eb6ef0407d27438b4c202de7afa8b302fc57af03
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82
83 /* The remote target. */
84
85 static const char remote_doc[] = N_("\
86 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
87 Specify the serial device it is connected to\n\
88 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
89
90 /* See remote.h */
91
92 bool remote_debug = false;
93
94 #define OPAQUETHREADBYTES 8
95
96 /* a 64 bit opaque identifier */
97 typedef unsigned char threadref[OPAQUETHREADBYTES];
98
99 struct gdb_ext_thread_info;
100 struct threads_listing_context;
101 typedef int (*rmt_thread_action) (threadref *ref, void *context);
102 struct protocol_feature;
103 struct packet_reg;
104
105 struct stop_reply;
106 typedef std::unique_ptr<stop_reply> stop_reply_up;
107
108 /* Generic configuration support for packets the stub optionally
109 supports. Allows the user to specify the use of the packet as well
110 as allowing GDB to auto-detect support in the remote stub. */
111
112 enum packet_support
113 {
114 PACKET_SUPPORT_UNKNOWN = 0,
115 PACKET_ENABLE,
116 PACKET_DISABLE
117 };
118
119 /* Analyze a packet's return value and update the packet config
120 accordingly. */
121
122 enum packet_result
123 {
124 PACKET_ERROR,
125 PACKET_OK,
126 PACKET_UNKNOWN
127 };
128
129 struct threads_listing_context;
130
131 /* Stub vCont actions support.
132
133 Each field is a boolean flag indicating whether the stub reports
134 support for the corresponding action. */
135
136 struct vCont_action_support
137 {
138 /* vCont;t */
139 bool t = false;
140
141 /* vCont;r */
142 bool r = false;
143
144 /* vCont;s */
145 bool s = false;
146
147 /* vCont;S */
148 bool S = false;
149 };
150
151 /* About this many threadids fit in a packet. */
152
153 #define MAXTHREADLISTRESULTS 32
154
155 /* Data for the vFile:pread readahead cache. */
156
157 struct readahead_cache
158 {
159 /* Invalidate the readahead cache. */
160 void invalidate ();
161
162 /* Invalidate the readahead cache if it is holding data for FD. */
163 void invalidate_fd (int fd);
164
165 /* Serve pread from the readahead cache. Returns number of bytes
166 read, or 0 if the request can't be served from the cache. */
167 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
168
169 /* The file descriptor for the file that is being cached. -1 if the
170 cache is invalid. */
171 int fd = -1;
172
173 /* The offset into the file that the cache buffer corresponds
174 to. */
175 ULONGEST offset = 0;
176
177 /* The buffer holding the cache contents. */
178 gdb_byte *buf = nullptr;
179 /* The buffer's size. We try to read as much as fits into a packet
180 at a time. */
181 size_t bufsize = 0;
182
183 /* Cache hit and miss counters. */
184 ULONGEST hit_count = 0;
185 ULONGEST miss_count = 0;
186 };
187
188 /* Description of the remote protocol for a given architecture. */
189
190 struct packet_reg
191 {
192 long offset; /* Offset into G packet. */
193 long regnum; /* GDB's internal register number. */
194 LONGEST pnum; /* Remote protocol register number. */
195 int in_g_packet; /* Always part of G packet. */
196 /* long size in bytes; == register_size (target_gdbarch (), regnum);
197 at present. */
198 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
199 at present. */
200 };
201
202 struct remote_arch_state
203 {
204 explicit remote_arch_state (struct gdbarch *gdbarch);
205
206 /* Description of the remote protocol registers. */
207 long sizeof_g_packet;
208
209 /* Description of the remote protocol registers indexed by REGNUM
210 (making an array gdbarch_num_regs in size). */
211 std::unique_ptr<packet_reg[]> regs;
212
213 /* This is the size (in chars) of the first response to the ``g''
214 packet. It is used as a heuristic when determining the maximum
215 size of memory-read and memory-write packets. A target will
216 typically only reserve a buffer large enough to hold the ``g''
217 packet. The size does not include packet overhead (headers and
218 trailers). */
219 long actual_register_packet_size;
220
221 /* This is the maximum size (in chars) of a non read/write packet.
222 It is also used as a cap on the size of read/write packets. */
223 long remote_packet_size;
224 };
225
226 /* Description of the remote protocol state for the currently
227 connected target. This is per-target state, and independent of the
228 selected architecture. */
229
230 class remote_state
231 {
232 public:
233
234 remote_state ();
235 ~remote_state ();
236
237 /* Get the remote arch state for GDBARCH. */
238 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
239
240 public: /* data */
241
242 /* A buffer to use for incoming packets, and its current size. The
243 buffer is grown dynamically for larger incoming packets.
244 Outgoing packets may also be constructed in this buffer.
245 The size of the buffer is always at least REMOTE_PACKET_SIZE;
246 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
247 packets. */
248 gdb::char_vector buf;
249
250 /* True if we're going through initial connection setup (finding out
251 about the remote side's threads, relocating symbols, etc.). */
252 bool starting_up = false;
253
254 /* If we negotiated packet size explicitly (and thus can bypass
255 heuristics for the largest packet size that will not overflow
256 a buffer in the stub), this will be set to that packet size.
257 Otherwise zero, meaning to use the guessed size. */
258 long explicit_packet_size = 0;
259
260 /* remote_wait is normally called when the target is running and
261 waits for a stop reply packet. But sometimes we need to call it
262 when the target is already stopped. We can send a "?" packet
263 and have remote_wait read the response. Or, if we already have
264 the response, we can stash it in BUF and tell remote_wait to
265 skip calling getpkt. This flag is set when BUF contains a
266 stop reply packet and the target is not waiting. */
267 int cached_wait_status = 0;
268
269 /* True, if in no ack mode. That is, neither GDB nor the stub will
270 expect acks from each other. The connection is assumed to be
271 reliable. */
272 bool noack_mode = false;
273
274 /* True if we're connected in extended remote mode. */
275 bool extended = false;
276
277 /* True if we resumed the target and we're waiting for the target to
278 stop. In the mean time, we can't start another command/query.
279 The remote server wouldn't be ready to process it, so we'd
280 timeout waiting for a reply that would never come and eventually
281 we'd close the connection. This can happen in asynchronous mode
282 because we allow GDB commands while the target is running. */
283 bool waiting_for_stop_reply = false;
284
285 /* The status of the stub support for the various vCont actions. */
286 vCont_action_support supports_vCont;
287 /* Whether vCont support was probed already. This is a workaround
288 until packet_support is per-connection. */
289 bool supports_vCont_probed;
290
291 /* True if the user has pressed Ctrl-C, but the target hasn't
292 responded to that. */
293 bool ctrlc_pending_p = false;
294
295 /* True if we saw a Ctrl-C while reading or writing from/to the
296 remote descriptor. At that point it is not safe to send a remote
297 interrupt packet, so we instead remember we saw the Ctrl-C and
298 process it once we're done with sending/receiving the current
299 packet, which should be shortly. If however that takes too long,
300 and the user presses Ctrl-C again, we offer to disconnect. */
301 bool got_ctrlc_during_io = false;
302
303 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
304 remote_open knows that we don't have a file open when the program
305 starts. */
306 struct serial *remote_desc = nullptr;
307
308 /* These are the threads which we last sent to the remote system. The
309 TID member will be -1 for all or -2 for not sent yet. */
310 ptid_t general_thread = null_ptid;
311 ptid_t continue_thread = null_ptid;
312
313 /* This is the traceframe which we last selected on the remote system.
314 It will be -1 if no traceframe is selected. */
315 int remote_traceframe_number = -1;
316
317 char *last_pass_packet = nullptr;
318
319 /* The last QProgramSignals packet sent to the target. We bypass
320 sending a new program signals list down to the target if the new
321 packet is exactly the same as the last we sent. IOW, we only let
322 the target know about program signals list changes. */
323 char *last_program_signals_packet = nullptr;
324
325 gdb_signal last_sent_signal = GDB_SIGNAL_0;
326
327 bool last_sent_step = false;
328
329 /* The execution direction of the last resume we got. */
330 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
331
332 char *finished_object = nullptr;
333 char *finished_annex = nullptr;
334 ULONGEST finished_offset = 0;
335
336 /* Should we try the 'ThreadInfo' query packet?
337
338 This variable (NOT available to the user: auto-detect only!)
339 determines whether GDB will use the new, simpler "ThreadInfo"
340 query or the older, more complex syntax for thread queries.
341 This is an auto-detect variable (set to true at each connect,
342 and set to false when the target fails to recognize it). */
343 bool use_threadinfo_query = false;
344 bool use_threadextra_query = false;
345
346 threadref echo_nextthread {};
347 threadref nextthread {};
348 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
349
350 /* The state of remote notification. */
351 struct remote_notif_state *notif_state = nullptr;
352
353 /* The branch trace configuration. */
354 struct btrace_config btrace_config {};
355
356 /* The argument to the last "vFile:setfs:" packet we sent, used
357 to avoid sending repeated unnecessary "vFile:setfs:" packets.
358 Initialized to -1 to indicate that no "vFile:setfs:" packet
359 has yet been sent. */
360 int fs_pid = -1;
361
362 /* A readahead cache for vFile:pread. Often, reading a binary
363 involves a sequence of small reads. E.g., when parsing an ELF
364 file. A readahead cache helps mostly the case of remote
365 debugging on a connection with higher latency, due to the
366 request/reply nature of the RSP. We only cache data for a single
367 file descriptor at a time. */
368 struct readahead_cache readahead_cache;
369
370 /* The list of already fetched and acknowledged stop events. This
371 queue is used for notification Stop, and other notifications
372 don't need queue for their events, because the notification
373 events of Stop can't be consumed immediately, so that events
374 should be queued first, and be consumed by remote_wait_{ns,as}
375 one per time. Other notifications can consume their events
376 immediately, so queue is not needed for them. */
377 std::vector<stop_reply_up> stop_reply_queue;
378
379 /* Asynchronous signal handle registered as event loop source for
380 when we have pending events ready to be passed to the core. */
381 struct async_event_handler *remote_async_inferior_event_token = nullptr;
382
383 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
384 ``forever'' still use the normal timeout mechanism. This is
385 currently used by the ASYNC code to guarentee that target reads
386 during the initial connect always time-out. Once getpkt has been
387 modified to return a timeout indication and, in turn
388 remote_wait()/wait_for_inferior() have gained a timeout parameter
389 this can go away. */
390 int wait_forever_enabled_p = 1;
391
392 private:
393 /* Mapping of remote protocol data for each gdbarch. Usually there
394 is only one entry here, though we may see more with stubs that
395 support multi-process. */
396 std::unordered_map<struct gdbarch *, remote_arch_state>
397 m_arch_states;
398 };
399
400 static const target_info remote_target_info = {
401 "remote",
402 N_("Remote serial target in gdb-specific protocol"),
403 remote_doc
404 };
405
406 class remote_target : public process_stratum_target
407 {
408 public:
409 remote_target () = default;
410 ~remote_target () override;
411
412 const target_info &info () const override
413 { return remote_target_info; }
414
415 const char *connection_string () override;
416
417 thread_control_capabilities get_thread_control_capabilities () override
418 { return tc_schedlock; }
419
420 /* Open a remote connection. */
421 static void open (const char *, int);
422
423 void close () override;
424
425 void detach (inferior *, int) override;
426 void disconnect (const char *, int) override;
427
428 void commit_resume () override;
429 void resume (ptid_t, int, enum gdb_signal) override;
430 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
431
432 void fetch_registers (struct regcache *, int) override;
433 void store_registers (struct regcache *, int) override;
434 void prepare_to_store (struct regcache *) override;
435
436 void files_info () override;
437
438 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
439
440 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
441 enum remove_bp_reason) override;
442
443
444 bool stopped_by_sw_breakpoint () override;
445 bool supports_stopped_by_sw_breakpoint () override;
446
447 bool stopped_by_hw_breakpoint () override;
448
449 bool supports_stopped_by_hw_breakpoint () override;
450
451 bool stopped_by_watchpoint () override;
452
453 bool stopped_data_address (CORE_ADDR *) override;
454
455 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
456
457 int can_use_hw_breakpoint (enum bptype, int, int) override;
458
459 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
460
461 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
464
465 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
466 struct expression *) override;
467
468 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
469 struct expression *) override;
470
471 void kill () override;
472
473 void load (const char *, int) override;
474
475 void mourn_inferior () override;
476
477 void pass_signals (gdb::array_view<const unsigned char>) override;
478
479 int set_syscall_catchpoint (int, bool, int,
480 gdb::array_view<const int>) override;
481
482 void program_signals (gdb::array_view<const unsigned char>) override;
483
484 bool thread_alive (ptid_t ptid) override;
485
486 const char *thread_name (struct thread_info *) override;
487
488 void update_thread_list () override;
489
490 std::string pid_to_str (ptid_t) override;
491
492 const char *extra_thread_info (struct thread_info *) override;
493
494 ptid_t get_ada_task_ptid (long lwp, long thread) override;
495
496 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
497 int handle_len,
498 inferior *inf) override;
499
500 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
501 override;
502
503 void stop (ptid_t) override;
504
505 void interrupt () override;
506
507 void pass_ctrlc () override;
508
509 enum target_xfer_status xfer_partial (enum target_object object,
510 const char *annex,
511 gdb_byte *readbuf,
512 const gdb_byte *writebuf,
513 ULONGEST offset, ULONGEST len,
514 ULONGEST *xfered_len) override;
515
516 ULONGEST get_memory_xfer_limit () override;
517
518 void rcmd (const char *command, struct ui_file *output) override;
519
520 char *pid_to_exec_file (int pid) override;
521
522 void log_command (const char *cmd) override
523 {
524 serial_log_command (this, cmd);
525 }
526
527 CORE_ADDR get_thread_local_address (ptid_t ptid,
528 CORE_ADDR load_module_addr,
529 CORE_ADDR offset) override;
530
531 bool can_execute_reverse () override;
532
533 std::vector<mem_region> memory_map () override;
534
535 void flash_erase (ULONGEST address, LONGEST length) override;
536
537 void flash_done () override;
538
539 const struct target_desc *read_description () override;
540
541 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
542 const gdb_byte *pattern, ULONGEST pattern_len,
543 CORE_ADDR *found_addrp) override;
544
545 bool can_async_p () override;
546
547 bool is_async_p () override;
548
549 void async (int) override;
550
551 int async_wait_fd () override;
552
553 void thread_events (int) override;
554
555 int can_do_single_step () override;
556
557 void terminal_inferior () override;
558
559 void terminal_ours () override;
560
561 bool supports_non_stop () override;
562
563 bool supports_multi_process () override;
564
565 bool supports_disable_randomization () override;
566
567 bool filesystem_is_local () override;
568
569
570 int fileio_open (struct inferior *inf, const char *filename,
571 int flags, int mode, int warn_if_slow,
572 int *target_errno) override;
573
574 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
575 ULONGEST offset, int *target_errno) override;
576
577 int fileio_pread (int fd, gdb_byte *read_buf, int len,
578 ULONGEST offset, int *target_errno) override;
579
580 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
581
582 int fileio_close (int fd, int *target_errno) override;
583
584 int fileio_unlink (struct inferior *inf,
585 const char *filename,
586 int *target_errno) override;
587
588 gdb::optional<std::string>
589 fileio_readlink (struct inferior *inf,
590 const char *filename,
591 int *target_errno) override;
592
593 bool supports_enable_disable_tracepoint () override;
594
595 bool supports_string_tracing () override;
596
597 bool supports_evaluation_of_breakpoint_conditions () override;
598
599 bool can_run_breakpoint_commands () override;
600
601 void trace_init () override;
602
603 void download_tracepoint (struct bp_location *location) override;
604
605 bool can_download_tracepoint () override;
606
607 void download_trace_state_variable (const trace_state_variable &tsv) override;
608
609 void enable_tracepoint (struct bp_location *location) override;
610
611 void disable_tracepoint (struct bp_location *location) override;
612
613 void trace_set_readonly_regions () override;
614
615 void trace_start () override;
616
617 int get_trace_status (struct trace_status *ts) override;
618
619 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
620 override;
621
622 void trace_stop () override;
623
624 int trace_find (enum trace_find_type type, int num,
625 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
626
627 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
628
629 int save_trace_data (const char *filename) override;
630
631 int upload_tracepoints (struct uploaded_tp **utpp) override;
632
633 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
634
635 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
636
637 int get_min_fast_tracepoint_insn_len () override;
638
639 void set_disconnected_tracing (int val) override;
640
641 void set_circular_trace_buffer (int val) override;
642
643 void set_trace_buffer_size (LONGEST val) override;
644
645 bool set_trace_notes (const char *user, const char *notes,
646 const char *stopnotes) override;
647
648 int core_of_thread (ptid_t ptid) override;
649
650 int verify_memory (const gdb_byte *data,
651 CORE_ADDR memaddr, ULONGEST size) override;
652
653
654 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
655
656 void set_permissions () override;
657
658 bool static_tracepoint_marker_at (CORE_ADDR,
659 struct static_tracepoint_marker *marker)
660 override;
661
662 std::vector<static_tracepoint_marker>
663 static_tracepoint_markers_by_strid (const char *id) override;
664
665 traceframe_info_up traceframe_info () override;
666
667 bool use_agent (bool use) override;
668 bool can_use_agent () override;
669
670 struct btrace_target_info *enable_btrace (ptid_t ptid,
671 const struct btrace_config *conf) override;
672
673 void disable_btrace (struct btrace_target_info *tinfo) override;
674
675 void teardown_btrace (struct btrace_target_info *tinfo) override;
676
677 enum btrace_error read_btrace (struct btrace_data *data,
678 struct btrace_target_info *btinfo,
679 enum btrace_read_type type) override;
680
681 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
682 bool augmented_libraries_svr4_read () override;
683 bool follow_fork (bool, bool) override;
684 void follow_exec (struct inferior *, const char *) override;
685 int insert_fork_catchpoint (int) override;
686 int remove_fork_catchpoint (int) override;
687 int insert_vfork_catchpoint (int) override;
688 int remove_vfork_catchpoint (int) override;
689 int insert_exec_catchpoint (int) override;
690 int remove_exec_catchpoint (int) override;
691 enum exec_direction_kind execution_direction () override;
692
693 bool supports_memory_tagging () override;
694
695 bool fetch_memtags (CORE_ADDR address, size_t len,
696 gdb::byte_vector &tags, int type) override;
697
698 bool store_memtags (CORE_ADDR address, size_t len,
699 const gdb::byte_vector &tags, int type) override;
700
701 public: /* Remote specific methods. */
702
703 void remote_download_command_source (int num, ULONGEST addr,
704 struct command_line *cmds);
705
706 void remote_file_put (const char *local_file, const char *remote_file,
707 int from_tty);
708 void remote_file_get (const char *remote_file, const char *local_file,
709 int from_tty);
710 void remote_file_delete (const char *remote_file, int from_tty);
711
712 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
713 ULONGEST offset, int *remote_errno);
714 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
715 ULONGEST offset, int *remote_errno);
716 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
717 ULONGEST offset, int *remote_errno);
718
719 int remote_hostio_send_command (int command_bytes, int which_packet,
720 int *remote_errno, const char **attachment,
721 int *attachment_len);
722 int remote_hostio_set_filesystem (struct inferior *inf,
723 int *remote_errno);
724 /* We should get rid of this and use fileio_open directly. */
725 int remote_hostio_open (struct inferior *inf, const char *filename,
726 int flags, int mode, int warn_if_slow,
727 int *remote_errno);
728 int remote_hostio_close (int fd, int *remote_errno);
729
730 int remote_hostio_unlink (inferior *inf, const char *filename,
731 int *remote_errno);
732
733 struct remote_state *get_remote_state ();
734
735 long get_remote_packet_size (void);
736 long get_memory_packet_size (struct memory_packet_config *config);
737
738 long get_memory_write_packet_size ();
739 long get_memory_read_packet_size ();
740
741 char *append_pending_thread_resumptions (char *p, char *endp,
742 ptid_t ptid);
743 static void open_1 (const char *name, int from_tty, int extended_p);
744 void start_remote (int from_tty, int extended_p);
745 void remote_detach_1 (struct inferior *inf, int from_tty);
746
747 char *append_resumption (char *p, char *endp,
748 ptid_t ptid, int step, gdb_signal siggnal);
749 int remote_resume_with_vcont (ptid_t ptid, int step,
750 gdb_signal siggnal);
751
752 thread_info *add_current_inferior_and_thread (const char *wait_status);
753
754 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
755 target_wait_flags options);
756 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
757 target_wait_flags options);
758
759 ptid_t process_stop_reply (struct stop_reply *stop_reply,
760 target_waitstatus *status);
761
762 ptid_t select_thread_for_ambiguous_stop_reply
763 (const struct target_waitstatus *status);
764
765 void remote_notice_new_inferior (ptid_t currthread, int executing);
766
767 void process_initial_stop_replies (int from_tty);
768
769 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
770
771 void btrace_sync_conf (const btrace_config *conf);
772
773 void remote_btrace_maybe_reopen ();
774
775 void remove_new_fork_children (threads_listing_context *context);
776 void kill_new_fork_children (int pid);
777 void discard_pending_stop_replies (struct inferior *inf);
778 int stop_reply_queue_length ();
779
780 void check_pending_events_prevent_wildcard_vcont
781 (int *may_global_wildcard_vcont);
782
783 void discard_pending_stop_replies_in_queue ();
784 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
785 struct stop_reply *queued_stop_reply (ptid_t ptid);
786 int peek_stop_reply (ptid_t ptid);
787 void remote_parse_stop_reply (const char *buf, stop_reply *event);
788
789 void remote_stop_ns (ptid_t ptid);
790 void remote_interrupt_as ();
791 void remote_interrupt_ns ();
792
793 char *remote_get_noisy_reply ();
794 int remote_query_attached (int pid);
795 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
796 int try_open_exec);
797
798 ptid_t remote_current_thread (ptid_t oldpid);
799 ptid_t get_current_thread (const char *wait_status);
800
801 void set_thread (ptid_t ptid, int gen);
802 void set_general_thread (ptid_t ptid);
803 void set_continue_thread (ptid_t ptid);
804 void set_general_process ();
805
806 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
807
808 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
809 gdb_ext_thread_info *info);
810 int remote_get_threadinfo (threadref *threadid, int fieldset,
811 gdb_ext_thread_info *info);
812
813 int parse_threadlist_response (const char *pkt, int result_limit,
814 threadref *original_echo,
815 threadref *resultlist,
816 int *doneflag);
817 int remote_get_threadlist (int startflag, threadref *nextthread,
818 int result_limit, int *done, int *result_count,
819 threadref *threadlist);
820
821 int remote_threadlist_iterator (rmt_thread_action stepfunction,
822 void *context, int looplimit);
823
824 int remote_get_threads_with_ql (threads_listing_context *context);
825 int remote_get_threads_with_qxfer (threads_listing_context *context);
826 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
827
828 void extended_remote_restart ();
829
830 void get_offsets ();
831
832 void remote_check_symbols ();
833
834 void remote_supported_packet (const struct protocol_feature *feature,
835 enum packet_support support,
836 const char *argument);
837
838 void remote_query_supported ();
839
840 void remote_packet_size (const protocol_feature *feature,
841 packet_support support, const char *value);
842
843 void remote_serial_quit_handler ();
844
845 void remote_detach_pid (int pid);
846
847 void remote_vcont_probe ();
848
849 void remote_resume_with_hc (ptid_t ptid, int step,
850 gdb_signal siggnal);
851
852 void send_interrupt_sequence ();
853 void interrupt_query ();
854
855 void remote_notif_get_pending_events (notif_client *nc);
856
857 int fetch_register_using_p (struct regcache *regcache,
858 packet_reg *reg);
859 int send_g_packet ();
860 void process_g_packet (struct regcache *regcache);
861 void fetch_registers_using_g (struct regcache *regcache);
862 int store_register_using_P (const struct regcache *regcache,
863 packet_reg *reg);
864 void store_registers_using_G (const struct regcache *regcache);
865
866 void set_remote_traceframe ();
867
868 void check_binary_download (CORE_ADDR addr);
869
870 target_xfer_status remote_write_bytes_aux (const char *header,
871 CORE_ADDR memaddr,
872 const gdb_byte *myaddr,
873 ULONGEST len_units,
874 int unit_size,
875 ULONGEST *xfered_len_units,
876 char packet_format,
877 int use_length);
878
879 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
880 const gdb_byte *myaddr, ULONGEST len,
881 int unit_size, ULONGEST *xfered_len);
882
883 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
884 ULONGEST len_units,
885 int unit_size, ULONGEST *xfered_len_units);
886
887 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
888 ULONGEST memaddr,
889 ULONGEST len,
890 int unit_size,
891 ULONGEST *xfered_len);
892
893 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
894 gdb_byte *myaddr, ULONGEST len,
895 int unit_size,
896 ULONGEST *xfered_len);
897
898 packet_result remote_send_printf (const char *format, ...)
899 ATTRIBUTE_PRINTF (2, 3);
900
901 target_xfer_status remote_flash_write (ULONGEST address,
902 ULONGEST length, ULONGEST *xfered_len,
903 const gdb_byte *data);
904
905 int readchar (int timeout);
906
907 void remote_serial_write (const char *str, int len);
908
909 int putpkt (const char *buf);
910 int putpkt_binary (const char *buf, int cnt);
911
912 int putpkt (const gdb::char_vector &buf)
913 {
914 return putpkt (buf.data ());
915 }
916
917 void skip_frame ();
918 long read_frame (gdb::char_vector *buf_p);
919 void getpkt (gdb::char_vector *buf, int forever);
920 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
921 int expecting_notif, int *is_notif);
922 int getpkt_sane (gdb::char_vector *buf, int forever);
923 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
924 int *is_notif);
925 int remote_vkill (int pid);
926 void remote_kill_k ();
927
928 void extended_remote_disable_randomization (int val);
929 int extended_remote_run (const std::string &args);
930
931 void send_environment_packet (const char *action,
932 const char *packet,
933 const char *value);
934
935 void extended_remote_environment_support ();
936 void extended_remote_set_inferior_cwd ();
937
938 target_xfer_status remote_write_qxfer (const char *object_name,
939 const char *annex,
940 const gdb_byte *writebuf,
941 ULONGEST offset, LONGEST len,
942 ULONGEST *xfered_len,
943 struct packet_config *packet);
944
945 target_xfer_status remote_read_qxfer (const char *object_name,
946 const char *annex,
947 gdb_byte *readbuf, ULONGEST offset,
948 LONGEST len,
949 ULONGEST *xfered_len,
950 struct packet_config *packet);
951
952 void push_stop_reply (struct stop_reply *new_event);
953
954 bool vcont_r_supported ();
955
956 void packet_command (const char *args, int from_tty);
957
958 private: /* data fields */
959
960 /* The remote state. Don't reference this directly. Use the
961 get_remote_state method instead. */
962 remote_state m_remote_state;
963 };
964
965 static const target_info extended_remote_target_info = {
966 "extended-remote",
967 N_("Extended remote serial target in gdb-specific protocol"),
968 remote_doc
969 };
970
971 /* Set up the extended remote target by extending the standard remote
972 target and adding to it. */
973
974 class extended_remote_target final : public remote_target
975 {
976 public:
977 const target_info &info () const override
978 { return extended_remote_target_info; }
979
980 /* Open an extended-remote connection. */
981 static void open (const char *, int);
982
983 bool can_create_inferior () override { return true; }
984 void create_inferior (const char *, const std::string &,
985 char **, int) override;
986
987 void detach (inferior *, int) override;
988
989 bool can_attach () override { return true; }
990 void attach (const char *, int) override;
991
992 void post_attach (int) override;
993 bool supports_disable_randomization () override;
994 };
995
996 /* Per-program-space data key. */
997 static const struct program_space_key<char, gdb::xfree_deleter<char>>
998 remote_pspace_data;
999
1000 /* The variable registered as the control variable used by the
1001 remote exec-file commands. While the remote exec-file setting is
1002 per-program-space, the set/show machinery uses this as the
1003 location of the remote exec-file value. */
1004 static char *remote_exec_file_var;
1005
1006 /* The size to align memory write packets, when practical. The protocol
1007 does not guarantee any alignment, and gdb will generate short
1008 writes and unaligned writes, but even as a best-effort attempt this
1009 can improve bulk transfers. For instance, if a write is misaligned
1010 relative to the target's data bus, the stub may need to make an extra
1011 round trip fetching data from the target. This doesn't make a
1012 huge difference, but it's easy to do, so we try to be helpful.
1013
1014 The alignment chosen is arbitrary; usually data bus width is
1015 important here, not the possibly larger cache line size. */
1016 enum { REMOTE_ALIGN_WRITES = 16 };
1017
1018 /* Prototypes for local functions. */
1019
1020 static int hexnumlen (ULONGEST num);
1021
1022 static int stubhex (int ch);
1023
1024 static int hexnumstr (char *, ULONGEST);
1025
1026 static int hexnumnstr (char *, ULONGEST, int);
1027
1028 static CORE_ADDR remote_address_masked (CORE_ADDR);
1029
1030 static void print_packet (const char *);
1031
1032 static int stub_unpack_int (const char *buff, int fieldlength);
1033
1034 struct packet_config;
1035
1036 static void show_packet_config_cmd (struct packet_config *config);
1037
1038 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1039 int from_tty,
1040 struct cmd_list_element *c,
1041 const char *value);
1042
1043 static ptid_t read_ptid (const char *buf, const char **obuf);
1044
1045 static void remote_async_inferior_event_handler (gdb_client_data);
1046
1047 static bool remote_read_description_p (struct target_ops *target);
1048
1049 static void remote_console_output (const char *msg);
1050
1051 static void remote_btrace_reset (remote_state *rs);
1052
1053 static void remote_unpush_and_throw (remote_target *target);
1054
1055 /* For "remote". */
1056
1057 static struct cmd_list_element *remote_cmdlist;
1058
1059 /* For "set remote" and "show remote". */
1060
1061 static struct cmd_list_element *remote_set_cmdlist;
1062 static struct cmd_list_element *remote_show_cmdlist;
1063
1064 /* Controls whether GDB is willing to use range stepping. */
1065
1066 static bool use_range_stepping = true;
1067
1068 /* From the remote target's point of view, each thread is in one of these three
1069 states. */
1070 enum class resume_state
1071 {
1072 /* Not resumed - we haven't been asked to resume this thread. */
1073 NOT_RESUMED,
1074
1075 /* We have been asked to resume this thread, but haven't sent a vCont action
1076 for it yet. We'll need to consider it next time commit_resume is
1077 called. */
1078 RESUMED_PENDING_VCONT,
1079
1080 /* We have been asked to resume this thread, and we have sent a vCont action
1081 for it. */
1082 RESUMED,
1083 };
1084
1085 /* Information about a thread's pending vCont-resume. Used when a thread is in
1086 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1087 stores this information which is then picked up by
1088 remote_target::commit_resume to know which is the proper action for this
1089 thread to include in the vCont packet. */
1090 struct resumed_pending_vcont_info
1091 {
1092 /* True if the last resume call for this thread was a step request, false
1093 if a continue request. */
1094 bool step;
1095
1096 /* The signal specified in the last resume call for this thread. */
1097 gdb_signal sig;
1098 };
1099
1100 /* Private data that we'll store in (struct thread_info)->priv. */
1101 struct remote_thread_info : public private_thread_info
1102 {
1103 std::string extra;
1104 std::string name;
1105 int core = -1;
1106
1107 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1108 sequence of bytes. */
1109 gdb::byte_vector thread_handle;
1110
1111 /* Whether the target stopped for a breakpoint/watchpoint. */
1112 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1113
1114 /* This is set to the data address of the access causing the target
1115 to stop for a watchpoint. */
1116 CORE_ADDR watch_data_address = 0;
1117
1118 /* Get the thread's resume state. */
1119 enum resume_state get_resume_state () const
1120 {
1121 return m_resume_state;
1122 }
1123
1124 /* Put the thread in the NOT_RESUMED state. */
1125 void set_not_resumed ()
1126 {
1127 m_resume_state = resume_state::NOT_RESUMED;
1128 }
1129
1130 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1131 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1132 {
1133 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1134 m_resumed_pending_vcont_info.step = step;
1135 m_resumed_pending_vcont_info.sig = sig;
1136 }
1137
1138 /* Get the information this thread's pending vCont-resumption.
1139
1140 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1141 state. */
1142 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1143 {
1144 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1145
1146 return m_resumed_pending_vcont_info;
1147 }
1148
1149 /* Put the thread in the VCONT_RESUMED state. */
1150 void set_resumed ()
1151 {
1152 m_resume_state = resume_state::RESUMED;
1153 }
1154
1155 private:
1156 /* Resume state for this thread. This is used to implement vCont action
1157 coalescing (only when the target operates in non-stop mode).
1158
1159 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1160 which notes that this thread must be considered in the next commit_resume
1161 call.
1162
1163 remote_target::commit_resume sends a vCont packet with actions for the
1164 threads in the RESUMED_PENDING_VCONT state and moves them to the
1165 VCONT_RESUMED state.
1166
1167 When reporting a stop to the core for a thread, that thread is moved back
1168 to the NOT_RESUMED state. */
1169 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1170
1171 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1172 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1173 };
1174
1175 remote_state::remote_state ()
1176 : buf (400)
1177 {
1178 }
1179
1180 remote_state::~remote_state ()
1181 {
1182 xfree (this->last_pass_packet);
1183 xfree (this->last_program_signals_packet);
1184 xfree (this->finished_object);
1185 xfree (this->finished_annex);
1186 }
1187
1188 /* Utility: generate error from an incoming stub packet. */
1189 static void
1190 trace_error (char *buf)
1191 {
1192 if (*buf++ != 'E')
1193 return; /* not an error msg */
1194 switch (*buf)
1195 {
1196 case '1': /* malformed packet error */
1197 if (*++buf == '0') /* general case: */
1198 error (_("remote.c: error in outgoing packet."));
1199 else
1200 error (_("remote.c: error in outgoing packet at field #%ld."),
1201 strtol (buf, NULL, 16));
1202 default:
1203 error (_("Target returns error code '%s'."), buf);
1204 }
1205 }
1206
1207 /* Utility: wait for reply from stub, while accepting "O" packets. */
1208
1209 char *
1210 remote_target::remote_get_noisy_reply ()
1211 {
1212 struct remote_state *rs = get_remote_state ();
1213
1214 do /* Loop on reply from remote stub. */
1215 {
1216 char *buf;
1217
1218 QUIT; /* Allow user to bail out with ^C. */
1219 getpkt (&rs->buf, 0);
1220 buf = rs->buf.data ();
1221 if (buf[0] == 'E')
1222 trace_error (buf);
1223 else if (startswith (buf, "qRelocInsn:"))
1224 {
1225 ULONGEST ul;
1226 CORE_ADDR from, to, org_to;
1227 const char *p, *pp;
1228 int adjusted_size = 0;
1229 int relocated = 0;
1230
1231 p = buf + strlen ("qRelocInsn:");
1232 pp = unpack_varlen_hex (p, &ul);
1233 if (*pp != ';')
1234 error (_("invalid qRelocInsn packet: %s"), buf);
1235 from = ul;
1236
1237 p = pp + 1;
1238 unpack_varlen_hex (p, &ul);
1239 to = ul;
1240
1241 org_to = to;
1242
1243 try
1244 {
1245 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1246 relocated = 1;
1247 }
1248 catch (const gdb_exception &ex)
1249 {
1250 if (ex.error == MEMORY_ERROR)
1251 {
1252 /* Propagate memory errors silently back to the
1253 target. The stub may have limited the range of
1254 addresses we can write to, for example. */
1255 }
1256 else
1257 {
1258 /* Something unexpectedly bad happened. Be verbose
1259 so we can tell what, and propagate the error back
1260 to the stub, so it doesn't get stuck waiting for
1261 a response. */
1262 exception_fprintf (gdb_stderr, ex,
1263 _("warning: relocating instruction: "));
1264 }
1265 putpkt ("E01");
1266 }
1267
1268 if (relocated)
1269 {
1270 adjusted_size = to - org_to;
1271
1272 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1273 putpkt (buf);
1274 }
1275 }
1276 else if (buf[0] == 'O' && buf[1] != 'K')
1277 remote_console_output (buf + 1); /* 'O' message from stub */
1278 else
1279 return buf; /* Here's the actual reply. */
1280 }
1281 while (1);
1282 }
1283
1284 struct remote_arch_state *
1285 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1286 {
1287 remote_arch_state *rsa;
1288
1289 auto it = this->m_arch_states.find (gdbarch);
1290 if (it == this->m_arch_states.end ())
1291 {
1292 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1293 std::forward_as_tuple (gdbarch),
1294 std::forward_as_tuple (gdbarch));
1295 rsa = &p.first->second;
1296
1297 /* Make sure that the packet buffer is plenty big enough for
1298 this architecture. */
1299 if (this->buf.size () < rsa->remote_packet_size)
1300 this->buf.resize (2 * rsa->remote_packet_size);
1301 }
1302 else
1303 rsa = &it->second;
1304
1305 return rsa;
1306 }
1307
1308 /* Fetch the global remote target state. */
1309
1310 remote_state *
1311 remote_target::get_remote_state ()
1312 {
1313 /* Make sure that the remote architecture state has been
1314 initialized, because doing so might reallocate rs->buf. Any
1315 function which calls getpkt also needs to be mindful of changes
1316 to rs->buf, but this call limits the number of places which run
1317 into trouble. */
1318 m_remote_state.get_remote_arch_state (target_gdbarch ());
1319
1320 return &m_remote_state;
1321 }
1322
1323 /* Fetch the remote exec-file from the current program space. */
1324
1325 static const char *
1326 get_remote_exec_file (void)
1327 {
1328 char *remote_exec_file;
1329
1330 remote_exec_file = remote_pspace_data.get (current_program_space);
1331 if (remote_exec_file == NULL)
1332 return "";
1333
1334 return remote_exec_file;
1335 }
1336
1337 /* Set the remote exec file for PSPACE. */
1338
1339 static void
1340 set_pspace_remote_exec_file (struct program_space *pspace,
1341 const char *remote_exec_file)
1342 {
1343 char *old_file = remote_pspace_data.get (pspace);
1344
1345 xfree (old_file);
1346 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1347 }
1348
1349 /* The "set/show remote exec-file" set command hook. */
1350
1351 static void
1352 set_remote_exec_file (const char *ignored, int from_tty,
1353 struct cmd_list_element *c)
1354 {
1355 gdb_assert (remote_exec_file_var != NULL);
1356 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1357 }
1358
1359 /* The "set/show remote exec-file" show command hook. */
1360
1361 static void
1362 show_remote_exec_file (struct ui_file *file, int from_tty,
1363 struct cmd_list_element *cmd, const char *value)
1364 {
1365 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1366 }
1367
1368 static int
1369 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1370 {
1371 int regnum, num_remote_regs, offset;
1372 struct packet_reg **remote_regs;
1373
1374 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1375 {
1376 struct packet_reg *r = &regs[regnum];
1377
1378 if (register_size (gdbarch, regnum) == 0)
1379 /* Do not try to fetch zero-sized (placeholder) registers. */
1380 r->pnum = -1;
1381 else
1382 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1383
1384 r->regnum = regnum;
1385 }
1386
1387 /* Define the g/G packet format as the contents of each register
1388 with a remote protocol number, in order of ascending protocol
1389 number. */
1390
1391 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1392 for (num_remote_regs = 0, regnum = 0;
1393 regnum < gdbarch_num_regs (gdbarch);
1394 regnum++)
1395 if (regs[regnum].pnum != -1)
1396 remote_regs[num_remote_regs++] = &regs[regnum];
1397
1398 std::sort (remote_regs, remote_regs + num_remote_regs,
1399 [] (const packet_reg *a, const packet_reg *b)
1400 { return a->pnum < b->pnum; });
1401
1402 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1403 {
1404 remote_regs[regnum]->in_g_packet = 1;
1405 remote_regs[regnum]->offset = offset;
1406 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1407 }
1408
1409 return offset;
1410 }
1411
1412 /* Given the architecture described by GDBARCH, return the remote
1413 protocol register's number and the register's offset in the g/G
1414 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1415 If the target does not have a mapping for REGNUM, return false,
1416 otherwise, return true. */
1417
1418 int
1419 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1420 int *pnum, int *poffset)
1421 {
1422 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1423
1424 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1425
1426 map_regcache_remote_table (gdbarch, regs.data ());
1427
1428 *pnum = regs[regnum].pnum;
1429 *poffset = regs[regnum].offset;
1430
1431 return *pnum != -1;
1432 }
1433
1434 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1435 {
1436 /* Use the architecture to build a regnum<->pnum table, which will be
1437 1:1 unless a feature set specifies otherwise. */
1438 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1439
1440 /* Record the maximum possible size of the g packet - it may turn out
1441 to be smaller. */
1442 this->sizeof_g_packet
1443 = map_regcache_remote_table (gdbarch, this->regs.get ());
1444
1445 /* Default maximum number of characters in a packet body. Many
1446 remote stubs have a hardwired buffer size of 400 bytes
1447 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1448 as the maximum packet-size to ensure that the packet and an extra
1449 NUL character can always fit in the buffer. This stops GDB
1450 trashing stubs that try to squeeze an extra NUL into what is
1451 already a full buffer (As of 1999-12-04 that was most stubs). */
1452 this->remote_packet_size = 400 - 1;
1453
1454 /* This one is filled in when a ``g'' packet is received. */
1455 this->actual_register_packet_size = 0;
1456
1457 /* Should rsa->sizeof_g_packet needs more space than the
1458 default, adjust the size accordingly. Remember that each byte is
1459 encoded as two characters. 32 is the overhead for the packet
1460 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1461 (``$NN:G...#NN'') is a better guess, the below has been padded a
1462 little. */
1463 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1464 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1465 }
1466
1467 /* Get a pointer to the current remote target. If not connected to a
1468 remote target, return NULL. */
1469
1470 static remote_target *
1471 get_current_remote_target ()
1472 {
1473 target_ops *proc_target = current_inferior ()->process_target ();
1474 return dynamic_cast<remote_target *> (proc_target);
1475 }
1476
1477 /* Return the current allowed size of a remote packet. This is
1478 inferred from the current architecture, and should be used to
1479 limit the length of outgoing packets. */
1480 long
1481 remote_target::get_remote_packet_size ()
1482 {
1483 struct remote_state *rs = get_remote_state ();
1484 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1485
1486 if (rs->explicit_packet_size)
1487 return rs->explicit_packet_size;
1488
1489 return rsa->remote_packet_size;
1490 }
1491
1492 static struct packet_reg *
1493 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1494 long regnum)
1495 {
1496 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1497 return NULL;
1498 else
1499 {
1500 struct packet_reg *r = &rsa->regs[regnum];
1501
1502 gdb_assert (r->regnum == regnum);
1503 return r;
1504 }
1505 }
1506
1507 static struct packet_reg *
1508 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1509 LONGEST pnum)
1510 {
1511 int i;
1512
1513 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1514 {
1515 struct packet_reg *r = &rsa->regs[i];
1516
1517 if (r->pnum == pnum)
1518 return r;
1519 }
1520 return NULL;
1521 }
1522
1523 /* Allow the user to specify what sequence to send to the remote
1524 when he requests a program interruption: Although ^C is usually
1525 what remote systems expect (this is the default, here), it is
1526 sometimes preferable to send a break. On other systems such
1527 as the Linux kernel, a break followed by g, which is Magic SysRq g
1528 is required in order to interrupt the execution. */
1529 const char interrupt_sequence_control_c[] = "Ctrl-C";
1530 const char interrupt_sequence_break[] = "BREAK";
1531 const char interrupt_sequence_break_g[] = "BREAK-g";
1532 static const char *const interrupt_sequence_modes[] =
1533 {
1534 interrupt_sequence_control_c,
1535 interrupt_sequence_break,
1536 interrupt_sequence_break_g,
1537 NULL
1538 };
1539 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1540
1541 static void
1542 show_interrupt_sequence (struct ui_file *file, int from_tty,
1543 struct cmd_list_element *c,
1544 const char *value)
1545 {
1546 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1547 fprintf_filtered (file,
1548 _("Send the ASCII ETX character (Ctrl-c) "
1549 "to the remote target to interrupt the "
1550 "execution of the program.\n"));
1551 else if (interrupt_sequence_mode == interrupt_sequence_break)
1552 fprintf_filtered (file,
1553 _("send a break signal to the remote target "
1554 "to interrupt the execution of the program.\n"));
1555 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1556 fprintf_filtered (file,
1557 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1558 "the remote target to interrupt the execution "
1559 "of Linux kernel.\n"));
1560 else
1561 internal_error (__FILE__, __LINE__,
1562 _("Invalid value for interrupt_sequence_mode: %s."),
1563 interrupt_sequence_mode);
1564 }
1565
1566 /* This boolean variable specifies whether interrupt_sequence is sent
1567 to the remote target when gdb connects to it.
1568 This is mostly needed when you debug the Linux kernel: The Linux kernel
1569 expects BREAK g which is Magic SysRq g for connecting gdb. */
1570 static bool interrupt_on_connect = false;
1571
1572 /* This variable is used to implement the "set/show remotebreak" commands.
1573 Since these commands are now deprecated in favor of "set/show remote
1574 interrupt-sequence", it no longer has any effect on the code. */
1575 static bool remote_break;
1576
1577 static void
1578 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1579 {
1580 if (remote_break)
1581 interrupt_sequence_mode = interrupt_sequence_break;
1582 else
1583 interrupt_sequence_mode = interrupt_sequence_control_c;
1584 }
1585
1586 static void
1587 show_remotebreak (struct ui_file *file, int from_tty,
1588 struct cmd_list_element *c,
1589 const char *value)
1590 {
1591 }
1592
1593 /* This variable sets the number of bits in an address that are to be
1594 sent in a memory ("M" or "m") packet. Normally, after stripping
1595 leading zeros, the entire address would be sent. This variable
1596 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1597 initial implementation of remote.c restricted the address sent in
1598 memory packets to ``host::sizeof long'' bytes - (typically 32
1599 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1600 address was never sent. Since fixing this bug may cause a break in
1601 some remote targets this variable is principally provided to
1602 facilitate backward compatibility. */
1603
1604 static unsigned int remote_address_size;
1605
1606 \f
1607 /* User configurable variables for the number of characters in a
1608 memory read/write packet. MIN (rsa->remote_packet_size,
1609 rsa->sizeof_g_packet) is the default. Some targets need smaller
1610 values (fifo overruns, et.al.) and some users need larger values
1611 (speed up transfers). The variables ``preferred_*'' (the user
1612 request), ``current_*'' (what was actually set) and ``forced_*''
1613 (Positive - a soft limit, negative - a hard limit). */
1614
1615 struct memory_packet_config
1616 {
1617 const char *name;
1618 long size;
1619 int fixed_p;
1620 };
1621
1622 /* The default max memory-write-packet-size, when the setting is
1623 "fixed". The 16k is historical. (It came from older GDB's using
1624 alloca for buffers and the knowledge (folklore?) that some hosts
1625 don't cope very well with large alloca calls.) */
1626 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1627
1628 /* The minimum remote packet size for memory transfers. Ensures we
1629 can write at least one byte. */
1630 #define MIN_MEMORY_PACKET_SIZE 20
1631
1632 /* Get the memory packet size, assuming it is fixed. */
1633
1634 static long
1635 get_fixed_memory_packet_size (struct memory_packet_config *config)
1636 {
1637 gdb_assert (config->fixed_p);
1638
1639 if (config->size <= 0)
1640 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1641 else
1642 return config->size;
1643 }
1644
1645 /* Compute the current size of a read/write packet. Since this makes
1646 use of ``actual_register_packet_size'' the computation is dynamic. */
1647
1648 long
1649 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1650 {
1651 struct remote_state *rs = get_remote_state ();
1652 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1653
1654 long what_they_get;
1655 if (config->fixed_p)
1656 what_they_get = get_fixed_memory_packet_size (config);
1657 else
1658 {
1659 what_they_get = get_remote_packet_size ();
1660 /* Limit the packet to the size specified by the user. */
1661 if (config->size > 0
1662 && what_they_get > config->size)
1663 what_they_get = config->size;
1664
1665 /* Limit it to the size of the targets ``g'' response unless we have
1666 permission from the stub to use a larger packet size. */
1667 if (rs->explicit_packet_size == 0
1668 && rsa->actual_register_packet_size > 0
1669 && what_they_get > rsa->actual_register_packet_size)
1670 what_they_get = rsa->actual_register_packet_size;
1671 }
1672 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1673 what_they_get = MIN_MEMORY_PACKET_SIZE;
1674
1675 /* Make sure there is room in the global buffer for this packet
1676 (including its trailing NUL byte). */
1677 if (rs->buf.size () < what_they_get + 1)
1678 rs->buf.resize (2 * what_they_get);
1679
1680 return what_they_get;
1681 }
1682
1683 /* Update the size of a read/write packet. If they user wants
1684 something really big then do a sanity check. */
1685
1686 static void
1687 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1688 {
1689 int fixed_p = config->fixed_p;
1690 long size = config->size;
1691
1692 if (args == NULL)
1693 error (_("Argument required (integer, `fixed' or `limited')."));
1694 else if (strcmp (args, "hard") == 0
1695 || strcmp (args, "fixed") == 0)
1696 fixed_p = 1;
1697 else if (strcmp (args, "soft") == 0
1698 || strcmp (args, "limit") == 0)
1699 fixed_p = 0;
1700 else
1701 {
1702 char *end;
1703
1704 size = strtoul (args, &end, 0);
1705 if (args == end)
1706 error (_("Invalid %s (bad syntax)."), config->name);
1707
1708 /* Instead of explicitly capping the size of a packet to or
1709 disallowing it, the user is allowed to set the size to
1710 something arbitrarily large. */
1711 }
1712
1713 /* Extra checks? */
1714 if (fixed_p && !config->fixed_p)
1715 {
1716 /* So that the query shows the correct value. */
1717 long query_size = (size <= 0
1718 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1719 : size);
1720
1721 if (! query (_("The target may not be able to correctly handle a %s\n"
1722 "of %ld bytes. Change the packet size? "),
1723 config->name, query_size))
1724 error (_("Packet size not changed."));
1725 }
1726 /* Update the config. */
1727 config->fixed_p = fixed_p;
1728 config->size = size;
1729 }
1730
1731 static void
1732 show_memory_packet_size (struct memory_packet_config *config)
1733 {
1734 if (config->size == 0)
1735 printf_filtered (_("The %s is 0 (default). "), config->name);
1736 else
1737 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1738 if (config->fixed_p)
1739 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1740 get_fixed_memory_packet_size (config));
1741 else
1742 {
1743 remote_target *remote = get_current_remote_target ();
1744
1745 if (remote != NULL)
1746 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1747 remote->get_memory_packet_size (config));
1748 else
1749 puts_filtered ("The actual limit will be further reduced "
1750 "dependent on the target.\n");
1751 }
1752 }
1753
1754 /* FIXME: needs to be per-remote-target. */
1755 static struct memory_packet_config memory_write_packet_config =
1756 {
1757 "memory-write-packet-size",
1758 };
1759
1760 static void
1761 set_memory_write_packet_size (const char *args, int from_tty)
1762 {
1763 set_memory_packet_size (args, &memory_write_packet_config);
1764 }
1765
1766 static void
1767 show_memory_write_packet_size (const char *args, int from_tty)
1768 {
1769 show_memory_packet_size (&memory_write_packet_config);
1770 }
1771
1772 /* Show the number of hardware watchpoints that can be used. */
1773
1774 static void
1775 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1776 struct cmd_list_element *c,
1777 const char *value)
1778 {
1779 fprintf_filtered (file, _("The maximum number of target hardware "
1780 "watchpoints is %s.\n"), value);
1781 }
1782
1783 /* Show the length limit (in bytes) for hardware watchpoints. */
1784
1785 static void
1786 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1787 struct cmd_list_element *c,
1788 const char *value)
1789 {
1790 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1791 "hardware watchpoint is %s.\n"), value);
1792 }
1793
1794 /* Show the number of hardware breakpoints that can be used. */
1795
1796 static void
1797 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1798 struct cmd_list_element *c,
1799 const char *value)
1800 {
1801 fprintf_filtered (file, _("The maximum number of target hardware "
1802 "breakpoints is %s.\n"), value);
1803 }
1804
1805 /* Controls the maximum number of characters to display in the debug output
1806 for each remote packet. The remaining characters are omitted. */
1807
1808 static int remote_packet_max_chars = 512;
1809
1810 /* Show the maximum number of characters to display for each remote packet
1811 when remote debugging is enabled. */
1812
1813 static void
1814 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1815 struct cmd_list_element *c,
1816 const char *value)
1817 {
1818 fprintf_filtered (file, _("Number of remote packet characters to "
1819 "display is %s.\n"), value);
1820 }
1821
1822 long
1823 remote_target::get_memory_write_packet_size ()
1824 {
1825 return get_memory_packet_size (&memory_write_packet_config);
1826 }
1827
1828 /* FIXME: needs to be per-remote-target. */
1829 static struct memory_packet_config memory_read_packet_config =
1830 {
1831 "memory-read-packet-size",
1832 };
1833
1834 static void
1835 set_memory_read_packet_size (const char *args, int from_tty)
1836 {
1837 set_memory_packet_size (args, &memory_read_packet_config);
1838 }
1839
1840 static void
1841 show_memory_read_packet_size (const char *args, int from_tty)
1842 {
1843 show_memory_packet_size (&memory_read_packet_config);
1844 }
1845
1846 long
1847 remote_target::get_memory_read_packet_size ()
1848 {
1849 long size = get_memory_packet_size (&memory_read_packet_config);
1850
1851 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1852 extra buffer size argument before the memory read size can be
1853 increased beyond this. */
1854 if (size > get_remote_packet_size ())
1855 size = get_remote_packet_size ();
1856 return size;
1857 }
1858
1859 \f
1860
1861 struct packet_config
1862 {
1863 const char *name;
1864 const char *title;
1865
1866 /* If auto, GDB auto-detects support for this packet or feature,
1867 either through qSupported, or by trying the packet and looking
1868 at the response. If true, GDB assumes the target supports this
1869 packet. If false, the packet is disabled. Configs that don't
1870 have an associated command always have this set to auto. */
1871 enum auto_boolean detect;
1872
1873 /* Does the target support this packet? */
1874 enum packet_support support;
1875 };
1876
1877 static enum packet_support packet_config_support (struct packet_config *config);
1878 static enum packet_support packet_support (int packet);
1879
1880 static void
1881 show_packet_config_cmd (struct packet_config *config)
1882 {
1883 const char *support = "internal-error";
1884
1885 switch (packet_config_support (config))
1886 {
1887 case PACKET_ENABLE:
1888 support = "enabled";
1889 break;
1890 case PACKET_DISABLE:
1891 support = "disabled";
1892 break;
1893 case PACKET_SUPPORT_UNKNOWN:
1894 support = "unknown";
1895 break;
1896 }
1897 switch (config->detect)
1898 {
1899 case AUTO_BOOLEAN_AUTO:
1900 printf_filtered (_("Support for the `%s' packet "
1901 "is auto-detected, currently %s.\n"),
1902 config->name, support);
1903 break;
1904 case AUTO_BOOLEAN_TRUE:
1905 case AUTO_BOOLEAN_FALSE:
1906 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1907 config->name, support);
1908 break;
1909 }
1910 }
1911
1912 static void
1913 add_packet_config_cmd (struct packet_config *config, const char *name,
1914 const char *title, int legacy)
1915 {
1916 char *set_doc;
1917 char *show_doc;
1918 char *cmd_name;
1919
1920 config->name = name;
1921 config->title = title;
1922 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1923 name, title);
1924 show_doc = xstrprintf ("Show current use of remote "
1925 "protocol `%s' (%s) packet.",
1926 name, title);
1927 /* set/show TITLE-packet {auto,on,off} */
1928 cmd_name = xstrprintf ("%s-packet", title);
1929 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1930 &config->detect, set_doc,
1931 show_doc, NULL, /* help_doc */
1932 NULL,
1933 show_remote_protocol_packet_cmd,
1934 &remote_set_cmdlist, &remote_show_cmdlist);
1935 /* The command code copies the documentation strings. */
1936 xfree (set_doc);
1937 xfree (show_doc);
1938 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1939 if (legacy)
1940 {
1941 char *legacy_name;
1942
1943 legacy_name = xstrprintf ("%s-packet", name);
1944 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1945 &remote_set_cmdlist);
1946 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1947 &remote_show_cmdlist);
1948 }
1949 }
1950
1951 static enum packet_result
1952 packet_check_result (const char *buf)
1953 {
1954 if (buf[0] != '\0')
1955 {
1956 /* The stub recognized the packet request. Check that the
1957 operation succeeded. */
1958 if (buf[0] == 'E'
1959 && isxdigit (buf[1]) && isxdigit (buf[2])
1960 && buf[3] == '\0')
1961 /* "Enn" - definitely an error. */
1962 return PACKET_ERROR;
1963
1964 /* Always treat "E." as an error. This will be used for
1965 more verbose error messages, such as E.memtypes. */
1966 if (buf[0] == 'E' && buf[1] == '.')
