da8ed81ba7840a5840501ce4e41e3ab51f124664
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82 #include "gdbsupport/selftest.h"
83
84 /* The remote target. */
85
86 static const char remote_doc[] = N_("\
87 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
88 Specify the serial device it is connected to\n\
89 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
90
91 /* See remote.h */
92
93 bool remote_debug = false;
94
95 #define OPAQUETHREADBYTES 8
96
97 /* a 64 bit opaque identifier */
98 typedef unsigned char threadref[OPAQUETHREADBYTES];
99
100 struct gdb_ext_thread_info;
101 struct threads_listing_context;
102 typedef int (*rmt_thread_action) (threadref *ref, void *context);
103 struct protocol_feature;
104 struct packet_reg;
105
106 struct stop_reply;
107 typedef std::unique_ptr<stop_reply> stop_reply_up;
108
109 /* Generic configuration support for packets the stub optionally
110 supports. Allows the user to specify the use of the packet as well
111 as allowing GDB to auto-detect support in the remote stub. */
112
113 enum packet_support
114 {
115 PACKET_SUPPORT_UNKNOWN = 0,
116 PACKET_ENABLE,
117 PACKET_DISABLE
118 };
119
120 /* Analyze a packet's return value and update the packet config
121 accordingly. */
122
123 enum packet_result
124 {
125 PACKET_ERROR,
126 PACKET_OK,
127 PACKET_UNKNOWN
128 };
129
130 struct threads_listing_context;
131
132 /* Stub vCont actions support.
133
134 Each field is a boolean flag indicating whether the stub reports
135 support for the corresponding action. */
136
137 struct vCont_action_support
138 {
139 /* vCont;t */
140 bool t = false;
141
142 /* vCont;r */
143 bool r = false;
144
145 /* vCont;s */
146 bool s = false;
147
148 /* vCont;S */
149 bool S = false;
150 };
151
152 /* About this many threadids fit in a packet. */
153
154 #define MAXTHREADLISTRESULTS 32
155
156 /* Data for the vFile:pread readahead cache. */
157
158 struct readahead_cache
159 {
160 /* Invalidate the readahead cache. */
161 void invalidate ();
162
163 /* Invalidate the readahead cache if it is holding data for FD. */
164 void invalidate_fd (int fd);
165
166 /* Serve pread from the readahead cache. Returns number of bytes
167 read, or 0 if the request can't be served from the cache. */
168 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
169
170 /* The file descriptor for the file that is being cached. -1 if the
171 cache is invalid. */
172 int fd = -1;
173
174 /* The offset into the file that the cache buffer corresponds
175 to. */
176 ULONGEST offset = 0;
177
178 /* The buffer holding the cache contents. */
179 gdb_byte *buf = nullptr;
180 /* The buffer's size. We try to read as much as fits into a packet
181 at a time. */
182 size_t bufsize = 0;
183
184 /* Cache hit and miss counters. */
185 ULONGEST hit_count = 0;
186 ULONGEST miss_count = 0;
187 };
188
189 /* Description of the remote protocol for a given architecture. */
190
191 struct packet_reg
192 {
193 long offset; /* Offset into G packet. */
194 long regnum; /* GDB's internal register number. */
195 LONGEST pnum; /* Remote protocol register number. */
196 int in_g_packet; /* Always part of G packet. */
197 /* long size in bytes; == register_size (target_gdbarch (), regnum);
198 at present. */
199 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
200 at present. */
201 };
202
203 struct remote_arch_state
204 {
205 explicit remote_arch_state (struct gdbarch *gdbarch);
206
207 /* Description of the remote protocol registers. */
208 long sizeof_g_packet;
209
210 /* Description of the remote protocol registers indexed by REGNUM
211 (making an array gdbarch_num_regs in size). */
212 std::unique_ptr<packet_reg[]> regs;
213
214 /* This is the size (in chars) of the first response to the ``g''
215 packet. It is used as a heuristic when determining the maximum
216 size of memory-read and memory-write packets. A target will
217 typically only reserve a buffer large enough to hold the ``g''
218 packet. The size does not include packet overhead (headers and
219 trailers). */
220 long actual_register_packet_size;
221
222 /* This is the maximum size (in chars) of a non read/write packet.
223 It is also used as a cap on the size of read/write packets. */
224 long remote_packet_size;
225 };
226
227 /* Description of the remote protocol state for the currently
228 connected target. This is per-target state, and independent of the
229 selected architecture. */
230
231 class remote_state
232 {
233 public:
234
235 remote_state ();
236 ~remote_state ();
237
238 /* Get the remote arch state for GDBARCH. */
239 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
240
241 public: /* data */
242
243 /* A buffer to use for incoming packets, and its current size. The
244 buffer is grown dynamically for larger incoming packets.
245 Outgoing packets may also be constructed in this buffer.
246 The size of the buffer is always at least REMOTE_PACKET_SIZE;
247 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
248 packets. */
249 gdb::char_vector buf;
250
251 /* True if we're going through initial connection setup (finding out
252 about the remote side's threads, relocating symbols, etc.). */
253 bool starting_up = false;
254
255 /* If we negotiated packet size explicitly (and thus can bypass
256 heuristics for the largest packet size that will not overflow
257 a buffer in the stub), this will be set to that packet size.
258 Otherwise zero, meaning to use the guessed size. */
259 long explicit_packet_size = 0;
260
261 /* remote_wait is normally called when the target is running and
262 waits for a stop reply packet. But sometimes we need to call it
263 when the target is already stopped. We can send a "?" packet
264 and have remote_wait read the response. Or, if we already have
265 the response, we can stash it in BUF and tell remote_wait to
266 skip calling getpkt. This flag is set when BUF contains a
267 stop reply packet and the target is not waiting. */
268 int cached_wait_status = 0;
269
270 /* True, if in no ack mode. That is, neither GDB nor the stub will
271 expect acks from each other. The connection is assumed to be
272 reliable. */
273 bool noack_mode = false;
274
275 /* True if we're connected in extended remote mode. */
276 bool extended = false;
277
278 /* True if we resumed the target and we're waiting for the target to
279 stop. In the mean time, we can't start another command/query.
280 The remote server wouldn't be ready to process it, so we'd
281 timeout waiting for a reply that would never come and eventually
282 we'd close the connection. This can happen in asynchronous mode
283 because we allow GDB commands while the target is running. */
284 bool waiting_for_stop_reply = false;
285
286 /* The status of the stub support for the various vCont actions. */
287 vCont_action_support supports_vCont;
288 /* Whether vCont support was probed already. This is a workaround
289 until packet_support is per-connection. */
290 bool supports_vCont_probed;
291
292 /* True if the user has pressed Ctrl-C, but the target hasn't
293 responded to that. */
294 bool ctrlc_pending_p = false;
295
296 /* True if we saw a Ctrl-C while reading or writing from/to the
297 remote descriptor. At that point it is not safe to send a remote
298 interrupt packet, so we instead remember we saw the Ctrl-C and
299 process it once we're done with sending/receiving the current
300 packet, which should be shortly. If however that takes too long,
301 and the user presses Ctrl-C again, we offer to disconnect. */
302 bool got_ctrlc_during_io = false;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 struct serial *remote_desc = nullptr;
308
309 /* These are the threads which we last sent to the remote system. The
310 TID member will be -1 for all or -2 for not sent yet. */
311 ptid_t general_thread = null_ptid;
312 ptid_t continue_thread = null_ptid;
313
314 /* This is the traceframe which we last selected on the remote system.
315 It will be -1 if no traceframe is selected. */
316 int remote_traceframe_number = -1;
317
318 char *last_pass_packet = nullptr;
319
320 /* The last QProgramSignals packet sent to the target. We bypass
321 sending a new program signals list down to the target if the new
322 packet is exactly the same as the last we sent. IOW, we only let
323 the target know about program signals list changes. */
324 char *last_program_signals_packet = nullptr;
325
326 gdb_signal last_sent_signal = GDB_SIGNAL_0;
327
328 bool last_sent_step = false;
329
330 /* The execution direction of the last resume we got. */
331 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
332
333 char *finished_object = nullptr;
334 char *finished_annex = nullptr;
335 ULONGEST finished_offset = 0;
336
337 /* Should we try the 'ThreadInfo' query packet?
338
339 This variable (NOT available to the user: auto-detect only!)
340 determines whether GDB will use the new, simpler "ThreadInfo"
341 query or the older, more complex syntax for thread queries.
342 This is an auto-detect variable (set to true at each connect,
343 and set to false when the target fails to recognize it). */
344 bool use_threadinfo_query = false;
345 bool use_threadextra_query = false;
346
347 threadref echo_nextthread {};
348 threadref nextthread {};
349 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
350
351 /* The state of remote notification. */
352 struct remote_notif_state *notif_state = nullptr;
353
354 /* The branch trace configuration. */
355 struct btrace_config btrace_config {};
356
357 /* The argument to the last "vFile:setfs:" packet we sent, used
358 to avoid sending repeated unnecessary "vFile:setfs:" packets.
359 Initialized to -1 to indicate that no "vFile:setfs:" packet
360 has yet been sent. */
361 int fs_pid = -1;
362
363 /* A readahead cache for vFile:pread. Often, reading a binary
364 involves a sequence of small reads. E.g., when parsing an ELF
365 file. A readahead cache helps mostly the case of remote
366 debugging on a connection with higher latency, due to the
367 request/reply nature of the RSP. We only cache data for a single
368 file descriptor at a time. */
369 struct readahead_cache readahead_cache;
370
371 /* The list of already fetched and acknowledged stop events. This
372 queue is used for notification Stop, and other notifications
373 don't need queue for their events, because the notification
374 events of Stop can't be consumed immediately, so that events
375 should be queued first, and be consumed by remote_wait_{ns,as}
376 one per time. Other notifications can consume their events
377 immediately, so queue is not needed for them. */
378 std::vector<stop_reply_up> stop_reply_queue;
379
380 /* Asynchronous signal handle registered as event loop source for
381 when we have pending events ready to be passed to the core. */
382 struct async_event_handler *remote_async_inferior_event_token = nullptr;
383
384 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
385 ``forever'' still use the normal timeout mechanism. This is
386 currently used by the ASYNC code to guarentee that target reads
387 during the initial connect always time-out. Once getpkt has been
388 modified to return a timeout indication and, in turn
389 remote_wait()/wait_for_inferior() have gained a timeout parameter
390 this can go away. */
391 int wait_forever_enabled_p = 1;
392
393 private:
394 /* Mapping of remote protocol data for each gdbarch. Usually there
395 is only one entry here, though we may see more with stubs that
396 support multi-process. */
397 std::unordered_map<struct gdbarch *, remote_arch_state>
398 m_arch_states;
399 };
400
401 static const target_info remote_target_info = {
402 "remote",
403 N_("Remote serial target in gdb-specific protocol"),
404 remote_doc
405 };
406
407 class remote_target : public process_stratum_target
408 {
409 public:
410 remote_target () = default;
411 ~remote_target () override;
412
413 const target_info &info () const override
414 { return remote_target_info; }
415
416 const char *connection_string () override;
417
418 thread_control_capabilities get_thread_control_capabilities () override
419 { return tc_schedlock; }
420
421 /* Open a remote connection. */
422 static void open (const char *, int);
423
424 void close () override;
425
426 void detach (inferior *, int) override;
427 void disconnect (const char *, int) override;
428
429 void commit_resumed () override;
430 void resume (ptid_t, int, enum gdb_signal) override;
431 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
432 bool has_pending_events () override;
433
434 void fetch_registers (struct regcache *, int) override;
435 void store_registers (struct regcache *, int) override;
436 void prepare_to_store (struct regcache *) override;
437
438 void files_info () override;
439
440 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
441
442 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
443 enum remove_bp_reason) override;
444
445
446 bool stopped_by_sw_breakpoint () override;
447 bool supports_stopped_by_sw_breakpoint () override;
448
449 bool stopped_by_hw_breakpoint () override;
450
451 bool supports_stopped_by_hw_breakpoint () override;
452
453 bool stopped_by_watchpoint () override;
454
455 bool stopped_data_address (CORE_ADDR *) override;
456
457 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
458
459 int can_use_hw_breakpoint (enum bptype, int, int) override;
460
461 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
464
465 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
466
467 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
468 struct expression *) override;
469
470 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
471 struct expression *) override;
472
473 void kill () override;
474
475 void load (const char *, int) override;
476
477 void mourn_inferior () override;
478
479 void pass_signals (gdb::array_view<const unsigned char>) override;
480
481 int set_syscall_catchpoint (int, bool, int,
482 gdb::array_view<const int>) override;
483
484 void program_signals (gdb::array_view<const unsigned char>) override;
485
486 bool thread_alive (ptid_t ptid) override;
487
488 const char *thread_name (struct thread_info *) override;
489
490 void update_thread_list () override;
491
492 std::string pid_to_str (ptid_t) override;
493
494 const char *extra_thread_info (struct thread_info *) override;
495
496 ptid_t get_ada_task_ptid (long lwp, ULONGEST thread) override;
497
498 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
499 int handle_len,
500 inferior *inf) override;
501
502 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
503 override;
504
505 void stop (ptid_t) override;
506
507 void interrupt () override;
508
509 void pass_ctrlc () override;
510
511 enum target_xfer_status xfer_partial (enum target_object object,
512 const char *annex,
513 gdb_byte *readbuf,
514 const gdb_byte *writebuf,
515 ULONGEST offset, ULONGEST len,
516 ULONGEST *xfered_len) override;
517
518 ULONGEST get_memory_xfer_limit () override;
519
520 void rcmd (const char *command, struct ui_file *output) override;
521
522 char *pid_to_exec_file (int pid) override;
523
524 void log_command (const char *cmd) override
525 {
526 serial_log_command (this, cmd);
527 }
528
529 CORE_ADDR get_thread_local_address (ptid_t ptid,
530 CORE_ADDR load_module_addr,
531 CORE_ADDR offset) override;
532
533 bool can_execute_reverse () override;
534
535 std::vector<mem_region> memory_map () override;
536
537 void flash_erase (ULONGEST address, LONGEST length) override;
538
539 void flash_done () override;
540
541 const struct target_desc *read_description () override;
542
543 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
544 const gdb_byte *pattern, ULONGEST pattern_len,
545 CORE_ADDR *found_addrp) override;
546
547 bool can_async_p () override;
548
549 bool is_async_p () override;
550
551 void async (int) override;
552
553 int async_wait_fd () override;
554
555 void thread_events (int) override;
556
557 int can_do_single_step () override;
558
559 void terminal_inferior () override;
560
561 void terminal_ours () override;
562
563 bool supports_non_stop () override;
564
565 bool supports_multi_process () override;
566
567 bool supports_disable_randomization () override;
568
569 bool filesystem_is_local () override;
570
571
572 int fileio_open (struct inferior *inf, const char *filename,
573 int flags, int mode, int warn_if_slow,
574 int *target_errno) override;
575
576 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
577 ULONGEST offset, int *target_errno) override;
578
579 int fileio_pread (int fd, gdb_byte *read_buf, int len,
580 ULONGEST offset, int *target_errno) override;
581
582 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
583
584 int fileio_close (int fd, int *target_errno) override;
585
586 int fileio_unlink (struct inferior *inf,
587 const char *filename,
588 int *target_errno) override;
589
590 gdb::optional<std::string>
591 fileio_readlink (struct inferior *inf,
592 const char *filename,
593 int *target_errno) override;
594
595 bool supports_enable_disable_tracepoint () override;
596
597 bool supports_string_tracing () override;
598
599 bool supports_evaluation_of_breakpoint_conditions () override;
600
601 bool can_run_breakpoint_commands () override;
602
603 void trace_init () override;
604
605 void download_tracepoint (struct bp_location *location) override;
606
607 bool can_download_tracepoint () override;
608
609 void download_trace_state_variable (const trace_state_variable &tsv) override;
610
611 void enable_tracepoint (struct bp_location *location) override;
612
613 void disable_tracepoint (struct bp_location *location) override;
614
615 void trace_set_readonly_regions () override;
616
617 void trace_start () override;
618
619 int get_trace_status (struct trace_status *ts) override;
620
621 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
622 override;
623
624 void trace_stop () override;
625
626 int trace_find (enum trace_find_type type, int num,
627 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
628
629 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
630
631 int save_trace_data (const char *filename) override;
632
633 int upload_tracepoints (struct uploaded_tp **utpp) override;
634
635 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
636
637 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
638
639 int get_min_fast_tracepoint_insn_len () override;
640
641 void set_disconnected_tracing (int val) override;
642
643 void set_circular_trace_buffer (int val) override;
644
645 void set_trace_buffer_size (LONGEST val) override;
646
647 bool set_trace_notes (const char *user, const char *notes,
648 const char *stopnotes) override;
649
650 int core_of_thread (ptid_t ptid) override;
651
652 int verify_memory (const gdb_byte *data,
653 CORE_ADDR memaddr, ULONGEST size) override;
654
655
656 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
657
658 void set_permissions () override;
659
660 bool static_tracepoint_marker_at (CORE_ADDR,
661 struct static_tracepoint_marker *marker)
662 override;
663
664 std::vector<static_tracepoint_marker>
665 static_tracepoint_markers_by_strid (const char *id) override;
666
667 traceframe_info_up traceframe_info () override;
668
669 bool use_agent (bool use) override;
670 bool can_use_agent () override;
671
672 struct btrace_target_info *enable_btrace (ptid_t ptid,
673 const struct btrace_config *conf) override;
674
675 void disable_btrace (struct btrace_target_info *tinfo) override;
676
677 void teardown_btrace (struct btrace_target_info *tinfo) override;
678
679 enum btrace_error read_btrace (struct btrace_data *data,
680 struct btrace_target_info *btinfo,
681 enum btrace_read_type type) override;
682
683 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
684 bool augmented_libraries_svr4_read () override;
685 void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool) override;
686 void follow_exec (inferior *, ptid_t, const char *) override;
687 int insert_fork_catchpoint (int) override;
688 int remove_fork_catchpoint (int) override;
689 int insert_vfork_catchpoint (int) override;
690 int remove_vfork_catchpoint (int) override;
691 int insert_exec_catchpoint (int) override;
692 int remove_exec_catchpoint (int) override;
693 enum exec_direction_kind execution_direction () override;
694
695 bool supports_memory_tagging () override;
696
697 bool fetch_memtags (CORE_ADDR address, size_t len,
698 gdb::byte_vector &tags, int type) override;
699
700 bool store_memtags (CORE_ADDR address, size_t len,
701 const gdb::byte_vector &tags, int type) override;
702
703 public: /* Remote specific methods. */
704
705 void remote_download_command_source (int num, ULONGEST addr,
706 struct command_line *cmds);
707
708 void remote_file_put (const char *local_file, const char *remote_file,
709 int from_tty);
710 void remote_file_get (const char *remote_file, const char *local_file,
711 int from_tty);
712 void remote_file_delete (const char *remote_file, int from_tty);
713
714 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
715 ULONGEST offset, int *remote_errno);
716 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
717 ULONGEST offset, int *remote_errno);
718 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
719 ULONGEST offset, int *remote_errno);
720
721 int remote_hostio_send_command (int command_bytes, int which_packet,
722 int *remote_errno, const char **attachment,
723 int *attachment_len);
724 int remote_hostio_set_filesystem (struct inferior *inf,
725 int *remote_errno);
726 /* We should get rid of this and use fileio_open directly. */
727 int remote_hostio_open (struct inferior *inf, const char *filename,
728 int flags, int mode, int warn_if_slow,
729 int *remote_errno);
730 int remote_hostio_close (int fd, int *remote_errno);
731
732 int remote_hostio_unlink (inferior *inf, const char *filename,
733 int *remote_errno);
734
735 struct remote_state *get_remote_state ();
736
737 long get_remote_packet_size (void);
738 long get_memory_packet_size (struct memory_packet_config *config);
739
740 long get_memory_write_packet_size ();
741 long get_memory_read_packet_size ();
742
743 char *append_pending_thread_resumptions (char *p, char *endp,
744 ptid_t ptid);
745 static void open_1 (const char *name, int from_tty, int extended_p);
746 void start_remote (int from_tty, int extended_p);
747 void remote_detach_1 (struct inferior *inf, int from_tty);
748
749 char *append_resumption (char *p, char *endp,
750 ptid_t ptid, int step, gdb_signal siggnal);
751 int remote_resume_with_vcont (ptid_t ptid, int step,
752 gdb_signal siggnal);
753
754 thread_info *add_current_inferior_and_thread (const char *wait_status);
755
756 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
757 target_wait_flags options);
758 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
759 target_wait_flags options);
760
761 ptid_t process_stop_reply (struct stop_reply *stop_reply,
762 target_waitstatus *status);
763
764 ptid_t select_thread_for_ambiguous_stop_reply
765 (const struct target_waitstatus &status);
766
767 void remote_notice_new_inferior (ptid_t currthread, bool executing);
768
769 void print_one_stopped_thread (thread_info *thread);
770 void process_initial_stop_replies (int from_tty);
771
772 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
773
774 void btrace_sync_conf (const btrace_config *conf);
775
776 void remote_btrace_maybe_reopen ();
777
778 void remove_new_fork_children (threads_listing_context *context);
779 void kill_new_fork_children (int pid);
780 void discard_pending_stop_replies (struct inferior *inf);
781 int stop_reply_queue_length ();
782
783 void check_pending_events_prevent_wildcard_vcont
784 (bool *may_global_wildcard_vcont);
785
786 void discard_pending_stop_replies_in_queue ();
787 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
788 struct stop_reply *queued_stop_reply (ptid_t ptid);
789 int peek_stop_reply (ptid_t ptid);
790 void remote_parse_stop_reply (const char *buf, stop_reply *event);
791
792 void remote_stop_ns (ptid_t ptid);
793 void remote_interrupt_as ();
794 void remote_interrupt_ns ();
795
796 char *remote_get_noisy_reply ();
797 int remote_query_attached (int pid);
798 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
799 int try_open_exec);
800
801 ptid_t remote_current_thread (ptid_t oldpid);
802 ptid_t get_current_thread (const char *wait_status);
803
804 void set_thread (ptid_t ptid, int gen);
805 void set_general_thread (ptid_t ptid);
806 void set_continue_thread (ptid_t ptid);
807 void set_general_process ();
808
809 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
810
811 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
812 gdb_ext_thread_info *info);
813 int remote_get_threadinfo (threadref *threadid, int fieldset,
814 gdb_ext_thread_info *info);
815
816 int parse_threadlist_response (const char *pkt, int result_limit,
817 threadref *original_echo,
818 threadref *resultlist,
819 int *doneflag);
820 int remote_get_threadlist (int startflag, threadref *nextthread,
821 int result_limit, int *done, int *result_count,
822 threadref *threadlist);
823
824 int remote_threadlist_iterator (rmt_thread_action stepfunction,
825 void *context, int looplimit);
826
827 int remote_get_threads_with_ql (threads_listing_context *context);
828 int remote_get_threads_with_qxfer (threads_listing_context *context);
829 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
830
831 void extended_remote_restart ();
832
833 void get_offsets ();
834
835 void remote_check_symbols ();
836
837 void remote_supported_packet (const struct protocol_feature *feature,
838 enum packet_support support,
839 const char *argument);
840
841 void remote_query_supported ();
842
843 void remote_packet_size (const protocol_feature *feature,
844 packet_support support, const char *value);
845
846 void remote_serial_quit_handler ();
847
848 void remote_detach_pid (int pid);
849
850 void remote_vcont_probe ();
851
852 void remote_resume_with_hc (ptid_t ptid, int step,
853 gdb_signal siggnal);
854
855 void send_interrupt_sequence ();
856 void interrupt_query ();
857
858 void remote_notif_get_pending_events (notif_client *nc);
859
860 int fetch_register_using_p (struct regcache *regcache,
861 packet_reg *reg);
862 int send_g_packet ();
863 void process_g_packet (struct regcache *regcache);
864 void fetch_registers_using_g (struct regcache *regcache);
865 int store_register_using_P (const struct regcache *regcache,
866 packet_reg *reg);
867 void store_registers_using_G (const struct regcache *regcache);
868
869 void set_remote_traceframe ();
870
871 void check_binary_download (CORE_ADDR addr);
872
873 target_xfer_status remote_write_bytes_aux (const char *header,
874 CORE_ADDR memaddr,
875 const gdb_byte *myaddr,
876 ULONGEST len_units,
877 int unit_size,
878 ULONGEST *xfered_len_units,
879 char packet_format,
880 int use_length);
881
882 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
883 const gdb_byte *myaddr, ULONGEST len,
884 int unit_size, ULONGEST *xfered_len);
885
886 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
887 ULONGEST len_units,
888 int unit_size, ULONGEST *xfered_len_units);
889
890 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
891 ULONGEST memaddr,
892 ULONGEST len,
893 int unit_size,
894 ULONGEST *xfered_len);
895
896 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
897 gdb_byte *myaddr, ULONGEST len,
898 int unit_size,
899 ULONGEST *xfered_len);
900
901 packet_result remote_send_printf (const char *format, ...)
902 ATTRIBUTE_PRINTF (2, 3);
903
904 target_xfer_status remote_flash_write (ULONGEST address,
905 ULONGEST length, ULONGEST *xfered_len,
906 const gdb_byte *data);
907
908 int readchar (int timeout);
909
910 void remote_serial_write (const char *str, int len);
911
912 int putpkt (const char *buf);
913 int putpkt_binary (const char *buf, int cnt);
914
915 int putpkt (const gdb::char_vector &buf)
916 {
917 return putpkt (buf.data ());
918 }
919
920 void skip_frame ();
921 long read_frame (gdb::char_vector *buf_p);
922 void getpkt (gdb::char_vector *buf, int forever);
923 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
924 int expecting_notif, int *is_notif);
925 int getpkt_sane (gdb::char_vector *buf, int forever);
926 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
927 int *is_notif);
928 int remote_vkill (int pid);
929 void remote_kill_k ();
930
931 void extended_remote_disable_randomization (int val);
932 int extended_remote_run (const std::string &args);
933
934 void send_environment_packet (const char *action,
935 const char *packet,
936 const char *value);
937
938 void extended_remote_environment_support ();
939 void extended_remote_set_inferior_cwd ();
940
941 target_xfer_status remote_write_qxfer (const char *object_name,
942 const char *annex,
943 const gdb_byte *writebuf,
944 ULONGEST offset, LONGEST len,
945 ULONGEST *xfered_len,
946 struct packet_config *packet);
947
948 target_xfer_status remote_read_qxfer (const char *object_name,
949 const char *annex,
950 gdb_byte *readbuf, ULONGEST offset,
951 LONGEST len,
952 ULONGEST *xfered_len,
953 struct packet_config *packet);
954
955 void push_stop_reply (struct stop_reply *new_event);
956
957 bool vcont_r_supported ();
958
959 void packet_command (const char *args, int from_tty);
960
961 private: /* data fields */
962
963 /* The remote state. Don't reference this directly. Use the
964 get_remote_state method instead. */
965 remote_state m_remote_state;
966 };
967
968 static const target_info extended_remote_target_info = {
969 "extended-remote",
970 N_("Extended remote serial target in gdb-specific protocol"),
971 remote_doc
972 };
973
974 /* Set up the extended remote target by extending the standard remote
975 target and adding to it. */
976
977 class extended_remote_target final : public remote_target
978 {
979 public:
980 const target_info &info () const override
981 { return extended_remote_target_info; }
982
983 /* Open an extended-remote connection. */
984 static void open (const char *, int);
985
986 bool can_create_inferior () override { return true; }
987 void create_inferior (const char *, const std::string &,
988 char **, int) override;
989
990 void detach (inferior *, int) override;
991
992 bool can_attach () override { return true; }
993 void attach (const char *, int) override;
994
995 void post_attach (int) override;
996 bool supports_disable_randomization () override;
997 };
998
999 /* Per-program-space data key. */
1000 static const struct program_space_key<char, gdb::xfree_deleter<char>>
1001 remote_pspace_data;
1002
1003 /* The variable registered as the control variable used by the
1004 remote exec-file commands. While the remote exec-file setting is
1005 per-program-space, the set/show machinery uses this as the
1006 location of the remote exec-file value. */
1007 static std::string remote_exec_file_var;
1008
1009 /* The size to align memory write packets, when practical. The protocol
1010 does not guarantee any alignment, and gdb will generate short
1011 writes and unaligned writes, but even as a best-effort attempt this
1012 can improve bulk transfers. For instance, if a write is misaligned
1013 relative to the target's data bus, the stub may need to make an extra
1014 round trip fetching data from the target. This doesn't make a
1015 huge difference, but it's easy to do, so we try to be helpful.
1016
1017 The alignment chosen is arbitrary; usually data bus width is
1018 important here, not the possibly larger cache line size. */
1019 enum { REMOTE_ALIGN_WRITES = 16 };
1020
1021 /* Prototypes for local functions. */
1022
1023 static int hexnumlen (ULONGEST num);
1024
1025 static int stubhex (int ch);
1026
1027 static int hexnumstr (char *, ULONGEST);
1028
1029 static int hexnumnstr (char *, ULONGEST, int);
1030
1031 static CORE_ADDR remote_address_masked (CORE_ADDR);
1032
1033 static void print_packet (const char *);
1034
1035 static int stub_unpack_int (const char *buff, int fieldlength);
1036
1037 struct packet_config;
1038
1039 static void show_packet_config_cmd (struct packet_config *config);
1040
1041 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1042 int from_tty,
1043 struct cmd_list_element *c,
1044 const char *value);
1045
1046 static ptid_t read_ptid (const char *buf, const char **obuf);
1047
1048 static void remote_async_inferior_event_handler (gdb_client_data);
1049
1050 static bool remote_read_description_p (struct target_ops *target);
1051
1052 static void remote_console_output (const char *msg);
1053
1054 static void remote_btrace_reset (remote_state *rs);
1055
1056 static void remote_unpush_and_throw (remote_target *target);
1057
1058 /* For "remote". */
1059
1060 static struct cmd_list_element *remote_cmdlist;
1061
1062 /* For "set remote" and "show remote". */
1063
1064 static struct cmd_list_element *remote_set_cmdlist;
1065 static struct cmd_list_element *remote_show_cmdlist;
1066
1067 /* Controls whether GDB is willing to use range stepping. */
1068
1069 static bool use_range_stepping = true;
1070
1071 /* From the remote target's point of view, each thread is in one of these three
1072 states. */
1073 enum class resume_state
1074 {
1075 /* Not resumed - we haven't been asked to resume this thread. */
1076 NOT_RESUMED,
1077
1078 /* We have been asked to resume this thread, but haven't sent a vCont action
1079 for it yet. We'll need to consider it next time commit_resume is
1080 called. */
1081 RESUMED_PENDING_VCONT,
1082
1083 /* We have been asked to resume this thread, and we have sent a vCont action
1084 for it. */
1085 RESUMED,
1086 };
1087
1088 /* Information about a thread's pending vCont-resume. Used when a thread is in
1089 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1090 stores this information which is then picked up by
1091 remote_target::commit_resume to know which is the proper action for this
1092 thread to include in the vCont packet. */
1093 struct resumed_pending_vcont_info
1094 {
1095 /* True if the last resume call for this thread was a step request, false
1096 if a continue request. */
1097 bool step;
1098
1099 /* The signal specified in the last resume call for this thread. */
1100 gdb_signal sig;
1101 };
1102
1103 /* Private data that we'll store in (struct thread_info)->priv. */
1104 struct remote_thread_info : public private_thread_info
1105 {
1106 std::string extra;
1107 std::string name;
1108 int core = -1;
1109
1110 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1111 sequence of bytes. */
1112 gdb::byte_vector thread_handle;
1113
1114 /* Whether the target stopped for a breakpoint/watchpoint. */
1115 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1116
1117 /* This is set to the data address of the access causing the target
1118 to stop for a watchpoint. */
1119 CORE_ADDR watch_data_address = 0;
1120
1121 /* Get the thread's resume state. */
1122 enum resume_state get_resume_state () const
1123 {
1124 return m_resume_state;
1125 }
1126
1127 /* Put the thread in the NOT_RESUMED state. */
1128 void set_not_resumed ()
1129 {
1130 m_resume_state = resume_state::NOT_RESUMED;
1131 }
1132
1133 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1134 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1135 {
1136 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1137 m_resumed_pending_vcont_info.step = step;
1138 m_resumed_pending_vcont_info.sig = sig;
1139 }
1140
1141 /* Get the information this thread's pending vCont-resumption.
1142
1143 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1144 state. */
1145 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1146 {
1147 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1148
1149 return m_resumed_pending_vcont_info;
1150 }
1151
1152 /* Put the thread in the VCONT_RESUMED state. */
1153 void set_resumed ()
1154 {
1155 m_resume_state = resume_state::RESUMED;
1156 }
1157
1158 private:
1159 /* Resume state for this thread. This is used to implement vCont action
1160 coalescing (only when the target operates in non-stop mode).
1161
1162 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1163 which notes that this thread must be considered in the next commit_resume
1164 call.
1165
1166 remote_target::commit_resume sends a vCont packet with actions for the
1167 threads in the RESUMED_PENDING_VCONT state and moves them to the
1168 VCONT_RESUMED state.
1169
1170 When reporting a stop to the core for a thread, that thread is moved back
1171 to the NOT_RESUMED state. */
1172 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1173
1174 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1175 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1176 };
1177
1178 remote_state::remote_state ()
1179 : buf (400)
1180 {
1181 }
1182
1183 remote_state::~remote_state ()
1184 {
1185 xfree (this->last_pass_packet);
1186 xfree (this->last_program_signals_packet);
1187 xfree (this->finished_object);
1188 xfree (this->finished_annex);
1189 }
1190
1191 /* Utility: generate error from an incoming stub packet. */
1192 static void
1193 trace_error (char *buf)
1194 {
1195 if (*buf++ != 'E')
1196 return; /* not an error msg */
1197 switch (*buf)
1198 {
1199 case '1': /* malformed packet error */
1200 if (*++buf == '0') /* general case: */
1201 error (_("remote.c: error in outgoing packet."));
1202 else
1203 error (_("remote.c: error in outgoing packet at field #%ld."),
1204 strtol (buf, NULL, 16));
1205 default:
1206 error (_("Target returns error code '%s'."), buf);
1207 }
1208 }
1209
1210 /* Utility: wait for reply from stub, while accepting "O" packets. */
1211
1212 char *
1213 remote_target::remote_get_noisy_reply ()
1214 {
1215 struct remote_state *rs = get_remote_state ();
1216
1217 do /* Loop on reply from remote stub. */
1218 {
1219 char *buf;
1220
1221 QUIT; /* Allow user to bail out with ^C. */
1222 getpkt (&rs->buf, 0);
1223 buf = rs->buf.data ();
1224 if (buf[0] == 'E')
1225 trace_error (buf);
1226 else if (startswith (buf, "qRelocInsn:"))
1227 {
1228 ULONGEST ul;
1229 CORE_ADDR from, to, org_to;
1230 const char *p, *pp;
1231 int adjusted_size = 0;
1232 int relocated = 0;
1233
1234 p = buf + strlen ("qRelocInsn:");
1235 pp = unpack_varlen_hex (p, &ul);
1236 if (*pp != ';')
1237 error (_("invalid qRelocInsn packet: %s"), buf);
1238 from = ul;
1239
1240 p = pp + 1;
1241 unpack_varlen_hex (p, &ul);
1242 to = ul;
1243
1244 org_to = to;
1245
1246 try
1247 {
1248 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1249 relocated = 1;
1250 }
1251 catch (const gdb_exception &ex)
1252 {
1253 if (ex.error == MEMORY_ERROR)
1254 {
1255 /* Propagate memory errors silently back to the
1256 target. The stub may have limited the range of
1257 addresses we can write to, for example. */
1258 }
1259 else
1260 {
1261 /* Something unexpectedly bad happened. Be verbose
1262 so we can tell what, and propagate the error back
1263 to the stub, so it doesn't get stuck waiting for
1264 a response. */
1265 exception_fprintf (gdb_stderr, ex,
1266 _("warning: relocating instruction: "));
1267 }
1268 putpkt ("E01");
1269 }
1270
1271 if (relocated)
1272 {
1273 adjusted_size = to - org_to;
1274
1275 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1276 putpkt (buf);
1277 }
1278 }
1279 else if (buf[0] == 'O' && buf[1] != 'K')
1280 remote_console_output (buf + 1); /* 'O' message from stub */
1281 else
1282 return buf; /* Here's the actual reply. */
1283 }
1284 while (1);
1285 }
1286
1287 struct remote_arch_state *
1288 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1289 {
1290 remote_arch_state *rsa;
1291
1292 auto it = this->m_arch_states.find (gdbarch);
1293 if (it == this->m_arch_states.end ())
1294 {
1295 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1296 std::forward_as_tuple (gdbarch),
1297 std::forward_as_tuple (gdbarch));
1298 rsa = &p.first->second;
1299
1300 /* Make sure that the packet buffer is plenty big enough for
1301 this architecture. */
1302 if (this->buf.size () < rsa->remote_packet_size)
1303 this->buf.resize (2 * rsa->remote_packet_size);
1304 }
1305 else
1306 rsa = &it->second;
1307
1308 return rsa;
1309 }
1310
1311 /* Fetch the global remote target state. */
1312
1313 remote_state *
1314 remote_target::get_remote_state ()
1315 {
1316 /* Make sure that the remote architecture state has been
1317 initialized, because doing so might reallocate rs->buf. Any
1318 function which calls getpkt also needs to be mindful of changes
1319 to rs->buf, but this call limits the number of places which run
1320 into trouble. */
1321 m_remote_state.get_remote_arch_state (target_gdbarch ());
1322
1323 return &m_remote_state;
1324 }
1325
1326 /* Fetch the remote exec-file from the current program space. */
1327
1328 static const char *
1329 get_remote_exec_file (void)
1330 {
1331 char *remote_exec_file;
1332
1333 remote_exec_file = remote_pspace_data.get (current_program_space);
1334 if (remote_exec_file == NULL)
1335 return "";
1336
1337 return remote_exec_file;
1338 }
1339
1340 /* Set the remote exec file for PSPACE. */
1341
1342 static void
1343 set_pspace_remote_exec_file (struct program_space *pspace,
1344 const char *remote_exec_file)
1345 {
1346 char *old_file = remote_pspace_data.get (pspace);
1347
1348 xfree (old_file);
1349 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1350 }
1351
1352 /* The "set/show remote exec-file" set command hook. */
1353
1354 static void
1355 set_remote_exec_file (const char *ignored, int from_tty,
1356 struct cmd_list_element *c)
1357 {
1358 set_pspace_remote_exec_file (current_program_space,
1359 remote_exec_file_var.c_str ());
1360 }
1361
1362 /* The "set/show remote exec-file" show command hook. */
1363
1364 static void
1365 show_remote_exec_file (struct ui_file *file, int from_tty,
1366 struct cmd_list_element *cmd, const char *value)
1367 {
1368 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1369 }
1370
1371 static int
1372 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1373 {
1374 int regnum, num_remote_regs, offset;
1375 struct packet_reg **remote_regs;
1376
1377 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1378 {
1379 struct packet_reg *r = &regs[regnum];
1380
1381 if (register_size (gdbarch, regnum) == 0)
1382 /* Do not try to fetch zero-sized (placeholder) registers. */
1383 r->pnum = -1;
1384 else
1385 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1386
1387 r->regnum = regnum;
1388 }
1389
1390 /* Define the g/G packet format as the contents of each register
1391 with a remote protocol number, in order of ascending protocol
1392 number. */
1393
1394 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1395 for (num_remote_regs = 0, regnum = 0;
1396 regnum < gdbarch_num_regs (gdbarch);
1397 regnum++)
1398 if (regs[regnum].pnum != -1)
1399 remote_regs[num_remote_regs++] = &regs[regnum];
1400
1401 std::sort (remote_regs, remote_regs + num_remote_regs,
1402 [] (const packet_reg *a, const packet_reg *b)
1403 { return a->pnum < b->pnum; });
1404
1405 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1406 {
1407 remote_regs[regnum]->in_g_packet = 1;
1408 remote_regs[regnum]->offset = offset;
1409 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1410 }
1411
1412 return offset;
1413 }
1414
1415 /* Given the architecture described by GDBARCH, return the remote
1416 protocol register's number and the register's offset in the g/G
1417 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1418 If the target does not have a mapping for REGNUM, return false,
1419 otherwise, return true. */
1420
1421 int
1422 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1423 int *pnum, int *poffset)
1424 {
1425 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1426
1427 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1428
1429 map_regcache_remote_table (gdbarch, regs.data ());
1430
1431 *pnum = regs[regnum].pnum;
1432 *poffset = regs[regnum].offset;
1433
1434 return *pnum != -1;
1435 }
1436
1437 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1438 {
1439 /* Use the architecture to build a regnum<->pnum table, which will be
1440 1:1 unless a feature set specifies otherwise. */
1441 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1442
1443 /* Record the maximum possible size of the g packet - it may turn out
1444 to be smaller. */
1445 this->sizeof_g_packet
1446 = map_regcache_remote_table (gdbarch, this->regs.get ());
1447
1448 /* Default maximum number of characters in a packet body. Many
1449 remote stubs have a hardwired buffer size of 400 bytes
1450 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1451 as the maximum packet-size to ensure that the packet and an extra
1452 NUL character can always fit in the buffer. This stops GDB
1453 trashing stubs that try to squeeze an extra NUL into what is
1454 already a full buffer (As of 1999-12-04 that was most stubs). */
1455 this->remote_packet_size = 400 - 1;
1456
1457 /* This one is filled in when a ``g'' packet is received. */
1458 this->actual_register_packet_size = 0;
1459
1460 /* Should rsa->sizeof_g_packet needs more space than the
1461 default, adjust the size accordingly. Remember that each byte is
1462 encoded as two characters. 32 is the overhead for the packet
1463 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1464 (``$NN:G...#NN'') is a better guess, the below has been padded a
1465 little. */
1466 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1467 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1468 }
1469
1470 /* Get a pointer to the current remote target. If not connected to a
1471 remote target, return NULL. */
1472
1473 static remote_target *
1474 get_current_remote_target ()
1475 {
1476 target_ops *proc_target = current_inferior ()->process_target ();
1477 return dynamic_cast<remote_target *> (proc_target);
1478 }
1479
1480 /* Return the current allowed size of a remote packet. This is
1481 inferred from the current architecture, and should be used to
1482 limit the length of outgoing packets. */
1483 long
1484 remote_target::get_remote_packet_size ()
1485 {
1486 struct remote_state *rs = get_remote_state ();
1487 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1488
1489 if (rs->explicit_packet_size)
1490 return rs->explicit_packet_size;
1491
1492 return rsa->remote_packet_size;
1493 }
1494
1495 static struct packet_reg *
1496 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1497 long regnum)
1498 {
1499 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1500 return NULL;
1501 else
1502 {
1503 struct packet_reg *r = &rsa->regs[regnum];
1504
1505 gdb_assert (r->regnum == regnum);
1506 return r;
1507 }
1508 }
1509
1510 static struct packet_reg *
1511 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1512 LONGEST pnum)
1513 {
1514 int i;
1515
1516 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1517 {
1518 struct packet_reg *r = &rsa->regs[i];
1519
1520 if (r->pnum == pnum)
1521 return r;
1522 }
1523 return NULL;
1524 }
1525
1526 /* Allow the user to specify what sequence to send to the remote
1527 when he requests a program interruption: Although ^C is usually
1528 what remote systems expect (this is the default, here), it is
1529 sometimes preferable to send a break. On other systems such
1530 as the Linux kernel, a break followed by g, which is Magic SysRq g
1531 is required in order to interrupt the execution. */
1532 const char interrupt_sequence_control_c[] = "Ctrl-C";
1533 const char interrupt_sequence_break[] = "BREAK";
1534 const char interrupt_sequence_break_g[] = "BREAK-g";
1535 static const char *const interrupt_sequence_modes[] =
1536 {
1537 interrupt_sequence_control_c,
1538 interrupt_sequence_break,
1539 interrupt_sequence_break_g,
1540 NULL
1541 };
1542 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1543
1544 static void
1545 show_interrupt_sequence (struct ui_file *file, int from_tty,
1546 struct cmd_list_element *c,
1547 const char *value)
1548 {
1549 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1550 fprintf_filtered (file,
1551 _("Send the ASCII ETX character (Ctrl-c) "
1552 "to the remote target to interrupt the "
1553 "execution of the program.\n"));
1554 else if (interrupt_sequence_mode == interrupt_sequence_break)
1555 fprintf_filtered (file,
1556 _("send a break signal to the remote target "
1557 "to interrupt the execution of the program.\n"));
1558 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1559 fprintf_filtered (file,
1560 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1561 "the remote target to interrupt the execution "
1562 "of Linux kernel.\n"));
1563 else
1564 internal_error (__FILE__, __LINE__,
1565 _("Invalid value for interrupt_sequence_mode: %s."),
1566 interrupt_sequence_mode);
1567 }
1568
1569 /* This boolean variable specifies whether interrupt_sequence is sent
1570 to the remote target when gdb connects to it.
1571 This is mostly needed when you debug the Linux kernel: The Linux kernel
1572 expects BREAK g which is Magic SysRq g for connecting gdb. */
1573 static bool interrupt_on_connect = false;
1574
1575 /* This variable is used to implement the "set/show remotebreak" commands.
1576 Since these commands are now deprecated in favor of "set/show remote
1577 interrupt-sequence", it no longer has any effect on the code. */
1578 static bool remote_break;
1579
1580 static void
1581 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1582 {
1583 if (remote_break)
1584 interrupt_sequence_mode = interrupt_sequence_break;
1585 else
1586 interrupt_sequence_mode = interrupt_sequence_control_c;
1587 }
1588
1589 static void
1590 show_remotebreak (struct ui_file *file, int from_tty,
1591 struct cmd_list_element *c,
1592 const char *value)
1593 {
1594 }
1595
1596 /* This variable sets the number of bits in an address that are to be
1597 sent in a memory ("M" or "m") packet. Normally, after stripping
1598 leading zeros, the entire address would be sent. This variable
1599 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1600 initial implementation of remote.c restricted the address sent in
1601 memory packets to ``host::sizeof long'' bytes - (typically 32
1602 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1603 address was never sent. Since fixing this bug may cause a break in
1604 some remote targets this variable is principally provided to
1605 facilitate backward compatibility. */
1606
1607 static unsigned int remote_address_size;
1608
1609 \f
1610 /* User configurable variables for the number of characters in a
1611 memory read/write packet. MIN (rsa->remote_packet_size,
1612 rsa->sizeof_g_packet) is the default. Some targets need smaller
1613 values (fifo overruns, et.al.) and some users need larger values
1614 (speed up transfers). The variables ``preferred_*'' (the user
1615 request), ``current_*'' (what was actually set) and ``forced_*''
1616 (Positive - a soft limit, negative - a hard limit). */
1617
1618 struct memory_packet_config
1619 {
1620 const char *name;
1621 long size;
1622 int fixed_p;
1623 };
1624
1625 /* The default max memory-write-packet-size, when the setting is
1626 "fixed". The 16k is historical. (It came from older GDB's using
1627 alloca for buffers and the knowledge (folklore?) that some hosts
1628 don't cope very well with large alloca calls.) */
1629 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1630
1631 /* The minimum remote packet size for memory transfers. Ensures we
1632 can write at least one byte. */
1633 #define MIN_MEMORY_PACKET_SIZE 20
1634
1635 /* Get the memory packet size, assuming it is fixed. */
1636
1637 static long
1638 get_fixed_memory_packet_size (struct memory_packet_config *config)
1639 {
1640 gdb_assert (config->fixed_p);
1641
1642 if (config->size <= 0)
1643 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1644 else
1645 return config->size;
1646 }
1647
1648 /* Compute the current size of a read/write packet. Since this makes
1649 use of ``actual_register_packet_size'' the computation is dynamic. */
1650
1651 long
1652 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1653 {
1654 struct remote_state *rs = get_remote_state ();
1655 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1656
1657 long what_they_get;
1658 if (config->fixed_p)
1659 what_they_get = get_fixed_memory_packet_size (config);
1660 else
1661 {
1662 what_they_get = get_remote_packet_size ();
1663 /* Limit the packet to the size specified by the user. */
1664 if (config->size > 0
1665 && what_they_get > config->size)
1666 what_they_get = config->size;
1667
1668 /* Limit it to the size of the targets ``g'' response unless we have
1669 permission from the stub to use a larger packet size. */
1670 if (rs->explicit_packet_size == 0
1671 && rsa->actual_register_packet_size > 0
1672 && what_they_get > rsa->actual_register_packet_size)
1673 what_they_get = rsa->actual_register_packet_size;
1674 }
1675 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1676 what_they_get = MIN_MEMORY_PACKET_SIZE;
1677
1678 /* Make sure there is room in the global buffer for this packet
1679 (including its trailing NUL byte). */
1680 if (rs->buf.size () < what_they_get + 1)
1681 rs->buf.resize (2 * what_they_get);
1682
1683 return what_they_get;
1684 }
1685
1686 /* Update the size of a read/write packet. If they user wants
1687 something really big then do a sanity check. */
1688
1689 static void
1690 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1691 {
1692 int fixed_p = config->fixed_p;
1693 long size = config->size;
1694
1695 if (args == NULL)
1696 error (_("Argument required (integer, `fixed' or `limited')."));
1697 else if (strcmp (args, "hard") == 0
1698 || strcmp (args, "fixed") == 0)
1699 fixed_p = 1;
1700 else if (strcmp (args, "soft") == 0
1701 || strcmp (args, "limit") == 0)
1702 fixed_p = 0;
1703 else
1704 {
1705 char *end;
1706
1707 size = strtoul (args, &end, 0);
1708 if (args == end)
1709 error (_("Invalid %s (bad syntax)."), config->name);
1710
1711 /* Instead of explicitly capping the size of a packet to or
1712 disallowing it, the user is allowed to set the size to
1713 something arbitrarily large. */
1714 }
1715
1716 /* Extra checks? */
1717 if (fixed_p && !config->fixed_p)
1718 {
1719 /* So that the query shows the correct value. */
1720 long query_size = (size <= 0
1721 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1722 : size);
1723
1724 if (! query (_("The target may not be able to correctly handle a %s\n"
1725 "of %ld bytes. Change the packet size? "),
1726 config->name, query_size))
1727 error (_("Packet size not changed."));
1728 }
1729 /* Update the config. */
1730 config->fixed_p = fixed_p;
1731 config->size = size;
1732 }
1733
1734 static void
1735 show_memory_packet_size (struct memory_packet_config *config)
1736 {
1737 if (config->size == 0)
1738 printf_filtered (_("The %s is 0 (default). "), config->name);
1739 else
1740 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1741 if (config->fixed_p)
1742 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1743 get_fixed_memory_packet_size (config));
1744 else
1745 {
1746 remote_target *remote = get_current_remote_target ();
1747
1748 if (remote != NULL)
1749 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1750 remote->get_memory_packet_size (config));
1751 else
1752 puts_filtered ("The actual limit will be further reduced "
1753 "dependent on the target.\n");
1754 }
1755 }
1756
1757 /* FIXME: needs to be per-remote-target. */
1758 static struct memory_packet_config memory_write_packet_config =
1759 {
1760 "memory-write-packet-size",
1761 };
1762
1763 static void
1764 set_memory_write_packet_size (const char *args, int from_tty)
1765 {
1766 set_memory_packet_size (args, &memory_write_packet_config);
1767 }
1768
1769 static void
1770 show_memory_write_packet_size (const char *args, int from_tty)
1771 {
1772 show_memory_packet_size (&memory_write_packet_config);
1773 }
1774
1775 /* Show the number of hardware watchpoints that can be used. */
1776
1777 static void
1778 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1779 struct cmd_list_element *c,
1780 const char *value)
1781 {
1782 fprintf_filtered (file, _("The maximum number of target hardware "
1783 "watchpoints is %s.\n"), value);
1784 }
1785
1786 /* Show the length limit (in bytes) for hardware watchpoints. */
1787
1788 static void
1789 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1790 struct cmd_list_element *c,
1791 const char *value)
1792 {
1793 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1794 "hardware watchpoint is %s.\n"), value);
1795 }
1796
1797 /* Show the number of hardware breakpoints that can be used. */
1798
1799 static void
1800 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1801 struct cmd_list_element *c,
1802 const char *value)
1803 {
1804 fprintf_filtered (file, _("The maximum number of target hardware "
1805 "breakpoints is %s.\n"), value);
1806 }
1807
1808 /* Controls the maximum number of characters to display in the debug output
1809 for each remote packet. The remaining characters are omitted. */
1810
1811 static int remote_packet_max_chars = 512;
1812
1813 /* Show the maximum number of characters to display for each remote packet
1814 when remote debugging is enabled. */
1815
1816 static void
1817 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1818 struct cmd_list_element *c,
1819 const char *value)
1820 {
1821 fprintf_filtered (file, _("Number of remote packet characters to "
1822 "display is %s.\n"), value);
1823 }
1824
1825 long
1826 remote_target::get_memory_write_packet_size ()
1827 {
1828 return get_memory_packet_size (&memory_write_packet_config);
1829 }
1830
1831 /* FIXME: needs to be per-remote-target. */
1832 static struct memory_packet_config memory_read_packet_config =
1833 {
1834 "memory-read-packet-size",
1835 };
1836
1837 static void
1838 set_memory_read_packet_size (const char *args, int from_tty)
1839 {
1840 set_memory_packet_size (args, &memory_read_packet_config);
1841 }
1842
1843 static void
1844 show_memory_read_packet_size (const char *args, int from_tty)
1845 {
1846 show_memory_packet_size (&memory_read_packet_config);
1847 }
1848
1849 long
1850 remote_target::get_memory_read_packet_size ()
1851 {
1852 long size = get_memory_packet_size (&memory_read_packet_config);
1853
1854 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1855 extra buffer size argument before the memory read size can be
1856 increased beyond this. */
1857 if (size > get_remote_packet_size ())
1858 size = get_remote_packet_size ();
1859 return size;
1860 }
1861
1862 \f
1863
1864 struct packet_config
1865 {
1866 const char *name;
1867 const char *title;
1868
1869 /* If auto, GDB auto-detects support for this packet or feature,
1870 either through qSupported, or by trying the packet and looking
1871 at the response. If true, GDB assumes the target supports this
1872 packet. If false, the packet is disabled. Configs that don't
1873 have an associated command always have this set to auto. */
1874 enum auto_boolean detect;
1875
1876 /* The "show remote foo-packet" command created for this packet. */
1877 cmd_list_element *show_cmd;
1878
1879 /* Does the target support this packet? */
1880 enum packet_support support;
1881 };
1882
1883 static enum packet_support packet_config_support (struct packet_config *config);
1884 static enum packet_support packet_support (int packet);
1885
1886 static void
1887 show_packet_config_cmd (struct packet_config *config)
1888 {
1889 const char *support = "internal-error";
1890
1891 switch (packet_config_support (config))
1892 {
1893 case PACKET_ENABLE:
1894 support = "enabled";
1895 break;
1896 case PACKET_DISABLE:
1897 support = "disabled";
1898 break;
1899 case PACKET_SUPPORT_UNKNOWN:
1900 support = "unknown";
1901 break;
1902 }
1903 switch (config->detect)
1904 {
1905 case AUTO_BOOLEAN_AUTO:
1906 printf_filtered (_("Support for the `%s' packet "
1907 "is auto-detected, currently %s.\n"),
1908 config->name, support);
1909 break;
1910 case AUTO_BOOLEAN_TRUE:
1911 case AUTO_BOOLEAN_FALSE:
1912 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1913 config->name, support);
1914 break;
1915 }
1916 }
1917
1918 static void
1919 add_packet_config_cmd (struct packet_config *config, const char *name,
1920 const char *title, int legacy)
1921 {
1922 config->name = name;
1923 config->title = title;
1924 gdb::unique_xmalloc_ptr<char> set_doc
1925 = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1926 name, title);
1927 gdb::unique_xmalloc_ptr<char> show_doc
1928 = xstrprintf ("Show current use of remote protocol `%s' (%s) packet.",
1929 name, title);
1930 /* set/show TITLE-packet {auto,on,off} */
1931 gdb::unique_xmalloc_ptr<char> cmd_name = xstrprintf ("%s-packet", title);
1932 set_show_commands cmds
1933 = add_setshow_auto_boolean_cmd (cmd_name.release (), class_obscure,
1934 &config->detect, set_doc.get (),
1935 show_doc.get (), NULL, /* help_doc */
1936 NULL,
1937 show_remote_protocol_packet_cmd,
1938 &remote_set_cmdlist, &remote_show_cmdlist);
1939 config->show_cmd = cmds.show;
1940
1941 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1942 if (legacy)
1943 {
1944 /* It's not clear who should take ownership of this string, so, for
1945 now, make it static, and give copies to each of the add_alias_cmd
1946 calls below. */
1947 static gdb::unique_xmalloc_ptr<char> legacy_name
1948 = xstrprintf ("%s-packet", name);
1949 add_alias_cmd (legacy_name.get (), cmds.set, class_obscure, 0,
1950 &remote_set_cmdlist);
1951 add_alias_cmd (legacy_name.get (), cmds.show, class_obscure, 0,
1952 &remote_show_cmdlist);
1953 }
1954 }
1955
1956 static enum packet_result
1957 packet_check_result (const char *buf)
1958 {
1959 if (buf[0] != '\0')
1960 {
1961 /* The stub recognized the packet request. Check that the
1962 operation succeeded. */
1963 if (buf[0] == 'E'
1964 && isxdigit (buf[1]) && isxdigit (buf[2])
1965 && buf[3] == '\0')
1966 /* "Enn" - definitely an error. */
1967 return PACKET_ERROR;
1968
1969 /* Always treat "E." as an error. This will be used for
1970 more verbose error messages, such as E.memtypes. */
1971 if (buf[0] == 'E' && buf[1] == '.')
