b6da6b086a2c441653dafa8943eeca3552595b96
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82 #include "gdbsupport/selftest.h"
83
84 /* The remote target. */
85
86 static const char remote_doc[] = N_("\
87 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
88 Specify the serial device it is connected to\n\
89 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
90
91 /* See remote.h */
92
93 bool remote_debug = false;
94
95 #define OPAQUETHREADBYTES 8
96
97 /* a 64 bit opaque identifier */
98 typedef unsigned char threadref[OPAQUETHREADBYTES];
99
100 struct gdb_ext_thread_info;
101 struct threads_listing_context;
102 typedef int (*rmt_thread_action) (threadref *ref, void *context);
103 struct protocol_feature;
104 struct packet_reg;
105
106 struct stop_reply;
107 typedef std::unique_ptr<stop_reply> stop_reply_up;
108
109 /* Generic configuration support for packets the stub optionally
110 supports. Allows the user to specify the use of the packet as well
111 as allowing GDB to auto-detect support in the remote stub. */
112
113 enum packet_support
114 {
115 PACKET_SUPPORT_UNKNOWN = 0,
116 PACKET_ENABLE,
117 PACKET_DISABLE
118 };
119
120 /* Analyze a packet's return value and update the packet config
121 accordingly. */
122
123 enum packet_result
124 {
125 PACKET_ERROR,
126 PACKET_OK,
127 PACKET_UNKNOWN
128 };
129
130 struct threads_listing_context;
131
132 /* Stub vCont actions support.
133
134 Each field is a boolean flag indicating whether the stub reports
135 support for the corresponding action. */
136
137 struct vCont_action_support
138 {
139 /* vCont;t */
140 bool t = false;
141
142 /* vCont;r */
143 bool r = false;
144
145 /* vCont;s */
146 bool s = false;
147
148 /* vCont;S */
149 bool S = false;
150 };
151
152 /* About this many threadids fit in a packet. */
153
154 #define MAXTHREADLISTRESULTS 32
155
156 /* Data for the vFile:pread readahead cache. */
157
158 struct readahead_cache
159 {
160 /* Invalidate the readahead cache. */
161 void invalidate ();
162
163 /* Invalidate the readahead cache if it is holding data for FD. */
164 void invalidate_fd (int fd);
165
166 /* Serve pread from the readahead cache. Returns number of bytes
167 read, or 0 if the request can't be served from the cache. */
168 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
169
170 /* The file descriptor for the file that is being cached. -1 if the
171 cache is invalid. */
172 int fd = -1;
173
174 /* The offset into the file that the cache buffer corresponds
175 to. */
176 ULONGEST offset = 0;
177
178 /* The buffer holding the cache contents. */
179 gdb_byte *buf = nullptr;
180 /* The buffer's size. We try to read as much as fits into a packet
181 at a time. */
182 size_t bufsize = 0;
183
184 /* Cache hit and miss counters. */
185 ULONGEST hit_count = 0;
186 ULONGEST miss_count = 0;
187 };
188
189 /* Description of the remote protocol for a given architecture. */
190
191 struct packet_reg
192 {
193 long offset; /* Offset into G packet. */
194 long regnum; /* GDB's internal register number. */
195 LONGEST pnum; /* Remote protocol register number. */
196 int in_g_packet; /* Always part of G packet. */
197 /* long size in bytes; == register_size (target_gdbarch (), regnum);
198 at present. */
199 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
200 at present. */
201 };
202
203 struct remote_arch_state
204 {
205 explicit remote_arch_state (struct gdbarch *gdbarch);
206
207 /* Description of the remote protocol registers. */
208 long sizeof_g_packet;
209
210 /* Description of the remote protocol registers indexed by REGNUM
211 (making an array gdbarch_num_regs in size). */
212 std::unique_ptr<packet_reg[]> regs;
213
214 /* This is the size (in chars) of the first response to the ``g''
215 packet. It is used as a heuristic when determining the maximum
216 size of memory-read and memory-write packets. A target will
217 typically only reserve a buffer large enough to hold the ``g''
218 packet. The size does not include packet overhead (headers and
219 trailers). */
220 long actual_register_packet_size;
221
222 /* This is the maximum size (in chars) of a non read/write packet.
223 It is also used as a cap on the size of read/write packets. */
224 long remote_packet_size;
225 };
226
227 /* Description of the remote protocol state for the currently
228 connected target. This is per-target state, and independent of the
229 selected architecture. */
230
231 class remote_state
232 {
233 public:
234
235 remote_state ();
236 ~remote_state ();
237
238 /* Get the remote arch state for GDBARCH. */
239 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
240
241 public: /* data */
242
243 /* A buffer to use for incoming packets, and its current size. The
244 buffer is grown dynamically for larger incoming packets.
245 Outgoing packets may also be constructed in this buffer.
246 The size of the buffer is always at least REMOTE_PACKET_SIZE;
247 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
248 packets. */
249 gdb::char_vector buf;
250
251 /* True if we're going through initial connection setup (finding out
252 about the remote side's threads, relocating symbols, etc.). */
253 bool starting_up = false;
254
255 /* If we negotiated packet size explicitly (and thus can bypass
256 heuristics for the largest packet size that will not overflow
257 a buffer in the stub), this will be set to that packet size.
258 Otherwise zero, meaning to use the guessed size. */
259 long explicit_packet_size = 0;
260
261 /* remote_wait is normally called when the target is running and
262 waits for a stop reply packet. But sometimes we need to call it
263 when the target is already stopped. We can send a "?" packet
264 and have remote_wait read the response. Or, if we already have
265 the response, we can stash it in BUF and tell remote_wait to
266 skip calling getpkt. This flag is set when BUF contains a
267 stop reply packet and the target is not waiting. */
268 int cached_wait_status = 0;
269
270 /* True, if in no ack mode. That is, neither GDB nor the stub will
271 expect acks from each other. The connection is assumed to be
272 reliable. */
273 bool noack_mode = false;
274
275 /* True if we're connected in extended remote mode. */
276 bool extended = false;
277
278 /* True if we resumed the target and we're waiting for the target to
279 stop. In the mean time, we can't start another command/query.
280 The remote server wouldn't be ready to process it, so we'd
281 timeout waiting for a reply that would never come and eventually
282 we'd close the connection. This can happen in asynchronous mode
283 because we allow GDB commands while the target is running. */
284 bool waiting_for_stop_reply = false;
285
286 /* The status of the stub support for the various vCont actions. */
287 vCont_action_support supports_vCont;
288 /* Whether vCont support was probed already. This is a workaround
289 until packet_support is per-connection. */
290 bool supports_vCont_probed;
291
292 /* True if the user has pressed Ctrl-C, but the target hasn't
293 responded to that. */
294 bool ctrlc_pending_p = false;
295
296 /* True if we saw a Ctrl-C while reading or writing from/to the
297 remote descriptor. At that point it is not safe to send a remote
298 interrupt packet, so we instead remember we saw the Ctrl-C and
299 process it once we're done with sending/receiving the current
300 packet, which should be shortly. If however that takes too long,
301 and the user presses Ctrl-C again, we offer to disconnect. */
302 bool got_ctrlc_during_io = false;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 struct serial *remote_desc = nullptr;
308
309 /* These are the threads which we last sent to the remote system. The
310 TID member will be -1 for all or -2 for not sent yet. */
311 ptid_t general_thread = null_ptid;
312 ptid_t continue_thread = null_ptid;
313
314 /* This is the traceframe which we last selected on the remote system.
315 It will be -1 if no traceframe is selected. */
316 int remote_traceframe_number = -1;
317
318 char *last_pass_packet = nullptr;
319
320 /* The last QProgramSignals packet sent to the target. We bypass
321 sending a new program signals list down to the target if the new
322 packet is exactly the same as the last we sent. IOW, we only let
323 the target know about program signals list changes. */
324 char *last_program_signals_packet = nullptr;
325
326 gdb_signal last_sent_signal = GDB_SIGNAL_0;
327
328 bool last_sent_step = false;
329
330 /* The execution direction of the last resume we got. */
331 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
332
333 char *finished_object = nullptr;
334 char *finished_annex = nullptr;
335 ULONGEST finished_offset = 0;
336
337 /* Should we try the 'ThreadInfo' query packet?
338
339 This variable (NOT available to the user: auto-detect only!)
340 determines whether GDB will use the new, simpler "ThreadInfo"
341 query or the older, more complex syntax for thread queries.
342 This is an auto-detect variable (set to true at each connect,
343 and set to false when the target fails to recognize it). */
344 bool use_threadinfo_query = false;
345 bool use_threadextra_query = false;
346
347 threadref echo_nextthread {};
348 threadref nextthread {};
349 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
350
351 /* The state of remote notification. */
352 struct remote_notif_state *notif_state = nullptr;
353
354 /* The branch trace configuration. */
355 struct btrace_config btrace_config {};
356
357 /* The argument to the last "vFile:setfs:" packet we sent, used
358 to avoid sending repeated unnecessary "vFile:setfs:" packets.
359 Initialized to -1 to indicate that no "vFile:setfs:" packet
360 has yet been sent. */
361 int fs_pid = -1;
362
363 /* A readahead cache for vFile:pread. Often, reading a binary
364 involves a sequence of small reads. E.g., when parsing an ELF
365 file. A readahead cache helps mostly the case of remote
366 debugging on a connection with higher latency, due to the
367 request/reply nature of the RSP. We only cache data for a single
368 file descriptor at a time. */
369 struct readahead_cache readahead_cache;
370
371 /* The list of already fetched and acknowledged stop events. This
372 queue is used for notification Stop, and other notifications
373 don't need queue for their events, because the notification
374 events of Stop can't be consumed immediately, so that events
375 should be queued first, and be consumed by remote_wait_{ns,as}
376 one per time. Other notifications can consume their events
377 immediately, so queue is not needed for them. */
378 std::vector<stop_reply_up> stop_reply_queue;
379
380 /* Asynchronous signal handle registered as event loop source for
381 when we have pending events ready to be passed to the core. */
382 struct async_event_handler *remote_async_inferior_event_token = nullptr;
383
384 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
385 ``forever'' still use the normal timeout mechanism. This is
386 currently used by the ASYNC code to guarentee that target reads
387 during the initial connect always time-out. Once getpkt has been
388 modified to return a timeout indication and, in turn
389 remote_wait()/wait_for_inferior() have gained a timeout parameter
390 this can go away. */
391 int wait_forever_enabled_p = 1;
392
393 private:
394 /* Mapping of remote protocol data for each gdbarch. Usually there
395 is only one entry here, though we may see more with stubs that
396 support multi-process. */
397 std::unordered_map<struct gdbarch *, remote_arch_state>
398 m_arch_states;
399 };
400
401 static const target_info remote_target_info = {
402 "remote",
403 N_("Remote serial target in gdb-specific protocol"),
404 remote_doc
405 };
406
407 class remote_target : public process_stratum_target
408 {
409 public:
410 remote_target () = default;
411 ~remote_target () override;
412
413 const target_info &info () const override
414 { return remote_target_info; }
415
416 const char *connection_string () override;
417
418 thread_control_capabilities get_thread_control_capabilities () override
419 { return tc_schedlock; }
420
421 /* Open a remote connection. */
422 static void open (const char *, int);
423
424 void close () override;
425
426 void detach (inferior *, int) override;
427 void disconnect (const char *, int) override;
428
429 void commit_resumed () override;
430 void resume (ptid_t, int, enum gdb_signal) override;
431 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
432 bool has_pending_events () override;
433
434 void fetch_registers (struct regcache *, int) override;
435 void store_registers (struct regcache *, int) override;
436 void prepare_to_store (struct regcache *) override;
437
438 void files_info () override;
439
440 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
441
442 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
443 enum remove_bp_reason) override;
444
445
446 bool stopped_by_sw_breakpoint () override;
447 bool supports_stopped_by_sw_breakpoint () override;
448
449 bool stopped_by_hw_breakpoint () override;
450
451 bool supports_stopped_by_hw_breakpoint () override;
452
453 bool stopped_by_watchpoint () override;
454
455 bool stopped_data_address (CORE_ADDR *) override;
456
457 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
458
459 int can_use_hw_breakpoint (enum bptype, int, int) override;
460
461 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
464
465 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
466
467 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
468 struct expression *) override;
469
470 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
471 struct expression *) override;
472
473 void kill () override;
474
475 void load (const char *, int) override;
476
477 void mourn_inferior () override;
478
479 void pass_signals (gdb::array_view<const unsigned char>) override;
480
481 int set_syscall_catchpoint (int, bool, int,
482 gdb::array_view<const int>) override;
483
484 void program_signals (gdb::array_view<const unsigned char>) override;
485
486 bool thread_alive (ptid_t ptid) override;
487
488 const char *thread_name (struct thread_info *) override;
489
490 void update_thread_list () override;
491
492 std::string pid_to_str (ptid_t) override;
493
494 const char *extra_thread_info (struct thread_info *) override;
495
496 ptid_t get_ada_task_ptid (long lwp, long thread) override;
497
498 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
499 int handle_len,
500 inferior *inf) override;
501
502 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
503 override;
504
505 void stop (ptid_t) override;
506
507 void interrupt () override;
508
509 void pass_ctrlc () override;
510
511 enum target_xfer_status xfer_partial (enum target_object object,
512 const char *annex,
513 gdb_byte *readbuf,
514 const gdb_byte *writebuf,
515 ULONGEST offset, ULONGEST len,
516 ULONGEST *xfered_len) override;
517
518 ULONGEST get_memory_xfer_limit () override;
519
520 void rcmd (const char *command, struct ui_file *output) override;
521
522 char *pid_to_exec_file (int pid) override;
523
524 void log_command (const char *cmd) override
525 {
526 serial_log_command (this, cmd);
527 }
528
529 CORE_ADDR get_thread_local_address (ptid_t ptid,
530 CORE_ADDR load_module_addr,
531 CORE_ADDR offset) override;
532
533 bool can_execute_reverse () override;
534
535 std::vector<mem_region> memory_map () override;
536
537 void flash_erase (ULONGEST address, LONGEST length) override;
538
539 void flash_done () override;
540
541 const struct target_desc *read_description () override;
542
543 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
544 const gdb_byte *pattern, ULONGEST pattern_len,
545 CORE_ADDR *found_addrp) override;
546
547 bool can_async_p () override;
548
549 bool is_async_p () override;
550
551 void async (int) override;
552
553 int async_wait_fd () override;
554
555 void thread_events (int) override;
556
557 int can_do_single_step () override;
558
559 void terminal_inferior () override;
560
561 void terminal_ours () override;
562
563 bool supports_non_stop () override;
564
565 bool supports_multi_process () override;
566
567 bool supports_disable_randomization () override;
568
569 bool filesystem_is_local () override;
570
571
572 int fileio_open (struct inferior *inf, const char *filename,
573 int flags, int mode, int warn_if_slow,
574 int *target_errno) override;
575
576 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
577 ULONGEST offset, int *target_errno) override;
578
579 int fileio_pread (int fd, gdb_byte *read_buf, int len,
580 ULONGEST offset, int *target_errno) override;
581
582 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
583
584 int fileio_close (int fd, int *target_errno) override;
585
586 int fileio_unlink (struct inferior *inf,
587 const char *filename,
588 int *target_errno) override;
589
590 gdb::optional<std::string>
591 fileio_readlink (struct inferior *inf,
592 const char *filename,
593 int *target_errno) override;
594
595 bool supports_enable_disable_tracepoint () override;
596
597 bool supports_string_tracing () override;
598
599 bool supports_evaluation_of_breakpoint_conditions () override;
600
601 bool can_run_breakpoint_commands () override;
602
603 void trace_init () override;
604
605 void download_tracepoint (struct bp_location *location) override;
606
607 bool can_download_tracepoint () override;
608
609 void download_trace_state_variable (const trace_state_variable &tsv) override;
610
611 void enable_tracepoint (struct bp_location *location) override;
612
613 void disable_tracepoint (struct bp_location *location) override;
614
615 void trace_set_readonly_regions () override;
616
617 void trace_start () override;
618
619 int get_trace_status (struct trace_status *ts) override;
620
621 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
622 override;
623
624 void trace_stop () override;
625
626 int trace_find (enum trace_find_type type, int num,
627 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
628
629 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
630
631 int save_trace_data (const char *filename) override;
632
633 int upload_tracepoints (struct uploaded_tp **utpp) override;
634
635 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
636
637 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
638
639 int get_min_fast_tracepoint_insn_len () override;
640
641 void set_disconnected_tracing (int val) override;
642
643 void set_circular_trace_buffer (int val) override;
644
645 void set_trace_buffer_size (LONGEST val) override;
646
647 bool set_trace_notes (const char *user, const char *notes,
648 const char *stopnotes) override;
649
650 int core_of_thread (ptid_t ptid) override;
651
652 int verify_memory (const gdb_byte *data,
653 CORE_ADDR memaddr, ULONGEST size) override;
654
655
656 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
657
658 void set_permissions () override;
659
660 bool static_tracepoint_marker_at (CORE_ADDR,
661 struct static_tracepoint_marker *marker)
662 override;
663
664 std::vector<static_tracepoint_marker>
665 static_tracepoint_markers_by_strid (const char *id) override;
666
667 traceframe_info_up traceframe_info () override;
668
669 bool use_agent (bool use) override;
670 bool can_use_agent () override;
671
672 struct btrace_target_info *enable_btrace (ptid_t ptid,
673 const struct btrace_config *conf) override;
674
675 void disable_btrace (struct btrace_target_info *tinfo) override;
676
677 void teardown_btrace (struct btrace_target_info *tinfo) override;
678
679 enum btrace_error read_btrace (struct btrace_data *data,
680 struct btrace_target_info *btinfo,
681 enum btrace_read_type type) override;
682
683 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
684 bool augmented_libraries_svr4_read () override;
685 void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool) override;
686 void follow_exec (inferior *, ptid_t, const char *) override;
687 int insert_fork_catchpoint (int) override;
688 int remove_fork_catchpoint (int) override;
689 int insert_vfork_catchpoint (int) override;
690 int remove_vfork_catchpoint (int) override;
691 int insert_exec_catchpoint (int) override;
692 int remove_exec_catchpoint (int) override;
693 enum exec_direction_kind execution_direction () override;
694
695 bool supports_memory_tagging () override;
696
697 bool fetch_memtags (CORE_ADDR address, size_t len,
698 gdb::byte_vector &tags, int type) override;
699
700 bool store_memtags (CORE_ADDR address, size_t len,
701 const gdb::byte_vector &tags, int type) override;
702
703 public: /* Remote specific methods. */
704
705 void remote_download_command_source (int num, ULONGEST addr,
706 struct command_line *cmds);
707
708 void remote_file_put (const char *local_file, const char *remote_file,
709 int from_tty);
710 void remote_file_get (const char *remote_file, const char *local_file,
711 int from_tty);
712 void remote_file_delete (const char *remote_file, int from_tty);
713
714 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
715 ULONGEST offset, int *remote_errno);
716 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
717 ULONGEST offset, int *remote_errno);
718 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
719 ULONGEST offset, int *remote_errno);
720
721 int remote_hostio_send_command (int command_bytes, int which_packet,
722 int *remote_errno, const char **attachment,
723 int *attachment_len);
724 int remote_hostio_set_filesystem (struct inferior *inf,
725 int *remote_errno);
726 /* We should get rid of this and use fileio_open directly. */
727 int remote_hostio_open (struct inferior *inf, const char *filename,
728 int flags, int mode, int warn_if_slow,
729 int *remote_errno);
730 int remote_hostio_close (int fd, int *remote_errno);
731
732 int remote_hostio_unlink (inferior *inf, const char *filename,
733 int *remote_errno);
734
735 struct remote_state *get_remote_state ();
736
737 long get_remote_packet_size (void);
738 long get_memory_packet_size (struct memory_packet_config *config);
739
740 long get_memory_write_packet_size ();
741 long get_memory_read_packet_size ();
742
743 char *append_pending_thread_resumptions (char *p, char *endp,
744 ptid_t ptid);
745 static void open_1 (const char *name, int from_tty, int extended_p);
746 void start_remote (int from_tty, int extended_p);
747 void remote_detach_1 (struct inferior *inf, int from_tty);
748
749 char *append_resumption (char *p, char *endp,
750 ptid_t ptid, int step, gdb_signal siggnal);
751 int remote_resume_with_vcont (ptid_t ptid, int step,
752 gdb_signal siggnal);
753
754 thread_info *add_current_inferior_and_thread (const char *wait_status);
755
756 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
757 target_wait_flags options);
758 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
759 target_wait_flags options);
760
761 ptid_t process_stop_reply (struct stop_reply *stop_reply,
762 target_waitstatus *status);
763
764 ptid_t select_thread_for_ambiguous_stop_reply
765 (const struct target_waitstatus *status);
766
767 void remote_notice_new_inferior (ptid_t currthread, bool executing);
768
769 void print_one_stopped_thread (thread_info *thread);
770 void process_initial_stop_replies (int from_tty);
771
772 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
773
774 void btrace_sync_conf (const btrace_config *conf);
775
776 void remote_btrace_maybe_reopen ();
777
778 void remove_new_fork_children (threads_listing_context *context);
779 void kill_new_fork_children (int pid);
780 void discard_pending_stop_replies (struct inferior *inf);
781 int stop_reply_queue_length ();
782
783 void check_pending_events_prevent_wildcard_vcont
784 (bool *may_global_wildcard_vcont);
785
786 void discard_pending_stop_replies_in_queue ();
787 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
788 struct stop_reply *queued_stop_reply (ptid_t ptid);
789 int peek_stop_reply (ptid_t ptid);
790 void remote_parse_stop_reply (const char *buf, stop_reply *event);
791
792 void remote_stop_ns (ptid_t ptid);
793 void remote_interrupt_as ();
794 void remote_interrupt_ns ();
795
796 char *remote_get_noisy_reply ();
797 int remote_query_attached (int pid);
798 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
799 int try_open_exec);
800
801 ptid_t remote_current_thread (ptid_t oldpid);
802 ptid_t get_current_thread (const char *wait_status);
803
804 void set_thread (ptid_t ptid, int gen);
805 void set_general_thread (ptid_t ptid);
806 void set_continue_thread (ptid_t ptid);
807 void set_general_process ();
808
809 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
810
811 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
812 gdb_ext_thread_info *info);
813 int remote_get_threadinfo (threadref *threadid, int fieldset,
814 gdb_ext_thread_info *info);
815
816 int parse_threadlist_response (const char *pkt, int result_limit,
817 threadref *original_echo,
818 threadref *resultlist,
819 int *doneflag);
820 int remote_get_threadlist (int startflag, threadref *nextthread,
821 int result_limit, int *done, int *result_count,
822 threadref *threadlist);
823
824 int remote_threadlist_iterator (rmt_thread_action stepfunction,
825 void *context, int looplimit);
826
827 int remote_get_threads_with_ql (threads_listing_context *context);
828 int remote_get_threads_with_qxfer (threads_listing_context *context);
829 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
830
831 void extended_remote_restart ();
832
833 void get_offsets ();
834
835 void remote_check_symbols ();
836
837 void remote_supported_packet (const struct protocol_feature *feature,
838 enum packet_support support,
839 const char *argument);
840
841 void remote_query_supported ();
842
843 void remote_packet_size (const protocol_feature *feature,
844 packet_support support, const char *value);
845
846 void remote_serial_quit_handler ();
847
848 void remote_detach_pid (int pid);
849
850 void remote_vcont_probe ();
851
852 void remote_resume_with_hc (ptid_t ptid, int step,
853 gdb_signal siggnal);
854
855 void send_interrupt_sequence ();
856 void interrupt_query ();
857
858 void remote_notif_get_pending_events (notif_client *nc);
859
860 int fetch_register_using_p (struct regcache *regcache,
861 packet_reg *reg);
862 int send_g_packet ();
863 void process_g_packet (struct regcache *regcache);
864 void fetch_registers_using_g (struct regcache *regcache);
865 int store_register_using_P (const struct regcache *regcache,
866 packet_reg *reg);
867 void store_registers_using_G (const struct regcache *regcache);
868
869 void set_remote_traceframe ();
870
871 void check_binary_download (CORE_ADDR addr);
872
873 target_xfer_status remote_write_bytes_aux (const char *header,
874 CORE_ADDR memaddr,
875 const gdb_byte *myaddr,
876 ULONGEST len_units,
877 int unit_size,
878 ULONGEST *xfered_len_units,
879 char packet_format,
880 int use_length);
881
882 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
883 const gdb_byte *myaddr, ULONGEST len,
884 int unit_size, ULONGEST *xfered_len);
885
886 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
887 ULONGEST len_units,
888 int unit_size, ULONGEST *xfered_len_units);
889
890 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
891 ULONGEST memaddr,
892 ULONGEST len,
893 int unit_size,
894 ULONGEST *xfered_len);
895
896 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
897 gdb_byte *myaddr, ULONGEST len,
898 int unit_size,
899 ULONGEST *xfered_len);
900
901 packet_result remote_send_printf (const char *format, ...)
902 ATTRIBUTE_PRINTF (2, 3);
903
904 target_xfer_status remote_flash_write (ULONGEST address,
905 ULONGEST length, ULONGEST *xfered_len,
906 const gdb_byte *data);
907
908 int readchar (int timeout);
909
910 void remote_serial_write (const char *str, int len);
911
912 int putpkt (const char *buf);
913 int putpkt_binary (const char *buf, int cnt);
914
915 int putpkt (const gdb::char_vector &buf)
916 {
917 return putpkt (buf.data ());
918 }
919
920 void skip_frame ();
921 long read_frame (gdb::char_vector *buf_p);
922 void getpkt (gdb::char_vector *buf, int forever);
923 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
924 int expecting_notif, int *is_notif);
925 int getpkt_sane (gdb::char_vector *buf, int forever);
926 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
927 int *is_notif);
928 int remote_vkill (int pid);
929 void remote_kill_k ();
930
931 void extended_remote_disable_randomization (int val);
932 int extended_remote_run (const std::string &args);
933
934 void send_environment_packet (const char *action,
935 const char *packet,
936 const char *value);
937
938 void extended_remote_environment_support ();
939 void extended_remote_set_inferior_cwd ();
940
941 target_xfer_status remote_write_qxfer (const char *object_name,
942 const char *annex,
943 const gdb_byte *writebuf,
944 ULONGEST offset, LONGEST len,
945 ULONGEST *xfered_len,
946 struct packet_config *packet);
947
948 target_xfer_status remote_read_qxfer (const char *object_name,
949 const char *annex,
950 gdb_byte *readbuf, ULONGEST offset,
951 LONGEST len,
952 ULONGEST *xfered_len,
953 struct packet_config *packet);
954
955 void push_stop_reply (struct stop_reply *new_event);
956
957 bool vcont_r_supported ();
958
959 void packet_command (const char *args, int from_tty);
960
961 private: /* data fields */
962
963 /* The remote state. Don't reference this directly. Use the
964 get_remote_state method instead. */
965 remote_state m_remote_state;
966 };
967
968 static const target_info extended_remote_target_info = {
969 "extended-remote",
970 N_("Extended remote serial target in gdb-specific protocol"),
971 remote_doc
972 };
973
974 /* Set up the extended remote target by extending the standard remote
975 target and adding to it. */
976
977 class extended_remote_target final : public remote_target
978 {
979 public:
980 const target_info &info () const override
981 { return extended_remote_target_info; }
982
983 /* Open an extended-remote connection. */
984 static void open (const char *, int);
985
986 bool can_create_inferior () override { return true; }
987 void create_inferior (const char *, const std::string &,
988 char **, int) override;
989
990 void detach (inferior *, int) override;
991
992 bool can_attach () override { return true; }
993 void attach (const char *, int) override;
994
995 void post_attach (int) override;
996 bool supports_disable_randomization () override;
997 };
998
999 /* Per-program-space data key. */
1000 static const struct program_space_key<char, gdb::xfree_deleter<char>>
1001 remote_pspace_data;
1002
1003 /* The variable registered as the control variable used by the
1004 remote exec-file commands. While the remote exec-file setting is
1005 per-program-space, the set/show machinery uses this as the
1006 location of the remote exec-file value. */
1007 static char *remote_exec_file_var;
1008
1009 /* The size to align memory write packets, when practical. The protocol
1010 does not guarantee any alignment, and gdb will generate short
1011 writes and unaligned writes, but even as a best-effort attempt this
1012 can improve bulk transfers. For instance, if a write is misaligned
1013 relative to the target's data bus, the stub may need to make an extra
1014 round trip fetching data from the target. This doesn't make a
1015 huge difference, but it's easy to do, so we try to be helpful.
1016
1017 The alignment chosen is arbitrary; usually data bus width is
1018 important here, not the possibly larger cache line size. */
1019 enum { REMOTE_ALIGN_WRITES = 16 };
1020
1021 /* Prototypes for local functions. */
1022
1023 static int hexnumlen (ULONGEST num);
1024
1025 static int stubhex (int ch);
1026
1027 static int hexnumstr (char *, ULONGEST);
1028
1029 static int hexnumnstr (char *, ULONGEST, int);
1030
1031 static CORE_ADDR remote_address_masked (CORE_ADDR);
1032
1033 static void print_packet (const char *);
1034
1035 static int stub_unpack_int (const char *buff, int fieldlength);
1036
1037 struct packet_config;
1038
1039 static void show_packet_config_cmd (struct packet_config *config);
1040
1041 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1042 int from_tty,
1043 struct cmd_list_element *c,
1044 const char *value);
1045
1046 static ptid_t read_ptid (const char *buf, const char **obuf);
1047
1048 static void remote_async_inferior_event_handler (gdb_client_data);
1049
1050 static bool remote_read_description_p (struct target_ops *target);
1051
1052 static void remote_console_output (const char *msg);
1053
1054 static void remote_btrace_reset (remote_state *rs);
1055
1056 static void remote_unpush_and_throw (remote_target *target);
1057
1058 /* For "remote". */
1059
1060 static struct cmd_list_element *remote_cmdlist;
1061
1062 /* For "set remote" and "show remote". */
1063
1064 static struct cmd_list_element *remote_set_cmdlist;
1065 static struct cmd_list_element *remote_show_cmdlist;
1066
1067 /* Controls whether GDB is willing to use range stepping. */
1068
1069 static bool use_range_stepping = true;
1070
1071 /* From the remote target's point of view, each thread is in one of these three
1072 states. */
1073 enum class resume_state
1074 {
1075 /* Not resumed - we haven't been asked to resume this thread. */
1076 NOT_RESUMED,
1077
1078 /* We have been asked to resume this thread, but haven't sent a vCont action
1079 for it yet. We'll need to consider it next time commit_resume is
1080 called. */
1081 RESUMED_PENDING_VCONT,
1082
1083 /* We have been asked to resume this thread, and we have sent a vCont action
1084 for it. */
1085 RESUMED,
1086 };
1087
1088 /* Information about a thread's pending vCont-resume. Used when a thread is in
1089 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1090 stores this information which is then picked up by
1091 remote_target::commit_resume to know which is the proper action for this
1092 thread to include in the vCont packet. */
1093 struct resumed_pending_vcont_info
1094 {
1095 /* True if the last resume call for this thread was a step request, false
1096 if a continue request. */
1097 bool step;
1098
1099 /* The signal specified in the last resume call for this thread. */
1100 gdb_signal sig;
1101 };
1102
1103 /* Private data that we'll store in (struct thread_info)->priv. */
1104 struct remote_thread_info : public private_thread_info
1105 {
1106 std::string extra;
1107 std::string name;
1108 int core = -1;
1109
1110 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1111 sequence of bytes. */
1112 gdb::byte_vector thread_handle;
1113
1114 /* Whether the target stopped for a breakpoint/watchpoint. */
1115 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1116
1117 /* This is set to the data address of the access causing the target
1118 to stop for a watchpoint. */
1119 CORE_ADDR watch_data_address = 0;
1120
1121 /* Get the thread's resume state. */
1122 enum resume_state get_resume_state () const
1123 {
1124 return m_resume_state;
1125 }
1126
1127 /* Put the thread in the NOT_RESUMED state. */
1128 void set_not_resumed ()
1129 {
1130 m_resume_state = resume_state::NOT_RESUMED;
1131 }
1132
1133 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1134 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1135 {
1136 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1137 m_resumed_pending_vcont_info.step = step;
1138 m_resumed_pending_vcont_info.sig = sig;
1139 }
1140
1141 /* Get the information this thread's pending vCont-resumption.
1142
1143 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1144 state. */
1145 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1146 {
1147 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1148
1149 return m_resumed_pending_vcont_info;
1150 }
1151
1152 /* Put the thread in the VCONT_RESUMED state. */
1153 void set_resumed ()
1154 {
1155 m_resume_state = resume_state::RESUMED;
1156 }
1157
1158 private:
1159 /* Resume state for this thread. This is used to implement vCont action
1160 coalescing (only when the target operates in non-stop mode).
1161
1162 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1163 which notes that this thread must be considered in the next commit_resume
1164 call.
1165
1166 remote_target::commit_resume sends a vCont packet with actions for the
1167 threads in the RESUMED_PENDING_VCONT state and moves them to the
1168 VCONT_RESUMED state.
1169
1170 When reporting a stop to the core for a thread, that thread is moved back
1171 to the NOT_RESUMED state. */
1172 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1173
1174 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1175 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1176 };
1177
1178 remote_state::remote_state ()
1179 : buf (400)
1180 {
1181 }
1182
1183 remote_state::~remote_state ()
1184 {
1185 xfree (this->last_pass_packet);
1186 xfree (this->last_program_signals_packet);
1187 xfree (this->finished_object);
1188 xfree (this->finished_annex);
1189 }
1190
1191 /* Utility: generate error from an incoming stub packet. */
1192 static void
1193 trace_error (char *buf)
1194 {
1195 if (*buf++ != 'E')
1196 return; /* not an error msg */
1197 switch (*buf)
1198 {
1199 case '1': /* malformed packet error */
1200 if (*++buf == '0') /* general case: */
1201 error (_("remote.c: error in outgoing packet."));
1202 else
1203 error (_("remote.c: error in outgoing packet at field #%ld."),
1204 strtol (buf, NULL, 16));
1205 default:
1206 error (_("Target returns error code '%s'."), buf);
1207 }
1208 }
1209
1210 /* Utility: wait for reply from stub, while accepting "O" packets. */
1211
1212 char *
1213 remote_target::remote_get_noisy_reply ()
1214 {
1215 struct remote_state *rs = get_remote_state ();
1216
1217 do /* Loop on reply from remote stub. */
1218 {
1219 char *buf;
1220
1221 QUIT; /* Allow user to bail out with ^C. */
1222 getpkt (&rs->buf, 0);
1223 buf = rs->buf.data ();
1224 if (buf[0] == 'E')
1225 trace_error (buf);
1226 else if (startswith (buf, "qRelocInsn:"))
1227 {
1228 ULONGEST ul;
1229 CORE_ADDR from, to, org_to;
1230 const char *p, *pp;
1231 int adjusted_size = 0;
1232 int relocated = 0;
1233
1234 p = buf + strlen ("qRelocInsn:");
1235 pp = unpack_varlen_hex (p, &ul);
1236 if (*pp != ';')
1237 error (_("invalid qRelocInsn packet: %s"), buf);
1238 from = ul;
1239
1240 p = pp + 1;
1241 unpack_varlen_hex (p, &ul);
1242 to = ul;
1243
1244 org_to = to;
1245
1246 try
1247 {
1248 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1249 relocated = 1;
1250 }
1251 catch (const gdb_exception &ex)
1252 {
1253 if (ex.error == MEMORY_ERROR)
1254 {
1255 /* Propagate memory errors silently back to the
1256 target. The stub may have limited the range of
1257 addresses we can write to, for example. */
1258 }
1259 else
1260 {
1261 /* Something unexpectedly bad happened. Be verbose
1262 so we can tell what, and propagate the error back
1263 to the stub, so it doesn't get stuck waiting for
1264 a response. */
1265 exception_fprintf (gdb_stderr, ex,
1266 _("warning: relocating instruction: "));
1267 }
1268 putpkt ("E01");
1269 }
1270
1271 if (relocated)
1272 {
1273 adjusted_size = to - org_to;
1274
1275 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1276 putpkt (buf);
1277 }
1278 }
1279 else if (buf[0] == 'O' && buf[1] != 'K')
1280 remote_console_output (buf + 1); /* 'O' message from stub */
1281 else
1282 return buf; /* Here's the actual reply. */
1283 }
1284 while (1);
1285 }
1286
1287 struct remote_arch_state *
1288 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1289 {
1290 remote_arch_state *rsa;
1291
1292 auto it = this->m_arch_states.find (gdbarch);
1293 if (it == this->m_arch_states.end ())
1294 {
1295 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1296 std::forward_as_tuple (gdbarch),
1297 std::forward_as_tuple (gdbarch));
1298 rsa = &p.first->second;
1299
1300 /* Make sure that the packet buffer is plenty big enough for
1301 this architecture. */
1302 if (this->buf.size () < rsa->remote_packet_size)
1303 this->buf.resize (2 * rsa->remote_packet_size);
1304 }
1305 else
1306 rsa = &it->second;
1307
1308 return rsa;
1309 }
1310
1311 /* Fetch the global remote target state. */
1312
1313 remote_state *
1314 remote_target::get_remote_state ()
1315 {
1316 /* Make sure that the remote architecture state has been
1317 initialized, because doing so might reallocate rs->buf. Any
1318 function which calls getpkt also needs to be mindful of changes
1319 to rs->buf, but this call limits the number of places which run
1320 into trouble. */
1321 m_remote_state.get_remote_arch_state (target_gdbarch ());
1322
1323 return &m_remote_state;
1324 }
1325
1326 /* Fetch the remote exec-file from the current program space. */
1327
1328 static const char *
1329 get_remote_exec_file (void)
1330 {
1331 char *remote_exec_file;
1332
1333 remote_exec_file = remote_pspace_data.get (current_program_space);
1334 if (remote_exec_file == NULL)
1335 return "";
1336
1337 return remote_exec_file;
1338 }
1339
1340 /* Set the remote exec file for PSPACE. */
1341
1342 static void
1343 set_pspace_remote_exec_file (struct program_space *pspace,
1344 const char *remote_exec_file)
1345 {
1346 char *old_file = remote_pspace_data.get (pspace);
1347
1348 xfree (old_file);
1349 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1350 }
1351
1352 /* The "set/show remote exec-file" set command hook. */
1353
1354 static void
1355 set_remote_exec_file (const char *ignored, int from_tty,
1356 struct cmd_list_element *c)
1357 {
1358 gdb_assert (remote_exec_file_var != NULL);
1359 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1360 }
1361
1362 /* The "set/show remote exec-file" show command hook. */
1363
1364 static void
1365 show_remote_exec_file (struct ui_file *file, int from_tty,
1366 struct cmd_list_element *cmd, const char *value)
1367 {
1368 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1369 }
1370
1371 static int
1372 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1373 {
1374 int regnum, num_remote_regs, offset;
1375 struct packet_reg **remote_regs;
1376
1377 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1378 {
1379 struct packet_reg *r = &regs[regnum];
1380
1381 if (register_size (gdbarch, regnum) == 0)
1382 /* Do not try to fetch zero-sized (placeholder) registers. */
1383 r->pnum = -1;
1384 else
1385 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1386
1387 r->regnum = regnum;
1388 }
1389
1390 /* Define the g/G packet format as the contents of each register
1391 with a remote protocol number, in order of ascending protocol
1392 number. */
1393
1394 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1395 for (num_remote_regs = 0, regnum = 0;
1396 regnum < gdbarch_num_regs (gdbarch);
1397 regnum++)
1398 if (regs[regnum].pnum != -1)
1399 remote_regs[num_remote_regs++] = &regs[regnum];
1400
1401 std::sort (remote_regs, remote_regs + num_remote_regs,
1402 [] (const packet_reg *a, const packet_reg *b)
1403 { return a->pnum < b->pnum; });
1404
1405 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1406 {
1407 remote_regs[regnum]->in_g_packet = 1;
1408 remote_regs[regnum]->offset = offset;
1409 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1410 }
1411
1412 return offset;
1413 }
1414
1415 /* Given the architecture described by GDBARCH, return the remote
1416 protocol register's number and the register's offset in the g/G
1417 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1418 If the target does not have a mapping for REGNUM, return false,
1419 otherwise, return true. */
1420
1421 int
1422 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1423 int *pnum, int *poffset)
1424 {
1425 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1426
1427 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1428
1429 map_regcache_remote_table (gdbarch, regs.data ());
1430
1431 *pnum = regs[regnum].pnum;
1432 *poffset = regs[regnum].offset;
1433
1434 return *pnum != -1;
1435 }
1436
1437 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1438 {
1439 /* Use the architecture to build a regnum<->pnum table, which will be
1440 1:1 unless a feature set specifies otherwise. */
1441 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1442
1443 /* Record the maximum possible size of the g packet - it may turn out
1444 to be smaller. */
1445 this->sizeof_g_packet
1446 = map_regcache_remote_table (gdbarch, this->regs.get ());
1447
1448 /* Default maximum number of characters in a packet body. Many
1449 remote stubs have a hardwired buffer size of 400 bytes
1450 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1451 as the maximum packet-size to ensure that the packet and an extra
1452 NUL character can always fit in the buffer. This stops GDB
1453 trashing stubs that try to squeeze an extra NUL into what is
1454 already a full buffer (As of 1999-12-04 that was most stubs). */
1455 this->remote_packet_size = 400 - 1;
1456
1457 /* This one is filled in when a ``g'' packet is received. */
1458 this->actual_register_packet_size = 0;
1459
1460 /* Should rsa->sizeof_g_packet needs more space than the
1461 default, adjust the size accordingly. Remember that each byte is
1462 encoded as two characters. 32 is the overhead for the packet
1463 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1464 (``$NN:G...#NN'') is a better guess, the below has been padded a
1465 little. */
1466 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1467 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1468 }
1469
1470 /* Get a pointer to the current remote target. If not connected to a
1471 remote target, return NULL. */
1472
1473 static remote_target *
1474 get_current_remote_target ()
1475 {
1476 target_ops *proc_target = current_inferior ()->process_target ();
1477 return dynamic_cast<remote_target *> (proc_target);
1478 }
1479
1480 /* Return the current allowed size of a remote packet. This is
1481 inferred from the current architecture, and should be used to
1482 limit the length of outgoing packets. */
1483 long
1484 remote_target::get_remote_packet_size ()
1485 {
1486 struct remote_state *rs = get_remote_state ();
1487 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1488
1489 if (rs->explicit_packet_size)
1490 return rs->explicit_packet_size;
1491
1492 return rsa->remote_packet_size;
1493 }
1494
1495 static struct packet_reg *
1496 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1497 long regnum)
1498 {
1499 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1500 return NULL;
1501 else
1502 {
1503 struct packet_reg *r = &rsa->regs[regnum];
1504
1505 gdb_assert (r->regnum == regnum);
1506 return r;
1507 }
1508 }
1509
1510 static struct packet_reg *
1511 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1512 LONGEST pnum)
1513 {
1514 int i;
1515
1516 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1517 {
1518 struct packet_reg *r = &rsa->regs[i];
1519
1520 if (r->pnum == pnum)
1521 return r;
1522 }
1523 return NULL;
1524 }
1525
1526 /* Allow the user to specify what sequence to send to the remote
1527 when he requests a program interruption: Although ^C is usually
1528 what remote systems expect (this is the default, here), it is
1529 sometimes preferable to send a break. On other systems such
1530 as the Linux kernel, a break followed by g, which is Magic SysRq g
1531 is required in order to interrupt the execution. */
1532 const char interrupt_sequence_control_c[] = "Ctrl-C";
1533 const char interrupt_sequence_break[] = "BREAK";
1534 const char interrupt_sequence_break_g[] = "BREAK-g";
1535 static const char *const interrupt_sequence_modes[] =
1536 {
1537 interrupt_sequence_control_c,
1538 interrupt_sequence_break,
1539 interrupt_sequence_break_g,
1540 NULL
1541 };
1542 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1543
1544 static void
1545 show_interrupt_sequence (struct ui_file *file, int from_tty,
1546 struct cmd_list_element *c,
1547 const char *value)
1548 {
1549 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1550 fprintf_filtered (file,
1551 _("Send the ASCII ETX character (Ctrl-c) "
1552 "to the remote target to interrupt the "
1553 "execution of the program.\n"));
1554 else if (interrupt_sequence_mode == interrupt_sequence_break)
1555 fprintf_filtered (file,
1556 _("send a break signal to the remote target "
1557 "to interrupt the execution of the program.\n"));
1558 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1559 fprintf_filtered (file,
1560 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1561 "the remote target to interrupt the execution "
1562 "of Linux kernel.\n"));
1563 else
1564 internal_error (__FILE__, __LINE__,
1565 _("Invalid value for interrupt_sequence_mode: %s."),
1566 interrupt_sequence_mode);
1567 }
1568
1569 /* This boolean variable specifies whether interrupt_sequence is sent
1570 to the remote target when gdb connects to it.
1571 This is mostly needed when you debug the Linux kernel: The Linux kernel
1572 expects BREAK g which is Magic SysRq g for connecting gdb. */
1573 static bool interrupt_on_connect = false;
1574
1575 /* This variable is used to implement the "set/show remotebreak" commands.
1576 Since these commands are now deprecated in favor of "set/show remote
1577 interrupt-sequence", it no longer has any effect on the code. */
1578 static bool remote_break;
1579
1580 static void
1581 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1582 {
1583 if (remote_break)
1584 interrupt_sequence_mode = interrupt_sequence_break;
1585 else
1586 interrupt_sequence_mode = interrupt_sequence_control_c;
1587 }
1588
1589 static void
1590 show_remotebreak (struct ui_file *file, int from_tty,
1591 struct cmd_list_element *c,
1592 const char *value)
1593 {
1594 }
1595
1596 /* This variable sets the number of bits in an address that are to be
1597 sent in a memory ("M" or "m") packet. Normally, after stripping
1598 leading zeros, the entire address would be sent. This variable
1599 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1600 initial implementation of remote.c restricted the address sent in
1601 memory packets to ``host::sizeof long'' bytes - (typically 32
1602 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1603 address was never sent. Since fixing this bug may cause a break in
1604 some remote targets this variable is principally provided to
1605 facilitate backward compatibility. */
1606
1607 static unsigned int remote_address_size;
1608
1609 \f
1610 /* User configurable variables for the number of characters in a
1611 memory read/write packet. MIN (rsa->remote_packet_size,
1612 rsa->sizeof_g_packet) is the default. Some targets need smaller
1613 values (fifo overruns, et.al.) and some users need larger values
1614 (speed up transfers). The variables ``preferred_*'' (the user
1615 request), ``current_*'' (what was actually set) and ``forced_*''
1616 (Positive - a soft limit, negative - a hard limit). */
1617
1618 struct memory_packet_config
1619 {
1620 const char *name;
1621 long size;
1622 int fixed_p;
1623 };
1624
1625 /* The default max memory-write-packet-size, when the setting is
1626 "fixed". The 16k is historical. (It came from older GDB's using
1627 alloca for buffers and the knowledge (folklore?) that some hosts
1628 don't cope very well with large alloca calls.) */
1629 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1630
1631 /* The minimum remote packet size for memory transfers. Ensures we
1632 can write at least one byte. */
1633 #define MIN_MEMORY_PACKET_SIZE 20
1634
1635 /* Get the memory packet size, assuming it is fixed. */
1636
1637 static long
1638 get_fixed_memory_packet_size (struct memory_packet_config *config)
1639 {
1640 gdb_assert (config->fixed_p);
1641
1642 if (config->size <= 0)
1643 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1644 else
1645 return config->size;
1646 }
1647
1648 /* Compute the current size of a read/write packet. Since this makes
1649 use of ``actual_register_packet_size'' the computation is dynamic. */
1650
1651 long
1652 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1653 {
1654 struct remote_state *rs = get_remote_state ();
1655 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1656
1657 long what_they_get;
1658 if (config->fixed_p)
1659 what_they_get = get_fixed_memory_packet_size (config);
1660 else
1661 {
1662 what_they_get = get_remote_packet_size ();
1663 /* Limit the packet to the size specified by the user. */
1664 if (config->size > 0
1665 && what_they_get > config->size)
1666 what_they_get = config->size;
1667
1668 /* Limit it to the size of the targets ``g'' response unless we have
1669 permission from the stub to use a larger packet size. */
1670 if (rs->explicit_packet_size == 0
1671 && rsa->actual_register_packet_size > 0
1672 && what_they_get > rsa->actual_register_packet_size)
1673 what_they_get = rsa->actual_register_packet_size;
1674 }
1675 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1676 what_they_get = MIN_MEMORY_PACKET_SIZE;
1677
1678 /* Make sure there is room in the global buffer for this packet
1679 (including its trailing NUL byte). */
1680 if (rs->buf.size () < what_they_get + 1)
1681 rs->buf.resize (2 * what_they_get);
1682
1683 return what_they_get;
1684 }
1685
1686 /* Update the size of a read/write packet. If they user wants
1687 something really big then do a sanity check. */
1688
1689 static void
1690 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1691 {
1692 int fixed_p = config->fixed_p;
1693 long size = config->size;
1694
1695 if (args == NULL)
1696 error (_("Argument required (integer, `fixed' or `limited')."));
1697 else if (strcmp (args, "hard") == 0
1698 || strcmp (args, "fixed") == 0)
1699 fixed_p = 1;
1700 else if (strcmp (args, "soft") == 0
1701 || strcmp (args, "limit") == 0)
1702 fixed_p = 0;
1703 else
1704 {
1705 char *end;
1706
1707 size = strtoul (args, &end, 0);
1708 if (args == end)
1709 error (_("Invalid %s (bad syntax)."), config->name);
1710
1711 /* Instead of explicitly capping the size of a packet to or
1712 disallowing it, the user is allowed to set the size to
1713 something arbitrarily large. */
1714 }
1715
1716 /* Extra checks? */
1717 if (fixed_p && !config->fixed_p)
1718 {
1719 /* So that the query shows the correct value. */
1720 long query_size = (size <= 0
1721 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1722 : size);
1723
1724 if (! query (_("The target may not be able to correctly handle a %s\n"
1725 "of %ld bytes. Change the packet size? "),
1726 config->name, query_size))
1727 error (_("Packet size not changed."));
1728 }
1729 /* Update the config. */
1730 config->fixed_p = fixed_p;
1731 config->size = size;
1732 }
1733
1734 static void
1735 show_memory_packet_size (struct memory_packet_config *config)
1736 {
1737 if (config->size == 0)
1738 printf_filtered (_("The %s is 0 (default). "), config->name);
1739 else
1740 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1741 if (config->fixed_p)
1742 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1743 get_fixed_memory_packet_size (config));
1744 else
1745 {
1746 remote_target *remote = get_current_remote_target ();
1747
1748 if (remote != NULL)
1749 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1750 remote->get_memory_packet_size (config));
1751 else
1752 puts_filtered ("The actual limit will be further reduced "
1753 "dependent on the target.\n");
1754 }
1755 }
1756
1757 /* FIXME: needs to be per-remote-target. */
1758 static struct memory_packet_config memory_write_packet_config =
1759 {
1760 "memory-write-packet-size",
1761 };
1762
1763 static void
1764 set_memory_write_packet_size (const char *args, int from_tty)
1765 {
1766 set_memory_packet_size (args, &memory_write_packet_config);
1767 }
1768
1769 static void
1770 show_memory_write_packet_size (const char *args, int from_tty)
1771 {
1772 show_memory_packet_size (&memory_write_packet_config);
1773 }
1774
1775 /* Show the number of hardware watchpoints that can be used. */
1776
1777 static void
1778 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1779 struct cmd_list_element *c,
1780 const char *value)
1781 {
1782 fprintf_filtered (file, _("The maximum number of target hardware "
1783 "watchpoints is %s.\n"), value);
1784 }
1785
1786 /* Show the length limit (in bytes) for hardware watchpoints. */
1787
1788 static void
1789 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1790 struct cmd_list_element *c,
1791 const char *value)
1792 {
1793 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1794 "hardware watchpoint is %s.\n"), value);
1795 }
1796
1797 /* Show the number of hardware breakpoints that can be used. */
1798
1799 static void
1800 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1801 struct cmd_list_element *c,
1802 const char *value)
1803 {
1804 fprintf_filtered (file, _("The maximum number of target hardware "
1805 "breakpoints is %s.\n"), value);
1806 }
1807
1808 /* Controls the maximum number of characters to display in the debug output
1809 for each remote packet. The remaining characters are omitted. */
1810
1811 static int remote_packet_max_chars = 512;
1812
1813 /* Show the maximum number of characters to display for each remote packet
1814 when remote debugging is enabled. */
1815
1816 static void
1817 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1818 struct cmd_list_element *c,
1819 const char *value)
1820 {
1821 fprintf_filtered (file, _("Number of remote packet characters to "
1822 "display is %s.\n"), value);
1823 }
1824
1825 long
1826 remote_target::get_memory_write_packet_size ()
1827 {
1828 return get_memory_packet_size (&memory_write_packet_config);
1829 }
1830
1831 /* FIXME: needs to be per-remote-target. */
1832 static struct memory_packet_config memory_read_packet_config =
1833 {
1834 "memory-read-packet-size",
1835 };
1836
1837 static void
1838 set_memory_read_packet_size (const char *args, int from_tty)
1839 {
1840 set_memory_packet_size (args, &memory_read_packet_config);
1841 }
1842
1843 static void
1844 show_memory_read_packet_size (const char *args, int from_tty)
1845 {
1846 show_memory_packet_size (&memory_read_packet_config);
1847 }
1848
1849 long
1850 remote_target::get_memory_read_packet_size ()
1851 {
1852 long size = get_memory_packet_size (&memory_read_packet_config);
1853
1854 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1855 extra buffer size argument before the memory read size can be
1856 increased beyond this. */
1857 if (size > get_remote_packet_size ())
1858 size = get_remote_packet_size ();
1859 return size;
1860 }
1861
1862 \f
1863
1864 struct packet_config
1865 {
1866 const char *name;
1867 const char *title;
1868
1869 /* If auto, GDB auto-detects support for this packet or feature,
1870 either through qSupported, or by trying the packet and looking
1871 at the response. If true, GDB assumes the target supports this
1872 packet. If false, the packet is disabled. Configs that don't
1873 have an associated command always have this set to auto. */
1874 enum auto_boolean detect;
1875
1876 /* Does the target support this packet? */
1877 enum packet_support support;
1878 };
1879
1880 static enum packet_support packet_config_support (struct packet_config *config);
1881 static enum packet_support packet_support (int packet);
1882
1883 static void
1884 show_packet_config_cmd (struct packet_config *config)
1885 {
1886 const char *support = "internal-error";
1887
1888 switch (packet_config_support (config))
1889 {
1890 case PACKET_ENABLE:
1891 support = "enabled";
1892 break;
1893 case PACKET_DISABLE:
1894 support = "disabled";
1895 break;
1896 case PACKET_SUPPORT_UNKNOWN:
1897 support = "unknown";
1898 break;
1899 }
1900 switch (config->detect)
1901 {
1902 case AUTO_BOOLEAN_AUTO:
1903 printf_filtered (_("Support for the `%s' packet "
1904 "is auto-detected, currently %s.\n"),
1905 config->name, support);
1906 break;
1907 case AUTO_BOOLEAN_TRUE:
1908 case AUTO_BOOLEAN_FALSE:
1909 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1910 config->name, support);
1911 break;
1912 }
1913 }
1914
1915 static void
1916 add_packet_config_cmd (struct packet_config *config, const char *name,
1917 const char *title, int legacy)
1918 {
1919 char *set_doc;
1920 char *show_doc;
1921 char *cmd_name;
1922
1923 config->name = name;
1924 config->title = title;
1925 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1926 name, title);
1927 show_doc = xstrprintf ("Show current use of remote "
1928 "protocol `%s' (%s) packet.",
1929 name, title);
1930 /* set/show TITLE-packet {auto,on,off} */
1931 cmd_name = xstrprintf ("%s-packet", title);
1932 set_show_commands cmds
1933 = add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1934 &config->detect, set_doc,
1935 show_doc, NULL, /* help_doc */
1936 NULL,
1937 show_remote_protocol_packet_cmd,
1938 &remote_set_cmdlist, &remote_show_cmdlist);
1939
1940 /* The command code copies the documentation strings. */
1941 xfree (set_doc);
1942 xfree (show_doc);
1943
1944 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1945 if (legacy)
1946 {
1947 char *legacy_name;
1948
1949 legacy_name = xstrprintf ("%s-packet", name);
1950 add_alias_cmd (legacy_name, cmds.set, class_obscure, 0,
1951 &remote_set_cmdlist);
1952 add_alias_cmd (legacy_name, cmds.show, class_obscure, 0,
1953 &remote_show_cmdlist);
1954 }
1955 }
1956
1957 static enum packet_result
1958 packet_check_result (const char *buf)
1959 {
1960 if (buf[0] != '\0')
1961 {
1962 /* The stub recognized the packet request. Check that the
1963 operation succeeded. */
1964 if (buf[0] == 'E'
1965 && isxdigit (buf[1]) && isxdigit (buf[2])
1966 && buf[3] == '\0')
1967 /* "Enn" - definitely an error. */
1968 return PACKET_ERROR;
1969
1970 /* Always treat "E." as an error. This will be used for
1971 more verbose error messages, such as E.memtypes. */
1972 if (buf[0] == 'E' && buf[1] == '.')
