8379f514738a3e8f3908e5964116d8550c635193
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82 #include "gdbsupport/selftest.h"
83
84 /* The remote target. */
85
86 static const char remote_doc[] = N_("\
87 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
88 Specify the serial device it is connected to\n\
89 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
90
91 /* See remote.h */
92
93 bool remote_debug = false;
94
95 #define OPAQUETHREADBYTES 8
96
97 /* a 64 bit opaque identifier */
98 typedef unsigned char threadref[OPAQUETHREADBYTES];
99
100 struct gdb_ext_thread_info;
101 struct threads_listing_context;
102 typedef int (*rmt_thread_action) (threadref *ref, void *context);
103 struct protocol_feature;
104 struct packet_reg;
105
106 struct stop_reply;
107 typedef std::unique_ptr<stop_reply> stop_reply_up;
108
109 /* Generic configuration support for packets the stub optionally
110 supports. Allows the user to specify the use of the packet as well
111 as allowing GDB to auto-detect support in the remote stub. */
112
113 enum packet_support
114 {
115 PACKET_SUPPORT_UNKNOWN = 0,
116 PACKET_ENABLE,
117 PACKET_DISABLE
118 };
119
120 /* Analyze a packet's return value and update the packet config
121 accordingly. */
122
123 enum packet_result
124 {
125 PACKET_ERROR,
126 PACKET_OK,
127 PACKET_UNKNOWN
128 };
129
130 struct threads_listing_context;
131
132 /* Stub vCont actions support.
133
134 Each field is a boolean flag indicating whether the stub reports
135 support for the corresponding action. */
136
137 struct vCont_action_support
138 {
139 /* vCont;t */
140 bool t = false;
141
142 /* vCont;r */
143 bool r = false;
144
145 /* vCont;s */
146 bool s = false;
147
148 /* vCont;S */
149 bool S = false;
150 };
151
152 /* About this many threadids fit in a packet. */
153
154 #define MAXTHREADLISTRESULTS 32
155
156 /* Data for the vFile:pread readahead cache. */
157
158 struct readahead_cache
159 {
160 /* Invalidate the readahead cache. */
161 void invalidate ();
162
163 /* Invalidate the readahead cache if it is holding data for FD. */
164 void invalidate_fd (int fd);
165
166 /* Serve pread from the readahead cache. Returns number of bytes
167 read, or 0 if the request can't be served from the cache. */
168 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
169
170 /* The file descriptor for the file that is being cached. -1 if the
171 cache is invalid. */
172 int fd = -1;
173
174 /* The offset into the file that the cache buffer corresponds
175 to. */
176 ULONGEST offset = 0;
177
178 /* The buffer holding the cache contents. */
179 gdb_byte *buf = nullptr;
180 /* The buffer's size. We try to read as much as fits into a packet
181 at a time. */
182 size_t bufsize = 0;
183
184 /* Cache hit and miss counters. */
185 ULONGEST hit_count = 0;
186 ULONGEST miss_count = 0;
187 };
188
189 /* Description of the remote protocol for a given architecture. */
190
191 struct packet_reg
192 {
193 long offset; /* Offset into G packet. */
194 long regnum; /* GDB's internal register number. */
195 LONGEST pnum; /* Remote protocol register number. */
196 int in_g_packet; /* Always part of G packet. */
197 /* long size in bytes; == register_size (target_gdbarch (), regnum);
198 at present. */
199 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
200 at present. */
201 };
202
203 struct remote_arch_state
204 {
205 explicit remote_arch_state (struct gdbarch *gdbarch);
206
207 /* Description of the remote protocol registers. */
208 long sizeof_g_packet;
209
210 /* Description of the remote protocol registers indexed by REGNUM
211 (making an array gdbarch_num_regs in size). */
212 std::unique_ptr<packet_reg[]> regs;
213
214 /* This is the size (in chars) of the first response to the ``g''
215 packet. It is used as a heuristic when determining the maximum
216 size of memory-read and memory-write packets. A target will
217 typically only reserve a buffer large enough to hold the ``g''
218 packet. The size does not include packet overhead (headers and
219 trailers). */
220 long actual_register_packet_size;
221
222 /* This is the maximum size (in chars) of a non read/write packet.
223 It is also used as a cap on the size of read/write packets. */
224 long remote_packet_size;
225 };
226
227 /* Description of the remote protocol state for the currently
228 connected target. This is per-target state, and independent of the
229 selected architecture. */
230
231 class remote_state
232 {
233 public:
234
235 remote_state ();
236 ~remote_state ();
237
238 /* Get the remote arch state for GDBARCH. */
239 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
240
241 public: /* data */
242
243 /* A buffer to use for incoming packets, and its current size. The
244 buffer is grown dynamically for larger incoming packets.
245 Outgoing packets may also be constructed in this buffer.
246 The size of the buffer is always at least REMOTE_PACKET_SIZE;
247 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
248 packets. */
249 gdb::char_vector buf;
250
251 /* True if we're going through initial connection setup (finding out
252 about the remote side's threads, relocating symbols, etc.). */
253 bool starting_up = false;
254
255 /* If we negotiated packet size explicitly (and thus can bypass
256 heuristics for the largest packet size that will not overflow
257 a buffer in the stub), this will be set to that packet size.
258 Otherwise zero, meaning to use the guessed size. */
259 long explicit_packet_size = 0;
260
261 /* remote_wait is normally called when the target is running and
262 waits for a stop reply packet. But sometimes we need to call it
263 when the target is already stopped. We can send a "?" packet
264 and have remote_wait read the response. Or, if we already have
265 the response, we can stash it in BUF and tell remote_wait to
266 skip calling getpkt. This flag is set when BUF contains a
267 stop reply packet and the target is not waiting. */
268 int cached_wait_status = 0;
269
270 /* True, if in no ack mode. That is, neither GDB nor the stub will
271 expect acks from each other. The connection is assumed to be
272 reliable. */
273 bool noack_mode = false;
274
275 /* True if we're connected in extended remote mode. */
276 bool extended = false;
277
278 /* True if we resumed the target and we're waiting for the target to
279 stop. In the mean time, we can't start another command/query.
280 The remote server wouldn't be ready to process it, so we'd
281 timeout waiting for a reply that would never come and eventually
282 we'd close the connection. This can happen in asynchronous mode
283 because we allow GDB commands while the target is running. */
284 bool waiting_for_stop_reply = false;
285
286 /* The status of the stub support for the various vCont actions. */
287 vCont_action_support supports_vCont;
288 /* Whether vCont support was probed already. This is a workaround
289 until packet_support is per-connection. */
290 bool supports_vCont_probed;
291
292 /* True if the user has pressed Ctrl-C, but the target hasn't
293 responded to that. */
294 bool ctrlc_pending_p = false;
295
296 /* True if we saw a Ctrl-C while reading or writing from/to the
297 remote descriptor. At that point it is not safe to send a remote
298 interrupt packet, so we instead remember we saw the Ctrl-C and
299 process it once we're done with sending/receiving the current
300 packet, which should be shortly. If however that takes too long,
301 and the user presses Ctrl-C again, we offer to disconnect. */
302 bool got_ctrlc_during_io = false;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 struct serial *remote_desc = nullptr;
308
309 /* These are the threads which we last sent to the remote system. The
310 TID member will be -1 for all or -2 for not sent yet. */
311 ptid_t general_thread = null_ptid;
312 ptid_t continue_thread = null_ptid;
313
314 /* This is the traceframe which we last selected on the remote system.
315 It will be -1 if no traceframe is selected. */
316 int remote_traceframe_number = -1;
317
318 char *last_pass_packet = nullptr;
319
320 /* The last QProgramSignals packet sent to the target. We bypass
321 sending a new program signals list down to the target if the new
322 packet is exactly the same as the last we sent. IOW, we only let
323 the target know about program signals list changes. */
324 char *last_program_signals_packet = nullptr;
325
326 gdb_signal last_sent_signal = GDB_SIGNAL_0;
327
328 bool last_sent_step = false;
329
330 /* The execution direction of the last resume we got. */
331 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
332
333 char *finished_object = nullptr;
334 char *finished_annex = nullptr;
335 ULONGEST finished_offset = 0;
336
337 /* Should we try the 'ThreadInfo' query packet?
338
339 This variable (NOT available to the user: auto-detect only!)
340 determines whether GDB will use the new, simpler "ThreadInfo"
341 query or the older, more complex syntax for thread queries.
342 This is an auto-detect variable (set to true at each connect,
343 and set to false when the target fails to recognize it). */
344 bool use_threadinfo_query = false;
345 bool use_threadextra_query = false;
346
347 threadref echo_nextthread {};
348 threadref nextthread {};
349 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
350
351 /* The state of remote notification. */
352 struct remote_notif_state *notif_state = nullptr;
353
354 /* The branch trace configuration. */
355 struct btrace_config btrace_config {};
356
357 /* The argument to the last "vFile:setfs:" packet we sent, used
358 to avoid sending repeated unnecessary "vFile:setfs:" packets.
359 Initialized to -1 to indicate that no "vFile:setfs:" packet
360 has yet been sent. */
361 int fs_pid = -1;
362
363 /* A readahead cache for vFile:pread. Often, reading a binary
364 involves a sequence of small reads. E.g., when parsing an ELF
365 file. A readahead cache helps mostly the case of remote
366 debugging on a connection with higher latency, due to the
367 request/reply nature of the RSP. We only cache data for a single
368 file descriptor at a time. */
369 struct readahead_cache readahead_cache;
370
371 /* The list of already fetched and acknowledged stop events. This
372 queue is used for notification Stop, and other notifications
373 don't need queue for their events, because the notification
374 events of Stop can't be consumed immediately, so that events
375 should be queued first, and be consumed by remote_wait_{ns,as}
376 one per time. Other notifications can consume their events
377 immediately, so queue is not needed for them. */
378 std::vector<stop_reply_up> stop_reply_queue;
379
380 /* Asynchronous signal handle registered as event loop source for
381 when we have pending events ready to be passed to the core. */
382 struct async_event_handler *remote_async_inferior_event_token = nullptr;
383
384 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
385 ``forever'' still use the normal timeout mechanism. This is
386 currently used by the ASYNC code to guarentee that target reads
387 during the initial connect always time-out. Once getpkt has been
388 modified to return a timeout indication and, in turn
389 remote_wait()/wait_for_inferior() have gained a timeout parameter
390 this can go away. */
391 int wait_forever_enabled_p = 1;
392
393 private:
394 /* Mapping of remote protocol data for each gdbarch. Usually there
395 is only one entry here, though we may see more with stubs that
396 support multi-process. */
397 std::unordered_map<struct gdbarch *, remote_arch_state>
398 m_arch_states;
399 };
400
401 static const target_info remote_target_info = {
402 "remote",
403 N_("Remote serial target in gdb-specific protocol"),
404 remote_doc
405 };
406
407 class remote_target : public process_stratum_target
408 {
409 public:
410 remote_target () = default;
411 ~remote_target () override;
412
413 const target_info &info () const override
414 { return remote_target_info; }
415
416 const char *connection_string () override;
417
418 thread_control_capabilities get_thread_control_capabilities () override
419 { return tc_schedlock; }
420
421 /* Open a remote connection. */
422 static void open (const char *, int);
423
424 void close () override;
425
426 void detach (inferior *, int) override;
427 void disconnect (const char *, int) override;
428
429 void commit_resumed () override;
430 void resume (ptid_t, int, enum gdb_signal) override;
431 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
432 bool has_pending_events () override;
433
434 void fetch_registers (struct regcache *, int) override;
435 void store_registers (struct regcache *, int) override;
436 void prepare_to_store (struct regcache *) override;
437
438 void files_info () override;
439
440 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
441
442 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
443 enum remove_bp_reason) override;
444
445
446 bool stopped_by_sw_breakpoint () override;
447 bool supports_stopped_by_sw_breakpoint () override;
448
449 bool stopped_by_hw_breakpoint () override;
450
451 bool supports_stopped_by_hw_breakpoint () override;
452
453 bool stopped_by_watchpoint () override;
454
455 bool stopped_data_address (CORE_ADDR *) override;
456
457 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
458
459 int can_use_hw_breakpoint (enum bptype, int, int) override;
460
461 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
464
465 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
466
467 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
468 struct expression *) override;
469
470 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
471 struct expression *) override;
472
473 void kill () override;
474
475 void load (const char *, int) override;
476
477 void mourn_inferior () override;
478
479 void pass_signals (gdb::array_view<const unsigned char>) override;
480
481 int set_syscall_catchpoint (int, bool, int,
482 gdb::array_view<const int>) override;
483
484 void program_signals (gdb::array_view<const unsigned char>) override;
485
486 bool thread_alive (ptid_t ptid) override;
487
488 const char *thread_name (struct thread_info *) override;
489
490 void update_thread_list () override;
491
492 std::string pid_to_str (ptid_t) override;
493
494 const char *extra_thread_info (struct thread_info *) override;
495
496 ptid_t get_ada_task_ptid (long lwp, long thread) override;
497
498 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
499 int handle_len,
500 inferior *inf) override;
501
502 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
503 override;
504
505 void stop (ptid_t) override;
506
507 void interrupt () override;
508
509 void pass_ctrlc () override;
510
511 enum target_xfer_status xfer_partial (enum target_object object,
512 const char *annex,
513 gdb_byte *readbuf,
514 const gdb_byte *writebuf,
515 ULONGEST offset, ULONGEST len,
516 ULONGEST *xfered_len) override;
517
518 ULONGEST get_memory_xfer_limit () override;
519
520 void rcmd (const char *command, struct ui_file *output) override;
521
522 char *pid_to_exec_file (int pid) override;
523
524 void log_command (const char *cmd) override
525 {
526 serial_log_command (this, cmd);
527 }
528
529 CORE_ADDR get_thread_local_address (ptid_t ptid,
530 CORE_ADDR load_module_addr,
531 CORE_ADDR offset) override;
532
533 bool can_execute_reverse () override;
534
535 std::vector<mem_region> memory_map () override;
536
537 void flash_erase (ULONGEST address, LONGEST length) override;
538
539 void flash_done () override;
540
541 const struct target_desc *read_description () override;
542
543 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
544 const gdb_byte *pattern, ULONGEST pattern_len,
545 CORE_ADDR *found_addrp) override;
546
547 bool can_async_p () override;
548
549 bool is_async_p () override;
550
551 void async (int) override;
552
553 int async_wait_fd () override;
554
555 void thread_events (int) override;
556
557 int can_do_single_step () override;
558
559 void terminal_inferior () override;
560
561 void terminal_ours () override;
562
563 bool supports_non_stop () override;
564
565 bool supports_multi_process () override;
566
567 bool supports_disable_randomization () override;
568
569 bool filesystem_is_local () override;
570
571
572 int fileio_open (struct inferior *inf, const char *filename,
573 int flags, int mode, int warn_if_slow,
574 int *target_errno) override;
575
576 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
577 ULONGEST offset, int *target_errno) override;
578
579 int fileio_pread (int fd, gdb_byte *read_buf, int len,
580 ULONGEST offset, int *target_errno) override;
581
582 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
583
584 int fileio_close (int fd, int *target_errno) override;
585
586 int fileio_unlink (struct inferior *inf,
587 const char *filename,
588 int *target_errno) override;
589
590 gdb::optional<std::string>
591 fileio_readlink (struct inferior *inf,
592 const char *filename,
593 int *target_errno) override;
594
595 bool supports_enable_disable_tracepoint () override;
596
597 bool supports_string_tracing () override;
598
599 bool supports_evaluation_of_breakpoint_conditions () override;
600
601 bool can_run_breakpoint_commands () override;
602
603 void trace_init () override;
604
605 void download_tracepoint (struct bp_location *location) override;
606
607 bool can_download_tracepoint () override;
608
609 void download_trace_state_variable (const trace_state_variable &tsv) override;
610
611 void enable_tracepoint (struct bp_location *location) override;
612
613 void disable_tracepoint (struct bp_location *location) override;
614
615 void trace_set_readonly_regions () override;
616
617 void trace_start () override;
618
619 int get_trace_status (struct trace_status *ts) override;
620
621 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
622 override;
623
624 void trace_stop () override;
625
626 int trace_find (enum trace_find_type type, int num,
627 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
628
629 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
630
631 int save_trace_data (const char *filename) override;
632
633 int upload_tracepoints (struct uploaded_tp **utpp) override;
634
635 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
636
637 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
638
639 int get_min_fast_tracepoint_insn_len () override;
640
641 void set_disconnected_tracing (int val) override;
642
643 void set_circular_trace_buffer (int val) override;
644
645 void set_trace_buffer_size (LONGEST val) override;
646
647 bool set_trace_notes (const char *user, const char *notes,
648 const char *stopnotes) override;
649
650 int core_of_thread (ptid_t ptid) override;
651
652 int verify_memory (const gdb_byte *data,
653 CORE_ADDR memaddr, ULONGEST size) override;
654
655
656 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
657
658 void set_permissions () override;
659
660 bool static_tracepoint_marker_at (CORE_ADDR,
661 struct static_tracepoint_marker *marker)
662 override;
663
664 std::vector<static_tracepoint_marker>
665 static_tracepoint_markers_by_strid (const char *id) override;
666
667 traceframe_info_up traceframe_info () override;
668
669 bool use_agent (bool use) override;
670 bool can_use_agent () override;
671
672 struct btrace_target_info *enable_btrace (ptid_t ptid,
673 const struct btrace_config *conf) override;
674
675 void disable_btrace (struct btrace_target_info *tinfo) override;
676
677 void teardown_btrace (struct btrace_target_info *tinfo) override;
678
679 enum btrace_error read_btrace (struct btrace_data *data,
680 struct btrace_target_info *btinfo,
681 enum btrace_read_type type) override;
682
683 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
684 bool augmented_libraries_svr4_read () override;
685 void follow_fork (bool, bool) override;
686 void follow_exec (inferior *, ptid_t, const char *) override;
687 int insert_fork_catchpoint (int) override;
688 int remove_fork_catchpoint (int) override;
689 int insert_vfork_catchpoint (int) override;
690 int remove_vfork_catchpoint (int) override;
691 int insert_exec_catchpoint (int) override;
692 int remove_exec_catchpoint (int) override;
693 enum exec_direction_kind execution_direction () override;
694
695 bool supports_memory_tagging () override;
696
697 bool fetch_memtags (CORE_ADDR address, size_t len,
698 gdb::byte_vector &tags, int type) override;
699
700 bool store_memtags (CORE_ADDR address, size_t len,
701 const gdb::byte_vector &tags, int type) override;
702
703 public: /* Remote specific methods. */
704
705 void remote_download_command_source (int num, ULONGEST addr,
706 struct command_line *cmds);
707
708 void remote_file_put (const char *local_file, const char *remote_file,
709 int from_tty);
710 void remote_file_get (const char *remote_file, const char *local_file,
711 int from_tty);
712 void remote_file_delete (const char *remote_file, int from_tty);
713
714 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
715 ULONGEST offset, int *remote_errno);
716 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
717 ULONGEST offset, int *remote_errno);
718 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
719 ULONGEST offset, int *remote_errno);
720
721 int remote_hostio_send_command (int command_bytes, int which_packet,
722 int *remote_errno, const char **attachment,
723 int *attachment_len);
724 int remote_hostio_set_filesystem (struct inferior *inf,
725 int *remote_errno);
726 /* We should get rid of this and use fileio_open directly. */
727 int remote_hostio_open (struct inferior *inf, const char *filename,
728 int flags, int mode, int warn_if_slow,
729 int *remote_errno);
730 int remote_hostio_close (int fd, int *remote_errno);
731
732 int remote_hostio_unlink (inferior *inf, const char *filename,
733 int *remote_errno);
734
735 struct remote_state *get_remote_state ();
736
737 long get_remote_packet_size (void);
738 long get_memory_packet_size (struct memory_packet_config *config);
739
740 long get_memory_write_packet_size ();
741 long get_memory_read_packet_size ();
742
743 char *append_pending_thread_resumptions (char *p, char *endp,
744 ptid_t ptid);
745 static void open_1 (const char *name, int from_tty, int extended_p);
746 void start_remote (int from_tty, int extended_p);
747 void remote_detach_1 (struct inferior *inf, int from_tty);
748
749 char *append_resumption (char *p, char *endp,
750 ptid_t ptid, int step, gdb_signal siggnal);
751 int remote_resume_with_vcont (ptid_t ptid, int step,
752 gdb_signal siggnal);
753
754 thread_info *add_current_inferior_and_thread (const char *wait_status);
755
756 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
757 target_wait_flags options);
758 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
759 target_wait_flags options);
760
761 ptid_t process_stop_reply (struct stop_reply *stop_reply,
762 target_waitstatus *status);
763
764 ptid_t select_thread_for_ambiguous_stop_reply
765 (const struct target_waitstatus *status);
766
767 void remote_notice_new_inferior (ptid_t currthread, bool executing);
768
769 void process_initial_stop_replies (int from_tty);
770
771 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
772
773 void btrace_sync_conf (const btrace_config *conf);
774
775 void remote_btrace_maybe_reopen ();
776
777 void remove_new_fork_children (threads_listing_context *context);
778 void kill_new_fork_children (int pid);
779 void discard_pending_stop_replies (struct inferior *inf);
780 int stop_reply_queue_length ();
781
782 void check_pending_events_prevent_wildcard_vcont
783 (bool *may_global_wildcard_vcont);
784
785 void discard_pending_stop_replies_in_queue ();
786 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
787 struct stop_reply *queued_stop_reply (ptid_t ptid);
788 int peek_stop_reply (ptid_t ptid);
789 void remote_parse_stop_reply (const char *buf, stop_reply *event);
790
791 void remote_stop_ns (ptid_t ptid);
792 void remote_interrupt_as ();
793 void remote_interrupt_ns ();
794
795 char *remote_get_noisy_reply ();
796 int remote_query_attached (int pid);
797 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
798 int try_open_exec);
799
800 ptid_t remote_current_thread (ptid_t oldpid);
801 ptid_t get_current_thread (const char *wait_status);
802
803 void set_thread (ptid_t ptid, int gen);
804 void set_general_thread (ptid_t ptid);
805 void set_continue_thread (ptid_t ptid);
806 void set_general_process ();
807
808 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
809
810 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
811 gdb_ext_thread_info *info);
812 int remote_get_threadinfo (threadref *threadid, int fieldset,
813 gdb_ext_thread_info *info);
814
815 int parse_threadlist_response (const char *pkt, int result_limit,
816 threadref *original_echo,
817 threadref *resultlist,
818 int *doneflag);
819 int remote_get_threadlist (int startflag, threadref *nextthread,
820 int result_limit, int *done, int *result_count,
821 threadref *threadlist);
822
823 int remote_threadlist_iterator (rmt_thread_action stepfunction,
824 void *context, int looplimit);
825
826 int remote_get_threads_with_ql (threads_listing_context *context);
827 int remote_get_threads_with_qxfer (threads_listing_context *context);
828 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
829
830 void extended_remote_restart ();
831
832 void get_offsets ();
833
834 void remote_check_symbols ();
835
836 void remote_supported_packet (const struct protocol_feature *feature,
837 enum packet_support support,
838 const char *argument);
839
840 void remote_query_supported ();
841
842 void remote_packet_size (const protocol_feature *feature,
843 packet_support support, const char *value);
844
845 void remote_serial_quit_handler ();
846
847 void remote_detach_pid (int pid);
848
849 void remote_vcont_probe ();
850
851 void remote_resume_with_hc (ptid_t ptid, int step,
852 gdb_signal siggnal);
853
854 void send_interrupt_sequence ();
855 void interrupt_query ();
856
857 void remote_notif_get_pending_events (notif_client *nc);
858
859 int fetch_register_using_p (struct regcache *regcache,
860 packet_reg *reg);
861 int send_g_packet ();
862 void process_g_packet (struct regcache *regcache);
863 void fetch_registers_using_g (struct regcache *regcache);
864 int store_register_using_P (const struct regcache *regcache,
865 packet_reg *reg);
866 void store_registers_using_G (const struct regcache *regcache);
867
868 void set_remote_traceframe ();
869
870 void check_binary_download (CORE_ADDR addr);
871
872 target_xfer_status remote_write_bytes_aux (const char *header,
873 CORE_ADDR memaddr,
874 const gdb_byte *myaddr,
875 ULONGEST len_units,
876 int unit_size,
877 ULONGEST *xfered_len_units,
878 char packet_format,
879 int use_length);
880
881 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
882 const gdb_byte *myaddr, ULONGEST len,
883 int unit_size, ULONGEST *xfered_len);
884
885 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
886 ULONGEST len_units,
887 int unit_size, ULONGEST *xfered_len_units);
888
889 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
890 ULONGEST memaddr,
891 ULONGEST len,
892 int unit_size,
893 ULONGEST *xfered_len);
894
895 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
896 gdb_byte *myaddr, ULONGEST len,
897 int unit_size,
898 ULONGEST *xfered_len);
899
900 packet_result remote_send_printf (const char *format, ...)
901 ATTRIBUTE_PRINTF (2, 3);
902
903 target_xfer_status remote_flash_write (ULONGEST address,
904 ULONGEST length, ULONGEST *xfered_len,
905 const gdb_byte *data);
906
907 int readchar (int timeout);
908
909 void remote_serial_write (const char *str, int len);
910
911 int putpkt (const char *buf);
912 int putpkt_binary (const char *buf, int cnt);
913
914 int putpkt (const gdb::char_vector &buf)
915 {
916 return putpkt (buf.data ());
917 }
918
919 void skip_frame ();
920 long read_frame (gdb::char_vector *buf_p);
921 void getpkt (gdb::char_vector *buf, int forever);
922 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
923 int expecting_notif, int *is_notif);
924 int getpkt_sane (gdb::char_vector *buf, int forever);
925 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
926 int *is_notif);
927 int remote_vkill (int pid);
928 void remote_kill_k ();
929
930 void extended_remote_disable_randomization (int val);
931 int extended_remote_run (const std::string &args);
932
933 void send_environment_packet (const char *action,
934 const char *packet,
935 const char *value);
936
937 void extended_remote_environment_support ();
938 void extended_remote_set_inferior_cwd ();
939
940 target_xfer_status remote_write_qxfer (const char *object_name,
941 const char *annex,
942 const gdb_byte *writebuf,
943 ULONGEST offset, LONGEST len,
944 ULONGEST *xfered_len,
945 struct packet_config *packet);
946
947 target_xfer_status remote_read_qxfer (const char *object_name,
948 const char *annex,
949 gdb_byte *readbuf, ULONGEST offset,
950 LONGEST len,
951 ULONGEST *xfered_len,
952 struct packet_config *packet);
953
954 void push_stop_reply (struct stop_reply *new_event);
955
956 bool vcont_r_supported ();
957
958 void packet_command (const char *args, int from_tty);
959
960 private: /* data fields */
961
962 /* The remote state. Don't reference this directly. Use the
963 get_remote_state method instead. */
964 remote_state m_remote_state;
965 };
966
967 static const target_info extended_remote_target_info = {
968 "extended-remote",
969 N_("Extended remote serial target in gdb-specific protocol"),
970 remote_doc
971 };
972
973 /* Set up the extended remote target by extending the standard remote
974 target and adding to it. */
975
976 class extended_remote_target final : public remote_target
977 {
978 public:
979 const target_info &info () const override
980 { return extended_remote_target_info; }
981
982 /* Open an extended-remote connection. */
983 static void open (const char *, int);
984
985 bool can_create_inferior () override { return true; }
986 void create_inferior (const char *, const std::string &,
987 char **, int) override;
988
989 void detach (inferior *, int) override;
990
991 bool can_attach () override { return true; }
992 void attach (const char *, int) override;
993
994 void post_attach (int) override;
995 bool supports_disable_randomization () override;
996 };
997
998 /* Per-program-space data key. */
999 static const struct program_space_key<char, gdb::xfree_deleter<char>>
1000 remote_pspace_data;
1001
1002 /* The variable registered as the control variable used by the
1003 remote exec-file commands. While the remote exec-file setting is
1004 per-program-space, the set/show machinery uses this as the
1005 location of the remote exec-file value. */
1006 static char *remote_exec_file_var;
1007
1008 /* The size to align memory write packets, when practical. The protocol
1009 does not guarantee any alignment, and gdb will generate short
1010 writes and unaligned writes, but even as a best-effort attempt this
1011 can improve bulk transfers. For instance, if a write is misaligned
1012 relative to the target's data bus, the stub may need to make an extra
1013 round trip fetching data from the target. This doesn't make a
1014 huge difference, but it's easy to do, so we try to be helpful.
1015
1016 The alignment chosen is arbitrary; usually data bus width is
1017 important here, not the possibly larger cache line size. */
1018 enum { REMOTE_ALIGN_WRITES = 16 };
1019
1020 /* Prototypes for local functions. */
1021
1022 static int hexnumlen (ULONGEST num);
1023
1024 static int stubhex (int ch);
1025
1026 static int hexnumstr (char *, ULONGEST);
1027
1028 static int hexnumnstr (char *, ULONGEST, int);
1029
1030 static CORE_ADDR remote_address_masked (CORE_ADDR);
1031
1032 static void print_packet (const char *);
1033
1034 static int stub_unpack_int (const char *buff, int fieldlength);
1035
1036 struct packet_config;
1037
1038 static void show_packet_config_cmd (struct packet_config *config);
1039
1040 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1041 int from_tty,
1042 struct cmd_list_element *c,
1043 const char *value);
1044
1045 static ptid_t read_ptid (const char *buf, const char **obuf);
1046
1047 static void remote_async_inferior_event_handler (gdb_client_data);
1048
1049 static bool remote_read_description_p (struct target_ops *target);
1050
1051 static void remote_console_output (const char *msg);
1052
1053 static void remote_btrace_reset (remote_state *rs);
1054
1055 static void remote_unpush_and_throw (remote_target *target);
1056
1057 /* For "remote". */
1058
1059 static struct cmd_list_element *remote_cmdlist;
1060
1061 /* For "set remote" and "show remote". */
1062
1063 static struct cmd_list_element *remote_set_cmdlist;
1064 static struct cmd_list_element *remote_show_cmdlist;
1065
1066 /* Controls whether GDB is willing to use range stepping. */
1067
1068 static bool use_range_stepping = true;
1069
1070 /* From the remote target's point of view, each thread is in one of these three
1071 states. */
1072 enum class resume_state
1073 {
1074 /* Not resumed - we haven't been asked to resume this thread. */
1075 NOT_RESUMED,
1076
1077 /* We have been asked to resume this thread, but haven't sent a vCont action
1078 for it yet. We'll need to consider it next time commit_resume is
1079 called. */
1080 RESUMED_PENDING_VCONT,
1081
1082 /* We have been asked to resume this thread, and we have sent a vCont action
1083 for it. */
1084 RESUMED,
1085 };
1086
1087 /* Information about a thread's pending vCont-resume. Used when a thread is in
1088 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1089 stores this information which is then picked up by
1090 remote_target::commit_resume to know which is the proper action for this
1091 thread to include in the vCont packet. */
1092 struct resumed_pending_vcont_info
1093 {
1094 /* True if the last resume call for this thread was a step request, false
1095 if a continue request. */
1096 bool step;
1097
1098 /* The signal specified in the last resume call for this thread. */
1099 gdb_signal sig;
1100 };
1101
1102 /* Private data that we'll store in (struct thread_info)->priv. */
1103 struct remote_thread_info : public private_thread_info
1104 {
1105 std::string extra;
1106 std::string name;
1107 int core = -1;
1108
1109 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1110 sequence of bytes. */
1111 gdb::byte_vector thread_handle;
1112
1113 /* Whether the target stopped for a breakpoint/watchpoint. */
1114 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1115
1116 /* This is set to the data address of the access causing the target
1117 to stop for a watchpoint. */
1118 CORE_ADDR watch_data_address = 0;
1119
1120 /* Get the thread's resume state. */
1121 enum resume_state get_resume_state () const
1122 {
1123 return m_resume_state;
1124 }
1125
1126 /* Put the thread in the NOT_RESUMED state. */
1127 void set_not_resumed ()
1128 {
1129 m_resume_state = resume_state::NOT_RESUMED;
1130 }
1131
1132 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1133 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1134 {
1135 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1136 m_resumed_pending_vcont_info.step = step;
1137 m_resumed_pending_vcont_info.sig = sig;
1138 }
1139
1140 /* Get the information this thread's pending vCont-resumption.
1141
1142 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1143 state. */
1144 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1145 {
1146 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1147
1148 return m_resumed_pending_vcont_info;
1149 }
1150
1151 /* Put the thread in the VCONT_RESUMED state. */
1152 void set_resumed ()
1153 {
1154 m_resume_state = resume_state::RESUMED;
1155 }
1156
1157 private:
1158 /* Resume state for this thread. This is used to implement vCont action
1159 coalescing (only when the target operates in non-stop mode).
1160
1161 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1162 which notes that this thread must be considered in the next commit_resume
1163 call.
1164
1165 remote_target::commit_resume sends a vCont packet with actions for the
1166 threads in the RESUMED_PENDING_VCONT state and moves them to the
1167 VCONT_RESUMED state.
1168
1169 When reporting a stop to the core for a thread, that thread is moved back
1170 to the NOT_RESUMED state. */
1171 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1172
1173 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1174 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1175 };
1176
1177 remote_state::remote_state ()
1178 : buf (400)
1179 {
1180 }
1181
1182 remote_state::~remote_state ()
1183 {
1184 xfree (this->last_pass_packet);
1185 xfree (this->last_program_signals_packet);
1186 xfree (this->finished_object);
1187 xfree (this->finished_annex);
1188 }
1189
1190 /* Utility: generate error from an incoming stub packet. */
1191 static void
1192 trace_error (char *buf)
1193 {
1194 if (*buf++ != 'E')
1195 return; /* not an error msg */
1196 switch (*buf)
1197 {
1198 case '1': /* malformed packet error */
1199 if (*++buf == '0') /* general case: */
1200 error (_("remote.c: error in outgoing packet."));
1201 else
1202 error (_("remote.c: error in outgoing packet at field #%ld."),
1203 strtol (buf, NULL, 16));
1204 default:
1205 error (_("Target returns error code '%s'."), buf);
1206 }
1207 }
1208
1209 /* Utility: wait for reply from stub, while accepting "O" packets. */
1210
1211 char *
1212 remote_target::remote_get_noisy_reply ()
1213 {
1214 struct remote_state *rs = get_remote_state ();
1215
1216 do /* Loop on reply from remote stub. */
1217 {
1218 char *buf;
1219
1220 QUIT; /* Allow user to bail out with ^C. */
1221 getpkt (&rs->buf, 0);
1222 buf = rs->buf.data ();
1223 if (buf[0] == 'E')
1224 trace_error (buf);
1225 else if (startswith (buf, "qRelocInsn:"))
1226 {
1227 ULONGEST ul;
1228 CORE_ADDR from, to, org_to;
1229 const char *p, *pp;
1230 int adjusted_size = 0;
1231 int relocated = 0;
1232
1233 p = buf + strlen ("qRelocInsn:");
1234 pp = unpack_varlen_hex (p, &ul);
1235 if (*pp != ';')
1236 error (_("invalid qRelocInsn packet: %s"), buf);
1237 from = ul;
1238
1239 p = pp + 1;
1240 unpack_varlen_hex (p, &ul);
1241 to = ul;
1242
1243 org_to = to;
1244
1245 try
1246 {
1247 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1248 relocated = 1;
1249 }
1250 catch (const gdb_exception &ex)
1251 {
1252 if (ex.error == MEMORY_ERROR)
1253 {
1254 /* Propagate memory errors silently back to the
1255 target. The stub may have limited the range of
1256 addresses we can write to, for example. */
1257 }
1258 else
1259 {
1260 /* Something unexpectedly bad happened. Be verbose
1261 so we can tell what, and propagate the error back
1262 to the stub, so it doesn't get stuck waiting for
1263 a response. */
1264 exception_fprintf (gdb_stderr, ex,
1265 _("warning: relocating instruction: "));
1266 }
1267 putpkt ("E01");
1268 }
1269
1270 if (relocated)
1271 {
1272 adjusted_size = to - org_to;
1273
1274 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1275 putpkt (buf);
1276 }
1277 }
1278 else if (buf[0] == 'O' && buf[1] != 'K')
1279 remote_console_output (buf + 1); /* 'O' message from stub */
1280 else
1281 return buf; /* Here's the actual reply. */
1282 }
1283 while (1);
1284 }
1285
1286 struct remote_arch_state *
1287 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1288 {
1289 remote_arch_state *rsa;
1290
1291 auto it = this->m_arch_states.find (gdbarch);
1292 if (it == this->m_arch_states.end ())
1293 {
1294 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1295 std::forward_as_tuple (gdbarch),
1296 std::forward_as_tuple (gdbarch));
1297 rsa = &p.first->second;
1298
1299 /* Make sure that the packet buffer is plenty big enough for
1300 this architecture. */
1301 if (this->buf.size () < rsa->remote_packet_size)
1302 this->buf.resize (2 * rsa->remote_packet_size);
1303 }
1304 else
1305 rsa = &it->second;
1306
1307 return rsa;
1308 }
1309
1310 /* Fetch the global remote target state. */
1311
1312 remote_state *
1313 remote_target::get_remote_state ()
1314 {
1315 /* Make sure that the remote architecture state has been
1316 initialized, because doing so might reallocate rs->buf. Any
1317 function which calls getpkt also needs to be mindful of changes
1318 to rs->buf, but this call limits the number of places which run
1319 into trouble. */
1320 m_remote_state.get_remote_arch_state (target_gdbarch ());
1321
1322 return &m_remote_state;
1323 }
1324
1325 /* Fetch the remote exec-file from the current program space. */
1326
1327 static const char *
1328 get_remote_exec_file (void)
1329 {
1330 char *remote_exec_file;
1331
1332 remote_exec_file = remote_pspace_data.get (current_program_space);
1333 if (remote_exec_file == NULL)
1334 return "";
1335
1336 return remote_exec_file;
1337 }
1338
1339 /* Set the remote exec file for PSPACE. */
1340
1341 static void
1342 set_pspace_remote_exec_file (struct program_space *pspace,
1343 const char *remote_exec_file)
1344 {
1345 char *old_file = remote_pspace_data.get (pspace);
1346
1347 xfree (old_file);
1348 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1349 }
1350
1351 /* The "set/show remote exec-file" set command hook. */
1352
1353 static void
1354 set_remote_exec_file (const char *ignored, int from_tty,
1355 struct cmd_list_element *c)
1356 {
1357 gdb_assert (remote_exec_file_var != NULL);
1358 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1359 }
1360
1361 /* The "set/show remote exec-file" show command hook. */
1362
1363 static void
1364 show_remote_exec_file (struct ui_file *file, int from_tty,
1365 struct cmd_list_element *cmd, const char *value)
1366 {
1367 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1368 }
1369
1370 static int
1371 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1372 {
1373 int regnum, num_remote_regs, offset;
1374 struct packet_reg **remote_regs;
1375
1376 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1377 {
1378 struct packet_reg *r = &regs[regnum];
1379
1380 if (register_size (gdbarch, regnum) == 0)
1381 /* Do not try to fetch zero-sized (placeholder) registers. */
1382 r->pnum = -1;
1383 else
1384 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1385
1386 r->regnum = regnum;
1387 }
1388
1389 /* Define the g/G packet format as the contents of each register
1390 with a remote protocol number, in order of ascending protocol
1391 number. */
1392
1393 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1394 for (num_remote_regs = 0, regnum = 0;
1395 regnum < gdbarch_num_regs (gdbarch);
1396 regnum++)
1397 if (regs[regnum].pnum != -1)
1398 remote_regs[num_remote_regs++] = &regs[regnum];
1399
1400 std::sort (remote_regs, remote_regs + num_remote_regs,
1401 [] (const packet_reg *a, const packet_reg *b)
1402 { return a->pnum < b->pnum; });
1403
1404 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1405 {
1406 remote_regs[regnum]->in_g_packet = 1;
1407 remote_regs[regnum]->offset = offset;
1408 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1409 }
1410
1411 return offset;
1412 }
1413
1414 /* Given the architecture described by GDBARCH, return the remote
1415 protocol register's number and the register's offset in the g/G
1416 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1417 If the target does not have a mapping for REGNUM, return false,
1418 otherwise, return true. */
1419
1420 int
1421 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1422 int *pnum, int *poffset)
1423 {
1424 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1425
1426 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1427
1428 map_regcache_remote_table (gdbarch, regs.data ());
1429
1430 *pnum = regs[regnum].pnum;
1431 *poffset = regs[regnum].offset;
1432
1433 return *pnum != -1;
1434 }
1435
1436 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1437 {
1438 /* Use the architecture to build a regnum<->pnum table, which will be
1439 1:1 unless a feature set specifies otherwise. */
1440 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1441
1442 /* Record the maximum possible size of the g packet - it may turn out
1443 to be smaller. */
1444 this->sizeof_g_packet
1445 = map_regcache_remote_table (gdbarch, this->regs.get ());
1446
1447 /* Default maximum number of characters in a packet body. Many
1448 remote stubs have a hardwired buffer size of 400 bytes
1449 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1450 as the maximum packet-size to ensure that the packet and an extra
1451 NUL character can always fit in the buffer. This stops GDB
1452 trashing stubs that try to squeeze an extra NUL into what is
1453 already a full buffer (As of 1999-12-04 that was most stubs). */
1454 this->remote_packet_size = 400 - 1;
1455
1456 /* This one is filled in when a ``g'' packet is received. */
1457 this->actual_register_packet_size = 0;
1458
1459 /* Should rsa->sizeof_g_packet needs more space than the
1460 default, adjust the size accordingly. Remember that each byte is
1461 encoded as two characters. 32 is the overhead for the packet
1462 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1463 (``$NN:G...#NN'') is a better guess, the below has been padded a
1464 little. */
1465 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1466 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1467 }
1468
1469 /* Get a pointer to the current remote target. If not connected to a
1470 remote target, return NULL. */
1471
1472 static remote_target *
1473 get_current_remote_target ()
1474 {
1475 target_ops *proc_target = current_inferior ()->process_target ();
1476 return dynamic_cast<remote_target *> (proc_target);
1477 }
1478
1479 /* Return the current allowed size of a remote packet. This is
1480 inferred from the current architecture, and should be used to
1481 limit the length of outgoing packets. */
1482 long
1483 remote_target::get_remote_packet_size ()
1484 {
1485 struct remote_state *rs = get_remote_state ();
1486 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1487
1488 if (rs->explicit_packet_size)
1489 return rs->explicit_packet_size;
1490
1491 return rsa->remote_packet_size;
1492 }
1493
1494 static struct packet_reg *
1495 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1496 long regnum)
1497 {
1498 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1499 return NULL;
1500 else
1501 {
1502 struct packet_reg *r = &rsa->regs[regnum];
1503
1504 gdb_assert (r->regnum == regnum);
1505 return r;
1506 }
1507 }
1508
1509 static struct packet_reg *
1510 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1511 LONGEST pnum)
1512 {
1513 int i;
1514
1515 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1516 {
1517 struct packet_reg *r = &rsa->regs[i];
1518
1519 if (r->pnum == pnum)
1520 return r;
1521 }
1522 return NULL;
1523 }
1524
1525 /* Allow the user to specify what sequence to send to the remote
1526 when he requests a program interruption: Although ^C is usually
1527 what remote systems expect (this is the default, here), it is
1528 sometimes preferable to send a break. On other systems such
1529 as the Linux kernel, a break followed by g, which is Magic SysRq g
1530 is required in order to interrupt the execution. */
1531 const char interrupt_sequence_control_c[] = "Ctrl-C";
1532 const char interrupt_sequence_break[] = "BREAK";
1533 const char interrupt_sequence_break_g[] = "BREAK-g";
1534 static const char *const interrupt_sequence_modes[] =
1535 {
1536 interrupt_sequence_control_c,
1537 interrupt_sequence_break,
1538 interrupt_sequence_break_g,
1539 NULL
1540 };
1541 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1542
1543 static void
1544 show_interrupt_sequence (struct ui_file *file, int from_tty,
1545 struct cmd_list_element *c,
1546 const char *value)
1547 {
1548 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1549 fprintf_filtered (file,
1550 _("Send the ASCII ETX character (Ctrl-c) "
1551 "to the remote target to interrupt the "
1552 "execution of the program.\n"));
1553 else if (interrupt_sequence_mode == interrupt_sequence_break)
1554 fprintf_filtered (file,
1555 _("send a break signal to the remote target "
1556 "to interrupt the execution of the program.\n"));
1557 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1558 fprintf_filtered (file,
1559 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1560 "the remote target to interrupt the execution "
1561 "of Linux kernel.\n"));
1562 else
1563 internal_error (__FILE__, __LINE__,
1564 _("Invalid value for interrupt_sequence_mode: %s."),
1565 interrupt_sequence_mode);
1566 }
1567
1568 /* This boolean variable specifies whether interrupt_sequence is sent
1569 to the remote target when gdb connects to it.
1570 This is mostly needed when you debug the Linux kernel: The Linux kernel
1571 expects BREAK g which is Magic SysRq g for connecting gdb. */
1572 static bool interrupt_on_connect = false;
1573
1574 /* This variable is used to implement the "set/show remotebreak" commands.
1575 Since these commands are now deprecated in favor of "set/show remote
1576 interrupt-sequence", it no longer has any effect on the code. */
1577 static bool remote_break;
1578
1579 static void
1580 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1581 {
1582 if (remote_break)
1583 interrupt_sequence_mode = interrupt_sequence_break;
1584 else
1585 interrupt_sequence_mode = interrupt_sequence_control_c;
1586 }
1587
1588 static void
1589 show_remotebreak (struct ui_file *file, int from_tty,
1590 struct cmd_list_element *c,
1591 const char *value)
1592 {
1593 }
1594
1595 /* This variable sets the number of bits in an address that are to be
1596 sent in a memory ("M" or "m") packet. Normally, after stripping
1597 leading zeros, the entire address would be sent. This variable
1598 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1599 initial implementation of remote.c restricted the address sent in
1600 memory packets to ``host::sizeof long'' bytes - (typically 32
1601 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1602 address was never sent. Since fixing this bug may cause a break in
1603 some remote targets this variable is principally provided to
1604 facilitate backward compatibility. */
1605
1606 static unsigned int remote_address_size;
1607
1608 \f
1609 /* User configurable variables for the number of characters in a
1610 memory read/write packet. MIN (rsa->remote_packet_size,
1611 rsa->sizeof_g_packet) is the default. Some targets need smaller
1612 values (fifo overruns, et.al.) and some users need larger values
1613 (speed up transfers). The variables ``preferred_*'' (the user
1614 request), ``current_*'' (what was actually set) and ``forced_*''
1615 (Positive - a soft limit, negative - a hard limit). */
1616
1617 struct memory_packet_config
1618 {
1619 const char *name;
1620 long size;
1621 int fixed_p;
1622 };
1623
1624 /* The default max memory-write-packet-size, when the setting is
1625 "fixed". The 16k is historical. (It came from older GDB's using
1626 alloca for buffers and the knowledge (folklore?) that some hosts
1627 don't cope very well with large alloca calls.) */
1628 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1629
1630 /* The minimum remote packet size for memory transfers. Ensures we
1631 can write at least one byte. */
1632 #define MIN_MEMORY_PACKET_SIZE 20
1633
1634 /* Get the memory packet size, assuming it is fixed. */
1635
1636 static long
1637 get_fixed_memory_packet_size (struct memory_packet_config *config)
1638 {
1639 gdb_assert (config->fixed_p);
1640
1641 if (config->size <= 0)
1642 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1643 else
1644 return config->size;
1645 }
1646
1647 /* Compute the current size of a read/write packet. Since this makes
1648 use of ``actual_register_packet_size'' the computation is dynamic. */
1649
1650 long
1651 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1652 {
1653 struct remote_state *rs = get_remote_state ();
1654 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1655
1656 long what_they_get;
1657 if (config->fixed_p)
1658 what_they_get = get_fixed_memory_packet_size (config);
1659 else
1660 {
1661 what_they_get = get_remote_packet_size ();
1662 /* Limit the packet to the size specified by the user. */
1663 if (config->size > 0
1664 && what_they_get > config->size)
1665 what_they_get = config->size;
1666
1667 /* Limit it to the size of the targets ``g'' response unless we have
1668 permission from the stub to use a larger packet size. */
1669 if (rs->explicit_packet_size == 0
1670 && rsa->actual_register_packet_size > 0
1671 && what_they_get > rsa->actual_register_packet_size)
1672 what_they_get = rsa->actual_register_packet_size;
1673 }
1674 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1675 what_they_get = MIN_MEMORY_PACKET_SIZE;
1676
1677 /* Make sure there is room in the global buffer for this packet
1678 (including its trailing NUL byte). */
1679 if (rs->buf.size () < what_they_get + 1)
1680 rs->buf.resize (2 * what_they_get);
1681
1682 return what_they_get;
1683 }
1684
1685 /* Update the size of a read/write packet. If they user wants
1686 something really big then do a sanity check. */
1687
1688 static void
1689 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1690 {
1691 int fixed_p = config->fixed_p;
1692 long size = config->size;
1693
1694 if (args == NULL)
1695 error (_("Argument required (integer, `fixed' or `limited')."));
1696 else if (strcmp (args, "hard") == 0
1697 || strcmp (args, "fixed") == 0)
1698 fixed_p = 1;
1699 else if (strcmp (args, "soft") == 0
1700 || strcmp (args, "limit") == 0)
1701 fixed_p = 0;
1702 else
1703 {
1704 char *end;
1705
1706 size = strtoul (args, &end, 0);
1707 if (args == end)
1708 error (_("Invalid %s (bad syntax)."), config->name);
1709
1710 /* Instead of explicitly capping the size of a packet to or
1711 disallowing it, the user is allowed to set the size to
1712 something arbitrarily large. */
1713 }
1714
1715 /* Extra checks? */
1716 if (fixed_p && !config->fixed_p)
1717 {
1718 /* So that the query shows the correct value. */
1719 long query_size = (size <= 0
1720 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1721 : size);
1722
1723 if (! query (_("The target may not be able to correctly handle a %s\n"
1724 "of %ld bytes. Change the packet size? "),
1725 config->name, query_size))
1726 error (_("Packet size not changed."));
1727 }
1728 /* Update the config. */
1729 config->fixed_p = fixed_p;
1730 config->size = size;
1731 }
1732
1733 static void
1734 show_memory_packet_size (struct memory_packet_config *config)
1735 {
1736 if (config->size == 0)
1737 printf_filtered (_("The %s is 0 (default). "), config->name);
1738 else
1739 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1740 if (config->fixed_p)
1741 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1742 get_fixed_memory_packet_size (config));
1743 else
1744 {
1745 remote_target *remote = get_current_remote_target ();
1746
1747 if (remote != NULL)
1748 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1749 remote->get_memory_packet_size (config));
1750 else
1751 puts_filtered ("The actual limit will be further reduced "
1752 "dependent on the target.\n");
1753 }
1754 }
1755
1756 /* FIXME: needs to be per-remote-target. */
1757 static struct memory_packet_config memory_write_packet_config =
1758 {
1759 "memory-write-packet-size",
1760 };
1761
1762 static void
1763 set_memory_write_packet_size (const char *args, int from_tty)
1764 {
1765 set_memory_packet_size (args, &memory_write_packet_config);
1766 }
1767
1768 static void
1769 show_memory_write_packet_size (const char *args, int from_tty)
1770 {
1771 show_memory_packet_size (&memory_write_packet_config);
1772 }
1773
1774 /* Show the number of hardware watchpoints that can be used. */
1775
1776 static void
1777 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1778 struct cmd_list_element *c,
1779 const char *value)
1780 {
1781 fprintf_filtered (file, _("The maximum number of target hardware "
1782 "watchpoints is %s.\n"), value);
1783 }
1784
1785 /* Show the length limit (in bytes) for hardware watchpoints. */
1786
1787 static void
1788 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1789 struct cmd_list_element *c,
1790 const char *value)
1791 {
1792 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1793 "hardware watchpoint is %s.\n"), value);
1794 }
1795
1796 /* Show the number of hardware breakpoints that can be used. */
1797
1798 static void
1799 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1800 struct cmd_list_element *c,
1801 const char *value)
1802 {
1803 fprintf_filtered (file, _("The maximum number of target hardware "
1804 "breakpoints is %s.\n"), value);
1805 }
1806
1807 /* Controls the maximum number of characters to display in the debug output
1808 for each remote packet. The remaining characters are omitted. */
1809
1810 static int remote_packet_max_chars = 512;
1811
1812 /* Show the maximum number of characters to display for each remote packet
1813 when remote debugging is enabled. */
1814
1815 static void
1816 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1817 struct cmd_list_element *c,
1818 const char *value)
1819 {
1820 fprintf_filtered (file, _("Number of remote packet characters to "
1821 "display is %s.\n"), value);
1822 }
1823
1824 long
1825 remote_target::get_memory_write_packet_size ()
1826 {
1827 return get_memory_packet_size (&memory_write_packet_config);
1828 }
1829
1830 /* FIXME: needs to be per-remote-target. */
1831 static struct memory_packet_config memory_read_packet_config =
1832 {
1833 "memory-read-packet-size",
1834 };
1835
1836 static void
1837 set_memory_read_packet_size (const char *args, int from_tty)
1838 {
1839 set_memory_packet_size (args, &memory_read_packet_config);
1840 }
1841
1842 static void
1843 show_memory_read_packet_size (const char *args, int from_tty)
1844 {
1845 show_memory_packet_size (&memory_read_packet_config);
1846 }
1847
1848 long
1849 remote_target::get_memory_read_packet_size ()
1850 {
1851 long size = get_memory_packet_size (&memory_read_packet_config);
1852
1853 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1854 extra buffer size argument before the memory read size can be
1855 increased beyond this. */
1856 if (size > get_remote_packet_size ())
1857 size = get_remote_packet_size ();
1858 return size;
1859 }
1860
1861 \f
1862
1863 struct packet_config
1864 {
1865 const char *name;
1866 const char *title;
1867
1868 /* If auto, GDB auto-detects support for this packet or feature,
1869 either through qSupported, or by trying the packet and looking
1870 at the response. If true, GDB assumes the target supports this
1871 packet. If false, the packet is disabled. Configs that don't
1872 have an associated command always have this set to auto. */
1873 enum auto_boolean detect;
1874
1875 /* Does the target support this packet? */
1876 enum packet_support support;
1877 };
1878
1879 static enum packet_support packet_config_support (struct packet_config *config);
1880 static enum packet_support packet_support (int packet);
1881
1882 static void
1883 show_packet_config_cmd (struct packet_config *config)
1884 {
1885 const char *support = "internal-error";
1886
1887 switch (packet_config_support (config))
1888 {
1889 case PACKET_ENABLE:
1890 support = "enabled";
1891 break;
1892 case PACKET_DISABLE:
1893 support = "disabled";
1894 break;
1895 case PACKET_SUPPORT_UNKNOWN:
1896 support = "unknown";
1897 break;
1898 }
1899 switch (config->detect)
1900 {
1901 case AUTO_BOOLEAN_AUTO:
1902 printf_filtered (_("Support for the `%s' packet "
1903 "is auto-detected, currently %s.\n"),
1904 config->name, support);
1905 break;
1906 case AUTO_BOOLEAN_TRUE:
1907 case AUTO_BOOLEAN_FALSE:
1908 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1909 config->name, support);
1910 break;
1911 }
1912 }
1913
1914 static void
1915 add_packet_config_cmd (struct packet_config *config, const char *name,
1916 const char *title, int legacy)
1917 {
1918 char *set_doc;
1919 char *show_doc;
1920 char *cmd_name;
1921
1922 config->name = name;
1923 config->title = title;
1924 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1925 name, title);
1926 show_doc = xstrprintf ("Show current use of remote "
1927 "protocol `%s' (%s) packet.",
1928 name, title);
1929 /* set/show TITLE-packet {auto,on,off} */
1930 cmd_name = xstrprintf ("%s-packet", title);
1931 set_show_commands cmds
1932 = add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1933 &config->detect, set_doc,
1934 show_doc, NULL, /* help_doc */
1935 NULL,
1936 show_remote_protocol_packet_cmd,
1937 &remote_set_cmdlist, &remote_show_cmdlist);
1938
1939 /* The command code copies the documentation strings. */
1940 xfree (set_doc);
1941 xfree (show_doc);
1942
1943 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1944 if (legacy)
1945 {
1946 char *legacy_name;
1947
1948 legacy_name = xstrprintf ("%s-packet", name);
1949 add_alias_cmd (legacy_name, cmds.set, class_obscure, 0,
1950 &remote_set_cmdlist);
1951 add_alias_cmd (legacy_name, cmds.show, class_obscure, 0,
1952 &remote_show_cmdlist);
1953 }
1954 }
1955
1956 static enum packet_result
1957 packet_check_result (const char *buf)
1958 {
1959 if (buf[0] != '\0')
1960 {
1961 /* The stub recognized the packet request. Check that the
1962 operation succeeded. */
1963 if (buf[0] == 'E'
1964 && isxdigit (buf[1]) && isxdigit (buf[2])
1965 && buf[3] == '\0')
1966 /* "Enn" - definitely an error. */
1967 return PACKET_ERROR;
1968
1969 /* Always treat "E." as an error. This will be used for
1970 more verbose error messages, such as E.memtypes. */
1971 if (buf[0] == 'E' && buf[1] == '.')