1972 return PACKET_ERROR;
1973
1974 /* The packet may or may not be OK. Just assume it is. */
1975 return PACKET_OK;
1976 }
1977 else
1978 /* The stub does not support the packet. */
1979 return PACKET_UNKNOWN;
1980 }
1981
1982 static enum packet_result
1983 packet_check_result (const gdb::char_vector &buf)
1984 {
1985 return packet_check_result (buf.data ());
1986 }
1987
1988 static enum packet_result
1989 packet_ok (const char *buf, struct packet_config *config)
1990 {
1991 enum packet_result result;
1992
1993 if (config->detect != AUTO_BOOLEAN_TRUE
1994 && config->support == PACKET_DISABLE)
1995 internal_error (__FILE__, __LINE__,
1996 _("packet_ok: attempt to use a disabled packet"));
1997
1998 result = packet_check_result (buf);
1999 switch (result)
2000 {
2001 case PACKET_OK:
2002 case PACKET_ERROR:
2003 /* The stub recognized the packet request. */
2004 if (config->support == PACKET_SUPPORT_UNKNOWN)
2005 {
2006 remote_debug_printf ("Packet %s (%s) is supported",
2007 config->name, config->title);
2008 config->support = PACKET_ENABLE;
2009 }
2010 break;
2011 case PACKET_UNKNOWN:
2012 /* The stub does not support the packet. */
2013 if (config->detect == AUTO_BOOLEAN_AUTO
2014 && config->support == PACKET_ENABLE)
2015 {
2016 /* If the stub previously indicated that the packet was
2017 supported then there is a protocol error. */
2018 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2019 config->name, config->title);
2020 }
2021 else if (config->detect == AUTO_BOOLEAN_TRUE)
2022 {
2023 /* The user set it wrong. */
2024 error (_("Enabled packet %s (%s) not recognized by stub"),
2025 config->name, config->title);
2026 }
2027
2028 remote_debug_printf ("Packet %s (%s) is NOT supported",
2029 config->name, config->title);
2030 config->support = PACKET_DISABLE;
2031 break;
2032 }
2033
2034 return result;
2035 }
2036
2037 static enum packet_result
2038 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2039 {
2040 return packet_ok (buf.data (), config);
2041 }
2042
2043 enum {
2044 PACKET_vCont = 0,
2045 PACKET_X,
2046 PACKET_qSymbol,
2047 PACKET_P,
2048 PACKET_p,
2049 PACKET_Z0,
2050 PACKET_Z1,
2051 PACKET_Z2,
2052 PACKET_Z3,
2053 PACKET_Z4,
2054 PACKET_vFile_setfs,
2055 PACKET_vFile_open,
2056 PACKET_vFile_pread,
2057 PACKET_vFile_pwrite,
2058 PACKET_vFile_close,
2059 PACKET_vFile_unlink,
2060 PACKET_vFile_readlink,
2061 PACKET_vFile_fstat,
2062 PACKET_qXfer_auxv,
2063 PACKET_qXfer_features,
2064 PACKET_qXfer_exec_file,
2065 PACKET_qXfer_libraries,
2066 PACKET_qXfer_libraries_svr4,
2067 PACKET_qXfer_memory_map,
2068 PACKET_qXfer_osdata,
2069 PACKET_qXfer_threads,
2070 PACKET_qXfer_statictrace_read,
2071 PACKET_qXfer_traceframe_info,
2072 PACKET_qXfer_uib,
2073 PACKET_qGetTIBAddr,
2074 PACKET_qGetTLSAddr,
2075 PACKET_qSupported,
2076 PACKET_qTStatus,
2077 PACKET_QPassSignals,
2078 PACKET_QCatchSyscalls,
2079 PACKET_QProgramSignals,
2080 PACKET_QSetWorkingDir,
2081 PACKET_QStartupWithShell,
2082 PACKET_QEnvironmentHexEncoded,
2083 PACKET_QEnvironmentReset,
2084 PACKET_QEnvironmentUnset,
2085 PACKET_qCRC,
2086 PACKET_qSearch_memory,
2087 PACKET_vAttach,
2088 PACKET_vRun,
2089 PACKET_QStartNoAckMode,
2090 PACKET_vKill,
2091 PACKET_qXfer_siginfo_read,
2092 PACKET_qXfer_siginfo_write,
2093 PACKET_qAttached,
2094
2095 /* Support for conditional tracepoints. */
2096 PACKET_ConditionalTracepoints,
2097
2098 /* Support for target-side breakpoint conditions. */
2099 PACKET_ConditionalBreakpoints,
2100
2101 /* Support for target-side breakpoint commands. */
2102 PACKET_BreakpointCommands,
2103
2104 /* Support for fast tracepoints. */
2105 PACKET_FastTracepoints,
2106
2107 /* Support for static tracepoints. */
2108 PACKET_StaticTracepoints,
2109
2110 /* Support for installing tracepoints while a trace experiment is
2111 running. */
2112 PACKET_InstallInTrace,
2113
2114 PACKET_bc,
2115 PACKET_bs,
2116 PACKET_TracepointSource,
2117 PACKET_QAllow,
2118 PACKET_qXfer_fdpic,
2119 PACKET_QDisableRandomization,
2120 PACKET_QAgent,
2121 PACKET_QTBuffer_size,
2122 PACKET_Qbtrace_off,
2123 PACKET_Qbtrace_bts,
2124 PACKET_Qbtrace_pt,
2125 PACKET_qXfer_btrace,
2126
2127 /* Support for the QNonStop packet. */
2128 PACKET_QNonStop,
2129
2130 /* Support for the QThreadEvents packet. */
2131 PACKET_QThreadEvents,
2132
2133 /* Support for multi-process extensions. */
2134 PACKET_multiprocess_feature,
2135
2136 /* Support for enabling and disabling tracepoints while a trace
2137 experiment is running. */
2138 PACKET_EnableDisableTracepoints_feature,
2139
2140 /* Support for collecting strings using the tracenz bytecode. */
2141 PACKET_tracenz_feature,
2142
2143 /* Support for continuing to run a trace experiment while GDB is
2144 disconnected. */
2145 PACKET_DisconnectedTracing_feature,
2146
2147 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2148 PACKET_augmented_libraries_svr4_read_feature,
2149
2150 /* Support for the qXfer:btrace-conf:read packet. */
2151 PACKET_qXfer_btrace_conf,
2152
2153 /* Support for the Qbtrace-conf:bts:size packet. */
2154 PACKET_Qbtrace_conf_bts_size,
2155
2156 /* Support for swbreak+ feature. */
2157 PACKET_swbreak_feature,
2158
2159 /* Support for hwbreak+ feature. */
2160 PACKET_hwbreak_feature,
2161
2162 /* Support for fork events. */
2163 PACKET_fork_event_feature,
2164
2165 /* Support for vfork events. */
2166 PACKET_vfork_event_feature,
2167
2168 /* Support for the Qbtrace-conf:pt:size packet. */
2169 PACKET_Qbtrace_conf_pt_size,
2170
2171 /* Support for exec events. */
2172 PACKET_exec_event_feature,
2173
2174 /* Support for query supported vCont actions. */
2175 PACKET_vContSupported,
2176
2177 /* Support remote CTRL-C. */
2178 PACKET_vCtrlC,
2179
2180 /* Support TARGET_WAITKIND_NO_RESUMED. */
2181 PACKET_no_resumed,
2182
2183 /* Support for memory tagging, allocation tag fetch/store
2184 packets and the tag violation stop replies. */
2185 PACKET_memory_tagging_feature,
2186
2187 PACKET_MAX
2188 };
2189
2190 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2191 assuming all remote targets are the same server (thus all support
2192 the same packets). */
2193 static struct packet_config remote_protocol_packets[PACKET_MAX];
2194
2195 /* Returns the packet's corresponding "set remote foo-packet" command
2196 state. See struct packet_config for more details. */
2197
2198 static enum auto_boolean
2199 packet_set_cmd_state (int packet)
2200 {
2201 return remote_protocol_packets[packet].detect;
2202 }
2203
2204 /* Returns whether a given packet or feature is supported. This takes
2205 into account the state of the corresponding "set remote foo-packet"
2206 command, which may be used to bypass auto-detection. */
2207
2208 static enum packet_support
2209 packet_config_support (struct packet_config *config)
2210 {
2211 switch (config->detect)
2212 {
2213 case AUTO_BOOLEAN_TRUE:
2214 return PACKET_ENABLE;
2215 case AUTO_BOOLEAN_FALSE:
2216 return PACKET_DISABLE;
2217 case AUTO_BOOLEAN_AUTO:
2218 return config->support;
2219 default:
2220 gdb_assert_not_reached ("bad switch");
2221 }
2222 }
2223
2224 /* Same as packet_config_support, but takes the packet's enum value as
2225 argument. */
2226
2227 static enum packet_support
2228 packet_support (int packet)
2229 {
2230 struct packet_config *config = &remote_protocol_packets[packet];
2231
2232 return packet_config_support (config);
2233 }
2234
2235 static void
2236 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2237 struct cmd_list_element *c,
2238 const char *value)
2239 {
2240 struct packet_config *packet;
2241 gdb_assert (c->var.has_value ());
2242
2243 for (packet = remote_protocol_packets;
2244 packet < &remote_protocol_packets[PACKET_MAX];
2245 packet++)
2246 {
2247 if (c == packet->show_cmd)
2248 {
2249 show_packet_config_cmd (packet);
2250 return;
2251 }
2252 }
2253 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2254 c->name);
2255 }
2256
2257 /* Should we try one of the 'Z' requests? */
2258
2259 enum Z_packet_type
2260 {
2261 Z_PACKET_SOFTWARE_BP,
2262 Z_PACKET_HARDWARE_BP,
2263 Z_PACKET_WRITE_WP,
2264 Z_PACKET_READ_WP,
2265 Z_PACKET_ACCESS_WP,
2266 NR_Z_PACKET_TYPES
2267 };
2268
2269 /* For compatibility with older distributions. Provide a ``set remote
2270 Z-packet ...'' command that updates all the Z packet types. */
2271
2272 static enum auto_boolean remote_Z_packet_detect;
2273
2274 static void
2275 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2276 struct cmd_list_element *c)
2277 {
2278 int i;
2279
2280 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2281 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2282 }
2283
2284 static void
2285 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2286 struct cmd_list_element *c,
2287 const char *value)
2288 {
2289 int i;
2290
2291 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2292 {
2293 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2294 }
2295 }
2296
2297 /* Returns true if the multi-process extensions are in effect. */
2298
2299 static int
2300 remote_multi_process_p (struct remote_state *rs)
2301 {
2302 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2303 }
2304
2305 /* Returns true if fork events are supported. */
2306
2307 static int
2308 remote_fork_event_p (struct remote_state *rs)
2309 {
2310 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2311 }
2312
2313 /* Returns true if vfork events are supported. */
2314
2315 static int
2316 remote_vfork_event_p (struct remote_state *rs)
2317 {
2318 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2319 }
2320
2321 /* Returns true if exec events are supported. */
2322
2323 static int
2324 remote_exec_event_p (struct remote_state *rs)
2325 {
2326 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2327 }
2328
2329 /* Returns true if memory tagging is supported, false otherwise. */
2330
2331 static bool
2332 remote_memory_tagging_p ()
2333 {
2334 return packet_support (PACKET_memory_tagging_feature) == PACKET_ENABLE;
2335 }
2336
2337 /* Insert fork catchpoint target routine. If fork events are enabled
2338 then return success, nothing more to do. */
2339
2340 int
2341 remote_target::insert_fork_catchpoint (int pid)
2342 {
2343 struct remote_state *rs = get_remote_state ();
2344
2345 return !remote_fork_event_p (rs);
2346 }
2347
2348 /* Remove fork catchpoint target routine. Nothing to do, just
2349 return success. */
2350
2351 int
2352 remote_target::remove_fork_catchpoint (int pid)
2353 {
2354 return 0;
2355 }
2356
2357 /* Insert vfork catchpoint target routine. If vfork events are enabled
2358 then return success, nothing more to do. */
2359
2360 int
2361 remote_target::insert_vfork_catchpoint (int pid)
2362 {
2363 struct remote_state *rs = get_remote_state ();
2364
2365 return !remote_vfork_event_p (rs);
2366 }
2367
2368 /* Remove vfork catchpoint target routine. Nothing to do, just
2369 return success. */
2370
2371 int
2372 remote_target::remove_vfork_catchpoint (int pid)
2373 {
2374 return 0;
2375 }
2376
2377 /* Insert exec catchpoint target routine. If exec events are
2378 enabled, just return success. */
2379
2380 int
2381 remote_target::insert_exec_catchpoint (int pid)
2382 {
2383 struct remote_state *rs = get_remote_state ();
2384
2385 return !remote_exec_event_p (rs);
2386 }
2387
2388 /* Remove exec catchpoint target routine. Nothing to do, just
2389 return success. */
2390
2391 int
2392 remote_target::remove_exec_catchpoint (int pid)
2393 {
2394 return 0;
2395 }
2396
2397 \f
2398
2399 /* Take advantage of the fact that the TID field is not used, to tag
2400 special ptids with it set to != 0. */
2401 static const ptid_t magic_null_ptid (42000, -1, 1);
2402 static const ptid_t not_sent_ptid (42000, -2, 1);
2403 static const ptid_t any_thread_ptid (42000, 0, 1);
2404
2405 /* Find out if the stub attached to PID (and hence GDB should offer to
2406 detach instead of killing it when bailing out). */
2407
2408 int
2409 remote_target::remote_query_attached (int pid)
2410 {
2411 struct remote_state *rs = get_remote_state ();
2412 size_t size = get_remote_packet_size ();
2413
2414 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2415 return 0;
2416
2417 if (remote_multi_process_p (rs))
2418 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2419 else
2420 xsnprintf (rs->buf.data (), size, "qAttached");
2421
2422 putpkt (rs->buf);
2423 getpkt (&rs->buf, 0);
2424
2425 switch (packet_ok (rs->buf,
2426 &remote_protocol_packets[PACKET_qAttached]))
2427 {
2428 case PACKET_OK:
2429 if (strcmp (rs->buf.data (), "1") == 0)
2430 return 1;
2431 break;
2432 case PACKET_ERROR:
2433 warning (_("Remote failure reply: %s"), rs->buf.data ());
2434 break;
2435 case PACKET_UNKNOWN:
2436 break;
2437 }
2438
2439 return 0;
2440 }
2441
2442 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2443 has been invented by GDB, instead of reported by the target. Since
2444 we can be connected to a remote system before before knowing about
2445 any inferior, mark the target with execution when we find the first
2446 inferior. If ATTACHED is 1, then we had just attached to this
2447 inferior. If it is 0, then we just created this inferior. If it
2448 is -1, then try querying the remote stub to find out if it had
2449 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2450 attempt to open this inferior's executable as the main executable
2451 if no main executable is open already. */
2452
2453 inferior *
2454 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2455 int try_open_exec)
2456 {
2457 struct inferior *inf;
2458
2459 /* Check whether this process we're learning about is to be
2460 considered attached, or if is to be considered to have been
2461 spawned by the stub. */
2462 if (attached == -1)
2463 attached = remote_query_attached (pid);
2464
2465 if (gdbarch_has_global_solist (target_gdbarch ()))
2466 {
2467 /* If the target shares code across all inferiors, then every
2468 attach adds a new inferior. */
2469 inf = add_inferior (pid);
2470
2471 /* ... and every inferior is bound to the same program space.
2472 However, each inferior may still have its own address
2473 space. */
2474 inf->aspace = maybe_new_address_space ();
2475 inf->pspace = current_program_space;
2476 }
2477 else
2478 {
2479 /* In the traditional debugging scenario, there's a 1-1 match
2480 between program/address spaces. We simply bind the inferior
2481 to the program space's address space. */
2482 inf = current_inferior ();
2483
2484 /* However, if the current inferior is already bound to a
2485 process, find some other empty inferior. */
2486 if (inf->pid != 0)
2487 {
2488 inf = nullptr;
2489 for (inferior *it : all_inferiors ())
2490 if (it->pid == 0)
2491 {
2492 inf = it;
2493 break;
2494 }
2495 }
2496 if (inf == nullptr)
2497 {
2498 /* Since all inferiors were already bound to a process, add
2499 a new inferior. */
2500 inf = add_inferior_with_spaces ();
2501 }
2502 switch_to_inferior_no_thread (inf);
2503 inf->push_target (this);
2504 inferior_appeared (inf, pid);
2505 }
2506
2507 inf->attach_flag = attached;
2508 inf->fake_pid_p = fake_pid_p;
2509
2510 /* If no main executable is currently open then attempt to
2511 open the file that was executed to create this inferior. */
2512 if (try_open_exec && get_exec_file (0) == NULL)
2513 exec_file_locate_attach (pid, 0, 1);
2514
2515 /* Check for exec file mismatch, and let the user solve it. */
2516 validate_exec_file (1);
2517
2518 return inf;
2519 }
2520
2521 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2522 static remote_thread_info *get_remote_thread_info (remote_target *target,
2523 ptid_t ptid);
2524
2525 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2526 according to RUNNING. */
2527
2528 thread_info *
2529 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2530 {
2531 struct remote_state *rs = get_remote_state ();
2532 struct thread_info *thread;
2533
2534 /* GDB historically didn't pull threads in the initial connection
2535 setup. If the remote target doesn't even have a concept of
2536 threads (e.g., a bare-metal target), even if internally we
2537 consider that a single-threaded target, mentioning a new thread
2538 might be confusing to the user. Be silent then, preserving the
2539 age old behavior. */
2540 if (rs->starting_up)
2541 thread = add_thread_silent (this, ptid);
2542 else
2543 thread = add_thread (this, ptid);
2544
2545 /* We start by assuming threads are resumed. That state then gets updated
2546 when we process a matching stop reply. */
2547 get_remote_thread_info (thread)->set_resumed ();
2548
2549 set_executing (this, ptid, executing);
2550 set_running (this, ptid, running);
2551
2552 return thread;
2553 }
2554
2555 /* Come here when we learn about a thread id from the remote target.
2556 It may be the first time we hear about such thread, so take the
2557 opportunity to add it to GDB's thread list. In case this is the
2558 first time we're noticing its corresponding inferior, add it to
2559 GDB's inferior list as well. EXECUTING indicates whether the
2560 thread is (internally) executing or stopped. */
2561
2562 void
2563 remote_target::remote_notice_new_inferior (ptid_t currthread, bool executing)
2564 {
2565 /* In non-stop mode, we assume new found threads are (externally)
2566 running until proven otherwise with a stop reply. In all-stop,
2567 we can only get here if all threads are stopped. */
2568 bool running = target_is_non_stop_p ();
2569
2570 /* If this is a new thread, add it to GDB's thread list.
2571 If we leave it up to WFI to do this, bad things will happen. */
2572
2573 thread_info *tp = find_thread_ptid (this, currthread);
2574 if (tp != NULL && tp->state == THREAD_EXITED)
2575 {
2576 /* We're seeing an event on a thread id we knew had exited.
2577 This has to be a new thread reusing the old id. Add it. */
2578 remote_add_thread (currthread, running, executing);
2579 return;
2580 }
2581
2582 if (!in_thread_list (this, currthread))
2583 {
2584 struct inferior *inf = NULL;
2585 int pid = currthread.pid ();
2586
2587 if (inferior_ptid.is_pid ()
2588 && pid == inferior_ptid.pid ())
2589 {
2590 /* inferior_ptid has no thread member yet. This can happen
2591 with the vAttach -> remote_wait,"TAAthread:" path if the
2592 stub doesn't support qC. This is the first stop reported
2593 after an attach, so this is the main thread. Update the
2594 ptid in the thread list. */
2595 if (in_thread_list (this, ptid_t (pid)))
2596 thread_change_ptid (this, inferior_ptid, currthread);
2597 else
2598 {
2599 thread_info *thr
2600 = remote_add_thread (currthread, running, executing);
2601 switch_to_thread (thr);
2602 }
2603 return;
2604 }
2605
2606 if (magic_null_ptid == inferior_ptid)
2607 {
2608 /* inferior_ptid is not set yet. This can happen with the
2609 vRun -> remote_wait,"TAAthread:" path if the stub
2610 doesn't support qC. This is the first stop reported
2611 after an attach, so this is the main thread. Update the
2612 ptid in the thread list. */
2613 thread_change_ptid (this, inferior_ptid, currthread);
2614 return;
2615 }
2616
2617 /* When connecting to a target remote, or to a target
2618 extended-remote which already was debugging an inferior, we
2619 may not know about it yet. Add it before adding its child
2620 thread, so notifications are emitted in a sensible order. */
2621 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2622 {
2623 struct remote_state *rs = get_remote_state ();
2624 bool fake_pid_p = !remote_multi_process_p (rs);
2625
2626 inf = remote_add_inferior (fake_pid_p,
2627 currthread.pid (), -1, 1);
2628 }
2629
2630 /* This is really a new thread. Add it. */
2631 thread_info *new_thr
2632 = remote_add_thread (currthread, running, executing);
2633
2634 /* If we found a new inferior, let the common code do whatever
2635 it needs to with it (e.g., read shared libraries, insert
2636 breakpoints), unless we're just setting up an all-stop
2637 connection. */
2638 if (inf != NULL)
2639 {
2640 struct remote_state *rs = get_remote_state ();
2641
2642 if (!rs->starting_up)
2643 notice_new_inferior (new_thr, executing, 0);
2644 }
2645 }
2646 }
2647
2648 /* Return THREAD's private thread data, creating it if necessary. */
2649
2650 static remote_thread_info *
2651 get_remote_thread_info (thread_info *thread)
2652 {
2653 gdb_assert (thread != NULL);
2654
2655 if (thread->priv == NULL)
2656 thread->priv.reset (new remote_thread_info);
2657
2658 return static_cast<remote_thread_info *> (thread->priv.get ());
2659 }
2660
2661 /* Return PTID's private thread data, creating it if necessary. */
2662
2663 static remote_thread_info *
2664 get_remote_thread_info (remote_target *target, ptid_t ptid)
2665 {
2666 thread_info *thr = find_thread_ptid (target, ptid);
2667 return get_remote_thread_info (thr);
2668 }
2669
2670 /* Call this function as a result of
2671 1) A halt indication (T packet) containing a thread id
2672 2) A direct query of currthread
2673 3) Successful execution of set thread */
2674
2675 static void
2676 record_currthread (struct remote_state *rs, ptid_t currthread)
2677 {
2678 rs->general_thread = currthread;
2679 }
2680
2681 /* If 'QPassSignals' is supported, tell the remote stub what signals
2682 it can simply pass through to the inferior without reporting. */
2683
2684 void
2685 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2686 {
2687 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2688 {
2689 char *pass_packet, *p;
2690 int count = 0;
2691 struct remote_state *rs = get_remote_state ();
2692
2693 gdb_assert (pass_signals.size () < 256);
2694 for (size_t i = 0; i < pass_signals.size (); i++)
2695 {
2696 if (pass_signals[i])
2697 count++;
2698 }
2699 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2700 strcpy (pass_packet, "QPassSignals:");
2701 p = pass_packet + strlen (pass_packet);
2702 for (size_t i = 0; i < pass_signals.size (); i++)
2703 {
2704 if (pass_signals[i])
2705 {
2706 if (i >= 16)
2707 *p++ = tohex (i >> 4);
2708 *p++ = tohex (i & 15);
2709 if (count)
2710 *p++ = ';';
2711 else
2712 break;
2713 count--;
2714 }
2715 }
2716 *p = 0;
2717 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2718 {
2719 putpkt (pass_packet);
2720 getpkt (&rs->buf, 0);
2721 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2722 xfree (rs->last_pass_packet);
2723 rs->last_pass_packet = pass_packet;
2724 }
2725 else
2726 xfree (pass_packet);
2727 }
2728 }
2729
2730 /* If 'QCatchSyscalls' is supported, tell the remote stub
2731 to report syscalls to GDB. */
2732
2733 int
2734 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2735 gdb::array_view<const int> syscall_counts)
2736 {
2737 const char *catch_packet;
2738 enum packet_result result;
2739 int n_sysno = 0;
2740
2741 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2742 {
2743 /* Not supported. */
2744 return 1;
2745 }
2746
2747 if (needed && any_count == 0)
2748 {
2749 /* Count how many syscalls are to be caught. */
2750 for (size_t i = 0; i < syscall_counts.size (); i++)
2751 {
2752 if (syscall_counts[i] != 0)
2753 n_sysno++;
2754 }
2755 }
2756
2757 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2758 pid, needed, any_count, n_sysno);
2759
2760 std::string built_packet;
2761 if (needed)
2762 {
2763 /* Prepare a packet with the sysno list, assuming max 8+1
2764 characters for a sysno. If the resulting packet size is too
2765 big, fallback on the non-selective packet. */
2766 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2767 built_packet.reserve (maxpktsz);
2768 built_packet = "QCatchSyscalls:1";
2769 if (any_count == 0)
2770 {
2771 /* Add in each syscall to be caught. */
2772 for (size_t i = 0; i < syscall_counts.size (); i++)
2773 {
2774 if (syscall_counts[i] != 0)
2775 string_appendf (built_packet, ";%zx", i);
2776 }
2777 }
2778 if (built_packet.size () > get_remote_packet_size ())
2779 {
2780 /* catch_packet too big. Fallback to less efficient
2781 non selective mode, with GDB doing the filtering. */
2782 catch_packet = "QCatchSyscalls:1";
2783 }
2784 else
2785 catch_packet = built_packet.c_str ();
2786 }
2787 else
2788 catch_packet = "QCatchSyscalls:0";
2789
2790 struct remote_state *rs = get_remote_state ();
2791
2792 putpkt (catch_packet);
2793 getpkt (&rs->buf, 0);
2794 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2795 if (result == PACKET_OK)
2796 return 0;
2797 else
2798 return -1;
2799 }
2800
2801 /* If 'QProgramSignals' is supported, tell the remote stub what
2802 signals it should pass through to the inferior when detaching. */
2803
2804 void
2805 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2806 {
2807 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2808 {
2809 char *packet, *p;
2810 int count = 0;
2811 struct remote_state *rs = get_remote_state ();
2812
2813 gdb_assert (signals.size () < 256);
2814 for (size_t i = 0; i < signals.size (); i++)
2815 {
2816 if (signals[i])
2817 count++;
2818 }
2819 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2820 strcpy (packet, "QProgramSignals:");
2821 p = packet + strlen (packet);
2822 for (size_t i = 0; i < signals.size (); i++)
2823 {
2824 if (signal_pass_state (i))
2825 {
2826 if (i >= 16)
2827 *p++ = tohex (i >> 4);
2828 *p++ = tohex (i & 15);
2829 if (count)
2830 *p++ = ';';
2831 else
2832 break;
2833 count--;
2834 }
2835 }
2836 *p = 0;
2837 if (!rs->last_program_signals_packet
2838 || strcmp (rs->last_program_signals_packet, packet) != 0)
2839 {
2840 putpkt (packet);
2841 getpkt (&rs->buf, 0);
2842 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2843 xfree (rs->last_program_signals_packet);
2844 rs->last_program_signals_packet = packet;
2845 }
2846 else
2847 xfree (packet);
2848 }
2849 }
2850
2851 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2852 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2853 thread. If GEN is set, set the general thread, if not, then set
2854 the step/continue thread. */
2855 void
2856 remote_target::set_thread (ptid_t ptid, int gen)
2857 {
2858 struct remote_state *rs = get_remote_state ();
2859 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2860 char *buf = rs->buf.data ();
2861 char *endbuf = buf + get_remote_packet_size ();
2862
2863 if (state == ptid)
2864 return;
2865
2866 *buf++ = 'H';
2867 *buf++ = gen ? 'g' : 'c';
2868 if (ptid == magic_null_ptid)
2869 xsnprintf (buf, endbuf - buf, "0");
2870 else if (ptid == any_thread_ptid)
2871 xsnprintf (buf, endbuf - buf, "0");
2872 else if (ptid == minus_one_ptid)
2873 xsnprintf (buf, endbuf - buf, "-1");
2874 else
2875 write_ptid (buf, endbuf, ptid);
2876 putpkt (rs->buf);
2877 getpkt (&rs->buf, 0);
2878 if (gen)
2879 rs->general_thread = ptid;
2880 else
2881 rs->continue_thread = ptid;
2882 }
2883
2884 void
2885 remote_target::set_general_thread (ptid_t ptid)
2886 {
2887 set_thread (ptid, 1);
2888 }
2889
2890 void
2891 remote_target::set_continue_thread (ptid_t ptid)
2892 {
2893 set_thread (ptid, 0);
2894 }
2895
2896 /* Change the remote current process. Which thread within the process
2897 ends up selected isn't important, as long as it is the same process
2898 as what INFERIOR_PTID points to.
2899
2900 This comes from that fact that there is no explicit notion of
2901 "selected process" in the protocol. The selected process for
2902 general operations is the process the selected general thread
2903 belongs to. */
2904
2905 void
2906 remote_target::set_general_process ()
2907 {
2908 struct remote_state *rs = get_remote_state ();
2909
2910 /* If the remote can't handle multiple processes, don't bother. */
2911 if (!remote_multi_process_p (rs))
2912 return;
2913
2914 /* We only need to change the remote current thread if it's pointing
2915 at some other process. */
2916 if (rs->general_thread.pid () != inferior_ptid.pid ())
2917 set_general_thread (inferior_ptid);
2918 }
2919
2920 \f
2921 /* Return nonzero if this is the main thread that we made up ourselves
2922 to model non-threaded targets as single-threaded. */
2923
2924 static int
2925 remote_thread_always_alive (ptid_t ptid)
2926 {
2927 if (ptid == magic_null_ptid)
2928 /* The main thread is always alive. */
2929 return 1;
2930
2931 if (ptid.pid () != 0 && ptid.lwp () == 0)
2932 /* The main thread is always alive. This can happen after a
2933 vAttach, if the remote side doesn't support
2934 multi-threading. */
2935 return 1;
2936
2937 return 0;
2938 }
2939
2940 /* Return nonzero if the thread PTID is still alive on the remote
2941 system. */
2942
2943 bool
2944 remote_target::thread_alive (ptid_t ptid)
2945 {
2946 struct remote_state *rs = get_remote_state ();
2947 char *p, *endp;
2948
2949 /* Check if this is a thread that we made up ourselves to model
2950 non-threaded targets as single-threaded. */
2951 if (remote_thread_always_alive (ptid))
2952 return 1;
2953
2954 p = rs->buf.data ();
2955 endp = p + get_remote_packet_size ();
2956
2957 *p++ = 'T';
2958 write_ptid (p, endp, ptid);
2959
2960 putpkt (rs->buf);
2961 getpkt (&rs->buf, 0);
2962 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2963 }
2964
2965 /* Return a pointer to a thread name if we know it and NULL otherwise.
2966 The thread_info object owns the memory for the name. */
2967
2968 const char *
2969 remote_target::thread_name (struct thread_info *info)
2970 {
2971 if (info->priv != NULL)
2972 {
2973 const std::string &name = get_remote_thread_info (info)->name;
2974 return !name.empty () ? name.c_str () : NULL;
2975 }
2976
2977 return NULL;
2978 }
2979
2980 /* About these extended threadlist and threadinfo packets. They are
2981 variable length packets but, the fields within them are often fixed
2982 length. They are redundant enough to send over UDP as is the
2983 remote protocol in general. There is a matching unit test module
2984 in libstub. */
2985
2986 /* WARNING: This threadref data structure comes from the remote O.S.,
2987 libstub protocol encoding, and remote.c. It is not particularly
2988 changable. */
2989
2990 /* Right now, the internal structure is int. We want it to be bigger.
2991 Plan to fix this. */
2992
2993 typedef int gdb_threadref; /* Internal GDB thread reference. */
2994
2995 /* gdb_ext_thread_info is an internal GDB data structure which is
2996 equivalent to the reply of the remote threadinfo packet. */
2997
2998 struct gdb_ext_thread_info
2999 {
3000 threadref threadid; /* External form of thread reference. */
3001 int active; /* Has state interesting to GDB?
3002 regs, stack. */
3003 char display[256]; /* Brief state display, name,
3004 blocked/suspended. */
3005 char shortname[32]; /* To be used to name threads. */
3006 char more_display[256]; /* Long info, statistics, queue depth,
3007 whatever. */
3008 };
3009
3010 /* The volume of remote transfers can be limited by submitting
3011 a mask containing bits specifying the desired information.
3012 Use a union of these values as the 'selection' parameter to
3013 get_thread_info. FIXME: Make these TAG names more thread specific. */
3014
3015 #define TAG_THREADID 1
3016 #define TAG_EXISTS 2
3017 #define TAG_DISPLAY 4
3018 #define TAG_THREADNAME 8
3019 #define TAG_MOREDISPLAY 16
3020
3021 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3022
3023 static const char *unpack_nibble (const char *buf, int *val);
3024
3025 static const char *unpack_byte (const char *buf, int *value);
3026
3027 static char *pack_int (char *buf, int value);
3028
3029 static const char *unpack_int (const char *buf, int *value);
3030
3031 static const char *unpack_string (const char *src, char *dest, int length);
3032
3033 static char *pack_threadid (char *pkt, threadref *id);
3034
3035 static const char *unpack_threadid (const char *inbuf, threadref *id);
3036
3037 void int_to_threadref (threadref *id, int value);
3038
3039 static int threadref_to_int (threadref *ref);
3040
3041 static void copy_threadref (threadref *dest, threadref *src);
3042
3043 static int threadmatch (threadref *dest, threadref *src);
3044
3045 static char *pack_threadinfo_request (char *pkt, int mode,
3046 threadref *id);
3047
3048 static char *pack_threadlist_request (char *pkt, int startflag,
3049 int threadcount,
3050 threadref *nextthread);
3051
3052 static int remote_newthread_step (threadref *ref, void *context);
3053
3054
3055 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3056 buffer we're allowed to write to. Returns
3057 BUF+CHARACTERS_WRITTEN. */
3058
3059 char *
3060 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3061 {
3062 int pid, tid;
3063 struct remote_state *rs = get_remote_state ();
3064
3065 if (remote_multi_process_p (rs))
3066 {
3067 pid = ptid.pid ();
3068 if (pid < 0)
3069 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3070 else
3071 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3072 }
3073 tid = ptid.lwp ();
3074 if (tid < 0)
3075 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3076 else
3077 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3078
3079 return buf;
3080 }
3081
3082 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3083 last parsed char. Returns null_ptid if no thread id is found, and
3084 throws an error if the thread id has an invalid format. */
3085
3086 static ptid_t
3087 read_ptid (const char *buf, const char **obuf)
3088 {
3089 const char *p = buf;
3090 const char *pp;
3091 ULONGEST pid = 0, tid = 0;
3092
3093 if (*p == 'p')
3094 {
3095 /* Multi-process ptid. */
3096 pp = unpack_varlen_hex (p + 1, &pid);
3097 if (*pp != '.')
3098 error (_("invalid remote ptid: %s"), p);
3099
3100 p = pp;
3101 pp = unpack_varlen_hex (p + 1, &tid);
3102 if (obuf)
3103 *obuf = pp;
3104 return ptid_t (pid, tid);
3105 }
3106
3107 /* No multi-process. Just a tid. */
3108 pp = unpack_varlen_hex (p, &tid);
3109
3110 /* Return null_ptid when no thread id is found. */
3111 if (p == pp)
3112 {
3113 if (obuf)
3114 *obuf = pp;
3115 return null_ptid;
3116 }
3117
3118 /* Since the stub is not sending a process id, then default to
3119 what's in inferior_ptid, unless it's null at this point. If so,
3120 then since there's no way to know the pid of the reported
3121 threads, use the magic number. */
3122 if (inferior_ptid == null_ptid)
3123 pid = magic_null_ptid.pid ();
3124 else
3125 pid = inferior_ptid.pid ();
3126
3127 if (obuf)
3128 *obuf = pp;
3129 return ptid_t (pid, tid);
3130 }
3131
3132 static int
3133 stubhex (int ch)
3134 {
3135 if (ch >= 'a' && ch <= 'f')
3136 return ch - 'a' + 10;
3137 if (ch >= '0' && ch <= '9')
3138 return ch - '0';
3139 if (ch >= 'A' && ch <= 'F')
3140 return ch - 'A' + 10;
3141 return -1;
3142 }
3143
3144 static int
3145 stub_unpack_int (const char *buff, int fieldlength)
3146 {
3147 int nibble;
3148 int retval = 0;
3149
3150 while (fieldlength)
3151 {
3152 nibble = stubhex (*buff++);
3153 retval |= nibble;
3154 fieldlength--;
3155 if (fieldlength)
3156 retval = retval << 4;
3157 }
3158 return retval;
3159 }
3160
3161 static const char *
3162 unpack_nibble (const char *buf, int *val)
3163 {
3164 *val = fromhex (*buf++);
3165 return buf;
3166 }
3167
3168 static const char *
3169 unpack_byte (const char *buf, int *value)
3170 {
3171 *value = stub_unpack_int (buf, 2);
3172 return buf + 2;
3173 }
3174
3175 static char *
3176 pack_int (char *buf, int value)
3177 {
3178 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3179 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3180 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3181 buf = pack_hex_byte (buf, (value & 0xff));
3182 return buf;
3183 }
3184
3185 static const char *
3186 unpack_int (const char *buf, int *value)
3187 {
3188 *value = stub_unpack_int (buf, 8);
3189 return buf + 8;
3190 }
3191
3192 #if 0 /* Currently unused, uncomment when needed. */
3193 static char *pack_string (char *pkt, char *string);
3194
3195 static char *
3196 pack_string (char *pkt, char *string)
3197 {
3198 char ch;
3199 int len;
3200
3201 len = strlen (string);
3202 if (len > 200)
3203 len = 200; /* Bigger than most GDB packets, junk??? */
3204 pkt = pack_hex_byte (pkt, len);
3205 while (len-- > 0)
3206 {
3207 ch = *string++;
3208 if ((ch == '\0') || (ch == '#'))
3209 ch = '*'; /* Protect encapsulation. */
3210 *pkt++ = ch;
3211 }
3212 return pkt;
3213 }
3214 #endif /* 0 (unused) */
3215
3216 static const char *
3217 unpack_string (const char *src, char *dest, int length)
3218 {
3219 while (length--)
3220 *dest++ = *src++;
3221 *dest = '\0';
3222 return src;
3223 }
3224
3225 static char *
3226 pack_threadid (char *pkt, threadref *id)
3227 {
3228 char *limit;
3229 unsigned char *altid;
3230
3231 altid = (unsigned char *) id;
3232 limit = pkt + BUF_THREAD_ID_SIZE;
3233 while (pkt < limit)
3234 pkt = pack_hex_byte (pkt, *altid++);
3235 return pkt;
3236 }
3237
3238
3239 static const char *
3240 unpack_threadid (const char *inbuf, threadref *id)
3241 {
3242 char *altref;
3243 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3244 int x, y;
3245
3246 altref = (char *) id;
3247
3248 while (inbuf < limit)
3249 {
3250 x = stubhex (*inbuf++);
3251 y = stubhex (*inbuf++);
3252 *altref++ = (x << 4) | y;
3253 }
3254 return inbuf;
3255 }
3256
3257 /* Externally, threadrefs are 64 bits but internally, they are still
3258 ints. This is due to a mismatch of specifications. We would like
3259 to use 64bit thread references internally. This is an adapter
3260 function. */
3261
3262 void
3263 int_to_threadref (threadref *id, int value)
3264 {
3265 unsigned char *scan;
3266
3267 scan = (unsigned char *) id;
3268 {
3269 int i = 4;
3270 while (i--)
3271 *scan++ = 0;
3272 }
3273 *scan++ = (value >> 24) & 0xff;
3274 *scan++ = (value >> 16) & 0xff;
3275 *scan++ = (value >> 8) & 0xff;
3276 *scan++ = (value & 0xff);
3277 }
3278
3279 static int
3280 threadref_to_int (threadref *ref)
3281 {
3282 int i, value = 0;
3283 unsigned char *scan;
3284
3285 scan = *ref;
3286 scan += 4;
3287 i = 4;
3288 while (i-- > 0)
3289 value = (value << 8) | ((*scan++) & 0xff);
3290 return value;
3291 }
3292
3293 static void
3294 copy_threadref (threadref *dest, threadref *src)
3295 {
3296 int i;
3297 unsigned char *csrc, *cdest;
3298
3299 csrc = (unsigned char *) src;
3300 cdest = (unsigned char *) dest;
3301 i = 8;
3302 while (i--)
3303 *cdest++ = *csrc++;
3304 }
3305
3306 static int
3307 threadmatch (threadref *dest, threadref *src)
3308 {
3309 /* Things are broken right now, so just assume we got a match. */
3310 #if 0
3311 unsigned char *srcp, *destp;
3312 int i, result;
3313 srcp = (char *) src;
3314 destp = (char *) dest;
3315
3316 result = 1;
3317 while (i-- > 0)
3318 result &= (*srcp++ == *destp++) ? 1 : 0;
3319 return result;
3320 #endif
3321 return 1;
3322 }
3323
3324 /*
3325 threadid:1, # always request threadid
3326 context_exists:2,
3327 display:4,
3328 unique_name:8,
3329 more_display:16
3330 */
3331
3332 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3333
3334 static char *
3335 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3336 {
3337 *pkt++ = 'q'; /* Info Query */
3338 *pkt++ = 'P'; /* process or thread info */
3339 pkt = pack_int (pkt, mode); /* mode */
3340 pkt = pack_threadid (pkt, id); /* threadid */
3341 *pkt = '\0'; /* terminate */
3342 return pkt;
3343 }
3344
3345 /* These values tag the fields in a thread info response packet. */
3346 /* Tagging the fields allows us to request specific fields and to
3347 add more fields as time goes by. */
3348
3349 #define TAG_THREADID 1 /* Echo the thread identifier. */
3350 #define TAG_EXISTS 2 /* Is this process defined enough to
3351 fetch registers and its stack? */
3352 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3353 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3354 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3355 the process. */
3356
3357 int
3358 remote_target::remote_unpack_thread_info_response (const char *pkt,
3359 threadref *expectedref,
3360 gdb_ext_thread_info *info)
3361 {
3362 struct remote_state *rs = get_remote_state ();
3363 int mask, length;
3364 int tag;
3365 threadref ref;
3366 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3367 int retval = 1;
3368
3369 /* info->threadid = 0; FIXME: implement zero_threadref. */
3370 info->active = 0;
3371 info->display[0] = '\0';
3372 info->shortname[0] = '\0';
3373 info->more_display[0] = '\0';
3374
3375 /* Assume the characters indicating the packet type have been
3376 stripped. */
3377 pkt = unpack_int (pkt, &mask); /* arg mask */
3378 pkt = unpack_threadid (pkt, &ref);
3379
3380 if (mask == 0)
3381 warning (_("Incomplete response to threadinfo request."));
3382 if (!threadmatch (&ref, expectedref))
3383 { /* This is an answer to a different request. */
3384 warning (_("ERROR RMT Thread info mismatch."));
3385 return 0;
3386 }
3387 copy_threadref (&info->threadid, &ref);
3388
3389 /* Loop on tagged fields , try to bail if something goes wrong. */
3390
3391 /* Packets are terminated with nulls. */
3392 while ((pkt < limit) && mask && *pkt)
3393 {
3394 pkt = unpack_int (pkt, &tag); /* tag */
3395 pkt = unpack_byte (pkt, &length); /* length */
3396 if (!(tag & mask)) /* Tags out of synch with mask. */
3397 {
3398 warning (_("ERROR RMT: threadinfo tag mismatch."));
3399 retval = 0;
3400 break;
3401 }
3402 if (tag == TAG_THREADID)
3403 {
3404 if (length != 16)
3405 {
3406 warning (_("ERROR RMT: length of threadid is not 16."));
3407 retval = 0;
3408 break;
3409 }
3410 pkt = unpack_threadid (pkt, &ref);
3411 mask = mask & ~TAG_THREADID;
3412 continue;
3413 }
3414 if (tag == TAG_EXISTS)
3415 {
3416 info->active = stub_unpack_int (pkt, length);
3417 pkt += length;
3418 mask = mask & ~(TAG_EXISTS);
3419 if (length > 8)
3420 {
3421 warning (_("ERROR RMT: 'exists' length too long."));
3422 retval = 0;
3423 break;
3424 }
3425 continue;
3426 }
3427 if (tag == TAG_THREADNAME)
3428 {
3429 pkt = unpack_string (pkt, &info->shortname[0], length);
3430 mask = mask & ~TAG_THREADNAME;
3431 continue;
3432 }
3433 if (tag == TAG_DISPLAY)
3434 {
3435 pkt = unpack_string (pkt, &info->display[0], length);
3436 mask = mask & ~TAG_DISPLAY;
3437 continue;
3438 }
3439 if (tag == TAG_MOREDISPLAY)
3440 {
3441 pkt = unpack_string (pkt, &info->more_display[0], length);
3442 mask = mask & ~TAG_MOREDISPLAY;
3443 continue;
3444 }
3445 warning (_("ERROR RMT: unknown thread info tag."));
3446 break; /* Not a tag we know about. */
3447 }
3448 return retval;
3449 }
3450
3451 int
3452 remote_target::remote_get_threadinfo (threadref *threadid,
3453 int fieldset,
3454 gdb_ext_thread_info *info)
3455 {
3456 struct remote_state *rs = get_remote_state ();
3457 int result;
3458
3459 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3460 putpkt (rs->buf);
3461 getpkt (&rs->buf, 0);
3462
3463 if (rs->buf[0] == '\0')
3464 return 0;
3465
3466 result = remote_unpack_thread_info_response (&rs->buf[2],
3467 threadid, info);
3468 return result;
3469 }
3470
3471 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3472
3473 static char *
3474 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3475 threadref *nextthread)
3476 {
3477 *pkt++ = 'q'; /* info query packet */
3478 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3479 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3480 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3481 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3482 *pkt = '\0';
3483 return pkt;
3484 }
3485
3486 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3487
3488 int
3489 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3490 threadref *original_echo,
3491 threadref *resultlist,
3492 int *doneflag)
3493 {
3494 struct remote_state *rs = get_remote_state ();
3495 int count, resultcount, done;
3496
3497 resultcount = 0;
3498 /* Assume the 'q' and 'M chars have been stripped. */
3499 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3500 /* done parse past here */
3501 pkt = unpack_byte (pkt, &count); /* count field */
3502 pkt = unpack_nibble (pkt, &done);
3503 /* The first threadid is the argument threadid. */
3504 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3505 while ((count-- > 0) && (pkt < limit))
3506 {
3507 pkt = unpack_threadid (pkt, resultlist++);
3508 if (resultcount++ >= result_limit)
3509 break;
3510 }
3511 if (doneflag)
3512 *doneflag = done;
3513 return resultcount;
3514 }
3515
3516 /* Fetch the next batch of threads from the remote. Returns -1 if the
3517 qL packet is not supported, 0 on error and 1 on success. */
3518
3519 int
3520 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3521 int result_limit, int *done, int *result_count,
3522 threadref *threadlist)
3523 {
3524 struct remote_state *rs = get_remote_state ();
3525 int result = 1;
3526
3527 /* Truncate result limit to be smaller than the packet size. */
3528 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3529 >= get_remote_packet_size ())
3530 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3531
3532 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3533 nextthread);
3534 putpkt (rs->buf);
3535 getpkt (&rs->buf, 0);
3536 if (rs->buf[0] == '\0')
3537 {
3538 /* Packet not supported. */
3539 return -1;
3540 }
3541
3542 *result_count =
3543 parse_threadlist_response (&rs->buf[2], result_limit,
3544 &rs->echo_nextthread, threadlist, done);
3545
3546 if (!threadmatch (&rs->echo_nextthread, nextthread))
3547 {
3548 /* FIXME: This is a good reason to drop the packet. */
3549 /* Possibly, there is a duplicate response. */
3550 /* Possibilities :
3551 retransmit immediatly - race conditions
3552 retransmit after timeout - yes
3553 exit
3554 wait for packet, then exit
3555 */
3556 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3557 return 0; /* I choose simply exiting. */
3558 }
3559 if (*result_count <= 0)
3560 {
3561 if (*done != 1)
3562 {
3563 warning (_("RMT ERROR : failed to get remote thread list."));
3564 result = 0;
3565 }
3566 return result; /* break; */
3567 }
3568 if (*result_count > result_limit)
3569 {
3570 *result_count = 0;
3571 warning (_("RMT ERROR: threadlist response longer than requested."));
3572 return 0;
3573 }
3574 return result;
3575 }
3576
3577 /* Fetch the list of remote threads, with the qL packet, and call
3578 STEPFUNCTION for each thread found. Stops iterating and returns 1
3579 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3580 STEPFUNCTION returns false. If the packet is not supported,
3581 returns -1. */
3582
3583 int
3584 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3585 void *context, int looplimit)
3586 {
3587 struct remote_state *rs = get_remote_state ();
3588 int done, i, result_count;
3589 int startflag = 1;
3590 int result = 1;
3591 int loopcount = 0;
3592
3593 done = 0;
3594 while (!done)
3595 {
3596 if (loopcount++ > looplimit)
3597 {
3598 result = 0;
3599 warning (_("Remote fetch threadlist -infinite loop-."));
3600 break;
3601 }
3602 result = remote_get_threadlist (startflag, &rs->nextthread,
3603 MAXTHREADLISTRESULTS,
3604 &done, &result_count,
3605 rs->resultthreadlist);
3606 if (result <= 0)
3607 break;
3608 /* Clear for later iterations. */
3609 startflag = 0;
3610 /* Setup to resume next batch of thread references, set nextthread. */
3611 if (result_count >= 1)
3612 copy_threadref (&rs->nextthread,
3613 &rs->resultthreadlist[result_count - 1]);
3614 i = 0;
3615 while (result_count--)
3616 {
3617 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3618 {
3619 result = 0;
3620 break;
3621 }
3622 }
3623 }
3624 return result;
3625 }
3626
3627 /* A thread found on the remote target. */
3628
3629 struct thread_item
3630 {
3631 explicit thread_item (ptid_t ptid_)
3632 : ptid (ptid_)
3633 {}
3634
3635 thread_item (thread_item &&other) = default;
3636 thread_item &operator= (thread_item &&other) = default;
3637
3638 DISABLE_COPY_AND_ASSIGN (thread_item);
3639
3640 /* The thread's PTID. */
3641 ptid_t ptid;
3642
3643 /* The thread's extra info. */
3644 std::string extra;
3645
3646 /* The thread's name. */
3647 std::string name;
3648
3649 /* The core the thread was running on. -1 if not known. */
3650 int core = -1;
3651
3652 /* The thread handle associated with the thread. */
3653 gdb::byte_vector thread_handle;
3654 };
3655
3656 /* Context passed around to the various methods listing remote
3657 threads. As new threads are found, they're added to the ITEMS
3658 vector. */
3659
3660 struct threads_listing_context
3661 {
3662 /* Return true if this object contains an entry for a thread with ptid
3663 PTID. */
3664
3665 bool contains_thread (ptid_t ptid) const
3666 {
3667 auto match_ptid = [&] (const thread_item &item)
3668 {
3669 return item.ptid == ptid;
3670 };
3671
3672 auto it = std::find_if (this->items.begin (),
3673 this->items.end (),
3674 match_ptid);
3675
3676 return it != this->items.end ();
3677 }
3678
3679 /* Remove the thread with ptid PTID. */
3680
3681 void remove_thread (ptid_t ptid)
3682 {
3683 auto match_ptid = [&] (const thread_item &item)
3684 {
3685 return item.ptid == ptid;
3686 };
3687
3688 auto it = std::remove_if (this->items.begin (),
3689 this->items.end (),
3690 match_ptid);
3691
3692 if (it != this->items.end ())
3693 this->items.erase (it);
3694 }
3695
3696 /* The threads found on the remote target. */
3697 std::vector<thread_item> items;
3698 };
3699
3700 static int
3701 remote_newthread_step (threadref *ref, void *data)
3702 {
3703 struct threads_listing_context *context
3704 = (struct threads_listing_context *) data;
3705 int pid = inferior_ptid.pid ();
3706 int lwp = threadref_to_int (ref);
3707 ptid_t ptid (pid, lwp);
3708
3709 context->items.emplace_back (ptid);
3710
3711 return 1; /* continue iterator */
3712 }
3713
3714 #define CRAZY_MAX_THREADS 1000
3715
3716 ptid_t
3717 remote_target::remote_current_thread (ptid_t oldpid)
3718 {
3719 struct remote_state *rs = get_remote_state ();
3720
3721 putpkt ("qC");
3722 getpkt (&rs->buf, 0);
3723 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3724 {
3725 const char *obuf;
3726 ptid_t result;
3727
3728 result = read_ptid (&rs->buf[2], &obuf);
3729 if (*obuf != '\0')
3730 remote_debug_printf ("warning: garbage in qC reply");
3731
3732 return result;
3733 }
3734 else
3735 return oldpid;
3736 }
3737
3738 /* List remote threads using the deprecated qL packet. */
3739
3740 int
3741 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3742 {
3743 if (remote_threadlist_iterator (remote_newthread_step, context,
3744 CRAZY_MAX_THREADS) >= 0)
3745 return 1;
3746
3747 return 0;
3748 }
3749
3750 #if defined(HAVE_LIBEXPAT)
3751
3752 static void
3753 start_thread (struct gdb_xml_parser *parser,
3754 const struct gdb_xml_element *element,
3755 void *user_data,
3756 std::vector<gdb_xml_value> &attributes)
3757 {
3758 struct threads_listing_context *data
3759 = (struct threads_listing_context *) user_data;
3760 struct gdb_xml_value *attr;
3761
3762 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3763 ptid_t ptid = read_ptid (id, NULL);
3764
3765 data->items.emplace_back (ptid);
3766 thread_item &item = data->items.back ();
3767
3768 attr = xml_find_attribute (attributes, "core");
3769 if (attr != NULL)
3770 item.core = *(ULONGEST *) attr->value.get ();
3771
3772 attr = xml_find_attribute (attributes, "name");
3773 if (attr != NULL)
3774 item.name = (const char *) attr->value.get ();
3775
3776 attr = xml_find_attribute (attributes, "handle");
3777 if (attr != NULL)
3778 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3779 }
3780
3781 static void
3782 end_thread (struct gdb_xml_parser *parser,
3783 const struct gdb_xml_element *element,
3784 void *user_data, const char *body_text)
3785 {
3786 struct threads_listing_context *data
3787 = (struct threads_listing_context *) user_data;
3788
3789 if (body_text != NULL && *body_text != '\0')
3790 data->items.back ().extra = body_text;
3791 }
3792
3793 const struct gdb_xml_attribute thread_attributes[] = {
3794 { "id", GDB_XML_AF_NONE, NULL, NULL },
3795 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3796 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3797 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3798 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3799 };
3800
3801 const struct gdb_xml_element thread_children[] = {
3802 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3803 };
3804
3805 const struct gdb_xml_element threads_children[] = {
3806 { "thread", thread_attributes, thread_children,
3807 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3808 start_thread, end_thread },
3809 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3810 };
3811
3812 const struct gdb_xml_element threads_elements[] = {
3813 { "threads", NULL, threads_children,
3814 GDB_XML_EF_NONE, NULL, NULL },
3815 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3816 };
3817
3818 #endif
3819
3820 /* List remote threads using qXfer:threads:read. */
3821
3822 int
3823 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3824 {
3825 #if defined(HAVE_LIBEXPAT)
3826 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3827 {
3828 gdb::optional<gdb::char_vector> xml
3829 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3830
3831 if (xml && (*xml)[0] != '\0')
3832 {
3833 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3834 threads_elements, xml->data (), context);
3835 }
3836
3837 return 1;
3838 }
3839 #endif
3840
3841 return 0;
3842 }
3843
3844 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3845
3846 int
3847 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3848 {
3849 struct remote_state *rs = get_remote_state ();
3850
3851 if (rs->use_threadinfo_query)
3852 {
3853 const char *bufp;
3854
3855 putpkt ("qfThreadInfo");
3856 getpkt (&rs->buf, 0);
3857 bufp = rs->buf.data ();
3858 if (bufp[0] != '\0') /* q packet recognized */
3859 {
3860 while (*bufp++ == 'm') /* reply contains one or more TID */
3861 {
3862 do
3863 {
3864 ptid_t ptid = read_ptid (bufp, &bufp);
3865 context->items.emplace_back (ptid);
3866 }
3867 while (*bufp++ == ','); /* comma-separated list */
3868 putpkt ("qsThreadInfo");
3869 getpkt (&rs->buf, 0);
3870 bufp = rs->buf.data ();
3871 }
3872 return 1;
3873 }
3874 else
3875 {
3876 /* Packet not recognized. */
3877 rs->use_threadinfo_query = 0;
3878 }
3879 }
3880
3881 return 0;
3882 }
3883
3884 /* Return true if INF only has one non-exited thread. */
3885
3886 static bool
3887 has_single_non_exited_thread (inferior *inf)
3888 {
3889 int count = 0;
3890 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3891 if (++count > 1)
3892 break;
3893 return count == 1;
3894 }
3895
3896 /* Implement the to_update_thread_list function for the remote
3897 targets. */
3898
3899 void
3900 remote_target::update_thread_list ()
3901 {
3902 struct threads_listing_context context;
3903 int got_list = 0;
3904
3905 /* We have a few different mechanisms to fetch the thread list. Try
3906 them all, starting with the most preferred one first, falling
3907 back to older methods. */
3908 if (remote_get_threads_with_qxfer (&context)
3909 || remote_get_threads_with_qthreadinfo (&context)
3910 || remote_get_threads_with_ql (&context))
3911 {
3912 got_list = 1;
3913
3914 if (context.items.empty ()
3915 && remote_thread_always_alive (inferior_ptid))
3916 {
3917 /* Some targets don't really support threads, but still
3918 reply an (empty) thread list in response to the thread
3919 listing packets, instead of replying "packet not
3920 supported". Exit early so we don't delete the main
3921 thread. */
3922 return;
3923 }
3924
3925 /* CONTEXT now holds the current thread list on the remote
3926 target end. Delete GDB-side threads no longer found on the
3927 target. */
3928 for (thread_info *tp : all_threads_safe ())
3929 {
3930 if (tp->inf->process_target () != this)
3931 continue;
3932
3933 if (!context.contains_thread (tp->ptid))
3934 {
3935 /* Do not remove the thread if it is the last thread in
3936 the inferior. This situation happens when we have a
3937 pending exit process status to process. Otherwise we
3938 may end up with a seemingly live inferior (i.e. pid
3939 != 0) that has no threads. */
3940 if (has_single_non_exited_thread (tp->inf))
3941 continue;
3942
3943 /* Not found. */
3944 delete_thread (tp);
3945 }
3946 }
3947
3948 /* Remove any unreported fork child threads from CONTEXT so
3949 that we don't interfere with follow fork, which is where
3950 creation of such threads is handled. */
3951 remove_new_fork_children (&context);
3952
3953 /* And now add threads we don't know about yet to our list. */
3954 for (thread_item &item : context.items)
3955 {
3956 if (item.ptid != null_ptid)
3957 {
3958 /* In non-stop mode, we assume new found threads are
3959 executing until proven otherwise with a stop reply.
