5daabf236b7ed261a4887bdf035db3f9fd3bd69a
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82
83 /* The remote target. */
84
85 static const char remote_doc[] = N_("\
86 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
87 Specify the serial device it is connected to\n\
88 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
89
90 #define OPAQUETHREADBYTES 8
91
92 /* a 64 bit opaque identifier */
93 typedef unsigned char threadref[OPAQUETHREADBYTES];
94
95 struct gdb_ext_thread_info;
96 struct threads_listing_context;
97 typedef int (*rmt_thread_action) (threadref *ref, void *context);
98 struct protocol_feature;
99 struct packet_reg;
100
101 struct stop_reply;
102 typedef std::unique_ptr<stop_reply> stop_reply_up;
103
104 /* Generic configuration support for packets the stub optionally
105 supports. Allows the user to specify the use of the packet as well
106 as allowing GDB to auto-detect support in the remote stub. */
107
108 enum packet_support
109 {
110 PACKET_SUPPORT_UNKNOWN = 0,
111 PACKET_ENABLE,
112 PACKET_DISABLE
113 };
114
115 /* Analyze a packet's return value and update the packet config
116 accordingly. */
117
118 enum packet_result
119 {
120 PACKET_ERROR,
121 PACKET_OK,
122 PACKET_UNKNOWN
123 };
124
125 struct threads_listing_context;
126
127 /* Stub vCont actions support.
128
129 Each field is a boolean flag indicating whether the stub reports
130 support for the corresponding action. */
131
132 struct vCont_action_support
133 {
134 /* vCont;t */
135 bool t = false;
136
137 /* vCont;r */
138 bool r = false;
139
140 /* vCont;s */
141 bool s = false;
142
143 /* vCont;S */
144 bool S = false;
145 };
146
147 /* About this many threadids fit in a packet. */
148
149 #define MAXTHREADLISTRESULTS 32
150
151 /* Data for the vFile:pread readahead cache. */
152
153 struct readahead_cache
154 {
155 /* Invalidate the readahead cache. */
156 void invalidate ();
157
158 /* Invalidate the readahead cache if it is holding data for FD. */
159 void invalidate_fd (int fd);
160
161 /* Serve pread from the readahead cache. Returns number of bytes
162 read, or 0 if the request can't be served from the cache. */
163 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
164
165 /* The file descriptor for the file that is being cached. -1 if the
166 cache is invalid. */
167 int fd = -1;
168
169 /* The offset into the file that the cache buffer corresponds
170 to. */
171 ULONGEST offset = 0;
172
173 /* The buffer holding the cache contents. */
174 gdb_byte *buf = nullptr;
175 /* The buffer's size. We try to read as much as fits into a packet
176 at a time. */
177 size_t bufsize = 0;
178
179 /* Cache hit and miss counters. */
180 ULONGEST hit_count = 0;
181 ULONGEST miss_count = 0;
182 };
183
184 /* Description of the remote protocol for a given architecture. */
185
186 struct packet_reg
187 {
188 long offset; /* Offset into G packet. */
189 long regnum; /* GDB's internal register number. */
190 LONGEST pnum; /* Remote protocol register number. */
191 int in_g_packet; /* Always part of G packet. */
192 /* long size in bytes; == register_size (target_gdbarch (), regnum);
193 at present. */
194 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
195 at present. */
196 };
197
198 struct remote_arch_state
199 {
200 explicit remote_arch_state (struct gdbarch *gdbarch);
201
202 /* Description of the remote protocol registers. */
203 long sizeof_g_packet;
204
205 /* Description of the remote protocol registers indexed by REGNUM
206 (making an array gdbarch_num_regs in size). */
207 std::unique_ptr<packet_reg[]> regs;
208
209 /* This is the size (in chars) of the first response to the ``g''
210 packet. It is used as a heuristic when determining the maximum
211 size of memory-read and memory-write packets. A target will
212 typically only reserve a buffer large enough to hold the ``g''
213 packet. The size does not include packet overhead (headers and
214 trailers). */
215 long actual_register_packet_size;
216
217 /* This is the maximum size (in chars) of a non read/write packet.
218 It is also used as a cap on the size of read/write packets. */
219 long remote_packet_size;
220 };
221
222 /* Description of the remote protocol state for the currently
223 connected target. This is per-target state, and independent of the
224 selected architecture. */
225
226 class remote_state
227 {
228 public:
229
230 remote_state ();
231 ~remote_state ();
232
233 /* Get the remote arch state for GDBARCH. */
234 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
235
236 public: /* data */
237
238 /* A buffer to use for incoming packets, and its current size. The
239 buffer is grown dynamically for larger incoming packets.
240 Outgoing packets may also be constructed in this buffer.
241 The size of the buffer is always at least REMOTE_PACKET_SIZE;
242 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
243 packets. */
244 gdb::char_vector buf;
245
246 /* True if we're going through initial connection setup (finding out
247 about the remote side's threads, relocating symbols, etc.). */
248 bool starting_up = false;
249
250 /* If we negotiated packet size explicitly (and thus can bypass
251 heuristics for the largest packet size that will not overflow
252 a buffer in the stub), this will be set to that packet size.
253 Otherwise zero, meaning to use the guessed size. */
254 long explicit_packet_size = 0;
255
256 /* remote_wait is normally called when the target is running and
257 waits for a stop reply packet. But sometimes we need to call it
258 when the target is already stopped. We can send a "?" packet
259 and have remote_wait read the response. Or, if we already have
260 the response, we can stash it in BUF and tell remote_wait to
261 skip calling getpkt. This flag is set when BUF contains a
262 stop reply packet and the target is not waiting. */
263 int cached_wait_status = 0;
264
265 /* True, if in no ack mode. That is, neither GDB nor the stub will
266 expect acks from each other. The connection is assumed to be
267 reliable. */
268 bool noack_mode = false;
269
270 /* True if we're connected in extended remote mode. */
271 bool extended = false;
272
273 /* True if we resumed the target and we're waiting for the target to
274 stop. In the mean time, we can't start another command/query.
275 The remote server wouldn't be ready to process it, so we'd
276 timeout waiting for a reply that would never come and eventually
277 we'd close the connection. This can happen in asynchronous mode
278 because we allow GDB commands while the target is running. */
279 bool waiting_for_stop_reply = false;
280
281 /* The status of the stub support for the various vCont actions. */
282 vCont_action_support supports_vCont;
283 /* Whether vCont support was probed already. This is a workaround
284 until packet_support is per-connection. */
285 bool supports_vCont_probed;
286
287 /* True if the user has pressed Ctrl-C, but the target hasn't
288 responded to that. */
289 bool ctrlc_pending_p = false;
290
291 /* True if we saw a Ctrl-C while reading or writing from/to the
292 remote descriptor. At that point it is not safe to send a remote
293 interrupt packet, so we instead remember we saw the Ctrl-C and
294 process it once we're done with sending/receiving the current
295 packet, which should be shortly. If however that takes too long,
296 and the user presses Ctrl-C again, we offer to disconnect. */
297 bool got_ctrlc_during_io = false;
298
299 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
300 remote_open knows that we don't have a file open when the program
301 starts. */
302 struct serial *remote_desc = nullptr;
303
304 /* These are the threads which we last sent to the remote system. The
305 TID member will be -1 for all or -2 for not sent yet. */
306 ptid_t general_thread = null_ptid;
307 ptid_t continue_thread = null_ptid;
308
309 /* This is the traceframe which we last selected on the remote system.
310 It will be -1 if no traceframe is selected. */
311 int remote_traceframe_number = -1;
312
313 char *last_pass_packet = nullptr;
314
315 /* The last QProgramSignals packet sent to the target. We bypass
316 sending a new program signals list down to the target if the new
317 packet is exactly the same as the last we sent. IOW, we only let
318 the target know about program signals list changes. */
319 char *last_program_signals_packet = nullptr;
320
321 gdb_signal last_sent_signal = GDB_SIGNAL_0;
322
323 bool last_sent_step = false;
324
325 /* The execution direction of the last resume we got. */
326 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
327
328 char *finished_object = nullptr;
329 char *finished_annex = nullptr;
330 ULONGEST finished_offset = 0;
331
332 /* Should we try the 'ThreadInfo' query packet?
333
334 This variable (NOT available to the user: auto-detect only!)
335 determines whether GDB will use the new, simpler "ThreadInfo"
336 query or the older, more complex syntax for thread queries.
337 This is an auto-detect variable (set to true at each connect,
338 and set to false when the target fails to recognize it). */
339 bool use_threadinfo_query = false;
340 bool use_threadextra_query = false;
341
342 threadref echo_nextthread {};
343 threadref nextthread {};
344 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
345
346 /* The state of remote notification. */
347 struct remote_notif_state *notif_state = nullptr;
348
349 /* The branch trace configuration. */
350 struct btrace_config btrace_config {};
351
352 /* The argument to the last "vFile:setfs:" packet we sent, used
353 to avoid sending repeated unnecessary "vFile:setfs:" packets.
354 Initialized to -1 to indicate that no "vFile:setfs:" packet
355 has yet been sent. */
356 int fs_pid = -1;
357
358 /* A readahead cache for vFile:pread. Often, reading a binary
359 involves a sequence of small reads. E.g., when parsing an ELF
360 file. A readahead cache helps mostly the case of remote
361 debugging on a connection with higher latency, due to the
362 request/reply nature of the RSP. We only cache data for a single
363 file descriptor at a time. */
364 struct readahead_cache readahead_cache;
365
366 /* The list of already fetched and acknowledged stop events. This
367 queue is used for notification Stop, and other notifications
368 don't need queue for their events, because the notification
369 events of Stop can't be consumed immediately, so that events
370 should be queued first, and be consumed by remote_wait_{ns,as}
371 one per time. Other notifications can consume their events
372 immediately, so queue is not needed for them. */
373 std::vector<stop_reply_up> stop_reply_queue;
374
375 /* Asynchronous signal handle registered as event loop source for
376 when we have pending events ready to be passed to the core. */
377 struct async_event_handler *remote_async_inferior_event_token = nullptr;
378
379 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
380 ``forever'' still use the normal timeout mechanism. This is
381 currently used by the ASYNC code to guarentee that target reads
382 during the initial connect always time-out. Once getpkt has been
383 modified to return a timeout indication and, in turn
384 remote_wait()/wait_for_inferior() have gained a timeout parameter
385 this can go away. */
386 int wait_forever_enabled_p = 1;
387
388 private:
389 /* Mapping of remote protocol data for each gdbarch. Usually there
390 is only one entry here, though we may see more with stubs that
391 support multi-process. */
392 std::unordered_map<struct gdbarch *, remote_arch_state>
393 m_arch_states;
394 };
395
396 static const target_info remote_target_info = {
397 "remote",
398 N_("Remote serial target in gdb-specific protocol"),
399 remote_doc
400 };
401
402 class remote_target : public process_stratum_target
403 {
404 public:
405 remote_target () = default;
406 ~remote_target () override;
407
408 const target_info &info () const override
409 { return remote_target_info; }
410
411 const char *connection_string () override;
412
413 thread_control_capabilities get_thread_control_capabilities () override
414 { return tc_schedlock; }
415
416 /* Open a remote connection. */
417 static void open (const char *, int);
418
419 void close () override;
420
421 void detach (inferior *, int) override;
422 void disconnect (const char *, int) override;
423
424 void commit_resume () override;
425 void resume (ptid_t, int, enum gdb_signal) override;
426 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
427
428 void fetch_registers (struct regcache *, int) override;
429 void store_registers (struct regcache *, int) override;
430 void prepare_to_store (struct regcache *) override;
431
432 void files_info () override;
433
434 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
435
436 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
437 enum remove_bp_reason) override;
438
439
440 bool stopped_by_sw_breakpoint () override;
441 bool supports_stopped_by_sw_breakpoint () override;
442
443 bool stopped_by_hw_breakpoint () override;
444
445 bool supports_stopped_by_hw_breakpoint () override;
446
447 bool stopped_by_watchpoint () override;
448
449 bool stopped_data_address (CORE_ADDR *) override;
450
451 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
452
453 int can_use_hw_breakpoint (enum bptype, int, int) override;
454
455 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
456
457 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
458
459 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
460
461 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
462 struct expression *) override;
463
464 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
465 struct expression *) override;
466
467 void kill () override;
468
469 void load (const char *, int) override;
470
471 void mourn_inferior () override;
472
473 void pass_signals (gdb::array_view<const unsigned char>) override;
474
475 int set_syscall_catchpoint (int, bool, int,
476 gdb::array_view<const int>) override;
477
478 void program_signals (gdb::array_view<const unsigned char>) override;
479
480 bool thread_alive (ptid_t ptid) override;
481
482 const char *thread_name (struct thread_info *) override;
483
484 void update_thread_list () override;
485
486 std::string pid_to_str (ptid_t) override;
487
488 const char *extra_thread_info (struct thread_info *) override;
489
490 ptid_t get_ada_task_ptid (long lwp, long thread) override;
491
492 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
493 int handle_len,
494 inferior *inf) override;
495
496 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
497 override;
498
499 void stop (ptid_t) override;
500
501 void interrupt () override;
502
503 void pass_ctrlc () override;
504
505 enum target_xfer_status xfer_partial (enum target_object object,
506 const char *annex,
507 gdb_byte *readbuf,
508 const gdb_byte *writebuf,
509 ULONGEST offset, ULONGEST len,
510 ULONGEST *xfered_len) override;
511
512 ULONGEST get_memory_xfer_limit () override;
513
514 void rcmd (const char *command, struct ui_file *output) override;
515
516 char *pid_to_exec_file (int pid) override;
517
518 void log_command (const char *cmd) override
519 {
520 serial_log_command (this, cmd);
521 }
522
523 CORE_ADDR get_thread_local_address (ptid_t ptid,
524 CORE_ADDR load_module_addr,
525 CORE_ADDR offset) override;
526
527 bool can_execute_reverse () override;
528
529 std::vector<mem_region> memory_map () override;
530
531 void flash_erase (ULONGEST address, LONGEST length) override;
532
533 void flash_done () override;
534
535 const struct target_desc *read_description () override;
536
537 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
538 const gdb_byte *pattern, ULONGEST pattern_len,
539 CORE_ADDR *found_addrp) override;
540
541 bool can_async_p () override;
542
543 bool is_async_p () override;
544
545 void async (int) override;
546
547 int async_wait_fd () override;
548
549 void thread_events (int) override;
550
551 int can_do_single_step () override;
552
553 void terminal_inferior () override;
554
555 void terminal_ours () override;
556
557 bool supports_non_stop () override;
558
559 bool supports_multi_process () override;
560
561 bool supports_disable_randomization () override;
562
563 bool filesystem_is_local () override;
564
565
566 int fileio_open (struct inferior *inf, const char *filename,
567 int flags, int mode, int warn_if_slow,
568 int *target_errno) override;
569
570 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
571 ULONGEST offset, int *target_errno) override;
572
573 int fileio_pread (int fd, gdb_byte *read_buf, int len,
574 ULONGEST offset, int *target_errno) override;
575
576 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
577
578 int fileio_close (int fd, int *target_errno) override;
579
580 int fileio_unlink (struct inferior *inf,
581 const char *filename,
582 int *target_errno) override;
583
584 gdb::optional<std::string>
585 fileio_readlink (struct inferior *inf,
586 const char *filename,
587 int *target_errno) override;
588
589 bool supports_enable_disable_tracepoint () override;
590
591 bool supports_string_tracing () override;
592
593 bool supports_evaluation_of_breakpoint_conditions () override;
594
595 bool can_run_breakpoint_commands () override;
596
597 void trace_init () override;
598
599 void download_tracepoint (struct bp_location *location) override;
600
601 bool can_download_tracepoint () override;
602
603 void download_trace_state_variable (const trace_state_variable &tsv) override;
604
605 void enable_tracepoint (struct bp_location *location) override;
606
607 void disable_tracepoint (struct bp_location *location) override;
608
609 void trace_set_readonly_regions () override;
610
611 void trace_start () override;
612
613 int get_trace_status (struct trace_status *ts) override;
614
615 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
616 override;
617
618 void trace_stop () override;
619
620 int trace_find (enum trace_find_type type, int num,
621 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
622
623 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
624
625 int save_trace_data (const char *filename) override;
626
627 int upload_tracepoints (struct uploaded_tp **utpp) override;
628
629 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
630
631 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
632
633 int get_min_fast_tracepoint_insn_len () override;
634
635 void set_disconnected_tracing (int val) override;
636
637 void set_circular_trace_buffer (int val) override;
638
639 void set_trace_buffer_size (LONGEST val) override;
640
641 bool set_trace_notes (const char *user, const char *notes,
642 const char *stopnotes) override;
643
644 int core_of_thread (ptid_t ptid) override;
645
646 int verify_memory (const gdb_byte *data,
647 CORE_ADDR memaddr, ULONGEST size) override;
648
649
650 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
651
652 void set_permissions () override;
653
654 bool static_tracepoint_marker_at (CORE_ADDR,
655 struct static_tracepoint_marker *marker)
656 override;
657
658 std::vector<static_tracepoint_marker>
659 static_tracepoint_markers_by_strid (const char *id) override;
660
661 traceframe_info_up traceframe_info () override;
662
663 bool use_agent (bool use) override;
664 bool can_use_agent () override;
665
666 struct btrace_target_info *enable_btrace (ptid_t ptid,
667 const struct btrace_config *conf) override;
668
669 void disable_btrace (struct btrace_target_info *tinfo) override;
670
671 void teardown_btrace (struct btrace_target_info *tinfo) override;
672
673 enum btrace_error read_btrace (struct btrace_data *data,
674 struct btrace_target_info *btinfo,
675 enum btrace_read_type type) override;
676
677 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
678 bool augmented_libraries_svr4_read () override;
679 bool follow_fork (bool, bool) override;
680 void follow_exec (struct inferior *, const char *) override;
681 int insert_fork_catchpoint (int) override;
682 int remove_fork_catchpoint (int) override;
683 int insert_vfork_catchpoint (int) override;
684 int remove_vfork_catchpoint (int) override;
685 int insert_exec_catchpoint (int) override;
686 int remove_exec_catchpoint (int) override;
687 enum exec_direction_kind execution_direction () override;
688
689 public: /* Remote specific methods. */
690
691 void remote_download_command_source (int num, ULONGEST addr,
692 struct command_line *cmds);
693
694 void remote_file_put (const char *local_file, const char *remote_file,
695 int from_tty);
696 void remote_file_get (const char *remote_file, const char *local_file,
697 int from_tty);
698 void remote_file_delete (const char *remote_file, int from_tty);
699
700 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
701 ULONGEST offset, int *remote_errno);
702 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
703 ULONGEST offset, int *remote_errno);
704 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
705 ULONGEST offset, int *remote_errno);
706
707 int remote_hostio_send_command (int command_bytes, int which_packet,
708 int *remote_errno, const char **attachment,
709 int *attachment_len);
710 int remote_hostio_set_filesystem (struct inferior *inf,
711 int *remote_errno);
712 /* We should get rid of this and use fileio_open directly. */
713 int remote_hostio_open (struct inferior *inf, const char *filename,
714 int flags, int mode, int warn_if_slow,
715 int *remote_errno);
716 int remote_hostio_close (int fd, int *remote_errno);
717
718 int remote_hostio_unlink (inferior *inf, const char *filename,
719 int *remote_errno);
720
721 struct remote_state *get_remote_state ();
722
723 long get_remote_packet_size (void);
724 long get_memory_packet_size (struct memory_packet_config *config);
725
726 long get_memory_write_packet_size ();
727 long get_memory_read_packet_size ();
728
729 char *append_pending_thread_resumptions (char *p, char *endp,
730 ptid_t ptid);
731 static void open_1 (const char *name, int from_tty, int extended_p);
732 void start_remote (int from_tty, int extended_p);
733 void remote_detach_1 (struct inferior *inf, int from_tty);
734
735 char *append_resumption (char *p, char *endp,
736 ptid_t ptid, int step, gdb_signal siggnal);
737 int remote_resume_with_vcont (ptid_t ptid, int step,
738 gdb_signal siggnal);
739
740 void add_current_inferior_and_thread (const char *wait_status);
741
742 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
743 target_wait_flags options);
744 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
745 target_wait_flags options);
746
747 ptid_t process_stop_reply (struct stop_reply *stop_reply,
748 target_waitstatus *status);
749
750 ptid_t select_thread_for_ambiguous_stop_reply
751 (const struct target_waitstatus *status);
752
753 void remote_notice_new_inferior (ptid_t currthread, int executing);
754
755 void process_initial_stop_replies (int from_tty);
756
757 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
758
759 void btrace_sync_conf (const btrace_config *conf);
760
761 void remote_btrace_maybe_reopen ();
762
763 void remove_new_fork_children (threads_listing_context *context);
764 void kill_new_fork_children (int pid);
765 void discard_pending_stop_replies (struct inferior *inf);
766 int stop_reply_queue_length ();
767
768 void check_pending_events_prevent_wildcard_vcont
769 (int *may_global_wildcard_vcont);
770
771 void discard_pending_stop_replies_in_queue ();
772 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
773 struct stop_reply *queued_stop_reply (ptid_t ptid);
774 int peek_stop_reply (ptid_t ptid);
775 void remote_parse_stop_reply (const char *buf, stop_reply *event);
776
777 void remote_stop_ns (ptid_t ptid);
778 void remote_interrupt_as ();
779 void remote_interrupt_ns ();
780
781 char *remote_get_noisy_reply ();
782 int remote_query_attached (int pid);
783 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
784 int try_open_exec);
785
786 ptid_t remote_current_thread (ptid_t oldpid);
787 ptid_t get_current_thread (const char *wait_status);
788
789 void set_thread (ptid_t ptid, int gen);
790 void set_general_thread (ptid_t ptid);
791 void set_continue_thread (ptid_t ptid);
792 void set_general_process ();
793
794 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
795
796 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
797 gdb_ext_thread_info *info);
798 int remote_get_threadinfo (threadref *threadid, int fieldset,
799 gdb_ext_thread_info *info);
800
801 int parse_threadlist_response (const char *pkt, int result_limit,
802 threadref *original_echo,
803 threadref *resultlist,
804 int *doneflag);
805 int remote_get_threadlist (int startflag, threadref *nextthread,
806 int result_limit, int *done, int *result_count,
807 threadref *threadlist);
808
809 int remote_threadlist_iterator (rmt_thread_action stepfunction,
810 void *context, int looplimit);
811
812 int remote_get_threads_with_ql (threads_listing_context *context);
813 int remote_get_threads_with_qxfer (threads_listing_context *context);
814 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
815
816 void extended_remote_restart ();
817
818 void get_offsets ();
819
820 void remote_check_symbols ();
821
822 void remote_supported_packet (const struct protocol_feature *feature,
823 enum packet_support support,
824 const char *argument);
825
826 void remote_query_supported ();
827
828 void remote_packet_size (const protocol_feature *feature,
829 packet_support support, const char *value);
830
831 void remote_serial_quit_handler ();
832
833 void remote_detach_pid (int pid);
834
835 void remote_vcont_probe ();
836
837 void remote_resume_with_hc (ptid_t ptid, int step,
838 gdb_signal siggnal);
839
840 void send_interrupt_sequence ();
841 void interrupt_query ();
842
843 void remote_notif_get_pending_events (notif_client *nc);
844
845 int fetch_register_using_p (struct regcache *regcache,
846 packet_reg *reg);
847 int send_g_packet ();
848 void process_g_packet (struct regcache *regcache);
849 void fetch_registers_using_g (struct regcache *regcache);
850 int store_register_using_P (const struct regcache *regcache,
851 packet_reg *reg);
852 void store_registers_using_G (const struct regcache *regcache);
853
854 void set_remote_traceframe ();
855
856 void check_binary_download (CORE_ADDR addr);
857
858 target_xfer_status remote_write_bytes_aux (const char *header,
859 CORE_ADDR memaddr,
860 const gdb_byte *myaddr,
861 ULONGEST len_units,
862 int unit_size,
863 ULONGEST *xfered_len_units,
864 char packet_format,
865 int use_length);
866
867 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
868 const gdb_byte *myaddr, ULONGEST len,
869 int unit_size, ULONGEST *xfered_len);
870
871 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
872 ULONGEST len_units,
873 int unit_size, ULONGEST *xfered_len_units);
874
875 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
876 ULONGEST memaddr,
877 ULONGEST len,
878 int unit_size,
879 ULONGEST *xfered_len);
880
881 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
882 gdb_byte *myaddr, ULONGEST len,
883 int unit_size,
884 ULONGEST *xfered_len);
885
886 packet_result remote_send_printf (const char *format, ...)
887 ATTRIBUTE_PRINTF (2, 3);
888
889 target_xfer_status remote_flash_write (ULONGEST address,
890 ULONGEST length, ULONGEST *xfered_len,
891 const gdb_byte *data);
892
893 int readchar (int timeout);
894
895 void remote_serial_write (const char *str, int len);
896
897 int putpkt (const char *buf);
898 int putpkt_binary (const char *buf, int cnt);
899
900 int putpkt (const gdb::char_vector &buf)
901 {
902 return putpkt (buf.data ());
903 }
904
905 void skip_frame ();
906 long read_frame (gdb::char_vector *buf_p);
907 void getpkt (gdb::char_vector *buf, int forever);
908 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
909 int expecting_notif, int *is_notif);
910 int getpkt_sane (gdb::char_vector *buf, int forever);
911 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
912 int *is_notif);
913 int remote_vkill (int pid);
914 void remote_kill_k ();
915
916 void extended_remote_disable_randomization (int val);
917 int extended_remote_run (const std::string &args);
918
919 void send_environment_packet (const char *action,
920 const char *packet,
921 const char *value);
922
923 void extended_remote_environment_support ();
924 void extended_remote_set_inferior_cwd ();
925
926 target_xfer_status remote_write_qxfer (const char *object_name,
927 const char *annex,
928 const gdb_byte *writebuf,
929 ULONGEST offset, LONGEST len,
930 ULONGEST *xfered_len,
931 struct packet_config *packet);
932
933 target_xfer_status remote_read_qxfer (const char *object_name,
934 const char *annex,
935 gdb_byte *readbuf, ULONGEST offset,
936 LONGEST len,
937 ULONGEST *xfered_len,
938 struct packet_config *packet);
939
940 void push_stop_reply (struct stop_reply *new_event);
941
942 bool vcont_r_supported ();
943
944 void packet_command (const char *args, int from_tty);
945
946 private: /* data fields */
947
948 /* The remote state. Don't reference this directly. Use the
949 get_remote_state method instead. */
950 remote_state m_remote_state;
951 };
952
953 static const target_info extended_remote_target_info = {
954 "extended-remote",
955 N_("Extended remote serial target in gdb-specific protocol"),
956 remote_doc
957 };
958
959 /* Set up the extended remote target by extending the standard remote
960 target and adding to it. */
961
962 class extended_remote_target final : public remote_target
963 {
964 public:
965 const target_info &info () const override
966 { return extended_remote_target_info; }
967
968 /* Open an extended-remote connection. */
969 static void open (const char *, int);
970
971 bool can_create_inferior () override { return true; }
972 void create_inferior (const char *, const std::string &,
973 char **, int) override;
974
975 void detach (inferior *, int) override;
976
977 bool can_attach () override { return true; }
978 void attach (const char *, int) override;
979
980 void post_attach (int) override;
981 bool supports_disable_randomization () override;
982 };
983
984 /* Per-program-space data key. */
985 static const struct program_space_key<char, gdb::xfree_deleter<char>>
986 remote_pspace_data;
987
988 /* The variable registered as the control variable used by the
989 remote exec-file commands. While the remote exec-file setting is
990 per-program-space, the set/show machinery uses this as the
991 location of the remote exec-file value. */
992 static char *remote_exec_file_var;
993
994 /* The size to align memory write packets, when practical. The protocol
995 does not guarantee any alignment, and gdb will generate short
996 writes and unaligned writes, but even as a best-effort attempt this
997 can improve bulk transfers. For instance, if a write is misaligned
998 relative to the target's data bus, the stub may need to make an extra
999 round trip fetching data from the target. This doesn't make a
1000 huge difference, but it's easy to do, so we try to be helpful.
1001
1002 The alignment chosen is arbitrary; usually data bus width is
1003 important here, not the possibly larger cache line size. */
1004 enum { REMOTE_ALIGN_WRITES = 16 };
1005
1006 /* Prototypes for local functions. */
1007
1008 static int hexnumlen (ULONGEST num);
1009
1010 static int stubhex (int ch);
1011
1012 static int hexnumstr (char *, ULONGEST);
1013
1014 static int hexnumnstr (char *, ULONGEST, int);
1015
1016 static CORE_ADDR remote_address_masked (CORE_ADDR);
1017
1018 static void print_packet (const char *);
1019
1020 static int stub_unpack_int (const char *buff, int fieldlength);
1021
1022 struct packet_config;
1023
1024 static void show_packet_config_cmd (struct packet_config *config);
1025
1026 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1027 int from_tty,
1028 struct cmd_list_element *c,
1029 const char *value);
1030
1031 static ptid_t read_ptid (const char *buf, const char **obuf);
1032
1033 static void remote_async_inferior_event_handler (gdb_client_data);
1034
1035 static bool remote_read_description_p (struct target_ops *target);
1036
1037 static void remote_console_output (const char *msg);
1038
1039 static void remote_btrace_reset (remote_state *rs);
1040
1041 static void remote_unpush_and_throw (remote_target *target);
1042
1043 /* For "remote". */
1044
1045 static struct cmd_list_element *remote_cmdlist;
1046
1047 /* For "set remote" and "show remote". */
1048
1049 static struct cmd_list_element *remote_set_cmdlist;
1050 static struct cmd_list_element *remote_show_cmdlist;
1051
1052 /* Controls whether GDB is willing to use range stepping. */
1053
1054 static bool use_range_stepping = true;
1055
1056 /* From the remote target's point of view, each thread is in one of these three
1057 states. */
1058 enum class resume_state
1059 {
1060 /* Not resumed - we haven't been asked to resume this thread. */
1061 NOT_RESUMED,
1062
1063 /* We have been asked to resume this thread, but haven't sent a vCont action
1064 for it yet. We'll need to consider it next time commit_resume is
1065 called. */
1066 RESUMED_PENDING_VCONT,
1067
1068 /* We have been asked to resume this thread, and we have sent a vCont action
1069 for it. */
1070 RESUMED,
1071 };
1072
1073 /* Information about a thread's pending vCont-resume. Used when a thread is in
1074 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1075 stores this information which is then picked up by
1076 remote_target::commit_resume to know which is the proper action for this
1077 thread to include in the vCont packet. */
1078 struct resumed_pending_vcont_info
1079 {
1080 /* True if the last resume call for this thread was a step request, false
1081 if a continue request. */
1082 bool step;
1083
1084 /* The signal specified in the last resume call for this thread. */
1085 gdb_signal sig;
1086 };
1087
1088 /* Private data that we'll store in (struct thread_info)->priv. */
1089 struct remote_thread_info : public private_thread_info
1090 {
1091 std::string extra;
1092 std::string name;
1093 int core = -1;
1094
1095 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1096 sequence of bytes. */
1097 gdb::byte_vector thread_handle;
1098
1099 /* Whether the target stopped for a breakpoint/watchpoint. */
1100 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1101
1102 /* This is set to the data address of the access causing the target
1103 to stop for a watchpoint. */
1104 CORE_ADDR watch_data_address = 0;
1105
1106 /* Get the thread's resume state. */
1107 enum resume_state get_resume_state () const
1108 {
1109 return m_resume_state;
1110 }
1111
1112 /* Put the thread in the NOT_RESUMED state. */
1113 void set_not_resumed ()
1114 {
1115 m_resume_state = resume_state::NOT_RESUMED;
1116 }
1117
1118 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1119 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1120 {
1121 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1122 m_resumed_pending_vcont_info.step = step;
1123 m_resumed_pending_vcont_info.sig = sig;
1124 }
1125
1126 /* Get the information this thread's pending vCont-resumption.
1127
1128 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1129 state. */
1130 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1131 {
1132 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1133
1134 return m_resumed_pending_vcont_info;
1135 }
1136
1137 /* Put the thread in the VCONT_RESUMED state. */
1138 void set_resumed ()
1139 {
1140 m_resume_state = resume_state::RESUMED;
1141 }
1142
1143 private:
1144 /* Resume state for this thread. This is used to implement vCont action
1145 coalescing (only when the target operates in non-stop mode).
1146
1147 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1148 which notes that this thread must be considered in the next commit_resume
1149 call.
1150
1151 remote_target::commit_resume sends a vCont packet with actions for the
1152 threads in the RESUMED_PENDING_VCONT state and moves them to the
1153 VCONT_RESUMED state.
1154
1155 When reporting a stop to the core for a thread, that thread is moved back
1156 to the NOT_RESUMED state. */
1157 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1158
1159 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1160 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1161 };
1162
1163 remote_state::remote_state ()
1164 : buf (400)
1165 {
1166 }
1167
1168 remote_state::~remote_state ()
1169 {
1170 xfree (this->last_pass_packet);
1171 xfree (this->last_program_signals_packet);
1172 xfree (this->finished_object);
1173 xfree (this->finished_annex);
1174 }
1175
1176 /* Utility: generate error from an incoming stub packet. */
1177 static void
1178 trace_error (char *buf)
1179 {
1180 if (*buf++ != 'E')
1181 return; /* not an error msg */
1182 switch (*buf)
1183 {
1184 case '1': /* malformed packet error */
1185 if (*++buf == '0') /* general case: */
1186 error (_("remote.c: error in outgoing packet."));
1187 else
1188 error (_("remote.c: error in outgoing packet at field #%ld."),
1189 strtol (buf, NULL, 16));
1190 default:
1191 error (_("Target returns error code '%s'."), buf);
1192 }
1193 }
1194
1195 /* Utility: wait for reply from stub, while accepting "O" packets. */
1196
1197 char *
1198 remote_target::remote_get_noisy_reply ()
1199 {
1200 struct remote_state *rs = get_remote_state ();
1201
1202 do /* Loop on reply from remote stub. */
1203 {
1204 char *buf;
1205
1206 QUIT; /* Allow user to bail out with ^C. */
1207 getpkt (&rs->buf, 0);
1208 buf = rs->buf.data ();
1209 if (buf[0] == 'E')
1210 trace_error (buf);
1211 else if (startswith (buf, "qRelocInsn:"))
1212 {
1213 ULONGEST ul;
1214 CORE_ADDR from, to, org_to;
1215 const char *p, *pp;
1216 int adjusted_size = 0;
1217 int relocated = 0;
1218
1219 p = buf + strlen ("qRelocInsn:");
1220 pp = unpack_varlen_hex (p, &ul);
1221 if (*pp != ';')
1222 error (_("invalid qRelocInsn packet: %s"), buf);
1223 from = ul;
1224
1225 p = pp + 1;
1226 unpack_varlen_hex (p, &ul);
1227 to = ul;
1228
1229 org_to = to;
1230
1231 try
1232 {
1233 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1234 relocated = 1;
1235 }
1236 catch (const gdb_exception &ex)
1237 {
1238 if (ex.error == MEMORY_ERROR)
1239 {
1240 /* Propagate memory errors silently back to the
1241 target. The stub may have limited the range of
1242 addresses we can write to, for example. */
1243 }
1244 else
1245 {
1246 /* Something unexpectedly bad happened. Be verbose
1247 so we can tell what, and propagate the error back
1248 to the stub, so it doesn't get stuck waiting for
1249 a response. */
1250 exception_fprintf (gdb_stderr, ex,
1251 _("warning: relocating instruction: "));
1252 }
1253 putpkt ("E01");
1254 }
1255
1256 if (relocated)
1257 {
1258 adjusted_size = to - org_to;
1259
1260 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1261 putpkt (buf);
1262 }
1263 }
1264 else if (buf[0] == 'O' && buf[1] != 'K')
1265 remote_console_output (buf + 1); /* 'O' message from stub */
1266 else
1267 return buf; /* Here's the actual reply. */
1268 }
1269 while (1);
1270 }
1271
1272 struct remote_arch_state *
1273 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1274 {
1275 remote_arch_state *rsa;
1276
1277 auto it = this->m_arch_states.find (gdbarch);
1278 if (it == this->m_arch_states.end ())
1279 {
1280 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1281 std::forward_as_tuple (gdbarch),
1282 std::forward_as_tuple (gdbarch));
1283 rsa = &p.first->second;
1284
1285 /* Make sure that the packet buffer is plenty big enough for
1286 this architecture. */
1287 if (this->buf.size () < rsa->remote_packet_size)
1288 this->buf.resize (2 * rsa->remote_packet_size);
1289 }
1290 else
1291 rsa = &it->second;
1292
1293 return rsa;
1294 }
1295
1296 /* Fetch the global remote target state. */
1297
1298 remote_state *
1299 remote_target::get_remote_state ()
1300 {
1301 /* Make sure that the remote architecture state has been
1302 initialized, because doing so might reallocate rs->buf. Any
1303 function which calls getpkt also needs to be mindful of changes
1304 to rs->buf, but this call limits the number of places which run
1305 into trouble. */
1306 m_remote_state.get_remote_arch_state (target_gdbarch ());
1307
1308 return &m_remote_state;
1309 }
1310
1311 /* Fetch the remote exec-file from the current program space. */
1312
1313 static const char *
1314 get_remote_exec_file (void)
1315 {
1316 char *remote_exec_file;
1317
1318 remote_exec_file = remote_pspace_data.get (current_program_space);
1319 if (remote_exec_file == NULL)
1320 return "";
1321
1322 return remote_exec_file;
1323 }
1324
1325 /* Set the remote exec file for PSPACE. */
1326
1327 static void
1328 set_pspace_remote_exec_file (struct program_space *pspace,
1329 const char *remote_exec_file)
1330 {
1331 char *old_file = remote_pspace_data.get (pspace);
1332
1333 xfree (old_file);
1334 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1335 }
1336
1337 /* The "set/show remote exec-file" set command hook. */
1338
1339 static void
1340 set_remote_exec_file (const char *ignored, int from_tty,
1341 struct cmd_list_element *c)
1342 {
1343 gdb_assert (remote_exec_file_var != NULL);
1344 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1345 }
1346
1347 /* The "set/show remote exec-file" show command hook. */
1348
1349 static void
1350 show_remote_exec_file (struct ui_file *file, int from_tty,
1351 struct cmd_list_element *cmd, const char *value)
1352 {
1353 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1354 }
1355
1356 static int
1357 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1358 {
1359 int regnum, num_remote_regs, offset;
1360 struct packet_reg **remote_regs;
1361
1362 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1363 {
1364 struct packet_reg *r = &regs[regnum];
1365
1366 if (register_size (gdbarch, regnum) == 0)
1367 /* Do not try to fetch zero-sized (placeholder) registers. */
1368 r->pnum = -1;
1369 else
1370 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1371
1372 r->regnum = regnum;
1373 }
1374
1375 /* Define the g/G packet format as the contents of each register
1376 with a remote protocol number, in order of ascending protocol
1377 number. */
1378
1379 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1380 for (num_remote_regs = 0, regnum = 0;
1381 regnum < gdbarch_num_regs (gdbarch);
1382 regnum++)
1383 if (regs[regnum].pnum != -1)
1384 remote_regs[num_remote_regs++] = &regs[regnum];
1385
1386 std::sort (remote_regs, remote_regs + num_remote_regs,
1387 [] (const packet_reg *a, const packet_reg *b)
1388 { return a->pnum < b->pnum; });
1389
1390 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1391 {
1392 remote_regs[regnum]->in_g_packet = 1;
1393 remote_regs[regnum]->offset = offset;
1394 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1395 }
1396
1397 return offset;
1398 }
1399
1400 /* Given the architecture described by GDBARCH, return the remote
1401 protocol register's number and the register's offset in the g/G
1402 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1403 If the target does not have a mapping for REGNUM, return false,
1404 otherwise, return true. */
1405
1406 int
1407 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1408 int *pnum, int *poffset)
1409 {
1410 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1411
1412 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1413
1414 map_regcache_remote_table (gdbarch, regs.data ());
1415
1416 *pnum = regs[regnum].pnum;
1417 *poffset = regs[regnum].offset;
1418
1419 return *pnum != -1;
1420 }
1421
1422 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1423 {
1424 /* Use the architecture to build a regnum<->pnum table, which will be
1425 1:1 unless a feature set specifies otherwise. */
1426 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1427
1428 /* Record the maximum possible size of the g packet - it may turn out
1429 to be smaller. */
1430 this->sizeof_g_packet
1431 = map_regcache_remote_table (gdbarch, this->regs.get ());
1432
1433 /* Default maximum number of characters in a packet body. Many
1434 remote stubs have a hardwired buffer size of 400 bytes
1435 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1436 as the maximum packet-size to ensure that the packet and an extra
1437 NUL character can always fit in the buffer. This stops GDB
1438 trashing stubs that try to squeeze an extra NUL into what is
1439 already a full buffer (As of 1999-12-04 that was most stubs). */
1440 this->remote_packet_size = 400 - 1;
1441
1442 /* This one is filled in when a ``g'' packet is received. */
1443 this->actual_register_packet_size = 0;
1444
1445 /* Should rsa->sizeof_g_packet needs more space than the
1446 default, adjust the size accordingly. Remember that each byte is
1447 encoded as two characters. 32 is the overhead for the packet
1448 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1449 (``$NN:G...#NN'') is a better guess, the below has been padded a
1450 little. */
1451 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1452 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1453 }
1454
1455 /* Get a pointer to the current remote target. If not connected to a
1456 remote target, return NULL. */
1457
1458 static remote_target *
1459 get_current_remote_target ()
1460 {
1461 target_ops *proc_target = current_inferior ()->process_target ();
1462 return dynamic_cast<remote_target *> (proc_target);
1463 }
1464
1465 /* Return the current allowed size of a remote packet. This is
1466 inferred from the current architecture, and should be used to
1467 limit the length of outgoing packets. */
1468 long
1469 remote_target::get_remote_packet_size ()
1470 {
1471 struct remote_state *rs = get_remote_state ();
1472 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1473
1474 if (rs->explicit_packet_size)
1475 return rs->explicit_packet_size;
1476
1477 return rsa->remote_packet_size;
1478 }
1479
1480 static struct packet_reg *
1481 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1482 long regnum)
1483 {
1484 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1485 return NULL;
1486 else
1487 {
1488 struct packet_reg *r = &rsa->regs[regnum];
1489
1490 gdb_assert (r->regnum == regnum);
1491 return r;
1492 }
1493 }
1494
1495 static struct packet_reg *
1496 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1497 LONGEST pnum)
1498 {
1499 int i;
1500
1501 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1502 {
1503 struct packet_reg *r = &rsa->regs[i];
1504
1505 if (r->pnum == pnum)
1506 return r;
1507 }
1508 return NULL;
1509 }
1510
1511 /* Allow the user to specify what sequence to send to the remote
1512 when he requests a program interruption: Although ^C is usually
1513 what remote systems expect (this is the default, here), it is
1514 sometimes preferable to send a break. On other systems such
1515 as the Linux kernel, a break followed by g, which is Magic SysRq g
1516 is required in order to interrupt the execution. */
1517 const char interrupt_sequence_control_c[] = "Ctrl-C";
1518 const char interrupt_sequence_break[] = "BREAK";
1519 const char interrupt_sequence_break_g[] = "BREAK-g";
1520 static const char *const interrupt_sequence_modes[] =
1521 {
1522 interrupt_sequence_control_c,
1523 interrupt_sequence_break,
1524 interrupt_sequence_break_g,
1525 NULL
1526 };
1527 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1528
1529 static void
1530 show_interrupt_sequence (struct ui_file *file, int from_tty,
1531 struct cmd_list_element *c,
1532 const char *value)
1533 {
1534 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1535 fprintf_filtered (file,
1536 _("Send the ASCII ETX character (Ctrl-c) "
1537 "to the remote target to interrupt the "
1538 "execution of the program.\n"));
1539 else if (interrupt_sequence_mode == interrupt_sequence_break)
1540 fprintf_filtered (file,
1541 _("send a break signal to the remote target "
1542 "to interrupt the execution of the program.\n"));
1543 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1544 fprintf_filtered (file,
1545 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1546 "the remote target to interrupt the execution "
1547 "of Linux kernel.\n"));
1548 else
1549 internal_error (__FILE__, __LINE__,
1550 _("Invalid value for interrupt_sequence_mode: %s."),
1551 interrupt_sequence_mode);
1552 }
1553
1554 /* This boolean variable specifies whether interrupt_sequence is sent
1555 to the remote target when gdb connects to it.
1556 This is mostly needed when you debug the Linux kernel: The Linux kernel
1557 expects BREAK g which is Magic SysRq g for connecting gdb. */
1558 static bool interrupt_on_connect = false;
1559
1560 /* This variable is used to implement the "set/show remotebreak" commands.
1561 Since these commands are now deprecated in favor of "set/show remote
1562 interrupt-sequence", it no longer has any effect on the code. */
1563 static bool remote_break;
1564
1565 static void
1566 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1567 {
1568 if (remote_break)
1569 interrupt_sequence_mode = interrupt_sequence_break;
1570 else
1571 interrupt_sequence_mode = interrupt_sequence_control_c;
1572 }
1573
1574 static void
1575 show_remotebreak (struct ui_file *file, int from_tty,
1576 struct cmd_list_element *c,
1577 const char *value)
1578 {
1579 }
1580
1581 /* This variable sets the number of bits in an address that are to be
1582 sent in a memory ("M" or "m") packet. Normally, after stripping
1583 leading zeros, the entire address would be sent. This variable
1584 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1585 initial implementation of remote.c restricted the address sent in
1586 memory packets to ``host::sizeof long'' bytes - (typically 32
1587 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1588 address was never sent. Since fixing this bug may cause a break in
1589 some remote targets this variable is principally provided to
1590 facilitate backward compatibility. */
1591
1592 static unsigned int remote_address_size;
1593
1594 \f
1595 /* User configurable variables for the number of characters in a
1596 memory read/write packet. MIN (rsa->remote_packet_size,
1597 rsa->sizeof_g_packet) is the default. Some targets need smaller
1598 values (fifo overruns, et.al.) and some users need larger values
1599 (speed up transfers). The variables ``preferred_*'' (the user
1600 request), ``current_*'' (what was actually set) and ``forced_*''
1601 (Positive - a soft limit, negative - a hard limit). */
1602
1603 struct memory_packet_config
1604 {
1605 const char *name;
1606 long size;
1607 int fixed_p;
1608 };
1609
1610 /* The default max memory-write-packet-size, when the setting is
1611 "fixed". The 16k is historical. (It came from older GDB's using
1612 alloca for buffers and the knowledge (folklore?) that some hosts
1613 don't cope very well with large alloca calls.) */
1614 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1615
1616 /* The minimum remote packet size for memory transfers. Ensures we
1617 can write at least one byte. */
1618 #define MIN_MEMORY_PACKET_SIZE 20
1619
1620 /* Get the memory packet size, assuming it is fixed. */
1621
1622 static long
1623 get_fixed_memory_packet_size (struct memory_packet_config *config)
1624 {
1625 gdb_assert (config->fixed_p);
1626
1627 if (config->size <= 0)
1628 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1629 else
1630 return config->size;
1631 }
1632
1633 /* Compute the current size of a read/write packet. Since this makes
1634 use of ``actual_register_packet_size'' the computation is dynamic. */
1635
1636 long
1637 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1638 {
1639 struct remote_state *rs = get_remote_state ();
1640 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1641
1642 long what_they_get;
1643 if (config->fixed_p)
1644 what_they_get = get_fixed_memory_packet_size (config);
1645 else
1646 {
1647 what_they_get = get_remote_packet_size ();
1648 /* Limit the packet to the size specified by the user. */
1649 if (config->size > 0
1650 && what_they_get > config->size)
1651 what_they_get = config->size;
1652
1653 /* Limit it to the size of the targets ``g'' response unless we have
1654 permission from the stub to use a larger packet size. */
1655 if (rs->explicit_packet_size == 0
1656 && rsa->actual_register_packet_size > 0
1657 && what_they_get > rsa->actual_register_packet_size)
1658 what_they_get = rsa->actual_register_packet_size;
1659 }
1660 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1661 what_they_get = MIN_MEMORY_PACKET_SIZE;
1662
1663 /* Make sure there is room in the global buffer for this packet
1664 (including its trailing NUL byte). */
1665 if (rs->buf.size () < what_they_get + 1)
1666 rs->buf.resize (2 * what_they_get);
1667
1668 return what_they_get;
1669 }
1670
1671 /* Update the size of a read/write packet. If they user wants
1672 something really big then do a sanity check. */
1673
1674 static void
1675 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1676 {
1677 int fixed_p = config->fixed_p;
1678 long size = config->size;
1679
1680 if (args == NULL)
1681 error (_("Argument required (integer, `fixed' or `limited')."));
1682 else if (strcmp (args, "hard") == 0
1683 || strcmp (args, "fixed") == 0)
1684 fixed_p = 1;
1685 else if (strcmp (args, "soft") == 0
1686 || strcmp (args, "limit") == 0)
1687 fixed_p = 0;
1688 else
1689 {
1690 char *end;
1691
1692 size = strtoul (args, &end, 0);
1693 if (args == end)
1694 error (_("Invalid %s (bad syntax)."), config->name);
1695
1696 /* Instead of explicitly capping the size of a packet to or
1697 disallowing it, the user is allowed to set the size to
1698 something arbitrarily large. */
1699 }
1700
1701 /* Extra checks? */
1702 if (fixed_p && !config->fixed_p)
1703 {
1704 /* So that the query shows the correct value. */
1705 long query_size = (size <= 0
1706 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1707 : size);
1708
1709 if (! query (_("The target may not be able to correctly handle a %s\n"
1710 "of %ld bytes. Change the packet size? "),
1711 config->name, query_size))
1712 error (_("Packet size not changed."));
1713 }
1714 /* Update the config. */
1715 config->fixed_p = fixed_p;
1716 config->size = size;
1717 }
1718
1719 static void
1720 show_memory_packet_size (struct memory_packet_config *config)
1721 {
1722 if (config->size == 0)
1723 printf_filtered (_("The %s is 0 (default). "), config->name);
1724 else
1725 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1726 if (config->fixed_p)
1727 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1728 get_fixed_memory_packet_size (config));
1729 else
1730 {
1731 remote_target *remote = get_current_remote_target ();
1732
1733 if (remote != NULL)
1734 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1735 remote->get_memory_packet_size (config));
1736 else
1737 puts_filtered ("The actual limit will be further reduced "
1738 "dependent on the target.\n");
1739 }
1740 }
1741
1742 /* FIXME: needs to be per-remote-target. */
1743 static struct memory_packet_config memory_write_packet_config =
1744 {
1745 "memory-write-packet-size",
1746 };
1747
1748 static void
1749 set_memory_write_packet_size (const char *args, int from_tty)
1750 {
1751 set_memory_packet_size (args, &memory_write_packet_config);
1752 }
1753
1754 static void
1755 show_memory_write_packet_size (const char *args, int from_tty)
1756 {
1757 show_memory_packet_size (&memory_write_packet_config);
1758 }
1759
1760 /* Show the number of hardware watchpoints that can be used. */
1761
1762 static void
1763 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1764 struct cmd_list_element *c,
1765 const char *value)
1766 {
1767 fprintf_filtered (file, _("The maximum number of target hardware "
1768 "watchpoints is %s.\n"), value);
1769 }
1770
1771 /* Show the length limit (in bytes) for hardware watchpoints. */
1772
1773 static void
1774 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1775 struct cmd_list_element *c,
1776 const char *value)
1777 {
1778 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1779 "hardware watchpoint is %s.\n"), value);
1780 }
1781
1782 /* Show the number of hardware breakpoints that can be used. */
1783
1784 static void
1785 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1786 struct cmd_list_element *c,
1787 const char *value)
1788 {
1789 fprintf_filtered (file, _("The maximum number of target hardware "
1790 "breakpoints is %s.\n"), value);
1791 }
1792
1793 /* Controls the maximum number of characters to display in the debug output
1794 for each remote packet. The remaining characters are omitted. */
1795
1796 static int remote_packet_max_chars = 512;
1797
1798 /* Show the maximum number of characters to display for each remote packet
1799 when remote debugging is enabled. */
1800
1801 static void
1802 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1803 struct cmd_list_element *c,
1804 const char *value)
1805 {
1806 fprintf_filtered (file, _("Number of remote packet characters to "
1807 "display is %s.\n"), value);
1808 }
1809
1810 long
1811 remote_target::get_memory_write_packet_size ()
1812 {
1813 return get_memory_packet_size (&memory_write_packet_config);
1814 }
1815
1816 /* FIXME: needs to be per-remote-target. */
1817 static struct memory_packet_config memory_read_packet_config =
1818 {
1819 "memory-read-packet-size",
1820 };
1821
1822 static void
1823 set_memory_read_packet_size (const char *args, int from_tty)
1824 {
1825 set_memory_packet_size (args, &memory_read_packet_config);
1826 }
1827
1828 static void
1829 show_memory_read_packet_size (const char *args, int from_tty)
1830 {
1831 show_memory_packet_size (&memory_read_packet_config);
1832 }
1833
1834 long
1835 remote_target::get_memory_read_packet_size ()
1836 {
1837 long size = get_memory_packet_size (&memory_read_packet_config);
1838
1839 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1840 extra buffer size argument before the memory read size can be
1841 increased beyond this. */
1842 if (size > get_remote_packet_size ())
1843 size = get_remote_packet_size ();
1844 return size;
1845 }
1846
1847 \f
1848
1849 struct packet_config
1850 {
1851 const char *name;
1852 const char *title;
1853
1854 /* If auto, GDB auto-detects support for this packet or feature,
1855 either through qSupported, or by trying the packet and looking
1856 at the response. If true, GDB assumes the target supports this
1857 packet. If false, the packet is disabled. Configs that don't
1858 have an associated command always have this set to auto. */
1859 enum auto_boolean detect;
1860
1861 /* Does the target support this packet? */
1862 enum packet_support support;
1863 };
1864
1865 static enum packet_support packet_config_support (struct packet_config *config);
1866 static enum packet_support packet_support (int packet);
1867
1868 static void
1869 show_packet_config_cmd (struct packet_config *config)
1870 {
1871 const char *support = "internal-error";
1872
1873 switch (packet_config_support (config))
1874 {
1875 case PACKET_ENABLE:
1876 support = "enabled";
1877 break;
1878 case PACKET_DISABLE:
1879 support = "disabled";
1880 break;
1881 case PACKET_SUPPORT_UNKNOWN:
1882 support = "unknown";
1883 break;
1884 }
1885 switch (config->detect)
1886 {
1887 case AUTO_BOOLEAN_AUTO:
1888 printf_filtered (_("Support for the `%s' packet "
1889 "is auto-detected, currently %s.\n"),
1890 config->name, support);
1891 break;
1892 case AUTO_BOOLEAN_TRUE:
1893 case AUTO_BOOLEAN_FALSE:
1894 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1895 config->name, support);
1896 break;
1897 }
1898 }
1899
1900 static void
1901 add_packet_config_cmd (struct packet_config *config, const char *name,
1902 const char *title, int legacy)
1903 {
1904 char *set_doc;
1905 char *show_doc;
1906 char *cmd_name;
1907
1908 config->name = name;
1909 config->title = title;
1910 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1911 name, title);
1912 show_doc = xstrprintf ("Show current use of remote "
1913 "protocol `%s' (%s) packet.",
1914 name, title);
1915 /* set/show TITLE-packet {auto,on,off} */
1916 cmd_name = xstrprintf ("%s-packet", title);
1917 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1918 &config->detect, set_doc,
1919 show_doc, NULL, /* help_doc */
1920 NULL,
1921 show_remote_protocol_packet_cmd,
1922 &remote_set_cmdlist, &remote_show_cmdlist);
1923 /* The command code copies the documentation strings. */
1924 xfree (set_doc);
1925 xfree (show_doc);
1926 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1927 if (legacy)
1928 {
1929 char *legacy_name;
1930
1931 legacy_name = xstrprintf ("%s-packet", name);
1932 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1933 &remote_set_cmdlist);
1934 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1935 &remote_show_cmdlist);
1936 }
1937 }
1938
1939 static enum packet_result
1940 packet_check_result (const char *buf)
1941 {
1942 if (buf[0] != '\0')
1943 {
1944 /* The stub recognized the packet request. Check that the
1945 operation succeeded. */
1946 if (buf[0] == 'E'
1947 && isxdigit (buf[1]) && isxdigit (buf[2])
1948 && buf[3] == '\0')
1949 /* "Enn" - definitely an error. */
1950 return PACKET_ERROR;
1951
1952 /* Always treat "E." as an error. This will be used for
1953 more verbose error messages, such as E.memtypes. */
1954 if (buf[0] == 'E' && buf[1] == '.')