1973 return PACKET_ERROR;
1974
1975 /* The packet may or may not be OK. Just assume it is. */
1976 return PACKET_OK;
1977 }
1978 else
1979 /* The stub does not support the packet. */
1980 return PACKET_UNKNOWN;
1981 }
1982
1983 static enum packet_result
1984 packet_check_result (const gdb::char_vector &buf)
1985 {
1986 return packet_check_result (buf.data ());
1987 }
1988
1989 static enum packet_result
1990 packet_ok (const char *buf, struct packet_config *config)
1991 {
1992 enum packet_result result;
1993
1994 if (config->detect != AUTO_BOOLEAN_TRUE
1995 && config->support == PACKET_DISABLE)
1996 internal_error (__FILE__, __LINE__,
1997 _("packet_ok: attempt to use a disabled packet"));
1998
1999 result = packet_check_result (buf);
2000 switch (result)
2001 {
2002 case PACKET_OK:
2003 case PACKET_ERROR:
2004 /* The stub recognized the packet request. */
2005 if (config->support == PACKET_SUPPORT_UNKNOWN)
2006 {
2007 remote_debug_printf ("Packet %s (%s) is supported",
2008 config->name, config->title);
2009 config->support = PACKET_ENABLE;
2010 }
2011 break;
2012 case PACKET_UNKNOWN:
2013 /* The stub does not support the packet. */
2014 if (config->detect == AUTO_BOOLEAN_AUTO
2015 && config->support == PACKET_ENABLE)
2016 {
2017 /* If the stub previously indicated that the packet was
2018 supported then there is a protocol error. */
2019 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2020 config->name, config->title);
2021 }
2022 else if (config->detect == AUTO_BOOLEAN_TRUE)
2023 {
2024 /* The user set it wrong. */
2025 error (_("Enabled packet %s (%s) not recognized by stub"),
2026 config->name, config->title);
2027 }
2028
2029 remote_debug_printf ("Packet %s (%s) is NOT supported",
2030 config->name, config->title);
2031 config->support = PACKET_DISABLE;
2032 break;
2033 }
2034
2035 return result;
2036 }
2037
2038 static enum packet_result
2039 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2040 {
2041 return packet_ok (buf.data (), config);
2042 }
2043
2044 enum {
2045 PACKET_vCont = 0,
2046 PACKET_X,
2047 PACKET_qSymbol,
2048 PACKET_P,
2049 PACKET_p,
2050 PACKET_Z0,
2051 PACKET_Z1,
2052 PACKET_Z2,
2053 PACKET_Z3,
2054 PACKET_Z4,
2055 PACKET_vFile_setfs,
2056 PACKET_vFile_open,
2057 PACKET_vFile_pread,
2058 PACKET_vFile_pwrite,
2059 PACKET_vFile_close,
2060 PACKET_vFile_unlink,
2061 PACKET_vFile_readlink,
2062 PACKET_vFile_fstat,
2063 PACKET_qXfer_auxv,
2064 PACKET_qXfer_features,
2065 PACKET_qXfer_exec_file,
2066 PACKET_qXfer_libraries,
2067 PACKET_qXfer_libraries_svr4,
2068 PACKET_qXfer_memory_map,
2069 PACKET_qXfer_osdata,
2070 PACKET_qXfer_threads,
2071 PACKET_qXfer_statictrace_read,
2072 PACKET_qXfer_traceframe_info,
2073 PACKET_qXfer_uib,
2074 PACKET_qGetTIBAddr,
2075 PACKET_qGetTLSAddr,
2076 PACKET_qSupported,
2077 PACKET_qTStatus,
2078 PACKET_QPassSignals,
2079 PACKET_QCatchSyscalls,
2080 PACKET_QProgramSignals,
2081 PACKET_QSetWorkingDir,
2082 PACKET_QStartupWithShell,
2083 PACKET_QEnvironmentHexEncoded,
2084 PACKET_QEnvironmentReset,
2085 PACKET_QEnvironmentUnset,
2086 PACKET_qCRC,
2087 PACKET_qSearch_memory,
2088 PACKET_vAttach,
2089 PACKET_vRun,
2090 PACKET_QStartNoAckMode,
2091 PACKET_vKill,
2092 PACKET_qXfer_siginfo_read,
2093 PACKET_qXfer_siginfo_write,
2094 PACKET_qAttached,
2095
2096 /* Support for conditional tracepoints. */
2097 PACKET_ConditionalTracepoints,
2098
2099 /* Support for target-side breakpoint conditions. */
2100 PACKET_ConditionalBreakpoints,
2101
2102 /* Support for target-side breakpoint commands. */
2103 PACKET_BreakpointCommands,
2104
2105 /* Support for fast tracepoints. */
2106 PACKET_FastTracepoints,
2107
2108 /* Support for static tracepoints. */
2109 PACKET_StaticTracepoints,
2110
2111 /* Support for installing tracepoints while a trace experiment is
2112 running. */
2113 PACKET_InstallInTrace,
2114
2115 PACKET_bc,
2116 PACKET_bs,
2117 PACKET_TracepointSource,
2118 PACKET_QAllow,
2119 PACKET_qXfer_fdpic,
2120 PACKET_QDisableRandomization,
2121 PACKET_QAgent,
2122 PACKET_QTBuffer_size,
2123 PACKET_Qbtrace_off,
2124 PACKET_Qbtrace_bts,
2125 PACKET_Qbtrace_pt,
2126 PACKET_qXfer_btrace,
2127
2128 /* Support for the QNonStop packet. */
2129 PACKET_QNonStop,
2130
2131 /* Support for the QThreadEvents packet. */
2132 PACKET_QThreadEvents,
2133
2134 /* Support for multi-process extensions. */
2135 PACKET_multiprocess_feature,
2136
2137 /* Support for enabling and disabling tracepoints while a trace
2138 experiment is running. */
2139 PACKET_EnableDisableTracepoints_feature,
2140
2141 /* Support for collecting strings using the tracenz bytecode. */
2142 PACKET_tracenz_feature,
2143
2144 /* Support for continuing to run a trace experiment while GDB is
2145 disconnected. */
2146 PACKET_DisconnectedTracing_feature,
2147
2148 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2149 PACKET_augmented_libraries_svr4_read_feature,
2150
2151 /* Support for the qXfer:btrace-conf:read packet. */
2152 PACKET_qXfer_btrace_conf,
2153
2154 /* Support for the Qbtrace-conf:bts:size packet. */
2155 PACKET_Qbtrace_conf_bts_size,
2156
2157 /* Support for swbreak+ feature. */
2158 PACKET_swbreak_feature,
2159
2160 /* Support for hwbreak+ feature. */
2161 PACKET_hwbreak_feature,
2162
2163 /* Support for fork events. */
2164 PACKET_fork_event_feature,
2165
2166 /* Support for vfork events. */
2167 PACKET_vfork_event_feature,
2168
2169 /* Support for the Qbtrace-conf:pt:size packet. */
2170 PACKET_Qbtrace_conf_pt_size,
2171
2172 /* Support for exec events. */
2173 PACKET_exec_event_feature,
2174
2175 /* Support for query supported vCont actions. */
2176 PACKET_vContSupported,
2177
2178 /* Support remote CTRL-C. */
2179 PACKET_vCtrlC,
2180
2181 /* Support TARGET_WAITKIND_NO_RESUMED. */
2182 PACKET_no_resumed,
2183
2184 /* Support for memory tagging, allocation tag fetch/store
2185 packets and the tag violation stop replies. */
2186 PACKET_memory_tagging_feature,
2187
2188 PACKET_MAX
2189 };
2190
2191 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2192 assuming all remote targets are the same server (thus all support
2193 the same packets). */
2194 static struct packet_config remote_protocol_packets[PACKET_MAX];
2195
2196 /* Returns the packet's corresponding "set remote foo-packet" command
2197 state. See struct packet_config for more details. */
2198
2199 static enum auto_boolean
2200 packet_set_cmd_state (int packet)
2201 {
2202 return remote_protocol_packets[packet].detect;
2203 }
2204
2205 /* Returns whether a given packet or feature is supported. This takes
2206 into account the state of the corresponding "set remote foo-packet"
2207 command, which may be used to bypass auto-detection. */
2208
2209 static enum packet_support
2210 packet_config_support (struct packet_config *config)
2211 {
2212 switch (config->detect)
2213 {
2214 case AUTO_BOOLEAN_TRUE:
2215 return PACKET_ENABLE;
2216 case AUTO_BOOLEAN_FALSE:
2217 return PACKET_DISABLE;
2218 case AUTO_BOOLEAN_AUTO:
2219 return config->support;
2220 default:
2221 gdb_assert_not_reached (_("bad switch"));
2222 }
2223 }
2224
2225 /* Same as packet_config_support, but takes the packet's enum value as
2226 argument. */
2227
2228 static enum packet_support
2229 packet_support (int packet)
2230 {
2231 struct packet_config *config = &remote_protocol_packets[packet];
2232
2233 return packet_config_support (config);
2234 }
2235
2236 static void
2237 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2238 struct cmd_list_element *c,
2239 const char *value)
2240 {
2241 struct packet_config *packet;
2242
2243 for (packet = remote_protocol_packets;
2244 packet < &remote_protocol_packets[PACKET_MAX];
2245 packet++)
2246 {
2247 if (&packet->detect == c->var)
2248 {
2249 show_packet_config_cmd (packet);
2250 return;
2251 }
2252 }
2253 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2254 c->name);
2255 }
2256
2257 /* Should we try one of the 'Z' requests? */
2258
2259 enum Z_packet_type
2260 {
2261 Z_PACKET_SOFTWARE_BP,
2262 Z_PACKET_HARDWARE_BP,
2263 Z_PACKET_WRITE_WP,
2264 Z_PACKET_READ_WP,
2265 Z_PACKET_ACCESS_WP,
2266 NR_Z_PACKET_TYPES
2267 };
2268
2269 /* For compatibility with older distributions. Provide a ``set remote
2270 Z-packet ...'' command that updates all the Z packet types. */
2271
2272 static enum auto_boolean remote_Z_packet_detect;
2273
2274 static void
2275 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2276 struct cmd_list_element *c)
2277 {
2278 int i;
2279
2280 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2281 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2282 }
2283
2284 static void
2285 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2286 struct cmd_list_element *c,
2287 const char *value)
2288 {
2289 int i;
2290
2291 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2292 {
2293 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2294 }
2295 }
2296
2297 /* Returns true if the multi-process extensions are in effect. */
2298
2299 static int
2300 remote_multi_process_p (struct remote_state *rs)
2301 {
2302 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2303 }
2304
2305 /* Returns true if fork events are supported. */
2306
2307 static int
2308 remote_fork_event_p (struct remote_state *rs)
2309 {
2310 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2311 }
2312
2313 /* Returns true if vfork events are supported. */
2314
2315 static int
2316 remote_vfork_event_p (struct remote_state *rs)
2317 {
2318 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2319 }
2320
2321 /* Returns true if exec events are supported. */
2322
2323 static int
2324 remote_exec_event_p (struct remote_state *rs)
2325 {
2326 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2327 }
2328
2329 /* Returns true if memory tagging is supported, false otherwise. */
2330
2331 static bool
2332 remote_memory_tagging_p ()
2333 {
2334 return packet_support (PACKET_memory_tagging_feature) == PACKET_ENABLE;
2335 }
2336
2337 /* Insert fork catchpoint target routine. If fork events are enabled
2338 then return success, nothing more to do. */
2339
2340 int
2341 remote_target::insert_fork_catchpoint (int pid)
2342 {
2343 struct remote_state *rs = get_remote_state ();
2344
2345 return !remote_fork_event_p (rs);
2346 }
2347
2348 /* Remove fork catchpoint target routine. Nothing to do, just
2349 return success. */
2350
2351 int
2352 remote_target::remove_fork_catchpoint (int pid)
2353 {
2354 return 0;
2355 }
2356
2357 /* Insert vfork catchpoint target routine. If vfork events are enabled
2358 then return success, nothing more to do. */
2359
2360 int
2361 remote_target::insert_vfork_catchpoint (int pid)
2362 {
2363 struct remote_state *rs = get_remote_state ();
2364
2365 return !remote_vfork_event_p (rs);
2366 }
2367
2368 /* Remove vfork catchpoint target routine. Nothing to do, just
2369 return success. */
2370
2371 int
2372 remote_target::remove_vfork_catchpoint (int pid)
2373 {
2374 return 0;
2375 }
2376
2377 /* Insert exec catchpoint target routine. If exec events are
2378 enabled, just return success. */
2379
2380 int
2381 remote_target::insert_exec_catchpoint (int pid)
2382 {
2383 struct remote_state *rs = get_remote_state ();
2384
2385 return !remote_exec_event_p (rs);
2386 }
2387
2388 /* Remove exec catchpoint target routine. Nothing to do, just
2389 return success. */
2390
2391 int
2392 remote_target::remove_exec_catchpoint (int pid)
2393 {
2394 return 0;
2395 }
2396
2397 \f
2398
2399 /* Take advantage of the fact that the TID field is not used, to tag
2400 special ptids with it set to != 0. */
2401 static const ptid_t magic_null_ptid (42000, -1, 1);
2402 static const ptid_t not_sent_ptid (42000, -2, 1);
2403 static const ptid_t any_thread_ptid (42000, 0, 1);
2404
2405 /* Find out if the stub attached to PID (and hence GDB should offer to
2406 detach instead of killing it when bailing out). */
2407
2408 int
2409 remote_target::remote_query_attached (int pid)
2410 {
2411 struct remote_state *rs = get_remote_state ();
2412 size_t size = get_remote_packet_size ();
2413
2414 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2415 return 0;
2416
2417 if (remote_multi_process_p (rs))
2418 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2419 else
2420 xsnprintf (rs->buf.data (), size, "qAttached");
2421
2422 putpkt (rs->buf);
2423 getpkt (&rs->buf, 0);
2424
2425 switch (packet_ok (rs->buf,
2426 &remote_protocol_packets[PACKET_qAttached]))
2427 {
2428 case PACKET_OK:
2429 if (strcmp (rs->buf.data (), "1") == 0)
2430 return 1;
2431 break;
2432 case PACKET_ERROR:
2433 warning (_("Remote failure reply: %s"), rs->buf.data ());
2434 break;
2435 case PACKET_UNKNOWN:
2436 break;
2437 }
2438
2439 return 0;
2440 }
2441
2442 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2443 has been invented by GDB, instead of reported by the target. Since
2444 we can be connected to a remote system before before knowing about
2445 any inferior, mark the target with execution when we find the first
2446 inferior. If ATTACHED is 1, then we had just attached to this
2447 inferior. If it is 0, then we just created this inferior. If it
2448 is -1, then try querying the remote stub to find out if it had
2449 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2450 attempt to open this inferior's executable as the main executable
2451 if no main executable is open already. */
2452
2453 inferior *
2454 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2455 int try_open_exec)
2456 {
2457 struct inferior *inf;
2458
2459 /* Check whether this process we're learning about is to be
2460 considered attached, or if is to be considered to have been
2461 spawned by the stub. */
2462 if (attached == -1)
2463 attached = remote_query_attached (pid);
2464
2465 if (gdbarch_has_global_solist (target_gdbarch ()))
2466 {
2467 /* If the target shares code across all inferiors, then every
2468 attach adds a new inferior. */
2469 inf = add_inferior (pid);
2470
2471 /* ... and every inferior is bound to the same program space.
2472 However, each inferior may still have its own address
2473 space. */
2474 inf->aspace = maybe_new_address_space ();
2475 inf->pspace = current_program_space;
2476 }
2477 else
2478 {
2479 /* In the traditional debugging scenario, there's a 1-1 match
2480 between program/address spaces. We simply bind the inferior
2481 to the program space's address space. */
2482 inf = current_inferior ();
2483
2484 /* However, if the current inferior is already bound to a
2485 process, find some other empty inferior. */
2486 if (inf->pid != 0)
2487 {
2488 inf = nullptr;
2489 for (inferior *it : all_inferiors ())
2490 if (it->pid == 0)
2491 {
2492 inf = it;
2493 break;
2494 }
2495 }
2496 if (inf == nullptr)
2497 {
2498 /* Since all inferiors were already bound to a process, add
2499 a new inferior. */
2500 inf = add_inferior_with_spaces ();
2501 }
2502 switch_to_inferior_no_thread (inf);
2503 inf->push_target (this);
2504 inferior_appeared (inf, pid);
2505 }
2506
2507 inf->attach_flag = attached;
2508 inf->fake_pid_p = fake_pid_p;
2509
2510 /* If no main executable is currently open then attempt to
2511 open the file that was executed to create this inferior. */
2512 if (try_open_exec && get_exec_file (0) == NULL)
2513 exec_file_locate_attach (pid, 0, 1);
2514
2515 /* Check for exec file mismatch, and let the user solve it. */
2516 validate_exec_file (1);
2517
2518 return inf;
2519 }
2520
2521 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2522 static remote_thread_info *get_remote_thread_info (remote_target *target,
2523 ptid_t ptid);
2524
2525 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2526 according to RUNNING. */
2527
2528 thread_info *
2529 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2530 {
2531 struct remote_state *rs = get_remote_state ();
2532 struct thread_info *thread;
2533
2534 /* GDB historically didn't pull threads in the initial connection
2535 setup. If the remote target doesn't even have a concept of
2536 threads (e.g., a bare-metal target), even if internally we
2537 consider that a single-threaded target, mentioning a new thread
2538 might be confusing to the user. Be silent then, preserving the
2539 age old behavior. */
2540 if (rs->starting_up)
2541 thread = add_thread_silent (this, ptid);
2542 else
2543 thread = add_thread (this, ptid);
2544
2545 /* We start by assuming threads are resumed. That state then gets updated
2546 when we process a matching stop reply. */
2547 get_remote_thread_info (thread)->set_resumed ();
2548
2549 set_executing (this, ptid, executing);
2550 set_running (this, ptid, running);
2551
2552 return thread;
2553 }
2554
2555 /* Come here when we learn about a thread id from the remote target.
2556 It may be the first time we hear about such thread, so take the
2557 opportunity to add it to GDB's thread list. In case this is the
2558 first time we're noticing its corresponding inferior, add it to
2559 GDB's inferior list as well. EXECUTING indicates whether the
2560 thread is (internally) executing or stopped. */
2561
2562 void
2563 remote_target::remote_notice_new_inferior (ptid_t currthread, bool executing)
2564 {
2565 /* In non-stop mode, we assume new found threads are (externally)
2566 running until proven otherwise with a stop reply. In all-stop,
2567 we can only get here if all threads are stopped. */
2568 bool running = target_is_non_stop_p ();
2569
2570 /* If this is a new thread, add it to GDB's thread list.
2571 If we leave it up to WFI to do this, bad things will happen. */
2572
2573 thread_info *tp = find_thread_ptid (this, currthread);
2574 if (tp != NULL && tp->state == THREAD_EXITED)
2575 {
2576 /* We're seeing an event on a thread id we knew had exited.
2577 This has to be a new thread reusing the old id. Add it. */
2578 remote_add_thread (currthread, running, executing);
2579 return;
2580 }
2581
2582 if (!in_thread_list (this, currthread))
2583 {
2584 struct inferior *inf = NULL;
2585 int pid = currthread.pid ();
2586
2587 if (inferior_ptid.is_pid ()
2588 && pid == inferior_ptid.pid ())
2589 {
2590 /* inferior_ptid has no thread member yet. This can happen
2591 with the vAttach -> remote_wait,"TAAthread:" path if the
2592 stub doesn't support qC. This is the first stop reported
2593 after an attach, so this is the main thread. Update the
2594 ptid in the thread list. */
2595 if (in_thread_list (this, ptid_t (pid)))
2596 thread_change_ptid (this, inferior_ptid, currthread);
2597 else
2598 {
2599 thread_info *thr
2600 = remote_add_thread (currthread, running, executing);
2601 switch_to_thread (thr);
2602 }
2603 return;
2604 }
2605
2606 if (magic_null_ptid == inferior_ptid)
2607 {
2608 /* inferior_ptid is not set yet. This can happen with the
2609 vRun -> remote_wait,"TAAthread:" path if the stub
2610 doesn't support qC. This is the first stop reported
2611 after an attach, so this is the main thread. Update the
2612 ptid in the thread list. */
2613 thread_change_ptid (this, inferior_ptid, currthread);
2614 return;
2615 }
2616
2617 /* When connecting to a target remote, or to a target
2618 extended-remote which already was debugging an inferior, we
2619 may not know about it yet. Add it before adding its child
2620 thread, so notifications are emitted in a sensible order. */
2621 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2622 {
2623 struct remote_state *rs = get_remote_state ();
2624 bool fake_pid_p = !remote_multi_process_p (rs);
2625
2626 inf = remote_add_inferior (fake_pid_p,
2627 currthread.pid (), -1, 1);
2628 }
2629
2630 /* This is really a new thread. Add it. */
2631 thread_info *new_thr
2632 = remote_add_thread (currthread, running, executing);
2633
2634 /* If we found a new inferior, let the common code do whatever
2635 it needs to with it (e.g., read shared libraries, insert
2636 breakpoints), unless we're just setting up an all-stop
2637 connection. */
2638 if (inf != NULL)
2639 {
2640 struct remote_state *rs = get_remote_state ();
2641
2642 if (!rs->starting_up)
2643 notice_new_inferior (new_thr, executing, 0);
2644 }
2645 }
2646 }
2647
2648 /* Return THREAD's private thread data, creating it if necessary. */
2649
2650 static remote_thread_info *
2651 get_remote_thread_info (thread_info *thread)
2652 {
2653 gdb_assert (thread != NULL);
2654
2655 if (thread->priv == NULL)
2656 thread->priv.reset (new remote_thread_info);
2657
2658 return static_cast<remote_thread_info *> (thread->priv.get ());
2659 }
2660
2661 /* Return PTID's private thread data, creating it if necessary. */
2662
2663 static remote_thread_info *
2664 get_remote_thread_info (remote_target *target, ptid_t ptid)
2665 {
2666 thread_info *thr = find_thread_ptid (target, ptid);
2667 return get_remote_thread_info (thr);
2668 }
2669
2670 /* Call this function as a result of
2671 1) A halt indication (T packet) containing a thread id
2672 2) A direct query of currthread
2673 3) Successful execution of set thread */
2674
2675 static void
2676 record_currthread (struct remote_state *rs, ptid_t currthread)
2677 {
2678 rs->general_thread = currthread;
2679 }
2680
2681 /* If 'QPassSignals' is supported, tell the remote stub what signals
2682 it can simply pass through to the inferior without reporting. */
2683
2684 void
2685 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2686 {
2687 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2688 {
2689 char *pass_packet, *p;
2690 int count = 0;
2691 struct remote_state *rs = get_remote_state ();
2692
2693 gdb_assert (pass_signals.size () < 256);
2694 for (size_t i = 0; i < pass_signals.size (); i++)
2695 {
2696 if (pass_signals[i])
2697 count++;
2698 }
2699 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2700 strcpy (pass_packet, "QPassSignals:");
2701 p = pass_packet + strlen (pass_packet);
2702 for (size_t i = 0; i < pass_signals.size (); i++)
2703 {
2704 if (pass_signals[i])
2705 {
2706 if (i >= 16)
2707 *p++ = tohex (i >> 4);
2708 *p++ = tohex (i & 15);
2709 if (count)
2710 *p++ = ';';
2711 else
2712 break;
2713 count--;
2714 }
2715 }
2716 *p = 0;
2717 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2718 {
2719 putpkt (pass_packet);
2720 getpkt (&rs->buf, 0);
2721 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2722 xfree (rs->last_pass_packet);
2723 rs->last_pass_packet = pass_packet;
2724 }
2725 else
2726 xfree (pass_packet);
2727 }
2728 }
2729
2730 /* If 'QCatchSyscalls' is supported, tell the remote stub
2731 to report syscalls to GDB. */
2732
2733 int
2734 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2735 gdb::array_view<const int> syscall_counts)
2736 {
2737 const char *catch_packet;
2738 enum packet_result result;
2739 int n_sysno = 0;
2740
2741 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2742 {
2743 /* Not supported. */
2744 return 1;
2745 }
2746
2747 if (needed && any_count == 0)
2748 {
2749 /* Count how many syscalls are to be caught. */
2750 for (size_t i = 0; i < syscall_counts.size (); i++)
2751 {
2752 if (syscall_counts[i] != 0)
2753 n_sysno++;
2754 }
2755 }
2756
2757 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2758 pid, needed, any_count, n_sysno);
2759
2760 std::string built_packet;
2761 if (needed)
2762 {
2763 /* Prepare a packet with the sysno list, assuming max 8+1
2764 characters for a sysno. If the resulting packet size is too
2765 big, fallback on the non-selective packet. */
2766 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2767 built_packet.reserve (maxpktsz);
2768 built_packet = "QCatchSyscalls:1";
2769 if (any_count == 0)
2770 {
2771 /* Add in each syscall to be caught. */
2772 for (size_t i = 0; i < syscall_counts.size (); i++)
2773 {
2774 if (syscall_counts[i] != 0)
2775 string_appendf (built_packet, ";%zx", i);
2776 }
2777 }
2778 if (built_packet.size () > get_remote_packet_size ())
2779 {
2780 /* catch_packet too big. Fallback to less efficient
2781 non selective mode, with GDB doing the filtering. */
2782 catch_packet = "QCatchSyscalls:1";
2783 }
2784 else
2785 catch_packet = built_packet.c_str ();
2786 }
2787 else
2788 catch_packet = "QCatchSyscalls:0";
2789
2790 struct remote_state *rs = get_remote_state ();
2791
2792 putpkt (catch_packet);
2793 getpkt (&rs->buf, 0);
2794 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2795 if (result == PACKET_OK)
2796 return 0;
2797 else
2798 return -1;
2799 }
2800
2801 /* If 'QProgramSignals' is supported, tell the remote stub what
2802 signals it should pass through to the inferior when detaching. */
2803
2804 void
2805 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2806 {
2807 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2808 {
2809 char *packet, *p;
2810 int count = 0;
2811 struct remote_state *rs = get_remote_state ();
2812
2813 gdb_assert (signals.size () < 256);
2814 for (size_t i = 0; i < signals.size (); i++)
2815 {
2816 if (signals[i])
2817 count++;
2818 }
2819 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2820 strcpy (packet, "QProgramSignals:");
2821 p = packet + strlen (packet);
2822 for (size_t i = 0; i < signals.size (); i++)
2823 {
2824 if (signal_pass_state (i))
2825 {
2826 if (i >= 16)
2827 *p++ = tohex (i >> 4);
2828 *p++ = tohex (i & 15);
2829 if (count)
2830 *p++ = ';';
2831 else
2832 break;
2833 count--;
2834 }
2835 }
2836 *p = 0;
2837 if (!rs->last_program_signals_packet
2838 || strcmp (rs->last_program_signals_packet, packet) != 0)
2839 {
2840 putpkt (packet);
2841 getpkt (&rs->buf, 0);
2842 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2843 xfree (rs->last_program_signals_packet);
2844 rs->last_program_signals_packet = packet;
2845 }
2846 else
2847 xfree (packet);
2848 }
2849 }
2850
2851 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2852 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2853 thread. If GEN is set, set the general thread, if not, then set
2854 the step/continue thread. */
2855 void
2856 remote_target::set_thread (ptid_t ptid, int gen)
2857 {
2858 struct remote_state *rs = get_remote_state ();
2859 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2860 char *buf = rs->buf.data ();
2861 char *endbuf = buf + get_remote_packet_size ();
2862
2863 if (state == ptid)
2864 return;
2865
2866 *buf++ = 'H';
2867 *buf++ = gen ? 'g' : 'c';
2868 if (ptid == magic_null_ptid)
2869 xsnprintf (buf, endbuf - buf, "0");
2870 else if (ptid == any_thread_ptid)
2871 xsnprintf (buf, endbuf - buf, "0");
2872 else if (ptid == minus_one_ptid)
2873 xsnprintf (buf, endbuf - buf, "-1");
2874 else
2875 write_ptid (buf, endbuf, ptid);
2876 putpkt (rs->buf);
2877 getpkt (&rs->buf, 0);
2878 if (gen)
2879 rs->general_thread = ptid;
2880 else
2881 rs->continue_thread = ptid;
2882 }
2883
2884 void
2885 remote_target::set_general_thread (ptid_t ptid)
2886 {
2887 set_thread (ptid, 1);
2888 }
2889
2890 void
2891 remote_target::set_continue_thread (ptid_t ptid)
2892 {
2893 set_thread (ptid, 0);
2894 }
2895
2896 /* Change the remote current process. Which thread within the process
2897 ends up selected isn't important, as long as it is the same process
2898 as what INFERIOR_PTID points to.
2899
2900 This comes from that fact that there is no explicit notion of
2901 "selected process" in the protocol. The selected process for
2902 general operations is the process the selected general thread
2903 belongs to. */
2904
2905 void
2906 remote_target::set_general_process ()
2907 {
2908 struct remote_state *rs = get_remote_state ();
2909
2910 /* If the remote can't handle multiple processes, don't bother. */
2911 if (!remote_multi_process_p (rs))
2912 return;
2913
2914 /* We only need to change the remote current thread if it's pointing
2915 at some other process. */
2916 if (rs->general_thread.pid () != inferior_ptid.pid ())
2917 set_general_thread (inferior_ptid);
2918 }
2919
2920 \f
2921 /* Return nonzero if this is the main thread that we made up ourselves
2922 to model non-threaded targets as single-threaded. */
2923
2924 static int
2925 remote_thread_always_alive (ptid_t ptid)
2926 {
2927 if (ptid == magic_null_ptid)
2928 /* The main thread is always alive. */
2929 return 1;
2930
2931 if (ptid.pid () != 0 && ptid.lwp () == 0)
2932 /* The main thread is always alive. This can happen after a
2933 vAttach, if the remote side doesn't support
2934 multi-threading. */
2935 return 1;
2936
2937 return 0;
2938 }
2939
2940 /* Return nonzero if the thread PTID is still alive on the remote
2941 system. */
2942
2943 bool
2944 remote_target::thread_alive (ptid_t ptid)
2945 {
2946 struct remote_state *rs = get_remote_state ();
2947 char *p, *endp;
2948
2949 /* Check if this is a thread that we made up ourselves to model
2950 non-threaded targets as single-threaded. */
2951 if (remote_thread_always_alive (ptid))
2952 return 1;
2953
2954 p = rs->buf.data ();
2955 endp = p + get_remote_packet_size ();
2956
2957 *p++ = 'T';
2958 write_ptid (p, endp, ptid);
2959
2960 putpkt (rs->buf);
2961 getpkt (&rs->buf, 0);
2962 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2963 }
2964
2965 /* Return a pointer to a thread name if we know it and NULL otherwise.
2966 The thread_info object owns the memory for the name. */
2967
2968 const char *
2969 remote_target::thread_name (struct thread_info *info)
2970 {
2971 if (info->priv != NULL)
2972 {
2973 const std::string &name = get_remote_thread_info (info)->name;
2974 return !name.empty () ? name.c_str () : NULL;
2975 }
2976
2977 return NULL;
2978 }
2979
2980 /* About these extended threadlist and threadinfo packets. They are
2981 variable length packets but, the fields within them are often fixed
2982 length. They are redundant enough to send over UDP as is the
2983 remote protocol in general. There is a matching unit test module
2984 in libstub. */
2985
2986 /* WARNING: This threadref data structure comes from the remote O.S.,
2987 libstub protocol encoding, and remote.c. It is not particularly
2988 changable. */
2989
2990 /* Right now, the internal structure is int. We want it to be bigger.
2991 Plan to fix this. */
2992
2993 typedef int gdb_threadref; /* Internal GDB thread reference. */
2994
2995 /* gdb_ext_thread_info is an internal GDB data structure which is
2996 equivalent to the reply of the remote threadinfo packet. */
2997
2998 struct gdb_ext_thread_info
2999 {
3000 threadref threadid; /* External form of thread reference. */
3001 int active; /* Has state interesting to GDB?
3002 regs, stack. */
3003 char display[256]; /* Brief state display, name,
3004 blocked/suspended. */
3005 char shortname[32]; /* To be used to name threads. */
3006 char more_display[256]; /* Long info, statistics, queue depth,
3007 whatever. */
3008 };
3009
3010 /* The volume of remote transfers can be limited by submitting
3011 a mask containing bits specifying the desired information.
3012 Use a union of these values as the 'selection' parameter to
3013 get_thread_info. FIXME: Make these TAG names more thread specific. */
3014
3015 #define TAG_THREADID 1
3016 #define TAG_EXISTS 2
3017 #define TAG_DISPLAY 4
3018 #define TAG_THREADNAME 8
3019 #define TAG_MOREDISPLAY 16
3020
3021 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3022
3023 static const char *unpack_nibble (const char *buf, int *val);
3024
3025 static const char *unpack_byte (const char *buf, int *value);
3026
3027 static char *pack_int (char *buf, int value);
3028
3029 static const char *unpack_int (const char *buf, int *value);
3030
3031 static const char *unpack_string (const char *src, char *dest, int length);
3032
3033 static char *pack_threadid (char *pkt, threadref *id);
3034
3035 static const char *unpack_threadid (const char *inbuf, threadref *id);
3036
3037 void int_to_threadref (threadref *id, int value);
3038
3039 static int threadref_to_int (threadref *ref);
3040
3041 static void copy_threadref (threadref *dest, threadref *src);
3042
3043 static int threadmatch (threadref *dest, threadref *src);
3044
3045 static char *pack_threadinfo_request (char *pkt, int mode,
3046 threadref *id);
3047
3048 static char *pack_threadlist_request (char *pkt, int startflag,
3049 int threadcount,
3050 threadref *nextthread);
3051
3052 static int remote_newthread_step (threadref *ref, void *context);
3053
3054
3055 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3056 buffer we're allowed to write to. Returns
3057 BUF+CHARACTERS_WRITTEN. */
3058
3059 char *
3060 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3061 {
3062 int pid, tid;
3063 struct remote_state *rs = get_remote_state ();
3064
3065 if (remote_multi_process_p (rs))
3066 {
3067 pid = ptid.pid ();
3068 if (pid < 0)
3069 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3070 else
3071 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3072 }
3073 tid = ptid.lwp ();
3074 if (tid < 0)
3075 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3076 else
3077 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3078
3079 return buf;
3080 }
3081
3082 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3083 last parsed char. Returns null_ptid if no thread id is found, and
3084 throws an error if the thread id has an invalid format. */
3085
3086 static ptid_t
3087 read_ptid (const char *buf, const char **obuf)
3088 {
3089 const char *p = buf;
3090 const char *pp;
3091 ULONGEST pid = 0, tid = 0;
3092
3093 if (*p == 'p')
3094 {
3095 /* Multi-process ptid. */
3096 pp = unpack_varlen_hex (p + 1, &pid);
3097 if (*pp != '.')
3098 error (_("invalid remote ptid: %s"), p);
3099
3100 p = pp;
3101 pp = unpack_varlen_hex (p + 1, &tid);
3102 if (obuf)
3103 *obuf = pp;
3104 return ptid_t (pid, tid, 0);
3105 }
3106
3107 /* No multi-process. Just a tid. */
3108 pp = unpack_varlen_hex (p, &tid);
3109
3110 /* Return null_ptid when no thread id is found. */
3111 if (p == pp)
3112 {
3113 if (obuf)
3114 *obuf = pp;
3115 return null_ptid;
3116 }
3117
3118 /* Since the stub is not sending a process id, then default to
3119 what's in inferior_ptid, unless it's null at this point. If so,
3120 then since there's no way to know the pid of the reported
3121 threads, use the magic number. */
3122 if (inferior_ptid == null_ptid)
3123 pid = magic_null_ptid.pid ();
3124 else
3125 pid = inferior_ptid.pid ();
3126
3127 if (obuf)
3128 *obuf = pp;
3129 return ptid_t (pid, tid, 0);
3130 }
3131
3132 static int
3133 stubhex (int ch)
3134 {
3135 if (ch >= 'a' && ch <= 'f')
3136 return ch - 'a' + 10;
3137 if (ch >= '0' && ch <= '9')
3138 return ch - '0';
3139 if (ch >= 'A' && ch <= 'F')
3140 return ch - 'A' + 10;
3141 return -1;
3142 }
3143
3144 static int
3145 stub_unpack_int (const char *buff, int fieldlength)
3146 {
3147 int nibble;
3148 int retval = 0;
3149
3150 while (fieldlength)
3151 {
3152 nibble = stubhex (*buff++);
3153 retval |= nibble;
3154 fieldlength--;
3155 if (fieldlength)
3156 retval = retval << 4;
3157 }
3158 return retval;
3159 }
3160
3161 static const char *
3162 unpack_nibble (const char *buf, int *val)
3163 {
3164 *val = fromhex (*buf++);
3165 return buf;
3166 }
3167
3168 static const char *
3169 unpack_byte (const char *buf, int *value)
3170 {
3171 *value = stub_unpack_int (buf, 2);
3172 return buf + 2;
3173 }
3174
3175 static char *
3176 pack_int (char *buf, int value)
3177 {
3178 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3179 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3180 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3181 buf = pack_hex_byte (buf, (value & 0xff));
3182 return buf;
3183 }
3184
3185 static const char *
3186 unpack_int (const char *buf, int *value)
3187 {
3188 *value = stub_unpack_int (buf, 8);
3189 return buf + 8;
3190 }
3191
3192 #if 0 /* Currently unused, uncomment when needed. */
3193 static char *pack_string (char *pkt, char *string);
3194
3195 static char *
3196 pack_string (char *pkt, char *string)
3197 {
3198 char ch;
3199 int len;
3200
3201 len = strlen (string);
3202 if (len > 200)
3203 len = 200; /* Bigger than most GDB packets, junk??? */
3204 pkt = pack_hex_byte (pkt, len);
3205 while (len-- > 0)
3206 {
3207 ch = *string++;
3208 if ((ch == '\0') || (ch == '#'))
3209 ch = '*'; /* Protect encapsulation. */
3210 *pkt++ = ch;
3211 }
3212 return pkt;
3213 }
3214 #endif /* 0 (unused) */
3215
3216 static const char *
3217 unpack_string (const char *src, char *dest, int length)
3218 {
3219 while (length--)
3220 *dest++ = *src++;
3221 *dest = '\0';
3222 return src;
3223 }
3224
3225 static char *
3226 pack_threadid (char *pkt, threadref *id)
3227 {
3228 char *limit;
3229 unsigned char *altid;
3230
3231 altid = (unsigned char *) id;
3232 limit = pkt + BUF_THREAD_ID_SIZE;
3233 while (pkt < limit)
3234 pkt = pack_hex_byte (pkt, *altid++);
3235 return pkt;
3236 }
3237
3238
3239 static const char *
3240 unpack_threadid (const char *inbuf, threadref *id)
3241 {
3242 char *altref;
3243 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3244 int x, y;
3245
3246 altref = (char *) id;
3247
3248 while (inbuf < limit)
3249 {
3250 x = stubhex (*inbuf++);
3251 y = stubhex (*inbuf++);
3252 *altref++ = (x << 4) | y;
3253 }
3254 return inbuf;
3255 }
3256
3257 /* Externally, threadrefs are 64 bits but internally, they are still
3258 ints. This is due to a mismatch of specifications. We would like
3259 to use 64bit thread references internally. This is an adapter
3260 function. */
3261
3262 void
3263 int_to_threadref (threadref *id, int value)
3264 {
3265 unsigned char *scan;
3266
3267 scan = (unsigned char *) id;
3268 {
3269 int i = 4;
3270 while (i--)
3271 *scan++ = 0;
3272 }
3273 *scan++ = (value >> 24) & 0xff;
3274 *scan++ = (value >> 16) & 0xff;
3275 *scan++ = (value >> 8) & 0xff;
3276 *scan++ = (value & 0xff);
3277 }
3278
3279 static int
3280 threadref_to_int (threadref *ref)
3281 {
3282 int i, value = 0;
3283 unsigned char *scan;
3284
3285 scan = *ref;
3286 scan += 4;
3287 i = 4;
3288 while (i-- > 0)
3289 value = (value << 8) | ((*scan++) & 0xff);
3290 return value;
3291 }
3292
3293 static void
3294 copy_threadref (threadref *dest, threadref *src)
3295 {
3296 int i;
3297 unsigned char *csrc, *cdest;
3298
3299 csrc = (unsigned char *) src;
3300 cdest = (unsigned char *) dest;
3301 i = 8;
3302 while (i--)
3303 *cdest++ = *csrc++;
3304 }
3305
3306 static int
3307 threadmatch (threadref *dest, threadref *src)
3308 {
3309 /* Things are broken right now, so just assume we got a match. */
3310 #if 0
3311 unsigned char *srcp, *destp;
3312 int i, result;
3313 srcp = (char *) src;
3314 destp = (char *) dest;
3315
3316 result = 1;
3317 while (i-- > 0)
3318 result &= (*srcp++ == *destp++) ? 1 : 0;
3319 return result;
3320 #endif
3321 return 1;
3322 }
3323
3324 /*
3325 threadid:1, # always request threadid
3326 context_exists:2,
3327 display:4,
3328 unique_name:8,
3329 more_display:16
3330 */
3331
3332 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3333
3334 static char *
3335 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3336 {
3337 *pkt++ = 'q'; /* Info Query */
3338 *pkt++ = 'P'; /* process or thread info */
3339 pkt = pack_int (pkt, mode); /* mode */
3340 pkt = pack_threadid (pkt, id); /* threadid */
3341 *pkt = '\0'; /* terminate */
3342 return pkt;
3343 }
3344
3345 /* These values tag the fields in a thread info response packet. */
3346 /* Tagging the fields allows us to request specific fields and to
3347 add more fields as time goes by. */
3348
3349 #define TAG_THREADID 1 /* Echo the thread identifier. */
3350 #define TAG_EXISTS 2 /* Is this process defined enough to
3351 fetch registers and its stack? */
3352 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3353 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3354 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3355 the process. */
3356
3357 int
3358 remote_target::remote_unpack_thread_info_response (const char *pkt,
3359 threadref *expectedref,
3360 gdb_ext_thread_info *info)
3361 {
3362 struct remote_state *rs = get_remote_state ();
3363 int mask, length;
3364 int tag;
3365 threadref ref;
3366 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3367 int retval = 1;
3368
3369 /* info->threadid = 0; FIXME: implement zero_threadref. */
3370 info->active = 0;
3371 info->display[0] = '\0';
3372 info->shortname[0] = '\0';
3373 info->more_display[0] = '\0';
3374
3375 /* Assume the characters indicating the packet type have been
3376 stripped. */
3377 pkt = unpack_int (pkt, &mask); /* arg mask */
3378 pkt = unpack_threadid (pkt, &ref);
3379
3380 if (mask == 0)
3381 warning (_("Incomplete response to threadinfo request."));
3382 if (!threadmatch (&ref, expectedref))
3383 { /* This is an answer to a different request. */
3384 warning (_("ERROR RMT Thread info mismatch."));
3385 return 0;
3386 }
3387 copy_threadref (&info->threadid, &ref);
3388
3389 /* Loop on tagged fields , try to bail if something goes wrong. */
3390
3391 /* Packets are terminated with nulls. */
3392 while ((pkt < limit) && mask && *pkt)
3393 {
3394 pkt = unpack_int (pkt, &tag); /* tag */
3395 pkt = unpack_byte (pkt, &length); /* length */
3396 if (!(tag & mask)) /* Tags out of synch with mask. */
3397 {
3398 warning (_("ERROR RMT: threadinfo tag mismatch."));
3399 retval = 0;
3400 break;
3401 }
3402 if (tag == TAG_THREADID)
3403 {
3404 if (length != 16)
3405 {
3406 warning (_("ERROR RMT: length of threadid is not 16."));
3407 retval = 0;
3408 break;
3409 }
3410 pkt = unpack_threadid (pkt, &ref);
3411 mask = mask & ~TAG_THREADID;
3412 continue;
3413 }
3414 if (tag == TAG_EXISTS)
3415 {
3416 info->active = stub_unpack_int (pkt, length);
3417 pkt += length;
3418 mask = mask & ~(TAG_EXISTS);
3419 if (length > 8)
3420 {
3421 warning (_("ERROR RMT: 'exists' length too long."));
3422 retval = 0;
3423 break;
3424 }
3425 continue;
3426 }
3427 if (tag == TAG_THREADNAME)
3428 {
3429 pkt = unpack_string (pkt, &info->shortname[0], length);
3430 mask = mask & ~TAG_THREADNAME;
3431 continue;
3432 }
3433 if (tag == TAG_DISPLAY)
3434 {
3435 pkt = unpack_string (pkt, &info->display[0], length);
3436 mask = mask & ~TAG_DISPLAY;
3437 continue;
3438 }
3439 if (tag == TAG_MOREDISPLAY)
3440 {
3441 pkt = unpack_string (pkt, &info->more_display[0], length);
3442 mask = mask & ~TAG_MOREDISPLAY;
3443 continue;
3444 }
3445 warning (_("ERROR RMT: unknown thread info tag."));
3446 break; /* Not a tag we know about. */
3447 }
3448 return retval;
3449 }
3450
3451 int
3452 remote_target::remote_get_threadinfo (threadref *threadid,
3453 int fieldset,
3454 gdb_ext_thread_info *info)
3455 {
3456 struct remote_state *rs = get_remote_state ();
3457 int result;
3458
3459 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3460 putpkt (rs->buf);
3461 getpkt (&rs->buf, 0);
3462
3463 if (rs->buf[0] == '\0')
3464 return 0;
3465
3466 result = remote_unpack_thread_info_response (&rs->buf[2],
3467 threadid, info);
3468 return result;
3469 }
3470
3471 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3472
3473 static char *
3474 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3475 threadref *nextthread)
3476 {
3477 *pkt++ = 'q'; /* info query packet */
3478 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3479 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3480 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3481 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3482 *pkt = '\0';
3483 return pkt;
3484 }
3485
3486 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3487
3488 int
3489 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3490 threadref *original_echo,
3491 threadref *resultlist,
3492 int *doneflag)
3493 {
3494 struct remote_state *rs = get_remote_state ();
3495 int count, resultcount, done;
3496
3497 resultcount = 0;
3498 /* Assume the 'q' and 'M chars have been stripped. */
3499 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3500 /* done parse past here */
3501 pkt = unpack_byte (pkt, &count); /* count field */
3502 pkt = unpack_nibble (pkt, &done);
3503 /* The first threadid is the argument threadid. */
3504 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3505 while ((count-- > 0) && (pkt < limit))
3506 {
3507 pkt = unpack_threadid (pkt, resultlist++);
3508 if (resultcount++ >= result_limit)
3509 break;
3510 }
3511 if (doneflag)
3512 *doneflag = done;
3513 return resultcount;
3514 }
3515
3516 /* Fetch the next batch of threads from the remote. Returns -1 if the
3517 qL packet is not supported, 0 on error and 1 on success. */
3518
3519 int
3520 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3521 int result_limit, int *done, int *result_count,
3522 threadref *threadlist)
3523 {
3524 struct remote_state *rs = get_remote_state ();
3525 int result = 1;
3526
3527 /* Truncate result limit to be smaller than the packet size. */
3528 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3529 >= get_remote_packet_size ())
3530 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3531
3532 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3533 nextthread);
3534 putpkt (rs->buf);
3535 getpkt (&rs->buf, 0);
3536 if (rs->buf[0] == '\0')
3537 {
3538 /* Packet not supported. */
3539 return -1;
3540 }
3541
3542 *result_count =
3543 parse_threadlist_response (&rs->buf[2], result_limit,
3544 &rs->echo_nextthread, threadlist, done);
3545
3546 if (!threadmatch (&rs->echo_nextthread, nextthread))
3547 {
3548 /* FIXME: This is a good reason to drop the packet. */
3549 /* Possibly, there is a duplicate response. */
3550 /* Possibilities :
3551 retransmit immediatly - race conditions
3552 retransmit after timeout - yes
3553 exit
3554 wait for packet, then exit
3555 */
3556 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3557 return 0; /* I choose simply exiting. */
3558 }
3559 if (*result_count <= 0)
3560 {
3561 if (*done != 1)
3562 {
3563 warning (_("RMT ERROR : failed to get remote thread list."));
3564 result = 0;
3565 }
3566 return result; /* break; */
3567 }
3568 if (*result_count > result_limit)
3569 {
3570 *result_count = 0;
3571 warning (_("RMT ERROR: threadlist response longer than requested."));
3572 return 0;
3573 }
3574 return result;
3575 }
3576
3577 /* Fetch the list of remote threads, with the qL packet, and call
3578 STEPFUNCTION for each thread found. Stops iterating and returns 1
3579 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3580 STEPFUNCTION returns false. If the packet is not supported,
3581 returns -1. */
3582
3583 int
3584 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3585 void *context, int looplimit)
3586 {
3587 struct remote_state *rs = get_remote_state ();
3588 int done, i, result_count;
3589 int startflag = 1;
3590 int result = 1;
3591 int loopcount = 0;
3592
3593 done = 0;
3594 while (!done)
3595 {
3596 if (loopcount++ > looplimit)
3597 {
3598 result = 0;
3599 warning (_("Remote fetch threadlist -infinite loop-."));
3600 break;
3601 }
3602 result = remote_get_threadlist (startflag, &rs->nextthread,
3603 MAXTHREADLISTRESULTS,
3604 &done, &result_count,
3605 rs->resultthreadlist);
3606 if (result <= 0)
3607 break;
3608 /* Clear for later iterations. */
3609 startflag = 0;
3610 /* Setup to resume next batch of thread references, set nextthread. */
3611 if (result_count >= 1)
3612 copy_threadref (&rs->nextthread,
3613 &rs->resultthreadlist[result_count - 1]);
3614 i = 0;
3615 while (result_count--)
3616 {
3617 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3618 {
3619 result = 0;
3620 break;
3621 }
3622 }
3623 }
3624 return result;
3625 }
3626
3627 /* A thread found on the remote target. */
3628
3629 struct thread_item
3630 {
3631 explicit thread_item (ptid_t ptid_)
3632 : ptid (ptid_)
3633 {}
3634
3635 thread_item (thread_item &&other) = default;
3636 thread_item &operator= (thread_item &&other) = default;
3637
3638 DISABLE_COPY_AND_ASSIGN (thread_item);
3639
3640 /* The thread's PTID. */
3641 ptid_t ptid;
3642
3643 /* The thread's extra info. */
3644 std::string extra;
3645
3646 /* The thread's name. */
3647 std::string name;
3648
3649 /* The core the thread was running on. -1 if not known. */
3650 int core = -1;
3651
3652 /* The thread handle associated with the thread. */
3653 gdb::byte_vector thread_handle;
3654 };
3655
3656 /* Context passed around to the various methods listing remote
3657 threads. As new threads are found, they're added to the ITEMS
3658 vector. */
3659
3660 struct threads_listing_context
3661 {
3662 /* Return true if this object contains an entry for a thread with ptid
3663 PTID. */
3664
3665 bool contains_thread (ptid_t ptid) const
3666 {
3667 auto match_ptid = [&] (const thread_item &item)
3668 {
3669 return item.ptid == ptid;
3670 };
3671
3672 auto it = std::find_if (this->items.begin (),
3673 this->items.end (),
3674 match_ptid);
3675
3676 return it != this->items.end ();
3677 }
3678
3679 /* Remove the thread with ptid PTID. */
3680
3681 void remove_thread (ptid_t ptid)
3682 {
3683 auto match_ptid = [&] (const thread_item &item)
3684 {
3685 return item.ptid == ptid;
3686 };
3687
3688 auto it = std::remove_if (this->items.begin (),
3689 this->items.end (),
3690 match_ptid);
3691
3692 if (it != this->items.end ())
3693 this->items.erase (it);
3694 }
3695
3696 /* The threads found on the remote target. */
3697 std::vector<thread_item> items;
3698 };
3699
3700 static int
3701 remote_newthread_step (threadref *ref, void *data)
3702 {
3703 struct threads_listing_context *context
3704 = (struct threads_listing_context *) data;
3705 int pid = inferior_ptid.pid ();
3706 int lwp = threadref_to_int (ref);
3707 ptid_t ptid (pid, lwp);
3708
3709 context->items.emplace_back (ptid);
3710
3711 return 1; /* continue iterator */
3712 }
3713
3714 #define CRAZY_MAX_THREADS 1000
3715
3716 ptid_t
3717 remote_target::remote_current_thread (ptid_t oldpid)
3718 {
3719 struct remote_state *rs = get_remote_state ();
3720
3721 putpkt ("qC");
3722 getpkt (&rs->buf, 0);
3723 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3724 {
3725 const char *obuf;
3726 ptid_t result;
3727
3728 result = read_ptid (&rs->buf[2], &obuf);
3729 if (*obuf != '\0')
3730 remote_debug_printf ("warning: garbage in qC reply");
3731
3732 return result;
3733 }
3734 else
3735 return oldpid;
3736 }
3737
3738 /* List remote threads using the deprecated qL packet. */
3739
3740 int
3741 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3742 {
3743 if (remote_threadlist_iterator (remote_newthread_step, context,
3744 CRAZY_MAX_THREADS) >= 0)
3745 return 1;
3746
3747 return 0;
3748 }
3749
3750 #if defined(HAVE_LIBEXPAT)
3751
3752 static void
3753 start_thread (struct gdb_xml_parser *parser,
3754 const struct gdb_xml_element *element,
3755 void *user_data,
3756 std::vector<gdb_xml_value> &attributes)
3757 {
3758 struct threads_listing_context *data
3759 = (struct threads_listing_context *) user_data;
3760 struct gdb_xml_value *attr;
3761
3762 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3763 ptid_t ptid = read_ptid (id, NULL);
3764
3765 data->items.emplace_back (ptid);
3766 thread_item &item = data->items.back ();
3767
3768 attr = xml_find_attribute (attributes, "core");
3769 if (attr != NULL)
3770 item.core = *(ULONGEST *) attr->value.get ();
3771
3772 attr = xml_find_attribute (attributes, "name");
3773 if (attr != NULL)
3774 item.name = (const char *) attr->value.get ();
3775
3776 attr = xml_find_attribute (attributes, "handle");
3777 if (attr != NULL)
3778 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3779 }
3780
3781 static void
3782 end_thread (struct gdb_xml_parser *parser,
3783 const struct gdb_xml_element *element,
3784 void *user_data, const char *body_text)
3785 {
3786 struct threads_listing_context *data
3787 = (struct threads_listing_context *) user_data;
3788
3789 if (body_text != NULL && *body_text != '\0')
3790 data->items.back ().extra = body_text;
3791 }
3792
3793 const struct gdb_xml_attribute thread_attributes[] = {
3794 { "id", GDB_XML_AF_NONE, NULL, NULL },
3795 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3796 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3797 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3798 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3799 };
3800
3801 const struct gdb_xml_element thread_children[] = {
3802 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3803 };
3804
3805 const struct gdb_xml_element threads_children[] = {
3806 { "thread", thread_attributes, thread_children,
3807 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3808 start_thread, end_thread },
3809 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3810 };
3811
3812 const struct gdb_xml_element threads_elements[] = {
3813 { "threads", NULL, threads_children,
3814 GDB_XML_EF_NONE, NULL, NULL },
3815 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3816 };
3817
3818 #endif
3819
3820 /* List remote threads using qXfer:threads:read. */
3821
3822 int
3823 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3824 {
3825 #if defined(HAVE_LIBEXPAT)
3826 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3827 {
3828 gdb::optional<gdb::char_vector> xml
3829 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3830
3831 if (xml && (*xml)[0] != '\0')
3832 {
3833 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3834 threads_elements, xml->data (), context);
3835 }
3836
3837 return 1;
3838 }
3839 #endif
3840
3841 return 0;
3842 }
3843
3844 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3845
3846 int
3847 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3848 {
3849 struct remote_state *rs = get_remote_state ();
3850
3851 if (rs->use_threadinfo_query)
3852 {
3853 const char *bufp;
3854
3855 putpkt ("qfThreadInfo");
3856 getpkt (&rs->buf, 0);
3857 bufp = rs->buf.data ();
3858 if (bufp[0] != '\0') /* q packet recognized */
3859 {
3860 while (*bufp++ == 'm') /* reply contains one or more TID */
3861 {
3862 do
3863 {
3864 ptid_t ptid = read_ptid (bufp, &bufp);
3865 context->items.emplace_back (ptid);
3866 }
3867 while (*bufp++ == ','); /* comma-separated list */
3868 putpkt ("qsThreadInfo");
3869 getpkt (&rs->buf, 0);
3870 bufp = rs->buf.data ();
3871 }
3872 return 1;
3873 }
3874 else
3875 {
3876 /* Packet not recognized. */
3877 rs->use_threadinfo_query = 0;
3878 }
3879 }
3880
3881 return 0;
3882 }
3883
3884 /* Return true if INF only has one non-exited thread. */
3885
3886 static bool
3887 has_single_non_exited_thread (inferior *inf)
3888 {
3889 int count = 0;
3890 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3891 if (++count > 1)
3892 break;
3893 return count == 1;
3894 }
3895
3896 /* Implement the to_update_thread_list function for the remote
3897 targets. */
3898
3899 void
3900 remote_target::update_thread_list ()
3901 {
3902 struct threads_listing_context context;
3903 int got_list = 0;
3904
3905 /* We have a few different mechanisms to fetch the thread list. Try
3906 them all, starting with the most preferred one first, falling
3907 back to older methods. */
3908 if (remote_get_threads_with_qxfer (&context)
3909 || remote_get_threads_with_qthreadinfo (&context)
3910 || remote_get_threads_with_ql (&context))
3911 {
3912 got_list = 1;
3913
3914 if (context.items.empty ()
3915 && remote_thread_always_alive (inferior_ptid))
3916 {
3917 /* Some targets don't really support threads, but still
3918 reply an (empty) thread list in response to the thread
3919 listing packets, instead of replying "packet not
3920 supported". Exit early so we don't delete the main
3921 thread. */
3922 return;
3923 }
3924
3925 /* CONTEXT now holds the current thread list on the remote
3926 target end. Delete GDB-side threads no longer found on the
3927 target. */
3928 for (thread_info *tp : all_threads_safe ())
3929 {
3930 if (tp->inf->process_target () != this)
3931 continue;
3932
3933 if (!context.contains_thread (tp->ptid))
3934 {
3935 /* Do not remove the thread if it is the last thread in
3936 the inferior. This situation happens when we have a
3937 pending exit process status to process. Otherwise we
3938 may end up with a seemingly live inferior (i.e. pid
3939 != 0) that has no threads. */
3940 if (has_single_non_exited_thread (tp->inf))
3941 continue;
3942
3943 /* Not found. */
3944 delete_thread (tp);
3945 }
3946 }
3947
3948 /* Remove any unreported fork child threads from CONTEXT so
3949 that we don't interfere with follow fork, which is where
3950 creation of such threads is handled. */
3951 remove_new_fork_children (&context);
3952
3953 /* And now add threads we don't know about yet to our list. */
3954 for (thread_item &item : context.items)
3955 {
3956 if (item.ptid != null_ptid)
3957 {
3958 /* In non-stop mode, we assume new found threads are
3959 executing until proven otherwise with a stop reply.
