struct block parameter constification in ada-lang.c
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "remote-notif.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "gdb_assert.h"
41 #include "observer.h"
42 #include "solib.h"
43 #include "cli/cli-decode.h"
44 #include "cli/cli-setshow.h"
45 #include "target-descriptions.h"
46 #include "gdb_bfd.h"
47 #include "filestuff.h"
48
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include <sys/stat.h>
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70 #include "agent.h"
71 #include "btrace.h"
72
73 /* Temp hacks for tracepoint encoding migration. */
74 static char *target_buf;
75 static long target_buf_size;
76
77 /* The size to align memory write packets, when practical. The protocol
78 does not guarantee any alignment, and gdb will generate short
79 writes and unaligned writes, but even as a best-effort attempt this
80 can improve bulk transfers. For instance, if a write is misaligned
81 relative to the target's data bus, the stub may need to make an extra
82 round trip fetching data from the target. This doesn't make a
83 huge difference, but it's easy to do, so we try to be helpful.
84
85 The alignment chosen is arbitrary; usually data bus width is
86 important here, not the possibly larger cache line size. */
87 enum { REMOTE_ALIGN_WRITES = 16 };
88
89 /* Prototypes for local functions. */
90 static void async_cleanup_sigint_signal_handler (void *dummy);
91 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
92 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
93 int forever, int *is_notif);
94
95 static void async_handle_remote_sigint (int);
96 static void async_handle_remote_sigint_twice (int);
97
98 static void remote_files_info (struct target_ops *ignore);
99
100 static void remote_prepare_to_store (struct target_ops *self,
101 struct regcache *regcache);
102
103 static void remote_open (char *name, int from_tty);
104
105 static void extended_remote_open (char *name, int from_tty);
106
107 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
108
109 static void remote_close (void);
110
111 static void remote_mourn (struct target_ops *ops);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (struct target_ops *);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static void remote_serial_write (const char *str, int len);
124
125 static void remote_kill (struct target_ops *ops);
126
127 static int tohex (int nib);
128
129 static int remote_can_async_p (void);
130
131 static int remote_is_async_p (void);
132
133 static void remote_async (void (*callback) (enum inferior_event_type event_type,
134 void *context), void *context);
135
136 static void sync_remote_interrupt_twice (int signo);
137
138 static void interrupt_query (void);
139
140 static void set_general_thread (struct ptid ptid);
141 static void set_continue_thread (struct ptid ptid);
142
143 static void get_offsets (void);
144
145 static void skip_frame (void);
146
147 static long read_frame (char **buf_p, long *sizeof_buf);
148
149 static int hexnumlen (ULONGEST num);
150
151 static void init_remote_ops (void);
152
153 static void init_extended_remote_ops (void);
154
155 static void remote_stop (ptid_t);
156
157 static int ishex (int ch, int *val);
158
159 static int stubhex (int ch);
160
161 static int hexnumstr (char *, ULONGEST);
162
163 static int hexnumnstr (char *, ULONGEST, int);
164
165 static CORE_ADDR remote_address_masked (CORE_ADDR);
166
167 static void print_packet (char *);
168
169 static void compare_sections_command (char *, int);
170
171 static void packet_command (char *, int);
172
173 static int stub_unpack_int (char *buff, int fieldlength);
174
175 static ptid_t remote_current_thread (ptid_t oldptid);
176
177 static void remote_find_new_threads (void);
178
179 static int fromhex (int a);
180
181 static int putpkt_binary (char *buf, int cnt);
182
183 static void check_binary_download (CORE_ADDR addr);
184
185 struct packet_config;
186
187 static void show_packet_config_cmd (struct packet_config *config);
188
189 static void update_packet_config (struct packet_config *config);
190
191 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
192 struct cmd_list_element *c);
193
194 static void show_remote_protocol_packet_cmd (struct ui_file *file,
195 int from_tty,
196 struct cmd_list_element *c,
197 const char *value);
198
199 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
200 static ptid_t read_ptid (char *buf, char **obuf);
201
202 static void remote_set_permissions (void);
203
204 struct remote_state;
205 static int remote_get_trace_status (struct trace_status *ts);
206
207 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
208
209 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
210
211 static void remote_query_supported (void);
212
213 static void remote_check_symbols (void);
214
215 void _initialize_remote (void);
216
217 struct stop_reply;
218 static void stop_reply_xfree (struct stop_reply *);
219 static void remote_parse_stop_reply (char *, struct stop_reply *);
220 static void push_stop_reply (struct stop_reply *);
221 static void discard_pending_stop_replies_in_queue (struct remote_state *);
222 static int peek_stop_reply (ptid_t ptid);
223
224 static void remote_async_inferior_event_handler (gdb_client_data);
225
226 static void remote_terminal_ours (void);
227
228 static int remote_read_description_p (struct target_ops *target);
229
230 static void remote_console_output (char *msg);
231
232 static int remote_supports_cond_breakpoints (void);
233
234 static int remote_can_run_breakpoint_commands (void);
235
236 /* For "remote". */
237
238 static struct cmd_list_element *remote_cmdlist;
239
240 /* For "set remote" and "show remote". */
241
242 static struct cmd_list_element *remote_set_cmdlist;
243 static struct cmd_list_element *remote_show_cmdlist;
244
245 /* Stub vCont actions support.
246
247 Each field is a boolean flag indicating whether the stub reports
248 support for the corresponding action. */
249
250 struct vCont_action_support
251 {
252 /* vCont;t */
253 int t;
254
255 /* vCont;r */
256 int r;
257 };
258
259 /* Controls whether GDB is willing to use range stepping. */
260
261 static int use_range_stepping = 1;
262
263 #define OPAQUETHREADBYTES 8
264
265 /* a 64 bit opaque identifier */
266 typedef unsigned char threadref[OPAQUETHREADBYTES];
267
268 /* About this many threadisds fit in a packet. */
269
270 #define MAXTHREADLISTRESULTS 32
271
272 /* Description of the remote protocol state for the currently
273 connected target. This is per-target state, and independent of the
274 selected architecture. */
275
276 struct remote_state
277 {
278 /* A buffer to use for incoming packets, and its current size. The
279 buffer is grown dynamically for larger incoming packets.
280 Outgoing packets may also be constructed in this buffer.
281 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
282 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
283 packets. */
284 char *buf;
285 long buf_size;
286
287 /* True if we're going through initial connection setup (finding out
288 about the remote side's threads, relocating symbols, etc.). */
289 int starting_up;
290
291 /* If we negotiated packet size explicitly (and thus can bypass
292 heuristics for the largest packet size that will not overflow
293 a buffer in the stub), this will be set to that packet size.
294 Otherwise zero, meaning to use the guessed size. */
295 long explicit_packet_size;
296
297 /* remote_wait is normally called when the target is running and
298 waits for a stop reply packet. But sometimes we need to call it
299 when the target is already stopped. We can send a "?" packet
300 and have remote_wait read the response. Or, if we already have
301 the response, we can stash it in BUF and tell remote_wait to
302 skip calling getpkt. This flag is set when BUF contains a
303 stop reply packet and the target is not waiting. */
304 int cached_wait_status;
305
306 /* True, if in no ack mode. That is, neither GDB nor the stub will
307 expect acks from each other. The connection is assumed to be
308 reliable. */
309 int noack_mode;
310
311 /* True if we're connected in extended remote mode. */
312 int extended;
313
314 /* True if the stub reported support for multi-process
315 extensions. */
316 int multi_process_aware;
317
318 /* True if we resumed the target and we're waiting for the target to
319 stop. In the mean time, we can't start another command/query.
320 The remote server wouldn't be ready to process it, so we'd
321 timeout waiting for a reply that would never come and eventually
322 we'd close the connection. This can happen in asynchronous mode
323 because we allow GDB commands while the target is running. */
324 int waiting_for_stop_reply;
325
326 /* True if the stub reports support for non-stop mode. */
327 int non_stop_aware;
328
329 /* The status of the stub support for the various vCont actions. */
330 struct vCont_action_support supports_vCont;
331
332 /* True if the stub reports support for conditional tracepoints. */
333 int cond_tracepoints;
334
335 /* True if the stub reports support for target-side breakpoint
336 conditions. */
337 int cond_breakpoints;
338
339 /* True if the stub reports support for target-side breakpoint
340 commands. */
341 int breakpoint_commands;
342
343 /* True if the stub reports support for fast tracepoints. */
344 int fast_tracepoints;
345
346 /* True if the stub reports support for static tracepoints. */
347 int static_tracepoints;
348
349 /* True if the stub reports support for installing tracepoint while
350 tracing. */
351 int install_in_trace;
352
353 /* True if the stub can continue running a trace while GDB is
354 disconnected. */
355 int disconnected_tracing;
356
357 /* True if the stub reports support for enabling and disabling
358 tracepoints while a trace experiment is running. */
359 int enable_disable_tracepoints;
360
361 /* True if the stub can collect strings using tracenz bytecode. */
362 int string_tracing;
363
364 /* True if the stub supports qXfer:libraries-svr4:read with a
365 non-empty annex. */
366 int augmented_libraries_svr4_read;
367
368 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
369 responded to that. */
370 int ctrlc_pending_p;
371
372 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
373 remote_open knows that we don't have a file open when the program
374 starts. */
375 struct serial *remote_desc;
376
377 /* These are the threads which we last sent to the remote system. The
378 TID member will be -1 for all or -2 for not sent yet. */
379 ptid_t general_thread;
380 ptid_t continue_thread;
381
382 /* This is the traceframe which we last selected on the remote system.
383 It will be -1 if no traceframe is selected. */
384 int remote_traceframe_number;
385
386 char *last_pass_packet;
387
388 /* The last QProgramSignals packet sent to the target. We bypass
389 sending a new program signals list down to the target if the new
390 packet is exactly the same as the last we sent. IOW, we only let
391 the target know about program signals list changes. */
392 char *last_program_signals_packet;
393
394 enum gdb_signal last_sent_signal;
395
396 int last_sent_step;
397
398 char *finished_object;
399 char *finished_annex;
400 ULONGEST finished_offset;
401
402 /* Should we try the 'ThreadInfo' query packet?
403
404 This variable (NOT available to the user: auto-detect only!)
405 determines whether GDB will use the new, simpler "ThreadInfo"
406 query or the older, more complex syntax for thread queries.
407 This is an auto-detect variable (set to true at each connect,
408 and set to false when the target fails to recognize it). */
409 int use_threadinfo_query;
410 int use_threadextra_query;
411
412 void (*async_client_callback) (enum inferior_event_type event_type,
413 void *context);
414 void *async_client_context;
415
416 /* This is set to the data address of the access causing the target
417 to stop for a watchpoint. */
418 CORE_ADDR remote_watch_data_address;
419
420 /* This is non-zero if target stopped for a watchpoint. */
421 int remote_stopped_by_watchpoint_p;
422
423 threadref echo_nextthread;
424 threadref nextthread;
425 threadref resultthreadlist[MAXTHREADLISTRESULTS];
426
427 /* The state of remote notification. */
428 struct remote_notif_state *notif_state;
429 };
430
431 /* Private data that we'll store in (struct thread_info)->private. */
432 struct private_thread_info
433 {
434 char *extra;
435 int core;
436 };
437
438 static void
439 free_private_thread_info (struct private_thread_info *info)
440 {
441 xfree (info->extra);
442 xfree (info);
443 }
444
445 /* Returns true if the multi-process extensions are in effect. */
446 static int
447 remote_multi_process_p (struct remote_state *rs)
448 {
449 return rs->multi_process_aware;
450 }
451
452 /* This data could be associated with a target, but we do not always
453 have access to the current target when we need it, so for now it is
454 static. This will be fine for as long as only one target is in use
455 at a time. */
456 static struct remote_state *remote_state;
457
458 static struct remote_state *
459 get_remote_state_raw (void)
460 {
461 return remote_state;
462 }
463
464 /* Allocate a new struct remote_state with xmalloc, initialize it, and
465 return it. */
466
467 static struct remote_state *
468 new_remote_state (void)
469 {
470 struct remote_state *result = XCNEW (struct remote_state);
471
472 /* The default buffer size is unimportant; it will be expanded
473 whenever a larger buffer is needed. */
474 result->buf_size = 400;
475 result->buf = xmalloc (result->buf_size);
476 result->remote_traceframe_number = -1;
477 result->last_sent_signal = GDB_SIGNAL_0;
478
479 return result;
480 }
481
482 /* Description of the remote protocol for a given architecture. */
483
484 struct packet_reg
485 {
486 long offset; /* Offset into G packet. */
487 long regnum; /* GDB's internal register number. */
488 LONGEST pnum; /* Remote protocol register number. */
489 int in_g_packet; /* Always part of G packet. */
490 /* long size in bytes; == register_size (target_gdbarch (), regnum);
491 at present. */
492 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
493 at present. */
494 };
495
496 struct remote_arch_state
497 {
498 /* Description of the remote protocol registers. */
499 long sizeof_g_packet;
500
501 /* Description of the remote protocol registers indexed by REGNUM
502 (making an array gdbarch_num_regs in size). */
503 struct packet_reg *regs;
504
505 /* This is the size (in chars) of the first response to the ``g''
506 packet. It is used as a heuristic when determining the maximum
507 size of memory-read and memory-write packets. A target will
508 typically only reserve a buffer large enough to hold the ``g''
509 packet. The size does not include packet overhead (headers and
510 trailers). */
511 long actual_register_packet_size;
512
513 /* This is the maximum size (in chars) of a non read/write packet.
514 It is also used as a cap on the size of read/write packets. */
515 long remote_packet_size;
516 };
517
518 /* Utility: generate error from an incoming stub packet. */
519 static void
520 trace_error (char *buf)
521 {
522 if (*buf++ != 'E')
523 return; /* not an error msg */
524 switch (*buf)
525 {
526 case '1': /* malformed packet error */
527 if (*++buf == '0') /* general case: */
528 error (_("remote.c: error in outgoing packet."));
529 else
530 error (_("remote.c: error in outgoing packet at field #%ld."),
531 strtol (buf, NULL, 16));
532 default:
533 error (_("Target returns error code '%s'."), buf);
534 }
535 }
536
537 /* Utility: wait for reply from stub, while accepting "O" packets. */
538 static char *
539 remote_get_noisy_reply (char **buf_p,
540 long *sizeof_buf)
541 {
542 do /* Loop on reply from remote stub. */
543 {
544 char *buf;
545
546 QUIT; /* Allow user to bail out with ^C. */
547 getpkt (buf_p, sizeof_buf, 0);
548 buf = *buf_p;
549 if (buf[0] == 'E')
550 trace_error (buf);
551 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
552 {
553 ULONGEST ul;
554 CORE_ADDR from, to, org_to;
555 char *p, *pp;
556 int adjusted_size = 0;
557 volatile struct gdb_exception ex;
558
559 p = buf + strlen ("qRelocInsn:");
560 pp = unpack_varlen_hex (p, &ul);
561 if (*pp != ';')
562 error (_("invalid qRelocInsn packet: %s"), buf);
563 from = ul;
564
565 p = pp + 1;
566 unpack_varlen_hex (p, &ul);
567 to = ul;
568
569 org_to = to;
570
571 TRY_CATCH (ex, RETURN_MASK_ALL)
572 {
573 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
574 }
575 if (ex.reason >= 0)
576 {
577 adjusted_size = to - org_to;
578
579 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
580 putpkt (buf);
581 }
582 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
583 {
584 /* Propagate memory errors silently back to the target.
585 The stub may have limited the range of addresses we
586 can write to, for example. */
587 putpkt ("E01");
588 }
589 else
590 {
591 /* Something unexpectedly bad happened. Be verbose so
592 we can tell what, and propagate the error back to the
593 stub, so it doesn't get stuck waiting for a
594 response. */
595 exception_fprintf (gdb_stderr, ex,
596 _("warning: relocating instruction: "));
597 putpkt ("E01");
598 }
599 }
600 else if (buf[0] == 'O' && buf[1] != 'K')
601 remote_console_output (buf + 1); /* 'O' message from stub */
602 else
603 return buf; /* Here's the actual reply. */
604 }
605 while (1);
606 }
607
608 /* Handle for retreving the remote protocol data from gdbarch. */
609 static struct gdbarch_data *remote_gdbarch_data_handle;
610
611 static struct remote_arch_state *
612 get_remote_arch_state (void)
613 {
614 return gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle);
615 }
616
617 /* Fetch the global remote target state. */
618
619 static struct remote_state *
620 get_remote_state (void)
621 {
622 /* Make sure that the remote architecture state has been
623 initialized, because doing so might reallocate rs->buf. Any
624 function which calls getpkt also needs to be mindful of changes
625 to rs->buf, but this call limits the number of places which run
626 into trouble. */
627 get_remote_arch_state ();
628
629 return get_remote_state_raw ();
630 }
631
632 static int
633 compare_pnums (const void *lhs_, const void *rhs_)
634 {
635 const struct packet_reg * const *lhs = lhs_;
636 const struct packet_reg * const *rhs = rhs_;
637
638 if ((*lhs)->pnum < (*rhs)->pnum)
639 return -1;
640 else if ((*lhs)->pnum == (*rhs)->pnum)
641 return 0;
642 else
643 return 1;
644 }
645
646 static int
647 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
648 {
649 int regnum, num_remote_regs, offset;
650 struct packet_reg **remote_regs;
651
652 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
653 {
654 struct packet_reg *r = &regs[regnum];
655
656 if (register_size (gdbarch, regnum) == 0)
657 /* Do not try to fetch zero-sized (placeholder) registers. */
658 r->pnum = -1;
659 else
660 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
661
662 r->regnum = regnum;
663 }
664
665 /* Define the g/G packet format as the contents of each register
666 with a remote protocol number, in order of ascending protocol
667 number. */
668
669 remote_regs = alloca (gdbarch_num_regs (gdbarch)
670 * sizeof (struct packet_reg *));
671 for (num_remote_regs = 0, regnum = 0;
672 regnum < gdbarch_num_regs (gdbarch);
673 regnum++)
674 if (regs[regnum].pnum != -1)
675 remote_regs[num_remote_regs++] = &regs[regnum];
676
677 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
678 compare_pnums);
679
680 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
681 {
682 remote_regs[regnum]->in_g_packet = 1;
683 remote_regs[regnum]->offset = offset;
684 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
685 }
686
687 return offset;
688 }
689
690 /* Given the architecture described by GDBARCH, return the remote
691 protocol register's number and the register's offset in the g/G
692 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
693 If the target does not have a mapping for REGNUM, return false,
694 otherwise, return true. */
695
696 int
697 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
698 int *pnum, int *poffset)
699 {
700 int sizeof_g_packet;
701 struct packet_reg *regs;
702 struct cleanup *old_chain;
703
704 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
705
706 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
707 old_chain = make_cleanup (xfree, regs);
708
709 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
710
711 *pnum = regs[regnum].pnum;
712 *poffset = regs[regnum].offset;
713
714 do_cleanups (old_chain);
715
716 return *pnum != -1;
717 }
718
719 static void *
720 init_remote_state (struct gdbarch *gdbarch)
721 {
722 struct remote_state *rs = get_remote_state_raw ();
723 struct remote_arch_state *rsa;
724
725 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
726
727 /* Use the architecture to build a regnum<->pnum table, which will be
728 1:1 unless a feature set specifies otherwise. */
729 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
730 gdbarch_num_regs (gdbarch),
731 struct packet_reg);
732
733 /* Record the maximum possible size of the g packet - it may turn out
734 to be smaller. */
735 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
736
737 /* Default maximum number of characters in a packet body. Many
738 remote stubs have a hardwired buffer size of 400 bytes
739 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
740 as the maximum packet-size to ensure that the packet and an extra
741 NUL character can always fit in the buffer. This stops GDB
742 trashing stubs that try to squeeze an extra NUL into what is
743 already a full buffer (As of 1999-12-04 that was most stubs). */
744 rsa->remote_packet_size = 400 - 1;
745
746 /* This one is filled in when a ``g'' packet is received. */
747 rsa->actual_register_packet_size = 0;
748
749 /* Should rsa->sizeof_g_packet needs more space than the
750 default, adjust the size accordingly. Remember that each byte is
751 encoded as two characters. 32 is the overhead for the packet
752 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
753 (``$NN:G...#NN'') is a better guess, the below has been padded a
754 little. */
755 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
756 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
757
758 /* Make sure that the packet buffer is plenty big enough for
759 this architecture. */
760 if (rs->buf_size < rsa->remote_packet_size)
761 {
762 rs->buf_size = 2 * rsa->remote_packet_size;
763 rs->buf = xrealloc (rs->buf, rs->buf_size);
764 }
765
766 return rsa;
767 }
768
769 /* Return the current allowed size of a remote packet. This is
770 inferred from the current architecture, and should be used to
771 limit the length of outgoing packets. */
772 static long
773 get_remote_packet_size (void)
774 {
775 struct remote_state *rs = get_remote_state ();
776 struct remote_arch_state *rsa = get_remote_arch_state ();
777
778 if (rs->explicit_packet_size)
779 return rs->explicit_packet_size;
780
781 return rsa->remote_packet_size;
782 }
783
784 static struct packet_reg *
785 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
786 {
787 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
788 return NULL;
789 else
790 {
791 struct packet_reg *r = &rsa->regs[regnum];
792
793 gdb_assert (r->regnum == regnum);
794 return r;
795 }
796 }
797
798 static struct packet_reg *
799 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
800 {
801 int i;
802
803 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
804 {
805 struct packet_reg *r = &rsa->regs[i];
806
807 if (r->pnum == pnum)
808 return r;
809 }
810 return NULL;
811 }
812
813 static struct target_ops remote_ops;
814
815 static struct target_ops extended_remote_ops;
816
817 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
818 ``forever'' still use the normal timeout mechanism. This is
819 currently used by the ASYNC code to guarentee that target reads
820 during the initial connect always time-out. Once getpkt has been
821 modified to return a timeout indication and, in turn
822 remote_wait()/wait_for_inferior() have gained a timeout parameter
823 this can go away. */
824 static int wait_forever_enabled_p = 1;
825
826 /* Allow the user to specify what sequence to send to the remote
827 when he requests a program interruption: Although ^C is usually
828 what remote systems expect (this is the default, here), it is
829 sometimes preferable to send a break. On other systems such
830 as the Linux kernel, a break followed by g, which is Magic SysRq g
831 is required in order to interrupt the execution. */
832 const char interrupt_sequence_control_c[] = "Ctrl-C";
833 const char interrupt_sequence_break[] = "BREAK";
834 const char interrupt_sequence_break_g[] = "BREAK-g";
835 static const char *const interrupt_sequence_modes[] =
836 {
837 interrupt_sequence_control_c,
838 interrupt_sequence_break,
839 interrupt_sequence_break_g,
840 NULL
841 };
842 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
843
844 static void
845 show_interrupt_sequence (struct ui_file *file, int from_tty,
846 struct cmd_list_element *c,
847 const char *value)
848 {
849 if (interrupt_sequence_mode == interrupt_sequence_control_c)
850 fprintf_filtered (file,
851 _("Send the ASCII ETX character (Ctrl-c) "
852 "to the remote target to interrupt the "
853 "execution of the program.\n"));
854 else if (interrupt_sequence_mode == interrupt_sequence_break)
855 fprintf_filtered (file,
856 _("send a break signal to the remote target "
857 "to interrupt the execution of the program.\n"));
858 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
859 fprintf_filtered (file,
860 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
861 "the remote target to interrupt the execution "
862 "of Linux kernel.\n"));
863 else
864 internal_error (__FILE__, __LINE__,
865 _("Invalid value for interrupt_sequence_mode: %s."),
866 interrupt_sequence_mode);
867 }
868
869 /* This boolean variable specifies whether interrupt_sequence is sent
870 to the remote target when gdb connects to it.
871 This is mostly needed when you debug the Linux kernel: The Linux kernel
872 expects BREAK g which is Magic SysRq g for connecting gdb. */
873 static int interrupt_on_connect = 0;
874
875 /* This variable is used to implement the "set/show remotebreak" commands.
876 Since these commands are now deprecated in favor of "set/show remote
877 interrupt-sequence", it no longer has any effect on the code. */
878 static int remote_break;
879
880 static void
881 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
882 {
883 if (remote_break)
884 interrupt_sequence_mode = interrupt_sequence_break;
885 else
886 interrupt_sequence_mode = interrupt_sequence_control_c;
887 }
888
889 static void
890 show_remotebreak (struct ui_file *file, int from_tty,
891 struct cmd_list_element *c,
892 const char *value)
893 {
894 }
895
896 /* This variable sets the number of bits in an address that are to be
897 sent in a memory ("M" or "m") packet. Normally, after stripping
898 leading zeros, the entire address would be sent. This variable
899 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
900 initial implementation of remote.c restricted the address sent in
901 memory packets to ``host::sizeof long'' bytes - (typically 32
902 bits). Consequently, for 64 bit targets, the upper 32 bits of an
903 address was never sent. Since fixing this bug may cause a break in
904 some remote targets this variable is principly provided to
905 facilitate backward compatibility. */
906
907 static unsigned int remote_address_size;
908
909 /* Temporary to track who currently owns the terminal. See
910 remote_terminal_* for more details. */
911
912 static int remote_async_terminal_ours_p;
913
914 /* The executable file to use for "run" on the remote side. */
915
916 static char *remote_exec_file = "";
917
918 \f
919 /* User configurable variables for the number of characters in a
920 memory read/write packet. MIN (rsa->remote_packet_size,
921 rsa->sizeof_g_packet) is the default. Some targets need smaller
922 values (fifo overruns, et.al.) and some users need larger values
923 (speed up transfers). The variables ``preferred_*'' (the user
924 request), ``current_*'' (what was actually set) and ``forced_*''
925 (Positive - a soft limit, negative - a hard limit). */
926
927 struct memory_packet_config
928 {
929 char *name;
930 long size;
931 int fixed_p;
932 };
933
934 /* Compute the current size of a read/write packet. Since this makes
935 use of ``actual_register_packet_size'' the computation is dynamic. */
936
937 static long
938 get_memory_packet_size (struct memory_packet_config *config)
939 {
940 struct remote_state *rs = get_remote_state ();
941 struct remote_arch_state *rsa = get_remote_arch_state ();
942
943 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
944 law?) that some hosts don't cope very well with large alloca()
945 calls. Eventually the alloca() code will be replaced by calls to
946 xmalloc() and make_cleanups() allowing this restriction to either
947 be lifted or removed. */
948 #ifndef MAX_REMOTE_PACKET_SIZE
949 #define MAX_REMOTE_PACKET_SIZE 16384
950 #endif
951 /* NOTE: 20 ensures we can write at least one byte. */
952 #ifndef MIN_REMOTE_PACKET_SIZE
953 #define MIN_REMOTE_PACKET_SIZE 20
954 #endif
955 long what_they_get;
956 if (config->fixed_p)
957 {
958 if (config->size <= 0)
959 what_they_get = MAX_REMOTE_PACKET_SIZE;
960 else
961 what_they_get = config->size;
962 }
963 else
964 {
965 what_they_get = get_remote_packet_size ();
966 /* Limit the packet to the size specified by the user. */
967 if (config->size > 0
968 && what_they_get > config->size)
969 what_they_get = config->size;
970
971 /* Limit it to the size of the targets ``g'' response unless we have
972 permission from the stub to use a larger packet size. */
973 if (rs->explicit_packet_size == 0
974 && rsa->actual_register_packet_size > 0
975 && what_they_get > rsa->actual_register_packet_size)
976 what_they_get = rsa->actual_register_packet_size;
977 }
978 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
979 what_they_get = MAX_REMOTE_PACKET_SIZE;
980 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
981 what_they_get = MIN_REMOTE_PACKET_SIZE;
982
983 /* Make sure there is room in the global buffer for this packet
984 (including its trailing NUL byte). */
985 if (rs->buf_size < what_they_get + 1)
986 {
987 rs->buf_size = 2 * what_they_get;
988 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
989 }
990
991 return what_they_get;
992 }
993
994 /* Update the size of a read/write packet. If they user wants
995 something really big then do a sanity check. */
996
997 static void
998 set_memory_packet_size (char *args, struct memory_packet_config *config)
999 {
1000 int fixed_p = config->fixed_p;
1001 long size = config->size;
1002
1003 if (args == NULL)
1004 error (_("Argument required (integer, `fixed' or `limited')."));
1005 else if (strcmp (args, "hard") == 0
1006 || strcmp (args, "fixed") == 0)
1007 fixed_p = 1;
1008 else if (strcmp (args, "soft") == 0
1009 || strcmp (args, "limit") == 0)
1010 fixed_p = 0;
1011 else
1012 {
1013 char *end;
1014
1015 size = strtoul (args, &end, 0);
1016 if (args == end)
1017 error (_("Invalid %s (bad syntax)."), config->name);
1018 #if 0
1019 /* Instead of explicitly capping the size of a packet to
1020 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
1021 instead allowed to set the size to something arbitrarily
1022 large. */
1023 if (size > MAX_REMOTE_PACKET_SIZE)
1024 error (_("Invalid %s (too large)."), config->name);
1025 #endif
1026 }
1027 /* Extra checks? */
1028 if (fixed_p && !config->fixed_p)
1029 {
1030 if (! query (_("The target may not be able to correctly handle a %s\n"
1031 "of %ld bytes. Change the packet size? "),
1032 config->name, size))
1033 error (_("Packet size not changed."));
1034 }
1035 /* Update the config. */
1036 config->fixed_p = fixed_p;
1037 config->size = size;
1038 }
1039
1040 static void
1041 show_memory_packet_size (struct memory_packet_config *config)
1042 {
1043 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1044 if (config->fixed_p)
1045 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1046 get_memory_packet_size (config));
1047 else
1048 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1049 get_memory_packet_size (config));
1050 }
1051
1052 static struct memory_packet_config memory_write_packet_config =
1053 {
1054 "memory-write-packet-size",
1055 };
1056
1057 static void
1058 set_memory_write_packet_size (char *args, int from_tty)
1059 {
1060 set_memory_packet_size (args, &memory_write_packet_config);
1061 }
1062
1063 static void
1064 show_memory_write_packet_size (char *args, int from_tty)
1065 {
1066 show_memory_packet_size (&memory_write_packet_config);
1067 }
1068
1069 static long
1070 get_memory_write_packet_size (void)
1071 {
1072 return get_memory_packet_size (&memory_write_packet_config);
1073 }
1074
1075 static struct memory_packet_config memory_read_packet_config =
1076 {
1077 "memory-read-packet-size",
1078 };
1079
1080 static void
1081 set_memory_read_packet_size (char *args, int from_tty)
1082 {
1083 set_memory_packet_size (args, &memory_read_packet_config);
1084 }
1085
1086 static void
1087 show_memory_read_packet_size (char *args, int from_tty)
1088 {
1089 show_memory_packet_size (&memory_read_packet_config);
1090 }
1091
1092 static long
1093 get_memory_read_packet_size (void)
1094 {
1095 long size = get_memory_packet_size (&memory_read_packet_config);
1096
1097 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1098 extra buffer size argument before the memory read size can be
1099 increased beyond this. */
1100 if (size > get_remote_packet_size ())
1101 size = get_remote_packet_size ();
1102 return size;
1103 }
1104
1105 \f
1106 /* Generic configuration support for packets the stub optionally
1107 supports. Allows the user to specify the use of the packet as well
1108 as allowing GDB to auto-detect support in the remote stub. */
1109
1110 enum packet_support
1111 {
1112 PACKET_SUPPORT_UNKNOWN = 0,
1113 PACKET_ENABLE,
1114 PACKET_DISABLE
1115 };
1116
1117 struct packet_config
1118 {
1119 const char *name;
1120 const char *title;
1121 enum auto_boolean detect;
1122 enum packet_support support;
1123 };
1124
1125 /* Analyze a packet's return value and update the packet config
1126 accordingly. */
1127
1128 enum packet_result
1129 {
1130 PACKET_ERROR,
1131 PACKET_OK,
1132 PACKET_UNKNOWN
1133 };
1134
1135 static void
1136 update_packet_config (struct packet_config *config)
1137 {
1138 switch (config->detect)
1139 {
1140 case AUTO_BOOLEAN_TRUE:
1141 config->support = PACKET_ENABLE;
1142 break;
1143 case AUTO_BOOLEAN_FALSE:
1144 config->support = PACKET_DISABLE;
1145 break;
1146 case AUTO_BOOLEAN_AUTO:
1147 config->support = PACKET_SUPPORT_UNKNOWN;
1148 break;
1149 }
1150 }
1151
1152 static void
1153 show_packet_config_cmd (struct packet_config *config)
1154 {
1155 char *support = "internal-error";
1156
1157 switch (config->support)
1158 {
1159 case PACKET_ENABLE:
1160 support = "enabled";
1161 break;
1162 case PACKET_DISABLE:
1163 support = "disabled";
1164 break;
1165 case PACKET_SUPPORT_UNKNOWN:
1166 support = "unknown";
1167 break;
1168 }
1169 switch (config->detect)
1170 {
1171 case AUTO_BOOLEAN_AUTO:
1172 printf_filtered (_("Support for the `%s' packet "
1173 "is auto-detected, currently %s.\n"),
1174 config->name, support);
1175 break;
1176 case AUTO_BOOLEAN_TRUE:
1177 case AUTO_BOOLEAN_FALSE:
1178 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1179 config->name, support);
1180 break;
1181 }
1182 }
1183
1184 static void
1185 add_packet_config_cmd (struct packet_config *config, const char *name,
1186 const char *title, int legacy)
1187 {
1188 char *set_doc;
1189 char *show_doc;
1190 char *cmd_name;
1191
1192 config->name = name;
1193 config->title = title;
1194 config->detect = AUTO_BOOLEAN_AUTO;
1195 config->support = PACKET_SUPPORT_UNKNOWN;
1196 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1197 name, title);
1198 show_doc = xstrprintf ("Show current use of remote "
1199 "protocol `%s' (%s) packet",
1200 name, title);
1201 /* set/show TITLE-packet {auto,on,off} */
1202 cmd_name = xstrprintf ("%s-packet", title);
1203 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1204 &config->detect, set_doc,
1205 show_doc, NULL, /* help_doc */
1206 set_remote_protocol_packet_cmd,
1207 show_remote_protocol_packet_cmd,
1208 &remote_set_cmdlist, &remote_show_cmdlist);
1209 /* The command code copies the documentation strings. */
1210 xfree (set_doc);
1211 xfree (show_doc);
1212 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1213 if (legacy)
1214 {
1215 char *legacy_name;
1216
1217 legacy_name = xstrprintf ("%s-packet", name);
1218 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1219 &remote_set_cmdlist);
1220 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1221 &remote_show_cmdlist);
1222 }
1223 }
1224
1225 static enum packet_result
1226 packet_check_result (const char *buf)
1227 {
1228 if (buf[0] != '\0')
1229 {
1230 /* The stub recognized the packet request. Check that the
1231 operation succeeded. */
1232 if (buf[0] == 'E'
1233 && isxdigit (buf[1]) && isxdigit (buf[2])
1234 && buf[3] == '\0')
1235 /* "Enn" - definitly an error. */
1236 return PACKET_ERROR;
1237
1238 /* Always treat "E." as an error. This will be used for
1239 more verbose error messages, such as E.memtypes. */
1240 if (buf[0] == 'E' && buf[1] == '.')
1241 return PACKET_ERROR;
1242
1243 /* The packet may or may not be OK. Just assume it is. */
1244 return PACKET_OK;
1245 }
1246 else
1247 /* The stub does not support the packet. */
1248 return PACKET_UNKNOWN;
1249 }
1250
1251 static enum packet_result
1252 packet_ok (const char *buf, struct packet_config *config)
1253 {
1254 enum packet_result result;
1255
1256 result = packet_check_result (buf);
1257 switch (result)
1258 {
1259 case PACKET_OK:
1260 case PACKET_ERROR:
1261 /* The stub recognized the packet request. */
1262 switch (config->support)
1263 {
1264 case PACKET_SUPPORT_UNKNOWN:
1265 if (remote_debug)
1266 fprintf_unfiltered (gdb_stdlog,
1267 "Packet %s (%s) is supported\n",
1268 config->name, config->title);
1269 config->support = PACKET_ENABLE;
1270 break;
1271 case PACKET_DISABLE:
1272 internal_error (__FILE__, __LINE__,
1273 _("packet_ok: attempt to use a disabled packet"));
1274 break;
1275 case PACKET_ENABLE:
1276 break;
1277 }
1278 break;
1279 case PACKET_UNKNOWN:
1280 /* The stub does not support the packet. */
1281 switch (config->support)
1282 {
1283 case PACKET_ENABLE:
1284 if (config->detect == AUTO_BOOLEAN_AUTO)
1285 /* If the stub previously indicated that the packet was
1286 supported then there is a protocol error.. */
1287 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1288 config->name, config->title);
1289 else
1290 /* The user set it wrong. */
1291 error (_("Enabled packet %s (%s) not recognized by stub"),
1292 config->name, config->title);
1293 break;
1294 case PACKET_SUPPORT_UNKNOWN:
1295 if (remote_debug)
1296 fprintf_unfiltered (gdb_stdlog,
1297 "Packet %s (%s) is NOT supported\n",
1298 config->name, config->title);
1299 config->support = PACKET_DISABLE;
1300 break;
1301 case PACKET_DISABLE:
1302 break;
1303 }
1304 break;
1305 }
1306
1307 return result;
1308 }
1309
1310 enum {
1311 PACKET_vCont = 0,
1312 PACKET_X,
1313 PACKET_qSymbol,
1314 PACKET_P,
1315 PACKET_p,
1316 PACKET_Z0,
1317 PACKET_Z1,
1318 PACKET_Z2,
1319 PACKET_Z3,
1320 PACKET_Z4,
1321 PACKET_vFile_open,
1322 PACKET_vFile_pread,
1323 PACKET_vFile_pwrite,
1324 PACKET_vFile_close,
1325 PACKET_vFile_unlink,
1326 PACKET_vFile_readlink,
1327 PACKET_qXfer_auxv,
1328 PACKET_qXfer_features,
1329 PACKET_qXfer_libraries,
1330 PACKET_qXfer_libraries_svr4,
1331 PACKET_qXfer_memory_map,
1332 PACKET_qXfer_spu_read,
1333 PACKET_qXfer_spu_write,
1334 PACKET_qXfer_osdata,
1335 PACKET_qXfer_threads,
1336 PACKET_qXfer_statictrace_read,
1337 PACKET_qXfer_traceframe_info,
1338 PACKET_qXfer_uib,
1339 PACKET_qGetTIBAddr,
1340 PACKET_qGetTLSAddr,
1341 PACKET_qSupported,
1342 PACKET_qTStatus,
1343 PACKET_QPassSignals,
1344 PACKET_QProgramSignals,
1345 PACKET_qSearch_memory,
1346 PACKET_vAttach,
1347 PACKET_vRun,
1348 PACKET_QStartNoAckMode,
1349 PACKET_vKill,
1350 PACKET_qXfer_siginfo_read,
1351 PACKET_qXfer_siginfo_write,
1352 PACKET_qAttached,
1353 PACKET_ConditionalTracepoints,
1354 PACKET_ConditionalBreakpoints,
1355 PACKET_BreakpointCommands,
1356 PACKET_FastTracepoints,
1357 PACKET_StaticTracepoints,
1358 PACKET_InstallInTrace,
1359 PACKET_bc,
1360 PACKET_bs,
1361 PACKET_TracepointSource,
1362 PACKET_QAllow,
1363 PACKET_qXfer_fdpic,
1364 PACKET_QDisableRandomization,
1365 PACKET_QAgent,
1366 PACKET_QTBuffer_size,
1367 PACKET_Qbtrace_off,
1368 PACKET_Qbtrace_bts,
1369 PACKET_qXfer_btrace,
1370 PACKET_MAX
1371 };
1372
1373 static struct packet_config remote_protocol_packets[PACKET_MAX];
1374
1375 static void
1376 set_remote_protocol_packet_cmd (char *args, int from_tty,
1377 struct cmd_list_element *c)
1378 {
1379 struct packet_config *packet;
1380
1381 for (packet = remote_protocol_packets;
1382 packet < &remote_protocol_packets[PACKET_MAX];
1383 packet++)
1384 {
1385 if (&packet->detect == c->var)
1386 {
1387 update_packet_config (packet);
1388 return;
1389 }
1390 }
1391 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1392 c->name);
1393 }
1394
1395 static void
1396 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1397 struct cmd_list_element *c,
1398 const char *value)
1399 {
1400 struct packet_config *packet;
1401
1402 for (packet = remote_protocol_packets;
1403 packet < &remote_protocol_packets[PACKET_MAX];
1404 packet++)
1405 {
1406 if (&packet->detect == c->var)
1407 {
1408 show_packet_config_cmd (packet);
1409 return;
1410 }
1411 }
1412 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1413 c->name);
1414 }
1415
1416 /* Should we try one of the 'Z' requests? */
1417
1418 enum Z_packet_type
1419 {
1420 Z_PACKET_SOFTWARE_BP,
1421 Z_PACKET_HARDWARE_BP,
1422 Z_PACKET_WRITE_WP,
1423 Z_PACKET_READ_WP,
1424 Z_PACKET_ACCESS_WP,
1425 NR_Z_PACKET_TYPES
1426 };
1427
1428 /* For compatibility with older distributions. Provide a ``set remote
1429 Z-packet ...'' command that updates all the Z packet types. */
1430
1431 static enum auto_boolean remote_Z_packet_detect;
1432
1433 static void
1434 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1435 struct cmd_list_element *c)
1436 {
1437 int i;
1438
1439 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1440 {
1441 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1442 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1443 }
1444 }
1445
1446 static void
1447 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1448 struct cmd_list_element *c,
1449 const char *value)
1450 {
1451 int i;
1452
1453 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1454 {
1455 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1456 }
1457 }
1458
1459 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1460 static struct async_signal_handler *async_sigint_remote_twice_token;
1461 static struct async_signal_handler *async_sigint_remote_token;
1462
1463 \f
1464 /* Asynchronous signal handle registered as event loop source for
1465 when we have pending events ready to be passed to the core. */
1466
1467 static struct async_event_handler *remote_async_inferior_event_token;
1468
1469 \f
1470
1471 static ptid_t magic_null_ptid;
1472 static ptid_t not_sent_ptid;
1473 static ptid_t any_thread_ptid;
1474
1475 /* Find out if the stub attached to PID (and hence GDB should offer to
1476 detach instead of killing it when bailing out). */
1477
1478 static int
1479 remote_query_attached (int pid)
1480 {
1481 struct remote_state *rs = get_remote_state ();
1482 size_t size = get_remote_packet_size ();
1483
1484 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1485 return 0;
1486
1487 if (remote_multi_process_p (rs))
1488 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1489 else
1490 xsnprintf (rs->buf, size, "qAttached");
1491
1492 putpkt (rs->buf);
1493 getpkt (&rs->buf, &rs->buf_size, 0);
1494
1495 switch (packet_ok (rs->buf,
1496 &remote_protocol_packets[PACKET_qAttached]))
1497 {
1498 case PACKET_OK:
1499 if (strcmp (rs->buf, "1") == 0)
1500 return 1;
1501 break;
1502 case PACKET_ERROR:
1503 warning (_("Remote failure reply: %s"), rs->buf);
1504 break;
1505 case PACKET_UNKNOWN:
1506 break;
1507 }
1508
1509 return 0;
1510 }
1511
1512 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1513 has been invented by GDB, instead of reported by the target. Since
1514 we can be connected to a remote system before before knowing about
1515 any inferior, mark the target with execution when we find the first
1516 inferior. If ATTACHED is 1, then we had just attached to this
1517 inferior. If it is 0, then we just created this inferior. If it
1518 is -1, then try querying the remote stub to find out if it had
1519 attached to the inferior or not. */
1520
1521 static struct inferior *
1522 remote_add_inferior (int fake_pid_p, int pid, int attached)
1523 {
1524 struct inferior *inf;
1525
1526 /* Check whether this process we're learning about is to be
1527 considered attached, or if is to be considered to have been
1528 spawned by the stub. */
1529 if (attached == -1)
1530 attached = remote_query_attached (pid);
1531
1532 if (gdbarch_has_global_solist (target_gdbarch ()))
1533 {
1534 /* If the target shares code across all inferiors, then every
1535 attach adds a new inferior. */
1536 inf = add_inferior (pid);
1537
1538 /* ... and every inferior is bound to the same program space.
1539 However, each inferior may still have its own address
1540 space. */
1541 inf->aspace = maybe_new_address_space ();
1542 inf->pspace = current_program_space;
1543 }
1544 else
1545 {
1546 /* In the traditional debugging scenario, there's a 1-1 match
1547 between program/address spaces. We simply bind the inferior
1548 to the program space's address space. */
1549 inf = current_inferior ();
1550 inferior_appeared (inf, pid);
1551 }
1552
1553 inf->attach_flag = attached;
1554 inf->fake_pid_p = fake_pid_p;
1555
1556 return inf;
1557 }
1558
1559 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1560 according to RUNNING. */
1561
1562 static void
1563 remote_add_thread (ptid_t ptid, int running)
1564 {
1565 struct remote_state *rs = get_remote_state ();
1566
1567 /* GDB historically didn't pull threads in the initial connection
1568 setup. If the remote target doesn't even have a concept of
1569 threads (e.g., a bare-metal target), even if internally we
1570 consider that a single-threaded target, mentioning a new thread
1571 might be confusing to the user. Be silent then, preserving the
1572 age old behavior. */
1573 if (rs->starting_up)
1574 add_thread_silent (ptid);
1575 else
1576 add_thread (ptid);
1577
1578 set_executing (ptid, running);
1579 set_running (ptid, running);
1580 }
1581
1582 /* Come here when we learn about a thread id from the remote target.
1583 It may be the first time we hear about such thread, so take the
1584 opportunity to add it to GDB's thread list. In case this is the
1585 first time we're noticing its corresponding inferior, add it to
1586 GDB's inferior list as well. */
1587
1588 static void
1589 remote_notice_new_inferior (ptid_t currthread, int running)
1590 {
1591 /* If this is a new thread, add it to GDB's thread list.
1592 If we leave it up to WFI to do this, bad things will happen. */
1593
1594 if (in_thread_list (currthread) && is_exited (currthread))
1595 {
1596 /* We're seeing an event on a thread id we knew had exited.