1972 return PACKET_ERROR;
1973
1974 /* The packet may or may not be OK. Just assume it is. */
1975 return PACKET_OK;
1976 }
1977 else
1978 /* The stub does not support the packet. */
1979 return PACKET_UNKNOWN;
1980 }
1981
1982 static enum packet_result
1983 packet_check_result (const gdb::char_vector &buf)
1984 {
1985 return packet_check_result (buf.data ());
1986 }
1987
1988 static enum packet_result
1989 packet_ok (const char *buf, struct packet_config *config)
1990 {
1991 enum packet_result result;
1992
1993 if (config->detect != AUTO_BOOLEAN_TRUE
1994 && config->support == PACKET_DISABLE)
1995 internal_error (__FILE__, __LINE__,
1996 _("packet_ok: attempt to use a disabled packet"));
1997
1998 result = packet_check_result (buf);
1999 switch (result)
2000 {
2001 case PACKET_OK:
2002 case PACKET_ERROR:
2003 /* The stub recognized the packet request. */
2004 if (config->support == PACKET_SUPPORT_UNKNOWN)
2005 {
2006 remote_debug_printf ("Packet %s (%s) is supported",
2007 config->name, config->title);
2008 config->support = PACKET_ENABLE;
2009 }
2010 break;
2011 case PACKET_UNKNOWN:
2012 /* The stub does not support the packet. */
2013 if (config->detect == AUTO_BOOLEAN_AUTO
2014 && config->support == PACKET_ENABLE)
2015 {
2016 /* If the stub previously indicated that the packet was
2017 supported then there is a protocol error. */
2018 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2019 config->name, config->title);
2020 }
2021 else if (config->detect == AUTO_BOOLEAN_TRUE)
2022 {
2023 /* The user set it wrong. */
2024 error (_("Enabled packet %s (%s) not recognized by stub"),
2025 config->name, config->title);
2026 }
2027
2028 remote_debug_printf ("Packet %s (%s) is NOT supported",
2029 config->name, config->title);
2030 config->support = PACKET_DISABLE;
2031 break;
2032 }
2033
2034 return result;
2035 }
2036
2037 static enum packet_result
2038 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2039 {
2040 return packet_ok (buf.data (), config);
2041 }
2042
2043 enum {
2044 PACKET_vCont = 0,
2045 PACKET_X,
2046 PACKET_qSymbol,
2047 PACKET_P,
2048 PACKET_p,
2049 PACKET_Z0,
2050 PACKET_Z1,
2051 PACKET_Z2,
2052 PACKET_Z3,
2053 PACKET_Z4,
2054 PACKET_vFile_setfs,
2055 PACKET_vFile_open,
2056 PACKET_vFile_pread,
2057 PACKET_vFile_pwrite,
2058 PACKET_vFile_close,
2059 PACKET_vFile_unlink,
2060 PACKET_vFile_readlink,
2061 PACKET_vFile_fstat,
2062 PACKET_qXfer_auxv,
2063 PACKET_qXfer_features,
2064 PACKET_qXfer_exec_file,
2065 PACKET_qXfer_libraries,
2066 PACKET_qXfer_libraries_svr4,
2067 PACKET_qXfer_memory_map,
2068 PACKET_qXfer_osdata,
2069 PACKET_qXfer_threads,
2070 PACKET_qXfer_statictrace_read,
2071 PACKET_qXfer_traceframe_info,
2072 PACKET_qXfer_uib,
2073 PACKET_qGetTIBAddr,
2074 PACKET_qGetTLSAddr,
2075 PACKET_qSupported,
2076 PACKET_qTStatus,
2077 PACKET_QPassSignals,
2078 PACKET_QCatchSyscalls,
2079 PACKET_QProgramSignals,
2080 PACKET_QSetWorkingDir,
2081 PACKET_QStartupWithShell,
2082 PACKET_QEnvironmentHexEncoded,
2083 PACKET_QEnvironmentReset,
2084 PACKET_QEnvironmentUnset,
2085 PACKET_qCRC,
2086 PACKET_qSearch_memory,
2087 PACKET_vAttach,
2088 PACKET_vRun,
2089 PACKET_QStartNoAckMode,
2090 PACKET_vKill,
2091 PACKET_qXfer_siginfo_read,
2092 PACKET_qXfer_siginfo_write,
2093 PACKET_qAttached,
2094
2095 /* Support for conditional tracepoints. */
2096 PACKET_ConditionalTracepoints,
2097
2098 /* Support for target-side breakpoint conditions. */
2099 PACKET_ConditionalBreakpoints,
2100
2101 /* Support for target-side breakpoint commands. */
2102 PACKET_BreakpointCommands,
2103
2104 /* Support for fast tracepoints. */
2105 PACKET_FastTracepoints,
2106
2107 /* Support for static tracepoints. */
2108 PACKET_StaticTracepoints,
2109
2110 /* Support for installing tracepoints while a trace experiment is
2111 running. */
2112 PACKET_InstallInTrace,
2113
2114 PACKET_bc,
2115 PACKET_bs,
2116 PACKET_TracepointSource,
2117 PACKET_QAllow,
2118 PACKET_qXfer_fdpic,
2119 PACKET_QDisableRandomization,
2120 PACKET_QAgent,
2121 PACKET_QTBuffer_size,
2122 PACKET_Qbtrace_off,
2123 PACKET_Qbtrace_bts,
2124 PACKET_Qbtrace_pt,
2125 PACKET_qXfer_btrace,
2126
2127 /* Support for the QNonStop packet. */
2128 PACKET_QNonStop,
2129
2130 /* Support for the QThreadEvents packet. */
2131 PACKET_QThreadEvents,
2132
2133 /* Support for multi-process extensions. */
2134 PACKET_multiprocess_feature,
2135
2136 /* Support for enabling and disabling tracepoints while a trace
2137 experiment is running. */
2138 PACKET_EnableDisableTracepoints_feature,
2139
2140 /* Support for collecting strings using the tracenz bytecode. */
2141 PACKET_tracenz_feature,
2142
2143 /* Support for continuing to run a trace experiment while GDB is
2144 disconnected. */
2145 PACKET_DisconnectedTracing_feature,
2146
2147 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2148 PACKET_augmented_libraries_svr4_read_feature,
2149
2150 /* Support for the qXfer:btrace-conf:read packet. */
2151 PACKET_qXfer_btrace_conf,
2152
2153 /* Support for the Qbtrace-conf:bts:size packet. */
2154 PACKET_Qbtrace_conf_bts_size,
2155
2156 /* Support for swbreak+ feature. */
2157 PACKET_swbreak_feature,
2158
2159 /* Support for hwbreak+ feature. */
2160 PACKET_hwbreak_feature,
2161
2162 /* Support for fork events. */
2163 PACKET_fork_event_feature,
2164
2165 /* Support for vfork events. */
2166 PACKET_vfork_event_feature,
2167
2168 /* Support for the Qbtrace-conf:pt:size packet. */
2169 PACKET_Qbtrace_conf_pt_size,
2170
2171 /* Support for exec events. */
2172 PACKET_exec_event_feature,
2173
2174 /* Support for query supported vCont actions. */
2175 PACKET_vContSupported,
2176
2177 /* Support remote CTRL-C. */
2178 PACKET_vCtrlC,
2179
2180 /* Support TARGET_WAITKIND_NO_RESUMED. */
2181 PACKET_no_resumed,
2182
2183 /* Support for memory tagging, allocation tag fetch/store
2184 packets and the tag violation stop replies. */
2185 PACKET_memory_tagging_feature,
2186
2187 PACKET_MAX
2188 };
2189
2190 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2191 assuming all remote targets are the same server (thus all support
2192 the same packets). */
2193 static struct packet_config remote_protocol_packets[PACKET_MAX];
2194
2195 /* Returns the packet's corresponding "set remote foo-packet" command
2196 state. See struct packet_config for more details. */
2197
2198 static enum auto_boolean
2199 packet_set_cmd_state (int packet)
2200 {
2201 return remote_protocol_packets[packet].detect;
2202 }
2203
2204 /* Returns whether a given packet or feature is supported. This takes
2205 into account the state of the corresponding "set remote foo-packet"
2206 command, which may be used to bypass auto-detection. */
2207
2208 static enum packet_support
2209 packet_config_support (struct packet_config *config)
2210 {
2211 switch (config->detect)
2212 {
2213 case AUTO_BOOLEAN_TRUE:
2214 return PACKET_ENABLE;
2215 case AUTO_BOOLEAN_FALSE:
2216 return PACKET_DISABLE;
2217 case AUTO_BOOLEAN_AUTO:
2218 return config->support;
2219 default:
2220 gdb_assert_not_reached (_("bad switch"));
2221 }
2222 }
2223
2224 /* Same as packet_config_support, but takes the packet's enum value as
2225 argument. */
2226
2227 static enum packet_support
2228 packet_support (int packet)
2229 {
2230 struct packet_config *config = &remote_protocol_packets[packet];
2231
2232 return packet_config_support (config);
2233 }
2234
2235 static void
2236 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2237 struct cmd_list_element *c,
2238 const char *value)
2239 {
2240 struct packet_config *packet;
2241
2242 for (packet = remote_protocol_packets;
2243 packet < &remote_protocol_packets[PACKET_MAX];
2244 packet++)
2245 {
2246 if (&packet->detect == c->var)
2247 {
2248 show_packet_config_cmd (packet);
2249 return;
2250 }
2251 }
2252 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2253 c->name);
2254 }
2255
2256 /* Should we try one of the 'Z' requests? */
2257
2258 enum Z_packet_type
2259 {
2260 Z_PACKET_SOFTWARE_BP,
2261 Z_PACKET_HARDWARE_BP,
2262 Z_PACKET_WRITE_WP,
2263 Z_PACKET_READ_WP,
2264 Z_PACKET_ACCESS_WP,
2265 NR_Z_PACKET_TYPES
2266 };
2267
2268 /* For compatibility with older distributions. Provide a ``set remote
2269 Z-packet ...'' command that updates all the Z packet types. */
2270
2271 static enum auto_boolean remote_Z_packet_detect;
2272
2273 static void
2274 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2275 struct cmd_list_element *c)
2276 {
2277 int i;
2278
2279 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2280 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2281 }
2282
2283 static void
2284 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2285 struct cmd_list_element *c,
2286 const char *value)
2287 {
2288 int i;
2289
2290 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2291 {
2292 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2293 }
2294 }
2295
2296 /* Returns true if the multi-process extensions are in effect. */
2297
2298 static int
2299 remote_multi_process_p (struct remote_state *rs)
2300 {
2301 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2302 }
2303
2304 /* Returns true if fork events are supported. */
2305
2306 static int
2307 remote_fork_event_p (struct remote_state *rs)
2308 {
2309 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2310 }
2311
2312 /* Returns true if vfork events are supported. */
2313
2314 static int
2315 remote_vfork_event_p (struct remote_state *rs)
2316 {
2317 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2318 }
2319
2320 /* Returns true if exec events are supported. */
2321
2322 static int
2323 remote_exec_event_p (struct remote_state *rs)
2324 {
2325 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2326 }
2327
2328 /* Returns true if memory tagging is supported, false otherwise. */
2329
2330 static bool
2331 remote_memory_tagging_p ()
2332 {
2333 return packet_support (PACKET_memory_tagging_feature) == PACKET_ENABLE;
2334 }
2335
2336 /* Insert fork catchpoint target routine. If fork events are enabled
2337 then return success, nothing more to do. */
2338
2339 int
2340 remote_target::insert_fork_catchpoint (int pid)
2341 {
2342 struct remote_state *rs = get_remote_state ();
2343
2344 return !remote_fork_event_p (rs);
2345 }
2346
2347 /* Remove fork catchpoint target routine. Nothing to do, just
2348 return success. */
2349
2350 int
2351 remote_target::remove_fork_catchpoint (int pid)
2352 {
2353 return 0;
2354 }
2355
2356 /* Insert vfork catchpoint target routine. If vfork events are enabled
2357 then return success, nothing more to do. */
2358
2359 int
2360 remote_target::insert_vfork_catchpoint (int pid)
2361 {
2362 struct remote_state *rs = get_remote_state ();
2363
2364 return !remote_vfork_event_p (rs);
2365 }
2366
2367 /* Remove vfork catchpoint target routine. Nothing to do, just
2368 return success. */
2369
2370 int
2371 remote_target::remove_vfork_catchpoint (int pid)
2372 {
2373 return 0;
2374 }
2375
2376 /* Insert exec catchpoint target routine. If exec events are
2377 enabled, just return success. */
2378
2379 int
2380 remote_target::insert_exec_catchpoint (int pid)
2381 {
2382 struct remote_state *rs = get_remote_state ();
2383
2384 return !remote_exec_event_p (rs);
2385 }
2386
2387 /* Remove exec catchpoint target routine. Nothing to do, just
2388 return success. */
2389
2390 int
2391 remote_target::remove_exec_catchpoint (int pid)
2392 {
2393 return 0;
2394 }
2395
2396 \f
2397
2398 /* Take advantage of the fact that the TID field is not used, to tag
2399 special ptids with it set to != 0. */
2400 static const ptid_t magic_null_ptid (42000, -1, 1);
2401 static const ptid_t not_sent_ptid (42000, -2, 1);
2402 static const ptid_t any_thread_ptid (42000, 0, 1);
2403
2404 /* Find out if the stub attached to PID (and hence GDB should offer to
2405 detach instead of killing it when bailing out). */
2406
2407 int
2408 remote_target::remote_query_attached (int pid)
2409 {
2410 struct remote_state *rs = get_remote_state ();
2411 size_t size = get_remote_packet_size ();
2412
2413 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2414 return 0;
2415
2416 if (remote_multi_process_p (rs))
2417 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2418 else
2419 xsnprintf (rs->buf.data (), size, "qAttached");
2420
2421 putpkt (rs->buf);
2422 getpkt (&rs->buf, 0);
2423
2424 switch (packet_ok (rs->buf,
2425 &remote_protocol_packets[PACKET_qAttached]))
2426 {
2427 case PACKET_OK:
2428 if (strcmp (rs->buf.data (), "1") == 0)
2429 return 1;
2430 break;
2431 case PACKET_ERROR:
2432 warning (_("Remote failure reply: %s"), rs->buf.data ());
2433 break;
2434 case PACKET_UNKNOWN:
2435 break;
2436 }
2437
2438 return 0;
2439 }
2440
2441 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2442 has been invented by GDB, instead of reported by the target. Since
2443 we can be connected to a remote system before before knowing about
2444 any inferior, mark the target with execution when we find the first
2445 inferior. If ATTACHED is 1, then we had just attached to this
2446 inferior. If it is 0, then we just created this inferior. If it
2447 is -1, then try querying the remote stub to find out if it had
2448 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2449 attempt to open this inferior's executable as the main executable
2450 if no main executable is open already. */
2451
2452 inferior *
2453 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2454 int try_open_exec)
2455 {
2456 struct inferior *inf;
2457
2458 /* Check whether this process we're learning about is to be
2459 considered attached, or if is to be considered to have been
2460 spawned by the stub. */
2461 if (attached == -1)
2462 attached = remote_query_attached (pid);
2463
2464 if (gdbarch_has_global_solist (target_gdbarch ()))
2465 {
2466 /* If the target shares code across all inferiors, then every
2467 attach adds a new inferior. */
2468 inf = add_inferior (pid);
2469
2470 /* ... and every inferior is bound to the same program space.
2471 However, each inferior may still have its own address
2472 space. */
2473 inf->aspace = maybe_new_address_space ();
2474 inf->pspace = current_program_space;
2475 }
2476 else
2477 {
2478 /* In the traditional debugging scenario, there's a 1-1 match
2479 between program/address spaces. We simply bind the inferior
2480 to the program space's address space. */
2481 inf = current_inferior ();
2482
2483 /* However, if the current inferior is already bound to a
2484 process, find some other empty inferior. */
2485 if (inf->pid != 0)
2486 {
2487 inf = nullptr;
2488 for (inferior *it : all_inferiors ())
2489 if (it->pid == 0)
2490 {
2491 inf = it;
2492 break;
2493 }
2494 }
2495 if (inf == nullptr)
2496 {
2497 /* Since all inferiors were already bound to a process, add
2498 a new inferior. */
2499 inf = add_inferior_with_spaces ();
2500 }
2501 switch_to_inferior_no_thread (inf);
2502 inf->push_target (this);
2503 inferior_appeared (inf, pid);
2504 }
2505
2506 inf->attach_flag = attached;
2507 inf->fake_pid_p = fake_pid_p;
2508
2509 /* If no main executable is currently open then attempt to
2510 open the file that was executed to create this inferior. */
2511 if (try_open_exec && get_exec_file (0) == NULL)
2512 exec_file_locate_attach (pid, 0, 1);
2513
2514 /* Check for exec file mismatch, and let the user solve it. */
2515 validate_exec_file (1);
2516
2517 return inf;
2518 }
2519
2520 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2521 static remote_thread_info *get_remote_thread_info (remote_target *target,
2522 ptid_t ptid);
2523
2524 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2525 according to RUNNING. */
2526
2527 thread_info *
2528 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2529 {
2530 struct remote_state *rs = get_remote_state ();
2531 struct thread_info *thread;
2532
2533 /* GDB historically didn't pull threads in the initial connection
2534 setup. If the remote target doesn't even have a concept of
2535 threads (e.g., a bare-metal target), even if internally we
2536 consider that a single-threaded target, mentioning a new thread
2537 might be confusing to the user. Be silent then, preserving the
2538 age old behavior. */
2539 if (rs->starting_up)
2540 thread = add_thread_silent (this, ptid);
2541 else
2542 thread = add_thread (this, ptid);
2543
2544 /* We start by assuming threads are resumed. That state then gets updated
2545 when we process a matching stop reply. */
2546 get_remote_thread_info (thread)->set_resumed ();
2547
2548 set_executing (this, ptid, executing);
2549 set_running (this, ptid, running);
2550
2551 return thread;
2552 }
2553
2554 /* Come here when we learn about a thread id from the remote target.
2555 It may be the first time we hear about such thread, so take the
2556 opportunity to add it to GDB's thread list. In case this is the
2557 first time we're noticing its corresponding inferior, add it to
2558 GDB's inferior list as well. EXECUTING indicates whether the
2559 thread is (internally) executing or stopped. */
2560
2561 void
2562 remote_target::remote_notice_new_inferior (ptid_t currthread, bool executing)
2563 {
2564 /* In non-stop mode, we assume new found threads are (externally)
2565 running until proven otherwise with a stop reply. In all-stop,
2566 we can only get here if all threads are stopped. */
2567 bool running = target_is_non_stop_p ();
2568
2569 /* If this is a new thread, add it to GDB's thread list.
2570 If we leave it up to WFI to do this, bad things will happen. */
2571
2572 thread_info *tp = find_thread_ptid (this, currthread);
2573 if (tp != NULL && tp->state == THREAD_EXITED)
2574 {
2575 /* We're seeing an event on a thread id we knew had exited.
2576 This has to be a new thread reusing the old id. Add it. */
2577 remote_add_thread (currthread, running, executing);
2578 return;
2579 }
2580
2581 if (!in_thread_list (this, currthread))
2582 {
2583 struct inferior *inf = NULL;
2584 int pid = currthread.pid ();
2585
2586 if (inferior_ptid.is_pid ()
2587 && pid == inferior_ptid.pid ())
2588 {
2589 /* inferior_ptid has no thread member yet. This can happen
2590 with the vAttach -> remote_wait,"TAAthread:" path if the
2591 stub doesn't support qC. This is the first stop reported
2592 after an attach, so this is the main thread. Update the
2593 ptid in the thread list. */
2594 if (in_thread_list (this, ptid_t (pid)))
2595 thread_change_ptid (this, inferior_ptid, currthread);
2596 else
2597 {
2598 thread_info *thr
2599 = remote_add_thread (currthread, running, executing);
2600 switch_to_thread (thr);
2601 }
2602 return;
2603 }
2604
2605 if (magic_null_ptid == inferior_ptid)
2606 {
2607 /* inferior_ptid is not set yet. This can happen with the
2608 vRun -> remote_wait,"TAAthread:" path if the stub
2609 doesn't support qC. This is the first stop reported
2610 after an attach, so this is the main thread. Update the
2611 ptid in the thread list. */
2612 thread_change_ptid (this, inferior_ptid, currthread);
2613 return;
2614 }
2615
2616 /* When connecting to a target remote, or to a target
2617 extended-remote which already was debugging an inferior, we
2618 may not know about it yet. Add it before adding its child
2619 thread, so notifications are emitted in a sensible order. */
2620 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2621 {
2622 struct remote_state *rs = get_remote_state ();
2623 bool fake_pid_p = !remote_multi_process_p (rs);
2624
2625 inf = remote_add_inferior (fake_pid_p,
2626 currthread.pid (), -1, 1);
2627 }
2628
2629 /* This is really a new thread. Add it. */
2630 thread_info *new_thr
2631 = remote_add_thread (currthread, running, executing);
2632
2633 /* If we found a new inferior, let the common code do whatever
2634 it needs to with it (e.g., read shared libraries, insert
2635 breakpoints), unless we're just setting up an all-stop
2636 connection. */
2637 if (inf != NULL)
2638 {
2639 struct remote_state *rs = get_remote_state ();
2640
2641 if (!rs->starting_up)
2642 notice_new_inferior (new_thr, executing, 0);
2643 }
2644 }
2645 }
2646
2647 /* Return THREAD's private thread data, creating it if necessary. */
2648
2649 static remote_thread_info *
2650 get_remote_thread_info (thread_info *thread)
2651 {
2652 gdb_assert (thread != NULL);
2653
2654 if (thread->priv == NULL)
2655 thread->priv.reset (new remote_thread_info);
2656
2657 return static_cast<remote_thread_info *> (thread->priv.get ());
2658 }
2659
2660 /* Return PTID's private thread data, creating it if necessary. */
2661
2662 static remote_thread_info *
2663 get_remote_thread_info (remote_target *target, ptid_t ptid)
2664 {
2665 thread_info *thr = find_thread_ptid (target, ptid);
2666 return get_remote_thread_info (thr);
2667 }
2668
2669 /* Call this function as a result of
2670 1) A halt indication (T packet) containing a thread id
2671 2) A direct query of currthread
2672 3) Successful execution of set thread */
2673
2674 static void
2675 record_currthread (struct remote_state *rs, ptid_t currthread)
2676 {
2677 rs->general_thread = currthread;
2678 }
2679
2680 /* If 'QPassSignals' is supported, tell the remote stub what signals
2681 it can simply pass through to the inferior without reporting. */
2682
2683 void
2684 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2685 {
2686 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2687 {
2688 char *pass_packet, *p;
2689 int count = 0;
2690 struct remote_state *rs = get_remote_state ();
2691
2692 gdb_assert (pass_signals.size () < 256);
2693 for (size_t i = 0; i < pass_signals.size (); i++)
2694 {
2695 if (pass_signals[i])
2696 count++;
2697 }
2698 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2699 strcpy (pass_packet, "QPassSignals:");
2700 p = pass_packet + strlen (pass_packet);
2701 for (size_t i = 0; i < pass_signals.size (); i++)
2702 {
2703 if (pass_signals[i])
2704 {
2705 if (i >= 16)
2706 *p++ = tohex (i >> 4);
2707 *p++ = tohex (i & 15);
2708 if (count)
2709 *p++ = ';';
2710 else
2711 break;
2712 count--;
2713 }
2714 }
2715 *p = 0;
2716 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2717 {
2718 putpkt (pass_packet);
2719 getpkt (&rs->buf, 0);
2720 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2721 xfree (rs->last_pass_packet);
2722 rs->last_pass_packet = pass_packet;
2723 }
2724 else
2725 xfree (pass_packet);
2726 }
2727 }
2728
2729 /* If 'QCatchSyscalls' is supported, tell the remote stub
2730 to report syscalls to GDB. */
2731
2732 int
2733 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2734 gdb::array_view<const int> syscall_counts)
2735 {
2736 const char *catch_packet;
2737 enum packet_result result;
2738 int n_sysno = 0;
2739
2740 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2741 {
2742 /* Not supported. */
2743 return 1;
2744 }
2745
2746 if (needed && any_count == 0)
2747 {
2748 /* Count how many syscalls are to be caught. */
2749 for (size_t i = 0; i < syscall_counts.size (); i++)
2750 {
2751 if (syscall_counts[i] != 0)
2752 n_sysno++;
2753 }
2754 }
2755
2756 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2757 pid, needed, any_count, n_sysno);
2758
2759 std::string built_packet;
2760 if (needed)
2761 {
2762 /* Prepare a packet with the sysno list, assuming max 8+1
2763 characters for a sysno. If the resulting packet size is too
2764 big, fallback on the non-selective packet. */
2765 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2766 built_packet.reserve (maxpktsz);
2767 built_packet = "QCatchSyscalls:1";
2768 if (any_count == 0)
2769 {
2770 /* Add in each syscall to be caught. */
2771 for (size_t i = 0; i < syscall_counts.size (); i++)
2772 {
2773 if (syscall_counts[i] != 0)
2774 string_appendf (built_packet, ";%zx", i);
2775 }
2776 }
2777 if (built_packet.size () > get_remote_packet_size ())
2778 {
2779 /* catch_packet too big. Fallback to less efficient
2780 non selective mode, with GDB doing the filtering. */
2781 catch_packet = "QCatchSyscalls:1";
2782 }
2783 else
2784 catch_packet = built_packet.c_str ();
2785 }
2786 else
2787 catch_packet = "QCatchSyscalls:0";
2788
2789 struct remote_state *rs = get_remote_state ();
2790
2791 putpkt (catch_packet);
2792 getpkt (&rs->buf, 0);
2793 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2794 if (result == PACKET_OK)
2795 return 0;
2796 else
2797 return -1;
2798 }
2799
2800 /* If 'QProgramSignals' is supported, tell the remote stub what
2801 signals it should pass through to the inferior when detaching. */
2802
2803 void
2804 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2805 {
2806 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2807 {
2808 char *packet, *p;
2809 int count = 0;
2810 struct remote_state *rs = get_remote_state ();
2811
2812 gdb_assert (signals.size () < 256);
2813 for (size_t i = 0; i < signals.size (); i++)
2814 {
2815 if (signals[i])
2816 count++;
2817 }
2818 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2819 strcpy (packet, "QProgramSignals:");
2820 p = packet + strlen (packet);
2821 for (size_t i = 0; i < signals.size (); i++)
2822 {
2823 if (signal_pass_state (i))
2824 {
2825 if (i >= 16)
2826 *p++ = tohex (i >> 4);
2827 *p++ = tohex (i & 15);
2828 if (count)
2829 *p++ = ';';
2830 else
2831 break;
2832 count--;
2833 }
2834 }
2835 *p = 0;
2836 if (!rs->last_program_signals_packet
2837 || strcmp (rs->last_program_signals_packet, packet) != 0)
2838 {
2839 putpkt (packet);
2840 getpkt (&rs->buf, 0);
2841 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2842 xfree (rs->last_program_signals_packet);
2843 rs->last_program_signals_packet = packet;
2844 }
2845 else
2846 xfree (packet);
2847 }
2848 }
2849
2850 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2851 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2852 thread. If GEN is set, set the general thread, if not, then set
2853 the step/continue thread. */
2854 void
2855 remote_target::set_thread (ptid_t ptid, int gen)
2856 {
2857 struct remote_state *rs = get_remote_state ();
2858 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2859 char *buf = rs->buf.data ();
2860 char *endbuf = buf + get_remote_packet_size ();
2861
2862 if (state == ptid)
2863 return;
2864
2865 *buf++ = 'H';
2866 *buf++ = gen ? 'g' : 'c';
2867 if (ptid == magic_null_ptid)
2868 xsnprintf (buf, endbuf - buf, "0");
2869 else if (ptid == any_thread_ptid)
2870 xsnprintf (buf, endbuf - buf, "0");
2871 else if (ptid == minus_one_ptid)
2872 xsnprintf (buf, endbuf - buf, "-1");
2873 else
2874 write_ptid (buf, endbuf, ptid);
2875 putpkt (rs->buf);
2876 getpkt (&rs->buf, 0);
2877 if (gen)
2878 rs->general_thread = ptid;
2879 else
2880 rs->continue_thread = ptid;
2881 }
2882
2883 void
2884 remote_target::set_general_thread (ptid_t ptid)
2885 {
2886 set_thread (ptid, 1);
2887 }
2888
2889 void
2890 remote_target::set_continue_thread (ptid_t ptid)
2891 {
2892 set_thread (ptid, 0);
2893 }
2894
2895 /* Change the remote current process. Which thread within the process
2896 ends up selected isn't important, as long as it is the same process
2897 as what INFERIOR_PTID points to.
2898
2899 This comes from that fact that there is no explicit notion of
2900 "selected process" in the protocol. The selected process for
2901 general operations is the process the selected general thread
2902 belongs to. */
2903
2904 void
2905 remote_target::set_general_process ()
2906 {
2907 struct remote_state *rs = get_remote_state ();
2908
2909 /* If the remote can't handle multiple processes, don't bother. */
2910 if (!remote_multi_process_p (rs))
2911 return;
2912
2913 /* We only need to change the remote current thread if it's pointing
2914 at some other process. */
2915 if (rs->general_thread.pid () != inferior_ptid.pid ())
2916 set_general_thread (inferior_ptid);
2917 }
2918
2919 \f
2920 /* Return nonzero if this is the main thread that we made up ourselves
2921 to model non-threaded targets as single-threaded. */
2922
2923 static int
2924 remote_thread_always_alive (ptid_t ptid)
2925 {
2926 if (ptid == magic_null_ptid)
2927 /* The main thread is always alive. */
2928 return 1;
2929
2930 if (ptid.pid () != 0 && ptid.lwp () == 0)
2931 /* The main thread is always alive. This can happen after a
2932 vAttach, if the remote side doesn't support
2933 multi-threading. */
2934 return 1;
2935
2936 return 0;
2937 }
2938
2939 /* Return nonzero if the thread PTID is still alive on the remote
2940 system. */
2941
2942 bool
2943 remote_target::thread_alive (ptid_t ptid)
2944 {
2945 struct remote_state *rs = get_remote_state ();
2946 char *p, *endp;
2947
2948 /* Check if this is a thread that we made up ourselves to model
2949 non-threaded targets as single-threaded. */
2950 if (remote_thread_always_alive (ptid))
2951 return 1;
2952
2953 p = rs->buf.data ();
2954 endp = p + get_remote_packet_size ();
2955
2956 *p++ = 'T';
2957 write_ptid (p, endp, ptid);
2958
2959 putpkt (rs->buf);
2960 getpkt (&rs->buf, 0);
2961 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2962 }
2963
2964 /* Return a pointer to a thread name if we know it and NULL otherwise.
2965 The thread_info object owns the memory for the name. */
2966
2967 const char *
2968 remote_target::thread_name (struct thread_info *info)
2969 {
2970 if (info->priv != NULL)
2971 {
2972 const std::string &name = get_remote_thread_info (info)->name;
2973 return !name.empty () ? name.c_str () : NULL;
2974 }
2975
2976 return NULL;
2977 }
2978
2979 /* About these extended threadlist and threadinfo packets. They are
2980 variable length packets but, the fields within them are often fixed
2981 length. They are redundant enough to send over UDP as is the
2982 remote protocol in general. There is a matching unit test module
2983 in libstub. */
2984
2985 /* WARNING: This threadref data structure comes from the remote O.S.,
2986 libstub protocol encoding, and remote.c. It is not particularly
2987 changable. */
2988
2989 /* Right now, the internal structure is int. We want it to be bigger.
2990 Plan to fix this. */
2991
2992 typedef int gdb_threadref; /* Internal GDB thread reference. */
2993
2994 /* gdb_ext_thread_info is an internal GDB data structure which is
2995 equivalent to the reply of the remote threadinfo packet. */
2996
2997 struct gdb_ext_thread_info
2998 {
2999 threadref threadid; /* External form of thread reference. */
3000 int active; /* Has state interesting to GDB?
3001 regs, stack. */
3002 char display[256]; /* Brief state display, name,
3003 blocked/suspended. */
3004 char shortname[32]; /* To be used to name threads. */
3005 char more_display[256]; /* Long info, statistics, queue depth,
3006 whatever. */
3007 };
3008
3009 /* The volume of remote transfers can be limited by submitting
3010 a mask containing bits specifying the desired information.
3011 Use a union of these values as the 'selection' parameter to
3012 get_thread_info. FIXME: Make these TAG names more thread specific. */
3013
3014 #define TAG_THREADID 1
3015 #define TAG_EXISTS 2
3016 #define TAG_DISPLAY 4
3017 #define TAG_THREADNAME 8
3018 #define TAG_MOREDISPLAY 16
3019
3020 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3021
3022 static const char *unpack_nibble (const char *buf, int *val);
3023
3024 static const char *unpack_byte (const char *buf, int *value);
3025
3026 static char *pack_int (char *buf, int value);
3027
3028 static const char *unpack_int (const char *buf, int *value);
3029
3030 static const char *unpack_string (const char *src, char *dest, int length);
3031
3032 static char *pack_threadid (char *pkt, threadref *id);
3033
3034 static const char *unpack_threadid (const char *inbuf, threadref *id);
3035
3036 void int_to_threadref (threadref *id, int value);
3037
3038 static int threadref_to_int (threadref *ref);
3039
3040 static void copy_threadref (threadref *dest, threadref *src);
3041
3042 static int threadmatch (threadref *dest, threadref *src);
3043
3044 static char *pack_threadinfo_request (char *pkt, int mode,
3045 threadref *id);
3046
3047 static char *pack_threadlist_request (char *pkt, int startflag,
3048 int threadcount,
3049 threadref *nextthread);
3050
3051 static int remote_newthread_step (threadref *ref, void *context);
3052
3053
3054 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3055 buffer we're allowed to write to. Returns
3056 BUF+CHARACTERS_WRITTEN. */
3057
3058 char *
3059 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3060 {
3061 int pid, tid;
3062 struct remote_state *rs = get_remote_state ();
3063
3064 if (remote_multi_process_p (rs))
3065 {
3066 pid = ptid.pid ();
3067 if (pid < 0)
3068 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3069 else
3070 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3071 }
3072 tid = ptid.lwp ();
3073 if (tid < 0)
3074 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3075 else
3076 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3077
3078 return buf;
3079 }
3080
3081 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3082 last parsed char. Returns null_ptid if no thread id is found, and
3083 throws an error if the thread id has an invalid format. */
3084
3085 static ptid_t
3086 read_ptid (const char *buf, const char **obuf)
3087 {
3088 const char *p = buf;
3089 const char *pp;
3090 ULONGEST pid = 0, tid = 0;
3091
3092 if (*p == 'p')
3093 {
3094 /* Multi-process ptid. */
3095 pp = unpack_varlen_hex (p + 1, &pid);
3096 if (*pp != '.')
3097 error (_("invalid remote ptid: %s"), p);
3098
3099 p = pp;
3100 pp = unpack_varlen_hex (p + 1, &tid);
3101 if (obuf)
3102 *obuf = pp;
3103 return ptid_t (pid, tid, 0);
3104 }
3105
3106 /* No multi-process. Just a tid. */
3107 pp = unpack_varlen_hex (p, &tid);
3108
3109 /* Return null_ptid when no thread id is found. */
3110 if (p == pp)
3111 {
3112 if (obuf)
3113 *obuf = pp;
3114 return null_ptid;
3115 }
3116
3117 /* Since the stub is not sending a process id, then default to
3118 what's in inferior_ptid, unless it's null at this point. If so,
3119 then since there's no way to know the pid of the reported
3120 threads, use the magic number. */
3121 if (inferior_ptid == null_ptid)
3122 pid = magic_null_ptid.pid ();
3123 else
3124 pid = inferior_ptid.pid ();
3125
3126 if (obuf)
3127 *obuf = pp;
3128 return ptid_t (pid, tid, 0);
3129 }
3130
3131 static int
3132 stubhex (int ch)
3133 {
3134 if (ch >= 'a' && ch <= 'f')
3135 return ch - 'a' + 10;
3136 if (ch >= '0' && ch <= '9')
3137 return ch - '0';
3138 if (ch >= 'A' && ch <= 'F')
3139 return ch - 'A' + 10;
3140 return -1;
3141 }
3142
3143 static int
3144 stub_unpack_int (const char *buff, int fieldlength)
3145 {
3146 int nibble;
3147 int retval = 0;
3148
3149 while (fieldlength)
3150 {
3151 nibble = stubhex (*buff++);
3152 retval |= nibble;
3153 fieldlength--;
3154 if (fieldlength)
3155 retval = retval << 4;
3156 }
3157 return retval;
3158 }
3159
3160 static const char *
3161 unpack_nibble (const char *buf, int *val)
3162 {
3163 *val = fromhex (*buf++);
3164 return buf;
3165 }
3166
3167 static const char *
3168 unpack_byte (const char *buf, int *value)
3169 {
3170 *value = stub_unpack_int (buf, 2);
3171 return buf + 2;
3172 }
3173
3174 static char *
3175 pack_int (char *buf, int value)
3176 {
3177 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3178 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3179 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3180 buf = pack_hex_byte (buf, (value & 0xff));
3181 return buf;
3182 }
3183
3184 static const char *
3185 unpack_int (const char *buf, int *value)
3186 {
3187 *value = stub_unpack_int (buf, 8);
3188 return buf + 8;
3189 }
3190
3191 #if 0 /* Currently unused, uncomment when needed. */
3192 static char *pack_string (char *pkt, char *string);
3193
3194 static char *
3195 pack_string (char *pkt, char *string)
3196 {
3197 char ch;
3198 int len;
3199
3200 len = strlen (string);
3201 if (len > 200)
3202 len = 200; /* Bigger than most GDB packets, junk??? */
3203 pkt = pack_hex_byte (pkt, len);
3204 while (len-- > 0)
3205 {
3206 ch = *string++;
3207 if ((ch == '\0') || (ch == '#'))
3208 ch = '*'; /* Protect encapsulation. */
3209 *pkt++ = ch;
3210 }
3211 return pkt;
3212 }
3213 #endif /* 0 (unused) */
3214
3215 static const char *
3216 unpack_string (const char *src, char *dest, int length)
3217 {
3218 while (length--)
3219 *dest++ = *src++;
3220 *dest = '\0';
3221 return src;
3222 }
3223
3224 static char *
3225 pack_threadid (char *pkt, threadref *id)
3226 {
3227 char *limit;
3228 unsigned char *altid;
3229
3230 altid = (unsigned char *) id;
3231 limit = pkt + BUF_THREAD_ID_SIZE;
3232 while (pkt < limit)
3233 pkt = pack_hex_byte (pkt, *altid++);
3234 return pkt;
3235 }
3236
3237
3238 static const char *
3239 unpack_threadid (const char *inbuf, threadref *id)
3240 {
3241 char *altref;
3242 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3243 int x, y;
3244
3245 altref = (char *) id;
3246
3247 while (inbuf < limit)
3248 {
3249 x = stubhex (*inbuf++);
3250 y = stubhex (*inbuf++);
3251 *altref++ = (x << 4) | y;
3252 }
3253 return inbuf;
3254 }
3255
3256 /* Externally, threadrefs are 64 bits but internally, they are still
3257 ints. This is due to a mismatch of specifications. We would like
3258 to use 64bit thread references internally. This is an adapter
3259 function. */
3260
3261 void
3262 int_to_threadref (threadref *id, int value)
3263 {
3264 unsigned char *scan;
3265
3266 scan = (unsigned char *) id;
3267 {
3268 int i = 4;
3269 while (i--)
3270 *scan++ = 0;
3271 }
3272 *scan++ = (value >> 24) & 0xff;
3273 *scan++ = (value >> 16) & 0xff;
3274 *scan++ = (value >> 8) & 0xff;
3275 *scan++ = (value & 0xff);
3276 }
3277
3278 static int
3279 threadref_to_int (threadref *ref)
3280 {
3281 int i, value = 0;
3282 unsigned char *scan;
3283
3284 scan = *ref;
3285 scan += 4;
3286 i = 4;
3287 while (i-- > 0)
3288 value = (value << 8) | ((*scan++) & 0xff);
3289 return value;
3290 }
3291
3292 static void
3293 copy_threadref (threadref *dest, threadref *src)
3294 {
3295 int i;
3296 unsigned char *csrc, *cdest;
3297
3298 csrc = (unsigned char *) src;
3299 cdest = (unsigned char *) dest;
3300 i = 8;
3301 while (i--)
3302 *cdest++ = *csrc++;
3303 }
3304
3305 static int
3306 threadmatch (threadref *dest, threadref *src)
3307 {
3308 /* Things are broken right now, so just assume we got a match. */
3309 #if 0
3310 unsigned char *srcp, *destp;
3311 int i, result;
3312 srcp = (char *) src;
3313 destp = (char *) dest;
3314
3315 result = 1;
3316 while (i-- > 0)
3317 result &= (*srcp++ == *destp++) ? 1 : 0;
3318 return result;
3319 #endif
3320 return 1;
3321 }
3322
3323 /*
3324 threadid:1, # always request threadid
3325 context_exists:2,
3326 display:4,
3327 unique_name:8,
3328 more_display:16
3329 */
3330
3331 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3332
3333 static char *
3334 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3335 {
3336 *pkt++ = 'q'; /* Info Query */
3337 *pkt++ = 'P'; /* process or thread info */
3338 pkt = pack_int (pkt, mode); /* mode */
3339 pkt = pack_threadid (pkt, id); /* threadid */
3340 *pkt = '\0'; /* terminate */
3341 return pkt;
3342 }
3343
3344 /* These values tag the fields in a thread info response packet. */
3345 /* Tagging the fields allows us to request specific fields and to
3346 add more fields as time goes by. */
3347
3348 #define TAG_THREADID 1 /* Echo the thread identifier. */
3349 #define TAG_EXISTS 2 /* Is this process defined enough to
3350 fetch registers and its stack? */
3351 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3352 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3353 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3354 the process. */
3355
3356 int
3357 remote_target::remote_unpack_thread_info_response (const char *pkt,
3358 threadref *expectedref,
3359 gdb_ext_thread_info *info)
3360 {
3361 struct remote_state *rs = get_remote_state ();
3362 int mask, length;
3363 int tag;
3364 threadref ref;
3365 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3366 int retval = 1;
3367
3368 /* info->threadid = 0; FIXME: implement zero_threadref. */
3369 info->active = 0;
3370 info->display[0] = '\0';
3371 info->shortname[0] = '\0';
3372 info->more_display[0] = '\0';
3373
3374 /* Assume the characters indicating the packet type have been
3375 stripped. */
3376 pkt = unpack_int (pkt, &mask); /* arg mask */
3377 pkt = unpack_threadid (pkt, &ref);
3378
3379 if (mask == 0)
3380 warning (_("Incomplete response to threadinfo request."));
3381 if (!threadmatch (&ref, expectedref))
3382 { /* This is an answer to a different request. */
3383 warning (_("ERROR RMT Thread info mismatch."));
3384 return 0;
3385 }
3386 copy_threadref (&info->threadid, &ref);
3387
3388 /* Loop on tagged fields , try to bail if something goes wrong. */
3389
3390 /* Packets are terminated with nulls. */
3391 while ((pkt < limit) && mask && *pkt)
3392 {
3393 pkt = unpack_int (pkt, &tag); /* tag */
3394 pkt = unpack_byte (pkt, &length); /* length */
3395 if (!(tag & mask)) /* Tags out of synch with mask. */
3396 {
3397 warning (_("ERROR RMT: threadinfo tag mismatch."));
3398 retval = 0;
3399 break;
3400 }
3401 if (tag == TAG_THREADID)
3402 {
3403 if (length != 16)
3404 {
3405 warning (_("ERROR RMT: length of threadid is not 16."));
3406 retval = 0;
3407 break;
3408 }
3409 pkt = unpack_threadid (pkt, &ref);
3410 mask = mask & ~TAG_THREADID;
3411 continue;
3412 }
3413 if (tag == TAG_EXISTS)
3414 {
3415 info->active = stub_unpack_int (pkt, length);
3416 pkt += length;
3417 mask = mask & ~(TAG_EXISTS);
3418 if (length > 8)
3419 {
3420 warning (_("ERROR RMT: 'exists' length too long."));
3421 retval = 0;
3422 break;
3423 }
3424 continue;
3425 }
3426 if (tag == TAG_THREADNAME)
3427 {
3428 pkt = unpack_string (pkt, &info->shortname[0], length);
3429 mask = mask & ~TAG_THREADNAME;
3430 continue;
3431 }
3432 if (tag == TAG_DISPLAY)
3433 {
3434 pkt = unpack_string (pkt, &info->display[0], length);
3435 mask = mask & ~TAG_DISPLAY;
3436 continue;
3437 }
3438 if (tag == TAG_MOREDISPLAY)
3439 {
3440 pkt = unpack_string (pkt, &info->more_display[0], length);
3441 mask = mask & ~TAG_MOREDISPLAY;
3442 continue;
3443 }
3444 warning (_("ERROR RMT: unknown thread info tag."));
3445 break; /* Not a tag we know about. */
3446 }
3447 return retval;
3448 }
3449
3450 int
3451 remote_target::remote_get_threadinfo (threadref *threadid,
3452 int fieldset,
3453 gdb_ext_thread_info *info)
3454 {
3455 struct remote_state *rs = get_remote_state ();
3456 int result;
3457
3458 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3459 putpkt (rs->buf);
3460 getpkt (&rs->buf, 0);
3461
3462 if (rs->buf[0] == '\0')
3463 return 0;
3464
3465 result = remote_unpack_thread_info_response (&rs->buf[2],
3466 threadid, info);
3467 return result;
3468 }
3469
3470 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3471
3472 static char *
3473 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3474 threadref *nextthread)
3475 {
3476 *pkt++ = 'q'; /* info query packet */
3477 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3478 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3479 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3480 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3481 *pkt = '\0';
3482 return pkt;
3483 }
3484
3485 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3486
3487 int
3488 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3489 threadref *original_echo,
3490 threadref *resultlist,
3491 int *doneflag)
3492 {
3493 struct remote_state *rs = get_remote_state ();
3494 int count, resultcount, done;
3495
3496 resultcount = 0;
3497 /* Assume the 'q' and 'M chars have been stripped. */
3498 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3499 /* done parse past here */
3500 pkt = unpack_byte (pkt, &count); /* count field */
3501 pkt = unpack_nibble (pkt, &done);
3502 /* The first threadid is the argument threadid. */
3503 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3504 while ((count-- > 0) && (pkt < limit))
3505 {
3506 pkt = unpack_threadid (pkt, resultlist++);
3507 if (resultcount++ >= result_limit)
3508 break;
3509 }
3510 if (doneflag)
3511 *doneflag = done;
3512 return resultcount;
3513 }
3514
3515 /* Fetch the next batch of threads from the remote. Returns -1 if the
3516 qL packet is not supported, 0 on error and 1 on success. */
3517
3518 int
3519 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3520 int result_limit, int *done, int *result_count,
3521 threadref *threadlist)
3522 {
3523 struct remote_state *rs = get_remote_state ();
3524 int result = 1;
3525
3526 /* Truncate result limit to be smaller than the packet size. */
3527 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3528 >= get_remote_packet_size ())
3529 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3530
3531 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3532 nextthread);
3533 putpkt (rs->buf);
3534 getpkt (&rs->buf, 0);
3535 if (rs->buf[0] == '\0')
3536 {
3537 /* Packet not supported. */
3538 return -1;
3539 }
3540
3541 *result_count =
3542 parse_threadlist_response (&rs->buf[2], result_limit,
3543 &rs->echo_nextthread, threadlist, done);
3544
3545 if (!threadmatch (&rs->echo_nextthread, nextthread))
3546 {
3547 /* FIXME: This is a good reason to drop the packet. */
3548 /* Possibly, there is a duplicate response. */
3549 /* Possibilities :
3550 retransmit immediatly - race conditions
3551 retransmit after timeout - yes
3552 exit
3553 wait for packet, then exit
3554 */
3555 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3556 return 0; /* I choose simply exiting. */
3557 }
3558 if (*result_count <= 0)
3559 {
3560 if (*done != 1)
3561 {
3562 warning (_("RMT ERROR : failed to get remote thread list."));
3563 result = 0;
3564 }
3565 return result; /* break; */
3566 }
3567 if (*result_count > result_limit)
3568 {
3569 *result_count = 0;
3570 warning (_("RMT ERROR: threadlist response longer than requested."));
3571 return 0;
3572 }
3573 return result;
3574 }
3575
3576 /* Fetch the list of remote threads, with the qL packet, and call
3577 STEPFUNCTION for each thread found. Stops iterating and returns 1
3578 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3579 STEPFUNCTION returns false. If the packet is not supported,
3580 returns -1. */
3581
3582 int
3583 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3584 void *context, int looplimit)
3585 {
3586 struct remote_state *rs = get_remote_state ();
3587 int done, i, result_count;
3588 int startflag = 1;
3589 int result = 1;
3590 int loopcount = 0;
3591
3592 done = 0;
3593 while (!done)
3594 {
3595 if (loopcount++ > looplimit)
3596 {
3597 result = 0;
3598 warning (_("Remote fetch threadlist -infinite loop-."));
3599 break;
3600 }
3601 result = remote_get_threadlist (startflag, &rs->nextthread,
3602 MAXTHREADLISTRESULTS,
3603 &done, &result_count,
3604 rs->resultthreadlist);
3605 if (result <= 0)
3606 break;
3607 /* Clear for later iterations. */
3608 startflag = 0;
3609 /* Setup to resume next batch of thread references, set nextthread. */
3610 if (result_count >= 1)
3611 copy_threadref (&rs->nextthread,
3612 &rs->resultthreadlist[result_count - 1]);
3613 i = 0;
3614 while (result_count--)
3615 {
3616 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3617 {
3618 result = 0;
3619 break;
3620 }
3621 }
3622 }
3623 return result;
3624 }
3625
3626 /* A thread found on the remote target. */
3627
3628 struct thread_item
3629 {
3630 explicit thread_item (ptid_t ptid_)
3631 : ptid (ptid_)
3632 {}
3633
3634 thread_item (thread_item &&other) = default;
3635 thread_item &operator= (thread_item &&other) = default;
3636
3637 DISABLE_COPY_AND_ASSIGN (thread_item);
3638
3639 /* The thread's PTID. */
3640 ptid_t ptid;
3641
3642 /* The thread's extra info. */
3643 std::string extra;
3644
3645 /* The thread's name. */
3646 std::string name;
3647
3648 /* The core the thread was running on. -1 if not known. */
3649 int core = -1;
3650
3651 /* The thread handle associated with the thread. */
3652 gdb::byte_vector thread_handle;
3653 };
3654
3655 /* Context passed around to the various methods listing remote
3656 threads. As new threads are found, they're added to the ITEMS
3657 vector. */
3658
3659 struct threads_listing_context
3660 {
3661 /* Return true if this object contains an entry for a thread with ptid
3662 PTID. */
3663
3664 bool contains_thread (ptid_t ptid) const
3665 {
3666 auto match_ptid = [&] (const thread_item &item)
3667 {
3668 return item.ptid == ptid;
3669 };
3670
3671 auto it = std::find_if (this->items.begin (),
3672 this->items.end (),
3673 match_ptid);
3674
3675 return it != this->items.end ();
3676 }
3677
3678 /* Remove the thread with ptid PTID. */
3679
3680 void remove_thread (ptid_t ptid)
3681 {
3682 auto match_ptid = [&] (const thread_item &item)
3683 {
3684 return item.ptid == ptid;
3685 };
3686
3687 auto it = std::remove_if (this->items.begin (),
3688 this->items.end (),
3689 match_ptid);
3690
3691 if (it != this->items.end ())
3692 this->items.erase (it);
3693 }
3694
3695 /* The threads found on the remote target. */
3696 std::vector<thread_item> items;
3697 };
3698
3699 static int
3700 remote_newthread_step (threadref *ref, void *data)
3701 {
3702 struct threads_listing_context *context
3703 = (struct threads_listing_context *) data;
3704 int pid = inferior_ptid.pid ();
3705 int lwp = threadref_to_int (ref);
3706 ptid_t ptid (pid, lwp);
3707
3708 context->items.emplace_back (ptid);
3709
3710 return 1; /* continue iterator */
3711 }
3712
3713 #define CRAZY_MAX_THREADS 1000
3714
3715 ptid_t
3716 remote_target::remote_current_thread (ptid_t oldpid)
3717 {
3718 struct remote_state *rs = get_remote_state ();
3719
3720 putpkt ("qC");
3721 getpkt (&rs->buf, 0);
3722 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3723 {
3724 const char *obuf;
3725 ptid_t result;
3726
3727 result = read_ptid (&rs->buf[2], &obuf);
3728 if (*obuf != '\0')
3729 remote_debug_printf ("warning: garbage in qC reply");
3730
3731 return result;
3732 }
3733 else
3734 return oldpid;
3735 }
3736
3737 /* List remote threads using the deprecated qL packet. */
3738
3739 int
3740 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3741 {
3742 if (remote_threadlist_iterator (remote_newthread_step, context,
3743 CRAZY_MAX_THREADS) >= 0)
3744 return 1;
3745
3746 return 0;
3747 }
3748
3749 #if defined(HAVE_LIBEXPAT)
3750
3751 static void
3752 start_thread (struct gdb_xml_parser *parser,
3753 const struct gdb_xml_element *element,
3754 void *user_data,
3755 std::vector<gdb_xml_value> &attributes)
3756 {
3757 struct threads_listing_context *data
3758 = (struct threads_listing_context *) user_data;
3759 struct gdb_xml_value *attr;
3760
3761 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3762 ptid_t ptid = read_ptid (id, NULL);
3763
3764 data->items.emplace_back (ptid);
3765 thread_item &item = data->items.back ();
3766
3767 attr = xml_find_attribute (attributes, "core");
3768 if (attr != NULL)
3769 item.core = *(ULONGEST *) attr->value.get ();
3770
3771 attr = xml_find_attribute (attributes, "name");
3772 if (attr != NULL)
3773 item.name = (const char *) attr->value.get ();
3774
3775 attr = xml_find_attribute (attributes, "handle");
3776 if (attr != NULL)
3777 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3778 }
3779
3780 static void
3781 end_thread (struct gdb_xml_parser *parser,
3782 const struct gdb_xml_element *element,
3783 void *user_data, const char *body_text)
3784 {
3785 struct threads_listing_context *data
3786 = (struct threads_listing_context *) user_data;
3787
3788 if (body_text != NULL && *body_text != '\0')
3789 data->items.back ().extra = body_text;
3790 }
3791
3792 const struct gdb_xml_attribute thread_attributes[] = {
3793 { "id", GDB_XML_AF_NONE, NULL, NULL },
3794 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3795 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3796 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3797 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3798 };
3799
3800 const struct gdb_xml_element thread_children[] = {
3801 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3802 };
3803
3804 const struct gdb_xml_element threads_children[] = {
3805 { "thread", thread_attributes, thread_children,
3806 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3807 start_thread, end_thread },
3808 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3809 };
3810
3811 const struct gdb_xml_element threads_elements[] = {
3812 { "threads", NULL, threads_children,
3813 GDB_XML_EF_NONE, NULL, NULL },
3814 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3815 };
3816
3817 #endif
3818
3819 /* List remote threads using qXfer:threads:read. */
3820
3821 int
3822 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3823 {
3824 #if defined(HAVE_LIBEXPAT)
3825 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3826 {
3827 gdb::optional<gdb::char_vector> xml
3828 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3829
3830 if (xml && (*xml)[0] != '\0')
3831 {
3832 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3833 threads_elements, xml->data (), context);
3834 }
3835
3836 return 1;
3837 }
3838 #endif
3839
3840 return 0;
3841 }
3842
3843 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3844
3845 int
3846 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3847 {
3848 struct remote_state *rs = get_remote_state ();
3849
3850 if (rs->use_threadinfo_query)
3851 {
3852 const char *bufp;
3853
3854 putpkt ("qfThreadInfo");
3855 getpkt (&rs->buf, 0);
3856 bufp = rs->buf.data ();
3857 if (bufp[0] != '\0') /* q packet recognized */
3858 {
3859 while (*bufp++ == 'm') /* reply contains one or more TID */
3860 {
3861 do
3862 {
3863 ptid_t ptid = read_ptid (bufp, &bufp);
3864 context->items.emplace_back (ptid);
3865 }
3866 while (*bufp++ == ','); /* comma-separated list */
3867 putpkt ("qsThreadInfo");
3868 getpkt (&rs->buf, 0);
3869 bufp = rs->buf.data ();
3870 }
3871 return 1;
3872 }
3873 else
3874 {
3875 /* Packet not recognized. */
3876 rs->use_threadinfo_query = 0;
3877 }
3878 }
3879
3880 return 0;
3881 }
3882
3883 /* Return true if INF only has one non-exited thread. */
3884
3885 static bool
3886 has_single_non_exited_thread (inferior *inf)
3887 {
3888 int count = 0;
3889 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3890 if (++count > 1)
3891 break;
3892 return count == 1;
3893 }
3894
3895 /* Implement the to_update_thread_list function for the remote
3896 targets. */
3897
3898 void
3899 remote_target::update_thread_list ()
3900 {
3901 struct threads_listing_context context;
3902 int got_list = 0;
3903
3904 /* We have a few different mechanisms to fetch the thread list. Try
3905 them all, starting with the most preferred one first, falling
3906 back to older methods. */
3907 if (remote_get_threads_with_qxfer (&context)
3908 || remote_get_threads_with_qthreadinfo (&context)
3909 || remote_get_threads_with_ql (&context))
3910 {
3911 got_list = 1;
3912
3913 if (context.items.empty ()
3914 && remote_thread_always_alive (inferior_ptid))
3915 {
3916 /* Some targets don't really support threads, but still
3917 reply an (empty) thread list in response to the thread
3918 listing packets, instead of replying "packet not
3919 supported". Exit early so we don't delete the main
3920 thread. */
3921 return;
3922 }
3923
3924 /* CONTEXT now holds the current thread list on the remote
3925 target end. Delete GDB-side threads no longer found on the
3926 target. */
3927 for (thread_info *tp : all_threads_safe ())
3928 {
3929 if (tp->inf->process_target () != this)
3930 continue;
3931
3932 if (!context.contains_thread (tp->ptid))
3933 {
3934 /* Do not remove the thread if it is the last thread in
3935 the inferior. This situation happens when we have a
3936 pending exit process status to process. Otherwise we
3937 may end up with a seemingly live inferior (i.e. pid
3938 != 0) that has no threads. */
3939 if (has_single_non_exited_thread (tp->inf))
3940 continue;
3941
3942 /* Not found. */
3943 delete_thread (tp);
3944 }
3945 }
3946
3947 /* Remove any unreported fork child threads from CONTEXT so
3948 that we don't interfere with follow fork, which is where
3949 creation of such threads is handled. */
3950 remove_new_fork_children (&context);
3951
3952 /* And now add threads we don't know about yet to our list. */
3953 for (thread_item &item : context.items)
3954 {
3955 if (item.ptid != null_ptid)
3956 {
3957 /* In non-stop mode, we assume new found threads are
3958 executing until proven otherwise with a stop reply.