3960 In all-stop, we can only get here if all threads are
3961 stopped. */
3962 bool executing = target_is_non_stop_p ();
3963
3964 remote_notice_new_inferior (item.ptid, executing);
3965
3966 thread_info *tp = find_thread_ptid (this, item.ptid);
3967 remote_thread_info *info = get_remote_thread_info (tp);
3968 info->core = item.core;
3969 info->extra = std::move (item.extra);
3970 info->name = std::move (item.name);
3971 info->thread_handle = std::move (item.thread_handle);
3972 }
3973 }
3974 }
3975
3976 if (!got_list)
3977 {
3978 /* If no thread listing method is supported, then query whether
3979 each known thread is alive, one by one, with the T packet.
3980 If the target doesn't support threads at all, then this is a
3981 no-op. See remote_thread_alive. */
3982 prune_threads ();
3983 }
3984 }
3985
3986 /*
3987 * Collect a descriptive string about the given thread.
3988 * The target may say anything it wants to about the thread
3989 * (typically info about its blocked / runnable state, name, etc.).
3990 * This string will appear in the info threads display.
3991 *
3992 * Optional: targets are not required to implement this function.
3993 */
3994
3995 const char *
3996 remote_target::extra_thread_info (thread_info *tp)
3997 {
3998 struct remote_state *rs = get_remote_state ();
3999 int set;
4000 threadref id;
4001 struct gdb_ext_thread_info threadinfo;
4002
4003 if (rs->remote_desc == 0) /* paranoia */
4004 internal_error (__FILE__, __LINE__,
4005 _("remote_threads_extra_info"));
4006
4007 if (tp->ptid == magic_null_ptid
4008 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
4009 /* This is the main thread which was added by GDB. The remote
4010 server doesn't know about it. */
4011 return NULL;
4012
4013 std::string &extra = get_remote_thread_info (tp)->extra;
4014
4015 /* If already have cached info, use it. */
4016 if (!extra.empty ())
4017 return extra.c_str ();
4018
4019 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4020 {
4021 /* If we're using qXfer:threads:read, then the extra info is
4022 included in the XML. So if we didn't have anything cached,
4023 it's because there's really no extra info. */
4024 return NULL;
4025 }
4026
4027 if (rs->use_threadextra_query)
4028 {
4029 char *b = rs->buf.data ();
4030 char *endb = b + get_remote_packet_size ();
4031
4032 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4033 b += strlen (b);
4034 write_ptid (b, endb, tp->ptid);
4035
4036 putpkt (rs->buf);
4037 getpkt (&rs->buf, 0);
4038 if (rs->buf[0] != 0)
4039 {
4040 extra.resize (strlen (rs->buf.data ()) / 2);
4041 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4042 return extra.c_str ();
4043 }
4044 }
4045
4046 /* If the above query fails, fall back to the old method. */
4047 rs->use_threadextra_query = 0;
4048 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4049 | TAG_MOREDISPLAY | TAG_DISPLAY;
4050 int_to_threadref (&id, tp->ptid.lwp ());
4051 if (remote_get_threadinfo (&id, set, &threadinfo))
4052 if (threadinfo.active)
4053 {
4054 if (*threadinfo.shortname)
4055 string_appendf (extra, " Name: %s", threadinfo.shortname);
4056 if (*threadinfo.display)
4057 {
4058 if (!extra.empty ())
4059 extra += ',';
4060 string_appendf (extra, " State: %s", threadinfo.display);
4061 }
4062 if (*threadinfo.more_display)
4063 {
4064 if (!extra.empty ())
4065 extra += ',';
4066 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4067 }
4068 return extra.c_str ();
4069 }
4070 return NULL;
4071 }
4072 \f
4073
4074 bool
4075 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4076 struct static_tracepoint_marker *marker)
4077 {
4078 struct remote_state *rs = get_remote_state ();
4079 char *p = rs->buf.data ();
4080
4081 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4082 p += strlen (p);
4083 p += hexnumstr (p, addr);
4084 putpkt (rs->buf);
4085 getpkt (&rs->buf, 0);
4086 p = rs->buf.data ();
4087
4088 if (*p == 'E')
4089 error (_("Remote failure reply: %s"), p);
4090
4091 if (*p++ == 'm')
4092 {
4093 parse_static_tracepoint_marker_definition (p, NULL, marker);
4094 return true;
4095 }
4096
4097 return false;
4098 }
4099
4100 std::vector<static_tracepoint_marker>
4101 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4102 {
4103 struct remote_state *rs = get_remote_state ();
4104 std::vector<static_tracepoint_marker> markers;
4105 const char *p;
4106 static_tracepoint_marker marker;
4107
4108 /* Ask for a first packet of static tracepoint marker
4109 definition. */
4110 putpkt ("qTfSTM");
4111 getpkt (&rs->buf, 0);
4112 p = rs->buf.data ();
4113 if (*p == 'E')
4114 error (_("Remote failure reply: %s"), p);
4115
4116 while (*p++ == 'm')
4117 {
4118 do
4119 {
4120 parse_static_tracepoint_marker_definition (p, &p, &marker);
4121
4122 if (strid == NULL || marker.str_id == strid)
4123 markers.push_back (std::move (marker));
4124 }
4125 while (*p++ == ','); /* comma-separated list */
4126 /* Ask for another packet of static tracepoint definition. */
4127 putpkt ("qTsSTM");
4128 getpkt (&rs->buf, 0);
4129 p = rs->buf.data ();
4130 }
4131
4132 return markers;
4133 }
4134
4135 \f
4136 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4137
4138 ptid_t
4139 remote_target::get_ada_task_ptid (long lwp, long thread)
4140 {
4141 return ptid_t (inferior_ptid.pid (), lwp, 0);
4142 }
4143 \f
4144
4145 /* Restart the remote side; this is an extended protocol operation. */
4146
4147 void
4148 remote_target::extended_remote_restart ()
4149 {
4150 struct remote_state *rs = get_remote_state ();
4151
4152 /* Send the restart command; for reasons I don't understand the
4153 remote side really expects a number after the "R". */
4154 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4155 putpkt (rs->buf);
4156
4157 remote_fileio_reset ();
4158 }
4159 \f
4160 /* Clean up connection to a remote debugger. */
4161
4162 void
4163 remote_target::close ()
4164 {
4165 /* Make sure we leave stdin registered in the event loop. */
4166 terminal_ours ();
4167
4168 trace_reset_local_state ();
4169
4170 delete this;
4171 }
4172
4173 remote_target::~remote_target ()
4174 {
4175 struct remote_state *rs = get_remote_state ();
4176
4177 /* Check for NULL because we may get here with a partially
4178 constructed target/connection. */
4179 if (rs->remote_desc == nullptr)
4180 return;
4181
4182 serial_close (rs->remote_desc);
4183
4184 /* We are destroying the remote target, so we should discard
4185 everything of this target. */
4186 discard_pending_stop_replies_in_queue ();
4187
4188 if (rs->remote_async_inferior_event_token)
4189 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4190
4191 delete rs->notif_state;
4192 }
4193
4194 /* Query the remote side for the text, data and bss offsets. */
4195
4196 void
4197 remote_target::get_offsets ()
4198 {
4199 struct remote_state *rs = get_remote_state ();
4200 char *buf;
4201 char *ptr;
4202 int lose, num_segments = 0, do_sections, do_segments;
4203 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4204
4205 if (current_program_space->symfile_object_file == NULL)
4206 return;
4207
4208 putpkt ("qOffsets");
4209 getpkt (&rs->buf, 0);
4210 buf = rs->buf.data ();
4211
4212 if (buf[0] == '\000')
4213 return; /* Return silently. Stub doesn't support
4214 this command. */
4215 if (buf[0] == 'E')
4216 {
4217 warning (_("Remote failure reply: %s"), buf);
4218 return;
4219 }
4220
4221 /* Pick up each field in turn. This used to be done with scanf, but
4222 scanf will make trouble if CORE_ADDR size doesn't match
4223 conversion directives correctly. The following code will work
4224 with any size of CORE_ADDR. */
4225 text_addr = data_addr = bss_addr = 0;
4226 ptr = buf;
4227 lose = 0;
4228
4229 if (startswith (ptr, "Text="))
4230 {
4231 ptr += 5;
4232 /* Don't use strtol, could lose on big values. */
4233 while (*ptr && *ptr != ';')
4234 text_addr = (text_addr << 4) + fromhex (*ptr++);
4235
4236 if (startswith (ptr, ";Data="))
4237 {
4238 ptr += 6;
4239 while (*ptr && *ptr != ';')
4240 data_addr = (data_addr << 4) + fromhex (*ptr++);
4241 }
4242 else
4243 lose = 1;
4244
4245 if (!lose && startswith (ptr, ";Bss="))
4246 {
4247 ptr += 5;
4248 while (*ptr && *ptr != ';')
4249 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4250
4251 if (bss_addr != data_addr)
4252 warning (_("Target reported unsupported offsets: %s"), buf);
4253 }
4254 else
4255 lose = 1;
4256 }
4257 else if (startswith (ptr, "TextSeg="))
4258 {
4259 ptr += 8;
4260 /* Don't use strtol, could lose on big values. */
4261 while (*ptr && *ptr != ';')
4262 text_addr = (text_addr << 4) + fromhex (*ptr++);
4263 num_segments = 1;
4264
4265 if (startswith (ptr, ";DataSeg="))
4266 {
4267 ptr += 9;
4268 while (*ptr && *ptr != ';')
4269 data_addr = (data_addr << 4) + fromhex (*ptr++);
4270 num_segments++;
4271 }
4272 }
4273 else
4274 lose = 1;
4275
4276 if (lose)
4277 error (_("Malformed response to offset query, %s"), buf);
4278 else if (*ptr != '\0')
4279 warning (_("Target reported unsupported offsets: %s"), buf);
4280
4281 objfile *objf = current_program_space->symfile_object_file;
4282 section_offsets offs = objf->section_offsets;
4283
4284 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4285 do_segments = (data != NULL);
4286 do_sections = num_segments == 0;
4287
4288 if (num_segments > 0)
4289 {
4290 segments[0] = text_addr;
4291 segments[1] = data_addr;
4292 }
4293 /* If we have two segments, we can still try to relocate everything
4294 by assuming that the .text and .data offsets apply to the whole
4295 text and data segments. Convert the offsets given in the packet
4296 to base addresses for symfile_map_offsets_to_segments. */
4297 else if (data != nullptr && data->segments.size () == 2)
4298 {
4299 segments[0] = data->segments[0].base + text_addr;
4300 segments[1] = data->segments[1].base + data_addr;
4301 num_segments = 2;
4302 }
4303 /* If the object file has only one segment, assume that it is text
4304 rather than data; main programs with no writable data are rare,
4305 but programs with no code are useless. Of course the code might
4306 have ended up in the data segment... to detect that we would need
4307 the permissions here. */
4308 else if (data && data->segments.size () == 1)
4309 {
4310 segments[0] = data->segments[0].base + text_addr;
4311 num_segments = 1;
4312 }
4313 /* There's no way to relocate by segment. */
4314 else
4315 do_segments = 0;
4316
4317 if (do_segments)
4318 {
4319 int ret = symfile_map_offsets_to_segments (objf->obfd,
4320 data.get (), offs,
4321 num_segments, segments);
4322
4323 if (ret == 0 && !do_sections)
4324 error (_("Can not handle qOffsets TextSeg "
4325 "response with this symbol file"));
4326
4327 if (ret > 0)
4328 do_sections = 0;
4329 }
4330
4331 if (do_sections)
4332 {
4333 offs[SECT_OFF_TEXT (objf)] = text_addr;
4334
4335 /* This is a temporary kludge to force data and bss to use the
4336 same offsets because that's what nlmconv does now. The real
4337 solution requires changes to the stub and remote.c that I
4338 don't have time to do right now. */
4339
4340 offs[SECT_OFF_DATA (objf)] = data_addr;
4341 offs[SECT_OFF_BSS (objf)] = data_addr;
4342 }
4343
4344 objfile_relocate (objf, offs);
4345 }
4346
4347 /* Send interrupt_sequence to remote target. */
4348
4349 void
4350 remote_target::send_interrupt_sequence ()
4351 {
4352 struct remote_state *rs = get_remote_state ();
4353
4354 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4355 remote_serial_write ("\x03", 1);
4356 else if (interrupt_sequence_mode == interrupt_sequence_break)
4357 serial_send_break (rs->remote_desc);
4358 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4359 {
4360 serial_send_break (rs->remote_desc);
4361 remote_serial_write ("g", 1);
4362 }
4363 else
4364 internal_error (__FILE__, __LINE__,
4365 _("Invalid value for interrupt_sequence_mode: %s."),
4366 interrupt_sequence_mode);
4367 }
4368
4369
4370 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4371 and extract the PTID. Returns NULL_PTID if not found. */
4372
4373 static ptid_t
4374 stop_reply_extract_thread (const char *stop_reply)
4375 {
4376 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4377 {
4378 const char *p;
4379
4380 /* Txx r:val ; r:val (...) */
4381 p = &stop_reply[3];
4382
4383 /* Look for "register" named "thread". */
4384 while (*p != '\0')
4385 {
4386 const char *p1;
4387
4388 p1 = strchr (p, ':');
4389 if (p1 == NULL)
4390 return null_ptid;
4391
4392 if (strncmp (p, "thread", p1 - p) == 0)
4393 return read_ptid (++p1, &p);
4394
4395 p1 = strchr (p, ';');
4396 if (p1 == NULL)
4397 return null_ptid;
4398 p1++;
4399
4400 p = p1;
4401 }
4402 }
4403
4404 return null_ptid;
4405 }
4406
4407 /* Determine the remote side's current thread. If we have a stop
4408 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4409 "thread" register we can extract the current thread from. If not,
4410 ask the remote which is the current thread with qC. The former
4411 method avoids a roundtrip. */
4412
4413 ptid_t
4414 remote_target::get_current_thread (const char *wait_status)
4415 {
4416 ptid_t ptid = null_ptid;
4417
4418 /* Note we don't use remote_parse_stop_reply as that makes use of
4419 the target architecture, which we haven't yet fully determined at
4420 this point. */
4421 if (wait_status != NULL)
4422 ptid = stop_reply_extract_thread (wait_status);
4423 if (ptid == null_ptid)
4424 ptid = remote_current_thread (inferior_ptid);
4425
4426 return ptid;
4427 }
4428
4429 /* Query the remote target for which is the current thread/process,
4430 add it to our tables, and update INFERIOR_PTID. The caller is
4431 responsible for setting the state such that the remote end is ready
4432 to return the current thread.
4433
4434 This function is called after handling the '?' or 'vRun' packets,
4435 whose response is a stop reply from which we can also try
4436 extracting the thread. If the target doesn't support the explicit
4437 qC query, we infer the current thread from that stop reply, passed
4438 in in WAIT_STATUS, which may be NULL.
4439
4440 The function returns pointer to the main thread of the inferior. */
4441
4442 thread_info *
4443 remote_target::add_current_inferior_and_thread (const char *wait_status)
4444 {
4445 struct remote_state *rs = get_remote_state ();
4446 bool fake_pid_p = false;
4447
4448 switch_to_no_thread ();
4449
4450 /* Now, if we have thread information, update the current thread's
4451 ptid. */
4452 ptid_t curr_ptid = get_current_thread (wait_status);
4453
4454 if (curr_ptid != null_ptid)
4455 {
4456 if (!remote_multi_process_p (rs))
4457 fake_pid_p = true;
4458 }
4459 else
4460 {
4461 /* Without this, some commands which require an active target
4462 (such as kill) won't work. This variable serves (at least)
4463 double duty as both the pid of the target process (if it has
4464 such), and as a flag indicating that a target is active. */
4465 curr_ptid = magic_null_ptid;
4466 fake_pid_p = true;
4467 }
4468
4469 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4470
4471 /* Add the main thread and switch to it. Don't try reading
4472 registers yet, since we haven't fetched the target description
4473 yet. */
4474 thread_info *tp = add_thread_silent (this, curr_ptid);
4475 switch_to_thread_no_regs (tp);
4476
4477 return tp;
4478 }
4479
4480 /* Print info about a thread that was found already stopped on
4481 connection. */
4482
4483 void
4484 remote_target::print_one_stopped_thread (thread_info *thread)
4485 {
4486 target_waitstatus ws;
4487
4488 /* If there is a pending waitstatus, use it. If there isn't it's because
4489 the thread's stop was reported with TARGET_WAITKIND_STOPPED / GDB_SIGNAL_0
4490 and process_initial_stop_replies decided it wasn't interesting to save
4491 and report to the core. */
4492 if (thread->has_pending_waitstatus ())
4493 {
4494 ws = thread->pending_waitstatus ();
4495 thread->clear_pending_waitstatus ();
4496 }
4497 else
4498 {
4499 ws.kind = TARGET_WAITKIND_STOPPED;
4500 ws.value.sig = GDB_SIGNAL_0;
4501 }
4502
4503 switch_to_thread (thread);
4504 thread->set_stop_pc (get_frame_pc (get_current_frame ()));
4505 set_current_sal_from_frame (get_current_frame ());
4506
4507 /* For "info program". */
4508 set_last_target_status (this, thread->ptid, ws);
4509
4510 if (ws.kind == TARGET_WAITKIND_STOPPED)
4511 {
4512 enum gdb_signal sig = ws.value.sig;
4513
4514 if (signal_print_state (sig))
4515 gdb::observers::signal_received.notify (sig);
4516 }
4517 gdb::observers::normal_stop.notify (NULL, 1);
4518 }
4519
4520 /* Process all initial stop replies the remote side sent in response
4521 to the ? packet. These indicate threads that were already stopped
4522 on initial connection. We mark these threads as stopped and print
4523 their current frame before giving the user the prompt. */
4524
4525 void
4526 remote_target::process_initial_stop_replies (int from_tty)
4527 {
4528 int pending_stop_replies = stop_reply_queue_length ();
4529 struct thread_info *selected = NULL;
4530 struct thread_info *lowest_stopped = NULL;
4531 struct thread_info *first = NULL;
4532
4533 /* This is only used when the target is non-stop. */
4534 gdb_assert (target_is_non_stop_p ());
4535
4536 /* Consume the initial pending events. */
4537 while (pending_stop_replies-- > 0)
4538 {
4539 ptid_t waiton_ptid = minus_one_ptid;
4540 ptid_t event_ptid;
4541 struct target_waitstatus ws;
4542 int ignore_event = 0;
4543
4544 memset (&ws, 0, sizeof (ws));
4545 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4546 if (remote_debug)
4547 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4548
4549 switch (ws.kind)
4550 {
4551 case TARGET_WAITKIND_IGNORE:
4552 case TARGET_WAITKIND_NO_RESUMED:
4553 case TARGET_WAITKIND_SIGNALLED:
4554 case TARGET_WAITKIND_EXITED:
4555 /* We shouldn't see these, but if we do, just ignore. */
4556 remote_debug_printf ("event ignored");
4557 ignore_event = 1;
4558 break;
4559
4560 case TARGET_WAITKIND_EXECD:
4561 xfree (ws.value.execd_pathname);
4562 break;
4563 default:
4564 break;
4565 }
4566
4567 if (ignore_event)
4568 continue;
4569
4570 thread_info *evthread = find_thread_ptid (this, event_ptid);
4571
4572 if (ws.kind == TARGET_WAITKIND_STOPPED)
4573 {
4574 enum gdb_signal sig = ws.value.sig;
4575
4576 /* Stubs traditionally report SIGTRAP as initial signal,
4577 instead of signal 0. Suppress it. */
4578 if (sig == GDB_SIGNAL_TRAP)
4579 sig = GDB_SIGNAL_0;
4580 evthread->set_stop_signal (sig);
4581 ws.value.sig = sig;
4582 }
4583
4584 if (ws.kind != TARGET_WAITKIND_STOPPED
4585 || ws.value.sig != GDB_SIGNAL_0)
4586 evthread->set_pending_waitstatus (ws);
4587
4588 set_executing (this, event_ptid, false);
4589 set_running (this, event_ptid, false);
4590 get_remote_thread_info (evthread)->set_not_resumed ();
4591 }
4592
4593 /* "Notice" the new inferiors before anything related to
4594 registers/memory. */
4595 for (inferior *inf : all_non_exited_inferiors (this))
4596 {
4597 inf->needs_setup = 1;
4598
4599 if (non_stop)
4600 {
4601 thread_info *thread = any_live_thread_of_inferior (inf);
4602 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4603 from_tty);
4604 }
4605 }
4606
4607 /* If all-stop on top of non-stop, pause all threads. Note this
4608 records the threads' stop pc, so must be done after "noticing"
4609 the inferiors. */
4610 if (!non_stop)
4611 {
4612 stop_all_threads ();
4613
4614 /* If all threads of an inferior were already stopped, we
4615 haven't setup the inferior yet. */
4616 for (inferior *inf : all_non_exited_inferiors (this))
4617 {
4618 if (inf->needs_setup)
4619 {
4620 thread_info *thread = any_live_thread_of_inferior (inf);
4621 switch_to_thread_no_regs (thread);
4622 setup_inferior (0);
4623 }
4624 }
4625 }
4626
4627 /* Now go over all threads that are stopped, and print their current
4628 frame. If all-stop, then if there's a signalled thread, pick
4629 that as current. */
4630 for (thread_info *thread : all_non_exited_threads (this))
4631 {
4632 if (first == NULL)
4633 first = thread;
4634
4635 if (!non_stop)
4636 thread->set_running (false);
4637 else if (thread->state != THREAD_STOPPED)
4638 continue;
4639
4640 if (selected == nullptr && thread->has_pending_waitstatus ())
4641 selected = thread;
4642
4643 if (lowest_stopped == NULL
4644 || thread->inf->num < lowest_stopped->inf->num
4645 || thread->per_inf_num < lowest_stopped->per_inf_num)
4646 lowest_stopped = thread;
4647
4648 if (non_stop)
4649 print_one_stopped_thread (thread);
4650 }
4651
4652 /* In all-stop, we only print the status of one thread, and leave
4653 others with their status pending. */
4654 if (!non_stop)
4655 {
4656 thread_info *thread = selected;
4657 if (thread == NULL)
4658 thread = lowest_stopped;
4659 if (thread == NULL)
4660 thread = first;
4661
4662 print_one_stopped_thread (thread);
4663 }
4664 }
4665
4666 /* Start the remote connection and sync state. */
4667
4668 void
4669 remote_target::start_remote (int from_tty, int extended_p)
4670 {
4671 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4672
4673 struct remote_state *rs = get_remote_state ();
4674 struct packet_config *noack_config;
4675
4676 /* Signal other parts that we're going through the initial setup,
4677 and so things may not be stable yet. E.g., we don't try to
4678 install tracepoints until we've relocated symbols. Also, a
4679 Ctrl-C before we're connected and synced up can't interrupt the
4680 target. Instead, it offers to drop the (potentially wedged)
4681 connection. */
4682 rs->starting_up = true;
4683
4684 QUIT;
4685
4686 if (interrupt_on_connect)
4687 send_interrupt_sequence ();
4688
4689 /* Ack any packet which the remote side has already sent. */
4690 remote_serial_write ("+", 1);
4691
4692 /* The first packet we send to the target is the optional "supported
4693 packets" request. If the target can answer this, it will tell us
4694 which later probes to skip. */
4695 remote_query_supported ();
4696
4697 /* If the stub wants to get a QAllow, compose one and send it. */
4698 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4699 set_permissions ();
4700
4701 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4702 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4703 as a reply to known packet. For packet "vFile:setfs:" it is an
4704 invalid reply and GDB would return error in
4705 remote_hostio_set_filesystem, making remote files access impossible.
4706 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4707 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4708 {
4709 const char v_mustreplyempty[] = "vMustReplyEmpty";
4710
4711 putpkt (v_mustreplyempty);
4712 getpkt (&rs->buf, 0);
4713 if (strcmp (rs->buf.data (), "OK") == 0)
4714 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4715 else if (strcmp (rs->buf.data (), "") != 0)
4716 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4717 rs->buf.data ());
4718 }
4719
4720 /* Next, we possibly activate noack mode.
4721
4722 If the QStartNoAckMode packet configuration is set to AUTO,
4723 enable noack mode if the stub reported a wish for it with
4724 qSupported.
4725
4726 If set to TRUE, then enable noack mode even if the stub didn't
4727 report it in qSupported. If the stub doesn't reply OK, the
4728 session ends with an error.
4729
4730 If FALSE, then don't activate noack mode, regardless of what the
4731 stub claimed should be the default with qSupported. */
4732
4733 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4734 if (packet_config_support (noack_config) != PACKET_DISABLE)
4735 {
4736 putpkt ("QStartNoAckMode");
4737 getpkt (&rs->buf, 0);
4738 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4739 rs->noack_mode = 1;
4740 }
4741
4742 if (extended_p)
4743 {
4744 /* Tell the remote that we are using the extended protocol. */
4745 putpkt ("!");
4746 getpkt (&rs->buf, 0);
4747 }
4748
4749 /* Let the target know which signals it is allowed to pass down to
4750 the program. */
4751 update_signals_program_target ();
4752
4753 /* Next, if the target can specify a description, read it. We do
4754 this before anything involving memory or registers. */
4755 target_find_description ();
4756
4757 /* Next, now that we know something about the target, update the
4758 address spaces in the program spaces. */
4759 update_address_spaces ();
4760
4761 /* On OSs where the list of libraries is global to all
4762 processes, we fetch them early. */
4763 if (gdbarch_has_global_solist (target_gdbarch ()))
4764 solib_add (NULL, from_tty, auto_solib_add);
4765
4766 if (target_is_non_stop_p ())
4767 {
4768 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4769 error (_("Non-stop mode requested, but remote "
4770 "does not support non-stop"));
4771
4772 putpkt ("QNonStop:1");
4773 getpkt (&rs->buf, 0);
4774
4775 if (strcmp (rs->buf.data (), "OK") != 0)
4776 error (_("Remote refused setting non-stop mode with: %s"),
4777 rs->buf.data ());
4778
4779 /* Find about threads and processes the stub is already
4780 controlling. We default to adding them in the running state.
4781 The '?' query below will then tell us about which threads are
4782 stopped. */
4783 this->update_thread_list ();
4784 }
4785 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4786 {
4787 /* Don't assume that the stub can operate in all-stop mode.
4788 Request it explicitly. */
4789 putpkt ("QNonStop:0");
4790 getpkt (&rs->buf, 0);
4791
4792 if (strcmp (rs->buf.data (), "OK") != 0)
4793 error (_("Remote refused setting all-stop mode with: %s"),
4794 rs->buf.data ());
4795 }
4796
4797 /* Upload TSVs regardless of whether the target is running or not. The
4798 remote stub, such as GDBserver, may have some predefined or builtin
4799 TSVs, even if the target is not running. */
4800 if (get_trace_status (current_trace_status ()) != -1)
4801 {
4802 struct uploaded_tsv *uploaded_tsvs = NULL;
4803
4804 upload_trace_state_variables (&uploaded_tsvs);
4805 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4806 }
4807
4808 /* Check whether the target is running now. */
4809 putpkt ("?");
4810 getpkt (&rs->buf, 0);
4811
4812 if (!target_is_non_stop_p ())
4813 {
4814 char *wait_status = NULL;
4815
4816 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4817 {
4818 if (!extended_p)
4819 error (_("The target is not running (try extended-remote?)"));
4820
4821 /* We're connected, but not running. Drop out before we
4822 call start_remote. */
4823 rs->starting_up = false;
4824 return;
4825 }
4826 else
4827 {
4828 /* Save the reply for later. */
4829 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4830 strcpy (wait_status, rs->buf.data ());
4831 }
4832
4833 /* Fetch thread list. */
4834 target_update_thread_list ();
4835
4836 /* Let the stub know that we want it to return the thread. */
4837 set_continue_thread (minus_one_ptid);
4838
4839 if (thread_count (this) == 0)
4840 {
4841 /* Target has no concept of threads at all. GDB treats
4842 non-threaded target as single-threaded; add a main
4843 thread. */
4844 thread_info *tp = add_current_inferior_and_thread (wait_status);
4845 get_remote_thread_info (tp)->set_resumed ();
4846 }
4847 else
4848 {
4849 /* We have thread information; select the thread the target
4850 says should be current. If we're reconnecting to a
4851 multi-threaded program, this will ideally be the thread
4852 that last reported an event before GDB disconnected. */
4853 ptid_t curr_thread = get_current_thread (wait_status);
4854 if (curr_thread == null_ptid)
4855 {
4856 /* Odd... The target was able to list threads, but not
4857 tell us which thread was current (no "thread"
4858 register in T stop reply?). Just pick the first
4859 thread in the thread list then. */
4860
4861 remote_debug_printf ("warning: couldn't determine remote "
4862 "current thread; picking first in list.");
4863
4864 for (thread_info *tp : all_non_exited_threads (this,
4865 minus_one_ptid))
4866 {
4867 switch_to_thread (tp);
4868 break;
4869 }
4870 }
4871 else
4872 switch_to_thread (find_thread_ptid (this, curr_thread));
4873 }
4874
4875 /* init_wait_for_inferior should be called before get_offsets in order
4876 to manage `inserted' flag in bp loc in a correct state.
4877 breakpoint_init_inferior, called from init_wait_for_inferior, set
4878 `inserted' flag to 0, while before breakpoint_re_set, called from
4879 start_remote, set `inserted' flag to 1. In the initialization of
4880 inferior, breakpoint_init_inferior should be called first, and then
4881 breakpoint_re_set can be called. If this order is broken, state of
4882 `inserted' flag is wrong, and cause some problems on breakpoint
4883 manipulation. */
4884 init_wait_for_inferior ();
4885
4886 get_offsets (); /* Get text, data & bss offsets. */
4887
4888 /* If we could not find a description using qXfer, and we know
4889 how to do it some other way, try again. This is not
4890 supported for non-stop; it could be, but it is tricky if
4891 there are no stopped threads when we connect. */
4892 if (remote_read_description_p (this)
4893 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4894 {
4895 target_clear_description ();
4896 target_find_description ();
4897 }
4898
4899 /* Use the previously fetched status. */
4900 gdb_assert (wait_status != NULL);
4901 strcpy (rs->buf.data (), wait_status);
4902 rs->cached_wait_status = 1;
4903
4904 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4905 }
4906 else
4907 {
4908 /* Clear WFI global state. Do this before finding about new
4909 threads and inferiors, and setting the current inferior.
4910 Otherwise we would clear the proceed status of the current
4911 inferior when we want its stop_soon state to be preserved
4912 (see notice_new_inferior). */
4913 init_wait_for_inferior ();
4914
4915 /* In non-stop, we will either get an "OK", meaning that there
4916 are no stopped threads at this time; or, a regular stop
4917 reply. In the latter case, there may be more than one thread
4918 stopped --- we pull them all out using the vStopped
4919 mechanism. */
4920 if (strcmp (rs->buf.data (), "OK") != 0)
4921 {
4922 struct notif_client *notif = &notif_client_stop;
4923
4924 /* remote_notif_get_pending_replies acks this one, and gets
4925 the rest out. */
4926 rs->notif_state->pending_event[notif_client_stop.id]
4927 = remote_notif_parse (this, notif, rs->buf.data ());
4928 remote_notif_get_pending_events (notif);
4929 }
4930
4931 if (thread_count (this) == 0)
4932 {
4933 if (!extended_p)
4934 error (_("The target is not running (try extended-remote?)"));
4935
4936 /* We're connected, but not running. Drop out before we
4937 call start_remote. */
4938 rs->starting_up = false;
4939 return;
4940 }
4941
4942 /* Report all signals during attach/startup. */
4943 pass_signals ({});
4944
4945 /* If there are already stopped threads, mark them stopped and
4946 report their stops before giving the prompt to the user. */
4947 process_initial_stop_replies (from_tty);
4948
4949 if (target_can_async_p ())
4950 target_async (1);
4951 }
4952
4953 /* If we connected to a live target, do some additional setup. */
4954 if (target_has_execution ())
4955 {
4956 /* No use without a symbol-file. */
4957 if (current_program_space->symfile_object_file)
4958 remote_check_symbols ();
4959 }
4960
4961 /* Possibly the target has been engaged in a trace run started
4962 previously; find out where things are at. */
4963 if (get_trace_status (current_trace_status ()) != -1)
4964 {
4965 struct uploaded_tp *uploaded_tps = NULL;
4966
4967 if (current_trace_status ()->running)
4968 printf_filtered (_("Trace is already running on the target.\n"));
4969
4970 upload_tracepoints (&uploaded_tps);
4971
4972 merge_uploaded_tracepoints (&uploaded_tps);
4973 }
4974
4975 /* Possibly the target has been engaged in a btrace record started
4976 previously; find out where things are at. */
4977 remote_btrace_maybe_reopen ();
4978
4979 /* The thread and inferior lists are now synchronized with the
4980 target, our symbols have been relocated, and we're merged the
4981 target's tracepoints with ours. We're done with basic start
4982 up. */
4983 rs->starting_up = false;
4984
4985 /* Maybe breakpoints are global and need to be inserted now. */
4986 if (breakpoints_should_be_inserted_now ())
4987 insert_breakpoints ();
4988 }
4989
4990 const char *
4991 remote_target::connection_string ()
4992 {
4993 remote_state *rs = get_remote_state ();
4994
4995 if (rs->remote_desc->name != NULL)
4996 return rs->remote_desc->name;
4997 else
4998 return NULL;
4999 }
5000
5001 /* Open a connection to a remote debugger.
5002 NAME is the filename used for communication. */
5003
5004 void
5005 remote_target::open (const char *name, int from_tty)
5006 {
5007 open_1 (name, from_tty, 0);
5008 }
5009
5010 /* Open a connection to a remote debugger using the extended
5011 remote gdb protocol. NAME is the filename used for communication. */
5012
5013 void
5014 extended_remote_target::open (const char *name, int from_tty)
5015 {
5016 open_1 (name, from_tty, 1 /*extended_p */);
5017 }
5018
5019 /* Reset all packets back to "unknown support". Called when opening a
5020 new connection to a remote target. */
5021
5022 static void
5023 reset_all_packet_configs_support (void)
5024 {
5025 int i;
5026
5027 for (i = 0; i < PACKET_MAX; i++)
5028 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5029 }
5030
5031 /* Initialize all packet configs. */
5032
5033 static void
5034 init_all_packet_configs (void)
5035 {
5036 int i;
5037
5038 for (i = 0; i < PACKET_MAX; i++)
5039 {
5040 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5041 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5042 }
5043 }
5044
5045 /* Symbol look-up. */
5046
5047 void
5048 remote_target::remote_check_symbols ()
5049 {
5050 char *tmp;
5051 int end;
5052
5053 /* The remote side has no concept of inferiors that aren't running
5054 yet, it only knows about running processes. If we're connected
5055 but our current inferior is not running, we should not invite the
5056 remote target to request symbol lookups related to its
5057 (unrelated) current process. */
5058 if (!target_has_execution ())
5059 return;
5060
5061 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5062 return;
5063
5064 /* Make sure the remote is pointing at the right process. Note
5065 there's no way to select "no process". */
5066 set_general_process ();
5067
5068 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5069 because we need both at the same time. */
5070 gdb::char_vector msg (get_remote_packet_size ());
5071 gdb::char_vector reply (get_remote_packet_size ());
5072
5073 /* Invite target to request symbol lookups. */
5074
5075 putpkt ("qSymbol::");
5076 getpkt (&reply, 0);
5077 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5078
5079 while (startswith (reply.data (), "qSymbol:"))
5080 {
5081 struct bound_minimal_symbol sym;
5082
5083 tmp = &reply[8];
5084 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5085 strlen (tmp) / 2);
5086 msg[end] = '\0';
5087 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5088 if (sym.minsym == NULL)
5089 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5090 &reply[8]);
5091 else
5092 {
5093 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5094 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5095
5096 /* If this is a function address, return the start of code
5097 instead of any data function descriptor. */
5098 sym_addr = gdbarch_convert_from_func_ptr_addr
5099 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
5100
5101 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5102 phex_nz (sym_addr, addr_size), &reply[8]);
5103 }
5104
5105 putpkt (msg.data ());
5106 getpkt (&reply, 0);
5107 }
5108 }
5109
5110 static struct serial *
5111 remote_serial_open (const char *name)
5112 {
5113 static int udp_warning = 0;
5114
5115 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5116 of in ser-tcp.c, because it is the remote protocol assuming that the
5117 serial connection is reliable and not the serial connection promising
5118 to be. */
5119 if (!udp_warning && startswith (name, "udp:"))
5120 {
5121 warning (_("The remote protocol may be unreliable over UDP.\n"
5122 "Some events may be lost, rendering further debugging "
5123 "impossible."));
5124 udp_warning = 1;
5125 }
5126
5127 return serial_open (name);
5128 }
5129
5130 /* Inform the target of our permission settings. The permission flags
5131 work without this, but if the target knows the settings, it can do
5132 a couple things. First, it can add its own check, to catch cases
5133 that somehow manage to get by the permissions checks in target
5134 methods. Second, if the target is wired to disallow particular
5135 settings (for instance, a system in the field that is not set up to
5136 be able to stop at a breakpoint), it can object to any unavailable
5137 permissions. */
5138
5139 void
5140 remote_target::set_permissions ()
5141 {
5142 struct remote_state *rs = get_remote_state ();
5143
5144 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5145 "WriteReg:%x;WriteMem:%x;"
5146 "InsertBreak:%x;InsertTrace:%x;"
5147 "InsertFastTrace:%x;Stop:%x",
5148 may_write_registers, may_write_memory,
5149 may_insert_breakpoints, may_insert_tracepoints,
5150 may_insert_fast_tracepoints, may_stop);
5151 putpkt (rs->buf);
5152 getpkt (&rs->buf, 0);
5153
5154 /* If the target didn't like the packet, warn the user. Do not try
5155 to undo the user's settings, that would just be maddening. */
5156 if (strcmp (rs->buf.data (), "OK") != 0)
5157 warning (_("Remote refused setting permissions with: %s"),
5158 rs->buf.data ());
5159 }
5160
5161 /* This type describes each known response to the qSupported
5162 packet. */
5163 struct protocol_feature
5164 {
5165 /* The name of this protocol feature. */
5166 const char *name;
5167
5168 /* The default for this protocol feature. */
5169 enum packet_support default_support;
5170
5171 /* The function to call when this feature is reported, or after
5172 qSupported processing if the feature is not supported.
5173 The first argument points to this structure. The second
5174 argument indicates whether the packet requested support be
5175 enabled, disabled, or probed (or the default, if this function
5176 is being called at the end of processing and this feature was
5177 not reported). The third argument may be NULL; if not NULL, it
5178 is a NUL-terminated string taken from the packet following
5179 this feature's name and an equals sign. */
5180 void (*func) (remote_target *remote, const struct protocol_feature *,
5181 enum packet_support, const char *);
5182
5183 /* The corresponding packet for this feature. Only used if
5184 FUNC is remote_supported_packet. */
5185 int packet;
5186 };
5187
5188 static void
5189 remote_supported_packet (remote_target *remote,
5190 const struct protocol_feature *feature,
5191 enum packet_support support,
5192 const char *argument)
5193 {
5194 if (argument)
5195 {
5196 warning (_("Remote qSupported response supplied an unexpected value for"
5197 " \"%s\"."), feature->name);
5198 return;
5199 }
5200
5201 remote_protocol_packets[feature->packet].support = support;
5202 }
5203
5204 void
5205 remote_target::remote_packet_size (const protocol_feature *feature,
5206 enum packet_support support, const char *value)
5207 {
5208 struct remote_state *rs = get_remote_state ();
5209
5210 int packet_size;
5211 char *value_end;
5212
5213 if (support != PACKET_ENABLE)
5214 return;
5215
5216 if (value == NULL || *value == '\0')
5217 {
5218 warning (_("Remote target reported \"%s\" without a size."),
5219 feature->name);
5220 return;
5221 }
5222
5223 errno = 0;
5224 packet_size = strtol (value, &value_end, 16);
5225 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5226 {
5227 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5228 feature->name, value);
5229 return;
5230 }
5231
5232 /* Record the new maximum packet size. */
5233 rs->explicit_packet_size = packet_size;
5234 }
5235
5236 static void
5237 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5238 enum packet_support support, const char *value)
5239 {
5240 remote->remote_packet_size (feature, support, value);
5241 }
5242
5243 static const struct protocol_feature remote_protocol_features[] = {
5244 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5245 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5246 PACKET_qXfer_auxv },
5247 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5248 PACKET_qXfer_exec_file },
5249 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5250 PACKET_qXfer_features },
5251 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5252 PACKET_qXfer_libraries },
5253 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5254 PACKET_qXfer_libraries_svr4 },
5255 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5256 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5257 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5258 PACKET_qXfer_memory_map },
5259 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5260 PACKET_qXfer_osdata },
5261 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5262 PACKET_qXfer_threads },
5263 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5264 PACKET_qXfer_traceframe_info },
5265 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5266 PACKET_QPassSignals },
5267 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5268 PACKET_QCatchSyscalls },
5269 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5270 PACKET_QProgramSignals },
5271 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5272 PACKET_QSetWorkingDir },
5273 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5274 PACKET_QStartupWithShell },
5275 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5276 PACKET_QEnvironmentHexEncoded },
5277 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5278 PACKET_QEnvironmentReset },
5279 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5280 PACKET_QEnvironmentUnset },
5281 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5282 PACKET_QStartNoAckMode },
5283 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5284 PACKET_multiprocess_feature },
5285 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5286 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5287 PACKET_qXfer_siginfo_read },
5288 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5289 PACKET_qXfer_siginfo_write },
5290 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5291 PACKET_ConditionalTracepoints },
5292 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5293 PACKET_ConditionalBreakpoints },
5294 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5295 PACKET_BreakpointCommands },
5296 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5297 PACKET_FastTracepoints },
5298 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5299 PACKET_StaticTracepoints },
5300 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5301 PACKET_InstallInTrace},
5302 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5303 PACKET_DisconnectedTracing_feature },
5304 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5305 PACKET_bc },
5306 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5307 PACKET_bs },
5308 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5309 PACKET_TracepointSource },
5310 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5311 PACKET_QAllow },
5312 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5313 PACKET_EnableDisableTracepoints_feature },
5314 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5315 PACKET_qXfer_fdpic },
5316 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5317 PACKET_qXfer_uib },
5318 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5319 PACKET_QDisableRandomization },
5320 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5321 { "QTBuffer:size", PACKET_DISABLE,
5322 remote_supported_packet, PACKET_QTBuffer_size},
5323 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5324 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5325 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5326 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5327 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5328 PACKET_qXfer_btrace },
5329 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5330 PACKET_qXfer_btrace_conf },
5331 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5332 PACKET_Qbtrace_conf_bts_size },
5333 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5334 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5335 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5336 PACKET_fork_event_feature },
5337 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5338 PACKET_vfork_event_feature },
5339 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5340 PACKET_exec_event_feature },
5341 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5342 PACKET_Qbtrace_conf_pt_size },
5343 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5344 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5345 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5346 { "memory-tagging", PACKET_DISABLE, remote_supported_packet,
5347 PACKET_memory_tagging_feature },
5348 };
5349
5350 static char *remote_support_xml;
5351
5352 /* Register string appended to "xmlRegisters=" in qSupported query. */
5353
5354 void
5355 register_remote_support_xml (const char *xml)
5356 {
5357 #if defined(HAVE_LIBEXPAT)
5358 if (remote_support_xml == NULL)
5359 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5360 else
5361 {
5362 char *copy = xstrdup (remote_support_xml + 13);
5363 char *saveptr;
5364 char *p = strtok_r (copy, ",", &saveptr);
5365
5366 do
5367 {
5368 if (strcmp (p, xml) == 0)
5369 {
5370 /* already there */
5371 xfree (copy);
5372 return;
5373 }
5374 }
5375 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5376 xfree (copy);
5377
5378 remote_support_xml = reconcat (remote_support_xml,
5379 remote_support_xml, ",", xml,
5380 (char *) NULL);
5381 }
5382 #endif
5383 }
5384
5385 static void
5386 remote_query_supported_append (std::string *msg, const char *append)
5387 {
5388 if (!msg->empty ())
5389 msg->append (";");
5390 msg->append (append);
5391 }
5392
5393 void
5394 remote_target::remote_query_supported ()
5395 {
5396 struct remote_state *rs = get_remote_state ();
5397 char *next;
5398 int i;
5399 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5400
5401 /* The packet support flags are handled differently for this packet
5402 than for most others. We treat an error, a disabled packet, and
5403 an empty response identically: any features which must be reported
5404 to be used will be automatically disabled. An empty buffer
5405 accomplishes this, since that is also the representation for a list
5406 containing no features. */
5407
5408 rs->buf[0] = 0;
5409 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5410 {
5411 std::string q;
5412
5413 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5414 remote_query_supported_append (&q, "multiprocess+");
5415
5416 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5417 remote_query_supported_append (&q, "swbreak+");
5418 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5419 remote_query_supported_append (&q, "hwbreak+");
5420
5421 remote_query_supported_append (&q, "qRelocInsn+");
5422
5423 if (packet_set_cmd_state (PACKET_fork_event_feature)
5424 != AUTO_BOOLEAN_FALSE)
5425 remote_query_supported_append (&q, "fork-events+");
5426 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5427 != AUTO_BOOLEAN_FALSE)
5428 remote_query_supported_append (&q, "vfork-events+");
5429 if (packet_set_cmd_state (PACKET_exec_event_feature)
5430 != AUTO_BOOLEAN_FALSE)
5431 remote_query_supported_append (&q, "exec-events+");
5432
5433 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5434 remote_query_supported_append (&q, "vContSupported+");
5435
5436 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5437 remote_query_supported_append (&q, "QThreadEvents+");
5438
5439 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5440 remote_query_supported_append (&q, "no-resumed+");
5441
5442 if (packet_set_cmd_state (PACKET_memory_tagging_feature)
5443 != AUTO_BOOLEAN_FALSE)
5444 remote_query_supported_append (&q, "memory-tagging+");
5445
5446 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5447 the qSupported:xmlRegisters=i386 handling. */
5448 if (remote_support_xml != NULL
5449 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5450 remote_query_supported_append (&q, remote_support_xml);
5451
5452 q = "qSupported:" + q;
5453 putpkt (q.c_str ());
5454
5455 getpkt (&rs->buf, 0);
5456
5457 /* If an error occured, warn, but do not return - just reset the
5458 buffer to empty and go on to disable features. */
5459 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5460 == PACKET_ERROR)
5461 {
5462 warning (_("Remote failure reply: %s"), rs->buf.data ());
5463 rs->buf[0] = 0;
5464 }
5465 }
5466
5467 memset (seen, 0, sizeof (seen));
5468
5469 next = rs->buf.data ();
5470 while (*next)
5471 {
5472 enum packet_support is_supported;
5473 char *p, *end, *name_end, *value;
5474
5475 /* First separate out this item from the rest of the packet. If
5476 there's another item after this, we overwrite the separator
5477 (terminated strings are much easier to work with). */
5478 p = next;
5479 end = strchr (p, ';');
5480 if (end == NULL)
5481 {
5482 end = p + strlen (p);
5483 next = end;
5484 }
5485 else
5486 {
5487 *end = '\0';
5488 next = end + 1;
5489
5490 if (end == p)
5491 {
5492 warning (_("empty item in \"qSupported\" response"));
5493 continue;
5494 }
5495 }
5496
5497 name_end = strchr (p, '=');
5498 if (name_end)
5499 {
5500 /* This is a name=value entry. */
5501 is_supported = PACKET_ENABLE;
5502 value = name_end + 1;
5503 *name_end = '\0';
5504 }
5505 else
5506 {
5507 value = NULL;
5508 switch (end[-1])
5509 {
5510 case '+':
5511 is_supported = PACKET_ENABLE;
5512 break;
5513
5514 case '-':
5515 is_supported = PACKET_DISABLE;
5516 break;
5517
5518 case '?':
5519 is_supported = PACKET_SUPPORT_UNKNOWN;
5520 break;
5521
5522 default:
5523 warning (_("unrecognized item \"%s\" "
5524 "in \"qSupported\" response"), p);
5525 continue;
5526 }
5527 end[-1] = '\0';
5528 }
5529
5530 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5531 if (strcmp (remote_protocol_features[i].name, p) == 0)
5532 {
5533 const struct protocol_feature *feature;
5534
5535 seen[i] = 1;
5536 feature = &remote_protocol_features[i];
5537 feature->func (this, feature, is_supported, value);
5538 break;
5539 }
5540 }
5541
5542 /* If we increased the packet size, make sure to increase the global
5543 buffer size also. We delay this until after parsing the entire
5544 qSupported packet, because this is the same buffer we were
5545 parsing. */
5546 if (rs->buf.size () < rs->explicit_packet_size)
5547 rs->buf.resize (rs->explicit_packet_size);
5548
5549 /* Handle the defaults for unmentioned features. */
5550 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5551 if (!seen[i])
5552 {
5553 const struct protocol_feature *feature;
5554
5555 feature = &remote_protocol_features[i];
5556 feature->func (this, feature, feature->default_support, NULL);
5557 }
5558 }
5559
5560 /* Serial QUIT handler for the remote serial descriptor.
5561
5562 Defers handling a Ctrl-C until we're done with the current
5563 command/response packet sequence, unless:
5564
5565 - We're setting up the connection. Don't send a remote interrupt
5566 request, as we're not fully synced yet. Quit immediately
5567 instead.
5568
5569 - The target has been resumed in the foreground
5570 (target_terminal::is_ours is false) with a synchronous resume
5571 packet, and we're blocked waiting for the stop reply, thus a
5572 Ctrl-C should be immediately sent to the target.
5573
5574 - We get a second Ctrl-C while still within the same serial read or
5575 write. In that case the serial is seemingly wedged --- offer to
5576 quit/disconnect.
5577
5578 - We see a second Ctrl-C without target response, after having
5579 previously interrupted the target. In that case the target/stub
5580 is probably wedged --- offer to quit/disconnect.
5581 */
5582
5583 void
5584 remote_target::remote_serial_quit_handler ()
5585 {
5586 struct remote_state *rs = get_remote_state ();
5587
5588 if (check_quit_flag ())
5589 {
5590 /* If we're starting up, we're not fully synced yet. Quit
5591 immediately. */
5592 if (rs->starting_up)
5593 quit ();
5594 else if (rs->got_ctrlc_during_io)
5595 {
5596 if (query (_("The target is not responding to GDB commands.\n"
5597 "Stop debugging it? ")))
5598 remote_unpush_and_throw (this);
5599 }
5600 /* If ^C has already been sent once, offer to disconnect. */
5601 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5602 interrupt_query ();
5603 /* All-stop protocol, and blocked waiting for stop reply. Send
5604 an interrupt request. */
5605 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5606 target_interrupt ();
5607 else
5608 rs->got_ctrlc_during_io = 1;
5609 }
5610 }
5611
5612 /* The remote_target that is current while the quit handler is
5613 overridden with remote_serial_quit_handler. */
5614 static remote_target *curr_quit_handler_target;
5615
5616 static void
5617 remote_serial_quit_handler ()
5618 {
5619 curr_quit_handler_target->remote_serial_quit_handler ();
5620 }
5621
5622 /* Remove the remote target from the target stack of each inferior
5623 that is using it. Upper targets depend on it so remove them
5624 first. */
5625
5626 static void
5627 remote_unpush_target (remote_target *target)
5628 {
5629 /* We have to unpush the target from all inferiors, even those that
5630 aren't running. */
5631 scoped_restore_current_inferior restore_current_inferior;
5632
5633 for (inferior *inf : all_inferiors (target))
5634 {
5635 switch_to_inferior_no_thread (inf);
5636 pop_all_targets_at_and_above (process_stratum);
5637 generic_mourn_inferior ();
5638 }
5639
5640 /* Don't rely on target_close doing this when the target is popped
5641 from the last remote inferior above, because something may be
5642 holding a reference to the target higher up on the stack, meaning
5643 target_close won't be called yet. We lost the connection to the
5644 target, so clear these now, otherwise we may later throw
5645 TARGET_CLOSE_ERROR while trying to tell the remote target to
5646 close the file. */
5647 fileio_handles_invalidate_target (target);
5648 }
5649
5650 static void
5651 remote_unpush_and_throw (remote_target *target)
5652 {
5653 remote_unpush_target (target);
5654 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5655 }
5656
5657 void
5658 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5659 {
5660 remote_target *curr_remote = get_current_remote_target ();
5661
5662 if (name == 0)
5663 error (_("To open a remote debug connection, you need to specify what\n"
5664 "serial device is attached to the remote system\n"
5665 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5666
5667 /* If we're connected to a running target, target_preopen will kill it.
5668 Ask this question first, before target_preopen has a chance to kill
5669 anything. */
5670 if (curr_remote != NULL && !target_has_execution ())
5671 {
5672 if (from_tty
5673 && !query (_("Already connected to a remote target. Disconnect? ")))
5674 error (_("Still connected."));
5675 }
5676
5677 /* Here the possibly existing remote target gets unpushed. */
5678 target_preopen (from_tty);
5679
5680 remote_fileio_reset ();
5681 reopen_exec_file ();
5682 reread_symbols ();
5683
5684 remote_target *remote
5685 = (extended_p ? new extended_remote_target () : new remote_target ());
5686 target_ops_up target_holder (remote);
5687
5688 remote_state *rs = remote->get_remote_state ();
5689
5690 /* See FIXME above. */
5691 if (!target_async_permitted)
5692 rs->wait_forever_enabled_p = 1;
5693
5694 rs->remote_desc = remote_serial_open (name);
5695 if (!rs->remote_desc)
5696 perror_with_name (name);
5697
5698 if (baud_rate != -1)
5699 {
5700 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5701 {
5702 /* The requested speed could not be set. Error out to
5703 top level after closing remote_desc. Take care to
5704 set remote_desc to NULL to avoid closing remote_desc
5705 more than once. */
5706 serial_close (rs->remote_desc);
5707 rs->remote_desc = NULL;
5708 perror_with_name (name);
5709 }
5710 }
5711
5712 serial_setparity (rs->remote_desc, serial_parity);
5713 serial_raw (rs->remote_desc);
5714
5715 /* If there is something sitting in the buffer we might take it as a
5716 response to a command, which would be bad. */
5717 serial_flush_input (rs->remote_desc);
5718
5719 if (from_tty)
5720 {
5721 puts_filtered ("Remote debugging using ");
5722 puts_filtered (name);
5723 puts_filtered ("\n");
5724 }
5725
5726 /* Switch to using the remote target now. */
5727 current_inferior ()->push_target (std::move (target_holder));
5728
5729 /* Register extra event sources in the event loop. */
5730 rs->remote_async_inferior_event_token
5731 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5732 "remote");
5733 rs->notif_state = remote_notif_state_allocate (remote);
5734
5735 /* Reset the target state; these things will be queried either by
5736 remote_query_supported or as they are needed. */
5737 reset_all_packet_configs_support ();
5738 rs->cached_wait_status = 0;
5739 rs->explicit_packet_size = 0;
5740 rs->noack_mode = 0;
5741 rs->extended = extended_p;
5742 rs->waiting_for_stop_reply = 0;
5743 rs->ctrlc_pending_p = 0;
5744 rs->got_ctrlc_during_io = 0;
5745
5746 rs->general_thread = not_sent_ptid;
5747 rs->continue_thread = not_sent_ptid;
5748 rs->remote_traceframe_number = -1;
5749
5750 rs->last_resume_exec_dir = EXEC_FORWARD;
5751
5752 /* Probe for ability to use "ThreadInfo" query, as required. */
5753 rs->use_threadinfo_query = 1;
5754 rs->use_threadextra_query = 1;
5755
5756 rs->readahead_cache.invalidate ();
5757
5758 if (target_async_permitted)
5759 {
5760 /* FIXME: cagney/1999-09-23: During the initial connection it is
5761 assumed that the target is already ready and able to respond to
5762 requests. Unfortunately remote_start_remote() eventually calls
5763 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5764 around this. Eventually a mechanism that allows
5765 wait_for_inferior() to expect/get timeouts will be
5766 implemented. */
5767 rs->wait_forever_enabled_p = 0;
5768 }
5769
5770 /* First delete any symbols previously loaded from shared libraries. */
5771 no_shared_libraries (NULL, 0);
5772
5773 /* Start the remote connection. If error() or QUIT, discard this
5774 target (we'd otherwise be in an inconsistent state) and then
5775 propogate the error on up the exception chain. This ensures that
5776 the caller doesn't stumble along blindly assuming that the
5777 function succeeded. The CLI doesn't have this problem but other
5778 UI's, such as MI do.
5779
5780 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5781 this function should return an error indication letting the
5782 caller restore the previous state. Unfortunately the command
5783 ``target remote'' is directly wired to this function making that
5784 impossible. On a positive note, the CLI side of this problem has
5785 been fixed - the function set_cmd_context() makes it possible for
5786 all the ``target ....'' commands to share a common callback
5787 function. See cli-dump.c. */
5788 {
5789
5790 try
5791 {
5792 remote->start_remote (from_tty, extended_p);
5793 }
5794 catch (const gdb_exception &ex)
5795 {
5796 /* Pop the partially set up target - unless something else did
5797 already before throwing the exception. */
5798 if (ex.error != TARGET_CLOSE_ERROR)
5799 remote_unpush_target (remote);
5800 throw;
5801 }
5802 }
5803
5804 remote_btrace_reset (rs);
5805
5806 if (target_async_permitted)
5807 rs->wait_forever_enabled_p = 1;
5808 }
5809
5810 /* Detach the specified process. */
5811
5812 void
5813 remote_target::remote_detach_pid (int pid)
5814 {
5815 struct remote_state *rs = get_remote_state ();
5816
5817 /* This should not be necessary, but the handling for D;PID in
5818 GDBserver versions prior to 8.2 incorrectly assumes that the
5819 selected process points to the same process we're detaching,
5820 leading to misbehavior (and possibly GDBserver crashing) when it
5821 does not. Since it's easy and cheap, work around it by forcing
5822 GDBserver to select GDB's current process. */
5823 set_general_process ();
5824
5825 if (remote_multi_process_p (rs))
5826 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5827 else
5828 strcpy (rs->buf.data (), "D");
5829
5830 putpkt (rs->buf);
5831 getpkt (&rs->buf, 0);
5832
5833 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5834 ;
5835 else if (rs->buf[0] == '\0')
5836 error (_("Remote doesn't know how to detach"));
5837 else
5838 error (_("Can't detach process."));
5839 }
5840
5841 /* This detaches a program to which we previously attached, using
5842 inferior_ptid to identify the process. After this is done, GDB
5843 can be used to debug some other program. We better not have left
5844 any breakpoints in the target program or it'll die when it hits
5845 one. */
5846
5847 void
5848 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5849 {
5850 int pid = inferior_ptid.pid ();
5851 struct remote_state *rs = get_remote_state ();
5852 int is_fork_parent;
5853
5854 if (!target_has_execution ())
5855 error (_("No process to detach from."));
5856
5857 target_announce_detach (from_tty);
5858
5859 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5860 {
5861 /* If we're in breakpoints-always-inserted mode, or the inferior
5862 is running, we have to remove breakpoints before detaching.