1955 return PACKET_ERROR;
1956
1957 /* The packet may or may not be OK. Just assume it is. */
1958 return PACKET_OK;
1959 }
1960 else
1961 /* The stub does not support the packet. */
1962 return PACKET_UNKNOWN;
1963 }
1964
1965 static enum packet_result
1966 packet_check_result (const gdb::char_vector &buf)
1967 {
1968 return packet_check_result (buf.data ());
1969 }
1970
1971 static enum packet_result
1972 packet_ok (const char *buf, struct packet_config *config)
1973 {
1974 enum packet_result result;
1975
1976 if (config->detect != AUTO_BOOLEAN_TRUE
1977 && config->support == PACKET_DISABLE)
1978 internal_error (__FILE__, __LINE__,
1979 _("packet_ok: attempt to use a disabled packet"));
1980
1981 result = packet_check_result (buf);
1982 switch (result)
1983 {
1984 case PACKET_OK:
1985 case PACKET_ERROR:
1986 /* The stub recognized the packet request. */
1987 if (config->support == PACKET_SUPPORT_UNKNOWN)
1988 {
1989 if (remote_debug)
1990 fprintf_unfiltered (gdb_stdlog,
1991 "Packet %s (%s) is supported\n",
1992 config->name, config->title);
1993 config->support = PACKET_ENABLE;
1994 }
1995 break;
1996 case PACKET_UNKNOWN:
1997 /* The stub does not support the packet. */
1998 if (config->detect == AUTO_BOOLEAN_AUTO
1999 && config->support == PACKET_ENABLE)
2000 {
2001 /* If the stub previously indicated that the packet was
2002 supported then there is a protocol error. */
2003 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2004 config->name, config->title);
2005 }
2006 else if (config->detect == AUTO_BOOLEAN_TRUE)
2007 {
2008 /* The user set it wrong. */
2009 error (_("Enabled packet %s (%s) not recognized by stub"),
2010 config->name, config->title);
2011 }
2012
2013 if (remote_debug)
2014 fprintf_unfiltered (gdb_stdlog,
2015 "Packet %s (%s) is NOT supported\n",
2016 config->name, config->title);
2017 config->support = PACKET_DISABLE;
2018 break;
2019 }
2020
2021 return result;
2022 }
2023
2024 static enum packet_result
2025 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2026 {
2027 return packet_ok (buf.data (), config);
2028 }
2029
2030 enum {
2031 PACKET_vCont = 0,
2032 PACKET_X,
2033 PACKET_qSymbol,
2034 PACKET_P,
2035 PACKET_p,
2036 PACKET_Z0,
2037 PACKET_Z1,
2038 PACKET_Z2,
2039 PACKET_Z3,
2040 PACKET_Z4,
2041 PACKET_vFile_setfs,
2042 PACKET_vFile_open,
2043 PACKET_vFile_pread,
2044 PACKET_vFile_pwrite,
2045 PACKET_vFile_close,
2046 PACKET_vFile_unlink,
2047 PACKET_vFile_readlink,
2048 PACKET_vFile_fstat,
2049 PACKET_qXfer_auxv,
2050 PACKET_qXfer_features,
2051 PACKET_qXfer_exec_file,
2052 PACKET_qXfer_libraries,
2053 PACKET_qXfer_libraries_svr4,
2054 PACKET_qXfer_memory_map,
2055 PACKET_qXfer_osdata,
2056 PACKET_qXfer_threads,
2057 PACKET_qXfer_statictrace_read,
2058 PACKET_qXfer_traceframe_info,
2059 PACKET_qXfer_uib,
2060 PACKET_qGetTIBAddr,
2061 PACKET_qGetTLSAddr,
2062 PACKET_qSupported,
2063 PACKET_qTStatus,
2064 PACKET_QPassSignals,
2065 PACKET_QCatchSyscalls,
2066 PACKET_QProgramSignals,
2067 PACKET_QSetWorkingDir,
2068 PACKET_QStartupWithShell,
2069 PACKET_QEnvironmentHexEncoded,
2070 PACKET_QEnvironmentReset,
2071 PACKET_QEnvironmentUnset,
2072 PACKET_qCRC,
2073 PACKET_qSearch_memory,
2074 PACKET_vAttach,
2075 PACKET_vRun,
2076 PACKET_QStartNoAckMode,
2077 PACKET_vKill,
2078 PACKET_qXfer_siginfo_read,
2079 PACKET_qXfer_siginfo_write,
2080 PACKET_qAttached,
2081
2082 /* Support for conditional tracepoints. */
2083 PACKET_ConditionalTracepoints,
2084
2085 /* Support for target-side breakpoint conditions. */
2086 PACKET_ConditionalBreakpoints,
2087
2088 /* Support for target-side breakpoint commands. */
2089 PACKET_BreakpointCommands,
2090
2091 /* Support for fast tracepoints. */
2092 PACKET_FastTracepoints,
2093
2094 /* Support for static tracepoints. */
2095 PACKET_StaticTracepoints,
2096
2097 /* Support for installing tracepoints while a trace experiment is
2098 running. */
2099 PACKET_InstallInTrace,
2100
2101 PACKET_bc,
2102 PACKET_bs,
2103 PACKET_TracepointSource,
2104 PACKET_QAllow,
2105 PACKET_qXfer_fdpic,
2106 PACKET_QDisableRandomization,
2107 PACKET_QAgent,
2108 PACKET_QTBuffer_size,
2109 PACKET_Qbtrace_off,
2110 PACKET_Qbtrace_bts,
2111 PACKET_Qbtrace_pt,
2112 PACKET_qXfer_btrace,
2113
2114 /* Support for the QNonStop packet. */
2115 PACKET_QNonStop,
2116
2117 /* Support for the QThreadEvents packet. */
2118 PACKET_QThreadEvents,
2119
2120 /* Support for multi-process extensions. */
2121 PACKET_multiprocess_feature,
2122
2123 /* Support for enabling and disabling tracepoints while a trace
2124 experiment is running. */
2125 PACKET_EnableDisableTracepoints_feature,
2126
2127 /* Support for collecting strings using the tracenz bytecode. */
2128 PACKET_tracenz_feature,
2129
2130 /* Support for continuing to run a trace experiment while GDB is
2131 disconnected. */
2132 PACKET_DisconnectedTracing_feature,
2133
2134 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2135 PACKET_augmented_libraries_svr4_read_feature,
2136
2137 /* Support for the qXfer:btrace-conf:read packet. */
2138 PACKET_qXfer_btrace_conf,
2139
2140 /* Support for the Qbtrace-conf:bts:size packet. */
2141 PACKET_Qbtrace_conf_bts_size,
2142
2143 /* Support for swbreak+ feature. */
2144 PACKET_swbreak_feature,
2145
2146 /* Support for hwbreak+ feature. */
2147 PACKET_hwbreak_feature,
2148
2149 /* Support for fork events. */
2150 PACKET_fork_event_feature,
2151
2152 /* Support for vfork events. */
2153 PACKET_vfork_event_feature,
2154
2155 /* Support for the Qbtrace-conf:pt:size packet. */
2156 PACKET_Qbtrace_conf_pt_size,
2157
2158 /* Support for exec events. */
2159 PACKET_exec_event_feature,
2160
2161 /* Support for query supported vCont actions. */
2162 PACKET_vContSupported,
2163
2164 /* Support remote CTRL-C. */
2165 PACKET_vCtrlC,
2166
2167 /* Support TARGET_WAITKIND_NO_RESUMED. */
2168 PACKET_no_resumed,
2169
2170 PACKET_MAX
2171 };
2172
2173 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2174 assuming all remote targets are the same server (thus all support
2175 the same packets). */
2176 static struct packet_config remote_protocol_packets[PACKET_MAX];
2177
2178 /* Returns the packet's corresponding "set remote foo-packet" command
2179 state. See struct packet_config for more details. */
2180
2181 static enum auto_boolean
2182 packet_set_cmd_state (int packet)
2183 {
2184 return remote_protocol_packets[packet].detect;
2185 }
2186
2187 /* Returns whether a given packet or feature is supported. This takes
2188 into account the state of the corresponding "set remote foo-packet"
2189 command, which may be used to bypass auto-detection. */
2190
2191 static enum packet_support
2192 packet_config_support (struct packet_config *config)
2193 {
2194 switch (config->detect)
2195 {
2196 case AUTO_BOOLEAN_TRUE:
2197 return PACKET_ENABLE;
2198 case AUTO_BOOLEAN_FALSE:
2199 return PACKET_DISABLE;
2200 case AUTO_BOOLEAN_AUTO:
2201 return config->support;
2202 default:
2203 gdb_assert_not_reached (_("bad switch"));
2204 }
2205 }
2206
2207 /* Same as packet_config_support, but takes the packet's enum value as
2208 argument. */
2209
2210 static enum packet_support
2211 packet_support (int packet)
2212 {
2213 struct packet_config *config = &remote_protocol_packets[packet];
2214
2215 return packet_config_support (config);
2216 }
2217
2218 static void
2219 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2220 struct cmd_list_element *c,
2221 const char *value)
2222 {
2223 struct packet_config *packet;
2224
2225 for (packet = remote_protocol_packets;
2226 packet < &remote_protocol_packets[PACKET_MAX];
2227 packet++)
2228 {
2229 if (&packet->detect == c->var)
2230 {
2231 show_packet_config_cmd (packet);
2232 return;
2233 }
2234 }
2235 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2236 c->name);
2237 }
2238
2239 /* Should we try one of the 'Z' requests? */
2240
2241 enum Z_packet_type
2242 {
2243 Z_PACKET_SOFTWARE_BP,
2244 Z_PACKET_HARDWARE_BP,
2245 Z_PACKET_WRITE_WP,
2246 Z_PACKET_READ_WP,
2247 Z_PACKET_ACCESS_WP,
2248 NR_Z_PACKET_TYPES
2249 };
2250
2251 /* For compatibility with older distributions. Provide a ``set remote
2252 Z-packet ...'' command that updates all the Z packet types. */
2253
2254 static enum auto_boolean remote_Z_packet_detect;
2255
2256 static void
2257 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2258 struct cmd_list_element *c)
2259 {
2260 int i;
2261
2262 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2263 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2264 }
2265
2266 static void
2267 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2268 struct cmd_list_element *c,
2269 const char *value)
2270 {
2271 int i;
2272
2273 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2274 {
2275 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2276 }
2277 }
2278
2279 /* Returns true if the multi-process extensions are in effect. */
2280
2281 static int
2282 remote_multi_process_p (struct remote_state *rs)
2283 {
2284 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2285 }
2286
2287 /* Returns true if fork events are supported. */
2288
2289 static int
2290 remote_fork_event_p (struct remote_state *rs)
2291 {
2292 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2293 }
2294
2295 /* Returns true if vfork events are supported. */
2296
2297 static int
2298 remote_vfork_event_p (struct remote_state *rs)
2299 {
2300 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2301 }
2302
2303 /* Returns true if exec events are supported. */
2304
2305 static int
2306 remote_exec_event_p (struct remote_state *rs)
2307 {
2308 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2309 }
2310
2311 /* Insert fork catchpoint target routine. If fork events are enabled
2312 then return success, nothing more to do. */
2313
2314 int
2315 remote_target::insert_fork_catchpoint (int pid)
2316 {
2317 struct remote_state *rs = get_remote_state ();
2318
2319 return !remote_fork_event_p (rs);
2320 }
2321
2322 /* Remove fork catchpoint target routine. Nothing to do, just
2323 return success. */
2324
2325 int
2326 remote_target::remove_fork_catchpoint (int pid)
2327 {
2328 return 0;
2329 }
2330
2331 /* Insert vfork catchpoint target routine. If vfork events are enabled
2332 then return success, nothing more to do. */
2333
2334 int
2335 remote_target::insert_vfork_catchpoint (int pid)
2336 {
2337 struct remote_state *rs = get_remote_state ();
2338
2339 return !remote_vfork_event_p (rs);
2340 }
2341
2342 /* Remove vfork catchpoint target routine. Nothing to do, just
2343 return success. */
2344
2345 int
2346 remote_target::remove_vfork_catchpoint (int pid)
2347 {
2348 return 0;
2349 }
2350
2351 /* Insert exec catchpoint target routine. If exec events are
2352 enabled, just return success. */
2353
2354 int
2355 remote_target::insert_exec_catchpoint (int pid)
2356 {
2357 struct remote_state *rs = get_remote_state ();
2358
2359 return !remote_exec_event_p (rs);
2360 }
2361
2362 /* Remove exec catchpoint target routine. Nothing to do, just
2363 return success. */
2364
2365 int
2366 remote_target::remove_exec_catchpoint (int pid)
2367 {
2368 return 0;
2369 }
2370
2371 \f
2372
2373 /* Take advantage of the fact that the TID field is not used, to tag
2374 special ptids with it set to != 0. */
2375 static const ptid_t magic_null_ptid (42000, -1, 1);
2376 static const ptid_t not_sent_ptid (42000, -2, 1);
2377 static const ptid_t any_thread_ptid (42000, 0, 1);
2378
2379 /* Find out if the stub attached to PID (and hence GDB should offer to
2380 detach instead of killing it when bailing out). */
2381
2382 int
2383 remote_target::remote_query_attached (int pid)
2384 {
2385 struct remote_state *rs = get_remote_state ();
2386 size_t size = get_remote_packet_size ();
2387
2388 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2389 return 0;
2390
2391 if (remote_multi_process_p (rs))
2392 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2393 else
2394 xsnprintf (rs->buf.data (), size, "qAttached");
2395
2396 putpkt (rs->buf);
2397 getpkt (&rs->buf, 0);
2398
2399 switch (packet_ok (rs->buf,
2400 &remote_protocol_packets[PACKET_qAttached]))
2401 {
2402 case PACKET_OK:
2403 if (strcmp (rs->buf.data (), "1") == 0)
2404 return 1;
2405 break;
2406 case PACKET_ERROR:
2407 warning (_("Remote failure reply: %s"), rs->buf.data ());
2408 break;
2409 case PACKET_UNKNOWN:
2410 break;
2411 }
2412
2413 return 0;
2414 }
2415
2416 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2417 has been invented by GDB, instead of reported by the target. Since
2418 we can be connected to a remote system before before knowing about
2419 any inferior, mark the target with execution when we find the first
2420 inferior. If ATTACHED is 1, then we had just attached to this
2421 inferior. If it is 0, then we just created this inferior. If it
2422 is -1, then try querying the remote stub to find out if it had
2423 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2424 attempt to open this inferior's executable as the main executable
2425 if no main executable is open already. */
2426
2427 inferior *
2428 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2429 int try_open_exec)
2430 {
2431 struct inferior *inf;
2432
2433 /* Check whether this process we're learning about is to be
2434 considered attached, or if is to be considered to have been
2435 spawned by the stub. */
2436 if (attached == -1)
2437 attached = remote_query_attached (pid);
2438
2439 if (gdbarch_has_global_solist (target_gdbarch ()))
2440 {
2441 /* If the target shares code across all inferiors, then every
2442 attach adds a new inferior. */
2443 inf = add_inferior (pid);
2444
2445 /* ... and every inferior is bound to the same program space.
2446 However, each inferior may still have its own address
2447 space. */
2448 inf->aspace = maybe_new_address_space ();
2449 inf->pspace = current_program_space;
2450 }
2451 else
2452 {
2453 /* In the traditional debugging scenario, there's a 1-1 match
2454 between program/address spaces. We simply bind the inferior
2455 to the program space's address space. */
2456 inf = current_inferior ();
2457
2458 /* However, if the current inferior is already bound to a
2459 process, find some other empty inferior. */
2460 if (inf->pid != 0)
2461 {
2462 inf = nullptr;
2463 for (inferior *it : all_inferiors ())
2464 if (it->pid == 0)
2465 {
2466 inf = it;
2467 break;
2468 }
2469 }
2470 if (inf == nullptr)
2471 {
2472 /* Since all inferiors were already bound to a process, add
2473 a new inferior. */
2474 inf = add_inferior_with_spaces ();
2475 }
2476 switch_to_inferior_no_thread (inf);
2477 push_target (this);
2478 inferior_appeared (inf, pid);
2479 }
2480
2481 inf->attach_flag = attached;
2482 inf->fake_pid_p = fake_pid_p;
2483
2484 /* If no main executable is currently open then attempt to
2485 open the file that was executed to create this inferior. */
2486 if (try_open_exec && get_exec_file (0) == NULL)
2487 exec_file_locate_attach (pid, 0, 1);
2488
2489 /* Check for exec file mismatch, and let the user solve it. */
2490 validate_exec_file (1);
2491
2492 return inf;
2493 }
2494
2495 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2496 static remote_thread_info *get_remote_thread_info (remote_target *target,
2497 ptid_t ptid);
2498
2499 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2500 according to RUNNING. */
2501
2502 thread_info *
2503 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2504 {
2505 struct remote_state *rs = get_remote_state ();
2506 struct thread_info *thread;
2507
2508 /* GDB historically didn't pull threads in the initial connection
2509 setup. If the remote target doesn't even have a concept of
2510 threads (e.g., a bare-metal target), even if internally we
2511 consider that a single-threaded target, mentioning a new thread
2512 might be confusing to the user. Be silent then, preserving the
2513 age old behavior. */
2514 if (rs->starting_up)
2515 thread = add_thread_silent (this, ptid);
2516 else
2517 thread = add_thread (this, ptid);
2518
2519 /* We start by assuming threads are resumed. That state then gets updated
2520 when we process a matching stop reply. */
2521 get_remote_thread_info (thread)->set_resumed ();
2522
2523 set_executing (this, ptid, executing);
2524 set_running (this, ptid, running);
2525
2526 return thread;
2527 }
2528
2529 /* Come here when we learn about a thread id from the remote target.
2530 It may be the first time we hear about such thread, so take the
2531 opportunity to add it to GDB's thread list. In case this is the
2532 first time we're noticing its corresponding inferior, add it to
2533 GDB's inferior list as well. EXECUTING indicates whether the
2534 thread is (internally) executing or stopped. */
2535
2536 void
2537 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2538 {
2539 /* In non-stop mode, we assume new found threads are (externally)
2540 running until proven otherwise with a stop reply. In all-stop,
2541 we can only get here if all threads are stopped. */
2542 int running = target_is_non_stop_p () ? 1 : 0;
2543
2544 /* If this is a new thread, add it to GDB's thread list.
2545 If we leave it up to WFI to do this, bad things will happen. */
2546
2547 thread_info *tp = find_thread_ptid (this, currthread);
2548 if (tp != NULL && tp->state == THREAD_EXITED)
2549 {
2550 /* We're seeing an event on a thread id we knew had exited.
2551 This has to be a new thread reusing the old id. Add it. */
2552 remote_add_thread (currthread, running, executing);
2553 return;
2554 }
2555
2556 if (!in_thread_list (this, currthread))
2557 {
2558 struct inferior *inf = NULL;
2559 int pid = currthread.pid ();
2560
2561 if (inferior_ptid.is_pid ()
2562 && pid == inferior_ptid.pid ())
2563 {
2564 /* inferior_ptid has no thread member yet. This can happen
2565 with the vAttach -> remote_wait,"TAAthread:" path if the
2566 stub doesn't support qC. This is the first stop reported
2567 after an attach, so this is the main thread. Update the
2568 ptid in the thread list. */
2569 if (in_thread_list (this, ptid_t (pid)))
2570 thread_change_ptid (this, inferior_ptid, currthread);
2571 else
2572 {
2573 thread_info *thr
2574 = remote_add_thread (currthread, running, executing);
2575 switch_to_thread (thr);
2576 }
2577 return;
2578 }
2579
2580 if (magic_null_ptid == inferior_ptid)
2581 {
2582 /* inferior_ptid is not set yet. This can happen with the
2583 vRun -> remote_wait,"TAAthread:" path if the stub
2584 doesn't support qC. This is the first stop reported
2585 after an attach, so this is the main thread. Update the
2586 ptid in the thread list. */
2587 thread_change_ptid (this, inferior_ptid, currthread);
2588 return;
2589 }
2590
2591 /* When connecting to a target remote, or to a target
2592 extended-remote which already was debugging an inferior, we
2593 may not know about it yet. Add it before adding its child
2594 thread, so notifications are emitted in a sensible order. */
2595 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2596 {
2597 struct remote_state *rs = get_remote_state ();
2598 bool fake_pid_p = !remote_multi_process_p (rs);
2599
2600 inf = remote_add_inferior (fake_pid_p,
2601 currthread.pid (), -1, 1);
2602 }
2603
2604 /* This is really a new thread. Add it. */
2605 thread_info *new_thr
2606 = remote_add_thread (currthread, running, executing);
2607
2608 /* If we found a new inferior, let the common code do whatever
2609 it needs to with it (e.g., read shared libraries, insert
2610 breakpoints), unless we're just setting up an all-stop
2611 connection. */
2612 if (inf != NULL)
2613 {
2614 struct remote_state *rs = get_remote_state ();
2615
2616 if (!rs->starting_up)
2617 notice_new_inferior (new_thr, executing, 0);
2618 }
2619 }
2620 }
2621
2622 /* Return THREAD's private thread data, creating it if necessary. */
2623
2624 static remote_thread_info *
2625 get_remote_thread_info (thread_info *thread)
2626 {
2627 gdb_assert (thread != NULL);
2628
2629 if (thread->priv == NULL)
2630 thread->priv.reset (new remote_thread_info);
2631
2632 return static_cast<remote_thread_info *> (thread->priv.get ());
2633 }
2634
2635 /* Return PTID's private thread data, creating it if necessary. */
2636
2637 static remote_thread_info *
2638 get_remote_thread_info (remote_target *target, ptid_t ptid)
2639 {
2640 thread_info *thr = find_thread_ptid (target, ptid);
2641 return get_remote_thread_info (thr);
2642 }
2643
2644 /* Call this function as a result of
2645 1) A halt indication (T packet) containing a thread id
2646 2) A direct query of currthread
2647 3) Successful execution of set thread */
2648
2649 static void
2650 record_currthread (struct remote_state *rs, ptid_t currthread)
2651 {
2652 rs->general_thread = currthread;
2653 }
2654
2655 /* If 'QPassSignals' is supported, tell the remote stub what signals
2656 it can simply pass through to the inferior without reporting. */
2657
2658 void
2659 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2660 {
2661 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2662 {
2663 char *pass_packet, *p;
2664 int count = 0;
2665 struct remote_state *rs = get_remote_state ();
2666
2667 gdb_assert (pass_signals.size () < 256);
2668 for (size_t i = 0; i < pass_signals.size (); i++)
2669 {
2670 if (pass_signals[i])
2671 count++;
2672 }
2673 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2674 strcpy (pass_packet, "QPassSignals:");
2675 p = pass_packet + strlen (pass_packet);
2676 for (size_t i = 0; i < pass_signals.size (); i++)
2677 {
2678 if (pass_signals[i])
2679 {
2680 if (i >= 16)
2681 *p++ = tohex (i >> 4);
2682 *p++ = tohex (i & 15);
2683 if (count)
2684 *p++ = ';';
2685 else
2686 break;
2687 count--;
2688 }
2689 }
2690 *p = 0;
2691 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2692 {
2693 putpkt (pass_packet);
2694 getpkt (&rs->buf, 0);
2695 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2696 xfree (rs->last_pass_packet);
2697 rs->last_pass_packet = pass_packet;
2698 }
2699 else
2700 xfree (pass_packet);
2701 }
2702 }
2703
2704 /* If 'QCatchSyscalls' is supported, tell the remote stub
2705 to report syscalls to GDB. */
2706
2707 int
2708 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2709 gdb::array_view<const int> syscall_counts)
2710 {
2711 const char *catch_packet;
2712 enum packet_result result;
2713 int n_sysno = 0;
2714
2715 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2716 {
2717 /* Not supported. */
2718 return 1;
2719 }
2720
2721 if (needed && any_count == 0)
2722 {
2723 /* Count how many syscalls are to be caught. */
2724 for (size_t i = 0; i < syscall_counts.size (); i++)
2725 {
2726 if (syscall_counts[i] != 0)
2727 n_sysno++;
2728 }
2729 }
2730
2731 if (remote_debug)
2732 {
2733 fprintf_unfiltered (gdb_stdlog,
2734 "remote_set_syscall_catchpoint "
2735 "pid %d needed %d any_count %d n_sysno %d\n",
2736 pid, needed, any_count, n_sysno);
2737 }
2738
2739 std::string built_packet;
2740 if (needed)
2741 {
2742 /* Prepare a packet with the sysno list, assuming max 8+1
2743 characters for a sysno. If the resulting packet size is too
2744 big, fallback on the non-selective packet. */
2745 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2746 built_packet.reserve (maxpktsz);
2747 built_packet = "QCatchSyscalls:1";
2748 if (any_count == 0)
2749 {
2750 /* Add in each syscall to be caught. */
2751 for (size_t i = 0; i < syscall_counts.size (); i++)
2752 {
2753 if (syscall_counts[i] != 0)
2754 string_appendf (built_packet, ";%zx", i);
2755 }
2756 }
2757 if (built_packet.size () > get_remote_packet_size ())
2758 {
2759 /* catch_packet too big. Fallback to less efficient
2760 non selective mode, with GDB doing the filtering. */
2761 catch_packet = "QCatchSyscalls:1";
2762 }
2763 else
2764 catch_packet = built_packet.c_str ();
2765 }
2766 else
2767 catch_packet = "QCatchSyscalls:0";
2768
2769 struct remote_state *rs = get_remote_state ();
2770
2771 putpkt (catch_packet);
2772 getpkt (&rs->buf, 0);
2773 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2774 if (result == PACKET_OK)
2775 return 0;
2776 else
2777 return -1;
2778 }
2779
2780 /* If 'QProgramSignals' is supported, tell the remote stub what
2781 signals it should pass through to the inferior when detaching. */
2782
2783 void
2784 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2785 {
2786 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2787 {
2788 char *packet, *p;
2789 int count = 0;
2790 struct remote_state *rs = get_remote_state ();
2791
2792 gdb_assert (signals.size () < 256);
2793 for (size_t i = 0; i < signals.size (); i++)
2794 {
2795 if (signals[i])
2796 count++;
2797 }
2798 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2799 strcpy (packet, "QProgramSignals:");
2800 p = packet + strlen (packet);
2801 for (size_t i = 0; i < signals.size (); i++)
2802 {
2803 if (signal_pass_state (i))
2804 {
2805 if (i >= 16)
2806 *p++ = tohex (i >> 4);
2807 *p++ = tohex (i & 15);
2808 if (count)
2809 *p++ = ';';
2810 else
2811 break;
2812 count--;
2813 }
2814 }
2815 *p = 0;
2816 if (!rs->last_program_signals_packet
2817 || strcmp (rs->last_program_signals_packet, packet) != 0)
2818 {
2819 putpkt (packet);
2820 getpkt (&rs->buf, 0);
2821 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2822 xfree (rs->last_program_signals_packet);
2823 rs->last_program_signals_packet = packet;
2824 }
2825 else
2826 xfree (packet);
2827 }
2828 }
2829
2830 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2831 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2832 thread. If GEN is set, set the general thread, if not, then set
2833 the step/continue thread. */
2834 void
2835 remote_target::set_thread (ptid_t ptid, int gen)
2836 {
2837 struct remote_state *rs = get_remote_state ();
2838 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2839 char *buf = rs->buf.data ();
2840 char *endbuf = buf + get_remote_packet_size ();
2841
2842 if (state == ptid)
2843 return;
2844
2845 *buf++ = 'H';
2846 *buf++ = gen ? 'g' : 'c';
2847 if (ptid == magic_null_ptid)
2848 xsnprintf (buf, endbuf - buf, "0");
2849 else if (ptid == any_thread_ptid)
2850 xsnprintf (buf, endbuf - buf, "0");
2851 else if (ptid == minus_one_ptid)
2852 xsnprintf (buf, endbuf - buf, "-1");
2853 else
2854 write_ptid (buf, endbuf, ptid);
2855 putpkt (rs->buf);
2856 getpkt (&rs->buf, 0);
2857 if (gen)
2858 rs->general_thread = ptid;
2859 else
2860 rs->continue_thread = ptid;
2861 }
2862
2863 void
2864 remote_target::set_general_thread (ptid_t ptid)
2865 {
2866 set_thread (ptid, 1);
2867 }
2868
2869 void
2870 remote_target::set_continue_thread (ptid_t ptid)
2871 {
2872 set_thread (ptid, 0);
2873 }
2874
2875 /* Change the remote current process. Which thread within the process
2876 ends up selected isn't important, as long as it is the same process
2877 as what INFERIOR_PTID points to.
2878
2879 This comes from that fact that there is no explicit notion of
2880 "selected process" in the protocol. The selected process for
2881 general operations is the process the selected general thread
2882 belongs to. */
2883
2884 void
2885 remote_target::set_general_process ()
2886 {
2887 struct remote_state *rs = get_remote_state ();
2888
2889 /* If the remote can't handle multiple processes, don't bother. */
2890 if (!remote_multi_process_p (rs))
2891 return;
2892
2893 /* We only need to change the remote current thread if it's pointing
2894 at some other process. */
2895 if (rs->general_thread.pid () != inferior_ptid.pid ())
2896 set_general_thread (inferior_ptid);
2897 }
2898
2899 \f
2900 /* Return nonzero if this is the main thread that we made up ourselves
2901 to model non-threaded targets as single-threaded. */
2902
2903 static int
2904 remote_thread_always_alive (ptid_t ptid)
2905 {
2906 if (ptid == magic_null_ptid)
2907 /* The main thread is always alive. */
2908 return 1;
2909
2910 if (ptid.pid () != 0 && ptid.lwp () == 0)
2911 /* The main thread is always alive. This can happen after a
2912 vAttach, if the remote side doesn't support
2913 multi-threading. */
2914 return 1;
2915
2916 return 0;
2917 }
2918
2919 /* Return nonzero if the thread PTID is still alive on the remote
2920 system. */
2921
2922 bool
2923 remote_target::thread_alive (ptid_t ptid)
2924 {
2925 struct remote_state *rs = get_remote_state ();
2926 char *p, *endp;
2927
2928 /* Check if this is a thread that we made up ourselves to model
2929 non-threaded targets as single-threaded. */
2930 if (remote_thread_always_alive (ptid))
2931 return 1;
2932
2933 p = rs->buf.data ();
2934 endp = p + get_remote_packet_size ();
2935
2936 *p++ = 'T';
2937 write_ptid (p, endp, ptid);
2938
2939 putpkt (rs->buf);
2940 getpkt (&rs->buf, 0);
2941 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2942 }
2943
2944 /* Return a pointer to a thread name if we know it and NULL otherwise.
2945 The thread_info object owns the memory for the name. */
2946
2947 const char *
2948 remote_target::thread_name (struct thread_info *info)
2949 {
2950 if (info->priv != NULL)
2951 {
2952 const std::string &name = get_remote_thread_info (info)->name;
2953 return !name.empty () ? name.c_str () : NULL;
2954 }
2955
2956 return NULL;
2957 }
2958
2959 /* About these extended threadlist and threadinfo packets. They are
2960 variable length packets but, the fields within them are often fixed
2961 length. They are redundant enough to send over UDP as is the
2962 remote protocol in general. There is a matching unit test module
2963 in libstub. */
2964
2965 /* WARNING: This threadref data structure comes from the remote O.S.,
2966 libstub protocol encoding, and remote.c. It is not particularly
2967 changable. */
2968
2969 /* Right now, the internal structure is int. We want it to be bigger.
2970 Plan to fix this. */
2971
2972 typedef int gdb_threadref; /* Internal GDB thread reference. */
2973
2974 /* gdb_ext_thread_info is an internal GDB data structure which is
2975 equivalent to the reply of the remote threadinfo packet. */
2976
2977 struct gdb_ext_thread_info
2978 {
2979 threadref threadid; /* External form of thread reference. */
2980 int active; /* Has state interesting to GDB?
2981 regs, stack. */
2982 char display[256]; /* Brief state display, name,
2983 blocked/suspended. */
2984 char shortname[32]; /* To be used to name threads. */
2985 char more_display[256]; /* Long info, statistics, queue depth,
2986 whatever. */
2987 };
2988
2989 /* The volume of remote transfers can be limited by submitting
2990 a mask containing bits specifying the desired information.
2991 Use a union of these values as the 'selection' parameter to
2992 get_thread_info. FIXME: Make these TAG names more thread specific. */
2993
2994 #define TAG_THREADID 1
2995 #define TAG_EXISTS 2
2996 #define TAG_DISPLAY 4
2997 #define TAG_THREADNAME 8
2998 #define TAG_MOREDISPLAY 16
2999
3000 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3001
3002 static const char *unpack_nibble (const char *buf, int *val);
3003
3004 static const char *unpack_byte (const char *buf, int *value);
3005
3006 static char *pack_int (char *buf, int value);
3007
3008 static const char *unpack_int (const char *buf, int *value);
3009
3010 static const char *unpack_string (const char *src, char *dest, int length);
3011
3012 static char *pack_threadid (char *pkt, threadref *id);
3013
3014 static const char *unpack_threadid (const char *inbuf, threadref *id);
3015
3016 void int_to_threadref (threadref *id, int value);
3017
3018 static int threadref_to_int (threadref *ref);
3019
3020 static void copy_threadref (threadref *dest, threadref *src);
3021
3022 static int threadmatch (threadref *dest, threadref *src);
3023
3024 static char *pack_threadinfo_request (char *pkt, int mode,
3025 threadref *id);
3026
3027 static char *pack_threadlist_request (char *pkt, int startflag,
3028 int threadcount,
3029 threadref *nextthread);
3030
3031 static int remote_newthread_step (threadref *ref, void *context);
3032
3033
3034 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3035 buffer we're allowed to write to. Returns
3036 BUF+CHARACTERS_WRITTEN. */
3037
3038 char *
3039 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3040 {
3041 int pid, tid;
3042 struct remote_state *rs = get_remote_state ();
3043
3044 if (remote_multi_process_p (rs))
3045 {
3046 pid = ptid.pid ();
3047 if (pid < 0)
3048 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3049 else
3050 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3051 }
3052 tid = ptid.lwp ();
3053 if (tid < 0)
3054 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3055 else
3056 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3057
3058 return buf;
3059 }
3060
3061 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3062 last parsed char. Returns null_ptid if no thread id is found, and
3063 throws an error if the thread id has an invalid format. */
3064
3065 static ptid_t
3066 read_ptid (const char *buf, const char **obuf)
3067 {
3068 const char *p = buf;
3069 const char *pp;
3070 ULONGEST pid = 0, tid = 0;
3071
3072 if (*p == 'p')
3073 {
3074 /* Multi-process ptid. */
3075 pp = unpack_varlen_hex (p + 1, &pid);
3076 if (*pp != '.')
3077 error (_("invalid remote ptid: %s"), p);
3078
3079 p = pp;
3080 pp = unpack_varlen_hex (p + 1, &tid);
3081 if (obuf)
3082 *obuf = pp;
3083 return ptid_t (pid, tid, 0);
3084 }
3085
3086 /* No multi-process. Just a tid. */
3087 pp = unpack_varlen_hex (p, &tid);
3088
3089 /* Return null_ptid when no thread id is found. */
3090 if (p == pp)
3091 {
3092 if (obuf)
3093 *obuf = pp;
3094 return null_ptid;
3095 }
3096
3097 /* Since the stub is not sending a process id, then default to
3098 what's in inferior_ptid, unless it's null at this point. If so,
3099 then since there's no way to know the pid of the reported
3100 threads, use the magic number. */
3101 if (inferior_ptid == null_ptid)
3102 pid = magic_null_ptid.pid ();
3103 else
3104 pid = inferior_ptid.pid ();
3105
3106 if (obuf)
3107 *obuf = pp;
3108 return ptid_t (pid, tid, 0);
3109 }
3110
3111 static int
3112 stubhex (int ch)
3113 {
3114 if (ch >= 'a' && ch <= 'f')
3115 return ch - 'a' + 10;
3116 if (ch >= '0' && ch <= '9')
3117 return ch - '0';
3118 if (ch >= 'A' && ch <= 'F')
3119 return ch - 'A' + 10;
3120 return -1;
3121 }
3122
3123 static int
3124 stub_unpack_int (const char *buff, int fieldlength)
3125 {
3126 int nibble;
3127 int retval = 0;
3128
3129 while (fieldlength)
3130 {
3131 nibble = stubhex (*buff++);
3132 retval |= nibble;
3133 fieldlength--;
3134 if (fieldlength)
3135 retval = retval << 4;
3136 }
3137 return retval;
3138 }
3139
3140 static const char *
3141 unpack_nibble (const char *buf, int *val)
3142 {
3143 *val = fromhex (*buf++);
3144 return buf;
3145 }
3146
3147 static const char *
3148 unpack_byte (const char *buf, int *value)
3149 {
3150 *value = stub_unpack_int (buf, 2);
3151 return buf + 2;
3152 }
3153
3154 static char *
3155 pack_int (char *buf, int value)
3156 {
3157 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3158 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3159 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3160 buf = pack_hex_byte (buf, (value & 0xff));
3161 return buf;
3162 }
3163
3164 static const char *
3165 unpack_int (const char *buf, int *value)
3166 {
3167 *value = stub_unpack_int (buf, 8);
3168 return buf + 8;
3169 }
3170
3171 #if 0 /* Currently unused, uncomment when needed. */
3172 static char *pack_string (char *pkt, char *string);
3173
3174 static char *
3175 pack_string (char *pkt, char *string)
3176 {
3177 char ch;
3178 int len;
3179
3180 len = strlen (string);
3181 if (len > 200)
3182 len = 200; /* Bigger than most GDB packets, junk??? */
3183 pkt = pack_hex_byte (pkt, len);
3184 while (len-- > 0)
3185 {
3186 ch = *string++;
3187 if ((ch == '\0') || (ch == '#'))
3188 ch = '*'; /* Protect encapsulation. */
3189 *pkt++ = ch;
3190 }
3191 return pkt;
3192 }
3193 #endif /* 0 (unused) */
3194
3195 static const char *
3196 unpack_string (const char *src, char *dest, int length)
3197 {
3198 while (length--)
3199 *dest++ = *src++;
3200 *dest = '\0';
3201 return src;
3202 }
3203
3204 static char *
3205 pack_threadid (char *pkt, threadref *id)
3206 {
3207 char *limit;
3208 unsigned char *altid;
3209
3210 altid = (unsigned char *) id;
3211 limit = pkt + BUF_THREAD_ID_SIZE;
3212 while (pkt < limit)
3213 pkt = pack_hex_byte (pkt, *altid++);
3214 return pkt;
3215 }
3216
3217
3218 static const char *
3219 unpack_threadid (const char *inbuf, threadref *id)
3220 {
3221 char *altref;
3222 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3223 int x, y;
3224
3225 altref = (char *) id;
3226
3227 while (inbuf < limit)
3228 {
3229 x = stubhex (*inbuf++);
3230 y = stubhex (*inbuf++);
3231 *altref++ = (x << 4) | y;
3232 }
3233 return inbuf;
3234 }
3235
3236 /* Externally, threadrefs are 64 bits but internally, they are still
3237 ints. This is due to a mismatch of specifications. We would like
3238 to use 64bit thread references internally. This is an adapter
3239 function. */
3240
3241 void
3242 int_to_threadref (threadref *id, int value)
3243 {
3244 unsigned char *scan;
3245
3246 scan = (unsigned char *) id;
3247 {
3248 int i = 4;
3249 while (i--)
3250 *scan++ = 0;
3251 }
3252 *scan++ = (value >> 24) & 0xff;
3253 *scan++ = (value >> 16) & 0xff;
3254 *scan++ = (value >> 8) & 0xff;
3255 *scan++ = (value & 0xff);
3256 }
3257
3258 static int
3259 threadref_to_int (threadref *ref)
3260 {
3261 int i, value = 0;
3262 unsigned char *scan;
3263
3264 scan = *ref;
3265 scan += 4;
3266 i = 4;
3267 while (i-- > 0)
3268 value = (value << 8) | ((*scan++) & 0xff);
3269 return value;
3270 }
3271
3272 static void
3273 copy_threadref (threadref *dest, threadref *src)
3274 {
3275 int i;
3276 unsigned char *csrc, *cdest;
3277
3278 csrc = (unsigned char *) src;
3279 cdest = (unsigned char *) dest;
3280 i = 8;
3281 while (i--)
3282 *cdest++ = *csrc++;
3283 }
3284
3285 static int
3286 threadmatch (threadref *dest, threadref *src)
3287 {
3288 /* Things are broken right now, so just assume we got a match. */
3289 #if 0
3290 unsigned char *srcp, *destp;
3291 int i, result;
3292 srcp = (char *) src;
3293 destp = (char *) dest;
3294
3295 result = 1;
3296 while (i-- > 0)
3297 result &= (*srcp++ == *destp++) ? 1 : 0;
3298 return result;
3299 #endif
3300 return 1;
3301 }
3302
3303 /*
3304 threadid:1, # always request threadid
3305 context_exists:2,
3306 display:4,
3307 unique_name:8,
3308 more_display:16
3309 */
3310
3311 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3312
3313 static char *
3314 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3315 {
3316 *pkt++ = 'q'; /* Info Query */
3317 *pkt++ = 'P'; /* process or thread info */
3318 pkt = pack_int (pkt, mode); /* mode */
3319 pkt = pack_threadid (pkt, id); /* threadid */
3320 *pkt = '\0'; /* terminate */
3321 return pkt;
3322 }
3323
3324 /* These values tag the fields in a thread info response packet. */
3325 /* Tagging the fields allows us to request specific fields and to
3326 add more fields as time goes by. */
3327
3328 #define TAG_THREADID 1 /* Echo the thread identifier. */
3329 #define TAG_EXISTS 2 /* Is this process defined enough to
3330 fetch registers and its stack? */
3331 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3332 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3333 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3334 the process. */
3335
3336 int
3337 remote_target::remote_unpack_thread_info_response (const char *pkt,
3338 threadref *expectedref,
3339 gdb_ext_thread_info *info)
3340 {
3341 struct remote_state *rs = get_remote_state ();
3342 int mask, length;
3343 int tag;
3344 threadref ref;
3345 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3346 int retval = 1;
3347
3348 /* info->threadid = 0; FIXME: implement zero_threadref. */
3349 info->active = 0;
3350 info->display[0] = '\0';
3351 info->shortname[0] = '\0';
3352 info->more_display[0] = '\0';
3353
3354 /* Assume the characters indicating the packet type have been
3355 stripped. */
3356 pkt = unpack_int (pkt, &mask); /* arg mask */
3357 pkt = unpack_threadid (pkt, &ref);
3358
3359 if (mask == 0)
3360 warning (_("Incomplete response to threadinfo request."));
3361 if (!threadmatch (&ref, expectedref))
3362 { /* This is an answer to a different request. */
3363 warning (_("ERROR RMT Thread info mismatch."));
3364 return 0;
3365 }
3366 copy_threadref (&info->threadid, &ref);
3367
3368 /* Loop on tagged fields , try to bail if something goes wrong. */
3369
3370 /* Packets are terminated with nulls. */
3371 while ((pkt < limit) && mask && *pkt)
3372 {
3373 pkt = unpack_int (pkt, &tag); /* tag */
3374 pkt = unpack_byte (pkt, &length); /* length */
3375 if (!(tag & mask)) /* Tags out of synch with mask. */
3376 {
3377 warning (_("ERROR RMT: threadinfo tag mismatch."));
3378 retval = 0;
3379 break;
3380 }
3381 if (tag == TAG_THREADID)
3382 {
3383 if (length != 16)
3384 {
3385 warning (_("ERROR RMT: length of threadid is not 16."));
3386 retval = 0;
3387 break;
3388 }
3389 pkt = unpack_threadid (pkt, &ref);
3390 mask = mask & ~TAG_THREADID;
3391 continue;
3392 }
3393 if (tag == TAG_EXISTS)
3394 {
3395 info->active = stub_unpack_int (pkt, length);
3396 pkt += length;
3397 mask = mask & ~(TAG_EXISTS);
3398 if (length > 8)
3399 {
3400 warning (_("ERROR RMT: 'exists' length too long."));
3401 retval = 0;
3402 break;
3403 }
3404 continue;
3405 }
3406 if (tag == TAG_THREADNAME)
3407 {
3408 pkt = unpack_string (pkt, &info->shortname[0], length);
3409 mask = mask & ~TAG_THREADNAME;
3410 continue;
3411 }
3412 if (tag == TAG_DISPLAY)
3413 {
3414 pkt = unpack_string (pkt, &info->display[0], length);
3415 mask = mask & ~TAG_DISPLAY;
3416 continue;
3417 }
3418 if (tag == TAG_MOREDISPLAY)
3419 {
3420 pkt = unpack_string (pkt, &info->more_display[0], length);
3421 mask = mask & ~TAG_MOREDISPLAY;
3422 continue;
3423 }
3424 warning (_("ERROR RMT: unknown thread info tag."));
3425 break; /* Not a tag we know about. */
3426 }
3427 return retval;
3428 }
3429
3430 int
3431 remote_target::remote_get_threadinfo (threadref *threadid,
3432 int fieldset,
3433 gdb_ext_thread_info *info)
3434 {
3435 struct remote_state *rs = get_remote_state ();
3436 int result;
3437
3438 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3439 putpkt (rs->buf);
3440 getpkt (&rs->buf, 0);
3441
3442 if (rs->buf[0] == '\0')
3443 return 0;
3444
3445 result = remote_unpack_thread_info_response (&rs->buf[2],
3446 threadid, info);
3447 return result;
3448 }
3449
3450 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3451
3452 static char *
3453 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3454 threadref *nextthread)
3455 {
3456 *pkt++ = 'q'; /* info query packet */
3457 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3458 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3459 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3460 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3461 *pkt = '\0';
3462 return pkt;
3463 }
3464
3465 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3466
3467 int
3468 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3469 threadref *original_echo,
3470 threadref *resultlist,
3471 int *doneflag)
3472 {
3473 struct remote_state *rs = get_remote_state ();
3474 int count, resultcount, done;
3475
3476 resultcount = 0;
3477 /* Assume the 'q' and 'M chars have been stripped. */
3478 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3479 /* done parse past here */
3480 pkt = unpack_byte (pkt, &count); /* count field */
3481 pkt = unpack_nibble (pkt, &done);
3482 /* The first threadid is the argument threadid. */
3483 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3484 while ((count-- > 0) && (pkt < limit))
3485 {
3486 pkt = unpack_threadid (pkt, resultlist++);
3487 if (resultcount++ >= result_limit)
3488 break;
3489 }
3490 if (doneflag)
3491 *doneflag = done;
3492 return resultcount;
3493 }
3494
3495 /* Fetch the next batch of threads from the remote. Returns -1 if the
3496 qL packet is not supported, 0 on error and 1 on success. */
3497
3498 int
3499 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3500 int result_limit, int *done, int *result_count,
3501 threadref *threadlist)
3502 {
3503 struct remote_state *rs = get_remote_state ();
3504 int result = 1;
3505
3506 /* Truncate result limit to be smaller than the packet size. */
3507 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3508 >= get_remote_packet_size ())
3509 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3510
3511 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3512 nextthread);
3513 putpkt (rs->buf);
3514 getpkt (&rs->buf, 0);
3515 if (rs->buf[0] == '\0')
3516 {
3517 /* Packet not supported. */
3518 return -1;
3519 }
3520
3521 *result_count =
3522 parse_threadlist_response (&rs->buf[2], result_limit,
3523 &rs->echo_nextthread, threadlist, done);
3524
3525 if (!threadmatch (&rs->echo_nextthread, nextthread))
3526 {
3527 /* FIXME: This is a good reason to drop the packet. */
3528 /* Possibly, there is a duplicate response. */
3529 /* Possibilities :
3530 retransmit immediatly - race conditions
3531 retransmit after timeout - yes
3532 exit
3533 wait for packet, then exit
3534 */
3535 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3536 return 0; /* I choose simply exiting. */
3537 }
3538 if (*result_count <= 0)
3539 {
3540 if (*done != 1)
3541 {
3542 warning (_("RMT ERROR : failed to get remote thread list."));
3543 result = 0;
3544 }
3545 return result; /* break; */
3546 }
3547 if (*result_count > result_limit)
3548 {
3549 *result_count = 0;
3550 warning (_("RMT ERROR: threadlist response longer than requested."));
3551 return 0;
3552 }
3553 return result;
3554 }
3555
3556 /* Fetch the list of remote threads, with the qL packet, and call
3557 STEPFUNCTION for each thread found. Stops iterating and returns 1
3558 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3559 STEPFUNCTION returns false. If the packet is not supported,
3560 returns -1. */
3561
3562 int
3563 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3564 void *context, int looplimit)
3565 {
3566 struct remote_state *rs = get_remote_state ();
3567 int done, i, result_count;
3568 int startflag = 1;
3569 int result = 1;
3570 int loopcount = 0;
3571
3572 done = 0;
3573 while (!done)
3574 {
3575 if (loopcount++ > looplimit)
3576 {
3577 result = 0;
3578 warning (_("Remote fetch threadlist -infinite loop-."));
3579 break;
3580 }
3581 result = remote_get_threadlist (startflag, &rs->nextthread,
3582 MAXTHREADLISTRESULTS,
3583 &done, &result_count,
3584 rs->resultthreadlist);
3585 if (result <= 0)
3586 break;
3587 /* Clear for later iterations. */
3588 startflag = 0;
3589 /* Setup to resume next batch of thread references, set nextthread. */
3590 if (result_count >= 1)
3591 copy_threadref (&rs->nextthread,
3592 &rs->resultthreadlist[result_count - 1]);
3593 i = 0;
3594 while (result_count--)
3595 {
3596 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3597 {
3598 result = 0;
3599 break;
3600 }
3601 }
3602 }
3603 return result;
3604 }
3605
3606 /* A thread found on the remote target. */
3607
3608 struct thread_item
3609 {
3610 explicit thread_item (ptid_t ptid_)
3611 : ptid (ptid_)
3612 {}
3613
3614 thread_item (thread_item &&other) = default;
3615 thread_item &operator= (thread_item &&other) = default;
3616
3617 DISABLE_COPY_AND_ASSIGN (thread_item);
3618
3619 /* The thread's PTID. */
3620 ptid_t ptid;
3621
3622 /* The thread's extra info. */
3623 std::string extra;
3624
3625 /* The thread's name. */
3626 std::string name;
3627
3628 /* The core the thread was running on. -1 if not known. */
3629 int core = -1;
3630
3631 /* The thread handle associated with the thread. */
3632 gdb::byte_vector thread_handle;
3633 };
3634
3635 /* Context passed around to the various methods listing remote
3636 threads. As new threads are found, they're added to the ITEMS
3637 vector. */
3638
3639 struct threads_listing_context
3640 {
3641 /* Return true if this object contains an entry for a thread with ptid
3642 PTID. */
3643
3644 bool contains_thread (ptid_t ptid) const
3645 {
3646 auto match_ptid = [&] (const thread_item &item)
3647 {
3648 return item.ptid == ptid;
3649 };
3650
3651 auto it = std::find_if (this->items.begin (),
3652 this->items.end (),
3653 match_ptid);
3654
3655 return it != this->items.end ();
3656 }
3657
3658 /* Remove the thread with ptid PTID. */
3659
3660 void remove_thread (ptid_t ptid)
3661 {
3662 auto match_ptid = [&] (const thread_item &item)
3663 {
3664 return item.ptid == ptid;
3665 };
3666
3667 auto it = std::remove_if (this->items.begin (),
3668 this->items.end (),
3669 match_ptid);
3670
3671 if (it != this->items.end ())
3672 this->items.erase (it);
3673 }
3674
3675 /* The threads found on the remote target. */
3676 std::vector<thread_item> items;
3677 };
3678
3679 static int
3680 remote_newthread_step (threadref *ref, void *data)
3681 {
3682 struct threads_listing_context *context
3683 = (struct threads_listing_context *) data;
3684 int pid = inferior_ptid.pid ();
3685 int lwp = threadref_to_int (ref);
3686 ptid_t ptid (pid, lwp);
3687
3688 context->items.emplace_back (ptid);
3689
3690 return 1; /* continue iterator */
3691 }
3692
3693 #define CRAZY_MAX_THREADS 1000
3694
3695 ptid_t
3696 remote_target::remote_current_thread (ptid_t oldpid)
3697 {
3698 struct remote_state *rs = get_remote_state ();
3699
3700 putpkt ("qC");
3701 getpkt (&rs->buf, 0);
3702 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3703 {
3704 const char *obuf;
3705 ptid_t result;
3706
3707 result = read_ptid (&rs->buf[2], &obuf);
3708 if (*obuf != '\0' && remote_debug)
3709 fprintf_unfiltered (gdb_stdlog,
3710 "warning: garbage in qC reply\n");
3711
3712 return result;
3713 }
3714 else
3715 return oldpid;
3716 }
3717
3718 /* List remote threads using the deprecated qL packet. */
3719
3720 int
3721 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3722 {
3723 if (remote_threadlist_iterator (remote_newthread_step, context,
3724 CRAZY_MAX_THREADS) >= 0)
3725 return 1;
3726
3727 return 0;
3728 }
3729
3730 #if defined(HAVE_LIBEXPAT)
3731
3732 static void
3733 start_thread (struct gdb_xml_parser *parser,
3734 const struct gdb_xml_element *element,
3735 void *user_data,
3736 std::vector<gdb_xml_value> &attributes)
3737 {
3738 struct threads_listing_context *data
3739 = (struct threads_listing_context *) user_data;
3740 struct gdb_xml_value *attr;
3741
3742 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3743 ptid_t ptid = read_ptid (id, NULL);
3744
3745 data->items.emplace_back (ptid);
3746 thread_item &item = data->items.back ();
3747
3748 attr = xml_find_attribute (attributes, "core");
3749 if (attr != NULL)
3750 item.core = *(ULONGEST *) attr->value.get ();
3751
3752 attr = xml_find_attribute (attributes, "name");
3753 if (attr != NULL)
3754 item.name = (const char *) attr->value.get ();
3755
3756 attr = xml_find_attribute (attributes, "handle");
3757 if (attr != NULL)
3758 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3759 }
3760
3761 static void
3762 end_thread (struct gdb_xml_parser *parser,
3763 const struct gdb_xml_element *element,
3764 void *user_data, const char *body_text)
3765 {
3766 struct threads_listing_context *data
3767 = (struct threads_listing_context *) user_data;
3768
3769 if (body_text != NULL && *body_text != '\0')
3770 data->items.back ().extra = body_text;
3771 }
3772
3773 const struct gdb_xml_attribute thread_attributes[] = {
3774 { "id", GDB_XML_AF_NONE, NULL, NULL },
3775 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3776 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3777 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3778 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3779 };
3780
3781 const struct gdb_xml_element thread_children[] = {
3782 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3783 };
3784
3785 const struct gdb_xml_element threads_children[] = {
3786 { "thread", thread_attributes, thread_children,
3787 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3788 start_thread, end_thread },
3789 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3790 };
3791
3792 const struct gdb_xml_element threads_elements[] = {
3793 { "threads", NULL, threads_children,
3794 GDB_XML_EF_NONE, NULL, NULL },
3795 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3796 };
3797
3798 #endif
3799
3800 /* List remote threads using qXfer:threads:read. */
3801
3802 int
3803 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3804 {
3805 #if defined(HAVE_LIBEXPAT)
3806 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3807 {
3808 gdb::optional<gdb::char_vector> xml
3809 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3810
3811 if (xml && (*xml)[0] != '\0')
3812 {
3813 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3814 threads_elements, xml->data (), context);
3815 }
3816
3817 return 1;
3818 }
3819 #endif
3820
3821 return 0;
3822 }
3823
3824 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3825
3826 int
3827 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3828 {
3829 struct remote_state *rs = get_remote_state ();
3830
3831 if (rs->use_threadinfo_query)
3832 {
3833 const char *bufp;
3834
3835 putpkt ("qfThreadInfo");
3836 getpkt (&rs->buf, 0);
3837 bufp = rs->buf.data ();
3838 if (bufp[0] != '\0') /* q packet recognized */
3839 {
3840 while (*bufp++ == 'm') /* reply contains one or more TID */
3841 {
3842 do
3843 {
3844 ptid_t ptid = read_ptid (bufp, &bufp);
3845 context->items.emplace_back (ptid);
3846 }
3847 while (*bufp++ == ','); /* comma-separated list */
3848 putpkt ("qsThreadInfo");
3849 getpkt (&rs->buf, 0);
3850 bufp = rs->buf.data ();
3851 }
3852 return 1;
3853 }
3854 else
3855 {
3856 /* Packet not recognized. */
3857 rs->use_threadinfo_query = 0;
3858 }
3859 }
3860
3861 return 0;
3862 }
3863
3864 /* Return true if INF only has one non-exited thread. */
3865
3866 static bool
3867 has_single_non_exited_thread (inferior *inf)
3868 {
3869 int count = 0;
3870 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3871 if (++count > 1)
3872 break;
3873 return count == 1;
3874 }
3875
3876 /* Implement the to_update_thread_list function for the remote
3877 targets. */
3878
3879 void
3880 remote_target::update_thread_list ()
3881 {
3882 struct threads_listing_context context;
3883 int got_list = 0;
3884
3885 /* We have a few different mechanisms to fetch the thread list. Try
3886 them all, starting with the most preferred one first, falling
3887 back to older methods. */
3888 if (remote_get_threads_with_qxfer (&context)
3889 || remote_get_threads_with_qthreadinfo (&context)
3890 || remote_get_threads_with_ql (&context))
3891 {
3892 got_list = 1;
3893
3894 if (context.items.empty ()
3895 && remote_thread_always_alive (inferior_ptid))
3896 {
3897 /* Some targets don't really support threads, but still
3898 reply an (empty) thread list in response to the thread
3899 listing packets, instead of replying "packet not
3900 supported". Exit early so we don't delete the main
3901 thread. */
3902 return;
3903 }
3904
3905 /* CONTEXT now holds the current thread list on the remote
3906 target end. Delete GDB-side threads no longer found on the
3907 target. */
3908 for (thread_info *tp : all_threads_safe ())
3909 {
3910 if (tp->inf->process_target () != this)
3911 continue;
3912
3913 if (!context.contains_thread (tp->ptid))
3914 {
3915 /* Do not remove the thread if it is the last thread in
3916 the inferior. This situation happens when we have a
3917 pending exit process status to process. Otherwise we
3918 may end up with a seemingly live inferior (i.e. pid
3919 != 0) that has no threads. */
3920 if (has_single_non_exited_thread (tp->inf))
3921 continue;
3922
3923 /* Not found. */
3924 delete_thread (tp);
3925 }
3926 }
3927
3928 /* Remove any unreported fork child threads from CONTEXT so
3929 that we don't interfere with follow fork, which is where
3930 creation of such threads is handled. */
3931 remove_new_fork_children (&context);
3932
3933 /* And now add threads we don't know about yet to our list. */
3934 for (thread_item &item : context.items)
3935 {
3936 if (item.ptid != null_ptid)
3937 {
3938 /* In non-stop mode, we assume new found threads are
3939 executing until proven otherwise with a stop reply.