3959 In all-stop, we can only get here if all threads are
3960 stopped. */
3961 bool executing = target_is_non_stop_p ();
3962
3963 remote_notice_new_inferior (item.ptid, executing);
3964
3965 thread_info *tp = find_thread_ptid (this, item.ptid);
3966 remote_thread_info *info = get_remote_thread_info (tp);
3967 info->core = item.core;
3968 info->extra = std::move (item.extra);
3969 info->name = std::move (item.name);
3970 info->thread_handle = std::move (item.thread_handle);
3971 }
3972 }
3973 }
3974
3975 if (!got_list)
3976 {
3977 /* If no thread listing method is supported, then query whether
3978 each known thread is alive, one by one, with the T packet.
3979 If the target doesn't support threads at all, then this is a
3980 no-op. See remote_thread_alive. */
3981 prune_threads ();
3982 }
3983 }
3984
3985 /*
3986 * Collect a descriptive string about the given thread.
3987 * The target may say anything it wants to about the thread
3988 * (typically info about its blocked / runnable state, name, etc.).
3989 * This string will appear in the info threads display.
3990 *
3991 * Optional: targets are not required to implement this function.
3992 */
3993
3994 const char *
3995 remote_target::extra_thread_info (thread_info *tp)
3996 {
3997 struct remote_state *rs = get_remote_state ();
3998 int set;
3999 threadref id;
4000 struct gdb_ext_thread_info threadinfo;
4001
4002 if (rs->remote_desc == 0) /* paranoia */
4003 internal_error (__FILE__, __LINE__,
4004 _("remote_threads_extra_info"));
4005
4006 if (tp->ptid == magic_null_ptid
4007 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
4008 /* This is the main thread which was added by GDB. The remote
4009 server doesn't know about it. */
4010 return NULL;
4011
4012 std::string &extra = get_remote_thread_info (tp)->extra;
4013
4014 /* If already have cached info, use it. */
4015 if (!extra.empty ())
4016 return extra.c_str ();
4017
4018 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4019 {
4020 /* If we're using qXfer:threads:read, then the extra info is
4021 included in the XML. So if we didn't have anything cached,
4022 it's because there's really no extra info. */
4023 return NULL;
4024 }
4025
4026 if (rs->use_threadextra_query)
4027 {
4028 char *b = rs->buf.data ();
4029 char *endb = b + get_remote_packet_size ();
4030
4031 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4032 b += strlen (b);
4033 write_ptid (b, endb, tp->ptid);
4034
4035 putpkt (rs->buf);
4036 getpkt (&rs->buf, 0);
4037 if (rs->buf[0] != 0)
4038 {
4039 extra.resize (strlen (rs->buf.data ()) / 2);
4040 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4041 return extra.c_str ();
4042 }
4043 }
4044
4045 /* If the above query fails, fall back to the old method. */
4046 rs->use_threadextra_query = 0;
4047 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4048 | TAG_MOREDISPLAY | TAG_DISPLAY;
4049 int_to_threadref (&id, tp->ptid.lwp ());
4050 if (remote_get_threadinfo (&id, set, &threadinfo))
4051 if (threadinfo.active)
4052 {
4053 if (*threadinfo.shortname)
4054 string_appendf (extra, " Name: %s", threadinfo.shortname);
4055 if (*threadinfo.display)
4056 {
4057 if (!extra.empty ())
4058 extra += ',';
4059 string_appendf (extra, " State: %s", threadinfo.display);
4060 }
4061 if (*threadinfo.more_display)
4062 {
4063 if (!extra.empty ())
4064 extra += ',';
4065 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4066 }
4067 return extra.c_str ();
4068 }
4069 return NULL;
4070 }
4071 \f
4072
4073 bool
4074 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4075 struct static_tracepoint_marker *marker)
4076 {
4077 struct remote_state *rs = get_remote_state ();
4078 char *p = rs->buf.data ();
4079
4080 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4081 p += strlen (p);
4082 p += hexnumstr (p, addr);
4083 putpkt (rs->buf);
4084 getpkt (&rs->buf, 0);
4085 p = rs->buf.data ();
4086
4087 if (*p == 'E')
4088 error (_("Remote failure reply: %s"), p);
4089
4090 if (*p++ == 'm')
4091 {
4092 parse_static_tracepoint_marker_definition (p, NULL, marker);
4093 return true;
4094 }
4095
4096 return false;
4097 }
4098
4099 std::vector<static_tracepoint_marker>
4100 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4101 {
4102 struct remote_state *rs = get_remote_state ();
4103 std::vector<static_tracepoint_marker> markers;
4104 const char *p;
4105 static_tracepoint_marker marker;
4106
4107 /* Ask for a first packet of static tracepoint marker
4108 definition. */
4109 putpkt ("qTfSTM");
4110 getpkt (&rs->buf, 0);
4111 p = rs->buf.data ();
4112 if (*p == 'E')
4113 error (_("Remote failure reply: %s"), p);
4114
4115 while (*p++ == 'm')
4116 {
4117 do
4118 {
4119 parse_static_tracepoint_marker_definition (p, &p, &marker);
4120
4121 if (strid == NULL || marker.str_id == strid)
4122 markers.push_back (std::move (marker));
4123 }
4124 while (*p++ == ','); /* comma-separated list */
4125 /* Ask for another packet of static tracepoint definition. */
4126 putpkt ("qTsSTM");
4127 getpkt (&rs->buf, 0);
4128 p = rs->buf.data ();
4129 }
4130
4131 return markers;
4132 }
4133
4134 \f
4135 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4136
4137 ptid_t
4138 remote_target::get_ada_task_ptid (long lwp, long thread)
4139 {
4140 return ptid_t (inferior_ptid.pid (), lwp, 0);
4141 }
4142 \f
4143
4144 /* Restart the remote side; this is an extended protocol operation. */
4145
4146 void
4147 remote_target::extended_remote_restart ()
4148 {
4149 struct remote_state *rs = get_remote_state ();
4150
4151 /* Send the restart command; for reasons I don't understand the
4152 remote side really expects a number after the "R". */
4153 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4154 putpkt (rs->buf);
4155
4156 remote_fileio_reset ();
4157 }
4158 \f
4159 /* Clean up connection to a remote debugger. */
4160
4161 void
4162 remote_target::close ()
4163 {
4164 /* Make sure we leave stdin registered in the event loop. */
4165 terminal_ours ();
4166
4167 trace_reset_local_state ();
4168
4169 delete this;
4170 }
4171
4172 remote_target::~remote_target ()
4173 {
4174 struct remote_state *rs = get_remote_state ();
4175
4176 /* Check for NULL because we may get here with a partially
4177 constructed target/connection. */
4178 if (rs->remote_desc == nullptr)
4179 return;
4180
4181 serial_close (rs->remote_desc);
4182
4183 /* We are destroying the remote target, so we should discard
4184 everything of this target. */
4185 discard_pending_stop_replies_in_queue ();
4186
4187 if (rs->remote_async_inferior_event_token)
4188 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4189
4190 delete rs->notif_state;
4191 }
4192
4193 /* Query the remote side for the text, data and bss offsets. */
4194
4195 void
4196 remote_target::get_offsets ()
4197 {
4198 struct remote_state *rs = get_remote_state ();
4199 char *buf;
4200 char *ptr;
4201 int lose, num_segments = 0, do_sections, do_segments;
4202 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4203
4204 if (current_program_space->symfile_object_file == NULL)
4205 return;
4206
4207 putpkt ("qOffsets");
4208 getpkt (&rs->buf, 0);
4209 buf = rs->buf.data ();
4210
4211 if (buf[0] == '\000')
4212 return; /* Return silently. Stub doesn't support
4213 this command. */
4214 if (buf[0] == 'E')
4215 {
4216 warning (_("Remote failure reply: %s"), buf);
4217 return;
4218 }
4219
4220 /* Pick up each field in turn. This used to be done with scanf, but
4221 scanf will make trouble if CORE_ADDR size doesn't match
4222 conversion directives correctly. The following code will work
4223 with any size of CORE_ADDR. */
4224 text_addr = data_addr = bss_addr = 0;
4225 ptr = buf;
4226 lose = 0;
4227
4228 if (startswith (ptr, "Text="))
4229 {
4230 ptr += 5;
4231 /* Don't use strtol, could lose on big values. */
4232 while (*ptr && *ptr != ';')
4233 text_addr = (text_addr << 4) + fromhex (*ptr++);
4234
4235 if (startswith (ptr, ";Data="))
4236 {
4237 ptr += 6;
4238 while (*ptr && *ptr != ';')
4239 data_addr = (data_addr << 4) + fromhex (*ptr++);
4240 }
4241 else
4242 lose = 1;
4243
4244 if (!lose && startswith (ptr, ";Bss="))
4245 {
4246 ptr += 5;
4247 while (*ptr && *ptr != ';')
4248 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4249
4250 if (bss_addr != data_addr)
4251 warning (_("Target reported unsupported offsets: %s"), buf);
4252 }
4253 else
4254 lose = 1;
4255 }
4256 else if (startswith (ptr, "TextSeg="))
4257 {
4258 ptr += 8;
4259 /* Don't use strtol, could lose on big values. */
4260 while (*ptr && *ptr != ';')
4261 text_addr = (text_addr << 4) + fromhex (*ptr++);
4262 num_segments = 1;
4263
4264 if (startswith (ptr, ";DataSeg="))
4265 {
4266 ptr += 9;
4267 while (*ptr && *ptr != ';')
4268 data_addr = (data_addr << 4) + fromhex (*ptr++);
4269 num_segments++;
4270 }
4271 }
4272 else
4273 lose = 1;
4274
4275 if (lose)
4276 error (_("Malformed response to offset query, %s"), buf);
4277 else if (*ptr != '\0')
4278 warning (_("Target reported unsupported offsets: %s"), buf);
4279
4280 objfile *objf = current_program_space->symfile_object_file;
4281 section_offsets offs = objf->section_offsets;
4282
4283 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4284 do_segments = (data != NULL);
4285 do_sections = num_segments == 0;
4286
4287 if (num_segments > 0)
4288 {
4289 segments[0] = text_addr;
4290 segments[1] = data_addr;
4291 }
4292 /* If we have two segments, we can still try to relocate everything
4293 by assuming that the .text and .data offsets apply to the whole
4294 text and data segments. Convert the offsets given in the packet
4295 to base addresses for symfile_map_offsets_to_segments. */
4296 else if (data != nullptr && data->segments.size () == 2)
4297 {
4298 segments[0] = data->segments[0].base + text_addr;
4299 segments[1] = data->segments[1].base + data_addr;
4300 num_segments = 2;
4301 }
4302 /* If the object file has only one segment, assume that it is text
4303 rather than data; main programs with no writable data are rare,
4304 but programs with no code are useless. Of course the code might
4305 have ended up in the data segment... to detect that we would need
4306 the permissions here. */
4307 else if (data && data->segments.size () == 1)
4308 {
4309 segments[0] = data->segments[0].base + text_addr;
4310 num_segments = 1;
4311 }
4312 /* There's no way to relocate by segment. */
4313 else
4314 do_segments = 0;
4315
4316 if (do_segments)
4317 {
4318 int ret = symfile_map_offsets_to_segments (objf->obfd,
4319 data.get (), offs,
4320 num_segments, segments);
4321
4322 if (ret == 0 && !do_sections)
4323 error (_("Can not handle qOffsets TextSeg "
4324 "response with this symbol file"));
4325
4326 if (ret > 0)
4327 do_sections = 0;
4328 }
4329
4330 if (do_sections)
4331 {
4332 offs[SECT_OFF_TEXT (objf)] = text_addr;
4333
4334 /* This is a temporary kludge to force data and bss to use the
4335 same offsets because that's what nlmconv does now. The real
4336 solution requires changes to the stub and remote.c that I
4337 don't have time to do right now. */
4338
4339 offs[SECT_OFF_DATA (objf)] = data_addr;
4340 offs[SECT_OFF_BSS (objf)] = data_addr;
4341 }
4342
4343 objfile_relocate (objf, offs);
4344 }
4345
4346 /* Send interrupt_sequence to remote target. */
4347
4348 void
4349 remote_target::send_interrupt_sequence ()
4350 {
4351 struct remote_state *rs = get_remote_state ();
4352
4353 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4354 remote_serial_write ("\x03", 1);
4355 else if (interrupt_sequence_mode == interrupt_sequence_break)
4356 serial_send_break (rs->remote_desc);
4357 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4358 {
4359 serial_send_break (rs->remote_desc);
4360 remote_serial_write ("g", 1);
4361 }
4362 else
4363 internal_error (__FILE__, __LINE__,
4364 _("Invalid value for interrupt_sequence_mode: %s."),
4365 interrupt_sequence_mode);
4366 }
4367
4368
4369 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4370 and extract the PTID. Returns NULL_PTID if not found. */
4371
4372 static ptid_t
4373 stop_reply_extract_thread (const char *stop_reply)
4374 {
4375 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4376 {
4377 const char *p;
4378
4379 /* Txx r:val ; r:val (...) */
4380 p = &stop_reply[3];
4381
4382 /* Look for "register" named "thread". */
4383 while (*p != '\0')
4384 {
4385 const char *p1;
4386
4387 p1 = strchr (p, ':');
4388 if (p1 == NULL)
4389 return null_ptid;
4390
4391 if (strncmp (p, "thread", p1 - p) == 0)
4392 return read_ptid (++p1, &p);
4393
4394 p1 = strchr (p, ';');
4395 if (p1 == NULL)
4396 return null_ptid;
4397 p1++;
4398
4399 p = p1;
4400 }
4401 }
4402
4403 return null_ptid;
4404 }
4405
4406 /* Determine the remote side's current thread. If we have a stop
4407 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4408 "thread" register we can extract the current thread from. If not,
4409 ask the remote which is the current thread with qC. The former
4410 method avoids a roundtrip. */
4411
4412 ptid_t
4413 remote_target::get_current_thread (const char *wait_status)
4414 {
4415 ptid_t ptid = null_ptid;
4416
4417 /* Note we don't use remote_parse_stop_reply as that makes use of
4418 the target architecture, which we haven't yet fully determined at
4419 this point. */
4420 if (wait_status != NULL)
4421 ptid = stop_reply_extract_thread (wait_status);
4422 if (ptid == null_ptid)
4423 ptid = remote_current_thread (inferior_ptid);
4424
4425 return ptid;
4426 }
4427
4428 /* Query the remote target for which is the current thread/process,
4429 add it to our tables, and update INFERIOR_PTID. The caller is
4430 responsible for setting the state such that the remote end is ready
4431 to return the current thread.
4432
4433 This function is called after handling the '?' or 'vRun' packets,
4434 whose response is a stop reply from which we can also try
4435 extracting the thread. If the target doesn't support the explicit
4436 qC query, we infer the current thread from that stop reply, passed
4437 in in WAIT_STATUS, which may be NULL.
4438
4439 The function returns pointer to the main thread of the inferior. */
4440
4441 thread_info *
4442 remote_target::add_current_inferior_and_thread (const char *wait_status)
4443 {
4444 struct remote_state *rs = get_remote_state ();
4445 bool fake_pid_p = false;
4446
4447 switch_to_no_thread ();
4448
4449 /* Now, if we have thread information, update the current thread's
4450 ptid. */
4451 ptid_t curr_ptid = get_current_thread (wait_status);
4452
4453 if (curr_ptid != null_ptid)
4454 {
4455 if (!remote_multi_process_p (rs))
4456 fake_pid_p = true;
4457 }
4458 else
4459 {
4460 /* Without this, some commands which require an active target
4461 (such as kill) won't work. This variable serves (at least)
4462 double duty as both the pid of the target process (if it has
4463 such), and as a flag indicating that a target is active. */
4464 curr_ptid = magic_null_ptid;
4465 fake_pid_p = true;
4466 }
4467
4468 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4469
4470 /* Add the main thread and switch to it. Don't try reading
4471 registers yet, since we haven't fetched the target description
4472 yet. */
4473 thread_info *tp = add_thread_silent (this, curr_ptid);
4474 switch_to_thread_no_regs (tp);
4475
4476 return tp;
4477 }
4478
4479 /* Print info about a thread that was found already stopped on
4480 connection. */
4481
4482 static void
4483 print_one_stopped_thread (struct thread_info *thread)
4484 {
4485 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4486
4487 switch_to_thread (thread);
4488 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4489 set_current_sal_from_frame (get_current_frame ());
4490
4491 thread->suspend.waitstatus_pending_p = 0;
4492
4493 if (ws->kind == TARGET_WAITKIND_STOPPED)
4494 {
4495 enum gdb_signal sig = ws->value.sig;
4496
4497 if (signal_print_state (sig))
4498 gdb::observers::signal_received.notify (sig);
4499 }
4500 gdb::observers::normal_stop.notify (NULL, 1);
4501 }
4502
4503 /* Process all initial stop replies the remote side sent in response
4504 to the ? packet. These indicate threads that were already stopped
4505 on initial connection. We mark these threads as stopped and print
4506 their current frame before giving the user the prompt. */
4507
4508 void
4509 remote_target::process_initial_stop_replies (int from_tty)
4510 {
4511 int pending_stop_replies = stop_reply_queue_length ();
4512 struct thread_info *selected = NULL;
4513 struct thread_info *lowest_stopped = NULL;
4514 struct thread_info *first = NULL;
4515
4516 /* Consume the initial pending events. */
4517 while (pending_stop_replies-- > 0)
4518 {
4519 ptid_t waiton_ptid = minus_one_ptid;
4520 ptid_t event_ptid;
4521 struct target_waitstatus ws;
4522 int ignore_event = 0;
4523
4524 memset (&ws, 0, sizeof (ws));
4525 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4526 if (remote_debug)
4527 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4528
4529 switch (ws.kind)
4530 {
4531 case TARGET_WAITKIND_IGNORE:
4532 case TARGET_WAITKIND_NO_RESUMED:
4533 case TARGET_WAITKIND_SIGNALLED:
4534 case TARGET_WAITKIND_EXITED:
4535 /* We shouldn't see these, but if we do, just ignore. */
4536 remote_debug_printf ("event ignored");
4537 ignore_event = 1;
4538 break;
4539
4540 case TARGET_WAITKIND_EXECD:
4541 xfree (ws.value.execd_pathname);
4542 break;
4543 default:
4544 break;
4545 }
4546
4547 if (ignore_event)
4548 continue;
4549
4550 thread_info *evthread = find_thread_ptid (this, event_ptid);
4551
4552 if (ws.kind == TARGET_WAITKIND_STOPPED)
4553 {
4554 enum gdb_signal sig = ws.value.sig;
4555
4556 /* Stubs traditionally report SIGTRAP as initial signal,
4557 instead of signal 0. Suppress it. */
4558 if (sig == GDB_SIGNAL_TRAP)
4559 sig = GDB_SIGNAL_0;
4560 evthread->suspend.stop_signal = sig;
4561 ws.value.sig = sig;
4562 }
4563
4564 evthread->suspend.waitstatus = ws;
4565
4566 if (ws.kind != TARGET_WAITKIND_STOPPED
4567 || ws.value.sig != GDB_SIGNAL_0)
4568 evthread->suspend.waitstatus_pending_p = 1;
4569
4570 set_executing (this, event_ptid, false);
4571 set_running (this, event_ptid, false);
4572 get_remote_thread_info (evthread)->set_not_resumed ();
4573 }
4574
4575 /* "Notice" the new inferiors before anything related to
4576 registers/memory. */
4577 for (inferior *inf : all_non_exited_inferiors (this))
4578 {
4579 inf->needs_setup = 1;
4580
4581 if (non_stop)
4582 {
4583 thread_info *thread = any_live_thread_of_inferior (inf);
4584 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4585 from_tty);
4586 }
4587 }
4588
4589 /* If all-stop on top of non-stop, pause all threads. Note this
4590 records the threads' stop pc, so must be done after "noticing"
4591 the inferiors. */
4592 if (!non_stop)
4593 {
4594 stop_all_threads ();
4595
4596 /* If all threads of an inferior were already stopped, we
4597 haven't setup the inferior yet. */
4598 for (inferior *inf : all_non_exited_inferiors (this))
4599 {
4600 if (inf->needs_setup)
4601 {
4602 thread_info *thread = any_live_thread_of_inferior (inf);
4603 switch_to_thread_no_regs (thread);
4604 setup_inferior (0);
4605 }
4606 }
4607 }
4608
4609 /* Now go over all threads that are stopped, and print their current
4610 frame. If all-stop, then if there's a signalled thread, pick
4611 that as current. */
4612 for (thread_info *thread : all_non_exited_threads (this))
4613 {
4614 if (first == NULL)
4615 first = thread;
4616
4617 if (!non_stop)
4618 thread->set_running (false);
4619 else if (thread->state != THREAD_STOPPED)
4620 continue;
4621
4622 if (selected == NULL
4623 && thread->suspend.waitstatus_pending_p)
4624 selected = thread;
4625
4626 if (lowest_stopped == NULL
4627 || thread->inf->num < lowest_stopped->inf->num
4628 || thread->per_inf_num < lowest_stopped->per_inf_num)
4629 lowest_stopped = thread;
4630
4631 if (non_stop)
4632 print_one_stopped_thread (thread);
4633 }
4634
4635 /* In all-stop, we only print the status of one thread, and leave
4636 others with their status pending. */
4637 if (!non_stop)
4638 {
4639 thread_info *thread = selected;
4640 if (thread == NULL)
4641 thread = lowest_stopped;
4642 if (thread == NULL)
4643 thread = first;
4644
4645 print_one_stopped_thread (thread);
4646 }
4647
4648 /* For "info program". */
4649 thread_info *thread = inferior_thread ();
4650 if (thread->state == THREAD_STOPPED)
4651 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4652 }
4653
4654 /* Start the remote connection and sync state. */
4655
4656 void
4657 remote_target::start_remote (int from_tty, int extended_p)
4658 {
4659 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4660
4661 struct remote_state *rs = get_remote_state ();
4662 struct packet_config *noack_config;
4663
4664 /* Signal other parts that we're going through the initial setup,
4665 and so things may not be stable yet. E.g., we don't try to
4666 install tracepoints until we've relocated symbols. Also, a
4667 Ctrl-C before we're connected and synced up can't interrupt the
4668 target. Instead, it offers to drop the (potentially wedged)
4669 connection. */
4670 rs->starting_up = 1;
4671
4672 QUIT;
4673
4674 if (interrupt_on_connect)
4675 send_interrupt_sequence ();
4676
4677 /* Ack any packet which the remote side has already sent. */
4678 remote_serial_write ("+", 1);
4679
4680 /* The first packet we send to the target is the optional "supported
4681 packets" request. If the target can answer this, it will tell us
4682 which later probes to skip. */
4683 remote_query_supported ();
4684
4685 /* If the stub wants to get a QAllow, compose one and send it. */
4686 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4687 set_permissions ();
4688
4689 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4690 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4691 as a reply to known packet. For packet "vFile:setfs:" it is an
4692 invalid reply and GDB would return error in
4693 remote_hostio_set_filesystem, making remote files access impossible.
4694 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4695 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4696 {
4697 const char v_mustreplyempty[] = "vMustReplyEmpty";
4698
4699 putpkt (v_mustreplyempty);
4700 getpkt (&rs->buf, 0);
4701 if (strcmp (rs->buf.data (), "OK") == 0)
4702 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4703 else if (strcmp (rs->buf.data (), "") != 0)
4704 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4705 rs->buf.data ());
4706 }
4707
4708 /* Next, we possibly activate noack mode.
4709
4710 If the QStartNoAckMode packet configuration is set to AUTO,
4711 enable noack mode if the stub reported a wish for it with
4712 qSupported.
4713
4714 If set to TRUE, then enable noack mode even if the stub didn't
4715 report it in qSupported. If the stub doesn't reply OK, the
4716 session ends with an error.
4717
4718 If FALSE, then don't activate noack mode, regardless of what the
4719 stub claimed should be the default with qSupported. */
4720
4721 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4722 if (packet_config_support (noack_config) != PACKET_DISABLE)
4723 {
4724 putpkt ("QStartNoAckMode");
4725 getpkt (&rs->buf, 0);
4726 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4727 rs->noack_mode = 1;
4728 }
4729
4730 if (extended_p)
4731 {
4732 /* Tell the remote that we are using the extended protocol. */
4733 putpkt ("!");
4734 getpkt (&rs->buf, 0);
4735 }
4736
4737 /* Let the target know which signals it is allowed to pass down to
4738 the program. */
4739 update_signals_program_target ();
4740
4741 /* Next, if the target can specify a description, read it. We do
4742 this before anything involving memory or registers. */
4743 target_find_description ();
4744
4745 /* Next, now that we know something about the target, update the
4746 address spaces in the program spaces. */
4747 update_address_spaces ();
4748
4749 /* On OSs where the list of libraries is global to all
4750 processes, we fetch them early. */
4751 if (gdbarch_has_global_solist (target_gdbarch ()))
4752 solib_add (NULL, from_tty, auto_solib_add);
4753
4754 if (target_is_non_stop_p ())
4755 {
4756 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4757 error (_("Non-stop mode requested, but remote "
4758 "does not support non-stop"));
4759
4760 putpkt ("QNonStop:1");
4761 getpkt (&rs->buf, 0);
4762
4763 if (strcmp (rs->buf.data (), "OK") != 0)
4764 error (_("Remote refused setting non-stop mode with: %s"),
4765 rs->buf.data ());
4766
4767 /* Find about threads and processes the stub is already
4768 controlling. We default to adding them in the running state.
4769 The '?' query below will then tell us about which threads are
4770 stopped. */
4771 this->update_thread_list ();
4772 }
4773 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4774 {
4775 /* Don't assume that the stub can operate in all-stop mode.
4776 Request it explicitly. */
4777 putpkt ("QNonStop:0");
4778 getpkt (&rs->buf, 0);
4779
4780 if (strcmp (rs->buf.data (), "OK") != 0)
4781 error (_("Remote refused setting all-stop mode with: %s"),
4782 rs->buf.data ());
4783 }
4784
4785 /* Upload TSVs regardless of whether the target is running or not. The
4786 remote stub, such as GDBserver, may have some predefined or builtin
4787 TSVs, even if the target is not running. */
4788 if (get_trace_status (current_trace_status ()) != -1)
4789 {
4790 struct uploaded_tsv *uploaded_tsvs = NULL;
4791
4792 upload_trace_state_variables (&uploaded_tsvs);
4793 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4794 }
4795
4796 /* Check whether the target is running now. */
4797 putpkt ("?");
4798 getpkt (&rs->buf, 0);
4799
4800 if (!target_is_non_stop_p ())
4801 {
4802 char *wait_status = NULL;
4803
4804 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4805 {
4806 if (!extended_p)
4807 error (_("The target is not running (try extended-remote?)"));
4808
4809 /* We're connected, but not running. Drop out before we
4810 call start_remote. */
4811 rs->starting_up = 0;
4812 return;
4813 }
4814 else
4815 {
4816 /* Save the reply for later. */
4817 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4818 strcpy (wait_status, rs->buf.data ());
4819 }
4820
4821 /* Fetch thread list. */
4822 target_update_thread_list ();
4823
4824 /* Let the stub know that we want it to return the thread. */
4825 set_continue_thread (minus_one_ptid);
4826
4827 if (thread_count (this) == 0)
4828 {
4829 /* Target has no concept of threads at all. GDB treats
4830 non-threaded target as single-threaded; add a main
4831 thread. */
4832 thread_info *tp = add_current_inferior_and_thread (wait_status);
4833 get_remote_thread_info (tp)->set_resumed ();
4834 }
4835 else
4836 {
4837 /* We have thread information; select the thread the target
4838 says should be current. If we're reconnecting to a
4839 multi-threaded program, this will ideally be the thread
4840 that last reported an event before GDB disconnected. */
4841 ptid_t curr_thread = get_current_thread (wait_status);
4842 if (curr_thread == null_ptid)
4843 {
4844 /* Odd... The target was able to list threads, but not
4845 tell us which thread was current (no "thread"
4846 register in T stop reply?). Just pick the first
4847 thread in the thread list then. */
4848
4849 remote_debug_printf ("warning: couldn't determine remote "
4850 "current thread; picking first in list.");
4851
4852 for (thread_info *tp : all_non_exited_threads (this,
4853 minus_one_ptid))
4854 {
4855 switch_to_thread (tp);
4856 break;
4857 }
4858 }
4859 else
4860 switch_to_thread (find_thread_ptid (this, curr_thread));
4861 }
4862
4863 /* init_wait_for_inferior should be called before get_offsets in order
4864 to manage `inserted' flag in bp loc in a correct state.
4865 breakpoint_init_inferior, called from init_wait_for_inferior, set
4866 `inserted' flag to 0, while before breakpoint_re_set, called from
4867 start_remote, set `inserted' flag to 1. In the initialization of
4868 inferior, breakpoint_init_inferior should be called first, and then
4869 breakpoint_re_set can be called. If this order is broken, state of
4870 `inserted' flag is wrong, and cause some problems on breakpoint
4871 manipulation. */
4872 init_wait_for_inferior ();
4873
4874 get_offsets (); /* Get text, data & bss offsets. */
4875
4876 /* If we could not find a description using qXfer, and we know
4877 how to do it some other way, try again. This is not
4878 supported for non-stop; it could be, but it is tricky if
4879 there are no stopped threads when we connect. */
4880 if (remote_read_description_p (this)
4881 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4882 {
4883 target_clear_description ();
4884 target_find_description ();
4885 }
4886
4887 /* Use the previously fetched status. */
4888 gdb_assert (wait_status != NULL);
4889 strcpy (rs->buf.data (), wait_status);
4890 rs->cached_wait_status = 1;
4891
4892 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4893 }
4894 else
4895 {
4896 /* Clear WFI global state. Do this before finding about new
4897 threads and inferiors, and setting the current inferior.
4898 Otherwise we would clear the proceed status of the current
4899 inferior when we want its stop_soon state to be preserved
4900 (see notice_new_inferior). */
4901 init_wait_for_inferior ();
4902
4903 /* In non-stop, we will either get an "OK", meaning that there
4904 are no stopped threads at this time; or, a regular stop
4905 reply. In the latter case, there may be more than one thread
4906 stopped --- we pull them all out using the vStopped
4907 mechanism. */
4908 if (strcmp (rs->buf.data (), "OK") != 0)
4909 {
4910 struct notif_client *notif = &notif_client_stop;
4911
4912 /* remote_notif_get_pending_replies acks this one, and gets
4913 the rest out. */
4914 rs->notif_state->pending_event[notif_client_stop.id]
4915 = remote_notif_parse (this, notif, rs->buf.data ());
4916 remote_notif_get_pending_events (notif);
4917 }
4918
4919 if (thread_count (this) == 0)
4920 {
4921 if (!extended_p)
4922 error (_("The target is not running (try extended-remote?)"));
4923
4924 /* We're connected, but not running. Drop out before we
4925 call start_remote. */
4926 rs->starting_up = 0;
4927 return;
4928 }
4929
4930 /* Report all signals during attach/startup. */
4931 pass_signals ({});
4932
4933 /* If there are already stopped threads, mark them stopped and
4934 report their stops before giving the prompt to the user. */
4935 process_initial_stop_replies (from_tty);
4936
4937 if (target_can_async_p ())
4938 target_async (1);
4939 }
4940
4941 /* If we connected to a live target, do some additional setup. */
4942 if (target_has_execution ())
4943 {
4944 /* No use without a symbol-file. */
4945 if (current_program_space->symfile_object_file)
4946 remote_check_symbols ();
4947 }
4948
4949 /* Possibly the target has been engaged in a trace run started
4950 previously; find out where things are at. */
4951 if (get_trace_status (current_trace_status ()) != -1)
4952 {
4953 struct uploaded_tp *uploaded_tps = NULL;
4954
4955 if (current_trace_status ()->running)
4956 printf_filtered (_("Trace is already running on the target.\n"));
4957
4958 upload_tracepoints (&uploaded_tps);
4959
4960 merge_uploaded_tracepoints (&uploaded_tps);
4961 }
4962
4963 /* Possibly the target has been engaged in a btrace record started
4964 previously; find out where things are at. */
4965 remote_btrace_maybe_reopen ();
4966
4967 /* The thread and inferior lists are now synchronized with the
4968 target, our symbols have been relocated, and we're merged the
4969 target's tracepoints with ours. We're done with basic start
4970 up. */
4971 rs->starting_up = 0;
4972
4973 /* Maybe breakpoints are global and need to be inserted now. */
4974 if (breakpoints_should_be_inserted_now ())
4975 insert_breakpoints ();
4976 }
4977
4978 const char *
4979 remote_target::connection_string ()
4980 {
4981 remote_state *rs = get_remote_state ();
4982
4983 if (rs->remote_desc->name != NULL)
4984 return rs->remote_desc->name;
4985 else
4986 return NULL;
4987 }
4988
4989 /* Open a connection to a remote debugger.
4990 NAME is the filename used for communication. */
4991
4992 void
4993 remote_target::open (const char *name, int from_tty)
4994 {
4995 open_1 (name, from_tty, 0);
4996 }
4997
4998 /* Open a connection to a remote debugger using the extended
4999 remote gdb protocol. NAME is the filename used for communication. */
5000
5001 void
5002 extended_remote_target::open (const char *name, int from_tty)
5003 {
5004 open_1 (name, from_tty, 1 /*extended_p */);
5005 }
5006
5007 /* Reset all packets back to "unknown support". Called when opening a
5008 new connection to a remote target. */
5009
5010 static void
5011 reset_all_packet_configs_support (void)
5012 {
5013 int i;
5014
5015 for (i = 0; i < PACKET_MAX; i++)
5016 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5017 }
5018
5019 /* Initialize all packet configs. */
5020
5021 static void
5022 init_all_packet_configs (void)
5023 {
5024 int i;
5025
5026 for (i = 0; i < PACKET_MAX; i++)
5027 {
5028 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5029 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5030 }
5031 }
5032
5033 /* Symbol look-up. */
5034
5035 void
5036 remote_target::remote_check_symbols ()
5037 {
5038 char *tmp;
5039 int end;
5040
5041 /* The remote side has no concept of inferiors that aren't running
5042 yet, it only knows about running processes. If we're connected
5043 but our current inferior is not running, we should not invite the
5044 remote target to request symbol lookups related to its
5045 (unrelated) current process. */
5046 if (!target_has_execution ())
5047 return;
5048
5049 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5050 return;
5051
5052 /* Make sure the remote is pointing at the right process. Note
5053 there's no way to select "no process". */
5054 set_general_process ();
5055
5056 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5057 because we need both at the same time. */
5058 gdb::char_vector msg (get_remote_packet_size ());
5059 gdb::char_vector reply (get_remote_packet_size ());
5060
5061 /* Invite target to request symbol lookups. */
5062
5063 putpkt ("qSymbol::");
5064 getpkt (&reply, 0);
5065 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5066
5067 while (startswith (reply.data (), "qSymbol:"))
5068 {
5069 struct bound_minimal_symbol sym;
5070
5071 tmp = &reply[8];
5072 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5073 strlen (tmp) / 2);
5074 msg[end] = '\0';
5075 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5076 if (sym.minsym == NULL)
5077 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5078 &reply[8]);
5079 else
5080 {
5081 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5082 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5083
5084 /* If this is a function address, return the start of code
5085 instead of any data function descriptor. */
5086 sym_addr = gdbarch_convert_from_func_ptr_addr
5087 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
5088
5089 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5090 phex_nz (sym_addr, addr_size), &reply[8]);
5091 }
5092
5093 putpkt (msg.data ());
5094 getpkt (&reply, 0);
5095 }
5096 }
5097
5098 static struct serial *
5099 remote_serial_open (const char *name)
5100 {
5101 static int udp_warning = 0;
5102
5103 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5104 of in ser-tcp.c, because it is the remote protocol assuming that the
5105 serial connection is reliable and not the serial connection promising
5106 to be. */
5107 if (!udp_warning && startswith (name, "udp:"))
5108 {
5109 warning (_("The remote protocol may be unreliable over UDP.\n"
5110 "Some events may be lost, rendering further debugging "
5111 "impossible."));
5112 udp_warning = 1;
5113 }
5114
5115 return serial_open (name);
5116 }
5117
5118 /* Inform the target of our permission settings. The permission flags
5119 work without this, but if the target knows the settings, it can do
5120 a couple things. First, it can add its own check, to catch cases
5121 that somehow manage to get by the permissions checks in target
5122 methods. Second, if the target is wired to disallow particular
5123 settings (for instance, a system in the field that is not set up to
5124 be able to stop at a breakpoint), it can object to any unavailable
5125 permissions. */
5126
5127 void
5128 remote_target::set_permissions ()
5129 {
5130 struct remote_state *rs = get_remote_state ();
5131
5132 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5133 "WriteReg:%x;WriteMem:%x;"
5134 "InsertBreak:%x;InsertTrace:%x;"
5135 "InsertFastTrace:%x;Stop:%x",
5136 may_write_registers, may_write_memory,
5137 may_insert_breakpoints, may_insert_tracepoints,
5138 may_insert_fast_tracepoints, may_stop);
5139 putpkt (rs->buf);
5140 getpkt (&rs->buf, 0);
5141
5142 /* If the target didn't like the packet, warn the user. Do not try
5143 to undo the user's settings, that would just be maddening. */
5144 if (strcmp (rs->buf.data (), "OK") != 0)
5145 warning (_("Remote refused setting permissions with: %s"),
5146 rs->buf.data ());
5147 }
5148
5149 /* This type describes each known response to the qSupported
5150 packet. */
5151 struct protocol_feature
5152 {
5153 /* The name of this protocol feature. */
5154 const char *name;
5155
5156 /* The default for this protocol feature. */
5157 enum packet_support default_support;
5158
5159 /* The function to call when this feature is reported, or after
5160 qSupported processing if the feature is not supported.
5161 The first argument points to this structure. The second
5162 argument indicates whether the packet requested support be
5163 enabled, disabled, or probed (or the default, if this function
5164 is being called at the end of processing and this feature was
5165 not reported). The third argument may be NULL; if not NULL, it
5166 is a NUL-terminated string taken from the packet following
5167 this feature's name and an equals sign. */
5168 void (*func) (remote_target *remote, const struct protocol_feature *,
5169 enum packet_support, const char *);
5170
5171 /* The corresponding packet for this feature. Only used if
5172 FUNC is remote_supported_packet. */
5173 int packet;
5174 };
5175
5176 static void
5177 remote_supported_packet (remote_target *remote,
5178 const struct protocol_feature *feature,
5179 enum packet_support support,
5180 const char *argument)
5181 {
5182 if (argument)
5183 {
5184 warning (_("Remote qSupported response supplied an unexpected value for"
5185 " \"%s\"."), feature->name);
5186 return;
5187 }
5188
5189 remote_protocol_packets[feature->packet].support = support;
5190 }
5191
5192 void
5193 remote_target::remote_packet_size (const protocol_feature *feature,
5194 enum packet_support support, const char *value)
5195 {
5196 struct remote_state *rs = get_remote_state ();
5197
5198 int packet_size;
5199 char *value_end;
5200
5201 if (support != PACKET_ENABLE)
5202 return;
5203
5204 if (value == NULL || *value == '\0')
5205 {
5206 warning (_("Remote target reported \"%s\" without a size."),
5207 feature->name);
5208 return;
5209 }
5210
5211 errno = 0;
5212 packet_size = strtol (value, &value_end, 16);
5213 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5214 {
5215 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5216 feature->name, value);
5217 return;
5218 }
5219
5220 /* Record the new maximum packet size. */
5221 rs->explicit_packet_size = packet_size;
5222 }
5223
5224 static void
5225 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5226 enum packet_support support, const char *value)
5227 {
5228 remote->remote_packet_size (feature, support, value);
5229 }
5230
5231 static const struct protocol_feature remote_protocol_features[] = {
5232 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5233 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5234 PACKET_qXfer_auxv },
5235 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5236 PACKET_qXfer_exec_file },
5237 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5238 PACKET_qXfer_features },
5239 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5240 PACKET_qXfer_libraries },
5241 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5242 PACKET_qXfer_libraries_svr4 },
5243 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5244 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5245 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5246 PACKET_qXfer_memory_map },
5247 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5248 PACKET_qXfer_osdata },
5249 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5250 PACKET_qXfer_threads },
5251 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5252 PACKET_qXfer_traceframe_info },
5253 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5254 PACKET_QPassSignals },
5255 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5256 PACKET_QCatchSyscalls },
5257 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5258 PACKET_QProgramSignals },
5259 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5260 PACKET_QSetWorkingDir },
5261 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5262 PACKET_QStartupWithShell },
5263 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5264 PACKET_QEnvironmentHexEncoded },
5265 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5266 PACKET_QEnvironmentReset },
5267 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5268 PACKET_QEnvironmentUnset },
5269 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5270 PACKET_QStartNoAckMode },
5271 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5272 PACKET_multiprocess_feature },
5273 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5274 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5275 PACKET_qXfer_siginfo_read },
5276 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5277 PACKET_qXfer_siginfo_write },
5278 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5279 PACKET_ConditionalTracepoints },
5280 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5281 PACKET_ConditionalBreakpoints },
5282 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5283 PACKET_BreakpointCommands },
5284 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5285 PACKET_FastTracepoints },
5286 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5287 PACKET_StaticTracepoints },
5288 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5289 PACKET_InstallInTrace},
5290 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5291 PACKET_DisconnectedTracing_feature },
5292 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5293 PACKET_bc },
5294 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5295 PACKET_bs },
5296 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5297 PACKET_TracepointSource },
5298 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5299 PACKET_QAllow },
5300 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5301 PACKET_EnableDisableTracepoints_feature },
5302 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5303 PACKET_qXfer_fdpic },
5304 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5305 PACKET_qXfer_uib },
5306 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5307 PACKET_QDisableRandomization },
5308 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5309 { "QTBuffer:size", PACKET_DISABLE,
5310 remote_supported_packet, PACKET_QTBuffer_size},
5311 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5312 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5313 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5314 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5315 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5316 PACKET_qXfer_btrace },
5317 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5318 PACKET_qXfer_btrace_conf },
5319 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5320 PACKET_Qbtrace_conf_bts_size },
5321 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5322 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5323 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5324 PACKET_fork_event_feature },
5325 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5326 PACKET_vfork_event_feature },
5327 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5328 PACKET_exec_event_feature },
5329 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5330 PACKET_Qbtrace_conf_pt_size },
5331 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5332 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5333 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5334 { "memory-tagging", PACKET_DISABLE, remote_supported_packet,
5335 PACKET_memory_tagging_feature },
5336 };
5337
5338 static char *remote_support_xml;
5339
5340 /* Register string appended to "xmlRegisters=" in qSupported query. */
5341
5342 void
5343 register_remote_support_xml (const char *xml)
5344 {
5345 #if defined(HAVE_LIBEXPAT)
5346 if (remote_support_xml == NULL)
5347 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5348 else
5349 {
5350 char *copy = xstrdup (remote_support_xml + 13);
5351 char *saveptr;
5352 char *p = strtok_r (copy, ",", &saveptr);
5353
5354 do
5355 {
5356 if (strcmp (p, xml) == 0)
5357 {
5358 /* already there */
5359 xfree (copy);
5360 return;
5361 }
5362 }
5363 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5364 xfree (copy);
5365
5366 remote_support_xml = reconcat (remote_support_xml,
5367 remote_support_xml, ",", xml,
5368 (char *) NULL);
5369 }
5370 #endif
5371 }
5372
5373 static void
5374 remote_query_supported_append (std::string *msg, const char *append)
5375 {
5376 if (!msg->empty ())
5377 msg->append (";");
5378 msg->append (append);
5379 }
5380
5381 void
5382 remote_target::remote_query_supported ()
5383 {
5384 struct remote_state *rs = get_remote_state ();
5385 char *next;
5386 int i;
5387 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5388
5389 /* The packet support flags are handled differently for this packet
5390 than for most others. We treat an error, a disabled packet, and
5391 an empty response identically: any features which must be reported
5392 to be used will be automatically disabled. An empty buffer
5393 accomplishes this, since that is also the representation for a list
5394 containing no features. */
5395
5396 rs->buf[0] = 0;
5397 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5398 {
5399 std::string q;
5400
5401 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5402 remote_query_supported_append (&q, "multiprocess+");
5403
5404 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5405 remote_query_supported_append (&q, "swbreak+");
5406 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5407 remote_query_supported_append (&q, "hwbreak+");
5408
5409 remote_query_supported_append (&q, "qRelocInsn+");
5410
5411 if (packet_set_cmd_state (PACKET_fork_event_feature)
5412 != AUTO_BOOLEAN_FALSE)
5413 remote_query_supported_append (&q, "fork-events+");
5414 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5415 != AUTO_BOOLEAN_FALSE)
5416 remote_query_supported_append (&q, "vfork-events+");
5417 if (packet_set_cmd_state (PACKET_exec_event_feature)
5418 != AUTO_BOOLEAN_FALSE)
5419 remote_query_supported_append (&q, "exec-events+");
5420
5421 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5422 remote_query_supported_append (&q, "vContSupported+");
5423
5424 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5425 remote_query_supported_append (&q, "QThreadEvents+");
5426
5427 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5428 remote_query_supported_append (&q, "no-resumed+");
5429
5430 if (packet_set_cmd_state (PACKET_memory_tagging_feature)
5431 != AUTO_BOOLEAN_FALSE)
5432 remote_query_supported_append (&q, "memory-tagging+");
5433
5434 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5435 the qSupported:xmlRegisters=i386 handling. */
5436 if (remote_support_xml != NULL
5437 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5438 remote_query_supported_append (&q, remote_support_xml);
5439
5440 q = "qSupported:" + q;
5441 putpkt (q.c_str ());
5442
5443 getpkt (&rs->buf, 0);
5444
5445 /* If an error occured, warn, but do not return - just reset the
5446 buffer to empty and go on to disable features. */
5447 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5448 == PACKET_ERROR)
5449 {
5450 warning (_("Remote failure reply: %s"), rs->buf.data ());
5451 rs->buf[0] = 0;
5452 }
5453 }
5454
5455 memset (seen, 0, sizeof (seen));
5456
5457 next = rs->buf.data ();
5458 while (*next)
5459 {
5460 enum packet_support is_supported;
5461 char *p, *end, *name_end, *value;
5462
5463 /* First separate out this item from the rest of the packet. If
5464 there's another item after this, we overwrite the separator
5465 (terminated strings are much easier to work with). */
5466 p = next;
5467 end = strchr (p, ';');
5468 if (end == NULL)
5469 {
5470 end = p + strlen (p);
5471 next = end;
5472 }
5473 else
5474 {
5475 *end = '\0';
5476 next = end + 1;
5477
5478 if (end == p)
5479 {
5480 warning (_("empty item in \"qSupported\" response"));
5481 continue;
5482 }
5483 }
5484
5485 name_end = strchr (p, '=');
5486 if (name_end)
5487 {
5488 /* This is a name=value entry. */
5489 is_supported = PACKET_ENABLE;
5490 value = name_end + 1;
5491 *name_end = '\0';
5492 }
5493 else
5494 {
5495 value = NULL;
5496 switch (end[-1])
5497 {
5498 case '+':
5499 is_supported = PACKET_ENABLE;
5500 break;
5501
5502 case '-':
5503 is_supported = PACKET_DISABLE;
5504 break;
5505
5506 case '?':
5507 is_supported = PACKET_SUPPORT_UNKNOWN;
5508 break;
5509
5510 default:
5511 warning (_("unrecognized item \"%s\" "
5512 "in \"qSupported\" response"), p);
5513 continue;
5514 }
5515 end[-1] = '\0';
5516 }
5517
5518 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5519 if (strcmp (remote_protocol_features[i].name, p) == 0)
5520 {
5521 const struct protocol_feature *feature;
5522
5523 seen[i] = 1;
5524 feature = &remote_protocol_features[i];
5525 feature->func (this, feature, is_supported, value);
5526 break;
5527 }
5528 }
5529
5530 /* If we increased the packet size, make sure to increase the global
5531 buffer size also. We delay this until after parsing the entire
5532 qSupported packet, because this is the same buffer we were
5533 parsing. */
5534 if (rs->buf.size () < rs->explicit_packet_size)
5535 rs->buf.resize (rs->explicit_packet_size);
5536
5537 /* Handle the defaults for unmentioned features. */
5538 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5539 if (!seen[i])
5540 {
5541 const struct protocol_feature *feature;
5542
5543 feature = &remote_protocol_features[i];
5544 feature->func (this, feature, feature->default_support, NULL);
5545 }
5546 }
5547
5548 /* Serial QUIT handler for the remote serial descriptor.
5549
5550 Defers handling a Ctrl-C until we're done with the current
5551 command/response packet sequence, unless:
5552
5553 - We're setting up the connection. Don't send a remote interrupt
5554 request, as we're not fully synced yet. Quit immediately
5555 instead.
5556
5557 - The target has been resumed in the foreground
5558 (target_terminal::is_ours is false) with a synchronous resume
5559 packet, and we're blocked waiting for the stop reply, thus a
5560 Ctrl-C should be immediately sent to the target.
5561
5562 - We get a second Ctrl-C while still within the same serial read or
5563 write. In that case the serial is seemingly wedged --- offer to
5564 quit/disconnect.
5565
5566 - We see a second Ctrl-C without target response, after having
5567 previously interrupted the target. In that case the target/stub
5568 is probably wedged --- offer to quit/disconnect.
5569 */
5570
5571 void
5572 remote_target::remote_serial_quit_handler ()
5573 {
5574 struct remote_state *rs = get_remote_state ();
5575
5576 if (check_quit_flag ())
5577 {
5578 /* If we're starting up, we're not fully synced yet. Quit
5579 immediately. */
5580 if (rs->starting_up)
5581 quit ();
5582 else if (rs->got_ctrlc_during_io)
5583 {
5584 if (query (_("The target is not responding to GDB commands.\n"
5585 "Stop debugging it? ")))
5586 remote_unpush_and_throw (this);
5587 }
5588 /* If ^C has already been sent once, offer to disconnect. */
5589 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5590 interrupt_query ();
5591 /* All-stop protocol, and blocked waiting for stop reply. Send
5592 an interrupt request. */
5593 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5594 target_interrupt ();
5595 else
5596 rs->got_ctrlc_during_io = 1;
5597 }
5598 }
5599
5600 /* The remote_target that is current while the quit handler is
5601 overridden with remote_serial_quit_handler. */
5602 static remote_target *curr_quit_handler_target;
5603
5604 static void
5605 remote_serial_quit_handler ()
5606 {
5607 curr_quit_handler_target->remote_serial_quit_handler ();
5608 }
5609
5610 /* Remove the remote target from the target stack of each inferior
5611 that is using it. Upper targets depend on it so remove them
5612 first. */
5613
5614 static void
5615 remote_unpush_target (remote_target *target)
5616 {
5617 /* We have to unpush the target from all inferiors, even those that
5618 aren't running. */
5619 scoped_restore_current_inferior restore_current_inferior;
5620
5621 for (inferior *inf : all_inferiors (target))
5622 {
5623 switch_to_inferior_no_thread (inf);
5624 pop_all_targets_at_and_above (process_stratum);
5625 generic_mourn_inferior ();
5626 }
5627 }
5628
5629 static void
5630 remote_unpush_and_throw (remote_target *target)
5631 {
5632 remote_unpush_target (target);
5633 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5634 }
5635
5636 void
5637 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5638 {
5639 remote_target *curr_remote = get_current_remote_target ();
5640
5641 if (name == 0)
5642 error (_("To open a remote debug connection, you need to specify what\n"
5643 "serial device is attached to the remote system\n"
5644 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5645
5646 /* If we're connected to a running target, target_preopen will kill it.
5647 Ask this question first, before target_preopen has a chance to kill
5648 anything. */
5649 if (curr_remote != NULL && !target_has_execution ())
5650 {
5651 if (from_tty
5652 && !query (_("Already connected to a remote target. Disconnect? ")))
5653 error (_("Still connected."));
5654 }
5655
5656 /* Here the possibly existing remote target gets unpushed. */
5657 target_preopen (from_tty);
5658
5659 remote_fileio_reset ();
5660 reopen_exec_file ();
5661 reread_symbols ();
5662
5663 remote_target *remote
5664 = (extended_p ? new extended_remote_target () : new remote_target ());
5665 target_ops_up target_holder (remote);
5666
5667 remote_state *rs = remote->get_remote_state ();
5668
5669 /* See FIXME above. */
5670 if (!target_async_permitted)
5671 rs->wait_forever_enabled_p = 1;
5672
5673 rs->remote_desc = remote_serial_open (name);
5674 if (!rs->remote_desc)
5675 perror_with_name (name);
5676
5677 if (baud_rate != -1)
5678 {
5679 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5680 {
5681 /* The requested speed could not be set. Error out to
5682 top level after closing remote_desc. Take care to
5683 set remote_desc to NULL to avoid closing remote_desc
5684 more than once. */
5685 serial_close (rs->remote_desc);
5686 rs->remote_desc = NULL;
5687 perror_with_name (name);
5688 }
5689 }
5690
5691 serial_setparity (rs->remote_desc, serial_parity);
5692 serial_raw (rs->remote_desc);
5693
5694 /* If there is something sitting in the buffer we might take it as a
5695 response to a command, which would be bad. */
5696 serial_flush_input (rs->remote_desc);
5697
5698 if (from_tty)
5699 {
5700 puts_filtered ("Remote debugging using ");
5701 puts_filtered (name);
5702 puts_filtered ("\n");
5703 }
5704
5705 /* Switch to using the remote target now. */
5706 current_inferior ()->push_target (std::move (target_holder));
5707
5708 /* Register extra event sources in the event loop. */
5709 rs->remote_async_inferior_event_token
5710 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5711 "remote");
5712 rs->notif_state = remote_notif_state_allocate (remote);
5713
5714 /* Reset the target state; these things will be queried either by
5715 remote_query_supported or as they are needed. */
5716 reset_all_packet_configs_support ();
5717 rs->cached_wait_status = 0;
5718 rs->explicit_packet_size = 0;
5719 rs->noack_mode = 0;
5720 rs->extended = extended_p;
5721 rs->waiting_for_stop_reply = 0;
5722 rs->ctrlc_pending_p = 0;
5723 rs->got_ctrlc_during_io = 0;
5724
5725 rs->general_thread = not_sent_ptid;
5726 rs->continue_thread = not_sent_ptid;
5727 rs->remote_traceframe_number = -1;
5728
5729 rs->last_resume_exec_dir = EXEC_FORWARD;
5730
5731 /* Probe for ability to use "ThreadInfo" query, as required. */
5732 rs->use_threadinfo_query = 1;
5733 rs->use_threadextra_query = 1;
5734
5735 rs->readahead_cache.invalidate ();
5736
5737 if (target_async_permitted)
5738 {
5739 /* FIXME: cagney/1999-09-23: During the initial connection it is
5740 assumed that the target is already ready and able to respond to
5741 requests. Unfortunately remote_start_remote() eventually calls
5742 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5743 around this. Eventually a mechanism that allows
5744 wait_for_inferior() to expect/get timeouts will be
5745 implemented. */
5746 rs->wait_forever_enabled_p = 0;
5747 }
5748
5749 /* First delete any symbols previously loaded from shared libraries. */
5750 no_shared_libraries (NULL, 0);
5751
5752 /* Start the remote connection. If error() or QUIT, discard this
5753 target (we'd otherwise be in an inconsistent state) and then
5754 propogate the error on up the exception chain. This ensures that
5755 the caller doesn't stumble along blindly assuming that the
5756 function succeeded. The CLI doesn't have this problem but other
5757 UI's, such as MI do.
5758
5759 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5760 this function should return an error indication letting the
5761 caller restore the previous state. Unfortunately the command
5762 ``target remote'' is directly wired to this function making that
5763 impossible. On a positive note, the CLI side of this problem has
5764 been fixed - the function set_cmd_context() makes it possible for
5765 all the ``target ....'' commands to share a common callback
5766 function. See cli-dump.c. */
5767 {
5768
5769 try
5770 {
5771 remote->start_remote (from_tty, extended_p);
5772 }
5773 catch (const gdb_exception &ex)
5774 {
5775 /* Pop the partially set up target - unless something else did
5776 already before throwing the exception. */
5777 if (ex.error != TARGET_CLOSE_ERROR)
5778 remote_unpush_target (remote);
5779 throw;
5780 }
5781 }
5782
5783 remote_btrace_reset (rs);
5784
5785 if (target_async_permitted)
5786 rs->wait_forever_enabled_p = 1;
5787 }
5788
5789 /* Detach the specified process. */
5790
5791 void
5792 remote_target::remote_detach_pid (int pid)
5793 {
5794 struct remote_state *rs = get_remote_state ();
5795
5796 /* This should not be necessary, but the handling for D;PID in
5797 GDBserver versions prior to 8.2 incorrectly assumes that the
5798 selected process points to the same process we're detaching,
5799 leading to misbehavior (and possibly GDBserver crashing) when it
5800 does not. Since it's easy and cheap, work around it by forcing
5801 GDBserver to select GDB's current process. */
5802 set_general_process ();
5803
5804 if (remote_multi_process_p (rs))
5805 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5806 else
5807 strcpy (rs->buf.data (), "D");
5808
5809 putpkt (rs->buf);
5810 getpkt (&rs->buf, 0);
5811
5812 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5813 ;
5814 else if (rs->buf[0] == '\0')
5815 error (_("Remote doesn't know how to detach"));
5816 else
5817 error (_("Can't detach process."));
5818 }
5819
5820 /* This detaches a program to which we previously attached, using
5821 inferior_ptid to identify the process. After this is done, GDB
5822 can be used to debug some other program. We better not have left
5823 any breakpoints in the target program or it'll die when it hits
5824 one. */
5825
5826 void
5827 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5828 {
5829 int pid = inferior_ptid.pid ();
5830 struct remote_state *rs = get_remote_state ();
5831 int is_fork_parent;
5832
5833 if (!target_has_execution ())
5834 error (_("No process to detach from."));
5835
5836 target_announce_detach (from_tty);
5837
5838 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5839 {
5840 /* If we're in breakpoints-always-inserted mode, or the inferior
5841 is running, we have to remove breakpoints before detaching.