1597 This has to be a new thread reusing the old id. Add it. */
1598 remote_add_thread (currthread, running);
1599 return;
1600 }
1601
1602 if (!in_thread_list (currthread))
1603 {
1604 struct inferior *inf = NULL;
1605 int pid = ptid_get_pid (currthread);
1606
1607 if (ptid_is_pid (inferior_ptid)
1608 && pid == ptid_get_pid (inferior_ptid))
1609 {
1610 /* inferior_ptid has no thread member yet. This can happen
1611 with the vAttach -> remote_wait,"TAAthread:" path if the
1612 stub doesn't support qC. This is the first stop reported
1613 after an attach, so this is the main thread. Update the
1614 ptid in the thread list. */
1615 if (in_thread_list (pid_to_ptid (pid)))
1616 thread_change_ptid (inferior_ptid, currthread);
1617 else
1618 {
1619 remote_add_thread (currthread, running);
1620 inferior_ptid = currthread;
1621 }
1622 return;
1623 }
1624
1625 if (ptid_equal (magic_null_ptid, inferior_ptid))
1626 {
1627 /* inferior_ptid is not set yet. This can happen with the
1628 vRun -> remote_wait,"TAAthread:" path if the stub
1629 doesn't support qC. This is the first stop reported
1630 after an attach, so this is the main thread. Update the
1631 ptid in the thread list. */
1632 thread_change_ptid (inferior_ptid, currthread);
1633 return;
1634 }
1635
1636 /* When connecting to a target remote, or to a target
1637 extended-remote which already was debugging an inferior, we
1638 may not know about it yet. Add it before adding its child
1639 thread, so notifications are emitted in a sensible order. */
1640 if (!in_inferior_list (ptid_get_pid (currthread)))
1641 {
1642 struct remote_state *rs = get_remote_state ();
1643 int fake_pid_p = !remote_multi_process_p (rs);
1644
1645 inf = remote_add_inferior (fake_pid_p,
1646 ptid_get_pid (currthread), -1);
1647 }
1648
1649 /* This is really a new thread. Add it. */
1650 remote_add_thread (currthread, running);
1651
1652 /* If we found a new inferior, let the common code do whatever
1653 it needs to with it (e.g., read shared libraries, insert
1654 breakpoints), unless we're just setting up an all-stop
1655 connection. */
1656 if (inf != NULL)
1657 {
1658 struct remote_state *rs = get_remote_state ();
1659
1660 if (non_stop || !rs->starting_up)
1661 notice_new_inferior (currthread, running, 0);
1662 }
1663 }
1664 }
1665
1666 /* Return the private thread data, creating it if necessary. */
1667
1668 static struct private_thread_info *
1669 demand_private_info (ptid_t ptid)
1670 {
1671 struct thread_info *info = find_thread_ptid (ptid);
1672
1673 gdb_assert (info);
1674
1675 if (!info->private)
1676 {
1677 info->private = xmalloc (sizeof (*(info->private)));
1678 info->private_dtor = free_private_thread_info;
1679 info->private->core = -1;
1680 info->private->extra = 0;
1681 }
1682
1683 return info->private;
1684 }
1685
1686 /* Call this function as a result of
1687 1) A halt indication (T packet) containing a thread id
1688 2) A direct query of currthread
1689 3) Successful execution of set thread */
1690
1691 static void
1692 record_currthread (struct remote_state *rs, ptid_t currthread)
1693 {
1694 rs->general_thread = currthread;
1695 }
1696
1697 /* If 'QPassSignals' is supported, tell the remote stub what signals
1698 it can simply pass through to the inferior without reporting. */
1699
1700 static void
1701 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1702 {
1703 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1704 {
1705 char *pass_packet, *p;
1706 int count = 0, i;
1707 struct remote_state *rs = get_remote_state ();
1708
1709 gdb_assert (numsigs < 256);
1710 for (i = 0; i < numsigs; i++)
1711 {
1712 if (pass_signals[i])
1713 count++;
1714 }
1715 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1716 strcpy (pass_packet, "QPassSignals:");
1717 p = pass_packet + strlen (pass_packet);
1718 for (i = 0; i < numsigs; i++)
1719 {
1720 if (pass_signals[i])
1721 {
1722 if (i >= 16)
1723 *p++ = tohex (i >> 4);
1724 *p++ = tohex (i & 15);
1725 if (count)
1726 *p++ = ';';
1727 else
1728 break;
1729 count--;
1730 }
1731 }
1732 *p = 0;
1733 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
1734 {
1735 putpkt (pass_packet);
1736 getpkt (&rs->buf, &rs->buf_size, 0);
1737 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
1738 if (rs->last_pass_packet)
1739 xfree (rs->last_pass_packet);
1740 rs->last_pass_packet = pass_packet;
1741 }
1742 else
1743 xfree (pass_packet);
1744 }
1745 }
1746
1747 /* If 'QProgramSignals' is supported, tell the remote stub what
1748 signals it should pass through to the inferior when detaching. */
1749
1750 static void
1751 remote_program_signals (int numsigs, unsigned char *signals)
1752 {
1753 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1754 {
1755 char *packet, *p;
1756 int count = 0, i;
1757 struct remote_state *rs = get_remote_state ();
1758
1759 gdb_assert (numsigs < 256);
1760 for (i = 0; i < numsigs; i++)
1761 {
1762 if (signals[i])
1763 count++;
1764 }
1765 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1766 strcpy (packet, "QProgramSignals:");
1767 p = packet + strlen (packet);
1768 for (i = 0; i < numsigs; i++)
1769 {
1770 if (signal_pass_state (i))
1771 {
1772 if (i >= 16)
1773 *p++ = tohex (i >> 4);
1774 *p++ = tohex (i & 15);
1775 if (count)
1776 *p++ = ';';
1777 else
1778 break;
1779 count--;
1780 }
1781 }
1782 *p = 0;
1783 if (!rs->last_program_signals_packet
1784 || strcmp (rs->last_program_signals_packet, packet) != 0)
1785 {
1786 putpkt (packet);
1787 getpkt (&rs->buf, &rs->buf_size, 0);
1788 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1789 xfree (rs->last_program_signals_packet);
1790 rs->last_program_signals_packet = packet;
1791 }
1792 else
1793 xfree (packet);
1794 }
1795 }
1796
1797 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1798 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1799 thread. If GEN is set, set the general thread, if not, then set
1800 the step/continue thread. */
1801 static void
1802 set_thread (struct ptid ptid, int gen)
1803 {
1804 struct remote_state *rs = get_remote_state ();
1805 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
1806 char *buf = rs->buf;
1807 char *endbuf = rs->buf + get_remote_packet_size ();
1808
1809 if (ptid_equal (state, ptid))
1810 return;
1811
1812 *buf++ = 'H';
1813 *buf++ = gen ? 'g' : 'c';
1814 if (ptid_equal (ptid, magic_null_ptid))
1815 xsnprintf (buf, endbuf - buf, "0");
1816 else if (ptid_equal (ptid, any_thread_ptid))
1817 xsnprintf (buf, endbuf - buf, "0");
1818 else if (ptid_equal (ptid, minus_one_ptid))
1819 xsnprintf (buf, endbuf - buf, "-1");
1820 else
1821 write_ptid (buf, endbuf, ptid);
1822 putpkt (rs->buf);
1823 getpkt (&rs->buf, &rs->buf_size, 0);
1824 if (gen)
1825 rs->general_thread = ptid;
1826 else
1827 rs->continue_thread = ptid;
1828 }
1829
1830 static void
1831 set_general_thread (struct ptid ptid)
1832 {
1833 set_thread (ptid, 1);
1834 }
1835
1836 static void
1837 set_continue_thread (struct ptid ptid)
1838 {
1839 set_thread (ptid, 0);
1840 }
1841
1842 /* Change the remote current process. Which thread within the process
1843 ends up selected isn't important, as long as it is the same process
1844 as what INFERIOR_PTID points to.
1845
1846 This comes from that fact that there is no explicit notion of
1847 "selected process" in the protocol. The selected process for
1848 general operations is the process the selected general thread
1849 belongs to. */
1850
1851 static void
1852 set_general_process (void)
1853 {
1854 struct remote_state *rs = get_remote_state ();
1855
1856 /* If the remote can't handle multiple processes, don't bother. */
1857 if (!rs->extended || !remote_multi_process_p (rs))
1858 return;
1859
1860 /* We only need to change the remote current thread if it's pointing
1861 at some other process. */
1862 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
1863 set_general_thread (inferior_ptid);
1864 }
1865
1866 \f
1867 /* Return nonzero if the thread PTID is still alive on the remote
1868 system. */
1869
1870 static int
1871 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1872 {
1873 struct remote_state *rs = get_remote_state ();
1874 char *p, *endp;
1875
1876 if (ptid_equal (ptid, magic_null_ptid))
1877 /* The main thread is always alive. */
1878 return 1;
1879
1880 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1881 /* The main thread is always alive. This can happen after a
1882 vAttach, if the remote side doesn't support
1883 multi-threading. */
1884 return 1;
1885
1886 p = rs->buf;
1887 endp = rs->buf + get_remote_packet_size ();
1888
1889 *p++ = 'T';
1890 write_ptid (p, endp, ptid);
1891
1892 putpkt (rs->buf);
1893 getpkt (&rs->buf, &rs->buf_size, 0);
1894 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1895 }
1896
1897 /* About these extended threadlist and threadinfo packets. They are
1898 variable length packets but, the fields within them are often fixed
1899 length. They are redundent enough to send over UDP as is the
1900 remote protocol in general. There is a matching unit test module
1901 in libstub. */
1902
1903 /* WARNING: This threadref data structure comes from the remote O.S.,
1904 libstub protocol encoding, and remote.c. It is not particularly
1905 changable. */
1906
1907 /* Right now, the internal structure is int. We want it to be bigger.
1908 Plan to fix this. */
1909
1910 typedef int gdb_threadref; /* Internal GDB thread reference. */
1911
1912 /* gdb_ext_thread_info is an internal GDB data structure which is
1913 equivalent to the reply of the remote threadinfo packet. */
1914
1915 struct gdb_ext_thread_info
1916 {
1917 threadref threadid; /* External form of thread reference. */
1918 int active; /* Has state interesting to GDB?
1919 regs, stack. */
1920 char display[256]; /* Brief state display, name,
1921 blocked/suspended. */
1922 char shortname[32]; /* To be used to name threads. */
1923 char more_display[256]; /* Long info, statistics, queue depth,
1924 whatever. */
1925 };
1926
1927 /* The volume of remote transfers can be limited by submitting
1928 a mask containing bits specifying the desired information.
1929 Use a union of these values as the 'selection' parameter to
1930 get_thread_info. FIXME: Make these TAG names more thread specific. */
1931
1932 #define TAG_THREADID 1
1933 #define TAG_EXISTS 2
1934 #define TAG_DISPLAY 4
1935 #define TAG_THREADNAME 8
1936 #define TAG_MOREDISPLAY 16
1937
1938 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1939
1940 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1941
1942 static char *unpack_nibble (char *buf, int *val);
1943
1944 static char *pack_nibble (char *buf, int nibble);
1945
1946 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1947
1948 static char *unpack_byte (char *buf, int *value);
1949
1950 static char *pack_int (char *buf, int value);
1951
1952 static char *unpack_int (char *buf, int *value);
1953
1954 static char *unpack_string (char *src, char *dest, int length);
1955
1956 static char *pack_threadid (char *pkt, threadref *id);
1957
1958 static char *unpack_threadid (char *inbuf, threadref *id);
1959
1960 void int_to_threadref (threadref *id, int value);
1961
1962 static int threadref_to_int (threadref *ref);
1963
1964 static void copy_threadref (threadref *dest, threadref *src);
1965
1966 static int threadmatch (threadref *dest, threadref *src);
1967
1968 static char *pack_threadinfo_request (char *pkt, int mode,
1969 threadref *id);
1970
1971 static int remote_unpack_thread_info_response (char *pkt,
1972 threadref *expectedref,
1973 struct gdb_ext_thread_info
1974 *info);
1975
1976
1977 static int remote_get_threadinfo (threadref *threadid,
1978 int fieldset, /*TAG mask */
1979 struct gdb_ext_thread_info *info);
1980
1981 static char *pack_threadlist_request (char *pkt, int startflag,
1982 int threadcount,
1983 threadref *nextthread);
1984
1985 static int parse_threadlist_response (char *pkt,
1986 int result_limit,
1987 threadref *original_echo,
1988 threadref *resultlist,
1989 int *doneflag);
1990
1991 static int remote_get_threadlist (int startflag,
1992 threadref *nextthread,
1993 int result_limit,
1994 int *done,
1995 int *result_count,
1996 threadref *threadlist);
1997
1998 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1999
2000 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2001 void *context, int looplimit);
2002
2003 static int remote_newthread_step (threadref *ref, void *context);
2004
2005
2006 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2007 buffer we're allowed to write to. Returns
2008 BUF+CHARACTERS_WRITTEN. */
2009
2010 static char *
2011 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2012 {
2013 int pid, tid;
2014 struct remote_state *rs = get_remote_state ();
2015
2016 if (remote_multi_process_p (rs))
2017 {
2018 pid = ptid_get_pid (ptid);
2019 if (pid < 0)
2020 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2021 else
2022 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2023 }
2024 tid = ptid_get_tid (ptid);
2025 if (tid < 0)
2026 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2027 else
2028 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2029
2030 return buf;
2031 }
2032
2033 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
2034 passed the last parsed char. Returns null_ptid on error. */
2035
2036 static ptid_t
2037 read_ptid (char *buf, char **obuf)
2038 {
2039 char *p = buf;
2040 char *pp;
2041 ULONGEST pid = 0, tid = 0;
2042
2043 if (*p == 'p')
2044 {
2045 /* Multi-process ptid. */
2046 pp = unpack_varlen_hex (p + 1, &pid);
2047 if (*pp != '.')
2048 error (_("invalid remote ptid: %s"), p);
2049
2050 p = pp;
2051 pp = unpack_varlen_hex (p + 1, &tid);
2052 if (obuf)
2053 *obuf = pp;
2054 return ptid_build (pid, 0, tid);
2055 }
2056
2057 /* No multi-process. Just a tid. */
2058 pp = unpack_varlen_hex (p, &tid);
2059
2060 /* Since the stub is not sending a process id, then default to
2061 what's in inferior_ptid, unless it's null at this point. If so,
2062 then since there's no way to know the pid of the reported
2063 threads, use the magic number. */
2064 if (ptid_equal (inferior_ptid, null_ptid))
2065 pid = ptid_get_pid (magic_null_ptid);
2066 else
2067 pid = ptid_get_pid (inferior_ptid);
2068
2069 if (obuf)
2070 *obuf = pp;
2071 return ptid_build (pid, 0, tid);
2072 }
2073
2074 /* Encode 64 bits in 16 chars of hex. */
2075
2076 static const char hexchars[] = "0123456789abcdef";
2077
2078 static int
2079 ishex (int ch, int *val)
2080 {
2081 if ((ch >= 'a') && (ch <= 'f'))
2082 {
2083 *val = ch - 'a' + 10;
2084 return 1;
2085 }
2086 if ((ch >= 'A') && (ch <= 'F'))
2087 {
2088 *val = ch - 'A' + 10;
2089 return 1;
2090 }
2091 if ((ch >= '0') && (ch <= '9'))
2092 {
2093 *val = ch - '0';
2094 return 1;
2095 }
2096 return 0;
2097 }
2098
2099 static int
2100 stubhex (int ch)
2101 {
2102 if (ch >= 'a' && ch <= 'f')
2103 return ch - 'a' + 10;
2104 if (ch >= '0' && ch <= '9')
2105 return ch - '0';
2106 if (ch >= 'A' && ch <= 'F')
2107 return ch - 'A' + 10;
2108 return -1;
2109 }
2110
2111 static int
2112 stub_unpack_int (char *buff, int fieldlength)
2113 {
2114 int nibble;
2115 int retval = 0;
2116
2117 while (fieldlength)
2118 {
2119 nibble = stubhex (*buff++);
2120 retval |= nibble;
2121 fieldlength--;
2122 if (fieldlength)
2123 retval = retval << 4;
2124 }
2125 return retval;
2126 }
2127
2128 char *
2129 unpack_varlen_hex (char *buff, /* packet to parse */
2130 ULONGEST *result)
2131 {
2132 int nibble;
2133 ULONGEST retval = 0;
2134
2135 while (ishex (*buff, &nibble))
2136 {
2137 buff++;
2138 retval = retval << 4;
2139 retval |= nibble & 0x0f;
2140 }
2141 *result = retval;
2142 return buff;
2143 }
2144
2145 static char *
2146 unpack_nibble (char *buf, int *val)
2147 {
2148 *val = fromhex (*buf++);
2149 return buf;
2150 }
2151
2152 static char *
2153 pack_nibble (char *buf, int nibble)
2154 {
2155 *buf++ = hexchars[(nibble & 0x0f)];
2156 return buf;
2157 }
2158
2159 static char *
2160 pack_hex_byte (char *pkt, int byte)
2161 {
2162 *pkt++ = hexchars[(byte >> 4) & 0xf];
2163 *pkt++ = hexchars[(byte & 0xf)];
2164 return pkt;
2165 }
2166
2167 static char *
2168 unpack_byte (char *buf, int *value)
2169 {
2170 *value = stub_unpack_int (buf, 2);
2171 return buf + 2;
2172 }
2173
2174 static char *
2175 pack_int (char *buf, int value)
2176 {
2177 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2178 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2179 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2180 buf = pack_hex_byte (buf, (value & 0xff));
2181 return buf;
2182 }
2183
2184 static char *
2185 unpack_int (char *buf, int *value)
2186 {
2187 *value = stub_unpack_int (buf, 8);
2188 return buf + 8;
2189 }
2190
2191 #if 0 /* Currently unused, uncomment when needed. */
2192 static char *pack_string (char *pkt, char *string);
2193
2194 static char *
2195 pack_string (char *pkt, char *string)
2196 {
2197 char ch;
2198 int len;
2199
2200 len = strlen (string);
2201 if (len > 200)
2202 len = 200; /* Bigger than most GDB packets, junk??? */
2203 pkt = pack_hex_byte (pkt, len);
2204 while (len-- > 0)
2205 {
2206 ch = *string++;
2207 if ((ch == '\0') || (ch == '#'))
2208 ch = '*'; /* Protect encapsulation. */
2209 *pkt++ = ch;
2210 }
2211 return pkt;
2212 }
2213 #endif /* 0 (unused) */
2214
2215 static char *
2216 unpack_string (char *src, char *dest, int length)
2217 {
2218 while (length--)
2219 *dest++ = *src++;
2220 *dest = '\0';
2221 return src;
2222 }
2223
2224 static char *
2225 pack_threadid (char *pkt, threadref *id)
2226 {
2227 char *limit;
2228 unsigned char *altid;
2229
2230 altid = (unsigned char *) id;
2231 limit = pkt + BUF_THREAD_ID_SIZE;
2232 while (pkt < limit)
2233 pkt = pack_hex_byte (pkt, *altid++);
2234 return pkt;
2235 }
2236
2237
2238 static char *
2239 unpack_threadid (char *inbuf, threadref *id)
2240 {
2241 char *altref;
2242 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2243 int x, y;
2244
2245 altref = (char *) id;
2246
2247 while (inbuf < limit)
2248 {
2249 x = stubhex (*inbuf++);
2250 y = stubhex (*inbuf++);
2251 *altref++ = (x << 4) | y;
2252 }
2253 return inbuf;
2254 }
2255
2256 /* Externally, threadrefs are 64 bits but internally, they are still
2257 ints. This is due to a mismatch of specifications. We would like
2258 to use 64bit thread references internally. This is an adapter
2259 function. */
2260
2261 void
2262 int_to_threadref (threadref *id, int value)
2263 {
2264 unsigned char *scan;
2265
2266 scan = (unsigned char *) id;
2267 {
2268 int i = 4;
2269 while (i--)
2270 *scan++ = 0;
2271 }
2272 *scan++ = (value >> 24) & 0xff;
2273 *scan++ = (value >> 16) & 0xff;
2274 *scan++ = (value >> 8) & 0xff;
2275 *scan++ = (value & 0xff);
2276 }
2277
2278 static int
2279 threadref_to_int (threadref *ref)
2280 {
2281 int i, value = 0;
2282 unsigned char *scan;
2283
2284 scan = *ref;
2285 scan += 4;
2286 i = 4;
2287 while (i-- > 0)
2288 value = (value << 8) | ((*scan++) & 0xff);
2289 return value;
2290 }
2291
2292 static void
2293 copy_threadref (threadref *dest, threadref *src)
2294 {
2295 int i;
2296 unsigned char *csrc, *cdest;
2297
2298 csrc = (unsigned char *) src;
2299 cdest = (unsigned char *) dest;
2300 i = 8;
2301 while (i--)
2302 *cdest++ = *csrc++;
2303 }
2304
2305 static int
2306 threadmatch (threadref *dest, threadref *src)
2307 {
2308 /* Things are broken right now, so just assume we got a match. */
2309 #if 0
2310 unsigned char *srcp, *destp;
2311 int i, result;
2312 srcp = (char *) src;
2313 destp = (char *) dest;
2314
2315 result = 1;
2316 while (i-- > 0)
2317 result &= (*srcp++ == *destp++) ? 1 : 0;
2318 return result;
2319 #endif
2320 return 1;
2321 }
2322
2323 /*
2324 threadid:1, # always request threadid
2325 context_exists:2,
2326 display:4,
2327 unique_name:8,
2328 more_display:16
2329 */
2330
2331 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2332
2333 static char *
2334 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2335 {
2336 *pkt++ = 'q'; /* Info Query */
2337 *pkt++ = 'P'; /* process or thread info */
2338 pkt = pack_int (pkt, mode); /* mode */
2339 pkt = pack_threadid (pkt, id); /* threadid */
2340 *pkt = '\0'; /* terminate */
2341 return pkt;
2342 }
2343
2344 /* These values tag the fields in a thread info response packet. */
2345 /* Tagging the fields allows us to request specific fields and to
2346 add more fields as time goes by. */
2347
2348 #define TAG_THREADID 1 /* Echo the thread identifier. */
2349 #define TAG_EXISTS 2 /* Is this process defined enough to
2350 fetch registers and its stack? */
2351 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2352 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2353 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2354 the process. */
2355
2356 static int
2357 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2358 struct gdb_ext_thread_info *info)
2359 {
2360 struct remote_state *rs = get_remote_state ();
2361 int mask, length;
2362 int tag;
2363 threadref ref;
2364 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2365 int retval = 1;
2366
2367 /* info->threadid = 0; FIXME: implement zero_threadref. */
2368 info->active = 0;
2369 info->display[0] = '\0';
2370 info->shortname[0] = '\0';
2371 info->more_display[0] = '\0';
2372
2373 /* Assume the characters indicating the packet type have been
2374 stripped. */
2375 pkt = unpack_int (pkt, &mask); /* arg mask */
2376 pkt = unpack_threadid (pkt, &ref);
2377
2378 if (mask == 0)
2379 warning (_("Incomplete response to threadinfo request."));
2380 if (!threadmatch (&ref, expectedref))
2381 { /* This is an answer to a different request. */
2382 warning (_("ERROR RMT Thread info mismatch."));
2383 return 0;
2384 }
2385 copy_threadref (&info->threadid, &ref);
2386
2387 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2388
2389 /* Packets are terminated with nulls. */
2390 while ((pkt < limit) && mask && *pkt)
2391 {
2392 pkt = unpack_int (pkt, &tag); /* tag */
2393 pkt = unpack_byte (pkt, &length); /* length */
2394 if (!(tag & mask)) /* Tags out of synch with mask. */
2395 {
2396 warning (_("ERROR RMT: threadinfo tag mismatch."));
2397 retval = 0;
2398 break;
2399 }
2400 if (tag == TAG_THREADID)
2401 {
2402 if (length != 16)
2403 {
2404 warning (_("ERROR RMT: length of threadid is not 16."));
2405 retval = 0;
2406 break;
2407 }
2408 pkt = unpack_threadid (pkt, &ref);
2409 mask = mask & ~TAG_THREADID;
2410 continue;
2411 }
2412 if (tag == TAG_EXISTS)
2413 {
2414 info->active = stub_unpack_int (pkt, length);
2415 pkt += length;
2416 mask = mask & ~(TAG_EXISTS);
2417 if (length > 8)
2418 {
2419 warning (_("ERROR RMT: 'exists' length too long."));
2420 retval = 0;
2421 break;
2422 }
2423 continue;
2424 }
2425 if (tag == TAG_THREADNAME)
2426 {
2427 pkt = unpack_string (pkt, &info->shortname[0], length);
2428 mask = mask & ~TAG_THREADNAME;
2429 continue;
2430 }
2431 if (tag == TAG_DISPLAY)
2432 {
2433 pkt = unpack_string (pkt, &info->display[0], length);
2434 mask = mask & ~TAG_DISPLAY;
2435 continue;
2436 }
2437 if (tag == TAG_MOREDISPLAY)
2438 {
2439 pkt = unpack_string (pkt, &info->more_display[0], length);
2440 mask = mask & ~TAG_MOREDISPLAY;
2441 continue;
2442 }
2443 warning (_("ERROR RMT: unknown thread info tag."));
2444 break; /* Not a tag we know about. */
2445 }
2446 return retval;
2447 }
2448
2449 static int
2450 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2451 struct gdb_ext_thread_info *info)
2452 {
2453 struct remote_state *rs = get_remote_state ();
2454 int result;
2455
2456 pack_threadinfo_request (rs->buf, fieldset, threadid);
2457 putpkt (rs->buf);
2458 getpkt (&rs->buf, &rs->buf_size, 0);
2459
2460 if (rs->buf[0] == '\0')
2461 return 0;
2462
2463 result = remote_unpack_thread_info_response (rs->buf + 2,
2464 threadid, info);
2465 return result;
2466 }
2467
2468 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2469
2470 static char *
2471 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2472 threadref *nextthread)
2473 {
2474 *pkt++ = 'q'; /* info query packet */
2475 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2476 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2477 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2478 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2479 *pkt = '\0';
2480 return pkt;
2481 }
2482
2483 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2484
2485 static int
2486 parse_threadlist_response (char *pkt, int result_limit,
2487 threadref *original_echo, threadref *resultlist,
2488 int *doneflag)
2489 {
2490 struct remote_state *rs = get_remote_state ();
2491 char *limit;
2492 int count, resultcount, done;
2493
2494 resultcount = 0;
2495 /* Assume the 'q' and 'M chars have been stripped. */
2496 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2497 /* done parse past here */
2498 pkt = unpack_byte (pkt, &count); /* count field */
2499 pkt = unpack_nibble (pkt, &done);
2500 /* The first threadid is the argument threadid. */
2501 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2502 while ((count-- > 0) && (pkt < limit))
2503 {
2504 pkt = unpack_threadid (pkt, resultlist++);
2505 if (resultcount++ >= result_limit)
2506 break;
2507 }
2508 if (doneflag)
2509 *doneflag = done;
2510 return resultcount;
2511 }
2512
2513 static int
2514 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2515 int *done, int *result_count, threadref *threadlist)
2516 {
2517 struct remote_state *rs = get_remote_state ();
2518 int result = 1;
2519
2520 /* Trancate result limit to be smaller than the packet size. */
2521 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2522 >= get_remote_packet_size ())
2523 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2524
2525 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2526 putpkt (rs->buf);
2527 getpkt (&rs->buf, &rs->buf_size, 0);
2528
2529 if (*rs->buf == '\0')
2530 return 0;
2531 else
2532 *result_count =
2533 parse_threadlist_response (rs->buf + 2, result_limit,
2534 &rs->echo_nextthread, threadlist, done);
2535
2536 if (!threadmatch (&rs->echo_nextthread, nextthread))
2537 {
2538 /* FIXME: This is a good reason to drop the packet. */
2539 /* Possably, there is a duplicate response. */
2540 /* Possabilities :
2541 retransmit immediatly - race conditions
2542 retransmit after timeout - yes
2543 exit
2544 wait for packet, then exit
2545 */
2546 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2547 return 0; /* I choose simply exiting. */
2548 }
2549 if (*result_count <= 0)
2550 {
2551 if (*done != 1)
2552 {
2553 warning (_("RMT ERROR : failed to get remote thread list."));
2554 result = 0;
2555 }
2556 return result; /* break; */
2557 }
2558 if (*result_count > result_limit)
2559 {
2560 *result_count = 0;
2561 warning (_("RMT ERROR: threadlist response longer than requested."));
2562 return 0;
2563 }
2564 return result;
2565 }
2566
2567 /* This is the interface between remote and threads, remotes upper
2568 interface. */
2569
2570 /* remote_find_new_threads retrieves the thread list and for each
2571 thread in the list, looks up the thread in GDB's internal list,
2572 adding the thread if it does not already exist. This involves
2573 getting partial thread lists from the remote target so, polling the
2574 quit_flag is required. */
2575
2576
2577 static int
2578 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2579 int looplimit)
2580 {
2581 struct remote_state *rs = get_remote_state ();
2582 int done, i, result_count;
2583 int startflag = 1;
2584 int result = 1;
2585 int loopcount = 0;
2586
2587 done = 0;
2588 while (!done)
2589 {
2590 if (loopcount++ > looplimit)
2591 {
2592 result = 0;
2593 warning (_("Remote fetch threadlist -infinite loop-."));
2594 break;
2595 }
2596 if (!remote_get_threadlist (startflag, &rs->nextthread,
2597 MAXTHREADLISTRESULTS,
2598 &done, &result_count, rs->resultthreadlist))
2599 {
2600 result = 0;
2601 break;
2602 }
2603 /* Clear for later iterations. */
2604 startflag = 0;
2605 /* Setup to resume next batch of thread references, set nextthread. */
2606 if (result_count >= 1)
2607 copy_threadref (&rs->nextthread,
2608 &rs->resultthreadlist[result_count - 1]);
2609 i = 0;
2610 while (result_count--)
2611 if (!(result = (*stepfunction) (&rs->resultthreadlist[i++], context)))
2612 break;
2613 }
2614 return result;
2615 }
2616
2617 static int
2618 remote_newthread_step (threadref *ref, void *context)
2619 {
2620 int pid = ptid_get_pid (inferior_ptid);
2621 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2622
2623 if (!in_thread_list (ptid))
2624 add_thread (ptid);
2625 return 1; /* continue iterator */
2626 }
2627
2628 #define CRAZY_MAX_THREADS 1000
2629
2630 static ptid_t
2631 remote_current_thread (ptid_t oldpid)
2632 {
2633 struct remote_state *rs = get_remote_state ();
2634
2635 putpkt ("qC");
2636 getpkt (&rs->buf, &rs->buf_size, 0);
2637 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2638 return read_ptid (&rs->buf[2], NULL);
2639 else
2640 return oldpid;
2641 }
2642
2643 /* Find new threads for info threads command.
2644 * Original version, using John Metzler's thread protocol.
2645 */
2646
2647 static void
2648 remote_find_new_threads (void)
2649 {
2650 remote_threadlist_iterator (remote_newthread_step, 0,
2651 CRAZY_MAX_THREADS);
2652 }
2653
2654 #if defined(HAVE_LIBEXPAT)
2655
2656 typedef struct thread_item
2657 {
2658 ptid_t ptid;
2659 char *extra;
2660 int core;
2661 } thread_item_t;
2662 DEF_VEC_O(thread_item_t);
2663
2664 struct threads_parsing_context
2665 {
2666 VEC (thread_item_t) *items;
2667 };
2668
2669 static void
2670 start_thread (struct gdb_xml_parser *parser,
2671 const struct gdb_xml_element *element,
2672 void *user_data, VEC(gdb_xml_value_s) *attributes)
2673 {
2674 struct threads_parsing_context *data = user_data;
2675
2676 struct thread_item item;
2677 char *id;
2678 struct gdb_xml_value *attr;
2679
2680 id = xml_find_attribute (attributes, "id")->value;
2681 item.ptid = read_ptid (id, NULL);
2682
2683 attr = xml_find_attribute (attributes, "core");
2684 if (attr != NULL)
2685 item.core = *(ULONGEST *) attr->value;
2686 else
2687 item.core = -1;
2688
2689 item.extra = 0;
2690
2691 VEC_safe_push (thread_item_t, data->items, &item);
2692 }
2693
2694 static void
2695 end_thread (struct gdb_xml_parser *parser,
2696 const struct gdb_xml_element *element,
2697 void *user_data, const char *body_text)
2698 {
2699 struct threads_parsing_context *data = user_data;
2700
2701 if (body_text && *body_text)
2702 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2703 }
2704
2705 const struct gdb_xml_attribute thread_attributes[] = {
2706 { "id", GDB_XML_AF_NONE, NULL, NULL },
2707 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2708 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2709 };
2710
2711 const struct gdb_xml_element thread_children[] = {
2712 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2713 };
2714
2715 const struct gdb_xml_element threads_children[] = {
2716 { "thread", thread_attributes, thread_children,
2717 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2718 start_thread, end_thread },
2719 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2720 };
2721
2722 const struct gdb_xml_element threads_elements[] = {
2723 { "threads", NULL, threads_children,
2724 GDB_XML_EF_NONE, NULL, NULL },
2725 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2726 };
2727
2728 /* Discard the contents of the constructed thread info context. */
2729
2730 static void
2731 clear_threads_parsing_context (void *p)
2732 {
2733 struct threads_parsing_context *context = p;
2734 int i;
2735 struct thread_item *item;
2736
2737 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2738 xfree (item->extra);
2739
2740 VEC_free (thread_item_t, context->items);
2741 }
2742
2743 #endif
2744
2745 /*
2746 * Find all threads for info threads command.
2747 * Uses new thread protocol contributed by Cisco.
2748 * Falls back and attempts to use the older method (above)
2749 * if the target doesn't respond to the new method.
2750 */
2751
2752 static void
2753 remote_threads_info (struct target_ops *ops)
2754 {
2755 struct remote_state *rs = get_remote_state ();
2756 char *bufp;
2757 ptid_t new_thread;
2758
2759 if (rs->remote_desc == 0) /* paranoia */
2760 error (_("Command can only be used when connected to the remote target."));
2761
2762 #if defined(HAVE_LIBEXPAT)
2763 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2764 {
2765 char *xml = target_read_stralloc (&current_target,
2766 TARGET_OBJECT_THREADS, NULL);
2767
2768 struct cleanup *back_to = make_cleanup (xfree, xml);
2769
2770 if (xml && *xml)
2771 {
2772 struct threads_parsing_context context;
2773
2774 context.items = NULL;
2775 make_cleanup (clear_threads_parsing_context, &context);
2776
2777 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2778 threads_elements, xml, &context) == 0)
2779 {
2780 int i;
2781 struct thread_item *item;
2782
2783 for (i = 0;
2784 VEC_iterate (thread_item_t, context.items, i, item);
2785 ++i)
2786 {
2787 if (!ptid_equal (item->ptid, null_ptid))
2788 {
2789 struct private_thread_info *info;
2790 /* In non-stop mode, we assume new found threads
2791 are running until proven otherwise with a
2792 stop reply. In all-stop, we can only get
2793 here if all threads are stopped. */
2794 int running = non_stop ? 1 : 0;
2795
2796 remote_notice_new_inferior (item->ptid, running);
2797
2798 info = demand_private_info (item->ptid);
2799 info->core = item->core;
2800 info->extra = item->extra;
2801 item->extra = NULL;
2802 }
2803 }
2804 }
2805 }
2806
2807 do_cleanups (back_to);
2808 return;
2809 }
2810 #endif
2811
2812 if (rs->use_threadinfo_query)
2813 {
2814 putpkt ("qfThreadInfo");
2815 getpkt (&rs->buf, &rs->buf_size, 0);
2816 bufp = rs->buf;
2817 if (bufp[0] != '\0') /* q packet recognized */
2818 {
2819 struct cleanup *old_chain;
2820 char *saved_reply;
2821
2822 /* remote_notice_new_inferior (in the loop below) may make
2823 new RSP calls, which clobber rs->buf. Work with a
2824 copy. */
2825 bufp = saved_reply = xstrdup (rs->buf);
2826 old_chain = make_cleanup (free_current_contents, &saved_reply);
2827
2828 while (*bufp++ == 'm') /* reply contains one or more TID */
2829 {
2830 do
2831 {
2832 new_thread = read_ptid (bufp, &bufp);
2833 if (!ptid_equal (new_thread, null_ptid))
2834 {
2835 /* In non-stop mode, we assume new found threads
2836 are running until proven otherwise with a
2837 stop reply. In all-stop, we can only get
2838 here if all threads are stopped. */
2839 int running = non_stop ? 1 : 0;
2840
2841 remote_notice_new_inferior (new_thread, running);
2842 }
2843 }
2844 while (*bufp++ == ','); /* comma-separated list */
2845 free_current_contents (&saved_reply);
2846 putpkt ("qsThreadInfo");
2847 getpkt (&rs->buf, &rs->buf_size, 0);
2848 bufp = saved_reply = xstrdup (rs->buf);
2849 }
2850 do_cleanups (old_chain);
2851 return; /* done */
2852 }
2853 }
2854
2855 /* Only qfThreadInfo is supported in non-stop mode. */
2856 if (non_stop)
2857 return;
2858
2859 /* Else fall back to old method based on jmetzler protocol. */
2860 rs->use_threadinfo_query = 0;
2861 remote_find_new_threads ();
2862 return;
2863 }
2864
2865 /*
2866 * Collect a descriptive string about the given thread.
2867 * The target may say anything it wants to about the thread
2868 * (typically info about its blocked / runnable state, name, etc.).
2869 * This string will appear in the info threads display.
2870 *
2871 * Optional: targets are not required to implement this function.
2872 */
2873
2874 static char *
2875 remote_threads_extra_info (struct thread_info *tp)
2876 {
2877 struct remote_state *rs = get_remote_state ();
2878 int result;
2879 int set;
2880 threadref id;
2881 struct gdb_ext_thread_info threadinfo;
2882 static char display_buf[100]; /* arbitrary... */
2883 int n = 0; /* position in display_buf */
2884
2885 if (rs->remote_desc == 0) /* paranoia */
2886 internal_error (__FILE__, __LINE__,
2887 _("remote_threads_extra_info"));
2888
2889 if (ptid_equal (tp->ptid, magic_null_ptid)
2890 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2891 /* This is the main thread which was added by GDB. The remote
2892 server doesn't know about it. */
2893 return NULL;
2894
2895 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2896 {
2897 struct thread_info *info = find_thread_ptid (tp->ptid);
2898
2899 if (info && info->private)
2900 return info->private->extra;
2901 else
2902 return NULL;
2903 }
2904
2905 if (rs->use_threadextra_query)
2906 {
2907 char *b = rs->buf;
2908 char *endb = rs->buf + get_remote_packet_size ();
2909
2910 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2911 b += strlen (b);
2912 write_ptid (b, endb, tp->ptid);
2913
2914 putpkt (rs->buf);
2915 getpkt (&rs->buf, &rs->buf_size, 0);
2916 if (rs->buf[0] != 0)
2917 {
2918 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2919 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2920 display_buf [result] = '\0';
2921 return display_buf;
2922 }
2923 }
2924
2925 /* If the above query fails, fall back to the old method. */
2926 rs->use_threadextra_query = 0;
2927 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2928 | TAG_MOREDISPLAY | TAG_DISPLAY;
2929 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2930 if (remote_get_threadinfo (&id, set, &threadinfo))
2931 if (threadinfo.active)
2932 {
2933 if (*threadinfo.shortname)
2934 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2935 " Name: %s,", threadinfo.shortname);
2936 if (*threadinfo.display)
2937 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2938 " State: %s,", threadinfo.display);
2939 if (*threadinfo.more_display)
2940 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2941 " Priority: %s", threadinfo.more_display);
2942
2943 if (n > 0)
2944 {
2945 /* For purely cosmetic reasons, clear up trailing commas. */
2946 if (',' == display_buf[n-1])
2947 display_buf[n-1] = ' ';
2948 return display_buf;
2949 }
2950 }
2951 return NULL;
2952 }
2953 \f
2954
2955 static int
2956 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2957 struct static_tracepoint_marker *marker)
2958 {
2959 struct remote_state *rs = get_remote_state ();
2960 char *p = rs->buf;
2961
2962 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2963 p += strlen (p);
2964 p += hexnumstr (p, addr);
2965 putpkt (rs->buf);
2966 getpkt (&rs->buf, &rs->buf_size, 0);
2967 p = rs->buf;
2968
2969 if (*p == 'E')
2970 error (_("Remote failure reply: %s"), p);
2971
2972 if (*p++ == 'm')
2973 {
2974 parse_static_tracepoint_marker_definition (p, &p, marker);
2975 return 1;
2976 }
2977
2978 return 0;
2979 }
2980
2981 static VEC(static_tracepoint_marker_p) *
2982 remote_static_tracepoint_markers_by_strid (const char *strid)
2983 {
2984 struct remote_state *rs = get_remote_state ();
2985 VEC(static_tracepoint_marker_p) *markers = NULL;
2986 struct static_tracepoint_marker *marker = NULL;
2987 struct cleanup *old_chain;
2988 char *p;
2989
2990 /* Ask for a first packet of static tracepoint marker
2991 definition. */
2992 putpkt ("qTfSTM");
2993 getpkt (&rs->buf, &rs->buf_size, 0);
2994 p = rs->buf;
2995 if (*p == 'E')
2996 error (_("Remote failure reply: %s"), p);
2997
2998 old_chain = make_cleanup (free_current_marker, &marker);
2999
3000 while (*p++ == 'm')
3001 {
3002 if (marker == NULL)
3003 marker = XCNEW (struct static_tracepoint_marker);
3004
3005 do
3006 {
3007 parse_static_tracepoint_marker_definition (p, &p, marker);
3008
3009 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3010 {
3011 VEC_safe_push (static_tracepoint_marker_p,
3012 markers, marker);
3013 marker = NULL;
3014 }
3015 else
3016 {
3017 release_static_tracepoint_marker (marker);
3018 memset (marker, 0, sizeof (*marker));
3019 }
3020 }
3021 while (*p++ == ','); /* comma-separated list */
3022 /* Ask for another packet of static tracepoint definition. */
3023 putpkt ("qTsSTM");
3024 getpkt (&rs->buf, &rs->buf_size, 0);
3025 p = rs->buf;
3026 }
3027
3028 do_cleanups (old_chain);
3029 return markers;
3030 }
3031
3032 \f
3033 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3034
3035 static ptid_t
3036 remote_get_ada_task_ptid (long lwp, long thread)
3037 {
3038 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
3039 }
3040 \f
3041
3042 /* Restart the remote side; this is an extended protocol operation. */
3043
3044 static void
3045 extended_remote_restart (void)
3046 {
3047 struct remote_state *rs = get_remote_state ();
3048
3049 /* Send the restart command; for reasons I don't understand the
3050 remote side really expects a number after the "R". */
3051 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3052 putpkt (rs->buf);
3053
3054 remote_fileio_reset ();
3055 }
3056 \f
3057 /* Clean up connection to a remote debugger. */
3058
3059 static void
3060 remote_close (void)
3061 {
3062 struct remote_state *rs = get_remote_state ();
3063
3064 if (rs->remote_desc == NULL)
3065 return; /* already closed */
3066
3067 /* Make sure we leave stdin registered in the event loop, and we
3068 don't leave the async SIGINT signal handler installed. */
3069 remote_terminal_ours ();
3070
3071 serial_close (rs->remote_desc);
3072 rs->remote_desc = NULL;
3073
3074 /* We don't have a connection to the remote stub anymore. Get rid
3075 of all the inferiors and their threads we were controlling.