5863 We don't do this in common code instead because not all
5864 targets support removing breakpoints while the target is
5865 running. The remote target / gdbserver does, though. */
5866 remove_breakpoints_inf (current_inferior ());
5867 }
5868
5869 /* Tell the remote target to detach. */
5870 remote_detach_pid (pid);
5871
5872 /* Exit only if this is the only active inferior. */
5873 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5874 puts_filtered (_("Ending remote debugging.\n"));
5875
5876 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5877
5878 /* Check to see if we are detaching a fork parent. Note that if we
5879 are detaching a fork child, tp == NULL. */
5880 is_fork_parent = (tp != NULL
5881 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5882
5883 /* If doing detach-on-fork, we don't mourn, because that will delete
5884 breakpoints that should be available for the followed inferior. */
5885 if (!is_fork_parent)
5886 {
5887 /* Save the pid as a string before mourning, since that will
5888 unpush the remote target, and we need the string after. */
5889 std::string infpid = target_pid_to_str (ptid_t (pid));
5890
5891 target_mourn_inferior (inferior_ptid);
5892 if (print_inferior_events)
5893 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5894 inf->num, infpid.c_str ());
5895 }
5896 else
5897 {
5898 switch_to_no_thread ();
5899 detach_inferior (current_inferior ());
5900 }
5901 }
5902
5903 void
5904 remote_target::detach (inferior *inf, int from_tty)
5905 {
5906 remote_detach_1 (inf, from_tty);
5907 }
5908
5909 void
5910 extended_remote_target::detach (inferior *inf, int from_tty)
5911 {
5912 remote_detach_1 (inf, from_tty);
5913 }
5914
5915 /* Target follow-fork function for remote targets. On entry, and
5916 at return, the current inferior is the fork parent.
5917
5918 Note that although this is currently only used for extended-remote,
5919 it is named remote_follow_fork in anticipation of using it for the
5920 remote target as well. */
5921
5922 void
5923 remote_target::follow_fork (inferior *child_inf, ptid_t child_ptid,
5924 target_waitkind fork_kind, bool follow_child,
5925 bool detach_fork)
5926 {
5927 process_stratum_target::follow_fork (child_inf, child_ptid,
5928 fork_kind, follow_child, detach_fork);
5929
5930 struct remote_state *rs = get_remote_state ();
5931
5932 if ((fork_kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5933 || (fork_kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5934 {
5935 /* When following the parent and detaching the child, we detach
5936 the child here. For the case of following the child and
5937 detaching the parent, the detach is done in the target-
5938 independent follow fork code in infrun.c. We can't use
5939 target_detach when detaching an unfollowed child because
5940 the client side doesn't know anything about the child. */
5941 if (detach_fork && !follow_child)
5942 {
5943 /* Detach the fork child. */
5944 remote_detach_pid (child_ptid.pid ());
5945 }
5946 }
5947 }
5948
5949 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5950 in the program space of the new inferior. */
5951
5952 void
5953 remote_target::follow_exec (inferior *follow_inf, ptid_t ptid,
5954 const char *execd_pathname)
5955 {
5956 process_stratum_target::follow_exec (follow_inf, ptid, execd_pathname);
5957
5958 /* We know that this is a target file name, so if it has the "target:"
5959 prefix we strip it off before saving it in the program space. */
5960 if (is_target_filename (execd_pathname))
5961 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5962
5963 set_pspace_remote_exec_file (follow_inf->pspace, execd_pathname);
5964 }
5965
5966 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5967
5968 void
5969 remote_target::disconnect (const char *args, int from_tty)
5970 {
5971 if (args)
5972 error (_("Argument given to \"disconnect\" when remotely debugging."));
5973
5974 /* Make sure we unpush even the extended remote targets. Calling
5975 target_mourn_inferior won't unpush, and
5976 remote_target::mourn_inferior won't unpush if there is more than
5977 one inferior left. */
5978 remote_unpush_target (this);
5979
5980 if (from_tty)
5981 puts_filtered ("Ending remote debugging.\n");
5982 }
5983
5984 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5985 be chatty about it. */
5986
5987 void
5988 extended_remote_target::attach (const char *args, int from_tty)
5989 {
5990 struct remote_state *rs = get_remote_state ();
5991 int pid;
5992 char *wait_status = NULL;
5993
5994 pid = parse_pid_to_attach (args);
5995
5996 /* Remote PID can be freely equal to getpid, do not check it here the same
5997 way as in other targets. */
5998
5999 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
6000 error (_("This target does not support attaching to a process"));
6001
6002 if (from_tty)
6003 {
6004 const char *exec_file = get_exec_file (0);
6005
6006 if (exec_file)
6007 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
6008 target_pid_to_str (ptid_t (pid)).c_str ());
6009 else
6010 printf_unfiltered (_("Attaching to %s\n"),
6011 target_pid_to_str (ptid_t (pid)).c_str ());
6012 }
6013
6014 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
6015 putpkt (rs->buf);
6016 getpkt (&rs->buf, 0);
6017
6018 switch (packet_ok (rs->buf,
6019 &remote_protocol_packets[PACKET_vAttach]))
6020 {
6021 case PACKET_OK:
6022 if (!target_is_non_stop_p ())
6023 {
6024 /* Save the reply for later. */
6025 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
6026 strcpy (wait_status, rs->buf.data ());
6027 }
6028 else if (strcmp (rs->buf.data (), "OK") != 0)
6029 error (_("Attaching to %s failed with: %s"),
6030 target_pid_to_str (ptid_t (pid)).c_str (),
6031 rs->buf.data ());
6032 break;
6033 case PACKET_UNKNOWN:
6034 error (_("This target does not support attaching to a process"));
6035 default:
6036 error (_("Attaching to %s failed"),
6037 target_pid_to_str (ptid_t (pid)).c_str ());
6038 }
6039
6040 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
6041
6042 inferior_ptid = ptid_t (pid);
6043
6044 if (target_is_non_stop_p ())
6045 {
6046 /* Get list of threads. */
6047 update_thread_list ();
6048
6049 thread_info *thread = first_thread_of_inferior (current_inferior ());
6050 if (thread != nullptr)
6051 switch_to_thread (thread);
6052
6053 /* Invalidate our notion of the remote current thread. */
6054 record_currthread (rs, minus_one_ptid);
6055 }
6056 else
6057 {
6058 /* Now, if we have thread information, update the main thread's
6059 ptid. */
6060 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6061
6062 /* Add the main thread to the thread list. */
6063 thread_info *thr = add_thread_silent (this, curr_ptid);
6064
6065 switch_to_thread (thr);
6066
6067 /* Don't consider the thread stopped until we've processed the
6068 saved stop reply. */
6069 set_executing (this, thr->ptid, true);
6070 }
6071
6072 /* Next, if the target can specify a description, read it. We do
6073 this before anything involving memory or registers. */
6074 target_find_description ();
6075
6076 if (!target_is_non_stop_p ())
6077 {
6078 /* Use the previously fetched status. */
6079 gdb_assert (wait_status != NULL);
6080
6081 if (target_can_async_p ())
6082 {
6083 struct notif_event *reply
6084 = remote_notif_parse (this, &notif_client_stop, wait_status);
6085
6086 push_stop_reply ((struct stop_reply *) reply);
6087
6088 target_async (1);
6089 }
6090 else
6091 {
6092 gdb_assert (wait_status != NULL);
6093 strcpy (rs->buf.data (), wait_status);
6094 rs->cached_wait_status = 1;
6095 }
6096 }
6097 else
6098 {
6099 gdb_assert (wait_status == NULL);
6100
6101 gdb_assert (target_can_async_p ());
6102 target_async (1);
6103 }
6104 }
6105
6106 /* Implementation of the to_post_attach method. */
6107
6108 void
6109 extended_remote_target::post_attach (int pid)
6110 {
6111 /* Get text, data & bss offsets. */
6112 get_offsets ();
6113
6114 /* In certain cases GDB might not have had the chance to start
6115 symbol lookup up until now. This could happen if the debugged
6116 binary is not using shared libraries, the vsyscall page is not
6117 present (on Linux) and the binary itself hadn't changed since the
6118 debugging process was started. */
6119 if (current_program_space->symfile_object_file != NULL)
6120 remote_check_symbols();
6121 }
6122
6123 \f
6124 /* Check for the availability of vCont. This function should also check
6125 the response. */
6126
6127 void
6128 remote_target::remote_vcont_probe ()
6129 {
6130 remote_state *rs = get_remote_state ();
6131 char *buf;
6132
6133 strcpy (rs->buf.data (), "vCont?");
6134 putpkt (rs->buf);
6135 getpkt (&rs->buf, 0);
6136 buf = rs->buf.data ();
6137
6138 /* Make sure that the features we assume are supported. */
6139 if (startswith (buf, "vCont"))
6140 {
6141 char *p = &buf[5];
6142 int support_c, support_C;
6143
6144 rs->supports_vCont.s = 0;
6145 rs->supports_vCont.S = 0;
6146 support_c = 0;
6147 support_C = 0;
6148 rs->supports_vCont.t = 0;
6149 rs->supports_vCont.r = 0;
6150 while (p && *p == ';')
6151 {
6152 p++;
6153 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6154 rs->supports_vCont.s = 1;
6155 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6156 rs->supports_vCont.S = 1;
6157 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6158 support_c = 1;
6159 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6160 support_C = 1;
6161 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6162 rs->supports_vCont.t = 1;
6163 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6164 rs->supports_vCont.r = 1;
6165
6166 p = strchr (p, ';');
6167 }
6168
6169 /* If c, and C are not all supported, we can't use vCont. Clearing
6170 BUF will make packet_ok disable the packet. */
6171 if (!support_c || !support_C)
6172 buf[0] = 0;
6173 }
6174
6175 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6176 rs->supports_vCont_probed = true;
6177 }
6178
6179 /* Helper function for building "vCont" resumptions. Write a
6180 resumption to P. ENDP points to one-passed-the-end of the buffer
6181 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6182 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6183 resumed thread should be single-stepped and/or signalled. If PTID
6184 equals minus_one_ptid, then all threads are resumed; if PTID
6185 represents a process, then all threads of the process are resumed;
6186 the thread to be stepped and/or signalled is given in the global
6187 INFERIOR_PTID. */
6188
6189 char *
6190 remote_target::append_resumption (char *p, char *endp,
6191 ptid_t ptid, int step, gdb_signal siggnal)
6192 {
6193 struct remote_state *rs = get_remote_state ();
6194
6195 if (step && siggnal != GDB_SIGNAL_0)
6196 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6197 else if (step
6198 /* GDB is willing to range step. */
6199 && use_range_stepping
6200 /* Target supports range stepping. */
6201 && rs->supports_vCont.r
6202 /* We don't currently support range stepping multiple
6203 threads with a wildcard (though the protocol allows it,
6204 so stubs shouldn't make an active effort to forbid
6205 it). */
6206 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6207 {
6208 struct thread_info *tp;
6209
6210 if (ptid == minus_one_ptid)
6211 {
6212 /* If we don't know about the target thread's tid, then
6213 we're resuming magic_null_ptid (see caller). */
6214 tp = find_thread_ptid (this, magic_null_ptid);
6215 }
6216 else
6217 tp = find_thread_ptid (this, ptid);
6218 gdb_assert (tp != NULL);
6219
6220 if (tp->control.may_range_step)
6221 {
6222 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6223
6224 p += xsnprintf (p, endp - p, ";r%s,%s",
6225 phex_nz (tp->control.step_range_start,
6226 addr_size),
6227 phex_nz (tp->control.step_range_end,
6228 addr_size));
6229 }
6230 else
6231 p += xsnprintf (p, endp - p, ";s");
6232 }
6233 else if (step)
6234 p += xsnprintf (p, endp - p, ";s");
6235 else if (siggnal != GDB_SIGNAL_0)
6236 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6237 else
6238 p += xsnprintf (p, endp - p, ";c");
6239
6240 if (remote_multi_process_p (rs) && ptid.is_pid ())
6241 {
6242 ptid_t nptid;
6243
6244 /* All (-1) threads of process. */
6245 nptid = ptid_t (ptid.pid (), -1, 0);
6246
6247 p += xsnprintf (p, endp - p, ":");
6248 p = write_ptid (p, endp, nptid);
6249 }
6250 else if (ptid != minus_one_ptid)
6251 {
6252 p += xsnprintf (p, endp - p, ":");
6253 p = write_ptid (p, endp, ptid);
6254 }
6255
6256 return p;
6257 }
6258
6259 /* Clear the thread's private info on resume. */
6260
6261 static void
6262 resume_clear_thread_private_info (struct thread_info *thread)
6263 {
6264 if (thread->priv != NULL)
6265 {
6266 remote_thread_info *priv = get_remote_thread_info (thread);
6267
6268 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6269 priv->watch_data_address = 0;
6270 }
6271 }
6272
6273 /* Append a vCont continue-with-signal action for threads that have a
6274 non-zero stop signal. */
6275
6276 char *
6277 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6278 ptid_t ptid)
6279 {
6280 for (thread_info *thread : all_non_exited_threads (this, ptid))
6281 if (inferior_ptid != thread->ptid
6282 && thread->stop_signal () != GDB_SIGNAL_0)
6283 {
6284 p = append_resumption (p, endp, thread->ptid,
6285 0, thread->stop_signal ());
6286 thread->set_stop_signal (GDB_SIGNAL_0);
6287 resume_clear_thread_private_info (thread);
6288 }
6289
6290 return p;
6291 }
6292
6293 /* Set the target running, using the packets that use Hc
6294 (c/s/C/S). */
6295
6296 void
6297 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6298 gdb_signal siggnal)
6299 {
6300 struct remote_state *rs = get_remote_state ();
6301 char *buf;
6302
6303 rs->last_sent_signal = siggnal;
6304 rs->last_sent_step = step;
6305
6306 /* The c/s/C/S resume packets use Hc, so set the continue
6307 thread. */
6308 if (ptid == minus_one_ptid)
6309 set_continue_thread (any_thread_ptid);
6310 else
6311 set_continue_thread (ptid);
6312
6313 for (thread_info *thread : all_non_exited_threads (this))
6314 resume_clear_thread_private_info (thread);
6315
6316 buf = rs->buf.data ();
6317 if (::execution_direction == EXEC_REVERSE)
6318 {
6319 /* We don't pass signals to the target in reverse exec mode. */
6320 if (info_verbose && siggnal != GDB_SIGNAL_0)
6321 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6322 siggnal);
6323
6324 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6325 error (_("Remote reverse-step not supported."));
6326 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6327 error (_("Remote reverse-continue not supported."));
6328
6329 strcpy (buf, step ? "bs" : "bc");
6330 }
6331 else if (siggnal != GDB_SIGNAL_0)
6332 {
6333 buf[0] = step ? 'S' : 'C';
6334 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6335 buf[2] = tohex (((int) siggnal) & 0xf);
6336 buf[3] = '\0';
6337 }
6338 else
6339 strcpy (buf, step ? "s" : "c");
6340
6341 putpkt (buf);
6342 }
6343
6344 /* Resume the remote inferior by using a "vCont" packet. The thread
6345 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6346 resumed thread should be single-stepped and/or signalled. If PTID
6347 equals minus_one_ptid, then all threads are resumed; the thread to
6348 be stepped and/or signalled is given in the global INFERIOR_PTID.
6349 This function returns non-zero iff it resumes the inferior.
6350
6351 This function issues a strict subset of all possible vCont commands
6352 at the moment. */
6353
6354 int
6355 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6356 enum gdb_signal siggnal)
6357 {
6358 struct remote_state *rs = get_remote_state ();
6359 char *p;
6360 char *endp;
6361
6362 /* No reverse execution actions defined for vCont. */
6363 if (::execution_direction == EXEC_REVERSE)
6364 return 0;
6365
6366 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6367 remote_vcont_probe ();
6368
6369 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6370 return 0;
6371
6372 p = rs->buf.data ();
6373 endp = p + get_remote_packet_size ();
6374
6375 /* If we could generate a wider range of packets, we'd have to worry
6376 about overflowing BUF. Should there be a generic
6377 "multi-part-packet" packet? */
6378
6379 p += xsnprintf (p, endp - p, "vCont");
6380
6381 if (ptid == magic_null_ptid)
6382 {
6383 /* MAGIC_NULL_PTID means that we don't have any active threads,
6384 so we don't have any TID numbers the inferior will
6385 understand. Make sure to only send forms that do not specify
6386 a TID. */
6387 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6388 }
6389 else if (ptid == minus_one_ptid || ptid.is_pid ())
6390 {
6391 /* Resume all threads (of all processes, or of a single
6392 process), with preference for INFERIOR_PTID. This assumes
6393 inferior_ptid belongs to the set of all threads we are about
6394 to resume. */
6395 if (step || siggnal != GDB_SIGNAL_0)
6396 {
6397 /* Step inferior_ptid, with or without signal. */
6398 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6399 }
6400
6401 /* Also pass down any pending signaled resumption for other
6402 threads not the current. */
6403 p = append_pending_thread_resumptions (p, endp, ptid);
6404
6405 /* And continue others without a signal. */
6406 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6407 }
6408 else
6409 {
6410 /* Scheduler locking; resume only PTID. */
6411 append_resumption (p, endp, ptid, step, siggnal);
6412 }
6413
6414 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6415 putpkt (rs->buf);
6416
6417 if (target_is_non_stop_p ())
6418 {
6419 /* In non-stop, the stub replies to vCont with "OK". The stop
6420 reply will be reported asynchronously by means of a `%Stop'
6421 notification. */
6422 getpkt (&rs->buf, 0);
6423 if (strcmp (rs->buf.data (), "OK") != 0)
6424 error (_("Unexpected vCont reply in non-stop mode: %s"),
6425 rs->buf.data ());
6426 }
6427
6428 return 1;
6429 }
6430
6431 /* Tell the remote machine to resume. */
6432
6433 void
6434 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6435 {
6436 struct remote_state *rs = get_remote_state ();
6437
6438 /* When connected in non-stop mode, the core resumes threads
6439 individually. Resuming remote threads directly in target_resume
6440 would thus result in sending one packet per thread. Instead, to
6441 minimize roundtrip latency, here we just store the resume
6442 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6443 resumption will be done in remote_target::commit_resume, where we'll be
6444 able to do vCont action coalescing. */
6445 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6446 {
6447 remote_thread_info *remote_thr;
6448
6449 if (minus_one_ptid == ptid || ptid.is_pid ())
6450 remote_thr = get_remote_thread_info (this, inferior_ptid);
6451 else
6452 remote_thr = get_remote_thread_info (this, ptid);
6453
6454 /* We don't expect the core to ask to resume an already resumed (from
6455 its point of view) thread. */
6456 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6457
6458 remote_thr->set_resumed_pending_vcont (step, siggnal);
6459 return;
6460 }
6461
6462 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6463 (explained in remote-notif.c:handle_notification) so
6464 remote_notif_process is not called. We need find a place where
6465 it is safe to start a 'vNotif' sequence. It is good to do it
6466 before resuming inferior, because inferior was stopped and no RSP
6467 traffic at that moment. */
6468 if (!target_is_non_stop_p ())
6469 remote_notif_process (rs->notif_state, &notif_client_stop);
6470
6471 rs->last_resume_exec_dir = ::execution_direction;
6472
6473 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6474 if (!remote_resume_with_vcont (ptid, step, siggnal))
6475 remote_resume_with_hc (ptid, step, siggnal);
6476
6477 /* Update resumed state tracked by the remote target. */
6478 for (thread_info *tp : all_non_exited_threads (this, ptid))
6479 get_remote_thread_info (tp)->set_resumed ();
6480
6481 /* We are about to start executing the inferior, let's register it
6482 with the event loop. NOTE: this is the one place where all the
6483 execution commands end up. We could alternatively do this in each
6484 of the execution commands in infcmd.c. */
6485 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6486 into infcmd.c in order to allow inferior function calls to work
6487 NOT asynchronously. */
6488 if (target_can_async_p ())
6489 target_async (1);
6490
6491 /* We've just told the target to resume. The remote server will
6492 wait for the inferior to stop, and then send a stop reply. In
6493 the mean time, we can't start another command/query ourselves
6494 because the stub wouldn't be ready to process it. This applies
6495 only to the base all-stop protocol, however. In non-stop (which
6496 only supports vCont), the stub replies with an "OK", and is
6497 immediate able to process further serial input. */
6498 if (!target_is_non_stop_p ())
6499 rs->waiting_for_stop_reply = 1;
6500 }
6501
6502 static int is_pending_fork_parent_thread (struct thread_info *thread);
6503
6504 /* Private per-inferior info for target remote processes. */
6505
6506 struct remote_inferior : public private_inferior
6507 {
6508 /* Whether we can send a wildcard vCont for this process. */
6509 bool may_wildcard_vcont = true;
6510 };
6511
6512 /* Get the remote private inferior data associated to INF. */
6513
6514 static remote_inferior *
6515 get_remote_inferior (inferior *inf)
6516 {
6517 if (inf->priv == NULL)
6518 inf->priv.reset (new remote_inferior);
6519
6520 return static_cast<remote_inferior *> (inf->priv.get ());
6521 }
6522
6523 struct stop_reply : public notif_event
6524 {
6525 ~stop_reply ();
6526
6527 /* The identifier of the thread about this event */
6528 ptid_t ptid;
6529
6530 /* The remote state this event is associated with. When the remote
6531 connection, represented by a remote_state object, is closed,
6532 all the associated stop_reply events should be released. */
6533 struct remote_state *rs;
6534
6535 struct target_waitstatus ws;
6536
6537 /* The architecture associated with the expedited registers. */
6538 gdbarch *arch;
6539
6540 /* Expedited registers. This makes remote debugging a bit more
6541 efficient for those targets that provide critical registers as
6542 part of their normal status mechanism (as another roundtrip to
6543 fetch them is avoided). */
6544 std::vector<cached_reg_t> regcache;
6545
6546 enum target_stop_reason stop_reason;
6547
6548 CORE_ADDR watch_data_address;
6549
6550 int core;
6551 };
6552
6553 /* Class used to track the construction of a vCont packet in the
6554 outgoing packet buffer. This is used to send multiple vCont
6555 packets if we have more actions than would fit a single packet. */
6556
6557 class vcont_builder
6558 {
6559 public:
6560 explicit vcont_builder (remote_target *remote)
6561 : m_remote (remote)
6562 {
6563 restart ();
6564 }
6565
6566 void flush ();
6567 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6568
6569 private:
6570 void restart ();
6571
6572 /* The remote target. */
6573 remote_target *m_remote;
6574
6575 /* Pointer to the first action. P points here if no action has been
6576 appended yet. */
6577 char *m_first_action;
6578
6579 /* Where the next action will be appended. */
6580 char *m_p;
6581
6582 /* The end of the buffer. Must never write past this. */
6583 char *m_endp;
6584 };
6585
6586 /* Prepare the outgoing buffer for a new vCont packet. */
6587
6588 void
6589 vcont_builder::restart ()
6590 {
6591 struct remote_state *rs = m_remote->get_remote_state ();
6592
6593 m_p = rs->buf.data ();
6594 m_endp = m_p + m_remote->get_remote_packet_size ();
6595 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6596 m_first_action = m_p;
6597 }
6598
6599 /* If the vCont packet being built has any action, send it to the
6600 remote end. */
6601
6602 void
6603 vcont_builder::flush ()
6604 {
6605 struct remote_state *rs;
6606
6607 if (m_p == m_first_action)
6608 return;
6609
6610 rs = m_remote->get_remote_state ();
6611 m_remote->putpkt (rs->buf);
6612 m_remote->getpkt (&rs->buf, 0);
6613 if (strcmp (rs->buf.data (), "OK") != 0)
6614 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6615 }
6616
6617 /* The largest action is range-stepping, with its two addresses. This
6618 is more than sufficient. If a new, bigger action is created, it'll
6619 quickly trigger a failed assertion in append_resumption (and we'll
6620 just bump this). */
6621 #define MAX_ACTION_SIZE 200
6622
6623 /* Append a new vCont action in the outgoing packet being built. If
6624 the action doesn't fit the packet along with previous actions, push
6625 what we've got so far to the remote end and start over a new vCont
6626 packet (with the new action). */
6627
6628 void
6629 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6630 {
6631 char buf[MAX_ACTION_SIZE + 1];
6632
6633 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6634 ptid, step, siggnal);
6635
6636 /* Check whether this new action would fit in the vCont packet along
6637 with previous actions. If not, send what we've got so far and
6638 start a new vCont packet. */
6639 size_t rsize = endp - buf;
6640 if (rsize > m_endp - m_p)
6641 {
6642 flush ();
6643 restart ();
6644
6645 /* Should now fit. */
6646 gdb_assert (rsize <= m_endp - m_p);
6647 }
6648
6649 memcpy (m_p, buf, rsize);
6650 m_p += rsize;
6651 *m_p = '\0';
6652 }
6653
6654 /* to_commit_resume implementation. */
6655
6656 void
6657 remote_target::commit_resumed ()
6658 {
6659 /* If connected in all-stop mode, we'd send the remote resume
6660 request directly from remote_resume. Likewise if
6661 reverse-debugging, as there are no defined vCont actions for
6662 reverse execution. */
6663 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6664 return;
6665
6666 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6667 instead of resuming all threads of each process individually.
6668 However, if any thread of a process must remain halted, we can't
6669 send wildcard resumes and must send one action per thread.
6670
6671 Care must be taken to not resume threads/processes the server
6672 side already told us are stopped, but the core doesn't know about
6673 yet, because the events are still in the vStopped notification
6674 queue. For example:
6675
6676 #1 => vCont s:p1.1;c
6677 #2 <= OK
6678 #3 <= %Stopped T05 p1.1
6679 #4 => vStopped
6680 #5 <= T05 p1.2
6681 #6 => vStopped
6682 #7 <= OK
6683 #8 (infrun handles the stop for p1.1 and continues stepping)
6684 #9 => vCont s:p1.1;c
6685
6686 The last vCont above would resume thread p1.2 by mistake, because
6687 the server has no idea that the event for p1.2 had not been
6688 handled yet.
6689
6690 The server side must similarly ignore resume actions for the
6691 thread that has a pending %Stopped notification (and any other
6692 threads with events pending), until GDB acks the notification
6693 with vStopped. Otherwise, e.g., the following case is
6694 mishandled:
6695
6696 #1 => g (or any other packet)
6697 #2 <= [registers]
6698 #3 <= %Stopped T05 p1.2
6699 #4 => vCont s:p1.1;c
6700 #5 <= OK
6701
6702 Above, the server must not resume thread p1.2. GDB can't know
6703 that p1.2 stopped until it acks the %Stopped notification, and
6704 since from GDB's perspective all threads should be running, it
6705 sends a "c" action.
6706
6707 Finally, special care must also be given to handling fork/vfork
6708 events. A (v)fork event actually tells us that two processes
6709 stopped -- the parent and the child. Until we follow the fork,
6710 we must not resume the child. Therefore, if we have a pending
6711 fork follow, we must not send a global wildcard resume action
6712 (vCont;c). We can still send process-wide wildcards though. */
6713
6714 /* Start by assuming a global wildcard (vCont;c) is possible. */
6715 bool may_global_wildcard_vcont = true;
6716
6717 /* And assume every process is individually wildcard-able too. */
6718 for (inferior *inf : all_non_exited_inferiors (this))
6719 {
6720 remote_inferior *priv = get_remote_inferior (inf);
6721
6722 priv->may_wildcard_vcont = true;
6723 }
6724
6725 /* Check for any pending events (not reported or processed yet) and
6726 disable process and global wildcard resumes appropriately. */
6727 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6728
6729 bool any_pending_vcont_resume = false;
6730
6731 for (thread_info *tp : all_non_exited_threads (this))
6732 {
6733 remote_thread_info *priv = get_remote_thread_info (tp);
6734
6735 /* If a thread of a process is not meant to be resumed, then we
6736 can't wildcard that process. */
6737 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6738 {
6739 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6740
6741 /* And if we can't wildcard a process, we can't wildcard
6742 everything either. */
6743 may_global_wildcard_vcont = false;
6744 continue;
6745 }
6746
6747 if (priv->get_resume_state () == resume_state::RESUMED_PENDING_VCONT)
6748 any_pending_vcont_resume = true;
6749
6750 /* If a thread is the parent of an unfollowed fork, then we
6751 can't do a global wildcard, as that would resume the fork
6752 child. */
6753 if (is_pending_fork_parent_thread (tp))
6754 may_global_wildcard_vcont = false;
6755 }
6756
6757 /* We didn't have any resumed thread pending a vCont resume, so nothing to
6758 do. */
6759 if (!any_pending_vcont_resume)
6760 return;
6761
6762 /* Now let's build the vCont packet(s). Actions must be appended
6763 from narrower to wider scopes (thread -> process -> global). If
6764 we end up with too many actions for a single packet vcont_builder
6765 flushes the current vCont packet to the remote side and starts a
6766 new one. */
6767 struct vcont_builder vcont_builder (this);
6768
6769 /* Threads first. */
6770 for (thread_info *tp : all_non_exited_threads (this))
6771 {
6772 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6773
6774 /* If the thread was previously vCont-resumed, no need to send a specific
6775 action for it. If we didn't receive a resume request for it, don't
6776 send an action for it either. */
6777 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6778 continue;
6779
6780 gdb_assert (!thread_is_in_step_over_chain (tp));
6781
6782 /* We should never be commit-resuming a thread that has a stop reply.
6783 Otherwise, we would end up reporting a stop event for a thread while
6784 it is running on the remote target. */
6785 remote_state *rs = get_remote_state ();
6786 for (const auto &stop_reply : rs->stop_reply_queue)
6787 gdb_assert (stop_reply->ptid != tp->ptid);
6788
6789 const resumed_pending_vcont_info &info
6790 = remote_thr->resumed_pending_vcont_info ();
6791
6792 /* Check if we need to send a specific action for this thread. If not,
6793 it will be included in a wildcard resume instead. */
6794 if (info.step || info.sig != GDB_SIGNAL_0
6795 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6796 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6797
6798 remote_thr->set_resumed ();
6799 }
6800
6801 /* Now check whether we can send any process-wide wildcard. This is
6802 to avoid sending a global wildcard in the case nothing is
6803 supposed to be resumed. */
6804 bool any_process_wildcard = false;
6805
6806 for (inferior *inf : all_non_exited_inferiors (this))
6807 {
6808 if (get_remote_inferior (inf)->may_wildcard_vcont)
6809 {
6810 any_process_wildcard = true;
6811 break;
6812 }
6813 }
6814
6815 if (any_process_wildcard)
6816 {
6817 /* If all processes are wildcard-able, then send a single "c"
6818 action, otherwise, send an "all (-1) threads of process"
6819 continue action for each running process, if any. */
6820 if (may_global_wildcard_vcont)
6821 {
6822 vcont_builder.push_action (minus_one_ptid,
6823 false, GDB_SIGNAL_0);
6824 }
6825 else
6826 {
6827 for (inferior *inf : all_non_exited_inferiors (this))
6828 {
6829 if (get_remote_inferior (inf)->may_wildcard_vcont)
6830 {
6831 vcont_builder.push_action (ptid_t (inf->pid),
6832 false, GDB_SIGNAL_0);
6833 }
6834 }
6835 }
6836 }
6837
6838 vcont_builder.flush ();
6839 }
6840
6841 /* Implementation of target_has_pending_events. */
6842
6843 bool
6844 remote_target::has_pending_events ()
6845 {
6846 if (target_can_async_p ())
6847 {
6848 remote_state *rs = get_remote_state ();
6849
6850 if (async_event_handler_marked (rs->remote_async_inferior_event_token))
6851 return true;
6852
6853 /* Note that BUFCNT can be negative, indicating sticky
6854 error. */
6855 if (rs->remote_desc->bufcnt != 0)
6856 return true;
6857 }
6858 return false;
6859 }
6860
6861 \f
6862
6863 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6864 thread, all threads of a remote process, or all threads of all
6865 processes. */
6866
6867 void
6868 remote_target::remote_stop_ns (ptid_t ptid)
6869 {
6870 struct remote_state *rs = get_remote_state ();
6871 char *p = rs->buf.data ();
6872 char *endp = p + get_remote_packet_size ();
6873
6874 /* If any thread that needs to stop was resumed but pending a vCont
6875 resume, generate a phony stop_reply. However, first check
6876 whether the thread wasn't resumed with a signal. Generating a
6877 phony stop in that case would result in losing the signal. */
6878 bool needs_commit = false;
6879 for (thread_info *tp : all_non_exited_threads (this, ptid))
6880 {
6881 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6882
6883 if (remote_thr->get_resume_state ()
6884 == resume_state::RESUMED_PENDING_VCONT)
6885 {
6886 const resumed_pending_vcont_info &info
6887 = remote_thr->resumed_pending_vcont_info ();
6888 if (info.sig != GDB_SIGNAL_0)
6889 {
6890 /* This signal must be forwarded to the inferior. We
6891 could commit-resume just this thread, but its simpler
6892 to just commit-resume everything. */
6893 needs_commit = true;
6894 break;
6895 }
6896 }
6897 }
6898
6899 if (needs_commit)
6900 commit_resumed ();
6901 else
6902 for (thread_info *tp : all_non_exited_threads (this, ptid))
6903 {
6904 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6905
6906 if (remote_thr->get_resume_state ()
6907 == resume_state::RESUMED_PENDING_VCONT)
6908 {
6909 remote_debug_printf ("Enqueueing phony stop reply for thread pending "
6910 "vCont-resume (%d, %ld, %ld)", tp->ptid.pid(),
6911 tp->ptid.lwp (), tp->ptid.tid ());
6912
6913 /* Check that the thread wasn't resumed with a signal.
6914 Generating a phony stop would result in losing the
6915 signal. */
6916 const resumed_pending_vcont_info &info
6917 = remote_thr->resumed_pending_vcont_info ();
6918 gdb_assert (info.sig == GDB_SIGNAL_0);
6919
6920 stop_reply *sr = new stop_reply ();
6921 sr->ptid = tp->ptid;
6922 sr->rs = rs;
6923 sr->ws.kind = TARGET_WAITKIND_STOPPED;
6924 sr->ws.value.sig = GDB_SIGNAL_0;
6925 sr->arch = tp->inf->gdbarch;
6926 sr->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6927 sr->watch_data_address = 0;
6928 sr->core = 0;
6929 this->push_stop_reply (sr);
6930
6931 /* Pretend that this thread was actually resumed on the
6932 remote target, then stopped. If we leave it in the
6933 RESUMED_PENDING_VCONT state and the commit_resumed
6934 method is called while the stop reply is still in the
6935 queue, we'll end up reporting a stop event to the core
6936 for that thread while it is running on the remote
6937 target... that would be bad. */
6938 remote_thr->set_resumed ();
6939 }
6940 }
6941
6942 /* FIXME: This supports_vCont_probed check is a workaround until
6943 packet_support is per-connection. */
6944 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6945 || !rs->supports_vCont_probed)
6946 remote_vcont_probe ();
6947
6948 if (!rs->supports_vCont.t)
6949 error (_("Remote server does not support stopping threads"));
6950
6951 if (ptid == minus_one_ptid
6952 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6953 p += xsnprintf (p, endp - p, "vCont;t");
6954 else
6955 {
6956 ptid_t nptid;
6957
6958 p += xsnprintf (p, endp - p, "vCont;t:");
6959
6960 if (ptid.is_pid ())
6961 /* All (-1) threads of process. */
6962 nptid = ptid_t (ptid.pid (), -1, 0);
6963 else
6964 {
6965 /* Small optimization: if we already have a stop reply for
6966 this thread, no use in telling the stub we want this
6967 stopped. */
6968 if (peek_stop_reply (ptid))
6969 return;
6970
6971 nptid = ptid;
6972 }
6973
6974 write_ptid (p, endp, nptid);
6975 }
6976
6977 /* In non-stop, we get an immediate OK reply. The stop reply will
6978 come in asynchronously by notification. */
6979 putpkt (rs->buf);
6980 getpkt (&rs->buf, 0);
6981 if (strcmp (rs->buf.data (), "OK") != 0)
6982 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6983 rs->buf.data ());
6984 }
6985
6986 /* All-stop version of target_interrupt. Sends a break or a ^C to
6987 interrupt the remote target. It is undefined which thread of which
6988 process reports the interrupt. */
6989
6990 void
6991 remote_target::remote_interrupt_as ()
6992 {
6993 struct remote_state *rs = get_remote_state ();
6994
6995 rs->ctrlc_pending_p = 1;
6996
6997 /* If the inferior is stopped already, but the core didn't know
6998 about it yet, just ignore the request. The cached wait status
6999 will be collected in remote_wait. */
7000 if (rs->cached_wait_status)
7001 return;
7002
7003 /* Send interrupt_sequence to remote target. */
7004 send_interrupt_sequence ();
7005 }
7006
7007 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
7008 the remote target. It is undefined which thread of which process
7009 reports the interrupt. Throws an error if the packet is not
7010 supported by the server. */
7011
7012 void
7013 remote_target::remote_interrupt_ns ()
7014 {
7015 struct remote_state *rs = get_remote_state ();
7016 char *p = rs->buf.data ();
7017 char *endp = p + get_remote_packet_size ();
7018
7019 xsnprintf (p, endp - p, "vCtrlC");
7020
7021 /* In non-stop, we get an immediate OK reply. The stop reply will
7022 come in asynchronously by notification. */
7023 putpkt (rs->buf);
7024 getpkt (&rs->buf, 0);
7025
7026 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
7027 {
7028 case PACKET_OK:
7029 break;
7030 case PACKET_UNKNOWN:
7031 error (_("No support for interrupting the remote target."));
7032 case PACKET_ERROR:
7033 error (_("Interrupting target failed: %s"), rs->buf.data ());
7034 }
7035 }
7036
7037 /* Implement the to_stop function for the remote targets. */
7038
7039 void
7040 remote_target::stop (ptid_t ptid)
7041 {
7042 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7043
7044 if (target_is_non_stop_p ())
7045 remote_stop_ns (ptid);
7046 else
7047 {
7048 /* We don't currently have a way to transparently pause the
7049 remote target in all-stop mode. Interrupt it instead. */
7050 remote_interrupt_as ();
7051 }
7052 }
7053
7054 /* Implement the to_interrupt function for the remote targets. */
7055
7056 void
7057 remote_target::interrupt ()
7058 {
7059 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7060
7061 if (target_is_non_stop_p ())
7062 remote_interrupt_ns ();
7063 else
7064 remote_interrupt_as ();
7065 }
7066
7067 /* Implement the to_pass_ctrlc function for the remote targets. */
7068
7069 void
7070 remote_target::pass_ctrlc ()
7071 {
7072 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7073
7074 struct remote_state *rs = get_remote_state ();
7075
7076 /* If we're starting up, we're not fully synced yet. Quit
7077 immediately. */
7078 if (rs->starting_up)
7079 quit ();
7080 /* If ^C has already been sent once, offer to disconnect. */
7081 else if (rs->ctrlc_pending_p)
7082 interrupt_query ();
7083 else
7084 target_interrupt ();
7085 }
7086
7087 /* Ask the user what to do when an interrupt is received. */
7088
7089 void
7090 remote_target::interrupt_query ()
7091 {
7092 struct remote_state *rs = get_remote_state ();
7093
7094 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
7095 {
7096 if (query (_("The target is not responding to interrupt requests.\n"
7097 "Stop debugging it? ")))
7098 {
7099 remote_unpush_target (this);
7100 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
7101 }
7102 }
7103 else
7104 {
7105 if (query (_("Interrupted while waiting for the program.\n"
7106 "Give up waiting? ")))
7107 quit ();
7108 }
7109 }
7110
7111 /* Enable/disable target terminal ownership. Most targets can use
7112 terminal groups to control terminal ownership. Remote targets are
7113 different in that explicit transfer of ownership to/from GDB/target
7114 is required. */
7115
7116 void
7117 remote_target::terminal_inferior ()
7118 {
7119 /* NOTE: At this point we could also register our selves as the
7120 recipient of all input. Any characters typed could then be
7121 passed on down to the target. */
7122 }
7123
7124 void
7125 remote_target::terminal_ours ()
7126 {
7127 }
7128
7129 static void
7130 remote_console_output (const char *msg)
7131 {
7132 const char *p;
7133
7134 for (p = msg; p[0] && p[1]; p += 2)
7135 {
7136 char tb[2];
7137 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
7138
7139 tb[0] = c;
7140 tb[1] = 0;
7141 gdb_stdtarg->puts (tb);
7142 }
7143 gdb_stdtarg->flush ();
7144 }
7145
7146 /* Return the length of the stop reply queue. */
7147
7148 int
7149 remote_target::stop_reply_queue_length ()
7150 {
7151 remote_state *rs = get_remote_state ();
7152 return rs->stop_reply_queue.size ();
7153 }
7154
7155 static void
7156 remote_notif_stop_parse (remote_target *remote,
7157 struct notif_client *self, const char *buf,
7158 struct notif_event *event)
7159 {
7160 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7161 }
7162
7163 static void
7164 remote_notif_stop_ack (remote_target *remote,
7165 struct notif_client *self, const char *buf,
7166 struct notif_event *event)
7167 {
7168 struct stop_reply *stop_reply = (struct stop_reply *) event;
7169
7170 /* acknowledge */
7171 putpkt (remote, self->ack_command);
7172
7173 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7174 the notification. It was left in the queue because we need to
7175 acknowledge it and pull the rest of the notifications out. */
7176 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
7177 remote->push_stop_reply (stop_reply);
7178 }
7179
7180 static int
7181 remote_notif_stop_can_get_pending_events (remote_target *remote,
7182 struct notif_client *self)
7183 {
7184 /* We can't get pending events in remote_notif_process for
7185 notification stop, and we have to do this in remote_wait_ns
7186 instead. If we fetch all queued events from stub, remote stub
7187 may exit and we have no chance to process them back in
7188 remote_wait_ns. */
7189 remote_state *rs = remote->get_remote_state ();
7190 mark_async_event_handler (rs->remote_async_inferior_event_token);
7191 return 0;
7192 }
7193
7194 stop_reply::~stop_reply ()
7195 {
7196 for (cached_reg_t &reg : regcache)
7197 xfree (reg.data);
7198 }
7199
7200 static notif_event_up
7201 remote_notif_stop_alloc_reply ()
7202 {
7203 return notif_event_up (new struct stop_reply ());
7204 }
7205
7206 /* A client of notification Stop. */
7207
7208 struct notif_client notif_client_stop =
7209 {
7210 "Stop",
7211 "vStopped",
7212 remote_notif_stop_parse,
7213 remote_notif_stop_ack,
7214 remote_notif_stop_can_get_pending_events,
7215 remote_notif_stop_alloc_reply,
7216 REMOTE_NOTIF_STOP,
7217 };
7218
7219 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7220 the pid of the process that owns the threads we want to check, or
7221 -1 if we want to check all threads. */
7222
7223 static int
7224 is_pending_fork_parent (const target_waitstatus *ws, int event_pid,
7225 ptid_t thread_ptid)
7226 {
7227 if (ws->kind == TARGET_WAITKIND_FORKED
7228 || ws->kind == TARGET_WAITKIND_VFORKED)
7229 {
7230 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7231 return 1;
7232 }
7233
7234 return 0;
7235 }
7236
7237 /* Return the thread's pending status used to determine whether the
7238 thread is a fork parent stopped at a fork event. */
7239
7240 static const target_waitstatus *
7241 thread_pending_fork_status (struct thread_info *thread)
7242 {
7243 if (thread->has_pending_waitstatus ())
7244 return &thread->pending_waitstatus ();
7245 else
7246 return &thread->pending_follow;
7247 }
7248
7249 /* Determine if THREAD is a pending fork parent thread. */
7250
7251 static int
7252 is_pending_fork_parent_thread (struct thread_info *thread)
7253 {
7254 const target_waitstatus *ws = thread_pending_fork_status (thread);
7255 int pid = -1;
7256
7257 return is_pending_fork_parent (ws, pid, thread->ptid);
7258 }
7259
7260 /* If CONTEXT contains any fork child threads that have not been
7261 reported yet, remove them from the CONTEXT list. If such a
7262 thread exists it is because we are stopped at a fork catchpoint
7263 and have not yet called follow_fork, which will set up the
7264 host-side data structures for the new process. */
7265
7266 void
7267 remote_target::remove_new_fork_children (threads_listing_context *context)
7268 {
7269 int pid = -1;
7270 struct notif_client *notif = &notif_client_stop;
7271
7272 /* For any threads stopped at a fork event, remove the corresponding
7273 fork child threads from the CONTEXT list. */
7274 for (thread_info *thread : all_non_exited_threads (this))
7275 {
7276 const target_waitstatus *ws = thread_pending_fork_status (thread);
7277
7278 if (is_pending_fork_parent (ws, pid, thread->ptid))
7279 context->remove_thread (ws->value.related_pid);
7280 }
7281
7282 /* Check for any pending fork events (not reported or processed yet)
7283 in process PID and remove those fork child threads from the
7284 CONTEXT list as well. */
7285 remote_notif_get_pending_events (notif);
7286 for (auto &event : get_remote_state ()->stop_reply_queue)
7287 if (event->ws.kind == TARGET_WAITKIND_FORKED
7288 || event->ws.kind == TARGET_WAITKIND_VFORKED
7289 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7290 context->remove_thread (event->ws.value.related_pid);
7291 }
7292
7293 /* Check whether any event pending in the vStopped queue would prevent a
7294 global or process wildcard vCont action. Set *may_global_wildcard to
7295 false if we can't do a global wildcard (vCont;c), and clear the event
7296 inferior's may_wildcard_vcont flag if we can't do a process-wide
7297 wildcard resume (vCont;c:pPID.-1). */
7298
7299 void
7300 remote_target::check_pending_events_prevent_wildcard_vcont
7301 (bool *may_global_wildcard)
7302 {
7303 struct notif_client *notif = &notif_client_stop;
7304
7305 remote_notif_get_pending_events (notif);
7306 for (auto &event : get_remote_state ()->stop_reply_queue)
7307 {
7308 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7309 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7310 continue;
7311
7312 if (event->ws.kind == TARGET_WAITKIND_FORKED
7313 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7314 *may_global_wildcard = false;
7315
7316 /* This may be the first time we heard about this process.
7317 Regardless, we must not do a global wildcard resume, otherwise
7318 we'd resume this process too. */
7319 *may_global_wildcard = false;
7320 if (event->ptid != null_ptid)
7321 {
7322 inferior *inf = find_inferior_ptid (this, event->ptid);
7323 if (inf != NULL)
7324 get_remote_inferior (inf)->may_wildcard_vcont = false;
7325 }
7326 }
7327 }
7328
7329 /* Discard all pending stop replies of inferior INF. */
7330
7331 void
7332 remote_target::discard_pending_stop_replies (struct inferior *inf)
7333 {
7334 struct stop_reply *reply;
7335 struct remote_state *rs = get_remote_state ();
7336 struct remote_notif_state *rns = rs->notif_state;
7337
7338 /* This function can be notified when an inferior exists. When the
7339 target is not remote, the notification state is NULL. */
7340 if (rs->remote_desc == NULL)
7341 return;
7342
7343 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7344
7345 /* Discard the in-flight notification. */
7346 if (reply != NULL && reply->ptid.pid () == inf->pid)
7347 {
7348 /* Leave the notification pending, since the server expects that
7349 we acknowledge it with vStopped. But clear its contents, so
7350 that later on when we acknowledge it, we also discard it. */
7351 reply->ws.kind = TARGET_WAITKIND_IGNORE;
7352
7353 if (remote_debug)
7354 fprintf_unfiltered (gdb_stdlog,
7355 "discarded in-flight notification\n");
7356 }
7357
7358 /* Discard the stop replies we have already pulled with
7359 vStopped. */
7360 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7361 rs->stop_reply_queue.end (),
7362 [=] (const stop_reply_up &event)
7363 {
7364 return event->ptid.pid () == inf->pid;
7365 });
7366 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7367 }
7368
7369 /* Discard the stop replies for RS in stop_reply_queue. */
7370
7371 void
7372 remote_target::discard_pending_stop_replies_in_queue ()
7373 {
7374 remote_state *rs = get_remote_state ();
7375
7376 /* Discard the stop replies we have already pulled with
7377 vStopped. */
7378 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7379 rs->stop_reply_queue.end (),
7380 [=] (const stop_reply_up &event)
7381 {
7382 return event->rs == rs;
7383 });
7384 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7385 }
7386
7387 /* Remove the first reply in 'stop_reply_queue' which matches
7388 PTID. */
7389
7390 struct stop_reply *
7391 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7392 {
7393 remote_state *rs = get_remote_state ();
7394
7395 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7396 rs->stop_reply_queue.end (),
7397 [=] (const stop_reply_up &event)
7398 {
7399 return event->ptid.matches (ptid);
7400 });
7401 struct stop_reply *result;
7402 if (iter == rs->stop_reply_queue.end ())
7403 result = nullptr;
7404 else
7405 {
7406 result = iter->release ();
7407 rs->stop_reply_queue.erase (iter);
7408 }
7409
7410 if (notif_debug)
7411 fprintf_unfiltered (gdb_stdlog,
7412 "notif: discard queued event: 'Stop' in %s\n",
7413 target_pid_to_str (ptid).c_str ());
7414
7415 return result;
7416 }
7417
7418 /* Look for a queued stop reply belonging to PTID. If one is found,
7419 remove it from the queue, and return it. Returns NULL if none is
7420 found. If there are still queued events left to process, tell the
7421 event loop to get back to target_wait soon. */
7422
7423 struct stop_reply *
7424 remote_target::queued_stop_reply (ptid_t ptid)
7425 {
7426 remote_state *rs = get_remote_state ();
7427 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7428
7429 if (!rs->stop_reply_queue.empty ())
7430 {
7431 /* There's still at least an event left. */
7432 mark_async_event_handler (rs->remote_async_inferior_event_token);
7433 }
7434
7435 return r;
7436 }
7437
7438 /* Push a fully parsed stop reply in the stop reply queue. Since we
7439 know that we now have at least one queued event left to pass to the
7440 core side, tell the event loop to get back to target_wait soon. */
7441
7442 void
7443 remote_target::push_stop_reply (struct stop_reply *new_event)
7444 {
7445 remote_state *rs = get_remote_state ();
7446 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7447
7448 if (notif_debug)
7449 fprintf_unfiltered (gdb_stdlog,
7450 "notif: push 'Stop' %s to queue %d\n",
7451 target_pid_to_str (new_event->ptid).c_str (),
7452 int (rs->stop_reply_queue.size ()));
7453
7454 mark_async_event_handler (rs->remote_async_inferior_event_token);
7455 }
7456
7457 /* Returns true if we have a stop reply for PTID. */
7458
7459 int
7460 remote_target::peek_stop_reply (ptid_t ptid)
7461 {
7462 remote_state *rs = get_remote_state ();
7463 for (auto &event : rs->stop_reply_queue)
7464 if (ptid == event->ptid
7465 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7466 return 1;
7467 return 0;
7468 }
7469
7470 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7471 starting with P and ending with PEND matches PREFIX. */
7472
7473 static int
7474 strprefix (const char *p, const char *pend, const char *prefix)
7475 {
7476 for ( ; p < pend; p++, prefix++)
7477 if (*p != *prefix)
7478 return 0;
7479 return *prefix == '\0';
7480 }
7481
7482 /* Parse the stop reply in BUF. Either the function succeeds, and the
7483 result is stored in EVENT, or throws an error. */
7484
7485 void
7486 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7487 {
7488 remote_arch_state *rsa = NULL;
7489 ULONGEST addr;
7490 const char *p;
7491 int skipregs = 0;
7492
7493 event->ptid = null_ptid;
7494 event->rs = get_remote_state ();
7495 event->ws.kind = TARGET_WAITKIND_IGNORE;
7496 event->ws.value.integer = 0;
7497 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7498 event->regcache.clear ();
7499 event->core = -1;
7500
7501 switch (buf[0])
7502 {
7503 case 'T': /* Status with PC, SP, FP, ... */
7504 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7505 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7506 ss = signal number
7507 n... = register number
7508 r... = register contents
7509 */
7510
7511 p = &buf[3]; /* after Txx */
7512 while (*p)
7513 {
7514 const char *p1;
7515 int fieldsize;
7516
7517 p1 = strchr (p, ':');
7518 if (p1 == NULL)
7519 error (_("Malformed packet(a) (missing colon): %s\n\
7520 Packet: '%s'\n"),
7521 p, buf);
7522 if (p == p1)
7523 error (_("Malformed packet(a) (missing register number): %s\n\
7524 Packet: '%s'\n"),
7525 p, buf);
7526
7527 /* Some "registers" are actually extended stop information.
7528 Note if you're adding a new entry here: GDB 7.9 and
7529 earlier assume that all register "numbers" that start
7530 with an hex digit are real register numbers. Make sure
7531 the server only sends such a packet if it knows the
7532 client understands it. */
7533
7534 if (strprefix (p, p1, "thread"))
7535 event->ptid = read_ptid (++p1, &p);
7536 else if (strprefix (p, p1, "syscall_entry"))
7537 {
7538 ULONGEST sysno;
7539
7540 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7541 p = unpack_varlen_hex (++p1, &sysno);
7542 event->ws.value.syscall_number = (int) sysno;
7543 }
7544 else if (strprefix (p, p1, "syscall_return"))
7545 {
7546 ULONGEST sysno;
7547
7548 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7549 p = unpack_varlen_hex (++p1, &sysno);
7550 event->ws.value.syscall_number = (int) sysno;
7551 }
7552 else if (strprefix (p, p1, "watch")
7553 || strprefix (p, p1, "rwatch")
7554 || strprefix (p, p1, "awatch"))
7555 {
7556 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7557 p = unpack_varlen_hex (++p1, &addr);
7558 event->watch_data_address = (CORE_ADDR) addr;
7559 }
7560 else if (strprefix (p, p1, "swbreak"))
7561 {
7562 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7563
7564 /* Make sure the stub doesn't forget to indicate support
7565 with qSupported. */
7566 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7567 error (_("Unexpected swbreak stop reason"));
7568
7569 /* The value part is documented as "must be empty",
7570 though we ignore it, in case we ever decide to make
7571 use of it in a backward compatible way. */
7572 p = strchrnul (p1 + 1, ';');
7573 }
7574 else if (strprefix (p, p1, "hwbreak"))
7575 {
7576 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7577
7578 /* Make sure the stub doesn't forget to indicate support
7579 with qSupported. */
7580 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7581 error (_("Unexpected hwbreak stop reason"));
7582
7583 /* See above. */
7584 p = strchrnul (p1 + 1, ';');
7585 }
7586 else if (strprefix (p, p1, "library"))
7587 {
7588 event->ws.kind = TARGET_WAITKIND_LOADED;
7589 p = strchrnul (p1 + 1, ';');
7590 }
7591 else if (strprefix (p, p1, "replaylog"))
7592 {
7593 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7594 /* p1 will indicate "begin" or "end", but it makes
7595 no difference for now, so ignore it. */
7596 p = strchrnul (p1 + 1, ';');
7597 }
7598 else if (strprefix (p, p1, "core"))
7599 {
7600 ULONGEST c;
7601
7602 p = unpack_varlen_hex (++p1, &c);
7603 event->core = c;
7604 }
7605 else if (strprefix (p, p1, "fork"))
7606 {
7607 event->ws.value.related_pid = read_ptid (++p1, &p);
7608 event->ws.kind = TARGET_WAITKIND_FORKED;
7609 }
7610 else if (strprefix (p, p1, "vfork"))
7611 {
7612 event->ws.value.related_pid = read_ptid (++p1, &p);
7613 event->ws.kind = TARGET_WAITKIND_VFORKED;
7614 }
7615 else if (strprefix (p, p1, "vforkdone"))
7616 {
7617 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7618 p = strchrnul (p1 + 1, ';');
7619 }
7620 else if (strprefix (p, p1, "exec"))
7621 {
7622 ULONGEST ignored;
7623 int pathlen;
7624
7625 /* Determine the length of the execd pathname. */
7626 p = unpack_varlen_hex (++p1, &ignored);
7627 pathlen = (p - p1) / 2;
7628
7629 /* Save the pathname for event reporting and for
7630 the next run command. */
7631 gdb::unique_xmalloc_ptr<char[]> pathname
7632 ((char *) xmalloc (pathlen + 1));
7633 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7634 pathname[pathlen] = '\0';
7635
7636 /* This is freed during event handling. */
7637 event->ws.value.execd_pathname = pathname.release ();
7638 event->ws.kind = TARGET_WAITKIND_EXECD;
7639
7640 /* Skip the registers included in this packet, since
7641 they may be for an architecture different from the
7642 one used by the original program. */
7643 skipregs = 1;
7644 }
7645 else if (strprefix (p, p1, "create"))
7646 {
7647 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7648 p = strchrnul (p1 + 1, ';');
7649 }
7650 else
7651 {
7652 ULONGEST pnum;
7653 const char *p_temp;
7654
7655 if (skipregs)
7656 {
7657 p = strchrnul (p1 + 1, ';');
7658 p++;
7659 continue;
7660 }
7661
7662 /* Maybe a real ``P'' register number. */
7663 p_temp = unpack_varlen_hex (p, &pnum);
7664 /* If the first invalid character is the colon, we got a
7665 register number. Otherwise, it's an unknown stop
7666 reason. */
7667 if (p_temp == p1)
7668 {
7669 /* If we haven't parsed the event's thread yet, find
7670 it now, in order to find the architecture of the
7671 reported expedited registers. */
7672 if (event->ptid == null_ptid)
7673 {
7674 /* If there is no thread-id information then leave
7675 the event->ptid as null_ptid. Later in
7676 process_stop_reply we will pick a suitable
7677 thread. */
7678 const char *thr = strstr (p1 + 1, ";thread:");
7679 if (thr != NULL)
7680 event->ptid = read_ptid (thr + strlen (";thread:"),
7681 NULL);
7682 }
7683
7684 if (rsa == NULL)
7685 {
7686 inferior *inf
7687 = (event->ptid == null_ptid
7688 ? NULL
7689 : find_inferior_ptid (this, event->ptid));
7690 /* If this is the first time we learn anything
7691 about this process, skip the registers
7692 included in this packet, since we don't yet
7693 know which architecture to use to parse them.