1967 return PACKET_ERROR;
1968
1969 /* The packet may or may not be OK. Just assume it is. */
1970 return PACKET_OK;
1971 }
1972 else
1973 /* The stub does not support the packet. */
1974 return PACKET_UNKNOWN;
1975 }
1976
1977 static enum packet_result
1978 packet_check_result (const gdb::char_vector &buf)
1979 {
1980 return packet_check_result (buf.data ());
1981 }
1982
1983 static enum packet_result
1984 packet_ok (const char *buf, struct packet_config *config)
1985 {
1986 enum packet_result result;
1987
1988 if (config->detect != AUTO_BOOLEAN_TRUE
1989 && config->support == PACKET_DISABLE)
1990 internal_error (__FILE__, __LINE__,
1991 _("packet_ok: attempt to use a disabled packet"));
1992
1993 result = packet_check_result (buf);
1994 switch (result)
1995 {
1996 case PACKET_OK:
1997 case PACKET_ERROR:
1998 /* The stub recognized the packet request. */
1999 if (config->support == PACKET_SUPPORT_UNKNOWN)
2000 {
2001 remote_debug_printf ("Packet %s (%s) is supported",
2002 config->name, config->title);
2003 config->support = PACKET_ENABLE;
2004 }
2005 break;
2006 case PACKET_UNKNOWN:
2007 /* The stub does not support the packet. */
2008 if (config->detect == AUTO_BOOLEAN_AUTO
2009 && config->support == PACKET_ENABLE)
2010 {
2011 /* If the stub previously indicated that the packet was
2012 supported then there is a protocol error. */
2013 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2014 config->name, config->title);
2015 }
2016 else if (config->detect == AUTO_BOOLEAN_TRUE)
2017 {
2018 /* The user set it wrong. */
2019 error (_("Enabled packet %s (%s) not recognized by stub"),
2020 config->name, config->title);
2021 }
2022
2023 remote_debug_printf ("Packet %s (%s) is NOT supported",
2024 config->name, config->title);
2025 config->support = PACKET_DISABLE;
2026 break;
2027 }
2028
2029 return result;
2030 }
2031
2032 static enum packet_result
2033 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2034 {
2035 return packet_ok (buf.data (), config);
2036 }
2037
2038 enum {
2039 PACKET_vCont = 0,
2040 PACKET_X,
2041 PACKET_qSymbol,
2042 PACKET_P,
2043 PACKET_p,
2044 PACKET_Z0,
2045 PACKET_Z1,
2046 PACKET_Z2,
2047 PACKET_Z3,
2048 PACKET_Z4,
2049 PACKET_vFile_setfs,
2050 PACKET_vFile_open,
2051 PACKET_vFile_pread,
2052 PACKET_vFile_pwrite,
2053 PACKET_vFile_close,
2054 PACKET_vFile_unlink,
2055 PACKET_vFile_readlink,
2056 PACKET_vFile_fstat,
2057 PACKET_qXfer_auxv,
2058 PACKET_qXfer_features,
2059 PACKET_qXfer_exec_file,
2060 PACKET_qXfer_libraries,
2061 PACKET_qXfer_libraries_svr4,
2062 PACKET_qXfer_memory_map,
2063 PACKET_qXfer_osdata,
2064 PACKET_qXfer_threads,
2065 PACKET_qXfer_statictrace_read,
2066 PACKET_qXfer_traceframe_info,
2067 PACKET_qXfer_uib,
2068 PACKET_qGetTIBAddr,
2069 PACKET_qGetTLSAddr,
2070 PACKET_qSupported,
2071 PACKET_qTStatus,
2072 PACKET_QPassSignals,
2073 PACKET_QCatchSyscalls,
2074 PACKET_QProgramSignals,
2075 PACKET_QSetWorkingDir,
2076 PACKET_QStartupWithShell,
2077 PACKET_QEnvironmentHexEncoded,
2078 PACKET_QEnvironmentReset,
2079 PACKET_QEnvironmentUnset,
2080 PACKET_qCRC,
2081 PACKET_qSearch_memory,
2082 PACKET_vAttach,
2083 PACKET_vRun,
2084 PACKET_QStartNoAckMode,
2085 PACKET_vKill,
2086 PACKET_qXfer_siginfo_read,
2087 PACKET_qXfer_siginfo_write,
2088 PACKET_qAttached,
2089
2090 /* Support for conditional tracepoints. */
2091 PACKET_ConditionalTracepoints,
2092
2093 /* Support for target-side breakpoint conditions. */
2094 PACKET_ConditionalBreakpoints,
2095
2096 /* Support for target-side breakpoint commands. */
2097 PACKET_BreakpointCommands,
2098
2099 /* Support for fast tracepoints. */
2100 PACKET_FastTracepoints,
2101
2102 /* Support for static tracepoints. */
2103 PACKET_StaticTracepoints,
2104
2105 /* Support for installing tracepoints while a trace experiment is
2106 running. */
2107 PACKET_InstallInTrace,
2108
2109 PACKET_bc,
2110 PACKET_bs,
2111 PACKET_TracepointSource,
2112 PACKET_QAllow,
2113 PACKET_qXfer_fdpic,
2114 PACKET_QDisableRandomization,
2115 PACKET_QAgent,
2116 PACKET_QTBuffer_size,
2117 PACKET_Qbtrace_off,
2118 PACKET_Qbtrace_bts,
2119 PACKET_Qbtrace_pt,
2120 PACKET_qXfer_btrace,
2121
2122 /* Support for the QNonStop packet. */
2123 PACKET_QNonStop,
2124
2125 /* Support for the QThreadEvents packet. */
2126 PACKET_QThreadEvents,
2127
2128 /* Support for multi-process extensions. */
2129 PACKET_multiprocess_feature,
2130
2131 /* Support for enabling and disabling tracepoints while a trace
2132 experiment is running. */
2133 PACKET_EnableDisableTracepoints_feature,
2134
2135 /* Support for collecting strings using the tracenz bytecode. */
2136 PACKET_tracenz_feature,
2137
2138 /* Support for continuing to run a trace experiment while GDB is
2139 disconnected. */
2140 PACKET_DisconnectedTracing_feature,
2141
2142 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2143 PACKET_augmented_libraries_svr4_read_feature,
2144
2145 /* Support for the qXfer:btrace-conf:read packet. */
2146 PACKET_qXfer_btrace_conf,
2147
2148 /* Support for the Qbtrace-conf:bts:size packet. */
2149 PACKET_Qbtrace_conf_bts_size,
2150
2151 /* Support for swbreak+ feature. */
2152 PACKET_swbreak_feature,
2153
2154 /* Support for hwbreak+ feature. */
2155 PACKET_hwbreak_feature,
2156
2157 /* Support for fork events. */
2158 PACKET_fork_event_feature,
2159
2160 /* Support for vfork events. */
2161 PACKET_vfork_event_feature,
2162
2163 /* Support for the Qbtrace-conf:pt:size packet. */
2164 PACKET_Qbtrace_conf_pt_size,
2165
2166 /* Support for exec events. */
2167 PACKET_exec_event_feature,
2168
2169 /* Support for query supported vCont actions. */
2170 PACKET_vContSupported,
2171
2172 /* Support remote CTRL-C. */
2173 PACKET_vCtrlC,
2174
2175 /* Support TARGET_WAITKIND_NO_RESUMED. */
2176 PACKET_no_resumed,
2177
2178 PACKET_MAX
2179 };
2180
2181 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2182 assuming all remote targets are the same server (thus all support
2183 the same packets). */
2184 static struct packet_config remote_protocol_packets[PACKET_MAX];
2185
2186 /* Returns the packet's corresponding "set remote foo-packet" command
2187 state. See struct packet_config for more details. */
2188
2189 static enum auto_boolean
2190 packet_set_cmd_state (int packet)
2191 {
2192 return remote_protocol_packets[packet].detect;
2193 }
2194
2195 /* Returns whether a given packet or feature is supported. This takes
2196 into account the state of the corresponding "set remote foo-packet"
2197 command, which may be used to bypass auto-detection. */
2198
2199 static enum packet_support
2200 packet_config_support (struct packet_config *config)
2201 {
2202 switch (config->detect)
2203 {
2204 case AUTO_BOOLEAN_TRUE:
2205 return PACKET_ENABLE;
2206 case AUTO_BOOLEAN_FALSE:
2207 return PACKET_DISABLE;
2208 case AUTO_BOOLEAN_AUTO:
2209 return config->support;
2210 default:
2211 gdb_assert_not_reached (_("bad switch"));
2212 }
2213 }
2214
2215 /* Same as packet_config_support, but takes the packet's enum value as
2216 argument. */
2217
2218 static enum packet_support
2219 packet_support (int packet)
2220 {
2221 struct packet_config *config = &remote_protocol_packets[packet];
2222
2223 return packet_config_support (config);
2224 }
2225
2226 static void
2227 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2228 struct cmd_list_element *c,
2229 const char *value)
2230 {
2231 struct packet_config *packet;
2232
2233 for (packet = remote_protocol_packets;
2234 packet < &remote_protocol_packets[PACKET_MAX];
2235 packet++)
2236 {
2237 if (&packet->detect == c->var)
2238 {
2239 show_packet_config_cmd (packet);
2240 return;
2241 }
2242 }
2243 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2244 c->name);
2245 }
2246
2247 /* Should we try one of the 'Z' requests? */
2248
2249 enum Z_packet_type
2250 {
2251 Z_PACKET_SOFTWARE_BP,
2252 Z_PACKET_HARDWARE_BP,
2253 Z_PACKET_WRITE_WP,
2254 Z_PACKET_READ_WP,
2255 Z_PACKET_ACCESS_WP,
2256 NR_Z_PACKET_TYPES
2257 };
2258
2259 /* For compatibility with older distributions. Provide a ``set remote
2260 Z-packet ...'' command that updates all the Z packet types. */
2261
2262 static enum auto_boolean remote_Z_packet_detect;
2263
2264 static void
2265 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2266 struct cmd_list_element *c)
2267 {
2268 int i;
2269
2270 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2271 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2272 }
2273
2274 static void
2275 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2276 struct cmd_list_element *c,
2277 const char *value)
2278 {
2279 int i;
2280
2281 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2282 {
2283 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2284 }
2285 }
2286
2287 /* Returns true if the multi-process extensions are in effect. */
2288
2289 static int
2290 remote_multi_process_p (struct remote_state *rs)
2291 {
2292 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2293 }
2294
2295 /* Returns true if fork events are supported. */
2296
2297 static int
2298 remote_fork_event_p (struct remote_state *rs)
2299 {
2300 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2301 }
2302
2303 /* Returns true if vfork events are supported. */
2304
2305 static int
2306 remote_vfork_event_p (struct remote_state *rs)
2307 {
2308 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2309 }
2310
2311 /* Returns true if exec events are supported. */
2312
2313 static int
2314 remote_exec_event_p (struct remote_state *rs)
2315 {
2316 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2317 }
2318
2319 /* Insert fork catchpoint target routine. If fork events are enabled
2320 then return success, nothing more to do. */
2321
2322 int
2323 remote_target::insert_fork_catchpoint (int pid)
2324 {
2325 struct remote_state *rs = get_remote_state ();
2326
2327 return !remote_fork_event_p (rs);
2328 }
2329
2330 /* Remove fork catchpoint target routine. Nothing to do, just
2331 return success. */
2332
2333 int
2334 remote_target::remove_fork_catchpoint (int pid)
2335 {
2336 return 0;
2337 }
2338
2339 /* Insert vfork catchpoint target routine. If vfork events are enabled
2340 then return success, nothing more to do. */
2341
2342 int
2343 remote_target::insert_vfork_catchpoint (int pid)
2344 {
2345 struct remote_state *rs = get_remote_state ();
2346
2347 return !remote_vfork_event_p (rs);
2348 }
2349
2350 /* Remove vfork catchpoint target routine. Nothing to do, just
2351 return success. */
2352
2353 int
2354 remote_target::remove_vfork_catchpoint (int pid)
2355 {
2356 return 0;
2357 }
2358
2359 /* Insert exec catchpoint target routine. If exec events are
2360 enabled, just return success. */
2361
2362 int
2363 remote_target::insert_exec_catchpoint (int pid)
2364 {
2365 struct remote_state *rs = get_remote_state ();
2366
2367 return !remote_exec_event_p (rs);
2368 }
2369
2370 /* Remove exec catchpoint target routine. Nothing to do, just
2371 return success. */
2372
2373 int
2374 remote_target::remove_exec_catchpoint (int pid)
2375 {
2376 return 0;
2377 }
2378
2379 \f
2380
2381 /* Take advantage of the fact that the TID field is not used, to tag
2382 special ptids with it set to != 0. */
2383 static const ptid_t magic_null_ptid (42000, -1, 1);
2384 static const ptid_t not_sent_ptid (42000, -2, 1);
2385 static const ptid_t any_thread_ptid (42000, 0, 1);
2386
2387 /* Find out if the stub attached to PID (and hence GDB should offer to
2388 detach instead of killing it when bailing out). */
2389
2390 int
2391 remote_target::remote_query_attached (int pid)
2392 {
2393 struct remote_state *rs = get_remote_state ();
2394 size_t size = get_remote_packet_size ();
2395
2396 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2397 return 0;
2398
2399 if (remote_multi_process_p (rs))
2400 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2401 else
2402 xsnprintf (rs->buf.data (), size, "qAttached");
2403
2404 putpkt (rs->buf);
2405 getpkt (&rs->buf, 0);
2406
2407 switch (packet_ok (rs->buf,
2408 &remote_protocol_packets[PACKET_qAttached]))
2409 {
2410 case PACKET_OK:
2411 if (strcmp (rs->buf.data (), "1") == 0)
2412 return 1;
2413 break;
2414 case PACKET_ERROR:
2415 warning (_("Remote failure reply: %s"), rs->buf.data ());
2416 break;
2417 case PACKET_UNKNOWN:
2418 break;
2419 }
2420
2421 return 0;
2422 }
2423
2424 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2425 has been invented by GDB, instead of reported by the target. Since
2426 we can be connected to a remote system before before knowing about
2427 any inferior, mark the target with execution when we find the first
2428 inferior. If ATTACHED is 1, then we had just attached to this
2429 inferior. If it is 0, then we just created this inferior. If it
2430 is -1, then try querying the remote stub to find out if it had
2431 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2432 attempt to open this inferior's executable as the main executable
2433 if no main executable is open already. */
2434
2435 inferior *
2436 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2437 int try_open_exec)
2438 {
2439 struct inferior *inf;
2440
2441 /* Check whether this process we're learning about is to be
2442 considered attached, or if is to be considered to have been
2443 spawned by the stub. */
2444 if (attached == -1)
2445 attached = remote_query_attached (pid);
2446
2447 if (gdbarch_has_global_solist (target_gdbarch ()))
2448 {
2449 /* If the target shares code across all inferiors, then every
2450 attach adds a new inferior. */
2451 inf = add_inferior (pid);
2452
2453 /* ... and every inferior is bound to the same program space.
2454 However, each inferior may still have its own address
2455 space. */
2456 inf->aspace = maybe_new_address_space ();
2457 inf->pspace = current_program_space;
2458 }
2459 else
2460 {
2461 /* In the traditional debugging scenario, there's a 1-1 match
2462 between program/address spaces. We simply bind the inferior
2463 to the program space's address space. */
2464 inf = current_inferior ();
2465
2466 /* However, if the current inferior is already bound to a
2467 process, find some other empty inferior. */
2468 if (inf->pid != 0)
2469 {
2470 inf = nullptr;
2471 for (inferior *it : all_inferiors ())
2472 if (it->pid == 0)
2473 {
2474 inf = it;
2475 break;
2476 }
2477 }
2478 if (inf == nullptr)
2479 {
2480 /* Since all inferiors were already bound to a process, add
2481 a new inferior. */
2482 inf = add_inferior_with_spaces ();
2483 }
2484 switch_to_inferior_no_thread (inf);
2485 inf->push_target (this);
2486 inferior_appeared (inf, pid);
2487 }
2488
2489 inf->attach_flag = attached;
2490 inf->fake_pid_p = fake_pid_p;
2491
2492 /* If no main executable is currently open then attempt to
2493 open the file that was executed to create this inferior. */
2494 if (try_open_exec && get_exec_file (0) == NULL)
2495 exec_file_locate_attach (pid, 0, 1);
2496
2497 /* Check for exec file mismatch, and let the user solve it. */
2498 validate_exec_file (1);
2499
2500 return inf;
2501 }
2502
2503 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2504 static remote_thread_info *get_remote_thread_info (remote_target *target,
2505 ptid_t ptid);
2506
2507 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2508 according to RUNNING. */
2509
2510 thread_info *
2511 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2512 {
2513 struct remote_state *rs = get_remote_state ();
2514 struct thread_info *thread;
2515
2516 /* GDB historically didn't pull threads in the initial connection
2517 setup. If the remote target doesn't even have a concept of
2518 threads (e.g., a bare-metal target), even if internally we
2519 consider that a single-threaded target, mentioning a new thread
2520 might be confusing to the user. Be silent then, preserving the
2521 age old behavior. */
2522 if (rs->starting_up)
2523 thread = add_thread_silent (this, ptid);
2524 else
2525 thread = add_thread (this, ptid);
2526
2527 /* We start by assuming threads are resumed. That state then gets updated
2528 when we process a matching stop reply. */
2529 get_remote_thread_info (thread)->set_resumed ();
2530
2531 set_executing (this, ptid, executing);
2532 set_running (this, ptid, running);
2533
2534 return thread;
2535 }
2536
2537 /* Come here when we learn about a thread id from the remote target.
2538 It may be the first time we hear about such thread, so take the
2539 opportunity to add it to GDB's thread list. In case this is the
2540 first time we're noticing its corresponding inferior, add it to
2541 GDB's inferior list as well. EXECUTING indicates whether the
2542 thread is (internally) executing or stopped. */
2543
2544 void
2545 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2546 {
2547 /* In non-stop mode, we assume new found threads are (externally)
2548 running until proven otherwise with a stop reply. In all-stop,
2549 we can only get here if all threads are stopped. */
2550 int running = target_is_non_stop_p () ? 1 : 0;
2551
2552 /* If this is a new thread, add it to GDB's thread list.
2553 If we leave it up to WFI to do this, bad things will happen. */
2554
2555 thread_info *tp = find_thread_ptid (this, currthread);
2556 if (tp != NULL && tp->state == THREAD_EXITED)
2557 {
2558 /* We're seeing an event on a thread id we knew had exited.
2559 This has to be a new thread reusing the old id. Add it. */
2560 remote_add_thread (currthread, running, executing);
2561 return;
2562 }
2563
2564 if (!in_thread_list (this, currthread))
2565 {
2566 struct inferior *inf = NULL;
2567 int pid = currthread.pid ();
2568
2569 if (inferior_ptid.is_pid ()
2570 && pid == inferior_ptid.pid ())
2571 {
2572 /* inferior_ptid has no thread member yet. This can happen
2573 with the vAttach -> remote_wait,"TAAthread:" path if the
2574 stub doesn't support qC. This is the first stop reported
2575 after an attach, so this is the main thread. Update the
2576 ptid in the thread list. */
2577 if (in_thread_list (this, ptid_t (pid)))
2578 thread_change_ptid (this, inferior_ptid, currthread);
2579 else
2580 {
2581 thread_info *thr
2582 = remote_add_thread (currthread, running, executing);
2583 switch_to_thread (thr);
2584 }
2585 return;
2586 }
2587
2588 if (magic_null_ptid == inferior_ptid)
2589 {
2590 /* inferior_ptid is not set yet. This can happen with the
2591 vRun -> remote_wait,"TAAthread:" path if the stub
2592 doesn't support qC. This is the first stop reported
2593 after an attach, so this is the main thread. Update the
2594 ptid in the thread list. */
2595 thread_change_ptid (this, inferior_ptid, currthread);
2596 return;
2597 }
2598
2599 /* When connecting to a target remote, or to a target
2600 extended-remote which already was debugging an inferior, we
2601 may not know about it yet. Add it before adding its child
2602 thread, so notifications are emitted in a sensible order. */
2603 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2604 {
2605 struct remote_state *rs = get_remote_state ();
2606 bool fake_pid_p = !remote_multi_process_p (rs);
2607
2608 inf = remote_add_inferior (fake_pid_p,
2609 currthread.pid (), -1, 1);
2610 }
2611
2612 /* This is really a new thread. Add it. */
2613 thread_info *new_thr
2614 = remote_add_thread (currthread, running, executing);
2615
2616 /* If we found a new inferior, let the common code do whatever
2617 it needs to with it (e.g., read shared libraries, insert
2618 breakpoints), unless we're just setting up an all-stop
2619 connection. */
2620 if (inf != NULL)
2621 {
2622 struct remote_state *rs = get_remote_state ();
2623
2624 if (!rs->starting_up)
2625 notice_new_inferior (new_thr, executing, 0);
2626 }
2627 }
2628 }
2629
2630 /* Return THREAD's private thread data, creating it if necessary. */
2631
2632 static remote_thread_info *
2633 get_remote_thread_info (thread_info *thread)
2634 {
2635 gdb_assert (thread != NULL);
2636
2637 if (thread->priv == NULL)
2638 thread->priv.reset (new remote_thread_info);
2639
2640 return static_cast<remote_thread_info *> (thread->priv.get ());
2641 }
2642
2643 /* Return PTID's private thread data, creating it if necessary. */
2644
2645 static remote_thread_info *
2646 get_remote_thread_info (remote_target *target, ptid_t ptid)
2647 {
2648 thread_info *thr = find_thread_ptid (target, ptid);
2649 return get_remote_thread_info (thr);
2650 }
2651
2652 /* Call this function as a result of
2653 1) A halt indication (T packet) containing a thread id
2654 2) A direct query of currthread
2655 3) Successful execution of set thread */
2656
2657 static void
2658 record_currthread (struct remote_state *rs, ptid_t currthread)
2659 {
2660 rs->general_thread = currthread;
2661 }
2662
2663 /* If 'QPassSignals' is supported, tell the remote stub what signals
2664 it can simply pass through to the inferior without reporting. */
2665
2666 void
2667 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2668 {
2669 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2670 {
2671 char *pass_packet, *p;
2672 int count = 0;
2673 struct remote_state *rs = get_remote_state ();
2674
2675 gdb_assert (pass_signals.size () < 256);
2676 for (size_t i = 0; i < pass_signals.size (); i++)
2677 {
2678 if (pass_signals[i])
2679 count++;
2680 }
2681 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2682 strcpy (pass_packet, "QPassSignals:");
2683 p = pass_packet + strlen (pass_packet);
2684 for (size_t i = 0; i < pass_signals.size (); i++)
2685 {
2686 if (pass_signals[i])
2687 {
2688 if (i >= 16)
2689 *p++ = tohex (i >> 4);
2690 *p++ = tohex (i & 15);
2691 if (count)
2692 *p++ = ';';
2693 else
2694 break;
2695 count--;
2696 }
2697 }
2698 *p = 0;
2699 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2700 {
2701 putpkt (pass_packet);
2702 getpkt (&rs->buf, 0);
2703 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2704 xfree (rs->last_pass_packet);
2705 rs->last_pass_packet = pass_packet;
2706 }
2707 else
2708 xfree (pass_packet);
2709 }
2710 }
2711
2712 /* If 'QCatchSyscalls' is supported, tell the remote stub
2713 to report syscalls to GDB. */
2714
2715 int
2716 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2717 gdb::array_view<const int> syscall_counts)
2718 {
2719 const char *catch_packet;
2720 enum packet_result result;
2721 int n_sysno = 0;
2722
2723 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2724 {
2725 /* Not supported. */
2726 return 1;
2727 }
2728
2729 if (needed && any_count == 0)
2730 {
2731 /* Count how many syscalls are to be caught. */
2732 for (size_t i = 0; i < syscall_counts.size (); i++)
2733 {
2734 if (syscall_counts[i] != 0)
2735 n_sysno++;
2736 }
2737 }
2738
2739 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2740 pid, needed, any_count, n_sysno);
2741
2742 std::string built_packet;
2743 if (needed)
2744 {
2745 /* Prepare a packet with the sysno list, assuming max 8+1
2746 characters for a sysno. If the resulting packet size is too
2747 big, fallback on the non-selective packet. */
2748 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2749 built_packet.reserve (maxpktsz);
2750 built_packet = "QCatchSyscalls:1";
2751 if (any_count == 0)
2752 {
2753 /* Add in each syscall to be caught. */
2754 for (size_t i = 0; i < syscall_counts.size (); i++)
2755 {
2756 if (syscall_counts[i] != 0)
2757 string_appendf (built_packet, ";%zx", i);
2758 }
2759 }
2760 if (built_packet.size () > get_remote_packet_size ())
2761 {
2762 /* catch_packet too big. Fallback to less efficient
2763 non selective mode, with GDB doing the filtering. */
2764 catch_packet = "QCatchSyscalls:1";
2765 }
2766 else
2767 catch_packet = built_packet.c_str ();
2768 }
2769 else
2770 catch_packet = "QCatchSyscalls:0";
2771
2772 struct remote_state *rs = get_remote_state ();
2773
2774 putpkt (catch_packet);
2775 getpkt (&rs->buf, 0);
2776 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2777 if (result == PACKET_OK)
2778 return 0;
2779 else
2780 return -1;
2781 }
2782
2783 /* If 'QProgramSignals' is supported, tell the remote stub what
2784 signals it should pass through to the inferior when detaching. */
2785
2786 void
2787 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2788 {
2789 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2790 {
2791 char *packet, *p;
2792 int count = 0;
2793 struct remote_state *rs = get_remote_state ();
2794
2795 gdb_assert (signals.size () < 256);
2796 for (size_t i = 0; i < signals.size (); i++)
2797 {
2798 if (signals[i])
2799 count++;
2800 }
2801 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2802 strcpy (packet, "QProgramSignals:");
2803 p = packet + strlen (packet);
2804 for (size_t i = 0; i < signals.size (); i++)
2805 {
2806 if (signal_pass_state (i))
2807 {
2808 if (i >= 16)
2809 *p++ = tohex (i >> 4);
2810 *p++ = tohex (i & 15);
2811 if (count)
2812 *p++ = ';';
2813 else
2814 break;
2815 count--;
2816 }
2817 }
2818 *p = 0;
2819 if (!rs->last_program_signals_packet
2820 || strcmp (rs->last_program_signals_packet, packet) != 0)
2821 {
2822 putpkt (packet);
2823 getpkt (&rs->buf, 0);
2824 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2825 xfree (rs->last_program_signals_packet);
2826 rs->last_program_signals_packet = packet;
2827 }
2828 else
2829 xfree (packet);
2830 }
2831 }
2832
2833 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2834 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2835 thread. If GEN is set, set the general thread, if not, then set
2836 the step/continue thread. */
2837 void
2838 remote_target::set_thread (ptid_t ptid, int gen)
2839 {
2840 struct remote_state *rs = get_remote_state ();
2841 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2842 char *buf = rs->buf.data ();
2843 char *endbuf = buf + get_remote_packet_size ();
2844
2845 if (state == ptid)
2846 return;
2847
2848 *buf++ = 'H';
2849 *buf++ = gen ? 'g' : 'c';
2850 if (ptid == magic_null_ptid)
2851 xsnprintf (buf, endbuf - buf, "0");
2852 else if (ptid == any_thread_ptid)
2853 xsnprintf (buf, endbuf - buf, "0");
2854 else if (ptid == minus_one_ptid)
2855 xsnprintf (buf, endbuf - buf, "-1");
2856 else
2857 write_ptid (buf, endbuf, ptid);
2858 putpkt (rs->buf);
2859 getpkt (&rs->buf, 0);
2860 if (gen)
2861 rs->general_thread = ptid;
2862 else
2863 rs->continue_thread = ptid;
2864 }
2865
2866 void
2867 remote_target::set_general_thread (ptid_t ptid)
2868 {
2869 set_thread (ptid, 1);
2870 }
2871
2872 void
2873 remote_target::set_continue_thread (ptid_t ptid)
2874 {
2875 set_thread (ptid, 0);
2876 }
2877
2878 /* Change the remote current process. Which thread within the process
2879 ends up selected isn't important, as long as it is the same process
2880 as what INFERIOR_PTID points to.
2881
2882 This comes from that fact that there is no explicit notion of
2883 "selected process" in the protocol. The selected process for
2884 general operations is the process the selected general thread
2885 belongs to. */
2886
2887 void
2888 remote_target::set_general_process ()
2889 {
2890 struct remote_state *rs = get_remote_state ();
2891
2892 /* If the remote can't handle multiple processes, don't bother. */
2893 if (!remote_multi_process_p (rs))
2894 return;
2895
2896 /* We only need to change the remote current thread if it's pointing
2897 at some other process. */
2898 if (rs->general_thread.pid () != inferior_ptid.pid ())
2899 set_general_thread (inferior_ptid);
2900 }
2901
2902 \f
2903 /* Return nonzero if this is the main thread that we made up ourselves
2904 to model non-threaded targets as single-threaded. */
2905
2906 static int
2907 remote_thread_always_alive (ptid_t ptid)
2908 {
2909 if (ptid == magic_null_ptid)
2910 /* The main thread is always alive. */
2911 return 1;
2912
2913 if (ptid.pid () != 0 && ptid.lwp () == 0)
2914 /* The main thread is always alive. This can happen after a
2915 vAttach, if the remote side doesn't support
2916 multi-threading. */
2917 return 1;
2918
2919 return 0;
2920 }
2921
2922 /* Return nonzero if the thread PTID is still alive on the remote
2923 system. */
2924
2925 bool
2926 remote_target::thread_alive (ptid_t ptid)
2927 {
2928 struct remote_state *rs = get_remote_state ();
2929 char *p, *endp;
2930
2931 /* Check if this is a thread that we made up ourselves to model
2932 non-threaded targets as single-threaded. */
2933 if (remote_thread_always_alive (ptid))
2934 return 1;
2935
2936 p = rs->buf.data ();
2937 endp = p + get_remote_packet_size ();
2938
2939 *p++ = 'T';
2940 write_ptid (p, endp, ptid);
2941
2942 putpkt (rs->buf);
2943 getpkt (&rs->buf, 0);
2944 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2945 }
2946
2947 /* Return a pointer to a thread name if we know it and NULL otherwise.
2948 The thread_info object owns the memory for the name. */
2949
2950 const char *
2951 remote_target::thread_name (struct thread_info *info)
2952 {
2953 if (info->priv != NULL)
2954 {
2955 const std::string &name = get_remote_thread_info (info)->name;
2956 return !name.empty () ? name.c_str () : NULL;
2957 }
2958
2959 return NULL;
2960 }
2961
2962 /* About these extended threadlist and threadinfo packets. They are
2963 variable length packets but, the fields within them are often fixed
2964 length. They are redundant enough to send over UDP as is the
2965 remote protocol in general. There is a matching unit test module
2966 in libstub. */
2967
2968 /* WARNING: This threadref data structure comes from the remote O.S.,
2969 libstub protocol encoding, and remote.c. It is not particularly
2970 changable. */
2971
2972 /* Right now, the internal structure is int. We want it to be bigger.
2973 Plan to fix this. */
2974
2975 typedef int gdb_threadref; /* Internal GDB thread reference. */
2976
2977 /* gdb_ext_thread_info is an internal GDB data structure which is
2978 equivalent to the reply of the remote threadinfo packet. */
2979
2980 struct gdb_ext_thread_info
2981 {
2982 threadref threadid; /* External form of thread reference. */
2983 int active; /* Has state interesting to GDB?
2984 regs, stack. */
2985 char display[256]; /* Brief state display, name,
2986 blocked/suspended. */
2987 char shortname[32]; /* To be used to name threads. */
2988 char more_display[256]; /* Long info, statistics, queue depth,
2989 whatever. */
2990 };
2991
2992 /* The volume of remote transfers can be limited by submitting
2993 a mask containing bits specifying the desired information.
2994 Use a union of these values as the 'selection' parameter to
2995 get_thread_info. FIXME: Make these TAG names more thread specific. */
2996
2997 #define TAG_THREADID 1
2998 #define TAG_EXISTS 2
2999 #define TAG_DISPLAY 4
3000 #define TAG_THREADNAME 8
3001 #define TAG_MOREDISPLAY 16
3002
3003 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3004
3005 static const char *unpack_nibble (const char *buf, int *val);
3006
3007 static const char *unpack_byte (const char *buf, int *value);
3008
3009 static char *pack_int (char *buf, int value);
3010
3011 static const char *unpack_int (const char *buf, int *value);
3012
3013 static const char *unpack_string (const char *src, char *dest, int length);
3014
3015 static char *pack_threadid (char *pkt, threadref *id);
3016
3017 static const char *unpack_threadid (const char *inbuf, threadref *id);
3018
3019 void int_to_threadref (threadref *id, int value);
3020
3021 static int threadref_to_int (threadref *ref);
3022
3023 static void copy_threadref (threadref *dest, threadref *src);
3024
3025 static int threadmatch (threadref *dest, threadref *src);
3026
3027 static char *pack_threadinfo_request (char *pkt, int mode,
3028 threadref *id);
3029
3030 static char *pack_threadlist_request (char *pkt, int startflag,
3031 int threadcount,
3032 threadref *nextthread);
3033
3034 static int remote_newthread_step (threadref *ref, void *context);
3035
3036
3037 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3038 buffer we're allowed to write to. Returns
3039 BUF+CHARACTERS_WRITTEN. */
3040
3041 char *
3042 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3043 {
3044 int pid, tid;
3045 struct remote_state *rs = get_remote_state ();
3046
3047 if (remote_multi_process_p (rs))
3048 {
3049 pid = ptid.pid ();
3050 if (pid < 0)
3051 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3052 else
3053 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3054 }
3055 tid = ptid.lwp ();
3056 if (tid < 0)
3057 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3058 else
3059 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3060
3061 return buf;
3062 }
3063
3064 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3065 last parsed char. Returns null_ptid if no thread id is found, and
3066 throws an error if the thread id has an invalid format. */
3067
3068 static ptid_t
3069 read_ptid (const char *buf, const char **obuf)
3070 {
3071 const char *p = buf;
3072 const char *pp;
3073 ULONGEST pid = 0, tid = 0;
3074
3075 if (*p == 'p')
3076 {
3077 /* Multi-process ptid. */
3078 pp = unpack_varlen_hex (p + 1, &pid);
3079 if (*pp != '.')
3080 error (_("invalid remote ptid: %s"), p);
3081
3082 p = pp;
3083 pp = unpack_varlen_hex (p + 1, &tid);
3084 if (obuf)
3085 *obuf = pp;
3086 return ptid_t (pid, tid, 0);
3087 }
3088
3089 /* No multi-process. Just a tid. */
3090 pp = unpack_varlen_hex (p, &tid);
3091
3092 /* Return null_ptid when no thread id is found. */
3093 if (p == pp)
3094 {
3095 if (obuf)
3096 *obuf = pp;
3097 return null_ptid;
3098 }
3099
3100 /* Since the stub is not sending a process id, then default to
3101 what's in inferior_ptid, unless it's null at this point. If so,
3102 then since there's no way to know the pid of the reported
3103 threads, use the magic number. */
3104 if (inferior_ptid == null_ptid)
3105 pid = magic_null_ptid.pid ();
3106 else
3107 pid = inferior_ptid.pid ();
3108
3109 if (obuf)
3110 *obuf = pp;
3111 return ptid_t (pid, tid, 0);
3112 }
3113
3114 static int
3115 stubhex (int ch)
3116 {
3117 if (ch >= 'a' && ch <= 'f')
3118 return ch - 'a' + 10;
3119 if (ch >= '0' && ch <= '9')
3120 return ch - '0';
3121 if (ch >= 'A' && ch <= 'F')
3122 return ch - 'A' + 10;
3123 return -1;
3124 }
3125
3126 static int
3127 stub_unpack_int (const char *buff, int fieldlength)
3128 {
3129 int nibble;
3130 int retval = 0;
3131
3132 while (fieldlength)
3133 {
3134 nibble = stubhex (*buff++);
3135 retval |= nibble;
3136 fieldlength--;
3137 if (fieldlength)
3138 retval = retval << 4;
3139 }
3140 return retval;
3141 }
3142
3143 static const char *
3144 unpack_nibble (const char *buf, int *val)
3145 {
3146 *val = fromhex (*buf++);
3147 return buf;
3148 }
3149
3150 static const char *
3151 unpack_byte (const char *buf, int *value)
3152 {
3153 *value = stub_unpack_int (buf, 2);
3154 return buf + 2;
3155 }
3156
3157 static char *
3158 pack_int (char *buf, int value)
3159 {
3160 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3161 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3162 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3163 buf = pack_hex_byte (buf, (value & 0xff));
3164 return buf;
3165 }
3166
3167 static const char *
3168 unpack_int (const char *buf, int *value)
3169 {
3170 *value = stub_unpack_int (buf, 8);
3171 return buf + 8;
3172 }
3173
3174 #if 0 /* Currently unused, uncomment when needed. */
3175 static char *pack_string (char *pkt, char *string);
3176
3177 static char *
3178 pack_string (char *pkt, char *string)
3179 {
3180 char ch;
3181 int len;
3182
3183 len = strlen (string);
3184 if (len > 200)
3185 len = 200; /* Bigger than most GDB packets, junk??? */
3186 pkt = pack_hex_byte (pkt, len);
3187 while (len-- > 0)
3188 {
3189 ch = *string++;
3190 if ((ch == '\0') || (ch == '#'))
3191 ch = '*'; /* Protect encapsulation. */
3192 *pkt++ = ch;
3193 }
3194 return pkt;
3195 }
3196 #endif /* 0 (unused) */
3197
3198 static const char *
3199 unpack_string (const char *src, char *dest, int length)
3200 {
3201 while (length--)
3202 *dest++ = *src++;
3203 *dest = '\0';
3204 return src;
3205 }
3206
3207 static char *
3208 pack_threadid (char *pkt, threadref *id)
3209 {
3210 char *limit;
3211 unsigned char *altid;
3212
3213 altid = (unsigned char *) id;
3214 limit = pkt + BUF_THREAD_ID_SIZE;
3215 while (pkt < limit)
3216 pkt = pack_hex_byte (pkt, *altid++);
3217 return pkt;
3218 }
3219
3220
3221 static const char *
3222 unpack_threadid (const char *inbuf, threadref *id)
3223 {
3224 char *altref;
3225 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3226 int x, y;
3227
3228 altref = (char *) id;
3229
3230 while (inbuf < limit)
3231 {
3232 x = stubhex (*inbuf++);
3233 y = stubhex (*inbuf++);
3234 *altref++ = (x << 4) | y;
3235 }
3236 return inbuf;
3237 }
3238
3239 /* Externally, threadrefs are 64 bits but internally, they are still
3240 ints. This is due to a mismatch of specifications. We would like
3241 to use 64bit thread references internally. This is an adapter
3242 function. */
3243
3244 void
3245 int_to_threadref (threadref *id, int value)
3246 {
3247 unsigned char *scan;
3248
3249 scan = (unsigned char *) id;
3250 {
3251 int i = 4;
3252 while (i--)
3253 *scan++ = 0;
3254 }
3255 *scan++ = (value >> 24) & 0xff;
3256 *scan++ = (value >> 16) & 0xff;
3257 *scan++ = (value >> 8) & 0xff;
3258 *scan++ = (value & 0xff);
3259 }
3260
3261 static int
3262 threadref_to_int (threadref *ref)
3263 {
3264 int i, value = 0;
3265 unsigned char *scan;
3266
3267 scan = *ref;
3268 scan += 4;
3269 i = 4;
3270 while (i-- > 0)
3271 value = (value << 8) | ((*scan++) & 0xff);
3272 return value;
3273 }
3274
3275 static void
3276 copy_threadref (threadref *dest, threadref *src)
3277 {
3278 int i;
3279 unsigned char *csrc, *cdest;
3280
3281 csrc = (unsigned char *) src;
3282 cdest = (unsigned char *) dest;
3283 i = 8;
3284 while (i--)
3285 *cdest++ = *csrc++;
3286 }
3287
3288 static int
3289 threadmatch (threadref *dest, threadref *src)
3290 {
3291 /* Things are broken right now, so just assume we got a match. */
3292 #if 0
3293 unsigned char *srcp, *destp;
3294 int i, result;
3295 srcp = (char *) src;
3296 destp = (char *) dest;
3297
3298 result = 1;
3299 while (i-- > 0)
3300 result &= (*srcp++ == *destp++) ? 1 : 0;
3301 return result;
3302 #endif
3303 return 1;
3304 }
3305
3306 /*
3307 threadid:1, # always request threadid
3308 context_exists:2,
3309 display:4,
3310 unique_name:8,
3311 more_display:16
3312 */
3313
3314 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3315
3316 static char *
3317 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3318 {
3319 *pkt++ = 'q'; /* Info Query */
3320 *pkt++ = 'P'; /* process or thread info */
3321 pkt = pack_int (pkt, mode); /* mode */
3322 pkt = pack_threadid (pkt, id); /* threadid */
3323 *pkt = '\0'; /* terminate */
3324 return pkt;
3325 }
3326
3327 /* These values tag the fields in a thread info response packet. */
3328 /* Tagging the fields allows us to request specific fields and to
3329 add more fields as time goes by. */
3330
3331 #define TAG_THREADID 1 /* Echo the thread identifier. */
3332 #define TAG_EXISTS 2 /* Is this process defined enough to
3333 fetch registers and its stack? */
3334 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3335 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3336 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3337 the process. */
3338
3339 int
3340 remote_target::remote_unpack_thread_info_response (const char *pkt,
3341 threadref *expectedref,
3342 gdb_ext_thread_info *info)
3343 {
3344 struct remote_state *rs = get_remote_state ();
3345 int mask, length;
3346 int tag;
3347 threadref ref;
3348 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3349 int retval = 1;
3350
3351 /* info->threadid = 0; FIXME: implement zero_threadref. */
3352 info->active = 0;
3353 info->display[0] = '\0';
3354 info->shortname[0] = '\0';
3355 info->more_display[0] = '\0';
3356
3357 /* Assume the characters indicating the packet type have been
3358 stripped. */
3359 pkt = unpack_int (pkt, &mask); /* arg mask */
3360 pkt = unpack_threadid (pkt, &ref);
3361
3362 if (mask == 0)
3363 warning (_("Incomplete response to threadinfo request."));
3364 if (!threadmatch (&ref, expectedref))
3365 { /* This is an answer to a different request. */
3366 warning (_("ERROR RMT Thread info mismatch."));
3367 return 0;
3368 }
3369 copy_threadref (&info->threadid, &ref);
3370
3371 /* Loop on tagged fields , try to bail if something goes wrong. */
3372
3373 /* Packets are terminated with nulls. */
3374 while ((pkt < limit) && mask && *pkt)
3375 {
3376 pkt = unpack_int (pkt, &tag); /* tag */
3377 pkt = unpack_byte (pkt, &length); /* length */
3378 if (!(tag & mask)) /* Tags out of synch with mask. */
3379 {
3380 warning (_("ERROR RMT: threadinfo tag mismatch."));
3381 retval = 0;
3382 break;
3383 }
3384 if (tag == TAG_THREADID)
3385 {
3386 if (length != 16)
3387 {
3388 warning (_("ERROR RMT: length of threadid is not 16."));
3389 retval = 0;
3390 break;
3391 }
3392 pkt = unpack_threadid (pkt, &ref);
3393 mask = mask & ~TAG_THREADID;
3394 continue;
3395 }
3396 if (tag == TAG_EXISTS)
3397 {
3398 info->active = stub_unpack_int (pkt, length);
3399 pkt += length;
3400 mask = mask & ~(TAG_EXISTS);
3401 if (length > 8)
3402 {
3403 warning (_("ERROR RMT: 'exists' length too long."));
3404 retval = 0;
3405 break;
3406 }
3407 continue;
3408 }
3409 if (tag == TAG_THREADNAME)
3410 {
3411 pkt = unpack_string (pkt, &info->shortname[0], length);
3412 mask = mask & ~TAG_THREADNAME;
3413 continue;
3414 }
3415 if (tag == TAG_DISPLAY)
3416 {
3417 pkt = unpack_string (pkt, &info->display[0], length);
3418 mask = mask & ~TAG_DISPLAY;
3419 continue;
3420 }
3421 if (tag == TAG_MOREDISPLAY)
3422 {
3423 pkt = unpack_string (pkt, &info->more_display[0], length);
3424 mask = mask & ~TAG_MOREDISPLAY;
3425 continue;
3426 }
3427 warning (_("ERROR RMT: unknown thread info tag."));
3428 break; /* Not a tag we know about. */
3429 }
3430 return retval;
3431 }
3432
3433 int
3434 remote_target::remote_get_threadinfo (threadref *threadid,
3435 int fieldset,
3436 gdb_ext_thread_info *info)
3437 {
3438 struct remote_state *rs = get_remote_state ();
3439 int result;
3440
3441 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3442 putpkt (rs->buf);
3443 getpkt (&rs->buf, 0);
3444
3445 if (rs->buf[0] == '\0')
3446 return 0;
3447
3448 result = remote_unpack_thread_info_response (&rs->buf[2],
3449 threadid, info);
3450 return result;
3451 }
3452
3453 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3454
3455 static char *
3456 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3457 threadref *nextthread)
3458 {
3459 *pkt++ = 'q'; /* info query packet */
3460 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3461 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3462 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3463 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3464 *pkt = '\0';
3465 return pkt;
3466 }
3467
3468 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3469
3470 int
3471 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3472 threadref *original_echo,
3473 threadref *resultlist,
3474 int *doneflag)
3475 {
3476 struct remote_state *rs = get_remote_state ();
3477 int count, resultcount, done;
3478
3479 resultcount = 0;
3480 /* Assume the 'q' and 'M chars have been stripped. */
3481 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3482 /* done parse past here */
3483 pkt = unpack_byte (pkt, &count); /* count field */
3484 pkt = unpack_nibble (pkt, &done);
3485 /* The first threadid is the argument threadid. */
3486 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3487 while ((count-- > 0) && (pkt < limit))
3488 {
3489 pkt = unpack_threadid (pkt, resultlist++);
3490 if (resultcount++ >= result_limit)
3491 break;
3492 }
3493 if (doneflag)
3494 *doneflag = done;
3495 return resultcount;
3496 }
3497
3498 /* Fetch the next batch of threads from the remote. Returns -1 if the
3499 qL packet is not supported, 0 on error and 1 on success. */
3500
3501 int
3502 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3503 int result_limit, int *done, int *result_count,
3504 threadref *threadlist)
3505 {
3506 struct remote_state *rs = get_remote_state ();
3507 int result = 1;
3508
3509 /* Truncate result limit to be smaller than the packet size. */
3510 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3511 >= get_remote_packet_size ())
3512 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3513
3514 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3515 nextthread);
3516 putpkt (rs->buf);
3517 getpkt (&rs->buf, 0);
3518 if (rs->buf[0] == '\0')
3519 {
3520 /* Packet not supported. */
3521 return -1;
3522 }
3523
3524 *result_count =
3525 parse_threadlist_response (&rs->buf[2], result_limit,
3526 &rs->echo_nextthread, threadlist, done);
3527
3528 if (!threadmatch (&rs->echo_nextthread, nextthread))
3529 {
3530 /* FIXME: This is a good reason to drop the packet. */
3531 /* Possibly, there is a duplicate response. */
3532 /* Possibilities :
3533 retransmit immediatly - race conditions
3534 retransmit after timeout - yes
3535 exit
3536 wait for packet, then exit
3537 */
3538 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3539 return 0; /* I choose simply exiting. */
3540 }
3541 if (*result_count <= 0)
3542 {
3543 if (*done != 1)
3544 {
3545 warning (_("RMT ERROR : failed to get remote thread list."));
3546 result = 0;
3547 }
3548 return result; /* break; */
3549 }
3550 if (*result_count > result_limit)
3551 {
3552 *result_count = 0;
3553 warning (_("RMT ERROR: threadlist response longer than requested."));
3554 return 0;
3555 }
3556 return result;
3557 }
3558
3559 /* Fetch the list of remote threads, with the qL packet, and call
3560 STEPFUNCTION for each thread found. Stops iterating and returns 1
3561 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3562 STEPFUNCTION returns false. If the packet is not supported,
3563 returns -1. */
3564
3565 int
3566 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3567 void *context, int looplimit)
3568 {
3569 struct remote_state *rs = get_remote_state ();
3570 int done, i, result_count;
3571 int startflag = 1;
3572 int result = 1;
3573 int loopcount = 0;
3574
3575 done = 0;
3576 while (!done)
3577 {
3578 if (loopcount++ > looplimit)
3579 {
3580 result = 0;
3581 warning (_("Remote fetch threadlist -infinite loop-."));
3582 break;
3583 }
3584 result = remote_get_threadlist (startflag, &rs->nextthread,
3585 MAXTHREADLISTRESULTS,
3586 &done, &result_count,
3587 rs->resultthreadlist);
3588 if (result <= 0)
3589 break;
3590 /* Clear for later iterations. */
3591 startflag = 0;
3592 /* Setup to resume next batch of thread references, set nextthread. */
3593 if (result_count >= 1)
3594 copy_threadref (&rs->nextthread,
3595 &rs->resultthreadlist[result_count - 1]);
3596 i = 0;
3597 while (result_count--)
3598 {
3599 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3600 {
3601 result = 0;
3602 break;
3603 }
3604 }
3605 }
3606 return result;
3607 }
3608
3609 /* A thread found on the remote target. */
3610
3611 struct thread_item
3612 {
3613 explicit thread_item (ptid_t ptid_)
3614 : ptid (ptid_)
3615 {}
3616
3617 thread_item (thread_item &&other) = default;
3618 thread_item &operator= (thread_item &&other) = default;
3619
3620 DISABLE_COPY_AND_ASSIGN (thread_item);
3621
3622 /* The thread's PTID. */
3623 ptid_t ptid;
3624
3625 /* The thread's extra info. */
3626 std::string extra;
3627
3628 /* The thread's name. */
3629 std::string name;
3630
3631 /* The core the thread was running on. -1 if not known. */
3632 int core = -1;
3633
3634 /* The thread handle associated with the thread. */
3635 gdb::byte_vector thread_handle;
3636 };
3637
3638 /* Context passed around to the various methods listing remote
3639 threads. As new threads are found, they're added to the ITEMS
3640 vector. */
3641
3642 struct threads_listing_context
3643 {
3644 /* Return true if this object contains an entry for a thread with ptid
3645 PTID. */
3646
3647 bool contains_thread (ptid_t ptid) const
3648 {
3649 auto match_ptid = [&] (const thread_item &item)
3650 {
3651 return item.ptid == ptid;
3652 };
3653
3654 auto it = std::find_if (this->items.begin (),
3655 this->items.end (),
3656 match_ptid);
3657
3658 return it != this->items.end ();
3659 }
3660
3661 /* Remove the thread with ptid PTID. */
3662
3663 void remove_thread (ptid_t ptid)
3664 {
3665 auto match_ptid = [&] (const thread_item &item)
3666 {
3667 return item.ptid == ptid;
3668 };
3669
3670 auto it = std::remove_if (this->items.begin (),
3671 this->items.end (),
3672 match_ptid);
3673
3674 if (it != this->items.end ())
3675 this->items.erase (it);
3676 }
3677
3678 /* The threads found on the remote target. */
3679 std::vector<thread_item> items;
3680 };
3681
3682 static int
3683 remote_newthread_step (threadref *ref, void *data)
3684 {
3685 struct threads_listing_context *context
3686 = (struct threads_listing_context *) data;
3687 int pid = inferior_ptid.pid ();
3688 int lwp = threadref_to_int (ref);
3689 ptid_t ptid (pid, lwp);
3690
3691 context->items.emplace_back (ptid);
3692
3693 return 1; /* continue iterator */
3694 }
3695
3696 #define CRAZY_MAX_THREADS 1000
3697
3698 ptid_t
3699 remote_target::remote_current_thread (ptid_t oldpid)
3700 {
3701 struct remote_state *rs = get_remote_state ();
3702
3703 putpkt ("qC");
3704 getpkt (&rs->buf, 0);
3705 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3706 {
3707 const char *obuf;
3708 ptid_t result;
3709
3710 result = read_ptid (&rs->buf[2], &obuf);
3711 if (*obuf != '\0')
3712 remote_debug_printf ("warning: garbage in qC reply");
3713
3714 return result;
3715 }
3716 else
3717 return oldpid;
3718 }
3719
3720 /* List remote threads using the deprecated qL packet. */
3721
3722 int
3723 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3724 {
3725 if (remote_threadlist_iterator (remote_newthread_step, context,
3726 CRAZY_MAX_THREADS) >= 0)
3727 return 1;
3728
3729 return 0;
3730 }
3731
3732 #if defined(HAVE_LIBEXPAT)
3733
3734 static void
3735 start_thread (struct gdb_xml_parser *parser,
3736 const struct gdb_xml_element *element,
3737 void *user_data,
3738 std::vector<gdb_xml_value> &attributes)
3739 {
3740 struct threads_listing_context *data
3741 = (struct threads_listing_context *) user_data;
3742 struct gdb_xml_value *attr;
3743
3744 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3745 ptid_t ptid = read_ptid (id, NULL);
3746
3747 data->items.emplace_back (ptid);
3748 thread_item &item = data->items.back ();
3749
3750 attr = xml_find_attribute (attributes, "core");
3751 if (attr != NULL)
3752 item.core = *(ULONGEST *) attr->value.get ();
3753
3754 attr = xml_find_attribute (attributes, "name");
3755 if (attr != NULL)
3756 item.name = (const char *) attr->value.get ();
3757
3758 attr = xml_find_attribute (attributes, "handle");
3759 if (attr != NULL)
3760 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3761 }
3762
3763 static void
3764 end_thread (struct gdb_xml_parser *parser,
3765 const struct gdb_xml_element *element,
3766 void *user_data, const char *body_text)
3767 {
3768 struct threads_listing_context *data
3769 = (struct threads_listing_context *) user_data;
3770
3771 if (body_text != NULL && *body_text != '\0')
3772 data->items.back ().extra = body_text;
3773 }
3774
3775 const struct gdb_xml_attribute thread_attributes[] = {
3776 { "id", GDB_XML_AF_NONE, NULL, NULL },
3777 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3778 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3779 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3780 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3781 };
3782
3783 const struct gdb_xml_element thread_children[] = {
3784 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3785 };
3786
3787 const struct gdb_xml_element threads_children[] = {
3788 { "thread", thread_attributes, thread_children,
3789 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3790 start_thread, end_thread },
3791 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3792 };
3793
3794 const struct gdb_xml_element threads_elements[] = {
3795 { "threads", NULL, threads_children,
3796 GDB_XML_EF_NONE, NULL, NULL },
3797 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3798 };
3799
3800 #endif
3801
3802 /* List remote threads using qXfer:threads:read. */
3803
3804 int
3805 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3806 {
3807 #if defined(HAVE_LIBEXPAT)
3808 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3809 {
3810 gdb::optional<gdb::char_vector> xml
3811 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3812
3813 if (xml && (*xml)[0] != '\0')
3814 {
3815 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3816 threads_elements, xml->data (), context);
3817 }
3818
3819 return 1;
3820 }
3821 #endif
3822
3823 return 0;
3824 }
3825
3826 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3827
3828 int
3829 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3830 {
3831 struct remote_state *rs = get_remote_state ();
3832
3833 if (rs->use_threadinfo_query)
3834 {
3835 const char *bufp;
3836
3837 putpkt ("qfThreadInfo");
3838 getpkt (&rs->buf, 0);
3839 bufp = rs->buf.data ();
3840 if (bufp[0] != '\0') /* q packet recognized */
3841 {
3842 while (*bufp++ == 'm') /* reply contains one or more TID */
3843 {
3844 do
3845 {
3846 ptid_t ptid = read_ptid (bufp, &bufp);
3847 context->items.emplace_back (ptid);
3848 }
3849 while (*bufp++ == ','); /* comma-separated list */
3850 putpkt ("qsThreadInfo");
3851 getpkt (&rs->buf, 0);
3852 bufp = rs->buf.data ();
3853 }
3854 return 1;
3855 }
3856 else
3857 {
3858 /* Packet not recognized. */
3859 rs->use_threadinfo_query = 0;
3860 }
3861 }
3862
3863 return 0;
3864 }
3865
3866 /* Return true if INF only has one non-exited thread. */
3867
3868 static bool
3869 has_single_non_exited_thread (inferior *inf)
3870 {
3871 int count = 0;
3872 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3873 if (++count > 1)
3874 break;
3875 return count == 1;
3876 }
3877
3878 /* Implement the to_update_thread_list function for the remote
3879 targets. */
3880
3881 void
3882 remote_target::update_thread_list ()
3883 {
3884 struct threads_listing_context context;
3885 int got_list = 0;
3886
3887 /* We have a few different mechanisms to fetch the thread list. Try
3888 them all, starting with the most preferred one first, falling
3889 back to older methods. */
3890 if (remote_get_threads_with_qxfer (&context)
3891 || remote_get_threads_with_qthreadinfo (&context)
3892 || remote_get_threads_with_ql (&context))
3893 {
3894 got_list = 1;
3895
3896 if (context.items.empty ()
3897 && remote_thread_always_alive (inferior_ptid))
3898 {
3899 /* Some targets don't really support threads, but still
3900 reply an (empty) thread list in response to the thread
3901 listing packets, instead of replying "packet not
3902 supported". Exit early so we don't delete the main
3903 thread. */
3904 return;
3905 }
3906
3907 /* CONTEXT now holds the current thread list on the remote
3908 target end. Delete GDB-side threads no longer found on the
3909 target. */
3910 for (thread_info *tp : all_threads_safe ())
3911 {
3912 if (tp->inf->process_target () != this)
3913 continue;
3914
3915 if (!context.contains_thread (tp->ptid))
3916 {
3917 /* Do not remove the thread if it is the last thread in
3918 the inferior. This situation happens when we have a
3919 pending exit process status to process. Otherwise we
3920 may end up with a seemingly live inferior (i.e. pid
3921 != 0) that has no threads. */
3922 if (has_single_non_exited_thread (tp->inf))
3923 continue;
3924
3925 /* Not found. */
3926 delete_thread (tp);
3927 }
3928 }
3929
3930 /* Remove any unreported fork child threads from CONTEXT so
3931 that we don't interfere with follow fork, which is where
3932 creation of such threads is handled. */
3933 remove_new_fork_children (&context);
3934
3935 /* And now add threads we don't know about yet to our list. */
3936 for (thread_item &item : context.items)
3937 {
3938 if (item.ptid != null_ptid)
3939 {
3940 /* In non-stop mode, we assume new found threads are
3941 executing until proven otherwise with a stop reply.