3940 In all-stop, we can only get here if all threads are
3941 stopped. */
3942 int executing = target_is_non_stop_p () ? 1 : 0;
3943
3944 remote_notice_new_inferior (item.ptid, executing);
3945
3946 thread_info *tp = find_thread_ptid (this, item.ptid);
3947 remote_thread_info *info = get_remote_thread_info (tp);
3948 info->core = item.core;
3949 info->extra = std::move (item.extra);
3950 info->name = std::move (item.name);
3951 info->thread_handle = std::move (item.thread_handle);
3952 }
3953 }
3954 }
3955
3956 if (!got_list)
3957 {
3958 /* If no thread listing method is supported, then query whether
3959 each known thread is alive, one by one, with the T packet.
3960 If the target doesn't support threads at all, then this is a
3961 no-op. See remote_thread_alive. */
3962 prune_threads ();
3963 }
3964 }
3965
3966 /*
3967 * Collect a descriptive string about the given thread.
3968 * The target may say anything it wants to about the thread
3969 * (typically info about its blocked / runnable state, name, etc.).
3970 * This string will appear in the info threads display.
3971 *
3972 * Optional: targets are not required to implement this function.
3973 */
3974
3975 const char *
3976 remote_target::extra_thread_info (thread_info *tp)
3977 {
3978 struct remote_state *rs = get_remote_state ();
3979 int set;
3980 threadref id;
3981 struct gdb_ext_thread_info threadinfo;
3982
3983 if (rs->remote_desc == 0) /* paranoia */
3984 internal_error (__FILE__, __LINE__,
3985 _("remote_threads_extra_info"));
3986
3987 if (tp->ptid == magic_null_ptid
3988 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3989 /* This is the main thread which was added by GDB. The remote
3990 server doesn't know about it. */
3991 return NULL;
3992
3993 std::string &extra = get_remote_thread_info (tp)->extra;
3994
3995 /* If already have cached info, use it. */
3996 if (!extra.empty ())
3997 return extra.c_str ();
3998
3999 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4000 {
4001 /* If we're using qXfer:threads:read, then the extra info is
4002 included in the XML. So if we didn't have anything cached,
4003 it's because there's really no extra info. */
4004 return NULL;
4005 }
4006
4007 if (rs->use_threadextra_query)
4008 {
4009 char *b = rs->buf.data ();
4010 char *endb = b + get_remote_packet_size ();
4011
4012 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4013 b += strlen (b);
4014 write_ptid (b, endb, tp->ptid);
4015
4016 putpkt (rs->buf);
4017 getpkt (&rs->buf, 0);
4018 if (rs->buf[0] != 0)
4019 {
4020 extra.resize (strlen (rs->buf.data ()) / 2);
4021 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4022 return extra.c_str ();
4023 }
4024 }
4025
4026 /* If the above query fails, fall back to the old method. */
4027 rs->use_threadextra_query = 0;
4028 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4029 | TAG_MOREDISPLAY | TAG_DISPLAY;
4030 int_to_threadref (&id, tp->ptid.lwp ());
4031 if (remote_get_threadinfo (&id, set, &threadinfo))
4032 if (threadinfo.active)
4033 {
4034 if (*threadinfo.shortname)
4035 string_appendf (extra, " Name: %s", threadinfo.shortname);
4036 if (*threadinfo.display)
4037 {
4038 if (!extra.empty ())
4039 extra += ',';
4040 string_appendf (extra, " State: %s", threadinfo.display);
4041 }
4042 if (*threadinfo.more_display)
4043 {
4044 if (!extra.empty ())
4045 extra += ',';
4046 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4047 }
4048 return extra.c_str ();
4049 }
4050 return NULL;
4051 }
4052 \f
4053
4054 bool
4055 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4056 struct static_tracepoint_marker *marker)
4057 {
4058 struct remote_state *rs = get_remote_state ();
4059 char *p = rs->buf.data ();
4060
4061 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4062 p += strlen (p);
4063 p += hexnumstr (p, addr);
4064 putpkt (rs->buf);
4065 getpkt (&rs->buf, 0);
4066 p = rs->buf.data ();
4067
4068 if (*p == 'E')
4069 error (_("Remote failure reply: %s"), p);
4070
4071 if (*p++ == 'm')
4072 {
4073 parse_static_tracepoint_marker_definition (p, NULL, marker);
4074 return true;
4075 }
4076
4077 return false;
4078 }
4079
4080 std::vector<static_tracepoint_marker>
4081 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4082 {
4083 struct remote_state *rs = get_remote_state ();
4084 std::vector<static_tracepoint_marker> markers;
4085 const char *p;
4086 static_tracepoint_marker marker;
4087
4088 /* Ask for a first packet of static tracepoint marker
4089 definition. */
4090 putpkt ("qTfSTM");
4091 getpkt (&rs->buf, 0);
4092 p = rs->buf.data ();
4093 if (*p == 'E')
4094 error (_("Remote failure reply: %s"), p);
4095
4096 while (*p++ == 'm')
4097 {
4098 do
4099 {
4100 parse_static_tracepoint_marker_definition (p, &p, &marker);
4101
4102 if (strid == NULL || marker.str_id == strid)
4103 markers.push_back (std::move (marker));
4104 }
4105 while (*p++ == ','); /* comma-separated list */
4106 /* Ask for another packet of static tracepoint definition. */
4107 putpkt ("qTsSTM");
4108 getpkt (&rs->buf, 0);
4109 p = rs->buf.data ();
4110 }
4111
4112 return markers;
4113 }
4114
4115 \f
4116 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4117
4118 ptid_t
4119 remote_target::get_ada_task_ptid (long lwp, long thread)
4120 {
4121 return ptid_t (inferior_ptid.pid (), lwp, 0);
4122 }
4123 \f
4124
4125 /* Restart the remote side; this is an extended protocol operation. */
4126
4127 void
4128 remote_target::extended_remote_restart ()
4129 {
4130 struct remote_state *rs = get_remote_state ();
4131
4132 /* Send the restart command; for reasons I don't understand the
4133 remote side really expects a number after the "R". */
4134 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4135 putpkt (rs->buf);
4136
4137 remote_fileio_reset ();
4138 }
4139 \f
4140 /* Clean up connection to a remote debugger. */
4141
4142 void
4143 remote_target::close ()
4144 {
4145 /* Make sure we leave stdin registered in the event loop. */
4146 terminal_ours ();
4147
4148 trace_reset_local_state ();
4149
4150 delete this;
4151 }
4152
4153 remote_target::~remote_target ()
4154 {
4155 struct remote_state *rs = get_remote_state ();
4156
4157 /* Check for NULL because we may get here with a partially
4158 constructed target/connection. */
4159 if (rs->remote_desc == nullptr)
4160 return;
4161
4162 serial_close (rs->remote_desc);
4163
4164 /* We are destroying the remote target, so we should discard
4165 everything of this target. */
4166 discard_pending_stop_replies_in_queue ();
4167
4168 if (rs->remote_async_inferior_event_token)
4169 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4170
4171 delete rs->notif_state;
4172 }
4173
4174 /* Query the remote side for the text, data and bss offsets. */
4175
4176 void
4177 remote_target::get_offsets ()
4178 {
4179 struct remote_state *rs = get_remote_state ();
4180 char *buf;
4181 char *ptr;
4182 int lose, num_segments = 0, do_sections, do_segments;
4183 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4184
4185 if (current_program_space->symfile_object_file == NULL)
4186 return;
4187
4188 putpkt ("qOffsets");
4189 getpkt (&rs->buf, 0);
4190 buf = rs->buf.data ();
4191
4192 if (buf[0] == '\000')
4193 return; /* Return silently. Stub doesn't support
4194 this command. */
4195 if (buf[0] == 'E')
4196 {
4197 warning (_("Remote failure reply: %s"), buf);
4198 return;
4199 }
4200
4201 /* Pick up each field in turn. This used to be done with scanf, but
4202 scanf will make trouble if CORE_ADDR size doesn't match
4203 conversion directives correctly. The following code will work
4204 with any size of CORE_ADDR. */
4205 text_addr = data_addr = bss_addr = 0;
4206 ptr = buf;
4207 lose = 0;
4208
4209 if (startswith (ptr, "Text="))
4210 {
4211 ptr += 5;
4212 /* Don't use strtol, could lose on big values. */
4213 while (*ptr && *ptr != ';')
4214 text_addr = (text_addr << 4) + fromhex (*ptr++);
4215
4216 if (startswith (ptr, ";Data="))
4217 {
4218 ptr += 6;
4219 while (*ptr && *ptr != ';')
4220 data_addr = (data_addr << 4) + fromhex (*ptr++);
4221 }
4222 else
4223 lose = 1;
4224
4225 if (!lose && startswith (ptr, ";Bss="))
4226 {
4227 ptr += 5;
4228 while (*ptr && *ptr != ';')
4229 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4230
4231 if (bss_addr != data_addr)
4232 warning (_("Target reported unsupported offsets: %s"), buf);
4233 }
4234 else
4235 lose = 1;
4236 }
4237 else if (startswith (ptr, "TextSeg="))
4238 {
4239 ptr += 8;
4240 /* Don't use strtol, could lose on big values. */
4241 while (*ptr && *ptr != ';')
4242 text_addr = (text_addr << 4) + fromhex (*ptr++);
4243 num_segments = 1;
4244
4245 if (startswith (ptr, ";DataSeg="))
4246 {
4247 ptr += 9;
4248 while (*ptr && *ptr != ';')
4249 data_addr = (data_addr << 4) + fromhex (*ptr++);
4250 num_segments++;
4251 }
4252 }
4253 else
4254 lose = 1;
4255
4256 if (lose)
4257 error (_("Malformed response to offset query, %s"), buf);
4258 else if (*ptr != '\0')
4259 warning (_("Target reported unsupported offsets: %s"), buf);
4260
4261 objfile *objf = current_program_space->symfile_object_file;
4262 section_offsets offs = objf->section_offsets;
4263
4264 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4265 do_segments = (data != NULL);
4266 do_sections = num_segments == 0;
4267
4268 if (num_segments > 0)
4269 {
4270 segments[0] = text_addr;
4271 segments[1] = data_addr;
4272 }
4273 /* If we have two segments, we can still try to relocate everything
4274 by assuming that the .text and .data offsets apply to the whole
4275 text and data segments. Convert the offsets given in the packet
4276 to base addresses for symfile_map_offsets_to_segments. */
4277 else if (data != nullptr && data->segments.size () == 2)
4278 {
4279 segments[0] = data->segments[0].base + text_addr;
4280 segments[1] = data->segments[1].base + data_addr;
4281 num_segments = 2;
4282 }
4283 /* If the object file has only one segment, assume that it is text
4284 rather than data; main programs with no writable data are rare,
4285 but programs with no code are useless. Of course the code might
4286 have ended up in the data segment... to detect that we would need
4287 the permissions here. */
4288 else if (data && data->segments.size () == 1)
4289 {
4290 segments[0] = data->segments[0].base + text_addr;
4291 num_segments = 1;
4292 }
4293 /* There's no way to relocate by segment. */
4294 else
4295 do_segments = 0;
4296
4297 if (do_segments)
4298 {
4299 int ret = symfile_map_offsets_to_segments (objf->obfd,
4300 data.get (), offs,
4301 num_segments, segments);
4302
4303 if (ret == 0 && !do_sections)
4304 error (_("Can not handle qOffsets TextSeg "
4305 "response with this symbol file"));
4306
4307 if (ret > 0)
4308 do_sections = 0;
4309 }
4310
4311 if (do_sections)
4312 {
4313 offs[SECT_OFF_TEXT (objf)] = text_addr;
4314
4315 /* This is a temporary kludge to force data and bss to use the
4316 same offsets because that's what nlmconv does now. The real
4317 solution requires changes to the stub and remote.c that I
4318 don't have time to do right now. */
4319
4320 offs[SECT_OFF_DATA (objf)] = data_addr;
4321 offs[SECT_OFF_BSS (objf)] = data_addr;
4322 }
4323
4324 objfile_relocate (objf, offs);
4325 }
4326
4327 /* Send interrupt_sequence to remote target. */
4328
4329 void
4330 remote_target::send_interrupt_sequence ()
4331 {
4332 struct remote_state *rs = get_remote_state ();
4333
4334 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4335 remote_serial_write ("\x03", 1);
4336 else if (interrupt_sequence_mode == interrupt_sequence_break)
4337 serial_send_break (rs->remote_desc);
4338 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4339 {
4340 serial_send_break (rs->remote_desc);
4341 remote_serial_write ("g", 1);
4342 }
4343 else
4344 internal_error (__FILE__, __LINE__,
4345 _("Invalid value for interrupt_sequence_mode: %s."),
4346 interrupt_sequence_mode);
4347 }
4348
4349
4350 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4351 and extract the PTID. Returns NULL_PTID if not found. */
4352
4353 static ptid_t
4354 stop_reply_extract_thread (const char *stop_reply)
4355 {
4356 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4357 {
4358 const char *p;
4359
4360 /* Txx r:val ; r:val (...) */
4361 p = &stop_reply[3];
4362
4363 /* Look for "register" named "thread". */
4364 while (*p != '\0')
4365 {
4366 const char *p1;
4367
4368 p1 = strchr (p, ':');
4369 if (p1 == NULL)
4370 return null_ptid;
4371
4372 if (strncmp (p, "thread", p1 - p) == 0)
4373 return read_ptid (++p1, &p);
4374
4375 p1 = strchr (p, ';');
4376 if (p1 == NULL)
4377 return null_ptid;
4378 p1++;
4379
4380 p = p1;
4381 }
4382 }
4383
4384 return null_ptid;
4385 }
4386
4387 /* Determine the remote side's current thread. If we have a stop
4388 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4389 "thread" register we can extract the current thread from. If not,
4390 ask the remote which is the current thread with qC. The former
4391 method avoids a roundtrip. */
4392
4393 ptid_t
4394 remote_target::get_current_thread (const char *wait_status)
4395 {
4396 ptid_t ptid = null_ptid;
4397
4398 /* Note we don't use remote_parse_stop_reply as that makes use of
4399 the target architecture, which we haven't yet fully determined at
4400 this point. */
4401 if (wait_status != NULL)
4402 ptid = stop_reply_extract_thread (wait_status);
4403 if (ptid == null_ptid)
4404 ptid = remote_current_thread (inferior_ptid);
4405
4406 return ptid;
4407 }
4408
4409 /* Query the remote target for which is the current thread/process,
4410 add it to our tables, and update INFERIOR_PTID. The caller is
4411 responsible for setting the state such that the remote end is ready
4412 to return the current thread.
4413
4414 This function is called after handling the '?' or 'vRun' packets,
4415 whose response is a stop reply from which we can also try
4416 extracting the thread. If the target doesn't support the explicit
4417 qC query, we infer the current thread from that stop reply, passed
4418 in in WAIT_STATUS, which may be NULL. */
4419
4420 void
4421 remote_target::add_current_inferior_and_thread (const char *wait_status)
4422 {
4423 struct remote_state *rs = get_remote_state ();
4424 bool fake_pid_p = false;
4425
4426 switch_to_no_thread ();
4427
4428 /* Now, if we have thread information, update the current thread's
4429 ptid. */
4430 ptid_t curr_ptid = get_current_thread (wait_status);
4431
4432 if (curr_ptid != null_ptid)
4433 {
4434 if (!remote_multi_process_p (rs))
4435 fake_pid_p = true;
4436 }
4437 else
4438 {
4439 /* Without this, some commands which require an active target
4440 (such as kill) won't work. This variable serves (at least)
4441 double duty as both the pid of the target process (if it has
4442 such), and as a flag indicating that a target is active. */
4443 curr_ptid = magic_null_ptid;
4444 fake_pid_p = true;
4445 }
4446
4447 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4448
4449 /* Add the main thread and switch to it. Don't try reading
4450 registers yet, since we haven't fetched the target description
4451 yet. */
4452 thread_info *tp = add_thread_silent (this, curr_ptid);
4453 switch_to_thread_no_regs (tp);
4454 }
4455
4456 /* Print info about a thread that was found already stopped on
4457 connection. */
4458
4459 static void
4460 print_one_stopped_thread (struct thread_info *thread)
4461 {
4462 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4463
4464 switch_to_thread (thread);
4465 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4466 set_current_sal_from_frame (get_current_frame ());
4467
4468 thread->suspend.waitstatus_pending_p = 0;
4469
4470 if (ws->kind == TARGET_WAITKIND_STOPPED)
4471 {
4472 enum gdb_signal sig = ws->value.sig;
4473
4474 if (signal_print_state (sig))
4475 gdb::observers::signal_received.notify (sig);
4476 }
4477 gdb::observers::normal_stop.notify (NULL, 1);
4478 }
4479
4480 /* Process all initial stop replies the remote side sent in response
4481 to the ? packet. These indicate threads that were already stopped
4482 on initial connection. We mark these threads as stopped and print
4483 their current frame before giving the user the prompt. */
4484
4485 void
4486 remote_target::process_initial_stop_replies (int from_tty)
4487 {
4488 int pending_stop_replies = stop_reply_queue_length ();
4489 struct thread_info *selected = NULL;
4490 struct thread_info *lowest_stopped = NULL;
4491 struct thread_info *first = NULL;
4492
4493 /* Consume the initial pending events. */
4494 while (pending_stop_replies-- > 0)
4495 {
4496 ptid_t waiton_ptid = minus_one_ptid;
4497 ptid_t event_ptid;
4498 struct target_waitstatus ws;
4499 int ignore_event = 0;
4500
4501 memset (&ws, 0, sizeof (ws));
4502 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4503 if (remote_debug)
4504 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4505
4506 switch (ws.kind)
4507 {
4508 case TARGET_WAITKIND_IGNORE:
4509 case TARGET_WAITKIND_NO_RESUMED:
4510 case TARGET_WAITKIND_SIGNALLED:
4511 case TARGET_WAITKIND_EXITED:
4512 /* We shouldn't see these, but if we do, just ignore. */
4513 if (remote_debug)
4514 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4515 ignore_event = 1;
4516 break;
4517
4518 case TARGET_WAITKIND_EXECD:
4519 xfree (ws.value.execd_pathname);
4520 break;
4521 default:
4522 break;
4523 }
4524
4525 if (ignore_event)
4526 continue;
4527
4528 thread_info *evthread = find_thread_ptid (this, event_ptid);
4529
4530 if (ws.kind == TARGET_WAITKIND_STOPPED)
4531 {
4532 enum gdb_signal sig = ws.value.sig;
4533
4534 /* Stubs traditionally report SIGTRAP as initial signal,
4535 instead of signal 0. Suppress it. */
4536 if (sig == GDB_SIGNAL_TRAP)
4537 sig = GDB_SIGNAL_0;
4538 evthread->suspend.stop_signal = sig;
4539 ws.value.sig = sig;
4540 }
4541
4542 evthread->suspend.waitstatus = ws;
4543
4544 if (ws.kind != TARGET_WAITKIND_STOPPED
4545 || ws.value.sig != GDB_SIGNAL_0)
4546 evthread->suspend.waitstatus_pending_p = 1;
4547
4548 set_executing (this, event_ptid, false);
4549 set_running (this, event_ptid, false);
4550 get_remote_thread_info (evthread)->set_not_resumed ();
4551 }
4552
4553 /* "Notice" the new inferiors before anything related to
4554 registers/memory. */
4555 for (inferior *inf : all_non_exited_inferiors (this))
4556 {
4557 inf->needs_setup = 1;
4558
4559 if (non_stop)
4560 {
4561 thread_info *thread = any_live_thread_of_inferior (inf);
4562 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4563 from_tty);
4564 }
4565 }
4566
4567 /* If all-stop on top of non-stop, pause all threads. Note this
4568 records the threads' stop pc, so must be done after "noticing"
4569 the inferiors. */
4570 if (!non_stop)
4571 {
4572 stop_all_threads ();
4573
4574 /* If all threads of an inferior were already stopped, we
4575 haven't setup the inferior yet. */
4576 for (inferior *inf : all_non_exited_inferiors (this))
4577 {
4578 if (inf->needs_setup)
4579 {
4580 thread_info *thread = any_live_thread_of_inferior (inf);
4581 switch_to_thread_no_regs (thread);
4582 setup_inferior (0);
4583 }
4584 }
4585 }
4586
4587 /* Now go over all threads that are stopped, and print their current
4588 frame. If all-stop, then if there's a signalled thread, pick
4589 that as current. */
4590 for (thread_info *thread : all_non_exited_threads (this))
4591 {
4592 if (first == NULL)
4593 first = thread;
4594
4595 if (!non_stop)
4596 thread->set_running (false);
4597 else if (thread->state != THREAD_STOPPED)
4598 continue;
4599
4600 if (selected == NULL
4601 && thread->suspend.waitstatus_pending_p)
4602 selected = thread;
4603
4604 if (lowest_stopped == NULL
4605 || thread->inf->num < lowest_stopped->inf->num
4606 || thread->per_inf_num < lowest_stopped->per_inf_num)
4607 lowest_stopped = thread;
4608
4609 if (non_stop)
4610 print_one_stopped_thread (thread);
4611 }
4612
4613 /* In all-stop, we only print the status of one thread, and leave
4614 others with their status pending. */
4615 if (!non_stop)
4616 {
4617 thread_info *thread = selected;
4618 if (thread == NULL)
4619 thread = lowest_stopped;
4620 if (thread == NULL)
4621 thread = first;
4622
4623 print_one_stopped_thread (thread);
4624 }
4625
4626 /* For "info program". */
4627 thread_info *thread = inferior_thread ();
4628 if (thread->state == THREAD_STOPPED)
4629 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4630 }
4631
4632 /* Start the remote connection and sync state. */
4633
4634 void
4635 remote_target::start_remote (int from_tty, int extended_p)
4636 {
4637 struct remote_state *rs = get_remote_state ();
4638 struct packet_config *noack_config;
4639
4640 /* Signal other parts that we're going through the initial setup,
4641 and so things may not be stable yet. E.g., we don't try to
4642 install tracepoints until we've relocated symbols. Also, a
4643 Ctrl-C before we're connected and synced up can't interrupt the
4644 target. Instead, it offers to drop the (potentially wedged)
4645 connection. */
4646 rs->starting_up = 1;
4647
4648 QUIT;
4649
4650 if (interrupt_on_connect)
4651 send_interrupt_sequence ();
4652
4653 /* Ack any packet which the remote side has already sent. */
4654 remote_serial_write ("+", 1);
4655
4656 /* The first packet we send to the target is the optional "supported
4657 packets" request. If the target can answer this, it will tell us
4658 which later probes to skip. */
4659 remote_query_supported ();
4660
4661 /* If the stub wants to get a QAllow, compose one and send it. */
4662 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4663 set_permissions ();
4664
4665 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4666 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4667 as a reply to known packet. For packet "vFile:setfs:" it is an
4668 invalid reply and GDB would return error in
4669 remote_hostio_set_filesystem, making remote files access impossible.
4670 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4671 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4672 {
4673 const char v_mustreplyempty[] = "vMustReplyEmpty";
4674
4675 putpkt (v_mustreplyempty);
4676 getpkt (&rs->buf, 0);
4677 if (strcmp (rs->buf.data (), "OK") == 0)
4678 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4679 else if (strcmp (rs->buf.data (), "") != 0)
4680 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4681 rs->buf.data ());
4682 }
4683
4684 /* Next, we possibly activate noack mode.
4685
4686 If the QStartNoAckMode packet configuration is set to AUTO,
4687 enable noack mode if the stub reported a wish for it with
4688 qSupported.
4689
4690 If set to TRUE, then enable noack mode even if the stub didn't
4691 report it in qSupported. If the stub doesn't reply OK, the
4692 session ends with an error.
4693
4694 If FALSE, then don't activate noack mode, regardless of what the
4695 stub claimed should be the default with qSupported. */
4696
4697 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4698 if (packet_config_support (noack_config) != PACKET_DISABLE)
4699 {
4700 putpkt ("QStartNoAckMode");
4701 getpkt (&rs->buf, 0);
4702 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4703 rs->noack_mode = 1;
4704 }
4705
4706 if (extended_p)
4707 {
4708 /* Tell the remote that we are using the extended protocol. */
4709 putpkt ("!");
4710 getpkt (&rs->buf, 0);
4711 }
4712
4713 /* Let the target know which signals it is allowed to pass down to
4714 the program. */
4715 update_signals_program_target ();
4716
4717 /* Next, if the target can specify a description, read it. We do
4718 this before anything involving memory or registers. */
4719 target_find_description ();
4720
4721 /* Next, now that we know something about the target, update the
4722 address spaces in the program spaces. */
4723 update_address_spaces ();
4724
4725 /* On OSs where the list of libraries is global to all
4726 processes, we fetch them early. */
4727 if (gdbarch_has_global_solist (target_gdbarch ()))
4728 solib_add (NULL, from_tty, auto_solib_add);
4729
4730 if (target_is_non_stop_p ())
4731 {
4732 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4733 error (_("Non-stop mode requested, but remote "
4734 "does not support non-stop"));
4735
4736 putpkt ("QNonStop:1");
4737 getpkt (&rs->buf, 0);
4738
4739 if (strcmp (rs->buf.data (), "OK") != 0)
4740 error (_("Remote refused setting non-stop mode with: %s"),
4741 rs->buf.data ());
4742
4743 /* Find about threads and processes the stub is already
4744 controlling. We default to adding them in the running state.
4745 The '?' query below will then tell us about which threads are
4746 stopped. */
4747 this->update_thread_list ();
4748 }
4749 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4750 {
4751 /* Don't assume that the stub can operate in all-stop mode.
4752 Request it explicitly. */
4753 putpkt ("QNonStop:0");
4754 getpkt (&rs->buf, 0);
4755
4756 if (strcmp (rs->buf.data (), "OK") != 0)
4757 error (_("Remote refused setting all-stop mode with: %s"),
4758 rs->buf.data ());
4759 }
4760
4761 /* Upload TSVs regardless of whether the target is running or not. The
4762 remote stub, such as GDBserver, may have some predefined or builtin
4763 TSVs, even if the target is not running. */
4764 if (get_trace_status (current_trace_status ()) != -1)
4765 {
4766 struct uploaded_tsv *uploaded_tsvs = NULL;
4767
4768 upload_trace_state_variables (&uploaded_tsvs);
4769 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4770 }
4771
4772 /* Check whether the target is running now. */
4773 putpkt ("?");
4774 getpkt (&rs->buf, 0);
4775
4776 if (!target_is_non_stop_p ())
4777 {
4778 char *wait_status = NULL;
4779
4780 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4781 {
4782 if (!extended_p)
4783 error (_("The target is not running (try extended-remote?)"));
4784
4785 /* We're connected, but not running. Drop out before we
4786 call start_remote. */
4787 rs->starting_up = 0;
4788 return;
4789 }
4790 else
4791 {
4792 /* Save the reply for later. */
4793 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4794 strcpy (wait_status, rs->buf.data ());
4795 }
4796
4797 /* Fetch thread list. */
4798 target_update_thread_list ();
4799
4800 /* Let the stub know that we want it to return the thread. */
4801 set_continue_thread (minus_one_ptid);
4802
4803 if (thread_count (this) == 0)
4804 {
4805 /* Target has no concept of threads at all. GDB treats
4806 non-threaded target as single-threaded; add a main
4807 thread. */
4808 add_current_inferior_and_thread (wait_status);
4809 }
4810 else
4811 {
4812 /* We have thread information; select the thread the target
4813 says should be current. If we're reconnecting to a
4814 multi-threaded program, this will ideally be the thread
4815 that last reported an event before GDB disconnected. */
4816 ptid_t curr_thread = get_current_thread (wait_status);
4817 if (curr_thread == null_ptid)
4818 {
4819 /* Odd... The target was able to list threads, but not
4820 tell us which thread was current (no "thread"
4821 register in T stop reply?). Just pick the first
4822 thread in the thread list then. */
4823
4824 if (remote_debug)
4825 fprintf_unfiltered (gdb_stdlog,
4826 "warning: couldn't determine remote "
4827 "current thread; picking first in list.\n");
4828
4829 for (thread_info *tp : all_non_exited_threads (this,
4830 minus_one_ptid))
4831 {
4832 switch_to_thread (tp);
4833 break;
4834 }
4835 }
4836 else
4837 switch_to_thread (find_thread_ptid (this, curr_thread));
4838 }
4839
4840 /* init_wait_for_inferior should be called before get_offsets in order
4841 to manage `inserted' flag in bp loc in a correct state.
4842 breakpoint_init_inferior, called from init_wait_for_inferior, set
4843 `inserted' flag to 0, while before breakpoint_re_set, called from
4844 start_remote, set `inserted' flag to 1. In the initialization of
4845 inferior, breakpoint_init_inferior should be called first, and then
4846 breakpoint_re_set can be called. If this order is broken, state of
4847 `inserted' flag is wrong, and cause some problems on breakpoint
4848 manipulation. */
4849 init_wait_for_inferior ();
4850
4851 get_offsets (); /* Get text, data & bss offsets. */
4852
4853 /* If we could not find a description using qXfer, and we know
4854 how to do it some other way, try again. This is not
4855 supported for non-stop; it could be, but it is tricky if
4856 there are no stopped threads when we connect. */
4857 if (remote_read_description_p (this)
4858 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4859 {
4860 target_clear_description ();
4861 target_find_description ();
4862 }
4863
4864 /* Use the previously fetched status. */
4865 gdb_assert (wait_status != NULL);
4866 strcpy (rs->buf.data (), wait_status);
4867 rs->cached_wait_status = 1;
4868
4869 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4870 }
4871 else
4872 {
4873 /* Clear WFI global state. Do this before finding about new
4874 threads and inferiors, and setting the current inferior.
4875 Otherwise we would clear the proceed status of the current
4876 inferior when we want its stop_soon state to be preserved
4877 (see notice_new_inferior). */
4878 init_wait_for_inferior ();
4879
4880 /* In non-stop, we will either get an "OK", meaning that there
4881 are no stopped threads at this time; or, a regular stop
4882 reply. In the latter case, there may be more than one thread
4883 stopped --- we pull them all out using the vStopped
4884 mechanism. */
4885 if (strcmp (rs->buf.data (), "OK") != 0)
4886 {
4887 struct notif_client *notif = &notif_client_stop;
4888
4889 /* remote_notif_get_pending_replies acks this one, and gets
4890 the rest out. */
4891 rs->notif_state->pending_event[notif_client_stop.id]
4892 = remote_notif_parse (this, notif, rs->buf.data ());
4893 remote_notif_get_pending_events (notif);
4894 }
4895
4896 if (thread_count (this) == 0)
4897 {
4898 if (!extended_p)
4899 error (_("The target is not running (try extended-remote?)"));
4900
4901 /* We're connected, but not running. Drop out before we
4902 call start_remote. */
4903 rs->starting_up = 0;
4904 return;
4905 }
4906
4907 /* Report all signals during attach/startup. */
4908 pass_signals ({});
4909
4910 /* If there are already stopped threads, mark them stopped and
4911 report their stops before giving the prompt to the user. */
4912 process_initial_stop_replies (from_tty);
4913
4914 if (target_can_async_p ())
4915 target_async (1);
4916 }
4917
4918 /* If we connected to a live target, do some additional setup. */
4919 if (target_has_execution ())
4920 {
4921 /* No use without a symbol-file. */
4922 if (current_program_space->symfile_object_file)
4923 remote_check_symbols ();
4924 }
4925
4926 /* Possibly the target has been engaged in a trace run started
4927 previously; find out where things are at. */
4928 if (get_trace_status (current_trace_status ()) != -1)
4929 {
4930 struct uploaded_tp *uploaded_tps = NULL;
4931
4932 if (current_trace_status ()->running)
4933 printf_filtered (_("Trace is already running on the target.\n"));
4934
4935 upload_tracepoints (&uploaded_tps);
4936
4937 merge_uploaded_tracepoints (&uploaded_tps);
4938 }
4939
4940 /* Possibly the target has been engaged in a btrace record started
4941 previously; find out where things are at. */
4942 remote_btrace_maybe_reopen ();
4943
4944 /* The thread and inferior lists are now synchronized with the
4945 target, our symbols have been relocated, and we're merged the
4946 target's tracepoints with ours. We're done with basic start
4947 up. */
4948 rs->starting_up = 0;
4949
4950 /* Maybe breakpoints are global and need to be inserted now. */
4951 if (breakpoints_should_be_inserted_now ())
4952 insert_breakpoints ();
4953 }
4954
4955 const char *
4956 remote_target::connection_string ()
4957 {
4958 remote_state *rs = get_remote_state ();
4959
4960 if (rs->remote_desc->name != NULL)
4961 return rs->remote_desc->name;
4962 else
4963 return NULL;
4964 }
4965
4966 /* Open a connection to a remote debugger.
4967 NAME is the filename used for communication. */
4968
4969 void
4970 remote_target::open (const char *name, int from_tty)
4971 {
4972 open_1 (name, from_tty, 0);
4973 }
4974
4975 /* Open a connection to a remote debugger using the extended
4976 remote gdb protocol. NAME is the filename used for communication. */
4977
4978 void
4979 extended_remote_target::open (const char *name, int from_tty)
4980 {
4981 open_1 (name, from_tty, 1 /*extended_p */);
4982 }
4983
4984 /* Reset all packets back to "unknown support". Called when opening a
4985 new connection to a remote target. */
4986
4987 static void
4988 reset_all_packet_configs_support (void)
4989 {
4990 int i;
4991
4992 for (i = 0; i < PACKET_MAX; i++)
4993 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4994 }
4995
4996 /* Initialize all packet configs. */
4997
4998 static void
4999 init_all_packet_configs (void)
5000 {
5001 int i;
5002
5003 for (i = 0; i < PACKET_MAX; i++)
5004 {
5005 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5006 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5007 }
5008 }
5009
5010 /* Symbol look-up. */
5011
5012 void
5013 remote_target::remote_check_symbols ()
5014 {
5015 char *tmp;
5016 int end;
5017
5018 /* The remote side has no concept of inferiors that aren't running
5019 yet, it only knows about running processes. If we're connected
5020 but our current inferior is not running, we should not invite the
5021 remote target to request symbol lookups related to its
5022 (unrelated) current process. */
5023 if (!target_has_execution ())
5024 return;
5025
5026 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5027 return;
5028
5029 /* Make sure the remote is pointing at the right process. Note
5030 there's no way to select "no process". */
5031 set_general_process ();
5032
5033 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5034 because we need both at the same time. */
5035 gdb::char_vector msg (get_remote_packet_size ());
5036 gdb::char_vector reply (get_remote_packet_size ());
5037
5038 /* Invite target to request symbol lookups. */
5039
5040 putpkt ("qSymbol::");
5041 getpkt (&reply, 0);
5042 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5043
5044 while (startswith (reply.data (), "qSymbol:"))
5045 {
5046 struct bound_minimal_symbol sym;
5047
5048 tmp = &reply[8];
5049 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5050 strlen (tmp) / 2);
5051 msg[end] = '\0';
5052 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5053 if (sym.minsym == NULL)
5054 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5055 &reply[8]);
5056 else
5057 {
5058 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5059 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5060
5061 /* If this is a function address, return the start of code
5062 instead of any data function descriptor. */
5063 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
5064 sym_addr,
5065 current_top_target ());
5066
5067 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5068 phex_nz (sym_addr, addr_size), &reply[8]);
5069 }
5070
5071 putpkt (msg.data ());
5072 getpkt (&reply, 0);
5073 }
5074 }
5075
5076 static struct serial *
5077 remote_serial_open (const char *name)
5078 {
5079 static int udp_warning = 0;
5080
5081 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5082 of in ser-tcp.c, because it is the remote protocol assuming that the
5083 serial connection is reliable and not the serial connection promising
5084 to be. */
5085 if (!udp_warning && startswith (name, "udp:"))
5086 {
5087 warning (_("The remote protocol may be unreliable over UDP.\n"
5088 "Some events may be lost, rendering further debugging "
5089 "impossible."));
5090 udp_warning = 1;
5091 }
5092
5093 return serial_open (name);
5094 }
5095
5096 /* Inform the target of our permission settings. The permission flags
5097 work without this, but if the target knows the settings, it can do
5098 a couple things. First, it can add its own check, to catch cases
5099 that somehow manage to get by the permissions checks in target
5100 methods. Second, if the target is wired to disallow particular
5101 settings (for instance, a system in the field that is not set up to
5102 be able to stop at a breakpoint), it can object to any unavailable
5103 permissions. */
5104
5105 void
5106 remote_target::set_permissions ()
5107 {
5108 struct remote_state *rs = get_remote_state ();
5109
5110 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5111 "WriteReg:%x;WriteMem:%x;"
5112 "InsertBreak:%x;InsertTrace:%x;"
5113 "InsertFastTrace:%x;Stop:%x",
5114 may_write_registers, may_write_memory,
5115 may_insert_breakpoints, may_insert_tracepoints,
5116 may_insert_fast_tracepoints, may_stop);
5117 putpkt (rs->buf);
5118 getpkt (&rs->buf, 0);
5119
5120 /* If the target didn't like the packet, warn the user. Do not try
5121 to undo the user's settings, that would just be maddening. */
5122 if (strcmp (rs->buf.data (), "OK") != 0)
5123 warning (_("Remote refused setting permissions with: %s"),
5124 rs->buf.data ());
5125 }
5126
5127 /* This type describes each known response to the qSupported
5128 packet. */
5129 struct protocol_feature
5130 {
5131 /* The name of this protocol feature. */
5132 const char *name;
5133
5134 /* The default for this protocol feature. */
5135 enum packet_support default_support;
5136
5137 /* The function to call when this feature is reported, or after
5138 qSupported processing if the feature is not supported.
5139 The first argument points to this structure. The second
5140 argument indicates whether the packet requested support be
5141 enabled, disabled, or probed (or the default, if this function
5142 is being called at the end of processing and this feature was
5143 not reported). The third argument may be NULL; if not NULL, it
5144 is a NUL-terminated string taken from the packet following
5145 this feature's name and an equals sign. */
5146 void (*func) (remote_target *remote, const struct protocol_feature *,
5147 enum packet_support, const char *);
5148
5149 /* The corresponding packet for this feature. Only used if
5150 FUNC is remote_supported_packet. */
5151 int packet;
5152 };
5153
5154 static void
5155 remote_supported_packet (remote_target *remote,
5156 const struct protocol_feature *feature,
5157 enum packet_support support,
5158 const char *argument)
5159 {
5160 if (argument)
5161 {
5162 warning (_("Remote qSupported response supplied an unexpected value for"
5163 " \"%s\"."), feature->name);
5164 return;
5165 }
5166
5167 remote_protocol_packets[feature->packet].support = support;
5168 }
5169
5170 void
5171 remote_target::remote_packet_size (const protocol_feature *feature,
5172 enum packet_support support, const char *value)
5173 {
5174 struct remote_state *rs = get_remote_state ();
5175
5176 int packet_size;
5177 char *value_end;
5178
5179 if (support != PACKET_ENABLE)
5180 return;
5181
5182 if (value == NULL || *value == '\0')
5183 {
5184 warning (_("Remote target reported \"%s\" without a size."),
5185 feature->name);
5186 return;
5187 }
5188
5189 errno = 0;
5190 packet_size = strtol (value, &value_end, 16);
5191 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5192 {
5193 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5194 feature->name, value);
5195 return;
5196 }
5197
5198 /* Record the new maximum packet size. */
5199 rs->explicit_packet_size = packet_size;
5200 }
5201
5202 static void
5203 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5204 enum packet_support support, const char *value)
5205 {
5206 remote->remote_packet_size (feature, support, value);
5207 }
5208
5209 static const struct protocol_feature remote_protocol_features[] = {
5210 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5211 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5212 PACKET_qXfer_auxv },
5213 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5214 PACKET_qXfer_exec_file },
5215 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5216 PACKET_qXfer_features },
5217 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5218 PACKET_qXfer_libraries },
5219 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5220 PACKET_qXfer_libraries_svr4 },
5221 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5222 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5223 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5224 PACKET_qXfer_memory_map },
5225 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5226 PACKET_qXfer_osdata },
5227 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5228 PACKET_qXfer_threads },
5229 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5230 PACKET_qXfer_traceframe_info },
5231 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5232 PACKET_QPassSignals },
5233 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5234 PACKET_QCatchSyscalls },
5235 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5236 PACKET_QProgramSignals },
5237 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5238 PACKET_QSetWorkingDir },
5239 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5240 PACKET_QStartupWithShell },
5241 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5242 PACKET_QEnvironmentHexEncoded },
5243 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5244 PACKET_QEnvironmentReset },
5245 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5246 PACKET_QEnvironmentUnset },
5247 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5248 PACKET_QStartNoAckMode },
5249 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5250 PACKET_multiprocess_feature },
5251 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5252 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5253 PACKET_qXfer_siginfo_read },
5254 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5255 PACKET_qXfer_siginfo_write },
5256 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5257 PACKET_ConditionalTracepoints },
5258 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5259 PACKET_ConditionalBreakpoints },
5260 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5261 PACKET_BreakpointCommands },
5262 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5263 PACKET_FastTracepoints },
5264 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5265 PACKET_StaticTracepoints },
5266 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5267 PACKET_InstallInTrace},
5268 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5269 PACKET_DisconnectedTracing_feature },
5270 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5271 PACKET_bc },
5272 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5273 PACKET_bs },
5274 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5275 PACKET_TracepointSource },
5276 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5277 PACKET_QAllow },
5278 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5279 PACKET_EnableDisableTracepoints_feature },
5280 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5281 PACKET_qXfer_fdpic },
5282 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5283 PACKET_qXfer_uib },
5284 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5285 PACKET_QDisableRandomization },
5286 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5287 { "QTBuffer:size", PACKET_DISABLE,
5288 remote_supported_packet, PACKET_QTBuffer_size},
5289 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5290 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5291 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5292 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5293 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5294 PACKET_qXfer_btrace },
5295 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5296 PACKET_qXfer_btrace_conf },
5297 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5298 PACKET_Qbtrace_conf_bts_size },
5299 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5300 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5301 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5302 PACKET_fork_event_feature },
5303 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5304 PACKET_vfork_event_feature },
5305 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5306 PACKET_exec_event_feature },
5307 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5308 PACKET_Qbtrace_conf_pt_size },
5309 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5310 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5311 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5312 };
5313
5314 static char *remote_support_xml;
5315
5316 /* Register string appended to "xmlRegisters=" in qSupported query. */
5317
5318 void
5319 register_remote_support_xml (const char *xml)
5320 {
5321 #if defined(HAVE_LIBEXPAT)
5322 if (remote_support_xml == NULL)
5323 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5324 else
5325 {
5326 char *copy = xstrdup (remote_support_xml + 13);
5327 char *saveptr;
5328 char *p = strtok_r (copy, ",", &saveptr);
5329
5330 do
5331 {
5332 if (strcmp (p, xml) == 0)
5333 {
5334 /* already there */
5335 xfree (copy);
5336 return;
5337 }
5338 }
5339 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5340 xfree (copy);
5341
5342 remote_support_xml = reconcat (remote_support_xml,
5343 remote_support_xml, ",", xml,
5344 (char *) NULL);
5345 }
5346 #endif
5347 }
5348
5349 static void
5350 remote_query_supported_append (std::string *msg, const char *append)
5351 {
5352 if (!msg->empty ())
5353 msg->append (";");
5354 msg->append (append);
5355 }
5356
5357 void
5358 remote_target::remote_query_supported ()
5359 {
5360 struct remote_state *rs = get_remote_state ();
5361 char *next;
5362 int i;
5363 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5364
5365 /* The packet support flags are handled differently for this packet
5366 than for most others. We treat an error, a disabled packet, and
5367 an empty response identically: any features which must be reported
5368 to be used will be automatically disabled. An empty buffer
5369 accomplishes this, since that is also the representation for a list
5370 containing no features. */
5371
5372 rs->buf[0] = 0;
5373 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5374 {
5375 std::string q;
5376
5377 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5378 remote_query_supported_append (&q, "multiprocess+");
5379
5380 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5381 remote_query_supported_append (&q, "swbreak+");
5382 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5383 remote_query_supported_append (&q, "hwbreak+");
5384
5385 remote_query_supported_append (&q, "qRelocInsn+");
5386
5387 if (packet_set_cmd_state (PACKET_fork_event_feature)
5388 != AUTO_BOOLEAN_FALSE)
5389 remote_query_supported_append (&q, "fork-events+");
5390 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5391 != AUTO_BOOLEAN_FALSE)
5392 remote_query_supported_append (&q, "vfork-events+");
5393 if (packet_set_cmd_state (PACKET_exec_event_feature)
5394 != AUTO_BOOLEAN_FALSE)
5395 remote_query_supported_append (&q, "exec-events+");
5396
5397 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5398 remote_query_supported_append (&q, "vContSupported+");
5399
5400 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5401 remote_query_supported_append (&q, "QThreadEvents+");
5402
5403 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5404 remote_query_supported_append (&q, "no-resumed+");
5405
5406 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5407 the qSupported:xmlRegisters=i386 handling. */
5408 if (remote_support_xml != NULL
5409 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5410 remote_query_supported_append (&q, remote_support_xml);
5411
5412 q = "qSupported:" + q;
5413 putpkt (q.c_str ());
5414
5415 getpkt (&rs->buf, 0);
5416
5417 /* If an error occured, warn, but do not return - just reset the
5418 buffer to empty and go on to disable features. */
5419 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5420 == PACKET_ERROR)
5421 {
5422 warning (_("Remote failure reply: %s"), rs->buf.data ());
5423 rs->buf[0] = 0;
5424 }
5425 }
5426
5427 memset (seen, 0, sizeof (seen));
5428
5429 next = rs->buf.data ();
5430 while (*next)
5431 {
5432 enum packet_support is_supported;
5433 char *p, *end, *name_end, *value;
5434
5435 /* First separate out this item from the rest of the packet. If
5436 there's another item after this, we overwrite the separator
5437 (terminated strings are much easier to work with). */
5438 p = next;
5439 end = strchr (p, ';');
5440 if (end == NULL)
5441 {
5442 end = p + strlen (p);
5443 next = end;
5444 }
5445 else
5446 {
5447 *end = '\0';
5448 next = end + 1;
5449
5450 if (end == p)
5451 {
5452 warning (_("empty item in \"qSupported\" response"));
5453 continue;
5454 }
5455 }
5456
5457 name_end = strchr (p, '=');
5458 if (name_end)
5459 {
5460 /* This is a name=value entry. */
5461 is_supported = PACKET_ENABLE;
5462 value = name_end + 1;
5463 *name_end = '\0';
5464 }
5465 else
5466 {
5467 value = NULL;
5468 switch (end[-1])
5469 {
5470 case '+':
5471 is_supported = PACKET_ENABLE;
5472 break;
5473
5474 case '-':
5475 is_supported = PACKET_DISABLE;
5476 break;
5477
5478 case '?':
5479 is_supported = PACKET_SUPPORT_UNKNOWN;
5480 break;
5481
5482 default:
5483 warning (_("unrecognized item \"%s\" "
5484 "in \"qSupported\" response"), p);
5485 continue;
5486 }
5487 end[-1] = '\0';
5488 }
5489
5490 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5491 if (strcmp (remote_protocol_features[i].name, p) == 0)
5492 {
5493 const struct protocol_feature *feature;
5494
5495 seen[i] = 1;
5496 feature = &remote_protocol_features[i];
5497 feature->func (this, feature, is_supported, value);
5498 break;
5499 }
5500 }
5501
5502 /* If we increased the packet size, make sure to increase the global
5503 buffer size also. We delay this until after parsing the entire
5504 qSupported packet, because this is the same buffer we were
5505 parsing. */
5506 if (rs->buf.size () < rs->explicit_packet_size)
5507 rs->buf.resize (rs->explicit_packet_size);
5508
5509 /* Handle the defaults for unmentioned features. */
5510 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5511 if (!seen[i])
5512 {
5513 const struct protocol_feature *feature;
5514
5515 feature = &remote_protocol_features[i];
5516 feature->func (this, feature, feature->default_support, NULL);
5517 }
5518 }
5519
5520 /* Serial QUIT handler for the remote serial descriptor.
5521
5522 Defers handling a Ctrl-C until we're done with the current
5523 command/response packet sequence, unless:
5524
5525 - We're setting up the connection. Don't send a remote interrupt
5526 request, as we're not fully synced yet. Quit immediately
5527 instead.
5528
5529 - The target has been resumed in the foreground
5530 (target_terminal::is_ours is false) with a synchronous resume
5531 packet, and we're blocked waiting for the stop reply, thus a
5532 Ctrl-C should be immediately sent to the target.
5533
5534 - We get a second Ctrl-C while still within the same serial read or
5535 write. In that case the serial is seemingly wedged --- offer to
5536 quit/disconnect.
5537
5538 - We see a second Ctrl-C without target response, after having
5539 previously interrupted the target. In that case the target/stub
5540 is probably wedged --- offer to quit/disconnect.
5541 */
5542
5543 void
5544 remote_target::remote_serial_quit_handler ()
5545 {
5546 struct remote_state *rs = get_remote_state ();
5547
5548 if (check_quit_flag ())
5549 {
5550 /* If we're starting up, we're not fully synced yet. Quit
5551 immediately. */
5552 if (rs->starting_up)
5553 quit ();
5554 else if (rs->got_ctrlc_during_io)
5555 {
5556 if (query (_("The target is not responding to GDB commands.\n"
5557 "Stop debugging it? ")))
5558 remote_unpush_and_throw (this);
5559 }
5560 /* If ^C has already been sent once, offer to disconnect. */
5561 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5562 interrupt_query ();
5563 /* All-stop protocol, and blocked waiting for stop reply. Send
5564 an interrupt request. */
5565 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5566 target_interrupt ();
5567 else
5568 rs->got_ctrlc_during_io = 1;
5569 }
5570 }
5571
5572 /* The remote_target that is current while the quit handler is
5573 overridden with remote_serial_quit_handler. */
5574 static remote_target *curr_quit_handler_target;
5575
5576 static void
5577 remote_serial_quit_handler ()
5578 {
5579 curr_quit_handler_target->remote_serial_quit_handler ();
5580 }
5581
5582 /* Remove the remote target from the target stack of each inferior
5583 that is using it. Upper targets depend on it so remove them
5584 first. */
5585
5586 static void
5587 remote_unpush_target (remote_target *target)
5588 {
5589 /* We have to unpush the target from all inferiors, even those that
5590 aren't running. */
5591 scoped_restore_current_inferior restore_current_inferior;
5592
5593 for (inferior *inf : all_inferiors (target))
5594 {
5595 switch_to_inferior_no_thread (inf);
5596 pop_all_targets_at_and_above (process_stratum);
5597 generic_mourn_inferior ();
5598 }
5599 }
5600
5601 static void
5602 remote_unpush_and_throw (remote_target *target)
5603 {
5604 remote_unpush_target (target);
5605 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5606 }
5607
5608 void
5609 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5610 {
5611 remote_target *curr_remote = get_current_remote_target ();
5612
5613 if (name == 0)
5614 error (_("To open a remote debug connection, you need to specify what\n"
5615 "serial device is attached to the remote system\n"
5616 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5617
5618 /* If we're connected to a running target, target_preopen will kill it.