3960 In all-stop, we can only get here if all threads are
3961 stopped. */
3962 bool executing = target_is_non_stop_p ();
3963
3964 remote_notice_new_inferior (item.ptid, executing);
3965
3966 thread_info *tp = find_thread_ptid (this, item.ptid);
3967 remote_thread_info *info = get_remote_thread_info (tp);
3968 info->core = item.core;
3969 info->extra = std::move (item.extra);
3970 info->name = std::move (item.name);
3971 info->thread_handle = std::move (item.thread_handle);
3972 }
3973 }
3974 }
3975
3976 if (!got_list)
3977 {
3978 /* If no thread listing method is supported, then query whether
3979 each known thread is alive, one by one, with the T packet.
3980 If the target doesn't support threads at all, then this is a
3981 no-op. See remote_thread_alive. */
3982 prune_threads ();
3983 }
3984 }
3985
3986 /*
3987 * Collect a descriptive string about the given thread.
3988 * The target may say anything it wants to about the thread
3989 * (typically info about its blocked / runnable state, name, etc.).
3990 * This string will appear in the info threads display.
3991 *
3992 * Optional: targets are not required to implement this function.
3993 */
3994
3995 const char *
3996 remote_target::extra_thread_info (thread_info *tp)
3997 {
3998 struct remote_state *rs = get_remote_state ();
3999 int set;
4000 threadref id;
4001 struct gdb_ext_thread_info threadinfo;
4002
4003 if (rs->remote_desc == 0) /* paranoia */
4004 internal_error (__FILE__, __LINE__,
4005 _("remote_threads_extra_info"));
4006
4007 if (tp->ptid == magic_null_ptid
4008 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
4009 /* This is the main thread which was added by GDB. The remote
4010 server doesn't know about it. */
4011 return NULL;
4012
4013 std::string &extra = get_remote_thread_info (tp)->extra;
4014
4015 /* If already have cached info, use it. */
4016 if (!extra.empty ())
4017 return extra.c_str ();
4018
4019 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4020 {
4021 /* If we're using qXfer:threads:read, then the extra info is
4022 included in the XML. So if we didn't have anything cached,
4023 it's because there's really no extra info. */
4024 return NULL;
4025 }
4026
4027 if (rs->use_threadextra_query)
4028 {
4029 char *b = rs->buf.data ();
4030 char *endb = b + get_remote_packet_size ();
4031
4032 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4033 b += strlen (b);
4034 write_ptid (b, endb, tp->ptid);
4035
4036 putpkt (rs->buf);
4037 getpkt (&rs->buf, 0);
4038 if (rs->buf[0] != 0)
4039 {
4040 extra.resize (strlen (rs->buf.data ()) / 2);
4041 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4042 return extra.c_str ();
4043 }
4044 }
4045
4046 /* If the above query fails, fall back to the old method. */
4047 rs->use_threadextra_query = 0;
4048 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4049 | TAG_MOREDISPLAY | TAG_DISPLAY;
4050 int_to_threadref (&id, tp->ptid.lwp ());
4051 if (remote_get_threadinfo (&id, set, &threadinfo))
4052 if (threadinfo.active)
4053 {
4054 if (*threadinfo.shortname)
4055 string_appendf (extra, " Name: %s", threadinfo.shortname);
4056 if (*threadinfo.display)
4057 {
4058 if (!extra.empty ())
4059 extra += ',';
4060 string_appendf (extra, " State: %s", threadinfo.display);
4061 }
4062 if (*threadinfo.more_display)
4063 {
4064 if (!extra.empty ())
4065 extra += ',';
4066 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4067 }
4068 return extra.c_str ();
4069 }
4070 return NULL;
4071 }
4072 \f
4073
4074 bool
4075 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4076 struct static_tracepoint_marker *marker)
4077 {
4078 struct remote_state *rs = get_remote_state ();
4079 char *p = rs->buf.data ();
4080
4081 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4082 p += strlen (p);
4083 p += hexnumstr (p, addr);
4084 putpkt (rs->buf);
4085 getpkt (&rs->buf, 0);
4086 p = rs->buf.data ();
4087
4088 if (*p == 'E')
4089 error (_("Remote failure reply: %s"), p);
4090
4091 if (*p++ == 'm')
4092 {
4093 parse_static_tracepoint_marker_definition (p, NULL, marker);
4094 return true;
4095 }
4096
4097 return false;
4098 }
4099
4100 std::vector<static_tracepoint_marker>
4101 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4102 {
4103 struct remote_state *rs = get_remote_state ();
4104 std::vector<static_tracepoint_marker> markers;
4105 const char *p;
4106 static_tracepoint_marker marker;
4107
4108 /* Ask for a first packet of static tracepoint marker
4109 definition. */
4110 putpkt ("qTfSTM");
4111 getpkt (&rs->buf, 0);
4112 p = rs->buf.data ();
4113 if (*p == 'E')
4114 error (_("Remote failure reply: %s"), p);
4115
4116 while (*p++ == 'm')
4117 {
4118 do
4119 {
4120 parse_static_tracepoint_marker_definition (p, &p, &marker);
4121
4122 if (strid == NULL || marker.str_id == strid)
4123 markers.push_back (std::move (marker));
4124 }
4125 while (*p++ == ','); /* comma-separated list */
4126 /* Ask for another packet of static tracepoint definition. */
4127 putpkt ("qTsSTM");
4128 getpkt (&rs->buf, 0);
4129 p = rs->buf.data ();
4130 }
4131
4132 return markers;
4133 }
4134
4135 \f
4136 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4137
4138 ptid_t
4139 remote_target::get_ada_task_ptid (long lwp, ULONGEST thread)
4140 {
4141 return ptid_t (inferior_ptid.pid (), lwp);
4142 }
4143 \f
4144
4145 /* Restart the remote side; this is an extended protocol operation. */
4146
4147 void
4148 remote_target::extended_remote_restart ()
4149 {
4150 struct remote_state *rs = get_remote_state ();
4151
4152 /* Send the restart command; for reasons I don't understand the
4153 remote side really expects a number after the "R". */
4154 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4155 putpkt (rs->buf);
4156
4157 remote_fileio_reset ();
4158 }
4159 \f
4160 /* Clean up connection to a remote debugger. */
4161
4162 void
4163 remote_target::close ()
4164 {
4165 /* Make sure we leave stdin registered in the event loop. */
4166 terminal_ours ();
4167
4168 trace_reset_local_state ();
4169
4170 delete this;
4171 }
4172
4173 remote_target::~remote_target ()
4174 {
4175 struct remote_state *rs = get_remote_state ();
4176
4177 /* Check for NULL because we may get here with a partially
4178 constructed target/connection. */
4179 if (rs->remote_desc == nullptr)
4180 return;
4181
4182 serial_close (rs->remote_desc);
4183
4184 /* We are destroying the remote target, so we should discard
4185 everything of this target. */
4186 discard_pending_stop_replies_in_queue ();
4187
4188 if (rs->remote_async_inferior_event_token)
4189 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4190
4191 delete rs->notif_state;
4192 }
4193
4194 /* Query the remote side for the text, data and bss offsets. */
4195
4196 void
4197 remote_target::get_offsets ()
4198 {
4199 struct remote_state *rs = get_remote_state ();
4200 char *buf;
4201 char *ptr;
4202 int lose, num_segments = 0, do_sections, do_segments;
4203 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4204
4205 if (current_program_space->symfile_object_file == NULL)
4206 return;
4207
4208 putpkt ("qOffsets");
4209 getpkt (&rs->buf, 0);
4210 buf = rs->buf.data ();
4211
4212 if (buf[0] == '\000')
4213 return; /* Return silently. Stub doesn't support
4214 this command. */
4215 if (buf[0] == 'E')
4216 {
4217 warning (_("Remote failure reply: %s"), buf);
4218 return;
4219 }
4220
4221 /* Pick up each field in turn. This used to be done with scanf, but
4222 scanf will make trouble if CORE_ADDR size doesn't match
4223 conversion directives correctly. The following code will work
4224 with any size of CORE_ADDR. */
4225 text_addr = data_addr = bss_addr = 0;
4226 ptr = buf;
4227 lose = 0;
4228
4229 if (startswith (ptr, "Text="))
4230 {
4231 ptr += 5;
4232 /* Don't use strtol, could lose on big values. */
4233 while (*ptr && *ptr != ';')
4234 text_addr = (text_addr << 4) + fromhex (*ptr++);
4235
4236 if (startswith (ptr, ";Data="))
4237 {
4238 ptr += 6;
4239 while (*ptr && *ptr != ';')
4240 data_addr = (data_addr << 4) + fromhex (*ptr++);
4241 }
4242 else
4243 lose = 1;
4244
4245 if (!lose && startswith (ptr, ";Bss="))
4246 {
4247 ptr += 5;
4248 while (*ptr && *ptr != ';')
4249 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4250
4251 if (bss_addr != data_addr)
4252 warning (_("Target reported unsupported offsets: %s"), buf);
4253 }
4254 else
4255 lose = 1;
4256 }
4257 else if (startswith (ptr, "TextSeg="))
4258 {
4259 ptr += 8;
4260 /* Don't use strtol, could lose on big values. */
4261 while (*ptr && *ptr != ';')
4262 text_addr = (text_addr << 4) + fromhex (*ptr++);
4263 num_segments = 1;
4264
4265 if (startswith (ptr, ";DataSeg="))
4266 {
4267 ptr += 9;
4268 while (*ptr && *ptr != ';')
4269 data_addr = (data_addr << 4) + fromhex (*ptr++);
4270 num_segments++;
4271 }
4272 }
4273 else
4274 lose = 1;
4275
4276 if (lose)
4277 error (_("Malformed response to offset query, %s"), buf);
4278 else if (*ptr != '\0')
4279 warning (_("Target reported unsupported offsets: %s"), buf);
4280
4281 objfile *objf = current_program_space->symfile_object_file;
4282 section_offsets offs = objf->section_offsets;
4283
4284 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4285 do_segments = (data != NULL);
4286 do_sections = num_segments == 0;
4287
4288 if (num_segments > 0)
4289 {
4290 segments[0] = text_addr;
4291 segments[1] = data_addr;
4292 }
4293 /* If we have two segments, we can still try to relocate everything
4294 by assuming that the .text and .data offsets apply to the whole
4295 text and data segments. Convert the offsets given in the packet
4296 to base addresses for symfile_map_offsets_to_segments. */
4297 else if (data != nullptr && data->segments.size () == 2)
4298 {
4299 segments[0] = data->segments[0].base + text_addr;
4300 segments[1] = data->segments[1].base + data_addr;
4301 num_segments = 2;
4302 }
4303 /* If the object file has only one segment, assume that it is text
4304 rather than data; main programs with no writable data are rare,
4305 but programs with no code are useless. Of course the code might
4306 have ended up in the data segment... to detect that we would need
4307 the permissions here. */
4308 else if (data && data->segments.size () == 1)
4309 {
4310 segments[0] = data->segments[0].base + text_addr;
4311 num_segments = 1;
4312 }
4313 /* There's no way to relocate by segment. */
4314 else
4315 do_segments = 0;
4316
4317 if (do_segments)
4318 {
4319 int ret = symfile_map_offsets_to_segments (objf->obfd,
4320 data.get (), offs,
4321 num_segments, segments);
4322
4323 if (ret == 0 && !do_sections)
4324 error (_("Can not handle qOffsets TextSeg "
4325 "response with this symbol file"));
4326
4327 if (ret > 0)
4328 do_sections = 0;
4329 }
4330
4331 if (do_sections)
4332 {
4333 offs[SECT_OFF_TEXT (objf)] = text_addr;
4334
4335 /* This is a temporary kludge to force data and bss to use the
4336 same offsets because that's what nlmconv does now. The real
4337 solution requires changes to the stub and remote.c that I
4338 don't have time to do right now. */
4339
4340 offs[SECT_OFF_DATA (objf)] = data_addr;
4341 offs[SECT_OFF_BSS (objf)] = data_addr;
4342 }
4343
4344 objfile_relocate (objf, offs);
4345 }
4346
4347 /* Send interrupt_sequence to remote target. */
4348
4349 void
4350 remote_target::send_interrupt_sequence ()
4351 {
4352 struct remote_state *rs = get_remote_state ();
4353
4354 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4355 remote_serial_write ("\x03", 1);
4356 else if (interrupt_sequence_mode == interrupt_sequence_break)
4357 serial_send_break (rs->remote_desc);
4358 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4359 {
4360 serial_send_break (rs->remote_desc);
4361 remote_serial_write ("g", 1);
4362 }
4363 else
4364 internal_error (__FILE__, __LINE__,
4365 _("Invalid value for interrupt_sequence_mode: %s."),
4366 interrupt_sequence_mode);
4367 }
4368
4369
4370 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4371 and extract the PTID. Returns NULL_PTID if not found. */
4372
4373 static ptid_t
4374 stop_reply_extract_thread (const char *stop_reply)
4375 {
4376 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4377 {
4378 const char *p;
4379
4380 /* Txx r:val ; r:val (...) */
4381 p = &stop_reply[3];
4382
4383 /* Look for "register" named "thread". */
4384 while (*p != '\0')
4385 {
4386 const char *p1;
4387
4388 p1 = strchr (p, ':');
4389 if (p1 == NULL)
4390 return null_ptid;
4391
4392 if (strncmp (p, "thread", p1 - p) == 0)
4393 return read_ptid (++p1, &p);
4394
4395 p1 = strchr (p, ';');
4396 if (p1 == NULL)
4397 return null_ptid;
4398 p1++;
4399
4400 p = p1;
4401 }
4402 }
4403
4404 return null_ptid;
4405 }
4406
4407 /* Determine the remote side's current thread. If we have a stop
4408 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4409 "thread" register we can extract the current thread from. If not,
4410 ask the remote which is the current thread with qC. The former
4411 method avoids a roundtrip. */
4412
4413 ptid_t
4414 remote_target::get_current_thread (const char *wait_status)
4415 {
4416 ptid_t ptid = null_ptid;
4417
4418 /* Note we don't use remote_parse_stop_reply as that makes use of
4419 the target architecture, which we haven't yet fully determined at
4420 this point. */
4421 if (wait_status != NULL)
4422 ptid = stop_reply_extract_thread (wait_status);
4423 if (ptid == null_ptid)
4424 ptid = remote_current_thread (inferior_ptid);
4425
4426 return ptid;
4427 }
4428
4429 /* Query the remote target for which is the current thread/process,
4430 add it to our tables, and update INFERIOR_PTID. The caller is
4431 responsible for setting the state such that the remote end is ready
4432 to return the current thread.
4433
4434 This function is called after handling the '?' or 'vRun' packets,
4435 whose response is a stop reply from which we can also try
4436 extracting the thread. If the target doesn't support the explicit
4437 qC query, we infer the current thread from that stop reply, passed
4438 in in WAIT_STATUS, which may be NULL.
4439
4440 The function returns pointer to the main thread of the inferior. */
4441
4442 thread_info *
4443 remote_target::add_current_inferior_and_thread (const char *wait_status)
4444 {
4445 struct remote_state *rs = get_remote_state ();
4446 bool fake_pid_p = false;
4447
4448 switch_to_no_thread ();
4449
4450 /* Now, if we have thread information, update the current thread's
4451 ptid. */
4452 ptid_t curr_ptid = get_current_thread (wait_status);
4453
4454 if (curr_ptid != null_ptid)
4455 {
4456 if (!remote_multi_process_p (rs))
4457 fake_pid_p = true;
4458 }
4459 else
4460 {
4461 /* Without this, some commands which require an active target
4462 (such as kill) won't work. This variable serves (at least)
4463 double duty as both the pid of the target process (if it has
4464 such), and as a flag indicating that a target is active. */
4465 curr_ptid = magic_null_ptid;
4466 fake_pid_p = true;
4467 }
4468
4469 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4470
4471 /* Add the main thread and switch to it. Don't try reading
4472 registers yet, since we haven't fetched the target description
4473 yet. */
4474 thread_info *tp = add_thread_silent (this, curr_ptid);
4475 switch_to_thread_no_regs (tp);
4476
4477 return tp;
4478 }
4479
4480 /* Print info about a thread that was found already stopped on
4481 connection. */
4482
4483 void
4484 remote_target::print_one_stopped_thread (thread_info *thread)
4485 {
4486 target_waitstatus ws;
4487
4488 /* If there is a pending waitstatus, use it. If there isn't it's because
4489 the thread's stop was reported with TARGET_WAITKIND_STOPPED / GDB_SIGNAL_0
4490 and process_initial_stop_replies decided it wasn't interesting to save
4491 and report to the core. */
4492 if (thread->has_pending_waitstatus ())
4493 {
4494 ws = thread->pending_waitstatus ();
4495 thread->clear_pending_waitstatus ();
4496 }
4497 else
4498 {
4499 ws.set_stopped (GDB_SIGNAL_0);
4500 }
4501
4502 switch_to_thread (thread);
4503 thread->set_stop_pc (get_frame_pc (get_current_frame ()));
4504 set_current_sal_from_frame (get_current_frame ());
4505
4506 /* For "info program". */
4507 set_last_target_status (this, thread->ptid, ws);
4508
4509 if (ws.kind () == TARGET_WAITKIND_STOPPED)
4510 {
4511 enum gdb_signal sig = ws.sig ();
4512
4513 if (signal_print_state (sig))
4514 gdb::observers::signal_received.notify (sig);
4515 }
4516 gdb::observers::normal_stop.notify (NULL, 1);
4517 }
4518
4519 /* Process all initial stop replies the remote side sent in response
4520 to the ? packet. These indicate threads that were already stopped
4521 on initial connection. We mark these threads as stopped and print
4522 their current frame before giving the user the prompt. */
4523
4524 void
4525 remote_target::process_initial_stop_replies (int from_tty)
4526 {
4527 int pending_stop_replies = stop_reply_queue_length ();
4528 struct thread_info *selected = NULL;
4529 struct thread_info *lowest_stopped = NULL;
4530 struct thread_info *first = NULL;
4531
4532 /* This is only used when the target is non-stop. */
4533 gdb_assert (target_is_non_stop_p ());
4534
4535 /* Consume the initial pending events. */
4536 while (pending_stop_replies-- > 0)
4537 {
4538 ptid_t waiton_ptid = minus_one_ptid;
4539 ptid_t event_ptid;
4540 struct target_waitstatus ws;
4541 int ignore_event = 0;
4542
4543 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4544 if (remote_debug)
4545 print_target_wait_results (waiton_ptid, event_ptid, ws);
4546
4547 switch (ws.kind ())
4548 {
4549 case TARGET_WAITKIND_IGNORE:
4550 case TARGET_WAITKIND_NO_RESUMED:
4551 case TARGET_WAITKIND_SIGNALLED:
4552 case TARGET_WAITKIND_EXITED:
4553 /* We shouldn't see these, but if we do, just ignore. */
4554 remote_debug_printf ("event ignored");
4555 ignore_event = 1;
4556 break;
4557
4558 default:
4559 break;
4560 }
4561
4562 if (ignore_event)
4563 continue;
4564
4565 thread_info *evthread = find_thread_ptid (this, event_ptid);
4566
4567 if (ws.kind () == TARGET_WAITKIND_STOPPED)
4568 {
4569 enum gdb_signal sig = ws.sig ();
4570
4571 /* Stubs traditionally report SIGTRAP as initial signal,
4572 instead of signal 0. Suppress it. */
4573 if (sig == GDB_SIGNAL_TRAP)
4574 sig = GDB_SIGNAL_0;
4575 evthread->set_stop_signal (sig);
4576 ws.set_stopped (sig);
4577 }
4578
4579 if (ws.kind () != TARGET_WAITKIND_STOPPED
4580 || ws.sig () != GDB_SIGNAL_0)
4581 evthread->set_pending_waitstatus (ws);
4582
4583 set_executing (this, event_ptid, false);
4584 set_running (this, event_ptid, false);
4585 get_remote_thread_info (evthread)->set_not_resumed ();
4586 }
4587
4588 /* "Notice" the new inferiors before anything related to
4589 registers/memory. */
4590 for (inferior *inf : all_non_exited_inferiors (this))
4591 {
4592 inf->needs_setup = 1;
4593
4594 if (non_stop)
4595 {
4596 thread_info *thread = any_live_thread_of_inferior (inf);
4597 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4598 from_tty);
4599 }
4600 }
4601
4602 /* If all-stop on top of non-stop, pause all threads. Note this
4603 records the threads' stop pc, so must be done after "noticing"
4604 the inferiors. */
4605 if (!non_stop)
4606 {
4607 {
4608 /* At this point, the remote target is not async. It needs to be for
4609 the poll in stop_all_threads to consider events from it, so enable
4610 it temporarily. */
4611 gdb_assert (!this->is_async_p ());
4612 SCOPE_EXIT { target_async (0); };
4613 target_async (1);
4614 stop_all_threads ();
4615 }
4616
4617 /* If all threads of an inferior were already stopped, we
4618 haven't setup the inferior yet. */
4619 for (inferior *inf : all_non_exited_inferiors (this))
4620 {
4621 if (inf->needs_setup)
4622 {
4623 thread_info *thread = any_live_thread_of_inferior (inf);
4624 switch_to_thread_no_regs (thread);
4625 setup_inferior (0);
4626 }
4627 }
4628 }
4629
4630 /* Now go over all threads that are stopped, and print their current
4631 frame. If all-stop, then if there's a signalled thread, pick
4632 that as current. */
4633 for (thread_info *thread : all_non_exited_threads (this))
4634 {
4635 if (first == NULL)
4636 first = thread;
4637
4638 if (!non_stop)
4639 thread->set_running (false);
4640 else if (thread->state != THREAD_STOPPED)
4641 continue;
4642
4643 if (selected == nullptr && thread->has_pending_waitstatus ())
4644 selected = thread;
4645
4646 if (lowest_stopped == NULL
4647 || thread->inf->num < lowest_stopped->inf->num
4648 || thread->per_inf_num < lowest_stopped->per_inf_num)
4649 lowest_stopped = thread;
4650
4651 if (non_stop)
4652 print_one_stopped_thread (thread);
4653 }
4654
4655 /* In all-stop, we only print the status of one thread, and leave
4656 others with their status pending. */
4657 if (!non_stop)
4658 {
4659 thread_info *thread = selected;
4660 if (thread == NULL)
4661 thread = lowest_stopped;
4662 if (thread == NULL)
4663 thread = first;
4664
4665 print_one_stopped_thread (thread);
4666 }
4667 }
4668
4669 /* Start the remote connection and sync state. */
4670
4671 void
4672 remote_target::start_remote (int from_tty, int extended_p)
4673 {
4674 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4675
4676 struct remote_state *rs = get_remote_state ();
4677 struct packet_config *noack_config;
4678
4679 /* Signal other parts that we're going through the initial setup,
4680 and so things may not be stable yet. E.g., we don't try to
4681 install tracepoints until we've relocated symbols. Also, a
4682 Ctrl-C before we're connected and synced up can't interrupt the
4683 target. Instead, it offers to drop the (potentially wedged)
4684 connection. */
4685 rs->starting_up = true;
4686
4687 QUIT;
4688
4689 if (interrupt_on_connect)
4690 send_interrupt_sequence ();
4691
4692 /* Ack any packet which the remote side has already sent. */
4693 remote_serial_write ("+", 1);
4694
4695 /* The first packet we send to the target is the optional "supported
4696 packets" request. If the target can answer this, it will tell us
4697 which later probes to skip. */
4698 remote_query_supported ();
4699
4700 /* If the stub wants to get a QAllow, compose one and send it. */
4701 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4702 set_permissions ();
4703
4704 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4705 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4706 as a reply to known packet. For packet "vFile:setfs:" it is an
4707 invalid reply and GDB would return error in
4708 remote_hostio_set_filesystem, making remote files access impossible.
4709 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4710 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4711 {
4712 const char v_mustreplyempty[] = "vMustReplyEmpty";
4713
4714 putpkt (v_mustreplyempty);
4715 getpkt (&rs->buf, 0);
4716 if (strcmp (rs->buf.data (), "OK") == 0)
4717 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4718 else if (strcmp (rs->buf.data (), "") != 0)
4719 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4720 rs->buf.data ());
4721 }
4722
4723 /* Next, we possibly activate noack mode.
4724
4725 If the QStartNoAckMode packet configuration is set to AUTO,
4726 enable noack mode if the stub reported a wish for it with
4727 qSupported.
4728
4729 If set to TRUE, then enable noack mode even if the stub didn't
4730 report it in qSupported. If the stub doesn't reply OK, the
4731 session ends with an error.
4732
4733 If FALSE, then don't activate noack mode, regardless of what the
4734 stub claimed should be the default with qSupported. */
4735
4736 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4737 if (packet_config_support (noack_config) != PACKET_DISABLE)
4738 {
4739 putpkt ("QStartNoAckMode");
4740 getpkt (&rs->buf, 0);
4741 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4742 rs->noack_mode = 1;
4743 }
4744
4745 if (extended_p)
4746 {
4747 /* Tell the remote that we are using the extended protocol. */
4748 putpkt ("!");
4749 getpkt (&rs->buf, 0);
4750 }
4751
4752 /* Let the target know which signals it is allowed to pass down to
4753 the program. */
4754 update_signals_program_target ();
4755
4756 /* Next, if the target can specify a description, read it. We do
4757 this before anything involving memory or registers. */
4758 target_find_description ();
4759
4760 /* Next, now that we know something about the target, update the
4761 address spaces in the program spaces. */
4762 update_address_spaces ();
4763
4764 /* On OSs where the list of libraries is global to all
4765 processes, we fetch them early. */
4766 if (gdbarch_has_global_solist (target_gdbarch ()))
4767 solib_add (NULL, from_tty, auto_solib_add);
4768
4769 if (target_is_non_stop_p ())
4770 {
4771 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4772 error (_("Non-stop mode requested, but remote "
4773 "does not support non-stop"));
4774
4775 putpkt ("QNonStop:1");
4776 getpkt (&rs->buf, 0);
4777
4778 if (strcmp (rs->buf.data (), "OK") != 0)
4779 error (_("Remote refused setting non-stop mode with: %s"),
4780 rs->buf.data ());
4781
4782 /* Find about threads and processes the stub is already
4783 controlling. We default to adding them in the running state.
4784 The '?' query below will then tell us about which threads are
4785 stopped. */
4786 this->update_thread_list ();
4787 }
4788 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4789 {
4790 /* Don't assume that the stub can operate in all-stop mode.
4791 Request it explicitly. */
4792 putpkt ("QNonStop:0");
4793 getpkt (&rs->buf, 0);
4794
4795 if (strcmp (rs->buf.data (), "OK") != 0)
4796 error (_("Remote refused setting all-stop mode with: %s"),
4797 rs->buf.data ());
4798 }
4799
4800 /* Upload TSVs regardless of whether the target is running or not. The
4801 remote stub, such as GDBserver, may have some predefined or builtin
4802 TSVs, even if the target is not running. */
4803 if (get_trace_status (current_trace_status ()) != -1)
4804 {
4805 struct uploaded_tsv *uploaded_tsvs = NULL;
4806
4807 upload_trace_state_variables (&uploaded_tsvs);
4808 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4809 }
4810
4811 /* Check whether the target is running now. */
4812 putpkt ("?");
4813 getpkt (&rs->buf, 0);
4814
4815 if (!target_is_non_stop_p ())
4816 {
4817 char *wait_status = NULL;
4818
4819 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4820 {
4821 if (!extended_p)
4822 error (_("The target is not running (try extended-remote?)"));
4823
4824 /* We're connected, but not running. Drop out before we
4825 call start_remote. */
4826 rs->starting_up = false;
4827 return;
4828 }
4829 else
4830 {
4831 /* Save the reply for later. */
4832 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4833 strcpy (wait_status, rs->buf.data ());
4834 }
4835
4836 /* Fetch thread list. */
4837 target_update_thread_list ();
4838
4839 /* Let the stub know that we want it to return the thread. */
4840 set_continue_thread (minus_one_ptid);
4841
4842 if (thread_count (this) == 0)
4843 {
4844 /* Target has no concept of threads at all. GDB treats
4845 non-threaded target as single-threaded; add a main
4846 thread. */
4847 thread_info *tp = add_current_inferior_and_thread (wait_status);
4848 get_remote_thread_info (tp)->set_resumed ();
4849 }
4850 else
4851 {
4852 /* We have thread information; select the thread the target
4853 says should be current. If we're reconnecting to a
4854 multi-threaded program, this will ideally be the thread
4855 that last reported an event before GDB disconnected. */
4856 ptid_t curr_thread = get_current_thread (wait_status);
4857 if (curr_thread == null_ptid)
4858 {
4859 /* Odd... The target was able to list threads, but not
4860 tell us which thread was current (no "thread"
4861 register in T stop reply?). Just pick the first
4862 thread in the thread list then. */
4863
4864 remote_debug_printf ("warning: couldn't determine remote "
4865 "current thread; picking first in list.");
4866
4867 for (thread_info *tp : all_non_exited_threads (this,
4868 minus_one_ptid))
4869 {
4870 switch_to_thread (tp);
4871 break;
4872 }
4873 }
4874 else
4875 switch_to_thread (find_thread_ptid (this, curr_thread));
4876 }
4877
4878 /* init_wait_for_inferior should be called before get_offsets in order
4879 to manage `inserted' flag in bp loc in a correct state.
4880 breakpoint_init_inferior, called from init_wait_for_inferior, set
4881 `inserted' flag to 0, while before breakpoint_re_set, called from
4882 start_remote, set `inserted' flag to 1. In the initialization of
4883 inferior, breakpoint_init_inferior should be called first, and then
4884 breakpoint_re_set can be called. If this order is broken, state of
4885 `inserted' flag is wrong, and cause some problems on breakpoint
4886 manipulation. */
4887 init_wait_for_inferior ();
4888
4889 get_offsets (); /* Get text, data & bss offsets. */
4890
4891 /* If we could not find a description using qXfer, and we know
4892 how to do it some other way, try again. This is not
4893 supported for non-stop; it could be, but it is tricky if
4894 there are no stopped threads when we connect. */
4895 if (remote_read_description_p (this)
4896 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4897 {
4898 target_clear_description ();
4899 target_find_description ();
4900 }
4901
4902 /* Use the previously fetched status. */
4903 gdb_assert (wait_status != NULL);
4904 strcpy (rs->buf.data (), wait_status);
4905 rs->cached_wait_status = 1;
4906
4907 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4908 }
4909 else
4910 {
4911 /* Clear WFI global state. Do this before finding about new
4912 threads and inferiors, and setting the current inferior.
4913 Otherwise we would clear the proceed status of the current
4914 inferior when we want its stop_soon state to be preserved
4915 (see notice_new_inferior). */
4916 init_wait_for_inferior ();
4917
4918 /* In non-stop, we will either get an "OK", meaning that there
4919 are no stopped threads at this time; or, a regular stop
4920 reply. In the latter case, there may be more than one thread
4921 stopped --- we pull them all out using the vStopped
4922 mechanism. */
4923 if (strcmp (rs->buf.data (), "OK") != 0)
4924 {
4925 struct notif_client *notif = &notif_client_stop;
4926
4927 /* remote_notif_get_pending_replies acks this one, and gets
4928 the rest out. */
4929 rs->notif_state->pending_event[notif_client_stop.id]
4930 = remote_notif_parse (this, notif, rs->buf.data ());
4931 remote_notif_get_pending_events (notif);
4932 }
4933
4934 if (thread_count (this) == 0)
4935 {
4936 if (!extended_p)
4937 error (_("The target is not running (try extended-remote?)"));
4938
4939 /* We're connected, but not running. Drop out before we
4940 call start_remote. */
4941 rs->starting_up = false;
4942 return;
4943 }
4944
4945 /* Report all signals during attach/startup. */
4946 pass_signals ({});
4947
4948 /* If there are already stopped threads, mark them stopped and
4949 report their stops before giving the prompt to the user. */
4950 process_initial_stop_replies (from_tty);
4951
4952 if (target_can_async_p ())
4953 target_async (1);
4954 }
4955
4956 /* If we connected to a live target, do some additional setup. */
4957 if (target_has_execution ())
4958 {
4959 /* No use without a symbol-file. */
4960 if (current_program_space->symfile_object_file)
4961 remote_check_symbols ();
4962 }
4963
4964 /* Possibly the target has been engaged in a trace run started
4965 previously; find out where things are at. */
4966 if (get_trace_status (current_trace_status ()) != -1)
4967 {
4968 struct uploaded_tp *uploaded_tps = NULL;
4969
4970 if (current_trace_status ()->running)
4971 printf_filtered (_("Trace is already running on the target.\n"));
4972
4973 upload_tracepoints (&uploaded_tps);
4974
4975 merge_uploaded_tracepoints (&uploaded_tps);
4976 }
4977
4978 /* Possibly the target has been engaged in a btrace record started
4979 previously; find out where things are at. */
4980 remote_btrace_maybe_reopen ();
4981
4982 /* The thread and inferior lists are now synchronized with the
4983 target, our symbols have been relocated, and we're merged the
4984 target's tracepoints with ours. We're done with basic start
4985 up. */
4986 rs->starting_up = false;
4987
4988 /* Maybe breakpoints are global and need to be inserted now. */
4989 if (breakpoints_should_be_inserted_now ())
4990 insert_breakpoints ();
4991 }
4992
4993 const char *
4994 remote_target::connection_string ()
4995 {
4996 remote_state *rs = get_remote_state ();
4997
4998 if (rs->remote_desc->name != NULL)
4999 return rs->remote_desc->name;
5000 else
5001 return NULL;
5002 }
5003
5004 /* Open a connection to a remote debugger.
5005 NAME is the filename used for communication. */
5006
5007 void
5008 remote_target::open (const char *name, int from_tty)
5009 {
5010 open_1 (name, from_tty, 0);
5011 }
5012
5013 /* Open a connection to a remote debugger using the extended
5014 remote gdb protocol. NAME is the filename used for communication. */
5015
5016 void
5017 extended_remote_target::open (const char *name, int from_tty)
5018 {
5019 open_1 (name, from_tty, 1 /*extended_p */);
5020 }
5021
5022 /* Reset all packets back to "unknown support". Called when opening a
5023 new connection to a remote target. */
5024
5025 static void
5026 reset_all_packet_configs_support (void)
5027 {
5028 int i;
5029
5030 for (i = 0; i < PACKET_MAX; i++)
5031 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5032 }
5033
5034 /* Initialize all packet configs. */
5035
5036 static void
5037 init_all_packet_configs (void)
5038 {
5039 int i;
5040
5041 for (i = 0; i < PACKET_MAX; i++)
5042 {
5043 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5044 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5045 }
5046 }
5047
5048 /* Symbol look-up. */
5049
5050 void
5051 remote_target::remote_check_symbols ()
5052 {
5053 char *tmp;
5054 int end;
5055
5056 /* The remote side has no concept of inferiors that aren't running
5057 yet, it only knows about running processes. If we're connected
5058 but our current inferior is not running, we should not invite the
5059 remote target to request symbol lookups related to its
5060 (unrelated) current process. */
5061 if (!target_has_execution ())
5062 return;
5063
5064 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5065 return;
5066
5067 /* Make sure the remote is pointing at the right process. Note
5068 there's no way to select "no process". */
5069 set_general_process ();
5070
5071 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5072 because we need both at the same time. */
5073 gdb::char_vector msg (get_remote_packet_size ());
5074 gdb::char_vector reply (get_remote_packet_size ());
5075
5076 /* Invite target to request symbol lookups. */
5077
5078 putpkt ("qSymbol::");
5079 getpkt (&reply, 0);
5080 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5081
5082 while (startswith (reply.data (), "qSymbol:"))
5083 {
5084 struct bound_minimal_symbol sym;
5085
5086 tmp = &reply[8];
5087 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5088 strlen (tmp) / 2);
5089 msg[end] = '\0';
5090 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5091 if (sym.minsym == NULL)
5092 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5093 &reply[8]);
5094 else
5095 {
5096 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5097 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5098
5099 /* If this is a function address, return the start of code
5100 instead of any data function descriptor. */
5101 sym_addr = gdbarch_convert_from_func_ptr_addr
5102 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
5103
5104 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5105 phex_nz (sym_addr, addr_size), &reply[8]);
5106 }
5107
5108 putpkt (msg.data ());
5109 getpkt (&reply, 0);
5110 }
5111 }
5112
5113 static struct serial *
5114 remote_serial_open (const char *name)
5115 {
5116 static int udp_warning = 0;
5117
5118 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5119 of in ser-tcp.c, because it is the remote protocol assuming that the
5120 serial connection is reliable and not the serial connection promising
5121 to be. */
5122 if (!udp_warning && startswith (name, "udp:"))
5123 {
5124 warning (_("The remote protocol may be unreliable over UDP.\n"
5125 "Some events may be lost, rendering further debugging "
5126 "impossible."));
5127 udp_warning = 1;
5128 }
5129
5130 return serial_open (name);
5131 }
5132
5133 /* Inform the target of our permission settings. The permission flags
5134 work without this, but if the target knows the settings, it can do
5135 a couple things. First, it can add its own check, to catch cases
5136 that somehow manage to get by the permissions checks in target
5137 methods. Second, if the target is wired to disallow particular
5138 settings (for instance, a system in the field that is not set up to
5139 be able to stop at a breakpoint), it can object to any unavailable
5140 permissions. */
5141
5142 void
5143 remote_target::set_permissions ()
5144 {
5145 struct remote_state *rs = get_remote_state ();
5146
5147 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5148 "WriteReg:%x;WriteMem:%x;"
5149 "InsertBreak:%x;InsertTrace:%x;"
5150 "InsertFastTrace:%x;Stop:%x",
5151 may_write_registers, may_write_memory,
5152 may_insert_breakpoints, may_insert_tracepoints,
5153 may_insert_fast_tracepoints, may_stop);
5154 putpkt (rs->buf);
5155 getpkt (&rs->buf, 0);
5156
5157 /* If the target didn't like the packet, warn the user. Do not try
5158 to undo the user's settings, that would just be maddening. */
5159 if (strcmp (rs->buf.data (), "OK") != 0)
5160 warning (_("Remote refused setting permissions with: %s"),
5161 rs->buf.data ());
5162 }
5163
5164 /* This type describes each known response to the qSupported
5165 packet. */
5166 struct protocol_feature
5167 {
5168 /* The name of this protocol feature. */
5169 const char *name;
5170
5171 /* The default for this protocol feature. */
5172 enum packet_support default_support;
5173
5174 /* The function to call when this feature is reported, or after
5175 qSupported processing if the feature is not supported.
5176 The first argument points to this structure. The second
5177 argument indicates whether the packet requested support be
5178 enabled, disabled, or probed (or the default, if this function
5179 is being called at the end of processing and this feature was
5180 not reported). The third argument may be NULL; if not NULL, it
5181 is a NUL-terminated string taken from the packet following
5182 this feature's name and an equals sign. */
5183 void (*func) (remote_target *remote, const struct protocol_feature *,
5184 enum packet_support, const char *);
5185
5186 /* The corresponding packet for this feature. Only used if
5187 FUNC is remote_supported_packet. */
5188 int packet;
5189 };
5190
5191 static void
5192 remote_supported_packet (remote_target *remote,
5193 const struct protocol_feature *feature,
5194 enum packet_support support,
5195 const char *argument)
5196 {
5197 if (argument)
5198 {
5199 warning (_("Remote qSupported response supplied an unexpected value for"
5200 " \"%s\"."), feature->name);
5201 return;
5202 }
5203
5204 remote_protocol_packets[feature->packet].support = support;
5205 }
5206
5207 void
5208 remote_target::remote_packet_size (const protocol_feature *feature,
5209 enum packet_support support, const char *value)
5210 {
5211 struct remote_state *rs = get_remote_state ();
5212
5213 int packet_size;
5214 char *value_end;
5215
5216 if (support != PACKET_ENABLE)
5217 return;
5218
5219 if (value == NULL || *value == '\0')
5220 {
5221 warning (_("Remote target reported \"%s\" without a size."),
5222 feature->name);
5223 return;
5224 }
5225
5226 errno = 0;
5227 packet_size = strtol (value, &value_end, 16);
5228 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5229 {
5230 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5231 feature->name, value);
5232 return;
5233 }
5234
5235 /* Record the new maximum packet size. */
5236 rs->explicit_packet_size = packet_size;
5237 }
5238
5239 static void
5240 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5241 enum packet_support support, const char *value)
5242 {
5243 remote->remote_packet_size (feature, support, value);
5244 }
5245
5246 static const struct protocol_feature remote_protocol_features[] = {
5247 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5248 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5249 PACKET_qXfer_auxv },
5250 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5251 PACKET_qXfer_exec_file },
5252 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5253 PACKET_qXfer_features },
5254 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5255 PACKET_qXfer_libraries },
5256 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5257 PACKET_qXfer_libraries_svr4 },
5258 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5259 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5260 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5261 PACKET_qXfer_memory_map },
5262 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5263 PACKET_qXfer_osdata },
5264 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5265 PACKET_qXfer_threads },
5266 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5267 PACKET_qXfer_traceframe_info },
5268 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5269 PACKET_QPassSignals },
5270 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5271 PACKET_QCatchSyscalls },
5272 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5273 PACKET_QProgramSignals },
5274 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5275 PACKET_QSetWorkingDir },
5276 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5277 PACKET_QStartupWithShell },
5278 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5279 PACKET_QEnvironmentHexEncoded },
5280 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5281 PACKET_QEnvironmentReset },
5282 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5283 PACKET_QEnvironmentUnset },
5284 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5285 PACKET_QStartNoAckMode },
5286 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5287 PACKET_multiprocess_feature },
5288 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5289 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5290 PACKET_qXfer_siginfo_read },
5291 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5292 PACKET_qXfer_siginfo_write },
5293 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5294 PACKET_ConditionalTracepoints },
5295 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5296 PACKET_ConditionalBreakpoints },
5297 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5298 PACKET_BreakpointCommands },
5299 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5300 PACKET_FastTracepoints },
5301 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5302 PACKET_StaticTracepoints },
5303 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5304 PACKET_InstallInTrace},
5305 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5306 PACKET_DisconnectedTracing_feature },
5307 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5308 PACKET_bc },
5309 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5310 PACKET_bs },
5311 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5312 PACKET_TracepointSource },
5313 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5314 PACKET_QAllow },
5315 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5316 PACKET_EnableDisableTracepoints_feature },
5317 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5318 PACKET_qXfer_fdpic },
5319 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5320 PACKET_qXfer_uib },
5321 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5322 PACKET_QDisableRandomization },
5323 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5324 { "QTBuffer:size", PACKET_DISABLE,
5325 remote_supported_packet, PACKET_QTBuffer_size},
5326 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5327 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5328 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5329 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5330 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5331 PACKET_qXfer_btrace },
5332 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5333 PACKET_qXfer_btrace_conf },
5334 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5335 PACKET_Qbtrace_conf_bts_size },
5336 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5337 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5338 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5339 PACKET_fork_event_feature },
5340 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5341 PACKET_vfork_event_feature },
5342 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5343 PACKET_exec_event_feature },
5344 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5345 PACKET_Qbtrace_conf_pt_size },
5346 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5347 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5348 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5349 { "memory-tagging", PACKET_DISABLE, remote_supported_packet,
5350 PACKET_memory_tagging_feature },
5351 };
5352
5353 static char *remote_support_xml;
5354
5355 /* Register string appended to "xmlRegisters=" in qSupported query. */
5356
5357 void
5358 register_remote_support_xml (const char *xml)
5359 {
5360 #if defined(HAVE_LIBEXPAT)
5361 if (remote_support_xml == NULL)
5362 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5363 else
5364 {
5365 char *copy = xstrdup (remote_support_xml + 13);
5366 char *saveptr;
5367 char *p = strtok_r (copy, ",", &saveptr);
5368
5369 do
5370 {
5371 if (strcmp (p, xml) == 0)
5372 {
5373 /* already there */
5374 xfree (copy);
5375 return;
5376 }
5377 }
5378 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5379 xfree (copy);
5380
5381 remote_support_xml = reconcat (remote_support_xml,
5382 remote_support_xml, ",", xml,
5383 (char *) NULL);
5384 }
5385 #endif
5386 }
5387
5388 static void
5389 remote_query_supported_append (std::string *msg, const char *append)
5390 {
5391 if (!msg->empty ())
5392 msg->append (";");
5393 msg->append (append);
5394 }
5395
5396 void
5397 remote_target::remote_query_supported ()
5398 {
5399 struct remote_state *rs = get_remote_state ();
5400 char *next;
5401 int i;
5402 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5403
5404 /* The packet support flags are handled differently for this packet
5405 than for most others. We treat an error, a disabled packet, and
5406 an empty response identically: any features which must be reported
5407 to be used will be automatically disabled. An empty buffer
5408 accomplishes this, since that is also the representation for a list
5409 containing no features. */
5410
5411 rs->buf[0] = 0;
5412 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5413 {
5414 std::string q;
5415
5416 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5417 remote_query_supported_append (&q, "multiprocess+");
5418
5419 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5420 remote_query_supported_append (&q, "swbreak+");
5421 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5422 remote_query_supported_append (&q, "hwbreak+");
5423
5424 remote_query_supported_append (&q, "qRelocInsn+");
5425
5426 if (packet_set_cmd_state (PACKET_fork_event_feature)
5427 != AUTO_BOOLEAN_FALSE)
5428 remote_query_supported_append (&q, "fork-events+");
5429 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5430 != AUTO_BOOLEAN_FALSE)
5431 remote_query_supported_append (&q, "vfork-events+");
5432 if (packet_set_cmd_state (PACKET_exec_event_feature)
5433 != AUTO_BOOLEAN_FALSE)
5434 remote_query_supported_append (&q, "exec-events+");
5435
5436 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5437 remote_query_supported_append (&q, "vContSupported+");
5438
5439 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5440 remote_query_supported_append (&q, "QThreadEvents+");
5441
5442 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5443 remote_query_supported_append (&q, "no-resumed+");
5444
5445 if (packet_set_cmd_state (PACKET_memory_tagging_feature)
5446 != AUTO_BOOLEAN_FALSE)
5447 remote_query_supported_append (&q, "memory-tagging+");
5448
5449 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5450 the qSupported:xmlRegisters=i386 handling. */
5451 if (remote_support_xml != NULL
5452 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5453 remote_query_supported_append (&q, remote_support_xml);
5454
5455 q = "qSupported:" + q;
5456 putpkt (q.c_str ());
5457
5458 getpkt (&rs->buf, 0);
5459
5460 /* If an error occured, warn, but do not return - just reset the
5461 buffer to empty and go on to disable features. */
5462 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5463 == PACKET_ERROR)
5464 {
5465 warning (_("Remote failure reply: %s"), rs->buf.data ());
5466 rs->buf[0] = 0;
5467 }
5468 }
5469
5470 memset (seen, 0, sizeof (seen));
5471
5472 next = rs->buf.data ();
5473 while (*next)
5474 {
5475 enum packet_support is_supported;
5476 char *p, *end, *name_end, *value;
5477
5478 /* First separate out this item from the rest of the packet. If
5479 there's another item after this, we overwrite the separator
5480 (terminated strings are much easier to work with). */
5481 p = next;
5482 end = strchr (p, ';');
5483 if (end == NULL)
5484 {
5485 end = p + strlen (p);
5486 next = end;
5487 }
5488 else
5489 {
5490 *end = '\0';
5491 next = end + 1;
5492
5493 if (end == p)
5494 {
5495 warning (_("empty item in \"qSupported\" response"));
5496 continue;
5497 }
5498 }
5499
5500 name_end = strchr (p, '=');
5501 if (name_end)
5502 {
5503 /* This is a name=value entry. */
5504 is_supported = PACKET_ENABLE;
5505 value = name_end + 1;
5506 *name_end = '\0';
5507 }
5508 else
5509 {
5510 value = NULL;
5511 switch (end[-1])
5512 {
5513 case '+':
5514 is_supported = PACKET_ENABLE;
5515 break;
5516
5517 case '-':
5518 is_supported = PACKET_DISABLE;
5519 break;
5520
5521 case '?':
5522 is_supported = PACKET_SUPPORT_UNKNOWN;
5523 break;
5524
5525 default:
5526 warning (_("unrecognized item \"%s\" "
5527 "in \"qSupported\" response"), p);
5528 continue;
5529 }
5530 end[-1] = '\0';
5531 }
5532
5533 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5534 if (strcmp (remote_protocol_features[i].name, p) == 0)
5535 {
5536 const struct protocol_feature *feature;
5537
5538 seen[i] = 1;
5539 feature = &remote_protocol_features[i];
5540 feature->func (this, feature, is_supported, value);
5541 break;
5542 }
5543 }
5544
5545 /* If we increased the packet size, make sure to increase the global
5546 buffer size also. We delay this until after parsing the entire
5547 qSupported packet, because this is the same buffer we were
5548 parsing. */
5549 if (rs->buf.size () < rs->explicit_packet_size)
5550 rs->buf.resize (rs->explicit_packet_size);
5551
5552 /* Handle the defaults for unmentioned features. */
5553 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5554 if (!seen[i])
5555 {
5556 const struct protocol_feature *feature;
5557
5558 feature = &remote_protocol_features[i];
5559 feature->func (this, feature, feature->default_support, NULL);
5560 }
5561 }
5562
5563 /* Serial QUIT handler for the remote serial descriptor.
5564
5565 Defers handling a Ctrl-C until we're done with the current
5566 command/response packet sequence, unless:
5567
5568 - We're setting up the connection. Don't send a remote interrupt
5569 request, as we're not fully synced yet. Quit immediately
5570 instead.
5571
5572 - The target has been resumed in the foreground
5573 (target_terminal::is_ours is false) with a synchronous resume
5574 packet, and we're blocked waiting for the stop reply, thus a
5575 Ctrl-C should be immediately sent to the target.
5576
5577 - We get a second Ctrl-C while still within the same serial read or
5578 write. In that case the serial is seemingly wedged --- offer to
5579 quit/disconnect.
5580
5581 - We see a second Ctrl-C without target response, after having
5582 previously interrupted the target. In that case the target/stub
5583 is probably wedged --- offer to quit/disconnect.
5584 */
5585
5586 void
5587 remote_target::remote_serial_quit_handler ()
5588 {
5589 struct remote_state *rs = get_remote_state ();
5590
5591 if (check_quit_flag ())
5592 {
5593 /* If we're starting up, we're not fully synced yet. Quit
5594 immediately. */
5595 if (rs->starting_up)
5596 quit ();
5597 else if (rs->got_ctrlc_during_io)
5598 {
5599 if (query (_("The target is not responding to GDB commands.\n"
5600 "Stop debugging it? ")))
5601 remote_unpush_and_throw (this);
5602 }
5603 /* If ^C has already been sent once, offer to disconnect. */
5604 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5605 interrupt_query ();
5606 /* All-stop protocol, and blocked waiting for stop reply. Send
5607 an interrupt request. */
5608 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5609 target_interrupt ();
5610 else
5611 rs->got_ctrlc_during_io = 1;
5612 }
5613 }
5614
5615 /* The remote_target that is current while the quit handler is
5616 overridden with remote_serial_quit_handler. */
5617 static remote_target *curr_quit_handler_target;
5618
5619 static void
5620 remote_serial_quit_handler ()
5621 {
5622 curr_quit_handler_target->remote_serial_quit_handler ();
5623 }
5624
5625 /* Remove the remote target from the target stack of each inferior
5626 that is using it. Upper targets depend on it so remove them
5627 first. */
5628
5629 static void
5630 remote_unpush_target (remote_target *target)
5631 {
5632 /* We have to unpush the target from all inferiors, even those that
5633 aren't running. */
5634 scoped_restore_current_inferior restore_current_inferior;
5635
5636 for (inferior *inf : all_inferiors (target))
5637 {
5638 switch_to_inferior_no_thread (inf);
5639 pop_all_targets_at_and_above (process_stratum);
5640 generic_mourn_inferior ();
5641 }
5642
5643 /* Don't rely on target_close doing this when the target is popped
5644 from the last remote inferior above, because something may be
5645 holding a reference to the target higher up on the stack, meaning
5646 target_close won't be called yet. We lost the connection to the
5647 target, so clear these now, otherwise we may later throw
5648 TARGET_CLOSE_ERROR while trying to tell the remote target to
5649 close the file. */
5650 fileio_handles_invalidate_target (target);
5651 }
5652
5653 static void
5654 remote_unpush_and_throw (remote_target *target)
5655 {
5656 remote_unpush_target (target);
5657 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5658 }
5659
5660 void
5661 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5662 {
5663 remote_target *curr_remote = get_current_remote_target ();
5664
5665 if (name == 0)
5666 error (_("To open a remote debug connection, you need to specify what\n"
5667 "serial device is attached to the remote system\n"
5668 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5669
5670 /* If we're connected to a running target, target_preopen will kill it.
5671 Ask this question first, before target_preopen has a chance to kill
5672 anything. */
5673 if (curr_remote != NULL && !target_has_execution ())
5674 {
5675 if (from_tty
5676 && !query (_("Already connected to a remote target. Disconnect? ")))
5677 error (_("Still connected."));
5678 }
5679
5680 /* Here the possibly existing remote target gets unpushed. */
5681 target_preopen (from_tty);
5682
5683 remote_fileio_reset ();
5684 reopen_exec_file ();
5685 reread_symbols ();
5686
5687 remote_target *remote
5688 = (extended_p ? new extended_remote_target () : new remote_target ());
5689 target_ops_up target_holder (remote);
5690
5691 remote_state *rs = remote->get_remote_state ();
5692
5693 /* See FIXME above. */
5694 if (!target_async_permitted)
5695 rs->wait_forever_enabled_p = 1;
5696
5697 rs->remote_desc = remote_serial_open (name);
5698 if (!rs->remote_desc)
5699 perror_with_name (name);
5700
5701 if (baud_rate != -1)
5702 {
5703 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5704 {
5705 /* The requested speed could not be set. Error out to
5706 top level after closing remote_desc. Take care to
5707 set remote_desc to NULL to avoid closing remote_desc
5708 more than once. */
5709 serial_close (rs->remote_desc);
5710 rs->remote_desc = NULL;
5711 perror_with_name (name);
5712 }
5713 }
5714
5715 serial_setparity (rs->remote_desc, serial_parity);
5716 serial_raw (rs->remote_desc);
5717
5718 /* If there is something sitting in the buffer we might take it as a
5719 response to a command, which would be bad. */
5720 serial_flush_input (rs->remote_desc);
5721
5722 if (from_tty)
5723 {
5724 puts_filtered ("Remote debugging using ");
5725 puts_filtered (name);
5726 puts_filtered ("\n");
5727 }
5728
5729 /* Switch to using the remote target now. */
5730 current_inferior ()->push_target (std::move (target_holder));
5731
5732 /* Register extra event sources in the event loop. */
5733 rs->remote_async_inferior_event_token
5734 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5735 "remote");
5736 rs->notif_state = remote_notif_state_allocate (remote);
5737
5738 /* Reset the target state; these things will be queried either by
5739 remote_query_supported or as they are needed. */
5740 reset_all_packet_configs_support ();
5741 rs->cached_wait_status = 0;
5742 rs->explicit_packet_size = 0;
5743 rs->noack_mode = 0;
5744 rs->extended = extended_p;
5745 rs->waiting_for_stop_reply = 0;
5746 rs->ctrlc_pending_p = 0;
5747 rs->got_ctrlc_during_io = 0;
5748
5749 rs->general_thread = not_sent_ptid;
5750 rs->continue_thread = not_sent_ptid;
5751 rs->remote_traceframe_number = -1;
5752
5753 rs->last_resume_exec_dir = EXEC_FORWARD;
5754
5755 /* Probe for ability to use "ThreadInfo" query, as required. */
5756 rs->use_threadinfo_query = 1;
5757 rs->use_threadextra_query = 1;
5758
5759 rs->readahead_cache.invalidate ();
5760
5761 if (target_async_permitted)
5762 {
5763 /* FIXME: cagney/1999-09-23: During the initial connection it is
5764 assumed that the target is already ready and able to respond to
5765 requests. Unfortunately remote_start_remote() eventually calls
5766 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5767 around this. Eventually a mechanism that allows
5768 wait_for_inferior() to expect/get timeouts will be
5769 implemented. */
5770 rs->wait_forever_enabled_p = 0;
5771 }
5772
5773 /* First delete any symbols previously loaded from shared libraries. */
5774 no_shared_libraries (NULL, 0);
5775
5776 /* Start the remote connection. If error() or QUIT, discard this
5777 target (we'd otherwise be in an inconsistent state) and then
5778 propogate the error on up the exception chain. This ensures that
5779 the caller doesn't stumble along blindly assuming that the
5780 function succeeded. The CLI doesn't have this problem but other
5781 UI's, such as MI do.
5782
5783 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5784 this function should return an error indication letting the
5785 caller restore the previous state. Unfortunately the command
5786 ``target remote'' is directly wired to this function making that
5787 impossible. On a positive note, the CLI side of this problem has
5788 been fixed - the function set_cmd_context() makes it possible for
5789 all the ``target ....'' commands to share a common callback
5790 function. See cli-dump.c. */
5791 {
5792
5793 try
5794 {
5795 remote->start_remote (from_tty, extended_p);
5796 }
5797 catch (const gdb_exception &ex)
5798 {
5799 /* Pop the partially set up target - unless something else did
5800 already before throwing the exception. */
5801 if (ex.error != TARGET_CLOSE_ERROR)
5802 remote_unpush_target (remote);
5803 throw;
5804 }
5805 }
5806
5807 remote_btrace_reset (rs);
5808
5809 if (target_async_permitted)
5810 rs->wait_forever_enabled_p = 1;
5811 }
5812
5813 /* Detach the specified process. */
5814
5815 void
5816 remote_target::remote_detach_pid (int pid)
5817 {
5818 struct remote_state *rs = get_remote_state ();
5819
5820 /* This should not be necessary, but the handling for D;PID in
5821 GDBserver versions prior to 8.2 incorrectly assumes that the
5822 selected process points to the same process we're detaching,
5823 leading to misbehavior (and possibly GDBserver crashing) when it
5824 does not. Since it's easy and cheap, work around it by forcing
5825 GDBserver to select GDB's current process. */
5826 set_general_process ();
5827
5828 if (remote_multi_process_p (rs))
5829 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5830 else
5831 strcpy (rs->buf.data (), "D");
5832
5833 putpkt (rs->buf);
5834 getpkt (&rs->buf, 0);
5835
5836 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5837 ;
5838 else if (rs->buf[0] == '\0')
5839 error (_("Remote doesn't know how to detach"));
5840 else
5841 error (_("Can't detach process."));
5842 }
5843
5844 /* This detaches a program to which we previously attached, using
5845 inferior_ptid to identify the process. After this is done, GDB
5846 can be used to debug some other program. We better not have left
5847 any breakpoints in the target program or it'll die when it hits
5848 one. */
5849
5850 void
5851 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5852 {
5853 int pid = inferior_ptid.pid ();
5854 struct remote_state *rs = get_remote_state ();
5855 int is_fork_parent;
5856
5857 if (!target_has_execution ())
5858 error (_("No process to detach from."));
5859
5860 target_announce_detach (from_tty);
5861
5862 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5863 {
5864 /* If we're in breakpoints-always-inserted mode, or the inferior
5865 is running, we have to remove breakpoints before detaching.