5842 We don't do this in common code instead because not all
5843 targets support removing breakpoints while the target is
5844 running. The remote target / gdbserver does, though. */
5845 remove_breakpoints_inf (current_inferior ());
5846 }
5847
5848 /* Tell the remote target to detach. */
5849 remote_detach_pid (pid);
5850
5851 /* Exit only if this is the only active inferior. */
5852 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5853 puts_filtered (_("Ending remote debugging.\n"));
5854
5855 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5856
5857 /* Check to see if we are detaching a fork parent. Note that if we
5858 are detaching a fork child, tp == NULL. */
5859 is_fork_parent = (tp != NULL
5860 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5861
5862 /* If doing detach-on-fork, we don't mourn, because that will delete
5863 breakpoints that should be available for the followed inferior. */
5864 if (!is_fork_parent)
5865 {
5866 /* Save the pid as a string before mourning, since that will
5867 unpush the remote target, and we need the string after. */
5868 std::string infpid = target_pid_to_str (ptid_t (pid));
5869
5870 target_mourn_inferior (inferior_ptid);
5871 if (print_inferior_events)
5872 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5873 inf->num, infpid.c_str ());
5874 }
5875 else
5876 {
5877 switch_to_no_thread ();
5878 detach_inferior (current_inferior ());
5879 }
5880 }
5881
5882 void
5883 remote_target::detach (inferior *inf, int from_tty)
5884 {
5885 remote_detach_1 (inf, from_tty);
5886 }
5887
5888 void
5889 extended_remote_target::detach (inferior *inf, int from_tty)
5890 {
5891 remote_detach_1 (inf, from_tty);
5892 }
5893
5894 /* Target follow-fork function for remote targets. On entry, and
5895 at return, the current inferior is the fork parent.
5896
5897 Note that although this is currently only used for extended-remote,
5898 it is named remote_follow_fork in anticipation of using it for the
5899 remote target as well. */
5900
5901 void
5902 remote_target::follow_fork (bool follow_child, bool detach_fork)
5903 {
5904 struct remote_state *rs = get_remote_state ();
5905 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5906
5907 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5908 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5909 {
5910 /* When following the parent and detaching the child, we detach
5911 the child here. For the case of following the child and
5912 detaching the parent, the detach is done in the target-
5913 independent follow fork code in infrun.c. We can't use
5914 target_detach when detaching an unfollowed child because
5915 the client side doesn't know anything about the child. */
5916 if (detach_fork && !follow_child)
5917 {
5918 /* Detach the fork child. */
5919 ptid_t child_ptid;
5920 pid_t child_pid;
5921
5922 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5923 child_pid = child_ptid.pid ();
5924
5925 remote_detach_pid (child_pid);
5926 }
5927 }
5928 }
5929
5930 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5931 in the program space of the new inferior. */
5932
5933 void
5934 remote_target::follow_exec (inferior *follow_inf, ptid_t ptid,
5935 const char *execd_pathname)
5936 {
5937 process_stratum_target::follow_exec (follow_inf, ptid, execd_pathname);
5938
5939 /* We know that this is a target file name, so if it has the "target:"
5940 prefix we strip it off before saving it in the program space. */
5941 if (is_target_filename (execd_pathname))
5942 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5943
5944 set_pspace_remote_exec_file (follow_inf->pspace, execd_pathname);
5945 }
5946
5947 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5948
5949 void
5950 remote_target::disconnect (const char *args, int from_tty)
5951 {
5952 if (args)
5953 error (_("Argument given to \"disconnect\" when remotely debugging."));
5954
5955 /* Make sure we unpush even the extended remote targets. Calling
5956 target_mourn_inferior won't unpush, and
5957 remote_target::mourn_inferior won't unpush if there is more than
5958 one inferior left. */
5959 remote_unpush_target (this);
5960
5961 if (from_tty)
5962 puts_filtered ("Ending remote debugging.\n");
5963 }
5964
5965 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5966 be chatty about it. */
5967
5968 void
5969 extended_remote_target::attach (const char *args, int from_tty)
5970 {
5971 struct remote_state *rs = get_remote_state ();
5972 int pid;
5973 char *wait_status = NULL;
5974
5975 pid = parse_pid_to_attach (args);
5976
5977 /* Remote PID can be freely equal to getpid, do not check it here the same
5978 way as in other targets. */
5979
5980 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5981 error (_("This target does not support attaching to a process"));
5982
5983 if (from_tty)
5984 {
5985 const char *exec_file = get_exec_file (0);
5986
5987 if (exec_file)
5988 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5989 target_pid_to_str (ptid_t (pid)).c_str ());
5990 else
5991 printf_unfiltered (_("Attaching to %s\n"),
5992 target_pid_to_str (ptid_t (pid)).c_str ());
5993 }
5994
5995 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5996 putpkt (rs->buf);
5997 getpkt (&rs->buf, 0);
5998
5999 switch (packet_ok (rs->buf,
6000 &remote_protocol_packets[PACKET_vAttach]))
6001 {
6002 case PACKET_OK:
6003 if (!target_is_non_stop_p ())
6004 {
6005 /* Save the reply for later. */
6006 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
6007 strcpy (wait_status, rs->buf.data ());
6008 }
6009 else if (strcmp (rs->buf.data (), "OK") != 0)
6010 error (_("Attaching to %s failed with: %s"),
6011 target_pid_to_str (ptid_t (pid)).c_str (),
6012 rs->buf.data ());
6013 break;
6014 case PACKET_UNKNOWN:
6015 error (_("This target does not support attaching to a process"));
6016 default:
6017 error (_("Attaching to %s failed"),
6018 target_pid_to_str (ptid_t (pid)).c_str ());
6019 }
6020
6021 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
6022
6023 inferior_ptid = ptid_t (pid);
6024
6025 if (target_is_non_stop_p ())
6026 {
6027 /* Get list of threads. */
6028 update_thread_list ();
6029
6030 thread_info *thread = first_thread_of_inferior (current_inferior ());
6031 if (thread != nullptr)
6032 switch_to_thread (thread);
6033
6034 /* Invalidate our notion of the remote current thread. */
6035 record_currthread (rs, minus_one_ptid);
6036 }
6037 else
6038 {
6039 /* Now, if we have thread information, update the main thread's
6040 ptid. */
6041 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6042
6043 /* Add the main thread to the thread list. */
6044 thread_info *thr = add_thread_silent (this, curr_ptid);
6045
6046 switch_to_thread (thr);
6047
6048 /* Don't consider the thread stopped until we've processed the
6049 saved stop reply. */
6050 set_executing (this, thr->ptid, true);
6051 }
6052
6053 /* Next, if the target can specify a description, read it. We do
6054 this before anything involving memory or registers. */
6055 target_find_description ();
6056
6057 if (!target_is_non_stop_p ())
6058 {
6059 /* Use the previously fetched status. */
6060 gdb_assert (wait_status != NULL);
6061
6062 if (target_can_async_p ())
6063 {
6064 struct notif_event *reply
6065 = remote_notif_parse (this, &notif_client_stop, wait_status);
6066
6067 push_stop_reply ((struct stop_reply *) reply);
6068
6069 target_async (1);
6070 }
6071 else
6072 {
6073 gdb_assert (wait_status != NULL);
6074 strcpy (rs->buf.data (), wait_status);
6075 rs->cached_wait_status = 1;
6076 }
6077 }
6078 else
6079 {
6080 gdb_assert (wait_status == NULL);
6081
6082 gdb_assert (target_can_async_p ());
6083 target_async (1);
6084 }
6085 }
6086
6087 /* Implementation of the to_post_attach method. */
6088
6089 void
6090 extended_remote_target::post_attach (int pid)
6091 {
6092 /* Get text, data & bss offsets. */
6093 get_offsets ();
6094
6095 /* In certain cases GDB might not have had the chance to start
6096 symbol lookup up until now. This could happen if the debugged
6097 binary is not using shared libraries, the vsyscall page is not
6098 present (on Linux) and the binary itself hadn't changed since the
6099 debugging process was started. */
6100 if (current_program_space->symfile_object_file != NULL)
6101 remote_check_symbols();
6102 }
6103
6104 \f
6105 /* Check for the availability of vCont. This function should also check
6106 the response. */
6107
6108 void
6109 remote_target::remote_vcont_probe ()
6110 {
6111 remote_state *rs = get_remote_state ();
6112 char *buf;
6113
6114 strcpy (rs->buf.data (), "vCont?");
6115 putpkt (rs->buf);
6116 getpkt (&rs->buf, 0);
6117 buf = rs->buf.data ();
6118
6119 /* Make sure that the features we assume are supported. */
6120 if (startswith (buf, "vCont"))
6121 {
6122 char *p = &buf[5];
6123 int support_c, support_C;
6124
6125 rs->supports_vCont.s = 0;
6126 rs->supports_vCont.S = 0;
6127 support_c = 0;
6128 support_C = 0;
6129 rs->supports_vCont.t = 0;
6130 rs->supports_vCont.r = 0;
6131 while (p && *p == ';')
6132 {
6133 p++;
6134 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6135 rs->supports_vCont.s = 1;
6136 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6137 rs->supports_vCont.S = 1;
6138 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6139 support_c = 1;
6140 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6141 support_C = 1;
6142 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6143 rs->supports_vCont.t = 1;
6144 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6145 rs->supports_vCont.r = 1;
6146
6147 p = strchr (p, ';');
6148 }
6149
6150 /* If c, and C are not all supported, we can't use vCont. Clearing
6151 BUF will make packet_ok disable the packet. */
6152 if (!support_c || !support_C)
6153 buf[0] = 0;
6154 }
6155
6156 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6157 rs->supports_vCont_probed = true;
6158 }
6159
6160 /* Helper function for building "vCont" resumptions. Write a
6161 resumption to P. ENDP points to one-passed-the-end of the buffer
6162 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6163 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6164 resumed thread should be single-stepped and/or signalled. If PTID
6165 equals minus_one_ptid, then all threads are resumed; if PTID
6166 represents a process, then all threads of the process are resumed;
6167 the thread to be stepped and/or signalled is given in the global
6168 INFERIOR_PTID. */
6169
6170 char *
6171 remote_target::append_resumption (char *p, char *endp,
6172 ptid_t ptid, int step, gdb_signal siggnal)
6173 {
6174 struct remote_state *rs = get_remote_state ();
6175
6176 if (step && siggnal != GDB_SIGNAL_0)
6177 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6178 else if (step
6179 /* GDB is willing to range step. */
6180 && use_range_stepping
6181 /* Target supports range stepping. */
6182 && rs->supports_vCont.r
6183 /* We don't currently support range stepping multiple
6184 threads with a wildcard (though the protocol allows it,
6185 so stubs shouldn't make an active effort to forbid
6186 it). */
6187 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6188 {
6189 struct thread_info *tp;
6190
6191 if (ptid == minus_one_ptid)
6192 {
6193 /* If we don't know about the target thread's tid, then
6194 we're resuming magic_null_ptid (see caller). */
6195 tp = find_thread_ptid (this, magic_null_ptid);
6196 }
6197 else
6198 tp = find_thread_ptid (this, ptid);
6199 gdb_assert (tp != NULL);
6200
6201 if (tp->control.may_range_step)
6202 {
6203 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6204
6205 p += xsnprintf (p, endp - p, ";r%s,%s",
6206 phex_nz (tp->control.step_range_start,
6207 addr_size),
6208 phex_nz (tp->control.step_range_end,
6209 addr_size));
6210 }
6211 else
6212 p += xsnprintf (p, endp - p, ";s");
6213 }
6214 else if (step)
6215 p += xsnprintf (p, endp - p, ";s");
6216 else if (siggnal != GDB_SIGNAL_0)
6217 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6218 else
6219 p += xsnprintf (p, endp - p, ";c");
6220
6221 if (remote_multi_process_p (rs) && ptid.is_pid ())
6222 {
6223 ptid_t nptid;
6224
6225 /* All (-1) threads of process. */
6226 nptid = ptid_t (ptid.pid (), -1, 0);
6227
6228 p += xsnprintf (p, endp - p, ":");
6229 p = write_ptid (p, endp, nptid);
6230 }
6231 else if (ptid != minus_one_ptid)
6232 {
6233 p += xsnprintf (p, endp - p, ":");
6234 p = write_ptid (p, endp, ptid);
6235 }
6236
6237 return p;
6238 }
6239
6240 /* Clear the thread's private info on resume. */
6241
6242 static void
6243 resume_clear_thread_private_info (struct thread_info *thread)
6244 {
6245 if (thread->priv != NULL)
6246 {
6247 remote_thread_info *priv = get_remote_thread_info (thread);
6248
6249 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6250 priv->watch_data_address = 0;
6251 }
6252 }
6253
6254 /* Append a vCont continue-with-signal action for threads that have a
6255 non-zero stop signal. */
6256
6257 char *
6258 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6259 ptid_t ptid)
6260 {
6261 for (thread_info *thread : all_non_exited_threads (this, ptid))
6262 if (inferior_ptid != thread->ptid
6263 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6264 {
6265 p = append_resumption (p, endp, thread->ptid,
6266 0, thread->suspend.stop_signal);
6267 thread->suspend.stop_signal = GDB_SIGNAL_0;
6268 resume_clear_thread_private_info (thread);
6269 }
6270
6271 return p;
6272 }
6273
6274 /* Set the target running, using the packets that use Hc
6275 (c/s/C/S). */
6276
6277 void
6278 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6279 gdb_signal siggnal)
6280 {
6281 struct remote_state *rs = get_remote_state ();
6282 char *buf;
6283
6284 rs->last_sent_signal = siggnal;
6285 rs->last_sent_step = step;
6286
6287 /* The c/s/C/S resume packets use Hc, so set the continue
6288 thread. */
6289 if (ptid == minus_one_ptid)
6290 set_continue_thread (any_thread_ptid);
6291 else
6292 set_continue_thread (ptid);
6293
6294 for (thread_info *thread : all_non_exited_threads (this))
6295 resume_clear_thread_private_info (thread);
6296
6297 buf = rs->buf.data ();
6298 if (::execution_direction == EXEC_REVERSE)
6299 {
6300 /* We don't pass signals to the target in reverse exec mode. */
6301 if (info_verbose && siggnal != GDB_SIGNAL_0)
6302 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6303 siggnal);
6304
6305 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6306 error (_("Remote reverse-step not supported."));
6307 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6308 error (_("Remote reverse-continue not supported."));
6309
6310 strcpy (buf, step ? "bs" : "bc");
6311 }
6312 else if (siggnal != GDB_SIGNAL_0)
6313 {
6314 buf[0] = step ? 'S' : 'C';
6315 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6316 buf[2] = tohex (((int) siggnal) & 0xf);
6317 buf[3] = '\0';
6318 }
6319 else
6320 strcpy (buf, step ? "s" : "c");
6321
6322 putpkt (buf);
6323 }
6324
6325 /* Resume the remote inferior by using a "vCont" packet. The thread
6326 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6327 resumed thread should be single-stepped and/or signalled. If PTID
6328 equals minus_one_ptid, then all threads are resumed; the thread to
6329 be stepped and/or signalled is given in the global INFERIOR_PTID.
6330 This function returns non-zero iff it resumes the inferior.
6331
6332 This function issues a strict subset of all possible vCont commands
6333 at the moment. */
6334
6335 int
6336 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6337 enum gdb_signal siggnal)
6338 {
6339 struct remote_state *rs = get_remote_state ();
6340 char *p;
6341 char *endp;
6342
6343 /* No reverse execution actions defined for vCont. */
6344 if (::execution_direction == EXEC_REVERSE)
6345 return 0;
6346
6347 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6348 remote_vcont_probe ();
6349
6350 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6351 return 0;
6352
6353 p = rs->buf.data ();
6354 endp = p + get_remote_packet_size ();
6355
6356 /* If we could generate a wider range of packets, we'd have to worry
6357 about overflowing BUF. Should there be a generic
6358 "multi-part-packet" packet? */
6359
6360 p += xsnprintf (p, endp - p, "vCont");
6361
6362 if (ptid == magic_null_ptid)
6363 {
6364 /* MAGIC_NULL_PTID means that we don't have any active threads,
6365 so we don't have any TID numbers the inferior will
6366 understand. Make sure to only send forms that do not specify
6367 a TID. */
6368 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6369 }
6370 else if (ptid == minus_one_ptid || ptid.is_pid ())
6371 {
6372 /* Resume all threads (of all processes, or of a single
6373 process), with preference for INFERIOR_PTID. This assumes
6374 inferior_ptid belongs to the set of all threads we are about
6375 to resume. */
6376 if (step || siggnal != GDB_SIGNAL_0)
6377 {
6378 /* Step inferior_ptid, with or without signal. */
6379 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6380 }
6381
6382 /* Also pass down any pending signaled resumption for other
6383 threads not the current. */
6384 p = append_pending_thread_resumptions (p, endp, ptid);
6385
6386 /* And continue others without a signal. */
6387 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6388 }
6389 else
6390 {
6391 /* Scheduler locking; resume only PTID. */
6392 append_resumption (p, endp, ptid, step, siggnal);
6393 }
6394
6395 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6396 putpkt (rs->buf);
6397
6398 if (target_is_non_stop_p ())
6399 {
6400 /* In non-stop, the stub replies to vCont with "OK". The stop
6401 reply will be reported asynchronously by means of a `%Stop'
6402 notification. */
6403 getpkt (&rs->buf, 0);
6404 if (strcmp (rs->buf.data (), "OK") != 0)
6405 error (_("Unexpected vCont reply in non-stop mode: %s"),
6406 rs->buf.data ());
6407 }
6408
6409 return 1;
6410 }
6411
6412 /* Tell the remote machine to resume. */
6413
6414 void
6415 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6416 {
6417 struct remote_state *rs = get_remote_state ();
6418
6419 /* When connected in non-stop mode, the core resumes threads
6420 individually. Resuming remote threads directly in target_resume
6421 would thus result in sending one packet per thread. Instead, to
6422 minimize roundtrip latency, here we just store the resume
6423 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6424 resumption will be done in remote_target::commit_resume, where we'll be
6425 able to do vCont action coalescing. */
6426 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6427 {
6428 remote_thread_info *remote_thr;
6429
6430 if (minus_one_ptid == ptid || ptid.is_pid ())
6431 remote_thr = get_remote_thread_info (this, inferior_ptid);
6432 else
6433 remote_thr = get_remote_thread_info (this, ptid);
6434
6435 /* We don't expect the core to ask to resume an already resumed (from
6436 its point of view) thread. */
6437 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6438
6439 remote_thr->set_resumed_pending_vcont (step, siggnal);
6440 return;
6441 }
6442
6443 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6444 (explained in remote-notif.c:handle_notification) so
6445 remote_notif_process is not called. We need find a place where
6446 it is safe to start a 'vNotif' sequence. It is good to do it
6447 before resuming inferior, because inferior was stopped and no RSP
6448 traffic at that moment. */
6449 if (!target_is_non_stop_p ())
6450 remote_notif_process (rs->notif_state, &notif_client_stop);
6451
6452 rs->last_resume_exec_dir = ::execution_direction;
6453
6454 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6455 if (!remote_resume_with_vcont (ptid, step, siggnal))
6456 remote_resume_with_hc (ptid, step, siggnal);
6457
6458 /* Update resumed state tracked by the remote target. */
6459 for (thread_info *tp : all_non_exited_threads (this, ptid))
6460 get_remote_thread_info (tp)->set_resumed ();
6461
6462 /* We are about to start executing the inferior, let's register it
6463 with the event loop. NOTE: this is the one place where all the
6464 execution commands end up. We could alternatively do this in each
6465 of the execution commands in infcmd.c. */
6466 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6467 into infcmd.c in order to allow inferior function calls to work
6468 NOT asynchronously. */
6469 if (target_can_async_p ())
6470 target_async (1);
6471
6472 /* We've just told the target to resume. The remote server will
6473 wait for the inferior to stop, and then send a stop reply. In
6474 the mean time, we can't start another command/query ourselves
6475 because the stub wouldn't be ready to process it. This applies
6476 only to the base all-stop protocol, however. In non-stop (which
6477 only supports vCont), the stub replies with an "OK", and is
6478 immediate able to process further serial input. */
6479 if (!target_is_non_stop_p ())
6480 rs->waiting_for_stop_reply = 1;
6481 }
6482
6483 static int is_pending_fork_parent_thread (struct thread_info *thread);
6484
6485 /* Private per-inferior info for target remote processes. */
6486
6487 struct remote_inferior : public private_inferior
6488 {
6489 /* Whether we can send a wildcard vCont for this process. */
6490 bool may_wildcard_vcont = true;
6491 };
6492
6493 /* Get the remote private inferior data associated to INF. */
6494
6495 static remote_inferior *
6496 get_remote_inferior (inferior *inf)
6497 {
6498 if (inf->priv == NULL)
6499 inf->priv.reset (new remote_inferior);
6500
6501 return static_cast<remote_inferior *> (inf->priv.get ());
6502 }
6503
6504 struct stop_reply : public notif_event
6505 {
6506 ~stop_reply ();
6507
6508 /* The identifier of the thread about this event */
6509 ptid_t ptid;
6510
6511 /* The remote state this event is associated with. When the remote
6512 connection, represented by a remote_state object, is closed,
6513 all the associated stop_reply events should be released. */
6514 struct remote_state *rs;
6515
6516 struct target_waitstatus ws;
6517
6518 /* The architecture associated with the expedited registers. */
6519 gdbarch *arch;
6520
6521 /* Expedited registers. This makes remote debugging a bit more
6522 efficient for those targets that provide critical registers as
6523 part of their normal status mechanism (as another roundtrip to
6524 fetch them is avoided). */
6525 std::vector<cached_reg_t> regcache;
6526
6527 enum target_stop_reason stop_reason;
6528
6529 CORE_ADDR watch_data_address;
6530
6531 int core;
6532 };
6533
6534 /* Class used to track the construction of a vCont packet in the
6535 outgoing packet buffer. This is used to send multiple vCont
6536 packets if we have more actions than would fit a single packet. */
6537
6538 class vcont_builder
6539 {
6540 public:
6541 explicit vcont_builder (remote_target *remote)
6542 : m_remote (remote)
6543 {
6544 restart ();
6545 }
6546
6547 void flush ();
6548 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6549
6550 private:
6551 void restart ();
6552
6553 /* The remote target. */
6554 remote_target *m_remote;
6555
6556 /* Pointer to the first action. P points here if no action has been
6557 appended yet. */
6558 char *m_first_action;
6559
6560 /* Where the next action will be appended. */
6561 char *m_p;
6562
6563 /* The end of the buffer. Must never write past this. */
6564 char *m_endp;
6565 };
6566
6567 /* Prepare the outgoing buffer for a new vCont packet. */
6568
6569 void
6570 vcont_builder::restart ()
6571 {
6572 struct remote_state *rs = m_remote->get_remote_state ();
6573
6574 m_p = rs->buf.data ();
6575 m_endp = m_p + m_remote->get_remote_packet_size ();
6576 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6577 m_first_action = m_p;
6578 }
6579
6580 /* If the vCont packet being built has any action, send it to the
6581 remote end. */
6582
6583 void
6584 vcont_builder::flush ()
6585 {
6586 struct remote_state *rs;
6587
6588 if (m_p == m_first_action)
6589 return;
6590
6591 rs = m_remote->get_remote_state ();
6592 m_remote->putpkt (rs->buf);
6593 m_remote->getpkt (&rs->buf, 0);
6594 if (strcmp (rs->buf.data (), "OK") != 0)
6595 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6596 }
6597
6598 /* The largest action is range-stepping, with its two addresses. This
6599 is more than sufficient. If a new, bigger action is created, it'll
6600 quickly trigger a failed assertion in append_resumption (and we'll
6601 just bump this). */
6602 #define MAX_ACTION_SIZE 200
6603
6604 /* Append a new vCont action in the outgoing packet being built. If
6605 the action doesn't fit the packet along with previous actions, push
6606 what we've got so far to the remote end and start over a new vCont
6607 packet (with the new action). */
6608
6609 void
6610 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6611 {
6612 char buf[MAX_ACTION_SIZE + 1];
6613
6614 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6615 ptid, step, siggnal);
6616
6617 /* Check whether this new action would fit in the vCont packet along
6618 with previous actions. If not, send what we've got so far and
6619 start a new vCont packet. */
6620 size_t rsize = endp - buf;
6621 if (rsize > m_endp - m_p)
6622 {
6623 flush ();
6624 restart ();
6625
6626 /* Should now fit. */
6627 gdb_assert (rsize <= m_endp - m_p);
6628 }
6629
6630 memcpy (m_p, buf, rsize);
6631 m_p += rsize;
6632 *m_p = '\0';
6633 }
6634
6635 /* to_commit_resume implementation. */
6636
6637 void
6638 remote_target::commit_resumed ()
6639 {
6640 /* If connected in all-stop mode, we'd send the remote resume
6641 request directly from remote_resume. Likewise if
6642 reverse-debugging, as there are no defined vCont actions for
6643 reverse execution. */
6644 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6645 return;
6646
6647 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6648 instead of resuming all threads of each process individually.
6649 However, if any thread of a process must remain halted, we can't
6650 send wildcard resumes and must send one action per thread.
6651
6652 Care must be taken to not resume threads/processes the server
6653 side already told us are stopped, but the core doesn't know about
6654 yet, because the events are still in the vStopped notification
6655 queue. For example:
6656
6657 #1 => vCont s:p1.1;c
6658 #2 <= OK
6659 #3 <= %Stopped T05 p1.1
6660 #4 => vStopped
6661 #5 <= T05 p1.2
6662 #6 => vStopped
6663 #7 <= OK
6664 #8 (infrun handles the stop for p1.1 and continues stepping)
6665 #9 => vCont s:p1.1;c
6666
6667 The last vCont above would resume thread p1.2 by mistake, because
6668 the server has no idea that the event for p1.2 had not been
6669 handled yet.
6670
6671 The server side must similarly ignore resume actions for the
6672 thread that has a pending %Stopped notification (and any other
6673 threads with events pending), until GDB acks the notification
6674 with vStopped. Otherwise, e.g., the following case is
6675 mishandled:
6676
6677 #1 => g (or any other packet)
6678 #2 <= [registers]
6679 #3 <= %Stopped T05 p1.2
6680 #4 => vCont s:p1.1;c
6681 #5 <= OK
6682
6683 Above, the server must not resume thread p1.2. GDB can't know
6684 that p1.2 stopped until it acks the %Stopped notification, and
6685 since from GDB's perspective all threads should be running, it
6686 sends a "c" action.
6687
6688 Finally, special care must also be given to handling fork/vfork
6689 events. A (v)fork event actually tells us that two processes
6690 stopped -- the parent and the child. Until we follow the fork,
6691 we must not resume the child. Therefore, if we have a pending
6692 fork follow, we must not send a global wildcard resume action
6693 (vCont;c). We can still send process-wide wildcards though. */
6694
6695 /* Start by assuming a global wildcard (vCont;c) is possible. */
6696 bool may_global_wildcard_vcont = true;
6697
6698 /* And assume every process is individually wildcard-able too. */
6699 for (inferior *inf : all_non_exited_inferiors (this))
6700 {
6701 remote_inferior *priv = get_remote_inferior (inf);
6702
6703 priv->may_wildcard_vcont = true;
6704 }
6705
6706 /* Check for any pending events (not reported or processed yet) and
6707 disable process and global wildcard resumes appropriately. */
6708 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6709
6710 bool any_pending_vcont_resume = false;
6711
6712 for (thread_info *tp : all_non_exited_threads (this))
6713 {
6714 remote_thread_info *priv = get_remote_thread_info (tp);
6715
6716 /* If a thread of a process is not meant to be resumed, then we
6717 can't wildcard that process. */
6718 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6719 {
6720 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6721
6722 /* And if we can't wildcard a process, we can't wildcard
6723 everything either. */
6724 may_global_wildcard_vcont = false;
6725 continue;
6726 }
6727
6728 if (priv->get_resume_state () == resume_state::RESUMED_PENDING_VCONT)
6729 any_pending_vcont_resume = true;
6730
6731 /* If a thread is the parent of an unfollowed fork, then we
6732 can't do a global wildcard, as that would resume the fork
6733 child. */
6734 if (is_pending_fork_parent_thread (tp))
6735 may_global_wildcard_vcont = false;
6736 }
6737
6738 /* We didn't have any resumed thread pending a vCont resume, so nothing to
6739 do. */
6740 if (!any_pending_vcont_resume)
6741 return;
6742
6743 /* Now let's build the vCont packet(s). Actions must be appended
6744 from narrower to wider scopes (thread -> process -> global). If
6745 we end up with too many actions for a single packet vcont_builder
6746 flushes the current vCont packet to the remote side and starts a
6747 new one. */
6748 struct vcont_builder vcont_builder (this);
6749
6750 /* Threads first. */
6751 for (thread_info *tp : all_non_exited_threads (this))
6752 {
6753 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6754
6755 /* If the thread was previously vCont-resumed, no need to send a specific
6756 action for it. If we didn't receive a resume request for it, don't
6757 send an action for it either. */
6758 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6759 continue;
6760
6761 gdb_assert (!thread_is_in_step_over_chain (tp));
6762
6763 /* We should never be commit-resuming a thread that has a stop reply.
6764 Otherwise, we would end up reporting a stop event for a thread while
6765 it is running on the remote target. */
6766 remote_state *rs = get_remote_state ();
6767 for (const auto &stop_reply : rs->stop_reply_queue)
6768 gdb_assert (stop_reply->ptid != tp->ptid);
6769
6770 const resumed_pending_vcont_info &info
6771 = remote_thr->resumed_pending_vcont_info ();
6772
6773 /* Check if we need to send a specific action for this thread. If not,
6774 it will be included in a wildcard resume instead. */
6775 if (info.step || info.sig != GDB_SIGNAL_0
6776 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6777 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6778
6779 remote_thr->set_resumed ();
6780 }
6781
6782 /* Now check whether we can send any process-wide wildcard. This is
6783 to avoid sending a global wildcard in the case nothing is
6784 supposed to be resumed. */
6785 bool any_process_wildcard = false;
6786
6787 for (inferior *inf : all_non_exited_inferiors (this))
6788 {
6789 if (get_remote_inferior (inf)->may_wildcard_vcont)
6790 {
6791 any_process_wildcard = true;
6792 break;
6793 }
6794 }
6795
6796 if (any_process_wildcard)
6797 {
6798 /* If all processes are wildcard-able, then send a single "c"
6799 action, otherwise, send an "all (-1) threads of process"
6800 continue action for each running process, if any. */
6801 if (may_global_wildcard_vcont)
6802 {
6803 vcont_builder.push_action (minus_one_ptid,
6804 false, GDB_SIGNAL_0);
6805 }
6806 else
6807 {
6808 for (inferior *inf : all_non_exited_inferiors (this))
6809 {
6810 if (get_remote_inferior (inf)->may_wildcard_vcont)
6811 {
6812 vcont_builder.push_action (ptid_t (inf->pid),
6813 false, GDB_SIGNAL_0);
6814 }
6815 }
6816 }
6817 }
6818
6819 vcont_builder.flush ();
6820 }
6821
6822 /* Implementation of target_has_pending_events. */
6823
6824 bool
6825 remote_target::has_pending_events ()
6826 {
6827 if (target_can_async_p ())
6828 {
6829 remote_state *rs = get_remote_state ();
6830
6831 if (async_event_handler_marked (rs->remote_async_inferior_event_token))
6832 return true;
6833
6834 /* Note that BUFCNT can be negative, indicating sticky
6835 error. */
6836 if (rs->remote_desc->bufcnt != 0)
6837 return true;
6838 }
6839 return false;
6840 }
6841
6842 \f
6843
6844 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6845 thread, all threads of a remote process, or all threads of all
6846 processes. */
6847
6848 void
6849 remote_target::remote_stop_ns (ptid_t ptid)
6850 {
6851 struct remote_state *rs = get_remote_state ();
6852 char *p = rs->buf.data ();
6853 char *endp = p + get_remote_packet_size ();
6854
6855 /* If any thread that needs to stop was resumed but pending a vCont
6856 resume, generate a phony stop_reply. However, first check
6857 whether the thread wasn't resumed with a signal. Generating a
6858 phony stop in that case would result in losing the signal. */
6859 bool needs_commit = false;
6860 for (thread_info *tp : all_non_exited_threads (this, ptid))
6861 {
6862 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6863
6864 if (remote_thr->get_resume_state ()
6865 == resume_state::RESUMED_PENDING_VCONT)
6866 {
6867 const resumed_pending_vcont_info &info
6868 = remote_thr->resumed_pending_vcont_info ();
6869 if (info.sig != GDB_SIGNAL_0)
6870 {
6871 /* This signal must be forwarded to the inferior. We
6872 could commit-resume just this thread, but its simpler
6873 to just commit-resume everything. */
6874 needs_commit = true;
6875 break;
6876 }
6877 }
6878 }
6879
6880 if (needs_commit)
6881 commit_resumed ();
6882 else
6883 for (thread_info *tp : all_non_exited_threads (this, ptid))
6884 {
6885 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6886
6887 if (remote_thr->get_resume_state ()
6888 == resume_state::RESUMED_PENDING_VCONT)
6889 {
6890 remote_debug_printf ("Enqueueing phony stop reply for thread pending "
6891 "vCont-resume (%d, %ld, %ld)", tp->ptid.pid(),
6892 tp->ptid.lwp (), tp->ptid.tid ());
6893
6894 /* Check that the thread wasn't resumed with a signal.
6895 Generating a phony stop would result in losing the
6896 signal. */
6897 const resumed_pending_vcont_info &info
6898 = remote_thr->resumed_pending_vcont_info ();
6899 gdb_assert (info.sig == GDB_SIGNAL_0);
6900
6901 stop_reply *sr = new stop_reply ();
6902 sr->ptid = tp->ptid;
6903 sr->rs = rs;
6904 sr->ws.kind = TARGET_WAITKIND_STOPPED;
6905 sr->ws.value.sig = GDB_SIGNAL_0;
6906 sr->arch = tp->inf->gdbarch;
6907 sr->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6908 sr->watch_data_address = 0;
6909 sr->core = 0;
6910 this->push_stop_reply (sr);
6911
6912 /* Pretend that this thread was actually resumed on the
6913 remote target, then stopped. If we leave it in the
6914 RESUMED_PENDING_VCONT state and the commit_resumed
6915 method is called while the stop reply is still in the
6916 queue, we'll end up reporting a stop event to the core
6917 for that thread while it is running on the remote
6918 target... that would be bad. */
6919 remote_thr->set_resumed ();
6920 }
6921 }
6922
6923 /* FIXME: This supports_vCont_probed check is a workaround until
6924 packet_support is per-connection. */
6925 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6926 || !rs->supports_vCont_probed)
6927 remote_vcont_probe ();
6928
6929 if (!rs->supports_vCont.t)
6930 error (_("Remote server does not support stopping threads"));
6931
6932 if (ptid == minus_one_ptid
6933 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6934 p += xsnprintf (p, endp - p, "vCont;t");
6935 else
6936 {
6937 ptid_t nptid;
6938
6939 p += xsnprintf (p, endp - p, "vCont;t:");
6940
6941 if (ptid.is_pid ())
6942 /* All (-1) threads of process. */
6943 nptid = ptid_t (ptid.pid (), -1, 0);
6944 else
6945 {
6946 /* Small optimization: if we already have a stop reply for
6947 this thread, no use in telling the stub we want this
6948 stopped. */
6949 if (peek_stop_reply (ptid))
6950 return;
6951
6952 nptid = ptid;
6953 }
6954
6955 write_ptid (p, endp, nptid);
6956 }
6957
6958 /* In non-stop, we get an immediate OK reply. The stop reply will
6959 come in asynchronously by notification. */
6960 putpkt (rs->buf);
6961 getpkt (&rs->buf, 0);
6962 if (strcmp (rs->buf.data (), "OK") != 0)
6963 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6964 rs->buf.data ());
6965 }
6966
6967 /* All-stop version of target_interrupt. Sends a break or a ^C to
6968 interrupt the remote target. It is undefined which thread of which
6969 process reports the interrupt. */
6970
6971 void
6972 remote_target::remote_interrupt_as ()
6973 {
6974 struct remote_state *rs = get_remote_state ();
6975
6976 rs->ctrlc_pending_p = 1;
6977
6978 /* If the inferior is stopped already, but the core didn't know
6979 about it yet, just ignore the request. The cached wait status
6980 will be collected in remote_wait. */
6981 if (rs->cached_wait_status)
6982 return;
6983
6984 /* Send interrupt_sequence to remote target. */
6985 send_interrupt_sequence ();
6986 }
6987
6988 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6989 the remote target. It is undefined which thread of which process
6990 reports the interrupt. Throws an error if the packet is not
6991 supported by the server. */
6992
6993 void
6994 remote_target::remote_interrupt_ns ()
6995 {
6996 struct remote_state *rs = get_remote_state ();
6997 char *p = rs->buf.data ();
6998 char *endp = p + get_remote_packet_size ();
6999
7000 xsnprintf (p, endp - p, "vCtrlC");
7001
7002 /* In non-stop, we get an immediate OK reply. The stop reply will
7003 come in asynchronously by notification. */
7004 putpkt (rs->buf);
7005 getpkt (&rs->buf, 0);
7006
7007 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
7008 {
7009 case PACKET_OK:
7010 break;
7011 case PACKET_UNKNOWN:
7012 error (_("No support for interrupting the remote target."));
7013 case PACKET_ERROR:
7014 error (_("Interrupting target failed: %s"), rs->buf.data ());
7015 }
7016 }
7017
7018 /* Implement the to_stop function for the remote targets. */
7019
7020 void
7021 remote_target::stop (ptid_t ptid)
7022 {
7023 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7024
7025 if (target_is_non_stop_p ())
7026 remote_stop_ns (ptid);
7027 else
7028 {
7029 /* We don't currently have a way to transparently pause the
7030 remote target in all-stop mode. Interrupt it instead. */
7031 remote_interrupt_as ();
7032 }
7033 }
7034
7035 /* Implement the to_interrupt function for the remote targets. */
7036
7037 void
7038 remote_target::interrupt ()
7039 {
7040 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7041
7042 if (target_is_non_stop_p ())
7043 remote_interrupt_ns ();
7044 else
7045 remote_interrupt_as ();
7046 }
7047
7048 /* Implement the to_pass_ctrlc function for the remote targets. */
7049
7050 void
7051 remote_target::pass_ctrlc ()
7052 {
7053 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7054
7055 struct remote_state *rs = get_remote_state ();
7056
7057 /* If we're starting up, we're not fully synced yet. Quit
7058 immediately. */
7059 if (rs->starting_up)
7060 quit ();
7061 /* If ^C has already been sent once, offer to disconnect. */
7062 else if (rs->ctrlc_pending_p)
7063 interrupt_query ();
7064 else
7065 target_interrupt ();
7066 }
7067
7068 /* Ask the user what to do when an interrupt is received. */
7069
7070 void
7071 remote_target::interrupt_query ()
7072 {
7073 struct remote_state *rs = get_remote_state ();
7074
7075 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
7076 {
7077 if (query (_("The target is not responding to interrupt requests.\n"
7078 "Stop debugging it? ")))
7079 {
7080 remote_unpush_target (this);
7081 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
7082 }
7083 }
7084 else
7085 {
7086 if (query (_("Interrupted while waiting for the program.\n"
7087 "Give up waiting? ")))
7088 quit ();
7089 }
7090 }
7091
7092 /* Enable/disable target terminal ownership. Most targets can use
7093 terminal groups to control terminal ownership. Remote targets are
7094 different in that explicit transfer of ownership to/from GDB/target
7095 is required. */
7096
7097 void
7098 remote_target::terminal_inferior ()
7099 {
7100 /* NOTE: At this point we could also register our selves as the
7101 recipient of all input. Any characters typed could then be
7102 passed on down to the target. */
7103 }
7104
7105 void
7106 remote_target::terminal_ours ()
7107 {
7108 }
7109
7110 static void
7111 remote_console_output (const char *msg)
7112 {
7113 const char *p;
7114
7115 for (p = msg; p[0] && p[1]; p += 2)
7116 {
7117 char tb[2];
7118 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
7119
7120 tb[0] = c;
7121 tb[1] = 0;
7122 gdb_stdtarg->puts (tb);
7123 }
7124 gdb_stdtarg->flush ();
7125 }
7126
7127 /* Return the length of the stop reply queue. */
7128
7129 int
7130 remote_target::stop_reply_queue_length ()
7131 {
7132 remote_state *rs = get_remote_state ();
7133 return rs->stop_reply_queue.size ();
7134 }
7135
7136 static void
7137 remote_notif_stop_parse (remote_target *remote,
7138 struct notif_client *self, const char *buf,
7139 struct notif_event *event)
7140 {
7141 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7142 }
7143
7144 static void
7145 remote_notif_stop_ack (remote_target *remote,
7146 struct notif_client *self, const char *buf,
7147 struct notif_event *event)
7148 {
7149 struct stop_reply *stop_reply = (struct stop_reply *) event;
7150
7151 /* acknowledge */
7152 putpkt (remote, self->ack_command);
7153
7154 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7155 the notification. It was left in the queue because we need to
7156 acknowledge it and pull the rest of the notifications out. */
7157 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
7158 remote->push_stop_reply (stop_reply);
7159 }
7160
7161 static int
7162 remote_notif_stop_can_get_pending_events (remote_target *remote,
7163 struct notif_client *self)
7164 {
7165 /* We can't get pending events in remote_notif_process for
7166 notification stop, and we have to do this in remote_wait_ns
7167 instead. If we fetch all queued events from stub, remote stub
7168 may exit and we have no chance to process them back in
7169 remote_wait_ns. */
7170 remote_state *rs = remote->get_remote_state ();
7171 mark_async_event_handler (rs->remote_async_inferior_event_token);
7172 return 0;
7173 }
7174
7175 stop_reply::~stop_reply ()
7176 {
7177 for (cached_reg_t &reg : regcache)
7178 xfree (reg.data);
7179 }
7180
7181 static notif_event_up
7182 remote_notif_stop_alloc_reply ()
7183 {
7184 return notif_event_up (new struct stop_reply ());
7185 }
7186
7187 /* A client of notification Stop. */
7188
7189 struct notif_client notif_client_stop =
7190 {
7191 "Stop",
7192 "vStopped",
7193 remote_notif_stop_parse,
7194 remote_notif_stop_ack,
7195 remote_notif_stop_can_get_pending_events,
7196 remote_notif_stop_alloc_reply,
7197 REMOTE_NOTIF_STOP,
7198 };
7199
7200 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7201 the pid of the process that owns the threads we want to check, or
7202 -1 if we want to check all threads. */
7203
7204 static int
7205 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
7206 ptid_t thread_ptid)
7207 {
7208 if (ws->kind == TARGET_WAITKIND_FORKED
7209 || ws->kind == TARGET_WAITKIND_VFORKED)
7210 {
7211 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7212 return 1;
7213 }
7214
7215 return 0;
7216 }
7217
7218 /* Return the thread's pending status used to determine whether the
7219 thread is a fork parent stopped at a fork event. */
7220
7221 static struct target_waitstatus *
7222 thread_pending_fork_status (struct thread_info *thread)
7223 {
7224 if (thread->suspend.waitstatus_pending_p)
7225 return &thread->suspend.waitstatus;
7226 else
7227 return &thread->pending_follow;
7228 }
7229
7230 /* Determine if THREAD is a pending fork parent thread. */
7231
7232 static int
7233 is_pending_fork_parent_thread (struct thread_info *thread)
7234 {
7235 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7236 int pid = -1;
7237
7238 return is_pending_fork_parent (ws, pid, thread->ptid);
7239 }
7240
7241 /* If CONTEXT contains any fork child threads that have not been
7242 reported yet, remove them from the CONTEXT list. If such a
7243 thread exists it is because we are stopped at a fork catchpoint
7244 and have not yet called follow_fork, which will set up the
7245 host-side data structures for the new process. */
7246
7247 void
7248 remote_target::remove_new_fork_children (threads_listing_context *context)
7249 {
7250 int pid = -1;
7251 struct notif_client *notif = &notif_client_stop;
7252
7253 /* For any threads stopped at a fork event, remove the corresponding
7254 fork child threads from the CONTEXT list. */
7255 for (thread_info *thread : all_non_exited_threads (this))
7256 {
7257 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7258
7259 if (is_pending_fork_parent (ws, pid, thread->ptid))
7260 context->remove_thread (ws->value.related_pid);
7261 }
7262
7263 /* Check for any pending fork events (not reported or processed yet)
7264 in process PID and remove those fork child threads from the
7265 CONTEXT list as well. */
7266 remote_notif_get_pending_events (notif);
7267 for (auto &event : get_remote_state ()->stop_reply_queue)
7268 if (event->ws.kind == TARGET_WAITKIND_FORKED
7269 || event->ws.kind == TARGET_WAITKIND_VFORKED
7270 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7271 context->remove_thread (event->ws.value.related_pid);
7272 }
7273
7274 /* Check whether any event pending in the vStopped queue would prevent a
7275 global or process wildcard vCont action. Set *may_global_wildcard to
7276 false if we can't do a global wildcard (vCont;c), and clear the event
7277 inferior's may_wildcard_vcont flag if we can't do a process-wide
7278 wildcard resume (vCont;c:pPID.-1). */
7279
7280 void
7281 remote_target::check_pending_events_prevent_wildcard_vcont
7282 (bool *may_global_wildcard)
7283 {
7284 struct notif_client *notif = &notif_client_stop;
7285
7286 remote_notif_get_pending_events (notif);
7287 for (auto &event : get_remote_state ()->stop_reply_queue)
7288 {
7289 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7290 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7291 continue;
7292
7293 if (event->ws.kind == TARGET_WAITKIND_FORKED
7294 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7295 *may_global_wildcard = false;
7296
7297 /* This may be the first time we heard about this process.
7298 Regardless, we must not do a global wildcard resume, otherwise
7299 we'd resume this process too. */
7300 *may_global_wildcard = false;
7301 if (event->ptid != null_ptid)
7302 {
7303 inferior *inf = find_inferior_ptid (this, event->ptid);
7304 if (inf != NULL)
7305 get_remote_inferior (inf)->may_wildcard_vcont = false;
7306 }
7307 }
7308 }
7309
7310 /* Discard all pending stop replies of inferior INF. */
7311
7312 void
7313 remote_target::discard_pending_stop_replies (struct inferior *inf)
7314 {
7315 struct stop_reply *reply;
7316 struct remote_state *rs = get_remote_state ();
7317 struct remote_notif_state *rns = rs->notif_state;
7318
7319 /* This function can be notified when an inferior exists. When the
7320 target is not remote, the notification state is NULL. */
7321 if (rs->remote_desc == NULL)
7322 return;
7323
7324 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7325
7326 /* Discard the in-flight notification. */
7327 if (reply != NULL && reply->ptid.pid () == inf->pid)
7328 {
7329 /* Leave the notification pending, since the server expects that
7330 we acknowledge it with vStopped. But clear its contents, so
7331 that later on when we acknowledge it, we also discard it. */
7332 reply->ws.kind = TARGET_WAITKIND_IGNORE;
7333
7334 if (remote_debug)
7335 fprintf_unfiltered (gdb_stdlog,
7336 "discarded in-flight notification\n");
7337 }
7338
7339 /* Discard the stop replies we have already pulled with
7340 vStopped. */
7341 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7342 rs->stop_reply_queue.end (),
7343 [=] (const stop_reply_up &event)
7344 {
7345 return event->ptid.pid () == inf->pid;
7346 });
7347 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7348 }
7349
7350 /* Discard the stop replies for RS in stop_reply_queue. */
7351
7352 void
7353 remote_target::discard_pending_stop_replies_in_queue ()
7354 {
7355 remote_state *rs = get_remote_state ();
7356
7357 /* Discard the stop replies we have already pulled with
7358 vStopped. */
7359 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7360 rs->stop_reply_queue.end (),
7361 [=] (const stop_reply_up &event)
7362 {
7363 return event->rs == rs;
7364 });
7365 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7366 }
7367
7368 /* Remove the first reply in 'stop_reply_queue' which matches
7369 PTID. */
7370
7371 struct stop_reply *
7372 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7373 {
7374 remote_state *rs = get_remote_state ();
7375
7376 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7377 rs->stop_reply_queue.end (),
7378 [=] (const stop_reply_up &event)
7379 {
7380 return event->ptid.matches (ptid);
7381 });
7382 struct stop_reply *result;
7383 if (iter == rs->stop_reply_queue.end ())
7384 result = nullptr;
7385 else
7386 {
7387 result = iter->release ();
7388 rs->stop_reply_queue.erase (iter);
7389 }
7390
7391 if (notif_debug)
7392 fprintf_unfiltered (gdb_stdlog,
7393 "notif: discard queued event: 'Stop' in %s\n",
7394 target_pid_to_str (ptid).c_str ());
7395
7396 return result;
7397 }
7398
7399 /* Look for a queued stop reply belonging to PTID. If one is found,
7400 remove it from the queue, and return it. Returns NULL if none is
7401 found. If there are still queued events left to process, tell the
7402 event loop to get back to target_wait soon. */
7403
7404 struct stop_reply *
7405 remote_target::queued_stop_reply (ptid_t ptid)
7406 {
7407 remote_state *rs = get_remote_state ();
7408 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7409
7410 if (!rs->stop_reply_queue.empty ())
7411 {
7412 /* There's still at least an event left. */
7413 mark_async_event_handler (rs->remote_async_inferior_event_token);
7414 }
7415
7416 return r;
7417 }
7418
7419 /* Push a fully parsed stop reply in the stop reply queue. Since we
7420 know that we now have at least one queued event left to pass to the
7421 core side, tell the event loop to get back to target_wait soon. */
7422
7423 void
7424 remote_target::push_stop_reply (struct stop_reply *new_event)
7425 {
7426 remote_state *rs = get_remote_state ();
7427 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7428
7429 if (notif_debug)
7430 fprintf_unfiltered (gdb_stdlog,
7431 "notif: push 'Stop' %s to queue %d\n",
7432 target_pid_to_str (new_event->ptid).c_str (),
7433 int (rs->stop_reply_queue.size ()));
7434
7435 mark_async_event_handler (rs->remote_async_inferior_event_token);
7436 }
7437
7438 /* Returns true if we have a stop reply for PTID. */
7439
7440 int
7441 remote_target::peek_stop_reply (ptid_t ptid)
7442 {
7443 remote_state *rs = get_remote_state ();
7444 for (auto &event : rs->stop_reply_queue)
7445 if (ptid == event->ptid
7446 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7447 return 1;
7448 return 0;
7449 }
7450
7451 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7452 starting with P and ending with PEND matches PREFIX. */
7453
7454 static int
7455 strprefix (const char *p, const char *pend, const char *prefix)
7456 {
7457 for ( ; p < pend; p++, prefix++)
7458 if (*p != *prefix)
7459 return 0;
7460 return *prefix == '\0';
7461 }
7462
7463 /* Parse the stop reply in BUF. Either the function succeeds, and the
7464 result is stored in EVENT, or throws an error. */
7465
7466 void
7467 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7468 {
7469 remote_arch_state *rsa = NULL;
7470 ULONGEST addr;
7471 const char *p;
7472 int skipregs = 0;
7473
7474 event->ptid = null_ptid;
7475 event->rs = get_remote_state ();
7476 event->ws.kind = TARGET_WAITKIND_IGNORE;
7477 event->ws.value.integer = 0;
7478 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7479 event->regcache.clear ();
7480 event->core = -1;
7481
7482 switch (buf[0])
7483 {
7484 case 'T': /* Status with PC, SP, FP, ... */
7485 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7486 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7487 ss = signal number
7488 n... = register number
7489 r... = register contents
7490 */
7491
7492 p = &buf[3]; /* after Txx */
7493 while (*p)
7494 {
7495 const char *p1;
7496 int fieldsize;
7497
7498 p1 = strchr (p, ':');
7499 if (p1 == NULL)
7500 error (_("Malformed packet(a) (missing colon): %s\n\
7501 Packet: '%s'\n"),
7502 p, buf);
7503 if (p == p1)
7504 error (_("Malformed packet(a) (missing register number): %s\n\
7505 Packet: '%s'\n"),
7506 p, buf);
7507
7508 /* Some "registers" are actually extended stop information.
7509 Note if you're adding a new entry here: GDB 7.9 and
7510 earlier assume that all register "numbers" that start
7511 with an hex digit are real register numbers. Make sure
7512 the server only sends such a packet if it knows the
7513 client understands it. */
7514
7515 if (strprefix (p, p1, "thread"))
7516 event->ptid = read_ptid (++p1, &p);
7517 else if (strprefix (p, p1, "syscall_entry"))
7518 {
7519 ULONGEST sysno;
7520
7521 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7522 p = unpack_varlen_hex (++p1, &sysno);
7523 event->ws.value.syscall_number = (int) sysno;
7524 }
7525 else if (strprefix (p, p1, "syscall_return"))
7526 {
7527 ULONGEST sysno;
7528
7529 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7530 p = unpack_varlen_hex (++p1, &sysno);
7531 event->ws.value.syscall_number = (int) sysno;
7532 }
7533 else if (strprefix (p, p1, "watch")
7534 || strprefix (p, p1, "rwatch")
7535 || strprefix (p, p1, "awatch"))
7536 {
7537 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7538 p = unpack_varlen_hex (++p1, &addr);
7539 event->watch_data_address = (CORE_ADDR) addr;
7540 }
7541 else if (strprefix (p, p1, "swbreak"))
7542 {
7543 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7544
7545 /* Make sure the stub doesn't forget to indicate support
7546 with qSupported. */
7547 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7548 error (_("Unexpected swbreak stop reason"));
7549
7550 /* The value part is documented as "must be empty",
7551 though we ignore it, in case we ever decide to make
7552 use of it in a backward compatible way. */
7553 p = strchrnul (p1 + 1, ';');
7554 }
7555 else if (strprefix (p, p1, "hwbreak"))
7556 {
7557 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7558
7559 /* Make sure the stub doesn't forget to indicate support
7560 with qSupported. */
7561 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7562 error (_("Unexpected hwbreak stop reason"));
7563
7564 /* See above. */
7565 p = strchrnul (p1 + 1, ';');
7566 }
7567 else if (strprefix (p, p1, "library"))
7568 {
7569 event->ws.kind = TARGET_WAITKIND_LOADED;
7570 p = strchrnul (p1 + 1, ';');
7571 }
7572 else if (strprefix (p, p1, "replaylog"))
7573 {
7574 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7575 /* p1 will indicate "begin" or "end", but it makes
7576 no difference for now, so ignore it. */
7577 p = strchrnul (p1 + 1, ';');
7578 }
7579 else if (strprefix (p, p1, "core"))
7580 {
7581 ULONGEST c;
7582
7583 p = unpack_varlen_hex (++p1, &c);
7584 event->core = c;
7585 }
7586 else if (strprefix (p, p1, "fork"))
7587 {
7588 event->ws.value.related_pid = read_ptid (++p1, &p);
7589 event->ws.kind = TARGET_WAITKIND_FORKED;
7590 }
7591 else if (strprefix (p, p1, "vfork"))
7592 {
7593 event->ws.value.related_pid = read_ptid (++p1, &p);
7594 event->ws.kind = TARGET_WAITKIND_VFORKED;
7595 }
7596 else if (strprefix (p, p1, "vforkdone"))
7597 {
7598 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7599 p = strchrnul (p1 + 1, ';');
7600 }
7601 else if (strprefix (p, p1, "exec"))
7602 {
7603 ULONGEST ignored;
7604 int pathlen;
7605
7606 /* Determine the length of the execd pathname. */
7607 p = unpack_varlen_hex (++p1, &ignored);
7608 pathlen = (p - p1) / 2;
7609
7610 /* Save the pathname for event reporting and for
7611 the next run command. */
7612 gdb::unique_xmalloc_ptr<char[]> pathname
7613 ((char *) xmalloc (pathlen + 1));
7614 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7615 pathname[pathlen] = '\0';
7616
7617 /* This is freed during event handling. */
7618 event->ws.value.execd_pathname = pathname.release ();
7619 event->ws.kind = TARGET_WAITKIND_EXECD;
7620
7621 /* Skip the registers included in this packet, since
7622 they may be for an architecture different from the
7623 one used by the original program. */
7624 skipregs = 1;
7625 }
7626 else if (strprefix (p, p1, "create"))
7627 {
7628 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7629 p = strchrnul (p1 + 1, ';');
7630 }
7631 else
7632 {
7633 ULONGEST pnum;
7634 const char *p_temp;
7635
7636 if (skipregs)
7637 {
7638 p = strchrnul (p1 + 1, ';');
7639 p++;
7640 continue;
7641 }
7642
7643 /* Maybe a real ``P'' register number. */
7644 p_temp = unpack_varlen_hex (p, &pnum);
7645 /* If the first invalid character is the colon, we got a
7646 register number. Otherwise, it's an unknown stop
7647 reason. */
7648 if (p_temp == p1)
7649 {
7650 /* If we haven't parsed the event's thread yet, find
7651 it now, in order to find the architecture of the
7652 reported expedited registers. */
7653 if (event->ptid == null_ptid)
7654 {
7655 /* If there is no thread-id information then leave
7656 the event->ptid as null_ptid. Later in
7657 process_stop_reply we will pick a suitable
7658 thread. */
7659 const char *thr = strstr (p1 + 1, ";thread:");
7660 if (thr != NULL)
7661 event->ptid = read_ptid (thr + strlen (";thread:"),
7662 NULL);
7663 }
7664
7665 if (rsa == NULL)
7666 {
7667 inferior *inf
7668 = (event->ptid == null_ptid
7669 ? NULL
7670 : find_inferior_ptid (this, event->ptid));
7671 /* If this is the first time we learn anything
7672 about this process, skip the registers
7673 included in this packet, since we don't yet
7674 know which architecture to use to parse them.