5619 Ask this question first, before target_preopen has a chance to kill
5620 anything. */
5621 if (curr_remote != NULL && !target_has_execution ())
5622 {
5623 if (from_tty
5624 && !query (_("Already connected to a remote target. Disconnect? ")))
5625 error (_("Still connected."));
5626 }
5627
5628 /* Here the possibly existing remote target gets unpushed. */
5629 target_preopen (from_tty);
5630
5631 remote_fileio_reset ();
5632 reopen_exec_file ();
5633 reread_symbols ();
5634
5635 remote_target *remote
5636 = (extended_p ? new extended_remote_target () : new remote_target ());
5637 target_ops_up target_holder (remote);
5638
5639 remote_state *rs = remote->get_remote_state ();
5640
5641 /* See FIXME above. */
5642 if (!target_async_permitted)
5643 rs->wait_forever_enabled_p = 1;
5644
5645 rs->remote_desc = remote_serial_open (name);
5646 if (!rs->remote_desc)
5647 perror_with_name (name);
5648
5649 if (baud_rate != -1)
5650 {
5651 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5652 {
5653 /* The requested speed could not be set. Error out to
5654 top level after closing remote_desc. Take care to
5655 set remote_desc to NULL to avoid closing remote_desc
5656 more than once. */
5657 serial_close (rs->remote_desc);
5658 rs->remote_desc = NULL;
5659 perror_with_name (name);
5660 }
5661 }
5662
5663 serial_setparity (rs->remote_desc, serial_parity);
5664 serial_raw (rs->remote_desc);
5665
5666 /* If there is something sitting in the buffer we might take it as a
5667 response to a command, which would be bad. */
5668 serial_flush_input (rs->remote_desc);
5669
5670 if (from_tty)
5671 {
5672 puts_filtered ("Remote debugging using ");
5673 puts_filtered (name);
5674 puts_filtered ("\n");
5675 }
5676
5677 /* Switch to using the remote target now. */
5678 push_target (std::move (target_holder));
5679
5680 /* Register extra event sources in the event loop. */
5681 rs->remote_async_inferior_event_token
5682 = create_async_event_handler (remote_async_inferior_event_handler, remote,
5683 "remote");
5684 rs->notif_state = remote_notif_state_allocate (remote);
5685
5686 /* Reset the target state; these things will be queried either by
5687 remote_query_supported or as they are needed. */
5688 reset_all_packet_configs_support ();
5689 rs->cached_wait_status = 0;
5690 rs->explicit_packet_size = 0;
5691 rs->noack_mode = 0;
5692 rs->extended = extended_p;
5693 rs->waiting_for_stop_reply = 0;
5694 rs->ctrlc_pending_p = 0;
5695 rs->got_ctrlc_during_io = 0;
5696
5697 rs->general_thread = not_sent_ptid;
5698 rs->continue_thread = not_sent_ptid;
5699 rs->remote_traceframe_number = -1;
5700
5701 rs->last_resume_exec_dir = EXEC_FORWARD;
5702
5703 /* Probe for ability to use "ThreadInfo" query, as required. */
5704 rs->use_threadinfo_query = 1;
5705 rs->use_threadextra_query = 1;
5706
5707 rs->readahead_cache.invalidate ();
5708
5709 if (target_async_permitted)
5710 {
5711 /* FIXME: cagney/1999-09-23: During the initial connection it is
5712 assumed that the target is already ready and able to respond to
5713 requests. Unfortunately remote_start_remote() eventually calls
5714 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5715 around this. Eventually a mechanism that allows
5716 wait_for_inferior() to expect/get timeouts will be
5717 implemented. */
5718 rs->wait_forever_enabled_p = 0;
5719 }
5720
5721 /* First delete any symbols previously loaded from shared libraries. */
5722 no_shared_libraries (NULL, 0);
5723
5724 /* Start the remote connection. If error() or QUIT, discard this
5725 target (we'd otherwise be in an inconsistent state) and then
5726 propogate the error on up the exception chain. This ensures that
5727 the caller doesn't stumble along blindly assuming that the
5728 function succeeded. The CLI doesn't have this problem but other
5729 UI's, such as MI do.
5730
5731 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5732 this function should return an error indication letting the
5733 caller restore the previous state. Unfortunately the command
5734 ``target remote'' is directly wired to this function making that
5735 impossible. On a positive note, the CLI side of this problem has
5736 been fixed - the function set_cmd_context() makes it possible for
5737 all the ``target ....'' commands to share a common callback
5738 function. See cli-dump.c. */
5739 {
5740
5741 try
5742 {
5743 remote->start_remote (from_tty, extended_p);
5744 }
5745 catch (const gdb_exception &ex)
5746 {
5747 /* Pop the partially set up target - unless something else did
5748 already before throwing the exception. */
5749 if (ex.error != TARGET_CLOSE_ERROR)
5750 remote_unpush_target (remote);
5751 throw;
5752 }
5753 }
5754
5755 remote_btrace_reset (rs);
5756
5757 if (target_async_permitted)
5758 rs->wait_forever_enabled_p = 1;
5759 }
5760
5761 /* Detach the specified process. */
5762
5763 void
5764 remote_target::remote_detach_pid (int pid)
5765 {
5766 struct remote_state *rs = get_remote_state ();
5767
5768 /* This should not be necessary, but the handling for D;PID in
5769 GDBserver versions prior to 8.2 incorrectly assumes that the
5770 selected process points to the same process we're detaching,
5771 leading to misbehavior (and possibly GDBserver crashing) when it
5772 does not. Since it's easy and cheap, work around it by forcing
5773 GDBserver to select GDB's current process. */
5774 set_general_process ();
5775
5776 if (remote_multi_process_p (rs))
5777 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5778 else
5779 strcpy (rs->buf.data (), "D");
5780
5781 putpkt (rs->buf);
5782 getpkt (&rs->buf, 0);
5783
5784 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5785 ;
5786 else if (rs->buf[0] == '\0')
5787 error (_("Remote doesn't know how to detach"));
5788 else
5789 error (_("Can't detach process."));
5790 }
5791
5792 /* This detaches a program to which we previously attached, using
5793 inferior_ptid to identify the process. After this is done, GDB
5794 can be used to debug some other program. We better not have left
5795 any breakpoints in the target program or it'll die when it hits
5796 one. */
5797
5798 void
5799 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5800 {
5801 int pid = inferior_ptid.pid ();
5802 struct remote_state *rs = get_remote_state ();
5803 int is_fork_parent;
5804
5805 if (!target_has_execution ())
5806 error (_("No process to detach from."));
5807
5808 target_announce_detach (from_tty);
5809
5810 /* Tell the remote target to detach. */
5811 remote_detach_pid (pid);
5812
5813 /* Exit only if this is the only active inferior. */
5814 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5815 puts_filtered (_("Ending remote debugging.\n"));
5816
5817 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5818
5819 /* Check to see if we are detaching a fork parent. Note that if we
5820 are detaching a fork child, tp == NULL. */
5821 is_fork_parent = (tp != NULL
5822 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5823
5824 /* If doing detach-on-fork, we don't mourn, because that will delete
5825 breakpoints that should be available for the followed inferior. */
5826 if (!is_fork_parent)
5827 {
5828 /* Save the pid as a string before mourning, since that will
5829 unpush the remote target, and we need the string after. */
5830 std::string infpid = target_pid_to_str (ptid_t (pid));
5831
5832 target_mourn_inferior (inferior_ptid);
5833 if (print_inferior_events)
5834 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5835 inf->num, infpid.c_str ());
5836 }
5837 else
5838 {
5839 switch_to_no_thread ();
5840 detach_inferior (current_inferior ());
5841 }
5842 }
5843
5844 void
5845 remote_target::detach (inferior *inf, int from_tty)
5846 {
5847 remote_detach_1 (inf, from_tty);
5848 }
5849
5850 void
5851 extended_remote_target::detach (inferior *inf, int from_tty)
5852 {
5853 remote_detach_1 (inf, from_tty);
5854 }
5855
5856 /* Target follow-fork function for remote targets. On entry, and
5857 at return, the current inferior is the fork parent.
5858
5859 Note that although this is currently only used for extended-remote,
5860 it is named remote_follow_fork in anticipation of using it for the
5861 remote target as well. */
5862
5863 bool
5864 remote_target::follow_fork (bool follow_child, bool detach_fork)
5865 {
5866 struct remote_state *rs = get_remote_state ();
5867 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5868
5869 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5870 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5871 {
5872 /* When following the parent and detaching the child, we detach
5873 the child here. For the case of following the child and
5874 detaching the parent, the detach is done in the target-
5875 independent follow fork code in infrun.c. We can't use
5876 target_detach when detaching an unfollowed child because
5877 the client side doesn't know anything about the child. */
5878 if (detach_fork && !follow_child)
5879 {
5880 /* Detach the fork child. */
5881 ptid_t child_ptid;
5882 pid_t child_pid;
5883
5884 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5885 child_pid = child_ptid.pid ();
5886
5887 remote_detach_pid (child_pid);
5888 }
5889 }
5890
5891 return false;
5892 }
5893
5894 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5895 in the program space of the new inferior. On entry and at return the
5896 current inferior is the exec'ing inferior. INF is the new exec'd
5897 inferior, which may be the same as the exec'ing inferior unless
5898 follow-exec-mode is "new". */
5899
5900 void
5901 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5902 {
5903 /* We know that this is a target file name, so if it has the "target:"
5904 prefix we strip it off before saving it in the program space. */
5905 if (is_target_filename (execd_pathname))
5906 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5907
5908 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5909 }
5910
5911 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5912
5913 void
5914 remote_target::disconnect (const char *args, int from_tty)
5915 {
5916 if (args)
5917 error (_("Argument given to \"disconnect\" when remotely debugging."));
5918
5919 /* Make sure we unpush even the extended remote targets. Calling
5920 target_mourn_inferior won't unpush, and
5921 remote_target::mourn_inferior won't unpush if there is more than
5922 one inferior left. */
5923 remote_unpush_target (this);
5924
5925 if (from_tty)
5926 puts_filtered ("Ending remote debugging.\n");
5927 }
5928
5929 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5930 be chatty about it. */
5931
5932 void
5933 extended_remote_target::attach (const char *args, int from_tty)
5934 {
5935 struct remote_state *rs = get_remote_state ();
5936 int pid;
5937 char *wait_status = NULL;
5938
5939 pid = parse_pid_to_attach (args);
5940
5941 /* Remote PID can be freely equal to getpid, do not check it here the same
5942 way as in other targets. */
5943
5944 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5945 error (_("This target does not support attaching to a process"));
5946
5947 if (from_tty)
5948 {
5949 const char *exec_file = get_exec_file (0);
5950
5951 if (exec_file)
5952 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5953 target_pid_to_str (ptid_t (pid)).c_str ());
5954 else
5955 printf_unfiltered (_("Attaching to %s\n"),
5956 target_pid_to_str (ptid_t (pid)).c_str ());
5957 }
5958
5959 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5960 putpkt (rs->buf);
5961 getpkt (&rs->buf, 0);
5962
5963 switch (packet_ok (rs->buf,
5964 &remote_protocol_packets[PACKET_vAttach]))
5965 {
5966 case PACKET_OK:
5967 if (!target_is_non_stop_p ())
5968 {
5969 /* Save the reply for later. */
5970 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5971 strcpy (wait_status, rs->buf.data ());
5972 }
5973 else if (strcmp (rs->buf.data (), "OK") != 0)
5974 error (_("Attaching to %s failed with: %s"),
5975 target_pid_to_str (ptid_t (pid)).c_str (),
5976 rs->buf.data ());
5977 break;
5978 case PACKET_UNKNOWN:
5979 error (_("This target does not support attaching to a process"));
5980 default:
5981 error (_("Attaching to %s failed"),
5982 target_pid_to_str (ptid_t (pid)).c_str ());
5983 }
5984
5985 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
5986
5987 inferior_ptid = ptid_t (pid);
5988
5989 if (target_is_non_stop_p ())
5990 {
5991 /* Get list of threads. */
5992 update_thread_list ();
5993
5994 thread_info *thread = first_thread_of_inferior (current_inferior ());
5995 if (thread != nullptr)
5996 switch_to_thread (thread);
5997
5998 /* Invalidate our notion of the remote current thread. */
5999 record_currthread (rs, minus_one_ptid);
6000 }
6001 else
6002 {
6003 /* Now, if we have thread information, update the main thread's
6004 ptid. */
6005 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6006
6007 /* Add the main thread to the thread list. */
6008 thread_info *thr = add_thread_silent (this, curr_ptid);
6009
6010 switch_to_thread (thr);
6011
6012 /* Don't consider the thread stopped until we've processed the
6013 saved stop reply. */
6014 set_executing (this, thr->ptid, true);
6015 }
6016
6017 /* Next, if the target can specify a description, read it. We do
6018 this before anything involving memory or registers. */
6019 target_find_description ();
6020
6021 if (!target_is_non_stop_p ())
6022 {
6023 /* Use the previously fetched status. */
6024 gdb_assert (wait_status != NULL);
6025
6026 if (target_can_async_p ())
6027 {
6028 struct notif_event *reply
6029 = remote_notif_parse (this, &notif_client_stop, wait_status);
6030
6031 push_stop_reply ((struct stop_reply *) reply);
6032
6033 target_async (1);
6034 }
6035 else
6036 {
6037 gdb_assert (wait_status != NULL);
6038 strcpy (rs->buf.data (), wait_status);
6039 rs->cached_wait_status = 1;
6040 }
6041 }
6042 else
6043 gdb_assert (wait_status == NULL);
6044 }
6045
6046 /* Implementation of the to_post_attach method. */
6047
6048 void
6049 extended_remote_target::post_attach (int pid)
6050 {
6051 /* Get text, data & bss offsets. */
6052 get_offsets ();
6053
6054 /* In certain cases GDB might not have had the chance to start
6055 symbol lookup up until now. This could happen if the debugged
6056 binary is not using shared libraries, the vsyscall page is not
6057 present (on Linux) and the binary itself hadn't changed since the
6058 debugging process was started. */
6059 if (current_program_space->symfile_object_file != NULL)
6060 remote_check_symbols();
6061 }
6062
6063 \f
6064 /* Check for the availability of vCont. This function should also check
6065 the response. */
6066
6067 void
6068 remote_target::remote_vcont_probe ()
6069 {
6070 remote_state *rs = get_remote_state ();
6071 char *buf;
6072
6073 strcpy (rs->buf.data (), "vCont?");
6074 putpkt (rs->buf);
6075 getpkt (&rs->buf, 0);
6076 buf = rs->buf.data ();
6077
6078 /* Make sure that the features we assume are supported. */
6079 if (startswith (buf, "vCont"))
6080 {
6081 char *p = &buf[5];
6082 int support_c, support_C;
6083
6084 rs->supports_vCont.s = 0;
6085 rs->supports_vCont.S = 0;
6086 support_c = 0;
6087 support_C = 0;
6088 rs->supports_vCont.t = 0;
6089 rs->supports_vCont.r = 0;
6090 while (p && *p == ';')
6091 {
6092 p++;
6093 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6094 rs->supports_vCont.s = 1;
6095 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6096 rs->supports_vCont.S = 1;
6097 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6098 support_c = 1;
6099 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6100 support_C = 1;
6101 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6102 rs->supports_vCont.t = 1;
6103 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6104 rs->supports_vCont.r = 1;
6105
6106 p = strchr (p, ';');
6107 }
6108
6109 /* If c, and C are not all supported, we can't use vCont. Clearing
6110 BUF will make packet_ok disable the packet. */
6111 if (!support_c || !support_C)
6112 buf[0] = 0;
6113 }
6114
6115 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6116 rs->supports_vCont_probed = true;
6117 }
6118
6119 /* Helper function for building "vCont" resumptions. Write a
6120 resumption to P. ENDP points to one-passed-the-end of the buffer
6121 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6122 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6123 resumed thread should be single-stepped and/or signalled. If PTID
6124 equals minus_one_ptid, then all threads are resumed; if PTID
6125 represents a process, then all threads of the process are resumed;
6126 the thread to be stepped and/or signalled is given in the global
6127 INFERIOR_PTID. */
6128
6129 char *
6130 remote_target::append_resumption (char *p, char *endp,
6131 ptid_t ptid, int step, gdb_signal siggnal)
6132 {
6133 struct remote_state *rs = get_remote_state ();
6134
6135 if (step && siggnal != GDB_SIGNAL_0)
6136 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6137 else if (step
6138 /* GDB is willing to range step. */
6139 && use_range_stepping
6140 /* Target supports range stepping. */
6141 && rs->supports_vCont.r
6142 /* We don't currently support range stepping multiple
6143 threads with a wildcard (though the protocol allows it,
6144 so stubs shouldn't make an active effort to forbid
6145 it). */
6146 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6147 {
6148 struct thread_info *tp;
6149
6150 if (ptid == minus_one_ptid)
6151 {
6152 /* If we don't know about the target thread's tid, then
6153 we're resuming magic_null_ptid (see caller). */
6154 tp = find_thread_ptid (this, magic_null_ptid);
6155 }
6156 else
6157 tp = find_thread_ptid (this, ptid);
6158 gdb_assert (tp != NULL);
6159
6160 if (tp->control.may_range_step)
6161 {
6162 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6163
6164 p += xsnprintf (p, endp - p, ";r%s,%s",
6165 phex_nz (tp->control.step_range_start,
6166 addr_size),
6167 phex_nz (tp->control.step_range_end,
6168 addr_size));
6169 }
6170 else
6171 p += xsnprintf (p, endp - p, ";s");
6172 }
6173 else if (step)
6174 p += xsnprintf (p, endp - p, ";s");
6175 else if (siggnal != GDB_SIGNAL_0)
6176 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6177 else
6178 p += xsnprintf (p, endp - p, ";c");
6179
6180 if (remote_multi_process_p (rs) && ptid.is_pid ())
6181 {
6182 ptid_t nptid;
6183
6184 /* All (-1) threads of process. */
6185 nptid = ptid_t (ptid.pid (), -1, 0);
6186
6187 p += xsnprintf (p, endp - p, ":");
6188 p = write_ptid (p, endp, nptid);
6189 }
6190 else if (ptid != minus_one_ptid)
6191 {
6192 p += xsnprintf (p, endp - p, ":");
6193 p = write_ptid (p, endp, ptid);
6194 }
6195
6196 return p;
6197 }
6198
6199 /* Clear the thread's private info on resume. */
6200
6201 static void
6202 resume_clear_thread_private_info (struct thread_info *thread)
6203 {
6204 if (thread->priv != NULL)
6205 {
6206 remote_thread_info *priv = get_remote_thread_info (thread);
6207
6208 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6209 priv->watch_data_address = 0;
6210 }
6211 }
6212
6213 /* Append a vCont continue-with-signal action for threads that have a
6214 non-zero stop signal. */
6215
6216 char *
6217 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6218 ptid_t ptid)
6219 {
6220 for (thread_info *thread : all_non_exited_threads (this, ptid))
6221 if (inferior_ptid != thread->ptid
6222 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6223 {
6224 p = append_resumption (p, endp, thread->ptid,
6225 0, thread->suspend.stop_signal);
6226 thread->suspend.stop_signal = GDB_SIGNAL_0;
6227 resume_clear_thread_private_info (thread);
6228 }
6229
6230 return p;
6231 }
6232
6233 /* Set the target running, using the packets that use Hc
6234 (c/s/C/S). */
6235
6236 void
6237 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6238 gdb_signal siggnal)
6239 {
6240 struct remote_state *rs = get_remote_state ();
6241 char *buf;
6242
6243 rs->last_sent_signal = siggnal;
6244 rs->last_sent_step = step;
6245
6246 /* The c/s/C/S resume packets use Hc, so set the continue
6247 thread. */
6248 if (ptid == minus_one_ptid)
6249 set_continue_thread (any_thread_ptid);
6250 else
6251 set_continue_thread (ptid);
6252
6253 for (thread_info *thread : all_non_exited_threads (this))
6254 resume_clear_thread_private_info (thread);
6255
6256 buf = rs->buf.data ();
6257 if (::execution_direction == EXEC_REVERSE)
6258 {
6259 /* We don't pass signals to the target in reverse exec mode. */
6260 if (info_verbose && siggnal != GDB_SIGNAL_0)
6261 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6262 siggnal);
6263
6264 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6265 error (_("Remote reverse-step not supported."));
6266 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6267 error (_("Remote reverse-continue not supported."));
6268
6269 strcpy (buf, step ? "bs" : "bc");
6270 }
6271 else if (siggnal != GDB_SIGNAL_0)
6272 {
6273 buf[0] = step ? 'S' : 'C';
6274 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6275 buf[2] = tohex (((int) siggnal) & 0xf);
6276 buf[3] = '\0';
6277 }
6278 else
6279 strcpy (buf, step ? "s" : "c");
6280
6281 putpkt (buf);
6282 }
6283
6284 /* Resume the remote inferior by using a "vCont" packet. The thread
6285 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6286 resumed thread should be single-stepped and/or signalled. If PTID
6287 equals minus_one_ptid, then all threads are resumed; the thread to
6288 be stepped and/or signalled is given in the global INFERIOR_PTID.
6289 This function returns non-zero iff it resumes the inferior.
6290
6291 This function issues a strict subset of all possible vCont commands
6292 at the moment. */
6293
6294 int
6295 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6296 enum gdb_signal siggnal)
6297 {
6298 struct remote_state *rs = get_remote_state ();
6299 char *p;
6300 char *endp;
6301
6302 /* No reverse execution actions defined for vCont. */
6303 if (::execution_direction == EXEC_REVERSE)
6304 return 0;
6305
6306 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6307 remote_vcont_probe ();
6308
6309 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6310 return 0;
6311
6312 p = rs->buf.data ();
6313 endp = p + get_remote_packet_size ();
6314
6315 /* If we could generate a wider range of packets, we'd have to worry
6316 about overflowing BUF. Should there be a generic
6317 "multi-part-packet" packet? */
6318
6319 p += xsnprintf (p, endp - p, "vCont");
6320
6321 if (ptid == magic_null_ptid)
6322 {
6323 /* MAGIC_NULL_PTID means that we don't have any active threads,
6324 so we don't have any TID numbers the inferior will
6325 understand. Make sure to only send forms that do not specify
6326 a TID. */
6327 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6328 }
6329 else if (ptid == minus_one_ptid || ptid.is_pid ())
6330 {
6331 /* Resume all threads (of all processes, or of a single
6332 process), with preference for INFERIOR_PTID. This assumes
6333 inferior_ptid belongs to the set of all threads we are about
6334 to resume. */
6335 if (step || siggnal != GDB_SIGNAL_0)
6336 {
6337 /* Step inferior_ptid, with or without signal. */
6338 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6339 }
6340
6341 /* Also pass down any pending signaled resumption for other
6342 threads not the current. */
6343 p = append_pending_thread_resumptions (p, endp, ptid);
6344
6345 /* And continue others without a signal. */
6346 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6347 }
6348 else
6349 {
6350 /* Scheduler locking; resume only PTID. */
6351 append_resumption (p, endp, ptid, step, siggnal);
6352 }
6353
6354 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6355 putpkt (rs->buf);
6356
6357 if (target_is_non_stop_p ())
6358 {
6359 /* In non-stop, the stub replies to vCont with "OK". The stop
6360 reply will be reported asynchronously by means of a `%Stop'
6361 notification. */
6362 getpkt (&rs->buf, 0);
6363 if (strcmp (rs->buf.data (), "OK") != 0)
6364 error (_("Unexpected vCont reply in non-stop mode: %s"),
6365 rs->buf.data ());
6366 }
6367
6368 return 1;
6369 }
6370
6371 /* Tell the remote machine to resume. */
6372
6373 void
6374 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6375 {
6376 struct remote_state *rs = get_remote_state ();
6377
6378 /* When connected in non-stop mode, the core resumes threads
6379 individually. Resuming remote threads directly in target_resume
6380 would thus result in sending one packet per thread. Instead, to
6381 minimize roundtrip latency, here we just store the resume
6382 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6383 resumption will be done in remote_target::commit_resume, where we'll be
6384 able to do vCont action coalescing. */
6385 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6386 {
6387 remote_thread_info *remote_thr;
6388
6389 if (minus_one_ptid == ptid || ptid.is_pid ())
6390 remote_thr = get_remote_thread_info (this, inferior_ptid);
6391 else
6392 remote_thr = get_remote_thread_info (this, ptid);
6393
6394 /* We don't expect the core to ask to resume an already resumed (from
6395 its point of view) thread. */
6396 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6397
6398 remote_thr->set_resumed_pending_vcont (step, siggnal);
6399 return;
6400 }
6401
6402 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6403 (explained in remote-notif.c:handle_notification) so
6404 remote_notif_process is not called. We need find a place where
6405 it is safe to start a 'vNotif' sequence. It is good to do it
6406 before resuming inferior, because inferior was stopped and no RSP
6407 traffic at that moment. */
6408 if (!target_is_non_stop_p ())
6409 remote_notif_process (rs->notif_state, &notif_client_stop);
6410
6411 rs->last_resume_exec_dir = ::execution_direction;
6412
6413 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6414 if (!remote_resume_with_vcont (ptid, step, siggnal))
6415 remote_resume_with_hc (ptid, step, siggnal);
6416
6417 /* Update resumed state tracked by the remote target. */
6418 for (thread_info *tp : all_non_exited_threads (this, ptid))
6419 get_remote_thread_info (tp)->set_resumed ();
6420
6421 /* We are about to start executing the inferior, let's register it
6422 with the event loop. NOTE: this is the one place where all the
6423 execution commands end up. We could alternatively do this in each
6424 of the execution commands in infcmd.c. */
6425 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6426 into infcmd.c in order to allow inferior function calls to work
6427 NOT asynchronously. */
6428 if (target_can_async_p ())
6429 target_async (1);
6430
6431 /* We've just told the target to resume. The remote server will
6432 wait for the inferior to stop, and then send a stop reply. In
6433 the mean time, we can't start another command/query ourselves
6434 because the stub wouldn't be ready to process it. This applies
6435 only to the base all-stop protocol, however. In non-stop (which
6436 only supports vCont), the stub replies with an "OK", and is
6437 immediate able to process further serial input. */
6438 if (!target_is_non_stop_p ())
6439 rs->waiting_for_stop_reply = 1;
6440 }
6441
6442 static int is_pending_fork_parent_thread (struct thread_info *thread);
6443
6444 /* Private per-inferior info for target remote processes. */
6445
6446 struct remote_inferior : public private_inferior
6447 {
6448 /* Whether we can send a wildcard vCont for this process. */
6449 bool may_wildcard_vcont = true;
6450 };
6451
6452 /* Get the remote private inferior data associated to INF. */
6453
6454 static remote_inferior *
6455 get_remote_inferior (inferior *inf)
6456 {
6457 if (inf->priv == NULL)
6458 inf->priv.reset (new remote_inferior);
6459
6460 return static_cast<remote_inferior *> (inf->priv.get ());
6461 }
6462
6463 /* Class used to track the construction of a vCont packet in the
6464 outgoing packet buffer. This is used to send multiple vCont
6465 packets if we have more actions than would fit a single packet. */
6466
6467 class vcont_builder
6468 {
6469 public:
6470 explicit vcont_builder (remote_target *remote)
6471 : m_remote (remote)
6472 {
6473 restart ();
6474 }
6475
6476 void flush ();
6477 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6478
6479 private:
6480 void restart ();
6481
6482 /* The remote target. */
6483 remote_target *m_remote;
6484
6485 /* Pointer to the first action. P points here if no action has been
6486 appended yet. */
6487 char *m_first_action;
6488
6489 /* Where the next action will be appended. */
6490 char *m_p;
6491
6492 /* The end of the buffer. Must never write past this. */
6493 char *m_endp;
6494 };
6495
6496 /* Prepare the outgoing buffer for a new vCont packet. */
6497
6498 void
6499 vcont_builder::restart ()
6500 {
6501 struct remote_state *rs = m_remote->get_remote_state ();
6502
6503 m_p = rs->buf.data ();
6504 m_endp = m_p + m_remote->get_remote_packet_size ();
6505 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6506 m_first_action = m_p;
6507 }
6508
6509 /* If the vCont packet being built has any action, send it to the
6510 remote end. */
6511
6512 void
6513 vcont_builder::flush ()
6514 {
6515 struct remote_state *rs;
6516
6517 if (m_p == m_first_action)
6518 return;
6519
6520 rs = m_remote->get_remote_state ();
6521 m_remote->putpkt (rs->buf);
6522 m_remote->getpkt (&rs->buf, 0);
6523 if (strcmp (rs->buf.data (), "OK") != 0)
6524 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6525 }
6526
6527 /* The largest action is range-stepping, with its two addresses. This
6528 is more than sufficient. If a new, bigger action is created, it'll
6529 quickly trigger a failed assertion in append_resumption (and we'll
6530 just bump this). */
6531 #define MAX_ACTION_SIZE 200
6532
6533 /* Append a new vCont action in the outgoing packet being built. If
6534 the action doesn't fit the packet along with previous actions, push
6535 what we've got so far to the remote end and start over a new vCont
6536 packet (with the new action). */
6537
6538 void
6539 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6540 {
6541 char buf[MAX_ACTION_SIZE + 1];
6542
6543 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6544 ptid, step, siggnal);
6545
6546 /* Check whether this new action would fit in the vCont packet along
6547 with previous actions. If not, send what we've got so far and
6548 start a new vCont packet. */
6549 size_t rsize = endp - buf;
6550 if (rsize > m_endp - m_p)
6551 {
6552 flush ();
6553 restart ();
6554
6555 /* Should now fit. */
6556 gdb_assert (rsize <= m_endp - m_p);
6557 }
6558
6559 memcpy (m_p, buf, rsize);
6560 m_p += rsize;
6561 *m_p = '\0';
6562 }
6563
6564 /* to_commit_resume implementation. */
6565
6566 void
6567 remote_target::commit_resume ()
6568 {
6569 int any_process_wildcard;
6570 int may_global_wildcard_vcont;
6571
6572 /* If connected in all-stop mode, we'd send the remote resume
6573 request directly from remote_resume. Likewise if
6574 reverse-debugging, as there are no defined vCont actions for
6575 reverse execution. */
6576 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6577 return;
6578
6579 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6580 instead of resuming all threads of each process individually.
6581 However, if any thread of a process must remain halted, we can't
6582 send wildcard resumes and must send one action per thread.
6583
6584 Care must be taken to not resume threads/processes the server
6585 side already told us are stopped, but the core doesn't know about
6586 yet, because the events are still in the vStopped notification
6587 queue. For example:
6588
6589 #1 => vCont s:p1.1;c
6590 #2 <= OK
6591 #3 <= %Stopped T05 p1.1
6592 #4 => vStopped
6593 #5 <= T05 p1.2
6594 #6 => vStopped
6595 #7 <= OK
6596 #8 (infrun handles the stop for p1.1 and continues stepping)
6597 #9 => vCont s:p1.1;c
6598
6599 The last vCont above would resume thread p1.2 by mistake, because
6600 the server has no idea that the event for p1.2 had not been
6601 handled yet.
6602
6603 The server side must similarly ignore resume actions for the
6604 thread that has a pending %Stopped notification (and any other
6605 threads with events pending), until GDB acks the notification
6606 with vStopped. Otherwise, e.g., the following case is
6607 mishandled:
6608
6609 #1 => g (or any other packet)
6610 #2 <= [registers]
6611 #3 <= %Stopped T05 p1.2
6612 #4 => vCont s:p1.1;c
6613 #5 <= OK
6614
6615 Above, the server must not resume thread p1.2. GDB can't know
6616 that p1.2 stopped until it acks the %Stopped notification, and
6617 since from GDB's perspective all threads should be running, it
6618 sends a "c" action.
6619
6620 Finally, special care must also be given to handling fork/vfork
6621 events. A (v)fork event actually tells us that two processes
6622 stopped -- the parent and the child. Until we follow the fork,
6623 we must not resume the child. Therefore, if we have a pending
6624 fork follow, we must not send a global wildcard resume action
6625 (vCont;c). We can still send process-wide wildcards though. */
6626
6627 /* Start by assuming a global wildcard (vCont;c) is possible. */
6628 may_global_wildcard_vcont = 1;
6629
6630 /* And assume every process is individually wildcard-able too. */
6631 for (inferior *inf : all_non_exited_inferiors (this))
6632 {
6633 remote_inferior *priv = get_remote_inferior (inf);
6634
6635 priv->may_wildcard_vcont = true;
6636 }
6637
6638 /* Check for any pending events (not reported or processed yet) and
6639 disable process and global wildcard resumes appropriately. */
6640 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6641
6642 for (thread_info *tp : all_non_exited_threads (this))
6643 {
6644 remote_thread_info *priv = get_remote_thread_info (tp);
6645
6646 /* If a thread of a process is not meant to be resumed, then we
6647 can't wildcard that process. */
6648 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6649 {
6650 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6651
6652 /* And if we can't wildcard a process, we can't wildcard
6653 everything either. */
6654 may_global_wildcard_vcont = 0;
6655 continue;
6656 }
6657
6658 /* If a thread is the parent of an unfollowed fork, then we
6659 can't do a global wildcard, as that would resume the fork
6660 child. */
6661 if (is_pending_fork_parent_thread (tp))
6662 may_global_wildcard_vcont = 0;
6663 }
6664
6665 /* Now let's build the vCont packet(s). Actions must be appended
6666 from narrower to wider scopes (thread -> process -> global). If
6667 we end up with too many actions for a single packet vcont_builder
6668 flushes the current vCont packet to the remote side and starts a
6669 new one. */
6670 struct vcont_builder vcont_builder (this);
6671
6672 /* Threads first. */
6673 for (thread_info *tp : all_non_exited_threads (this))
6674 {
6675 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6676
6677 /* If the thread was previously vCont-resumed, no need to send a specific
6678 action for it. If we didn't receive a resume request for it, don't
6679 send an action for it either. */
6680 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6681 continue;
6682
6683 gdb_assert (!thread_is_in_step_over_chain (tp));
6684
6685 const resumed_pending_vcont_info &info
6686 = remote_thr->resumed_pending_vcont_info ();
6687
6688 /* Check if we need to send a specific action for this thread. If not,
6689 it will be included in a wildcard resume instead. */
6690 if (info.step || info.sig != GDB_SIGNAL_0
6691 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6692 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6693
6694 remote_thr->set_resumed ();
6695 }
6696
6697 /* Now check whether we can send any process-wide wildcard. This is
6698 to avoid sending a global wildcard in the case nothing is
6699 supposed to be resumed. */
6700 any_process_wildcard = 0;
6701
6702 for (inferior *inf : all_non_exited_inferiors (this))
6703 {
6704 if (get_remote_inferior (inf)->may_wildcard_vcont)
6705 {
6706 any_process_wildcard = 1;
6707 break;
6708 }
6709 }
6710
6711 if (any_process_wildcard)
6712 {
6713 /* If all processes are wildcard-able, then send a single "c"
6714 action, otherwise, send an "all (-1) threads of process"
6715 continue action for each running process, if any. */
6716 if (may_global_wildcard_vcont)
6717 {
6718 vcont_builder.push_action (minus_one_ptid,
6719 false, GDB_SIGNAL_0);
6720 }
6721 else
6722 {
6723 for (inferior *inf : all_non_exited_inferiors (this))
6724 {
6725 if (get_remote_inferior (inf)->may_wildcard_vcont)
6726 {
6727 vcont_builder.push_action (ptid_t (inf->pid),
6728 false, GDB_SIGNAL_0);
6729 }
6730 }
6731 }
6732 }
6733
6734 vcont_builder.flush ();
6735 }
6736
6737 \f
6738
6739 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6740 thread, all threads of a remote process, or all threads of all
6741 processes. */
6742
6743 void
6744 remote_target::remote_stop_ns (ptid_t ptid)
6745 {
6746 struct remote_state *rs = get_remote_state ();
6747 char *p = rs->buf.data ();
6748 char *endp = p + get_remote_packet_size ();
6749
6750 /* FIXME: This supports_vCont_probed check is a workaround until
6751 packet_support is per-connection. */
6752 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6753 || !rs->supports_vCont_probed)
6754 remote_vcont_probe ();
6755
6756 if (!rs->supports_vCont.t)
6757 error (_("Remote server does not support stopping threads"));
6758
6759 if (ptid == minus_one_ptid
6760 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6761 p += xsnprintf (p, endp - p, "vCont;t");
6762 else
6763 {
6764 ptid_t nptid;
6765
6766 p += xsnprintf (p, endp - p, "vCont;t:");
6767
6768 if (ptid.is_pid ())
6769 /* All (-1) threads of process. */
6770 nptid = ptid_t (ptid.pid (), -1, 0);
6771 else
6772 {
6773 /* Small optimization: if we already have a stop reply for
6774 this thread, no use in telling the stub we want this
6775 stopped. */
6776 if (peek_stop_reply (ptid))
6777 return;
6778
6779 nptid = ptid;
6780 }
6781
6782 write_ptid (p, endp, nptid);
6783 }
6784
6785 /* In non-stop, we get an immediate OK reply. The stop reply will
6786 come in asynchronously by notification. */
6787 putpkt (rs->buf);
6788 getpkt (&rs->buf, 0);
6789 if (strcmp (rs->buf.data (), "OK") != 0)
6790 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6791 rs->buf.data ());
6792 }
6793
6794 /* All-stop version of target_interrupt. Sends a break or a ^C to
6795 interrupt the remote target. It is undefined which thread of which
6796 process reports the interrupt. */
6797
6798 void
6799 remote_target::remote_interrupt_as ()
6800 {
6801 struct remote_state *rs = get_remote_state ();
6802
6803 rs->ctrlc_pending_p = 1;
6804
6805 /* If the inferior is stopped already, but the core didn't know
6806 about it yet, just ignore the request. The cached wait status
6807 will be collected in remote_wait. */
6808 if (rs->cached_wait_status)
6809 return;
6810
6811 /* Send interrupt_sequence to remote target. */
6812 send_interrupt_sequence ();
6813 }
6814
6815 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6816 the remote target. It is undefined which thread of which process
6817 reports the interrupt. Throws an error if the packet is not
6818 supported by the server. */
6819
6820 void
6821 remote_target::remote_interrupt_ns ()
6822 {
6823 struct remote_state *rs = get_remote_state ();
6824 char *p = rs->buf.data ();
6825 char *endp = p + get_remote_packet_size ();
6826
6827 xsnprintf (p, endp - p, "vCtrlC");
6828
6829 /* In non-stop, we get an immediate OK reply. The stop reply will
6830 come in asynchronously by notification. */
6831 putpkt (rs->buf);
6832 getpkt (&rs->buf, 0);
6833
6834 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6835 {
6836 case PACKET_OK:
6837 break;
6838 case PACKET_UNKNOWN:
6839 error (_("No support for interrupting the remote target."));
6840 case PACKET_ERROR:
6841 error (_("Interrupting target failed: %s"), rs->buf.data ());
6842 }
6843 }
6844
6845 /* Implement the to_stop function for the remote targets. */
6846
6847 void
6848 remote_target::stop (ptid_t ptid)
6849 {
6850 if (remote_debug)
6851 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6852
6853 if (target_is_non_stop_p ())
6854 remote_stop_ns (ptid);
6855 else
6856 {
6857 /* We don't currently have a way to transparently pause the
6858 remote target in all-stop mode. Interrupt it instead. */
6859 remote_interrupt_as ();
6860 }
6861 }
6862
6863 /* Implement the to_interrupt function for the remote targets. */
6864
6865 void
6866 remote_target::interrupt ()
6867 {
6868 if (remote_debug)
6869 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6870
6871 if (target_is_non_stop_p ())
6872 remote_interrupt_ns ();
6873 else
6874 remote_interrupt_as ();
6875 }
6876
6877 /* Implement the to_pass_ctrlc function for the remote targets. */
6878
6879 void
6880 remote_target::pass_ctrlc ()
6881 {
6882 struct remote_state *rs = get_remote_state ();
6883
6884 if (remote_debug)
6885 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6886
6887 /* If we're starting up, we're not fully synced yet. Quit
6888 immediately. */
6889 if (rs->starting_up)
6890 quit ();
6891 /* If ^C has already been sent once, offer to disconnect. */
6892 else if (rs->ctrlc_pending_p)
6893 interrupt_query ();
6894 else
6895 target_interrupt ();
6896 }
6897
6898 /* Ask the user what to do when an interrupt is received. */
6899
6900 void
6901 remote_target::interrupt_query ()
6902 {
6903 struct remote_state *rs = get_remote_state ();
6904
6905 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6906 {
6907 if (query (_("The target is not responding to interrupt requests.\n"
6908 "Stop debugging it? ")))
6909 {
6910 remote_unpush_target (this);
6911 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6912 }
6913 }
6914 else
6915 {
6916 if (query (_("Interrupted while waiting for the program.\n"
6917 "Give up waiting? ")))
6918 quit ();
6919 }
6920 }
6921
6922 /* Enable/disable target terminal ownership. Most targets can use
6923 terminal groups to control terminal ownership. Remote targets are
6924 different in that explicit transfer of ownership to/from GDB/target
6925 is required. */
6926
6927 void
6928 remote_target::terminal_inferior ()
6929 {
6930 /* NOTE: At this point we could also register our selves as the
6931 recipient of all input. Any characters typed could then be
6932 passed on down to the target. */
6933 }
6934
6935 void
6936 remote_target::terminal_ours ()
6937 {
6938 }
6939
6940 static void
6941 remote_console_output (const char *msg)
6942 {
6943 const char *p;
6944
6945 for (p = msg; p[0] && p[1]; p += 2)
6946 {
6947 char tb[2];
6948 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6949
6950 tb[0] = c;
6951 tb[1] = 0;
6952 gdb_stdtarg->puts (tb);
6953 }
6954 gdb_stdtarg->flush ();
6955 }
6956
6957 struct stop_reply : public notif_event
6958 {
6959 ~stop_reply ();
6960
6961 /* The identifier of the thread about this event */
6962 ptid_t ptid;
6963
6964 /* The remote state this event is associated with. When the remote
6965 connection, represented by a remote_state object, is closed,
6966 all the associated stop_reply events should be released. */
6967 struct remote_state *rs;
6968
6969 struct target_waitstatus ws;
6970
6971 /* The architecture associated with the expedited registers. */
6972 gdbarch *arch;
6973
6974 /* Expedited registers. This makes remote debugging a bit more
6975 efficient for those targets that provide critical registers as
6976 part of their normal status mechanism (as another roundtrip to
6977 fetch them is avoided). */
6978 std::vector<cached_reg_t> regcache;
6979
6980 enum target_stop_reason stop_reason;
6981
6982 CORE_ADDR watch_data_address;
6983
6984 int core;
6985 };
6986
6987 /* Return the length of the stop reply queue. */
6988
6989 int
6990 remote_target::stop_reply_queue_length ()
6991 {
6992 remote_state *rs = get_remote_state ();
6993 return rs->stop_reply_queue.size ();
6994 }
6995
6996 static void
6997 remote_notif_stop_parse (remote_target *remote,
6998 struct notif_client *self, const char *buf,
6999 struct notif_event *event)
7000 {
7001 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7002 }
7003
7004 static void
7005 remote_notif_stop_ack (remote_target *remote,
7006 struct notif_client *self, const char *buf,
7007 struct notif_event *event)
7008 {
7009 struct stop_reply *stop_reply = (struct stop_reply *) event;
7010
7011 /* acknowledge */
7012 putpkt (remote, self->ack_command);
7013
7014 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
7015 {
7016 /* We got an unknown stop reply. */
7017 error (_("Unknown stop reply"));
7018 }
7019
7020 remote->push_stop_reply (stop_reply);
7021 }
7022
7023 static int
7024 remote_notif_stop_can_get_pending_events (remote_target *remote,
7025 struct notif_client *self)
7026 {
7027 /* We can't get pending events in remote_notif_process for
7028 notification stop, and we have to do this in remote_wait_ns
7029 instead. If we fetch all queued events from stub, remote stub
7030 may exit and we have no chance to process them back in
7031 remote_wait_ns. */
7032 remote_state *rs = remote->get_remote_state ();
7033 mark_async_event_handler (rs->remote_async_inferior_event_token);
7034 return 0;
7035 }
7036
7037 stop_reply::~stop_reply ()
7038 {
7039 for (cached_reg_t &reg : regcache)
7040 xfree (reg.data);
7041 }
7042
7043 static notif_event_up
7044 remote_notif_stop_alloc_reply ()
7045 {
7046 return notif_event_up (new struct stop_reply ());
7047 }
7048
7049 /* A client of notification Stop. */
7050
7051 struct notif_client notif_client_stop =
7052 {
7053 "Stop",
7054 "vStopped",
7055 remote_notif_stop_parse,
7056 remote_notif_stop_ack,
7057 remote_notif_stop_can_get_pending_events,
7058 remote_notif_stop_alloc_reply,
7059 REMOTE_NOTIF_STOP,
7060 };
7061
7062 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7063 the pid of the process that owns the threads we want to check, or
7064 -1 if we want to check all threads. */
7065
7066 static int
7067 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
7068 ptid_t thread_ptid)
7069 {
7070 if (ws->kind == TARGET_WAITKIND_FORKED
7071 || ws->kind == TARGET_WAITKIND_VFORKED)
7072 {
7073 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7074 return 1;
7075 }
7076
7077 return 0;
7078 }
7079
7080 /* Return the thread's pending status used to determine whether the
7081 thread is a fork parent stopped at a fork event. */
7082
7083 static struct target_waitstatus *
7084 thread_pending_fork_status (struct thread_info *thread)
7085 {
7086 if (thread->suspend.waitstatus_pending_p)
7087 return &thread->suspend.waitstatus;
7088 else
7089 return &thread->pending_follow;
7090 }
7091
7092 /* Determine if THREAD is a pending fork parent thread. */
7093
7094 static int
7095 is_pending_fork_parent_thread (struct thread_info *thread)
7096 {
7097 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7098 int pid = -1;
7099
7100 return is_pending_fork_parent (ws, pid, thread->ptid);
7101 }
7102
7103 /* If CONTEXT contains any fork child threads that have not been
7104 reported yet, remove them from the CONTEXT list. If such a
7105 thread exists it is because we are stopped at a fork catchpoint
7106 and have not yet called follow_fork, which will set up the
7107 host-side data structures for the new process. */
7108
7109 void
7110 remote_target::remove_new_fork_children (threads_listing_context *context)
7111 {
7112 int pid = -1;
7113 struct notif_client *notif = &notif_client_stop;
7114
7115 /* For any threads stopped at a fork event, remove the corresponding
7116 fork child threads from the CONTEXT list. */
7117 for (thread_info *thread : all_non_exited_threads (this))
7118 {
7119 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7120
7121 if (is_pending_fork_parent (ws, pid, thread->ptid))
7122 context->remove_thread (ws->value.related_pid);
7123 }
7124
7125 /* Check for any pending fork events (not reported or processed yet)
7126 in process PID and remove those fork child threads from the
7127 CONTEXT list as well. */
7128 remote_notif_get_pending_events (notif);
7129 for (auto &event : get_remote_state ()->stop_reply_queue)
7130 if (event->ws.kind == TARGET_WAITKIND_FORKED
7131 || event->ws.kind == TARGET_WAITKIND_VFORKED
7132 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7133 context->remove_thread (event->ws.value.related_pid);
7134 }
7135
7136 /* Check whether any event pending in the vStopped queue would prevent
7137 a global or process wildcard vCont action. Clear
7138 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7139 and clear the event inferior's may_wildcard_vcont flag if we can't
7140 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7141
7142 void
7143 remote_target::check_pending_events_prevent_wildcard_vcont
7144 (int *may_global_wildcard)
7145 {
7146 struct notif_client *notif = &notif_client_stop;
7147
7148 remote_notif_get_pending_events (notif);
7149 for (auto &event : get_remote_state ()->stop_reply_queue)
7150 {
7151 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7152 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7153 continue;
7154
7155 if (event->ws.kind == TARGET_WAITKIND_FORKED
7156 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7157 *may_global_wildcard = 0;
7158
7159 struct inferior *inf = find_inferior_ptid (this, event->ptid);
7160
7161 /* This may be the first time we heard about this process.
7162 Regardless, we must not do a global wildcard resume, otherwise
7163 we'd resume this process too. */
7164 *may_global_wildcard = 0;
7165 if (inf != NULL)
7166 get_remote_inferior (inf)->may_wildcard_vcont = false;
7167 }
7168 }
7169
7170 /* Discard all pending stop replies of inferior INF. */
7171
7172 void
7173 remote_target::discard_pending_stop_replies (struct inferior *inf)
7174 {
7175 struct stop_reply *reply;
7176 struct remote_state *rs = get_remote_state ();
7177 struct remote_notif_state *rns = rs->notif_state;
7178
7179 /* This function can be notified when an inferior exists. When the
7180 target is not remote, the notification state is NULL. */
7181 if (rs->remote_desc == NULL)
7182 return;
7183
7184 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7185
7186 /* Discard the in-flight notification. */
7187 if (reply != NULL && reply->ptid.pid () == inf->pid)
7188 {
7189 delete reply;
7190 rns->pending_event[notif_client_stop.id] = NULL;
7191 }
7192
7193 /* Discard the stop replies we have already pulled with
7194 vStopped. */
7195 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7196 rs->stop_reply_queue.end (),
7197 [=] (const stop_reply_up &event)
7198 {
7199 return event->ptid.pid () == inf->pid;
7200 });
7201 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7202 }
7203
7204 /* Discard the stop replies for RS in stop_reply_queue. */
7205
7206 void
7207 remote_target::discard_pending_stop_replies_in_queue ()
7208 {
7209 remote_state *rs = get_remote_state ();
7210
7211 /* Discard the stop replies we have already pulled with
7212 vStopped. */
7213 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7214 rs->stop_reply_queue.end (),
7215 [=] (const stop_reply_up &event)
7216 {
7217 return event->rs == rs;
7218 });
7219 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7220 }
7221
7222 /* Remove the first reply in 'stop_reply_queue' which matches
7223 PTID. */
7224
7225 struct stop_reply *
7226 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7227 {
7228 remote_state *rs = get_remote_state ();
7229
7230 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7231 rs->stop_reply_queue.end (),
7232 [=] (const stop_reply_up &event)
7233 {
7234 return event->ptid.matches (ptid);
7235 });
7236 struct stop_reply *result;
7237 if (iter == rs->stop_reply_queue.end ())
7238 result = nullptr;
7239 else
7240 {
7241 result = iter->release ();
7242 rs->stop_reply_queue.erase (iter);
7243 }
7244
7245 if (notif_debug)
7246 fprintf_unfiltered (gdb_stdlog,
7247 "notif: discard queued event: 'Stop' in %s\n",
7248 target_pid_to_str (ptid).c_str ());
7249
7250 return result;
7251 }
7252
7253 /* Look for a queued stop reply belonging to PTID. If one is found,
7254 remove it from the queue, and return it. Returns NULL if none is
7255 found. If there are still queued events left to process, tell the
7256 event loop to get back to target_wait soon. */
7257
7258 struct stop_reply *
7259 remote_target::queued_stop_reply (ptid_t ptid)
7260 {
7261 remote_state *rs = get_remote_state ();
7262 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7263
7264 if (!rs->stop_reply_queue.empty ())
7265 {
7266 /* There's still at least an event left. */
7267 mark_async_event_handler (rs->remote_async_inferior_event_token);
7268 }
7269
7270 return r;
7271 }
7272
7273 /* Push a fully parsed stop reply in the stop reply queue. Since we
7274 know that we now have at least one queued event left to pass to the
7275 core side, tell the event loop to get back to target_wait soon. */
7276
7277 void
7278 remote_target::push_stop_reply (struct stop_reply *new_event)
7279 {
7280 remote_state *rs = get_remote_state ();
7281 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7282
7283 if (notif_debug)
7284 fprintf_unfiltered (gdb_stdlog,
7285 "notif: push 'Stop' %s to queue %d\n",
7286 target_pid_to_str (new_event->ptid).c_str (),
7287 int (rs->stop_reply_queue.size ()));
7288
7289 mark_async_event_handler (rs->remote_async_inferior_event_token);
7290 }
7291
7292 /* Returns true if we have a stop reply for PTID. */
7293
7294 int
7295 remote_target::peek_stop_reply (ptid_t ptid)
7296 {
7297 remote_state *rs = get_remote_state ();
7298 for (auto &event : rs->stop_reply_queue)
7299 if (ptid == event->ptid
7300 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7301 return 1;
7302 return 0;
7303 }
7304
7305 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7306 starting with P and ending with PEND matches PREFIX. */
7307
7308 static int
7309 strprefix (const char *p, const char *pend, const char *prefix)
7310 {
7311 for ( ; p < pend; p++, prefix++)
7312 if (*p != *prefix)
7313 return 0;
7314 return *prefix == '\0';
7315 }
7316
7317 /* Parse the stop reply in BUF. Either the function succeeds, and the
7318 result is stored in EVENT, or throws an error. */
7319
7320 void
7321 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7322 {
7323 remote_arch_state *rsa = NULL;
7324 ULONGEST addr;
7325 const char *p;
7326 int skipregs = 0;
7327
7328 event->ptid = null_ptid;
7329 event->rs = get_remote_state ();
7330 event->ws.kind = TARGET_WAITKIND_IGNORE;
7331 event->ws.value.integer = 0;
7332 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7333 event->regcache.clear ();
7334 event->core = -1;
7335
7336 switch (buf[0])
7337 {
7338 case 'T': /* Status with PC, SP, FP, ... */
7339 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7340 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7341 ss = signal number
7342 n... = register number
7343 r... = register contents
7344 */
7345
7346 p = &buf[3]; /* after Txx */
7347 while (*p)
7348 {
7349 const char *p1;
7350 int fieldsize;
7351
7352 p1 = strchr (p, ':');
7353 if (p1 == NULL)
7354 error (_("Malformed packet(a) (missing colon): %s\n\
7355 Packet: '%s'\n"),
7356 p, buf);
7357 if (p == p1)
7358 error (_("Malformed packet(a) (missing register number): %s\n\
7359 Packet: '%s'\n"),
7360 p, buf);
7361
7362 /* Some "registers" are actually extended stop information.
7363 Note if you're adding a new entry here: GDB 7.9 and
7364 earlier assume that all register "numbers" that start
7365 with an hex digit are real register numbers. Make sure
7366 the server only sends such a packet if it knows the
7367 client understands it. */
7368
7369 if (strprefix (p, p1, "thread"))
7370 event->ptid = read_ptid (++p1, &p);
7371 else if (strprefix (p, p1, "syscall_entry"))
7372 {
7373 ULONGEST sysno;
7374
7375 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7376 p = unpack_varlen_hex (++p1, &sysno);
7377 event->ws.value.syscall_number = (int) sysno;
7378 }
7379 else if (strprefix (p, p1, "syscall_return"))
7380 {
7381 ULONGEST sysno;
7382
7383 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7384 p = unpack_varlen_hex (++p1, &sysno);
7385 event->ws.value.syscall_number = (int) sysno;
7386 }
7387 else if (strprefix (p, p1, "watch")
7388 || strprefix (p, p1, "rwatch")
7389 || strprefix (p, p1, "awatch"))
7390 {
7391 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7392 p = unpack_varlen_hex (++p1, &addr);
7393 event->watch_data_address = (CORE_ADDR) addr;
7394 }
7395 else if (strprefix (p, p1, "swbreak"))
7396 {
7397 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7398
7399 /* Make sure the stub doesn't forget to indicate support
7400 with qSupported. */
7401 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7402 error (_("Unexpected swbreak stop reason"));
7403
7404 /* The value part is documented as "must be empty",
7405 though we ignore it, in case we ever decide to make
7406 use of it in a backward compatible way. */
7407 p = strchrnul (p1 + 1, ';');
7408 }
7409 else if (strprefix (p, p1, "hwbreak"))
7410 {
7411 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7412
7413 /* Make sure the stub doesn't forget to indicate support
7414 with qSupported. */
7415 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7416 error (_("Unexpected hwbreak stop reason"));
7417
7418 /* See above. */
7419 p = strchrnul (p1 + 1, ';');
7420 }
7421 else if (strprefix (p, p1, "library"))
7422 {
7423 event->ws.kind = TARGET_WAITKIND_LOADED;
7424 p = strchrnul (p1 + 1, ';');
7425 }
7426 else if (strprefix (p, p1, "replaylog"))
7427 {
7428 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7429 /* p1 will indicate "begin" or "end", but it makes
7430 no difference for now, so ignore it. */
7431 p = strchrnul (p1 + 1, ';');
7432 }
7433 else if (strprefix (p, p1, "core"))
7434 {
7435 ULONGEST c;
7436
7437 p = unpack_varlen_hex (++p1, &c);
7438 event->core = c;
7439 }
7440 else if (strprefix (p, p1, "fork"))
7441 {
7442 event->ws.value.related_pid = read_ptid (++p1, &p);
7443 event->ws.kind = TARGET_WAITKIND_FORKED;
7444 }
7445 else if (strprefix (p, p1, "vfork"))
7446 {
7447 event->ws.value.related_pid = read_ptid (++p1, &p);
7448 event->ws.kind = TARGET_WAITKIND_VFORKED;
7449 }
7450 else if (strprefix (p, p1, "vforkdone"))
7451 {
7452 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7453 p = strchrnul (p1 + 1, ';');
7454 }
7455 else if (strprefix (p, p1, "exec"))
7456 {
7457 ULONGEST ignored;
7458 int pathlen;
7459
7460 /* Determine the length of the execd pathname. */
7461 p = unpack_varlen_hex (++p1, &ignored);
7462 pathlen = (p - p1) / 2;
7463
7464 /* Save the pathname for event reporting and for
7465 the next run command. */
7466 gdb::unique_xmalloc_ptr<char[]> pathname
7467 ((char *) xmalloc (pathlen + 1));
7468 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7469 pathname[pathlen] = '\0';
7470
7471 /* This is freed during event handling. */
7472 event->ws.value.execd_pathname = pathname.release ();
7473 event->ws.kind = TARGET_WAITKIND_EXECD;
7474
7475 /* Skip the registers included in this packet, since
7476 they may be for an architecture different from the
7477 one used by the original program. */
7478 skipregs = 1;
7479 }
7480 else if (strprefix (p, p1, "create"))
7481 {
7482 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7483 p = strchrnul (p1 + 1, ';');
7484 }
7485 else
7486 {
7487 ULONGEST pnum;
7488 const char *p_temp;
7489
7490 if (skipregs)
7491 {
7492 p = strchrnul (p1 + 1, ';');
7493 p++;
7494 continue;
7495 }
7496
7497 /* Maybe a real ``P'' register number. */
7498 p_temp = unpack_varlen_hex (p, &pnum);
7499 /* If the first invalid character is the colon, we got a
7500 register number. Otherwise, it's an unknown stop
7501 reason. */
7502 if (p_temp == p1)
7503 {
7504 /* If we haven't parsed the event's thread yet, find
7505 it now, in order to find the architecture of the
7506 reported expedited registers. */
7507 if (event->ptid == null_ptid)
7508 {
7509 /* If there is no thread-id information then leave
7510 the event->ptid as null_ptid. Later in
7511 process_stop_reply we will pick a suitable
7512 thread. */
7513 const char *thr = strstr (p1 + 1, ";thread:");
7514 if (thr != NULL)
7515 event->ptid = read_ptid (thr + strlen (";thread:"),
7516 NULL);
7517 }
7518
7519 if (rsa == NULL)
7520 {
7521 inferior *inf
7522 = (event->ptid == null_ptid
7523 ? NULL
7524 : find_inferior_ptid (this, event->ptid));
7525 /* If this is the first time we learn anything
7526 about this process, skip the registers
7527 included in this packet, since we don't yet
7528 know which architecture to use to parse them.
