REG_EVENT);
14433 }
14434
14435 int
14436 remote_target::async_wait_fd ()
14437 {
14438 struct remote_state *rs = get_remote_state ();
14439 return rs->remote_desc->fd;
14440 }
14441
14442 void
14443 remote_target::async (int enable)
14444 {
14445 struct remote_state *rs = get_remote_state ();
14446
14447 if (enable)
14448 {
14449 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14450
14451 /* If there are pending events in the stop reply queue tell the
14452 event loop to process them. */
14453 if (!rs->stop_reply_queue.empty ())
14454 mark_async_event_handler (rs->remote_async_inferior_event_token);
14455 /* For simplicity, below we clear the pending events token
14456 without remembering whether it is marked, so here we always
14457 mark it. If there's actually no pending notification to
14458 process, this ends up being a no-op (other than a spurious
14459 event-loop wakeup). */
14460 if (target_is_non_stop_p ())
14461 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14462 }
14463 else
14464 {
14465 serial_async (rs->remote_desc, NULL, NULL);
14466 /* If the core is disabling async, it doesn't want to be
14467 disturbed with target events. Clear all async event sources
14468 too. */
14469 clear_async_event_handler (rs->remote_async_inferior_event_token);
14470 if (target_is_non_stop_p ())
14471 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14472 }
14473 }
14474
14475 /* Implementation of the to_thread_events method. */
14476
14477 void
14478 remote_target::thread_events (int enable)
14479 {
14480 struct remote_state *rs = get_remote_state ();
14481 size_t size = get_remote_packet_size ();
14482
14483 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14484 return;
14485
14486 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14487 putpkt (rs->buf);
14488 getpkt (&rs->buf, 0);
14489
14490 switch (packet_ok (rs->buf,
14491 &remote_protocol_packets[PACKET_QThreadEvents]))
14492 {
14493 case PACKET_OK:
14494 if (strcmp (rs->buf.data (), "OK") != 0)
14495 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14496 break;
14497 case PACKET_ERROR:
14498 warning (_("Remote failure reply: %s"), rs->buf.data ());
14499 break;
14500 case PACKET_UNKNOWN:
14501 break;
14502 }
14503 }
14504
14505 static void
14506 show_remote_cmd (const char *args, int from_tty)
14507 {
14508 /* We can't just use cmd_show_list here, because we want to skip
14509 the redundant "show remote Z-packet" and the legacy aliases. */
14510 struct cmd_list_element *list = remote_show_cmdlist;
14511 struct ui_out *uiout = current_uiout;
14512
14513 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14514 for (; list != NULL; list = list->next)
14515 if (strcmp (list->name, "Z-packet") == 0)
14516 continue;
14517 else if (list->type == not_set_cmd)
14518 /* Alias commands are exactly like the original, except they
14519 don't have the normal type. */
14520 continue;
14521 else
14522 {
14523 ui_out_emit_tuple option_emitter (uiout, "option");
14524
14525 uiout->field_string ("name", list->name);
14526 uiout->text (": ");
14527 if (list->type == show_cmd)
14528 do_show_command (NULL, from_tty, list);
14529 else
14530 cmd_func (list, NULL, from_tty);
14531 }
14532 }
14533
14534
14535 /* Function to be called whenever a new objfile (shlib) is detected. */
14536 static void
14537 remote_new_objfile (struct objfile *objfile)
14538 {
14539 remote_target *remote = get_current_remote_target ();
14540
14541 /* First, check whether the current inferior's process target is a remote
14542 target. */
14543 if (remote == nullptr)
14544 return;
14545
14546 /* When we are attaching or handling a fork child and the shared library
14547 subsystem reads the list of loaded libraries, we receive new objfile
14548 events in between each found library. The libraries are read in an
14549 undefined order, so if we gave the remote side a chance to look up
14550 symbols between each objfile, we might give it an inconsistent picture
14551 of the inferior. It could appear that a library A appears loaded but
14552 a library B does not, even though library A requires library B. That
14553 would present a state that couldn't normally exist in the inferior.
