move some static thread state into remote_state
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "remote-notif.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "gdb_assert.h"
41 #include "observer.h"
42 #include "solib.h"
43 #include "cli/cli-decode.h"
44 #include "cli/cli-setshow.h"
45 #include "target-descriptions.h"
46 #include "gdb_bfd.h"
47 #include "filestuff.h"
48
49 #include <ctype.h>
50 #include <sys/time.h>
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include "gdb_stat.h"
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73
74 /* Temp hacks for tracepoint encoding migration. */
75 static char *target_buf;
76 static long target_buf_size;
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void async_cleanup_sigint_signal_handler (void *dummy);
92 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
93 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
94 int forever, int *is_notif);
95
96 static void async_handle_remote_sigint (int);
97 static void async_handle_remote_sigint_twice (int);
98
99 static void remote_files_info (struct target_ops *ignore);
100
101 static void remote_prepare_to_store (struct regcache *regcache);
102
103 static void remote_open (char *name, int from_tty);
104
105 static void extended_remote_open (char *name, int from_tty);
106
107 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
108
109 static void remote_close (void);
110
111 static void remote_mourn (struct target_ops *ops);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (struct target_ops *);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static void remote_serial_write (const char *str, int len);
124
125 static void remote_kill (struct target_ops *ops);
126
127 static int tohex (int nib);
128
129 static int remote_can_async_p (void);
130
131 static int remote_is_async_p (void);
132
133 static void remote_async (void (*callback) (enum inferior_event_type event_type,
134 void *context), void *context);
135
136 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
137
138 static void sync_remote_interrupt_twice (int signo);
139
140 static void interrupt_query (void);
141
142 static void set_general_thread (struct ptid ptid);
143 static void set_continue_thread (struct ptid ptid);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (ptid_t);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static void compare_sections_command (char *, int);
172
173 static void packet_command (char *, int);
174
175 static int stub_unpack_int (char *buff, int fieldlength);
176
177 static ptid_t remote_current_thread (ptid_t oldptid);
178
179 static void remote_find_new_threads (void);
180
181 static int fromhex (int a);
182
183 static int putpkt_binary (char *buf, int cnt);
184
185 static void check_binary_download (CORE_ADDR addr);
186
187 struct packet_config;
188
189 static void show_packet_config_cmd (struct packet_config *config);
190
191 static void update_packet_config (struct packet_config *config);
192
193 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
194 struct cmd_list_element *c);
195
196 static void show_remote_protocol_packet_cmd (struct ui_file *file,
197 int from_tty,
198 struct cmd_list_element *c,
199 const char *value);
200
201 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
202 static ptid_t read_ptid (char *buf, char **obuf);
203
204 static void remote_set_permissions (void);
205
206 struct remote_state;
207 static int remote_get_trace_status (struct trace_status *ts);
208
209 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
210
211 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
212
213 static void remote_query_supported (void);
214
215 static void remote_check_symbols (void);
216
217 void _initialize_remote (void);
218
219 struct stop_reply;
220 static void stop_reply_xfree (struct stop_reply *);
221 static void remote_parse_stop_reply (char *, struct stop_reply *);
222 static void push_stop_reply (struct stop_reply *);
223 static void discard_pending_stop_replies (struct inferior *);
224 static int peek_stop_reply (ptid_t ptid);
225
226 static void remote_async_inferior_event_handler (gdb_client_data);
227
228 static void remote_terminal_ours (void);
229
230 static int remote_read_description_p (struct target_ops *target);
231
232 static void remote_console_output (char *msg);
233
234 static int remote_supports_cond_breakpoints (void);
235
236 static int remote_can_run_breakpoint_commands (void);
237
238 /* For "remote". */
239
240 static struct cmd_list_element *remote_cmdlist;
241
242 /* For "set remote" and "show remote". */
243
244 static struct cmd_list_element *remote_set_cmdlist;
245 static struct cmd_list_element *remote_show_cmdlist;
246
247 /* Stub vCont actions support.
248
249 Each field is a boolean flag indicating whether the stub reports
250 support for the corresponding action. */
251
252 struct vCont_action_support
253 {
254 /* vCont;t */
255 int t;
256
257 /* vCont;r */
258 int r;
259 };
260
261 /* Controls whether GDB is willing to use range stepping. */
262
263 static int use_range_stepping = 1;
264
265 #define OPAQUETHREADBYTES 8
266
267 /* a 64 bit opaque identifier */
268 typedef unsigned char threadref[OPAQUETHREADBYTES];
269
270 /* About this many threadisds fit in a packet. */
271
272 #define MAXTHREADLISTRESULTS 32
273
274 /* Description of the remote protocol state for the currently
275 connected target. This is per-target state, and independent of the
276 selected architecture. */
277
278 struct remote_state
279 {
280 /* A buffer to use for incoming packets, and its current size. The
281 buffer is grown dynamically for larger incoming packets.
282 Outgoing packets may also be constructed in this buffer.
283 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
284 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
285 packets. */
286 char *buf;
287 long buf_size;
288
289 /* True if we're going through initial connection setup (finding out
290 about the remote side's threads, relocating symbols, etc.). */
291 int starting_up;
292
293 /* If we negotiated packet size explicitly (and thus can bypass
294 heuristics for the largest packet size that will not overflow
295 a buffer in the stub), this will be set to that packet size.
296 Otherwise zero, meaning to use the guessed size. */
297 long explicit_packet_size;
298
299 /* remote_wait is normally called when the target is running and
300 waits for a stop reply packet. But sometimes we need to call it
301 when the target is already stopped. We can send a "?" packet
302 and have remote_wait read the response. Or, if we already have
303 the response, we can stash it in BUF and tell remote_wait to
304 skip calling getpkt. This flag is set when BUF contains a
305 stop reply packet and the target is not waiting. */
306 int cached_wait_status;
307
308 /* True, if in no ack mode. That is, neither GDB nor the stub will
309 expect acks from each other. The connection is assumed to be
310 reliable. */
311 int noack_mode;
312
313 /* True if we're connected in extended remote mode. */
314 int extended;
315
316 /* True if the stub reported support for multi-process
317 extensions. */
318 int multi_process_aware;
319
320 /* True if we resumed the target and we're waiting for the target to
321 stop. In the mean time, we can't start another command/query.
322 The remote server wouldn't be ready to process it, so we'd
323 timeout waiting for a reply that would never come and eventually
324 we'd close the connection. This can happen in asynchronous mode
325 because we allow GDB commands while the target is running. */
326 int waiting_for_stop_reply;
327
328 /* True if the stub reports support for non-stop mode. */
329 int non_stop_aware;
330
331 /* The status of the stub support for the various vCont actions. */
332 struct vCont_action_support supports_vCont;
333
334 /* True if the stub reports support for conditional tracepoints. */
335 int cond_tracepoints;
336
337 /* True if the stub reports support for target-side breakpoint
338 conditions. */
339 int cond_breakpoints;
340
341 /* True if the stub reports support for target-side breakpoint
342 commands. */
343 int breakpoint_commands;
344
345 /* True if the stub reports support for fast tracepoints. */
346 int fast_tracepoints;
347
348 /* True if the stub reports support for static tracepoints. */
349 int static_tracepoints;
350
351 /* True if the stub reports support for installing tracepoint while
352 tracing. */
353 int install_in_trace;
354
355 /* True if the stub can continue running a trace while GDB is
356 disconnected. */
357 int disconnected_tracing;
358
359 /* True if the stub reports support for enabling and disabling
360 tracepoints while a trace experiment is running. */
361 int enable_disable_tracepoints;
362
363 /* True if the stub can collect strings using tracenz bytecode. */
364 int string_tracing;
365
366 /* True if the stub supports qXfer:libraries-svr4:read with a
367 non-empty annex. */
368 int augmented_libraries_svr4_read;
369
370 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
371 responded to that. */
372 int ctrlc_pending_p;
373
374 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
375 remote_open knows that we don't have a file open when the program
376 starts. */
377 struct serial *remote_desc;
378
379 /* These are the threads which we last sent to the remote system. The
380 TID member will be -1 for all or -2 for not sent yet. */
381 ptid_t general_thread;
382 ptid_t continue_thread;
383
384 /* This is the traceframe which we last selected on the remote system.
385 It will be -1 if no traceframe is selected. */
386 int remote_traceframe_number;
387
388 char *last_pass_packet;
389
390 /* The last QProgramSignals packet sent to the target. We bypass
391 sending a new program signals list down to the target if the new
392 packet is exactly the same as the last we sent. IOW, we only let
393 the target know about program signals list changes. */
394 char *last_program_signals_packet;
395
396 enum gdb_signal last_sent_signal;
397
398 int last_sent_step;
399
400 char *finished_object;
401 char *finished_annex;
402 ULONGEST finished_offset;
403
404 /* Should we try the 'ThreadInfo' query packet?
405
406 This variable (NOT available to the user: auto-detect only!)
407 determines whether GDB will use the new, simpler "ThreadInfo"
408 query or the older, more complex syntax for thread queries.
409 This is an auto-detect variable (set to true at each connect,
410 and set to false when the target fails to recognize it). */
411 int use_threadinfo_query;
412 int use_threadextra_query;
413
414 void (*async_client_callback) (enum inferior_event_type event_type,
415 void *context);
416 void *async_client_context;
417
418 /* This is set to the data address of the access causing the target
419 to stop for a watchpoint. */
420 CORE_ADDR remote_watch_data_address;
421
422 /* This is non-zero if target stopped for a watchpoint. */
423 int remote_stopped_by_watchpoint_p;
424
425 threadref echo_nextthread;
426 threadref nextthread;
427 threadref resultthreadlist[MAXTHREADLISTRESULTS];
428 };
429
430 /* Private data that we'll store in (struct thread_info)->private. */
431 struct private_thread_info
432 {
433 char *extra;
434 int core;
435 };
436
437 static void
438 free_private_thread_info (struct private_thread_info *info)
439 {
440 xfree (info->extra);
441 xfree (info);
442 }
443
444 /* Returns true if the multi-process extensions are in effect. */
445 static int
446 remote_multi_process_p (struct remote_state *rs)
447 {
448 return rs->multi_process_aware;
449 }
450
451 /* This data could be associated with a target, but we do not always
452 have access to the current target when we need it, so for now it is
453 static. This will be fine for as long as only one target is in use
454 at a time. */
455 static struct remote_state *remote_state;
456
457 static struct remote_state *
458 get_remote_state_raw (void)
459 {
460 return remote_state;
461 }
462
463 /* Allocate a new struct remote_state with xmalloc, initialize it, and
464 return it. */
465
466 static struct remote_state *
467 new_remote_state (void)
468 {
469 struct remote_state *result = XCNEW (struct remote_state);
470
471 /* The default buffer size is unimportant; it will be expanded
472 whenever a larger buffer is needed. */
473 result->buf_size = 400;
474 result->buf = xmalloc (result->buf_size);
475 result->remote_traceframe_number = -1;
476 result->last_sent_signal = GDB_SIGNAL_0;
477
478 return result;
479 }
480
481 /* Description of the remote protocol for a given architecture. */
482
483 struct packet_reg
484 {
485 long offset; /* Offset into G packet. */
486 long regnum; /* GDB's internal register number. */
487 LONGEST pnum; /* Remote protocol register number. */
488 int in_g_packet; /* Always part of G packet. */
489 /* long size in bytes; == register_size (target_gdbarch (), regnum);
490 at present. */
491 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
492 at present. */
493 };
494
495 struct remote_arch_state
496 {
497 /* Description of the remote protocol registers. */
498 long sizeof_g_packet;
499
500 /* Description of the remote protocol registers indexed by REGNUM
501 (making an array gdbarch_num_regs in size). */
502 struct packet_reg *regs;
503
504 /* This is the size (in chars) of the first response to the ``g''
505 packet. It is used as a heuristic when determining the maximum
506 size of memory-read and memory-write packets. A target will
507 typically only reserve a buffer large enough to hold the ``g''
508 packet. The size does not include packet overhead (headers and
509 trailers). */
510 long actual_register_packet_size;
511
512 /* This is the maximum size (in chars) of a non read/write packet.
513 It is also used as a cap on the size of read/write packets. */
514 long remote_packet_size;
515 };
516
517 /* Utility: generate error from an incoming stub packet. */
518 static void
519 trace_error (char *buf)
520 {
521 if (*buf++ != 'E')
522 return; /* not an error msg */
523 switch (*buf)
524 {
525 case '1': /* malformed packet error */
526 if (*++buf == '0') /* general case: */
527 error (_("remote.c: error in outgoing packet."));
528 else
529 error (_("remote.c: error in outgoing packet at field #%ld."),
530 strtol (buf, NULL, 16));
531 default:
532 error (_("Target returns error code '%s'."), buf);
533 }
534 }
535
536 /* Utility: wait for reply from stub, while accepting "O" packets. */
537 static char *
538 remote_get_noisy_reply (char **buf_p,
539 long *sizeof_buf)
540 {
541 do /* Loop on reply from remote stub. */
542 {
543 char *buf;
544
545 QUIT; /* Allow user to bail out with ^C. */
546 getpkt (buf_p, sizeof_buf, 0);
547 buf = *buf_p;
548 if (buf[0] == 'E')
549 trace_error (buf);
550 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
551 {
552 ULONGEST ul;
553 CORE_ADDR from, to, org_to;
554 char *p, *pp;
555 int adjusted_size = 0;
556 volatile struct gdb_exception ex;
557
558 p = buf + strlen ("qRelocInsn:");
559 pp = unpack_varlen_hex (p, &ul);
560 if (*pp != ';')
561 error (_("invalid qRelocInsn packet: %s"), buf);
562 from = ul;
563
564 p = pp + 1;
565 unpack_varlen_hex (p, &ul);
566 to = ul;
567
568 org_to = to;
569
570 TRY_CATCH (ex, RETURN_MASK_ALL)
571 {
572 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
573 }
574 if (ex.reason >= 0)
575 {
576 adjusted_size = to - org_to;
577
578 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
579 putpkt (buf);
580 }
581 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
582 {
583 /* Propagate memory errors silently back to the target.
584 The stub may have limited the range of addresses we
585 can write to, for example. */
586 putpkt ("E01");
587 }
588 else
589 {
590 /* Something unexpectedly bad happened. Be verbose so
591 we can tell what, and propagate the error back to the
592 stub, so it doesn't get stuck waiting for a
593 response. */
594 exception_fprintf (gdb_stderr, ex,
595 _("warning: relocating instruction: "));
596 putpkt ("E01");
597 }
598 }
599 else if (buf[0] == 'O' && buf[1] != 'K')
600 remote_console_output (buf + 1); /* 'O' message from stub */
601 else
602 return buf; /* Here's the actual reply. */
603 }
604 while (1);
605 }
606
607 /* Handle for retreving the remote protocol data from gdbarch. */
608 static struct gdbarch_data *remote_gdbarch_data_handle;
609
610 static struct remote_arch_state *
611 get_remote_arch_state (void)
612 {
613 return gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle);
614 }
615
616 /* Fetch the global remote target state. */
617
618 static struct remote_state *
619 get_remote_state (void)
620 {
621 /* Make sure that the remote architecture state has been
622 initialized, because doing so might reallocate rs->buf. Any
623 function which calls getpkt also needs to be mindful of changes
624 to rs->buf, but this call limits the number of places which run
625 into trouble. */
626 get_remote_arch_state ();
627
628 return get_remote_state_raw ();
629 }
630
631 static int
632 compare_pnums (const void *lhs_, const void *rhs_)
633 {
634 const struct packet_reg * const *lhs = lhs_;
635 const struct packet_reg * const *rhs = rhs_;
636
637 if ((*lhs)->pnum < (*rhs)->pnum)
638 return -1;
639 else if ((*lhs)->pnum == (*rhs)->pnum)
640 return 0;
641 else
642 return 1;
643 }
644
645 static int
646 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
647 {
648 int regnum, num_remote_regs, offset;
649 struct packet_reg **remote_regs;
650
651 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
652 {
653 struct packet_reg *r = &regs[regnum];
654
655 if (register_size (gdbarch, regnum) == 0)
656 /* Do not try to fetch zero-sized (placeholder) registers. */
657 r->pnum = -1;
658 else
659 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
660
661 r->regnum = regnum;
662 }
663
664 /* Define the g/G packet format as the contents of each register
665 with a remote protocol number, in order of ascending protocol
666 number. */
667
668 remote_regs = alloca (gdbarch_num_regs (gdbarch)
669 * sizeof (struct packet_reg *));
670 for (num_remote_regs = 0, regnum = 0;
671 regnum < gdbarch_num_regs (gdbarch);
672 regnum++)
673 if (regs[regnum].pnum != -1)
674 remote_regs[num_remote_regs++] = &regs[regnum];
675
676 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
677 compare_pnums);
678
679 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
680 {
681 remote_regs[regnum]->in_g_packet = 1;
682 remote_regs[regnum]->offset = offset;
683 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
684 }
685
686 return offset;
687 }
688
689 /* Given the architecture described by GDBARCH, return the remote
690 protocol register's number and the register's offset in the g/G
691 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
692 If the target does not have a mapping for REGNUM, return false,
693 otherwise, return true. */
694
695 int
696 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
697 int *pnum, int *poffset)
698 {
699 int sizeof_g_packet;
700 struct packet_reg *regs;
701 struct cleanup *old_chain;
702
703 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
704
705 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
706 old_chain = make_cleanup (xfree, regs);
707
708 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
709
710 *pnum = regs[regnum].pnum;
711 *poffset = regs[regnum].offset;
712
713 do_cleanups (old_chain);
714
715 return *pnum != -1;
716 }
717
718 static void *
719 init_remote_state (struct gdbarch *gdbarch)
720 {
721 struct remote_state *rs = get_remote_state_raw ();
722 struct remote_arch_state *rsa;
723
724 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
725
726 /* Use the architecture to build a regnum<->pnum table, which will be
727 1:1 unless a feature set specifies otherwise. */
728 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
729 gdbarch_num_regs (gdbarch),
730 struct packet_reg);
731
732 /* Record the maximum possible size of the g packet - it may turn out
733 to be smaller. */
734 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
735
736 /* Default maximum number of characters in a packet body. Many
737 remote stubs have a hardwired buffer size of 400 bytes
738 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
739 as the maximum packet-size to ensure that the packet and an extra
740 NUL character can always fit in the buffer. This stops GDB
741 trashing stubs that try to squeeze an extra NUL into what is
742 already a full buffer (As of 1999-12-04 that was most stubs). */
743 rsa->remote_packet_size = 400 - 1;
744
745 /* This one is filled in when a ``g'' packet is received. */
746 rsa->actual_register_packet_size = 0;
747
748 /* Should rsa->sizeof_g_packet needs more space than the
749 default, adjust the size accordingly. Remember that each byte is
750 encoded as two characters. 32 is the overhead for the packet
751 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
752 (``$NN:G...#NN'') is a better guess, the below has been padded a
753 little. */
754 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
755 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
756
757 /* Make sure that the packet buffer is plenty big enough for
758 this architecture. */
759 if (rs->buf_size < rsa->remote_packet_size)
760 {
761 rs->buf_size = 2 * rsa->remote_packet_size;
762 rs->buf = xrealloc (rs->buf, rs->buf_size);
763 }
764
765 return rsa;
766 }
767
768 /* Return the current allowed size of a remote packet. This is
769 inferred from the current architecture, and should be used to
770 limit the length of outgoing packets. */
771 static long
772 get_remote_packet_size (void)
773 {
774 struct remote_state *rs = get_remote_state ();
775 struct remote_arch_state *rsa = get_remote_arch_state ();
776
777 if (rs->explicit_packet_size)
778 return rs->explicit_packet_size;
779
780 return rsa->remote_packet_size;
781 }
782
783 static struct packet_reg *
784 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
785 {
786 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
787 return NULL;
788 else
789 {
790 struct packet_reg *r = &rsa->regs[regnum];
791
792 gdb_assert (r->regnum == regnum);
793 return r;
794 }
795 }
796
797 static struct packet_reg *
798 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
799 {
800 int i;
801
802 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
803 {
804 struct packet_reg *r = &rsa->regs[i];
805
806 if (r->pnum == pnum)
807 return r;
808 }
809 return NULL;
810 }
811
812 static struct target_ops remote_ops;
813
814 static struct target_ops extended_remote_ops;
815
816 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
817 ``forever'' still use the normal timeout mechanism. This is
818 currently used by the ASYNC code to guarentee that target reads
819 during the initial connect always time-out. Once getpkt has been
820 modified to return a timeout indication and, in turn
821 remote_wait()/wait_for_inferior() have gained a timeout parameter
822 this can go away. */
823 static int wait_forever_enabled_p = 1;
824
825 /* Allow the user to specify what sequence to send to the remote
826 when he requests a program interruption: Although ^C is usually
827 what remote systems expect (this is the default, here), it is
828 sometimes preferable to send a break. On other systems such
829 as the Linux kernel, a break followed by g, which is Magic SysRq g
830 is required in order to interrupt the execution. */
831 const char interrupt_sequence_control_c[] = "Ctrl-C";
832 const char interrupt_sequence_break[] = "BREAK";
833 const char interrupt_sequence_break_g[] = "BREAK-g";
834 static const char *const interrupt_sequence_modes[] =
835 {
836 interrupt_sequence_control_c,
837 interrupt_sequence_break,
838 interrupt_sequence_break_g,
839 NULL
840 };
841 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
842
843 static void
844 show_interrupt_sequence (struct ui_file *file, int from_tty,
845 struct cmd_list_element *c,
846 const char *value)
847 {
848 if (interrupt_sequence_mode == interrupt_sequence_control_c)
849 fprintf_filtered (file,
850 _("Send the ASCII ETX character (Ctrl-c) "
851 "to the remote target to interrupt the "
852 "execution of the program.\n"));
853 else if (interrupt_sequence_mode == interrupt_sequence_break)
854 fprintf_filtered (file,
855 _("send a break signal to the remote target "
856 "to interrupt the execution of the program.\n"));
857 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
858 fprintf_filtered (file,
859 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
860 "the remote target to interrupt the execution "
861 "of Linux kernel.\n"));
862 else
863 internal_error (__FILE__, __LINE__,
864 _("Invalid value for interrupt_sequence_mode: %s."),
865 interrupt_sequence_mode);
866 }
867
868 /* This boolean variable specifies whether interrupt_sequence is sent
869 to the remote target when gdb connects to it.
870 This is mostly needed when you debug the Linux kernel: The Linux kernel
871 expects BREAK g which is Magic SysRq g for connecting gdb. */
872 static int interrupt_on_connect = 0;
873
874 /* This variable is used to implement the "set/show remotebreak" commands.
875 Since these commands are now deprecated in favor of "set/show remote
876 interrupt-sequence", it no longer has any effect on the code. */
877 static int remote_break;
878
879 static void
880 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
881 {
882 if (remote_break)
883 interrupt_sequence_mode = interrupt_sequence_break;
884 else
885 interrupt_sequence_mode = interrupt_sequence_control_c;
886 }
887
888 static void
889 show_remotebreak (struct ui_file *file, int from_tty,
890 struct cmd_list_element *c,
891 const char *value)
892 {
893 }
894
895 /* This variable sets the number of bits in an address that are to be
896 sent in a memory ("M" or "m") packet. Normally, after stripping
897 leading zeros, the entire address would be sent. This variable
898 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
899 initial implementation of remote.c restricted the address sent in
900 memory packets to ``host::sizeof long'' bytes - (typically 32
901 bits). Consequently, for 64 bit targets, the upper 32 bits of an
902 address was never sent. Since fixing this bug may cause a break in
903 some remote targets this variable is principly provided to
904 facilitate backward compatibility. */
905
906 static unsigned int remote_address_size;
907
908 /* Temporary to track who currently owns the terminal. See
909 remote_terminal_* for more details. */
910
911 static int remote_async_terminal_ours_p;
912
913 /* The executable file to use for "run" on the remote side. */
914
915 static char *remote_exec_file = "";
916
917 \f
918 /* User configurable variables for the number of characters in a
919 memory read/write packet. MIN (rsa->remote_packet_size,
920 rsa->sizeof_g_packet) is the default. Some targets need smaller
921 values (fifo overruns, et.al.) and some users need larger values
922 (speed up transfers). The variables ``preferred_*'' (the user
923 request), ``current_*'' (what was actually set) and ``forced_*''
924 (Positive - a soft limit, negative - a hard limit). */
925
926 struct memory_packet_config
927 {
928 char *name;
929 long size;
930 int fixed_p;
931 };
932
933 /* Compute the current size of a read/write packet. Since this makes
934 use of ``actual_register_packet_size'' the computation is dynamic. */
935
936 static long
937 get_memory_packet_size (struct memory_packet_config *config)
938 {
939 struct remote_state *rs = get_remote_state ();
940 struct remote_arch_state *rsa = get_remote_arch_state ();
941
942 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
943 law?) that some hosts don't cope very well with large alloca()
944 calls. Eventually the alloca() code will be replaced by calls to
945 xmalloc() and make_cleanups() allowing this restriction to either
946 be lifted or removed. */
947 #ifndef MAX_REMOTE_PACKET_SIZE
948 #define MAX_REMOTE_PACKET_SIZE 16384
949 #endif
950 /* NOTE: 20 ensures we can write at least one byte. */
951 #ifndef MIN_REMOTE_PACKET_SIZE
952 #define MIN_REMOTE_PACKET_SIZE 20
953 #endif
954 long what_they_get;
955 if (config->fixed_p)
956 {
957 if (config->size <= 0)
958 what_they_get = MAX_REMOTE_PACKET_SIZE;
959 else
960 what_they_get = config->size;
961 }
962 else
963 {
964 what_they_get = get_remote_packet_size ();
965 /* Limit the packet to the size specified by the user. */
966 if (config->size > 0
967 && what_they_get > config->size)
968 what_they_get = config->size;
969
970 /* Limit it to the size of the targets ``g'' response unless we have
971 permission from the stub to use a larger packet size. */
972 if (rs->explicit_packet_size == 0
973 && rsa->actual_register_packet_size > 0
974 && what_they_get > rsa->actual_register_packet_size)
975 what_they_get = rsa->actual_register_packet_size;
976 }
977 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
978 what_they_get = MAX_REMOTE_PACKET_SIZE;
979 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
980 what_they_get = MIN_REMOTE_PACKET_SIZE;
981
982 /* Make sure there is room in the global buffer for this packet
983 (including its trailing NUL byte). */
984 if (rs->buf_size < what_they_get + 1)
985 {
986 rs->buf_size = 2 * what_they_get;
987 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
988 }
989
990 return what_they_get;
991 }
992
993 /* Update the size of a read/write packet. If they user wants
994 something really big then do a sanity check. */
995
996 static void
997 set_memory_packet_size (char *args, struct memory_packet_config *config)
998 {
999 int fixed_p = config->fixed_p;
1000 long size = config->size;
1001
1002 if (args == NULL)
1003 error (_("Argument required (integer, `fixed' or `limited')."));
1004 else if (strcmp (args, "hard") == 0
1005 || strcmp (args, "fixed") == 0)
1006 fixed_p = 1;
1007 else if (strcmp (args, "soft") == 0
1008 || strcmp (args, "limit") == 0)
1009 fixed_p = 0;
1010 else
1011 {
1012 char *end;
1013
1014 size = strtoul (args, &end, 0);
1015 if (args == end)
1016 error (_("Invalid %s (bad syntax)."), config->name);
1017 #if 0
1018 /* Instead of explicitly capping the size of a packet to
1019 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
1020 instead allowed to set the size to something arbitrarily
1021 large. */
1022 if (size > MAX_REMOTE_PACKET_SIZE)
1023 error (_("Invalid %s (too large)."), config->name);
1024 #endif
1025 }
1026 /* Extra checks? */
1027 if (fixed_p && !config->fixed_p)
1028 {
1029 if (! query (_("The target may not be able to correctly handle a %s\n"
1030 "of %ld bytes. Change the packet size? "),
1031 config->name, size))
1032 error (_("Packet size not changed."));
1033 }
1034 /* Update the config. */
1035 config->fixed_p = fixed_p;
1036 config->size = size;
1037 }
1038
1039 static void
1040 show_memory_packet_size (struct memory_packet_config *config)
1041 {
1042 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1043 if (config->fixed_p)
1044 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1045 get_memory_packet_size (config));
1046 else
1047 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1048 get_memory_packet_size (config));
1049 }
1050
1051 static struct memory_packet_config memory_write_packet_config =
1052 {
1053 "memory-write-packet-size",
1054 };
1055
1056 static void
1057 set_memory_write_packet_size (char *args, int from_tty)
1058 {
1059 set_memory_packet_size (args, &memory_write_packet_config);
1060 }
1061
1062 static void
1063 show_memory_write_packet_size (char *args, int from_tty)
1064 {
1065 show_memory_packet_size (&memory_write_packet_config);
1066 }
1067
1068 static long
1069 get_memory_write_packet_size (void)
1070 {
1071 return get_memory_packet_size (&memory_write_packet_config);
1072 }
1073
1074 static struct memory_packet_config memory_read_packet_config =
1075 {
1076 "memory-read-packet-size",
1077 };
1078
1079 static void
1080 set_memory_read_packet_size (char *args, int from_tty)
1081 {
1082 set_memory_packet_size (args, &memory_read_packet_config);
1083 }
1084
1085 static void
1086 show_memory_read_packet_size (char *args, int from_tty)
1087 {
1088 show_memory_packet_size (&memory_read_packet_config);
1089 }
1090
1091 static long
1092 get_memory_read_packet_size (void)
1093 {
1094 long size = get_memory_packet_size (&memory_read_packet_config);
1095
1096 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1097 extra buffer size argument before the memory read size can be
1098 increased beyond this. */
1099 if (size > get_remote_packet_size ())
1100 size = get_remote_packet_size ();
1101 return size;
1102 }
1103
1104 \f
1105 /* Generic configuration support for packets the stub optionally
1106 supports. Allows the user to specify the use of the packet as well
1107 as allowing GDB to auto-detect support in the remote stub. */
1108
1109 enum packet_support
1110 {
1111 PACKET_SUPPORT_UNKNOWN = 0,
1112 PACKET_ENABLE,
1113 PACKET_DISABLE
1114 };
1115
1116 struct packet_config
1117 {
1118 const char *name;
1119 const char *title;
1120 enum auto_boolean detect;
1121 enum packet_support support;
1122 };
1123
1124 /* Analyze a packet's return value and update the packet config
1125 accordingly. */
1126
1127 enum packet_result
1128 {
1129 PACKET_ERROR,
1130 PACKET_OK,
1131 PACKET_UNKNOWN
1132 };
1133
1134 static void
1135 update_packet_config (struct packet_config *config)
1136 {
1137 switch (config->detect)
1138 {
1139 case AUTO_BOOLEAN_TRUE:
1140 config->support = PACKET_ENABLE;
1141 break;
1142 case AUTO_BOOLEAN_FALSE:
1143 config->support = PACKET_DISABLE;
1144 break;
1145 case AUTO_BOOLEAN_AUTO:
1146 config->support = PACKET_SUPPORT_UNKNOWN;
1147 break;
1148 }
1149 }
1150
1151 static void
1152 show_packet_config_cmd (struct packet_config *config)
1153 {
1154 char *support = "internal-error";
1155
1156 switch (config->support)
1157 {
1158 case PACKET_ENABLE:
1159 support = "enabled";
1160 break;
1161 case PACKET_DISABLE:
1162 support = "disabled";
1163 break;
1164 case PACKET_SUPPORT_UNKNOWN:
1165 support = "unknown";
1166 break;
1167 }
1168 switch (config->detect)
1169 {
1170 case AUTO_BOOLEAN_AUTO:
1171 printf_filtered (_("Support for the `%s' packet "
1172 "is auto-detected, currently %s.\n"),
1173 config->name, support);
1174 break;
1175 case AUTO_BOOLEAN_TRUE:
1176 case AUTO_BOOLEAN_FALSE:
1177 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1178 config->name, support);
1179 break;
1180 }
1181 }
1182
1183 static void
1184 add_packet_config_cmd (struct packet_config *config, const char *name,
1185 const char *title, int legacy)
1186 {
1187 char *set_doc;
1188 char *show_doc;
1189 char *cmd_name;
1190
1191 config->name = name;
1192 config->title = title;
1193 config->detect = AUTO_BOOLEAN_AUTO;
1194 config->support = PACKET_SUPPORT_UNKNOWN;
1195 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1196 name, title);
1197 show_doc = xstrprintf ("Show current use of remote "
1198 "protocol `%s' (%s) packet",
1199 name, title);
1200 /* set/show TITLE-packet {auto,on,off} */
1201 cmd_name = xstrprintf ("%s-packet", title);
1202 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1203 &config->detect, set_doc,
1204 show_doc, NULL, /* help_doc */
1205 set_remote_protocol_packet_cmd,
1206 show_remote_protocol_packet_cmd,
1207 &remote_set_cmdlist, &remote_show_cmdlist);
1208 /* The command code copies the documentation strings. */
1209 xfree (set_doc);
1210 xfree (show_doc);
1211 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1212 if (legacy)
1213 {
1214 char *legacy_name;
1215
1216 legacy_name = xstrprintf ("%s-packet", name);
1217 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1218 &remote_set_cmdlist);
1219 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1220 &remote_show_cmdlist);
1221 }
1222 }
1223
1224 static enum packet_result
1225 packet_check_result (const char *buf)
1226 {
1227 if (buf[0] != '\0')
1228 {
1229 /* The stub recognized the packet request. Check that the
1230 operation succeeded. */
1231 if (buf[0] == 'E'
1232 && isxdigit (buf[1]) && isxdigit (buf[2])
1233 && buf[3] == '\0')
1234 /* "Enn" - definitly an error. */
1235 return PACKET_ERROR;
1236
1237 /* Always treat "E." as an error. This will be used for
1238 more verbose error messages, such as E.memtypes. */
1239 if (buf[0] == 'E' && buf[1] == '.')
1240 return PACKET_ERROR;
1241
1242 /* The packet may or may not be OK. Just assume it is. */
1243 return PACKET_OK;
1244 }
1245 else
1246 /* The stub does not support the packet. */
1247 return PACKET_UNKNOWN;
1248 }
1249
1250 static enum packet_result
1251 packet_ok (const char *buf, struct packet_config *config)
1252 {
1253 enum packet_result result;
1254
1255 result = packet_check_result (buf);
1256 switch (result)
1257 {
1258 case PACKET_OK:
1259 case PACKET_ERROR:
1260 /* The stub recognized the packet request. */
1261 switch (config->support)
1262 {
1263 case PACKET_SUPPORT_UNKNOWN:
1264 if (remote_debug)
1265 fprintf_unfiltered (gdb_stdlog,
1266 "Packet %s (%s) is supported\n",
1267 config->name, config->title);
1268 config->support = PACKET_ENABLE;
1269 break;
1270 case PACKET_DISABLE:
1271 internal_error (__FILE__, __LINE__,
1272 _("packet_ok: attempt to use a disabled packet"));
1273 break;
1274 case PACKET_ENABLE:
1275 break;
1276 }
1277 break;
1278 case PACKET_UNKNOWN:
1279 /* The stub does not support the packet. */
1280 switch (config->support)
1281 {
1282 case PACKET_ENABLE:
1283 if (config->detect == AUTO_BOOLEAN_AUTO)
1284 /* If the stub previously indicated that the packet was
1285 supported then there is a protocol error.. */
1286 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1287 config->name, config->title);
1288 else
1289 /* The user set it wrong. */
1290 error (_("Enabled packet %s (%s) not recognized by stub"),
1291 config->name, config->title);
1292 break;
1293 case PACKET_SUPPORT_UNKNOWN:
1294 if (remote_debug)
1295 fprintf_unfiltered (gdb_stdlog,
1296 "Packet %s (%s) is NOT supported\n",
1297 config->name, config->title);
1298 config->support = PACKET_DISABLE;
1299 break;
1300 case PACKET_DISABLE:
1301 break;
1302 }
1303 break;
1304 }
1305
1306 return result;
1307 }
1308
1309 enum {
1310 PACKET_vCont = 0,
1311 PACKET_X,
1312 PACKET_qSymbol,
1313 PACKET_P,
1314 PACKET_p,
1315 PACKET_Z0,
1316 PACKET_Z1,
1317 PACKET_Z2,
1318 PACKET_Z3,
1319 PACKET_Z4,
1320 PACKET_vFile_open,
1321 PACKET_vFile_pread,
1322 PACKET_vFile_pwrite,
1323 PACKET_vFile_close,
1324 PACKET_vFile_unlink,
1325 PACKET_vFile_readlink,
1326 PACKET_qXfer_auxv,
1327 PACKET_qXfer_features,
1328 PACKET_qXfer_libraries,
1329 PACKET_qXfer_libraries_svr4,
1330 PACKET_qXfer_memory_map,
1331 PACKET_qXfer_spu_read,
1332 PACKET_qXfer_spu_write,
1333 PACKET_qXfer_osdata,
1334 PACKET_qXfer_threads,
1335 PACKET_qXfer_statictrace_read,
1336 PACKET_qXfer_traceframe_info,
1337 PACKET_qXfer_uib,
1338 PACKET_qGetTIBAddr,
1339 PACKET_qGetTLSAddr,
1340 PACKET_qSupported,
1341 PACKET_qTStatus,
1342 PACKET_QPassSignals,
1343 PACKET_QProgramSignals,
1344 PACKET_qSearch_memory,
1345 PACKET_vAttach,
1346 PACKET_vRun,
1347 PACKET_QStartNoAckMode,
1348 PACKET_vKill,
1349 PACKET_qXfer_siginfo_read,
1350 PACKET_qXfer_siginfo_write,
1351 PACKET_qAttached,
1352 PACKET_ConditionalTracepoints,
1353 PACKET_ConditionalBreakpoints,
1354 PACKET_BreakpointCommands,
1355 PACKET_FastTracepoints,
1356 PACKET_StaticTracepoints,
1357 PACKET_InstallInTrace,
1358 PACKET_bc,
1359 PACKET_bs,
1360 PACKET_TracepointSource,
1361 PACKET_QAllow,
1362 PACKET_qXfer_fdpic,
1363 PACKET_QDisableRandomization,
1364 PACKET_QAgent,
1365 PACKET_QTBuffer_size,
1366 PACKET_Qbtrace_off,
1367 PACKET_Qbtrace_bts,
1368 PACKET_qXfer_btrace,
1369 PACKET_MAX
1370 };
1371
1372 static struct packet_config remote_protocol_packets[PACKET_MAX];
1373
1374 static void
1375 set_remote_protocol_packet_cmd (char *args, int from_tty,
1376 struct cmd_list_element *c)
1377 {
1378 struct packet_config *packet;
1379
1380 for (packet = remote_protocol_packets;
1381 packet < &remote_protocol_packets[PACKET_MAX];
1382 packet++)
1383 {
1384 if (&packet->detect == c->var)
1385 {
1386 update_packet_config (packet);
1387 return;
1388 }
1389 }
1390 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1391 c->name);
1392 }
1393
1394 static void
1395 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1396 struct cmd_list_element *c,
1397 const char *value)
1398 {
1399 struct packet_config *packet;
1400
1401 for (packet = remote_protocol_packets;
1402 packet < &remote_protocol_packets[PACKET_MAX];
1403 packet++)
1404 {
1405 if (&packet->detect == c->var)
1406 {
1407 show_packet_config_cmd (packet);
1408 return;
1409 }
1410 }
1411 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1412 c->name);
1413 }
1414
1415 /* Should we try one of the 'Z' requests? */
1416
1417 enum Z_packet_type
1418 {
1419 Z_PACKET_SOFTWARE_BP,
1420 Z_PACKET_HARDWARE_BP,
1421 Z_PACKET_WRITE_WP,
1422 Z_PACKET_READ_WP,
1423 Z_PACKET_ACCESS_WP,
1424 NR_Z_PACKET_TYPES
1425 };
1426
1427 /* For compatibility with older distributions. Provide a ``set remote
1428 Z-packet ...'' command that updates all the Z packet types. */
1429
1430 static enum auto_boolean remote_Z_packet_detect;
1431
1432 static void
1433 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1434 struct cmd_list_element *c)
1435 {
1436 int i;
1437
1438 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1439 {
1440 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1441 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1442 }
1443 }
1444
1445 static void
1446 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1447 struct cmd_list_element *c,
1448 const char *value)
1449 {
1450 int i;
1451
1452 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1453 {
1454 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1455 }
1456 }
1457
1458 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1459 static struct async_signal_handler *async_sigint_remote_twice_token;
1460 static struct async_signal_handler *async_sigint_remote_token;
1461
1462 \f
1463 /* Asynchronous signal handle registered as event loop source for
1464 when we have pending events ready to be passed to the core. */
1465
1466 static struct async_event_handler *remote_async_inferior_event_token;
1467
1468 \f
1469
1470 static ptid_t magic_null_ptid;
1471 static ptid_t not_sent_ptid;
1472 static ptid_t any_thread_ptid;
1473
1474 /* Find out if the stub attached to PID (and hence GDB should offer to
1475 detach instead of killing it when bailing out). */
1476
1477 static int
1478 remote_query_attached (int pid)
1479 {
1480 struct remote_state *rs = get_remote_state ();
1481 size_t size = get_remote_packet_size ();
1482
1483 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1484 return 0;
1485
1486 if (remote_multi_process_p (rs))
1487 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1488 else
1489 xsnprintf (rs->buf, size, "qAttached");
1490
1491 putpkt (rs->buf);
1492 getpkt (&rs->buf, &rs->buf_size, 0);
1493
1494 switch (packet_ok (rs->buf,
1495 &remote_protocol_packets[PACKET_qAttached]))
1496 {
1497 case PACKET_OK:
1498 if (strcmp (rs->buf, "1") == 0)
1499 return 1;
1500 break;
1501 case PACKET_ERROR:
1502 warning (_("Remote failure reply: %s"), rs->buf);
1503 break;
1504 case PACKET_UNKNOWN:
1505 break;
1506 }
1507
1508 return 0;
1509 }
1510
1511 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1512 has been invented by GDB, instead of reported by the target. Since
1513 we can be connected to a remote system before before knowing about
1514 any inferior, mark the target with execution when we find the first
1515 inferior. If ATTACHED is 1, then we had just attached to this
1516 inferior. If it is 0, then we just created this inferior. If it
1517 is -1, then try querying the remote stub to find out if it had
1518 attached to the inferior or not. */
1519
1520 static struct inferior *
1521 remote_add_inferior (int fake_pid_p, int pid, int attached)
1522 {
1523 struct inferior *inf;
1524
1525 /* Check whether this process we're learning about is to be
1526 considered attached, or if is to be considered to have been
1527 spawned by the stub. */
1528 if (attached == -1)
1529 attached = remote_query_attached (pid);
1530
1531 if (gdbarch_has_global_solist (target_gdbarch ()))
1532 {
1533 /* If the target shares code across all inferiors, then every
1534 attach adds a new inferior. */
1535 inf = add_inferior (pid);
1536
1537 /* ... and every inferior is bound to the same program space.
1538 However, each inferior may still have its own address
1539 space. */
1540 inf->aspace = maybe_new_address_space ();
1541 inf->pspace = current_program_space;
1542 }
1543 else
1544 {
1545 /* In the traditional debugging scenario, there's a 1-1 match
1546 between program/address spaces. We simply bind the inferior
1547 to the program space's address space. */
1548 inf = current_inferior ();
1549 inferior_appeared (inf, pid);
1550 }
1551
1552 inf->attach_flag = attached;
1553 inf->fake_pid_p = fake_pid_p;
1554
1555 return inf;
1556 }
1557
1558 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1559 according to RUNNING. */
1560
1561 static void
1562 remote_add_thread (ptid_t ptid, int running)
1563 {
1564 add_thread (ptid);
1565
1566 set_executing (ptid, running);
1567 set_running (ptid, running);
1568 }
1569
1570 /* Come here when we learn about a thread id from the remote target.
1571 It may be the first time we hear about such thread, so take the
1572 opportunity to add it to GDB's thread list. In case this is the
1573 first time we're noticing its corresponding inferior, add it to
1574 GDB's inferior list as well. */
1575
1576 static void
1577 remote_notice_new_inferior (ptid_t currthread, int running)
1578 {
1579 /* If this is a new thread, add it to GDB's thread list.
1580 If we leave it up to WFI to do this, bad things will happen. */
1581
1582 if (in_thread_list (currthread) && is_exited (currthread))
1583 {
1584 /* We're seeing an event on a thread id we knew had exited.