3076 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3077 will be unable to find the thread corresponding to (pid, 0, 0). */
3078 inferior_ptid = null_ptid;
3079 discard_all_inferiors ();
3080
3081 /* We are closing the remote target, so we should discard
3082 everything of this target. */
3083 discard_pending_stop_replies_in_queue (rs);
3084
3085 if (remote_async_inferior_event_token)
3086 delete_async_event_handler (&remote_async_inferior_event_token);
3087
3088 remote_notif_state_xfree (rs->notif_state);
3089
3090 trace_reset_local_state ();
3091 }
3092
3093 /* Query the remote side for the text, data and bss offsets. */
3094
3095 static void
3096 get_offsets (void)
3097 {
3098 struct remote_state *rs = get_remote_state ();
3099 char *buf;
3100 char *ptr;
3101 int lose, num_segments = 0, do_sections, do_segments;
3102 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3103 struct section_offsets *offs;
3104 struct symfile_segment_data *data;
3105
3106 if (symfile_objfile == NULL)
3107 return;
3108
3109 putpkt ("qOffsets");
3110 getpkt (&rs->buf, &rs->buf_size, 0);
3111 buf = rs->buf;
3112
3113 if (buf[0] == '\000')
3114 return; /* Return silently. Stub doesn't support
3115 this command. */
3116 if (buf[0] == 'E')
3117 {
3118 warning (_("Remote failure reply: %s"), buf);
3119 return;
3120 }
3121
3122 /* Pick up each field in turn. This used to be done with scanf, but
3123 scanf will make trouble if CORE_ADDR size doesn't match
3124 conversion directives correctly. The following code will work
3125 with any size of CORE_ADDR. */
3126 text_addr = data_addr = bss_addr = 0;
3127 ptr = buf;
3128 lose = 0;
3129
3130 if (strncmp (ptr, "Text=", 5) == 0)
3131 {
3132 ptr += 5;
3133 /* Don't use strtol, could lose on big values. */
3134 while (*ptr && *ptr != ';')
3135 text_addr = (text_addr << 4) + fromhex (*ptr++);
3136
3137 if (strncmp (ptr, ";Data=", 6) == 0)
3138 {
3139 ptr += 6;
3140 while (*ptr && *ptr != ';')
3141 data_addr = (data_addr << 4) + fromhex (*ptr++);
3142 }
3143 else
3144 lose = 1;
3145
3146 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3147 {
3148 ptr += 5;
3149 while (*ptr && *ptr != ';')
3150 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3151
3152 if (bss_addr != data_addr)
3153 warning (_("Target reported unsupported offsets: %s"), buf);
3154 }
3155 else
3156 lose = 1;
3157 }
3158 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3159 {
3160 ptr += 8;
3161 /* Don't use strtol, could lose on big values. */
3162 while (*ptr && *ptr != ';')
3163 text_addr = (text_addr << 4) + fromhex (*ptr++);
3164 num_segments = 1;
3165
3166 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3167 {
3168 ptr += 9;
3169 while (*ptr && *ptr != ';')
3170 data_addr = (data_addr << 4) + fromhex (*ptr++);
3171 num_segments++;
3172 }
3173 }
3174 else
3175 lose = 1;
3176
3177 if (lose)
3178 error (_("Malformed response to offset query, %s"), buf);
3179 else if (*ptr != '\0')
3180 warning (_("Target reported unsupported offsets: %s"), buf);
3181
3182 offs = ((struct section_offsets *)
3183 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3184 memcpy (offs, symfile_objfile->section_offsets,
3185 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3186
3187 data = get_symfile_segment_data (symfile_objfile->obfd);
3188 do_segments = (data != NULL);
3189 do_sections = num_segments == 0;
3190
3191 if (num_segments > 0)
3192 {
3193 segments[0] = text_addr;
3194 segments[1] = data_addr;
3195 }
3196 /* If we have two segments, we can still try to relocate everything
3197 by assuming that the .text and .data offsets apply to the whole
3198 text and data segments. Convert the offsets given in the packet
3199 to base addresses for symfile_map_offsets_to_segments. */
3200 else if (data && data->num_segments == 2)
3201 {
3202 segments[0] = data->segment_bases[0] + text_addr;
3203 segments[1] = data->segment_bases[1] + data_addr;
3204 num_segments = 2;
3205 }
3206 /* If the object file has only one segment, assume that it is text
3207 rather than data; main programs with no writable data are rare,
3208 but programs with no code are useless. Of course the code might
3209 have ended up in the data segment... to detect that we would need
3210 the permissions here. */
3211 else if (data && data->num_segments == 1)
3212 {
3213 segments[0] = data->segment_bases[0] + text_addr;
3214 num_segments = 1;
3215 }
3216 /* There's no way to relocate by segment. */
3217 else
3218 do_segments = 0;
3219
3220 if (do_segments)
3221 {
3222 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3223 offs, num_segments, segments);
3224
3225 if (ret == 0 && !do_sections)
3226 error (_("Can not handle qOffsets TextSeg "
3227 "response with this symbol file"));
3228
3229 if (ret > 0)
3230 do_sections = 0;
3231 }
3232
3233 if (data)
3234 free_symfile_segment_data (data);
3235
3236 if (do_sections)
3237 {
3238 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3239
3240 /* This is a temporary kludge to force data and bss to use the
3241 same offsets because that's what nlmconv does now. The real
3242 solution requires changes to the stub and remote.c that I
3243 don't have time to do right now. */
3244
3245 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3246 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3247 }
3248
3249 objfile_relocate (symfile_objfile, offs);
3250 }
3251
3252 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3253 threads we know are stopped already. This is used during the
3254 initial remote connection in non-stop mode --- threads that are
3255 reported as already being stopped are left stopped. */
3256
3257 static int
3258 set_stop_requested_callback (struct thread_info *thread, void *data)
3259 {
3260 /* If we have a stop reply for this thread, it must be stopped. */
3261 if (peek_stop_reply (thread->ptid))
3262 set_stop_requested (thread->ptid, 1);
3263
3264 return 0;
3265 }
3266
3267 /* Send interrupt_sequence to remote target. */
3268 static void
3269 send_interrupt_sequence (void)
3270 {
3271 struct remote_state *rs = get_remote_state ();
3272
3273 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3274 remote_serial_write ("\x03", 1);
3275 else if (interrupt_sequence_mode == interrupt_sequence_break)
3276 serial_send_break (rs->remote_desc);
3277 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3278 {
3279 serial_send_break (rs->remote_desc);
3280 remote_serial_write ("g", 1);
3281 }
3282 else
3283 internal_error (__FILE__, __LINE__,
3284 _("Invalid value for interrupt_sequence_mode: %s."),
3285 interrupt_sequence_mode);
3286 }
3287
3288
3289 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3290 and extract the PTID. Returns NULL_PTID if not found. */
3291
3292 static ptid_t
3293 stop_reply_extract_thread (char *stop_reply)
3294 {
3295 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3296 {
3297 char *p;
3298
3299 /* Txx r:val ; r:val (...) */
3300 p = &stop_reply[3];
3301
3302 /* Look for "register" named "thread". */
3303 while (*p != '\0')
3304 {
3305 char *p1;
3306
3307 p1 = strchr (p, ':');
3308 if (p1 == NULL)
3309 return null_ptid;
3310
3311 if (strncmp (p, "thread", p1 - p) == 0)
3312 return read_ptid (++p1, &p);
3313
3314 p1 = strchr (p, ';');
3315 if (p1 == NULL)
3316 return null_ptid;
3317 p1++;
3318
3319 p = p1;
3320 }
3321 }
3322
3323 return null_ptid;
3324 }
3325
3326 /* Determine the remote side's current thread. If we have a stop
3327 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3328 "thread" register we can extract the current thread from. If not,
3329 ask the remote which is the current thread with qC. The former
3330 method avoids a roundtrip. */
3331
3332 static ptid_t
3333 get_current_thread (char *wait_status)
3334 {
3335 ptid_t ptid;
3336
3337 /* Note we don't use remote_parse_stop_reply as that makes use of
3338 the target architecture, which we haven't yet fully determined at
3339 this point. */
3340 if (wait_status != NULL)
3341 ptid = stop_reply_extract_thread (wait_status);
3342 if (ptid_equal (ptid, null_ptid))
3343 ptid = remote_current_thread (inferior_ptid);
3344
3345 return ptid;
3346 }
3347
3348 /* Query the remote target for which is the current thread/process,
3349 add it to our tables, and update INFERIOR_PTID. The caller is
3350 responsible for setting the state such that the remote end is ready
3351 to return the current thread.
3352
3353 This function is called after handling the '?' or 'vRun' packets,
3354 whose response is a stop reply from which we can also try
3355 extracting the thread. If the target doesn't support the explicit
3356 qC query, we infer the current thread from that stop reply, passed
3357 in in WAIT_STATUS, which may be NULL. */
3358
3359 static void
3360 add_current_inferior_and_thread (char *wait_status)
3361 {
3362 struct remote_state *rs = get_remote_state ();
3363 int fake_pid_p = 0;
3364 ptid_t ptid = null_ptid;
3365
3366 inferior_ptid = null_ptid;
3367
3368 /* Now, if we have thread information, update inferior_ptid. */
3369 ptid = get_current_thread (wait_status);
3370
3371 if (!ptid_equal (ptid, null_ptid))
3372 {
3373 if (!remote_multi_process_p (rs))
3374 fake_pid_p = 1;
3375
3376 inferior_ptid = ptid;
3377 }
3378 else
3379 {
3380 /* Without this, some commands which require an active target
3381 (such as kill) won't work. This variable serves (at least)
3382 double duty as both the pid of the target process (if it has
3383 such), and as a flag indicating that a target is active. */
3384 inferior_ptid = magic_null_ptid;
3385 fake_pid_p = 1;
3386 }
3387
3388 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3389
3390 /* Add the main thread. */
3391 add_thread_silent (inferior_ptid);
3392 }
3393
3394 static void
3395 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3396 {
3397 struct remote_state *rs = get_remote_state ();
3398 struct packet_config *noack_config;
3399 char *wait_status = NULL;
3400
3401 immediate_quit++; /* Allow user to interrupt it. */
3402 QUIT;
3403
3404 if (interrupt_on_connect)
3405 send_interrupt_sequence ();
3406
3407 /* Ack any packet which the remote side has already sent. */
3408 serial_write (rs->remote_desc, "+", 1);
3409
3410 /* Signal other parts that we're going through the initial setup,
3411 and so things may not be stable yet. */
3412 rs->starting_up = 1;
3413
3414 /* The first packet we send to the target is the optional "supported
3415 packets" request. If the target can answer this, it will tell us
3416 which later probes to skip. */
3417 remote_query_supported ();
3418
3419 /* If the stub wants to get a QAllow, compose one and send it. */
3420 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3421 remote_set_permissions ();
3422
3423 /* Next, we possibly activate noack mode.
3424
3425 If the QStartNoAckMode packet configuration is set to AUTO,
3426 enable noack mode if the stub reported a wish for it with
3427 qSupported.
3428
3429 If set to TRUE, then enable noack mode even if the stub didn't
3430 report it in qSupported. If the stub doesn't reply OK, the
3431 session ends with an error.
3432
3433 If FALSE, then don't activate noack mode, regardless of what the
3434 stub claimed should be the default with qSupported. */
3435
3436 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3437
3438 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3439 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3440 && noack_config->support == PACKET_ENABLE))
3441 {
3442 putpkt ("QStartNoAckMode");
3443 getpkt (&rs->buf, &rs->buf_size, 0);
3444 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3445 rs->noack_mode = 1;
3446 }
3447
3448 if (extended_p)
3449 {
3450 /* Tell the remote that we are using the extended protocol. */
3451 putpkt ("!");
3452 getpkt (&rs->buf, &rs->buf_size, 0);
3453 }
3454
3455 /* Let the target know which signals it is allowed to pass down to
3456 the program. */
3457 update_signals_program_target ();
3458
3459 /* Next, if the target can specify a description, read it. We do
3460 this before anything involving memory or registers. */
3461 target_find_description ();
3462
3463 /* Next, now that we know something about the target, update the
3464 address spaces in the program spaces. */
3465 update_address_spaces ();
3466
3467 /* On OSs where the list of libraries is global to all
3468 processes, we fetch them early. */
3469 if (gdbarch_has_global_solist (target_gdbarch ()))
3470 solib_add (NULL, from_tty, target, auto_solib_add);
3471
3472 if (non_stop)
3473 {
3474 if (!rs->non_stop_aware)
3475 error (_("Non-stop mode requested, but remote "
3476 "does not support non-stop"));
3477
3478 putpkt ("QNonStop:1");
3479 getpkt (&rs->buf, &rs->buf_size, 0);
3480
3481 if (strcmp (rs->buf, "OK") != 0)
3482 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3483
3484 /* Find about threads and processes the stub is already
3485 controlling. We default to adding them in the running state.
3486 The '?' query below will then tell us about which threads are
3487 stopped. */
3488 remote_threads_info (target);
3489 }
3490 else if (rs->non_stop_aware)
3491 {
3492 /* Don't assume that the stub can operate in all-stop mode.
3493 Request it explicitly. */
3494 putpkt ("QNonStop:0");
3495 getpkt (&rs->buf, &rs->buf_size, 0);
3496
3497 if (strcmp (rs->buf, "OK") != 0)
3498 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3499 }
3500
3501 /* Upload TSVs regardless of whether the target is running or not. The
3502 remote stub, such as GDBserver, may have some predefined or builtin
3503 TSVs, even if the target is not running. */
3504 if (remote_get_trace_status (current_trace_status ()) != -1)
3505 {
3506 struct uploaded_tsv *uploaded_tsvs = NULL;
3507
3508 remote_upload_trace_state_variables (&uploaded_tsvs);
3509 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3510 }
3511
3512 /* Check whether the target is running now. */
3513 putpkt ("?");
3514 getpkt (&rs->buf, &rs->buf_size, 0);
3515
3516 if (!non_stop)
3517 {
3518 ptid_t ptid;
3519 int fake_pid_p = 0;
3520 struct inferior *inf;
3521
3522 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3523 {
3524 if (!extended_p)
3525 error (_("The target is not running (try extended-remote?)"));
3526
3527 /* We're connected, but not running. Drop out before we
3528 call start_remote. */
3529 rs->starting_up = 0;
3530 return;
3531 }
3532 else
3533 {
3534 /* Save the reply for later. */
3535 wait_status = alloca (strlen (rs->buf) + 1);
3536 strcpy (wait_status, rs->buf);
3537 }
3538
3539 /* Fetch thread list. */
3540 target_find_new_threads ();
3541
3542 /* Let the stub know that we want it to return the thread. */
3543 set_continue_thread (minus_one_ptid);
3544
3545 if (thread_count () == 0)
3546 {
3547 /* Target has no concept of threads at all. GDB treats
3548 non-threaded target as single-threaded; add a main
3549 thread. */
3550 add_current_inferior_and_thread (wait_status);
3551 }
3552 else
3553 {
3554 /* We have thread information; select the thread the target
3555 says should be current. If we're reconnecting to a
3556 multi-threaded program, this will ideally be the thread
3557 that last reported an event before GDB disconnected. */
3558 inferior_ptid = get_current_thread (wait_status);
3559 if (ptid_equal (inferior_ptid, null_ptid))
3560 {
3561 /* Odd... The target was able to list threads, but not
3562 tell us which thread was current (no "thread"
3563 register in T stop reply?). Just pick the first
3564 thread in the thread list then. */
3565 inferior_ptid = thread_list->ptid;
3566 }
3567 }
3568
3569 /* init_wait_for_inferior should be called before get_offsets in order
3570 to manage `inserted' flag in bp loc in a correct state.
3571 breakpoint_init_inferior, called from init_wait_for_inferior, set
3572 `inserted' flag to 0, while before breakpoint_re_set, called from
3573 start_remote, set `inserted' flag to 1. In the initialization of
3574 inferior, breakpoint_init_inferior should be called first, and then
3575 breakpoint_re_set can be called. If this order is broken, state of
3576 `inserted' flag is wrong, and cause some problems on breakpoint
3577 manipulation. */
3578 init_wait_for_inferior ();
3579
3580 get_offsets (); /* Get text, data & bss offsets. */
3581
3582 /* If we could not find a description using qXfer, and we know
3583 how to do it some other way, try again. This is not
3584 supported for non-stop; it could be, but it is tricky if
3585 there are no stopped threads when we connect. */
3586 if (remote_read_description_p (target)
3587 && gdbarch_target_desc (target_gdbarch ()) == NULL)
3588 {
3589 target_clear_description ();
3590 target_find_description ();
3591 }
3592
3593 /* Use the previously fetched status. */
3594 gdb_assert (wait_status != NULL);
3595 strcpy (rs->buf, wait_status);
3596 rs->cached_wait_status = 1;
3597
3598 immediate_quit--;
3599 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3600 }
3601 else
3602 {
3603 /* Clear WFI global state. Do this before finding about new
3604 threads and inferiors, and setting the current inferior.
3605 Otherwise we would clear the proceed status of the current
3606 inferior when we want its stop_soon state to be preserved
3607 (see notice_new_inferior). */
3608 init_wait_for_inferior ();
3609
3610 /* In non-stop, we will either get an "OK", meaning that there
3611 are no stopped threads at this time; or, a regular stop
3612 reply. In the latter case, there may be more than one thread
3613 stopped --- we pull them all out using the vStopped
3614 mechanism. */
3615 if (strcmp (rs->buf, "OK") != 0)
3616 {
3617 struct notif_client *notif = &notif_client_stop;
3618
3619 /* remote_notif_get_pending_replies acks this one, and gets
3620 the rest out. */
3621 rs->notif_state->pending_event[notif_client_stop.id]
3622 = remote_notif_parse (notif, rs->buf);
3623 remote_notif_get_pending_events (notif);
3624
3625 /* Make sure that threads that were stopped remain
3626 stopped. */
3627 iterate_over_threads (set_stop_requested_callback, NULL);
3628 }
3629
3630 if (target_can_async_p ())
3631 target_async (inferior_event_handler, 0);
3632
3633 if (thread_count () == 0)
3634 {
3635 if (!extended_p)
3636 error (_("The target is not running (try extended-remote?)"));
3637
3638 /* We're connected, but not running. Drop out before we
3639 call start_remote. */
3640 rs->starting_up = 0;
3641 return;
3642 }
3643
3644 /* Let the stub know that we want it to return the thread. */
3645
3646 /* Force the stub to choose a thread. */
3647 set_general_thread (null_ptid);
3648
3649 /* Query it. */
3650 inferior_ptid = remote_current_thread (minus_one_ptid);
3651 if (ptid_equal (inferior_ptid, minus_one_ptid))
3652 error (_("remote didn't report the current thread in non-stop mode"));
3653
3654 get_offsets (); /* Get text, data & bss offsets. */
3655
3656 /* In non-stop mode, any cached wait status will be stored in
3657 the stop reply queue. */
3658 gdb_assert (wait_status == NULL);
3659
3660 /* Report all signals during attach/startup. */
3661 remote_pass_signals (0, NULL);
3662 }
3663
3664 /* If we connected to a live target, do some additional setup. */
3665 if (target_has_execution)
3666 {
3667 if (symfile_objfile) /* No use without a symbol-file. */
3668 remote_check_symbols ();
3669 }
3670
3671 /* Possibly the target has been engaged in a trace run started
3672 previously; find out where things are at. */
3673 if (remote_get_trace_status (current_trace_status ()) != -1)
3674 {
3675 struct uploaded_tp *uploaded_tps = NULL;
3676
3677 if (current_trace_status ()->running)
3678 printf_filtered (_("Trace is already running on the target.\n"));
3679
3680 remote_upload_tracepoints (&uploaded_tps);
3681
3682 merge_uploaded_tracepoints (&uploaded_tps);
3683 }
3684
3685 /* The thread and inferior lists are now synchronized with the
3686 target, our symbols have been relocated, and we're merged the
3687 target's tracepoints with ours. We're done with basic start
3688 up. */
3689 rs->starting_up = 0;
3690
3691 /* If breakpoints are global, insert them now. */
3692 if (gdbarch_has_global_breakpoints (target_gdbarch ())
3693 && breakpoints_always_inserted_mode ())
3694 insert_breakpoints ();
3695 }
3696
3697 /* Open a connection to a remote debugger.
3698 NAME is the filename used for communication. */
3699
3700 static void
3701 remote_open (char *name, int from_tty)
3702 {
3703 remote_open_1 (name, from_tty, &remote_ops, 0);
3704 }
3705
3706 /* Open a connection to a remote debugger using the extended
3707 remote gdb protocol. NAME is the filename used for communication. */
3708
3709 static void
3710 extended_remote_open (char *name, int from_tty)
3711 {
3712 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3713 }
3714
3715 /* Generic code for opening a connection to a remote target. */
3716
3717 static void
3718 init_all_packet_configs (void)
3719 {
3720 int i;
3721
3722 for (i = 0; i < PACKET_MAX; i++)
3723 update_packet_config (&remote_protocol_packets[i]);
3724 }
3725
3726 /* Symbol look-up. */
3727
3728 static void
3729 remote_check_symbols (void)
3730 {
3731 struct remote_state *rs = get_remote_state ();
3732 char *msg, *reply, *tmp;
3733 struct minimal_symbol *sym;
3734 int end;
3735
3736 /* The remote side has no concept of inferiors that aren't running
3737 yet, it only knows about running processes. If we're connected
3738 but our current inferior is not running, we should not invite the
3739 remote target to request symbol lookups related to its
3740 (unrelated) current process. */
3741 if (!target_has_execution)
3742 return;
3743
3744 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3745 return;
3746
3747 /* Make sure the remote is pointing at the right process. Note
3748 there's no way to select "no process". */
3749 set_general_process ();
3750
3751 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3752 because we need both at the same time. */
3753 msg = alloca (get_remote_packet_size ());
3754
3755 /* Invite target to request symbol lookups. */
3756
3757 putpkt ("qSymbol::");
3758 getpkt (&rs->buf, &rs->buf_size, 0);
3759 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3760 reply = rs->buf;
3761
3762 while (strncmp (reply, "qSymbol:", 8) == 0)
3763 {
3764 tmp = &reply[8];
3765 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3766 msg[end] = '\0';
3767 sym = lookup_minimal_symbol (msg, NULL, NULL);
3768 if (sym == NULL)
3769 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3770 else
3771 {
3772 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
3773 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3774
3775 /* If this is a function address, return the start of code
3776 instead of any data function descriptor. */
3777 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3778 sym_addr,
3779 &current_target);
3780
3781 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3782 phex_nz (sym_addr, addr_size), &reply[8]);
3783 }
3784
3785 putpkt (msg);
3786 getpkt (&rs->buf, &rs->buf_size, 0);
3787 reply = rs->buf;
3788 }
3789 }
3790
3791 static struct serial *
3792 remote_serial_open (char *name)
3793 {
3794 static int udp_warning = 0;
3795
3796 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3797 of in ser-tcp.c, because it is the remote protocol assuming that the
3798 serial connection is reliable and not the serial connection promising
3799 to be. */
3800 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3801 {
3802 warning (_("The remote protocol may be unreliable over UDP.\n"
3803 "Some events may be lost, rendering further debugging "
3804 "impossible."));
3805 udp_warning = 1;
3806 }
3807
3808 return serial_open (name);
3809 }
3810
3811 /* Inform the target of our permission settings. The permission flags
3812 work without this, but if the target knows the settings, it can do
3813 a couple things. First, it can add its own check, to catch cases
3814 that somehow manage to get by the permissions checks in target
3815 methods. Second, if the target is wired to disallow particular
3816 settings (for instance, a system in the field that is not set up to
3817 be able to stop at a breakpoint), it can object to any unavailable
3818 permissions. */
3819
3820 void
3821 remote_set_permissions (void)
3822 {
3823 struct remote_state *rs = get_remote_state ();
3824
3825 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3826 "WriteReg:%x;WriteMem:%x;"
3827 "InsertBreak:%x;InsertTrace:%x;"
3828 "InsertFastTrace:%x;Stop:%x",
3829 may_write_registers, may_write_memory,
3830 may_insert_breakpoints, may_insert_tracepoints,
3831 may_insert_fast_tracepoints, may_stop);
3832 putpkt (rs->buf);
3833 getpkt (&rs->buf, &rs->buf_size, 0);
3834
3835 /* If the target didn't like the packet, warn the user. Do not try
3836 to undo the user's settings, that would just be maddening. */
3837 if (strcmp (rs->buf, "OK") != 0)
3838 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3839 }
3840
3841 /* This type describes each known response to the qSupported
3842 packet. */
3843 struct protocol_feature
3844 {
3845 /* The name of this protocol feature. */
3846 const char *name;
3847
3848 /* The default for this protocol feature. */
3849 enum packet_support default_support;
3850
3851 /* The function to call when this feature is reported, or after
3852 qSupported processing if the feature is not supported.
3853 The first argument points to this structure. The second
3854 argument indicates whether the packet requested support be
3855 enabled, disabled, or probed (or the default, if this function
3856 is being called at the end of processing and this feature was
3857 not reported). The third argument may be NULL; if not NULL, it
3858 is a NUL-terminated string taken from the packet following
3859 this feature's name and an equals sign. */
3860 void (*func) (const struct protocol_feature *, enum packet_support,
3861 const char *);
3862
3863 /* The corresponding packet for this feature. Only used if
3864 FUNC is remote_supported_packet. */
3865 int packet;
3866 };
3867
3868 static void
3869 remote_supported_packet (const struct protocol_feature *feature,
3870 enum packet_support support,
3871 const char *argument)
3872 {
3873 if (argument)
3874 {
3875 warning (_("Remote qSupported response supplied an unexpected value for"
3876 " \"%s\"."), feature->name);
3877 return;
3878 }
3879
3880 if (remote_protocol_packets[feature->packet].support
3881 == PACKET_SUPPORT_UNKNOWN)
3882 remote_protocol_packets[feature->packet].support = support;
3883 }
3884
3885 static void
3886 remote_packet_size (const struct protocol_feature *feature,
3887 enum packet_support support, const char *value)
3888 {
3889 struct remote_state *rs = get_remote_state ();
3890
3891 int packet_size;
3892 char *value_end;
3893
3894 if (support != PACKET_ENABLE)
3895 return;
3896
3897 if (value == NULL || *value == '\0')
3898 {
3899 warning (_("Remote target reported \"%s\" without a size."),
3900 feature->name);
3901 return;
3902 }
3903
3904 errno = 0;
3905 packet_size = strtol (value, &value_end, 16);
3906 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3907 {
3908 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3909 feature->name, value);
3910 return;
3911 }
3912
3913 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3914 {
3915 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3916 packet_size, MAX_REMOTE_PACKET_SIZE);
3917 packet_size = MAX_REMOTE_PACKET_SIZE;
3918 }
3919
3920 /* Record the new maximum packet size. */
3921 rs->explicit_packet_size = packet_size;
3922 }
3923
3924 static void
3925 remote_multi_process_feature (const struct protocol_feature *feature,
3926 enum packet_support support, const char *value)
3927 {
3928 struct remote_state *rs = get_remote_state ();
3929
3930 rs->multi_process_aware = (support == PACKET_ENABLE);
3931 }
3932
3933 static void
3934 remote_non_stop_feature (const struct protocol_feature *feature,
3935 enum packet_support support, const char *value)
3936 {
3937 struct remote_state *rs = get_remote_state ();
3938
3939 rs->non_stop_aware = (support == PACKET_ENABLE);
3940 }
3941
3942 static void
3943 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3944 enum packet_support support,
3945 const char *value)
3946 {
3947 struct remote_state *rs = get_remote_state ();
3948
3949 rs->cond_tracepoints = (support == PACKET_ENABLE);
3950 }
3951
3952 static void
3953 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3954 enum packet_support support,
3955 const char *value)
3956 {
3957 struct remote_state *rs = get_remote_state ();
3958
3959 rs->cond_breakpoints = (support == PACKET_ENABLE);
3960 }
3961
3962 static void
3963 remote_breakpoint_commands_feature (const struct protocol_feature *feature,
3964 enum packet_support support,
3965 const char *value)
3966 {
3967 struct remote_state *rs = get_remote_state ();
3968
3969 rs->breakpoint_commands = (support == PACKET_ENABLE);
3970 }
3971
3972 static void
3973 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3974 enum packet_support support,
3975 const char *value)
3976 {
3977 struct remote_state *rs = get_remote_state ();
3978
3979 rs->fast_tracepoints = (support == PACKET_ENABLE);
3980 }
3981
3982 static void
3983 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3984 enum packet_support support,
3985 const char *value)
3986 {
3987 struct remote_state *rs = get_remote_state ();
3988
3989 rs->static_tracepoints = (support == PACKET_ENABLE);
3990 }
3991
3992 static void
3993 remote_install_in_trace_feature (const struct protocol_feature *feature,
3994 enum packet_support support,
3995 const char *value)
3996 {
3997 struct remote_state *rs = get_remote_state ();
3998
3999 rs->install_in_trace = (support == PACKET_ENABLE);
4000 }
4001
4002 static void
4003 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
4004 enum packet_support support,
4005 const char *value)
4006 {
4007 struct remote_state *rs = get_remote_state ();
4008
4009 rs->disconnected_tracing = (support == PACKET_ENABLE);
4010 }
4011
4012 static void
4013 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
4014 enum packet_support support,
4015 const char *value)
4016 {
4017 struct remote_state *rs = get_remote_state ();
4018
4019 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
4020 }
4021
4022 static void
4023 remote_string_tracing_feature (const struct protocol_feature *feature,
4024 enum packet_support support,
4025 const char *value)
4026 {
4027 struct remote_state *rs = get_remote_state ();
4028
4029 rs->string_tracing = (support == PACKET_ENABLE);
4030 }
4031
4032 static void
4033 remote_augmented_libraries_svr4_read_feature
4034 (const struct protocol_feature *feature,
4035 enum packet_support support, const char *value)
4036 {
4037 struct remote_state *rs = get_remote_state ();
4038
4039 rs->augmented_libraries_svr4_read = (support == PACKET_ENABLE);
4040 }
4041
4042 static const struct protocol_feature remote_protocol_features[] = {
4043 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4044 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4045 PACKET_qXfer_auxv },
4046 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4047 PACKET_qXfer_features },
4048 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4049 PACKET_qXfer_libraries },
4050 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4051 PACKET_qXfer_libraries_svr4 },
4052 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4053 remote_augmented_libraries_svr4_read_feature, -1 },
4054 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4055 PACKET_qXfer_memory_map },
4056 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4057 PACKET_qXfer_spu_read },
4058 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4059 PACKET_qXfer_spu_write },
4060 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4061 PACKET_qXfer_osdata },
4062 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4063 PACKET_qXfer_threads },
4064 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4065 PACKET_qXfer_traceframe_info },
4066 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4067 PACKET_QPassSignals },
4068 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4069 PACKET_QProgramSignals },
4070 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4071 PACKET_QStartNoAckMode },
4072 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
4073 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
4074 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4075 PACKET_qXfer_siginfo_read },
4076 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4077 PACKET_qXfer_siginfo_write },
4078 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
4079 PACKET_ConditionalTracepoints },
4080 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
4081 PACKET_ConditionalBreakpoints },
4082 { "BreakpointCommands", PACKET_DISABLE, remote_breakpoint_commands_feature,
4083 PACKET_BreakpointCommands },
4084 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
4085 PACKET_FastTracepoints },
4086 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
4087 PACKET_StaticTracepoints },
4088 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
4089 PACKET_InstallInTrace},
4090 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
4091 -1 },
4092 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4093 PACKET_bc },
4094 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4095 PACKET_bs },
4096 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4097 PACKET_TracepointSource },
4098 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4099 PACKET_QAllow },
4100 { "EnableDisableTracepoints", PACKET_DISABLE,
4101 remote_enable_disable_tracepoint_feature, -1 },
4102 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4103 PACKET_qXfer_fdpic },
4104 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4105 PACKET_qXfer_uib },
4106 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4107 PACKET_QDisableRandomization },
4108 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4109 { "QTBuffer:size", PACKET_DISABLE,
4110 remote_supported_packet, PACKET_QTBuffer_size},
4111 { "tracenz", PACKET_DISABLE,
4112 remote_string_tracing_feature, -1 },
4113 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4114 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4115 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4116 PACKET_qXfer_btrace }
4117 };
4118
4119 static char *remote_support_xml;
4120
4121 /* Register string appended to "xmlRegisters=" in qSupported query. */
4122
4123 void
4124 register_remote_support_xml (const char *xml)
4125 {
4126 #if defined(HAVE_LIBEXPAT)
4127 if (remote_support_xml == NULL)
4128 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4129 else
4130 {
4131 char *copy = xstrdup (remote_support_xml + 13);
4132 char *p = strtok (copy, ",");
4133
4134 do
4135 {
4136 if (strcmp (p, xml) == 0)
4137 {
4138 /* already there */
4139 xfree (copy);
4140 return;
4141 }
4142 }
4143 while ((p = strtok (NULL, ",")) != NULL);
4144 xfree (copy);
4145
4146 remote_support_xml = reconcat (remote_support_xml,
4147 remote_support_xml, ",", xml,
4148 (char *) NULL);
4149 }
4150 #endif
4151 }
4152
4153 static char *
4154 remote_query_supported_append (char *msg, const char *append)
4155 {
4156 if (msg)
4157 return reconcat (msg, msg, ";", append, (char *) NULL);
4158 else
4159 return xstrdup (append);
4160 }
4161
4162 static void
4163 remote_query_supported (void)
4164 {
4165 struct remote_state *rs = get_remote_state ();
4166 char *next;
4167 int i;
4168 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4169
4170 /* The packet support flags are handled differently for this packet
4171 than for most others. We treat an error, a disabled packet, and
4172 an empty response identically: any features which must be reported
4173 to be used will be automatically disabled. An empty buffer
4174 accomplishes this, since that is also the representation for a list
4175 containing no features. */
4176
4177 rs->buf[0] = 0;
4178 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
4179 {
4180 char *q = NULL;
4181 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4182
4183 q = remote_query_supported_append (q, "multiprocess+");
4184
4185 if (remote_support_xml)
4186 q = remote_query_supported_append (q, remote_support_xml);
4187
4188 q = remote_query_supported_append (q, "qRelocInsn+");
4189
4190 q = reconcat (q, "qSupported:", q, (char *) NULL);
4191 putpkt (q);
4192
4193 do_cleanups (old_chain);
4194
4195 getpkt (&rs->buf, &rs->buf_size, 0);
4196
4197 /* If an error occured, warn, but do not return - just reset the
4198 buffer to empty and go on to disable features. */
4199 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4200 == PACKET_ERROR)
4201 {
4202 warning (_("Remote failure reply: %s"), rs->buf);
4203 rs->buf[0] = 0;
4204 }
4205 }
4206
4207 memset (seen, 0, sizeof (seen));
4208
4209 next = rs->buf;
4210 while (*next)
4211 {
4212 enum packet_support is_supported;
4213 char *p, *end, *name_end, *value;
4214
4215 /* First separate out this item from the rest of the packet. If
4216 there's another item after this, we overwrite the separator
4217 (terminated strings are much easier to work with). */
4218 p = next;
4219 end = strchr (p, ';');
4220 if (end == NULL)
4221 {
4222 end = p + strlen (p);
4223 next = end;
4224 }
4225 else
4226 {
4227 *end = '\0';
4228 next = end + 1;
4229
4230 if (end == p)
4231 {
4232 warning (_("empty item in \"qSupported\" response"));
4233 continue;
4234 }
4235 }
4236
4237 name_end = strchr (p, '=');
4238 if (name_end)
4239 {
4240 /* This is a name=value entry. */
4241 is_supported = PACKET_ENABLE;
4242 value = name_end + 1;
4243 *name_end = '\0';
4244 }
4245 else
4246 {
4247 value = NULL;
4248 switch (end[-1])
4249 {
4250 case '+':
4251 is_supported = PACKET_ENABLE;
4252 break;
4253
4254 case '-':
4255 is_supported = PACKET_DISABLE;
4256 break;
4257
4258 case '?':
4259 is_supported = PACKET_SUPPORT_UNKNOWN;
4260 break;
4261
4262 default:
4263 warning (_("unrecognized item \"%s\" "
4264 "in \"qSupported\" response"), p);
4265 continue;
4266 }
4267 end[-1] = '\0';
4268 }
4269
4270 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4271 if (strcmp (remote_protocol_features[i].name, p) == 0)
4272 {
4273 const struct protocol_feature *feature;
4274
4275 seen[i] = 1;
4276 feature = &remote_protocol_features[i];
4277 feature->func (feature, is_supported, value);
4278 break;
4279 }
4280 }
4281
4282 /* If we increased the packet size, make sure to increase the global
4283 buffer size also. We delay this until after parsing the entire
4284 qSupported packet, because this is the same buffer we were
4285 parsing. */
4286 if (rs->buf_size < rs->explicit_packet_size)
4287 {
4288 rs->buf_size = rs->explicit_packet_size;
4289 rs->buf = xrealloc (rs->buf, rs->buf_size);
4290 }
4291
4292 /* Handle the defaults for unmentioned features. */
4293 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4294 if (!seen[i])
4295 {
4296 const struct protocol_feature *feature;
4297
4298 feature = &remote_protocol_features[i];
4299 feature->func (feature, feature->default_support, NULL);
4300 }
4301 }
4302
4303 /* Remove any of the remote.c targets from target stack. Upper targets depend
4304 on it so remove them first. */
4305
4306 static void
4307 remote_unpush_target (void)
4308 {
4309 pop_all_targets_above (process_stratum - 1);
4310 }
4311
4312 static void
4313 remote_open_1 (char *name, int from_tty,
4314 struct target_ops *target, int extended_p)
4315 {
4316 struct remote_state *rs = get_remote_state ();
4317
4318 if (name == 0)
4319 error (_("To open a remote debug connection, you need to specify what\n"
4320 "serial device is attached to the remote system\n"
4321 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4322
4323 /* See FIXME above. */
4324 if (!target_async_permitted)
4325 wait_forever_enabled_p = 1;
4326
4327 /* If we're connected to a running target, target_preopen will kill it.
4328 Ask this question first, before target_preopen has a chance to kill
4329 anything. */
4330 if (rs->remote_desc != NULL && !have_inferiors ())
4331 {
4332 if (from_tty
4333 && !query (_("Already connected to a remote target. Disconnect? ")))
4334 error (_("Still connected."));
4335 }
4336
4337 /* Here the possibly existing remote target gets unpushed. */
4338 target_preopen (from_tty);
4339
4340 /* Make sure we send the passed signals list the next time we resume. */
4341 xfree (rs->last_pass_packet);
4342 rs->last_pass_packet = NULL;
4343
4344 /* Make sure we send the program signals list the next time we
4345 resume. */
4346 xfree (rs->last_program_signals_packet);
4347 rs->last_program_signals_packet = NULL;
4348
4349 remote_fileio_reset ();
4350 reopen_exec_file ();
4351 reread_symbols ();
4352
4353 rs->remote_desc = remote_serial_open (name);
4354 if (!rs->remote_desc)
4355 perror_with_name (name);
4356
4357 if (baud_rate != -1)
4358 {
4359 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4360 {
4361 /* The requested speed could not be set. Error out to
4362 top level after closing remote_desc. Take care to
4363 set remote_desc to NULL to avoid closing remote_desc
4364 more than once. */
4365 serial_close (rs->remote_desc);
4366 rs->remote_desc = NULL;
4367 perror_with_name (name);
4368 }
4369 }
4370
4371 serial_raw (rs->remote_desc);
4372
4373 /* If there is something sitting in the buffer we might take it as a
4374 response to a command, which would be bad. */
4375 serial_flush_input (rs->remote_desc);
4376
4377 if (from_tty)
4378 {
4379 puts_filtered ("Remote debugging using ");
4380 puts_filtered (name);
4381 puts_filtered ("\n");
4382 }
4383 push_target (target); /* Switch to using remote target now. */
4384
4385 /* Register extra event sources in the event loop. */
4386 remote_async_inferior_event_token
4387 = create_async_event_handler (remote_async_inferior_event_handler,
4388 NULL);
4389 rs->notif_state = remote_notif_state_allocate ();
4390
4391 /* Reset the target state; these things will be queried either by
4392 remote_query_supported or as they are needed. */
4393 init_all_packet_configs ();
4394 rs->cached_wait_status = 0;
4395 rs->explicit_packet_size = 0;
4396 rs->noack_mode = 0;
4397 rs->multi_process_aware = 0;
4398 rs->extended = extended_p;
4399 rs->non_stop_aware = 0;
4400 rs->waiting_for_stop_reply = 0;
4401 rs->ctrlc_pending_p = 0;
4402
4403 rs->general_thread = not_sent_ptid;
4404 rs->continue_thread = not_sent_ptid;
4405 rs->remote_traceframe_number = -1;
4406
4407 /* Probe for ability to use "ThreadInfo" query, as required. */
4408 rs->use_threadinfo_query = 1;
4409 rs->use_threadextra_query = 1;
4410
4411 if (target_async_permitted)
4412 {
4413 /* With this target we start out by owning the terminal. */
4414 remote_async_terminal_ours_p = 1;
4415
4416 /* FIXME: cagney/1999-09-23: During the initial connection it is
4417 assumed that the target is already ready and able to respond to
4418 requests. Unfortunately remote_start_remote() eventually calls
4419 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4420 around this. Eventually a mechanism that allows
4421 wait_for_inferior() to expect/get timeouts will be
4422 implemented. */
4423 wait_forever_enabled_p = 0;
4424 }
4425
4426 /* First delete any symbols previously loaded from shared libraries. */
4427 no_shared_libraries (NULL, 0);
4428
4429 /* Start afresh. */
4430 init_thread_list ();
4431
4432 /* Start the remote connection. If error() or QUIT, discard this
4433 target (we'd otherwise be in an inconsistent state) and then
4434 propogate the error on up the exception chain. This ensures that
4435 the caller doesn't stumble along blindly assuming that the
4436 function succeeded. The CLI doesn't have this problem but other
4437 UI's, such as MI do.
4438
4439 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4440 this function should return an error indication letting the
4441 caller restore the previous state. Unfortunately the command
4442 ``target remote'' is directly wired to this function making that
4443 impossible. On a positive note, the CLI side of this problem has
4444 been fixed - the function set_cmd_context() makes it possible for
4445 all the ``target ....'' commands to share a common callback
4446 function. See cli-dump.c. */
4447 {
4448 volatile struct gdb_exception ex;
4449
4450 TRY_CATCH (ex, RETURN_MASK_ALL)
4451 {
4452 remote_start_remote (from_tty, target, extended_p);
4453 }
4454 if (ex.reason < 0)
4455 {
4456 /* Pop the partially set up target - unless something else did
4457 already before throwing the exception. */
4458 if (rs->remote_desc != NULL)
4459 remote_unpush_target ();
4460 if (target_async_permitted)
4461 wait_forever_enabled_p = 1;
4462 throw_exception (ex);
4463 }
4464 }
4465
4466 if (target_async_permitted)
4467 wait_forever_enabled_p = 1;
4468 }
4469
4470 /* This takes a program previously attached to and detaches it. After
4471 this is done, GDB can be used to debug some other program. We
4472 better not have left any breakpoints in the target program or it'll
4473 die when it hits one. */
4474
4475 static void
4476 remote_detach_1 (const char *args, int from_tty, int extended)
4477 {
4478 int pid = ptid_get_pid (inferior_ptid);
4479 struct remote_state *rs = get_remote_state ();
4480
4481 if (args)
4482 error (_("Argument given to \"detach\" when remotely debugging."));
4483
4484 if (!target_has_execution)
4485 error (_("No process to detach from."));
4486
4487 if (from_tty)
4488 {
4489 char *exec_file = get_exec_file (0);
4490 if (exec_file == NULL)
4491 exec_file = "";
4492 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4493 target_pid_to_str (pid_to_ptid (pid)));
4494 gdb_flush (gdb_stdout);
4495 }
4496
4497 /* Tell the remote target to detach. */
4498 if (remote_multi_process_p (rs))
4499 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4500 else
4501 strcpy (rs->buf, "D");
4502
4503 putpkt (rs->buf);
4504 getpkt (&rs->buf, &rs->buf_size, 0);
4505
4506 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4507 ;
4508 else if (rs->buf[0] == '\0')
4509 error (_("Remote doesn't know how to detach"));
4510 else
4511 error (_("Can't detach process."));
4512
4513 if (from_tty && !extended)
4514 puts_filtered (_("Ending remote debugging.\n"));
4515
4516 target_mourn_inferior ();
4517 }
4518
4519 static void
4520 remote_detach (struct target_ops *ops, const char *args, int from_tty)
4521 {
4522 remote_detach_1 (args, from_tty, 0);
4523 }
4524
4525 static void
4526 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
4527 {
4528 remote_detach_1 (args, from_tty, 1);
4529 }
4530
4531 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4532
4533 static void
4534 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4535 {
4536 if (args)
4537 error (_("Argument given to \"disconnect\" when remotely debugging."));
4538
4539 /* Make sure we unpush even the extended remote targets; mourn
4540 won't do it. So call remote_mourn_1 directly instead of
4541 target_mourn_inferior. */
4542 remote_mourn_1 (target);
4543
4544 if (from_tty)
4545 puts_filtered ("Ending remote debugging.\n");
4546 }
4547
4548 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4549 be chatty about it. */
4550
4551 static void
4552 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4553 {
4554 struct remote_state *rs = get_remote_state ();
4555 int pid;
4556 char *wait_status = NULL;
4557
4558 pid = parse_pid_to_attach (args);
4559
4560 /* Remote PID can be freely equal to getpid, do not check it here the same
4561 way as in other targets. */
4562
4563 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4564 error (_("This target does not support attaching to a process"));
4565
4566 if (from_tty)
4567 {
4568 char *exec_file = get_exec_file (0);
4569
4570 if (exec_file)
4571 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4572 target_pid_to_str (pid_to_ptid (pid)));
4573 else
4574 printf_unfiltered (_("Attaching to %s\n"),
4575 target_pid_to_str (pid_to_ptid (pid)));
4576
4577 gdb_flush (gdb_stdout);
4578 }
4579
4580 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4581 putpkt (rs->buf);
4582 getpkt (&rs->buf, &rs->buf_size, 0);
4583
4584 if (packet_ok (rs->buf,
4585 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4586 {
4587 if (!non_stop)
4588 {
4589 /* Save the reply for later. */
4590 wait_status = alloca (strlen (rs->buf) + 1);
4591 strcpy (wait_status, rs->buf);
4592 }
4593 else if (strcmp (rs->buf, "OK") != 0)
4594 error (_("Attaching to %s failed with: %s"),
4595 target_pid_to_str (pid_to_ptid (pid)),
4596 rs->buf);
4597 }
4598 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4599 error (_("This target does not support attaching to a process"));
4600 else
4601 error (_("Attaching to %s failed"),
4602 target_pid_to_str (pid_to_ptid (pid)));
4603
4604 set_current_inferior (remote_add_inferior (0, pid, 1));
4605
4606 inferior_ptid = pid_to_ptid (pid);
4607
4608 if (non_stop)
4609 {
4610 struct thread_info *thread;
4611
4612 /* Get list of threads. */
4613 remote_threads_info (target);
4614
4615 thread = first_thread_of_process (pid);
4616 if (thread)
4617 inferior_ptid = thread->ptid;
4618 else
4619 inferior_ptid = pid_to_ptid (pid);
4620
4621 /* Invalidate our notion of the remote current thread. */
4622 record_currthread (rs, minus_one_ptid);
4623 }
4624 else
4625 {
4626 /* Now, if we have thread information, update inferior_ptid. */
4627 inferior_ptid = remote_current_thread (inferior_ptid);
4628
4629 /* Add the main thread to the thread list. */
4630 add_thread_silent (inferior_ptid);
4631 }
4632
4633 /* Next, if the target can specify a description, read it. We do
4634 this before anything involving memory or registers. */
4635 target_find_description ();
4636
4637 if (!non_stop)
4638 {
4639 /* Use the previously fetched status. */
4640 gdb_assert (wait_status != NULL);
4641
4642 if (target_can_async_p ())
4643 {
4644 struct notif_event *reply
4645 = remote_notif_parse (&notif_client_stop, wait_status);
4646
4647 push_stop_reply ((struct stop_reply *) reply);
4648
4649 target_async (inferior_event_handler, 0);
4650 }
4651 else
4652 {
4653 gdb_assert (wait_status != NULL);
4654 strcpy (rs->buf, wait_status);
4655 rs->cached_wait_status = 1;
4656 }
4657 }
4658 else
4659 gdb_assert (wait_status == NULL);
4660 }
4661
4662 static void
4663 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4664 {
4665 extended_remote_attach_1 (ops, args, from_tty);
4666 }
4667
4668 /* Convert hex digit A to a number. */
4669
4670 static int
4671 fromhex (int a)
4672 {
4673 if (a >= '0' && a <= '9')
4674 return a - '0';
4675 else if (a >= 'a' && a <= 'f')
4676 return a - 'a' + 10;
4677 else if (a >= 'A' && a <= 'F')
4678 return a - 'A' + 10;
4679 else
4680 error (_("Reply contains invalid hex digit %d"), a);
4681 }
4682
4683 int
4684 hex2bin (const char *hex, gdb_byte *bin, int count)
4685 {
4686 int i;
4687
4688 for (i = 0; i < count; i++)
4689 {
4690 if (hex[0] == 0 || hex[1] == 0)
4691 {
4692 /* Hex string is short, or of uneven length.