7694 We'll determine the architecture later when
7695 we process the stop reply and retrieve the
7696 target description, via
7697 remote_notice_new_inferior ->
7698 post_create_inferior. */
7699 if (inf == NULL)
7700 {
7701 p = strchrnul (p1 + 1, ';');
7702 p++;
7703 continue;
7704 }
7705
7706 event->arch = inf->gdbarch;
7707 rsa = event->rs->get_remote_arch_state (event->arch);
7708 }
7709
7710 packet_reg *reg
7711 = packet_reg_from_pnum (event->arch, rsa, pnum);
7712 cached_reg_t cached_reg;
7713
7714 if (reg == NULL)
7715 error (_("Remote sent bad register number %s: %s\n\
7716 Packet: '%s'\n"),
7717 hex_string (pnum), p, buf);
7718
7719 cached_reg.num = reg->regnum;
7720 cached_reg.data = (gdb_byte *)
7721 xmalloc (register_size (event->arch, reg->regnum));
7722
7723 p = p1 + 1;
7724 fieldsize = hex2bin (p, cached_reg.data,
7725 register_size (event->arch, reg->regnum));
7726 p += 2 * fieldsize;
7727 if (fieldsize < register_size (event->arch, reg->regnum))
7728 warning (_("Remote reply is too short: %s"), buf);
7729
7730 event->regcache.push_back (cached_reg);
7731 }
7732 else
7733 {
7734 /* Not a number. Silently skip unknown optional
7735 info. */
7736 p = strchrnul (p1 + 1, ';');
7737 }
7738 }
7739
7740 if (*p != ';')
7741 error (_("Remote register badly formatted: %s\nhere: %s"),
7742 buf, p);
7743 ++p;
7744 }
7745
7746 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7747 break;
7748
7749 /* fall through */
7750 case 'S': /* Old style status, just signal only. */
7751 {
7752 int sig;
7753
7754 event->ws.kind = TARGET_WAITKIND_STOPPED;
7755 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7756 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7757 event->ws.value.sig = (enum gdb_signal) sig;
7758 else
7759 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7760 }
7761 break;
7762 case 'w': /* Thread exited. */
7763 {
7764 ULONGEST value;
7765
7766 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7767 p = unpack_varlen_hex (&buf[1], &value);
7768 event->ws.value.integer = value;
7769 if (*p != ';')
7770 error (_("stop reply packet badly formatted: %s"), buf);
7771 event->ptid = read_ptid (++p, NULL);
7772 break;
7773 }
7774 case 'W': /* Target exited. */
7775 case 'X':
7776 {
7777 ULONGEST value;
7778
7779 /* GDB used to accept only 2 hex chars here. Stubs should
7780 only send more if they detect GDB supports multi-process
7781 support. */
7782 p = unpack_varlen_hex (&buf[1], &value);
7783
7784 if (buf[0] == 'W')
7785 {
7786 /* The remote process exited. */
7787 event->ws.kind = TARGET_WAITKIND_EXITED;
7788 event->ws.value.integer = value;
7789 }
7790 else
7791 {
7792 /* The remote process exited with a signal. */
7793 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7794 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7795 event->ws.value.sig = (enum gdb_signal) value;
7796 else
7797 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7798 }
7799
7800 /* If no process is specified, return null_ptid, and let the
7801 caller figure out the right process to use. */
7802 int pid = 0;
7803 if (*p == '\0')
7804 ;
7805 else if (*p == ';')
7806 {
7807 p++;
7808
7809 if (*p == '\0')
7810 ;
7811 else if (startswith (p, "process:"))
7812 {
7813 ULONGEST upid;
7814
7815 p += sizeof ("process:") - 1;
7816 unpack_varlen_hex (p, &upid);
7817 pid = upid;
7818 }
7819 else
7820 error (_("unknown stop reply packet: %s"), buf);
7821 }
7822 else
7823 error (_("unknown stop reply packet: %s"), buf);
7824 event->ptid = ptid_t (pid);
7825 }
7826 break;
7827 case 'N':
7828 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7829 event->ptid = minus_one_ptid;
7830 break;
7831 }
7832 }
7833
7834 /* When the stub wants to tell GDB about a new notification reply, it
7835 sends a notification (%Stop, for example). Those can come it at
7836 any time, hence, we have to make sure that any pending
7837 putpkt/getpkt sequence we're making is finished, before querying
7838 the stub for more events with the corresponding ack command
7839 (vStopped, for example). E.g., if we started a vStopped sequence
7840 immediately upon receiving the notification, something like this
7841 could happen:
7842
7843 1.1) --> Hg 1
7844 1.2) <-- OK
7845 1.3) --> g
7846 1.4) <-- %Stop
7847 1.5) --> vStopped
7848 1.6) <-- (registers reply to step #1.3)
7849
7850 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7851 query.
7852
7853 To solve this, whenever we parse a %Stop notification successfully,
7854 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7855 doing whatever we were doing:
7856
7857 2.1) --> Hg 1
7858 2.2) <-- OK
7859 2.3) --> g
7860 2.4) <-- %Stop
7861 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7862 2.5) <-- (registers reply to step #2.3)
7863
7864 Eventually after step #2.5, we return to the event loop, which
7865 notices there's an event on the
7866 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7867 associated callback --- the function below. At this point, we're
7868 always safe to start a vStopped sequence. :
7869
7870 2.6) --> vStopped
7871 2.7) <-- T05 thread:2
7872 2.8) --> vStopped
7873 2.9) --> OK
7874 */
7875
7876 void
7877 remote_target::remote_notif_get_pending_events (notif_client *nc)
7878 {
7879 struct remote_state *rs = get_remote_state ();
7880
7881 if (rs->notif_state->pending_event[nc->id] != NULL)
7882 {
7883 if (notif_debug)
7884 fprintf_unfiltered (gdb_stdlog,
7885 "notif: process: '%s' ack pending event\n",
7886 nc->name);
7887
7888 /* acknowledge */
7889 nc->ack (this, nc, rs->buf.data (),
7890 rs->notif_state->pending_event[nc->id]);
7891 rs->notif_state->pending_event[nc->id] = NULL;
7892
7893 while (1)
7894 {
7895 getpkt (&rs->buf, 0);
7896 if (strcmp (rs->buf.data (), "OK") == 0)
7897 break;
7898 else
7899 remote_notif_ack (this, nc, rs->buf.data ());
7900 }
7901 }
7902 else
7903 {
7904 if (notif_debug)
7905 fprintf_unfiltered (gdb_stdlog,
7906 "notif: process: '%s' no pending reply\n",
7907 nc->name);
7908 }
7909 }
7910
7911 /* Wrapper around remote_target::remote_notif_get_pending_events to
7912 avoid having to export the whole remote_target class. */
7913
7914 void
7915 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7916 {
7917 remote->remote_notif_get_pending_events (nc);
7918 }
7919
7920 /* Called from process_stop_reply when the stop packet we are responding
7921 to didn't include a process-id or thread-id. STATUS is the stop event
7922 we are responding to.
7923
7924 It is the task of this function to select a suitable thread (or process)
7925 and return its ptid, this is the thread (or process) we will assume the
7926 stop event came from.
7927
7928 In some cases there isn't really any choice about which thread (or
7929 process) is selected, a basic remote with a single process containing a
7930 single thread might choose not to send any process-id or thread-id in
7931 its stop packets, this function will select and return the one and only
7932 thread.
7933
7934 However, if a target supports multiple threads (or processes) and still
7935 doesn't include a thread-id (or process-id) in its stop packet then
7936 first, this is a badly behaving target, and second, we're going to have
7937 to select a thread (or process) at random and use that. This function
7938 will print a warning to the user if it detects that there is the
7939 possibility that GDB is guessing which thread (or process) to
7940 report.
7941
7942 Note that this is called before GDB fetches the updated thread list from the
7943 target. So it's possible for the stop reply to be ambiguous and for GDB to
7944 not realize it. For example, if there's initially one thread, the target
7945 spawns a second thread, and then sends a stop reply without an id that
7946 concerns the first thread. GDB will assume the stop reply is about the
7947 first thread - the only thread it knows about - without printing a warning.
7948 Anyway, if the remote meant for the stop reply to be about the second thread,
7949 then it would be really broken, because GDB doesn't know about that thread
7950 yet. */
7951
7952 ptid_t
7953 remote_target::select_thread_for_ambiguous_stop_reply
7954 (const struct target_waitstatus *status)
7955 {
7956 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7957
7958 /* Some stop events apply to all threads in an inferior, while others
7959 only apply to a single thread. */
7960 bool process_wide_stop
7961 = (status->kind == TARGET_WAITKIND_EXITED
7962 || status->kind == TARGET_WAITKIND_SIGNALLED);
7963
7964 remote_debug_printf ("process_wide_stop = %d", process_wide_stop);
7965
7966 thread_info *first_resumed_thread = nullptr;
7967 bool ambiguous = false;
7968
7969 /* Consider all non-exited threads of the target, find the first resumed
7970 one. */
7971 for (thread_info *thr : all_non_exited_threads (this))
7972 {
7973 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7974
7975 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7976 continue;
7977
7978 if (first_resumed_thread == nullptr)
7979 first_resumed_thread = thr;
7980 else if (!process_wide_stop
7981 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7982 ambiguous = true;
7983 }
7984
7985 remote_debug_printf ("first resumed thread is %s",
7986 pid_to_str (first_resumed_thread->ptid).c_str ());
7987 remote_debug_printf ("is this guess ambiguous? = %d", ambiguous);
7988
7989 gdb_assert (first_resumed_thread != nullptr);
7990
7991 /* Warn if the remote target is sending ambiguous stop replies. */
7992 if (ambiguous)
7993 {
7994 static bool warned = false;
7995
7996 if (!warned)
7997 {
7998 /* If you are seeing this warning then the remote target has
7999 stopped without specifying a thread-id, but the target
8000 does have multiple threads (or inferiors), and so GDB is
8001 having to guess which thread stopped.
8002
8003 Examples of what might cause this are the target sending
8004 and 'S' stop packet, or a 'T' stop packet and not
8005 including a thread-id.
8006
8007 Additionally, the target might send a 'W' or 'X packet
8008 without including a process-id, when the target has
8009 multiple running inferiors. */
8010 if (process_wide_stop)
8011 warning (_("multi-inferior target stopped without "
8012 "sending a process-id, using first "
8013 "non-exited inferior"));
8014 else
8015 warning (_("multi-threaded target stopped without "
8016 "sending a thread-id, using first "
8017 "non-exited thread"));
8018 warned = true;
8019 }
8020 }
8021
8022 /* If this is a stop for all threads then don't use a particular threads
8023 ptid, instead create a new ptid where only the pid field is set. */
8024 if (process_wide_stop)
8025 return ptid_t (first_resumed_thread->ptid.pid ());
8026 else
8027 return first_resumed_thread->ptid;
8028 }
8029
8030 /* Called when it is decided that STOP_REPLY holds the info of the
8031 event that is to be returned to the core. This function always
8032 destroys STOP_REPLY. */
8033
8034 ptid_t
8035 remote_target::process_stop_reply (struct stop_reply *stop_reply,
8036 struct target_waitstatus *status)
8037 {
8038 *status = stop_reply->ws;
8039 ptid_t ptid = stop_reply->ptid;
8040
8041 /* If no thread/process was reported by the stub then select a suitable
8042 thread/process. */
8043 if (ptid == null_ptid)
8044 ptid = select_thread_for_ambiguous_stop_reply (status);
8045 gdb_assert (ptid != null_ptid);
8046
8047 if (status->kind != TARGET_WAITKIND_EXITED
8048 && status->kind != TARGET_WAITKIND_SIGNALLED
8049 && status->kind != TARGET_WAITKIND_NO_RESUMED)
8050 {
8051 /* Expedited registers. */
8052 if (!stop_reply->regcache.empty ())
8053 {
8054 struct regcache *regcache
8055 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
8056
8057 for (cached_reg_t &reg : stop_reply->regcache)
8058 {
8059 regcache->raw_supply (reg.num, reg.data);
8060 xfree (reg.data);
8061 }
8062
8063 stop_reply->regcache.clear ();
8064 }
8065
8066 remote_notice_new_inferior (ptid, false);
8067 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
8068 remote_thr->core = stop_reply->core;
8069 remote_thr->stop_reason = stop_reply->stop_reason;
8070 remote_thr->watch_data_address = stop_reply->watch_data_address;
8071
8072 if (target_is_non_stop_p ())
8073 {
8074 /* If the target works in non-stop mode, a stop-reply indicates that
8075 only this thread stopped. */
8076 remote_thr->set_not_resumed ();
8077 }
8078 else
8079 {
8080 /* If the target works in all-stop mode, a stop-reply indicates that
8081 all the target's threads stopped. */
8082 for (thread_info *tp : all_non_exited_threads (this))
8083 get_remote_thread_info (tp)->set_not_resumed ();
8084 }
8085 }
8086
8087 delete stop_reply;
8088 return ptid;
8089 }
8090
8091 /* The non-stop mode version of target_wait. */
8092
8093 ptid_t
8094 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
8095 target_wait_flags options)
8096 {
8097 struct remote_state *rs = get_remote_state ();
8098 struct stop_reply *stop_reply;
8099 int ret;
8100 int is_notif = 0;
8101
8102 /* If in non-stop mode, get out of getpkt even if a
8103 notification is received. */
8104
8105 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
8106 while (1)
8107 {
8108 if (ret != -1 && !is_notif)
8109 switch (rs->buf[0])
8110 {
8111 case 'E': /* Error of some sort. */
8112 /* We're out of sync with the target now. Did it continue
8113 or not? We can't tell which thread it was in non-stop,
8114 so just ignore this. */
8115 warning (_("Remote failure reply: %s"), rs->buf.data ());
8116 break;
8117 case 'O': /* Console output. */
8118 remote_console_output (&rs->buf[1]);
8119 break;
8120 default:
8121 warning (_("Invalid remote reply: %s"), rs->buf.data ());
8122 break;
8123 }
8124
8125 /* Acknowledge a pending stop reply that may have arrived in the
8126 mean time. */
8127 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
8128 remote_notif_get_pending_events (&notif_client_stop);
8129
8130 /* If indeed we noticed a stop reply, we're done. */
8131 stop_reply = queued_stop_reply (ptid);
8132 if (stop_reply != NULL)
8133 return process_stop_reply (stop_reply, status);
8134
8135 /* Still no event. If we're just polling for an event, then
8136 return to the event loop. */
8137 if (options & TARGET_WNOHANG)
8138 {
8139 status->kind = TARGET_WAITKIND_IGNORE;
8140 return minus_one_ptid;
8141 }
8142
8143 /* Otherwise do a blocking wait. */
8144 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
8145 }
8146 }
8147
8148 /* Return the first resumed thread. */
8149
8150 static ptid_t
8151 first_remote_resumed_thread (remote_target *target)
8152 {
8153 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
8154 if (tp->resumed ())
8155 return tp->ptid;
8156 return null_ptid;
8157 }
8158
8159 /* Wait until the remote machine stops, then return, storing status in
8160 STATUS just as `wait' would. */
8161
8162 ptid_t
8163 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8164 target_wait_flags options)
8165 {
8166 struct remote_state *rs = get_remote_state ();
8167 ptid_t event_ptid = null_ptid;
8168 char *buf;
8169 struct stop_reply *stop_reply;
8170
8171 again:
8172
8173 status->kind = TARGET_WAITKIND_IGNORE;
8174 status->value.integer = 0;
8175
8176 stop_reply = queued_stop_reply (ptid);
8177 if (stop_reply != NULL)
8178 return process_stop_reply (stop_reply, status);
8179
8180 if (rs->cached_wait_status)
8181 /* Use the cached wait status, but only once. */
8182 rs->cached_wait_status = 0;
8183 else
8184 {
8185 int ret;
8186 int is_notif;
8187 int forever = ((options & TARGET_WNOHANG) == 0
8188 && rs->wait_forever_enabled_p);
8189
8190 if (!rs->waiting_for_stop_reply)
8191 {
8192 status->kind = TARGET_WAITKIND_NO_RESUMED;
8193 return minus_one_ptid;
8194 }
8195
8196 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8197 _never_ wait for ever -> test on target_is_async_p().
8198 However, before we do that we need to ensure that the caller
8199 knows how to take the target into/out of async mode. */
8200 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8201
8202 /* GDB gets a notification. Return to core as this event is
8203 not interesting. */
8204 if (ret != -1 && is_notif)
8205 return minus_one_ptid;
8206
8207 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8208 return minus_one_ptid;
8209 }
8210
8211 buf = rs->buf.data ();
8212
8213 /* Assume that the target has acknowledged Ctrl-C unless we receive
8214 an 'F' or 'O' packet. */
8215 if (buf[0] != 'F' && buf[0] != 'O')
8216 rs->ctrlc_pending_p = 0;
8217
8218 switch (buf[0])
8219 {
8220 case 'E': /* Error of some sort. */
8221 /* We're out of sync with the target now. Did it continue or
8222 not? Not is more likely, so report a stop. */
8223 rs->waiting_for_stop_reply = 0;
8224
8225 warning (_("Remote failure reply: %s"), buf);
8226 status->kind = TARGET_WAITKIND_STOPPED;
8227 status->value.sig = GDB_SIGNAL_0;
8228 break;
8229 case 'F': /* File-I/O request. */
8230 /* GDB may access the inferior memory while handling the File-I/O
8231 request, but we don't want GDB accessing memory while waiting
8232 for a stop reply. See the comments in putpkt_binary. Set
8233 waiting_for_stop_reply to 0 temporarily. */
8234 rs->waiting_for_stop_reply = 0;
8235 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8236 rs->ctrlc_pending_p = 0;
8237 /* GDB handled the File-I/O request, and the target is running
8238 again. Keep waiting for events. */
8239 rs->waiting_for_stop_reply = 1;
8240 break;
8241 case 'N': case 'T': case 'S': case 'X': case 'W':
8242 {
8243 /* There is a stop reply to handle. */
8244 rs->waiting_for_stop_reply = 0;
8245
8246 stop_reply
8247 = (struct stop_reply *) remote_notif_parse (this,
8248 &notif_client_stop,
8249 rs->buf.data ());
8250
8251 event_ptid = process_stop_reply (stop_reply, status);
8252 break;
8253 }
8254 case 'O': /* Console output. */
8255 remote_console_output (buf + 1);
8256 break;
8257 case '\0':
8258 if (rs->last_sent_signal != GDB_SIGNAL_0)
8259 {
8260 /* Zero length reply means that we tried 'S' or 'C' and the
8261 remote system doesn't support it. */
8262 target_terminal::ours_for_output ();
8263 printf_filtered
8264 ("Can't send signals to this remote system. %s not sent.\n",
8265 gdb_signal_to_name (rs->last_sent_signal));
8266 rs->last_sent_signal = GDB_SIGNAL_0;
8267 target_terminal::inferior ();
8268
8269 strcpy (buf, rs->last_sent_step ? "s" : "c");
8270 putpkt (buf);
8271 break;
8272 }
8273 /* fallthrough */
8274 default:
8275 warning (_("Invalid remote reply: %s"), buf);
8276 break;
8277 }
8278
8279 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
8280 return minus_one_ptid;
8281 else if (status->kind == TARGET_WAITKIND_IGNORE)
8282 {
8283 /* Nothing interesting happened. If we're doing a non-blocking
8284 poll, we're done. Otherwise, go back to waiting. */
8285 if (options & TARGET_WNOHANG)
8286 return minus_one_ptid;
8287 else
8288 goto again;
8289 }
8290 else if (status->kind != TARGET_WAITKIND_EXITED
8291 && status->kind != TARGET_WAITKIND_SIGNALLED)
8292 {
8293 if (event_ptid != null_ptid)
8294 record_currthread (rs, event_ptid);
8295 else
8296 event_ptid = first_remote_resumed_thread (this);
8297 }
8298 else
8299 {
8300 /* A process exit. Invalidate our notion of current thread. */
8301 record_currthread (rs, minus_one_ptid);
8302 /* It's possible that the packet did not include a pid. */
8303 if (event_ptid == null_ptid)
8304 event_ptid = first_remote_resumed_thread (this);
8305 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8306 if (event_ptid == null_ptid)
8307 event_ptid = magic_null_ptid;
8308 }
8309
8310 return event_ptid;
8311 }
8312
8313 /* Wait until the remote machine stops, then return, storing status in
8314 STATUS just as `wait' would. */
8315
8316 ptid_t
8317 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8318 target_wait_flags options)
8319 {
8320 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8321
8322 remote_state *rs = get_remote_state ();
8323
8324 /* Start by clearing the flag that asks for our wait method to be called,
8325 we'll mark it again at the end if needed. */
8326 if (target_is_async_p ())
8327 clear_async_event_handler (rs->remote_async_inferior_event_token);
8328
8329 ptid_t event_ptid;
8330
8331 if (target_is_non_stop_p ())
8332 event_ptid = wait_ns (ptid, status, options);
8333 else
8334 event_ptid = wait_as (ptid, status, options);
8335
8336 if (target_is_async_p ())
8337 {
8338 /* If there are events left in the queue, or unacknowledged
8339 notifications, then tell the event loop to call us again. */
8340 if (!rs->stop_reply_queue.empty ()
8341 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8342 mark_async_event_handler (rs->remote_async_inferior_event_token);
8343 }
8344
8345 return event_ptid;
8346 }
8347
8348 /* Fetch a single register using a 'p' packet. */
8349
8350 int
8351 remote_target::fetch_register_using_p (struct regcache *regcache,
8352 packet_reg *reg)
8353 {
8354 struct gdbarch *gdbarch = regcache->arch ();
8355 struct remote_state *rs = get_remote_state ();
8356 char *buf, *p;
8357 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8358 int i;
8359
8360 if (packet_support (PACKET_p) == PACKET_DISABLE)
8361 return 0;
8362
8363 if (reg->pnum == -1)
8364 return 0;
8365
8366 p = rs->buf.data ();
8367 *p++ = 'p';
8368 p += hexnumstr (p, reg->pnum);
8369 *p++ = '\0';
8370 putpkt (rs->buf);
8371 getpkt (&rs->buf, 0);
8372
8373 buf = rs->buf.data ();
8374
8375 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8376 {
8377 case PACKET_OK:
8378 break;
8379 case PACKET_UNKNOWN:
8380 return 0;
8381 case PACKET_ERROR:
8382 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8383 gdbarch_register_name (regcache->arch (),
8384 reg->regnum),
8385 buf);
8386 }
8387
8388 /* If this register is unfetchable, tell the regcache. */
8389 if (buf[0] == 'x')
8390 {
8391 regcache->raw_supply (reg->regnum, NULL);
8392 return 1;
8393 }
8394
8395 /* Otherwise, parse and supply the value. */
8396 p = buf;
8397 i = 0;
8398 while (p[0] != 0)
8399 {
8400 if (p[1] == 0)
8401 error (_("fetch_register_using_p: early buf termination"));
8402
8403 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8404 p += 2;
8405 }
8406 regcache->raw_supply (reg->regnum, regp);
8407 return 1;
8408 }
8409
8410 /* Fetch the registers included in the target's 'g' packet. */
8411
8412 int
8413 remote_target::send_g_packet ()
8414 {
8415 struct remote_state *rs = get_remote_state ();
8416 int buf_len;
8417
8418 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8419 putpkt (rs->buf);
8420 getpkt (&rs->buf, 0);
8421 if (packet_check_result (rs->buf) == PACKET_ERROR)
8422 error (_("Could not read registers; remote failure reply '%s'"),
8423 rs->buf.data ());
8424
8425 /* We can get out of synch in various cases. If the first character
8426 in the buffer is not a hex character, assume that has happened
8427 and try to fetch another packet to read. */
8428 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8429 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8430 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8431 && rs->buf[0] != 'x') /* New: unavailable register value. */
8432 {
8433 remote_debug_printf ("Bad register packet; fetching a new packet");
8434 getpkt (&rs->buf, 0);
8435 }
8436
8437 buf_len = strlen (rs->buf.data ());
8438
8439 /* Sanity check the received packet. */
8440 if (buf_len % 2 != 0)
8441 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8442
8443 return buf_len / 2;
8444 }
8445
8446 void
8447 remote_target::process_g_packet (struct regcache *regcache)
8448 {
8449 struct gdbarch *gdbarch = regcache->arch ();
8450 struct remote_state *rs = get_remote_state ();
8451 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8452 int i, buf_len;
8453 char *p;
8454 char *regs;
8455
8456 buf_len = strlen (rs->buf.data ());
8457
8458 /* Further sanity checks, with knowledge of the architecture. */
8459 if (buf_len > 2 * rsa->sizeof_g_packet)
8460 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8461 "bytes): %s"),
8462 rsa->sizeof_g_packet, buf_len / 2,
8463 rs->buf.data ());
8464
8465 /* Save the size of the packet sent to us by the target. It is used
8466 as a heuristic when determining the max size of packets that the
8467 target can safely receive. */
8468 if (rsa->actual_register_packet_size == 0)
8469 rsa->actual_register_packet_size = buf_len;
8470
8471 /* If this is smaller than we guessed the 'g' packet would be,
8472 update our records. A 'g' reply that doesn't include a register's
8473 value implies either that the register is not available, or that
8474 the 'p' packet must be used. */
8475 if (buf_len < 2 * rsa->sizeof_g_packet)
8476 {
8477 long sizeof_g_packet = buf_len / 2;
8478
8479 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8480 {
8481 long offset = rsa->regs[i].offset;
8482 long reg_size = register_size (gdbarch, i);
8483
8484 if (rsa->regs[i].pnum == -1)
8485 continue;
8486
8487 if (offset >= sizeof_g_packet)
8488 rsa->regs[i].in_g_packet = 0;
8489 else if (offset + reg_size > sizeof_g_packet)
8490 error (_("Truncated register %d in remote 'g' packet"), i);
8491 else
8492 rsa->regs[i].in_g_packet = 1;
8493 }
8494
8495 /* Looks valid enough, we can assume this is the correct length
8496 for a 'g' packet. It's important not to adjust
8497 rsa->sizeof_g_packet if we have truncated registers otherwise
8498 this "if" won't be run the next time the method is called
8499 with a packet of the same size and one of the internal errors
8500 below will trigger instead. */
8501 rsa->sizeof_g_packet = sizeof_g_packet;
8502 }
8503
8504 regs = (char *) alloca (rsa->sizeof_g_packet);
8505
8506 /* Unimplemented registers read as all bits zero. */
8507 memset (regs, 0, rsa->sizeof_g_packet);
8508
8509 /* Reply describes registers byte by byte, each byte encoded as two
8510 hex characters. Suck them all up, then supply them to the
8511 register cacheing/storage mechanism. */
8512
8513 p = rs->buf.data ();
8514 for (i = 0; i < rsa->sizeof_g_packet; i++)
8515 {
8516 if (p[0] == 0 || p[1] == 0)
8517 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8518 internal_error (__FILE__, __LINE__,
8519 _("unexpected end of 'g' packet reply"));
8520
8521 if (p[0] == 'x' && p[1] == 'x')
8522 regs[i] = 0; /* 'x' */
8523 else
8524 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8525 p += 2;
8526 }
8527
8528 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8529 {
8530 struct packet_reg *r = &rsa->regs[i];
8531 long reg_size = register_size (gdbarch, i);
8532
8533 if (r->in_g_packet)
8534 {
8535 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8536 /* This shouldn't happen - we adjusted in_g_packet above. */
8537 internal_error (__FILE__, __LINE__,
8538 _("unexpected end of 'g' packet reply"));
8539 else if (rs->buf[r->offset * 2] == 'x')
8540 {
8541 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8542 /* The register isn't available, mark it as such (at
8543 the same time setting the value to zero). */
8544 regcache->raw_supply (r->regnum, NULL);
8545 }
8546 else
8547 regcache->raw_supply (r->regnum, regs + r->offset);
8548 }
8549 }
8550 }
8551
8552 void
8553 remote_target::fetch_registers_using_g (struct regcache *regcache)
8554 {
8555 send_g_packet ();
8556 process_g_packet (regcache);
8557 }
8558
8559 /* Make the remote selected traceframe match GDB's selected
8560 traceframe. */
8561
8562 void
8563 remote_target::set_remote_traceframe ()
8564 {
8565 int newnum;
8566 struct remote_state *rs = get_remote_state ();
8567
8568 if (rs->remote_traceframe_number == get_traceframe_number ())
8569 return;
8570
8571 /* Avoid recursion, remote_trace_find calls us again. */
8572 rs->remote_traceframe_number = get_traceframe_number ();
8573
8574 newnum = target_trace_find (tfind_number,
8575 get_traceframe_number (), 0, 0, NULL);
8576
8577 /* Should not happen. If it does, all bets are off. */
8578 if (newnum != get_traceframe_number ())
8579 warning (_("could not set remote traceframe"));
8580 }
8581
8582 void
8583 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8584 {
8585 struct gdbarch *gdbarch = regcache->arch ();
8586 struct remote_state *rs = get_remote_state ();
8587 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8588 int i;
8589
8590 set_remote_traceframe ();
8591 set_general_thread (regcache->ptid ());
8592
8593 if (regnum >= 0)
8594 {
8595 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8596
8597 gdb_assert (reg != NULL);
8598
8599 /* If this register might be in the 'g' packet, try that first -
8600 we are likely to read more than one register. If this is the
8601 first 'g' packet, we might be overly optimistic about its
8602 contents, so fall back to 'p'. */
8603 if (reg->in_g_packet)
8604 {
8605 fetch_registers_using_g (regcache);
8606 if (reg->in_g_packet)
8607 return;
8608 }
8609
8610 if (fetch_register_using_p (regcache, reg))
8611 return;
8612
8613 /* This register is not available. */
8614 regcache->raw_supply (reg->regnum, NULL);
8615
8616 return;
8617 }
8618
8619 fetch_registers_using_g (regcache);
8620
8621 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8622 if (!rsa->regs[i].in_g_packet)
8623 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8624 {
8625 /* This register is not available. */
8626 regcache->raw_supply (i, NULL);
8627 }
8628 }
8629
8630 /* Prepare to store registers. Since we may send them all (using a
8631 'G' request), we have to read out the ones we don't want to change
8632 first. */
8633
8634 void
8635 remote_target::prepare_to_store (struct regcache *regcache)
8636 {
8637 struct remote_state *rs = get_remote_state ();
8638 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8639 int i;
8640
8641 /* Make sure the entire registers array is valid. */
8642 switch (packet_support (PACKET_P))
8643 {
8644 case PACKET_DISABLE:
8645 case PACKET_SUPPORT_UNKNOWN:
8646 /* Make sure all the necessary registers are cached. */
8647 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8648 if (rsa->regs[i].in_g_packet)
8649 regcache->raw_update (rsa->regs[i].regnum);
8650 break;
8651 case PACKET_ENABLE:
8652 break;
8653 }
8654 }
8655
8656 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8657 packet was not recognized. */
8658
8659 int
8660 remote_target::store_register_using_P (const struct regcache *regcache,
8661 packet_reg *reg)
8662 {
8663 struct gdbarch *gdbarch = regcache->arch ();
8664 struct remote_state *rs = get_remote_state ();
8665 /* Try storing a single register. */
8666 char *buf = rs->buf.data ();
8667 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8668 char *p;
8669
8670 if (packet_support (PACKET_P) == PACKET_DISABLE)
8671 return 0;
8672
8673 if (reg->pnum == -1)
8674 return 0;
8675
8676 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8677 p = buf + strlen (buf);
8678 regcache->raw_collect (reg->regnum, regp);
8679 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8680 putpkt (rs->buf);
8681 getpkt (&rs->buf, 0);
8682
8683 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8684 {
8685 case PACKET_OK:
8686 return 1;
8687 case PACKET_ERROR:
8688 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8689 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8690 case PACKET_UNKNOWN:
8691 return 0;
8692 default:
8693 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8694 }
8695 }
8696
8697 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8698 contents of the register cache buffer. FIXME: ignores errors. */
8699
8700 void
8701 remote_target::store_registers_using_G (const struct regcache *regcache)
8702 {
8703 struct remote_state *rs = get_remote_state ();
8704 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8705 gdb_byte *regs;
8706 char *p;
8707
8708 /* Extract all the registers in the regcache copying them into a
8709 local buffer. */
8710 {
8711 int i;
8712
8713 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8714 memset (regs, 0, rsa->sizeof_g_packet);
8715 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8716 {
8717 struct packet_reg *r = &rsa->regs[i];
8718
8719 if (r->in_g_packet)
8720 regcache->raw_collect (r->regnum, regs + r->offset);
8721 }
8722 }
8723
8724 /* Command describes registers byte by byte,
8725 each byte encoded as two hex characters. */
8726 p = rs->buf.data ();
8727 *p++ = 'G';
8728 bin2hex (regs, p, rsa->sizeof_g_packet);
8729 putpkt (rs->buf);
8730 getpkt (&rs->buf, 0);
8731 if (packet_check_result (rs->buf) == PACKET_ERROR)
8732 error (_("Could not write registers; remote failure reply '%s'"),
8733 rs->buf.data ());
8734 }
8735
8736 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8737 of the register cache buffer. FIXME: ignores errors. */
8738
8739 void
8740 remote_target::store_registers (struct regcache *regcache, int regnum)
8741 {
8742 struct gdbarch *gdbarch = regcache->arch ();
8743 struct remote_state *rs = get_remote_state ();
8744 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8745 int i;
8746
8747 set_remote_traceframe ();
8748 set_general_thread (regcache->ptid ());
8749
8750 if (regnum >= 0)
8751 {
8752 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8753
8754 gdb_assert (reg != NULL);
8755
8756 /* Always prefer to store registers using the 'P' packet if
8757 possible; we often change only a small number of registers.
8758 Sometimes we change a larger number; we'd need help from a
8759 higher layer to know to use 'G'. */
8760 if (store_register_using_P (regcache, reg))
8761 return;
8762
8763 /* For now, don't complain if we have no way to write the
8764 register. GDB loses track of unavailable registers too
8765 easily. Some day, this may be an error. We don't have
8766 any way to read the register, either... */
8767 if (!reg->in_g_packet)
8768 return;
8769
8770 store_registers_using_G (regcache);
8771 return;
8772 }
8773
8774 store_registers_using_G (regcache);
8775
8776 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8777 if (!rsa->regs[i].in_g_packet)
8778 if (!store_register_using_P (regcache, &rsa->regs[i]))
8779 /* See above for why we do not issue an error here. */
8780 continue;
8781 }
8782 \f
8783
8784 /* Return the number of hex digits in num. */
8785
8786 static int
8787 hexnumlen (ULONGEST num)
8788 {
8789 int i;
8790
8791 for (i = 0; num != 0; i++)
8792 num >>= 4;
8793
8794 return std::max (i, 1);
8795 }
8796
8797 /* Set BUF to the minimum number of hex digits representing NUM. */
8798
8799 static int
8800 hexnumstr (char *buf, ULONGEST num)
8801 {
8802 int len = hexnumlen (num);
8803
8804 return hexnumnstr (buf, num, len);
8805 }
8806
8807
8808 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8809
8810 static int
8811 hexnumnstr (char *buf, ULONGEST num, int width)
8812 {
8813 int i;
8814
8815 buf[width] = '\0';
8816
8817 for (i = width - 1; i >= 0; i--)
8818 {
8819 buf[i] = "0123456789abcdef"[(num & 0xf)];
8820 num >>= 4;
8821 }
8822
8823 return width;
8824 }
8825
8826 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8827
8828 static CORE_ADDR
8829 remote_address_masked (CORE_ADDR addr)
8830 {
8831 unsigned int address_size = remote_address_size;
8832
8833 /* If "remoteaddresssize" was not set, default to target address size. */
8834 if (!address_size)
8835 address_size = gdbarch_addr_bit (target_gdbarch ());
8836
8837 if (address_size > 0
8838 && address_size < (sizeof (ULONGEST) * 8))
8839 {
8840 /* Only create a mask when that mask can safely be constructed
8841 in a ULONGEST variable. */
8842 ULONGEST mask = 1;
8843
8844 mask = (mask << address_size) - 1;
8845 addr &= mask;
8846 }
8847 return addr;
8848 }
8849
8850 /* Determine whether the remote target supports binary downloading.
8851 This is accomplished by sending a no-op memory write of zero length
8852 to the target at the specified address. It does not suffice to send
8853 the whole packet, since many stubs strip the eighth bit and
8854 subsequently compute a wrong checksum, which causes real havoc with
8855 remote_write_bytes.
8856
8857 NOTE: This can still lose if the serial line is not eight-bit
8858 clean. In cases like this, the user should clear "remote
8859 X-packet". */
8860
8861 void
8862 remote_target::check_binary_download (CORE_ADDR addr)
8863 {
8864 struct remote_state *rs = get_remote_state ();
8865
8866 switch (packet_support (PACKET_X))
8867 {
8868 case PACKET_DISABLE:
8869 break;
8870 case PACKET_ENABLE:
8871 break;
8872 case PACKET_SUPPORT_UNKNOWN:
8873 {
8874 char *p;
8875
8876 p = rs->buf.data ();
8877 *p++ = 'X';
8878 p += hexnumstr (p, (ULONGEST) addr);
8879 *p++ = ',';
8880 p += hexnumstr (p, (ULONGEST) 0);
8881 *p++ = ':';
8882 *p = '\0';
8883
8884 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8885 getpkt (&rs->buf, 0);
8886
8887 if (rs->buf[0] == '\0')
8888 {
8889 remote_debug_printf ("binary downloading NOT supported by target");
8890 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8891 }
8892 else
8893 {
8894 remote_debug_printf ("binary downloading supported by target");
8895 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8896 }
8897 break;
8898 }
8899 }
8900 }
8901
8902 /* Helper function to resize the payload in order to try to get a good
8903 alignment. We try to write an amount of data such that the next write will
8904 start on an address aligned on REMOTE_ALIGN_WRITES. */
8905
8906 static int
8907 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8908 {
8909 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8910 }
8911
8912 /* Write memory data directly to the remote machine.
8913 This does not inform the data cache; the data cache uses this.
8914 HEADER is the starting part of the packet.
8915 MEMADDR is the address in the remote memory space.
8916 MYADDR is the address of the buffer in our space.
8917 LEN_UNITS is the number of addressable units to write.
8918 UNIT_SIZE is the length in bytes of an addressable unit.
8919 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8920 should send data as binary ('X'), or hex-encoded ('M').
8921
8922 The function creates packet of the form
8923 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8924
8925 where encoding of <DATA> is terminated by PACKET_FORMAT.
8926
8927 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8928 are omitted.
8929
8930 Return the transferred status, error or OK (an
8931 'enum target_xfer_status' value). Save the number of addressable units
8932 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8933
8934 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8935 exchange between gdb and the stub could look like (?? in place of the
8936 checksum):
8937
8938 -> $m1000,4#??
8939 <- aaaabbbbccccdddd
8940
8941 -> $M1000,3:eeeeffffeeee#??
8942 <- OK
8943
8944 -> $m1000,4#??
8945 <- eeeeffffeeeedddd */
8946
8947 target_xfer_status
8948 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8949 const gdb_byte *myaddr,
8950 ULONGEST len_units,
8951 int unit_size,
8952 ULONGEST *xfered_len_units,
8953 char packet_format, int use_length)
8954 {
8955 struct remote_state *rs = get_remote_state ();
8956 char *p;
8957 char *plen = NULL;
8958 int plenlen = 0;
8959 int todo_units;
8960 int units_written;
8961 int payload_capacity_bytes;
8962 int payload_length_bytes;
8963
8964 if (packet_format != 'X' && packet_format != 'M')
8965 internal_error (__FILE__, __LINE__,
8966 _("remote_write_bytes_aux: bad packet format"));
8967
8968 if (len_units == 0)
8969 return TARGET_XFER_EOF;
8970
8971 payload_capacity_bytes = get_memory_write_packet_size ();
8972
8973 /* The packet buffer will be large enough for the payload;
8974 get_memory_packet_size ensures this. */
8975 rs->buf[0] = '\0';
8976
8977 /* Compute the size of the actual payload by subtracting out the
8978 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8979
8980 payload_capacity_bytes -= strlen ("$,:#NN");
8981 if (!use_length)
8982 /* The comma won't be used. */
8983 payload_capacity_bytes += 1;
8984 payload_capacity_bytes -= strlen (header);
8985 payload_capacity_bytes -= hexnumlen (memaddr);
8986
8987 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8988
8989 strcat (rs->buf.data (), header);
8990 p = rs->buf.data () + strlen (header);
8991
8992 /* Compute a best guess of the number of bytes actually transfered. */
8993 if (packet_format == 'X')
8994 {
8995 /* Best guess at number of bytes that will fit. */
8996 todo_units = std::min (len_units,
8997 (ULONGEST) payload_capacity_bytes / unit_size);
8998 if (use_length)
8999 payload_capacity_bytes -= hexnumlen (todo_units);
9000 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
9001 }
9002 else
9003 {
9004 /* Number of bytes that will fit. */
9005 todo_units
9006 = std::min (len_units,
9007 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
9008 if (use_length)
9009 payload_capacity_bytes -= hexnumlen (todo_units);
9010 todo_units = std::min (todo_units,
9011 (payload_capacity_bytes / unit_size) / 2);
9012 }
9013
9014 if (todo_units <= 0)
9015 internal_error (__FILE__, __LINE__,
9016 _("minimum packet size too small to write data"));
9017
9018 /* If we already need another packet, then try to align the end
9019 of this packet to a useful boundary. */
9020 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
9021 todo_units = align_for_efficient_write (todo_units, memaddr);
9022
9023 /* Append "<memaddr>". */
9024 memaddr = remote_address_masked (memaddr);
9025 p += hexnumstr (p, (ULONGEST) memaddr);
9026
9027 if (use_length)
9028 {
9029 /* Append ",". */
9030 *p++ = ',';
9031
9032 /* Append the length and retain its location and size. It may need to be
9033 adjusted once the packet body has been created. */
9034 plen = p;
9035 plenlen = hexnumstr (p, (ULONGEST) todo_units);
9036 p += plenlen;
9037 }
9038
9039 /* Append ":". */
9040 *p++ = ':';
9041 *p = '\0';
9042
9043 /* Append the packet body. */
9044 if (packet_format == 'X')
9045 {
9046 /* Binary mode. Send target system values byte by byte, in
9047 increasing byte addresses. Only escape certain critical
9048 characters. */
9049 payload_length_bytes =
9050 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
9051 &units_written, payload_capacity_bytes);
9052
9053 /* If not all TODO units fit, then we'll need another packet. Make
9054 a second try to keep the end of the packet aligned. Don't do
9055 this if the packet is tiny. */
9056 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
9057 {
9058 int new_todo_units;
9059
9060 new_todo_units = align_for_efficient_write (units_written, memaddr);
9061
9062 if (new_todo_units != units_written)
9063 payload_length_bytes =
9064 remote_escape_output (myaddr, new_todo_units, unit_size,
9065 (gdb_byte *) p, &units_written,
9066 payload_capacity_bytes);
9067 }
9068
9069 p += payload_length_bytes;
9070 if (use_length && units_written < todo_units)
9071 {
9072 /* Escape chars have filled up the buffer prematurely,
9073 and we have actually sent fewer units than planned.
9074 Fix-up the length field of the packet. Use the same
9075 number of characters as before. */
9076 plen += hexnumnstr (plen, (ULONGEST) units_written,
9077 plenlen);
9078 *plen = ':'; /* overwrite \0 from hexnumnstr() */
9079 }
9080 }
9081 else
9082 {
9083 /* Normal mode: Send target system values byte by byte, in
9084 increasing byte addresses. Each byte is encoded as a two hex
9085 value. */
9086 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
9087 units_written = todo_units;
9088 }
9089
9090 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
9091 getpkt (&rs->buf, 0);
9092
9093 if (rs->buf[0] == 'E')
9094 return TARGET_XFER_E_IO;
9095
9096 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
9097 send fewer units than we'd planned. */
9098 *xfered_len_units = (ULONGEST) units_written;
9099 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9100 }
9101
9102 /* Write memory data directly to the remote machine.
9103 This does not inform the data cache; the data cache uses this.
9104 MEMADDR is the address in the remote memory space.
9105 MYADDR is the address of the buffer in our space.
9106 LEN is the number of bytes.
9107
9108 Return the transferred status, error or OK (an
9109 'enum target_xfer_status' value). Save the number of bytes
9110 transferred in *XFERED_LEN. Only transfer a single packet. */
9111
9112 target_xfer_status
9113 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
9114 ULONGEST len, int unit_size,
9115 ULONGEST *xfered_len)
9116 {
9117 const char *packet_format = NULL;
9118
9119 /* Check whether the target supports binary download. */
9120 check_binary_download (memaddr);
9121
9122 switch (packet_support (PACKET_X))
9123 {
9124 case PACKET_ENABLE:
9125 packet_format = "X";
9126 break;
9127 case PACKET_DISABLE:
9128 packet_format = "M";
9129 break;
9130 case PACKET_SUPPORT_UNKNOWN:
9131 internal_error (__FILE__, __LINE__,
9132 _("remote_write_bytes: bad internal state"));
9133 default:
9134 internal_error (__FILE__, __LINE__, _("bad switch"));
9135 }
9136
9137 return remote_write_bytes_aux (packet_format,
9138 memaddr, myaddr, len, unit_size, xfered_len,
9139 packet_format[0], 1);
9140 }
9141
9142 /* Read memory data directly from the remote machine.
9143 This does not use the data cache; the data cache uses this.
9144 MEMADDR is the address in the remote memory space.
9145 MYADDR is the address of the buffer in our space.
9146 LEN_UNITS is the number of addressable memory units to read..
9147 UNIT_SIZE is the length in bytes of an addressable unit.
9148
9149 Return the transferred status, error or OK (an
9150 'enum target_xfer_status' value). Save the number of bytes
9151 transferred in *XFERED_LEN_UNITS.
9152
9153 See the comment of remote_write_bytes_aux for an example of
9154 memory read/write exchange between gdb and the stub. */
9155
9156 target_xfer_status
9157 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
9158 ULONGEST len_units,
9159 int unit_size, ULONGEST *xfered_len_units)
9160 {
9161 struct remote_state *rs = get_remote_state ();
9162 int buf_size_bytes; /* Max size of packet output buffer. */
9163 char *p;
9164 int todo_units;
9165 int decoded_bytes;
9166
9167 buf_size_bytes = get_memory_read_packet_size ();
9168 /* The packet buffer will be large enough for the payload;
9169 get_memory_packet_size ensures this. */
9170
9171 /* Number of units that will fit. */
9172 todo_units = std::min (len_units,
9173 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9174
9175 /* Construct "m"<memaddr>","<len>". */
9176 memaddr = remote_address_masked (memaddr);
9177 p = rs->buf.data ();
9178 *p++ = 'm';
9179 p += hexnumstr (p, (ULONGEST) memaddr);
9180 *p++ = ',';
9181 p += hexnumstr (p, (ULONGEST) todo_units);
9182 *p = '\0';
9183 putpkt (rs->buf);
9184 getpkt (&rs->buf, 0);
9185 if (rs->buf[0] == 'E'
9186 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9187 && rs->buf[3] == '\0')
9188 return TARGET_XFER_E_IO;
9189 /* Reply describes memory byte by byte, each byte encoded as two hex
9190 characters. */
9191 p = rs->buf.data ();
9192 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9193 /* Return what we have. Let higher layers handle partial reads. */
9194 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9195 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9196 }
9197
9198 /* Using the set of read-only target sections of remote, read live
9199 read-only memory.
9200
9201 For interface/parameters/return description see target.h,
9202 to_xfer_partial. */
9203
9204 target_xfer_status
9205 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9206 ULONGEST memaddr,
9207 ULONGEST len,
9208 int unit_size,
9209 ULONGEST *xfered_len)
9210 {
9211 const struct target_section *secp;
9212
9213 secp = target_section_by_addr (this, memaddr);
9214 if (secp != NULL
9215 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9216 {
9217 ULONGEST memend = memaddr + len;
9218
9219 const target_section_table *table = target_get_section_table (this);
9220 for (const target_section &p : *table)
9221 {
9222 if (memaddr >= p.addr)
9223 {
9224 if (memend <= p.endaddr)
9225 {
9226 /* Entire transfer is within this section. */
9227 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9228 xfered_len);
9229 }
9230 else if (memaddr >= p.endaddr)
9231 {
9232 /* This section ends before the transfer starts. */
9233 continue;
9234 }
9235 else
9236 {
9237 /* This section overlaps the transfer. Just do half. */
9238 len = p.endaddr - memaddr;
9239 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9240 xfered_len);
9241 }
9242 }
9243 }
9244 }
9245
9246 return TARGET_XFER_EOF;
9247 }
9248
9249 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9250 first if the requested memory is unavailable in traceframe.
9251 Otherwise, fall back to remote_read_bytes_1. */
9252
9253 target_xfer_status
9254 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9255 gdb_byte *myaddr, ULONGEST len, int unit_size,
9256 ULONGEST *xfered_len)
9257 {
9258 if (len == 0)
9259 return TARGET_XFER_EOF;
9260
9261 if (get_traceframe_number () != -1)
9262 {
9263 std::vector<mem_range> available;
9264
9265 /* If we fail to get the set of available memory, then the
9266 target does not support querying traceframe info, and so we
9267 attempt reading from the traceframe anyway (assuming the
9268 target implements the old QTro packet then). */
9269 if (traceframe_available_memory (&available, memaddr, len))
9270 {
9271 if (available.empty () || available[0].start != memaddr)
9272 {
9273 enum target_xfer_status res;
9274
9275 /* Don't read into the traceframe's available
9276 memory. */
9277 if (!available.empty ())
9278 {
9279 LONGEST oldlen = len;
9280
9281 len = available[0].start - memaddr;
9282 gdb_assert (len <= oldlen);
9283 }
9284
9285 /* This goes through the topmost target again. */
9286 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9287 len, unit_size, xfered_len);
9288 if (res == TARGET_XFER_OK)
9289 return TARGET_XFER_OK;
9290 else
9291 {
9292 /* No use trying further, we know some memory starting
9293 at MEMADDR isn't available. */
9294 *xfered_len = len;
9295 return (*xfered_len != 0) ?
9296 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9297 }
9298 }
9299
9300 /* Don't try to read more than how much is available, in
9301 case the target implements the deprecated QTro packet to
9302 cater for older GDBs (the target's knowledge of read-only
9303 sections may be outdated by now). */
9304 len = available[0].length;
9305 }
9306 }
9307
9308 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9309 }
9310
9311 \f
9312
9313 /* Sends a packet with content determined by the printf format string
9314 FORMAT and the remaining arguments, then gets the reply. Returns
9315 whether the packet was a success, a failure, or unknown. */
9316
9317 packet_result
9318 remote_target::remote_send_printf (const char *format, ...)
9319 {
9320 struct remote_state *rs = get_remote_state ();
9321 int max_size = get_remote_packet_size ();
9322 va_list ap;
9323
9324 va_start (ap, format);
9325
9326 rs->buf[0] = '\0';
9327 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9328
9329 va_end (ap);
9330
9331 if (size >= max_size)
9332 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9333
9334 if (putpkt (rs->buf) < 0)
9335 error (_("Communication problem with target."));
9336
9337 rs->buf[0] = '\0';
9338 getpkt (&rs->buf, 0);
9339
9340 return packet_check_result (rs->buf);
9341 }
9342
9343 /* Flash writing can take quite some time. We'll set
9344 effectively infinite timeout for flash operations.
9345 In future, we'll need to decide on a better approach. */
9346 static const int remote_flash_timeout = 1000;
9347
9348 void
9349 remote_target::flash_erase (ULONGEST address, LONGEST length)
9350 {
9351 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9352 enum packet_result ret;
9353 scoped_restore restore_timeout
9354 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9355
9356 ret = remote_send_printf ("vFlashErase:%s,%s",
9357 phex (address, addr_size),
9358 phex (length, 4));
9359 switch (ret)
9360 {
9361 case PACKET_UNKNOWN:
9362 error (_("Remote target does not support flash erase"));
9363 case PACKET_ERROR:
9364 error (_("Error erasing flash with vFlashErase packet"));
9365 default:
9366 break;
9367 }
9368 }
9369
9370 target_xfer_status
9371 remote_target::remote_flash_write (ULONGEST address,
9372 ULONGEST length, ULONGEST *xfered_len,
9373 const gdb_byte *data)
9374 {
9375 scoped_restore restore_timeout
9376 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9377 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9378 xfered_len,'X', 0);
9379 }
9380
9381 void
9382 remote_target::flash_done ()
9383 {
9384 int ret;
9385
9386 scoped_restore restore_timeout
9387 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9388
9389 ret = remote_send_printf ("vFlashDone");
9390
9391 switch (ret)
9392 {
9393 case PACKET_UNKNOWN:
9394 error (_("Remote target does not support vFlashDone"));
9395 case PACKET_ERROR:
9396 error (_("Error finishing flash operation"));
9397 default:
9398 break;
9399 }
9400 }
9401
9402 void
9403 remote_target::files_info ()
9404 {
9405 puts_filtered ("Debugging a target over a serial line.\n");
9406 }
9407 \f
9408 /* Stuff for dealing with the packets which are part of this protocol.
9409 See comment at top of file for details. */
9410
9411 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9412 error to higher layers. Called when a serial error is detected.
9413 The exception message is STRING, followed by a colon and a blank,
9414 the system error message for errno at function entry and final dot
9415 for output compatibility with throw_perror_with_name. */
9416
9417 static void
9418 unpush_and_perror (remote_target *target, const char *string)
9419 {
9420 int saved_errno = errno;
9421
9422 remote_unpush_target (target);
9423 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9424 safe_strerror (saved_errno));
9425 }
9426
9427 /* Read a single character from the remote end. The current quit
9428 handler is overridden to avoid quitting in the middle of packet
9429 sequence, as that would break communication with the remote server.
9430 See remote_serial_quit_handler for more detail. */
9431
9432 int
9433 remote_target::readchar (int timeout)
9434 {
9435 int ch;
9436 struct remote_state *rs = get_remote_state ();
9437
9438 {
9439 scoped_restore restore_quit_target
9440 = make_scoped_restore (&curr_quit_handler_target, this);
9441 scoped_restore restore_quit
9442 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9443
9444 rs->got_ctrlc_during_io = 0;
9445
9446 ch = serial_readchar (rs->remote_desc, timeout);
9447
9448 if (rs->got_ctrlc_during_io)
9449 set_quit_flag ();
9450 }
9451
9452 if (ch >= 0)
9453 return ch;
9454
9455 switch ((enum serial_rc) ch)
9456 {
9457 case SERIAL_EOF:
9458 remote_unpush_target (this);
9459 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9460 /* no return */
9461 case SERIAL_ERROR:
9462 unpush_and_perror (this, _("Remote communication error. "
9463 "Target disconnected."));
9464 /* no return */
9465 case SERIAL_TIMEOUT:
9466 break;
9467 }
9468 return ch;
9469 }
9470
9471 /* Wrapper for serial_write that closes the target and throws if
9472 writing fails. The current quit handler is overridden to avoid
9473 quitting in the middle of packet sequence, as that would break
9474 communication with the remote server. See
9475 remote_serial_quit_handler for more detail. */
9476
9477 void
9478 remote_target::remote_serial_write (const char *str, int len)
9479 {
9480 struct remote_state *rs = get_remote_state ();
9481
9482 scoped_restore restore_quit_target
9483 = make_scoped_restore (&curr_quit_handler_target, this);
9484 scoped_restore restore_quit
9485 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9486
9487 rs->got_ctrlc_during_io = 0;
9488
9489 if (serial_write (rs->remote_desc, str, len))
9490 {
9491 unpush_and_perror (this, _("Remote communication error. "
9492 "Target disconnected."));
9493 }
9494
9495 if (rs->got_ctrlc_during_io)
9496 set_quit_flag ();
9497 }
9498
9499 /* Return a string representing an escaped version of BUF, of len N.