1585 This has to be a new thread reusing the old id. Add it. */
1586 remote_add_thread (currthread, running);
1587 return;
1588 }
1589
1590 if (!in_thread_list (currthread))
1591 {
1592 struct inferior *inf = NULL;
1593 int pid = ptid_get_pid (currthread);
1594
1595 if (ptid_is_pid (inferior_ptid)
1596 && pid == ptid_get_pid (inferior_ptid))
1597 {
1598 /* inferior_ptid has no thread member yet. This can happen
1599 with the vAttach -> remote_wait,"TAAthread:" path if the
1600 stub doesn't support qC. This is the first stop reported
1601 after an attach, so this is the main thread. Update the
1602 ptid in the thread list. */
1603 if (in_thread_list (pid_to_ptid (pid)))
1604 thread_change_ptid (inferior_ptid, currthread);
1605 else
1606 {
1607 remote_add_thread (currthread, running);
1608 inferior_ptid = currthread;
1609 }
1610 return;
1611 }
1612
1613 if (ptid_equal (magic_null_ptid, inferior_ptid))
1614 {
1615 /* inferior_ptid is not set yet. This can happen with the
1616 vRun -> remote_wait,"TAAthread:" path if the stub
1617 doesn't support qC. This is the first stop reported
1618 after an attach, so this is the main thread. Update the
1619 ptid in the thread list. */
1620 thread_change_ptid (inferior_ptid, currthread);
1621 return;
1622 }
1623
1624 /* When connecting to a target remote, or to a target
1625 extended-remote which already was debugging an inferior, we
1626 may not know about it yet. Add it before adding its child
1627 thread, so notifications are emitted in a sensible order. */
1628 if (!in_inferior_list (ptid_get_pid (currthread)))
1629 {
1630 struct remote_state *rs = get_remote_state ();
1631 int fake_pid_p = !remote_multi_process_p (rs);
1632
1633 inf = remote_add_inferior (fake_pid_p,
1634 ptid_get_pid (currthread), -1);
1635 }
1636
1637 /* This is really a new thread. Add it. */
1638 remote_add_thread (currthread, running);
1639
1640 /* If we found a new inferior, let the common code do whatever
1641 it needs to with it (e.g., read shared libraries, insert
1642 breakpoints). */
1643 if (inf != NULL)
1644 notice_new_inferior (currthread, running, 0);
1645 }
1646 }
1647
1648 /* Return the private thread data, creating it if necessary. */
1649
1650 static struct private_thread_info *
1651 demand_private_info (ptid_t ptid)
1652 {
1653 struct thread_info *info = find_thread_ptid (ptid);
1654
1655 gdb_assert (info);
1656
1657 if (!info->private)
1658 {
1659 info->private = xmalloc (sizeof (*(info->private)));
1660 info->private_dtor = free_private_thread_info;
1661 info->private->core = -1;
1662 info->private->extra = 0;
1663 }
1664
1665 return info->private;
1666 }
1667
1668 /* Call this function as a result of
1669 1) A halt indication (T packet) containing a thread id
1670 2) A direct query of currthread
1671 3) Successful execution of set thread */
1672
1673 static void
1674 record_currthread (struct remote_state *rs, ptid_t currthread)
1675 {
1676 rs->general_thread = currthread;
1677 }
1678
1679 /* If 'QPassSignals' is supported, tell the remote stub what signals
1680 it can simply pass through to the inferior without reporting. */
1681
1682 static void
1683 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1684 {
1685 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1686 {
1687 char *pass_packet, *p;
1688 int count = 0, i;
1689 struct remote_state *rs = get_remote_state ();
1690
1691 gdb_assert (numsigs < 256);
1692 for (i = 0; i < numsigs; i++)
1693 {
1694 if (pass_signals[i])
1695 count++;
1696 }
1697 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1698 strcpy (pass_packet, "QPassSignals:");
1699 p = pass_packet + strlen (pass_packet);
1700 for (i = 0; i < numsigs; i++)
1701 {
1702 if (pass_signals[i])
1703 {
1704 if (i >= 16)
1705 *p++ = tohex (i >> 4);
1706 *p++ = tohex (i & 15);
1707 if (count)
1708 *p++ = ';';
1709 else
1710 break;
1711 count--;
1712 }
1713 }
1714 *p = 0;
1715 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
1716 {
1717 char *buf = rs->buf;
1718
1719 putpkt (pass_packet);
1720 getpkt (&rs->buf, &rs->buf_size, 0);
1721 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1722 if (rs->last_pass_packet)
1723 xfree (rs->last_pass_packet);
1724 rs->last_pass_packet = pass_packet;
1725 }
1726 else
1727 xfree (pass_packet);
1728 }
1729 }
1730
1731 /* If 'QProgramSignals' is supported, tell the remote stub what
1732 signals it should pass through to the inferior when detaching. */
1733
1734 static void
1735 remote_program_signals (int numsigs, unsigned char *signals)
1736 {
1737 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1738 {
1739 char *packet, *p;
1740 int count = 0, i;
1741 struct remote_state *rs = get_remote_state ();
1742
1743 gdb_assert (numsigs < 256);
1744 for (i = 0; i < numsigs; i++)
1745 {
1746 if (signals[i])
1747 count++;
1748 }
1749 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1750 strcpy (packet, "QProgramSignals:");
1751 p = packet + strlen (packet);
1752 for (i = 0; i < numsigs; i++)
1753 {
1754 if (signal_pass_state (i))
1755 {
1756 if (i >= 16)
1757 *p++ = tohex (i >> 4);
1758 *p++ = tohex (i & 15);
1759 if (count)
1760 *p++ = ';';
1761 else
1762 break;
1763 count--;
1764 }
1765 }
1766 *p = 0;
1767 if (!rs->last_program_signals_packet
1768 || strcmp (rs->last_program_signals_packet, packet) != 0)
1769 {
1770 char *buf = rs->buf;
1771
1772 putpkt (packet);
1773 getpkt (&rs->buf, &rs->buf_size, 0);
1774 packet_ok (buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1775 xfree (rs->last_program_signals_packet);
1776 rs->last_program_signals_packet = packet;
1777 }
1778 else
1779 xfree (packet);
1780 }
1781 }
1782
1783 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1784 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1785 thread. If GEN is set, set the general thread, if not, then set
1786 the step/continue thread. */
1787 static void
1788 set_thread (struct ptid ptid, int gen)
1789 {
1790 struct remote_state *rs = get_remote_state ();
1791 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
1792 char *buf = rs->buf;
1793 char *endbuf = rs->buf + get_remote_packet_size ();
1794
1795 if (ptid_equal (state, ptid))
1796 return;
1797
1798 *buf++ = 'H';
1799 *buf++ = gen ? 'g' : 'c';
1800 if (ptid_equal (ptid, magic_null_ptid))
1801 xsnprintf (buf, endbuf - buf, "0");
1802 else if (ptid_equal (ptid, any_thread_ptid))
1803 xsnprintf (buf, endbuf - buf, "0");
1804 else if (ptid_equal (ptid, minus_one_ptid))
1805 xsnprintf (buf, endbuf - buf, "-1");
1806 else
1807 write_ptid (buf, endbuf, ptid);
1808 putpkt (rs->buf);
1809 getpkt (&rs->buf, &rs->buf_size, 0);
1810 if (gen)
1811 rs->general_thread = ptid;
1812 else
1813 rs->continue_thread = ptid;
1814 }
1815
1816 static void
1817 set_general_thread (struct ptid ptid)
1818 {
1819 set_thread (ptid, 1);
1820 }
1821
1822 static void
1823 set_continue_thread (struct ptid ptid)
1824 {
1825 set_thread (ptid, 0);
1826 }
1827
1828 /* Change the remote current process. Which thread within the process
1829 ends up selected isn't important, as long as it is the same process
1830 as what INFERIOR_PTID points to.
1831
1832 This comes from that fact that there is no explicit notion of
1833 "selected process" in the protocol. The selected process for
1834 general operations is the process the selected general thread
1835 belongs to. */
1836
1837 static void
1838 set_general_process (void)
1839 {
1840 struct remote_state *rs = get_remote_state ();
1841
1842 /* If the remote can't handle multiple processes, don't bother. */
1843 if (!rs->extended || !remote_multi_process_p (rs))
1844 return;
1845
1846 /* We only need to change the remote current thread if it's pointing
1847 at some other process. */
1848 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
1849 set_general_thread (inferior_ptid);
1850 }
1851
1852 \f
1853 /* Return nonzero if the thread PTID is still alive on the remote
1854 system. */
1855
1856 static int
1857 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1858 {
1859 struct remote_state *rs = get_remote_state ();
1860 char *p, *endp;
1861
1862 if (ptid_equal (ptid, magic_null_ptid))
1863 /* The main thread is always alive. */
1864 return 1;
1865
1866 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1867 /* The main thread is always alive. This can happen after a
1868 vAttach, if the remote side doesn't support
1869 multi-threading. */
1870 return 1;
1871
1872 p = rs->buf;
1873 endp = rs->buf + get_remote_packet_size ();
1874
1875 *p++ = 'T';
1876 write_ptid (p, endp, ptid);
1877
1878 putpkt (rs->buf);
1879 getpkt (&rs->buf, &rs->buf_size, 0);
1880 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1881 }
1882
1883 /* About these extended threadlist and threadinfo packets. They are
1884 variable length packets but, the fields within them are often fixed
1885 length. They are redundent enough to send over UDP as is the
1886 remote protocol in general. There is a matching unit test module
1887 in libstub. */
1888
1889 /* WARNING: This threadref data structure comes from the remote O.S.,
1890 libstub protocol encoding, and remote.c. It is not particularly
1891 changable. */
1892
1893 /* Right now, the internal structure is int. We want it to be bigger.
1894 Plan to fix this. */
1895
1896 typedef int gdb_threadref; /* Internal GDB thread reference. */
1897
1898 /* gdb_ext_thread_info is an internal GDB data structure which is
1899 equivalent to the reply of the remote threadinfo packet. */
1900
1901 struct gdb_ext_thread_info
1902 {
1903 threadref threadid; /* External form of thread reference. */
1904 int active; /* Has state interesting to GDB?
1905 regs, stack. */
1906 char display[256]; /* Brief state display, name,
1907 blocked/suspended. */
1908 char shortname[32]; /* To be used to name threads. */
1909 char more_display[256]; /* Long info, statistics, queue depth,
1910 whatever. */
1911 };
1912
1913 /* The volume of remote transfers can be limited by submitting
1914 a mask containing bits specifying the desired information.
1915 Use a union of these values as the 'selection' parameter to
1916 get_thread_info. FIXME: Make these TAG names more thread specific. */
1917
1918 #define TAG_THREADID 1
1919 #define TAG_EXISTS 2
1920 #define TAG_DISPLAY 4
1921 #define TAG_THREADNAME 8
1922 #define TAG_MOREDISPLAY 16
1923
1924 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1925
1926 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1927
1928 static char *unpack_nibble (char *buf, int *val);
1929
1930 static char *pack_nibble (char *buf, int nibble);
1931
1932 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1933
1934 static char *unpack_byte (char *buf, int *value);
1935
1936 static char *pack_int (char *buf, int value);
1937
1938 static char *unpack_int (char *buf, int *value);
1939
1940 static char *unpack_string (char *src, char *dest, int length);
1941
1942 static char *pack_threadid (char *pkt, threadref *id);
1943
1944 static char *unpack_threadid (char *inbuf, threadref *id);
1945
1946 void int_to_threadref (threadref *id, int value);
1947
1948 static int threadref_to_int (threadref *ref);
1949
1950 static void copy_threadref (threadref *dest, threadref *src);
1951
1952 static int threadmatch (threadref *dest, threadref *src);
1953
1954 static char *pack_threadinfo_request (char *pkt, int mode,
1955 threadref *id);
1956
1957 static int remote_unpack_thread_info_response (char *pkt,
1958 threadref *expectedref,
1959 struct gdb_ext_thread_info
1960 *info);
1961
1962
1963 static int remote_get_threadinfo (threadref *threadid,
1964 int fieldset, /*TAG mask */
1965 struct gdb_ext_thread_info *info);
1966
1967 static char *pack_threadlist_request (char *pkt, int startflag,
1968 int threadcount,
1969 threadref *nextthread);
1970
1971 static int parse_threadlist_response (char *pkt,
1972 int result_limit,
1973 threadref *original_echo,
1974 threadref *resultlist,
1975 int *doneflag);
1976
1977 static int remote_get_threadlist (int startflag,
1978 threadref *nextthread,
1979 int result_limit,
1980 int *done,
1981 int *result_count,
1982 threadref *threadlist);
1983
1984 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1985
1986 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1987 void *context, int looplimit);
1988
1989 static int remote_newthread_step (threadref *ref, void *context);
1990
1991
1992 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1993 buffer we're allowed to write to. Returns
1994 BUF+CHARACTERS_WRITTEN. */
1995
1996 static char *
1997 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1998 {
1999 int pid, tid;
2000 struct remote_state *rs = get_remote_state ();
2001
2002 if (remote_multi_process_p (rs))
2003 {
2004 pid = ptid_get_pid (ptid);
2005 if (pid < 0)
2006 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2007 else
2008 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2009 }
2010 tid = ptid_get_tid (ptid);
2011 if (tid < 0)
2012 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2013 else
2014 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2015
2016 return buf;
2017 }
2018
2019 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
2020 passed the last parsed char. Returns null_ptid on error. */
2021
2022 static ptid_t
2023 read_ptid (char *buf, char **obuf)
2024 {
2025 char *p = buf;
2026 char *pp;
2027 ULONGEST pid = 0, tid = 0;
2028
2029 if (*p == 'p')
2030 {
2031 /* Multi-process ptid. */
2032 pp = unpack_varlen_hex (p + 1, &pid);
2033 if (*pp != '.')
2034 error (_("invalid remote ptid: %s"), p);
2035
2036 p = pp;
2037 pp = unpack_varlen_hex (p + 1, &tid);
2038 if (obuf)
2039 *obuf = pp;
2040 return ptid_build (pid, 0, tid);
2041 }
2042
2043 /* No multi-process. Just a tid. */
2044 pp = unpack_varlen_hex (p, &tid);
2045
2046 /* Since the stub is not sending a process id, then default to
2047 what's in inferior_ptid, unless it's null at this point. If so,
2048 then since there's no way to know the pid of the reported
2049 threads, use the magic number. */
2050 if (ptid_equal (inferior_ptid, null_ptid))
2051 pid = ptid_get_pid (magic_null_ptid);
2052 else
2053 pid = ptid_get_pid (inferior_ptid);
2054
2055 if (obuf)
2056 *obuf = pp;
2057 return ptid_build (pid, 0, tid);
2058 }
2059
2060 /* Encode 64 bits in 16 chars of hex. */
2061
2062 static const char hexchars[] = "0123456789abcdef";
2063
2064 static int
2065 ishex (int ch, int *val)
2066 {
2067 if ((ch >= 'a') && (ch <= 'f'))
2068 {
2069 *val = ch - 'a' + 10;
2070 return 1;
2071 }
2072 if ((ch >= 'A') && (ch <= 'F'))
2073 {
2074 *val = ch - 'A' + 10;
2075 return 1;
2076 }
2077 if ((ch >= '0') && (ch <= '9'))
2078 {
2079 *val = ch - '0';
2080 return 1;
2081 }
2082 return 0;
2083 }
2084
2085 static int
2086 stubhex (int ch)
2087 {
2088 if (ch >= 'a' && ch <= 'f')
2089 return ch - 'a' + 10;
2090 if (ch >= '0' && ch <= '9')
2091 return ch - '0';
2092 if (ch >= 'A' && ch <= 'F')
2093 return ch - 'A' + 10;
2094 return -1;
2095 }
2096
2097 static int
2098 stub_unpack_int (char *buff, int fieldlength)
2099 {
2100 int nibble;
2101 int retval = 0;
2102
2103 while (fieldlength)
2104 {
2105 nibble = stubhex (*buff++);
2106 retval |= nibble;
2107 fieldlength--;
2108 if (fieldlength)
2109 retval = retval << 4;
2110 }
2111 return retval;
2112 }
2113
2114 char *
2115 unpack_varlen_hex (char *buff, /* packet to parse */
2116 ULONGEST *result)
2117 {
2118 int nibble;
2119 ULONGEST retval = 0;
2120
2121 while (ishex (*buff, &nibble))
2122 {
2123 buff++;
2124 retval = retval << 4;
2125 retval |= nibble & 0x0f;
2126 }
2127 *result = retval;
2128 return buff;
2129 }
2130
2131 static char *
2132 unpack_nibble (char *buf, int *val)
2133 {
2134 *val = fromhex (*buf++);
2135 return buf;
2136 }
2137
2138 static char *
2139 pack_nibble (char *buf, int nibble)
2140 {
2141 *buf++ = hexchars[(nibble & 0x0f)];
2142 return buf;
2143 }
2144
2145 static char *
2146 pack_hex_byte (char *pkt, int byte)
2147 {
2148 *pkt++ = hexchars[(byte >> 4) & 0xf];
2149 *pkt++ = hexchars[(byte & 0xf)];
2150 return pkt;
2151 }
2152
2153 static char *
2154 unpack_byte (char *buf, int *value)
2155 {
2156 *value = stub_unpack_int (buf, 2);
2157 return buf + 2;
2158 }
2159
2160 static char *
2161 pack_int (char *buf, int value)
2162 {
2163 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2164 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2165 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2166 buf = pack_hex_byte (buf, (value & 0xff));
2167 return buf;
2168 }
2169
2170 static char *
2171 unpack_int (char *buf, int *value)
2172 {
2173 *value = stub_unpack_int (buf, 8);
2174 return buf + 8;
2175 }
2176
2177 #if 0 /* Currently unused, uncomment when needed. */
2178 static char *pack_string (char *pkt, char *string);
2179
2180 static char *
2181 pack_string (char *pkt, char *string)
2182 {
2183 char ch;
2184 int len;
2185
2186 len = strlen (string);
2187 if (len > 200)
2188 len = 200; /* Bigger than most GDB packets, junk??? */
2189 pkt = pack_hex_byte (pkt, len);
2190 while (len-- > 0)
2191 {
2192 ch = *string++;
2193 if ((ch == '\0') || (ch == '#'))
2194 ch = '*'; /* Protect encapsulation. */
2195 *pkt++ = ch;
2196 }
2197 return pkt;
2198 }
2199 #endif /* 0 (unused) */
2200
2201 static char *
2202 unpack_string (char *src, char *dest, int length)
2203 {
2204 while (length--)
2205 *dest++ = *src++;
2206 *dest = '\0';
2207 return src;
2208 }
2209
2210 static char *
2211 pack_threadid (char *pkt, threadref *id)
2212 {
2213 char *limit;
2214 unsigned char *altid;
2215
2216 altid = (unsigned char *) id;
2217 limit = pkt + BUF_THREAD_ID_SIZE;
2218 while (pkt < limit)
2219 pkt = pack_hex_byte (pkt, *altid++);
2220 return pkt;
2221 }
2222
2223
2224 static char *
2225 unpack_threadid (char *inbuf, threadref *id)
2226 {
2227 char *altref;
2228 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2229 int x, y;
2230
2231 altref = (char *) id;
2232
2233 while (inbuf < limit)
2234 {
2235 x = stubhex (*inbuf++);
2236 y = stubhex (*inbuf++);
2237 *altref++ = (x << 4) | y;
2238 }
2239 return inbuf;
2240 }
2241
2242 /* Externally, threadrefs are 64 bits but internally, they are still
2243 ints. This is due to a mismatch of specifications. We would like
2244 to use 64bit thread references internally. This is an adapter
2245 function. */
2246
2247 void
2248 int_to_threadref (threadref *id, int value)
2249 {
2250 unsigned char *scan;
2251
2252 scan = (unsigned char *) id;
2253 {
2254 int i = 4;
2255 while (i--)
2256 *scan++ = 0;
2257 }
2258 *scan++ = (value >> 24) & 0xff;
2259 *scan++ = (value >> 16) & 0xff;
2260 *scan++ = (value >> 8) & 0xff;
2261 *scan++ = (value & 0xff);
2262 }
2263
2264 static int
2265 threadref_to_int (threadref *ref)
2266 {
2267 int i, value = 0;
2268 unsigned char *scan;
2269
2270 scan = *ref;
2271 scan += 4;
2272 i = 4;
2273 while (i-- > 0)
2274 value = (value << 8) | ((*scan++) & 0xff);
2275 return value;
2276 }
2277
2278 static void
2279 copy_threadref (threadref *dest, threadref *src)
2280 {
2281 int i;
2282 unsigned char *csrc, *cdest;
2283
2284 csrc = (unsigned char *) src;
2285 cdest = (unsigned char *) dest;
2286 i = 8;
2287 while (i--)
2288 *cdest++ = *csrc++;
2289 }
2290
2291 static int
2292 threadmatch (threadref *dest, threadref *src)
2293 {
2294 /* Things are broken right now, so just assume we got a match. */
2295 #if 0
2296 unsigned char *srcp, *destp;
2297 int i, result;
2298 srcp = (char *) src;
2299 destp = (char *) dest;
2300
2301 result = 1;
2302 while (i-- > 0)
2303 result &= (*srcp++ == *destp++) ? 1 : 0;
2304 return result;
2305 #endif
2306 return 1;
2307 }
2308
2309 /*
2310 threadid:1, # always request threadid
2311 context_exists:2,
2312 display:4,
2313 unique_name:8,
2314 more_display:16
2315 */
2316
2317 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2318
2319 static char *
2320 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2321 {
2322 *pkt++ = 'q'; /* Info Query */
2323 *pkt++ = 'P'; /* process or thread info */
2324 pkt = pack_int (pkt, mode); /* mode */
2325 pkt = pack_threadid (pkt, id); /* threadid */
2326 *pkt = '\0'; /* terminate */
2327 return pkt;
2328 }
2329
2330 /* These values tag the fields in a thread info response packet. */
2331 /* Tagging the fields allows us to request specific fields and to
2332 add more fields as time goes by. */
2333
2334 #define TAG_THREADID 1 /* Echo the thread identifier. */
2335 #define TAG_EXISTS 2 /* Is this process defined enough to
2336 fetch registers and its stack? */
2337 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2338 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2339 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2340 the process. */
2341
2342 static int
2343 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2344 struct gdb_ext_thread_info *info)
2345 {
2346 struct remote_state *rs = get_remote_state ();
2347 int mask, length;
2348 int tag;
2349 threadref ref;
2350 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2351 int retval = 1;
2352
2353 /* info->threadid = 0; FIXME: implement zero_threadref. */
2354 info->active = 0;
2355 info->display[0] = '\0';
2356 info->shortname[0] = '\0';
2357 info->more_display[0] = '\0';
2358
2359 /* Assume the characters indicating the packet type have been
2360 stripped. */
2361 pkt = unpack_int (pkt, &mask); /* arg mask */
2362 pkt = unpack_threadid (pkt, &ref);
2363
2364 if (mask == 0)
2365 warning (_("Incomplete response to threadinfo request."));
2366 if (!threadmatch (&ref, expectedref))
2367 { /* This is an answer to a different request. */
2368 warning (_("ERROR RMT Thread info mismatch."));
2369 return 0;
2370 }
2371 copy_threadref (&info->threadid, &ref);
2372
2373 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2374
2375 /* Packets are terminated with nulls. */
2376 while ((pkt < limit) && mask && *pkt)
2377 {
2378 pkt = unpack_int (pkt, &tag); /* tag */
2379 pkt = unpack_byte (pkt, &length); /* length */
2380 if (!(tag & mask)) /* Tags out of synch with mask. */
2381 {
2382 warning (_("ERROR RMT: threadinfo tag mismatch."));
2383 retval = 0;
2384 break;
2385 }
2386 if (tag == TAG_THREADID)
2387 {
2388 if (length != 16)
2389 {
2390 warning (_("ERROR RMT: length of threadid is not 16."));
2391 retval = 0;
2392 break;
2393 }
2394 pkt = unpack_threadid (pkt, &ref);
2395 mask = mask & ~TAG_THREADID;
2396 continue;
2397 }
2398 if (tag == TAG_EXISTS)
2399 {
2400 info->active = stub_unpack_int (pkt, length);
2401 pkt += length;
2402 mask = mask & ~(TAG_EXISTS);
2403 if (length > 8)
2404 {
2405 warning (_("ERROR RMT: 'exists' length too long."));
2406 retval = 0;
2407 break;
2408 }
2409 continue;
2410 }
2411 if (tag == TAG_THREADNAME)
2412 {
2413 pkt = unpack_string (pkt, &info->shortname[0], length);
2414 mask = mask & ~TAG_THREADNAME;
2415 continue;
2416 }
2417 if (tag == TAG_DISPLAY)
2418 {
2419 pkt = unpack_string (pkt, &info->display[0], length);
2420 mask = mask & ~TAG_DISPLAY;
2421 continue;
2422 }
2423 if (tag == TAG_MOREDISPLAY)
2424 {
2425 pkt = unpack_string (pkt, &info->more_display[0], length);
2426 mask = mask & ~TAG_MOREDISPLAY;
2427 continue;
2428 }
2429 warning (_("ERROR RMT: unknown thread info tag."));
2430 break; /* Not a tag we know about. */
2431 }
2432 return retval;
2433 }
2434
2435 static int
2436 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2437 struct gdb_ext_thread_info *info)
2438 {
2439 struct remote_state *rs = get_remote_state ();
2440 int result;
2441
2442 pack_threadinfo_request (rs->buf, fieldset, threadid);
2443 putpkt (rs->buf);
2444 getpkt (&rs->buf, &rs->buf_size, 0);
2445
2446 if (rs->buf[0] == '\0')
2447 return 0;
2448
2449 result = remote_unpack_thread_info_response (rs->buf + 2,
2450 threadid, info);
2451 return result;
2452 }
2453
2454 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2455
2456 static char *
2457 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2458 threadref *nextthread)
2459 {
2460 *pkt++ = 'q'; /* info query packet */
2461 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2462 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2463 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2464 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2465 *pkt = '\0';
2466 return pkt;
2467 }
2468
2469 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2470
2471 static int
2472 parse_threadlist_response (char *pkt, int result_limit,
2473 threadref *original_echo, threadref *resultlist,
2474 int *doneflag)
2475 {
2476 struct remote_state *rs = get_remote_state ();
2477 char *limit;
2478 int count, resultcount, done;
2479
2480 resultcount = 0;
2481 /* Assume the 'q' and 'M chars have been stripped. */
2482 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2483 /* done parse past here */
2484 pkt = unpack_byte (pkt, &count); /* count field */
2485 pkt = unpack_nibble (pkt, &done);
2486 /* The first threadid is the argument threadid. */
2487 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2488 while ((count-- > 0) && (pkt < limit))
2489 {
2490 pkt = unpack_threadid (pkt, resultlist++);
2491 if (resultcount++ >= result_limit)
2492 break;
2493 }
2494 if (doneflag)
2495 *doneflag = done;
2496 return resultcount;
2497 }
2498
2499 static int
2500 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2501 int *done, int *result_count, threadref *threadlist)
2502 {
2503 struct remote_state *rs = get_remote_state ();
2504 int result = 1;
2505
2506 /* Trancate result limit to be smaller than the packet size. */
2507 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2508 >= get_remote_packet_size ())
2509 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2510
2511 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2512 putpkt (rs->buf);
2513 getpkt (&rs->buf, &rs->buf_size, 0);
2514
2515 if (*rs->buf == '\0')
2516 return 0;
2517 else
2518 *result_count =
2519 parse_threadlist_response (rs->buf + 2, result_limit,
2520 &rs->echo_nextthread, threadlist, done);
2521
2522 if (!threadmatch (&rs->echo_nextthread, nextthread))
2523 {
2524 /* FIXME: This is a good reason to drop the packet. */
2525 /* Possably, there is a duplicate response. */
2526 /* Possabilities :
2527 retransmit immediatly - race conditions
2528 retransmit after timeout - yes
2529 exit
2530 wait for packet, then exit
2531 */
2532 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2533 return 0; /* I choose simply exiting. */
2534 }
2535 if (*result_count <= 0)
2536 {
2537 if (*done != 1)
2538 {
2539 warning (_("RMT ERROR : failed to get remote thread list."));
2540 result = 0;
2541 }
2542 return result; /* break; */
2543 }
2544 if (*result_count > result_limit)
2545 {
2546 *result_count = 0;
2547 warning (_("RMT ERROR: threadlist response longer than requested."));
2548 return 0;
2549 }
2550 return result;
2551 }
2552
2553 /* This is the interface between remote and threads, remotes upper
2554 interface. */
2555
2556 /* remote_find_new_threads retrieves the thread list and for each
2557 thread in the list, looks up the thread in GDB's internal list,
2558 adding the thread if it does not already exist. This involves
2559 getting partial thread lists from the remote target so, polling the
2560 quit_flag is required. */
2561
2562
2563 static int
2564 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2565 int looplimit)
2566 {
2567 struct remote_state *rs = get_remote_state ();
2568 int done, i, result_count;
2569 int startflag = 1;
2570 int result = 1;
2571 int loopcount = 0;
2572
2573 done = 0;
2574 while (!done)
2575 {
2576 if (loopcount++ > looplimit)
2577 {
2578 result = 0;
2579 warning (_("Remote fetch threadlist -infinite loop-."));
2580 break;
2581 }
2582 if (!remote_get_threadlist (startflag, &rs->nextthread,
2583 MAXTHREADLISTRESULTS,
2584 &done, &result_count, rs->resultthreadlist))
2585 {
2586 result = 0;
2587 break;
2588 }
2589 /* Clear for later iterations. */
2590 startflag = 0;
2591 /* Setup to resume next batch of thread references, set nextthread. */
2592 if (result_count >= 1)
2593 copy_threadref (&rs->nextthread,
2594 &rs->resultthreadlist[result_count - 1]);
2595 i = 0;
2596 while (result_count--)
2597 if (!(result = (*stepfunction) (&rs->resultthreadlist[i++], context)))
2598 break;
2599 }
2600 return result;
2601 }
2602
2603 static int
2604 remote_newthread_step (threadref *ref, void *context)
2605 {
2606 int pid = ptid_get_pid (inferior_ptid);
2607 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2608
2609 if (!in_thread_list (ptid))
2610 add_thread (ptid);
2611 return 1; /* continue iterator */
2612 }
2613
2614 #define CRAZY_MAX_THREADS 1000
2615
2616 static ptid_t
2617 remote_current_thread (ptid_t oldpid)
2618 {
2619 struct remote_state *rs = get_remote_state ();
2620
2621 putpkt ("qC");
2622 getpkt (&rs->buf, &rs->buf_size, 0);
2623 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2624 return read_ptid (&rs->buf[2], NULL);
2625 else
2626 return oldpid;
2627 }
2628
2629 /* Find new threads for info threads command.
2630 * Original version, using John Metzler's thread protocol.
2631 */
2632
2633 static void
2634 remote_find_new_threads (void)
2635 {
2636 remote_threadlist_iterator (remote_newthread_step, 0,
2637 CRAZY_MAX_THREADS);
2638 }
2639
2640 #if defined(HAVE_LIBEXPAT)
2641
2642 typedef struct thread_item
2643 {
2644 ptid_t ptid;
2645 char *extra;
2646 int core;
2647 } thread_item_t;
2648 DEF_VEC_O(thread_item_t);
2649
2650 struct threads_parsing_context
2651 {
2652 VEC (thread_item_t) *items;
2653 };
2654
2655 static void
2656 start_thread (struct gdb_xml_parser *parser,
2657 const struct gdb_xml_element *element,
2658 void *user_data, VEC(gdb_xml_value_s) *attributes)
2659 {
2660 struct threads_parsing_context *data = user_data;
2661
2662 struct thread_item item;
2663 char *id;
2664 struct gdb_xml_value *attr;
2665
2666 id = xml_find_attribute (attributes, "id")->value;
2667 item.ptid = read_ptid (id, NULL);
2668
2669 attr = xml_find_attribute (attributes, "core");
2670 if (attr != NULL)
2671 item.core = *(ULONGEST *) attr->value;
2672 else
2673 item.core = -1;
2674
2675 item.extra = 0;
2676
2677 VEC_safe_push (thread_item_t, data->items, &item);
2678 }
2679
2680 static void
2681 end_thread (struct gdb_xml_parser *parser,
2682 const struct gdb_xml_element *element,
2683 void *user_data, const char *body_text)
2684 {
2685 struct threads_parsing_context *data = user_data;
2686
2687 if (body_text && *body_text)
2688 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2689 }
2690
2691 const struct gdb_xml_attribute thread_attributes[] = {
2692 { "id", GDB_XML_AF_NONE, NULL, NULL },
2693 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2694 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2695 };
2696
2697 const struct gdb_xml_element thread_children[] = {
2698 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2699 };
2700
2701 const struct gdb_xml_element threads_children[] = {
2702 { "thread", thread_attributes, thread_children,
2703 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2704 start_thread, end_thread },
2705 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2706 };
2707
2708 const struct gdb_xml_element threads_elements[] = {
2709 { "threads", NULL, threads_children,
2710 GDB_XML_EF_NONE, NULL, NULL },
2711 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2712 };
2713
2714 /* Discard the contents of the constructed thread info context. */
2715
2716 static void
2717 clear_threads_parsing_context (void *p)
2718 {
2719 struct threads_parsing_context *context = p;
2720 int i;
2721 struct thread_item *item;
2722
2723 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2724 xfree (item->extra);
2725
2726 VEC_free (thread_item_t, context->items);
2727 }
2728
2729 #endif
2730
2731 /*
2732 * Find all threads for info threads command.
2733 * Uses new thread protocol contributed by Cisco.
2734 * Falls back and attempts to use the older method (above)
2735 * if the target doesn't respond to the new method.
2736 */
2737
2738 static void
2739 remote_threads_info (struct target_ops *ops)
2740 {
2741 struct remote_state *rs = get_remote_state ();
2742 char *bufp;
2743 ptid_t new_thread;
2744
2745 if (rs->remote_desc == 0) /* paranoia */
2746 error (_("Command can only be used when connected to the remote target."));
2747
2748 #if defined(HAVE_LIBEXPAT)
2749 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2750 {
2751 char *xml = target_read_stralloc (&current_target,
2752 TARGET_OBJECT_THREADS, NULL);
2753
2754 struct cleanup *back_to = make_cleanup (xfree, xml);
2755
2756 if (xml && *xml)
2757 {
2758 struct threads_parsing_context context;
2759
2760 context.items = NULL;
2761 make_cleanup (clear_threads_parsing_context, &context);
2762
2763 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2764 threads_elements, xml, &context) == 0)
2765 {
2766 int i;
2767 struct thread_item *item;
2768
2769 for (i = 0;
2770 VEC_iterate (thread_item_t, context.items, i, item);
2771 ++i)
2772 {
2773 if (!ptid_equal (item->ptid, null_ptid))
2774 {
2775 struct private_thread_info *info;
2776 /* In non-stop mode, we assume new found threads
2777 are running until proven otherwise with a
2778 stop reply. In all-stop, we can only get
2779 here if all threads are stopped. */
2780 int running = non_stop ? 1 : 0;
2781
2782 remote_notice_new_inferior (item->ptid, running);
2783
2784 info = demand_private_info (item->ptid);
2785 info->core = item->core;
2786 info->extra = item->extra;
2787 item->extra = NULL;
2788 }
2789 }
2790 }
2791 }
2792
2793 do_cleanups (back_to);
2794 return;
2795 }
2796 #endif
2797
2798 if (rs->use_threadinfo_query)
2799 {
2800 putpkt ("qfThreadInfo");
2801 getpkt (&rs->buf, &rs->buf_size, 0);
2802 bufp = rs->buf;
2803 if (bufp[0] != '\0') /* q packet recognized */
2804 {
2805 struct cleanup *old_chain;
2806 char *saved_reply;
2807
2808 /* remote_notice_new_inferior (in the loop below) may make
2809 new RSP calls, which clobber rs->buf. Work with a
2810 copy. */
2811 bufp = saved_reply = xstrdup (rs->buf);
2812 old_chain = make_cleanup (free_current_contents, &saved_reply);
2813
2814 while (*bufp++ == 'm') /* reply contains one or more TID */
2815 {
2816 do
2817 {
2818 new_thread = read_ptid (bufp, &bufp);
2819 if (!ptid_equal (new_thread, null_ptid))
2820 {
2821 /* In non-stop mode, we assume new found threads
2822 are running until proven otherwise with a
2823 stop reply. In all-stop, we can only get
2824 here if all threads are stopped. */
2825 int running = non_stop ? 1 : 0;
2826
2827 remote_notice_new_inferior (new_thread, running);
2828 }
2829 }
2830 while (*bufp++ == ','); /* comma-separated list */
2831 free_current_contents (&saved_reply);
2832 putpkt ("qsThreadInfo");
2833 getpkt (&rs->buf, &rs->buf_size, 0);
2834 bufp = saved_reply = xstrdup (rs->buf);
2835 }
2836 do_cleanups (old_chain);
2837 return; /* done */
2838 }
2839 }
2840
2841 /* Only qfThreadInfo is supported in non-stop mode. */
2842 if (non_stop)
2843 return;
2844
2845 /* Else fall back to old method based on jmetzler protocol. */
2846 rs->use_threadinfo_query = 0;
2847 remote_find_new_threads ();
2848 return;
2849 }
2850
2851 /*
2852 * Collect a descriptive string about the given thread.
2853 * The target may say anything it wants to about the thread
2854 * (typically info about its blocked / runnable state, name, etc.).
2855 * This string will appear in the info threads display.
2856 *
2857 * Optional: targets are not required to implement this function.
2858 */
2859
2860 static char *
2861 remote_threads_extra_info (struct thread_info *tp)
2862 {
2863 struct remote_state *rs = get_remote_state ();
2864 int result;
2865 int set;
2866 threadref id;
2867 struct gdb_ext_thread_info threadinfo;
2868 static char display_buf[100]; /* arbitrary... */
2869 int n = 0; /* position in display_buf */
2870
2871 if (rs->remote_desc == 0) /* paranoia */
2872 internal_error (__FILE__, __LINE__,
2873 _("remote_threads_extra_info"));
2874
2875 if (ptid_equal (tp->ptid, magic_null_ptid)
2876 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2877 /* This is the main thread which was added by GDB. The remote
2878 server doesn't know about it. */
2879 return NULL;
2880
2881 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2882 {
2883 struct thread_info *info = find_thread_ptid (tp->ptid);
2884
2885 if (info && info->private)
2886 return info->private->extra;
2887 else
2888 return NULL;
2889 }
2890
2891 if (rs->use_threadextra_query)
2892 {
2893 char *b = rs->buf;
2894 char *endb = rs->buf + get_remote_packet_size ();
2895
2896 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2897 b += strlen (b);
2898 write_ptid (b, endb, tp->ptid);
2899
2900 putpkt (rs->buf);
2901 getpkt (&rs->buf, &rs->buf_size, 0);
2902 if (rs->buf[0] != 0)
2903 {
2904 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2905 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2906 display_buf [result] = '\0';
2907 return display_buf;
2908 }
2909 }
2910
2911 /* If the above query fails, fall back to the old method. */
2912 rs->use_threadextra_query = 0;
2913 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2914 | TAG_MOREDISPLAY | TAG_DISPLAY;
2915 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2916 if (remote_get_threadinfo (&id, set, &threadinfo))
2917 if (threadinfo.active)
2918 {
2919 if (*threadinfo.shortname)
2920 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2921 " Name: %s,", threadinfo.shortname);
2922 if (*threadinfo.display)
2923 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2924 " State: %s,", threadinfo.display);
2925 if (*threadinfo.more_display)
2926 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2927 " Priority: %s", threadinfo.more_display);
2928
2929 if (n > 0)
2930 {
2931 /* For purely cosmetic reasons, clear up trailing commas. */
2932 if (',' == display_buf[n-1])
2933 display_buf[n-1] = ' ';
2934 return display_buf;
2935 }
2936 }
2937 return NULL;
2938 }
2939 \f
2940
2941 static int
2942 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2943 struct static_tracepoint_marker *marker)
2944 {
2945 struct remote_state *rs = get_remote_state ();
2946 char *p = rs->buf;
2947
2948 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2949 p += strlen (p);
2950 p += hexnumstr (p, addr);
2951 putpkt (rs->buf);
2952 getpkt (&rs->buf, &rs->buf_size, 0);
2953 p = rs->buf;
2954
2955 if (*p == 'E')
2956 error (_("Remote failure reply: %s"), p);
2957
2958 if (*p++ == 'm')
2959 {
2960 parse_static_tracepoint_marker_definition (p, &p, marker);
2961 return 1;
2962 }
2963
2964 return 0;
2965 }
2966
2967 static VEC(static_tracepoint_marker_p) *
2968 remote_static_tracepoint_markers_by_strid (const char *strid)
2969 {
2970 struct remote_state *rs = get_remote_state ();
2971 VEC(static_tracepoint_marker_p) *markers = NULL;
2972 struct static_tracepoint_marker *marker = NULL;
2973 struct cleanup *old_chain;
2974 char *p;
2975
2976 /* Ask for a first packet of static tracepoint marker
2977 definition. */
2978 putpkt ("qTfSTM");
2979 getpkt (&rs->buf, &rs->buf_size, 0);
2980 p = rs->buf;
2981 if (*p == 'E')
2982 error (_("Remote failure reply: %s"), p);
2983
2984 old_chain = make_cleanup (free_current_marker, &marker);
2985
2986 while (*p++ == 'm')
2987 {
2988 if (marker == NULL)
2989 marker = XCNEW (struct static_tracepoint_marker);
2990
2991 do
2992 {
2993 parse_static_tracepoint_marker_definition (p, &p, marker);
2994
2995 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2996 {
2997 VEC_safe_push (static_tracepoint_marker_p,
2998 markers, marker);
2999 marker = NULL;
3000 }
3001 else
3002 {
3003 release_static_tracepoint_marker (marker);
3004 memset (marker, 0, sizeof (*marker));
3005 }
3006 }
3007 while (*p++ == ','); /* comma-separated list */
3008 /* Ask for another packet of static tracepoint definition. */
3009 putpkt ("qTsSTM");
3010 getpkt (&rs->buf, &rs->buf_size, 0);
3011 p = rs->buf;
3012 }
3013
3014 do_cleanups (old_chain);
3015 return markers;
3016 }
3017
3018 \f
3019 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3020
3021 static ptid_t
3022 remote_get_ada_task_ptid (long lwp, long thread)
3023 {
3024 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
3025 }
3026 \f
3027
3028 /* Restart the remote side; this is an extended protocol operation. */
3029
3030 static void
3031 extended_remote_restart (void)
3032 {
3033 struct remote_state *rs = get_remote_state ();
3034
3035 /* Send the restart command; for reasons I don't understand the
3036 remote side really expects a number after the "R". */
3037 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3038 putpkt (rs->buf);
3039
3040 remote_fileio_reset ();
3041 }
3042 \f
3043 /* Clean up connection to a remote debugger. */
3044
3045 static void
3046 remote_close (void)
3047 {
3048 struct remote_state *rs = get_remote_state ();
3049
3050 if (rs->remote_desc == NULL)
3051 return; /* already closed */
3052
3053 /* Make sure we leave stdin registered in the event loop, and we
3054 don't leave the async SIGINT signal handler installed. */
3055 remote_terminal_ours ();
3056
3057 serial_close (rs->remote_desc);
3058 rs->remote_desc = NULL;
3059
3060 /* We don't have a connection to the remote stub anymore. Get rid
3061 of all the inferiors and their threads we were controlling.
3062 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3063 will be unable to find the thread corresponding to (pid, 0, 0). */
3064 inferior_ptid = null_ptid;
3065 discard_all_inferiors ();
3066
3067 /* Stop replies may from inferiors which are still unknown to GDB.