14554
14555 So, skip these events, we'll give the remote a chance to look up symbols
14556 once all the loaded libraries and their symbols are known to GDB. */
14557 if (current_inferior ()->in_initial_library_scan)
14558 return;
14559
14560 remote->remote_check_symbols ();
14561 }
14562
14563 /* Pull all the tracepoints defined on the target and create local
14564 data structures representing them. We don't want to create real
14565 tracepoints yet, we don't want to mess up the user's existing
14566 collection. */
14567
14568 int
14569 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14570 {
14571 struct remote_state *rs = get_remote_state ();
14572 char *p;
14573
14574 /* Ask for a first packet of tracepoint definition. */
14575 putpkt ("qTfP");
14576 getpkt (&rs->buf, 0);
14577 p = rs->buf.data ();
14578 while (*p && *p != 'l')
14579 {
14580 parse_tracepoint_definition (p, utpp);
14581 /* Ask for another packet of tracepoint definition. */
14582 putpkt ("qTsP");
14583 getpkt (&rs->buf, 0);
14584 p = rs->buf.data ();
14585 }
14586 return 0;
14587 }
14588
14589 int
14590 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14591 {
14592 struct remote_state *rs = get_remote_state ();
14593 char *p;
14594
14595 /* Ask for a first packet of variable definition. */
14596 putpkt ("qTfV");
14597 getpkt (&rs->buf, 0);
14598 p = rs->buf.data ();
14599 while (*p && *p != 'l')
14600 {
14601 parse_tsv_definition (p, utsvp);
14602 /* Ask for another packet of variable definition. */
14603 putpkt ("qTsV");
14604 getpkt (&rs->buf, 0);
14605 p = rs->buf.data ();
14606 }
14607 return 0;
14608 }
14609
14610 /* The "set/show range-stepping" show hook. */
14611
14612 static void
14613 show_range_stepping (struct ui_file *file, int from_tty,
14614 struct cmd_list_element *c,
14615 const char *value)
14616 {
14617 fprintf_filtered (file,
14618 _("Debugger's willingness to use range stepping "
14619 "is %s.\n"), value);
14620 }
14621
14622 /* Return true if the vCont;r action is supported by the remote
14623 stub. */
14624
14625 bool
14626 remote_target::vcont_r_supported ()
14627 {
14628 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14629 remote_vcont_probe ();
14630
14631 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14632 && get_remote_state ()->supports_vCont.r);
14633 }
14634
14635 /* The "set/show range-stepping" set hook. */
14636
14637 static void
14638 set_range_stepping (const char *ignore_args, int from_tty,
14639 struct cmd_list_element *c)
14640 {
14641 /* When enabling, check whether range stepping is actually supported
14642 by the target, and warn if not. */
14643 if (use_range_stepping)
14644 {
14645 remote_target *remote = get_current_remote_target ();
14646 if (remote == NULL
14647 || !remote->vcont_r_supported ())
14648 warning (_("Range stepping is not supported by the current target"));
14649 }
14650 }
14651
14652 static void
14653 show_remote_debug (struct ui_file *file, int from_tty,
14654 struct cmd_list_element *c, const char *value)
14655 {
14656 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14657 value);
14658 }
14659
14660 static void
14661 show_remote_timeout (struct ui_file *file, int from_tty,
14662 struct cmd_list_element *c, const char *value)
14663 {
14664 fprintf_filtered (file,
14665 _("Timeout limit to wait for target to respond is %s.\n"),
14666 value);
14667 }
14668
14669 /* Implement the "supports_memory_tagging" target_ops method. */
14670
14671 bool
14672 remote_target::supports_memory_tagging ()
14673 {
14674 return remote_memory_tagging_p ();
14675 }
14676
14677 /* Create the qMemTags packet given ADDRESS, LEN and TYPE. */
14678
14679 static void
14680 create_fetch_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14681 size_t len, int type)
14682 {
14683 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14684
14685 std::string request = string_printf ("qMemTags:%s,%s:%s",
14686 phex_nz (address, addr_size),
14687 phex_nz (len, sizeof (len)),
14688 phex_nz (type, sizeof (type)));
14689
14690 strcpy (packet.data (), request.c_str ());
14691 }
14692
14693 /* Parse the qMemTags packet reply into TAGS.