4693 Return the count that has been converted so far. */
4694 return i;
4695 }
4696 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4697 hex += 2;
4698 }
4699 return i;
4700 }
4701
4702 /* Convert number NIB to a hex digit. */
4703
4704 static int
4705 tohex (int nib)
4706 {
4707 if (nib < 10)
4708 return '0' + nib;
4709 else
4710 return 'a' + nib - 10;
4711 }
4712
4713 int
4714 bin2hex (const gdb_byte *bin, char *hex, int count)
4715 {
4716 int i;
4717
4718 /* May use a length, or a nul-terminated string as input. */
4719 if (count == 0)
4720 count = strlen ((char *) bin);
4721
4722 for (i = 0; i < count; i++)
4723 {
4724 *hex++ = tohex ((*bin >> 4) & 0xf);
4725 *hex++ = tohex (*bin++ & 0xf);
4726 }
4727 *hex = 0;
4728 return i;
4729 }
4730 \f
4731 /* Check for the availability of vCont. This function should also check
4732 the response. */
4733
4734 static void
4735 remote_vcont_probe (struct remote_state *rs)
4736 {
4737 char *buf;
4738
4739 strcpy (rs->buf, "vCont?");
4740 putpkt (rs->buf);
4741 getpkt (&rs->buf, &rs->buf_size, 0);
4742 buf = rs->buf;
4743
4744 /* Make sure that the features we assume are supported. */
4745 if (strncmp (buf, "vCont", 5) == 0)
4746 {
4747 char *p = &buf[5];
4748 int support_s, support_S, support_c, support_C;
4749
4750 support_s = 0;
4751 support_S = 0;
4752 support_c = 0;
4753 support_C = 0;
4754 rs->supports_vCont.t = 0;
4755 rs->supports_vCont.r = 0;
4756 while (p && *p == ';')
4757 {
4758 p++;
4759 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4760 support_s = 1;
4761 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4762 support_S = 1;
4763 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4764 support_c = 1;
4765 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4766 support_C = 1;
4767 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4768 rs->supports_vCont.t = 1;
4769 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
4770 rs->supports_vCont.r = 1;
4771
4772 p = strchr (p, ';');
4773 }
4774
4775 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4776 BUF will make packet_ok disable the packet. */
4777 if (!support_s || !support_S || !support_c || !support_C)
4778 buf[0] = 0;
4779 }
4780
4781 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4782 }
4783
4784 /* Helper function for building "vCont" resumptions. Write a
4785 resumption to P. ENDP points to one-passed-the-end of the buffer
4786 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4787 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4788 resumed thread should be single-stepped and/or signalled. If PTID
4789 equals minus_one_ptid, then all threads are resumed; if PTID
4790 represents a process, then all threads of the process are resumed;
4791 the thread to be stepped and/or signalled is given in the global
4792 INFERIOR_PTID. */
4793
4794 static char *
4795 append_resumption (char *p, char *endp,
4796 ptid_t ptid, int step, enum gdb_signal siggnal)
4797 {
4798 struct remote_state *rs = get_remote_state ();
4799
4800 if (step && siggnal != GDB_SIGNAL_0)
4801 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4802 else if (step
4803 /* GDB is willing to range step. */
4804 && use_range_stepping
4805 /* Target supports range stepping. */
4806 && rs->supports_vCont.r
4807 /* We don't currently support range stepping multiple
4808 threads with a wildcard (though the protocol allows it,
4809 so stubs shouldn't make an active effort to forbid
4810 it). */
4811 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4812 {
4813 struct thread_info *tp;
4814
4815 if (ptid_equal (ptid, minus_one_ptid))
4816 {
4817 /* If we don't know about the target thread's tid, then
4818 we're resuming magic_null_ptid (see caller). */
4819 tp = find_thread_ptid (magic_null_ptid);
4820 }
4821 else
4822 tp = find_thread_ptid (ptid);
4823 gdb_assert (tp != NULL);
4824
4825 if (tp->control.may_range_step)
4826 {
4827 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4828
4829 p += xsnprintf (p, endp - p, ";r%s,%s",
4830 phex_nz (tp->control.step_range_start,
4831 addr_size),
4832 phex_nz (tp->control.step_range_end,
4833 addr_size));
4834 }
4835 else
4836 p += xsnprintf (p, endp - p, ";s");
4837 }
4838 else if (step)
4839 p += xsnprintf (p, endp - p, ";s");
4840 else if (siggnal != GDB_SIGNAL_0)
4841 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4842 else
4843 p += xsnprintf (p, endp - p, ";c");
4844
4845 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4846 {
4847 ptid_t nptid;
4848
4849 /* All (-1) threads of process. */
4850 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4851
4852 p += xsnprintf (p, endp - p, ":");
4853 p = write_ptid (p, endp, nptid);
4854 }
4855 else if (!ptid_equal (ptid, minus_one_ptid))
4856 {
4857 p += xsnprintf (p, endp - p, ":");
4858 p = write_ptid (p, endp, ptid);
4859 }
4860
4861 return p;
4862 }
4863
4864 /* Append a vCont continue-with-signal action for threads that have a
4865 non-zero stop signal. */
4866
4867 static char *
4868 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4869 {
4870 struct thread_info *thread;
4871
4872 ALL_THREADS (thread)
4873 if (ptid_match (thread->ptid, ptid)
4874 && !ptid_equal (inferior_ptid, thread->ptid)
4875 && thread->suspend.stop_signal != GDB_SIGNAL_0
4876 && signal_pass_state (thread->suspend.stop_signal))
4877 {
4878 p = append_resumption (p, endp, thread->ptid,
4879 0, thread->suspend.stop_signal);
4880 thread->suspend.stop_signal = GDB_SIGNAL_0;
4881 }
4882
4883 return p;
4884 }
4885
4886 /* Resume the remote inferior by using a "vCont" packet. The thread
4887 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4888 resumed thread should be single-stepped and/or signalled. If PTID
4889 equals minus_one_ptid, then all threads are resumed; the thread to
4890 be stepped and/or signalled is given in the global INFERIOR_PTID.
4891 This function returns non-zero iff it resumes the inferior.
4892
4893 This function issues a strict subset of all possible vCont commands at the
4894 moment. */
4895
4896 static int
4897 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
4898 {
4899 struct remote_state *rs = get_remote_state ();
4900 char *p;
4901 char *endp;
4902
4903 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4904 remote_vcont_probe (rs);
4905
4906 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4907 return 0;
4908
4909 p = rs->buf;
4910 endp = rs->buf + get_remote_packet_size ();
4911
4912 /* If we could generate a wider range of packets, we'd have to worry
4913 about overflowing BUF. Should there be a generic
4914 "multi-part-packet" packet? */
4915
4916 p += xsnprintf (p, endp - p, "vCont");
4917
4918 if (ptid_equal (ptid, magic_null_ptid))
4919 {
4920 /* MAGIC_NULL_PTID means that we don't have any active threads,
4921 so we don't have any TID numbers the inferior will
4922 understand. Make sure to only send forms that do not specify
4923 a TID. */
4924 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4925 }
4926 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4927 {
4928 /* Resume all threads (of all processes, or of a single
4929 process), with preference for INFERIOR_PTID. This assumes
4930 inferior_ptid belongs to the set of all threads we are about
4931 to resume. */
4932 if (step || siggnal != GDB_SIGNAL_0)
4933 {
4934 /* Step inferior_ptid, with or without signal. */
4935 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4936 }
4937
4938 /* Also pass down any pending signaled resumption for other
4939 threads not the current. */
4940 p = append_pending_thread_resumptions (p, endp, ptid);
4941
4942 /* And continue others without a signal. */
4943 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
4944 }
4945 else
4946 {
4947 /* Scheduler locking; resume only PTID. */
4948 append_resumption (p, endp, ptid, step, siggnal);
4949 }
4950
4951 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4952 putpkt (rs->buf);
4953
4954 if (non_stop)
4955 {
4956 /* In non-stop, the stub replies to vCont with "OK". The stop
4957 reply will be reported asynchronously by means of a `%Stop'
4958 notification. */
4959 getpkt (&rs->buf, &rs->buf_size, 0);
4960 if (strcmp (rs->buf, "OK") != 0)
4961 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4962 }
4963
4964 return 1;
4965 }
4966
4967 /* Tell the remote machine to resume. */
4968
4969 static void
4970 remote_resume (struct target_ops *ops,
4971 ptid_t ptid, int step, enum gdb_signal siggnal)
4972 {
4973 struct remote_state *rs = get_remote_state ();
4974 char *buf;
4975
4976 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
4977 (explained in remote-notif.c:handle_notification) so
4978 remote_notif_process is not called. We need find a place where
4979 it is safe to start a 'vNotif' sequence. It is good to do it
4980 before resuming inferior, because inferior was stopped and no RSP
4981 traffic at that moment. */
4982 if (!non_stop)
4983 remote_notif_process (rs->notif_state, &notif_client_stop);
4984
4985 rs->last_sent_signal = siggnal;
4986 rs->last_sent_step = step;
4987
4988 /* The vCont packet doesn't need to specify threads via Hc. */
4989 /* No reverse support (yet) for vCont. */
4990 if (execution_direction != EXEC_REVERSE)
4991 if (remote_vcont_resume (ptid, step, siggnal))
4992 goto done;
4993
4994 /* All other supported resume packets do use Hc, so set the continue
4995 thread. */
4996 if (ptid_equal (ptid, minus_one_ptid))
4997 set_continue_thread (any_thread_ptid);
4998 else
4999 set_continue_thread (ptid);
5000
5001 buf = rs->buf;
5002 if (execution_direction == EXEC_REVERSE)
5003 {
5004 /* We don't pass signals to the target in reverse exec mode. */
5005 if (info_verbose && siggnal != GDB_SIGNAL_0)
5006 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5007 siggnal);
5008
5009 if (step
5010 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
5011 error (_("Remote reverse-step not supported."));
5012 if (!step
5013 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
5014 error (_("Remote reverse-continue not supported."));
5015
5016 strcpy (buf, step ? "bs" : "bc");
5017 }
5018 else if (siggnal != GDB_SIGNAL_0)
5019 {
5020 buf[0] = step ? 'S' : 'C';
5021 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5022 buf[2] = tohex (((int) siggnal) & 0xf);
5023 buf[3] = '\0';
5024 }
5025 else
5026 strcpy (buf, step ? "s" : "c");
5027
5028 putpkt (buf);
5029
5030 done:
5031 /* We are about to start executing the inferior, let's register it
5032 with the event loop. NOTE: this is the one place where all the
5033 execution commands end up. We could alternatively do this in each
5034 of the execution commands in infcmd.c. */
5035 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5036 into infcmd.c in order to allow inferior function calls to work
5037 NOT asynchronously. */
5038 if (target_can_async_p ())
5039 target_async (inferior_event_handler, 0);
5040
5041 /* We've just told the target to resume. The remote server will
5042 wait for the inferior to stop, and then send a stop reply. In
5043 the mean time, we can't start another command/query ourselves
5044 because the stub wouldn't be ready to process it. This applies
5045 only to the base all-stop protocol, however. In non-stop (which
5046 only supports vCont), the stub replies with an "OK", and is
5047 immediate able to process further serial input. */
5048 if (!non_stop)
5049 rs->waiting_for_stop_reply = 1;
5050 }
5051 \f
5052
5053 /* Set up the signal handler for SIGINT, while the target is
5054 executing, ovewriting the 'regular' SIGINT signal handler. */
5055 static void
5056 async_initialize_sigint_signal_handler (void)
5057 {
5058 signal (SIGINT, async_handle_remote_sigint);
5059 }
5060
5061 /* Signal handler for SIGINT, while the target is executing. */
5062 static void
5063 async_handle_remote_sigint (int sig)
5064 {
5065 signal (sig, async_handle_remote_sigint_twice);
5066 mark_async_signal_handler (async_sigint_remote_token);
5067 }
5068
5069 /* Signal handler for SIGINT, installed after SIGINT has already been
5070 sent once. It will take effect the second time that the user sends
5071 a ^C. */
5072 static void
5073 async_handle_remote_sigint_twice (int sig)
5074 {
5075 signal (sig, async_handle_remote_sigint);
5076 mark_async_signal_handler (async_sigint_remote_twice_token);
5077 }
5078
5079 /* Perform the real interruption of the target execution, in response
5080 to a ^C. */
5081 static void
5082 async_remote_interrupt (gdb_client_data arg)
5083 {
5084 if (remote_debug)
5085 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
5086
5087 target_stop (inferior_ptid);
5088 }
5089
5090 /* Perform interrupt, if the first attempt did not succeed. Just give
5091 up on the target alltogether. */
5092 static void
5093 async_remote_interrupt_twice (gdb_client_data arg)
5094 {
5095 if (remote_debug)
5096 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
5097
5098 interrupt_query ();
5099 }
5100
5101 /* Reinstall the usual SIGINT handlers, after the target has
5102 stopped. */
5103 static void
5104 async_cleanup_sigint_signal_handler (void *dummy)
5105 {
5106 signal (SIGINT, handle_sigint);
5107 }
5108
5109 /* Send ^C to target to halt it. Target will respond, and send us a
5110 packet. */
5111 static void (*ofunc) (int);
5112
5113 /* The command line interface's stop routine. This function is installed
5114 as a signal handler for SIGINT. The first time a user requests a
5115 stop, we call remote_stop to send a break or ^C. If there is no
5116 response from the target (it didn't stop when the user requested it),
5117 we ask the user if he'd like to detach from the target. */
5118 static void
5119 sync_remote_interrupt (int signo)
5120 {
5121 /* If this doesn't work, try more severe steps. */
5122 signal (signo, sync_remote_interrupt_twice);
5123
5124 gdb_call_async_signal_handler (async_sigint_remote_token, 1);
5125 }
5126
5127 /* The user typed ^C twice. */
5128
5129 static void
5130 sync_remote_interrupt_twice (int signo)
5131 {
5132 signal (signo, ofunc);
5133 gdb_call_async_signal_handler (async_sigint_remote_twice_token, 1);
5134 signal (signo, sync_remote_interrupt);
5135 }
5136
5137 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
5138 thread, all threads of a remote process, or all threads of all
5139 processes. */
5140
5141 static void
5142 remote_stop_ns (ptid_t ptid)
5143 {
5144 struct remote_state *rs = get_remote_state ();
5145 char *p = rs->buf;
5146 char *endp = rs->buf + get_remote_packet_size ();
5147
5148 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
5149 remote_vcont_probe (rs);
5150
5151 if (!rs->supports_vCont.t)
5152 error (_("Remote server does not support stopping threads"));
5153
5154 if (ptid_equal (ptid, minus_one_ptid)
5155 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5156 p += xsnprintf (p, endp - p, "vCont;t");
5157 else
5158 {
5159 ptid_t nptid;
5160
5161 p += xsnprintf (p, endp - p, "vCont;t:");
5162
5163 if (ptid_is_pid (ptid))
5164 /* All (-1) threads of process. */
5165 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
5166 else
5167 {
5168 /* Small optimization: if we already have a stop reply for
5169 this thread, no use in telling the stub we want this
5170 stopped. */
5171 if (peek_stop_reply (ptid))
5172 return;
5173
5174 nptid = ptid;
5175 }
5176
5177 write_ptid (p, endp, nptid);
5178 }
5179
5180 /* In non-stop, we get an immediate OK reply. The stop reply will
5181 come in asynchronously by notification. */
5182 putpkt (rs->buf);
5183 getpkt (&rs->buf, &rs->buf_size, 0);
5184 if (strcmp (rs->buf, "OK") != 0)
5185 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
5186 }
5187
5188 /* All-stop version of target_stop. Sends a break or a ^C to stop the
5189 remote target. It is undefined which thread of which process
5190 reports the stop. */
5191
5192 static void
5193 remote_stop_as (ptid_t ptid)
5194 {
5195 struct remote_state *rs = get_remote_state ();
5196
5197 rs->ctrlc_pending_p = 1;
5198
5199 /* If the inferior is stopped already, but the core didn't know
5200 about it yet, just ignore the request. The cached wait status
5201 will be collected in remote_wait. */
5202 if (rs->cached_wait_status)
5203 return;
5204
5205 /* Send interrupt_sequence to remote target. */
5206 send_interrupt_sequence ();
5207 }
5208
5209 /* This is the generic stop called via the target vector. When a target
5210 interrupt is requested, either by the command line or the GUI, we
5211 will eventually end up here. */
5212
5213 static void
5214 remote_stop (ptid_t ptid)
5215 {
5216 if (remote_debug)
5217 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5218
5219 if (non_stop)
5220 remote_stop_ns (ptid);
5221 else
5222 remote_stop_as (ptid);
5223 }
5224
5225 /* Ask the user what to do when an interrupt is received. */
5226
5227 static void
5228 interrupt_query (void)
5229 {
5230 target_terminal_ours ();
5231
5232 if (target_can_async_p ())
5233 {
5234 signal (SIGINT, handle_sigint);
5235 quit ();
5236 }
5237 else
5238 {
5239 if (query (_("Interrupted while waiting for the program.\n\
5240 Give up (and stop debugging it)? ")))
5241 {
5242 remote_unpush_target ();
5243 quit ();
5244 }
5245 }
5246
5247 target_terminal_inferior ();
5248 }
5249
5250 /* Enable/disable target terminal ownership. Most targets can use
5251 terminal groups to control terminal ownership. Remote targets are
5252 different in that explicit transfer of ownership to/from GDB/target
5253 is required. */
5254
5255 static void
5256 remote_terminal_inferior (void)
5257 {
5258 if (!target_async_permitted)
5259 /* Nothing to do. */
5260 return;
5261
5262 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5263 idempotent. The event-loop GDB talking to an asynchronous target
5264 with a synchronous command calls this function from both
5265 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5266 transfer the terminal to the target when it shouldn't this guard
5267 can go away. */
5268 if (!remote_async_terminal_ours_p)
5269 return;
5270 delete_file_handler (input_fd);
5271 remote_async_terminal_ours_p = 0;
5272 async_initialize_sigint_signal_handler ();
5273 /* NOTE: At this point we could also register our selves as the
5274 recipient of all input. Any characters typed could then be
5275 passed on down to the target. */
5276 }
5277
5278 static void
5279 remote_terminal_ours (void)
5280 {
5281 if (!target_async_permitted)
5282 /* Nothing to do. */
5283 return;
5284
5285 /* See FIXME in remote_terminal_inferior. */
5286 if (remote_async_terminal_ours_p)
5287 return;
5288 async_cleanup_sigint_signal_handler (NULL);
5289 add_file_handler (input_fd, stdin_event_handler, 0);
5290 remote_async_terminal_ours_p = 1;
5291 }
5292
5293 static void
5294 remote_console_output (char *msg)
5295 {
5296 char *p;
5297
5298 for (p = msg; p[0] && p[1]; p += 2)
5299 {
5300 char tb[2];
5301 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5302
5303 tb[0] = c;
5304 tb[1] = 0;
5305 fputs_unfiltered (tb, gdb_stdtarg);
5306 }
5307 gdb_flush (gdb_stdtarg);
5308 }
5309
5310 typedef struct cached_reg
5311 {
5312 int num;
5313 gdb_byte data[MAX_REGISTER_SIZE];
5314 } cached_reg_t;
5315
5316 DEF_VEC_O(cached_reg_t);
5317
5318 typedef struct stop_reply
5319 {
5320 struct notif_event base;
5321
5322 /* The identifier of the thread about this event */
5323 ptid_t ptid;
5324
5325 /* The remote state this event is associated with. When the remote
5326 connection, represented by a remote_state object, is closed,
5327 all the associated stop_reply events should be released. */
5328 struct remote_state *rs;
5329
5330 struct target_waitstatus ws;
5331
5332 /* Expedited registers. This makes remote debugging a bit more
5333 efficient for those targets that provide critical registers as
5334 part of their normal status mechanism (as another roundtrip to
5335 fetch them is avoided). */
5336 VEC(cached_reg_t) *regcache;
5337
5338 int stopped_by_watchpoint_p;
5339 CORE_ADDR watch_data_address;
5340
5341 int core;
5342 } *stop_reply_p;
5343
5344 DECLARE_QUEUE_P (stop_reply_p);
5345 DEFINE_QUEUE_P (stop_reply_p);
5346 /* The list of already fetched and acknowledged stop events. This
5347 queue is used for notification Stop, and other notifications
5348 don't need queue for their events, because the notification events
5349 of Stop can't be consumed immediately, so that events should be
5350 queued first, and be consumed by remote_wait_{ns,as} one per
5351 time. Other notifications can consume their events immediately,
5352 so queue is not needed for them. */
5353 static QUEUE (stop_reply_p) *stop_reply_queue;
5354
5355 static void
5356 stop_reply_xfree (struct stop_reply *r)
5357 {
5358 notif_event_xfree ((struct notif_event *) r);
5359 }
5360
5361 static void
5362 remote_notif_stop_parse (struct notif_client *self, char *buf,
5363 struct notif_event *event)
5364 {
5365 remote_parse_stop_reply (buf, (struct stop_reply *) event);
5366 }
5367
5368 static void
5369 remote_notif_stop_ack (struct notif_client *self, char *buf,
5370 struct notif_event *event)
5371 {
5372 struct stop_reply *stop_reply = (struct stop_reply *) event;
5373
5374 /* acknowledge */
5375 putpkt ((char *) self->ack_command);
5376
5377 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
5378 /* We got an unknown stop reply. */
5379 error (_("Unknown stop reply"));
5380
5381 push_stop_reply (stop_reply);
5382 }
5383
5384 static int
5385 remote_notif_stop_can_get_pending_events (struct notif_client *self)
5386 {
5387 /* We can't get pending events in remote_notif_process for
5388 notification stop, and we have to do this in remote_wait_ns
5389 instead. If we fetch all queued events from stub, remote stub
5390 may exit and we have no chance to process them back in
5391 remote_wait_ns. */
5392 mark_async_event_handler (remote_async_inferior_event_token);
5393 return 0;
5394 }
5395
5396 static void
5397 stop_reply_dtr (struct notif_event *event)
5398 {
5399 struct stop_reply *r = (struct stop_reply *) event;
5400
5401 VEC_free (cached_reg_t, r->regcache);
5402 }
5403
5404 static struct notif_event *
5405 remote_notif_stop_alloc_reply (void)
5406 {
5407 struct notif_event *r
5408 = (struct notif_event *) XNEW (struct stop_reply);
5409
5410 r->dtr = stop_reply_dtr;
5411
5412 return r;
5413 }
5414
5415 /* A client of notification Stop. */
5416
5417 struct notif_client notif_client_stop =
5418 {
5419 "Stop",
5420 "vStopped",
5421 remote_notif_stop_parse,
5422 remote_notif_stop_ack,
5423 remote_notif_stop_can_get_pending_events,
5424 remote_notif_stop_alloc_reply,
5425 REMOTE_NOTIF_STOP,
5426 };
5427
5428 /* A parameter to pass data in and out. */
5429
5430 struct queue_iter_param
5431 {
5432 void *input;
5433 struct stop_reply *output;
5434 };
5435
5436 /* Remove stop replies in the queue if its pid is equal to the given
5437 inferior's pid. */
5438
5439 static int
5440 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
5441 QUEUE_ITER (stop_reply_p) *iter,
5442 stop_reply_p event,
5443 void *data)
5444 {
5445 struct queue_iter_param *param = data;
5446 struct inferior *inf = param->input;
5447
5448 if (ptid_get_pid (event->ptid) == inf->pid)
5449 {
5450 stop_reply_xfree (event);
5451 QUEUE_remove_elem (stop_reply_p, q, iter);
5452 }
5453
5454 return 1;
5455 }
5456
5457 /* Discard all pending stop replies of inferior INF. */
5458
5459 static void
5460 discard_pending_stop_replies (struct inferior *inf)
5461 {
5462 int i;
5463 struct queue_iter_param param;
5464 struct stop_reply *reply;
5465 struct remote_state *rs = get_remote_state ();
5466 struct remote_notif_state *rns = rs->notif_state;
5467
5468 /* This function can be notified when an inferior exists. When the
5469 target is not remote, the notification state is NULL. */
5470 if (rs->remote_desc == NULL)
5471 return;
5472
5473 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
5474
5475 /* Discard the in-flight notification. */
5476 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
5477 {
5478 stop_reply_xfree (reply);
5479 rns->pending_event[notif_client_stop.id] = NULL;
5480 }
5481
5482 param.input = inf;
5483 param.output = NULL;
5484 /* Discard the stop replies we have already pulled with
5485 vStopped. */
5486 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5487 remove_stop_reply_for_inferior, &param);
5488 }
5489
5490 /* If its remote state is equal to the given remote state,
5491 remove EVENT from the stop reply queue. */
5492
5493 static int
5494 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
5495 QUEUE_ITER (stop_reply_p) *iter,
5496 stop_reply_p event,
5497 void *data)
5498 {
5499 struct queue_iter_param *param = data;
5500 struct remote_state *rs = param->input;
5501
5502 if (event->rs == rs)
5503 {
5504 stop_reply_xfree (event);
5505 QUEUE_remove_elem (stop_reply_p, q, iter);
5506 }
5507
5508 return 1;
5509 }
5510
5511 /* Discard the stop replies for RS in stop_reply_queue. */
5512
5513 static void
5514 discard_pending_stop_replies_in_queue (struct remote_state *rs)
5515 {
5516 struct queue_iter_param param;
5517
5518 param.input = rs;
5519 param.output = NULL;
5520 /* Discard the stop replies we have already pulled with
5521 vStopped. */
5522 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5523 remove_stop_reply_of_remote_state, &param);
5524 }
5525
5526 /* A parameter to pass data in and out. */
5527
5528 static int
5529 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
5530 QUEUE_ITER (stop_reply_p) *iter,
5531 stop_reply_p event,
5532 void *data)
5533 {
5534 struct queue_iter_param *param = data;
5535 ptid_t *ptid = param->input;
5536
5537 if (ptid_match (event->ptid, *ptid))
5538 {
5539 param->output = event;
5540 QUEUE_remove_elem (stop_reply_p, q, iter);
5541 return 0;
5542 }
5543
5544 return 1;
5545 }
5546
5547 /* Remove the first reply in 'stop_reply_queue' which matches
5548 PTID. */
5549
5550 static struct stop_reply *
5551 remote_notif_remove_queued_reply (ptid_t ptid)
5552 {
5553 struct queue_iter_param param;
5554
5555 param.input = &ptid;
5556 param.output = NULL;
5557
5558 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5559 remote_notif_remove_once_on_match, &param);
5560 if (notif_debug)
5561 fprintf_unfiltered (gdb_stdlog,
5562 "notif: discard queued event: 'Stop' in %s\n",
5563 target_pid_to_str (ptid));
5564
5565 return param.output;
5566 }
5567
5568 /* Look for a queued stop reply belonging to PTID. If one is found,
5569 remove it from the queue, and return it. Returns NULL if none is
5570 found. If there are still queued events left to process, tell the
5571 event loop to get back to target_wait soon. */
5572
5573 static struct stop_reply *
5574 queued_stop_reply (ptid_t ptid)
5575 {
5576 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
5577
5578 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
5579 /* There's still at least an event left. */
5580 mark_async_event_handler (remote_async_inferior_event_token);
5581
5582 return r;
5583 }
5584
5585 /* Push a fully parsed stop reply in the stop reply queue. Since we
5586 know that we now have at least one queued event left to pass to the
5587 core side, tell the event loop to get back to target_wait soon. */
5588
5589 static void
5590 push_stop_reply (struct stop_reply *new_event)
5591 {
5592 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
5593
5594 if (notif_debug)
5595 fprintf_unfiltered (gdb_stdlog,
5596 "notif: push 'Stop' %s to queue %d\n",
5597 target_pid_to_str (new_event->ptid),
5598 QUEUE_length (stop_reply_p,
5599 stop_reply_queue));
5600
5601 mark_async_event_handler (remote_async_inferior_event_token);
5602 }
5603
5604 static int
5605 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
5606 QUEUE_ITER (stop_reply_p) *iter,
5607 struct stop_reply *event,
5608 void *data)
5609 {
5610 ptid_t *ptid = data;
5611
5612 return !(ptid_equal (*ptid, event->ptid)
5613 && event->ws.kind == TARGET_WAITKIND_STOPPED);
5614 }
5615
5616 /* Returns true if we have a stop reply for PTID. */
5617
5618 static int
5619 peek_stop_reply (ptid_t ptid)
5620 {
5621 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
5622 stop_reply_match_ptid_and_ws, &ptid);
5623 }
5624
5625 /* Parse the stop reply in BUF. Either the function succeeds, and the
5626 result is stored in EVENT, or throws an error. */
5627
5628 static void
5629 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5630 {
5631 struct remote_arch_state *rsa = get_remote_arch_state ();
5632 ULONGEST addr;
5633 char *p;
5634
5635 event->ptid = null_ptid;
5636 event->rs = get_remote_state ();
5637 event->ws.kind = TARGET_WAITKIND_IGNORE;
5638 event->ws.value.integer = 0;
5639 event->stopped_by_watchpoint_p = 0;
5640 event->regcache = NULL;
5641 event->core = -1;
5642
5643 switch (buf[0])
5644 {
5645 case 'T': /* Status with PC, SP, FP, ... */
5646 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5647 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5648 ss = signal number
5649 n... = register number
5650 r... = register contents
5651 */
5652
5653 p = &buf[3]; /* after Txx */
5654 while (*p)
5655 {
5656 char *p1;
5657 char *p_temp;
5658 int fieldsize;
5659 LONGEST pnum = 0;
5660
5661 /* If the packet contains a register number, save it in
5662 pnum and set p1 to point to the character following it.
5663 Otherwise p1 points to p. */
5664
5665 /* If this packet is an awatch packet, don't parse the 'a'
5666 as a register number. */
5667
5668 if (strncmp (p, "awatch", strlen("awatch")) != 0
5669 && strncmp (p, "core", strlen ("core") != 0))
5670 {
5671 /* Read the ``P'' register number. */
5672 pnum = strtol (p, &p_temp, 16);
5673 p1 = p_temp;
5674 }
5675 else
5676 p1 = p;
5677
5678 if (p1 == p) /* No register number present here. */
5679 {
5680 p1 = strchr (p, ':');
5681 if (p1 == NULL)
5682 error (_("Malformed packet(a) (missing colon): %s\n\
5683 Packet: '%s'\n"),
5684 p, buf);
5685 if (strncmp (p, "thread", p1 - p) == 0)
5686 event->ptid = read_ptid (++p1, &p);
5687 else if ((strncmp (p, "watch", p1 - p) == 0)
5688 || (strncmp (p, "rwatch", p1 - p) == 0)
5689 || (strncmp (p, "awatch", p1 - p) == 0))
5690 {
5691 event->stopped_by_watchpoint_p = 1;
5692 p = unpack_varlen_hex (++p1, &addr);
5693 event->watch_data_address = (CORE_ADDR) addr;
5694 }
5695 else if (strncmp (p, "library", p1 - p) == 0)
5696 {
5697 p1++;
5698 p_temp = p1;
5699 while (*p_temp && *p_temp != ';')
5700 p_temp++;
5701
5702 event->ws.kind = TARGET_WAITKIND_LOADED;
5703 p = p_temp;
5704 }
5705 else if (strncmp (p, "replaylog", p1 - p) == 0)
5706 {
5707 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5708 /* p1 will indicate "begin" or "end", but it makes
5709 no difference for now, so ignore it. */
5710 p_temp = strchr (p1 + 1, ';');
5711 if (p_temp)
5712 p = p_temp;
5713 }
5714 else if (strncmp (p, "core", p1 - p) == 0)
5715 {
5716 ULONGEST c;
5717
5718 p = unpack_varlen_hex (++p1, &c);
5719 event->core = c;
5720 }
5721 else
5722 {
5723 /* Silently skip unknown optional info. */
5724 p_temp = strchr (p1 + 1, ';');
5725 if (p_temp)
5726 p = p_temp;
5727 }
5728 }
5729 else
5730 {
5731 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5732 cached_reg_t cached_reg;
5733
5734 p = p1;
5735
5736 if (*p != ':')
5737 error (_("Malformed packet(b) (missing colon): %s\n\
5738 Packet: '%s'\n"),
5739 p, buf);
5740 ++p;
5741
5742 if (reg == NULL)
5743 error (_("Remote sent bad register number %s: %s\n\
5744 Packet: '%s'\n"),
5745 hex_string (pnum), p, buf);
5746
5747 cached_reg.num = reg->regnum;
5748
5749 fieldsize = hex2bin (p, cached_reg.data,
5750 register_size (target_gdbarch (),
5751 reg->regnum));
5752 p += 2 * fieldsize;
5753 if (fieldsize < register_size (target_gdbarch (),
5754 reg->regnum))
5755 warning (_("Remote reply is too short: %s"), buf);
5756
5757 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5758 }
5759
5760 if (*p != ';')
5761 error (_("Remote register badly formatted: %s\nhere: %s"),
5762 buf, p);
5763 ++p;
5764 }
5765
5766 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
5767 break;
5768
5769 /* fall through */
5770 case 'S': /* Old style status, just signal only. */
5771 {
5772 int sig;
5773
5774 event->ws.kind = TARGET_WAITKIND_STOPPED;
5775 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
5776 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
5777 event->ws.value.sig = (enum gdb_signal) sig;
5778 else
5779 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
5780 }
5781 break;
5782 case 'W': /* Target exited. */
5783 case 'X':
5784 {
5785 char *p;
5786 int pid;
5787 ULONGEST value;
5788
5789 /* GDB used to accept only 2 hex chars here. Stubs should
5790 only send more if they detect GDB supports multi-process
5791 support. */
5792 p = unpack_varlen_hex (&buf[1], &value);
5793
5794 if (buf[0] == 'W')
5795 {
5796 /* The remote process exited. */
5797 event->ws.kind = TARGET_WAITKIND_EXITED;
5798 event->ws.value.integer = value;
5799 }
5800 else
5801 {
5802 /* The remote process exited with a signal. */
5803 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5804 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
5805 event->ws.value.sig = (enum gdb_signal) value;
5806 else
5807 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
5808 }
5809
5810 /* If no process is specified, assume inferior_ptid. */
5811 pid = ptid_get_pid (inferior_ptid);
5812 if (*p == '\0')
5813 ;
5814 else if (*p == ';')
5815 {
5816 p++;
5817
5818 if (p == '\0')
5819 ;
5820 else if (strncmp (p,
5821 "process:", sizeof ("process:") - 1) == 0)
5822 {
5823 ULONGEST upid;
5824
5825 p += sizeof ("process:") - 1;
5826 unpack_varlen_hex (p, &upid);
5827 pid = upid;
5828 }
5829 else
5830 error (_("unknown stop reply packet: %s"), buf);
5831 }
5832 else
5833 error (_("unknown stop reply packet: %s"), buf);
5834 event->ptid = pid_to_ptid (pid);
5835 }
5836 break;
5837 }
5838
5839 if (non_stop && ptid_equal (event->ptid, null_ptid))
5840 error (_("No process or thread specified in stop reply: %s"), buf);
5841 }
5842
5843 /* When the stub wants to tell GDB about a new notification reply, it
5844 sends a notification (%Stop, for example). Those can come it at
5845 any time, hence, we have to make sure that any pending
5846 putpkt/getpkt sequence we're making is finished, before querying
5847 the stub for more events with the corresponding ack command
5848 (vStopped, for example). E.g., if we started a vStopped sequence
5849 immediately upon receiving the notification, something like this
5850 could happen:
5851
5852 1.1) --> Hg 1
5853 1.2) <-- OK
5854 1.3) --> g
5855 1.4) <-- %Stop
5856 1.5) --> vStopped
5857 1.6) <-- (registers reply to step #1.3)
5858
5859 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5860 query.
5861
5862 To solve this, whenever we parse a %Stop notification successfully,
5863 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5864 doing whatever we were doing:
5865
5866 2.1) --> Hg 1
5867 2.2) <-- OK
5868 2.3) --> g
5869 2.4) <-- %Stop
5870 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5871 2.5) <-- (registers reply to step #2.3)
5872
5873 Eventualy after step #2.5, we return to the event loop, which
5874 notices there's an event on the
5875 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5876 associated callback --- the function below. At this point, we're
5877 always safe to start a vStopped sequence. :
5878
5879 2.6) --> vStopped
5880 2.7) <-- T05 thread:2
5881 2.8) --> vStopped
5882 2.9) --> OK
5883 */
5884
5885 void
5886 remote_notif_get_pending_events (struct notif_client *nc)
5887 {
5888 struct remote_state *rs = get_remote_state ();
5889
5890 if (rs->notif_state->pending_event[nc->id] != NULL)
5891 {
5892 if (notif_debug)
5893 fprintf_unfiltered (gdb_stdlog,
5894 "notif: process: '%s' ack pending event\n",
5895 nc->name);
5896
5897 /* acknowledge */
5898 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
5899 rs->notif_state->pending_event[nc->id] = NULL;
5900
5901 while (1)
5902 {
5903 getpkt (&rs->buf, &rs->buf_size, 0);
5904 if (strcmp (rs->buf, "OK") == 0)
5905 break;
5906 else
5907 remote_notif_ack (nc, rs->buf);
5908 }
5909 }
5910 else
5911 {
5912 if (notif_debug)
5913 fprintf_unfiltered (gdb_stdlog,
5914 "notif: process: '%s' no pending reply\n",
5915 nc->name);
5916 }
5917 }
5918
5919 /* Called when it is decided that STOP_REPLY holds the info of the
5920 event that is to be returned to the core. This function always
5921 destroys STOP_REPLY. */
5922
5923 static ptid_t
5924 process_stop_reply (struct stop_reply *stop_reply,
5925 struct target_waitstatus *status)
5926 {
5927 ptid_t ptid;
5928
5929 *status = stop_reply->ws;
5930 ptid = stop_reply->ptid;
5931
5932 /* If no thread/process was reported by the stub, assume the current
5933 inferior. */
5934 if (ptid_equal (ptid, null_ptid))
5935 ptid = inferior_ptid;
5936
5937 if (status->kind != TARGET_WAITKIND_EXITED
5938 && status->kind != TARGET_WAITKIND_SIGNALLED)
5939 {
5940 struct remote_state *rs = get_remote_state ();
5941
5942 /* Expedited registers. */
5943 if (stop_reply->regcache)
5944 {
5945 struct regcache *regcache
5946 = get_thread_arch_regcache (ptid, target_gdbarch ());
5947 cached_reg_t *reg;
5948 int ix;
5949
5950 for (ix = 0;
5951 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5952 ix++)
5953 regcache_raw_supply (regcache, reg->num, reg->data);
5954 VEC_free (cached_reg_t, stop_reply->regcache);
5955 }
5956
5957 rs->remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5958 rs->remote_watch_data_address = stop_reply->watch_data_address;
5959
5960 remote_notice_new_inferior (ptid, 0);
5961 demand_private_info (ptid)->core = stop_reply->core;
5962 }
5963
5964 stop_reply_xfree (stop_reply);
5965 return ptid;
5966 }
5967
5968 /* The non-stop mode version of target_wait. */
5969
5970 static ptid_t
5971 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5972 {
5973 struct remote_state *rs = get_remote_state ();
5974 struct stop_reply *stop_reply;
5975 int ret;
5976 int is_notif = 0;
5977
5978 /* If in non-stop mode, get out of getpkt even if a
5979 notification is received. */
5980
5981 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5982 0 /* forever */, &is_notif);
5983 while (1)
5984 {
5985 if (ret != -1 && !is_notif)
5986 switch (rs->buf[0])
5987 {
5988 case 'E': /* Error of some sort. */
5989 /* We're out of sync with the target now. Did it continue
5990 or not? We can't tell which thread it was in non-stop,
5991 so just ignore this. */
5992 warning (_("Remote failure reply: %s"), rs->buf);
5993 break;
5994 case 'O': /* Console output. */
5995 remote_console_output (rs->buf + 1);
5996 break;
5997 default:
5998 warning (_("Invalid remote reply: %s"), rs->buf);
5999 break;
6000 }
6001
6002 /* Acknowledge a pending stop reply that may have arrived in the
6003 mean time. */
6004 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
6005 remote_notif_get_pending_events (&notif_client_stop);
6006
6007 /* If indeed we noticed a stop reply, we're done. */
6008 stop_reply = queued_stop_reply (ptid);
6009 if (stop_reply != NULL)
6010 return process_stop_reply (stop_reply, status);
6011
6012 /* Still no event. If we're just polling for an event, then
6013 return to the event loop. */
6014 if (options & TARGET_WNOHANG)
6015 {
6016 status->kind = TARGET_WAITKIND_IGNORE;
6017 return minus_one_ptid;
6018 }
6019
6020 /* Otherwise do a blocking wait. */
6021 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
6022 1 /* forever */, &is_notif);
6023 }
6024 }
6025
6026 /* Wait until the remote machine stops, then return, storing status in
6027 STATUS just as `wait' would. */
6028
6029 static ptid_t
6030 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
6031 {
6032 struct remote_state *rs = get_remote_state ();
6033 ptid_t event_ptid = null_ptid;
6034 char *buf;
6035 struct stop_reply *stop_reply;
6036
6037 again:
6038
6039 status->kind = TARGET_WAITKIND_IGNORE;
6040 status->value.integer = 0;
6041
6042 stop_reply = queued_stop_reply (ptid);
6043 if (stop_reply != NULL)
6044 return process_stop_reply (stop_reply, status);
6045
6046 if (rs->cached_wait_status)
6047 /* Use the cached wait status, but only once. */
6048 rs->cached_wait_status = 0;
6049 else
6050 {
6051 int ret;
6052 int is_notif;
6053
6054 if (!target_is_async_p ())
6055 {
6056 ofunc = signal (SIGINT, sync_remote_interrupt);
6057 /* If the user hit C-c before this packet, or between packets,
6058 pretend that it was hit right here. */
6059 if (check_quit_flag ())
6060 {
6061 clear_quit_flag ();
6062 sync_remote_interrupt (SIGINT);
6063 }
6064 }
6065
6066 /* FIXME: cagney/1999-09-27: If we're in async mode we should
6067 _never_ wait for ever -> test on target_is_async_p().