9500 E.g. \n is converted to \\n, \t to \\t, etc. */
9501
9502 static std::string
9503 escape_buffer (const char *buf, int n)
9504 {
9505 string_file stb;
9506
9507 stb.putstrn (buf, n, '\\');
9508 return std::move (stb.string ());
9509 }
9510
9511 /* Display a null-terminated packet on stdout, for debugging, using C
9512 string notation. */
9513
9514 static void
9515 print_packet (const char *buf)
9516 {
9517 puts_filtered ("\"");
9518 fputstr_filtered (buf, '"', gdb_stdout);
9519 puts_filtered ("\"");
9520 }
9521
9522 int
9523 remote_target::putpkt (const char *buf)
9524 {
9525 return putpkt_binary (buf, strlen (buf));
9526 }
9527
9528 /* Wrapper around remote_target::putpkt to avoid exporting
9529 remote_target. */
9530
9531 int
9532 putpkt (remote_target *remote, const char *buf)
9533 {
9534 return remote->putpkt (buf);
9535 }
9536
9537 /* Send a packet to the remote machine, with error checking. The data
9538 of the packet is in BUF. The string in BUF can be at most
9539 get_remote_packet_size () - 5 to account for the $, # and checksum,
9540 and for a possible /0 if we are debugging (remote_debug) and want
9541 to print the sent packet as a string. */
9542
9543 int
9544 remote_target::putpkt_binary (const char *buf, int cnt)
9545 {
9546 struct remote_state *rs = get_remote_state ();
9547 int i;
9548 unsigned char csum = 0;
9549 gdb::def_vector<char> data (cnt + 6);
9550 char *buf2 = data.data ();
9551
9552 int ch;
9553 int tcount = 0;
9554 char *p;
9555
9556 /* Catch cases like trying to read memory or listing threads while
9557 we're waiting for a stop reply. The remote server wouldn't be
9558 ready to handle this request, so we'd hang and timeout. We don't
9559 have to worry about this in synchronous mode, because in that
9560 case it's not possible to issue a command while the target is
9561 running. This is not a problem in non-stop mode, because in that
9562 case, the stub is always ready to process serial input. */
9563 if (!target_is_non_stop_p ()
9564 && target_is_async_p ()
9565 && rs->waiting_for_stop_reply)
9566 {
9567 error (_("Cannot execute this command while the target is running.\n"
9568 "Use the \"interrupt\" command to stop the target\n"
9569 "and then try again."));
9570 }
9571
9572 /* We're sending out a new packet. Make sure we don't look at a
9573 stale cached response. */
9574 rs->cached_wait_status = 0;
9575
9576 /* Copy the packet into buffer BUF2, encapsulating it
9577 and giving it a checksum. */
9578
9579 p = buf2;
9580 *p++ = '$';
9581
9582 for (i = 0; i < cnt; i++)
9583 {
9584 csum += buf[i];
9585 *p++ = buf[i];
9586 }
9587 *p++ = '#';
9588 *p++ = tohex ((csum >> 4) & 0xf);
9589 *p++ = tohex (csum & 0xf);
9590
9591 /* Send it over and over until we get a positive ack. */
9592
9593 while (1)
9594 {
9595 if (remote_debug)
9596 {
9597 *p = '\0';
9598
9599 int len = (int) (p - buf2);
9600 int max_chars;
9601
9602 if (remote_packet_max_chars < 0)
9603 max_chars = len;
9604 else
9605 max_chars = remote_packet_max_chars;
9606
9607 std::string str
9608 = escape_buffer (buf2, std::min (len, max_chars));
9609
9610 if (len > max_chars)
9611 remote_debug_printf_nofunc
9612 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9613 len - max_chars);
9614 else
9615 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9616 }
9617 remote_serial_write (buf2, p - buf2);
9618
9619 /* If this is a no acks version of the remote protocol, send the
9620 packet and move on. */
9621 if (rs->noack_mode)
9622 break;
9623
9624 /* Read until either a timeout occurs (-2) or '+' is read.
9625 Handle any notification that arrives in the mean time. */
9626 while (1)
9627 {
9628 ch = readchar (remote_timeout);
9629
9630 switch (ch)
9631 {
9632 case '+':
9633 remote_debug_printf_nofunc ("Received Ack");
9634 return 1;
9635 case '-':
9636 remote_debug_printf_nofunc ("Received Nak");
9637 /* FALLTHROUGH */
9638 case SERIAL_TIMEOUT:
9639 tcount++;
9640 if (tcount > 3)
9641 return 0;
9642 break; /* Retransmit buffer. */
9643 case '$':
9644 {
9645 remote_debug_printf ("Packet instead of Ack, ignoring it");
9646 /* It's probably an old response sent because an ACK
9647 was lost. Gobble up the packet and ack it so it
9648 doesn't get retransmitted when we resend this
9649 packet. */
9650 skip_frame ();
9651 remote_serial_write ("+", 1);
9652 continue; /* Now, go look for +. */
9653 }
9654
9655 case '%':
9656 {
9657 int val;
9658
9659 /* If we got a notification, handle it, and go back to looking
9660 for an ack. */
9661 /* We've found the start of a notification. Now
9662 collect the data. */
9663 val = read_frame (&rs->buf);
9664 if (val >= 0)
9665 {
9666 remote_debug_printf_nofunc
9667 (" Notification received: %s",
9668 escape_buffer (rs->buf.data (), val).c_str ());
9669
9670 handle_notification (rs->notif_state, rs->buf.data ());
9671 /* We're in sync now, rewait for the ack. */
9672 tcount = 0;
9673 }
9674 else
9675 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9676 rs->buf.data ());
9677 continue;
9678 }
9679 /* fall-through */
9680 default:
9681 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9682 rs->buf.data ());
9683 continue;
9684 }
9685 break; /* Here to retransmit. */
9686 }
9687
9688 #if 0
9689 /* This is wrong. If doing a long backtrace, the user should be
9690 able to get out next time we call QUIT, without anything as
9691 violent as interrupt_query. If we want to provide a way out of
9692 here without getting to the next QUIT, it should be based on
9693 hitting ^C twice as in remote_wait. */
9694 if (quit_flag)
9695 {
9696 quit_flag = 0;
9697 interrupt_query ();
9698 }
9699 #endif
9700 }
9701
9702 return 0;
9703 }
9704
9705 /* Come here after finding the start of a frame when we expected an
9706 ack. Do our best to discard the rest of this packet. */
9707
9708 void
9709 remote_target::skip_frame ()
9710 {
9711 int c;
9712
9713 while (1)
9714 {
9715 c = readchar (remote_timeout);
9716 switch (c)
9717 {
9718 case SERIAL_TIMEOUT:
9719 /* Nothing we can do. */
9720 return;
9721 case '#':
9722 /* Discard the two bytes of checksum and stop. */
9723 c = readchar (remote_timeout);
9724 if (c >= 0)
9725 c = readchar (remote_timeout);
9726
9727 return;
9728 case '*': /* Run length encoding. */
9729 /* Discard the repeat count. */
9730 c = readchar (remote_timeout);
9731 if (c < 0)
9732 return;
9733 break;
9734 default:
9735 /* A regular character. */
9736 break;
9737 }
9738 }
9739 }
9740
9741 /* Come here after finding the start of the frame. Collect the rest
9742 into *BUF, verifying the checksum, length, and handling run-length
9743 compression. NUL terminate the buffer. If there is not enough room,
9744 expand *BUF.
9745
9746 Returns -1 on error, number of characters in buffer (ignoring the
9747 trailing NULL) on success. (could be extended to return one of the
9748 SERIAL status indications). */
9749
9750 long
9751 remote_target::read_frame (gdb::char_vector *buf_p)
9752 {
9753 unsigned char csum;
9754 long bc;
9755 int c;
9756 char *buf = buf_p->data ();
9757 struct remote_state *rs = get_remote_state ();
9758
9759 csum = 0;
9760 bc = 0;
9761
9762 while (1)
9763 {
9764 c = readchar (remote_timeout);
9765 switch (c)
9766 {
9767 case SERIAL_TIMEOUT:
9768 remote_debug_printf ("Timeout in mid-packet, retrying");
9769 return -1;
9770
9771 case '$':
9772 remote_debug_printf ("Saw new packet start in middle of old one");
9773 return -1; /* Start a new packet, count retries. */
9774
9775 case '#':
9776 {
9777 unsigned char pktcsum;
9778 int check_0 = 0;
9779 int check_1 = 0;
9780
9781 buf[bc] = '\0';
9782
9783 check_0 = readchar (remote_timeout);
9784 if (check_0 >= 0)
9785 check_1 = readchar (remote_timeout);
9786
9787 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9788 {
9789 remote_debug_printf ("Timeout in checksum, retrying");
9790 return -1;
9791 }
9792 else if (check_0 < 0 || check_1 < 0)
9793 {
9794 remote_debug_printf ("Communication error in checksum");
9795 return -1;
9796 }
9797
9798 /* Don't recompute the checksum; with no ack packets we
9799 don't have any way to indicate a packet retransmission
9800 is necessary. */
9801 if (rs->noack_mode)
9802 return bc;
9803
9804 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9805 if (csum == pktcsum)
9806 return bc;
9807
9808 remote_debug_printf
9809 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9810 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9811
9812 /* Number of characters in buffer ignoring trailing
9813 NULL. */
9814 return -1;
9815 }
9816 case '*': /* Run length encoding. */
9817 {
9818 int repeat;
9819
9820 csum += c;
9821 c = readchar (remote_timeout);
9822 csum += c;
9823 repeat = c - ' ' + 3; /* Compute repeat count. */
9824
9825 /* The character before ``*'' is repeated. */
9826
9827 if (repeat > 0 && repeat <= 255 && bc > 0)
9828 {
9829 if (bc + repeat - 1 >= buf_p->size () - 1)
9830 {
9831 /* Make some more room in the buffer. */
9832 buf_p->resize (buf_p->size () + repeat);
9833 buf = buf_p->data ();
9834 }
9835
9836 memset (&buf[bc], buf[bc - 1], repeat);
9837 bc += repeat;
9838 continue;
9839 }
9840
9841 buf[bc] = '\0';
9842 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9843 return -1;
9844 }
9845 default:
9846 if (bc >= buf_p->size () - 1)
9847 {
9848 /* Make some more room in the buffer. */
9849 buf_p->resize (buf_p->size () * 2);
9850 buf = buf_p->data ();
9851 }
9852
9853 buf[bc++] = c;
9854 csum += c;
9855 continue;
9856 }
9857 }
9858 }
9859
9860 /* Set this to the maximum number of seconds to wait instead of waiting forever
9861 in target_wait(). If this timer times out, then it generates an error and
9862 the command is aborted. This replaces most of the need for timeouts in the
9863 GDB test suite, and makes it possible to distinguish between a hung target
9864 and one with slow communications. */
9865
9866 static int watchdog = 0;
9867 static void
9868 show_watchdog (struct ui_file *file, int from_tty,
9869 struct cmd_list_element *c, const char *value)
9870 {
9871 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9872 }
9873
9874 /* Read a packet from the remote machine, with error checking, and
9875 store it in *BUF. Resize *BUF if necessary to hold the result. If
9876 FOREVER, wait forever rather than timing out; this is used (in
9877 synchronous mode) to wait for a target that is is executing user
9878 code to stop. */
9879 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9880 don't have to change all the calls to getpkt to deal with the
9881 return value, because at the moment I don't know what the right
9882 thing to do it for those. */
9883
9884 void
9885 remote_target::getpkt (gdb::char_vector *buf, int forever)
9886 {
9887 getpkt_sane (buf, forever);
9888 }
9889
9890
9891 /* Read a packet from the remote machine, with error checking, and
9892 store it in *BUF. Resize *BUF if necessary to hold the result. If
9893 FOREVER, wait forever rather than timing out; this is used (in
9894 synchronous mode) to wait for a target that is is executing user
9895 code to stop. If FOREVER == 0, this function is allowed to time
9896 out gracefully and return an indication of this to the caller.
9897 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9898 consider receiving a notification enough reason to return to the
9899 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9900 holds a notification or not (a regular packet). */
9901
9902 int
9903 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9904 int forever, int expecting_notif,
9905 int *is_notif)
9906 {
9907 struct remote_state *rs = get_remote_state ();
9908 int c;
9909 int tries;
9910 int timeout;
9911 int val = -1;
9912
9913 /* We're reading a new response. Make sure we don't look at a
9914 previously cached response. */
9915 rs->cached_wait_status = 0;
9916
9917 strcpy (buf->data (), "timeout");
9918
9919 if (forever)
9920 timeout = watchdog > 0 ? watchdog : -1;
9921 else if (expecting_notif)
9922 timeout = 0; /* There should already be a char in the buffer. If
9923 not, bail out. */
9924 else
9925 timeout = remote_timeout;
9926
9927 #define MAX_TRIES 3
9928
9929 /* Process any number of notifications, and then return when
9930 we get a packet. */
9931 for (;;)
9932 {
9933 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9934 times. */
9935 for (tries = 1; tries <= MAX_TRIES; tries++)
9936 {
9937 /* This can loop forever if the remote side sends us
9938 characters continuously, but if it pauses, we'll get
9939 SERIAL_TIMEOUT from readchar because of timeout. Then
9940 we'll count that as a retry.
9941
9942 Note that even when forever is set, we will only wait
9943 forever prior to the start of a packet. After that, we
9944 expect characters to arrive at a brisk pace. They should
9945 show up within remote_timeout intervals. */
9946 do
9947 c = readchar (timeout);
9948 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9949
9950 if (c == SERIAL_TIMEOUT)
9951 {
9952 if (expecting_notif)
9953 return -1; /* Don't complain, it's normal to not get
9954 anything in this case. */
9955
9956 if (forever) /* Watchdog went off? Kill the target. */
9957 {
9958 remote_unpush_target (this);
9959 throw_error (TARGET_CLOSE_ERROR,
9960 _("Watchdog timeout has expired. "
9961 "Target detached."));
9962 }
9963
9964 remote_debug_printf ("Timed out.");
9965 }
9966 else
9967 {
9968 /* We've found the start of a packet or notification.
9969 Now collect the data. */
9970 val = read_frame (buf);
9971 if (val >= 0)
9972 break;
9973 }
9974
9975 remote_serial_write ("-", 1);
9976 }
9977
9978 if (tries > MAX_TRIES)
9979 {
9980 /* We have tried hard enough, and just can't receive the
9981 packet/notification. Give up. */
9982 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9983
9984 /* Skip the ack char if we're in no-ack mode. */
9985 if (!rs->noack_mode)
9986 remote_serial_write ("+", 1);
9987 return -1;
9988 }
9989
9990 /* If we got an ordinary packet, return that to our caller. */
9991 if (c == '$')
9992 {
9993 if (remote_debug)
9994 {
9995 int max_chars;
9996
9997 if (remote_packet_max_chars < 0)
9998 max_chars = val;
9999 else
10000 max_chars = remote_packet_max_chars;
10001
10002 std::string str
10003 = escape_buffer (buf->data (),
10004 std::min (val, max_chars));
10005
10006 if (val > max_chars)
10007 remote_debug_printf_nofunc
10008 ("Packet received: %s [%d bytes omitted]", str.c_str (),
10009 val - max_chars);
10010 else
10011 remote_debug_printf_nofunc ("Packet received: %s",
10012 str.c_str ());
10013 }
10014
10015 /* Skip the ack char if we're in no-ack mode. */
10016 if (!rs->noack_mode)
10017 remote_serial_write ("+", 1);
10018 if (is_notif != NULL)
10019 *is_notif = 0;
10020 return val;
10021 }
10022
10023 /* If we got a notification, handle it, and go back to looking
10024 for a packet. */
10025 else
10026 {
10027 gdb_assert (c == '%');
10028
10029 remote_debug_printf_nofunc
10030 (" Notification received: %s",
10031 escape_buffer (buf->data (), val).c_str ());
10032
10033 if (is_notif != NULL)
10034 *is_notif = 1;
10035
10036 handle_notification (rs->notif_state, buf->data ());
10037
10038 /* Notifications require no acknowledgement. */
10039
10040 if (expecting_notif)
10041 return val;
10042 }
10043 }
10044 }
10045
10046 int
10047 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
10048 {
10049 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
10050 }
10051
10052 int
10053 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
10054 int *is_notif)
10055 {
10056 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
10057 }
10058
10059 /* Kill any new fork children of process PID that haven't been
10060 processed by follow_fork. */
10061
10062 void
10063 remote_target::kill_new_fork_children (int pid)
10064 {
10065 remote_state *rs = get_remote_state ();
10066 struct notif_client *notif = &notif_client_stop;
10067
10068 /* Kill the fork child threads of any threads in process PID
10069 that are stopped at a fork event. */
10070 for (thread_info *thread : all_non_exited_threads (this))
10071 {
10072 struct target_waitstatus *ws = &thread->pending_follow;
10073
10074 if (is_pending_fork_parent (ws, pid, thread->ptid))
10075 {
10076 int child_pid = ws->value.related_pid.pid ();
10077 int res;
10078
10079 res = remote_vkill (child_pid);
10080 if (res != 0)
10081 error (_("Can't kill fork child process %d"), child_pid);
10082 }
10083 }
10084
10085 /* Check for any pending fork events (not reported or processed yet)
10086 in process PID and kill those fork child threads as well. */
10087 remote_notif_get_pending_events (notif);
10088 for (auto &event : rs->stop_reply_queue)
10089 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
10090 {
10091 int child_pid = event->ws.value.related_pid.pid ();
10092 int res;
10093
10094 res = remote_vkill (child_pid);
10095 if (res != 0)
10096 error (_("Can't kill fork child process %d"), child_pid);
10097 }
10098 }
10099
10100 \f
10101 /* Target hook to kill the current inferior. */
10102
10103 void
10104 remote_target::kill ()
10105 {
10106 int res = -1;
10107 int pid = inferior_ptid.pid ();
10108 struct remote_state *rs = get_remote_state ();
10109
10110 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
10111 {
10112 /* If we're stopped while forking and we haven't followed yet,
10113 kill the child task. We need to do this before killing the
10114 parent task because if this is a vfork then the parent will
10115 be sleeping. */
10116 kill_new_fork_children (pid);
10117
10118 res = remote_vkill (pid);
10119 if (res == 0)
10120 {
10121 target_mourn_inferior (inferior_ptid);
10122 return;
10123 }
10124 }
10125
10126 /* If we are in 'target remote' mode and we are killing the only
10127 inferior, then we will tell gdbserver to exit and unpush the
10128 target. */
10129 if (res == -1 && !remote_multi_process_p (rs)
10130 && number_of_live_inferiors (this) == 1)
10131 {
10132 remote_kill_k ();
10133
10134 /* We've killed the remote end, we get to mourn it. If we are
10135 not in extended mode, mourning the inferior also unpushes
10136 remote_ops from the target stack, which closes the remote
10137 connection. */
10138 target_mourn_inferior (inferior_ptid);
10139
10140 return;
10141 }
10142
10143 error (_("Can't kill process"));
10144 }
10145
10146 /* Send a kill request to the target using the 'vKill' packet. */
10147
10148 int
10149 remote_target::remote_vkill (int pid)
10150 {
10151 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10152 return -1;
10153
10154 remote_state *rs = get_remote_state ();
10155
10156 /* Tell the remote target to detach. */
10157 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10158 putpkt (rs->buf);
10159 getpkt (&rs->buf, 0);
10160
10161 switch (packet_ok (rs->buf,
10162 &remote_protocol_packets[PACKET_vKill]))
10163 {
10164 case PACKET_OK:
10165 return 0;
10166 case PACKET_ERROR:
10167 return 1;
10168 case PACKET_UNKNOWN:
10169 return -1;
10170 default:
10171 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10172 }
10173 }
10174
10175 /* Send a kill request to the target using the 'k' packet. */
10176
10177 void
10178 remote_target::remote_kill_k ()
10179 {
10180 /* Catch errors so the user can quit from gdb even when we
10181 aren't on speaking terms with the remote system. */
10182 try
10183 {
10184 putpkt ("k");
10185 }
10186 catch (const gdb_exception_error &ex)
10187 {
10188 if (ex.error == TARGET_CLOSE_ERROR)
10189 {
10190 /* If we got an (EOF) error that caused the target
10191 to go away, then we're done, that's what we wanted.
10192 "k" is susceptible to cause a premature EOF, given
10193 that the remote server isn't actually required to
10194 reply to "k", and it can happen that it doesn't
10195 even get to reply ACK to the "k". */
10196 return;
10197 }
10198
10199 /* Otherwise, something went wrong. We didn't actually kill
10200 the target. Just propagate the exception, and let the
10201 user or higher layers decide what to do. */
10202 throw;
10203 }
10204 }
10205
10206 void
10207 remote_target::mourn_inferior ()
10208 {
10209 struct remote_state *rs = get_remote_state ();
10210
10211 /* We're no longer interested in notification events of an inferior
10212 that exited or was killed/detached. */
10213 discard_pending_stop_replies (current_inferior ());
10214
10215 /* In 'target remote' mode with one inferior, we close the connection. */
10216 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10217 {
10218 remote_unpush_target (this);
10219 return;
10220 }
10221
10222 /* In case we got here due to an error, but we're going to stay
10223 connected. */
10224 rs->waiting_for_stop_reply = 0;
10225
10226 /* If the current general thread belonged to the process we just
10227 detached from or has exited, the remote side current general
10228 thread becomes undefined. Considering a case like this:
10229
10230 - We just got here due to a detach.
10231 - The process that we're detaching from happens to immediately
10232 report a global breakpoint being hit in non-stop mode, in the
10233 same thread we had selected before.
10234 - GDB attaches to this process again.
10235 - This event happens to be the next event we handle.
10236
10237 GDB would consider that the current general thread didn't need to
10238 be set on the stub side (with Hg), since for all it knew,
10239 GENERAL_THREAD hadn't changed.
10240
10241 Notice that although in all-stop mode, the remote server always
10242 sets the current thread to the thread reporting the stop event,
10243 that doesn't happen in non-stop mode; in non-stop, the stub *must
10244 not* change the current thread when reporting a breakpoint hit,
10245 due to the decoupling of event reporting and event handling.
10246
10247 To keep things simple, we always invalidate our notion of the
10248 current thread. */
10249 record_currthread (rs, minus_one_ptid);
10250
10251 /* Call common code to mark the inferior as not running. */
10252 generic_mourn_inferior ();
10253 }
10254
10255 bool
10256 extended_remote_target::supports_disable_randomization ()
10257 {
10258 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10259 }
10260
10261 void
10262 remote_target::extended_remote_disable_randomization (int val)
10263 {
10264 struct remote_state *rs = get_remote_state ();
10265 char *reply;
10266
10267 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10268 "QDisableRandomization:%x", val);
10269 putpkt (rs->buf);
10270 reply = remote_get_noisy_reply ();
10271 if (*reply == '\0')
10272 error (_("Target does not support QDisableRandomization."));
10273 if (strcmp (reply, "OK") != 0)
10274 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10275 }
10276
10277 int
10278 remote_target::extended_remote_run (const std::string &args)
10279 {
10280 struct remote_state *rs = get_remote_state ();
10281 int len;
10282 const char *remote_exec_file = get_remote_exec_file ();
10283
10284 /* If the user has disabled vRun support, or we have detected that
10285 support is not available, do not try it. */
10286 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10287 return -1;
10288
10289 strcpy (rs->buf.data (), "vRun;");
10290 len = strlen (rs->buf.data ());
10291
10292 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10293 error (_("Remote file name too long for run packet"));
10294 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10295 strlen (remote_exec_file));
10296
10297 if (!args.empty ())
10298 {
10299 int i;
10300
10301 gdb_argv argv (args.c_str ());
10302 for (i = 0; argv[i] != NULL; i++)
10303 {
10304 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10305 error (_("Argument list too long for run packet"));
10306 rs->buf[len++] = ';';
10307 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10308 strlen (argv[i]));
10309 }
10310 }
10311
10312 rs->buf[len++] = '\0';
10313
10314 putpkt (rs->buf);
10315 getpkt (&rs->buf, 0);
10316
10317 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10318 {
10319 case PACKET_OK:
10320 /* We have a wait response. All is well. */
10321 return 0;
10322 case PACKET_UNKNOWN:
10323 return -1;
10324 case PACKET_ERROR:
10325 if (remote_exec_file[0] == '\0')
10326 error (_("Running the default executable on the remote target failed; "
10327 "try \"set remote exec-file\"?"));
10328 else
10329 error (_("Running \"%s\" on the remote target failed"),
10330 remote_exec_file);
10331 default:
10332 gdb_assert_not_reached (_("bad switch"));
10333 }
10334 }
10335
10336 /* Helper function to send set/unset environment packets. ACTION is
10337 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10338 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10339 sent. */
10340
10341 void
10342 remote_target::send_environment_packet (const char *action,
10343 const char *packet,
10344 const char *value)
10345 {
10346 remote_state *rs = get_remote_state ();
10347
10348 /* Convert the environment variable to an hex string, which
10349 is the best format to be transmitted over the wire. */
10350 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10351 strlen (value));
10352
10353 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10354 "%s:%s", packet, encoded_value.c_str ());
10355
10356 putpkt (rs->buf);
10357 getpkt (&rs->buf, 0);
10358 if (strcmp (rs->buf.data (), "OK") != 0)
10359 warning (_("Unable to %s environment variable '%s' on remote."),
10360 action, value);
10361 }
10362
10363 /* Helper function to handle the QEnvironment* packets. */
10364
10365 void
10366 remote_target::extended_remote_environment_support ()
10367 {
10368 remote_state *rs = get_remote_state ();
10369
10370 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10371 {
10372 putpkt ("QEnvironmentReset");
10373 getpkt (&rs->buf, 0);
10374 if (strcmp (rs->buf.data (), "OK") != 0)
10375 warning (_("Unable to reset environment on remote."));
10376 }
10377
10378 gdb_environ *e = &current_inferior ()->environment;
10379
10380 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10381 for (const std::string &el : e->user_set_env ())
10382 send_environment_packet ("set", "QEnvironmentHexEncoded",
10383 el.c_str ());
10384
10385 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10386 for (const std::string &el : e->user_unset_env ())
10387 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10388 }
10389
10390 /* Helper function to set the current working directory for the
10391 inferior in the remote target. */
10392
10393 void
10394 remote_target::extended_remote_set_inferior_cwd ()
10395 {
10396 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10397 {
10398 const std::string &inferior_cwd = current_inferior ()->cwd ();
10399 remote_state *rs = get_remote_state ();
10400
10401 if (!inferior_cwd.empty ())
10402 {
10403 std::string hexpath
10404 = bin2hex ((const gdb_byte *) inferior_cwd.data (),
10405 inferior_cwd.size ());
10406
10407 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10408 "QSetWorkingDir:%s", hexpath.c_str ());
10409 }
10410 else
10411 {
10412 /* An empty inferior_cwd means that the user wants us to
10413 reset the remote server's inferior's cwd. */
10414 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10415 "QSetWorkingDir:");
10416 }
10417
10418 putpkt (rs->buf);
10419 getpkt (&rs->buf, 0);
10420 if (packet_ok (rs->buf,
10421 &remote_protocol_packets[PACKET_QSetWorkingDir])
10422 != PACKET_OK)
10423 error (_("\
10424 Remote replied unexpectedly while setting the inferior's working\n\
10425 directory: %s"),
10426 rs->buf.data ());
10427
10428 }
10429 }
10430
10431 /* In the extended protocol we want to be able to do things like
10432 "run" and have them basically work as expected. So we need
10433 a special create_inferior function. We support changing the
10434 executable file and the command line arguments, but not the
10435 environment. */
10436
10437 void
10438 extended_remote_target::create_inferior (const char *exec_file,
10439 const std::string &args,
10440 char **env, int from_tty)
10441 {
10442 int run_worked;
10443 char *stop_reply;
10444 struct remote_state *rs = get_remote_state ();
10445 const char *remote_exec_file = get_remote_exec_file ();
10446
10447 /* If running asynchronously, register the target file descriptor
10448 with the event loop. */
10449 if (target_can_async_p ())
10450 target_async (1);
10451
10452 /* Disable address space randomization if requested (and supported). */
10453 if (supports_disable_randomization ())
10454 extended_remote_disable_randomization (disable_randomization);
10455
10456 /* If startup-with-shell is on, we inform gdbserver to start the
10457 remote inferior using a shell. */
10458 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10459 {
10460 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10461 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10462 putpkt (rs->buf);
10463 getpkt (&rs->buf, 0);
10464 if (strcmp (rs->buf.data (), "OK") != 0)
10465 error (_("\
10466 Remote replied unexpectedly while setting startup-with-shell: %s"),
10467 rs->buf.data ());
10468 }
10469
10470 extended_remote_environment_support ();
10471
10472 extended_remote_set_inferior_cwd ();
10473
10474 /* Now restart the remote server. */
10475 run_worked = extended_remote_run (args) != -1;
10476 if (!run_worked)
10477 {
10478 /* vRun was not supported. Fail if we need it to do what the
10479 user requested. */
10480 if (remote_exec_file[0])
10481 error (_("Remote target does not support \"set remote exec-file\""));
10482 if (!args.empty ())
10483 error (_("Remote target does not support \"set args\" or run ARGS"));
10484
10485 /* Fall back to "R". */
10486 extended_remote_restart ();
10487 }
10488
10489 /* vRun's success return is a stop reply. */
10490 stop_reply = run_worked ? rs->buf.data () : NULL;
10491 add_current_inferior_and_thread (stop_reply);
10492
10493 /* Get updated offsets, if the stub uses qOffsets. */
10494 get_offsets ();
10495 }
10496 \f
10497
10498 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10499 the list of conditions (in agent expression bytecode format), if any, the
10500 target needs to evaluate. The output is placed into the packet buffer
10501 started from BUF and ended at BUF_END. */
10502
10503 static int
10504 remote_add_target_side_condition (struct gdbarch *gdbarch,
10505 struct bp_target_info *bp_tgt, char *buf,
10506 char *buf_end)
10507 {
10508 if (bp_tgt->conditions.empty ())
10509 return 0;
10510
10511 buf += strlen (buf);
10512 xsnprintf (buf, buf_end - buf, "%s", ";");
10513 buf++;
10514
10515 /* Send conditions to the target. */
10516 for (agent_expr *aexpr : bp_tgt->conditions)
10517 {
10518 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10519 buf += strlen (buf);
10520 for (int i = 0; i < aexpr->len; ++i)
10521 buf = pack_hex_byte (buf, aexpr->buf[i]);
10522 *buf = '\0';
10523 }
10524 return 0;
10525 }
10526
10527 static void
10528 remote_add_target_side_commands (struct gdbarch *gdbarch,
10529 struct bp_target_info *bp_tgt, char *buf)
10530 {
10531 if (bp_tgt->tcommands.empty ())
10532 return;
10533
10534 buf += strlen (buf);
10535
10536 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10537 buf += strlen (buf);
10538
10539 /* Concatenate all the agent expressions that are commands into the
10540 cmds parameter. */
10541 for (agent_expr *aexpr : bp_tgt->tcommands)
10542 {
10543 sprintf (buf, "X%x,", aexpr->len);
10544 buf += strlen (buf);
10545 for (int i = 0; i < aexpr->len; ++i)
10546 buf = pack_hex_byte (buf, aexpr->buf[i]);
10547 *buf = '\0';
10548 }
10549 }
10550
10551 /* Insert a breakpoint. On targets that have software breakpoint
10552 support, we ask the remote target to do the work; on targets
10553 which don't, we insert a traditional memory breakpoint. */
10554
10555 int
10556 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10557 struct bp_target_info *bp_tgt)
10558 {
10559 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10560 If it succeeds, then set the support to PACKET_ENABLE. If it
10561 fails, and the user has explicitly requested the Z support then
10562 report an error, otherwise, mark it disabled and go on. */
10563
10564 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10565 {
10566 CORE_ADDR addr = bp_tgt->reqstd_address;
10567 struct remote_state *rs;
10568 char *p, *endbuf;
10569
10570 /* Make sure the remote is pointing at the right process, if
10571 necessary. */
10572 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10573 set_general_process ();
10574
10575 rs = get_remote_state ();
10576 p = rs->buf.data ();
10577 endbuf = p + get_remote_packet_size ();
10578
10579 *(p++) = 'Z';
10580 *(p++) = '0';
10581 *(p++) = ',';
10582 addr = (ULONGEST) remote_address_masked (addr);
10583 p += hexnumstr (p, addr);
10584 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10585
10586 if (supports_evaluation_of_breakpoint_conditions ())
10587 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10588
10589 if (can_run_breakpoint_commands ())
10590 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10591
10592 putpkt (rs->buf);
10593 getpkt (&rs->buf, 0);
10594
10595 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10596 {
10597 case PACKET_ERROR:
10598 return -1;
10599 case PACKET_OK:
10600 return 0;
10601 case PACKET_UNKNOWN:
10602 break;
10603 }
10604 }
10605
10606 /* If this breakpoint has target-side commands but this stub doesn't
10607 support Z0 packets, throw error. */
10608 if (!bp_tgt->tcommands.empty ())
10609 throw_error (NOT_SUPPORTED_ERROR, _("\
10610 Target doesn't support breakpoints that have target side commands."));
10611
10612 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10613 }
10614
10615 int
10616 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10617 struct bp_target_info *bp_tgt,
10618 enum remove_bp_reason reason)
10619 {
10620 CORE_ADDR addr = bp_tgt->placed_address;
10621 struct remote_state *rs = get_remote_state ();
10622
10623 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10624 {
10625 char *p = rs->buf.data ();
10626 char *endbuf = p + get_remote_packet_size ();
10627
10628 /* Make sure the remote is pointing at the right process, if
10629 necessary. */
10630 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10631 set_general_process ();
10632
10633 *(p++) = 'z';
10634 *(p++) = '0';
10635 *(p++) = ',';
10636
10637 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10638 p += hexnumstr (p, addr);
10639 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10640
10641 putpkt (rs->buf);
10642 getpkt (&rs->buf, 0);
10643
10644 return (rs->buf[0] == 'E');
10645 }
10646
10647 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10648 }
10649
10650 static enum Z_packet_type
10651 watchpoint_to_Z_packet (int type)
10652 {
10653 switch (type)
10654 {
10655 case hw_write:
10656 return Z_PACKET_WRITE_WP;
10657 break;
10658 case hw_read:
10659 return Z_PACKET_READ_WP;
10660 break;
10661 case hw_access:
10662 return Z_PACKET_ACCESS_WP;
10663 break;
10664 default:
10665 internal_error (__FILE__, __LINE__,
10666 _("hw_bp_to_z: bad watchpoint type %d"), type);
10667 }
10668 }
10669
10670 int
10671 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10672 enum target_hw_bp_type type, struct expression *cond)
10673 {
10674 struct remote_state *rs = get_remote_state ();
10675 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10676 char *p;
10677 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10678
10679 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10680 return 1;
10681
10682 /* Make sure the remote is pointing at the right process, if
10683 necessary. */
10684 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10685 set_general_process ();
10686
10687 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10688 p = strchr (rs->buf.data (), '\0');
10689 addr = remote_address_masked (addr);
10690 p += hexnumstr (p, (ULONGEST) addr);
10691 xsnprintf (p, endbuf - p, ",%x", len);
10692
10693 putpkt (rs->buf);
10694 getpkt (&rs->buf, 0);
10695
10696 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10697 {
10698 case PACKET_ERROR:
10699 return -1;
10700 case PACKET_UNKNOWN:
10701 return 1;
10702 case PACKET_OK:
10703 return 0;
10704 }
10705 internal_error (__FILE__, __LINE__,
10706 _("remote_insert_watchpoint: reached end of function"));
10707 }
10708
10709 bool
10710 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10711 CORE_ADDR start, int length)
10712 {
10713 CORE_ADDR diff = remote_address_masked (addr - start);
10714
10715 return diff < length;
10716 }
10717
10718
10719 int
10720 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10721 enum target_hw_bp_type type, struct expression *cond)
10722 {
10723 struct remote_state *rs = get_remote_state ();
10724 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10725 char *p;
10726 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10727
10728 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10729 return -1;
10730
10731 /* Make sure the remote is pointing at the right process, if
10732 necessary. */
10733 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10734 set_general_process ();
10735
10736 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10737 p = strchr (rs->buf.data (), '\0');
10738 addr = remote_address_masked (addr);
10739 p += hexnumstr (p, (ULONGEST) addr);
10740 xsnprintf (p, endbuf - p, ",%x", len);
10741 putpkt (rs->buf);
10742 getpkt (&rs->buf, 0);
10743
10744 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10745 {
10746 case PACKET_ERROR:
10747 case PACKET_UNKNOWN:
10748 return -1;
10749 case PACKET_OK:
10750 return 0;
10751 }
10752 internal_error (__FILE__, __LINE__,
10753 _("remote_remove_watchpoint: reached end of function"));
10754 }
10755
10756
10757 static int remote_hw_watchpoint_limit = -1;
10758 static int remote_hw_watchpoint_length_limit = -1;
10759 static int remote_hw_breakpoint_limit = -1;
10760
10761 int
10762 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10763 {
10764 if (remote_hw_watchpoint_length_limit == 0)
10765 return 0;
10766 else if (remote_hw_watchpoint_length_limit < 0)
10767 return 1;
10768 else if (len <= remote_hw_watchpoint_length_limit)
10769 return 1;
10770 else
10771 return 0;
10772 }
10773
10774 int
10775 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10776 {
10777 if (type == bp_hardware_breakpoint)
10778 {
10779 if (remote_hw_breakpoint_limit == 0)
10780 return 0;
10781 else if (remote_hw_breakpoint_limit < 0)
10782 return 1;
10783 else if (cnt <= remote_hw_breakpoint_limit)
10784 return 1;
10785 }
10786 else
10787 {
10788 if (remote_hw_watchpoint_limit == 0)
10789 return 0;
10790 else if (remote_hw_watchpoint_limit < 0)
10791 return 1;
10792 else if (ot)
10793 return -1;
10794 else if (cnt <= remote_hw_watchpoint_limit)
10795 return 1;
10796 }
10797 return -1;
10798 }
10799
10800 /* The to_stopped_by_sw_breakpoint method of target remote. */
10801
10802 bool
10803 remote_target::stopped_by_sw_breakpoint ()
10804 {
10805 struct thread_info *thread = inferior_thread ();
10806
10807 return (thread->priv != NULL
10808 && (get_remote_thread_info (thread)->stop_reason
10809 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10810 }
10811
10812 /* The to_supports_stopped_by_sw_breakpoint method of target
10813 remote. */
10814
10815 bool
10816 remote_target::supports_stopped_by_sw_breakpoint ()
10817 {
10818 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10819 }
10820
10821 /* The to_stopped_by_hw_breakpoint method of target remote. */
10822
10823 bool
10824 remote_target::stopped_by_hw_breakpoint ()
10825 {
10826 struct thread_info *thread = inferior_thread ();
10827
10828 return (thread->priv != NULL
10829 && (get_remote_thread_info (thread)->stop_reason
10830 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10831 }
10832
10833 /* The to_supports_stopped_by_hw_breakpoint method of target
10834 remote. */
10835
10836 bool
10837 remote_target::supports_stopped_by_hw_breakpoint ()
10838 {
10839 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10840 }
10841
10842 bool
10843 remote_target::stopped_by_watchpoint ()
10844 {
10845 struct thread_info *thread = inferior_thread ();
10846
10847 return (thread->priv != NULL
10848 && (get_remote_thread_info (thread)->stop_reason
10849 == TARGET_STOPPED_BY_WATCHPOINT));
10850 }
10851
10852 bool
10853 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10854 {
10855 struct thread_info *thread = inferior_thread ();
10856
10857 if (thread->priv != NULL
10858 && (get_remote_thread_info (thread)->stop_reason
10859 == TARGET_STOPPED_BY_WATCHPOINT))
10860 {
10861 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10862 return true;
10863 }
10864
10865 return false;
10866 }
10867
10868
10869 int
10870 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10871 struct bp_target_info *bp_tgt)
10872 {
10873 CORE_ADDR addr = bp_tgt->reqstd_address;
10874 struct remote_state *rs;
10875 char *p, *endbuf;
10876 char *message;
10877
10878 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10879 return -1;
10880
10881 /* Make sure the remote is pointing at the right process, if
10882 necessary. */
10883 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10884 set_general_process ();
10885
10886 rs = get_remote_state ();
10887 p = rs->buf.data ();
10888 endbuf = p + get_remote_packet_size ();
10889
10890 *(p++) = 'Z';
10891 *(p++) = '1';
10892 *(p++) = ',';
10893
10894 addr = remote_address_masked (addr);
10895 p += hexnumstr (p, (ULONGEST) addr);
10896 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10897
10898 if (supports_evaluation_of_breakpoint_conditions ())
10899 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10900
10901 if (can_run_breakpoint_commands ())
10902 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10903
10904 putpkt (rs->buf);
10905 getpkt (&rs->buf, 0);
10906
10907 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10908 {
10909 case PACKET_ERROR:
10910 if (rs->buf[1] == '.')
10911 {
10912 message = strchr (&rs->buf[2], '.');
10913 if (message)
10914 error (_("Remote failure reply: %s"), message + 1);
10915 }
10916 return -1;
10917 case PACKET_UNKNOWN:
10918 return -1;
10919 case PACKET_OK:
10920 return 0;
10921 }
10922 internal_error (__FILE__, __LINE__,
10923 _("remote_insert_hw_breakpoint: reached end of function"));
10924 }
10925
10926
10927 int
10928 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10929 struct bp_target_info *bp_tgt)
10930 {
10931 CORE_ADDR addr;
10932 struct remote_state *rs = get_remote_state ();
10933 char *p = rs->buf.data ();
10934 char *endbuf = p + get_remote_packet_size ();
10935
10936 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10937 return -1;
10938
10939 /* Make sure the remote is pointing at the right process, if
10940 necessary. */
10941 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10942 set_general_process ();
10943
10944 *(p++) = 'z';
10945 *(p++) = '1';
10946 *(p++) = ',';
10947
10948 addr = remote_address_masked (bp_tgt->placed_address);
10949 p += hexnumstr (p, (ULONGEST) addr);
10950 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10951
10952 putpkt (rs->buf);
10953 getpkt (&rs->buf, 0);
10954
10955 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10956 {
10957 case PACKET_ERROR:
10958 case PACKET_UNKNOWN:
10959 return -1;
10960 case PACKET_OK:
10961 return 0;
10962 }
10963 internal_error (__FILE__, __LINE__,
10964 _("remote_remove_hw_breakpoint: reached end of function"));
10965 }
10966
10967 /* Verify memory using the "qCRC:" request. */
10968
10969 int
10970 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10971 {
10972 struct remote_state *rs = get_remote_state ();
10973 unsigned long host_crc, target_crc;
10974 char *tmp;
10975
10976 /* It doesn't make sense to use qCRC if the remote target is
10977 connected but not running. */
10978 if (target_has_execution ()
10979 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10980 {
10981 enum packet_result result;
10982
10983 /* Make sure the remote is pointing at the right process. */
10984 set_general_process ();
10985
10986 /* FIXME: assumes lma can fit into long. */
10987 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10988 (long) lma, (long) size);
10989 putpkt (rs->buf);
10990
10991 /* Be clever; compute the host_crc before waiting for target
10992 reply. */
10993 host_crc = xcrc32 (data, size, 0xffffffff);
10994
10995 getpkt (&rs->buf, 0);
10996
10997 result = packet_ok (rs->buf,
10998 &remote_protocol_packets[PACKET_qCRC]);
10999 if (result == PACKET_ERROR)
11000 return -1;
11001 else if (result == PACKET_OK)
11002 {
11003 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
11004 target_crc = target_crc * 16 + fromhex (*tmp);
11005
11006 return (host_crc == target_crc);
11007 }
11008 }
11009
11010 return simple_verify_memory (this, data, lma, size);
11011 }
11012
11013 /* compare-sections command
11014
11015 With no arguments, compares each loadable section in the exec bfd
11016 with the same memory range on the target, and reports mismatches.
11017 Useful for verifying the image on the target against the exec file. */
11018
11019 static void
11020 compare_sections_command (const char *args, int from_tty)
11021 {
11022 asection *s;
11023 const char *sectname;
11024 bfd_size_type size;
11025 bfd_vma lma;
11026 int matched = 0;
11027 int mismatched = 0;
11028 int res;
11029 int read_only = 0;
11030
11031 if (!current_program_space->exec_bfd ())
11032 error (_("command cannot be used without an exec file"));
11033
11034 if (args != NULL && strcmp (args, "-r") == 0)
11035 {
11036 read_only = 1;
11037 args = NULL;
11038 }
11039
11040 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
11041 {
11042 if (!(s->flags & SEC_LOAD))
11043 continue; /* Skip non-loadable section. */
11044
11045 if (read_only && (s->flags & SEC_READONLY) == 0)
11046 continue; /* Skip writeable sections */
11047
11048 size = bfd_section_size (s);
11049 if (size == 0)
11050 continue; /* Skip zero-length section. */
11051
11052 sectname = bfd_section_name (s);
11053 if (args && strcmp (args, sectname) != 0)
11054 continue; /* Not the section selected by user. */
11055
11056 matched = 1; /* Do this section. */
11057 lma = s->lma;
11058
11059 gdb::byte_vector sectdata (size);
11060 bfd_get_section_contents (current_program_space->exec_bfd (), s,
11061 sectdata.data (), 0, size);
11062
11063 res = target_verify_memory (sectdata.data (), lma, size);
11064
11065 if (res == -1)
11066 error (_("target memory fault, section %s, range %s -- %s"), sectname,
11067 paddress (target_gdbarch (), lma),
11068 paddress (target_gdbarch (), lma + size));
11069
11070 printf_filtered ("Section %s, range %s -- %s: ", sectname,
11071 paddress (target_gdbarch (), lma),
11072 paddress (target_gdbarch (), lma + size));
11073 if (res)
11074 printf_filtered ("matched.\n");
11075 else
11076 {
11077 printf_filtered ("MIS-MATCHED!\n");
11078 mismatched++;
11079 }
11080 }
11081 if (mismatched > 0)
11082 warning (_("One or more sections of the target image does not match\n\
11083 the loaded file\n"));
11084 if (args && !matched)
11085 printf_filtered (_("No loaded section named '%s'.\n"), args);
11086 }
11087
11088 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
11089 into remote target. The number of bytes written to the remote
11090 target is returned, or -1 for error. */
11091
11092 target_xfer_status
11093 remote_target::remote_write_qxfer (const char *object_name,
11094 const char *annex, const gdb_byte *writebuf,
11095 ULONGEST offset, LONGEST len,
11096 ULONGEST *xfered_len,
11097 struct packet_config *packet)
11098 {
11099 int i, buf_len;
11100 ULONGEST n;
11101 struct remote_state *rs = get_remote_state ();
11102 int max_size = get_memory_write_packet_size ();
11103
11104 if (packet_config_support (packet) == PACKET_DISABLE)
11105 return TARGET_XFER_E_IO;
11106
11107 /* Insert header. */
11108 i = snprintf (rs->buf.data (), max_size,
11109 "qXfer:%s:write:%s:%s:",
11110 object_name, annex ? annex : "",
11111 phex_nz (offset, sizeof offset));
11112 max_size -= (i + 1);
11113
11114 /* Escape as much data as fits into rs->buf. */
11115 buf_len = remote_escape_output
11116 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
11117
11118 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
11119 || getpkt_sane (&rs->buf, 0) < 0
11120 || packet_ok (rs->buf, packet) != PACKET_OK)
11121 return TARGET_XFER_E_IO;
11122
11123 unpack_varlen_hex (rs->buf.data (), &n);
11124
11125 *xfered_len = n;
11126 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11127 }
11128
11129 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
11130 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
11131 number of bytes read is returned, or 0 for EOF, or -1 for error.
11132 The number of bytes read may be less than LEN without indicating an
11133 EOF. PACKET is checked and updated to indicate whether the remote
11134 target supports this object. */
11135
11136 target_xfer_status
11137 remote_target::remote_read_qxfer (const char *object_name,
11138 const char *annex,
11139 gdb_byte *readbuf, ULONGEST offset,
11140 LONGEST len,
11141 ULONGEST *xfered_len,
11142 struct packet_config *packet)
11143 {
11144 struct remote_state *rs = get_remote_state ();
11145 LONGEST i, n, packet_len;
11146
11147 if (packet_config_support (packet) == PACKET_DISABLE)
11148 return TARGET_XFER_E_IO;
11149
11150 /* Check whether we've cached an end-of-object packet that matches
11151 this request. */
11152 if (rs->finished_object)
11153 {
11154 if (strcmp (object_name, rs->finished_object) == 0
11155 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11156 && offset == rs->finished_offset)
11157 return TARGET_XFER_EOF;
11158
11159
11160 /* Otherwise, we're now reading something different. Discard
11161 the cache. */
11162 xfree (rs->finished_object);
11163 xfree (rs->finished_annex);
11164 rs->finished_object = NULL;
11165 rs->finished_annex = NULL;
11166 }
11167
11168 /* Request only enough to fit in a single packet. The actual data
11169 may not, since we don't know how much of it will need to be escaped;
11170 the target is free to respond with slightly less data. We subtract
11171 five to account for the response type and the protocol frame. */
11172 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11173 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11174 "qXfer:%s:read:%s:%s,%s",
11175 object_name, annex ? annex : "",
11176 phex_nz (offset, sizeof offset),
11177 phex_nz (n, sizeof n));
11178 i = putpkt (rs->buf);
11179 if (i < 0)
11180 return TARGET_XFER_E_IO;
11181
11182 rs->buf[0] = '\0';
11183 packet_len = getpkt_sane (&rs->buf, 0);
11184 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11185 return TARGET_XFER_E_IO;
11186
11187 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11188 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11189
11190 /* 'm' means there is (or at least might be) more data after this
11191 batch. That does not make sense unless there's at least one byte
11192 of data in this reply. */
11193 if (rs->buf[0] == 'm' && packet_len == 1)
11194 error (_("Remote qXfer reply contained no data."));
11195
11196 /* Got some data. */
11197 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11198 packet_len - 1, readbuf, n);
11199
11200 /* 'l' is an EOF marker, possibly including a final block of data,
11201 or possibly empty. If we have the final block of a non-empty
11202 object, record this fact to bypass a subsequent partial read. */
11203 if (rs->buf[0] == 'l' && offset + i > 0)
11204 {
11205 rs->finished_object = xstrdup (object_name);
11206 rs->finished_annex = xstrdup (annex ? annex : "");
11207 rs->finished_offset = offset + i;
11208 }
11209
11210 if (i == 0)
11211 return TARGET_XFER_EOF;
11212 else
11213 {
11214 *xfered_len = i;
11215 return TARGET_XFER_OK;
11216 }
11217 }
11218
11219 enum target_xfer_status
11220 remote_target::xfer_partial (enum target_object object,
11221 const char *annex, gdb_byte *readbuf,
11222 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11223 ULONGEST *xfered_len)
11224 {
11225 struct remote_state *rs;
11226 int i;
11227 char *p2;
11228 char query_type;
11229 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11230
11231 set_remote_traceframe ();
11232 set_general_thread (inferior_ptid);
11233
11234 rs = get_remote_state ();
11235
11236 /* Handle memory using the standard memory routines. */
11237 if (object == TARGET_OBJECT_MEMORY)
11238 {
11239 /* If the remote target is connected but not running, we should
11240 pass this request down to a lower stratum (e.g. the executable
11241 file). */
11242 if (!target_has_execution ())
11243 return TARGET_XFER_EOF;
11244
11245 if (writebuf != NULL)
11246 return remote_write_bytes (offset, writebuf, len, unit_size,
11247 xfered_len);
11248 else
11249 return remote_read_bytes (offset, readbuf, len, unit_size,
11250 xfered_len);
11251 }
11252
11253 /* Handle extra signal info using qxfer packets. */
11254 if (object == TARGET_OBJECT_SIGNAL_INFO)
11255 {
11256 if (readbuf)
11257 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11258 xfered_len, &remote_protocol_packets
11259 [PACKET_qXfer_siginfo_read]);
11260 else
11261 return remote_write_qxfer ("siginfo", annex,
11262 writebuf, offset, len, xfered_len,
11263 &remote_protocol_packets
11264 [PACKET_qXfer_siginfo_write]);
11265 }
11266
11267 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11268 {
11269 if (readbuf)
11270 return remote_read_qxfer ("statictrace", annex,
11271 readbuf, offset, len, xfered_len,
11272 &remote_protocol_packets
11273 [PACKET_qXfer_statictrace_read]);
11274 else
11275 return TARGET_XFER_E_IO;
11276 }
11277
11278 /* Only handle flash writes. */
11279 if (writebuf != NULL)
11280 {
11281 switch (object)
11282 {
11283 case TARGET_OBJECT_FLASH:
11284 return remote_flash_write (offset, len, xfered_len,
11285 writebuf);
11286
11287 default:
11288 return TARGET_XFER_E_IO;
11289 }
11290 }
11291
11292 /* Map pre-existing objects onto letters. DO NOT do this for new
11293 objects!!! Instead specify new query packets. */
11294 switch (object)
11295 {
11296 case TARGET_OBJECT_AVR:
11297 query_type = 'R';
11298 break;
11299
11300 case TARGET_OBJECT_AUXV:
11301 gdb_assert (annex == NULL);
11302 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11303 xfered_len,
11304 &remote_protocol_packets[PACKET_qXfer_auxv]);
11305
11306 case TARGET_OBJECT_AVAILABLE_FEATURES:
11307 return remote_read_qxfer
11308 ("features", annex, readbuf, offset, len, xfered_len,
11309 &remote_protocol_packets[PACKET_qXfer_features]);
11310
11311 case TARGET_OBJECT_LIBRARIES:
11312 return remote_read_qxfer
11313 ("libraries", annex, readbuf, offset, len, xfered_len,
11314 &remote_protocol_packets[PACKET_qXfer_libraries]);
11315
11316 case TARGET_OBJECT_LIBRARIES_SVR4:
11317 return remote_read_qxfer
11318 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11319 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11320
11321 case TARGET_OBJECT_MEMORY_MAP:
11322 gdb_assert (annex == NULL);
11323 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11324 xfered_len,
11325 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11326
11327 case TARGET_OBJECT_OSDATA:
11328 /* Should only get here if we're connected. */
11329 gdb_assert (rs->remote_desc);
11330 return remote_read_qxfer
11331 ("osdata", annex, readbuf, offset, len, xfered_len,
11332 &remote_protocol_packets[PACKET_qXfer_osdata]);
11333
11334 case TARGET_OBJECT_THREADS:
11335 gdb_assert (annex == NULL);
11336 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11337 xfered_len,
11338 &remote_protocol_packets[PACKET_qXfer_threads]);
11339
11340 case TARGET_OBJECT_TRACEFRAME_INFO:
11341 gdb_assert (annex == NULL);
11342 return remote_read_qxfer
11343 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11344 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11345
11346 case TARGET_OBJECT_FDPIC:
11347 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11348 xfered_len,
11349 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11350
11351 case TARGET_OBJECT_OPENVMS_UIB:
11352 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11353 xfered_len,
11354 &remote_protocol_packets[PACKET_qXfer_uib]);
11355
11356 case TARGET_OBJECT_BTRACE:
11357 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11358 xfered_len,
11359 &remote_protocol_packets[PACKET_qXfer_btrace]);
11360
11361 case TARGET_OBJECT_BTRACE_CONF:
11362 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11363 len, xfered_len,
11364 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11365
11366 case TARGET_OBJECT_EXEC_FILE:
11367 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11368 len, xfered_len,
11369 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11370
11371 default:
11372 return TARGET_XFER_E_IO;
11373 }
11374
11375 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11376 large enough let the caller deal with it. */
11377 if (len < get_remote_packet_size ())
11378 return TARGET_XFER_E_IO;
11379 len = get_remote_packet_size ();
11380
11381 /* Except for querying the minimum buffer size, target must be open. */
11382 if (!rs->remote_desc)
11383 error (_("remote query is only available after target open"));
11384
11385 gdb_assert (annex != NULL);
11386 gdb_assert (readbuf != NULL);
11387
11388 p2 = rs->buf.data ();
11389 *p2++ = 'q';
11390 *p2++ = query_type;
11391
11392 /* We used one buffer char for the remote protocol q command and
11393 another for the query type. As the remote protocol encapsulation
11394 uses 4 chars plus one extra in case we are debugging
11395 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11396 string. */
11397 i = 0;
11398 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11399 {
11400 /* Bad caller may have sent forbidden characters. */
11401 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11402 *p2++ = annex[i];
11403 i++;
11404 }
11405 *p2 = '\0';
11406 gdb_assert (annex[i] == '\0');
11407
11408 i = putpkt (rs->buf);
11409 if (i < 0)
11410 return TARGET_XFER_E_IO;
11411
11412 getpkt (&rs->buf, 0);
11413 strcpy ((char *) readbuf, rs->buf.data ());
11414
11415 *xfered_len = strlen ((char *) readbuf);
11416 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11417 }
11418
11419 /* Implementation of to_get_memory_xfer_limit. */
11420
11421 ULONGEST
11422 remote_target::get_memory_xfer_limit ()
11423 {
11424 return get_memory_write_packet_size ();
11425 }
11426
11427 int
11428 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11429 const gdb_byte *pattern, ULONGEST pattern_len,
11430 CORE_ADDR *found_addrp)
11431 {
11432 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11433 struct remote_state *rs = get_remote_state ();
11434 int max_size = get_memory_write_packet_size ();
11435 struct packet_config *packet =
11436 &remote_protocol_packets[PACKET_qSearch_memory];
11437 /* Number of packet bytes used to encode the pattern;
11438 this could be more than PATTERN_LEN due to escape characters. */
11439 int escaped_pattern_len;
11440 /* Amount of pattern that was encodable in the packet. */
11441 int used_pattern_len;
11442 int i;
11443 int found;
11444 ULONGEST found_addr;
11445
11446 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11447 {
11448 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11449 == len);
11450 };
11451
11452 /* Don't go to the target if we don't have to. This is done before
11453 checking packet_config_support to avoid the possibility that a
11454 success for this edge case means the facility works in
11455 general. */
11456 if (pattern_len > search_space_len)
11457 return 0;
11458 if (pattern_len == 0)
11459 {
11460 *found_addrp = start_addr;
11461 return 1;
11462 }
11463
11464 /* If we already know the packet isn't supported, fall back to the simple
11465 way of searching memory. */
11466
11467 if (packet_config_support (packet) == PACKET_DISABLE)
11468 {
11469 /* Target doesn't provided special support, fall back and use the
11470 standard support (copy memory and do the search here). */
11471 return simple_search_memory (read_memory, start_addr, search_space_len,
11472 pattern, pattern_len, found_addrp);
11473 }
11474
11475 /* Make sure the remote is pointing at the right process. */
11476 set_general_process ();
11477
11478 /* Insert header. */
11479 i = snprintf (rs->buf.data (), max_size,
11480 "qSearch:memory:%s;%s;",
11481 phex_nz (start_addr, addr_size),
11482 phex_nz (search_space_len, sizeof (search_space_len)));
11483 max_size -= (i + 1);
11484
11485 /* Escape as much data as fits into rs->buf. */
11486 escaped_pattern_len =
11487 remote_escape_output (pattern, pattern_len, 1,
11488 (gdb_byte *) rs->buf.data () + i,
11489 &used_pattern_len, max_size);
11490
11491 /* Bail if the pattern is too large. */
11492 if (used_pattern_len != pattern_len)
11493 error (_("Pattern is too large to transmit to remote target."));
11494
11495 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11496 || getpkt_sane (&rs->buf, 0) < 0
11497 || packet_ok (rs->buf, packet) != PACKET_OK)
11498 {
11499 /* The request may not have worked because the command is not
11500 supported. If so, fall back to the simple way. */
11501 if (packet_config_support (packet) == PACKET_DISABLE)
11502 {
11503 return simple_search_memory (read_memory, start_addr, search_space_len,
11504 pattern, pattern_len, found_addrp);
11505 }
11506 return -1;
11507 }
11508
11509 if (rs->buf[0] == '0')
11510 found = 0;
11511 else if (rs->buf[0] == '1')
11512 {
11513 found = 1;
11514 if (rs->buf[1] != ',')
11515 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11516 unpack_varlen_hex (&rs->buf[2], &found_addr);
11517 *found_addrp = found_addr;
11518 }
11519 else
11520 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11521
11522 return found;
11523 }
11524
11525 void
11526 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11527 {
11528 struct remote_state *rs = get_remote_state ();
11529 char *p = rs->buf.data ();
11530
11531 if (!rs->remote_desc)
11532 error (_("remote rcmd is only available after target open"));
11533
11534 /* Send a NULL command across as an empty command. */
11535 if (command == NULL)
11536 command = "";
11537
11538 /* The query prefix. */
11539 strcpy (rs->buf.data (), "qRcmd,");
11540 p = strchr (rs->buf.data (), '\0');
11541
11542 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11543 > get_remote_packet_size ())
11544 error (_("\"monitor\" command ``%s'' is too long."), command);
11545
11546 /* Encode the actual command. */
11547 bin2hex ((const gdb_byte *) command, p, strlen (command));
11548
11549 if (putpkt (rs->buf) < 0)
11550 error (_("Communication problem with target."));
11551
11552 /* get/display the response */
11553 while (1)
11554 {
11555 char *buf;
11556
11557 /* XXX - see also remote_get_noisy_reply(). */
11558 QUIT; /* Allow user to bail out with ^C. */
11559 rs->buf[0] = '\0';
11560 if (getpkt_sane (&rs->buf, 0) == -1)
11561 {
11562 /* Timeout. Continue to (try to) read responses.