5866 We don't do this in common code instead because not all
5867 targets support removing breakpoints while the target is
5868 running. The remote target / gdbserver does, though. */
5869 remove_breakpoints_inf (current_inferior ());
5870 }
5871
5872 /* Tell the remote target to detach. */
5873 remote_detach_pid (pid);
5874
5875 /* Exit only if this is the only active inferior. */
5876 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5877 puts_filtered (_("Ending remote debugging.\n"));
5878
5879 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5880
5881 /* Check to see if we are detaching a fork parent. Note that if we
5882 are detaching a fork child, tp == NULL. */
5883 is_fork_parent = (tp != NULL
5884 && tp->pending_follow.kind () == TARGET_WAITKIND_FORKED);
5885
5886 /* If doing detach-on-fork, we don't mourn, because that will delete
5887 breakpoints that should be available for the followed inferior. */
5888 if (!is_fork_parent)
5889 {
5890 /* Save the pid as a string before mourning, since that will
5891 unpush the remote target, and we need the string after. */
5892 std::string infpid = target_pid_to_str (ptid_t (pid));
5893
5894 target_mourn_inferior (inferior_ptid);
5895 if (print_inferior_events)
5896 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5897 inf->num, infpid.c_str ());
5898 }
5899 else
5900 {
5901 switch_to_no_thread ();
5902 detach_inferior (current_inferior ());
5903 }
5904 }
5905
5906 void
5907 remote_target::detach (inferior *inf, int from_tty)
5908 {
5909 remote_detach_1 (inf, from_tty);
5910 }
5911
5912 void
5913 extended_remote_target::detach (inferior *inf, int from_tty)
5914 {
5915 remote_detach_1 (inf, from_tty);
5916 }
5917
5918 /* Target follow-fork function for remote targets. On entry, and
5919 at return, the current inferior is the fork parent.
5920
5921 Note that although this is currently only used for extended-remote,
5922 it is named remote_follow_fork in anticipation of using it for the
5923 remote target as well. */
5924
5925 void
5926 remote_target::follow_fork (inferior *child_inf, ptid_t child_ptid,
5927 target_waitkind fork_kind, bool follow_child,
5928 bool detach_fork)
5929 {
5930 process_stratum_target::follow_fork (child_inf, child_ptid,
5931 fork_kind, follow_child, detach_fork);
5932
5933 struct remote_state *rs = get_remote_state ();
5934
5935 if ((fork_kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5936 || (fork_kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5937 {
5938 /* When following the parent and detaching the child, we detach
5939 the child here. For the case of following the child and
5940 detaching the parent, the detach is done in the target-
5941 independent follow fork code in infrun.c. We can't use
5942 target_detach when detaching an unfollowed child because
5943 the client side doesn't know anything about the child. */
5944 if (detach_fork && !follow_child)
5945 {
5946 /* Detach the fork child. */
5947 remote_detach_pid (child_ptid.pid ());
5948 }
5949 }
5950 }
5951
5952 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5953 in the program space of the new inferior. */
5954
5955 void
5956 remote_target::follow_exec (inferior *follow_inf, ptid_t ptid,
5957 const char *execd_pathname)
5958 {
5959 process_stratum_target::follow_exec (follow_inf, ptid, execd_pathname);
5960
5961 /* We know that this is a target file name, so if it has the "target:"
5962 prefix we strip it off before saving it in the program space. */
5963 if (is_target_filename (execd_pathname))
5964 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5965
5966 set_pspace_remote_exec_file (follow_inf->pspace, execd_pathname);
5967 }
5968
5969 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5970
5971 void
5972 remote_target::disconnect (const char *args, int from_tty)
5973 {
5974 if (args)
5975 error (_("Argument given to \"disconnect\" when remotely debugging."));
5976
5977 /* Make sure we unpush even the extended remote targets. Calling
5978 target_mourn_inferior won't unpush, and
5979 remote_target::mourn_inferior won't unpush if there is more than
5980 one inferior left. */
5981 remote_unpush_target (this);
5982
5983 if (from_tty)
5984 puts_filtered ("Ending remote debugging.\n");
5985 }
5986
5987 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5988 be chatty about it. */
5989
5990 void
5991 extended_remote_target::attach (const char *args, int from_tty)
5992 {
5993 struct remote_state *rs = get_remote_state ();
5994 int pid;
5995 char *wait_status = NULL;
5996
5997 pid = parse_pid_to_attach (args);
5998
5999 /* Remote PID can be freely equal to getpid, do not check it here the same
6000 way as in other targets. */
6001
6002 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
6003 error (_("This target does not support attaching to a process"));
6004
6005 if (from_tty)
6006 {
6007 const char *exec_file = get_exec_file (0);
6008
6009 if (exec_file)
6010 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
6011 target_pid_to_str (ptid_t (pid)).c_str ());
6012 else
6013 printf_unfiltered (_("Attaching to %s\n"),
6014 target_pid_to_str (ptid_t (pid)).c_str ());
6015 }
6016
6017 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
6018 putpkt (rs->buf);
6019 getpkt (&rs->buf, 0);
6020
6021 switch (packet_ok (rs->buf,
6022 &remote_protocol_packets[PACKET_vAttach]))
6023 {
6024 case PACKET_OK:
6025 if (!target_is_non_stop_p ())
6026 {
6027 /* Save the reply for later. */
6028 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
6029 strcpy (wait_status, rs->buf.data ());
6030 }
6031 else if (strcmp (rs->buf.data (), "OK") != 0)
6032 error (_("Attaching to %s failed with: %s"),
6033 target_pid_to_str (ptid_t (pid)).c_str (),
6034 rs->buf.data ());
6035 break;
6036 case PACKET_UNKNOWN:
6037 error (_("This target does not support attaching to a process"));
6038 default:
6039 error (_("Attaching to %s failed"),
6040 target_pid_to_str (ptid_t (pid)).c_str ());
6041 }
6042
6043 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
6044
6045 inferior_ptid = ptid_t (pid);
6046
6047 if (target_is_non_stop_p ())
6048 {
6049 /* Get list of threads. */
6050 update_thread_list ();
6051
6052 thread_info *thread = first_thread_of_inferior (current_inferior ());
6053 if (thread != nullptr)
6054 switch_to_thread (thread);
6055
6056 /* Invalidate our notion of the remote current thread. */
6057 record_currthread (rs, minus_one_ptid);
6058 }
6059 else
6060 {
6061 /* Now, if we have thread information, update the main thread's
6062 ptid. */
6063 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6064
6065 /* Add the main thread to the thread list. */
6066 thread_info *thr = add_thread_silent (this, curr_ptid);
6067
6068 switch_to_thread (thr);
6069
6070 /* Don't consider the thread stopped until we've processed the
6071 saved stop reply. */
6072 set_executing (this, thr->ptid, true);
6073 }
6074
6075 /* Next, if the target can specify a description, read it. We do
6076 this before anything involving memory or registers. */
6077 target_find_description ();
6078
6079 if (!target_is_non_stop_p ())
6080 {
6081 /* Use the previously fetched status. */
6082 gdb_assert (wait_status != NULL);
6083
6084 if (target_can_async_p ())
6085 {
6086 struct notif_event *reply
6087 = remote_notif_parse (this, &notif_client_stop, wait_status);
6088
6089 push_stop_reply ((struct stop_reply *) reply);
6090
6091 target_async (1);
6092 }
6093 else
6094 {
6095 gdb_assert (wait_status != NULL);
6096 strcpy (rs->buf.data (), wait_status);
6097 rs->cached_wait_status = 1;
6098 }
6099 }
6100 else
6101 {
6102 gdb_assert (wait_status == NULL);
6103
6104 gdb_assert (target_can_async_p ());
6105 target_async (1);
6106 }
6107 }
6108
6109 /* Implementation of the to_post_attach method. */
6110
6111 void
6112 extended_remote_target::post_attach (int pid)
6113 {
6114 /* Get text, data & bss offsets. */
6115 get_offsets ();
6116
6117 /* In certain cases GDB might not have had the chance to start
6118 symbol lookup up until now. This could happen if the debugged
6119 binary is not using shared libraries, the vsyscall page is not
6120 present (on Linux) and the binary itself hadn't changed since the
6121 debugging process was started. */
6122 if (current_program_space->symfile_object_file != NULL)
6123 remote_check_symbols();
6124 }
6125
6126 \f
6127 /* Check for the availability of vCont. This function should also check
6128 the response. */
6129
6130 void
6131 remote_target::remote_vcont_probe ()
6132 {
6133 remote_state *rs = get_remote_state ();
6134 char *buf;
6135
6136 strcpy (rs->buf.data (), "vCont?");
6137 putpkt (rs->buf);
6138 getpkt (&rs->buf, 0);
6139 buf = rs->buf.data ();
6140
6141 /* Make sure that the features we assume are supported. */
6142 if (startswith (buf, "vCont"))
6143 {
6144 char *p = &buf[5];
6145 int support_c, support_C;
6146
6147 rs->supports_vCont.s = 0;
6148 rs->supports_vCont.S = 0;
6149 support_c = 0;
6150 support_C = 0;
6151 rs->supports_vCont.t = 0;
6152 rs->supports_vCont.r = 0;
6153 while (p && *p == ';')
6154 {
6155 p++;
6156 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6157 rs->supports_vCont.s = 1;
6158 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6159 rs->supports_vCont.S = 1;
6160 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6161 support_c = 1;
6162 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6163 support_C = 1;
6164 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6165 rs->supports_vCont.t = 1;
6166 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6167 rs->supports_vCont.r = 1;
6168
6169 p = strchr (p, ';');
6170 }
6171
6172 /* If c, and C are not all supported, we can't use vCont. Clearing
6173 BUF will make packet_ok disable the packet. */
6174 if (!support_c || !support_C)
6175 buf[0] = 0;
6176 }
6177
6178 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6179 rs->supports_vCont_probed = true;
6180 }
6181
6182 /* Helper function for building "vCont" resumptions. Write a
6183 resumption to P. ENDP points to one-passed-the-end of the buffer
6184 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6185 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6186 resumed thread should be single-stepped and/or signalled. If PTID
6187 equals minus_one_ptid, then all threads are resumed; if PTID
6188 represents a process, then all threads of the process are resumed;
6189 the thread to be stepped and/or signalled is given in the global
6190 INFERIOR_PTID. */
6191
6192 char *
6193 remote_target::append_resumption (char *p, char *endp,
6194 ptid_t ptid, int step, gdb_signal siggnal)
6195 {
6196 struct remote_state *rs = get_remote_state ();
6197
6198 if (step && siggnal != GDB_SIGNAL_0)
6199 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6200 else if (step
6201 /* GDB is willing to range step. */
6202 && use_range_stepping
6203 /* Target supports range stepping. */
6204 && rs->supports_vCont.r
6205 /* We don't currently support range stepping multiple
6206 threads with a wildcard (though the protocol allows it,
6207 so stubs shouldn't make an active effort to forbid
6208 it). */
6209 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6210 {
6211 struct thread_info *tp;
6212
6213 if (ptid == minus_one_ptid)
6214 {
6215 /* If we don't know about the target thread's tid, then
6216 we're resuming magic_null_ptid (see caller). */
6217 tp = find_thread_ptid (this, magic_null_ptid);
6218 }
6219 else
6220 tp = find_thread_ptid (this, ptid);
6221 gdb_assert (tp != NULL);
6222
6223 if (tp->control.may_range_step)
6224 {
6225 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6226
6227 p += xsnprintf (p, endp - p, ";r%s,%s",
6228 phex_nz (tp->control.step_range_start,
6229 addr_size),
6230 phex_nz (tp->control.step_range_end,
6231 addr_size));
6232 }
6233 else
6234 p += xsnprintf (p, endp - p, ";s");
6235 }
6236 else if (step)
6237 p += xsnprintf (p, endp - p, ";s");
6238 else if (siggnal != GDB_SIGNAL_0)
6239 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6240 else
6241 p += xsnprintf (p, endp - p, ";c");
6242
6243 if (remote_multi_process_p (rs) && ptid.is_pid ())
6244 {
6245 ptid_t nptid;
6246
6247 /* All (-1) threads of process. */
6248 nptid = ptid_t (ptid.pid (), -1);
6249
6250 p += xsnprintf (p, endp - p, ":");
6251 p = write_ptid (p, endp, nptid);
6252 }
6253 else if (ptid != minus_one_ptid)
6254 {
6255 p += xsnprintf (p, endp - p, ":");
6256 p = write_ptid (p, endp, ptid);
6257 }
6258
6259 return p;
6260 }
6261
6262 /* Clear the thread's private info on resume. */
6263
6264 static void
6265 resume_clear_thread_private_info (struct thread_info *thread)
6266 {
6267 if (thread->priv != NULL)
6268 {
6269 remote_thread_info *priv = get_remote_thread_info (thread);
6270
6271 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6272 priv->watch_data_address = 0;
6273 }
6274 }
6275
6276 /* Append a vCont continue-with-signal action for threads that have a
6277 non-zero stop signal. */
6278
6279 char *
6280 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6281 ptid_t ptid)
6282 {
6283 for (thread_info *thread : all_non_exited_threads (this, ptid))
6284 if (inferior_ptid != thread->ptid
6285 && thread->stop_signal () != GDB_SIGNAL_0)
6286 {
6287 p = append_resumption (p, endp, thread->ptid,
6288 0, thread->stop_signal ());
6289 thread->set_stop_signal (GDB_SIGNAL_0);
6290 resume_clear_thread_private_info (thread);
6291 }
6292
6293 return p;
6294 }
6295
6296 /* Set the target running, using the packets that use Hc
6297 (c/s/C/S). */
6298
6299 void
6300 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6301 gdb_signal siggnal)
6302 {
6303 struct remote_state *rs = get_remote_state ();
6304 char *buf;
6305
6306 rs->last_sent_signal = siggnal;
6307 rs->last_sent_step = step;
6308
6309 /* The c/s/C/S resume packets use Hc, so set the continue
6310 thread. */
6311 if (ptid == minus_one_ptid)
6312 set_continue_thread (any_thread_ptid);
6313 else
6314 set_continue_thread (ptid);
6315
6316 for (thread_info *thread : all_non_exited_threads (this))
6317 resume_clear_thread_private_info (thread);
6318
6319 buf = rs->buf.data ();
6320 if (::execution_direction == EXEC_REVERSE)
6321 {
6322 /* We don't pass signals to the target in reverse exec mode. */
6323 if (info_verbose && siggnal != GDB_SIGNAL_0)
6324 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6325 siggnal);
6326
6327 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6328 error (_("Remote reverse-step not supported."));
6329 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6330 error (_("Remote reverse-continue not supported."));
6331
6332 strcpy (buf, step ? "bs" : "bc");
6333 }
6334 else if (siggnal != GDB_SIGNAL_0)
6335 {
6336 buf[0] = step ? 'S' : 'C';
6337 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6338 buf[2] = tohex (((int) siggnal) & 0xf);
6339 buf[3] = '\0';
6340 }
6341 else
6342 strcpy (buf, step ? "s" : "c");
6343
6344 putpkt (buf);
6345 }
6346
6347 /* Resume the remote inferior by using a "vCont" packet. The thread
6348 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6349 resumed thread should be single-stepped and/or signalled. If PTID
6350 equals minus_one_ptid, then all threads are resumed; the thread to
6351 be stepped and/or signalled is given in the global INFERIOR_PTID.
6352 This function returns non-zero iff it resumes the inferior.
6353
6354 This function issues a strict subset of all possible vCont commands
6355 at the moment. */
6356
6357 int
6358 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6359 enum gdb_signal siggnal)
6360 {
6361 struct remote_state *rs = get_remote_state ();
6362 char *p;
6363 char *endp;
6364
6365 /* No reverse execution actions defined for vCont. */
6366 if (::execution_direction == EXEC_REVERSE)
6367 return 0;
6368
6369 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6370 remote_vcont_probe ();
6371
6372 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6373 return 0;
6374
6375 p = rs->buf.data ();
6376 endp = p + get_remote_packet_size ();
6377
6378 /* If we could generate a wider range of packets, we'd have to worry
6379 about overflowing BUF. Should there be a generic
6380 "multi-part-packet" packet? */
6381
6382 p += xsnprintf (p, endp - p, "vCont");
6383
6384 if (ptid == magic_null_ptid)
6385 {
6386 /* MAGIC_NULL_PTID means that we don't have any active threads,
6387 so we don't have any TID numbers the inferior will
6388 understand. Make sure to only send forms that do not specify
6389 a TID. */
6390 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6391 }
6392 else if (ptid == minus_one_ptid || ptid.is_pid ())
6393 {
6394 /* Resume all threads (of all processes, or of a single
6395 process), with preference for INFERIOR_PTID. This assumes
6396 inferior_ptid belongs to the set of all threads we are about
6397 to resume. */
6398 if (step || siggnal != GDB_SIGNAL_0)
6399 {
6400 /* Step inferior_ptid, with or without signal. */
6401 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6402 }
6403
6404 /* Also pass down any pending signaled resumption for other
6405 threads not the current. */
6406 p = append_pending_thread_resumptions (p, endp, ptid);
6407
6408 /* And continue others without a signal. */
6409 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6410 }
6411 else
6412 {
6413 /* Scheduler locking; resume only PTID. */
6414 append_resumption (p, endp, ptid, step, siggnal);
6415 }
6416
6417 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6418 putpkt (rs->buf);
6419
6420 if (target_is_non_stop_p ())
6421 {
6422 /* In non-stop, the stub replies to vCont with "OK". The stop
6423 reply will be reported asynchronously by means of a `%Stop'
6424 notification. */
6425 getpkt (&rs->buf, 0);
6426 if (strcmp (rs->buf.data (), "OK") != 0)
6427 error (_("Unexpected vCont reply in non-stop mode: %s"),
6428 rs->buf.data ());
6429 }
6430
6431 return 1;
6432 }
6433
6434 /* Tell the remote machine to resume. */
6435
6436 void
6437 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6438 {
6439 struct remote_state *rs = get_remote_state ();
6440
6441 /* When connected in non-stop mode, the core resumes threads
6442 individually. Resuming remote threads directly in target_resume
6443 would thus result in sending one packet per thread. Instead, to
6444 minimize roundtrip latency, here we just store the resume
6445 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6446 resumption will be done in remote_target::commit_resume, where we'll be
6447 able to do vCont action coalescing. */
6448 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6449 {
6450 remote_thread_info *remote_thr;
6451
6452 if (minus_one_ptid == ptid || ptid.is_pid ())
6453 remote_thr = get_remote_thread_info (this, inferior_ptid);
6454 else
6455 remote_thr = get_remote_thread_info (this, ptid);
6456
6457 /* We don't expect the core to ask to resume an already resumed (from
6458 its point of view) thread. */
6459 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6460
6461 remote_thr->set_resumed_pending_vcont (step, siggnal);
6462 return;
6463 }
6464
6465 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6466 (explained in remote-notif.c:handle_notification) so
6467 remote_notif_process is not called. We need find a place where
6468 it is safe to start a 'vNotif' sequence. It is good to do it
6469 before resuming inferior, because inferior was stopped and no RSP
6470 traffic at that moment. */
6471 if (!target_is_non_stop_p ())
6472 remote_notif_process (rs->notif_state, &notif_client_stop);
6473
6474 rs->last_resume_exec_dir = ::execution_direction;
6475
6476 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6477 if (!remote_resume_with_vcont (ptid, step, siggnal))
6478 remote_resume_with_hc (ptid, step, siggnal);
6479
6480 /* Update resumed state tracked by the remote target. */
6481 for (thread_info *tp : all_non_exited_threads (this, ptid))
6482 get_remote_thread_info (tp)->set_resumed ();
6483
6484 /* We are about to start executing the inferior, let's register it
6485 with the event loop. NOTE: this is the one place where all the
6486 execution commands end up. We could alternatively do this in each
6487 of the execution commands in infcmd.c. */
6488 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6489 into infcmd.c in order to allow inferior function calls to work
6490 NOT asynchronously. */
6491 if (target_can_async_p ())
6492 target_async (1);
6493
6494 /* We've just told the target to resume. The remote server will
6495 wait for the inferior to stop, and then send a stop reply. In
6496 the mean time, we can't start another command/query ourselves
6497 because the stub wouldn't be ready to process it. This applies
6498 only to the base all-stop protocol, however. In non-stop (which
6499 only supports vCont), the stub replies with an "OK", and is
6500 immediate able to process further serial input. */
6501 if (!target_is_non_stop_p ())
6502 rs->waiting_for_stop_reply = 1;
6503 }
6504
6505 static int is_pending_fork_parent_thread (struct thread_info *thread);
6506
6507 /* Private per-inferior info for target remote processes. */
6508
6509 struct remote_inferior : public private_inferior
6510 {
6511 /* Whether we can send a wildcard vCont for this process. */
6512 bool may_wildcard_vcont = true;
6513 };
6514
6515 /* Get the remote private inferior data associated to INF. */
6516
6517 static remote_inferior *
6518 get_remote_inferior (inferior *inf)
6519 {
6520 if (inf->priv == NULL)
6521 inf->priv.reset (new remote_inferior);
6522
6523 return static_cast<remote_inferior *> (inf->priv.get ());
6524 }
6525
6526 struct stop_reply : public notif_event
6527 {
6528 ~stop_reply ();
6529
6530 /* The identifier of the thread about this event */
6531 ptid_t ptid;
6532
6533 /* The remote state this event is associated with. When the remote
6534 connection, represented by a remote_state object, is closed,
6535 all the associated stop_reply events should be released. */
6536 struct remote_state *rs;
6537
6538 struct target_waitstatus ws;
6539
6540 /* The architecture associated with the expedited registers. */
6541 gdbarch *arch;
6542
6543 /* Expedited registers. This makes remote debugging a bit more
6544 efficient for those targets that provide critical registers as
6545 part of their normal status mechanism (as another roundtrip to
6546 fetch them is avoided). */
6547 std::vector<cached_reg_t> regcache;
6548
6549 enum target_stop_reason stop_reason;
6550
6551 CORE_ADDR watch_data_address;
6552
6553 int core;
6554 };
6555
6556 /* Class used to track the construction of a vCont packet in the
6557 outgoing packet buffer. This is used to send multiple vCont
6558 packets if we have more actions than would fit a single packet. */
6559
6560 class vcont_builder
6561 {
6562 public:
6563 explicit vcont_builder (remote_target *remote)
6564 : m_remote (remote)
6565 {
6566 restart ();
6567 }
6568
6569 void flush ();
6570 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6571
6572 private:
6573 void restart ();
6574
6575 /* The remote target. */
6576 remote_target *m_remote;
6577
6578 /* Pointer to the first action. P points here if no action has been
6579 appended yet. */
6580 char *m_first_action;
6581
6582 /* Where the next action will be appended. */
6583 char *m_p;
6584
6585 /* The end of the buffer. Must never write past this. */
6586 char *m_endp;
6587 };
6588
6589 /* Prepare the outgoing buffer for a new vCont packet. */
6590
6591 void
6592 vcont_builder::restart ()
6593 {
6594 struct remote_state *rs = m_remote->get_remote_state ();
6595
6596 m_p = rs->buf.data ();
6597 m_endp = m_p + m_remote->get_remote_packet_size ();
6598 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6599 m_first_action = m_p;
6600 }
6601
6602 /* If the vCont packet being built has any action, send it to the
6603 remote end. */
6604
6605 void
6606 vcont_builder::flush ()
6607 {
6608 struct remote_state *rs;
6609
6610 if (m_p == m_first_action)
6611 return;
6612
6613 rs = m_remote->get_remote_state ();
6614 m_remote->putpkt (rs->buf);
6615 m_remote->getpkt (&rs->buf, 0);
6616 if (strcmp (rs->buf.data (), "OK") != 0)
6617 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6618 }
6619
6620 /* The largest action is range-stepping, with its two addresses. This
6621 is more than sufficient. If a new, bigger action is created, it'll
6622 quickly trigger a failed assertion in append_resumption (and we'll
6623 just bump this). */
6624 #define MAX_ACTION_SIZE 200
6625
6626 /* Append a new vCont action in the outgoing packet being built. If
6627 the action doesn't fit the packet along with previous actions, push
6628 what we've got so far to the remote end and start over a new vCont
6629 packet (with the new action). */
6630
6631 void
6632 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6633 {
6634 char buf[MAX_ACTION_SIZE + 1];
6635
6636 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6637 ptid, step, siggnal);
6638
6639 /* Check whether this new action would fit in the vCont packet along
6640 with previous actions. If not, send what we've got so far and
6641 start a new vCont packet. */
6642 size_t rsize = endp - buf;
6643 if (rsize > m_endp - m_p)
6644 {
6645 flush ();
6646 restart ();
6647
6648 /* Should now fit. */
6649 gdb_assert (rsize <= m_endp - m_p);
6650 }
6651
6652 memcpy (m_p, buf, rsize);
6653 m_p += rsize;
6654 *m_p = '\0';
6655 }
6656
6657 /* to_commit_resume implementation. */
6658
6659 void
6660 remote_target::commit_resumed ()
6661 {
6662 /* If connected in all-stop mode, we'd send the remote resume
6663 request directly from remote_resume. Likewise if
6664 reverse-debugging, as there are no defined vCont actions for
6665 reverse execution. */
6666 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6667 return;
6668
6669 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6670 instead of resuming all threads of each process individually.
6671 However, if any thread of a process must remain halted, we can't
6672 send wildcard resumes and must send one action per thread.
6673
6674 Care must be taken to not resume threads/processes the server
6675 side already told us are stopped, but the core doesn't know about
6676 yet, because the events are still in the vStopped notification
6677 queue. For example:
6678
6679 #1 => vCont s:p1.1;c
6680 #2 <= OK
6681 #3 <= %Stopped T05 p1.1
6682 #4 => vStopped
6683 #5 <= T05 p1.2
6684 #6 => vStopped
6685 #7 <= OK
6686 #8 (infrun handles the stop for p1.1 and continues stepping)
6687 #9 => vCont s:p1.1;c
6688
6689 The last vCont above would resume thread p1.2 by mistake, because
6690 the server has no idea that the event for p1.2 had not been
6691 handled yet.
6692
6693 The server side must similarly ignore resume actions for the
6694 thread that has a pending %Stopped notification (and any other
6695 threads with events pending), until GDB acks the notification
6696 with vStopped. Otherwise, e.g., the following case is
6697 mishandled:
6698
6699 #1 => g (or any other packet)
6700 #2 <= [registers]
6701 #3 <= %Stopped T05 p1.2
6702 #4 => vCont s:p1.1;c
6703 #5 <= OK
6704
6705 Above, the server must not resume thread p1.2. GDB can't know
6706 that p1.2 stopped until it acks the %Stopped notification, and
6707 since from GDB's perspective all threads should be running, it
6708 sends a "c" action.
6709
6710 Finally, special care must also be given to handling fork/vfork
6711 events. A (v)fork event actually tells us that two processes
6712 stopped -- the parent and the child. Until we follow the fork,
6713 we must not resume the child. Therefore, if we have a pending
6714 fork follow, we must not send a global wildcard resume action
6715 (vCont;c). We can still send process-wide wildcards though. */
6716
6717 /* Start by assuming a global wildcard (vCont;c) is possible. */
6718 bool may_global_wildcard_vcont = true;
6719
6720 /* And assume every process is individually wildcard-able too. */
6721 for (inferior *inf : all_non_exited_inferiors (this))
6722 {
6723 remote_inferior *priv = get_remote_inferior (inf);
6724
6725 priv->may_wildcard_vcont = true;
6726 }
6727
6728 /* Check for any pending events (not reported or processed yet) and
6729 disable process and global wildcard resumes appropriately. */
6730 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6731
6732 bool any_pending_vcont_resume = false;
6733
6734 for (thread_info *tp : all_non_exited_threads (this))
6735 {
6736 remote_thread_info *priv = get_remote_thread_info (tp);
6737
6738 /* If a thread of a process is not meant to be resumed, then we
6739 can't wildcard that process. */
6740 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6741 {
6742 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6743
6744 /* And if we can't wildcard a process, we can't wildcard
6745 everything either. */
6746 may_global_wildcard_vcont = false;
6747 continue;
6748 }
6749
6750 if (priv->get_resume_state () == resume_state::RESUMED_PENDING_VCONT)
6751 any_pending_vcont_resume = true;
6752
6753 /* If a thread is the parent of an unfollowed fork, then we
6754 can't do a global wildcard, as that would resume the fork
6755 child. */
6756 if (is_pending_fork_parent_thread (tp))
6757 may_global_wildcard_vcont = false;
6758 }
6759
6760 /* We didn't have any resumed thread pending a vCont resume, so nothing to
6761 do. */
6762 if (!any_pending_vcont_resume)
6763 return;
6764
6765 /* Now let's build the vCont packet(s). Actions must be appended
6766 from narrower to wider scopes (thread -> process -> global). If
6767 we end up with too many actions for a single packet vcont_builder
6768 flushes the current vCont packet to the remote side and starts a
6769 new one. */
6770 struct vcont_builder vcont_builder (this);
6771
6772 /* Threads first. */
6773 for (thread_info *tp : all_non_exited_threads (this))
6774 {
6775 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6776
6777 /* If the thread was previously vCont-resumed, no need to send a specific
6778 action for it. If we didn't receive a resume request for it, don't
6779 send an action for it either. */
6780 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6781 continue;
6782
6783 gdb_assert (!thread_is_in_step_over_chain (tp));
6784
6785 /* We should never be commit-resuming a thread that has a stop reply.
6786 Otherwise, we would end up reporting a stop event for a thread while
6787 it is running on the remote target. */
6788 remote_state *rs = get_remote_state ();
6789 for (const auto &stop_reply : rs->stop_reply_queue)
6790 gdb_assert (stop_reply->ptid != tp->ptid);
6791
6792 const resumed_pending_vcont_info &info
6793 = remote_thr->resumed_pending_vcont_info ();
6794
6795 /* Check if we need to send a specific action for this thread. If not,
6796 it will be included in a wildcard resume instead. */
6797 if (info.step || info.sig != GDB_SIGNAL_0
6798 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6799 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6800
6801 remote_thr->set_resumed ();
6802 }
6803
6804 /* Now check whether we can send any process-wide wildcard. This is
6805 to avoid sending a global wildcard in the case nothing is
6806 supposed to be resumed. */
6807 bool any_process_wildcard = false;
6808
6809 for (inferior *inf : all_non_exited_inferiors (this))
6810 {
6811 if (get_remote_inferior (inf)->may_wildcard_vcont)
6812 {
6813 any_process_wildcard = true;
6814 break;
6815 }
6816 }
6817
6818 if (any_process_wildcard)
6819 {
6820 /* If all processes are wildcard-able, then send a single "c"
6821 action, otherwise, send an "all (-1) threads of process"
6822 continue action for each running process, if any. */
6823 if (may_global_wildcard_vcont)
6824 {
6825 vcont_builder.push_action (minus_one_ptid,
6826 false, GDB_SIGNAL_0);
6827 }
6828 else
6829 {
6830 for (inferior *inf : all_non_exited_inferiors (this))
6831 {
6832 if (get_remote_inferior (inf)->may_wildcard_vcont)
6833 {
6834 vcont_builder.push_action (ptid_t (inf->pid),
6835 false, GDB_SIGNAL_0);
6836 }
6837 }
6838 }
6839 }
6840
6841 vcont_builder.flush ();
6842 }
6843
6844 /* Implementation of target_has_pending_events. */
6845
6846 bool
6847 remote_target::has_pending_events ()
6848 {
6849 if (target_can_async_p ())
6850 {
6851 remote_state *rs = get_remote_state ();
6852
6853 if (async_event_handler_marked (rs->remote_async_inferior_event_token))
6854 return true;
6855
6856 /* Note that BUFCNT can be negative, indicating sticky
6857 error. */
6858 if (rs->remote_desc->bufcnt != 0)
6859 return true;
6860 }
6861 return false;
6862 }
6863
6864 \f
6865
6866 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6867 thread, all threads of a remote process, or all threads of all
6868 processes. */
6869
6870 void
6871 remote_target::remote_stop_ns (ptid_t ptid)
6872 {
6873 struct remote_state *rs = get_remote_state ();
6874 char *p = rs->buf.data ();
6875 char *endp = p + get_remote_packet_size ();
6876
6877 /* If any thread that needs to stop was resumed but pending a vCont
6878 resume, generate a phony stop_reply. However, first check
6879 whether the thread wasn't resumed with a signal. Generating a
6880 phony stop in that case would result in losing the signal. */
6881 bool needs_commit = false;
6882 for (thread_info *tp : all_non_exited_threads (this, ptid))
6883 {
6884 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6885
6886 if (remote_thr->get_resume_state ()
6887 == resume_state::RESUMED_PENDING_VCONT)
6888 {
6889 const resumed_pending_vcont_info &info
6890 = remote_thr->resumed_pending_vcont_info ();
6891 if (info.sig != GDB_SIGNAL_0)
6892 {
6893 /* This signal must be forwarded to the inferior. We
6894 could commit-resume just this thread, but its simpler
6895 to just commit-resume everything. */
6896 needs_commit = true;
6897 break;
6898 }
6899 }
6900 }
6901
6902 if (needs_commit)
6903 commit_resumed ();
6904 else
6905 for (thread_info *tp : all_non_exited_threads (this, ptid))
6906 {
6907 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6908
6909 if (remote_thr->get_resume_state ()
6910 == resume_state::RESUMED_PENDING_VCONT)
6911 {
6912 remote_debug_printf ("Enqueueing phony stop reply for thread pending "
6913 "vCont-resume (%d, %ld, %s)", tp->ptid.pid(),
6914 tp->ptid.lwp (),
6915 pulongest (tp->ptid.tid ()));
6916
6917 /* Check that the thread wasn't resumed with a signal.
6918 Generating a phony stop would result in losing the
6919 signal. */
6920 const resumed_pending_vcont_info &info
6921 = remote_thr->resumed_pending_vcont_info ();
6922 gdb_assert (info.sig == GDB_SIGNAL_0);
6923
6924 stop_reply *sr = new stop_reply ();
6925 sr->ptid = tp->ptid;
6926 sr->rs = rs;
6927 sr->ws.set_stopped (GDB_SIGNAL_0);
6928 sr->arch = tp->inf->gdbarch;
6929 sr->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6930 sr->watch_data_address = 0;
6931 sr->core = 0;
6932 this->push_stop_reply (sr);
6933
6934 /* Pretend that this thread was actually resumed on the
6935 remote target, then stopped. If we leave it in the
6936 RESUMED_PENDING_VCONT state and the commit_resumed
6937 method is called while the stop reply is still in the
6938 queue, we'll end up reporting a stop event to the core
6939 for that thread while it is running on the remote
6940 target... that would be bad. */
6941 remote_thr->set_resumed ();
6942 }
6943 }
6944
6945 /* FIXME: This supports_vCont_probed check is a workaround until
6946 packet_support is per-connection. */
6947 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6948 || !rs->supports_vCont_probed)
6949 remote_vcont_probe ();
6950
6951 if (!rs->supports_vCont.t)
6952 error (_("Remote server does not support stopping threads"));
6953
6954 if (ptid == minus_one_ptid
6955 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6956 p += xsnprintf (p, endp - p, "vCont;t");
6957 else
6958 {
6959 ptid_t nptid;
6960
6961 p += xsnprintf (p, endp - p, "vCont;t:");
6962
6963 if (ptid.is_pid ())
6964 /* All (-1) threads of process. */
6965 nptid = ptid_t (ptid.pid (), -1);
6966 else
6967 {
6968 /* Small optimization: if we already have a stop reply for
6969 this thread, no use in telling the stub we want this
6970 stopped. */
6971 if (peek_stop_reply (ptid))
6972 return;
6973
6974 nptid = ptid;
6975 }
6976
6977 write_ptid (p, endp, nptid);
6978 }
6979
6980 /* In non-stop, we get an immediate OK reply. The stop reply will
6981 come in asynchronously by notification. */
6982 putpkt (rs->buf);
6983 getpkt (&rs->buf, 0);
6984 if (strcmp (rs->buf.data (), "OK") != 0)
6985 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6986 rs->buf.data ());
6987 }
6988
6989 /* All-stop version of target_interrupt. Sends a break or a ^C to
6990 interrupt the remote target. It is undefined which thread of which
6991 process reports the interrupt. */
6992
6993 void
6994 remote_target::remote_interrupt_as ()
6995 {
6996 struct remote_state *rs = get_remote_state ();
6997
6998 rs->ctrlc_pending_p = 1;
6999
7000 /* If the inferior is stopped already, but the core didn't know
7001 about it yet, just ignore the request. The cached wait status
7002 will be collected in remote_wait. */
7003 if (rs->cached_wait_status)
7004 return;
7005
7006 /* Send interrupt_sequence to remote target. */
7007 send_interrupt_sequence ();
7008 }
7009
7010 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
7011 the remote target. It is undefined which thread of which process
7012 reports the interrupt. Throws an error if the packet is not
7013 supported by the server. */
7014
7015 void
7016 remote_target::remote_interrupt_ns ()
7017 {
7018 struct remote_state *rs = get_remote_state ();
7019 char *p = rs->buf.data ();
7020 char *endp = p + get_remote_packet_size ();
7021
7022 xsnprintf (p, endp - p, "vCtrlC");
7023
7024 /* In non-stop, we get an immediate OK reply. The stop reply will
7025 come in asynchronously by notification. */
7026 putpkt (rs->buf);
7027 getpkt (&rs->buf, 0);
7028
7029 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
7030 {
7031 case PACKET_OK:
7032 break;
7033 case PACKET_UNKNOWN:
7034 error (_("No support for interrupting the remote target."));
7035 case PACKET_ERROR:
7036 error (_("Interrupting target failed: %s"), rs->buf.data ());
7037 }
7038 }
7039
7040 /* Implement the to_stop function for the remote targets. */
7041
7042 void
7043 remote_target::stop (ptid_t ptid)
7044 {
7045 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7046
7047 if (target_is_non_stop_p ())
7048 remote_stop_ns (ptid);
7049 else
7050 {
7051 /* We don't currently have a way to transparently pause the
7052 remote target in all-stop mode. Interrupt it instead. */
7053 remote_interrupt_as ();
7054 }
7055 }
7056
7057 /* Implement the to_interrupt function for the remote targets. */
7058
7059 void
7060 remote_target::interrupt ()
7061 {
7062 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7063
7064 if (target_is_non_stop_p ())
7065 remote_interrupt_ns ();
7066 else
7067 remote_interrupt_as ();
7068 }
7069
7070 /* Implement the to_pass_ctrlc function for the remote targets. */
7071
7072 void
7073 remote_target::pass_ctrlc ()
7074 {
7075 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7076
7077 struct remote_state *rs = get_remote_state ();
7078
7079 /* If we're starting up, we're not fully synced yet. Quit
7080 immediately. */
7081 if (rs->starting_up)
7082 quit ();
7083 /* If ^C has already been sent once, offer to disconnect. */
7084 else if (rs->ctrlc_pending_p)
7085 interrupt_query ();
7086 else
7087 target_interrupt ();
7088 }
7089
7090 /* Ask the user what to do when an interrupt is received. */
7091
7092 void
7093 remote_target::interrupt_query ()
7094 {
7095 struct remote_state *rs = get_remote_state ();
7096
7097 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
7098 {
7099 if (query (_("The target is not responding to interrupt requests.\n"
7100 "Stop debugging it? ")))
7101 {
7102 remote_unpush_target (this);
7103 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
7104 }
7105 }
7106 else
7107 {
7108 if (query (_("Interrupted while waiting for the program.\n"
7109 "Give up waiting? ")))
7110 quit ();
7111 }
7112 }
7113
7114 /* Enable/disable target terminal ownership. Most targets can use
7115 terminal groups to control terminal ownership. Remote targets are
7116 different in that explicit transfer of ownership to/from GDB/target
7117 is required. */
7118
7119 void
7120 remote_target::terminal_inferior ()
7121 {
7122 /* NOTE: At this point we could also register our selves as the
7123 recipient of all input. Any characters typed could then be
7124 passed on down to the target. */
7125 }
7126
7127 void
7128 remote_target::terminal_ours ()
7129 {
7130 }
7131
7132 static void
7133 remote_console_output (const char *msg)
7134 {
7135 const char *p;
7136
7137 for (p = msg; p[0] && p[1]; p += 2)
7138 {
7139 char tb[2];
7140 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
7141
7142 tb[0] = c;
7143 tb[1] = 0;
7144 gdb_stdtarg->puts (tb);
7145 }
7146 gdb_stdtarg->flush ();
7147 }
7148
7149 /* Return the length of the stop reply queue. */
7150
7151 int
7152 remote_target::stop_reply_queue_length ()
7153 {
7154 remote_state *rs = get_remote_state ();
7155 return rs->stop_reply_queue.size ();
7156 }
7157
7158 static void
7159 remote_notif_stop_parse (remote_target *remote,
7160 struct notif_client *self, const char *buf,
7161 struct notif_event *event)
7162 {
7163 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7164 }
7165
7166 static void
7167 remote_notif_stop_ack (remote_target *remote,
7168 struct notif_client *self, const char *buf,
7169 struct notif_event *event)
7170 {
7171 struct stop_reply *stop_reply = (struct stop_reply *) event;
7172
7173 /* acknowledge */
7174 putpkt (remote, self->ack_command);
7175
7176 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7177 the notification. It was left in the queue because we need to
7178 acknowledge it and pull the rest of the notifications out. */
7179 if (stop_reply->ws.kind () != TARGET_WAITKIND_IGNORE)
7180 remote->push_stop_reply (stop_reply);
7181 }
7182
7183 static int
7184 remote_notif_stop_can_get_pending_events (remote_target *remote,
7185 struct notif_client *self)
7186 {
7187 /* We can't get pending events in remote_notif_process for
7188 notification stop, and we have to do this in remote_wait_ns
7189 instead. If we fetch all queued events from stub, remote stub
7190 may exit and we have no chance to process them back in
7191 remote_wait_ns. */
7192 remote_state *rs = remote->get_remote_state ();
7193 mark_async_event_handler (rs->remote_async_inferior_event_token);
7194 return 0;
7195 }
7196
7197 stop_reply::~stop_reply ()
7198 {
7199 for (cached_reg_t &reg : regcache)
7200 xfree (reg.data);
7201 }
7202
7203 static notif_event_up
7204 remote_notif_stop_alloc_reply ()
7205 {
7206 return notif_event_up (new struct stop_reply ());
7207 }
7208
7209 /* A client of notification Stop. */
7210
7211 struct notif_client notif_client_stop =
7212 {
7213 "Stop",
7214 "vStopped",
7215 remote_notif_stop_parse,
7216 remote_notif_stop_ack,
7217 remote_notif_stop_can_get_pending_events,
7218 remote_notif_stop_alloc_reply,
7219 REMOTE_NOTIF_STOP,
7220 };
7221
7222 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7223 the pid of the process that owns the threads we want to check, or
7224 -1 if we want to check all threads. */
7225
7226 static int
7227 is_pending_fork_parent (const target_waitstatus &ws, int event_pid,
7228 ptid_t thread_ptid)
7229 {
7230 if (ws.kind () == TARGET_WAITKIND_FORKED
7231 || ws.kind () == TARGET_WAITKIND_VFORKED)
7232 {
7233 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7234 return 1;
7235 }
7236
7237 return 0;
7238 }
7239
7240 /* Return the thread's pending status used to determine whether the
7241 thread is a fork parent stopped at a fork event. */
7242
7243 static const target_waitstatus &
7244 thread_pending_fork_status (struct thread_info *thread)
7245 {
7246 if (thread->has_pending_waitstatus ())
7247 return thread->pending_waitstatus ();
7248 else
7249 return thread->pending_follow;
7250 }
7251
7252 /* Determine if THREAD is a pending fork parent thread. */
7253
7254 static int
7255 is_pending_fork_parent_thread (struct thread_info *thread)
7256 {
7257 const target_waitstatus &ws = thread_pending_fork_status (thread);
7258 int pid = -1;
7259
7260 return is_pending_fork_parent (ws, pid, thread->ptid);
7261 }
7262
7263 /* If CONTEXT contains any fork child threads that have not been
7264 reported yet, remove them from the CONTEXT list. If such a
7265 thread exists it is because we are stopped at a fork catchpoint
7266 and have not yet called follow_fork, which will set up the
7267 host-side data structures for the new process. */
7268
7269 void
7270 remote_target::remove_new_fork_children (threads_listing_context *context)
7271 {
7272 int pid = -1;
7273 struct notif_client *notif = &notif_client_stop;
7274
7275 /* For any threads stopped at a fork event, remove the corresponding
7276 fork child threads from the CONTEXT list. */
7277 for (thread_info *thread : all_non_exited_threads (this))
7278 {
7279 const target_waitstatus &ws = thread_pending_fork_status (thread);
7280
7281 if (is_pending_fork_parent (ws, pid, thread->ptid))
7282 context->remove_thread (ws.child_ptid ());
7283 }
7284
7285 /* Check for any pending fork events (not reported or processed yet)
7286 in process PID and remove those fork child threads from the
7287 CONTEXT list as well. */
7288 remote_notif_get_pending_events (notif);
7289 for (auto &event : get_remote_state ()->stop_reply_queue)
7290 if (event->ws.kind () == TARGET_WAITKIND_FORKED
7291 || event->ws.kind () == TARGET_WAITKIND_VFORKED
7292 || event->ws.kind () == TARGET_WAITKIND_THREAD_EXITED)
7293 context->remove_thread (event->ws.child_ptid ());
7294 }
7295
7296 /* Check whether any event pending in the vStopped queue would prevent a
7297 global or process wildcard vCont action. Set *may_global_wildcard to
7298 false if we can't do a global wildcard (vCont;c), and clear the event
7299 inferior's may_wildcard_vcont flag if we can't do a process-wide
7300 wildcard resume (vCont;c:pPID.-1). */
7301
7302 void
7303 remote_target::check_pending_events_prevent_wildcard_vcont
7304 (bool *may_global_wildcard)
7305 {
7306 struct notif_client *notif = &notif_client_stop;
7307
7308 remote_notif_get_pending_events (notif);
7309 for (auto &event : get_remote_state ()->stop_reply_queue)
7310 {
7311 if (event->ws.kind () == TARGET_WAITKIND_NO_RESUMED
7312 || event->ws.kind () == TARGET_WAITKIND_NO_HISTORY)
7313 continue;
7314
7315 if (event->ws.kind () == TARGET_WAITKIND_FORKED
7316 || event->ws.kind () == TARGET_WAITKIND_VFORKED)
7317 *may_global_wildcard = false;
7318
7319 /* This may be the first time we heard about this process.
7320 Regardless, we must not do a global wildcard resume, otherwise
7321 we'd resume this process too. */
7322 *may_global_wildcard = false;
7323 if (event->ptid != null_ptid)
7324 {
7325 inferior *inf = find_inferior_ptid (this, event->ptid);
7326 if (inf != NULL)
7327 get_remote_inferior (inf)->may_wildcard_vcont = false;
7328 }
7329 }
7330 }
7331
7332 /* Discard all pending stop replies of inferior INF. */
7333
7334 void
7335 remote_target::discard_pending_stop_replies (struct inferior *inf)
7336 {
7337 struct stop_reply *reply;
7338 struct remote_state *rs = get_remote_state ();
7339 struct remote_notif_state *rns = rs->notif_state;
7340
7341 /* This function can be notified when an inferior exists. When the
7342 target is not remote, the notification state is NULL. */
7343 if (rs->remote_desc == NULL)
7344 return;
7345
7346 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7347
7348 /* Discard the in-flight notification. */
7349 if (reply != NULL && reply->ptid.pid () == inf->pid)
7350 {
7351 /* Leave the notification pending, since the server expects that
7352 we acknowledge it with vStopped. But clear its contents, so
7353 that later on when we acknowledge it, we also discard it. */
7354 reply->ws.set_ignore ();
7355
7356 if (remote_debug)
7357 fprintf_unfiltered (gdb_stdlog,
7358 "discarded in-flight notification\n");
7359 }
7360
7361 /* Discard the stop replies we have already pulled with
7362 vStopped. */
7363 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7364 rs->stop_reply_queue.end (),
7365 [=] (const stop_reply_up &event)
7366 {
7367 return event->ptid.pid () == inf->pid;
7368 });
7369 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7370 }
7371
7372 /* Discard the stop replies for RS in stop_reply_queue. */
7373
7374 void
7375 remote_target::discard_pending_stop_replies_in_queue ()
7376 {
7377 remote_state *rs = get_remote_state ();
7378
7379 /* Discard the stop replies we have already pulled with
7380 vStopped. */
7381 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7382 rs->stop_reply_queue.end (),
7383 [=] (const stop_reply_up &event)
7384 {
7385 return event->rs == rs;
7386 });
7387 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7388 }
7389
7390 /* Remove the first reply in 'stop_reply_queue' which matches
7391 PTID. */
7392
7393 struct stop_reply *
7394 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7395 {
7396 remote_state *rs = get_remote_state ();
7397
7398 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7399 rs->stop_reply_queue.end (),
7400 [=] (const stop_reply_up &event)
7401 {
7402 return event->ptid.matches (ptid);
7403 });
7404 struct stop_reply *result;
7405 if (iter == rs->stop_reply_queue.end ())
7406 result = nullptr;
7407 else
7408 {
7409 result = iter->release ();
7410 rs->stop_reply_queue.erase (iter);
7411 }
7412
7413 if (notif_debug)
7414 fprintf_unfiltered (gdb_stdlog,
7415 "notif: discard queued event: 'Stop' in %s\n",
7416 target_pid_to_str (ptid).c_str ());
7417
7418 return result;
7419 }
7420
7421 /* Look for a queued stop reply belonging to PTID. If one is found,
7422 remove it from the queue, and return it. Returns NULL if none is
7423 found. If there are still queued events left to process, tell the
7424 event loop to get back to target_wait soon. */
7425
7426 struct stop_reply *
7427 remote_target::queued_stop_reply (ptid_t ptid)
7428 {
7429 remote_state *rs = get_remote_state ();
7430 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7431
7432 if (!rs->stop_reply_queue.empty ())
7433 {
7434 /* There's still at least an event left. */
7435 mark_async_event_handler (rs->remote_async_inferior_event_token);
7436 }
7437
7438 return r;
7439 }
7440
7441 /* Push a fully parsed stop reply in the stop reply queue. Since we
7442 know that we now have at least one queued event left to pass to the
7443 core side, tell the event loop to get back to target_wait soon. */
7444
7445 void
7446 remote_target::push_stop_reply (struct stop_reply *new_event)
7447 {
7448 remote_state *rs = get_remote_state ();
7449 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7450
7451 if (notif_debug)
7452 fprintf_unfiltered (gdb_stdlog,
7453 "notif: push 'Stop' %s to queue %d\n",
7454 target_pid_to_str (new_event->ptid).c_str (),
7455 int (rs->stop_reply_queue.size ()));
7456
7457 mark_async_event_handler (rs->remote_async_inferior_event_token);
7458 }
7459
7460 /* Returns true if we have a stop reply for PTID. */
7461
7462 int
7463 remote_target::peek_stop_reply (ptid_t ptid)
7464 {
7465 remote_state *rs = get_remote_state ();
7466 for (auto &event : rs->stop_reply_queue)
7467 if (ptid == event->ptid
7468 && event->ws.kind () == TARGET_WAITKIND_STOPPED)
7469 return 1;
7470 return 0;
7471 }
7472
7473 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7474 starting with P and ending with PEND matches PREFIX. */
7475
7476 static int
7477 strprefix (const char *p, const char *pend, const char *prefix)
7478 {
7479 for ( ; p < pend; p++, prefix++)
7480 if (*p != *prefix)
7481 return 0;
7482 return *prefix == '\0';
7483 }
7484
7485 /* Parse the stop reply in BUF. Either the function succeeds, and the
7486 result is stored in EVENT, or throws an error. */
7487
7488 void
7489 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7490 {
7491 remote_arch_state *rsa = NULL;
7492 ULONGEST addr;
7493 const char *p;
7494 int skipregs = 0;
7495
7496 event->ptid = null_ptid;
7497 event->rs = get_remote_state ();
7498 event->ws.set_ignore ();
7499 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7500 event->regcache.clear ();
7501 event->core = -1;
7502
7503 switch (buf[0])
7504 {
7505 case 'T': /* Status with PC, SP, FP, ... */
7506 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7507 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7508 ss = signal number
7509 n... = register number
7510 r... = register contents
7511 */
7512
7513 p = &buf[3]; /* after Txx */
7514 while (*p)
7515 {
7516 const char *p1;
7517 int fieldsize;
7518
7519 p1 = strchr (p, ':');
7520 if (p1 == NULL)
7521 error (_("Malformed packet(a) (missing colon): %s\n\
7522 Packet: '%s'\n"),
7523 p, buf);
7524 if (p == p1)
7525 error (_("Malformed packet(a) (missing register number): %s\n\
7526 Packet: '%s'\n"),
7527 p, buf);
7528
7529 /* Some "registers" are actually extended stop information.
7530 Note if you're adding a new entry here: GDB 7.9 and
7531 earlier assume that all register "numbers" that start
7532 with an hex digit are real register numbers. Make sure
7533 the server only sends such a packet if it knows the
7534 client understands it. */
7535
7536 if (strprefix (p, p1, "thread"))
7537 event->ptid = read_ptid (++p1, &p);
7538 else if (strprefix (p, p1, "syscall_entry"))
7539 {
7540 ULONGEST sysno;
7541
7542 p = unpack_varlen_hex (++p1, &sysno);
7543 event->ws.set_syscall_entry ((int) sysno);
7544 }
7545 else if (strprefix (p, p1, "syscall_return"))
7546 {
7547 ULONGEST sysno;
7548
7549 p = unpack_varlen_hex (++p1, &sysno);
7550 event->ws.set_syscall_return ((int) sysno);
7551 }
7552 else if (strprefix (p, p1, "watch")
7553 || strprefix (p, p1, "rwatch")
7554 || strprefix (p, p1, "awatch"))
7555 {
7556 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7557 p = unpack_varlen_hex (++p1, &addr);
7558 event->watch_data_address = (CORE_ADDR) addr;
7559 }
7560 else if (strprefix (p, p1, "swbreak"))
7561 {
7562 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7563
7564 /* Make sure the stub doesn't forget to indicate support
7565 with qSupported. */
7566 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7567 error (_("Unexpected swbreak stop reason"));
7568
7569 /* The value part is documented as "must be empty",
7570 though we ignore it, in case we ever decide to make
7571 use of it in a backward compatible way. */
7572 p = strchrnul (p1 + 1, ';');
7573 }
7574 else if (strprefix (p, p1, "hwbreak"))
7575 {
7576 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7577
7578 /* Make sure the stub doesn't forget to indicate support
7579 with qSupported. */
7580 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7581 error (_("Unexpected hwbreak stop reason"));
7582
7583 /* See above. */
7584 p = strchrnul (p1 + 1, ';');
7585 }
7586 else if (strprefix (p, p1, "library"))
7587 {
7588 event->ws.set_loaded ();
7589 p = strchrnul (p1 + 1, ';');
7590 }
7591 else if (strprefix (p, p1, "replaylog"))
7592 {
7593 event->ws.set_no_history ();
7594 /* p1 will indicate "begin" or "end", but it makes
7595 no difference for now, so ignore it. */
7596 p = strchrnul (p1 + 1, ';');
7597 }
7598 else if (strprefix (p, p1, "core"))
7599 {
7600 ULONGEST c;
7601
7602 p = unpack_varlen_hex (++p1, &c);
7603 event->core = c;
7604 }
7605 else if (strprefix (p, p1, "fork"))
7606 event->ws.set_forked (read_ptid (++p1, &p));
7607 else if (strprefix (p, p1, "vfork"))
7608 event->ws.set_vforked (read_ptid (++p1, &p));
7609 else if (strprefix (p, p1, "vforkdone"))
7610 {
7611 event->ws.set_vfork_done ();
7612 p = strchrnul (p1 + 1, ';');
7613 }
7614 else if (strprefix (p, p1, "exec"))
7615 {
7616 ULONGEST ignored;
7617 int pathlen;
7618
7619 /* Determine the length of the execd pathname. */
7620 p = unpack_varlen_hex (++p1, &ignored);
7621 pathlen = (p - p1) / 2;
7622
7623 /* Save the pathname for event reporting and for
7624 the next run command. */
7625 gdb::unique_xmalloc_ptr<char> pathname
7626 ((char *) xmalloc (pathlen + 1));
7627 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7628 pathname.get ()[pathlen] = '\0';
7629
7630 /* This is freed during event handling. */
7631 event->ws.set_execd (std::move (pathname));
7632
7633 /* Skip the registers included in this packet, since
7634 they may be for an architecture different from the
7635 one used by the original program. */
7636 skipregs = 1;
7637 }
7638 else if (strprefix (p, p1, "create"))
7639 {
7640 event->ws.set_thread_created ();
7641 p = strchrnul (p1 + 1, ';');
7642 }
7643 else
7644 {
7645 ULONGEST pnum;
7646 const char *p_temp;
7647
7648 if (skipregs)
7649 {
7650 p = strchrnul (p1 + 1, ';');
7651 p++;
7652 continue;
7653 }
7654
7655 /* Maybe a real ``P'' register number. */
7656 p_temp = unpack_varlen_hex (p, &pnum);
7657 /* If the first invalid character is the colon, we got a
7658 register number. Otherwise, it's an unknown stop
7659 reason. */
7660 if (p_temp == p1)
7661 {
7662 /* If we haven't parsed the event's thread yet, find
7663 it now, in order to find the architecture of the
7664 reported expedited registers. */
7665 if (event->ptid == null_ptid)
7666 {
7667 /* If there is no thread-id information then leave
7668 the event->ptid as null_ptid. Later in
7669 process_stop_reply we will pick a suitable
7670 thread. */
7671 const char *thr = strstr (p1 + 1, ";thread:");
7672 if (thr != NULL)
7673 event->ptid = read_ptid (thr + strlen (";thread:"),
7674 NULL);
7675 }
7676
7677 if (rsa == NULL)
7678 {
7679 inferior *inf
7680 = (event->ptid == null_ptid
7681 ? NULL
7682 : find_inferior_ptid (this, event->ptid));
7683 /* If this is the first time we learn anything
7684 about this process, skip the registers
7685 included in this packet, since we don't yet
7686 know which architecture to use to parse them.