3942 In all-stop, we can only get here if all threads are
3943 stopped. */
3944 int executing = target_is_non_stop_p () ? 1 : 0;
3945
3946 remote_notice_new_inferior (item.ptid, executing);
3947
3948 thread_info *tp = find_thread_ptid (this, item.ptid);
3949 remote_thread_info *info = get_remote_thread_info (tp);
3950 info->core = item.core;
3951 info->extra = std::move (item.extra);
3952 info->name = std::move (item.name);
3953 info->thread_handle = std::move (item.thread_handle);
3954 }
3955 }
3956 }
3957
3958 if (!got_list)
3959 {
3960 /* If no thread listing method is supported, then query whether
3961 each known thread is alive, one by one, with the T packet.
3962 If the target doesn't support threads at all, then this is a
3963 no-op. See remote_thread_alive. */
3964 prune_threads ();
3965 }
3966 }
3967
3968 /*
3969 * Collect a descriptive string about the given thread.
3970 * The target may say anything it wants to about the thread
3971 * (typically info about its blocked / runnable state, name, etc.).
3972 * This string will appear in the info threads display.
3973 *
3974 * Optional: targets are not required to implement this function.
3975 */
3976
3977 const char *
3978 remote_target::extra_thread_info (thread_info *tp)
3979 {
3980 struct remote_state *rs = get_remote_state ();
3981 int set;
3982 threadref id;
3983 struct gdb_ext_thread_info threadinfo;
3984
3985 if (rs->remote_desc == 0) /* paranoia */
3986 internal_error (__FILE__, __LINE__,
3987 _("remote_threads_extra_info"));
3988
3989 if (tp->ptid == magic_null_ptid
3990 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3991 /* This is the main thread which was added by GDB. The remote
3992 server doesn't know about it. */
3993 return NULL;
3994
3995 std::string &extra = get_remote_thread_info (tp)->extra;
3996
3997 /* If already have cached info, use it. */
3998 if (!extra.empty ())
3999 return extra.c_str ();
4000
4001 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4002 {
4003 /* If we're using qXfer:threads:read, then the extra info is
4004 included in the XML. So if we didn't have anything cached,
4005 it's because there's really no extra info. */
4006 return NULL;
4007 }
4008
4009 if (rs->use_threadextra_query)
4010 {
4011 char *b = rs->buf.data ();
4012 char *endb = b + get_remote_packet_size ();
4013
4014 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4015 b += strlen (b);
4016 write_ptid (b, endb, tp->ptid);
4017
4018 putpkt (rs->buf);
4019 getpkt (&rs->buf, 0);
4020 if (rs->buf[0] != 0)
4021 {
4022 extra.resize (strlen (rs->buf.data ()) / 2);
4023 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4024 return extra.c_str ();
4025 }
4026 }
4027
4028 /* If the above query fails, fall back to the old method. */
4029 rs->use_threadextra_query = 0;
4030 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4031 | TAG_MOREDISPLAY | TAG_DISPLAY;
4032 int_to_threadref (&id, tp->ptid.lwp ());
4033 if (remote_get_threadinfo (&id, set, &threadinfo))
4034 if (threadinfo.active)
4035 {
4036 if (*threadinfo.shortname)
4037 string_appendf (extra, " Name: %s", threadinfo.shortname);
4038 if (*threadinfo.display)
4039 {
4040 if (!extra.empty ())
4041 extra += ',';
4042 string_appendf (extra, " State: %s", threadinfo.display);
4043 }
4044 if (*threadinfo.more_display)
4045 {
4046 if (!extra.empty ())
4047 extra += ',';
4048 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4049 }
4050 return extra.c_str ();
4051 }
4052 return NULL;
4053 }
4054 \f
4055
4056 bool
4057 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4058 struct static_tracepoint_marker *marker)
4059 {
4060 struct remote_state *rs = get_remote_state ();
4061 char *p = rs->buf.data ();
4062
4063 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4064 p += strlen (p);
4065 p += hexnumstr (p, addr);
4066 putpkt (rs->buf);
4067 getpkt (&rs->buf, 0);
4068 p = rs->buf.data ();
4069
4070 if (*p == 'E')
4071 error (_("Remote failure reply: %s"), p);
4072
4073 if (*p++ == 'm')
4074 {
4075 parse_static_tracepoint_marker_definition (p, NULL, marker);
4076 return true;
4077 }
4078
4079 return false;
4080 }
4081
4082 std::vector<static_tracepoint_marker>
4083 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4084 {
4085 struct remote_state *rs = get_remote_state ();
4086 std::vector<static_tracepoint_marker> markers;
4087 const char *p;
4088 static_tracepoint_marker marker;
4089
4090 /* Ask for a first packet of static tracepoint marker
4091 definition. */
4092 putpkt ("qTfSTM");
4093 getpkt (&rs->buf, 0);
4094 p = rs->buf.data ();
4095 if (*p == 'E')
4096 error (_("Remote failure reply: %s"), p);
4097
4098 while (*p++ == 'm')
4099 {
4100 do
4101 {
4102 parse_static_tracepoint_marker_definition (p, &p, &marker);
4103
4104 if (strid == NULL || marker.str_id == strid)
4105 markers.push_back (std::move (marker));
4106 }
4107 while (*p++ == ','); /* comma-separated list */
4108 /* Ask for another packet of static tracepoint definition. */
4109 putpkt ("qTsSTM");
4110 getpkt (&rs->buf, 0);
4111 p = rs->buf.data ();
4112 }
4113
4114 return markers;
4115 }
4116
4117 \f
4118 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4119
4120 ptid_t
4121 remote_target::get_ada_task_ptid (long lwp, long thread)
4122 {
4123 return ptid_t (inferior_ptid.pid (), lwp, 0);
4124 }
4125 \f
4126
4127 /* Restart the remote side; this is an extended protocol operation. */
4128
4129 void
4130 remote_target::extended_remote_restart ()
4131 {
4132 struct remote_state *rs = get_remote_state ();
4133
4134 /* Send the restart command; for reasons I don't understand the
4135 remote side really expects a number after the "R". */
4136 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4137 putpkt (rs->buf);
4138
4139 remote_fileio_reset ();
4140 }
4141 \f
4142 /* Clean up connection to a remote debugger. */
4143
4144 void
4145 remote_target::close ()
4146 {
4147 /* Make sure we leave stdin registered in the event loop. */
4148 terminal_ours ();
4149
4150 trace_reset_local_state ();
4151
4152 delete this;
4153 }
4154
4155 remote_target::~remote_target ()
4156 {
4157 struct remote_state *rs = get_remote_state ();
4158
4159 /* Check for NULL because we may get here with a partially
4160 constructed target/connection. */
4161 if (rs->remote_desc == nullptr)
4162 return;
4163
4164 serial_close (rs->remote_desc);
4165
4166 /* We are destroying the remote target, so we should discard
4167 everything of this target. */
4168 discard_pending_stop_replies_in_queue ();
4169
4170 if (rs->remote_async_inferior_event_token)
4171 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4172
4173 delete rs->notif_state;
4174 }
4175
4176 /* Query the remote side for the text, data and bss offsets. */
4177
4178 void
4179 remote_target::get_offsets ()
4180 {
4181 struct remote_state *rs = get_remote_state ();
4182 char *buf;
4183 char *ptr;
4184 int lose, num_segments = 0, do_sections, do_segments;
4185 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4186
4187 if (current_program_space->symfile_object_file == NULL)
4188 return;
4189
4190 putpkt ("qOffsets");
4191 getpkt (&rs->buf, 0);
4192 buf = rs->buf.data ();
4193
4194 if (buf[0] == '\000')
4195 return; /* Return silently. Stub doesn't support
4196 this command. */
4197 if (buf[0] == 'E')
4198 {
4199 warning (_("Remote failure reply: %s"), buf);
4200 return;
4201 }
4202
4203 /* Pick up each field in turn. This used to be done with scanf, but
4204 scanf will make trouble if CORE_ADDR size doesn't match
4205 conversion directives correctly. The following code will work
4206 with any size of CORE_ADDR. */
4207 text_addr = data_addr = bss_addr = 0;
4208 ptr = buf;
4209 lose = 0;
4210
4211 if (startswith (ptr, "Text="))
4212 {
4213 ptr += 5;
4214 /* Don't use strtol, could lose on big values. */
4215 while (*ptr && *ptr != ';')
4216 text_addr = (text_addr << 4) + fromhex (*ptr++);
4217
4218 if (startswith (ptr, ";Data="))
4219 {
4220 ptr += 6;
4221 while (*ptr && *ptr != ';')
4222 data_addr = (data_addr << 4) + fromhex (*ptr++);
4223 }
4224 else
4225 lose = 1;
4226
4227 if (!lose && startswith (ptr, ";Bss="))
4228 {
4229 ptr += 5;
4230 while (*ptr && *ptr != ';')
4231 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4232
4233 if (bss_addr != data_addr)
4234 warning (_("Target reported unsupported offsets: %s"), buf);
4235 }
4236 else
4237 lose = 1;
4238 }
4239 else if (startswith (ptr, "TextSeg="))
4240 {
4241 ptr += 8;
4242 /* Don't use strtol, could lose on big values. */
4243 while (*ptr && *ptr != ';')
4244 text_addr = (text_addr << 4) + fromhex (*ptr++);
4245 num_segments = 1;
4246
4247 if (startswith (ptr, ";DataSeg="))
4248 {
4249 ptr += 9;
4250 while (*ptr && *ptr != ';')
4251 data_addr = (data_addr << 4) + fromhex (*ptr++);
4252 num_segments++;
4253 }
4254 }
4255 else
4256 lose = 1;
4257
4258 if (lose)
4259 error (_("Malformed response to offset query, %s"), buf);
4260 else if (*ptr != '\0')
4261 warning (_("Target reported unsupported offsets: %s"), buf);
4262
4263 objfile *objf = current_program_space->symfile_object_file;
4264 section_offsets offs = objf->section_offsets;
4265
4266 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4267 do_segments = (data != NULL);
4268 do_sections = num_segments == 0;
4269
4270 if (num_segments > 0)
4271 {
4272 segments[0] = text_addr;
4273 segments[1] = data_addr;
4274 }
4275 /* If we have two segments, we can still try to relocate everything
4276 by assuming that the .text and .data offsets apply to the whole
4277 text and data segments. Convert the offsets given in the packet
4278 to base addresses for symfile_map_offsets_to_segments. */
4279 else if (data != nullptr && data->segments.size () == 2)
4280 {
4281 segments[0] = data->segments[0].base + text_addr;
4282 segments[1] = data->segments[1].base + data_addr;
4283 num_segments = 2;
4284 }
4285 /* If the object file has only one segment, assume that it is text
4286 rather than data; main programs with no writable data are rare,
4287 but programs with no code are useless. Of course the code might
4288 have ended up in the data segment... to detect that we would need
4289 the permissions here. */
4290 else if (data && data->segments.size () == 1)
4291 {
4292 segments[0] = data->segments[0].base + text_addr;
4293 num_segments = 1;
4294 }
4295 /* There's no way to relocate by segment. */
4296 else
4297 do_segments = 0;
4298
4299 if (do_segments)
4300 {
4301 int ret = symfile_map_offsets_to_segments (objf->obfd,
4302 data.get (), offs,
4303 num_segments, segments);
4304
4305 if (ret == 0 && !do_sections)
4306 error (_("Can not handle qOffsets TextSeg "
4307 "response with this symbol file"));
4308
4309 if (ret > 0)
4310 do_sections = 0;
4311 }
4312
4313 if (do_sections)
4314 {
4315 offs[SECT_OFF_TEXT (objf)] = text_addr;
4316
4317 /* This is a temporary kludge to force data and bss to use the
4318 same offsets because that's what nlmconv does now. The real
4319 solution requires changes to the stub and remote.c that I
4320 don't have time to do right now. */
4321
4322 offs[SECT_OFF_DATA (objf)] = data_addr;
4323 offs[SECT_OFF_BSS (objf)] = data_addr;
4324 }
4325
4326 objfile_relocate (objf, offs);
4327 }
4328
4329 /* Send interrupt_sequence to remote target. */
4330
4331 void
4332 remote_target::send_interrupt_sequence ()
4333 {
4334 struct remote_state *rs = get_remote_state ();
4335
4336 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4337 remote_serial_write ("\x03", 1);
4338 else if (interrupt_sequence_mode == interrupt_sequence_break)
4339 serial_send_break (rs->remote_desc);
4340 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4341 {
4342 serial_send_break (rs->remote_desc);
4343 remote_serial_write ("g", 1);
4344 }
4345 else
4346 internal_error (__FILE__, __LINE__,
4347 _("Invalid value for interrupt_sequence_mode: %s."),
4348 interrupt_sequence_mode);
4349 }
4350
4351
4352 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4353 and extract the PTID. Returns NULL_PTID if not found. */
4354
4355 static ptid_t
4356 stop_reply_extract_thread (const char *stop_reply)
4357 {
4358 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4359 {
4360 const char *p;
4361
4362 /* Txx r:val ; r:val (...) */
4363 p = &stop_reply[3];
4364
4365 /* Look for "register" named "thread". */
4366 while (*p != '\0')
4367 {
4368 const char *p1;
4369
4370 p1 = strchr (p, ':');
4371 if (p1 == NULL)
4372 return null_ptid;
4373
4374 if (strncmp (p, "thread", p1 - p) == 0)
4375 return read_ptid (++p1, &p);
4376
4377 p1 = strchr (p, ';');
4378 if (p1 == NULL)
4379 return null_ptid;
4380 p1++;
4381
4382 p = p1;
4383 }
4384 }
4385
4386 return null_ptid;
4387 }
4388
4389 /* Determine the remote side's current thread. If we have a stop
4390 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4391 "thread" register we can extract the current thread from. If not,
4392 ask the remote which is the current thread with qC. The former
4393 method avoids a roundtrip. */
4394
4395 ptid_t
4396 remote_target::get_current_thread (const char *wait_status)
4397 {
4398 ptid_t ptid = null_ptid;
4399
4400 /* Note we don't use remote_parse_stop_reply as that makes use of
4401 the target architecture, which we haven't yet fully determined at
4402 this point. */
4403 if (wait_status != NULL)
4404 ptid = stop_reply_extract_thread (wait_status);
4405 if (ptid == null_ptid)
4406 ptid = remote_current_thread (inferior_ptid);
4407
4408 return ptid;
4409 }
4410
4411 /* Query the remote target for which is the current thread/process,
4412 add it to our tables, and update INFERIOR_PTID. The caller is
4413 responsible for setting the state such that the remote end is ready
4414 to return the current thread.
4415
4416 This function is called after handling the '?' or 'vRun' packets,
4417 whose response is a stop reply from which we can also try
4418 extracting the thread. If the target doesn't support the explicit
4419 qC query, we infer the current thread from that stop reply, passed
4420 in in WAIT_STATUS, which may be NULL.
4421
4422 The function returns pointer to the main thread of the inferior. */
4423
4424 thread_info *
4425 remote_target::add_current_inferior_and_thread (const char *wait_status)
4426 {
4427 struct remote_state *rs = get_remote_state ();
4428 bool fake_pid_p = false;
4429
4430 switch_to_no_thread ();
4431
4432 /* Now, if we have thread information, update the current thread's
4433 ptid. */
4434 ptid_t curr_ptid = get_current_thread (wait_status);
4435
4436 if (curr_ptid != null_ptid)
4437 {
4438 if (!remote_multi_process_p (rs))
4439 fake_pid_p = true;
4440 }
4441 else
4442 {
4443 /* Without this, some commands which require an active target
4444 (such as kill) won't work. This variable serves (at least)
4445 double duty as both the pid of the target process (if it has
4446 such), and as a flag indicating that a target is active. */
4447 curr_ptid = magic_null_ptid;
4448 fake_pid_p = true;
4449 }
4450
4451 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4452
4453 /* Add the main thread and switch to it. Don't try reading
4454 registers yet, since we haven't fetched the target description
4455 yet. */
4456 thread_info *tp = add_thread_silent (this, curr_ptid);
4457 switch_to_thread_no_regs (tp);
4458
4459 return tp;
4460 }
4461
4462 /* Print info about a thread that was found already stopped on
4463 connection. */
4464
4465 static void
4466 print_one_stopped_thread (struct thread_info *thread)
4467 {
4468 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4469
4470 switch_to_thread (thread);
4471 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4472 set_current_sal_from_frame (get_current_frame ());
4473
4474 thread->suspend.waitstatus_pending_p = 0;
4475
4476 if (ws->kind == TARGET_WAITKIND_STOPPED)
4477 {
4478 enum gdb_signal sig = ws->value.sig;
4479
4480 if (signal_print_state (sig))
4481 gdb::observers::signal_received.notify (sig);
4482 }
4483 gdb::observers::normal_stop.notify (NULL, 1);
4484 }
4485
4486 /* Process all initial stop replies the remote side sent in response
4487 to the ? packet. These indicate threads that were already stopped
4488 on initial connection. We mark these threads as stopped and print
4489 their current frame before giving the user the prompt. */
4490
4491 void
4492 remote_target::process_initial_stop_replies (int from_tty)
4493 {
4494 int pending_stop_replies = stop_reply_queue_length ();
4495 struct thread_info *selected = NULL;
4496 struct thread_info *lowest_stopped = NULL;
4497 struct thread_info *first = NULL;
4498
4499 /* Consume the initial pending events. */
4500 while (pending_stop_replies-- > 0)
4501 {
4502 ptid_t waiton_ptid = minus_one_ptid;
4503 ptid_t event_ptid;
4504 struct target_waitstatus ws;
4505 int ignore_event = 0;
4506
4507 memset (&ws, 0, sizeof (ws));
4508 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4509 if (remote_debug)
4510 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4511
4512 switch (ws.kind)
4513 {
4514 case TARGET_WAITKIND_IGNORE:
4515 case TARGET_WAITKIND_NO_RESUMED:
4516 case TARGET_WAITKIND_SIGNALLED:
4517 case TARGET_WAITKIND_EXITED:
4518 /* We shouldn't see these, but if we do, just ignore. */
4519 remote_debug_printf ("event ignored");
4520 ignore_event = 1;
4521 break;
4522
4523 case TARGET_WAITKIND_EXECD:
4524 xfree (ws.value.execd_pathname);
4525 break;
4526 default:
4527 break;
4528 }
4529
4530 if (ignore_event)
4531 continue;
4532
4533 thread_info *evthread = find_thread_ptid (this, event_ptid);
4534
4535 if (ws.kind == TARGET_WAITKIND_STOPPED)
4536 {
4537 enum gdb_signal sig = ws.value.sig;
4538
4539 /* Stubs traditionally report SIGTRAP as initial signal,
4540 instead of signal 0. Suppress it. */
4541 if (sig == GDB_SIGNAL_TRAP)
4542 sig = GDB_SIGNAL_0;
4543 evthread->suspend.stop_signal = sig;
4544 ws.value.sig = sig;
4545 }
4546
4547 evthread->suspend.waitstatus = ws;
4548
4549 if (ws.kind != TARGET_WAITKIND_STOPPED
4550 || ws.value.sig != GDB_SIGNAL_0)
4551 evthread->suspend.waitstatus_pending_p = 1;
4552
4553 set_executing (this, event_ptid, false);
4554 set_running (this, event_ptid, false);
4555 get_remote_thread_info (evthread)->set_not_resumed ();
4556 }
4557
4558 /* "Notice" the new inferiors before anything related to
4559 registers/memory. */
4560 for (inferior *inf : all_non_exited_inferiors (this))
4561 {
4562 inf->needs_setup = 1;
4563
4564 if (non_stop)
4565 {
4566 thread_info *thread = any_live_thread_of_inferior (inf);
4567 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4568 from_tty);
4569 }
4570 }
4571
4572 /* If all-stop on top of non-stop, pause all threads. Note this
4573 records the threads' stop pc, so must be done after "noticing"
4574 the inferiors. */
4575 if (!non_stop)
4576 {
4577 stop_all_threads ();
4578
4579 /* If all threads of an inferior were already stopped, we
4580 haven't setup the inferior yet. */
4581 for (inferior *inf : all_non_exited_inferiors (this))
4582 {
4583 if (inf->needs_setup)
4584 {
4585 thread_info *thread = any_live_thread_of_inferior (inf);
4586 switch_to_thread_no_regs (thread);
4587 setup_inferior (0);
4588 }
4589 }
4590 }
4591
4592 /* Now go over all threads that are stopped, and print their current
4593 frame. If all-stop, then if there's a signalled thread, pick
4594 that as current. */
4595 for (thread_info *thread : all_non_exited_threads (this))
4596 {
4597 if (first == NULL)
4598 first = thread;
4599
4600 if (!non_stop)
4601 thread->set_running (false);
4602 else if (thread->state != THREAD_STOPPED)
4603 continue;
4604
4605 if (selected == NULL
4606 && thread->suspend.waitstatus_pending_p)
4607 selected = thread;
4608
4609 if (lowest_stopped == NULL
4610 || thread->inf->num < lowest_stopped->inf->num
4611 || thread->per_inf_num < lowest_stopped->per_inf_num)
4612 lowest_stopped = thread;
4613
4614 if (non_stop)
4615 print_one_stopped_thread (thread);
4616 }
4617
4618 /* In all-stop, we only print the status of one thread, and leave
4619 others with their status pending. */
4620 if (!non_stop)
4621 {
4622 thread_info *thread = selected;
4623 if (thread == NULL)
4624 thread = lowest_stopped;
4625 if (thread == NULL)
4626 thread = first;
4627
4628 print_one_stopped_thread (thread);
4629 }
4630
4631 /* For "info program". */
4632 thread_info *thread = inferior_thread ();
4633 if (thread->state == THREAD_STOPPED)
4634 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4635 }
4636
4637 /* Start the remote connection and sync state. */
4638
4639 void
4640 remote_target::start_remote (int from_tty, int extended_p)
4641 {
4642 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4643
4644 struct remote_state *rs = get_remote_state ();
4645 struct packet_config *noack_config;
4646
4647 /* Signal other parts that we're going through the initial setup,
4648 and so things may not be stable yet. E.g., we don't try to
4649 install tracepoints until we've relocated symbols. Also, a
4650 Ctrl-C before we're connected and synced up can't interrupt the
4651 target. Instead, it offers to drop the (potentially wedged)
4652 connection. */
4653 rs->starting_up = 1;
4654
4655 QUIT;
4656
4657 if (interrupt_on_connect)
4658 send_interrupt_sequence ();
4659
4660 /* Ack any packet which the remote side has already sent. */
4661 remote_serial_write ("+", 1);
4662
4663 /* The first packet we send to the target is the optional "supported
4664 packets" request. If the target can answer this, it will tell us
4665 which later probes to skip. */
4666 remote_query_supported ();
4667
4668 /* If the stub wants to get a QAllow, compose one and send it. */
4669 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4670 set_permissions ();
4671
4672 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4673 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4674 as a reply to known packet. For packet "vFile:setfs:" it is an
4675 invalid reply and GDB would return error in
4676 remote_hostio_set_filesystem, making remote files access impossible.
4677 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4678 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4679 {
4680 const char v_mustreplyempty[] = "vMustReplyEmpty";
4681
4682 putpkt (v_mustreplyempty);
4683 getpkt (&rs->buf, 0);
4684 if (strcmp (rs->buf.data (), "OK") == 0)
4685 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4686 else if (strcmp (rs->buf.data (), "") != 0)
4687 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4688 rs->buf.data ());
4689 }
4690
4691 /* Next, we possibly activate noack mode.
4692
4693 If the QStartNoAckMode packet configuration is set to AUTO,
4694 enable noack mode if the stub reported a wish for it with
4695 qSupported.
4696
4697 If set to TRUE, then enable noack mode even if the stub didn't
4698 report it in qSupported. If the stub doesn't reply OK, the
4699 session ends with an error.
4700
4701 If FALSE, then don't activate noack mode, regardless of what the
4702 stub claimed should be the default with qSupported. */
4703
4704 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4705 if (packet_config_support (noack_config) != PACKET_DISABLE)
4706 {
4707 putpkt ("QStartNoAckMode");
4708 getpkt (&rs->buf, 0);
4709 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4710 rs->noack_mode = 1;
4711 }
4712
4713 if (extended_p)
4714 {
4715 /* Tell the remote that we are using the extended protocol. */
4716 putpkt ("!");
4717 getpkt (&rs->buf, 0);
4718 }
4719
4720 /* Let the target know which signals it is allowed to pass down to
4721 the program. */
4722 update_signals_program_target ();
4723
4724 /* Next, if the target can specify a description, read it. We do
4725 this before anything involving memory or registers. */
4726 target_find_description ();
4727
4728 /* Next, now that we know something about the target, update the
4729 address spaces in the program spaces. */
4730 update_address_spaces ();
4731
4732 /* On OSs where the list of libraries is global to all
4733 processes, we fetch them early. */
4734 if (gdbarch_has_global_solist (target_gdbarch ()))
4735 solib_add (NULL, from_tty, auto_solib_add);
4736
4737 if (target_is_non_stop_p ())
4738 {
4739 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4740 error (_("Non-stop mode requested, but remote "
4741 "does not support non-stop"));
4742
4743 putpkt ("QNonStop:1");
4744 getpkt (&rs->buf, 0);
4745
4746 if (strcmp (rs->buf.data (), "OK") != 0)
4747 error (_("Remote refused setting non-stop mode with: %s"),
4748 rs->buf.data ());
4749
4750 /* Find about threads and processes the stub is already
4751 controlling. We default to adding them in the running state.
4752 The '?' query below will then tell us about which threads are
4753 stopped. */
4754 this->update_thread_list ();
4755 }
4756 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4757 {
4758 /* Don't assume that the stub can operate in all-stop mode.
4759 Request it explicitly. */
4760 putpkt ("QNonStop:0");
4761 getpkt (&rs->buf, 0);
4762
4763 if (strcmp (rs->buf.data (), "OK") != 0)
4764 error (_("Remote refused setting all-stop mode with: %s"),
4765 rs->buf.data ());
4766 }
4767
4768 /* Upload TSVs regardless of whether the target is running or not. The
4769 remote stub, such as GDBserver, may have some predefined or builtin
4770 TSVs, even if the target is not running. */
4771 if (get_trace_status (current_trace_status ()) != -1)
4772 {
4773 struct uploaded_tsv *uploaded_tsvs = NULL;
4774
4775 upload_trace_state_variables (&uploaded_tsvs);
4776 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4777 }
4778
4779 /* Check whether the target is running now. */
4780 putpkt ("?");
4781 getpkt (&rs->buf, 0);
4782
4783 if (!target_is_non_stop_p ())
4784 {
4785 char *wait_status = NULL;
4786
4787 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4788 {
4789 if (!extended_p)
4790 error (_("The target is not running (try extended-remote?)"));
4791
4792 /* We're connected, but not running. Drop out before we
4793 call start_remote. */
4794 rs->starting_up = 0;
4795 return;
4796 }
4797 else
4798 {
4799 /* Save the reply for later. */
4800 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4801 strcpy (wait_status, rs->buf.data ());
4802 }
4803
4804 /* Fetch thread list. */
4805 target_update_thread_list ();
4806
4807 /* Let the stub know that we want it to return the thread. */
4808 set_continue_thread (minus_one_ptid);
4809
4810 if (thread_count (this) == 0)
4811 {
4812 /* Target has no concept of threads at all. GDB treats
4813 non-threaded target as single-threaded; add a main
4814 thread. */
4815 thread_info *tp = add_current_inferior_and_thread (wait_status);
4816 get_remote_thread_info (tp)->set_resumed ();
4817 }
4818 else
4819 {
4820 /* We have thread information; select the thread the target
4821 says should be current. If we're reconnecting to a
4822 multi-threaded program, this will ideally be the thread
4823 that last reported an event before GDB disconnected. */
4824 ptid_t curr_thread = get_current_thread (wait_status);
4825 if (curr_thread == null_ptid)
4826 {
4827 /* Odd... The target was able to list threads, but not
4828 tell us which thread was current (no "thread"
4829 register in T stop reply?). Just pick the first
4830 thread in the thread list then. */
4831
4832 remote_debug_printf ("warning: couldn't determine remote "
4833 "current thread; picking first in list.");
4834
4835 for (thread_info *tp : all_non_exited_threads (this,
4836 minus_one_ptid))
4837 {
4838 switch_to_thread (tp);
4839 break;
4840 }
4841 }
4842 else
4843 switch_to_thread (find_thread_ptid (this, curr_thread));
4844 }
4845
4846 /* init_wait_for_inferior should be called before get_offsets in order
4847 to manage `inserted' flag in bp loc in a correct state.
4848 breakpoint_init_inferior, called from init_wait_for_inferior, set
4849 `inserted' flag to 0, while before breakpoint_re_set, called from
4850 start_remote, set `inserted' flag to 1. In the initialization of
4851 inferior, breakpoint_init_inferior should be called first, and then
4852 breakpoint_re_set can be called. If this order is broken, state of
4853 `inserted' flag is wrong, and cause some problems on breakpoint
4854 manipulation. */
4855 init_wait_for_inferior ();
4856
4857 get_offsets (); /* Get text, data & bss offsets. */
4858
4859 /* If we could not find a description using qXfer, and we know
4860 how to do it some other way, try again. This is not
4861 supported for non-stop; it could be, but it is tricky if
4862 there are no stopped threads when we connect. */
4863 if (remote_read_description_p (this)
4864 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4865 {
4866 target_clear_description ();
4867 target_find_description ();
4868 }
4869
4870 /* Use the previously fetched status. */
4871 gdb_assert (wait_status != NULL);
4872 strcpy (rs->buf.data (), wait_status);
4873 rs->cached_wait_status = 1;
4874
4875 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4876 }
4877 else
4878 {
4879 /* Clear WFI global state. Do this before finding about new
4880 threads and inferiors, and setting the current inferior.
4881 Otherwise we would clear the proceed status of the current
4882 inferior when we want its stop_soon state to be preserved
4883 (see notice_new_inferior). */
4884 init_wait_for_inferior ();
4885
4886 /* In non-stop, we will either get an "OK", meaning that there
4887 are no stopped threads at this time; or, a regular stop
4888 reply. In the latter case, there may be more than one thread
4889 stopped --- we pull them all out using the vStopped
4890 mechanism. */
4891 if (strcmp (rs->buf.data (), "OK") != 0)
4892 {
4893 struct notif_client *notif = &notif_client_stop;
4894
4895 /* remote_notif_get_pending_replies acks this one, and gets
4896 the rest out. */
4897 rs->notif_state->pending_event[notif_client_stop.id]
4898 = remote_notif_parse (this, notif, rs->buf.data ());
4899 remote_notif_get_pending_events (notif);
4900 }
4901
4902 if (thread_count (this) == 0)
4903 {
4904 if (!extended_p)
4905 error (_("The target is not running (try extended-remote?)"));
4906
4907 /* We're connected, but not running. Drop out before we
4908 call start_remote. */
4909 rs->starting_up = 0;
4910 return;
4911 }
4912
4913 /* Report all signals during attach/startup. */
4914 pass_signals ({});
4915
4916 /* If there are already stopped threads, mark them stopped and
4917 report their stops before giving the prompt to the user. */
4918 process_initial_stop_replies (from_tty);
4919
4920 if (target_can_async_p ())
4921 target_async (1);
4922 }
4923
4924 /* If we connected to a live target, do some additional setup. */
4925 if (target_has_execution ())
4926 {
4927 /* No use without a symbol-file. */
4928 if (current_program_space->symfile_object_file)
4929 remote_check_symbols ();
4930 }
4931
4932 /* Possibly the target has been engaged in a trace run started
4933 previously; find out where things are at. */
4934 if (get_trace_status (current_trace_status ()) != -1)
4935 {
4936 struct uploaded_tp *uploaded_tps = NULL;
4937
4938 if (current_trace_status ()->running)
4939 printf_filtered (_("Trace is already running on the target.\n"));
4940
4941 upload_tracepoints (&uploaded_tps);
4942
4943 merge_uploaded_tracepoints (&uploaded_tps);
4944 }
4945
4946 /* Possibly the target has been engaged in a btrace record started
4947 previously; find out where things are at. */
4948 remote_btrace_maybe_reopen ();
4949
4950 /* The thread and inferior lists are now synchronized with the
4951 target, our symbols have been relocated, and we're merged the
4952 target's tracepoints with ours. We're done with basic start
4953 up. */
4954 rs->starting_up = 0;
4955
4956 /* Maybe breakpoints are global and need to be inserted now. */
4957 if (breakpoints_should_be_inserted_now ())
4958 insert_breakpoints ();
4959 }
4960
4961 const char *
4962 remote_target::connection_string ()
4963 {
4964 remote_state *rs = get_remote_state ();
4965
4966 if (rs->remote_desc->name != NULL)
4967 return rs->remote_desc->name;
4968 else
4969 return NULL;
4970 }
4971
4972 /* Open a connection to a remote debugger.
4973 NAME is the filename used for communication. */
4974
4975 void
4976 remote_target::open (const char *name, int from_tty)
4977 {
4978 open_1 (name, from_tty, 0);
4979 }
4980
4981 /* Open a connection to a remote debugger using the extended
4982 remote gdb protocol. NAME is the filename used for communication. */
4983
4984 void
4985 extended_remote_target::open (const char *name, int from_tty)
4986 {
4987 open_1 (name, from_tty, 1 /*extended_p */);
4988 }
4989
4990 /* Reset all packets back to "unknown support". Called when opening a
4991 new connection to a remote target. */
4992
4993 static void
4994 reset_all_packet_configs_support (void)
4995 {
4996 int i;
4997
4998 for (i = 0; i < PACKET_MAX; i++)
4999 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5000 }
5001
5002 /* Initialize all packet configs. */
5003
5004 static void
5005 init_all_packet_configs (void)
5006 {
5007 int i;
5008
5009 for (i = 0; i < PACKET_MAX; i++)
5010 {
5011 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5012 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5013 }
5014 }
5015
5016 /* Symbol look-up. */
5017
5018 void
5019 remote_target::remote_check_symbols ()
5020 {
5021 char *tmp;
5022 int end;
5023
5024 /* The remote side has no concept of inferiors that aren't running
5025 yet, it only knows about running processes. If we're connected
5026 but our current inferior is not running, we should not invite the
5027 remote target to request symbol lookups related to its
5028 (unrelated) current process. */
5029 if (!target_has_execution ())
5030 return;
5031
5032 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5033 return;
5034
5035 /* Make sure the remote is pointing at the right process. Note
5036 there's no way to select "no process". */
5037 set_general_process ();
5038
5039 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5040 because we need both at the same time. */
5041 gdb::char_vector msg (get_remote_packet_size ());
5042 gdb::char_vector reply (get_remote_packet_size ());
5043
5044 /* Invite target to request symbol lookups. */
5045
5046 putpkt ("qSymbol::");
5047 getpkt (&reply, 0);
5048 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5049
5050 while (startswith (reply.data (), "qSymbol:"))
5051 {
5052 struct bound_minimal_symbol sym;
5053
5054 tmp = &reply[8];
5055 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5056 strlen (tmp) / 2);
5057 msg[end] = '\0';
5058 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5059 if (sym.minsym == NULL)
5060 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5061 &reply[8]);
5062 else
5063 {
5064 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5065 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5066
5067 /* If this is a function address, return the start of code
5068 instead of any data function descriptor. */
5069 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
5070 sym_addr,
5071 current_top_target ());
5072
5073 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5074 phex_nz (sym_addr, addr_size), &reply[8]);
5075 }
5076
5077 putpkt (msg.data ());
5078 getpkt (&reply, 0);
5079 }
5080 }
5081
5082 static struct serial *
5083 remote_serial_open (const char *name)
5084 {
5085 static int udp_warning = 0;
5086
5087 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5088 of in ser-tcp.c, because it is the remote protocol assuming that the
5089 serial connection is reliable and not the serial connection promising
5090 to be. */
5091 if (!udp_warning && startswith (name, "udp:"))
5092 {
5093 warning (_("The remote protocol may be unreliable over UDP.\n"
5094 "Some events may be lost, rendering further debugging "
5095 "impossible."));
5096 udp_warning = 1;
5097 }
5098
5099 return serial_open (name);
5100 }
5101
5102 /* Inform the target of our permission settings. The permission flags
5103 work without this, but if the target knows the settings, it can do
5104 a couple things. First, it can add its own check, to catch cases
5105 that somehow manage to get by the permissions checks in target
5106 methods. Second, if the target is wired to disallow particular
5107 settings (for instance, a system in the field that is not set up to
5108 be able to stop at a breakpoint), it can object to any unavailable
5109 permissions. */
5110
5111 void
5112 remote_target::set_permissions ()
5113 {
5114 struct remote_state *rs = get_remote_state ();
5115
5116 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5117 "WriteReg:%x;WriteMem:%x;"
5118 "InsertBreak:%x;InsertTrace:%x;"
5119 "InsertFastTrace:%x;Stop:%x",
5120 may_write_registers, may_write_memory,
5121 may_insert_breakpoints, may_insert_tracepoints,
5122 may_insert_fast_tracepoints, may_stop);
5123 putpkt (rs->buf);
5124 getpkt (&rs->buf, 0);
5125
5126 /* If the target didn't like the packet, warn the user. Do not try
5127 to undo the user's settings, that would just be maddening. */
5128 if (strcmp (rs->buf.data (), "OK") != 0)
5129 warning (_("Remote refused setting permissions with: %s"),
5130 rs->buf.data ());
5131 }
5132
5133 /* This type describes each known response to the qSupported
5134 packet. */
5135 struct protocol_feature
5136 {
5137 /* The name of this protocol feature. */
5138 const char *name;
5139
5140 /* The default for this protocol feature. */
5141 enum packet_support default_support;
5142
5143 /* The function to call when this feature is reported, or after
5144 qSupported processing if the feature is not supported.
5145 The first argument points to this structure. The second
5146 argument indicates whether the packet requested support be
5147 enabled, disabled, or probed (or the default, if this function
5148 is being called at the end of processing and this feature was
5149 not reported). The third argument may be NULL; if not NULL, it
5150 is a NUL-terminated string taken from the packet following
5151 this feature's name and an equals sign. */
5152 void (*func) (remote_target *remote, const struct protocol_feature *,
5153 enum packet_support, const char *);
5154
5155 /* The corresponding packet for this feature. Only used if
5156 FUNC is remote_supported_packet. */
5157 int packet;
5158 };
5159
5160 static void
5161 remote_supported_packet (remote_target *remote,
5162 const struct protocol_feature *feature,
5163 enum packet_support support,
5164 const char *argument)
5165 {
5166 if (argument)
5167 {
5168 warning (_("Remote qSupported response supplied an unexpected value for"
5169 " \"%s\"."), feature->name);
5170 return;
5171 }
5172
5173 remote_protocol_packets[feature->packet].support = support;
5174 }
5175
5176 void
5177 remote_target::remote_packet_size (const protocol_feature *feature,
5178 enum packet_support support, const char *value)
5179 {
5180 struct remote_state *rs = get_remote_state ();
5181
5182 int packet_size;
5183 char *value_end;
5184
5185 if (support != PACKET_ENABLE)
5186 return;
5187
5188 if (value == NULL || *value == '\0')
5189 {
5190 warning (_("Remote target reported \"%s\" without a size."),
5191 feature->name);
5192 return;
5193 }
5194
5195 errno = 0;
5196 packet_size = strtol (value, &value_end, 16);
5197 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5198 {
5199 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5200 feature->name, value);
5201 return;
5202 }
5203
5204 /* Record the new maximum packet size. */
5205 rs->explicit_packet_size = packet_size;
5206 }
5207
5208 static void
5209 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5210 enum packet_support support, const char *value)
5211 {
5212 remote->remote_packet_size (feature, support, value);
5213 }
5214
5215 static const struct protocol_feature remote_protocol_features[] = {
5216 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5217 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5218 PACKET_qXfer_auxv },
5219 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5220 PACKET_qXfer_exec_file },
5221 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5222 PACKET_qXfer_features },
5223 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5224 PACKET_qXfer_libraries },
5225 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5226 PACKET_qXfer_libraries_svr4 },
5227 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5228 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5229 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5230 PACKET_qXfer_memory_map },
5231 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5232 PACKET_qXfer_osdata },
5233 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5234 PACKET_qXfer_threads },
5235 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5236 PACKET_qXfer_traceframe_info },
5237 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5238 PACKET_QPassSignals },
5239 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5240 PACKET_QCatchSyscalls },
5241 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5242 PACKET_QProgramSignals },
5243 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5244 PACKET_QSetWorkingDir },
5245 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5246 PACKET_QStartupWithShell },
5247 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5248 PACKET_QEnvironmentHexEncoded },
5249 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5250 PACKET_QEnvironmentReset },
5251 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5252 PACKET_QEnvironmentUnset },
5253 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5254 PACKET_QStartNoAckMode },
5255 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5256 PACKET_multiprocess_feature },
5257 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5258 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5259 PACKET_qXfer_siginfo_read },
5260 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5261 PACKET_qXfer_siginfo_write },
5262 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5263 PACKET_ConditionalTracepoints },
5264 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5265 PACKET_ConditionalBreakpoints },
5266 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5267 PACKET_BreakpointCommands },
5268 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5269 PACKET_FastTracepoints },
5270 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5271 PACKET_StaticTracepoints },
5272 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5273 PACKET_InstallInTrace},
5274 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5275 PACKET_DisconnectedTracing_feature },
5276 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5277 PACKET_bc },
5278 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5279 PACKET_bs },
5280 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5281 PACKET_TracepointSource },
5282 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5283 PACKET_QAllow },
5284 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5285 PACKET_EnableDisableTracepoints_feature },
5286 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5287 PACKET_qXfer_fdpic },
5288 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5289 PACKET_qXfer_uib },
5290 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5291 PACKET_QDisableRandomization },
5292 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5293 { "QTBuffer:size", PACKET_DISABLE,
5294 remote_supported_packet, PACKET_QTBuffer_size},
5295 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5296 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5297 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5298 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5299 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5300 PACKET_qXfer_btrace },
5301 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5302 PACKET_qXfer_btrace_conf },
5303 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5304 PACKET_Qbtrace_conf_bts_size },
5305 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5306 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5307 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5308 PACKET_fork_event_feature },
5309 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5310 PACKET_vfork_event_feature },
5311 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5312 PACKET_exec_event_feature },
5313 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5314 PACKET_Qbtrace_conf_pt_size },
5315 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5316 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5317 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5318 };
5319
5320 static char *remote_support_xml;
5321
5322 /* Register string appended to "xmlRegisters=" in qSupported query. */
5323
5324 void
5325 register_remote_support_xml (const char *xml)
5326 {
5327 #if defined(HAVE_LIBEXPAT)
5328 if (remote_support_xml == NULL)
5329 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5330 else
5331 {
5332 char *copy = xstrdup (remote_support_xml + 13);
5333 char *saveptr;
5334 char *p = strtok_r (copy, ",", &saveptr);
5335
5336 do
5337 {
5338 if (strcmp (p, xml) == 0)
5339 {
5340 /* already there */
5341 xfree (copy);
5342 return;
5343 }
5344 }
5345 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5346 xfree (copy);
5347
5348 remote_support_xml = reconcat (remote_support_xml,
5349 remote_support_xml, ",", xml,
5350 (char *) NULL);
5351 }
5352 #endif
5353 }
5354
5355 static void
5356 remote_query_supported_append (std::string *msg, const char *append)
5357 {
5358 if (!msg->empty ())
5359 msg->append (";");
5360 msg->append (append);
5361 }
5362
5363 void
5364 remote_target::remote_query_supported ()
5365 {
5366 struct remote_state *rs = get_remote_state ();
5367 char *next;
5368 int i;
5369 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5370
5371 /* The packet support flags are handled differently for this packet
5372 than for most others. We treat an error, a disabled packet, and
5373 an empty response identically: any features which must be reported
5374 to be used will be automatically disabled. An empty buffer
5375 accomplishes this, since that is also the representation for a list
5376 containing no features. */
5377
5378 rs->buf[0] = 0;
5379 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5380 {
5381 std::string q;
5382
5383 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5384 remote_query_supported_append (&q, "multiprocess+");
5385
5386 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5387 remote_query_supported_append (&q, "swbreak+");
5388 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5389 remote_query_supported_append (&q, "hwbreak+");
5390
5391 remote_query_supported_append (&q, "qRelocInsn+");
5392
5393 if (packet_set_cmd_state (PACKET_fork_event_feature)
5394 != AUTO_BOOLEAN_FALSE)
5395 remote_query_supported_append (&q, "fork-events+");
5396 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5397 != AUTO_BOOLEAN_FALSE)
5398 remote_query_supported_append (&q, "vfork-events+");
5399 if (packet_set_cmd_state (PACKET_exec_event_feature)
5400 != AUTO_BOOLEAN_FALSE)
5401 remote_query_supported_append (&q, "exec-events+");
5402
5403 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5404 remote_query_supported_append (&q, "vContSupported+");
5405
5406 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5407 remote_query_supported_append (&q, "QThreadEvents+");
5408
5409 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5410 remote_query_supported_append (&q, "no-resumed+");
5411
5412 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5413 the qSupported:xmlRegisters=i386 handling. */
5414 if (remote_support_xml != NULL
5415 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5416 remote_query_supported_append (&q, remote_support_xml);
5417
5418 q = "qSupported:" + q;
5419 putpkt (q.c_str ());
5420
5421 getpkt (&rs->buf, 0);
5422
5423 /* If an error occured, warn, but do not return - just reset the
5424 buffer to empty and go on to disable features. */
5425 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5426 == PACKET_ERROR)
5427 {
5428 warning (_("Remote failure reply: %s"), rs->buf.data ());
5429 rs->buf[0] = 0;
5430 }
5431 }
5432
5433 memset (seen, 0, sizeof (seen));
5434
5435 next = rs->buf.data ();
5436 while (*next)
5437 {
5438 enum packet_support is_supported;
5439 char *p, *end, *name_end, *value;
5440
5441 /* First separate out this item from the rest of the packet. If
5442 there's another item after this, we overwrite the separator
5443 (terminated strings are much easier to work with). */
5444 p = next;
5445 end = strchr (p, ';');
5446 if (end == NULL)
5447 {
5448 end = p + strlen (p);
5449 next = end;
5450 }
5451 else
5452 {
5453 *end = '\0';
5454 next = end + 1;
5455
5456 if (end == p)
5457 {
5458 warning (_("empty item in \"qSupported\" response"));
5459 continue;
5460 }
5461 }
5462
5463 name_end = strchr (p, '=');
5464 if (name_end)
5465 {
5466 /* This is a name=value entry. */
5467 is_supported = PACKET_ENABLE;
5468 value = name_end + 1;
5469 *name_end = '\0';
5470 }
5471 else
5472 {
5473 value = NULL;
5474 switch (end[-1])
5475 {
5476 case '+':
5477 is_supported = PACKET_ENABLE;
5478 break;
5479
5480 case '-':
5481 is_supported = PACKET_DISABLE;
5482 break;
5483
5484 case '?':
5485 is_supported = PACKET_SUPPORT_UNKNOWN;
5486 break;
5487
5488 default:
5489 warning (_("unrecognized item \"%s\" "
5490 "in \"qSupported\" response"), p);
5491 continue;
5492 }
5493 end[-1] = '\0';
5494 }
5495
5496 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5497 if (strcmp (remote_protocol_features[i].name, p) == 0)
5498 {
5499 const struct protocol_feature *feature;
5500
5501 seen[i] = 1;
5502 feature = &remote_protocol_features[i];
5503 feature->func (this, feature, is_supported, value);
5504 break;
5505 }
5506 }
5507
5508 /* If we increased the packet size, make sure to increase the global
5509 buffer size also. We delay this until after parsing the entire
5510 qSupported packet, because this is the same buffer we were
5511 parsing. */
5512 if (rs->buf.size () < rs->explicit_packet_size)
5513 rs->buf.resize (rs->explicit_packet_size);
5514
5515 /* Handle the defaults for unmentioned features. */
5516 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5517 if (!seen[i])
5518 {
5519 const struct protocol_feature *feature;
5520
5521 feature = &remote_protocol_features[i];
5522 feature->func (this, feature, feature->default_support, NULL);
5523 }
5524 }
5525
5526 /* Serial QUIT handler for the remote serial descriptor.
5527
5528 Defers handling a Ctrl-C until we're done with the current
5529 command/response packet sequence, unless:
5530
5531 - We're setting up the connection. Don't send a remote interrupt
5532 request, as we're not fully synced yet. Quit immediately
5533 instead.
5534
5535 - The target has been resumed in the foreground
5536 (target_terminal::is_ours is false) with a synchronous resume
5537 packet, and we're blocked waiting for the stop reply, thus a
5538 Ctrl-C should be immediately sent to the target.
5539
5540 - We get a second Ctrl-C while still within the same serial read or
5541 write. In that case the serial is seemingly wedged --- offer to
5542 quit/disconnect.
5543
5544 - We see a second Ctrl-C without target response, after having
5545 previously interrupted the target. In that case the target/stub
5546 is probably wedged --- offer to quit/disconnect.
5547 */
5548
5549 void
5550 remote_target::remote_serial_quit_handler ()
5551 {
5552 struct remote_state *rs = get_remote_state ();
5553
5554 if (check_quit_flag ())
5555 {
5556 /* If we're starting up, we're not fully synced yet. Quit
5557 immediately. */
5558 if (rs->starting_up)
5559 quit ();
5560 else if (rs->got_ctrlc_during_io)
5561 {
5562 if (query (_("The target is not responding to GDB commands.\n"
5563 "Stop debugging it? ")))
5564 remote_unpush_and_throw (this);
5565 }
5566 /* If ^C has already been sent once, offer to disconnect. */
5567 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5568 interrupt_query ();
5569 /* All-stop protocol, and blocked waiting for stop reply. Send
5570 an interrupt request. */
5571 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5572 target_interrupt ();
5573 else
5574 rs->got_ctrlc_during_io = 1;
5575 }
5576 }
5577
5578 /* The remote_target that is current while the quit handler is
5579 overridden with remote_serial_quit_handler. */
5580 static remote_target *curr_quit_handler_target;
5581
5582 static void
5583 remote_serial_quit_handler ()
5584 {
5585 curr_quit_handler_target->remote_serial_quit_handler ();
5586 }
5587
5588 /* Remove the remote target from the target stack of each inferior
5589 that is using it. Upper targets depend on it so remove them
5590 first. */
5591
5592 static void
5593 remote_unpush_target (remote_target *target)
5594 {
5595 /* We have to unpush the target from all inferiors, even those that
5596 aren't running. */
5597 scoped_restore_current_inferior restore_current_inferior;
5598
5599 for (inferior *inf : all_inferiors (target))
5600 {
5601 switch_to_inferior_no_thread (inf);
5602 pop_all_targets_at_and_above (process_stratum);
5603 generic_mourn_inferior ();
5604 }
5605 }
5606
5607 static void
5608 remote_unpush_and_throw (remote_target *target)
5609 {
5610 remote_unpush_target (target);
5611 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5612 }
5613
5614 void
5615 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5616 {
5617 remote_target *curr_remote = get_current_remote_target ();
5618
5619 if (name == 0)
5620 error (_("To open a remote debug connection, you need to specify what\n"
5621 "serial device is attached to the remote system\n"
5622 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5623
5624 /* If we're connected to a running target, target_preopen will kill it.