7675 We'll determine the architecture later when
7676 we process the stop reply and retrieve the
7677 target description, via
7678 remote_notice_new_inferior ->
7679 post_create_inferior. */
7680 if (inf == NULL)
7681 {
7682 p = strchrnul (p1 + 1, ';');
7683 p++;
7684 continue;
7685 }
7686
7687 event->arch = inf->gdbarch;
7688 rsa = event->rs->get_remote_arch_state (event->arch);
7689 }
7690
7691 packet_reg *reg
7692 = packet_reg_from_pnum (event->arch, rsa, pnum);
7693 cached_reg_t cached_reg;
7694
7695 if (reg == NULL)
7696 error (_("Remote sent bad register number %s: %s\n\
7697 Packet: '%s'\n"),
7698 hex_string (pnum), p, buf);
7699
7700 cached_reg.num = reg->regnum;
7701 cached_reg.data = (gdb_byte *)
7702 xmalloc (register_size (event->arch, reg->regnum));
7703
7704 p = p1 + 1;
7705 fieldsize = hex2bin (p, cached_reg.data,
7706 register_size (event->arch, reg->regnum));
7707 p += 2 * fieldsize;
7708 if (fieldsize < register_size (event->arch, reg->regnum))
7709 warning (_("Remote reply is too short: %s"), buf);
7710
7711 event->regcache.push_back (cached_reg);
7712 }
7713 else
7714 {
7715 /* Not a number. Silently skip unknown optional
7716 info. */
7717 p = strchrnul (p1 + 1, ';');
7718 }
7719 }
7720
7721 if (*p != ';')
7722 error (_("Remote register badly formatted: %s\nhere: %s"),
7723 buf, p);
7724 ++p;
7725 }
7726
7727 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7728 break;
7729
7730 /* fall through */
7731 case 'S': /* Old style status, just signal only. */
7732 {
7733 int sig;
7734
7735 event->ws.kind = TARGET_WAITKIND_STOPPED;
7736 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7737 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7738 event->ws.value.sig = (enum gdb_signal) sig;
7739 else
7740 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7741 }
7742 break;
7743 case 'w': /* Thread exited. */
7744 {
7745 ULONGEST value;
7746
7747 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7748 p = unpack_varlen_hex (&buf[1], &value);
7749 event->ws.value.integer = value;
7750 if (*p != ';')
7751 error (_("stop reply packet badly formatted: %s"), buf);
7752 event->ptid = read_ptid (++p, NULL);
7753 break;
7754 }
7755 case 'W': /* Target exited. */
7756 case 'X':
7757 {
7758 ULONGEST value;
7759
7760 /* GDB used to accept only 2 hex chars here. Stubs should
7761 only send more if they detect GDB supports multi-process
7762 support. */
7763 p = unpack_varlen_hex (&buf[1], &value);
7764
7765 if (buf[0] == 'W')
7766 {
7767 /* The remote process exited. */
7768 event->ws.kind = TARGET_WAITKIND_EXITED;
7769 event->ws.value.integer = value;
7770 }
7771 else
7772 {
7773 /* The remote process exited with a signal. */
7774 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7775 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7776 event->ws.value.sig = (enum gdb_signal) value;
7777 else
7778 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7779 }
7780
7781 /* If no process is specified, return null_ptid, and let the
7782 caller figure out the right process to use. */
7783 int pid = 0;
7784 if (*p == '\0')
7785 ;
7786 else if (*p == ';')
7787 {
7788 p++;
7789
7790 if (*p == '\0')
7791 ;
7792 else if (startswith (p, "process:"))
7793 {
7794 ULONGEST upid;
7795
7796 p += sizeof ("process:") - 1;
7797 unpack_varlen_hex (p, &upid);
7798 pid = upid;
7799 }
7800 else
7801 error (_("unknown stop reply packet: %s"), buf);
7802 }
7803 else
7804 error (_("unknown stop reply packet: %s"), buf);
7805 event->ptid = ptid_t (pid);
7806 }
7807 break;
7808 case 'N':
7809 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7810 event->ptid = minus_one_ptid;
7811 break;
7812 }
7813 }
7814
7815 /* When the stub wants to tell GDB about a new notification reply, it
7816 sends a notification (%Stop, for example). Those can come it at
7817 any time, hence, we have to make sure that any pending
7818 putpkt/getpkt sequence we're making is finished, before querying
7819 the stub for more events with the corresponding ack command
7820 (vStopped, for example). E.g., if we started a vStopped sequence
7821 immediately upon receiving the notification, something like this
7822 could happen:
7823
7824 1.1) --> Hg 1
7825 1.2) <-- OK
7826 1.3) --> g
7827 1.4) <-- %Stop
7828 1.5) --> vStopped
7829 1.6) <-- (registers reply to step #1.3)
7830
7831 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7832 query.
7833
7834 To solve this, whenever we parse a %Stop notification successfully,
7835 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7836 doing whatever we were doing:
7837
7838 2.1) --> Hg 1
7839 2.2) <-- OK
7840 2.3) --> g
7841 2.4) <-- %Stop
7842 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7843 2.5) <-- (registers reply to step #2.3)
7844
7845 Eventually after step #2.5, we return to the event loop, which
7846 notices there's an event on the
7847 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7848 associated callback --- the function below. At this point, we're
7849 always safe to start a vStopped sequence. :
7850
7851 2.6) --> vStopped
7852 2.7) <-- T05 thread:2
7853 2.8) --> vStopped
7854 2.9) --> OK
7855 */
7856
7857 void
7858 remote_target::remote_notif_get_pending_events (notif_client *nc)
7859 {
7860 struct remote_state *rs = get_remote_state ();
7861
7862 if (rs->notif_state->pending_event[nc->id] != NULL)
7863 {
7864 if (notif_debug)
7865 fprintf_unfiltered (gdb_stdlog,
7866 "notif: process: '%s' ack pending event\n",
7867 nc->name);
7868
7869 /* acknowledge */
7870 nc->ack (this, nc, rs->buf.data (),
7871 rs->notif_state->pending_event[nc->id]);
7872 rs->notif_state->pending_event[nc->id] = NULL;
7873
7874 while (1)
7875 {
7876 getpkt (&rs->buf, 0);
7877 if (strcmp (rs->buf.data (), "OK") == 0)
7878 break;
7879 else
7880 remote_notif_ack (this, nc, rs->buf.data ());
7881 }
7882 }
7883 else
7884 {
7885 if (notif_debug)
7886 fprintf_unfiltered (gdb_stdlog,
7887 "notif: process: '%s' no pending reply\n",
7888 nc->name);
7889 }
7890 }
7891
7892 /* Wrapper around remote_target::remote_notif_get_pending_events to
7893 avoid having to export the whole remote_target class. */
7894
7895 void
7896 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7897 {
7898 remote->remote_notif_get_pending_events (nc);
7899 }
7900
7901 /* Called from process_stop_reply when the stop packet we are responding
7902 to didn't include a process-id or thread-id. STATUS is the stop event
7903 we are responding to.
7904
7905 It is the task of this function to select a suitable thread (or process)
7906 and return its ptid, this is the thread (or process) we will assume the
7907 stop event came from.
7908
7909 In some cases there isn't really any choice about which thread (or
7910 process) is selected, a basic remote with a single process containing a
7911 single thread might choose not to send any process-id or thread-id in
7912 its stop packets, this function will select and return the one and only
7913 thread.
7914
7915 However, if a target supports multiple threads (or processes) and still
7916 doesn't include a thread-id (or process-id) in its stop packet then
7917 first, this is a badly behaving target, and second, we're going to have
7918 to select a thread (or process) at random and use that. This function
7919 will print a warning to the user if it detects that there is the
7920 possibility that GDB is guessing which thread (or process) to
7921 report.
7922
7923 Note that this is called before GDB fetches the updated thread list from the
7924 target. So it's possible for the stop reply to be ambiguous and for GDB to
7925 not realize it. For example, if there's initially one thread, the target
7926 spawns a second thread, and then sends a stop reply without an id that
7927 concerns the first thread. GDB will assume the stop reply is about the
7928 first thread - the only thread it knows about - without printing a warning.
7929 Anyway, if the remote meant for the stop reply to be about the second thread,
7930 then it would be really broken, because GDB doesn't know about that thread
7931 yet. */
7932
7933 ptid_t
7934 remote_target::select_thread_for_ambiguous_stop_reply
7935 (const struct target_waitstatus *status)
7936 {
7937 /* Some stop events apply to all threads in an inferior, while others
7938 only apply to a single thread. */
7939 bool process_wide_stop
7940 = (status->kind == TARGET_WAITKIND_EXITED
7941 || status->kind == TARGET_WAITKIND_SIGNALLED);
7942
7943 thread_info *first_resumed_thread = nullptr;
7944 bool ambiguous = false;
7945
7946 /* Consider all non-exited threads of the target, find the first resumed
7947 one. */
7948 for (thread_info *thr : all_non_exited_threads (this))
7949 {
7950 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7951
7952 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7953 continue;
7954
7955 if (first_resumed_thread == nullptr)
7956 first_resumed_thread = thr;
7957 else if (!process_wide_stop
7958 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7959 ambiguous = true;
7960 }
7961
7962 gdb_assert (first_resumed_thread != nullptr);
7963
7964 /* Warn if the remote target is sending ambiguous stop replies. */
7965 if (ambiguous)
7966 {
7967 static bool warned = false;
7968
7969 if (!warned)
7970 {
7971 /* If you are seeing this warning then the remote target has
7972 stopped without specifying a thread-id, but the target
7973 does have multiple threads (or inferiors), and so GDB is
7974 having to guess which thread stopped.
7975
7976 Examples of what might cause this are the target sending
7977 and 'S' stop packet, or a 'T' stop packet and not
7978 including a thread-id.
7979
7980 Additionally, the target might send a 'W' or 'X packet
7981 without including a process-id, when the target has
7982 multiple running inferiors. */
7983 if (process_wide_stop)
7984 warning (_("multi-inferior target stopped without "
7985 "sending a process-id, using first "
7986 "non-exited inferior"));
7987 else
7988 warning (_("multi-threaded target stopped without "
7989 "sending a thread-id, using first "
7990 "non-exited thread"));
7991 warned = true;
7992 }
7993 }
7994
7995 /* If this is a stop for all threads then don't use a particular threads
7996 ptid, instead create a new ptid where only the pid field is set. */
7997 if (process_wide_stop)
7998 return ptid_t (first_resumed_thread->ptid.pid ());
7999 else
8000 return first_resumed_thread->ptid;
8001 }
8002
8003 /* Called when it is decided that STOP_REPLY holds the info of the
8004 event that is to be returned to the core. This function always
8005 destroys STOP_REPLY. */
8006
8007 ptid_t
8008 remote_target::process_stop_reply (struct stop_reply *stop_reply,
8009 struct target_waitstatus *status)
8010 {
8011 *status = stop_reply->ws;
8012 ptid_t ptid = stop_reply->ptid;
8013
8014 /* If no thread/process was reported by the stub then select a suitable
8015 thread/process. */
8016 if (ptid == null_ptid)
8017 ptid = select_thread_for_ambiguous_stop_reply (status);
8018 gdb_assert (ptid != null_ptid);
8019
8020 if (status->kind != TARGET_WAITKIND_EXITED
8021 && status->kind != TARGET_WAITKIND_SIGNALLED
8022 && status->kind != TARGET_WAITKIND_NO_RESUMED)
8023 {
8024 /* Expedited registers. */
8025 if (!stop_reply->regcache.empty ())
8026 {
8027 struct regcache *regcache
8028 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
8029
8030 for (cached_reg_t &reg : stop_reply->regcache)
8031 {
8032 regcache->raw_supply (reg.num, reg.data);
8033 xfree (reg.data);
8034 }
8035
8036 stop_reply->regcache.clear ();
8037 }
8038
8039 remote_notice_new_inferior (ptid, false);
8040 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
8041 remote_thr->core = stop_reply->core;
8042 remote_thr->stop_reason = stop_reply->stop_reason;
8043 remote_thr->watch_data_address = stop_reply->watch_data_address;
8044
8045 if (target_is_non_stop_p ())
8046 {
8047 /* If the target works in non-stop mode, a stop-reply indicates that
8048 only this thread stopped. */
8049 remote_thr->set_not_resumed ();
8050 }
8051 else
8052 {
8053 /* If the target works in all-stop mode, a stop-reply indicates that
8054 all the target's threads stopped. */
8055 for (thread_info *tp : all_non_exited_threads (this))
8056 get_remote_thread_info (tp)->set_not_resumed ();
8057 }
8058 }
8059
8060 delete stop_reply;
8061 return ptid;
8062 }
8063
8064 /* The non-stop mode version of target_wait. */
8065
8066 ptid_t
8067 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
8068 target_wait_flags options)
8069 {
8070 struct remote_state *rs = get_remote_state ();
8071 struct stop_reply *stop_reply;
8072 int ret;
8073 int is_notif = 0;
8074
8075 /* If in non-stop mode, get out of getpkt even if a
8076 notification is received. */
8077
8078 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
8079 while (1)
8080 {
8081 if (ret != -1 && !is_notif)
8082 switch (rs->buf[0])
8083 {
8084 case 'E': /* Error of some sort. */
8085 /* We're out of sync with the target now. Did it continue
8086 or not? We can't tell which thread it was in non-stop,
8087 so just ignore this. */
8088 warning (_("Remote failure reply: %s"), rs->buf.data ());
8089 break;
8090 case 'O': /* Console output. */
8091 remote_console_output (&rs->buf[1]);
8092 break;
8093 default:
8094 warning (_("Invalid remote reply: %s"), rs->buf.data ());
8095 break;
8096 }
8097
8098 /* Acknowledge a pending stop reply that may have arrived in the
8099 mean time. */
8100 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
8101 remote_notif_get_pending_events (&notif_client_stop);
8102
8103 /* If indeed we noticed a stop reply, we're done. */
8104 stop_reply = queued_stop_reply (ptid);
8105 if (stop_reply != NULL)
8106 return process_stop_reply (stop_reply, status);
8107
8108 /* Still no event. If we're just polling for an event, then
8109 return to the event loop. */
8110 if (options & TARGET_WNOHANG)
8111 {
8112 status->kind = TARGET_WAITKIND_IGNORE;
8113 return minus_one_ptid;
8114 }
8115
8116 /* Otherwise do a blocking wait. */
8117 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
8118 }
8119 }
8120
8121 /* Return the first resumed thread. */
8122
8123 static ptid_t
8124 first_remote_resumed_thread (remote_target *target)
8125 {
8126 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
8127 if (tp->resumed)
8128 return tp->ptid;
8129 return null_ptid;
8130 }
8131
8132 /* Wait until the remote machine stops, then return, storing status in
8133 STATUS just as `wait' would. */
8134
8135 ptid_t
8136 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8137 target_wait_flags options)
8138 {
8139 struct remote_state *rs = get_remote_state ();
8140 ptid_t event_ptid = null_ptid;
8141 char *buf;
8142 struct stop_reply *stop_reply;
8143
8144 again:
8145
8146 status->kind = TARGET_WAITKIND_IGNORE;
8147 status->value.integer = 0;
8148
8149 stop_reply = queued_stop_reply (ptid);
8150 if (stop_reply != NULL)
8151 return process_stop_reply (stop_reply, status);
8152
8153 if (rs->cached_wait_status)
8154 /* Use the cached wait status, but only once. */
8155 rs->cached_wait_status = 0;
8156 else
8157 {
8158 int ret;
8159 int is_notif;
8160 int forever = ((options & TARGET_WNOHANG) == 0
8161 && rs->wait_forever_enabled_p);
8162
8163 if (!rs->waiting_for_stop_reply)
8164 {
8165 status->kind = TARGET_WAITKIND_NO_RESUMED;
8166 return minus_one_ptid;
8167 }
8168
8169 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8170 _never_ wait for ever -> test on target_is_async_p().
8171 However, before we do that we need to ensure that the caller
8172 knows how to take the target into/out of async mode. */
8173 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8174
8175 /* GDB gets a notification. Return to core as this event is
8176 not interesting. */
8177 if (ret != -1 && is_notif)
8178 return minus_one_ptid;
8179
8180 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8181 return minus_one_ptid;
8182 }
8183
8184 buf = rs->buf.data ();
8185
8186 /* Assume that the target has acknowledged Ctrl-C unless we receive
8187 an 'F' or 'O' packet. */
8188 if (buf[0] != 'F' && buf[0] != 'O')
8189 rs->ctrlc_pending_p = 0;
8190
8191 switch (buf[0])
8192 {
8193 case 'E': /* Error of some sort. */
8194 /* We're out of sync with the target now. Did it continue or
8195 not? Not is more likely, so report a stop. */
8196 rs->waiting_for_stop_reply = 0;
8197
8198 warning (_("Remote failure reply: %s"), buf);
8199 status->kind = TARGET_WAITKIND_STOPPED;
8200 status->value.sig = GDB_SIGNAL_0;
8201 break;
8202 case 'F': /* File-I/O request. */
8203 /* GDB may access the inferior memory while handling the File-I/O
8204 request, but we don't want GDB accessing memory while waiting
8205 for a stop reply. See the comments in putpkt_binary. Set
8206 waiting_for_stop_reply to 0 temporarily. */
8207 rs->waiting_for_stop_reply = 0;
8208 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8209 rs->ctrlc_pending_p = 0;
8210 /* GDB handled the File-I/O request, and the target is running
8211 again. Keep waiting for events. */
8212 rs->waiting_for_stop_reply = 1;
8213 break;
8214 case 'N': case 'T': case 'S': case 'X': case 'W':
8215 {
8216 /* There is a stop reply to handle. */
8217 rs->waiting_for_stop_reply = 0;
8218
8219 stop_reply
8220 = (struct stop_reply *) remote_notif_parse (this,
8221 &notif_client_stop,
8222 rs->buf.data ());
8223
8224 event_ptid = process_stop_reply (stop_reply, status);
8225 break;
8226 }
8227 case 'O': /* Console output. */
8228 remote_console_output (buf + 1);
8229 break;
8230 case '\0':
8231 if (rs->last_sent_signal != GDB_SIGNAL_0)
8232 {
8233 /* Zero length reply means that we tried 'S' or 'C' and the
8234 remote system doesn't support it. */
8235 target_terminal::ours_for_output ();
8236 printf_filtered
8237 ("Can't send signals to this remote system. %s not sent.\n",
8238 gdb_signal_to_name (rs->last_sent_signal));
8239 rs->last_sent_signal = GDB_SIGNAL_0;
8240 target_terminal::inferior ();
8241
8242 strcpy (buf, rs->last_sent_step ? "s" : "c");
8243 putpkt (buf);
8244 break;
8245 }
8246 /* fallthrough */
8247 default:
8248 warning (_("Invalid remote reply: %s"), buf);
8249 break;
8250 }
8251
8252 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
8253 return minus_one_ptid;
8254 else if (status->kind == TARGET_WAITKIND_IGNORE)
8255 {
8256 /* Nothing interesting happened. If we're doing a non-blocking
8257 poll, we're done. Otherwise, go back to waiting. */
8258 if (options & TARGET_WNOHANG)
8259 return minus_one_ptid;
8260 else
8261 goto again;
8262 }
8263 else if (status->kind != TARGET_WAITKIND_EXITED
8264 && status->kind != TARGET_WAITKIND_SIGNALLED)
8265 {
8266 if (event_ptid != null_ptid)
8267 record_currthread (rs, event_ptid);
8268 else
8269 event_ptid = first_remote_resumed_thread (this);
8270 }
8271 else
8272 {
8273 /* A process exit. Invalidate our notion of current thread. */
8274 record_currthread (rs, minus_one_ptid);
8275 /* It's possible that the packet did not include a pid. */
8276 if (event_ptid == null_ptid)
8277 event_ptid = first_remote_resumed_thread (this);
8278 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8279 if (event_ptid == null_ptid)
8280 event_ptid = magic_null_ptid;
8281 }
8282
8283 return event_ptid;
8284 }
8285
8286 /* Wait until the remote machine stops, then return, storing status in
8287 STATUS just as `wait' would. */
8288
8289 ptid_t
8290 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8291 target_wait_flags options)
8292 {
8293 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8294
8295 remote_state *rs = get_remote_state ();
8296
8297 /* Start by clearing the flag that asks for our wait method to be called,
8298 we'll mark it again at the end if needed. */
8299 if (target_is_async_p ())
8300 clear_async_event_handler (rs->remote_async_inferior_event_token);
8301
8302 ptid_t event_ptid;
8303
8304 if (target_is_non_stop_p ())
8305 event_ptid = wait_ns (ptid, status, options);
8306 else
8307 event_ptid = wait_as (ptid, status, options);
8308
8309 if (target_is_async_p ())
8310 {
8311 /* If there are events left in the queue, or unacknowledged
8312 notifications, then tell the event loop to call us again. */
8313 if (!rs->stop_reply_queue.empty ()
8314 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8315 mark_async_event_handler (rs->remote_async_inferior_event_token);
8316 }
8317
8318 return event_ptid;
8319 }
8320
8321 /* Fetch a single register using a 'p' packet. */
8322
8323 int
8324 remote_target::fetch_register_using_p (struct regcache *regcache,
8325 packet_reg *reg)
8326 {
8327 struct gdbarch *gdbarch = regcache->arch ();
8328 struct remote_state *rs = get_remote_state ();
8329 char *buf, *p;
8330 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8331 int i;
8332
8333 if (packet_support (PACKET_p) == PACKET_DISABLE)
8334 return 0;
8335
8336 if (reg->pnum == -1)
8337 return 0;
8338
8339 p = rs->buf.data ();
8340 *p++ = 'p';
8341 p += hexnumstr (p, reg->pnum);
8342 *p++ = '\0';
8343 putpkt (rs->buf);
8344 getpkt (&rs->buf, 0);
8345
8346 buf = rs->buf.data ();
8347
8348 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8349 {
8350 case PACKET_OK:
8351 break;
8352 case PACKET_UNKNOWN:
8353 return 0;
8354 case PACKET_ERROR:
8355 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8356 gdbarch_register_name (regcache->arch (),
8357 reg->regnum),
8358 buf);
8359 }
8360
8361 /* If this register is unfetchable, tell the regcache. */
8362 if (buf[0] == 'x')
8363 {
8364 regcache->raw_supply (reg->regnum, NULL);
8365 return 1;
8366 }
8367
8368 /* Otherwise, parse and supply the value. */
8369 p = buf;
8370 i = 0;
8371 while (p[0] != 0)
8372 {
8373 if (p[1] == 0)
8374 error (_("fetch_register_using_p: early buf termination"));
8375
8376 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8377 p += 2;
8378 }
8379 regcache->raw_supply (reg->regnum, regp);
8380 return 1;
8381 }
8382
8383 /* Fetch the registers included in the target's 'g' packet. */
8384
8385 int
8386 remote_target::send_g_packet ()
8387 {
8388 struct remote_state *rs = get_remote_state ();
8389 int buf_len;
8390
8391 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8392 putpkt (rs->buf);
8393 getpkt (&rs->buf, 0);
8394 if (packet_check_result (rs->buf) == PACKET_ERROR)
8395 error (_("Could not read registers; remote failure reply '%s'"),
8396 rs->buf.data ());
8397
8398 /* We can get out of synch in various cases. If the first character
8399 in the buffer is not a hex character, assume that has happened
8400 and try to fetch another packet to read. */
8401 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8402 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8403 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8404 && rs->buf[0] != 'x') /* New: unavailable register value. */
8405 {
8406 remote_debug_printf ("Bad register packet; fetching a new packet");
8407 getpkt (&rs->buf, 0);
8408 }
8409
8410 buf_len = strlen (rs->buf.data ());
8411
8412 /* Sanity check the received packet. */
8413 if (buf_len % 2 != 0)
8414 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8415
8416 return buf_len / 2;
8417 }
8418
8419 void
8420 remote_target::process_g_packet (struct regcache *regcache)
8421 {
8422 struct gdbarch *gdbarch = regcache->arch ();
8423 struct remote_state *rs = get_remote_state ();
8424 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8425 int i, buf_len;
8426 char *p;
8427 char *regs;
8428
8429 buf_len = strlen (rs->buf.data ());
8430
8431 /* Further sanity checks, with knowledge of the architecture. */
8432 if (buf_len > 2 * rsa->sizeof_g_packet)
8433 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8434 "bytes): %s"),
8435 rsa->sizeof_g_packet, buf_len / 2,
8436 rs->buf.data ());
8437
8438 /* Save the size of the packet sent to us by the target. It is used
8439 as a heuristic when determining the max size of packets that the
8440 target can safely receive. */
8441 if (rsa->actual_register_packet_size == 0)
8442 rsa->actual_register_packet_size = buf_len;
8443
8444 /* If this is smaller than we guessed the 'g' packet would be,
8445 update our records. A 'g' reply that doesn't include a register's
8446 value implies either that the register is not available, or that
8447 the 'p' packet must be used. */
8448 if (buf_len < 2 * rsa->sizeof_g_packet)
8449 {
8450 long sizeof_g_packet = buf_len / 2;
8451
8452 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8453 {
8454 long offset = rsa->regs[i].offset;
8455 long reg_size = register_size (gdbarch, i);
8456
8457 if (rsa->regs[i].pnum == -1)
8458 continue;
8459
8460 if (offset >= sizeof_g_packet)
8461 rsa->regs[i].in_g_packet = 0;
8462 else if (offset + reg_size > sizeof_g_packet)
8463 error (_("Truncated register %d in remote 'g' packet"), i);
8464 else
8465 rsa->regs[i].in_g_packet = 1;
8466 }
8467
8468 /* Looks valid enough, we can assume this is the correct length
8469 for a 'g' packet. It's important not to adjust
8470 rsa->sizeof_g_packet if we have truncated registers otherwise
8471 this "if" won't be run the next time the method is called
8472 with a packet of the same size and one of the internal errors
8473 below will trigger instead. */
8474 rsa->sizeof_g_packet = sizeof_g_packet;
8475 }
8476
8477 regs = (char *) alloca (rsa->sizeof_g_packet);
8478
8479 /* Unimplemented registers read as all bits zero. */
8480 memset (regs, 0, rsa->sizeof_g_packet);
8481
8482 /* Reply describes registers byte by byte, each byte encoded as two
8483 hex characters. Suck them all up, then supply them to the
8484 register cacheing/storage mechanism. */
8485
8486 p = rs->buf.data ();
8487 for (i = 0; i < rsa->sizeof_g_packet; i++)
8488 {
8489 if (p[0] == 0 || p[1] == 0)
8490 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8491 internal_error (__FILE__, __LINE__,
8492 _("unexpected end of 'g' packet reply"));
8493
8494 if (p[0] == 'x' && p[1] == 'x')
8495 regs[i] = 0; /* 'x' */
8496 else
8497 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8498 p += 2;
8499 }
8500
8501 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8502 {
8503 struct packet_reg *r = &rsa->regs[i];
8504 long reg_size = register_size (gdbarch, i);
8505
8506 if (r->in_g_packet)
8507 {
8508 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8509 /* This shouldn't happen - we adjusted in_g_packet above. */
8510 internal_error (__FILE__, __LINE__,
8511 _("unexpected end of 'g' packet reply"));
8512 else if (rs->buf[r->offset * 2] == 'x')
8513 {
8514 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8515 /* The register isn't available, mark it as such (at
8516 the same time setting the value to zero). */
8517 regcache->raw_supply (r->regnum, NULL);
8518 }
8519 else
8520 regcache->raw_supply (r->regnum, regs + r->offset);
8521 }
8522 }
8523 }
8524
8525 void
8526 remote_target::fetch_registers_using_g (struct regcache *regcache)
8527 {
8528 send_g_packet ();
8529 process_g_packet (regcache);
8530 }
8531
8532 /* Make the remote selected traceframe match GDB's selected
8533 traceframe. */
8534
8535 void
8536 remote_target::set_remote_traceframe ()
8537 {
8538 int newnum;
8539 struct remote_state *rs = get_remote_state ();
8540
8541 if (rs->remote_traceframe_number == get_traceframe_number ())
8542 return;
8543
8544 /* Avoid recursion, remote_trace_find calls us again. */
8545 rs->remote_traceframe_number = get_traceframe_number ();
8546
8547 newnum = target_trace_find (tfind_number,
8548 get_traceframe_number (), 0, 0, NULL);
8549
8550 /* Should not happen. If it does, all bets are off. */
8551 if (newnum != get_traceframe_number ())
8552 warning (_("could not set remote traceframe"));
8553 }
8554
8555 void
8556 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8557 {
8558 struct gdbarch *gdbarch = regcache->arch ();
8559 struct remote_state *rs = get_remote_state ();
8560 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8561 int i;
8562
8563 set_remote_traceframe ();
8564 set_general_thread (regcache->ptid ());
8565
8566 if (regnum >= 0)
8567 {
8568 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8569
8570 gdb_assert (reg != NULL);
8571
8572 /* If this register might be in the 'g' packet, try that first -
8573 we are likely to read more than one register. If this is the
8574 first 'g' packet, we might be overly optimistic about its
8575 contents, so fall back to 'p'. */
8576 if (reg->in_g_packet)
8577 {
8578 fetch_registers_using_g (regcache);
8579 if (reg->in_g_packet)
8580 return;
8581 }
8582
8583 if (fetch_register_using_p (regcache, reg))
8584 return;
8585
8586 /* This register is not available. */
8587 regcache->raw_supply (reg->regnum, NULL);
8588
8589 return;
8590 }
8591
8592 fetch_registers_using_g (regcache);
8593
8594 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8595 if (!rsa->regs[i].in_g_packet)
8596 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8597 {
8598 /* This register is not available. */
8599 regcache->raw_supply (i, NULL);
8600 }
8601 }
8602
8603 /* Prepare to store registers. Since we may send them all (using a
8604 'G' request), we have to read out the ones we don't want to change
8605 first. */
8606
8607 void
8608 remote_target::prepare_to_store (struct regcache *regcache)
8609 {
8610 struct remote_state *rs = get_remote_state ();
8611 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8612 int i;
8613
8614 /* Make sure the entire registers array is valid. */
8615 switch (packet_support (PACKET_P))
8616 {
8617 case PACKET_DISABLE:
8618 case PACKET_SUPPORT_UNKNOWN:
8619 /* Make sure all the necessary registers are cached. */
8620 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8621 if (rsa->regs[i].in_g_packet)
8622 regcache->raw_update (rsa->regs[i].regnum);
8623 break;
8624 case PACKET_ENABLE:
8625 break;
8626 }
8627 }
8628
8629 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8630 packet was not recognized. */
8631
8632 int
8633 remote_target::store_register_using_P (const struct regcache *regcache,
8634 packet_reg *reg)
8635 {
8636 struct gdbarch *gdbarch = regcache->arch ();
8637 struct remote_state *rs = get_remote_state ();
8638 /* Try storing a single register. */
8639 char *buf = rs->buf.data ();
8640 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8641 char *p;
8642
8643 if (packet_support (PACKET_P) == PACKET_DISABLE)
8644 return 0;
8645
8646 if (reg->pnum == -1)
8647 return 0;
8648
8649 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8650 p = buf + strlen (buf);
8651 regcache->raw_collect (reg->regnum, regp);
8652 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8653 putpkt (rs->buf);
8654 getpkt (&rs->buf, 0);
8655
8656 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8657 {
8658 case PACKET_OK:
8659 return 1;
8660 case PACKET_ERROR:
8661 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8662 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8663 case PACKET_UNKNOWN:
8664 return 0;
8665 default:
8666 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8667 }
8668 }
8669
8670 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8671 contents of the register cache buffer. FIXME: ignores errors. */
8672
8673 void
8674 remote_target::store_registers_using_G (const struct regcache *regcache)
8675 {
8676 struct remote_state *rs = get_remote_state ();
8677 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8678 gdb_byte *regs;
8679 char *p;
8680
8681 /* Extract all the registers in the regcache copying them into a
8682 local buffer. */
8683 {
8684 int i;
8685
8686 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8687 memset (regs, 0, rsa->sizeof_g_packet);
8688 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8689 {
8690 struct packet_reg *r = &rsa->regs[i];
8691
8692 if (r->in_g_packet)
8693 regcache->raw_collect (r->regnum, regs + r->offset);
8694 }
8695 }
8696
8697 /* Command describes registers byte by byte,
8698 each byte encoded as two hex characters. */
8699 p = rs->buf.data ();
8700 *p++ = 'G';
8701 bin2hex (regs, p, rsa->sizeof_g_packet);
8702 putpkt (rs->buf);
8703 getpkt (&rs->buf, 0);
8704 if (packet_check_result (rs->buf) == PACKET_ERROR)
8705 error (_("Could not write registers; remote failure reply '%s'"),
8706 rs->buf.data ());
8707 }
8708
8709 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8710 of the register cache buffer. FIXME: ignores errors. */
8711
8712 void
8713 remote_target::store_registers (struct regcache *regcache, int regnum)
8714 {
8715 struct gdbarch *gdbarch = regcache->arch ();
8716 struct remote_state *rs = get_remote_state ();
8717 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8718 int i;
8719
8720 set_remote_traceframe ();
8721 set_general_thread (regcache->ptid ());
8722
8723 if (regnum >= 0)
8724 {
8725 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8726
8727 gdb_assert (reg != NULL);
8728
8729 /* Always prefer to store registers using the 'P' packet if
8730 possible; we often change only a small number of registers.
8731 Sometimes we change a larger number; we'd need help from a
8732 higher layer to know to use 'G'. */
8733 if (store_register_using_P (regcache, reg))
8734 return;
8735
8736 /* For now, don't complain if we have no way to write the
8737 register. GDB loses track of unavailable registers too
8738 easily. Some day, this may be an error. We don't have
8739 any way to read the register, either... */
8740 if (!reg->in_g_packet)
8741 return;
8742
8743 store_registers_using_G (regcache);
8744 return;
8745 }
8746
8747 store_registers_using_G (regcache);
8748
8749 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8750 if (!rsa->regs[i].in_g_packet)
8751 if (!store_register_using_P (regcache, &rsa->regs[i]))
8752 /* See above for why we do not issue an error here. */
8753 continue;
8754 }
8755 \f
8756
8757 /* Return the number of hex digits in num. */
8758
8759 static int
8760 hexnumlen (ULONGEST num)
8761 {
8762 int i;
8763
8764 for (i = 0; num != 0; i++)
8765 num >>= 4;
8766
8767 return std::max (i, 1);
8768 }
8769
8770 /* Set BUF to the minimum number of hex digits representing NUM. */
8771
8772 static int
8773 hexnumstr (char *buf, ULONGEST num)
8774 {
8775 int len = hexnumlen (num);
8776
8777 return hexnumnstr (buf, num, len);
8778 }
8779
8780
8781 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8782
8783 static int
8784 hexnumnstr (char *buf, ULONGEST num, int width)
8785 {
8786 int i;
8787
8788 buf[width] = '\0';
8789
8790 for (i = width - 1; i >= 0; i--)
8791 {
8792 buf[i] = "0123456789abcdef"[(num & 0xf)];
8793 num >>= 4;
8794 }
8795
8796 return width;
8797 }
8798
8799 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8800
8801 static CORE_ADDR
8802 remote_address_masked (CORE_ADDR addr)
8803 {
8804 unsigned int address_size = remote_address_size;
8805
8806 /* If "remoteaddresssize" was not set, default to target address size. */
8807 if (!address_size)
8808 address_size = gdbarch_addr_bit (target_gdbarch ());
8809
8810 if (address_size > 0
8811 && address_size < (sizeof (ULONGEST) * 8))
8812 {
8813 /* Only create a mask when that mask can safely be constructed
8814 in a ULONGEST variable. */
8815 ULONGEST mask = 1;
8816
8817 mask = (mask << address_size) - 1;
8818 addr &= mask;
8819 }
8820 return addr;
8821 }
8822
8823 /* Determine whether the remote target supports binary downloading.
8824 This is accomplished by sending a no-op memory write of zero length
8825 to the target at the specified address. It does not suffice to send
8826 the whole packet, since many stubs strip the eighth bit and
8827 subsequently compute a wrong checksum, which causes real havoc with
8828 remote_write_bytes.
8829
8830 NOTE: This can still lose if the serial line is not eight-bit
8831 clean. In cases like this, the user should clear "remote
8832 X-packet". */
8833
8834 void
8835 remote_target::check_binary_download (CORE_ADDR addr)
8836 {
8837 struct remote_state *rs = get_remote_state ();
8838
8839 switch (packet_support (PACKET_X))
8840 {
8841 case PACKET_DISABLE:
8842 break;
8843 case PACKET_ENABLE:
8844 break;
8845 case PACKET_SUPPORT_UNKNOWN:
8846 {
8847 char *p;
8848
8849 p = rs->buf.data ();
8850 *p++ = 'X';
8851 p += hexnumstr (p, (ULONGEST) addr);
8852 *p++ = ',';
8853 p += hexnumstr (p, (ULONGEST) 0);
8854 *p++ = ':';
8855 *p = '\0';
8856
8857 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8858 getpkt (&rs->buf, 0);
8859
8860 if (rs->buf[0] == '\0')
8861 {
8862 remote_debug_printf ("binary downloading NOT supported by target");
8863 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8864 }
8865 else
8866 {
8867 remote_debug_printf ("binary downloading supported by target");
8868 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8869 }
8870 break;
8871 }
8872 }
8873 }
8874
8875 /* Helper function to resize the payload in order to try to get a good
8876 alignment. We try to write an amount of data such that the next write will
8877 start on an address aligned on REMOTE_ALIGN_WRITES. */
8878
8879 static int
8880 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8881 {
8882 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8883 }
8884
8885 /* Write memory data directly to the remote machine.
8886 This does not inform the data cache; the data cache uses this.
8887 HEADER is the starting part of the packet.
8888 MEMADDR is the address in the remote memory space.
8889 MYADDR is the address of the buffer in our space.
8890 LEN_UNITS is the number of addressable units to write.
8891 UNIT_SIZE is the length in bytes of an addressable unit.
8892 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8893 should send data as binary ('X'), or hex-encoded ('M').
8894
8895 The function creates packet of the form
8896 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8897
8898 where encoding of <DATA> is terminated by PACKET_FORMAT.
8899
8900 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8901 are omitted.
8902
8903 Return the transferred status, error or OK (an
8904 'enum target_xfer_status' value). Save the number of addressable units
8905 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8906
8907 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8908 exchange between gdb and the stub could look like (?? in place of the
8909 checksum):
8910
8911 -> $m1000,4#??
8912 <- aaaabbbbccccdddd
8913
8914 -> $M1000,3:eeeeffffeeee#??
8915 <- OK
8916
8917 -> $m1000,4#??
8918 <- eeeeffffeeeedddd */
8919
8920 target_xfer_status
8921 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8922 const gdb_byte *myaddr,
8923 ULONGEST len_units,
8924 int unit_size,
8925 ULONGEST *xfered_len_units,
8926 char packet_format, int use_length)
8927 {
8928 struct remote_state *rs = get_remote_state ();
8929 char *p;
8930 char *plen = NULL;
8931 int plenlen = 0;
8932 int todo_units;
8933 int units_written;
8934 int payload_capacity_bytes;
8935 int payload_length_bytes;
8936
8937 if (packet_format != 'X' && packet_format != 'M')
8938 internal_error (__FILE__, __LINE__,
8939 _("remote_write_bytes_aux: bad packet format"));
8940
8941 if (len_units == 0)
8942 return TARGET_XFER_EOF;
8943
8944 payload_capacity_bytes = get_memory_write_packet_size ();
8945
8946 /* The packet buffer will be large enough for the payload;
8947 get_memory_packet_size ensures this. */
8948 rs->buf[0] = '\0';
8949
8950 /* Compute the size of the actual payload by subtracting out the
8951 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8952
8953 payload_capacity_bytes -= strlen ("$,:#NN");
8954 if (!use_length)
8955 /* The comma won't be used. */
8956 payload_capacity_bytes += 1;
8957 payload_capacity_bytes -= strlen (header);
8958 payload_capacity_bytes -= hexnumlen (memaddr);
8959
8960 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8961
8962 strcat (rs->buf.data (), header);
8963 p = rs->buf.data () + strlen (header);
8964
8965 /* Compute a best guess of the number of bytes actually transfered. */
8966 if (packet_format == 'X')
8967 {
8968 /* Best guess at number of bytes that will fit. */
8969 todo_units = std::min (len_units,
8970 (ULONGEST) payload_capacity_bytes / unit_size);
8971 if (use_length)
8972 payload_capacity_bytes -= hexnumlen (todo_units);
8973 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8974 }
8975 else
8976 {
8977 /* Number of bytes that will fit. */
8978 todo_units
8979 = std::min (len_units,
8980 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8981 if (use_length)
8982 payload_capacity_bytes -= hexnumlen (todo_units);
8983 todo_units = std::min (todo_units,
8984 (payload_capacity_bytes / unit_size) / 2);
8985 }
8986
8987 if (todo_units <= 0)
8988 internal_error (__FILE__, __LINE__,
8989 _("minimum packet size too small to write data"));
8990
8991 /* If we already need another packet, then try to align the end
8992 of this packet to a useful boundary. */
8993 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8994 todo_units = align_for_efficient_write (todo_units, memaddr);
8995
8996 /* Append "<memaddr>". */
8997 memaddr = remote_address_masked (memaddr);
8998 p += hexnumstr (p, (ULONGEST) memaddr);
8999
9000 if (use_length)
9001 {
9002 /* Append ",". */
9003 *p++ = ',';
9004
9005 /* Append the length and retain its location and size. It may need to be
9006 adjusted once the packet body has been created. */
9007 plen = p;
9008 plenlen = hexnumstr (p, (ULONGEST) todo_units);
9009 p += plenlen;
9010 }
9011
9012 /* Append ":". */
9013 *p++ = ':';
9014 *p = '\0';
9015
9016 /* Append the packet body. */
9017 if (packet_format == 'X')
9018 {
9019 /* Binary mode. Send target system values byte by byte, in
9020 increasing byte addresses. Only escape certain critical
9021 characters. */
9022 payload_length_bytes =
9023 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
9024 &units_written, payload_capacity_bytes);
9025
9026 /* If not all TODO units fit, then we'll need another packet. Make
9027 a second try to keep the end of the packet aligned. Don't do
9028 this if the packet is tiny. */
9029 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
9030 {
9031 int new_todo_units;
9032
9033 new_todo_units = align_for_efficient_write (units_written, memaddr);
9034
9035 if (new_todo_units != units_written)
9036 payload_length_bytes =
9037 remote_escape_output (myaddr, new_todo_units, unit_size,
9038 (gdb_byte *) p, &units_written,
9039 payload_capacity_bytes);
9040 }
9041
9042 p += payload_length_bytes;
9043 if (use_length && units_written < todo_units)
9044 {
9045 /* Escape chars have filled up the buffer prematurely,
9046 and we have actually sent fewer units than planned.
9047 Fix-up the length field of the packet. Use the same
9048 number of characters as before. */
9049 plen += hexnumnstr (plen, (ULONGEST) units_written,
9050 plenlen);
9051 *plen = ':'; /* overwrite \0 from hexnumnstr() */
9052 }
9053 }
9054 else
9055 {
9056 /* Normal mode: Send target system values byte by byte, in
9057 increasing byte addresses. Each byte is encoded as a two hex
9058 value. */
9059 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
9060 units_written = todo_units;
9061 }
9062
9063 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
9064 getpkt (&rs->buf, 0);
9065
9066 if (rs->buf[0] == 'E')
9067 return TARGET_XFER_E_IO;
9068
9069 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
9070 send fewer units than we'd planned. */
9071 *xfered_len_units = (ULONGEST) units_written;
9072 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9073 }
9074
9075 /* Write memory data directly to the remote machine.
9076 This does not inform the data cache; the data cache uses this.
9077 MEMADDR is the address in the remote memory space.
9078 MYADDR is the address of the buffer in our space.
9079 LEN is the number of bytes.
9080
9081 Return the transferred status, error or OK (an
9082 'enum target_xfer_status' value). Save the number of bytes
9083 transferred in *XFERED_LEN. Only transfer a single packet. */
9084
9085 target_xfer_status
9086 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
9087 ULONGEST len, int unit_size,
9088 ULONGEST *xfered_len)
9089 {
9090 const char *packet_format = NULL;
9091
9092 /* Check whether the target supports binary download. */
9093 check_binary_download (memaddr);
9094
9095 switch (packet_support (PACKET_X))
9096 {
9097 case PACKET_ENABLE:
9098 packet_format = "X";
9099 break;
9100 case PACKET_DISABLE:
9101 packet_format = "M";
9102 break;
9103 case PACKET_SUPPORT_UNKNOWN:
9104 internal_error (__FILE__, __LINE__,
9105 _("remote_write_bytes: bad internal state"));
9106 default:
9107 internal_error (__FILE__, __LINE__, _("bad switch"));
9108 }
9109
9110 return remote_write_bytes_aux (packet_format,
9111 memaddr, myaddr, len, unit_size, xfered_len,
9112 packet_format[0], 1);
9113 }
9114
9115 /* Read memory data directly from the remote machine.
9116 This does not use the data cache; the data cache uses this.
9117 MEMADDR is the address in the remote memory space.
9118 MYADDR is the address of the buffer in our space.
9119 LEN_UNITS is the number of addressable memory units to read..
9120 UNIT_SIZE is the length in bytes of an addressable unit.
9121
9122 Return the transferred status, error or OK (an
9123 'enum target_xfer_status' value). Save the number of bytes
9124 transferred in *XFERED_LEN_UNITS.
9125
9126 See the comment of remote_write_bytes_aux for an example of
9127 memory read/write exchange between gdb and the stub. */
9128
9129 target_xfer_status
9130 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
9131 ULONGEST len_units,
9132 int unit_size, ULONGEST *xfered_len_units)
9133 {
9134 struct remote_state *rs = get_remote_state ();
9135 int buf_size_bytes; /* Max size of packet output buffer. */
9136 char *p;
9137 int todo_units;
9138 int decoded_bytes;
9139
9140 buf_size_bytes = get_memory_read_packet_size ();
9141 /* The packet buffer will be large enough for the payload;
9142 get_memory_packet_size ensures this. */
9143
9144 /* Number of units that will fit. */
9145 todo_units = std::min (len_units,
9146 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9147
9148 /* Construct "m"<memaddr>","<len>". */
9149 memaddr = remote_address_masked (memaddr);
9150 p = rs->buf.data ();
9151 *p++ = 'm';
9152 p += hexnumstr (p, (ULONGEST) memaddr);
9153 *p++ = ',';
9154 p += hexnumstr (p, (ULONGEST) todo_units);
9155 *p = '\0';
9156 putpkt (rs->buf);
9157 getpkt (&rs->buf, 0);
9158 if (rs->buf[0] == 'E'
9159 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9160 && rs->buf[3] == '\0')
9161 return TARGET_XFER_E_IO;
9162 /* Reply describes memory byte by byte, each byte encoded as two hex
9163 characters. */
9164 p = rs->buf.data ();
9165 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9166 /* Return what we have. Let higher layers handle partial reads. */
9167 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9168 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9169 }
9170
9171 /* Using the set of read-only target sections of remote, read live
9172 read-only memory.
9173
9174 For interface/parameters/return description see target.h,
9175 to_xfer_partial. */
9176
9177 target_xfer_status
9178 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9179 ULONGEST memaddr,
9180 ULONGEST len,
9181 int unit_size,
9182 ULONGEST *xfered_len)
9183 {
9184 const struct target_section *secp;
9185
9186 secp = target_section_by_addr (this, memaddr);
9187 if (secp != NULL
9188 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9189 {
9190 ULONGEST memend = memaddr + len;
9191
9192 const target_section_table *table = target_get_section_table (this);
9193 for (const target_section &p : *table)
9194 {
9195 if (memaddr >= p.addr)
9196 {
9197 if (memend <= p.endaddr)
9198 {
9199 /* Entire transfer is within this section. */
9200 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9201 xfered_len);
9202 }
9203 else if (memaddr >= p.endaddr)
9204 {
9205 /* This section ends before the transfer starts. */
9206 continue;
9207 }
9208 else
9209 {
9210 /* This section overlaps the transfer. Just do half. */
9211 len = p.endaddr - memaddr;
9212 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9213 xfered_len);
9214 }
9215 }
9216 }
9217 }
9218
9219 return TARGET_XFER_EOF;
9220 }
9221
9222 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9223 first if the requested memory is unavailable in traceframe.
9224 Otherwise, fall back to remote_read_bytes_1. */
9225
9226 target_xfer_status
9227 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9228 gdb_byte *myaddr, ULONGEST len, int unit_size,
9229 ULONGEST *xfered_len)
9230 {
9231 if (len == 0)
9232 return TARGET_XFER_EOF;
9233
9234 if (get_traceframe_number () != -1)
9235 {
9236 std::vector<mem_range> available;
9237
9238 /* If we fail to get the set of available memory, then the
9239 target does not support querying traceframe info, and so we
9240 attempt reading from the traceframe anyway (assuming the
9241 target implements the old QTro packet then). */
9242 if (traceframe_available_memory (&available, memaddr, len))
9243 {
9244 if (available.empty () || available[0].start != memaddr)
9245 {
9246 enum target_xfer_status res;
9247
9248 /* Don't read into the traceframe's available
9249 memory. */
9250 if (!available.empty ())
9251 {
9252 LONGEST oldlen = len;
9253
9254 len = available[0].start - memaddr;
9255 gdb_assert (len <= oldlen);
9256 }
9257
9258 /* This goes through the topmost target again. */
9259 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9260 len, unit_size, xfered_len);
9261 if (res == TARGET_XFER_OK)
9262 return TARGET_XFER_OK;
9263 else
9264 {
9265 /* No use trying further, we know some memory starting
9266 at MEMADDR isn't available. */
9267 *xfered_len = len;
9268 return (*xfered_len != 0) ?
9269 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9270 }
9271 }
9272
9273 /* Don't try to read more than how much is available, in
9274 case the target implements the deprecated QTro packet to
9275 cater for older GDBs (the target's knowledge of read-only
9276 sections may be outdated by now). */
9277 len = available[0].length;
9278 }
9279 }
9280
9281 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9282 }
9283
9284 \f
9285
9286 /* Sends a packet with content determined by the printf format string
9287 FORMAT and the remaining arguments, then gets the reply. Returns
9288 whether the packet was a success, a failure, or unknown. */
9289
9290 packet_result
9291 remote_target::remote_send_printf (const char *format, ...)
9292 {
9293 struct remote_state *rs = get_remote_state ();
9294 int max_size = get_remote_packet_size ();
9295 va_list ap;
9296
9297 va_start (ap, format);
9298
9299 rs->buf[0] = '\0';
9300 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9301
9302 va_end (ap);
9303
9304 if (size >= max_size)
9305 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9306
9307 if (putpkt (rs->buf) < 0)
9308 error (_("Communication problem with target."));
9309
9310 rs->buf[0] = '\0';
9311 getpkt (&rs->buf, 0);
9312
9313 return packet_check_result (rs->buf);
9314 }
9315
9316 /* Flash writing can take quite some time. We'll set
9317 effectively infinite timeout for flash operations.
9318 In future, we'll need to decide on a better approach. */
9319 static const int remote_flash_timeout = 1000;
9320
9321 void
9322 remote_target::flash_erase (ULONGEST address, LONGEST length)
9323 {
9324 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9325 enum packet_result ret;
9326 scoped_restore restore_timeout
9327 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9328
9329 ret = remote_send_printf ("vFlashErase:%s,%s",
9330 phex (address, addr_size),
9331 phex (length, 4));
9332 switch (ret)
9333 {
9334 case PACKET_UNKNOWN:
9335 error (_("Remote target does not support flash erase"));
9336 case PACKET_ERROR:
9337 error (_("Error erasing flash with vFlashErase packet"));
9338 default:
9339 break;
9340 }
9341 }
9342
9343 target_xfer_status
9344 remote_target::remote_flash_write (ULONGEST address,
9345 ULONGEST length, ULONGEST *xfered_len,
9346 const gdb_byte *data)
9347 {
9348 scoped_restore restore_timeout
9349 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9350 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9351 xfered_len,'X', 0);
9352 }
9353
9354 void
9355 remote_target::flash_done ()
9356 {
9357 int ret;
9358
9359 scoped_restore restore_timeout
9360 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9361
9362 ret = remote_send_printf ("vFlashDone");
9363
9364 switch (ret)
9365 {
9366 case PACKET_UNKNOWN:
9367 error (_("Remote target does not support vFlashDone"));
9368 case PACKET_ERROR:
9369 error (_("Error finishing flash operation"));
9370 default:
9371 break;
9372 }
9373 }
9374
9375 void
9376 remote_target::files_info ()
9377 {
9378 puts_filtered ("Debugging a target over a serial line.\n");
9379 }
9380 \f
9381 /* Stuff for dealing with the packets which are part of this protocol.
9382 See comment at top of file for details. */
9383
9384 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9385 error to higher layers. Called when a serial error is detected.
9386 The exception message is STRING, followed by a colon and a blank,
9387 the system error message for errno at function entry and final dot
9388 for output compatibility with throw_perror_with_name. */
9389
9390 static void
9391 unpush_and_perror (remote_target *target, const char *string)
9392 {
9393 int saved_errno = errno;
9394
9395 remote_unpush_target (target);
9396 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9397 safe_strerror (saved_errno));
9398 }
9399
9400 /* Read a single character from the remote end. The current quit
9401 handler is overridden to avoid quitting in the middle of packet
9402 sequence, as that would break communication with the remote server.
9403 See remote_serial_quit_handler for more detail. */
9404
9405 int
9406 remote_target::readchar (int timeout)
9407 {
9408 int ch;
9409 struct remote_state *rs = get_remote_state ();
9410
9411 {
9412 scoped_restore restore_quit_target
9413 = make_scoped_restore (&curr_quit_handler_target, this);
9414 scoped_restore restore_quit
9415 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9416
9417 rs->got_ctrlc_during_io = 0;
9418
9419 ch = serial_readchar (rs->remote_desc, timeout);
9420
9421 if (rs->got_ctrlc_during_io)
9422 set_quit_flag ();
9423 }
9424
9425 if (ch >= 0)
9426 return ch;
9427
9428 switch ((enum serial_rc) ch)
9429 {
9430 case SERIAL_EOF:
9431 remote_unpush_target (this);
9432 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9433 /* no return */
9434 case SERIAL_ERROR:
9435 unpush_and_perror (this, _("Remote communication error. "
9436 "Target disconnected."));
9437 /* no return */
9438 case SERIAL_TIMEOUT:
9439 break;
9440 }
9441 return ch;
9442 }
9443
9444 /* Wrapper for serial_write that closes the target and throws if
9445 writing fails. The current quit handler is overridden to avoid
9446 quitting in the middle of packet sequence, as that would break
9447 communication with the remote server. See
9448 remote_serial_quit_handler for more detail. */
9449
9450 void
9451 remote_target::remote_serial_write (const char *str, int len)
9452 {
9453 struct remote_state *rs = get_remote_state ();
9454
9455 scoped_restore restore_quit_target
9456 = make_scoped_restore (&curr_quit_handler_target, this);
9457 scoped_restore restore_quit
9458 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9459
9460 rs->got_ctrlc_during_io = 0;
9461
9462 if (serial_write (rs->remote_desc, str, len))
9463 {
9464 unpush_and_perror (this, _("Remote communication error. "
9465 "Target disconnected."));
9466 }
9467
9468 if (rs->got_ctrlc_during_io)
9469 set_quit_flag ();
9470 }
9471
9472 /* Return a string representing an escaped version of BUF, of len N.