6068 However, before we do that we need to ensure that the caller
6069 knows how to take the target into/out of async mode. */
6070 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
6071 wait_forever_enabled_p, &is_notif);
6072
6073 if (!target_is_async_p ())
6074 signal (SIGINT, ofunc);
6075
6076 /* GDB gets a notification. Return to core as this event is
6077 not interesting. */
6078 if (ret != -1 && is_notif)
6079 return minus_one_ptid;
6080 }
6081
6082 buf = rs->buf;
6083
6084 rs->remote_stopped_by_watchpoint_p = 0;
6085
6086 /* We got something. */
6087 rs->waiting_for_stop_reply = 0;
6088
6089 /* Assume that the target has acknowledged Ctrl-C unless we receive
6090 an 'F' or 'O' packet. */
6091 if (buf[0] != 'F' && buf[0] != 'O')
6092 rs->ctrlc_pending_p = 0;
6093
6094 switch (buf[0])
6095 {
6096 case 'E': /* Error of some sort. */
6097 /* We're out of sync with the target now. Did it continue or
6098 not? Not is more likely, so report a stop. */
6099 warning (_("Remote failure reply: %s"), buf);
6100 status->kind = TARGET_WAITKIND_STOPPED;
6101 status->value.sig = GDB_SIGNAL_0;
6102 break;
6103 case 'F': /* File-I/O request. */
6104 remote_fileio_request (buf, rs->ctrlc_pending_p);
6105 rs->ctrlc_pending_p = 0;
6106 break;
6107 case 'T': case 'S': case 'X': case 'W':
6108 {
6109 struct stop_reply *stop_reply
6110 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
6111 rs->buf);
6112
6113 event_ptid = process_stop_reply (stop_reply, status);
6114 break;
6115 }
6116 case 'O': /* Console output. */
6117 remote_console_output (buf + 1);
6118
6119 /* The target didn't really stop; keep waiting. */
6120 rs->waiting_for_stop_reply = 1;
6121
6122 break;
6123 case '\0':
6124 if (rs->last_sent_signal != GDB_SIGNAL_0)
6125 {
6126 /* Zero length reply means that we tried 'S' or 'C' and the
6127 remote system doesn't support it. */
6128 target_terminal_ours_for_output ();
6129 printf_filtered
6130 ("Can't send signals to this remote system. %s not sent.\n",
6131 gdb_signal_to_name (rs->last_sent_signal));
6132 rs->last_sent_signal = GDB_SIGNAL_0;
6133 target_terminal_inferior ();
6134
6135 strcpy ((char *) buf, rs->last_sent_step ? "s" : "c");
6136 putpkt ((char *) buf);
6137
6138 /* We just told the target to resume, so a stop reply is in
6139 order. */
6140 rs->waiting_for_stop_reply = 1;
6141 break;
6142 }
6143 /* else fallthrough */
6144 default:
6145 warning (_("Invalid remote reply: %s"), buf);
6146 /* Keep waiting. */
6147 rs->waiting_for_stop_reply = 1;
6148 break;
6149 }
6150
6151 if (status->kind == TARGET_WAITKIND_IGNORE)
6152 {
6153 /* Nothing interesting happened. If we're doing a non-blocking
6154 poll, we're done. Otherwise, go back to waiting. */
6155 if (options & TARGET_WNOHANG)
6156 return minus_one_ptid;
6157 else
6158 goto again;
6159 }
6160 else if (status->kind != TARGET_WAITKIND_EXITED
6161 && status->kind != TARGET_WAITKIND_SIGNALLED)
6162 {
6163 if (!ptid_equal (event_ptid, null_ptid))
6164 record_currthread (rs, event_ptid);
6165 else
6166 event_ptid = inferior_ptid;
6167 }
6168 else
6169 /* A process exit. Invalidate our notion of current thread. */
6170 record_currthread (rs, minus_one_ptid);
6171
6172 return event_ptid;
6173 }
6174
6175 /* Wait until the remote machine stops, then return, storing status in
6176 STATUS just as `wait' would. */
6177
6178 static ptid_t
6179 remote_wait (struct target_ops *ops,
6180 ptid_t ptid, struct target_waitstatus *status, int options)
6181 {
6182 ptid_t event_ptid;
6183
6184 if (non_stop)
6185 event_ptid = remote_wait_ns (ptid, status, options);
6186 else
6187 event_ptid = remote_wait_as (ptid, status, options);
6188
6189 if (target_can_async_p ())
6190 {
6191 /* If there are are events left in the queue tell the event loop
6192 to return here. */
6193 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6194 mark_async_event_handler (remote_async_inferior_event_token);
6195 }
6196
6197 return event_ptid;
6198 }
6199
6200 /* Fetch a single register using a 'p' packet. */
6201
6202 static int
6203 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
6204 {
6205 struct remote_state *rs = get_remote_state ();
6206 char *buf, *p;
6207 char regp[MAX_REGISTER_SIZE];
6208 int i;
6209
6210 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
6211 return 0;
6212
6213 if (reg->pnum == -1)
6214 return 0;
6215
6216 p = rs->buf;
6217 *p++ = 'p';
6218 p += hexnumstr (p, reg->pnum);
6219 *p++ = '\0';
6220 putpkt (rs->buf);
6221 getpkt (&rs->buf, &rs->buf_size, 0);
6222
6223 buf = rs->buf;
6224
6225 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
6226 {
6227 case PACKET_OK:
6228 break;
6229 case PACKET_UNKNOWN:
6230 return 0;
6231 case PACKET_ERROR:
6232 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
6233 gdbarch_register_name (get_regcache_arch (regcache),
6234 reg->regnum),
6235 buf);
6236 }
6237
6238 /* If this register is unfetchable, tell the regcache. */
6239 if (buf[0] == 'x')
6240 {
6241 regcache_raw_supply (regcache, reg->regnum, NULL);
6242 return 1;
6243 }
6244
6245 /* Otherwise, parse and supply the value. */
6246 p = buf;
6247 i = 0;
6248 while (p[0] != 0)
6249 {
6250 if (p[1] == 0)
6251 error (_("fetch_register_using_p: early buf termination"));
6252
6253 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
6254 p += 2;
6255 }
6256 regcache_raw_supply (regcache, reg->regnum, regp);
6257 return 1;
6258 }
6259
6260 /* Fetch the registers included in the target's 'g' packet. */
6261
6262 static int
6263 send_g_packet (void)
6264 {
6265 struct remote_state *rs = get_remote_state ();
6266 int buf_len;
6267
6268 xsnprintf (rs->buf, get_remote_packet_size (), "g");
6269 remote_send (&rs->buf, &rs->buf_size);
6270
6271 /* We can get out of synch in various cases. If the first character
6272 in the buffer is not a hex character, assume that has happened
6273 and try to fetch another packet to read. */
6274 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
6275 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
6276 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
6277 && rs->buf[0] != 'x') /* New: unavailable register value. */
6278 {
6279 if (remote_debug)
6280 fprintf_unfiltered (gdb_stdlog,
6281 "Bad register packet; fetching a new packet\n");
6282 getpkt (&rs->buf, &rs->buf_size, 0);
6283 }
6284
6285 buf_len = strlen (rs->buf);
6286
6287 /* Sanity check the received packet. */
6288 if (buf_len % 2 != 0)
6289 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
6290
6291 return buf_len / 2;
6292 }
6293
6294 static void
6295 process_g_packet (struct regcache *regcache)
6296 {
6297 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6298 struct remote_state *rs = get_remote_state ();
6299 struct remote_arch_state *rsa = get_remote_arch_state ();
6300 int i, buf_len;
6301 char *p;
6302 char *regs;
6303
6304 buf_len = strlen (rs->buf);
6305
6306 /* Further sanity checks, with knowledge of the architecture. */
6307 if (buf_len > 2 * rsa->sizeof_g_packet)
6308 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
6309
6310 /* Save the size of the packet sent to us by the target. It is used
6311 as a heuristic when determining the max size of packets that the
6312 target can safely receive. */
6313 if (rsa->actual_register_packet_size == 0)
6314 rsa->actual_register_packet_size = buf_len;
6315
6316 /* If this is smaller than we guessed the 'g' packet would be,
6317 update our records. A 'g' reply that doesn't include a register's
6318 value implies either that the register is not available, or that
6319 the 'p' packet must be used. */
6320 if (buf_len < 2 * rsa->sizeof_g_packet)
6321 {
6322 rsa->sizeof_g_packet = buf_len / 2;
6323
6324 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6325 {
6326 if (rsa->regs[i].pnum == -1)
6327 continue;
6328
6329 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
6330 rsa->regs[i].in_g_packet = 0;
6331 else
6332 rsa->regs[i].in_g_packet = 1;
6333 }
6334 }
6335
6336 regs = alloca (rsa->sizeof_g_packet);
6337
6338 /* Unimplemented registers read as all bits zero. */
6339 memset (regs, 0, rsa->sizeof_g_packet);
6340
6341 /* Reply describes registers byte by byte, each byte encoded as two
6342 hex characters. Suck them all up, then supply them to the
6343 register cacheing/storage mechanism. */
6344
6345 p = rs->buf;
6346 for (i = 0; i < rsa->sizeof_g_packet; i++)
6347 {
6348 if (p[0] == 0 || p[1] == 0)
6349 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6350 internal_error (__FILE__, __LINE__,
6351 _("unexpected end of 'g' packet reply"));
6352
6353 if (p[0] == 'x' && p[1] == 'x')
6354 regs[i] = 0; /* 'x' */
6355 else
6356 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6357 p += 2;
6358 }
6359
6360 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6361 {
6362 struct packet_reg *r = &rsa->regs[i];
6363
6364 if (r->in_g_packet)
6365 {
6366 if (r->offset * 2 >= strlen (rs->buf))
6367 /* This shouldn't happen - we adjusted in_g_packet above. */
6368 internal_error (__FILE__, __LINE__,
6369 _("unexpected end of 'g' packet reply"));
6370 else if (rs->buf[r->offset * 2] == 'x')
6371 {
6372 gdb_assert (r->offset * 2 < strlen (rs->buf));
6373 /* The register isn't available, mark it as such (at
6374 the same time setting the value to zero). */
6375 regcache_raw_supply (regcache, r->regnum, NULL);
6376 }
6377 else
6378 regcache_raw_supply (regcache, r->regnum,
6379 regs + r->offset);
6380 }
6381 }
6382 }
6383
6384 static void
6385 fetch_registers_using_g (struct regcache *regcache)
6386 {
6387 send_g_packet ();
6388 process_g_packet (regcache);
6389 }
6390
6391 /* Make the remote selected traceframe match GDB's selected
6392 traceframe. */
6393
6394 static void
6395 set_remote_traceframe (void)
6396 {
6397 int newnum;
6398 struct remote_state *rs = get_remote_state ();
6399
6400 if (rs->remote_traceframe_number == get_traceframe_number ())
6401 return;
6402
6403 /* Avoid recursion, remote_trace_find calls us again. */
6404 rs->remote_traceframe_number = get_traceframe_number ();
6405
6406 newnum = target_trace_find (tfind_number,
6407 get_traceframe_number (), 0, 0, NULL);
6408
6409 /* Should not happen. If it does, all bets are off. */
6410 if (newnum != get_traceframe_number ())
6411 warning (_("could not set remote traceframe"));
6412 }
6413
6414 static void
6415 remote_fetch_registers (struct target_ops *ops,
6416 struct regcache *regcache, int regnum)
6417 {
6418 struct remote_arch_state *rsa = get_remote_arch_state ();
6419 int i;
6420
6421 set_remote_traceframe ();
6422 set_general_thread (inferior_ptid);
6423
6424 if (regnum >= 0)
6425 {
6426 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6427
6428 gdb_assert (reg != NULL);
6429
6430 /* If this register might be in the 'g' packet, try that first -
6431 we are likely to read more than one register. If this is the
6432 first 'g' packet, we might be overly optimistic about its
6433 contents, so fall back to 'p'. */
6434 if (reg->in_g_packet)
6435 {
6436 fetch_registers_using_g (regcache);
6437 if (reg->in_g_packet)
6438 return;
6439 }
6440
6441 if (fetch_register_using_p (regcache, reg))
6442 return;
6443
6444 /* This register is not available. */
6445 regcache_raw_supply (regcache, reg->regnum, NULL);
6446
6447 return;
6448 }
6449
6450 fetch_registers_using_g (regcache);
6451
6452 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6453 if (!rsa->regs[i].in_g_packet)
6454 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6455 {
6456 /* This register is not available. */
6457 regcache_raw_supply (regcache, i, NULL);
6458 }
6459 }
6460
6461 /* Prepare to store registers. Since we may send them all (using a
6462 'G' request), we have to read out the ones we don't want to change
6463 first. */
6464
6465 static void
6466 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
6467 {
6468 struct remote_arch_state *rsa = get_remote_arch_state ();
6469 int i;
6470 gdb_byte buf[MAX_REGISTER_SIZE];
6471
6472 /* Make sure the entire registers array is valid. */
6473 switch (remote_protocol_packets[PACKET_P].support)
6474 {
6475 case PACKET_DISABLE:
6476 case PACKET_SUPPORT_UNKNOWN:
6477 /* Make sure all the necessary registers are cached. */
6478 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6479 if (rsa->regs[i].in_g_packet)
6480 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6481 break;
6482 case PACKET_ENABLE:
6483 break;
6484 }
6485 }
6486
6487 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6488 packet was not recognized. */
6489
6490 static int
6491 store_register_using_P (const struct regcache *regcache,
6492 struct packet_reg *reg)
6493 {
6494 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6495 struct remote_state *rs = get_remote_state ();
6496 /* Try storing a single register. */
6497 char *buf = rs->buf;
6498 gdb_byte regp[MAX_REGISTER_SIZE];
6499 char *p;
6500
6501 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6502 return 0;
6503
6504 if (reg->pnum == -1)
6505 return 0;
6506
6507 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6508 p = buf + strlen (buf);
6509 regcache_raw_collect (regcache, reg->regnum, regp);
6510 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6511 putpkt (rs->buf);
6512 getpkt (&rs->buf, &rs->buf_size, 0);
6513
6514 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6515 {
6516 case PACKET_OK:
6517 return 1;
6518 case PACKET_ERROR:
6519 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6520 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6521 case PACKET_UNKNOWN:
6522 return 0;
6523 default:
6524 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6525 }
6526 }
6527
6528 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6529 contents of the register cache buffer. FIXME: ignores errors. */
6530
6531 static void
6532 store_registers_using_G (const struct regcache *regcache)
6533 {
6534 struct remote_state *rs = get_remote_state ();
6535 struct remote_arch_state *rsa = get_remote_arch_state ();
6536 gdb_byte *regs;
6537 char *p;
6538
6539 /* Extract all the registers in the regcache copying them into a
6540 local buffer. */
6541 {
6542 int i;
6543
6544 regs = alloca (rsa->sizeof_g_packet);
6545 memset (regs, 0, rsa->sizeof_g_packet);
6546 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6547 {
6548 struct packet_reg *r = &rsa->regs[i];
6549
6550 if (r->in_g_packet)
6551 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6552 }
6553 }
6554
6555 /* Command describes registers byte by byte,
6556 each byte encoded as two hex characters. */
6557 p = rs->buf;
6558 *p++ = 'G';
6559 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6560 updated. */
6561 bin2hex (regs, p, rsa->sizeof_g_packet);
6562 putpkt (rs->buf);
6563 getpkt (&rs->buf, &rs->buf_size, 0);
6564 if (packet_check_result (rs->buf) == PACKET_ERROR)
6565 error (_("Could not write registers; remote failure reply '%s'"),
6566 rs->buf);
6567 }
6568
6569 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6570 of the register cache buffer. FIXME: ignores errors. */
6571
6572 static void
6573 remote_store_registers (struct target_ops *ops,
6574 struct regcache *regcache, int regnum)
6575 {
6576 struct remote_arch_state *rsa = get_remote_arch_state ();
6577 int i;
6578
6579 set_remote_traceframe ();
6580 set_general_thread (inferior_ptid);
6581
6582 if (regnum >= 0)
6583 {
6584 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6585
6586 gdb_assert (reg != NULL);
6587
6588 /* Always prefer to store registers using the 'P' packet if
6589 possible; we often change only a small number of registers.
6590 Sometimes we change a larger number; we'd need help from a
6591 higher layer to know to use 'G'. */
6592 if (store_register_using_P (regcache, reg))
6593 return;
6594
6595 /* For now, don't complain if we have no way to write the
6596 register. GDB loses track of unavailable registers too
6597 easily. Some day, this may be an error. We don't have
6598 any way to read the register, either... */
6599 if (!reg->in_g_packet)
6600 return;
6601
6602 store_registers_using_G (regcache);
6603 return;
6604 }
6605
6606 store_registers_using_G (regcache);
6607
6608 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6609 if (!rsa->regs[i].in_g_packet)
6610 if (!store_register_using_P (regcache, &rsa->regs[i]))
6611 /* See above for why we do not issue an error here. */
6612 continue;
6613 }
6614 \f
6615
6616 /* Return the number of hex digits in num. */
6617
6618 static int
6619 hexnumlen (ULONGEST num)
6620 {
6621 int i;
6622
6623 for (i = 0; num != 0; i++)
6624 num >>= 4;
6625
6626 return max (i, 1);
6627 }
6628
6629 /* Set BUF to the minimum number of hex digits representing NUM. */
6630
6631 static int
6632 hexnumstr (char *buf, ULONGEST num)
6633 {
6634 int len = hexnumlen (num);
6635
6636 return hexnumnstr (buf, num, len);
6637 }
6638
6639
6640 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6641
6642 static int
6643 hexnumnstr (char *buf, ULONGEST num, int width)
6644 {
6645 int i;
6646
6647 buf[width] = '\0';
6648
6649 for (i = width - 1; i >= 0; i--)
6650 {
6651 buf[i] = "0123456789abcdef"[(num & 0xf)];
6652 num >>= 4;
6653 }
6654
6655 return width;
6656 }
6657
6658 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6659
6660 static CORE_ADDR
6661 remote_address_masked (CORE_ADDR addr)
6662 {
6663 unsigned int address_size = remote_address_size;
6664
6665 /* If "remoteaddresssize" was not set, default to target address size. */
6666 if (!address_size)
6667 address_size = gdbarch_addr_bit (target_gdbarch ());
6668
6669 if (address_size > 0
6670 && address_size < (sizeof (ULONGEST) * 8))
6671 {
6672 /* Only create a mask when that mask can safely be constructed
6673 in a ULONGEST variable. */
6674 ULONGEST mask = 1;
6675
6676 mask = (mask << address_size) - 1;
6677 addr &= mask;
6678 }
6679 return addr;
6680 }
6681
6682 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6683 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6684 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6685 (which may be more than *OUT_LEN due to escape characters). The
6686 total number of bytes in the output buffer will be at most
6687 OUT_MAXLEN. */
6688
6689 static int
6690 remote_escape_output (const gdb_byte *buffer, int len,
6691 gdb_byte *out_buf, int *out_len,
6692 int out_maxlen)
6693 {
6694 int input_index, output_index;
6695
6696 output_index = 0;
6697 for (input_index = 0; input_index < len; input_index++)
6698 {
6699 gdb_byte b = buffer[input_index];
6700
6701 if (b == '$' || b == '#' || b == '}')
6702 {
6703 /* These must be escaped. */
6704 if (output_index + 2 > out_maxlen)
6705 break;
6706 out_buf[output_index++] = '}';
6707 out_buf[output_index++] = b ^ 0x20;
6708 }
6709 else
6710 {
6711 if (output_index + 1 > out_maxlen)
6712 break;
6713 out_buf[output_index++] = b;
6714 }
6715 }
6716
6717 *out_len = input_index;
6718 return output_index;
6719 }
6720
6721 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6722 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6723 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6724
6725 This function reverses remote_escape_output. It allows more
6726 escaped characters than that function does, in particular because
6727 '*' must be escaped to avoid the run-length encoding processing
6728 in reading packets. */
6729
6730 static int
6731 remote_unescape_input (const gdb_byte *buffer, int len,
6732 gdb_byte *out_buf, int out_maxlen)
6733 {
6734 int input_index, output_index;
6735 int escaped;
6736
6737 output_index = 0;
6738 escaped = 0;
6739 for (input_index = 0; input_index < len; input_index++)
6740 {
6741 gdb_byte b = buffer[input_index];
6742
6743 if (output_index + 1 > out_maxlen)
6744 {
6745 warning (_("Received too much data from remote target;"
6746 " ignoring overflow."));
6747 return output_index;
6748 }
6749
6750 if (escaped)
6751 {
6752 out_buf[output_index++] = b ^ 0x20;
6753 escaped = 0;
6754 }
6755 else if (b == '}')
6756 escaped = 1;
6757 else
6758 out_buf[output_index++] = b;
6759 }
6760
6761 if (escaped)
6762 error (_("Unmatched escape character in target response."));
6763
6764 return output_index;
6765 }
6766
6767 /* Determine whether the remote target supports binary downloading.
6768 This is accomplished by sending a no-op memory write of zero length
6769 to the target at the specified address. It does not suffice to send
6770 the whole packet, since many stubs strip the eighth bit and
6771 subsequently compute a wrong checksum, which causes real havoc with
6772 remote_write_bytes.
6773
6774 NOTE: This can still lose if the serial line is not eight-bit
6775 clean. In cases like this, the user should clear "remote
6776 X-packet". */
6777
6778 static void
6779 check_binary_download (CORE_ADDR addr)
6780 {
6781 struct remote_state *rs = get_remote_state ();
6782
6783 switch (remote_protocol_packets[PACKET_X].support)
6784 {
6785 case PACKET_DISABLE:
6786 break;
6787 case PACKET_ENABLE:
6788 break;
6789 case PACKET_SUPPORT_UNKNOWN:
6790 {
6791 char *p;
6792
6793 p = rs->buf;
6794 *p++ = 'X';
6795 p += hexnumstr (p, (ULONGEST) addr);
6796 *p++ = ',';
6797 p += hexnumstr (p, (ULONGEST) 0);
6798 *p++ = ':';
6799 *p = '\0';
6800
6801 putpkt_binary (rs->buf, (int) (p - rs->buf));
6802 getpkt (&rs->buf, &rs->buf_size, 0);
6803
6804 if (rs->buf[0] == '\0')
6805 {
6806 if (remote_debug)
6807 fprintf_unfiltered (gdb_stdlog,
6808 "binary downloading NOT "
6809 "supported by target\n");
6810 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6811 }
6812 else
6813 {
6814 if (remote_debug)
6815 fprintf_unfiltered (gdb_stdlog,
6816 "binary downloading supported by target\n");
6817 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6818 }
6819 break;
6820 }
6821 }
6822 }
6823
6824 /* Write memory data directly to the remote machine.
6825 This does not inform the data cache; the data cache uses this.
6826 HEADER is the starting part of the packet.
6827 MEMADDR is the address in the remote memory space.
6828 MYADDR is the address of the buffer in our space.
6829 LEN is the number of bytes.
6830 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6831 should send data as binary ('X'), or hex-encoded ('M').
6832
6833 The function creates packet of the form
6834 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6835
6836 where encoding of <DATA> is termined by PACKET_FORMAT.
6837
6838 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6839 are omitted.
6840
6841 Returns the number of bytes transferred, or a negative value (an
6842 'enum target_xfer_error' value) for error. Only transfer a single
6843 packet. */
6844
6845 static LONGEST
6846 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6847 const gdb_byte *myaddr, ULONGEST len,
6848 char packet_format, int use_length)
6849 {
6850 struct remote_state *rs = get_remote_state ();
6851 char *p;
6852 char *plen = NULL;
6853 int plenlen = 0;
6854 int todo;
6855 int nr_bytes;
6856 int payload_size;
6857 int payload_length;
6858 int header_length;
6859
6860 if (packet_format != 'X' && packet_format != 'M')
6861 internal_error (__FILE__, __LINE__,
6862 _("remote_write_bytes_aux: bad packet format"));
6863
6864 if (len == 0)
6865 return 0;
6866
6867 payload_size = get_memory_write_packet_size ();
6868
6869 /* The packet buffer will be large enough for the payload;
6870 get_memory_packet_size ensures this. */
6871 rs->buf[0] = '\0';
6872
6873 /* Compute the size of the actual payload by subtracting out the
6874 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6875
6876 payload_size -= strlen ("$,:#NN");
6877 if (!use_length)
6878 /* The comma won't be used. */
6879 payload_size += 1;
6880 header_length = strlen (header);
6881 payload_size -= header_length;
6882 payload_size -= hexnumlen (memaddr);
6883
6884 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6885
6886 strcat (rs->buf, header);
6887 p = rs->buf + strlen (header);
6888
6889 /* Compute a best guess of the number of bytes actually transfered. */
6890 if (packet_format == 'X')
6891 {
6892 /* Best guess at number of bytes that will fit. */
6893 todo = min (len, payload_size);
6894 if (use_length)
6895 payload_size -= hexnumlen (todo);
6896 todo = min (todo, payload_size);
6897 }
6898 else
6899 {
6900 /* Num bytes that will fit. */
6901 todo = min (len, payload_size / 2);
6902 if (use_length)
6903 payload_size -= hexnumlen (todo);
6904 todo = min (todo, payload_size / 2);
6905 }
6906
6907 if (todo <= 0)
6908 internal_error (__FILE__, __LINE__,
6909 _("minimum packet size too small to write data"));
6910
6911 /* If we already need another packet, then try to align the end
6912 of this packet to a useful boundary. */
6913 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6914 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6915
6916 /* Append "<memaddr>". */
6917 memaddr = remote_address_masked (memaddr);
6918 p += hexnumstr (p, (ULONGEST) memaddr);
6919
6920 if (use_length)
6921 {
6922 /* Append ",". */
6923 *p++ = ',';
6924
6925 /* Append <len>. Retain the location/size of <len>. It may need to
6926 be adjusted once the packet body has been created. */
6927 plen = p;
6928 plenlen = hexnumstr (p, (ULONGEST) todo);
6929 p += plenlen;
6930 }
6931
6932 /* Append ":". */
6933 *p++ = ':';
6934 *p = '\0';
6935
6936 /* Append the packet body. */
6937 if (packet_format == 'X')
6938 {
6939 /* Binary mode. Send target system values byte by byte, in
6940 increasing byte addresses. Only escape certain critical
6941 characters. */
6942 payload_length = remote_escape_output (myaddr, todo, (gdb_byte *) p,
6943 &nr_bytes, payload_size);
6944
6945 /* If not all TODO bytes fit, then we'll need another packet. Make
6946 a second try to keep the end of the packet aligned. Don't do
6947 this if the packet is tiny. */
6948 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6949 {
6950 int new_nr_bytes;
6951
6952 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6953 - memaddr);
6954 if (new_nr_bytes != nr_bytes)
6955 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6956 (gdb_byte *) p, &nr_bytes,
6957 payload_size);
6958 }
6959
6960 p += payload_length;
6961 if (use_length && nr_bytes < todo)
6962 {
6963 /* Escape chars have filled up the buffer prematurely,
6964 and we have actually sent fewer bytes than planned.
6965 Fix-up the length field of the packet. Use the same
6966 number of characters as before. */
6967 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6968 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6969 }
6970 }
6971 else
6972 {
6973 /* Normal mode: Send target system values byte by byte, in
6974 increasing byte addresses. Each byte is encoded as a two hex
6975 value. */
6976 nr_bytes = bin2hex (myaddr, p, todo);
6977 p += 2 * nr_bytes;
6978 }
6979
6980 putpkt_binary (rs->buf, (int) (p - rs->buf));
6981 getpkt (&rs->buf, &rs->buf_size, 0);
6982
6983 if (rs->buf[0] == 'E')
6984 return TARGET_XFER_E_IO;
6985
6986 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6987 fewer bytes than we'd planned. */
6988 return nr_bytes;
6989 }
6990
6991 /* Write memory data directly to the remote machine.
6992 This does not inform the data cache; the data cache uses this.
6993 MEMADDR is the address in the remote memory space.
6994 MYADDR is the address of the buffer in our space.
6995 LEN is the number of bytes.
6996
6997 Returns number of bytes transferred, or a negative value (an 'enum
6998 target_xfer_error' value) for error. Only transfer a single
6999 packet. */
7000
7001 static LONGEST
7002 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len)
7003 {
7004 char *packet_format = 0;
7005
7006 /* Check whether the target supports binary download. */
7007 check_binary_download (memaddr);
7008
7009 switch (remote_protocol_packets[PACKET_X].support)
7010 {
7011 case PACKET_ENABLE:
7012 packet_format = "X";
7013 break;
7014 case PACKET_DISABLE:
7015 packet_format = "M";
7016 break;
7017 case PACKET_SUPPORT_UNKNOWN:
7018 internal_error (__FILE__, __LINE__,
7019 _("remote_write_bytes: bad internal state"));
7020 default:
7021 internal_error (__FILE__, __LINE__, _("bad switch"));
7022 }
7023
7024 return remote_write_bytes_aux (packet_format,
7025 memaddr, myaddr, len, packet_format[0], 1);
7026 }
7027
7028 /* Read memory data directly from the remote machine.
7029 This does not use the data cache; the data cache uses this.
7030 MEMADDR is the address in the remote memory space.
7031 MYADDR is the address of the buffer in our space.
7032 LEN is the number of bytes.
7033
7034 Returns number of bytes transferred, or a negative value (an 'enum
7035 target_xfer_error' value) for error. */
7036
7037 static LONGEST
7038 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len)
7039 {
7040 struct remote_state *rs = get_remote_state ();
7041 int max_buf_size; /* Max size of packet output buffer. */
7042 char *p;
7043 int todo;
7044 int i;
7045
7046 if (len == 0)
7047 return 0;
7048
7049 max_buf_size = get_memory_read_packet_size ();
7050 /* The packet buffer will be large enough for the payload;
7051 get_memory_packet_size ensures this. */
7052
7053 /* Number if bytes that will fit. */
7054 todo = min (len, max_buf_size / 2);
7055
7056 /* Construct "m"<memaddr>","<len>". */
7057 memaddr = remote_address_masked (memaddr);
7058 p = rs->buf;
7059 *p++ = 'm';
7060 p += hexnumstr (p, (ULONGEST) memaddr);
7061 *p++ = ',';
7062 p += hexnumstr (p, (ULONGEST) todo);
7063 *p = '\0';
7064 putpkt (rs->buf);
7065 getpkt (&rs->buf, &rs->buf_size, 0);
7066 if (rs->buf[0] == 'E'
7067 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
7068 && rs->buf[3] == '\0')
7069 return TARGET_XFER_E_IO;
7070 /* Reply describes memory byte by byte, each byte encoded as two hex
7071 characters. */
7072 p = rs->buf;
7073 i = hex2bin (p, myaddr, todo);
7074 /* Return what we have. Let higher layers handle partial reads. */
7075 return i;
7076 }
7077
7078 \f
7079
7080 /* Sends a packet with content determined by the printf format string
7081 FORMAT and the remaining arguments, then gets the reply. Returns
7082 whether the packet was a success, a failure, or unknown. */
7083
7084 static enum packet_result
7085 remote_send_printf (const char *format, ...)
7086 {
7087 struct remote_state *rs = get_remote_state ();
7088 int max_size = get_remote_packet_size ();
7089 va_list ap;
7090
7091 va_start (ap, format);
7092
7093 rs->buf[0] = '\0';
7094 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
7095 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
7096
7097 if (putpkt (rs->buf) < 0)
7098 error (_("Communication problem with target."));
7099
7100 rs->buf[0] = '\0';
7101 getpkt (&rs->buf, &rs->buf_size, 0);
7102
7103 return packet_check_result (rs->buf);
7104 }
7105
7106 static void
7107 restore_remote_timeout (void *p)
7108 {
7109 int value = *(int *)p;
7110
7111 remote_timeout = value;
7112 }
7113
7114 /* Flash writing can take quite some time. We'll set
7115 effectively infinite timeout for flash operations.
7116 In future, we'll need to decide on a better approach. */
7117 static const int remote_flash_timeout = 1000;
7118
7119 static void
7120 remote_flash_erase (struct target_ops *ops,
7121 ULONGEST address, LONGEST length)
7122 {
7123 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
7124 int saved_remote_timeout = remote_timeout;
7125 enum packet_result ret;
7126 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7127 &saved_remote_timeout);
7128
7129 remote_timeout = remote_flash_timeout;
7130
7131 ret = remote_send_printf ("vFlashErase:%s,%s",
7132 phex (address, addr_size),
7133 phex (length, 4));
7134 switch (ret)
7135 {
7136 case PACKET_UNKNOWN:
7137 error (_("Remote target does not support flash erase"));
7138 case PACKET_ERROR:
7139 error (_("Error erasing flash with vFlashErase packet"));
7140 default:
7141 break;
7142 }
7143
7144 do_cleanups (back_to);
7145 }
7146
7147 static LONGEST
7148 remote_flash_write (struct target_ops *ops,
7149 ULONGEST address, LONGEST length,
7150 const gdb_byte *data)
7151 {
7152 int saved_remote_timeout = remote_timeout;
7153 LONGEST ret;
7154 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7155 &saved_remote_timeout);
7156
7157 remote_timeout = remote_flash_timeout;
7158 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
7159 do_cleanups (back_to);
7160
7161 return ret;
7162 }
7163
7164 static void
7165 remote_flash_done (struct target_ops *ops)
7166 {
7167 int saved_remote_timeout = remote_timeout;
7168 int ret;
7169 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7170 &saved_remote_timeout);
7171
7172 remote_timeout = remote_flash_timeout;
7173 ret = remote_send_printf ("vFlashDone");
7174 do_cleanups (back_to);
7175
7176 switch (ret)
7177 {
7178 case PACKET_UNKNOWN:
7179 error (_("Remote target does not support vFlashDone"));
7180 case PACKET_ERROR:
7181 error (_("Error finishing flash operation"));
7182 default:
7183 break;
7184 }
7185 }
7186
7187 static void
7188 remote_files_info (struct target_ops *ignore)
7189 {
7190 puts_filtered ("Debugging a target over a serial line.\n");
7191 }
7192 \f
7193 /* Stuff for dealing with the packets which are part of this protocol.
7194 See comment at top of file for details. */
7195
7196 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
7197 error to higher layers. Called when a serial error is detected.
7198 The exception message is STRING, followed by a colon and a blank,
7199 the system error message for errno at function entry and final dot
7200 for output compatibility with throw_perror_with_name. */
7201
7202 static void
7203 unpush_and_perror (const char *string)
7204 {
7205 int saved_errno = errno;
7206
7207 remote_unpush_target ();
7208 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
7209 safe_strerror (saved_errno));
7210 }
7211
7212 /* Read a single character from the remote end. */
7213
7214 static int
7215 readchar (int timeout)
7216 {
7217 int ch;
7218 struct remote_state *rs = get_remote_state ();
7219
7220 ch = serial_readchar (rs->remote_desc, timeout);
7221
7222 if (ch >= 0)
7223 return ch;
7224
7225 switch ((enum serial_rc) ch)
7226 {
7227 case SERIAL_EOF:
7228 remote_unpush_target ();
7229 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
7230 /* no return */
7231 case SERIAL_ERROR:
7232 unpush_and_perror (_("Remote communication error. "
7233 "Target disconnected."));
7234 /* no return */
7235 case SERIAL_TIMEOUT:
7236 break;
7237 }
7238 return ch;
7239 }
7240
7241 /* Wrapper for serial_write that closes the target and throws if
7242 writing fails. */
7243
7244 static void
7245 remote_serial_write (const char *str, int len)
7246 {
7247 struct remote_state *rs = get_remote_state ();
7248
7249 if (serial_write (rs->remote_desc, str, len))
7250 {
7251 unpush_and_perror (_("Remote communication error. "
7252 "Target disconnected."));
7253 }
7254 }
7255
7256 /* Send the command in *BUF to the remote machine, and read the reply
7257 into *BUF. Report an error if we get an error reply. Resize
7258 *BUF using xrealloc if necessary to hold the result, and update
7259 *SIZEOF_BUF. */
7260
7261 static void
7262 remote_send (char **buf,
7263 long *sizeof_buf)
7264 {
7265 putpkt (*buf);
7266 getpkt (buf, sizeof_buf, 0);
7267
7268 if ((*buf)[0] == 'E')
7269 error (_("Remote failure reply: %s"), *buf);
7270 }
7271
7272 /* Return a pointer to an xmalloc'ed string representing an escaped
7273 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
7274 etc. The caller is responsible for releasing the returned
7275 memory. */
7276
7277 static char *
7278 escape_buffer (const char *buf, int n)
7279 {
7280 struct cleanup *old_chain;
7281 struct ui_file *stb;
7282 char *str;
7283
7284 stb = mem_fileopen ();
7285 old_chain = make_cleanup_ui_file_delete (stb);
7286
7287 fputstrn_unfiltered (buf, n, 0, stb);
7288 str = ui_file_xstrdup (stb, NULL);
7289 do_cleanups (old_chain);
7290 return str;
7291 }
7292
7293 /* Display a null-terminated packet on stdout, for debugging, using C
7294 string notation. */
7295
7296 static void
7297 print_packet (char *buf)
7298 {
7299 puts_filtered ("\"");
7300 fputstr_filtered (buf, '"', gdb_stdout);
7301 puts_filtered ("\"");
7302 }
7303
7304 int
7305 putpkt (char *buf)
7306 {
7307 return putpkt_binary (buf, strlen (buf));
7308 }
7309
7310 /* Send a packet to the remote machine, with error checking. The data
7311 of the packet is in BUF. The string in BUF can be at most
7312 get_remote_packet_size () - 5 to account for the $, # and checksum,
7313 and for a possible /0 if we are debugging (remote_debug) and want
7314 to print the sent packet as a string. */
7315
7316 static int
7317 putpkt_binary (char *buf, int cnt)
7318 {
7319 struct remote_state *rs = get_remote_state ();
7320 int i;
7321 unsigned char csum = 0;
7322 char *buf2 = alloca (cnt + 6);
7323
7324 int ch;
7325 int tcount = 0;
7326 char *p;
7327 char *message;
7328
7329 /* Catch cases like trying to read memory or listing threads while
7330 we're waiting for a stop reply. The remote server wouldn't be
7331 ready to handle this request, so we'd hang and timeout. We don't
7332 have to worry about this in synchronous mode, because in that
7333 case it's not possible to issue a command while the target is
7334 running. This is not a problem in non-stop mode, because in that
7335 case, the stub is always ready to process serial input. */
7336 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
7337 error (_("Cannot execute this command while the target is running."));
7338
7339 /* We're sending out a new packet. Make sure we don't look at a
7340 stale cached response. */
7341 rs->cached_wait_status = 0;
7342
7343 /* Copy the packet into buffer BUF2, encapsulating it
7344 and giving it a checksum. */
7345
7346 p = buf2;
7347 *p++ = '$';
7348
7349 for (i = 0; i < cnt; i++)
7350 {
7351 csum += buf[i];
7352 *p++ = buf[i];
7353 }
7354 *p++ = '#';
7355 *p++ = tohex ((csum >> 4) & 0xf);
7356 *p++ = tohex (csum & 0xf);
7357
7358 /* Send it over and over until we get a positive ack. */
7359
7360 while (1)
7361 {
7362 int started_error_output = 0;
7363
7364 if (remote_debug)
7365 {
7366 struct cleanup *old_chain;
7367 char *str;
7368
7369 *p = '\0';
7370 str = escape_buffer (buf2, p - buf2);
7371 old_chain = make_cleanup (xfree, str);
7372 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7373 gdb_flush (gdb_stdlog);
7374 do_cleanups (old_chain);
7375 }
7376 remote_serial_write (buf2, p - buf2);
7377
7378 /* If this is a no acks version of the remote protocol, send the
7379 packet and move on. */
7380 if (rs->noack_mode)
7381 break;
7382
7383 /* Read until either a timeout occurs (-2) or '+' is read.
7384 Handle any notification that arrives in the mean time. */
7385 while (1)
7386 {
7387 ch = readchar (remote_timeout);
7388
7389 if (remote_debug)
7390 {
7391 switch (ch)
7392 {
7393 case '+':
7394 case '-':
7395 case SERIAL_TIMEOUT:
7396 case '$':
7397 case '%':
7398 if (started_error_output)
7399 {
7400 putchar_unfiltered ('\n');
7401 started_error_output = 0;
7402 }
7403 }
7404 }
7405
7406 switch (ch)
7407 {
7408 case '+':
7409 if (remote_debug)
7410 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7411 return 1;
7412 case '-':
7413 if (remote_debug)
7414 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7415 /* FALLTHROUGH */
7416 case SERIAL_TIMEOUT:
7417 tcount++;
7418 if (tcount > 3)
7419 return 0;
7420 break; /* Retransmit buffer. */
7421 case '$':
7422 {
7423 if (remote_debug)
7424 fprintf_unfiltered (gdb_stdlog,
7425 "Packet instead of Ack, ignoring it\n");
7426 /* It's probably an old response sent because an ACK
7427 was lost. Gobble up the packet and ack it so it
7428 doesn't get retransmitted when we resend this
7429 packet. */
7430 skip_frame ();
7431 remote_serial_write ("+", 1);
7432 continue; /* Now, go look for +. */
7433 }
7434
7435 case '%':
7436 {
7437 int val;
7438
7439 /* If we got a notification, handle it, and go back to looking
7440 for an ack. */
7441 /* We've found the start of a notification. Now
7442 collect the data. */
7443 val = read_frame (&rs->buf, &rs->buf_size);
7444 if (val >= 0)
7445 {
7446 if (remote_debug)
7447 {
7448 struct cleanup *old_chain;
7449 char *str;
7450
7451 str = escape_buffer (rs->buf, val);
7452 old_chain = make_cleanup (xfree, str);
7453 fprintf_unfiltered (gdb_stdlog,
7454 " Notification received: %s\n",
7455 str);
7456 do_cleanups (old_chain);
7457 }
7458 handle_notification (rs->notif_state, rs->buf);
7459 /* We're in sync now, rewait for the ack. */
7460 tcount = 0;
7461 }
7462 else
7463 {
7464 if (remote_debug)
7465 {
7466 if (!started_error_output)
7467 {
7468 started_error_output = 1;
7469 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7470 }
7471 fputc_unfiltered (ch & 0177, gdb_stdlog);
7472 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7473 }
7474 }
7475 continue;
7476 }
7477 /* fall-through */
7478 default:
7479 if (remote_debug)
7480 {
7481 if (!started_error_output)
7482 {
7483 started_error_output = 1;
7484 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7485 }
7486 fputc_unfiltered (ch & 0177, gdb_stdlog);
7487 }
7488 continue;
7489 }
7490 break; /* Here to retransmit. */
7491 }
7492
7493 #if 0
7494 /* This is wrong. If doing a long backtrace, the user should be
7495 able to get out next time we call QUIT, without anything as
7496 violent as interrupt_query. If we want to provide a way out of
7497 here without getting to the next QUIT, it should be based on
7498 hitting ^C twice as in remote_wait. */
7499 if (quit_flag)
7500 {
7501 quit_flag = 0;
7502 interrupt_query ();
7503 }
7504 #endif
7505 }
7506 return 0;
7507 }
7508
7509 /* Come here after finding the start of a frame when we expected an
7510 ack. Do our best to discard the rest of this packet. */
7511
7512 static void
7513 skip_frame (void)
7514 {
7515 int c;
7516
7517 while (1)
7518 {
7519 c = readchar (remote_timeout);
7520 switch (c)
7521 {
7522 case SERIAL_TIMEOUT:
7523 /* Nothing we can do. */
7524 return;
7525 case '#':
7526 /* Discard the two bytes of checksum and stop. */
7527 c = readchar (remote_timeout);
7528 if (c >= 0)
7529 c = readchar (remote_timeout);
7530
7531 return;
7532 case '*': /* Run length encoding. */
7533 /* Discard the repeat count. */
7534 c = readchar (remote_timeout);
7535 if (c < 0)
7536 return;
7537 break;
7538 default:
7539 /* A regular character. */
7540 break;
7541 }
7542 }
7543 }
7544
7545 /* Come here after finding the start of the frame. Collect the rest
7546 into *BUF, verifying the checksum, length, and handling run-length
7547 compression. NUL terminate the buffer. If there is not enough room,
7548 expand *BUF using xrealloc.
7549
7550 Returns -1 on error, number of characters in buffer (ignoring the
7551 trailing NULL) on success. (could be extended to return one of the
7552 SERIAL status indications). */
7553
7554 static long
7555 read_frame (char **buf_p,
7556 long *sizeof_buf)
7557 {
7558 unsigned char csum;
7559 long bc;
7560 int c;
7561 char *buf = *buf_p;
7562 struct remote_state *rs = get_remote_state ();
7563
7564 csum = 0;
7565 bc = 0;
7566
7567 while (1)
7568 {
7569 c = readchar (remote_timeout);
7570 switch (c)
7571 {
7572 case SERIAL_TIMEOUT:
7573 if (remote_debug)
7574 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7575 return -1;
7576 case '$':
7577 if (remote_debug)
7578 fputs_filtered ("Saw new packet start in middle of old one\n",
7579 gdb_stdlog);
7580 return -1; /* Start a new packet, count retries. */
7581 case '#':
7582 {
7583 unsigned char pktcsum;
7584 int check_0 = 0;
7585 int check_1 = 0;
7586
7587 buf[bc] = '\0';
7588
7589 check_0 = readchar (remote_timeout);
7590 if (check_0 >= 0)
7591 check_1 = readchar (remote_timeout);
7592
7593 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7594 {
7595 if (remote_debug)
7596 fputs_filtered ("Timeout in checksum, retrying\n",
7597 gdb_stdlog);
7598 return -1;
7599 }
7600 else if (check_0 < 0 || check_1 < 0)
7601 {
7602 if (remote_debug)
7603 fputs_filtered ("Communication error in checksum\n",
7604 gdb_stdlog);
7605 return -1;
7606 }
7607
7608 /* Don't recompute the checksum; with no ack packets we
7609 don't have any way to indicate a packet retransmission
7610 is necessary. */
7611 if (rs->noack_mode)
7612 return bc;
7613
7614 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7615 if (csum == pktcsum)
7616 return bc;
7617
7618 if (remote_debug)
7619 {
7620 struct cleanup *old_chain;
7621 char *str;
7622
7623 str = escape_buffer (buf, bc);
7624 old_chain = make_cleanup (xfree, str);
7625 fprintf_unfiltered (gdb_stdlog,
7626 "Bad checksum, sentsum=0x%x, "
7627 "csum=0x%x, buf=%s\n",
7628 pktcsum, csum, str);
7629 do_cleanups (old_chain);
7630 }
7631 /* Number of characters in buffer ignoring trailing
7632 NULL. */
7633 return -1;
7634 }
7635 case '*': /* Run length encoding. */
7636 {
7637 int repeat;
7638
7639 csum += c;
7640 c = readchar (remote_timeout);
7641 csum += c;
7642 repeat = c - ' ' + 3; /* Compute repeat count. */
7643
7644 /* The character before ``*'' is repeated. */
7645
7646 if (repeat > 0 && repeat <= 255 && bc > 0)
7647 {
7648 if (bc + repeat - 1 >= *sizeof_buf - 1)
7649 {
7650 /* Make some more room in the buffer. */
7651 *sizeof_buf += repeat;
7652 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7653 buf = *buf_p;
7654 }
7655
7656 memset (&buf[bc], buf[bc - 1], repeat);
7657 bc += repeat;
7658 continue;
7659 }
7660
7661 buf[bc] = '\0';
7662 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7663 return -1;
7664 }
7665 default:
7666 if (bc >= *sizeof_buf - 1)
7667 {
7668 /* Make some more room in the buffer. */
7669 *sizeof_buf *= 2;
7670 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7671 buf = *buf_p;
7672 }
7673
7674 buf[bc++] = c;
7675 csum += c;
7676 continue;
7677 }
7678 }
7679 }
7680
7681 /* Read a packet from the remote machine, with error checking, and
7682 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7683 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7684 rather than timing out; this is used (in synchronous mode) to wait
7685 for a target that is is executing user code to stop. */
7686 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7687 don't have to change all the calls to getpkt to deal with the
7688 return value, because at the moment I don't know what the right
7689 thing to do it for those. */
7690 void
7691 getpkt (char **buf,
7692 long *sizeof_buf,
7693 int forever)
7694 {
7695 int timed_out;
7696
7697 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7698 }
7699
7700
7701 /* Read a packet from the remote machine, with error checking, and
7702 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7703 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7704 rather than timing out; this is used (in synchronous mode) to wait
7705 for a target that is is executing user code to stop. If FOREVER ==
7706 0, this function is allowed to time out gracefully and return an
7707 indication of this to the caller. Otherwise return the number of
7708 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7709 enough reason to return to the caller. *IS_NOTIF is an output
7710 boolean that indicates whether *BUF holds a notification or not
7711 (a regular packet). */
7712
7713 static int
7714 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7715 int expecting_notif, int *is_notif)
7716 {
7717 struct remote_state *rs = get_remote_state ();
7718 int c;
7719 int tries;
7720 int timeout;
7721 int val = -1;
7722
7723 /* We're reading a new response. Make sure we don't look at a
7724 previously cached response. */
7725 rs->cached_wait_status = 0;
7726
7727 strcpy (*buf, "timeout");
7728
7729 if (forever)
7730 timeout = watchdog > 0 ? watchdog : -1;
7731 else if (expecting_notif)
7732 timeout = 0; /* There should already be a char in the buffer. If
7733 not, bail out. */
7734 else
7735 timeout = remote_timeout;
7736
7737 #define MAX_TRIES 3
7738
7739 /* Process any number of notifications, and then return when
7740 we get a packet. */
7741 for (;;)
7742 {
7743 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
7744 times. */
7745 for (tries = 1; tries <= MAX_TRIES; tries++)
7746 {
7747 /* This can loop forever if the remote side sends us
7748 characters continuously, but if it pauses, we'll get
7749 SERIAL_TIMEOUT from readchar because of timeout. Then
7750 we'll count that as a retry.
7751
7752 Note that even when forever is set, we will only wait
7753 forever prior to the start of a packet. After that, we
7754 expect characters to arrive at a brisk pace. They should
7755 show up within remote_timeout intervals. */
7756 do
7757 c = readchar (timeout);
7758 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7759
7760 if (c == SERIAL_TIMEOUT)
7761 {
7762 if (expecting_notif)
7763 return -1; /* Don't complain, it's normal to not get
7764 anything in this case. */
7765
7766 if (forever) /* Watchdog went off? Kill the target. */
7767 {
7768 QUIT;
7769 remote_unpush_target ();
7770 throw_error (TARGET_CLOSE_ERROR,
7771 _("Watchdog timeout has expired. "
7772 "Target detached."));
7773 }
7774 if (remote_debug)
7775 fputs_filtered ("Timed out.\n", gdb_stdlog);
7776 }
7777 else
7778 {
7779 /* We've found the start of a packet or notification.