7687 We'll determine the architecture later when
7688 we process the stop reply and retrieve the
7689 target description, via
7690 remote_notice_new_inferior ->
7691 post_create_inferior. */
7692 if (inf == NULL)
7693 {
7694 p = strchrnul (p1 + 1, ';');
7695 p++;
7696 continue;
7697 }
7698
7699 event->arch = inf->gdbarch;
7700 rsa = event->rs->get_remote_arch_state (event->arch);
7701 }
7702
7703 packet_reg *reg
7704 = packet_reg_from_pnum (event->arch, rsa, pnum);
7705 cached_reg_t cached_reg;
7706
7707 if (reg == NULL)
7708 error (_("Remote sent bad register number %s: %s\n\
7709 Packet: '%s'\n"),
7710 hex_string (pnum), p, buf);
7711
7712 cached_reg.num = reg->regnum;
7713 cached_reg.data = (gdb_byte *)
7714 xmalloc (register_size (event->arch, reg->regnum));
7715
7716 p = p1 + 1;
7717 fieldsize = hex2bin (p, cached_reg.data,
7718 register_size (event->arch, reg->regnum));
7719 p += 2 * fieldsize;
7720 if (fieldsize < register_size (event->arch, reg->regnum))
7721 warning (_("Remote reply is too short: %s"), buf);
7722
7723 event->regcache.push_back (cached_reg);
7724 }
7725 else
7726 {
7727 /* Not a number. Silently skip unknown optional
7728 info. */
7729 p = strchrnul (p1 + 1, ';');
7730 }
7731 }
7732
7733 if (*p != ';')
7734 error (_("Remote register badly formatted: %s\nhere: %s"),
7735 buf, p);
7736 ++p;
7737 }
7738
7739 if (event->ws.kind () != TARGET_WAITKIND_IGNORE)
7740 break;
7741
7742 /* fall through */
7743 case 'S': /* Old style status, just signal only. */
7744 {
7745 int sig;
7746
7747 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7748 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7749 event->ws.set_stopped ((enum gdb_signal) sig);
7750 else
7751 event->ws.set_stopped (GDB_SIGNAL_UNKNOWN);
7752 }
7753 break;
7754 case 'w': /* Thread exited. */
7755 {
7756 ULONGEST value;
7757
7758 p = unpack_varlen_hex (&buf[1], &value);
7759 event->ws.set_thread_exited (value);
7760 if (*p != ';')
7761 error (_("stop reply packet badly formatted: %s"), buf);
7762 event->ptid = read_ptid (++p, NULL);
7763 break;
7764 }
7765 case 'W': /* Target exited. */
7766 case 'X':
7767 {
7768 ULONGEST value;
7769
7770 /* GDB used to accept only 2 hex chars here. Stubs should
7771 only send more if they detect GDB supports multi-process
7772 support. */
7773 p = unpack_varlen_hex (&buf[1], &value);
7774
7775 if (buf[0] == 'W')
7776 {
7777 /* The remote process exited. */
7778 event->ws.set_exited (value);
7779 }
7780 else
7781 {
7782 /* The remote process exited with a signal. */
7783 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7784 event->ws.set_signalled ((enum gdb_signal) value);
7785 else
7786 event->ws.set_signalled (GDB_SIGNAL_UNKNOWN);
7787 }
7788
7789 /* If no process is specified, return null_ptid, and let the
7790 caller figure out the right process to use. */
7791 int pid = 0;
7792 if (*p == '\0')
7793 ;
7794 else if (*p == ';')
7795 {
7796 p++;
7797
7798 if (*p == '\0')
7799 ;
7800 else if (startswith (p, "process:"))
7801 {
7802 ULONGEST upid;
7803
7804 p += sizeof ("process:") - 1;
7805 unpack_varlen_hex (p, &upid);
7806 pid = upid;
7807 }
7808 else
7809 error (_("unknown stop reply packet: %s"), buf);
7810 }
7811 else
7812 error (_("unknown stop reply packet: %s"), buf);
7813 event->ptid = ptid_t (pid);
7814 }
7815 break;
7816 case 'N':
7817 event->ws.set_no_resumed ();
7818 event->ptid = minus_one_ptid;
7819 break;
7820 }
7821 }
7822
7823 /* When the stub wants to tell GDB about a new notification reply, it
7824 sends a notification (%Stop, for example). Those can come it at
7825 any time, hence, we have to make sure that any pending
7826 putpkt/getpkt sequence we're making is finished, before querying
7827 the stub for more events with the corresponding ack command
7828 (vStopped, for example). E.g., if we started a vStopped sequence
7829 immediately upon receiving the notification, something like this
7830 could happen:
7831
7832 1.1) --> Hg 1
7833 1.2) <-- OK
7834 1.3) --> g
7835 1.4) <-- %Stop
7836 1.5) --> vStopped
7837 1.6) <-- (registers reply to step #1.3)
7838
7839 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7840 query.
7841
7842 To solve this, whenever we parse a %Stop notification successfully,
7843 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7844 doing whatever we were doing:
7845
7846 2.1) --> Hg 1
7847 2.2) <-- OK
7848 2.3) --> g
7849 2.4) <-- %Stop
7850 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7851 2.5) <-- (registers reply to step #2.3)
7852
7853 Eventually after step #2.5, we return to the event loop, which
7854 notices there's an event on the
7855 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7856 associated callback --- the function below. At this point, we're
7857 always safe to start a vStopped sequence. :
7858
7859 2.6) --> vStopped
7860 2.7) <-- T05 thread:2
7861 2.8) --> vStopped
7862 2.9) --> OK
7863 */
7864
7865 void
7866 remote_target::remote_notif_get_pending_events (notif_client *nc)
7867 {
7868 struct remote_state *rs = get_remote_state ();
7869
7870 if (rs->notif_state->pending_event[nc->id] != NULL)
7871 {
7872 if (notif_debug)
7873 fprintf_unfiltered (gdb_stdlog,
7874 "notif: process: '%s' ack pending event\n",
7875 nc->name);
7876
7877 /* acknowledge */
7878 nc->ack (this, nc, rs->buf.data (),
7879 rs->notif_state->pending_event[nc->id]);
7880 rs->notif_state->pending_event[nc->id] = NULL;
7881
7882 while (1)
7883 {
7884 getpkt (&rs->buf, 0);
7885 if (strcmp (rs->buf.data (), "OK") == 0)
7886 break;
7887 else
7888 remote_notif_ack (this, nc, rs->buf.data ());
7889 }
7890 }
7891 else
7892 {
7893 if (notif_debug)
7894 fprintf_unfiltered (gdb_stdlog,
7895 "notif: process: '%s' no pending reply\n",
7896 nc->name);
7897 }
7898 }
7899
7900 /* Wrapper around remote_target::remote_notif_get_pending_events to
7901 avoid having to export the whole remote_target class. */
7902
7903 void
7904 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7905 {
7906 remote->remote_notif_get_pending_events (nc);
7907 }
7908
7909 /* Called from process_stop_reply when the stop packet we are responding
7910 to didn't include a process-id or thread-id. STATUS is the stop event
7911 we are responding to.
7912
7913 It is the task of this function to select a suitable thread (or process)
7914 and return its ptid, this is the thread (or process) we will assume the
7915 stop event came from.
7916
7917 In some cases there isn't really any choice about which thread (or
7918 process) is selected, a basic remote with a single process containing a
7919 single thread might choose not to send any process-id or thread-id in
7920 its stop packets, this function will select and return the one and only
7921 thread.
7922
7923 However, if a target supports multiple threads (or processes) and still
7924 doesn't include a thread-id (or process-id) in its stop packet then
7925 first, this is a badly behaving target, and second, we're going to have
7926 to select a thread (or process) at random and use that. This function
7927 will print a warning to the user if it detects that there is the
7928 possibility that GDB is guessing which thread (or process) to
7929 report.
7930
7931 Note that this is called before GDB fetches the updated thread list from the
7932 target. So it's possible for the stop reply to be ambiguous and for GDB to
7933 not realize it. For example, if there's initially one thread, the target
7934 spawns a second thread, and then sends a stop reply without an id that
7935 concerns the first thread. GDB will assume the stop reply is about the
7936 first thread - the only thread it knows about - without printing a warning.
7937 Anyway, if the remote meant for the stop reply to be about the second thread,
7938 then it would be really broken, because GDB doesn't know about that thread
7939 yet. */
7940
7941 ptid_t
7942 remote_target::select_thread_for_ambiguous_stop_reply
7943 (const target_waitstatus &status)
7944 {
7945 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7946
7947 /* Some stop events apply to all threads in an inferior, while others
7948 only apply to a single thread. */
7949 bool process_wide_stop
7950 = (status.kind () == TARGET_WAITKIND_EXITED
7951 || status.kind () == TARGET_WAITKIND_SIGNALLED);
7952
7953 remote_debug_printf ("process_wide_stop = %d", process_wide_stop);
7954
7955 thread_info *first_resumed_thread = nullptr;
7956 bool ambiguous = false;
7957
7958 /* Consider all non-exited threads of the target, find the first resumed
7959 one. */
7960 for (thread_info *thr : all_non_exited_threads (this))
7961 {
7962 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7963
7964 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7965 continue;
7966
7967 if (first_resumed_thread == nullptr)
7968 first_resumed_thread = thr;
7969 else if (!process_wide_stop
7970 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7971 ambiguous = true;
7972 }
7973
7974 remote_debug_printf ("first resumed thread is %s",
7975 pid_to_str (first_resumed_thread->ptid).c_str ());
7976 remote_debug_printf ("is this guess ambiguous? = %d", ambiguous);
7977
7978 gdb_assert (first_resumed_thread != nullptr);
7979
7980 /* Warn if the remote target is sending ambiguous stop replies. */
7981 if (ambiguous)
7982 {
7983 static bool warned = false;
7984
7985 if (!warned)
7986 {
7987 /* If you are seeing this warning then the remote target has
7988 stopped without specifying a thread-id, but the target
7989 does have multiple threads (or inferiors), and so GDB is
7990 having to guess which thread stopped.
7991
7992 Examples of what might cause this are the target sending
7993 and 'S' stop packet, or a 'T' stop packet and not
7994 including a thread-id.
7995
7996 Additionally, the target might send a 'W' or 'X packet
7997 without including a process-id, when the target has
7998 multiple running inferiors. */
7999 if (process_wide_stop)
8000 warning (_("multi-inferior target stopped without "
8001 "sending a process-id, using first "
8002 "non-exited inferior"));
8003 else
8004 warning (_("multi-threaded target stopped without "
8005 "sending a thread-id, using first "
8006 "non-exited thread"));
8007 warned = true;
8008 }
8009 }
8010
8011 /* If this is a stop for all threads then don't use a particular threads
8012 ptid, instead create a new ptid where only the pid field is set. */
8013 if (process_wide_stop)
8014 return ptid_t (first_resumed_thread->ptid.pid ());
8015 else
8016 return first_resumed_thread->ptid;
8017 }
8018
8019 /* Called when it is decided that STOP_REPLY holds the info of the
8020 event that is to be returned to the core. This function always
8021 destroys STOP_REPLY. */
8022
8023 ptid_t
8024 remote_target::process_stop_reply (struct stop_reply *stop_reply,
8025 struct target_waitstatus *status)
8026 {
8027 *status = stop_reply->ws;
8028 ptid_t ptid = stop_reply->ptid;
8029
8030 /* If no thread/process was reported by the stub then select a suitable
8031 thread/process. */
8032 if (ptid == null_ptid)
8033 ptid = select_thread_for_ambiguous_stop_reply (*status);
8034 gdb_assert (ptid != null_ptid);
8035
8036 if (status->kind () != TARGET_WAITKIND_EXITED
8037 && status->kind () != TARGET_WAITKIND_SIGNALLED
8038 && status->kind () != TARGET_WAITKIND_NO_RESUMED)
8039 {
8040 /* Expedited registers. */
8041 if (!stop_reply->regcache.empty ())
8042 {
8043 struct regcache *regcache
8044 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
8045
8046 for (cached_reg_t &reg : stop_reply->regcache)
8047 {
8048 regcache->raw_supply (reg.num, reg.data);
8049 xfree (reg.data);
8050 }
8051
8052 stop_reply->regcache.clear ();
8053 }
8054
8055 remote_notice_new_inferior (ptid, false);
8056 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
8057 remote_thr->core = stop_reply->core;
8058 remote_thr->stop_reason = stop_reply->stop_reason;
8059 remote_thr->watch_data_address = stop_reply->watch_data_address;
8060
8061 if (target_is_non_stop_p ())
8062 {
8063 /* If the target works in non-stop mode, a stop-reply indicates that
8064 only this thread stopped. */
8065 remote_thr->set_not_resumed ();
8066 }
8067 else
8068 {
8069 /* If the target works in all-stop mode, a stop-reply indicates that
8070 all the target's threads stopped. */
8071 for (thread_info *tp : all_non_exited_threads (this))
8072 get_remote_thread_info (tp)->set_not_resumed ();
8073 }
8074 }
8075
8076 delete stop_reply;
8077 return ptid;
8078 }
8079
8080 /* The non-stop mode version of target_wait. */
8081
8082 ptid_t
8083 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
8084 target_wait_flags options)
8085 {
8086 struct remote_state *rs = get_remote_state ();
8087 struct stop_reply *stop_reply;
8088 int ret;
8089 int is_notif = 0;
8090
8091 /* If in non-stop mode, get out of getpkt even if a
8092 notification is received. */
8093
8094 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
8095 while (1)
8096 {
8097 if (ret != -1 && !is_notif)
8098 switch (rs->buf[0])
8099 {
8100 case 'E': /* Error of some sort. */
8101 /* We're out of sync with the target now. Did it continue
8102 or not? We can't tell which thread it was in non-stop,
8103 so just ignore this. */
8104 warning (_("Remote failure reply: %s"), rs->buf.data ());
8105 break;
8106 case 'O': /* Console output. */
8107 remote_console_output (&rs->buf[1]);
8108 break;
8109 default:
8110 warning (_("Invalid remote reply: %s"), rs->buf.data ());
8111 break;
8112 }
8113
8114 /* Acknowledge a pending stop reply that may have arrived in the
8115 mean time. */
8116 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
8117 remote_notif_get_pending_events (&notif_client_stop);
8118
8119 /* If indeed we noticed a stop reply, we're done. */
8120 stop_reply = queued_stop_reply (ptid);
8121 if (stop_reply != NULL)
8122 return process_stop_reply (stop_reply, status);
8123
8124 /* Still no event. If we're just polling for an event, then
8125 return to the event loop. */
8126 if (options & TARGET_WNOHANG)
8127 {
8128 status->set_ignore ();
8129 return minus_one_ptid;
8130 }
8131
8132 /* Otherwise do a blocking wait. */
8133 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
8134 }
8135 }
8136
8137 /* Return the first resumed thread. */
8138
8139 static ptid_t
8140 first_remote_resumed_thread (remote_target *target)
8141 {
8142 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
8143 if (tp->resumed ())
8144 return tp->ptid;
8145 return null_ptid;
8146 }
8147
8148 /* Wait until the remote machine stops, then return, storing status in
8149 STATUS just as `wait' would. */
8150
8151 ptid_t
8152 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8153 target_wait_flags options)
8154 {
8155 struct remote_state *rs = get_remote_state ();
8156 ptid_t event_ptid = null_ptid;
8157 char *buf;
8158 struct stop_reply *stop_reply;
8159
8160 again:
8161
8162 status->set_ignore ();
8163
8164 stop_reply = queued_stop_reply (ptid);
8165 if (stop_reply != NULL)
8166 return process_stop_reply (stop_reply, status);
8167
8168 if (rs->cached_wait_status)
8169 /* Use the cached wait status, but only once. */
8170 rs->cached_wait_status = 0;
8171 else
8172 {
8173 int ret;
8174 int is_notif;
8175 int forever = ((options & TARGET_WNOHANG) == 0
8176 && rs->wait_forever_enabled_p);
8177
8178 if (!rs->waiting_for_stop_reply)
8179 {
8180 status->set_no_resumed ();
8181 return minus_one_ptid;
8182 }
8183
8184 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8185 _never_ wait for ever -> test on target_is_async_p().
8186 However, before we do that we need to ensure that the caller
8187 knows how to take the target into/out of async mode. */
8188 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8189
8190 /* GDB gets a notification. Return to core as this event is
8191 not interesting. */
8192 if (ret != -1 && is_notif)
8193 return minus_one_ptid;
8194
8195 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8196 return minus_one_ptid;
8197 }
8198
8199 buf = rs->buf.data ();
8200
8201 /* Assume that the target has acknowledged Ctrl-C unless we receive
8202 an 'F' or 'O' packet. */
8203 if (buf[0] != 'F' && buf[0] != 'O')
8204 rs->ctrlc_pending_p = 0;
8205
8206 switch (buf[0])
8207 {
8208 case 'E': /* Error of some sort. */
8209 /* We're out of sync with the target now. Did it continue or
8210 not? Not is more likely, so report a stop. */
8211 rs->waiting_for_stop_reply = 0;
8212
8213 warning (_("Remote failure reply: %s"), buf);
8214 status->set_stopped (GDB_SIGNAL_0);
8215 break;
8216 case 'F': /* File-I/O request. */
8217 /* GDB may access the inferior memory while handling the File-I/O
8218 request, but we don't want GDB accessing memory while waiting
8219 for a stop reply. See the comments in putpkt_binary. Set
8220 waiting_for_stop_reply to 0 temporarily. */
8221 rs->waiting_for_stop_reply = 0;
8222 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8223 rs->ctrlc_pending_p = 0;
8224 /* GDB handled the File-I/O request, and the target is running
8225 again. Keep waiting for events. */
8226 rs->waiting_for_stop_reply = 1;
8227 break;
8228 case 'N': case 'T': case 'S': case 'X': case 'W':
8229 {
8230 /* There is a stop reply to handle. */
8231 rs->waiting_for_stop_reply = 0;
8232
8233 stop_reply
8234 = (struct stop_reply *) remote_notif_parse (this,
8235 &notif_client_stop,
8236 rs->buf.data ());
8237
8238 event_ptid = process_stop_reply (stop_reply, status);
8239 break;
8240 }
8241 case 'O': /* Console output. */
8242 remote_console_output (buf + 1);
8243 break;
8244 case '\0':
8245 if (rs->last_sent_signal != GDB_SIGNAL_0)
8246 {
8247 /* Zero length reply means that we tried 'S' or 'C' and the
8248 remote system doesn't support it. */
8249 target_terminal::ours_for_output ();
8250 printf_filtered
8251 ("Can't send signals to this remote system. %s not sent.\n",
8252 gdb_signal_to_name (rs->last_sent_signal));
8253 rs->last_sent_signal = GDB_SIGNAL_0;
8254 target_terminal::inferior ();
8255
8256 strcpy (buf, rs->last_sent_step ? "s" : "c");
8257 putpkt (buf);
8258 break;
8259 }
8260 /* fallthrough */
8261 default:
8262 warning (_("Invalid remote reply: %s"), buf);
8263 break;
8264 }
8265
8266 if (status->kind () == TARGET_WAITKIND_NO_RESUMED)
8267 return minus_one_ptid;
8268 else if (status->kind () == TARGET_WAITKIND_IGNORE)
8269 {
8270 /* Nothing interesting happened. If we're doing a non-blocking
8271 poll, we're done. Otherwise, go back to waiting. */
8272 if (options & TARGET_WNOHANG)
8273 return minus_one_ptid;
8274 else
8275 goto again;
8276 }
8277 else if (status->kind () != TARGET_WAITKIND_EXITED
8278 && status->kind () != TARGET_WAITKIND_SIGNALLED)
8279 {
8280 if (event_ptid != null_ptid)
8281 record_currthread (rs, event_ptid);
8282 else
8283 event_ptid = first_remote_resumed_thread (this);
8284 }
8285 else
8286 {
8287 /* A process exit. Invalidate our notion of current thread. */
8288 record_currthread (rs, minus_one_ptid);
8289 /* It's possible that the packet did not include a pid. */
8290 if (event_ptid == null_ptid)
8291 event_ptid = first_remote_resumed_thread (this);
8292 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8293 if (event_ptid == null_ptid)
8294 event_ptid = magic_null_ptid;
8295 }
8296
8297 return event_ptid;
8298 }
8299
8300 /* Wait until the remote machine stops, then return, storing status in
8301 STATUS just as `wait' would. */
8302
8303 ptid_t
8304 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8305 target_wait_flags options)
8306 {
8307 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8308
8309 remote_state *rs = get_remote_state ();
8310
8311 /* Start by clearing the flag that asks for our wait method to be called,
8312 we'll mark it again at the end if needed. If the target is not in
8313 async mode then the async token should not be marked. */
8314 if (target_is_async_p ())
8315 clear_async_event_handler (rs->remote_async_inferior_event_token);
8316 else
8317 gdb_assert (!async_event_handler_marked
8318 (rs->remote_async_inferior_event_token));
8319
8320 ptid_t event_ptid;
8321
8322 if (target_is_non_stop_p ())
8323 event_ptid = wait_ns (ptid, status, options);
8324 else
8325 event_ptid = wait_as (ptid, status, options);
8326
8327 if (target_is_async_p ())
8328 {
8329 /* If there are events left in the queue, or unacknowledged
8330 notifications, then tell the event loop to call us again. */
8331 if (!rs->stop_reply_queue.empty ()
8332 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8333 mark_async_event_handler (rs->remote_async_inferior_event_token);
8334 }
8335
8336 return event_ptid;
8337 }
8338
8339 /* Fetch a single register using a 'p' packet. */
8340
8341 int
8342 remote_target::fetch_register_using_p (struct regcache *regcache,
8343 packet_reg *reg)
8344 {
8345 struct gdbarch *gdbarch = regcache->arch ();
8346 struct remote_state *rs = get_remote_state ();
8347 char *buf, *p;
8348 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8349 int i;
8350
8351 if (packet_support (PACKET_p) == PACKET_DISABLE)
8352 return 0;
8353
8354 if (reg->pnum == -1)
8355 return 0;
8356
8357 p = rs->buf.data ();
8358 *p++ = 'p';
8359 p += hexnumstr (p, reg->pnum);
8360 *p++ = '\0';
8361 putpkt (rs->buf);
8362 getpkt (&rs->buf, 0);
8363
8364 buf = rs->buf.data ();
8365
8366 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8367 {
8368 case PACKET_OK:
8369 break;
8370 case PACKET_UNKNOWN:
8371 return 0;
8372 case PACKET_ERROR:
8373 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8374 gdbarch_register_name (regcache->arch (),
8375 reg->regnum),
8376 buf);
8377 }
8378
8379 /* If this register is unfetchable, tell the regcache. */
8380 if (buf[0] == 'x')
8381 {
8382 regcache->raw_supply (reg->regnum, NULL);
8383 return 1;
8384 }
8385
8386 /* Otherwise, parse and supply the value. */
8387 p = buf;
8388 i = 0;
8389 while (p[0] != 0)
8390 {
8391 if (p[1] == 0)
8392 error (_("fetch_register_using_p: early buf termination"));
8393
8394 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8395 p += 2;
8396 }
8397 regcache->raw_supply (reg->regnum, regp);
8398 return 1;
8399 }
8400
8401 /* Fetch the registers included in the target's 'g' packet. */
8402
8403 int
8404 remote_target::send_g_packet ()
8405 {
8406 struct remote_state *rs = get_remote_state ();
8407 int buf_len;
8408
8409 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8410 putpkt (rs->buf);
8411 getpkt (&rs->buf, 0);
8412 if (packet_check_result (rs->buf) == PACKET_ERROR)
8413 error (_("Could not read registers; remote failure reply '%s'"),
8414 rs->buf.data ());
8415
8416 /* We can get out of synch in various cases. If the first character
8417 in the buffer is not a hex character, assume that has happened
8418 and try to fetch another packet to read. */
8419 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8420 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8421 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8422 && rs->buf[0] != 'x') /* New: unavailable register value. */
8423 {
8424 remote_debug_printf ("Bad register packet; fetching a new packet");
8425 getpkt (&rs->buf, 0);
8426 }
8427
8428 buf_len = strlen (rs->buf.data ());
8429
8430 /* Sanity check the received packet. */
8431 if (buf_len % 2 != 0)
8432 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8433
8434 return buf_len / 2;
8435 }
8436
8437 void
8438 remote_target::process_g_packet (struct regcache *regcache)
8439 {
8440 struct gdbarch *gdbarch = regcache->arch ();
8441 struct remote_state *rs = get_remote_state ();
8442 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8443 int i, buf_len;
8444 char *p;
8445 char *regs;
8446
8447 buf_len = strlen (rs->buf.data ());
8448
8449 /* Further sanity checks, with knowledge of the architecture. */
8450 if (buf_len > 2 * rsa->sizeof_g_packet)
8451 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8452 "bytes): %s"),
8453 rsa->sizeof_g_packet, buf_len / 2,
8454 rs->buf.data ());
8455
8456 /* Save the size of the packet sent to us by the target. It is used
8457 as a heuristic when determining the max size of packets that the
8458 target can safely receive. */
8459 if (rsa->actual_register_packet_size == 0)
8460 rsa->actual_register_packet_size = buf_len;
8461
8462 /* If this is smaller than we guessed the 'g' packet would be,
8463 update our records. A 'g' reply that doesn't include a register's
8464 value implies either that the register is not available, or that
8465 the 'p' packet must be used. */
8466 if (buf_len < 2 * rsa->sizeof_g_packet)
8467 {
8468 long sizeof_g_packet = buf_len / 2;
8469
8470 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8471 {
8472 long offset = rsa->regs[i].offset;
8473 long reg_size = register_size (gdbarch, i);
8474
8475 if (rsa->regs[i].pnum == -1)
8476 continue;
8477
8478 if (offset >= sizeof_g_packet)
8479 rsa->regs[i].in_g_packet = 0;
8480 else if (offset + reg_size > sizeof_g_packet)
8481 error (_("Truncated register %d in remote 'g' packet"), i);
8482 else
8483 rsa->regs[i].in_g_packet = 1;
8484 }
8485
8486 /* Looks valid enough, we can assume this is the correct length
8487 for a 'g' packet. It's important not to adjust
8488 rsa->sizeof_g_packet if we have truncated registers otherwise
8489 this "if" won't be run the next time the method is called
8490 with a packet of the same size and one of the internal errors
8491 below will trigger instead. */
8492 rsa->sizeof_g_packet = sizeof_g_packet;
8493 }
8494
8495 regs = (char *) alloca (rsa->sizeof_g_packet);
8496
8497 /* Unimplemented registers read as all bits zero. */
8498 memset (regs, 0, rsa->sizeof_g_packet);
8499
8500 /* Reply describes registers byte by byte, each byte encoded as two
8501 hex characters. Suck them all up, then supply them to the
8502 register cacheing/storage mechanism. */
8503
8504 p = rs->buf.data ();
8505 for (i = 0; i < rsa->sizeof_g_packet; i++)
8506 {
8507 if (p[0] == 0 || p[1] == 0)
8508 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8509 internal_error (__FILE__, __LINE__,
8510 _("unexpected end of 'g' packet reply"));
8511
8512 if (p[0] == 'x' && p[1] == 'x')
8513 regs[i] = 0; /* 'x' */
8514 else
8515 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8516 p += 2;
8517 }
8518
8519 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8520 {
8521 struct packet_reg *r = &rsa->regs[i];
8522 long reg_size = register_size (gdbarch, i);
8523
8524 if (r->in_g_packet)
8525 {
8526 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8527 /* This shouldn't happen - we adjusted in_g_packet above. */
8528 internal_error (__FILE__, __LINE__,
8529 _("unexpected end of 'g' packet reply"));
8530 else if (rs->buf[r->offset * 2] == 'x')
8531 {
8532 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8533 /* The register isn't available, mark it as such (at
8534 the same time setting the value to zero). */
8535 regcache->raw_supply (r->regnum, NULL);
8536 }
8537 else
8538 regcache->raw_supply (r->regnum, regs + r->offset);
8539 }
8540 }
8541 }
8542
8543 void
8544 remote_target::fetch_registers_using_g (struct regcache *regcache)
8545 {
8546 send_g_packet ();
8547 process_g_packet (regcache);
8548 }
8549
8550 /* Make the remote selected traceframe match GDB's selected
8551 traceframe. */
8552
8553 void
8554 remote_target::set_remote_traceframe ()
8555 {
8556 int newnum;
8557 struct remote_state *rs = get_remote_state ();
8558
8559 if (rs->remote_traceframe_number == get_traceframe_number ())
8560 return;
8561
8562 /* Avoid recursion, remote_trace_find calls us again. */
8563 rs->remote_traceframe_number = get_traceframe_number ();
8564
8565 newnum = target_trace_find (tfind_number,
8566 get_traceframe_number (), 0, 0, NULL);
8567
8568 /* Should not happen. If it does, all bets are off. */
8569 if (newnum != get_traceframe_number ())
8570 warning (_("could not set remote traceframe"));
8571 }
8572
8573 void
8574 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8575 {
8576 struct gdbarch *gdbarch = regcache->arch ();
8577 struct remote_state *rs = get_remote_state ();
8578 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8579 int i;
8580
8581 set_remote_traceframe ();
8582 set_general_thread (regcache->ptid ());
8583
8584 if (regnum >= 0)
8585 {
8586 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8587
8588 gdb_assert (reg != NULL);
8589
8590 /* If this register might be in the 'g' packet, try that first -
8591 we are likely to read more than one register. If this is the
8592 first 'g' packet, we might be overly optimistic about its
8593 contents, so fall back to 'p'. */
8594 if (reg->in_g_packet)
8595 {
8596 fetch_registers_using_g (regcache);
8597 if (reg->in_g_packet)
8598 return;
8599 }
8600
8601 if (fetch_register_using_p (regcache, reg))
8602 return;
8603
8604 /* This register is not available. */
8605 regcache->raw_supply (reg->regnum, NULL);
8606
8607 return;
8608 }
8609
8610 fetch_registers_using_g (regcache);
8611
8612 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8613 if (!rsa->regs[i].in_g_packet)
8614 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8615 {
8616 /* This register is not available. */
8617 regcache->raw_supply (i, NULL);
8618 }
8619 }
8620
8621 /* Prepare to store registers. Since we may send them all (using a
8622 'G' request), we have to read out the ones we don't want to change
8623 first. */
8624
8625 void
8626 remote_target::prepare_to_store (struct regcache *regcache)
8627 {
8628 struct remote_state *rs = get_remote_state ();
8629 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8630 int i;
8631
8632 /* Make sure the entire registers array is valid. */
8633 switch (packet_support (PACKET_P))
8634 {
8635 case PACKET_DISABLE:
8636 case PACKET_SUPPORT_UNKNOWN:
8637 /* Make sure all the necessary registers are cached. */
8638 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8639 if (rsa->regs[i].in_g_packet)
8640 regcache->raw_update (rsa->regs[i].regnum);
8641 break;
8642 case PACKET_ENABLE:
8643 break;
8644 }
8645 }
8646
8647 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8648 packet was not recognized. */
8649
8650 int
8651 remote_target::store_register_using_P (const struct regcache *regcache,
8652 packet_reg *reg)
8653 {
8654 struct gdbarch *gdbarch = regcache->arch ();
8655 struct remote_state *rs = get_remote_state ();
8656 /* Try storing a single register. */
8657 char *buf = rs->buf.data ();
8658 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8659 char *p;
8660
8661 if (packet_support (PACKET_P) == PACKET_DISABLE)
8662 return 0;
8663
8664 if (reg->pnum == -1)
8665 return 0;
8666
8667 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8668 p = buf + strlen (buf);
8669 regcache->raw_collect (reg->regnum, regp);
8670 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8671 putpkt (rs->buf);
8672 getpkt (&rs->buf, 0);
8673
8674 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8675 {
8676 case PACKET_OK:
8677 return 1;
8678 case PACKET_ERROR:
8679 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8680 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8681 case PACKET_UNKNOWN:
8682 return 0;
8683 default:
8684 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8685 }
8686 }
8687
8688 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8689 contents of the register cache buffer. FIXME: ignores errors. */
8690
8691 void
8692 remote_target::store_registers_using_G (const struct regcache *regcache)
8693 {
8694 struct remote_state *rs = get_remote_state ();
8695 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8696 gdb_byte *regs;
8697 char *p;
8698
8699 /* Extract all the registers in the regcache copying them into a
8700 local buffer. */
8701 {
8702 int i;
8703
8704 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8705 memset (regs, 0, rsa->sizeof_g_packet);
8706 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8707 {
8708 struct packet_reg *r = &rsa->regs[i];
8709
8710 if (r->in_g_packet)
8711 regcache->raw_collect (r->regnum, regs + r->offset);
8712 }
8713 }
8714
8715 /* Command describes registers byte by byte,
8716 each byte encoded as two hex characters. */
8717 p = rs->buf.data ();
8718 *p++ = 'G';
8719 bin2hex (regs, p, rsa->sizeof_g_packet);
8720 putpkt (rs->buf);
8721 getpkt (&rs->buf, 0);
8722 if (packet_check_result (rs->buf) == PACKET_ERROR)
8723 error (_("Could not write registers; remote failure reply '%s'"),
8724 rs->buf.data ());
8725 }
8726
8727 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8728 of the register cache buffer. FIXME: ignores errors. */
8729
8730 void
8731 remote_target::store_registers (struct regcache *regcache, int regnum)
8732 {
8733 struct gdbarch *gdbarch = regcache->arch ();
8734 struct remote_state *rs = get_remote_state ();
8735 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8736 int i;
8737
8738 set_remote_traceframe ();
8739 set_general_thread (regcache->ptid ());
8740
8741 if (regnum >= 0)
8742 {
8743 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8744
8745 gdb_assert (reg != NULL);
8746
8747 /* Always prefer to store registers using the 'P' packet if
8748 possible; we often change only a small number of registers.
8749 Sometimes we change a larger number; we'd need help from a
8750 higher layer to know to use 'G'. */
8751 if (store_register_using_P (regcache, reg))
8752 return;
8753
8754 /* For now, don't complain if we have no way to write the
8755 register. GDB loses track of unavailable registers too
8756 easily. Some day, this may be an error. We don't have
8757 any way to read the register, either... */
8758 if (!reg->in_g_packet)
8759 return;
8760
8761 store_registers_using_G (regcache);
8762 return;
8763 }
8764
8765 store_registers_using_G (regcache);
8766
8767 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8768 if (!rsa->regs[i].in_g_packet)
8769 if (!store_register_using_P (regcache, &rsa->regs[i]))
8770 /* See above for why we do not issue an error here. */
8771 continue;
8772 }
8773 \f
8774
8775 /* Return the number of hex digits in num. */
8776
8777 static int
8778 hexnumlen (ULONGEST num)
8779 {
8780 int i;
8781
8782 for (i = 0; num != 0; i++)
8783 num >>= 4;
8784
8785 return std::max (i, 1);
8786 }
8787
8788 /* Set BUF to the minimum number of hex digits representing NUM. */
8789
8790 static int
8791 hexnumstr (char *buf, ULONGEST num)
8792 {
8793 int len = hexnumlen (num);
8794
8795 return hexnumnstr (buf, num, len);
8796 }
8797
8798
8799 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8800
8801 static int
8802 hexnumnstr (char *buf, ULONGEST num, int width)
8803 {
8804 int i;
8805
8806 buf[width] = '\0';
8807
8808 for (i = width - 1; i >= 0; i--)
8809 {
8810 buf[i] = "0123456789abcdef"[(num & 0xf)];
8811 num >>= 4;
8812 }
8813
8814 return width;
8815 }
8816
8817 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8818
8819 static CORE_ADDR
8820 remote_address_masked (CORE_ADDR addr)
8821 {
8822 unsigned int address_size = remote_address_size;
8823
8824 /* If "remoteaddresssize" was not set, default to target address size. */
8825 if (!address_size)
8826 address_size = gdbarch_addr_bit (target_gdbarch ());
8827
8828 if (address_size > 0
8829 && address_size < (sizeof (ULONGEST) * 8))
8830 {
8831 /* Only create a mask when that mask can safely be constructed
8832 in a ULONGEST variable. */
8833 ULONGEST mask = 1;
8834
8835 mask = (mask << address_size) - 1;
8836 addr &= mask;
8837 }
8838 return addr;
8839 }
8840
8841 /* Determine whether the remote target supports binary downloading.
8842 This is accomplished by sending a no-op memory write of zero length
8843 to the target at the specified address. It does not suffice to send
8844 the whole packet, since many stubs strip the eighth bit and
8845 subsequently compute a wrong checksum, which causes real havoc with
8846 remote_write_bytes.
8847
8848 NOTE: This can still lose if the serial line is not eight-bit
8849 clean. In cases like this, the user should clear "remote
8850 X-packet". */
8851
8852 void
8853 remote_target::check_binary_download (CORE_ADDR addr)
8854 {
8855 struct remote_state *rs = get_remote_state ();
8856
8857 switch (packet_support (PACKET_X))
8858 {
8859 case PACKET_DISABLE:
8860 break;
8861 case PACKET_ENABLE:
8862 break;
8863 case PACKET_SUPPORT_UNKNOWN:
8864 {
8865 char *p;
8866
8867 p = rs->buf.data ();
8868 *p++ = 'X';
8869 p += hexnumstr (p, (ULONGEST) addr);
8870 *p++ = ',';
8871 p += hexnumstr (p, (ULONGEST) 0);
8872 *p++ = ':';
8873 *p = '\0';
8874
8875 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8876 getpkt (&rs->buf, 0);
8877
8878 if (rs->buf[0] == '\0')
8879 {
8880 remote_debug_printf ("binary downloading NOT supported by target");
8881 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8882 }
8883 else
8884 {
8885 remote_debug_printf ("binary downloading supported by target");
8886 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8887 }
8888 break;
8889 }
8890 }
8891 }
8892
8893 /* Helper function to resize the payload in order to try to get a good
8894 alignment. We try to write an amount of data such that the next write will
8895 start on an address aligned on REMOTE_ALIGN_WRITES. */
8896
8897 static int
8898 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8899 {
8900 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8901 }
8902
8903 /* Write memory data directly to the remote machine.
8904 This does not inform the data cache; the data cache uses this.
8905 HEADER is the starting part of the packet.
8906 MEMADDR is the address in the remote memory space.
8907 MYADDR is the address of the buffer in our space.
8908 LEN_UNITS is the number of addressable units to write.
8909 UNIT_SIZE is the length in bytes of an addressable unit.
8910 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8911 should send data as binary ('X'), or hex-encoded ('M').
8912
8913 The function creates packet of the form
8914 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8915
8916 where encoding of <DATA> is terminated by PACKET_FORMAT.
8917
8918 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8919 are omitted.
8920
8921 Return the transferred status, error or OK (an
8922 'enum target_xfer_status' value). Save the number of addressable units
8923 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8924
8925 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8926 exchange between gdb and the stub could look like (?? in place of the
8927 checksum):
8928
8929 -> $m1000,4#??
8930 <- aaaabbbbccccdddd
8931
8932 -> $M1000,3:eeeeffffeeee#??
8933 <- OK
8934
8935 -> $m1000,4#??
8936 <- eeeeffffeeeedddd */
8937
8938 target_xfer_status
8939 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8940 const gdb_byte *myaddr,
8941 ULONGEST len_units,
8942 int unit_size,
8943 ULONGEST *xfered_len_units,
8944 char packet_format, int use_length)
8945 {
8946 struct remote_state *rs = get_remote_state ();
8947 char *p;
8948 char *plen = NULL;
8949 int plenlen = 0;
8950 int todo_units;
8951 int units_written;
8952 int payload_capacity_bytes;
8953 int payload_length_bytes;
8954
8955 if (packet_format != 'X' && packet_format != 'M')
8956 internal_error (__FILE__, __LINE__,
8957 _("remote_write_bytes_aux: bad packet format"));
8958
8959 if (len_units == 0)
8960 return TARGET_XFER_EOF;
8961
8962 payload_capacity_bytes = get_memory_write_packet_size ();
8963
8964 /* The packet buffer will be large enough for the payload;
8965 get_memory_packet_size ensures this. */
8966 rs->buf[0] = '\0';
8967
8968 /* Compute the size of the actual payload by subtracting out the
8969 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8970
8971 payload_capacity_bytes -= strlen ("$,:#NN");
8972 if (!use_length)
8973 /* The comma won't be used. */
8974 payload_capacity_bytes += 1;
8975 payload_capacity_bytes -= strlen (header);
8976 payload_capacity_bytes -= hexnumlen (memaddr);
8977
8978 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8979
8980 strcat (rs->buf.data (), header);
8981 p = rs->buf.data () + strlen (header);
8982
8983 /* Compute a best guess of the number of bytes actually transfered. */
8984 if (packet_format == 'X')
8985 {
8986 /* Best guess at number of bytes that will fit. */
8987 todo_units = std::min (len_units,
8988 (ULONGEST) payload_capacity_bytes / unit_size);
8989 if (use_length)
8990 payload_capacity_bytes -= hexnumlen (todo_units);
8991 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8992 }
8993 else
8994 {
8995 /* Number of bytes that will fit. */
8996 todo_units
8997 = std::min (len_units,
8998 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8999 if (use_length)
9000 payload_capacity_bytes -= hexnumlen (todo_units);
9001 todo_units = std::min (todo_units,
9002 (payload_capacity_bytes / unit_size) / 2);
9003 }
9004
9005 if (todo_units <= 0)
9006 internal_error (__FILE__, __LINE__,
9007 _("minimum packet size too small to write data"));
9008
9009 /* If we already need another packet, then try to align the end
9010 of this packet to a useful boundary. */
9011 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
9012 todo_units = align_for_efficient_write (todo_units, memaddr);
9013
9014 /* Append "<memaddr>". */
9015 memaddr = remote_address_masked (memaddr);
9016 p += hexnumstr (p, (ULONGEST) memaddr);
9017
9018 if (use_length)
9019 {
9020 /* Append ",". */
9021 *p++ = ',';
9022
9023 /* Append the length and retain its location and size. It may need to be
9024 adjusted once the packet body has been created. */
9025 plen = p;
9026 plenlen = hexnumstr (p, (ULONGEST) todo_units);
9027 p += plenlen;
9028 }
9029
9030 /* Append ":". */
9031 *p++ = ':';
9032 *p = '\0';
9033
9034 /* Append the packet body. */
9035 if (packet_format == 'X')
9036 {
9037 /* Binary mode. Send target system values byte by byte, in
9038 increasing byte addresses. Only escape certain critical
9039 characters. */
9040 payload_length_bytes =
9041 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
9042 &units_written, payload_capacity_bytes);
9043
9044 /* If not all TODO units fit, then we'll need another packet. Make
9045 a second try to keep the end of the packet aligned. Don't do
9046 this if the packet is tiny. */
9047 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
9048 {
9049 int new_todo_units;
9050
9051 new_todo_units = align_for_efficient_write (units_written, memaddr);
9052
9053 if (new_todo_units != units_written)
9054 payload_length_bytes =
9055 remote_escape_output (myaddr, new_todo_units, unit_size,
9056 (gdb_byte *) p, &units_written,
9057 payload_capacity_bytes);
9058 }
9059
9060 p += payload_length_bytes;
9061 if (use_length && units_written < todo_units)
9062 {
9063 /* Escape chars have filled up the buffer prematurely,
9064 and we have actually sent fewer units than planned.
9065 Fix-up the length field of the packet. Use the same
9066 number of characters as before. */
9067 plen += hexnumnstr (plen, (ULONGEST) units_written,
9068 plenlen);
9069 *plen = ':'; /* overwrite \0 from hexnumnstr() */
9070 }
9071 }
9072 else
9073 {
9074 /* Normal mode: Send target system values byte by byte, in
9075 increasing byte addresses. Each byte is encoded as a two hex
9076 value. */
9077 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
9078 units_written = todo_units;
9079 }
9080
9081 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
9082 getpkt (&rs->buf, 0);
9083
9084 if (rs->buf[0] == 'E')
9085 return TARGET_XFER_E_IO;
9086
9087 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
9088 send fewer units than we'd planned. */
9089 *xfered_len_units = (ULONGEST) units_written;
9090 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9091 }
9092
9093 /* Write memory data directly to the remote machine.
9094 This does not inform the data cache; the data cache uses this.
9095 MEMADDR is the address in the remote memory space.
9096 MYADDR is the address of the buffer in our space.
9097 LEN is the number of bytes.
9098
9099 Return the transferred status, error or OK (an
9100 'enum target_xfer_status' value). Save the number of bytes
9101 transferred in *XFERED_LEN. Only transfer a single packet. */
9102
9103 target_xfer_status
9104 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
9105 ULONGEST len, int unit_size,
9106 ULONGEST *xfered_len)
9107 {
9108 const char *packet_format = NULL;
9109
9110 /* Check whether the target supports binary download. */
9111 check_binary_download (memaddr);
9112
9113 switch (packet_support (PACKET_X))
9114 {
9115 case PACKET_ENABLE:
9116 packet_format = "X";
9117 break;
9118 case PACKET_DISABLE:
9119 packet_format = "M";
9120 break;
9121 case PACKET_SUPPORT_UNKNOWN:
9122 internal_error (__FILE__, __LINE__,
9123 _("remote_write_bytes: bad internal state"));
9124 default:
9125 internal_error (__FILE__, __LINE__, _("bad switch"));
9126 }
9127
9128 return remote_write_bytes_aux (packet_format,
9129 memaddr, myaddr, len, unit_size, xfered_len,
9130 packet_format[0], 1);
9131 }
9132
9133 /* Read memory data directly from the remote machine.
9134 This does not use the data cache; the data cache uses this.
9135 MEMADDR is the address in the remote memory space.
9136 MYADDR is the address of the buffer in our space.
9137 LEN_UNITS is the number of addressable memory units to read..
9138 UNIT_SIZE is the length in bytes of an addressable unit.
9139
9140 Return the transferred status, error or OK (an
9141 'enum target_xfer_status' value). Save the number of bytes
9142 transferred in *XFERED_LEN_UNITS.
9143
9144 See the comment of remote_write_bytes_aux for an example of
9145 memory read/write exchange between gdb and the stub. */
9146
9147 target_xfer_status
9148 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
9149 ULONGEST len_units,
9150 int unit_size, ULONGEST *xfered_len_units)
9151 {
9152 struct remote_state *rs = get_remote_state ();
9153 int buf_size_bytes; /* Max size of packet output buffer. */
9154 char *p;
9155 int todo_units;
9156 int decoded_bytes;
9157
9158 buf_size_bytes = get_memory_read_packet_size ();
9159 /* The packet buffer will be large enough for the payload;
9160 get_memory_packet_size ensures this. */
9161
9162 /* Number of units that will fit. */
9163 todo_units = std::min (len_units,
9164 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9165
9166 /* Construct "m"<memaddr>","<len>". */
9167 memaddr = remote_address_masked (memaddr);
9168 p = rs->buf.data ();
9169 *p++ = 'm';
9170 p += hexnumstr (p, (ULONGEST) memaddr);
9171 *p++ = ',';
9172 p += hexnumstr (p, (ULONGEST) todo_units);
9173 *p = '\0';
9174 putpkt (rs->buf);
9175 getpkt (&rs->buf, 0);
9176 if (rs->buf[0] == 'E'
9177 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9178 && rs->buf[3] == '\0')
9179 return TARGET_XFER_E_IO;
9180 /* Reply describes memory byte by byte, each byte encoded as two hex
9181 characters. */
9182 p = rs->buf.data ();
9183 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9184 /* Return what we have. Let higher layers handle partial reads. */
9185 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9186 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9187 }
9188
9189 /* Using the set of read-only target sections of remote, read live
9190 read-only memory.
9191
9192 For interface/parameters/return description see target.h,
9193 to_xfer_partial. */
9194
9195 target_xfer_status
9196 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9197 ULONGEST memaddr,
9198 ULONGEST len,
9199 int unit_size,
9200 ULONGEST *xfered_len)
9201 {
9202 const struct target_section *secp;
9203
9204 secp = target_section_by_addr (this, memaddr);
9205 if (secp != NULL
9206 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9207 {
9208 ULONGEST memend = memaddr + len;
9209
9210 const target_section_table *table = target_get_section_table (this);
9211 for (const target_section &p : *table)
9212 {
9213 if (memaddr >= p.addr)
9214 {
9215 if (memend <= p.endaddr)
9216 {
9217 /* Entire transfer is within this section. */
9218 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9219 xfered_len);
9220 }
9221 else if (memaddr >= p.endaddr)
9222 {
9223 /* This section ends before the transfer starts. */
9224 continue;
9225 }
9226 else
9227 {
9228 /* This section overlaps the transfer. Just do half. */
9229 len = p.endaddr - memaddr;
9230 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9231 xfered_len);
9232 }
9233 }
9234 }
9235 }
9236
9237 return TARGET_XFER_EOF;
9238 }
9239
9240 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9241 first if the requested memory is unavailable in traceframe.
9242 Otherwise, fall back to remote_read_bytes_1. */
9243
9244 target_xfer_status
9245 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9246 gdb_byte *myaddr, ULONGEST len, int unit_size,
9247 ULONGEST *xfered_len)
9248 {
9249 if (len == 0)
9250 return TARGET_XFER_EOF;
9251
9252 if (get_traceframe_number () != -1)
9253 {
9254 std::vector<mem_range> available;
9255
9256 /* If we fail to get the set of available memory, then the
9257 target does not support querying traceframe info, and so we
9258 attempt reading from the traceframe anyway (assuming the
9259 target implements the old QTro packet then). */
9260 if (traceframe_available_memory (&available, memaddr, len))
9261 {
9262 if (available.empty () || available[0].start != memaddr)
9263 {
9264 enum target_xfer_status res;
9265
9266 /* Don't read into the traceframe's available
9267 memory. */
9268 if (!available.empty ())
9269 {
9270 LONGEST oldlen = len;
9271
9272 len = available[0].start - memaddr;
9273 gdb_assert (len <= oldlen);
9274 }
9275
9276 /* This goes through the topmost target again. */
9277 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9278 len, unit_size, xfered_len);
9279 if (res == TARGET_XFER_OK)
9280 return TARGET_XFER_OK;
9281 else
9282 {
9283 /* No use trying further, we know some memory starting
9284 at MEMADDR isn't available. */
9285 *xfered_len = len;
9286 return (*xfered_len != 0) ?
9287 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9288 }
9289 }
9290
9291 /* Don't try to read more than how much is available, in
9292 case the target implements the deprecated QTro packet to
9293 cater for older GDBs (the target's knowledge of read-only
9294 sections may be outdated by now). */
9295 len = available[0].length;
9296 }
9297 }
9298
9299 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9300 }
9301
9302 \f
9303
9304 /* Sends a packet with content determined by the printf format string
9305 FORMAT and the remaining arguments, then gets the reply. Returns
9306 whether the packet was a success, a failure, or unknown. */
9307
9308 packet_result
9309 remote_target::remote_send_printf (const char *format, ...)
9310 {
9311 struct remote_state *rs = get_remote_state ();
9312 int max_size = get_remote_packet_size ();
9313 va_list ap;
9314
9315 va_start (ap, format);
9316
9317 rs->buf[0] = '\0';
9318 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9319
9320 va_end (ap);
9321
9322 if (size >= max_size)
9323 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9324
9325 if (putpkt (rs->buf) < 0)
9326 error (_("Communication problem with target."));
9327
9328 rs->buf[0] = '\0';
9329 getpkt (&rs->buf, 0);
9330
9331 return packet_check_result (rs->buf);
9332 }
9333
9334 /* Flash writing can take quite some time. We'll set
9335 effectively infinite timeout for flash operations.
9336 In future, we'll need to decide on a better approach. */
9337 static const int remote_flash_timeout = 1000;
9338
9339 void
9340 remote_target::flash_erase (ULONGEST address, LONGEST length)
9341 {
9342 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9343 enum packet_result ret;
9344 scoped_restore restore_timeout
9345 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9346
9347 ret = remote_send_printf ("vFlashErase:%s,%s",
9348 phex (address, addr_size),
9349 phex (length, 4));
9350 switch (ret)
9351 {
9352 case PACKET_UNKNOWN:
9353 error (_("Remote target does not support flash erase"));
9354 case PACKET_ERROR:
9355 error (_("Error erasing flash with vFlashErase packet"));
9356 default:
9357 break;
9358 }
9359 }
9360
9361 target_xfer_status
9362 remote_target::remote_flash_write (ULONGEST address,
9363 ULONGEST length, ULONGEST *xfered_len,
9364 const gdb_byte *data)
9365 {
9366 scoped_restore restore_timeout
9367 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9368 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9369 xfered_len,'X', 0);
9370 }
9371
9372 void
9373 remote_target::flash_done ()
9374 {
9375 int ret;
9376
9377 scoped_restore restore_timeout
9378 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9379
9380 ret = remote_send_printf ("vFlashDone");
9381
9382 switch (ret)
9383 {
9384 case PACKET_UNKNOWN:
9385 error (_("Remote target does not support vFlashDone"));
9386 case PACKET_ERROR:
9387 error (_("Error finishing flash operation"));
9388 default:
9389 break;
9390 }
9391 }
9392
9393 void
9394 remote_target::files_info ()
9395 {
9396 puts_filtered ("Debugging a target over a serial line.\n");
9397 }
9398 \f
9399 /* Stuff for dealing with the packets which are part of this protocol.
9400 See comment at top of file for details. */
9401
9402 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9403 error to higher layers. Called when a serial error is detected.
9404 The exception message is STRING, followed by a colon and a blank,
9405 the system error message for errno at function entry and final dot
9406 for output compatibility with throw_perror_with_name. */
9407
9408 static void
9409 unpush_and_perror (remote_target *target, const char *string)
9410 {
9411 int saved_errno = errno;
9412
9413 remote_unpush_target (target);
9414 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9415 safe_strerror (saved_errno));
9416 }
9417
9418 /* Read a single character from the remote end. The current quit
9419 handler is overridden to avoid quitting in the middle of packet
9420 sequence, as that would break communication with the remote server.
9421 See remote_serial_quit_handler for more detail. */
9422
9423 int
9424 remote_target::readchar (int timeout)
9425 {
9426 int ch;
9427 struct remote_state *rs = get_remote_state ();
9428
9429 {
9430 scoped_restore restore_quit_target
9431 = make_scoped_restore (&curr_quit_handler_target, this);
9432 scoped_restore restore_quit
9433 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9434
9435 rs->got_ctrlc_during_io = 0;
9436
9437 ch = serial_readchar (rs->remote_desc, timeout);
9438
9439 if (rs->got_ctrlc_during_io)
9440 set_quit_flag ();
9441 }
9442
9443 if (ch >= 0)
9444 return ch;
9445
9446 switch ((enum serial_rc) ch)
9447 {
9448 case SERIAL_EOF:
9449 remote_unpush_target (this);
9450 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9451 /* no return */
9452 case SERIAL_ERROR:
9453 unpush_and_perror (this, _("Remote communication error. "
9454 "Target disconnected."));
9455 /* no return */
9456 case SERIAL_TIMEOUT:
9457 break;
9458 }
9459 return ch;
9460 }
9461
9462 /* Wrapper for serial_write that closes the target and throws if
9463 writing fails. The current quit handler is overridden to avoid
9464 quitting in the middle of packet sequence, as that would break
9465 communication with the remote server. See
9466 remote_serial_quit_handler for more detail. */
9467
9468 void
9469 remote_target::remote_serial_write (const char *str, int len)
9470 {
9471 struct remote_state *rs = get_remote_state ();
9472
9473 scoped_restore restore_quit_target
9474 = make_scoped_restore (&curr_quit_handler_target, this);
9475 scoped_restore restore_quit
9476 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9477
9478 rs->got_ctrlc_during_io = 0;
9479
9480 if (serial_write (rs->remote_desc, str, len))
9481 {
9482 unpush_and_perror (this, _("Remote communication error. "
9483 "Target disconnected."));
9484 }
9485
9486 if (rs->got_ctrlc_during_io)
9487 set_quit_flag ();
9488 }
9489
9490 /* Return a string representing an escaped version of BUF, of len N.