7529 We'll determine the architecture later when
7530 we process the stop reply and retrieve the
7531 target description, via
7532 remote_notice_new_inferior ->
7533 post_create_inferior. */
7534 if (inf == NULL)
7535 {
7536 p = strchrnul (p1 + 1, ';');
7537 p++;
7538 continue;
7539 }
7540
7541 event->arch = inf->gdbarch;
7542 rsa = event->rs->get_remote_arch_state (event->arch);
7543 }
7544
7545 packet_reg *reg
7546 = packet_reg_from_pnum (event->arch, rsa, pnum);
7547 cached_reg_t cached_reg;
7548
7549 if (reg == NULL)
7550 error (_("Remote sent bad register number %s: %s\n\
7551 Packet: '%s'\n"),
7552 hex_string (pnum), p, buf);
7553
7554 cached_reg.num = reg->regnum;
7555 cached_reg.data = (gdb_byte *)
7556 xmalloc (register_size (event->arch, reg->regnum));
7557
7558 p = p1 + 1;
7559 fieldsize = hex2bin (p, cached_reg.data,
7560 register_size (event->arch, reg->regnum));
7561 p += 2 * fieldsize;
7562 if (fieldsize < register_size (event->arch, reg->regnum))
7563 warning (_("Remote reply is too short: %s"), buf);
7564
7565 event->regcache.push_back (cached_reg);
7566 }
7567 else
7568 {
7569 /* Not a number. Silently skip unknown optional
7570 info. */
7571 p = strchrnul (p1 + 1, ';');
7572 }
7573 }
7574
7575 if (*p != ';')
7576 error (_("Remote register badly formatted: %s\nhere: %s"),
7577 buf, p);
7578 ++p;
7579 }
7580
7581 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7582 break;
7583
7584 /* fall through */
7585 case 'S': /* Old style status, just signal only. */
7586 {
7587 int sig;
7588
7589 event->ws.kind = TARGET_WAITKIND_STOPPED;
7590 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7591 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7592 event->ws.value.sig = (enum gdb_signal) sig;
7593 else
7594 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7595 }
7596 break;
7597 case 'w': /* Thread exited. */
7598 {
7599 ULONGEST value;
7600
7601 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7602 p = unpack_varlen_hex (&buf[1], &value);
7603 event->ws.value.integer = value;
7604 if (*p != ';')
7605 error (_("stop reply packet badly formatted: %s"), buf);
7606 event->ptid = read_ptid (++p, NULL);
7607 break;
7608 }
7609 case 'W': /* Target exited. */
7610 case 'X':
7611 {
7612 ULONGEST value;
7613
7614 /* GDB used to accept only 2 hex chars here. Stubs should
7615 only send more if they detect GDB supports multi-process
7616 support. */
7617 p = unpack_varlen_hex (&buf[1], &value);
7618
7619 if (buf[0] == 'W')
7620 {
7621 /* The remote process exited. */
7622 event->ws.kind = TARGET_WAITKIND_EXITED;
7623 event->ws.value.integer = value;
7624 }
7625 else
7626 {
7627 /* The remote process exited with a signal. */
7628 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7629 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7630 event->ws.value.sig = (enum gdb_signal) value;
7631 else
7632 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7633 }
7634
7635 /* If no process is specified, return null_ptid, and let the
7636 caller figure out the right process to use. */
7637 int pid = 0;
7638 if (*p == '\0')
7639 ;
7640 else if (*p == ';')
7641 {
7642 p++;
7643
7644 if (*p == '\0')
7645 ;
7646 else if (startswith (p, "process:"))
7647 {
7648 ULONGEST upid;
7649
7650 p += sizeof ("process:") - 1;
7651 unpack_varlen_hex (p, &upid);
7652 pid = upid;
7653 }
7654 else
7655 error (_("unknown stop reply packet: %s"), buf);
7656 }
7657 else
7658 error (_("unknown stop reply packet: %s"), buf);
7659 event->ptid = ptid_t (pid);
7660 }
7661 break;
7662 case 'N':
7663 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7664 event->ptid = minus_one_ptid;
7665 break;
7666 }
7667 }
7668
7669 /* When the stub wants to tell GDB about a new notification reply, it
7670 sends a notification (%Stop, for example). Those can come it at
7671 any time, hence, we have to make sure that any pending
7672 putpkt/getpkt sequence we're making is finished, before querying
7673 the stub for more events with the corresponding ack command
7674 (vStopped, for example). E.g., if we started a vStopped sequence
7675 immediately upon receiving the notification, something like this
7676 could happen:
7677
7678 1.1) --> Hg 1
7679 1.2) <-- OK
7680 1.3) --> g
7681 1.4) <-- %Stop
7682 1.5) --> vStopped
7683 1.6) <-- (registers reply to step #1.3)
7684
7685 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7686 query.
7687
7688 To solve this, whenever we parse a %Stop notification successfully,
7689 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7690 doing whatever we were doing:
7691
7692 2.1) --> Hg 1
7693 2.2) <-- OK
7694 2.3) --> g
7695 2.4) <-- %Stop
7696 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7697 2.5) <-- (registers reply to step #2.3)
7698
7699 Eventually after step #2.5, we return to the event loop, which
7700 notices there's an event on the
7701 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7702 associated callback --- the function below. At this point, we're
7703 always safe to start a vStopped sequence. :
7704
7705 2.6) --> vStopped
7706 2.7) <-- T05 thread:2
7707 2.8) --> vStopped
7708 2.9) --> OK
7709 */
7710
7711 void
7712 remote_target::remote_notif_get_pending_events (notif_client *nc)
7713 {
7714 struct remote_state *rs = get_remote_state ();
7715
7716 if (rs->notif_state->pending_event[nc->id] != NULL)
7717 {
7718 if (notif_debug)
7719 fprintf_unfiltered (gdb_stdlog,
7720 "notif: process: '%s' ack pending event\n",
7721 nc->name);
7722
7723 /* acknowledge */
7724 nc->ack (this, nc, rs->buf.data (),
7725 rs->notif_state->pending_event[nc->id]);
7726 rs->notif_state->pending_event[nc->id] = NULL;
7727
7728 while (1)
7729 {
7730 getpkt (&rs->buf, 0);
7731 if (strcmp (rs->buf.data (), "OK") == 0)
7732 break;
7733 else
7734 remote_notif_ack (this, nc, rs->buf.data ());
7735 }
7736 }
7737 else
7738 {
7739 if (notif_debug)
7740 fprintf_unfiltered (gdb_stdlog,
7741 "notif: process: '%s' no pending reply\n",
7742 nc->name);
7743 }
7744 }
7745
7746 /* Wrapper around remote_target::remote_notif_get_pending_events to
7747 avoid having to export the whole remote_target class. */
7748
7749 void
7750 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7751 {
7752 remote->remote_notif_get_pending_events (nc);
7753 }
7754
7755 /* Called from process_stop_reply when the stop packet we are responding
7756 to didn't include a process-id or thread-id. STATUS is the stop event
7757 we are responding to.
7758
7759 It is the task of this function to select a suitable thread (or process)
7760 and return its ptid, this is the thread (or process) we will assume the
7761 stop event came from.
7762
7763 In some cases there isn't really any choice about which thread (or
7764 process) is selected, a basic remote with a single process containing a
7765 single thread might choose not to send any process-id or thread-id in
7766 its stop packets, this function will select and return the one and only
7767 thread.
7768
7769 However, if a target supports multiple threads (or processes) and still
7770 doesn't include a thread-id (or process-id) in its stop packet then
7771 first, this is a badly behaving target, and second, we're going to have
7772 to select a thread (or process) at random and use that. This function
7773 will print a warning to the user if it detects that there is the
7774 possibility that GDB is guessing which thread (or process) to
7775 report.
7776
7777 Note that this is called before GDB fetches the updated thread list from the
7778 target. So it's possible for the stop reply to be ambiguous and for GDB to
7779 not realize it. For example, if there's initially one thread, the target
7780 spawns a second thread, and then sends a stop reply without an id that
7781 concerns the first thread. GDB will assume the stop reply is about the
7782 first thread - the only thread it knows about - without printing a warning.
7783 Anyway, if the remote meant for the stop reply to be about the second thread,
7784 then it would be really broken, because GDB doesn't know about that thread
7785 yet. */
7786
7787 ptid_t
7788 remote_target::select_thread_for_ambiguous_stop_reply
7789 (const struct target_waitstatus *status)
7790 {
7791 /* Some stop events apply to all threads in an inferior, while others
7792 only apply to a single thread. */
7793 bool process_wide_stop
7794 = (status->kind == TARGET_WAITKIND_EXITED
7795 || status->kind == TARGET_WAITKIND_SIGNALLED);
7796
7797 thread_info *first_resumed_thread = nullptr;
7798 bool ambiguous = false;
7799
7800 /* Consider all non-exited threads of the target, find the first resumed
7801 one. */
7802 for (thread_info *thr : all_non_exited_threads (this))
7803 {
7804 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7805
7806 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7807 continue;
7808
7809 if (first_resumed_thread == nullptr)
7810 first_resumed_thread = thr;
7811 else if (!process_wide_stop
7812 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7813 ambiguous = true;
7814 }
7815
7816 gdb_assert (first_resumed_thread != nullptr);
7817
7818 /* Warn if the remote target is sending ambiguous stop replies. */
7819 if (ambiguous)
7820 {
7821 static bool warned = false;
7822
7823 if (!warned)
7824 {
7825 /* If you are seeing this warning then the remote target has
7826 stopped without specifying a thread-id, but the target
7827 does have multiple threads (or inferiors), and so GDB is
7828 having to guess which thread stopped.
7829
7830 Examples of what might cause this are the target sending
7831 and 'S' stop packet, or a 'T' stop packet and not
7832 including a thread-id.
7833
7834 Additionally, the target might send a 'W' or 'X packet
7835 without including a process-id, when the target has
7836 multiple running inferiors. */
7837 if (process_wide_stop)
7838 warning (_("multi-inferior target stopped without "
7839 "sending a process-id, using first "
7840 "non-exited inferior"));
7841 else
7842 warning (_("multi-threaded target stopped without "
7843 "sending a thread-id, using first "
7844 "non-exited thread"));
7845 warned = true;
7846 }
7847 }
7848
7849 /* If this is a stop for all threads then don't use a particular threads
7850 ptid, instead create a new ptid where only the pid field is set. */
7851 if (process_wide_stop)
7852 return ptid_t (first_resumed_thread->ptid.pid ());
7853 else
7854 return first_resumed_thread->ptid;
7855 }
7856
7857 /* Called when it is decided that STOP_REPLY holds the info of the
7858 event that is to be returned to the core. This function always
7859 destroys STOP_REPLY. */
7860
7861 ptid_t
7862 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7863 struct target_waitstatus *status)
7864 {
7865 *status = stop_reply->ws;
7866 ptid_t ptid = stop_reply->ptid;
7867
7868 /* If no thread/process was reported by the stub then select a suitable
7869 thread/process. */
7870 if (ptid == null_ptid)
7871 ptid = select_thread_for_ambiguous_stop_reply (status);
7872 gdb_assert (ptid != null_ptid);
7873
7874 if (status->kind != TARGET_WAITKIND_EXITED
7875 && status->kind != TARGET_WAITKIND_SIGNALLED
7876 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7877 {
7878 /* Expedited registers. */
7879 if (!stop_reply->regcache.empty ())
7880 {
7881 struct regcache *regcache
7882 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
7883
7884 for (cached_reg_t &reg : stop_reply->regcache)
7885 {
7886 regcache->raw_supply (reg.num, reg.data);
7887 xfree (reg.data);
7888 }
7889
7890 stop_reply->regcache.clear ();
7891 }
7892
7893 remote_notice_new_inferior (ptid, 0);
7894 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
7895 remote_thr->core = stop_reply->core;
7896 remote_thr->stop_reason = stop_reply->stop_reason;
7897 remote_thr->watch_data_address = stop_reply->watch_data_address;
7898
7899 if (target_is_non_stop_p ())
7900 {
7901 /* If the target works in non-stop mode, a stop-reply indicates that
7902 only this thread stopped. */
7903 remote_thr->set_not_resumed ();
7904 }
7905 else
7906 {
7907 /* If the target works in all-stop mode, a stop-reply indicates that
7908 all the target's threads stopped. */
7909 for (thread_info *tp : all_non_exited_threads (this))
7910 get_remote_thread_info (tp)->set_not_resumed ();
7911 }
7912 }
7913
7914 delete stop_reply;
7915 return ptid;
7916 }
7917
7918 /* The non-stop mode version of target_wait. */
7919
7920 ptid_t
7921 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
7922 target_wait_flags options)
7923 {
7924 struct remote_state *rs = get_remote_state ();
7925 struct stop_reply *stop_reply;
7926 int ret;
7927 int is_notif = 0;
7928
7929 /* If in non-stop mode, get out of getpkt even if a
7930 notification is received. */
7931
7932 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7933 while (1)
7934 {
7935 if (ret != -1 && !is_notif)
7936 switch (rs->buf[0])
7937 {
7938 case 'E': /* Error of some sort. */
7939 /* We're out of sync with the target now. Did it continue
7940 or not? We can't tell which thread it was in non-stop,
7941 so just ignore this. */
7942 warning (_("Remote failure reply: %s"), rs->buf.data ());
7943 break;
7944 case 'O': /* Console output. */
7945 remote_console_output (&rs->buf[1]);
7946 break;
7947 default:
7948 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7949 break;
7950 }
7951
7952 /* Acknowledge a pending stop reply that may have arrived in the
7953 mean time. */
7954 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7955 remote_notif_get_pending_events (&notif_client_stop);
7956
7957 /* If indeed we noticed a stop reply, we're done. */
7958 stop_reply = queued_stop_reply (ptid);
7959 if (stop_reply != NULL)
7960 return process_stop_reply (stop_reply, status);
7961
7962 /* Still no event. If we're just polling for an event, then
7963 return to the event loop. */
7964 if (options & TARGET_WNOHANG)
7965 {
7966 status->kind = TARGET_WAITKIND_IGNORE;
7967 return minus_one_ptid;
7968 }
7969
7970 /* Otherwise do a blocking wait. */
7971 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7972 }
7973 }
7974
7975 /* Return the first resumed thread. */
7976
7977 static ptid_t
7978 first_remote_resumed_thread (remote_target *target)
7979 {
7980 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
7981 if (tp->resumed)
7982 return tp->ptid;
7983 return null_ptid;
7984 }
7985
7986 /* Wait until the remote machine stops, then return, storing status in
7987 STATUS just as `wait' would. */
7988
7989 ptid_t
7990 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
7991 target_wait_flags options)
7992 {
7993 struct remote_state *rs = get_remote_state ();
7994 ptid_t event_ptid = null_ptid;
7995 char *buf;
7996 struct stop_reply *stop_reply;
7997
7998 again:
7999
8000 status->kind = TARGET_WAITKIND_IGNORE;
8001 status->value.integer = 0;
8002
8003 stop_reply = queued_stop_reply (ptid);
8004 if (stop_reply != NULL)
8005 return process_stop_reply (stop_reply, status);
8006
8007 if (rs->cached_wait_status)
8008 /* Use the cached wait status, but only once. */
8009 rs->cached_wait_status = 0;
8010 else
8011 {
8012 int ret;
8013 int is_notif;
8014 int forever = ((options & TARGET_WNOHANG) == 0
8015 && rs->wait_forever_enabled_p);
8016
8017 if (!rs->waiting_for_stop_reply)
8018 {
8019 status->kind = TARGET_WAITKIND_NO_RESUMED;
8020 return minus_one_ptid;
8021 }
8022
8023 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8024 _never_ wait for ever -> test on target_is_async_p().
8025 However, before we do that we need to ensure that the caller
8026 knows how to take the target into/out of async mode. */
8027 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8028
8029 /* GDB gets a notification. Return to core as this event is
8030 not interesting. */
8031 if (ret != -1 && is_notif)
8032 return minus_one_ptid;
8033
8034 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8035 return minus_one_ptid;
8036 }
8037
8038 buf = rs->buf.data ();
8039
8040 /* Assume that the target has acknowledged Ctrl-C unless we receive
8041 an 'F' or 'O' packet. */
8042 if (buf[0] != 'F' && buf[0] != 'O')
8043 rs->ctrlc_pending_p = 0;
8044
8045 switch (buf[0])
8046 {
8047 case 'E': /* Error of some sort. */
8048 /* We're out of sync with the target now. Did it continue or
8049 not? Not is more likely, so report a stop. */
8050 rs->waiting_for_stop_reply = 0;
8051
8052 warning (_("Remote failure reply: %s"), buf);
8053 status->kind = TARGET_WAITKIND_STOPPED;
8054 status->value.sig = GDB_SIGNAL_0;
8055 break;
8056 case 'F': /* File-I/O request. */
8057 /* GDB may access the inferior memory while handling the File-I/O
8058 request, but we don't want GDB accessing memory while waiting
8059 for a stop reply. See the comments in putpkt_binary. Set
8060 waiting_for_stop_reply to 0 temporarily. */
8061 rs->waiting_for_stop_reply = 0;
8062 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8063 rs->ctrlc_pending_p = 0;
8064 /* GDB handled the File-I/O request, and the target is running
8065 again. Keep waiting for events. */
8066 rs->waiting_for_stop_reply = 1;
8067 break;
8068 case 'N': case 'T': case 'S': case 'X': case 'W':
8069 {
8070 /* There is a stop reply to handle. */
8071 rs->waiting_for_stop_reply = 0;
8072
8073 stop_reply
8074 = (struct stop_reply *) remote_notif_parse (this,
8075 &notif_client_stop,
8076 rs->buf.data ());
8077
8078 event_ptid = process_stop_reply (stop_reply, status);
8079 break;
8080 }
8081 case 'O': /* Console output. */
8082 remote_console_output (buf + 1);
8083 break;
8084 case '\0':
8085 if (rs->last_sent_signal != GDB_SIGNAL_0)
8086 {
8087 /* Zero length reply means that we tried 'S' or 'C' and the
8088 remote system doesn't support it. */
8089 target_terminal::ours_for_output ();
8090 printf_filtered
8091 ("Can't send signals to this remote system. %s not sent.\n",
8092 gdb_signal_to_name (rs->last_sent_signal));
8093 rs->last_sent_signal = GDB_SIGNAL_0;
8094 target_terminal::inferior ();
8095
8096 strcpy (buf, rs->last_sent_step ? "s" : "c");
8097 putpkt (buf);
8098 break;
8099 }
8100 /* fallthrough */
8101 default:
8102 warning (_("Invalid remote reply: %s"), buf);
8103 break;
8104 }
8105
8106 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
8107 return minus_one_ptid;
8108 else if (status->kind == TARGET_WAITKIND_IGNORE)
8109 {
8110 /* Nothing interesting happened. If we're doing a non-blocking
8111 poll, we're done. Otherwise, go back to waiting. */
8112 if (options & TARGET_WNOHANG)
8113 return minus_one_ptid;
8114 else
8115 goto again;
8116 }
8117 else if (status->kind != TARGET_WAITKIND_EXITED
8118 && status->kind != TARGET_WAITKIND_SIGNALLED)
8119 {
8120 if (event_ptid != null_ptid)
8121 record_currthread (rs, event_ptid);
8122 else
8123 event_ptid = first_remote_resumed_thread (this);
8124 }
8125 else
8126 {
8127 /* A process exit. Invalidate our notion of current thread. */
8128 record_currthread (rs, minus_one_ptid);
8129 /* It's possible that the packet did not include a pid. */
8130 if (event_ptid == null_ptid)
8131 event_ptid = first_remote_resumed_thread (this);
8132 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8133 if (event_ptid == null_ptid)
8134 event_ptid = magic_null_ptid;
8135 }
8136
8137 return event_ptid;
8138 }
8139
8140 /* Wait until the remote machine stops, then return, storing status in
8141 STATUS just as `wait' would. */
8142
8143 ptid_t
8144 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8145 target_wait_flags options)
8146 {
8147 ptid_t event_ptid;
8148
8149 if (target_is_non_stop_p ())
8150 event_ptid = wait_ns (ptid, status, options);
8151 else
8152 event_ptid = wait_as (ptid, status, options);
8153
8154 if (target_is_async_p ())
8155 {
8156 remote_state *rs = get_remote_state ();
8157
8158 /* If there are are events left in the queue tell the event loop
8159 to return here. */
8160 if (!rs->stop_reply_queue.empty ())
8161 mark_async_event_handler (rs->remote_async_inferior_event_token);
8162 }
8163
8164 return event_ptid;
8165 }
8166
8167 /* Fetch a single register using a 'p' packet. */
8168
8169 int
8170 remote_target::fetch_register_using_p (struct regcache *regcache,
8171 packet_reg *reg)
8172 {
8173 struct gdbarch *gdbarch = regcache->arch ();
8174 struct remote_state *rs = get_remote_state ();
8175 char *buf, *p;
8176 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8177 int i;
8178
8179 if (packet_support (PACKET_p) == PACKET_DISABLE)
8180 return 0;
8181
8182 if (reg->pnum == -1)
8183 return 0;
8184
8185 p = rs->buf.data ();
8186 *p++ = 'p';
8187 p += hexnumstr (p, reg->pnum);
8188 *p++ = '\0';
8189 putpkt (rs->buf);
8190 getpkt (&rs->buf, 0);
8191
8192 buf = rs->buf.data ();
8193
8194 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8195 {
8196 case PACKET_OK:
8197 break;
8198 case PACKET_UNKNOWN:
8199 return 0;
8200 case PACKET_ERROR:
8201 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8202 gdbarch_register_name (regcache->arch (),
8203 reg->regnum),
8204 buf);
8205 }
8206
8207 /* If this register is unfetchable, tell the regcache. */
8208 if (buf[0] == 'x')
8209 {
8210 regcache->raw_supply (reg->regnum, NULL);
8211 return 1;
8212 }
8213
8214 /* Otherwise, parse and supply the value. */
8215 p = buf;
8216 i = 0;
8217 while (p[0] != 0)
8218 {
8219 if (p[1] == 0)
8220 error (_("fetch_register_using_p: early buf termination"));
8221
8222 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8223 p += 2;
8224 }
8225 regcache->raw_supply (reg->regnum, regp);
8226 return 1;
8227 }
8228
8229 /* Fetch the registers included in the target's 'g' packet. */
8230
8231 int
8232 remote_target::send_g_packet ()
8233 {
8234 struct remote_state *rs = get_remote_state ();
8235 int buf_len;
8236
8237 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8238 putpkt (rs->buf);
8239 getpkt (&rs->buf, 0);
8240 if (packet_check_result (rs->buf) == PACKET_ERROR)
8241 error (_("Could not read registers; remote failure reply '%s'"),
8242 rs->buf.data ());
8243
8244 /* We can get out of synch in various cases. If the first character
8245 in the buffer is not a hex character, assume that has happened
8246 and try to fetch another packet to read. */
8247 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8248 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8249 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8250 && rs->buf[0] != 'x') /* New: unavailable register value. */
8251 {
8252 if (remote_debug)
8253 fprintf_unfiltered (gdb_stdlog,
8254 "Bad register packet; fetching a new packet\n");
8255 getpkt (&rs->buf, 0);
8256 }
8257
8258 buf_len = strlen (rs->buf.data ());
8259
8260 /* Sanity check the received packet. */
8261 if (buf_len % 2 != 0)
8262 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8263
8264 return buf_len / 2;
8265 }
8266
8267 void
8268 remote_target::process_g_packet (struct regcache *regcache)
8269 {
8270 struct gdbarch *gdbarch = regcache->arch ();
8271 struct remote_state *rs = get_remote_state ();
8272 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8273 int i, buf_len;
8274 char *p;
8275 char *regs;
8276
8277 buf_len = strlen (rs->buf.data ());
8278
8279 /* Further sanity checks, with knowledge of the architecture. */
8280 if (buf_len > 2 * rsa->sizeof_g_packet)
8281 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8282 "bytes): %s"),
8283 rsa->sizeof_g_packet, buf_len / 2,
8284 rs->buf.data ());
8285
8286 /* Save the size of the packet sent to us by the target. It is used
8287 as a heuristic when determining the max size of packets that the
8288 target can safely receive. */
8289 if (rsa->actual_register_packet_size == 0)
8290 rsa->actual_register_packet_size = buf_len;
8291
8292 /* If this is smaller than we guessed the 'g' packet would be,
8293 update our records. A 'g' reply that doesn't include a register's
8294 value implies either that the register is not available, or that
8295 the 'p' packet must be used. */
8296 if (buf_len < 2 * rsa->sizeof_g_packet)
8297 {
8298 long sizeof_g_packet = buf_len / 2;
8299
8300 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8301 {
8302 long offset = rsa->regs[i].offset;
8303 long reg_size = register_size (gdbarch, i);
8304
8305 if (rsa->regs[i].pnum == -1)
8306 continue;
8307
8308 if (offset >= sizeof_g_packet)
8309 rsa->regs[i].in_g_packet = 0;
8310 else if (offset + reg_size > sizeof_g_packet)
8311 error (_("Truncated register %d in remote 'g' packet"), i);
8312 else
8313 rsa->regs[i].in_g_packet = 1;
8314 }
8315
8316 /* Looks valid enough, we can assume this is the correct length
8317 for a 'g' packet. It's important not to adjust
8318 rsa->sizeof_g_packet if we have truncated registers otherwise
8319 this "if" won't be run the next time the method is called
8320 with a packet of the same size and one of the internal errors
8321 below will trigger instead. */
8322 rsa->sizeof_g_packet = sizeof_g_packet;
8323 }
8324
8325 regs = (char *) alloca (rsa->sizeof_g_packet);
8326
8327 /* Unimplemented registers read as all bits zero. */
8328 memset (regs, 0, rsa->sizeof_g_packet);
8329
8330 /* Reply describes registers byte by byte, each byte encoded as two
8331 hex characters. Suck them all up, then supply them to the
8332 register cacheing/storage mechanism. */
8333
8334 p = rs->buf.data ();
8335 for (i = 0; i < rsa->sizeof_g_packet; i++)
8336 {
8337 if (p[0] == 0 || p[1] == 0)
8338 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8339 internal_error (__FILE__, __LINE__,
8340 _("unexpected end of 'g' packet reply"));
8341
8342 if (p[0] == 'x' && p[1] == 'x')
8343 regs[i] = 0; /* 'x' */
8344 else
8345 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8346 p += 2;
8347 }
8348
8349 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8350 {
8351 struct packet_reg *r = &rsa->regs[i];
8352 long reg_size = register_size (gdbarch, i);
8353
8354 if (r->in_g_packet)
8355 {
8356 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8357 /* This shouldn't happen - we adjusted in_g_packet above. */
8358 internal_error (__FILE__, __LINE__,
8359 _("unexpected end of 'g' packet reply"));
8360 else if (rs->buf[r->offset * 2] == 'x')
8361 {
8362 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8363 /* The register isn't available, mark it as such (at
8364 the same time setting the value to zero). */
8365 regcache->raw_supply (r->regnum, NULL);
8366 }
8367 else
8368 regcache->raw_supply (r->regnum, regs + r->offset);
8369 }
8370 }
8371 }
8372
8373 void
8374 remote_target::fetch_registers_using_g (struct regcache *regcache)
8375 {
8376 send_g_packet ();
8377 process_g_packet (regcache);
8378 }
8379
8380 /* Make the remote selected traceframe match GDB's selected
8381 traceframe. */
8382
8383 void
8384 remote_target::set_remote_traceframe ()
8385 {
8386 int newnum;
8387 struct remote_state *rs = get_remote_state ();
8388
8389 if (rs->remote_traceframe_number == get_traceframe_number ())
8390 return;
8391
8392 /* Avoid recursion, remote_trace_find calls us again. */
8393 rs->remote_traceframe_number = get_traceframe_number ();
8394
8395 newnum = target_trace_find (tfind_number,
8396 get_traceframe_number (), 0, 0, NULL);
8397
8398 /* Should not happen. If it does, all bets are off. */
8399 if (newnum != get_traceframe_number ())
8400 warning (_("could not set remote traceframe"));
8401 }
8402
8403 void
8404 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8405 {
8406 struct gdbarch *gdbarch = regcache->arch ();
8407 struct remote_state *rs = get_remote_state ();
8408 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8409 int i;
8410
8411 set_remote_traceframe ();
8412 set_general_thread (regcache->ptid ());
8413
8414 if (regnum >= 0)
8415 {
8416 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8417
8418 gdb_assert (reg != NULL);
8419
8420 /* If this register might be in the 'g' packet, try that first -
8421 we are likely to read more than one register. If this is the
8422 first 'g' packet, we might be overly optimistic about its
8423 contents, so fall back to 'p'. */
8424 if (reg->in_g_packet)
8425 {
8426 fetch_registers_using_g (regcache);
8427 if (reg->in_g_packet)
8428 return;
8429 }
8430
8431 if (fetch_register_using_p (regcache, reg))
8432 return;
8433
8434 /* This register is not available. */
8435 regcache->raw_supply (reg->regnum, NULL);
8436
8437 return;
8438 }
8439
8440 fetch_registers_using_g (regcache);
8441
8442 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8443 if (!rsa->regs[i].in_g_packet)
8444 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8445 {
8446 /* This register is not available. */
8447 regcache->raw_supply (i, NULL);
8448 }
8449 }
8450
8451 /* Prepare to store registers. Since we may send them all (using a
8452 'G' request), we have to read out the ones we don't want to change
8453 first. */
8454
8455 void
8456 remote_target::prepare_to_store (struct regcache *regcache)
8457 {
8458 struct remote_state *rs = get_remote_state ();
8459 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8460 int i;
8461
8462 /* Make sure the entire registers array is valid. */
8463 switch (packet_support (PACKET_P))
8464 {
8465 case PACKET_DISABLE:
8466 case PACKET_SUPPORT_UNKNOWN:
8467 /* Make sure all the necessary registers are cached. */
8468 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8469 if (rsa->regs[i].in_g_packet)
8470 regcache->raw_update (rsa->regs[i].regnum);
8471 break;
8472 case PACKET_ENABLE:
8473 break;
8474 }
8475 }
8476
8477 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8478 packet was not recognized. */
8479
8480 int
8481 remote_target::store_register_using_P (const struct regcache *regcache,
8482 packet_reg *reg)
8483 {
8484 struct gdbarch *gdbarch = regcache->arch ();
8485 struct remote_state *rs = get_remote_state ();
8486 /* Try storing a single register. */
8487 char *buf = rs->buf.data ();
8488 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8489 char *p;
8490
8491 if (packet_support (PACKET_P) == PACKET_DISABLE)
8492 return 0;
8493
8494 if (reg->pnum == -1)
8495 return 0;
8496
8497 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8498 p = buf + strlen (buf);
8499 regcache->raw_collect (reg->regnum, regp);
8500 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8501 putpkt (rs->buf);
8502 getpkt (&rs->buf, 0);
8503
8504 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8505 {
8506 case PACKET_OK:
8507 return 1;
8508 case PACKET_ERROR:
8509 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8510 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8511 case PACKET_UNKNOWN:
8512 return 0;
8513 default:
8514 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8515 }
8516 }
8517
8518 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8519 contents of the register cache buffer. FIXME: ignores errors. */
8520
8521 void
8522 remote_target::store_registers_using_G (const struct regcache *regcache)
8523 {
8524 struct remote_state *rs = get_remote_state ();
8525 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8526 gdb_byte *regs;
8527 char *p;
8528
8529 /* Extract all the registers in the regcache copying them into a
8530 local buffer. */
8531 {
8532 int i;
8533
8534 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8535 memset (regs, 0, rsa->sizeof_g_packet);
8536 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8537 {
8538 struct packet_reg *r = &rsa->regs[i];
8539
8540 if (r->in_g_packet)
8541 regcache->raw_collect (r->regnum, regs + r->offset);
8542 }
8543 }
8544
8545 /* Command describes registers byte by byte,
8546 each byte encoded as two hex characters. */
8547 p = rs->buf.data ();
8548 *p++ = 'G';
8549 bin2hex (regs, p, rsa->sizeof_g_packet);
8550 putpkt (rs->buf);
8551 getpkt (&rs->buf, 0);
8552 if (packet_check_result (rs->buf) == PACKET_ERROR)
8553 error (_("Could not write registers; remote failure reply '%s'"),
8554 rs->buf.data ());
8555 }
8556
8557 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8558 of the register cache buffer. FIXME: ignores errors. */
8559
8560 void
8561 remote_target::store_registers (struct regcache *regcache, int regnum)
8562 {
8563 struct gdbarch *gdbarch = regcache->arch ();
8564 struct remote_state *rs = get_remote_state ();
8565 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8566 int i;
8567
8568 set_remote_traceframe ();
8569 set_general_thread (regcache->ptid ());
8570
8571 if (regnum >= 0)
8572 {
8573 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8574
8575 gdb_assert (reg != NULL);
8576
8577 /* Always prefer to store registers using the 'P' packet if
8578 possible; we often change only a small number of registers.
8579 Sometimes we change a larger number; we'd need help from a
8580 higher layer to know to use 'G'. */
8581 if (store_register_using_P (regcache, reg))
8582 return;
8583
8584 /* For now, don't complain if we have no way to write the
8585 register. GDB loses track of unavailable registers too
8586 easily. Some day, this may be an error. We don't have
8587 any way to read the register, either... */
8588 if (!reg->in_g_packet)
8589 return;
8590
8591 store_registers_using_G (regcache);
8592 return;
8593 }
8594
8595 store_registers_using_G (regcache);
8596
8597 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8598 if (!rsa->regs[i].in_g_packet)
8599 if (!store_register_using_P (regcache, &rsa->regs[i]))
8600 /* See above for why we do not issue an error here. */
8601 continue;
8602 }
8603 \f
8604
8605 /* Return the number of hex digits in num. */
8606
8607 static int
8608 hexnumlen (ULONGEST num)
8609 {
8610 int i;
8611
8612 for (i = 0; num != 0; i++)
8613 num >>= 4;
8614
8615 return std::max (i, 1);
8616 }
8617
8618 /* Set BUF to the minimum number of hex digits representing NUM. */
8619
8620 static int
8621 hexnumstr (char *buf, ULONGEST num)
8622 {
8623 int len = hexnumlen (num);
8624
8625 return hexnumnstr (buf, num, len);
8626 }
8627
8628
8629 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8630
8631 static int
8632 hexnumnstr (char *buf, ULONGEST num, int width)
8633 {
8634 int i;
8635
8636 buf[width] = '\0';
8637
8638 for (i = width - 1; i >= 0; i--)
8639 {
8640 buf[i] = "0123456789abcdef"[(num & 0xf)];
8641 num >>= 4;
8642 }
8643
8644 return width;
8645 }
8646
8647 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8648
8649 static CORE_ADDR
8650 remote_address_masked (CORE_ADDR addr)
8651 {
8652 unsigned int address_size = remote_address_size;
8653
8654 /* If "remoteaddresssize" was not set, default to target address size. */
8655 if (!address_size)
8656 address_size = gdbarch_addr_bit (target_gdbarch ());
8657
8658 if (address_size > 0
8659 && address_size < (sizeof (ULONGEST) * 8))
8660 {
8661 /* Only create a mask when that mask can safely be constructed
8662 in a ULONGEST variable. */
8663 ULONGEST mask = 1;
8664
8665 mask = (mask << address_size) - 1;
8666 addr &= mask;
8667 }
8668 return addr;
8669 }
8670
8671 /* Determine whether the remote target supports binary downloading.
8672 This is accomplished by sending a no-op memory write of zero length
8673 to the target at the specified address. It does not suffice to send
8674 the whole packet, since many stubs strip the eighth bit and
8675 subsequently compute a wrong checksum, which causes real havoc with
8676 remote_write_bytes.
8677
8678 NOTE: This can still lose if the serial line is not eight-bit
8679 clean. In cases like this, the user should clear "remote
8680 X-packet". */
8681
8682 void
8683 remote_target::check_binary_download (CORE_ADDR addr)
8684 {
8685 struct remote_state *rs = get_remote_state ();
8686
8687 switch (packet_support (PACKET_X))
8688 {
8689 case PACKET_DISABLE:
8690 break;
8691 case PACKET_ENABLE:
8692 break;
8693 case PACKET_SUPPORT_UNKNOWN:
8694 {
8695 char *p;
8696
8697 p = rs->buf.data ();
8698 *p++ = 'X';
8699 p += hexnumstr (p, (ULONGEST) addr);
8700 *p++ = ',';
8701 p += hexnumstr (p, (ULONGEST) 0);
8702 *p++ = ':';
8703 *p = '\0';
8704
8705 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8706 getpkt (&rs->buf, 0);
8707
8708 if (rs->buf[0] == '\0')
8709 {
8710 if (remote_debug)
8711 fprintf_unfiltered (gdb_stdlog,
8712 "binary downloading NOT "
8713 "supported by target\n");
8714 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8715 }
8716 else
8717 {
8718 if (remote_debug)
8719 fprintf_unfiltered (gdb_stdlog,
8720 "binary downloading supported by target\n");
8721 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8722 }
8723 break;
8724 }
8725 }
8726 }
8727
8728 /* Helper function to resize the payload in order to try to get a good
8729 alignment. We try to write an amount of data such that the next write will
8730 start on an address aligned on REMOTE_ALIGN_WRITES. */
8731
8732 static int
8733 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8734 {
8735 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8736 }
8737
8738 /* Write memory data directly to the remote machine.
8739 This does not inform the data cache; the data cache uses this.
8740 HEADER is the starting part of the packet.
8741 MEMADDR is the address in the remote memory space.
8742 MYADDR is the address of the buffer in our space.
8743 LEN_UNITS is the number of addressable units to write.
8744 UNIT_SIZE is the length in bytes of an addressable unit.
8745 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8746 should send data as binary ('X'), or hex-encoded ('M').
8747
8748 The function creates packet of the form
8749 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8750
8751 where encoding of <DATA> is terminated by PACKET_FORMAT.
8752
8753 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8754 are omitted.
8755
8756 Return the transferred status, error or OK (an
8757 'enum target_xfer_status' value). Save the number of addressable units
8758 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8759
8760 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8761 exchange between gdb and the stub could look like (?? in place of the
8762 checksum):
8763
8764 -> $m1000,4#??
8765 <- aaaabbbbccccdddd
8766
8767 -> $M1000,3:eeeeffffeeee#??
8768 <- OK
8769
8770 -> $m1000,4#??
8771 <- eeeeffffeeeedddd */
8772
8773 target_xfer_status
8774 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8775 const gdb_byte *myaddr,
8776 ULONGEST len_units,
8777 int unit_size,
8778 ULONGEST *xfered_len_units,
8779 char packet_format, int use_length)
8780 {
8781 struct remote_state *rs = get_remote_state ();
8782 char *p;
8783 char *plen = NULL;
8784 int plenlen = 0;
8785 int todo_units;
8786 int units_written;
8787 int payload_capacity_bytes;
8788 int payload_length_bytes;
8789
8790 if (packet_format != 'X' && packet_format != 'M')
8791 internal_error (__FILE__, __LINE__,
8792 _("remote_write_bytes_aux: bad packet format"));
8793
8794 if (len_units == 0)
8795 return TARGET_XFER_EOF;
8796
8797 payload_capacity_bytes = get_memory_write_packet_size ();
8798
8799 /* The packet buffer will be large enough for the payload;
8800 get_memory_packet_size ensures this. */
8801 rs->buf[0] = '\0';
8802
8803 /* Compute the size of the actual payload by subtracting out the
8804 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8805
8806 payload_capacity_bytes -= strlen ("$,:#NN");
8807 if (!use_length)
8808 /* The comma won't be used. */
8809 payload_capacity_bytes += 1;
8810 payload_capacity_bytes -= strlen (header);
8811 payload_capacity_bytes -= hexnumlen (memaddr);
8812
8813 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8814
8815 strcat (rs->buf.data (), header);
8816 p = rs->buf.data () + strlen (header);
8817
8818 /* Compute a best guess of the number of bytes actually transfered. */
8819 if (packet_format == 'X')
8820 {
8821 /* Best guess at number of bytes that will fit. */
8822 todo_units = std::min (len_units,
8823 (ULONGEST) payload_capacity_bytes / unit_size);
8824 if (use_length)
8825 payload_capacity_bytes -= hexnumlen (todo_units);
8826 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8827 }
8828 else
8829 {
8830 /* Number of bytes that will fit. */
8831 todo_units
8832 = std::min (len_units,
8833 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8834 if (use_length)
8835 payload_capacity_bytes -= hexnumlen (todo_units);
8836 todo_units = std::min (todo_units,
8837 (payload_capacity_bytes / unit_size) / 2);
8838 }
8839
8840 if (todo_units <= 0)
8841 internal_error (__FILE__, __LINE__,
8842 _("minimum packet size too small to write data"));
8843
8844 /* If we already need another packet, then try to align the end
8845 of this packet to a useful boundary. */
8846 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8847 todo_units = align_for_efficient_write (todo_units, memaddr);
8848
8849 /* Append "<memaddr>". */
8850 memaddr = remote_address_masked (memaddr);
8851 p += hexnumstr (p, (ULONGEST) memaddr);
8852
8853 if (use_length)
8854 {
8855 /* Append ",". */
8856 *p++ = ',';
8857
8858 /* Append the length and retain its location and size. It may need to be
8859 adjusted once the packet body has been created. */
8860 plen = p;
8861 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8862 p += plenlen;
8863 }
8864
8865 /* Append ":". */
8866 *p++ = ':';
8867 *p = '\0';
8868
8869 /* Append the packet body. */
8870 if (packet_format == 'X')
8871 {
8872 /* Binary mode. Send target system values byte by byte, in
8873 increasing byte addresses. Only escape certain critical
8874 characters. */
8875 payload_length_bytes =
8876 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8877 &units_written, payload_capacity_bytes);
8878
8879 /* If not all TODO units fit, then we'll need another packet. Make
8880 a second try to keep the end of the packet aligned. Don't do
8881 this if the packet is tiny. */
8882 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8883 {
8884 int new_todo_units;
8885
8886 new_todo_units = align_for_efficient_write (units_written, memaddr);
8887
8888 if (new_todo_units != units_written)
8889 payload_length_bytes =
8890 remote_escape_output (myaddr, new_todo_units, unit_size,
8891 (gdb_byte *) p, &units_written,
8892 payload_capacity_bytes);
8893 }
8894
8895 p += payload_length_bytes;
8896 if (use_length && units_written < todo_units)
8897 {
8898 /* Escape chars have filled up the buffer prematurely,
8899 and we have actually sent fewer units than planned.
8900 Fix-up the length field of the packet. Use the same
8901 number of characters as before. */
8902 plen += hexnumnstr (plen, (ULONGEST) units_written,
8903 plenlen);
8904 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8905 }
8906 }
8907 else
8908 {
8909 /* Normal mode: Send target system values byte by byte, in
8910 increasing byte addresses. Each byte is encoded as a two hex
8911 value. */
8912 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8913 units_written = todo_units;
8914 }
8915
8916 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8917 getpkt (&rs->buf, 0);
8918
8919 if (rs->buf[0] == 'E')
8920 return TARGET_XFER_E_IO;
8921
8922 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8923 send fewer units than we'd planned. */
8924 *xfered_len_units = (ULONGEST) units_written;
8925 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8926 }
8927
8928 /* Write memory data directly to the remote machine.
8929 This does not inform the data cache; the data cache uses this.
8930 MEMADDR is the address in the remote memory space.
8931 MYADDR is the address of the buffer in our space.
8932 LEN is the number of bytes.
8933
8934 Return the transferred status, error or OK (an
8935 'enum target_xfer_status' value). Save the number of bytes
8936 transferred in *XFERED_LEN. Only transfer a single packet. */
8937
8938 target_xfer_status
8939 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8940 ULONGEST len, int unit_size,
8941 ULONGEST *xfered_len)
8942 {
8943 const char *packet_format = NULL;
8944
8945 /* Check whether the target supports binary download. */
8946 check_binary_download (memaddr);
8947
8948 switch (packet_support (PACKET_X))
8949 {
8950 case PACKET_ENABLE:
8951 packet_format = "X";
8952 break;
8953 case PACKET_DISABLE:
8954 packet_format = "M";
8955 break;
8956 case PACKET_SUPPORT_UNKNOWN:
8957 internal_error (__FILE__, __LINE__,
8958 _("remote_write_bytes: bad internal state"));
8959 default:
8960 internal_error (__FILE__, __LINE__, _("bad switch"));
8961 }
8962
8963 return remote_write_bytes_aux (packet_format,
8964 memaddr, myaddr, len, unit_size, xfered_len,
8965 packet_format[0], 1);
8966 }
8967
8968 /* Read memory data directly from the remote machine.
8969 This does not use the data cache; the data cache uses this.
8970 MEMADDR is the address in the remote memory space.
8971 MYADDR is the address of the buffer in our space.
8972 LEN_UNITS is the number of addressable memory units to read..
8973 UNIT_SIZE is the length in bytes of an addressable unit.
8974
8975 Return the transferred status, error or OK (an
8976 'enum target_xfer_status' value). Save the number of bytes
8977 transferred in *XFERED_LEN_UNITS.
8978
8979 See the comment of remote_write_bytes_aux for an example of
8980 memory read/write exchange between gdb and the stub. */
8981
8982 target_xfer_status
8983 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8984 ULONGEST len_units,
8985 int unit_size, ULONGEST *xfered_len_units)
8986 {
8987 struct remote_state *rs = get_remote_state ();
8988 int buf_size_bytes; /* Max size of packet output buffer. */
8989 char *p;
8990 int todo_units;
8991 int decoded_bytes;
8992
8993 buf_size_bytes = get_memory_read_packet_size ();
8994 /* The packet buffer will be large enough for the payload;
8995 get_memory_packet_size ensures this. */
8996
8997 /* Number of units that will fit. */
8998 todo_units = std::min (len_units,
8999 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9000
9001 /* Construct "m"<memaddr>","<len>". */
9002 memaddr = remote_address_masked (memaddr);
9003 p = rs->buf.data ();
9004 *p++ = 'm';
9005 p += hexnumstr (p, (ULONGEST) memaddr);
9006 *p++ = ',';
9007 p += hexnumstr (p, (ULONGEST) todo_units);
9008 *p = '\0';
9009 putpkt (rs->buf);
9010 getpkt (&rs->buf, 0);
9011 if (rs->buf[0] == 'E'
9012 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9013 && rs->buf[3] == '\0')
9014 return TARGET_XFER_E_IO;
9015 /* Reply describes memory byte by byte, each byte encoded as two hex
9016 characters. */
9017 p = rs->buf.data ();
9018 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9019 /* Return what we have. Let higher layers handle partial reads. */
9020 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9021 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9022 }
9023
9024 /* Using the set of read-only target sections of remote, read live
9025 read-only memory.
9026
9027 For interface/parameters/return description see target.h,
9028 to_xfer_partial. */
9029
9030 target_xfer_status
9031 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9032 ULONGEST memaddr,
9033 ULONGEST len,
9034 int unit_size,
9035 ULONGEST *xfered_len)
9036 {
9037 struct target_section *secp;
9038
9039 secp = target_section_by_addr (this, memaddr);
9040 if (secp != NULL
9041 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9042 {
9043 ULONGEST memend = memaddr + len;
9044
9045 target_section_table *table = target_get_section_table (this);
9046 for (target_section &p : *table)
9047 {
9048 if (memaddr >= p.addr)
9049 {
9050 if (memend <= p.endaddr)
9051 {
9052 /* Entire transfer is within this section. */
9053 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9054 xfered_len);
9055 }
9056 else if (memaddr >= p.endaddr)
9057 {
9058 /* This section ends before the transfer starts. */
9059 continue;
9060 }
9061 else
9062 {
9063 /* This section overlaps the transfer. Just do half. */
9064 len = p.endaddr - memaddr;
9065 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9066 xfered_len);
9067 }
9068 }
9069 }
9070 }
9071
9072 return TARGET_XFER_EOF;
9073 }
9074
9075 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9076 first if the requested memory is unavailable in traceframe.
9077 Otherwise, fall back to remote_read_bytes_1. */
9078
9079 target_xfer_status
9080 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9081 gdb_byte *myaddr, ULONGEST len, int unit_size,
9082 ULONGEST *xfered_len)
9083 {
9084 if (len == 0)
9085 return TARGET_XFER_EOF;
9086
9087 if (get_traceframe_number () != -1)
9088 {
9089 std::vector<mem_range> available;
9090
9091 /* If we fail to get the set of available memory, then the
9092 target does not support querying traceframe info, and so we
9093 attempt reading from the traceframe anyway (assuming the
9094 target implements the old QTro packet then). */
9095 if (traceframe_available_memory (&available, memaddr, len))
9096 {
9097 if (available.empty () || available[0].start != memaddr)
9098 {
9099 enum target_xfer_status res;
9100
9101 /* Don't read into the traceframe's available
9102 memory. */
9103 if (!available.empty ())
9104 {
9105 LONGEST oldlen = len;
9106
9107 len = available[0].start - memaddr;
9108 gdb_assert (len <= oldlen);
9109 }
9110
9111 /* This goes through the topmost target again. */
9112 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9113 len, unit_size, xfered_len);
9114 if (res == TARGET_XFER_OK)
9115 return TARGET_XFER_OK;
9116 else
9117 {
9118 /* No use trying further, we know some memory starting
9119 at MEMADDR isn't available. */
9120 *xfered_len = len;
9121 return (*xfered_len != 0) ?
9122 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9123 }
9124 }
9125
9126 /* Don't try to read more than how much is available, in
9127 case the target implements the deprecated QTro packet to
9128 cater for older GDBs (the target's knowledge of read-only
9129 sections may be outdated by now). */
9130 len = available[0].length;
9131 }
9132 }
9133
9134 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9135 }
9136
9137 \f
9138
9139 /* Sends a packet with content determined by the printf format string
9140 FORMAT and the remaining arguments, then gets the reply. Returns
9141 whether the packet was a success, a failure, or unknown. */
9142
9143 packet_result
9144 remote_target::remote_send_printf (const char *format, ...)
9145 {
9146 struct remote_state *rs = get_remote_state ();
9147 int max_size = get_remote_packet_size ();
9148 va_list ap;
9149
9150 va_start (ap, format);
9151
9152 rs->buf[0] = '\0';
9153 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9154
9155 va_end (ap);
9156
9157 if (size >= max_size)
9158 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9159
9160 if (putpkt (rs->buf) < 0)
9161 error (_("Communication problem with target."));
9162
9163 rs->buf[0] = '\0';
9164 getpkt (&rs->buf, 0);
9165
9166 return packet_check_result (rs->buf);
9167 }
9168
9169 /* Flash writing can take quite some time. We'll set
9170 effectively infinite timeout for flash operations.
9171 In future, we'll need to decide on a better approach. */
9172 static const int remote_flash_timeout = 1000;
9173
9174 void
9175 remote_target::flash_erase (ULONGEST address, LONGEST length)
9176 {
9177 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9178 enum packet_result ret;
9179 scoped_restore restore_timeout
9180 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9181
9182 ret = remote_send_printf ("vFlashErase:%s,%s",
9183 phex (address, addr_size),
9184 phex (length, 4));
9185 switch (ret)
9186 {
9187 case PACKET_UNKNOWN:
9188 error (_("Remote target does not support flash erase"));
9189 case PACKET_ERROR:
9190 error (_("Error erasing flash with vFlashErase packet"));
9191 default:
9192 break;
9193 }
9194 }
9195
9196 target_xfer_status
9197 remote_target::remote_flash_write (ULONGEST address,
9198 ULONGEST length, ULONGEST *xfered_len,
9199 const gdb_byte *data)
9200 {
9201 scoped_restore restore_timeout
9202 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9203 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9204 xfered_len,'X', 0);
9205 }
9206
9207 void
9208 remote_target::flash_done ()
9209 {
9210 int ret;
9211
9212 scoped_restore restore_timeout
9213 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9214
9215 ret = remote_send_printf ("vFlashDone");
9216
9217 switch (ret)
9218 {
9219 case PACKET_UNKNOWN:
9220 error (_("Remote target does not support vFlashDone"));
9221 case PACKET_ERROR:
9222 error (_("Error finishing flash operation"));
9223 default:
9224 break;
9225 }
9226 }
9227
9228 void
9229 remote_target::files_info ()
9230 {
9231 puts_filtered ("Debugging a target over a serial line.\n");
9232 }
9233 \f
9234 /* Stuff for dealing with the packets which are part of this protocol.
9235 See comment at top of file for details. */
9236
9237 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9238 error to higher layers. Called when a serial error is detected.
9239 The exception message is STRING, followed by a colon and a blank,
9240 the system error message for errno at function entry and final dot
9241 for output compatibility with throw_perror_with_name. */
9242
9243 static void
9244 unpush_and_perror (remote_target *target, const char *string)
9245 {
9246 int saved_errno = errno;
9247
9248 remote_unpush_target (target);
9249 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9250 safe_strerror (saved_errno));
9251 }
9252
9253 /* Read a single character from the remote end. The current quit
9254 handler is overridden to avoid quitting in the middle of packet
9255 sequence, as that would break communication with the remote server.