3068 We are closing the remote target, so we should discard
3069 everything, including the stop replies from GDB-unknown
3070 inferiors. */
3071 discard_pending_stop_replies (NULL);
3072
3073 if (remote_async_inferior_event_token)
3074 delete_async_event_handler (&remote_async_inferior_event_token);
3075
3076 remote_notif_unregister_async_event_handler ();
3077
3078 trace_reset_local_state ();
3079 }
3080
3081 /* Query the remote side for the text, data and bss offsets. */
3082
3083 static void
3084 get_offsets (void)
3085 {
3086 struct remote_state *rs = get_remote_state ();
3087 char *buf;
3088 char *ptr;
3089 int lose, num_segments = 0, do_sections, do_segments;
3090 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3091 struct section_offsets *offs;
3092 struct symfile_segment_data *data;
3093
3094 if (symfile_objfile == NULL)
3095 return;
3096
3097 putpkt ("qOffsets");
3098 getpkt (&rs->buf, &rs->buf_size, 0);
3099 buf = rs->buf;
3100
3101 if (buf[0] == '\000')
3102 return; /* Return silently. Stub doesn't support
3103 this command. */
3104 if (buf[0] == 'E')
3105 {
3106 warning (_("Remote failure reply: %s"), buf);
3107 return;
3108 }
3109
3110 /* Pick up each field in turn. This used to be done with scanf, but
3111 scanf will make trouble if CORE_ADDR size doesn't match
3112 conversion directives correctly. The following code will work
3113 with any size of CORE_ADDR. */
3114 text_addr = data_addr = bss_addr = 0;
3115 ptr = buf;
3116 lose = 0;
3117
3118 if (strncmp (ptr, "Text=", 5) == 0)
3119 {
3120 ptr += 5;
3121 /* Don't use strtol, could lose on big values. */
3122 while (*ptr && *ptr != ';')
3123 text_addr = (text_addr << 4) + fromhex (*ptr++);
3124
3125 if (strncmp (ptr, ";Data=", 6) == 0)
3126 {
3127 ptr += 6;
3128 while (*ptr && *ptr != ';')
3129 data_addr = (data_addr << 4) + fromhex (*ptr++);
3130 }
3131 else
3132 lose = 1;
3133
3134 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3135 {
3136 ptr += 5;
3137 while (*ptr && *ptr != ';')
3138 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3139
3140 if (bss_addr != data_addr)
3141 warning (_("Target reported unsupported offsets: %s"), buf);
3142 }
3143 else
3144 lose = 1;
3145 }
3146 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3147 {
3148 ptr += 8;
3149 /* Don't use strtol, could lose on big values. */
3150 while (*ptr && *ptr != ';')
3151 text_addr = (text_addr << 4) + fromhex (*ptr++);
3152 num_segments = 1;
3153
3154 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3155 {
3156 ptr += 9;
3157 while (*ptr && *ptr != ';')
3158 data_addr = (data_addr << 4) + fromhex (*ptr++);
3159 num_segments++;
3160 }
3161 }
3162 else
3163 lose = 1;
3164
3165 if (lose)
3166 error (_("Malformed response to offset query, %s"), buf);
3167 else if (*ptr != '\0')
3168 warning (_("Target reported unsupported offsets: %s"), buf);
3169
3170 offs = ((struct section_offsets *)
3171 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3172 memcpy (offs, symfile_objfile->section_offsets,
3173 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3174
3175 data = get_symfile_segment_data (symfile_objfile->obfd);
3176 do_segments = (data != NULL);
3177 do_sections = num_segments == 0;
3178
3179 if (num_segments > 0)
3180 {
3181 segments[0] = text_addr;
3182 segments[1] = data_addr;
3183 }
3184 /* If we have two segments, we can still try to relocate everything
3185 by assuming that the .text and .data offsets apply to the whole
3186 text and data segments. Convert the offsets given in the packet
3187 to base addresses for symfile_map_offsets_to_segments. */
3188 else if (data && data->num_segments == 2)
3189 {
3190 segments[0] = data->segment_bases[0] + text_addr;
3191 segments[1] = data->segment_bases[1] + data_addr;
3192 num_segments = 2;
3193 }
3194 /* If the object file has only one segment, assume that it is text
3195 rather than data; main programs with no writable data are rare,
3196 but programs with no code are useless. Of course the code might
3197 have ended up in the data segment... to detect that we would need
3198 the permissions here. */
3199 else if (data && data->num_segments == 1)
3200 {
3201 segments[0] = data->segment_bases[0] + text_addr;
3202 num_segments = 1;
3203 }
3204 /* There's no way to relocate by segment. */
3205 else
3206 do_segments = 0;
3207
3208 if (do_segments)
3209 {
3210 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3211 offs, num_segments, segments);
3212
3213 if (ret == 0 && !do_sections)
3214 error (_("Can not handle qOffsets TextSeg "
3215 "response with this symbol file"));
3216
3217 if (ret > 0)
3218 do_sections = 0;
3219 }
3220
3221 if (data)
3222 free_symfile_segment_data (data);
3223
3224 if (do_sections)
3225 {
3226 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3227
3228 /* This is a temporary kludge to force data and bss to use the
3229 same offsets because that's what nlmconv does now. The real
3230 solution requires changes to the stub and remote.c that I
3231 don't have time to do right now. */
3232
3233 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3234 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3235 }
3236
3237 objfile_relocate (symfile_objfile, offs);
3238 }
3239
3240 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3241 threads we know are stopped already. This is used during the
3242 initial remote connection in non-stop mode --- threads that are
3243 reported as already being stopped are left stopped. */
3244
3245 static int
3246 set_stop_requested_callback (struct thread_info *thread, void *data)
3247 {
3248 /* If we have a stop reply for this thread, it must be stopped. */
3249 if (peek_stop_reply (thread->ptid))
3250 set_stop_requested (thread->ptid, 1);
3251
3252 return 0;
3253 }
3254
3255 /* Send interrupt_sequence to remote target. */
3256 static void
3257 send_interrupt_sequence (void)
3258 {
3259 struct remote_state *rs = get_remote_state ();
3260
3261 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3262 remote_serial_write ("\x03", 1);
3263 else if (interrupt_sequence_mode == interrupt_sequence_break)
3264 serial_send_break (rs->remote_desc);
3265 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3266 {
3267 serial_send_break (rs->remote_desc);
3268 remote_serial_write ("g", 1);
3269 }
3270 else
3271 internal_error (__FILE__, __LINE__,
3272 _("Invalid value for interrupt_sequence_mode: %s."),
3273 interrupt_sequence_mode);
3274 }
3275
3276
3277 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3278 and extract the PTID. Returns NULL_PTID if not found. */
3279
3280 static ptid_t
3281 stop_reply_extract_thread (char *stop_reply)
3282 {
3283 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3284 {
3285 char *p;
3286
3287 /* Txx r:val ; r:val (...) */
3288 p = &stop_reply[3];
3289
3290 /* Look for "register" named "thread". */
3291 while (*p != '\0')
3292 {
3293 char *p1;
3294
3295 p1 = strchr (p, ':');
3296 if (p1 == NULL)
3297 return null_ptid;
3298
3299 if (strncmp (p, "thread", p1 - p) == 0)
3300 return read_ptid (++p1, &p);
3301
3302 p1 = strchr (p, ';');
3303 if (p1 == NULL)
3304 return null_ptid;
3305 p1++;
3306
3307 p = p1;
3308 }
3309 }
3310
3311 return null_ptid;
3312 }
3313
3314 /* Query the remote target for which is the current thread/process,
3315 add it to our tables, and update INFERIOR_PTID. The caller is
3316 responsible for setting the state such that the remote end is ready
3317 to return the current thread.
3318
3319 This function is called after handling the '?' or 'vRun' packets,
3320 whose response is a stop reply from which we can also try
3321 extracting the thread. If the target doesn't support the explicit
3322 qC query, we infer the current thread from that stop reply, passed
3323 in in WAIT_STATUS, which may be NULL. */
3324
3325 static void
3326 add_current_inferior_and_thread (char *wait_status)
3327 {
3328 struct remote_state *rs = get_remote_state ();
3329 int fake_pid_p = 0;
3330 ptid_t ptid = null_ptid;
3331
3332 inferior_ptid = null_ptid;
3333
3334 /* Now, if we have thread information, update inferior_ptid. First
3335 if we have a stop reply handy, maybe it's a T stop reply with a
3336 "thread" register we can extract the current thread from. If
3337 not, ask the remote which is the current thread, with qC. The
3338 former method avoids a roundtrip. Note we don't use
3339 remote_parse_stop_reply as that makes use of the target
3340 architecture, which we haven't yet fully determined at this
3341 point. */
3342 if (wait_status != NULL)
3343 ptid = stop_reply_extract_thread (wait_status);
3344 if (ptid_equal (ptid, null_ptid))
3345 ptid = remote_current_thread (inferior_ptid);
3346
3347 if (!ptid_equal (ptid, null_ptid))
3348 {
3349 if (!remote_multi_process_p (rs))
3350 fake_pid_p = 1;
3351
3352 inferior_ptid = ptid;
3353 }
3354 else
3355 {
3356 /* Without this, some commands which require an active target
3357 (such as kill) won't work. This variable serves (at least)
3358 double duty as both the pid of the target process (if it has
3359 such), and as a flag indicating that a target is active. */
3360 inferior_ptid = magic_null_ptid;
3361 fake_pid_p = 1;
3362 }
3363
3364 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3365
3366 /* Add the main thread. */
3367 add_thread_silent (inferior_ptid);
3368 }
3369
3370 static void
3371 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3372 {
3373 struct remote_state *rs = get_remote_state ();
3374 struct packet_config *noack_config;
3375 char *wait_status = NULL;
3376
3377 immediate_quit++; /* Allow user to interrupt it. */
3378 QUIT;
3379
3380 if (interrupt_on_connect)
3381 send_interrupt_sequence ();
3382
3383 /* Ack any packet which the remote side has already sent. */
3384 serial_write (rs->remote_desc, "+", 1);
3385
3386 /* Signal other parts that we're going through the initial setup,
3387 and so things may not be stable yet. */
3388 rs->starting_up = 1;
3389
3390 /* The first packet we send to the target is the optional "supported
3391 packets" request. If the target can answer this, it will tell us
3392 which later probes to skip. */
3393 remote_query_supported ();
3394
3395 /* If the stub wants to get a QAllow, compose one and send it. */
3396 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3397 remote_set_permissions ();
3398
3399 /* Next, we possibly activate noack mode.
3400
3401 If the QStartNoAckMode packet configuration is set to AUTO,
3402 enable noack mode if the stub reported a wish for it with
3403 qSupported.
3404
3405 If set to TRUE, then enable noack mode even if the stub didn't
3406 report it in qSupported. If the stub doesn't reply OK, the
3407 session ends with an error.
3408
3409 If FALSE, then don't activate noack mode, regardless of what the
3410 stub claimed should be the default with qSupported. */
3411
3412 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3413
3414 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3415 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3416 && noack_config->support == PACKET_ENABLE))
3417 {
3418 putpkt ("QStartNoAckMode");
3419 getpkt (&rs->buf, &rs->buf_size, 0);
3420 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3421 rs->noack_mode = 1;
3422 }
3423
3424 if (extended_p)
3425 {
3426 /* Tell the remote that we are using the extended protocol. */
3427 putpkt ("!");
3428 getpkt (&rs->buf, &rs->buf_size, 0);
3429 }
3430
3431 /* Let the target know which signals it is allowed to pass down to
3432 the program. */
3433 update_signals_program_target ();
3434
3435 /* Next, if the target can specify a description, read it. We do
3436 this before anything involving memory or registers. */
3437 target_find_description ();
3438
3439 /* Next, now that we know something about the target, update the
3440 address spaces in the program spaces. */
3441 update_address_spaces ();
3442
3443 /* On OSs where the list of libraries is global to all
3444 processes, we fetch them early. */
3445 if (gdbarch_has_global_solist (target_gdbarch ()))
3446 solib_add (NULL, from_tty, target, auto_solib_add);
3447
3448 if (non_stop)
3449 {
3450 if (!rs->non_stop_aware)
3451 error (_("Non-stop mode requested, but remote "
3452 "does not support non-stop"));
3453
3454 putpkt ("QNonStop:1");
3455 getpkt (&rs->buf, &rs->buf_size, 0);
3456
3457 if (strcmp (rs->buf, "OK") != 0)
3458 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3459
3460 /* Find about threads and processes the stub is already
3461 controlling. We default to adding them in the running state.
3462 The '?' query below will then tell us about which threads are
3463 stopped. */
3464 remote_threads_info (target);
3465 }
3466 else if (rs->non_stop_aware)
3467 {
3468 /* Don't assume that the stub can operate in all-stop mode.
3469 Request it explicitly. */
3470 putpkt ("QNonStop:0");
3471 getpkt (&rs->buf, &rs->buf_size, 0);
3472
3473 if (strcmp (rs->buf, "OK") != 0)
3474 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3475 }
3476
3477 /* Upload TSVs regardless of whether the target is running or not. The
3478 remote stub, such as GDBserver, may have some predefined or builtin
3479 TSVs, even if the target is not running. */
3480 if (remote_get_trace_status (current_trace_status ()) != -1)
3481 {
3482 struct uploaded_tsv *uploaded_tsvs = NULL;
3483
3484 remote_upload_trace_state_variables (&uploaded_tsvs);
3485 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3486 }
3487
3488 /* Check whether the target is running now. */
3489 putpkt ("?");
3490 getpkt (&rs->buf, &rs->buf_size, 0);
3491
3492 if (!non_stop)
3493 {
3494 ptid_t ptid;
3495 int fake_pid_p = 0;
3496 struct inferior *inf;
3497
3498 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3499 {
3500 if (!extended_p)
3501 error (_("The target is not running (try extended-remote?)"));
3502
3503 /* We're connected, but not running. Drop out before we
3504 call start_remote. */
3505 rs->starting_up = 0;
3506 return;
3507 }
3508 else
3509 {
3510 /* Save the reply for later. */
3511 wait_status = alloca (strlen (rs->buf) + 1);
3512 strcpy (wait_status, rs->buf);
3513 }
3514
3515 /* Let the stub know that we want it to return the thread. */
3516 set_continue_thread (minus_one_ptid);
3517
3518 add_current_inferior_and_thread (wait_status);
3519
3520 /* init_wait_for_inferior should be called before get_offsets in order
3521 to manage `inserted' flag in bp loc in a correct state.
3522 breakpoint_init_inferior, called from init_wait_for_inferior, set
3523 `inserted' flag to 0, while before breakpoint_re_set, called from
3524 start_remote, set `inserted' flag to 1. In the initialization of
3525 inferior, breakpoint_init_inferior should be called first, and then
3526 breakpoint_re_set can be called. If this order is broken, state of
3527 `inserted' flag is wrong, and cause some problems on breakpoint
3528 manipulation. */
3529 init_wait_for_inferior ();
3530
3531 get_offsets (); /* Get text, data & bss offsets. */
3532
3533 /* If we could not find a description using qXfer, and we know
3534 how to do it some other way, try again. This is not
3535 supported for non-stop; it could be, but it is tricky if
3536 there are no stopped threads when we connect. */
3537 if (remote_read_description_p (target)
3538 && gdbarch_target_desc (target_gdbarch ()) == NULL)
3539 {
3540 target_clear_description ();
3541 target_find_description ();
3542 }
3543
3544 /* Use the previously fetched status. */
3545 gdb_assert (wait_status != NULL);
3546 strcpy (rs->buf, wait_status);
3547 rs->cached_wait_status = 1;
3548
3549 immediate_quit--;
3550 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3551 }
3552 else
3553 {
3554 /* Clear WFI global state. Do this before finding about new
3555 threads and inferiors, and setting the current inferior.
3556 Otherwise we would clear the proceed status of the current
3557 inferior when we want its stop_soon state to be preserved
3558 (see notice_new_inferior). */
3559 init_wait_for_inferior ();
3560
3561 /* In non-stop, we will either get an "OK", meaning that there
3562 are no stopped threads at this time; or, a regular stop
3563 reply. In the latter case, there may be more than one thread
3564 stopped --- we pull them all out using the vStopped
3565 mechanism. */
3566 if (strcmp (rs->buf, "OK") != 0)
3567 {
3568 struct notif_client *notif = &notif_client_stop;
3569
3570 /* remote_notif_get_pending_replies acks this one, and gets
3571 the rest out. */
3572 notif_client_stop.pending_event
3573 = remote_notif_parse (notif, rs->buf);
3574 remote_notif_get_pending_events (notif);
3575
3576 /* Make sure that threads that were stopped remain
3577 stopped. */
3578 iterate_over_threads (set_stop_requested_callback, NULL);
3579 }
3580
3581 if (target_can_async_p ())
3582 target_async (inferior_event_handler, 0);
3583
3584 if (thread_count () == 0)
3585 {
3586 if (!extended_p)
3587 error (_("The target is not running (try extended-remote?)"));
3588
3589 /* We're connected, but not running. Drop out before we
3590 call start_remote. */
3591 rs->starting_up = 0;
3592 return;
3593 }
3594
3595 /* Let the stub know that we want it to return the thread. */
3596
3597 /* Force the stub to choose a thread. */
3598 set_general_thread (null_ptid);
3599
3600 /* Query it. */
3601 inferior_ptid = remote_current_thread (minus_one_ptid);
3602 if (ptid_equal (inferior_ptid, minus_one_ptid))
3603 error (_("remote didn't report the current thread in non-stop mode"));
3604
3605 get_offsets (); /* Get text, data & bss offsets. */
3606
3607 /* In non-stop mode, any cached wait status will be stored in
3608 the stop reply queue. */
3609 gdb_assert (wait_status == NULL);
3610
3611 /* Report all signals during attach/startup. */
3612 remote_pass_signals (0, NULL);
3613 }
3614
3615 /* If we connected to a live target, do some additional setup. */
3616 if (target_has_execution)
3617 {
3618 if (exec_bfd) /* No use without an exec file. */
3619 remote_check_symbols ();
3620 }
3621
3622 /* Possibly the target has been engaged in a trace run started
3623 previously; find out where things are at. */
3624 if (remote_get_trace_status (current_trace_status ()) != -1)
3625 {
3626 struct uploaded_tp *uploaded_tps = NULL;
3627
3628 if (current_trace_status ()->running)
3629 printf_filtered (_("Trace is already running on the target.\n"));
3630
3631 remote_upload_tracepoints (&uploaded_tps);
3632
3633 merge_uploaded_tracepoints (&uploaded_tps);
3634 }
3635
3636 /* The thread and inferior lists are now synchronized with the
3637 target, our symbols have been relocated, and we're merged the
3638 target's tracepoints with ours. We're done with basic start
3639 up. */
3640 rs->starting_up = 0;
3641
3642 /* If breakpoints are global, insert them now. */
3643 if (gdbarch_has_global_breakpoints (target_gdbarch ())
3644 && breakpoints_always_inserted_mode ())
3645 insert_breakpoints ();
3646 }
3647
3648 /* Open a connection to a remote debugger.
3649 NAME is the filename used for communication. */
3650
3651 static void
3652 remote_open (char *name, int from_tty)
3653 {
3654 remote_open_1 (name, from_tty, &remote_ops, 0);
3655 }
3656
3657 /* Open a connection to a remote debugger using the extended
3658 remote gdb protocol. NAME is the filename used for communication. */
3659
3660 static void
3661 extended_remote_open (char *name, int from_tty)
3662 {
3663 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3664 }
3665
3666 /* Generic code for opening a connection to a remote target. */
3667
3668 static void
3669 init_all_packet_configs (void)
3670 {
3671 int i;
3672
3673 for (i = 0; i < PACKET_MAX; i++)
3674 update_packet_config (&remote_protocol_packets[i]);
3675 }
3676
3677 /* Symbol look-up. */
3678
3679 static void
3680 remote_check_symbols (void)
3681 {
3682 struct remote_state *rs = get_remote_state ();
3683 char *msg, *reply, *tmp;
3684 struct minimal_symbol *sym;
3685 int end;
3686
3687 /* The remote side has no concept of inferiors that aren't running
3688 yet, it only knows about running processes. If we're connected
3689 but our current inferior is not running, we should not invite the
3690 remote target to request symbol lookups related to its
3691 (unrelated) current process. */
3692 if (!target_has_execution)
3693 return;
3694
3695 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3696 return;
3697
3698 /* Make sure the remote is pointing at the right process. Note
3699 there's no way to select "no process". */
3700 set_general_process ();
3701
3702 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3703 because we need both at the same time. */
3704 msg = alloca (get_remote_packet_size ());
3705
3706 /* Invite target to request symbol lookups. */
3707
3708 putpkt ("qSymbol::");
3709 getpkt (&rs->buf, &rs->buf_size, 0);
3710 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3711 reply = rs->buf;
3712
3713 while (strncmp (reply, "qSymbol:", 8) == 0)
3714 {
3715 tmp = &reply[8];
3716 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3717 msg[end] = '\0';
3718 sym = lookup_minimal_symbol (msg, NULL, NULL);
3719 if (sym == NULL)
3720 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3721 else
3722 {
3723 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
3724 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3725
3726 /* If this is a function address, return the start of code
3727 instead of any data function descriptor. */
3728 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3729 sym_addr,
3730 &current_target);
3731
3732 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3733 phex_nz (sym_addr, addr_size), &reply[8]);
3734 }
3735
3736 putpkt (msg);
3737 getpkt (&rs->buf, &rs->buf_size, 0);
3738 reply = rs->buf;
3739 }
3740 }
3741
3742 static struct serial *
3743 remote_serial_open (char *name)
3744 {
3745 static int udp_warning = 0;
3746
3747 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3748 of in ser-tcp.c, because it is the remote protocol assuming that the
3749 serial connection is reliable and not the serial connection promising
3750 to be. */
3751 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3752 {
3753 warning (_("The remote protocol may be unreliable over UDP.\n"
3754 "Some events may be lost, rendering further debugging "
3755 "impossible."));
3756 udp_warning = 1;
3757 }
3758
3759 return serial_open (name);
3760 }
3761
3762 /* Inform the target of our permission settings. The permission flags
3763 work without this, but if the target knows the settings, it can do
3764 a couple things. First, it can add its own check, to catch cases
3765 that somehow manage to get by the permissions checks in target
3766 methods. Second, if the target is wired to disallow particular
3767 settings (for instance, a system in the field that is not set up to
3768 be able to stop at a breakpoint), it can object to any unavailable
3769 permissions. */
3770
3771 void
3772 remote_set_permissions (void)
3773 {
3774 struct remote_state *rs = get_remote_state ();
3775
3776 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3777 "WriteReg:%x;WriteMem:%x;"
3778 "InsertBreak:%x;InsertTrace:%x;"
3779 "InsertFastTrace:%x;Stop:%x",
3780 may_write_registers, may_write_memory,
3781 may_insert_breakpoints, may_insert_tracepoints,
3782 may_insert_fast_tracepoints, may_stop);
3783 putpkt (rs->buf);
3784 getpkt (&rs->buf, &rs->buf_size, 0);
3785
3786 /* If the target didn't like the packet, warn the user. Do not try
3787 to undo the user's settings, that would just be maddening. */
3788 if (strcmp (rs->buf, "OK") != 0)
3789 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3790 }
3791
3792 /* This type describes each known response to the qSupported
3793 packet. */
3794 struct protocol_feature
3795 {
3796 /* The name of this protocol feature. */
3797 const char *name;
3798
3799 /* The default for this protocol feature. */
3800 enum packet_support default_support;
3801
3802 /* The function to call when this feature is reported, or after
3803 qSupported processing if the feature is not supported.
3804 The first argument points to this structure. The second
3805 argument indicates whether the packet requested support be
3806 enabled, disabled, or probed (or the default, if this function
3807 is being called at the end of processing and this feature was
3808 not reported). The third argument may be NULL; if not NULL, it
3809 is a NUL-terminated string taken from the packet following
3810 this feature's name and an equals sign. */
3811 void (*func) (const struct protocol_feature *, enum packet_support,
3812 const char *);
3813
3814 /* The corresponding packet for this feature. Only used if
3815 FUNC is remote_supported_packet. */
3816 int packet;
3817 };
3818
3819 static void
3820 remote_supported_packet (const struct protocol_feature *feature,
3821 enum packet_support support,
3822 const char *argument)
3823 {
3824 if (argument)
3825 {
3826 warning (_("Remote qSupported response supplied an unexpected value for"
3827 " \"%s\"."), feature->name);
3828 return;
3829 }
3830
3831 if (remote_protocol_packets[feature->packet].support
3832 == PACKET_SUPPORT_UNKNOWN)
3833 remote_protocol_packets[feature->packet].support = support;
3834 }
3835
3836 static void
3837 remote_packet_size (const struct protocol_feature *feature,
3838 enum packet_support support, const char *value)
3839 {
3840 struct remote_state *rs = get_remote_state ();
3841
3842 int packet_size;
3843 char *value_end;
3844
3845 if (support != PACKET_ENABLE)
3846 return;
3847
3848 if (value == NULL || *value == '\0')
3849 {
3850 warning (_("Remote target reported \"%s\" without a size."),
3851 feature->name);
3852 return;
3853 }
3854
3855 errno = 0;
3856 packet_size = strtol (value, &value_end, 16);
3857 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3858 {
3859 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3860 feature->name, value);
3861 return;
3862 }
3863
3864 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3865 {
3866 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3867 packet_size, MAX_REMOTE_PACKET_SIZE);
3868 packet_size = MAX_REMOTE_PACKET_SIZE;
3869 }
3870
3871 /* Record the new maximum packet size. */
3872 rs->explicit_packet_size = packet_size;
3873 }
3874
3875 static void
3876 remote_multi_process_feature (const struct protocol_feature *feature,
3877 enum packet_support support, const char *value)
3878 {
3879 struct remote_state *rs = get_remote_state ();
3880
3881 rs->multi_process_aware = (support == PACKET_ENABLE);
3882 }
3883
3884 static void
3885 remote_non_stop_feature (const struct protocol_feature *feature,
3886 enum packet_support support, const char *value)
3887 {
3888 struct remote_state *rs = get_remote_state ();
3889
3890 rs->non_stop_aware = (support == PACKET_ENABLE);
3891 }
3892
3893 static void
3894 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3895 enum packet_support support,
3896 const char *value)
3897 {
3898 struct remote_state *rs = get_remote_state ();
3899
3900 rs->cond_tracepoints = (support == PACKET_ENABLE);
3901 }
3902
3903 static void
3904 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3905 enum packet_support support,
3906 const char *value)
3907 {
3908 struct remote_state *rs = get_remote_state ();
3909
3910 rs->cond_breakpoints = (support == PACKET_ENABLE);
3911 }
3912
3913 static void
3914 remote_breakpoint_commands_feature (const struct protocol_feature *feature,
3915 enum packet_support support,
3916 const char *value)
3917 {
3918 struct remote_state *rs = get_remote_state ();
3919
3920 rs->breakpoint_commands = (support == PACKET_ENABLE);
3921 }
3922
3923 static void
3924 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3925 enum packet_support support,
3926 const char *value)
3927 {
3928 struct remote_state *rs = get_remote_state ();
3929
3930 rs->fast_tracepoints = (support == PACKET_ENABLE);
3931 }
3932
3933 static void
3934 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3935 enum packet_support support,
3936 const char *value)
3937 {
3938 struct remote_state *rs = get_remote_state ();
3939
3940 rs->static_tracepoints = (support == PACKET_ENABLE);
3941 }
3942
3943 static void
3944 remote_install_in_trace_feature (const struct protocol_feature *feature,
3945 enum packet_support support,
3946 const char *value)
3947 {
3948 struct remote_state *rs = get_remote_state ();
3949
3950 rs->install_in_trace = (support == PACKET_ENABLE);
3951 }
3952
3953 static void
3954 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3955 enum packet_support support,
3956 const char *value)
3957 {
3958 struct remote_state *rs = get_remote_state ();
3959
3960 rs->disconnected_tracing = (support == PACKET_ENABLE);
3961 }
3962
3963 static void
3964 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3965 enum packet_support support,
3966 const char *value)
3967 {
3968 struct remote_state *rs = get_remote_state ();
3969
3970 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3971 }
3972
3973 static void
3974 remote_string_tracing_feature (const struct protocol_feature *feature,
3975 enum packet_support support,
3976 const char *value)
3977 {
3978 struct remote_state *rs = get_remote_state ();
3979
3980 rs->string_tracing = (support == PACKET_ENABLE);
3981 }
3982
3983 static void
3984 remote_augmented_libraries_svr4_read_feature
3985 (const struct protocol_feature *feature,
3986 enum packet_support support, const char *value)
3987 {
3988 struct remote_state *rs = get_remote_state ();
3989
3990 rs->augmented_libraries_svr4_read = (support == PACKET_ENABLE);
3991 }
3992
3993 static const struct protocol_feature remote_protocol_features[] = {
3994 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3995 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3996 PACKET_qXfer_auxv },
3997 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3998 PACKET_qXfer_features },
3999 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4000 PACKET_qXfer_libraries },
4001 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4002 PACKET_qXfer_libraries_svr4 },
4003 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4004 remote_augmented_libraries_svr4_read_feature, -1 },
4005 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4006 PACKET_qXfer_memory_map },
4007 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4008 PACKET_qXfer_spu_read },
4009 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4010 PACKET_qXfer_spu_write },
4011 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4012 PACKET_qXfer_osdata },
4013 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4014 PACKET_qXfer_threads },
4015 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4016 PACKET_qXfer_traceframe_info },
4017 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4018 PACKET_QPassSignals },
4019 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4020 PACKET_QProgramSignals },
4021 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4022 PACKET_QStartNoAckMode },
4023 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
4024 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
4025 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4026 PACKET_qXfer_siginfo_read },
4027 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4028 PACKET_qXfer_siginfo_write },
4029 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
4030 PACKET_ConditionalTracepoints },
4031 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
4032 PACKET_ConditionalBreakpoints },
4033 { "BreakpointCommands", PACKET_DISABLE, remote_breakpoint_commands_feature,
4034 PACKET_BreakpointCommands },
4035 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
4036 PACKET_FastTracepoints },
4037 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
4038 PACKET_StaticTracepoints },
4039 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
4040 PACKET_InstallInTrace},
4041 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
4042 -1 },
4043 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4044 PACKET_bc },
4045 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4046 PACKET_bs },
4047 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4048 PACKET_TracepointSource },
4049 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4050 PACKET_QAllow },
4051 { "EnableDisableTracepoints", PACKET_DISABLE,
4052 remote_enable_disable_tracepoint_feature, -1 },
4053 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4054 PACKET_qXfer_fdpic },
4055 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4056 PACKET_qXfer_uib },
4057 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4058 PACKET_QDisableRandomization },
4059 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4060 { "QTBuffer:size", PACKET_DISABLE,
4061 remote_supported_packet, PACKET_QTBuffer_size},
4062 { "tracenz", PACKET_DISABLE,
4063 remote_string_tracing_feature, -1 },
4064 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4065 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4066 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4067 PACKET_qXfer_btrace }
4068 };
4069
4070 static char *remote_support_xml;
4071
4072 /* Register string appended to "xmlRegisters=" in qSupported query. */
4073
4074 void
4075 register_remote_support_xml (const char *xml)
4076 {
4077 #if defined(HAVE_LIBEXPAT)
4078 if (remote_support_xml == NULL)
4079 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4080 else
4081 {
4082 char *copy = xstrdup (remote_support_xml + 13);
4083 char *p = strtok (copy, ",");
4084
4085 do
4086 {
4087 if (strcmp (p, xml) == 0)
4088 {
4089 /* already there */
4090 xfree (copy);
4091 return;
4092 }
4093 }
4094 while ((p = strtok (NULL, ",")) != NULL);
4095 xfree (copy);
4096
4097 remote_support_xml = reconcat (remote_support_xml,
4098 remote_support_xml, ",", xml,
4099 (char *) NULL);
4100 }
4101 #endif
4102 }
4103
4104 static char *
4105 remote_query_supported_append (char *msg, const char *append)
4106 {
4107 if (msg)
4108 return reconcat (msg, msg, ";", append, (char *) NULL);
4109 else
4110 return xstrdup (append);
4111 }
4112
4113 static void
4114 remote_query_supported (void)
4115 {
4116 struct remote_state *rs = get_remote_state ();
4117 char *next;
4118 int i;
4119 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4120
4121 /* The packet support flags are handled differently for this packet
4122 than for most others. We treat an error, a disabled packet, and
4123 an empty response identically: any features which must be reported
4124 to be used will be automatically disabled. An empty buffer
4125 accomplishes this, since that is also the representation for a list
4126 containing no features. */
4127
4128 rs->buf[0] = 0;
4129 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
4130 {
4131 char *q = NULL;
4132 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4133
4134 q = remote_query_supported_append (q, "multiprocess+");
4135
4136 if (remote_support_xml)
4137 q = remote_query_supported_append (q, remote_support_xml);
4138
4139 q = remote_query_supported_append (q, "qRelocInsn+");
4140
4141 q = reconcat (q, "qSupported:", q, (char *) NULL);
4142 putpkt (q);
4143
4144 do_cleanups (old_chain);
4145
4146 getpkt (&rs->buf, &rs->buf_size, 0);
4147
4148 /* If an error occured, warn, but do not return - just reset the
4149 buffer to empty and go on to disable features. */
4150 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4151 == PACKET_ERROR)
4152 {
4153 warning (_("Remote failure reply: %s"), rs->buf);
4154 rs->buf[0] = 0;
4155 }
4156 }
4157
4158 memset (seen, 0, sizeof (seen));
4159
4160 next = rs->buf;
4161 while (*next)
4162 {
4163 enum packet_support is_supported;
4164 char *p, *end, *name_end, *value;
4165
4166 /* First separate out this item from the rest of the packet. If
4167 there's another item after this, we overwrite the separator
4168 (terminated strings are much easier to work with). */
4169 p = next;
4170 end = strchr (p, ';');
4171 if (end == NULL)
4172 {
4173 end = p + strlen (p);
4174 next = end;
4175 }
4176 else
4177 {
4178 *end = '\0';
4179 next = end + 1;
4180
4181 if (end == p)
4182 {
4183 warning (_("empty item in \"qSupported\" response"));
4184 continue;
4185 }
4186 }
4187
4188 name_end = strchr (p, '=');
4189 if (name_end)
4190 {
4191 /* This is a name=value entry. */
4192 is_supported = PACKET_ENABLE;
4193 value = name_end + 1;
4194 *name_end = '\0';
4195 }
4196 else
4197 {
4198 value = NULL;
4199 switch (end[-1])
4200 {
4201 case '+':
4202 is_supported = PACKET_ENABLE;
4203 break;
4204
4205 case '-':
4206 is_supported = PACKET_DISABLE;
4207 break;
4208
4209 case '?':
4210 is_supported = PACKET_SUPPORT_UNKNOWN;
4211 break;
4212
4213 default:
4214 warning (_("unrecognized item \"%s\" "
4215 "in \"qSupported\" response"), p);
4216 continue;
4217 }
4218 end[-1] = '\0';
4219 }
4220
4221 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4222 if (strcmp (remote_protocol_features[i].name, p) == 0)
4223 {
4224 const struct protocol_feature *feature;
4225
4226 seen[i] = 1;
4227 feature = &remote_protocol_features[i];
4228 feature->func (feature, is_supported, value);
4229 break;
4230 }
4231 }
4232
4233 /* If we increased the packet size, make sure to increase the global
4234 buffer size also. We delay this until after parsing the entire
4235 qSupported packet, because this is the same buffer we were
4236 parsing. */
4237 if (rs->buf_size < rs->explicit_packet_size)
4238 {
4239 rs->buf_size = rs->explicit_packet_size;
4240 rs->buf = xrealloc (rs->buf, rs->buf_size);
4241 }
4242
4243 /* Handle the defaults for unmentioned features. */
4244 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4245 if (!seen[i])
4246 {
4247 const struct protocol_feature *feature;
4248
4249 feature = &remote_protocol_features[i];
4250 feature->func (feature, feature->default_support, NULL);
4251 }
4252 }
4253
4254 /* Remove any of the remote.c targets from target stack. Upper targets depend
4255 on it so remove them first. */
4256
4257 static void
4258 remote_unpush_target (void)
4259 {
4260 pop_all_targets_above (process_stratum - 1);
4261 }
4262
4263 static void
4264 remote_open_1 (char *name, int from_tty,
4265 struct target_ops *target, int extended_p)
4266 {
4267 struct remote_state *rs = get_remote_state ();
4268
4269 if (name == 0)
4270 error (_("To open a remote debug connection, you need to specify what\n"
4271 "serial device is attached to the remote system\n"
4272 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4273
4274 /* See FIXME above. */
4275 if (!target_async_permitted)
4276 wait_forever_enabled_p = 1;
4277
4278 /* If we're connected to a running target, target_preopen will kill it.
4279 Ask this question first, before target_preopen has a chance to kill
4280 anything. */
4281 if (rs->remote_desc != NULL && !have_inferiors ())
4282 {
4283 if (from_tty
4284 && !query (_("Already connected to a remote target. Disconnect? ")))
4285 error (_("Still connected."));
4286 }
4287
4288 /* Here the possibly existing remote target gets unpushed. */
4289 target_preopen (from_tty);
4290
4291 /* Make sure we send the passed signals list the next time we resume. */
4292 xfree (rs->last_pass_packet);
4293 rs->last_pass_packet = NULL;
4294
4295 /* Make sure we send the program signals list the next time we
4296 resume. */
4297 xfree (rs->last_program_signals_packet);
4298 rs->last_program_signals_packet = NULL;
4299
4300 remote_fileio_reset ();
4301 reopen_exec_file ();
4302 reread_symbols ();
4303
4304 rs->remote_desc = remote_serial_open (name);
4305 if (!rs->remote_desc)
4306 perror_with_name (name);
4307
4308 if (baud_rate != -1)
4309 {
4310 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4311 {
4312 /* The requested speed could not be set. Error out to
4313 top level after closing remote_desc. Take care to
4314 set remote_desc to NULL to avoid closing remote_desc
4315 more than once. */
4316 serial_close (rs->remote_desc);
4317 rs->remote_desc = NULL;
4318 perror_with_name (name);
4319 }
4320 }
4321
4322 serial_raw (rs->remote_desc);
4323
4324 /* If there is something sitting in the buffer we might take it as a
4325 response to a command, which would be bad. */
4326 serial_flush_input (rs->remote_desc);
4327
4328 if (from_tty)
4329 {
4330 puts_filtered ("Remote debugging using ");
4331 puts_filtered (name);
4332 puts_filtered ("\n");
4333 }
4334 push_target (target); /* Switch to using remote target now. */
4335
4336 /* Register extra event sources in the event loop. */
4337 remote_async_inferior_event_token
4338 = create_async_event_handler (remote_async_inferior_event_handler,
4339 NULL);
4340 remote_notif_register_async_event_handler ();
4341
4342 /* Reset the target state; these things will be queried either by
4343 remote_query_supported or as they are needed. */
4344 init_all_packet_configs ();
4345 rs->cached_wait_status = 0;
4346 rs->explicit_packet_size = 0;
4347 rs->noack_mode = 0;
4348 rs->multi_process_aware = 0;
4349 rs->extended = extended_p;
4350 rs->non_stop_aware = 0;
4351 rs->waiting_for_stop_reply = 0;
4352 rs->ctrlc_pending_p = 0;
4353
4354 rs->general_thread = not_sent_ptid;
4355 rs->continue_thread = not_sent_ptid;
4356 rs->remote_traceframe_number = -1;
4357
4358 /* Probe for ability to use "ThreadInfo" query, as required. */
4359 rs->use_threadinfo_query = 1;
4360 rs->use_threadextra_query = 1;
4361
4362 if (target_async_permitted)
4363 {
4364 /* With this target we start out by owning the terminal. */
4365 remote_async_terminal_ours_p = 1;
4366
4367 /* FIXME: cagney/1999-09-23: During the initial connection it is
4368 assumed that the target is already ready and able to respond to
4369 requests. Unfortunately remote_start_remote() eventually calls
4370 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4371 around this. Eventually a mechanism that allows
4372 wait_for_inferior() to expect/get timeouts will be
4373 implemented. */
4374 wait_forever_enabled_p = 0;
4375 }
4376
4377 /* First delete any symbols previously loaded from shared libraries. */
4378 no_shared_libraries (NULL, 0);
4379
4380 /* Start afresh. */
4381 init_thread_list ();
4382
4383 /* Start the remote connection. If error() or QUIT, discard this
4384 target (we'd otherwise be in an inconsistent state) and then
4385 propogate the error on up the exception chain. This ensures that
4386 the caller doesn't stumble along blindly assuming that the
4387 function succeeded. The CLI doesn't have this problem but other
4388 UI's, such as MI do.
4389
4390 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4391 this function should return an error indication letting the
4392 caller restore the previous state. Unfortunately the command
4393 ``target remote'' is directly wired to this function making that
4394 impossible. On a positive note, the CLI side of this problem has
4395 been fixed - the function set_cmd_context() makes it possible for
4396 all the ``target ....'' commands to share a common callback
4397 function. See cli-dump.c. */
4398 {
4399 volatile struct gdb_exception ex;
4400
4401 TRY_CATCH (ex, RETURN_MASK_ALL)
4402 {
4403 remote_start_remote (from_tty, target, extended_p);
4404 }
4405 if (ex.reason < 0)
4406 {
4407 /* Pop the partially set up target - unless something else did
4408 already before throwing the exception. */
4409 if (rs->remote_desc != NULL)
4410 remote_unpush_target ();
4411 if (target_async_permitted)
4412 wait_forever_enabled_p = 1;
4413 throw_exception (ex);
4414 }
4415 }
4416
4417 if (target_async_permitted)
4418 wait_forever_enabled_p = 1;
4419 }
4420
4421 /* This takes a program previously attached to and detaches it. After
4422 this is done, GDB can be used to debug some other program. We
4423 better not have left any breakpoints in the target program or it'll
4424 die when it hits one. */
4425
4426 static void
4427 remote_detach_1 (char *args, int from_tty, int extended)
4428 {
4429 int pid = ptid_get_pid (inferior_ptid);
4430 struct remote_state *rs = get_remote_state ();
4431
4432 if (args)
4433 error (_("Argument given to \"detach\" when remotely debugging."));
4434
4435 if (!target_has_execution)
4436 error (_("No process to detach from."));
4437
4438 if (from_tty)
4439 {
4440 char *exec_file = get_exec_file (0);
4441 if (exec_file == NULL)
4442 exec_file = "";
4443 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4444 target_pid_to_str (pid_to_ptid (pid)));
4445 gdb_flush (gdb_stdout);
4446 }
4447
4448 /* Tell the remote target to detach. */
4449 if (remote_multi_process_p (rs))
4450 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4451 else
4452 strcpy (rs->buf, "D");
4453
4454 putpkt (rs->buf);
4455 getpkt (&rs->buf, &rs->buf_size, 0);
4456
4457 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4458 ;
4459 else if (rs->buf[0] == '\0')
4460 error (_("Remote doesn't know how to detach"));
4461 else
4462 error (_("Can't detach process."));
4463
4464 if (from_tty && !extended)
4465 puts_filtered (_("Ending remote debugging.\n"));
4466
4467 target_mourn_inferior ();
4468 }
4469
4470 static void
4471 remote_detach (struct target_ops *ops, char *args, int from_tty)
4472 {
4473 remote_detach_1 (args, from_tty, 0);
4474 }
4475
4476 static void
4477 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4478 {
4479 remote_detach_1 (args, from_tty, 1);
4480 }
4481
4482 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4483
4484 static void
4485 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4486 {
4487 if (args)
4488 error (_("Argument given to \"disconnect\" when remotely debugging."));
4489
4490 /* Make sure we unpush even the extended remote targets; mourn
4491 won't do it. So call remote_mourn_1 directly instead of
4492 target_mourn_inferior. */
4493 remote_mourn_1 (target);
4494
4495 if (from_tty)
4496 puts_filtered ("Ending remote debugging.\n");
4497 }
4498
4499 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4500 be chatty about it. */
4501
4502 static void
4503 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4504 {
4505 struct remote_state *rs = get_remote_state ();
4506 int pid;
4507 char *wait_status = NULL;
4508
4509 pid = parse_pid_to_attach (args);
4510
4511 /* Remote PID can be freely equal to getpid, do not check it here the same
4512 way as in other targets. */
4513
4514 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4515 error (_("This target does not support attaching to a process"));
4516
4517 if (from_tty)
4518 {
4519 char *exec_file = get_exec_file (0);
4520
4521 if (exec_file)
4522 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4523 target_pid_to_str (pid_to_ptid (pid)));
4524 else
4525 printf_unfiltered (_("Attaching to %s\n"),
4526 target_pid_to_str (pid_to_ptid (pid)));
4527
4528 gdb_flush (gdb_stdout);
4529 }
4530
4531 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4532 putpkt (rs->buf);
4533 getpkt (&rs->buf, &rs->buf_size, 0);
4534
4535 if (packet_ok (rs->buf,
4536 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4537 {
4538 if (!non_stop)
4539 {
4540 /* Save the reply for later. */
4541 wait_status = alloca (strlen (rs->buf) + 1);
4542 strcpy (wait_status, rs->buf);
4543 }
4544 else if (strcmp (rs->buf, "OK") != 0)
4545 error (_("Attaching to %s failed with: %s"),
4546 target_pid_to_str (pid_to_ptid (pid)),
4547 rs->buf);
4548 }
4549 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4550 error (_("This target does not support attaching to a process"));
4551 else
4552 error (_("Attaching to %s failed"),
4553 target_pid_to_str (pid_to_ptid (pid)));
4554
4555 set_current_inferior (remote_add_inferior (0, pid, 1));
4556
4557 inferior_ptid = pid_to_ptid (pid);
4558
4559 if (non_stop)
4560 {
4561 struct thread_info *thread;
4562
4563 /* Get list of threads. */
4564 remote_threads_info (target);
4565
4566 thread = first_thread_of_process (pid);
4567 if (thread)
4568 inferior_ptid = thread->ptid;
4569 else
4570 inferior_ptid = pid_to_ptid (pid);
4571
4572 /* Invalidate our notion of the remote current thread. */
4573 record_currthread (rs, minus_one_ptid);
4574 }
4575 else
4576 {
4577 /* Now, if we have thread information, update inferior_ptid. */
4578 inferior_ptid = remote_current_thread (inferior_ptid);
4579
4580 /* Add the main thread to the thread list. */
4581 add_thread_silent (inferior_ptid);
4582 }
4583
4584 /* Next, if the target can specify a description, read it. We do
4585 this before anything involving memory or registers. */
4586 target_find_description ();
4587
4588 if (!non_stop)
4589 {
4590 /* Use the previously fetched status. */
4591 gdb_assert (wait_status != NULL);
4592
4593 if (target_can_async_p ())
4594 {
4595 struct notif_event *reply
4596 = remote_notif_parse (&notif_client_stop, wait_status);
4597
4598 push_stop_reply ((struct stop_reply *) reply);
4599
4600 target_async (inferior_event_handler, 0);
4601 }
4602 else
4603 {
4604 gdb_assert (wait_status != NULL);
4605 strcpy (rs->buf, wait_status);
4606 rs->cached_wait_status = 1;
4607 }
4608 }
4609 else
4610 gdb_assert (wait_status == NULL);
4611 }
4612
4613 static void
4614 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4615 {
4616 extended_remote_attach_1 (ops, args, from_tty);
4617 }
4618
4619 /* Convert hex digit A to a number. */
4620
4621 static int
4622 fromhex (int a)
4623 {
4624 if (a >= '0' && a <= '9')
4625 return a - '0';
4626 else if (a >= 'a' && a <= 'f')
4627 return a - 'a' + 10;
4628 else if (a >= 'A' && a <= 'F')
4629 return a - 'A' + 10;
4630 else
4631 error (_("Reply contains invalid hex digit %d"), a);
4632 }
4633
4634 int
4635 hex2bin (const char *hex, gdb_byte *bin, int count)
4636 {
4637 int i;
4638
4639 for (i = 0; i < count; i++)
4640 {
4641 if (hex[0] == 0 || hex[1] == 0)
4642 {
4643 /* Hex string is short, or of uneven length.