14694
14695 Return true if successful, false otherwise. */
14696
14697 static bool
14698 parse_fetch_memtags_reply (const gdb::char_vector &reply,
14699 gdb::byte_vector &tags)
14700 {
14701 if (reply.empty () || reply[0] == 'E' || reply[0] != 'm')
14702 return false;
14703
14704 /* Copy the tag data. */
14705 tags = hex2bin (reply.data () + 1);
14706
14707 return true;
14708 }
14709
14710 /* Create the QMemTags packet given ADDRESS, LEN, TYPE and TAGS. */
14711
14712 static void
14713 create_store_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14714 size_t len, int type,
14715 const gdb::byte_vector &tags)
14716 {
14717 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14718
14719 /* Put together the main packet, address and length. */
14720 std::string request = string_printf ("QMemTags:%s,%s:%s:",
14721 phex_nz (address, addr_size),
14722 phex_nz (len, sizeof (len)),
14723 phex_nz (type, sizeof (type)));
14724 request += bin2hex (tags.data (), tags.size ());
14725
14726 /* Check if we have exceeded the maximum packet size. */
14727 if (packet.size () < request.length ())
14728 error (_("Contents too big for packet QMemTags."));
14729
14730 strcpy (packet.data (), request.c_str ());
14731 }
14732
14733 /* Implement the "fetch_memtags" target_ops method. */
14734
14735 bool
14736 remote_target::fetch_memtags (CORE_ADDR address, size_t len,
14737 gdb::byte_vector &tags, int type)
14738 {
14739 /* Make sure the qMemTags packet is supported. */
14740 if (!remote_memory_tagging_p ())
14741 gdb_assert_not_reached ("remote fetch_memtags called with packet disabled");
14742
14743 struct remote_state *rs = get_remote_state ();
14744
14745 create_fetch_memtags_request (rs->buf, address, len, type);
14746
14747 putpkt (rs->buf);
14748 getpkt (&rs->buf, 0);
14749
14750 return parse_fetch_memtags_reply (rs->buf, tags);
14751 }
14752
14753 /* Implement the "store_memtags" target_ops method. */
14754
14755 bool
14756 remote_target::store_memtags (CORE_ADDR address, size_t len,
14757 const gdb::byte_vector &tags, int type)
14758 {
14759 /* Make sure the QMemTags packet is supported. */
14760 if (!remote_memory_tagging_p ())
14761 gdb_assert_not_reached ("remote store_memtags called with packet disabled");
14762
14763 struct remote_state *rs = get_remote_state ();
14764
14765 create_store_memtags_request (rs->buf, address, len, type, tags);
14766
14767 putpkt (rs->buf);
14768 getpkt (&rs->buf, 0);
14769
14770 /* Verify if the request was successful. */
14771 return packet_check_result (rs->buf.data ()) == PACKET_OK;
14772 }
14773
14774 /* Return true if remote target T is non-stop. */
14775
14776 bool
14777 remote_target_is_non_stop_p (remote_target *t)
14778 {
14779 scoped_restore_current_thread restore_thread;
14780 switch_to_target_no_thread (t);
14781
14782 return target_is_non_stop_p ();
14783 }
14784
14785 #if GDB_SELF_TEST
14786
14787 namespace selftests {
14788
14789 static void
14790 test_memory_tagging_functions ()
14791 {
14792 remote_target remote;
14793
14794 struct packet_config *config
14795 = &remote_protocol_packets[PACKET_memory_tagging_feature];
14796
14797 scoped_restore restore_memtag_support_
14798 = make_scoped_restore (&config->support);
14799
14800 /* Test memory tagging packet support. */
14801 config->support = PACKET_SUPPORT_UNKNOWN;
14802 SELF_CHECK (remote.supports_memory_tagging () == false);
14803 config->support = PACKET_DISABLE;
14804 SELF_CHECK (remote.supports_memory_tagging () == false);
14805 config->support = PACKET_ENABLE;
14806 SELF_CHECK (remote.supports_memory_tagging () == true);
14807
14808 /* Setup testing. */
14809 gdb::char_vector packet;
14810 gdb::byte_vector tags, bv;
14811 std::string expected, reply;
14812 packet.resize (32000);
14813
14814 /* Test creating a qMemTags request. */
14815
14816 expected = "qMemTags:0,0:0";
14817 create_fetch_memtags_request (packet, 0x0, 0x0, 0);
14818 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14819
14820 expected = "qMemTags:deadbeef,10:1";
14821 create_fetch_memtags_request (packet, 0xdeadbeef, 16, 1);
14822 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14823
14824 /* Test parsing a qMemTags reply. */
14825
14826 /* Error reply, tags vector unmodified. */
14827 reply = "E00";
14828 strcpy (packet.data (), reply.c_str ());
14829 tags.resize (0);
14830 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == false);
14831 SELF_CHECK (tags.size () == 0);