9491 E.g. \n is converted to \\n, \t to \\t, etc. */
9492
9493 static std::string
9494 escape_buffer (const char *buf, int n)
9495 {
9496 string_file stb;
9497
9498 stb.putstrn (buf, n, '\\');
9499 return std::move (stb.string ());
9500 }
9501
9502 /* Display a null-terminated packet on stdout, for debugging, using C
9503 string notation. */
9504
9505 static void
9506 print_packet (const char *buf)
9507 {
9508 puts_filtered ("\"");
9509 fputstr_filtered (buf, '"', gdb_stdout);
9510 puts_filtered ("\"");
9511 }
9512
9513 int
9514 remote_target::putpkt (const char *buf)
9515 {
9516 return putpkt_binary (buf, strlen (buf));
9517 }
9518
9519 /* Wrapper around remote_target::putpkt to avoid exporting
9520 remote_target. */
9521
9522 int
9523 putpkt (remote_target *remote, const char *buf)
9524 {
9525 return remote->putpkt (buf);
9526 }
9527
9528 /* Send a packet to the remote machine, with error checking. The data
9529 of the packet is in BUF. The string in BUF can be at most
9530 get_remote_packet_size () - 5 to account for the $, # and checksum,
9531 and for a possible /0 if we are debugging (remote_debug) and want
9532 to print the sent packet as a string. */
9533
9534 int
9535 remote_target::putpkt_binary (const char *buf, int cnt)
9536 {
9537 struct remote_state *rs = get_remote_state ();
9538 int i;
9539 unsigned char csum = 0;
9540 gdb::def_vector<char> data (cnt + 6);
9541 char *buf2 = data.data ();
9542
9543 int ch;
9544 int tcount = 0;
9545 char *p;
9546
9547 /* Catch cases like trying to read memory or listing threads while
9548 we're waiting for a stop reply. The remote server wouldn't be
9549 ready to handle this request, so we'd hang and timeout. We don't
9550 have to worry about this in synchronous mode, because in that
9551 case it's not possible to issue a command while the target is
9552 running. This is not a problem in non-stop mode, because in that
9553 case, the stub is always ready to process serial input. */
9554 if (!target_is_non_stop_p ()
9555 && target_is_async_p ()
9556 && rs->waiting_for_stop_reply)
9557 {
9558 error (_("Cannot execute this command while the target is running.\n"
9559 "Use the \"interrupt\" command to stop the target\n"
9560 "and then try again."));
9561 }
9562
9563 /* We're sending out a new packet. Make sure we don't look at a
9564 stale cached response. */
9565 rs->cached_wait_status = 0;
9566
9567 /* Copy the packet into buffer BUF2, encapsulating it
9568 and giving it a checksum. */
9569
9570 p = buf2;
9571 *p++ = '$';
9572
9573 for (i = 0; i < cnt; i++)
9574 {
9575 csum += buf[i];
9576 *p++ = buf[i];
9577 }
9578 *p++ = '#';
9579 *p++ = tohex ((csum >> 4) & 0xf);
9580 *p++ = tohex (csum & 0xf);
9581
9582 /* Send it over and over until we get a positive ack. */
9583
9584 while (1)
9585 {
9586 if (remote_debug)
9587 {
9588 *p = '\0';
9589
9590 int len = (int) (p - buf2);
9591 int max_chars;
9592
9593 if (remote_packet_max_chars < 0)
9594 max_chars = len;
9595 else
9596 max_chars = remote_packet_max_chars;
9597
9598 std::string str
9599 = escape_buffer (buf2, std::min (len, max_chars));
9600
9601 if (len > max_chars)
9602 remote_debug_printf_nofunc
9603 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9604 len - max_chars);
9605 else
9606 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9607 }
9608 remote_serial_write (buf2, p - buf2);
9609
9610 /* If this is a no acks version of the remote protocol, send the
9611 packet and move on. */
9612 if (rs->noack_mode)
9613 break;
9614
9615 /* Read until either a timeout occurs (-2) or '+' is read.
9616 Handle any notification that arrives in the mean time. */
9617 while (1)
9618 {
9619 ch = readchar (remote_timeout);
9620
9621 switch (ch)
9622 {
9623 case '+':
9624 remote_debug_printf_nofunc ("Received Ack");
9625 return 1;
9626 case '-':
9627 remote_debug_printf_nofunc ("Received Nak");
9628 /* FALLTHROUGH */
9629 case SERIAL_TIMEOUT:
9630 tcount++;
9631 if (tcount > 3)
9632 return 0;
9633 break; /* Retransmit buffer. */
9634 case '$':
9635 {
9636 remote_debug_printf ("Packet instead of Ack, ignoring it");
9637 /* It's probably an old response sent because an ACK
9638 was lost. Gobble up the packet and ack it so it
9639 doesn't get retransmitted when we resend this
9640 packet. */
9641 skip_frame ();
9642 remote_serial_write ("+", 1);
9643 continue; /* Now, go look for +. */
9644 }
9645
9646 case '%':
9647 {
9648 int val;
9649
9650 /* If we got a notification, handle it, and go back to looking
9651 for an ack. */
9652 /* We've found the start of a notification. Now
9653 collect the data. */
9654 val = read_frame (&rs->buf);
9655 if (val >= 0)
9656 {
9657 remote_debug_printf_nofunc
9658 (" Notification received: %s",
9659 escape_buffer (rs->buf.data (), val).c_str ());
9660
9661 handle_notification (rs->notif_state, rs->buf.data ());
9662 /* We're in sync now, rewait for the ack. */
9663 tcount = 0;
9664 }
9665 else
9666 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9667 rs->buf.data ());
9668 continue;
9669 }
9670 /* fall-through */
9671 default:
9672 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9673 rs->buf.data ());
9674 continue;
9675 }
9676 break; /* Here to retransmit. */
9677 }
9678
9679 #if 0
9680 /* This is wrong. If doing a long backtrace, the user should be
9681 able to get out next time we call QUIT, without anything as
9682 violent as interrupt_query. If we want to provide a way out of
9683 here without getting to the next QUIT, it should be based on
9684 hitting ^C twice as in remote_wait. */
9685 if (quit_flag)
9686 {
9687 quit_flag = 0;
9688 interrupt_query ();
9689 }
9690 #endif
9691 }
9692
9693 return 0;
9694 }
9695
9696 /* Come here after finding the start of a frame when we expected an
9697 ack. Do our best to discard the rest of this packet. */
9698
9699 void
9700 remote_target::skip_frame ()
9701 {
9702 int c;
9703
9704 while (1)
9705 {
9706 c = readchar (remote_timeout);
9707 switch (c)
9708 {
9709 case SERIAL_TIMEOUT:
9710 /* Nothing we can do. */
9711 return;
9712 case '#':
9713 /* Discard the two bytes of checksum and stop. */
9714 c = readchar (remote_timeout);
9715 if (c >= 0)
9716 c = readchar (remote_timeout);
9717
9718 return;
9719 case '*': /* Run length encoding. */
9720 /* Discard the repeat count. */
9721 c = readchar (remote_timeout);
9722 if (c < 0)
9723 return;
9724 break;
9725 default:
9726 /* A regular character. */
9727 break;
9728 }
9729 }
9730 }
9731
9732 /* Come here after finding the start of the frame. Collect the rest
9733 into *BUF, verifying the checksum, length, and handling run-length
9734 compression. NUL terminate the buffer. If there is not enough room,
9735 expand *BUF.
9736
9737 Returns -1 on error, number of characters in buffer (ignoring the
9738 trailing NULL) on success. (could be extended to return one of the
9739 SERIAL status indications). */
9740
9741 long
9742 remote_target::read_frame (gdb::char_vector *buf_p)
9743 {
9744 unsigned char csum;
9745 long bc;
9746 int c;
9747 char *buf = buf_p->data ();
9748 struct remote_state *rs = get_remote_state ();
9749
9750 csum = 0;
9751 bc = 0;
9752
9753 while (1)
9754 {
9755 c = readchar (remote_timeout);
9756 switch (c)
9757 {
9758 case SERIAL_TIMEOUT:
9759 remote_debug_printf ("Timeout in mid-packet, retrying");
9760 return -1;
9761
9762 case '$':
9763 remote_debug_printf ("Saw new packet start in middle of old one");
9764 return -1; /* Start a new packet, count retries. */
9765
9766 case '#':
9767 {
9768 unsigned char pktcsum;
9769 int check_0 = 0;
9770 int check_1 = 0;
9771
9772 buf[bc] = '\0';
9773
9774 check_0 = readchar (remote_timeout);
9775 if (check_0 >= 0)
9776 check_1 = readchar (remote_timeout);
9777
9778 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9779 {
9780 remote_debug_printf ("Timeout in checksum, retrying");
9781 return -1;
9782 }
9783 else if (check_0 < 0 || check_1 < 0)
9784 {
9785 remote_debug_printf ("Communication error in checksum");
9786 return -1;
9787 }
9788
9789 /* Don't recompute the checksum; with no ack packets we
9790 don't have any way to indicate a packet retransmission
9791 is necessary. */
9792 if (rs->noack_mode)
9793 return bc;
9794
9795 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9796 if (csum == pktcsum)
9797 return bc;
9798
9799 remote_debug_printf
9800 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9801 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9802
9803 /* Number of characters in buffer ignoring trailing
9804 NULL. */
9805 return -1;
9806 }
9807 case '*': /* Run length encoding. */
9808 {
9809 int repeat;
9810
9811 csum += c;
9812 c = readchar (remote_timeout);
9813 csum += c;
9814 repeat = c - ' ' + 3; /* Compute repeat count. */
9815
9816 /* The character before ``*'' is repeated. */
9817
9818 if (repeat > 0 && repeat <= 255 && bc > 0)
9819 {
9820 if (bc + repeat - 1 >= buf_p->size () - 1)
9821 {
9822 /* Make some more room in the buffer. */
9823 buf_p->resize (buf_p->size () + repeat);
9824 buf = buf_p->data ();
9825 }
9826
9827 memset (&buf[bc], buf[bc - 1], repeat);
9828 bc += repeat;
9829 continue;
9830 }
9831
9832 buf[bc] = '\0';
9833 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9834 return -1;
9835 }
9836 default:
9837 if (bc >= buf_p->size () - 1)
9838 {
9839 /* Make some more room in the buffer. */
9840 buf_p->resize (buf_p->size () * 2);
9841 buf = buf_p->data ();
9842 }
9843
9844 buf[bc++] = c;
9845 csum += c;
9846 continue;
9847 }
9848 }
9849 }
9850
9851 /* Set this to the maximum number of seconds to wait instead of waiting forever
9852 in target_wait(). If this timer times out, then it generates an error and
9853 the command is aborted. This replaces most of the need for timeouts in the
9854 GDB test suite, and makes it possible to distinguish between a hung target
9855 and one with slow communications. */
9856
9857 static int watchdog = 0;
9858 static void
9859 show_watchdog (struct ui_file *file, int from_tty,
9860 struct cmd_list_element *c, const char *value)
9861 {
9862 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9863 }
9864
9865 /* Read a packet from the remote machine, with error checking, and
9866 store it in *BUF. Resize *BUF if necessary to hold the result. If
9867 FOREVER, wait forever rather than timing out; this is used (in
9868 synchronous mode) to wait for a target that is is executing user
9869 code to stop. */
9870 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9871 don't have to change all the calls to getpkt to deal with the
9872 return value, because at the moment I don't know what the right
9873 thing to do it for those. */
9874
9875 void
9876 remote_target::getpkt (gdb::char_vector *buf, int forever)
9877 {
9878 getpkt_sane (buf, forever);
9879 }
9880
9881
9882 /* Read a packet from the remote machine, with error checking, and
9883 store it in *BUF. Resize *BUF if necessary to hold the result. If
9884 FOREVER, wait forever rather than timing out; this is used (in
9885 synchronous mode) to wait for a target that is is executing user
9886 code to stop. If FOREVER == 0, this function is allowed to time
9887 out gracefully and return an indication of this to the caller.
9888 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9889 consider receiving a notification enough reason to return to the
9890 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9891 holds a notification or not (a regular packet). */
9892
9893 int
9894 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9895 int forever, int expecting_notif,
9896 int *is_notif)
9897 {
9898 struct remote_state *rs = get_remote_state ();
9899 int c;
9900 int tries;
9901 int timeout;
9902 int val = -1;
9903
9904 /* We're reading a new response. Make sure we don't look at a
9905 previously cached response. */
9906 rs->cached_wait_status = 0;
9907
9908 strcpy (buf->data (), "timeout");
9909
9910 if (forever)
9911 timeout = watchdog > 0 ? watchdog : -1;
9912 else if (expecting_notif)
9913 timeout = 0; /* There should already be a char in the buffer. If
9914 not, bail out. */
9915 else
9916 timeout = remote_timeout;
9917
9918 #define MAX_TRIES 3
9919
9920 /* Process any number of notifications, and then return when
9921 we get a packet. */
9922 for (;;)
9923 {
9924 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9925 times. */
9926 for (tries = 1; tries <= MAX_TRIES; tries++)
9927 {
9928 /* This can loop forever if the remote side sends us
9929 characters continuously, but if it pauses, we'll get
9930 SERIAL_TIMEOUT from readchar because of timeout. Then
9931 we'll count that as a retry.
9932
9933 Note that even when forever is set, we will only wait
9934 forever prior to the start of a packet. After that, we
9935 expect characters to arrive at a brisk pace. They should
9936 show up within remote_timeout intervals. */
9937 do
9938 c = readchar (timeout);
9939 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9940
9941 if (c == SERIAL_TIMEOUT)
9942 {
9943 if (expecting_notif)
9944 return -1; /* Don't complain, it's normal to not get
9945 anything in this case. */
9946
9947 if (forever) /* Watchdog went off? Kill the target. */
9948 {
9949 remote_unpush_target (this);
9950 throw_error (TARGET_CLOSE_ERROR,
9951 _("Watchdog timeout has expired. "
9952 "Target detached."));
9953 }
9954
9955 remote_debug_printf ("Timed out.");
9956 }
9957 else
9958 {
9959 /* We've found the start of a packet or notification.
9960 Now collect the data. */
9961 val = read_frame (buf);
9962 if (val >= 0)
9963 break;
9964 }
9965
9966 remote_serial_write ("-", 1);
9967 }
9968
9969 if (tries > MAX_TRIES)
9970 {
9971 /* We have tried hard enough, and just can't receive the
9972 packet/notification. Give up. */
9973 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9974
9975 /* Skip the ack char if we're in no-ack mode. */
9976 if (!rs->noack_mode)
9977 remote_serial_write ("+", 1);
9978 return -1;
9979 }
9980
9981 /* If we got an ordinary packet, return that to our caller. */
9982 if (c == '$')
9983 {
9984 if (remote_debug)
9985 {
9986 int max_chars;
9987
9988 if (remote_packet_max_chars < 0)
9989 max_chars = val;
9990 else
9991 max_chars = remote_packet_max_chars;
9992
9993 std::string str
9994 = escape_buffer (buf->data (),
9995 std::min (val, max_chars));
9996
9997 if (val > max_chars)
9998 remote_debug_printf_nofunc
9999 ("Packet received: %s [%d bytes omitted]", str.c_str (),
10000 val - max_chars);
10001 else
10002 remote_debug_printf_nofunc ("Packet received: %s",
10003 str.c_str ());
10004 }
10005
10006 /* Skip the ack char if we're in no-ack mode. */
10007 if (!rs->noack_mode)
10008 remote_serial_write ("+", 1);
10009 if (is_notif != NULL)
10010 *is_notif = 0;
10011 return val;
10012 }
10013
10014 /* If we got a notification, handle it, and go back to looking
10015 for a packet. */
10016 else
10017 {
10018 gdb_assert (c == '%');
10019
10020 remote_debug_printf_nofunc
10021 (" Notification received: %s",
10022 escape_buffer (buf->data (), val).c_str ());
10023
10024 if (is_notif != NULL)
10025 *is_notif = 1;
10026
10027 handle_notification (rs->notif_state, buf->data ());
10028
10029 /* Notifications require no acknowledgement. */
10030
10031 if (expecting_notif)
10032 return val;
10033 }
10034 }
10035 }
10036
10037 int
10038 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
10039 {
10040 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
10041 }
10042
10043 int
10044 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
10045 int *is_notif)
10046 {
10047 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
10048 }
10049
10050 /* Kill any new fork children of process PID that haven't been
10051 processed by follow_fork. */
10052
10053 void
10054 remote_target::kill_new_fork_children (int pid)
10055 {
10056 remote_state *rs = get_remote_state ();
10057 struct notif_client *notif = &notif_client_stop;
10058
10059 /* Kill the fork child threads of any threads in process PID
10060 that are stopped at a fork event. */
10061 for (thread_info *thread : all_non_exited_threads (this))
10062 {
10063 const target_waitstatus &ws = thread->pending_follow;
10064
10065 if (is_pending_fork_parent (ws, pid, thread->ptid))
10066 {
10067 int child_pid = ws.child_ptid ().pid ();
10068 int res;
10069
10070 res = remote_vkill (child_pid);
10071 if (res != 0)
10072 error (_("Can't kill fork child process %d"), child_pid);
10073 }
10074 }
10075
10076 /* Check for any pending fork events (not reported or processed yet)
10077 in process PID and kill those fork child threads as well. */
10078 remote_notif_get_pending_events (notif);
10079 for (auto &event : rs->stop_reply_queue)
10080 if (is_pending_fork_parent (event->ws, pid, event->ptid))
10081 {
10082 int child_pid = event->ws.child_ptid ().pid ();
10083 int res;
10084
10085 res = remote_vkill (child_pid);
10086 if (res != 0)
10087 error (_("Can't kill fork child process %d"), child_pid);
10088 }
10089 }
10090
10091 \f
10092 /* Target hook to kill the current inferior. */
10093
10094 void
10095 remote_target::kill ()
10096 {
10097 int res = -1;
10098 int pid = inferior_ptid.pid ();
10099 struct remote_state *rs = get_remote_state ();
10100
10101 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
10102 {
10103 /* If we're stopped while forking and we haven't followed yet,
10104 kill the child task. We need to do this before killing the
10105 parent task because if this is a vfork then the parent will
10106 be sleeping. */
10107 kill_new_fork_children (pid);
10108
10109 res = remote_vkill (pid);
10110 if (res == 0)
10111 {
10112 target_mourn_inferior (inferior_ptid);
10113 return;
10114 }
10115 }
10116
10117 /* If we are in 'target remote' mode and we are killing the only
10118 inferior, then we will tell gdbserver to exit and unpush the
10119 target. */
10120 if (res == -1 && !remote_multi_process_p (rs)
10121 && number_of_live_inferiors (this) == 1)
10122 {
10123 remote_kill_k ();
10124
10125 /* We've killed the remote end, we get to mourn it. If we are
10126 not in extended mode, mourning the inferior also unpushes
10127 remote_ops from the target stack, which closes the remote
10128 connection. */
10129 target_mourn_inferior (inferior_ptid);
10130
10131 return;
10132 }
10133
10134 error (_("Can't kill process"));
10135 }
10136
10137 /* Send a kill request to the target using the 'vKill' packet. */
10138
10139 int
10140 remote_target::remote_vkill (int pid)
10141 {
10142 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10143 return -1;
10144
10145 remote_state *rs = get_remote_state ();
10146
10147 /* Tell the remote target to detach. */
10148 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10149 putpkt (rs->buf);
10150 getpkt (&rs->buf, 0);
10151
10152 switch (packet_ok (rs->buf,
10153 &remote_protocol_packets[PACKET_vKill]))
10154 {
10155 case PACKET_OK:
10156 return 0;
10157 case PACKET_ERROR:
10158 return 1;
10159 case PACKET_UNKNOWN:
10160 return -1;
10161 default:
10162 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10163 }
10164 }
10165
10166 /* Send a kill request to the target using the 'k' packet. */
10167
10168 void
10169 remote_target::remote_kill_k ()
10170 {
10171 /* Catch errors so the user can quit from gdb even when we
10172 aren't on speaking terms with the remote system. */
10173 try
10174 {
10175 putpkt ("k");
10176 }
10177 catch (const gdb_exception_error &ex)
10178 {
10179 if (ex.error == TARGET_CLOSE_ERROR)
10180 {
10181 /* If we got an (EOF) error that caused the target
10182 to go away, then we're done, that's what we wanted.
10183 "k" is susceptible to cause a premature EOF, given
10184 that the remote server isn't actually required to
10185 reply to "k", and it can happen that it doesn't
10186 even get to reply ACK to the "k". */
10187 return;
10188 }
10189
10190 /* Otherwise, something went wrong. We didn't actually kill
10191 the target. Just propagate the exception, and let the
10192 user or higher layers decide what to do. */
10193 throw;
10194 }
10195 }
10196
10197 void
10198 remote_target::mourn_inferior ()
10199 {
10200 struct remote_state *rs = get_remote_state ();
10201
10202 /* We're no longer interested in notification events of an inferior
10203 that exited or was killed/detached. */
10204 discard_pending_stop_replies (current_inferior ());
10205
10206 /* In 'target remote' mode with one inferior, we close the connection. */
10207 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10208 {
10209 remote_unpush_target (this);
10210 return;
10211 }
10212
10213 /* In case we got here due to an error, but we're going to stay
10214 connected. */
10215 rs->waiting_for_stop_reply = 0;
10216
10217 /* If the current general thread belonged to the process we just
10218 detached from or has exited, the remote side current general
10219 thread becomes undefined. Considering a case like this:
10220
10221 - We just got here due to a detach.
10222 - The process that we're detaching from happens to immediately
10223 report a global breakpoint being hit in non-stop mode, in the
10224 same thread we had selected before.
10225 - GDB attaches to this process again.
10226 - This event happens to be the next event we handle.
10227
10228 GDB would consider that the current general thread didn't need to
10229 be set on the stub side (with Hg), since for all it knew,
10230 GENERAL_THREAD hadn't changed.
10231
10232 Notice that although in all-stop mode, the remote server always
10233 sets the current thread to the thread reporting the stop event,
10234 that doesn't happen in non-stop mode; in non-stop, the stub *must
10235 not* change the current thread when reporting a breakpoint hit,
10236 due to the decoupling of event reporting and event handling.
10237
10238 To keep things simple, we always invalidate our notion of the
10239 current thread. */
10240 record_currthread (rs, minus_one_ptid);
10241
10242 /* Call common code to mark the inferior as not running. */
10243 generic_mourn_inferior ();
10244 }
10245
10246 bool
10247 extended_remote_target::supports_disable_randomization ()
10248 {
10249 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10250 }
10251
10252 void
10253 remote_target::extended_remote_disable_randomization (int val)
10254 {
10255 struct remote_state *rs = get_remote_state ();
10256 char *reply;
10257
10258 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10259 "QDisableRandomization:%x", val);
10260 putpkt (rs->buf);
10261 reply = remote_get_noisy_reply ();
10262 if (*reply == '\0')
10263 error (_("Target does not support QDisableRandomization."));
10264 if (strcmp (reply, "OK") != 0)
10265 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10266 }
10267
10268 int
10269 remote_target::extended_remote_run (const std::string &args)
10270 {
10271 struct remote_state *rs = get_remote_state ();
10272 int len;
10273 const char *remote_exec_file = get_remote_exec_file ();
10274
10275 /* If the user has disabled vRun support, or we have detected that
10276 support is not available, do not try it. */
10277 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10278 return -1;
10279
10280 strcpy (rs->buf.data (), "vRun;");
10281 len = strlen (rs->buf.data ());
10282
10283 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10284 error (_("Remote file name too long for run packet"));
10285 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10286 strlen (remote_exec_file));
10287
10288 if (!args.empty ())
10289 {
10290 int i;
10291
10292 gdb_argv argv (args.c_str ());
10293 for (i = 0; argv[i] != NULL; i++)
10294 {
10295 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10296 error (_("Argument list too long for run packet"));
10297 rs->buf[len++] = ';';
10298 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10299 strlen (argv[i]));
10300 }
10301 }
10302
10303 rs->buf[len++] = '\0';
10304
10305 putpkt (rs->buf);
10306 getpkt (&rs->buf, 0);
10307
10308 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10309 {
10310 case PACKET_OK:
10311 /* We have a wait response. All is well. */
10312 return 0;
10313 case PACKET_UNKNOWN:
10314 return -1;
10315 case PACKET_ERROR:
10316 if (remote_exec_file[0] == '\0')
10317 error (_("Running the default executable on the remote target failed; "
10318 "try \"set remote exec-file\"?"));
10319 else
10320 error (_("Running \"%s\" on the remote target failed"),
10321 remote_exec_file);
10322 default:
10323 gdb_assert_not_reached ("bad switch");
10324 }
10325 }
10326
10327 /* Helper function to send set/unset environment packets. ACTION is
10328 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10329 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10330 sent. */
10331
10332 void
10333 remote_target::send_environment_packet (const char *action,
10334 const char *packet,
10335 const char *value)
10336 {
10337 remote_state *rs = get_remote_state ();
10338
10339 /* Convert the environment variable to an hex string, which
10340 is the best format to be transmitted over the wire. */
10341 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10342 strlen (value));
10343
10344 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10345 "%s:%s", packet, encoded_value.c_str ());
10346
10347 putpkt (rs->buf);
10348 getpkt (&rs->buf, 0);
10349 if (strcmp (rs->buf.data (), "OK") != 0)
10350 warning (_("Unable to %s environment variable '%s' on remote."),
10351 action, value);
10352 }
10353
10354 /* Helper function to handle the QEnvironment* packets. */
10355
10356 void
10357 remote_target::extended_remote_environment_support ()
10358 {
10359 remote_state *rs = get_remote_state ();
10360
10361 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10362 {
10363 putpkt ("QEnvironmentReset");
10364 getpkt (&rs->buf, 0);
10365 if (strcmp (rs->buf.data (), "OK") != 0)
10366 warning (_("Unable to reset environment on remote."));
10367 }
10368
10369 gdb_environ *e = &current_inferior ()->environment;
10370
10371 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10372 for (const std::string &el : e->user_set_env ())
10373 send_environment_packet ("set", "QEnvironmentHexEncoded",
10374 el.c_str ());
10375
10376 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10377 for (const std::string &el : e->user_unset_env ())
10378 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10379 }
10380
10381 /* Helper function to set the current working directory for the
10382 inferior in the remote target. */
10383
10384 void
10385 remote_target::extended_remote_set_inferior_cwd ()
10386 {
10387 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10388 {
10389 const std::string &inferior_cwd = current_inferior ()->cwd ();
10390 remote_state *rs = get_remote_state ();
10391
10392 if (!inferior_cwd.empty ())
10393 {
10394 std::string hexpath
10395 = bin2hex ((const gdb_byte *) inferior_cwd.data (),
10396 inferior_cwd.size ());
10397
10398 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10399 "QSetWorkingDir:%s", hexpath.c_str ());
10400 }
10401 else
10402 {
10403 /* An empty inferior_cwd means that the user wants us to
10404 reset the remote server's inferior's cwd. */
10405 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10406 "QSetWorkingDir:");
10407 }
10408
10409 putpkt (rs->buf);
10410 getpkt (&rs->buf, 0);
10411 if (packet_ok (rs->buf,
10412 &remote_protocol_packets[PACKET_QSetWorkingDir])
10413 != PACKET_OK)
10414 error (_("\
10415 Remote replied unexpectedly while setting the inferior's working\n\
10416 directory: %s"),
10417 rs->buf.data ());
10418
10419 }
10420 }
10421
10422 /* In the extended protocol we want to be able to do things like
10423 "run" and have them basically work as expected. So we need
10424 a special create_inferior function. We support changing the
10425 executable file and the command line arguments, but not the
10426 environment. */
10427
10428 void
10429 extended_remote_target::create_inferior (const char *exec_file,
10430 const std::string &args,
10431 char **env, int from_tty)
10432 {
10433 int run_worked;
10434 char *stop_reply;
10435 struct remote_state *rs = get_remote_state ();
10436 const char *remote_exec_file = get_remote_exec_file ();
10437
10438 /* If running asynchronously, register the target file descriptor
10439 with the event loop. */
10440 if (target_can_async_p ())
10441 target_async (1);
10442
10443 /* Disable address space randomization if requested (and supported). */
10444 if (supports_disable_randomization ())
10445 extended_remote_disable_randomization (disable_randomization);
10446
10447 /* If startup-with-shell is on, we inform gdbserver to start the
10448 remote inferior using a shell. */
10449 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10450 {
10451 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10452 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10453 putpkt (rs->buf);
10454 getpkt (&rs->buf, 0);
10455 if (strcmp (rs->buf.data (), "OK") != 0)
10456 error (_("\
10457 Remote replied unexpectedly while setting startup-with-shell: %s"),
10458 rs->buf.data ());
10459 }
10460
10461 extended_remote_environment_support ();
10462
10463 extended_remote_set_inferior_cwd ();
10464
10465 /* Now restart the remote server. */
10466 run_worked = extended_remote_run (args) != -1;
10467 if (!run_worked)
10468 {
10469 /* vRun was not supported. Fail if we need it to do what the
10470 user requested. */
10471 if (remote_exec_file[0])
10472 error (_("Remote target does not support \"set remote exec-file\""));
10473 if (!args.empty ())
10474 error (_("Remote target does not support \"set args\" or run ARGS"));
10475
10476 /* Fall back to "R". */
10477 extended_remote_restart ();
10478 }
10479
10480 /* vRun's success return is a stop reply. */
10481 stop_reply = run_worked ? rs->buf.data () : NULL;
10482 add_current_inferior_and_thread (stop_reply);
10483
10484 /* Get updated offsets, if the stub uses qOffsets. */
10485 get_offsets ();
10486 }
10487 \f
10488
10489 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10490 the list of conditions (in agent expression bytecode format), if any, the
10491 target needs to evaluate. The output is placed into the packet buffer
10492 started from BUF and ended at BUF_END. */
10493
10494 static int
10495 remote_add_target_side_condition (struct gdbarch *gdbarch,
10496 struct bp_target_info *bp_tgt, char *buf,
10497 char *buf_end)
10498 {
10499 if (bp_tgt->conditions.empty ())
10500 return 0;
10501
10502 buf += strlen (buf);
10503 xsnprintf (buf, buf_end - buf, "%s", ";");
10504 buf++;
10505
10506 /* Send conditions to the target. */
10507 for (agent_expr *aexpr : bp_tgt->conditions)
10508 {
10509 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10510 buf += strlen (buf);
10511 for (int i = 0; i < aexpr->len; ++i)
10512 buf = pack_hex_byte (buf, aexpr->buf[i]);
10513 *buf = '\0';
10514 }
10515 return 0;
10516 }
10517
10518 static void
10519 remote_add_target_side_commands (struct gdbarch *gdbarch,
10520 struct bp_target_info *bp_tgt, char *buf)
10521 {
10522 if (bp_tgt->tcommands.empty ())
10523 return;
10524
10525 buf += strlen (buf);
10526
10527 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10528 buf += strlen (buf);
10529
10530 /* Concatenate all the agent expressions that are commands into the
10531 cmds parameter. */
10532 for (agent_expr *aexpr : bp_tgt->tcommands)
10533 {
10534 sprintf (buf, "X%x,", aexpr->len);
10535 buf += strlen (buf);
10536 for (int i = 0; i < aexpr->len; ++i)
10537 buf = pack_hex_byte (buf, aexpr->buf[i]);
10538 *buf = '\0';
10539 }
10540 }
10541
10542 /* Insert a breakpoint. On targets that have software breakpoint
10543 support, we ask the remote target to do the work; on targets
10544 which don't, we insert a traditional memory breakpoint. */
10545
10546 int
10547 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10548 struct bp_target_info *bp_tgt)
10549 {
10550 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10551 If it succeeds, then set the support to PACKET_ENABLE. If it
10552 fails, and the user has explicitly requested the Z support then
10553 report an error, otherwise, mark it disabled and go on. */
10554
10555 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10556 {
10557 CORE_ADDR addr = bp_tgt->reqstd_address;
10558 struct remote_state *rs;
10559 char *p, *endbuf;
10560
10561 /* Make sure the remote is pointing at the right process, if
10562 necessary. */
10563 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10564 set_general_process ();
10565
10566 rs = get_remote_state ();
10567 p = rs->buf.data ();
10568 endbuf = p + get_remote_packet_size ();
10569
10570 *(p++) = 'Z';
10571 *(p++) = '0';
10572 *(p++) = ',';
10573 addr = (ULONGEST) remote_address_masked (addr);
10574 p += hexnumstr (p, addr);
10575 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10576
10577 if (supports_evaluation_of_breakpoint_conditions ())
10578 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10579
10580 if (can_run_breakpoint_commands ())
10581 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10582
10583 putpkt (rs->buf);
10584 getpkt (&rs->buf, 0);
10585
10586 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10587 {
10588 case PACKET_ERROR:
10589 return -1;
10590 case PACKET_OK:
10591 return 0;
10592 case PACKET_UNKNOWN:
10593 break;
10594 }
10595 }
10596
10597 /* If this breakpoint has target-side commands but this stub doesn't
10598 support Z0 packets, throw error. */
10599 if (!bp_tgt->tcommands.empty ())
10600 throw_error (NOT_SUPPORTED_ERROR, _("\
10601 Target doesn't support breakpoints that have target side commands."));
10602
10603 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10604 }
10605
10606 int
10607 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10608 struct bp_target_info *bp_tgt,
10609 enum remove_bp_reason reason)
10610 {
10611 CORE_ADDR addr = bp_tgt->placed_address;
10612 struct remote_state *rs = get_remote_state ();
10613
10614 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10615 {
10616 char *p = rs->buf.data ();
10617 char *endbuf = p + get_remote_packet_size ();
10618
10619 /* Make sure the remote is pointing at the right process, if
10620 necessary. */
10621 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10622 set_general_process ();
10623
10624 *(p++) = 'z';
10625 *(p++) = '0';
10626 *(p++) = ',';
10627
10628 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10629 p += hexnumstr (p, addr);
10630 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10631
10632 putpkt (rs->buf);
10633 getpkt (&rs->buf, 0);
10634
10635 return (rs->buf[0] == 'E');
10636 }
10637
10638 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10639 }
10640
10641 static enum Z_packet_type
10642 watchpoint_to_Z_packet (int type)
10643 {
10644 switch (type)
10645 {
10646 case hw_write:
10647 return Z_PACKET_WRITE_WP;
10648 break;
10649 case hw_read:
10650 return Z_PACKET_READ_WP;
10651 break;
10652 case hw_access:
10653 return Z_PACKET_ACCESS_WP;
10654 break;
10655 default:
10656 internal_error (__FILE__, __LINE__,
10657 _("hw_bp_to_z: bad watchpoint type %d"), type);
10658 }
10659 }
10660
10661 int
10662 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10663 enum target_hw_bp_type type, struct expression *cond)
10664 {
10665 struct remote_state *rs = get_remote_state ();
10666 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10667 char *p;
10668 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10669
10670 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10671 return 1;
10672
10673 /* Make sure the remote is pointing at the right process, if
10674 necessary. */
10675 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10676 set_general_process ();
10677
10678 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10679 p = strchr (rs->buf.data (), '\0');
10680 addr = remote_address_masked (addr);
10681 p += hexnumstr (p, (ULONGEST) addr);
10682 xsnprintf (p, endbuf - p, ",%x", len);
10683
10684 putpkt (rs->buf);
10685 getpkt (&rs->buf, 0);
10686
10687 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10688 {
10689 case PACKET_ERROR:
10690 return -1;
10691 case PACKET_UNKNOWN:
10692 return 1;
10693 case PACKET_OK:
10694 return 0;
10695 }
10696 internal_error (__FILE__, __LINE__,
10697 _("remote_insert_watchpoint: reached end of function"));
10698 }
10699
10700 bool
10701 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10702 CORE_ADDR start, int length)
10703 {
10704 CORE_ADDR diff = remote_address_masked (addr - start);
10705
10706 return diff < length;
10707 }
10708
10709
10710 int
10711 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10712 enum target_hw_bp_type type, struct expression *cond)
10713 {
10714 struct remote_state *rs = get_remote_state ();
10715 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10716 char *p;
10717 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10718
10719 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10720 return -1;
10721
10722 /* Make sure the remote is pointing at the right process, if
10723 necessary. */
10724 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10725 set_general_process ();
10726
10727 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10728 p = strchr (rs->buf.data (), '\0');
10729 addr = remote_address_masked (addr);
10730 p += hexnumstr (p, (ULONGEST) addr);
10731 xsnprintf (p, endbuf - p, ",%x", len);
10732 putpkt (rs->buf);
10733 getpkt (&rs->buf, 0);
10734
10735 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10736 {
10737 case PACKET_ERROR:
10738 case PACKET_UNKNOWN:
10739 return -1;
10740 case PACKET_OK:
10741 return 0;
10742 }
10743 internal_error (__FILE__, __LINE__,
10744 _("remote_remove_watchpoint: reached end of function"));
10745 }
10746
10747
10748 static int remote_hw_watchpoint_limit = -1;
10749 static int remote_hw_watchpoint_length_limit = -1;
10750 static int remote_hw_breakpoint_limit = -1;
10751
10752 int
10753 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10754 {
10755 if (remote_hw_watchpoint_length_limit == 0)
10756 return 0;
10757 else if (remote_hw_watchpoint_length_limit < 0)
10758 return 1;
10759 else if (len <= remote_hw_watchpoint_length_limit)
10760 return 1;
10761 else
10762 return 0;
10763 }
10764
10765 int
10766 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10767 {
10768 if (type == bp_hardware_breakpoint)
10769 {
10770 if (remote_hw_breakpoint_limit == 0)
10771 return 0;
10772 else if (remote_hw_breakpoint_limit < 0)
10773 return 1;
10774 else if (cnt <= remote_hw_breakpoint_limit)
10775 return 1;
10776 }
10777 else
10778 {
10779 if (remote_hw_watchpoint_limit == 0)
10780 return 0;
10781 else if (remote_hw_watchpoint_limit < 0)
10782 return 1;
10783 else if (ot)
10784 return -1;
10785 else if (cnt <= remote_hw_watchpoint_limit)
10786 return 1;
10787 }
10788 return -1;
10789 }
10790
10791 /* The to_stopped_by_sw_breakpoint method of target remote. */
10792
10793 bool
10794 remote_target::stopped_by_sw_breakpoint ()
10795 {
10796 struct thread_info *thread = inferior_thread ();
10797
10798 return (thread->priv != NULL
10799 && (get_remote_thread_info (thread)->stop_reason
10800 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10801 }
10802
10803 /* The to_supports_stopped_by_sw_breakpoint method of target
10804 remote. */
10805
10806 bool
10807 remote_target::supports_stopped_by_sw_breakpoint ()
10808 {
10809 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10810 }
10811
10812 /* The to_stopped_by_hw_breakpoint method of target remote. */
10813
10814 bool
10815 remote_target::stopped_by_hw_breakpoint ()
10816 {
10817 struct thread_info *thread = inferior_thread ();
10818
10819 return (thread->priv != NULL
10820 && (get_remote_thread_info (thread)->stop_reason
10821 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10822 }
10823
10824 /* The to_supports_stopped_by_hw_breakpoint method of target
10825 remote. */
10826
10827 bool
10828 remote_target::supports_stopped_by_hw_breakpoint ()
10829 {
10830 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10831 }
10832
10833 bool
10834 remote_target::stopped_by_watchpoint ()
10835 {
10836 struct thread_info *thread = inferior_thread ();
10837
10838 return (thread->priv != NULL
10839 && (get_remote_thread_info (thread)->stop_reason
10840 == TARGET_STOPPED_BY_WATCHPOINT));
10841 }
10842
10843 bool
10844 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10845 {
10846 struct thread_info *thread = inferior_thread ();
10847
10848 if (thread->priv != NULL
10849 && (get_remote_thread_info (thread)->stop_reason
10850 == TARGET_STOPPED_BY_WATCHPOINT))
10851 {
10852 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10853 return true;
10854 }
10855
10856 return false;
10857 }
10858
10859
10860 int
10861 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10862 struct bp_target_info *bp_tgt)
10863 {
10864 CORE_ADDR addr = bp_tgt->reqstd_address;
10865 struct remote_state *rs;
10866 char *p, *endbuf;
10867 char *message;
10868
10869 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10870 return -1;
10871
10872 /* Make sure the remote is pointing at the right process, if
10873 necessary. */
10874 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10875 set_general_process ();
10876
10877 rs = get_remote_state ();
10878 p = rs->buf.data ();
10879 endbuf = p + get_remote_packet_size ();
10880
10881 *(p++) = 'Z';
10882 *(p++) = '1';
10883 *(p++) = ',';
10884
10885 addr = remote_address_masked (addr);
10886 p += hexnumstr (p, (ULONGEST) addr);
10887 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10888
10889 if (supports_evaluation_of_breakpoint_conditions ())
10890 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10891
10892 if (can_run_breakpoint_commands ())
10893 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10894
10895 putpkt (rs->buf);
10896 getpkt (&rs->buf, 0);
10897
10898 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10899 {
10900 case PACKET_ERROR:
10901 if (rs->buf[1] == '.')
10902 {
10903 message = strchr (&rs->buf[2], '.');
10904 if (message)
10905 error (_("Remote failure reply: %s"), message + 1);
10906 }
10907 return -1;
10908 case PACKET_UNKNOWN:
10909 return -1;
10910 case PACKET_OK:
10911 return 0;
10912 }
10913 internal_error (__FILE__, __LINE__,
10914 _("remote_insert_hw_breakpoint: reached end of function"));
10915 }
10916
10917
10918 int
10919 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10920 struct bp_target_info *bp_tgt)
10921 {
10922 CORE_ADDR addr;
10923 struct remote_state *rs = get_remote_state ();
10924 char *p = rs->buf.data ();
10925 char *endbuf = p + get_remote_packet_size ();
10926
10927 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10928 return -1;
10929
10930 /* Make sure the remote is pointing at the right process, if
10931 necessary. */
10932 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10933 set_general_process ();
10934
10935 *(p++) = 'z';
10936 *(p++) = '1';
10937 *(p++) = ',';
10938
10939 addr = remote_address_masked (bp_tgt->placed_address);
10940 p += hexnumstr (p, (ULONGEST) addr);
10941 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10942
10943 putpkt (rs->buf);
10944 getpkt (&rs->buf, 0);
10945
10946 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10947 {
10948 case PACKET_ERROR:
10949 case PACKET_UNKNOWN:
10950 return -1;
10951 case PACKET_OK:
10952 return 0;
10953 }
10954 internal_error (__FILE__, __LINE__,
10955 _("remote_remove_hw_breakpoint: reached end of function"));
10956 }
10957
10958 /* Verify memory using the "qCRC:" request. */
10959
10960 int
10961 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10962 {
10963 struct remote_state *rs = get_remote_state ();
10964 unsigned long host_crc, target_crc;
10965 char *tmp;
10966
10967 /* It doesn't make sense to use qCRC if the remote target is
10968 connected but not running. */
10969 if (target_has_execution ()
10970 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10971 {
10972 enum packet_result result;
10973
10974 /* Make sure the remote is pointing at the right process. */
10975 set_general_process ();
10976
10977 /* FIXME: assumes lma can fit into long. */
10978 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10979 (long) lma, (long) size);
10980 putpkt (rs->buf);
10981
10982 /* Be clever; compute the host_crc before waiting for target
10983 reply. */
10984 host_crc = xcrc32 (data, size, 0xffffffff);
10985
10986 getpkt (&rs->buf, 0);
10987
10988 result = packet_ok (rs->buf,
10989 &remote_protocol_packets[PACKET_qCRC]);
10990 if (result == PACKET_ERROR)
10991 return -1;
10992 else if (result == PACKET_OK)
10993 {
10994 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10995 target_crc = target_crc * 16 + fromhex (*tmp);
10996
10997 return (host_crc == target_crc);
10998 }
10999 }
11000
11001 return simple_verify_memory (this, data, lma, size);
11002 }
11003
11004 /* compare-sections command
11005
11006 With no arguments, compares each loadable section in the exec bfd
11007 with the same memory range on the target, and reports mismatches.
11008 Useful for verifying the image on the target against the exec file. */
11009
11010 static void
11011 compare_sections_command (const char *args, int from_tty)
11012 {
11013 asection *s;
11014 const char *sectname;
11015 bfd_size_type size;
11016 bfd_vma lma;
11017 int matched = 0;
11018 int mismatched = 0;
11019 int res;
11020 int read_only = 0;
11021
11022 if (!current_program_space->exec_bfd ())
11023 error (_("command cannot be used without an exec file"));
11024
11025 if (args != NULL && strcmp (args, "-r") == 0)
11026 {
11027 read_only = 1;
11028 args = NULL;
11029 }
11030
11031 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
11032 {
11033 if (!(s->flags & SEC_LOAD))
11034 continue; /* Skip non-loadable section. */
11035
11036 if (read_only && (s->flags & SEC_READONLY) == 0)
11037 continue; /* Skip writeable sections */
11038
11039 size = bfd_section_size (s);
11040 if (size == 0)
11041 continue; /* Skip zero-length section. */
11042
11043 sectname = bfd_section_name (s);
11044 if (args && strcmp (args, sectname) != 0)
11045 continue; /* Not the section selected by user. */
11046
11047 matched = 1; /* Do this section. */
11048 lma = s->lma;
11049
11050 gdb::byte_vector sectdata (size);
11051 bfd_get_section_contents (current_program_space->exec_bfd (), s,
11052 sectdata.data (), 0, size);
11053
11054 res = target_verify_memory (sectdata.data (), lma, size);
11055
11056 if (res == -1)
11057 error (_("target memory fault, section %s, range %s -- %s"), sectname,
11058 paddress (target_gdbarch (), lma),
11059 paddress (target_gdbarch (), lma + size));
11060
11061 printf_filtered ("Section %s, range %s -- %s: ", sectname,
11062 paddress (target_gdbarch (), lma),
11063 paddress (target_gdbarch (), lma + size));
11064 if (res)
11065 printf_filtered ("matched.\n");
11066 else
11067 {
11068 printf_filtered ("MIS-MATCHED!\n");
11069 mismatched++;
11070 }
11071 }
11072 if (mismatched > 0)
11073 warning (_("One or more sections of the target image does not match\n\
11074 the loaded file\n"));
11075 if (args && !matched)
11076 printf_filtered (_("No loaded section named '%s'.\n"), args);
11077 }
11078
11079 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
11080 into remote target. The number of bytes written to the remote
11081 target is returned, or -1 for error. */
11082
11083 target_xfer_status
11084 remote_target::remote_write_qxfer (const char *object_name,
11085 const char *annex, const gdb_byte *writebuf,
11086 ULONGEST offset, LONGEST len,
11087 ULONGEST *xfered_len,
11088 struct packet_config *packet)
11089 {
11090 int i, buf_len;
11091 ULONGEST n;
11092 struct remote_state *rs = get_remote_state ();
11093 int max_size = get_memory_write_packet_size ();
11094
11095 if (packet_config_support (packet) == PACKET_DISABLE)
11096 return TARGET_XFER_E_IO;
11097
11098 /* Insert header. */
11099 i = snprintf (rs->buf.data (), max_size,
11100 "qXfer:%s:write:%s:%s:",
11101 object_name, annex ? annex : "",
11102 phex_nz (offset, sizeof offset));
11103 max_size -= (i + 1);
11104
11105 /* Escape as much data as fits into rs->buf. */
11106 buf_len = remote_escape_output
11107 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
11108
11109 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
11110 || getpkt_sane (&rs->buf, 0) < 0
11111 || packet_ok (rs->buf, packet) != PACKET_OK)
11112 return TARGET_XFER_E_IO;
11113
11114 unpack_varlen_hex (rs->buf.data (), &n);
11115
11116 *xfered_len = n;
11117 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11118 }
11119
11120 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
11121 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
11122 number of bytes read is returned, or 0 for EOF, or -1 for error.
11123 The number of bytes read may be less than LEN without indicating an
11124 EOF. PACKET is checked and updated to indicate whether the remote
11125 target supports this object. */
11126
11127 target_xfer_status
11128 remote_target::remote_read_qxfer (const char *object_name,
11129 const char *annex,
11130 gdb_byte *readbuf, ULONGEST offset,
11131 LONGEST len,
11132 ULONGEST *xfered_len,
11133 struct packet_config *packet)
11134 {
11135 struct remote_state *rs = get_remote_state ();
11136 LONGEST i, n, packet_len;
11137
11138 if (packet_config_support (packet) == PACKET_DISABLE)
11139 return TARGET_XFER_E_IO;
11140
11141 /* Check whether we've cached an end-of-object packet that matches
11142 this request. */
11143 if (rs->finished_object)
11144 {
11145 if (strcmp (object_name, rs->finished_object) == 0
11146 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11147 && offset == rs->finished_offset)
11148 return TARGET_XFER_EOF;
11149
11150
11151 /* Otherwise, we're now reading something different. Discard
11152 the cache. */
11153 xfree (rs->finished_object);
11154 xfree (rs->finished_annex);
11155 rs->finished_object = NULL;
11156 rs->finished_annex = NULL;
11157 }
11158
11159 /* Request only enough to fit in a single packet. The actual data
11160 may not, since we don't know how much of it will need to be escaped;
11161 the target is free to respond with slightly less data. We subtract
11162 five to account for the response type and the protocol frame. */
11163 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11164 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11165 "qXfer:%s:read:%s:%s,%s",
11166 object_name, annex ? annex : "",
11167 phex_nz (offset, sizeof offset),
11168 phex_nz (n, sizeof n));
11169 i = putpkt (rs->buf);
11170 if (i < 0)
11171 return TARGET_XFER_E_IO;
11172
11173 rs->buf[0] = '\0';
11174 packet_len = getpkt_sane (&rs->buf, 0);
11175 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11176 return TARGET_XFER_E_IO;
11177
11178 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11179 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11180
11181 /* 'm' means there is (or at least might be) more data after this
11182 batch. That does not make sense unless there's at least one byte
11183 of data in this reply. */
11184 if (rs->buf[0] == 'm' && packet_len == 1)
11185 error (_("Remote qXfer reply contained no data."));
11186
11187 /* Got some data. */
11188 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11189 packet_len - 1, readbuf, n);
11190
11191 /* 'l' is an EOF marker, possibly including a final block of data,
11192 or possibly empty. If we have the final block of a non-empty
11193 object, record this fact to bypass a subsequent partial read. */
11194 if (rs->buf[0] == 'l' && offset + i > 0)
11195 {
11196 rs->finished_object = xstrdup (object_name);
11197 rs->finished_annex = xstrdup (annex ? annex : "");
11198 rs->finished_offset = offset + i;
11199 }
11200
11201 if (i == 0)
11202 return TARGET_XFER_EOF;
11203 else
11204 {
11205 *xfered_len = i;
11206 return TARGET_XFER_OK;
11207 }
11208 }
11209
11210 enum target_xfer_status
11211 remote_target::xfer_partial (enum target_object object,
11212 const char *annex, gdb_byte *readbuf,
11213 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11214 ULONGEST *xfered_len)
11215 {
11216 struct remote_state *rs;
11217 int i;
11218 char *p2;
11219 char query_type;
11220 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11221
11222 set_remote_traceframe ();
11223 set_general_thread (inferior_ptid);
11224
11225 rs = get_remote_state ();
11226
11227 /* Handle memory using the standard memory routines. */
11228 if (object == TARGET_OBJECT_MEMORY)
11229 {
11230 /* If the remote target is connected but not running, we should
11231 pass this request down to a lower stratum (e.g. the executable
11232 file). */
11233 if (!target_has_execution ())
11234 return TARGET_XFER_EOF;
11235
11236 if (writebuf != NULL)
11237 return remote_write_bytes (offset, writebuf, len, unit_size,
11238 xfered_len);
11239 else
11240 return remote_read_bytes (offset, readbuf, len, unit_size,
11241 xfered_len);
11242 }
11243
11244 /* Handle extra signal info using qxfer packets. */
11245 if (object == TARGET_OBJECT_SIGNAL_INFO)
11246 {
11247 if (readbuf)
11248 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11249 xfered_len, &remote_protocol_packets
11250 [PACKET_qXfer_siginfo_read]);
11251 else
11252 return remote_write_qxfer ("siginfo", annex,
11253 writebuf, offset, len, xfered_len,
11254 &remote_protocol_packets
11255 [PACKET_qXfer_siginfo_write]);
11256 }
11257
11258 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11259 {
11260 if (readbuf)
11261 return remote_read_qxfer ("statictrace", annex,
11262 readbuf, offset, len, xfered_len,
11263 &remote_protocol_packets
11264 [PACKET_qXfer_statictrace_read]);
11265 else
11266 return TARGET_XFER_E_IO;
11267 }
11268
11269 /* Only handle flash writes. */
11270 if (writebuf != NULL)
11271 {
11272 switch (object)
11273 {
11274 case TARGET_OBJECT_FLASH:
11275 return remote_flash_write (offset, len, xfered_len,
11276 writebuf);
11277
11278 default:
11279 return TARGET_XFER_E_IO;
11280 }
11281 }
11282
11283 /* Map pre-existing objects onto letters. DO NOT do this for new
11284 objects!!! Instead specify new query packets. */
11285 switch (object)
11286 {
11287 case TARGET_OBJECT_AVR:
11288 query_type = 'R';
11289 break;
11290
11291 case TARGET_OBJECT_AUXV:
11292 gdb_assert (annex == NULL);
11293 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11294 xfered_len,
11295 &remote_protocol_packets[PACKET_qXfer_auxv]);
11296
11297 case TARGET_OBJECT_AVAILABLE_FEATURES:
11298 return remote_read_qxfer
11299 ("features", annex, readbuf, offset, len, xfered_len,
11300 &remote_protocol_packets[PACKET_qXfer_features]);
11301
11302 case TARGET_OBJECT_LIBRARIES:
11303 return remote_read_qxfer
11304 ("libraries", annex, readbuf, offset, len, xfered_len,
11305 &remote_protocol_packets[PACKET_qXfer_libraries]);
11306
11307 case TARGET_OBJECT_LIBRARIES_SVR4:
11308 return remote_read_qxfer
11309 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11310 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11311
11312 case TARGET_OBJECT_MEMORY_MAP:
11313 gdb_assert (annex == NULL);
11314 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11315 xfered_len,
11316 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11317
11318 case TARGET_OBJECT_OSDATA:
11319 /* Should only get here if we're connected. */
11320 gdb_assert (rs->remote_desc);
11321 return remote_read_qxfer
11322 ("osdata", annex, readbuf, offset, len, xfered_len,
11323 &remote_protocol_packets[PACKET_qXfer_osdata]);
11324
11325 case TARGET_OBJECT_THREADS:
11326 gdb_assert (annex == NULL);
11327 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11328 xfered_len,
11329 &remote_protocol_packets[PACKET_qXfer_threads]);
11330
11331 case TARGET_OBJECT_TRACEFRAME_INFO:
11332 gdb_assert (annex == NULL);
11333 return remote_read_qxfer
11334 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11335 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11336
11337 case TARGET_OBJECT_FDPIC:
11338 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11339 xfered_len,
11340 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11341
11342 case TARGET_OBJECT_OPENVMS_UIB:
11343 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11344 xfered_len,
11345 &remote_protocol_packets[PACKET_qXfer_uib]);
11346
11347 case TARGET_OBJECT_BTRACE:
11348 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11349 xfered_len,
11350 &remote_protocol_packets[PACKET_qXfer_btrace]);
11351
11352 case TARGET_OBJECT_BTRACE_CONF:
11353 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11354 len, xfered_len,
11355 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11356
11357 case TARGET_OBJECT_EXEC_FILE:
11358 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11359 len, xfered_len,
11360 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11361
11362 default:
11363 return TARGET_XFER_E_IO;
11364 }
11365
11366 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11367 large enough let the caller deal with it. */
11368 if (len < get_remote_packet_size ())
11369 return TARGET_XFER_E_IO;
11370 len = get_remote_packet_size ();
11371
11372 /* Except for querying the minimum buffer size, target must be open. */
11373 if (!rs->remote_desc)
11374 error (_("remote query is only available after target open"));
11375
11376 gdb_assert (annex != NULL);
11377 gdb_assert (readbuf != NULL);
11378
11379 p2 = rs->buf.data ();
11380 *p2++ = 'q';
11381 *p2++ = query_type;
11382
11383 /* We used one buffer char for the remote protocol q command and
11384 another for the query type. As the remote protocol encapsulation
11385 uses 4 chars plus one extra in case we are debugging
11386 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11387 string. */
11388 i = 0;
11389 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11390 {
11391 /* Bad caller may have sent forbidden characters. */
11392 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11393 *p2++ = annex[i];
11394 i++;
11395 }
11396 *p2 = '\0';
11397 gdb_assert (annex[i] == '\0');
11398
11399 i = putpkt (rs->buf);
11400 if (i < 0)
11401 return TARGET_XFER_E_IO;
11402
11403 getpkt (&rs->buf, 0);
11404 strcpy ((char *) readbuf, rs->buf.data ());
11405
11406 *xfered_len = strlen ((char *) readbuf);
11407 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11408 }
11409
11410 /* Implementation of to_get_memory_xfer_limit. */
11411
11412 ULONGEST
11413 remote_target::get_memory_xfer_limit ()
11414 {
11415 return get_memory_write_packet_size ();
11416 }
11417
11418 int
11419 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11420 const gdb_byte *pattern, ULONGEST pattern_len,
11421 CORE_ADDR *found_addrp)
11422 {
11423 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11424 struct remote_state *rs = get_remote_state ();
11425 int max_size = get_memory_write_packet_size ();
11426 struct packet_config *packet =
11427 &remote_protocol_packets[PACKET_qSearch_memory];
11428 /* Number of packet bytes used to encode the pattern;
11429 this could be more than PATTERN_LEN due to escape characters. */
11430 int escaped_pattern_len;
11431 /* Amount of pattern that was encodable in the packet. */
11432 int used_pattern_len;
11433 int i;
11434 int found;
11435 ULONGEST found_addr;
11436
11437 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11438 {
11439 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11440 == len);
11441 };
11442
11443 /* Don't go to the target if we don't have to. This is done before
11444 checking packet_config_support to avoid the possibility that a
11445 success for this edge case means the facility works in
11446 general. */
11447 if (pattern_len > search_space_len)
11448 return 0;
11449 if (pattern_len == 0)
11450 {
11451 *found_addrp = start_addr;
11452 return 1;
11453 }
11454
11455 /* If we already know the packet isn't supported, fall back to the simple
11456 way of searching memory. */
11457
11458 if (packet_config_support (packet) == PACKET_DISABLE)
11459 {
11460 /* Target doesn't provided special support, fall back and use the
11461 standard support (copy memory and do the search here). */
11462 return simple_search_memory (read_memory, start_addr, search_space_len,
11463 pattern, pattern_len, found_addrp);
11464 }
11465
11466 /* Make sure the remote is pointing at the right process. */
11467 set_general_process ();
11468
11469 /* Insert header. */
11470 i = snprintf (rs->buf.data (), max_size,
11471 "qSearch:memory:%s;%s;",
11472 phex_nz (start_addr, addr_size),
11473 phex_nz (search_space_len, sizeof (search_space_len)));
11474 max_size -= (i + 1);
11475
11476 /* Escape as much data as fits into rs->buf. */
11477 escaped_pattern_len =
11478 remote_escape_output (pattern, pattern_len, 1,
11479 (gdb_byte *) rs->buf.data () + i,
11480 &used_pattern_len, max_size);
11481
11482 /* Bail if the pattern is too large. */
11483 if (used_pattern_len != pattern_len)
11484 error (_("Pattern is too large to transmit to remote target."));
11485
11486 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11487 || getpkt_sane (&rs->buf, 0) < 0
11488 || packet_ok (rs->buf, packet) != PACKET_OK)
11489 {
11490 /* The request may not have worked because the command is not
11491 supported. If so, fall back to the simple way. */
11492 if (packet_config_support (packet) == PACKET_DISABLE)
11493 {
11494 return simple_search_memory (read_memory, start_addr, search_space_len,
11495 pattern, pattern_len, found_addrp);
11496 }
11497 return -1;
11498 }
11499
11500 if (rs->buf[0] == '0')
11501 found = 0;
11502 else if (rs->buf[0] == '1')
11503 {
11504 found = 1;
11505 if (rs->buf[1] != ',')
11506 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11507 unpack_varlen_hex (&rs->buf[2], &found_addr);
11508 *found_addrp = found_addr;
11509 }
11510 else
11511 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11512
11513 return found;
11514 }
11515
11516 void
11517 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11518 {
11519 struct remote_state *rs = get_remote_state ();
11520 char *p = rs->buf.data ();
11521
11522 if (!rs->remote_desc)
11523 error (_("remote rcmd is only available after target open"));
11524
11525 /* Send a NULL command across as an empty command. */
11526 if (command == NULL)
11527 command = "";
11528
11529 /* The query prefix. */
11530 strcpy (rs->buf.data (), "qRcmd,");
11531 p = strchr (rs->buf.data (), '\0');
11532
11533 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11534 > get_remote_packet_size ())
11535 error (_("\"monitor\" command ``%s'' is too long."), command);
11536
11537 /* Encode the actual command. */
11538 bin2hex ((const gdb_byte *) command, p, strlen (command));
11539
11540 if (putpkt (rs->buf) < 0)
11541 error (_("Communication problem with target."));
11542
11543 /* get/display the response */
11544 while (1)
11545 {
11546 char *buf;
11547
11548 /* XXX - see also remote_get_noisy_reply(). */
11549 QUIT; /* Allow user to bail out with ^C. */
11550 rs->buf[0] = '\0';
11551 if (getpkt_sane (&rs->buf, 0) == -1)
11552 {
11553 /* Timeout. Continue to (try to) read responses.