9473 E.g. \n is converted to \\n, \t to \\t, etc. */
9474
9475 static std::string
9476 escape_buffer (const char *buf, int n)
9477 {
9478 string_file stb;
9479
9480 stb.putstrn (buf, n, '\\');
9481 return std::move (stb.string ());
9482 }
9483
9484 /* Display a null-terminated packet on stdout, for debugging, using C
9485 string notation. */
9486
9487 static void
9488 print_packet (const char *buf)
9489 {
9490 puts_filtered ("\"");
9491 fputstr_filtered (buf, '"', gdb_stdout);
9492 puts_filtered ("\"");
9493 }
9494
9495 int
9496 remote_target::putpkt (const char *buf)
9497 {
9498 return putpkt_binary (buf, strlen (buf));
9499 }
9500
9501 /* Wrapper around remote_target::putpkt to avoid exporting
9502 remote_target. */
9503
9504 int
9505 putpkt (remote_target *remote, const char *buf)
9506 {
9507 return remote->putpkt (buf);
9508 }
9509
9510 /* Send a packet to the remote machine, with error checking. The data
9511 of the packet is in BUF. The string in BUF can be at most
9512 get_remote_packet_size () - 5 to account for the $, # and checksum,
9513 and for a possible /0 if we are debugging (remote_debug) and want
9514 to print the sent packet as a string. */
9515
9516 int
9517 remote_target::putpkt_binary (const char *buf, int cnt)
9518 {
9519 struct remote_state *rs = get_remote_state ();
9520 int i;
9521 unsigned char csum = 0;
9522 gdb::def_vector<char> data (cnt + 6);
9523 char *buf2 = data.data ();
9524
9525 int ch;
9526 int tcount = 0;
9527 char *p;
9528
9529 /* Catch cases like trying to read memory or listing threads while
9530 we're waiting for a stop reply. The remote server wouldn't be
9531 ready to handle this request, so we'd hang and timeout. We don't
9532 have to worry about this in synchronous mode, because in that
9533 case it's not possible to issue a command while the target is
9534 running. This is not a problem in non-stop mode, because in that
9535 case, the stub is always ready to process serial input. */
9536 if (!target_is_non_stop_p ()
9537 && target_is_async_p ()
9538 && rs->waiting_for_stop_reply)
9539 {
9540 error (_("Cannot execute this command while the target is running.\n"
9541 "Use the \"interrupt\" command to stop the target\n"
9542 "and then try again."));
9543 }
9544
9545 /* We're sending out a new packet. Make sure we don't look at a
9546 stale cached response. */
9547 rs->cached_wait_status = 0;
9548
9549 /* Copy the packet into buffer BUF2, encapsulating it
9550 and giving it a checksum. */
9551
9552 p = buf2;
9553 *p++ = '$';
9554
9555 for (i = 0; i < cnt; i++)
9556 {
9557 csum += buf[i];
9558 *p++ = buf[i];
9559 }
9560 *p++ = '#';
9561 *p++ = tohex ((csum >> 4) & 0xf);
9562 *p++ = tohex (csum & 0xf);
9563
9564 /* Send it over and over until we get a positive ack. */
9565
9566 while (1)
9567 {
9568 if (remote_debug)
9569 {
9570 *p = '\0';
9571
9572 int len = (int) (p - buf2);
9573 int max_chars;
9574
9575 if (remote_packet_max_chars < 0)
9576 max_chars = len;
9577 else
9578 max_chars = remote_packet_max_chars;
9579
9580 std::string str
9581 = escape_buffer (buf2, std::min (len, max_chars));
9582
9583 if (len > max_chars)
9584 remote_debug_printf_nofunc
9585 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9586 len - max_chars);
9587 else
9588 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9589 }
9590 remote_serial_write (buf2, p - buf2);
9591
9592 /* If this is a no acks version of the remote protocol, send the
9593 packet and move on. */
9594 if (rs->noack_mode)
9595 break;
9596
9597 /* Read until either a timeout occurs (-2) or '+' is read.
9598 Handle any notification that arrives in the mean time. */
9599 while (1)
9600 {
9601 ch = readchar (remote_timeout);
9602
9603 switch (ch)
9604 {
9605 case '+':
9606 remote_debug_printf_nofunc ("Received Ack");
9607 return 1;
9608 case '-':
9609 remote_debug_printf_nofunc ("Received Nak");
9610 /* FALLTHROUGH */
9611 case SERIAL_TIMEOUT:
9612 tcount++;
9613 if (tcount > 3)
9614 return 0;
9615 break; /* Retransmit buffer. */
9616 case '$':
9617 {
9618 remote_debug_printf ("Packet instead of Ack, ignoring it");
9619 /* It's probably an old response sent because an ACK
9620 was lost. Gobble up the packet and ack it so it
9621 doesn't get retransmitted when we resend this
9622 packet. */
9623 skip_frame ();
9624 remote_serial_write ("+", 1);
9625 continue; /* Now, go look for +. */
9626 }
9627
9628 case '%':
9629 {
9630 int val;
9631
9632 /* If we got a notification, handle it, and go back to looking
9633 for an ack. */
9634 /* We've found the start of a notification. Now
9635 collect the data. */
9636 val = read_frame (&rs->buf);
9637 if (val >= 0)
9638 {
9639 remote_debug_printf_nofunc
9640 (" Notification received: %s",
9641 escape_buffer (rs->buf.data (), val).c_str ());
9642
9643 handle_notification (rs->notif_state, rs->buf.data ());
9644 /* We're in sync now, rewait for the ack. */
9645 tcount = 0;
9646 }
9647 else
9648 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9649 rs->buf.data ());
9650 continue;
9651 }
9652 /* fall-through */
9653 default:
9654 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9655 rs->buf.data ());
9656 continue;
9657 }
9658 break; /* Here to retransmit. */
9659 }
9660
9661 #if 0
9662 /* This is wrong. If doing a long backtrace, the user should be
9663 able to get out next time we call QUIT, without anything as
9664 violent as interrupt_query. If we want to provide a way out of
9665 here without getting to the next QUIT, it should be based on
9666 hitting ^C twice as in remote_wait. */
9667 if (quit_flag)
9668 {
9669 quit_flag = 0;
9670 interrupt_query ();
9671 }
9672 #endif
9673 }
9674
9675 return 0;
9676 }
9677
9678 /* Come here after finding the start of a frame when we expected an
9679 ack. Do our best to discard the rest of this packet. */
9680
9681 void
9682 remote_target::skip_frame ()
9683 {
9684 int c;
9685
9686 while (1)
9687 {
9688 c = readchar (remote_timeout);
9689 switch (c)
9690 {
9691 case SERIAL_TIMEOUT:
9692 /* Nothing we can do. */
9693 return;
9694 case '#':
9695 /* Discard the two bytes of checksum and stop. */
9696 c = readchar (remote_timeout);
9697 if (c >= 0)
9698 c = readchar (remote_timeout);
9699
9700 return;
9701 case '*': /* Run length encoding. */
9702 /* Discard the repeat count. */
9703 c = readchar (remote_timeout);
9704 if (c < 0)
9705 return;
9706 break;
9707 default:
9708 /* A regular character. */
9709 break;
9710 }
9711 }
9712 }
9713
9714 /* Come here after finding the start of the frame. Collect the rest
9715 into *BUF, verifying the checksum, length, and handling run-length
9716 compression. NUL terminate the buffer. If there is not enough room,
9717 expand *BUF.
9718
9719 Returns -1 on error, number of characters in buffer (ignoring the
9720 trailing NULL) on success. (could be extended to return one of the
9721 SERIAL status indications). */
9722
9723 long
9724 remote_target::read_frame (gdb::char_vector *buf_p)
9725 {
9726 unsigned char csum;
9727 long bc;
9728 int c;
9729 char *buf = buf_p->data ();
9730 struct remote_state *rs = get_remote_state ();
9731
9732 csum = 0;
9733 bc = 0;
9734
9735 while (1)
9736 {
9737 c = readchar (remote_timeout);
9738 switch (c)
9739 {
9740 case SERIAL_TIMEOUT:
9741 remote_debug_printf ("Timeout in mid-packet, retrying");
9742 return -1;
9743
9744 case '$':
9745 remote_debug_printf ("Saw new packet start in middle of old one");
9746 return -1; /* Start a new packet, count retries. */
9747
9748 case '#':
9749 {
9750 unsigned char pktcsum;
9751 int check_0 = 0;
9752 int check_1 = 0;
9753
9754 buf[bc] = '\0';
9755
9756 check_0 = readchar (remote_timeout);
9757 if (check_0 >= 0)
9758 check_1 = readchar (remote_timeout);
9759
9760 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9761 {
9762 remote_debug_printf ("Timeout in checksum, retrying");
9763 return -1;
9764 }
9765 else if (check_0 < 0 || check_1 < 0)
9766 {
9767 remote_debug_printf ("Communication error in checksum");
9768 return -1;
9769 }
9770
9771 /* Don't recompute the checksum; with no ack packets we
9772 don't have any way to indicate a packet retransmission
9773 is necessary. */
9774 if (rs->noack_mode)
9775 return bc;
9776
9777 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9778 if (csum == pktcsum)
9779 return bc;
9780
9781 remote_debug_printf
9782 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9783 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9784
9785 /* Number of characters in buffer ignoring trailing
9786 NULL. */
9787 return -1;
9788 }
9789 case '*': /* Run length encoding. */
9790 {
9791 int repeat;
9792
9793 csum += c;
9794 c = readchar (remote_timeout);
9795 csum += c;
9796 repeat = c - ' ' + 3; /* Compute repeat count. */
9797
9798 /* The character before ``*'' is repeated. */
9799
9800 if (repeat > 0 && repeat <= 255 && bc > 0)
9801 {
9802 if (bc + repeat - 1 >= buf_p->size () - 1)
9803 {
9804 /* Make some more room in the buffer. */
9805 buf_p->resize (buf_p->size () + repeat);
9806 buf = buf_p->data ();
9807 }
9808
9809 memset (&buf[bc], buf[bc - 1], repeat);
9810 bc += repeat;
9811 continue;
9812 }
9813
9814 buf[bc] = '\0';
9815 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9816 return -1;
9817 }
9818 default:
9819 if (bc >= buf_p->size () - 1)
9820 {
9821 /* Make some more room in the buffer. */
9822 buf_p->resize (buf_p->size () * 2);
9823 buf = buf_p->data ();
9824 }
9825
9826 buf[bc++] = c;
9827 csum += c;
9828 continue;
9829 }
9830 }
9831 }
9832
9833 /* Set this to the maximum number of seconds to wait instead of waiting forever
9834 in target_wait(). If this timer times out, then it generates an error and
9835 the command is aborted. This replaces most of the need for timeouts in the
9836 GDB test suite, and makes it possible to distinguish between a hung target
9837 and one with slow communications. */
9838
9839 static int watchdog = 0;
9840 static void
9841 show_watchdog (struct ui_file *file, int from_tty,
9842 struct cmd_list_element *c, const char *value)
9843 {
9844 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9845 }
9846
9847 /* Read a packet from the remote machine, with error checking, and
9848 store it in *BUF. Resize *BUF if necessary to hold the result. If
9849 FOREVER, wait forever rather than timing out; this is used (in
9850 synchronous mode) to wait for a target that is is executing user
9851 code to stop. */
9852 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9853 don't have to change all the calls to getpkt to deal with the
9854 return value, because at the moment I don't know what the right
9855 thing to do it for those. */
9856
9857 void
9858 remote_target::getpkt (gdb::char_vector *buf, int forever)
9859 {
9860 getpkt_sane (buf, forever);
9861 }
9862
9863
9864 /* Read a packet from the remote machine, with error checking, and
9865 store it in *BUF. Resize *BUF if necessary to hold the result. If
9866 FOREVER, wait forever rather than timing out; this is used (in
9867 synchronous mode) to wait for a target that is is executing user
9868 code to stop. If FOREVER == 0, this function is allowed to time
9869 out gracefully and return an indication of this to the caller.
9870 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9871 consider receiving a notification enough reason to return to the
9872 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9873 holds a notification or not (a regular packet). */
9874
9875 int
9876 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9877 int forever, int expecting_notif,
9878 int *is_notif)
9879 {
9880 struct remote_state *rs = get_remote_state ();
9881 int c;
9882 int tries;
9883 int timeout;
9884 int val = -1;
9885
9886 /* We're reading a new response. Make sure we don't look at a
9887 previously cached response. */
9888 rs->cached_wait_status = 0;
9889
9890 strcpy (buf->data (), "timeout");
9891
9892 if (forever)
9893 timeout = watchdog > 0 ? watchdog : -1;
9894 else if (expecting_notif)
9895 timeout = 0; /* There should already be a char in the buffer. If
9896 not, bail out. */
9897 else
9898 timeout = remote_timeout;
9899
9900 #define MAX_TRIES 3
9901
9902 /* Process any number of notifications, and then return when
9903 we get a packet. */
9904 for (;;)
9905 {
9906 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9907 times. */
9908 for (tries = 1; tries <= MAX_TRIES; tries++)
9909 {
9910 /* This can loop forever if the remote side sends us
9911 characters continuously, but if it pauses, we'll get
9912 SERIAL_TIMEOUT from readchar because of timeout. Then
9913 we'll count that as a retry.
9914
9915 Note that even when forever is set, we will only wait
9916 forever prior to the start of a packet. After that, we
9917 expect characters to arrive at a brisk pace. They should
9918 show up within remote_timeout intervals. */
9919 do
9920 c = readchar (timeout);
9921 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9922
9923 if (c == SERIAL_TIMEOUT)
9924 {
9925 if (expecting_notif)
9926 return -1; /* Don't complain, it's normal to not get
9927 anything in this case. */
9928
9929 if (forever) /* Watchdog went off? Kill the target. */
9930 {
9931 remote_unpush_target (this);
9932 throw_error (TARGET_CLOSE_ERROR,
9933 _("Watchdog timeout has expired. "
9934 "Target detached."));
9935 }
9936
9937 remote_debug_printf ("Timed out.");
9938 }
9939 else
9940 {
9941 /* We've found the start of a packet or notification.
9942 Now collect the data. */
9943 val = read_frame (buf);
9944 if (val >= 0)
9945 break;
9946 }
9947
9948 remote_serial_write ("-", 1);
9949 }
9950
9951 if (tries > MAX_TRIES)
9952 {
9953 /* We have tried hard enough, and just can't receive the
9954 packet/notification. Give up. */
9955 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9956
9957 /* Skip the ack char if we're in no-ack mode. */
9958 if (!rs->noack_mode)
9959 remote_serial_write ("+", 1);
9960 return -1;
9961 }
9962
9963 /* If we got an ordinary packet, return that to our caller. */
9964 if (c == '$')
9965 {
9966 if (remote_debug)
9967 {
9968 int max_chars;
9969
9970 if (remote_packet_max_chars < 0)
9971 max_chars = val;
9972 else
9973 max_chars = remote_packet_max_chars;
9974
9975 std::string str
9976 = escape_buffer (buf->data (),
9977 std::min (val, max_chars));
9978
9979 if (val > max_chars)
9980 remote_debug_printf_nofunc
9981 ("Packet received: %s [%d bytes omitted]", str.c_str (),
9982 val - max_chars);
9983 else
9984 remote_debug_printf_nofunc ("Packet received: %s",
9985 str.c_str ());
9986 }
9987
9988 /* Skip the ack char if we're in no-ack mode. */
9989 if (!rs->noack_mode)
9990 remote_serial_write ("+", 1);
9991 if (is_notif != NULL)
9992 *is_notif = 0;
9993 return val;
9994 }
9995
9996 /* If we got a notification, handle it, and go back to looking
9997 for a packet. */
9998 else
9999 {
10000 gdb_assert (c == '%');
10001
10002 remote_debug_printf_nofunc
10003 (" Notification received: %s",
10004 escape_buffer (buf->data (), val).c_str ());
10005
10006 if (is_notif != NULL)
10007 *is_notif = 1;
10008
10009 handle_notification (rs->notif_state, buf->data ());
10010
10011 /* Notifications require no acknowledgement. */
10012
10013 if (expecting_notif)
10014 return val;
10015 }
10016 }
10017 }
10018
10019 int
10020 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
10021 {
10022 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
10023 }
10024
10025 int
10026 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
10027 int *is_notif)
10028 {
10029 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
10030 }
10031
10032 /* Kill any new fork children of process PID that haven't been
10033 processed by follow_fork. */
10034
10035 void
10036 remote_target::kill_new_fork_children (int pid)
10037 {
10038 remote_state *rs = get_remote_state ();
10039 struct notif_client *notif = &notif_client_stop;
10040
10041 /* Kill the fork child threads of any threads in process PID
10042 that are stopped at a fork event. */
10043 for (thread_info *thread : all_non_exited_threads (this))
10044 {
10045 struct target_waitstatus *ws = &thread->pending_follow;
10046
10047 if (is_pending_fork_parent (ws, pid, thread->ptid))
10048 {
10049 int child_pid = ws->value.related_pid.pid ();
10050 int res;
10051
10052 res = remote_vkill (child_pid);
10053 if (res != 0)
10054 error (_("Can't kill fork child process %d"), child_pid);
10055 }
10056 }
10057
10058 /* Check for any pending fork events (not reported or processed yet)
10059 in process PID and kill those fork child threads as well. */
10060 remote_notif_get_pending_events (notif);
10061 for (auto &event : rs->stop_reply_queue)
10062 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
10063 {
10064 int child_pid = event->ws.value.related_pid.pid ();
10065 int res;
10066
10067 res = remote_vkill (child_pid);
10068 if (res != 0)
10069 error (_("Can't kill fork child process %d"), child_pid);
10070 }
10071 }
10072
10073 \f
10074 /* Target hook to kill the current inferior. */
10075
10076 void
10077 remote_target::kill ()
10078 {
10079 int res = -1;
10080 int pid = inferior_ptid.pid ();
10081 struct remote_state *rs = get_remote_state ();
10082
10083 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
10084 {
10085 /* If we're stopped while forking and we haven't followed yet,
10086 kill the child task. We need to do this before killing the
10087 parent task because if this is a vfork then the parent will
10088 be sleeping. */
10089 kill_new_fork_children (pid);
10090
10091 res = remote_vkill (pid);
10092 if (res == 0)
10093 {
10094 target_mourn_inferior (inferior_ptid);
10095 return;
10096 }
10097 }
10098
10099 /* If we are in 'target remote' mode and we are killing the only
10100 inferior, then we will tell gdbserver to exit and unpush the
10101 target. */
10102 if (res == -1 && !remote_multi_process_p (rs)
10103 && number_of_live_inferiors (this) == 1)
10104 {
10105 remote_kill_k ();
10106
10107 /* We've killed the remote end, we get to mourn it. If we are
10108 not in extended mode, mourning the inferior also unpushes
10109 remote_ops from the target stack, which closes the remote
10110 connection. */
10111 target_mourn_inferior (inferior_ptid);
10112
10113 return;
10114 }
10115
10116 error (_("Can't kill process"));
10117 }
10118
10119 /* Send a kill request to the target using the 'vKill' packet. */
10120
10121 int
10122 remote_target::remote_vkill (int pid)
10123 {
10124 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10125 return -1;
10126
10127 remote_state *rs = get_remote_state ();
10128
10129 /* Tell the remote target to detach. */
10130 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10131 putpkt (rs->buf);
10132 getpkt (&rs->buf, 0);
10133
10134 switch (packet_ok (rs->buf,
10135 &remote_protocol_packets[PACKET_vKill]))
10136 {
10137 case PACKET_OK:
10138 return 0;
10139 case PACKET_ERROR:
10140 return 1;
10141 case PACKET_UNKNOWN:
10142 return -1;
10143 default:
10144 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10145 }
10146 }
10147
10148 /* Send a kill request to the target using the 'k' packet. */
10149
10150 void
10151 remote_target::remote_kill_k ()
10152 {
10153 /* Catch errors so the user can quit from gdb even when we
10154 aren't on speaking terms with the remote system. */
10155 try
10156 {
10157 putpkt ("k");
10158 }
10159 catch (const gdb_exception_error &ex)
10160 {
10161 if (ex.error == TARGET_CLOSE_ERROR)
10162 {
10163 /* If we got an (EOF) error that caused the target
10164 to go away, then we're done, that's what we wanted.
10165 "k" is susceptible to cause a premature EOF, given
10166 that the remote server isn't actually required to
10167 reply to "k", and it can happen that it doesn't
10168 even get to reply ACK to the "k". */
10169 return;
10170 }
10171
10172 /* Otherwise, something went wrong. We didn't actually kill
10173 the target. Just propagate the exception, and let the
10174 user or higher layers decide what to do. */
10175 throw;
10176 }
10177 }
10178
10179 void
10180 remote_target::mourn_inferior ()
10181 {
10182 struct remote_state *rs = get_remote_state ();
10183
10184 /* We're no longer interested in notification events of an inferior
10185 that exited or was killed/detached. */
10186 discard_pending_stop_replies (current_inferior ());
10187
10188 /* In 'target remote' mode with one inferior, we close the connection. */
10189 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10190 {
10191 remote_unpush_target (this);
10192 return;
10193 }
10194
10195 /* In case we got here due to an error, but we're going to stay
10196 connected. */
10197 rs->waiting_for_stop_reply = 0;
10198
10199 /* If the current general thread belonged to the process we just
10200 detached from or has exited, the remote side current general
10201 thread becomes undefined. Considering a case like this:
10202
10203 - We just got here due to a detach.
10204 - The process that we're detaching from happens to immediately
10205 report a global breakpoint being hit in non-stop mode, in the
10206 same thread we had selected before.
10207 - GDB attaches to this process again.
10208 - This event happens to be the next event we handle.
10209
10210 GDB would consider that the current general thread didn't need to
10211 be set on the stub side (with Hg), since for all it knew,
10212 GENERAL_THREAD hadn't changed.
10213
10214 Notice that although in all-stop mode, the remote server always
10215 sets the current thread to the thread reporting the stop event,
10216 that doesn't happen in non-stop mode; in non-stop, the stub *must
10217 not* change the current thread when reporting a breakpoint hit,
10218 due to the decoupling of event reporting and event handling.
10219
10220 To keep things simple, we always invalidate our notion of the
10221 current thread. */
10222 record_currthread (rs, minus_one_ptid);
10223
10224 /* Call common code to mark the inferior as not running. */
10225 generic_mourn_inferior ();
10226 }
10227
10228 bool
10229 extended_remote_target::supports_disable_randomization ()
10230 {
10231 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10232 }
10233
10234 void
10235 remote_target::extended_remote_disable_randomization (int val)
10236 {
10237 struct remote_state *rs = get_remote_state ();
10238 char *reply;
10239
10240 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10241 "QDisableRandomization:%x", val);
10242 putpkt (rs->buf);
10243 reply = remote_get_noisy_reply ();
10244 if (*reply == '\0')
10245 error (_("Target does not support QDisableRandomization."));
10246 if (strcmp (reply, "OK") != 0)
10247 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10248 }
10249
10250 int
10251 remote_target::extended_remote_run (const std::string &args)
10252 {
10253 struct remote_state *rs = get_remote_state ();
10254 int len;
10255 const char *remote_exec_file = get_remote_exec_file ();
10256
10257 /* If the user has disabled vRun support, or we have detected that
10258 support is not available, do not try it. */
10259 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10260 return -1;
10261
10262 strcpy (rs->buf.data (), "vRun;");
10263 len = strlen (rs->buf.data ());
10264
10265 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10266 error (_("Remote file name too long for run packet"));
10267 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10268 strlen (remote_exec_file));
10269
10270 if (!args.empty ())
10271 {
10272 int i;
10273
10274 gdb_argv argv (args.c_str ());
10275 for (i = 0; argv[i] != NULL; i++)
10276 {
10277 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10278 error (_("Argument list too long for run packet"));
10279 rs->buf[len++] = ';';
10280 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10281 strlen (argv[i]));
10282 }
10283 }
10284
10285 rs->buf[len++] = '\0';
10286
10287 putpkt (rs->buf);
10288 getpkt (&rs->buf, 0);
10289
10290 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10291 {
10292 case PACKET_OK:
10293 /* We have a wait response. All is well. */
10294 return 0;
10295 case PACKET_UNKNOWN:
10296 return -1;
10297 case PACKET_ERROR:
10298 if (remote_exec_file[0] == '\0')
10299 error (_("Running the default executable on the remote target failed; "
10300 "try \"set remote exec-file\"?"));
10301 else
10302 error (_("Running \"%s\" on the remote target failed"),
10303 remote_exec_file);
10304 default:
10305 gdb_assert_not_reached (_("bad switch"));
10306 }
10307 }
10308
10309 /* Helper function to send set/unset environment packets. ACTION is
10310 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10311 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10312 sent. */
10313
10314 void
10315 remote_target::send_environment_packet (const char *action,
10316 const char *packet,
10317 const char *value)
10318 {
10319 remote_state *rs = get_remote_state ();
10320
10321 /* Convert the environment variable to an hex string, which
10322 is the best format to be transmitted over the wire. */
10323 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10324 strlen (value));
10325
10326 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10327 "%s:%s", packet, encoded_value.c_str ());
10328
10329 putpkt (rs->buf);
10330 getpkt (&rs->buf, 0);
10331 if (strcmp (rs->buf.data (), "OK") != 0)
10332 warning (_("Unable to %s environment variable '%s' on remote."),
10333 action, value);
10334 }
10335
10336 /* Helper function to handle the QEnvironment* packets. */
10337
10338 void
10339 remote_target::extended_remote_environment_support ()
10340 {
10341 remote_state *rs = get_remote_state ();
10342
10343 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10344 {
10345 putpkt ("QEnvironmentReset");
10346 getpkt (&rs->buf, 0);
10347 if (strcmp (rs->buf.data (), "OK") != 0)
10348 warning (_("Unable to reset environment on remote."));
10349 }
10350
10351 gdb_environ *e = &current_inferior ()->environment;
10352
10353 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10354 for (const std::string &el : e->user_set_env ())
10355 send_environment_packet ("set", "QEnvironmentHexEncoded",
10356 el.c_str ());
10357
10358 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10359 for (const std::string &el : e->user_unset_env ())
10360 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10361 }
10362
10363 /* Helper function to set the current working directory for the
10364 inferior in the remote target. */
10365
10366 void
10367 remote_target::extended_remote_set_inferior_cwd ()
10368 {
10369 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10370 {
10371 const char *inferior_cwd = get_inferior_cwd ();
10372 remote_state *rs = get_remote_state ();
10373
10374 if (inferior_cwd != NULL)
10375 {
10376 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10377 strlen (inferior_cwd));
10378
10379 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10380 "QSetWorkingDir:%s", hexpath.c_str ());
10381 }
10382 else
10383 {
10384 /* An empty inferior_cwd means that the user wants us to
10385 reset the remote server's inferior's cwd. */
10386 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10387 "QSetWorkingDir:");
10388 }
10389
10390 putpkt (rs->buf);
10391 getpkt (&rs->buf, 0);
10392 if (packet_ok (rs->buf,
10393 &remote_protocol_packets[PACKET_QSetWorkingDir])
10394 != PACKET_OK)
10395 error (_("\
10396 Remote replied unexpectedly while setting the inferior's working\n\
10397 directory: %s"),
10398 rs->buf.data ());
10399
10400 }
10401 }
10402
10403 /* In the extended protocol we want to be able to do things like
10404 "run" and have them basically work as expected. So we need
10405 a special create_inferior function. We support changing the
10406 executable file and the command line arguments, but not the
10407 environment. */
10408
10409 void
10410 extended_remote_target::create_inferior (const char *exec_file,
10411 const std::string &args,
10412 char **env, int from_tty)
10413 {
10414 int run_worked;
10415 char *stop_reply;
10416 struct remote_state *rs = get_remote_state ();
10417 const char *remote_exec_file = get_remote_exec_file ();
10418
10419 /* If running asynchronously, register the target file descriptor
10420 with the event loop. */
10421 if (target_can_async_p ())
10422 target_async (1);
10423
10424 /* Disable address space randomization if requested (and supported). */
10425 if (supports_disable_randomization ())
10426 extended_remote_disable_randomization (disable_randomization);
10427
10428 /* If startup-with-shell is on, we inform gdbserver to start the
10429 remote inferior using a shell. */
10430 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10431 {
10432 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10433 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10434 putpkt (rs->buf);
10435 getpkt (&rs->buf, 0);
10436 if (strcmp (rs->buf.data (), "OK") != 0)
10437 error (_("\
10438 Remote replied unexpectedly while setting startup-with-shell: %s"),
10439 rs->buf.data ());
10440 }
10441
10442 extended_remote_environment_support ();
10443
10444 extended_remote_set_inferior_cwd ();
10445
10446 /* Now restart the remote server. */
10447 run_worked = extended_remote_run (args) != -1;
10448 if (!run_worked)
10449 {
10450 /* vRun was not supported. Fail if we need it to do what the
10451 user requested. */
10452 if (remote_exec_file[0])
10453 error (_("Remote target does not support \"set remote exec-file\""));
10454 if (!args.empty ())
10455 error (_("Remote target does not support \"set args\" or run ARGS"));
10456
10457 /* Fall back to "R". */
10458 extended_remote_restart ();
10459 }
10460
10461 /* vRun's success return is a stop reply. */
10462 stop_reply = run_worked ? rs->buf.data () : NULL;
10463 add_current_inferior_and_thread (stop_reply);
10464
10465 /* Get updated offsets, if the stub uses qOffsets. */
10466 get_offsets ();
10467 }
10468 \f
10469
10470 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10471 the list of conditions (in agent expression bytecode format), if any, the
10472 target needs to evaluate. The output is placed into the packet buffer
10473 started from BUF and ended at BUF_END. */
10474
10475 static int
10476 remote_add_target_side_condition (struct gdbarch *gdbarch,
10477 struct bp_target_info *bp_tgt, char *buf,
10478 char *buf_end)
10479 {
10480 if (bp_tgt->conditions.empty ())
10481 return 0;
10482
10483 buf += strlen (buf);
10484 xsnprintf (buf, buf_end - buf, "%s", ";");
10485 buf++;
10486
10487 /* Send conditions to the target. */
10488 for (agent_expr *aexpr : bp_tgt->conditions)
10489 {
10490 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10491 buf += strlen (buf);
10492 for (int i = 0; i < aexpr->len; ++i)
10493 buf = pack_hex_byte (buf, aexpr->buf[i]);
10494 *buf = '\0';
10495 }
10496 return 0;
10497 }
10498
10499 static void
10500 remote_add_target_side_commands (struct gdbarch *gdbarch,
10501 struct bp_target_info *bp_tgt, char *buf)
10502 {
10503 if (bp_tgt->tcommands.empty ())
10504 return;
10505
10506 buf += strlen (buf);
10507
10508 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10509 buf += strlen (buf);
10510
10511 /* Concatenate all the agent expressions that are commands into the
10512 cmds parameter. */
10513 for (agent_expr *aexpr : bp_tgt->tcommands)
10514 {
10515 sprintf (buf, "X%x,", aexpr->len);
10516 buf += strlen (buf);
10517 for (int i = 0; i < aexpr->len; ++i)
10518 buf = pack_hex_byte (buf, aexpr->buf[i]);
10519 *buf = '\0';
10520 }
10521 }
10522
10523 /* Insert a breakpoint. On targets that have software breakpoint
10524 support, we ask the remote target to do the work; on targets
10525 which don't, we insert a traditional memory breakpoint. */
10526
10527 int
10528 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10529 struct bp_target_info *bp_tgt)
10530 {
10531 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10532 If it succeeds, then set the support to PACKET_ENABLE. If it
10533 fails, and the user has explicitly requested the Z support then
10534 report an error, otherwise, mark it disabled and go on. */
10535
10536 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10537 {
10538 CORE_ADDR addr = bp_tgt->reqstd_address;
10539 struct remote_state *rs;
10540 char *p, *endbuf;
10541
10542 /* Make sure the remote is pointing at the right process, if
10543 necessary. */
10544 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10545 set_general_process ();
10546
10547 rs = get_remote_state ();
10548 p = rs->buf.data ();
10549 endbuf = p + get_remote_packet_size ();
10550
10551 *(p++) = 'Z';
10552 *(p++) = '0';
10553 *(p++) = ',';
10554 addr = (ULONGEST) remote_address_masked (addr);
10555 p += hexnumstr (p, addr);
10556 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10557
10558 if (supports_evaluation_of_breakpoint_conditions ())
10559 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10560
10561 if (can_run_breakpoint_commands ())
10562 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10563
10564 putpkt (rs->buf);
10565 getpkt (&rs->buf, 0);
10566
10567 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10568 {
10569 case PACKET_ERROR:
10570 return -1;
10571 case PACKET_OK:
10572 return 0;
10573 case PACKET_UNKNOWN:
10574 break;
10575 }
10576 }
10577
10578 /* If this breakpoint has target-side commands but this stub doesn't
10579 support Z0 packets, throw error. */
10580 if (!bp_tgt->tcommands.empty ())
10581 throw_error (NOT_SUPPORTED_ERROR, _("\
10582 Target doesn't support breakpoints that have target side commands."));
10583
10584 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10585 }
10586
10587 int
10588 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10589 struct bp_target_info *bp_tgt,
10590 enum remove_bp_reason reason)
10591 {
10592 CORE_ADDR addr = bp_tgt->placed_address;
10593 struct remote_state *rs = get_remote_state ();
10594
10595 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10596 {
10597 char *p = rs->buf.data ();
10598 char *endbuf = p + get_remote_packet_size ();
10599
10600 /* Make sure the remote is pointing at the right process, if
10601 necessary. */
10602 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10603 set_general_process ();
10604
10605 *(p++) = 'z';
10606 *(p++) = '0';
10607 *(p++) = ',';
10608
10609 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10610 p += hexnumstr (p, addr);
10611 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10612
10613 putpkt (rs->buf);
10614 getpkt (&rs->buf, 0);
10615
10616 return (rs->buf[0] == 'E');
10617 }
10618
10619 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10620 }
10621
10622 static enum Z_packet_type
10623 watchpoint_to_Z_packet (int type)
10624 {
10625 switch (type)
10626 {
10627 case hw_write:
10628 return Z_PACKET_WRITE_WP;
10629 break;
10630 case hw_read:
10631 return Z_PACKET_READ_WP;
10632 break;
10633 case hw_access:
10634 return Z_PACKET_ACCESS_WP;
10635 break;
10636 default:
10637 internal_error (__FILE__, __LINE__,
10638 _("hw_bp_to_z: bad watchpoint type %d"), type);
10639 }
10640 }
10641
10642 int
10643 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10644 enum target_hw_bp_type type, struct expression *cond)
10645 {
10646 struct remote_state *rs = get_remote_state ();
10647 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10648 char *p;
10649 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10650
10651 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10652 return 1;
10653
10654 /* Make sure the remote is pointing at the right process, if
10655 necessary. */
10656 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10657 set_general_process ();
10658
10659 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10660 p = strchr (rs->buf.data (), '\0');
10661 addr = remote_address_masked (addr);
10662 p += hexnumstr (p, (ULONGEST) addr);
10663 xsnprintf (p, endbuf - p, ",%x", len);
10664
10665 putpkt (rs->buf);
10666 getpkt (&rs->buf, 0);
10667
10668 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10669 {
10670 case PACKET_ERROR:
10671 return -1;
10672 case PACKET_UNKNOWN:
10673 return 1;
10674 case PACKET_OK:
10675 return 0;
10676 }
10677 internal_error (__FILE__, __LINE__,
10678 _("remote_insert_watchpoint: reached end of function"));
10679 }
10680
10681 bool
10682 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10683 CORE_ADDR start, int length)
10684 {
10685 CORE_ADDR diff = remote_address_masked (addr - start);
10686
10687 return diff < length;
10688 }
10689
10690
10691 int
10692 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10693 enum target_hw_bp_type type, struct expression *cond)
10694 {
10695 struct remote_state *rs = get_remote_state ();
10696 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10697 char *p;
10698 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10699
10700 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10701 return -1;
10702
10703 /* Make sure the remote is pointing at the right process, if
10704 necessary. */
10705 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10706 set_general_process ();
10707
10708 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10709 p = strchr (rs->buf.data (), '\0');
10710 addr = remote_address_masked (addr);
10711 p += hexnumstr (p, (ULONGEST) addr);
10712 xsnprintf (p, endbuf - p, ",%x", len);
10713 putpkt (rs->buf);
10714 getpkt (&rs->buf, 0);
10715
10716 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10717 {
10718 case PACKET_ERROR:
10719 case PACKET_UNKNOWN:
10720 return -1;
10721 case PACKET_OK:
10722 return 0;
10723 }
10724 internal_error (__FILE__, __LINE__,
10725 _("remote_remove_watchpoint: reached end of function"));
10726 }
10727
10728
10729 static int remote_hw_watchpoint_limit = -1;
10730 static int remote_hw_watchpoint_length_limit = -1;
10731 static int remote_hw_breakpoint_limit = -1;
10732
10733 int
10734 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10735 {
10736 if (remote_hw_watchpoint_length_limit == 0)
10737 return 0;
10738 else if (remote_hw_watchpoint_length_limit < 0)
10739 return 1;
10740 else if (len <= remote_hw_watchpoint_length_limit)
10741 return 1;
10742 else
10743 return 0;
10744 }
10745
10746 int
10747 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10748 {
10749 if (type == bp_hardware_breakpoint)
10750 {
10751 if (remote_hw_breakpoint_limit == 0)
10752 return 0;
10753 else if (remote_hw_breakpoint_limit < 0)
10754 return 1;
10755 else if (cnt <= remote_hw_breakpoint_limit)
10756 return 1;
10757 }
10758 else
10759 {
10760 if (remote_hw_watchpoint_limit == 0)
10761 return 0;
10762 else if (remote_hw_watchpoint_limit < 0)
10763 return 1;
10764 else if (ot)
10765 return -1;
10766 else if (cnt <= remote_hw_watchpoint_limit)
10767 return 1;
10768 }
10769 return -1;
10770 }
10771
10772 /* The to_stopped_by_sw_breakpoint method of target remote. */
10773
10774 bool
10775 remote_target::stopped_by_sw_breakpoint ()
10776 {
10777 struct thread_info *thread = inferior_thread ();
10778
10779 return (thread->priv != NULL
10780 && (get_remote_thread_info (thread)->stop_reason
10781 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10782 }
10783
10784 /* The to_supports_stopped_by_sw_breakpoint method of target
10785 remote. */
10786
10787 bool
10788 remote_target::supports_stopped_by_sw_breakpoint ()
10789 {
10790 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10791 }
10792
10793 /* The to_stopped_by_hw_breakpoint method of target remote. */
10794
10795 bool
10796 remote_target::stopped_by_hw_breakpoint ()
10797 {
10798 struct thread_info *thread = inferior_thread ();
10799
10800 return (thread->priv != NULL
10801 && (get_remote_thread_info (thread)->stop_reason
10802 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10803 }
10804
10805 /* The to_supports_stopped_by_hw_breakpoint method of target
10806 remote. */
10807
10808 bool
10809 remote_target::supports_stopped_by_hw_breakpoint ()
10810 {
10811 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10812 }
10813
10814 bool
10815 remote_target::stopped_by_watchpoint ()
10816 {
10817 struct thread_info *thread = inferior_thread ();
10818
10819 return (thread->priv != NULL
10820 && (get_remote_thread_info (thread)->stop_reason
10821 == TARGET_STOPPED_BY_WATCHPOINT));
10822 }
10823
10824 bool
10825 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10826 {
10827 struct thread_info *thread = inferior_thread ();
10828
10829 if (thread->priv != NULL
10830 && (get_remote_thread_info (thread)->stop_reason
10831 == TARGET_STOPPED_BY_WATCHPOINT))
10832 {
10833 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10834 return true;
10835 }
10836
10837 return false;
10838 }
10839
10840
10841 int
10842 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10843 struct bp_target_info *bp_tgt)
10844 {
10845 CORE_ADDR addr = bp_tgt->reqstd_address;
10846 struct remote_state *rs;
10847 char *p, *endbuf;
10848 char *message;
10849
10850 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10851 return -1;
10852
10853 /* Make sure the remote is pointing at the right process, if
10854 necessary. */
10855 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10856 set_general_process ();
10857
10858 rs = get_remote_state ();
10859 p = rs->buf.data ();
10860 endbuf = p + get_remote_packet_size ();
10861
10862 *(p++) = 'Z';
10863 *(p++) = '1';
10864 *(p++) = ',';
10865
10866 addr = remote_address_masked (addr);
10867 p += hexnumstr (p, (ULONGEST) addr);
10868 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10869
10870 if (supports_evaluation_of_breakpoint_conditions ())
10871 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10872
10873 if (can_run_breakpoint_commands ())
10874 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10875
10876 putpkt (rs->buf);
10877 getpkt (&rs->buf, 0);
10878
10879 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10880 {
10881 case PACKET_ERROR:
10882 if (rs->buf[1] == '.')
10883 {
10884 message = strchr (&rs->buf[2], '.');
10885 if (message)
10886 error (_("Remote failure reply: %s"), message + 1);
10887 }
10888 return -1;
10889 case PACKET_UNKNOWN:
10890 return -1;
10891 case PACKET_OK:
10892 return 0;
10893 }
10894 internal_error (__FILE__, __LINE__,
10895 _("remote_insert_hw_breakpoint: reached end of function"));
10896 }
10897
10898
10899 int
10900 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10901 struct bp_target_info *bp_tgt)
10902 {
10903 CORE_ADDR addr;
10904 struct remote_state *rs = get_remote_state ();
10905 char *p = rs->buf.data ();
10906 char *endbuf = p + get_remote_packet_size ();
10907
10908 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10909 return -1;
10910
10911 /* Make sure the remote is pointing at the right process, if
10912 necessary. */
10913 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10914 set_general_process ();
10915
10916 *(p++) = 'z';
10917 *(p++) = '1';
10918 *(p++) = ',';
10919
10920 addr = remote_address_masked (bp_tgt->placed_address);
10921 p += hexnumstr (p, (ULONGEST) addr);
10922 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10923
10924 putpkt (rs->buf);
10925 getpkt (&rs->buf, 0);
10926
10927 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10928 {
10929 case PACKET_ERROR:
10930 case PACKET_UNKNOWN:
10931 return -1;
10932 case PACKET_OK:
10933 return 0;
10934 }
10935 internal_error (__FILE__, __LINE__,
10936 _("remote_remove_hw_breakpoint: reached end of function"));
10937 }
10938
10939 /* Verify memory using the "qCRC:" request. */
10940
10941 int
10942 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10943 {
10944 struct remote_state *rs = get_remote_state ();
10945 unsigned long host_crc, target_crc;
10946 char *tmp;
10947
10948 /* It doesn't make sense to use qCRC if the remote target is
10949 connected but not running. */
10950 if (target_has_execution ()
10951 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10952 {
10953 enum packet_result result;
10954
10955 /* Make sure the remote is pointing at the right process. */
10956 set_general_process ();
10957
10958 /* FIXME: assumes lma can fit into long. */
10959 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10960 (long) lma, (long) size);
10961 putpkt (rs->buf);
10962
10963 /* Be clever; compute the host_crc before waiting for target
10964 reply. */
10965 host_crc = xcrc32 (data, size, 0xffffffff);
10966
10967 getpkt (&rs->buf, 0);
10968
10969 result = packet_ok (rs->buf,
10970 &remote_protocol_packets[PACKET_qCRC]);
10971 if (result == PACKET_ERROR)
10972 return -1;
10973 else if (result == PACKET_OK)
10974 {
10975 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10976 target_crc = target_crc * 16 + fromhex (*tmp);
10977
10978 return (host_crc == target_crc);
10979 }
10980 }
10981
10982 return simple_verify_memory (this, data, lma, size);
10983 }
10984
10985 /* compare-sections command
10986
10987 With no arguments, compares each loadable section in the exec bfd
10988 with the same memory range on the target, and reports mismatches.
10989 Useful for verifying the image on the target against the exec file. */
10990
10991 static void
10992 compare_sections_command (const char *args, int from_tty)
10993 {
10994 asection *s;
10995 const char *sectname;
10996 bfd_size_type size;
10997 bfd_vma lma;
10998 int matched = 0;
10999 int mismatched = 0;
11000 int res;
11001 int read_only = 0;
11002
11003 if (!current_program_space->exec_bfd ())
11004 error (_("command cannot be used without an exec file"));
11005
11006 if (args != NULL && strcmp (args, "-r") == 0)
11007 {
11008 read_only = 1;
11009 args = NULL;
11010 }
11011
11012 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
11013 {
11014 if (!(s->flags & SEC_LOAD))
11015 continue; /* Skip non-loadable section. */
11016
11017 if (read_only && (s->flags & SEC_READONLY) == 0)
11018 continue; /* Skip writeable sections */
11019
11020 size = bfd_section_size (s);
11021 if (size == 0)
11022 continue; /* Skip zero-length section. */
11023
11024 sectname = bfd_section_name (s);
11025 if (args && strcmp (args, sectname) != 0)
11026 continue; /* Not the section selected by user. */
11027
11028 matched = 1; /* Do this section. */
11029 lma = s->lma;
11030
11031 gdb::byte_vector sectdata (size);
11032 bfd_get_section_contents (current_program_space->exec_bfd (), s,
11033 sectdata.data (), 0, size);
11034
11035 res = target_verify_memory (sectdata.data (), lma, size);
11036
11037 if (res == -1)
11038 error (_("target memory fault, section %s, range %s -- %s"), sectname,
11039 paddress (target_gdbarch (), lma),
11040 paddress (target_gdbarch (), lma + size));
11041
11042 printf_filtered ("Section %s, range %s -- %s: ", sectname,
11043 paddress (target_gdbarch (), lma),
11044 paddress (target_gdbarch (), lma + size));
11045 if (res)
11046 printf_filtered ("matched.\n");
11047 else
11048 {
11049 printf_filtered ("MIS-MATCHED!\n");
11050 mismatched++;
11051 }
11052 }
11053 if (mismatched > 0)
11054 warning (_("One or more sections of the target image does not match\n\
11055 the loaded file\n"));
11056 if (args && !matched)
11057 printf_filtered (_("No loaded section named '%s'.\n"), args);
11058 }
11059
11060 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
11061 into remote target. The number of bytes written to the remote
11062 target is returned, or -1 for error. */
11063
11064 target_xfer_status
11065 remote_target::remote_write_qxfer (const char *object_name,
11066 const char *annex, const gdb_byte *writebuf,
11067 ULONGEST offset, LONGEST len,
11068 ULONGEST *xfered_len,
11069 struct packet_config *packet)
11070 {
11071 int i, buf_len;
11072 ULONGEST n;
11073 struct remote_state *rs = get_remote_state ();
11074 int max_size = get_memory_write_packet_size ();
11075
11076 if (packet_config_support (packet) == PACKET_DISABLE)
11077 return TARGET_XFER_E_IO;
11078
11079 /* Insert header. */
11080 i = snprintf (rs->buf.data (), max_size,
11081 "qXfer:%s:write:%s:%s:",
11082 object_name, annex ? annex : "",
11083 phex_nz (offset, sizeof offset));
11084 max_size -= (i + 1);
11085
11086 /* Escape as much data as fits into rs->buf. */
11087 buf_len = remote_escape_output
11088 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
11089
11090 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
11091 || getpkt_sane (&rs->buf, 0) < 0
11092 || packet_ok (rs->buf, packet) != PACKET_OK)
11093 return TARGET_XFER_E_IO;
11094
11095 unpack_varlen_hex (rs->buf.data (), &n);
11096
11097 *xfered_len = n;
11098 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11099 }
11100
11101 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
11102 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
11103 number of bytes read is returned, or 0 for EOF, or -1 for error.
11104 The number of bytes read may be less than LEN without indicating an
11105 EOF. PACKET is checked and updated to indicate whether the remote
11106 target supports this object. */
11107
11108 target_xfer_status
11109 remote_target::remote_read_qxfer (const char *object_name,
11110 const char *annex,
11111 gdb_byte *readbuf, ULONGEST offset,
11112 LONGEST len,
11113 ULONGEST *xfered_len,
11114 struct packet_config *packet)
11115 {
11116 struct remote_state *rs = get_remote_state ();
11117 LONGEST i, n, packet_len;
11118
11119 if (packet_config_support (packet) == PACKET_DISABLE)
11120 return TARGET_XFER_E_IO;
11121
11122 /* Check whether we've cached an end-of-object packet that matches
11123 this request. */
11124 if (rs->finished_object)
11125 {
11126 if (strcmp (object_name, rs->finished_object) == 0
11127 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11128 && offset == rs->finished_offset)
11129 return TARGET_XFER_EOF;
11130
11131
11132 /* Otherwise, we're now reading something different. Discard
11133 the cache. */
11134 xfree (rs->finished_object);
11135 xfree (rs->finished_annex);
11136 rs->finished_object = NULL;
11137 rs->finished_annex = NULL;
11138 }
11139
11140 /* Request only enough to fit in a single packet. The actual data
11141 may not, since we don't know how much of it will need to be escaped;
11142 the target is free to respond with slightly less data. We subtract
11143 five to account for the response type and the protocol frame. */
11144 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11145 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11146 "qXfer:%s:read:%s:%s,%s",
11147 object_name, annex ? annex : "",
11148 phex_nz (offset, sizeof offset),
11149 phex_nz (n, sizeof n));
11150 i = putpkt (rs->buf);
11151 if (i < 0)
11152 return TARGET_XFER_E_IO;
11153
11154 rs->buf[0] = '\0';
11155 packet_len = getpkt_sane (&rs->buf, 0);
11156 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11157 return TARGET_XFER_E_IO;
11158
11159 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11160 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11161
11162 /* 'm' means there is (or at least might be) more data after this
11163 batch. That does not make sense unless there's at least one byte
11164 of data in this reply. */
11165 if (rs->buf[0] == 'm' && packet_len == 1)
11166 error (_("Remote qXfer reply contained no data."));
11167
11168 /* Got some data. */
11169 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11170 packet_len - 1, readbuf, n);
11171
11172 /* 'l' is an EOF marker, possibly including a final block of data,
11173 or possibly empty. If we have the final block of a non-empty
11174 object, record this fact to bypass a subsequent partial read. */
11175 if (rs->buf[0] == 'l' && offset + i > 0)
11176 {
11177 rs->finished_object = xstrdup (object_name);
11178 rs->finished_annex = xstrdup (annex ? annex : "");
11179 rs->finished_offset = offset + i;
11180 }
11181
11182 if (i == 0)
11183 return TARGET_XFER_EOF;
11184 else
11185 {
11186 *xfered_len = i;
11187 return TARGET_XFER_OK;
11188 }
11189 }
11190
11191 enum target_xfer_status
11192 remote_target::xfer_partial (enum target_object object,
11193 const char *annex, gdb_byte *readbuf,
11194 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11195 ULONGEST *xfered_len)
11196 {
11197 struct remote_state *rs;
11198 int i;
11199 char *p2;
11200 char query_type;
11201 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11202
11203 set_remote_traceframe ();
11204 set_general_thread (inferior_ptid);
11205
11206 rs = get_remote_state ();
11207
11208 /* Handle memory using the standard memory routines. */
11209 if (object == TARGET_OBJECT_MEMORY)
11210 {
11211 /* If the remote target is connected but not running, we should
11212 pass this request down to a lower stratum (e.g. the executable
11213 file). */
11214 if (!target_has_execution ())
11215 return TARGET_XFER_EOF;
11216
11217 if (writebuf != NULL)
11218 return remote_write_bytes (offset, writebuf, len, unit_size,
11219 xfered_len);
11220 else
11221 return remote_read_bytes (offset, readbuf, len, unit_size,
11222 xfered_len);
11223 }
11224
11225 /* Handle extra signal info using qxfer packets. */
11226 if (object == TARGET_OBJECT_SIGNAL_INFO)
11227 {
11228 if (readbuf)
11229 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11230 xfered_len, &remote_protocol_packets
11231 [PACKET_qXfer_siginfo_read]);
11232 else
11233 return remote_write_qxfer ("siginfo", annex,
11234 writebuf, offset, len, xfered_len,
11235 &remote_protocol_packets
11236 [PACKET_qXfer_siginfo_write]);
11237 }
11238
11239 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11240 {
11241 if (readbuf)
11242 return remote_read_qxfer ("statictrace", annex,
11243 readbuf, offset, len, xfered_len,
11244 &remote_protocol_packets
11245 [PACKET_qXfer_statictrace_read]);
11246 else
11247 return TARGET_XFER_E_IO;
11248 }
11249
11250 /* Only handle flash writes. */
11251 if (writebuf != NULL)
11252 {
11253 switch (object)
11254 {
11255 case TARGET_OBJECT_FLASH:
11256 return remote_flash_write (offset, len, xfered_len,
11257 writebuf);
11258
11259 default:
11260 return TARGET_XFER_E_IO;
11261 }
11262 }
11263
11264 /* Map pre-existing objects onto letters. DO NOT do this for new
11265 objects!!! Instead specify new query packets. */
11266 switch (object)
11267 {
11268 case TARGET_OBJECT_AVR:
11269 query_type = 'R';
11270 break;
11271
11272 case TARGET_OBJECT_AUXV:
11273 gdb_assert (annex == NULL);
11274 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11275 xfered_len,
11276 &remote_protocol_packets[PACKET_qXfer_auxv]);
11277
11278 case TARGET_OBJECT_AVAILABLE_FEATURES:
11279 return remote_read_qxfer
11280 ("features", annex, readbuf, offset, len, xfered_len,
11281 &remote_protocol_packets[PACKET_qXfer_features]);
11282
11283 case TARGET_OBJECT_LIBRARIES:
11284 return remote_read_qxfer
11285 ("libraries", annex, readbuf, offset, len, xfered_len,
11286 &remote_protocol_packets[PACKET_qXfer_libraries]);
11287
11288 case TARGET_OBJECT_LIBRARIES_SVR4:
11289 return remote_read_qxfer
11290 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11291 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11292
11293 case TARGET_OBJECT_MEMORY_MAP:
11294 gdb_assert (annex == NULL);
11295 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11296 xfered_len,
11297 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11298
11299 case TARGET_OBJECT_OSDATA:
11300 /* Should only get here if we're connected. */
11301 gdb_assert (rs->remote_desc);
11302 return remote_read_qxfer
11303 ("osdata", annex, readbuf, offset, len, xfered_len,
11304 &remote_protocol_packets[PACKET_qXfer_osdata]);
11305
11306 case TARGET_OBJECT_THREADS:
11307 gdb_assert (annex == NULL);
11308 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11309 xfered_len,
11310 &remote_protocol_packets[PACKET_qXfer_threads]);
11311
11312 case TARGET_OBJECT_TRACEFRAME_INFO:
11313 gdb_assert (annex == NULL);
11314 return remote_read_qxfer
11315 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11316 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11317
11318 case TARGET_OBJECT_FDPIC:
11319 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11320 xfered_len,
11321 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11322
11323 case TARGET_OBJECT_OPENVMS_UIB:
11324 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11325 xfered_len,
11326 &remote_protocol_packets[PACKET_qXfer_uib]);
11327
11328 case TARGET_OBJECT_BTRACE:
11329 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11330 xfered_len,
11331 &remote_protocol_packets[PACKET_qXfer_btrace]);
11332
11333 case TARGET_OBJECT_BTRACE_CONF:
11334 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11335 len, xfered_len,
11336 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11337
11338 case TARGET_OBJECT_EXEC_FILE:
11339 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11340 len, xfered_len,
11341 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11342
11343 default:
11344 return TARGET_XFER_E_IO;
11345 }
11346
11347 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11348 large enough let the caller deal with it. */
11349 if (len < get_remote_packet_size ())
11350 return TARGET_XFER_E_IO;
11351 len = get_remote_packet_size ();
11352
11353 /* Except for querying the minimum buffer size, target must be open. */
11354 if (!rs->remote_desc)
11355 error (_("remote query is only available after target open"));
11356
11357 gdb_assert (annex != NULL);
11358 gdb_assert (readbuf != NULL);
11359
11360 p2 = rs->buf.data ();
11361 *p2++ = 'q';
11362 *p2++ = query_type;
11363
11364 /* We used one buffer char for the remote protocol q command and
11365 another for the query type. As the remote protocol encapsulation
11366 uses 4 chars plus one extra in case we are debugging
11367 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11368 string. */
11369 i = 0;
11370 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11371 {
11372 /* Bad caller may have sent forbidden characters. */
11373 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11374 *p2++ = annex[i];
11375 i++;
11376 }
11377 *p2 = '\0';
11378 gdb_assert (annex[i] == '\0');
11379
11380 i = putpkt (rs->buf);
11381 if (i < 0)
11382 return TARGET_XFER_E_IO;
11383
11384 getpkt (&rs->buf, 0);
11385 strcpy ((char *) readbuf, rs->buf.data ());
11386
11387 *xfered_len = strlen ((char *) readbuf);
11388 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11389 }
11390
11391 /* Implementation of to_get_memory_xfer_limit. */
11392
11393 ULONGEST
11394 remote_target::get_memory_xfer_limit ()
11395 {
11396 return get_memory_write_packet_size ();
11397 }
11398
11399 int
11400 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11401 const gdb_byte *pattern, ULONGEST pattern_len,
11402 CORE_ADDR *found_addrp)
11403 {
11404 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11405 struct remote_state *rs = get_remote_state ();
11406 int max_size = get_memory_write_packet_size ();
11407 struct packet_config *packet =
11408 &remote_protocol_packets[PACKET_qSearch_memory];
11409 /* Number of packet bytes used to encode the pattern;
11410 this could be more than PATTERN_LEN due to escape characters. */
11411 int escaped_pattern_len;
11412 /* Amount of pattern that was encodable in the packet. */
11413 int used_pattern_len;
11414 int i;
11415 int found;
11416 ULONGEST found_addr;
11417
11418 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11419 {
11420 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11421 == len);
11422 };
11423
11424 /* Don't go to the target if we don't have to. This is done before
11425 checking packet_config_support to avoid the possibility that a
11426 success for this edge case means the facility works in
11427 general. */
11428 if (pattern_len > search_space_len)
11429 return 0;
11430 if (pattern_len == 0)
11431 {
11432 *found_addrp = start_addr;
11433 return 1;
11434 }
11435
11436 /* If we already know the packet isn't supported, fall back to the simple
11437 way of searching memory. */
11438
11439 if (packet_config_support (packet) == PACKET_DISABLE)
11440 {
11441 /* Target doesn't provided special support, fall back and use the
11442 standard support (copy memory and do the search here). */
11443 return simple_search_memory (read_memory, start_addr, search_space_len,
11444 pattern, pattern_len, found_addrp);
11445 }
11446
11447 /* Make sure the remote is pointing at the right process. */
11448 set_general_process ();
11449
11450 /* Insert header. */
11451 i = snprintf (rs->buf.data (), max_size,
11452 "qSearch:memory:%s;%s;",
11453 phex_nz (start_addr, addr_size),
11454 phex_nz (search_space_len, sizeof (search_space_len)));
11455 max_size -= (i + 1);
11456
11457 /* Escape as much data as fits into rs->buf. */
11458 escaped_pattern_len =
11459 remote_escape_output (pattern, pattern_len, 1,
11460 (gdb_byte *) rs->buf.data () + i,
11461 &used_pattern_len, max_size);
11462
11463 /* Bail if the pattern is too large. */
11464 if (used_pattern_len != pattern_len)
11465 error (_("Pattern is too large to transmit to remote target."));
11466
11467 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11468 || getpkt_sane (&rs->buf, 0) < 0
11469 || packet_ok (rs->buf, packet) != PACKET_OK)
11470 {
11471 /* The request may not have worked because the command is not
11472 supported. If so, fall back to the simple way. */
11473 if (packet_config_support (packet) == PACKET_DISABLE)
11474 {
11475 return simple_search_memory (read_memory, start_addr, search_space_len,
11476 pattern, pattern_len, found_addrp);
11477 }
11478 return -1;
11479 }
11480
11481 if (rs->buf[0] == '0')
11482 found = 0;
11483 else if (rs->buf[0] == '1')
11484 {
11485 found = 1;
11486 if (rs->buf[1] != ',')
11487 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11488 unpack_varlen_hex (&rs->buf[2], &found_addr);
11489 *found_addrp = found_addr;
11490 }
11491 else
11492 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11493
11494 return found;
11495 }
11496
11497 void
11498 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11499 {
11500 struct remote_state *rs = get_remote_state ();
11501 char *p = rs->buf.data ();
11502
11503 if (!rs->remote_desc)
11504 error (_("remote rcmd is only available after target open"));
11505
11506 /* Send a NULL command across as an empty command. */
11507 if (command == NULL)
11508 command = "";
11509
11510 /* The query prefix. */
11511 strcpy (rs->buf.data (), "qRcmd,");
11512 p = strchr (rs->buf.data (), '\0');
11513
11514 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11515 > get_remote_packet_size ())
11516 error (_("\"monitor\" command ``%s'' is too long."), command);
11517
11518 /* Encode the actual command. */
11519 bin2hex ((const gdb_byte *) command, p, strlen (command));
11520
11521 if (putpkt (rs->buf) < 0)
11522 error (_("Communication problem with target."));
11523
11524 /* get/display the response */
11525 while (1)
11526 {
11527 char *buf;
11528
11529 /* XXX - see also remote_get_noisy_reply(). */
11530 QUIT; /* Allow user to bail out with ^C. */
11531 rs->buf[0] = '\0';
11532 if (getpkt_sane (&rs->buf, 0) == -1)
11533 {
11534 /* Timeout. Continue to (try to) read responses.