14832
14833 /* Valid reply, tags vector updated. */
14834 tags.resize (0);
14835 bv.resize (0);
14836
14837 for (int i = 0; i < 5; i++)
14838 bv.push_back (i);
14839
14840 reply = "m" + bin2hex (bv.data (), bv.size ());
14841 strcpy (packet.data (), reply.c_str ());
14842
14843 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == true);
14844 SELF_CHECK (tags.size () == 5);
14845
14846 for (int i = 0; i < 5; i++)
14847 SELF_CHECK (tags[i] == i);
14848
14849 /* Test creating a QMemTags request. */
14850
14851 /* Empty tag data. */
14852 tags.resize (0);
14853 expected = "QMemTags:0,0:0:";
14854 create_store_memtags_request (packet, 0x0, 0x0, 0, tags);
14855 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14856 expected.length ()) == 0);
14857
14858 /* Non-empty tag data. */
14859 tags.resize (0);
14860 for (int i = 0; i < 5; i++)
14861 tags.push_back (i);
14862 expected = "QMemTags:deadbeef,ff:1:0001020304";
14863 create_store_memtags_request (packet, 0xdeadbeef, 255, 1, tags);
14864 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14865 expected.length ()) == 0);
14866 }
14867
14868 } // namespace selftests
14869 #endif /* GDB_SELF_TEST */
14870
14871 void _initialize_remote ();
14872 void
14873 _initialize_remote ()
14874 {
14875 /* architecture specific data */
14876 remote_g_packet_data_handle =
14877 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14878
14879 add_target (remote_target_info, remote_target::open);
14880 add_target (extended_remote_target_info, extended_remote_target::open);
14881
14882 /* Hook into new objfile notification. */
14883 gdb::observers::new_objfile.attach (remote_new_objfile, "remote");
14884
14885 #if 0
14886 init_remote_threadtests ();
14887 #endif
14888
14889 /* set/show remote ... */
14890
14891 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14892 Remote protocol specific variables.\n\
14893 Configure various remote-protocol specific variables such as\n\
14894 the packets being used."),
14895 &remote_set_cmdlist,
14896 0 /* allow-unknown */, &setlist);
14897 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14898 Remote protocol specific variables.\n\
14899 Configure various remote-protocol specific variables such as\n\
14900 the packets being used."),
14901 &remote_show_cmdlist,
14902 0 /* allow-unknown */, &showlist);
14903
14904 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14905 Compare section data on target to the exec file.\n\
14906 Argument is a single section name (default: all loaded sections).\n\
14907 To compare only read-only loaded sections, specify the -r option."),
14908 &cmdlist);
14909
14910 add_cmd ("packet", class_maintenance, packet_command, _("\
14911 Send an arbitrary packet to a remote target.\n\
14912 maintenance packet TEXT\n\
14913 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14914 this command sends the string TEXT to the inferior, and displays the\n\
14915 response packet. GDB supplies the initial `$' character, and the\n\
14916 terminating `#' character and checksum."),
14917 &maintenancelist);
14918
14919 set_show_commands remotebreak_cmds
14920 = add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14921 Set whether to send break if interrupted."), _("\
14922 Show whether to send break if interrupted."), _("\
14923 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14924 set_remotebreak, show_remotebreak,
14925 &setlist, &showlist);
14926 deprecate_cmd (remotebreak_cmds.set, "set remote interrupt-sequence");
14927 deprecate_cmd (remotebreak_cmds.show, "show remote interrupt-sequence");
14928
14929 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14930 interrupt_sequence_modes, &interrupt_sequence_mode,
14931 _("\
14932 Set interrupt sequence to remote target."), _("\
14933 Show interrupt sequence to remote target."), _("\
14934 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14935 NULL, show_interrupt_sequence,
14936 &remote_set_cmdlist,
14937 &remote_show_cmdlist);
14938
14939 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14940 &interrupt_on_connect, _("\
14941 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14942 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14943 If set, interrupt sequence is sent to remote target."),
14944 NULL, NULL,
14945 &remote_set_cmdlist, &remote_show_cmdlist);
14946
14947 /* Install commands for configuring memory read/write packets. */
14948