5625 Ask this question first, before target_preopen has a chance to kill
5626 anything. */
5627 if (curr_remote != NULL && !target_has_execution ())
5628 {
5629 if (from_tty
5630 && !query (_("Already connected to a remote target. Disconnect? ")))
5631 error (_("Still connected."));
5632 }
5633
5634 /* Here the possibly existing remote target gets unpushed. */
5635 target_preopen (from_tty);
5636
5637 remote_fileio_reset ();
5638 reopen_exec_file ();
5639 reread_symbols ();
5640
5641 remote_target *remote
5642 = (extended_p ? new extended_remote_target () : new remote_target ());
5643 target_ops_up target_holder (remote);
5644
5645 remote_state *rs = remote->get_remote_state ();
5646
5647 /* See FIXME above. */
5648 if (!target_async_permitted)
5649 rs->wait_forever_enabled_p = 1;
5650
5651 rs->remote_desc = remote_serial_open (name);
5652 if (!rs->remote_desc)
5653 perror_with_name (name);
5654
5655 if (baud_rate != -1)
5656 {
5657 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5658 {
5659 /* The requested speed could not be set. Error out to
5660 top level after closing remote_desc. Take care to
5661 set remote_desc to NULL to avoid closing remote_desc
5662 more than once. */
5663 serial_close (rs->remote_desc);
5664 rs->remote_desc = NULL;
5665 perror_with_name (name);
5666 }
5667 }
5668
5669 serial_setparity (rs->remote_desc, serial_parity);
5670 serial_raw (rs->remote_desc);
5671
5672 /* If there is something sitting in the buffer we might take it as a
5673 response to a command, which would be bad. */
5674 serial_flush_input (rs->remote_desc);
5675
5676 if (from_tty)
5677 {
5678 puts_filtered ("Remote debugging using ");
5679 puts_filtered (name);
5680 puts_filtered ("\n");
5681 }
5682
5683 /* Switch to using the remote target now. */
5684 current_inferior ()->push_target (std::move (target_holder));
5685
5686 /* Register extra event sources in the event loop. */
5687 rs->remote_async_inferior_event_token
5688 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5689 "remote");
5690 rs->notif_state = remote_notif_state_allocate (remote);
5691
5692 /* Reset the target state; these things will be queried either by
5693 remote_query_supported or as they are needed. */
5694 reset_all_packet_configs_support ();
5695 rs->cached_wait_status = 0;
5696 rs->explicit_packet_size = 0;
5697 rs->noack_mode = 0;
5698 rs->extended = extended_p;
5699 rs->waiting_for_stop_reply = 0;
5700 rs->ctrlc_pending_p = 0;
5701 rs->got_ctrlc_during_io = 0;
5702
5703 rs->general_thread = not_sent_ptid;
5704 rs->continue_thread = not_sent_ptid;
5705 rs->remote_traceframe_number = -1;
5706
5707 rs->last_resume_exec_dir = EXEC_FORWARD;
5708
5709 /* Probe for ability to use "ThreadInfo" query, as required. */
5710 rs->use_threadinfo_query = 1;
5711 rs->use_threadextra_query = 1;
5712
5713 rs->readahead_cache.invalidate ();
5714
5715 if (target_async_permitted)
5716 {
5717 /* FIXME: cagney/1999-09-23: During the initial connection it is
5718 assumed that the target is already ready and able to respond to
5719 requests. Unfortunately remote_start_remote() eventually calls
5720 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5721 around this. Eventually a mechanism that allows
5722 wait_for_inferior() to expect/get timeouts will be
5723 implemented. */
5724 rs->wait_forever_enabled_p = 0;
5725 }
5726
5727 /* First delete any symbols previously loaded from shared libraries. */
5728 no_shared_libraries (NULL, 0);
5729
5730 /* Start the remote connection. If error() or QUIT, discard this
5731 target (we'd otherwise be in an inconsistent state) and then
5732 propogate the error on up the exception chain. This ensures that
5733 the caller doesn't stumble along blindly assuming that the
5734 function succeeded. The CLI doesn't have this problem but other
5735 UI's, such as MI do.
5736
5737 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5738 this function should return an error indication letting the
5739 caller restore the previous state. Unfortunately the command
5740 ``target remote'' is directly wired to this function making that
5741 impossible. On a positive note, the CLI side of this problem has
5742 been fixed - the function set_cmd_context() makes it possible for
5743 all the ``target ....'' commands to share a common callback
5744 function. See cli-dump.c. */
5745 {
5746
5747 try
5748 {
5749 remote->start_remote (from_tty, extended_p);
5750 }
5751 catch (const gdb_exception &ex)
5752 {
5753 /* Pop the partially set up target - unless something else did
5754 already before throwing the exception. */
5755 if (ex.error != TARGET_CLOSE_ERROR)
5756 remote_unpush_target (remote);
5757 throw;
5758 }
5759 }
5760
5761 remote_btrace_reset (rs);
5762
5763 if (target_async_permitted)
5764 rs->wait_forever_enabled_p = 1;
5765 }
5766
5767 /* Detach the specified process. */
5768
5769 void
5770 remote_target::remote_detach_pid (int pid)
5771 {
5772 struct remote_state *rs = get_remote_state ();
5773
5774 /* This should not be necessary, but the handling for D;PID in
5775 GDBserver versions prior to 8.2 incorrectly assumes that the
5776 selected process points to the same process we're detaching,
5777 leading to misbehavior (and possibly GDBserver crashing) when it
5778 does not. Since it's easy and cheap, work around it by forcing
5779 GDBserver to select GDB's current process. */
5780 set_general_process ();
5781
5782 if (remote_multi_process_p (rs))
5783 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5784 else
5785 strcpy (rs->buf.data (), "D");
5786
5787 putpkt (rs->buf);
5788 getpkt (&rs->buf, 0);
5789
5790 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5791 ;
5792 else if (rs->buf[0] == '\0')
5793 error (_("Remote doesn't know how to detach"));
5794 else
5795 error (_("Can't detach process."));
5796 }
5797
5798 /* This detaches a program to which we previously attached, using
5799 inferior_ptid to identify the process. After this is done, GDB
5800 can be used to debug some other program. We better not have left
5801 any breakpoints in the target program or it'll die when it hits
5802 one. */
5803
5804 void
5805 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5806 {
5807 int pid = inferior_ptid.pid ();
5808 struct remote_state *rs = get_remote_state ();
5809 int is_fork_parent;
5810
5811 if (!target_has_execution ())
5812 error (_("No process to detach from."));
5813
5814 target_announce_detach (from_tty);
5815
5816 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5817 {
5818 /* If we're in breakpoints-always-inserted mode, or the inferior
5819 is running, we have to remove breakpoints before detaching.
5820 We don't do this in common code instead because not all
5821 targets support removing breakpoints while the target is
5822 running. The remote target / gdbserver does, though. */
5823 remove_breakpoints_inf (current_inferior ());
5824 }
5825
5826 /* Tell the remote target to detach. */
5827 remote_detach_pid (pid);
5828
5829 /* Exit only if this is the only active inferior. */
5830 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5831 puts_filtered (_("Ending remote debugging.\n"));
5832
5833 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5834
5835 /* Check to see if we are detaching a fork parent. Note that if we
5836 are detaching a fork child, tp == NULL. */
5837 is_fork_parent = (tp != NULL
5838 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5839
5840 /* If doing detach-on-fork, we don't mourn, because that will delete
5841 breakpoints that should be available for the followed inferior. */
5842 if (!is_fork_parent)
5843 {
5844 /* Save the pid as a string before mourning, since that will
5845 unpush the remote target, and we need the string after. */
5846 std::string infpid = target_pid_to_str (ptid_t (pid));
5847
5848 target_mourn_inferior (inferior_ptid);
5849 if (print_inferior_events)
5850 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5851 inf->num, infpid.c_str ());
5852 }
5853 else
5854 {
5855 switch_to_no_thread ();
5856 detach_inferior (current_inferior ());
5857 }
5858 }
5859
5860 void
5861 remote_target::detach (inferior *inf, int from_tty)
5862 {
5863 remote_detach_1 (inf, from_tty);
5864 }
5865
5866 void
5867 extended_remote_target::detach (inferior *inf, int from_tty)
5868 {
5869 remote_detach_1 (inf, from_tty);
5870 }
5871
5872 /* Target follow-fork function for remote targets. On entry, and
5873 at return, the current inferior is the fork parent.
5874
5875 Note that although this is currently only used for extended-remote,
5876 it is named remote_follow_fork in anticipation of using it for the
5877 remote target as well. */
5878
5879 bool
5880 remote_target::follow_fork (bool follow_child, bool detach_fork)
5881 {
5882 struct remote_state *rs = get_remote_state ();
5883 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5884
5885 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5886 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5887 {
5888 /* When following the parent and detaching the child, we detach
5889 the child here. For the case of following the child and
5890 detaching the parent, the detach is done in the target-
5891 independent follow fork code in infrun.c. We can't use
5892 target_detach when detaching an unfollowed child because
5893 the client side doesn't know anything about the child. */
5894 if (detach_fork && !follow_child)
5895 {
5896 /* Detach the fork child. */
5897 ptid_t child_ptid;
5898 pid_t child_pid;
5899
5900 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5901 child_pid = child_ptid.pid ();
5902
5903 remote_detach_pid (child_pid);
5904 }
5905 }
5906
5907 return false;
5908 }
5909
5910 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5911 in the program space of the new inferior. On entry and at return the
5912 current inferior is the exec'ing inferior. INF is the new exec'd
5913 inferior, which may be the same as the exec'ing inferior unless
5914 follow-exec-mode is "new". */
5915
5916 void
5917 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5918 {
5919 /* We know that this is a target file name, so if it has the "target:"
5920 prefix we strip it off before saving it in the program space. */
5921 if (is_target_filename (execd_pathname))
5922 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5923
5924 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5925 }
5926
5927 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5928
5929 void
5930 remote_target::disconnect (const char *args, int from_tty)
5931 {
5932 if (args)
5933 error (_("Argument given to \"disconnect\" when remotely debugging."));
5934
5935 /* Make sure we unpush even the extended remote targets. Calling
5936 target_mourn_inferior won't unpush, and
5937 remote_target::mourn_inferior won't unpush if there is more than
5938 one inferior left. */
5939 remote_unpush_target (this);
5940
5941 if (from_tty)
5942 puts_filtered ("Ending remote debugging.\n");
5943 }
5944
5945 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5946 be chatty about it. */
5947
5948 void
5949 extended_remote_target::attach (const char *args, int from_tty)
5950 {
5951 struct remote_state *rs = get_remote_state ();
5952 int pid;
5953 char *wait_status = NULL;
5954
5955 pid = parse_pid_to_attach (args);
5956
5957 /* Remote PID can be freely equal to getpid, do not check it here the same
5958 way as in other targets. */
5959
5960 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5961 error (_("This target does not support attaching to a process"));
5962
5963 if (from_tty)
5964 {
5965 const char *exec_file = get_exec_file (0);
5966
5967 if (exec_file)
5968 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5969 target_pid_to_str (ptid_t (pid)).c_str ());
5970 else
5971 printf_unfiltered (_("Attaching to %s\n"),
5972 target_pid_to_str (ptid_t (pid)).c_str ());
5973 }
5974
5975 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5976 putpkt (rs->buf);
5977 getpkt (&rs->buf, 0);
5978
5979 switch (packet_ok (rs->buf,
5980 &remote_protocol_packets[PACKET_vAttach]))
5981 {
5982 case PACKET_OK:
5983 if (!target_is_non_stop_p ())
5984 {
5985 /* Save the reply for later. */
5986 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5987 strcpy (wait_status, rs->buf.data ());
5988 }
5989 else if (strcmp (rs->buf.data (), "OK") != 0)
5990 error (_("Attaching to %s failed with: %s"),
5991 target_pid_to_str (ptid_t (pid)).c_str (),
5992 rs->buf.data ());
5993 break;
5994 case PACKET_UNKNOWN:
5995 error (_("This target does not support attaching to a process"));
5996 default:
5997 error (_("Attaching to %s failed"),
5998 target_pid_to_str (ptid_t (pid)).c_str ());
5999 }
6000
6001 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
6002
6003 inferior_ptid = ptid_t (pid);
6004
6005 if (target_is_non_stop_p ())
6006 {
6007 /* Get list of threads. */
6008 update_thread_list ();
6009
6010 thread_info *thread = first_thread_of_inferior (current_inferior ());
6011 if (thread != nullptr)
6012 switch_to_thread (thread);
6013
6014 /* Invalidate our notion of the remote current thread. */
6015 record_currthread (rs, minus_one_ptid);
6016 }
6017 else
6018 {
6019 /* Now, if we have thread information, update the main thread's
6020 ptid. */
6021 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6022
6023 /* Add the main thread to the thread list. */
6024 thread_info *thr = add_thread_silent (this, curr_ptid);
6025
6026 switch_to_thread (thr);
6027
6028 /* Don't consider the thread stopped until we've processed the
6029 saved stop reply. */
6030 set_executing (this, thr->ptid, true);
6031 }
6032
6033 /* Next, if the target can specify a description, read it. We do
6034 this before anything involving memory or registers. */
6035 target_find_description ();
6036
6037 if (!target_is_non_stop_p ())
6038 {
6039 /* Use the previously fetched status. */
6040 gdb_assert (wait_status != NULL);
6041
6042 if (target_can_async_p ())
6043 {
6044 struct notif_event *reply
6045 = remote_notif_parse (this, &notif_client_stop, wait_status);
6046
6047 push_stop_reply ((struct stop_reply *) reply);
6048
6049 target_async (1);
6050 }
6051 else
6052 {
6053 gdb_assert (wait_status != NULL);
6054 strcpy (rs->buf.data (), wait_status);
6055 rs->cached_wait_status = 1;
6056 }
6057 }
6058 else
6059 {
6060 gdb_assert (wait_status == NULL);
6061
6062 gdb_assert (target_can_async_p ());
6063 target_async (1);
6064 }
6065 }
6066
6067 /* Implementation of the to_post_attach method. */
6068
6069 void
6070 extended_remote_target::post_attach (int pid)
6071 {
6072 /* Get text, data & bss offsets. */
6073 get_offsets ();
6074
6075 /* In certain cases GDB might not have had the chance to start
6076 symbol lookup up until now. This could happen if the debugged
6077 binary is not using shared libraries, the vsyscall page is not
6078 present (on Linux) and the binary itself hadn't changed since the
6079 debugging process was started. */
6080 if (current_program_space->symfile_object_file != NULL)
6081 remote_check_symbols();
6082 }
6083
6084 \f
6085 /* Check for the availability of vCont. This function should also check
6086 the response. */
6087
6088 void
6089 remote_target::remote_vcont_probe ()
6090 {
6091 remote_state *rs = get_remote_state ();
6092 char *buf;
6093
6094 strcpy (rs->buf.data (), "vCont?");
6095 putpkt (rs->buf);
6096 getpkt (&rs->buf, 0);
6097 buf = rs->buf.data ();
6098
6099 /* Make sure that the features we assume are supported. */
6100 if (startswith (buf, "vCont"))
6101 {
6102 char *p = &buf[5];
6103 int support_c, support_C;
6104
6105 rs->supports_vCont.s = 0;
6106 rs->supports_vCont.S = 0;
6107 support_c = 0;
6108 support_C = 0;
6109 rs->supports_vCont.t = 0;
6110 rs->supports_vCont.r = 0;
6111 while (p && *p == ';')
6112 {
6113 p++;
6114 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6115 rs->supports_vCont.s = 1;
6116 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6117 rs->supports_vCont.S = 1;
6118 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6119 support_c = 1;
6120 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6121 support_C = 1;
6122 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6123 rs->supports_vCont.t = 1;
6124 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6125 rs->supports_vCont.r = 1;
6126
6127 p = strchr (p, ';');
6128 }
6129
6130 /* If c, and C are not all supported, we can't use vCont. Clearing
6131 BUF will make packet_ok disable the packet. */
6132 if (!support_c || !support_C)
6133 buf[0] = 0;
6134 }
6135
6136 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6137 rs->supports_vCont_probed = true;
6138 }
6139
6140 /* Helper function for building "vCont" resumptions. Write a
6141 resumption to P. ENDP points to one-passed-the-end of the buffer
6142 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6143 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6144 resumed thread should be single-stepped and/or signalled. If PTID
6145 equals minus_one_ptid, then all threads are resumed; if PTID
6146 represents a process, then all threads of the process are resumed;
6147 the thread to be stepped and/or signalled is given in the global
6148 INFERIOR_PTID. */
6149
6150 char *
6151 remote_target::append_resumption (char *p, char *endp,
6152 ptid_t ptid, int step, gdb_signal siggnal)
6153 {
6154 struct remote_state *rs = get_remote_state ();
6155
6156 if (step && siggnal != GDB_SIGNAL_0)
6157 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6158 else if (step
6159 /* GDB is willing to range step. */
6160 && use_range_stepping
6161 /* Target supports range stepping. */
6162 && rs->supports_vCont.r
6163 /* We don't currently support range stepping multiple
6164 threads with a wildcard (though the protocol allows it,
6165 so stubs shouldn't make an active effort to forbid
6166 it). */
6167 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6168 {
6169 struct thread_info *tp;
6170
6171 if (ptid == minus_one_ptid)
6172 {
6173 /* If we don't know about the target thread's tid, then
6174 we're resuming magic_null_ptid (see caller). */
6175 tp = find_thread_ptid (this, magic_null_ptid);
6176 }
6177 else
6178 tp = find_thread_ptid (this, ptid);
6179 gdb_assert (tp != NULL);
6180
6181 if (tp->control.may_range_step)
6182 {
6183 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6184
6185 p += xsnprintf (p, endp - p, ";r%s,%s",
6186 phex_nz (tp->control.step_range_start,
6187 addr_size),
6188 phex_nz (tp->control.step_range_end,
6189 addr_size));
6190 }
6191 else
6192 p += xsnprintf (p, endp - p, ";s");
6193 }
6194 else if (step)
6195 p += xsnprintf (p, endp - p, ";s");
6196 else if (siggnal != GDB_SIGNAL_0)
6197 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6198 else
6199 p += xsnprintf (p, endp - p, ";c");
6200
6201 if (remote_multi_process_p (rs) && ptid.is_pid ())
6202 {
6203 ptid_t nptid;
6204
6205 /* All (-1) threads of process. */
6206 nptid = ptid_t (ptid.pid (), -1, 0);
6207
6208 p += xsnprintf (p, endp - p, ":");
6209 p = write_ptid (p, endp, nptid);
6210 }
6211 else if (ptid != minus_one_ptid)
6212 {
6213 p += xsnprintf (p, endp - p, ":");
6214 p = write_ptid (p, endp, ptid);
6215 }
6216
6217 return p;
6218 }
6219
6220 /* Clear the thread's private info on resume. */
6221
6222 static void
6223 resume_clear_thread_private_info (struct thread_info *thread)
6224 {
6225 if (thread->priv != NULL)
6226 {
6227 remote_thread_info *priv = get_remote_thread_info (thread);
6228
6229 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6230 priv->watch_data_address = 0;
6231 }
6232 }
6233
6234 /* Append a vCont continue-with-signal action for threads that have a
6235 non-zero stop signal. */
6236
6237 char *
6238 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6239 ptid_t ptid)
6240 {
6241 for (thread_info *thread : all_non_exited_threads (this, ptid))
6242 if (inferior_ptid != thread->ptid
6243 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6244 {
6245 p = append_resumption (p, endp, thread->ptid,
6246 0, thread->suspend.stop_signal);
6247 thread->suspend.stop_signal = GDB_SIGNAL_0;
6248 resume_clear_thread_private_info (thread);
6249 }
6250
6251 return p;
6252 }
6253
6254 /* Set the target running, using the packets that use Hc
6255 (c/s/C/S). */
6256
6257 void
6258 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6259 gdb_signal siggnal)
6260 {
6261 struct remote_state *rs = get_remote_state ();
6262 char *buf;
6263
6264 rs->last_sent_signal = siggnal;
6265 rs->last_sent_step = step;
6266
6267 /* The c/s/C/S resume packets use Hc, so set the continue
6268 thread. */
6269 if (ptid == minus_one_ptid)
6270 set_continue_thread (any_thread_ptid);
6271 else
6272 set_continue_thread (ptid);
6273
6274 for (thread_info *thread : all_non_exited_threads (this))
6275 resume_clear_thread_private_info (thread);
6276
6277 buf = rs->buf.data ();
6278 if (::execution_direction == EXEC_REVERSE)
6279 {
6280 /* We don't pass signals to the target in reverse exec mode. */
6281 if (info_verbose && siggnal != GDB_SIGNAL_0)
6282 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6283 siggnal);
6284
6285 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6286 error (_("Remote reverse-step not supported."));
6287 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6288 error (_("Remote reverse-continue not supported."));
6289
6290 strcpy (buf, step ? "bs" : "bc");
6291 }
6292 else if (siggnal != GDB_SIGNAL_0)
6293 {
6294 buf[0] = step ? 'S' : 'C';
6295 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6296 buf[2] = tohex (((int) siggnal) & 0xf);
6297 buf[3] = '\0';
6298 }
6299 else
6300 strcpy (buf, step ? "s" : "c");
6301
6302 putpkt (buf);
6303 }
6304
6305 /* Resume the remote inferior by using a "vCont" packet. The thread
6306 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6307 resumed thread should be single-stepped and/or signalled. If PTID
6308 equals minus_one_ptid, then all threads are resumed; the thread to
6309 be stepped and/or signalled is given in the global INFERIOR_PTID.
6310 This function returns non-zero iff it resumes the inferior.
6311
6312 This function issues a strict subset of all possible vCont commands
6313 at the moment. */
6314
6315 int
6316 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6317 enum gdb_signal siggnal)
6318 {
6319 struct remote_state *rs = get_remote_state ();
6320 char *p;
6321 char *endp;
6322
6323 /* No reverse execution actions defined for vCont. */
6324 if (::execution_direction == EXEC_REVERSE)
6325 return 0;
6326
6327 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6328 remote_vcont_probe ();
6329
6330 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6331 return 0;
6332
6333 p = rs->buf.data ();
6334 endp = p + get_remote_packet_size ();
6335
6336 /* If we could generate a wider range of packets, we'd have to worry
6337 about overflowing BUF. Should there be a generic
6338 "multi-part-packet" packet? */
6339
6340 p += xsnprintf (p, endp - p, "vCont");
6341
6342 if (ptid == magic_null_ptid)
6343 {
6344 /* MAGIC_NULL_PTID means that we don't have any active threads,
6345 so we don't have any TID numbers the inferior will
6346 understand. Make sure to only send forms that do not specify
6347 a TID. */
6348 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6349 }
6350 else if (ptid == minus_one_ptid || ptid.is_pid ())
6351 {
6352 /* Resume all threads (of all processes, or of a single
6353 process), with preference for INFERIOR_PTID. This assumes
6354 inferior_ptid belongs to the set of all threads we are about
6355 to resume. */
6356 if (step || siggnal != GDB_SIGNAL_0)
6357 {
6358 /* Step inferior_ptid, with or without signal. */
6359 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6360 }
6361
6362 /* Also pass down any pending signaled resumption for other
6363 threads not the current. */
6364 p = append_pending_thread_resumptions (p, endp, ptid);
6365
6366 /* And continue others without a signal. */
6367 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6368 }
6369 else
6370 {
6371 /* Scheduler locking; resume only PTID. */
6372 append_resumption (p, endp, ptid, step, siggnal);
6373 }
6374
6375 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6376 putpkt (rs->buf);
6377
6378 if (target_is_non_stop_p ())
6379 {
6380 /* In non-stop, the stub replies to vCont with "OK". The stop
6381 reply will be reported asynchronously by means of a `%Stop'
6382 notification. */
6383 getpkt (&rs->buf, 0);
6384 if (strcmp (rs->buf.data (), "OK") != 0)
6385 error (_("Unexpected vCont reply in non-stop mode: %s"),
6386 rs->buf.data ());
6387 }
6388
6389 return 1;
6390 }
6391
6392 /* Tell the remote machine to resume. */
6393
6394 void
6395 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6396 {
6397 struct remote_state *rs = get_remote_state ();
6398
6399 /* When connected in non-stop mode, the core resumes threads
6400 individually. Resuming remote threads directly in target_resume
6401 would thus result in sending one packet per thread. Instead, to
6402 minimize roundtrip latency, here we just store the resume
6403 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6404 resumption will be done in remote_target::commit_resume, where we'll be
6405 able to do vCont action coalescing. */
6406 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6407 {
6408 remote_thread_info *remote_thr;
6409
6410 if (minus_one_ptid == ptid || ptid.is_pid ())
6411 remote_thr = get_remote_thread_info (this, inferior_ptid);
6412 else
6413 remote_thr = get_remote_thread_info (this, ptid);
6414
6415 /* We don't expect the core to ask to resume an already resumed (from
6416 its point of view) thread. */
6417 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6418
6419 remote_thr->set_resumed_pending_vcont (step, siggnal);
6420 return;
6421 }
6422
6423 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6424 (explained in remote-notif.c:handle_notification) so
6425 remote_notif_process is not called. We need find a place where
6426 it is safe to start a 'vNotif' sequence. It is good to do it
6427 before resuming inferior, because inferior was stopped and no RSP
6428 traffic at that moment. */
6429 if (!target_is_non_stop_p ())
6430 remote_notif_process (rs->notif_state, &notif_client_stop);
6431
6432 rs->last_resume_exec_dir = ::execution_direction;
6433
6434 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6435 if (!remote_resume_with_vcont (ptid, step, siggnal))
6436 remote_resume_with_hc (ptid, step, siggnal);
6437
6438 /* Update resumed state tracked by the remote target. */
6439 for (thread_info *tp : all_non_exited_threads (this, ptid))
6440 get_remote_thread_info (tp)->set_resumed ();
6441
6442 /* We are about to start executing the inferior, let's register it
6443 with the event loop. NOTE: this is the one place where all the
6444 execution commands end up. We could alternatively do this in each
6445 of the execution commands in infcmd.c. */
6446 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6447 into infcmd.c in order to allow inferior function calls to work
6448 NOT asynchronously. */
6449 if (target_can_async_p ())
6450 target_async (1);
6451
6452 /* We've just told the target to resume. The remote server will
6453 wait for the inferior to stop, and then send a stop reply. In
6454 the mean time, we can't start another command/query ourselves
6455 because the stub wouldn't be ready to process it. This applies
6456 only to the base all-stop protocol, however. In non-stop (which
6457 only supports vCont), the stub replies with an "OK", and is
6458 immediate able to process further serial input. */
6459 if (!target_is_non_stop_p ())
6460 rs->waiting_for_stop_reply = 1;
6461 }
6462
6463 static int is_pending_fork_parent_thread (struct thread_info *thread);
6464
6465 /* Private per-inferior info for target remote processes. */
6466
6467 struct remote_inferior : public private_inferior
6468 {
6469 /* Whether we can send a wildcard vCont for this process. */
6470 bool may_wildcard_vcont = true;
6471 };
6472
6473 /* Get the remote private inferior data associated to INF. */
6474
6475 static remote_inferior *
6476 get_remote_inferior (inferior *inf)
6477 {
6478 if (inf->priv == NULL)
6479 inf->priv.reset (new remote_inferior);
6480
6481 return static_cast<remote_inferior *> (inf->priv.get ());
6482 }
6483
6484 /* Class used to track the construction of a vCont packet in the
6485 outgoing packet buffer. This is used to send multiple vCont
6486 packets if we have more actions than would fit a single packet. */
6487
6488 class vcont_builder
6489 {
6490 public:
6491 explicit vcont_builder (remote_target *remote)
6492 : m_remote (remote)
6493 {
6494 restart ();
6495 }
6496
6497 void flush ();
6498 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6499
6500 private:
6501 void restart ();
6502
6503 /* The remote target. */
6504 remote_target *m_remote;
6505
6506 /* Pointer to the first action. P points here if no action has been
6507 appended yet. */
6508 char *m_first_action;
6509
6510 /* Where the next action will be appended. */
6511 char *m_p;
6512
6513 /* The end of the buffer. Must never write past this. */
6514 char *m_endp;
6515 };
6516
6517 /* Prepare the outgoing buffer for a new vCont packet. */
6518
6519 void
6520 vcont_builder::restart ()
6521 {
6522 struct remote_state *rs = m_remote->get_remote_state ();
6523
6524 m_p = rs->buf.data ();
6525 m_endp = m_p + m_remote->get_remote_packet_size ();
6526 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6527 m_first_action = m_p;
6528 }
6529
6530 /* If the vCont packet being built has any action, send it to the
6531 remote end. */
6532
6533 void
6534 vcont_builder::flush ()
6535 {
6536 struct remote_state *rs;
6537
6538 if (m_p == m_first_action)
6539 return;
6540
6541 rs = m_remote->get_remote_state ();
6542 m_remote->putpkt (rs->buf);
6543 m_remote->getpkt (&rs->buf, 0);
6544 if (strcmp (rs->buf.data (), "OK") != 0)
6545 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6546 }
6547
6548 /* The largest action is range-stepping, with its two addresses. This
6549 is more than sufficient. If a new, bigger action is created, it'll
6550 quickly trigger a failed assertion in append_resumption (and we'll
6551 just bump this). */
6552 #define MAX_ACTION_SIZE 200
6553
6554 /* Append a new vCont action in the outgoing packet being built. If
6555 the action doesn't fit the packet along with previous actions, push
6556 what we've got so far to the remote end and start over a new vCont
6557 packet (with the new action). */
6558
6559 void
6560 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6561 {
6562 char buf[MAX_ACTION_SIZE + 1];
6563
6564 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6565 ptid, step, siggnal);
6566
6567 /* Check whether this new action would fit in the vCont packet along
6568 with previous actions. If not, send what we've got so far and
6569 start a new vCont packet. */
6570 size_t rsize = endp - buf;
6571 if (rsize > m_endp - m_p)
6572 {
6573 flush ();
6574 restart ();
6575
6576 /* Should now fit. */
6577 gdb_assert (rsize <= m_endp - m_p);
6578 }
6579
6580 memcpy (m_p, buf, rsize);
6581 m_p += rsize;
6582 *m_p = '\0';
6583 }
6584
6585 /* to_commit_resume implementation. */
6586
6587 void
6588 remote_target::commit_resume ()
6589 {
6590 int any_process_wildcard;
6591 int may_global_wildcard_vcont;
6592
6593 /* If connected in all-stop mode, we'd send the remote resume
6594 request directly from remote_resume. Likewise if
6595 reverse-debugging, as there are no defined vCont actions for
6596 reverse execution. */
6597 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6598 return;
6599
6600 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6601 instead of resuming all threads of each process individually.
6602 However, if any thread of a process must remain halted, we can't
6603 send wildcard resumes and must send one action per thread.
6604
6605 Care must be taken to not resume threads/processes the server
6606 side already told us are stopped, but the core doesn't know about
6607 yet, because the events are still in the vStopped notification
6608 queue. For example:
6609
6610 #1 => vCont s:p1.1;c
6611 #2 <= OK
6612 #3 <= %Stopped T05 p1.1
6613 #4 => vStopped
6614 #5 <= T05 p1.2
6615 #6 => vStopped
6616 #7 <= OK
6617 #8 (infrun handles the stop for p1.1 and continues stepping)
6618 #9 => vCont s:p1.1;c
6619
6620 The last vCont above would resume thread p1.2 by mistake, because
6621 the server has no idea that the event for p1.2 had not been
6622 handled yet.
6623
6624 The server side must similarly ignore resume actions for the
6625 thread that has a pending %Stopped notification (and any other
6626 threads with events pending), until GDB acks the notification
6627 with vStopped. Otherwise, e.g., the following case is
6628 mishandled:
6629
6630 #1 => g (or any other packet)
6631 #2 <= [registers]
6632 #3 <= %Stopped T05 p1.2
6633 #4 => vCont s:p1.1;c
6634 #5 <= OK
6635
6636 Above, the server must not resume thread p1.2. GDB can't know
6637 that p1.2 stopped until it acks the %Stopped notification, and
6638 since from GDB's perspective all threads should be running, it
6639 sends a "c" action.
6640
6641 Finally, special care must also be given to handling fork/vfork
6642 events. A (v)fork event actually tells us that two processes
6643 stopped -- the parent and the child. Until we follow the fork,
6644 we must not resume the child. Therefore, if we have a pending
6645 fork follow, we must not send a global wildcard resume action
6646 (vCont;c). We can still send process-wide wildcards though. */
6647
6648 /* Start by assuming a global wildcard (vCont;c) is possible. */
6649 may_global_wildcard_vcont = 1;
6650
6651 /* And assume every process is individually wildcard-able too. */
6652 for (inferior *inf : all_non_exited_inferiors (this))
6653 {
6654 remote_inferior *priv = get_remote_inferior (inf);
6655
6656 priv->may_wildcard_vcont = true;
6657 }
6658
6659 /* Check for any pending events (not reported or processed yet) and
6660 disable process and global wildcard resumes appropriately. */
6661 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6662
6663 for (thread_info *tp : all_non_exited_threads (this))
6664 {
6665 remote_thread_info *priv = get_remote_thread_info (tp);
6666
6667 /* If a thread of a process is not meant to be resumed, then we
6668 can't wildcard that process. */
6669 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6670 {
6671 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6672
6673 /* And if we can't wildcard a process, we can't wildcard
6674 everything either. */
6675 may_global_wildcard_vcont = 0;
6676 continue;
6677 }
6678
6679 /* If a thread is the parent of an unfollowed fork, then we
6680 can't do a global wildcard, as that would resume the fork
6681 child. */
6682 if (is_pending_fork_parent_thread (tp))
6683 may_global_wildcard_vcont = 0;
6684 }
6685
6686 /* Now let's build the vCont packet(s). Actions must be appended
6687 from narrower to wider scopes (thread -> process -> global). If
6688 we end up with too many actions for a single packet vcont_builder
6689 flushes the current vCont packet to the remote side and starts a
6690 new one. */
6691 struct vcont_builder vcont_builder (this);
6692
6693 /* Threads first. */
6694 for (thread_info *tp : all_non_exited_threads (this))
6695 {
6696 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6697
6698 /* If the thread was previously vCont-resumed, no need to send a specific
6699 action for it. If we didn't receive a resume request for it, don't
6700 send an action for it either. */
6701 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6702 continue;
6703
6704 gdb_assert (!thread_is_in_step_over_chain (tp));
6705
6706 const resumed_pending_vcont_info &info
6707 = remote_thr->resumed_pending_vcont_info ();
6708
6709 /* Check if we need to send a specific action for this thread. If not,
6710 it will be included in a wildcard resume instead. */
6711 if (info.step || info.sig != GDB_SIGNAL_0
6712 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6713 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6714
6715 remote_thr->set_resumed ();
6716 }
6717
6718 /* Now check whether we can send any process-wide wildcard. This is
6719 to avoid sending a global wildcard in the case nothing is
6720 supposed to be resumed. */
6721 any_process_wildcard = 0;
6722
6723 for (inferior *inf : all_non_exited_inferiors (this))
6724 {
6725 if (get_remote_inferior (inf)->may_wildcard_vcont)
6726 {
6727 any_process_wildcard = 1;
6728 break;
6729 }
6730 }
6731
6732 if (any_process_wildcard)
6733 {
6734 /* If all processes are wildcard-able, then send a single "c"
6735 action, otherwise, send an "all (-1) threads of process"
6736 continue action for each running process, if any. */
6737 if (may_global_wildcard_vcont)
6738 {
6739 vcont_builder.push_action (minus_one_ptid,
6740 false, GDB_SIGNAL_0);
6741 }
6742 else
6743 {
6744 for (inferior *inf : all_non_exited_inferiors (this))
6745 {
6746 if (get_remote_inferior (inf)->may_wildcard_vcont)
6747 {
6748 vcont_builder.push_action (ptid_t (inf->pid),
6749 false, GDB_SIGNAL_0);
6750 }
6751 }
6752 }
6753 }
6754
6755 vcont_builder.flush ();
6756 }
6757
6758 \f
6759
6760 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6761 thread, all threads of a remote process, or all threads of all
6762 processes. */
6763
6764 void
6765 remote_target::remote_stop_ns (ptid_t ptid)
6766 {
6767 struct remote_state *rs = get_remote_state ();
6768 char *p = rs->buf.data ();
6769 char *endp = p + get_remote_packet_size ();
6770
6771 /* FIXME: This supports_vCont_probed check is a workaround until
6772 packet_support is per-connection. */
6773 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6774 || !rs->supports_vCont_probed)
6775 remote_vcont_probe ();
6776
6777 if (!rs->supports_vCont.t)
6778 error (_("Remote server does not support stopping threads"));
6779
6780 if (ptid == minus_one_ptid
6781 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6782 p += xsnprintf (p, endp - p, "vCont;t");
6783 else
6784 {
6785 ptid_t nptid;
6786
6787 p += xsnprintf (p, endp - p, "vCont;t:");
6788
6789 if (ptid.is_pid ())
6790 /* All (-1) threads of process. */
6791 nptid = ptid_t (ptid.pid (), -1, 0);
6792 else
6793 {
6794 /* Small optimization: if we already have a stop reply for
6795 this thread, no use in telling the stub we want this
6796 stopped. */
6797 if (peek_stop_reply (ptid))
6798 return;
6799
6800 nptid = ptid;
6801 }
6802
6803 write_ptid (p, endp, nptid);
6804 }
6805
6806 /* In non-stop, we get an immediate OK reply. The stop reply will
6807 come in asynchronously by notification. */
6808 putpkt (rs->buf);
6809 getpkt (&rs->buf, 0);
6810 if (strcmp (rs->buf.data (), "OK") != 0)
6811 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6812 rs->buf.data ());
6813 }
6814
6815 /* All-stop version of target_interrupt. Sends a break or a ^C to
6816 interrupt the remote target. It is undefined which thread of which
6817 process reports the interrupt. */
6818
6819 void
6820 remote_target::remote_interrupt_as ()
6821 {
6822 struct remote_state *rs = get_remote_state ();
6823
6824 rs->ctrlc_pending_p = 1;
6825
6826 /* If the inferior is stopped already, but the core didn't know
6827 about it yet, just ignore the request. The cached wait status
6828 will be collected in remote_wait. */
6829 if (rs->cached_wait_status)
6830 return;
6831
6832 /* Send interrupt_sequence to remote target. */
6833 send_interrupt_sequence ();
6834 }
6835
6836 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6837 the remote target. It is undefined which thread of which process
6838 reports the interrupt. Throws an error if the packet is not
6839 supported by the server. */
6840
6841 void
6842 remote_target::remote_interrupt_ns ()
6843 {
6844 struct remote_state *rs = get_remote_state ();
6845 char *p = rs->buf.data ();
6846 char *endp = p + get_remote_packet_size ();
6847
6848 xsnprintf (p, endp - p, "vCtrlC");
6849
6850 /* In non-stop, we get an immediate OK reply. The stop reply will
6851 come in asynchronously by notification. */
6852 putpkt (rs->buf);
6853 getpkt (&rs->buf, 0);
6854
6855 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6856 {
6857 case PACKET_OK:
6858 break;
6859 case PACKET_UNKNOWN:
6860 error (_("No support for interrupting the remote target."));
6861 case PACKET_ERROR:
6862 error (_("Interrupting target failed: %s"), rs->buf.data ());
6863 }
6864 }
6865
6866 /* Implement the to_stop function for the remote targets. */
6867
6868 void
6869 remote_target::stop (ptid_t ptid)
6870 {
6871 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
6872
6873 if (target_is_non_stop_p ())
6874 remote_stop_ns (ptid);
6875 else
6876 {
6877 /* We don't currently have a way to transparently pause the
6878 remote target in all-stop mode. Interrupt it instead. */
6879 remote_interrupt_as ();
6880 }
6881 }
6882
6883 /* Implement the to_interrupt function for the remote targets. */
6884
6885 void
6886 remote_target::interrupt ()
6887 {
6888 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
6889
6890 if (target_is_non_stop_p ())
6891 remote_interrupt_ns ();
6892 else
6893 remote_interrupt_as ();
6894 }
6895
6896 /* Implement the to_pass_ctrlc function for the remote targets. */
6897
6898 void
6899 remote_target::pass_ctrlc ()
6900 {
6901 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
6902
6903 struct remote_state *rs = get_remote_state ();
6904
6905 /* If we're starting up, we're not fully synced yet. Quit
6906 immediately. */
6907 if (rs->starting_up)
6908 quit ();
6909 /* If ^C has already been sent once, offer to disconnect. */
6910 else if (rs->ctrlc_pending_p)
6911 interrupt_query ();
6912 else
6913 target_interrupt ();
6914 }
6915
6916 /* Ask the user what to do when an interrupt is received. */
6917
6918 void
6919 remote_target::interrupt_query ()
6920 {
6921 struct remote_state *rs = get_remote_state ();
6922
6923 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6924 {
6925 if (query (_("The target is not responding to interrupt requests.\n"
6926 "Stop debugging it? ")))
6927 {
6928 remote_unpush_target (this);
6929 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6930 }
6931 }
6932 else
6933 {
6934 if (query (_("Interrupted while waiting for the program.\n"
6935 "Give up waiting? ")))
6936 quit ();
6937 }
6938 }
6939
6940 /* Enable/disable target terminal ownership. Most targets can use
6941 terminal groups to control terminal ownership. Remote targets are
6942 different in that explicit transfer of ownership to/from GDB/target
6943 is required. */
6944
6945 void
6946 remote_target::terminal_inferior ()
6947 {
6948 /* NOTE: At this point we could also register our selves as the
6949 recipient of all input. Any characters typed could then be
6950 passed on down to the target. */
6951 }
6952
6953 void
6954 remote_target::terminal_ours ()
6955 {
6956 }
6957
6958 static void
6959 remote_console_output (const char *msg)
6960 {
6961 const char *p;
6962
6963 for (p = msg; p[0] && p[1]; p += 2)
6964 {
6965 char tb[2];
6966 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6967
6968 tb[0] = c;
6969 tb[1] = 0;
6970 gdb_stdtarg->puts (tb);
6971 }
6972 gdb_stdtarg->flush ();
6973 }
6974
6975 struct stop_reply : public notif_event
6976 {
6977 ~stop_reply ();
6978
6979 /* The identifier of the thread about this event */
6980 ptid_t ptid;
6981
6982 /* The remote state this event is associated with. When the remote
6983 connection, represented by a remote_state object, is closed,
6984 all the associated stop_reply events should be released. */
6985 struct remote_state *rs;
6986
6987 struct target_waitstatus ws;
6988
6989 /* The architecture associated with the expedited registers. */
6990 gdbarch *arch;
6991
6992 /* Expedited registers. This makes remote debugging a bit more
6993 efficient for those targets that provide critical registers as
6994 part of their normal status mechanism (as another roundtrip to
6995 fetch them is avoided). */
6996 std::vector<cached_reg_t> regcache;
6997
6998 enum target_stop_reason stop_reason;
6999
7000 CORE_ADDR watch_data_address;
7001
7002 int core;
7003 };
7004
7005 /* Return the length of the stop reply queue. */
7006
7007 int
7008 remote_target::stop_reply_queue_length ()
7009 {
7010 remote_state *rs = get_remote_state ();
7011 return rs->stop_reply_queue.size ();
7012 }
7013
7014 static void
7015 remote_notif_stop_parse (remote_target *remote,
7016 struct notif_client *self, const char *buf,
7017 struct notif_event *event)
7018 {
7019 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7020 }
7021
7022 static void
7023 remote_notif_stop_ack (remote_target *remote,
7024 struct notif_client *self, const char *buf,
7025 struct notif_event *event)
7026 {
7027 struct stop_reply *stop_reply = (struct stop_reply *) event;
7028
7029 /* acknowledge */
7030 putpkt (remote, self->ack_command);
7031
7032 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7033 the notification. It was left in the queue because we need to
7034 acknowledge it and pull the rest of the notifications out. */
7035 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
7036 remote->push_stop_reply (stop_reply);
7037 }
7038
7039 static int
7040 remote_notif_stop_can_get_pending_events (remote_target *remote,
7041 struct notif_client *self)
7042 {
7043 /* We can't get pending events in remote_notif_process for
7044 notification stop, and we have to do this in remote_wait_ns
7045 instead. If we fetch all queued events from stub, remote stub
7046 may exit and we have no chance to process them back in
7047 remote_wait_ns. */
7048 remote_state *rs = remote->get_remote_state ();
7049 mark_async_event_handler (rs->remote_async_inferior_event_token);
7050 return 0;
7051 }
7052
7053 stop_reply::~stop_reply ()
7054 {
7055 for (cached_reg_t &reg : regcache)
7056 xfree (reg.data);
7057 }
7058
7059 static notif_event_up
7060 remote_notif_stop_alloc_reply ()
7061 {
7062 return notif_event_up (new struct stop_reply ());
7063 }
7064
7065 /* A client of notification Stop. */
7066
7067 struct notif_client notif_client_stop =
7068 {
7069 "Stop",
7070 "vStopped",
7071 remote_notif_stop_parse,
7072 remote_notif_stop_ack,
7073 remote_notif_stop_can_get_pending_events,
7074 remote_notif_stop_alloc_reply,
7075 REMOTE_NOTIF_STOP,
7076 };
7077
7078 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7079 the pid of the process that owns the threads we want to check, or
7080 -1 if we want to check all threads. */
7081
7082 static int
7083 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
7084 ptid_t thread_ptid)
7085 {
7086 if (ws->kind == TARGET_WAITKIND_FORKED
7087 || ws->kind == TARGET_WAITKIND_VFORKED)
7088 {
7089 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7090 return 1;
7091 }
7092
7093 return 0;
7094 }
7095
7096 /* Return the thread's pending status used to determine whether the
7097 thread is a fork parent stopped at a fork event. */
7098
7099 static struct target_waitstatus *
7100 thread_pending_fork_status (struct thread_info *thread)
7101 {
7102 if (thread->suspend.waitstatus_pending_p)
7103 return &thread->suspend.waitstatus;
7104 else
7105 return &thread->pending_follow;
7106 }
7107
7108 /* Determine if THREAD is a pending fork parent thread. */
7109
7110 static int
7111 is_pending_fork_parent_thread (struct thread_info *thread)
7112 {
7113 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7114 int pid = -1;
7115
7116 return is_pending_fork_parent (ws, pid, thread->ptid);
7117 }
7118
7119 /* If CONTEXT contains any fork child threads that have not been
7120 reported yet, remove them from the CONTEXT list. If such a
7121 thread exists it is because we are stopped at a fork catchpoint
7122 and have not yet called follow_fork, which will set up the
7123 host-side data structures for the new process. */
7124
7125 void
7126 remote_target::remove_new_fork_children (threads_listing_context *context)
7127 {
7128 int pid = -1;
7129 struct notif_client *notif = &notif_client_stop;
7130
7131 /* For any threads stopped at a fork event, remove the corresponding
7132 fork child threads from the CONTEXT list. */
7133 for (thread_info *thread : all_non_exited_threads (this))
7134 {
7135 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7136
7137 if (is_pending_fork_parent (ws, pid, thread->ptid))
7138 context->remove_thread (ws->value.related_pid);
7139 }
7140
7141 /* Check for any pending fork events (not reported or processed yet)
7142 in process PID and remove those fork child threads from the
7143 CONTEXT list as well. */
7144 remote_notif_get_pending_events (notif);
7145 for (auto &event : get_remote_state ()->stop_reply_queue)
7146 if (event->ws.kind == TARGET_WAITKIND_FORKED
7147 || event->ws.kind == TARGET_WAITKIND_VFORKED
7148 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7149 context->remove_thread (event->ws.value.related_pid);
7150 }
7151
7152 /* Check whether any event pending in the vStopped queue would prevent
7153 a global or process wildcard vCont action. Clear
7154 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7155 and clear the event inferior's may_wildcard_vcont flag if we can't
7156 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7157
7158 void
7159 remote_target::check_pending_events_prevent_wildcard_vcont
7160 (int *may_global_wildcard)
7161 {
7162 struct notif_client *notif = &notif_client_stop;
7163
7164 remote_notif_get_pending_events (notif);
7165 for (auto &event : get_remote_state ()->stop_reply_queue)
7166 {
7167 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7168 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7169 continue;
7170
7171 if (event->ws.kind == TARGET_WAITKIND_FORKED
7172 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7173 *may_global_wildcard = 0;
7174
7175 struct inferior *inf = find_inferior_ptid (this, event->ptid);
7176
7177 /* This may be the first time we heard about this process.
7178 Regardless, we must not do a global wildcard resume, otherwise
7179 we'd resume this process too. */
7180 *may_global_wildcard = 0;
7181 if (inf != NULL)
7182 get_remote_inferior (inf)->may_wildcard_vcont = false;
7183 }
7184 }
7185
7186 /* Discard all pending stop replies of inferior INF. */
7187
7188 void
7189 remote_target::discard_pending_stop_replies (struct inferior *inf)
7190 {
7191 struct stop_reply *reply;
7192 struct remote_state *rs = get_remote_state ();
7193 struct remote_notif_state *rns = rs->notif_state;
7194
7195 /* This function can be notified when an inferior exists. When the
7196 target is not remote, the notification state is NULL. */
7197 if (rs->remote_desc == NULL)
7198 return;
7199
7200 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7201
7202 /* Discard the in-flight notification. */
7203 if (reply != NULL && reply->ptid.pid () == inf->pid)
7204 {
7205 /* Leave the notification pending, since the server expects that
7206 we acknowledge it with vStopped. But clear its contents, so
7207 that later on when we acknowledge it, we also discard it. */
7208 reply->ws.kind = TARGET_WAITKIND_IGNORE;
7209
7210 if (remote_debug)
7211 fprintf_unfiltered (gdb_stdlog,
7212 "discarded in-flight notification\n");
7213 }
7214
7215 /* Discard the stop replies we have already pulled with
7216 vStopped. */
7217 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7218 rs->stop_reply_queue.end (),
7219 [=] (const stop_reply_up &event)
7220 {
7221 return event->ptid.pid () == inf->pid;
7222 });
7223 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7224 }
7225
7226 /* Discard the stop replies for RS in stop_reply_queue. */
7227
7228 void
7229 remote_target::discard_pending_stop_replies_in_queue ()
7230 {
7231 remote_state *rs = get_remote_state ();
7232
7233 /* Discard the stop replies we have already pulled with
7234 vStopped. */
7235 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7236 rs->stop_reply_queue.end (),
7237 [=] (const stop_reply_up &event)
7238 {
7239 return event->rs == rs;
7240 });
7241 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7242 }
7243
7244 /* Remove the first reply in 'stop_reply_queue' which matches
7245 PTID. */
7246
7247 struct stop_reply *
7248 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7249 {
7250 remote_state *rs = get_remote_state ();
7251
7252 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7253 rs->stop_reply_queue.end (),
7254 [=] (const stop_reply_up &event)
7255 {
7256 return event->ptid.matches (ptid);
7257 });
7258 struct stop_reply *result;
7259 if (iter == rs->stop_reply_queue.end ())
7260 result = nullptr;
7261 else
7262 {
7263 result = iter->release ();
7264 rs->stop_reply_queue.erase (iter);
7265 }
7266
7267 if (notif_debug)
7268 fprintf_unfiltered (gdb_stdlog,
7269 "notif: discard queued event: 'Stop' in %s\n",
7270 target_pid_to_str (ptid).c_str ());
7271
7272 return result;
7273 }
7274
7275 /* Look for a queued stop reply belonging to PTID. If one is found,
7276 remove it from the queue, and return it. Returns NULL if none is
7277 found. If there are still queued events left to process, tell the
7278 event loop to get back to target_wait soon. */
7279
7280 struct stop_reply *
7281 remote_target::queued_stop_reply (ptid_t ptid)
7282 {
7283 remote_state *rs = get_remote_state ();
7284 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7285
7286 if (!rs->stop_reply_queue.empty ())
7287 {
7288 /* There's still at least an event left. */
7289 mark_async_event_handler (rs->remote_async_inferior_event_token);
7290 }
7291
7292 return r;
7293 }
7294
7295 /* Push a fully parsed stop reply in the stop reply queue. Since we
7296 know that we now have at least one queued event left to pass to the
7297 core side, tell the event loop to get back to target_wait soon. */
7298
7299 void
7300 remote_target::push_stop_reply (struct stop_reply *new_event)
7301 {
7302 remote_state *rs = get_remote_state ();
7303 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7304
7305 if (notif_debug)
7306 fprintf_unfiltered (gdb_stdlog,
7307 "notif: push 'Stop' %s to queue %d\n",
7308 target_pid_to_str (new_event->ptid).c_str (),
7309 int (rs->stop_reply_queue.size ()));
7310
7311 mark_async_event_handler (rs->remote_async_inferior_event_token);
7312 }
7313
7314 /* Returns true if we have a stop reply for PTID. */
7315
7316 int
7317 remote_target::peek_stop_reply (ptid_t ptid)
7318 {
7319 remote_state *rs = get_remote_state ();
7320 for (auto &event : rs->stop_reply_queue)
7321 if (ptid == event->ptid
7322 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7323 return 1;
7324 return 0;
7325 }
7326
7327 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7328 starting with P and ending with PEND matches PREFIX. */
7329
7330 static int
7331 strprefix (const char *p, const char *pend, const char *prefix)
7332 {
7333 for ( ; p < pend; p++, prefix++)
7334 if (*p != *prefix)
7335 return 0;
7336 return *prefix == '\0';
7337 }
7338
7339 /* Parse the stop reply in BUF. Either the function succeeds, and the
7340 result is stored in EVENT, or throws an error. */
7341
7342 void
7343 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7344 {
7345 remote_arch_state *rsa = NULL;
7346 ULONGEST addr;
7347 const char *p;
7348 int skipregs = 0;
7349
7350 event->ptid = null_ptid;
7351 event->rs = get_remote_state ();
7352 event->ws.kind = TARGET_WAITKIND_IGNORE;
7353 event->ws.value.integer = 0;
7354 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7355 event->regcache.clear ();
7356 event->core = -1;
7357
7358 switch (buf[0])
7359 {
7360 case 'T': /* Status with PC, SP, FP, ... */
7361 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7362 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7363 ss = signal number
7364 n... = register number
7365 r... = register contents
7366 */
7367
7368 p = &buf[3]; /* after Txx */
7369 while (*p)
7370 {
7371 const char *p1;
7372 int fieldsize;
7373
7374 p1 = strchr (p, ':');
7375 if (p1 == NULL)
7376 error (_("Malformed packet(a) (missing colon): %s\n\
7377 Packet: '%s'\n"),
7378 p, buf);
7379 if (p == p1)
7380 error (_("Malformed packet(a) (missing register number): %s\n\
7381 Packet: '%s'\n"),
7382 p, buf);
7383
7384 /* Some "registers" are actually extended stop information.
7385 Note if you're adding a new entry here: GDB 7.9 and
7386 earlier assume that all register "numbers" that start
7387 with an hex digit are real register numbers. Make sure
7388 the server only sends such a packet if it knows the
7389 client understands it. */
7390
7391 if (strprefix (p, p1, "thread"))
7392 event->ptid = read_ptid (++p1, &p);
7393 else if (strprefix (p, p1, "syscall_entry"))
7394 {
7395 ULONGEST sysno;
7396
7397 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7398 p = unpack_varlen_hex (++p1, &sysno);
7399 event->ws.value.syscall_number = (int) sysno;
7400 }
7401 else if (strprefix (p, p1, "syscall_return"))
7402 {
7403 ULONGEST sysno;
7404
7405 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7406 p = unpack_varlen_hex (++p1, &sysno);
7407 event->ws.value.syscall_number = (int) sysno;
7408 }
7409 else if (strprefix (p, p1, "watch")
7410 || strprefix (p, p1, "rwatch")
7411 || strprefix (p, p1, "awatch"))
7412 {
7413 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7414 p = unpack_varlen_hex (++p1, &addr);
7415 event->watch_data_address = (CORE_ADDR) addr;
7416 }
7417 else if (strprefix (p, p1, "swbreak"))
7418 {
7419 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7420
7421 /* Make sure the stub doesn't forget to indicate support
7422 with qSupported. */
7423 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7424 error (_("Unexpected swbreak stop reason"));
7425
7426 /* The value part is documented as "must be empty",
7427 though we ignore it, in case we ever decide to make
7428 use of it in a backward compatible way. */
7429 p = strchrnul (p1 + 1, ';');
7430 }
7431 else if (strprefix (p, p1, "hwbreak"))
7432 {
7433 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7434
7435 /* Make sure the stub doesn't forget to indicate support
7436 with qSupported. */
7437 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7438 error (_("Unexpected hwbreak stop reason"));
7439
7440 /* See above. */
7441 p = strchrnul (p1 + 1, ';');
7442 }
7443 else if (strprefix (p, p1, "library"))
7444 {
7445 event->ws.kind = TARGET_WAITKIND_LOADED;
7446 p = strchrnul (p1 + 1, ';');
7447 }
7448 else if (strprefix (p, p1, "replaylog"))
7449 {
7450 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7451 /* p1 will indicate "begin" or "end", but it makes
7452 no difference for now, so ignore it. */
7453 p = strchrnul (p1 + 1, ';');
7454 }
7455 else if (strprefix (p, p1, "core"))
7456 {
7457 ULONGEST c;
7458
7459 p = unpack_varlen_hex (++p1, &c);
7460 event->core = c;
7461 }
7462 else if (strprefix (p, p1, "fork"))
7463 {
7464 event->ws.value.related_pid = read_ptid (++p1, &p);
7465 event->ws.kind = TARGET_WAITKIND_FORKED;
7466 }
7467 else if (strprefix (p, p1, "vfork"))
7468 {
7469 event->ws.value.related_pid = read_ptid (++p1, &p);
7470 event->ws.kind = TARGET_WAITKIND_VFORKED;
7471 }
7472 else if (strprefix (p, p1, "vforkdone"))
7473 {
7474 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7475 p = strchrnul (p1 + 1, ';');
7476 }
7477 else if (strprefix (p, p1, "exec"))
7478 {
7479 ULONGEST ignored;
7480 int pathlen;
7481
7482 /* Determine the length of the execd pathname. */
7483 p = unpack_varlen_hex (++p1, &ignored);
7484 pathlen = (p - p1) / 2;
7485
7486 /* Save the pathname for event reporting and for
7487 the next run command. */
7488 gdb::unique_xmalloc_ptr<char[]> pathname
7489 ((char *) xmalloc (pathlen + 1));
7490 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7491 pathname[pathlen] = '\0';
7492
7493 /* This is freed during event handling. */
7494 event->ws.value.execd_pathname = pathname.release ();
7495 event->ws.kind = TARGET_WAITKIND_EXECD;
7496
7497 /* Skip the registers included in this packet, since
7498 they may be for an architecture different from the
7499 one used by the original program. */
7500 skipregs = 1;
7501 }
7502 else if (strprefix (p, p1, "create"))
7503 {
7504 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7505 p = strchrnul (p1 + 1, ';');
7506 }
7507 else
7508 {
7509 ULONGEST pnum;
7510 const char *p_temp;
7511
7512 if (skipregs)
7513 {
7514 p = strchrnul (p1 + 1, ';');
7515 p++;
7516 continue;
7517 }
7518
7519 /* Maybe a real ``P'' register number. */
7520 p_temp = unpack_varlen_hex (p, &pnum);
7521 /* If the first invalid character is the colon, we got a
7522 register number. Otherwise, it's an unknown stop
7523 reason. */
7524 if (p_temp == p1)
7525 {
7526 /* If we haven't parsed the event's thread yet, find
7527 it now, in order to find the architecture of the
7528 reported expedited registers. */
7529 if (event->ptid == null_ptid)
7530 {
7531 /* If there is no thread-id information then leave
7532 the event->ptid as null_ptid. Later in
7533 process_stop_reply we will pick a suitable
7534 thread. */
7535 const char *thr = strstr (p1 + 1, ";thread:");
7536 if (thr != NULL)
7537 event->ptid = read_ptid (thr + strlen (";thread:"),
7538 NULL);
7539 }
7540
7541 if (rsa == NULL)
7542 {
7543 inferior *inf
7544 = (event->ptid == null_ptid
7545 ? NULL
7546 : find_inferior_ptid (this, event->ptid));
7547 /* If this is the first time we learn anything
7548 about this process, skip the registers
7549 included in this packet, since we don't yet
7550 know which architecture to use to parse them.