11563 This is better than stopping with an error, assuming the stub
11564 is still executing the (long) monitor command.
11565 If needed, the user can interrupt gdb using C-c, obtaining
11566 an effect similar to stop on timeout. */
11567 continue;
11568 }
11569 buf = rs->buf.data ();
11570 if (buf[0] == '\0')
11571 error (_("Target does not support this command."));
11572 if (buf[0] == 'O' && buf[1] != 'K')
11573 {
11574 remote_console_output (buf + 1); /* 'O' message from stub. */
11575 continue;
11576 }
11577 if (strcmp (buf, "OK") == 0)
11578 break;
11579 if (strlen (buf) == 3 && buf[0] == 'E'
11580 && isdigit (buf[1]) && isdigit (buf[2]))
11581 {
11582 error (_("Protocol error with Rcmd"));
11583 }
11584 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11585 {
11586 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11587
11588 fputc_unfiltered (c, outbuf);
11589 }
11590 break;
11591 }
11592 }
11593
11594 std::vector<mem_region>
11595 remote_target::memory_map ()
11596 {
11597 std::vector<mem_region> result;
11598 gdb::optional<gdb::char_vector> text
11599 = target_read_stralloc (current_inferior ()->top_target (),
11600 TARGET_OBJECT_MEMORY_MAP, NULL);
11601
11602 if (text)
11603 result = parse_memory_map (text->data ());
11604
11605 return result;
11606 }
11607
11608 static void
11609 packet_command (const char *args, int from_tty)
11610 {
11611 remote_target *remote = get_current_remote_target ();
11612
11613 if (remote == nullptr)
11614 error (_("command can only be used with remote target"));
11615
11616 remote->packet_command (args, from_tty);
11617 }
11618
11619 void
11620 remote_target::packet_command (const char *args, int from_tty)
11621 {
11622 if (!args)
11623 error (_("remote-packet command requires packet text as argument"));
11624
11625 puts_filtered ("sending: ");
11626 print_packet (args);
11627 puts_filtered ("\n");
11628 putpkt (args);
11629
11630 remote_state *rs = get_remote_state ();
11631
11632 getpkt (&rs->buf, 0);
11633 puts_filtered ("received: ");
11634 print_packet (rs->buf.data ());
11635 puts_filtered ("\n");
11636 }
11637
11638 #if 0
11639 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11640
11641 static void display_thread_info (struct gdb_ext_thread_info *info);
11642
11643 static void threadset_test_cmd (char *cmd, int tty);
11644
11645 static void threadalive_test (char *cmd, int tty);
11646
11647 static void threadlist_test_cmd (char *cmd, int tty);
11648
11649 int get_and_display_threadinfo (threadref *ref);
11650
11651 static void threadinfo_test_cmd (char *cmd, int tty);
11652
11653 static int thread_display_step (threadref *ref, void *context);
11654
11655 static void threadlist_update_test_cmd (char *cmd, int tty);
11656
11657 static void init_remote_threadtests (void);
11658
11659 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11660
11661 static void
11662 threadset_test_cmd (const char *cmd, int tty)
11663 {
11664 int sample_thread = SAMPLE_THREAD;
11665
11666 printf_filtered (_("Remote threadset test\n"));
11667 set_general_thread (sample_thread);
11668 }
11669
11670
11671 static void
11672 threadalive_test (const char *cmd, int tty)
11673 {
11674 int sample_thread = SAMPLE_THREAD;
11675 int pid = inferior_ptid.pid ();
11676 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11677
11678 if (remote_thread_alive (ptid))
11679 printf_filtered ("PASS: Thread alive test\n");
11680 else
11681 printf_filtered ("FAIL: Thread alive test\n");
11682 }
11683
11684 void output_threadid (char *title, threadref *ref);
11685
11686 void
11687 output_threadid (char *title, threadref *ref)
11688 {
11689 char hexid[20];
11690
11691 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11692 hexid[16] = 0;
11693 printf_filtered ("%s %s\n", title, (&hexid[0]));
11694 }
11695
11696 static void
11697 threadlist_test_cmd (const char *cmd, int tty)
11698 {
11699 int startflag = 1;
11700 threadref nextthread;
11701 int done, result_count;
11702 threadref threadlist[3];
11703
11704 printf_filtered ("Remote Threadlist test\n");
11705 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11706 &result_count, &threadlist[0]))
11707 printf_filtered ("FAIL: threadlist test\n");
11708 else
11709 {
11710 threadref *scan = threadlist;
11711 threadref *limit = scan + result_count;
11712
11713 while (scan < limit)
11714 output_threadid (" thread ", scan++);
11715 }
11716 }
11717
11718 void
11719 display_thread_info (struct gdb_ext_thread_info *info)
11720 {
11721 output_threadid ("Threadid: ", &info->threadid);
11722 printf_filtered ("Name: %s\n ", info->shortname);
11723 printf_filtered ("State: %s\n", info->display);
11724 printf_filtered ("other: %s\n\n", info->more_display);
11725 }
11726
11727 int
11728 get_and_display_threadinfo (threadref *ref)
11729 {
11730 int result;
11731 int set;
11732 struct gdb_ext_thread_info threadinfo;
11733
11734 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11735 | TAG_MOREDISPLAY | TAG_DISPLAY;
11736 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11737 display_thread_info (&threadinfo);
11738 return result;
11739 }
11740
11741 static void
11742 threadinfo_test_cmd (const char *cmd, int tty)
11743 {
11744 int athread = SAMPLE_THREAD;
11745 threadref thread;
11746 int set;
11747
11748 int_to_threadref (&thread, athread);
11749 printf_filtered ("Remote Threadinfo test\n");
11750 if (!get_and_display_threadinfo (&thread))
11751 printf_filtered ("FAIL cannot get thread info\n");
11752 }
11753
11754 static int
11755 thread_display_step (threadref *ref, void *context)
11756 {
11757 /* output_threadid(" threadstep ",ref); *//* simple test */
11758 return get_and_display_threadinfo (ref);
11759 }
11760
11761 static void
11762 threadlist_update_test_cmd (const char *cmd, int tty)
11763 {
11764 printf_filtered ("Remote Threadlist update test\n");
11765 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11766 }
11767
11768 static void
11769 init_remote_threadtests (void)
11770 {
11771 add_com ("tlist", class_obscure, threadlist_test_cmd,
11772 _("Fetch and print the remote list of "
11773 "thread identifiers, one pkt only."));
11774 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11775 _("Fetch and display info about one thread."));
11776 add_com ("tset", class_obscure, threadset_test_cmd,
11777 _("Test setting to a different thread."));
11778 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11779 _("Iterate through updating all remote thread info."));
11780 add_com ("talive", class_obscure, threadalive_test,
11781 _("Remote thread alive test."));
11782 }
11783
11784 #endif /* 0 */
11785
11786 /* Convert a thread ID to a string. */
11787
11788 std::string
11789 remote_target::pid_to_str (ptid_t ptid)
11790 {
11791 struct remote_state *rs = get_remote_state ();
11792
11793 if (ptid == null_ptid)
11794 return normal_pid_to_str (ptid);
11795 else if (ptid.is_pid ())
11796 {
11797 /* Printing an inferior target id. */
11798
11799 /* When multi-process extensions are off, there's no way in the
11800 remote protocol to know the remote process id, if there's any
11801 at all. There's one exception --- when we're connected with
11802 target extended-remote, and we manually attached to a process
11803 with "attach PID". We don't record anywhere a flag that
11804 allows us to distinguish that case from the case of
11805 connecting with extended-remote and the stub already being
11806 attached to a process, and reporting yes to qAttached, hence
11807 no smart special casing here. */
11808 if (!remote_multi_process_p (rs))
11809 return "Remote target";
11810
11811 return normal_pid_to_str (ptid);
11812 }
11813 else
11814 {
11815 if (magic_null_ptid == ptid)
11816 return "Thread <main>";
11817 else if (remote_multi_process_p (rs))
11818 if (ptid.lwp () == 0)
11819 return normal_pid_to_str (ptid);
11820 else
11821 return string_printf ("Thread %d.%ld",
11822 ptid.pid (), ptid.lwp ());
11823 else
11824 return string_printf ("Thread %ld", ptid.lwp ());
11825 }
11826 }
11827
11828 /* Get the address of the thread local variable in OBJFILE which is
11829 stored at OFFSET within the thread local storage for thread PTID. */
11830
11831 CORE_ADDR
11832 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11833 CORE_ADDR offset)
11834 {
11835 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11836 {
11837 struct remote_state *rs = get_remote_state ();
11838 char *p = rs->buf.data ();
11839 char *endp = p + get_remote_packet_size ();
11840 enum packet_result result;
11841
11842 strcpy (p, "qGetTLSAddr:");
11843 p += strlen (p);
11844 p = write_ptid (p, endp, ptid);
11845 *p++ = ',';
11846 p += hexnumstr (p, offset);
11847 *p++ = ',';
11848 p += hexnumstr (p, lm);
11849 *p++ = '\0';
11850
11851 putpkt (rs->buf);
11852 getpkt (&rs->buf, 0);
11853 result = packet_ok (rs->buf,
11854 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11855 if (result == PACKET_OK)
11856 {
11857 ULONGEST addr;
11858
11859 unpack_varlen_hex (rs->buf.data (), &addr);
11860 return addr;
11861 }
11862 else if (result == PACKET_UNKNOWN)
11863 throw_error (TLS_GENERIC_ERROR,
11864 _("Remote target doesn't support qGetTLSAddr packet"));
11865 else
11866 throw_error (TLS_GENERIC_ERROR,
11867 _("Remote target failed to process qGetTLSAddr request"));
11868 }
11869 else
11870 throw_error (TLS_GENERIC_ERROR,
11871 _("TLS not supported or disabled on this target"));
11872 /* Not reached. */
11873 return 0;
11874 }
11875
11876 /* Provide thread local base, i.e. Thread Information Block address.
11877 Returns 1 if ptid is found and thread_local_base is non zero. */
11878
11879 bool
11880 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11881 {
11882 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11883 {
11884 struct remote_state *rs = get_remote_state ();
11885 char *p = rs->buf.data ();
11886 char *endp = p + get_remote_packet_size ();
11887 enum packet_result result;
11888
11889 strcpy (p, "qGetTIBAddr:");
11890 p += strlen (p);
11891 p = write_ptid (p, endp, ptid);
11892 *p++ = '\0';
11893
11894 putpkt (rs->buf);
11895 getpkt (&rs->buf, 0);
11896 result = packet_ok (rs->buf,
11897 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11898 if (result == PACKET_OK)
11899 {
11900 ULONGEST val;
11901 unpack_varlen_hex (rs->buf.data (), &val);
11902 if (addr)
11903 *addr = (CORE_ADDR) val;
11904 return true;
11905 }
11906 else if (result == PACKET_UNKNOWN)
11907 error (_("Remote target doesn't support qGetTIBAddr packet"));
11908 else
11909 error (_("Remote target failed to process qGetTIBAddr request"));
11910 }
11911 else
11912 error (_("qGetTIBAddr not supported or disabled on this target"));
11913 /* Not reached. */
11914 return false;
11915 }
11916
11917 /* Support for inferring a target description based on the current
11918 architecture and the size of a 'g' packet. While the 'g' packet
11919 can have any size (since optional registers can be left off the
11920 end), some sizes are easily recognizable given knowledge of the
11921 approximate architecture. */
11922
11923 struct remote_g_packet_guess
11924 {
11925 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11926 : bytes (bytes_),
11927 tdesc (tdesc_)
11928 {
11929 }
11930
11931 int bytes;
11932 const struct target_desc *tdesc;
11933 };
11934
11935 struct remote_g_packet_data : public allocate_on_obstack
11936 {
11937 std::vector<remote_g_packet_guess> guesses;
11938 };
11939
11940 static struct gdbarch_data *remote_g_packet_data_handle;
11941
11942 static void *
11943 remote_g_packet_data_init (struct obstack *obstack)
11944 {
11945 return new (obstack) remote_g_packet_data;
11946 }
11947
11948 void
11949 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11950 const struct target_desc *tdesc)
11951 {
11952 struct remote_g_packet_data *data
11953 = ((struct remote_g_packet_data *)
11954 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11955
11956 gdb_assert (tdesc != NULL);
11957
11958 for (const remote_g_packet_guess &guess : data->guesses)
11959 if (guess.bytes == bytes)
11960 internal_error (__FILE__, __LINE__,
11961 _("Duplicate g packet description added for size %d"),
11962 bytes);
11963
11964 data->guesses.emplace_back (bytes, tdesc);
11965 }
11966
11967 /* Return true if remote_read_description would do anything on this target
11968 and architecture, false otherwise. */
11969
11970 static bool
11971 remote_read_description_p (struct target_ops *target)
11972 {
11973 struct remote_g_packet_data *data
11974 = ((struct remote_g_packet_data *)
11975 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11976
11977 return !data->guesses.empty ();
11978 }
11979
11980 const struct target_desc *
11981 remote_target::read_description ()
11982 {
11983 struct remote_g_packet_data *data
11984 = ((struct remote_g_packet_data *)
11985 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11986
11987 /* Do not try this during initial connection, when we do not know
11988 whether there is a running but stopped thread. */
11989 if (!target_has_execution () || inferior_ptid == null_ptid)
11990 return beneath ()->read_description ();
11991
11992 if (!data->guesses.empty ())
11993 {
11994 int bytes = send_g_packet ();
11995
11996 for (const remote_g_packet_guess &guess : data->guesses)
11997 if (guess.bytes == bytes)
11998 return guess.tdesc;
11999
12000 /* We discard the g packet. A minor optimization would be to
12001 hold on to it, and fill the register cache once we have selected
12002 an architecture, but it's too tricky to do safely. */
12003 }
12004
12005 return beneath ()->read_description ();
12006 }
12007
12008 /* Remote file transfer support. This is host-initiated I/O, not
12009 target-initiated; for target-initiated, see remote-fileio.c. */
12010
12011 /* If *LEFT is at least the length of STRING, copy STRING to
12012 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12013 decrease *LEFT. Otherwise raise an error. */
12014
12015 static void
12016 remote_buffer_add_string (char **buffer, int *left, const char *string)
12017 {
12018 int len = strlen (string);
12019
12020 if (len > *left)
12021 error (_("Packet too long for target."));
12022
12023 memcpy (*buffer, string, len);
12024 *buffer += len;
12025 *left -= len;
12026
12027 /* NUL-terminate the buffer as a convenience, if there is
12028 room. */
12029 if (*left)
12030 **buffer = '\0';
12031 }
12032
12033 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
12034 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12035 decrease *LEFT. Otherwise raise an error. */
12036
12037 static void
12038 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
12039 int len)
12040 {
12041 if (2 * len > *left)
12042 error (_("Packet too long for target."));
12043
12044 bin2hex (bytes, *buffer, len);
12045 *buffer += 2 * len;
12046 *left -= 2 * len;
12047
12048 /* NUL-terminate the buffer as a convenience, if there is
12049 room. */
12050 if (*left)
12051 **buffer = '\0';
12052 }
12053
12054 /* If *LEFT is large enough, convert VALUE to hex and add it to
12055 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12056 decrease *LEFT. Otherwise raise an error. */
12057
12058 static void
12059 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
12060 {
12061 int len = hexnumlen (value);
12062
12063 if (len > *left)
12064 error (_("Packet too long for target."));
12065
12066 hexnumstr (*buffer, value);
12067 *buffer += len;
12068 *left -= len;
12069
12070 /* NUL-terminate the buffer as a convenience, if there is
12071 room. */
12072 if (*left)
12073 **buffer = '\0';
12074 }
12075
12076 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
12077 value, *REMOTE_ERRNO to the remote error number or zero if none
12078 was included, and *ATTACHMENT to point to the start of the annex
12079 if any. The length of the packet isn't needed here; there may
12080 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
12081
12082 Return 0 if the packet could be parsed, -1 if it could not. If
12083 -1 is returned, the other variables may not be initialized. */
12084
12085 static int
12086 remote_hostio_parse_result (const char *buffer, int *retcode,
12087 int *remote_errno, const char **attachment)
12088 {
12089 char *p, *p2;
12090
12091 *remote_errno = 0;
12092 *attachment = NULL;
12093
12094 if (buffer[0] != 'F')
12095 return -1;
12096
12097 errno = 0;
12098 *retcode = strtol (&buffer[1], &p, 16);
12099 if (errno != 0 || p == &buffer[1])
12100 return -1;
12101
12102 /* Check for ",errno". */
12103 if (*p == ',')
12104 {
12105 errno = 0;
12106 *remote_errno = strtol (p + 1, &p2, 16);
12107 if (errno != 0 || p + 1 == p2)
12108 return -1;
12109 p = p2;
12110 }
12111
12112 /* Check for ";attachment". If there is no attachment, the
12113 packet should end here. */
12114 if (*p == ';')
12115 {
12116 *attachment = p + 1;
12117 return 0;
12118 }
12119 else if (*p == '\0')
12120 return 0;
12121 else
12122 return -1;
12123 }
12124
12125 /* Send a prepared I/O packet to the target and read its response.
12126 The prepared packet is in the global RS->BUF before this function
12127 is called, and the answer is there when we return.
12128
12129 COMMAND_BYTES is the length of the request to send, which may include
12130 binary data. WHICH_PACKET is the packet configuration to check
12131 before attempting a packet. If an error occurs, *REMOTE_ERRNO
12132 is set to the error number and -1 is returned. Otherwise the value
12133 returned by the function is returned.
12134
12135 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12136 attachment is expected; an error will be reported if there's a
12137 mismatch. If one is found, *ATTACHMENT will be set to point into
12138 the packet buffer and *ATTACHMENT_LEN will be set to the
12139 attachment's length. */
12140
12141 int
12142 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12143 int *remote_errno, const char **attachment,
12144 int *attachment_len)
12145 {
12146 struct remote_state *rs = get_remote_state ();
12147 int ret, bytes_read;
12148 const char *attachment_tmp;
12149
12150 if (packet_support (which_packet) == PACKET_DISABLE)
12151 {
12152 *remote_errno = FILEIO_ENOSYS;
12153 return -1;
12154 }
12155
12156 putpkt_binary (rs->buf.data (), command_bytes);
12157 bytes_read = getpkt_sane (&rs->buf, 0);
12158
12159 /* If it timed out, something is wrong. Don't try to parse the
12160 buffer. */
12161 if (bytes_read < 0)
12162 {
12163 *remote_errno = FILEIO_EINVAL;
12164 return -1;
12165 }
12166
12167 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12168 {
12169 case PACKET_ERROR:
12170 *remote_errno = FILEIO_EINVAL;
12171 return -1;
12172 case PACKET_UNKNOWN:
12173 *remote_errno = FILEIO_ENOSYS;
12174 return -1;
12175 case PACKET_OK:
12176 break;
12177 }
12178
12179 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12180 &attachment_tmp))
12181 {
12182 *remote_errno = FILEIO_EINVAL;
12183 return -1;
12184 }
12185
12186 /* Make sure we saw an attachment if and only if we expected one. */
12187 if ((attachment_tmp == NULL && attachment != NULL)
12188 || (attachment_tmp != NULL && attachment == NULL))
12189 {
12190 *remote_errno = FILEIO_EINVAL;
12191 return -1;
12192 }
12193
12194 /* If an attachment was found, it must point into the packet buffer;
12195 work out how many bytes there were. */
12196 if (attachment_tmp != NULL)
12197 {
12198 *attachment = attachment_tmp;
12199 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12200 }
12201
12202 return ret;
12203 }
12204
12205 /* See declaration.h. */
12206
12207 void
12208 readahead_cache::invalidate ()
12209 {
12210 this->fd = -1;
12211 }
12212
12213 /* See declaration.h. */
12214
12215 void
12216 readahead_cache::invalidate_fd (int fd)
12217 {
12218 if (this->fd == fd)
12219 this->fd = -1;
12220 }
12221
12222 /* Set the filesystem remote_hostio functions that take FILENAME
12223 arguments will use. Return 0 on success, or -1 if an error
12224 occurs (and set *REMOTE_ERRNO). */
12225
12226 int
12227 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12228 int *remote_errno)
12229 {
12230 struct remote_state *rs = get_remote_state ();
12231 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12232 char *p = rs->buf.data ();
12233 int left = get_remote_packet_size () - 1;
12234 char arg[9];
12235 int ret;
12236
12237 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12238 return 0;
12239
12240 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12241 return 0;
12242
12243 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12244
12245 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12246 remote_buffer_add_string (&p, &left, arg);
12247
12248 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12249 remote_errno, NULL, NULL);
12250
12251 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12252 return 0;
12253
12254 if (ret == 0)
12255 rs->fs_pid = required_pid;
12256
12257 return ret;
12258 }
12259
12260 /* Implementation of to_fileio_open. */
12261
12262 int
12263 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12264 int flags, int mode, int warn_if_slow,
12265 int *remote_errno)
12266 {
12267 struct remote_state *rs = get_remote_state ();
12268 char *p = rs->buf.data ();
12269 int left = get_remote_packet_size () - 1;
12270
12271 if (warn_if_slow)
12272 {
12273 static int warning_issued = 0;
12274
12275 printf_unfiltered (_("Reading %s from remote target...\n"),
12276 filename);
12277
12278 if (!warning_issued)
12279 {
12280 warning (_("File transfers from remote targets can be slow."
12281 " Use \"set sysroot\" to access files locally"
12282 " instead."));
12283 warning_issued = 1;
12284 }
12285 }
12286
12287 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12288 return -1;
12289
12290 remote_buffer_add_string (&p, &left, "vFile:open:");
12291
12292 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12293 strlen (filename));
12294 remote_buffer_add_string (&p, &left, ",");
12295
12296 remote_buffer_add_int (&p, &left, flags);
12297 remote_buffer_add_string (&p, &left, ",");
12298
12299 remote_buffer_add_int (&p, &left, mode);
12300
12301 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12302 remote_errno, NULL, NULL);
12303 }
12304
12305 int
12306 remote_target::fileio_open (struct inferior *inf, const char *filename,
12307 int flags, int mode, int warn_if_slow,
12308 int *remote_errno)
12309 {
12310 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12311 remote_errno);
12312 }
12313
12314 /* Implementation of to_fileio_pwrite. */
12315
12316 int
12317 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12318 ULONGEST offset, int *remote_errno)
12319 {
12320 struct remote_state *rs = get_remote_state ();
12321 char *p = rs->buf.data ();
12322 int left = get_remote_packet_size ();
12323 int out_len;
12324
12325 rs->readahead_cache.invalidate_fd (fd);
12326
12327 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12328
12329 remote_buffer_add_int (&p, &left, fd);
12330 remote_buffer_add_string (&p, &left, ",");
12331
12332 remote_buffer_add_int (&p, &left, offset);
12333 remote_buffer_add_string (&p, &left, ",");
12334
12335 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12336 (get_remote_packet_size ()
12337 - (p - rs->buf.data ())));
12338
12339 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12340 remote_errno, NULL, NULL);
12341 }
12342
12343 int
12344 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12345 ULONGEST offset, int *remote_errno)
12346 {
12347 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12348 }
12349
12350 /* Helper for the implementation of to_fileio_pread. Read the file
12351 from the remote side with vFile:pread. */
12352
12353 int
12354 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12355 ULONGEST offset, int *remote_errno)
12356 {
12357 struct remote_state *rs = get_remote_state ();
12358 char *p = rs->buf.data ();
12359 const char *attachment;
12360 int left = get_remote_packet_size ();
12361 int ret, attachment_len;
12362 int read_len;
12363
12364 remote_buffer_add_string (&p, &left, "vFile:pread:");
12365
12366 remote_buffer_add_int (&p, &left, fd);
12367 remote_buffer_add_string (&p, &left, ",");
12368
12369 remote_buffer_add_int (&p, &left, len);
12370 remote_buffer_add_string (&p, &left, ",");
12371
12372 remote_buffer_add_int (&p, &left, offset);
12373
12374 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12375 remote_errno, &attachment,
12376 &attachment_len);
12377
12378 if (ret < 0)
12379 return ret;
12380
12381 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12382 read_buf, len);
12383 if (read_len != ret)
12384 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12385
12386 return ret;
12387 }
12388
12389 /* See declaration.h. */
12390
12391 int
12392 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12393 ULONGEST offset)
12394 {
12395 if (this->fd == fd
12396 && this->offset <= offset
12397 && offset < this->offset + this->bufsize)
12398 {
12399 ULONGEST max = this->offset + this->bufsize;
12400
12401 if (offset + len > max)
12402 len = max - offset;
12403
12404 memcpy (read_buf, this->buf + offset - this->offset, len);
12405 return len;
12406 }
12407
12408 return 0;
12409 }
12410
12411 /* Implementation of to_fileio_pread. */
12412
12413 int
12414 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12415 ULONGEST offset, int *remote_errno)
12416 {
12417 int ret;
12418 struct remote_state *rs = get_remote_state ();
12419 readahead_cache *cache = &rs->readahead_cache;
12420
12421 ret = cache->pread (fd, read_buf, len, offset);
12422 if (ret > 0)
12423 {
12424 cache->hit_count++;
12425
12426 remote_debug_printf ("readahead cache hit %s",
12427 pulongest (cache->hit_count));
12428 return ret;
12429 }
12430
12431 cache->miss_count++;
12432
12433 remote_debug_printf ("readahead cache miss %s",
12434 pulongest (cache->miss_count));
12435
12436 cache->fd = fd;
12437 cache->offset = offset;
12438 cache->bufsize = get_remote_packet_size ();
12439 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12440
12441 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12442 cache->offset, remote_errno);
12443 if (ret <= 0)
12444 {
12445 cache->invalidate_fd (fd);
12446 return ret;
12447 }
12448
12449 cache->bufsize = ret;
12450 return cache->pread (fd, read_buf, len, offset);
12451 }
12452
12453 int
12454 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12455 ULONGEST offset, int *remote_errno)
12456 {
12457 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12458 }
12459
12460 /* Implementation of to_fileio_close. */
12461
12462 int
12463 remote_target::remote_hostio_close (int fd, int *remote_errno)
12464 {
12465 struct remote_state *rs = get_remote_state ();
12466 char *p = rs->buf.data ();
12467 int left = get_remote_packet_size () - 1;
12468
12469 rs->readahead_cache.invalidate_fd (fd);
12470
12471 remote_buffer_add_string (&p, &left, "vFile:close:");
12472
12473 remote_buffer_add_int (&p, &left, fd);
12474
12475 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12476 remote_errno, NULL, NULL);
12477 }
12478
12479 int
12480 remote_target::fileio_close (int fd, int *remote_errno)
12481 {
12482 return remote_hostio_close (fd, remote_errno);
12483 }
12484
12485 /* Implementation of to_fileio_unlink. */
12486
12487 int
12488 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12489 int *remote_errno)
12490 {
12491 struct remote_state *rs = get_remote_state ();
12492 char *p = rs->buf.data ();
12493 int left = get_remote_packet_size () - 1;
12494
12495 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12496 return -1;
12497
12498 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12499
12500 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12501 strlen (filename));
12502
12503 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12504 remote_errno, NULL, NULL);
12505 }
12506
12507 int
12508 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12509 int *remote_errno)
12510 {
12511 return remote_hostio_unlink (inf, filename, remote_errno);
12512 }
12513
12514 /* Implementation of to_fileio_readlink. */
12515
12516 gdb::optional<std::string>
12517 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12518 int *remote_errno)
12519 {
12520 struct remote_state *rs = get_remote_state ();
12521 char *p = rs->buf.data ();
12522 const char *attachment;
12523 int left = get_remote_packet_size ();
12524 int len, attachment_len;
12525 int read_len;
12526
12527 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12528 return {};
12529
12530 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12531
12532 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12533 strlen (filename));
12534
12535 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12536 remote_errno, &attachment,
12537 &attachment_len);
12538
12539 if (len < 0)
12540 return {};
12541
12542 std::string ret (len, '\0');
12543
12544 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12545 (gdb_byte *) &ret[0], len);
12546 if (read_len != len)
12547 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12548
12549 return ret;
12550 }
12551
12552 /* Implementation of to_fileio_fstat. */
12553
12554 int
12555 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12556 {
12557 struct remote_state *rs = get_remote_state ();
12558 char *p = rs->buf.data ();
12559 int left = get_remote_packet_size ();
12560 int attachment_len, ret;
12561 const char *attachment;
12562 struct fio_stat fst;
12563 int read_len;
12564
12565 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12566
12567 remote_buffer_add_int (&p, &left, fd);
12568
12569 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12570 remote_errno, &attachment,
12571 &attachment_len);
12572 if (ret < 0)
12573 {
12574 if (*remote_errno != FILEIO_ENOSYS)
12575 return ret;
12576
12577 /* Strictly we should return -1, ENOSYS here, but when
12578 "set sysroot remote:" was implemented in August 2008
12579 BFD's need for a stat function was sidestepped with
12580 this hack. This was not remedied until March 2015
12581 so we retain the previous behavior to avoid breaking
12582 compatibility.
12583
12584 Note that the memset is a March 2015 addition; older
12585 GDBs set st_size *and nothing else* so the structure
12586 would have garbage in all other fields. This might
12587 break something but retaining the previous behavior
12588 here would be just too wrong. */
12589
12590 memset (st, 0, sizeof (struct stat));
12591 st->st_size = INT_MAX;
12592 return 0;
12593 }
12594
12595 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12596 (gdb_byte *) &fst, sizeof (fst));
12597
12598 if (read_len != ret)
12599 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12600
12601 if (read_len != sizeof (fst))
12602 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12603 read_len, (int) sizeof (fst));
12604
12605 remote_fileio_to_host_stat (&fst, st);
12606
12607 return 0;
12608 }
12609
12610 /* Implementation of to_filesystem_is_local. */
12611
12612 bool
12613 remote_target::filesystem_is_local ()
12614 {
12615 /* Valgrind GDB presents itself as a remote target but works
12616 on the local filesystem: it does not implement remote get
12617 and users are not expected to set a sysroot. To handle
12618 this case we treat the remote filesystem as local if the
12619 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12620 does not support vFile:open. */
12621 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12622 {
12623 enum packet_support ps = packet_support (PACKET_vFile_open);
12624
12625 if (ps == PACKET_SUPPORT_UNKNOWN)
12626 {
12627 int fd, remote_errno;
12628
12629 /* Try opening a file to probe support. The supplied
12630 filename is irrelevant, we only care about whether
12631 the stub recognizes the packet or not. */
12632 fd = remote_hostio_open (NULL, "just probing",
12633 FILEIO_O_RDONLY, 0700, 0,
12634 &remote_errno);
12635
12636 if (fd >= 0)
12637 remote_hostio_close (fd, &remote_errno);
12638
12639 ps = packet_support (PACKET_vFile_open);
12640 }
12641
12642 if (ps == PACKET_DISABLE)
12643 {
12644 static int warning_issued = 0;
12645
12646 if (!warning_issued)
12647 {
12648 warning (_("remote target does not support file"
12649 " transfer, attempting to access files"
12650 " from local filesystem."));
12651 warning_issued = 1;
12652 }
12653
12654 return true;
12655 }
12656 }
12657
12658 return false;
12659 }
12660
12661 static int
12662 remote_fileio_errno_to_host (int errnum)
12663 {
12664 switch (errnum)
12665 {
12666 case FILEIO_EPERM:
12667 return EPERM;
12668 case FILEIO_ENOENT:
12669 return ENOENT;
12670 case FILEIO_EINTR:
12671 return EINTR;
12672 case FILEIO_EIO:
12673 return EIO;
12674 case FILEIO_EBADF:
12675 return EBADF;
12676 case FILEIO_EACCES:
12677 return EACCES;
12678 case FILEIO_EFAULT:
12679 return EFAULT;
12680 case FILEIO_EBUSY:
12681 return EBUSY;
12682 case FILEIO_EEXIST:
12683 return EEXIST;
12684 case FILEIO_ENODEV:
12685 return ENODEV;
12686 case FILEIO_ENOTDIR:
12687 return ENOTDIR;
12688 case FILEIO_EISDIR:
12689 return EISDIR;
12690 case FILEIO_EINVAL:
12691 return EINVAL;
12692 case FILEIO_ENFILE:
12693 return ENFILE;
12694 case FILEIO_EMFILE:
12695 return EMFILE;
12696 case FILEIO_EFBIG:
12697 return EFBIG;
12698 case FILEIO_ENOSPC:
12699 return ENOSPC;
12700 case FILEIO_ESPIPE:
12701 return ESPIPE;
12702 case FILEIO_EROFS:
12703 return EROFS;
12704 case FILEIO_ENOSYS:
12705 return ENOSYS;
12706 case FILEIO_ENAMETOOLONG:
12707 return ENAMETOOLONG;
12708 }
12709 return -1;
12710 }
12711
12712 static char *
12713 remote_hostio_error (int errnum)
12714 {
12715 int host_error = remote_fileio_errno_to_host (errnum);
12716
12717 if (host_error == -1)
12718 error (_("Unknown remote I/O error %d"), errnum);
12719 else
12720 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12721 }
12722
12723 /* A RAII wrapper around a remote file descriptor. */
12724
12725 class scoped_remote_fd
12726 {
12727 public:
12728 scoped_remote_fd (remote_target *remote, int fd)
12729 : m_remote (remote), m_fd (fd)
12730 {
12731 }
12732
12733 ~scoped_remote_fd ()
12734 {
12735 if (m_fd != -1)
12736 {
12737 try
12738 {
12739 int remote_errno;
12740 m_remote->remote_hostio_close (m_fd, &remote_errno);
12741 }
12742 catch (...)
12743 {
12744 /* Swallow exception before it escapes the dtor. If
12745 something goes wrong, likely the connection is gone,
12746 and there's nothing else that can be done. */
12747 }
12748 }
12749 }
12750
12751 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12752
12753 /* Release ownership of the file descriptor, and return it. */
12754 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12755 {
12756 int fd = m_fd;
12757 m_fd = -1;
12758 return fd;
12759 }
12760
12761 /* Return the owned file descriptor. */
12762 int get () const noexcept
12763 {
12764 return m_fd;
12765 }
12766
12767 private:
12768 /* The remote target. */
12769 remote_target *m_remote;
12770
12771 /* The owned remote I/O file descriptor. */
12772 int m_fd;
12773 };
12774
12775 void
12776 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12777 {
12778 remote_target *remote = get_current_remote_target ();
12779
12780 if (remote == nullptr)
12781 error (_("command can only be used with remote target"));
12782
12783 remote->remote_file_put (local_file, remote_file, from_tty);
12784 }
12785
12786 void
12787 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12788 int from_tty)
12789 {
12790 int retcode, remote_errno, bytes, io_size;
12791 int bytes_in_buffer;
12792 int saw_eof;
12793 ULONGEST offset;
12794
12795 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12796 if (file == NULL)
12797 perror_with_name (local_file);
12798
12799 scoped_remote_fd fd
12800 (this, remote_hostio_open (NULL,
12801 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12802 | FILEIO_O_TRUNC),
12803 0700, 0, &remote_errno));
12804 if (fd.get () == -1)
12805 remote_hostio_error (remote_errno);
12806
12807 /* Send up to this many bytes at once. They won't all fit in the
12808 remote packet limit, so we'll transfer slightly fewer. */
12809 io_size = get_remote_packet_size ();
12810 gdb::byte_vector buffer (io_size);
12811
12812 bytes_in_buffer = 0;
12813 saw_eof = 0;
12814 offset = 0;
12815 while (bytes_in_buffer || !saw_eof)
12816 {
12817 if (!saw_eof)
12818 {
12819 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12820 io_size - bytes_in_buffer,
12821 file.get ());
12822 if (bytes == 0)
12823 {
12824 if (ferror (file.get ()))
12825 error (_("Error reading %s."), local_file);
12826 else
12827 {
12828 /* EOF. Unless there is something still in the
12829 buffer from the last iteration, we are done. */
12830 saw_eof = 1;
12831 if (bytes_in_buffer == 0)
12832 break;
12833 }
12834 }
12835 }
12836 else
12837 bytes = 0;
12838
12839 bytes += bytes_in_buffer;
12840 bytes_in_buffer = 0;
12841
12842 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12843 offset, &remote_errno);
12844
12845 if (retcode < 0)
12846 remote_hostio_error (remote_errno);
12847 else if (retcode == 0)
12848 error (_("Remote write of %d bytes returned 0!"), bytes);
12849 else if (retcode < bytes)
12850 {
12851 /* Short write. Save the rest of the read data for the next
12852 write. */
12853 bytes_in_buffer = bytes - retcode;
12854 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12855 }
12856
12857 offset += retcode;
12858 }
12859
12860 if (remote_hostio_close (fd.release (), &remote_errno))
12861 remote_hostio_error (remote_errno);
12862
12863 if (from_tty)
12864 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12865 }
12866
12867 void
12868 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12869 {
12870 remote_target *remote = get_current_remote_target ();
12871
12872 if (remote == nullptr)
12873 error (_("command can only be used with remote target"));
12874
12875 remote->remote_file_get (remote_file, local_file, from_tty);
12876 }
12877
12878 void
12879 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12880 int from_tty)
12881 {
12882 int remote_errno, bytes, io_size;
12883 ULONGEST offset;
12884
12885 scoped_remote_fd fd
12886 (this, remote_hostio_open (NULL,
12887 remote_file, FILEIO_O_RDONLY, 0, 0,
12888 &remote_errno));
12889 if (fd.get () == -1)
12890 remote_hostio_error (remote_errno);
12891
12892 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12893 if (file == NULL)
12894 perror_with_name (local_file);
12895
12896 /* Send up to this many bytes at once. They won't all fit in the
12897 remote packet limit, so we'll transfer slightly fewer. */
12898 io_size = get_remote_packet_size ();
12899 gdb::byte_vector buffer (io_size);
12900
12901 offset = 0;
12902 while (1)
12903 {
12904 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12905 &remote_errno);
12906 if (bytes == 0)
12907 /* Success, but no bytes, means end-of-file. */
12908 break;
12909 if (bytes == -1)
12910 remote_hostio_error (remote_errno);
12911
12912 offset += bytes;
12913
12914 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12915 if (bytes == 0)
12916 perror_with_name (local_file);
12917 }
12918
12919 if (remote_hostio_close (fd.release (), &remote_errno))
12920 remote_hostio_error (remote_errno);
12921
12922 if (from_tty)
12923 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12924 }
12925
12926 void
12927 remote_file_delete (const char *remote_file, int from_tty)
12928 {
12929 remote_target *remote = get_current_remote_target ();
12930
12931 if (remote == nullptr)
12932 error (_("command can only be used with remote target"));
12933
12934 remote->remote_file_delete (remote_file, from_tty);
12935 }
12936
12937 void
12938 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12939 {
12940 int retcode, remote_errno;
12941
12942 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12943 if (retcode == -1)
12944 remote_hostio_error (remote_errno);
12945
12946 if (from_tty)
12947 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12948 }
12949
12950 static void
12951 remote_put_command (const char *args, int from_tty)
12952 {
12953 if (args == NULL)
12954 error_no_arg (_("file to put"));
12955
12956 gdb_argv argv (args);
12957 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12958 error (_("Invalid parameters to remote put"));
12959
12960 remote_file_put (argv[0], argv[1], from_tty);
12961 }
12962
12963 static void
12964 remote_get_command (const char *args, int from_tty)
12965 {
12966 if (args == NULL)
12967 error_no_arg (_("file to get"));
12968
12969 gdb_argv argv (args);
12970 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12971 error (_("Invalid parameters to remote get"));
12972
12973 remote_file_get (argv[0], argv[1], from_tty);
12974 }
12975
12976 static void
12977 remote_delete_command (const char *args, int from_tty)
12978 {
12979 if (args == NULL)
12980 error_no_arg (_("file to delete"));
12981
12982 gdb_argv argv (args);
12983 if (argv[0] == NULL || argv[1] != NULL)
12984 error (_("Invalid parameters to remote delete"));
12985
12986 remote_file_delete (argv[0], from_tty);
12987 }
12988
12989 bool
12990 remote_target::can_execute_reverse ()
12991 {
12992 if (packet_support (PACKET_bs) == PACKET_ENABLE
12993 || packet_support (PACKET_bc) == PACKET_ENABLE)
12994 return true;
12995 else
12996 return false;
12997 }
12998
12999 bool
13000 remote_target::supports_non_stop ()
13001 {
13002 return true;
13003 }
13004
13005 bool
13006 remote_target::supports_disable_randomization ()
13007 {
13008 /* Only supported in extended mode. */
13009 return false;
13010 }
13011
13012 bool
13013 remote_target::supports_multi_process ()
13014 {
13015 struct remote_state *rs = get_remote_state ();
13016
13017 return remote_multi_process_p (rs);
13018 }
13019
13020 static int
13021 remote_supports_cond_tracepoints ()
13022 {
13023 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
13024 }
13025
13026 bool
13027 remote_target::supports_evaluation_of_breakpoint_conditions ()
13028 {
13029 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
13030 }
13031
13032 static int
13033 remote_supports_fast_tracepoints ()
13034 {
13035 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
13036 }
13037
13038 static int
13039 remote_supports_static_tracepoints ()
13040 {
13041 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
13042 }
13043
13044 static int
13045 remote_supports_install_in_trace ()
13046 {
13047 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
13048 }
13049
13050 bool
13051 remote_target::supports_enable_disable_tracepoint ()
13052 {
13053 return (packet_support (PACKET_EnableDisableTracepoints_feature)
13054 == PACKET_ENABLE);
13055 }
13056
13057 bool
13058 remote_target::supports_string_tracing ()
13059 {
13060 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
13061 }
13062
13063 bool
13064 remote_target::can_run_breakpoint_commands ()
13065 {
13066 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
13067 }
13068
13069 void
13070 remote_target::trace_init ()
13071 {
13072 struct remote_state *rs = get_remote_state ();
13073
13074 putpkt ("QTinit");
13075 remote_get_noisy_reply ();
13076 if (strcmp (rs->buf.data (), "OK") != 0)
13077 error (_("Target does not support this command."));
13078 }
13079
13080 /* Recursive routine to walk through command list including loops, and
13081 download packets for each command. */
13082
13083 void
13084 remote_target::remote_download_command_source (int num, ULONGEST addr,
13085 struct command_line *cmds)
13086 {
13087 struct remote_state *rs = get_remote_state ();
13088 struct command_line *cmd;
13089
13090 for (cmd = cmds; cmd; cmd = cmd->next)
13091 {
13092 QUIT; /* Allow user to bail out with ^C. */
13093 strcpy (rs->buf.data (), "QTDPsrc:");
13094 encode_source_string (num, addr, "cmd", cmd->line,
13095 rs->buf.data () + strlen (rs->buf.data ()),
13096 rs->buf.size () - strlen (rs->buf.data ()));
13097 putpkt (rs->buf);
13098 remote_get_noisy_reply ();
13099 if (strcmp (rs->buf.data (), "OK"))
13100 warning (_("Target does not support source download."));
13101
13102 if (cmd->control_type == while_control
13103 || cmd->control_type == while_stepping_control)
13104 {
13105 remote_download_command_source (num, addr, cmd->body_list_0.get ());
13106
13107 QUIT; /* Allow user to bail out with ^C. */
13108 strcpy (rs->buf.data (), "QTDPsrc:");
13109 encode_source_string (num, addr, "cmd", "end",
13110 rs->buf.data () + strlen (rs->buf.data ()),
13111 rs->buf.size () - strlen (rs->buf.data ()));
13112 putpkt (rs->buf);
13113 remote_get_noisy_reply ();
13114 if (strcmp (rs->buf.data (), "OK"))
13115 warning (_("Target does not support source download."));
13116 }
13117 }
13118 }
13119
13120 void
13121 remote_target::download_tracepoint (struct bp_location *loc)
13122 {
13123 CORE_ADDR tpaddr;
13124 char addrbuf[40];
13125 std::vector<std::string> tdp_actions;
13126 std::vector<std::string> stepping_actions;
13127 char *pkt;
13128 struct breakpoint *b = loc->owner;
13129 struct tracepoint *t = (struct tracepoint *) b;
13130 struct remote_state *rs = get_remote_state ();
13131 int ret;
13132 const char *err_msg = _("Tracepoint packet too large for target.");
13133 size_t size_left;
13134
13135 /* We use a buffer other than rs->buf because we'll build strings
13136 across multiple statements, and other statements in between could
13137 modify rs->buf. */
13138 gdb::char_vector buf (get_remote_packet_size ());
13139
13140 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13141
13142 tpaddr = loc->address;
13143 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13144 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13145 b->number, addrbuf, /* address */
13146 (b->enable_state == bp_enabled ? 'E' : 'D'),
13147 t->step_count, t->pass_count);
13148
13149 if (ret < 0 || ret >= buf.size ())
13150 error ("%s", err_msg);
13151
13152 /* Fast tracepoints are mostly handled by the target, but we can
13153 tell the target how big of an instruction block should be moved
13154 around. */
13155 if (b->type == bp_fast_tracepoint)
13156 {
13157 /* Only test for support at download time; we may not know
13158 target capabilities at definition time. */
13159 if (remote_supports_fast_tracepoints ())
13160 {
13161 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13162 NULL))
13163 {
13164 size_left = buf.size () - strlen (buf.data ());
13165 ret = snprintf (buf.data () + strlen (buf.data ()),
13166 size_left, ":F%x",
13167 gdb_insn_length (loc->gdbarch, tpaddr));
13168
13169 if (ret < 0 || ret >= size_left)
13170 error ("%s", err_msg);
13171 }
13172 else
13173 /* If it passed validation at definition but fails now,
13174 something is very wrong. */
13175 internal_error (__FILE__, __LINE__,
13176 _("Fast tracepoint not "
13177 "valid during download"));
13178 }
13179 else
13180 /* Fast tracepoints are functionally identical to regular
13181 tracepoints, so don't take lack of support as a reason to
13182 give up on the trace run. */
13183 warning (_("Target does not support fast tracepoints, "
13184 "downloading %d as regular tracepoint"), b->number);
13185 }
13186 else if (b->type == bp_static_tracepoint)
13187 {
13188 /* Only test for support at download time; we may not know
13189 target capabilities at definition time. */
13190 if (remote_supports_static_tracepoints ())
13191 {
13192 struct static_tracepoint_marker marker;
13193
13194 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13195 {
13196 size_left = buf.size () - strlen (buf.data ());
13197 ret = snprintf (buf.data () + strlen (buf.data ()),
13198 size_left, ":S");
13199
13200 if (ret < 0 || ret >= size_left)
13201 error ("%s", err_msg);
13202 }
13203 else
13204 error (_("Static tracepoint not valid during download"));
13205 }
13206 else
13207 /* Fast tracepoints are functionally identical to regular
13208 tracepoints, so don't take lack of support as a reason
13209 to give up on the trace run. */
13210 error (_("Target does not support static tracepoints"));
13211 }
13212 /* If the tracepoint has a conditional, make it into an agent
13213 expression and append to the definition. */
13214 if (loc->cond)
13215 {
13216 /* Only test support at download time, we may not know target
13217 capabilities at definition time. */
13218 if (remote_supports_cond_tracepoints ())
13219 {
13220 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13221 loc->cond.get ());
13222
13223 size_left = buf.size () - strlen (buf.data ());
13224
13225 ret = snprintf (buf.data () + strlen (buf.data ()),
13226 size_left, ":X%x,", aexpr->len);
13227
13228 if (ret < 0 || ret >= size_left)
13229 error ("%s", err_msg);
13230
13231 size_left = buf.size () - strlen (buf.data ());
13232
13233 /* Two bytes to encode each aexpr byte, plus the terminating
13234 null byte. */
13235 if (aexpr->len * 2 + 1 > size_left)
13236 error ("%s", err_msg);
13237
13238 pkt = buf.data () + strlen (buf.data ());
13239
13240 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13241 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13242 *pkt = '\0';
13243 }
13244 else
13245 warning (_("Target does not support conditional tracepoints, "
13246 "ignoring tp %d cond"), b->number);
13247 }
13248
13249 if (b->commands || *default_collect)
13250 {
13251 size_left = buf.size () - strlen (buf.data ());
13252
13253 ret = snprintf (buf.data () + strlen (buf.data ()),
13254 size_left, "-");
13255
13256 if (ret < 0 || ret >= size_left)
13257 error ("%s", err_msg);
13258 }
13259
13260 putpkt (buf.data ());
13261 remote_get_noisy_reply ();
13262 if (strcmp (rs->buf.data (), "OK"))
13263 error (_("Target does not support tracepoints."));
13264
13265 /* do_single_steps (t); */
13266 for (auto action_it = tdp_actions.begin ();
13267 action_it != tdp_actions.end (); action_it++)
13268 {
13269 QUIT; /* Allow user to bail out with ^C. */
13270
13271 bool has_more = ((action_it + 1) != tdp_actions.end ()
13272 || !stepping_actions.empty ());
13273
13274 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13275 b->number, addrbuf, /* address */
13276 action_it->c_str (),
13277 has_more ? '-' : 0);
13278
13279 if (ret < 0 || ret >= buf.size ())
13280 error ("%s", err_msg);
13281
13282 putpkt (buf.data ());
13283 remote_get_noisy_reply ();
13284 if (strcmp (rs->buf.data (), "OK"))
13285 error (_("Error on target while setting tracepoints."));
13286 }
13287
13288 for (auto action_it = stepping_actions.begin ();
13289 action_it != stepping_actions.end (); action_it++)
13290 {
13291 QUIT; /* Allow user to bail out with ^C. */
13292
13293 bool is_first = action_it == stepping_actions.begin ();
13294 bool has_more = (action_it + 1) != stepping_actions.end ();
13295
13296 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13297 b->number, addrbuf, /* address */
13298 is_first ? "S" : "",
13299 action_it->c_str (),
13300 has_more ? "-" : "");
13301
13302 if (ret < 0 || ret >= buf.size ())
13303 error ("%s", err_msg);
13304
13305 putpkt (buf.data ());
13306 remote_get_noisy_reply ();
13307 if (strcmp (rs->buf.data (), "OK"))
13308 error (_("Error on target while setting tracepoints."));
13309 }
13310
13311 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13312 {
13313 if (b->location != NULL)
13314 {
13315 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13316
13317 if (ret < 0 || ret >= buf.size ())
13318 error ("%s", err_msg);
13319
13320 encode_source_string (b->number, loc->address, "at",
13321 event_location_to_string (b->location.get ()),
13322 buf.data () + strlen (buf.data ()),
13323 buf.size () - strlen (buf.data ()));
13324 putpkt (buf.data ());
13325 remote_get_noisy_reply ();
13326 if (strcmp (rs->buf.data (), "OK"))
13327 warning (_("Target does not support source download."));
13328 }
13329 if (b->cond_string)
13330 {
13331 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13332
13333 if (ret < 0 || ret >= buf.size ())
13334 error ("%s", err_msg);
13335
13336 encode_source_string (b->number, loc->address,
13337 "cond", b->cond_string,
13338 buf.data () + strlen (buf.data ()),
13339 buf.size () - strlen (buf.data ()));
13340 putpkt (buf.data ());
13341 remote_get_noisy_reply ();
13342 if (strcmp (rs->buf.data (), "OK"))
13343 warning (_("Target does not support source download."));
13344 }
13345 remote_download_command_source (b->number, loc->address,
13346 breakpoint_commands (b));
13347 }
13348 }
13349
13350 bool
13351 remote_target::can_download_tracepoint ()
13352 {
13353 struct remote_state *rs = get_remote_state ();
13354 struct trace_status *ts;
13355 int status;
13356
13357 /* Don't try to install tracepoints until we've relocated our
13358 symbols, and fetched and merged the target's tracepoint list with
13359 ours. */
13360 if (rs->starting_up)
13361 return false;
13362
13363 ts = current_trace_status ();
13364 status = get_trace_status (ts);
13365
13366 if (status == -1 || !ts->running_known || !ts->running)
13367 return false;
13368
13369 /* If we are in a tracing experiment, but remote stub doesn't support
13370 installing tracepoint in trace, we have to return. */
13371 if (!remote_supports_install_in_trace ())
13372 return false;
13373
13374 return true;
13375 }
13376
13377
13378 void
13379 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13380 {
13381 struct remote_state *rs = get_remote_state ();
13382 char *p;
13383
13384 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13385 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13386 tsv.builtin);
13387 p = rs->buf.data () + strlen (rs->buf.data ());
13388 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13389 >= get_remote_packet_size ())
13390 error (_("Trace state variable name too long for tsv definition packet"));
13391 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13392 *p++ = '\0';
13393 putpkt (rs->buf);
13394 remote_get_noisy_reply ();
13395 if (rs->buf[0] == '\0')
13396 error (_("Target does not support this command."));
13397 if (strcmp (rs->buf.data (), "OK") != 0)
13398 error (_("Error on target while downloading trace state variable."));
13399 }
13400
13401 void
13402 remote_target::enable_tracepoint (struct bp_location *location)
13403 {
13404 struct remote_state *rs = get_remote_state ();
13405
13406 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13407 location->owner->number,
13408 phex (location->address, sizeof (CORE_ADDR)));
13409 putpkt (rs->buf);
13410 remote_get_noisy_reply ();
13411 if (rs->buf[0] == '\0')
13412 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13413 if (strcmp (rs->buf.data (), "OK") != 0)
13414 error (_("Error on target while enabling tracepoint."));
13415 }
13416
13417 void
13418 remote_target::disable_tracepoint (struct bp_location *location)
13419 {
13420 struct remote_state *rs = get_remote_state ();
13421
13422 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13423 location->owner->number,
13424 phex (location->address, sizeof (CORE_ADDR)));
13425 putpkt (rs->buf);
13426 remote_get_noisy_reply ();
13427 if (rs->buf[0] == '\0')
13428 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13429 if (strcmp (rs->buf.data (), "OK") != 0)
13430 error (_("Error on target while disabling tracepoint."));
13431 }
13432
13433 void
13434 remote_target::trace_set_readonly_regions ()
13435 {
13436 asection *s;
13437 bfd_size_type size;
13438 bfd_vma vma;
13439 int anysecs = 0;
13440 int offset = 0;
13441
13442 if (!current_program_space->exec_bfd ())
13443 return; /* No information to give. */
13444
13445 struct remote_state *rs = get_remote_state ();
13446
13447 strcpy (rs->buf.data (), "QTro");
13448 offset = strlen (rs->buf.data ());
13449 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13450 {
13451 char tmp1[40], tmp2[40];
13452 int sec_length;
13453
13454 if ((s->flags & SEC_LOAD) == 0 ||
13455 /* (s->flags & SEC_CODE) == 0 || */
13456 (s->flags & SEC_READONLY) == 0)
13457 continue;
13458
13459 anysecs = 1;
13460 vma = bfd_section_vma (s);
13461 size = bfd_section_size (s);
13462 sprintf_vma (tmp1, vma);
13463 sprintf_vma (tmp2, vma + size);
13464 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13465 if (offset + sec_length + 1 > rs->buf.size ())
13466 {
13467 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13468 warning (_("\
13469 Too many sections for read-only sections definition packet."));
13470 break;
13471 }
13472 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13473 tmp1, tmp2);
13474 offset += sec_length;
13475 }
13476 if (anysecs)
13477 {
13478 putpkt (rs->buf);
13479 getpkt (&rs->buf, 0);
13480 }
13481 }
13482
13483 void
13484 remote_target::trace_start ()
13485 {
13486 struct remote_state *rs = get_remote_state ();
13487
13488 putpkt ("QTStart");
13489 remote_get_noisy_reply ();
13490 if (rs->buf[0] == '\0')
13491 error (_("Target does not support this command."));
13492 if (strcmp (rs->buf.data (), "OK") != 0)
13493 error (_("Bogus reply from target: %s"), rs->buf.data ());
13494 }
13495
13496 int
13497 remote_target::get_trace_status (struct trace_status *ts)
13498 {
13499 /* Initialize it just to avoid a GCC false warning. */
13500 char *p = NULL;
13501 enum packet_result result;
13502 struct remote_state *rs = get_remote_state ();
13503
13504 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13505 return -1;
13506
13507 /* FIXME we need to get register block size some other way. */
13508 trace_regblock_size
13509 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13510
13511 putpkt ("qTStatus");
13512
13513 try
13514 {
13515 p = remote_get_noisy_reply ();
13516 }
13517 catch (const gdb_exception_error &ex)
13518 {
13519 if (ex.error != TARGET_CLOSE_ERROR)
13520 {
13521 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13522 return -1;
13523 }
13524 throw;
13525 }
13526
13527 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13528
13529 /* If the remote target doesn't do tracing, flag it. */
13530 if (result == PACKET_UNKNOWN)
13531 return -1;
13532
13533 /* We're working with a live target. */
13534 ts->filename = NULL;
13535
13536 if (*p++ != 'T')
13537 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13538
13539 /* Function 'parse_trace_status' sets default value of each field of
13540 'ts' at first, so we don't have to do it here. */
13541 parse_trace_status (p, ts);
13542
13543 return ts->running;
13544 }
13545
13546 void
13547 remote_target::get_tracepoint_status (struct breakpoint *bp,
13548 struct uploaded_tp *utp)
13549 {
13550 struct remote_state *rs = get_remote_state ();
13551 char *reply;
13552 struct tracepoint *tp = (struct tracepoint *) bp;
13553 size_t size = get_remote_packet_size ();
13554
13555 if (tp)
13556 {
13557 tp->hit_count = 0;
13558 tp->traceframe_usage = 0;
13559 for (bp_location *loc : tp->locations ())
13560 {
13561 /* If the tracepoint was never downloaded, don't go asking for
13562 any status. */
13563 if (tp->number_on_target == 0)
13564 continue;
13565 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13566 phex_nz (loc->address, 0));
13567 putpkt (rs->buf);
13568 reply = remote_get_noisy_reply ();
13569 if (reply && *reply)
13570 {
13571 if (*reply == 'V')
13572 parse_tracepoint_status (reply + 1, bp, utp);
13573 }
13574 }
13575 }
13576 else if (utp)
13577 {
13578 utp->hit_count = 0;
13579 utp->traceframe_usage = 0;
13580 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13581 phex_nz (utp->addr, 0));
13582 putpkt (rs->buf);
13583 reply = remote_get_noisy_reply ();
13584 if (reply && *reply)
13585 {
13586 if (*reply == 'V')
13587 parse_tracepoint_status (reply + 1, bp, utp);
13588 }
13589 }
13590 }
13591
13592 void
13593 remote_target::trace_stop ()
13594 {
13595 struct remote_state *rs = get_remote_state ();
13596
13597 putpkt ("QTStop");
13598 remote_get_noisy_reply ();
13599 if (rs->buf[0] == '\0')
13600 error (_("Target does not support this command."));
13601 if (strcmp (rs->buf.data (), "OK") != 0)
13602 error (_("Bogus reply from target: %s"), rs->buf.data ());
13603 }
13604
13605 int
13606 remote_target::trace_find (enum trace_find_type type, int num,
13607 CORE_ADDR addr1, CORE_ADDR addr2,
13608 int *tpp)
13609 {
13610 struct remote_state *rs = get_remote_state ();
13611 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13612 char *p, *reply;
13613 int target_frameno = -1, target_tracept = -1;
13614
13615 /* Lookups other than by absolute frame number depend on the current
13616 trace selected, so make sure it is correct on the remote end
13617 first. */
13618 if (type != tfind_number)
13619 set_remote_traceframe ();
13620
13621 p = rs->buf.data ();
13622 strcpy (p, "QTFrame:");
13623 p = strchr (p, '\0');
13624 switch (type)
13625 {
13626 case tfind_number:
13627 xsnprintf (p, endbuf - p, "%x", num);
13628 break;
13629 case tfind_pc:
13630 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13631 break;
13632 case tfind_tp:
13633 xsnprintf (p, endbuf - p, "tdp:%x", num);
13634 break;
13635 case tfind_range:
13636 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13637 phex_nz (addr2, 0));
13638 break;
13639 case tfind_outside:
13640 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13641 phex_nz (addr2, 0));
13642 break;
13643 default:
13644 error (_("Unknown trace find type %d"), type);
13645 }
13646
13647 putpkt (rs->buf);
13648 reply = remote_get_noisy_reply ();
13649 if (*reply == '\0')
13650 error (_("Target does not support this command."));
13651
13652 while (reply && *reply)
13653 switch (*reply)
13654 {
13655 case 'F':
13656 p = ++reply;
13657 target_frameno = (int) strtol (p, &reply, 16);
13658 if (reply == p)
13659 error (_("Unable to parse trace frame number"));
13660 /* Don't update our remote traceframe number cache on failure
13661 to select a remote traceframe. */
13662 if (target_frameno == -1)
13663 return -1;
13664 break;
13665 case 'T':
13666 p = ++reply;
13667 target_tracept = (int) strtol (p, &reply, 16);
13668 if (reply == p)
13669 error (_("Unable to parse tracepoint number"));
13670 break;
13671 case 'O': /* "OK"? */
13672 if (reply[1] == 'K' && reply[2] == '\0')
13673 reply += 2;
13674 else
13675 error (_("Bogus reply from target: %s"), reply);
13676 break;
13677 default:
13678 error (_("Bogus reply from target: %s"), reply);
13679 }
13680 if (tpp)
13681 *tpp = target_tracept;
13682
13683 rs->remote_traceframe_number = target_frameno;
13684 return target_frameno;
13685 }
13686
13687 bool
13688 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13689 {
13690 struct remote_state *rs = get_remote_state ();
13691 char *reply;
13692 ULONGEST uval;
13693
13694 set_remote_traceframe ();
13695
13696 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13697 putpkt (rs->buf);
13698 reply = remote_get_noisy_reply ();
13699 if (reply && *reply)
13700 {
13701 if (*reply == 'V')
13702 {
13703 unpack_varlen_hex (reply + 1, &uval);
13704 *val = (LONGEST) uval;
13705 return true;
13706 }
13707 }
13708 return false;
13709 }
13710
13711 int
13712 remote_target::save_trace_data (const char *filename)
13713 {
13714 struct remote_state *rs = get_remote_state ();
13715 char *p, *reply;
13716
13717 p = rs->buf.data ();
13718 strcpy (p, "QTSave:");
13719 p += strlen (p);
13720 if ((p - rs->buf.data ()) + strlen (filename) * 2
13721 >= get_remote_packet_size ())
13722 error (_("Remote file name too long for trace save packet"));
13723 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13724 *p++ = '\0';
13725 putpkt (rs->buf);
13726 reply = remote_get_noisy_reply ();
13727 if (*reply == '\0')
13728 error (_("Target does not support this command."));
13729 if (strcmp (reply, "OK") != 0)
13730 error (_("Bogus reply from target: %s"), reply);
13731 return 0;
13732 }
13733
13734 /* This is basically a memory transfer, but needs to be its own packet
13735 because we don't know how the target actually organizes its trace
13736 memory, plus we want to be able to ask for as much as possible, but
13737 not be unhappy if we don't get as much as we ask for. */
13738
13739 LONGEST
13740 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13741 {
13742 struct remote_state *rs = get_remote_state ();
13743 char *reply;
13744 char *p;
13745 int rslt;
13746
13747 p = rs->buf.data ();
13748 strcpy (p, "qTBuffer:");
13749 p += strlen (p);
13750 p += hexnumstr (p, offset);
13751 *p++ = ',';
13752 p += hexnumstr (p, len);
13753 *p++ = '\0';
13754
13755 putpkt (rs->buf);
13756 reply = remote_get_noisy_reply ();
13757 if (reply && *reply)
13758 {
13759 /* 'l' by itself means we're at the end of the buffer and
13760 there is nothing more to get. */
13761 if (*reply == 'l')
13762 return 0;
13763
13764 /* Convert the reply into binary. Limit the number of bytes to
13765 convert according to our passed-in buffer size, rather than
13766 what was returned in the packet; if the target is
13767 unexpectedly generous and gives us a bigger reply than we
13768 asked for, we don't want to crash. */
13769 rslt = hex2bin (reply, buf, len);
13770 return rslt;
13771 }
13772
13773 /* Something went wrong, flag as an error. */
13774 return -1;
13775 }
13776
13777 void
13778 remote_target::set_disconnected_tracing (int val)
13779 {
13780 struct remote_state *rs = get_remote_state ();
13781
13782 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13783 {
13784 char *reply;
13785
13786 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13787 "QTDisconnected:%x", val);
13788 putpkt (rs->buf);
13789 reply = remote_get_noisy_reply ();
13790 if (*reply == '\0')
13791 error (_("Target does not support this command."));
13792 if (strcmp (reply, "OK") != 0)
13793 error (_("Bogus reply from target: %s"), reply);
13794 }
13795 else if (val)
13796 warning (_("Target does not support disconnected tracing."));
13797 }
13798
13799 int
13800 remote_target::core_of_thread (ptid_t ptid)
13801 {
13802 thread_info *info = find_thread_ptid (this, ptid);
13803
13804 if (info != NULL && info->priv != NULL)
13805 return get_remote_thread_info (info)->core;
13806
13807 return -1;
13808 }
13809
13810 void
13811 remote_target::set_circular_trace_buffer (int val)
13812 {
13813 struct remote_state *rs = get_remote_state ();
13814 char *reply;
13815
13816 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13817 "QTBuffer:circular:%x", val);
13818 putpkt (rs->buf);
13819 reply = remote_get_noisy_reply ();
13820 if (*reply == '\0')
13821 error (_("Target does not support this command."));
13822 if (strcmp (reply, "OK") != 0)
13823 error (_("Bogus reply from target: %s"), reply);
13824 }
13825
13826 traceframe_info_up
13827 remote_target::traceframe_info ()
13828 {
13829 gdb::optional<gdb::char_vector> text
13830 = target_read_stralloc (current_inferior ()->top_target (),
13831 TARGET_OBJECT_TRACEFRAME_INFO,
13832 NULL);
13833 if (text)
13834 return parse_traceframe_info (text->data ());
13835
13836 return NULL;
13837 }
13838
13839 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13840 instruction on which a fast tracepoint may be placed. Returns -1
13841 if the packet is not supported, and 0 if the minimum instruction
13842 length is unknown. */
13843
13844 int
13845 remote_target::get_min_fast_tracepoint_insn_len ()
13846 {
13847 struct remote_state *rs = get_remote_state ();
13848 char *reply;
13849
13850 /* If we're not debugging a process yet, the IPA can't be
13851 loaded. */
13852 if (!target_has_execution ())
13853 return 0;
13854
13855 /* Make sure the remote is pointing at the right process. */
13856 set_general_process ();
13857
13858 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13859 putpkt (rs->buf);
13860 reply = remote_get_noisy_reply ();
13861 if (*reply == '\0')
13862 return -1;
13863 else
13864 {
13865 ULONGEST min_insn_len;
13866
13867 unpack_varlen_hex (reply, &min_insn_len);
13868
13869 return (int) min_insn_len;
13870 }
13871 }
13872
13873 void
13874 remote_target::set_trace_buffer_size (LONGEST val)
13875 {
13876 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13877 {
13878 struct remote_state *rs = get_remote_state ();
13879 char *buf = rs->buf.data ();
13880 char *endbuf = buf + get_remote_packet_size ();
13881 enum packet_result result;
13882
13883 gdb_assert (val >= 0 || val == -1);
13884 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13885 /* Send -1 as literal "-1" to avoid host size dependency. */
13886 if (val < 0)
13887 {
13888 *buf++ = '-';
13889 buf += hexnumstr (buf, (ULONGEST) -val);
13890 }
13891 else
13892 buf += hexnumstr (buf, (ULONGEST) val);
13893
13894 putpkt (rs->buf);
13895 remote_get_noisy_reply ();
13896 result = packet_ok (rs->buf,
13897 &remote_protocol_packets[PACKET_QTBuffer_size]);
13898
13899 if (result != PACKET_OK)
13900 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13901 }
13902 }
13903
13904 bool
13905 remote_target::set_trace_notes (const char *user, const char *notes,
13906 const char *stop_notes)
13907 {
13908 struct remote_state *rs = get_remote_state ();
13909 char *reply;
13910 char *buf = rs->buf.data ();
13911 char *endbuf = buf + get_remote_packet_size ();
13912 int nbytes;
13913
13914 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13915 if (user)
13916 {
13917 buf += xsnprintf (buf, endbuf - buf, "user:");
13918 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13919 buf += 2 * nbytes;
13920 *buf++ = ';';
13921 }
13922 if (notes)
13923 {
13924 buf += xsnprintf (buf, endbuf - buf, "notes:");
13925 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13926 buf += 2 * nbytes;
13927 *buf++ = ';';
13928 }
13929 if (stop_notes)
13930 {
13931 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13932 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13933 buf += 2 * nbytes;
13934 *buf++ = ';';
13935 }
13936 /* Ensure the buffer is terminated. */
13937 *buf = '\0';
13938
13939 putpkt (rs->buf);
13940 reply = remote_get_noisy_reply ();
13941 if (*reply == '\0')
13942 return false;
13943
13944 if (strcmp (reply, "OK") != 0)
13945 error (_("Bogus reply from target: %s"), reply);
13946
13947 return true;
13948 }
13949
13950 bool
13951 remote_target::use_agent (bool use)
13952 {
13953 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13954 {
13955 struct remote_state *rs = get_remote_state ();
13956
13957 /* If the stub supports QAgent. */
13958 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13959 putpkt (rs->buf);
13960 getpkt (&rs->buf, 0);
13961
13962 if (strcmp (rs->buf.data (), "OK") == 0)
13963 {
13964 ::use_agent = use;
13965 return true;
13966 }
13967 }
13968
13969 return false;
13970 }
13971
13972 bool
13973 remote_target::can_use_agent ()
13974 {
13975 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13976 }
13977
13978 struct btrace_target_info
13979 {
13980 /* The ptid of the traced thread. */
13981 ptid_t ptid;
13982
13983 /* The obtained branch trace configuration. */
13984 struct btrace_config conf;
13985 };
13986
13987 /* Reset our idea of our target's btrace configuration. */
13988
13989 static void
13990 remote_btrace_reset (remote_state *rs)
13991 {
13992 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13993 }
13994
13995 /* Synchronize the configuration with the target. */
13996
13997 void
13998 remote_target::btrace_sync_conf (const btrace_config *conf)
13999 {
14000 struct packet_config *packet;
14001 struct remote_state *rs;
14002 char *buf, *pos, *endbuf;
14003
14004 rs = get_remote_state ();
14005 buf = rs->buf.data ();
14006 endbuf = buf + get_remote_packet_size ();
14007
14008 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
14009 if (packet_config_support (packet) == PACKET_ENABLE
14010 && conf->bts.size != rs->btrace_config.bts.size)
14011 {
14012 pos = buf;
14013 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14014 conf->bts.size);
14015
14016 putpkt (buf);
14017 getpkt (&rs->buf, 0);
14018
14019 if (packet_ok (buf, packet) == PACKET_ERROR)
14020 {
14021 if (buf[0] == 'E' && buf[1] == '.')