14949 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14950 Set the maximum number of bytes per memory write packet (deprecated)."),
14951 &setlist);
14952 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14953 Show the maximum number of bytes per memory write packet (deprecated)."),
14954 &showlist);
14955 add_cmd ("memory-write-packet-size", no_class,
14956 set_memory_write_packet_size, _("\
14957 Set the maximum number of bytes per memory-write packet.\n\
14958 Specify the number of bytes in a packet or 0 (zero) for the\n\
14959 default packet size. The actual limit is further reduced\n\
14960 dependent on the target. Specify ``fixed'' to disable the\n\
14961 further restriction and ``limit'' to enable that restriction."),
14962 &remote_set_cmdlist);
14963 add_cmd ("memory-read-packet-size", no_class,
14964 set_memory_read_packet_size, _("\
14965 Set the maximum number of bytes per memory-read packet.\n\
14966 Specify the number of bytes in a packet or 0 (zero) for the\n\
14967 default packet size. The actual limit is further reduced\n\
14968 dependent on the target. Specify ``fixed'' to disable the\n\
14969 further restriction and ``limit'' to enable that restriction."),
14970 &remote_set_cmdlist);
14971 add_cmd ("memory-write-packet-size", no_class,
14972 show_memory_write_packet_size,
14973 _("Show the maximum number of bytes per memory-write packet."),
14974 &remote_show_cmdlist);
14975 add_cmd ("memory-read-packet-size", no_class,
14976 show_memory_read_packet_size,
14977 _("Show the maximum number of bytes per memory-read packet."),
14978 &remote_show_cmdlist);
14979
14980 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14981 &remote_hw_watchpoint_limit, _("\
14982 Set the maximum number of target hardware watchpoints."), _("\
14983 Show the maximum number of target hardware watchpoints."), _("\
14984 Specify \"unlimited\" for unlimited hardware watchpoints."),
14985 NULL, show_hardware_watchpoint_limit,
14986 &remote_set_cmdlist,
14987 &remote_show_cmdlist);
14988 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14989 no_class,
14990 &remote_hw_watchpoint_length_limit, _("\
14991 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14992 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14993 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14994 NULL, show_hardware_watchpoint_length_limit,
14995 &remote_set_cmdlist, &remote_show_cmdlist);
14996 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14997 &remote_hw_breakpoint_limit, _("\
14998 Set the maximum number of target hardware breakpoints."), _("\
14999 Show the maximum number of target hardware breakpoints."), _("\
15000 Specify \"unlimited\" for unlimited hardware breakpoints."),
15001 NULL, show_hardware_breakpoint_limit,
15002 &remote_set_cmdlist, &remote_show_cmdlist);
15003
15004 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
15005 &remote_address_size, _("\
15006 Set the maximum size of the address (in bits) in a memory packet."), _("\
15007 Show the maximum size of the address (in bits) in a memory packet."), NULL,
15008 NULL,
15009 NULL, /* FIXME: i18n: */
15010 &setlist, &showlist);
15011
15012 init_all_packet_configs ();
15013
15014 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
15015 "X", "binary-download", 1);
15016
15017 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
15018 "vCont", "verbose-resume", 0);
15019
15020 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
15021 "QPassSignals", "pass-signals", 0);
15022
15023 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
15024 "QCatchSyscalls", "catch-syscalls", 0);
15025
15026 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
15027 "QProgramSignals", "program-signals", 0);
15028
15029 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
15030 "QSetWorkingDir", "set-working-dir", 0);
15031
15032 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
15033 "QStartupWithShell", "startup-with-shell", 0);
15034
15035 add_packet_config_cmd (&remote_protocol_packets
15036 [PACKET_QEnvironmentHexEncoded],
15037 "QEnvironmentHexEncoded", "environment-hex-encoded",
15038 0);
15039
15040 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
15041 "QEnvironmentReset", "environment-reset",
15042 0);
15043
15044 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
15045 "QEnvironmentUnset", "environment-unset",
15046 0);
15047
15048 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