7551 We'll determine the architecture later when
7552 we process the stop reply and retrieve the
7553 target description, via
7554 remote_notice_new_inferior ->
7555 post_create_inferior. */
7556 if (inf == NULL)
7557 {
7558 p = strchrnul (p1 + 1, ';');
7559 p++;
7560 continue;
7561 }
7562
7563 event->arch = inf->gdbarch;
7564 rsa = event->rs->get_remote_arch_state (event->arch);
7565 }
7566
7567 packet_reg *reg
7568 = packet_reg_from_pnum (event->arch, rsa, pnum);
7569 cached_reg_t cached_reg;
7570
7571 if (reg == NULL)
7572 error (_("Remote sent bad register number %s: %s\n\
7573 Packet: '%s'\n"),
7574 hex_string (pnum), p, buf);
7575
7576 cached_reg.num = reg->regnum;
7577 cached_reg.data = (gdb_byte *)
7578 xmalloc (register_size (event->arch, reg->regnum));
7579
7580 p = p1 + 1;
7581 fieldsize = hex2bin (p, cached_reg.data,
7582 register_size (event->arch, reg->regnum));
7583 p += 2 * fieldsize;
7584 if (fieldsize < register_size (event->arch, reg->regnum))
7585 warning (_("Remote reply is too short: %s"), buf);
7586
7587 event->regcache.push_back (cached_reg);
7588 }
7589 else
7590 {
7591 /* Not a number. Silently skip unknown optional
7592 info. */
7593 p = strchrnul (p1 + 1, ';');
7594 }
7595 }
7596
7597 if (*p != ';')
7598 error (_("Remote register badly formatted: %s\nhere: %s"),
7599 buf, p);
7600 ++p;
7601 }
7602
7603 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7604 break;
7605
7606 /* fall through */
7607 case 'S': /* Old style status, just signal only. */
7608 {
7609 int sig;
7610
7611 event->ws.kind = TARGET_WAITKIND_STOPPED;
7612 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7613 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7614 event->ws.value.sig = (enum gdb_signal) sig;
7615 else
7616 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7617 }
7618 break;
7619 case 'w': /* Thread exited. */
7620 {
7621 ULONGEST value;
7622
7623 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7624 p = unpack_varlen_hex (&buf[1], &value);
7625 event->ws.value.integer = value;
7626 if (*p != ';')
7627 error (_("stop reply packet badly formatted: %s"), buf);
7628 event->ptid = read_ptid (++p, NULL);
7629 break;
7630 }
7631 case 'W': /* Target exited. */
7632 case 'X':
7633 {
7634 ULONGEST value;
7635
7636 /* GDB used to accept only 2 hex chars here. Stubs should
7637 only send more if they detect GDB supports multi-process
7638 support. */
7639 p = unpack_varlen_hex (&buf[1], &value);
7640
7641 if (buf[0] == 'W')
7642 {
7643 /* The remote process exited. */
7644 event->ws.kind = TARGET_WAITKIND_EXITED;
7645 event->ws.value.integer = value;
7646 }
7647 else
7648 {
7649 /* The remote process exited with a signal. */
7650 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7651 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7652 event->ws.value.sig = (enum gdb_signal) value;
7653 else
7654 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7655 }
7656
7657 /* If no process is specified, return null_ptid, and let the
7658 caller figure out the right process to use. */
7659 int pid = 0;
7660 if (*p == '\0')
7661 ;
7662 else if (*p == ';')
7663 {
7664 p++;
7665
7666 if (*p == '\0')
7667 ;
7668 else if (startswith (p, "process:"))
7669 {
7670 ULONGEST upid;
7671
7672 p += sizeof ("process:") - 1;
7673 unpack_varlen_hex (p, &upid);
7674 pid = upid;
7675 }
7676 else
7677 error (_("unknown stop reply packet: %s"), buf);
7678 }
7679 else
7680 error (_("unknown stop reply packet: %s"), buf);
7681 event->ptid = ptid_t (pid);
7682 }
7683 break;
7684 case 'N':
7685 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7686 event->ptid = minus_one_ptid;
7687 break;
7688 }
7689 }
7690
7691 /* When the stub wants to tell GDB about a new notification reply, it
7692 sends a notification (%Stop, for example). Those can come it at
7693 any time, hence, we have to make sure that any pending
7694 putpkt/getpkt sequence we're making is finished, before querying
7695 the stub for more events with the corresponding ack command
7696 (vStopped, for example). E.g., if we started a vStopped sequence
7697 immediately upon receiving the notification, something like this
7698 could happen:
7699
7700 1.1) --> Hg 1
7701 1.2) <-- OK
7702 1.3) --> g
7703 1.4) <-- %Stop
7704 1.5) --> vStopped
7705 1.6) <-- (registers reply to step #1.3)
7706
7707 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7708 query.
7709
7710 To solve this, whenever we parse a %Stop notification successfully,
7711 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7712 doing whatever we were doing:
7713
7714 2.1) --> Hg 1
7715 2.2) <-- OK
7716 2.3) --> g
7717 2.4) <-- %Stop
7718 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7719 2.5) <-- (registers reply to step #2.3)
7720
7721 Eventually after step #2.5, we return to the event loop, which
7722 notices there's an event on the
7723 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7724 associated callback --- the function below. At this point, we're
7725 always safe to start a vStopped sequence. :
7726
7727 2.6) --> vStopped
7728 2.7) <-- T05 thread:2
7729 2.8) --> vStopped
7730 2.9) --> OK
7731 */
7732
7733 void
7734 remote_target::remote_notif_get_pending_events (notif_client *nc)
7735 {
7736 struct remote_state *rs = get_remote_state ();
7737
7738 if (rs->notif_state->pending_event[nc->id] != NULL)
7739 {
7740 if (notif_debug)
7741 fprintf_unfiltered (gdb_stdlog,
7742 "notif: process: '%s' ack pending event\n",
7743 nc->name);
7744
7745 /* acknowledge */
7746 nc->ack (this, nc, rs->buf.data (),
7747 rs->notif_state->pending_event[nc->id]);
7748 rs->notif_state->pending_event[nc->id] = NULL;
7749
7750 while (1)
7751 {
7752 getpkt (&rs->buf, 0);
7753 if (strcmp (rs->buf.data (), "OK") == 0)
7754 break;
7755 else
7756 remote_notif_ack (this, nc, rs->buf.data ());
7757 }
7758 }
7759 else
7760 {
7761 if (notif_debug)
7762 fprintf_unfiltered (gdb_stdlog,
7763 "notif: process: '%s' no pending reply\n",
7764 nc->name);
7765 }
7766 }
7767
7768 /* Wrapper around remote_target::remote_notif_get_pending_events to
7769 avoid having to export the whole remote_target class. */
7770
7771 void
7772 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7773 {
7774 remote->remote_notif_get_pending_events (nc);
7775 }
7776
7777 /* Called from process_stop_reply when the stop packet we are responding
7778 to didn't include a process-id or thread-id. STATUS is the stop event
7779 we are responding to.
7780
7781 It is the task of this function to select a suitable thread (or process)
7782 and return its ptid, this is the thread (or process) we will assume the
7783 stop event came from.
7784
7785 In some cases there isn't really any choice about which thread (or
7786 process) is selected, a basic remote with a single process containing a
7787 single thread might choose not to send any process-id or thread-id in
7788 its stop packets, this function will select and return the one and only
7789 thread.
7790
7791 However, if a target supports multiple threads (or processes) and still
7792 doesn't include a thread-id (or process-id) in its stop packet then
7793 first, this is a badly behaving target, and second, we're going to have
7794 to select a thread (or process) at random and use that. This function
7795 will print a warning to the user if it detects that there is the
7796 possibility that GDB is guessing which thread (or process) to
7797 report.
7798
7799 Note that this is called before GDB fetches the updated thread list from the
7800 target. So it's possible for the stop reply to be ambiguous and for GDB to
7801 not realize it. For example, if there's initially one thread, the target
7802 spawns a second thread, and then sends a stop reply without an id that
7803 concerns the first thread. GDB will assume the stop reply is about the
7804 first thread - the only thread it knows about - without printing a warning.
7805 Anyway, if the remote meant for the stop reply to be about the second thread,
7806 then it would be really broken, because GDB doesn't know about that thread
7807 yet. */
7808
7809 ptid_t
7810 remote_target::select_thread_for_ambiguous_stop_reply
7811 (const struct target_waitstatus *status)
7812 {
7813 /* Some stop events apply to all threads in an inferior, while others
7814 only apply to a single thread. */
7815 bool process_wide_stop
7816 = (status->kind == TARGET_WAITKIND_EXITED
7817 || status->kind == TARGET_WAITKIND_SIGNALLED);
7818
7819 thread_info *first_resumed_thread = nullptr;
7820 bool ambiguous = false;
7821
7822 /* Consider all non-exited threads of the target, find the first resumed
7823 one. */
7824 for (thread_info *thr : all_non_exited_threads (this))
7825 {
7826 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7827
7828 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7829 continue;
7830
7831 if (first_resumed_thread == nullptr)
7832 first_resumed_thread = thr;
7833 else if (!process_wide_stop
7834 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7835 ambiguous = true;
7836 }
7837
7838 gdb_assert (first_resumed_thread != nullptr);
7839
7840 /* Warn if the remote target is sending ambiguous stop replies. */
7841 if (ambiguous)
7842 {
7843 static bool warned = false;
7844
7845 if (!warned)
7846 {
7847 /* If you are seeing this warning then the remote target has
7848 stopped without specifying a thread-id, but the target
7849 does have multiple threads (or inferiors), and so GDB is
7850 having to guess which thread stopped.
7851
7852 Examples of what might cause this are the target sending
7853 and 'S' stop packet, or a 'T' stop packet and not
7854 including a thread-id.
7855
7856 Additionally, the target might send a 'W' or 'X packet
7857 without including a process-id, when the target has
7858 multiple running inferiors. */
7859 if (process_wide_stop)
7860 warning (_("multi-inferior target stopped without "
7861 "sending a process-id, using first "
7862 "non-exited inferior"));
7863 else
7864 warning (_("multi-threaded target stopped without "
7865 "sending a thread-id, using first "
7866 "non-exited thread"));
7867 warned = true;
7868 }
7869 }
7870
7871 /* If this is a stop for all threads then don't use a particular threads
7872 ptid, instead create a new ptid where only the pid field is set. */
7873 if (process_wide_stop)
7874 return ptid_t (first_resumed_thread->ptid.pid ());
7875 else
7876 return first_resumed_thread->ptid;
7877 }
7878
7879 /* Called when it is decided that STOP_REPLY holds the info of the
7880 event that is to be returned to the core. This function always
7881 destroys STOP_REPLY. */
7882
7883 ptid_t
7884 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7885 struct target_waitstatus *status)
7886 {
7887 *status = stop_reply->ws;
7888 ptid_t ptid = stop_reply->ptid;
7889
7890 /* If no thread/process was reported by the stub then select a suitable
7891 thread/process. */
7892 if (ptid == null_ptid)
7893 ptid = select_thread_for_ambiguous_stop_reply (status);
7894 gdb_assert (ptid != null_ptid);
7895
7896 if (status->kind != TARGET_WAITKIND_EXITED
7897 && status->kind != TARGET_WAITKIND_SIGNALLED
7898 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7899 {
7900 /* Expedited registers. */
7901 if (!stop_reply->regcache.empty ())
7902 {
7903 struct regcache *regcache
7904 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
7905
7906 for (cached_reg_t &reg : stop_reply->regcache)
7907 {
7908 regcache->raw_supply (reg.num, reg.data);
7909 xfree (reg.data);
7910 }
7911
7912 stop_reply->regcache.clear ();
7913 }
7914
7915 remote_notice_new_inferior (ptid, 0);
7916 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
7917 remote_thr->core = stop_reply->core;
7918 remote_thr->stop_reason = stop_reply->stop_reason;
7919 remote_thr->watch_data_address = stop_reply->watch_data_address;
7920
7921 if (target_is_non_stop_p ())
7922 {
7923 /* If the target works in non-stop mode, a stop-reply indicates that
7924 only this thread stopped. */
7925 remote_thr->set_not_resumed ();
7926 }
7927 else
7928 {
7929 /* If the target works in all-stop mode, a stop-reply indicates that
7930 all the target's threads stopped. */
7931 for (thread_info *tp : all_non_exited_threads (this))
7932 get_remote_thread_info (tp)->set_not_resumed ();
7933 }
7934 }
7935
7936 delete stop_reply;
7937 return ptid;
7938 }
7939
7940 /* The non-stop mode version of target_wait. */
7941
7942 ptid_t
7943 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
7944 target_wait_flags options)
7945 {
7946 struct remote_state *rs = get_remote_state ();
7947 struct stop_reply *stop_reply;
7948 int ret;
7949 int is_notif = 0;
7950
7951 /* If in non-stop mode, get out of getpkt even if a
7952 notification is received. */
7953
7954 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7955 while (1)
7956 {
7957 if (ret != -1 && !is_notif)
7958 switch (rs->buf[0])
7959 {
7960 case 'E': /* Error of some sort. */
7961 /* We're out of sync with the target now. Did it continue
7962 or not? We can't tell which thread it was in non-stop,
7963 so just ignore this. */
7964 warning (_("Remote failure reply: %s"), rs->buf.data ());
7965 break;
7966 case 'O': /* Console output. */
7967 remote_console_output (&rs->buf[1]);
7968 break;
7969 default:
7970 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7971 break;
7972 }
7973
7974 /* Acknowledge a pending stop reply that may have arrived in the
7975 mean time. */
7976 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7977 remote_notif_get_pending_events (&notif_client_stop);
7978
7979 /* If indeed we noticed a stop reply, we're done. */
7980 stop_reply = queued_stop_reply (ptid);
7981 if (stop_reply != NULL)
7982 return process_stop_reply (stop_reply, status);
7983
7984 /* Still no event. If we're just polling for an event, then
7985 return to the event loop. */
7986 if (options & TARGET_WNOHANG)
7987 {
7988 status->kind = TARGET_WAITKIND_IGNORE;
7989 return minus_one_ptid;
7990 }
7991
7992 /* Otherwise do a blocking wait. */
7993 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7994 }
7995 }
7996
7997 /* Return the first resumed thread. */
7998
7999 static ptid_t
8000 first_remote_resumed_thread (remote_target *target)
8001 {
8002 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
8003 if (tp->resumed)
8004 return tp->ptid;
8005 return null_ptid;
8006 }
8007
8008 /* Wait until the remote machine stops, then return, storing status in
8009 STATUS just as `wait' would. */
8010
8011 ptid_t
8012 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8013 target_wait_flags options)
8014 {
8015 struct remote_state *rs = get_remote_state ();
8016 ptid_t event_ptid = null_ptid;
8017 char *buf;
8018 struct stop_reply *stop_reply;
8019
8020 again:
8021
8022 status->kind = TARGET_WAITKIND_IGNORE;
8023 status->value.integer = 0;
8024
8025 stop_reply = queued_stop_reply (ptid);
8026 if (stop_reply != NULL)
8027 return process_stop_reply (stop_reply, status);
8028
8029 if (rs->cached_wait_status)
8030 /* Use the cached wait status, but only once. */
8031 rs->cached_wait_status = 0;
8032 else
8033 {
8034 int ret;
8035 int is_notif;
8036 int forever = ((options & TARGET_WNOHANG) == 0
8037 && rs->wait_forever_enabled_p);
8038
8039 if (!rs->waiting_for_stop_reply)
8040 {
8041 status->kind = TARGET_WAITKIND_NO_RESUMED;
8042 return minus_one_ptid;
8043 }
8044
8045 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8046 _never_ wait for ever -> test on target_is_async_p().
8047 However, before we do that we need to ensure that the caller
8048 knows how to take the target into/out of async mode. */
8049 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8050
8051 /* GDB gets a notification. Return to core as this event is
8052 not interesting. */
8053 if (ret != -1 && is_notif)
8054 return minus_one_ptid;
8055
8056 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8057 return minus_one_ptid;
8058 }
8059
8060 buf = rs->buf.data ();
8061
8062 /* Assume that the target has acknowledged Ctrl-C unless we receive
8063 an 'F' or 'O' packet. */
8064 if (buf[0] != 'F' && buf[0] != 'O')
8065 rs->ctrlc_pending_p = 0;
8066
8067 switch (buf[0])
8068 {
8069 case 'E': /* Error of some sort. */
8070 /* We're out of sync with the target now. Did it continue or
8071 not? Not is more likely, so report a stop. */
8072 rs->waiting_for_stop_reply = 0;
8073
8074 warning (_("Remote failure reply: %s"), buf);
8075 status->kind = TARGET_WAITKIND_STOPPED;
8076 status->value.sig = GDB_SIGNAL_0;
8077 break;
8078 case 'F': /* File-I/O request. */
8079 /* GDB may access the inferior memory while handling the File-I/O
8080 request, but we don't want GDB accessing memory while waiting
8081 for a stop reply. See the comments in putpkt_binary. Set
8082 waiting_for_stop_reply to 0 temporarily. */
8083 rs->waiting_for_stop_reply = 0;
8084 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8085 rs->ctrlc_pending_p = 0;
8086 /* GDB handled the File-I/O request, and the target is running
8087 again. Keep waiting for events. */
8088 rs->waiting_for_stop_reply = 1;
8089 break;
8090 case 'N': case 'T': case 'S': case 'X': case 'W':
8091 {
8092 /* There is a stop reply to handle. */
8093 rs->waiting_for_stop_reply = 0;
8094
8095 stop_reply
8096 = (struct stop_reply *) remote_notif_parse (this,
8097 &notif_client_stop,
8098 rs->buf.data ());
8099
8100 event_ptid = process_stop_reply (stop_reply, status);
8101 break;
8102 }
8103 case 'O': /* Console output. */
8104 remote_console_output (buf + 1);
8105 break;
8106 case '\0':
8107 if (rs->last_sent_signal != GDB_SIGNAL_0)
8108 {
8109 /* Zero length reply means that we tried 'S' or 'C' and the
8110 remote system doesn't support it. */
8111 target_terminal::ours_for_output ();
8112 printf_filtered
8113 ("Can't send signals to this remote system. %s not sent.\n",
8114 gdb_signal_to_name (rs->last_sent_signal));
8115 rs->last_sent_signal = GDB_SIGNAL_0;
8116 target_terminal::inferior ();
8117
8118 strcpy (buf, rs->last_sent_step ? "s" : "c");
8119 putpkt (buf);
8120 break;
8121 }
8122 /* fallthrough */
8123 default:
8124 warning (_("Invalid remote reply: %s"), buf);
8125 break;
8126 }
8127
8128 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
8129 return minus_one_ptid;
8130 else if (status->kind == TARGET_WAITKIND_IGNORE)
8131 {
8132 /* Nothing interesting happened. If we're doing a non-blocking
8133 poll, we're done. Otherwise, go back to waiting. */
8134 if (options & TARGET_WNOHANG)
8135 return minus_one_ptid;
8136 else
8137 goto again;
8138 }
8139 else if (status->kind != TARGET_WAITKIND_EXITED
8140 && status->kind != TARGET_WAITKIND_SIGNALLED)
8141 {
8142 if (event_ptid != null_ptid)
8143 record_currthread (rs, event_ptid);
8144 else
8145 event_ptid = first_remote_resumed_thread (this);
8146 }
8147 else
8148 {
8149 /* A process exit. Invalidate our notion of current thread. */
8150 record_currthread (rs, minus_one_ptid);
8151 /* It's possible that the packet did not include a pid. */
8152 if (event_ptid == null_ptid)
8153 event_ptid = first_remote_resumed_thread (this);
8154 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8155 if (event_ptid == null_ptid)
8156 event_ptid = magic_null_ptid;
8157 }
8158
8159 return event_ptid;
8160 }
8161
8162 /* Wait until the remote machine stops, then return, storing status in
8163 STATUS just as `wait' would. */
8164
8165 ptid_t
8166 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8167 target_wait_flags options)
8168 {
8169 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8170
8171 remote_state *rs = get_remote_state ();
8172
8173 /* Start by clearing the flag that asks for our wait method to be called,
8174 we'll mark it again at the end if needed. */
8175 if (target_is_async_p ())
8176 clear_async_event_handler (rs->remote_async_inferior_event_token);
8177
8178 ptid_t event_ptid;
8179
8180 if (target_is_non_stop_p ())
8181 event_ptid = wait_ns (ptid, status, options);
8182 else
8183 event_ptid = wait_as (ptid, status, options);
8184
8185 if (target_is_async_p ())
8186 {
8187 /* If there are events left in the queue, or unacknowledged
8188 notifications, then tell the event loop to call us again. */
8189 if (!rs->stop_reply_queue.empty ()
8190 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8191 mark_async_event_handler (rs->remote_async_inferior_event_token);
8192 }
8193
8194 return event_ptid;
8195 }
8196
8197 /* Fetch a single register using a 'p' packet. */
8198
8199 int
8200 remote_target::fetch_register_using_p (struct regcache *regcache,
8201 packet_reg *reg)
8202 {
8203 struct gdbarch *gdbarch = regcache->arch ();
8204 struct remote_state *rs = get_remote_state ();
8205 char *buf, *p;
8206 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8207 int i;
8208
8209 if (packet_support (PACKET_p) == PACKET_DISABLE)
8210 return 0;
8211
8212 if (reg->pnum == -1)
8213 return 0;
8214
8215 p = rs->buf.data ();
8216 *p++ = 'p';
8217 p += hexnumstr (p, reg->pnum);
8218 *p++ = '\0';
8219 putpkt (rs->buf);
8220 getpkt (&rs->buf, 0);
8221
8222 buf = rs->buf.data ();
8223
8224 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8225 {
8226 case PACKET_OK:
8227 break;
8228 case PACKET_UNKNOWN:
8229 return 0;
8230 case PACKET_ERROR:
8231 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8232 gdbarch_register_name (regcache->arch (),
8233 reg->regnum),
8234 buf);
8235 }
8236
8237 /* If this register is unfetchable, tell the regcache. */
8238 if (buf[0] == 'x')
8239 {
8240 regcache->raw_supply (reg->regnum, NULL);
8241 return 1;
8242 }
8243
8244 /* Otherwise, parse and supply the value. */
8245 p = buf;
8246 i = 0;
8247 while (p[0] != 0)
8248 {
8249 if (p[1] == 0)
8250 error (_("fetch_register_using_p: early buf termination"));
8251
8252 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8253 p += 2;
8254 }
8255 regcache->raw_supply (reg->regnum, regp);
8256 return 1;
8257 }
8258
8259 /* Fetch the registers included in the target's 'g' packet. */
8260
8261 int
8262 remote_target::send_g_packet ()
8263 {
8264 struct remote_state *rs = get_remote_state ();
8265 int buf_len;
8266
8267 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8268 putpkt (rs->buf);
8269 getpkt (&rs->buf, 0);
8270 if (packet_check_result (rs->buf) == PACKET_ERROR)
8271 error (_("Could not read registers; remote failure reply '%s'"),
8272 rs->buf.data ());
8273
8274 /* We can get out of synch in various cases. If the first character
8275 in the buffer is not a hex character, assume that has happened
8276 and try to fetch another packet to read. */
8277 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8278 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8279 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8280 && rs->buf[0] != 'x') /* New: unavailable register value. */
8281 {
8282 remote_debug_printf ("Bad register packet; fetching a new packet");
8283 getpkt (&rs->buf, 0);
8284 }
8285
8286 buf_len = strlen (rs->buf.data ());
8287
8288 /* Sanity check the received packet. */
8289 if (buf_len % 2 != 0)
8290 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8291
8292 return buf_len / 2;
8293 }
8294
8295 void
8296 remote_target::process_g_packet (struct regcache *regcache)
8297 {
8298 struct gdbarch *gdbarch = regcache->arch ();
8299 struct remote_state *rs = get_remote_state ();
8300 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8301 int i, buf_len;
8302 char *p;
8303 char *regs;
8304
8305 buf_len = strlen (rs->buf.data ());
8306
8307 /* Further sanity checks, with knowledge of the architecture. */
8308 if (buf_len > 2 * rsa->sizeof_g_packet)
8309 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8310 "bytes): %s"),
8311 rsa->sizeof_g_packet, buf_len / 2,
8312 rs->buf.data ());
8313
8314 /* Save the size of the packet sent to us by the target. It is used
8315 as a heuristic when determining the max size of packets that the
8316 target can safely receive. */
8317 if (rsa->actual_register_packet_size == 0)
8318 rsa->actual_register_packet_size = buf_len;
8319
8320 /* If this is smaller than we guessed the 'g' packet would be,
8321 update our records. A 'g' reply that doesn't include a register's
8322 value implies either that the register is not available, or that
8323 the 'p' packet must be used. */
8324 if (buf_len < 2 * rsa->sizeof_g_packet)
8325 {
8326 long sizeof_g_packet = buf_len / 2;
8327
8328 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8329 {
8330 long offset = rsa->regs[i].offset;
8331 long reg_size = register_size (gdbarch, i);
8332
8333 if (rsa->regs[i].pnum == -1)
8334 continue;
8335
8336 if (offset >= sizeof_g_packet)
8337 rsa->regs[i].in_g_packet = 0;
8338 else if (offset + reg_size > sizeof_g_packet)
8339 error (_("Truncated register %d in remote 'g' packet"), i);
8340 else
8341 rsa->regs[i].in_g_packet = 1;
8342 }
8343
8344 /* Looks valid enough, we can assume this is the correct length
8345 for a 'g' packet. It's important not to adjust
8346 rsa->sizeof_g_packet if we have truncated registers otherwise
8347 this "if" won't be run the next time the method is called
8348 with a packet of the same size and one of the internal errors
8349 below will trigger instead. */
8350 rsa->sizeof_g_packet = sizeof_g_packet;
8351 }
8352
8353 regs = (char *) alloca (rsa->sizeof_g_packet);
8354
8355 /* Unimplemented registers read as all bits zero. */
8356 memset (regs, 0, rsa->sizeof_g_packet);
8357
8358 /* Reply describes registers byte by byte, each byte encoded as two
8359 hex characters. Suck them all up, then supply them to the
8360 register cacheing/storage mechanism. */
8361
8362 p = rs->buf.data ();
8363 for (i = 0; i < rsa->sizeof_g_packet; i++)
8364 {
8365 if (p[0] == 0 || p[1] == 0)
8366 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8367 internal_error (__FILE__, __LINE__,
8368 _("unexpected end of 'g' packet reply"));
8369
8370 if (p[0] == 'x' && p[1] == 'x')
8371 regs[i] = 0; /* 'x' */
8372 else
8373 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8374 p += 2;
8375 }
8376
8377 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8378 {
8379 struct packet_reg *r = &rsa->regs[i];
8380 long reg_size = register_size (gdbarch, i);
8381
8382 if (r->in_g_packet)
8383 {
8384 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8385 /* This shouldn't happen - we adjusted in_g_packet above. */
8386 internal_error (__FILE__, __LINE__,
8387 _("unexpected end of 'g' packet reply"));
8388 else if (rs->buf[r->offset * 2] == 'x')
8389 {
8390 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8391 /* The register isn't available, mark it as such (at
8392 the same time setting the value to zero). */
8393 regcache->raw_supply (r->regnum, NULL);
8394 }
8395 else
8396 regcache->raw_supply (r->regnum, regs + r->offset);
8397 }
8398 }
8399 }
8400
8401 void
8402 remote_target::fetch_registers_using_g (struct regcache *regcache)
8403 {
8404 send_g_packet ();
8405 process_g_packet (regcache);
8406 }
8407
8408 /* Make the remote selected traceframe match GDB's selected
8409 traceframe. */
8410
8411 void
8412 remote_target::set_remote_traceframe ()
8413 {
8414 int newnum;
8415 struct remote_state *rs = get_remote_state ();
8416
8417 if (rs->remote_traceframe_number == get_traceframe_number ())
8418 return;
8419
8420 /* Avoid recursion, remote_trace_find calls us again. */
8421 rs->remote_traceframe_number = get_traceframe_number ();
8422
8423 newnum = target_trace_find (tfind_number,
8424 get_traceframe_number (), 0, 0, NULL);
8425
8426 /* Should not happen. If it does, all bets are off. */
8427 if (newnum != get_traceframe_number ())
8428 warning (_("could not set remote traceframe"));
8429 }
8430
8431 void
8432 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8433 {
8434 struct gdbarch *gdbarch = regcache->arch ();
8435 struct remote_state *rs = get_remote_state ();
8436 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8437 int i;
8438
8439 set_remote_traceframe ();
8440 set_general_thread (regcache->ptid ());
8441
8442 if (regnum >= 0)
8443 {
8444 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8445
8446 gdb_assert (reg != NULL);
8447
8448 /* If this register might be in the 'g' packet, try that first -
8449 we are likely to read more than one register. If this is the
8450 first 'g' packet, we might be overly optimistic about its
8451 contents, so fall back to 'p'. */
8452 if (reg->in_g_packet)
8453 {
8454 fetch_registers_using_g (regcache);
8455 if (reg->in_g_packet)
8456 return;
8457 }
8458
8459 if (fetch_register_using_p (regcache, reg))
8460 return;
8461
8462 /* This register is not available. */
8463 regcache->raw_supply (reg->regnum, NULL);
8464
8465 return;
8466 }
8467
8468 fetch_registers_using_g (regcache);
8469
8470 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8471 if (!rsa->regs[i].in_g_packet)
8472 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8473 {
8474 /* This register is not available. */
8475 regcache->raw_supply (i, NULL);
8476 }
8477 }
8478
8479 /* Prepare to store registers. Since we may send them all (using a
8480 'G' request), we have to read out the ones we don't want to change
8481 first. */
8482
8483 void
8484 remote_target::prepare_to_store (struct regcache *regcache)
8485 {
8486 struct remote_state *rs = get_remote_state ();
8487 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8488 int i;
8489
8490 /* Make sure the entire registers array is valid. */
8491 switch (packet_support (PACKET_P))
8492 {
8493 case PACKET_DISABLE:
8494 case PACKET_SUPPORT_UNKNOWN:
8495 /* Make sure all the necessary registers are cached. */
8496 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8497 if (rsa->regs[i].in_g_packet)
8498 regcache->raw_update (rsa->regs[i].regnum);
8499 break;
8500 case PACKET_ENABLE:
8501 break;
8502 }
8503 }
8504
8505 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8506 packet was not recognized. */
8507
8508 int
8509 remote_target::store_register_using_P (const struct regcache *regcache,
8510 packet_reg *reg)
8511 {
8512 struct gdbarch *gdbarch = regcache->arch ();
8513 struct remote_state *rs = get_remote_state ();
8514 /* Try storing a single register. */
8515 char *buf = rs->buf.data ();
8516 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8517 char *p;
8518
8519 if (packet_support (PACKET_P) == PACKET_DISABLE)
8520 return 0;
8521
8522 if (reg->pnum == -1)
8523 return 0;
8524
8525 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8526 p = buf + strlen (buf);
8527 regcache->raw_collect (reg->regnum, regp);
8528 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8529 putpkt (rs->buf);
8530 getpkt (&rs->buf, 0);
8531
8532 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8533 {
8534 case PACKET_OK:
8535 return 1;
8536 case PACKET_ERROR:
8537 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8538 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8539 case PACKET_UNKNOWN:
8540 return 0;
8541 default:
8542 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8543 }
8544 }
8545
8546 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8547 contents of the register cache buffer. FIXME: ignores errors. */
8548
8549 void
8550 remote_target::store_registers_using_G (const struct regcache *regcache)
8551 {
8552 struct remote_state *rs = get_remote_state ();
8553 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8554 gdb_byte *regs;
8555 char *p;
8556
8557 /* Extract all the registers in the regcache copying them into a
8558 local buffer. */
8559 {
8560 int i;
8561
8562 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8563 memset (regs, 0, rsa->sizeof_g_packet);
8564 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8565 {
8566 struct packet_reg *r = &rsa->regs[i];
8567
8568 if (r->in_g_packet)
8569 regcache->raw_collect (r->regnum, regs + r->offset);
8570 }
8571 }
8572
8573 /* Command describes registers byte by byte,
8574 each byte encoded as two hex characters. */
8575 p = rs->buf.data ();
8576 *p++ = 'G';
8577 bin2hex (regs, p, rsa->sizeof_g_packet);
8578 putpkt (rs->buf);
8579 getpkt (&rs->buf, 0);
8580 if (packet_check_result (rs->buf) == PACKET_ERROR)
8581 error (_("Could not write registers; remote failure reply '%s'"),
8582 rs->buf.data ());
8583 }
8584
8585 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8586 of the register cache buffer. FIXME: ignores errors. */
8587
8588 void
8589 remote_target::store_registers (struct regcache *regcache, int regnum)
8590 {
8591 struct gdbarch *gdbarch = regcache->arch ();
8592 struct remote_state *rs = get_remote_state ();
8593 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8594 int i;
8595
8596 set_remote_traceframe ();
8597 set_general_thread (regcache->ptid ());
8598
8599 if (regnum >= 0)
8600 {
8601 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8602
8603 gdb_assert (reg != NULL);
8604
8605 /* Always prefer to store registers using the 'P' packet if
8606 possible; we often change only a small number of registers.
8607 Sometimes we change a larger number; we'd need help from a
8608 higher layer to know to use 'G'. */
8609 if (store_register_using_P (regcache, reg))
8610 return;
8611
8612 /* For now, don't complain if we have no way to write the
8613 register. GDB loses track of unavailable registers too
8614 easily. Some day, this may be an error. We don't have
8615 any way to read the register, either... */
8616 if (!reg->in_g_packet)
8617 return;
8618
8619 store_registers_using_G (regcache);
8620 return;
8621 }
8622
8623 store_registers_using_G (regcache);
8624
8625 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8626 if (!rsa->regs[i].in_g_packet)
8627 if (!store_register_using_P (regcache, &rsa->regs[i]))
8628 /* See above for why we do not issue an error here. */
8629 continue;
8630 }
8631 \f
8632
8633 /* Return the number of hex digits in num. */
8634
8635 static int
8636 hexnumlen (ULONGEST num)
8637 {
8638 int i;
8639
8640 for (i = 0; num != 0; i++)
8641 num >>= 4;
8642
8643 return std::max (i, 1);
8644 }
8645
8646 /* Set BUF to the minimum number of hex digits representing NUM. */
8647
8648 static int
8649 hexnumstr (char *buf, ULONGEST num)
8650 {
8651 int len = hexnumlen (num);
8652
8653 return hexnumnstr (buf, num, len);
8654 }
8655
8656
8657 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8658
8659 static int
8660 hexnumnstr (char *buf, ULONGEST num, int width)
8661 {
8662 int i;
8663
8664 buf[width] = '\0';
8665
8666 for (i = width - 1; i >= 0; i--)
8667 {
8668 buf[i] = "0123456789abcdef"[(num & 0xf)];
8669 num >>= 4;
8670 }
8671
8672 return width;
8673 }
8674
8675 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8676
8677 static CORE_ADDR
8678 remote_address_masked (CORE_ADDR addr)
8679 {
8680 unsigned int address_size = remote_address_size;
8681
8682 /* If "remoteaddresssize" was not set, default to target address size. */
8683 if (!address_size)
8684 address_size = gdbarch_addr_bit (target_gdbarch ());
8685
8686 if (address_size > 0
8687 && address_size < (sizeof (ULONGEST) * 8))
8688 {
8689 /* Only create a mask when that mask can safely be constructed
8690 in a ULONGEST variable. */
8691 ULONGEST mask = 1;
8692
8693 mask = (mask << address_size) - 1;
8694 addr &= mask;
8695 }
8696 return addr;
8697 }
8698
8699 /* Determine whether the remote target supports binary downloading.
8700 This is accomplished by sending a no-op memory write of zero length
8701 to the target at the specified address. It does not suffice to send
8702 the whole packet, since many stubs strip the eighth bit and
8703 subsequently compute a wrong checksum, which causes real havoc with
8704 remote_write_bytes.
8705
8706 NOTE: This can still lose if the serial line is not eight-bit
8707 clean. In cases like this, the user should clear "remote
8708 X-packet". */
8709
8710 void
8711 remote_target::check_binary_download (CORE_ADDR addr)
8712 {
8713 struct remote_state *rs = get_remote_state ();
8714
8715 switch (packet_support (PACKET_X))
8716 {
8717 case PACKET_DISABLE:
8718 break;
8719 case PACKET_ENABLE:
8720 break;
8721 case PACKET_SUPPORT_UNKNOWN:
8722 {
8723 char *p;
8724
8725 p = rs->buf.data ();
8726 *p++ = 'X';
8727 p += hexnumstr (p, (ULONGEST) addr);
8728 *p++ = ',';
8729 p += hexnumstr (p, (ULONGEST) 0);
8730 *p++ = ':';
8731 *p = '\0';
8732
8733 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8734 getpkt (&rs->buf, 0);
8735
8736 if (rs->buf[0] == '\0')
8737 {
8738 remote_debug_printf ("binary downloading NOT supported by target");
8739 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8740 }
8741 else
8742 {
8743 remote_debug_printf ("binary downloading supported by target");
8744 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8745 }
8746 break;
8747 }
8748 }
8749 }
8750
8751 /* Helper function to resize the payload in order to try to get a good
8752 alignment. We try to write an amount of data such that the next write will
8753 start on an address aligned on REMOTE_ALIGN_WRITES. */
8754
8755 static int
8756 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8757 {
8758 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8759 }
8760
8761 /* Write memory data directly to the remote machine.
8762 This does not inform the data cache; the data cache uses this.
8763 HEADER is the starting part of the packet.
8764 MEMADDR is the address in the remote memory space.
8765 MYADDR is the address of the buffer in our space.
8766 LEN_UNITS is the number of addressable units to write.
8767 UNIT_SIZE is the length in bytes of an addressable unit.
8768 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8769 should send data as binary ('X'), or hex-encoded ('M').
8770
8771 The function creates packet of the form
8772 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8773
8774 where encoding of <DATA> is terminated by PACKET_FORMAT.
8775
8776 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8777 are omitted.
8778
8779 Return the transferred status, error or OK (an
8780 'enum target_xfer_status' value). Save the number of addressable units
8781 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8782
8783 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8784 exchange between gdb and the stub could look like (?? in place of the
8785 checksum):
8786
8787 -> $m1000,4#??
8788 <- aaaabbbbccccdddd
8789
8790 -> $M1000,3:eeeeffffeeee#??
8791 <- OK
8792
8793 -> $m1000,4#??
8794 <- eeeeffffeeeedddd */
8795
8796 target_xfer_status
8797 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8798 const gdb_byte *myaddr,
8799 ULONGEST len_units,
8800 int unit_size,
8801 ULONGEST *xfered_len_units,
8802 char packet_format, int use_length)
8803 {
8804 struct remote_state *rs = get_remote_state ();
8805 char *p;
8806 char *plen = NULL;
8807 int plenlen = 0;
8808 int todo_units;
8809 int units_written;
8810 int payload_capacity_bytes;
8811 int payload_length_bytes;
8812
8813 if (packet_format != 'X' && packet_format != 'M')
8814 internal_error (__FILE__, __LINE__,
8815 _("remote_write_bytes_aux: bad packet format"));
8816
8817 if (len_units == 0)
8818 return TARGET_XFER_EOF;
8819
8820 payload_capacity_bytes = get_memory_write_packet_size ();
8821
8822 /* The packet buffer will be large enough for the payload;
8823 get_memory_packet_size ensures this. */
8824 rs->buf[0] = '\0';
8825
8826 /* Compute the size of the actual payload by subtracting out the
8827 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8828
8829 payload_capacity_bytes -= strlen ("$,:#NN");
8830 if (!use_length)
8831 /* The comma won't be used. */
8832 payload_capacity_bytes += 1;
8833 payload_capacity_bytes -= strlen (header);
8834 payload_capacity_bytes -= hexnumlen (memaddr);
8835
8836 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8837
8838 strcat (rs->buf.data (), header);
8839 p = rs->buf.data () + strlen (header);
8840
8841 /* Compute a best guess of the number of bytes actually transfered. */
8842 if (packet_format == 'X')
8843 {
8844 /* Best guess at number of bytes that will fit. */
8845 todo_units = std::min (len_units,
8846 (ULONGEST) payload_capacity_bytes / unit_size);
8847 if (use_length)
8848 payload_capacity_bytes -= hexnumlen (todo_units);
8849 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8850 }
8851 else
8852 {
8853 /* Number of bytes that will fit. */
8854 todo_units
8855 = std::min (len_units,
8856 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8857 if (use_length)
8858 payload_capacity_bytes -= hexnumlen (todo_units);
8859 todo_units = std::min (todo_units,
8860 (payload_capacity_bytes / unit_size) / 2);
8861 }
8862
8863 if (todo_units <= 0)
8864 internal_error (__FILE__, __LINE__,
8865 _("minimum packet size too small to write data"));
8866
8867 /* If we already need another packet, then try to align the end
8868 of this packet to a useful boundary. */
8869 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8870 todo_units = align_for_efficient_write (todo_units, memaddr);
8871
8872 /* Append "<memaddr>". */
8873 memaddr = remote_address_masked (memaddr);
8874 p += hexnumstr (p, (ULONGEST) memaddr);
8875
8876 if (use_length)
8877 {
8878 /* Append ",". */
8879 *p++ = ',';
8880
8881 /* Append the length and retain its location and size. It may need to be
8882 adjusted once the packet body has been created. */
8883 plen = p;
8884 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8885 p += plenlen;
8886 }
8887
8888 /* Append ":". */
8889 *p++ = ':';
8890 *p = '\0';
8891
8892 /* Append the packet body. */
8893 if (packet_format == 'X')
8894 {
8895 /* Binary mode. Send target system values byte by byte, in
8896 increasing byte addresses. Only escape certain critical
8897 characters. */
8898 payload_length_bytes =
8899 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8900 &units_written, payload_capacity_bytes);
8901
8902 /* If not all TODO units fit, then we'll need another packet. Make
8903 a second try to keep the end of the packet aligned. Don't do
8904 this if the packet is tiny. */
8905 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8906 {
8907 int new_todo_units;
8908
8909 new_todo_units = align_for_efficient_write (units_written, memaddr);
8910
8911 if (new_todo_units != units_written)
8912 payload_length_bytes =
8913 remote_escape_output (myaddr, new_todo_units, unit_size,
8914 (gdb_byte *) p, &units_written,
8915 payload_capacity_bytes);
8916 }
8917
8918 p += payload_length_bytes;
8919 if (use_length && units_written < todo_units)
8920 {
8921 /* Escape chars have filled up the buffer prematurely,
8922 and we have actually sent fewer units than planned.
8923 Fix-up the length field of the packet. Use the same
8924 number of characters as before. */
8925 plen += hexnumnstr (plen, (ULONGEST) units_written,
8926 plenlen);
8927 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8928 }
8929 }
8930 else
8931 {
8932 /* Normal mode: Send target system values byte by byte, in
8933 increasing byte addresses. Each byte is encoded as a two hex
8934 value. */
8935 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8936 units_written = todo_units;
8937 }
8938
8939 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8940 getpkt (&rs->buf, 0);
8941
8942 if (rs->buf[0] == 'E')
8943 return TARGET_XFER_E_IO;
8944
8945 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8946 send fewer units than we'd planned. */
8947 *xfered_len_units = (ULONGEST) units_written;
8948 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8949 }
8950
8951 /* Write memory data directly to the remote machine.
8952 This does not inform the data cache; the data cache uses this.
8953 MEMADDR is the address in the remote memory space.
8954 MYADDR is the address of the buffer in our space.
8955 LEN is the number of bytes.
8956
8957 Return the transferred status, error or OK (an
8958 'enum target_xfer_status' value). Save the number of bytes
8959 transferred in *XFERED_LEN. Only transfer a single packet. */
8960
8961 target_xfer_status
8962 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8963 ULONGEST len, int unit_size,
8964 ULONGEST *xfered_len)
8965 {
8966 const char *packet_format = NULL;
8967
8968 /* Check whether the target supports binary download. */
8969 check_binary_download (memaddr);
8970
8971 switch (packet_support (PACKET_X))
8972 {
8973 case PACKET_ENABLE:
8974 packet_format = "X";
8975 break;
8976 case PACKET_DISABLE:
8977 packet_format = "M";
8978 break;
8979 case PACKET_SUPPORT_UNKNOWN:
8980 internal_error (__FILE__, __LINE__,
8981 _("remote_write_bytes: bad internal state"));
8982 default:
8983 internal_error (__FILE__, __LINE__, _("bad switch"));
8984 }
8985
8986 return remote_write_bytes_aux (packet_format,
8987 memaddr, myaddr, len, unit_size, xfered_len,
8988 packet_format[0], 1);
8989 }
8990
8991 /* Read memory data directly from the remote machine.
8992 This does not use the data cache; the data cache uses this.
8993 MEMADDR is the address in the remote memory space.
8994 MYADDR is the address of the buffer in our space.
8995 LEN_UNITS is the number of addressable memory units to read..
8996 UNIT_SIZE is the length in bytes of an addressable unit.
8997
8998 Return the transferred status, error or OK (an
8999 'enum target_xfer_status' value). Save the number of bytes
9000 transferred in *XFERED_LEN_UNITS.
9001
9002 See the comment of remote_write_bytes_aux for an example of
9003 memory read/write exchange between gdb and the stub. */
9004
9005 target_xfer_status
9006 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
9007 ULONGEST len_units,
9008 int unit_size, ULONGEST *xfered_len_units)
9009 {
9010 struct remote_state *rs = get_remote_state ();
9011 int buf_size_bytes; /* Max size of packet output buffer. */
9012 char *p;
9013 int todo_units;
9014 int decoded_bytes;
9015
9016 buf_size_bytes = get_memory_read_packet_size ();
9017 /* The packet buffer will be large enough for the payload;
9018 get_memory_packet_size ensures this. */
9019
9020 /* Number of units that will fit. */
9021 todo_units = std::min (len_units,
9022 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9023
9024 /* Construct "m"<memaddr>","<len>". */
9025 memaddr = remote_address_masked (memaddr);
9026 p = rs->buf.data ();
9027 *p++ = 'm';
9028 p += hexnumstr (p, (ULONGEST) memaddr);
9029 *p++ = ',';
9030 p += hexnumstr (p, (ULONGEST) todo_units);
9031 *p = '\0';
9032 putpkt (rs->buf);
9033 getpkt (&rs->buf, 0);
9034 if (rs->buf[0] == 'E'
9035 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9036 && rs->buf[3] == '\0')
9037 return TARGET_XFER_E_IO;
9038 /* Reply describes memory byte by byte, each byte encoded as two hex
9039 characters. */
9040 p = rs->buf.data ();
9041 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9042 /* Return what we have. Let higher layers handle partial reads. */
9043 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9044 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9045 }
9046
9047 /* Using the set of read-only target sections of remote, read live
9048 read-only memory.
9049
9050 For interface/parameters/return description see target.h,
9051 to_xfer_partial. */
9052
9053 target_xfer_status
9054 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9055 ULONGEST memaddr,
9056 ULONGEST len,
9057 int unit_size,
9058 ULONGEST *xfered_len)
9059 {
9060 const struct target_section *secp;
9061
9062 secp = target_section_by_addr (this, memaddr);
9063 if (secp != NULL
9064 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9065 {
9066 ULONGEST memend = memaddr + len;
9067
9068 const target_section_table *table = target_get_section_table (this);
9069 for (const target_section &p : *table)
9070 {
9071 if (memaddr >= p.addr)
9072 {
9073 if (memend <= p.endaddr)
9074 {
9075 /* Entire transfer is within this section. */
9076 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9077 xfered_len);
9078 }
9079 else if (memaddr >= p.endaddr)
9080 {
9081 /* This section ends before the transfer starts. */
9082 continue;
9083 }
9084 else
9085 {
9086 /* This section overlaps the transfer. Just do half. */
9087 len = p.endaddr - memaddr;
9088 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9089 xfered_len);
9090 }
9091 }
9092 }
9093 }
9094
9095 return TARGET_XFER_EOF;
9096 }
9097
9098 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9099 first if the requested memory is unavailable in traceframe.
9100 Otherwise, fall back to remote_read_bytes_1. */
9101
9102 target_xfer_status
9103 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9104 gdb_byte *myaddr, ULONGEST len, int unit_size,
9105 ULONGEST *xfered_len)
9106 {
9107 if (len == 0)
9108 return TARGET_XFER_EOF;
9109
9110 if (get_traceframe_number () != -1)
9111 {
9112 std::vector<mem_range> available;
9113
9114 /* If we fail to get the set of available memory, then the
9115 target does not support querying traceframe info, and so we
9116 attempt reading from the traceframe anyway (assuming the
9117 target implements the old QTro packet then). */
9118 if (traceframe_available_memory (&available, memaddr, len))
9119 {
9120 if (available.empty () || available[0].start != memaddr)
9121 {
9122 enum target_xfer_status res;
9123
9124 /* Don't read into the traceframe's available
9125 memory. */
9126 if (!available.empty ())
9127 {
9128 LONGEST oldlen = len;
9129
9130 len = available[0].start - memaddr;
9131 gdb_assert (len <= oldlen);
9132 }
9133
9134 /* This goes through the topmost target again. */
9135 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9136 len, unit_size, xfered_len);
9137 if (res == TARGET_XFER_OK)
9138 return TARGET_XFER_OK;
9139 else
9140 {
9141 /* No use trying further, we know some memory starting
9142 at MEMADDR isn't available. */
9143 *xfered_len = len;
9144 return (*xfered_len != 0) ?
9145 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9146 }
9147 }
9148
9149 /* Don't try to read more than how much is available, in
9150 case the target implements the deprecated QTro packet to
9151 cater for older GDBs (the target's knowledge of read-only
9152 sections may be outdated by now). */
9153 len = available[0].length;
9154 }
9155 }
9156
9157 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9158 }
9159
9160 \f
9161
9162 /* Sends a packet with content determined by the printf format string
9163 FORMAT and the remaining arguments, then gets the reply. Returns
9164 whether the packet was a success, a failure, or unknown. */
9165
9166 packet_result
9167 remote_target::remote_send_printf (const char *format, ...)
9168 {
9169 struct remote_state *rs = get_remote_state ();
9170 int max_size = get_remote_packet_size ();
9171 va_list ap;
9172
9173 va_start (ap, format);
9174
9175 rs->buf[0] = '\0';
9176 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9177
9178 va_end (ap);
9179
9180 if (size >= max_size)
9181 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9182
9183 if (putpkt (rs->buf) < 0)
9184 error (_("Communication problem with target."));
9185
9186 rs->buf[0] = '\0';
9187 getpkt (&rs->buf, 0);
9188
9189 return packet_check_result (rs->buf);
9190 }
9191
9192 /* Flash writing can take quite some time. We'll set
9193 effectively infinite timeout for flash operations.
9194 In future, we'll need to decide on a better approach. */
9195 static const int remote_flash_timeout = 1000;
9196
9197 void
9198 remote_target::flash_erase (ULONGEST address, LONGEST length)
9199 {
9200 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9201 enum packet_result ret;
9202 scoped_restore restore_timeout
9203 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9204
9205 ret = remote_send_printf ("vFlashErase:%s,%s",
9206 phex (address, addr_size),
9207 phex (length, 4));
9208 switch (ret)
9209 {
9210 case PACKET_UNKNOWN:
9211 error (_("Remote target does not support flash erase"));
9212 case PACKET_ERROR:
9213 error (_("Error erasing flash with vFlashErase packet"));
9214 default:
9215 break;
9216 }
9217 }
9218
9219 target_xfer_status
9220 remote_target::remote_flash_write (ULONGEST address,
9221 ULONGEST length, ULONGEST *xfered_len,
9222 const gdb_byte *data)
9223 {
9224 scoped_restore restore_timeout
9225 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9226 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9227 xfered_len,'X', 0);
9228 }
9229
9230 void
9231 remote_target::flash_done ()
9232 {
9233 int ret;
9234
9235 scoped_restore restore_timeout
9236 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9237
9238 ret = remote_send_printf ("vFlashDone");
9239
9240 switch (ret)
9241 {
9242 case PACKET_UNKNOWN:
9243 error (_("Remote target does not support vFlashDone"));
9244 case PACKET_ERROR:
9245 error (_("Error finishing flash operation"));
9246 default:
9247 break;
9248 }
9249 }
9250
9251 void
9252 remote_target::files_info ()
9253 {
9254 puts_filtered ("Debugging a target over a serial line.\n");
9255 }
9256 \f
9257 /* Stuff for dealing with the packets which are part of this protocol.
9258 See comment at top of file for details. */
9259
9260 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9261 error to higher layers. Called when a serial error is detected.
9262 The exception message is STRING, followed by a colon and a blank,
9263 the system error message for errno at function entry and final dot
9264 for output compatibility with throw_perror_with_name. */
9265
9266 static void
9267 unpush_and_perror (remote_target *target, const char *string)
9268 {
9269 int saved_errno = errno;
9270
9271 remote_unpush_target (target);
9272 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9273 safe_strerror (saved_errno));
9274 }
9275
9276 /* Read a single character from the remote end. The current quit
9277 handler is overridden to avoid quitting in the middle of packet
9278 sequence, as that would break communication with the remote server.