11535 This is better than stopping with an error, assuming the stub
11536 is still executing the (long) monitor command.
11537 If needed, the user can interrupt gdb using C-c, obtaining
11538 an effect similar to stop on timeout. */
11539 continue;
11540 }
11541 buf = rs->buf.data ();
11542 if (buf[0] == '\0')
11543 error (_("Target does not support this command."));
11544 if (buf[0] == 'O' && buf[1] != 'K')
11545 {
11546 remote_console_output (buf + 1); /* 'O' message from stub. */
11547 continue;
11548 }
11549 if (strcmp (buf, "OK") == 0)
11550 break;
11551 if (strlen (buf) == 3 && buf[0] == 'E'
11552 && isdigit (buf[1]) && isdigit (buf[2]))
11553 {
11554 error (_("Protocol error with Rcmd"));
11555 }
11556 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11557 {
11558 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11559
11560 fputc_unfiltered (c, outbuf);
11561 }
11562 break;
11563 }
11564 }
11565
11566 std::vector<mem_region>
11567 remote_target::memory_map ()
11568 {
11569 std::vector<mem_region> result;
11570 gdb::optional<gdb::char_vector> text
11571 = target_read_stralloc (current_inferior ()->top_target (),
11572 TARGET_OBJECT_MEMORY_MAP, NULL);
11573
11574 if (text)
11575 result = parse_memory_map (text->data ());
11576
11577 return result;
11578 }
11579
11580 static void
11581 packet_command (const char *args, int from_tty)
11582 {
11583 remote_target *remote = get_current_remote_target ();
11584
11585 if (remote == nullptr)
11586 error (_("command can only be used with remote target"));
11587
11588 remote->packet_command (args, from_tty);
11589 }
11590
11591 void
11592 remote_target::packet_command (const char *args, int from_tty)
11593 {
11594 if (!args)
11595 error (_("remote-packet command requires packet text as argument"));
11596
11597 puts_filtered ("sending: ");
11598 print_packet (args);
11599 puts_filtered ("\n");
11600 putpkt (args);
11601
11602 remote_state *rs = get_remote_state ();
11603
11604 getpkt (&rs->buf, 0);
11605 puts_filtered ("received: ");
11606 print_packet (rs->buf.data ());
11607 puts_filtered ("\n");
11608 }
11609
11610 #if 0
11611 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11612
11613 static void display_thread_info (struct gdb_ext_thread_info *info);
11614
11615 static void threadset_test_cmd (char *cmd, int tty);
11616
11617 static void threadalive_test (char *cmd, int tty);
11618
11619 static void threadlist_test_cmd (char *cmd, int tty);
11620
11621 int get_and_display_threadinfo (threadref *ref);
11622
11623 static void threadinfo_test_cmd (char *cmd, int tty);
11624
11625 static int thread_display_step (threadref *ref, void *context);
11626
11627 static void threadlist_update_test_cmd (char *cmd, int tty);
11628
11629 static void init_remote_threadtests (void);
11630
11631 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11632
11633 static void
11634 threadset_test_cmd (const char *cmd, int tty)
11635 {
11636 int sample_thread = SAMPLE_THREAD;
11637
11638 printf_filtered (_("Remote threadset test\n"));
11639 set_general_thread (sample_thread);
11640 }
11641
11642
11643 static void
11644 threadalive_test (const char *cmd, int tty)
11645 {
11646 int sample_thread = SAMPLE_THREAD;
11647 int pid = inferior_ptid.pid ();
11648 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11649
11650 if (remote_thread_alive (ptid))
11651 printf_filtered ("PASS: Thread alive test\n");
11652 else
11653 printf_filtered ("FAIL: Thread alive test\n");
11654 }
11655
11656 void output_threadid (char *title, threadref *ref);
11657
11658 void
11659 output_threadid (char *title, threadref *ref)
11660 {
11661 char hexid[20];
11662
11663 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11664 hexid[16] = 0;
11665 printf_filtered ("%s %s\n", title, (&hexid[0]));
11666 }
11667
11668 static void
11669 threadlist_test_cmd (const char *cmd, int tty)
11670 {
11671 int startflag = 1;
11672 threadref nextthread;
11673 int done, result_count;
11674 threadref threadlist[3];
11675
11676 printf_filtered ("Remote Threadlist test\n");
11677 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11678 &result_count, &threadlist[0]))
11679 printf_filtered ("FAIL: threadlist test\n");
11680 else
11681 {
11682 threadref *scan = threadlist;
11683 threadref *limit = scan + result_count;
11684
11685 while (scan < limit)
11686 output_threadid (" thread ", scan++);
11687 }
11688 }
11689
11690 void
11691 display_thread_info (struct gdb_ext_thread_info *info)
11692 {
11693 output_threadid ("Threadid: ", &info->threadid);
11694 printf_filtered ("Name: %s\n ", info->shortname);
11695 printf_filtered ("State: %s\n", info->display);
11696 printf_filtered ("other: %s\n\n", info->more_display);
11697 }
11698
11699 int
11700 get_and_display_threadinfo (threadref *ref)
11701 {
11702 int result;
11703 int set;
11704 struct gdb_ext_thread_info threadinfo;
11705
11706 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11707 | TAG_MOREDISPLAY | TAG_DISPLAY;
11708 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11709 display_thread_info (&threadinfo);
11710 return result;
11711 }
11712
11713 static void
11714 threadinfo_test_cmd (const char *cmd, int tty)
11715 {
11716 int athread = SAMPLE_THREAD;
11717 threadref thread;
11718 int set;
11719
11720 int_to_threadref (&thread, athread);
11721 printf_filtered ("Remote Threadinfo test\n");
11722 if (!get_and_display_threadinfo (&thread))
11723 printf_filtered ("FAIL cannot get thread info\n");
11724 }
11725
11726 static int
11727 thread_display_step (threadref *ref, void *context)
11728 {
11729 /* output_threadid(" threadstep ",ref); *//* simple test */
11730 return get_and_display_threadinfo (ref);
11731 }
11732
11733 static void
11734 threadlist_update_test_cmd (const char *cmd, int tty)
11735 {
11736 printf_filtered ("Remote Threadlist update test\n");
11737 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11738 }
11739
11740 static void
11741 init_remote_threadtests (void)
11742 {
11743 add_com ("tlist", class_obscure, threadlist_test_cmd,
11744 _("Fetch and print the remote list of "
11745 "thread identifiers, one pkt only."));
11746 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11747 _("Fetch and display info about one thread."));
11748 add_com ("tset", class_obscure, threadset_test_cmd,
11749 _("Test setting to a different thread."));
11750 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11751 _("Iterate through updating all remote thread info."));
11752 add_com ("talive", class_obscure, threadalive_test,
11753 _("Remote thread alive test."));
11754 }
11755
11756 #endif /* 0 */
11757
11758 /* Convert a thread ID to a string. */
11759
11760 std::string
11761 remote_target::pid_to_str (ptid_t ptid)
11762 {
11763 struct remote_state *rs = get_remote_state ();
11764
11765 if (ptid == null_ptid)
11766 return normal_pid_to_str (ptid);
11767 else if (ptid.is_pid ())
11768 {
11769 /* Printing an inferior target id. */
11770
11771 /* When multi-process extensions are off, there's no way in the
11772 remote protocol to know the remote process id, if there's any
11773 at all. There's one exception --- when we're connected with
11774 target extended-remote, and we manually attached to a process
11775 with "attach PID". We don't record anywhere a flag that
11776 allows us to distinguish that case from the case of
11777 connecting with extended-remote and the stub already being
11778 attached to a process, and reporting yes to qAttached, hence
11779 no smart special casing here. */
11780 if (!remote_multi_process_p (rs))
11781 return "Remote target";
11782
11783 return normal_pid_to_str (ptid);
11784 }
11785 else
11786 {
11787 if (magic_null_ptid == ptid)
11788 return "Thread <main>";
11789 else if (remote_multi_process_p (rs))
11790 if (ptid.lwp () == 0)
11791 return normal_pid_to_str (ptid);
11792 else
11793 return string_printf ("Thread %d.%ld",
11794 ptid.pid (), ptid.lwp ());
11795 else
11796 return string_printf ("Thread %ld", ptid.lwp ());
11797 }
11798 }
11799
11800 /* Get the address of the thread local variable in OBJFILE which is
11801 stored at OFFSET within the thread local storage for thread PTID. */
11802
11803 CORE_ADDR
11804 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11805 CORE_ADDR offset)
11806 {
11807 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11808 {
11809 struct remote_state *rs = get_remote_state ();
11810 char *p = rs->buf.data ();
11811 char *endp = p + get_remote_packet_size ();
11812 enum packet_result result;
11813
11814 strcpy (p, "qGetTLSAddr:");
11815 p += strlen (p);
11816 p = write_ptid (p, endp, ptid);
11817 *p++ = ',';
11818 p += hexnumstr (p, offset);
11819 *p++ = ',';
11820 p += hexnumstr (p, lm);
11821 *p++ = '\0';
11822
11823 putpkt (rs->buf);
11824 getpkt (&rs->buf, 0);
11825 result = packet_ok (rs->buf,
11826 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11827 if (result == PACKET_OK)
11828 {
11829 ULONGEST addr;
11830
11831 unpack_varlen_hex (rs->buf.data (), &addr);
11832 return addr;
11833 }
11834 else if (result == PACKET_UNKNOWN)
11835 throw_error (TLS_GENERIC_ERROR,
11836 _("Remote target doesn't support qGetTLSAddr packet"));
11837 else
11838 throw_error (TLS_GENERIC_ERROR,
11839 _("Remote target failed to process qGetTLSAddr request"));
11840 }
11841 else
11842 throw_error (TLS_GENERIC_ERROR,
11843 _("TLS not supported or disabled on this target"));
11844 /* Not reached. */
11845 return 0;
11846 }
11847
11848 /* Provide thread local base, i.e. Thread Information Block address.
11849 Returns 1 if ptid is found and thread_local_base is non zero. */
11850
11851 bool
11852 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11853 {
11854 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11855 {
11856 struct remote_state *rs = get_remote_state ();
11857 char *p = rs->buf.data ();
11858 char *endp = p + get_remote_packet_size ();
11859 enum packet_result result;
11860
11861 strcpy (p, "qGetTIBAddr:");
11862 p += strlen (p);
11863 p = write_ptid (p, endp, ptid);
11864 *p++ = '\0';
11865
11866 putpkt (rs->buf);
11867 getpkt (&rs->buf, 0);
11868 result = packet_ok (rs->buf,
11869 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11870 if (result == PACKET_OK)
11871 {
11872 ULONGEST val;
11873 unpack_varlen_hex (rs->buf.data (), &val);
11874 if (addr)
11875 *addr = (CORE_ADDR) val;
11876 return true;
11877 }
11878 else if (result == PACKET_UNKNOWN)
11879 error (_("Remote target doesn't support qGetTIBAddr packet"));
11880 else
11881 error (_("Remote target failed to process qGetTIBAddr request"));
11882 }
11883 else
11884 error (_("qGetTIBAddr not supported or disabled on this target"));
11885 /* Not reached. */
11886 return false;
11887 }
11888
11889 /* Support for inferring a target description based on the current
11890 architecture and the size of a 'g' packet. While the 'g' packet
11891 can have any size (since optional registers can be left off the
11892 end), some sizes are easily recognizable given knowledge of the
11893 approximate architecture. */
11894
11895 struct remote_g_packet_guess
11896 {
11897 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11898 : bytes (bytes_),
11899 tdesc (tdesc_)
11900 {
11901 }
11902
11903 int bytes;
11904 const struct target_desc *tdesc;
11905 };
11906
11907 struct remote_g_packet_data : public allocate_on_obstack
11908 {
11909 std::vector<remote_g_packet_guess> guesses;
11910 };
11911
11912 static struct gdbarch_data *remote_g_packet_data_handle;
11913
11914 static void *
11915 remote_g_packet_data_init (struct obstack *obstack)
11916 {
11917 return new (obstack) remote_g_packet_data;
11918 }
11919
11920 void
11921 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11922 const struct target_desc *tdesc)
11923 {
11924 struct remote_g_packet_data *data
11925 = ((struct remote_g_packet_data *)
11926 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11927
11928 gdb_assert (tdesc != NULL);
11929
11930 for (const remote_g_packet_guess &guess : data->guesses)
11931 if (guess.bytes == bytes)
11932 internal_error (__FILE__, __LINE__,
11933 _("Duplicate g packet description added for size %d"),
11934 bytes);
11935
11936 data->guesses.emplace_back (bytes, tdesc);
11937 }
11938
11939 /* Return true if remote_read_description would do anything on this target
11940 and architecture, false otherwise. */
11941
11942 static bool
11943 remote_read_description_p (struct target_ops *target)
11944 {
11945 struct remote_g_packet_data *data
11946 = ((struct remote_g_packet_data *)
11947 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11948
11949 return !data->guesses.empty ();
11950 }
11951
11952 const struct target_desc *
11953 remote_target::read_description ()
11954 {
11955 struct remote_g_packet_data *data
11956 = ((struct remote_g_packet_data *)
11957 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11958
11959 /* Do not try this during initial connection, when we do not know
11960 whether there is a running but stopped thread. */
11961 if (!target_has_execution () || inferior_ptid == null_ptid)
11962 return beneath ()->read_description ();
11963
11964 if (!data->guesses.empty ())
11965 {
11966 int bytes = send_g_packet ();
11967
11968 for (const remote_g_packet_guess &guess : data->guesses)
11969 if (guess.bytes == bytes)
11970 return guess.tdesc;
11971
11972 /* We discard the g packet. A minor optimization would be to
11973 hold on to it, and fill the register cache once we have selected
11974 an architecture, but it's too tricky to do safely. */
11975 }
11976
11977 return beneath ()->read_description ();
11978 }
11979
11980 /* Remote file transfer support. This is host-initiated I/O, not
11981 target-initiated; for target-initiated, see remote-fileio.c. */
11982
11983 /* If *LEFT is at least the length of STRING, copy STRING to
11984 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11985 decrease *LEFT. Otherwise raise an error. */
11986
11987 static void
11988 remote_buffer_add_string (char **buffer, int *left, const char *string)
11989 {
11990 int len = strlen (string);
11991
11992 if (len > *left)
11993 error (_("Packet too long for target."));
11994
11995 memcpy (*buffer, string, len);
11996 *buffer += len;
11997 *left -= len;
11998
11999 /* NUL-terminate the buffer as a convenience, if there is
12000 room. */
12001 if (*left)
12002 **buffer = '\0';
12003 }
12004
12005 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
12006 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12007 decrease *LEFT. Otherwise raise an error. */
12008
12009 static void
12010 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
12011 int len)
12012 {
12013 if (2 * len > *left)
12014 error (_("Packet too long for target."));
12015
12016 bin2hex (bytes, *buffer, len);
12017 *buffer += 2 * len;
12018 *left -= 2 * len;
12019
12020 /* NUL-terminate the buffer as a convenience, if there is
12021 room. */
12022 if (*left)
12023 **buffer = '\0';
12024 }
12025
12026 /* If *LEFT is large enough, convert VALUE to hex and add it to
12027 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12028 decrease *LEFT. Otherwise raise an error. */
12029
12030 static void
12031 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
12032 {
12033 int len = hexnumlen (value);
12034
12035 if (len > *left)
12036 error (_("Packet too long for target."));
12037
12038 hexnumstr (*buffer, value);
12039 *buffer += len;
12040 *left -= len;
12041
12042 /* NUL-terminate the buffer as a convenience, if there is
12043 room. */
12044 if (*left)
12045 **buffer = '\0';
12046 }
12047
12048 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
12049 value, *REMOTE_ERRNO to the remote error number or zero if none
12050 was included, and *ATTACHMENT to point to the start of the annex
12051 if any. The length of the packet isn't needed here; there may
12052 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
12053
12054 Return 0 if the packet could be parsed, -1 if it could not. If
12055 -1 is returned, the other variables may not be initialized. */
12056
12057 static int
12058 remote_hostio_parse_result (const char *buffer, int *retcode,
12059 int *remote_errno, const char **attachment)
12060 {
12061 char *p, *p2;
12062
12063 *remote_errno = 0;
12064 *attachment = NULL;
12065
12066 if (buffer[0] != 'F')
12067 return -1;
12068
12069 errno = 0;
12070 *retcode = strtol (&buffer[1], &p, 16);
12071 if (errno != 0 || p == &buffer[1])
12072 return -1;
12073
12074 /* Check for ",errno". */
12075 if (*p == ',')
12076 {
12077 errno = 0;
12078 *remote_errno = strtol (p + 1, &p2, 16);
12079 if (errno != 0 || p + 1 == p2)
12080 return -1;
12081 p = p2;
12082 }
12083
12084 /* Check for ";attachment". If there is no attachment, the
12085 packet should end here. */
12086 if (*p == ';')
12087 {
12088 *attachment = p + 1;
12089 return 0;
12090 }
12091 else if (*p == '\0')
12092 return 0;
12093 else
12094 return -1;
12095 }
12096
12097 /* Send a prepared I/O packet to the target and read its response.
12098 The prepared packet is in the global RS->BUF before this function
12099 is called, and the answer is there when we return.
12100
12101 COMMAND_BYTES is the length of the request to send, which may include
12102 binary data. WHICH_PACKET is the packet configuration to check
12103 before attempting a packet. If an error occurs, *REMOTE_ERRNO
12104 is set to the error number and -1 is returned. Otherwise the value
12105 returned by the function is returned.
12106
12107 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12108 attachment is expected; an error will be reported if there's a
12109 mismatch. If one is found, *ATTACHMENT will be set to point into
12110 the packet buffer and *ATTACHMENT_LEN will be set to the
12111 attachment's length. */
12112
12113 int
12114 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12115 int *remote_errno, const char **attachment,
12116 int *attachment_len)
12117 {
12118 struct remote_state *rs = get_remote_state ();
12119 int ret, bytes_read;
12120 const char *attachment_tmp;
12121
12122 if (packet_support (which_packet) == PACKET_DISABLE)
12123 {
12124 *remote_errno = FILEIO_ENOSYS;
12125 return -1;
12126 }
12127
12128 putpkt_binary (rs->buf.data (), command_bytes);
12129 bytes_read = getpkt_sane (&rs->buf, 0);
12130
12131 /* If it timed out, something is wrong. Don't try to parse the
12132 buffer. */
12133 if (bytes_read < 0)
12134 {
12135 *remote_errno = FILEIO_EINVAL;
12136 return -1;
12137 }
12138
12139 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12140 {
12141 case PACKET_ERROR:
12142 *remote_errno = FILEIO_EINVAL;
12143 return -1;
12144 case PACKET_UNKNOWN:
12145 *remote_errno = FILEIO_ENOSYS;
12146 return -1;
12147 case PACKET_OK:
12148 break;
12149 }
12150
12151 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12152 &attachment_tmp))
12153 {
12154 *remote_errno = FILEIO_EINVAL;
12155 return -1;
12156 }
12157
12158 /* Make sure we saw an attachment if and only if we expected one. */
12159 if ((attachment_tmp == NULL && attachment != NULL)
12160 || (attachment_tmp != NULL && attachment == NULL))
12161 {
12162 *remote_errno = FILEIO_EINVAL;
12163 return -1;
12164 }
12165
12166 /* If an attachment was found, it must point into the packet buffer;
12167 work out how many bytes there were. */
12168 if (attachment_tmp != NULL)
12169 {
12170 *attachment = attachment_tmp;
12171 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12172 }
12173
12174 return ret;
12175 }
12176
12177 /* See declaration.h. */
12178
12179 void
12180 readahead_cache::invalidate ()
12181 {
12182 this->fd = -1;
12183 }
12184
12185 /* See declaration.h. */
12186
12187 void
12188 readahead_cache::invalidate_fd (int fd)
12189 {
12190 if (this->fd == fd)
12191 this->fd = -1;
12192 }
12193
12194 /* Set the filesystem remote_hostio functions that take FILENAME
12195 arguments will use. Return 0 on success, or -1 if an error
12196 occurs (and set *REMOTE_ERRNO). */
12197
12198 int
12199 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12200 int *remote_errno)
12201 {
12202 struct remote_state *rs = get_remote_state ();
12203 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12204 char *p = rs->buf.data ();
12205 int left = get_remote_packet_size () - 1;
12206 char arg[9];
12207 int ret;
12208
12209 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12210 return 0;
12211
12212 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12213 return 0;
12214
12215 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12216
12217 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12218 remote_buffer_add_string (&p, &left, arg);
12219
12220 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12221 remote_errno, NULL, NULL);
12222
12223 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12224 return 0;
12225
12226 if (ret == 0)
12227 rs->fs_pid = required_pid;
12228
12229 return ret;
12230 }
12231
12232 /* Implementation of to_fileio_open. */
12233
12234 int
12235 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12236 int flags, int mode, int warn_if_slow,
12237 int *remote_errno)
12238 {
12239 struct remote_state *rs = get_remote_state ();
12240 char *p = rs->buf.data ();
12241 int left = get_remote_packet_size () - 1;
12242
12243 if (warn_if_slow)
12244 {
12245 static int warning_issued = 0;
12246
12247 printf_unfiltered (_("Reading %s from remote target...\n"),
12248 filename);
12249
12250 if (!warning_issued)
12251 {
12252 warning (_("File transfers from remote targets can be slow."
12253 " Use \"set sysroot\" to access files locally"
12254 " instead."));
12255 warning_issued = 1;
12256 }
12257 }
12258
12259 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12260 return -1;
12261
12262 remote_buffer_add_string (&p, &left, "vFile:open:");
12263
12264 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12265 strlen (filename));
12266 remote_buffer_add_string (&p, &left, ",");
12267
12268 remote_buffer_add_int (&p, &left, flags);
12269 remote_buffer_add_string (&p, &left, ",");
12270
12271 remote_buffer_add_int (&p, &left, mode);
12272
12273 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12274 remote_errno, NULL, NULL);
12275 }
12276
12277 int
12278 remote_target::fileio_open (struct inferior *inf, const char *filename,
12279 int flags, int mode, int warn_if_slow,
12280 int *remote_errno)
12281 {
12282 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12283 remote_errno);
12284 }
12285
12286 /* Implementation of to_fileio_pwrite. */
12287
12288 int
12289 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12290 ULONGEST offset, int *remote_errno)
12291 {
12292 struct remote_state *rs = get_remote_state ();
12293 char *p = rs->buf.data ();
12294 int left = get_remote_packet_size ();
12295 int out_len;
12296
12297 rs->readahead_cache.invalidate_fd (fd);
12298
12299 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12300
12301 remote_buffer_add_int (&p, &left, fd);
12302 remote_buffer_add_string (&p, &left, ",");
12303
12304 remote_buffer_add_int (&p, &left, offset);
12305 remote_buffer_add_string (&p, &left, ",");
12306
12307 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12308 (get_remote_packet_size ()
12309 - (p - rs->buf.data ())));
12310
12311 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12312 remote_errno, NULL, NULL);
12313 }
12314
12315 int
12316 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12317 ULONGEST offset, int *remote_errno)
12318 {
12319 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12320 }
12321
12322 /* Helper for the implementation of to_fileio_pread. Read the file
12323 from the remote side with vFile:pread. */
12324
12325 int
12326 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12327 ULONGEST offset, int *remote_errno)
12328 {
12329 struct remote_state *rs = get_remote_state ();
12330 char *p = rs->buf.data ();
12331 const char *attachment;
12332 int left = get_remote_packet_size ();
12333 int ret, attachment_len;
12334 int read_len;
12335
12336 remote_buffer_add_string (&p, &left, "vFile:pread:");
12337
12338 remote_buffer_add_int (&p, &left, fd);
12339 remote_buffer_add_string (&p, &left, ",");
12340
12341 remote_buffer_add_int (&p, &left, len);
12342 remote_buffer_add_string (&p, &left, ",");
12343
12344 remote_buffer_add_int (&p, &left, offset);
12345
12346 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12347 remote_errno, &attachment,
12348 &attachment_len);
12349
12350 if (ret < 0)
12351 return ret;
12352
12353 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12354 read_buf, len);
12355 if (read_len != ret)
12356 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12357
12358 return ret;
12359 }
12360
12361 /* See declaration.h. */
12362
12363 int
12364 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12365 ULONGEST offset)
12366 {
12367 if (this->fd == fd
12368 && this->offset <= offset
12369 && offset < this->offset + this->bufsize)
12370 {
12371 ULONGEST max = this->offset + this->bufsize;
12372
12373 if (offset + len > max)
12374 len = max - offset;
12375
12376 memcpy (read_buf, this->buf + offset - this->offset, len);
12377 return len;
12378 }
12379
12380 return 0;
12381 }
12382
12383 /* Implementation of to_fileio_pread. */
12384
12385 int
12386 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12387 ULONGEST offset, int *remote_errno)
12388 {
12389 int ret;
12390 struct remote_state *rs = get_remote_state ();
12391 readahead_cache *cache = &rs->readahead_cache;
12392
12393 ret = cache->pread (fd, read_buf, len, offset);
12394 if (ret > 0)
12395 {
12396 cache->hit_count++;
12397
12398 remote_debug_printf ("readahead cache hit %s",
12399 pulongest (cache->hit_count));
12400 return ret;
12401 }
12402
12403 cache->miss_count++;
12404
12405 remote_debug_printf ("readahead cache miss %s",
12406 pulongest (cache->miss_count));
12407
12408 cache->fd = fd;
12409 cache->offset = offset;
12410 cache->bufsize = get_remote_packet_size ();
12411 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12412
12413 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12414 cache->offset, remote_errno);
12415 if (ret <= 0)
12416 {
12417 cache->invalidate_fd (fd);
12418 return ret;
12419 }
12420
12421 cache->bufsize = ret;
12422 return cache->pread (fd, read_buf, len, offset);
12423 }
12424
12425 int
12426 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12427 ULONGEST offset, int *remote_errno)
12428 {
12429 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12430 }
12431
12432 /* Implementation of to_fileio_close. */
12433
12434 int
12435 remote_target::remote_hostio_close (int fd, int *remote_errno)
12436 {
12437 struct remote_state *rs = get_remote_state ();
12438 char *p = rs->buf.data ();
12439 int left = get_remote_packet_size () - 1;
12440
12441 rs->readahead_cache.invalidate_fd (fd);
12442
12443 remote_buffer_add_string (&p, &left, "vFile:close:");
12444
12445 remote_buffer_add_int (&p, &left, fd);
12446
12447 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12448 remote_errno, NULL, NULL);
12449 }
12450
12451 int
12452 remote_target::fileio_close (int fd, int *remote_errno)
12453 {
12454 return remote_hostio_close (fd, remote_errno);
12455 }
12456
12457 /* Implementation of to_fileio_unlink. */
12458
12459 int
12460 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12461 int *remote_errno)
12462 {
12463 struct remote_state *rs = get_remote_state ();
12464 char *p = rs->buf.data ();
12465 int left = get_remote_packet_size () - 1;
12466
12467 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12468 return -1;
12469
12470 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12471
12472 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12473 strlen (filename));
12474
12475 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12476 remote_errno, NULL, NULL);
12477 }
12478
12479 int
12480 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12481 int *remote_errno)
12482 {
12483 return remote_hostio_unlink (inf, filename, remote_errno);
12484 }
12485
12486 /* Implementation of to_fileio_readlink. */
12487
12488 gdb::optional<std::string>
12489 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12490 int *remote_errno)
12491 {
12492 struct remote_state *rs = get_remote_state ();
12493 char *p = rs->buf.data ();
12494 const char *attachment;
12495 int left = get_remote_packet_size ();
12496 int len, attachment_len;
12497 int read_len;
12498
12499 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12500 return {};
12501
12502 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12503
12504 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12505 strlen (filename));
12506
12507 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12508 remote_errno, &attachment,
12509 &attachment_len);
12510
12511 if (len < 0)
12512 return {};
12513
12514 std::string ret (len, '\0');
12515
12516 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12517 (gdb_byte *) &ret[0], len);
12518 if (read_len != len)
12519 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12520
12521 return ret;
12522 }
12523
12524 /* Implementation of to_fileio_fstat. */
12525
12526 int
12527 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12528 {
12529 struct remote_state *rs = get_remote_state ();
12530 char *p = rs->buf.data ();
12531 int left = get_remote_packet_size ();
12532 int attachment_len, ret;
12533 const char *attachment;
12534 struct fio_stat fst;
12535 int read_len;
12536
12537 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12538
12539 remote_buffer_add_int (&p, &left, fd);
12540
12541 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12542 remote_errno, &attachment,
12543 &attachment_len);
12544 if (ret < 0)
12545 {
12546 if (*remote_errno != FILEIO_ENOSYS)
12547 return ret;
12548
12549 /* Strictly we should return -1, ENOSYS here, but when
12550 "set sysroot remote:" was implemented in August 2008
12551 BFD's need for a stat function was sidestepped with
12552 this hack. This was not remedied until March 2015
12553 so we retain the previous behavior to avoid breaking
12554 compatibility.
12555
12556 Note that the memset is a March 2015 addition; older
12557 GDBs set st_size *and nothing else* so the structure
12558 would have garbage in all other fields. This might
12559 break something but retaining the previous behavior
12560 here would be just too wrong. */
12561
12562 memset (st, 0, sizeof (struct stat));
12563 st->st_size = INT_MAX;
12564 return 0;
12565 }
12566
12567 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12568 (gdb_byte *) &fst, sizeof (fst));
12569
12570 if (read_len != ret)
12571 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12572
12573 if (read_len != sizeof (fst))
12574 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12575 read_len, (int) sizeof (fst));
12576
12577 remote_fileio_to_host_stat (&fst, st);
12578
12579 return 0;
12580 }
12581
12582 /* Implementation of to_filesystem_is_local. */
12583
12584 bool
12585 remote_target::filesystem_is_local ()
12586 {
12587 /* Valgrind GDB presents itself as a remote target but works
12588 on the local filesystem: it does not implement remote get
12589 and users are not expected to set a sysroot. To handle
12590 this case we treat the remote filesystem as local if the
12591 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12592 does not support vFile:open. */
12593 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12594 {
12595 enum packet_support ps = packet_support (PACKET_vFile_open);
12596
12597 if (ps == PACKET_SUPPORT_UNKNOWN)
12598 {
12599 int fd, remote_errno;
12600
12601 /* Try opening a file to probe support. The supplied
12602 filename is irrelevant, we only care about whether
12603 the stub recognizes the packet or not. */
12604 fd = remote_hostio_open (NULL, "just probing",
12605 FILEIO_O_RDONLY, 0700, 0,
12606 &remote_errno);
12607
12608 if (fd >= 0)
12609 remote_hostio_close (fd, &remote_errno);
12610
12611 ps = packet_support (PACKET_vFile_open);
12612 }
12613
12614 if (ps == PACKET_DISABLE)
12615 {
12616 static int warning_issued = 0;
12617
12618 if (!warning_issued)
12619 {
12620 warning (_("remote target does not support file"
12621 " transfer, attempting to access files"
12622 " from local filesystem."));
12623 warning_issued = 1;
12624 }
12625
12626 return true;
12627 }
12628 }
12629
12630 return false;
12631 }
12632
12633 static int
12634 remote_fileio_errno_to_host (int errnum)
12635 {
12636 switch (errnum)
12637 {
12638 case FILEIO_EPERM:
12639 return EPERM;
12640 case FILEIO_ENOENT:
12641 return ENOENT;
12642 case FILEIO_EINTR:
12643 return EINTR;
12644 case FILEIO_EIO:
12645 return EIO;
12646 case FILEIO_EBADF:
12647 return EBADF;
12648 case FILEIO_EACCES:
12649 return EACCES;
12650 case FILEIO_EFAULT:
12651 return EFAULT;
12652 case FILEIO_EBUSY:
12653 return EBUSY;
12654 case FILEIO_EEXIST:
12655 return EEXIST;
12656 case FILEIO_ENODEV:
12657 return ENODEV;
12658 case FILEIO_ENOTDIR:
12659 return ENOTDIR;
12660 case FILEIO_EISDIR:
12661 return EISDIR;
12662 case FILEIO_EINVAL:
12663 return EINVAL;
12664 case FILEIO_ENFILE:
12665 return ENFILE;
12666 case FILEIO_EMFILE:
12667 return EMFILE;
12668 case FILEIO_EFBIG:
12669 return EFBIG;
12670 case FILEIO_ENOSPC:
12671 return ENOSPC;
12672 case FILEIO_ESPIPE:
12673 return ESPIPE;
12674 case FILEIO_EROFS:
12675 return EROFS;
12676 case FILEIO_ENOSYS:
12677 return ENOSYS;
12678 case FILEIO_ENAMETOOLONG:
12679 return ENAMETOOLONG;
12680 }
12681 return -1;
12682 }
12683
12684 static char *
12685 remote_hostio_error (int errnum)
12686 {
12687 int host_error = remote_fileio_errno_to_host (errnum);
12688
12689 if (host_error == -1)
12690 error (_("Unknown remote I/O error %d"), errnum);
12691 else
12692 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12693 }
12694
12695 /* A RAII wrapper around a remote file descriptor. */
12696
12697 class scoped_remote_fd
12698 {
12699 public:
12700 scoped_remote_fd (remote_target *remote, int fd)
12701 : m_remote (remote), m_fd (fd)
12702 {
12703 }
12704
12705 ~scoped_remote_fd ()
12706 {
12707 if (m_fd != -1)
12708 {
12709 try
12710 {
12711 int remote_errno;
12712 m_remote->remote_hostio_close (m_fd, &remote_errno);
12713 }
12714 catch (...)
12715 {
12716 /* Swallow exception before it escapes the dtor. If
12717 something goes wrong, likely the connection is gone,
12718 and there's nothing else that can be done. */
12719 }
12720 }
12721 }
12722
12723 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12724
12725 /* Release ownership of the file descriptor, and return it. */
12726 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12727 {
12728 int fd = m_fd;
12729 m_fd = -1;
12730 return fd;
12731 }
12732
12733 /* Return the owned file descriptor. */
12734 int get () const noexcept
12735 {
12736 return m_fd;
12737 }
12738
12739 private:
12740 /* The remote target. */
12741 remote_target *m_remote;
12742
12743 /* The owned remote I/O file descriptor. */
12744 int m_fd;
12745 };
12746
12747 void
12748 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12749 {
12750 remote_target *remote = get_current_remote_target ();
12751
12752 if (remote == nullptr)
12753 error (_("command can only be used with remote target"));
12754
12755 remote->remote_file_put (local_file, remote_file, from_tty);
12756 }
12757
12758 void
12759 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12760 int from_tty)
12761 {
12762 int retcode, remote_errno, bytes, io_size;
12763 int bytes_in_buffer;
12764 int saw_eof;
12765 ULONGEST offset;
12766
12767 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12768 if (file == NULL)
12769 perror_with_name (local_file);
12770
12771 scoped_remote_fd fd
12772 (this, remote_hostio_open (NULL,
12773 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12774 | FILEIO_O_TRUNC),
12775 0700, 0, &remote_errno));
12776 if (fd.get () == -1)
12777 remote_hostio_error (remote_errno);
12778
12779 /* Send up to this many bytes at once. They won't all fit in the
12780 remote packet limit, so we'll transfer slightly fewer. */
12781 io_size = get_remote_packet_size ();
12782 gdb::byte_vector buffer (io_size);
12783
12784 bytes_in_buffer = 0;
12785 saw_eof = 0;
12786 offset = 0;
12787 while (bytes_in_buffer || !saw_eof)
12788 {
12789 if (!saw_eof)
12790 {
12791 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12792 io_size - bytes_in_buffer,
12793 file.get ());
12794 if (bytes == 0)
12795 {
12796 if (ferror (file.get ()))
12797 error (_("Error reading %s."), local_file);
12798 else
12799 {
12800 /* EOF. Unless there is something still in the
12801 buffer from the last iteration, we are done. */
12802 saw_eof = 1;
12803 if (bytes_in_buffer == 0)
12804 break;
12805 }
12806 }
12807 }
12808 else
12809 bytes = 0;
12810
12811 bytes += bytes_in_buffer;
12812 bytes_in_buffer = 0;
12813
12814 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12815 offset, &remote_errno);
12816
12817 if (retcode < 0)
12818 remote_hostio_error (remote_errno);
12819 else if (retcode == 0)
12820 error (_("Remote write of %d bytes returned 0!"), bytes);
12821 else if (retcode < bytes)
12822 {
12823 /* Short write. Save the rest of the read data for the next
12824 write. */
12825 bytes_in_buffer = bytes - retcode;
12826 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12827 }
12828
12829 offset += retcode;
12830 }
12831
12832 if (remote_hostio_close (fd.release (), &remote_errno))
12833 remote_hostio_error (remote_errno);
12834
12835 if (from_tty)
12836 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12837 }
12838
12839 void
12840 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12841 {
12842 remote_target *remote = get_current_remote_target ();
12843
12844 if (remote == nullptr)
12845 error (_("command can only be used with remote target"));
12846
12847 remote->remote_file_get (remote_file, local_file, from_tty);
12848 }
12849
12850 void
12851 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12852 int from_tty)
12853 {
12854 int remote_errno, bytes, io_size;
12855 ULONGEST offset;
12856
12857 scoped_remote_fd fd
12858 (this, remote_hostio_open (NULL,
12859 remote_file, FILEIO_O_RDONLY, 0, 0,
12860 &remote_errno));
12861 if (fd.get () == -1)
12862 remote_hostio_error (remote_errno);
12863
12864 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12865 if (file == NULL)
12866 perror_with_name (local_file);
12867
12868 /* Send up to this many bytes at once. They won't all fit in the
12869 remote packet limit, so we'll transfer slightly fewer. */
12870 io_size = get_remote_packet_size ();
12871 gdb::byte_vector buffer (io_size);
12872
12873 offset = 0;
12874 while (1)
12875 {
12876 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12877 &remote_errno);
12878 if (bytes == 0)
12879 /* Success, but no bytes, means end-of-file. */
12880 break;
12881 if (bytes == -1)
12882 remote_hostio_error (remote_errno);
12883
12884 offset += bytes;
12885
12886 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12887 if (bytes == 0)
12888 perror_with_name (local_file);
12889 }
12890
12891 if (remote_hostio_close (fd.release (), &remote_errno))
12892 remote_hostio_error (remote_errno);
12893
12894 if (from_tty)
12895 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12896 }
12897
12898 void
12899 remote_file_delete (const char *remote_file, int from_tty)
12900 {
12901 remote_target *remote = get_current_remote_target ();
12902
12903 if (remote == nullptr)
12904 error (_("command can only be used with remote target"));
12905
12906 remote->remote_file_delete (remote_file, from_tty);
12907 }
12908
12909 void
12910 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12911 {
12912 int retcode, remote_errno;
12913
12914 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12915 if (retcode == -1)
12916 remote_hostio_error (remote_errno);
12917
12918 if (from_tty)
12919 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12920 }
12921
12922 static void
12923 remote_put_command (const char *args, int from_tty)
12924 {
12925 if (args == NULL)
12926 error_no_arg (_("file to put"));
12927
12928 gdb_argv argv (args);
12929 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12930 error (_("Invalid parameters to remote put"));
12931
12932 remote_file_put (argv[0], argv[1], from_tty);
12933 }
12934
12935 static void
12936 remote_get_command (const char *args, int from_tty)
12937 {
12938 if (args == NULL)
12939 error_no_arg (_("file to get"));
12940
12941 gdb_argv argv (args);
12942 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12943 error (_("Invalid parameters to remote get"));
12944
12945 remote_file_get (argv[0], argv[1], from_tty);
12946 }
12947
12948 static void
12949 remote_delete_command (const char *args, int from_tty)
12950 {
12951 if (args == NULL)
12952 error_no_arg (_("file to delete"));
12953
12954 gdb_argv argv (args);
12955 if (argv[0] == NULL || argv[1] != NULL)
12956 error (_("Invalid parameters to remote delete"));
12957
12958 remote_file_delete (argv[0], from_tty);
12959 }
12960
12961 bool
12962 remote_target::can_execute_reverse ()
12963 {
12964 if (packet_support (PACKET_bs) == PACKET_ENABLE
12965 || packet_support (PACKET_bc) == PACKET_ENABLE)
12966 return true;
12967 else
12968 return false;
12969 }
12970
12971 bool
12972 remote_target::supports_non_stop ()
12973 {
12974 return true;
12975 }
12976
12977 bool
12978 remote_target::supports_disable_randomization ()
12979 {
12980 /* Only supported in extended mode. */
12981 return false;
12982 }
12983
12984 bool
12985 remote_target::supports_multi_process ()
12986 {
12987 struct remote_state *rs = get_remote_state ();
12988
12989 return remote_multi_process_p (rs);
12990 }
12991
12992 static int
12993 remote_supports_cond_tracepoints ()
12994 {
12995 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12996 }
12997
12998 bool
12999 remote_target::supports_evaluation_of_breakpoint_conditions ()
13000 {
13001 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
13002 }
13003
13004 static int
13005 remote_supports_fast_tracepoints ()
13006 {
13007 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
13008 }
13009
13010 static int
13011 remote_supports_static_tracepoints ()
13012 {
13013 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
13014 }
13015
13016 static int
13017 remote_supports_install_in_trace ()
13018 {
13019 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
13020 }
13021
13022 bool
13023 remote_target::supports_enable_disable_tracepoint ()
13024 {
13025 return (packet_support (PACKET_EnableDisableTracepoints_feature)
13026 == PACKET_ENABLE);
13027 }
13028
13029 bool
13030 remote_target::supports_string_tracing ()
13031 {
13032 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
13033 }
13034
13035 bool
13036 remote_target::can_run_breakpoint_commands ()
13037 {
13038 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
13039 }
13040
13041 void
13042 remote_target::trace_init ()
13043 {
13044 struct remote_state *rs = get_remote_state ();
13045
13046 putpkt ("QTinit");
13047 remote_get_noisy_reply ();
13048 if (strcmp (rs->buf.data (), "OK") != 0)
13049 error (_("Target does not support this command."));
13050 }
13051
13052 /* Recursive routine to walk through command list including loops, and
13053 download packets for each command. */
13054
13055 void
13056 remote_target::remote_download_command_source (int num, ULONGEST addr,
13057 struct command_line *cmds)
13058 {
13059 struct remote_state *rs = get_remote_state ();
13060 struct command_line *cmd;
13061
13062 for (cmd = cmds; cmd; cmd = cmd->next)
13063 {
13064 QUIT; /* Allow user to bail out with ^C. */
13065 strcpy (rs->buf.data (), "QTDPsrc:");
13066 encode_source_string (num, addr, "cmd", cmd->line,
13067 rs->buf.data () + strlen (rs->buf.data ()),
13068 rs->buf.size () - strlen (rs->buf.data ()));
13069 putpkt (rs->buf);
13070 remote_get_noisy_reply ();
13071 if (strcmp (rs->buf.data (), "OK"))
13072 warning (_("Target does not support source download."));
13073
13074 if (cmd->control_type == while_control
13075 || cmd->control_type == while_stepping_control)
13076 {
13077 remote_download_command_source (num, addr, cmd->body_list_0.get ());
13078
13079 QUIT; /* Allow user to bail out with ^C. */
13080 strcpy (rs->buf.data (), "QTDPsrc:");
13081 encode_source_string (num, addr, "cmd", "end",
13082 rs->buf.data () + strlen (rs->buf.data ()),
13083 rs->buf.size () - strlen (rs->buf.data ()));
13084 putpkt (rs->buf);
13085 remote_get_noisy_reply ();
13086 if (strcmp (rs->buf.data (), "OK"))
13087 warning (_("Target does not support source download."));
13088 }
13089 }
13090 }
13091
13092 void
13093 remote_target::download_tracepoint (struct bp_location *loc)
13094 {
13095 CORE_ADDR tpaddr;
13096 char addrbuf[40];
13097 std::vector<std::string> tdp_actions;
13098 std::vector<std::string> stepping_actions;
13099 char *pkt;
13100 struct breakpoint *b = loc->owner;
13101 struct tracepoint *t = (struct tracepoint *) b;
13102 struct remote_state *rs = get_remote_state ();
13103 int ret;
13104 const char *err_msg = _("Tracepoint packet too large for target.");
13105 size_t size_left;
13106
13107 /* We use a buffer other than rs->buf because we'll build strings
13108 across multiple statements, and other statements in between could
13109 modify rs->buf. */
13110 gdb::char_vector buf (get_remote_packet_size ());
13111
13112 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13113
13114 tpaddr = loc->address;
13115 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13116 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13117 b->number, addrbuf, /* address */
13118 (b->enable_state == bp_enabled ? 'E' : 'D'),
13119 t->step_count, t->pass_count);
13120
13121 if (ret < 0 || ret >= buf.size ())
13122 error ("%s", err_msg);
13123
13124 /* Fast tracepoints are mostly handled by the target, but we can
13125 tell the target how big of an instruction block should be moved
13126 around. */
13127 if (b->type == bp_fast_tracepoint)
13128 {
13129 /* Only test for support at download time; we may not know
13130 target capabilities at definition time. */
13131 if (remote_supports_fast_tracepoints ())
13132 {
13133 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13134 NULL))
13135 {
13136 size_left = buf.size () - strlen (buf.data ());
13137 ret = snprintf (buf.data () + strlen (buf.data ()),
13138 size_left, ":F%x",
13139 gdb_insn_length (loc->gdbarch, tpaddr));
13140
13141 if (ret < 0 || ret >= size_left)
13142 error ("%s", err_msg);
13143 }
13144 else
13145 /* If it passed validation at definition but fails now,
13146 something is very wrong. */
13147 internal_error (__FILE__, __LINE__,
13148 _("Fast tracepoint not "
13149 "valid during download"));
13150 }
13151 else
13152 /* Fast tracepoints are functionally identical to regular
13153 tracepoints, so don't take lack of support as a reason to
13154 give up on the trace run. */
13155 warning (_("Target does not support fast tracepoints, "
13156 "downloading %d as regular tracepoint"), b->number);
13157 }
13158 else if (b->type == bp_static_tracepoint)
13159 {
13160 /* Only test for support at download time; we may not know
13161 target capabilities at definition time. */
13162 if (remote_supports_static_tracepoints ())
13163 {
13164 struct static_tracepoint_marker marker;
13165
13166 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13167 {
13168 size_left = buf.size () - strlen (buf.data ());
13169 ret = snprintf (buf.data () + strlen (buf.data ()),
13170 size_left, ":S");
13171
13172 if (ret < 0 || ret >= size_left)
13173 error ("%s", err_msg);
13174 }
13175 else
13176 error (_("Static tracepoint not valid during download"));
13177 }
13178 else
13179 /* Fast tracepoints are functionally identical to regular
13180 tracepoints, so don't take lack of support as a reason
13181 to give up on the trace run. */
13182 error (_("Target does not support static tracepoints"));
13183 }
13184 /* If the tracepoint has a conditional, make it into an agent
13185 expression and append to the definition. */
13186 if (loc->cond)
13187 {
13188 /* Only test support at download time, we may not know target
13189 capabilities at definition time. */
13190 if (remote_supports_cond_tracepoints ())
13191 {
13192 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13193 loc->cond.get ());
13194
13195 size_left = buf.size () - strlen (buf.data ());
13196
13197 ret = snprintf (buf.data () + strlen (buf.data ()),
13198 size_left, ":X%x,", aexpr->len);
13199
13200 if (ret < 0 || ret >= size_left)
13201 error ("%s", err_msg);
13202
13203 size_left = buf.size () - strlen (buf.data ());
13204
13205 /* Two bytes to encode each aexpr byte, plus the terminating
13206 null byte. */
13207 if (aexpr->len * 2 + 1 > size_left)
13208 error ("%s", err_msg);
13209
13210 pkt = buf.data () + strlen (buf.data ());
13211
13212 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13213 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13214 *pkt = '\0';
13215 }
13216 else
13217 warning (_("Target does not support conditional tracepoints, "
13218 "ignoring tp %d cond"), b->number);
13219 }
13220
13221 if (b->commands || *default_collect)
13222 {
13223 size_left = buf.size () - strlen (buf.data ());
13224
13225 ret = snprintf (buf.data () + strlen (buf.data ()),
13226 size_left, "-");
13227
13228 if (ret < 0 || ret >= size_left)
13229 error ("%s", err_msg);
13230 }
13231
13232 putpkt (buf.data ());
13233 remote_get_noisy_reply ();
13234 if (strcmp (rs->buf.data (), "OK"))
13235 error (_("Target does not support tracepoints."));
13236
13237 /* do_single_steps (t); */
13238 for (auto action_it = tdp_actions.begin ();
13239 action_it != tdp_actions.end (); action_it++)
13240 {
13241 QUIT; /* Allow user to bail out with ^C. */
13242
13243 bool has_more = ((action_it + 1) != tdp_actions.end ()
13244 || !stepping_actions.empty ());
13245
13246 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13247 b->number, addrbuf, /* address */
13248 action_it->c_str (),
13249 has_more ? '-' : 0);
13250
13251 if (ret < 0 || ret >= buf.size ())
13252 error ("%s", err_msg);
13253
13254 putpkt (buf.data ());
13255 remote_get_noisy_reply ();
13256 if (strcmp (rs->buf.data (), "OK"))
13257 error (_("Error on target while setting tracepoints."));
13258 }
13259
13260 for (auto action_it = stepping_actions.begin ();
13261 action_it != stepping_actions.end (); action_it++)
13262 {
13263 QUIT; /* Allow user to bail out with ^C. */
13264
13265 bool is_first = action_it == stepping_actions.begin ();
13266 bool has_more = (action_it + 1) != stepping_actions.end ();
13267
13268 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13269 b->number, addrbuf, /* address */
13270 is_first ? "S" : "",
13271 action_it->c_str (),
13272 has_more ? "-" : "");
13273
13274 if (ret < 0 || ret >= buf.size ())
13275 error ("%s", err_msg);
13276
13277 putpkt (buf.data ());
13278 remote_get_noisy_reply ();
13279 if (strcmp (rs->buf.data (), "OK"))
13280 error (_("Error on target while setting tracepoints."));
13281 }
13282
13283 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13284 {
13285 if (b->location != NULL)
13286 {
13287 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13288
13289 if (ret < 0 || ret >= buf.size ())
13290 error ("%s", err_msg);
13291
13292 encode_source_string (b->number, loc->address, "at",
13293 event_location_to_string (b->location.get ()),
13294 buf.data () + strlen (buf.data ()),
13295 buf.size () - strlen (buf.data ()));
13296 putpkt (buf.data ());
13297 remote_get_noisy_reply ();
13298 if (strcmp (rs->buf.data (), "OK"))
13299 warning (_("Target does not support source download."));
13300 }
13301 if (b->cond_string)
13302 {
13303 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13304
13305 if (ret < 0 || ret >= buf.size ())
13306 error ("%s", err_msg);
13307
13308 encode_source_string (b->number, loc->address,
13309 "cond", b->cond_string,
13310 buf.data () + strlen (buf.data ()),
13311 buf.size () - strlen (buf.data ()));
13312 putpkt (buf.data ());
13313 remote_get_noisy_reply ();
13314 if (strcmp (rs->buf.data (), "OK"))
13315 warning (_("Target does not support source download."));
13316 }
13317 remote_download_command_source (b->number, loc->address,
13318 breakpoint_commands (b));
13319 }
13320 }
13321
13322 bool
13323 remote_target::can_download_tracepoint ()
13324 {
13325 struct remote_state *rs = get_remote_state ();
13326 struct trace_status *ts;
13327 int status;
13328
13329 /* Don't try to install tracepoints until we've relocated our
13330 symbols, and fetched and merged the target's tracepoint list with
13331 ours. */
13332 if (rs->starting_up)
13333 return false;
13334
13335 ts = current_trace_status ();
13336 status = get_trace_status (ts);
13337
13338 if (status == -1 || !ts->running_known || !ts->running)
13339 return false;
13340
13341 /* If we are in a tracing experiment, but remote stub doesn't support
13342 installing tracepoint in trace, we have to return. */
13343 if (!remote_supports_install_in_trace ())
13344 return false;
13345
13346 return true;
13347 }
13348
13349
13350 void
13351 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13352 {
13353 struct remote_state *rs = get_remote_state ();
13354 char *p;
13355
13356 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13357 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13358 tsv.builtin);
13359 p = rs->buf.data () + strlen (rs->buf.data ());
13360 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13361 >= get_remote_packet_size ())
13362 error (_("Trace state variable name too long for tsv definition packet"));
13363 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13364 *p++ = '\0';
13365 putpkt (rs->buf);
13366 remote_get_noisy_reply ();
13367 if (rs->buf[0] == '\0')
13368 error (_("Target does not support this command."));
13369 if (strcmp (rs->buf.data (), "OK") != 0)
13370 error (_("Error on target while downloading trace state variable."));
13371 }
13372
13373 void
13374 remote_target::enable_tracepoint (struct bp_location *location)
13375 {
13376 struct remote_state *rs = get_remote_state ();
13377
13378 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13379 location->owner->number,
13380 phex (location->address, sizeof (CORE_ADDR)));
13381 putpkt (rs->buf);
13382 remote_get_noisy_reply ();
13383 if (rs->buf[0] == '\0')
13384 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13385 if (strcmp (rs->buf.data (), "OK") != 0)
13386 error (_("Error on target while enabling tracepoint."));
13387 }
13388
13389 void
13390 remote_target::disable_tracepoint (struct bp_location *location)
13391 {
13392 struct remote_state *rs = get_remote_state ();
13393
13394 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13395 location->owner->number,
13396 phex (location->address, sizeof (CORE_ADDR)));
13397 putpkt (rs->buf);
13398 remote_get_noisy_reply ();
13399 if (rs->buf[0] == '\0')
13400 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13401 if (strcmp (rs->buf.data (), "OK") != 0)
13402 error (_("Error on target while disabling tracepoint."));
13403 }
13404
13405 void
13406 remote_target::trace_set_readonly_regions ()
13407 {
13408 asection *s;
13409 bfd_size_type size;
13410 bfd_vma vma;
13411 int anysecs = 0;
13412 int offset = 0;
13413
13414 if (!current_program_space->exec_bfd ())
13415 return; /* No information to give. */
13416
13417 struct remote_state *rs = get_remote_state ();
13418
13419 strcpy (rs->buf.data (), "QTro");
13420 offset = strlen (rs->buf.data ());
13421 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13422 {
13423 char tmp1[40], tmp2[40];
13424 int sec_length;
13425
13426 if ((s->flags & SEC_LOAD) == 0 ||
13427 /* (s->flags & SEC_CODE) == 0 || */
13428 (s->flags & SEC_READONLY) == 0)
13429 continue;
13430
13431 anysecs = 1;
13432 vma = bfd_section_vma (s);
13433 size = bfd_section_size (s);
13434 sprintf_vma (tmp1, vma);
13435 sprintf_vma (tmp2, vma + size);
13436 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13437 if (offset + sec_length + 1 > rs->buf.size ())
13438 {
13439 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13440 warning (_("\
13441 Too many sections for read-only sections definition packet."));
13442 break;
13443 }
13444 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13445 tmp1, tmp2);
13446 offset += sec_length;
13447 }
13448 if (anysecs)
13449 {
13450 putpkt (rs->buf);
13451 getpkt (&rs->buf, 0);
13452 }
13453 }
13454
13455 void
13456 remote_target::trace_start ()
13457 {
13458 struct remote_state *rs = get_remote_state ();
13459
13460 putpkt ("QTStart");
13461 remote_get_noisy_reply ();
13462 if (rs->buf[0] == '\0')
13463 error (_("Target does not support this command."));
13464 if (strcmp (rs->buf.data (), "OK") != 0)
13465 error (_("Bogus reply from target: %s"), rs->buf.data ());
13466 }
13467
13468 int
13469 remote_target::get_trace_status (struct trace_status *ts)
13470 {
13471 /* Initialize it just to avoid a GCC false warning. */
13472 char *p = NULL;
13473 enum packet_result result;
13474 struct remote_state *rs = get_remote_state ();
13475
13476 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13477 return -1;
13478
13479 /* FIXME we need to get register block size some other way. */
13480 trace_regblock_size
13481 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13482
13483 putpkt ("qTStatus");
13484
13485 try
13486 {
13487 p = remote_get_noisy_reply ();
13488 }
13489 catch (const gdb_exception_error &ex)
13490 {
13491 if (ex.error != TARGET_CLOSE_ERROR)
13492 {
13493 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13494 return -1;
13495 }
13496 throw;
13497 }
13498
13499 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13500
13501 /* If the remote target doesn't do tracing, flag it. */
13502 if (result == PACKET_UNKNOWN)
13503 return -1;
13504
13505 /* We're working with a live target. */
13506 ts->filename = NULL;
13507
13508 if (*p++ != 'T')
13509 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13510
13511 /* Function 'parse_trace_status' sets default value of each field of
13512 'ts' at first, so we don't have to do it here. */
13513 parse_trace_status (p, ts);
13514
13515 return ts->running;
13516 }
13517
13518 void
13519 remote_target::get_tracepoint_status (struct breakpoint *bp,
13520 struct uploaded_tp *utp)
13521 {
13522 struct remote_state *rs = get_remote_state ();
13523 char *reply;
13524 struct bp_location *loc;
13525 struct tracepoint *tp = (struct tracepoint *) bp;
13526 size_t size = get_remote_packet_size ();
13527
13528 if (tp)
13529 {
13530 tp->hit_count = 0;
13531 tp->traceframe_usage = 0;
13532 for (loc = tp->loc; loc; loc = loc->next)
13533 {
13534 /* If the tracepoint was never downloaded, don't go asking for
13535 any status. */
13536 if (tp->number_on_target == 0)
13537 continue;
13538 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13539 phex_nz (loc->address, 0));
13540 putpkt (rs->buf);
13541 reply = remote_get_noisy_reply ();
13542 if (reply && *reply)
13543 {
13544 if (*reply == 'V')
13545 parse_tracepoint_status (reply + 1, bp, utp);
13546 }
13547 }
13548 }
13549 else if (utp)
13550 {
13551 utp->hit_count = 0;
13552 utp->traceframe_usage = 0;
13553 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13554 phex_nz (utp->addr, 0));
13555 putpkt (rs->buf);
13556 reply = remote_get_noisy_reply ();
13557 if (reply && *reply)
13558 {
13559 if (*reply == 'V')
13560 parse_tracepoint_status (reply + 1, bp, utp);
13561 }
13562 }
13563 }
13564
13565 void
13566 remote_target::trace_stop ()
13567 {
13568 struct remote_state *rs = get_remote_state ();
13569
13570 putpkt ("QTStop");
13571 remote_get_noisy_reply ();
13572 if (rs->buf[0] == '\0')
13573 error (_("Target does not support this command."));
13574 if (strcmp (rs->buf.data (), "OK") != 0)
13575 error (_("Bogus reply from target: %s"), rs->buf.data ());
13576 }
13577
13578 int
13579 remote_target::trace_find (enum trace_find_type type, int num,
13580 CORE_ADDR addr1, CORE_ADDR addr2,
13581 int *tpp)
13582 {
13583 struct remote_state *rs = get_remote_state ();
13584 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13585 char *p, *reply;
13586 int target_frameno = -1, target_tracept = -1;
13587
13588 /* Lookups other than by absolute frame number depend on the current
13589 trace selected, so make sure it is correct on the remote end
13590 first. */
13591 if (type != tfind_number)
13592 set_remote_traceframe ();
13593
13594 p = rs->buf.data ();
13595 strcpy (p, "QTFrame:");
13596 p = strchr (p, '\0');
13597 switch (type)
13598 {
13599 case tfind_number:
13600 xsnprintf (p, endbuf - p, "%x", num);
13601 break;
13602 case tfind_pc:
13603 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13604 break;
13605 case tfind_tp:
13606 xsnprintf (p, endbuf - p, "tdp:%x", num);
13607 break;
13608 case tfind_range:
13609 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13610 phex_nz (addr2, 0));
13611 break;
13612 case tfind_outside:
13613 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13614 phex_nz (addr2, 0));
13615 break;
13616 default:
13617 error (_("Unknown trace find type %d"), type);
13618 }
13619
13620 putpkt (rs->buf);
13621 reply = remote_get_noisy_reply ();
13622 if (*reply == '\0')
13623 error (_("Target does not support this command."));
13624
13625 while (reply && *reply)
13626 switch (*reply)
13627 {
13628 case 'F':
13629 p = ++reply;
13630 target_frameno = (int) strtol (p, &reply, 16);
13631 if (reply == p)
13632 error (_("Unable to parse trace frame number"));
13633 /* Don't update our remote traceframe number cache on failure
13634 to select a remote traceframe. */
13635 if (target_frameno == -1)
13636 return -1;
13637 break;
13638 case 'T':
13639 p = ++reply;
13640 target_tracept = (int) strtol (p, &reply, 16);
13641 if (reply == p)
13642 error (_("Unable to parse tracepoint number"));
13643 break;
13644 case 'O': /* "OK"? */
13645 if (reply[1] == 'K' && reply[2] == '\0')
13646 reply += 2;
13647 else
13648 error (_("Bogus reply from target: %s"), reply);
13649 break;
13650 default:
13651 error (_("Bogus reply from target: %s"), reply);
13652 }
13653 if (tpp)
13654 *tpp = target_tracept;
13655
13656 rs->remote_traceframe_number = target_frameno;
13657 return target_frameno;
13658 }
13659
13660 bool
13661 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13662 {
13663 struct remote_state *rs = get_remote_state ();
13664 char *reply;
13665 ULONGEST uval;
13666
13667 set_remote_traceframe ();
13668
13669 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13670 putpkt (rs->buf);
13671 reply = remote_get_noisy_reply ();
13672 if (reply && *reply)
13673 {
13674 if (*reply == 'V')
13675 {
13676 unpack_varlen_hex (reply + 1, &uval);
13677 *val = (LONGEST) uval;
13678 return true;
13679 }
13680 }
13681 return false;
13682 }
13683
13684 int
13685 remote_target::save_trace_data (const char *filename)
13686 {
13687 struct remote_state *rs = get_remote_state ();
13688 char *p, *reply;
13689
13690 p = rs->buf.data ();
13691 strcpy (p, "QTSave:");
13692 p += strlen (p);
13693 if ((p - rs->buf.data ()) + strlen (filename) * 2
13694 >= get_remote_packet_size ())
13695 error (_("Remote file name too long for trace save packet"));
13696 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13697 *p++ = '\0';
13698 putpkt (rs->buf);
13699 reply = remote_get_noisy_reply ();
13700 if (*reply == '\0')
13701 error (_("Target does not support this command."));
13702 if (strcmp (reply, "OK") != 0)
13703 error (_("Bogus reply from target: %s"), reply);
13704 return 0;
13705 }
13706
13707 /* This is basically a memory transfer, but needs to be its own packet
13708 because we don't know how the target actually organizes its trace
13709 memory, plus we want to be able to ask for as much as possible, but
13710 not be unhappy if we don't get as much as we ask for. */
13711
13712 LONGEST
13713 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13714 {
13715 struct remote_state *rs = get_remote_state ();
13716 char *reply;
13717 char *p;
13718 int rslt;
13719
13720 p = rs->buf.data ();
13721 strcpy (p, "qTBuffer:");
13722 p += strlen (p);
13723 p += hexnumstr (p, offset);
13724 *p++ = ',';
13725 p += hexnumstr (p, len);
13726 *p++ = '\0';
13727
13728 putpkt (rs->buf);
13729 reply = remote_get_noisy_reply ();
13730 if (reply && *reply)
13731 {
13732 /* 'l' by itself means we're at the end of the buffer and
13733 there is nothing more to get. */
13734 if (*reply == 'l')
13735 return 0;
13736
13737 /* Convert the reply into binary. Limit the number of bytes to
13738 convert according to our passed-in buffer size, rather than
13739 what was returned in the packet; if the target is
13740 unexpectedly generous and gives us a bigger reply than we
13741 asked for, we don't want to crash. */
13742 rslt = hex2bin (reply, buf, len);
13743 return rslt;
13744 }
13745
13746 /* Something went wrong, flag as an error. */
13747 return -1;
13748 }
13749
13750 void
13751 remote_target::set_disconnected_tracing (int val)
13752 {
13753 struct remote_state *rs = get_remote_state ();
13754
13755 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13756 {
13757 char *reply;
13758
13759 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13760 "QTDisconnected:%x", val);
13761 putpkt (rs->buf);
13762 reply = remote_get_noisy_reply ();
13763 if (*reply == '\0')
13764 error (_("Target does not support this command."));
13765 if (strcmp (reply, "OK") != 0)
13766 error (_("Bogus reply from target: %s"), reply);
13767 }
13768 else if (val)
13769 warning (_("Target does not support disconnected tracing."));
13770 }
13771
13772 int
13773 remote_target::core_of_thread (ptid_t ptid)
13774 {
13775 thread_info *info = find_thread_ptid (this, ptid);
13776
13777 if (info != NULL && info->priv != NULL)
13778 return get_remote_thread_info (info)->core;
13779
13780 return -1;
13781 }
13782
13783 void
13784 remote_target::set_circular_trace_buffer (int val)
13785 {
13786 struct remote_state *rs = get_remote_state ();
13787 char *reply;
13788
13789 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13790 "QTBuffer:circular:%x", val);
13791 putpkt (rs->buf);
13792 reply = remote_get_noisy_reply ();
13793 if (*reply == '\0')
13794 error (_("Target does not support this command."));
13795 if (strcmp (reply, "OK") != 0)
13796 error (_("Bogus reply from target: %s"), reply);
13797 }
13798
13799 traceframe_info_up
13800 remote_target::traceframe_info ()
13801 {
13802 gdb::optional<gdb::char_vector> text
13803 = target_read_stralloc (current_inferior ()->top_target (),
13804 TARGET_OBJECT_TRACEFRAME_INFO,
13805 NULL);
13806 if (text)
13807 return parse_traceframe_info (text->data ());
13808
13809 return NULL;
13810 }
13811
13812 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13813 instruction on which a fast tracepoint may be placed. Returns -1
13814 if the packet is not supported, and 0 if the minimum instruction
13815 length is unknown. */
13816
13817 int
13818 remote_target::get_min_fast_tracepoint_insn_len ()
13819 {
13820 struct remote_state *rs = get_remote_state ();
13821 char *reply;
13822
13823 /* If we're not debugging a process yet, the IPA can't be
13824 loaded. */
13825 if (!target_has_execution ())
13826 return 0;
13827
13828 /* Make sure the remote is pointing at the right process. */
13829 set_general_process ();
13830
13831 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13832 putpkt (rs->buf);
13833 reply = remote_get_noisy_reply ();
13834 if (*reply == '\0')
13835 return -1;
13836 else
13837 {
13838 ULONGEST min_insn_len;
13839
13840 unpack_varlen_hex (reply, &min_insn_len);
13841
13842 return (int) min_insn_len;
13843 }
13844 }
13845
13846 void
13847 remote_target::set_trace_buffer_size (LONGEST val)
13848 {
13849 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13850 {
13851 struct remote_state *rs = get_remote_state ();
13852 char *buf = rs->buf.data ();
13853 char *endbuf = buf + get_remote_packet_size ();
13854 enum packet_result result;
13855
13856 gdb_assert (val >= 0 || val == -1);
13857 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13858 /* Send -1 as literal "-1" to avoid host size dependency. */
13859 if (val < 0)
13860 {
13861 *buf++ = '-';
13862 buf += hexnumstr (buf, (ULONGEST) -val);
13863 }
13864 else
13865 buf += hexnumstr (buf, (ULONGEST) val);
13866
13867 putpkt (rs->buf);
13868 remote_get_noisy_reply ();
13869 result = packet_ok (rs->buf,
13870 &remote_protocol_packets[PACKET_QTBuffer_size]);
13871
13872 if (result != PACKET_OK)
13873 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13874 }
13875 }
13876
13877 bool
13878 remote_target::set_trace_notes (const char *user, const char *notes,
13879 const char *stop_notes)
13880 {
13881 struct remote_state *rs = get_remote_state ();
13882 char *reply;
13883 char *buf = rs->buf.data ();
13884 char *endbuf = buf + get_remote_packet_size ();
13885 int nbytes;
13886
13887 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13888 if (user)
13889 {
13890 buf += xsnprintf (buf, endbuf - buf, "user:");
13891 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13892 buf += 2 * nbytes;
13893 *buf++ = ';';
13894 }
13895 if (notes)
13896 {
13897 buf += xsnprintf (buf, endbuf - buf, "notes:");
13898 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13899 buf += 2 * nbytes;
13900 *buf++ = ';';
13901 }
13902 if (stop_notes)
13903 {
13904 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13905 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13906 buf += 2 * nbytes;
13907 *buf++ = ';';
13908 }
13909 /* Ensure the buffer is terminated. */
13910 *buf = '\0';
13911
13912 putpkt (rs->buf);
13913 reply = remote_get_noisy_reply ();
13914 if (*reply == '\0')
13915 return false;
13916
13917 if (strcmp (reply, "OK") != 0)
13918 error (_("Bogus reply from target: %s"), reply);
13919
13920 return true;
13921 }
13922
13923 bool
13924 remote_target::use_agent (bool use)
13925 {
13926 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13927 {
13928 struct remote_state *rs = get_remote_state ();
13929
13930 /* If the stub supports QAgent. */
13931 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13932 putpkt (rs->buf);
13933 getpkt (&rs->buf, 0);
13934
13935 if (strcmp (rs->buf.data (), "OK") == 0)
13936 {
13937 ::use_agent = use;
13938 return true;
13939 }
13940 }
13941
13942 return false;
13943 }
13944
13945 bool
13946 remote_target::can_use_agent ()
13947 {
13948 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13949 }
13950
13951 struct btrace_target_info
13952 {
13953 /* The ptid of the traced thread. */
13954 ptid_t ptid;
13955
13956 /* The obtained branch trace configuration. */
13957 struct btrace_config conf;
13958 };
13959
13960 /* Reset our idea of our target's btrace configuration. */
13961
13962 static void
13963 remote_btrace_reset (remote_state *rs)
13964 {
13965 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13966 }
13967
13968 /* Synchronize the configuration with the target. */
13969
13970 void
13971 remote_target::btrace_sync_conf (const btrace_config *conf)
13972 {
13973 struct packet_config *packet;
13974 struct remote_state *rs;
13975 char *buf, *pos, *endbuf;
13976
13977 rs = get_remote_state ();
13978 buf = rs->buf.data ();
13979 endbuf = buf + get_remote_packet_size ();
13980
13981 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13982 if (packet_config_support (packet) == PACKET_ENABLE
13983 && conf->bts.size != rs->btrace_config.bts.size)
13984 {
13985 pos = buf;
13986 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13987 conf->bts.size);
13988
13989 putpkt (buf);
13990 getpkt (&rs->buf, 0);
13991
13992 if (packet_ok (buf, packet) == PACKET_ERROR)
13993 {
13994 if (buf[0] == 'E' && buf[1] == '.')