15049 "qSymbol", "symbol-lookup", 0);
15050
15051 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
15052 "P", "set-register", 1);
15053
15054 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
15055 "p", "fetch-register", 1);
15056
15057 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
15058 "Z0", "software-breakpoint", 0);
15059
15060 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
15061 "Z1", "hardware-breakpoint", 0);
15062
15063 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
15064 "Z2", "write-watchpoint", 0);
15065
15066 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
15067 "Z3", "read-watchpoint", 0);
15068
15069 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
15070 "Z4", "access-watchpoint", 0);
15071
15072 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
15073 "qXfer:auxv:read", "read-aux-vector", 0);
15074
15075 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
15076 "qXfer:exec-file:read", "pid-to-exec-file", 0);
15077
15078 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
15079 "qXfer:features:read", "target-features", 0);
15080
15081 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
15082 "qXfer:libraries:read", "library-info", 0);
15083
15084 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
15085 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
15086
15087 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
15088 "qXfer:memory-map:read", "memory-map", 0);
15089
15090 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
15091 "qXfer:osdata:read", "osdata", 0);
15092
15093 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
15094 "qXfer:threads:read", "threads", 0);
15095
15096 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
15097 "qXfer:siginfo:read", "read-siginfo-object", 0);
15098
15099 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
15100 "qXfer:siginfo:write", "write-siginfo-object", 0);
15101
15102 add_packet_config_cmd
15103 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
15104 "qXfer:traceframe-info:read", "traceframe-info", 0);
15105
15106 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
15107 "qXfer:uib:read", "unwind-info-block", 0);
15108
15109 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
15110 "qGetTLSAddr", "get-thread-local-storage-address",
15111 0);
15112
15113 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
15114 "qGetTIBAddr", "get-thread-information-block-address",
15115 0);
15116
15117 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
15118 "bc", "reverse-continue", 0);
15119
15120 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
15121 "bs", "reverse-step", 0);
15122
15123 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
15124 "qSupported", "supported-packets", 0);
15125
15126 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
15127 "qSearch:memory", "search-memory", 0);
15128
15129 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
15130 "qTStatus", "trace-status", 0);
15131
15132 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
15133 "vFile:setfs", "hostio-setfs", 0);
15134
15135 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
15136 "vFile:open", "hostio-open", 0);
15137
15138 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
15139 "vFile:pread", "hostio-pread", 0);
15140
15141 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
15142 "vFile:pwrite", "hostio-pwrite", 0);
15143
15144 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
15145 "vFile:close", "hostio-close", 0);
15146
15147 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
15148 "vFile:unlink", "hostio-unlink", 0);
15149
15150 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
15151 "vFile:readlink", "hostio-readlink", 0);
15152
15153 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
15154 "vFile:fstat", "hostio-fstat", 0);
15155
15156 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
15157 "vAttach", "attach", 0);
15158
15159 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
15160 "vRun", "run", 0);
15161
15162 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
15163 "QStartNoAckMode", "noack", 0);
15164
15165 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
15166 "vKill", "kill", 0);
15167
15168 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
15169 "qAttached", "query-attached", 0);
15170
15171 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