4644 Return the count that has been converted so far. */
4645 return i;
4646 }
4647 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4648 hex += 2;
4649 }
4650 return i;
4651 }
4652
4653 /* Convert number NIB to a hex digit. */
4654
4655 static int
4656 tohex (int nib)
4657 {
4658 if (nib < 10)
4659 return '0' + nib;
4660 else
4661 return 'a' + nib - 10;
4662 }
4663
4664 int
4665 bin2hex (const gdb_byte *bin, char *hex, int count)
4666 {
4667 int i;
4668
4669 /* May use a length, or a nul-terminated string as input. */
4670 if (count == 0)
4671 count = strlen ((char *) bin);
4672
4673 for (i = 0; i < count; i++)
4674 {
4675 *hex++ = tohex ((*bin >> 4) & 0xf);
4676 *hex++ = tohex (*bin++ & 0xf);
4677 }
4678 *hex = 0;
4679 return i;
4680 }
4681 \f
4682 /* Check for the availability of vCont. This function should also check
4683 the response. */
4684
4685 static void
4686 remote_vcont_probe (struct remote_state *rs)
4687 {
4688 char *buf;
4689
4690 strcpy (rs->buf, "vCont?");
4691 putpkt (rs->buf);
4692 getpkt (&rs->buf, &rs->buf_size, 0);
4693 buf = rs->buf;
4694
4695 /* Make sure that the features we assume are supported. */
4696 if (strncmp (buf, "vCont", 5) == 0)
4697 {
4698 char *p = &buf[5];
4699 int support_s, support_S, support_c, support_C;
4700
4701 support_s = 0;
4702 support_S = 0;
4703 support_c = 0;
4704 support_C = 0;
4705 rs->supports_vCont.t = 0;
4706 rs->supports_vCont.r = 0;
4707 while (p && *p == ';')
4708 {
4709 p++;
4710 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4711 support_s = 1;
4712 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4713 support_S = 1;
4714 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4715 support_c = 1;
4716 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4717 support_C = 1;
4718 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4719 rs->supports_vCont.t = 1;
4720 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
4721 rs->supports_vCont.r = 1;
4722
4723 p = strchr (p, ';');
4724 }
4725
4726 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4727 BUF will make packet_ok disable the packet. */
4728 if (!support_s || !support_S || !support_c || !support_C)
4729 buf[0] = 0;
4730 }
4731
4732 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4733 }
4734
4735 /* Helper function for building "vCont" resumptions. Write a
4736 resumption to P. ENDP points to one-passed-the-end of the buffer
4737 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4738 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4739 resumed thread should be single-stepped and/or signalled. If PTID
4740 equals minus_one_ptid, then all threads are resumed; if PTID
4741 represents a process, then all threads of the process are resumed;
4742 the thread to be stepped and/or signalled is given in the global
4743 INFERIOR_PTID. */
4744
4745 static char *
4746 append_resumption (char *p, char *endp,
4747 ptid_t ptid, int step, enum gdb_signal siggnal)
4748 {
4749 struct remote_state *rs = get_remote_state ();
4750
4751 if (step && siggnal != GDB_SIGNAL_0)
4752 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4753 else if (step
4754 /* GDB is willing to range step. */
4755 && use_range_stepping
4756 /* Target supports range stepping. */
4757 && rs->supports_vCont.r
4758 /* We don't currently support range stepping multiple
4759 threads with a wildcard (though the protocol allows it,
4760 so stubs shouldn't make an active effort to forbid
4761 it). */
4762 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4763 {
4764 struct thread_info *tp;
4765
4766 if (ptid_equal (ptid, minus_one_ptid))
4767 {
4768 /* If we don't know about the target thread's tid, then
4769 we're resuming magic_null_ptid (see caller). */
4770 tp = find_thread_ptid (magic_null_ptid);
4771 }
4772 else
4773 tp = find_thread_ptid (ptid);
4774 gdb_assert (tp != NULL);
4775
4776 if (tp->control.may_range_step)
4777 {
4778 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4779
4780 p += xsnprintf (p, endp - p, ";r%s,%s",
4781 phex_nz (tp->control.step_range_start,
4782 addr_size),
4783 phex_nz (tp->control.step_range_end,
4784 addr_size));
4785 }
4786 else
4787 p += xsnprintf (p, endp - p, ";s");
4788 }
4789 else if (step)
4790 p += xsnprintf (p, endp - p, ";s");
4791 else if (siggnal != GDB_SIGNAL_0)
4792 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4793 else
4794 p += xsnprintf (p, endp - p, ";c");
4795
4796 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4797 {
4798 ptid_t nptid;
4799
4800 /* All (-1) threads of process. */
4801 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4802
4803 p += xsnprintf (p, endp - p, ":");
4804 p = write_ptid (p, endp, nptid);
4805 }
4806 else if (!ptid_equal (ptid, minus_one_ptid))
4807 {
4808 p += xsnprintf (p, endp - p, ":");
4809 p = write_ptid (p, endp, ptid);
4810 }
4811
4812 return p;
4813 }
4814
4815 /* Append a vCont continue-with-signal action for threads that have a
4816 non-zero stop signal. */
4817
4818 static char *
4819 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4820 {
4821 struct thread_info *thread;
4822
4823 ALL_THREADS (thread)
4824 if (ptid_match (thread->ptid, ptid)
4825 && !ptid_equal (inferior_ptid, thread->ptid)
4826 && thread->suspend.stop_signal != GDB_SIGNAL_0
4827 && signal_pass_state (thread->suspend.stop_signal))
4828 {
4829 p = append_resumption (p, endp, thread->ptid,
4830 0, thread->suspend.stop_signal);
4831 thread->suspend.stop_signal = GDB_SIGNAL_0;
4832 }
4833
4834 return p;
4835 }
4836
4837 /* Resume the remote inferior by using a "vCont" packet. The thread
4838 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4839 resumed thread should be single-stepped and/or signalled. If PTID
4840 equals minus_one_ptid, then all threads are resumed; the thread to
4841 be stepped and/or signalled is given in the global INFERIOR_PTID.
4842 This function returns non-zero iff it resumes the inferior.
4843
4844 This function issues a strict subset of all possible vCont commands at the
4845 moment. */
4846
4847 static int
4848 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
4849 {
4850 struct remote_state *rs = get_remote_state ();
4851 char *p;
4852 char *endp;
4853
4854 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4855 remote_vcont_probe (rs);
4856
4857 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4858 return 0;
4859
4860 p = rs->buf;
4861 endp = rs->buf + get_remote_packet_size ();
4862
4863 /* If we could generate a wider range of packets, we'd have to worry
4864 about overflowing BUF. Should there be a generic
4865 "multi-part-packet" packet? */
4866
4867 p += xsnprintf (p, endp - p, "vCont");
4868
4869 if (ptid_equal (ptid, magic_null_ptid))
4870 {
4871 /* MAGIC_NULL_PTID means that we don't have any active threads,
4872 so we don't have any TID numbers the inferior will
4873 understand. Make sure to only send forms that do not specify
4874 a TID. */
4875 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4876 }
4877 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4878 {
4879 /* Resume all threads (of all processes, or of a single
4880 process), with preference for INFERIOR_PTID. This assumes
4881 inferior_ptid belongs to the set of all threads we are about
4882 to resume. */
4883 if (step || siggnal != GDB_SIGNAL_0)
4884 {
4885 /* Step inferior_ptid, with or without signal. */
4886 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4887 }
4888
4889 /* Also pass down any pending signaled resumption for other
4890 threads not the current. */
4891 p = append_pending_thread_resumptions (p, endp, ptid);
4892
4893 /* And continue others without a signal. */
4894 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
4895 }
4896 else
4897 {
4898 /* Scheduler locking; resume only PTID. */
4899 append_resumption (p, endp, ptid, step, siggnal);
4900 }
4901
4902 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4903 putpkt (rs->buf);
4904
4905 if (non_stop)
4906 {
4907 /* In non-stop, the stub replies to vCont with "OK". The stop
4908 reply will be reported asynchronously by means of a `%Stop'
4909 notification. */
4910 getpkt (&rs->buf, &rs->buf_size, 0);
4911 if (strcmp (rs->buf, "OK") != 0)
4912 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4913 }
4914
4915 return 1;
4916 }
4917
4918 /* Tell the remote machine to resume. */
4919
4920 static void
4921 remote_resume (struct target_ops *ops,
4922 ptid_t ptid, int step, enum gdb_signal siggnal)
4923 {
4924 struct remote_state *rs = get_remote_state ();
4925 char *buf;
4926
4927 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
4928 (explained in remote-notif.c:handle_notification) so
4929 remote_notif_process is not called. We need find a place where
4930 it is safe to start a 'vNotif' sequence. It is good to do it
4931 before resuming inferior, because inferior was stopped and no RSP
4932 traffic at that moment. */
4933 if (!non_stop)
4934 remote_notif_process (&notif_client_stop);
4935
4936 rs->last_sent_signal = siggnal;
4937 rs->last_sent_step = step;
4938
4939 /* The vCont packet doesn't need to specify threads via Hc. */
4940 /* No reverse support (yet) for vCont. */
4941 if (execution_direction != EXEC_REVERSE)
4942 if (remote_vcont_resume (ptid, step, siggnal))
4943 goto done;
4944
4945 /* All other supported resume packets do use Hc, so set the continue
4946 thread. */
4947 if (ptid_equal (ptid, minus_one_ptid))
4948 set_continue_thread (any_thread_ptid);
4949 else
4950 set_continue_thread (ptid);
4951
4952 buf = rs->buf;
4953 if (execution_direction == EXEC_REVERSE)
4954 {
4955 /* We don't pass signals to the target in reverse exec mode. */
4956 if (info_verbose && siggnal != GDB_SIGNAL_0)
4957 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4958 siggnal);
4959
4960 if (step
4961 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4962 error (_("Remote reverse-step not supported."));
4963 if (!step
4964 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4965 error (_("Remote reverse-continue not supported."));
4966
4967 strcpy (buf, step ? "bs" : "bc");
4968 }
4969 else if (siggnal != GDB_SIGNAL_0)
4970 {
4971 buf[0] = step ? 'S' : 'C';
4972 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4973 buf[2] = tohex (((int) siggnal) & 0xf);
4974 buf[3] = '\0';
4975 }
4976 else
4977 strcpy (buf, step ? "s" : "c");
4978
4979 putpkt (buf);
4980
4981 done:
4982 /* We are about to start executing the inferior, let's register it
4983 with the event loop. NOTE: this is the one place where all the
4984 execution commands end up. We could alternatively do this in each
4985 of the execution commands in infcmd.c. */
4986 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4987 into infcmd.c in order to allow inferior function calls to work
4988 NOT asynchronously. */
4989 if (target_can_async_p ())
4990 target_async (inferior_event_handler, 0);
4991
4992 /* We've just told the target to resume. The remote server will
4993 wait for the inferior to stop, and then send a stop reply. In
4994 the mean time, we can't start another command/query ourselves
4995 because the stub wouldn't be ready to process it. This applies
4996 only to the base all-stop protocol, however. In non-stop (which
4997 only supports vCont), the stub replies with an "OK", and is
4998 immediate able to process further serial input. */
4999 if (!non_stop)
5000 rs->waiting_for_stop_reply = 1;
5001 }
5002 \f
5003
5004 /* Set up the signal handler for SIGINT, while the target is
5005 executing, ovewriting the 'regular' SIGINT signal handler. */
5006 static void
5007 async_initialize_sigint_signal_handler (void)
5008 {
5009 signal (SIGINT, async_handle_remote_sigint);
5010 }
5011
5012 /* Signal handler for SIGINT, while the target is executing. */
5013 static void
5014 async_handle_remote_sigint (int sig)
5015 {
5016 signal (sig, async_handle_remote_sigint_twice);
5017 mark_async_signal_handler (async_sigint_remote_token);
5018 }
5019
5020 /* Signal handler for SIGINT, installed after SIGINT has already been
5021 sent once. It will take effect the second time that the user sends
5022 a ^C. */
5023 static void
5024 async_handle_remote_sigint_twice (int sig)
5025 {
5026 signal (sig, async_handle_remote_sigint);
5027 mark_async_signal_handler (async_sigint_remote_twice_token);
5028 }
5029
5030 /* Perform the real interruption of the target execution, in response
5031 to a ^C. */
5032 static void
5033 async_remote_interrupt (gdb_client_data arg)
5034 {
5035 if (remote_debug)
5036 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
5037
5038 target_stop (inferior_ptid);
5039 }
5040
5041 /* Perform interrupt, if the first attempt did not succeed. Just give
5042 up on the target alltogether. */
5043 static void
5044 async_remote_interrupt_twice (gdb_client_data arg)
5045 {
5046 if (remote_debug)
5047 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
5048
5049 interrupt_query ();
5050 }
5051
5052 /* Reinstall the usual SIGINT handlers, after the target has
5053 stopped. */
5054 static void
5055 async_cleanup_sigint_signal_handler (void *dummy)
5056 {
5057 signal (SIGINT, handle_sigint);
5058 }
5059
5060 /* Send ^C to target to halt it. Target will respond, and send us a
5061 packet. */
5062 static void (*ofunc) (int);
5063
5064 /* The command line interface's stop routine. This function is installed
5065 as a signal handler for SIGINT. The first time a user requests a
5066 stop, we call remote_stop to send a break or ^C. If there is no
5067 response from the target (it didn't stop when the user requested it),
5068 we ask the user if he'd like to detach from the target. */
5069 static void
5070 sync_remote_interrupt (int signo)
5071 {
5072 /* If this doesn't work, try more severe steps. */
5073 signal (signo, sync_remote_interrupt_twice);
5074
5075 gdb_call_async_signal_handler (async_sigint_remote_token, 1);
5076 }
5077
5078 /* The user typed ^C twice. */
5079
5080 static void
5081 sync_remote_interrupt_twice (int signo)
5082 {
5083 signal (signo, ofunc);
5084 gdb_call_async_signal_handler (async_sigint_remote_twice_token, 1);
5085 signal (signo, sync_remote_interrupt);
5086 }
5087
5088 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
5089 thread, all threads of a remote process, or all threads of all
5090 processes. */
5091
5092 static void
5093 remote_stop_ns (ptid_t ptid)
5094 {
5095 struct remote_state *rs = get_remote_state ();
5096 char *p = rs->buf;
5097 char *endp = rs->buf + get_remote_packet_size ();
5098
5099 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
5100 remote_vcont_probe (rs);
5101
5102 if (!rs->supports_vCont.t)
5103 error (_("Remote server does not support stopping threads"));
5104
5105 if (ptid_equal (ptid, minus_one_ptid)
5106 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5107 p += xsnprintf (p, endp - p, "vCont;t");
5108 else
5109 {
5110 ptid_t nptid;
5111
5112 p += xsnprintf (p, endp - p, "vCont;t:");
5113
5114 if (ptid_is_pid (ptid))
5115 /* All (-1) threads of process. */
5116 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
5117 else
5118 {
5119 /* Small optimization: if we already have a stop reply for
5120 this thread, no use in telling the stub we want this
5121 stopped. */
5122 if (peek_stop_reply (ptid))
5123 return;
5124
5125 nptid = ptid;
5126 }
5127
5128 write_ptid (p, endp, nptid);
5129 }
5130
5131 /* In non-stop, we get an immediate OK reply. The stop reply will
5132 come in asynchronously by notification. */
5133 putpkt (rs->buf);
5134 getpkt (&rs->buf, &rs->buf_size, 0);
5135 if (strcmp (rs->buf, "OK") != 0)
5136 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
5137 }
5138
5139 /* All-stop version of target_stop. Sends a break or a ^C to stop the
5140 remote target. It is undefined which thread of which process
5141 reports the stop. */
5142
5143 static void
5144 remote_stop_as (ptid_t ptid)
5145 {
5146 struct remote_state *rs = get_remote_state ();
5147
5148 rs->ctrlc_pending_p = 1;
5149
5150 /* If the inferior is stopped already, but the core didn't know
5151 about it yet, just ignore the request. The cached wait status
5152 will be collected in remote_wait. */
5153 if (rs->cached_wait_status)
5154 return;
5155
5156 /* Send interrupt_sequence to remote target. */
5157 send_interrupt_sequence ();
5158 }
5159
5160 /* This is the generic stop called via the target vector. When a target
5161 interrupt is requested, either by the command line or the GUI, we
5162 will eventually end up here. */
5163
5164 static void
5165 remote_stop (ptid_t ptid)
5166 {
5167 if (remote_debug)
5168 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5169
5170 if (non_stop)
5171 remote_stop_ns (ptid);
5172 else
5173 remote_stop_as (ptid);
5174 }
5175
5176 /* Ask the user what to do when an interrupt is received. */
5177
5178 static void
5179 interrupt_query (void)
5180 {
5181 target_terminal_ours ();
5182
5183 if (target_can_async_p ())
5184 {
5185 signal (SIGINT, handle_sigint);
5186 quit ();
5187 }
5188 else
5189 {
5190 if (query (_("Interrupted while waiting for the program.\n\
5191 Give up (and stop debugging it)? ")))
5192 {
5193 remote_unpush_target ();
5194 quit ();
5195 }
5196 }
5197
5198 target_terminal_inferior ();
5199 }
5200
5201 /* Enable/disable target terminal ownership. Most targets can use
5202 terminal groups to control terminal ownership. Remote targets are
5203 different in that explicit transfer of ownership to/from GDB/target
5204 is required. */
5205
5206 static void
5207 remote_terminal_inferior (void)
5208 {
5209 if (!target_async_permitted)
5210 /* Nothing to do. */
5211 return;
5212
5213 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5214 idempotent. The event-loop GDB talking to an asynchronous target
5215 with a synchronous command calls this function from both
5216 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5217 transfer the terminal to the target when it shouldn't this guard
5218 can go away. */
5219 if (!remote_async_terminal_ours_p)
5220 return;
5221 delete_file_handler (input_fd);
5222 remote_async_terminal_ours_p = 0;
5223 async_initialize_sigint_signal_handler ();
5224 /* NOTE: At this point we could also register our selves as the
5225 recipient of all input. Any characters typed could then be
5226 passed on down to the target. */
5227 }
5228
5229 static void
5230 remote_terminal_ours (void)
5231 {
5232 if (!target_async_permitted)
5233 /* Nothing to do. */
5234 return;
5235
5236 /* See FIXME in remote_terminal_inferior. */
5237 if (remote_async_terminal_ours_p)
5238 return;
5239 async_cleanup_sigint_signal_handler (NULL);
5240 add_file_handler (input_fd, stdin_event_handler, 0);
5241 remote_async_terminal_ours_p = 1;
5242 }
5243
5244 static void
5245 remote_console_output (char *msg)
5246 {
5247 char *p;
5248
5249 for (p = msg; p[0] && p[1]; p += 2)
5250 {
5251 char tb[2];
5252 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5253
5254 tb[0] = c;
5255 tb[1] = 0;
5256 fputs_unfiltered (tb, gdb_stdtarg);
5257 }
5258 gdb_flush (gdb_stdtarg);
5259 }
5260
5261 typedef struct cached_reg
5262 {
5263 int num;
5264 gdb_byte data[MAX_REGISTER_SIZE];
5265 } cached_reg_t;
5266
5267 DEF_VEC_O(cached_reg_t);
5268
5269 typedef struct stop_reply
5270 {
5271 struct notif_event base;
5272
5273 /* The identifier of the thread about this event */
5274 ptid_t ptid;
5275
5276 struct target_waitstatus ws;
5277
5278 /* Expedited registers. This makes remote debugging a bit more
5279 efficient for those targets that provide critical registers as
5280 part of their normal status mechanism (as another roundtrip to
5281 fetch them is avoided). */
5282 VEC(cached_reg_t) *regcache;
5283
5284 int stopped_by_watchpoint_p;
5285 CORE_ADDR watch_data_address;
5286
5287 int solibs_changed;
5288 int replay_event;
5289
5290 int core;
5291 } *stop_reply_p;
5292
5293 DECLARE_QUEUE_P (stop_reply_p);
5294 DEFINE_QUEUE_P (stop_reply_p);
5295 /* The list of already fetched and acknowledged stop events. This
5296 queue is used for notification Stop, and other notifications
5297 don't need queue for their events, because the notification events
5298 of Stop can't be consumed immediately, so that events should be
5299 queued first, and be consumed by remote_wait_{ns,as} one per
5300 time. Other notifications can consume their events immediately,
5301 so queue is not needed for them. */
5302 static QUEUE (stop_reply_p) *stop_reply_queue;
5303
5304 static void
5305 stop_reply_xfree (struct stop_reply *r)
5306 {
5307 if (r != NULL)
5308 {
5309 VEC_free (cached_reg_t, r->regcache);
5310 xfree (r);
5311 }
5312 }
5313
5314 static void
5315 remote_notif_stop_parse (struct notif_client *self, char *buf,
5316 struct notif_event *event)
5317 {
5318 remote_parse_stop_reply (buf, (struct stop_reply *) event);
5319 }
5320
5321 static void
5322 remote_notif_stop_ack (struct notif_client *self, char *buf,
5323 struct notif_event *event)
5324 {
5325 struct stop_reply *stop_reply = (struct stop_reply *) event;
5326
5327 /* acknowledge */
5328 putpkt ((char *) self->ack_command);
5329
5330 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
5331 /* We got an unknown stop reply. */
5332 error (_("Unknown stop reply"));
5333
5334 push_stop_reply (stop_reply);
5335 }
5336
5337 static int
5338 remote_notif_stop_can_get_pending_events (struct notif_client *self)
5339 {
5340 /* We can't get pending events in remote_notif_process for
5341 notification stop, and we have to do this in remote_wait_ns
5342 instead. If we fetch all queued events from stub, remote stub
5343 may exit and we have no chance to process them back in
5344 remote_wait_ns. */
5345 mark_async_event_handler (remote_async_inferior_event_token);
5346 return 0;
5347 }
5348
5349 static void
5350 stop_reply_dtr (struct notif_event *event)
5351 {
5352 struct stop_reply *r = (struct stop_reply *) event;
5353
5354 VEC_free (cached_reg_t, r->regcache);
5355 }
5356
5357 static struct notif_event *
5358 remote_notif_stop_alloc_reply (void)
5359 {
5360 struct notif_event *r
5361 = (struct notif_event *) XMALLOC (struct stop_reply);
5362
5363 r->dtr = stop_reply_dtr;
5364
5365 return r;
5366 }
5367
5368 /* A client of notification Stop. */
5369
5370 struct notif_client notif_client_stop =
5371 {
5372 "Stop",
5373 "vStopped",
5374 remote_notif_stop_parse,
5375 remote_notif_stop_ack,
5376 remote_notif_stop_can_get_pending_events,
5377 remote_notif_stop_alloc_reply,
5378 NULL,
5379 };
5380
5381 /* A parameter to pass data in and out. */
5382
5383 struct queue_iter_param
5384 {
5385 void *input;
5386 struct stop_reply *output;
5387 };
5388
5389 /* Remove all queue elements meet the condition it checks. */
5390
5391 static int
5392 remote_notif_remove_all (QUEUE (stop_reply_p) *q,
5393 QUEUE_ITER (stop_reply_p) *iter,
5394 stop_reply_p event,
5395 void *data)
5396 {
5397 struct queue_iter_param *param = data;
5398 struct inferior *inf = param->input;
5399
5400 if (inf == NULL || ptid_get_pid (event->ptid) == inf->pid)
5401 {
5402 stop_reply_xfree (event);
5403 QUEUE_remove_elem (stop_reply_p, q, iter);
5404 }
5405
5406 return 1;
5407 }
5408
5409 /* Discard all pending stop replies of inferior INF. If INF is NULL,
5410 discard everything. */
5411
5412 static void
5413 discard_pending_stop_replies (struct inferior *inf)
5414 {
5415 int i;
5416 struct queue_iter_param param;
5417 struct stop_reply *reply
5418 = (struct stop_reply *) notif_client_stop.pending_event;
5419
5420 /* Discard the in-flight notification. */
5421 if (reply != NULL
5422 && (inf == NULL
5423 || ptid_get_pid (reply->ptid) == inf->pid))
5424 {
5425 stop_reply_xfree (reply);
5426 notif_client_stop.pending_event = NULL;
5427 }
5428
5429 param.input = inf;
5430 param.output = NULL;
5431 /* Discard the stop replies we have already pulled with
5432 vStopped. */
5433 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5434 remote_notif_remove_all, &param);
5435 }
5436
5437 /* A parameter to pass data in and out. */
5438
5439 static int
5440 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
5441 QUEUE_ITER (stop_reply_p) *iter,
5442 stop_reply_p event,
5443 void *data)
5444 {
5445 struct queue_iter_param *param = data;
5446 ptid_t *ptid = param->input;
5447
5448 if (ptid_match (event->ptid, *ptid))
5449 {
5450 param->output = event;
5451 QUEUE_remove_elem (stop_reply_p, q, iter);
5452 return 0;
5453 }
5454
5455 return 1;
5456 }
5457
5458 /* Remove the first reply in 'stop_reply_queue' which matches
5459 PTID. */
5460
5461 static struct stop_reply *
5462 remote_notif_remove_queued_reply (ptid_t ptid)
5463 {
5464 struct queue_iter_param param;
5465
5466 param.input = &ptid;
5467 param.output = NULL;
5468
5469 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5470 remote_notif_remove_once_on_match, &param);
5471 if (notif_debug)
5472 fprintf_unfiltered (gdb_stdlog,
5473 "notif: discard queued event: 'Stop' in %s\n",
5474 target_pid_to_str (ptid));
5475
5476 return param.output;
5477 }
5478
5479 /* Look for a queued stop reply belonging to PTID. If one is found,
5480 remove it from the queue, and return it. Returns NULL if none is
5481 found. If there are still queued events left to process, tell the
5482 event loop to get back to target_wait soon. */
5483
5484 static struct stop_reply *
5485 queued_stop_reply (ptid_t ptid)
5486 {
5487 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
5488
5489 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
5490 /* There's still at least an event left. */
5491 mark_async_event_handler (remote_async_inferior_event_token);
5492
5493 return r;
5494 }
5495
5496 /* Push a fully parsed stop reply in the stop reply queue. Since we
5497 know that we now have at least one queued event left to pass to the
5498 core side, tell the event loop to get back to target_wait soon. */
5499
5500 static void
5501 push_stop_reply (struct stop_reply *new_event)
5502 {
5503 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
5504
5505 if (notif_debug)
5506 fprintf_unfiltered (gdb_stdlog,
5507 "notif: push 'Stop' %s to queue %d\n",
5508 target_pid_to_str (new_event->ptid),
5509 QUEUE_length (stop_reply_p,
5510 stop_reply_queue));
5511
5512 mark_async_event_handler (remote_async_inferior_event_token);
5513 }
5514
5515 static int
5516 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
5517 QUEUE_ITER (stop_reply_p) *iter,
5518 struct stop_reply *event,
5519 void *data)
5520 {
5521 ptid_t *ptid = data;
5522
5523 return !(ptid_equal (*ptid, event->ptid)
5524 && event->ws.kind == TARGET_WAITKIND_STOPPED);
5525 }
5526
5527 /* Returns true if we have a stop reply for PTID. */
5528
5529 static int
5530 peek_stop_reply (ptid_t ptid)
5531 {
5532 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
5533 stop_reply_match_ptid_and_ws, &ptid);
5534 }
5535
5536 /* Parse the stop reply in BUF. Either the function succeeds, and the
5537 result is stored in EVENT, or throws an error. */
5538
5539 static void
5540 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5541 {
5542 struct remote_arch_state *rsa = get_remote_arch_state ();
5543 ULONGEST addr;
5544 char *p;
5545
5546 event->ptid = null_ptid;
5547 event->ws.kind = TARGET_WAITKIND_IGNORE;
5548 event->ws.value.integer = 0;
5549 event->solibs_changed = 0;
5550 event->replay_event = 0;
5551 event->stopped_by_watchpoint_p = 0;
5552 event->regcache = NULL;
5553 event->core = -1;
5554
5555 switch (buf[0])
5556 {
5557 case 'T': /* Status with PC, SP, FP, ... */
5558 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5559 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5560 ss = signal number
5561 n... = register number
5562 r... = register contents
5563 */
5564
5565 p = &buf[3]; /* after Txx */
5566 while (*p)
5567 {
5568 char *p1;
5569 char *p_temp;
5570 int fieldsize;
5571 LONGEST pnum = 0;
5572
5573 /* If the packet contains a register number, save it in
5574 pnum and set p1 to point to the character following it.
5575 Otherwise p1 points to p. */
5576
5577 /* If this packet is an awatch packet, don't parse the 'a'
5578 as a register number. */
5579
5580 if (strncmp (p, "awatch", strlen("awatch")) != 0
5581 && strncmp (p, "core", strlen ("core") != 0))
5582 {
5583 /* Read the ``P'' register number. */
5584 pnum = strtol (p, &p_temp, 16);
5585 p1 = p_temp;
5586 }
5587 else
5588 p1 = p;
5589
5590 if (p1 == p) /* No register number present here. */
5591 {
5592 p1 = strchr (p, ':');
5593 if (p1 == NULL)
5594 error (_("Malformed packet(a) (missing colon): %s\n\
5595 Packet: '%s'\n"),
5596 p, buf);
5597 if (strncmp (p, "thread", p1 - p) == 0)
5598 event->ptid = read_ptid (++p1, &p);
5599 else if ((strncmp (p, "watch", p1 - p) == 0)
5600 || (strncmp (p, "rwatch", p1 - p) == 0)
5601 || (strncmp (p, "awatch", p1 - p) == 0))
5602 {
5603 event->stopped_by_watchpoint_p = 1;
5604 p = unpack_varlen_hex (++p1, &addr);
5605 event->watch_data_address = (CORE_ADDR) addr;
5606 }
5607 else if (strncmp (p, "library", p1 - p) == 0)
5608 {
5609 p1++;
5610 p_temp = p1;
5611 while (*p_temp && *p_temp != ';')
5612 p_temp++;
5613
5614 event->solibs_changed = 1;
5615 p = p_temp;
5616 }
5617 else if (strncmp (p, "replaylog", p1 - p) == 0)
5618 {
5619 /* NO_HISTORY event.
5620 p1 will indicate "begin" or "end", but
5621 it makes no difference for now, so ignore it. */
5622 event->replay_event = 1;
5623 p_temp = strchr (p1 + 1, ';');
5624 if (p_temp)
5625 p = p_temp;
5626 }
5627 else if (strncmp (p, "core", p1 - p) == 0)
5628 {
5629 ULONGEST c;
5630
5631 p = unpack_varlen_hex (++p1, &c);
5632 event->core = c;
5633 }
5634 else
5635 {
5636 /* Silently skip unknown optional info. */
5637 p_temp = strchr (p1 + 1, ';');
5638 if (p_temp)
5639 p = p_temp;
5640 }
5641 }
5642 else
5643 {
5644 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5645 cached_reg_t cached_reg;
5646
5647 p = p1;
5648
5649 if (*p != ':')
5650 error (_("Malformed packet(b) (missing colon): %s\n\
5651 Packet: '%s'\n"),
5652 p, buf);
5653 ++p;
5654
5655 if (reg == NULL)
5656 error (_("Remote sent bad register number %s: %s\n\
5657 Packet: '%s'\n"),
5658 hex_string (pnum), p, buf);
5659
5660 cached_reg.num = reg->regnum;
5661
5662 fieldsize = hex2bin (p, cached_reg.data,
5663 register_size (target_gdbarch (),
5664 reg->regnum));
5665 p += 2 * fieldsize;
5666 if (fieldsize < register_size (target_gdbarch (),
5667 reg->regnum))
5668 warning (_("Remote reply is too short: %s"), buf);
5669
5670 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5671 }
5672
5673 if (*p != ';')
5674 error (_("Remote register badly formatted: %s\nhere: %s"),
5675 buf, p);
5676 ++p;
5677 }
5678 /* fall through */
5679 case 'S': /* Old style status, just signal only. */
5680 if (event->solibs_changed)
5681 event->ws.kind = TARGET_WAITKIND_LOADED;
5682 else if (event->replay_event)
5683 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5684 else
5685 {
5686 event->ws.kind = TARGET_WAITKIND_STOPPED;
5687 event->ws.value.sig = (enum gdb_signal)
5688 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5689 }
5690 break;
5691 case 'W': /* Target exited. */
5692 case 'X':
5693 {
5694 char *p;
5695 int pid;
5696 ULONGEST value;
5697
5698 /* GDB used to accept only 2 hex chars here. Stubs should
5699 only send more if they detect GDB supports multi-process
5700 support. */
5701 p = unpack_varlen_hex (&buf[1], &value);
5702
5703 if (buf[0] == 'W')
5704 {
5705 /* The remote process exited. */
5706 event->ws.kind = TARGET_WAITKIND_EXITED;
5707 event->ws.value.integer = value;
5708 }
5709 else
5710 {
5711 /* The remote process exited with a signal. */
5712 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5713 event->ws.value.sig = (enum gdb_signal) value;
5714 }
5715
5716 /* If no process is specified, assume inferior_ptid. */
5717 pid = ptid_get_pid (inferior_ptid);
5718 if (*p == '\0')
5719 ;
5720 else if (*p == ';')
5721 {
5722 p++;
5723
5724 if (p == '\0')
5725 ;
5726 else if (strncmp (p,
5727 "process:", sizeof ("process:") - 1) == 0)
5728 {
5729 ULONGEST upid;
5730
5731 p += sizeof ("process:") - 1;
5732 unpack_varlen_hex (p, &upid);
5733 pid = upid;
5734 }
5735 else
5736 error (_("unknown stop reply packet: %s"), buf);
5737 }
5738 else
5739 error (_("unknown stop reply packet: %s"), buf);
5740 event->ptid = pid_to_ptid (pid);
5741 }
5742 break;
5743 }
5744
5745 if (non_stop && ptid_equal (event->ptid, null_ptid))
5746 error (_("No process or thread specified in stop reply: %s"), buf);
5747 }
5748
5749 /* When the stub wants to tell GDB about a new notification reply, it
5750 sends a notification (%Stop, for example). Those can come it at
5751 any time, hence, we have to make sure that any pending
5752 putpkt/getpkt sequence we're making is finished, before querying
5753 the stub for more events with the corresponding ack command
5754 (vStopped, for example). E.g., if we started a vStopped sequence
5755 immediately upon receiving the notification, something like this
5756 could happen:
5757
5758 1.1) --> Hg 1
5759 1.2) <-- OK
5760 1.3) --> g
5761 1.4) <-- %Stop
5762 1.5) --> vStopped
5763 1.6) <-- (registers reply to step #1.3)
5764
5765 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5766 query.
5767
5768 To solve this, whenever we parse a %Stop notification successfully,
5769 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5770 doing whatever we were doing:
5771
5772 2.1) --> Hg 1
5773 2.2) <-- OK
5774 2.3) --> g
5775 2.4) <-- %Stop
5776 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5777 2.5) <-- (registers reply to step #2.3)
5778
5779 Eventualy after step #2.5, we return to the event loop, which
5780 notices there's an event on the
5781 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5782 associated callback --- the function below. At this point, we're
5783 always safe to start a vStopped sequence. :
5784
5785 2.6) --> vStopped
5786 2.7) <-- T05 thread:2
5787 2.8) --> vStopped
5788 2.9) --> OK
5789 */
5790
5791 void
5792 remote_notif_get_pending_events (struct notif_client *nc)
5793 {
5794 struct remote_state *rs = get_remote_state ();
5795
5796 if (nc->pending_event)
5797 {
5798 if (notif_debug)
5799 fprintf_unfiltered (gdb_stdlog,
5800 "notif: process: '%s' ack pending event\n",
5801 nc->name);
5802
5803 /* acknowledge */
5804 nc->ack (nc, rs->buf, nc->pending_event);
5805 nc->pending_event = NULL;
5806
5807 while (1)
5808 {
5809 getpkt (&rs->buf, &rs->buf_size, 0);
5810 if (strcmp (rs->buf, "OK") == 0)
5811 break;
5812 else
5813 remote_notif_ack (nc, rs->buf);
5814 }
5815 }
5816 else
5817 {
5818 if (notif_debug)
5819 fprintf_unfiltered (gdb_stdlog,
5820 "notif: process: '%s' no pending reply\n",
5821 nc->name);
5822 }
5823 }
5824
5825 /* Called when it is decided that STOP_REPLY holds the info of the
5826 event that is to be returned to the core. This function always
5827 destroys STOP_REPLY. */
5828
5829 static ptid_t
5830 process_stop_reply (struct stop_reply *stop_reply,
5831 struct target_waitstatus *status)
5832 {
5833 ptid_t ptid;
5834
5835 *status = stop_reply->ws;
5836 ptid = stop_reply->ptid;
5837
5838 /* If no thread/process was reported by the stub, assume the current
5839 inferior. */
5840 if (ptid_equal (ptid, null_ptid))
5841 ptid = inferior_ptid;
5842
5843 if (status->kind != TARGET_WAITKIND_EXITED
5844 && status->kind != TARGET_WAITKIND_SIGNALLED)
5845 {
5846 struct remote_state *rs = get_remote_state ();
5847
5848 /* Expedited registers. */
5849 if (stop_reply->regcache)
5850 {
5851 struct regcache *regcache
5852 = get_thread_arch_regcache (ptid, target_gdbarch ());
5853 cached_reg_t *reg;
5854 int ix;
5855
5856 for (ix = 0;
5857 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5858 ix++)
5859 regcache_raw_supply (regcache, reg->num, reg->data);
5860 VEC_free (cached_reg_t, stop_reply->regcache);
5861 }
5862
5863 rs->remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5864 rs->remote_watch_data_address = stop_reply->watch_data_address;
5865
5866 remote_notice_new_inferior (ptid, 0);
5867 demand_private_info (ptid)->core = stop_reply->core;
5868 }
5869
5870 stop_reply_xfree (stop_reply);
5871 return ptid;
5872 }
5873
5874 /* The non-stop mode version of target_wait. */
5875
5876 static ptid_t
5877 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5878 {
5879 struct remote_state *rs = get_remote_state ();
5880 struct stop_reply *stop_reply;
5881 int ret;
5882 int is_notif = 0;
5883
5884 /* If in non-stop mode, get out of getpkt even if a
5885 notification is received. */
5886
5887 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5888 0 /* forever */, &is_notif);
5889 while (1)
5890 {
5891 if (ret != -1 && !is_notif)
5892 switch (rs->buf[0])
5893 {
5894 case 'E': /* Error of some sort. */
5895 /* We're out of sync with the target now. Did it continue
5896 or not? We can't tell which thread it was in non-stop,
5897 so just ignore this. */
5898 warning (_("Remote failure reply: %s"), rs->buf);
5899 break;
5900 case 'O': /* Console output. */
5901 remote_console_output (rs->buf + 1);
5902 break;
5903 default:
5904 warning (_("Invalid remote reply: %s"), rs->buf);
5905 break;
5906 }
5907
5908 /* Acknowledge a pending stop reply that may have arrived in the
5909 mean time. */
5910 if (notif_client_stop.pending_event != NULL)
5911 remote_notif_get_pending_events (&notif_client_stop);
5912
5913 /* If indeed we noticed a stop reply, we're done. */
5914 stop_reply = queued_stop_reply (ptid);
5915 if (stop_reply != NULL)
5916 return process_stop_reply (stop_reply, status);
5917
5918 /* Still no event. If we're just polling for an event, then
5919 return to the event loop. */
5920 if (options & TARGET_WNOHANG)
5921 {
5922 status->kind = TARGET_WAITKIND_IGNORE;
5923 return minus_one_ptid;
5924 }
5925
5926 /* Otherwise do a blocking wait. */
5927 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5928 1 /* forever */, &is_notif);
5929 }
5930 }
5931
5932 /* Wait until the remote machine stops, then return, storing status in
5933 STATUS just as `wait' would. */
5934
5935 static ptid_t
5936 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5937 {
5938 struct remote_state *rs = get_remote_state ();
5939 ptid_t event_ptid = null_ptid;
5940 char *buf;
5941 struct stop_reply *stop_reply;
5942
5943 again:
5944
5945 status->kind = TARGET_WAITKIND_IGNORE;
5946 status->value.integer = 0;
5947
5948 stop_reply = queued_stop_reply (ptid);
5949 if (stop_reply != NULL)
5950 return process_stop_reply (stop_reply, status);
5951
5952 if (rs->cached_wait_status)
5953 /* Use the cached wait status, but only once. */
5954 rs->cached_wait_status = 0;
5955 else
5956 {
5957 int ret;
5958 int is_notif;
5959
5960 if (!target_is_async_p ())
5961 {
5962 ofunc = signal (SIGINT, sync_remote_interrupt);
5963 /* If the user hit C-c before this packet, or between packets,
5964 pretend that it was hit right here. */
5965 if (check_quit_flag ())
5966 {
5967 clear_quit_flag ();
5968 sync_remote_interrupt (SIGINT);
5969 }
5970 }
5971
5972 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5973 _never_ wait for ever -> test on target_is_async_p().