9279 See remote_serial_quit_handler for more detail. */
9280
9281 int
9282 remote_target::readchar (int timeout)
9283 {
9284 int ch;
9285 struct remote_state *rs = get_remote_state ();
9286
9287 {
9288 scoped_restore restore_quit_target
9289 = make_scoped_restore (&curr_quit_handler_target, this);
9290 scoped_restore restore_quit
9291 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9292
9293 rs->got_ctrlc_during_io = 0;
9294
9295 ch = serial_readchar (rs->remote_desc, timeout);
9296
9297 if (rs->got_ctrlc_during_io)
9298 set_quit_flag ();
9299 }
9300
9301 if (ch >= 0)
9302 return ch;
9303
9304 switch ((enum serial_rc) ch)
9305 {
9306 case SERIAL_EOF:
9307 remote_unpush_target (this);
9308 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9309 /* no return */
9310 case SERIAL_ERROR:
9311 unpush_and_perror (this, _("Remote communication error. "
9312 "Target disconnected."));
9313 /* no return */
9314 case SERIAL_TIMEOUT:
9315 break;
9316 }
9317 return ch;
9318 }
9319
9320 /* Wrapper for serial_write that closes the target and throws if
9321 writing fails. The current quit handler is overridden to avoid
9322 quitting in the middle of packet sequence, as that would break
9323 communication with the remote server. See
9324 remote_serial_quit_handler for more detail. */
9325
9326 void
9327 remote_target::remote_serial_write (const char *str, int len)
9328 {
9329 struct remote_state *rs = get_remote_state ();
9330
9331 scoped_restore restore_quit_target
9332 = make_scoped_restore (&curr_quit_handler_target, this);
9333 scoped_restore restore_quit
9334 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9335
9336 rs->got_ctrlc_during_io = 0;
9337
9338 if (serial_write (rs->remote_desc, str, len))
9339 {
9340 unpush_and_perror (this, _("Remote communication error. "
9341 "Target disconnected."));
9342 }
9343
9344 if (rs->got_ctrlc_during_io)
9345 set_quit_flag ();
9346 }
9347
9348 /* Return a string representing an escaped version of BUF, of len N.
9349 E.g. \n is converted to \\n, \t to \\t, etc. */
9350
9351 static std::string
9352 escape_buffer (const char *buf, int n)
9353 {
9354 string_file stb;
9355
9356 stb.putstrn (buf, n, '\\');
9357 return std::move (stb.string ());
9358 }
9359
9360 /* Display a null-terminated packet on stdout, for debugging, using C
9361 string notation. */
9362
9363 static void
9364 print_packet (const char *buf)
9365 {
9366 puts_filtered ("\"");
9367 fputstr_filtered (buf, '"', gdb_stdout);
9368 puts_filtered ("\"");
9369 }
9370
9371 int
9372 remote_target::putpkt (const char *buf)
9373 {
9374 return putpkt_binary (buf, strlen (buf));
9375 }
9376
9377 /* Wrapper around remote_target::putpkt to avoid exporting
9378 remote_target. */
9379
9380 int
9381 putpkt (remote_target *remote, const char *buf)
9382 {
9383 return remote->putpkt (buf);
9384 }
9385
9386 /* Send a packet to the remote machine, with error checking. The data
9387 of the packet is in BUF. The string in BUF can be at most
9388 get_remote_packet_size () - 5 to account for the $, # and checksum,
9389 and for a possible /0 if we are debugging (remote_debug) and want
9390 to print the sent packet as a string. */
9391
9392 int
9393 remote_target::putpkt_binary (const char *buf, int cnt)
9394 {
9395 struct remote_state *rs = get_remote_state ();
9396 int i;
9397 unsigned char csum = 0;
9398 gdb::def_vector<char> data (cnt + 6);
9399 char *buf2 = data.data ();
9400
9401 int ch;
9402 int tcount = 0;
9403 char *p;
9404
9405 /* Catch cases like trying to read memory or listing threads while
9406 we're waiting for a stop reply. The remote server wouldn't be
9407 ready to handle this request, so we'd hang and timeout. We don't
9408 have to worry about this in synchronous mode, because in that
9409 case it's not possible to issue a command while the target is
9410 running. This is not a problem in non-stop mode, because in that
9411 case, the stub is always ready to process serial input. */
9412 if (!target_is_non_stop_p ()
9413 && target_is_async_p ()
9414 && rs->waiting_for_stop_reply)
9415 {
9416 error (_("Cannot execute this command while the target is running.\n"
9417 "Use the \"interrupt\" command to stop the target\n"
9418 "and then try again."));
9419 }
9420
9421 /* We're sending out a new packet. Make sure we don't look at a
9422 stale cached response. */
9423 rs->cached_wait_status = 0;
9424
9425 /* Copy the packet into buffer BUF2, encapsulating it
9426 and giving it a checksum. */
9427
9428 p = buf2;
9429 *p++ = '$';
9430
9431 for (i = 0; i < cnt; i++)
9432 {
9433 csum += buf[i];
9434 *p++ = buf[i];
9435 }
9436 *p++ = '#';
9437 *p++ = tohex ((csum >> 4) & 0xf);
9438 *p++ = tohex (csum & 0xf);
9439
9440 /* Send it over and over until we get a positive ack. */
9441
9442 while (1)
9443 {
9444 if (remote_debug)
9445 {
9446 *p = '\0';
9447
9448 int len = (int) (p - buf2);
9449 int max_chars;
9450
9451 if (remote_packet_max_chars < 0)
9452 max_chars = len;
9453 else
9454 max_chars = remote_packet_max_chars;
9455
9456 std::string str
9457 = escape_buffer (buf2, std::min (len, max_chars));
9458
9459 if (len > max_chars)
9460 remote_debug_printf_nofunc
9461 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9462 len - max_chars);
9463 else
9464 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9465 }
9466 remote_serial_write (buf2, p - buf2);
9467
9468 /* If this is a no acks version of the remote protocol, send the
9469 packet and move on. */
9470 if (rs->noack_mode)
9471 break;
9472
9473 /* Read until either a timeout occurs (-2) or '+' is read.
9474 Handle any notification that arrives in the mean time. */
9475 while (1)
9476 {
9477 ch = readchar (remote_timeout);
9478
9479 switch (ch)
9480 {
9481 case '+':
9482 remote_debug_printf_nofunc ("Received Ack");
9483 return 1;
9484 case '-':
9485 remote_debug_printf_nofunc ("Received Nak");
9486 /* FALLTHROUGH */
9487 case SERIAL_TIMEOUT:
9488 tcount++;
9489 if (tcount > 3)
9490 return 0;
9491 break; /* Retransmit buffer. */
9492 case '$':
9493 {
9494 remote_debug_printf ("Packet instead of Ack, ignoring it");
9495 /* It's probably an old response sent because an ACK
9496 was lost. Gobble up the packet and ack it so it
9497 doesn't get retransmitted when we resend this
9498 packet. */
9499 skip_frame ();
9500 remote_serial_write ("+", 1);
9501 continue; /* Now, go look for +. */
9502 }
9503
9504 case '%':
9505 {
9506 int val;
9507
9508 /* If we got a notification, handle it, and go back to looking
9509 for an ack. */
9510 /* We've found the start of a notification. Now
9511 collect the data. */
9512 val = read_frame (&rs->buf);
9513 if (val >= 0)
9514 {
9515 remote_debug_printf_nofunc
9516 (" Notification received: %s",
9517 escape_buffer (rs->buf.data (), val).c_str ());
9518
9519 handle_notification (rs->notif_state, rs->buf.data ());
9520 /* We're in sync now, rewait for the ack. */
9521 tcount = 0;
9522 }
9523 else
9524 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9525 rs->buf.data ());
9526 continue;
9527 }
9528 /* fall-through */
9529 default:
9530 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9531 rs->buf.data ());
9532 continue;
9533 }
9534 break; /* Here to retransmit. */
9535 }
9536
9537 #if 0
9538 /* This is wrong. If doing a long backtrace, the user should be
9539 able to get out next time we call QUIT, without anything as
9540 violent as interrupt_query. If we want to provide a way out of
9541 here without getting to the next QUIT, it should be based on
9542 hitting ^C twice as in remote_wait. */
9543 if (quit_flag)
9544 {
9545 quit_flag = 0;
9546 interrupt_query ();
9547 }
9548 #endif
9549 }
9550
9551 return 0;
9552 }
9553
9554 /* Come here after finding the start of a frame when we expected an
9555 ack. Do our best to discard the rest of this packet. */
9556
9557 void
9558 remote_target::skip_frame ()
9559 {
9560 int c;
9561
9562 while (1)
9563 {
9564 c = readchar (remote_timeout);
9565 switch (c)
9566 {
9567 case SERIAL_TIMEOUT:
9568 /* Nothing we can do. */
9569 return;
9570 case '#':
9571 /* Discard the two bytes of checksum and stop. */
9572 c = readchar (remote_timeout);
9573 if (c >= 0)
9574 c = readchar (remote_timeout);
9575
9576 return;
9577 case '*': /* Run length encoding. */
9578 /* Discard the repeat count. */
9579 c = readchar (remote_timeout);
9580 if (c < 0)
9581 return;
9582 break;
9583 default:
9584 /* A regular character. */
9585 break;
9586 }
9587 }
9588 }
9589
9590 /* Come here after finding the start of the frame. Collect the rest
9591 into *BUF, verifying the checksum, length, and handling run-length
9592 compression. NUL terminate the buffer. If there is not enough room,
9593 expand *BUF.
9594
9595 Returns -1 on error, number of characters in buffer (ignoring the
9596 trailing NULL) on success. (could be extended to return one of the
9597 SERIAL status indications). */
9598
9599 long
9600 remote_target::read_frame (gdb::char_vector *buf_p)
9601 {
9602 unsigned char csum;
9603 long bc;
9604 int c;
9605 char *buf = buf_p->data ();
9606 struct remote_state *rs = get_remote_state ();
9607
9608 csum = 0;
9609 bc = 0;
9610
9611 while (1)
9612 {
9613 c = readchar (remote_timeout);
9614 switch (c)
9615 {
9616 case SERIAL_TIMEOUT:
9617 remote_debug_printf ("Timeout in mid-packet, retrying");
9618 return -1;
9619
9620 case '$':
9621 remote_debug_printf ("Saw new packet start in middle of old one");
9622 return -1; /* Start a new packet, count retries. */
9623
9624 case '#':
9625 {
9626 unsigned char pktcsum;
9627 int check_0 = 0;
9628 int check_1 = 0;
9629
9630 buf[bc] = '\0';
9631
9632 check_0 = readchar (remote_timeout);
9633 if (check_0 >= 0)
9634 check_1 = readchar (remote_timeout);
9635
9636 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9637 {
9638 remote_debug_printf ("Timeout in checksum, retrying");
9639 return -1;
9640 }
9641 else if (check_0 < 0 || check_1 < 0)
9642 {
9643 remote_debug_printf ("Communication error in checksum");
9644 return -1;
9645 }
9646
9647 /* Don't recompute the checksum; with no ack packets we
9648 don't have any way to indicate a packet retransmission
9649 is necessary. */
9650 if (rs->noack_mode)
9651 return bc;
9652
9653 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9654 if (csum == pktcsum)
9655 return bc;
9656
9657 remote_debug_printf
9658 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9659 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9660
9661 /* Number of characters in buffer ignoring trailing
9662 NULL. */
9663 return -1;
9664 }
9665 case '*': /* Run length encoding. */
9666 {
9667 int repeat;
9668
9669 csum += c;
9670 c = readchar (remote_timeout);
9671 csum += c;
9672 repeat = c - ' ' + 3; /* Compute repeat count. */
9673
9674 /* The character before ``*'' is repeated. */
9675
9676 if (repeat > 0 && repeat <= 255 && bc > 0)
9677 {
9678 if (bc + repeat - 1 >= buf_p->size () - 1)
9679 {
9680 /* Make some more room in the buffer. */
9681 buf_p->resize (buf_p->size () + repeat);
9682 buf = buf_p->data ();
9683 }
9684
9685 memset (&buf[bc], buf[bc - 1], repeat);
9686 bc += repeat;
9687 continue;
9688 }
9689
9690 buf[bc] = '\0';
9691 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9692 return -1;
9693 }
9694 default:
9695 if (bc >= buf_p->size () - 1)
9696 {
9697 /* Make some more room in the buffer. */
9698 buf_p->resize (buf_p->size () * 2);
9699 buf = buf_p->data ();
9700 }
9701
9702 buf[bc++] = c;
9703 csum += c;
9704 continue;
9705 }
9706 }
9707 }
9708
9709 /* Set this to the maximum number of seconds to wait instead of waiting forever
9710 in target_wait(). If this timer times out, then it generates an error and
9711 the command is aborted. This replaces most of the need for timeouts in the
9712 GDB test suite, and makes it possible to distinguish between a hung target
9713 and one with slow communications. */
9714
9715 static int watchdog = 0;
9716 static void
9717 show_watchdog (struct ui_file *file, int from_tty,
9718 struct cmd_list_element *c, const char *value)
9719 {
9720 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9721 }
9722
9723 /* Read a packet from the remote machine, with error checking, and
9724 store it in *BUF. Resize *BUF if necessary to hold the result. If
9725 FOREVER, wait forever rather than timing out; this is used (in
9726 synchronous mode) to wait for a target that is is executing user
9727 code to stop. */
9728 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9729 don't have to change all the calls to getpkt to deal with the
9730 return value, because at the moment I don't know what the right
9731 thing to do it for those. */
9732
9733 void
9734 remote_target::getpkt (gdb::char_vector *buf, int forever)
9735 {
9736 getpkt_sane (buf, forever);
9737 }
9738
9739
9740 /* Read a packet from the remote machine, with error checking, and
9741 store it in *BUF. Resize *BUF if necessary to hold the result. If
9742 FOREVER, wait forever rather than timing out; this is used (in
9743 synchronous mode) to wait for a target that is is executing user
9744 code to stop. If FOREVER == 0, this function is allowed to time
9745 out gracefully and return an indication of this to the caller.
9746 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9747 consider receiving a notification enough reason to return to the
9748 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9749 holds a notification or not (a regular packet). */
9750
9751 int
9752 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9753 int forever, int expecting_notif,
9754 int *is_notif)
9755 {
9756 struct remote_state *rs = get_remote_state ();
9757 int c;
9758 int tries;
9759 int timeout;
9760 int val = -1;
9761
9762 /* We're reading a new response. Make sure we don't look at a
9763 previously cached response. */
9764 rs->cached_wait_status = 0;
9765
9766 strcpy (buf->data (), "timeout");
9767
9768 if (forever)
9769 timeout = watchdog > 0 ? watchdog : -1;
9770 else if (expecting_notif)
9771 timeout = 0; /* There should already be a char in the buffer. If
9772 not, bail out. */
9773 else
9774 timeout = remote_timeout;
9775
9776 #define MAX_TRIES 3
9777
9778 /* Process any number of notifications, and then return when
9779 we get a packet. */
9780 for (;;)
9781 {
9782 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9783 times. */
9784 for (tries = 1; tries <= MAX_TRIES; tries++)
9785 {
9786 /* This can loop forever if the remote side sends us
9787 characters continuously, but if it pauses, we'll get
9788 SERIAL_TIMEOUT from readchar because of timeout. Then
9789 we'll count that as a retry.
9790
9791 Note that even when forever is set, we will only wait
9792 forever prior to the start of a packet. After that, we
9793 expect characters to arrive at a brisk pace. They should
9794 show up within remote_timeout intervals. */
9795 do
9796 c = readchar (timeout);
9797 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9798
9799 if (c == SERIAL_TIMEOUT)
9800 {
9801 if (expecting_notif)
9802 return -1; /* Don't complain, it's normal to not get
9803 anything in this case. */
9804
9805 if (forever) /* Watchdog went off? Kill the target. */
9806 {
9807 remote_unpush_target (this);
9808 throw_error (TARGET_CLOSE_ERROR,
9809 _("Watchdog timeout has expired. "
9810 "Target detached."));
9811 }
9812
9813 remote_debug_printf ("Timed out.");
9814 }
9815 else
9816 {
9817 /* We've found the start of a packet or notification.
9818 Now collect the data. */
9819 val = read_frame (buf);
9820 if (val >= 0)
9821 break;
9822 }
9823
9824 remote_serial_write ("-", 1);
9825 }
9826
9827 if (tries > MAX_TRIES)
9828 {
9829 /* We have tried hard enough, and just can't receive the
9830 packet/notification. Give up. */
9831 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9832
9833 /* Skip the ack char if we're in no-ack mode. */
9834 if (!rs->noack_mode)
9835 remote_serial_write ("+", 1);
9836 return -1;
9837 }
9838
9839 /* If we got an ordinary packet, return that to our caller. */
9840 if (c == '$')
9841 {
9842 if (remote_debug)
9843 {
9844 int max_chars;
9845
9846 if (remote_packet_max_chars < 0)
9847 max_chars = val;
9848 else
9849 max_chars = remote_packet_max_chars;
9850
9851 std::string str
9852 = escape_buffer (buf->data (),
9853 std::min (val, max_chars));
9854
9855 if (val > max_chars)
9856 remote_debug_printf_nofunc
9857 ("Packet received: %s [%d bytes omitted]", str.c_str (),
9858 val - max_chars);
9859 else
9860 remote_debug_printf_nofunc ("Packet received: %s",
9861 str.c_str ());
9862 }
9863
9864 /* Skip the ack char if we're in no-ack mode. */
9865 if (!rs->noack_mode)
9866 remote_serial_write ("+", 1);
9867 if (is_notif != NULL)
9868 *is_notif = 0;
9869 return val;
9870 }
9871
9872 /* If we got a notification, handle it, and go back to looking
9873 for a packet. */
9874 else
9875 {
9876 gdb_assert (c == '%');
9877
9878 remote_debug_printf_nofunc
9879 (" Notification received: %s",
9880 escape_buffer (buf->data (), val).c_str ());
9881
9882 if (is_notif != NULL)
9883 *is_notif = 1;
9884
9885 handle_notification (rs->notif_state, buf->data ());
9886
9887 /* Notifications require no acknowledgement. */
9888
9889 if (expecting_notif)
9890 return val;
9891 }
9892 }
9893 }
9894
9895 int
9896 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9897 {
9898 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9899 }
9900
9901 int
9902 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9903 int *is_notif)
9904 {
9905 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9906 }
9907
9908 /* Kill any new fork children of process PID that haven't been
9909 processed by follow_fork. */
9910
9911 void
9912 remote_target::kill_new_fork_children (int pid)
9913 {
9914 remote_state *rs = get_remote_state ();
9915 struct notif_client *notif = &notif_client_stop;
9916
9917 /* Kill the fork child threads of any threads in process PID
9918 that are stopped at a fork event. */
9919 for (thread_info *thread : all_non_exited_threads (this))
9920 {
9921 struct target_waitstatus *ws = &thread->pending_follow;
9922
9923 if (is_pending_fork_parent (ws, pid, thread->ptid))
9924 {
9925 int child_pid = ws->value.related_pid.pid ();
9926 int res;
9927
9928 res = remote_vkill (child_pid);
9929 if (res != 0)
9930 error (_("Can't kill fork child process %d"), child_pid);
9931 }
9932 }
9933
9934 /* Check for any pending fork events (not reported or processed yet)
9935 in process PID and kill those fork child threads as well. */
9936 remote_notif_get_pending_events (notif);
9937 for (auto &event : rs->stop_reply_queue)
9938 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9939 {
9940 int child_pid = event->ws.value.related_pid.pid ();
9941 int res;
9942
9943 res = remote_vkill (child_pid);
9944 if (res != 0)
9945 error (_("Can't kill fork child process %d"), child_pid);
9946 }
9947 }
9948
9949 \f
9950 /* Target hook to kill the current inferior. */
9951
9952 void
9953 remote_target::kill ()
9954 {
9955 int res = -1;
9956 int pid = inferior_ptid.pid ();
9957 struct remote_state *rs = get_remote_state ();
9958
9959 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9960 {
9961 /* If we're stopped while forking and we haven't followed yet,
9962 kill the child task. We need to do this before killing the
9963 parent task because if this is a vfork then the parent will
9964 be sleeping. */
9965 kill_new_fork_children (pid);
9966
9967 res = remote_vkill (pid);
9968 if (res == 0)
9969 {
9970 target_mourn_inferior (inferior_ptid);
9971 return;
9972 }
9973 }
9974
9975 /* If we are in 'target remote' mode and we are killing the only
9976 inferior, then we will tell gdbserver to exit and unpush the
9977 target. */
9978 if (res == -1 && !remote_multi_process_p (rs)
9979 && number_of_live_inferiors (this) == 1)
9980 {
9981 remote_kill_k ();
9982
9983 /* We've killed the remote end, we get to mourn it. If we are
9984 not in extended mode, mourning the inferior also unpushes
9985 remote_ops from the target stack, which closes the remote
9986 connection. */
9987 target_mourn_inferior (inferior_ptid);
9988
9989 return;
9990 }
9991
9992 error (_("Can't kill process"));
9993 }
9994
9995 /* Send a kill request to the target using the 'vKill' packet. */
9996
9997 int
9998 remote_target::remote_vkill (int pid)
9999 {
10000 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10001 return -1;
10002
10003 remote_state *rs = get_remote_state ();
10004
10005 /* Tell the remote target to detach. */
10006 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10007 putpkt (rs->buf);
10008 getpkt (&rs->buf, 0);
10009
10010 switch (packet_ok (rs->buf,
10011 &remote_protocol_packets[PACKET_vKill]))
10012 {
10013 case PACKET_OK:
10014 return 0;
10015 case PACKET_ERROR:
10016 return 1;
10017 case PACKET_UNKNOWN:
10018 return -1;
10019 default:
10020 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10021 }
10022 }
10023
10024 /* Send a kill request to the target using the 'k' packet. */
10025
10026 void
10027 remote_target::remote_kill_k ()
10028 {
10029 /* Catch errors so the user can quit from gdb even when we
10030 aren't on speaking terms with the remote system. */
10031 try
10032 {
10033 putpkt ("k");
10034 }
10035 catch (const gdb_exception_error &ex)
10036 {
10037 if (ex.error == TARGET_CLOSE_ERROR)
10038 {
10039 /* If we got an (EOF) error that caused the target
10040 to go away, then we're done, that's what we wanted.
10041 "k" is susceptible to cause a premature EOF, given
10042 that the remote server isn't actually required to
10043 reply to "k", and it can happen that it doesn't
10044 even get to reply ACK to the "k". */
10045 return;
10046 }
10047
10048 /* Otherwise, something went wrong. We didn't actually kill
10049 the target. Just propagate the exception, and let the
10050 user or higher layers decide what to do. */
10051 throw;
10052 }
10053 }
10054
10055 void
10056 remote_target::mourn_inferior ()
10057 {
10058 struct remote_state *rs = get_remote_state ();
10059
10060 /* We're no longer interested in notification events of an inferior
10061 that exited or was killed/detached. */
10062 discard_pending_stop_replies (current_inferior ());
10063
10064 /* In 'target remote' mode with one inferior, we close the connection. */
10065 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10066 {
10067 remote_unpush_target (this);
10068 return;
10069 }
10070
10071 /* In case we got here due to an error, but we're going to stay
10072 connected. */
10073 rs->waiting_for_stop_reply = 0;
10074
10075 /* If the current general thread belonged to the process we just
10076 detached from or has exited, the remote side current general
10077 thread becomes undefined. Considering a case like this:
10078
10079 - We just got here due to a detach.
10080 - The process that we're detaching from happens to immediately
10081 report a global breakpoint being hit in non-stop mode, in the
10082 same thread we had selected before.
10083 - GDB attaches to this process again.
10084 - This event happens to be the next event we handle.
10085
10086 GDB would consider that the current general thread didn't need to
10087 be set on the stub side (with Hg), since for all it knew,
10088 GENERAL_THREAD hadn't changed.
10089
10090 Notice that although in all-stop mode, the remote server always
10091 sets the current thread to the thread reporting the stop event,
10092 that doesn't happen in non-stop mode; in non-stop, the stub *must
10093 not* change the current thread when reporting a breakpoint hit,
10094 due to the decoupling of event reporting and event handling.
10095
10096 To keep things simple, we always invalidate our notion of the
10097 current thread. */
10098 record_currthread (rs, minus_one_ptid);
10099
10100 /* Call common code to mark the inferior as not running. */
10101 generic_mourn_inferior ();
10102 }
10103
10104 bool
10105 extended_remote_target::supports_disable_randomization ()
10106 {
10107 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10108 }
10109
10110 void
10111 remote_target::extended_remote_disable_randomization (int val)
10112 {
10113 struct remote_state *rs = get_remote_state ();
10114 char *reply;
10115
10116 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10117 "QDisableRandomization:%x", val);
10118 putpkt (rs->buf);
10119 reply = remote_get_noisy_reply ();
10120 if (*reply == '\0')
10121 error (_("Target does not support QDisableRandomization."));
10122 if (strcmp (reply, "OK") != 0)
10123 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10124 }
10125
10126 int
10127 remote_target::extended_remote_run (const std::string &args)
10128 {
10129 struct remote_state *rs = get_remote_state ();
10130 int len;
10131 const char *remote_exec_file = get_remote_exec_file ();
10132
10133 /* If the user has disabled vRun support, or we have detected that
10134 support is not available, do not try it. */
10135 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10136 return -1;
10137
10138 strcpy (rs->buf.data (), "vRun;");
10139 len = strlen (rs->buf.data ());
10140
10141 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10142 error (_("Remote file name too long for run packet"));
10143 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10144 strlen (remote_exec_file));
10145
10146 if (!args.empty ())
10147 {
10148 int i;
10149
10150 gdb_argv argv (args.c_str ());
10151 for (i = 0; argv[i] != NULL; i++)
10152 {
10153 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10154 error (_("Argument list too long for run packet"));
10155 rs->buf[len++] = ';';
10156 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10157 strlen (argv[i]));
10158 }
10159 }
10160
10161 rs->buf[len++] = '\0';
10162
10163 putpkt (rs->buf);
10164 getpkt (&rs->buf, 0);
10165
10166 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10167 {
10168 case PACKET_OK:
10169 /* We have a wait response. All is well. */
10170 return 0;
10171 case PACKET_UNKNOWN:
10172 return -1;
10173 case PACKET_ERROR:
10174 if (remote_exec_file[0] == '\0')
10175 error (_("Running the default executable on the remote target failed; "
10176 "try \"set remote exec-file\"?"));
10177 else
10178 error (_("Running \"%s\" on the remote target failed"),
10179 remote_exec_file);
10180 default:
10181 gdb_assert_not_reached (_("bad switch"));
10182 }
10183 }
10184
10185 /* Helper function to send set/unset environment packets. ACTION is
10186 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10187 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10188 sent. */
10189
10190 void
10191 remote_target::send_environment_packet (const char *action,
10192 const char *packet,
10193 const char *value)
10194 {
10195 remote_state *rs = get_remote_state ();
10196
10197 /* Convert the environment variable to an hex string, which
10198 is the best format to be transmitted over the wire. */
10199 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10200 strlen (value));
10201
10202 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10203 "%s:%s", packet, encoded_value.c_str ());
10204
10205 putpkt (rs->buf);
10206 getpkt (&rs->buf, 0);
10207 if (strcmp (rs->buf.data (), "OK") != 0)
10208 warning (_("Unable to %s environment variable '%s' on remote."),
10209 action, value);
10210 }
10211
10212 /* Helper function to handle the QEnvironment* packets. */
10213
10214 void
10215 remote_target::extended_remote_environment_support ()
10216 {
10217 remote_state *rs = get_remote_state ();
10218
10219 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10220 {
10221 putpkt ("QEnvironmentReset");
10222 getpkt (&rs->buf, 0);
10223 if (strcmp (rs->buf.data (), "OK") != 0)
10224 warning (_("Unable to reset environment on remote."));
10225 }
10226
10227 gdb_environ *e = &current_inferior ()->environment;
10228
10229 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10230 for (const std::string &el : e->user_set_env ())
10231 send_environment_packet ("set", "QEnvironmentHexEncoded",
10232 el.c_str ());
10233
10234 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10235 for (const std::string &el : e->user_unset_env ())
10236 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10237 }
10238
10239 /* Helper function to set the current working directory for the
10240 inferior in the remote target. */
10241
10242 void
10243 remote_target::extended_remote_set_inferior_cwd ()
10244 {
10245 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10246 {
10247 const char *inferior_cwd = get_inferior_cwd ();
10248 remote_state *rs = get_remote_state ();
10249
10250 if (inferior_cwd != NULL)
10251 {
10252 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10253 strlen (inferior_cwd));
10254
10255 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10256 "QSetWorkingDir:%s", hexpath.c_str ());
10257 }
10258 else
10259 {
10260 /* An empty inferior_cwd means that the user wants us to
10261 reset the remote server's inferior's cwd. */
10262 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10263 "QSetWorkingDir:");
10264 }
10265
10266 putpkt (rs->buf);
10267 getpkt (&rs->buf, 0);
10268 if (packet_ok (rs->buf,
10269 &remote_protocol_packets[PACKET_QSetWorkingDir])
10270 != PACKET_OK)
10271 error (_("\
10272 Remote replied unexpectedly while setting the inferior's working\n\
10273 directory: %s"),
10274 rs->buf.data ());
10275
10276 }
10277 }
10278
10279 /* In the extended protocol we want to be able to do things like
10280 "run" and have them basically work as expected. So we need
10281 a special create_inferior function. We support changing the
10282 executable file and the command line arguments, but not the
10283 environment. */
10284
10285 void
10286 extended_remote_target::create_inferior (const char *exec_file,
10287 const std::string &args,
10288 char **env, int from_tty)
10289 {
10290 int run_worked;
10291 char *stop_reply;
10292 struct remote_state *rs = get_remote_state ();
10293 const char *remote_exec_file = get_remote_exec_file ();
10294
10295 /* If running asynchronously, register the target file descriptor
10296 with the event loop. */
10297 if (target_can_async_p ())
10298 target_async (1);
10299
10300 /* Disable address space randomization if requested (and supported). */
10301 if (supports_disable_randomization ())
10302 extended_remote_disable_randomization (disable_randomization);
10303
10304 /* If startup-with-shell is on, we inform gdbserver to start the
10305 remote inferior using a shell. */
10306 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10307 {
10308 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10309 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10310 putpkt (rs->buf);
10311 getpkt (&rs->buf, 0);
10312 if (strcmp (rs->buf.data (), "OK") != 0)
10313 error (_("\
10314 Remote replied unexpectedly while setting startup-with-shell: %s"),
10315 rs->buf.data ());
10316 }
10317
10318 extended_remote_environment_support ();
10319
10320 extended_remote_set_inferior_cwd ();
10321
10322 /* Now restart the remote server. */
10323 run_worked = extended_remote_run (args) != -1;
10324 if (!run_worked)
10325 {
10326 /* vRun was not supported. Fail if we need it to do what the
10327 user requested. */
10328 if (remote_exec_file[0])
10329 error (_("Remote target does not support \"set remote exec-file\""));
10330 if (!args.empty ())
10331 error (_("Remote target does not support \"set args\" or run ARGS"));
10332
10333 /* Fall back to "R". */
10334 extended_remote_restart ();
10335 }
10336
10337 /* vRun's success return is a stop reply. */
10338 stop_reply = run_worked ? rs->buf.data () : NULL;
10339 add_current_inferior_and_thread (stop_reply);
10340
10341 /* Get updated offsets, if the stub uses qOffsets. */
10342 get_offsets ();
10343 }
10344 \f
10345
10346 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10347 the list of conditions (in agent expression bytecode format), if any, the
10348 target needs to evaluate. The output is placed into the packet buffer
10349 started from BUF and ended at BUF_END. */
10350
10351 static int
10352 remote_add_target_side_condition (struct gdbarch *gdbarch,
10353 struct bp_target_info *bp_tgt, char *buf,
10354 char *buf_end)
10355 {
10356 if (bp_tgt->conditions.empty ())
10357 return 0;
10358
10359 buf += strlen (buf);
10360 xsnprintf (buf, buf_end - buf, "%s", ";");
10361 buf++;
10362
10363 /* Send conditions to the target. */
10364 for (agent_expr *aexpr : bp_tgt->conditions)
10365 {
10366 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10367 buf += strlen (buf);
10368 for (int i = 0; i < aexpr->len; ++i)
10369 buf = pack_hex_byte (buf, aexpr->buf[i]);
10370 *buf = '\0';
10371 }
10372 return 0;
10373 }
10374
10375 static void
10376 remote_add_target_side_commands (struct gdbarch *gdbarch,
10377 struct bp_target_info *bp_tgt, char *buf)
10378 {
10379 if (bp_tgt->tcommands.empty ())
10380 return;
10381
10382 buf += strlen (buf);
10383
10384 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10385 buf += strlen (buf);
10386
10387 /* Concatenate all the agent expressions that are commands into the
10388 cmds parameter. */
10389 for (agent_expr *aexpr : bp_tgt->tcommands)
10390 {
10391 sprintf (buf, "X%x,", aexpr->len);
10392 buf += strlen (buf);
10393 for (int i = 0; i < aexpr->len; ++i)
10394 buf = pack_hex_byte (buf, aexpr->buf[i]);
10395 *buf = '\0';
10396 }
10397 }
10398
10399 /* Insert a breakpoint. On targets that have software breakpoint
10400 support, we ask the remote target to do the work; on targets
10401 which don't, we insert a traditional memory breakpoint. */
10402
10403 int
10404 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10405 struct bp_target_info *bp_tgt)
10406 {
10407 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10408 If it succeeds, then set the support to PACKET_ENABLE. If it
10409 fails, and the user has explicitly requested the Z support then
10410 report an error, otherwise, mark it disabled and go on. */
10411
10412 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10413 {
10414 CORE_ADDR addr = bp_tgt->reqstd_address;
10415 struct remote_state *rs;
10416 char *p, *endbuf;
10417
10418 /* Make sure the remote is pointing at the right process, if
10419 necessary. */
10420 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10421 set_general_process ();
10422
10423 rs = get_remote_state ();
10424 p = rs->buf.data ();
10425 endbuf = p + get_remote_packet_size ();
10426
10427 *(p++) = 'Z';
10428 *(p++) = '0';
10429 *(p++) = ',';
10430 addr = (ULONGEST) remote_address_masked (addr);
10431 p += hexnumstr (p, addr);
10432 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10433
10434 if (supports_evaluation_of_breakpoint_conditions ())
10435 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10436
10437 if (can_run_breakpoint_commands ())
10438 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10439
10440 putpkt (rs->buf);
10441 getpkt (&rs->buf, 0);
10442
10443 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10444 {
10445 case PACKET_ERROR:
10446 return -1;
10447 case PACKET_OK:
10448 return 0;
10449 case PACKET_UNKNOWN:
10450 break;
10451 }
10452 }
10453
10454 /* If this breakpoint has target-side commands but this stub doesn't
10455 support Z0 packets, throw error. */
10456 if (!bp_tgt->tcommands.empty ())
10457 throw_error (NOT_SUPPORTED_ERROR, _("\
10458 Target doesn't support breakpoints that have target side commands."));
10459
10460 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10461 }
10462
10463 int
10464 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10465 struct bp_target_info *bp_tgt,
10466 enum remove_bp_reason reason)
10467 {
10468 CORE_ADDR addr = bp_tgt->placed_address;
10469 struct remote_state *rs = get_remote_state ();
10470
10471 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10472 {
10473 char *p = rs->buf.data ();
10474 char *endbuf = p + get_remote_packet_size ();
10475
10476 /* Make sure the remote is pointing at the right process, if
10477 necessary. */
10478 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10479 set_general_process ();
10480
10481 *(p++) = 'z';
10482 *(p++) = '0';
10483 *(p++) = ',';
10484
10485 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10486 p += hexnumstr (p, addr);
10487 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10488
10489 putpkt (rs->buf);
10490 getpkt (&rs->buf, 0);
10491
10492 return (rs->buf[0] == 'E');
10493 }
10494
10495 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10496 }
10497
10498 static enum Z_packet_type
10499 watchpoint_to_Z_packet (int type)
10500 {
10501 switch (type)
10502 {
10503 case hw_write:
10504 return Z_PACKET_WRITE_WP;
10505 break;
10506 case hw_read:
10507 return Z_PACKET_READ_WP;
10508 break;
10509 case hw_access:
10510 return Z_PACKET_ACCESS_WP;
10511 break;
10512 default:
10513 internal_error (__FILE__, __LINE__,
10514 _("hw_bp_to_z: bad watchpoint type %d"), type);
10515 }
10516 }
10517
10518 int
10519 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10520 enum target_hw_bp_type type, struct expression *cond)
10521 {
10522 struct remote_state *rs = get_remote_state ();
10523 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10524 char *p;
10525 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10526
10527 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10528 return 1;
10529
10530 /* Make sure the remote is pointing at the right process, if
10531 necessary. */
10532 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10533 set_general_process ();
10534
10535 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10536 p = strchr (rs->buf.data (), '\0');
10537 addr = remote_address_masked (addr);
10538 p += hexnumstr (p, (ULONGEST) addr);
10539 xsnprintf (p, endbuf - p, ",%x", len);
10540
10541 putpkt (rs->buf);
10542 getpkt (&rs->buf, 0);
10543
10544 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10545 {
10546 case PACKET_ERROR:
10547 return -1;
10548 case PACKET_UNKNOWN:
10549 return 1;
10550 case PACKET_OK:
10551 return 0;
10552 }
10553 internal_error (__FILE__, __LINE__,
10554 _("remote_insert_watchpoint: reached end of function"));
10555 }
10556
10557 bool
10558 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10559 CORE_ADDR start, int length)
10560 {
10561 CORE_ADDR diff = remote_address_masked (addr - start);
10562
10563 return diff < length;
10564 }
10565
10566
10567 int
10568 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10569 enum target_hw_bp_type type, struct expression *cond)
10570 {
10571 struct remote_state *rs = get_remote_state ();
10572 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10573 char *p;
10574 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10575
10576 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10577 return -1;
10578
10579 /* Make sure the remote is pointing at the right process, if
10580 necessary. */
10581 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10582 set_general_process ();
10583
10584 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10585 p = strchr (rs->buf.data (), '\0');
10586 addr = remote_address_masked (addr);
10587 p += hexnumstr (p, (ULONGEST) addr);
10588 xsnprintf (p, endbuf - p, ",%x", len);
10589 putpkt (rs->buf);
10590 getpkt (&rs->buf, 0);
10591
10592 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10593 {
10594 case PACKET_ERROR:
10595 case PACKET_UNKNOWN:
10596 return -1;
10597 case PACKET_OK:
10598 return 0;
10599 }
10600 internal_error (__FILE__, __LINE__,
10601 _("remote_remove_watchpoint: reached end of function"));
10602 }
10603
10604
10605 static int remote_hw_watchpoint_limit = -1;
10606 static int remote_hw_watchpoint_length_limit = -1;
10607 static int remote_hw_breakpoint_limit = -1;
10608
10609 int
10610 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10611 {
10612 if (remote_hw_watchpoint_length_limit == 0)
10613 return 0;
10614 else if (remote_hw_watchpoint_length_limit < 0)
10615 return 1;
10616 else if (len <= remote_hw_watchpoint_length_limit)
10617 return 1;
10618 else
10619 return 0;
10620 }
10621
10622 int
10623 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10624 {
10625 if (type == bp_hardware_breakpoint)
10626 {
10627 if (remote_hw_breakpoint_limit == 0)
10628 return 0;
10629 else if (remote_hw_breakpoint_limit < 0)
10630 return 1;
10631 else if (cnt <= remote_hw_breakpoint_limit)
10632 return 1;
10633 }
10634 else
10635 {
10636 if (remote_hw_watchpoint_limit == 0)
10637 return 0;
10638 else if (remote_hw_watchpoint_limit < 0)
10639 return 1;
10640 else if (ot)
10641 return -1;
10642 else if (cnt <= remote_hw_watchpoint_limit)
10643 return 1;
10644 }
10645 return -1;
10646 }
10647
10648 /* The to_stopped_by_sw_breakpoint method of target remote. */
10649
10650 bool
10651 remote_target::stopped_by_sw_breakpoint ()
10652 {
10653 struct thread_info *thread = inferior_thread ();
10654
10655 return (thread->priv != NULL
10656 && (get_remote_thread_info (thread)->stop_reason
10657 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10658 }
10659
10660 /* The to_supports_stopped_by_sw_breakpoint method of target
10661 remote. */
10662
10663 bool
10664 remote_target::supports_stopped_by_sw_breakpoint ()
10665 {
10666 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10667 }
10668
10669 /* The to_stopped_by_hw_breakpoint method of target remote. */
10670
10671 bool
10672 remote_target::stopped_by_hw_breakpoint ()
10673 {
10674 struct thread_info *thread = inferior_thread ();
10675
10676 return (thread->priv != NULL
10677 && (get_remote_thread_info (thread)->stop_reason
10678 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10679 }
10680
10681 /* The to_supports_stopped_by_hw_breakpoint method of target
10682 remote. */
10683
10684 bool
10685 remote_target::supports_stopped_by_hw_breakpoint ()
10686 {
10687 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10688 }
10689
10690 bool
10691 remote_target::stopped_by_watchpoint ()
10692 {
10693 struct thread_info *thread = inferior_thread ();
10694
10695 return (thread->priv != NULL
10696 && (get_remote_thread_info (thread)->stop_reason
10697 == TARGET_STOPPED_BY_WATCHPOINT));
10698 }
10699
10700 bool
10701 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10702 {
10703 struct thread_info *thread = inferior_thread ();
10704
10705 if (thread->priv != NULL
10706 && (get_remote_thread_info (thread)->stop_reason
10707 == TARGET_STOPPED_BY_WATCHPOINT))
10708 {
10709 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10710 return true;
10711 }
10712
10713 return false;
10714 }
10715
10716
10717 int
10718 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10719 struct bp_target_info *bp_tgt)
10720 {
10721 CORE_ADDR addr = bp_tgt->reqstd_address;
10722 struct remote_state *rs;
10723 char *p, *endbuf;
10724 char *message;
10725
10726 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10727 return -1;
10728
10729 /* Make sure the remote is pointing at the right process, if
10730 necessary. */
10731 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10732 set_general_process ();
10733
10734 rs = get_remote_state ();
10735 p = rs->buf.data ();
10736 endbuf = p + get_remote_packet_size ();
10737
10738 *(p++) = 'Z';
10739 *(p++) = '1';
10740 *(p++) = ',';
10741
10742 addr = remote_address_masked (addr);
10743 p += hexnumstr (p, (ULONGEST) addr);
10744 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10745
10746 if (supports_evaluation_of_breakpoint_conditions ())
10747 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10748
10749 if (can_run_breakpoint_commands ())
10750 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10751
10752 putpkt (rs->buf);
10753 getpkt (&rs->buf, 0);
10754
10755 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10756 {
10757 case PACKET_ERROR:
10758 if (rs->buf[1] == '.')
10759 {
10760 message = strchr (&rs->buf[2], '.');
10761 if (message)
10762 error (_("Remote failure reply: %s"), message + 1);
10763 }
10764 return -1;
10765 case PACKET_UNKNOWN:
10766 return -1;
10767 case PACKET_OK:
10768 return 0;
10769 }
10770 internal_error (__FILE__, __LINE__,
10771 _("remote_insert_hw_breakpoint: reached end of function"));
10772 }
10773
10774
10775 int
10776 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10777 struct bp_target_info *bp_tgt)
10778 {
10779 CORE_ADDR addr;
10780 struct remote_state *rs = get_remote_state ();
10781 char *p = rs->buf.data ();
10782 char *endbuf = p + get_remote_packet_size ();
10783
10784 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10785 return -1;
10786
10787 /* Make sure the remote is pointing at the right process, if
10788 necessary. */
10789 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10790 set_general_process ();
10791
10792 *(p++) = 'z';
10793 *(p++) = '1';
10794 *(p++) = ',';
10795
10796 addr = remote_address_masked (bp_tgt->placed_address);
10797 p += hexnumstr (p, (ULONGEST) addr);
10798 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10799
10800 putpkt (rs->buf);
10801 getpkt (&rs->buf, 0);
10802
10803 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10804 {
10805 case PACKET_ERROR:
10806 case PACKET_UNKNOWN:
10807 return -1;
10808 case PACKET_OK:
10809 return 0;
10810 }
10811 internal_error (__FILE__, __LINE__,
10812 _("remote_remove_hw_breakpoint: reached end of function"));
10813 }
10814
10815 /* Verify memory using the "qCRC:" request. */
10816
10817 int
10818 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10819 {
10820 struct remote_state *rs = get_remote_state ();
10821 unsigned long host_crc, target_crc;
10822 char *tmp;
10823
10824 /* It doesn't make sense to use qCRC if the remote target is
10825 connected but not running. */
10826 if (target_has_execution ()
10827 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10828 {
10829 enum packet_result result;
10830
10831 /* Make sure the remote is pointing at the right process. */
10832 set_general_process ();
10833
10834 /* FIXME: assumes lma can fit into long. */
10835 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10836 (long) lma, (long) size);
10837 putpkt (rs->buf);
10838
10839 /* Be clever; compute the host_crc before waiting for target
10840 reply. */
10841 host_crc = xcrc32 (data, size, 0xffffffff);
10842
10843 getpkt (&rs->buf, 0);
10844
10845 result = packet_ok (rs->buf,
10846 &remote_protocol_packets[PACKET_qCRC]);
10847 if (result == PACKET_ERROR)
10848 return -1;
10849 else if (result == PACKET_OK)
10850 {
10851 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10852 target_crc = target_crc * 16 + fromhex (*tmp);
10853
10854 return (host_crc == target_crc);
10855 }
10856 }
10857
10858 return simple_verify_memory (this, data, lma, size);
10859 }
10860
10861 /* compare-sections command
10862
10863 With no arguments, compares each loadable section in the exec bfd
10864 with the same memory range on the target, and reports mismatches.
10865 Useful for verifying the image on the target against the exec file. */
10866
10867 static void
10868 compare_sections_command (const char *args, int from_tty)
10869 {
10870 asection *s;
10871 const char *sectname;
10872 bfd_size_type size;
10873 bfd_vma lma;
10874 int matched = 0;
10875 int mismatched = 0;
10876 int res;
10877 int read_only = 0;
10878
10879 if (!current_program_space->exec_bfd ())
10880 error (_("command cannot be used without an exec file"));
10881
10882 if (args != NULL && strcmp (args, "-r") == 0)
10883 {
10884 read_only = 1;
10885 args = NULL;
10886 }
10887
10888 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
10889 {
10890 if (!(s->flags & SEC_LOAD))
10891 continue; /* Skip non-loadable section. */
10892
10893 if (read_only && (s->flags & SEC_READONLY) == 0)
10894 continue; /* Skip writeable sections */
10895
10896 size = bfd_section_size (s);
10897 if (size == 0)
10898 continue; /* Skip zero-length section. */
10899
10900 sectname = bfd_section_name (s);
10901 if (args && strcmp (args, sectname) != 0)
10902 continue; /* Not the section selected by user. */
10903
10904 matched = 1; /* Do this section. */
10905 lma = s->lma;
10906
10907 gdb::byte_vector sectdata (size);
10908 bfd_get_section_contents (current_program_space->exec_bfd (), s,
10909 sectdata.data (), 0, size);
10910
10911 res = target_verify_memory (sectdata.data (), lma, size);
10912
10913 if (res == -1)
10914 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10915 paddress (target_gdbarch (), lma),
10916 paddress (target_gdbarch (), lma + size));
10917
10918 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10919 paddress (target_gdbarch (), lma),
10920 paddress (target_gdbarch (), lma + size));
10921 if (res)
10922 printf_filtered ("matched.\n");
10923 else
10924 {
10925 printf_filtered ("MIS-MATCHED!\n");
10926 mismatched++;
10927 }
10928 }
10929 if (mismatched > 0)
10930 warning (_("One or more sections of the target image does not match\n\
10931 the loaded file\n"));
10932 if (args && !matched)
10933 printf_filtered (_("No loaded section named '%s'.\n"), args);
10934 }
10935
10936 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10937 into remote target. The number of bytes written to the remote
10938 target is returned, or -1 for error. */
10939
10940 target_xfer_status
10941 remote_target::remote_write_qxfer (const char *object_name,
10942 const char *annex, const gdb_byte *writebuf,
10943 ULONGEST offset, LONGEST len,
10944 ULONGEST *xfered_len,
10945 struct packet_config *packet)
10946 {
10947 int i, buf_len;
10948 ULONGEST n;
10949 struct remote_state *rs = get_remote_state ();
10950 int max_size = get_memory_write_packet_size ();
10951
10952 if (packet_config_support (packet) == PACKET_DISABLE)
10953 return TARGET_XFER_E_IO;
10954
10955 /* Insert header. */
10956 i = snprintf (rs->buf.data (), max_size,
10957 "qXfer:%s:write:%s:%s:",
10958 object_name, annex ? annex : "",
10959 phex_nz (offset, sizeof offset));
10960 max_size -= (i + 1);
10961
10962 /* Escape as much data as fits into rs->buf. */
10963 buf_len = remote_escape_output
10964 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10965
10966 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10967 || getpkt_sane (&rs->buf, 0) < 0
10968 || packet_ok (rs->buf, packet) != PACKET_OK)
10969 return TARGET_XFER_E_IO;
10970
10971 unpack_varlen_hex (rs->buf.data (), &n);
10972
10973 *xfered_len = n;
10974 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10975 }
10976
10977 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10978 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10979 number of bytes read is returned, or 0 for EOF, or -1 for error.
10980 The number of bytes read may be less than LEN without indicating an
10981 EOF. PACKET is checked and updated to indicate whether the remote
10982 target supports this object. */
10983
10984 target_xfer_status
10985 remote_target::remote_read_qxfer (const char *object_name,
10986 const char *annex,
10987 gdb_byte *readbuf, ULONGEST offset,
10988 LONGEST len,
10989 ULONGEST *xfered_len,
10990 struct packet_config *packet)
10991 {
10992 struct remote_state *rs = get_remote_state ();
10993 LONGEST i, n, packet_len;
10994
10995 if (packet_config_support (packet) == PACKET_DISABLE)
10996 return TARGET_XFER_E_IO;
10997
10998 /* Check whether we've cached an end-of-object packet that matches
10999 this request. */
11000 if (rs->finished_object)
11001 {
11002 if (strcmp (object_name, rs->finished_object) == 0
11003 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11004 && offset == rs->finished_offset)
11005 return TARGET_XFER_EOF;
11006
11007
11008 /* Otherwise, we're now reading something different. Discard
11009 the cache. */
11010 xfree (rs->finished_object);
11011 xfree (rs->finished_annex);
11012 rs->finished_object = NULL;
11013 rs->finished_annex = NULL;
11014 }
11015
11016 /* Request only enough to fit in a single packet. The actual data
11017 may not, since we don't know how much of it will need to be escaped;
11018 the target is free to respond with slightly less data. We subtract
11019 five to account for the response type and the protocol frame. */
11020 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11021 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11022 "qXfer:%s:read:%s:%s,%s",
11023 object_name, annex ? annex : "",
11024 phex_nz (offset, sizeof offset),
11025 phex_nz (n, sizeof n));
11026 i = putpkt (rs->buf);
11027 if (i < 0)
11028 return TARGET_XFER_E_IO;
11029
11030 rs->buf[0] = '\0';
11031 packet_len = getpkt_sane (&rs->buf, 0);
11032 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11033 return TARGET_XFER_E_IO;
11034
11035 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11036 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11037
11038 /* 'm' means there is (or at least might be) more data after this
11039 batch. That does not make sense unless there's at least one byte
11040 of data in this reply. */
11041 if (rs->buf[0] == 'm' && packet_len == 1)
11042 error (_("Remote qXfer reply contained no data."));
11043
11044 /* Got some data. */
11045 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11046 packet_len - 1, readbuf, n);
11047
11048 /* 'l' is an EOF marker, possibly including a final block of data,
11049 or possibly empty. If we have the final block of a non-empty
11050 object, record this fact to bypass a subsequent partial read. */
11051 if (rs->buf[0] == 'l' && offset + i > 0)
11052 {
11053 rs->finished_object = xstrdup (object_name);
11054 rs->finished_annex = xstrdup (annex ? annex : "");
11055 rs->finished_offset = offset + i;
11056 }
11057
11058 if (i == 0)
11059 return TARGET_XFER_EOF;
11060 else
11061 {
11062 *xfered_len = i;
11063 return TARGET_XFER_OK;
11064 }
11065 }
11066
11067 enum target_xfer_status
11068 remote_target::xfer_partial (enum target_object object,
11069 const char *annex, gdb_byte *readbuf,
11070 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11071 ULONGEST *xfered_len)
11072 {
11073 struct remote_state *rs;
11074 int i;
11075 char *p2;
11076 char query_type;
11077 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11078
11079 set_remote_traceframe ();
11080 set_general_thread (inferior_ptid);
11081
11082 rs = get_remote_state ();
11083
11084 /* Handle memory using the standard memory routines. */
11085 if (object == TARGET_OBJECT_MEMORY)
11086 {
11087 /* If the remote target is connected but not running, we should
11088 pass this request down to a lower stratum (e.g. the executable
11089 file). */
11090 if (!target_has_execution ())
11091 return TARGET_XFER_EOF;
11092
11093 if (writebuf != NULL)
11094 return remote_write_bytes (offset, writebuf, len, unit_size,
11095 xfered_len);
11096 else
11097 return remote_read_bytes (offset, readbuf, len, unit_size,
11098 xfered_len);
11099 }
11100
11101 /* Handle extra signal info using qxfer packets. */
11102 if (object == TARGET_OBJECT_SIGNAL_INFO)
11103 {
11104 if (readbuf)
11105 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11106 xfered_len, &remote_protocol_packets
11107 [PACKET_qXfer_siginfo_read]);
11108 else
11109 return remote_write_qxfer ("siginfo", annex,
11110 writebuf, offset, len, xfered_len,
11111 &remote_protocol_packets
11112 [PACKET_qXfer_siginfo_write]);
11113 }
11114
11115 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11116 {
11117 if (readbuf)
11118 return remote_read_qxfer ("statictrace", annex,
11119 readbuf, offset, len, xfered_len,
11120 &remote_protocol_packets
11121 [PACKET_qXfer_statictrace_read]);
11122 else
11123 return TARGET_XFER_E_IO;
11124 }
11125
11126 /* Only handle flash writes. */
11127 if (writebuf != NULL)
11128 {
11129 switch (object)
11130 {
11131 case TARGET_OBJECT_FLASH:
11132 return remote_flash_write (offset, len, xfered_len,
11133 writebuf);
11134
11135 default:
11136 return TARGET_XFER_E_IO;
11137 }
11138 }
11139
11140 /* Map pre-existing objects onto letters. DO NOT do this for new
11141 objects!!! Instead specify new query packets. */
11142 switch (object)
11143 {
11144 case TARGET_OBJECT_AVR:
11145 query_type = 'R';
11146 break;
11147
11148 case TARGET_OBJECT_AUXV:
11149 gdb_assert (annex == NULL);
11150 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11151 xfered_len,
11152 &remote_protocol_packets[PACKET_qXfer_auxv]);
11153
11154 case TARGET_OBJECT_AVAILABLE_FEATURES:
11155 return remote_read_qxfer
11156 ("features", annex, readbuf, offset, len, xfered_len,
11157 &remote_protocol_packets[PACKET_qXfer_features]);
11158
11159 case TARGET_OBJECT_LIBRARIES:
11160 return remote_read_qxfer
11161 ("libraries", annex, readbuf, offset, len, xfered_len,
11162 &remote_protocol_packets[PACKET_qXfer_libraries]);
11163
11164 case TARGET_OBJECT_LIBRARIES_SVR4:
11165 return remote_read_qxfer
11166 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11167 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11168
11169 case TARGET_OBJECT_MEMORY_MAP:
11170 gdb_assert (annex == NULL);
11171 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11172 xfered_len,
11173 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11174
11175 case TARGET_OBJECT_OSDATA:
11176 /* Should only get here if we're connected. */
11177 gdb_assert (rs->remote_desc);
11178 return remote_read_qxfer
11179 ("osdata", annex, readbuf, offset, len, xfered_len,
11180 &remote_protocol_packets[PACKET_qXfer_osdata]);
11181
11182 case TARGET_OBJECT_THREADS:
11183 gdb_assert (annex == NULL);
11184 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11185 xfered_len,
11186 &remote_protocol_packets[PACKET_qXfer_threads]);
11187
11188 case TARGET_OBJECT_TRACEFRAME_INFO:
11189 gdb_assert (annex == NULL);
11190 return remote_read_qxfer
11191 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11192 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11193
11194 case TARGET_OBJECT_FDPIC:
11195 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11196 xfered_len,
11197 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11198
11199 case TARGET_OBJECT_OPENVMS_UIB:
11200 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11201 xfered_len,
11202 &remote_protocol_packets[PACKET_qXfer_uib]);
11203
11204 case TARGET_OBJECT_BTRACE:
11205 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11206 xfered_len,
11207 &remote_protocol_packets[PACKET_qXfer_btrace]);
11208
11209 case TARGET_OBJECT_BTRACE_CONF:
11210 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11211 len, xfered_len,
11212 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11213
11214 case TARGET_OBJECT_EXEC_FILE:
11215 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11216 len, xfered_len,
11217 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11218
11219 default:
11220 return TARGET_XFER_E_IO;
11221 }
11222
11223 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11224 large enough let the caller deal with it. */
11225 if (len < get_remote_packet_size ())
11226 return TARGET_XFER_E_IO;
11227 len = get_remote_packet_size ();
11228
11229 /* Except for querying the minimum buffer size, target must be open. */
11230 if (!rs->remote_desc)
11231 error (_("remote query is only available after target open"));
11232
11233 gdb_assert (annex != NULL);
11234 gdb_assert (readbuf != NULL);
11235
11236 p2 = rs->buf.data ();
11237 *p2++ = 'q';
11238 *p2++ = query_type;
11239
11240 /* We used one buffer char for the remote protocol q command and
11241 another for the query type. As the remote protocol encapsulation
11242 uses 4 chars plus one extra in case we are debugging
11243 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11244 string. */
11245 i = 0;
11246 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11247 {
11248 /* Bad caller may have sent forbidden characters. */
11249 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11250 *p2++ = annex[i];
11251 i++;
11252 }
11253 *p2 = '\0';
11254 gdb_assert (annex[i] == '\0');
11255
11256 i = putpkt (rs->buf);
11257 if (i < 0)
11258 return TARGET_XFER_E_IO;
11259
11260 getpkt (&rs->buf, 0);
11261 strcpy ((char *) readbuf, rs->buf.data ());
11262
11263 *xfered_len = strlen ((char *) readbuf);
11264 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11265 }
11266
11267 /* Implementation of to_get_memory_xfer_limit. */
11268
11269 ULONGEST
11270 remote_target::get_memory_xfer_limit ()
11271 {
11272 return get_memory_write_packet_size ();
11273 }
11274
11275 int
11276 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11277 const gdb_byte *pattern, ULONGEST pattern_len,
11278 CORE_ADDR *found_addrp)
11279 {
11280 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11281 struct remote_state *rs = get_remote_state ();
11282 int max_size = get_memory_write_packet_size ();
11283 struct packet_config *packet =
11284 &remote_protocol_packets[PACKET_qSearch_memory];
11285 /* Number of packet bytes used to encode the pattern;
11286 this could be more than PATTERN_LEN due to escape characters. */
11287 int escaped_pattern_len;
11288 /* Amount of pattern that was encodable in the packet. */
11289 int used_pattern_len;
11290 int i;
11291 int found;
11292 ULONGEST found_addr;
11293
11294 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11295 {
11296 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11297 == len);
11298 };
11299
11300 /* Don't go to the target if we don't have to. This is done before
11301 checking packet_config_support to avoid the possibility that a
11302 success for this edge case means the facility works in
11303 general. */
11304 if (pattern_len > search_space_len)
11305 return 0;
11306 if (pattern_len == 0)
11307 {
11308 *found_addrp = start_addr;
11309 return 1;
11310 }
11311
11312 /* If we already know the packet isn't supported, fall back to the simple
11313 way of searching memory. */
11314
11315 if (packet_config_support (packet) == PACKET_DISABLE)
11316 {
11317 /* Target doesn't provided special support, fall back and use the
11318 standard support (copy memory and do the search here). */
11319 return simple_search_memory (read_memory, start_addr, search_space_len,
11320 pattern, pattern_len, found_addrp);
11321 }
11322
11323 /* Make sure the remote is pointing at the right process. */
11324 set_general_process ();
11325
11326 /* Insert header. */
11327 i = snprintf (rs->buf.data (), max_size,
11328 "qSearch:memory:%s;%s;",
11329 phex_nz (start_addr, addr_size),
11330 phex_nz (search_space_len, sizeof (search_space_len)));
11331 max_size -= (i + 1);
11332
11333 /* Escape as much data as fits into rs->buf. */
11334 escaped_pattern_len =
11335 remote_escape_output (pattern, pattern_len, 1,
11336 (gdb_byte *) rs->buf.data () + i,
11337 &used_pattern_len, max_size);
11338
11339 /* Bail if the pattern is too large. */
11340 if (used_pattern_len != pattern_len)
11341 error (_("Pattern is too large to transmit to remote target."));
11342
11343 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11344 || getpkt_sane (&rs->buf, 0) < 0
11345 || packet_ok (rs->buf, packet) != PACKET_OK)
11346 {
11347 /* The request may not have worked because the command is not
11348 supported. If so, fall back to the simple way. */
11349 if (packet_config_support (packet) == PACKET_DISABLE)
11350 {
11351 return simple_search_memory (read_memory, start_addr, search_space_len,
11352 pattern, pattern_len, found_addrp);
11353 }
11354 return -1;
11355 }
11356
11357 if (rs->buf[0] == '0')
11358 found = 0;
11359 else if (rs->buf[0] == '1')
11360 {
11361 found = 1;
11362 if (rs->buf[1] != ',')
11363 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11364 unpack_varlen_hex (&rs->buf[2], &found_addr);
11365 *found_addrp = found_addr;
11366 }
11367 else
11368 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11369
11370 return found;
11371 }
11372
11373 void
11374 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11375 {
11376 struct remote_state *rs = get_remote_state ();
11377 char *p = rs->buf.data ();
11378
11379 if (!rs->remote_desc)
11380 error (_("remote rcmd is only available after target open"));
11381
11382 /* Send a NULL command across as an empty command. */
11383 if (command == NULL)
11384 command = "";
11385
11386 /* The query prefix. */
11387 strcpy (rs->buf.data (), "qRcmd,");
11388 p = strchr (rs->buf.data (), '\0');
11389
11390 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11391 > get_remote_packet_size ())
11392 error (_("\"monitor\" command ``%s'' is too long."), command);
11393
11394 /* Encode the actual command. */
11395 bin2hex ((const gdb_byte *) command, p, strlen (command));
11396
11397 if (putpkt (rs->buf) < 0)
11398 error (_("Communication problem with target."));
11399
11400 /* get/display the response */
11401 while (1)
11402 {
11403 char *buf;
11404
11405 /* XXX - see also remote_get_noisy_reply(). */
11406 QUIT; /* Allow user to bail out with ^C. */
11407 rs->buf[0] = '\0';
11408 if (getpkt_sane (&rs->buf, 0) == -1)
11409 {
11410 /* Timeout. Continue to (try to) read responses.