9256 See remote_serial_quit_handler for more detail. */
9257
9258 int
9259 remote_target::readchar (int timeout)
9260 {
9261 int ch;
9262 struct remote_state *rs = get_remote_state ();
9263
9264 {
9265 scoped_restore restore_quit_target
9266 = make_scoped_restore (&curr_quit_handler_target, this);
9267 scoped_restore restore_quit
9268 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9269
9270 rs->got_ctrlc_during_io = 0;
9271
9272 ch = serial_readchar (rs->remote_desc, timeout);
9273
9274 if (rs->got_ctrlc_during_io)
9275 set_quit_flag ();
9276 }
9277
9278 if (ch >= 0)
9279 return ch;
9280
9281 switch ((enum serial_rc) ch)
9282 {
9283 case SERIAL_EOF:
9284 remote_unpush_target (this);
9285 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9286 /* no return */
9287 case SERIAL_ERROR:
9288 unpush_and_perror (this, _("Remote communication error. "
9289 "Target disconnected."));
9290 /* no return */
9291 case SERIAL_TIMEOUT:
9292 break;
9293 }
9294 return ch;
9295 }
9296
9297 /* Wrapper for serial_write that closes the target and throws if
9298 writing fails. The current quit handler is overridden to avoid
9299 quitting in the middle of packet sequence, as that would break
9300 communication with the remote server. See
9301 remote_serial_quit_handler for more detail. */
9302
9303 void
9304 remote_target::remote_serial_write (const char *str, int len)
9305 {
9306 struct remote_state *rs = get_remote_state ();
9307
9308 scoped_restore restore_quit_target
9309 = make_scoped_restore (&curr_quit_handler_target, this);
9310 scoped_restore restore_quit
9311 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9312
9313 rs->got_ctrlc_during_io = 0;
9314
9315 if (serial_write (rs->remote_desc, str, len))
9316 {
9317 unpush_and_perror (this, _("Remote communication error. "
9318 "Target disconnected."));
9319 }
9320
9321 if (rs->got_ctrlc_during_io)
9322 set_quit_flag ();
9323 }
9324
9325 /* Return a string representing an escaped version of BUF, of len N.
9326 E.g. \n is converted to \\n, \t to \\t, etc. */
9327
9328 static std::string
9329 escape_buffer (const char *buf, int n)
9330 {
9331 string_file stb;
9332
9333 stb.putstrn (buf, n, '\\');
9334 return std::move (stb.string ());
9335 }
9336
9337 /* Display a null-terminated packet on stdout, for debugging, using C
9338 string notation. */
9339
9340 static void
9341 print_packet (const char *buf)
9342 {
9343 puts_filtered ("\"");
9344 fputstr_filtered (buf, '"', gdb_stdout);
9345 puts_filtered ("\"");
9346 }
9347
9348 int
9349 remote_target::putpkt (const char *buf)
9350 {
9351 return putpkt_binary (buf, strlen (buf));
9352 }
9353
9354 /* Wrapper around remote_target::putpkt to avoid exporting
9355 remote_target. */
9356
9357 int
9358 putpkt (remote_target *remote, const char *buf)
9359 {
9360 return remote->putpkt (buf);
9361 }
9362
9363 /* Send a packet to the remote machine, with error checking. The data
9364 of the packet is in BUF. The string in BUF can be at most
9365 get_remote_packet_size () - 5 to account for the $, # and checksum,
9366 and for a possible /0 if we are debugging (remote_debug) and want
9367 to print the sent packet as a string. */
9368
9369 int
9370 remote_target::putpkt_binary (const char *buf, int cnt)
9371 {
9372 struct remote_state *rs = get_remote_state ();
9373 int i;
9374 unsigned char csum = 0;
9375 gdb::def_vector<char> data (cnt + 6);
9376 char *buf2 = data.data ();
9377
9378 int ch;
9379 int tcount = 0;
9380 char *p;
9381
9382 /* Catch cases like trying to read memory or listing threads while
9383 we're waiting for a stop reply. The remote server wouldn't be
9384 ready to handle this request, so we'd hang and timeout. We don't
9385 have to worry about this in synchronous mode, because in that
9386 case it's not possible to issue a command while the target is
9387 running. This is not a problem in non-stop mode, because in that
9388 case, the stub is always ready to process serial input. */
9389 if (!target_is_non_stop_p ()
9390 && target_is_async_p ()
9391 && rs->waiting_for_stop_reply)
9392 {
9393 error (_("Cannot execute this command while the target is running.\n"
9394 "Use the \"interrupt\" command to stop the target\n"
9395 "and then try again."));
9396 }
9397
9398 /* We're sending out a new packet. Make sure we don't look at a
9399 stale cached response. */
9400 rs->cached_wait_status = 0;
9401
9402 /* Copy the packet into buffer BUF2, encapsulating it
9403 and giving it a checksum. */
9404
9405 p = buf2;
9406 *p++ = '$';
9407
9408 for (i = 0; i < cnt; i++)
9409 {
9410 csum += buf[i];
9411 *p++ = buf[i];
9412 }
9413 *p++ = '#';
9414 *p++ = tohex ((csum >> 4) & 0xf);
9415 *p++ = tohex (csum & 0xf);
9416
9417 /* Send it over and over until we get a positive ack. */
9418
9419 while (1)
9420 {
9421 int started_error_output = 0;
9422
9423 if (remote_debug)
9424 {
9425 *p = '\0';
9426
9427 int len = (int) (p - buf2);
9428 int max_chars;
9429
9430 if (remote_packet_max_chars < 0)
9431 max_chars = len;
9432 else
9433 max_chars = remote_packet_max_chars;
9434
9435 std::string str
9436 = escape_buffer (buf2, std::min (len, max_chars));
9437
9438 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9439
9440 if (len > max_chars)
9441 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9442 len - max_chars);
9443
9444 fprintf_unfiltered (gdb_stdlog, "...");
9445
9446 gdb_flush (gdb_stdlog);
9447 }
9448 remote_serial_write (buf2, p - buf2);
9449
9450 /* If this is a no acks version of the remote protocol, send the
9451 packet and move on. */
9452 if (rs->noack_mode)
9453 break;
9454
9455 /* Read until either a timeout occurs (-2) or '+' is read.
9456 Handle any notification that arrives in the mean time. */
9457 while (1)
9458 {
9459 ch = readchar (remote_timeout);
9460
9461 if (remote_debug)
9462 {
9463 switch (ch)
9464 {
9465 case '+':
9466 case '-':
9467 case SERIAL_TIMEOUT:
9468 case '$':
9469 case '%':
9470 if (started_error_output)
9471 {
9472 putchar_unfiltered ('\n');
9473 started_error_output = 0;
9474 }
9475 }
9476 }
9477
9478 switch (ch)
9479 {
9480 case '+':
9481 if (remote_debug)
9482 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9483 return 1;
9484 case '-':
9485 if (remote_debug)
9486 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9487 /* FALLTHROUGH */
9488 case SERIAL_TIMEOUT:
9489 tcount++;
9490 if (tcount > 3)
9491 return 0;
9492 break; /* Retransmit buffer. */
9493 case '$':
9494 {
9495 if (remote_debug)
9496 fprintf_unfiltered (gdb_stdlog,
9497 "Packet instead of Ack, ignoring it\n");
9498 /* It's probably an old response sent because an ACK
9499 was lost. Gobble up the packet and ack it so it
9500 doesn't get retransmitted when we resend this
9501 packet. */
9502 skip_frame ();
9503 remote_serial_write ("+", 1);
9504 continue; /* Now, go look for +. */
9505 }
9506
9507 case '%':
9508 {
9509 int val;
9510
9511 /* If we got a notification, handle it, and go back to looking
9512 for an ack. */
9513 /* We've found the start of a notification. Now
9514 collect the data. */
9515 val = read_frame (&rs->buf);
9516 if (val >= 0)
9517 {
9518 if (remote_debug)
9519 {
9520 std::string str = escape_buffer (rs->buf.data (), val);
9521
9522 fprintf_unfiltered (gdb_stdlog,
9523 " Notification received: %s\n",
9524 str.c_str ());
9525 }
9526 handle_notification (rs->notif_state, rs->buf.data ());
9527 /* We're in sync now, rewait for the ack. */
9528 tcount = 0;
9529 }
9530 else
9531 {
9532 if (remote_debug)
9533 {
9534 if (!started_error_output)
9535 {
9536 started_error_output = 1;
9537 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9538 }
9539 fputc_unfiltered (ch & 0177, gdb_stdlog);
9540 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9541 }
9542 }
9543 continue;
9544 }
9545 /* fall-through */
9546 default:
9547 if (remote_debug)
9548 {
9549 if (!started_error_output)
9550 {
9551 started_error_output = 1;
9552 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9553 }
9554 fputc_unfiltered (ch & 0177, gdb_stdlog);
9555 }
9556 continue;
9557 }
9558 break; /* Here to retransmit. */
9559 }
9560
9561 #if 0
9562 /* This is wrong. If doing a long backtrace, the user should be
9563 able to get out next time we call QUIT, without anything as
9564 violent as interrupt_query. If we want to provide a way out of
9565 here without getting to the next QUIT, it should be based on
9566 hitting ^C twice as in remote_wait. */
9567 if (quit_flag)
9568 {
9569 quit_flag = 0;
9570 interrupt_query ();
9571 }
9572 #endif
9573 }
9574
9575 return 0;
9576 }
9577
9578 /* Come here after finding the start of a frame when we expected an
9579 ack. Do our best to discard the rest of this packet. */
9580
9581 void
9582 remote_target::skip_frame ()
9583 {
9584 int c;
9585
9586 while (1)
9587 {
9588 c = readchar (remote_timeout);
9589 switch (c)
9590 {
9591 case SERIAL_TIMEOUT:
9592 /* Nothing we can do. */
9593 return;
9594 case '#':
9595 /* Discard the two bytes of checksum and stop. */
9596 c = readchar (remote_timeout);
9597 if (c >= 0)
9598 c = readchar (remote_timeout);
9599
9600 return;
9601 case '*': /* Run length encoding. */
9602 /* Discard the repeat count. */
9603 c = readchar (remote_timeout);
9604 if (c < 0)
9605 return;
9606 break;
9607 default:
9608 /* A regular character. */
9609 break;
9610 }
9611 }
9612 }
9613
9614 /* Come here after finding the start of the frame. Collect the rest
9615 into *BUF, verifying the checksum, length, and handling run-length
9616 compression. NUL terminate the buffer. If there is not enough room,
9617 expand *BUF.
9618
9619 Returns -1 on error, number of characters in buffer (ignoring the
9620 trailing NULL) on success. (could be extended to return one of the
9621 SERIAL status indications). */
9622
9623 long
9624 remote_target::read_frame (gdb::char_vector *buf_p)
9625 {
9626 unsigned char csum;
9627 long bc;
9628 int c;
9629 char *buf = buf_p->data ();
9630 struct remote_state *rs = get_remote_state ();
9631
9632 csum = 0;
9633 bc = 0;
9634
9635 while (1)
9636 {
9637 c = readchar (remote_timeout);
9638 switch (c)
9639 {
9640 case SERIAL_TIMEOUT:
9641 if (remote_debug)
9642 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9643 return -1;
9644 case '$':
9645 if (remote_debug)
9646 fputs_filtered ("Saw new packet start in middle of old one\n",
9647 gdb_stdlog);
9648 return -1; /* Start a new packet, count retries. */
9649 case '#':
9650 {
9651 unsigned char pktcsum;
9652 int check_0 = 0;
9653 int check_1 = 0;
9654
9655 buf[bc] = '\0';
9656
9657 check_0 = readchar (remote_timeout);
9658 if (check_0 >= 0)
9659 check_1 = readchar (remote_timeout);
9660
9661 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9662 {
9663 if (remote_debug)
9664 fputs_filtered ("Timeout in checksum, retrying\n",
9665 gdb_stdlog);
9666 return -1;
9667 }
9668 else if (check_0 < 0 || check_1 < 0)
9669 {
9670 if (remote_debug)
9671 fputs_filtered ("Communication error in checksum\n",
9672 gdb_stdlog);
9673 return -1;
9674 }
9675
9676 /* Don't recompute the checksum; with no ack packets we
9677 don't have any way to indicate a packet retransmission
9678 is necessary. */
9679 if (rs->noack_mode)
9680 return bc;
9681
9682 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9683 if (csum == pktcsum)
9684 return bc;
9685
9686 if (remote_debug)
9687 {
9688 std::string str = escape_buffer (buf, bc);
9689
9690 fprintf_unfiltered (gdb_stdlog,
9691 "Bad checksum, sentsum=0x%x, "
9692 "csum=0x%x, buf=%s\n",
9693 pktcsum, csum, str.c_str ());
9694 }
9695 /* Number of characters in buffer ignoring trailing
9696 NULL. */
9697 return -1;
9698 }
9699 case '*': /* Run length encoding. */
9700 {
9701 int repeat;
9702
9703 csum += c;
9704 c = readchar (remote_timeout);
9705 csum += c;
9706 repeat = c - ' ' + 3; /* Compute repeat count. */
9707
9708 /* The character before ``*'' is repeated. */
9709
9710 if (repeat > 0 && repeat <= 255 && bc > 0)
9711 {
9712 if (bc + repeat - 1 >= buf_p->size () - 1)
9713 {
9714 /* Make some more room in the buffer. */
9715 buf_p->resize (buf_p->size () + repeat);
9716 buf = buf_p->data ();
9717 }
9718
9719 memset (&buf[bc], buf[bc - 1], repeat);
9720 bc += repeat;
9721 continue;
9722 }
9723
9724 buf[bc] = '\0';
9725 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9726 return -1;
9727 }
9728 default:
9729 if (bc >= buf_p->size () - 1)
9730 {
9731 /* Make some more room in the buffer. */
9732 buf_p->resize (buf_p->size () * 2);
9733 buf = buf_p->data ();
9734 }
9735
9736 buf[bc++] = c;
9737 csum += c;
9738 continue;
9739 }
9740 }
9741 }
9742
9743 /* Set this to the maximum number of seconds to wait instead of waiting forever
9744 in target_wait(). If this timer times out, then it generates an error and
9745 the command is aborted. This replaces most of the need for timeouts in the
9746 GDB test suite, and makes it possible to distinguish between a hung target
9747 and one with slow communications. */
9748
9749 static int watchdog = 0;
9750 static void
9751 show_watchdog (struct ui_file *file, int from_tty,
9752 struct cmd_list_element *c, const char *value)
9753 {
9754 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9755 }
9756
9757 /* Read a packet from the remote machine, with error checking, and
9758 store it in *BUF. Resize *BUF if necessary to hold the result. If
9759 FOREVER, wait forever rather than timing out; this is used (in
9760 synchronous mode) to wait for a target that is is executing user
9761 code to stop. */
9762 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9763 don't have to change all the calls to getpkt to deal with the
9764 return value, because at the moment I don't know what the right
9765 thing to do it for those. */
9766
9767 void
9768 remote_target::getpkt (gdb::char_vector *buf, int forever)
9769 {
9770 getpkt_sane (buf, forever);
9771 }
9772
9773
9774 /* Read a packet from the remote machine, with error checking, and
9775 store it in *BUF. Resize *BUF if necessary to hold the result. If
9776 FOREVER, wait forever rather than timing out; this is used (in
9777 synchronous mode) to wait for a target that is is executing user
9778 code to stop. If FOREVER == 0, this function is allowed to time
9779 out gracefully and return an indication of this to the caller.
9780 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9781 consider receiving a notification enough reason to return to the
9782 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9783 holds a notification or not (a regular packet). */
9784
9785 int
9786 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9787 int forever, int expecting_notif,
9788 int *is_notif)
9789 {
9790 struct remote_state *rs = get_remote_state ();
9791 int c;
9792 int tries;
9793 int timeout;
9794 int val = -1;
9795
9796 /* We're reading a new response. Make sure we don't look at a
9797 previously cached response. */
9798 rs->cached_wait_status = 0;
9799
9800 strcpy (buf->data (), "timeout");
9801
9802 if (forever)
9803 timeout = watchdog > 0 ? watchdog : -1;
9804 else if (expecting_notif)
9805 timeout = 0; /* There should already be a char in the buffer. If
9806 not, bail out. */
9807 else
9808 timeout = remote_timeout;
9809
9810 #define MAX_TRIES 3
9811
9812 /* Process any number of notifications, and then return when
9813 we get a packet. */
9814 for (;;)
9815 {
9816 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9817 times. */
9818 for (tries = 1; tries <= MAX_TRIES; tries++)
9819 {
9820 /* This can loop forever if the remote side sends us
9821 characters continuously, but if it pauses, we'll get
9822 SERIAL_TIMEOUT from readchar because of timeout. Then
9823 we'll count that as a retry.
9824
9825 Note that even when forever is set, we will only wait
9826 forever prior to the start of a packet. After that, we
9827 expect characters to arrive at a brisk pace. They should
9828 show up within remote_timeout intervals. */
9829 do
9830 c = readchar (timeout);
9831 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9832
9833 if (c == SERIAL_TIMEOUT)
9834 {
9835 if (expecting_notif)
9836 return -1; /* Don't complain, it's normal to not get
9837 anything in this case. */
9838
9839 if (forever) /* Watchdog went off? Kill the target. */
9840 {
9841 remote_unpush_target (this);
9842 throw_error (TARGET_CLOSE_ERROR,
9843 _("Watchdog timeout has expired. "
9844 "Target detached."));
9845 }
9846 if (remote_debug)
9847 fputs_filtered ("Timed out.\n", gdb_stdlog);
9848 }
9849 else
9850 {
9851 /* We've found the start of a packet or notification.
9852 Now collect the data. */
9853 val = read_frame (buf);
9854 if (val >= 0)
9855 break;
9856 }
9857
9858 remote_serial_write ("-", 1);
9859 }
9860
9861 if (tries > MAX_TRIES)
9862 {
9863 /* We have tried hard enough, and just can't receive the
9864 packet/notification. Give up. */
9865 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9866
9867 /* Skip the ack char if we're in no-ack mode. */
9868 if (!rs->noack_mode)
9869 remote_serial_write ("+", 1);
9870 return -1;
9871 }
9872
9873 /* If we got an ordinary packet, return that to our caller. */
9874 if (c == '$')
9875 {
9876 if (remote_debug)
9877 {
9878 int max_chars;
9879
9880 if (remote_packet_max_chars < 0)
9881 max_chars = val;
9882 else
9883 max_chars = remote_packet_max_chars;
9884
9885 std::string str
9886 = escape_buffer (buf->data (),
9887 std::min (val, max_chars));
9888
9889 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9890 str.c_str ());
9891
9892 if (val > max_chars)
9893 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9894 val - max_chars);
9895
9896 fprintf_unfiltered (gdb_stdlog, "\n");
9897 }
9898
9899 /* Skip the ack char if we're in no-ack mode. */
9900 if (!rs->noack_mode)
9901 remote_serial_write ("+", 1);
9902 if (is_notif != NULL)
9903 *is_notif = 0;
9904 return val;
9905 }
9906
9907 /* If we got a notification, handle it, and go back to looking
9908 for a packet. */
9909 else
9910 {
9911 gdb_assert (c == '%');
9912
9913 if (remote_debug)
9914 {
9915 std::string str = escape_buffer (buf->data (), val);
9916
9917 fprintf_unfiltered (gdb_stdlog,
9918 " Notification received: %s\n",
9919 str.c_str ());
9920 }
9921 if (is_notif != NULL)
9922 *is_notif = 1;
9923
9924 handle_notification (rs->notif_state, buf->data ());
9925
9926 /* Notifications require no acknowledgement. */
9927
9928 if (expecting_notif)
9929 return val;
9930 }
9931 }
9932 }
9933
9934 int
9935 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9936 {
9937 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9938 }
9939
9940 int
9941 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9942 int *is_notif)
9943 {
9944 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9945 }
9946
9947 /* Kill any new fork children of process PID that haven't been
9948 processed by follow_fork. */
9949
9950 void
9951 remote_target::kill_new_fork_children (int pid)
9952 {
9953 remote_state *rs = get_remote_state ();
9954 struct notif_client *notif = &notif_client_stop;
9955
9956 /* Kill the fork child threads of any threads in process PID
9957 that are stopped at a fork event. */
9958 for (thread_info *thread : all_non_exited_threads (this))
9959 {
9960 struct target_waitstatus *ws = &thread->pending_follow;
9961
9962 if (is_pending_fork_parent (ws, pid, thread->ptid))
9963 {
9964 int child_pid = ws->value.related_pid.pid ();
9965 int res;
9966
9967 res = remote_vkill (child_pid);
9968 if (res != 0)
9969 error (_("Can't kill fork child process %d"), child_pid);
9970 }
9971 }
9972
9973 /* Check for any pending fork events (not reported or processed yet)
9974 in process PID and kill those fork child threads as well. */
9975 remote_notif_get_pending_events (notif);
9976 for (auto &event : rs->stop_reply_queue)
9977 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9978 {
9979 int child_pid = event->ws.value.related_pid.pid ();
9980 int res;
9981
9982 res = remote_vkill (child_pid);
9983 if (res != 0)
9984 error (_("Can't kill fork child process %d"), child_pid);
9985 }
9986 }
9987
9988 \f
9989 /* Target hook to kill the current inferior. */
9990
9991 void
9992 remote_target::kill ()
9993 {
9994 int res = -1;
9995 int pid = inferior_ptid.pid ();
9996 struct remote_state *rs = get_remote_state ();
9997
9998 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9999 {
10000 /* If we're stopped while forking and we haven't followed yet,
10001 kill the child task. We need to do this before killing the
10002 parent task because if this is a vfork then the parent will
10003 be sleeping. */
10004 kill_new_fork_children (pid);
10005
10006 res = remote_vkill (pid);
10007 if (res == 0)
10008 {
10009 target_mourn_inferior (inferior_ptid);
10010 return;
10011 }
10012 }
10013
10014 /* If we are in 'target remote' mode and we are killing the only
10015 inferior, then we will tell gdbserver to exit and unpush the
10016 target. */
10017 if (res == -1 && !remote_multi_process_p (rs)
10018 && number_of_live_inferiors (this) == 1)
10019 {
10020 remote_kill_k ();
10021
10022 /* We've killed the remote end, we get to mourn it. If we are
10023 not in extended mode, mourning the inferior also unpushes
10024 remote_ops from the target stack, which closes the remote
10025 connection. */
10026 target_mourn_inferior (inferior_ptid);
10027
10028 return;
10029 }
10030
10031 error (_("Can't kill process"));
10032 }
10033
10034 /* Send a kill request to the target using the 'vKill' packet. */
10035
10036 int
10037 remote_target::remote_vkill (int pid)
10038 {
10039 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10040 return -1;
10041
10042 remote_state *rs = get_remote_state ();
10043
10044 /* Tell the remote target to detach. */
10045 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10046 putpkt (rs->buf);
10047 getpkt (&rs->buf, 0);
10048
10049 switch (packet_ok (rs->buf,
10050 &remote_protocol_packets[PACKET_vKill]))
10051 {
10052 case PACKET_OK:
10053 return 0;
10054 case PACKET_ERROR:
10055 return 1;
10056 case PACKET_UNKNOWN:
10057 return -1;
10058 default:
10059 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10060 }
10061 }
10062
10063 /* Send a kill request to the target using the 'k' packet. */
10064
10065 void
10066 remote_target::remote_kill_k ()
10067 {
10068 /* Catch errors so the user can quit from gdb even when we
10069 aren't on speaking terms with the remote system. */
10070 try
10071 {
10072 putpkt ("k");
10073 }
10074 catch (const gdb_exception_error &ex)
10075 {
10076 if (ex.error == TARGET_CLOSE_ERROR)
10077 {
10078 /* If we got an (EOF) error that caused the target
10079 to go away, then we're done, that's what we wanted.
10080 "k" is susceptible to cause a premature EOF, given
10081 that the remote server isn't actually required to
10082 reply to "k", and it can happen that it doesn't
10083 even get to reply ACK to the "k". */
10084 return;
10085 }
10086
10087 /* Otherwise, something went wrong. We didn't actually kill
10088 the target. Just propagate the exception, and let the
10089 user or higher layers decide what to do. */
10090 throw;
10091 }
10092 }
10093
10094 void
10095 remote_target::mourn_inferior ()
10096 {
10097 struct remote_state *rs = get_remote_state ();
10098
10099 /* We're no longer interested in notification events of an inferior
10100 that exited or was killed/detached. */
10101 discard_pending_stop_replies (current_inferior ());
10102
10103 /* In 'target remote' mode with one inferior, we close the connection. */
10104 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10105 {
10106 remote_unpush_target (this);
10107 return;
10108 }
10109
10110 /* In case we got here due to an error, but we're going to stay
10111 connected. */
10112 rs->waiting_for_stop_reply = 0;
10113
10114 /* If the current general thread belonged to the process we just
10115 detached from or has exited, the remote side current general
10116 thread becomes undefined. Considering a case like this:
10117
10118 - We just got here due to a detach.
10119 - The process that we're detaching from happens to immediately
10120 report a global breakpoint being hit in non-stop mode, in the
10121 same thread we had selected before.
10122 - GDB attaches to this process again.
10123 - This event happens to be the next event we handle.
10124
10125 GDB would consider that the current general thread didn't need to
10126 be set on the stub side (with Hg), since for all it knew,
10127 GENERAL_THREAD hadn't changed.
10128
10129 Notice that although in all-stop mode, the remote server always
10130 sets the current thread to the thread reporting the stop event,
10131 that doesn't happen in non-stop mode; in non-stop, the stub *must
10132 not* change the current thread when reporting a breakpoint hit,
10133 due to the decoupling of event reporting and event handling.
10134
10135 To keep things simple, we always invalidate our notion of the
10136 current thread. */
10137 record_currthread (rs, minus_one_ptid);
10138
10139 /* Call common code to mark the inferior as not running. */
10140 generic_mourn_inferior ();
10141 }
10142
10143 bool
10144 extended_remote_target::supports_disable_randomization ()
10145 {
10146 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10147 }
10148
10149 void
10150 remote_target::extended_remote_disable_randomization (int val)
10151 {
10152 struct remote_state *rs = get_remote_state ();
10153 char *reply;
10154
10155 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10156 "QDisableRandomization:%x", val);
10157 putpkt (rs->buf);
10158 reply = remote_get_noisy_reply ();
10159 if (*reply == '\0')
10160 error (_("Target does not support QDisableRandomization."));
10161 if (strcmp (reply, "OK") != 0)
10162 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10163 }
10164
10165 int
10166 remote_target::extended_remote_run (const std::string &args)
10167 {
10168 struct remote_state *rs = get_remote_state ();
10169 int len;
10170 const char *remote_exec_file = get_remote_exec_file ();
10171
10172 /* If the user has disabled vRun support, or we have detected that
10173 support is not available, do not try it. */
10174 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10175 return -1;
10176
10177 strcpy (rs->buf.data (), "vRun;");
10178 len = strlen (rs->buf.data ());
10179
10180 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10181 error (_("Remote file name too long for run packet"));
10182 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10183 strlen (remote_exec_file));
10184
10185 if (!args.empty ())
10186 {
10187 int i;
10188
10189 gdb_argv argv (args.c_str ());
10190 for (i = 0; argv[i] != NULL; i++)
10191 {
10192 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10193 error (_("Argument list too long for run packet"));
10194 rs->buf[len++] = ';';
10195 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10196 strlen (argv[i]));
10197 }
10198 }
10199
10200 rs->buf[len++] = '\0';
10201
10202 putpkt (rs->buf);
10203 getpkt (&rs->buf, 0);
10204
10205 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10206 {
10207 case PACKET_OK:
10208 /* We have a wait response. All is well. */
10209 return 0;
10210 case PACKET_UNKNOWN:
10211 return -1;
10212 case PACKET_ERROR:
10213 if (remote_exec_file[0] == '\0')
10214 error (_("Running the default executable on the remote target failed; "
10215 "try \"set remote exec-file\"?"));
10216 else
10217 error (_("Running \"%s\" on the remote target failed"),
10218 remote_exec_file);
10219 default:
10220 gdb_assert_not_reached (_("bad switch"));
10221 }
10222 }
10223
10224 /* Helper function to send set/unset environment packets. ACTION is
10225 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10226 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10227 sent. */
10228
10229 void
10230 remote_target::send_environment_packet (const char *action,
10231 const char *packet,
10232 const char *value)
10233 {
10234 remote_state *rs = get_remote_state ();
10235
10236 /* Convert the environment variable to an hex string, which
10237 is the best format to be transmitted over the wire. */
10238 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10239 strlen (value));
10240
10241 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10242 "%s:%s", packet, encoded_value.c_str ());
10243
10244 putpkt (rs->buf);
10245 getpkt (&rs->buf, 0);
10246 if (strcmp (rs->buf.data (), "OK") != 0)
10247 warning (_("Unable to %s environment variable '%s' on remote."),
10248 action, value);
10249 }
10250
10251 /* Helper function to handle the QEnvironment* packets. */
10252
10253 void
10254 remote_target::extended_remote_environment_support ()
10255 {
10256 remote_state *rs = get_remote_state ();
10257
10258 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10259 {
10260 putpkt ("QEnvironmentReset");
10261 getpkt (&rs->buf, 0);
10262 if (strcmp (rs->buf.data (), "OK") != 0)
10263 warning (_("Unable to reset environment on remote."));
10264 }
10265
10266 gdb_environ *e = &current_inferior ()->environment;
10267
10268 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10269 for (const std::string &el : e->user_set_env ())
10270 send_environment_packet ("set", "QEnvironmentHexEncoded",
10271 el.c_str ());
10272
10273 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10274 for (const std::string &el : e->user_unset_env ())
10275 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10276 }
10277
10278 /* Helper function to set the current working directory for the
10279 inferior in the remote target. */
10280
10281 void
10282 remote_target::extended_remote_set_inferior_cwd ()
10283 {
10284 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10285 {
10286 const char *inferior_cwd = get_inferior_cwd ();
10287 remote_state *rs = get_remote_state ();
10288
10289 if (inferior_cwd != NULL)
10290 {
10291 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10292 strlen (inferior_cwd));
10293
10294 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10295 "QSetWorkingDir:%s", hexpath.c_str ());
10296 }
10297 else
10298 {
10299 /* An empty inferior_cwd means that the user wants us to
10300 reset the remote server's inferior's cwd. */
10301 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10302 "QSetWorkingDir:");
10303 }
10304
10305 putpkt (rs->buf);
10306 getpkt (&rs->buf, 0);
10307 if (packet_ok (rs->buf,
10308 &remote_protocol_packets[PACKET_QSetWorkingDir])
10309 != PACKET_OK)
10310 error (_("\
10311 Remote replied unexpectedly while setting the inferior's working\n\
10312 directory: %s"),
10313 rs->buf.data ());
10314
10315 }
10316 }
10317
10318 /* In the extended protocol we want to be able to do things like
10319 "run" and have them basically work as expected. So we need
10320 a special create_inferior function. We support changing the
10321 executable file and the command line arguments, but not the
10322 environment. */
10323
10324 void
10325 extended_remote_target::create_inferior (const char *exec_file,
10326 const std::string &args,
10327 char **env, int from_tty)
10328 {
10329 int run_worked;
10330 char *stop_reply;
10331 struct remote_state *rs = get_remote_state ();
10332 const char *remote_exec_file = get_remote_exec_file ();
10333
10334 /* If running asynchronously, register the target file descriptor
10335 with the event loop. */
10336 if (target_can_async_p ())
10337 target_async (1);
10338
10339 /* Disable address space randomization if requested (and supported). */
10340 if (supports_disable_randomization ())
10341 extended_remote_disable_randomization (disable_randomization);
10342
10343 /* If startup-with-shell is on, we inform gdbserver to start the
10344 remote inferior using a shell. */
10345 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10346 {
10347 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10348 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10349 putpkt (rs->buf);
10350 getpkt (&rs->buf, 0);
10351 if (strcmp (rs->buf.data (), "OK") != 0)
10352 error (_("\
10353 Remote replied unexpectedly while setting startup-with-shell: %s"),
10354 rs->buf.data ());
10355 }
10356
10357 extended_remote_environment_support ();
10358
10359 extended_remote_set_inferior_cwd ();
10360
10361 /* Now restart the remote server. */
10362 run_worked = extended_remote_run (args) != -1;
10363 if (!run_worked)
10364 {
10365 /* vRun was not supported. Fail if we need it to do what the
10366 user requested. */
10367 if (remote_exec_file[0])
10368 error (_("Remote target does not support \"set remote exec-file\""));
10369 if (!args.empty ())
10370 error (_("Remote target does not support \"set args\" or run ARGS"));
10371
10372 /* Fall back to "R". */
10373 extended_remote_restart ();
10374 }
10375
10376 /* vRun's success return is a stop reply. */
10377 stop_reply = run_worked ? rs->buf.data () : NULL;
10378 add_current_inferior_and_thread (stop_reply);
10379
10380 /* Get updated offsets, if the stub uses qOffsets. */
10381 get_offsets ();
10382 }
10383 \f
10384
10385 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10386 the list of conditions (in agent expression bytecode format), if any, the
10387 target needs to evaluate. The output is placed into the packet buffer
10388 started from BUF and ended at BUF_END. */
10389
10390 static int
10391 remote_add_target_side_condition (struct gdbarch *gdbarch,
10392 struct bp_target_info *bp_tgt, char *buf,
10393 char *buf_end)
10394 {
10395 if (bp_tgt->conditions.empty ())
10396 return 0;
10397
10398 buf += strlen (buf);
10399 xsnprintf (buf, buf_end - buf, "%s", ";");
10400 buf++;
10401
10402 /* Send conditions to the target. */
10403 for (agent_expr *aexpr : bp_tgt->conditions)
10404 {
10405 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10406 buf += strlen (buf);
10407 for (int i = 0; i < aexpr->len; ++i)
10408 buf = pack_hex_byte (buf, aexpr->buf[i]);
10409 *buf = '\0';
10410 }
10411 return 0;
10412 }
10413
10414 static void
10415 remote_add_target_side_commands (struct gdbarch *gdbarch,
10416 struct bp_target_info *bp_tgt, char *buf)
10417 {
10418 if (bp_tgt->tcommands.empty ())
10419 return;
10420
10421 buf += strlen (buf);
10422
10423 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10424 buf += strlen (buf);
10425
10426 /* Concatenate all the agent expressions that are commands into the
10427 cmds parameter. */
10428 for (agent_expr *aexpr : bp_tgt->tcommands)
10429 {
10430 sprintf (buf, "X%x,", aexpr->len);
10431 buf += strlen (buf);
10432 for (int i = 0; i < aexpr->len; ++i)
10433 buf = pack_hex_byte (buf, aexpr->buf[i]);
10434 *buf = '\0';
10435 }
10436 }
10437
10438 /* Insert a breakpoint. On targets that have software breakpoint
10439 support, we ask the remote target to do the work; on targets
10440 which don't, we insert a traditional memory breakpoint. */
10441
10442 int
10443 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10444 struct bp_target_info *bp_tgt)
10445 {
10446 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10447 If it succeeds, then set the support to PACKET_ENABLE. If it
10448 fails, and the user has explicitly requested the Z support then
10449 report an error, otherwise, mark it disabled and go on. */
10450
10451 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10452 {
10453 CORE_ADDR addr = bp_tgt->reqstd_address;
10454 struct remote_state *rs;
10455 char *p, *endbuf;
10456
10457 /* Make sure the remote is pointing at the right process, if
10458 necessary. */
10459 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10460 set_general_process ();
10461
10462 rs = get_remote_state ();
10463 p = rs->buf.data ();
10464 endbuf = p + get_remote_packet_size ();
10465
10466 *(p++) = 'Z';
10467 *(p++) = '0';
10468 *(p++) = ',';
10469 addr = (ULONGEST) remote_address_masked (addr);
10470 p += hexnumstr (p, addr);
10471 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10472
10473 if (supports_evaluation_of_breakpoint_conditions ())
10474 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10475
10476 if (can_run_breakpoint_commands ())
10477 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10478
10479 putpkt (rs->buf);
10480 getpkt (&rs->buf, 0);
10481
10482 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10483 {
10484 case PACKET_ERROR:
10485 return -1;
10486 case PACKET_OK:
10487 return 0;
10488 case PACKET_UNKNOWN:
10489 break;
10490 }
10491 }
10492
10493 /* If this breakpoint has target-side commands but this stub doesn't
10494 support Z0 packets, throw error. */
10495 if (!bp_tgt->tcommands.empty ())
10496 throw_error (NOT_SUPPORTED_ERROR, _("\
10497 Target doesn't support breakpoints that have target side commands."));
10498
10499 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10500 }
10501
10502 int
10503 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10504 struct bp_target_info *bp_tgt,
10505 enum remove_bp_reason reason)
10506 {
10507 CORE_ADDR addr = bp_tgt->placed_address;
10508 struct remote_state *rs = get_remote_state ();
10509
10510 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10511 {
10512 char *p = rs->buf.data ();
10513 char *endbuf = p + get_remote_packet_size ();
10514
10515 /* Make sure the remote is pointing at the right process, if
10516 necessary. */
10517 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10518 set_general_process ();
10519
10520 *(p++) = 'z';
10521 *(p++) = '0';
10522 *(p++) = ',';
10523
10524 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10525 p += hexnumstr (p, addr);
10526 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10527
10528 putpkt (rs->buf);
10529 getpkt (&rs->buf, 0);
10530
10531 return (rs->buf[0] == 'E');
10532 }
10533
10534 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10535 }
10536
10537 static enum Z_packet_type
10538 watchpoint_to_Z_packet (int type)
10539 {
10540 switch (type)
10541 {
10542 case hw_write:
10543 return Z_PACKET_WRITE_WP;
10544 break;
10545 case hw_read:
10546 return Z_PACKET_READ_WP;
10547 break;
10548 case hw_access:
10549 return Z_PACKET_ACCESS_WP;
10550 break;
10551 default:
10552 internal_error (__FILE__, __LINE__,
10553 _("hw_bp_to_z: bad watchpoint type %d"), type);
10554 }
10555 }
10556
10557 int
10558 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10559 enum target_hw_bp_type type, struct expression *cond)
10560 {
10561 struct remote_state *rs = get_remote_state ();
10562 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10563 char *p;
10564 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10565
10566 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10567 return 1;
10568
10569 /* Make sure the remote is pointing at the right process, if
10570 necessary. */
10571 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10572 set_general_process ();
10573
10574 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10575 p = strchr (rs->buf.data (), '\0');
10576 addr = remote_address_masked (addr);
10577 p += hexnumstr (p, (ULONGEST) addr);
10578 xsnprintf (p, endbuf - p, ",%x", len);
10579
10580 putpkt (rs->buf);
10581 getpkt (&rs->buf, 0);
10582
10583 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10584 {
10585 case PACKET_ERROR:
10586 return -1;
10587 case PACKET_UNKNOWN:
10588 return 1;
10589 case PACKET_OK:
10590 return 0;
10591 }
10592 internal_error (__FILE__, __LINE__,
10593 _("remote_insert_watchpoint: reached end of function"));
10594 }
10595
10596 bool
10597 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10598 CORE_ADDR start, int length)
10599 {
10600 CORE_ADDR diff = remote_address_masked (addr - start);
10601
10602 return diff < length;
10603 }
10604
10605
10606 int
10607 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10608 enum target_hw_bp_type type, struct expression *cond)
10609 {
10610 struct remote_state *rs = get_remote_state ();
10611 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10612 char *p;
10613 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10614
10615 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10616 return -1;
10617
10618 /* Make sure the remote is pointing at the right process, if
10619 necessary. */
10620 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10621 set_general_process ();
10622
10623 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10624 p = strchr (rs->buf.data (), '\0');
10625 addr = remote_address_masked (addr);
10626 p += hexnumstr (p, (ULONGEST) addr);
10627 xsnprintf (p, endbuf - p, ",%x", len);
10628 putpkt (rs->buf);
10629 getpkt (&rs->buf, 0);
10630
10631 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10632 {
10633 case PACKET_ERROR:
10634 case PACKET_UNKNOWN:
10635 return -1;
10636 case PACKET_OK:
10637 return 0;
10638 }
10639 internal_error (__FILE__, __LINE__,
10640 _("remote_remove_watchpoint: reached end of function"));
10641 }
10642
10643
10644 static int remote_hw_watchpoint_limit = -1;
10645 static int remote_hw_watchpoint_length_limit = -1;
10646 static int remote_hw_breakpoint_limit = -1;
10647
10648 int
10649 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10650 {
10651 if (remote_hw_watchpoint_length_limit == 0)
10652 return 0;
10653 else if (remote_hw_watchpoint_length_limit < 0)
10654 return 1;
10655 else if (len <= remote_hw_watchpoint_length_limit)
10656 return 1;
10657 else
10658 return 0;
10659 }
10660
10661 int
10662 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10663 {
10664 if (type == bp_hardware_breakpoint)
10665 {
10666 if (remote_hw_breakpoint_limit == 0)
10667 return 0;
10668 else if (remote_hw_breakpoint_limit < 0)
10669 return 1;
10670 else if (cnt <= remote_hw_breakpoint_limit)
10671 return 1;
10672 }
10673 else
10674 {
10675 if (remote_hw_watchpoint_limit == 0)
10676 return 0;
10677 else if (remote_hw_watchpoint_limit < 0)
10678 return 1;
10679 else if (ot)
10680 return -1;
10681 else if (cnt <= remote_hw_watchpoint_limit)
10682 return 1;
10683 }
10684 return -1;
10685 }
10686
10687 /* The to_stopped_by_sw_breakpoint method of target remote. */
10688
10689 bool
10690 remote_target::stopped_by_sw_breakpoint ()
10691 {
10692 struct thread_info *thread = inferior_thread ();
10693
10694 return (thread->priv != NULL
10695 && (get_remote_thread_info (thread)->stop_reason
10696 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10697 }
10698
10699 /* The to_supports_stopped_by_sw_breakpoint method of target
10700 remote. */
10701
10702 bool
10703 remote_target::supports_stopped_by_sw_breakpoint ()
10704 {
10705 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10706 }
10707
10708 /* The to_stopped_by_hw_breakpoint method of target remote. */
10709
10710 bool
10711 remote_target::stopped_by_hw_breakpoint ()
10712 {
10713 struct thread_info *thread = inferior_thread ();
10714
10715 return (thread->priv != NULL
10716 && (get_remote_thread_info (thread)->stop_reason
10717 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10718 }
10719
10720 /* The to_supports_stopped_by_hw_breakpoint method of target
10721 remote. */
10722
10723 bool
10724 remote_target::supports_stopped_by_hw_breakpoint ()
10725 {
10726 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10727 }
10728
10729 bool
10730 remote_target::stopped_by_watchpoint ()
10731 {
10732 struct thread_info *thread = inferior_thread ();
10733
10734 return (thread->priv != NULL
10735 && (get_remote_thread_info (thread)->stop_reason
10736 == TARGET_STOPPED_BY_WATCHPOINT));
10737 }
10738
10739 bool
10740 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10741 {
10742 struct thread_info *thread = inferior_thread ();
10743
10744 if (thread->priv != NULL
10745 && (get_remote_thread_info (thread)->stop_reason
10746 == TARGET_STOPPED_BY_WATCHPOINT))
10747 {
10748 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10749 return true;
10750 }
10751
10752 return false;
10753 }
10754
10755
10756 int
10757 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10758 struct bp_target_info *bp_tgt)
10759 {
10760 CORE_ADDR addr = bp_tgt->reqstd_address;
10761 struct remote_state *rs;
10762 char *p, *endbuf;
10763 char *message;
10764
10765 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10766 return -1;
10767
10768 /* Make sure the remote is pointing at the right process, if
10769 necessary. */
10770 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10771 set_general_process ();
10772
10773 rs = get_remote_state ();
10774 p = rs->buf.data ();
10775 endbuf = p + get_remote_packet_size ();
10776
10777 *(p++) = 'Z';
10778 *(p++) = '1';
10779 *(p++) = ',';
10780
10781 addr = remote_address_masked (addr);
10782 p += hexnumstr (p, (ULONGEST) addr);
10783 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10784
10785 if (supports_evaluation_of_breakpoint_conditions ())
10786 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10787
10788 if (can_run_breakpoint_commands ())
10789 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10790
10791 putpkt (rs->buf);
10792 getpkt (&rs->buf, 0);
10793
10794 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10795 {
10796 case PACKET_ERROR:
10797 if (rs->buf[1] == '.')
10798 {
10799 message = strchr (&rs->buf[2], '.');
10800 if (message)
10801 error (_("Remote failure reply: %s"), message + 1);
10802 }
10803 return -1;
10804 case PACKET_UNKNOWN:
10805 return -1;
10806 case PACKET_OK:
10807 return 0;
10808 }
10809 internal_error (__FILE__, __LINE__,
10810 _("remote_insert_hw_breakpoint: reached end of function"));
10811 }
10812
10813
10814 int
10815 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10816 struct bp_target_info *bp_tgt)
10817 {
10818 CORE_ADDR addr;
10819 struct remote_state *rs = get_remote_state ();
10820 char *p = rs->buf.data ();
10821 char *endbuf = p + get_remote_packet_size ();
10822
10823 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10824 return -1;
10825
10826 /* Make sure the remote is pointing at the right process, if
10827 necessary. */
10828 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10829 set_general_process ();
10830
10831 *(p++) = 'z';
10832 *(p++) = '1';
10833 *(p++) = ',';
10834
10835 addr = remote_address_masked (bp_tgt->placed_address);
10836 p += hexnumstr (p, (ULONGEST) addr);
10837 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10838
10839 putpkt (rs->buf);
10840 getpkt (&rs->buf, 0);
10841
10842 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10843 {
10844 case PACKET_ERROR:
10845 case PACKET_UNKNOWN:
10846 return -1;
10847 case PACKET_OK:
10848 return 0;
10849 }
10850 internal_error (__FILE__, __LINE__,
10851 _("remote_remove_hw_breakpoint: reached end of function"));
10852 }
10853
10854 /* Verify memory using the "qCRC:" request. */
10855
10856 int
10857 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10858 {
10859 struct remote_state *rs = get_remote_state ();
10860 unsigned long host_crc, target_crc;
10861 char *tmp;
10862
10863 /* It doesn't make sense to use qCRC if the remote target is
10864 connected but not running. */
10865 if (target_has_execution ()
10866 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10867 {
10868 enum packet_result result;
10869
10870 /* Make sure the remote is pointing at the right process. */
10871 set_general_process ();
10872
10873 /* FIXME: assumes lma can fit into long. */
10874 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10875 (long) lma, (long) size);
10876 putpkt (rs->buf);
10877
10878 /* Be clever; compute the host_crc before waiting for target
10879 reply. */
10880 host_crc = xcrc32 (data, size, 0xffffffff);
10881
10882 getpkt (&rs->buf, 0);
10883
10884 result = packet_ok (rs->buf,
10885 &remote_protocol_packets[PACKET_qCRC]);
10886 if (result == PACKET_ERROR)
10887 return -1;
10888 else if (result == PACKET_OK)
10889 {
10890 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10891 target_crc = target_crc * 16 + fromhex (*tmp);
10892
10893 return (host_crc == target_crc);
10894 }
10895 }
10896
10897 return simple_verify_memory (this, data, lma, size);
10898 }
10899
10900 /* compare-sections command
10901
10902 With no arguments, compares each loadable section in the exec bfd
10903 with the same memory range on the target, and reports mismatches.
10904 Useful for verifying the image on the target against the exec file. */
10905
10906 static void
10907 compare_sections_command (const char *args, int from_tty)
10908 {
10909 asection *s;
10910 const char *sectname;
10911 bfd_size_type size;
10912 bfd_vma lma;
10913 int matched = 0;
10914 int mismatched = 0;
10915 int res;
10916 int read_only = 0;
10917
10918 if (!current_program_space->exec_bfd ())
10919 error (_("command cannot be used without an exec file"));
10920
10921 if (args != NULL && strcmp (args, "-r") == 0)
10922 {
10923 read_only = 1;
10924 args = NULL;
10925 }
10926
10927 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
10928 {
10929 if (!(s->flags & SEC_LOAD))
10930 continue; /* Skip non-loadable section. */
10931
10932 if (read_only && (s->flags & SEC_READONLY) == 0)
10933 continue; /* Skip writeable sections */
10934
10935 size = bfd_section_size (s);
10936 if (size == 0)
10937 continue; /* Skip zero-length section. */
10938
10939 sectname = bfd_section_name (s);
10940 if (args && strcmp (args, sectname) != 0)
10941 continue; /* Not the section selected by user. */
10942
10943 matched = 1; /* Do this section. */
10944 lma = s->lma;
10945
10946 gdb::byte_vector sectdata (size);
10947 bfd_get_section_contents (current_program_space->exec_bfd (), s,
10948 sectdata.data (), 0, size);
10949
10950 res = target_verify_memory (sectdata.data (), lma, size);
10951
10952 if (res == -1)
10953 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10954 paddress (target_gdbarch (), lma),
10955 paddress (target_gdbarch (), lma + size));
10956
10957 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10958 paddress (target_gdbarch (), lma),
10959 paddress (target_gdbarch (), lma + size));
10960 if (res)
10961 printf_filtered ("matched.\n");
10962 else
10963 {
10964 printf_filtered ("MIS-MATCHED!\n");
10965 mismatched++;
10966 }
10967 }
10968 if (mismatched > 0)
10969 warning (_("One or more sections of the target image does not match\n\
10970 the loaded file\n"));
10971 if (args && !matched)
10972 printf_filtered (_("No loaded section named '%s'.\n"), args);
10973 }
10974
10975 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10976 into remote target. The number of bytes written to the remote
10977 target is returned, or -1 for error. */
10978
10979 target_xfer_status
10980 remote_target::remote_write_qxfer (const char *object_name,
10981 const char *annex, const gdb_byte *writebuf,
10982 ULONGEST offset, LONGEST len,
10983 ULONGEST *xfered_len,
10984 struct packet_config *packet)
10985 {
10986 int i, buf_len;
10987 ULONGEST n;
10988 struct remote_state *rs = get_remote_state ();
10989 int max_size = get_memory_write_packet_size ();
10990
10991 if (packet_config_support (packet) == PACKET_DISABLE)
10992 return TARGET_XFER_E_IO;
10993
10994 /* Insert header. */
10995 i = snprintf (rs->buf.data (), max_size,
10996 "qXfer:%s:write:%s:%s:",
10997 object_name, annex ? annex : "",
10998 phex_nz (offset, sizeof offset));
10999 max_size -= (i + 1);
11000
11001 /* Escape as much data as fits into rs->buf. */
11002 buf_len = remote_escape_output
11003 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
11004
11005 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
11006 || getpkt_sane (&rs->buf, 0) < 0
11007 || packet_ok (rs->buf, packet) != PACKET_OK)
11008 return TARGET_XFER_E_IO;
11009
11010 unpack_varlen_hex (rs->buf.data (), &n);
11011
11012 *xfered_len = n;
11013 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11014 }
11015
11016 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
11017 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
11018 number of bytes read is returned, or 0 for EOF, or -1 for error.