5974 However, before we do that we need to ensure that the caller
5975 knows how to take the target into/out of async mode. */
5976 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5977 wait_forever_enabled_p, &is_notif);
5978
5979 if (!target_is_async_p ())
5980 signal (SIGINT, ofunc);
5981
5982 /* GDB gets a notification. Return to core as this event is
5983 not interesting. */
5984 if (ret != -1 && is_notif)
5985 return minus_one_ptid;
5986 }
5987
5988 buf = rs->buf;
5989
5990 rs->remote_stopped_by_watchpoint_p = 0;
5991
5992 /* We got something. */
5993 rs->waiting_for_stop_reply = 0;
5994
5995 /* Assume that the target has acknowledged Ctrl-C unless we receive
5996 an 'F' or 'O' packet. */
5997 if (buf[0] != 'F' && buf[0] != 'O')
5998 rs->ctrlc_pending_p = 0;
5999
6000 switch (buf[0])
6001 {
6002 case 'E': /* Error of some sort. */
6003 /* We're out of sync with the target now. Did it continue or
6004 not? Not is more likely, so report a stop. */
6005 warning (_("Remote failure reply: %s"), buf);
6006 status->kind = TARGET_WAITKIND_STOPPED;
6007 status->value.sig = GDB_SIGNAL_0;
6008 break;
6009 case 'F': /* File-I/O request. */
6010 remote_fileio_request (buf, rs->ctrlc_pending_p);
6011 rs->ctrlc_pending_p = 0;
6012 break;
6013 case 'T': case 'S': case 'X': case 'W':
6014 {
6015 struct stop_reply *stop_reply
6016 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
6017 rs->buf);
6018
6019 event_ptid = process_stop_reply (stop_reply, status);
6020 break;
6021 }
6022 case 'O': /* Console output. */
6023 remote_console_output (buf + 1);
6024
6025 /* The target didn't really stop; keep waiting. */
6026 rs->waiting_for_stop_reply = 1;
6027
6028 break;
6029 case '\0':
6030 if (rs->last_sent_signal != GDB_SIGNAL_0)
6031 {
6032 /* Zero length reply means that we tried 'S' or 'C' and the
6033 remote system doesn't support it. */
6034 target_terminal_ours_for_output ();
6035 printf_filtered
6036 ("Can't send signals to this remote system. %s not sent.\n",
6037 gdb_signal_to_name (rs->last_sent_signal));
6038 rs->last_sent_signal = GDB_SIGNAL_0;
6039 target_terminal_inferior ();
6040
6041 strcpy ((char *) buf, rs->last_sent_step ? "s" : "c");
6042 putpkt ((char *) buf);
6043
6044 /* We just told the target to resume, so a stop reply is in
6045 order. */
6046 rs->waiting_for_stop_reply = 1;
6047 break;
6048 }
6049 /* else fallthrough */
6050 default:
6051 warning (_("Invalid remote reply: %s"), buf);
6052 /* Keep waiting. */
6053 rs->waiting_for_stop_reply = 1;
6054 break;
6055 }
6056
6057 if (status->kind == TARGET_WAITKIND_IGNORE)
6058 {
6059 /* Nothing interesting happened. If we're doing a non-blocking
6060 poll, we're done. Otherwise, go back to waiting. */
6061 if (options & TARGET_WNOHANG)
6062 return minus_one_ptid;
6063 else
6064 goto again;
6065 }
6066 else if (status->kind != TARGET_WAITKIND_EXITED
6067 && status->kind != TARGET_WAITKIND_SIGNALLED)
6068 {
6069 if (!ptid_equal (event_ptid, null_ptid))
6070 record_currthread (rs, event_ptid);
6071 else
6072 event_ptid = inferior_ptid;
6073 }
6074 else
6075 /* A process exit. Invalidate our notion of current thread. */
6076 record_currthread (rs, minus_one_ptid);
6077
6078 return event_ptid;
6079 }
6080
6081 /* Wait until the remote machine stops, then return, storing status in
6082 STATUS just as `wait' would. */
6083
6084 static ptid_t
6085 remote_wait (struct target_ops *ops,
6086 ptid_t ptid, struct target_waitstatus *status, int options)
6087 {
6088 ptid_t event_ptid;
6089
6090 if (non_stop)
6091 event_ptid = remote_wait_ns (ptid, status, options);
6092 else
6093 event_ptid = remote_wait_as (ptid, status, options);
6094
6095 if (target_can_async_p ())
6096 {
6097 /* If there are are events left in the queue tell the event loop
6098 to return here. */
6099 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6100 mark_async_event_handler (remote_async_inferior_event_token);
6101 }
6102
6103 return event_ptid;
6104 }
6105
6106 /* Fetch a single register using a 'p' packet. */
6107
6108 static int
6109 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
6110 {
6111 struct remote_state *rs = get_remote_state ();
6112 char *buf, *p;
6113 char regp[MAX_REGISTER_SIZE];
6114 int i;
6115
6116 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
6117 return 0;
6118
6119 if (reg->pnum == -1)
6120 return 0;
6121
6122 p = rs->buf;
6123 *p++ = 'p';
6124 p += hexnumstr (p, reg->pnum);
6125 *p++ = '\0';
6126 putpkt (rs->buf);
6127 getpkt (&rs->buf, &rs->buf_size, 0);
6128
6129 buf = rs->buf;
6130
6131 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
6132 {
6133 case PACKET_OK:
6134 break;
6135 case PACKET_UNKNOWN:
6136 return 0;
6137 case PACKET_ERROR:
6138 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
6139 gdbarch_register_name (get_regcache_arch (regcache),
6140 reg->regnum),
6141 buf);
6142 }
6143
6144 /* If this register is unfetchable, tell the regcache. */
6145 if (buf[0] == 'x')
6146 {
6147 regcache_raw_supply (regcache, reg->regnum, NULL);
6148 return 1;
6149 }
6150
6151 /* Otherwise, parse and supply the value. */
6152 p = buf;
6153 i = 0;
6154 while (p[0] != 0)
6155 {
6156 if (p[1] == 0)
6157 error (_("fetch_register_using_p: early buf termination"));
6158
6159 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
6160 p += 2;
6161 }
6162 regcache_raw_supply (regcache, reg->regnum, regp);
6163 return 1;
6164 }
6165
6166 /* Fetch the registers included in the target's 'g' packet. */
6167
6168 static int
6169 send_g_packet (void)
6170 {
6171 struct remote_state *rs = get_remote_state ();
6172 int buf_len;
6173
6174 xsnprintf (rs->buf, get_remote_packet_size (), "g");
6175 remote_send (&rs->buf, &rs->buf_size);
6176
6177 /* We can get out of synch in various cases. If the first character
6178 in the buffer is not a hex character, assume that has happened
6179 and try to fetch another packet to read. */
6180 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
6181 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
6182 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
6183 && rs->buf[0] != 'x') /* New: unavailable register value. */
6184 {
6185 if (remote_debug)
6186 fprintf_unfiltered (gdb_stdlog,
6187 "Bad register packet; fetching a new packet\n");
6188 getpkt (&rs->buf, &rs->buf_size, 0);
6189 }
6190
6191 buf_len = strlen (rs->buf);
6192
6193 /* Sanity check the received packet. */
6194 if (buf_len % 2 != 0)
6195 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
6196
6197 return buf_len / 2;
6198 }
6199
6200 static void
6201 process_g_packet (struct regcache *regcache)
6202 {
6203 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6204 struct remote_state *rs = get_remote_state ();
6205 struct remote_arch_state *rsa = get_remote_arch_state ();
6206 int i, buf_len;
6207 char *p;
6208 char *regs;
6209
6210 buf_len = strlen (rs->buf);
6211
6212 /* Further sanity checks, with knowledge of the architecture. */
6213 if (buf_len > 2 * rsa->sizeof_g_packet)
6214 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
6215
6216 /* Save the size of the packet sent to us by the target. It is used
6217 as a heuristic when determining the max size of packets that the
6218 target can safely receive. */
6219 if (rsa->actual_register_packet_size == 0)
6220 rsa->actual_register_packet_size = buf_len;
6221
6222 /* If this is smaller than we guessed the 'g' packet would be,
6223 update our records. A 'g' reply that doesn't include a register's
6224 value implies either that the register is not available, or that
6225 the 'p' packet must be used. */
6226 if (buf_len < 2 * rsa->sizeof_g_packet)
6227 {
6228 rsa->sizeof_g_packet = buf_len / 2;
6229
6230 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6231 {
6232 if (rsa->regs[i].pnum == -1)
6233 continue;
6234
6235 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
6236 rsa->regs[i].in_g_packet = 0;
6237 else
6238 rsa->regs[i].in_g_packet = 1;
6239 }
6240 }
6241
6242 regs = alloca (rsa->sizeof_g_packet);
6243
6244 /* Unimplemented registers read as all bits zero. */
6245 memset (regs, 0, rsa->sizeof_g_packet);
6246
6247 /* Reply describes registers byte by byte, each byte encoded as two
6248 hex characters. Suck them all up, then supply them to the
6249 register cacheing/storage mechanism. */
6250
6251 p = rs->buf;
6252 for (i = 0; i < rsa->sizeof_g_packet; i++)
6253 {
6254 if (p[0] == 0 || p[1] == 0)
6255 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6256 internal_error (__FILE__, __LINE__,
6257 _("unexpected end of 'g' packet reply"));
6258
6259 if (p[0] == 'x' && p[1] == 'x')
6260 regs[i] = 0; /* 'x' */
6261 else
6262 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6263 p += 2;
6264 }
6265
6266 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6267 {
6268 struct packet_reg *r = &rsa->regs[i];
6269
6270 if (r->in_g_packet)
6271 {
6272 if (r->offset * 2 >= strlen (rs->buf))
6273 /* This shouldn't happen - we adjusted in_g_packet above. */
6274 internal_error (__FILE__, __LINE__,
6275 _("unexpected end of 'g' packet reply"));
6276 else if (rs->buf[r->offset * 2] == 'x')
6277 {
6278 gdb_assert (r->offset * 2 < strlen (rs->buf));
6279 /* The register isn't available, mark it as such (at
6280 the same time setting the value to zero). */
6281 regcache_raw_supply (regcache, r->regnum, NULL);
6282 }
6283 else
6284 regcache_raw_supply (regcache, r->regnum,
6285 regs + r->offset);
6286 }
6287 }
6288 }
6289
6290 static void
6291 fetch_registers_using_g (struct regcache *regcache)
6292 {
6293 send_g_packet ();
6294 process_g_packet (regcache);
6295 }
6296
6297 /* Make the remote selected traceframe match GDB's selected
6298 traceframe. */
6299
6300 static void
6301 set_remote_traceframe (void)
6302 {
6303 int newnum;
6304 struct remote_state *rs = get_remote_state ();
6305
6306 if (rs->remote_traceframe_number == get_traceframe_number ())
6307 return;
6308
6309 /* Avoid recursion, remote_trace_find calls us again. */
6310 rs->remote_traceframe_number = get_traceframe_number ();
6311
6312 newnum = target_trace_find (tfind_number,
6313 get_traceframe_number (), 0, 0, NULL);
6314
6315 /* Should not happen. If it does, all bets are off. */
6316 if (newnum != get_traceframe_number ())
6317 warning (_("could not set remote traceframe"));
6318 }
6319
6320 static void
6321 remote_fetch_registers (struct target_ops *ops,
6322 struct regcache *regcache, int regnum)
6323 {
6324 struct remote_arch_state *rsa = get_remote_arch_state ();
6325 int i;
6326
6327 set_remote_traceframe ();
6328 set_general_thread (inferior_ptid);
6329
6330 if (regnum >= 0)
6331 {
6332 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6333
6334 gdb_assert (reg != NULL);
6335
6336 /* If this register might be in the 'g' packet, try that first -
6337 we are likely to read more than one register. If this is the
6338 first 'g' packet, we might be overly optimistic about its
6339 contents, so fall back to 'p'. */
6340 if (reg->in_g_packet)
6341 {
6342 fetch_registers_using_g (regcache);
6343 if (reg->in_g_packet)
6344 return;
6345 }
6346
6347 if (fetch_register_using_p (regcache, reg))
6348 return;
6349
6350 /* This register is not available. */
6351 regcache_raw_supply (regcache, reg->regnum, NULL);
6352
6353 return;
6354 }
6355
6356 fetch_registers_using_g (regcache);
6357
6358 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6359 if (!rsa->regs[i].in_g_packet)
6360 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6361 {
6362 /* This register is not available. */
6363 regcache_raw_supply (regcache, i, NULL);
6364 }
6365 }
6366
6367 /* Prepare to store registers. Since we may send them all (using a
6368 'G' request), we have to read out the ones we don't want to change
6369 first. */
6370
6371 static void
6372 remote_prepare_to_store (struct regcache *regcache)
6373 {
6374 struct remote_arch_state *rsa = get_remote_arch_state ();
6375 int i;
6376 gdb_byte buf[MAX_REGISTER_SIZE];
6377
6378 /* Make sure the entire registers array is valid. */
6379 switch (remote_protocol_packets[PACKET_P].support)
6380 {
6381 case PACKET_DISABLE:
6382 case PACKET_SUPPORT_UNKNOWN:
6383 /* Make sure all the necessary registers are cached. */
6384 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6385 if (rsa->regs[i].in_g_packet)
6386 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6387 break;
6388 case PACKET_ENABLE:
6389 break;
6390 }
6391 }
6392
6393 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6394 packet was not recognized. */
6395
6396 static int
6397 store_register_using_P (const struct regcache *regcache,
6398 struct packet_reg *reg)
6399 {
6400 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6401 struct remote_state *rs = get_remote_state ();
6402 /* Try storing a single register. */
6403 char *buf = rs->buf;
6404 gdb_byte regp[MAX_REGISTER_SIZE];
6405 char *p;
6406
6407 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6408 return 0;
6409
6410 if (reg->pnum == -1)
6411 return 0;
6412
6413 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6414 p = buf + strlen (buf);
6415 regcache_raw_collect (regcache, reg->regnum, regp);
6416 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6417 putpkt (rs->buf);
6418 getpkt (&rs->buf, &rs->buf_size, 0);
6419
6420 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6421 {
6422 case PACKET_OK:
6423 return 1;
6424 case PACKET_ERROR:
6425 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6426 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6427 case PACKET_UNKNOWN:
6428 return 0;
6429 default:
6430 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6431 }
6432 }
6433
6434 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6435 contents of the register cache buffer. FIXME: ignores errors. */
6436
6437 static void
6438 store_registers_using_G (const struct regcache *regcache)
6439 {
6440 struct remote_state *rs = get_remote_state ();
6441 struct remote_arch_state *rsa = get_remote_arch_state ();
6442 gdb_byte *regs;
6443 char *p;
6444
6445 /* Extract all the registers in the regcache copying them into a
6446 local buffer. */
6447 {
6448 int i;
6449
6450 regs = alloca (rsa->sizeof_g_packet);
6451 memset (regs, 0, rsa->sizeof_g_packet);
6452 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6453 {
6454 struct packet_reg *r = &rsa->regs[i];
6455
6456 if (r->in_g_packet)
6457 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6458 }
6459 }
6460
6461 /* Command describes registers byte by byte,
6462 each byte encoded as two hex characters. */
6463 p = rs->buf;
6464 *p++ = 'G';
6465 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6466 updated. */
6467 bin2hex (regs, p, rsa->sizeof_g_packet);
6468 putpkt (rs->buf);
6469 getpkt (&rs->buf, &rs->buf_size, 0);
6470 if (packet_check_result (rs->buf) == PACKET_ERROR)
6471 error (_("Could not write registers; remote failure reply '%s'"),
6472 rs->buf);
6473 }
6474
6475 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6476 of the register cache buffer. FIXME: ignores errors. */
6477
6478 static void
6479 remote_store_registers (struct target_ops *ops,
6480 struct regcache *regcache, int regnum)
6481 {
6482 struct remote_arch_state *rsa = get_remote_arch_state ();
6483 int i;
6484
6485 set_remote_traceframe ();
6486 set_general_thread (inferior_ptid);
6487
6488 if (regnum >= 0)
6489 {
6490 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6491
6492 gdb_assert (reg != NULL);
6493
6494 /* Always prefer to store registers using the 'P' packet if
6495 possible; we often change only a small number of registers.
6496 Sometimes we change a larger number; we'd need help from a
6497 higher layer to know to use 'G'. */
6498 if (store_register_using_P (regcache, reg))
6499 return;
6500
6501 /* For now, don't complain if we have no way to write the
6502 register. GDB loses track of unavailable registers too
6503 easily. Some day, this may be an error. We don't have
6504 any way to read the register, either... */
6505 if (!reg->in_g_packet)
6506 return;
6507
6508 store_registers_using_G (regcache);
6509 return;
6510 }
6511
6512 store_registers_using_G (regcache);
6513
6514 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6515 if (!rsa->regs[i].in_g_packet)
6516 if (!store_register_using_P (regcache, &rsa->regs[i]))
6517 /* See above for why we do not issue an error here. */
6518 continue;
6519 }
6520 \f
6521
6522 /* Return the number of hex digits in num. */
6523
6524 static int
6525 hexnumlen (ULONGEST num)
6526 {
6527 int i;
6528
6529 for (i = 0; num != 0; i++)
6530 num >>= 4;
6531
6532 return max (i, 1);
6533 }
6534
6535 /* Set BUF to the minimum number of hex digits representing NUM. */
6536
6537 static int
6538 hexnumstr (char *buf, ULONGEST num)
6539 {
6540 int len = hexnumlen (num);
6541
6542 return hexnumnstr (buf, num, len);
6543 }
6544
6545
6546 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6547
6548 static int
6549 hexnumnstr (char *buf, ULONGEST num, int width)
6550 {
6551 int i;
6552
6553 buf[width] = '\0';
6554
6555 for (i = width - 1; i >= 0; i--)
6556 {
6557 buf[i] = "0123456789abcdef"[(num & 0xf)];
6558 num >>= 4;
6559 }
6560
6561 return width;
6562 }
6563
6564 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6565
6566 static CORE_ADDR
6567 remote_address_masked (CORE_ADDR addr)
6568 {
6569 unsigned int address_size = remote_address_size;
6570
6571 /* If "remoteaddresssize" was not set, default to target address size. */
6572 if (!address_size)
6573 address_size = gdbarch_addr_bit (target_gdbarch ());
6574
6575 if (address_size > 0
6576 && address_size < (sizeof (ULONGEST) * 8))
6577 {
6578 /* Only create a mask when that mask can safely be constructed
6579 in a ULONGEST variable. */
6580 ULONGEST mask = 1;
6581
6582 mask = (mask << address_size) - 1;
6583 addr &= mask;
6584 }
6585 return addr;
6586 }
6587
6588 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6589 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6590 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6591 (which may be more than *OUT_LEN due to escape characters). The
6592 total number of bytes in the output buffer will be at most
6593 OUT_MAXLEN. */
6594
6595 static int
6596 remote_escape_output (const gdb_byte *buffer, int len,
6597 gdb_byte *out_buf, int *out_len,
6598 int out_maxlen)
6599 {
6600 int input_index, output_index;
6601
6602 output_index = 0;
6603 for (input_index = 0; input_index < len; input_index++)
6604 {
6605 gdb_byte b = buffer[input_index];
6606
6607 if (b == '$' || b == '#' || b == '}')
6608 {
6609 /* These must be escaped. */
6610 if (output_index + 2 > out_maxlen)
6611 break;
6612 out_buf[output_index++] = '}';
6613 out_buf[output_index++] = b ^ 0x20;
6614 }
6615 else
6616 {
6617 if (output_index + 1 > out_maxlen)
6618 break;
6619 out_buf[output_index++] = b;
6620 }
6621 }
6622
6623 *out_len = input_index;
6624 return output_index;
6625 }
6626
6627 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6628 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6629 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6630
6631 This function reverses remote_escape_output. It allows more
6632 escaped characters than that function does, in particular because
6633 '*' must be escaped to avoid the run-length encoding processing
6634 in reading packets. */
6635
6636 static int
6637 remote_unescape_input (const gdb_byte *buffer, int len,
6638 gdb_byte *out_buf, int out_maxlen)
6639 {
6640 int input_index, output_index;
6641 int escaped;
6642
6643 output_index = 0;
6644 escaped = 0;
6645 for (input_index = 0; input_index < len; input_index++)
6646 {
6647 gdb_byte b = buffer[input_index];
6648
6649 if (output_index + 1 > out_maxlen)
6650 {
6651 warning (_("Received too much data from remote target;"
6652 " ignoring overflow."));
6653 return output_index;
6654 }
6655
6656 if (escaped)
6657 {
6658 out_buf[output_index++] = b ^ 0x20;
6659 escaped = 0;
6660 }
6661 else if (b == '}')
6662 escaped = 1;
6663 else
6664 out_buf[output_index++] = b;
6665 }
6666
6667 if (escaped)
6668 error (_("Unmatched escape character in target response."));
6669
6670 return output_index;
6671 }
6672
6673 /* Determine whether the remote target supports binary downloading.
6674 This is accomplished by sending a no-op memory write of zero length
6675 to the target at the specified address. It does not suffice to send
6676 the whole packet, since many stubs strip the eighth bit and
6677 subsequently compute a wrong checksum, which causes real havoc with
6678 remote_write_bytes.
6679
6680 NOTE: This can still lose if the serial line is not eight-bit
6681 clean. In cases like this, the user should clear "remote
6682 X-packet". */
6683
6684 static void
6685 check_binary_download (CORE_ADDR addr)
6686 {
6687 struct remote_state *rs = get_remote_state ();
6688
6689 switch (remote_protocol_packets[PACKET_X].support)
6690 {
6691 case PACKET_DISABLE:
6692 break;
6693 case PACKET_ENABLE:
6694 break;
6695 case PACKET_SUPPORT_UNKNOWN:
6696 {
6697 char *p;
6698
6699 p = rs->buf;
6700 *p++ = 'X';
6701 p += hexnumstr (p, (ULONGEST) addr);
6702 *p++ = ',';
6703 p += hexnumstr (p, (ULONGEST) 0);
6704 *p++ = ':';
6705 *p = '\0';
6706
6707 putpkt_binary (rs->buf, (int) (p - rs->buf));
6708 getpkt (&rs->buf, &rs->buf_size, 0);
6709
6710 if (rs->buf[0] == '\0')
6711 {
6712 if (remote_debug)
6713 fprintf_unfiltered (gdb_stdlog,
6714 "binary downloading NOT "
6715 "supported by target\n");
6716 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6717 }
6718 else
6719 {
6720 if (remote_debug)
6721 fprintf_unfiltered (gdb_stdlog,
6722 "binary downloading supported by target\n");
6723 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6724 }
6725 break;
6726 }
6727 }
6728 }
6729
6730 /* Write memory data directly to the remote machine.
6731 This does not inform the data cache; the data cache uses this.
6732 HEADER is the starting part of the packet.
6733 MEMADDR is the address in the remote memory space.
6734 MYADDR is the address of the buffer in our space.
6735 LEN is the number of bytes.
6736 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6737 should send data as binary ('X'), or hex-encoded ('M').
6738
6739 The function creates packet of the form
6740 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6741
6742 where encoding of <DATA> is termined by PACKET_FORMAT.
6743
6744 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6745 are omitted.
6746
6747 Returns the number of bytes transferred, or 0 (setting errno) for
6748 error. Only transfer a single packet. */
6749
6750 static int
6751 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6752 const gdb_byte *myaddr, ssize_t len,
6753 char packet_format, int use_length)
6754 {
6755 struct remote_state *rs = get_remote_state ();
6756 char *p;
6757 char *plen = NULL;
6758 int plenlen = 0;
6759 int todo;
6760 int nr_bytes;
6761 int payload_size;
6762 int payload_length;
6763 int header_length;
6764
6765 if (packet_format != 'X' && packet_format != 'M')
6766 internal_error (__FILE__, __LINE__,
6767 _("remote_write_bytes_aux: bad packet format"));
6768
6769 if (len <= 0)
6770 return 0;
6771
6772 payload_size = get_memory_write_packet_size ();
6773
6774 /* The packet buffer will be large enough for the payload;
6775 get_memory_packet_size ensures this. */
6776 rs->buf[0] = '\0';
6777
6778 /* Compute the size of the actual payload by subtracting out the
6779 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6780
6781 payload_size -= strlen ("$,:#NN");
6782 if (!use_length)
6783 /* The comma won't be used. */
6784 payload_size += 1;
6785 header_length = strlen (header);
6786 payload_size -= header_length;
6787 payload_size -= hexnumlen (memaddr);
6788
6789 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6790
6791 strcat (rs->buf, header);
6792 p = rs->buf + strlen (header);
6793
6794 /* Compute a best guess of the number of bytes actually transfered. */
6795 if (packet_format == 'X')
6796 {
6797 /* Best guess at number of bytes that will fit. */
6798 todo = min (len, payload_size);
6799 if (use_length)
6800 payload_size -= hexnumlen (todo);
6801 todo = min (todo, payload_size);
6802 }
6803 else
6804 {
6805 /* Num bytes that will fit. */
6806 todo = min (len, payload_size / 2);
6807 if (use_length)
6808 payload_size -= hexnumlen (todo);
6809 todo = min (todo, payload_size / 2);
6810 }
6811
6812 if (todo <= 0)
6813 internal_error (__FILE__, __LINE__,
6814 _("minimum packet size too small to write data"));
6815
6816 /* If we already need another packet, then try to align the end
6817 of this packet to a useful boundary. */
6818 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6819 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6820
6821 /* Append "<memaddr>". */
6822 memaddr = remote_address_masked (memaddr);
6823 p += hexnumstr (p, (ULONGEST) memaddr);
6824
6825 if (use_length)
6826 {
6827 /* Append ",". */
6828 *p++ = ',';
6829
6830 /* Append <len>. Retain the location/size of <len>. It may need to
6831 be adjusted once the packet body has been created. */
6832 plen = p;
6833 plenlen = hexnumstr (p, (ULONGEST) todo);
6834 p += plenlen;
6835 }
6836
6837 /* Append ":". */
6838 *p++ = ':';
6839 *p = '\0';
6840
6841 /* Append the packet body. */
6842 if (packet_format == 'X')
6843 {
6844 /* Binary mode. Send target system values byte by byte, in
6845 increasing byte addresses. Only escape certain critical
6846 characters. */
6847 payload_length = remote_escape_output (myaddr, todo, (gdb_byte *) p,
6848 &nr_bytes, payload_size);
6849
6850 /* If not all TODO bytes fit, then we'll need another packet. Make
6851 a second try to keep the end of the packet aligned. Don't do
6852 this if the packet is tiny. */
6853 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6854 {
6855 int new_nr_bytes;
6856
6857 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6858 - memaddr);
6859 if (new_nr_bytes != nr_bytes)
6860 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6861 (gdb_byte *) p, &nr_bytes,
6862 payload_size);
6863 }
6864
6865 p += payload_length;
6866 if (use_length && nr_bytes < todo)
6867 {
6868 /* Escape chars have filled up the buffer prematurely,
6869 and we have actually sent fewer bytes than planned.
6870 Fix-up the length field of the packet. Use the same
6871 number of characters as before. */
6872 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6873 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6874 }
6875 }
6876 else
6877 {
6878 /* Normal mode: Send target system values byte by byte, in
6879 increasing byte addresses. Each byte is encoded as a two hex
6880 value. */
6881 nr_bytes = bin2hex (myaddr, p, todo);
6882 p += 2 * nr_bytes;
6883 }
6884
6885 putpkt_binary (rs->buf, (int) (p - rs->buf));
6886 getpkt (&rs->buf, &rs->buf_size, 0);
6887
6888 if (rs->buf[0] == 'E')
6889 {
6890 /* There is no correspondance between what the remote protocol
6891 uses for errors and errno codes. We would like a cleaner way
6892 of representing errors (big enough to include errno codes,
6893 bfd_error codes, and others). But for now just return EIO. */
6894 errno = EIO;
6895 return 0;
6896 }
6897
6898 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6899 fewer bytes than we'd planned. */
6900 return nr_bytes;
6901 }
6902
6903 /* Write memory data directly to the remote machine.
6904 This does not inform the data cache; the data cache uses this.
6905 MEMADDR is the address in the remote memory space.
6906 MYADDR is the address of the buffer in our space.
6907 LEN is the number of bytes.
6908
6909 Returns number of bytes transferred, or 0 (setting errno) for
6910 error. Only transfer a single packet. */
6911
6912 static int
6913 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
6914 {
6915 char *packet_format = 0;
6916
6917 /* Check whether the target supports binary download. */
6918 check_binary_download (memaddr);
6919
6920 switch (remote_protocol_packets[PACKET_X].support)
6921 {
6922 case PACKET_ENABLE:
6923 packet_format = "X";
6924 break;
6925 case PACKET_DISABLE:
6926 packet_format = "M";
6927 break;
6928 case PACKET_SUPPORT_UNKNOWN:
6929 internal_error (__FILE__, __LINE__,
6930 _("remote_write_bytes: bad internal state"));
6931 default:
6932 internal_error (__FILE__, __LINE__, _("bad switch"));
6933 }
6934
6935 return remote_write_bytes_aux (packet_format,
6936 memaddr, myaddr, len, packet_format[0], 1);
6937 }
6938
6939 /* Read memory data directly from the remote machine.
6940 This does not use the data cache; the data cache uses this.
6941 MEMADDR is the address in the remote memory space.
6942 MYADDR is the address of the buffer in our space.
6943 LEN is the number of bytes.
6944
6945 Returns number of bytes transferred, or 0 for error. */
6946
6947 static int
6948 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6949 {
6950 struct remote_state *rs = get_remote_state ();
6951 int max_buf_size; /* Max size of packet output buffer. */
6952 char *p;
6953 int todo;
6954 int i;
6955
6956 if (len <= 0)
6957 return 0;
6958
6959 max_buf_size = get_memory_read_packet_size ();
6960 /* The packet buffer will be large enough for the payload;
6961 get_memory_packet_size ensures this. */
6962
6963 /* Number if bytes that will fit. */
6964 todo = min (len, max_buf_size / 2);
6965
6966 /* Construct "m"<memaddr>","<len>". */
6967 memaddr = remote_address_masked (memaddr);
6968 p = rs->buf;
6969 *p++ = 'm';
6970 p += hexnumstr (p, (ULONGEST) memaddr);
6971 *p++ = ',';
6972 p += hexnumstr (p, (ULONGEST) todo);
6973 *p = '\0';
6974 putpkt (rs->buf);
6975 getpkt (&rs->buf, &rs->buf_size, 0);
6976 if (rs->buf[0] == 'E'
6977 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6978 && rs->buf[3] == '\0')
6979 {
6980 /* There is no correspondance between what the remote protocol
6981 uses for errors and errno codes. We would like a cleaner way
6982 of representing errors (big enough to include errno codes,
6983 bfd_error codes, and others). But for now just return
6984 EIO. */
6985 errno = EIO;
6986 return 0;
6987 }
6988 /* Reply describes memory byte by byte, each byte encoded as two hex
6989 characters. */
6990 p = rs->buf;
6991 i = hex2bin (p, myaddr, todo);
6992 /* Return what we have. Let higher layers handle partial reads. */
6993 return i;
6994 }
6995
6996 \f
6997 /* Read or write LEN bytes from inferior memory at MEMADDR,
6998 transferring to or from debugger address BUFFER. Write to inferior
6999 if SHOULD_WRITE is nonzero. Returns length of data written or
7000 read; 0 for error. TARGET is unused. */
7001
7002 static int
7003 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
7004 int should_write, struct mem_attrib *attrib,
7005 struct target_ops *target)
7006 {
7007 int res;
7008
7009 set_remote_traceframe ();
7010 set_general_thread (inferior_ptid);
7011
7012 if (should_write)
7013 res = remote_write_bytes (mem_addr, buffer, mem_len);
7014 else
7015 res = remote_read_bytes (mem_addr, buffer, mem_len);
7016
7017 return res;
7018 }
7019
7020 /* Sends a packet with content determined by the printf format string
7021 FORMAT and the remaining arguments, then gets the reply. Returns
7022 whether the packet was a success, a failure, or unknown. */
7023
7024 static enum packet_result
7025 remote_send_printf (const char *format, ...)
7026 {
7027 struct remote_state *rs = get_remote_state ();
7028 int max_size = get_remote_packet_size ();
7029 va_list ap;
7030
7031 va_start (ap, format);
7032
7033 rs->buf[0] = '\0';
7034 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
7035 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
7036
7037 if (putpkt (rs->buf) < 0)
7038 error (_("Communication problem with target."));
7039
7040 rs->buf[0] = '\0';
7041 getpkt (&rs->buf, &rs->buf_size, 0);
7042
7043 return packet_check_result (rs->buf);
7044 }
7045
7046 static void
7047 restore_remote_timeout (void *p)
7048 {
7049 int value = *(int *)p;
7050
7051 remote_timeout = value;
7052 }
7053
7054 /* Flash writing can take quite some time. We'll set
7055 effectively infinite timeout for flash operations.
7056 In future, we'll need to decide on a better approach. */
7057 static const int remote_flash_timeout = 1000;
7058
7059 static void
7060 remote_flash_erase (struct target_ops *ops,
7061 ULONGEST address, LONGEST length)
7062 {
7063 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
7064 int saved_remote_timeout = remote_timeout;
7065 enum packet_result ret;
7066 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7067 &saved_remote_timeout);
7068
7069 remote_timeout = remote_flash_timeout;
7070
7071 ret = remote_send_printf ("vFlashErase:%s,%s",
7072 phex (address, addr_size),
7073 phex (length, 4));
7074 switch (ret)
7075 {
7076 case PACKET_UNKNOWN:
7077 error (_("Remote target does not support flash erase"));
7078 case PACKET_ERROR:
7079 error (_("Error erasing flash with vFlashErase packet"));
7080 default:
7081 break;
7082 }
7083
7084 do_cleanups (back_to);
7085 }
7086
7087 static LONGEST
7088 remote_flash_write (struct target_ops *ops,
7089 ULONGEST address, LONGEST length,
7090 const gdb_byte *data)
7091 {
7092 int saved_remote_timeout = remote_timeout;
7093 int ret;
7094 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7095 &saved_remote_timeout);
7096
7097 remote_timeout = remote_flash_timeout;
7098 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
7099 do_cleanups (back_to);
7100
7101 return ret;
7102 }
7103
7104 static void
7105 remote_flash_done (struct target_ops *ops)
7106 {
7107 int saved_remote_timeout = remote_timeout;
7108 int ret;
7109 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7110 &saved_remote_timeout);
7111
7112 remote_timeout = remote_flash_timeout;
7113 ret = remote_send_printf ("vFlashDone");
7114 do_cleanups (back_to);
7115
7116 switch (ret)
7117 {
7118 case PACKET_UNKNOWN:
7119 error (_("Remote target does not support vFlashDone"));
7120 case PACKET_ERROR:
7121 error (_("Error finishing flash operation"));
7122 default:
7123 break;
7124 }
7125 }
7126
7127 static void
7128 remote_files_info (struct target_ops *ignore)
7129 {
7130 puts_filtered ("Debugging a target over a serial line.\n");
7131 }
7132 \f
7133 /* Stuff for dealing with the packets which are part of this protocol.
7134 See comment at top of file for details. */
7135
7136 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
7137 error to higher layers. Called when a serial error is detected.
7138 The exception message is STRING, followed by a colon and a blank,
7139 the system error message for errno at function entry and final dot
7140 for output compatibility with throw_perror_with_name. */
7141
7142 static void
7143 unpush_and_perror (const char *string)
7144 {
7145 int saved_errno = errno;
7146
7147 remote_unpush_target ();
7148 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
7149 safe_strerror (saved_errno));
7150 }
7151
7152 /* Read a single character from the remote end. */
7153
7154 static int
7155 readchar (int timeout)
7156 {
7157 int ch;
7158 struct remote_state *rs = get_remote_state ();
7159
7160 ch = serial_readchar (rs->remote_desc, timeout);
7161
7162 if (ch >= 0)
7163 return ch;
7164
7165 switch ((enum serial_rc) ch)
7166 {
7167 case SERIAL_EOF:
7168 remote_unpush_target ();
7169 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
7170 /* no return */
7171 case SERIAL_ERROR:
7172 unpush_and_perror (_("Remote communication error. "
7173 "Target disconnected."));
7174 /* no return */
7175 case SERIAL_TIMEOUT:
7176 break;
7177 }
7178 return ch;
7179 }
7180
7181 /* Wrapper for serial_write that closes the target and throws if
7182 writing fails. */
7183
7184 static void
7185 remote_serial_write (const char *str, int len)
7186 {
7187 struct remote_state *rs = get_remote_state ();
7188
7189 if (serial_write (rs->remote_desc, str, len))
7190 {
7191 unpush_and_perror (_("Remote communication error. "
7192 "Target disconnected."));
7193 }
7194 }
7195
7196 /* Send the command in *BUF to the remote machine, and read the reply
7197 into *BUF. Report an error if we get an error reply. Resize
7198 *BUF using xrealloc if necessary to hold the result, and update
7199 *SIZEOF_BUF. */
7200
7201 static void
7202 remote_send (char **buf,
7203 long *sizeof_buf)
7204 {
7205 putpkt (*buf);
7206 getpkt (buf, sizeof_buf, 0);
7207
7208 if ((*buf)[0] == 'E')
7209 error (_("Remote failure reply: %s"), *buf);
7210 }
7211
7212 /* Return a pointer to an xmalloc'ed string representing an escaped
7213 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
7214 etc. The caller is responsible for releasing the returned
7215 memory. */
7216
7217 static char *
7218 escape_buffer (const char *buf, int n)
7219 {
7220 struct cleanup *old_chain;
7221 struct ui_file *stb;
7222 char *str;
7223
7224 stb = mem_fileopen ();
7225 old_chain = make_cleanup_ui_file_delete (stb);
7226
7227 fputstrn_unfiltered (buf, n, 0, stb);
7228 str = ui_file_xstrdup (stb, NULL);
7229 do_cleanups (old_chain);
7230 return str;
7231 }
7232
7233 /* Display a null-terminated packet on stdout, for debugging, using C
7234 string notation. */
7235
7236 static void
7237 print_packet (char *buf)
7238 {
7239 puts_filtered ("\"");
7240 fputstr_filtered (buf, '"', gdb_stdout);
7241 puts_filtered ("\"");
7242 }
7243
7244 int
7245 putpkt (char *buf)
7246 {
7247 return putpkt_binary (buf, strlen (buf));
7248 }
7249
7250 /* Send a packet to the remote machine, with error checking. The data
7251 of the packet is in BUF. The string in BUF can be at most
7252 get_remote_packet_size () - 5 to account for the $, # and checksum,
7253 and for a possible /0 if we are debugging (remote_debug) and want
7254 to print the sent packet as a string. */
7255
7256 static int
7257 putpkt_binary (char *buf, int cnt)
7258 {
7259 struct remote_state *rs = get_remote_state ();
7260 int i;
7261 unsigned char csum = 0;
7262 char *buf2 = alloca (cnt + 6);
7263
7264 int ch;
7265 int tcount = 0;
7266 char *p;
7267 char *message;
7268
7269 /* Catch cases like trying to read memory or listing threads while
7270 we're waiting for a stop reply. The remote server wouldn't be
7271 ready to handle this request, so we'd hang and timeout. We don't
7272 have to worry about this in synchronous mode, because in that
7273 case it's not possible to issue a command while the target is
7274 running. This is not a problem in non-stop mode, because in that
7275 case, the stub is always ready to process serial input. */
7276 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
7277 error (_("Cannot execute this command while the target is running."));
7278
7279 /* We're sending out a new packet. Make sure we don't look at a
7280 stale cached response. */
7281 rs->cached_wait_status = 0;
7282
7283 /* Copy the packet into buffer BUF2, encapsulating it
7284 and giving it a checksum. */
7285
7286 p = buf2;
7287 *p++ = '$';
7288
7289 for (i = 0; i < cnt; i++)
7290 {
7291 csum += buf[i];
7292 *p++ = buf[i];
7293 }
7294 *p++ = '#';
7295 *p++ = tohex ((csum >> 4) & 0xf);
7296 *p++ = tohex (csum & 0xf);
7297
7298 /* Send it over and over until we get a positive ack. */
7299
7300 while (1)
7301 {
7302 int started_error_output = 0;
7303
7304 if (remote_debug)
7305 {
7306 struct cleanup *old_chain;
7307 char *str;
7308
7309 *p = '\0';
7310 str = escape_buffer (buf2, p - buf2);
7311 old_chain = make_cleanup (xfree, str);
7312 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7313 gdb_flush (gdb_stdlog);
7314 do_cleanups (old_chain);
7315 }
7316 remote_serial_write (buf2, p - buf2);
7317
7318 /* If this is a no acks version of the remote protocol, send the
7319 packet and move on. */
7320 if (rs->noack_mode)
7321 break;
7322
7323 /* Read until either a timeout occurs (-2) or '+' is read.
7324 Handle any notification that arrives in the mean time. */
7325 while (1)
7326 {
7327 ch = readchar (remote_timeout);
7328
7329 if (remote_debug)
7330 {
7331 switch (ch)
7332 {
7333 case '+':
7334 case '-':
7335 case SERIAL_TIMEOUT:
7336 case '$':
7337 case '%':
7338 if (started_error_output)
7339 {
7340 putchar_unfiltered ('\n');
7341 started_error_output = 0;
7342 }
7343 }
7344 }
7345
7346 switch (ch)
7347 {
7348 case '+':
7349 if (remote_debug)
7350 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7351 return 1;
7352 case '-':
7353 if (remote_debug)
7354 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7355 /* FALLTHROUGH */
7356 case SERIAL_TIMEOUT:
7357 tcount++;
7358 if (tcount > 3)
7359 return 0;
7360 break; /* Retransmit buffer. */
7361 case '$':
7362 {
7363 if (remote_debug)
7364 fprintf_unfiltered (gdb_stdlog,
7365 "Packet instead of Ack, ignoring it\n");
7366 /* It's probably an old response sent because an ACK
7367 was lost. Gobble up the packet and ack it so it
7368 doesn't get retransmitted when we resend this
7369 packet. */
7370 skip_frame ();
7371 remote_serial_write ("+", 1);
7372 continue; /* Now, go look for +. */
7373 }
7374
7375 case '%':
7376 {
7377 int val;
7378
7379 /* If we got a notification, handle it, and go back to looking
7380 for an ack. */
7381 /* We've found the start of a notification. Now
7382 collect the data. */
7383 val = read_frame (&rs->buf, &rs->buf_size);
7384 if (val >= 0)
7385 {
7386 if (remote_debug)
7387 {
7388 struct cleanup *old_chain;
7389 char *str;
7390
7391 str = escape_buffer (rs->buf, val);
7392 old_chain = make_cleanup (xfree, str);
7393 fprintf_unfiltered (gdb_stdlog,
7394 " Notification received: %s\n",
7395 str);
7396 do_cleanups (old_chain);
7397 }
7398 handle_notification (rs->buf);
7399 /* We're in sync now, rewait for the ack. */
7400 tcount = 0;
7401 }
7402 else
7403 {
7404 if (remote_debug)
7405 {
7406 if (!started_error_output)
7407 {
7408 started_error_output = 1;
7409 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7410 }
7411 fputc_unfiltered (ch & 0177, gdb_stdlog);
7412 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7413 }
7414 }
7415 continue;
7416 }
7417 /* fall-through */
7418 default:
7419 if (remote_debug)
7420 {
7421 if (!started_error_output)
7422 {
7423 started_error_output = 1;
7424 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7425 }
7426 fputc_unfiltered (ch & 0177, gdb_stdlog);
7427 }
7428 continue;
7429 }
7430 break; /* Here to retransmit. */
7431 }
7432
7433 #if 0
7434 /* This is wrong. If doing a long backtrace, the user should be
7435 able to get out next time we call QUIT, without anything as
7436 violent as interrupt_query. If we want to provide a way out of
7437 here without getting to the next QUIT, it should be based on
7438 hitting ^C twice as in remote_wait. */
7439 if (quit_flag)
7440 {
7441 quit_flag = 0;
7442 interrupt_query ();
7443 }
7444 #endif
7445 }
7446 return 0;
7447 }
7448
7449 /* Come here after finding the start of a frame when we expected an
7450 ack. Do our best to discard the rest of this packet. */
7451
7452 static void
7453 skip_frame (void)
7454 {
7455 int c;
7456
7457 while (1)
7458 {
7459 c = readchar (remote_timeout);
7460 switch (c)
7461 {
7462 case SERIAL_TIMEOUT:
7463 /* Nothing we can do. */
7464 return;
7465 case '#':
7466 /* Discard the two bytes of checksum and stop. */
7467 c = readchar (remote_timeout);
7468 if (c >= 0)
7469 c = readchar (remote_timeout);
7470
7471 return;
7472 case '*': /* Run length encoding. */
7473 /* Discard the repeat count. */
7474 c = readchar (remote_timeout);
7475 if (c < 0)
7476 return;
7477 break;
7478 default:
7479 /* A regular character. */
7480 break;
7481 }
7482 }
7483 }
7484
7485 /* Come here after finding the start of the frame. Collect the rest
7486 into *BUF, verifying the checksum, length, and handling run-length
7487 compression. NUL terminate the buffer. If there is not enough room,
7488 expand *BUF using xrealloc.
7489
7490 Returns -1 on error, number of characters in buffer (ignoring the
7491 trailing NULL) on success. (could be extended to return one of the
7492 SERIAL status indications). */
7493
7494 static long
7495 read_frame (char **buf_p,
7496 long *sizeof_buf)
7497 {
7498 unsigned char csum;
7499 long bc;
7500 int c;
7501 char *buf = *buf_p;
7502 struct remote_state *rs = get_remote_state ();
7503
7504 csum = 0;
7505 bc = 0;
7506
7507 while (1)
7508 {
7509 c = readchar (remote_timeout);
7510 switch (c)
7511 {
7512 case SERIAL_TIMEOUT:
7513 if (remote_debug)
7514 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7515 return -1;
7516 case '$':
7517 if (remote_debug)
7518 fputs_filtered ("Saw new packet start in middle of old one\n",
7519 gdb_stdlog);
7520 return -1; /* Start a new packet, count retries. */
7521 case '#':
7522 {
7523 unsigned char pktcsum;
7524 int check_0 = 0;
7525 int check_1 = 0;
7526
7527 buf[bc] = '\0';
7528
7529 check_0 = readchar (remote_timeout);
7530 if (check_0 >= 0)
7531 check_1 = readchar (remote_timeout);
7532
7533 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7534 {
7535 if (remote_debug)
7536 fputs_filtered ("Timeout in checksum, retrying\n",
7537 gdb_stdlog);
7538 return -1;
7539 }
7540 else if (check_0 < 0 || check_1 < 0)
7541 {
7542 if (remote_debug)
7543 fputs_filtered ("Communication error in checksum\n",
7544 gdb_stdlog);
7545 return -1;
7546 }
7547
7548 /* Don't recompute the checksum; with no ack packets we
7549 don't have any way to indicate a packet retransmission
7550 is necessary. */
7551 if (rs->noack_mode)
7552 return bc;
7553
7554 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7555 if (csum == pktcsum)
7556 return bc;
7557
7558 if (remote_debug)
7559 {
7560 struct cleanup *old_chain;
7561 char *str;
7562
7563 str = escape_buffer (buf, bc);
7564 old_chain = make_cleanup (xfree, str);
7565 fprintf_unfiltered (gdb_stdlog,
7566 "Bad checksum, sentsum=0x%x, "
7567 "csum=0x%x, buf=%s\n",
7568 pktcsum, csum, str);
7569 do_cleanups (old_chain);
7570 }
7571 /* Number of characters in buffer ignoring trailing
7572 NULL. */
7573 return -1;
7574 }
7575 case '*': /* Run length encoding. */
7576 {
7577 int repeat;
7578
7579 csum += c;
7580 c = readchar (remote_timeout);
7581 csum += c;
7582 repeat = c - ' ' + 3; /* Compute repeat count. */
7583
7584 /* The character before ``*'' is repeated. */
7585
7586 if (repeat > 0 && repeat <= 255 && bc > 0)
7587 {
7588 if (bc + repeat - 1 >= *sizeof_buf - 1)
7589 {
7590 /* Make some more room in the buffer. */
7591 *sizeof_buf += repeat;
7592 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7593 buf = *buf_p;
7594 }
7595
7596 memset (&buf[bc], buf[bc - 1], repeat);
7597 bc += repeat;
7598 continue;
7599 }
7600
7601 buf[bc] = '\0';
7602 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7603 return -1;
7604 }
7605 default:
7606 if (bc >= *sizeof_buf - 1)
7607 {
7608 /* Make some more room in the buffer. */
7609 *sizeof_buf *= 2;
7610 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7611 buf = *buf_p;
7612 }
7613
7614 buf[bc++] = c;
7615 csum += c;
7616 continue;
7617 }
7618 }
7619 }
7620
7621 /* Read a packet from the remote machine, with error checking, and
7622 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7623 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7624 rather than timing out; this is used (in synchronous mode) to wait
7625 for a target that is is executing user code to stop. */
7626 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7627 don't have to change all the calls to getpkt to deal with the
7628 return value, because at the moment I don't know what the right
7629 thing to do it for those. */
7630 void
7631 getpkt (char **buf,
7632 long *sizeof_buf,
7633 int forever)
7634 {
7635 int timed_out;
7636
7637 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7638 }
7639
7640
7641 /* Read a packet from the remote machine, with error checking, and
7642 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7643 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7644 rather than timing out; this is used (in synchronous mode) to wait
7645 for a target that is is executing user code to stop. If FOREVER ==
7646 0, this function is allowed to time out gracefully and return an
7647 indication of this to the caller. Otherwise return the number of
7648 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7649 enough reason to return to the caller. *IS_NOTIF is an output
7650 boolean that indicates whether *BUF holds a notification or not
7651 (a regular packet). */
7652
7653 static int
7654 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7655 int expecting_notif, int *is_notif)
7656 {
7657 struct remote_state *rs = get_remote_state ();
7658 int c;
7659 int tries;
7660 int timeout;
7661 int val = -1;
7662
7663 /* We're reading a new response. Make sure we don't look at a
7664 previously cached response. */
7665 rs->cached_wait_status = 0;
7666
7667 strcpy (*buf, "timeout");
7668
7669 if (forever)
7670 timeout = watchdog > 0 ? watchdog : -1;
7671 else if (expecting_notif)
7672 timeout = 0; /* There should already be a char in the buffer. If
7673 not, bail out. */
7674 else
7675 timeout = remote_timeout;
7676
7677 #define MAX_TRIES 3
7678
7679 /* Process any number of notifications, and then return when
7680 we get a packet. */
7681 for (;;)
7682 {
7683 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7684 times. */
7685 for (tries = 1; tries <= MAX_TRIES; tries++)
7686 {
7687 /* This can loop forever if the remote side sends us
7688 characters continuously, but if it pauses, we'll get
7689 SERIAL_TIMEOUT from readchar because of timeout. Then
7690 we'll count that as a retry.
7691
7692 Note that even when forever is set, we will only wait
7693 forever prior to the start of a packet. After that, we
7694 expect characters to arrive at a brisk pace. They should
7695 show up within remote_timeout intervals. */
7696 do
7697 c = readchar (timeout);
7698 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7699
7700 if (c == SERIAL_TIMEOUT)
7701 {
7702 if (expecting_notif)
7703 return -1; /* Don't complain, it's normal to not get
7704 anything in this case. */
7705
7706 if (forever) /* Watchdog went off? Kill the target. */
7707 {
7708 QUIT;
7709 remote_unpush_target ();
7710 throw_error (TARGET_CLOSE_ERROR,
7711 _("Watchdog timeout has expired. "
7712 "Target detached."));
7713 }
7714 if (remote_debug)
7715 fputs_filtered ("Timed out.\n", gdb_stdlog);
7716 }
7717 else
7718 {
7719 /* We've found the start of a packet or notification.