14022 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
14023 else
14024 error (_("Failed to configure the BTS buffer size."));
14025 }
14026
14027 rs->btrace_config.bts.size = conf->bts.size;
14028 }
14029
14030 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
14031 if (packet_config_support (packet) == PACKET_ENABLE
14032 && conf->pt.size != rs->btrace_config.pt.size)
14033 {
14034 pos = buf;
14035 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14036 conf->pt.size);
14037
14038 putpkt (buf);
14039 getpkt (&rs->buf, 0);
14040
14041 if (packet_ok (buf, packet) == PACKET_ERROR)
14042 {
14043 if (buf[0] == 'E' && buf[1] == '.')
14044 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
14045 else
14046 error (_("Failed to configure the trace buffer size."));
14047 }
14048
14049 rs->btrace_config.pt.size = conf->pt.size;
14050 }
14051 }
14052
14053 /* Read the current thread's btrace configuration from the target and
14054 store it into CONF. */
14055
14056 static void
14057 btrace_read_config (struct btrace_config *conf)
14058 {
14059 gdb::optional<gdb::char_vector> xml
14060 = target_read_stralloc (current_inferior ()->top_target (),
14061 TARGET_OBJECT_BTRACE_CONF, "");
14062 if (xml)
14063 parse_xml_btrace_conf (conf, xml->data ());
14064 }
14065
14066 /* Maybe reopen target btrace. */
14067
14068 void
14069 remote_target::remote_btrace_maybe_reopen ()
14070 {
14071 struct remote_state *rs = get_remote_state ();
14072 int btrace_target_pushed = 0;
14073 #if !defined (HAVE_LIBIPT)
14074 int warned = 0;
14075 #endif
14076
14077 /* Don't bother walking the entirety of the remote thread list when
14078 we know the feature isn't supported by the remote. */
14079 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
14080 return;
14081
14082 scoped_restore_current_thread restore_thread;
14083
14084 for (thread_info *tp : all_non_exited_threads (this))
14085 {
14086 set_general_thread (tp->ptid);
14087
14088 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
14089 btrace_read_config (&rs->btrace_config);
14090
14091 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
14092 continue;
14093
14094 #if !defined (HAVE_LIBIPT)
14095 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
14096 {
14097 if (!warned)
14098 {
14099 warned = 1;
14100 warning (_("Target is recording using Intel Processor Trace "
14101 "but support was disabled at compile time."));
14102 }
14103
14104 continue;
14105 }
14106 #endif /* !defined (HAVE_LIBIPT) */
14107
14108 /* Push target, once, but before anything else happens. This way our
14109 changes to the threads will be cleaned up by unpushing the target
14110 in case btrace_read_config () throws. */
14111 if (!btrace_target_pushed)
14112 {
14113 btrace_target_pushed = 1;
14114 record_btrace_push_target ();
14115 printf_filtered (_("Target is recording using %s.\n"),
14116 btrace_format_string (rs->btrace_config.format));
14117 }
14118
14119 tp->btrace.target = XCNEW (struct btrace_target_info);
14120 tp->btrace.target->ptid = tp->ptid;
14121 tp->btrace.target->conf = rs->btrace_config;
14122 }
14123 }
14124
14125 /* Enable branch tracing. */
14126
14127 struct btrace_target_info *
14128 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
14129 {
14130 struct btrace_target_info *tinfo = NULL;
14131 struct packet_config *packet = NULL;
14132 struct remote_state *rs = get_remote_state ();
14133 char *buf = rs->buf.data ();
14134 char *endbuf = buf + get_remote_packet_size ();
14135
14136 switch (conf->format)
14137 {
14138 case BTRACE_FORMAT_BTS:
14139 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14140 break;
14141
14142 case BTRACE_FORMAT_PT:
14143 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14144 break;
14145 }
14146
14147 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14148 error (_("Target does not support branch tracing."));
14149
14150 btrace_sync_conf (conf);
14151
14152 set_general_thread (ptid);
14153
14154 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14155 putpkt (rs->buf);
14156 getpkt (&rs->buf, 0);
14157
14158 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14159 {
14160 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14161 error (_("Could not enable branch tracing for %s: %s"),
14162 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14163 else
14164 error (_("Could not enable branch tracing for %s."),
14165 target_pid_to_str (ptid).c_str ());
14166 }
14167
14168 tinfo = XCNEW (struct btrace_target_info);
14169 tinfo->ptid = ptid;
14170
14171 /* If we fail to read the configuration, we lose some information, but the
14172 tracing itself is not impacted. */
14173 try
14174 {
14175 btrace_read_config (&tinfo->conf);
14176 }
14177 catch (const gdb_exception_error &err)
14178 {
14179 if (err.message != NULL)
14180 warning ("%s", err.what ());
14181 }
14182
14183 return tinfo;
14184 }
14185
14186 /* Disable branch tracing. */
14187
14188 void
14189 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14190 {
14191 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14192 struct remote_state *rs = get_remote_state ();
14193 char *buf = rs->buf.data ();
14194 char *endbuf = buf + get_remote_packet_size ();
14195
14196 if (packet_config_support (packet) != PACKET_ENABLE)
14197 error (_("Target does not support branch tracing."));
14198
14199 set_general_thread (tinfo->ptid);
14200
14201 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14202 putpkt (rs->buf);
14203 getpkt (&rs->buf, 0);
14204
14205 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14206 {
14207 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14208 error (_("Could not disable branch tracing for %s: %s"),
14209 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14210 else
14211 error (_("Could not disable branch tracing for %s."),
14212 target_pid_to_str (tinfo->ptid).c_str ());
14213 }
14214
14215 xfree (tinfo);
14216 }
14217
14218 /* Teardown branch tracing. */
14219
14220 void
14221 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14222 {
14223 /* We must not talk to the target during teardown. */
14224 xfree (tinfo);
14225 }
14226
14227 /* Read the branch trace. */
14228
14229 enum btrace_error
14230 remote_target::read_btrace (struct btrace_data *btrace,
14231 struct btrace_target_info *tinfo,
14232 enum btrace_read_type type)
14233 {
14234 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14235 const char *annex;
14236
14237 if (packet_config_support (packet) != PACKET_ENABLE)
14238 error (_("Target does not support branch tracing."));
14239
14240 #if !defined(HAVE_LIBEXPAT)
14241 error (_("Cannot process branch tracing result. XML parsing not supported."));
14242 #endif
14243
14244 switch (type)
14245 {
14246 case BTRACE_READ_ALL:
14247 annex = "all";
14248 break;
14249 case BTRACE_READ_NEW:
14250 annex = "new";
14251 break;
14252 case BTRACE_READ_DELTA:
14253 annex = "delta";
14254 break;
14255 default:
14256 internal_error (__FILE__, __LINE__,
14257 _("Bad branch tracing read type: %u."),
14258 (unsigned int) type);
14259 }
14260
14261 gdb::optional<gdb::char_vector> xml
14262 = target_read_stralloc (current_inferior ()->top_target (),
14263 TARGET_OBJECT_BTRACE, annex);
14264 if (!xml)
14265 return BTRACE_ERR_UNKNOWN;
14266
14267 parse_xml_btrace (btrace, xml->data ());
14268
14269 return BTRACE_ERR_NONE;
14270 }
14271
14272 const struct btrace_config *
14273 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14274 {
14275 return &tinfo->conf;
14276 }
14277
14278 bool
14279 remote_target::augmented_libraries_svr4_read ()
14280 {
14281 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14282 == PACKET_ENABLE);
14283 }
14284
14285 /* Implementation of to_load. */
14286
14287 void
14288 remote_target::load (const char *name, int from_tty)
14289 {
14290 generic_load (name, from_tty);
14291 }
14292
14293 /* Accepts an integer PID; returns a string representing a file that
14294 can be opened on the remote side to get the symbols for the child
14295 process. Returns NULL if the operation is not supported. */
14296
14297 char *
14298 remote_target::pid_to_exec_file (int pid)
14299 {
14300 static gdb::optional<gdb::char_vector> filename;
14301 char *annex = NULL;
14302
14303 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14304 return NULL;
14305
14306 inferior *inf = find_inferior_pid (this, pid);
14307 if (inf == NULL)
14308 internal_error (__FILE__, __LINE__,
14309 _("not currently attached to process %d"), pid);
14310
14311 if (!inf->fake_pid_p)
14312 {
14313 const int annex_size = 9;
14314
14315 annex = (char *) alloca (annex_size);
14316 xsnprintf (annex, annex_size, "%x", pid);
14317 }
14318
14319 filename = target_read_stralloc (current_inferior ()->top_target (),
14320 TARGET_OBJECT_EXEC_FILE, annex);
14321
14322 return filename ? filename->data () : nullptr;
14323 }
14324
14325 /* Implement the to_can_do_single_step target_ops method. */
14326
14327 int
14328 remote_target::can_do_single_step ()
14329 {
14330 /* We can only tell whether target supports single step or not by
14331 supported s and S vCont actions if the stub supports vContSupported
14332 feature. If the stub doesn't support vContSupported feature,
14333 we have conservatively to think target doesn't supports single
14334 step. */
14335 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14336 {
14337 struct remote_state *rs = get_remote_state ();
14338
14339 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14340 remote_vcont_probe ();
14341
14342 return rs->supports_vCont.s && rs->supports_vCont.S;
14343 }
14344 else
14345 return 0;
14346 }
14347
14348 /* Implementation of the to_execution_direction method for the remote
14349 target. */
14350
14351 enum exec_direction_kind
14352 remote_target::execution_direction ()
14353 {
14354 struct remote_state *rs = get_remote_state ();
14355
14356 return rs->last_resume_exec_dir;
14357 }
14358
14359 /* Return pointer to the thread_info struct which corresponds to
14360 THREAD_HANDLE (having length HANDLE_LEN). */
14361
14362 thread_info *
14363 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14364 int handle_len,
14365 inferior *inf)
14366 {
14367 for (thread_info *tp : all_non_exited_threads (this))
14368 {
14369 remote_thread_info *priv = get_remote_thread_info (tp);
14370
14371 if (tp->inf == inf && priv != NULL)
14372 {
14373 if (handle_len != priv->thread_handle.size ())
14374 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14375 handle_len, priv->thread_handle.size ());
14376 if (memcmp (thread_handle, priv->thread_handle.data (),
14377 handle_len) == 0)
14378 return tp;
14379 }
14380 }
14381
14382 return NULL;
14383 }
14384
14385 gdb::byte_vector
14386 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14387 {
14388 remote_thread_info *priv = get_remote_thread_info (tp);
14389 return priv->thread_handle;
14390 }
14391
14392 bool
14393 remote_target::can_async_p ()
14394 {
14395 struct remote_state *rs = get_remote_state ();
14396
14397 /* We don't go async if the user has explicitly prevented it with the
14398 "maint set target-async" command. */
14399 if (!target_async_permitted)
14400 return false;
14401
14402 /* We're async whenever the serial device is. */
14403 return serial_can_async_p (rs->remote_desc);
14404 }
14405
14406 bool
14407 remote_target::is_async_p ()
14408 {
14409 struct remote_state *rs = get_remote_state ();
14410
14411 if (!target_async_permitted)
14412 /* We only enable async when the user specifically asks for it. */
14413 return false;
14414
14415 /* We're async whenever the serial device is. */
14416 return serial_is_async_p (rs->remote_desc);
14417 }
14418
14419 /* Pass the SERIAL event on and up to the client. One day this code
14420 will be able to delay notifying the client of an event until the
14421 point where an entire packet has been received. */
14422
14423 static serial_event_ftype remote_async_serial_handler;
14424
14425 static void
14426 remote_async_serial_handler (struct serial *scb, void *context)
14427 {
14428 /* Don't propogate error information up to the client. Instead let
14429 the client find out about the error by querying the target. */
14430 inferior_event_handler (INF_REG_EVENT);
14431 }
14432
14433 static void
14434 remote_async_inferior_event_handler (gdb_client_data data)
14435 {
14436 inferior_event_handler (INF_REG_EVENT);
14437 }
14438
14439 int
14440 remote_target::async_wait_fd ()
14441 {
14442 struct remote_state *rs = get_remote_state ();
14443 return rs->remote_desc->fd;
14444 }
14445
14446 void
14447 remote_target::async (int enable)
14448 {
14449 struct remote_state *rs = get_remote_state ();
14450
14451 if (enable)
14452 {
14453 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14454
14455 /* If there are pending events in the stop reply queue tell the
14456 event loop to process them. */
14457 if (!rs->stop_reply_queue.empty ())
14458 mark_async_event_handler (rs->remote_async_inferior_event_token);
14459 /* For simplicity, below we clear the pending events token
14460 without remembering whether it is marked, so here we always
14461 mark it. If there's actually no pending notification to
14462 process, this ends up being a no-op (other than a spurious
14463 event-loop wakeup). */
14464 if (target_is_non_stop_p ())
14465 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14466 }
14467 else
14468 {
14469 serial_async (rs->remote_desc, NULL, NULL);
14470 /* If the core is disabling async, it doesn't want to be
14471 disturbed with target events. Clear all async event sources
14472 too. */
14473 clear_async_event_handler (rs->remote_async_inferior_event_token);
14474 if (target_is_non_stop_p ())
14475 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14476 }
14477 }
14478
14479 /* Implementation of the to_thread_events method. */
14480
14481 void
14482 remote_target::thread_events (int enable)
14483 {
14484 struct remote_state *rs = get_remote_state ();
14485 size_t size = get_remote_packet_size ();
14486
14487 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14488 return;
14489
14490 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14491 putpkt (rs->buf);
14492 getpkt (&rs->buf, 0);
14493
14494 switch (packet_ok (rs->buf,
14495 &remote_protocol_packets[PACKET_QThreadEvents]))
14496 {
14497 case PACKET_OK:
14498 if (strcmp (rs->buf.data (), "OK") != 0)
14499 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14500 break;
14501 case PACKET_ERROR:
14502 warning (_("Remote failure reply: %s"), rs->buf.data ());
14503 break;
14504 case PACKET_UNKNOWN:
14505 break;
14506 }
14507 }
14508
14509 static void
14510 show_remote_cmd (const char *args, int from_tty)
14511 {
14512 /* We can't just use cmd_show_list here, because we want to skip
14513 the redundant "show remote Z-packet" and the legacy aliases. */
14514 struct cmd_list_element *list = remote_show_cmdlist;
14515 struct ui_out *uiout = current_uiout;
14516
14517 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14518 for (; list != NULL; list = list->next)
14519 if (strcmp (list->name, "Z-packet") == 0)
14520 continue;
14521 else if (list->type == not_set_cmd)
14522 /* Alias commands are exactly like the original, except they
14523 don't have the normal type. */
14524 continue;
14525 else
14526 {
14527 ui_out_emit_tuple option_emitter (uiout, "option");
14528
14529 uiout->field_string ("name", list->name);
14530 uiout->text (": ");
14531 if (list->type == show_cmd)
14532 do_show_command (NULL, from_tty, list);
14533 else
14534 cmd_func (list, NULL, from_tty);
14535 }
14536 }
14537
14538
14539 /* Function to be called whenever a new objfile (shlib) is detected. */
14540 static void
14541 remote_new_objfile (struct objfile *objfile)
14542 {
14543 remote_target *remote = get_current_remote_target ();
14544
14545 /* First, check whether the current inferior's process target is a remote
14546 target. */
14547 if (remote == nullptr)
14548 return;
14549
14550 /* When we are attaching or handling a fork child and the shared library
14551 subsystem reads the list of loaded libraries, we receive new objfile
14552 events in between each found library. The libraries are read in an
14553 undefined order, so if we gave the remote side a chance to look up
14554 symbols between each objfile, we might give it an inconsistent picture
14555 of the inferior. It could appear that a library A appears loaded but
14556 a library B does not, even though library A requires library B. That
14557 would present a state that couldn't normally exist in the inferior.
14558
14559 So, skip these events, we'll give the remote a chance to look up symbols
14560 once all the loaded libraries and their symbols are known to GDB. */
14561 if (current_inferior ()->in_initial_library_scan)
14562 return;
14563
14564 remote->remote_check_symbols ();
14565 }
14566
14567 /* Pull all the tracepoints defined on the target and create local
14568 data structures representing them. We don't want to create real
14569 tracepoints yet, we don't want to mess up the user's existing
14570 collection. */
14571
14572 int
14573 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14574 {
14575 struct remote_state *rs = get_remote_state ();
14576 char *p;
14577
14578 /* Ask for a first packet of tracepoint definition. */
14579 putpkt ("qTfP");
14580 getpkt (&rs->buf, 0);
14581 p = rs->buf.data ();
14582 while (*p && *p != 'l')
14583 {
14584 parse_tracepoint_definition (p, utpp);
14585 /* Ask for another packet of tracepoint definition. */
14586 putpkt ("qTsP");
14587 getpkt (&rs->buf, 0);
14588 p = rs->buf.data ();
14589 }
14590 return 0;
14591 }
14592
14593 int
14594 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14595 {
14596 struct remote_state *rs = get_remote_state ();
14597 char *p;
14598
14599 /* Ask for a first packet of variable definition. */
14600 putpkt ("qTfV");
14601 getpkt (&rs->buf, 0);
14602 p = rs->buf.data ();
14603 while (*p && *p != 'l')
14604 {
14605 parse_tsv_definition (p, utsvp);
14606 /* Ask for another packet of variable definition. */
14607 putpkt ("qTsV");
14608 getpkt (&rs->buf, 0);
14609 p = rs->buf.data ();
14610 }
14611 return 0;
14612 }
14613
14614 /* The "set/show range-stepping" show hook. */
14615
14616 static void
14617 show_range_stepping (struct ui_file *file, int from_tty,
14618 struct cmd_list_element *c,
14619 const char *value)
14620 {
14621 fprintf_filtered (file,
14622 _("Debugger's willingness to use range stepping "
14623 "is %s.\n"), value);
14624 }
14625
14626 /* Return true if the vCont;r action is supported by the remote
14627 stub. */
14628
14629 bool
14630 remote_target::vcont_r_supported ()
14631 {
14632 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14633 remote_vcont_probe ();
14634
14635 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14636 && get_remote_state ()->supports_vCont.r);
14637 }
14638
14639 /* The "set/show range-stepping" set hook. */
14640
14641 static void
14642 set_range_stepping (const char *ignore_args, int from_tty,
14643 struct cmd_list_element *c)
14644 {
14645 /* When enabling, check whether range stepping is actually supported
14646 by the target, and warn if not. */
14647 if (use_range_stepping)
14648 {
14649 remote_target *remote = get_current_remote_target ();
14650 if (remote == NULL
14651 || !remote->vcont_r_supported ())
14652 warning (_("Range stepping is not supported by the current target"));
14653 }
14654 }
14655
14656 static void
14657 show_remote_debug (struct ui_file *file, int from_tty,
14658 struct cmd_list_element *c, const char *value)
14659 {
14660 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14661 value);
14662 }
14663
14664 static void
14665 show_remote_timeout (struct ui_file *file, int from_tty,
14666 struct cmd_list_element *c, const char *value)
14667 {
14668 fprintf_filtered (file,
14669 _("Timeout limit to wait for target to respond is %s.\n"),
14670 value);
14671 }
14672
14673 /* Implement the "supports_memory_tagging" target_ops method. */
14674
14675 bool
14676 remote_target::supports_memory_tagging ()
14677 {
14678 return remote_memory_tagging_p ();
14679 }
14680
14681 /* Create the qMemTags packet given ADDRESS, LEN and TYPE. */
14682
14683 static void
14684 create_fetch_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14685 size_t len, int type)
14686 {
14687 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14688
14689 std::string request = string_printf ("qMemTags:%s,%s:%s",
14690 phex_nz (address, addr_size),
14691 phex_nz (len, sizeof (len)),
14692 phex_nz (type, sizeof (type)));
14693
14694 strcpy (packet.data (), request.c_str ());
14695 }
14696
14697 /* Parse the qMemTags packet reply into TAGS.
14698
14699 Return true if successful, false otherwise. */
14700
14701 static bool
14702 parse_fetch_memtags_reply (const gdb::char_vector &reply,
14703 gdb::byte_vector &tags)
14704 {
14705 if (reply.empty () || reply[0] == 'E' || reply[0] != 'm')
14706 return false;
14707
14708 /* Copy the tag data. */
14709 tags = hex2bin (reply.data () + 1);
14710
14711 return true;
14712 }
14713
14714 /* Create the QMemTags packet given ADDRESS, LEN, TYPE and TAGS. */
14715
14716 static void
14717 create_store_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14718 size_t len, int type,
14719 const gdb::byte_vector &tags)
14720 {
14721 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14722
14723 /* Put together the main packet, address and length. */
14724 std::string request = string_printf ("QMemTags:%s,%s:%s:",
14725 phex_nz (address, addr_size),
14726 phex_nz (len, sizeof (len)),
14727 phex_nz (type, sizeof (type)));
14728 request += bin2hex (tags.data (), tags.size ());
14729
14730 /* Check if we have exceeded the maximum packet size. */
14731 if (packet.size () < request.length ())
14732 error (_("Contents too big for packet QMemTags."));
14733
14734 strcpy (packet.data (), request.c_str ());
14735 }
14736
14737 /* Implement the "fetch_memtags" target_ops method. */
14738
14739 bool
14740 remote_target::fetch_memtags (CORE_ADDR address, size_t len,
14741 gdb::byte_vector &tags, int type)
14742 {
14743 /* Make sure the qMemTags packet is supported. */
14744 if (!remote_memory_tagging_p ())
14745 gdb_assert_not_reached ("remote fetch_memtags called with packet disabled");
14746
14747 struct remote_state *rs = get_remote_state ();
14748
14749 create_fetch_memtags_request (rs->buf, address, len, type);
14750
14751 putpkt (rs->buf);
14752 getpkt (&rs->buf, 0);
14753
14754 return parse_fetch_memtags_reply (rs->buf, tags);
14755 }
14756
14757 /* Implement the "store_memtags" target_ops method. */
14758
14759 bool
14760 remote_target::store_memtags (CORE_ADDR address, size_t len,
14761 const gdb::byte_vector &tags, int type)
14762 {
14763 /* Make sure the QMemTags packet is supported. */
14764 if (!remote_memory_tagging_p ())
14765 gdb_assert_not_reached ("remote store_memtags called with packet disabled");
14766
14767 struct remote_state *rs = get_remote_state ();
14768
14769 create_store_memtags_request (rs->buf, address, len, type, tags);
14770
14771 putpkt (rs->buf);
14772 getpkt (&rs->buf, 0);
14773
14774 /* Verify if the request was successful. */
14775 return packet_check_result (rs->buf.data ()) == PACKET_OK;
14776 }
14777
14778 /* Return true if remote target T is non-stop. */
14779
14780 bool
14781 remote_target_is_non_stop_p (remote_target *t)
14782 {
14783 scoped_restore_current_thread restore_thread;
14784 switch_to_target_no_thread (t);
14785
14786 return target_is_non_stop_p ();
14787 }
14788
14789 #if GDB_SELF_TEST
14790
14791 namespace selftests {
14792
14793 static void
14794 test_memory_tagging_functions ()
14795 {
14796 remote_target remote;
14797
14798 struct packet_config *config
14799 = &remote_protocol_packets[PACKET_memory_tagging_feature];
14800
14801 scoped_restore restore_memtag_support_
14802 = make_scoped_restore (&config->support);
14803
14804 /* Test memory tagging packet support. */
14805 config->support = PACKET_SUPPORT_UNKNOWN;
14806 SELF_CHECK (remote.supports_memory_tagging () == false);
14807 config->support = PACKET_DISABLE;
14808 SELF_CHECK (remote.supports_memory_tagging () == false);
14809 config->support = PACKET_ENABLE;
14810 SELF_CHECK (remote.supports_memory_tagging () == true);
14811
14812 /* Setup testing. */
14813 gdb::char_vector packet;
14814 gdb::byte_vector tags, bv;
14815 std::string expected, reply;
14816 packet.resize (32000);
14817
14818 /* Test creating a qMemTags request. */
14819
14820 expected = "qMemTags:0,0:0";
14821 create_fetch_memtags_request (packet, 0x0, 0x0, 0);
14822 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14823
14824 expected = "qMemTags:deadbeef,10:1";
14825 create_fetch_memtags_request (packet, 0xdeadbeef, 16, 1);
14826 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14827
14828 /* Test parsing a qMemTags reply. */
14829
14830 /* Error reply, tags vector unmodified. */
14831 reply = "E00";
14832 strcpy (packet.data (), reply.c_str ());
14833 tags.resize (0);
14834 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == false);
14835 SELF_CHECK (tags.size () == 0);
14836
14837 /* Valid reply, tags vector updated. */
14838 tags.resize (0);
14839 bv.resize (0);
14840
14841 for (int i = 0; i < 5; i++)
14842 bv.push_back (i);
14843
14844 reply = "m" + bin2hex (bv.data (), bv.size ());
14845 strcpy (packet.data (), reply.c_str ());
14846
14847 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == true);
14848 SELF_CHECK (tags.size () == 5);
14849
14850 for (int i = 0; i < 5; i++)
14851 SELF_CHECK (tags[i] == i);
14852
14853 /* Test creating a QMemTags request. */
14854
14855 /* Empty tag data. */
14856 tags.resize (0);
14857 expected = "QMemTags:0,0:0:";
14858 create_store_memtags_request (packet, 0x0, 0x0, 0, tags);
14859 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14860 expected.length ()) == 0);
14861
14862 /* Non-empty tag data. */
14863 tags.resize (0);
14864 for (int i = 0; i < 5; i++)
14865 tags.push_back (i);
14866 expected = "QMemTags:deadbeef,ff:1:0001020304";
14867 create_store_memtags_request (packet, 0xdeadbeef, 255, 1, tags);
14868 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14869 expected.length ()) == 0);
14870 }
14871
14872 } // namespace selftests
14873 #endif /* GDB_SELF_TEST */
14874
14875 void _initialize_remote ();
14876 void
14877 _initialize_remote ()
14878 {
14879 /* architecture specific data */
14880 remote_g_packet_data_handle =
14881 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14882
14883 add_target (remote_target_info, remote_target::open);
14884 add_target (extended_remote_target_info, extended_remote_target::open);
14885
14886 /* Hook into new objfile notification. */
14887 gdb::observers::new_objfile.attach (remote_new_objfile, "remote");
14888
14889 #if 0
14890 init_remote_threadtests ();
14891 #endif
14892
14893 /* set/show remote ... */
14894
14895 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14896 Remote protocol specific variables.\n\
14897 Configure various remote-protocol specific variables such as\n\
14898 the packets being used."),
14899 &remote_set_cmdlist,
14900 0 /* allow-unknown */, &setlist);
14901 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14902 Remote protocol specific variables.\n\
14903 Configure various remote-protocol specific variables such as\n\
14904 the packets being used."),
14905 &remote_show_cmdlist,
14906 0 /* allow-unknown */, &showlist);
14907
14908 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14909 Compare section data on target to the exec file.\n\
14910 Argument is a single section name (default: all loaded sections).\n\
14911 To compare only read-only loaded sections, specify the -r option."),
14912 &cmdlist);
14913
14914 add_cmd ("packet", class_maintenance, packet_command, _("\
14915 Send an arbitrary packet to a remote target.\n\
14916 maintenance packet TEXT\n\
14917 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14918 this command sends the string TEXT to the inferior, and displays the\n\
14919 response packet. GDB supplies the initial `$' character, and the\n\
14920 terminating `#' character and checksum."),
14921 &maintenancelist);
14922
14923 set_show_commands remotebreak_cmds
14924 = add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14925 Set whether to send break if interrupted."), _("\
14926 Show whether to send break if interrupted."), _("\
14927 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14928 set_remotebreak, show_remotebreak,
14929 &setlist, &showlist);
14930 deprecate_cmd (remotebreak_cmds.set, "set remote interrupt-sequence");
14931 deprecate_cmd (remotebreak_cmds.show, "show remote interrupt-sequence");
14932
14933 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14934 interrupt_sequence_modes, &interrupt_sequence_mode,
14935 _("\
14936 Set interrupt sequence to remote target."), _("\
14937 Show interrupt sequence to remote target."), _("\
14938 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14939 NULL, show_interrupt_sequence,
14940 &remote_set_cmdlist,
14941 &remote_show_cmdlist);
14942
14943 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14944 &interrupt_on_connect, _("\
14945 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14946 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14947 If set, interrupt sequence is sent to remote target."),
14948 NULL, NULL,
14949 &remote_set_cmdlist, &remote_show_cmdlist);
14950
14951 /* Install commands for configuring memory read/write packets. */
14952
14953 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14954 Set the maximum number of bytes per memory write packet (deprecated)."),
14955 &setlist);
14956 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14957 Show the maximum number of bytes per memory write packet (deprecated)."),
14958 &showlist);
14959 add_cmd ("memory-write-packet-size", no_class,
14960 set_memory_write_packet_size, _("\
14961 Set the maximum number of bytes per memory-write packet.\n\
14962 Specify the number of bytes in a packet or 0 (zero) for the\n\
14963 default packet size. The actual limit is further reduced\n\
14964 dependent on the target. Specify ``fixed'' to disable the\n\
14965 further restriction and ``limit'' to enable that restriction."),
14966 &remote_set_cmdlist);
14967 add_cmd ("memory-read-packet-size", no_class,
14968 set_memory_read_packet_size, _("\
14969 Set the maximum number of bytes per memory-read packet.\n\
14970 Specify the number of bytes in a packet or 0 (zero) for the\n\
14971 default packet size. The actual limit is further reduced\n\
14972 dependent on the target. Specify ``fixed'' to disable the\n\
14973 further restriction and ``limit'' to enable that restriction."),
14974 &remote_set_cmdlist);
14975 add_cmd ("memory-write-packet-size", no_class,
14976 show_memory_write_packet_size,
14977 _("Show the maximum number of bytes per memory-write packet."),
14978 &remote_show_cmdlist);
14979 add_cmd ("memory-read-packet-size", no_class,
14980 show_memory_read_packet_size,
14981 _("Show the maximum number of bytes per memory-read packet."),
14982 &remote_show_cmdlist);
14983
14984 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14985 &remote_hw_watchpoint_limit, _("\
14986 Set the maximum number of target hardware watchpoints."), _("\
14987 Show the maximum number of target hardware watchpoints."), _("\
14988 Specify \"unlimited\" for unlimited hardware watchpoints."),
14989 NULL, show_hardware_watchpoint_limit,
14990 &remote_set_cmdlist,
14991 &remote_show_cmdlist);
14992 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14993 no_class,
14994 &remote_hw_watchpoint_length_limit, _("\
14995 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14996 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14997 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14998 NULL, show_hardware_watchpoint_length_limit,
14999 &remote_set_cmdlist, &remote_show_cmdlist);
15000 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
15001 &remote_hw_breakpoint_limit, _("\
15002 Set the maximum number of target hardware breakpoints."), _("\
15003 Show the maximum number of target hardware breakpoints."), _("\
15004 Specify \"unlimited\" for unlimited hardware breakpoints."),
15005 NULL, show_hardware_breakpoint_limit,
15006 &remote_set_cmdlist, &remote_show_cmdlist);
15007
15008 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
15009 &remote_address_size, _("\
15010 Set the maximum size of the address (in bits) in a memory packet."), _("\
15011 Show the maximum size of the address (in bits) in a memory packet."), NULL,
15012 NULL,
15013 NULL, /* FIXME: i18n: */
15014 &setlist, &showlist);
15015
15016 init_all_packet_configs ();
15017
15018 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
15019 "X", "binary-download", 1);
15020
15021 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
15022 "vCont", "verbose-resume", 0);
15023
15024 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
15025 "QPassSignals", "pass-signals", 0);
15026
15027 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
15028 "QCatchSyscalls", "catch-syscalls", 0);
15029
15030 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
15031 "QProgramSignals", "program-signals", 0);
15032
15033 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
15034 "QSetWorkingDir", "set-working-dir", 0);
15035
15036 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
15037 "QStartupWithShell", "startup-with-shell", 0);
15038
15039 add_packet_config_cmd (&remote_protocol_packets
15040 [PACKET_QEnvironmentHexEncoded],
15041 "QEnvironmentHexEncoded", "environment-hex-encoded",
15042 0);
15043
15044 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
15045 "QEnvironmentReset", "environment-reset",
15046 0);
15047
15048 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
15049 "QEnvironmentUnset", "environment-unset",
15050 0);
15051
15052 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
15053 "qSymbol", "symbol-lookup", 0);
15054
15055 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
15056 "P", "set-register", 1);
15057
15058 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
15059 "p", "fetch-register", 1);
15060
15061 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
15062 "Z0", "software-breakpoint", 0);
15063
15064 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
15065 "Z1", "hardware-breakpoint", 0);
15066
15067 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
15068 "Z2", "write-watchpoint", 0);
15069
15070 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
15071 "Z3", "read-watchpoint", 0);
15072
15073 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
15074 "Z4", "access-watchpoint", 0);
15075
15076 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
15077 "qXfer:auxv:read", "read-aux-vector", 0);
15078
15079 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
15080 "qXfer:exec-file:read", "pid-to-exec-file", 0);
15081
15082 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
15083 "qXfer:features:read", "target-features", 0);
15084
15085 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
15086 "qXfer:libraries:read", "library-info", 0);
15087
15088 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
15089 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
15090
15091 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
15092 "qXfer:memory-map:read", "memory-map", 0);
15093
15094 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
15095 "qXfer:osdata:read", "osdata", 0);
15096
15097 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
15098 "qXfer:threads:read", "threads", 0);
15099
15100 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
15101 "qXfer:siginfo:read", "read-siginfo-object", 0);
15102
15103 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
15104 "qXfer:siginfo:write", "write-siginfo-object", 0);
15105
15106 add_packet_config_cmd
15107 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
15108 "qXfer:traceframe-info:read", "traceframe-info", 0);
15109
15110 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
15111 "qXfer:uib:read", "unwind-info-block", 0);
15112
15113 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
15114 "qGetTLSAddr", "get-thread-local-storage-address",
15115 0);
15116
15117 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
15118 "qGetTIBAddr", "get-thread-information-block-address",
15119 0);
15120
15121 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
15122 "bc", "reverse-continue", 0);
15123
15124 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
15125 "bs", "reverse-step", 0);
15126
15127 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
15128 "qSupported", "supported-packets", 0);
15129
15130 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
15131 "qSearch:memory", "search-memory", 0);
15132
15133 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
15134 "qTStatus", "trace-status", 0);
15135
15136 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
15137 "vFile:setfs", "hostio-setfs", 0);
15138
15139 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
15140 "vFile:open", "hostio-open", 0);
15141
15142 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
15143 "vFile:pread", "hostio-pread", 0);
15144
15145 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
15146 "vFile:pwrite", "hostio-pwrite", 0);
15147
15148 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
15149 "vFile:close", "hostio-close", 0);
15150
15151 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
15152 "vFile:unlink", "hostio-unlink", 0);
15153
15154 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
15155 "vFile:readlink", "hostio-readlink", 0);
15156
15157 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
15158 "vFile:fstat", "hostio-fstat", 0);
15159
15160 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
15161 "vAttach", "attach", 0);
15162
15163 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
15164 "vRun", "run", 0);
15165
15166 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
15167 "QStartNoAckMode", "noack", 0);
15168
15169 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
15170 "vKill", "kill", 0);
15171
15172 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
15173 "qAttached", "query-attached", 0);
15174
15175 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
15176 "ConditionalTracepoints",
15177 "conditional-tracepoints", 0);
15178
15179 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
15180 "ConditionalBreakpoints",
15181 "conditional-breakpoints", 0);
15182
15183 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
15184 "BreakpointCommands",
15185 "breakpoint-commands", 0);
15186
15187 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
15188 "FastTracepoints", "fast-tracepoints", 0);
15189
15190 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
15191 "TracepointSource", "TracepointSource", 0);
15192
15193 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
15194 "QAllow", "allow", 0);
15195
15196 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
15197 "StaticTracepoints", "static-tracepoints", 0);
15198
15199 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
15200 "InstallInTrace", "install-in-trace", 0);
15201
15202 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
15203 "qXfer:statictrace:read", "read-sdata-object", 0);
15204
15205 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
15206 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
15207
15208 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
15209 "QDisableRandomization", "disable-randomization", 0);
15210
15211 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
15212 "QAgent", "agent", 0);
15213
15214 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
15215 "QTBuffer:size", "trace-buffer-size", 0);
15216
15217 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
15218 "Qbtrace:off", "disable-btrace", 0);
15219
15220 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
15221 "Qbtrace:bts", "enable-btrace-bts", 0);
15222
15223 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
15224 "Qbtrace:pt", "enable-btrace-pt", 0);
15225
15226 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
15227 "qXfer:btrace", "read-btrace", 0);
15228
15229 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
15230 "qXfer:btrace-conf", "read-btrace-conf", 0);
15231
15232 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
15233 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
15234
15235 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
15236 "multiprocess-feature", "multiprocess-feature", 0);
15237
15238 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
15239 "swbreak-feature", "swbreak-feature", 0);
15240
15241 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
15242 "hwbreak-feature", "hwbreak-feature", 0);
15243
15244 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
15245 "fork-event-feature", "fork-event-feature", 0);
15246
15247 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
15248 "vfork-event-feature", "vfork-event-feature", 0);
15249
15250 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
15251 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
15252
15253 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
15254 "vContSupported", "verbose-resume-supported", 0);
15255
15256 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
15257 "exec-event-feature", "exec-event-feature", 0);
15258
15259 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
15260 "vCtrlC", "ctrl-c", 0);
15261
15262 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
15263 "QThreadEvents", "thread-events", 0);
15264
15265 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
15266 "N stop reply", "no-resumed-stop-reply", 0);
15267
15268 add_packet_config_cmd (&remote_protocol_packets[PACKET_memory_tagging_feature],
15269 "memory-tagging-feature", "memory-tagging-feature", 0);
15270
15271 /* Assert that we've registered "set remote foo-packet" commands
15272 for all packet configs. */
15273 {
15274 int i;
15275
15276 for (i = 0; i < PACKET_MAX; i++)
15277 {
15278 /* Ideally all configs would have a command associated. Some
15279 still don't though. */
15280 int excepted;
15281
15282 switch (i)
15283 {
15284 case PACKET_QNonStop:
15285 case PACKET_EnableDisableTracepoints_feature:
15286 case PACKET_tracenz_feature:
15287 case PACKET_DisconnectedTracing_feature:
15288 case PACKET_augmented_libraries_svr4_read_feature:
15289 case PACKET_qCRC:
15290 /* Additions to this list need to be well justified:
15291 pre-existing packets are OK; new packets are not. */
15292 excepted = 1;
15293 break;
15294 default:
15295 excepted = 0;
15296 break;
15297 }
15298
15299 /* This catches both forgetting to add a config command, and
15300 forgetting to remove a packet from the exception list. */
15301 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
15302 }
15303 }
15304
15305 /* Keep the old ``set remote Z-packet ...'' working. Each individual
15306 Z sub-packet has its own set and show commands, but users may
15307 have sets to this variable in their .gdbinit files (or in their
15308 documentation). */
15309 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
15310 &remote_Z_packet_detect, _("\
15311 Set use of remote protocol `Z' packets."), _("\
15312 Show use of remote protocol `Z' packets."), _("\
15313 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
15314 packets."),
15315 set_remote_protocol_Z_packet_cmd,
15316 show_remote_protocol_Z_packet_cmd,
15317 /* FIXME: i18n: Use of remote protocol
15318 `Z' packets is %s. */
15319 &remote_set_cmdlist, &remote_show_cmdlist);
15320
15321 add_basic_prefix_cmd ("remote", class_files, _("\
15322 Manipulate files on the remote system.\n\
15323 Transfer files to and from the remote target system."),
15324 &remote_cmdlist,
15325 0 /* allow-unknown */, &cmdlist);
15326
15327 add_cmd ("put", class_files, remote_put_command,
15328 _("Copy a local file to the remote system."),
15329 &remote_cmdlist);
15330
15331 add_cmd ("get", class_files, remote_get_command,
15332 _("Copy a remote file to the local system."),
15333 &remote_cmdlist);
15334
15335 add_cmd ("delete", class_files, remote_delete_command,
15336 _("Delete a remote file."),
15337 &remote_cmdlist);
15338
15339 add_setshow_string_noescape_cmd ("exec-file", class_files,
15340 &remote_exec_file_var, _("\
15341 Set the remote pathname for \"run\"."), _("\
15342 Show the remote pathname for \"run\"."), NULL,
15343 set_remote_exec_file,
15344 show_remote_exec_file,
15345 &remote_set_cmdlist,
15346 &remote_show_cmdlist);
15347
15348 add_setshow_boolean_cmd ("range-stepping", class_run,
15349 &use_range_stepping, _("\
15350 Enable or disable range stepping."), _("\
15351 Show whether target-assisted range stepping is enabled."), _("\
15352 If on, and the target supports it, when stepping a source line, GDB\n\
15353 tells the target to step the corresponding range of addresses itself instead\n\
15354 of issuing multiple single-steps. This speeds up source level\n\
15355 stepping. If off, GDB always issues single-steps, even if range\n\
15356 stepping is supported by the target. The default is on."),
15357 set_range_stepping,
15358 show_range_stepping,
15359 &setlist,
15360 &showlist);
15361
15362 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15363 Set watchdog timer."), _("\
15364 Show watchdog timer."), _("\
15365 When non-zero, this timeout is used instead of waiting forever for a target\n\
15366 to finish a low-level step or continue operation. If the specified amount\n\
15367 of time passes without a response from the target, an error occurs."),
15368 NULL,
15369 show_watchdog,
15370 &setlist, &showlist);
15371
15372 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15373 &remote_packet_max_chars, _("\
15374 Set the maximum number of characters to display for each remote packet."), _("\
15375 Show the maximum number of characters to display for each remote packet."), _("\
15376 Specify \"unlimited\" to display all the characters."),
15377 NULL, show_remote_packet_max_chars,
15378 &setdebuglist, &showdebuglist);
15379
15380 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
15381 _("Set debugging of remote protocol."),
15382 _("Show debugging of remote protocol."),
15383 _("\
15384 When enabled, each packet sent or received with the remote target\n\
15385 is displayed."),
15386 NULL,
15387 show_remote_debug,
15388 &setdebuglist, &showdebuglist);
15389
15390 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15391 &remote_timeout, _("\
15392 Set timeout limit to wait for target to respond."), _("\
15393 Show timeout limit to wait for target to respond."), _("\
15394 This value is used to set the time limit for gdb to wait for a response\n\
15395 from the target."),
15396 NULL,
15397 show_remote_timeout,
15398 &setlist, &showlist);
15399
15400 /* Eventually initialize fileio. See fileio.c */
15401 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15402
15403 #if GDB_SELF_TEST
15404 selftests::register_test ("remote_memory_tagging",
15405 selftests::test_memory_tagging_functions);
15406 #endif
15407 }