7780 Now collect the data. */
7781 val = read_frame (buf, sizeof_buf);
7782 if (val >= 0)
7783 break;
7784 }
7785
7786 remote_serial_write ("-", 1);
7787 }
7788
7789 if (tries > MAX_TRIES)
7790 {
7791 /* We have tried hard enough, and just can't receive the
7792 packet/notification. Give up. */
7793 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7794
7795 /* Skip the ack char if we're in no-ack mode. */
7796 if (!rs->noack_mode)
7797 remote_serial_write ("+", 1);
7798 return -1;
7799 }
7800
7801 /* If we got an ordinary packet, return that to our caller. */
7802 if (c == '$')
7803 {
7804 if (remote_debug)
7805 {
7806 struct cleanup *old_chain;
7807 char *str;
7808
7809 str = escape_buffer (*buf, val);
7810 old_chain = make_cleanup (xfree, str);
7811 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7812 do_cleanups (old_chain);
7813 }
7814
7815 /* Skip the ack char if we're in no-ack mode. */
7816 if (!rs->noack_mode)
7817 remote_serial_write ("+", 1);
7818 if (is_notif != NULL)
7819 *is_notif = 0;
7820 return val;
7821 }
7822
7823 /* If we got a notification, handle it, and go back to looking
7824 for a packet. */
7825 else
7826 {
7827 gdb_assert (c == '%');
7828
7829 if (remote_debug)
7830 {
7831 struct cleanup *old_chain;
7832 char *str;
7833
7834 str = escape_buffer (*buf, val);
7835 old_chain = make_cleanup (xfree, str);
7836 fprintf_unfiltered (gdb_stdlog,
7837 " Notification received: %s\n",
7838 str);
7839 do_cleanups (old_chain);
7840 }
7841 if (is_notif != NULL)
7842 *is_notif = 1;
7843
7844 handle_notification (rs->notif_state, *buf);
7845
7846 /* Notifications require no acknowledgement. */
7847
7848 if (expecting_notif)
7849 return val;
7850 }
7851 }
7852 }
7853
7854 static int
7855 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7856 {
7857 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
7858 }
7859
7860 static int
7861 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
7862 int *is_notif)
7863 {
7864 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
7865 is_notif);
7866 }
7867
7868 \f
7869 static void
7870 remote_kill (struct target_ops *ops)
7871 {
7872 volatile struct gdb_exception ex;
7873
7874 /* Catch errors so the user can quit from gdb even when we
7875 aren't on speaking terms with the remote system. */
7876 TRY_CATCH (ex, RETURN_MASK_ERROR)
7877 {
7878 putpkt ("k");
7879 }
7880 if (ex.reason < 0)
7881 {
7882 if (ex.error == TARGET_CLOSE_ERROR)
7883 {
7884 /* If we got an (EOF) error that caused the target
7885 to go away, then we're done, that's what we wanted.
7886 "k" is susceptible to cause a premature EOF, given
7887 that the remote server isn't actually required to
7888 reply to "k", and it can happen that it doesn't
7889 even get to reply ACK to the "k". */
7890 return;
7891 }
7892
7893 /* Otherwise, something went wrong. We didn't actually kill
7894 the target. Just propagate the exception, and let the
7895 user or higher layers decide what to do. */
7896 throw_exception (ex);
7897 }
7898
7899 /* We've killed the remote end, we get to mourn it. Since this is
7900 target remote, single-process, mourning the inferior also
7901 unpushes remote_ops. */
7902 target_mourn_inferior ();
7903 }
7904
7905 static int
7906 remote_vkill (int pid, struct remote_state *rs)
7907 {
7908 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7909 return -1;
7910
7911 /* Tell the remote target to detach. */
7912 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7913 putpkt (rs->buf);
7914 getpkt (&rs->buf, &rs->buf_size, 0);
7915
7916 if (packet_ok (rs->buf,
7917 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7918 return 0;
7919 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7920 return -1;
7921 else
7922 return 1;
7923 }
7924
7925 static void
7926 extended_remote_kill (struct target_ops *ops)
7927 {
7928 int res;
7929 int pid = ptid_get_pid (inferior_ptid);
7930 struct remote_state *rs = get_remote_state ();
7931
7932 res = remote_vkill (pid, rs);
7933 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7934 {
7935 /* Don't try 'k' on a multi-process aware stub -- it has no way
7936 to specify the pid. */
7937
7938 putpkt ("k");
7939 #if 0
7940 getpkt (&rs->buf, &rs->buf_size, 0);
7941 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7942 res = 1;
7943 #else
7944 /* Don't wait for it to die. I'm not really sure it matters whether
7945 we do or not. For the existing stubs, kill is a noop. */
7946 res = 0;
7947 #endif
7948 }
7949
7950 if (res != 0)
7951 error (_("Can't kill process"));
7952
7953 target_mourn_inferior ();
7954 }
7955
7956 static void
7957 remote_mourn (struct target_ops *ops)
7958 {
7959 remote_mourn_1 (ops);
7960 }
7961
7962 /* Worker function for remote_mourn. */
7963 static void
7964 remote_mourn_1 (struct target_ops *target)
7965 {
7966 unpush_target (target);
7967
7968 /* remote_close takes care of doing most of the clean up. */
7969 generic_mourn_inferior ();
7970 }
7971
7972 static void
7973 extended_remote_mourn_1 (struct target_ops *target)
7974 {
7975 struct remote_state *rs = get_remote_state ();
7976
7977 /* In case we got here due to an error, but we're going to stay
7978 connected. */
7979 rs->waiting_for_stop_reply = 0;
7980
7981 /* If the current general thread belonged to the process we just
7982 detached from or has exited, the remote side current general
7983 thread becomes undefined. Considering a case like this:
7984
7985 - We just got here due to a detach.
7986 - The process that we're detaching from happens to immediately
7987 report a global breakpoint being hit in non-stop mode, in the
7988 same thread we had selected before.
7989 - GDB attaches to this process again.
7990 - This event happens to be the next event we handle.
7991
7992 GDB would consider that the current general thread didn't need to
7993 be set on the stub side (with Hg), since for all it knew,
7994 GENERAL_THREAD hadn't changed.
7995
7996 Notice that although in all-stop mode, the remote server always
7997 sets the current thread to the thread reporting the stop event,
7998 that doesn't happen in non-stop mode; in non-stop, the stub *must
7999 not* change the current thread when reporting a breakpoint hit,
8000 due to the decoupling of event reporting and event handling.
8001
8002 To keep things simple, we always invalidate our notion of the
8003 current thread. */
8004 record_currthread (rs, minus_one_ptid);
8005
8006 /* Unlike "target remote", we do not want to unpush the target; then
8007 the next time the user says "run", we won't be connected. */
8008
8009 /* Call common code to mark the inferior as not running. */
8010 generic_mourn_inferior ();
8011
8012 if (!have_inferiors ())
8013 {
8014 if (!remote_multi_process_p (rs))
8015 {
8016 /* Check whether the target is running now - some remote stubs
8017 automatically restart after kill. */
8018 putpkt ("?");
8019 getpkt (&rs->buf, &rs->buf_size, 0);
8020
8021 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
8022 {
8023 /* Assume that the target has been restarted. Set
8024 inferior_ptid so that bits of core GDB realizes
8025 there's something here, e.g., so that the user can
8026 say "kill" again. */
8027 inferior_ptid = magic_null_ptid;
8028 }
8029 }
8030 }
8031 }
8032
8033 static void
8034 extended_remote_mourn (struct target_ops *ops)
8035 {
8036 extended_remote_mourn_1 (ops);
8037 }
8038
8039 static int
8040 extended_remote_supports_disable_randomization (void)
8041 {
8042 return (remote_protocol_packets[PACKET_QDisableRandomization].support
8043 == PACKET_ENABLE);
8044 }
8045
8046 static void
8047 extended_remote_disable_randomization (int val)
8048 {
8049 struct remote_state *rs = get_remote_state ();
8050 char *reply;
8051
8052 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
8053 val);
8054 putpkt (rs->buf);
8055 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
8056 if (*reply == '\0')
8057 error (_("Target does not support QDisableRandomization."));
8058 if (strcmp (reply, "OK") != 0)
8059 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
8060 }
8061
8062 static int
8063 extended_remote_run (char *args)
8064 {
8065 struct remote_state *rs = get_remote_state ();
8066 int len;
8067
8068 /* If the user has disabled vRun support, or we have detected that
8069 support is not available, do not try it. */
8070 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
8071 return -1;
8072
8073 strcpy (rs->buf, "vRun;");
8074 len = strlen (rs->buf);
8075
8076 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
8077 error (_("Remote file name too long for run packet"));
8078 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
8079
8080 gdb_assert (args != NULL);
8081 if (*args)
8082 {
8083 struct cleanup *back_to;
8084 int i;
8085 char **argv;
8086
8087 argv = gdb_buildargv (args);
8088 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
8089 for (i = 0; argv[i] != NULL; i++)
8090 {
8091 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
8092 error (_("Argument list too long for run packet"));
8093 rs->buf[len++] = ';';
8094 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
8095 }
8096 do_cleanups (back_to);
8097 }
8098
8099 rs->buf[len++] = '\0';
8100
8101 putpkt (rs->buf);
8102 getpkt (&rs->buf, &rs->buf_size, 0);
8103
8104 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
8105 {
8106 /* We have a wait response. All is well. */
8107 return 0;
8108 }
8109 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
8110 /* It wasn't disabled before, but it is now. */
8111 return -1;
8112 else
8113 {
8114 if (remote_exec_file[0] == '\0')
8115 error (_("Running the default executable on the remote target failed; "
8116 "try \"set remote exec-file\"?"));
8117 else
8118 error (_("Running \"%s\" on the remote target failed"),
8119 remote_exec_file);
8120 }
8121 }
8122
8123 /* In the extended protocol we want to be able to do things like
8124 "run" and have them basically work as expected. So we need
8125 a special create_inferior function. We support changing the
8126 executable file and the command line arguments, but not the
8127 environment. */
8128
8129 static void
8130 extended_remote_create_inferior (struct target_ops *ops,
8131 char *exec_file, char *args,
8132 char **env, int from_tty)
8133 {
8134 int run_worked;
8135 char *stop_reply;
8136 struct remote_state *rs = get_remote_state ();
8137
8138 /* If running asynchronously, register the target file descriptor
8139 with the event loop. */
8140 if (target_can_async_p ())
8141 target_async (inferior_event_handler, 0);
8142
8143 /* Disable address space randomization if requested (and supported). */
8144 if (extended_remote_supports_disable_randomization ())
8145 extended_remote_disable_randomization (disable_randomization);
8146
8147 /* Now restart the remote server. */
8148 run_worked = extended_remote_run (args) != -1;
8149 if (!run_worked)
8150 {
8151 /* vRun was not supported. Fail if we need it to do what the
8152 user requested. */
8153 if (remote_exec_file[0])
8154 error (_("Remote target does not support \"set remote exec-file\""));
8155 if (args[0])
8156 error (_("Remote target does not support \"set args\" or run <ARGS>"));
8157
8158 /* Fall back to "R". */
8159 extended_remote_restart ();
8160 }
8161
8162 if (!have_inferiors ())
8163 {
8164 /* Clean up from the last time we ran, before we mark the target
8165 running again. This will mark breakpoints uninserted, and
8166 get_offsets may insert breakpoints. */
8167 init_thread_list ();
8168 init_wait_for_inferior ();
8169 }
8170
8171 /* vRun's success return is a stop reply. */
8172 stop_reply = run_worked ? rs->buf : NULL;
8173 add_current_inferior_and_thread (stop_reply);
8174
8175 /* Get updated offsets, if the stub uses qOffsets. */
8176 get_offsets ();
8177 }
8178 \f
8179
8180 /* Given a location's target info BP_TGT and the packet buffer BUF, output
8181 the list of conditions (in agent expression bytecode format), if any, the
8182 target needs to evaluate. The output is placed into the packet buffer
8183 started from BUF and ended at BUF_END. */
8184
8185 static int
8186 remote_add_target_side_condition (struct gdbarch *gdbarch,
8187 struct bp_target_info *bp_tgt, char *buf,
8188 char *buf_end)
8189 {
8190 struct agent_expr *aexpr = NULL;
8191 int i, ix;
8192 char *pkt;
8193 char *buf_start = buf;
8194
8195 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
8196 return 0;
8197
8198 buf += strlen (buf);
8199 xsnprintf (buf, buf_end - buf, "%s", ";");
8200 buf++;
8201
8202 /* Send conditions to the target and free the vector. */
8203 for (ix = 0;
8204 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
8205 ix++)
8206 {
8207 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
8208 buf += strlen (buf);
8209 for (i = 0; i < aexpr->len; ++i)
8210 buf = pack_hex_byte (buf, aexpr->buf[i]);
8211 *buf = '\0';
8212 }
8213 return 0;
8214 }
8215
8216 static void
8217 remote_add_target_side_commands (struct gdbarch *gdbarch,
8218 struct bp_target_info *bp_tgt, char *buf)
8219 {
8220 struct agent_expr *aexpr = NULL;
8221 int i, ix;
8222
8223 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
8224 return;
8225
8226 buf += strlen (buf);
8227
8228 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
8229 buf += strlen (buf);
8230
8231 /* Concatenate all the agent expressions that are commands into the
8232 cmds parameter. */
8233 for (ix = 0;
8234 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
8235 ix++)
8236 {
8237 sprintf (buf, "X%x,", aexpr->len);
8238 buf += strlen (buf);
8239 for (i = 0; i < aexpr->len; ++i)
8240 buf = pack_hex_byte (buf, aexpr->buf[i]);
8241 *buf = '\0';
8242 }
8243 }
8244
8245 /* Insert a breakpoint. On targets that have software breakpoint
8246 support, we ask the remote target to do the work; on targets
8247 which don't, we insert a traditional memory breakpoint. */
8248
8249 static int
8250 remote_insert_breakpoint (struct target_ops *ops,
8251 struct gdbarch *gdbarch,
8252 struct bp_target_info *bp_tgt)
8253 {
8254 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
8255 If it succeeds, then set the support to PACKET_ENABLE. If it
8256 fails, and the user has explicitly requested the Z support then
8257 report an error, otherwise, mark it disabled and go on. */
8258
8259 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8260 {
8261 CORE_ADDR addr = bp_tgt->placed_address;
8262 struct remote_state *rs;
8263 char *p, *endbuf;
8264 int bpsize;
8265 struct condition_list *cond = NULL;
8266
8267 /* Make sure the remote is pointing at the right process, if
8268 necessary. */
8269 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8270 set_general_process ();
8271
8272 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
8273
8274 rs = get_remote_state ();
8275 p = rs->buf;
8276 endbuf = rs->buf + get_remote_packet_size ();
8277
8278 *(p++) = 'Z';
8279 *(p++) = '0';
8280 *(p++) = ',';
8281 addr = (ULONGEST) remote_address_masked (addr);
8282 p += hexnumstr (p, addr);
8283 xsnprintf (p, endbuf - p, ",%d", bpsize);
8284
8285 if (remote_supports_cond_breakpoints ())
8286 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8287
8288 if (remote_can_run_breakpoint_commands ())
8289 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8290
8291 putpkt (rs->buf);
8292 getpkt (&rs->buf, &rs->buf_size, 0);
8293
8294 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
8295 {
8296 case PACKET_ERROR:
8297 return -1;
8298 case PACKET_OK:
8299 bp_tgt->placed_address = addr;
8300 bp_tgt->placed_size = bpsize;
8301 return 0;
8302 case PACKET_UNKNOWN:
8303 break;
8304 }
8305 }
8306
8307 /* If this breakpoint has target-side commands but this stub doesn't
8308 support Z0 packets, throw error. */
8309 if (!VEC_empty (agent_expr_p, bp_tgt->tcommands))
8310 throw_error (NOT_SUPPORTED_ERROR, _("\
8311 Target doesn't support breakpoints that have target side commands."));
8312
8313 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
8314 }
8315
8316 static int
8317 remote_remove_breakpoint (struct target_ops *ops,
8318 struct gdbarch *gdbarch,
8319 struct bp_target_info *bp_tgt)
8320 {
8321 CORE_ADDR addr = bp_tgt->placed_address;
8322 struct remote_state *rs = get_remote_state ();
8323
8324 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8325 {
8326 char *p = rs->buf;
8327 char *endbuf = rs->buf + get_remote_packet_size ();
8328
8329 /* Make sure the remote is pointing at the right process, if
8330 necessary. */
8331 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8332 set_general_process ();
8333
8334 *(p++) = 'z';
8335 *(p++) = '0';
8336 *(p++) = ',';
8337
8338 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8339 p += hexnumstr (p, addr);
8340 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8341
8342 putpkt (rs->buf);
8343 getpkt (&rs->buf, &rs->buf_size, 0);
8344
8345 return (rs->buf[0] == 'E');
8346 }
8347
8348 return memory_remove_breakpoint (ops, gdbarch, bp_tgt);
8349 }
8350
8351 static int
8352 watchpoint_to_Z_packet (int type)
8353 {
8354 switch (type)
8355 {
8356 case hw_write:
8357 return Z_PACKET_WRITE_WP;
8358 break;
8359 case hw_read:
8360 return Z_PACKET_READ_WP;
8361 break;
8362 case hw_access:
8363 return Z_PACKET_ACCESS_WP;
8364 break;
8365 default:
8366 internal_error (__FILE__, __LINE__,
8367 _("hw_bp_to_z: bad watchpoint type %d"), type);
8368 }
8369 }
8370
8371 static int
8372 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
8373 struct expression *cond)
8374 {
8375 struct remote_state *rs = get_remote_state ();
8376 char *endbuf = rs->buf + get_remote_packet_size ();
8377 char *p;
8378 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8379
8380 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8381 return 1;
8382
8383 /* Make sure the remote is pointing at the right process, if
8384 necessary. */
8385 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8386 set_general_process ();
8387
8388 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8389 p = strchr (rs->buf, '\0');
8390 addr = remote_address_masked (addr);
8391 p += hexnumstr (p, (ULONGEST) addr);
8392 xsnprintf (p, endbuf - p, ",%x", len);
8393
8394 putpkt (rs->buf);
8395 getpkt (&rs->buf, &rs->buf_size, 0);
8396
8397 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8398 {
8399 case PACKET_ERROR:
8400 return -1;
8401 case PACKET_UNKNOWN:
8402 return 1;
8403 case PACKET_OK:
8404 return 0;
8405 }
8406 internal_error (__FILE__, __LINE__,
8407 _("remote_insert_watchpoint: reached end of function"));
8408 }
8409
8410 static int
8411 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8412 CORE_ADDR start, int length)
8413 {
8414 CORE_ADDR diff = remote_address_masked (addr - start);
8415
8416 return diff < length;
8417 }
8418
8419
8420 static int
8421 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
8422 struct expression *cond)
8423 {
8424 struct remote_state *rs = get_remote_state ();
8425 char *endbuf = rs->buf + get_remote_packet_size ();
8426 char *p;
8427 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8428
8429 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8430 return -1;
8431
8432 /* Make sure the remote is pointing at the right process, if
8433 necessary. */
8434 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8435 set_general_process ();
8436
8437 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8438 p = strchr (rs->buf, '\0');
8439 addr = remote_address_masked (addr);
8440 p += hexnumstr (p, (ULONGEST) addr);
8441 xsnprintf (p, endbuf - p, ",%x", len);
8442 putpkt (rs->buf);
8443 getpkt (&rs->buf, &rs->buf_size, 0);
8444
8445 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8446 {
8447 case PACKET_ERROR:
8448 case PACKET_UNKNOWN:
8449 return -1;
8450 case PACKET_OK:
8451 return 0;
8452 }
8453 internal_error (__FILE__, __LINE__,
8454 _("remote_remove_watchpoint: reached end of function"));
8455 }
8456
8457
8458 int remote_hw_watchpoint_limit = -1;
8459 int remote_hw_watchpoint_length_limit = -1;
8460 int remote_hw_breakpoint_limit = -1;
8461
8462 static int
8463 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
8464 {
8465 if (remote_hw_watchpoint_length_limit == 0)
8466 return 0;
8467 else if (remote_hw_watchpoint_length_limit < 0)
8468 return 1;
8469 else if (len <= remote_hw_watchpoint_length_limit)
8470 return 1;
8471 else
8472 return 0;
8473 }
8474
8475 static int
8476 remote_check_watch_resources (int type, int cnt, int ot)
8477 {
8478 if (type == bp_hardware_breakpoint)
8479 {
8480 if (remote_hw_breakpoint_limit == 0)
8481 return 0;
8482 else if (remote_hw_breakpoint_limit < 0)
8483 return 1;
8484 else if (cnt <= remote_hw_breakpoint_limit)
8485 return 1;
8486 }
8487 else
8488 {
8489 if (remote_hw_watchpoint_limit == 0)
8490 return 0;
8491 else if (remote_hw_watchpoint_limit < 0)
8492 return 1;
8493 else if (ot)
8494 return -1;
8495 else if (cnt <= remote_hw_watchpoint_limit)
8496 return 1;
8497 }
8498 return -1;
8499 }
8500
8501 static int
8502 remote_stopped_by_watchpoint (void)
8503 {
8504 struct remote_state *rs = get_remote_state ();
8505
8506 return rs->remote_stopped_by_watchpoint_p;
8507 }
8508
8509 static int
8510 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8511 {
8512 struct remote_state *rs = get_remote_state ();
8513 int rc = 0;
8514
8515 if (remote_stopped_by_watchpoint ())
8516 {
8517 *addr_p = rs->remote_watch_data_address;
8518 rc = 1;
8519 }
8520
8521 return rc;
8522 }
8523
8524
8525 static int
8526 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8527 struct bp_target_info *bp_tgt)
8528 {
8529 CORE_ADDR addr;
8530 struct remote_state *rs;
8531 char *p, *endbuf;
8532 char *message;
8533
8534 /* The length field should be set to the size of a breakpoint
8535 instruction, even though we aren't inserting one ourselves. */
8536
8537 gdbarch_remote_breakpoint_from_pc
8538 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8539
8540 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8541 return -1;
8542
8543 /* Make sure the remote is pointing at the right process, if
8544 necessary. */
8545 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8546 set_general_process ();
8547
8548 rs = get_remote_state ();
8549 p = rs->buf;
8550 endbuf = rs->buf + get_remote_packet_size ();
8551
8552 *(p++) = 'Z';
8553 *(p++) = '1';
8554 *(p++) = ',';
8555
8556 addr = remote_address_masked (bp_tgt->placed_address);
8557 p += hexnumstr (p, (ULONGEST) addr);
8558 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8559
8560 if (remote_supports_cond_breakpoints ())
8561 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8562
8563 if (remote_can_run_breakpoint_commands ())
8564 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8565
8566 putpkt (rs->buf);
8567 getpkt (&rs->buf, &rs->buf_size, 0);
8568
8569 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8570 {
8571 case PACKET_ERROR:
8572 if (rs->buf[1] == '.')
8573 {
8574 message = strchr (rs->buf + 2, '.');
8575 if (message)
8576 error (_("Remote failure reply: %s"), message + 1);
8577 }
8578 return -1;
8579 case PACKET_UNKNOWN:
8580 return -1;
8581 case PACKET_OK:
8582 return 0;
8583 }
8584 internal_error (__FILE__, __LINE__,
8585 _("remote_insert_hw_breakpoint: reached end of function"));
8586 }
8587
8588
8589 static int
8590 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8591 struct bp_target_info *bp_tgt)
8592 {
8593 CORE_ADDR addr;
8594 struct remote_state *rs = get_remote_state ();
8595 char *p = rs->buf;
8596 char *endbuf = rs->buf + get_remote_packet_size ();
8597
8598 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8599 return -1;
8600
8601 /* Make sure the remote is pointing at the right process, if
8602 necessary. */
8603 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8604 set_general_process ();
8605
8606 *(p++) = 'z';
8607 *(p++) = '1';
8608 *(p++) = ',';
8609
8610 addr = remote_address_masked (bp_tgt->placed_address);
8611 p += hexnumstr (p, (ULONGEST) addr);
8612 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8613
8614 putpkt (rs->buf);
8615 getpkt (&rs->buf, &rs->buf_size, 0);
8616
8617 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8618 {
8619 case PACKET_ERROR:
8620 case PACKET_UNKNOWN:
8621 return -1;
8622 case PACKET_OK:
8623 return 0;
8624 }
8625 internal_error (__FILE__, __LINE__,
8626 _("remote_remove_hw_breakpoint: reached end of function"));
8627 }
8628
8629 /* Verify memory using the "qCRC:" request. */
8630
8631 static int
8632 remote_verify_memory (struct target_ops *ops,
8633 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8634 {
8635 struct remote_state *rs = get_remote_state ();
8636 unsigned long host_crc, target_crc;
8637 char *tmp;
8638
8639 /* Make sure the remote is pointing at the right process. */
8640 set_general_process ();
8641
8642 /* FIXME: assumes lma can fit into long. */
8643 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8644 (long) lma, (long) size);
8645 putpkt (rs->buf);
8646
8647 /* Be clever; compute the host_crc before waiting for target
8648 reply. */
8649 host_crc = xcrc32 (data, size, 0xffffffff);
8650
8651 getpkt (&rs->buf, &rs->buf_size, 0);
8652 if (rs->buf[0] == 'E')
8653 return -1;
8654
8655 if (rs->buf[0] != 'C')
8656 error (_("remote target does not support this operation"));
8657
8658 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8659 target_crc = target_crc * 16 + fromhex (*tmp);
8660
8661 return (host_crc == target_crc);
8662 }
8663
8664 /* compare-sections command
8665
8666 With no arguments, compares each loadable section in the exec bfd
8667 with the same memory range on the target, and reports mismatches.
8668 Useful for verifying the image on the target against the exec file. */
8669
8670 static void
8671 compare_sections_command (char *args, int from_tty)
8672 {
8673 asection *s;
8674 struct cleanup *old_chain;
8675 gdb_byte *sectdata;
8676 const char *sectname;
8677 bfd_size_type size;
8678 bfd_vma lma;
8679 int matched = 0;
8680 int mismatched = 0;
8681 int res;
8682
8683 if (!exec_bfd)
8684 error (_("command cannot be used without an exec file"));
8685
8686 /* Make sure the remote is pointing at the right process. */
8687 set_general_process ();
8688
8689 for (s = exec_bfd->sections; s; s = s->next)
8690 {
8691 if (!(s->flags & SEC_LOAD))
8692 continue; /* Skip non-loadable section. */
8693
8694 size = bfd_get_section_size (s);
8695 if (size == 0)
8696 continue; /* Skip zero-length section. */
8697
8698 sectname = bfd_get_section_name (exec_bfd, s);
8699 if (args && strcmp (args, sectname) != 0)
8700 continue; /* Not the section selected by user. */
8701
8702 matched = 1; /* Do this section. */
8703 lma = s->lma;
8704
8705 sectdata = xmalloc (size);
8706 old_chain = make_cleanup (xfree, sectdata);
8707 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8708
8709 res = target_verify_memory (sectdata, lma, size);
8710
8711 if (res == -1)
8712 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8713 paddress (target_gdbarch (), lma),
8714 paddress (target_gdbarch (), lma + size));
8715
8716 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8717 paddress (target_gdbarch (), lma),
8718 paddress (target_gdbarch (), lma + size));
8719 if (res)
8720 printf_filtered ("matched.\n");
8721 else
8722 {
8723 printf_filtered ("MIS-MATCHED!\n");
8724 mismatched++;
8725 }
8726
8727 do_cleanups (old_chain);
8728 }
8729 if (mismatched > 0)
8730 warning (_("One or more sections of the remote executable does not match\n\
8731 the loaded file\n"));
8732 if (args && !matched)
8733 printf_filtered (_("No loaded section named '%s'.\n"), args);
8734 }
8735
8736 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8737 into remote target. The number of bytes written to the remote
8738 target is returned, or -1 for error. */
8739
8740 static LONGEST
8741 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8742 const char *annex, const gdb_byte *writebuf,
8743 ULONGEST offset, LONGEST len,
8744 struct packet_config *packet)
8745 {
8746 int i, buf_len;
8747 ULONGEST n;
8748 struct remote_state *rs = get_remote_state ();
8749 int max_size = get_memory_write_packet_size ();
8750
8751 if (packet->support == PACKET_DISABLE)
8752 return TARGET_XFER_E_IO;
8753
8754 /* Insert header. */
8755 i = snprintf (rs->buf, max_size,
8756 "qXfer:%s:write:%s:%s:",
8757 object_name, annex ? annex : "",
8758 phex_nz (offset, sizeof offset));
8759 max_size -= (i + 1);
8760
8761 /* Escape as much data as fits into rs->buf. */
8762 buf_len = remote_escape_output
8763 (writebuf, len, (gdb_byte *) rs->buf + i, &max_size, max_size);
8764
8765 if (putpkt_binary (rs->buf, i + buf_len) < 0
8766 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8767 || packet_ok (rs->buf, packet) != PACKET_OK)
8768 return TARGET_XFER_E_IO;
8769
8770 unpack_varlen_hex (rs->buf, &n);
8771 return n;
8772 }
8773
8774 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8775 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8776 number of bytes read is returned, or 0 for EOF, or -1 for error.
8777 The number of bytes read may be less than LEN without indicating an
8778 EOF. PACKET is checked and updated to indicate whether the remote
8779 target supports this object. */
8780
8781 static LONGEST
8782 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8783 const char *annex,
8784 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8785 struct packet_config *packet)
8786 {
8787 struct remote_state *rs = get_remote_state ();
8788 LONGEST i, n, packet_len;
8789
8790 if (packet->support == PACKET_DISABLE)
8791 return TARGET_XFER_E_IO;
8792
8793 /* Check whether we've cached an end-of-object packet that matches
8794 this request. */
8795 if (rs->finished_object)
8796 {
8797 if (strcmp (object_name, rs->finished_object) == 0
8798 && strcmp (annex ? annex : "", rs->finished_annex) == 0
8799 && offset == rs->finished_offset)
8800 return 0;
8801
8802 /* Otherwise, we're now reading something different. Discard
8803 the cache. */
8804 xfree (rs->finished_object);
8805 xfree (rs->finished_annex);
8806 rs->finished_object = NULL;
8807 rs->finished_annex = NULL;
8808 }
8809
8810 /* Request only enough to fit in a single packet. The actual data
8811 may not, since we don't know how much of it will need to be escaped;
8812 the target is free to respond with slightly less data. We subtract
8813 five to account for the response type and the protocol frame. */
8814 n = min (get_remote_packet_size () - 5, len);
8815 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8816 object_name, annex ? annex : "",
8817 phex_nz (offset, sizeof offset),
8818 phex_nz (n, sizeof n));
8819 i = putpkt (rs->buf);
8820 if (i < 0)
8821 return TARGET_XFER_E_IO;
8822
8823 rs->buf[0] = '\0';
8824 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8825 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8826 return TARGET_XFER_E_IO;
8827
8828 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8829 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8830
8831 /* 'm' means there is (or at least might be) more data after this
8832 batch. That does not make sense unless there's at least one byte
8833 of data in this reply. */
8834 if (rs->buf[0] == 'm' && packet_len == 1)
8835 error (_("Remote qXfer reply contained no data."));
8836
8837 /* Got some data. */
8838 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
8839 packet_len - 1, readbuf, n);
8840
8841 /* 'l' is an EOF marker, possibly including a final block of data,
8842 or possibly empty. If we have the final block of a non-empty
8843 object, record this fact to bypass a subsequent partial read. */
8844 if (rs->buf[0] == 'l' && offset + i > 0)
8845 {
8846 rs->finished_object = xstrdup (object_name);
8847 rs->finished_annex = xstrdup (annex ? annex : "");
8848 rs->finished_offset = offset + i;
8849 }
8850
8851 return i;
8852 }
8853
8854 static LONGEST
8855 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8856 const char *annex, gdb_byte *readbuf,
8857 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len)
8858 {
8859 struct remote_state *rs;
8860 int i;
8861 char *p2;
8862 char query_type;
8863
8864 set_remote_traceframe ();
8865 set_general_thread (inferior_ptid);
8866
8867 rs = get_remote_state ();
8868
8869 /* Handle memory using the standard memory routines. */
8870 if (object == TARGET_OBJECT_MEMORY)
8871 {
8872 LONGEST xfered;
8873
8874 /* If the remote target is connected but not running, we should
8875 pass this request down to a lower stratum (e.g. the executable
8876 file). */
8877 if (!target_has_execution)
8878 return 0;
8879
8880 if (writebuf != NULL)
8881 xfered = remote_write_bytes (offset, writebuf, len);
8882 else
8883 xfered = remote_read_bytes (offset, readbuf, len);
8884
8885 return xfered;
8886 }
8887
8888 /* Handle SPU memory using qxfer packets. */
8889 if (object == TARGET_OBJECT_SPU)
8890 {
8891 if (readbuf)
8892 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8893 &remote_protocol_packets
8894 [PACKET_qXfer_spu_read]);
8895 else
8896 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8897 &remote_protocol_packets
8898 [PACKET_qXfer_spu_write]);
8899 }
8900
8901 /* Handle extra signal info using qxfer packets. */
8902 if (object == TARGET_OBJECT_SIGNAL_INFO)
8903 {
8904 if (readbuf)
8905 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8906 &remote_protocol_packets
8907 [PACKET_qXfer_siginfo_read]);
8908 else
8909 return remote_write_qxfer (ops, "siginfo", annex,
8910 writebuf, offset, len,
8911 &remote_protocol_packets
8912 [PACKET_qXfer_siginfo_write]);
8913 }
8914
8915 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8916 {
8917 if (readbuf)
8918 return remote_read_qxfer (ops, "statictrace", annex,
8919 readbuf, offset, len,
8920 &remote_protocol_packets
8921 [PACKET_qXfer_statictrace_read]);
8922 else
8923 return TARGET_XFER_E_IO;
8924 }
8925
8926 /* Only handle flash writes. */
8927 if (writebuf != NULL)
8928 {
8929 LONGEST xfered;
8930
8931 switch (object)
8932 {
8933 case TARGET_OBJECT_FLASH:
8934 return remote_flash_write (ops, offset, len, writebuf);
8935
8936 default:
8937 return TARGET_XFER_E_IO;
8938 }
8939 }
8940
8941 /* Map pre-existing objects onto letters. DO NOT do this for new
8942 objects!!! Instead specify new query packets. */
8943 switch (object)
8944 {
8945 case TARGET_OBJECT_AVR:
8946 query_type = 'R';
8947 break;
8948
8949 case TARGET_OBJECT_AUXV:
8950 gdb_assert (annex == NULL);
8951 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8952 &remote_protocol_packets[PACKET_qXfer_auxv]);
8953
8954 case TARGET_OBJECT_AVAILABLE_FEATURES:
8955 return remote_read_qxfer
8956 (ops, "features", annex, readbuf, offset, len,
8957 &remote_protocol_packets[PACKET_qXfer_features]);
8958
8959 case TARGET_OBJECT_LIBRARIES:
8960 return remote_read_qxfer
8961 (ops, "libraries", annex, readbuf, offset, len,
8962 &remote_protocol_packets[PACKET_qXfer_libraries]);
8963
8964 case TARGET_OBJECT_LIBRARIES_SVR4:
8965 return remote_read_qxfer
8966 (ops, "libraries-svr4", annex, readbuf, offset, len,
8967 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8968
8969 case TARGET_OBJECT_MEMORY_MAP:
8970 gdb_assert (annex == NULL);
8971 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8972 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8973
8974 case TARGET_OBJECT_OSDATA:
8975 /* Should only get here if we're connected. */
8976 gdb_assert (rs->remote_desc);
8977 return remote_read_qxfer
8978 (ops, "osdata", annex, readbuf, offset, len,
8979 &remote_protocol_packets[PACKET_qXfer_osdata]);
8980
8981 case TARGET_OBJECT_THREADS:
8982 gdb_assert (annex == NULL);
8983 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8984 &remote_protocol_packets[PACKET_qXfer_threads]);
8985
8986 case TARGET_OBJECT_TRACEFRAME_INFO:
8987 gdb_assert (annex == NULL);
8988 return remote_read_qxfer
8989 (ops, "traceframe-info", annex, readbuf, offset, len,
8990 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8991
8992 case TARGET_OBJECT_FDPIC:
8993 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8994 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8995
8996 case TARGET_OBJECT_OPENVMS_UIB:
8997 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
8998 &remote_protocol_packets[PACKET_qXfer_uib]);
8999
9000 case TARGET_OBJECT_BTRACE:
9001 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
9002 &remote_protocol_packets[PACKET_qXfer_btrace]);
9003
9004 default:
9005 return TARGET_XFER_E_IO;
9006 }
9007
9008 /* Note: a zero OFFSET and LEN can be used to query the minimum
9009 buffer size. */
9010 if (offset == 0 && len == 0)
9011 return (get_remote_packet_size ());
9012 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
9013 large enough let the caller deal with it. */
9014 if (len < get_remote_packet_size ())
9015 return TARGET_XFER_E_IO;
9016 len = get_remote_packet_size ();
9017
9018 /* Except for querying the minimum buffer size, target must be open. */
9019 if (!rs->remote_desc)
9020 error (_("remote query is only available after target open"));
9021
9022 gdb_assert (annex != NULL);
9023 gdb_assert (readbuf != NULL);
9024
9025 p2 = rs->buf;
9026 *p2++ = 'q';
9027 *p2++ = query_type;
9028
9029 /* We used one buffer char for the remote protocol q command and
9030 another for the query type. As the remote protocol encapsulation
9031 uses 4 chars plus one extra in case we are debugging
9032 (remote_debug), we have PBUFZIZ - 7 left to pack the query
9033 string. */
9034 i = 0;
9035 while (annex[i] && (i < (get_remote_packet_size () - 8)))
9036 {
9037 /* Bad caller may have sent forbidden characters. */
9038 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
9039 *p2++ = annex[i];
9040 i++;
9041 }
9042 *p2 = '\0';
9043 gdb_assert (annex[i] == '\0');
9044
9045 i = putpkt (rs->buf);
9046 if (i < 0)
9047 return TARGET_XFER_E_IO;
9048
9049 getpkt (&rs->buf, &rs->buf_size, 0);
9050 strcpy ((char *) readbuf, rs->buf);
9051
9052 return strlen ((char *) readbuf);
9053 }
9054
9055 static int
9056 remote_search_memory (struct target_ops* ops,
9057 CORE_ADDR start_addr, ULONGEST search_space_len,
9058 const gdb_byte *pattern, ULONGEST pattern_len,
9059 CORE_ADDR *found_addrp)
9060 {
9061 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9062 struct remote_state *rs = get_remote_state ();
9063 int max_size = get_memory_write_packet_size ();
9064 struct packet_config *packet =
9065 &remote_protocol_packets[PACKET_qSearch_memory];
9066 /* Number of packet bytes used to encode the pattern;
9067 this could be more than PATTERN_LEN due to escape characters. */
9068 int escaped_pattern_len;
9069 /* Amount of pattern that was encodable in the packet. */
9070 int used_pattern_len;
9071 int i;
9072 int found;
9073 ULONGEST found_addr;
9074
9075 /* Don't go to the target if we don't have to.
9076 This is done before checking packet->support to avoid the possibility that
9077 a success for this edge case means the facility works in general. */
9078 if (pattern_len > search_space_len)
9079 return 0;
9080 if (pattern_len == 0)
9081 {
9082 *found_addrp = start_addr;
9083 return 1;
9084 }
9085
9086 /* If we already know the packet isn't supported, fall back to the simple
9087 way of searching memory. */
9088
9089 if (packet->support == PACKET_DISABLE)
9090 {
9091 /* Target doesn't provided special support, fall back and use the
9092 standard support (copy memory and do the search here). */
9093 return simple_search_memory (ops, start_addr, search_space_len,
9094 pattern, pattern_len, found_addrp);
9095 }
9096
9097 /* Make sure the remote is pointing at the right process. */
9098 set_general_process ();
9099
9100 /* Insert header. */
9101 i = snprintf (rs->buf, max_size,
9102 "qSearch:memory:%s;%s;",
9103 phex_nz (start_addr, addr_size),
9104 phex_nz (search_space_len, sizeof (search_space_len)));
9105 max_size -= (i + 1);
9106
9107 /* Escape as much data as fits into rs->buf. */
9108 escaped_pattern_len =
9109 remote_escape_output (pattern, pattern_len, (gdb_byte *) rs->buf + i,
9110 &used_pattern_len, max_size);
9111
9112 /* Bail if the pattern is too large. */
9113 if (used_pattern_len != pattern_len)
9114 error (_("Pattern is too large to transmit to remote target."));
9115
9116 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
9117 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
9118 || packet_ok (rs->buf, packet) != PACKET_OK)
9119 {
9120 /* The request may not have worked because the command is not
9121 supported. If so, fall back to the simple way. */
9122 if (packet->support == PACKET_DISABLE)
9123 {
9124 return simple_search_memory (ops, start_addr, search_space_len,
9125 pattern, pattern_len, found_addrp);
9126 }
9127 return -1;
9128 }
9129
9130 if (rs->buf[0] == '0')
9131 found = 0;
9132 else if (rs->buf[0] == '1')
9133 {
9134 found = 1;
9135 if (rs->buf[1] != ',')
9136 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9137 unpack_varlen_hex (rs->buf + 2, &found_addr);
9138 *found_addrp = found_addr;
9139 }
9140 else
9141 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9142
9143 return found;
9144 }
9145
9146 static void
9147 remote_rcmd (char *command,
9148 struct ui_file *outbuf)
9149 {
9150 struct remote_state *rs = get_remote_state ();
9151 char *p = rs->buf;
9152
9153 if (!rs->remote_desc)
9154 error (_("remote rcmd is only available after target open"));
9155
9156 /* Send a NULL command across as an empty command. */
9157 if (command == NULL)
9158 command = "";
9159
9160 /* The query prefix. */
9161 strcpy (rs->buf, "qRcmd,");
9162 p = strchr (rs->buf, '\0');
9163
9164 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
9165 > get_remote_packet_size ())
9166 error (_("\"monitor\" command ``%s'' is too long."), command);
9167
9168 /* Encode the actual command. */
9169 bin2hex ((gdb_byte *) command, p, 0);
9170
9171 if (putpkt (rs->buf) < 0)
9172 error (_("Communication problem with target."));
9173
9174 /* get/display the response */
9175 while (1)
9176 {
9177 char *buf;
9178
9179 /* XXX - see also remote_get_noisy_reply(). */
9180 QUIT; /* Allow user to bail out with ^C. */
9181 rs->buf[0] = '\0';
9182 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
9183 {
9184 /* Timeout. Continue to (try to) read responses.
9185 This is better than stopping with an error, assuming the stub
9186 is still executing the (long) monitor command.