7720 Now collect the data. */
7721 val = read_frame (buf, sizeof_buf);
7722 if (val >= 0)
7723 break;
7724 }
7725
7726 remote_serial_write ("-", 1);
7727 }
7728
7729 if (tries > MAX_TRIES)
7730 {
7731 /* We have tried hard enough, and just can't receive the
7732 packet/notification. Give up. */
7733 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7734
7735 /* Skip the ack char if we're in no-ack mode. */
7736 if (!rs->noack_mode)
7737 remote_serial_write ("+", 1);
7738 return -1;
7739 }
7740
7741 /* If we got an ordinary packet, return that to our caller. */
7742 if (c == '$')
7743 {
7744 if (remote_debug)
7745 {
7746 struct cleanup *old_chain;
7747 char *str;
7748
7749 str = escape_buffer (*buf, val);
7750 old_chain = make_cleanup (xfree, str);
7751 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7752 do_cleanups (old_chain);
7753 }
7754
7755 /* Skip the ack char if we're in no-ack mode. */
7756 if (!rs->noack_mode)
7757 remote_serial_write ("+", 1);
7758 if (is_notif != NULL)
7759 *is_notif = 0;
7760 return val;
7761 }
7762
7763 /* If we got a notification, handle it, and go back to looking
7764 for a packet. */
7765 else
7766 {
7767 gdb_assert (c == '%');
7768
7769 if (remote_debug)
7770 {
7771 struct cleanup *old_chain;
7772 char *str;
7773
7774 str = escape_buffer (*buf, val);
7775 old_chain = make_cleanup (xfree, str);
7776 fprintf_unfiltered (gdb_stdlog,
7777 " Notification received: %s\n",
7778 str);
7779 do_cleanups (old_chain);
7780 }
7781 if (is_notif != NULL)
7782 *is_notif = 1;
7783
7784 handle_notification (*buf);
7785
7786 /* Notifications require no acknowledgement. */
7787
7788 if (expecting_notif)
7789 return val;
7790 }
7791 }
7792 }
7793
7794 static int
7795 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7796 {
7797 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
7798 }
7799
7800 static int
7801 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
7802 int *is_notif)
7803 {
7804 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
7805 is_notif);
7806 }
7807
7808 \f
7809 /* A helper function that just calls putpkt; for type correctness. */
7810
7811 static int
7812 putpkt_for_catch_errors (void *arg)
7813 {
7814 return putpkt (arg);
7815 }
7816
7817 static void
7818 remote_kill (struct target_ops *ops)
7819 {
7820 /* Use catch_errors so the user can quit from gdb even when we
7821 aren't on speaking terms with the remote system. */
7822 catch_errors (putpkt_for_catch_errors, "k", "", RETURN_MASK_ERROR);
7823
7824 /* Don't wait for it to die. I'm not really sure it matters whether
7825 we do or not. For the existing stubs, kill is a noop. */
7826 target_mourn_inferior ();
7827 }
7828
7829 static int
7830 remote_vkill (int pid, struct remote_state *rs)
7831 {
7832 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7833 return -1;
7834
7835 /* Tell the remote target to detach. */
7836 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7837 putpkt (rs->buf);
7838 getpkt (&rs->buf, &rs->buf_size, 0);
7839
7840 if (packet_ok (rs->buf,
7841 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7842 return 0;
7843 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7844 return -1;
7845 else
7846 return 1;
7847 }
7848
7849 static void
7850 extended_remote_kill (struct target_ops *ops)
7851 {
7852 int res;
7853 int pid = ptid_get_pid (inferior_ptid);
7854 struct remote_state *rs = get_remote_state ();
7855
7856 res = remote_vkill (pid, rs);
7857 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7858 {
7859 /* Don't try 'k' on a multi-process aware stub -- it has no way
7860 to specify the pid. */
7861
7862 putpkt ("k");
7863 #if 0
7864 getpkt (&rs->buf, &rs->buf_size, 0);
7865 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7866 res = 1;
7867 #else
7868 /* Don't wait for it to die. I'm not really sure it matters whether
7869 we do or not. For the existing stubs, kill is a noop. */
7870 res = 0;
7871 #endif
7872 }
7873
7874 if (res != 0)
7875 error (_("Can't kill process"));
7876
7877 target_mourn_inferior ();
7878 }
7879
7880 static void
7881 remote_mourn (struct target_ops *ops)
7882 {
7883 remote_mourn_1 (ops);
7884 }
7885
7886 /* Worker function for remote_mourn. */
7887 static void
7888 remote_mourn_1 (struct target_ops *target)
7889 {
7890 unpush_target (target);
7891
7892 /* remote_close takes care of doing most of the clean up. */
7893 generic_mourn_inferior ();
7894 }
7895
7896 static void
7897 extended_remote_mourn_1 (struct target_ops *target)
7898 {
7899 struct remote_state *rs = get_remote_state ();
7900
7901 /* In case we got here due to an error, but we're going to stay
7902 connected. */
7903 rs->waiting_for_stop_reply = 0;
7904
7905 /* If the current general thread belonged to the process we just
7906 detached from or has exited, the remote side current general
7907 thread becomes undefined. Considering a case like this:
7908
7909 - We just got here due to a detach.
7910 - The process that we're detaching from happens to immediately
7911 report a global breakpoint being hit in non-stop mode, in the
7912 same thread we had selected before.
7913 - GDB attaches to this process again.
7914 - This event happens to be the next event we handle.
7915
7916 GDB would consider that the current general thread didn't need to
7917 be set on the stub side (with Hg), since for all it knew,
7918 GENERAL_THREAD hadn't changed.
7919
7920 Notice that although in all-stop mode, the remote server always
7921 sets the current thread to the thread reporting the stop event,
7922 that doesn't happen in non-stop mode; in non-stop, the stub *must
7923 not* change the current thread when reporting a breakpoint hit,
7924 due to the decoupling of event reporting and event handling.
7925
7926 To keep things simple, we always invalidate our notion of the
7927 current thread. */
7928 record_currthread (rs, minus_one_ptid);
7929
7930 /* Unlike "target remote", we do not want to unpush the target; then
7931 the next time the user says "run", we won't be connected. */
7932
7933 /* Call common code to mark the inferior as not running. */
7934 generic_mourn_inferior ();
7935
7936 if (!have_inferiors ())
7937 {
7938 if (!remote_multi_process_p (rs))
7939 {
7940 /* Check whether the target is running now - some remote stubs
7941 automatically restart after kill. */
7942 putpkt ("?");
7943 getpkt (&rs->buf, &rs->buf_size, 0);
7944
7945 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7946 {
7947 /* Assume that the target has been restarted. Set
7948 inferior_ptid so that bits of core GDB realizes
7949 there's something here, e.g., so that the user can
7950 say "kill" again. */
7951 inferior_ptid = magic_null_ptid;
7952 }
7953 }
7954 }
7955 }
7956
7957 static void
7958 extended_remote_mourn (struct target_ops *ops)
7959 {
7960 extended_remote_mourn_1 (ops);
7961 }
7962
7963 static int
7964 extended_remote_supports_disable_randomization (void)
7965 {
7966 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7967 == PACKET_ENABLE);
7968 }
7969
7970 static void
7971 extended_remote_disable_randomization (int val)
7972 {
7973 struct remote_state *rs = get_remote_state ();
7974 char *reply;
7975
7976 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
7977 val);
7978 putpkt (rs->buf);
7979 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7980 if (*reply == '\0')
7981 error (_("Target does not support QDisableRandomization."));
7982 if (strcmp (reply, "OK") != 0)
7983 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7984 }
7985
7986 static int
7987 extended_remote_run (char *args)
7988 {
7989 struct remote_state *rs = get_remote_state ();
7990 int len;
7991
7992 /* If the user has disabled vRun support, or we have detected that
7993 support is not available, do not try it. */
7994 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7995 return -1;
7996
7997 strcpy (rs->buf, "vRun;");
7998 len = strlen (rs->buf);
7999
8000 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
8001 error (_("Remote file name too long for run packet"));
8002 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
8003
8004 gdb_assert (args != NULL);
8005 if (*args)
8006 {
8007 struct cleanup *back_to;
8008 int i;
8009 char **argv;
8010
8011 argv = gdb_buildargv (args);
8012 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
8013 for (i = 0; argv[i] != NULL; i++)
8014 {
8015 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
8016 error (_("Argument list too long for run packet"));
8017 rs->buf[len++] = ';';
8018 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
8019 }
8020 do_cleanups (back_to);
8021 }
8022
8023 rs->buf[len++] = '\0';
8024
8025 putpkt (rs->buf);
8026 getpkt (&rs->buf, &rs->buf_size, 0);
8027
8028 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
8029 {
8030 /* We have a wait response. All is well. */
8031 return 0;
8032 }
8033 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
8034 /* It wasn't disabled before, but it is now. */
8035 return -1;
8036 else
8037 {
8038 if (remote_exec_file[0] == '\0')
8039 error (_("Running the default executable on the remote target failed; "
8040 "try \"set remote exec-file\"?"));
8041 else
8042 error (_("Running \"%s\" on the remote target failed"),
8043 remote_exec_file);
8044 }
8045 }
8046
8047 /* In the extended protocol we want to be able to do things like
8048 "run" and have them basically work as expected. So we need
8049 a special create_inferior function. We support changing the
8050 executable file and the command line arguments, but not the
8051 environment. */
8052
8053 static void
8054 extended_remote_create_inferior_1 (char *exec_file, char *args,
8055 char **env, int from_tty)
8056 {
8057 int run_worked;
8058 char *stop_reply;
8059 struct remote_state *rs = get_remote_state ();
8060
8061 /* If running asynchronously, register the target file descriptor
8062 with the event loop. */
8063 if (target_can_async_p ())
8064 target_async (inferior_event_handler, 0);
8065
8066 /* Disable address space randomization if requested (and supported). */
8067 if (extended_remote_supports_disable_randomization ())
8068 extended_remote_disable_randomization (disable_randomization);
8069
8070 /* Now restart the remote server. */
8071 run_worked = extended_remote_run (args) != -1;
8072 if (!run_worked)
8073 {
8074 /* vRun was not supported. Fail if we need it to do what the
8075 user requested. */
8076 if (remote_exec_file[0])
8077 error (_("Remote target does not support \"set remote exec-file\""));
8078 if (args[0])
8079 error (_("Remote target does not support \"set args\" or run <ARGS>"));
8080
8081 /* Fall back to "R". */
8082 extended_remote_restart ();
8083 }
8084
8085 if (!have_inferiors ())
8086 {
8087 /* Clean up from the last time we ran, before we mark the target
8088 running again. This will mark breakpoints uninserted, and
8089 get_offsets may insert breakpoints. */
8090 init_thread_list ();
8091 init_wait_for_inferior ();
8092 }
8093
8094 /* vRun's success return is a stop reply. */
8095 stop_reply = run_worked ? rs->buf : NULL;
8096 add_current_inferior_and_thread (stop_reply);
8097
8098 /* Get updated offsets, if the stub uses qOffsets. */
8099 get_offsets ();
8100 }
8101
8102 static void
8103 extended_remote_create_inferior (struct target_ops *ops,
8104 char *exec_file, char *args,
8105 char **env, int from_tty)
8106 {
8107 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
8108 }
8109 \f
8110
8111 /* Given a location's target info BP_TGT and the packet buffer BUF, output
8112 the list of conditions (in agent expression bytecode format), if any, the
8113 target needs to evaluate. The output is placed into the packet buffer
8114 started from BUF and ended at BUF_END. */
8115
8116 static int
8117 remote_add_target_side_condition (struct gdbarch *gdbarch,
8118 struct bp_target_info *bp_tgt, char *buf,
8119 char *buf_end)
8120 {
8121 struct agent_expr *aexpr = NULL;
8122 int i, ix;
8123 char *pkt;
8124 char *buf_start = buf;
8125
8126 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
8127 return 0;
8128
8129 buf += strlen (buf);
8130 xsnprintf (buf, buf_end - buf, "%s", ";");
8131 buf++;
8132
8133 /* Send conditions to the target and free the vector. */
8134 for (ix = 0;
8135 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
8136 ix++)
8137 {
8138 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
8139 buf += strlen (buf);
8140 for (i = 0; i < aexpr->len; ++i)
8141 buf = pack_hex_byte (buf, aexpr->buf[i]);
8142 *buf = '\0';
8143 }
8144
8145 VEC_free (agent_expr_p, bp_tgt->conditions);
8146 return 0;
8147 }
8148
8149 static void
8150 remote_add_target_side_commands (struct gdbarch *gdbarch,
8151 struct bp_target_info *bp_tgt, char *buf)
8152 {
8153 struct agent_expr *aexpr = NULL;
8154 int i, ix;
8155
8156 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
8157 return;
8158
8159 buf += strlen (buf);
8160
8161 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
8162 buf += strlen (buf);
8163
8164 /* Concatenate all the agent expressions that are commands into the
8165 cmds parameter. */
8166 for (ix = 0;
8167 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
8168 ix++)
8169 {
8170 sprintf (buf, "X%x,", aexpr->len);
8171 buf += strlen (buf);
8172 for (i = 0; i < aexpr->len; ++i)
8173 buf = pack_hex_byte (buf, aexpr->buf[i]);
8174 *buf = '\0';
8175 }
8176
8177 VEC_free (agent_expr_p, bp_tgt->tcommands);
8178 }
8179
8180 /* Insert a breakpoint. On targets that have software breakpoint
8181 support, we ask the remote target to do the work; on targets
8182 which don't, we insert a traditional memory breakpoint. */
8183
8184 static int
8185 remote_insert_breakpoint (struct gdbarch *gdbarch,
8186 struct bp_target_info *bp_tgt)
8187 {
8188 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
8189 If it succeeds, then set the support to PACKET_ENABLE. If it
8190 fails, and the user has explicitly requested the Z support then
8191 report an error, otherwise, mark it disabled and go on. */
8192
8193 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8194 {
8195 CORE_ADDR addr = bp_tgt->placed_address;
8196 struct remote_state *rs;
8197 char *p, *endbuf;
8198 int bpsize;
8199 struct condition_list *cond = NULL;
8200
8201 /* Make sure the remote is pointing at the right process, if
8202 necessary. */
8203 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8204 set_general_process ();
8205
8206 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
8207
8208 rs = get_remote_state ();
8209 p = rs->buf;
8210 endbuf = rs->buf + get_remote_packet_size ();
8211
8212 *(p++) = 'Z';
8213 *(p++) = '0';
8214 *(p++) = ',';
8215 addr = (ULONGEST) remote_address_masked (addr);
8216 p += hexnumstr (p, addr);
8217 xsnprintf (p, endbuf - p, ",%d", bpsize);
8218
8219 if (remote_supports_cond_breakpoints ())
8220 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8221
8222 if (remote_can_run_breakpoint_commands ())
8223 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8224
8225 putpkt (rs->buf);
8226 getpkt (&rs->buf, &rs->buf_size, 0);
8227
8228 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
8229 {
8230 case PACKET_ERROR:
8231 return -1;
8232 case PACKET_OK:
8233 bp_tgt->placed_address = addr;
8234 bp_tgt->placed_size = bpsize;
8235 return 0;
8236 case PACKET_UNKNOWN:
8237 break;
8238 }
8239 }
8240
8241 return memory_insert_breakpoint (gdbarch, bp_tgt);
8242 }
8243
8244 static int
8245 remote_remove_breakpoint (struct gdbarch *gdbarch,
8246 struct bp_target_info *bp_tgt)
8247 {
8248 CORE_ADDR addr = bp_tgt->placed_address;
8249 struct remote_state *rs = get_remote_state ();
8250
8251 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8252 {
8253 char *p = rs->buf;
8254 char *endbuf = rs->buf + get_remote_packet_size ();
8255
8256 /* Make sure the remote is pointing at the right process, if
8257 necessary. */
8258 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8259 set_general_process ();
8260
8261 *(p++) = 'z';
8262 *(p++) = '0';
8263 *(p++) = ',';
8264
8265 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8266 p += hexnumstr (p, addr);
8267 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8268
8269 putpkt (rs->buf);
8270 getpkt (&rs->buf, &rs->buf_size, 0);
8271
8272 return (rs->buf[0] == 'E');
8273 }
8274
8275 return memory_remove_breakpoint (gdbarch, bp_tgt);
8276 }
8277
8278 static int
8279 watchpoint_to_Z_packet (int type)
8280 {
8281 switch (type)
8282 {
8283 case hw_write:
8284 return Z_PACKET_WRITE_WP;
8285 break;
8286 case hw_read:
8287 return Z_PACKET_READ_WP;
8288 break;
8289 case hw_access:
8290 return Z_PACKET_ACCESS_WP;
8291 break;
8292 default:
8293 internal_error (__FILE__, __LINE__,
8294 _("hw_bp_to_z: bad watchpoint type %d"), type);
8295 }
8296 }
8297
8298 static int
8299 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
8300 struct expression *cond)
8301 {
8302 struct remote_state *rs = get_remote_state ();
8303 char *endbuf = rs->buf + get_remote_packet_size ();
8304 char *p;
8305 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8306
8307 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8308 return 1;
8309
8310 /* Make sure the remote is pointing at the right process, if
8311 necessary. */
8312 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8313 set_general_process ();
8314
8315 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8316 p = strchr (rs->buf, '\0');
8317 addr = remote_address_masked (addr);
8318 p += hexnumstr (p, (ULONGEST) addr);
8319 xsnprintf (p, endbuf - p, ",%x", len);
8320
8321 putpkt (rs->buf);
8322 getpkt (&rs->buf, &rs->buf_size, 0);
8323
8324 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8325 {
8326 case PACKET_ERROR:
8327 return -1;
8328 case PACKET_UNKNOWN:
8329 return 1;
8330 case PACKET_OK:
8331 return 0;
8332 }
8333 internal_error (__FILE__, __LINE__,
8334 _("remote_insert_watchpoint: reached end of function"));
8335 }
8336
8337 static int
8338 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8339 CORE_ADDR start, int length)
8340 {
8341 CORE_ADDR diff = remote_address_masked (addr - start);
8342
8343 return diff < length;
8344 }
8345
8346
8347 static int
8348 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
8349 struct expression *cond)
8350 {
8351 struct remote_state *rs = get_remote_state ();
8352 char *endbuf = rs->buf + get_remote_packet_size ();
8353 char *p;
8354 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8355
8356 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8357 return -1;
8358
8359 /* Make sure the remote is pointing at the right process, if
8360 necessary. */
8361 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8362 set_general_process ();
8363
8364 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8365 p = strchr (rs->buf, '\0');
8366 addr = remote_address_masked (addr);
8367 p += hexnumstr (p, (ULONGEST) addr);
8368 xsnprintf (p, endbuf - p, ",%x", len);
8369 putpkt (rs->buf);
8370 getpkt (&rs->buf, &rs->buf_size, 0);
8371
8372 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8373 {
8374 case PACKET_ERROR:
8375 case PACKET_UNKNOWN:
8376 return -1;
8377 case PACKET_OK:
8378 return 0;
8379 }
8380 internal_error (__FILE__, __LINE__,
8381 _("remote_remove_watchpoint: reached end of function"));
8382 }
8383
8384
8385 int remote_hw_watchpoint_limit = -1;
8386 int remote_hw_watchpoint_length_limit = -1;
8387 int remote_hw_breakpoint_limit = -1;
8388
8389 static int
8390 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
8391 {
8392 if (remote_hw_watchpoint_length_limit == 0)
8393 return 0;
8394 else if (remote_hw_watchpoint_length_limit < 0)
8395 return 1;
8396 else if (len <= remote_hw_watchpoint_length_limit)
8397 return 1;
8398 else
8399 return 0;
8400 }
8401
8402 static int
8403 remote_check_watch_resources (int type, int cnt, int ot)
8404 {
8405 if (type == bp_hardware_breakpoint)
8406 {
8407 if (remote_hw_breakpoint_limit == 0)
8408 return 0;
8409 else if (remote_hw_breakpoint_limit < 0)
8410 return 1;
8411 else if (cnt <= remote_hw_breakpoint_limit)
8412 return 1;
8413 }
8414 else
8415 {
8416 if (remote_hw_watchpoint_limit == 0)
8417 return 0;
8418 else if (remote_hw_watchpoint_limit < 0)
8419 return 1;
8420 else if (ot)
8421 return -1;
8422 else if (cnt <= remote_hw_watchpoint_limit)
8423 return 1;
8424 }
8425 return -1;
8426 }
8427
8428 static int
8429 remote_stopped_by_watchpoint (void)
8430 {
8431 struct remote_state *rs = get_remote_state ();
8432
8433 return rs->remote_stopped_by_watchpoint_p;
8434 }
8435
8436 static int
8437 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8438 {
8439 struct remote_state *rs = get_remote_state ();
8440 int rc = 0;
8441
8442 if (remote_stopped_by_watchpoint ())
8443 {
8444 *addr_p = rs->remote_watch_data_address;
8445 rc = 1;
8446 }
8447
8448 return rc;
8449 }
8450
8451
8452 static int
8453 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8454 struct bp_target_info *bp_tgt)
8455 {
8456 CORE_ADDR addr;
8457 struct remote_state *rs;
8458 char *p, *endbuf;
8459 char *message;
8460
8461 /* The length field should be set to the size of a breakpoint
8462 instruction, even though we aren't inserting one ourselves. */
8463
8464 gdbarch_remote_breakpoint_from_pc
8465 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8466
8467 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8468 return -1;
8469
8470 /* Make sure the remote is pointing at the right process, if
8471 necessary. */
8472 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8473 set_general_process ();
8474
8475 rs = get_remote_state ();
8476 p = rs->buf;
8477 endbuf = rs->buf + get_remote_packet_size ();
8478
8479 *(p++) = 'Z';
8480 *(p++) = '1';
8481 *(p++) = ',';
8482
8483 addr = remote_address_masked (bp_tgt->placed_address);
8484 p += hexnumstr (p, (ULONGEST) addr);
8485 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8486
8487 if (remote_supports_cond_breakpoints ())
8488 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8489
8490 if (remote_can_run_breakpoint_commands ())
8491 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8492
8493 putpkt (rs->buf);
8494 getpkt (&rs->buf, &rs->buf_size, 0);
8495
8496 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8497 {
8498 case PACKET_ERROR:
8499 if (rs->buf[1] == '.')
8500 {
8501 message = strchr (rs->buf + 2, '.');
8502 if (message)
8503 error (_("Remote failure reply: %s"), message + 1);
8504 }
8505 return -1;
8506 case PACKET_UNKNOWN:
8507 return -1;
8508 case PACKET_OK:
8509 return 0;
8510 }
8511 internal_error (__FILE__, __LINE__,
8512 _("remote_insert_hw_breakpoint: reached end of function"));
8513 }
8514
8515
8516 static int
8517 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8518 struct bp_target_info *bp_tgt)
8519 {
8520 CORE_ADDR addr;
8521 struct remote_state *rs = get_remote_state ();
8522 char *p = rs->buf;
8523 char *endbuf = rs->buf + get_remote_packet_size ();
8524
8525 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8526 return -1;
8527
8528 /* Make sure the remote is pointing at the right process, if
8529 necessary. */
8530 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8531 set_general_process ();
8532
8533 *(p++) = 'z';
8534 *(p++) = '1';
8535 *(p++) = ',';
8536
8537 addr = remote_address_masked (bp_tgt->placed_address);
8538 p += hexnumstr (p, (ULONGEST) addr);
8539 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8540
8541 putpkt (rs->buf);
8542 getpkt (&rs->buf, &rs->buf_size, 0);
8543
8544 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8545 {
8546 case PACKET_ERROR:
8547 case PACKET_UNKNOWN:
8548 return -1;
8549 case PACKET_OK:
8550 return 0;
8551 }
8552 internal_error (__FILE__, __LINE__,
8553 _("remote_remove_hw_breakpoint: reached end of function"));
8554 }
8555
8556 /* Verify memory using the "qCRC:" request. */
8557
8558 static int
8559 remote_verify_memory (struct target_ops *ops,
8560 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8561 {
8562 struct remote_state *rs = get_remote_state ();
8563 unsigned long host_crc, target_crc;
8564 char *tmp;
8565
8566 /* Make sure the remote is pointing at the right process. */
8567 set_general_process ();
8568
8569 /* FIXME: assumes lma can fit into long. */
8570 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8571 (long) lma, (long) size);
8572 putpkt (rs->buf);
8573
8574 /* Be clever; compute the host_crc before waiting for target
8575 reply. */
8576 host_crc = xcrc32 (data, size, 0xffffffff);
8577
8578 getpkt (&rs->buf, &rs->buf_size, 0);
8579 if (rs->buf[0] == 'E')
8580 return -1;
8581
8582 if (rs->buf[0] != 'C')
8583 error (_("remote target does not support this operation"));
8584
8585 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8586 target_crc = target_crc * 16 + fromhex (*tmp);
8587
8588 return (host_crc == target_crc);
8589 }
8590
8591 /* compare-sections command
8592
8593 With no arguments, compares each loadable section in the exec bfd
8594 with the same memory range on the target, and reports mismatches.
8595 Useful for verifying the image on the target against the exec file. */
8596
8597 static void
8598 compare_sections_command (char *args, int from_tty)
8599 {
8600 asection *s;
8601 struct cleanup *old_chain;
8602 gdb_byte *sectdata;
8603 const char *sectname;
8604 bfd_size_type size;
8605 bfd_vma lma;
8606 int matched = 0;
8607 int mismatched = 0;
8608 int res;
8609
8610 if (!exec_bfd)
8611 error (_("command cannot be used without an exec file"));
8612
8613 /* Make sure the remote is pointing at the right process. */
8614 set_general_process ();
8615
8616 for (s = exec_bfd->sections; s; s = s->next)
8617 {
8618 if (!(s->flags & SEC_LOAD))
8619 continue; /* Skip non-loadable section. */
8620
8621 size = bfd_get_section_size (s);
8622 if (size == 0)
8623 continue; /* Skip zero-length section. */
8624
8625 sectname = bfd_get_section_name (exec_bfd, s);
8626 if (args && strcmp (args, sectname) != 0)
8627 continue; /* Not the section selected by user. */
8628
8629 matched = 1; /* Do this section. */
8630 lma = s->lma;
8631
8632 sectdata = xmalloc (size);
8633 old_chain = make_cleanup (xfree, sectdata);
8634 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8635
8636 res = target_verify_memory (sectdata, lma, size);
8637
8638 if (res == -1)
8639 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8640 paddress (target_gdbarch (), lma),
8641 paddress (target_gdbarch (), lma + size));
8642
8643 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8644 paddress (target_gdbarch (), lma),
8645 paddress (target_gdbarch (), lma + size));
8646 if (res)
8647 printf_filtered ("matched.\n");
8648 else
8649 {
8650 printf_filtered ("MIS-MATCHED!\n");
8651 mismatched++;
8652 }
8653
8654 do_cleanups (old_chain);
8655 }
8656 if (mismatched > 0)
8657 warning (_("One or more sections of the remote executable does not match\n\
8658 the loaded file\n"));
8659 if (args && !matched)
8660 printf_filtered (_("No loaded section named '%s'.\n"), args);
8661 }
8662
8663 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8664 into remote target. The number of bytes written to the remote
8665 target is returned, or -1 for error. */
8666
8667 static LONGEST
8668 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8669 const char *annex, const gdb_byte *writebuf,
8670 ULONGEST offset, LONGEST len,
8671 struct packet_config *packet)
8672 {
8673 int i, buf_len;
8674 ULONGEST n;
8675 struct remote_state *rs = get_remote_state ();
8676 int max_size = get_memory_write_packet_size ();
8677
8678 if (packet->support == PACKET_DISABLE)
8679 return -1;
8680
8681 /* Insert header. */
8682 i = snprintf (rs->buf, max_size,
8683 "qXfer:%s:write:%s:%s:",
8684 object_name, annex ? annex : "",
8685 phex_nz (offset, sizeof offset));
8686 max_size -= (i + 1);
8687
8688 /* Escape as much data as fits into rs->buf. */
8689 buf_len = remote_escape_output
8690 (writebuf, len, (gdb_byte *) rs->buf + i, &max_size, max_size);
8691
8692 if (putpkt_binary (rs->buf, i + buf_len) < 0
8693 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8694 || packet_ok (rs->buf, packet) != PACKET_OK)
8695 return -1;
8696
8697 unpack_varlen_hex (rs->buf, &n);
8698 return n;
8699 }
8700
8701 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8702 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8703 number of bytes read is returned, or 0 for EOF, or -1 for error.
8704 The number of bytes read may be less than LEN without indicating an
8705 EOF. PACKET is checked and updated to indicate whether the remote
8706 target supports this object. */
8707
8708 static LONGEST
8709 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8710 const char *annex,
8711 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8712 struct packet_config *packet)
8713 {
8714 struct remote_state *rs = get_remote_state ();
8715 LONGEST i, n, packet_len;
8716
8717 if (packet->support == PACKET_DISABLE)
8718 return -1;
8719
8720 /* Check whether we've cached an end-of-object packet that matches
8721 this request. */
8722 if (rs->finished_object)
8723 {
8724 if (strcmp (object_name, rs->finished_object) == 0
8725 && strcmp (annex ? annex : "", rs->finished_annex) == 0
8726 && offset == rs->finished_offset)
8727 return 0;
8728
8729 /* Otherwise, we're now reading something different. Discard
8730 the cache. */
8731 xfree (rs->finished_object);
8732 xfree (rs->finished_annex);
8733 rs->finished_object = NULL;
8734 rs->finished_annex = NULL;
8735 }
8736
8737 /* Request only enough to fit in a single packet. The actual data
8738 may not, since we don't know how much of it will need to be escaped;
8739 the target is free to respond with slightly less data. We subtract
8740 five to account for the response type and the protocol frame. */
8741 n = min (get_remote_packet_size () - 5, len);
8742 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8743 object_name, annex ? annex : "",
8744 phex_nz (offset, sizeof offset),
8745 phex_nz (n, sizeof n));
8746 i = putpkt (rs->buf);
8747 if (i < 0)
8748 return -1;
8749
8750 rs->buf[0] = '\0';
8751 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8752 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8753 return -1;
8754
8755 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8756 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8757
8758 /* 'm' means there is (or at least might be) more data after this
8759 batch. That does not make sense unless there's at least one byte
8760 of data in this reply. */
8761 if (rs->buf[0] == 'm' && packet_len == 1)
8762 error (_("Remote qXfer reply contained no data."));
8763
8764 /* Got some data. */
8765 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
8766 packet_len - 1, readbuf, n);
8767
8768 /* 'l' is an EOF marker, possibly including a final block of data,
8769 or possibly empty. If we have the final block of a non-empty
8770 object, record this fact to bypass a subsequent partial read. */
8771 if (rs->buf[0] == 'l' && offset + i > 0)
8772 {
8773 rs->finished_object = xstrdup (object_name);
8774 rs->finished_annex = xstrdup (annex ? annex : "");
8775 rs->finished_offset = offset + i;
8776 }
8777
8778 return i;
8779 }
8780
8781 static LONGEST
8782 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8783 const char *annex, gdb_byte *readbuf,
8784 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8785 {
8786 struct remote_state *rs;
8787 int i;
8788 char *p2;
8789 char query_type;
8790
8791 set_remote_traceframe ();
8792 set_general_thread (inferior_ptid);
8793
8794 rs = get_remote_state ();
8795
8796 /* Handle memory using the standard memory routines. */
8797 if (object == TARGET_OBJECT_MEMORY)
8798 {
8799 int xfered;
8800
8801 errno = 0;
8802
8803 /* If the remote target is connected but not running, we should
8804 pass this request down to a lower stratum (e.g. the executable
8805 file). */
8806 if (!target_has_execution)
8807 return 0;
8808
8809 if (writebuf != NULL)
8810 xfered = remote_write_bytes (offset, writebuf, len);
8811 else
8812 xfered = remote_read_bytes (offset, readbuf, len);
8813
8814 if (xfered > 0)
8815 return xfered;
8816 else if (xfered == 0 && errno == 0)
8817 return 0;
8818 else
8819 return -1;
8820 }
8821
8822 /* Handle SPU memory using qxfer packets. */
8823 if (object == TARGET_OBJECT_SPU)
8824 {
8825 if (readbuf)
8826 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8827 &remote_protocol_packets
8828 [PACKET_qXfer_spu_read]);
8829 else
8830 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8831 &remote_protocol_packets
8832 [PACKET_qXfer_spu_write]);
8833 }
8834
8835 /* Handle extra signal info using qxfer packets. */
8836 if (object == TARGET_OBJECT_SIGNAL_INFO)
8837 {
8838 if (readbuf)
8839 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8840 &remote_protocol_packets
8841 [PACKET_qXfer_siginfo_read]);
8842 else
8843 return remote_write_qxfer (ops, "siginfo", annex,
8844 writebuf, offset, len,
8845 &remote_protocol_packets
8846 [PACKET_qXfer_siginfo_write]);
8847 }
8848
8849 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8850 {
8851 if (readbuf)
8852 return remote_read_qxfer (ops, "statictrace", annex,
8853 readbuf, offset, len,
8854 &remote_protocol_packets
8855 [PACKET_qXfer_statictrace_read]);
8856 else
8857 return -1;
8858 }
8859
8860 /* Only handle flash writes. */
8861 if (writebuf != NULL)
8862 {
8863 LONGEST xfered;
8864
8865 switch (object)
8866 {
8867 case TARGET_OBJECT_FLASH:
8868 xfered = remote_flash_write (ops, offset, len, writebuf);
8869
8870 if (xfered > 0)
8871 return xfered;
8872 else if (xfered == 0 && errno == 0)
8873 return 0;
8874 else
8875 return -1;
8876
8877 default:
8878 return -1;
8879 }
8880 }
8881
8882 /* Map pre-existing objects onto letters. DO NOT do this for new
8883 objects!!! Instead specify new query packets. */
8884 switch (object)
8885 {
8886 case TARGET_OBJECT_AVR:
8887 query_type = 'R';
8888 break;
8889
8890 case TARGET_OBJECT_AUXV:
8891 gdb_assert (annex == NULL);
8892 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8893 &remote_protocol_packets[PACKET_qXfer_auxv]);
8894
8895 case TARGET_OBJECT_AVAILABLE_FEATURES:
8896 return remote_read_qxfer
8897 (ops, "features", annex, readbuf, offset, len,
8898 &remote_protocol_packets[PACKET_qXfer_features]);
8899
8900 case TARGET_OBJECT_LIBRARIES:
8901 return remote_read_qxfer
8902 (ops, "libraries", annex, readbuf, offset, len,
8903 &remote_protocol_packets[PACKET_qXfer_libraries]);
8904
8905 case TARGET_OBJECT_LIBRARIES_SVR4:
8906 return remote_read_qxfer
8907 (ops, "libraries-svr4", annex, readbuf, offset, len,
8908 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8909
8910 case TARGET_OBJECT_MEMORY_MAP:
8911 gdb_assert (annex == NULL);
8912 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8913 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8914
8915 case TARGET_OBJECT_OSDATA:
8916 /* Should only get here if we're connected. */
8917 gdb_assert (rs->remote_desc);
8918 return remote_read_qxfer
8919 (ops, "osdata", annex, readbuf, offset, len,
8920 &remote_protocol_packets[PACKET_qXfer_osdata]);
8921
8922 case TARGET_OBJECT_THREADS:
8923 gdb_assert (annex == NULL);
8924 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8925 &remote_protocol_packets[PACKET_qXfer_threads]);
8926
8927 case TARGET_OBJECT_TRACEFRAME_INFO:
8928 gdb_assert (annex == NULL);
8929 return remote_read_qxfer
8930 (ops, "traceframe-info", annex, readbuf, offset, len,
8931 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8932
8933 case TARGET_OBJECT_FDPIC:
8934 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8935 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8936
8937 case TARGET_OBJECT_OPENVMS_UIB:
8938 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
8939 &remote_protocol_packets[PACKET_qXfer_uib]);
8940
8941 case TARGET_OBJECT_BTRACE:
8942 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
8943 &remote_protocol_packets[PACKET_qXfer_btrace]);
8944
8945 default:
8946 return -1;
8947 }
8948
8949 /* Note: a zero OFFSET and LEN can be used to query the minimum
8950 buffer size. */
8951 if (offset == 0 && len == 0)
8952 return (get_remote_packet_size ());
8953 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8954 large enough let the caller deal with it. */
8955 if (len < get_remote_packet_size ())
8956 return -1;
8957 len = get_remote_packet_size ();
8958
8959 /* Except for querying the minimum buffer size, target must be open. */
8960 if (!rs->remote_desc)
8961 error (_("remote query is only available after target open"));
8962
8963 gdb_assert (annex != NULL);
8964 gdb_assert (readbuf != NULL);
8965
8966 p2 = rs->buf;
8967 *p2++ = 'q';
8968 *p2++ = query_type;
8969
8970 /* We used one buffer char for the remote protocol q command and
8971 another for the query type. As the remote protocol encapsulation
8972 uses 4 chars plus one extra in case we are debugging
8973 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8974 string. */
8975 i = 0;
8976 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8977 {
8978 /* Bad caller may have sent forbidden characters. */
8979 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8980 *p2++ = annex[i];
8981 i++;
8982 }
8983 *p2 = '\0';
8984 gdb_assert (annex[i] == '\0');
8985
8986 i = putpkt (rs->buf);
8987 if (i < 0)
8988 return i;
8989
8990 getpkt (&rs->buf, &rs->buf_size, 0);
8991 strcpy ((char *) readbuf, rs->buf);
8992
8993 return strlen ((char *) readbuf);
8994 }
8995
8996 static int
8997 remote_search_memory (struct target_ops* ops,
8998 CORE_ADDR start_addr, ULONGEST search_space_len,
8999 const gdb_byte *pattern, ULONGEST pattern_len,
9000 CORE_ADDR *found_addrp)
9001 {
9002 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9003 struct remote_state *rs = get_remote_state ();
9004 int max_size = get_memory_write_packet_size ();
9005 struct packet_config *packet =
9006 &remote_protocol_packets[PACKET_qSearch_memory];
9007 /* Number of packet bytes used to encode the pattern;
9008 this could be more than PATTERN_LEN due to escape characters. */
9009 int escaped_pattern_len;
9010 /* Amount of pattern that was encodable in the packet. */
9011 int used_pattern_len;
9012 int i;
9013 int found;
9014 ULONGEST found_addr;
9015
9016 /* Don't go to the target if we don't have to.
9017 This is done before checking packet->support to avoid the possibility that
9018 a success for this edge case means the facility works in general. */
9019 if (pattern_len > search_space_len)
9020 return 0;
9021 if (pattern_len == 0)
9022 {
9023 *found_addrp = start_addr;
9024 return 1;
9025 }
9026
9027 /* If we already know the packet isn't supported, fall back to the simple
9028 way of searching memory. */
9029
9030 if (packet->support == PACKET_DISABLE)
9031 {
9032 /* Target doesn't provided special support, fall back and use the
9033 standard support (copy memory and do the search here). */
9034 return simple_search_memory (ops, start_addr, search_space_len,
9035 pattern, pattern_len, found_addrp);
9036 }
9037
9038 /* Make sure the remote is pointing at the right process. */
9039 set_general_process ();
9040
9041 /* Insert header. */
9042 i = snprintf (rs->buf, max_size,
9043 "qSearch:memory:%s;%s;",
9044 phex_nz (start_addr, addr_size),
9045 phex_nz (search_space_len, sizeof (search_space_len)));
9046 max_size -= (i + 1);
9047
9048 /* Escape as much data as fits into rs->buf. */
9049 escaped_pattern_len =
9050 remote_escape_output (pattern, pattern_len, (gdb_byte *) rs->buf + i,
9051 &used_pattern_len, max_size);
9052
9053 /* Bail if the pattern is too large. */
9054 if (used_pattern_len != pattern_len)
9055 error (_("Pattern is too large to transmit to remote target."));
9056
9057 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
9058 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
9059 || packet_ok (rs->buf, packet) != PACKET_OK)
9060 {
9061 /* The request may not have worked because the command is not
9062 supported. If so, fall back to the simple way. */
9063 if (packet->support == PACKET_DISABLE)
9064 {
9065 return simple_search_memory (ops, start_addr, search_space_len,
9066 pattern, pattern_len, found_addrp);
9067 }
9068 return -1;
9069 }
9070
9071 if (rs->buf[0] == '0')
9072 found = 0;
9073 else if (rs->buf[0] == '1')
9074 {
9075 found = 1;
9076 if (rs->buf[1] != ',')
9077 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9078 unpack_varlen_hex (rs->buf + 2, &found_addr);
9079 *found_addrp = found_addr;
9080 }
9081 else
9082 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9083
9084 return found;
9085 }
9086
9087 static void
9088 remote_rcmd (char *command,
9089 struct ui_file *outbuf)
9090 {
9091 struct remote_state *rs = get_remote_state ();
9092 char *p = rs->buf;
9093
9094 if (!rs->remote_desc)
9095 error (_("remote rcmd is only available after target open"));
9096
9097 /* Send a NULL command across as an empty command. */
9098 if (command == NULL)
9099 command = "";
9100
9101 /* The query prefix. */
9102 strcpy (rs->buf, "qRcmd,");
9103 p = strchr (rs->buf, '\0');
9104
9105 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
9106 > get_remote_packet_size ())
9107 error (_("\"monitor\" command ``%s'' is too long."), command);
9108
9109 /* Encode the actual command. */
9110 bin2hex ((gdb_byte *) command, p, 0);
9111
9112 if (putpkt (rs->buf) < 0)
9113 error (_("Communication problem with target."));
9114
9115 /* get/display the response */
9116 while (1)
9117 {
9118 char *buf;
9119
9120 /* XXX - see also remote_get_noisy_reply(). */
9121 QUIT; /* Allow user to bail out with ^C. */
9122 rs->buf[0] = '\0';
9123 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
9124 {
9125 /* Timeout. Continue to (try to) read responses.
9126 This is better than stopping with an error, assuming the stub
9127 is still executing the (long) monitor command.