11019 The number of bytes read may be less than LEN without indicating an
11020 EOF. PACKET is checked and updated to indicate whether the remote
11021 target supports this object. */
11022
11023 target_xfer_status
11024 remote_target::remote_read_qxfer (const char *object_name,
11025 const char *annex,
11026 gdb_byte *readbuf, ULONGEST offset,
11027 LONGEST len,
11028 ULONGEST *xfered_len,
11029 struct packet_config *packet)
11030 {
11031 struct remote_state *rs = get_remote_state ();
11032 LONGEST i, n, packet_len;
11033
11034 if (packet_config_support (packet) == PACKET_DISABLE)
11035 return TARGET_XFER_E_IO;
11036
11037 /* Check whether we've cached an end-of-object packet that matches
11038 this request. */
11039 if (rs->finished_object)
11040 {
11041 if (strcmp (object_name, rs->finished_object) == 0
11042 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11043 && offset == rs->finished_offset)
11044 return TARGET_XFER_EOF;
11045
11046
11047 /* Otherwise, we're now reading something different. Discard
11048 the cache. */
11049 xfree (rs->finished_object);
11050 xfree (rs->finished_annex);
11051 rs->finished_object = NULL;
11052 rs->finished_annex = NULL;
11053 }
11054
11055 /* Request only enough to fit in a single packet. The actual data
11056 may not, since we don't know how much of it will need to be escaped;
11057 the target is free to respond with slightly less data. We subtract
11058 five to account for the response type and the protocol frame. */
11059 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11060 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11061 "qXfer:%s:read:%s:%s,%s",
11062 object_name, annex ? annex : "",
11063 phex_nz (offset, sizeof offset),
11064 phex_nz (n, sizeof n));
11065 i = putpkt (rs->buf);
11066 if (i < 0)
11067 return TARGET_XFER_E_IO;
11068
11069 rs->buf[0] = '\0';
11070 packet_len = getpkt_sane (&rs->buf, 0);
11071 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11072 return TARGET_XFER_E_IO;
11073
11074 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11075 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11076
11077 /* 'm' means there is (or at least might be) more data after this
11078 batch. That does not make sense unless there's at least one byte
11079 of data in this reply. */
11080 if (rs->buf[0] == 'm' && packet_len == 1)
11081 error (_("Remote qXfer reply contained no data."));
11082
11083 /* Got some data. */
11084 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11085 packet_len - 1, readbuf, n);
11086
11087 /* 'l' is an EOF marker, possibly including a final block of data,
11088 or possibly empty. If we have the final block of a non-empty
11089 object, record this fact to bypass a subsequent partial read. */
11090 if (rs->buf[0] == 'l' && offset + i > 0)
11091 {
11092 rs->finished_object = xstrdup (object_name);
11093 rs->finished_annex = xstrdup (annex ? annex : "");
11094 rs->finished_offset = offset + i;
11095 }
11096
11097 if (i == 0)
11098 return TARGET_XFER_EOF;
11099 else
11100 {
11101 *xfered_len = i;
11102 return TARGET_XFER_OK;
11103 }
11104 }
11105
11106 enum target_xfer_status
11107 remote_target::xfer_partial (enum target_object object,
11108 const char *annex, gdb_byte *readbuf,
11109 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11110 ULONGEST *xfered_len)
11111 {
11112 struct remote_state *rs;
11113 int i;
11114 char *p2;
11115 char query_type;
11116 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11117
11118 set_remote_traceframe ();
11119 set_general_thread (inferior_ptid);
11120
11121 rs = get_remote_state ();
11122
11123 /* Handle memory using the standard memory routines. */
11124 if (object == TARGET_OBJECT_MEMORY)
11125 {
11126 /* If the remote target is connected but not running, we should
11127 pass this request down to a lower stratum (e.g. the executable
11128 file). */
11129 if (!target_has_execution ())
11130 return TARGET_XFER_EOF;
11131
11132 if (writebuf != NULL)
11133 return remote_write_bytes (offset, writebuf, len, unit_size,
11134 xfered_len);
11135 else
11136 return remote_read_bytes (offset, readbuf, len, unit_size,
11137 xfered_len);
11138 }
11139
11140 /* Handle extra signal info using qxfer packets. */
11141 if (object == TARGET_OBJECT_SIGNAL_INFO)
11142 {
11143 if (readbuf)
11144 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11145 xfered_len, &remote_protocol_packets
11146 [PACKET_qXfer_siginfo_read]);
11147 else
11148 return remote_write_qxfer ("siginfo", annex,
11149 writebuf, offset, len, xfered_len,
11150 &remote_protocol_packets
11151 [PACKET_qXfer_siginfo_write]);
11152 }
11153
11154 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11155 {
11156 if (readbuf)
11157 return remote_read_qxfer ("statictrace", annex,
11158 readbuf, offset, len, xfered_len,
11159 &remote_protocol_packets
11160 [PACKET_qXfer_statictrace_read]);
11161 else
11162 return TARGET_XFER_E_IO;
11163 }
11164
11165 /* Only handle flash writes. */
11166 if (writebuf != NULL)
11167 {
11168 switch (object)
11169 {
11170 case TARGET_OBJECT_FLASH:
11171 return remote_flash_write (offset, len, xfered_len,
11172 writebuf);
11173
11174 default:
11175 return TARGET_XFER_E_IO;
11176 }
11177 }
11178
11179 /* Map pre-existing objects onto letters. DO NOT do this for new
11180 objects!!! Instead specify new query packets. */
11181 switch (object)
11182 {
11183 case TARGET_OBJECT_AVR:
11184 query_type = 'R';
11185 break;
11186
11187 case TARGET_OBJECT_AUXV:
11188 gdb_assert (annex == NULL);
11189 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11190 xfered_len,
11191 &remote_protocol_packets[PACKET_qXfer_auxv]);
11192
11193 case TARGET_OBJECT_AVAILABLE_FEATURES:
11194 return remote_read_qxfer
11195 ("features", annex, readbuf, offset, len, xfered_len,
11196 &remote_protocol_packets[PACKET_qXfer_features]);
11197
11198 case TARGET_OBJECT_LIBRARIES:
11199 return remote_read_qxfer
11200 ("libraries", annex, readbuf, offset, len, xfered_len,
11201 &remote_protocol_packets[PACKET_qXfer_libraries]);
11202
11203 case TARGET_OBJECT_LIBRARIES_SVR4:
11204 return remote_read_qxfer
11205 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11206 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11207
11208 case TARGET_OBJECT_MEMORY_MAP:
11209 gdb_assert (annex == NULL);
11210 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11211 xfered_len,
11212 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11213
11214 case TARGET_OBJECT_OSDATA:
11215 /* Should only get here if we're connected. */
11216 gdb_assert (rs->remote_desc);
11217 return remote_read_qxfer
11218 ("osdata", annex, readbuf, offset, len, xfered_len,
11219 &remote_protocol_packets[PACKET_qXfer_osdata]);
11220
11221 case TARGET_OBJECT_THREADS:
11222 gdb_assert (annex == NULL);
11223 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11224 xfered_len,
11225 &remote_protocol_packets[PACKET_qXfer_threads]);
11226
11227 case TARGET_OBJECT_TRACEFRAME_INFO:
11228 gdb_assert (annex == NULL);
11229 return remote_read_qxfer
11230 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11231 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11232
11233 case TARGET_OBJECT_FDPIC:
11234 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11235 xfered_len,
11236 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11237
11238 case TARGET_OBJECT_OPENVMS_UIB:
11239 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11240 xfered_len,
11241 &remote_protocol_packets[PACKET_qXfer_uib]);
11242
11243 case TARGET_OBJECT_BTRACE:
11244 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11245 xfered_len,
11246 &remote_protocol_packets[PACKET_qXfer_btrace]);
11247
11248 case TARGET_OBJECT_BTRACE_CONF:
11249 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11250 len, xfered_len,
11251 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11252
11253 case TARGET_OBJECT_EXEC_FILE:
11254 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11255 len, xfered_len,
11256 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11257
11258 default:
11259 return TARGET_XFER_E_IO;
11260 }
11261
11262 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11263 large enough let the caller deal with it. */
11264 if (len < get_remote_packet_size ())
11265 return TARGET_XFER_E_IO;
11266 len = get_remote_packet_size ();
11267
11268 /* Except for querying the minimum buffer size, target must be open. */
11269 if (!rs->remote_desc)
11270 error (_("remote query is only available after target open"));
11271
11272 gdb_assert (annex != NULL);
11273 gdb_assert (readbuf != NULL);
11274
11275 p2 = rs->buf.data ();
11276 *p2++ = 'q';
11277 *p2++ = query_type;
11278
11279 /* We used one buffer char for the remote protocol q command and
11280 another for the query type. As the remote protocol encapsulation
11281 uses 4 chars plus one extra in case we are debugging
11282 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11283 string. */
11284 i = 0;
11285 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11286 {
11287 /* Bad caller may have sent forbidden characters. */
11288 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11289 *p2++ = annex[i];
11290 i++;
11291 }
11292 *p2 = '\0';
11293 gdb_assert (annex[i] == '\0');
11294
11295 i = putpkt (rs->buf);
11296 if (i < 0)
11297 return TARGET_XFER_E_IO;
11298
11299 getpkt (&rs->buf, 0);
11300 strcpy ((char *) readbuf, rs->buf.data ());
11301
11302 *xfered_len = strlen ((char *) readbuf);
11303 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11304 }
11305
11306 /* Implementation of to_get_memory_xfer_limit. */
11307
11308 ULONGEST
11309 remote_target::get_memory_xfer_limit ()
11310 {
11311 return get_memory_write_packet_size ();
11312 }
11313
11314 int
11315 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11316 const gdb_byte *pattern, ULONGEST pattern_len,
11317 CORE_ADDR *found_addrp)
11318 {
11319 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11320 struct remote_state *rs = get_remote_state ();
11321 int max_size = get_memory_write_packet_size ();
11322 struct packet_config *packet =
11323 &remote_protocol_packets[PACKET_qSearch_memory];
11324 /* Number of packet bytes used to encode the pattern;
11325 this could be more than PATTERN_LEN due to escape characters. */
11326 int escaped_pattern_len;
11327 /* Amount of pattern that was encodable in the packet. */
11328 int used_pattern_len;
11329 int i;
11330 int found;
11331 ULONGEST found_addr;
11332
11333 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11334 {
11335 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11336 == len);
11337 };
11338
11339 /* Don't go to the target if we don't have to. This is done before
11340 checking packet_config_support to avoid the possibility that a
11341 success for this edge case means the facility works in
11342 general. */
11343 if (pattern_len > search_space_len)
11344 return 0;
11345 if (pattern_len == 0)
11346 {
11347 *found_addrp = start_addr;
11348 return 1;
11349 }
11350
11351 /* If we already know the packet isn't supported, fall back to the simple
11352 way of searching memory. */
11353
11354 if (packet_config_support (packet) == PACKET_DISABLE)
11355 {
11356 /* Target doesn't provided special support, fall back and use the
11357 standard support (copy memory and do the search here). */
11358 return simple_search_memory (read_memory, start_addr, search_space_len,
11359 pattern, pattern_len, found_addrp);
11360 }
11361
11362 /* Make sure the remote is pointing at the right process. */
11363 set_general_process ();
11364
11365 /* Insert header. */
11366 i = snprintf (rs->buf.data (), max_size,
11367 "qSearch:memory:%s;%s;",
11368 phex_nz (start_addr, addr_size),
11369 phex_nz (search_space_len, sizeof (search_space_len)));
11370 max_size -= (i + 1);
11371
11372 /* Escape as much data as fits into rs->buf. */
11373 escaped_pattern_len =
11374 remote_escape_output (pattern, pattern_len, 1,
11375 (gdb_byte *) rs->buf.data () + i,
11376 &used_pattern_len, max_size);
11377
11378 /* Bail if the pattern is too large. */
11379 if (used_pattern_len != pattern_len)
11380 error (_("Pattern is too large to transmit to remote target."));
11381
11382 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11383 || getpkt_sane (&rs->buf, 0) < 0
11384 || packet_ok (rs->buf, packet) != PACKET_OK)
11385 {
11386 /* The request may not have worked because the command is not
11387 supported. If so, fall back to the simple way. */
11388 if (packet_config_support (packet) == PACKET_DISABLE)
11389 {
11390 return simple_search_memory (read_memory, start_addr, search_space_len,
11391 pattern, pattern_len, found_addrp);
11392 }
11393 return -1;
11394 }
11395
11396 if (rs->buf[0] == '0')
11397 found = 0;
11398 else if (rs->buf[0] == '1')
11399 {
11400 found = 1;
11401 if (rs->buf[1] != ',')
11402 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11403 unpack_varlen_hex (&rs->buf[2], &found_addr);
11404 *found_addrp = found_addr;
11405 }
11406 else
11407 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11408
11409 return found;
11410 }
11411
11412 void
11413 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11414 {
11415 struct remote_state *rs = get_remote_state ();
11416 char *p = rs->buf.data ();
11417
11418 if (!rs->remote_desc)
11419 error (_("remote rcmd is only available after target open"));
11420
11421 /* Send a NULL command across as an empty command. */
11422 if (command == NULL)
11423 command = "";
11424
11425 /* The query prefix. */
11426 strcpy (rs->buf.data (), "qRcmd,");
11427 p = strchr (rs->buf.data (), '\0');
11428
11429 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11430 > get_remote_packet_size ())
11431 error (_("\"monitor\" command ``%s'' is too long."), command);
11432
11433 /* Encode the actual command. */
11434 bin2hex ((const gdb_byte *) command, p, strlen (command));
11435
11436 if (putpkt (rs->buf) < 0)
11437 error (_("Communication problem with target."));
11438
11439 /* get/display the response */
11440 while (1)
11441 {
11442 char *buf;
11443
11444 /* XXX - see also remote_get_noisy_reply(). */
11445 QUIT; /* Allow user to bail out with ^C. */
11446 rs->buf[0] = '\0';
11447 if (getpkt_sane (&rs->buf, 0) == -1)
11448 {
11449 /* Timeout. Continue to (try to) read responses.
11450 This is better than stopping with an error, assuming the stub
11451 is still executing the (long) monitor command.
11452 If needed, the user can interrupt gdb using C-c, obtaining
11453 an effect similar to stop on timeout. */
11454 continue;
11455 }
11456 buf = rs->buf.data ();
11457 if (buf[0] == '\0')
11458 error (_("Target does not support this command."));
11459 if (buf[0] == 'O' && buf[1] != 'K')
11460 {
11461 remote_console_output (buf + 1); /* 'O' message from stub. */
11462 continue;
11463 }
11464 if (strcmp (buf, "OK") == 0)
11465 break;
11466 if (strlen (buf) == 3 && buf[0] == 'E'
11467 && isdigit (buf[1]) && isdigit (buf[2]))
11468 {
11469 error (_("Protocol error with Rcmd"));
11470 }
11471 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11472 {
11473 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11474
11475 fputc_unfiltered (c, outbuf);
11476 }
11477 break;
11478 }
11479 }
11480
11481 std::vector<mem_region>
11482 remote_target::memory_map ()
11483 {
11484 std::vector<mem_region> result;
11485 gdb::optional<gdb::char_vector> text
11486 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11487
11488 if (text)
11489 result = parse_memory_map (text->data ());
11490
11491 return result;
11492 }
11493
11494 static void
11495 packet_command (const char *args, int from_tty)
11496 {
11497 remote_target *remote = get_current_remote_target ();
11498
11499 if (remote == nullptr)
11500 error (_("command can only be used with remote target"));
11501
11502 remote->packet_command (args, from_tty);
11503 }
11504
11505 void
11506 remote_target::packet_command (const char *args, int from_tty)
11507 {
11508 if (!args)
11509 error (_("remote-packet command requires packet text as argument"));
11510
11511 puts_filtered ("sending: ");
11512 print_packet (args);
11513 puts_filtered ("\n");
11514 putpkt (args);
11515
11516 remote_state *rs = get_remote_state ();
11517
11518 getpkt (&rs->buf, 0);
11519 puts_filtered ("received: ");
11520 print_packet (rs->buf.data ());
11521 puts_filtered ("\n");
11522 }
11523
11524 #if 0
11525 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11526
11527 static void display_thread_info (struct gdb_ext_thread_info *info);
11528
11529 static void threadset_test_cmd (char *cmd, int tty);
11530
11531 static void threadalive_test (char *cmd, int tty);
11532
11533 static void threadlist_test_cmd (char *cmd, int tty);
11534
11535 int get_and_display_threadinfo (threadref *ref);
11536
11537 static void threadinfo_test_cmd (char *cmd, int tty);
11538
11539 static int thread_display_step (threadref *ref, void *context);
11540
11541 static void threadlist_update_test_cmd (char *cmd, int tty);
11542
11543 static void init_remote_threadtests (void);
11544
11545 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11546
11547 static void
11548 threadset_test_cmd (const char *cmd, int tty)
11549 {
11550 int sample_thread = SAMPLE_THREAD;
11551
11552 printf_filtered (_("Remote threadset test\n"));
11553 set_general_thread (sample_thread);
11554 }
11555
11556
11557 static void
11558 threadalive_test (const char *cmd, int tty)
11559 {
11560 int sample_thread = SAMPLE_THREAD;
11561 int pid = inferior_ptid.pid ();
11562 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11563
11564 if (remote_thread_alive (ptid))
11565 printf_filtered ("PASS: Thread alive test\n");
11566 else
11567 printf_filtered ("FAIL: Thread alive test\n");
11568 }
11569
11570 void output_threadid (char *title, threadref *ref);
11571
11572 void
11573 output_threadid (char *title, threadref *ref)
11574 {
11575 char hexid[20];
11576
11577 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11578 hexid[16] = 0;
11579 printf_filtered ("%s %s\n", title, (&hexid[0]));
11580 }
11581
11582 static void
11583 threadlist_test_cmd (const char *cmd, int tty)
11584 {
11585 int startflag = 1;
11586 threadref nextthread;
11587 int done, result_count;
11588 threadref threadlist[3];
11589
11590 printf_filtered ("Remote Threadlist test\n");
11591 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11592 &result_count, &threadlist[0]))
11593 printf_filtered ("FAIL: threadlist test\n");
11594 else
11595 {
11596 threadref *scan = threadlist;
11597 threadref *limit = scan + result_count;
11598
11599 while (scan < limit)
11600 output_threadid (" thread ", scan++);
11601 }
11602 }
11603
11604 void
11605 display_thread_info (struct gdb_ext_thread_info *info)
11606 {
11607 output_threadid ("Threadid: ", &info->threadid);
11608 printf_filtered ("Name: %s\n ", info->shortname);
11609 printf_filtered ("State: %s\n", info->display);
11610 printf_filtered ("other: %s\n\n", info->more_display);
11611 }
11612
11613 int
11614 get_and_display_threadinfo (threadref *ref)
11615 {
11616 int result;
11617 int set;
11618 struct gdb_ext_thread_info threadinfo;
11619
11620 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11621 | TAG_MOREDISPLAY | TAG_DISPLAY;
11622 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11623 display_thread_info (&threadinfo);
11624 return result;
11625 }
11626
11627 static void
11628 threadinfo_test_cmd (const char *cmd, int tty)
11629 {
11630 int athread = SAMPLE_THREAD;
11631 threadref thread;
11632 int set;
11633
11634 int_to_threadref (&thread, athread);
11635 printf_filtered ("Remote Threadinfo test\n");
11636 if (!get_and_display_threadinfo (&thread))
11637 printf_filtered ("FAIL cannot get thread info\n");
11638 }
11639
11640 static int
11641 thread_display_step (threadref *ref, void *context)
11642 {
11643 /* output_threadid(" threadstep ",ref); *//* simple test */
11644 return get_and_display_threadinfo (ref);
11645 }
11646
11647 static void
11648 threadlist_update_test_cmd (const char *cmd, int tty)
11649 {
11650 printf_filtered ("Remote Threadlist update test\n");
11651 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11652 }
11653
11654 static void
11655 init_remote_threadtests (void)
11656 {
11657 add_com ("tlist", class_obscure, threadlist_test_cmd,
11658 _("Fetch and print the remote list of "
11659 "thread identifiers, one pkt only."));
11660 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11661 _("Fetch and display info about one thread."));
11662 add_com ("tset", class_obscure, threadset_test_cmd,
11663 _("Test setting to a different thread."));
11664 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11665 _("Iterate through updating all remote thread info."));
11666 add_com ("talive", class_obscure, threadalive_test,
11667 _("Remote thread alive test."));
11668 }
11669
11670 #endif /* 0 */
11671
11672 /* Convert a thread ID to a string. */
11673
11674 std::string
11675 remote_target::pid_to_str (ptid_t ptid)
11676 {
11677 struct remote_state *rs = get_remote_state ();
11678
11679 if (ptid == null_ptid)
11680 return normal_pid_to_str (ptid);
11681 else if (ptid.is_pid ())
11682 {
11683 /* Printing an inferior target id. */
11684
11685 /* When multi-process extensions are off, there's no way in the
11686 remote protocol to know the remote process id, if there's any
11687 at all. There's one exception --- when we're connected with
11688 target extended-remote, and we manually attached to a process
11689 with "attach PID". We don't record anywhere a flag that
11690 allows us to distinguish that case from the case of
11691 connecting with extended-remote and the stub already being
11692 attached to a process, and reporting yes to qAttached, hence
11693 no smart special casing here. */
11694 if (!remote_multi_process_p (rs))
11695 return "Remote target";
11696
11697 return normal_pid_to_str (ptid);
11698 }
11699 else
11700 {
11701 if (magic_null_ptid == ptid)
11702 return "Thread <main>";
11703 else if (remote_multi_process_p (rs))
11704 if (ptid.lwp () == 0)
11705 return normal_pid_to_str (ptid);
11706 else
11707 return string_printf ("Thread %d.%ld",
11708 ptid.pid (), ptid.lwp ());
11709 else
11710 return string_printf ("Thread %ld", ptid.lwp ());
11711 }
11712 }
11713
11714 /* Get the address of the thread local variable in OBJFILE which is
11715 stored at OFFSET within the thread local storage for thread PTID. */
11716
11717 CORE_ADDR
11718 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11719 CORE_ADDR offset)
11720 {
11721 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11722 {
11723 struct remote_state *rs = get_remote_state ();
11724 char *p = rs->buf.data ();
11725 char *endp = p + get_remote_packet_size ();
11726 enum packet_result result;
11727
11728 strcpy (p, "qGetTLSAddr:");
11729 p += strlen (p);
11730 p = write_ptid (p, endp, ptid);
11731 *p++ = ',';
11732 p += hexnumstr (p, offset);
11733 *p++ = ',';
11734 p += hexnumstr (p, lm);
11735 *p++ = '\0';
11736
11737 putpkt (rs->buf);
11738 getpkt (&rs->buf, 0);
11739 result = packet_ok (rs->buf,
11740 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11741 if (result == PACKET_OK)
11742 {
11743 ULONGEST addr;
11744
11745 unpack_varlen_hex (rs->buf.data (), &addr);
11746 return addr;
11747 }
11748 else if (result == PACKET_UNKNOWN)
11749 throw_error (TLS_GENERIC_ERROR,
11750 _("Remote target doesn't support qGetTLSAddr packet"));
11751 else
11752 throw_error (TLS_GENERIC_ERROR,
11753 _("Remote target failed to process qGetTLSAddr request"));
11754 }
11755 else
11756 throw_error (TLS_GENERIC_ERROR,
11757 _("TLS not supported or disabled on this target"));
11758 /* Not reached. */
11759 return 0;
11760 }
11761
11762 /* Provide thread local base, i.e. Thread Information Block address.
11763 Returns 1 if ptid is found and thread_local_base is non zero. */
11764
11765 bool
11766 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11767 {
11768 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11769 {
11770 struct remote_state *rs = get_remote_state ();
11771 char *p = rs->buf.data ();
11772 char *endp = p + get_remote_packet_size ();
11773 enum packet_result result;
11774
11775 strcpy (p, "qGetTIBAddr:");
11776 p += strlen (p);
11777 p = write_ptid (p, endp, ptid);
11778 *p++ = '\0';
11779
11780 putpkt (rs->buf);
11781 getpkt (&rs->buf, 0);
11782 result = packet_ok (rs->buf,
11783 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11784 if (result == PACKET_OK)
11785 {
11786 ULONGEST val;
11787 unpack_varlen_hex (rs->buf.data (), &val);
11788 if (addr)
11789 *addr = (CORE_ADDR) val;
11790 return true;
11791 }
11792 else if (result == PACKET_UNKNOWN)
11793 error (_("Remote target doesn't support qGetTIBAddr packet"));
11794 else
11795 error (_("Remote target failed to process qGetTIBAddr request"));
11796 }
11797 else
11798 error (_("qGetTIBAddr not supported or disabled on this target"));
11799 /* Not reached. */
11800 return false;
11801 }
11802
11803 /* Support for inferring a target description based on the current
11804 architecture and the size of a 'g' packet. While the 'g' packet
11805 can have any size (since optional registers can be left off the
11806 end), some sizes are easily recognizable given knowledge of the
11807 approximate architecture. */
11808
11809 struct remote_g_packet_guess
11810 {
11811 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11812 : bytes (bytes_),
11813 tdesc (tdesc_)
11814 {
11815 }
11816
11817 int bytes;
11818 const struct target_desc *tdesc;
11819 };
11820
11821 struct remote_g_packet_data : public allocate_on_obstack
11822 {
11823 std::vector<remote_g_packet_guess> guesses;
11824 };
11825
11826 static struct gdbarch_data *remote_g_packet_data_handle;
11827
11828 static void *
11829 remote_g_packet_data_init (struct obstack *obstack)
11830 {
11831 return new (obstack) remote_g_packet_data;
11832 }
11833
11834 void
11835 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11836 const struct target_desc *tdesc)
11837 {
11838 struct remote_g_packet_data *data
11839 = ((struct remote_g_packet_data *)
11840 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11841
11842 gdb_assert (tdesc != NULL);
11843
11844 for (const remote_g_packet_guess &guess : data->guesses)
11845 if (guess.bytes == bytes)
11846 internal_error (__FILE__, __LINE__,
11847 _("Duplicate g packet description added for size %d"),
11848 bytes);
11849
11850 data->guesses.emplace_back (bytes, tdesc);
11851 }
11852
11853 /* Return true if remote_read_description would do anything on this target
11854 and architecture, false otherwise. */
11855
11856 static bool
11857 remote_read_description_p (struct target_ops *target)
11858 {
11859 struct remote_g_packet_data *data
11860 = ((struct remote_g_packet_data *)
11861 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11862
11863 return !data->guesses.empty ();
11864 }
11865
11866 const struct target_desc *
11867 remote_target::read_description ()
11868 {
11869 struct remote_g_packet_data *data
11870 = ((struct remote_g_packet_data *)
11871 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11872
11873 /* Do not try this during initial connection, when we do not know
11874 whether there is a running but stopped thread. */
11875 if (!target_has_execution () || inferior_ptid == null_ptid)
11876 return beneath ()->read_description ();
11877
11878 if (!data->guesses.empty ())
11879 {
11880 int bytes = send_g_packet ();
11881
11882 for (const remote_g_packet_guess &guess : data->guesses)
11883 if (guess.bytes == bytes)
11884 return guess.tdesc;
11885
11886 /* We discard the g packet. A minor optimization would be to
11887 hold on to it, and fill the register cache once we have selected
11888 an architecture, but it's too tricky to do safely. */
11889 }
11890
11891 return beneath ()->read_description ();
11892 }
11893
11894 /* Remote file transfer support. This is host-initiated I/O, not
11895 target-initiated; for target-initiated, see remote-fileio.c. */
11896
11897 /* If *LEFT is at least the length of STRING, copy STRING to
11898 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11899 decrease *LEFT. Otherwise raise an error. */
11900
11901 static void
11902 remote_buffer_add_string (char **buffer, int *left, const char *string)
11903 {
11904 int len = strlen (string);
11905
11906 if (len > *left)
11907 error (_("Packet too long for target."));
11908
11909 memcpy (*buffer, string, len);
11910 *buffer += len;
11911 *left -= len;
11912
11913 /* NUL-terminate the buffer as a convenience, if there is
11914 room. */
11915 if (*left)
11916 **buffer = '\0';
11917 }
11918
11919 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11920 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11921 decrease *LEFT. Otherwise raise an error. */
11922
11923 static void
11924 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11925 int len)
11926 {
11927 if (2 * len > *left)
11928 error (_("Packet too long for target."));
11929
11930 bin2hex (bytes, *buffer, len);
11931 *buffer += 2 * len;
11932 *left -= 2 * len;
11933
11934 /* NUL-terminate the buffer as a convenience, if there is
11935 room. */
11936 if (*left)
11937 **buffer = '\0';
11938 }
11939
11940 /* If *LEFT is large enough, convert VALUE to hex and add it to
11941 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11942 decrease *LEFT. Otherwise raise an error. */
11943
11944 static void
11945 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11946 {
11947 int len = hexnumlen (value);
11948
11949 if (len > *left)
11950 error (_("Packet too long for target."));
11951
11952 hexnumstr (*buffer, value);
11953 *buffer += len;
11954 *left -= len;
11955
11956 /* NUL-terminate the buffer as a convenience, if there is
11957 room. */
11958 if (*left)
11959 **buffer = '\0';
11960 }
11961
11962 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11963 value, *REMOTE_ERRNO to the remote error number or zero if none
11964 was included, and *ATTACHMENT to point to the start of the annex
11965 if any. The length of the packet isn't needed here; there may
11966 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11967
11968 Return 0 if the packet could be parsed, -1 if it could not. If
11969 -1 is returned, the other variables may not be initialized. */
11970
11971 static int
11972 remote_hostio_parse_result (const char *buffer, int *retcode,
11973 int *remote_errno, const char **attachment)
11974 {
11975 char *p, *p2;
11976
11977 *remote_errno = 0;
11978 *attachment = NULL;
11979
11980 if (buffer[0] != 'F')
11981 return -1;
11982
11983 errno = 0;
11984 *retcode = strtol (&buffer[1], &p, 16);
11985 if (errno != 0 || p == &buffer[1])
11986 return -1;
11987
11988 /* Check for ",errno". */
11989 if (*p == ',')
11990 {
11991 errno = 0;
11992 *remote_errno = strtol (p + 1, &p2, 16);
11993 if (errno != 0 || p + 1 == p2)
11994 return -1;
11995 p = p2;
11996 }
11997
11998 /* Check for ";attachment". If there is no attachment, the
11999 packet should end here. */
12000 if (*p == ';')
12001 {
12002 *attachment = p + 1;
12003 return 0;
12004 }
12005 else if (*p == '\0')
12006 return 0;
12007 else
12008 return -1;
12009 }
12010
12011 /* Send a prepared I/O packet to the target and read its response.
12012 The prepared packet is in the global RS->BUF before this function
12013 is called, and the answer is there when we return.
12014
12015 COMMAND_BYTES is the length of the request to send, which may include
12016 binary data. WHICH_PACKET is the packet configuration to check
12017 before attempting a packet. If an error occurs, *REMOTE_ERRNO
12018 is set to the error number and -1 is returned. Otherwise the value
12019 returned by the function is returned.
12020
12021 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12022 attachment is expected; an error will be reported if there's a
12023 mismatch. If one is found, *ATTACHMENT will be set to point into
12024 the packet buffer and *ATTACHMENT_LEN will be set to the
12025 attachment's length. */
12026
12027 int
12028 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12029 int *remote_errno, const char **attachment,
12030 int *attachment_len)
12031 {
12032 struct remote_state *rs = get_remote_state ();
12033 int ret, bytes_read;
12034 const char *attachment_tmp;
12035
12036 if (packet_support (which_packet) == PACKET_DISABLE)
12037 {
12038 *remote_errno = FILEIO_ENOSYS;
12039 return -1;
12040 }
12041
12042 putpkt_binary (rs->buf.data (), command_bytes);
12043 bytes_read = getpkt_sane (&rs->buf, 0);
12044
12045 /* If it timed out, something is wrong. Don't try to parse the
12046 buffer. */
12047 if (bytes_read < 0)
12048 {
12049 *remote_errno = FILEIO_EINVAL;
12050 return -1;
12051 }
12052
12053 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12054 {
12055 case PACKET_ERROR:
12056 *remote_errno = FILEIO_EINVAL;
12057 return -1;
12058 case PACKET_UNKNOWN:
12059 *remote_errno = FILEIO_ENOSYS;
12060 return -1;
12061 case PACKET_OK:
12062 break;
12063 }
12064
12065 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12066 &attachment_tmp))
12067 {
12068 *remote_errno = FILEIO_EINVAL;
12069 return -1;
12070 }
12071
12072 /* Make sure we saw an attachment if and only if we expected one. */
12073 if ((attachment_tmp == NULL && attachment != NULL)
12074 || (attachment_tmp != NULL && attachment == NULL))
12075 {
12076 *remote_errno = FILEIO_EINVAL;
12077 return -1;
12078 }
12079
12080 /* If an attachment was found, it must point into the packet buffer;
12081 work out how many bytes there were. */
12082 if (attachment_tmp != NULL)
12083 {
12084 *attachment = attachment_tmp;
12085 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12086 }
12087
12088 return ret;
12089 }
12090
12091 /* See declaration.h. */
12092
12093 void
12094 readahead_cache::invalidate ()
12095 {
12096 this->fd = -1;
12097 }
12098
12099 /* See declaration.h. */
12100
12101 void
12102 readahead_cache::invalidate_fd (int fd)
12103 {
12104 if (this->fd == fd)
12105 this->fd = -1;
12106 }
12107
12108 /* Set the filesystem remote_hostio functions that take FILENAME
12109 arguments will use. Return 0 on success, or -1 if an error
12110 occurs (and set *REMOTE_ERRNO). */
12111
12112 int
12113 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12114 int *remote_errno)
12115 {
12116 struct remote_state *rs = get_remote_state ();
12117 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12118 char *p = rs->buf.data ();
12119 int left = get_remote_packet_size () - 1;
12120 char arg[9];
12121 int ret;
12122
12123 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12124 return 0;
12125
12126 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12127 return 0;
12128
12129 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12130
12131 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12132 remote_buffer_add_string (&p, &left, arg);
12133
12134 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12135 remote_errno, NULL, NULL);
12136
12137 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12138 return 0;
12139
12140 if (ret == 0)
12141 rs->fs_pid = required_pid;
12142
12143 return ret;
12144 }
12145
12146 /* Implementation of to_fileio_open. */
12147
12148 int
12149 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12150 int flags, int mode, int warn_if_slow,
12151 int *remote_errno)
12152 {
12153 struct remote_state *rs = get_remote_state ();
12154 char *p = rs->buf.data ();
12155 int left = get_remote_packet_size () - 1;
12156
12157 if (warn_if_slow)
12158 {
12159 static int warning_issued = 0;
12160
12161 printf_unfiltered (_("Reading %s from remote target...\n"),
12162 filename);
12163
12164 if (!warning_issued)
12165 {
12166 warning (_("File transfers from remote targets can be slow."
12167 " Use \"set sysroot\" to access files locally"
12168 " instead."));
12169 warning_issued = 1;
12170 }
12171 }
12172
12173 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12174 return -1;
12175
12176 remote_buffer_add_string (&p, &left, "vFile:open:");
12177
12178 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12179 strlen (filename));
12180 remote_buffer_add_string (&p, &left, ",");
12181
12182 remote_buffer_add_int (&p, &left, flags);
12183 remote_buffer_add_string (&p, &left, ",");
12184
12185 remote_buffer_add_int (&p, &left, mode);
12186
12187 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12188 remote_errno, NULL, NULL);
12189 }
12190
12191 int
12192 remote_target::fileio_open (struct inferior *inf, const char *filename,
12193 int flags, int mode, int warn_if_slow,
12194 int *remote_errno)
12195 {
12196 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12197 remote_errno);
12198 }
12199
12200 /* Implementation of to_fileio_pwrite. */
12201
12202 int
12203 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12204 ULONGEST offset, int *remote_errno)
12205 {
12206 struct remote_state *rs = get_remote_state ();
12207 char *p = rs->buf.data ();
12208 int left = get_remote_packet_size ();
12209 int out_len;
12210
12211 rs->readahead_cache.invalidate_fd (fd);
12212
12213 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12214
12215 remote_buffer_add_int (&p, &left, fd);
12216 remote_buffer_add_string (&p, &left, ",");
12217
12218 remote_buffer_add_int (&p, &left, offset);
12219 remote_buffer_add_string (&p, &left, ",");
12220
12221 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12222 (get_remote_packet_size ()
12223 - (p - rs->buf.data ())));
12224
12225 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12226 remote_errno, NULL, NULL);
12227 }
12228
12229 int
12230 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12231 ULONGEST offset, int *remote_errno)
12232 {
12233 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12234 }
12235
12236 /* Helper for the implementation of to_fileio_pread. Read the file
12237 from the remote side with vFile:pread. */
12238
12239 int
12240 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12241 ULONGEST offset, int *remote_errno)
12242 {
12243 struct remote_state *rs = get_remote_state ();
12244 char *p = rs->buf.data ();
12245 const char *attachment;
12246 int left = get_remote_packet_size ();
12247 int ret, attachment_len;
12248 int read_len;
12249
12250 remote_buffer_add_string (&p, &left, "vFile:pread:");
12251
12252 remote_buffer_add_int (&p, &left, fd);
12253 remote_buffer_add_string (&p, &left, ",");
12254
12255 remote_buffer_add_int (&p, &left, len);
12256 remote_buffer_add_string (&p, &left, ",");
12257
12258 remote_buffer_add_int (&p, &left, offset);
12259
12260 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12261 remote_errno, &attachment,
12262 &attachment_len);
12263
12264 if (ret < 0)
12265 return ret;
12266
12267 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12268 read_buf, len);
12269 if (read_len != ret)
12270 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12271
12272 return ret;
12273 }
12274
12275 /* See declaration.h. */
12276
12277 int
12278 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12279 ULONGEST offset)
12280 {
12281 if (this->fd == fd
12282 && this->offset <= offset
12283 && offset < this->offset + this->bufsize)
12284 {
12285 ULONGEST max = this->offset + this->bufsize;
12286
12287 if (offset + len > max)
12288 len = max - offset;
12289
12290 memcpy (read_buf, this->buf + offset - this->offset, len);
12291 return len;
12292 }
12293
12294 return 0;
12295 }
12296
12297 /* Implementation of to_fileio_pread. */
12298
12299 int
12300 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12301 ULONGEST offset, int *remote_errno)
12302 {
12303 int ret;
12304 struct remote_state *rs = get_remote_state ();
12305 readahead_cache *cache = &rs->readahead_cache;
12306
12307 ret = cache->pread (fd, read_buf, len, offset);
12308 if (ret > 0)
12309 {
12310 cache->hit_count++;
12311
12312 if (remote_debug)
12313 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12314 pulongest (cache->hit_count));
12315 return ret;
12316 }
12317
12318 cache->miss_count++;
12319 if (remote_debug)
12320 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12321 pulongest (cache->miss_count));
12322
12323 cache->fd = fd;
12324 cache->offset = offset;
12325 cache->bufsize = get_remote_packet_size ();
12326 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12327
12328 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12329 cache->offset, remote_errno);
12330 if (ret <= 0)
12331 {
12332 cache->invalidate_fd (fd);
12333 return ret;
12334 }
12335
12336 cache->bufsize = ret;
12337 return cache->pread (fd, read_buf, len, offset);
12338 }
12339
12340 int
12341 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12342 ULONGEST offset, int *remote_errno)
12343 {
12344 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12345 }
12346
12347 /* Implementation of to_fileio_close. */
12348
12349 int
12350 remote_target::remote_hostio_close (int fd, int *remote_errno)
12351 {
12352 struct remote_state *rs = get_remote_state ();
12353 char *p = rs->buf.data ();
12354 int left = get_remote_packet_size () - 1;
12355
12356 rs->readahead_cache.invalidate_fd (fd);
12357
12358 remote_buffer_add_string (&p, &left, "vFile:close:");
12359
12360 remote_buffer_add_int (&p, &left, fd);
12361
12362 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12363 remote_errno, NULL, NULL);
12364 }
12365
12366 int
12367 remote_target::fileio_close (int fd, int *remote_errno)
12368 {
12369 return remote_hostio_close (fd, remote_errno);
12370 }
12371
12372 /* Implementation of to_fileio_unlink. */
12373
12374 int
12375 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12376 int *remote_errno)
12377 {
12378 struct remote_state *rs = get_remote_state ();
12379 char *p = rs->buf.data ();
12380 int left = get_remote_packet_size () - 1;
12381
12382 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12383 return -1;
12384
12385 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12386
12387 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12388 strlen (filename));
12389
12390 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12391 remote_errno, NULL, NULL);
12392 }
12393
12394 int
12395 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12396 int *remote_errno)
12397 {
12398 return remote_hostio_unlink (inf, filename, remote_errno);
12399 }
12400
12401 /* Implementation of to_fileio_readlink. */
12402
12403 gdb::optional<std::string>
12404 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12405 int *remote_errno)
12406 {
12407 struct remote_state *rs = get_remote_state ();
12408 char *p = rs->buf.data ();
12409 const char *attachment;
12410 int left = get_remote_packet_size ();
12411 int len, attachment_len;
12412 int read_len;
12413
12414 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12415 return {};
12416
12417 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12418
12419 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12420 strlen (filename));
12421
12422 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12423 remote_errno, &attachment,
12424 &attachment_len);
12425
12426 if (len < 0)
12427 return {};
12428
12429 std::string ret (len, '\0');
12430
12431 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12432 (gdb_byte *) &ret[0], len);
12433 if (read_len != len)
12434 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12435
12436 return ret;
12437 }
12438
12439 /* Implementation of to_fileio_fstat. */
12440
12441 int
12442 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12443 {
12444 struct remote_state *rs = get_remote_state ();
12445 char *p = rs->buf.data ();
12446 int left = get_remote_packet_size ();
12447 int attachment_len, ret;
12448 const char *attachment;
12449 struct fio_stat fst;
12450 int read_len;
12451
12452 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12453
12454 remote_buffer_add_int (&p, &left, fd);
12455
12456 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12457 remote_errno, &attachment,
12458 &attachment_len);
12459 if (ret < 0)
12460 {
12461 if (*remote_errno != FILEIO_ENOSYS)
12462 return ret;
12463
12464 /* Strictly we should return -1, ENOSYS here, but when
12465 "set sysroot remote:" was implemented in August 2008
12466 BFD's need for a stat function was sidestepped with
12467 this hack. This was not remedied until March 2015
12468 so we retain the previous behavior to avoid breaking
12469 compatibility.
12470
12471 Note that the memset is a March 2015 addition; older
12472 GDBs set st_size *and nothing else* so the structure
12473 would have garbage in all other fields. This might
12474 break something but retaining the previous behavior
12475 here would be just too wrong. */
12476
12477 memset (st, 0, sizeof (struct stat));
12478 st->st_size = INT_MAX;
12479 return 0;
12480 }
12481
12482 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12483 (gdb_byte *) &fst, sizeof (fst));
12484
12485 if (read_len != ret)
12486 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12487
12488 if (read_len != sizeof (fst))
12489 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12490 read_len, (int) sizeof (fst));
12491
12492 remote_fileio_to_host_stat (&fst, st);
12493
12494 return 0;
12495 }
12496
12497 /* Implementation of to_filesystem_is_local. */
12498
12499 bool
12500 remote_target::filesystem_is_local ()
12501 {
12502 /* Valgrind GDB presents itself as a remote target but works
12503 on the local filesystem: it does not implement remote get
12504 and users are not expected to set a sysroot. To handle
12505 this case we treat the remote filesystem as local if the
12506 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12507 does not support vFile:open. */
12508 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12509 {
12510 enum packet_support ps = packet_support (PACKET_vFile_open);
12511
12512 if (ps == PACKET_SUPPORT_UNKNOWN)
12513 {
12514 int fd, remote_errno;
12515
12516 /* Try opening a file to probe support. The supplied
12517 filename is irrelevant, we only care about whether
12518 the stub recognizes the packet or not. */
12519 fd = remote_hostio_open (NULL, "just probing",
12520 FILEIO_O_RDONLY, 0700, 0,
12521 &remote_errno);
12522
12523 if (fd >= 0)
12524 remote_hostio_close (fd, &remote_errno);
12525
12526 ps = packet_support (PACKET_vFile_open);
12527 }
12528
12529 if (ps == PACKET_DISABLE)
12530 {
12531 static int warning_issued = 0;
12532
12533 if (!warning_issued)
12534 {
12535 warning (_("remote target does not support file"
12536 " transfer, attempting to access files"
12537 " from local filesystem."));
12538 warning_issued = 1;
12539 }
12540
12541 return true;
12542 }
12543 }
12544
12545 return false;
12546 }
12547
12548 static int
12549 remote_fileio_errno_to_host (int errnum)
12550 {
12551 switch (errnum)
12552 {
12553 case FILEIO_EPERM:
12554 return EPERM;
12555 case FILEIO_ENOENT:
12556 return ENOENT;
12557 case FILEIO_EINTR:
12558 return EINTR;
12559 case FILEIO_EIO:
12560 return EIO;
12561 case FILEIO_EBADF:
12562 return EBADF;
12563 case FILEIO_EACCES:
12564 return EACCES;
12565 case FILEIO_EFAULT:
12566 return EFAULT;
12567 case FILEIO_EBUSY:
12568 return EBUSY;
12569 case FILEIO_EEXIST:
12570 return EEXIST;
12571 case FILEIO_ENODEV:
12572 return ENODEV;
12573 case FILEIO_ENOTDIR:
12574 return ENOTDIR;
12575 case FILEIO_EISDIR:
12576 return EISDIR;
12577 case FILEIO_EINVAL:
12578 return EINVAL;
12579 case FILEIO_ENFILE:
12580 return ENFILE;
12581 case FILEIO_EMFILE:
12582 return EMFILE;
12583 case FILEIO_EFBIG:
12584 return EFBIG;
12585 case FILEIO_ENOSPC:
12586 return ENOSPC;
12587 case FILEIO_ESPIPE:
12588 return ESPIPE;
12589 case FILEIO_EROFS:
12590 return EROFS;
12591 case FILEIO_ENOSYS:
12592 return ENOSYS;
12593 case FILEIO_ENAMETOOLONG:
12594 return ENAMETOOLONG;
12595 }
12596 return -1;
12597 }
12598
12599 static char *
12600 remote_hostio_error (int errnum)
12601 {
12602 int host_error = remote_fileio_errno_to_host (errnum);
12603
12604 if (host_error == -1)
12605 error (_("Unknown remote I/O error %d"), errnum);
12606 else
12607 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12608 }
12609
12610 /* A RAII wrapper around a remote file descriptor. */
12611
12612 class scoped_remote_fd
12613 {
12614 public:
12615 scoped_remote_fd (remote_target *remote, int fd)
12616 : m_remote (remote), m_fd (fd)
12617 {
12618 }
12619
12620 ~scoped_remote_fd ()
12621 {
12622 if (m_fd != -1)
12623 {
12624 try
12625 {
12626 int remote_errno;
12627 m_remote->remote_hostio_close (m_fd, &remote_errno);
12628 }
12629 catch (...)