9187 If needed, the user can interrupt gdb using C-c, obtaining
9188 an effect similar to stop on timeout. */
9189 continue;
9190 }
9191 buf = rs->buf;
9192 if (buf[0] == '\0')
9193 error (_("Target does not support this command."));
9194 if (buf[0] == 'O' && buf[1] != 'K')
9195 {
9196 remote_console_output (buf + 1); /* 'O' message from stub. */
9197 continue;
9198 }
9199 if (strcmp (buf, "OK") == 0)
9200 break;
9201 if (strlen (buf) == 3 && buf[0] == 'E'
9202 && isdigit (buf[1]) && isdigit (buf[2]))
9203 {
9204 error (_("Protocol error with Rcmd"));
9205 }
9206 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
9207 {
9208 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
9209
9210 fputc_unfiltered (c, outbuf);
9211 }
9212 break;
9213 }
9214 }
9215
9216 static VEC(mem_region_s) *
9217 remote_memory_map (struct target_ops *ops)
9218 {
9219 VEC(mem_region_s) *result = NULL;
9220 char *text = target_read_stralloc (&current_target,
9221 TARGET_OBJECT_MEMORY_MAP, NULL);
9222
9223 if (text)
9224 {
9225 struct cleanup *back_to = make_cleanup (xfree, text);
9226
9227 result = parse_memory_map (text);
9228 do_cleanups (back_to);
9229 }
9230
9231 return result;
9232 }
9233
9234 static void
9235 packet_command (char *args, int from_tty)
9236 {
9237 struct remote_state *rs = get_remote_state ();
9238
9239 if (!rs->remote_desc)
9240 error (_("command can only be used with remote target"));
9241
9242 if (!args)
9243 error (_("remote-packet command requires packet text as argument"));
9244
9245 puts_filtered ("sending: ");
9246 print_packet (args);
9247 puts_filtered ("\n");
9248 putpkt (args);
9249
9250 getpkt (&rs->buf, &rs->buf_size, 0);
9251 puts_filtered ("received: ");
9252 print_packet (rs->buf);
9253 puts_filtered ("\n");
9254 }
9255
9256 #if 0
9257 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
9258
9259 static void display_thread_info (struct gdb_ext_thread_info *info);
9260
9261 static void threadset_test_cmd (char *cmd, int tty);
9262
9263 static void threadalive_test (char *cmd, int tty);
9264
9265 static void threadlist_test_cmd (char *cmd, int tty);
9266
9267 int get_and_display_threadinfo (threadref *ref);
9268
9269 static void threadinfo_test_cmd (char *cmd, int tty);
9270
9271 static int thread_display_step (threadref *ref, void *context);
9272
9273 static void threadlist_update_test_cmd (char *cmd, int tty);
9274
9275 static void init_remote_threadtests (void);
9276
9277 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
9278
9279 static void
9280 threadset_test_cmd (char *cmd, int tty)
9281 {
9282 int sample_thread = SAMPLE_THREAD;
9283
9284 printf_filtered (_("Remote threadset test\n"));
9285 set_general_thread (sample_thread);
9286 }
9287
9288
9289 static void
9290 threadalive_test (char *cmd, int tty)
9291 {
9292 int sample_thread = SAMPLE_THREAD;
9293 int pid = ptid_get_pid (inferior_ptid);
9294 ptid_t ptid = ptid_build (pid, 0, sample_thread);
9295
9296 if (remote_thread_alive (ptid))
9297 printf_filtered ("PASS: Thread alive test\n");
9298 else
9299 printf_filtered ("FAIL: Thread alive test\n");
9300 }
9301
9302 void output_threadid (char *title, threadref *ref);
9303
9304 void
9305 output_threadid (char *title, threadref *ref)
9306 {
9307 char hexid[20];
9308
9309 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
9310 hexid[16] = 0;
9311 printf_filtered ("%s %s\n", title, (&hexid[0]));
9312 }
9313
9314 static void
9315 threadlist_test_cmd (char *cmd, int tty)
9316 {
9317 int startflag = 1;
9318 threadref nextthread;
9319 int done, result_count;
9320 threadref threadlist[3];
9321
9322 printf_filtered ("Remote Threadlist test\n");
9323 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
9324 &result_count, &threadlist[0]))
9325 printf_filtered ("FAIL: threadlist test\n");
9326 else
9327 {
9328 threadref *scan = threadlist;
9329 threadref *limit = scan + result_count;
9330
9331 while (scan < limit)
9332 output_threadid (" thread ", scan++);
9333 }
9334 }
9335
9336 void
9337 display_thread_info (struct gdb_ext_thread_info *info)
9338 {
9339 output_threadid ("Threadid: ", &info->threadid);
9340 printf_filtered ("Name: %s\n ", info->shortname);
9341 printf_filtered ("State: %s\n", info->display);
9342 printf_filtered ("other: %s\n\n", info->more_display);
9343 }
9344
9345 int
9346 get_and_display_threadinfo (threadref *ref)
9347 {
9348 int result;
9349 int set;
9350 struct gdb_ext_thread_info threadinfo;
9351
9352 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9353 | TAG_MOREDISPLAY | TAG_DISPLAY;
9354 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9355 display_thread_info (&threadinfo);
9356 return result;
9357 }
9358
9359 static void
9360 threadinfo_test_cmd (char *cmd, int tty)
9361 {
9362 int athread = SAMPLE_THREAD;
9363 threadref thread;
9364 int set;
9365
9366 int_to_threadref (&thread, athread);
9367 printf_filtered ("Remote Threadinfo test\n");
9368 if (!get_and_display_threadinfo (&thread))
9369 printf_filtered ("FAIL cannot get thread info\n");
9370 }
9371
9372 static int
9373 thread_display_step (threadref *ref, void *context)
9374 {
9375 /* output_threadid(" threadstep ",ref); *//* simple test */
9376 return get_and_display_threadinfo (ref);
9377 }
9378
9379 static void
9380 threadlist_update_test_cmd (char *cmd, int tty)
9381 {
9382 printf_filtered ("Remote Threadlist update test\n");
9383 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9384 }
9385
9386 static void
9387 init_remote_threadtests (void)
9388 {
9389 add_com ("tlist", class_obscure, threadlist_test_cmd,
9390 _("Fetch and print the remote list of "
9391 "thread identifiers, one pkt only"));
9392 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9393 _("Fetch and display info about one thread"));
9394 add_com ("tset", class_obscure, threadset_test_cmd,
9395 _("Test setting to a different thread"));
9396 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9397 _("Iterate through updating all remote thread info"));
9398 add_com ("talive", class_obscure, threadalive_test,
9399 _(" Remote thread alive test "));
9400 }
9401
9402 #endif /* 0 */
9403
9404 /* Convert a thread ID to a string. Returns the string in a static
9405 buffer. */
9406
9407 static char *
9408 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9409 {
9410 static char buf[64];
9411 struct remote_state *rs = get_remote_state ();
9412
9413 if (ptid_equal (ptid, null_ptid))
9414 return normal_pid_to_str (ptid);
9415 else if (ptid_is_pid (ptid))
9416 {
9417 /* Printing an inferior target id. */
9418
9419 /* When multi-process extensions are off, there's no way in the
9420 remote protocol to know the remote process id, if there's any
9421 at all. There's one exception --- when we're connected with
9422 target extended-remote, and we manually attached to a process
9423 with "attach PID". We don't record anywhere a flag that
9424 allows us to distinguish that case from the case of
9425 connecting with extended-remote and the stub already being
9426 attached to a process, and reporting yes to qAttached, hence
9427 no smart special casing here. */
9428 if (!remote_multi_process_p (rs))
9429 {
9430 xsnprintf (buf, sizeof buf, "Remote target");
9431 return buf;
9432 }
9433
9434 return normal_pid_to_str (ptid);
9435 }
9436 else
9437 {
9438 if (ptid_equal (magic_null_ptid, ptid))
9439 xsnprintf (buf, sizeof buf, "Thread <main>");
9440 else if (rs->extended && remote_multi_process_p (rs))
9441 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9442 ptid_get_pid (ptid), ptid_get_tid (ptid));
9443 else
9444 xsnprintf (buf, sizeof buf, "Thread %ld",
9445 ptid_get_tid (ptid));
9446 return buf;
9447 }
9448 }
9449
9450 /* Get the address of the thread local variable in OBJFILE which is
9451 stored at OFFSET within the thread local storage for thread PTID. */
9452
9453 static CORE_ADDR
9454 remote_get_thread_local_address (struct target_ops *ops,
9455 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9456 {
9457 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9458 {
9459 struct remote_state *rs = get_remote_state ();
9460 char *p = rs->buf;
9461 char *endp = rs->buf + get_remote_packet_size ();
9462 enum packet_result result;
9463
9464 strcpy (p, "qGetTLSAddr:");
9465 p += strlen (p);
9466 p = write_ptid (p, endp, ptid);
9467 *p++ = ',';
9468 p += hexnumstr (p, offset);
9469 *p++ = ',';
9470 p += hexnumstr (p, lm);
9471 *p++ = '\0';
9472
9473 putpkt (rs->buf);
9474 getpkt (&rs->buf, &rs->buf_size, 0);
9475 result = packet_ok (rs->buf,
9476 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9477 if (result == PACKET_OK)
9478 {
9479 ULONGEST result;
9480
9481 unpack_varlen_hex (rs->buf, &result);
9482 return result;
9483 }
9484 else if (result == PACKET_UNKNOWN)
9485 throw_error (TLS_GENERIC_ERROR,
9486 _("Remote target doesn't support qGetTLSAddr packet"));
9487 else
9488 throw_error (TLS_GENERIC_ERROR,
9489 _("Remote target failed to process qGetTLSAddr request"));
9490 }
9491 else
9492 throw_error (TLS_GENERIC_ERROR,
9493 _("TLS not supported or disabled on this target"));
9494 /* Not reached. */
9495 return 0;
9496 }
9497
9498 /* Provide thread local base, i.e. Thread Information Block address.
9499 Returns 1 if ptid is found and thread_local_base is non zero. */
9500
9501 static int
9502 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
9503 {
9504 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9505 {
9506 struct remote_state *rs = get_remote_state ();
9507 char *p = rs->buf;
9508 char *endp = rs->buf + get_remote_packet_size ();
9509 enum packet_result result;
9510
9511 strcpy (p, "qGetTIBAddr:");
9512 p += strlen (p);
9513 p = write_ptid (p, endp, ptid);
9514 *p++ = '\0';
9515
9516 putpkt (rs->buf);
9517 getpkt (&rs->buf, &rs->buf_size, 0);
9518 result = packet_ok (rs->buf,
9519 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9520 if (result == PACKET_OK)
9521 {
9522 ULONGEST result;
9523
9524 unpack_varlen_hex (rs->buf, &result);
9525 if (addr)
9526 *addr = (CORE_ADDR) result;
9527 return 1;
9528 }
9529 else if (result == PACKET_UNKNOWN)
9530 error (_("Remote target doesn't support qGetTIBAddr packet"));
9531 else
9532 error (_("Remote target failed to process qGetTIBAddr request"));
9533 }
9534 else
9535 error (_("qGetTIBAddr not supported or disabled on this target"));
9536 /* Not reached. */
9537 return 0;
9538 }
9539
9540 /* Support for inferring a target description based on the current
9541 architecture and the size of a 'g' packet. While the 'g' packet
9542 can have any size (since optional registers can be left off the
9543 end), some sizes are easily recognizable given knowledge of the
9544 approximate architecture. */
9545
9546 struct remote_g_packet_guess
9547 {
9548 int bytes;
9549 const struct target_desc *tdesc;
9550 };
9551 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9552 DEF_VEC_O(remote_g_packet_guess_s);
9553
9554 struct remote_g_packet_data
9555 {
9556 VEC(remote_g_packet_guess_s) *guesses;
9557 };
9558
9559 static struct gdbarch_data *remote_g_packet_data_handle;
9560
9561 static void *
9562 remote_g_packet_data_init (struct obstack *obstack)
9563 {
9564 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9565 }
9566
9567 void
9568 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9569 const struct target_desc *tdesc)
9570 {
9571 struct remote_g_packet_data *data
9572 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9573 struct remote_g_packet_guess new_guess, *guess;
9574 int ix;
9575
9576 gdb_assert (tdesc != NULL);
9577
9578 for (ix = 0;
9579 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9580 ix++)
9581 if (guess->bytes == bytes)
9582 internal_error (__FILE__, __LINE__,
9583 _("Duplicate g packet description added for size %d"),
9584 bytes);
9585
9586 new_guess.bytes = bytes;
9587 new_guess.tdesc = tdesc;
9588 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9589 }
9590
9591 /* Return 1 if remote_read_description would do anything on this target
9592 and architecture, 0 otherwise. */
9593
9594 static int
9595 remote_read_description_p (struct target_ops *target)
9596 {
9597 struct remote_g_packet_data *data
9598 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9599
9600 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9601 return 1;
9602
9603 return 0;
9604 }
9605
9606 static const struct target_desc *
9607 remote_read_description (struct target_ops *target)
9608 {
9609 struct remote_g_packet_data *data
9610 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9611
9612 /* Do not try this during initial connection, when we do not know
9613 whether there is a running but stopped thread. */
9614 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9615 return NULL;
9616
9617 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9618 {
9619 struct remote_g_packet_guess *guess;
9620 int ix;
9621 int bytes = send_g_packet ();
9622
9623 for (ix = 0;
9624 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9625 ix++)
9626 if (guess->bytes == bytes)
9627 return guess->tdesc;
9628
9629 /* We discard the g packet. A minor optimization would be to
9630 hold on to it, and fill the register cache once we have selected
9631 an architecture, but it's too tricky to do safely. */
9632 }
9633
9634 return NULL;
9635 }
9636
9637 /* Remote file transfer support. This is host-initiated I/O, not
9638 target-initiated; for target-initiated, see remote-fileio.c. */
9639
9640 /* If *LEFT is at least the length of STRING, copy STRING to
9641 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9642 decrease *LEFT. Otherwise raise an error. */
9643
9644 static void
9645 remote_buffer_add_string (char **buffer, int *left, char *string)
9646 {
9647 int len = strlen (string);
9648
9649 if (len > *left)
9650 error (_("Packet too long for target."));
9651
9652 memcpy (*buffer, string, len);
9653 *buffer += len;
9654 *left -= len;
9655
9656 /* NUL-terminate the buffer as a convenience, if there is
9657 room. */
9658 if (*left)
9659 **buffer = '\0';
9660 }
9661
9662 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9663 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9664 decrease *LEFT. Otherwise raise an error. */
9665
9666 static void
9667 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9668 int len)
9669 {
9670 if (2 * len > *left)
9671 error (_("Packet too long for target."));
9672
9673 bin2hex (bytes, *buffer, len);
9674 *buffer += 2 * len;
9675 *left -= 2 * len;
9676
9677 /* NUL-terminate the buffer as a convenience, if there is
9678 room. */
9679 if (*left)
9680 **buffer = '\0';
9681 }
9682
9683 /* If *LEFT is large enough, convert VALUE to hex and add it to
9684 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9685 decrease *LEFT. Otherwise raise an error. */
9686
9687 static void
9688 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9689 {
9690 int len = hexnumlen (value);
9691
9692 if (len > *left)
9693 error (_("Packet too long for target."));
9694
9695 hexnumstr (*buffer, value);
9696 *buffer += len;
9697 *left -= len;
9698
9699 /* NUL-terminate the buffer as a convenience, if there is
9700 room. */
9701 if (*left)
9702 **buffer = '\0';
9703 }
9704
9705 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9706 value, *REMOTE_ERRNO to the remote error number or zero if none
9707 was included, and *ATTACHMENT to point to the start of the annex
9708 if any. The length of the packet isn't needed here; there may
9709 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9710
9711 Return 0 if the packet could be parsed, -1 if it could not. If
9712 -1 is returned, the other variables may not be initialized. */
9713
9714 static int
9715 remote_hostio_parse_result (char *buffer, int *retcode,
9716 int *remote_errno, char **attachment)
9717 {
9718 char *p, *p2;
9719
9720 *remote_errno = 0;
9721 *attachment = NULL;
9722
9723 if (buffer[0] != 'F')
9724 return -1;
9725
9726 errno = 0;
9727 *retcode = strtol (&buffer[1], &p, 16);
9728 if (errno != 0 || p == &buffer[1])
9729 return -1;
9730
9731 /* Check for ",errno". */
9732 if (*p == ',')
9733 {
9734 errno = 0;
9735 *remote_errno = strtol (p + 1, &p2, 16);
9736 if (errno != 0 || p + 1 == p2)
9737 return -1;
9738 p = p2;
9739 }
9740
9741 /* Check for ";attachment". If there is no attachment, the
9742 packet should end here. */
9743 if (*p == ';')
9744 {
9745 *attachment = p + 1;
9746 return 0;
9747 }
9748 else if (*p == '\0')
9749 return 0;
9750 else
9751 return -1;
9752 }
9753
9754 /* Send a prepared I/O packet to the target and read its response.
9755 The prepared packet is in the global RS->BUF before this function
9756 is called, and the answer is there when we return.
9757
9758 COMMAND_BYTES is the length of the request to send, which may include
9759 binary data. WHICH_PACKET is the packet configuration to check
9760 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9761 is set to the error number and -1 is returned. Otherwise the value
9762 returned by the function is returned.
9763
9764 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9765 attachment is expected; an error will be reported if there's a
9766 mismatch. If one is found, *ATTACHMENT will be set to point into
9767 the packet buffer and *ATTACHMENT_LEN will be set to the
9768 attachment's length. */
9769
9770 static int
9771 remote_hostio_send_command (int command_bytes, int which_packet,
9772 int *remote_errno, char **attachment,
9773 int *attachment_len)
9774 {
9775 struct remote_state *rs = get_remote_state ();
9776 int ret, bytes_read;
9777 char *attachment_tmp;
9778
9779 if (!rs->remote_desc
9780 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9781 {
9782 *remote_errno = FILEIO_ENOSYS;
9783 return -1;
9784 }
9785
9786 putpkt_binary (rs->buf, command_bytes);
9787 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9788
9789 /* If it timed out, something is wrong. Don't try to parse the
9790 buffer. */
9791 if (bytes_read < 0)
9792 {
9793 *remote_errno = FILEIO_EINVAL;
9794 return -1;
9795 }
9796
9797 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9798 {
9799 case PACKET_ERROR:
9800 *remote_errno = FILEIO_EINVAL;
9801 return -1;
9802 case PACKET_UNKNOWN:
9803 *remote_errno = FILEIO_ENOSYS;
9804 return -1;
9805 case PACKET_OK:
9806 break;
9807 }
9808
9809 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9810 &attachment_tmp))
9811 {
9812 *remote_errno = FILEIO_EINVAL;
9813 return -1;
9814 }
9815
9816 /* Make sure we saw an attachment if and only if we expected one. */
9817 if ((attachment_tmp == NULL && attachment != NULL)
9818 || (attachment_tmp != NULL && attachment == NULL))
9819 {
9820 *remote_errno = FILEIO_EINVAL;
9821 return -1;
9822 }
9823
9824 /* If an attachment was found, it must point into the packet buffer;
9825 work out how many bytes there were. */
9826 if (attachment_tmp != NULL)
9827 {
9828 *attachment = attachment_tmp;
9829 *attachment_len = bytes_read - (*attachment - rs->buf);
9830 }
9831
9832 return ret;
9833 }
9834
9835 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9836 remote file descriptor, or -1 if an error occurs (and set
9837 *REMOTE_ERRNO). */
9838
9839 static int
9840 remote_hostio_open (const char *filename, int flags, int mode,
9841 int *remote_errno)
9842 {
9843 struct remote_state *rs = get_remote_state ();
9844 char *p = rs->buf;
9845 int left = get_remote_packet_size () - 1;
9846
9847 remote_buffer_add_string (&p, &left, "vFile:open:");
9848
9849 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9850 strlen (filename));
9851 remote_buffer_add_string (&p, &left, ",");
9852
9853 remote_buffer_add_int (&p, &left, flags);
9854 remote_buffer_add_string (&p, &left, ",");
9855
9856 remote_buffer_add_int (&p, &left, mode);
9857
9858 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9859 remote_errno, NULL, NULL);
9860 }
9861
9862 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9863 Return the number of bytes written, or -1 if an error occurs (and
9864 set *REMOTE_ERRNO). */
9865
9866 static int
9867 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9868 ULONGEST offset, int *remote_errno)
9869 {
9870 struct remote_state *rs = get_remote_state ();
9871 char *p = rs->buf;
9872 int left = get_remote_packet_size ();
9873 int out_len;
9874
9875 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9876
9877 remote_buffer_add_int (&p, &left, fd);
9878 remote_buffer_add_string (&p, &left, ",");
9879
9880 remote_buffer_add_int (&p, &left, offset);
9881 remote_buffer_add_string (&p, &left, ",");
9882
9883 p += remote_escape_output (write_buf, len, (gdb_byte *) p, &out_len,
9884 get_remote_packet_size () - (p - rs->buf));
9885
9886 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9887 remote_errno, NULL, NULL);
9888 }
9889
9890 /* Read up to LEN bytes FD on the remote target into READ_BUF
9891 Return the number of bytes read, or -1 if an error occurs (and
9892 set *REMOTE_ERRNO). */
9893
9894 static int
9895 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9896 ULONGEST offset, int *remote_errno)
9897 {
9898 struct remote_state *rs = get_remote_state ();
9899 char *p = rs->buf;
9900 char *attachment;
9901 int left = get_remote_packet_size ();
9902 int ret, attachment_len;
9903 int read_len;
9904
9905 remote_buffer_add_string (&p, &left, "vFile:pread:");
9906
9907 remote_buffer_add_int (&p, &left, fd);
9908 remote_buffer_add_string (&p, &left, ",");
9909
9910 remote_buffer_add_int (&p, &left, len);
9911 remote_buffer_add_string (&p, &left, ",");
9912
9913 remote_buffer_add_int (&p, &left, offset);
9914
9915 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9916 remote_errno, &attachment,
9917 &attachment_len);
9918
9919 if (ret < 0)
9920 return ret;
9921
9922 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9923 read_buf, len);
9924 if (read_len != ret)
9925 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9926
9927 return ret;
9928 }
9929
9930 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9931 (and set *REMOTE_ERRNO). */
9932
9933 static int
9934 remote_hostio_close (int fd, int *remote_errno)
9935 {
9936 struct remote_state *rs = get_remote_state ();
9937 char *p = rs->buf;
9938 int left = get_remote_packet_size () - 1;
9939
9940 remote_buffer_add_string (&p, &left, "vFile:close:");
9941
9942 remote_buffer_add_int (&p, &left, fd);
9943
9944 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9945 remote_errno, NULL, NULL);
9946 }
9947
9948 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9949 occurs (and set *REMOTE_ERRNO). */
9950
9951 static int
9952 remote_hostio_unlink (const char *filename, int *remote_errno)
9953 {
9954 struct remote_state *rs = get_remote_state ();
9955 char *p = rs->buf;
9956 int left = get_remote_packet_size () - 1;
9957
9958 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9959
9960 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9961 strlen (filename));
9962
9963 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9964 remote_errno, NULL, NULL);
9965 }
9966
9967 /* Read value of symbolic link FILENAME on the remote target. Return
9968 a null-terminated string allocated via xmalloc, or NULL if an error
9969 occurs (and set *REMOTE_ERRNO). */
9970
9971 static char *
9972 remote_hostio_readlink (const char *filename, int *remote_errno)
9973 {
9974 struct remote_state *rs = get_remote_state ();
9975 char *p = rs->buf;
9976 char *attachment;
9977 int left = get_remote_packet_size ();
9978 int len, attachment_len;
9979 int read_len;
9980 char *ret;
9981
9982 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9983
9984 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9985 strlen (filename));
9986
9987 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9988 remote_errno, &attachment,
9989 &attachment_len);
9990
9991 if (len < 0)
9992 return NULL;
9993
9994 ret = xmalloc (len + 1);
9995
9996 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9997 (gdb_byte *) ret, len);
9998 if (read_len != len)
9999 error (_("Readlink returned %d, but %d bytes."), len, read_len);
10000
10001 ret[len] = '\0';
10002 return ret;
10003 }
10004
10005 static int
10006 remote_fileio_errno_to_host (int errnum)
10007 {
10008 switch (errnum)
10009 {
10010 case FILEIO_EPERM:
10011 return EPERM;
10012 case FILEIO_ENOENT:
10013 return ENOENT;
10014 case FILEIO_EINTR:
10015 return EINTR;
10016 case FILEIO_EIO:
10017 return EIO;
10018 case FILEIO_EBADF:
10019 return EBADF;
10020 case FILEIO_EACCES:
10021 return EACCES;
10022 case FILEIO_EFAULT:
10023 return EFAULT;
10024 case FILEIO_EBUSY:
10025 return EBUSY;
10026 case FILEIO_EEXIST:
10027 return EEXIST;
10028 case FILEIO_ENODEV:
10029 return ENODEV;
10030 case FILEIO_ENOTDIR:
10031 return ENOTDIR;
10032 case FILEIO_EISDIR:
10033 return EISDIR;
10034 case FILEIO_EINVAL:
10035 return EINVAL;
10036 case FILEIO_ENFILE:
10037 return ENFILE;
10038 case FILEIO_EMFILE:
10039 return EMFILE;
10040 case FILEIO_EFBIG:
10041 return EFBIG;
10042 case FILEIO_ENOSPC:
10043 return ENOSPC;
10044 case FILEIO_ESPIPE:
10045 return ESPIPE;
10046 case FILEIO_EROFS:
10047 return EROFS;
10048 case FILEIO_ENOSYS:
10049 return ENOSYS;
10050 case FILEIO_ENAMETOOLONG:
10051 return ENAMETOOLONG;
10052 }
10053 return -1;
10054 }
10055
10056 static char *
10057 remote_hostio_error (int errnum)
10058 {
10059 int host_error = remote_fileio_errno_to_host (errnum);
10060
10061 if (host_error == -1)
10062 error (_("Unknown remote I/O error %d"), errnum);
10063 else
10064 error (_("Remote I/O error: %s"), safe_strerror (host_error));
10065 }
10066
10067 static void
10068 remote_hostio_close_cleanup (void *opaque)
10069 {
10070 int fd = *(int *) opaque;
10071 int remote_errno;
10072
10073 remote_hostio_close (fd, &remote_errno);
10074 }
10075
10076
10077 static void *
10078 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
10079 {
10080 const char *filename = bfd_get_filename (abfd);
10081 int fd, remote_errno;
10082 int *stream;
10083
10084 gdb_assert (remote_filename_p (filename));
10085
10086 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
10087 if (fd == -1)
10088 {
10089 errno = remote_fileio_errno_to_host (remote_errno);
10090 bfd_set_error (bfd_error_system_call);
10091 return NULL;
10092 }
10093
10094 stream = xmalloc (sizeof (int));
10095 *stream = fd;
10096 return stream;
10097 }
10098
10099 static int
10100 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
10101 {
10102 int fd = *(int *)stream;
10103 int remote_errno;
10104
10105 xfree (stream);
10106
10107 /* Ignore errors on close; these may happen if the remote
10108 connection was already torn down. */
10109 remote_hostio_close (fd, &remote_errno);
10110
10111 /* Zero means success. */
10112 return 0;
10113 }
10114
10115 static file_ptr
10116 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
10117 file_ptr nbytes, file_ptr offset)
10118 {
10119 int fd = *(int *)stream;
10120 int remote_errno;
10121 file_ptr pos, bytes;
10122
10123 pos = 0;
10124 while (nbytes > pos)
10125 {
10126 bytes = remote_hostio_pread (fd, (gdb_byte *) buf + pos, nbytes - pos,
10127 offset + pos, &remote_errno);
10128 if (bytes == 0)
10129 /* Success, but no bytes, means end-of-file. */
10130 break;
10131 if (bytes == -1)
10132 {
10133 errno = remote_fileio_errno_to_host (remote_errno);
10134 bfd_set_error (bfd_error_system_call);
10135 return -1;
10136 }
10137
10138 pos += bytes;
10139 }
10140
10141 return pos;
10142 }
10143
10144 static int
10145 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
10146 {
10147 /* FIXME: We should probably implement remote_hostio_stat. */
10148 sb->st_size = INT_MAX;
10149 return 0;
10150 }
10151
10152 int
10153 remote_filename_p (const char *filename)
10154 {
10155 return strncmp (filename,
10156 REMOTE_SYSROOT_PREFIX,
10157 sizeof (REMOTE_SYSROOT_PREFIX) - 1) == 0;
10158 }
10159
10160 bfd *
10161 remote_bfd_open (const char *remote_file, const char *target)
10162 {
10163 bfd *abfd = gdb_bfd_openr_iovec (remote_file, target,
10164 remote_bfd_iovec_open, NULL,
10165 remote_bfd_iovec_pread,
10166 remote_bfd_iovec_close,
10167 remote_bfd_iovec_stat);
10168
10169 return abfd;
10170 }
10171
10172 void
10173 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
10174 {
10175 struct cleanup *back_to, *close_cleanup;
10176 int retcode, fd, remote_errno, bytes, io_size;
10177 FILE *file;
10178 gdb_byte *buffer;
10179 int bytes_in_buffer;
10180 int saw_eof;
10181 ULONGEST offset;
10182 struct remote_state *rs = get_remote_state ();
10183
10184 if (!rs->remote_desc)
10185 error (_("command can only be used with remote target"));
10186
10187 file = gdb_fopen_cloexec (local_file, "rb");
10188 if (file == NULL)
10189 perror_with_name (local_file);
10190 back_to = make_cleanup_fclose (file);
10191
10192 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
10193 | FILEIO_O_TRUNC),
10194 0700, &remote_errno);
10195 if (fd == -1)
10196 remote_hostio_error (remote_errno);
10197
10198 /* Send up to this many bytes at once. They won't all fit in the
10199 remote packet limit, so we'll transfer slightly fewer. */
10200 io_size = get_remote_packet_size ();
10201 buffer = xmalloc (io_size);
10202 make_cleanup (xfree, buffer);
10203
10204 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10205
10206 bytes_in_buffer = 0;
10207 saw_eof = 0;
10208 offset = 0;
10209 while (bytes_in_buffer || !saw_eof)
10210 {
10211 if (!saw_eof)
10212 {
10213 bytes = fread (buffer + bytes_in_buffer, 1,
10214 io_size - bytes_in_buffer,
10215 file);
10216 if (bytes == 0)
10217 {
10218 if (ferror (file))
10219 error (_("Error reading %s."), local_file);
10220 else
10221 {
10222 /* EOF. Unless there is something still in the
10223 buffer from the last iteration, we are done. */
10224 saw_eof = 1;
10225 if (bytes_in_buffer == 0)
10226 break;
10227 }
10228 }
10229 }
10230 else
10231 bytes = 0;
10232
10233 bytes += bytes_in_buffer;
10234 bytes_in_buffer = 0;
10235
10236 retcode = remote_hostio_pwrite (fd, buffer, bytes,
10237 offset, &remote_errno);
10238
10239 if (retcode < 0)
10240 remote_hostio_error (remote_errno);
10241 else if (retcode == 0)
10242 error (_("Remote write of %d bytes returned 0!"), bytes);
10243 else if (retcode < bytes)
10244 {
10245 /* Short write. Save the rest of the read data for the next
10246 write. */
10247 bytes_in_buffer = bytes - retcode;
10248 memmove (buffer, buffer + retcode, bytes_in_buffer);
10249 }
10250
10251 offset += retcode;
10252 }
10253
10254 discard_cleanups (close_cleanup);
10255 if (remote_hostio_close (fd, &remote_errno))
10256 remote_hostio_error (remote_errno);
10257
10258 if (from_tty)
10259 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
10260 do_cleanups (back_to);
10261 }
10262
10263 void
10264 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
10265 {
10266 struct cleanup *back_to, *close_cleanup;
10267 int fd, remote_errno, bytes, io_size;
10268 FILE *file;
10269 gdb_byte *buffer;
10270 ULONGEST offset;
10271 struct remote_state *rs = get_remote_state ();
10272
10273 if (!rs->remote_desc)
10274 error (_("command can only be used with remote target"));
10275
10276 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
10277 if (fd == -1)
10278 remote_hostio_error (remote_errno);
10279
10280 file = gdb_fopen_cloexec (local_file, "wb");
10281 if (file == NULL)
10282 perror_with_name (local_file);
10283 back_to = make_cleanup_fclose (file);
10284
10285 /* Send up to this many bytes at once. They won't all fit in the
10286 remote packet limit, so we'll transfer slightly fewer. */
10287 io_size = get_remote_packet_size ();
10288 buffer = xmalloc (io_size);
10289 make_cleanup (xfree, buffer);
10290
10291 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10292
10293 offset = 0;
10294 while (1)
10295 {
10296 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
10297 if (bytes == 0)
10298 /* Success, but no bytes, means end-of-file. */
10299 break;
10300 if (bytes == -1)
10301 remote_hostio_error (remote_errno);
10302
10303 offset += bytes;
10304
10305 bytes = fwrite (buffer, 1, bytes, file);
10306 if (bytes == 0)
10307 perror_with_name (local_file);
10308 }
10309
10310 discard_cleanups (close_cleanup);
10311 if (remote_hostio_close (fd, &remote_errno))
10312 remote_hostio_error (remote_errno);
10313
10314 if (from_tty)
10315 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
10316 do_cleanups (back_to);
10317 }
10318
10319 void
10320 remote_file_delete (const char *remote_file, int from_tty)
10321 {
10322 int retcode, remote_errno;
10323 struct remote_state *rs = get_remote_state ();
10324
10325 if (!rs->remote_desc)
10326 error (_("command can only be used with remote target"));
10327
10328 retcode = remote_hostio_unlink (remote_file, &remote_errno);
10329 if (retcode == -1)
10330 remote_hostio_error (remote_errno);
10331
10332 if (from_tty)
10333 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
10334 }
10335
10336 static void
10337 remote_put_command (char *args, int from_tty)
10338 {
10339 struct cleanup *back_to;
10340 char **argv;
10341
10342 if (args == NULL)
10343 error_no_arg (_("file to put"));
10344
10345 argv = gdb_buildargv (args);
10346 back_to = make_cleanup_freeargv (argv);
10347 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10348 error (_("Invalid parameters to remote put"));
10349
10350 remote_file_put (argv[0], argv[1], from_tty);
10351
10352 do_cleanups (back_to);
10353 }
10354
10355 static void
10356 remote_get_command (char *args, int from_tty)
10357 {
10358 struct cleanup *back_to;
10359 char **argv;
10360
10361 if (args == NULL)
10362 error_no_arg (_("file to get"));
10363
10364 argv = gdb_buildargv (args);
10365 back_to = make_cleanup_freeargv (argv);
10366 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10367 error (_("Invalid parameters to remote get"));
10368
10369 remote_file_get (argv[0], argv[1], from_tty);
10370
10371 do_cleanups (back_to);
10372 }
10373
10374 static void
10375 remote_delete_command (char *args, int from_tty)
10376 {
10377 struct cleanup *back_to;
10378 char **argv;
10379
10380 if (args == NULL)
10381 error_no_arg (_("file to delete"));
10382
10383 argv = gdb_buildargv (args);
10384 back_to = make_cleanup_freeargv (argv);
10385 if (argv[0] == NULL || argv[1] != NULL)
10386 error (_("Invalid parameters to remote delete"));
10387
10388 remote_file_delete (argv[0], from_tty);
10389
10390 do_cleanups (back_to);
10391 }
10392
10393 static void
10394 remote_command (char *args, int from_tty)
10395 {
10396 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
10397 }
10398
10399 static int
10400 remote_can_execute_reverse (void)
10401 {
10402 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
10403 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
10404 return 1;
10405 else
10406 return 0;
10407 }
10408
10409 static int
10410 remote_supports_non_stop (void)
10411 {
10412 return 1;
10413 }
10414
10415 static int
10416 remote_supports_disable_randomization (void)
10417 {
10418 /* Only supported in extended mode. */
10419 return 0;
10420 }
10421
10422 static int
10423 remote_supports_multi_process (void)
10424 {
10425 struct remote_state *rs = get_remote_state ();
10426
10427 /* Only extended-remote handles being attached to multiple
10428 processes, even though plain remote can use the multi-process
10429 thread id extensions, so that GDB knows the target process's
10430 PID. */
10431 return rs->extended && remote_multi_process_p (rs);
10432 }
10433
10434 static int
10435 remote_supports_cond_tracepoints (void)
10436 {
10437 struct remote_state *rs = get_remote_state ();
10438
10439 return rs->cond_tracepoints;
10440 }
10441
10442 static int
10443 remote_supports_cond_breakpoints (void)
10444 {
10445 struct remote_state *rs = get_remote_state ();
10446
10447 return rs->cond_breakpoints;
10448 }
10449
10450 static int
10451 remote_supports_fast_tracepoints (void)
10452 {
10453 struct remote_state *rs = get_remote_state ();
10454
10455 return rs->fast_tracepoints;
10456 }
10457
10458 static int
10459 remote_supports_static_tracepoints (void)
10460 {
10461 struct remote_state *rs = get_remote_state ();
10462
10463 return rs->static_tracepoints;
10464 }
10465
10466 static int
10467 remote_supports_install_in_trace (void)
10468 {
10469 struct remote_state *rs = get_remote_state ();
10470
10471 return rs->install_in_trace;
10472 }
10473
10474 static int
10475 remote_supports_enable_disable_tracepoint (void)
10476 {
10477 struct remote_state *rs = get_remote_state ();
10478
10479 return rs->enable_disable_tracepoints;
10480 }
10481
10482 static int
10483 remote_supports_string_tracing (void)
10484 {
10485 struct remote_state *rs = get_remote_state ();
10486
10487 return rs->string_tracing;
10488 }
10489
10490 static int
10491 remote_can_run_breakpoint_commands (void)
10492 {
10493 struct remote_state *rs = get_remote_state ();
10494
10495 return rs->breakpoint_commands;
10496 }
10497
10498 static void
10499 remote_trace_init (void)
10500 {
10501 putpkt ("QTinit");
10502 remote_get_noisy_reply (&target_buf, &target_buf_size);
10503 if (strcmp (target_buf, "OK") != 0)
10504 error (_("Target does not support this command."));
10505 }
10506
10507 static void free_actions_list (char **actions_list);
10508 static void free_actions_list_cleanup_wrapper (void *);
10509 static void
10510 free_actions_list_cleanup_wrapper (void *al)
10511 {
10512 free_actions_list (al);
10513 }
10514
10515 static void
10516 free_actions_list (char **actions_list)
10517 {
10518 int ndx;
10519
10520 if (actions_list == 0)
10521 return;
10522
10523 for (ndx = 0; actions_list[ndx]; ndx++)
10524 xfree (actions_list[ndx]);
10525
10526 xfree (actions_list);
10527 }
10528
10529 /* Recursive routine to walk through command list including loops, and
10530 download packets for each command. */
10531
10532 static void
10533 remote_download_command_source (int num, ULONGEST addr,
10534 struct command_line *cmds)
10535 {
10536 struct remote_state *rs = get_remote_state ();
10537 struct command_line *cmd;
10538
10539 for (cmd = cmds; cmd; cmd = cmd->next)
10540 {
10541 QUIT; /* Allow user to bail out with ^C. */
10542 strcpy (rs->buf, "QTDPsrc:");
10543 encode_source_string (num, addr, "cmd", cmd->line,
10544 rs->buf + strlen (rs->buf),
10545 rs->buf_size - strlen (rs->buf));
10546 putpkt (rs->buf);
10547 remote_get_noisy_reply (&target_buf, &target_buf_size);
10548 if (strcmp (target_buf, "OK"))
10549 warning (_("Target does not support source download."));
10550
10551 if (cmd->control_type == while_control
10552 || cmd->control_type == while_stepping_control)
10553 {
10554 remote_download_command_source (num, addr, *cmd->body_list);
10555
10556 QUIT; /* Allow user to bail out with ^C. */
10557 strcpy (rs->buf, "QTDPsrc:");
10558 encode_source_string (num, addr, "cmd", "end",
10559 rs->buf + strlen (rs->buf),
10560 rs->buf_size - strlen (rs->buf));
10561 putpkt (rs->buf);
10562 remote_get_noisy_reply (&target_buf, &target_buf_size);
10563 if (strcmp (target_buf, "OK"))
10564 warning (_("Target does not support source download."));
10565 }
10566 }
10567 }
10568
10569 static void
10570 remote_download_tracepoint (struct bp_location *loc)
10571 {
10572 #define BUF_SIZE 2048
10573
10574 CORE_ADDR tpaddr;
10575 char addrbuf[40];
10576 char buf[BUF_SIZE];
10577 char **tdp_actions;
10578 char **stepping_actions;
10579 int ndx;
10580 struct cleanup *old_chain = NULL;
10581 struct agent_expr *aexpr;
10582 struct cleanup *aexpr_chain = NULL;
10583 char *pkt;
10584 struct breakpoint *b = loc->owner;
10585 struct tracepoint *t = (struct tracepoint *) b;
10586
10587 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
10588 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10589 tdp_actions);
10590 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10591 stepping_actions);
10592
10593 tpaddr = loc->address;
10594 sprintf_vma (addrbuf, tpaddr);
10595 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10596 addrbuf, /* address */
10597 (b->enable_state == bp_enabled ? 'E' : 'D'),
10598 t->step_count, t->pass_count);
10599 /* Fast tracepoints are mostly handled by the target, but we can
10600 tell the target how big of an instruction block should be moved
10601 around. */
10602 if (b->type == bp_fast_tracepoint)
10603 {
10604 /* Only test for support at download time; we may not know
10605 target capabilities at definition time. */
10606 if (remote_supports_fast_tracepoints ())
10607 {
10608 int isize;
10609
10610 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (),
10611 tpaddr, &isize, NULL))
10612 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10613 isize);
10614 else
10615 /* If it passed validation at definition but fails now,
10616 something is very wrong. */
10617 internal_error (__FILE__, __LINE__,
10618 _("Fast tracepoint not "
10619 "valid during download"));
10620 }
10621 else
10622 /* Fast tracepoints are functionally identical to regular
10623 tracepoints, so don't take lack of support as a reason to
10624 give up on the trace run. */
10625 warning (_("Target does not support fast tracepoints, "
10626 "downloading %d as regular tracepoint"), b->number);
10627 }
10628 else if (b->type == bp_static_tracepoint)
10629 {
10630 /* Only test for support at download time; we may not know
10631 target capabilities at definition time. */
10632 if (remote_supports_static_tracepoints ())
10633 {
10634 struct static_tracepoint_marker marker;
10635
10636 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10637 strcat (buf, ":S");
10638 else
10639 error (_("Static tracepoint not valid during download"));
10640 }
10641 else
10642 /* Fast tracepoints are functionally identical to regular
10643 tracepoints, so don't take lack of support as a reason
10644 to give up on the trace run. */
10645 error (_("Target does not support static tracepoints"));
10646 }
10647 /* If the tracepoint has a conditional, make it into an agent
10648 expression and append to the definition. */
10649 if (loc->cond)
10650 {
10651 /* Only test support at download time, we may not know target
10652 capabilities at definition time. */
10653 if (remote_supports_cond_tracepoints ())
10654 {
10655 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10656 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10657 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10658 aexpr->len);
10659 pkt = buf + strlen (buf);
10660 for (ndx = 0; ndx < aexpr->len; ++ndx)
10661 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10662 *pkt = '\0';
10663 do_cleanups (aexpr_chain);
10664 }
10665 else
10666 warning (_("Target does not support conditional tracepoints, "
10667 "ignoring tp %d cond"), b->number);
10668 }
10669
10670 if (b->commands || *default_collect)
10671 strcat (buf, "-");
10672 putpkt (buf);
10673 remote_get_noisy_reply (&target_buf, &target_buf_size);
10674 if (strcmp (target_buf, "OK"))
10675 error (_("Target does not support tracepoints."));
10676
10677 /* do_single_steps (t); */
10678 if (tdp_actions)
10679 {
10680 for (ndx = 0; tdp_actions[ndx]; ndx++)
10681 {
10682 QUIT; /* Allow user to bail out with ^C. */
10683 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10684 b->number, addrbuf, /* address */
10685 tdp_actions[ndx],
10686 ((tdp_actions[ndx + 1] || stepping_actions)
10687 ? '-' : 0));
10688 putpkt (buf);
10689 remote_get_noisy_reply (&target_buf,
10690 &target_buf_size);
10691 if (strcmp (target_buf, "OK"))
10692 error (_("Error on target while setting tracepoints."));
10693 }
10694 }
10695 if (stepping_actions)
10696 {
10697 for (ndx = 0; stepping_actions[ndx]; ndx++)
10698 {
10699 QUIT; /* Allow user to bail out with ^C. */
10700 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10701 b->number, addrbuf, /* address */
10702 ((ndx == 0) ? "S" : ""),
10703 stepping_actions[ndx],
10704 (stepping_actions[ndx + 1] ? "-" : ""));
10705 putpkt (buf);
10706 remote_get_noisy_reply (&target_buf,
10707 &target_buf_size);
10708 if (strcmp (target_buf, "OK"))
10709 error (_("Error on target while setting tracepoints."));
10710 }
10711 }
10712
10713 if (remote_protocol_packets[PACKET_TracepointSource].support
10714 == PACKET_ENABLE)
10715 {
10716 if (b->addr_string)
10717 {
10718 strcpy (buf, "QTDPsrc:");
10719 encode_source_string (b->number, loc->address,
10720 "at", b->addr_string, buf + strlen (buf),
10721 2048 - strlen (buf));
10722
10723 putpkt (buf);
10724 remote_get_noisy_reply (&target_buf, &target_buf_size);
10725 if (strcmp (target_buf, "OK"))
10726 warning (_("Target does not support source download."));
10727 }
10728 if (b->cond_string)
10729 {
10730 strcpy (buf, "QTDPsrc:");
10731 encode_source_string (b->number, loc->address,
10732 "cond", b->cond_string, buf + strlen (buf),
10733 2048 - strlen (buf));
10734 putpkt (buf);
10735 remote_get_noisy_reply (&target_buf, &target_buf_size);
10736 if (strcmp (target_buf, "OK"))
10737 warning (_("Target does not support source download."));
10738 }
10739 remote_download_command_source (b->number, loc->address,
10740 breakpoint_commands (b));
10741 }
10742
10743 do_cleanups (old_chain);
10744 }
10745
10746 static int
10747 remote_can_download_tracepoint (void)
10748 {
10749 struct remote_state *rs = get_remote_state ();
10750 struct trace_status *ts;
10751 int status;
10752
10753 /* Don't try to install tracepoints until we've relocated our
10754 symbols, and fetched and merged the target's tracepoint list with
10755 ours. */
10756 if (rs->starting_up)
10757 return 0;
10758
10759 ts = current_trace_status ();
10760 status = remote_get_trace_status (ts);
10761
10762 if (status == -1 || !ts->running_known || !ts->running)
10763 return 0;
10764
10765 /* If we are in a tracing experiment, but remote stub doesn't support
10766 installing tracepoint in trace, we have to return. */
10767 if (!remote_supports_install_in_trace ())
10768 return 0;
10769
10770 return 1;
10771 }
10772
10773
10774 static void
10775 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10776 {
10777 struct remote_state *rs = get_remote_state ();
10778 char *p;
10779
10780 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10781 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10782 tsv->builtin);
10783 p = rs->buf + strlen (rs->buf);
10784 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10785 error (_("Trace state variable name too long for tsv definition packet"));
10786 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10787 *p++ = '\0';
10788 putpkt (rs->buf);
10789 remote_get_noisy_reply (&target_buf, &target_buf_size);
10790 if (*target_buf == '\0')
10791 error (_("Target does not support this command."));
10792 if (strcmp (target_buf, "OK") != 0)
10793 error (_("Error on target while downloading trace state variable."));
10794 }
10795
10796 static void
10797 remote_enable_tracepoint (struct bp_location *location)
10798 {
10799 struct remote_state *rs = get_remote_state ();
10800 char addr_buf[40];
10801
10802 sprintf_vma (addr_buf, location->address);
10803 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10804 location->owner->number, addr_buf);
10805 putpkt (rs->buf);
10806 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10807 if (*rs->buf == '\0')
10808 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10809 if (strcmp (rs->buf, "OK") != 0)
10810 error (_("Error on target while enabling tracepoint."));
10811 }
10812
10813 static void
10814 remote_disable_tracepoint (struct bp_location *location)
10815 {
10816 struct remote_state *rs = get_remote_state ();
10817 char addr_buf[40];
10818
10819 sprintf_vma (addr_buf, location->address);
10820 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10821 location->owner->number, addr_buf);
10822 putpkt (rs->buf);
10823 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10824 if (*rs->buf == '\0')
10825 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10826 if (strcmp (rs->buf, "OK") != 0)
10827 error (_("Error on target while disabling tracepoint."));
10828 }
10829
10830 static void
10831 remote_trace_set_readonly_regions (void)
10832 {
10833 asection *s;
10834 bfd *abfd = NULL;
10835 bfd_size_type size;
10836 bfd_vma vma;
10837 int anysecs = 0;
10838 int offset = 0;
10839
10840 if (!exec_bfd)
10841 return; /* No information to give. */
10842
10843 strcpy (target_buf, "QTro");
10844 offset = strlen (target_buf);
10845 for (s = exec_bfd->sections; s; s = s->next)
10846 {
10847 char tmp1[40], tmp2[40];
10848 int sec_length;
10849
10850 if ((s->flags & SEC_LOAD) == 0 ||
10851 /* (s->flags & SEC_CODE) == 0 || */
10852 (s->flags & SEC_READONLY) == 0)
10853 continue;
10854
10855 anysecs = 1;
10856 vma = bfd_get_section_vma (abfd, s);
10857 size = bfd_get_section_size (s);
10858 sprintf_vma (tmp1, vma);
10859 sprintf_vma (tmp2, vma + size);
10860 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10861 if (offset + sec_length + 1 > target_buf_size)
10862 {
10863 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10864 != PACKET_ENABLE)
10865 warning (_("\
10866 Too many sections for read-only sections definition packet."));
10867 break;
10868 }
10869 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10870 tmp1, tmp2);
10871 offset += sec_length;
10872 }
10873 if (anysecs)
10874 {
10875 putpkt (target_buf);
10876 getpkt (&target_buf, &target_buf_size, 0);
10877 }
10878 }
10879
10880 static void
10881 remote_trace_start (void)
10882 {
10883 putpkt ("QTStart");
10884 remote_get_noisy_reply (&target_buf, &target_buf_size);
10885 if (*target_buf == '\0')
10886 error (_("Target does not support this command."));
10887 if (strcmp (target_buf, "OK") != 0)