9128 If needed, the user can interrupt gdb using C-c, obtaining
9129 an effect similar to stop on timeout. */
9130 continue;
9131 }
9132 buf = rs->buf;
9133 if (buf[0] == '\0')
9134 error (_("Target does not support this command."));
9135 if (buf[0] == 'O' && buf[1] != 'K')
9136 {
9137 remote_console_output (buf + 1); /* 'O' message from stub. */
9138 continue;
9139 }
9140 if (strcmp (buf, "OK") == 0)
9141 break;
9142 if (strlen (buf) == 3 && buf[0] == 'E'
9143 && isdigit (buf[1]) && isdigit (buf[2]))
9144 {
9145 error (_("Protocol error with Rcmd"));
9146 }
9147 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
9148 {
9149 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
9150
9151 fputc_unfiltered (c, outbuf);
9152 }
9153 break;
9154 }
9155 }
9156
9157 static VEC(mem_region_s) *
9158 remote_memory_map (struct target_ops *ops)
9159 {
9160 VEC(mem_region_s) *result = NULL;
9161 char *text = target_read_stralloc (&current_target,
9162 TARGET_OBJECT_MEMORY_MAP, NULL);
9163
9164 if (text)
9165 {
9166 struct cleanup *back_to = make_cleanup (xfree, text);
9167
9168 result = parse_memory_map (text);
9169 do_cleanups (back_to);
9170 }
9171
9172 return result;
9173 }
9174
9175 static void
9176 packet_command (char *args, int from_tty)
9177 {
9178 struct remote_state *rs = get_remote_state ();
9179
9180 if (!rs->remote_desc)
9181 error (_("command can only be used with remote target"));
9182
9183 if (!args)
9184 error (_("remote-packet command requires packet text as argument"));
9185
9186 puts_filtered ("sending: ");
9187 print_packet (args);
9188 puts_filtered ("\n");
9189 putpkt (args);
9190
9191 getpkt (&rs->buf, &rs->buf_size, 0);
9192 puts_filtered ("received: ");
9193 print_packet (rs->buf);
9194 puts_filtered ("\n");
9195 }
9196
9197 #if 0
9198 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
9199
9200 static void display_thread_info (struct gdb_ext_thread_info *info);
9201
9202 static void threadset_test_cmd (char *cmd, int tty);
9203
9204 static void threadalive_test (char *cmd, int tty);
9205
9206 static void threadlist_test_cmd (char *cmd, int tty);
9207
9208 int get_and_display_threadinfo (threadref *ref);
9209
9210 static void threadinfo_test_cmd (char *cmd, int tty);
9211
9212 static int thread_display_step (threadref *ref, void *context);
9213
9214 static void threadlist_update_test_cmd (char *cmd, int tty);
9215
9216 static void init_remote_threadtests (void);
9217
9218 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
9219
9220 static void
9221 threadset_test_cmd (char *cmd, int tty)
9222 {
9223 int sample_thread = SAMPLE_THREAD;
9224
9225 printf_filtered (_("Remote threadset test\n"));
9226 set_general_thread (sample_thread);
9227 }
9228
9229
9230 static void
9231 threadalive_test (char *cmd, int tty)
9232 {
9233 int sample_thread = SAMPLE_THREAD;
9234 int pid = ptid_get_pid (inferior_ptid);
9235 ptid_t ptid = ptid_build (pid, 0, sample_thread);
9236
9237 if (remote_thread_alive (ptid))
9238 printf_filtered ("PASS: Thread alive test\n");
9239 else
9240 printf_filtered ("FAIL: Thread alive test\n");
9241 }
9242
9243 void output_threadid (char *title, threadref *ref);
9244
9245 void
9246 output_threadid (char *title, threadref *ref)
9247 {
9248 char hexid[20];
9249
9250 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
9251 hexid[16] = 0;
9252 printf_filtered ("%s %s\n", title, (&hexid[0]));
9253 }
9254
9255 static void
9256 threadlist_test_cmd (char *cmd, int tty)
9257 {
9258 int startflag = 1;
9259 threadref nextthread;
9260 int done, result_count;
9261 threadref threadlist[3];
9262
9263 printf_filtered ("Remote Threadlist test\n");
9264 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
9265 &result_count, &threadlist[0]))
9266 printf_filtered ("FAIL: threadlist test\n");
9267 else
9268 {
9269 threadref *scan = threadlist;
9270 threadref *limit = scan + result_count;
9271
9272 while (scan < limit)
9273 output_threadid (" thread ", scan++);
9274 }
9275 }
9276
9277 void
9278 display_thread_info (struct gdb_ext_thread_info *info)
9279 {
9280 output_threadid ("Threadid: ", &info->threadid);
9281 printf_filtered ("Name: %s\n ", info->shortname);
9282 printf_filtered ("State: %s\n", info->display);
9283 printf_filtered ("other: %s\n\n", info->more_display);
9284 }
9285
9286 int
9287 get_and_display_threadinfo (threadref *ref)
9288 {
9289 int result;
9290 int set;
9291 struct gdb_ext_thread_info threadinfo;
9292
9293 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9294 | TAG_MOREDISPLAY | TAG_DISPLAY;
9295 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9296 display_thread_info (&threadinfo);
9297 return result;
9298 }
9299
9300 static void
9301 threadinfo_test_cmd (char *cmd, int tty)
9302 {
9303 int athread = SAMPLE_THREAD;
9304 threadref thread;
9305 int set;
9306
9307 int_to_threadref (&thread, athread);
9308 printf_filtered ("Remote Threadinfo test\n");
9309 if (!get_and_display_threadinfo (&thread))
9310 printf_filtered ("FAIL cannot get thread info\n");
9311 }
9312
9313 static int
9314 thread_display_step (threadref *ref, void *context)
9315 {
9316 /* output_threadid(" threadstep ",ref); *//* simple test */
9317 return get_and_display_threadinfo (ref);
9318 }
9319
9320 static void
9321 threadlist_update_test_cmd (char *cmd, int tty)
9322 {
9323 printf_filtered ("Remote Threadlist update test\n");
9324 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9325 }
9326
9327 static void
9328 init_remote_threadtests (void)
9329 {
9330 add_com ("tlist", class_obscure, threadlist_test_cmd,
9331 _("Fetch and print the remote list of "
9332 "thread identifiers, one pkt only"));
9333 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9334 _("Fetch and display info about one thread"));
9335 add_com ("tset", class_obscure, threadset_test_cmd,
9336 _("Test setting to a different thread"));
9337 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9338 _("Iterate through updating all remote thread info"));
9339 add_com ("talive", class_obscure, threadalive_test,
9340 _(" Remote thread alive test "));
9341 }
9342
9343 #endif /* 0 */
9344
9345 /* Convert a thread ID to a string. Returns the string in a static
9346 buffer. */
9347
9348 static char *
9349 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9350 {
9351 static char buf[64];
9352 struct remote_state *rs = get_remote_state ();
9353
9354 if (ptid_equal (ptid, null_ptid))
9355 return normal_pid_to_str (ptid);
9356 else if (ptid_is_pid (ptid))
9357 {
9358 /* Printing an inferior target id. */
9359
9360 /* When multi-process extensions are off, there's no way in the
9361 remote protocol to know the remote process id, if there's any
9362 at all. There's one exception --- when we're connected with
9363 target extended-remote, and we manually attached to a process
9364 with "attach PID". We don't record anywhere a flag that
9365 allows us to distinguish that case from the case of
9366 connecting with extended-remote and the stub already being
9367 attached to a process, and reporting yes to qAttached, hence
9368 no smart special casing here. */
9369 if (!remote_multi_process_p (rs))
9370 {
9371 xsnprintf (buf, sizeof buf, "Remote target");
9372 return buf;
9373 }
9374
9375 return normal_pid_to_str (ptid);
9376 }
9377 else
9378 {
9379 if (ptid_equal (magic_null_ptid, ptid))
9380 xsnprintf (buf, sizeof buf, "Thread <main>");
9381 else if (rs->extended && remote_multi_process_p (rs))
9382 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9383 ptid_get_pid (ptid), ptid_get_tid (ptid));
9384 else
9385 xsnprintf (buf, sizeof buf, "Thread %ld",
9386 ptid_get_tid (ptid));
9387 return buf;
9388 }
9389 }
9390
9391 /* Get the address of the thread local variable in OBJFILE which is
9392 stored at OFFSET within the thread local storage for thread PTID. */
9393
9394 static CORE_ADDR
9395 remote_get_thread_local_address (struct target_ops *ops,
9396 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9397 {
9398 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9399 {
9400 struct remote_state *rs = get_remote_state ();
9401 char *p = rs->buf;
9402 char *endp = rs->buf + get_remote_packet_size ();
9403 enum packet_result result;
9404
9405 strcpy (p, "qGetTLSAddr:");
9406 p += strlen (p);
9407 p = write_ptid (p, endp, ptid);
9408 *p++ = ',';
9409 p += hexnumstr (p, offset);
9410 *p++ = ',';
9411 p += hexnumstr (p, lm);
9412 *p++ = '\0';
9413
9414 putpkt (rs->buf);
9415 getpkt (&rs->buf, &rs->buf_size, 0);
9416 result = packet_ok (rs->buf,
9417 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9418 if (result == PACKET_OK)
9419 {
9420 ULONGEST result;
9421
9422 unpack_varlen_hex (rs->buf, &result);
9423 return result;
9424 }
9425 else if (result == PACKET_UNKNOWN)
9426 throw_error (TLS_GENERIC_ERROR,
9427 _("Remote target doesn't support qGetTLSAddr packet"));
9428 else
9429 throw_error (TLS_GENERIC_ERROR,
9430 _("Remote target failed to process qGetTLSAddr request"));
9431 }
9432 else
9433 throw_error (TLS_GENERIC_ERROR,
9434 _("TLS not supported or disabled on this target"));
9435 /* Not reached. */
9436 return 0;
9437 }
9438
9439 /* Provide thread local base, i.e. Thread Information Block address.
9440 Returns 1 if ptid is found and thread_local_base is non zero. */
9441
9442 static int
9443 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
9444 {
9445 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9446 {
9447 struct remote_state *rs = get_remote_state ();
9448 char *p = rs->buf;
9449 char *endp = rs->buf + get_remote_packet_size ();
9450 enum packet_result result;
9451
9452 strcpy (p, "qGetTIBAddr:");
9453 p += strlen (p);
9454 p = write_ptid (p, endp, ptid);
9455 *p++ = '\0';
9456
9457 putpkt (rs->buf);
9458 getpkt (&rs->buf, &rs->buf_size, 0);
9459 result = packet_ok (rs->buf,
9460 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9461 if (result == PACKET_OK)
9462 {
9463 ULONGEST result;
9464
9465 unpack_varlen_hex (rs->buf, &result);
9466 if (addr)
9467 *addr = (CORE_ADDR) result;
9468 return 1;
9469 }
9470 else if (result == PACKET_UNKNOWN)
9471 error (_("Remote target doesn't support qGetTIBAddr packet"));
9472 else
9473 error (_("Remote target failed to process qGetTIBAddr request"));
9474 }
9475 else
9476 error (_("qGetTIBAddr not supported or disabled on this target"));
9477 /* Not reached. */
9478 return 0;
9479 }
9480
9481 /* Support for inferring a target description based on the current
9482 architecture and the size of a 'g' packet. While the 'g' packet
9483 can have any size (since optional registers can be left off the
9484 end), some sizes are easily recognizable given knowledge of the
9485 approximate architecture. */
9486
9487 struct remote_g_packet_guess
9488 {
9489 int bytes;
9490 const struct target_desc *tdesc;
9491 };
9492 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9493 DEF_VEC_O(remote_g_packet_guess_s);
9494
9495 struct remote_g_packet_data
9496 {
9497 VEC(remote_g_packet_guess_s) *guesses;
9498 };
9499
9500 static struct gdbarch_data *remote_g_packet_data_handle;
9501
9502 static void *
9503 remote_g_packet_data_init (struct obstack *obstack)
9504 {
9505 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9506 }
9507
9508 void
9509 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9510 const struct target_desc *tdesc)
9511 {
9512 struct remote_g_packet_data *data
9513 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9514 struct remote_g_packet_guess new_guess, *guess;
9515 int ix;
9516
9517 gdb_assert (tdesc != NULL);
9518
9519 for (ix = 0;
9520 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9521 ix++)
9522 if (guess->bytes == bytes)
9523 internal_error (__FILE__, __LINE__,
9524 _("Duplicate g packet description added for size %d"),
9525 bytes);
9526
9527 new_guess.bytes = bytes;
9528 new_guess.tdesc = tdesc;
9529 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9530 }
9531
9532 /* Return 1 if remote_read_description would do anything on this target
9533 and architecture, 0 otherwise. */
9534
9535 static int
9536 remote_read_description_p (struct target_ops *target)
9537 {
9538 struct remote_g_packet_data *data
9539 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9540
9541 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9542 return 1;
9543
9544 return 0;
9545 }
9546
9547 static const struct target_desc *
9548 remote_read_description (struct target_ops *target)
9549 {
9550 struct remote_g_packet_data *data
9551 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9552
9553 /* Do not try this during initial connection, when we do not know
9554 whether there is a running but stopped thread. */
9555 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9556 return NULL;
9557
9558 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9559 {
9560 struct remote_g_packet_guess *guess;
9561 int ix;
9562 int bytes = send_g_packet ();
9563
9564 for (ix = 0;
9565 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9566 ix++)
9567 if (guess->bytes == bytes)
9568 return guess->tdesc;
9569
9570 /* We discard the g packet. A minor optimization would be to
9571 hold on to it, and fill the register cache once we have selected
9572 an architecture, but it's too tricky to do safely. */
9573 }
9574
9575 return NULL;
9576 }
9577
9578 /* Remote file transfer support. This is host-initiated I/O, not
9579 target-initiated; for target-initiated, see remote-fileio.c. */
9580
9581 /* If *LEFT is at least the length of STRING, copy STRING to
9582 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9583 decrease *LEFT. Otherwise raise an error. */
9584
9585 static void
9586 remote_buffer_add_string (char **buffer, int *left, char *string)
9587 {
9588 int len = strlen (string);
9589
9590 if (len > *left)
9591 error (_("Packet too long for target."));
9592
9593 memcpy (*buffer, string, len);
9594 *buffer += len;
9595 *left -= len;
9596
9597 /* NUL-terminate the buffer as a convenience, if there is
9598 room. */
9599 if (*left)
9600 **buffer = '\0';
9601 }
9602
9603 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9604 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9605 decrease *LEFT. Otherwise raise an error. */
9606
9607 static void
9608 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9609 int len)
9610 {
9611 if (2 * len > *left)
9612 error (_("Packet too long for target."));
9613
9614 bin2hex (bytes, *buffer, len);
9615 *buffer += 2 * len;
9616 *left -= 2 * len;
9617
9618 /* NUL-terminate the buffer as a convenience, if there is
9619 room. */
9620 if (*left)
9621 **buffer = '\0';
9622 }
9623
9624 /* If *LEFT is large enough, convert VALUE to hex and add it to
9625 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9626 decrease *LEFT. Otherwise raise an error. */
9627
9628 static void
9629 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9630 {
9631 int len = hexnumlen (value);
9632
9633 if (len > *left)
9634 error (_("Packet too long for target."));
9635
9636 hexnumstr (*buffer, value);
9637 *buffer += len;
9638 *left -= len;
9639
9640 /* NUL-terminate the buffer as a convenience, if there is
9641 room. */
9642 if (*left)
9643 **buffer = '\0';
9644 }
9645
9646 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9647 value, *REMOTE_ERRNO to the remote error number or zero if none
9648 was included, and *ATTACHMENT to point to the start of the annex
9649 if any. The length of the packet isn't needed here; there may
9650 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9651
9652 Return 0 if the packet could be parsed, -1 if it could not. If
9653 -1 is returned, the other variables may not be initialized. */
9654
9655 static int
9656 remote_hostio_parse_result (char *buffer, int *retcode,
9657 int *remote_errno, char **attachment)
9658 {
9659 char *p, *p2;
9660
9661 *remote_errno = 0;
9662 *attachment = NULL;
9663
9664 if (buffer[0] != 'F')
9665 return -1;
9666
9667 errno = 0;
9668 *retcode = strtol (&buffer[1], &p, 16);
9669 if (errno != 0 || p == &buffer[1])
9670 return -1;
9671
9672 /* Check for ",errno". */
9673 if (*p == ',')
9674 {
9675 errno = 0;
9676 *remote_errno = strtol (p + 1, &p2, 16);
9677 if (errno != 0 || p + 1 == p2)
9678 return -1;
9679 p = p2;
9680 }
9681
9682 /* Check for ";attachment". If there is no attachment, the
9683 packet should end here. */
9684 if (*p == ';')
9685 {
9686 *attachment = p + 1;
9687 return 0;
9688 }
9689 else if (*p == '\0')
9690 return 0;
9691 else
9692 return -1;
9693 }
9694
9695 /* Send a prepared I/O packet to the target and read its response.
9696 The prepared packet is in the global RS->BUF before this function
9697 is called, and the answer is there when we return.
9698
9699 COMMAND_BYTES is the length of the request to send, which may include
9700 binary data. WHICH_PACKET is the packet configuration to check
9701 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9702 is set to the error number and -1 is returned. Otherwise the value
9703 returned by the function is returned.
9704
9705 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9706 attachment is expected; an error will be reported if there's a
9707 mismatch. If one is found, *ATTACHMENT will be set to point into
9708 the packet buffer and *ATTACHMENT_LEN will be set to the
9709 attachment's length. */
9710
9711 static int
9712 remote_hostio_send_command (int command_bytes, int which_packet,
9713 int *remote_errno, char **attachment,
9714 int *attachment_len)
9715 {
9716 struct remote_state *rs = get_remote_state ();
9717 int ret, bytes_read;
9718 char *attachment_tmp;
9719
9720 if (!rs->remote_desc
9721 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9722 {
9723 *remote_errno = FILEIO_ENOSYS;
9724 return -1;
9725 }
9726
9727 putpkt_binary (rs->buf, command_bytes);
9728 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9729
9730 /* If it timed out, something is wrong. Don't try to parse the
9731 buffer. */
9732 if (bytes_read < 0)
9733 {
9734 *remote_errno = FILEIO_EINVAL;
9735 return -1;
9736 }
9737
9738 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9739 {
9740 case PACKET_ERROR:
9741 *remote_errno = FILEIO_EINVAL;
9742 return -1;
9743 case PACKET_UNKNOWN:
9744 *remote_errno = FILEIO_ENOSYS;
9745 return -1;
9746 case PACKET_OK:
9747 break;
9748 }
9749
9750 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9751 &attachment_tmp))
9752 {
9753 *remote_errno = FILEIO_EINVAL;
9754 return -1;
9755 }
9756
9757 /* Make sure we saw an attachment if and only if we expected one. */
9758 if ((attachment_tmp == NULL && attachment != NULL)
9759 || (attachment_tmp != NULL && attachment == NULL))
9760 {
9761 *remote_errno = FILEIO_EINVAL;
9762 return -1;
9763 }
9764
9765 /* If an attachment was found, it must point into the packet buffer;
9766 work out how many bytes there were. */
9767 if (attachment_tmp != NULL)
9768 {
9769 *attachment = attachment_tmp;
9770 *attachment_len = bytes_read - (*attachment - rs->buf);
9771 }
9772
9773 return ret;
9774 }
9775
9776 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9777 remote file descriptor, or -1 if an error occurs (and set
9778 *REMOTE_ERRNO). */
9779
9780 static int
9781 remote_hostio_open (const char *filename, int flags, int mode,
9782 int *remote_errno)
9783 {
9784 struct remote_state *rs = get_remote_state ();
9785 char *p = rs->buf;
9786 int left = get_remote_packet_size () - 1;
9787
9788 remote_buffer_add_string (&p, &left, "vFile:open:");
9789
9790 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9791 strlen (filename));
9792 remote_buffer_add_string (&p, &left, ",");
9793
9794 remote_buffer_add_int (&p, &left, flags);
9795 remote_buffer_add_string (&p, &left, ",");
9796
9797 remote_buffer_add_int (&p, &left, mode);
9798
9799 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9800 remote_errno, NULL, NULL);
9801 }
9802
9803 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9804 Return the number of bytes written, or -1 if an error occurs (and
9805 set *REMOTE_ERRNO). */
9806
9807 static int
9808 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9809 ULONGEST offset, int *remote_errno)
9810 {
9811 struct remote_state *rs = get_remote_state ();
9812 char *p = rs->buf;
9813 int left = get_remote_packet_size ();
9814 int out_len;
9815
9816 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9817
9818 remote_buffer_add_int (&p, &left, fd);
9819 remote_buffer_add_string (&p, &left, ",");
9820
9821 remote_buffer_add_int (&p, &left, offset);
9822 remote_buffer_add_string (&p, &left, ",");
9823
9824 p += remote_escape_output (write_buf, len, (gdb_byte *) p, &out_len,
9825 get_remote_packet_size () - (p - rs->buf));
9826
9827 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9828 remote_errno, NULL, NULL);
9829 }
9830
9831 /* Read up to LEN bytes FD on the remote target into READ_BUF
9832 Return the number of bytes read, or -1 if an error occurs (and
9833 set *REMOTE_ERRNO). */
9834
9835 static int
9836 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9837 ULONGEST offset, int *remote_errno)
9838 {
9839 struct remote_state *rs = get_remote_state ();
9840 char *p = rs->buf;
9841 char *attachment;
9842 int left = get_remote_packet_size ();
9843 int ret, attachment_len;
9844 int read_len;
9845
9846 remote_buffer_add_string (&p, &left, "vFile:pread:");
9847
9848 remote_buffer_add_int (&p, &left, fd);
9849 remote_buffer_add_string (&p, &left, ",");
9850
9851 remote_buffer_add_int (&p, &left, len);
9852 remote_buffer_add_string (&p, &left, ",");
9853
9854 remote_buffer_add_int (&p, &left, offset);
9855
9856 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9857 remote_errno, &attachment,
9858 &attachment_len);
9859
9860 if (ret < 0)
9861 return ret;
9862
9863 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9864 read_buf, len);
9865 if (read_len != ret)
9866 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9867
9868 return ret;
9869 }
9870
9871 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9872 (and set *REMOTE_ERRNO). */
9873
9874 static int
9875 remote_hostio_close (int fd, int *remote_errno)
9876 {
9877 struct remote_state *rs = get_remote_state ();
9878 char *p = rs->buf;
9879 int left = get_remote_packet_size () - 1;
9880
9881 remote_buffer_add_string (&p, &left, "vFile:close:");
9882
9883 remote_buffer_add_int (&p, &left, fd);
9884
9885 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9886 remote_errno, NULL, NULL);
9887 }
9888
9889 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9890 occurs (and set *REMOTE_ERRNO). */
9891
9892 static int
9893 remote_hostio_unlink (const char *filename, int *remote_errno)
9894 {
9895 struct remote_state *rs = get_remote_state ();
9896 char *p = rs->buf;
9897 int left = get_remote_packet_size () - 1;
9898
9899 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9900
9901 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9902 strlen (filename));
9903
9904 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9905 remote_errno, NULL, NULL);
9906 }
9907
9908 /* Read value of symbolic link FILENAME on the remote target. Return
9909 a null-terminated string allocated via xmalloc, or NULL if an error
9910 occurs (and set *REMOTE_ERRNO). */
9911
9912 static char *
9913 remote_hostio_readlink (const char *filename, int *remote_errno)
9914 {
9915 struct remote_state *rs = get_remote_state ();
9916 char *p = rs->buf;
9917 char *attachment;
9918 int left = get_remote_packet_size ();
9919 int len, attachment_len;
9920 int read_len;
9921 char *ret;
9922
9923 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9924
9925 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9926 strlen (filename));
9927
9928 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9929 remote_errno, &attachment,
9930 &attachment_len);
9931
9932 if (len < 0)
9933 return NULL;
9934
9935 ret = xmalloc (len + 1);
9936
9937 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9938 (gdb_byte *) ret, len);
9939 if (read_len != len)
9940 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9941
9942 ret[len] = '\0';
9943 return ret;
9944 }
9945
9946 static int
9947 remote_fileio_errno_to_host (int errnum)
9948 {
9949 switch (errnum)
9950 {
9951 case FILEIO_EPERM:
9952 return EPERM;
9953 case FILEIO_ENOENT:
9954 return ENOENT;
9955 case FILEIO_EINTR:
9956 return EINTR;
9957 case FILEIO_EIO:
9958 return EIO;
9959 case FILEIO_EBADF:
9960 return EBADF;
9961 case FILEIO_EACCES:
9962 return EACCES;
9963 case FILEIO_EFAULT:
9964 return EFAULT;
9965 case FILEIO_EBUSY:
9966 return EBUSY;
9967 case FILEIO_EEXIST:
9968 return EEXIST;
9969 case FILEIO_ENODEV:
9970 return ENODEV;
9971 case FILEIO_ENOTDIR:
9972 return ENOTDIR;
9973 case FILEIO_EISDIR:
9974 return EISDIR;
9975 case FILEIO_EINVAL:
9976 return EINVAL;
9977 case FILEIO_ENFILE:
9978 return ENFILE;
9979 case FILEIO_EMFILE:
9980 return EMFILE;
9981 case FILEIO_EFBIG:
9982 return EFBIG;
9983 case FILEIO_ENOSPC:
9984 return ENOSPC;
9985 case FILEIO_ESPIPE:
9986 return ESPIPE;
9987 case FILEIO_EROFS:
9988 return EROFS;
9989 case FILEIO_ENOSYS:
9990 return ENOSYS;
9991 case FILEIO_ENAMETOOLONG:
9992 return ENAMETOOLONG;
9993 }
9994 return -1;
9995 }
9996
9997 static char *
9998 remote_hostio_error (int errnum)
9999 {
10000 int host_error = remote_fileio_errno_to_host (errnum);
10001
10002 if (host_error == -1)
10003 error (_("Unknown remote I/O error %d"), errnum);
10004 else
10005 error (_("Remote I/O error: %s"), safe_strerror (host_error));
10006 }
10007
10008 static void
10009 remote_hostio_close_cleanup (void *opaque)
10010 {
10011 int fd = *(int *) opaque;
10012 int remote_errno;
10013
10014 remote_hostio_close (fd, &remote_errno);
10015 }
10016
10017
10018 static void *
10019 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
10020 {
10021 const char *filename = bfd_get_filename (abfd);
10022 int fd, remote_errno;
10023 int *stream;
10024
10025 gdb_assert (remote_filename_p (filename));
10026
10027 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
10028 if (fd == -1)
10029 {
10030 errno = remote_fileio_errno_to_host (remote_errno);
10031 bfd_set_error (bfd_error_system_call);
10032 return NULL;
10033 }
10034
10035 stream = xmalloc (sizeof (int));
10036 *stream = fd;
10037 return stream;
10038 }
10039
10040 static int
10041 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
10042 {
10043 int fd = *(int *)stream;
10044 int remote_errno;
10045
10046 xfree (stream);
10047
10048 /* Ignore errors on close; these may happen if the remote
10049 connection was already torn down. */
10050 remote_hostio_close (fd, &remote_errno);
10051
10052 /* Zero means success. */
10053 return 0;
10054 }
10055
10056 static file_ptr
10057 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
10058 file_ptr nbytes, file_ptr offset)
10059 {
10060 int fd = *(int *)stream;
10061 int remote_errno;
10062 file_ptr pos, bytes;
10063
10064 pos = 0;
10065 while (nbytes > pos)
10066 {
10067 bytes = remote_hostio_pread (fd, (gdb_byte *) buf + pos, nbytes - pos,
10068 offset + pos, &remote_errno);
10069 if (bytes == 0)
10070 /* Success, but no bytes, means end-of-file. */
10071 break;
10072 if (bytes == -1)
10073 {
10074 errno = remote_fileio_errno_to_host (remote_errno);
10075 bfd_set_error (bfd_error_system_call);
10076 return -1;
10077 }
10078
10079 pos += bytes;
10080 }
10081
10082 return pos;
10083 }
10084
10085 static int
10086 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
10087 {
10088 /* FIXME: We should probably implement remote_hostio_stat. */
10089 sb->st_size = INT_MAX;
10090 return 0;
10091 }
10092
10093 int
10094 remote_filename_p (const char *filename)
10095 {
10096 return strncmp (filename, "remote:", 7) == 0;
10097 }
10098
10099 bfd *
10100 remote_bfd_open (const char *remote_file, const char *target)
10101 {
10102 bfd *abfd = gdb_bfd_openr_iovec (remote_file, target,
10103 remote_bfd_iovec_open, NULL,
10104 remote_bfd_iovec_pread,
10105 remote_bfd_iovec_close,
10106 remote_bfd_iovec_stat);
10107
10108 return abfd;
10109 }
10110
10111 void
10112 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
10113 {
10114 struct cleanup *back_to, *close_cleanup;
10115 int retcode, fd, remote_errno, bytes, io_size;
10116 FILE *file;
10117 gdb_byte *buffer;
10118 int bytes_in_buffer;
10119 int saw_eof;
10120 ULONGEST offset;
10121 struct remote_state *rs = get_remote_state ();
10122
10123 if (!rs->remote_desc)
10124 error (_("command can only be used with remote target"));
10125
10126 file = gdb_fopen_cloexec (local_file, "rb");
10127 if (file == NULL)
10128 perror_with_name (local_file);
10129 back_to = make_cleanup_fclose (file);
10130
10131 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
10132 | FILEIO_O_TRUNC),
10133 0700, &remote_errno);
10134 if (fd == -1)
10135 remote_hostio_error (remote_errno);
10136
10137 /* Send up to this many bytes at once. They won't all fit in the
10138 remote packet limit, so we'll transfer slightly fewer. */
10139 io_size = get_remote_packet_size ();
10140 buffer = xmalloc (io_size);
10141 make_cleanup (xfree, buffer);
10142
10143 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10144
10145 bytes_in_buffer = 0;
10146 saw_eof = 0;
10147 offset = 0;
10148 while (bytes_in_buffer || !saw_eof)
10149 {
10150 if (!saw_eof)
10151 {
10152 bytes = fread (buffer + bytes_in_buffer, 1,
10153 io_size - bytes_in_buffer,
10154 file);
10155 if (bytes == 0)
10156 {
10157 if (ferror (file))
10158 error (_("Error reading %s."), local_file);
10159 else
10160 {
10161 /* EOF. Unless there is something still in the
10162 buffer from the last iteration, we are done. */
10163 saw_eof = 1;
10164 if (bytes_in_buffer == 0)
10165 break;
10166 }
10167 }
10168 }
10169 else
10170 bytes = 0;
10171
10172 bytes += bytes_in_buffer;
10173 bytes_in_buffer = 0;
10174
10175 retcode = remote_hostio_pwrite (fd, buffer, bytes,
10176 offset, &remote_errno);
10177
10178 if (retcode < 0)
10179 remote_hostio_error (remote_errno);
10180 else if (retcode == 0)
10181 error (_("Remote write of %d bytes returned 0!"), bytes);
10182 else if (retcode < bytes)
10183 {
10184 /* Short write. Save the rest of the read data for the next
10185 write. */
10186 bytes_in_buffer = bytes - retcode;
10187 memmove (buffer, buffer + retcode, bytes_in_buffer);
10188 }
10189
10190 offset += retcode;
10191 }
10192
10193 discard_cleanups (close_cleanup);
10194 if (remote_hostio_close (fd, &remote_errno))
10195 remote_hostio_error (remote_errno);
10196
10197 if (from_tty)
10198 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
10199 do_cleanups (back_to);
10200 }
10201
10202 void
10203 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
10204 {
10205 struct cleanup *back_to, *close_cleanup;
10206 int fd, remote_errno, bytes, io_size;
10207 FILE *file;
10208 gdb_byte *buffer;
10209 ULONGEST offset;
10210 struct remote_state *rs = get_remote_state ();
10211
10212 if (!rs->remote_desc)
10213 error (_("command can only be used with remote target"));
10214
10215 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
10216 if (fd == -1)
10217 remote_hostio_error (remote_errno);
10218
10219 file = gdb_fopen_cloexec (local_file, "wb");
10220 if (file == NULL)
10221 perror_with_name (local_file);
10222 back_to = make_cleanup_fclose (file);
10223
10224 /* Send up to this many bytes at once. They won't all fit in the
10225 remote packet limit, so we'll transfer slightly fewer. */
10226 io_size = get_remote_packet_size ();
10227 buffer = xmalloc (io_size);
10228 make_cleanup (xfree, buffer);
10229
10230 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10231
10232 offset = 0;
10233 while (1)
10234 {
10235 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
10236 if (bytes == 0)
10237 /* Success, but no bytes, means end-of-file. */
10238 break;
10239 if (bytes == -1)
10240 remote_hostio_error (remote_errno);
10241
10242 offset += bytes;
10243
10244 bytes = fwrite (buffer, 1, bytes, file);
10245 if (bytes == 0)
10246 perror_with_name (local_file);
10247 }
10248
10249 discard_cleanups (close_cleanup);
10250 if (remote_hostio_close (fd, &remote_errno))
10251 remote_hostio_error (remote_errno);
10252
10253 if (from_tty)
10254 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
10255 do_cleanups (back_to);
10256 }
10257
10258 void
10259 remote_file_delete (const char *remote_file, int from_tty)
10260 {
10261 int retcode, remote_errno;
10262 struct remote_state *rs = get_remote_state ();
10263
10264 if (!rs->remote_desc)
10265 error (_("command can only be used with remote target"));
10266
10267 retcode = remote_hostio_unlink (remote_file, &remote_errno);
10268 if (retcode == -1)
10269 remote_hostio_error (remote_errno);
10270
10271 if (from_tty)
10272 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
10273 }
10274
10275 static void
10276 remote_put_command (char *args, int from_tty)
10277 {
10278 struct cleanup *back_to;
10279 char **argv;
10280
10281 if (args == NULL)
10282 error_no_arg (_("file to put"));
10283
10284 argv = gdb_buildargv (args);
10285 back_to = make_cleanup_freeargv (argv);
10286 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10287 error (_("Invalid parameters to remote put"));
10288
10289 remote_file_put (argv[0], argv[1], from_tty);
10290
10291 do_cleanups (back_to);
10292 }
10293
10294 static void
10295 remote_get_command (char *args, int from_tty)
10296 {
10297 struct cleanup *back_to;
10298 char **argv;
10299
10300 if (args == NULL)
10301 error_no_arg (_("file to get"));
10302
10303 argv = gdb_buildargv (args);
10304 back_to = make_cleanup_freeargv (argv);
10305 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10306 error (_("Invalid parameters to remote get"));
10307
10308 remote_file_get (argv[0], argv[1], from_tty);
10309
10310 do_cleanups (back_to);
10311 }
10312
10313 static void
10314 remote_delete_command (char *args, int from_tty)
10315 {
10316 struct cleanup *back_to;
10317 char **argv;
10318
10319 if (args == NULL)
10320 error_no_arg (_("file to delete"));
10321
10322 argv = gdb_buildargv (args);
10323 back_to = make_cleanup_freeargv (argv);
10324 if (argv[0] == NULL || argv[1] != NULL)
10325 error (_("Invalid parameters to remote delete"));
10326
10327 remote_file_delete (argv[0], from_tty);
10328
10329 do_cleanups (back_to);
10330 }
10331
10332 static void
10333 remote_command (char *args, int from_tty)
10334 {
10335 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
10336 }
10337
10338 static int
10339 remote_can_execute_reverse (void)
10340 {
10341 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
10342 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
10343 return 1;
10344 else
10345 return 0;
10346 }
10347
10348 static int
10349 remote_supports_non_stop (void)
10350 {
10351 return 1;
10352 }
10353
10354 static int
10355 remote_supports_disable_randomization (void)
10356 {
10357 /* Only supported in extended mode. */
10358 return 0;
10359 }
10360
10361 static int
10362 remote_supports_multi_process (void)
10363 {
10364 struct remote_state *rs = get_remote_state ();
10365
10366 /* Only extended-remote handles being attached to multiple
10367 processes, even though plain remote can use the multi-process
10368 thread id extensions, so that GDB knows the target process's
10369 PID. */
10370 return rs->extended && remote_multi_process_p (rs);
10371 }
10372
10373 static int
10374 remote_supports_cond_tracepoints (void)
10375 {
10376 struct remote_state *rs = get_remote_state ();
10377
10378 return rs->cond_tracepoints;
10379 }
10380
10381 static int
10382 remote_supports_cond_breakpoints (void)
10383 {
10384 struct remote_state *rs = get_remote_state ();
10385
10386 return rs->cond_breakpoints;
10387 }
10388
10389 static int
10390 remote_supports_fast_tracepoints (void)
10391 {
10392 struct remote_state *rs = get_remote_state ();
10393
10394 return rs->fast_tracepoints;
10395 }
10396
10397 static int
10398 remote_supports_static_tracepoints (void)
10399 {
10400 struct remote_state *rs = get_remote_state ();
10401
10402 return rs->static_tracepoints;
10403 }
10404
10405 static int
10406 remote_supports_install_in_trace (void)
10407 {
10408 struct remote_state *rs = get_remote_state ();
10409
10410 return rs->install_in_trace;
10411 }
10412
10413 static int
10414 remote_supports_enable_disable_tracepoint (void)
10415 {
10416 struct remote_state *rs = get_remote_state ();
10417
10418 return rs->enable_disable_tracepoints;
10419 }
10420
10421 static int
10422 remote_supports_string_tracing (void)
10423 {
10424 struct remote_state *rs = get_remote_state ();
10425
10426 return rs->string_tracing;
10427 }
10428
10429 static int
10430 remote_can_run_breakpoint_commands (void)
10431 {
10432 struct remote_state *rs = get_remote_state ();
10433
10434 return rs->breakpoint_commands;
10435 }
10436
10437 static void
10438 remote_trace_init (void)
10439 {
10440 putpkt ("QTinit");
10441 remote_get_noisy_reply (&target_buf, &target_buf_size);
10442 if (strcmp (target_buf, "OK") != 0)
10443 error (_("Target does not support this command."));
10444 }
10445
10446 static void free_actions_list (char **actions_list);
10447 static void free_actions_list_cleanup_wrapper (void *);
10448 static void
10449 free_actions_list_cleanup_wrapper (void *al)
10450 {
10451 free_actions_list (al);
10452 }
10453
10454 static void
10455 free_actions_list (char **actions_list)
10456 {
10457 int ndx;
10458
10459 if (actions_list == 0)
10460 return;
10461
10462 for (ndx = 0; actions_list[ndx]; ndx++)
10463 xfree (actions_list[ndx]);
10464
10465 xfree (actions_list);
10466 }
10467
10468 /* Recursive routine to walk through command list including loops, and
10469 download packets for each command. */
10470
10471 static void
10472 remote_download_command_source (int num, ULONGEST addr,
10473 struct command_line *cmds)
10474 {
10475 struct remote_state *rs = get_remote_state ();
10476 struct command_line *cmd;
10477
10478 for (cmd = cmds; cmd; cmd = cmd->next)
10479 {
10480 QUIT; /* Allow user to bail out with ^C. */
10481 strcpy (rs->buf, "QTDPsrc:");
10482 encode_source_string (num, addr, "cmd", cmd->line,
10483 rs->buf + strlen (rs->buf),
10484 rs->buf_size - strlen (rs->buf));
10485 putpkt (rs->buf);
10486 remote_get_noisy_reply (&target_buf, &target_buf_size);
10487 if (strcmp (target_buf, "OK"))
10488 warning (_("Target does not support source download."));
10489
10490 if (cmd->control_type == while_control
10491 || cmd->control_type == while_stepping_control)
10492 {
10493 remote_download_command_source (num, addr, *cmd->body_list);
10494
10495 QUIT; /* Allow user to bail out with ^C. */
10496 strcpy (rs->buf, "QTDPsrc:");
10497 encode_source_string (num, addr, "cmd", "end",
10498 rs->buf + strlen (rs->buf),
10499 rs->buf_size - strlen (rs->buf));
10500 putpkt (rs->buf);
10501 remote_get_noisy_reply (&target_buf, &target_buf_size);
10502 if (strcmp (target_buf, "OK"))
10503 warning (_("Target does not support source download."));
10504 }
10505 }
10506 }
10507
10508 static void
10509 remote_download_tracepoint (struct bp_location *loc)
10510 {
10511 #define BUF_SIZE 2048
10512
10513 CORE_ADDR tpaddr;
10514 char addrbuf[40];
10515 char buf[BUF_SIZE];
10516 char **tdp_actions;
10517 char **stepping_actions;
10518 int ndx;
10519 struct cleanup *old_chain = NULL;
10520 struct agent_expr *aexpr;
10521 struct cleanup *aexpr_chain = NULL;
10522 char *pkt;
10523 struct breakpoint *b = loc->owner;
10524 struct tracepoint *t = (struct tracepoint *) b;
10525
10526 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
10527 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10528 tdp_actions);
10529 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10530 stepping_actions);
10531
10532 tpaddr = loc->address;
10533 sprintf_vma (addrbuf, tpaddr);
10534 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10535 addrbuf, /* address */
10536 (b->enable_state == bp_enabled ? 'E' : 'D'),
10537 t->step_count, t->pass_count);
10538 /* Fast tracepoints are mostly handled by the target, but we can
10539 tell the target how big of an instruction block should be moved
10540 around. */
10541 if (b->type == bp_fast_tracepoint)
10542 {
10543 /* Only test for support at download time; we may not know
10544 target capabilities at definition time. */
10545 if (remote_supports_fast_tracepoints ())
10546 {
10547 int isize;
10548
10549 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (),
10550 tpaddr, &isize, NULL))
10551 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10552 isize);
10553 else
10554 /* If it passed validation at definition but fails now,
10555 something is very wrong. */
10556 internal_error (__FILE__, __LINE__,
10557 _("Fast tracepoint not "
10558 "valid during download"));
10559 }
10560 else
10561 /* Fast tracepoints are functionally identical to regular
10562 tracepoints, so don't take lack of support as a reason to
10563 give up on the trace run. */
10564 warning (_("Target does not support fast tracepoints, "
10565 "downloading %d as regular tracepoint"), b->number);
10566 }
10567 else if (b->type == bp_static_tracepoint)
10568 {
10569 /* Only test for support at download time; we may not know
10570 target capabilities at definition time. */
10571 if (remote_supports_static_tracepoints ())
10572 {
10573 struct static_tracepoint_marker marker;
10574
10575 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10576 strcat (buf, ":S");
10577 else
10578 error (_("Static tracepoint not valid during download"));
10579 }
10580 else
10581 /* Fast tracepoints are functionally identical to regular
10582 tracepoints, so don't take lack of support as a reason
10583 to give up on the trace run. */
10584 error (_("Target does not support static tracepoints"));
10585 }
10586 /* If the tracepoint has a conditional, make it into an agent
10587 expression and append to the definition. */
10588 if (loc->cond)
10589 {
10590 /* Only test support at download time, we may not know target
10591 capabilities at definition time. */
10592 if (remote_supports_cond_tracepoints ())
10593 {
10594 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10595 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10596 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10597 aexpr->len);
10598 pkt = buf + strlen (buf);
10599 for (ndx = 0; ndx < aexpr->len; ++ndx)
10600 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10601 *pkt = '\0';
10602 do_cleanups (aexpr_chain);
10603 }
10604 else
10605 warning (_("Target does not support conditional tracepoints, "
10606 "ignoring tp %d cond"), b->number);
10607 }
10608
10609 if (b->commands || *default_collect)
10610 strcat (buf, "-");
10611 putpkt (buf);
10612 remote_get_noisy_reply (&target_buf, &target_buf_size);
10613 if (strcmp (target_buf, "OK"))
10614 error (_("Target does not support tracepoints."));
10615
10616 /* do_single_steps (t); */
10617 if (tdp_actions)
10618 {
10619 for (ndx = 0; tdp_actions[ndx]; ndx++)
10620 {
10621 QUIT; /* Allow user to bail out with ^C. */
10622 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10623 b->number, addrbuf, /* address */
10624 tdp_actions[ndx],
10625 ((tdp_actions[ndx + 1] || stepping_actions)
10626 ? '-' : 0));
10627 putpkt (buf);
10628 remote_get_noisy_reply (&target_buf,
10629 &target_buf_size);
10630 if (strcmp (target_buf, "OK"))
10631 error (_("Error on target while setting tracepoints."));
10632 }
10633 }
10634 if (stepping_actions)
10635 {
10636 for (ndx = 0; stepping_actions[ndx]; ndx++)
10637 {
10638 QUIT; /* Allow user to bail out with ^C. */
10639 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10640 b->number, addrbuf, /* address */
10641 ((ndx == 0) ? "S" : ""),
10642 stepping_actions[ndx],
10643 (stepping_actions[ndx + 1] ? "-" : ""));
10644 putpkt (buf);
10645 remote_get_noisy_reply (&target_buf,
10646 &target_buf_size);
10647 if (strcmp (target_buf, "OK"))
10648 error (_("Error on target while setting tracepoints."));
10649 }
10650 }
10651
10652 if (remote_protocol_packets[PACKET_TracepointSource].support
10653 == PACKET_ENABLE)
10654 {
10655 if (b->addr_string)
10656 {
10657 strcpy (buf, "QTDPsrc:");
10658 encode_source_string (b->number, loc->address,
10659 "at", b->addr_string, buf + strlen (buf),
10660 2048 - strlen (buf));
10661
10662 putpkt (buf);
10663 remote_get_noisy_reply (&target_buf, &target_buf_size);
10664 if (strcmp (target_buf, "OK"))
10665 warning (_("Target does not support source download."));
10666 }
10667 if (b->cond_string)
10668 {
10669 strcpy (buf, "QTDPsrc:");
10670 encode_source_string (b->number, loc->address,
10671 "cond", b->cond_string, buf + strlen (buf),
10672 2048 - strlen (buf));
10673 putpkt (buf);
10674 remote_get_noisy_reply (&target_buf, &target_buf_size);
10675 if (strcmp (target_buf, "OK"))
10676 warning (_("Target does not support source download."));
10677 }
10678 remote_download_command_source (b->number, loc->address,
10679 breakpoint_commands (b));
10680 }
10681
10682 do_cleanups (old_chain);
10683 }
10684
10685 static int
10686 remote_can_download_tracepoint (void)
10687 {
10688 struct remote_state *rs = get_remote_state ();
10689 struct trace_status *ts;
10690 int status;
10691
10692 /* Don't try to install tracepoints until we've relocated our
10693 symbols, and fetched and merged the target's tracepoint list with
10694 ours. */
10695 if (rs->starting_up)
10696 return 0;
10697
10698 ts = current_trace_status ();
10699 status = remote_get_trace_status (ts);
10700
10701 if (status == -1 || !ts->running_known || !ts->running)
10702 return 0;
10703
10704 /* If we are in a tracing experiment, but remote stub doesn't support
10705 installing tracepoint in trace, we have to return. */
10706 if (!remote_supports_install_in_trace ())
10707 return 0;
10708
10709 return 1;
10710 }
10711
10712
10713 static void
10714 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10715 {
10716 struct remote_state *rs = get_remote_state ();
10717 char *p;
10718
10719 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10720 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10721 tsv->builtin);
10722 p = rs->buf + strlen (rs->buf);
10723 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10724 error (_("Trace state variable name too long for tsv definition packet"));
10725 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10726 *p++ = '\0';
10727 putpkt (rs->buf);
10728 remote_get_noisy_reply (&target_buf, &target_buf_size);
10729 if (*target_buf == '\0')
10730 error (_("Target does not support this command."));
10731 if (strcmp (target_buf, "OK") != 0)
10732 error (_("Error on target while downloading trace state variable."));
10733 }
10734
10735 static void
10736 remote_enable_tracepoint (struct bp_location *location)
10737 {
10738 struct remote_state *rs = get_remote_state ();
10739 char addr_buf[40];
10740
10741 sprintf_vma (addr_buf, location->address);
10742 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10743 location->owner->number, addr_buf);
10744 putpkt (rs->buf);
10745 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10746 if (*rs->buf == '\0')
10747 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10748 if (strcmp (rs->buf, "OK") != 0)
10749 error (_("Error on target while enabling tracepoint."));
10750 }
10751
10752 static void
10753 remote_disable_tracepoint (struct bp_location *location)
10754 {
10755 struct remote_state *rs = get_remote_state ();
10756 char addr_buf[40];
10757
10758 sprintf_vma (addr_buf, location->address);
10759 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10760 location->owner->number, addr_buf);
10761 putpkt (rs->buf);
10762 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10763 if (*rs->buf == '\0')
10764 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10765 if (strcmp (rs->buf, "OK") != 0)
10766 error (_("Error on target while disabling tracepoint."));
10767 }
10768
10769 static void
10770 remote_trace_set_readonly_regions (void)
10771 {
10772 asection *s;
10773 bfd *abfd = NULL;
10774 bfd_size_type size;
10775 bfd_vma vma;
10776 int anysecs = 0;
10777 int offset = 0;
10778
10779 if (!exec_bfd)
10780 return; /* No information to give. */
10781
10782 strcpy (target_buf, "QTro");
10783 offset = strlen (target_buf);
10784 for (s = exec_bfd->sections; s; s = s->next)
10785 {
10786 char tmp1[40], tmp2[40];
10787 int sec_length;
10788
10789 if ((s->flags & SEC_LOAD) == 0 ||
10790 /* (s->flags & SEC_CODE) == 0 || */
10791 (s->flags & SEC_READONLY) == 0)
10792 continue;
10793
10794 anysecs = 1;
10795 vma = bfd_get_section_vma (abfd, s);
10796 size = bfd_get_section_size (s);
10797 sprintf_vma (tmp1, vma);
10798 sprintf_vma (tmp2, vma + size);
10799 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10800 if (offset + sec_length + 1 > target_buf_size)
10801 {
10802 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10803 != PACKET_ENABLE)
10804 warning (_("\
10805 Too many sections for read-only sections definition packet."));
10806 break;
10807 }
10808 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10809 tmp1, tmp2);
10810 offset += sec_length;
10811 }
10812 if (anysecs)
10813 {
10814 putpkt (target_buf);
10815 getpkt (&target_buf, &target_buf_size, 0);
10816 }
10817 }
10818
10819 static void
10820 remote_trace_start (void)
10821 {
10822 putpkt ("QTStart");
10823 remote_get_noisy_reply (&target_buf, &target_buf_size);
10824 if (*target_buf == '\0')
10825 error (_("Target does not support this command."));