11554 This is better than stopping with an error, assuming the stub
11555 is still executing the (long) monitor command.
11556 If needed, the user can interrupt gdb using C-c, obtaining
11557 an effect similar to stop on timeout. */
11558 continue;
11559 }
11560 buf = rs->buf.data ();
11561 if (buf[0] == '\0')
11562 error (_("Target does not support this command."));
11563 if (buf[0] == 'O' && buf[1] != 'K')
11564 {
11565 remote_console_output (buf + 1); /* 'O' message from stub. */
11566 continue;
11567 }
11568 if (strcmp (buf, "OK") == 0)
11569 break;
11570 if (strlen (buf) == 3 && buf[0] == 'E'
11571 && isdigit (buf[1]) && isdigit (buf[2]))
11572 {
11573 error (_("Protocol error with Rcmd"));
11574 }
11575 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11576 {
11577 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11578
11579 fputc_unfiltered (c, outbuf);
11580 }
11581 break;
11582 }
11583 }
11584
11585 std::vector<mem_region>
11586 remote_target::memory_map ()
11587 {
11588 std::vector<mem_region> result;
11589 gdb::optional<gdb::char_vector> text
11590 = target_read_stralloc (current_inferior ()->top_target (),
11591 TARGET_OBJECT_MEMORY_MAP, NULL);
11592
11593 if (text)
11594 result = parse_memory_map (text->data ());
11595
11596 return result;
11597 }
11598
11599 static void
11600 packet_command (const char *args, int from_tty)
11601 {
11602 remote_target *remote = get_current_remote_target ();
11603
11604 if (remote == nullptr)
11605 error (_("command can only be used with remote target"));
11606
11607 remote->packet_command (args, from_tty);
11608 }
11609
11610 void
11611 remote_target::packet_command (const char *args, int from_tty)
11612 {
11613 if (!args)
11614 error (_("remote-packet command requires packet text as argument"));
11615
11616 puts_filtered ("sending: ");
11617 print_packet (args);
11618 puts_filtered ("\n");
11619 putpkt (args);
11620
11621 remote_state *rs = get_remote_state ();
11622
11623 getpkt (&rs->buf, 0);
11624 puts_filtered ("received: ");
11625 print_packet (rs->buf.data ());
11626 puts_filtered ("\n");
11627 }
11628
11629 #if 0
11630 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11631
11632 static void display_thread_info (struct gdb_ext_thread_info *info);
11633
11634 static void threadset_test_cmd (char *cmd, int tty);
11635
11636 static void threadalive_test (char *cmd, int tty);
11637
11638 static void threadlist_test_cmd (char *cmd, int tty);
11639
11640 int get_and_display_threadinfo (threadref *ref);
11641
11642 static void threadinfo_test_cmd (char *cmd, int tty);
11643
11644 static int thread_display_step (threadref *ref, void *context);
11645
11646 static void threadlist_update_test_cmd (char *cmd, int tty);
11647
11648 static void init_remote_threadtests (void);
11649
11650 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11651
11652 static void
11653 threadset_test_cmd (const char *cmd, int tty)
11654 {
11655 int sample_thread = SAMPLE_THREAD;
11656
11657 printf_filtered (_("Remote threadset test\n"));
11658 set_general_thread (sample_thread);
11659 }
11660
11661
11662 static void
11663 threadalive_test (const char *cmd, int tty)
11664 {
11665 int sample_thread = SAMPLE_THREAD;
11666 int pid = inferior_ptid.pid ();
11667 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11668
11669 if (remote_thread_alive (ptid))
11670 printf_filtered ("PASS: Thread alive test\n");
11671 else
11672 printf_filtered ("FAIL: Thread alive test\n");
11673 }
11674
11675 void output_threadid (char *title, threadref *ref);
11676
11677 void
11678 output_threadid (char *title, threadref *ref)
11679 {
11680 char hexid[20];
11681
11682 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11683 hexid[16] = 0;
11684 printf_filtered ("%s %s\n", title, (&hexid[0]));
11685 }
11686
11687 static void
11688 threadlist_test_cmd (const char *cmd, int tty)
11689 {
11690 int startflag = 1;
11691 threadref nextthread;
11692 int done, result_count;
11693 threadref threadlist[3];
11694
11695 printf_filtered ("Remote Threadlist test\n");
11696 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11697 &result_count, &threadlist[0]))
11698 printf_filtered ("FAIL: threadlist test\n");
11699 else
11700 {
11701 threadref *scan = threadlist;
11702 threadref *limit = scan + result_count;
11703
11704 while (scan < limit)
11705 output_threadid (" thread ", scan++);
11706 }
11707 }
11708
11709 void
11710 display_thread_info (struct gdb_ext_thread_info *info)
11711 {
11712 output_threadid ("Threadid: ", &info->threadid);
11713 printf_filtered ("Name: %s\n ", info->shortname);
11714 printf_filtered ("State: %s\n", info->display);
11715 printf_filtered ("other: %s\n\n", info->more_display);
11716 }
11717
11718 int
11719 get_and_display_threadinfo (threadref *ref)
11720 {
11721 int result;
11722 int set;
11723 struct gdb_ext_thread_info threadinfo;
11724
11725 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11726 | TAG_MOREDISPLAY | TAG_DISPLAY;
11727 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11728 display_thread_info (&threadinfo);
11729 return result;
11730 }
11731
11732 static void
11733 threadinfo_test_cmd (const char *cmd, int tty)
11734 {
11735 int athread = SAMPLE_THREAD;
11736 threadref thread;
11737 int set;
11738
11739 int_to_threadref (&thread, athread);
11740 printf_filtered ("Remote Threadinfo test\n");
11741 if (!get_and_display_threadinfo (&thread))
11742 printf_filtered ("FAIL cannot get thread info\n");
11743 }
11744
11745 static int
11746 thread_display_step (threadref *ref, void *context)
11747 {
11748 /* output_threadid(" threadstep ",ref); *//* simple test */
11749 return get_and_display_threadinfo (ref);
11750 }
11751
11752 static void
11753 threadlist_update_test_cmd (const char *cmd, int tty)
11754 {
11755 printf_filtered ("Remote Threadlist update test\n");
11756 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11757 }
11758
11759 static void
11760 init_remote_threadtests (void)
11761 {
11762 add_com ("tlist", class_obscure, threadlist_test_cmd,
11763 _("Fetch and print the remote list of "
11764 "thread identifiers, one pkt only."));
11765 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11766 _("Fetch and display info about one thread."));
11767 add_com ("tset", class_obscure, threadset_test_cmd,
11768 _("Test setting to a different thread."));
11769 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11770 _("Iterate through updating all remote thread info."));
11771 add_com ("talive", class_obscure, threadalive_test,
11772 _("Remote thread alive test."));
11773 }
11774
11775 #endif /* 0 */
11776
11777 /* Convert a thread ID to a string. */
11778
11779 std::string
11780 remote_target::pid_to_str (ptid_t ptid)
11781 {
11782 struct remote_state *rs = get_remote_state ();
11783
11784 if (ptid == null_ptid)
11785 return normal_pid_to_str (ptid);
11786 else if (ptid.is_pid ())
11787 {
11788 /* Printing an inferior target id. */
11789
11790 /* When multi-process extensions are off, there's no way in the
11791 remote protocol to know the remote process id, if there's any
11792 at all. There's one exception --- when we're connected with
11793 target extended-remote, and we manually attached to a process
11794 with "attach PID". We don't record anywhere a flag that
11795 allows us to distinguish that case from the case of
11796 connecting with extended-remote and the stub already being
11797 attached to a process, and reporting yes to qAttached, hence
11798 no smart special casing here. */
11799 if (!remote_multi_process_p (rs))
11800 return "Remote target";
11801
11802 return normal_pid_to_str (ptid);
11803 }
11804 else
11805 {
11806 if (magic_null_ptid == ptid)
11807 return "Thread <main>";
11808 else if (remote_multi_process_p (rs))
11809 if (ptid.lwp () == 0)
11810 return normal_pid_to_str (ptid);
11811 else
11812 return string_printf ("Thread %d.%ld",
11813 ptid.pid (), ptid.lwp ());
11814 else
11815 return string_printf ("Thread %ld", ptid.lwp ());
11816 }
11817 }
11818
11819 /* Get the address of the thread local variable in OBJFILE which is
11820 stored at OFFSET within the thread local storage for thread PTID. */
11821
11822 CORE_ADDR
11823 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11824 CORE_ADDR offset)
11825 {
11826 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11827 {
11828 struct remote_state *rs = get_remote_state ();
11829 char *p = rs->buf.data ();
11830 char *endp = p + get_remote_packet_size ();
11831 enum packet_result result;
11832
11833 strcpy (p, "qGetTLSAddr:");
11834 p += strlen (p);
11835 p = write_ptid (p, endp, ptid);
11836 *p++ = ',';
11837 p += hexnumstr (p, offset);
11838 *p++ = ',';
11839 p += hexnumstr (p, lm);
11840 *p++ = '\0';
11841
11842 putpkt (rs->buf);
11843 getpkt (&rs->buf, 0);
11844 result = packet_ok (rs->buf,
11845 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11846 if (result == PACKET_OK)
11847 {
11848 ULONGEST addr;
11849
11850 unpack_varlen_hex (rs->buf.data (), &addr);
11851 return addr;
11852 }
11853 else if (result == PACKET_UNKNOWN)
11854 throw_error (TLS_GENERIC_ERROR,
11855 _("Remote target doesn't support qGetTLSAddr packet"));
11856 else
11857 throw_error (TLS_GENERIC_ERROR,
11858 _("Remote target failed to process qGetTLSAddr request"));
11859 }
11860 else
11861 throw_error (TLS_GENERIC_ERROR,
11862 _("TLS not supported or disabled on this target"));
11863 /* Not reached. */
11864 return 0;
11865 }
11866
11867 /* Provide thread local base, i.e. Thread Information Block address.
11868 Returns 1 if ptid is found and thread_local_base is non zero. */
11869
11870 bool
11871 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11872 {
11873 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11874 {
11875 struct remote_state *rs = get_remote_state ();
11876 char *p = rs->buf.data ();
11877 char *endp = p + get_remote_packet_size ();
11878 enum packet_result result;
11879
11880 strcpy (p, "qGetTIBAddr:");
11881 p += strlen (p);
11882 p = write_ptid (p, endp, ptid);
11883 *p++ = '\0';
11884
11885 putpkt (rs->buf);
11886 getpkt (&rs->buf, 0);
11887 result = packet_ok (rs->buf,
11888 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11889 if (result == PACKET_OK)
11890 {
11891 ULONGEST val;
11892 unpack_varlen_hex (rs->buf.data (), &val);
11893 if (addr)
11894 *addr = (CORE_ADDR) val;
11895 return true;
11896 }
11897 else if (result == PACKET_UNKNOWN)
11898 error (_("Remote target doesn't support qGetTIBAddr packet"));
11899 else
11900 error (_("Remote target failed to process qGetTIBAddr request"));
11901 }
11902 else
11903 error (_("qGetTIBAddr not supported or disabled on this target"));
11904 /* Not reached. */
11905 return false;
11906 }
11907
11908 /* Support for inferring a target description based on the current
11909 architecture and the size of a 'g' packet. While the 'g' packet
11910 can have any size (since optional registers can be left off the
11911 end), some sizes are easily recognizable given knowledge of the
11912 approximate architecture. */
11913
11914 struct remote_g_packet_guess
11915 {
11916 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11917 : bytes (bytes_),
11918 tdesc (tdesc_)
11919 {
11920 }
11921
11922 int bytes;
11923 const struct target_desc *tdesc;
11924 };
11925
11926 struct remote_g_packet_data : public allocate_on_obstack
11927 {
11928 std::vector<remote_g_packet_guess> guesses;
11929 };
11930
11931 static struct gdbarch_data *remote_g_packet_data_handle;
11932
11933 static void *
11934 remote_g_packet_data_init (struct obstack *obstack)
11935 {
11936 return new (obstack) remote_g_packet_data;
11937 }
11938
11939 void
11940 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11941 const struct target_desc *tdesc)
11942 {
11943 struct remote_g_packet_data *data
11944 = ((struct remote_g_packet_data *)
11945 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11946
11947 gdb_assert (tdesc != NULL);
11948
11949 for (const remote_g_packet_guess &guess : data->guesses)
11950 if (guess.bytes == bytes)
11951 internal_error (__FILE__, __LINE__,
11952 _("Duplicate g packet description added for size %d"),
11953 bytes);
11954
11955 data->guesses.emplace_back (bytes, tdesc);
11956 }
11957
11958 /* Return true if remote_read_description would do anything on this target
11959 and architecture, false otherwise. */
11960
11961 static bool
11962 remote_read_description_p (struct target_ops *target)
11963 {
11964 struct remote_g_packet_data *data
11965 = ((struct remote_g_packet_data *)
11966 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11967
11968 return !data->guesses.empty ();
11969 }
11970
11971 const struct target_desc *
11972 remote_target::read_description ()
11973 {
11974 struct remote_g_packet_data *data
11975 = ((struct remote_g_packet_data *)
11976 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11977
11978 /* Do not try this during initial connection, when we do not know
11979 whether there is a running but stopped thread. */
11980 if (!target_has_execution () || inferior_ptid == null_ptid)
11981 return beneath ()->read_description ();
11982
11983 if (!data->guesses.empty ())
11984 {
11985 int bytes = send_g_packet ();
11986
11987 for (const remote_g_packet_guess &guess : data->guesses)
11988 if (guess.bytes == bytes)
11989 return guess.tdesc;
11990
11991 /* We discard the g packet. A minor optimization would be to
11992 hold on to it, and fill the register cache once we have selected
11993 an architecture, but it's too tricky to do safely. */
11994 }
11995
11996 return beneath ()->read_description ();
11997 }
11998
11999 /* Remote file transfer support. This is host-initiated I/O, not
12000 target-initiated; for target-initiated, see remote-fileio.c. */
12001
12002 /* If *LEFT is at least the length of STRING, copy STRING to
12003 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12004 decrease *LEFT. Otherwise raise an error. */
12005
12006 static void
12007 remote_buffer_add_string (char **buffer, int *left, const char *string)
12008 {
12009 int len = strlen (string);
12010
12011 if (len > *left)
12012 error (_("Packet too long for target."));
12013
12014 memcpy (*buffer, string, len);
12015 *buffer += len;
12016 *left -= len;
12017
12018 /* NUL-terminate the buffer as a convenience, if there is
12019 room. */
12020 if (*left)
12021 **buffer = '\0';
12022 }
12023
12024 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
12025 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12026 decrease *LEFT. Otherwise raise an error. */
12027
12028 static void
12029 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
12030 int len)
12031 {
12032 if (2 * len > *left)
12033 error (_("Packet too long for target."));
12034
12035 bin2hex (bytes, *buffer, len);
12036 *buffer += 2 * len;
12037 *left -= 2 * len;
12038
12039 /* NUL-terminate the buffer as a convenience, if there is
12040 room. */
12041 if (*left)
12042 **buffer = '\0';
12043 }
12044
12045 /* If *LEFT is large enough, convert VALUE to hex and add it to
12046 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12047 decrease *LEFT. Otherwise raise an error. */
12048
12049 static void
12050 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
12051 {
12052 int len = hexnumlen (value);
12053
12054 if (len > *left)
12055 error (_("Packet too long for target."));
12056
12057 hexnumstr (*buffer, value);
12058 *buffer += len;
12059 *left -= len;
12060
12061 /* NUL-terminate the buffer as a convenience, if there is
12062 room. */
12063 if (*left)
12064 **buffer = '\0';
12065 }
12066
12067 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
12068 value, *REMOTE_ERRNO to the remote error number or zero if none
12069 was included, and *ATTACHMENT to point to the start of the annex
12070 if any. The length of the packet isn't needed here; there may
12071 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
12072
12073 Return 0 if the packet could be parsed, -1 if it could not. If
12074 -1 is returned, the other variables may not be initialized. */
12075
12076 static int
12077 remote_hostio_parse_result (const char *buffer, int *retcode,
12078 int *remote_errno, const char **attachment)
12079 {
12080 char *p, *p2;
12081
12082 *remote_errno = 0;
12083 *attachment = NULL;
12084
12085 if (buffer[0] != 'F')
12086 return -1;
12087
12088 errno = 0;
12089 *retcode = strtol (&buffer[1], &p, 16);
12090 if (errno != 0 || p == &buffer[1])
12091 return -1;
12092
12093 /* Check for ",errno". */
12094 if (*p == ',')
12095 {
12096 errno = 0;
12097 *remote_errno = strtol (p + 1, &p2, 16);
12098 if (errno != 0 || p + 1 == p2)
12099 return -1;
12100 p = p2;
12101 }
12102
12103 /* Check for ";attachment". If there is no attachment, the
12104 packet should end here. */
12105 if (*p == ';')
12106 {
12107 *attachment = p + 1;
12108 return 0;
12109 }
12110 else if (*p == '\0')
12111 return 0;
12112 else
12113 return -1;
12114 }
12115
12116 /* Send a prepared I/O packet to the target and read its response.
12117 The prepared packet is in the global RS->BUF before this function
12118 is called, and the answer is there when we return.
12119
12120 COMMAND_BYTES is the length of the request to send, which may include
12121 binary data. WHICH_PACKET is the packet configuration to check
12122 before attempting a packet. If an error occurs, *REMOTE_ERRNO
12123 is set to the error number and -1 is returned. Otherwise the value
12124 returned by the function is returned.
12125
12126 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12127 attachment is expected; an error will be reported if there's a
12128 mismatch. If one is found, *ATTACHMENT will be set to point into
12129 the packet buffer and *ATTACHMENT_LEN will be set to the
12130 attachment's length. */
12131
12132 int
12133 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12134 int *remote_errno, const char **attachment,
12135 int *attachment_len)
12136 {
12137 struct remote_state *rs = get_remote_state ();
12138 int ret, bytes_read;
12139 const char *attachment_tmp;
12140
12141 if (packet_support (which_packet) == PACKET_DISABLE)
12142 {
12143 *remote_errno = FILEIO_ENOSYS;
12144 return -1;
12145 }
12146
12147 putpkt_binary (rs->buf.data (), command_bytes);
12148 bytes_read = getpkt_sane (&rs->buf, 0);
12149
12150 /* If it timed out, something is wrong. Don't try to parse the
12151 buffer. */
12152 if (bytes_read < 0)
12153 {
12154 *remote_errno = FILEIO_EINVAL;
12155 return -1;
12156 }
12157
12158 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12159 {
12160 case PACKET_ERROR:
12161 *remote_errno = FILEIO_EINVAL;
12162 return -1;
12163 case PACKET_UNKNOWN:
12164 *remote_errno = FILEIO_ENOSYS;
12165 return -1;
12166 case PACKET_OK:
12167 break;
12168 }
12169
12170 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12171 &attachment_tmp))
12172 {
12173 *remote_errno = FILEIO_EINVAL;
12174 return -1;
12175 }
12176
12177 /* Make sure we saw an attachment if and only if we expected one. */
12178 if ((attachment_tmp == NULL && attachment != NULL)
12179 || (attachment_tmp != NULL && attachment == NULL))
12180 {
12181 *remote_errno = FILEIO_EINVAL;
12182 return -1;
12183 }
12184
12185 /* If an attachment was found, it must point into the packet buffer;
12186 work out how many bytes there were. */
12187 if (attachment_tmp != NULL)
12188 {
12189 *attachment = attachment_tmp;
12190 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12191 }
12192
12193 return ret;
12194 }
12195
12196 /* See declaration.h. */
12197
12198 void
12199 readahead_cache::invalidate ()
12200 {
12201 this->fd = -1;
12202 }
12203
12204 /* See declaration.h. */
12205
12206 void
12207 readahead_cache::invalidate_fd (int fd)
12208 {
12209 if (this->fd == fd)
12210 this->fd = -1;
12211 }
12212
12213 /* Set the filesystem remote_hostio functions that take FILENAME
12214 arguments will use. Return 0 on success, or -1 if an error
12215 occurs (and set *REMOTE_ERRNO). */
12216
12217 int
12218 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12219 int *remote_errno)
12220 {
12221 struct remote_state *rs = get_remote_state ();
12222 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12223 char *p = rs->buf.data ();
12224 int left = get_remote_packet_size () - 1;
12225 char arg[9];
12226 int ret;
12227
12228 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12229 return 0;
12230
12231 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12232 return 0;
12233
12234 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12235
12236 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12237 remote_buffer_add_string (&p, &left, arg);
12238
12239 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12240 remote_errno, NULL, NULL);
12241
12242 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12243 return 0;
12244
12245 if (ret == 0)
12246 rs->fs_pid = required_pid;
12247
12248 return ret;
12249 }
12250
12251 /* Implementation of to_fileio_open. */
12252
12253 int
12254 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12255 int flags, int mode, int warn_if_slow,
12256 int *remote_errno)
12257 {
12258 struct remote_state *rs = get_remote_state ();
12259 char *p = rs->buf.data ();
12260 int left = get_remote_packet_size () - 1;
12261
12262 if (warn_if_slow)
12263 {
12264 static int warning_issued = 0;
12265
12266 printf_unfiltered (_("Reading %s from remote target...\n"),
12267 filename);
12268
12269 if (!warning_issued)
12270 {
12271 warning (_("File transfers from remote targets can be slow."
12272 " Use \"set sysroot\" to access files locally"
12273 " instead."));
12274 warning_issued = 1;
12275 }
12276 }
12277
12278 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12279 return -1;
12280
12281 remote_buffer_add_string (&p, &left, "vFile:open:");
12282
12283 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12284 strlen (filename));
12285 remote_buffer_add_string (&p, &left, ",");
12286
12287 remote_buffer_add_int (&p, &left, flags);
12288 remote_buffer_add_string (&p, &left, ",");
12289
12290 remote_buffer_add_int (&p, &left, mode);
12291
12292 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12293 remote_errno, NULL, NULL);
12294 }
12295
12296 int
12297 remote_target::fileio_open (struct inferior *inf, const char *filename,
12298 int flags, int mode, int warn_if_slow,
12299 int *remote_errno)
12300 {
12301 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12302 remote_errno);
12303 }
12304
12305 /* Implementation of to_fileio_pwrite. */
12306
12307 int
12308 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12309 ULONGEST offset, int *remote_errno)
12310 {
12311 struct remote_state *rs = get_remote_state ();
12312 char *p = rs->buf.data ();
12313 int left = get_remote_packet_size ();
12314 int out_len;
12315
12316 rs->readahead_cache.invalidate_fd (fd);
12317
12318 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12319
12320 remote_buffer_add_int (&p, &left, fd);
12321 remote_buffer_add_string (&p, &left, ",");
12322
12323 remote_buffer_add_int (&p, &left, offset);
12324 remote_buffer_add_string (&p, &left, ",");
12325
12326 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12327 (get_remote_packet_size ()
12328 - (p - rs->buf.data ())));
12329
12330 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12331 remote_errno, NULL, NULL);
12332 }
12333
12334 int
12335 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12336 ULONGEST offset, int *remote_errno)
12337 {
12338 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12339 }
12340
12341 /* Helper for the implementation of to_fileio_pread. Read the file
12342 from the remote side with vFile:pread. */
12343
12344 int
12345 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12346 ULONGEST offset, int *remote_errno)
12347 {
12348 struct remote_state *rs = get_remote_state ();
12349 char *p = rs->buf.data ();
12350 const char *attachment;
12351 int left = get_remote_packet_size ();
12352 int ret, attachment_len;
12353 int read_len;
12354
12355 remote_buffer_add_string (&p, &left, "vFile:pread:");
12356
12357 remote_buffer_add_int (&p, &left, fd);
12358 remote_buffer_add_string (&p, &left, ",");
12359
12360 remote_buffer_add_int (&p, &left, len);
12361 remote_buffer_add_string (&p, &left, ",");
12362
12363 remote_buffer_add_int (&p, &left, offset);
12364
12365 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12366 remote_errno, &attachment,
12367 &attachment_len);
12368
12369 if (ret < 0)
12370 return ret;
12371
12372 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12373 read_buf, len);
12374 if (read_len != ret)
12375 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12376
12377 return ret;
12378 }
12379
12380 /* See declaration.h. */
12381
12382 int
12383 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12384 ULONGEST offset)
12385 {
12386 if (this->fd == fd
12387 && this->offset <= offset
12388 && offset < this->offset + this->bufsize)
12389 {
12390 ULONGEST max = this->offset + this->bufsize;
12391
12392 if (offset + len > max)
12393 len = max - offset;
12394
12395 memcpy (read_buf, this->buf + offset - this->offset, len);
12396 return len;
12397 }
12398
12399 return 0;
12400 }
12401
12402 /* Implementation of to_fileio_pread. */
12403
12404 int
12405 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12406 ULONGEST offset, int *remote_errno)
12407 {
12408 int ret;
12409 struct remote_state *rs = get_remote_state ();
12410 readahead_cache *cache = &rs->readahead_cache;
12411
12412 ret = cache->pread (fd, read_buf, len, offset);
12413 if (ret > 0)
12414 {
12415 cache->hit_count++;
12416
12417 remote_debug_printf ("readahead cache hit %s",
12418 pulongest (cache->hit_count));
12419 return ret;
12420 }
12421
12422 cache->miss_count++;
12423
12424 remote_debug_printf ("readahead cache miss %s",
12425 pulongest (cache->miss_count));
12426
12427 cache->fd = fd;
12428 cache->offset = offset;
12429 cache->bufsize = get_remote_packet_size ();
12430 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12431
12432 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12433 cache->offset, remote_errno);
12434 if (ret <= 0)
12435 {
12436 cache->invalidate_fd (fd);
12437 return ret;
12438 }
12439
12440 cache->bufsize = ret;
12441 return cache->pread (fd, read_buf, len, offset);
12442 }
12443
12444 int
12445 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12446 ULONGEST offset, int *remote_errno)
12447 {
12448 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12449 }
12450
12451 /* Implementation of to_fileio_close. */
12452
12453 int
12454 remote_target::remote_hostio_close (int fd, int *remote_errno)
12455 {
12456 struct remote_state *rs = get_remote_state ();
12457 char *p = rs->buf.data ();
12458 int left = get_remote_packet_size () - 1;
12459
12460 rs->readahead_cache.invalidate_fd (fd);
12461
12462 remote_buffer_add_string (&p, &left, "vFile:close:");
12463
12464 remote_buffer_add_int (&p, &left, fd);
12465
12466 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12467 remote_errno, NULL, NULL);
12468 }
12469
12470 int
12471 remote_target::fileio_close (int fd, int *remote_errno)
12472 {
12473 return remote_hostio_close (fd, remote_errno);
12474 }
12475
12476 /* Implementation of to_fileio_unlink. */
12477
12478 int
12479 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12480 int *remote_errno)
12481 {
12482 struct remote_state *rs = get_remote_state ();
12483 char *p = rs->buf.data ();
12484 int left = get_remote_packet_size () - 1;
12485
12486 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12487 return -1;
12488
12489 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12490
12491 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12492 strlen (filename));
12493
12494 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12495 remote_errno, NULL, NULL);
12496 }
12497
12498 int
12499 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12500 int *remote_errno)
12501 {
12502 return remote_hostio_unlink (inf, filename, remote_errno);
12503 }
12504
12505 /* Implementation of to_fileio_readlink. */
12506
12507 gdb::optional<std::string>
12508 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12509 int *remote_errno)
12510 {
12511 struct remote_state *rs = get_remote_state ();
12512 char *p = rs->buf.data ();
12513 const char *attachment;
12514 int left = get_remote_packet_size ();
12515 int len, attachment_len;
12516 int read_len;
12517
12518 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12519 return {};
12520
12521 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12522
12523 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12524 strlen (filename));
12525
12526 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12527 remote_errno, &attachment,
12528 &attachment_len);
12529
12530 if (len < 0)
12531 return {};
12532
12533 std::string ret (len, '\0');
12534
12535 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12536 (gdb_byte *) &ret[0], len);
12537 if (read_len != len)
12538 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12539
12540 return ret;
12541 }
12542
12543 /* Implementation of to_fileio_fstat. */
12544
12545 int
12546 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12547 {
12548 struct remote_state *rs = get_remote_state ();
12549 char *p = rs->buf.data ();
12550 int left = get_remote_packet_size ();
12551 int attachment_len, ret;
12552 const char *attachment;
12553 struct fio_stat fst;
12554 int read_len;
12555
12556 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12557
12558 remote_buffer_add_int (&p, &left, fd);
12559
12560 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12561 remote_errno, &attachment,
12562 &attachment_len);
12563 if (ret < 0)
12564 {
12565 if (*remote_errno != FILEIO_ENOSYS)
12566 return ret;
12567
12568 /* Strictly we should return -1, ENOSYS here, but when
12569 "set sysroot remote:" was implemented in August 2008
12570 BFD's need for a stat function was sidestepped with
12571 this hack. This was not remedied until March 2015
12572 so we retain the previous behavior to avoid breaking
12573 compatibility.
12574
12575 Note that the memset is a March 2015 addition; older
12576 GDBs set st_size *and nothing else* so the structure
12577 would have garbage in all other fields. This might
12578 break something but retaining the previous behavior
12579 here would be just too wrong. */
12580
12581 memset (st, 0, sizeof (struct stat));
12582 st->st_size = INT_MAX;
12583 return 0;
12584 }
12585
12586 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12587 (gdb_byte *) &fst, sizeof (fst));
12588
12589 if (read_len != ret)
12590 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12591
12592 if (read_len != sizeof (fst))
12593 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12594 read_len, (int) sizeof (fst));
12595
12596 remote_fileio_to_host_stat (&fst, st);
12597
12598 return 0;
12599 }
12600
12601 /* Implementation of to_filesystem_is_local. */
12602
12603 bool
12604 remote_target::filesystem_is_local ()
12605 {
12606 /* Valgrind GDB presents itself as a remote target but works
12607 on the local filesystem: it does not implement remote get
12608 and users are not expected to set a sysroot. To handle
12609 this case we treat the remote filesystem as local if the
12610 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12611 does not support vFile:open. */
12612 if (gdb_sysroot == TARGET_SYSROOT_PREFIX)
12613 {
12614 enum packet_support ps = packet_support (PACKET_vFile_open);
12615
12616 if (ps == PACKET_SUPPORT_UNKNOWN)
12617 {
12618 int fd, remote_errno;
12619
12620 /* Try opening a file to probe support. The supplied
12621 filename is irrelevant, we only care about whether
12622 the stub recognizes the packet or not. */
12623 fd = remote_hostio_open (NULL, "just probing",
12624 FILEIO_O_RDONLY, 0700, 0,
12625 &remote_errno);
12626
12627 if (fd >= 0)
12628 remote_hostio_close (fd, &remote_errno);
12629
12630 ps = packet_support (PACKET_vFile_open);
12631 }
12632
12633 if (ps == PACKET_DISABLE)
12634 {
12635 static int warning_issued = 0;
12636
12637 if (!warning_issued)
12638 {
12639 warning (_("remote target does not support file"
12640 " transfer, attempting to access files"
12641 " from local filesystem."));
12642 warning_issued = 1;
12643 }
12644
12645 return true;
12646 }
12647 }
12648
12649 return false;
12650 }
12651
12652 static int
12653 remote_fileio_errno_to_host (int errnum)
12654 {
12655 switch (errnum)
12656 {
12657 case FILEIO_EPERM:
12658 return EPERM;
12659 case FILEIO_ENOENT:
12660 return ENOENT;
12661 case FILEIO_EINTR:
12662 return EINTR;
12663 case FILEIO_EIO:
12664 return EIO;
12665 case FILEIO_EBADF:
12666 return EBADF;
12667 case FILEIO_EACCES:
12668 return EACCES;
12669 case FILEIO_EFAULT:
12670 return EFAULT;
12671 case FILEIO_EBUSY:
12672 return EBUSY;
12673 case FILEIO_EEXIST:
12674 return EEXIST;
12675 case FILEIO_ENODEV:
12676 return ENODEV;
12677 case FILEIO_ENOTDIR:
12678 return ENOTDIR;
12679 case FILEIO_EISDIR:
12680 return EISDIR;
12681 case FILEIO_EINVAL:
12682 return EINVAL;
12683 case FILEIO_ENFILE:
12684 return ENFILE;
12685 case FILEIO_EMFILE:
12686 return EMFILE;
12687 case FILEIO_EFBIG:
12688 return EFBIG;
12689 case FILEIO_ENOSPC:
12690 return ENOSPC;
12691 case FILEIO_ESPIPE:
12692 return ESPIPE;
12693 case FILEIO_EROFS:
12694 return EROFS;
12695 case FILEIO_ENOSYS:
12696 return ENOSYS;
12697 case FILEIO_ENAMETOOLONG:
12698 return ENAMETOOLONG;
12699 }
12700 return -1;
12701 }
12702
12703 static char *
12704 remote_hostio_error (int errnum)
12705 {
12706 int host_error = remote_fileio_errno_to_host (errnum);
12707
12708 if (host_error == -1)
12709 error (_("Unknown remote I/O error %d"), errnum);
12710 else
12711 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12712 }
12713
12714 /* A RAII wrapper around a remote file descriptor. */
12715
12716 class scoped_remote_fd
12717 {
12718 public:
12719 scoped_remote_fd (remote_target *remote, int fd)
12720 : m_remote (remote), m_fd (fd)
12721 {
12722 }
12723
12724 ~scoped_remote_fd ()
12725 {
12726 if (m_fd != -1)
12727 {
12728 try
12729 {
12730 int remote_errno;
12731 m_remote->remote_hostio_close (m_fd, &remote_errno);
12732 }
12733 catch (...)
12734 {
12735 /* Swallow exception before it escapes the dtor. If
12736 something goes wrong, likely the connection is gone,
12737 and there's nothing else that can be done. */
12738 }
12739 }
12740 }
12741
12742 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12743
12744 /* Release ownership of the file descriptor, and return it. */
12745 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12746 {
12747 int fd = m_fd;
12748 m_fd = -1;
12749 return fd;
12750 }
12751
12752 /* Return the owned file descriptor. */
12753 int get () const noexcept
12754 {
12755 return m_fd;
12756 }
12757
12758 private:
12759 /* The remote target. */
12760 remote_target *m_remote;
12761
12762 /* The owned remote I/O file descriptor. */
12763 int m_fd;
12764 };
12765
12766 void
12767 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12768 {
12769 remote_target *remote = get_current_remote_target ();
12770
12771 if (remote == nullptr)
12772 error (_("command can only be used with remote target"));
12773
12774 remote->remote_file_put (local_file, remote_file, from_tty);
12775 }
12776
12777 void
12778 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12779 int from_tty)
12780 {
12781 int retcode, remote_errno, bytes, io_size;
12782 int bytes_in_buffer;
12783 int saw_eof;
12784 ULONGEST offset;
12785
12786 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12787 if (file == NULL)
12788 perror_with_name (local_file);
12789
12790 scoped_remote_fd fd
12791 (this, remote_hostio_open (NULL,
12792 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12793 | FILEIO_O_TRUNC),
12794 0700, 0, &remote_errno));
12795 if (fd.get () == -1)
12796 remote_hostio_error (remote_errno);
12797
12798 /* Send up to this many bytes at once. They won't all fit in the
12799 remote packet limit, so we'll transfer slightly fewer. */
12800 io_size = get_remote_packet_size ();
12801 gdb::byte_vector buffer (io_size);
12802
12803 bytes_in_buffer = 0;
12804 saw_eof = 0;
12805 offset = 0;
12806 while (bytes_in_buffer || !saw_eof)
12807 {
12808 if (!saw_eof)
12809 {
12810 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12811 io_size - bytes_in_buffer,
12812 file.get ());
12813 if (bytes == 0)
12814 {
12815 if (ferror (file.get ()))
12816 error (_("Error reading %s."), local_file);
12817 else
12818 {
12819 /* EOF. Unless there is something still in the
12820 buffer from the last iteration, we are done. */
12821 saw_eof = 1;
12822 if (bytes_in_buffer == 0)
12823 break;
12824 }
12825 }
12826 }
12827 else
12828 bytes = 0;
12829
12830 bytes += bytes_in_buffer;
12831 bytes_in_buffer = 0;
12832
12833 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12834 offset, &remote_errno);
12835
12836 if (retcode < 0)
12837 remote_hostio_error (remote_errno);
12838 else if (retcode == 0)
12839 error (_("Remote write of %d bytes returned 0!"), bytes);
12840 else if (retcode < bytes)
12841 {
12842 /* Short write. Save the rest of the read data for the next
12843 write. */
12844 bytes_in_buffer = bytes - retcode;
12845 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12846 }
12847
12848 offset += retcode;
12849 }
12850
12851 if (remote_hostio_close (fd.release (), &remote_errno))
12852 remote_hostio_error (remote_errno);
12853
12854 if (from_tty)
12855 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12856 }
12857
12858 void
12859 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12860 {
12861 remote_target *remote = get_current_remote_target ();
12862
12863 if (remote == nullptr)
12864 error (_("command can only be used with remote target"));
12865
12866 remote->remote_file_get (remote_file, local_file, from_tty);
12867 }
12868
12869 void
12870 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12871 int from_tty)
12872 {
12873 int remote_errno, bytes, io_size;
12874 ULONGEST offset;
12875
12876 scoped_remote_fd fd
12877 (this, remote_hostio_open (NULL,
12878 remote_file, FILEIO_O_RDONLY, 0, 0,
12879 &remote_errno));
12880 if (fd.get () == -1)
12881 remote_hostio_error (remote_errno);
12882
12883 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12884 if (file == NULL)
12885 perror_with_name (local_file);
12886
12887 /* Send up to this many bytes at once. They won't all fit in the
12888 remote packet limit, so we'll transfer slightly fewer. */
12889 io_size = get_remote_packet_size ();
12890 gdb::byte_vector buffer (io_size);
12891
12892 offset = 0;
12893 while (1)
12894 {
12895 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12896 &remote_errno);
12897 if (bytes == 0)
12898 /* Success, but no bytes, means end-of-file. */
12899 break;
12900 if (bytes == -1)
12901 remote_hostio_error (remote_errno);
12902
12903 offset += bytes;
12904
12905 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12906 if (bytes == 0)
12907 perror_with_name (local_file);
12908 }
12909
12910 if (remote_hostio_close (fd.release (), &remote_errno))
12911 remote_hostio_error (remote_errno);
12912
12913 if (from_tty)
12914 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12915 }
12916
12917 void
12918 remote_file_delete (const char *remote_file, int from_tty)
12919 {
12920 remote_target *remote = get_current_remote_target ();
12921
12922 if (remote == nullptr)
12923 error (_("command can only be used with remote target"));
12924
12925 remote->remote_file_delete (remote_file, from_tty);
12926 }
12927
12928 void
12929 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12930 {
12931 int retcode, remote_errno;
12932
12933 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12934 if (retcode == -1)
12935 remote_hostio_error (remote_errno);
12936
12937 if (from_tty)
12938 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12939 }
12940
12941 static void
12942 remote_put_command (const char *args, int from_tty)
12943 {
12944 if (args == NULL)
12945 error_no_arg (_("file to put"));
12946
12947 gdb_argv argv (args);
12948 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12949 error (_("Invalid parameters to remote put"));
12950
12951 remote_file_put (argv[0], argv[1], from_tty);
12952 }
12953
12954 static void
12955 remote_get_command (const char *args, int from_tty)
12956 {
12957 if (args == NULL)
12958 error_no_arg (_("file to get"));
12959
12960 gdb_argv argv (args);
12961 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12962 error (_("Invalid parameters to remote get"));
12963
12964 remote_file_get (argv[0], argv[1], from_tty);
12965 }
12966
12967 static void
12968 remote_delete_command (const char *args, int from_tty)
12969 {
12970 if (args == NULL)
12971 error_no_arg (_("file to delete"));
12972
12973 gdb_argv argv (args);
12974 if (argv[0] == NULL || argv[1] != NULL)
12975 error (_("Invalid parameters to remote delete"));
12976
12977 remote_file_delete (argv[0], from_tty);
12978 }
12979
12980 bool
12981 remote_target::can_execute_reverse ()
12982 {
12983 if (packet_support (PACKET_bs) == PACKET_ENABLE
12984 || packet_support (PACKET_bc) == PACKET_ENABLE)
12985 return true;
12986 else
12987 return false;
12988 }
12989
12990 bool
12991 remote_target::supports_non_stop ()
12992 {
12993 return true;
12994 }
12995
12996 bool
12997 remote_target::supports_disable_randomization ()
12998 {
12999 /* Only supported in extended mode. */
13000 return false;
13001 }
13002
13003 bool
13004 remote_target::supports_multi_process ()
13005 {
13006 struct remote_state *rs = get_remote_state ();
13007
13008 return remote_multi_process_p (rs);
13009 }
13010
13011 static int
13012 remote_supports_cond_tracepoints ()
13013 {
13014 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
13015 }
13016
13017 bool
13018 remote_target::supports_evaluation_of_breakpoint_conditions ()
13019 {
13020 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
13021 }
13022
13023 static int
13024 remote_supports_fast_tracepoints ()
13025 {
13026 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
13027 }
13028
13029 static int
13030 remote_supports_static_tracepoints ()
13031 {
13032 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
13033 }
13034
13035 static int
13036 remote_supports_install_in_trace ()
13037 {
13038 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
13039 }
13040
13041 bool
13042 remote_target::supports_enable_disable_tracepoint ()
13043 {
13044 return (packet_support (PACKET_EnableDisableTracepoints_feature)
13045 == PACKET_ENABLE);
13046 }
13047
13048 bool
13049 remote_target::supports_string_tracing ()
13050 {
13051 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
13052 }
13053
13054 bool
13055 remote_target::can_run_breakpoint_commands ()
13056 {
13057 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
13058 }
13059
13060 void
13061 remote_target::trace_init ()
13062 {
13063 struct remote_state *rs = get_remote_state ();
13064
13065 putpkt ("QTinit");
13066 remote_get_noisy_reply ();
13067 if (strcmp (rs->buf.data (), "OK") != 0)
13068 error (_("Target does not support this command."));
13069 }
13070
13071 /* Recursive routine to walk through command list including loops, and
13072 download packets for each command. */
13073
13074 void
13075 remote_target::remote_download_command_source (int num, ULONGEST addr,
13076 struct command_line *cmds)
13077 {
13078 struct remote_state *rs = get_remote_state ();
13079 struct command_line *cmd;
13080
13081 for (cmd = cmds; cmd; cmd = cmd->next)
13082 {
13083 QUIT; /* Allow user to bail out with ^C. */
13084 strcpy (rs->buf.data (), "QTDPsrc:");
13085 encode_source_string (num, addr, "cmd", cmd->line,
13086 rs->buf.data () + strlen (rs->buf.data ()),
13087 rs->buf.size () - strlen (rs->buf.data ()));
13088 putpkt (rs->buf);
13089 remote_get_noisy_reply ();
13090 if (strcmp (rs->buf.data (), "OK"))
13091 warning (_("Target does not support source download."));
13092
13093 if (cmd->control_type == while_control
13094 || cmd->control_type == while_stepping_control)
13095 {
13096 remote_download_command_source (num, addr, cmd->body_list_0.get ());
13097
13098 QUIT; /* Allow user to bail out with ^C. */
13099 strcpy (rs->buf.data (), "QTDPsrc:");
13100 encode_source_string (num, addr, "cmd", "end",
13101 rs->buf.data () + strlen (rs->buf.data ()),
13102 rs->buf.size () - strlen (rs->buf.data ()));
13103 putpkt (rs->buf);
13104 remote_get_noisy_reply ();
13105 if (strcmp (rs->buf.data (), "OK"))
13106 warning (_("Target does not support source download."));
13107 }
13108 }
13109 }
13110
13111 void
13112 remote_target::download_tracepoint (struct bp_location *loc)
13113 {
13114 CORE_ADDR tpaddr;
13115 char addrbuf[40];
13116 std::vector<std::string> tdp_actions;
13117 std::vector<std::string> stepping_actions;
13118 char *pkt;
13119 struct breakpoint *b = loc->owner;
13120 struct tracepoint *t = (struct tracepoint *) b;
13121 struct remote_state *rs = get_remote_state ();
13122 int ret;
13123 const char *err_msg = _("Tracepoint packet too large for target.");
13124 size_t size_left;
13125
13126 /* We use a buffer other than rs->buf because we'll build strings
13127 across multiple statements, and other statements in between could
13128 modify rs->buf. */
13129 gdb::char_vector buf (get_remote_packet_size ());
13130
13131 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13132
13133 tpaddr = loc->address;
13134 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13135 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13136 b->number, addrbuf, /* address */
13137 (b->enable_state == bp_enabled ? 'E' : 'D'),
13138 t->step_count, t->pass_count);
13139
13140 if (ret < 0 || ret >= buf.size ())
13141 error ("%s", err_msg);
13142
13143 /* Fast tracepoints are mostly handled by the target, but we can
13144 tell the target how big of an instruction block should be moved
13145 around. */
13146 if (b->type == bp_fast_tracepoint)
13147 {
13148 /* Only test for support at download time; we may not know
13149 target capabilities at definition time. */
13150 if (remote_supports_fast_tracepoints ())
13151 {
13152 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13153 NULL))
13154 {
13155 size_left = buf.size () - strlen (buf.data ());
13156 ret = snprintf (buf.data () + strlen (buf.data ()),
13157 size_left, ":F%x",
13158 gdb_insn_length (loc->gdbarch, tpaddr));
13159
13160 if (ret < 0 || ret >= size_left)
13161 error ("%s", err_msg);
13162 }
13163 else
13164 /* If it passed validation at definition but fails now,
13165 something is very wrong. */
13166 internal_error (__FILE__, __LINE__,
13167 _("Fast tracepoint not "
13168 "valid during download"));
13169 }
13170 else
13171 /* Fast tracepoints are functionally identical to regular
13172 tracepoints, so don't take lack of support as a reason to
13173 give up on the trace run. */
13174 warning (_("Target does not support fast tracepoints, "
13175 "downloading %d as regular tracepoint"), b->number);
13176 }
13177 else if (b->type == bp_static_tracepoint)
13178 {
13179 /* Only test for support at download time; we may not know
13180 target capabilities at definition time. */
13181 if (remote_supports_static_tracepoints ())
13182 {
13183 struct static_tracepoint_marker marker;
13184
13185 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13186 {
13187 size_left = buf.size () - strlen (buf.data ());
13188 ret = snprintf (buf.data () + strlen (buf.data ()),
13189 size_left, ":S");
13190
13191 if (ret < 0 || ret >= size_left)
13192 error ("%s", err_msg);
13193 }
13194 else
13195 error (_("Static tracepoint not valid during download"));
13196 }
13197 else
13198 /* Fast tracepoints are functionally identical to regular
13199 tracepoints, so don't take lack of support as a reason
13200 to give up on the trace run. */
13201 error (_("Target does not support static tracepoints"));
13202 }
13203 /* If the tracepoint has a conditional, make it into an agent
13204 expression and append to the definition. */
13205 if (loc->cond)
13206 {
13207 /* Only test support at download time, we may not know target
13208 capabilities at definition time. */
13209 if (remote_supports_cond_tracepoints ())
13210 {
13211 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13212 loc->cond.get ());
13213
13214 size_left = buf.size () - strlen (buf.data ());
13215
13216 ret = snprintf (buf.data () + strlen (buf.data ()),
13217 size_left, ":X%x,", aexpr->len);
13218
13219 if (ret < 0 || ret >= size_left)
13220 error ("%s", err_msg);
13221
13222 size_left = buf.size () - strlen (buf.data ());
13223
13224 /* Two bytes to encode each aexpr byte, plus the terminating
13225 null byte. */
13226 if (aexpr->len * 2 + 1 > size_left)
13227 error ("%s", err_msg);
13228
13229 pkt = buf.data () + strlen (buf.data ());
13230
13231 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13232 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13233 *pkt = '\0';
13234 }
13235 else
13236 warning (_("Target does not support conditional tracepoints, "
13237 "ignoring tp %d cond"), b->number);
13238 }
13239
13240 if (b->commands || !default_collect.empty ())
13241 {
13242 size_left = buf.size () - strlen (buf.data ());
13243
13244 ret = snprintf (buf.data () + strlen (buf.data ()),
13245 size_left, "-");
13246
13247 if (ret < 0 || ret >= size_left)
13248 error ("%s", err_msg);
13249 }
13250
13251 putpkt (buf.data ());
13252 remote_get_noisy_reply ();
13253 if (strcmp (rs->buf.data (), "OK"))
13254 error (_("Target does not support tracepoints."));
13255
13256 /* do_single_steps (t); */
13257 for (auto action_it = tdp_actions.begin ();
13258 action_it != tdp_actions.end (); action_it++)
13259 {
13260 QUIT; /* Allow user to bail out with ^C. */
13261
13262 bool has_more = ((action_it + 1) != tdp_actions.end ()
13263 || !stepping_actions.empty ());
13264
13265 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13266 b->number, addrbuf, /* address */
13267 action_it->c_str (),
13268 has_more ? '-' : 0);
13269
13270 if (ret < 0 || ret >= buf.size ())
13271 error ("%s", err_msg);
13272
13273 putpkt (buf.data ());
13274 remote_get_noisy_reply ();
13275 if (strcmp (rs->buf.data (), "OK"))
13276 error (_("Error on target while setting tracepoints."));
13277 }
13278
13279 for (auto action_it = stepping_actions.begin ();
13280 action_it != stepping_actions.end (); action_it++)
13281 {
13282 QUIT; /* Allow user to bail out with ^C. */
13283
13284 bool is_first = action_it == stepping_actions.begin ();
13285 bool has_more = (action_it + 1) != stepping_actions.end ();
13286
13287 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13288 b->number, addrbuf, /* address */
13289 is_first ? "S" : "",
13290 action_it->c_str (),
13291 has_more ? "-" : "");
13292
13293 if (ret < 0 || ret >= buf.size ())
13294 error ("%s", err_msg);
13295
13296 putpkt (buf.data ());
13297 remote_get_noisy_reply ();
13298 if (strcmp (rs->buf.data (), "OK"))
13299 error (_("Error on target while setting tracepoints."));
13300 }
13301
13302 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13303 {
13304 if (b->location != NULL)
13305 {
13306 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13307
13308 if (ret < 0 || ret >= buf.size ())
13309 error ("%s", err_msg);
13310
13311 encode_source_string (b->number, loc->address, "at",
13312 event_location_to_string (b->location.get ()),
13313 buf.data () + strlen (buf.data ()),
13314 buf.size () - strlen (buf.data ()));
13315 putpkt (buf.data ());
13316 remote_get_noisy_reply ();
13317 if (strcmp (rs->buf.data (), "OK"))
13318 warning (_("Target does not support source download."));
13319 }
13320 if (b->cond_string)
13321 {
13322 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13323
13324 if (ret < 0 || ret >= buf.size ())
13325 error ("%s", err_msg);
13326
13327 encode_source_string (b->number, loc->address,
13328 "cond", b->cond_string.get (),
13329 buf.data () + strlen (buf.data ()),
13330 buf.size () - strlen (buf.data ()));
13331 putpkt (buf.data ());
13332 remote_get_noisy_reply ();
13333 if (strcmp (rs->buf.data (), "OK"))
13334 warning (_("Target does not support source download."));
13335 }
13336 remote_download_command_source (b->number, loc->address,
13337 breakpoint_commands (b));
13338 }
13339 }
13340
13341 bool
13342 remote_target::can_download_tracepoint ()
13343 {
13344 struct remote_state *rs = get_remote_state ();
13345 struct trace_status *ts;
13346 int status;
13347
13348 /* Don't try to install tracepoints until we've relocated our
13349 symbols, and fetched and merged the target's tracepoint list with
13350 ours. */
13351 if (rs->starting_up)
13352 return false;
13353
13354 ts = current_trace_status ();
13355 status = get_trace_status (ts);
13356
13357 if (status == -1 || !ts->running_known || !ts->running)
13358 return false;
13359
13360 /* If we are in a tracing experiment, but remote stub doesn't support
13361 installing tracepoint in trace, we have to return. */
13362 if (!remote_supports_install_in_trace ())
13363 return false;
13364
13365 return true;
13366 }
13367
13368
13369 void
13370 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13371 {
13372 struct remote_state *rs = get_remote_state ();
13373 char *p;
13374
13375 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13376 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13377 tsv.builtin);
13378 p = rs->buf.data () + strlen (rs->buf.data ());
13379 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13380 >= get_remote_packet_size ())
13381 error (_("Trace state variable name too long for tsv definition packet"));
13382 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13383 *p++ = '\0';
13384 putpkt (rs->buf);
13385 remote_get_noisy_reply ();
13386 if (rs->buf[0] == '\0')
13387 error (_("Target does not support this command."));
13388 if (strcmp (rs->buf.data (), "OK") != 0)
13389 error (_("Error on target while downloading trace state variable."));
13390 }
13391
13392 void
13393 remote_target::enable_tracepoint (struct bp_location *location)
13394 {
13395 struct remote_state *rs = get_remote_state ();
13396
13397 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13398 location->owner->number,
13399 phex (location->address, sizeof (CORE_ADDR)));
13400 putpkt (rs->buf);
13401 remote_get_noisy_reply ();
13402 if (rs->buf[0] == '\0')
13403 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13404 if (strcmp (rs->buf.data (), "OK") != 0)
13405 error (_("Error on target while enabling tracepoint."));
13406 }
13407
13408 void
13409 remote_target::disable_tracepoint (struct bp_location *location)
13410 {
13411 struct remote_state *rs = get_remote_state ();
13412
13413 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13414 location->owner->number,
13415 phex (location->address, sizeof (CORE_ADDR)));
13416 putpkt (rs->buf);
13417 remote_get_noisy_reply ();
13418 if (rs->buf[0] == '\0')
13419 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13420 if (strcmp (rs->buf.data (), "OK") != 0)
13421 error (_("Error on target while disabling tracepoint."));
13422 }
13423
13424 void
13425 remote_target::trace_set_readonly_regions ()
13426 {
13427 asection *s;
13428 bfd_size_type size;
13429 bfd_vma vma;
13430 int anysecs = 0;
13431 int offset = 0;
13432
13433 if (!current_program_space->exec_bfd ())
13434 return; /* No information to give. */
13435
13436 struct remote_state *rs = get_remote_state ();
13437
13438 strcpy (rs->buf.data (), "QTro");
13439 offset = strlen (rs->buf.data ());
13440 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13441 {
13442 char tmp1[40], tmp2[40];
13443 int sec_length;
13444
13445 if ((s->flags & SEC_LOAD) == 0 ||
13446 /* (s->flags & SEC_CODE) == 0 || */
13447 (s->flags & SEC_READONLY) == 0)
13448 continue;
13449
13450 anysecs = 1;
13451 vma = bfd_section_vma (s);
13452 size = bfd_section_size (s);
13453 sprintf_vma (tmp1, vma);
13454 sprintf_vma (tmp2, vma + size);
13455 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13456 if (offset + sec_length + 1 > rs->buf.size ())
13457 {
13458 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13459 warning (_("\
13460 Too many sections for read-only sections definition packet."));
13461 break;
13462 }
13463 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13464 tmp1, tmp2);
13465 offset += sec_length;
13466 }
13467 if (anysecs)
13468 {
13469 putpkt (rs->buf);
13470 getpkt (&rs->buf, 0);
13471 }
13472 }
13473
13474 void
13475 remote_target::trace_start ()
13476 {
13477 struct remote_state *rs = get_remote_state ();
13478
13479 putpkt ("QTStart");
13480 remote_get_noisy_reply ();
13481 if (rs->buf[0] == '\0')
13482 error (_("Target does not support this command."));
13483 if (strcmp (rs->buf.data (), "OK") != 0)
13484 error (_("Bogus reply from target: %s"), rs->buf.data ());
13485 }
13486
13487 int
13488 remote_target::get_trace_status (struct trace_status *ts)
13489 {
13490 /* Initialize it just to avoid a GCC false warning. */
13491 char *p = NULL;
13492 enum packet_result result;
13493 struct remote_state *rs = get_remote_state ();
13494
13495 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13496 return -1;
13497
13498 /* FIXME we need to get register block size some other way. */
13499 trace_regblock_size
13500 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13501
13502 putpkt ("qTStatus");
13503
13504 try
13505 {
13506 p = remote_get_noisy_reply ();
13507 }
13508 catch (const gdb_exception_error &ex)
13509 {
13510 if (ex.error != TARGET_CLOSE_ERROR)
13511 {
13512 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13513 return -1;
13514 }
13515 throw;
13516 }
13517
13518 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13519
13520 /* If the remote target doesn't do tracing, flag it. */
13521 if (result == PACKET_UNKNOWN)
13522 return -1;
13523
13524 /* We're working with a live target. */
13525 ts->filename = NULL;
13526
13527 if (*p++ != 'T')
13528 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13529
13530 /* Function 'parse_trace_status' sets default value of each field of
13531 'ts' at first, so we don't have to do it here. */
13532 parse_trace_status (p, ts);
13533
13534 return ts->running;
13535 }
13536
13537 void
13538 remote_target::get_tracepoint_status (struct breakpoint *bp,
13539 struct uploaded_tp *utp)
13540 {
13541 struct remote_state *rs = get_remote_state ();
13542 char *reply;
13543 struct tracepoint *tp = (struct tracepoint *) bp;
13544 size_t size = get_remote_packet_size ();
13545
13546 if (tp)
13547 {
13548 tp->hit_count = 0;
13549 tp->traceframe_usage = 0;
13550 for (bp_location *loc : tp->locations ())
13551 {
13552 /* If the tracepoint was never downloaded, don't go asking for
13553 any status. */
13554 if (tp->number_on_target == 0)
13555 continue;
13556 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13557 phex_nz (loc->address, 0));
13558 putpkt (rs->buf);
13559 reply = remote_get_noisy_reply ();
13560 if (reply && *reply)
13561 {
13562 if (*reply == 'V')
13563 parse_tracepoint_status (reply + 1, bp, utp);
13564 }
13565 }
13566 }
13567 else if (utp)
13568 {
13569 utp->hit_count = 0;
13570 utp->traceframe_usage = 0;
13571 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13572 phex_nz (utp->addr, 0));
13573 putpkt (rs->buf);
13574 reply = remote_get_noisy_reply ();
13575 if (reply && *reply)
13576 {
13577 if (*reply == 'V')
13578 parse_tracepoint_status (reply + 1, bp, utp);
13579 }
13580 }
13581 }
13582
13583 void
13584 remote_target::trace_stop ()
13585 {
13586 struct remote_state *rs = get_remote_state ();
13587
13588 putpkt ("QTStop");
13589 remote_get_noisy_reply ();
13590 if (rs->buf[0] == '\0')
13591 error (_("Target does not support this command."));
13592 if (strcmp (rs->buf.data (), "OK") != 0)
13593 error (_("Bogus reply from target: %s"), rs->buf.data ());
13594 }
13595
13596 int
13597 remote_target::trace_find (enum trace_find_type type, int num,
13598 CORE_ADDR addr1, CORE_ADDR addr2,
13599 int *tpp)
13600 {
13601 struct remote_state *rs = get_remote_state ();
13602 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13603 char *p, *reply;
13604 int target_frameno = -1, target_tracept = -1;
13605
13606 /* Lookups other than by absolute frame number depend on the current
13607 trace selected, so make sure it is correct on the remote end
13608 first. */
13609 if (type != tfind_number)
13610 set_remote_traceframe ();
13611
13612 p = rs->buf.data ();
13613 strcpy (p, "QTFrame:");
13614 p = strchr (p, '\0');
13615 switch (type)
13616 {
13617 case tfind_number:
13618 xsnprintf (p, endbuf - p, "%x", num);
13619 break;
13620 case tfind_pc:
13621 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13622 break;
13623 case tfind_tp:
13624 xsnprintf (p, endbuf - p, "tdp:%x", num);
13625 break;
13626 case tfind_range:
13627 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13628 phex_nz (addr2, 0));
13629 break;
13630 case tfind_outside:
13631 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13632 phex_nz (addr2, 0));
13633 break;
13634 default:
13635 error (_("Unknown trace find type %d"), type);
13636 }
13637
13638 putpkt (rs->buf);
13639 reply = remote_get_noisy_reply ();
13640 if (*reply == '\0')
13641 error (_("Target does not support this command."));
13642
13643 while (reply && *reply)
13644 switch (*reply)
13645 {
13646 case 'F':
13647 p = ++reply;
13648 target_frameno = (int) strtol (p, &reply, 16);
13649 if (reply == p)
13650 error (_("Unable to parse trace frame number"));
13651 /* Don't update our remote traceframe number cache on failure
13652 to select a remote traceframe. */
13653 if (target_frameno == -1)
13654 return -1;
13655 break;
13656 case 'T':
13657 p = ++reply;
13658 target_tracept = (int) strtol (p, &reply, 16);
13659 if (reply == p)
13660 error (_("Unable to parse tracepoint number"));
13661 break;
13662 case 'O': /* "OK"? */
13663 if (reply[1] == 'K' && reply[2] == '\0')
13664 reply += 2;
13665 else
13666 error (_("Bogus reply from target: %s"), reply);
13667 break;
13668 default:
13669 error (_("Bogus reply from target: %s"), reply);
13670 }
13671 if (tpp)
13672 *tpp = target_tracept;
13673
13674 rs->remote_traceframe_number = target_frameno;
13675 return target_frameno;
13676 }
13677
13678 bool
13679 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13680 {
13681 struct remote_state *rs = get_remote_state ();
13682 char *reply;
13683 ULONGEST uval;
13684
13685 set_remote_traceframe ();
13686
13687 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13688 putpkt (rs->buf);
13689 reply = remote_get_noisy_reply ();
13690 if (reply && *reply)
13691 {
13692 if (*reply == 'V')
13693 {
13694 unpack_varlen_hex (reply + 1, &uval);
13695 *val = (LONGEST) uval;
13696 return true;
13697 }
13698 }
13699 return false;
13700 }
13701
13702 int
13703 remote_target::save_trace_data (const char *filename)
13704 {
13705 struct remote_state *rs = get_remote_state ();
13706 char *p, *reply;
13707
13708 p = rs->buf.data ();
13709 strcpy (p, "QTSave:");
13710 p += strlen (p);
13711 if ((p - rs->buf.data ()) + strlen (filename) * 2
13712 >= get_remote_packet_size ())
13713 error (_("Remote file name too long for trace save packet"));
13714 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13715 *p++ = '\0';
13716 putpkt (rs->buf);
13717 reply = remote_get_noisy_reply ();
13718 if (*reply == '\0')
13719 error (_("Target does not support this command."));
13720 if (strcmp (reply, "OK") != 0)
13721 error (_("Bogus reply from target: %s"), reply);
13722 return 0;
13723 }
13724
13725 /* This is basically a memory transfer, but needs to be its own packet
13726 because we don't know how the target actually organizes its trace
13727 memory, plus we want to be able to ask for as much as possible, but
13728 not be unhappy if we don't get as much as we ask for. */
13729
13730 LONGEST
13731 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13732 {
13733 struct remote_state *rs = get_remote_state ();
13734 char *reply;
13735 char *p;
13736 int rslt;
13737
13738 p = rs->buf.data ();
13739 strcpy (p, "qTBuffer:");
13740 p += strlen (p);
13741 p += hexnumstr (p, offset);
13742 *p++ = ',';
13743 p += hexnumstr (p, len);
13744 *p++ = '\0';
13745
13746 putpkt (rs->buf);
13747 reply = remote_get_noisy_reply ();
13748 if (reply && *reply)
13749 {
13750 /* 'l' by itself means we're at the end of the buffer and
13751 there is nothing more to get. */
13752 if (*reply == 'l')
13753 return 0;
13754
13755 /* Convert the reply into binary. Limit the number of bytes to
13756 convert according to our passed-in buffer size, rather than
13757 what was returned in the packet; if the target is
13758 unexpectedly generous and gives us a bigger reply than we
13759 asked for, we don't want to crash. */
13760 rslt = hex2bin (reply, buf, len);
13761 return rslt;
13762 }
13763
13764 /* Something went wrong, flag as an error. */
13765 return -1;
13766 }
13767
13768 void
13769 remote_target::set_disconnected_tracing (int val)
13770 {
13771 struct remote_state *rs = get_remote_state ();
13772
13773 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13774 {
13775 char *reply;
13776
13777 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13778 "QTDisconnected:%x", val);
13779 putpkt (rs->buf);
13780 reply = remote_get_noisy_reply ();
13781 if (*reply == '\0')
13782 error (_("Target does not support this command."));
13783 if (strcmp (reply, "OK") != 0)
13784 error (_("Bogus reply from target: %s"), reply);
13785 }
13786 else if (val)
13787 warning (_("Target does not support disconnected tracing."));
13788 }
13789
13790 int
13791 remote_target::core_of_thread (ptid_t ptid)
13792 {
13793 thread_info *info = find_thread_ptid (this, ptid);
13794
13795 if (info != NULL && info->priv != NULL)
13796 return get_remote_thread_info (info)->core;
13797
13798 return -1;
13799 }
13800
13801 void
13802 remote_target::set_circular_trace_buffer (int val)
13803 {
13804 struct remote_state *rs = get_remote_state ();
13805 char *reply;
13806
13807 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13808 "QTBuffer:circular:%x", val);
13809 putpkt (rs->buf);
13810 reply = remote_get_noisy_reply ();
13811 if (*reply == '\0')
13812 error (_("Target does not support this command."));
13813 if (strcmp (reply, "OK") != 0)
13814 error (_("Bogus reply from target: %s"), reply);
13815 }
13816
13817 traceframe_info_up
13818 remote_target::traceframe_info ()
13819 {
13820 gdb::optional<gdb::char_vector> text
13821 = target_read_stralloc (current_inferior ()->top_target (),
13822 TARGET_OBJECT_TRACEFRAME_INFO,
13823 NULL);
13824 if (text)
13825 return parse_traceframe_info (text->data ());
13826
13827 return NULL;
13828 }
13829
13830 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13831 instruction on which a fast tracepoint may be placed. Returns -1
13832 if the packet is not supported, and 0 if the minimum instruction
13833 length is unknown. */
13834
13835 int
13836 remote_target::get_min_fast_tracepoint_insn_len ()
13837 {
13838 struct remote_state *rs = get_remote_state ();
13839 char *reply;
13840
13841 /* If we're not debugging a process yet, the IPA can't be
13842 loaded. */
13843 if (!target_has_execution ())
13844 return 0;
13845
13846 /* Make sure the remote is pointing at the right process. */
13847 set_general_process ();
13848
13849 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13850 putpkt (rs->buf);
13851 reply = remote_get_noisy_reply ();
13852 if (*reply == '\0')
13853 return -1;
13854 else
13855 {
13856 ULONGEST min_insn_len;
13857
13858 unpack_varlen_hex (reply, &min_insn_len);
13859
13860 return (int) min_insn_len;
13861 }
13862 }
13863
13864 void
13865 remote_target::set_trace_buffer_size (LONGEST val)
13866 {
13867 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13868 {
13869 struct remote_state *rs = get_remote_state ();
13870 char *buf = rs->buf.data ();
13871 char *endbuf = buf + get_remote_packet_size ();
13872 enum packet_result result;
13873
13874 gdb_assert (val >= 0 || val == -1);
13875 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13876 /* Send -1 as literal "-1" to avoid host size dependency. */
13877 if (val < 0)
13878 {
13879 *buf++ = '-';
13880 buf += hexnumstr (buf, (ULONGEST) -val);
13881 }
13882 else
13883 buf += hexnumstr (buf, (ULONGEST) val);
13884
13885 putpkt (rs->buf);
13886 remote_get_noisy_reply ();
13887 result = packet_ok (rs->buf,
13888 &remote_protocol_packets[PACKET_QTBuffer_size]);
13889
13890 if (result != PACKET_OK)
13891 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13892 }
13893 }
13894
13895 bool
13896 remote_target::set_trace_notes (const char *user, const char *notes,
13897 const char *stop_notes)
13898 {
13899 struct remote_state *rs = get_remote_state ();
13900 char *reply;
13901 char *buf = rs->buf.data ();
13902 char *endbuf = buf + get_remote_packet_size ();
13903 int nbytes;
13904
13905 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13906 if (user)
13907 {
13908 buf += xsnprintf (buf, endbuf - buf, "user:");
13909 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13910 buf += 2 * nbytes;
13911 *buf++ = ';';
13912 }
13913 if (notes)
13914 {
13915 buf += xsnprintf (buf, endbuf - buf, "notes:");
13916 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13917 buf += 2 * nbytes;
13918 *buf++ = ';';
13919 }
13920 if (stop_notes)
13921 {
13922 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13923 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13924 buf += 2 * nbytes;
13925 *buf++ = ';';
13926 }
13927 /* Ensure the buffer is terminated. */
13928 *buf = '\0';
13929
13930 putpkt (rs->buf);
13931 reply = remote_get_noisy_reply ();
13932 if (*reply == '\0')
13933 return false;
13934
13935 if (strcmp (reply, "OK") != 0)
13936 error (_("Bogus reply from target: %s"), reply);
13937
13938 return true;
13939 }
13940
13941 bool
13942 remote_target::use_agent (bool use)
13943 {
13944 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13945 {
13946 struct remote_state *rs = get_remote_state ();
13947
13948 /* If the stub supports QAgent. */
13949 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13950 putpkt (rs->buf);
13951 getpkt (&rs->buf, 0);
13952
13953 if (strcmp (rs->buf.data (), "OK") == 0)
13954 {
13955 ::use_agent = use;
13956 return true;
13957 }
13958 }
13959
13960 return false;
13961 }
13962
13963 bool
13964 remote_target::can_use_agent ()
13965 {
13966 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13967 }
13968
13969 struct btrace_target_info
13970 {
13971 /* The ptid of the traced thread. */
13972 ptid_t ptid;
13973
13974 /* The obtained branch trace configuration. */
13975 struct btrace_config conf;
13976 };
13977
13978 /* Reset our idea of our target's btrace configuration. */
13979
13980 static void
13981 remote_btrace_reset (remote_state *rs)
13982 {
13983 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13984 }
13985
13986 /* Synchronize the configuration with the target. */
13987
13988 void
13989 remote_target::btrace_sync_conf (const btrace_config *conf)
13990 {
13991 struct packet_config *packet;
13992 struct remote_state *rs;
13993 char *buf, *pos, *endbuf;
13994
13995 rs = get_remote_state ();
13996 buf = rs->buf.data ();
13997 endbuf = buf + get_remote_packet_size ();
13998
13999 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
14000 if (packet_config_support (packet) == PACKET_ENABLE
14001 && conf->bts.size != rs->btrace_config.bts.size)
14002 {
14003 pos = buf;
14004 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14005 conf->bts.size);
14006
14007 putpkt (buf);
14008 getpkt (&rs->buf, 0);
14009
14010 if (packet_ok (buf, packet) == PACKET_ERROR)
14011 {
14012 if (buf[0] == 'E' && buf[1] == '.')