15172 "ConditionalTracepoints",
15173 "conditional-tracepoints", 0);
15174
15175 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
15176 "ConditionalBreakpoints",
15177 "conditional-breakpoints", 0);
15178
15179 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
15180 "BreakpointCommands",
15181 "breakpoint-commands", 0);
15182
15183 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
15184 "FastTracepoints", "fast-tracepoints", 0);
15185
15186 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
15187 "TracepointSource", "TracepointSource", 0);
15188
15189 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
15190 "QAllow", "allow", 0);
15191
15192 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
15193 "StaticTracepoints", "static-tracepoints", 0);
15194
15195 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
15196 "InstallInTrace", "install-in-trace", 0);
15197
15198 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
15199 "qXfer:statictrace:read", "read-sdata-object", 0);
15200
15201 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
15202 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
15203
15204 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
15205 "QDisableRandomization", "disable-randomization", 0);
15206
15207 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
15208 "QAgent", "agent", 0);
15209
15210 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
15211 "QTBuffer:size", "trace-buffer-size", 0);
15212
15213 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
15214 "Qbtrace:off", "disable-btrace", 0);
15215
15216 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
15217 "Qbtrace:bts", "enable-btrace-bts", 0);
15218
15219 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
15220 "Qbtrace:pt", "enable-btrace-pt", 0);
15221
15222 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
15223 "qXfer:btrace", "read-btrace", 0);
15224
15225 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
15226 "qXfer:btrace-conf", "read-btrace-conf", 0);
15227
15228 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
15229 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
15230
15231 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
15232 "multiprocess-feature", "multiprocess-feature", 0);
15233
15234 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
15235 "swbreak-feature", "swbreak-feature", 0);
15236
15237 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
15238 "hwbreak-feature", "hwbreak-feature", 0);
15239
15240 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
15241 "fork-event-feature", "fork-event-feature", 0);
15242
15243 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
15244 "vfork-event-feature", "vfork-event-feature", 0);
15245
15246 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
15247 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
15248
15249 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
15250 "vContSupported", "verbose-resume-supported", 0);
15251
15252 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
15253 "exec-event-feature", "exec-event-feature", 0);
15254
15255 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
15256 "vCtrlC", "ctrl-c", 0);
15257
15258 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
15259 "QThreadEvents", "thread-events", 0);
15260
15261 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
15262 "N stop reply", "no-resumed-stop-reply", 0);
15263
15264 add_packet_config_cmd (&remote_protocol_packets[PACKET_memory_tagging_feature],
15265 "memory-tagging-feature", "memory-tagging-feature", 0);
15266
15267 /* Assert that we've registered "set remote foo-packet" commands
15268 for all packet configs. */
15269 {
15270 int i;
15271
15272 for (i = 0; i < PACKET_MAX; i++)
15273 {
15274 /* Ideally all configs would have a command associated. Some
15275 still don't though. */
15276 int excepted;
15277
15278 switch (i)
15279 {
15280 case PACKET_QNonStop:
15281 case PACKET_EnableDisableTracepoints_feature:
15282 case PACKET_tracenz_feature:
15283 case PACKET_DisconnectedTracing_feature:
15284 case PACKET_augmented_libraries_svr4_read_feature:
15285 case PACKET_qCRC:
15286 /* Additions to this list need to be well justified:
15287 pre-existing packets are OK; new packets are not. */
15288 excepted = 1;
15289 break;
15290 default:
15291 excepted = 0;
15292 break;
15293 }
15294