11411 This is better than stopping with an error, assuming the stub
11412 is still executing the (long) monitor command.
11413 If needed, the user can interrupt gdb using C-c, obtaining
11414 an effect similar to stop on timeout. */
11415 continue;
11416 }
11417 buf = rs->buf.data ();
11418 if (buf[0] == '\0')
11419 error (_("Target does not support this command."));
11420 if (buf[0] == 'O' && buf[1] != 'K')
11421 {
11422 remote_console_output (buf + 1); /* 'O' message from stub. */
11423 continue;
11424 }
11425 if (strcmp (buf, "OK") == 0)
11426 break;
11427 if (strlen (buf) == 3 && buf[0] == 'E'
11428 && isdigit (buf[1]) && isdigit (buf[2]))
11429 {
11430 error (_("Protocol error with Rcmd"));
11431 }
11432 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11433 {
11434 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11435
11436 fputc_unfiltered (c, outbuf);
11437 }
11438 break;
11439 }
11440 }
11441
11442 std::vector<mem_region>
11443 remote_target::memory_map ()
11444 {
11445 std::vector<mem_region> result;
11446 gdb::optional<gdb::char_vector> text
11447 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11448
11449 if (text)
11450 result = parse_memory_map (text->data ());
11451
11452 return result;
11453 }
11454
11455 static void
11456 packet_command (const char *args, int from_tty)
11457 {
11458 remote_target *remote = get_current_remote_target ();
11459
11460 if (remote == nullptr)
11461 error (_("command can only be used with remote target"));
11462
11463 remote->packet_command (args, from_tty);
11464 }
11465
11466 void
11467 remote_target::packet_command (const char *args, int from_tty)
11468 {
11469 if (!args)
11470 error (_("remote-packet command requires packet text as argument"));
11471
11472 puts_filtered ("sending: ");
11473 print_packet (args);
11474 puts_filtered ("\n");
11475 putpkt (args);
11476
11477 remote_state *rs = get_remote_state ();
11478
11479 getpkt (&rs->buf, 0);
11480 puts_filtered ("received: ");
11481 print_packet (rs->buf.data ());
11482 puts_filtered ("\n");
11483 }
11484
11485 #if 0
11486 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11487
11488 static void display_thread_info (struct gdb_ext_thread_info *info);
11489
11490 static void threadset_test_cmd (char *cmd, int tty);
11491
11492 static void threadalive_test (char *cmd, int tty);
11493
11494 static void threadlist_test_cmd (char *cmd, int tty);
11495
11496 int get_and_display_threadinfo (threadref *ref);
11497
11498 static void threadinfo_test_cmd (char *cmd, int tty);
11499
11500 static int thread_display_step (threadref *ref, void *context);
11501
11502 static void threadlist_update_test_cmd (char *cmd, int tty);
11503
11504 static void init_remote_threadtests (void);
11505
11506 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11507
11508 static void
11509 threadset_test_cmd (const char *cmd, int tty)
11510 {
11511 int sample_thread = SAMPLE_THREAD;
11512
11513 printf_filtered (_("Remote threadset test\n"));
11514 set_general_thread (sample_thread);
11515 }
11516
11517
11518 static void
11519 threadalive_test (const char *cmd, int tty)
11520 {
11521 int sample_thread = SAMPLE_THREAD;
11522 int pid = inferior_ptid.pid ();
11523 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11524
11525 if (remote_thread_alive (ptid))
11526 printf_filtered ("PASS: Thread alive test\n");
11527 else
11528 printf_filtered ("FAIL: Thread alive test\n");
11529 }
11530
11531 void output_threadid (char *title, threadref *ref);
11532
11533 void
11534 output_threadid (char *title, threadref *ref)
11535 {
11536 char hexid[20];
11537
11538 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11539 hexid[16] = 0;
11540 printf_filtered ("%s %s\n", title, (&hexid[0]));
11541 }
11542
11543 static void
11544 threadlist_test_cmd (const char *cmd, int tty)
11545 {
11546 int startflag = 1;
11547 threadref nextthread;
11548 int done, result_count;
11549 threadref threadlist[3];
11550
11551 printf_filtered ("Remote Threadlist test\n");
11552 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11553 &result_count, &threadlist[0]))
11554 printf_filtered ("FAIL: threadlist test\n");
11555 else
11556 {
11557 threadref *scan = threadlist;
11558 threadref *limit = scan + result_count;
11559
11560 while (scan < limit)
11561 output_threadid (" thread ", scan++);
11562 }
11563 }
11564
11565 void
11566 display_thread_info (struct gdb_ext_thread_info *info)
11567 {
11568 output_threadid ("Threadid: ", &info->threadid);
11569 printf_filtered ("Name: %s\n ", info->shortname);
11570 printf_filtered ("State: %s\n", info->display);
11571 printf_filtered ("other: %s\n\n", info->more_display);
11572 }
11573
11574 int
11575 get_and_display_threadinfo (threadref *ref)
11576 {
11577 int result;
11578 int set;
11579 struct gdb_ext_thread_info threadinfo;
11580
11581 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11582 | TAG_MOREDISPLAY | TAG_DISPLAY;
11583 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11584 display_thread_info (&threadinfo);
11585 return result;
11586 }
11587
11588 static void
11589 threadinfo_test_cmd (const char *cmd, int tty)
11590 {
11591 int athread = SAMPLE_THREAD;
11592 threadref thread;
11593 int set;
11594
11595 int_to_threadref (&thread, athread);
11596 printf_filtered ("Remote Threadinfo test\n");
11597 if (!get_and_display_threadinfo (&thread))
11598 printf_filtered ("FAIL cannot get thread info\n");
11599 }
11600
11601 static int
11602 thread_display_step (threadref *ref, void *context)
11603 {
11604 /* output_threadid(" threadstep ",ref); *//* simple test */
11605 return get_and_display_threadinfo (ref);
11606 }
11607
11608 static void
11609 threadlist_update_test_cmd (const char *cmd, int tty)
11610 {
11611 printf_filtered ("Remote Threadlist update test\n");
11612 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11613 }
11614
11615 static void
11616 init_remote_threadtests (void)
11617 {
11618 add_com ("tlist", class_obscure, threadlist_test_cmd,
11619 _("Fetch and print the remote list of "
11620 "thread identifiers, one pkt only."));
11621 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11622 _("Fetch and display info about one thread."));
11623 add_com ("tset", class_obscure, threadset_test_cmd,
11624 _("Test setting to a different thread."));
11625 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11626 _("Iterate through updating all remote thread info."));
11627 add_com ("talive", class_obscure, threadalive_test,
11628 _("Remote thread alive test."));
11629 }
11630
11631 #endif /* 0 */
11632
11633 /* Convert a thread ID to a string. */
11634
11635 std::string
11636 remote_target::pid_to_str (ptid_t ptid)
11637 {
11638 struct remote_state *rs = get_remote_state ();
11639
11640 if (ptid == null_ptid)
11641 return normal_pid_to_str (ptid);
11642 else if (ptid.is_pid ())
11643 {
11644 /* Printing an inferior target id. */
11645
11646 /* When multi-process extensions are off, there's no way in the
11647 remote protocol to know the remote process id, if there's any
11648 at all. There's one exception --- when we're connected with
11649 target extended-remote, and we manually attached to a process
11650 with "attach PID". We don't record anywhere a flag that
11651 allows us to distinguish that case from the case of
11652 connecting with extended-remote and the stub already being
11653 attached to a process, and reporting yes to qAttached, hence
11654 no smart special casing here. */
11655 if (!remote_multi_process_p (rs))
11656 return "Remote target";
11657
11658 return normal_pid_to_str (ptid);
11659 }
11660 else
11661 {
11662 if (magic_null_ptid == ptid)
11663 return "Thread <main>";
11664 else if (remote_multi_process_p (rs))
11665 if (ptid.lwp () == 0)
11666 return normal_pid_to_str (ptid);
11667 else
11668 return string_printf ("Thread %d.%ld",
11669 ptid.pid (), ptid.lwp ());
11670 else
11671 return string_printf ("Thread %ld", ptid.lwp ());
11672 }
11673 }
11674
11675 /* Get the address of the thread local variable in OBJFILE which is
11676 stored at OFFSET within the thread local storage for thread PTID. */
11677
11678 CORE_ADDR
11679 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11680 CORE_ADDR offset)
11681 {
11682 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11683 {
11684 struct remote_state *rs = get_remote_state ();
11685 char *p = rs->buf.data ();
11686 char *endp = p + get_remote_packet_size ();
11687 enum packet_result result;
11688
11689 strcpy (p, "qGetTLSAddr:");
11690 p += strlen (p);
11691 p = write_ptid (p, endp, ptid);
11692 *p++ = ',';
11693 p += hexnumstr (p, offset);
11694 *p++ = ',';
11695 p += hexnumstr (p, lm);
11696 *p++ = '\0';
11697
11698 putpkt (rs->buf);
11699 getpkt (&rs->buf, 0);
11700 result = packet_ok (rs->buf,
11701 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11702 if (result == PACKET_OK)
11703 {
11704 ULONGEST addr;
11705
11706 unpack_varlen_hex (rs->buf.data (), &addr);
11707 return addr;
11708 }
11709 else if (result == PACKET_UNKNOWN)
11710 throw_error (TLS_GENERIC_ERROR,
11711 _("Remote target doesn't support qGetTLSAddr packet"));
11712 else
11713 throw_error (TLS_GENERIC_ERROR,
11714 _("Remote target failed to process qGetTLSAddr request"));
11715 }
11716 else
11717 throw_error (TLS_GENERIC_ERROR,
11718 _("TLS not supported or disabled on this target"));
11719 /* Not reached. */
11720 return 0;
11721 }
11722
11723 /* Provide thread local base, i.e. Thread Information Block address.
11724 Returns 1 if ptid is found and thread_local_base is non zero. */
11725
11726 bool
11727 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11728 {
11729 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11730 {
11731 struct remote_state *rs = get_remote_state ();
11732 char *p = rs->buf.data ();
11733 char *endp = p + get_remote_packet_size ();
11734 enum packet_result result;
11735
11736 strcpy (p, "qGetTIBAddr:");
11737 p += strlen (p);
11738 p = write_ptid (p, endp, ptid);
11739 *p++ = '\0';
11740
11741 putpkt (rs->buf);
11742 getpkt (&rs->buf, 0);
11743 result = packet_ok (rs->buf,
11744 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11745 if (result == PACKET_OK)
11746 {
11747 ULONGEST val;
11748 unpack_varlen_hex (rs->buf.data (), &val);
11749 if (addr)
11750 *addr = (CORE_ADDR) val;
11751 return true;
11752 }
11753 else if (result == PACKET_UNKNOWN)
11754 error (_("Remote target doesn't support qGetTIBAddr packet"));
11755 else
11756 error (_("Remote target failed to process qGetTIBAddr request"));
11757 }
11758 else
11759 error (_("qGetTIBAddr not supported or disabled on this target"));
11760 /* Not reached. */
11761 return false;
11762 }
11763
11764 /* Support for inferring a target description based on the current
11765 architecture and the size of a 'g' packet. While the 'g' packet
11766 can have any size (since optional registers can be left off the
11767 end), some sizes are easily recognizable given knowledge of the
11768 approximate architecture. */
11769
11770 struct remote_g_packet_guess
11771 {
11772 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11773 : bytes (bytes_),
11774 tdesc (tdesc_)
11775 {
11776 }
11777
11778 int bytes;
11779 const struct target_desc *tdesc;
11780 };
11781
11782 struct remote_g_packet_data : public allocate_on_obstack
11783 {
11784 std::vector<remote_g_packet_guess> guesses;
11785 };
11786
11787 static struct gdbarch_data *remote_g_packet_data_handle;
11788
11789 static void *
11790 remote_g_packet_data_init (struct obstack *obstack)
11791 {
11792 return new (obstack) remote_g_packet_data;
11793 }
11794
11795 void
11796 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11797 const struct target_desc *tdesc)
11798 {
11799 struct remote_g_packet_data *data
11800 = ((struct remote_g_packet_data *)
11801 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11802
11803 gdb_assert (tdesc != NULL);
11804
11805 for (const remote_g_packet_guess &guess : data->guesses)
11806 if (guess.bytes == bytes)
11807 internal_error (__FILE__, __LINE__,
11808 _("Duplicate g packet description added for size %d"),
11809 bytes);
11810
11811 data->guesses.emplace_back (bytes, tdesc);
11812 }
11813
11814 /* Return true if remote_read_description would do anything on this target
11815 and architecture, false otherwise. */
11816
11817 static bool
11818 remote_read_description_p (struct target_ops *target)
11819 {
11820 struct remote_g_packet_data *data
11821 = ((struct remote_g_packet_data *)
11822 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11823
11824 return !data->guesses.empty ();
11825 }
11826
11827 const struct target_desc *
11828 remote_target::read_description ()
11829 {
11830 struct remote_g_packet_data *data
11831 = ((struct remote_g_packet_data *)
11832 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11833
11834 /* Do not try this during initial connection, when we do not know
11835 whether there is a running but stopped thread. */
11836 if (!target_has_execution () || inferior_ptid == null_ptid)
11837 return beneath ()->read_description ();
11838
11839 if (!data->guesses.empty ())
11840 {
11841 int bytes = send_g_packet ();
11842
11843 for (const remote_g_packet_guess &guess : data->guesses)
11844 if (guess.bytes == bytes)
11845 return guess.tdesc;
11846
11847 /* We discard the g packet. A minor optimization would be to
11848 hold on to it, and fill the register cache once we have selected
11849 an architecture, but it's too tricky to do safely. */
11850 }
11851
11852 return beneath ()->read_description ();
11853 }
11854
11855 /* Remote file transfer support. This is host-initiated I/O, not
11856 target-initiated; for target-initiated, see remote-fileio.c. */
11857
11858 /* If *LEFT is at least the length of STRING, copy STRING to
11859 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11860 decrease *LEFT. Otherwise raise an error. */
11861
11862 static void
11863 remote_buffer_add_string (char **buffer, int *left, const char *string)
11864 {
11865 int len = strlen (string);
11866
11867 if (len > *left)
11868 error (_("Packet too long for target."));
11869
11870 memcpy (*buffer, string, len);
11871 *buffer += len;
11872 *left -= len;
11873
11874 /* NUL-terminate the buffer as a convenience, if there is
11875 room. */
11876 if (*left)
11877 **buffer = '\0';
11878 }
11879
11880 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11881 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11882 decrease *LEFT. Otherwise raise an error. */
11883
11884 static void
11885 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11886 int len)
11887 {
11888 if (2 * len > *left)
11889 error (_("Packet too long for target."));
11890
11891 bin2hex (bytes, *buffer, len);
11892 *buffer += 2 * len;
11893 *left -= 2 * len;
11894
11895 /* NUL-terminate the buffer as a convenience, if there is
11896 room. */
11897 if (*left)
11898 **buffer = '\0';
11899 }
11900
11901 /* If *LEFT is large enough, convert VALUE to hex and add it to
11902 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11903 decrease *LEFT. Otherwise raise an error. */
11904
11905 static void
11906 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11907 {
11908 int len = hexnumlen (value);
11909
11910 if (len > *left)
11911 error (_("Packet too long for target."));
11912
11913 hexnumstr (*buffer, value);
11914 *buffer += len;
11915 *left -= len;
11916
11917 /* NUL-terminate the buffer as a convenience, if there is
11918 room. */
11919 if (*left)
11920 **buffer = '\0';
11921 }
11922
11923 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11924 value, *REMOTE_ERRNO to the remote error number or zero if none
11925 was included, and *ATTACHMENT to point to the start of the annex
11926 if any. The length of the packet isn't needed here; there may
11927 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11928
11929 Return 0 if the packet could be parsed, -1 if it could not. If
11930 -1 is returned, the other variables may not be initialized. */
11931
11932 static int
11933 remote_hostio_parse_result (const char *buffer, int *retcode,
11934 int *remote_errno, const char **attachment)
11935 {
11936 char *p, *p2;
11937
11938 *remote_errno = 0;
11939 *attachment = NULL;
11940
11941 if (buffer[0] != 'F')
11942 return -1;
11943
11944 errno = 0;
11945 *retcode = strtol (&buffer[1], &p, 16);
11946 if (errno != 0 || p == &buffer[1])
11947 return -1;
11948
11949 /* Check for ",errno". */
11950 if (*p == ',')
11951 {
11952 errno = 0;
11953 *remote_errno = strtol (p + 1, &p2, 16);
11954 if (errno != 0 || p + 1 == p2)
11955 return -1;
11956 p = p2;
11957 }
11958
11959 /* Check for ";attachment". If there is no attachment, the
11960 packet should end here. */
11961 if (*p == ';')
11962 {
11963 *attachment = p + 1;
11964 return 0;
11965 }
11966 else if (*p == '\0')
11967 return 0;
11968 else
11969 return -1;
11970 }
11971
11972 /* Send a prepared I/O packet to the target and read its response.
11973 The prepared packet is in the global RS->BUF before this function
11974 is called, and the answer is there when we return.
11975
11976 COMMAND_BYTES is the length of the request to send, which may include
11977 binary data. WHICH_PACKET is the packet configuration to check
11978 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11979 is set to the error number and -1 is returned. Otherwise the value
11980 returned by the function is returned.
11981
11982 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11983 attachment is expected; an error will be reported if there's a
11984 mismatch. If one is found, *ATTACHMENT will be set to point into
11985 the packet buffer and *ATTACHMENT_LEN will be set to the
11986 attachment's length. */
11987
11988 int
11989 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11990 int *remote_errno, const char **attachment,
11991 int *attachment_len)
11992 {
11993 struct remote_state *rs = get_remote_state ();
11994 int ret, bytes_read;
11995 const char *attachment_tmp;
11996
11997 if (packet_support (which_packet) == PACKET_DISABLE)
11998 {
11999 *remote_errno = FILEIO_ENOSYS;
12000 return -1;
12001 }
12002
12003 putpkt_binary (rs->buf.data (), command_bytes);
12004 bytes_read = getpkt_sane (&rs->buf, 0);
12005
12006 /* If it timed out, something is wrong. Don't try to parse the
12007 buffer. */
12008 if (bytes_read < 0)
12009 {
12010 *remote_errno = FILEIO_EINVAL;
12011 return -1;
12012 }
12013
12014 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12015 {
12016 case PACKET_ERROR:
12017 *remote_errno = FILEIO_EINVAL;
12018 return -1;
12019 case PACKET_UNKNOWN:
12020 *remote_errno = FILEIO_ENOSYS;
12021 return -1;
12022 case PACKET_OK:
12023 break;
12024 }
12025
12026 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12027 &attachment_tmp))
12028 {
12029 *remote_errno = FILEIO_EINVAL;
12030 return -1;
12031 }
12032
12033 /* Make sure we saw an attachment if and only if we expected one. */
12034 if ((attachment_tmp == NULL && attachment != NULL)
12035 || (attachment_tmp != NULL && attachment == NULL))
12036 {
12037 *remote_errno = FILEIO_EINVAL;
12038 return -1;
12039 }
12040
12041 /* If an attachment was found, it must point into the packet buffer;
12042 work out how many bytes there were. */
12043 if (attachment_tmp != NULL)
12044 {
12045 *attachment = attachment_tmp;
12046 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12047 }
12048
12049 return ret;
12050 }
12051
12052 /* See declaration.h. */
12053
12054 void
12055 readahead_cache::invalidate ()
12056 {
12057 this->fd = -1;
12058 }
12059
12060 /* See declaration.h. */
12061
12062 void
12063 readahead_cache::invalidate_fd (int fd)
12064 {
12065 if (this->fd == fd)
12066 this->fd = -1;
12067 }
12068
12069 /* Set the filesystem remote_hostio functions that take FILENAME
12070 arguments will use. Return 0 on success, or -1 if an error
12071 occurs (and set *REMOTE_ERRNO). */
12072
12073 int
12074 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12075 int *remote_errno)
12076 {
12077 struct remote_state *rs = get_remote_state ();
12078 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12079 char *p = rs->buf.data ();
12080 int left = get_remote_packet_size () - 1;
12081 char arg[9];
12082 int ret;
12083
12084 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12085 return 0;
12086
12087 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12088 return 0;
12089
12090 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12091
12092 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12093 remote_buffer_add_string (&p, &left, arg);
12094
12095 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12096 remote_errno, NULL, NULL);
12097
12098 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12099 return 0;
12100
12101 if (ret == 0)
12102 rs->fs_pid = required_pid;
12103
12104 return ret;
12105 }
12106
12107 /* Implementation of to_fileio_open. */
12108
12109 int
12110 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12111 int flags, int mode, int warn_if_slow,
12112 int *remote_errno)
12113 {
12114 struct remote_state *rs = get_remote_state ();
12115 char *p = rs->buf.data ();
12116 int left = get_remote_packet_size () - 1;
12117
12118 if (warn_if_slow)
12119 {
12120 static int warning_issued = 0;
12121
12122 printf_unfiltered (_("Reading %s from remote target...\n"),
12123 filename);
12124
12125 if (!warning_issued)
12126 {
12127 warning (_("File transfers from remote targets can be slow."
12128 " Use \"set sysroot\" to access files locally"
12129 " instead."));
12130 warning_issued = 1;
12131 }
12132 }
12133
12134 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12135 return -1;
12136
12137 remote_buffer_add_string (&p, &left, "vFile:open:");
12138
12139 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12140 strlen (filename));
12141 remote_buffer_add_string (&p, &left, ",");
12142
12143 remote_buffer_add_int (&p, &left, flags);
12144 remote_buffer_add_string (&p, &left, ",");
12145
12146 remote_buffer_add_int (&p, &left, mode);
12147
12148 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12149 remote_errno, NULL, NULL);
12150 }
12151
12152 int
12153 remote_target::fileio_open (struct inferior *inf, const char *filename,
12154 int flags, int mode, int warn_if_slow,
12155 int *remote_errno)
12156 {
12157 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12158 remote_errno);
12159 }
12160
12161 /* Implementation of to_fileio_pwrite. */
12162
12163 int
12164 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12165 ULONGEST offset, int *remote_errno)
12166 {
12167 struct remote_state *rs = get_remote_state ();
12168 char *p = rs->buf.data ();
12169 int left = get_remote_packet_size ();
12170 int out_len;
12171
12172 rs->readahead_cache.invalidate_fd (fd);
12173
12174 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12175
12176 remote_buffer_add_int (&p, &left, fd);
12177 remote_buffer_add_string (&p, &left, ",");
12178
12179 remote_buffer_add_int (&p, &left, offset);
12180 remote_buffer_add_string (&p, &left, ",");
12181
12182 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12183 (get_remote_packet_size ()
12184 - (p - rs->buf.data ())));
12185
12186 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12187 remote_errno, NULL, NULL);
12188 }
12189
12190 int
12191 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12192 ULONGEST offset, int *remote_errno)
12193 {
12194 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12195 }
12196
12197 /* Helper for the implementation of to_fileio_pread. Read the file
12198 from the remote side with vFile:pread. */
12199
12200 int
12201 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12202 ULONGEST offset, int *remote_errno)
12203 {
12204 struct remote_state *rs = get_remote_state ();
12205 char *p = rs->buf.data ();
12206 const char *attachment;
12207 int left = get_remote_packet_size ();
12208 int ret, attachment_len;
12209 int read_len;
12210
12211 remote_buffer_add_string (&p, &left, "vFile:pread:");
12212
12213 remote_buffer_add_int (&p, &left, fd);
12214 remote_buffer_add_string (&p, &left, ",");
12215
12216 remote_buffer_add_int (&p, &left, len);
12217 remote_buffer_add_string (&p, &left, ",");
12218
12219 remote_buffer_add_int (&p, &left, offset);
12220
12221 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12222 remote_errno, &attachment,
12223 &attachment_len);
12224
12225 if (ret < 0)
12226 return ret;
12227
12228 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12229 read_buf, len);
12230 if (read_len != ret)
12231 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12232
12233 return ret;
12234 }
12235
12236 /* See declaration.h. */
12237
12238 int
12239 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12240 ULONGEST offset)
12241 {
12242 if (this->fd == fd
12243 && this->offset <= offset
12244 && offset < this->offset + this->bufsize)
12245 {
12246 ULONGEST max = this->offset + this->bufsize;
12247
12248 if (offset + len > max)
12249 len = max - offset;
12250
12251 memcpy (read_buf, this->buf + offset - this->offset, len);
12252 return len;
12253 }
12254
12255 return 0;
12256 }
12257
12258 /* Implementation of to_fileio_pread. */
12259
12260 int
12261 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12262 ULONGEST offset, int *remote_errno)
12263 {
12264 int ret;
12265 struct remote_state *rs = get_remote_state ();
12266 readahead_cache *cache = &rs->readahead_cache;
12267
12268 ret = cache->pread (fd, read_buf, len, offset);
12269 if (ret > 0)
12270 {
12271 cache->hit_count++;
12272
12273 remote_debug_printf ("readahead cache hit %s",
12274 pulongest (cache->hit_count));
12275 return ret;
12276 }
12277
12278 cache->miss_count++;
12279
12280 remote_debug_printf ("readahead cache miss %s",
12281 pulongest (cache->miss_count));
12282
12283 cache->fd = fd;
12284 cache->offset = offset;
12285 cache->bufsize = get_remote_packet_size ();
12286 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12287
12288 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12289 cache->offset, remote_errno);
12290 if (ret <= 0)
12291 {
12292 cache->invalidate_fd (fd);
12293 return ret;
12294 }
12295
12296 cache->bufsize = ret;
12297 return cache->pread (fd, read_buf, len, offset);
12298 }
12299
12300 int
12301 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12302 ULONGEST offset, int *remote_errno)
12303 {
12304 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12305 }
12306
12307 /* Implementation of to_fileio_close. */
12308
12309 int
12310 remote_target::remote_hostio_close (int fd, int *remote_errno)
12311 {
12312 struct remote_state *rs = get_remote_state ();
12313 char *p = rs->buf.data ();
12314 int left = get_remote_packet_size () - 1;
12315
12316 rs->readahead_cache.invalidate_fd (fd);
12317
12318 remote_buffer_add_string (&p, &left, "vFile:close:");
12319
12320 remote_buffer_add_int (&p, &left, fd);
12321
12322 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12323 remote_errno, NULL, NULL);
12324 }
12325
12326 int
12327 remote_target::fileio_close (int fd, int *remote_errno)
12328 {
12329 return remote_hostio_close (fd, remote_errno);
12330 }
12331
12332 /* Implementation of to_fileio_unlink. */
12333
12334 int
12335 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12336 int *remote_errno)
12337 {
12338 struct remote_state *rs = get_remote_state ();
12339 char *p = rs->buf.data ();
12340 int left = get_remote_packet_size () - 1;
12341
12342 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12343 return -1;
12344
12345 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12346
12347 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12348 strlen (filename));
12349
12350 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12351 remote_errno, NULL, NULL);
12352 }
12353
12354 int
12355 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12356 int *remote_errno)
12357 {
12358 return remote_hostio_unlink (inf, filename, remote_errno);
12359 }
12360
12361 /* Implementation of to_fileio_readlink. */
12362
12363 gdb::optional<std::string>
12364 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12365 int *remote_errno)
12366 {
12367 struct remote_state *rs = get_remote_state ();
12368 char *p = rs->buf.data ();
12369 const char *attachment;
12370 int left = get_remote_packet_size ();
12371 int len, attachment_len;
12372 int read_len;
12373
12374 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12375 return {};
12376
12377 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12378
12379 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12380 strlen (filename));
12381
12382 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12383 remote_errno, &attachment,
12384 &attachment_len);
12385
12386 if (len < 0)
12387 return {};
12388
12389 std::string ret (len, '\0');
12390
12391 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12392 (gdb_byte *) &ret[0], len);
12393 if (read_len != len)
12394 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12395
12396 return ret;
12397 }
12398
12399 /* Implementation of to_fileio_fstat. */
12400
12401 int
12402 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12403 {
12404 struct remote_state *rs = get_remote_state ();
12405 char *p = rs->buf.data ();
12406 int left = get_remote_packet_size ();
12407 int attachment_len, ret;
12408 const char *attachment;
12409 struct fio_stat fst;
12410 int read_len;
12411
12412 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12413
12414 remote_buffer_add_int (&p, &left, fd);
12415
12416 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12417 remote_errno, &attachment,
12418 &attachment_len);
12419 if (ret < 0)
12420 {
12421 if (*remote_errno != FILEIO_ENOSYS)
12422 return ret;
12423
12424 /* Strictly we should return -1, ENOSYS here, but when
12425 "set sysroot remote:" was implemented in August 2008
12426 BFD's need for a stat function was sidestepped with
12427 this hack. This was not remedied until March 2015
12428 so we retain the previous behavior to avoid breaking
12429 compatibility.
12430
12431 Note that the memset is a March 2015 addition; older
12432 GDBs set st_size *and nothing else* so the structure
12433 would have garbage in all other fields. This might
12434 break something but retaining the previous behavior
12435 here would be just too wrong. */
12436
12437 memset (st, 0, sizeof (struct stat));
12438 st->st_size = INT_MAX;
12439 return 0;
12440 }
12441
12442 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12443 (gdb_byte *) &fst, sizeof (fst));
12444
12445 if (read_len != ret)
12446 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12447
12448 if (read_len != sizeof (fst))
12449 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12450 read_len, (int) sizeof (fst));
12451
12452 remote_fileio_to_host_stat (&fst, st);
12453
12454 return 0;
12455 }
12456
12457 /* Implementation of to_filesystem_is_local. */
12458
12459 bool
12460 remote_target::filesystem_is_local ()
12461 {
12462 /* Valgrind GDB presents itself as a remote target but works
12463 on the local filesystem: it does not implement remote get
12464 and users are not expected to set a sysroot. To handle
12465 this case we treat the remote filesystem as local if the
12466 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12467 does not support vFile:open. */
12468 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12469 {
12470 enum packet_support ps = packet_support (PACKET_vFile_open);
12471
12472 if (ps == PACKET_SUPPORT_UNKNOWN)
12473 {
12474 int fd, remote_errno;
12475
12476 /* Try opening a file to probe support. The supplied
12477 filename is irrelevant, we only care about whether
12478 the stub recognizes the packet or not. */
12479 fd = remote_hostio_open (NULL, "just probing",
12480 FILEIO_O_RDONLY, 0700, 0,
12481 &remote_errno);
12482
12483 if (fd >= 0)
12484 remote_hostio_close (fd, &remote_errno);
12485
12486 ps = packet_support (PACKET_vFile_open);
12487 }
12488
12489 if (ps == PACKET_DISABLE)
12490 {
12491 static int warning_issued = 0;
12492
12493 if (!warning_issued)
12494 {
12495 warning (_("remote target does not support file"
12496 " transfer, attempting to access files"
12497 " from local filesystem."));
12498 warning_issued = 1;
12499 }
12500
12501 return true;
12502 }
12503 }
12504
12505 return false;
12506 }
12507
12508 static int
12509 remote_fileio_errno_to_host (int errnum)
12510 {
12511 switch (errnum)
12512 {
12513 case FILEIO_EPERM:
12514 return EPERM;
12515 case FILEIO_ENOENT:
12516 return ENOENT;
12517 case FILEIO_EINTR:
12518 return EINTR;
12519 case FILEIO_EIO:
12520 return EIO;
12521 case FILEIO_EBADF:
12522 return EBADF;
12523 case FILEIO_EACCES:
12524 return EACCES;
12525 case FILEIO_EFAULT:
12526 return EFAULT;
12527 case FILEIO_EBUSY:
12528 return EBUSY;
12529 case FILEIO_EEXIST:
12530 return EEXIST;
12531 case FILEIO_ENODEV:
12532 return ENODEV;
12533 case FILEIO_ENOTDIR:
12534 return ENOTDIR;
12535 case FILEIO_EISDIR:
12536 return EISDIR;
12537 case FILEIO_EINVAL:
12538 return EINVAL;
12539 case FILEIO_ENFILE:
12540 return ENFILE;
12541 case FILEIO_EMFILE:
12542 return EMFILE;
12543 case FILEIO_EFBIG:
12544 return EFBIG;
12545 case FILEIO_ENOSPC:
12546 return ENOSPC;
12547 case FILEIO_ESPIPE:
12548 return ESPIPE;
12549 case FILEIO_EROFS:
12550 return EROFS;
12551 case FILEIO_ENOSYS:
12552 return ENOSYS;
12553 case FILEIO_ENAMETOOLONG:
12554 return ENAMETOOLONG;
12555 }
12556 return -1;
12557 }
12558
12559 static char *
12560 remote_hostio_error (int errnum)
12561 {
12562 int host_error = remote_fileio_errno_to_host (errnum);
12563
12564 if (host_error == -1)
12565 error (_("Unknown remote I/O error %d"), errnum);
12566 else
12567 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12568 }
12569
12570 /* A RAII wrapper around a remote file descriptor. */
12571
12572 class scoped_remote_fd
12573 {
12574 public:
12575 scoped_remote_fd (remote_target *remote, int fd)
12576 : m_remote (remote), m_fd (fd)
12577 {
12578 }
12579
12580 ~scoped_remote_fd ()
12581 {
12582 if (m_fd != -1)
12583 {
12584 try
12585 {
12586 int remote_errno;
12587 m_remote->remote_hostio_close (m_fd, &remote_errno);
12588 }
12589 catch (...)