14013 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
14014 else
14015 error (_("Failed to configure the BTS buffer size."));
14016 }
14017
14018 rs->btrace_config.bts.size = conf->bts.size;
14019 }
14020
14021 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
14022 if (packet_config_support (packet) == PACKET_ENABLE
14023 && conf->pt.size != rs->btrace_config.pt.size)
14024 {
14025 pos = buf;
14026 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14027 conf->pt.size);
14028
14029 putpkt (buf);
14030 getpkt (&rs->buf, 0);
14031
14032 if (packet_ok (buf, packet) == PACKET_ERROR)
14033 {
14034 if (buf[0] == 'E' && buf[1] == '.')
14035 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
14036 else
14037 error (_("Failed to configure the trace buffer size."));
14038 }
14039
14040 rs->btrace_config.pt.size = conf->pt.size;
14041 }
14042 }
14043
14044 /* Read the current thread's btrace configuration from the target and
14045 store it into CONF. */
14046
14047 static void
14048 btrace_read_config (struct btrace_config *conf)
14049 {
14050 gdb::optional<gdb::char_vector> xml
14051 = target_read_stralloc (current_inferior ()->top_target (),
14052 TARGET_OBJECT_BTRACE_CONF, "");
14053 if (xml)
14054 parse_xml_btrace_conf (conf, xml->data ());
14055 }
14056
14057 /* Maybe reopen target btrace. */
14058
14059 void
14060 remote_target::remote_btrace_maybe_reopen ()
14061 {
14062 struct remote_state *rs = get_remote_state ();
14063 int btrace_target_pushed = 0;
14064 #if !defined (HAVE_LIBIPT)
14065 int warned = 0;
14066 #endif
14067
14068 /* Don't bother walking the entirety of the remote thread list when
14069 we know the feature isn't supported by the remote. */
14070 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
14071 return;
14072
14073 scoped_restore_current_thread restore_thread;
14074
14075 for (thread_info *tp : all_non_exited_threads (this))
14076 {
14077 set_general_thread (tp->ptid);
14078
14079 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
14080 btrace_read_config (&rs->btrace_config);
14081
14082 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
14083 continue;
14084
14085 #if !defined (HAVE_LIBIPT)
14086 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
14087 {
14088 if (!warned)
14089 {
14090 warned = 1;
14091 warning (_("Target is recording using Intel Processor Trace "
14092 "but support was disabled at compile time."));
14093 }
14094
14095 continue;
14096 }
14097 #endif /* !defined (HAVE_LIBIPT) */
14098
14099 /* Push target, once, but before anything else happens. This way our
14100 changes to the threads will be cleaned up by unpushing the target
14101 in case btrace_read_config () throws. */
14102 if (!btrace_target_pushed)
14103 {
14104 btrace_target_pushed = 1;
14105 record_btrace_push_target ();
14106 printf_filtered (_("Target is recording using %s.\n"),
14107 btrace_format_string (rs->btrace_config.format));
14108 }
14109
14110 tp->btrace.target = XCNEW (struct btrace_target_info);
14111 tp->btrace.target->ptid = tp->ptid;
14112 tp->btrace.target->conf = rs->btrace_config;
14113 }
14114 }
14115
14116 /* Enable branch tracing. */
14117
14118 struct btrace_target_info *
14119 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
14120 {
14121 struct btrace_target_info *tinfo = NULL;
14122 struct packet_config *packet = NULL;
14123 struct remote_state *rs = get_remote_state ();
14124 char *buf = rs->buf.data ();
14125 char *endbuf = buf + get_remote_packet_size ();
14126
14127 switch (conf->format)
14128 {
14129 case BTRACE_FORMAT_BTS:
14130 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14131 break;
14132
14133 case BTRACE_FORMAT_PT:
14134 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14135 break;
14136 }
14137
14138 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14139 error (_("Target does not support branch tracing."));
14140
14141 btrace_sync_conf (conf);
14142
14143 set_general_thread (ptid);
14144
14145 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14146 putpkt (rs->buf);
14147 getpkt (&rs->buf, 0);
14148
14149 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14150 {
14151 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14152 error (_("Could not enable branch tracing for %s: %s"),
14153 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14154 else
14155 error (_("Could not enable branch tracing for %s."),
14156 target_pid_to_str (ptid).c_str ());
14157 }
14158
14159 tinfo = XCNEW (struct btrace_target_info);
14160 tinfo->ptid = ptid;
14161
14162 /* If we fail to read the configuration, we lose some information, but the
14163 tracing itself is not impacted. */
14164 try
14165 {
14166 btrace_read_config (&tinfo->conf);
14167 }
14168 catch (const gdb_exception_error &err)
14169 {
14170 if (err.message != NULL)
14171 warning ("%s", err.what ());
14172 }
14173
14174 return tinfo;
14175 }
14176
14177 /* Disable branch tracing. */
14178
14179 void
14180 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14181 {
14182 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14183 struct remote_state *rs = get_remote_state ();
14184 char *buf = rs->buf.data ();
14185 char *endbuf = buf + get_remote_packet_size ();
14186
14187 if (packet_config_support (packet) != PACKET_ENABLE)
14188 error (_("Target does not support branch tracing."));
14189
14190 set_general_thread (tinfo->ptid);
14191
14192 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14193 putpkt (rs->buf);
14194 getpkt (&rs->buf, 0);
14195
14196 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14197 {
14198 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14199 error (_("Could not disable branch tracing for %s: %s"),
14200 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14201 else
14202 error (_("Could not disable branch tracing for %s."),
14203 target_pid_to_str (tinfo->ptid).c_str ());
14204 }
14205
14206 xfree (tinfo);
14207 }
14208
14209 /* Teardown branch tracing. */
14210
14211 void
14212 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14213 {
14214 /* We must not talk to the target during teardown. */
14215 xfree (tinfo);
14216 }
14217
14218 /* Read the branch trace. */
14219
14220 enum btrace_error
14221 remote_target::read_btrace (struct btrace_data *btrace,
14222 struct btrace_target_info *tinfo,
14223 enum btrace_read_type type)
14224 {
14225 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14226 const char *annex;
14227
14228 if (packet_config_support (packet) != PACKET_ENABLE)
14229 error (_("Target does not support branch tracing."));
14230
14231 #if !defined(HAVE_LIBEXPAT)
14232 error (_("Cannot process branch tracing result. XML parsing not supported."));
14233 #endif
14234
14235 switch (type)
14236 {
14237 case BTRACE_READ_ALL:
14238 annex = "all";
14239 break;
14240 case BTRACE_READ_NEW:
14241 annex = "new";
14242 break;
14243 case BTRACE_READ_DELTA:
14244 annex = "delta";
14245 break;
14246 default:
14247 internal_error (__FILE__, __LINE__,
14248 _("Bad branch tracing read type: %u."),
14249 (unsigned int) type);
14250 }
14251
14252 gdb::optional<gdb::char_vector> xml
14253 = target_read_stralloc (current_inferior ()->top_target (),
14254 TARGET_OBJECT_BTRACE, annex);
14255 if (!xml)
14256 return BTRACE_ERR_UNKNOWN;
14257
14258 parse_xml_btrace (btrace, xml->data ());
14259
14260 return BTRACE_ERR_NONE;
14261 }
14262
14263 const struct btrace_config *
14264 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14265 {
14266 return &tinfo->conf;
14267 }
14268
14269 bool
14270 remote_target::augmented_libraries_svr4_read ()
14271 {
14272 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14273 == PACKET_ENABLE);
14274 }
14275
14276 /* Implementation of to_load. */
14277
14278 void
14279 remote_target::load (const char *name, int from_tty)
14280 {
14281 generic_load (name, from_tty);
14282 }
14283
14284 /* Accepts an integer PID; returns a string representing a file that
14285 can be opened on the remote side to get the symbols for the child
14286 process. Returns NULL if the operation is not supported. */
14287
14288 char *
14289 remote_target::pid_to_exec_file (int pid)
14290 {
14291 static gdb::optional<gdb::char_vector> filename;
14292 char *annex = NULL;
14293
14294 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14295 return NULL;
14296
14297 inferior *inf = find_inferior_pid (this, pid);
14298 if (inf == NULL)
14299 internal_error (__FILE__, __LINE__,
14300 _("not currently attached to process %d"), pid);
14301
14302 if (!inf->fake_pid_p)
14303 {
14304 const int annex_size = 9;
14305
14306 annex = (char *) alloca (annex_size);
14307 xsnprintf (annex, annex_size, "%x", pid);
14308 }
14309
14310 filename = target_read_stralloc (current_inferior ()->top_target (),
14311 TARGET_OBJECT_EXEC_FILE, annex);
14312
14313 return filename ? filename->data () : nullptr;
14314 }
14315
14316 /* Implement the to_can_do_single_step target_ops method. */
14317
14318 int
14319 remote_target::can_do_single_step ()
14320 {
14321 /* We can only tell whether target supports single step or not by
14322 supported s and S vCont actions if the stub supports vContSupported
14323 feature. If the stub doesn't support vContSupported feature,
14324 we have conservatively to think target doesn't supports single
14325 step. */
14326 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14327 {
14328 struct remote_state *rs = get_remote_state ();
14329
14330 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14331 remote_vcont_probe ();
14332
14333 return rs->supports_vCont.s && rs->supports_vCont.S;
14334 }
14335 else
14336 return 0;
14337 }
14338
14339 /* Implementation of the to_execution_direction method for the remote
14340 target. */
14341
14342 enum exec_direction_kind
14343 remote_target::execution_direction ()
14344 {
14345 struct remote_state *rs = get_remote_state ();
14346
14347 return rs->last_resume_exec_dir;
14348 }
14349
14350 /* Return pointer to the thread_info struct which corresponds to
14351 THREAD_HANDLE (having length HANDLE_LEN). */
14352
14353 thread_info *
14354 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14355 int handle_len,
14356 inferior *inf)
14357 {
14358 for (thread_info *tp : all_non_exited_threads (this))
14359 {
14360 remote_thread_info *priv = get_remote_thread_info (tp);
14361
14362 if (tp->inf == inf && priv != NULL)
14363 {
14364 if (handle_len != priv->thread_handle.size ())
14365 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14366 handle_len, priv->thread_handle.size ());
14367 if (memcmp (thread_handle, priv->thread_handle.data (),
14368 handle_len) == 0)
14369 return tp;
14370 }
14371 }
14372
14373 return NULL;
14374 }
14375
14376 gdb::byte_vector
14377 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14378 {
14379 remote_thread_info *priv = get_remote_thread_info (tp);
14380 return priv->thread_handle;
14381 }
14382
14383 bool
14384 remote_target::can_async_p ()
14385 {
14386 /* This flag should be checked in the common target.c code. */
14387 gdb_assert (target_async_permitted);
14388
14389 /* We're async whenever the serial device can. */
14390 struct remote_state *rs = get_remote_state ();
14391 return serial_can_async_p (rs->remote_desc);
14392 }
14393
14394 bool
14395 remote_target::is_async_p ()
14396 {
14397 /* We're async whenever the serial device is. */
14398 struct remote_state *rs = get_remote_state ();
14399 return serial_is_async_p (rs->remote_desc);
14400 }
14401
14402 /* Pass the SERIAL event on and up to the client. One day this code
14403 will be able to delay notifying the client of an event until the
14404 point where an entire packet has been received. */
14405
14406 static serial_event_ftype remote_async_serial_handler;
14407
14408 static void
14409 remote_async_serial_handler (struct serial *scb, void *context)
14410 {
14411 /* Don't propogate error information up to the client. Instead let
14412 the client find out about the error by querying the target. */
14413 inferior_event_handler (INF_REG_EVENT);
14414 }
14415
14416 static void
14417 remote_async_inferior_event_handler (gdb_client_data data)
14418 {
14419 inferior_event_handler (INF_REG_EVENT);
14420 }
14421
14422 int
14423 remote_target::async_wait_fd ()
14424 {
14425 struct remote_state *rs = get_remote_state ();
14426 return rs->remote_desc->fd;
14427 }
14428
14429 void
14430 remote_target::async (int enable)
14431 {
14432 struct remote_state *rs = get_remote_state ();
14433
14434 if (enable)
14435 {
14436 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14437
14438 /* If there are pending events in the stop reply queue tell the
14439 event loop to process them. */
14440 if (!rs->stop_reply_queue.empty ())
14441 mark_async_event_handler (rs->remote_async_inferior_event_token);
14442 /* For simplicity, below we clear the pending events token
14443 without remembering whether it is marked, so here we always
14444 mark it. If there's actually no pending notification to
14445 process, this ends up being a no-op (other than a spurious
14446 event-loop wakeup). */
14447 if (target_is_non_stop_p ())
14448 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14449 }
14450 else
14451 {
14452 serial_async (rs->remote_desc, NULL, NULL);
14453 /* If the core is disabling async, it doesn't want to be
14454 disturbed with target events. Clear all async event sources
14455 too. */
14456 clear_async_event_handler (rs->remote_async_inferior_event_token);
14457 if (target_is_non_stop_p ())
14458 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14459 }
14460 }
14461
14462 /* Implementation of the to_thread_events method. */
14463
14464 void
14465 remote_target::thread_events (int enable)
14466 {
14467 struct remote_state *rs = get_remote_state ();
14468 size_t size = get_remote_packet_size ();
14469
14470 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14471 return;
14472
14473 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14474 putpkt (rs->buf);
14475 getpkt (&rs->buf, 0);
14476
14477 switch (packet_ok (rs->buf,
14478 &remote_protocol_packets[PACKET_QThreadEvents]))
14479 {
14480 case PACKET_OK:
14481 if (strcmp (rs->buf.data (), "OK") != 0)
14482 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14483 break;
14484 case PACKET_ERROR:
14485 warning (_("Remote failure reply: %s"), rs->buf.data ());
14486 break;
14487 case PACKET_UNKNOWN:
14488 break;
14489 }
14490 }
14491
14492 static void
14493 show_remote_cmd (const char *args, int from_tty)
14494 {
14495 /* We can't just use cmd_show_list here, because we want to skip
14496 the redundant "show remote Z-packet" and the legacy aliases. */
14497 struct cmd_list_element *list = remote_show_cmdlist;
14498 struct ui_out *uiout = current_uiout;
14499
14500 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14501 for (; list != NULL; list = list->next)
14502 if (strcmp (list->name, "Z-packet") == 0)
14503 continue;
14504 else if (list->type == not_set_cmd)
14505 /* Alias commands are exactly like the original, except they
14506 don't have the normal type. */
14507 continue;
14508 else
14509 {
14510 ui_out_emit_tuple option_emitter (uiout, "option");
14511
14512 uiout->field_string ("name", list->name);
14513 uiout->text (": ");
14514 if (list->type == show_cmd)
14515 do_show_command (NULL, from_tty, list);
14516 else
14517 cmd_func (list, NULL, from_tty);
14518 }
14519 }
14520
14521
14522 /* Function to be called whenever a new objfile (shlib) is detected. */
14523 static void
14524 remote_new_objfile (struct objfile *objfile)
14525 {
14526 remote_target *remote = get_current_remote_target ();
14527
14528 /* First, check whether the current inferior's process target is a remote
14529 target. */
14530 if (remote == nullptr)
14531 return;
14532
14533 /* When we are attaching or handling a fork child and the shared library
14534 subsystem reads the list of loaded libraries, we receive new objfile
14535 events in between each found library. The libraries are read in an
14536 undefined order, so if we gave the remote side a chance to look up
14537 symbols between each objfile, we might give it an inconsistent picture
14538 of the inferior. It could appear that a library A appears loaded but
14539 a library B does not, even though library A requires library B. That
14540 would present a state that couldn't normally exist in the inferior.
14541
14542 So, skip these events, we'll give the remote a chance to look up symbols
14543 once all the loaded libraries and their symbols are known to GDB. */
14544 if (current_inferior ()->in_initial_library_scan)
14545 return;
14546
14547 remote->remote_check_symbols ();
14548 }
14549
14550 /* Pull all the tracepoints defined on the target and create local
14551 data structures representing them. We don't want to create real
14552 tracepoints yet, we don't want to mess up the user's existing
14553 collection. */
14554
14555 int
14556 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14557 {
14558 struct remote_state *rs = get_remote_state ();
14559 char *p;
14560
14561 /* Ask for a first packet of tracepoint definition. */
14562 putpkt ("qTfP");
14563 getpkt (&rs->buf, 0);
14564 p = rs->buf.data ();
14565 while (*p && *p != 'l')
14566 {
14567 parse_tracepoint_definition (p, utpp);
14568 /* Ask for another packet of tracepoint definition. */
14569 putpkt ("qTsP");
14570 getpkt (&rs->buf, 0);
14571 p = rs->buf.data ();
14572 }
14573 return 0;
14574 }
14575
14576 int
14577 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14578 {
14579 struct remote_state *rs = get_remote_state ();
14580 char *p;
14581
14582 /* Ask for a first packet of variable definition. */
14583 putpkt ("qTfV");
14584 getpkt (&rs->buf, 0);
14585 p = rs->buf.data ();
14586 while (*p && *p != 'l')
14587 {
14588 parse_tsv_definition (p, utsvp);
14589 /* Ask for another packet of variable definition. */
14590 putpkt ("qTsV");
14591 getpkt (&rs->buf, 0);
14592 p = rs->buf.data ();
14593 }
14594 return 0;
14595 }
14596
14597 /* The "set/show range-stepping" show hook. */
14598
14599 static void
14600 show_range_stepping (struct ui_file *file, int from_tty,
14601 struct cmd_list_element *c,
14602 const char *value)
14603 {
14604 fprintf_filtered (file,
14605 _("Debugger's willingness to use range stepping "
14606 "is %s.\n"), value);
14607 }
14608
14609 /* Return true if the vCont;r action is supported by the remote
14610 stub. */
14611
14612 bool
14613 remote_target::vcont_r_supported ()
14614 {
14615 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14616 remote_vcont_probe ();
14617
14618 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14619 && get_remote_state ()->supports_vCont.r);
14620 }
14621
14622 /* The "set/show range-stepping" set hook. */
14623
14624 static void
14625 set_range_stepping (const char *ignore_args, int from_tty,
14626 struct cmd_list_element *c)
14627 {
14628 /* When enabling, check whether range stepping is actually supported
14629 by the target, and warn if not. */
14630 if (use_range_stepping)
14631 {
14632 remote_target *remote = get_current_remote_target ();
14633 if (remote == NULL
14634 || !remote->vcont_r_supported ())
14635 warning (_("Range stepping is not supported by the current target"));
14636 }
14637 }
14638
14639 static void
14640 show_remote_debug (struct ui_file *file, int from_tty,
14641 struct cmd_list_element *c, const char *value)
14642 {
14643 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14644 value);
14645 }
14646
14647 static void
14648 show_remote_timeout (struct ui_file *file, int from_tty,
14649 struct cmd_list_element *c, const char *value)
14650 {
14651 fprintf_filtered (file,
14652 _("Timeout limit to wait for target to respond is %s.\n"),
14653 value);
14654 }
14655
14656 /* Implement the "supports_memory_tagging" target_ops method. */
14657
14658 bool
14659 remote_target::supports_memory_tagging ()
14660 {
14661 return remote_memory_tagging_p ();
14662 }
14663
14664 /* Create the qMemTags packet given ADDRESS, LEN and TYPE. */
14665
14666 static void
14667 create_fetch_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14668 size_t len, int type)
14669 {
14670 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14671
14672 std::string request = string_printf ("qMemTags:%s,%s:%s",
14673 phex_nz (address, addr_size),
14674 phex_nz (len, sizeof (len)),
14675 phex_nz (type, sizeof (type)));
14676
14677 strcpy (packet.data (), request.c_str ());
14678 }
14679
14680 /* Parse the qMemTags packet reply into TAGS.
14681
14682 Return true if successful, false otherwise. */
14683
14684 static bool
14685 parse_fetch_memtags_reply (const gdb::char_vector &reply,
14686 gdb::byte_vector &tags)
14687 {
14688 if (reply.empty () || reply[0] == 'E' || reply[0] != 'm')
14689 return false;
14690
14691 /* Copy the tag data. */
14692 tags = hex2bin (reply.data () + 1);
14693
14694 return true;
14695 }
14696
14697 /* Create the QMemTags packet given ADDRESS, LEN, TYPE and TAGS. */
14698
14699 static void
14700 create_store_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14701 size_t len, int type,
14702 const gdb::byte_vector &tags)
14703 {
14704 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14705
14706 /* Put together the main packet, address and length. */
14707 std::string request = string_printf ("QMemTags:%s,%s:%s:",
14708 phex_nz (address, addr_size),
14709 phex_nz (len, sizeof (len)),
14710 phex_nz (type, sizeof (type)));
14711 request += bin2hex (tags.data (), tags.size ());
14712
14713 /* Check if we have exceeded the maximum packet size. */
14714 if (packet.size () < request.length ())
14715 error (_("Contents too big for packet QMemTags."));
14716
14717 strcpy (packet.data (), request.c_str ());
14718 }
14719
14720 /* Implement the "fetch_memtags" target_ops method. */
14721
14722 bool
14723 remote_target::fetch_memtags (CORE_ADDR address, size_t len,
14724 gdb::byte_vector &tags, int type)
14725 {
14726 /* Make sure the qMemTags packet is supported. */
14727 if (!remote_memory_tagging_p ())
14728 gdb_assert_not_reached ("remote fetch_memtags called with packet disabled");
14729
14730 struct remote_state *rs = get_remote_state ();
14731
14732 create_fetch_memtags_request (rs->buf, address, len, type);
14733
14734 putpkt (rs->buf);
14735 getpkt (&rs->buf, 0);
14736
14737 return parse_fetch_memtags_reply (rs->buf, tags);
14738 }
14739
14740 /* Implement the "store_memtags" target_ops method. */
14741
14742 bool
14743 remote_target::store_memtags (CORE_ADDR address, size_t len,
14744 const gdb::byte_vector &tags, int type)
14745 {
14746 /* Make sure the QMemTags packet is supported. */
14747 if (!remote_memory_tagging_p ())
14748 gdb_assert_not_reached ("remote store_memtags called with packet disabled");
14749
14750 struct remote_state *rs = get_remote_state ();
14751
14752 create_store_memtags_request (rs->buf, address, len, type, tags);
14753
14754 putpkt (rs->buf);
14755 getpkt (&rs->buf, 0);
14756
14757 /* Verify if the request was successful. */
14758 return packet_check_result (rs->buf.data ()) == PACKET_OK;
14759 }
14760
14761 /* Return true if remote target T is non-stop. */
14762
14763 bool
14764 remote_target_is_non_stop_p (remote_target *t)
14765 {
14766 scoped_restore_current_thread restore_thread;
14767 switch_to_target_no_thread (t);
14768
14769 return target_is_non_stop_p ();
14770 }
14771
14772 #if GDB_SELF_TEST
14773
14774 namespace selftests {
14775
14776 static void
14777 test_memory_tagging_functions ()
14778 {
14779 remote_target remote;
14780
14781 struct packet_config *config
14782 = &remote_protocol_packets[PACKET_memory_tagging_feature];
14783
14784 scoped_restore restore_memtag_support_
14785 = make_scoped_restore (&config->support);
14786
14787 /* Test memory tagging packet support. */
14788 config->support = PACKET_SUPPORT_UNKNOWN;
14789 SELF_CHECK (remote.supports_memory_tagging () == false);
14790 config->support = PACKET_DISABLE;
14791 SELF_CHECK (remote.supports_memory_tagging () == false);
14792 config->support = PACKET_ENABLE;
14793 SELF_CHECK (remote.supports_memory_tagging () == true);
14794
14795 /* Setup testing. */
14796 gdb::char_vector packet;
14797 gdb::byte_vector tags, bv;
14798 std::string expected, reply;
14799 packet.resize (32000);
14800
14801 /* Test creating a qMemTags request. */
14802
14803 expected = "qMemTags:0,0:0";
14804 create_fetch_memtags_request (packet, 0x0, 0x0, 0);
14805 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14806
14807 expected = "qMemTags:deadbeef,10:1";
14808 create_fetch_memtags_request (packet, 0xdeadbeef, 16, 1);
14809 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14810
14811 /* Test parsing a qMemTags reply. */
14812
14813 /* Error reply, tags vector unmodified. */
14814 reply = "E00";
14815 strcpy (packet.data (), reply.c_str ());
14816 tags.resize (0);
14817 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == false);
14818 SELF_CHECK (tags.size () == 0);
14819
14820 /* Valid reply, tags vector updated. */
14821 tags.resize (0);
14822 bv.resize (0);
14823
14824 for (int i = 0; i < 5; i++)
14825 bv.push_back (i);
14826
14827 reply = "m" + bin2hex (bv.data (), bv.size ());
14828 strcpy (packet.data (), reply.c_str ());
14829
14830 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == true);
14831 SELF_CHECK (tags.size () == 5);
14832
14833 for (int i = 0; i < 5; i++)
14834 SELF_CHECK (tags[i] == i);
14835
14836 /* Test creating a QMemTags request. */
14837
14838 /* Empty tag data. */
14839 tags.resize (0);
14840 expected = "QMemTags:0,0:0:";
14841 create_store_memtags_request (packet, 0x0, 0x0, 0, tags);
14842 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14843 expected.length ()) == 0);
14844
14845 /* Non-empty tag data. */
14846 tags.resize (0);
14847 for (int i = 0; i < 5; i++)
14848 tags.push_back (i);
14849 expected = "QMemTags:deadbeef,ff:1:0001020304";
14850 create_store_memtags_request (packet, 0xdeadbeef, 255, 1, tags);
14851 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14852 expected.length ()) == 0);
14853 }
14854
14855 } // namespace selftests
14856 #endif /* GDB_SELF_TEST */
14857
14858 void _initialize_remote ();
14859 void
14860 _initialize_remote ()
14861 {
14862 /* architecture specific data */
14863 remote_g_packet_data_handle =
14864 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14865
14866 add_target (remote_target_info, remote_target::open);
14867 add_target (extended_remote_target_info, extended_remote_target::open);
14868
14869 /* Hook into new objfile notification. */
14870 gdb::observers::new_objfile.attach (remote_new_objfile, "remote");
14871
14872 #if 0
14873 init_remote_threadtests ();
14874 #endif
14875
14876 /* set/show remote ... */
14877
14878 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14879 Remote protocol specific variables.\n\
14880 Configure various remote-protocol specific variables such as\n\
14881 the packets being used."),
14882 &remote_set_cmdlist,
14883 0 /* allow-unknown */, &setlist);
14884 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14885 Remote protocol specific variables.\n\
14886 Configure various remote-protocol specific variables such as\n\
14887 the packets being used."),
14888 &remote_show_cmdlist,
14889 0 /* allow-unknown */, &showlist);
14890
14891 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14892 Compare section data on target to the exec file.\n\
14893 Argument is a single section name (default: all loaded sections).\n\
14894 To compare only read-only loaded sections, specify the -r option."),
14895 &cmdlist);
14896
14897 add_cmd ("packet", class_maintenance, packet_command, _("\
14898 Send an arbitrary packet to a remote target.\n\
14899 maintenance packet TEXT\n\
14900 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14901 this command sends the string TEXT to the inferior, and displays the\n\
14902 response packet. GDB supplies the initial `$' character, and the\n\
14903 terminating `#' character and checksum."),
14904 &maintenancelist);
14905
14906 set_show_commands remotebreak_cmds
14907 = add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14908 Set whether to send break if interrupted."), _("\
14909 Show whether to send break if interrupted."), _("\
14910 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14911 set_remotebreak, show_remotebreak,
14912 &setlist, &showlist);
14913 deprecate_cmd (remotebreak_cmds.set, "set remote interrupt-sequence");
14914 deprecate_cmd (remotebreak_cmds.show, "show remote interrupt-sequence");
14915
14916 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14917 interrupt_sequence_modes, &interrupt_sequence_mode,
14918 _("\
14919 Set interrupt sequence to remote target."), _("\
14920 Show interrupt sequence to remote target."), _("\
14921 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14922 NULL, show_interrupt_sequence,
14923 &remote_set_cmdlist,
14924 &remote_show_cmdlist);
14925
14926 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14927 &interrupt_on_connect, _("\
14928 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14929 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14930 If set, interrupt sequence is sent to remote target."),
14931 NULL, NULL,
14932 &remote_set_cmdlist, &remote_show_cmdlist);
14933
14934 /* Install commands for configuring memory read/write packets. */
14935
14936 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14937 Set the maximum number of bytes per memory write packet (deprecated)."),
14938 &setlist);
14939 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14940 Show the maximum number of bytes per memory write packet (deprecated)."),
14941 &showlist);
14942 add_cmd ("memory-write-packet-size", no_class,
14943 set_memory_write_packet_size, _("\
14944 Set the maximum number of bytes per memory-write packet.\n\
14945 Specify the number of bytes in a packet or 0 (zero) for the\n\
14946 default packet size. The actual limit is further reduced\n\
14947 dependent on the target. Specify ``fixed'' to disable the\n\
14948 further restriction and ``limit'' to enable that restriction."),
14949 &remote_set_cmdlist);
14950 add_cmd ("memory-read-packet-size", no_class,
14951 set_memory_read_packet_size, _("\
14952 Set the maximum number of bytes per memory-read packet.\n\
14953 Specify the number of bytes in a packet or 0 (zero) for the\n\
14954 default packet size. The actual limit is further reduced\n\
14955 dependent on the target. Specify ``fixed'' to disable the\n\
14956 further restriction and ``limit'' to enable that restriction."),
14957 &remote_set_cmdlist);
14958 add_cmd ("memory-write-packet-size", no_class,
14959 show_memory_write_packet_size,
14960 _("Show the maximum number of bytes per memory-write packet."),
14961 &remote_show_cmdlist);
14962 add_cmd ("memory-read-packet-size", no_class,
14963 show_memory_read_packet_size,
14964 _("Show the maximum number of bytes per memory-read packet."),
14965 &remote_show_cmdlist);
14966
14967 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14968 &remote_hw_watchpoint_limit, _("\
14969 Set the maximum number of target hardware watchpoints."), _("\
14970 Show the maximum number of target hardware watchpoints."), _("\
14971 Specify \"unlimited\" for unlimited hardware watchpoints."),
14972 NULL, show_hardware_watchpoint_limit,
14973 &remote_set_cmdlist,
14974 &remote_show_cmdlist);
14975 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14976 no_class,
14977 &remote_hw_watchpoint_length_limit, _("\
14978 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14979 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14980 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14981 NULL, show_hardware_watchpoint_length_limit,
14982 &remote_set_cmdlist, &remote_show_cmdlist);
14983 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14984 &remote_hw_breakpoint_limit, _("\
14985 Set the maximum number of target hardware breakpoints."), _("\
14986 Show the maximum number of target hardware breakpoints."), _("\
14987 Specify \"unlimited\" for unlimited hardware breakpoints."),
14988 NULL, show_hardware_breakpoint_limit,
14989 &remote_set_cmdlist, &remote_show_cmdlist);
14990
14991 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14992 &remote_address_size, _("\
14993 Set the maximum size of the address (in bits) in a memory packet."), _("\
14994 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14995 NULL,
14996 NULL, /* FIXME: i18n: */
14997 &setlist, &showlist);
14998
14999 init_all_packet_configs ();
15000
15001 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
15002 "X", "binary-download", 1);
15003
15004 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
15005 "vCont", "verbose-resume", 0);
15006
15007 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
15008 "QPassSignals", "pass-signals", 0);
15009
15010 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
15011 "QCatchSyscalls", "catch-syscalls", 0);
15012
15013 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
15014 "QProgramSignals", "program-signals", 0);
15015
15016 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
15017 "QSetWorkingDir", "set-working-dir", 0);
15018
15019 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
15020 "QStartupWithShell", "startup-with-shell", 0);
15021
15022 add_packet_config_cmd (&remote_protocol_packets
15023 [PACKET_QEnvironmentHexEncoded],
15024 "QEnvironmentHexEncoded", "environment-hex-encoded",
15025 0);
15026
15027 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
15028 "QEnvironmentReset", "environment-reset",
15029 0);
15030
15031 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
15032 "QEnvironmentUnset", "environment-unset",
15033 0);
15034
15035 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
15036 "qSymbol", "symbol-lookup", 0);
15037
15038 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
15039 "P", "set-register", 1);
15040
15041 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
15042 "p", "fetch-register", 1);
15043
15044 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
15045 "Z0", "software-breakpoint", 0);
15046
15047 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
15048 "Z1", "hardware-breakpoint", 0);
15049
15050 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
15051 "Z2", "write-watchpoint", 0);
15052
15053 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
15054 "Z3", "read-watchpoint", 0);
15055
15056 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
15057 "Z4", "access-watchpoint", 0);
15058
15059 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
15060 "qXfer:auxv:read", "read-aux-vector", 0);
15061
15062 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
15063 "qXfer:exec-file:read", "pid-to-exec-file", 0);
15064
15065 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
15066 "qXfer:features:read", "target-features", 0);
15067
15068 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
15069 "qXfer:libraries:read", "library-info", 0);
15070
15071 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
15072 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
15073
15074 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
15075 "qXfer:memory-map:read", "memory-map", 0);
15076
15077 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
15078 "qXfer:osdata:read", "osdata", 0);
15079
15080 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
15081 "qXfer:threads:read", "threads", 0);
15082
15083 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
15084 "qXfer:siginfo:read", "read-siginfo-object", 0);
15085
15086 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
15087 "qXfer:siginfo:write", "write-siginfo-object", 0);
15088
15089 add_packet_config_cmd
15090 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
15091 "qXfer:traceframe-info:read", "traceframe-info", 0);
15092
15093 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
15094 "qXfer:uib:read", "unwind-info-block", 0);
15095
15096 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
15097 "qGetTLSAddr", "get-thread-local-storage-address",
15098 0);
15099
15100 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
15101 "qGetTIBAddr", "get-thread-information-block-address",
15102 0);
15103
15104 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
15105 "bc", "reverse-continue", 0);
15106
15107 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
15108 "bs", "reverse-step", 0);
15109
15110 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
15111 "qSupported", "supported-packets", 0);
15112
15113 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
15114 "qSearch:memory", "search-memory", 0);
15115
15116 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
15117 "qTStatus", "trace-status", 0);
15118
15119 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
15120 "vFile:setfs", "hostio-setfs", 0);
15121
15122 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
15123 "vFile:open", "hostio-open", 0);
15124
15125 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
15126 "vFile:pread", "hostio-pread", 0);
15127
15128 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
15129 "vFile:pwrite", "hostio-pwrite", 0);
15130
15131 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
15132 "vFile:close", "hostio-close", 0);
15133
15134 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
15135 "vFile:unlink", "hostio-unlink", 0);
15136
15137 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
15138 "vFile:readlink", "hostio-readlink", 0);
15139
15140 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
15141 "vFile:fstat", "hostio-fstat", 0);
15142
15143 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
15144 "vAttach", "attach", 0);
15145
15146 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
15147 "vRun", "run", 0);
15148
15149 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
15150 "QStartNoAckMode", "noack", 0);
15151
15152 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
15153 "vKill", "kill", 0);
15154
15155 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
15156 "qAttached", "query-attached", 0);
15157
15158 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
15159 "ConditionalTracepoints",
15160 "conditional-tracepoints", 0);
15161
15162 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
15163 "ConditionalBreakpoints",
15164 "conditional-breakpoints", 0);
15165
15166 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
15167 "BreakpointCommands",
15168 "breakpoint-commands", 0);
15169
15170 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
15171 "FastTracepoints", "fast-tracepoints", 0);
15172
15173 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
15174 "TracepointSource", "TracepointSource", 0);
15175
15176 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
15177 "QAllow", "allow", 0);
15178
15179 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
15180 "StaticTracepoints", "static-tracepoints", 0);
15181
15182 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
15183 "InstallInTrace", "install-in-trace", 0);
15184
15185 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
15186 "qXfer:statictrace:read", "read-sdata-object", 0);
15187
15188 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
15189 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
15190
15191 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
15192 "QDisableRandomization", "disable-randomization", 0);
15193
15194 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
15195 "QAgent", "agent", 0);
15196
15197 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
15198 "QTBuffer:size", "trace-buffer-size", 0);
15199
15200 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
15201 "Qbtrace:off", "disable-btrace", 0);
15202
15203 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
15204 "Qbtrace:bts", "enable-btrace-bts", 0);
15205
15206 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
15207 "Qbtrace:pt", "enable-btrace-pt", 0);
15208
15209 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
15210 "qXfer:btrace", "read-btrace", 0);
15211
15212 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
15213 "qXfer:btrace-conf", "read-btrace-conf", 0);
15214
15215 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
15216 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
15217
15218 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
15219 "multiprocess-feature", "multiprocess-feature", 0);
15220
15221 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
15222 "swbreak-feature", "swbreak-feature", 0);
15223
15224 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
15225 "hwbreak-feature", "hwbreak-feature", 0);
15226
15227 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
15228 "fork-event-feature", "fork-event-feature", 0);
15229
15230 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
15231 "vfork-event-feature", "vfork-event-feature", 0);
15232
15233 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
15234 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
15235
15236 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
15237 "vContSupported", "verbose-resume-supported", 0);
15238
15239 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
15240 "exec-event-feature", "exec-event-feature", 0);
15241
15242 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
15243 "vCtrlC", "ctrl-c", 0);
15244
15245 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
15246 "QThreadEvents", "thread-events", 0);
15247
15248 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
15249 "N stop reply", "no-resumed-stop-reply", 0);
15250
15251 add_packet_config_cmd (&remote_protocol_packets[PACKET_memory_tagging_feature],
15252 "memory-tagging-feature", "memory-tagging-feature", 0);
15253
15254 /* Assert that we've registered "set remote foo-packet" commands
15255 for all packet configs. */
15256 {
15257 int i;
15258
15259 for (i = 0; i < PACKET_MAX; i++)
15260 {
15261 /* Ideally all configs would have a command associated. Some
15262 still don't though. */
15263 int excepted;
15264
15265 switch (i)
15266 {
15267 case PACKET_QNonStop:
15268 case PACKET_EnableDisableTracepoints_feature:
15269 case PACKET_tracenz_feature:
15270 case PACKET_DisconnectedTracing_feature:
15271 case PACKET_augmented_libraries_svr4_read_feature:
15272 case PACKET_qCRC:
15273 /* Additions to this list need to be well justified:
15274 pre-existing packets are OK; new packets are not. */
15275 excepted = 1;
15276 break;
15277 default:
15278 excepted = 0;
15279 break;
15280 }
15281
15282 /* This catches both forgetting to add a config command, and
15283 forgetting to remove a packet from the exception list. */
15284 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
15285 }
15286 }
15287
15288 /* Keep the old ``set remote Z-packet ...'' working. Each individual
15289 Z sub-packet has its own set and show commands, but users may
15290 have sets to this variable in their .gdbinit files (or in their
15291 documentation). */
15292 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
15293 &remote_Z_packet_detect, _("\
15294 Set use of remote protocol `Z' packets."), _("\
15295 Show use of remote protocol `Z' packets."), _("\
15296 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
15297 packets."),
15298 set_remote_protocol_Z_packet_cmd,
15299 show_remote_protocol_Z_packet_cmd,
15300 /* FIXME: i18n: Use of remote protocol
15301 `Z' packets is %s. */
15302 &remote_set_cmdlist, &remote_show_cmdlist);
15303
15304 add_basic_prefix_cmd ("remote", class_files, _("\
15305 Manipulate files on the remote system.\n\
15306 Transfer files to and from the remote target system."),
15307 &remote_cmdlist,
15308 0 /* allow-unknown */, &cmdlist);
15309
15310 add_cmd ("put", class_files, remote_put_command,
15311 _("Copy a local file to the remote system."),
15312 &remote_cmdlist);
15313
15314 add_cmd ("get", class_files, remote_get_command,
15315 _("Copy a remote file to the local system."),
15316 &remote_cmdlist);
15317
15318 add_cmd ("delete", class_files, remote_delete_command,
15319 _("Delete a remote file."),
15320 &remote_cmdlist);
15321
15322 add_setshow_string_noescape_cmd ("exec-file", class_files,
15323 &remote_exec_file_var, _("\
15324 Set the remote pathname for \"run\"."), _("\
15325 Show the remote pathname for \"run\"."), NULL,
15326 set_remote_exec_file,
15327 show_remote_exec_file,
15328 &remote_set_cmdlist,
15329 &remote_show_cmdlist);
15330
15331 add_setshow_boolean_cmd ("range-stepping", class_run,
15332 &use_range_stepping, _("\
15333 Enable or disable range stepping."), _("\
15334 Show whether target-assisted range stepping is enabled."), _("\
15335 If on, and the target supports it, when stepping a source line, GDB\n\
15336 tells the target to step the corresponding range of addresses itself instead\n\
15337 of issuing multiple single-steps. This speeds up source level\n\
15338 stepping. If off, GDB always issues single-steps, even if range\n\
15339 stepping is supported by the target. The default is on."),
15340 set_range_stepping,
15341 show_range_stepping,
15342 &setlist,
15343 &showlist);
15344
15345 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15346 Set watchdog timer."), _("\
15347 Show watchdog timer."), _("\
15348 When non-zero, this timeout is used instead of waiting forever for a target\n\
15349 to finish a low-level step or continue operation. If the specified amount\n\
15350 of time passes without a response from the target, an error occurs."),
15351 NULL,
15352 show_watchdog,
15353 &setlist, &showlist);
15354
15355 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15356 &remote_packet_max_chars, _("\
15357 Set the maximum number of characters to display for each remote packet."), _("\
15358 Show the maximum number of characters to display for each remote packet."), _("\
15359 Specify \"unlimited\" to display all the characters."),
15360 NULL, show_remote_packet_max_chars,
15361 &setdebuglist, &showdebuglist);
15362
15363 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
15364 _("Set debugging of remote protocol."),
15365 _("Show debugging of remote protocol."),
15366 _("\
15367 When enabled, each packet sent or received with the remote target\n\
15368 is displayed."),
15369 NULL,
15370 show_remote_debug,
15371 &setdebuglist, &showdebuglist);
15372
15373 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15374 &remote_timeout, _("\
15375 Set timeout limit to wait for target to respond."), _("\
15376 Show timeout limit to wait for target to respond."), _("\
15377 This value is used to set the time limit for gdb to wait for a response\n\
15378 from the target."),
15379 NULL,
15380 show_remote_timeout,
15381 &setlist, &showlist);
15382
15383 /* Eventually initialize fileio. See fileio.c */
15384 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15385
15386 #if GDB_SELF_TEST
15387 selftests::register_test ("remote_memory_tagging",
15388 selftests::test_memory_tagging_functions);
15389 #endif
15390 }