10826 if (strcmp (target_buf, "OK") != 0)
10827 error (_("Bogus reply from target: %s"), target_buf);
10828 }
10829
10830 static int
10831 remote_get_trace_status (struct trace_status *ts)
10832 {
10833 /* Initialize it just to avoid a GCC false warning. */
10834 char *p = NULL;
10835 /* FIXME we need to get register block size some other way. */
10836 extern int trace_regblock_size;
10837 volatile struct gdb_exception ex;
10838 enum packet_result result;
10839
10840 if (remote_protocol_packets[PACKET_qTStatus].support == PACKET_DISABLE)
10841 return -1;
10842
10843 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10844
10845 putpkt ("qTStatus");
10846
10847 TRY_CATCH (ex, RETURN_MASK_ERROR)
10848 {
10849 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10850 }
10851 if (ex.reason < 0)
10852 {
10853 if (ex.error != TARGET_CLOSE_ERROR)
10854 {
10855 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10856 return -1;
10857 }
10858 throw_exception (ex);
10859 }
10860
10861 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
10862
10863 /* If the remote target doesn't do tracing, flag it. */
10864 if (result == PACKET_UNKNOWN)
10865 return -1;
10866
10867 /* We're working with a live target. */
10868 ts->filename = NULL;
10869
10870 if (*p++ != 'T')
10871 error (_("Bogus trace status reply from target: %s"), target_buf);
10872
10873 /* Function 'parse_trace_status' sets default value of each field of
10874 'ts' at first, so we don't have to do it here. */
10875 parse_trace_status (p, ts);
10876
10877 return ts->running;
10878 }
10879
10880 static void
10881 remote_get_tracepoint_status (struct breakpoint *bp,
10882 struct uploaded_tp *utp)
10883 {
10884 struct remote_state *rs = get_remote_state ();
10885 char *reply;
10886 struct bp_location *loc;
10887 struct tracepoint *tp = (struct tracepoint *) bp;
10888 size_t size = get_remote_packet_size ();
10889
10890 if (tp)
10891 {
10892 tp->base.hit_count = 0;
10893 tp->traceframe_usage = 0;
10894 for (loc = tp->base.loc; loc; loc = loc->next)
10895 {
10896 /* If the tracepoint was never downloaded, don't go asking for
10897 any status. */
10898 if (tp->number_on_target == 0)
10899 continue;
10900 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10901 phex_nz (loc->address, 0));
10902 putpkt (rs->buf);
10903 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10904 if (reply && *reply)
10905 {
10906 if (*reply == 'V')
10907 parse_tracepoint_status (reply + 1, bp, utp);
10908 }
10909 }
10910 }
10911 else if (utp)
10912 {
10913 utp->hit_count = 0;
10914 utp->traceframe_usage = 0;
10915 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
10916 phex_nz (utp->addr, 0));
10917 putpkt (rs->buf);
10918 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10919 if (reply && *reply)
10920 {
10921 if (*reply == 'V')
10922 parse_tracepoint_status (reply + 1, bp, utp);
10923 }
10924 }
10925 }
10926
10927 static void
10928 remote_trace_stop (void)
10929 {
10930 putpkt ("QTStop");
10931 remote_get_noisy_reply (&target_buf, &target_buf_size);
10932 if (*target_buf == '\0')
10933 error (_("Target does not support this command."));
10934 if (strcmp (target_buf, "OK") != 0)
10935 error (_("Bogus reply from target: %s"), target_buf);
10936 }
10937
10938 static int
10939 remote_trace_find (enum trace_find_type type, int num,
10940 CORE_ADDR addr1, CORE_ADDR addr2,
10941 int *tpp)
10942 {
10943 struct remote_state *rs = get_remote_state ();
10944 char *endbuf = rs->buf + get_remote_packet_size ();
10945 char *p, *reply;
10946 int target_frameno = -1, target_tracept = -1;
10947
10948 /* Lookups other than by absolute frame number depend on the current
10949 trace selected, so make sure it is correct on the remote end
10950 first. */
10951 if (type != tfind_number)
10952 set_remote_traceframe ();
10953
10954 p = rs->buf;
10955 strcpy (p, "QTFrame:");
10956 p = strchr (p, '\0');
10957 switch (type)
10958 {
10959 case tfind_number:
10960 xsnprintf (p, endbuf - p, "%x", num);
10961 break;
10962 case tfind_pc:
10963 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
10964 break;
10965 case tfind_tp:
10966 xsnprintf (p, endbuf - p, "tdp:%x", num);
10967 break;
10968 case tfind_range:
10969 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
10970 phex_nz (addr2, 0));
10971 break;
10972 case tfind_outside:
10973 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
10974 phex_nz (addr2, 0));
10975 break;
10976 default:
10977 error (_("Unknown trace find type %d"), type);
10978 }
10979
10980 putpkt (rs->buf);
10981 reply = remote_get_noisy_reply (&(rs->buf), &rs->buf_size);
10982 if (*reply == '\0')
10983 error (_("Target does not support this command."));
10984
10985 while (reply && *reply)
10986 switch (*reply)
10987 {
10988 case 'F':
10989 p = ++reply;
10990 target_frameno = (int) strtol (p, &reply, 16);
10991 if (reply == p)
10992 error (_("Unable to parse trace frame number"));
10993 /* Don't update our remote traceframe number cache on failure
10994 to select a remote traceframe. */
10995 if (target_frameno == -1)
10996 return -1;
10997 break;
10998 case 'T':
10999 p = ++reply;
11000 target_tracept = (int) strtol (p, &reply, 16);
11001 if (reply == p)
11002 error (_("Unable to parse tracepoint number"));
11003 break;
11004 case 'O': /* "OK"? */
11005 if (reply[1] == 'K' && reply[2] == '\0')
11006 reply += 2;
11007 else
11008 error (_("Bogus reply from target: %s"), reply);
11009 break;
11010 default:
11011 error (_("Bogus reply from target: %s"), reply);
11012 }
11013 if (tpp)
11014 *tpp = target_tracept;
11015
11016 rs->remote_traceframe_number = target_frameno;
11017 return target_frameno;
11018 }
11019
11020 static int
11021 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
11022 {
11023 struct remote_state *rs = get_remote_state ();
11024 char *reply;
11025 ULONGEST uval;
11026
11027 set_remote_traceframe ();
11028
11029 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
11030 putpkt (rs->buf);
11031 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11032 if (reply && *reply)
11033 {
11034 if (*reply == 'V')
11035 {
11036 unpack_varlen_hex (reply + 1, &uval);
11037 *val = (LONGEST) uval;
11038 return 1;
11039 }
11040 }
11041 return 0;
11042 }
11043
11044 static int
11045 remote_save_trace_data (const char *filename)
11046 {
11047 struct remote_state *rs = get_remote_state ();
11048 char *p, *reply;
11049
11050 p = rs->buf;
11051 strcpy (p, "QTSave:");
11052 p += strlen (p);
11053 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
11054 error (_("Remote file name too long for trace save packet"));
11055 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
11056 *p++ = '\0';
11057 putpkt (rs->buf);
11058 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11059 if (*reply == '\0')
11060 error (_("Target does not support this command."));
11061 if (strcmp (reply, "OK") != 0)
11062 error (_("Bogus reply from target: %s"), reply);
11063 return 0;
11064 }
11065
11066 /* This is basically a memory transfer, but needs to be its own packet
11067 because we don't know how the target actually organizes its trace
11068 memory, plus we want to be able to ask for as much as possible, but
11069 not be unhappy if we don't get as much as we ask for. */
11070
11071 static LONGEST
11072 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
11073 {
11074 struct remote_state *rs = get_remote_state ();
11075 char *reply;
11076 char *p;
11077 int rslt;
11078
11079 p = rs->buf;
11080 strcpy (p, "qTBuffer:");
11081 p += strlen (p);
11082 p += hexnumstr (p, offset);
11083 *p++ = ',';
11084 p += hexnumstr (p, len);
11085 *p++ = '\0';
11086
11087 putpkt (rs->buf);
11088 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11089 if (reply && *reply)
11090 {
11091 /* 'l' by itself means we're at the end of the buffer and
11092 there is nothing more to get. */
11093 if (*reply == 'l')
11094 return 0;
11095
11096 /* Convert the reply into binary. Limit the number of bytes to
11097 convert according to our passed-in buffer size, rather than
11098 what was returned in the packet; if the target is
11099 unexpectedly generous and gives us a bigger reply than we
11100 asked for, we don't want to crash. */
11101 rslt = hex2bin (target_buf, buf, len);
11102 return rslt;
11103 }
11104
11105 /* Something went wrong, flag as an error. */
11106 return -1;
11107 }
11108
11109 static void
11110 remote_set_disconnected_tracing (int val)
11111 {
11112 struct remote_state *rs = get_remote_state ();
11113
11114 if (rs->disconnected_tracing)
11115 {
11116 char *reply;
11117
11118 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
11119 putpkt (rs->buf);
11120 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11121 if (*reply == '\0')
11122 error (_("Target does not support this command."));
11123 if (strcmp (reply, "OK") != 0)
11124 error (_("Bogus reply from target: %s"), reply);
11125 }
11126 else if (val)
11127 warning (_("Target does not support disconnected tracing."));
11128 }
11129
11130 static int
11131 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
11132 {
11133 struct thread_info *info = find_thread_ptid (ptid);
11134
11135 if (info && info->private)
11136 return info->private->core;
11137 return -1;
11138 }
11139
11140 static void
11141 remote_set_circular_trace_buffer (int val)
11142 {
11143 struct remote_state *rs = get_remote_state ();
11144 char *reply;
11145
11146 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
11147 putpkt (rs->buf);
11148 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11149 if (*reply == '\0')
11150 error (_("Target does not support this command."));
11151 if (strcmp (reply, "OK") != 0)
11152 error (_("Bogus reply from target: %s"), reply);
11153 }
11154
11155 static struct traceframe_info *
11156 remote_traceframe_info (void)
11157 {
11158 char *text;
11159
11160 text = target_read_stralloc (&current_target,
11161 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
11162 if (text != NULL)
11163 {
11164 struct traceframe_info *info;
11165 struct cleanup *back_to = make_cleanup (xfree, text);
11166
11167 info = parse_traceframe_info (text);
11168 do_cleanups (back_to);
11169 return info;
11170 }
11171
11172 return NULL;
11173 }
11174
11175 /* Handle the qTMinFTPILen packet. Returns the minimum length of
11176 instruction on which a fast tracepoint may be placed. Returns -1
11177 if the packet is not supported, and 0 if the minimum instruction
11178 length is unknown. */
11179
11180 static int
11181 remote_get_min_fast_tracepoint_insn_len (void)
11182 {
11183 struct remote_state *rs = get_remote_state ();
11184 char *reply;
11185
11186 /* If we're not debugging a process yet, the IPA can't be
11187 loaded. */
11188 if (!target_has_execution)
11189 return 0;
11190
11191 /* Make sure the remote is pointing at the right process. */
11192 set_general_process ();
11193
11194 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
11195 putpkt (rs->buf);
11196 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11197 if (*reply == '\0')
11198 return -1;
11199 else
11200 {
11201 ULONGEST min_insn_len;
11202
11203 unpack_varlen_hex (reply, &min_insn_len);
11204
11205 return (int) min_insn_len;
11206 }
11207 }
11208
11209 static void
11210 remote_set_trace_buffer_size (LONGEST val)
11211 {
11212 if (remote_protocol_packets[PACKET_QTBuffer_size].support
11213 != PACKET_DISABLE)
11214 {
11215 struct remote_state *rs = get_remote_state ();
11216 char *buf = rs->buf;
11217 char *endbuf = rs->buf + get_remote_packet_size ();
11218 enum packet_result result;
11219
11220 gdb_assert (val >= 0 || val == -1);
11221 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
11222 /* Send -1 as literal "-1" to avoid host size dependency. */
11223 if (val < 0)
11224 {
11225 *buf++ = '-';
11226 buf += hexnumstr (buf, (ULONGEST) -val);
11227 }
11228 else
11229 buf += hexnumstr (buf, (ULONGEST) val);
11230
11231 putpkt (rs->buf);
11232 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
11233 result = packet_ok (rs->buf,
11234 &remote_protocol_packets[PACKET_QTBuffer_size]);
11235
11236 if (result != PACKET_OK)
11237 warning (_("Bogus reply from target: %s"), rs->buf);
11238 }
11239 }
11240
11241 static int
11242 remote_set_trace_notes (const char *user, const char *notes,
11243 const char *stop_notes)
11244 {
11245 struct remote_state *rs = get_remote_state ();
11246 char *reply;
11247 char *buf = rs->buf;
11248 char *endbuf = rs->buf + get_remote_packet_size ();
11249 int nbytes;
11250
11251 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
11252 if (user)
11253 {
11254 buf += xsnprintf (buf, endbuf - buf, "user:");
11255 nbytes = bin2hex ((gdb_byte *) user, buf, 0);
11256 buf += 2 * nbytes;
11257 *buf++ = ';';
11258 }
11259 if (notes)
11260 {
11261 buf += xsnprintf (buf, endbuf - buf, "notes:");
11262 nbytes = bin2hex ((gdb_byte *) notes, buf, 0);
11263 buf += 2 * nbytes;
11264 *buf++ = ';';
11265 }
11266 if (stop_notes)
11267 {
11268 buf += xsnprintf (buf, endbuf - buf, "tstop:");
11269 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, 0);
11270 buf += 2 * nbytes;
11271 *buf++ = ';';
11272 }
11273 /* Ensure the buffer is terminated. */
11274 *buf = '\0';
11275
11276 putpkt (rs->buf);
11277 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11278 if (*reply == '\0')
11279 return 0;
11280
11281 if (strcmp (reply, "OK") != 0)
11282 error (_("Bogus reply from target: %s"), reply);
11283
11284 return 1;
11285 }
11286
11287 static int
11288 remote_use_agent (int use)
11289 {
11290 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
11291 {
11292 struct remote_state *rs = get_remote_state ();
11293
11294 /* If the stub supports QAgent. */
11295 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
11296 putpkt (rs->buf);
11297 getpkt (&rs->buf, &rs->buf_size, 0);
11298
11299 if (strcmp (rs->buf, "OK") == 0)
11300 {
11301 use_agent = use;
11302 return 1;
11303 }
11304 }
11305
11306 return 0;
11307 }
11308
11309 static int
11310 remote_can_use_agent (void)
11311 {
11312 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
11313 }
11314
11315 struct btrace_target_info
11316 {
11317 /* The ptid of the traced thread. */
11318 ptid_t ptid;
11319 };
11320
11321 /* Check whether the target supports branch tracing. */
11322
11323 static int
11324 remote_supports_btrace (void)
11325 {
11326 if (remote_protocol_packets[PACKET_Qbtrace_off].support != PACKET_ENABLE)
11327 return 0;
11328 if (remote_protocol_packets[PACKET_Qbtrace_bts].support != PACKET_ENABLE)
11329 return 0;
11330 if (remote_protocol_packets[PACKET_qXfer_btrace].support != PACKET_ENABLE)
11331 return 0;
11332
11333 return 1;
11334 }
11335
11336 /* Enable branch tracing. */
11337
11338 static struct btrace_target_info *
11339 remote_enable_btrace (ptid_t ptid)
11340 {
11341 struct btrace_target_info *tinfo = NULL;
11342 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
11343 struct remote_state *rs = get_remote_state ();
11344 char *buf = rs->buf;
11345 char *endbuf = rs->buf + get_remote_packet_size ();
11346
11347 if (packet->support != PACKET_ENABLE)
11348 error (_("Target does not support branch tracing."));
11349
11350 set_general_thread (ptid);
11351
11352 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11353 putpkt (rs->buf);
11354 getpkt (&rs->buf, &rs->buf_size, 0);
11355
11356 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11357 {
11358 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11359 error (_("Could not enable branch tracing for %s: %s"),
11360 target_pid_to_str (ptid), rs->buf + 2);
11361 else
11362 error (_("Could not enable branch tracing for %s."),
11363 target_pid_to_str (ptid));
11364 }
11365
11366 tinfo = xzalloc (sizeof (*tinfo));
11367 tinfo->ptid = ptid;
11368
11369 return tinfo;
11370 }
11371
11372 /* Disable branch tracing. */
11373
11374 static void
11375 remote_disable_btrace (struct btrace_target_info *tinfo)
11376 {
11377 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
11378 struct remote_state *rs = get_remote_state ();
11379 char *buf = rs->buf;
11380 char *endbuf = rs->buf + get_remote_packet_size ();
11381
11382 if (packet->support != PACKET_ENABLE)
11383 error (_("Target does not support branch tracing."));
11384
11385 set_general_thread (tinfo->ptid);
11386
11387 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11388 putpkt (rs->buf);
11389 getpkt (&rs->buf, &rs->buf_size, 0);
11390
11391 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11392 {
11393 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11394 error (_("Could not disable branch tracing for %s: %s"),
11395 target_pid_to_str (tinfo->ptid), rs->buf + 2);
11396 else
11397 error (_("Could not disable branch tracing for %s."),
11398 target_pid_to_str (tinfo->ptid));
11399 }
11400
11401 xfree (tinfo);
11402 }
11403
11404 /* Teardown branch tracing. */
11405
11406 static void
11407 remote_teardown_btrace (struct btrace_target_info *tinfo)
11408 {
11409 /* We must not talk to the target during teardown. */
11410 xfree (tinfo);
11411 }
11412
11413 /* Read the branch trace. */
11414
11415 static VEC (btrace_block_s) *
11416 remote_read_btrace (struct btrace_target_info *tinfo,
11417 enum btrace_read_type type)
11418 {
11419 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
11420 struct remote_state *rs = get_remote_state ();
11421 VEC (btrace_block_s) *btrace = NULL;
11422 const char *annex;
11423 char *xml;
11424
11425 if (packet->support != PACKET_ENABLE)
11426 error (_("Target does not support branch tracing."));
11427
11428 #if !defined(HAVE_LIBEXPAT)
11429 error (_("Cannot process branch tracing result. XML parsing not supported."));
11430 #endif
11431
11432 switch (type)
11433 {
11434 case btrace_read_all:
11435 annex = "all";
11436 break;
11437 case btrace_read_new:
11438 annex = "new";
11439 break;
11440 default:
11441 internal_error (__FILE__, __LINE__,
11442 _("Bad branch tracing read type: %u."),
11443 (unsigned int) type);
11444 }
11445
11446 xml = target_read_stralloc (&current_target,
11447 TARGET_OBJECT_BTRACE, annex);
11448 if (xml != NULL)
11449 {
11450 struct cleanup *cleanup = make_cleanup (xfree, xml);
11451
11452 btrace = parse_xml_btrace (xml);
11453 do_cleanups (cleanup);
11454 }
11455
11456 return btrace;
11457 }
11458
11459 static int
11460 remote_augmented_libraries_svr4_read (void)
11461 {
11462 struct remote_state *rs = get_remote_state ();
11463
11464 return rs->augmented_libraries_svr4_read;
11465 }
11466
11467 static void
11468 init_remote_ops (void)
11469 {
11470 remote_ops.to_shortname = "remote";
11471 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
11472 remote_ops.to_doc =
11473 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11474 Specify the serial device it is connected to\n\
11475 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
11476 remote_ops.to_open = remote_open;
11477 remote_ops.to_close = remote_close;
11478 remote_ops.to_detach = remote_detach;
11479 remote_ops.to_disconnect = remote_disconnect;
11480 remote_ops.to_resume = remote_resume;
11481 remote_ops.to_wait = remote_wait;
11482 remote_ops.to_fetch_registers = remote_fetch_registers;
11483 remote_ops.to_store_registers = remote_store_registers;
11484 remote_ops.to_prepare_to_store = remote_prepare_to_store;
11485 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
11486 remote_ops.to_files_info = remote_files_info;
11487 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
11488 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
11489 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
11490 remote_ops.to_stopped_data_address = remote_stopped_data_address;
11491 remote_ops.to_watchpoint_addr_within_range =
11492 remote_watchpoint_addr_within_range;
11493 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
11494 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
11495 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
11496 remote_ops.to_region_ok_for_hw_watchpoint
11497 = remote_region_ok_for_hw_watchpoint;
11498 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
11499 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
11500 remote_ops.to_kill = remote_kill;
11501 remote_ops.to_load = generic_load;
11502 remote_ops.to_mourn_inferior = remote_mourn;
11503 remote_ops.to_pass_signals = remote_pass_signals;
11504 remote_ops.to_program_signals = remote_program_signals;
11505 remote_ops.to_thread_alive = remote_thread_alive;
11506 remote_ops.to_find_new_threads = remote_threads_info;
11507 remote_ops.to_pid_to_str = remote_pid_to_str;
11508 remote_ops.to_extra_thread_info = remote_threads_extra_info;
11509 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
11510 remote_ops.to_stop = remote_stop;
11511 remote_ops.to_xfer_partial = remote_xfer_partial;
11512 remote_ops.to_rcmd = remote_rcmd;
11513 remote_ops.to_log_command = serial_log_command;
11514 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
11515 remote_ops.to_stratum = process_stratum;
11516 remote_ops.to_has_all_memory = default_child_has_all_memory;
11517 remote_ops.to_has_memory = default_child_has_memory;
11518 remote_ops.to_has_stack = default_child_has_stack;
11519 remote_ops.to_has_registers = default_child_has_registers;
11520 remote_ops.to_has_execution = default_child_has_execution;
11521 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
11522 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
11523 remote_ops.to_magic = OPS_MAGIC;
11524 remote_ops.to_memory_map = remote_memory_map;
11525 remote_ops.to_flash_erase = remote_flash_erase;
11526 remote_ops.to_flash_done = remote_flash_done;
11527 remote_ops.to_read_description = remote_read_description;
11528 remote_ops.to_search_memory = remote_search_memory;
11529 remote_ops.to_can_async_p = remote_can_async_p;
11530 remote_ops.to_is_async_p = remote_is_async_p;
11531 remote_ops.to_async = remote_async;
11532 remote_ops.to_terminal_inferior = remote_terminal_inferior;
11533 remote_ops.to_terminal_ours = remote_terminal_ours;
11534 remote_ops.to_supports_non_stop = remote_supports_non_stop;
11535 remote_ops.to_supports_multi_process = remote_supports_multi_process;
11536 remote_ops.to_supports_disable_randomization
11537 = remote_supports_disable_randomization;
11538 remote_ops.to_fileio_open = remote_hostio_open;
11539 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
11540 remote_ops.to_fileio_pread = remote_hostio_pread;
11541 remote_ops.to_fileio_close = remote_hostio_close;
11542 remote_ops.to_fileio_unlink = remote_hostio_unlink;
11543 remote_ops.to_fileio_readlink = remote_hostio_readlink;
11544 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
11545 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
11546 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
11547 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
11548 remote_ops.to_trace_init = remote_trace_init;
11549 remote_ops.to_download_tracepoint = remote_download_tracepoint;
11550 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
11551 remote_ops.to_download_trace_state_variable
11552 = remote_download_trace_state_variable;
11553 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
11554 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
11555 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
11556 remote_ops.to_trace_start = remote_trace_start;
11557 remote_ops.to_get_trace_status = remote_get_trace_status;
11558 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
11559 remote_ops.to_trace_stop = remote_trace_stop;
11560 remote_ops.to_trace_find = remote_trace_find;
11561 remote_ops.to_get_trace_state_variable_value
11562 = remote_get_trace_state_variable_value;
11563 remote_ops.to_save_trace_data = remote_save_trace_data;
11564 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11565 remote_ops.to_upload_trace_state_variables
11566 = remote_upload_trace_state_variables;
11567 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11568 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11569 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11570 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11571 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
11572 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11573 remote_ops.to_core_of_thread = remote_core_of_thread;
11574 remote_ops.to_verify_memory = remote_verify_memory;
11575 remote_ops.to_get_tib_address = remote_get_tib_address;
11576 remote_ops.to_set_permissions = remote_set_permissions;
11577 remote_ops.to_static_tracepoint_marker_at
11578 = remote_static_tracepoint_marker_at;
11579 remote_ops.to_static_tracepoint_markers_by_strid
11580 = remote_static_tracepoint_markers_by_strid;
11581 remote_ops.to_traceframe_info = remote_traceframe_info;
11582 remote_ops.to_use_agent = remote_use_agent;
11583 remote_ops.to_can_use_agent = remote_can_use_agent;
11584 remote_ops.to_supports_btrace = remote_supports_btrace;
11585 remote_ops.to_enable_btrace = remote_enable_btrace;
11586 remote_ops.to_disable_btrace = remote_disable_btrace;
11587 remote_ops.to_teardown_btrace = remote_teardown_btrace;
11588 remote_ops.to_read_btrace = remote_read_btrace;
11589 remote_ops.to_augmented_libraries_svr4_read =
11590 remote_augmented_libraries_svr4_read;
11591 }
11592
11593 /* Set up the extended remote vector by making a copy of the standard
11594 remote vector and adding to it. */
11595
11596 static void
11597 init_extended_remote_ops (void)
11598 {
11599 extended_remote_ops = remote_ops;
11600
11601 extended_remote_ops.to_shortname = "extended-remote";
11602 extended_remote_ops.to_longname =
11603 "Extended remote serial target in gdb-specific protocol";
11604 extended_remote_ops.to_doc =
11605 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11606 Specify the serial device it is connected to (e.g. /dev/ttya).";
11607 extended_remote_ops.to_open = extended_remote_open;
11608 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11609 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11610 extended_remote_ops.to_detach = extended_remote_detach;
11611 extended_remote_ops.to_attach = extended_remote_attach;
11612 extended_remote_ops.to_kill = extended_remote_kill;
11613 extended_remote_ops.to_supports_disable_randomization
11614 = extended_remote_supports_disable_randomization;
11615 }
11616
11617 static int
11618 remote_can_async_p (void)
11619 {
11620 struct remote_state *rs = get_remote_state ();
11621
11622 if (!target_async_permitted)
11623 /* We only enable async when the user specifically asks for it. */
11624 return 0;
11625
11626 /* We're async whenever the serial device is. */
11627 return serial_can_async_p (rs->remote_desc);
11628 }
11629
11630 static int
11631 remote_is_async_p (void)
11632 {
11633 struct remote_state *rs = get_remote_state ();
11634
11635 if (!target_async_permitted)
11636 /* We only enable async when the user specifically asks for it. */
11637 return 0;
11638
11639 /* We're async whenever the serial device is. */
11640 return serial_is_async_p (rs->remote_desc);
11641 }
11642
11643 /* Pass the SERIAL event on and up to the client. One day this code
11644 will be able to delay notifying the client of an event until the
11645 point where an entire packet has been received. */
11646
11647 static serial_event_ftype remote_async_serial_handler;
11648
11649 static void
11650 remote_async_serial_handler (struct serial *scb, void *context)
11651 {
11652 struct remote_state *rs = context;
11653
11654 /* Don't propogate error information up to the client. Instead let
11655 the client find out about the error by querying the target. */
11656 rs->async_client_callback (INF_REG_EVENT, rs->async_client_context);
11657 }
11658
11659 static void
11660 remote_async_inferior_event_handler (gdb_client_data data)
11661 {
11662 inferior_event_handler (INF_REG_EVENT, NULL);
11663 }
11664
11665 static void
11666 remote_async (void (*callback) (enum inferior_event_type event_type,
11667 void *context), void *context)
11668 {
11669 struct remote_state *rs = get_remote_state ();
11670
11671 if (callback != NULL)
11672 {
11673 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
11674 rs->async_client_callback = callback;
11675 rs->async_client_context = context;
11676 }
11677 else
11678 serial_async (rs->remote_desc, NULL, NULL);
11679 }
11680
11681 static void
11682 set_remote_cmd (char *args, int from_tty)
11683 {
11684 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11685 }
11686
11687 static void
11688 show_remote_cmd (char *args, int from_tty)
11689 {
11690 /* We can't just use cmd_show_list here, because we want to skip
11691 the redundant "show remote Z-packet" and the legacy aliases. */
11692 struct cleanup *showlist_chain;
11693 struct cmd_list_element *list = remote_show_cmdlist;
11694 struct ui_out *uiout = current_uiout;
11695
11696 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11697 for (; list != NULL; list = list->next)
11698 if (strcmp (list->name, "Z-packet") == 0)
11699 continue;
11700 else if (list->type == not_set_cmd)
11701 /* Alias commands are exactly like the original, except they
11702 don't have the normal type. */
11703 continue;
11704 else
11705 {
11706 struct cleanup *option_chain
11707 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11708
11709 ui_out_field_string (uiout, "name", list->name);
11710 ui_out_text (uiout, ": ");
11711 if (list->type == show_cmd)
11712 do_show_command ((char *) NULL, from_tty, list);
11713 else
11714 cmd_func (list, NULL, from_tty);
11715 /* Close the tuple. */
11716 do_cleanups (option_chain);
11717 }
11718
11719 /* Close the tuple. */
11720 do_cleanups (showlist_chain);
11721 }
11722
11723
11724 /* Function to be called whenever a new objfile (shlib) is detected. */
11725 static void
11726 remote_new_objfile (struct objfile *objfile)
11727 {
11728 struct remote_state *rs = get_remote_state ();
11729
11730 if (rs->remote_desc != 0) /* Have a remote connection. */
11731 remote_check_symbols ();
11732 }
11733
11734 /* Pull all the tracepoints defined on the target and create local
11735 data structures representing them. We don't want to create real
11736 tracepoints yet, we don't want to mess up the user's existing
11737 collection. */
11738
11739 static int
11740 remote_upload_tracepoints (struct uploaded_tp **utpp)
11741 {
11742 struct remote_state *rs = get_remote_state ();
11743 char *p;
11744
11745 /* Ask for a first packet of tracepoint definition. */
11746 putpkt ("qTfP");
11747 getpkt (&rs->buf, &rs->buf_size, 0);
11748 p = rs->buf;
11749 while (*p && *p != 'l')
11750 {
11751 parse_tracepoint_definition (p, utpp);
11752 /* Ask for another packet of tracepoint definition. */
11753 putpkt ("qTsP");
11754 getpkt (&rs->buf, &rs->buf_size, 0);
11755 p = rs->buf;
11756 }
11757 return 0;
11758 }
11759
11760 static int
11761 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11762 {
11763 struct remote_state *rs = get_remote_state ();
11764 char *p;
11765
11766 /* Ask for a first packet of variable definition. */
11767 putpkt ("qTfV");
11768 getpkt (&rs->buf, &rs->buf_size, 0);
11769 p = rs->buf;
11770 while (*p && *p != 'l')
11771 {
11772 parse_tsv_definition (p, utsvp);
11773 /* Ask for another packet of variable definition. */
11774 putpkt ("qTsV");
11775 getpkt (&rs->buf, &rs->buf_size, 0);
11776 p = rs->buf;
11777 }
11778 return 0;
11779 }
11780
11781 /* The "set/show range-stepping" show hook. */
11782
11783 static void
11784 show_range_stepping (struct ui_file *file, int from_tty,
11785 struct cmd_list_element *c,
11786 const char *value)
11787 {
11788 fprintf_filtered (file,
11789 _("Debugger's willingness to use range stepping "
11790 "is %s.\n"), value);
11791 }
11792
11793 /* The "set/show range-stepping" set hook. */
11794
11795 static void
11796 set_range_stepping (char *ignore_args, int from_tty,
11797 struct cmd_list_element *c)
11798 {
11799 struct remote_state *rs = get_remote_state ();
11800
11801 /* Whene enabling, check whether range stepping is actually
11802 supported by the target, and warn if not. */
11803 if (use_range_stepping)
11804 {
11805 if (rs->remote_desc != NULL)
11806 {
11807 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
11808 remote_vcont_probe (rs);
11809
11810 if (remote_protocol_packets[PACKET_vCont].support == PACKET_ENABLE
11811 && rs->supports_vCont.r)
11812 return;
11813 }
11814
11815 warning (_("Range stepping is not supported by the current target"));
11816 }
11817 }
11818
11819 void
11820 _initialize_remote (void)
11821 {
11822 struct remote_state *rs;
11823 struct cmd_list_element *cmd;
11824 const char *cmd_name;
11825
11826 /* architecture specific data */
11827 remote_gdbarch_data_handle =
11828 gdbarch_data_register_post_init (init_remote_state);
11829 remote_g_packet_data_handle =
11830 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11831
11832 /* Initialize the per-target state. At the moment there is only one
11833 of these, not one per target. Only one target is active at a
11834 time. */
11835 remote_state = new_remote_state ();
11836
11837 init_remote_ops ();
11838 add_target (&remote_ops);
11839
11840 init_extended_remote_ops ();
11841 add_target (&extended_remote_ops);
11842
11843 /* Hook into new objfile notification. */
11844 observer_attach_new_objfile (remote_new_objfile);
11845 /* We're no longer interested in notification events of an inferior
11846 when it exits. */
11847 observer_attach_inferior_exit (discard_pending_stop_replies);
11848
11849 /* Set up signal handlers. */
11850 async_sigint_remote_token =
11851 create_async_signal_handler (async_remote_interrupt, NULL);
11852 async_sigint_remote_twice_token =
11853 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11854
11855 #if 0
11856 init_remote_threadtests ();
11857 #endif
11858
11859 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
11860 /* set/show remote ... */
11861
11862 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11863 Remote protocol specific variables\n\
11864 Configure various remote-protocol specific variables such as\n\
11865 the packets being used"),
11866 &remote_set_cmdlist, "set remote ",
11867 0 /* allow-unknown */, &setlist);
11868 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11869 Remote protocol specific variables\n\
11870 Configure various remote-protocol specific variables such as\n\
11871 the packets being used"),
11872 &remote_show_cmdlist, "show remote ",
11873 0 /* allow-unknown */, &showlist);
11874
11875 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11876 Compare section data on target to the exec file.\n\
11877 Argument is a single section name (default: all loaded sections)."),
11878 &cmdlist);
11879
11880 add_cmd ("packet", class_maintenance, packet_command, _("\
11881 Send an arbitrary packet to a remote target.\n\
11882 maintenance packet TEXT\n\
11883 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11884 this command sends the string TEXT to the inferior, and displays the\n\
11885 response packet. GDB supplies the initial `$' character, and the\n\
11886 terminating `#' character and checksum."),
11887 &maintenancelist);
11888
11889 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11890 Set whether to send break if interrupted."), _("\
11891 Show whether to send break if interrupted."), _("\
11892 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11893 set_remotebreak, show_remotebreak,
11894 &setlist, &showlist);
11895 cmd_name = "remotebreak";
11896 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11897 deprecate_cmd (cmd, "set remote interrupt-sequence");
11898 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11899 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11900 deprecate_cmd (cmd, "show remote interrupt-sequence");
11901
11902 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11903 interrupt_sequence_modes, &interrupt_sequence_mode,
11904 _("\
11905 Set interrupt sequence to remote target."), _("\
11906 Show interrupt sequence to remote target."), _("\
11907 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11908 NULL, show_interrupt_sequence,
11909 &remote_set_cmdlist,
11910 &remote_show_cmdlist);
11911
11912 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11913 &interrupt_on_connect, _("\
11914 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11915 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11916 If set, interrupt sequence is sent to remote target."),
11917 NULL, NULL,
11918 &remote_set_cmdlist, &remote_show_cmdlist);
11919
11920 /* Install commands for configuring memory read/write packets. */
11921
11922 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11923 Set the maximum number of bytes per memory write packet (deprecated)."),
11924 &setlist);
11925 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11926 Show the maximum number of bytes per memory write packet (deprecated)."),
11927 &showlist);
11928 add_cmd ("memory-write-packet-size", no_class,
11929 set_memory_write_packet_size, _("\
11930 Set the maximum number of bytes per memory-write packet.\n\
11931 Specify the number of bytes in a packet or 0 (zero) for the\n\
11932 default packet size. The actual limit is further reduced\n\
11933 dependent on the target. Specify ``fixed'' to disable the\n\
11934 further restriction and ``limit'' to enable that restriction."),
11935 &remote_set_cmdlist);
11936 add_cmd ("memory-read-packet-size", no_class,
11937 set_memory_read_packet_size, _("\
11938 Set the maximum number of bytes per memory-read packet.\n\
11939 Specify the number of bytes in a packet or 0 (zero) for the\n\
11940 default packet size. The actual limit is further reduced\n\
11941 dependent on the target. Specify ``fixed'' to disable the\n\
11942 further restriction and ``limit'' to enable that restriction."),
11943 &remote_set_cmdlist);
11944 add_cmd ("memory-write-packet-size", no_class,
11945 show_memory_write_packet_size,
11946 _("Show the maximum number of bytes per memory-write packet."),
11947 &remote_show_cmdlist);
11948 add_cmd ("memory-read-packet-size", no_class,
11949 show_memory_read_packet_size,
11950 _("Show the maximum number of bytes per memory-read packet."),
11951 &remote_show_cmdlist);
11952
11953 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11954 &remote_hw_watchpoint_limit, _("\
11955 Set the maximum number of target hardware watchpoints."), _("\
11956 Show the maximum number of target hardware watchpoints."), _("\
11957 Specify a negative limit for unlimited."),
11958 NULL, NULL, /* FIXME: i18n: The maximum
11959 number of target hardware
11960 watchpoints is %s. */
11961 &remote_set_cmdlist, &remote_show_cmdlist);
11962 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11963 &remote_hw_watchpoint_length_limit, _("\
11964 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11965 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11966 Specify a negative limit for unlimited."),
11967 NULL, NULL, /* FIXME: i18n: The maximum
11968 length (in bytes) of a target
11969 hardware watchpoint is %s. */
11970 &remote_set_cmdlist, &remote_show_cmdlist);
11971 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11972 &remote_hw_breakpoint_limit, _("\
11973 Set the maximum number of target hardware breakpoints."), _("\
11974 Show the maximum number of target hardware breakpoints."), _("\
11975 Specify a negative limit for unlimited."),
11976 NULL, NULL, /* FIXME: i18n: The maximum
11977 number of target hardware
11978 breakpoints is %s. */
11979 &remote_set_cmdlist, &remote_show_cmdlist);
11980
11981 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
11982 &remote_address_size, _("\
11983 Set the maximum size of the address (in bits) in a memory packet."), _("\
11984 Show the maximum size of the address (in bits) in a memory packet."), NULL,
11985 NULL,
11986 NULL, /* FIXME: i18n: */
11987 &setlist, &showlist);
11988
11989 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
11990 "X", "binary-download", 1);
11991
11992 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
11993 "vCont", "verbose-resume", 0);
11994
11995 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
11996 "QPassSignals", "pass-signals", 0);
11997
11998 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
11999 "QProgramSignals", "program-signals", 0);
12000
12001 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
12002 "qSymbol", "symbol-lookup", 0);
12003
12004 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
12005 "P", "set-register", 1);
12006
12007 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
12008 "p", "fetch-register", 1);
12009
12010 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
12011 "Z0", "software-breakpoint", 0);
12012
12013 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
12014 "Z1", "hardware-breakpoint", 0);
12015
12016 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
12017 "Z2", "write-watchpoint", 0);
12018
12019 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
12020 "Z3", "read-watchpoint", 0);
12021
12022 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
12023 "Z4", "access-watchpoint", 0);
12024
12025 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
12026 "qXfer:auxv:read", "read-aux-vector", 0);
12027
12028 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
12029 "qXfer:features:read", "target-features", 0);
12030
12031 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
12032 "qXfer:libraries:read", "library-info", 0);
12033
12034 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
12035 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
12036
12037 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
12038 "qXfer:memory-map:read", "memory-map", 0);
12039
12040 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
12041 "qXfer:spu:read", "read-spu-object", 0);
12042
12043 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
12044 "qXfer:spu:write", "write-spu-object", 0);
12045
12046 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
12047 "qXfer:osdata:read", "osdata", 0);
12048
12049 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
12050 "qXfer:threads:read", "threads", 0);
12051
12052 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
12053 "qXfer:siginfo:read", "read-siginfo-object", 0);
12054
12055 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
12056 "qXfer:siginfo:write", "write-siginfo-object", 0);
12057
12058 add_packet_config_cmd
12059 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
12060 "qXfer:traceframe-info:read", "traceframe-info", 0);
12061
12062 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
12063 "qXfer:uib:read", "unwind-info-block", 0);
12064
12065 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
12066 "qGetTLSAddr", "get-thread-local-storage-address",
12067 0);
12068
12069 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
12070 "qGetTIBAddr", "get-thread-information-block-address",
12071 0);
12072
12073 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
12074 "bc", "reverse-continue", 0);
12075
12076 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
12077 "bs", "reverse-step", 0);
12078
12079 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
12080 "qSupported", "supported-packets", 0);
12081
12082 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
12083 "qSearch:memory", "search-memory", 0);
12084
12085 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
12086 "qTStatus", "trace-status", 0);
12087
12088 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
12089 "vFile:open", "hostio-open", 0);
12090
12091 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
12092 "vFile:pread", "hostio-pread", 0);
12093
12094 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
12095 "vFile:pwrite", "hostio-pwrite", 0);
12096
12097 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
12098 "vFile:close", "hostio-close", 0);
12099
12100 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
12101 "vFile:unlink", "hostio-unlink", 0);
12102
12103 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
12104 "vFile:readlink", "hostio-readlink", 0);
12105
12106 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
12107 "vAttach", "attach", 0);
12108
12109 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
12110 "vRun", "run", 0);
12111
12112 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
12113 "QStartNoAckMode", "noack", 0);
12114
12115 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
12116 "vKill", "kill", 0);
12117
12118 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
12119 "qAttached", "query-attached", 0);
12120
12121 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
12122 "ConditionalTracepoints",
12123 "conditional-tracepoints", 0);
12124
12125 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
12126 "ConditionalBreakpoints",
12127 "conditional-breakpoints", 0);
12128
12129 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
12130 "BreakpointCommands",
12131 "breakpoint-commands", 0);
12132
12133 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
12134 "FastTracepoints", "fast-tracepoints", 0);
12135
12136 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
12137 "TracepointSource", "TracepointSource", 0);
12138
12139 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
12140 "QAllow", "allow", 0);
12141
12142 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
12143 "StaticTracepoints", "static-tracepoints", 0);
12144
12145 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
12146 "InstallInTrace", "install-in-trace", 0);
12147
12148 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
12149 "qXfer:statictrace:read", "read-sdata-object", 0);
12150
12151 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
12152 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
12153
12154 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
12155 "QDisableRandomization", "disable-randomization", 0);
12156
12157 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
12158 "QAgent", "agent", 0);
12159
12160 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
12161 "QTBuffer:size", "trace-buffer-size", 0);
12162
12163 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
12164 "Qbtrace:off", "disable-btrace", 0);
12165
12166 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
12167 "Qbtrace:bts", "enable-btrace", 0);
12168
12169 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
12170 "qXfer:btrace", "read-btrace", 0);
12171
12172 /* Keep the old ``set remote Z-packet ...'' working. Each individual
12173 Z sub-packet has its own set and show commands, but users may
12174 have sets to this variable in their .gdbinit files (or in their
12175 documentation). */
12176 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
12177 &remote_Z_packet_detect, _("\
12178 Set use of remote protocol `Z' packets"), _("\
12179 Show use of remote protocol `Z' packets "), _("\
12180 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
12181 packets."),
12182 set_remote_protocol_Z_packet_cmd,
12183 show_remote_protocol_Z_packet_cmd,
12184 /* FIXME: i18n: Use of remote protocol
12185 `Z' packets is %s. */
12186 &remote_set_cmdlist, &remote_show_cmdlist);
12187
12188 add_prefix_cmd ("remote", class_files, remote_command, _("\
12189 Manipulate files on the remote system\n\
12190 Transfer files to and from the remote target system."),
12191 &remote_cmdlist, "remote ",
12192 0 /* allow-unknown */, &cmdlist);
12193
12194 add_cmd ("put", class_files, remote_put_command,
12195 _("Copy a local file to the remote system."),
12196 &remote_cmdlist);
12197
12198 add_cmd ("get", class_files, remote_get_command,
12199 _("Copy a remote file to the local system."),
12200 &remote_cmdlist);
12201
12202 add_cmd ("delete", class_files, remote_delete_command,
12203 _("Delete a remote file."),
12204 &remote_cmdlist);
12205
12206 remote_exec_file = xstrdup ("");
12207 add_setshow_string_noescape_cmd ("exec-file", class_files,
12208 &remote_exec_file, _("\
12209 Set the remote pathname for \"run\""), _("\
12210 Show the remote pathname for \"run\""), NULL, NULL, NULL,
12211 &remote_set_cmdlist, &remote_show_cmdlist);
12212
12213 add_setshow_boolean_cmd ("range-stepping", class_run,
12214 &use_range_stepping, _("\
12215 Enable or disable range stepping."), _("\
12216 Show whether target-assisted range stepping is enabled."), _("\
12217 If on, and the target supports it, when stepping a source line, GDB\n\
12218 tells the target to step the corresponding range of addresses itself instead\n\
12219 of issuing multiple single-steps. This speeds up source level\n\
12220 stepping. If off, GDB always issues single-steps, even if range\n\
12221 stepping is supported by the target. The default is on."),
12222 set_range_stepping,
12223 show_range_stepping,
12224 &setlist,
12225 &showlist);
12226
12227 /* Eventually initialize fileio. See fileio.c */
12228 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
12229
12230 /* Take advantage of the fact that the LWP field is not used, to tag
12231 special ptids with it set to != 0. */
12232 magic_null_ptid = ptid_build (42000, 1, -1);
12233 not_sent_ptid = ptid_build (42000, 1, -2);
12234 any_thread_ptid = ptid_build (42000, 1, 0);
12235
12236 target_buf_size = 2048;
12237 target_buf = xmalloc (target_buf_size);
12238 }
12239