10888 error (_("Bogus reply from target: %s"), target_buf);
10889 }
10890
10891 static int
10892 remote_get_trace_status (struct trace_status *ts)
10893 {
10894 /* Initialize it just to avoid a GCC false warning. */
10895 char *p = NULL;
10896 /* FIXME we need to get register block size some other way. */
10897 extern int trace_regblock_size;
10898 volatile struct gdb_exception ex;
10899 enum packet_result result;
10900
10901 if (remote_protocol_packets[PACKET_qTStatus].support == PACKET_DISABLE)
10902 return -1;
10903
10904 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10905
10906 putpkt ("qTStatus");
10907
10908 TRY_CATCH (ex, RETURN_MASK_ERROR)
10909 {
10910 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10911 }
10912 if (ex.reason < 0)
10913 {
10914 if (ex.error != TARGET_CLOSE_ERROR)
10915 {
10916 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10917 return -1;
10918 }
10919 throw_exception (ex);
10920 }
10921
10922 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
10923
10924 /* If the remote target doesn't do tracing, flag it. */
10925 if (result == PACKET_UNKNOWN)
10926 return -1;
10927
10928 /* We're working with a live target. */
10929 ts->filename = NULL;
10930
10931 if (*p++ != 'T')
10932 error (_("Bogus trace status reply from target: %s"), target_buf);
10933
10934 /* Function 'parse_trace_status' sets default value of each field of
10935 'ts' at first, so we don't have to do it here. */
10936 parse_trace_status (p, ts);
10937
10938 return ts->running;
10939 }
10940
10941 static void
10942 remote_get_tracepoint_status (struct breakpoint *bp,
10943 struct uploaded_tp *utp)
10944 {
10945 struct remote_state *rs = get_remote_state ();
10946 char *reply;
10947 struct bp_location *loc;
10948 struct tracepoint *tp = (struct tracepoint *) bp;
10949 size_t size = get_remote_packet_size ();
10950
10951 if (tp)
10952 {
10953 tp->base.hit_count = 0;
10954 tp->traceframe_usage = 0;
10955 for (loc = tp->base.loc; loc; loc = loc->next)
10956 {
10957 /* If the tracepoint was never downloaded, don't go asking for
10958 any status. */
10959 if (tp->number_on_target == 0)
10960 continue;
10961 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10962 phex_nz (loc->address, 0));
10963 putpkt (rs->buf);
10964 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10965 if (reply && *reply)
10966 {
10967 if (*reply == 'V')
10968 parse_tracepoint_status (reply + 1, bp, utp);
10969 }
10970 }
10971 }
10972 else if (utp)
10973 {
10974 utp->hit_count = 0;
10975 utp->traceframe_usage = 0;
10976 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
10977 phex_nz (utp->addr, 0));
10978 putpkt (rs->buf);
10979 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10980 if (reply && *reply)
10981 {
10982 if (*reply == 'V')
10983 parse_tracepoint_status (reply + 1, bp, utp);
10984 }
10985 }
10986 }
10987
10988 static void
10989 remote_trace_stop (void)
10990 {
10991 putpkt ("QTStop");
10992 remote_get_noisy_reply (&target_buf, &target_buf_size);
10993 if (*target_buf == '\0')
10994 error (_("Target does not support this command."));
10995 if (strcmp (target_buf, "OK") != 0)
10996 error (_("Bogus reply from target: %s"), target_buf);
10997 }
10998
10999 static int
11000 remote_trace_find (enum trace_find_type type, int num,
11001 CORE_ADDR addr1, CORE_ADDR addr2,
11002 int *tpp)
11003 {
11004 struct remote_state *rs = get_remote_state ();
11005 char *endbuf = rs->buf + get_remote_packet_size ();
11006 char *p, *reply;
11007 int target_frameno = -1, target_tracept = -1;
11008
11009 /* Lookups other than by absolute frame number depend on the current
11010 trace selected, so make sure it is correct on the remote end
11011 first. */
11012 if (type != tfind_number)
11013 set_remote_traceframe ();
11014
11015 p = rs->buf;
11016 strcpy (p, "QTFrame:");
11017 p = strchr (p, '\0');
11018 switch (type)
11019 {
11020 case tfind_number:
11021 xsnprintf (p, endbuf - p, "%x", num);
11022 break;
11023 case tfind_pc:
11024 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
11025 break;
11026 case tfind_tp:
11027 xsnprintf (p, endbuf - p, "tdp:%x", num);
11028 break;
11029 case tfind_range:
11030 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
11031 phex_nz (addr2, 0));
11032 break;
11033 case tfind_outside:
11034 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
11035 phex_nz (addr2, 0));
11036 break;
11037 default:
11038 error (_("Unknown trace find type %d"), type);
11039 }
11040
11041 putpkt (rs->buf);
11042 reply = remote_get_noisy_reply (&(rs->buf), &rs->buf_size);
11043 if (*reply == '\0')
11044 error (_("Target does not support this command."));
11045
11046 while (reply && *reply)
11047 switch (*reply)
11048 {
11049 case 'F':
11050 p = ++reply;
11051 target_frameno = (int) strtol (p, &reply, 16);
11052 if (reply == p)
11053 error (_("Unable to parse trace frame number"));
11054 /* Don't update our remote traceframe number cache on failure
11055 to select a remote traceframe. */
11056 if (target_frameno == -1)
11057 return -1;
11058 break;
11059 case 'T':
11060 p = ++reply;
11061 target_tracept = (int) strtol (p, &reply, 16);
11062 if (reply == p)
11063 error (_("Unable to parse tracepoint number"));
11064 break;
11065 case 'O': /* "OK"? */
11066 if (reply[1] == 'K' && reply[2] == '\0')
11067 reply += 2;
11068 else
11069 error (_("Bogus reply from target: %s"), reply);
11070 break;
11071 default:
11072 error (_("Bogus reply from target: %s"), reply);
11073 }
11074 if (tpp)
11075 *tpp = target_tracept;
11076
11077 rs->remote_traceframe_number = target_frameno;
11078 return target_frameno;
11079 }
11080
11081 static int
11082 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
11083 {
11084 struct remote_state *rs = get_remote_state ();
11085 char *reply;
11086 ULONGEST uval;
11087
11088 set_remote_traceframe ();
11089
11090 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
11091 putpkt (rs->buf);
11092 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11093 if (reply && *reply)
11094 {
11095 if (*reply == 'V')
11096 {
11097 unpack_varlen_hex (reply + 1, &uval);
11098 *val = (LONGEST) uval;
11099 return 1;
11100 }
11101 }
11102 return 0;
11103 }
11104
11105 static int
11106 remote_save_trace_data (const char *filename)
11107 {
11108 struct remote_state *rs = get_remote_state ();
11109 char *p, *reply;
11110
11111 p = rs->buf;
11112 strcpy (p, "QTSave:");
11113 p += strlen (p);
11114 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
11115 error (_("Remote file name too long for trace save packet"));
11116 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
11117 *p++ = '\0';
11118 putpkt (rs->buf);
11119 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11120 if (*reply == '\0')
11121 error (_("Target does not support this command."));
11122 if (strcmp (reply, "OK") != 0)
11123 error (_("Bogus reply from target: %s"), reply);
11124 return 0;
11125 }
11126
11127 /* This is basically a memory transfer, but needs to be its own packet
11128 because we don't know how the target actually organizes its trace
11129 memory, plus we want to be able to ask for as much as possible, but
11130 not be unhappy if we don't get as much as we ask for. */
11131
11132 static LONGEST
11133 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
11134 {
11135 struct remote_state *rs = get_remote_state ();
11136 char *reply;
11137 char *p;
11138 int rslt;
11139
11140 p = rs->buf;
11141 strcpy (p, "qTBuffer:");
11142 p += strlen (p);
11143 p += hexnumstr (p, offset);
11144 *p++ = ',';
11145 p += hexnumstr (p, len);
11146 *p++ = '\0';
11147
11148 putpkt (rs->buf);
11149 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11150 if (reply && *reply)
11151 {
11152 /* 'l' by itself means we're at the end of the buffer and
11153 there is nothing more to get. */
11154 if (*reply == 'l')
11155 return 0;
11156
11157 /* Convert the reply into binary. Limit the number of bytes to
11158 convert according to our passed-in buffer size, rather than
11159 what was returned in the packet; if the target is
11160 unexpectedly generous and gives us a bigger reply than we
11161 asked for, we don't want to crash. */
11162 rslt = hex2bin (target_buf, buf, len);
11163 return rslt;
11164 }
11165
11166 /* Something went wrong, flag as an error. */
11167 return -1;
11168 }
11169
11170 static void
11171 remote_set_disconnected_tracing (int val)
11172 {
11173 struct remote_state *rs = get_remote_state ();
11174
11175 if (rs->disconnected_tracing)
11176 {
11177 char *reply;
11178
11179 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
11180 putpkt (rs->buf);
11181 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11182 if (*reply == '\0')
11183 error (_("Target does not support this command."));
11184 if (strcmp (reply, "OK") != 0)
11185 error (_("Bogus reply from target: %s"), reply);
11186 }
11187 else if (val)
11188 warning (_("Target does not support disconnected tracing."));
11189 }
11190
11191 static int
11192 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
11193 {
11194 struct thread_info *info = find_thread_ptid (ptid);
11195
11196 if (info && info->private)
11197 return info->private->core;
11198 return -1;
11199 }
11200
11201 static void
11202 remote_set_circular_trace_buffer (int val)
11203 {
11204 struct remote_state *rs = get_remote_state ();
11205 char *reply;
11206
11207 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
11208 putpkt (rs->buf);
11209 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11210 if (*reply == '\0')
11211 error (_("Target does not support this command."));
11212 if (strcmp (reply, "OK") != 0)
11213 error (_("Bogus reply from target: %s"), reply);
11214 }
11215
11216 static struct traceframe_info *
11217 remote_traceframe_info (void)
11218 {
11219 char *text;
11220
11221 /* If current traceframe is not selected, don't bother the remote
11222 stub. */
11223 if (get_traceframe_number () < 0)
11224 return NULL;
11225
11226 text = target_read_stralloc (&current_target,
11227 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
11228 if (text != NULL)
11229 {
11230 struct traceframe_info *info;
11231 struct cleanup *back_to = make_cleanup (xfree, text);
11232
11233 info = parse_traceframe_info (text);
11234 do_cleanups (back_to);
11235 return info;
11236 }
11237
11238 return NULL;
11239 }
11240
11241 /* Handle the qTMinFTPILen packet. Returns the minimum length of
11242 instruction on which a fast tracepoint may be placed. Returns -1
11243 if the packet is not supported, and 0 if the minimum instruction
11244 length is unknown. */
11245
11246 static int
11247 remote_get_min_fast_tracepoint_insn_len (void)
11248 {
11249 struct remote_state *rs = get_remote_state ();
11250 char *reply;
11251
11252 /* If we're not debugging a process yet, the IPA can't be
11253 loaded. */
11254 if (!target_has_execution)
11255 return 0;
11256
11257 /* Make sure the remote is pointing at the right process. */
11258 set_general_process ();
11259
11260 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
11261 putpkt (rs->buf);
11262 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11263 if (*reply == '\0')
11264 return -1;
11265 else
11266 {
11267 ULONGEST min_insn_len;
11268
11269 unpack_varlen_hex (reply, &min_insn_len);
11270
11271 return (int) min_insn_len;
11272 }
11273 }
11274
11275 static void
11276 remote_set_trace_buffer_size (LONGEST val)
11277 {
11278 if (remote_protocol_packets[PACKET_QTBuffer_size].support
11279 != PACKET_DISABLE)
11280 {
11281 struct remote_state *rs = get_remote_state ();
11282 char *buf = rs->buf;
11283 char *endbuf = rs->buf + get_remote_packet_size ();
11284 enum packet_result result;
11285
11286 gdb_assert (val >= 0 || val == -1);
11287 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
11288 /* Send -1 as literal "-1" to avoid host size dependency. */
11289 if (val < 0)
11290 {
11291 *buf++ = '-';
11292 buf += hexnumstr (buf, (ULONGEST) -val);
11293 }
11294 else
11295 buf += hexnumstr (buf, (ULONGEST) val);
11296
11297 putpkt (rs->buf);
11298 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
11299 result = packet_ok (rs->buf,
11300 &remote_protocol_packets[PACKET_QTBuffer_size]);
11301
11302 if (result != PACKET_OK)
11303 warning (_("Bogus reply from target: %s"), rs->buf);
11304 }
11305 }
11306
11307 static int
11308 remote_set_trace_notes (const char *user, const char *notes,
11309 const char *stop_notes)
11310 {
11311 struct remote_state *rs = get_remote_state ();
11312 char *reply;
11313 char *buf = rs->buf;
11314 char *endbuf = rs->buf + get_remote_packet_size ();
11315 int nbytes;
11316
11317 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
11318 if (user)
11319 {
11320 buf += xsnprintf (buf, endbuf - buf, "user:");
11321 nbytes = bin2hex ((gdb_byte *) user, buf, 0);
11322 buf += 2 * nbytes;
11323 *buf++ = ';';
11324 }
11325 if (notes)
11326 {
11327 buf += xsnprintf (buf, endbuf - buf, "notes:");
11328 nbytes = bin2hex ((gdb_byte *) notes, buf, 0);
11329 buf += 2 * nbytes;
11330 *buf++ = ';';
11331 }
11332 if (stop_notes)
11333 {
11334 buf += xsnprintf (buf, endbuf - buf, "tstop:");
11335 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, 0);
11336 buf += 2 * nbytes;
11337 *buf++ = ';';
11338 }
11339 /* Ensure the buffer is terminated. */
11340 *buf = '\0';
11341
11342 putpkt (rs->buf);
11343 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11344 if (*reply == '\0')
11345 return 0;
11346
11347 if (strcmp (reply, "OK") != 0)
11348 error (_("Bogus reply from target: %s"), reply);
11349
11350 return 1;
11351 }
11352
11353 static int
11354 remote_use_agent (int use)
11355 {
11356 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
11357 {
11358 struct remote_state *rs = get_remote_state ();
11359
11360 /* If the stub supports QAgent. */
11361 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
11362 putpkt (rs->buf);
11363 getpkt (&rs->buf, &rs->buf_size, 0);
11364
11365 if (strcmp (rs->buf, "OK") == 0)
11366 {
11367 use_agent = use;
11368 return 1;
11369 }
11370 }
11371
11372 return 0;
11373 }
11374
11375 static int
11376 remote_can_use_agent (void)
11377 {
11378 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
11379 }
11380
11381 struct btrace_target_info
11382 {
11383 /* The ptid of the traced thread. */
11384 ptid_t ptid;
11385 };
11386
11387 /* Check whether the target supports branch tracing. */
11388
11389 static int
11390 remote_supports_btrace (void)
11391 {
11392 if (remote_protocol_packets[PACKET_Qbtrace_off].support != PACKET_ENABLE)
11393 return 0;
11394 if (remote_protocol_packets[PACKET_Qbtrace_bts].support != PACKET_ENABLE)
11395 return 0;
11396 if (remote_protocol_packets[PACKET_qXfer_btrace].support != PACKET_ENABLE)
11397 return 0;
11398
11399 return 1;
11400 }
11401
11402 /* Enable branch tracing. */
11403
11404 static struct btrace_target_info *
11405 remote_enable_btrace (ptid_t ptid)
11406 {
11407 struct btrace_target_info *tinfo = NULL;
11408 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
11409 struct remote_state *rs = get_remote_state ();
11410 char *buf = rs->buf;
11411 char *endbuf = rs->buf + get_remote_packet_size ();
11412
11413 if (packet->support != PACKET_ENABLE)
11414 error (_("Target does not support branch tracing."));
11415
11416 set_general_thread (ptid);
11417
11418 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11419 putpkt (rs->buf);
11420 getpkt (&rs->buf, &rs->buf_size, 0);
11421
11422 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11423 {
11424 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11425 error (_("Could not enable branch tracing for %s: %s"),
11426 target_pid_to_str (ptid), rs->buf + 2);
11427 else
11428 error (_("Could not enable branch tracing for %s."),
11429 target_pid_to_str (ptid));
11430 }
11431
11432 tinfo = xzalloc (sizeof (*tinfo));
11433 tinfo->ptid = ptid;
11434
11435 return tinfo;
11436 }
11437
11438 /* Disable branch tracing. */
11439
11440 static void
11441 remote_disable_btrace (struct btrace_target_info *tinfo)
11442 {
11443 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
11444 struct remote_state *rs = get_remote_state ();
11445 char *buf = rs->buf;
11446 char *endbuf = rs->buf + get_remote_packet_size ();
11447
11448 if (packet->support != PACKET_ENABLE)
11449 error (_("Target does not support branch tracing."));
11450
11451 set_general_thread (tinfo->ptid);
11452
11453 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11454 putpkt (rs->buf);
11455 getpkt (&rs->buf, &rs->buf_size, 0);
11456
11457 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11458 {
11459 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11460 error (_("Could not disable branch tracing for %s: %s"),
11461 target_pid_to_str (tinfo->ptid), rs->buf + 2);
11462 else
11463 error (_("Could not disable branch tracing for %s."),
11464 target_pid_to_str (tinfo->ptid));
11465 }
11466
11467 xfree (tinfo);
11468 }
11469
11470 /* Teardown branch tracing. */
11471
11472 static void
11473 remote_teardown_btrace (struct btrace_target_info *tinfo)
11474 {
11475 /* We must not talk to the target during teardown. */
11476 xfree (tinfo);
11477 }
11478
11479 /* Read the branch trace. */
11480
11481 static enum btrace_error
11482 remote_read_btrace (VEC (btrace_block_s) **btrace,
11483 struct btrace_target_info *tinfo,
11484 enum btrace_read_type type)
11485 {
11486 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
11487 struct remote_state *rs = get_remote_state ();
11488 struct cleanup *cleanup;
11489 const char *annex;
11490 char *xml;
11491
11492 if (packet->support != PACKET_ENABLE)
11493 error (_("Target does not support branch tracing."));
11494
11495 #if !defined(HAVE_LIBEXPAT)
11496 error (_("Cannot process branch tracing result. XML parsing not supported."));
11497 #endif
11498
11499 switch (type)
11500 {
11501 case BTRACE_READ_ALL:
11502 annex = "all";
11503 break;
11504 case BTRACE_READ_NEW:
11505 annex = "new";
11506 break;
11507 case BTRACE_READ_DELTA:
11508 annex = "delta";
11509 break;
11510 default:
11511 internal_error (__FILE__, __LINE__,
11512 _("Bad branch tracing read type: %u."),
11513 (unsigned int) type);
11514 }
11515
11516 xml = target_read_stralloc (&current_target,
11517 TARGET_OBJECT_BTRACE, annex);
11518 if (xml == NULL)
11519 return BTRACE_ERR_UNKNOWN;
11520
11521 cleanup = make_cleanup (xfree, xml);
11522 *btrace = parse_xml_btrace (xml);
11523 do_cleanups (cleanup);
11524
11525 return BTRACE_ERR_NONE;
11526 }
11527
11528 static int
11529 remote_augmented_libraries_svr4_read (void)
11530 {
11531 struct remote_state *rs = get_remote_state ();
11532
11533 return rs->augmented_libraries_svr4_read;
11534 }
11535
11536 static void
11537 init_remote_ops (void)
11538 {
11539 remote_ops.to_shortname = "remote";
11540 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
11541 remote_ops.to_doc =
11542 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11543 Specify the serial device it is connected to\n\
11544 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
11545 remote_ops.to_open = remote_open;
11546 remote_ops.to_close = remote_close;
11547 remote_ops.to_detach = remote_detach;
11548 remote_ops.to_disconnect = remote_disconnect;
11549 remote_ops.to_resume = remote_resume;
11550 remote_ops.to_wait = remote_wait;
11551 remote_ops.to_fetch_registers = remote_fetch_registers;
11552 remote_ops.to_store_registers = remote_store_registers;
11553 remote_ops.to_prepare_to_store = remote_prepare_to_store;
11554 remote_ops.to_files_info = remote_files_info;
11555 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
11556 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
11557 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
11558 remote_ops.to_stopped_data_address = remote_stopped_data_address;
11559 remote_ops.to_watchpoint_addr_within_range =
11560 remote_watchpoint_addr_within_range;
11561 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
11562 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
11563 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
11564 remote_ops.to_region_ok_for_hw_watchpoint
11565 = remote_region_ok_for_hw_watchpoint;
11566 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
11567 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
11568 remote_ops.to_kill = remote_kill;
11569 remote_ops.to_load = generic_load;
11570 remote_ops.to_mourn_inferior = remote_mourn;
11571 remote_ops.to_pass_signals = remote_pass_signals;
11572 remote_ops.to_program_signals = remote_program_signals;
11573 remote_ops.to_thread_alive = remote_thread_alive;
11574 remote_ops.to_find_new_threads = remote_threads_info;
11575 remote_ops.to_pid_to_str = remote_pid_to_str;
11576 remote_ops.to_extra_thread_info = remote_threads_extra_info;
11577 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
11578 remote_ops.to_stop = remote_stop;
11579 remote_ops.to_xfer_partial = remote_xfer_partial;
11580 remote_ops.to_rcmd = remote_rcmd;
11581 remote_ops.to_log_command = serial_log_command;
11582 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
11583 remote_ops.to_stratum = process_stratum;
11584 remote_ops.to_has_all_memory = default_child_has_all_memory;
11585 remote_ops.to_has_memory = default_child_has_memory;
11586 remote_ops.to_has_stack = default_child_has_stack;
11587 remote_ops.to_has_registers = default_child_has_registers;
11588 remote_ops.to_has_execution = default_child_has_execution;
11589 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
11590 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
11591 remote_ops.to_magic = OPS_MAGIC;
11592 remote_ops.to_memory_map = remote_memory_map;
11593 remote_ops.to_flash_erase = remote_flash_erase;
11594 remote_ops.to_flash_done = remote_flash_done;
11595 remote_ops.to_read_description = remote_read_description;
11596 remote_ops.to_search_memory = remote_search_memory;
11597 remote_ops.to_can_async_p = remote_can_async_p;
11598 remote_ops.to_is_async_p = remote_is_async_p;
11599 remote_ops.to_async = remote_async;
11600 remote_ops.to_terminal_inferior = remote_terminal_inferior;
11601 remote_ops.to_terminal_ours = remote_terminal_ours;
11602 remote_ops.to_supports_non_stop = remote_supports_non_stop;
11603 remote_ops.to_supports_multi_process = remote_supports_multi_process;
11604 remote_ops.to_supports_disable_randomization
11605 = remote_supports_disable_randomization;
11606 remote_ops.to_fileio_open = remote_hostio_open;
11607 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
11608 remote_ops.to_fileio_pread = remote_hostio_pread;
11609 remote_ops.to_fileio_close = remote_hostio_close;
11610 remote_ops.to_fileio_unlink = remote_hostio_unlink;
11611 remote_ops.to_fileio_readlink = remote_hostio_readlink;
11612 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
11613 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
11614 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
11615 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
11616 remote_ops.to_trace_init = remote_trace_init;
11617 remote_ops.to_download_tracepoint = remote_download_tracepoint;
11618 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
11619 remote_ops.to_download_trace_state_variable
11620 = remote_download_trace_state_variable;
11621 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
11622 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
11623 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
11624 remote_ops.to_trace_start = remote_trace_start;
11625 remote_ops.to_get_trace_status = remote_get_trace_status;
11626 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
11627 remote_ops.to_trace_stop = remote_trace_stop;
11628 remote_ops.to_trace_find = remote_trace_find;
11629 remote_ops.to_get_trace_state_variable_value
11630 = remote_get_trace_state_variable_value;
11631 remote_ops.to_save_trace_data = remote_save_trace_data;
11632 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11633 remote_ops.to_upload_trace_state_variables
11634 = remote_upload_trace_state_variables;
11635 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11636 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11637 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11638 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11639 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
11640 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11641 remote_ops.to_core_of_thread = remote_core_of_thread;
11642 remote_ops.to_verify_memory = remote_verify_memory;
11643 remote_ops.to_get_tib_address = remote_get_tib_address;
11644 remote_ops.to_set_permissions = remote_set_permissions;
11645 remote_ops.to_static_tracepoint_marker_at
11646 = remote_static_tracepoint_marker_at;
11647 remote_ops.to_static_tracepoint_markers_by_strid
11648 = remote_static_tracepoint_markers_by_strid;
11649 remote_ops.to_traceframe_info = remote_traceframe_info;
11650 remote_ops.to_use_agent = remote_use_agent;
11651 remote_ops.to_can_use_agent = remote_can_use_agent;
11652 remote_ops.to_supports_btrace = remote_supports_btrace;
11653 remote_ops.to_enable_btrace = remote_enable_btrace;
11654 remote_ops.to_disable_btrace = remote_disable_btrace;
11655 remote_ops.to_teardown_btrace = remote_teardown_btrace;
11656 remote_ops.to_read_btrace = remote_read_btrace;
11657 remote_ops.to_augmented_libraries_svr4_read =
11658 remote_augmented_libraries_svr4_read;
11659 }
11660
11661 /* Set up the extended remote vector by making a copy of the standard
11662 remote vector and adding to it. */
11663
11664 static void
11665 init_extended_remote_ops (void)
11666 {
11667 extended_remote_ops = remote_ops;
11668
11669 extended_remote_ops.to_shortname = "extended-remote";
11670 extended_remote_ops.to_longname =
11671 "Extended remote serial target in gdb-specific protocol";
11672 extended_remote_ops.to_doc =
11673 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11674 Specify the serial device it is connected to (e.g. /dev/ttya).";
11675 extended_remote_ops.to_open = extended_remote_open;
11676 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11677 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11678 extended_remote_ops.to_detach = extended_remote_detach;
11679 extended_remote_ops.to_attach = extended_remote_attach;
11680 extended_remote_ops.to_kill = extended_remote_kill;
11681 extended_remote_ops.to_supports_disable_randomization
11682 = extended_remote_supports_disable_randomization;
11683 }
11684
11685 static int
11686 remote_can_async_p (void)
11687 {
11688 struct remote_state *rs = get_remote_state ();
11689
11690 if (!target_async_permitted)
11691 /* We only enable async when the user specifically asks for it. */
11692 return 0;
11693
11694 /* We're async whenever the serial device is. */
11695 return serial_can_async_p (rs->remote_desc);
11696 }
11697
11698 static int
11699 remote_is_async_p (void)
11700 {
11701 struct remote_state *rs = get_remote_state ();
11702
11703 if (!target_async_permitted)
11704 /* We only enable async when the user specifically asks for it. */
11705 return 0;
11706
11707 /* We're async whenever the serial device is. */
11708 return serial_is_async_p (rs->remote_desc);
11709 }
11710
11711 /* Pass the SERIAL event on and up to the client. One day this code
11712 will be able to delay notifying the client of an event until the
11713 point where an entire packet has been received. */
11714
11715 static serial_event_ftype remote_async_serial_handler;
11716
11717 static void
11718 remote_async_serial_handler (struct serial *scb, void *context)
11719 {
11720 struct remote_state *rs = context;
11721
11722 /* Don't propogate error information up to the client. Instead let
11723 the client find out about the error by querying the target. */
11724 rs->async_client_callback (INF_REG_EVENT, rs->async_client_context);
11725 }
11726
11727 static void
11728 remote_async_inferior_event_handler (gdb_client_data data)
11729 {
11730 inferior_event_handler (INF_REG_EVENT, NULL);
11731 }
11732
11733 static void
11734 remote_async (void (*callback) (enum inferior_event_type event_type,
11735 void *context), void *context)
11736 {
11737 struct remote_state *rs = get_remote_state ();
11738
11739 if (callback != NULL)
11740 {
11741 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
11742 rs->async_client_callback = callback;
11743 rs->async_client_context = context;
11744 }
11745 else
11746 serial_async (rs->remote_desc, NULL, NULL);
11747 }
11748
11749 static void
11750 set_remote_cmd (char *args, int from_tty)
11751 {
11752 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11753 }
11754
11755 static void
11756 show_remote_cmd (char *args, int from_tty)
11757 {
11758 /* We can't just use cmd_show_list here, because we want to skip
11759 the redundant "show remote Z-packet" and the legacy aliases. */
11760 struct cleanup *showlist_chain;
11761 struct cmd_list_element *list = remote_show_cmdlist;
11762 struct ui_out *uiout = current_uiout;
11763
11764 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11765 for (; list != NULL; list = list->next)
11766 if (strcmp (list->name, "Z-packet") == 0)
11767 continue;
11768 else if (list->type == not_set_cmd)
11769 /* Alias commands are exactly like the original, except they
11770 don't have the normal type. */
11771 continue;
11772 else
11773 {
11774 struct cleanup *option_chain
11775 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11776
11777 ui_out_field_string (uiout, "name", list->name);
11778 ui_out_text (uiout, ": ");
11779 if (list->type == show_cmd)
11780 do_show_command ((char *) NULL, from_tty, list);
11781 else
11782 cmd_func (list, NULL, from_tty);
11783 /* Close the tuple. */
11784 do_cleanups (option_chain);
11785 }
11786
11787 /* Close the tuple. */
11788 do_cleanups (showlist_chain);
11789 }
11790
11791
11792 /* Function to be called whenever a new objfile (shlib) is detected. */
11793 static void
11794 remote_new_objfile (struct objfile *objfile)
11795 {
11796 struct remote_state *rs = get_remote_state ();
11797
11798 if (rs->remote_desc != 0) /* Have a remote connection. */
11799 remote_check_symbols ();
11800 }
11801
11802 /* Pull all the tracepoints defined on the target and create local
11803 data structures representing them. We don't want to create real
11804 tracepoints yet, we don't want to mess up the user's existing
11805 collection. */
11806
11807 static int
11808 remote_upload_tracepoints (struct uploaded_tp **utpp)
11809 {
11810 struct remote_state *rs = get_remote_state ();
11811 char *p;
11812
11813 /* Ask for a first packet of tracepoint definition. */
11814 putpkt ("qTfP");
11815 getpkt (&rs->buf, &rs->buf_size, 0);
11816 p = rs->buf;
11817 while (*p && *p != 'l')
11818 {
11819 parse_tracepoint_definition (p, utpp);
11820 /* Ask for another packet of tracepoint definition. */
11821 putpkt ("qTsP");
11822 getpkt (&rs->buf, &rs->buf_size, 0);
11823 p = rs->buf;
11824 }
11825 return 0;
11826 }
11827
11828 static int
11829 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11830 {
11831 struct remote_state *rs = get_remote_state ();
11832 char *p;
11833
11834 /* Ask for a first packet of variable definition. */
11835 putpkt ("qTfV");
11836 getpkt (&rs->buf, &rs->buf_size, 0);
11837 p = rs->buf;
11838 while (*p && *p != 'l')
11839 {
11840 parse_tsv_definition (p, utsvp);
11841 /* Ask for another packet of variable definition. */
11842 putpkt ("qTsV");
11843 getpkt (&rs->buf, &rs->buf_size, 0);
11844 p = rs->buf;
11845 }
11846 return 0;
11847 }
11848
11849 /* The "set/show range-stepping" show hook. */
11850
11851 static void
11852 show_range_stepping (struct ui_file *file, int from_tty,
11853 struct cmd_list_element *c,
11854 const char *value)
11855 {
11856 fprintf_filtered (file,
11857 _("Debugger's willingness to use range stepping "
11858 "is %s.\n"), value);
11859 }
11860
11861 /* The "set/show range-stepping" set hook. */
11862
11863 static void
11864 set_range_stepping (char *ignore_args, int from_tty,
11865 struct cmd_list_element *c)
11866 {
11867 struct remote_state *rs = get_remote_state ();
11868
11869 /* Whene enabling, check whether range stepping is actually
11870 supported by the target, and warn if not. */
11871 if (use_range_stepping)
11872 {
11873 if (rs->remote_desc != NULL)
11874 {
11875 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
11876 remote_vcont_probe (rs);
11877
11878 if (remote_protocol_packets[PACKET_vCont].support == PACKET_ENABLE
11879 && rs->supports_vCont.r)
11880 return;
11881 }
11882
11883 warning (_("Range stepping is not supported by the current target"));
11884 }
11885 }
11886
11887 void
11888 _initialize_remote (void)
11889 {
11890 struct remote_state *rs;
11891 struct cmd_list_element *cmd;
11892 const char *cmd_name;
11893
11894 /* architecture specific data */
11895 remote_gdbarch_data_handle =
11896 gdbarch_data_register_post_init (init_remote_state);
11897 remote_g_packet_data_handle =
11898 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11899
11900 /* Initialize the per-target state. At the moment there is only one
11901 of these, not one per target. Only one target is active at a
11902 time. */
11903 remote_state = new_remote_state ();
11904
11905 init_remote_ops ();
11906 add_target (&remote_ops);
11907
11908 init_extended_remote_ops ();
11909 add_target (&extended_remote_ops);
11910
11911 /* Hook into new objfile notification. */
11912 observer_attach_new_objfile (remote_new_objfile);
11913 /* We're no longer interested in notification events of an inferior
11914 when it exits. */
11915 observer_attach_inferior_exit (discard_pending_stop_replies);
11916
11917 /* Set up signal handlers. */
11918 async_sigint_remote_token =
11919 create_async_signal_handler (async_remote_interrupt, NULL);
11920 async_sigint_remote_twice_token =
11921 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11922
11923 #if 0
11924 init_remote_threadtests ();
11925 #endif
11926
11927 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
11928 /* set/show remote ... */
11929
11930 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11931 Remote protocol specific variables\n\
11932 Configure various remote-protocol specific variables such as\n\
11933 the packets being used"),
11934 &remote_set_cmdlist, "set remote ",
11935 0 /* allow-unknown */, &setlist);
11936 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11937 Remote protocol specific variables\n\
11938 Configure various remote-protocol specific variables such as\n\
11939 the packets being used"),
11940 &remote_show_cmdlist, "show remote ",
11941 0 /* allow-unknown */, &showlist);
11942
11943 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11944 Compare section data on target to the exec file.\n\
11945 Argument is a single section name (default: all loaded sections)."),
11946 &cmdlist);
11947
11948 add_cmd ("packet", class_maintenance, packet_command, _("\
11949 Send an arbitrary packet to a remote target.\n\
11950 maintenance packet TEXT\n\
11951 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11952 this command sends the string TEXT to the inferior, and displays the\n\
11953 response packet. GDB supplies the initial `$' character, and the\n\
11954 terminating `#' character and checksum."),
11955 &maintenancelist);
11956
11957 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11958 Set whether to send break if interrupted."), _("\
11959 Show whether to send break if interrupted."), _("\
11960 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11961 set_remotebreak, show_remotebreak,
11962 &setlist, &showlist);
11963 cmd_name = "remotebreak";
11964 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11965 deprecate_cmd (cmd, "set remote interrupt-sequence");
11966 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11967 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11968 deprecate_cmd (cmd, "show remote interrupt-sequence");
11969
11970 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11971 interrupt_sequence_modes, &interrupt_sequence_mode,
11972 _("\
11973 Set interrupt sequence to remote target."), _("\
11974 Show interrupt sequence to remote target."), _("\
11975 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11976 NULL, show_interrupt_sequence,
11977 &remote_set_cmdlist,
11978 &remote_show_cmdlist);
11979
11980 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11981 &interrupt_on_connect, _("\
11982 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11983 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11984 If set, interrupt sequence is sent to remote target."),
11985 NULL, NULL,
11986 &remote_set_cmdlist, &remote_show_cmdlist);
11987
11988 /* Install commands for configuring memory read/write packets. */
11989
11990 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11991 Set the maximum number of bytes per memory write packet (deprecated)."),
11992 &setlist);
11993 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11994 Show the maximum number of bytes per memory write packet (deprecated)."),
11995 &showlist);
11996 add_cmd ("memory-write-packet-size", no_class,
11997 set_memory_write_packet_size, _("\
11998 Set the maximum number of bytes per memory-write packet.\n\
11999 Specify the number of bytes in a packet or 0 (zero) for the\n\
12000 default packet size. The actual limit is further reduced\n\
12001 dependent on the target. Specify ``fixed'' to disable the\n\
12002 further restriction and ``limit'' to enable that restriction."),
12003 &remote_set_cmdlist);
12004 add_cmd ("memory-read-packet-size", no_class,
12005 set_memory_read_packet_size, _("\
12006 Set the maximum number of bytes per memory-read packet.\n\
12007 Specify the number of bytes in a packet or 0 (zero) for the\n\
12008 default packet size. The actual limit is further reduced\n\
12009 dependent on the target. Specify ``fixed'' to disable the\n\
12010 further restriction and ``limit'' to enable that restriction."),
12011 &remote_set_cmdlist);
12012 add_cmd ("memory-write-packet-size", no_class,
12013 show_memory_write_packet_size,
12014 _("Show the maximum number of bytes per memory-write packet."),
12015 &remote_show_cmdlist);
12016 add_cmd ("memory-read-packet-size", no_class,
12017 show_memory_read_packet_size,
12018 _("Show the maximum number of bytes per memory-read packet."),
12019 &remote_show_cmdlist);
12020
12021 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
12022 &remote_hw_watchpoint_limit, _("\
12023 Set the maximum number of target hardware watchpoints."), _("\
12024 Show the maximum number of target hardware watchpoints."), _("\
12025 Specify a negative limit for unlimited."),
12026 NULL, NULL, /* FIXME: i18n: The maximum
12027 number of target hardware
12028 watchpoints is %s. */
12029 &remote_set_cmdlist, &remote_show_cmdlist);
12030 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
12031 &remote_hw_watchpoint_length_limit, _("\
12032 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
12033 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
12034 Specify a negative limit for unlimited."),
12035 NULL, NULL, /* FIXME: i18n: The maximum
12036 length (in bytes) of a target
12037 hardware watchpoint is %s. */
12038 &remote_set_cmdlist, &remote_show_cmdlist);
12039 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
12040 &remote_hw_breakpoint_limit, _("\
12041 Set the maximum number of target hardware breakpoints."), _("\
12042 Show the maximum number of target hardware breakpoints."), _("\
12043 Specify a negative limit for unlimited."),
12044 NULL, NULL, /* FIXME: i18n: The maximum
12045 number of target hardware
12046 breakpoints is %s. */
12047 &remote_set_cmdlist, &remote_show_cmdlist);
12048
12049 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
12050 &remote_address_size, _("\
12051 Set the maximum size of the address (in bits) in a memory packet."), _("\
12052 Show the maximum size of the address (in bits) in a memory packet."), NULL,
12053 NULL,
12054 NULL, /* FIXME: i18n: */
12055 &setlist, &showlist);
12056
12057 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
12058 "X", "binary-download", 1);
12059
12060 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
12061 "vCont", "verbose-resume", 0);
12062
12063 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
12064 "QPassSignals", "pass-signals", 0);
12065
12066 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
12067 "QProgramSignals", "program-signals", 0);
12068
12069 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
12070 "qSymbol", "symbol-lookup", 0);
12071
12072 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
12073 "P", "set-register", 1);
12074
12075 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
12076 "p", "fetch-register", 1);
12077
12078 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
12079 "Z0", "software-breakpoint", 0);
12080
12081 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
12082 "Z1", "hardware-breakpoint", 0);
12083
12084 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
12085 "Z2", "write-watchpoint", 0);
12086
12087 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
12088 "Z3", "read-watchpoint", 0);
12089
12090 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
12091 "Z4", "access-watchpoint", 0);
12092
12093 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
12094 "qXfer:auxv:read", "read-aux-vector", 0);
12095
12096 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
12097 "qXfer:features:read", "target-features", 0);
12098
12099 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
12100 "qXfer:libraries:read", "library-info", 0);
12101
12102 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
12103 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
12104
12105 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
12106 "qXfer:memory-map:read", "memory-map", 0);
12107
12108 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
12109 "qXfer:spu:read", "read-spu-object", 0);
12110
12111 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
12112 "qXfer:spu:write", "write-spu-object", 0);
12113
12114 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
12115 "qXfer:osdata:read", "osdata", 0);
12116
12117 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
12118 "qXfer:threads:read", "threads", 0);
12119
12120 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
12121 "qXfer:siginfo:read", "read-siginfo-object", 0);
12122
12123 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
12124 "qXfer:siginfo:write", "write-siginfo-object", 0);
12125
12126 add_packet_config_cmd
12127 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
12128 "qXfer:traceframe-info:read", "traceframe-info", 0);
12129
12130 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
12131 "qXfer:uib:read", "unwind-info-block", 0);
12132
12133 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
12134 "qGetTLSAddr", "get-thread-local-storage-address",
12135 0);
12136
12137 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
12138 "qGetTIBAddr", "get-thread-information-block-address",
12139 0);
12140
12141 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
12142 "bc", "reverse-continue", 0);
12143
12144 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
12145 "bs", "reverse-step", 0);
12146
12147 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
12148 "qSupported", "supported-packets", 0);
12149
12150 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
12151 "qSearch:memory", "search-memory", 0);
12152
12153 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
12154 "qTStatus", "trace-status", 0);
12155
12156 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
12157 "vFile:open", "hostio-open", 0);
12158
12159 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
12160 "vFile:pread", "hostio-pread", 0);
12161
12162 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
12163 "vFile:pwrite", "hostio-pwrite", 0);
12164
12165 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
12166 "vFile:close", "hostio-close", 0);
12167
12168 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
12169 "vFile:unlink", "hostio-unlink", 0);
12170
12171 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
12172 "vFile:readlink", "hostio-readlink", 0);
12173
12174 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
12175 "vAttach", "attach", 0);
12176
12177 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
12178 "vRun", "run", 0);
12179
12180 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
12181 "QStartNoAckMode", "noack", 0);
12182
12183 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
12184 "vKill", "kill", 0);
12185
12186 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
12187 "qAttached", "query-attached", 0);
12188
12189 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
12190 "ConditionalTracepoints",
12191 "conditional-tracepoints", 0);
12192
12193 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
12194 "ConditionalBreakpoints",
12195 "conditional-breakpoints", 0);
12196
12197 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
12198 "BreakpointCommands",
12199 "breakpoint-commands", 0);
12200
12201 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
12202 "FastTracepoints", "fast-tracepoints", 0);
12203
12204 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
12205 "TracepointSource", "TracepointSource", 0);
12206
12207 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
12208 "QAllow", "allow", 0);
12209
12210 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
12211 "StaticTracepoints", "static-tracepoints", 0);
12212
12213 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
12214 "InstallInTrace", "install-in-trace", 0);
12215
12216 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
12217 "qXfer:statictrace:read", "read-sdata-object", 0);
12218
12219 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
12220 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
12221
12222 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
12223 "QDisableRandomization", "disable-randomization", 0);
12224
12225 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
12226 "QAgent", "agent", 0);
12227
12228 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
12229 "QTBuffer:size", "trace-buffer-size", 0);
12230
12231 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
12232 "Qbtrace:off", "disable-btrace", 0);
12233
12234 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
12235 "Qbtrace:bts", "enable-btrace", 0);
12236
12237 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
12238 "qXfer:btrace", "read-btrace", 0);
12239
12240 /* Keep the old ``set remote Z-packet ...'' working. Each individual
12241 Z sub-packet has its own set and show commands, but users may
12242 have sets to this variable in their .gdbinit files (or in their
12243 documentation). */
12244 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
12245 &remote_Z_packet_detect, _("\
12246 Set use of remote protocol `Z' packets"), _("\
12247 Show use of remote protocol `Z' packets "), _("\
12248 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
12249 packets."),
12250 set_remote_protocol_Z_packet_cmd,
12251 show_remote_protocol_Z_packet_cmd,
12252 /* FIXME: i18n: Use of remote protocol
12253 `Z' packets is %s. */
12254 &remote_set_cmdlist, &remote_show_cmdlist);
12255
12256 add_prefix_cmd ("remote", class_files, remote_command, _("\
12257 Manipulate files on the remote system\n\
12258 Transfer files to and from the remote target system."),
12259 &remote_cmdlist, "remote ",
12260 0 /* allow-unknown */, &cmdlist);
12261
12262 add_cmd ("put", class_files, remote_put_command,
12263 _("Copy a local file to the remote system."),
12264 &remote_cmdlist);
12265
12266 add_cmd ("get", class_files, remote_get_command,
12267 _("Copy a remote file to the local system."),
12268 &remote_cmdlist);
12269
12270 add_cmd ("delete", class_files, remote_delete_command,
12271 _("Delete a remote file."),
12272 &remote_cmdlist);
12273
12274 remote_exec_file = xstrdup ("");
12275 add_setshow_string_noescape_cmd ("exec-file", class_files,
12276 &remote_exec_file, _("\
12277 Set the remote pathname for \"run\""), _("\
12278 Show the remote pathname for \"run\""), NULL, NULL, NULL,
12279 &remote_set_cmdlist, &remote_show_cmdlist);
12280
12281 add_setshow_boolean_cmd ("range-stepping", class_run,
12282 &use_range_stepping, _("\
12283 Enable or disable range stepping."), _("\
12284 Show whether target-assisted range stepping is enabled."), _("\
12285 If on, and the target supports it, when stepping a source line, GDB\n\
12286 tells the target to step the corresponding range of addresses itself instead\n\
12287 of issuing multiple single-steps. This speeds up source level\n\
12288 stepping. If off, GDB always issues single-steps, even if range\n\
12289 stepping is supported by the target. The default is on."),
12290 set_range_stepping,
12291 show_range_stepping,
12292 &setlist,
12293 &showlist);
12294
12295 /* Eventually initialize fileio. See fileio.c */
12296 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
12297
12298 /* Take advantage of the fact that the LWP field is not used, to tag
12299 special ptids with it set to != 0. */
12300 magic_null_ptid = ptid_build (42000, 1, -1);
12301 not_sent_ptid = ptid_build (42000, 1, -2);
12302 any_thread_ptid = ptid_build (42000, 1, 0);
12303
12304 target_buf_size = 2048;
12305 target_buf = xmalloc (target_buf_size);
12306 }
12307