12590 {
12591 /* Swallow exception before it escapes the dtor. If
12592 something goes wrong, likely the connection is gone,
12593 and there's nothing else that can be done. */
12594 }
12595 }
12596 }
12597
12598 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12599
12600 /* Release ownership of the file descriptor, and return it. */
12601 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12602 {
12603 int fd = m_fd;
12604 m_fd = -1;
12605 return fd;
12606 }
12607
12608 /* Return the owned file descriptor. */
12609 int get () const noexcept
12610 {
12611 return m_fd;
12612 }
12613
12614 private:
12615 /* The remote target. */
12616 remote_target *m_remote;
12617
12618 /* The owned remote I/O file descriptor. */
12619 int m_fd;
12620 };
12621
12622 void
12623 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12624 {
12625 remote_target *remote = get_current_remote_target ();
12626
12627 if (remote == nullptr)
12628 error (_("command can only be used with remote target"));
12629
12630 remote->remote_file_put (local_file, remote_file, from_tty);
12631 }
12632
12633 void
12634 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12635 int from_tty)
12636 {
12637 int retcode, remote_errno, bytes, io_size;
12638 int bytes_in_buffer;
12639 int saw_eof;
12640 ULONGEST offset;
12641
12642 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12643 if (file == NULL)
12644 perror_with_name (local_file);
12645
12646 scoped_remote_fd fd
12647 (this, remote_hostio_open (NULL,
12648 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12649 | FILEIO_O_TRUNC),
12650 0700, 0, &remote_errno));
12651 if (fd.get () == -1)
12652 remote_hostio_error (remote_errno);
12653
12654 /* Send up to this many bytes at once. They won't all fit in the
12655 remote packet limit, so we'll transfer slightly fewer. */
12656 io_size = get_remote_packet_size ();
12657 gdb::byte_vector buffer (io_size);
12658
12659 bytes_in_buffer = 0;
12660 saw_eof = 0;
12661 offset = 0;
12662 while (bytes_in_buffer || !saw_eof)
12663 {
12664 if (!saw_eof)
12665 {
12666 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12667 io_size - bytes_in_buffer,
12668 file.get ());
12669 if (bytes == 0)
12670 {
12671 if (ferror (file.get ()))
12672 error (_("Error reading %s."), local_file);
12673 else
12674 {
12675 /* EOF. Unless there is something still in the
12676 buffer from the last iteration, we are done. */
12677 saw_eof = 1;
12678 if (bytes_in_buffer == 0)
12679 break;
12680 }
12681 }
12682 }
12683 else
12684 bytes = 0;
12685
12686 bytes += bytes_in_buffer;
12687 bytes_in_buffer = 0;
12688
12689 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12690 offset, &remote_errno);
12691
12692 if (retcode < 0)
12693 remote_hostio_error (remote_errno);
12694 else if (retcode == 0)
12695 error (_("Remote write of %d bytes returned 0!"), bytes);
12696 else if (retcode < bytes)
12697 {
12698 /* Short write. Save the rest of the read data for the next
12699 write. */
12700 bytes_in_buffer = bytes - retcode;
12701 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12702 }
12703
12704 offset += retcode;
12705 }
12706
12707 if (remote_hostio_close (fd.release (), &remote_errno))
12708 remote_hostio_error (remote_errno);
12709
12710 if (from_tty)
12711 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12712 }
12713
12714 void
12715 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12716 {
12717 remote_target *remote = get_current_remote_target ();
12718
12719 if (remote == nullptr)
12720 error (_("command can only be used with remote target"));
12721
12722 remote->remote_file_get (remote_file, local_file, from_tty);
12723 }
12724
12725 void
12726 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12727 int from_tty)
12728 {
12729 int remote_errno, bytes, io_size;
12730 ULONGEST offset;
12731
12732 scoped_remote_fd fd
12733 (this, remote_hostio_open (NULL,
12734 remote_file, FILEIO_O_RDONLY, 0, 0,
12735 &remote_errno));
12736 if (fd.get () == -1)
12737 remote_hostio_error (remote_errno);
12738
12739 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12740 if (file == NULL)
12741 perror_with_name (local_file);
12742
12743 /* Send up to this many bytes at once. They won't all fit in the
12744 remote packet limit, so we'll transfer slightly fewer. */
12745 io_size = get_remote_packet_size ();
12746 gdb::byte_vector buffer (io_size);
12747
12748 offset = 0;
12749 while (1)
12750 {
12751 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12752 &remote_errno);
12753 if (bytes == 0)
12754 /* Success, but no bytes, means end-of-file. */
12755 break;
12756 if (bytes == -1)
12757 remote_hostio_error (remote_errno);
12758
12759 offset += bytes;
12760
12761 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12762 if (bytes == 0)
12763 perror_with_name (local_file);
12764 }
12765
12766 if (remote_hostio_close (fd.release (), &remote_errno))
12767 remote_hostio_error (remote_errno);
12768
12769 if (from_tty)
12770 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12771 }
12772
12773 void
12774 remote_file_delete (const char *remote_file, int from_tty)
12775 {
12776 remote_target *remote = get_current_remote_target ();
12777
12778 if (remote == nullptr)
12779 error (_("command can only be used with remote target"));
12780
12781 remote->remote_file_delete (remote_file, from_tty);
12782 }
12783
12784 void
12785 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12786 {
12787 int retcode, remote_errno;
12788
12789 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12790 if (retcode == -1)
12791 remote_hostio_error (remote_errno);
12792
12793 if (from_tty)
12794 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12795 }
12796
12797 static void
12798 remote_put_command (const char *args, int from_tty)
12799 {
12800 if (args == NULL)
12801 error_no_arg (_("file to put"));
12802
12803 gdb_argv argv (args);
12804 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12805 error (_("Invalid parameters to remote put"));
12806
12807 remote_file_put (argv[0], argv[1], from_tty);
12808 }
12809
12810 static void
12811 remote_get_command (const char *args, int from_tty)
12812 {
12813 if (args == NULL)
12814 error_no_arg (_("file to get"));
12815
12816 gdb_argv argv (args);
12817 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12818 error (_("Invalid parameters to remote get"));
12819
12820 remote_file_get (argv[0], argv[1], from_tty);
12821 }
12822
12823 static void
12824 remote_delete_command (const char *args, int from_tty)
12825 {
12826 if (args == NULL)
12827 error_no_arg (_("file to delete"));
12828
12829 gdb_argv argv (args);
12830 if (argv[0] == NULL || argv[1] != NULL)
12831 error (_("Invalid parameters to remote delete"));
12832
12833 remote_file_delete (argv[0], from_tty);
12834 }
12835
12836 bool
12837 remote_target::can_execute_reverse ()
12838 {
12839 if (packet_support (PACKET_bs) == PACKET_ENABLE
12840 || packet_support (PACKET_bc) == PACKET_ENABLE)
12841 return true;
12842 else
12843 return false;
12844 }
12845
12846 bool
12847 remote_target::supports_non_stop ()
12848 {
12849 return true;
12850 }
12851
12852 bool
12853 remote_target::supports_disable_randomization ()
12854 {
12855 /* Only supported in extended mode. */
12856 return false;
12857 }
12858
12859 bool
12860 remote_target::supports_multi_process ()
12861 {
12862 struct remote_state *rs = get_remote_state ();
12863
12864 return remote_multi_process_p (rs);
12865 }
12866
12867 static int
12868 remote_supports_cond_tracepoints ()
12869 {
12870 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12871 }
12872
12873 bool
12874 remote_target::supports_evaluation_of_breakpoint_conditions ()
12875 {
12876 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12877 }
12878
12879 static int
12880 remote_supports_fast_tracepoints ()
12881 {
12882 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12883 }
12884
12885 static int
12886 remote_supports_static_tracepoints ()
12887 {
12888 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12889 }
12890
12891 static int
12892 remote_supports_install_in_trace ()
12893 {
12894 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12895 }
12896
12897 bool
12898 remote_target::supports_enable_disable_tracepoint ()
12899 {
12900 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12901 == PACKET_ENABLE);
12902 }
12903
12904 bool
12905 remote_target::supports_string_tracing ()
12906 {
12907 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12908 }
12909
12910 bool
12911 remote_target::can_run_breakpoint_commands ()
12912 {
12913 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12914 }
12915
12916 void
12917 remote_target::trace_init ()
12918 {
12919 struct remote_state *rs = get_remote_state ();
12920
12921 putpkt ("QTinit");
12922 remote_get_noisy_reply ();
12923 if (strcmp (rs->buf.data (), "OK") != 0)
12924 error (_("Target does not support this command."));
12925 }
12926
12927 /* Recursive routine to walk through command list including loops, and
12928 download packets for each command. */
12929
12930 void
12931 remote_target::remote_download_command_source (int num, ULONGEST addr,
12932 struct command_line *cmds)
12933 {
12934 struct remote_state *rs = get_remote_state ();
12935 struct command_line *cmd;
12936
12937 for (cmd = cmds; cmd; cmd = cmd->next)
12938 {
12939 QUIT; /* Allow user to bail out with ^C. */
12940 strcpy (rs->buf.data (), "QTDPsrc:");
12941 encode_source_string (num, addr, "cmd", cmd->line,
12942 rs->buf.data () + strlen (rs->buf.data ()),
12943 rs->buf.size () - strlen (rs->buf.data ()));
12944 putpkt (rs->buf);
12945 remote_get_noisy_reply ();
12946 if (strcmp (rs->buf.data (), "OK"))
12947 warning (_("Target does not support source download."));
12948
12949 if (cmd->control_type == while_control
12950 || cmd->control_type == while_stepping_control)
12951 {
12952 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12953
12954 QUIT; /* Allow user to bail out with ^C. */
12955 strcpy (rs->buf.data (), "QTDPsrc:");
12956 encode_source_string (num, addr, "cmd", "end",
12957 rs->buf.data () + strlen (rs->buf.data ()),
12958 rs->buf.size () - strlen (rs->buf.data ()));
12959 putpkt (rs->buf);
12960 remote_get_noisy_reply ();
12961 if (strcmp (rs->buf.data (), "OK"))
12962 warning (_("Target does not support source download."));
12963 }
12964 }
12965 }
12966
12967 void
12968 remote_target::download_tracepoint (struct bp_location *loc)
12969 {
12970 CORE_ADDR tpaddr;
12971 char addrbuf[40];
12972 std::vector<std::string> tdp_actions;
12973 std::vector<std::string> stepping_actions;
12974 char *pkt;
12975 struct breakpoint *b = loc->owner;
12976 struct tracepoint *t = (struct tracepoint *) b;
12977 struct remote_state *rs = get_remote_state ();
12978 int ret;
12979 const char *err_msg = _("Tracepoint packet too large for target.");
12980 size_t size_left;
12981
12982 /* We use a buffer other than rs->buf because we'll build strings
12983 across multiple statements, and other statements in between could
12984 modify rs->buf. */
12985 gdb::char_vector buf (get_remote_packet_size ());
12986
12987 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12988
12989 tpaddr = loc->address;
12990 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
12991 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12992 b->number, addrbuf, /* address */
12993 (b->enable_state == bp_enabled ? 'E' : 'D'),
12994 t->step_count, t->pass_count);
12995
12996 if (ret < 0 || ret >= buf.size ())
12997 error ("%s", err_msg);
12998
12999 /* Fast tracepoints are mostly handled by the target, but we can
13000 tell the target how big of an instruction block should be moved
13001 around. */
13002 if (b->type == bp_fast_tracepoint)
13003 {
13004 /* Only test for support at download time; we may not know
13005 target capabilities at definition time. */
13006 if (remote_supports_fast_tracepoints ())
13007 {
13008 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13009 NULL))
13010 {
13011 size_left = buf.size () - strlen (buf.data ());
13012 ret = snprintf (buf.data () + strlen (buf.data ()),
13013 size_left, ":F%x",
13014 gdb_insn_length (loc->gdbarch, tpaddr));
13015
13016 if (ret < 0 || ret >= size_left)
13017 error ("%s", err_msg);
13018 }
13019 else
13020 /* If it passed validation at definition but fails now,
13021 something is very wrong. */
13022 internal_error (__FILE__, __LINE__,
13023 _("Fast tracepoint not "
13024 "valid during download"));
13025 }
13026 else
13027 /* Fast tracepoints are functionally identical to regular
13028 tracepoints, so don't take lack of support as a reason to
13029 give up on the trace run. */
13030 warning (_("Target does not support fast tracepoints, "
13031 "downloading %d as regular tracepoint"), b->number);
13032 }
13033 else if (b->type == bp_static_tracepoint)
13034 {
13035 /* Only test for support at download time; we may not know
13036 target capabilities at definition time. */
13037 if (remote_supports_static_tracepoints ())
13038 {
13039 struct static_tracepoint_marker marker;
13040
13041 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13042 {
13043 size_left = buf.size () - strlen (buf.data ());
13044 ret = snprintf (buf.data () + strlen (buf.data ()),
13045 size_left, ":S");
13046
13047 if (ret < 0 || ret >= size_left)
13048 error ("%s", err_msg);
13049 }
13050 else
13051 error (_("Static tracepoint not valid during download"));
13052 }
13053 else
13054 /* Fast tracepoints are functionally identical to regular
13055 tracepoints, so don't take lack of support as a reason
13056 to give up on the trace run. */
13057 error (_("Target does not support static tracepoints"));
13058 }
13059 /* If the tracepoint has a conditional, make it into an agent
13060 expression and append to the definition. */
13061 if (loc->cond)
13062 {
13063 /* Only test support at download time, we may not know target
13064 capabilities at definition time. */
13065 if (remote_supports_cond_tracepoints ())
13066 {
13067 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13068 loc->cond.get ());
13069
13070 size_left = buf.size () - strlen (buf.data ());
13071
13072 ret = snprintf (buf.data () + strlen (buf.data ()),
13073 size_left, ":X%x,", aexpr->len);
13074
13075 if (ret < 0 || ret >= size_left)
13076 error ("%s", err_msg);
13077
13078 size_left = buf.size () - strlen (buf.data ());
13079
13080 /* Two bytes to encode each aexpr byte, plus the terminating
13081 null byte. */
13082 if (aexpr->len * 2 + 1 > size_left)
13083 error ("%s", err_msg);
13084
13085 pkt = buf.data () + strlen (buf.data ());
13086
13087 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13088 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13089 *pkt = '\0';
13090 }
13091 else
13092 warning (_("Target does not support conditional tracepoints, "
13093 "ignoring tp %d cond"), b->number);
13094 }
13095
13096 if (b->commands || *default_collect)
13097 {
13098 size_left = buf.size () - strlen (buf.data ());
13099
13100 ret = snprintf (buf.data () + strlen (buf.data ()),
13101 size_left, "-");
13102
13103 if (ret < 0 || ret >= size_left)
13104 error ("%s", err_msg);
13105 }
13106
13107 putpkt (buf.data ());
13108 remote_get_noisy_reply ();
13109 if (strcmp (rs->buf.data (), "OK"))
13110 error (_("Target does not support tracepoints."));
13111
13112 /* do_single_steps (t); */
13113 for (auto action_it = tdp_actions.begin ();
13114 action_it != tdp_actions.end (); action_it++)
13115 {
13116 QUIT; /* Allow user to bail out with ^C. */
13117
13118 bool has_more = ((action_it + 1) != tdp_actions.end ()
13119 || !stepping_actions.empty ());
13120
13121 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13122 b->number, addrbuf, /* address */
13123 action_it->c_str (),
13124 has_more ? '-' : 0);
13125
13126 if (ret < 0 || ret >= buf.size ())
13127 error ("%s", err_msg);
13128
13129 putpkt (buf.data ());
13130 remote_get_noisy_reply ();
13131 if (strcmp (rs->buf.data (), "OK"))
13132 error (_("Error on target while setting tracepoints."));
13133 }
13134
13135 for (auto action_it = stepping_actions.begin ();
13136 action_it != stepping_actions.end (); action_it++)
13137 {
13138 QUIT; /* Allow user to bail out with ^C. */
13139
13140 bool is_first = action_it == stepping_actions.begin ();
13141 bool has_more = (action_it + 1) != stepping_actions.end ();
13142
13143 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13144 b->number, addrbuf, /* address */
13145 is_first ? "S" : "",
13146 action_it->c_str (),
13147 has_more ? "-" : "");
13148
13149 if (ret < 0 || ret >= buf.size ())
13150 error ("%s", err_msg);
13151
13152 putpkt (buf.data ());
13153 remote_get_noisy_reply ();
13154 if (strcmp (rs->buf.data (), "OK"))
13155 error (_("Error on target while setting tracepoints."));
13156 }
13157
13158 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13159 {
13160 if (b->location != NULL)
13161 {
13162 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13163
13164 if (ret < 0 || ret >= buf.size ())
13165 error ("%s", err_msg);
13166
13167 encode_source_string (b->number, loc->address, "at",
13168 event_location_to_string (b->location.get ()),
13169 buf.data () + strlen (buf.data ()),
13170 buf.size () - strlen (buf.data ()));
13171 putpkt (buf.data ());
13172 remote_get_noisy_reply ();
13173 if (strcmp (rs->buf.data (), "OK"))
13174 warning (_("Target does not support source download."));
13175 }
13176 if (b->cond_string)
13177 {
13178 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13179
13180 if (ret < 0 || ret >= buf.size ())
13181 error ("%s", err_msg);
13182
13183 encode_source_string (b->number, loc->address,
13184 "cond", b->cond_string,
13185 buf.data () + strlen (buf.data ()),
13186 buf.size () - strlen (buf.data ()));
13187 putpkt (buf.data ());
13188 remote_get_noisy_reply ();
13189 if (strcmp (rs->buf.data (), "OK"))
13190 warning (_("Target does not support source download."));
13191 }
13192 remote_download_command_source (b->number, loc->address,
13193 breakpoint_commands (b));
13194 }
13195 }
13196
13197 bool
13198 remote_target::can_download_tracepoint ()
13199 {
13200 struct remote_state *rs = get_remote_state ();
13201 struct trace_status *ts;
13202 int status;
13203
13204 /* Don't try to install tracepoints until we've relocated our
13205 symbols, and fetched and merged the target's tracepoint list with
13206 ours. */
13207 if (rs->starting_up)
13208 return false;
13209
13210 ts = current_trace_status ();
13211 status = get_trace_status (ts);
13212
13213 if (status == -1 || !ts->running_known || !ts->running)
13214 return false;
13215
13216 /* If we are in a tracing experiment, but remote stub doesn't support
13217 installing tracepoint in trace, we have to return. */
13218 if (!remote_supports_install_in_trace ())
13219 return false;
13220
13221 return true;
13222 }
13223
13224
13225 void
13226 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13227 {
13228 struct remote_state *rs = get_remote_state ();
13229 char *p;
13230
13231 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13232 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13233 tsv.builtin);
13234 p = rs->buf.data () + strlen (rs->buf.data ());
13235 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13236 >= get_remote_packet_size ())
13237 error (_("Trace state variable name too long for tsv definition packet"));
13238 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13239 *p++ = '\0';
13240 putpkt (rs->buf);
13241 remote_get_noisy_reply ();
13242 if (rs->buf[0] == '\0')
13243 error (_("Target does not support this command."));
13244 if (strcmp (rs->buf.data (), "OK") != 0)
13245 error (_("Error on target while downloading trace state variable."));
13246 }
13247
13248 void
13249 remote_target::enable_tracepoint (struct bp_location *location)
13250 {
13251 struct remote_state *rs = get_remote_state ();
13252
13253 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13254 location->owner->number,
13255 phex (location->address, sizeof (CORE_ADDR)));
13256 putpkt (rs->buf);
13257 remote_get_noisy_reply ();
13258 if (rs->buf[0] == '\0')
13259 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13260 if (strcmp (rs->buf.data (), "OK") != 0)
13261 error (_("Error on target while enabling tracepoint."));
13262 }
13263
13264 void
13265 remote_target::disable_tracepoint (struct bp_location *location)
13266 {
13267 struct remote_state *rs = get_remote_state ();
13268
13269 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13270 location->owner->number,
13271 phex (location->address, sizeof (CORE_ADDR)));
13272 putpkt (rs->buf);
13273 remote_get_noisy_reply ();
13274 if (rs->buf[0] == '\0')
13275 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13276 if (strcmp (rs->buf.data (), "OK") != 0)
13277 error (_("Error on target while disabling tracepoint."));
13278 }
13279
13280 void
13281 remote_target::trace_set_readonly_regions ()
13282 {
13283 asection *s;
13284 bfd_size_type size;
13285 bfd_vma vma;
13286 int anysecs = 0;
13287 int offset = 0;
13288
13289 if (!current_program_space->exec_bfd ())
13290 return; /* No information to give. */
13291
13292 struct remote_state *rs = get_remote_state ();
13293
13294 strcpy (rs->buf.data (), "QTro");
13295 offset = strlen (rs->buf.data ());
13296 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13297 {
13298 char tmp1[40], tmp2[40];
13299 int sec_length;
13300
13301 if ((s->flags & SEC_LOAD) == 0 ||
13302 /* (s->flags & SEC_CODE) == 0 || */
13303 (s->flags & SEC_READONLY) == 0)
13304 continue;
13305
13306 anysecs = 1;
13307 vma = bfd_section_vma (s);
13308 size = bfd_section_size (s);
13309 sprintf_vma (tmp1, vma);
13310 sprintf_vma (tmp2, vma + size);
13311 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13312 if (offset + sec_length + 1 > rs->buf.size ())
13313 {
13314 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13315 warning (_("\
13316 Too many sections for read-only sections definition packet."));
13317 break;
13318 }
13319 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13320 tmp1, tmp2);
13321 offset += sec_length;
13322 }
13323 if (anysecs)
13324 {
13325 putpkt (rs->buf);
13326 getpkt (&rs->buf, 0);
13327 }
13328 }
13329
13330 void
13331 remote_target::trace_start ()
13332 {
13333 struct remote_state *rs = get_remote_state ();
13334
13335 putpkt ("QTStart");
13336 remote_get_noisy_reply ();
13337 if (rs->buf[0] == '\0')
13338 error (_("Target does not support this command."));
13339 if (strcmp (rs->buf.data (), "OK") != 0)
13340 error (_("Bogus reply from target: %s"), rs->buf.data ());
13341 }
13342
13343 int
13344 remote_target::get_trace_status (struct trace_status *ts)
13345 {
13346 /* Initialize it just to avoid a GCC false warning. */
13347 char *p = NULL;
13348 enum packet_result result;
13349 struct remote_state *rs = get_remote_state ();
13350
13351 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13352 return -1;
13353
13354 /* FIXME we need to get register block size some other way. */
13355 trace_regblock_size
13356 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13357
13358 putpkt ("qTStatus");
13359
13360 try
13361 {
13362 p = remote_get_noisy_reply ();
13363 }
13364 catch (const gdb_exception_error &ex)
13365 {
13366 if (ex.error != TARGET_CLOSE_ERROR)
13367 {
13368 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13369 return -1;
13370 }
13371 throw;
13372 }
13373
13374 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13375
13376 /* If the remote target doesn't do tracing, flag it. */
13377 if (result == PACKET_UNKNOWN)
13378 return -1;
13379
13380 /* We're working with a live target. */
13381 ts->filename = NULL;
13382
13383 if (*p++ != 'T')
13384 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13385
13386 /* Function 'parse_trace_status' sets default value of each field of
13387 'ts' at first, so we don't have to do it here. */
13388 parse_trace_status (p, ts);
13389
13390 return ts->running;
13391 }
13392
13393 void
13394 remote_target::get_tracepoint_status (struct breakpoint *bp,
13395 struct uploaded_tp *utp)
13396 {
13397 struct remote_state *rs = get_remote_state ();
13398 char *reply;
13399 struct bp_location *loc;
13400 struct tracepoint *tp = (struct tracepoint *) bp;
13401 size_t size = get_remote_packet_size ();
13402
13403 if (tp)
13404 {
13405 tp->hit_count = 0;
13406 tp->traceframe_usage = 0;
13407 for (loc = tp->loc; loc; loc = loc->next)
13408 {
13409 /* If the tracepoint was never downloaded, don't go asking for
13410 any status. */
13411 if (tp->number_on_target == 0)
13412 continue;
13413 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13414 phex_nz (loc->address, 0));
13415 putpkt (rs->buf);
13416 reply = remote_get_noisy_reply ();
13417 if (reply && *reply)
13418 {
13419 if (*reply == 'V')
13420 parse_tracepoint_status (reply + 1, bp, utp);
13421 }
13422 }
13423 }
13424 else if (utp)
13425 {
13426 utp->hit_count = 0;
13427 utp->traceframe_usage = 0;
13428 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13429 phex_nz (utp->addr, 0));
13430 putpkt (rs->buf);
13431 reply = remote_get_noisy_reply ();
13432 if (reply && *reply)
13433 {
13434 if (*reply == 'V')
13435 parse_tracepoint_status (reply + 1, bp, utp);
13436 }
13437 }
13438 }
13439
13440 void
13441 remote_target::trace_stop ()
13442 {
13443 struct remote_state *rs = get_remote_state ();
13444
13445 putpkt ("QTStop");
13446 remote_get_noisy_reply ();
13447 if (rs->buf[0] == '\0')
13448 error (_("Target does not support this command."));
13449 if (strcmp (rs->buf.data (), "OK") != 0)
13450 error (_("Bogus reply from target: %s"), rs->buf.data ());
13451 }
13452
13453 int
13454 remote_target::trace_find (enum trace_find_type type, int num,
13455 CORE_ADDR addr1, CORE_ADDR addr2,
13456 int *tpp)
13457 {
13458 struct remote_state *rs = get_remote_state ();
13459 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13460 char *p, *reply;
13461 int target_frameno = -1, target_tracept = -1;
13462
13463 /* Lookups other than by absolute frame number depend on the current
13464 trace selected, so make sure it is correct on the remote end
13465 first. */
13466 if (type != tfind_number)
13467 set_remote_traceframe ();
13468
13469 p = rs->buf.data ();
13470 strcpy (p, "QTFrame:");
13471 p = strchr (p, '\0');
13472 switch (type)
13473 {
13474 case tfind_number:
13475 xsnprintf (p, endbuf - p, "%x", num);
13476 break;
13477 case tfind_pc:
13478 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13479 break;
13480 case tfind_tp:
13481 xsnprintf (p, endbuf - p, "tdp:%x", num);
13482 break;
13483 case tfind_range:
13484 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13485 phex_nz (addr2, 0));
13486 break;
13487 case tfind_outside:
13488 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13489 phex_nz (addr2, 0));
13490 break;
13491 default:
13492 error (_("Unknown trace find type %d"), type);
13493 }
13494
13495 putpkt (rs->buf);
13496 reply = remote_get_noisy_reply ();
13497 if (*reply == '\0')
13498 error (_("Target does not support this command."));
13499
13500 while (reply && *reply)
13501 switch (*reply)
13502 {
13503 case 'F':
13504 p = ++reply;
13505 target_frameno = (int) strtol (p, &reply, 16);
13506 if (reply == p)
13507 error (_("Unable to parse trace frame number"));
13508 /* Don't update our remote traceframe number cache on failure
13509 to select a remote traceframe. */
13510 if (target_frameno == -1)
13511 return -1;
13512 break;
13513 case 'T':
13514 p = ++reply;
13515 target_tracept = (int) strtol (p, &reply, 16);
13516 if (reply == p)
13517 error (_("Unable to parse tracepoint number"));
13518 break;
13519 case 'O': /* "OK"? */
13520 if (reply[1] == 'K' && reply[2] == '\0')
13521 reply += 2;
13522 else
13523 error (_("Bogus reply from target: %s"), reply);
13524 break;
13525 default:
13526 error (_("Bogus reply from target: %s"), reply);
13527 }
13528 if (tpp)
13529 *tpp = target_tracept;
13530
13531 rs->remote_traceframe_number = target_frameno;
13532 return target_frameno;
13533 }
13534
13535 bool
13536 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13537 {
13538 struct remote_state *rs = get_remote_state ();
13539 char *reply;
13540 ULONGEST uval;
13541
13542 set_remote_traceframe ();
13543
13544 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13545 putpkt (rs->buf);
13546 reply = remote_get_noisy_reply ();
13547 if (reply && *reply)
13548 {
13549 if (*reply == 'V')
13550 {
13551 unpack_varlen_hex (reply + 1, &uval);
13552 *val = (LONGEST) uval;
13553 return true;
13554 }
13555 }
13556 return false;
13557 }
13558
13559 int
13560 remote_target::save_trace_data (const char *filename)
13561 {
13562 struct remote_state *rs = get_remote_state ();
13563 char *p, *reply;
13564
13565 p = rs->buf.data ();
13566 strcpy (p, "QTSave:");
13567 p += strlen (p);
13568 if ((p - rs->buf.data ()) + strlen (filename) * 2
13569 >= get_remote_packet_size ())
13570 error (_("Remote file name too long for trace save packet"));
13571 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13572 *p++ = '\0';
13573 putpkt (rs->buf);
13574 reply = remote_get_noisy_reply ();
13575 if (*reply == '\0')
13576 error (_("Target does not support this command."));
13577 if (strcmp (reply, "OK") != 0)
13578 error (_("Bogus reply from target: %s"), reply);
13579 return 0;
13580 }
13581
13582 /* This is basically a memory transfer, but needs to be its own packet
13583 because we don't know how the target actually organizes its trace
13584 memory, plus we want to be able to ask for as much as possible, but
13585 not be unhappy if we don't get as much as we ask for. */
13586
13587 LONGEST
13588 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13589 {
13590 struct remote_state *rs = get_remote_state ();
13591 char *reply;
13592 char *p;
13593 int rslt;
13594
13595 p = rs->buf.data ();
13596 strcpy (p, "qTBuffer:");
13597 p += strlen (p);
13598 p += hexnumstr (p, offset);
13599 *p++ = ',';
13600 p += hexnumstr (p, len);
13601 *p++ = '\0';
13602
13603 putpkt (rs->buf);
13604 reply = remote_get_noisy_reply ();
13605 if (reply && *reply)
13606 {
13607 /* 'l' by itself means we're at the end of the buffer and
13608 there is nothing more to get. */
13609 if (*reply == 'l')
13610 return 0;
13611
13612 /* Convert the reply into binary. Limit the number of bytes to
13613 convert according to our passed-in buffer size, rather than
13614 what was returned in the packet; if the target is
13615 unexpectedly generous and gives us a bigger reply than we
13616 asked for, we don't want to crash. */
13617 rslt = hex2bin (reply, buf, len);
13618 return rslt;
13619 }
13620
13621 /* Something went wrong, flag as an error. */
13622 return -1;
13623 }
13624
13625 void
13626 remote_target::set_disconnected_tracing (int val)
13627 {
13628 struct remote_state *rs = get_remote_state ();
13629
13630 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13631 {
13632 char *reply;
13633
13634 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13635 "QTDisconnected:%x", val);
13636 putpkt (rs->buf);
13637 reply = remote_get_noisy_reply ();
13638 if (*reply == '\0')
13639 error (_("Target does not support this command."));
13640 if (strcmp (reply, "OK") != 0)
13641 error (_("Bogus reply from target: %s"), reply);
13642 }
13643 else if (val)
13644 warning (_("Target does not support disconnected tracing."));
13645 }
13646
13647 int
13648 remote_target::core_of_thread (ptid_t ptid)
13649 {
13650 thread_info *info = find_thread_ptid (this, ptid);
13651
13652 if (info != NULL && info->priv != NULL)
13653 return get_remote_thread_info (info)->core;
13654
13655 return -1;
13656 }
13657
13658 void
13659 remote_target::set_circular_trace_buffer (int val)
13660 {
13661 struct remote_state *rs = get_remote_state ();
13662 char *reply;
13663
13664 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13665 "QTBuffer:circular:%x", val);
13666 putpkt (rs->buf);
13667 reply = remote_get_noisy_reply ();
13668 if (*reply == '\0')
13669 error (_("Target does not support this command."));
13670 if (strcmp (reply, "OK") != 0)
13671 error (_("Bogus reply from target: %s"), reply);
13672 }
13673
13674 traceframe_info_up
13675 remote_target::traceframe_info ()
13676 {
13677 gdb::optional<gdb::char_vector> text
13678 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13679 NULL);
13680 if (text)
13681 return parse_traceframe_info (text->data ());
13682
13683 return NULL;
13684 }
13685
13686 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13687 instruction on which a fast tracepoint may be placed. Returns -1
13688 if the packet is not supported, and 0 if the minimum instruction
13689 length is unknown. */
13690
13691 int
13692 remote_target::get_min_fast_tracepoint_insn_len ()
13693 {
13694 struct remote_state *rs = get_remote_state ();
13695 char *reply;
13696
13697 /* If we're not debugging a process yet, the IPA can't be
13698 loaded. */
13699 if (!target_has_execution ())
13700 return 0;
13701
13702 /* Make sure the remote is pointing at the right process. */
13703 set_general_process ();
13704
13705 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13706 putpkt (rs->buf);
13707 reply = remote_get_noisy_reply ();
13708 if (*reply == '\0')
13709 return -1;
13710 else
13711 {
13712 ULONGEST min_insn_len;
13713
13714 unpack_varlen_hex (reply, &min_insn_len);
13715
13716 return (int) min_insn_len;
13717 }
13718 }
13719
13720 void
13721 remote_target::set_trace_buffer_size (LONGEST val)
13722 {
13723 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13724 {
13725 struct remote_state *rs = get_remote_state ();
13726 char *buf = rs->buf.data ();
13727 char *endbuf = buf + get_remote_packet_size ();
13728 enum packet_result result;
13729
13730 gdb_assert (val >= 0 || val == -1);
13731 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13732 /* Send -1 as literal "-1" to avoid host size dependency. */
13733 if (val < 0)
13734 {
13735 *buf++ = '-';
13736 buf += hexnumstr (buf, (ULONGEST) -val);
13737 }
13738 else
13739 buf += hexnumstr (buf, (ULONGEST) val);
13740
13741 putpkt (rs->buf);
13742 remote_get_noisy_reply ();
13743 result = packet_ok (rs->buf,
13744 &remote_protocol_packets[PACKET_QTBuffer_size]);
13745
13746 if (result != PACKET_OK)
13747 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13748 }
13749 }
13750
13751 bool
13752 remote_target::set_trace_notes (const char *user, const char *notes,
13753 const char *stop_notes)
13754 {
13755 struct remote_state *rs = get_remote_state ();
13756 char *reply;
13757 char *buf = rs->buf.data ();
13758 char *endbuf = buf + get_remote_packet_size ();
13759 int nbytes;
13760
13761 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13762 if (user)
13763 {
13764 buf += xsnprintf (buf, endbuf - buf, "user:");
13765 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13766 buf += 2 * nbytes;
13767 *buf++ = ';';
13768 }
13769 if (notes)
13770 {
13771 buf += xsnprintf (buf, endbuf - buf, "notes:");
13772 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13773 buf += 2 * nbytes;
13774 *buf++ = ';';
13775 }
13776 if (stop_notes)
13777 {
13778 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13779 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13780 buf += 2 * nbytes;
13781 *buf++ = ';';
13782 }
13783 /* Ensure the buffer is terminated. */
13784 *buf = '\0';
13785
13786 putpkt (rs->buf);
13787 reply = remote_get_noisy_reply ();
13788 if (*reply == '\0')
13789 return false;
13790
13791 if (strcmp (reply, "OK") != 0)
13792 error (_("Bogus reply from target: %s"), reply);
13793
13794 return true;
13795 }
13796
13797 bool
13798 remote_target::use_agent (bool use)
13799 {
13800 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13801 {
13802 struct remote_state *rs = get_remote_state ();
13803
13804 /* If the stub supports QAgent. */
13805 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13806 putpkt (rs->buf);
13807 getpkt (&rs->buf, 0);
13808
13809 if (strcmp (rs->buf.data (), "OK") == 0)
13810 {
13811 ::use_agent = use;
13812 return true;
13813 }
13814 }
13815
13816 return false;
13817 }
13818
13819 bool
13820 remote_target::can_use_agent ()
13821 {
13822 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13823 }
13824
13825 struct btrace_target_info
13826 {
13827 /* The ptid of the traced thread. */
13828 ptid_t ptid;
13829
13830 /* The obtained branch trace configuration. */
13831 struct btrace_config conf;
13832 };
13833
13834 /* Reset our idea of our target's btrace configuration. */
13835
13836 static void
13837 remote_btrace_reset (remote_state *rs)
13838 {
13839 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13840 }
13841
13842 /* Synchronize the configuration with the target. */
13843
13844 void
13845 remote_target::btrace_sync_conf (const btrace_config *conf)
13846 {
13847 struct packet_config *packet;
13848 struct remote_state *rs;
13849 char *buf, *pos, *endbuf;
13850
13851 rs = get_remote_state ();
13852 buf = rs->buf.data ();
13853 endbuf = buf + get_remote_packet_size ();
13854
13855 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13856 if (packet_config_support (packet) == PACKET_ENABLE
13857 && conf->bts.size != rs->btrace_config.bts.size)
13858 {
13859 pos = buf;
13860 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13861 conf->bts.size);
13862
13863 putpkt (buf);
13864 getpkt (&rs->buf, 0);
13865
13866 if (packet_ok (buf, packet) == PACKET_ERROR)
13867 {
13868 if (buf[0] == 'E' && buf[1] == '.')
13869 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13870 else
13871 error (_("Failed to configure the BTS buffer size."));
13872 }
13873
13874 rs->btrace_config.bts.size = conf->bts.size;
13875 }
13876
13877 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13878 if (packet_config_support (packet) == PACKET_ENABLE
13879 && conf->pt.size != rs->btrace_config.pt.size)
13880 {
13881 pos = buf;
13882 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13883 conf->pt.size);
13884
13885 putpkt (buf);
13886 getpkt (&rs->buf, 0);
13887
13888 if (packet_ok (buf, packet) == PACKET_ERROR)
13889 {
13890 if (buf[0] == 'E' && buf[1] == '.')
13891 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13892 else
13893 error (_("Failed to configure the trace buffer size."));
13894 }
13895
13896 rs->btrace_config.pt.size = conf->pt.size;
13897 }
13898 }
13899
13900 /* Read the current thread's btrace configuration from the target and
13901 store it into CONF. */
13902
13903 static void
13904 btrace_read_config (struct btrace_config *conf)
13905 {
13906 gdb::optional<gdb::char_vector> xml
13907 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13908 if (xml)
13909 parse_xml_btrace_conf (conf, xml->data ());
13910 }
13911
13912 /* Maybe reopen target btrace. */
13913
13914 void
13915 remote_target::remote_btrace_maybe_reopen ()
13916 {
13917 struct remote_state *rs = get_remote_state ();
13918 int btrace_target_pushed = 0;
13919 #if !defined (HAVE_LIBIPT)
13920 int warned = 0;
13921 #endif
13922
13923 /* Don't bother walking the entirety of the remote thread list when
13924 we know the feature isn't supported by the remote. */
13925 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13926 return;
13927
13928 scoped_restore_current_thread restore_thread;
13929
13930 for (thread_info *tp : all_non_exited_threads (this))
13931 {
13932 set_general_thread (tp->ptid);
13933
13934 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13935 btrace_read_config (&rs->btrace_config);
13936
13937 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13938 continue;
13939
13940 #if !defined (HAVE_LIBIPT)
13941 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13942 {
13943 if (!warned)
13944 {
13945 warned = 1;
13946 warning (_("Target is recording using Intel Processor Trace "
13947 "but support was disabled at compile time."));
13948 }
13949
13950 continue;
13951 }
13952 #endif /* !defined (HAVE_LIBIPT) */
13953
13954 /* Push target, once, but before anything else happens. This way our
13955 changes to the threads will be cleaned up by unpushing the target
13956 in case btrace_read_config () throws. */
13957 if (!btrace_target_pushed)
13958 {
13959 btrace_target_pushed = 1;
13960 record_btrace_push_target ();
13961 printf_filtered (_("Target is recording using %s.\n"),
13962 btrace_format_string (rs->btrace_config.format));
13963 }
13964
13965 tp->btrace.target = XCNEW (struct btrace_target_info);
13966 tp->btrace.target->ptid = tp->ptid;
13967 tp->btrace.target->conf = rs->btrace_config;
13968 }
13969 }
13970
13971 /* Enable branch tracing. */
13972
13973 struct btrace_target_info *
13974 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13975 {
13976 struct btrace_target_info *tinfo = NULL;
13977 struct packet_config *packet = NULL;
13978 struct remote_state *rs = get_remote_state ();
13979 char *buf = rs->buf.data ();
13980 char *endbuf = buf + get_remote_packet_size ();
13981
13982 switch (conf->format)
13983 {
13984 case BTRACE_FORMAT_BTS:
13985 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13986 break;
13987
13988 case BTRACE_FORMAT_PT:
13989 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13990 break;
13991 }
13992
13993 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13994 error (_("Target does not support branch tracing."));
13995
13996 btrace_sync_conf (conf);
13997
13998 set_general_thread (ptid);
13999
14000 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14001 putpkt (rs->buf);
14002 getpkt (&rs->buf, 0);
14003
14004 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14005 {
14006 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14007 error (_("Could not enable branch tracing for %s: %s"),
14008 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14009 else
14010 error (_("Could not enable branch tracing for %s."),
14011 target_pid_to_str (ptid).c_str ());
14012 }
14013
14014 tinfo = XCNEW (struct btrace_target_info);
14015 tinfo->ptid = ptid;
14016
14017 /* If we fail to read the configuration, we lose some information, but the
14018 tracing itself is not impacted. */
14019 try
14020 {
14021 btrace_read_config (&tinfo->conf);
14022 }
14023 catch (const gdb_exception_error &err)
14024 {
14025 if (err.message != NULL)
14026 warning ("%s", err.what ());
14027 }
14028
14029 return tinfo;
14030 }
14031
14032 /* Disable branch tracing. */
14033
14034 void
14035 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14036 {
14037 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14038 struct remote_state *rs = get_remote_state ();
14039 char *buf = rs->buf.data ();
14040 char *endbuf = buf + get_remote_packet_size ();
14041
14042 if (packet_config_support (packet) != PACKET_ENABLE)
14043 error (_("Target does not support branch tracing."));
14044
14045 set_general_thread (tinfo->ptid);
14046
14047 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14048 putpkt (rs->buf);
14049 getpkt (&rs->buf, 0);
14050
14051 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14052 {
14053 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14054 error (_("Could not disable branch tracing for %s: %s"),
14055 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14056 else
14057 error (_("Could not disable branch tracing for %s."),
14058 target_pid_to_str (tinfo->ptid).c_str ());
14059 }
14060
14061 xfree (tinfo);
14062 }
14063
14064 /* Teardown branch tracing. */
14065
14066 void
14067 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14068 {
14069 /* We must not talk to the target during teardown. */
14070 xfree (tinfo);
14071 }
14072
14073 /* Read the branch trace. */
14074
14075 enum btrace_error
14076 remote_target::read_btrace (struct btrace_data *btrace,
14077 struct btrace_target_info *tinfo,
14078 enum btrace_read_type type)
14079 {
14080 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14081 const char *annex;
14082
14083 if (packet_config_support (packet) != PACKET_ENABLE)
14084 error (_("Target does not support branch tracing."));
14085
14086 #if !defined(HAVE_LIBEXPAT)
14087 error (_("Cannot process branch tracing result. XML parsing not supported."));
14088 #endif
14089
14090 switch (type)
14091 {
14092 case BTRACE_READ_ALL:
14093 annex = "all";
14094 break;
14095 case BTRACE_READ_NEW:
14096 annex = "new";
14097 break;
14098 case BTRACE_READ_DELTA:
14099 annex = "delta";
14100 break;
14101 default:
14102 internal_error (__FILE__, __LINE__,
14103 _("Bad branch tracing read type: %u."),
14104 (unsigned int) type);
14105 }
14106
14107 gdb::optional<gdb::char_vector> xml
14108 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
14109 if (!xml)
14110 return BTRACE_ERR_UNKNOWN;
14111
14112 parse_xml_btrace (btrace, xml->data ());
14113
14114 return BTRACE_ERR_NONE;
14115 }
14116
14117 const struct btrace_config *
14118 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14119 {
14120 return &tinfo->conf;
14121 }
14122
14123 bool
14124 remote_target::augmented_libraries_svr4_read ()
14125 {
14126 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14127 == PACKET_ENABLE);
14128 }
14129
14130 /* Implementation of to_load. */
14131
14132 void
14133 remote_target::load (const char *name, int from_tty)
14134 {
14135 generic_load (name, from_tty);
14136 }
14137
14138 /* Accepts an integer PID; returns a string representing a file that
14139 can be opened on the remote side to get the symbols for the child
14140 process. Returns NULL if the operation is not supported. */
14141
14142 char *
14143 remote_target::pid_to_exec_file (int pid)
14144 {
14145 static gdb::optional<gdb::char_vector> filename;
14146 char *annex = NULL;
14147
14148 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14149 return NULL;
14150
14151 inferior *inf = find_inferior_pid (this, pid);
14152 if (inf == NULL)
14153 internal_error (__FILE__, __LINE__,
14154 _("not currently attached to process %d"), pid);
14155
14156 if (!inf->fake_pid_p)
14157 {
14158 const int annex_size = 9;
14159
14160 annex = (char *) alloca (annex_size);
14161 xsnprintf (annex, annex_size, "%x", pid);
14162 }
14163
14164 filename = target_read_stralloc (current_top_target (),
14165 TARGET_OBJECT_EXEC_FILE, annex);
14166
14167 return filename ? filename->data () : nullptr;
14168 }
14169
14170 /* Implement the to_can_do_single_step target_ops method. */
14171
14172 int
14173 remote_target::can_do_single_step ()
14174 {
14175 /* We can only tell whether target supports single step or not by
14176 supported s and S vCont actions if the stub supports vContSupported
14177 feature. If the stub doesn't support vContSupported feature,
14178 we have conservatively to think target doesn't supports single
14179 step. */
14180 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14181 {
14182 struct remote_state *rs = get_remote_state ();
14183
14184 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14185 remote_vcont_probe ();
14186
14187 return rs->supports_vCont.s && rs->supports_vCont.S;
14188 }
14189 else
14190 return 0;
14191 }
14192
14193 /* Implementation of the to_execution_direction method for the remote
14194 target. */
14195
14196 enum exec_direction_kind
14197 remote_target::execution_direction ()
14198 {
14199 struct remote_state *rs = get_remote_state ();
14200
14201 return rs->last_resume_exec_dir;
14202 }
14203
14204 /* Return pointer to the thread_info struct which corresponds to
14205 THREAD_HANDLE (having length HANDLE_LEN). */
14206
14207 thread_info *
14208 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14209 int handle_len,
14210 inferior *inf)
14211 {
14212 for (thread_info *tp : all_non_exited_threads (this))
14213 {
14214 remote_thread_info *priv = get_remote_thread_info (tp);
14215
14216 if (tp->inf == inf && priv != NULL)
14217 {
14218 if (handle_len != priv->thread_handle.size ())
14219 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14220 handle_len, priv->thread_handle.size ());
14221 if (memcmp (thread_handle, priv->thread_handle.data (),
14222 handle_len) == 0)
14223 return tp;
14224 }
14225 }
14226
14227 return NULL;
14228 }
14229
14230 gdb::byte_vector
14231 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14232 {
14233 remote_thread_info *priv = get_remote_thread_info (tp);
14234 return priv->thread_handle;
14235 }
14236
14237 bool
14238 remote_target::can_async_p ()
14239 {
14240 struct remote_state *rs = get_remote_state ();
14241
14242 /* We don't go async if the user has explicitly prevented it with the
14243 "maint set target-async" command. */
14244 if (!target_async_permitted)
14245 return false;
14246
14247 /* We're async whenever the serial device is. */
14248 return serial_can_async_p (rs->remote_desc);
14249 }
14250
14251 bool
14252 remote_target::is_async_p ()
14253 {
14254 struct remote_state *rs = get_remote_state ();
14255
14256 if (!target_async_permitted)
14257 /* We only enable async when the user specifically asks for it. */
14258 return false;
14259
14260 /* We're async whenever the serial device is. */
14261 return serial_is_async_p (rs->remote_desc);
14262 }
14263
14264 /* Pass the SERIAL event on and up to the client. One day this code
14265 will be able to delay notifying the client of an event until the
14266 point where an entire packet has been received. */
14267
14268 static serial_event_ftype remote_async_serial_handler;
14269
14270 static void
14271 remote_async_serial_handler (struct serial *scb, void *context)
14272 {
14273 /* Don't propogate error information up to the client. Instead let
14274 the client find out about the error by querying the target. */
14275 inferior_event_handler (INF_REG_EVENT);
14276 }
14277
14278 static void
14279 remote_async_inferior_event_handler (gdb_client_data data)
14280 {
14281 inferior_event_handler (INF_REG_EVENT);
14282 }
14283
14284 int
14285 remote_target::async_wait_fd ()
14286 {
14287 struct remote_state *rs = get_remote_state ();
14288 return rs->remote_desc->fd;
14289 }
14290
14291 void
14292 remote_target::async (int enable)
14293 {
14294 struct remote_state *rs = get_remote_state ();
14295
14296 if (enable)
14297 {
14298 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14299
14300 /* If there are pending events in the stop reply queue tell the
14301 event loop to process them. */
14302 if (!rs->stop_reply_queue.empty ())
14303 mark_async_event_handler (rs->remote_async_inferior_event_token);
14304 /* For simplicity, below we clear the pending events token
14305 without remembering whether it is marked, so here we always
14306 mark it. If there's actually no pending notification to
14307 process, this ends up being a no-op (other than a spurious
14308 event-loop wakeup). */
14309 if (target_is_non_stop_p ())
14310 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14311 }
14312 else
14313 {
14314 serial_async (rs->remote_desc, NULL, NULL);
14315 /* If the core is disabling async, it doesn't want to be
14316 disturbed with target events. Clear all async event sources
14317 too. */
14318 clear_async_event_handler (rs->remote_async_inferior_event_token);
14319 if (target_is_non_stop_p ())
14320 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14321 }
14322 }
14323
14324 /* Implementation of the to_thread_events method. */
14325
14326 void
14327 remote_target::thread_events (int enable)
14328 {
14329 struct remote_state *rs = get_remote_state ();
14330 size_t size = get_remote_packet_size ();
14331
14332 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14333 return;
14334
14335 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14336 putpkt (rs->buf);
14337 getpkt (&rs->buf, 0);
14338
14339 switch (packet_ok (rs->buf,
14340 &remote_protocol_packets[PACKET_QThreadEvents]))
14341 {
14342 case PACKET_OK:
14343 if (strcmp (rs->buf.data (), "OK") != 0)
14344 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14345 break;
14346 case PACKET_ERROR:
14347 warning (_("Remote failure reply: %s"), rs->buf.data ());
14348 break;
14349 case PACKET_UNKNOWN:
14350 break;
14351 }
14352 }
14353
14354 static void
14355 show_remote_cmd (const char *args, int from_tty)
14356 {
14357 /* We can't just use cmd_show_list here, because we want to skip
14358 the redundant "show remote Z-packet" and the legacy aliases. */
14359 struct cmd_list_element *list = remote_show_cmdlist;
14360 struct ui_out *uiout = current_uiout;
14361
14362 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14363 for (; list != NULL; list = list->next)
14364 if (strcmp (list->name, "Z-packet") == 0)
14365 continue;
14366 else if (list->type == not_set_cmd)
14367 /* Alias commands are exactly like the original, except they
14368 don't have the normal type. */
14369 continue;
14370 else
14371 {
14372 ui_out_emit_tuple option_emitter (uiout, "option");
14373
14374 uiout->field_string ("name", list->name);
14375 uiout->text (": ");
14376 if (list->type == show_cmd)
14377 do_show_command (NULL, from_tty, list);
14378 else
14379 cmd_func (list, NULL, from_tty);
14380 }
14381 }
14382
14383
14384 /* Function to be called whenever a new objfile (shlib) is detected. */
14385 static void
14386 remote_new_objfile (struct objfile *objfile)
14387 {
14388 remote_target *remote = get_current_remote_target ();
14389
14390 if (remote != NULL) /* Have a remote connection. */
14391 remote->remote_check_symbols ();
14392 }
14393
14394 /* Pull all the tracepoints defined on the target and create local
14395 data structures representing them. We don't want to create real
14396 tracepoints yet, we don't want to mess up the user's existing
14397 collection. */
14398
14399 int
14400 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14401 {
14402 struct remote_state *rs = get_remote_state ();
14403 char *p;
14404
14405 /* Ask for a first packet of tracepoint definition. */
14406 putpkt ("qTfP");
14407 getpkt (&rs->buf, 0);
14408 p = rs->buf.data ();
14409 while (*p && *p != 'l')
14410 {
14411 parse_tracepoint_definition (p, utpp);
14412 /* Ask for another packet of tracepoint definition. */
14413 putpkt ("qTsP");
14414 getpkt (&rs->buf, 0);
14415 p = rs->buf.data ();
14416 }
14417 return 0;
14418 }
14419
14420 int
14421 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14422 {
14423 struct remote_state *rs = get_remote_state ();
14424 char *p;
14425
14426 /* Ask for a first packet of variable definition. */
14427 putpkt ("qTfV");
14428 getpkt (&rs->buf, 0);
14429 p = rs->buf.data ();
14430 while (*p && *p != 'l')
14431 {
14432 parse_tsv_definition (p, utsvp);
14433 /* Ask for another packet of variable definition. */
14434 putpkt ("qTsV");
14435 getpkt (&rs->buf, 0);
14436 p = rs->buf.data ();
14437 }
14438 return 0;
14439 }
14440
14441 /* The "set/show range-stepping" show hook. */
14442
14443 static void
14444 show_range_stepping (struct ui_file *file, int from_tty,
14445 struct cmd_list_element *c,
14446 const char *value)
14447 {
14448 fprintf_filtered (file,
14449 _("Debugger's willingness to use range stepping "
14450 "is %s.\n"), value);
14451 }
14452
14453 /* Return true if the vCont;r action is supported by the remote
14454 stub. */
14455
14456 bool
14457 remote_target::vcont_r_supported ()
14458 {
14459 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14460 remote_vcont_probe ();
14461
14462 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14463 && get_remote_state ()->supports_vCont.r);
14464 }
14465
14466 /* The "set/show range-stepping" set hook. */
14467
14468 static void
14469 set_range_stepping (const char *ignore_args, int from_tty,
14470 struct cmd_list_element *c)
14471 {
14472 /* When enabling, check whether range stepping is actually supported
14473 by the target, and warn if not. */
14474 if (use_range_stepping)
14475 {
14476 remote_target *remote = get_current_remote_target ();
14477 if (remote == NULL
14478 || !remote->vcont_r_supported ())
14479 warning (_("Range stepping is not supported by the current target"));
14480 }
14481 }
14482
14483 static void
14484 show_remote_debug (struct ui_file *file, int from_tty,
14485 struct cmd_list_element *c, const char *value)
14486 {
14487 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14488 value);
14489 }
14490
14491 static void
14492 show_remote_timeout (struct ui_file *file, int from_tty,
14493 struct cmd_list_element *c, const char *value)
14494 {
14495 fprintf_filtered (file,
14496 _("Timeout limit to wait for target to respond is %s.\n"),
14497 value);
14498 }
14499
14500 /* Implement the "supports_memory_tagging" target_ops method. */
14501
14502 bool
14503 remote_target::supports_memory_tagging ()
14504 {
14505 return false;
14506 }
14507
14508 /* Implement the "fetch_memtags" target_ops method. */
14509
14510 bool
14511 remote_target::fetch_memtags (CORE_ADDR address, size_t len,
14512 gdb::byte_vector &tags, int type)
14513 {
14514 return false;
14515 }
14516
14517 /* Implement the "store_memtags" target_ops method. */
14518
14519 bool
14520 remote_target::store_memtags (CORE_ADDR address, size_t len,
14521 const gdb::byte_vector &tags, int type)
14522 {
14523 return false;
14524 }
14525
14526 void _initialize_remote ();
14527 void
14528 _initialize_remote ()
14529 {
14530 struct cmd_list_element *cmd;
14531 const char *cmd_name;
14532
14533 /* architecture specific data */
14534 remote_g_packet_data_handle =
14535 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14536
14537 add_target (remote_target_info, remote_target::open);
14538 add_target (extended_remote_target_info, extended_remote_target::open);
14539
14540 /* Hook into new objfile notification. */
14541 gdb::observers::new_objfile.attach (remote_new_objfile);
14542
14543 #if 0
14544 init_remote_threadtests ();
14545 #endif
14546
14547 /* set/show remote ... */
14548
14549 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14550 Remote protocol specific variables.\n\
14551 Configure various remote-protocol specific variables such as\n\
14552 the packets being used."),
14553 &remote_set_cmdlist, "set remote ",
14554 0 /* allow-unknown */, &setlist);
14555 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14556 Remote protocol specific variables.\n\
14557 Configure various remote-protocol specific variables such as\n\
14558 the packets being used."),
14559 &remote_show_cmdlist, "show remote ",
14560 0 /* allow-unknown */, &showlist);
14561
14562 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14563 Compare section data on target to the exec file.\n\
14564 Argument is a single section name (default: all loaded sections).\n\
14565 To compare only read-only loaded sections, specify the -r option."),
14566 &cmdlist);
14567
14568 add_cmd ("packet", class_maintenance, packet_command, _("\
14569 Send an arbitrary packet to a remote target.\n\
14570 maintenance packet TEXT\n\
14571 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14572 this command sends the string TEXT to the inferior, and displays the\n\
14573 response packet. GDB supplies the initial `$' character, and the\n\
14574 terminating `#' character and checksum."),
14575 &maintenancelist);
14576
14577 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14578 Set whether to send break if interrupted."), _("\
14579 Show whether to send break if interrupted."), _("\
14580 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14581 set_remotebreak, show_remotebreak,
14582 &setlist, &showlist);
14583 cmd_name = "remotebreak";
14584 cmd = lookup_cmd (&cmd_name, setlist, "", NULL, -1, 1);
14585 deprecate_cmd (cmd, "set remote interrupt-sequence");
14586 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14587 cmd = lookup_cmd (&cmd_name, showlist, "", NULL, -1, 1);
14588 deprecate_cmd (cmd, "show remote interrupt-sequence");
14589
14590 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14591 interrupt_sequence_modes, &interrupt_sequence_mode,
14592 _("\
14593 Set interrupt sequence to remote target."), _("\
14594 Show interrupt sequence to remote target."), _("\
14595 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14596 NULL, show_interrupt_sequence,
14597 &remote_set_cmdlist,
14598 &remote_show_cmdlist);
14599
14600 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14601 &interrupt_on_connect, _("\
14602 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14603 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14604 If set, interrupt sequence is sent to remote target."),
14605 NULL, NULL,
14606 &remote_set_cmdlist, &remote_show_cmdlist);
14607
14608 /* Install commands for configuring memory read/write packets. */
14609
14610 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14611 Set the maximum number of bytes per memory write packet (deprecated)."),
14612 &setlist);
14613 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14614 Show the maximum number of bytes per memory write packet (deprecated)."),
14615 &showlist);
14616 add_cmd ("memory-write-packet-size", no_class,
14617 set_memory_write_packet_size, _("\
14618 Set the maximum number of bytes per memory-write packet.\n\
14619 Specify the number of bytes in a packet or 0 (zero) for the\n\
14620 default packet size. The actual limit is further reduced\n\
14621 dependent on the target. Specify ``fixed'' to disable the\n\
14622 further restriction and ``limit'' to enable that restriction."),
14623 &remote_set_cmdlist);
14624 add_cmd ("memory-read-packet-size", no_class,
14625 set_memory_read_packet_size, _("\
14626 Set the maximum number of bytes per memory-read packet.\n\
14627 Specify the number of bytes in a packet or 0 (zero) for the\n\
14628 default packet size. The actual limit is further reduced\n\
14629 dependent on the target. Specify ``fixed'' to disable the\n\
14630 further restriction and ``limit'' to enable that restriction."),
14631 &remote_set_cmdlist);
14632 add_cmd ("memory-write-packet-size", no_class,
14633 show_memory_write_packet_size,
14634 _("Show the maximum number of bytes per memory-write packet."),
14635 &remote_show_cmdlist);
14636 add_cmd ("memory-read-packet-size", no_class,
14637 show_memory_read_packet_size,
14638 _("Show the maximum number of bytes per memory-read packet."),
14639 &remote_show_cmdlist);
14640
14641 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14642 &remote_hw_watchpoint_limit, _("\
14643 Set the maximum number of target hardware watchpoints."), _("\
14644 Show the maximum number of target hardware watchpoints."), _("\
14645 Specify \"unlimited\" for unlimited hardware watchpoints."),
14646 NULL, show_hardware_watchpoint_limit,
14647 &remote_set_cmdlist,
14648 &remote_show_cmdlist);
14649 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14650 no_class,
14651 &remote_hw_watchpoint_length_limit, _("\
14652 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14653 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14654 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14655 NULL, show_hardware_watchpoint_length_limit,
14656 &remote_set_cmdlist, &remote_show_cmdlist);
14657 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14658 &remote_hw_breakpoint_limit, _("\
14659 Set the maximum number of target hardware breakpoints."), _("\
14660 Show the maximum number of target hardware breakpoints."), _("\
14661 Specify \"unlimited\" for unlimited hardware breakpoints."),
14662 NULL, show_hardware_breakpoint_limit,
14663 &remote_set_cmdlist, &remote_show_cmdlist);
14664
14665 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14666 &remote_address_size, _("\
14667 Set the maximum size of the address (in bits) in a memory packet."), _("\
14668 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14669 NULL,
14670 NULL, /* FIXME: i18n: */
14671 &setlist, &showlist);
14672
14673 init_all_packet_configs ();
14674
14675 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14676 "X", "binary-download", 1);
14677
14678 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14679 "vCont", "verbose-resume", 0);
14680
14681 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14682 "QPassSignals", "pass-signals", 0);
14683
14684 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14685 "QCatchSyscalls", "catch-syscalls", 0);
14686
14687 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14688 "QProgramSignals", "program-signals", 0);
14689
14690 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14691 "QSetWorkingDir", "set-working-dir", 0);
14692
14693 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14694 "QStartupWithShell", "startup-with-shell", 0);
14695
14696 add_packet_config_cmd (&remote_protocol_packets
14697 [PACKET_QEnvironmentHexEncoded],
14698 "QEnvironmentHexEncoded", "environment-hex-encoded",
14699 0);
14700
14701 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14702 "QEnvironmentReset", "environment-reset",
14703 0);
14704
14705 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14706 "QEnvironmentUnset", "environment-unset",
14707 0);
14708
14709 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14710 "qSymbol", "symbol-lookup", 0);
14711
14712 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14713 "P", "set-register", 1);
14714
14715 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14716 "p", "fetch-register", 1);
14717
14718 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14719 "Z0", "software-breakpoint", 0);
14720
14721 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14722 "Z1", "hardware-breakpoint", 0);
14723
14724 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14725 "Z2", "write-watchpoint", 0);
14726
14727 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14728 "Z3", "read-watchpoint", 0);
14729
14730 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14731 "Z4", "access-watchpoint", 0);
14732
14733 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14734 "qXfer:auxv:read", "read-aux-vector", 0);
14735
14736 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14737 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14738
14739 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14740 "qXfer:features:read", "target-features", 0);
14741
14742 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14743 "qXfer:libraries:read", "library-info", 0);
14744
14745 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14746 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14747
14748 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14749 "qXfer:memory-map:read", "memory-map", 0);
14750
14751 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14752 "qXfer:osdata:read", "osdata", 0);
14753
14754 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14755 "qXfer:threads:read", "threads", 0);
14756
14757 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14758 "qXfer:siginfo:read", "read-siginfo-object", 0);
14759
14760 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14761 "qXfer:siginfo:write", "write-siginfo-object", 0);
14762
14763 add_packet_config_cmd
14764 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14765 "qXfer:traceframe-info:read", "traceframe-info", 0);
14766
14767 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14768 "qXfer:uib:read", "unwind-info-block", 0);
14769
14770 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14771 "qGetTLSAddr", "get-thread-local-storage-address",
14772 0);
14773
14774 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14775 "qGetTIBAddr", "get-thread-information-block-address",
14776 0);
14777
14778 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14779 "bc", "reverse-continue", 0);
14780
14781 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14782 "bs", "reverse-step", 0);
14783
14784 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14785 "qSupported", "supported-packets", 0);
14786
14787 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14788 "qSearch:memory", "search-memory", 0);
14789
14790 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14791 "qTStatus", "trace-status", 0);
14792
14793 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14794 "vFile:setfs", "hostio-setfs", 0);
14795
14796 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14797 "vFile:open", "hostio-open", 0);
14798
14799 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14800 "vFile:pread", "hostio-pread", 0);
14801
14802 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14803 "vFile:pwrite", "hostio-pwrite", 0);
14804
14805 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14806 "vFile:close", "hostio-close", 0);
14807
14808 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14809 "vFile:unlink", "hostio-unlink", 0);
14810
14811 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14812 "vFile:readlink", "hostio-readlink", 0);
14813
14814 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14815 "vFile:fstat", "hostio-fstat", 0);
14816
14817 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14818 "vAttach", "attach", 0);
14819
14820 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14821 "vRun", "run", 0);
14822
14823 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14824 "QStartNoAckMode", "noack", 0);
14825
14826 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14827 "vKill", "kill", 0);
14828
14829 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14830 "qAttached", "query-attached", 0);
14831
14832 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14833 "ConditionalTracepoints",
14834 "conditional-tracepoints", 0);
14835
14836 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14837 "ConditionalBreakpoints",
14838 "conditional-breakpoints", 0);
14839
14840 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14841 "BreakpointCommands",
14842 "breakpoint-commands", 0);
14843
14844 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14845 "FastTracepoints", "fast-tracepoints", 0);
14846
14847 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14848 "TracepointSource", "TracepointSource", 0);
14849
14850 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14851 "QAllow", "allow", 0);
14852
14853 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14854 "StaticTracepoints", "static-tracepoints", 0);
14855
14856 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14857 "InstallInTrace", "install-in-trace", 0);
14858
14859 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14860 "qXfer:statictrace:read", "read-sdata-object", 0);
14861
14862 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14863 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14864
14865 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14866 "QDisableRandomization", "disable-randomization", 0);
14867
14868 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14869 "QAgent", "agent", 0);
14870
14871 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14872 "QTBuffer:size", "trace-buffer-size", 0);
14873
14874 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14875 "Qbtrace:off", "disable-btrace", 0);
14876
14877 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14878 "Qbtrace:bts", "enable-btrace-bts", 0);
14879
14880 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14881 "Qbtrace:pt", "enable-btrace-pt", 0);
14882
14883 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14884 "qXfer:btrace", "read-btrace", 0);
14885
14886 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14887 "qXfer:btrace-conf", "read-btrace-conf", 0);
14888
14889 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14890 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14891
14892 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14893 "multiprocess-feature", "multiprocess-feature", 0);
14894
14895 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14896 "swbreak-feature", "swbreak-feature", 0);
14897
14898 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14899 "hwbreak-feature", "hwbreak-feature", 0);
14900
14901 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14902 "fork-event-feature", "fork-event-feature", 0);
14903
14904 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14905 "vfork-event-feature", "vfork-event-feature", 0);
14906
14907 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14908 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14909
14910 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14911 "vContSupported", "verbose-resume-supported", 0);
14912
14913 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14914 "exec-event-feature", "exec-event-feature", 0);
14915
14916 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14917 "vCtrlC", "ctrl-c", 0);
14918
14919 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14920 "QThreadEvents", "thread-events", 0);
14921
14922 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14923 "N stop reply", "no-resumed-stop-reply", 0);
14924
14925 /* Assert that we've registered "set remote foo-packet" commands
14926 for all packet configs. */
14927 {
14928 int i;
14929
14930 for (i = 0; i < PACKET_MAX; i++)
14931 {
14932 /* Ideally all configs would have a command associated. Some
14933 still don't though. */
14934 int excepted;
14935
14936 switch (i)
14937 {
14938 case PACKET_QNonStop:
14939 case PACKET_EnableDisableTracepoints_feature:
14940 case PACKET_tracenz_feature:
14941 case PACKET_DisconnectedTracing_feature:
14942 case PACKET_augmented_libraries_svr4_read_feature:
14943 case PACKET_qCRC:
14944 /* Additions to this list need to be well justified:
14945 pre-existing packets are OK; new packets are not. */
14946 excepted = 1;
14947 break;
14948 default:
14949 excepted = 0;
14950 break;
14951 }
14952
14953 /* This catches both forgetting to add a config command, and
14954 forgetting to remove a packet from the exception list. */
14955 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14956 }
14957 }
14958
14959 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14960 Z sub-packet has its own set and show commands, but users may
14961 have sets to this variable in their .gdbinit files (or in their
14962 documentation). */
14963 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14964 &remote_Z_packet_detect, _("\
14965 Set use of remote protocol `Z' packets."), _("\
14966 Show use of remote protocol `Z' packets."), _("\
14967 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14968 packets."),
14969 set_remote_protocol_Z_packet_cmd,
14970 show_remote_protocol_Z_packet_cmd,
14971 /* FIXME: i18n: Use of remote protocol
14972 `Z' packets is %s. */
14973 &remote_set_cmdlist, &remote_show_cmdlist);
14974
14975 add_basic_prefix_cmd ("remote", class_files, _("\
14976 Manipulate files on the remote system.\n\
14977 Transfer files to and from the remote target system."),
14978 &remote_cmdlist, "remote ",
14979 0 /* allow-unknown */, &cmdlist);
14980
14981 add_cmd ("put", class_files, remote_put_command,
14982 _("Copy a local file to the remote system."),
14983 &remote_cmdlist);
14984
14985 add_cmd ("get", class_files, remote_get_command,
14986 _("Copy a remote file to the local system."),
14987 &remote_cmdlist);
14988
14989 add_cmd ("delete", class_files, remote_delete_command,
14990 _("Delete a remote file."),
14991 &remote_cmdlist);
14992
14993 add_setshow_string_noescape_cmd ("exec-file", class_files,
14994 &remote_exec_file_var, _("\
14995 Set the remote pathname for \"run\"."), _("\
14996 Show the remote pathname for \"run\"."), NULL,
14997 set_remote_exec_file,
14998 show_remote_exec_file,
14999 &remote_set_cmdlist,
15000 &remote_show_cmdlist);
15001
15002 add_setshow_boolean_cmd ("range-stepping", class_run,
15003 &use_range_stepping, _("\
15004 Enable or disable range stepping."), _("\
15005 Show whether target-assisted range stepping is enabled."), _("\
15006 If on, and the target supports it, when stepping a source line, GDB\n\
15007 tells the target to step the corresponding range of addresses itself instead\n\
15008 of issuing multiple single-steps. This speeds up source level\n\
15009 stepping. If off, GDB always issues single-steps, even if range\n\
15010 stepping is supported by the target. The default is on."),
15011 set_range_stepping,
15012 show_range_stepping,
15013 &setlist,
15014 &showlist);
15015
15016 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15017 Set watchdog timer."), _("\
15018 Show watchdog timer."), _("\
15019 When non-zero, this timeout is used instead of waiting forever for a target\n\
15020 to finish a low-level step or continue operation. If the specified amount\n\
15021 of time passes without a response from the target, an error occurs."),
15022 NULL,
15023 show_watchdog,
15024 &setlist, &showlist);
15025
15026 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15027 &remote_packet_max_chars, _("\
15028 Set the maximum number of characters to display for each remote packet."), _("\
15029 Show the maximum number of characters to display for each remote packet."), _("\
15030 Specify \"unlimited\" to display all the characters."),
15031 NULL, show_remote_packet_max_chars,
15032 &setdebuglist, &showdebuglist);
15033
15034 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
15035 _("Set debugging of remote protocol."),
15036 _("Show debugging of remote protocol."),
15037 _("\
15038 When enabled, each packet sent or received with the remote target\n\
15039 is displayed."),
15040 NULL,
15041 show_remote_debug,
15042 &setdebuglist, &showdebuglist);
15043
15044 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15045 &remote_timeout, _("\
15046 Set timeout limit to wait for target to respond."), _("\
15047 Show timeout limit to wait for target to respond."), _("\
15048 This value is used to set the time limit for gdb to wait for a response\n\
15049 from the target."),
15050 NULL,
15051 show_remote_timeout,
15052 &setlist, &showlist);
15053
15054 /* Eventually initialize fileio. See fileio.c */
15055 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15056 }