12630 {
12631 /* Swallow exception before it escapes the dtor. If
12632 something goes wrong, likely the connection is gone,
12633 and there's nothing else that can be done. */
12634 }
12635 }
12636 }
12637
12638 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12639
12640 /* Release ownership of the file descriptor, and return it. */
12641 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12642 {
12643 int fd = m_fd;
12644 m_fd = -1;
12645 return fd;
12646 }
12647
12648 /* Return the owned file descriptor. */
12649 int get () const noexcept
12650 {
12651 return m_fd;
12652 }
12653
12654 private:
12655 /* The remote target. */
12656 remote_target *m_remote;
12657
12658 /* The owned remote I/O file descriptor. */
12659 int m_fd;
12660 };
12661
12662 void
12663 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12664 {
12665 remote_target *remote = get_current_remote_target ();
12666
12667 if (remote == nullptr)
12668 error (_("command can only be used with remote target"));
12669
12670 remote->remote_file_put (local_file, remote_file, from_tty);
12671 }
12672
12673 void
12674 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12675 int from_tty)
12676 {
12677 int retcode, remote_errno, bytes, io_size;
12678 int bytes_in_buffer;
12679 int saw_eof;
12680 ULONGEST offset;
12681
12682 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12683 if (file == NULL)
12684 perror_with_name (local_file);
12685
12686 scoped_remote_fd fd
12687 (this, remote_hostio_open (NULL,
12688 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12689 | FILEIO_O_TRUNC),
12690 0700, 0, &remote_errno));
12691 if (fd.get () == -1)
12692 remote_hostio_error (remote_errno);
12693
12694 /* Send up to this many bytes at once. They won't all fit in the
12695 remote packet limit, so we'll transfer slightly fewer. */
12696 io_size = get_remote_packet_size ();
12697 gdb::byte_vector buffer (io_size);
12698
12699 bytes_in_buffer = 0;
12700 saw_eof = 0;
12701 offset = 0;
12702 while (bytes_in_buffer || !saw_eof)
12703 {
12704 if (!saw_eof)
12705 {
12706 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12707 io_size - bytes_in_buffer,
12708 file.get ());
12709 if (bytes == 0)
12710 {
12711 if (ferror (file.get ()))
12712 error (_("Error reading %s."), local_file);
12713 else
12714 {
12715 /* EOF. Unless there is something still in the
12716 buffer from the last iteration, we are done. */
12717 saw_eof = 1;
12718 if (bytes_in_buffer == 0)
12719 break;
12720 }
12721 }
12722 }
12723 else
12724 bytes = 0;
12725
12726 bytes += bytes_in_buffer;
12727 bytes_in_buffer = 0;
12728
12729 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12730 offset, &remote_errno);
12731
12732 if (retcode < 0)
12733 remote_hostio_error (remote_errno);
12734 else if (retcode == 0)
12735 error (_("Remote write of %d bytes returned 0!"), bytes);
12736 else if (retcode < bytes)
12737 {
12738 /* Short write. Save the rest of the read data for the next
12739 write. */
12740 bytes_in_buffer = bytes - retcode;
12741 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12742 }
12743
12744 offset += retcode;
12745 }
12746
12747 if (remote_hostio_close (fd.release (), &remote_errno))
12748 remote_hostio_error (remote_errno);
12749
12750 if (from_tty)
12751 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12752 }
12753
12754 void
12755 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12756 {
12757 remote_target *remote = get_current_remote_target ();
12758
12759 if (remote == nullptr)
12760 error (_("command can only be used with remote target"));
12761
12762 remote->remote_file_get (remote_file, local_file, from_tty);
12763 }
12764
12765 void
12766 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12767 int from_tty)
12768 {
12769 int remote_errno, bytes, io_size;
12770 ULONGEST offset;
12771
12772 scoped_remote_fd fd
12773 (this, remote_hostio_open (NULL,
12774 remote_file, FILEIO_O_RDONLY, 0, 0,
12775 &remote_errno));
12776 if (fd.get () == -1)
12777 remote_hostio_error (remote_errno);
12778
12779 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12780 if (file == NULL)
12781 perror_with_name (local_file);
12782
12783 /* Send up to this many bytes at once. They won't all fit in the
12784 remote packet limit, so we'll transfer slightly fewer. */
12785 io_size = get_remote_packet_size ();
12786 gdb::byte_vector buffer (io_size);
12787
12788 offset = 0;
12789 while (1)
12790 {
12791 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12792 &remote_errno);
12793 if (bytes == 0)
12794 /* Success, but no bytes, means end-of-file. */
12795 break;
12796 if (bytes == -1)
12797 remote_hostio_error (remote_errno);
12798
12799 offset += bytes;
12800
12801 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12802 if (bytes == 0)
12803 perror_with_name (local_file);
12804 }
12805
12806 if (remote_hostio_close (fd.release (), &remote_errno))
12807 remote_hostio_error (remote_errno);
12808
12809 if (from_tty)
12810 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12811 }
12812
12813 void
12814 remote_file_delete (const char *remote_file, int from_tty)
12815 {
12816 remote_target *remote = get_current_remote_target ();
12817
12818 if (remote == nullptr)
12819 error (_("command can only be used with remote target"));
12820
12821 remote->remote_file_delete (remote_file, from_tty);
12822 }
12823
12824 void
12825 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12826 {
12827 int retcode, remote_errno;
12828
12829 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12830 if (retcode == -1)
12831 remote_hostio_error (remote_errno);
12832
12833 if (from_tty)
12834 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12835 }
12836
12837 static void
12838 remote_put_command (const char *args, int from_tty)
12839 {
12840 if (args == NULL)
12841 error_no_arg (_("file to put"));
12842
12843 gdb_argv argv (args);
12844 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12845 error (_("Invalid parameters to remote put"));
12846
12847 remote_file_put (argv[0], argv[1], from_tty);
12848 }
12849
12850 static void
12851 remote_get_command (const char *args, int from_tty)
12852 {
12853 if (args == NULL)
12854 error_no_arg (_("file to get"));
12855
12856 gdb_argv argv (args);
12857 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12858 error (_("Invalid parameters to remote get"));
12859
12860 remote_file_get (argv[0], argv[1], from_tty);
12861 }
12862
12863 static void
12864 remote_delete_command (const char *args, int from_tty)
12865 {
12866 if (args == NULL)
12867 error_no_arg (_("file to delete"));
12868
12869 gdb_argv argv (args);
12870 if (argv[0] == NULL || argv[1] != NULL)
12871 error (_("Invalid parameters to remote delete"));
12872
12873 remote_file_delete (argv[0], from_tty);
12874 }
12875
12876 bool
12877 remote_target::can_execute_reverse ()
12878 {
12879 if (packet_support (PACKET_bs) == PACKET_ENABLE
12880 || packet_support (PACKET_bc) == PACKET_ENABLE)
12881 return true;
12882 else
12883 return false;
12884 }
12885
12886 bool
12887 remote_target::supports_non_stop ()
12888 {
12889 return true;
12890 }
12891
12892 bool
12893 remote_target::supports_disable_randomization ()
12894 {
12895 /* Only supported in extended mode. */
12896 return false;
12897 }
12898
12899 bool
12900 remote_target::supports_multi_process ()
12901 {
12902 struct remote_state *rs = get_remote_state ();
12903
12904 return remote_multi_process_p (rs);
12905 }
12906
12907 static int
12908 remote_supports_cond_tracepoints ()
12909 {
12910 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12911 }
12912
12913 bool
12914 remote_target::supports_evaluation_of_breakpoint_conditions ()
12915 {
12916 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12917 }
12918
12919 static int
12920 remote_supports_fast_tracepoints ()
12921 {
12922 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12923 }
12924
12925 static int
12926 remote_supports_static_tracepoints ()
12927 {
12928 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12929 }
12930
12931 static int
12932 remote_supports_install_in_trace ()
12933 {
12934 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12935 }
12936
12937 bool
12938 remote_target::supports_enable_disable_tracepoint ()
12939 {
12940 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12941 == PACKET_ENABLE);
12942 }
12943
12944 bool
12945 remote_target::supports_string_tracing ()
12946 {
12947 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12948 }
12949
12950 bool
12951 remote_target::can_run_breakpoint_commands ()
12952 {
12953 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12954 }
12955
12956 void
12957 remote_target::trace_init ()
12958 {
12959 struct remote_state *rs = get_remote_state ();
12960
12961 putpkt ("QTinit");
12962 remote_get_noisy_reply ();
12963 if (strcmp (rs->buf.data (), "OK") != 0)
12964 error (_("Target does not support this command."));
12965 }
12966
12967 /* Recursive routine to walk through command list including loops, and
12968 download packets for each command. */
12969
12970 void
12971 remote_target::remote_download_command_source (int num, ULONGEST addr,
12972 struct command_line *cmds)
12973 {
12974 struct remote_state *rs = get_remote_state ();
12975 struct command_line *cmd;
12976
12977 for (cmd = cmds; cmd; cmd = cmd->next)
12978 {
12979 QUIT; /* Allow user to bail out with ^C. */
12980 strcpy (rs->buf.data (), "QTDPsrc:");
12981 encode_source_string (num, addr, "cmd", cmd->line,
12982 rs->buf.data () + strlen (rs->buf.data ()),
12983 rs->buf.size () - strlen (rs->buf.data ()));
12984 putpkt (rs->buf);
12985 remote_get_noisy_reply ();
12986 if (strcmp (rs->buf.data (), "OK"))
12987 warning (_("Target does not support source download."));
12988
12989 if (cmd->control_type == while_control
12990 || cmd->control_type == while_stepping_control)
12991 {
12992 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12993
12994 QUIT; /* Allow user to bail out with ^C. */
12995 strcpy (rs->buf.data (), "QTDPsrc:");
12996 encode_source_string (num, addr, "cmd", "end",
12997 rs->buf.data () + strlen (rs->buf.data ()),
12998 rs->buf.size () - strlen (rs->buf.data ()));
12999 putpkt (rs->buf);
13000 remote_get_noisy_reply ();
13001 if (strcmp (rs->buf.data (), "OK"))
13002 warning (_("Target does not support source download."));
13003 }
13004 }
13005 }
13006
13007 void
13008 remote_target::download_tracepoint (struct bp_location *loc)
13009 {
13010 CORE_ADDR tpaddr;
13011 char addrbuf[40];
13012 std::vector<std::string> tdp_actions;
13013 std::vector<std::string> stepping_actions;
13014 char *pkt;
13015 struct breakpoint *b = loc->owner;
13016 struct tracepoint *t = (struct tracepoint *) b;
13017 struct remote_state *rs = get_remote_state ();
13018 int ret;
13019 const char *err_msg = _("Tracepoint packet too large for target.");
13020 size_t size_left;
13021
13022 /* We use a buffer other than rs->buf because we'll build strings
13023 across multiple statements, and other statements in between could
13024 modify rs->buf. */
13025 gdb::char_vector buf (get_remote_packet_size ());
13026
13027 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13028
13029 tpaddr = loc->address;
13030 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13031 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13032 b->number, addrbuf, /* address */
13033 (b->enable_state == bp_enabled ? 'E' : 'D'),
13034 t->step_count, t->pass_count);
13035
13036 if (ret < 0 || ret >= buf.size ())
13037 error ("%s", err_msg);
13038
13039 /* Fast tracepoints are mostly handled by the target, but we can
13040 tell the target how big of an instruction block should be moved
13041 around. */
13042 if (b->type == bp_fast_tracepoint)
13043 {
13044 /* Only test for support at download time; we may not know
13045 target capabilities at definition time. */
13046 if (remote_supports_fast_tracepoints ())
13047 {
13048 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13049 NULL))
13050 {
13051 size_left = buf.size () - strlen (buf.data ());
13052 ret = snprintf (buf.data () + strlen (buf.data ()),
13053 size_left, ":F%x",
13054 gdb_insn_length (loc->gdbarch, tpaddr));
13055
13056 if (ret < 0 || ret >= size_left)
13057 error ("%s", err_msg);
13058 }
13059 else
13060 /* If it passed validation at definition but fails now,
13061 something is very wrong. */
13062 internal_error (__FILE__, __LINE__,
13063 _("Fast tracepoint not "
13064 "valid during download"));
13065 }
13066 else
13067 /* Fast tracepoints are functionally identical to regular
13068 tracepoints, so don't take lack of support as a reason to
13069 give up on the trace run. */
13070 warning (_("Target does not support fast tracepoints, "
13071 "downloading %d as regular tracepoint"), b->number);
13072 }
13073 else if (b->type == bp_static_tracepoint)
13074 {
13075 /* Only test for support at download time; we may not know
13076 target capabilities at definition time. */
13077 if (remote_supports_static_tracepoints ())
13078 {
13079 struct static_tracepoint_marker marker;
13080
13081 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13082 {
13083 size_left = buf.size () - strlen (buf.data ());
13084 ret = snprintf (buf.data () + strlen (buf.data ()),
13085 size_left, ":S");
13086
13087 if (ret < 0 || ret >= size_left)
13088 error ("%s", err_msg);
13089 }
13090 else
13091 error (_("Static tracepoint not valid during download"));
13092 }
13093 else
13094 /* Fast tracepoints are functionally identical to regular
13095 tracepoints, so don't take lack of support as a reason
13096 to give up on the trace run. */
13097 error (_("Target does not support static tracepoints"));
13098 }
13099 /* If the tracepoint has a conditional, make it into an agent
13100 expression and append to the definition. */
13101 if (loc->cond)
13102 {
13103 /* Only test support at download time, we may not know target
13104 capabilities at definition time. */
13105 if (remote_supports_cond_tracepoints ())
13106 {
13107 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13108 loc->cond.get ());
13109
13110 size_left = buf.size () - strlen (buf.data ());
13111
13112 ret = snprintf (buf.data () + strlen (buf.data ()),
13113 size_left, ":X%x,", aexpr->len);
13114
13115 if (ret < 0 || ret >= size_left)
13116 error ("%s", err_msg);
13117
13118 size_left = buf.size () - strlen (buf.data ());
13119
13120 /* Two bytes to encode each aexpr byte, plus the terminating
13121 null byte. */
13122 if (aexpr->len * 2 + 1 > size_left)
13123 error ("%s", err_msg);
13124
13125 pkt = buf.data () + strlen (buf.data ());
13126
13127 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13128 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13129 *pkt = '\0';
13130 }
13131 else
13132 warning (_("Target does not support conditional tracepoints, "
13133 "ignoring tp %d cond"), b->number);
13134 }
13135
13136 if (b->commands || *default_collect)
13137 {
13138 size_left = buf.size () - strlen (buf.data ());
13139
13140 ret = snprintf (buf.data () + strlen (buf.data ()),
13141 size_left, "-");
13142
13143 if (ret < 0 || ret >= size_left)
13144 error ("%s", err_msg);
13145 }
13146
13147 putpkt (buf.data ());
13148 remote_get_noisy_reply ();
13149 if (strcmp (rs->buf.data (), "OK"))
13150 error (_("Target does not support tracepoints."));
13151
13152 /* do_single_steps (t); */
13153 for (auto action_it = tdp_actions.begin ();
13154 action_it != tdp_actions.end (); action_it++)
13155 {
13156 QUIT; /* Allow user to bail out with ^C. */
13157
13158 bool has_more = ((action_it + 1) != tdp_actions.end ()
13159 || !stepping_actions.empty ());
13160
13161 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13162 b->number, addrbuf, /* address */
13163 action_it->c_str (),
13164 has_more ? '-' : 0);
13165
13166 if (ret < 0 || ret >= buf.size ())
13167 error ("%s", err_msg);
13168
13169 putpkt (buf.data ());
13170 remote_get_noisy_reply ();
13171 if (strcmp (rs->buf.data (), "OK"))
13172 error (_("Error on target while setting tracepoints."));
13173 }
13174
13175 for (auto action_it = stepping_actions.begin ();
13176 action_it != stepping_actions.end (); action_it++)
13177 {
13178 QUIT; /* Allow user to bail out with ^C. */
13179
13180 bool is_first = action_it == stepping_actions.begin ();
13181 bool has_more = (action_it + 1) != stepping_actions.end ();
13182
13183 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13184 b->number, addrbuf, /* address */
13185 is_first ? "S" : "",
13186 action_it->c_str (),
13187 has_more ? "-" : "");
13188
13189 if (ret < 0 || ret >= buf.size ())
13190 error ("%s", err_msg);
13191
13192 putpkt (buf.data ());
13193 remote_get_noisy_reply ();
13194 if (strcmp (rs->buf.data (), "OK"))
13195 error (_("Error on target while setting tracepoints."));
13196 }
13197
13198 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13199 {
13200 if (b->location != NULL)
13201 {
13202 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13203
13204 if (ret < 0 || ret >= buf.size ())
13205 error ("%s", err_msg);
13206
13207 encode_source_string (b->number, loc->address, "at",
13208 event_location_to_string (b->location.get ()),
13209 buf.data () + strlen (buf.data ()),
13210 buf.size () - strlen (buf.data ()));
13211 putpkt (buf.data ());
13212 remote_get_noisy_reply ();
13213 if (strcmp (rs->buf.data (), "OK"))
13214 warning (_("Target does not support source download."));
13215 }
13216 if (b->cond_string)
13217 {
13218 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13219
13220 if (ret < 0 || ret >= buf.size ())
13221 error ("%s", err_msg);
13222
13223 encode_source_string (b->number, loc->address,
13224 "cond", b->cond_string,
13225 buf.data () + strlen (buf.data ()),
13226 buf.size () - strlen (buf.data ()));
13227 putpkt (buf.data ());
13228 remote_get_noisy_reply ();
13229 if (strcmp (rs->buf.data (), "OK"))
13230 warning (_("Target does not support source download."));
13231 }
13232 remote_download_command_source (b->number, loc->address,
13233 breakpoint_commands (b));
13234 }
13235 }
13236
13237 bool
13238 remote_target::can_download_tracepoint ()
13239 {
13240 struct remote_state *rs = get_remote_state ();
13241 struct trace_status *ts;
13242 int status;
13243
13244 /* Don't try to install tracepoints until we've relocated our
13245 symbols, and fetched and merged the target's tracepoint list with
13246 ours. */
13247 if (rs->starting_up)
13248 return false;
13249
13250 ts = current_trace_status ();
13251 status = get_trace_status (ts);
13252
13253 if (status == -1 || !ts->running_known || !ts->running)
13254 return false;
13255
13256 /* If we are in a tracing experiment, but remote stub doesn't support
13257 installing tracepoint in trace, we have to return. */
13258 if (!remote_supports_install_in_trace ())
13259 return false;
13260
13261 return true;
13262 }
13263
13264
13265 void
13266 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13267 {
13268 struct remote_state *rs = get_remote_state ();
13269 char *p;
13270
13271 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13272 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13273 tsv.builtin);
13274 p = rs->buf.data () + strlen (rs->buf.data ());
13275 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13276 >= get_remote_packet_size ())
13277 error (_("Trace state variable name too long for tsv definition packet"));
13278 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13279 *p++ = '\0';
13280 putpkt (rs->buf);
13281 remote_get_noisy_reply ();
13282 if (rs->buf[0] == '\0')
13283 error (_("Target does not support this command."));
13284 if (strcmp (rs->buf.data (), "OK") != 0)
13285 error (_("Error on target while downloading trace state variable."));
13286 }
13287
13288 void
13289 remote_target::enable_tracepoint (struct bp_location *location)
13290 {
13291 struct remote_state *rs = get_remote_state ();
13292
13293 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13294 location->owner->number,
13295 phex (location->address, sizeof (CORE_ADDR)));
13296 putpkt (rs->buf);
13297 remote_get_noisy_reply ();
13298 if (rs->buf[0] == '\0')
13299 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13300 if (strcmp (rs->buf.data (), "OK") != 0)
13301 error (_("Error on target while enabling tracepoint."));
13302 }
13303
13304 void
13305 remote_target::disable_tracepoint (struct bp_location *location)
13306 {
13307 struct remote_state *rs = get_remote_state ();
13308
13309 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13310 location->owner->number,
13311 phex (location->address, sizeof (CORE_ADDR)));
13312 putpkt (rs->buf);
13313 remote_get_noisy_reply ();
13314 if (rs->buf[0] == '\0')
13315 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13316 if (strcmp (rs->buf.data (), "OK") != 0)
13317 error (_("Error on target while disabling tracepoint."));
13318 }
13319
13320 void
13321 remote_target::trace_set_readonly_regions ()
13322 {
13323 asection *s;
13324 bfd_size_type size;
13325 bfd_vma vma;
13326 int anysecs = 0;
13327 int offset = 0;
13328
13329 if (!current_program_space->exec_bfd ())
13330 return; /* No information to give. */
13331
13332 struct remote_state *rs = get_remote_state ();
13333
13334 strcpy (rs->buf.data (), "QTro");
13335 offset = strlen (rs->buf.data ());
13336 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13337 {
13338 char tmp1[40], tmp2[40];
13339 int sec_length;
13340
13341 if ((s->flags & SEC_LOAD) == 0 ||
13342 /* (s->flags & SEC_CODE) == 0 || */
13343 (s->flags & SEC_READONLY) == 0)
13344 continue;
13345
13346 anysecs = 1;
13347 vma = bfd_section_vma (s);
13348 size = bfd_section_size (s);
13349 sprintf_vma (tmp1, vma);
13350 sprintf_vma (tmp2, vma + size);
13351 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13352 if (offset + sec_length + 1 > rs->buf.size ())
13353 {
13354 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13355 warning (_("\
13356 Too many sections for read-only sections definition packet."));
13357 break;
13358 }
13359 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13360 tmp1, tmp2);
13361 offset += sec_length;
13362 }
13363 if (anysecs)
13364 {
13365 putpkt (rs->buf);
13366 getpkt (&rs->buf, 0);
13367 }
13368 }
13369
13370 void
13371 remote_target::trace_start ()
13372 {
13373 struct remote_state *rs = get_remote_state ();
13374
13375 putpkt ("QTStart");
13376 remote_get_noisy_reply ();
13377 if (rs->buf[0] == '\0')
13378 error (_("Target does not support this command."));
13379 if (strcmp (rs->buf.data (), "OK") != 0)
13380 error (_("Bogus reply from target: %s"), rs->buf.data ());
13381 }
13382
13383 int
13384 remote_target::get_trace_status (struct trace_status *ts)
13385 {
13386 /* Initialize it just to avoid a GCC false warning. */
13387 char *p = NULL;
13388 enum packet_result result;
13389 struct remote_state *rs = get_remote_state ();
13390
13391 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13392 return -1;
13393
13394 /* FIXME we need to get register block size some other way. */
13395 trace_regblock_size
13396 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13397
13398 putpkt ("qTStatus");
13399
13400 try
13401 {
13402 p = remote_get_noisy_reply ();
13403 }
13404 catch (const gdb_exception_error &ex)
13405 {
13406 if (ex.error != TARGET_CLOSE_ERROR)
13407 {
13408 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13409 return -1;
13410 }
13411 throw;
13412 }
13413
13414 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13415
13416 /* If the remote target doesn't do tracing, flag it. */
13417 if (result == PACKET_UNKNOWN)
13418 return -1;
13419
13420 /* We're working with a live target. */
13421 ts->filename = NULL;
13422
13423 if (*p++ != 'T')
13424 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13425
13426 /* Function 'parse_trace_status' sets default value of each field of
13427 'ts' at first, so we don't have to do it here. */
13428 parse_trace_status (p, ts);
13429
13430 return ts->running;
13431 }
13432
13433 void
13434 remote_target::get_tracepoint_status (struct breakpoint *bp,
13435 struct uploaded_tp *utp)
13436 {
13437 struct remote_state *rs = get_remote_state ();
13438 char *reply;
13439 struct bp_location *loc;
13440 struct tracepoint *tp = (struct tracepoint *) bp;
13441 size_t size = get_remote_packet_size ();
13442
13443 if (tp)
13444 {
13445 tp->hit_count = 0;
13446 tp->traceframe_usage = 0;
13447 for (loc = tp->loc; loc; loc = loc->next)
13448 {
13449 /* If the tracepoint was never downloaded, don't go asking for
13450 any status. */
13451 if (tp->number_on_target == 0)
13452 continue;
13453 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13454 phex_nz (loc->address, 0));
13455 putpkt (rs->buf);
13456 reply = remote_get_noisy_reply ();
13457 if (reply && *reply)
13458 {
13459 if (*reply == 'V')
13460 parse_tracepoint_status (reply + 1, bp, utp);
13461 }
13462 }
13463 }
13464 else if (utp)
13465 {
13466 utp->hit_count = 0;
13467 utp->traceframe_usage = 0;
13468 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13469 phex_nz (utp->addr, 0));
13470 putpkt (rs->buf);
13471 reply = remote_get_noisy_reply ();
13472 if (reply && *reply)
13473 {
13474 if (*reply == 'V')
13475 parse_tracepoint_status (reply + 1, bp, utp);
13476 }
13477 }
13478 }
13479
13480 void
13481 remote_target::trace_stop ()
13482 {
13483 struct remote_state *rs = get_remote_state ();
13484
13485 putpkt ("QTStop");
13486 remote_get_noisy_reply ();
13487 if (rs->buf[0] == '\0')
13488 error (_("Target does not support this command."));
13489 if (strcmp (rs->buf.data (), "OK") != 0)
13490 error (_("Bogus reply from target: %s"), rs->buf.data ());
13491 }
13492
13493 int
13494 remote_target::trace_find (enum trace_find_type type, int num,
13495 CORE_ADDR addr1, CORE_ADDR addr2,
13496 int *tpp)
13497 {
13498 struct remote_state *rs = get_remote_state ();
13499 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13500 char *p, *reply;
13501 int target_frameno = -1, target_tracept = -1;
13502
13503 /* Lookups other than by absolute frame number depend on the current
13504 trace selected, so make sure it is correct on the remote end
13505 first. */
13506 if (type != tfind_number)
13507 set_remote_traceframe ();
13508
13509 p = rs->buf.data ();
13510 strcpy (p, "QTFrame:");
13511 p = strchr (p, '\0');
13512 switch (type)
13513 {
13514 case tfind_number:
13515 xsnprintf (p, endbuf - p, "%x", num);
13516 break;
13517 case tfind_pc:
13518 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13519 break;
13520 case tfind_tp:
13521 xsnprintf (p, endbuf - p, "tdp:%x", num);
13522 break;
13523 case tfind_range:
13524 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13525 phex_nz (addr2, 0));
13526 break;
13527 case tfind_outside:
13528 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13529 phex_nz (addr2, 0));
13530 break;
13531 default:
13532 error (_("Unknown trace find type %d"), type);
13533 }
13534
13535 putpkt (rs->buf);
13536 reply = remote_get_noisy_reply ();
13537 if (*reply == '\0')
13538 error (_("Target does not support this command."));
13539
13540 while (reply && *reply)
13541 switch (*reply)
13542 {
13543 case 'F':
13544 p = ++reply;
13545 target_frameno = (int) strtol (p, &reply, 16);
13546 if (reply == p)
13547 error (_("Unable to parse trace frame number"));
13548 /* Don't update our remote traceframe number cache on failure
13549 to select a remote traceframe. */
13550 if (target_frameno == -1)
13551 return -1;
13552 break;
13553 case 'T':
13554 p = ++reply;
13555 target_tracept = (int) strtol (p, &reply, 16);
13556 if (reply == p)
13557 error (_("Unable to parse tracepoint number"));
13558 break;
13559 case 'O': /* "OK"? */
13560 if (reply[1] == 'K' && reply[2] == '\0')
13561 reply += 2;
13562 else
13563 error (_("Bogus reply from target: %s"), reply);
13564 break;
13565 default:
13566 error (_("Bogus reply from target: %s"), reply);
13567 }
13568 if (tpp)
13569 *tpp = target_tracept;
13570
13571 rs->remote_traceframe_number = target_frameno;
13572 return target_frameno;
13573 }
13574
13575 bool
13576 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13577 {
13578 struct remote_state *rs = get_remote_state ();
13579 char *reply;
13580 ULONGEST uval;
13581
13582 set_remote_traceframe ();
13583
13584 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13585 putpkt (rs->buf);
13586 reply = remote_get_noisy_reply ();
13587 if (reply && *reply)
13588 {
13589 if (*reply == 'V')
13590 {
13591 unpack_varlen_hex (reply + 1, &uval);
13592 *val = (LONGEST) uval;
13593 return true;
13594 }
13595 }
13596 return false;
13597 }
13598
13599 int
13600 remote_target::save_trace_data (const char *filename)
13601 {
13602 struct remote_state *rs = get_remote_state ();
13603 char *p, *reply;
13604
13605 p = rs->buf.data ();
13606 strcpy (p, "QTSave:");
13607 p += strlen (p);
13608 if ((p - rs->buf.data ()) + strlen (filename) * 2
13609 >= get_remote_packet_size ())
13610 error (_("Remote file name too long for trace save packet"));
13611 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13612 *p++ = '\0';
13613 putpkt (rs->buf);
13614 reply = remote_get_noisy_reply ();
13615 if (*reply == '\0')
13616 error (_("Target does not support this command."));
13617 if (strcmp (reply, "OK") != 0)
13618 error (_("Bogus reply from target: %s"), reply);
13619 return 0;
13620 }
13621
13622 /* This is basically a memory transfer, but needs to be its own packet
13623 because we don't know how the target actually organizes its trace
13624 memory, plus we want to be able to ask for as much as possible, but
13625 not be unhappy if we don't get as much as we ask for. */
13626
13627 LONGEST
13628 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13629 {
13630 struct remote_state *rs = get_remote_state ();
13631 char *reply;
13632 char *p;
13633 int rslt;
13634
13635 p = rs->buf.data ();
13636 strcpy (p, "qTBuffer:");
13637 p += strlen (p);
13638 p += hexnumstr (p, offset);
13639 *p++ = ',';
13640 p += hexnumstr (p, len);
13641 *p++ = '\0';
13642
13643 putpkt (rs->buf);
13644 reply = remote_get_noisy_reply ();
13645 if (reply && *reply)
13646 {
13647 /* 'l' by itself means we're at the end of the buffer and
13648 there is nothing more to get. */
13649 if (*reply == 'l')
13650 return 0;
13651
13652 /* Convert the reply into binary. Limit the number of bytes to
13653 convert according to our passed-in buffer size, rather than
13654 what was returned in the packet; if the target is
13655 unexpectedly generous and gives us a bigger reply than we
13656 asked for, we don't want to crash. */
13657 rslt = hex2bin (reply, buf, len);
13658 return rslt;
13659 }
13660
13661 /* Something went wrong, flag as an error. */
13662 return -1;
13663 }
13664
13665 void
13666 remote_target::set_disconnected_tracing (int val)
13667 {
13668 struct remote_state *rs = get_remote_state ();
13669
13670 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13671 {
13672 char *reply;
13673
13674 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13675 "QTDisconnected:%x", val);
13676 putpkt (rs->buf);
13677 reply = remote_get_noisy_reply ();
13678 if (*reply == '\0')
13679 error (_("Target does not support this command."));
13680 if (strcmp (reply, "OK") != 0)
13681 error (_("Bogus reply from target: %s"), reply);
13682 }
13683 else if (val)
13684 warning (_("Target does not support disconnected tracing."));
13685 }
13686
13687 int
13688 remote_target::core_of_thread (ptid_t ptid)
13689 {
13690 thread_info *info = find_thread_ptid (this, ptid);
13691
13692 if (info != NULL && info->priv != NULL)
13693 return get_remote_thread_info (info)->core;
13694
13695 return -1;
13696 }
13697
13698 void
13699 remote_target::set_circular_trace_buffer (int val)
13700 {
13701 struct remote_state *rs = get_remote_state ();
13702 char *reply;
13703
13704 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13705 "QTBuffer:circular:%x", val);
13706 putpkt (rs->buf);
13707 reply = remote_get_noisy_reply ();
13708 if (*reply == '\0')
13709 error (_("Target does not support this command."));
13710 if (strcmp (reply, "OK") != 0)
13711 error (_("Bogus reply from target: %s"), reply);
13712 }
13713
13714 traceframe_info_up
13715 remote_target::traceframe_info ()
13716 {
13717 gdb::optional<gdb::char_vector> text
13718 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13719 NULL);
13720 if (text)
13721 return parse_traceframe_info (text->data ());
13722
13723 return NULL;
13724 }
13725
13726 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13727 instruction on which a fast tracepoint may be placed. Returns -1
13728 if the packet is not supported, and 0 if the minimum instruction
13729 length is unknown. */
13730
13731 int
13732 remote_target::get_min_fast_tracepoint_insn_len ()
13733 {
13734 struct remote_state *rs = get_remote_state ();
13735 char *reply;
13736
13737 /* If we're not debugging a process yet, the IPA can't be
13738 loaded. */
13739 if (!target_has_execution ())
13740 return 0;
13741
13742 /* Make sure the remote is pointing at the right process. */
13743 set_general_process ();
13744
13745 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13746 putpkt (rs->buf);
13747 reply = remote_get_noisy_reply ();
13748 if (*reply == '\0')
13749 return -1;
13750 else
13751 {
13752 ULONGEST min_insn_len;
13753
13754 unpack_varlen_hex (reply, &min_insn_len);
13755
13756 return (int) min_insn_len;
13757 }
13758 }
13759
13760 void
13761 remote_target::set_trace_buffer_size (LONGEST val)
13762 {
13763 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13764 {
13765 struct remote_state *rs = get_remote_state ();
13766 char *buf = rs->buf.data ();
13767 char *endbuf = buf + get_remote_packet_size ();
13768 enum packet_result result;
13769
13770 gdb_assert (val >= 0 || val == -1);
13771 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13772 /* Send -1 as literal "-1" to avoid host size dependency. */
13773 if (val < 0)
13774 {
13775 *buf++ = '-';
13776 buf += hexnumstr (buf, (ULONGEST) -val);
13777 }
13778 else
13779 buf += hexnumstr (buf, (ULONGEST) val);
13780
13781 putpkt (rs->buf);
13782 remote_get_noisy_reply ();
13783 result = packet_ok (rs->buf,
13784 &remote_protocol_packets[PACKET_QTBuffer_size]);
13785
13786 if (result != PACKET_OK)
13787 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13788 }
13789 }
13790
13791 bool
13792 remote_target::set_trace_notes (const char *user, const char *notes,
13793 const char *stop_notes)
13794 {
13795 struct remote_state *rs = get_remote_state ();
13796 char *reply;
13797 char *buf = rs->buf.data ();
13798 char *endbuf = buf + get_remote_packet_size ();
13799 int nbytes;
13800
13801 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13802 if (user)
13803 {
13804 buf += xsnprintf (buf, endbuf - buf, "user:");
13805 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13806 buf += 2 * nbytes;
13807 *buf++ = ';';
13808 }
13809 if (notes)
13810 {
13811 buf += xsnprintf (buf, endbuf - buf, "notes:");
13812 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13813 buf += 2 * nbytes;
13814 *buf++ = ';';
13815 }
13816 if (stop_notes)
13817 {
13818 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13819 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13820 buf += 2 * nbytes;
13821 *buf++ = ';';
13822 }
13823 /* Ensure the buffer is terminated. */
13824 *buf = '\0';
13825
13826 putpkt (rs->buf);
13827 reply = remote_get_noisy_reply ();
13828 if (*reply == '\0')
13829 return false;
13830
13831 if (strcmp (reply, "OK") != 0)
13832 error (_("Bogus reply from target: %s"), reply);
13833
13834 return true;
13835 }
13836
13837 bool
13838 remote_target::use_agent (bool use)
13839 {
13840 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13841 {
13842 struct remote_state *rs = get_remote_state ();
13843
13844 /* If the stub supports QAgent. */
13845 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13846 putpkt (rs->buf);
13847 getpkt (&rs->buf, 0);
13848
13849 if (strcmp (rs->buf.data (), "OK") == 0)
13850 {
13851 ::use_agent = use;
13852 return true;
13853 }
13854 }
13855
13856 return false;
13857 }
13858
13859 bool
13860 remote_target::can_use_agent ()
13861 {
13862 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13863 }
13864
13865 struct btrace_target_info
13866 {
13867 /* The ptid of the traced thread. */
13868 ptid_t ptid;
13869
13870 /* The obtained branch trace configuration. */
13871 struct btrace_config conf;
13872 };
13873
13874 /* Reset our idea of our target's btrace configuration. */
13875
13876 static void
13877 remote_btrace_reset (remote_state *rs)
13878 {
13879 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13880 }
13881
13882 /* Synchronize the configuration with the target. */
13883
13884 void
13885 remote_target::btrace_sync_conf (const btrace_config *conf)
13886 {
13887 struct packet_config *packet;
13888 struct remote_state *rs;
13889 char *buf, *pos, *endbuf;
13890
13891 rs = get_remote_state ();
13892 buf = rs->buf.data ();
13893 endbuf = buf + get_remote_packet_size ();
13894
13895 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13896 if (packet_config_support (packet) == PACKET_ENABLE
13897 && conf->bts.size != rs->btrace_config.bts.size)
13898 {
13899 pos = buf;
13900 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13901 conf->bts.size);
13902
13903 putpkt (buf);
13904 getpkt (&rs->buf, 0);
13905
13906 if (packet_ok (buf, packet) == PACKET_ERROR)
13907 {
13908 if (buf[0] == 'E' && buf[1] == '.')
13909 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13910 else
13911 error (_("Failed to configure the BTS buffer size."));
13912 }
13913
13914 rs->btrace_config.bts.size = conf->bts.size;
13915 }
13916
13917 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13918 if (packet_config_support (packet) == PACKET_ENABLE
13919 && conf->pt.size != rs->btrace_config.pt.size)
13920 {
13921 pos = buf;
13922 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13923 conf->pt.size);
13924
13925 putpkt (buf);
13926 getpkt (&rs->buf, 0);
13927
13928 if (packet_ok (buf, packet) == PACKET_ERROR)
13929 {
13930 if (buf[0] == 'E' && buf[1] == '.')
13931 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13932 else
13933 error (_("Failed to configure the trace buffer size."));
13934 }
13935
13936 rs->btrace_config.pt.size = conf->pt.size;
13937 }
13938 }
13939
13940 /* Read the current thread's btrace configuration from the target and
13941 store it into CONF. */
13942
13943 static void
13944 btrace_read_config (struct btrace_config *conf)
13945 {
13946 gdb::optional<gdb::char_vector> xml
13947 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13948 if (xml)
13949 parse_xml_btrace_conf (conf, xml->data ());
13950 }
13951
13952 /* Maybe reopen target btrace. */
13953
13954 void
13955 remote_target::remote_btrace_maybe_reopen ()
13956 {
13957 struct remote_state *rs = get_remote_state ();
13958 int btrace_target_pushed = 0;
13959 #if !defined (HAVE_LIBIPT)
13960 int warned = 0;
13961 #endif
13962
13963 /* Don't bother walking the entirety of the remote thread list when
13964 we know the feature isn't supported by the remote. */
13965 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13966 return;
13967
13968 scoped_restore_current_thread restore_thread;
13969
13970 for (thread_info *tp : all_non_exited_threads (this))
13971 {
13972 set_general_thread (tp->ptid);
13973
13974 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13975 btrace_read_config (&rs->btrace_config);
13976
13977 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13978 continue;
13979
13980 #if !defined (HAVE_LIBIPT)
13981 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13982 {
13983 if (!warned)
13984 {
13985 warned = 1;
13986 warning (_("Target is recording using Intel Processor Trace "
13987 "but support was disabled at compile time."));
13988 }
13989
13990 continue;
13991 }
13992 #endif /* !defined (HAVE_LIBIPT) */
13993
13994 /* Push target, once, but before anything else happens. This way our
13995 changes to the threads will be cleaned up by unpushing the target
13996 in case btrace_read_config () throws. */
13997 if (!btrace_target_pushed)
13998 {
13999 btrace_target_pushed = 1;
14000 record_btrace_push_target ();
14001 printf_filtered (_("Target is recording using %s.\n"),
14002 btrace_format_string (rs->btrace_config.format));
14003 }
14004
14005 tp->btrace.target = XCNEW (struct btrace_target_info);
14006 tp->btrace.target->ptid = tp->ptid;
14007 tp->btrace.target->conf = rs->btrace_config;
14008 }
14009 }
14010
14011 /* Enable branch tracing. */
14012
14013 struct btrace_target_info *
14014 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
14015 {
14016 struct btrace_target_info *tinfo = NULL;
14017 struct packet_config *packet = NULL;
14018 struct remote_state *rs = get_remote_state ();
14019 char *buf = rs->buf.data ();
14020 char *endbuf = buf + get_remote_packet_size ();
14021
14022 switch (conf->format)
14023 {
14024 case BTRACE_FORMAT_BTS:
14025 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14026 break;
14027
14028 case BTRACE_FORMAT_PT:
14029 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14030 break;
14031 }
14032
14033 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14034 error (_("Target does not support branch tracing."));
14035
14036 btrace_sync_conf (conf);
14037
14038 set_general_thread (ptid);
14039
14040 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14041 putpkt (rs->buf);
14042 getpkt (&rs->buf, 0);
14043
14044 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14045 {
14046 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14047 error (_("Could not enable branch tracing for %s: %s"),
14048 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14049 else
14050 error (_("Could not enable branch tracing for %s."),
14051 target_pid_to_str (ptid).c_str ());
14052 }
14053
14054 tinfo = XCNEW (struct btrace_target_info);
14055 tinfo->ptid = ptid;
14056
14057 /* If we fail to read the configuration, we lose some information, but the
14058 tracing itself is not impacted. */
14059 try
14060 {
14061 btrace_read_config (&tinfo->conf);
14062 }
14063 catch (const gdb_exception_error &err)
14064 {
14065 if (err.message != NULL)
14066 warning ("%s", err.what ());
14067 }
14068
14069 return tinfo;
14070 }
14071
14072 /* Disable branch tracing. */
14073
14074 void
14075 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14076 {
14077 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14078 struct remote_state *rs = get_remote_state ();
14079 char *buf = rs->buf.data ();
14080 char *endbuf = buf + get_remote_packet_size ();
14081
14082 if (packet_config_support (packet) != PACKET_ENABLE)
14083 error (_("Target does not support branch tracing."));
14084
14085 set_general_thread (tinfo->ptid);
14086
14087 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14088 putpkt (rs->buf);
14089 getpkt (&rs->buf, 0);
14090
14091 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14092 {
14093 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14094 error (_("Could not disable branch tracing for %s: %s"),
14095 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14096 else
14097 error (_("Could not disable branch tracing for %s."),
14098 target_pid_to_str (tinfo->ptid).c_str ());
14099 }
14100
14101 xfree (tinfo);
14102 }
14103
14104 /* Teardown branch tracing. */
14105
14106 void
14107 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14108 {
14109 /* We must not talk to the target during teardown. */
14110 xfree (tinfo);
14111 }
14112
14113 /* Read the branch trace. */
14114
14115 enum btrace_error
14116 remote_target::read_btrace (struct btrace_data *btrace,
14117 struct btrace_target_info *tinfo,
14118 enum btrace_read_type type)
14119 {
14120 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14121 const char *annex;
14122
14123 if (packet_config_support (packet) != PACKET_ENABLE)
14124 error (_("Target does not support branch tracing."));
14125
14126 #if !defined(HAVE_LIBEXPAT)
14127 error (_("Cannot process branch tracing result. XML parsing not supported."));
14128 #endif
14129
14130 switch (type)
14131 {
14132 case BTRACE_READ_ALL:
14133 annex = "all";
14134 break;
14135 case BTRACE_READ_NEW:
14136 annex = "new";
14137 break;
14138 case BTRACE_READ_DELTA:
14139 annex = "delta";
14140 break;
14141 default:
14142 internal_error (__FILE__, __LINE__,
14143 _("Bad branch tracing read type: %u."),
14144 (unsigned int) type);
14145 }
14146
14147 gdb::optional<gdb::char_vector> xml
14148 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
14149 if (!xml)
14150 return BTRACE_ERR_UNKNOWN;
14151
14152 parse_xml_btrace (btrace, xml->data ());
14153
14154 return BTRACE_ERR_NONE;
14155 }
14156
14157 const struct btrace_config *
14158 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14159 {
14160 return &tinfo->conf;
14161 }
14162
14163 bool
14164 remote_target::augmented_libraries_svr4_read ()
14165 {
14166 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14167 == PACKET_ENABLE);
14168 }
14169
14170 /* Implementation of to_load. */
14171
14172 void
14173 remote_target::load (const char *name, int from_tty)
14174 {
14175 generic_load (name, from_tty);
14176 }
14177
14178 /* Accepts an integer PID; returns a string representing a file that
14179 can be opened on the remote side to get the symbols for the child
14180 process. Returns NULL if the operation is not supported. */
14181
14182 char *
14183 remote_target::pid_to_exec_file (int pid)
14184 {
14185 static gdb::optional<gdb::char_vector> filename;
14186 char *annex = NULL;
14187
14188 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14189 return NULL;
14190
14191 inferior *inf = find_inferior_pid (this, pid);
14192 if (inf == NULL)
14193 internal_error (__FILE__, __LINE__,
14194 _("not currently attached to process %d"), pid);
14195
14196 if (!inf->fake_pid_p)
14197 {
14198 const int annex_size = 9;
14199
14200 annex = (char *) alloca (annex_size);
14201 xsnprintf (annex, annex_size, "%x", pid);
14202 }
14203
14204 filename = target_read_stralloc (current_top_target (),
14205 TARGET_OBJECT_EXEC_FILE, annex);
14206
14207 return filename ? filename->data () : nullptr;
14208 }
14209
14210 /* Implement the to_can_do_single_step target_ops method. */
14211
14212 int
14213 remote_target::can_do_single_step ()
14214 {
14215 /* We can only tell whether target supports single step or not by
14216 supported s and S vCont actions if the stub supports vContSupported
14217 feature. If the stub doesn't support vContSupported feature,
14218 we have conservatively to think target doesn't supports single
14219 step. */
14220 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14221 {
14222 struct remote_state *rs = get_remote_state ();
14223
14224 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14225 remote_vcont_probe ();
14226
14227 return rs->supports_vCont.s && rs->supports_vCont.S;
14228 }
14229 else
14230 return 0;
14231 }
14232
14233 /* Implementation of the to_execution_direction method for the remote
14234 target. */
14235
14236 enum exec_direction_kind
14237 remote_target::execution_direction ()
14238 {
14239 struct remote_state *rs = get_remote_state ();
14240
14241 return rs->last_resume_exec_dir;
14242 }
14243
14244 /* Return pointer to the thread_info struct which corresponds to
14245 THREAD_HANDLE (having length HANDLE_LEN). */
14246
14247 thread_info *
14248 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14249 int handle_len,
14250 inferior *inf)
14251 {
14252 for (thread_info *tp : all_non_exited_threads (this))
14253 {
14254 remote_thread_info *priv = get_remote_thread_info (tp);
14255
14256 if (tp->inf == inf && priv != NULL)
14257 {
14258 if (handle_len != priv->thread_handle.size ())
14259 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14260 handle_len, priv->thread_handle.size ());
14261 if (memcmp (thread_handle, priv->thread_handle.data (),
14262 handle_len) == 0)
14263 return tp;
14264 }
14265 }
14266
14267 return NULL;
14268 }
14269
14270 gdb::byte_vector
14271 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14272 {
14273 remote_thread_info *priv = get_remote_thread_info (tp);
14274 return priv->thread_handle;
14275 }
14276
14277 bool
14278 remote_target::can_async_p ()
14279 {
14280 struct remote_state *rs = get_remote_state ();
14281
14282 /* We don't go async if the user has explicitly prevented it with the
14283 "maint set target-async" command. */
14284 if (!target_async_permitted)
14285 return false;
14286
14287 /* We're async whenever the serial device is. */
14288 return serial_can_async_p (rs->remote_desc);
14289 }
14290
14291 bool
14292 remote_target::is_async_p ()
14293 {
14294 struct remote_state *rs = get_remote_state ();
14295
14296 if (!target_async_permitted)
14297 /* We only enable async when the user specifically asks for it. */
14298 return false;
14299
14300 /* We're async whenever the serial device is. */
14301 return serial_is_async_p (rs->remote_desc);
14302 }
14303
14304 /* Pass the SERIAL event on and up to the client. One day this code
14305 will be able to delay notifying the client of an event until the
14306 point where an entire packet has been received. */
14307
14308 static serial_event_ftype remote_async_serial_handler;
14309
14310 static void
14311 remote_async_serial_handler (struct serial *scb, void *context)
14312 {
14313 /* Don't propogate error information up to the client. Instead let
14314 the client find out about the error by querying the target. */
14315 inferior_event_handler (INF_REG_EVENT);
14316 }
14317
14318 static void
14319 remote_async_inferior_event_handler (gdb_client_data data)
14320 {
14321 inferior_event_handler (INF_REG_EVENT);
14322
14323 remote_target *remote = (remote_target *) data;
14324 remote_state *rs = remote->get_remote_state ();
14325
14326 /* inferior_event_handler may have consumed an event pending on the
14327 infrun side without calling target_wait on the REMOTE target, or
14328 may have pulled an event out of a different target. Keep trying
14329 for this remote target as long it still has either pending events
14330 or unacknowledged notifications. */
14331
14332 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL
14333 || !rs->stop_reply_queue.empty ())
14334 mark_async_event_handler (rs->remote_async_inferior_event_token);
14335 }
14336
14337 int
14338 remote_target::async_wait_fd ()
14339 {
14340 struct remote_state *rs = get_remote_state ();
14341 return rs->remote_desc->fd;
14342 }
14343
14344 void
14345 remote_target::async (int enable)
14346 {
14347 struct remote_state *rs = get_remote_state ();
14348
14349 if (enable)
14350 {
14351 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14352
14353 /* If there are pending events in the stop reply queue tell the
14354 event loop to process them. */
14355 if (!rs->stop_reply_queue.empty ())
14356 mark_async_event_handler (rs->remote_async_inferior_event_token);
14357 /* For simplicity, below we clear the pending events token
14358 without remembering whether it is marked, so here we always
14359 mark it. If there's actually no pending notification to
14360 process, this ends up being a no-op (other than a spurious
14361 event-loop wakeup). */
14362 if (target_is_non_stop_p ())
14363 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14364 }
14365 else
14366 {
14367 serial_async (rs->remote_desc, NULL, NULL);
14368 /* If the core is disabling async, it doesn't want to be
14369 disturbed with target events. Clear all async event sources
14370 too. */
14371 clear_async_event_handler (rs->remote_async_inferior_event_token);
14372 if (target_is_non_stop_p ())
14373 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14374 }
14375 }
14376
14377 /* Implementation of the to_thread_events method. */
14378
14379 void
14380 remote_target::thread_events (int enable)
14381 {
14382 struct remote_state *rs = get_remote_state ();
14383 size_t size = get_remote_packet_size ();
14384
14385 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14386 return;
14387
14388 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14389 putpkt (rs->buf);
14390 getpkt (&rs->buf, 0);
14391
14392 switch (packet_ok (rs->buf,
14393 &remote_protocol_packets[PACKET_QThreadEvents]))
14394 {
14395 case PACKET_OK:
14396 if (strcmp (rs->buf.data (), "OK") != 0)
14397 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14398 break;
14399 case PACKET_ERROR:
14400 warning (_("Remote failure reply: %s"), rs->buf.data ());
14401 break;
14402 case PACKET_UNKNOWN:
14403 break;
14404 }
14405 }
14406
14407 static void
14408 show_remote_cmd (const char *args, int from_tty)
14409 {
14410 /* We can't just use cmd_show_list here, because we want to skip
14411 the redundant "show remote Z-packet" and the legacy aliases. */
14412 struct cmd_list_element *list = remote_show_cmdlist;
14413 struct ui_out *uiout = current_uiout;
14414
14415 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14416 for (; list != NULL; list = list->next)
14417 if (strcmp (list->name, "Z-packet") == 0)
14418 continue;
14419 else if (list->type == not_set_cmd)
14420 /* Alias commands are exactly like the original, except they
14421 don't have the normal type. */
14422 continue;
14423 else
14424 {
14425 ui_out_emit_tuple option_emitter (uiout, "option");
14426
14427 uiout->field_string ("name", list->name);
14428 uiout->text (": ");
14429 if (list->type == show_cmd)
14430 do_show_command (NULL, from_tty, list);
14431 else
14432 cmd_func (list, NULL, from_tty);
14433 }
14434 }
14435
14436
14437 /* Function to be called whenever a new objfile (shlib) is detected. */
14438 static void
14439 remote_new_objfile (struct objfile *objfile)
14440 {
14441 remote_target *remote = get_current_remote_target ();
14442
14443 if (remote != NULL) /* Have a remote connection. */
14444 remote->remote_check_symbols ();
14445 }
14446
14447 /* Pull all the tracepoints defined on the target and create local
14448 data structures representing them. We don't want to create real
14449 tracepoints yet, we don't want to mess up the user's existing
14450 collection. */
14451
14452 int
14453 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14454 {
14455 struct remote_state *rs = get_remote_state ();
14456 char *p;
14457
14458 /* Ask for a first packet of tracepoint definition. */
14459 putpkt ("qTfP");
14460 getpkt (&rs->buf, 0);
14461 p = rs->buf.data ();
14462 while (*p && *p != 'l')
14463 {
14464 parse_tracepoint_definition (p, utpp);
14465 /* Ask for another packet of tracepoint definition. */
14466 putpkt ("qTsP");
14467 getpkt (&rs->buf, 0);
14468 p = rs->buf.data ();
14469 }
14470 return 0;
14471 }
14472
14473 int
14474 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14475 {
14476 struct remote_state *rs = get_remote_state ();
14477 char *p;
14478
14479 /* Ask for a first packet of variable definition. */
14480 putpkt ("qTfV");
14481 getpkt (&rs->buf, 0);
14482 p = rs->buf.data ();
14483 while (*p && *p != 'l')
14484 {
14485 parse_tsv_definition (p, utsvp);
14486 /* Ask for another packet of variable definition. */
14487 putpkt ("qTsV");
14488 getpkt (&rs->buf, 0);
14489 p = rs->buf.data ();
14490 }
14491 return 0;
14492 }
14493
14494 /* The "set/show range-stepping" show hook. */
14495
14496 static void
14497 show_range_stepping (struct ui_file *file, int from_tty,
14498 struct cmd_list_element *c,
14499 const char *value)
14500 {
14501 fprintf_filtered (file,
14502 _("Debugger's willingness to use range stepping "
14503 "is %s.\n"), value);
14504 }
14505
14506 /* Return true if the vCont;r action is supported by the remote
14507 stub. */
14508
14509 bool
14510 remote_target::vcont_r_supported ()
14511 {
14512 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14513 remote_vcont_probe ();
14514
14515 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14516 && get_remote_state ()->supports_vCont.r);
14517 }
14518
14519 /* The "set/show range-stepping" set hook. */
14520
14521 static void
14522 set_range_stepping (const char *ignore_args, int from_tty,
14523 struct cmd_list_element *c)
14524 {
14525 /* When enabling, check whether range stepping is actually supported
14526 by the target, and warn if not. */
14527 if (use_range_stepping)
14528 {
14529 remote_target *remote = get_current_remote_target ();
14530 if (remote == NULL
14531 || !remote->vcont_r_supported ())
14532 warning (_("Range stepping is not supported by the current target"));
14533 }
14534 }
14535
14536 void _initialize_remote ();
14537 void
14538 _initialize_remote ()
14539 {
14540 struct cmd_list_element *cmd;
14541 const char *cmd_name;
14542
14543 /* architecture specific data */
14544 remote_g_packet_data_handle =
14545 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14546
14547 add_target (remote_target_info, remote_target::open);
14548 add_target (extended_remote_target_info, extended_remote_target::open);
14549
14550 /* Hook into new objfile notification. */
14551 gdb::observers::new_objfile.attach (remote_new_objfile);
14552
14553 #if 0
14554 init_remote_threadtests ();
14555 #endif
14556
14557 /* set/show remote ... */
14558
14559 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14560 Remote protocol specific variables.\n\
14561 Configure various remote-protocol specific variables such as\n\
14562 the packets being used."),
14563 &remote_set_cmdlist, "set remote ",
14564 0 /* allow-unknown */, &setlist);
14565 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14566 Remote protocol specific variables.\n\
14567 Configure various remote-protocol specific variables such as\n\
14568 the packets being used."),
14569 &remote_show_cmdlist, "show remote ",
14570 0 /* allow-unknown */, &showlist);
14571
14572 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14573 Compare section data on target to the exec file.\n\
14574 Argument is a single section name (default: all loaded sections).\n\
14575 To compare only read-only loaded sections, specify the -r option."),
14576 &cmdlist);
14577
14578 add_cmd ("packet", class_maintenance, packet_command, _("\
14579 Send an arbitrary packet to a remote target.\n\
14580 maintenance packet TEXT\n\
14581 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14582 this command sends the string TEXT to the inferior, and displays the\n\
14583 response packet. GDB supplies the initial `$' character, and the\n\
14584 terminating `#' character and checksum."),
14585 &maintenancelist);
14586
14587 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14588 Set whether to send break if interrupted."), _("\
14589 Show whether to send break if interrupted."), _("\
14590 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14591 set_remotebreak, show_remotebreak,
14592 &setlist, &showlist);
14593 cmd_name = "remotebreak";
14594 cmd = lookup_cmd (&cmd_name, setlist, "", NULL, -1, 1);
14595 deprecate_cmd (cmd, "set remote interrupt-sequence");
14596 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14597 cmd = lookup_cmd (&cmd_name, showlist, "", NULL, -1, 1);
14598 deprecate_cmd (cmd, "show remote interrupt-sequence");
14599
14600 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14601 interrupt_sequence_modes, &interrupt_sequence_mode,
14602 _("\
14603 Set interrupt sequence to remote target."), _("\
14604 Show interrupt sequence to remote target."), _("\
14605 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14606 NULL, show_interrupt_sequence,
14607 &remote_set_cmdlist,
14608 &remote_show_cmdlist);
14609
14610 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14611 &interrupt_on_connect, _("\
14612 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14613 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14614 If set, interrupt sequence is sent to remote target."),
14615 NULL, NULL,
14616 &remote_set_cmdlist, &remote_show_cmdlist);
14617
14618 /* Install commands for configuring memory read/write packets. */
14619
14620 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14621 Set the maximum number of bytes per memory write packet (deprecated)."),
14622 &setlist);
14623 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14624 Show the maximum number of bytes per memory write packet (deprecated)."),
14625 &showlist);
14626 add_cmd ("memory-write-packet-size", no_class,
14627 set_memory_write_packet_size, _("\
14628 Set the maximum number of bytes per memory-write packet.\n\
14629 Specify the number of bytes in a packet or 0 (zero) for the\n\
14630 default packet size. The actual limit is further reduced\n\
14631 dependent on the target. Specify ``fixed'' to disable the\n\
14632 further restriction and ``limit'' to enable that restriction."),
14633 &remote_set_cmdlist);
14634 add_cmd ("memory-read-packet-size", no_class,
14635 set_memory_read_packet_size, _("\
14636 Set the maximum number of bytes per memory-read packet.\n\
14637 Specify the number of bytes in a packet or 0 (zero) for the\n\
14638 default packet size. The actual limit is further reduced\n\
14639 dependent on the target. Specify ``fixed'' to disable the\n\
14640 further restriction and ``limit'' to enable that restriction."),
14641 &remote_set_cmdlist);
14642 add_cmd ("memory-write-packet-size", no_class,
14643 show_memory_write_packet_size,
14644 _("Show the maximum number of bytes per memory-write packet."),
14645 &remote_show_cmdlist);
14646 add_cmd ("memory-read-packet-size", no_class,
14647 show_memory_read_packet_size,
14648 _("Show the maximum number of bytes per memory-read packet."),
14649 &remote_show_cmdlist);
14650
14651 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14652 &remote_hw_watchpoint_limit, _("\
14653 Set the maximum number of target hardware watchpoints."), _("\
14654 Show the maximum number of target hardware watchpoints."), _("\
14655 Specify \"unlimited\" for unlimited hardware watchpoints."),
14656 NULL, show_hardware_watchpoint_limit,
14657 &remote_set_cmdlist,
14658 &remote_show_cmdlist);
14659 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14660 no_class,
14661 &remote_hw_watchpoint_length_limit, _("\
14662 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14663 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14664 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14665 NULL, show_hardware_watchpoint_length_limit,
14666 &remote_set_cmdlist, &remote_show_cmdlist);
14667 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14668 &remote_hw_breakpoint_limit, _("\
14669 Set the maximum number of target hardware breakpoints."), _("\
14670 Show the maximum number of target hardware breakpoints."), _("\
14671 Specify \"unlimited\" for unlimited hardware breakpoints."),
14672 NULL, show_hardware_breakpoint_limit,
14673 &remote_set_cmdlist, &remote_show_cmdlist);
14674
14675 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14676 &remote_address_size, _("\
14677 Set the maximum size of the address (in bits) in a memory packet."), _("\
14678 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14679 NULL,
14680 NULL, /* FIXME: i18n: */
14681 &setlist, &showlist);
14682
14683 init_all_packet_configs ();
14684
14685 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14686 "X", "binary-download", 1);
14687
14688 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14689 "vCont", "verbose-resume", 0);
14690
14691 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14692 "QPassSignals", "pass-signals", 0);
14693
14694 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14695 "QCatchSyscalls", "catch-syscalls", 0);
14696
14697 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14698 "QProgramSignals", "program-signals", 0);
14699
14700 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14701 "QSetWorkingDir", "set-working-dir", 0);
14702
14703 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14704 "QStartupWithShell", "startup-with-shell", 0);
14705
14706 add_packet_config_cmd (&remote_protocol_packets
14707 [PACKET_QEnvironmentHexEncoded],
14708 "QEnvironmentHexEncoded", "environment-hex-encoded",
14709 0);
14710
14711 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14712 "QEnvironmentReset", "environment-reset",
14713 0);
14714
14715 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14716 "QEnvironmentUnset", "environment-unset",
14717 0);
14718
14719 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14720 "qSymbol", "symbol-lookup", 0);
14721
14722 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14723 "P", "set-register", 1);
14724
14725 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14726 "p", "fetch-register", 1);
14727
14728 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14729 "Z0", "software-breakpoint", 0);
14730
14731 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14732 "Z1", "hardware-breakpoint", 0);
14733
14734 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14735 "Z2", "write-watchpoint", 0);
14736
14737 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14738 "Z3", "read-watchpoint", 0);
14739
14740 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14741 "Z4", "access-watchpoint", 0);
14742
14743 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14744 "qXfer:auxv:read", "read-aux-vector", 0);
14745
14746 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14747 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14748
14749 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14750 "qXfer:features:read", "target-features", 0);
14751
14752 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14753 "qXfer:libraries:read", "library-info", 0);
14754
14755 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14756 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14757
14758 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14759 "qXfer:memory-map:read", "memory-map", 0);
14760
14761 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14762 "qXfer:osdata:read", "osdata", 0);
14763
14764 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14765 "qXfer:threads:read", "threads", 0);
14766
14767 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14768 "qXfer:siginfo:read", "read-siginfo-object", 0);
14769
14770 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14771 "qXfer:siginfo:write", "write-siginfo-object", 0);
14772
14773 add_packet_config_cmd
14774 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14775 "qXfer:traceframe-info:read", "traceframe-info", 0);
14776
14777 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14778 "qXfer:uib:read", "unwind-info-block", 0);
14779
14780 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14781 "qGetTLSAddr", "get-thread-local-storage-address",
14782 0);
14783
14784 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14785 "qGetTIBAddr", "get-thread-information-block-address",
14786 0);
14787
14788 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14789 "bc", "reverse-continue", 0);
14790
14791 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14792 "bs", "reverse-step", 0);
14793
14794 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14795 "qSupported", "supported-packets", 0);
14796
14797 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14798 "qSearch:memory", "search-memory", 0);
14799
14800 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14801 "qTStatus", "trace-status", 0);
14802
14803 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14804 "vFile:setfs", "hostio-setfs", 0);
14805
14806 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14807 "vFile:open", "hostio-open", 0);
14808
14809 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14810 "vFile:pread", "hostio-pread", 0);
14811
14812 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14813 "vFile:pwrite", "hostio-pwrite", 0);
14814
14815 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14816 "vFile:close", "hostio-close", 0);
14817
14818 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14819 "vFile:unlink", "hostio-unlink", 0);
14820
14821 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14822 "vFile:readlink", "hostio-readlink", 0);
14823
14824 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14825 "vFile:fstat", "hostio-fstat", 0);
14826
14827 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14828 "vAttach", "attach", 0);
14829
14830 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14831 "vRun", "run", 0);
14832
14833 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14834 "QStartNoAckMode", "noack", 0);
14835
14836 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14837 "vKill", "kill", 0);
14838
14839 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14840 "qAttached", "query-attached", 0);
14841
14842 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14843 "ConditionalTracepoints",
14844 "conditional-tracepoints", 0);
14845
14846 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14847 "ConditionalBreakpoints",
14848 "conditional-breakpoints", 0);
14849
14850 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14851 "BreakpointCommands",
14852 "breakpoint-commands", 0);
14853
14854 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14855 "FastTracepoints", "fast-tracepoints", 0);
14856
14857 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14858 "TracepointSource", "TracepointSource", 0);
14859
14860 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14861 "QAllow", "allow", 0);
14862
14863 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14864 "StaticTracepoints", "static-tracepoints", 0);
14865
14866 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14867 "InstallInTrace", "install-in-trace", 0);
14868
14869 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14870 "qXfer:statictrace:read", "read-sdata-object", 0);
14871
14872 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14873 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14874
14875 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14876 "QDisableRandomization", "disable-randomization", 0);
14877
14878 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14879 "QAgent", "agent", 0);
14880
14881 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14882 "QTBuffer:size", "trace-buffer-size", 0);
14883
14884 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14885 "Qbtrace:off", "disable-btrace", 0);
14886
14887 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14888 "Qbtrace:bts", "enable-btrace-bts", 0);
14889
14890 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14891 "Qbtrace:pt", "enable-btrace-pt", 0);
14892
14893 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14894 "qXfer:btrace", "read-btrace", 0);
14895
14896 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14897 "qXfer:btrace-conf", "read-btrace-conf", 0);
14898
14899 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14900 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14901
14902 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14903 "multiprocess-feature", "multiprocess-feature", 0);
14904
14905 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14906 "swbreak-feature", "swbreak-feature", 0);
14907
14908 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14909 "hwbreak-feature", "hwbreak-feature", 0);
14910
14911 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14912 "fork-event-feature", "fork-event-feature", 0);
14913
14914 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14915 "vfork-event-feature", "vfork-event-feature", 0);
14916
14917 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14918 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14919
14920 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14921 "vContSupported", "verbose-resume-supported", 0);
14922
14923 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14924 "exec-event-feature", "exec-event-feature", 0);
14925
14926 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14927 "vCtrlC", "ctrl-c", 0);
14928
14929 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14930 "QThreadEvents", "thread-events", 0);
14931
14932 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14933 "N stop reply", "no-resumed-stop-reply", 0);
14934
14935 /* Assert that we've registered "set remote foo-packet" commands
14936 for all packet configs. */
14937 {
14938 int i;
14939
14940 for (i = 0; i < PACKET_MAX; i++)
14941 {
14942 /* Ideally all configs would have a command associated. Some
14943 still don't though. */
14944 int excepted;
14945
14946 switch (i)
14947 {
14948 case PACKET_QNonStop:
14949 case PACKET_EnableDisableTracepoints_feature:
14950 case PACKET_tracenz_feature:
14951 case PACKET_DisconnectedTracing_feature:
14952 case PACKET_augmented_libraries_svr4_read_feature:
14953 case PACKET_qCRC:
14954 /* Additions to this list need to be well justified:
14955 pre-existing packets are OK; new packets are not. */
14956 excepted = 1;
14957 break;
14958 default:
14959 excepted = 0;
14960 break;
14961 }
14962
14963 /* This catches both forgetting to add a config command, and
14964 forgetting to remove a packet from the exception list. */
14965 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14966 }
14967 }
14968
14969 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14970 Z sub-packet has its own set and show commands, but users may
14971 have sets to this variable in their .gdbinit files (or in their
14972 documentation). */
14973 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14974 &remote_Z_packet_detect, _("\
14975 Set use of remote protocol `Z' packets."), _("\
14976 Show use of remote protocol `Z' packets."), _("\
14977 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14978 packets."),
14979 set_remote_protocol_Z_packet_cmd,
14980 show_remote_protocol_Z_packet_cmd,
14981 /* FIXME: i18n: Use of remote protocol
14982 `Z' packets is %s. */
14983 &remote_set_cmdlist, &remote_show_cmdlist);
14984
14985 add_basic_prefix_cmd ("remote", class_files, _("\
14986 Manipulate files on the remote system.\n\
14987 Transfer files to and from the remote target system."),
14988 &remote_cmdlist, "remote ",
14989 0 /* allow-unknown */, &cmdlist);
14990
14991 add_cmd ("put", class_files, remote_put_command,
14992 _("Copy a local file to the remote system."),
14993 &remote_cmdlist);
14994
14995 add_cmd ("get", class_files, remote_get_command,
14996 _("Copy a remote file to the local system."),
14997 &remote_cmdlist);
14998
14999 add_cmd ("delete", class_files, remote_delete_command,
15000 _("Delete a remote file."),
15001 &remote_cmdlist);
15002
15003 add_setshow_string_noescape_cmd ("exec-file", class_files,
15004 &remote_exec_file_var, _("\
15005 Set the remote pathname for \"run\"."), _("\
15006 Show the remote pathname for \"run\"."), NULL,
15007 set_remote_exec_file,
15008 show_remote_exec_file,
15009 &remote_set_cmdlist,
15010 &remote_show_cmdlist);
15011
15012 add_setshow_boolean_cmd ("range-stepping", class_run,
15013 &use_range_stepping, _("\
15014 Enable or disable range stepping."), _("\
15015 Show whether target-assisted range stepping is enabled."), _("\
15016 If on, and the target supports it, when stepping a source line, GDB\n\
15017 tells the target to step the corresponding range of addresses itself instead\n\
15018 of issuing multiple single-steps. This speeds up source level\n\
15019 stepping. If off, GDB always issues single-steps, even if range\n\
15020 stepping is supported by the target. The default is on."),
15021 set_range_stepping,
15022 show_range_stepping,
15023 &setlist,
15024 &showlist);
15025
15026 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15027 Set watchdog timer."), _("\
15028 Show watchdog timer."), _("\
15029 When non-zero, this timeout is used instead of waiting forever for a target\n\
15030 to finish a low-level step or continue operation. If the specified amount\n\
15031 of time passes without a response from the target, an error occurs."),
15032 NULL,
15033 show_watchdog,
15034 &setlist, &showlist);
15035
15036 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15037 &remote_packet_max_chars, _("\
15038 Set the maximum number of characters to display for each remote packet."), _("\
15039 Show the maximum number of characters to display for each remote packet."), _("\
15040 Specify \"unlimited\" to display all the characters."),
15041 NULL, show_remote_packet_max_chars,
15042 &setdebuglist, &showdebuglist);
15043
15044 /* Eventually initialize fileio. See fileio.c */
15045 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15046 }