13995 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13996 else
13997 error (_("Failed to configure the BTS buffer size."));
13998 }
13999
14000 rs->btrace_config.bts.size = conf->bts.size;
14001 }
14002
14003 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
14004 if (packet_config_support (packet) == PACKET_ENABLE
14005 && conf->pt.size != rs->btrace_config.pt.size)
14006 {
14007 pos = buf;
14008 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14009 conf->pt.size);
14010
14011 putpkt (buf);
14012 getpkt (&rs->buf, 0);
14013
14014 if (packet_ok (buf, packet) == PACKET_ERROR)
14015 {
14016 if (buf[0] == 'E' && buf[1] == '.')
14017 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
14018 else
14019 error (_("Failed to configure the trace buffer size."));
14020 }
14021
14022 rs->btrace_config.pt.size = conf->pt.size;
14023 }
14024 }
14025
14026 /* Read the current thread's btrace configuration from the target and
14027 store it into CONF. */
14028
14029 static void
14030 btrace_read_config (struct btrace_config *conf)
14031 {
14032 gdb::optional<gdb::char_vector> xml
14033 = target_read_stralloc (current_inferior ()->top_target (),
14034 TARGET_OBJECT_BTRACE_CONF, "");
14035 if (xml)
14036 parse_xml_btrace_conf (conf, xml->data ());
14037 }
14038
14039 /* Maybe reopen target btrace. */
14040
14041 void
14042 remote_target::remote_btrace_maybe_reopen ()
14043 {
14044 struct remote_state *rs = get_remote_state ();
14045 int btrace_target_pushed = 0;
14046 #if !defined (HAVE_LIBIPT)
14047 int warned = 0;
14048 #endif
14049
14050 /* Don't bother walking the entirety of the remote thread list when
14051 we know the feature isn't supported by the remote. */
14052 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
14053 return;
14054
14055 scoped_restore_current_thread restore_thread;
14056
14057 for (thread_info *tp : all_non_exited_threads (this))
14058 {
14059 set_general_thread (tp->ptid);
14060
14061 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
14062 btrace_read_config (&rs->btrace_config);
14063
14064 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
14065 continue;
14066
14067 #if !defined (HAVE_LIBIPT)
14068 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
14069 {
14070 if (!warned)
14071 {
14072 warned = 1;
14073 warning (_("Target is recording using Intel Processor Trace "
14074 "but support was disabled at compile time."));
14075 }
14076
14077 continue;
14078 }
14079 #endif /* !defined (HAVE_LIBIPT) */
14080
14081 /* Push target, once, but before anything else happens. This way our
14082 changes to the threads will be cleaned up by unpushing the target
14083 in case btrace_read_config () throws. */
14084 if (!btrace_target_pushed)
14085 {
14086 btrace_target_pushed = 1;
14087 record_btrace_push_target ();
14088 printf_filtered (_("Target is recording using %s.\n"),
14089 btrace_format_string (rs->btrace_config.format));
14090 }
14091
14092 tp->btrace.target = XCNEW (struct btrace_target_info);
14093 tp->btrace.target->ptid = tp->ptid;
14094 tp->btrace.target->conf = rs->btrace_config;
14095 }
14096 }
14097
14098 /* Enable branch tracing. */
14099
14100 struct btrace_target_info *
14101 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
14102 {
14103 struct btrace_target_info *tinfo = NULL;
14104 struct packet_config *packet = NULL;
14105 struct remote_state *rs = get_remote_state ();
14106 char *buf = rs->buf.data ();
14107 char *endbuf = buf + get_remote_packet_size ();
14108
14109 switch (conf->format)
14110 {
14111 case BTRACE_FORMAT_BTS:
14112 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14113 break;
14114
14115 case BTRACE_FORMAT_PT:
14116 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14117 break;
14118 }
14119
14120 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14121 error (_("Target does not support branch tracing."));
14122
14123 btrace_sync_conf (conf);
14124
14125 set_general_thread (ptid);
14126
14127 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14128 putpkt (rs->buf);
14129 getpkt (&rs->buf, 0);
14130
14131 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14132 {
14133 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14134 error (_("Could not enable branch tracing for %s: %s"),
14135 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14136 else
14137 error (_("Could not enable branch tracing for %s."),
14138 target_pid_to_str (ptid).c_str ());
14139 }
14140
14141 tinfo = XCNEW (struct btrace_target_info);
14142 tinfo->ptid = ptid;
14143
14144 /* If we fail to read the configuration, we lose some information, but the
14145 tracing itself is not impacted. */
14146 try
14147 {
14148 btrace_read_config (&tinfo->conf);
14149 }
14150 catch (const gdb_exception_error &err)
14151 {
14152 if (err.message != NULL)
14153 warning ("%s", err.what ());
14154 }
14155
14156 return tinfo;
14157 }
14158
14159 /* Disable branch tracing. */
14160
14161 void
14162 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14163 {
14164 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14165 struct remote_state *rs = get_remote_state ();
14166 char *buf = rs->buf.data ();
14167 char *endbuf = buf + get_remote_packet_size ();
14168
14169 if (packet_config_support (packet) != PACKET_ENABLE)
14170 error (_("Target does not support branch tracing."));
14171
14172 set_general_thread (tinfo->ptid);
14173
14174 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14175 putpkt (rs->buf);
14176 getpkt (&rs->buf, 0);
14177
14178 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14179 {
14180 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14181 error (_("Could not disable branch tracing for %s: %s"),
14182 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14183 else
14184 error (_("Could not disable branch tracing for %s."),
14185 target_pid_to_str (tinfo->ptid).c_str ());
14186 }
14187
14188 xfree (tinfo);
14189 }
14190
14191 /* Teardown branch tracing. */
14192
14193 void
14194 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14195 {
14196 /* We must not talk to the target during teardown. */
14197 xfree (tinfo);
14198 }
14199
14200 /* Read the branch trace. */
14201
14202 enum btrace_error
14203 remote_target::read_btrace (struct btrace_data *btrace,
14204 struct btrace_target_info *tinfo,
14205 enum btrace_read_type type)
14206 {
14207 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14208 const char *annex;
14209
14210 if (packet_config_support (packet) != PACKET_ENABLE)
14211 error (_("Target does not support branch tracing."));
14212
14213 #if !defined(HAVE_LIBEXPAT)
14214 error (_("Cannot process branch tracing result. XML parsing not supported."));
14215 #endif
14216
14217 switch (type)
14218 {
14219 case BTRACE_READ_ALL:
14220 annex = "all";
14221 break;
14222 case BTRACE_READ_NEW:
14223 annex = "new";
14224 break;
14225 case BTRACE_READ_DELTA:
14226 annex = "delta";
14227 break;
14228 default:
14229 internal_error (__FILE__, __LINE__,
14230 _("Bad branch tracing read type: %u."),
14231 (unsigned int) type);
14232 }
14233
14234 gdb::optional<gdb::char_vector> xml
14235 = target_read_stralloc (current_inferior ()->top_target (),
14236 TARGET_OBJECT_BTRACE, annex);
14237 if (!xml)
14238 return BTRACE_ERR_UNKNOWN;
14239
14240 parse_xml_btrace (btrace, xml->data ());
14241
14242 return BTRACE_ERR_NONE;
14243 }
14244
14245 const struct btrace_config *
14246 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14247 {
14248 return &tinfo->conf;
14249 }
14250
14251 bool
14252 remote_target::augmented_libraries_svr4_read ()
14253 {
14254 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14255 == PACKET_ENABLE);
14256 }
14257
14258 /* Implementation of to_load. */
14259
14260 void
14261 remote_target::load (const char *name, int from_tty)
14262 {
14263 generic_load (name, from_tty);
14264 }
14265
14266 /* Accepts an integer PID; returns a string representing a file that
14267 can be opened on the remote side to get the symbols for the child
14268 process. Returns NULL if the operation is not supported. */
14269
14270 char *
14271 remote_target::pid_to_exec_file (int pid)
14272 {
14273 static gdb::optional<gdb::char_vector> filename;
14274 char *annex = NULL;
14275
14276 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14277 return NULL;
14278
14279 inferior *inf = find_inferior_pid (this, pid);
14280 if (inf == NULL)
14281 internal_error (__FILE__, __LINE__,
14282 _("not currently attached to process %d"), pid);
14283
14284 if (!inf->fake_pid_p)
14285 {
14286 const int annex_size = 9;
14287
14288 annex = (char *) alloca (annex_size);
14289 xsnprintf (annex, annex_size, "%x", pid);
14290 }
14291
14292 filename = target_read_stralloc (current_inferior ()->top_target (),
14293 TARGET_OBJECT_EXEC_FILE, annex);
14294
14295 return filename ? filename->data () : nullptr;
14296 }
14297
14298 /* Implement the to_can_do_single_step target_ops method. */
14299
14300 int
14301 remote_target::can_do_single_step ()
14302 {
14303 /* We can only tell whether target supports single step or not by
14304 supported s and S vCont actions if the stub supports vContSupported
14305 feature. If the stub doesn't support vContSupported feature,
14306 we have conservatively to think target doesn't supports single
14307 step. */
14308 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14309 {
14310 struct remote_state *rs = get_remote_state ();
14311
14312 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14313 remote_vcont_probe ();
14314
14315 return rs->supports_vCont.s && rs->supports_vCont.S;
14316 }
14317 else
14318 return 0;
14319 }
14320
14321 /* Implementation of the to_execution_direction method for the remote
14322 target. */
14323
14324 enum exec_direction_kind
14325 remote_target::execution_direction ()
14326 {
14327 struct remote_state *rs = get_remote_state ();
14328
14329 return rs->last_resume_exec_dir;
14330 }
14331
14332 /* Return pointer to the thread_info struct which corresponds to
14333 THREAD_HANDLE (having length HANDLE_LEN). */
14334
14335 thread_info *
14336 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14337 int handle_len,
14338 inferior *inf)
14339 {
14340 for (thread_info *tp : all_non_exited_threads (this))
14341 {
14342 remote_thread_info *priv = get_remote_thread_info (tp);
14343
14344 if (tp->inf == inf && priv != NULL)
14345 {
14346 if (handle_len != priv->thread_handle.size ())
14347 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14348 handle_len, priv->thread_handle.size ());
14349 if (memcmp (thread_handle, priv->thread_handle.data (),
14350 handle_len) == 0)
14351 return tp;
14352 }
14353 }
14354
14355 return NULL;
14356 }
14357
14358 gdb::byte_vector
14359 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14360 {
14361 remote_thread_info *priv = get_remote_thread_info (tp);
14362 return priv->thread_handle;
14363 }
14364
14365 bool
14366 remote_target::can_async_p ()
14367 {
14368 struct remote_state *rs = get_remote_state ();
14369
14370 /* We don't go async if the user has explicitly prevented it with the
14371 "maint set target-async" command. */
14372 if (!target_async_permitted)
14373 return false;
14374
14375 /* We're async whenever the serial device is. */
14376 return serial_can_async_p (rs->remote_desc);
14377 }
14378
14379 bool
14380 remote_target::is_async_p ()
14381 {
14382 struct remote_state *rs = get_remote_state ();
14383
14384 if (!target_async_permitted)
14385 /* We only enable async when the user specifically asks for it. */
14386 return false;
14387
14388 /* We're async whenever the serial device is. */
14389 return serial_is_async_p (rs->remote_desc);
14390 }
14391
14392 /* Pass the SERIAL event on and up to the client. One day this code
14393 will be able to delay notifying the client of an event until the
14394 point where an entire packet has been received. */
14395
14396 static serial_event_ftype remote_async_serial_handler;
14397
14398 static void
14399 remote_async_serial_handler (struct serial *scb, void *context)
14400 {
14401 /* Don't propogate error information up to the client. Instead let
14402 the client find out about the error by querying the target. */
14403 inferior_event_handler (INF_REG_EVENT);
14404 }
14405
14406 static void
14407 remote_async_inferior_event_handler (gdb_client_data data)
14408 {
14409 inferior_event_handler (INF_REG_EVENT);
14410 }
14411
14412 int
14413 remote_target::async_wait_fd ()
14414 {
14415 struct remote_state *rs = get_remote_state ();
14416 return rs->remote_desc->fd;
14417 }
14418
14419 void
14420 remote_target::async (int enable)
14421 {
14422 struct remote_state *rs = get_remote_state ();
14423
14424 if (enable)
14425 {
14426 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14427
14428 /* If there are pending events in the stop reply queue tell the
14429 event loop to process them. */
14430 if (!rs->stop_reply_queue.empty ())
14431 mark_async_event_handler (rs->remote_async_inferior_event_token);
14432 /* For simplicity, below we clear the pending events token
14433 without remembering whether it is marked, so here we always
14434 mark it. If there's actually no pending notification to
14435 process, this ends up being a no-op (other than a spurious
14436 event-loop wakeup). */
14437 if (target_is_non_stop_p ())
14438 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14439 }
14440 else
14441 {
14442 serial_async (rs->remote_desc, NULL, NULL);
14443 /* If the core is disabling async, it doesn't want to be
14444 disturbed with target events. Clear all async event sources
14445 too. */
14446 clear_async_event_handler (rs->remote_async_inferior_event_token);
14447 if (target_is_non_stop_p ())
14448 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14449 }
14450 }
14451
14452 /* Implementation of the to_thread_events method. */
14453
14454 void
14455 remote_target::thread_events (int enable)
14456 {
14457 struct remote_state *rs = get_remote_state ();
14458 size_t size = get_remote_packet_size ();
14459
14460 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14461 return;
14462
14463 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14464 putpkt (rs->buf);
14465 getpkt (&rs->buf, 0);
14466
14467 switch (packet_ok (rs->buf,
14468 &remote_protocol_packets[PACKET_QThreadEvents]))
14469 {
14470 case PACKET_OK:
14471 if (strcmp (rs->buf.data (), "OK") != 0)
14472 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14473 break;
14474 case PACKET_ERROR:
14475 warning (_("Remote failure reply: %s"), rs->buf.data ());
14476 break;
14477 case PACKET_UNKNOWN:
14478 break;
14479 }
14480 }
14481
14482 static void
14483 show_remote_cmd (const char *args, int from_tty)
14484 {
14485 /* We can't just use cmd_show_list here, because we want to skip
14486 the redundant "show remote Z-packet" and the legacy aliases. */
14487 struct cmd_list_element *list = remote_show_cmdlist;
14488 struct ui_out *uiout = current_uiout;
14489
14490 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14491 for (; list != NULL; list = list->next)
14492 if (strcmp (list->name, "Z-packet") == 0)
14493 continue;
14494 else if (list->type == not_set_cmd)
14495 /* Alias commands are exactly like the original, except they
14496 don't have the normal type. */
14497 continue;
14498 else
14499 {
14500 ui_out_emit_tuple option_emitter (uiout, "option");
14501
14502 uiout->field_string ("name", list->name);
14503 uiout->text (": ");
14504 if (list->type == show_cmd)
14505 do_show_command (NULL, from_tty, list);
14506 else
14507 cmd_func (list, NULL, from_tty);
14508 }
14509 }
14510
14511
14512 /* Function to be called whenever a new objfile (shlib) is detected. */
14513 static void
14514 remote_new_objfile (struct objfile *objfile)
14515 {
14516 remote_target *remote = get_current_remote_target ();
14517
14518 if (remote != NULL) /* Have a remote connection. */
14519 remote->remote_check_symbols ();
14520 }
14521
14522 /* Pull all the tracepoints defined on the target and create local
14523 data structures representing them. We don't want to create real
14524 tracepoints yet, we don't want to mess up the user's existing
14525 collection. */
14526
14527 int
14528 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14529 {
14530 struct remote_state *rs = get_remote_state ();
14531 char *p;
14532
14533 /* Ask for a first packet of tracepoint definition. */
14534 putpkt ("qTfP");
14535 getpkt (&rs->buf, 0);
14536 p = rs->buf.data ();
14537 while (*p && *p != 'l')
14538 {
14539 parse_tracepoint_definition (p, utpp);
14540 /* Ask for another packet of tracepoint definition. */
14541 putpkt ("qTsP");
14542 getpkt (&rs->buf, 0);
14543 p = rs->buf.data ();
14544 }
14545 return 0;
14546 }
14547
14548 int
14549 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14550 {
14551 struct remote_state *rs = get_remote_state ();
14552 char *p;
14553
14554 /* Ask for a first packet of variable definition. */
14555 putpkt ("qTfV");
14556 getpkt (&rs->buf, 0);
14557 p = rs->buf.data ();
14558 while (*p && *p != 'l')
14559 {
14560 parse_tsv_definition (p, utsvp);
14561 /* Ask for another packet of variable definition. */
14562 putpkt ("qTsV");
14563 getpkt (&rs->buf, 0);
14564 p = rs->buf.data ();
14565 }
14566 return 0;
14567 }
14568
14569 /* The "set/show range-stepping" show hook. */
14570
14571 static void
14572 show_range_stepping (struct ui_file *file, int from_tty,
14573 struct cmd_list_element *c,
14574 const char *value)
14575 {
14576 fprintf_filtered (file,
14577 _("Debugger's willingness to use range stepping "
14578 "is %s.\n"), value);
14579 }
14580
14581 /* Return true if the vCont;r action is supported by the remote
14582 stub. */
14583
14584 bool
14585 remote_target::vcont_r_supported ()
14586 {
14587 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14588 remote_vcont_probe ();
14589
14590 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14591 && get_remote_state ()->supports_vCont.r);
14592 }
14593
14594 /* The "set/show range-stepping" set hook. */
14595
14596 static void
14597 set_range_stepping (const char *ignore_args, int from_tty,
14598 struct cmd_list_element *c)
14599 {
14600 /* When enabling, check whether range stepping is actually supported
14601 by the target, and warn if not. */
14602 if (use_range_stepping)
14603 {
14604 remote_target *remote = get_current_remote_target ();
14605 if (remote == NULL
14606 || !remote->vcont_r_supported ())
14607 warning (_("Range stepping is not supported by the current target"));
14608 }
14609 }
14610
14611 static void
14612 show_remote_debug (struct ui_file *file, int from_tty,
14613 struct cmd_list_element *c, const char *value)
14614 {
14615 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14616 value);
14617 }
14618
14619 static void
14620 show_remote_timeout (struct ui_file *file, int from_tty,
14621 struct cmd_list_element *c, const char *value)
14622 {
14623 fprintf_filtered (file,
14624 _("Timeout limit to wait for target to respond is %s.\n"),
14625 value);
14626 }
14627
14628 /* Implement the "supports_memory_tagging" target_ops method. */
14629
14630 bool
14631 remote_target::supports_memory_tagging ()
14632 {
14633 return remote_memory_tagging_p ();
14634 }
14635
14636 /* Create the qMemTags packet given ADDRESS, LEN and TYPE. */
14637
14638 static void
14639 create_fetch_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14640 size_t len, int type)
14641 {
14642 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14643
14644 std::string request = string_printf ("qMemTags:%s,%s:%s",
14645 phex_nz (address, addr_size),
14646 phex_nz (len, sizeof (len)),
14647 phex_nz (type, sizeof (type)));
14648
14649 strcpy (packet.data (), request.c_str ());
14650 }
14651
14652 /* Parse the qMemTags packet reply into TAGS.
14653
14654 Return true if successful, false otherwise. */
14655
14656 static bool
14657 parse_fetch_memtags_reply (const gdb::char_vector &reply,
14658 gdb::byte_vector &tags)
14659 {
14660 if (reply.empty () || reply[0] == 'E' || reply[0] != 'm')
14661 return false;
14662
14663 /* Copy the tag data. */
14664 tags = hex2bin (reply.data () + 1);
14665
14666 return true;
14667 }
14668
14669 /* Create the QMemTags packet given ADDRESS, LEN, TYPE and TAGS. */
14670
14671 static void
14672 create_store_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14673 size_t len, int type,
14674 const gdb::byte_vector &tags)
14675 {
14676 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14677
14678 /* Put together the main packet, address and length. */
14679 std::string request = string_printf ("QMemTags:%s,%s:%s:",
14680 phex_nz (address, addr_size),
14681 phex_nz (len, sizeof (len)),
14682 phex_nz (type, sizeof (type)));
14683 request += bin2hex (tags.data (), tags.size ());
14684
14685 /* Check if we have exceeded the maximum packet size. */
14686 if (packet.size () < request.length ())
14687 error (_("Contents too big for packet QMemTags."));
14688
14689 strcpy (packet.data (), request.c_str ());
14690 }
14691
14692 /* Implement the "fetch_memtags" target_ops method. */
14693
14694 bool
14695 remote_target::fetch_memtags (CORE_ADDR address, size_t len,
14696 gdb::byte_vector &tags, int type)
14697 {
14698 /* Make sure the qMemTags packet is supported. */
14699 if (!remote_memory_tagging_p ())
14700 gdb_assert_not_reached ("remote fetch_memtags called with packet disabled");
14701
14702 struct remote_state *rs = get_remote_state ();
14703
14704 create_fetch_memtags_request (rs->buf, address, len, type);
14705
14706 putpkt (rs->buf);
14707 getpkt (&rs->buf, 0);
14708
14709 return parse_fetch_memtags_reply (rs->buf, tags);
14710 }
14711
14712 /* Implement the "store_memtags" target_ops method. */
14713
14714 bool
14715 remote_target::store_memtags (CORE_ADDR address, size_t len,
14716 const gdb::byte_vector &tags, int type)
14717 {
14718 /* Make sure the QMemTags packet is supported. */
14719 if (!remote_memory_tagging_p ())
14720 gdb_assert_not_reached ("remote store_memtags called with packet disabled");
14721
14722 struct remote_state *rs = get_remote_state ();
14723
14724 create_store_memtags_request (rs->buf, address, len, type, tags);
14725
14726 putpkt (rs->buf);
14727 getpkt (&rs->buf, 0);
14728
14729 /* Verify if the request was successful. */
14730 return packet_check_result (rs->buf.data ()) == PACKET_OK;
14731 }
14732
14733 /* Return true if remote target T is non-stop. */
14734
14735 bool
14736 remote_target_is_non_stop_p (remote_target *t)
14737 {
14738 scoped_restore_current_thread restore_thread;
14739 switch_to_target_no_thread (t);
14740
14741 return target_is_non_stop_p ();
14742 }
14743
14744 #if GDB_SELF_TEST
14745
14746 namespace selftests {
14747
14748 static void
14749 test_memory_tagging_functions ()
14750 {
14751 remote_target remote;
14752
14753 struct packet_config *config
14754 = &remote_protocol_packets[PACKET_memory_tagging_feature];
14755
14756 scoped_restore restore_memtag_support_
14757 = make_scoped_restore (&config->support);
14758
14759 /* Test memory tagging packet support. */
14760 config->support = PACKET_SUPPORT_UNKNOWN;
14761 SELF_CHECK (remote.supports_memory_tagging () == false);
14762 config->support = PACKET_DISABLE;
14763 SELF_CHECK (remote.supports_memory_tagging () == false);
14764 config->support = PACKET_ENABLE;
14765 SELF_CHECK (remote.supports_memory_tagging () == true);
14766
14767 /* Setup testing. */
14768 gdb::char_vector packet;
14769 gdb::byte_vector tags, bv;
14770 std::string expected, reply;
14771 packet.resize (32000);
14772
14773 /* Test creating a qMemTags request. */
14774
14775 expected = "qMemTags:0,0:0";
14776 create_fetch_memtags_request (packet, 0x0, 0x0, 0);
14777 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14778
14779 expected = "qMemTags:deadbeef,10:1";
14780 create_fetch_memtags_request (packet, 0xdeadbeef, 16, 1);
14781 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14782
14783 /* Test parsing a qMemTags reply. */
14784
14785 /* Error reply, tags vector unmodified. */
14786 reply = "E00";
14787 strcpy (packet.data (), reply.c_str ());
14788 tags.resize (0);
14789 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == false);
14790 SELF_CHECK (tags.size () == 0);
14791
14792 /* Valid reply, tags vector updated. */
14793 tags.resize (0);
14794 bv.resize (0);
14795
14796 for (int i = 0; i < 5; i++)
14797 bv.push_back (i);
14798
14799 reply = "m" + bin2hex (bv.data (), bv.size ());
14800 strcpy (packet.data (), reply.c_str ());
14801
14802 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == true);
14803 SELF_CHECK (tags.size () == 5);
14804
14805 for (int i = 0; i < 5; i++)
14806 SELF_CHECK (tags[i] == i);
14807
14808 /* Test creating a QMemTags request. */
14809
14810 /* Empty tag data. */
14811 tags.resize (0);
14812 expected = "QMemTags:0,0:0:";
14813 create_store_memtags_request (packet, 0x0, 0x0, 0, tags);
14814 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14815 expected.length ()) == 0);
14816
14817 /* Non-empty tag data. */
14818 tags.resize (0);
14819 for (int i = 0; i < 5; i++)
14820 tags.push_back (i);
14821 expected = "QMemTags:deadbeef,ff:1:0001020304";
14822 create_store_memtags_request (packet, 0xdeadbeef, 255, 1, tags);
14823 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14824 expected.length ()) == 0);
14825 }
14826
14827 } // namespace selftests
14828 #endif /* GDB_SELF_TEST */
14829
14830 void _initialize_remote ();
14831 void
14832 _initialize_remote ()
14833 {
14834 /* architecture specific data */
14835 remote_g_packet_data_handle =
14836 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14837
14838 add_target (remote_target_info, remote_target::open);
14839 add_target (extended_remote_target_info, extended_remote_target::open);
14840
14841 /* Hook into new objfile notification. */
14842 gdb::observers::new_objfile.attach (remote_new_objfile, "remote");
14843
14844 #if 0
14845 init_remote_threadtests ();
14846 #endif
14847
14848 /* set/show remote ... */
14849
14850 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14851 Remote protocol specific variables.\n\
14852 Configure various remote-protocol specific variables such as\n\
14853 the packets being used."),
14854 &remote_set_cmdlist,
14855 0 /* allow-unknown */, &setlist);
14856 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14857 Remote protocol specific variables.\n\
14858 Configure various remote-protocol specific variables such as\n\
14859 the packets being used."),
14860 &remote_show_cmdlist,
14861 0 /* allow-unknown */, &showlist);
14862
14863 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14864 Compare section data on target to the exec file.\n\
14865 Argument is a single section name (default: all loaded sections).\n\
14866 To compare only read-only loaded sections, specify the -r option."),
14867 &cmdlist);
14868
14869 add_cmd ("packet", class_maintenance, packet_command, _("\
14870 Send an arbitrary packet to a remote target.\n\
14871 maintenance packet TEXT\n\
14872 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14873 this command sends the string TEXT to the inferior, and displays the\n\
14874 response packet. GDB supplies the initial `$' character, and the\n\
14875 terminating `#' character and checksum."),
14876 &maintenancelist);
14877
14878 set_show_commands remotebreak_cmds
14879 = add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14880 Set whether to send break if interrupted."), _("\
14881 Show whether to send break if interrupted."), _("\
14882 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14883 set_remotebreak, show_remotebreak,
14884 &setlist, &showlist);
14885 deprecate_cmd (remotebreak_cmds.set, "set remote interrupt-sequence");
14886 deprecate_cmd (remotebreak_cmds.show, "show remote interrupt-sequence");
14887
14888 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14889 interrupt_sequence_modes, &interrupt_sequence_mode,
14890 _("\
14891 Set interrupt sequence to remote target."), _("\
14892 Show interrupt sequence to remote target."), _("\
14893 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14894 NULL, show_interrupt_sequence,
14895 &remote_set_cmdlist,
14896 &remote_show_cmdlist);
14897
14898 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14899 &interrupt_on_connect, _("\
14900 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14901 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14902 If set, interrupt sequence is sent to remote target."),
14903 NULL, NULL,
14904 &remote_set_cmdlist, &remote_show_cmdlist);
14905
14906 /* Install commands for configuring memory read/write packets. */
14907
14908 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14909 Set the maximum number of bytes per memory write packet (deprecated)."),
14910 &setlist);
14911 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14912 Show the maximum number of bytes per memory write packet (deprecated)."),
14913 &showlist);
14914 add_cmd ("memory-write-packet-size", no_class,
14915 set_memory_write_packet_size, _("\
14916 Set the maximum number of bytes per memory-write packet.\n\
14917 Specify the number of bytes in a packet or 0 (zero) for the\n\
14918 default packet size. The actual limit is further reduced\n\
14919 dependent on the target. Specify ``fixed'' to disable the\n\
14920 further restriction and ``limit'' to enable that restriction."),
14921 &remote_set_cmdlist);
14922 add_cmd ("memory-read-packet-size", no_class,
14923 set_memory_read_packet_size, _("\
14924 Set the maximum number of bytes per memory-read packet.\n\
14925 Specify the number of bytes in a packet or 0 (zero) for the\n\
14926 default packet size. The actual limit is further reduced\n\
14927 dependent on the target. Specify ``fixed'' to disable the\n\
14928 further restriction and ``limit'' to enable that restriction."),
14929 &remote_set_cmdlist);
14930 add_cmd ("memory-write-packet-size", no_class,
14931 show_memory_write_packet_size,
14932 _("Show the maximum number of bytes per memory-write packet."),
14933 &remote_show_cmdlist);
14934 add_cmd ("memory-read-packet-size", no_class,
14935 show_memory_read_packet_size,
14936 _("Show the maximum number of bytes per memory-read packet."),
14937 &remote_show_cmdlist);
14938
14939 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14940 &remote_hw_watchpoint_limit, _("\
14941 Set the maximum number of target hardware watchpoints."), _("\
14942 Show the maximum number of target hardware watchpoints."), _("\
14943 Specify \"unlimited\" for unlimited hardware watchpoints."),
14944 NULL, show_hardware_watchpoint_limit,
14945 &remote_set_cmdlist,
14946 &remote_show_cmdlist);
14947 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14948 no_class,
14949 &remote_hw_watchpoint_length_limit, _("\
14950 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14951 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14952 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14953 NULL, show_hardware_watchpoint_length_limit,
14954 &remote_set_cmdlist, &remote_show_cmdlist);
14955 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14956 &remote_hw_breakpoint_limit, _("\
14957 Set the maximum number of target hardware breakpoints."), _("\
14958 Show the maximum number of target hardware breakpoints."), _("\
14959 Specify \"unlimited\" for unlimited hardware breakpoints."),
14960 NULL, show_hardware_breakpoint_limit,
14961 &remote_set_cmdlist, &remote_show_cmdlist);
14962
14963 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14964 &remote_address_size, _("\
14965 Set the maximum size of the address (in bits) in a memory packet."), _("\
14966 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14967 NULL,
14968 NULL, /* FIXME: i18n: */
14969 &setlist, &showlist);
14970
14971 init_all_packet_configs ();
14972
14973 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14974 "X", "binary-download", 1);
14975
14976 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14977 "vCont", "verbose-resume", 0);
14978
14979 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14980 "QPassSignals", "pass-signals", 0);
14981
14982 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14983 "QCatchSyscalls", "catch-syscalls", 0);
14984
14985 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14986 "QProgramSignals", "program-signals", 0);
14987
14988 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14989 "QSetWorkingDir", "set-working-dir", 0);
14990
14991 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14992 "QStartupWithShell", "startup-with-shell", 0);
14993
14994 add_packet_config_cmd (&remote_protocol_packets
14995 [PACKET_QEnvironmentHexEncoded],
14996 "QEnvironmentHexEncoded", "environment-hex-encoded",
14997 0);
14998
14999 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
15000 "QEnvironmentReset", "environment-reset",
15001 0);
15002
15003 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
15004 "QEnvironmentUnset", "environment-unset",
15005 0);
15006
15007 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
15008 "qSymbol", "symbol-lookup", 0);
15009
15010 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
15011 "P", "set-register", 1);
15012
15013 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
15014 "p", "fetch-register", 1);
15015
15016 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
15017 "Z0", "software-breakpoint", 0);
15018
15019 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
15020 "Z1", "hardware-breakpoint", 0);
15021
15022 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
15023 "Z2", "write-watchpoint", 0);
15024
15025 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
15026 "Z3", "read-watchpoint", 0);
15027
15028 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
15029 "Z4", "access-watchpoint", 0);
15030
15031 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
15032 "qXfer:auxv:read", "read-aux-vector", 0);
15033
15034 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
15035 "qXfer:exec-file:read", "pid-to-exec-file", 0);
15036
15037 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
15038 "qXfer:features:read", "target-features", 0);
15039
15040 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
15041 "qXfer:libraries:read", "library-info", 0);
15042
15043 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
15044 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
15045
15046 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
15047 "qXfer:memory-map:read", "memory-map", 0);
15048
15049 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
15050 "qXfer:osdata:read", "osdata", 0);
15051
15052 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
15053 "qXfer:threads:read", "threads", 0);
15054
15055 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
15056 "qXfer:siginfo:read", "read-siginfo-object", 0);
15057
15058 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
15059 "qXfer:siginfo:write", "write-siginfo-object", 0);
15060
15061 add_packet_config_cmd
15062 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
15063 "qXfer:traceframe-info:read", "traceframe-info", 0);
15064
15065 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
15066 "qXfer:uib:read", "unwind-info-block", 0);
15067
15068 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
15069 "qGetTLSAddr", "get-thread-local-storage-address",
15070 0);
15071
15072 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
15073 "qGetTIBAddr", "get-thread-information-block-address",
15074 0);
15075
15076 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
15077 "bc", "reverse-continue", 0);
15078
15079 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
15080 "bs", "reverse-step", 0);
15081
15082 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
15083 "qSupported", "supported-packets", 0);
15084
15085 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
15086 "qSearch:memory", "search-memory", 0);
15087
15088 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
15089 "qTStatus", "trace-status", 0);
15090
15091 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
15092 "vFile:setfs", "hostio-setfs", 0);
15093
15094 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
15095 "vFile:open", "hostio-open", 0);
15096
15097 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
15098 "vFile:pread", "hostio-pread", 0);
15099
15100 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
15101 "vFile:pwrite", "hostio-pwrite", 0);
15102
15103 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
15104 "vFile:close", "hostio-close", 0);
15105
15106 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
15107 "vFile:unlink", "hostio-unlink", 0);
15108
15109 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
15110 "vFile:readlink", "hostio-readlink", 0);
15111
15112 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
15113 "vFile:fstat", "hostio-fstat", 0);
15114
15115 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
15116 "vAttach", "attach", 0);
15117
15118 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
15119 "vRun", "run", 0);
15120
15121 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
15122 "QStartNoAckMode", "noack", 0);
15123
15124 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
15125 "vKill", "kill", 0);
15126
15127 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
15128 "qAttached", "query-attached", 0);
15129
15130 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
15131 "ConditionalTracepoints",
15132 "conditional-tracepoints", 0);
15133
15134 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
15135 "ConditionalBreakpoints",
15136 "conditional-breakpoints", 0);
15137
15138 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
15139 "BreakpointCommands",
15140 "breakpoint-commands", 0);
15141
15142 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
15143 "FastTracepoints", "fast-tracepoints", 0);
15144
15145 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
15146 "TracepointSource", "TracepointSource", 0);
15147
15148 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
15149 "QAllow", "allow", 0);
15150
15151 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
15152 "StaticTracepoints", "static-tracepoints", 0);
15153
15154 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
15155 "InstallInTrace", "install-in-trace", 0);
15156
15157 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
15158 "qXfer:statictrace:read", "read-sdata-object", 0);
15159
15160 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
15161 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
15162
15163 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
15164 "QDisableRandomization", "disable-randomization", 0);
15165
15166 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
15167 "QAgent", "agent", 0);
15168
15169 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
15170 "QTBuffer:size", "trace-buffer-size", 0);
15171
15172 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
15173 "Qbtrace:off", "disable-btrace", 0);
15174
15175 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
15176 "Qbtrace:bts", "enable-btrace-bts", 0);
15177
15178 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
15179 "Qbtrace:pt", "enable-btrace-pt", 0);
15180
15181 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
15182 "qXfer:btrace", "read-btrace", 0);
15183
15184 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
15185 "qXfer:btrace-conf", "read-btrace-conf", 0);
15186
15187 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
15188 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
15189
15190 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
15191 "multiprocess-feature", "multiprocess-feature", 0);
15192
15193 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
15194 "swbreak-feature", "swbreak-feature", 0);
15195
15196 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
15197 "hwbreak-feature", "hwbreak-feature", 0);
15198
15199 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
15200 "fork-event-feature", "fork-event-feature", 0);
15201
15202 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
15203 "vfork-event-feature", "vfork-event-feature", 0);
15204
15205 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
15206 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
15207
15208 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
15209 "vContSupported", "verbose-resume-supported", 0);
15210
15211 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
15212 "exec-event-feature", "exec-event-feature", 0);
15213
15214 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
15215 "vCtrlC", "ctrl-c", 0);
15216
15217 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
15218 "QThreadEvents", "thread-events", 0);
15219
15220 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
15221 "N stop reply", "no-resumed-stop-reply", 0);
15222
15223 add_packet_config_cmd (&remote_protocol_packets[PACKET_memory_tagging_feature],
15224 "memory-tagging-feature", "memory-tagging-feature", 0);
15225
15226 /* Assert that we've registered "set remote foo-packet" commands
15227 for all packet configs. */
15228 {
15229 int i;
15230
15231 for (i = 0; i < PACKET_MAX; i++)
15232 {
15233 /* Ideally all configs would have a command associated. Some
15234 still don't though. */
15235 int excepted;
15236
15237 switch (i)
15238 {
15239 case PACKET_QNonStop:
15240 case PACKET_EnableDisableTracepoints_feature:
15241 case PACKET_tracenz_feature:
15242 case PACKET_DisconnectedTracing_feature:
15243 case PACKET_augmented_libraries_svr4_read_feature:
15244 case PACKET_qCRC:
15245 /* Additions to this list need to be well justified:
15246 pre-existing packets are OK; new packets are not. */
15247 excepted = 1;
15248 break;
15249 default:
15250 excepted = 0;
15251 break;
15252 }
15253
15254 /* This catches both forgetting to add a config command, and
15255 forgetting to remove a packet from the exception list. */
15256 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
15257 }
15258 }
15259
15260 /* Keep the old ``set remote Z-packet ...'' working. Each individual
15261 Z sub-packet has its own set and show commands, but users may
15262 have sets to this variable in their .gdbinit files (or in their
15263 documentation). */
15264 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
15265 &remote_Z_packet_detect, _("\
15266 Set use of remote protocol `Z' packets."), _("\
15267 Show use of remote protocol `Z' packets."), _("\
15268 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
15269 packets."),
15270 set_remote_protocol_Z_packet_cmd,
15271 show_remote_protocol_Z_packet_cmd,
15272 /* FIXME: i18n: Use of remote protocol
15273 `Z' packets is %s. */
15274 &remote_set_cmdlist, &remote_show_cmdlist);
15275
15276 add_basic_prefix_cmd ("remote", class_files, _("\
15277 Manipulate files on the remote system.\n\
15278 Transfer files to and from the remote target system."),
15279 &remote_cmdlist,
15280 0 /* allow-unknown */, &cmdlist);
15281
15282 add_cmd ("put", class_files, remote_put_command,
15283 _("Copy a local file to the remote system."),
15284 &remote_cmdlist);
15285
15286 add_cmd ("get", class_files, remote_get_command,
15287 _("Copy a remote file to the local system."),
15288 &remote_cmdlist);
15289
15290 add_cmd ("delete", class_files, remote_delete_command,
15291 _("Delete a remote file."),
15292 &remote_cmdlist);
15293
15294 add_setshow_string_noescape_cmd ("exec-file", class_files,
15295 &remote_exec_file_var, _("\
15296 Set the remote pathname for \"run\"."), _("\
15297 Show the remote pathname for \"run\"."), NULL,
15298 set_remote_exec_file,
15299 show_remote_exec_file,
15300 &remote_set_cmdlist,
15301 &remote_show_cmdlist);
15302
15303 add_setshow_boolean_cmd ("range-stepping", class_run,
15304 &use_range_stepping, _("\
15305 Enable or disable range stepping."), _("\
15306 Show whether target-assisted range stepping is enabled."), _("\
15307 If on, and the target supports it, when stepping a source line, GDB\n\
15308 tells the target to step the corresponding range of addresses itself instead\n\
15309 of issuing multiple single-steps. This speeds up source level\n\
15310 stepping. If off, GDB always issues single-steps, even if range\n\
15311 stepping is supported by the target. The default is on."),
15312 set_range_stepping,
15313 show_range_stepping,
15314 &setlist,
15315 &showlist);
15316
15317 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15318 Set watchdog timer."), _("\
15319 Show watchdog timer."), _("\
15320 When non-zero, this timeout is used instead of waiting forever for a target\n\
15321 to finish a low-level step or continue operation. If the specified amount\n\
15322 of time passes without a response from the target, an error occurs."),
15323 NULL,
15324 show_watchdog,
15325 &setlist, &showlist);
15326
15327 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15328 &remote_packet_max_chars, _("\
15329 Set the maximum number of characters to display for each remote packet."), _("\
15330 Show the maximum number of characters to display for each remote packet."), _("\
15331 Specify \"unlimited\" to display all the characters."),
15332 NULL, show_remote_packet_max_chars,
15333 &setdebuglist, &showdebuglist);
15334
15335 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
15336 _("Set debugging of remote protocol."),
15337 _("Show debugging of remote protocol."),
15338 _("\
15339 When enabled, each packet sent or received with the remote target\n\
15340 is displayed."),
15341 NULL,
15342 show_remote_debug,
15343 &setdebuglist, &showdebuglist);
15344
15345 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15346 &remote_timeout, _("\
15347 Set timeout limit to wait for target to respond."), _("\
15348 Show timeout limit to wait for target to respond."), _("\
15349 This value is used to set the time limit for gdb to wait for a response\n\
15350 from the target."),
15351 NULL,
15352 show_remote_timeout,
15353 &setlist, &showlist);
15354
15355 /* Eventually initialize fileio. See fileio.c */
15356 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15357
15358 #if GDB_SELF_TEST
15359 selftests::register_test ("remote_memory_tagging",
15360 selftests::test_memory_tagging_functions);
15361 #endif
15362 }