15295 /* This catches both forgetting to add a config command, and
15296 forgetting to remove a packet from the exception list. */
15297 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
15298 }
15299 }
15300
15301 /* Keep the old ``set remote Z-packet ...'' working. Each individual
15302 Z sub-packet has its own set and show commands, but users may
15303 have sets to this variable in their .gdbinit files (or in their
15304 documentation). */
15305 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
15306 &remote_Z_packet_detect, _("\
15307 Set use of remote protocol `Z' packets."), _("\
15308 Show use of remote protocol `Z' packets."), _("\
15309 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
15310 packets."),
15311 set_remote_protocol_Z_packet_cmd,
15312 show_remote_protocol_Z_packet_cmd,
15313 /* FIXME: i18n: Use of remote protocol
15314 `Z' packets is %s. */
15315 &remote_set_cmdlist, &remote_show_cmdlist);
15316
15317 add_basic_prefix_cmd ("remote", class_files, _("\
15318 Manipulate files on the remote system.\n\
15319 Transfer files to and from the remote target system."),
15320 &remote_cmdlist,
15321 0 /* allow-unknown */, &cmdlist);
15322
15323 add_cmd ("put", class_files, remote_put_command,
15324 _("Copy a local file to the remote system."),
15325 &remote_cmdlist);
15326
15327 add_cmd ("get", class_files, remote_get_command,
15328 _("Copy a remote file to the local system."),
15329 &remote_cmdlist);
15330
15331 add_cmd ("delete", class_files, remote_delete_command,
15332 _("Delete a remote file."),
15333 &remote_cmdlist);
15334
15335 add_setshow_string_noescape_cmd ("exec-file", class_files,
15336 &remote_exec_file_var, _("\
15337 Set the remote pathname for \"run\"."), _("\
15338 Show the remote pathname for \"run\"."), NULL,
15339 set_remote_exec_file,
15340 show_remote_exec_file,
15341 &remote_set_cmdlist,
15342 &remote_show_cmdlist);
15343
15344 add_setshow_boolean_cmd ("range-stepping", class_run,
15345 &use_range_stepping, _("\
15346 Enable or disable range stepping."), _("\
15347 Show whether target-assisted range stepping is enabled."), _("\
15348 If on, and the target supports it, when stepping a source line, GDB\n\
15349 tells the target to step the corresponding range of addresses itself instead\n\
15350 of issuing multiple single-steps. This speeds up source level\n\
15351 stepping. If off, GDB always issues single-steps, even if range\n\
15352 stepping is supported by the target. The default is on."),
15353 set_range_stepping,
15354 show_range_stepping,
15355 &setlist,
15356 &showlist);
15357
15358 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15359 Set watchdog timer."), _("\
15360 Show watchdog timer."), _("\
15361 When non-zero, this timeout is used instead of waiting forever for a target\n\
15362 to finish a low-level step or continue operation. If the specified amount\n\
15363 of time passes without a response from the target, an error occurs."),
15364 NULL,
15365 show_watchdog,
15366 &setlist, &showlist);
15367
15368 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15369 &remote_packet_max_chars, _("\
15370 Set the maximum number of characters to display for each remote packet."), _("\
15371 Show the maximum number of characters to display for each remote packet."), _("\
15372 Specify \"unlimited\" to display all the characters."),
15373 NULL, show_remote_packet_max_chars,
15374 &setdebuglist, &showdebuglist);
15375
15376 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
15377 _("Set debugging of remote protocol."),
15378 _("Show debugging of remote protocol."),
15379 _("\
15380 When enabled, each packet sent or received with the remote target\n\
15381 is displayed."),
15382 NULL,
15383 show_remote_debug,
15384 &setdebuglist, &showdebuglist);
15385
15386 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15387 &remote_timeout, _("\
15388 Set timeout limit to wait for target to respond."), _("\
15389 Show timeout limit to wait for target to respond."), _("\
15390 This value is used to set the time limit for gdb to wait for a response\n\
15391 from the target."),
15392 NULL,
15393 show_remote_timeout,
15394 &setlist, &showlist);
15395
15396 /* Eventually initialize fileio. See fileio.c */
15397 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15398
15399 #if GDB_SELF_TEST
15400 selftests::register_test ("remote_memory_tagging",
15401 selftests::test_memory_tagging_functions);
15402 #endif
15403 }