* remote.c (remote_wait, remote_async_wait): Stop if we receive
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62
63 #include "memory-map.h"
64
65 /* The size to align memory write packets, when practical. The protocol
66 does not guarantee any alignment, and gdb will generate short
67 writes and unaligned writes, but even as a best-effort attempt this
68 can improve bulk transfers. For instance, if a write is misaligned
69 relative to the target's data bus, the stub may need to make an extra
70 round trip fetching data from the target. This doesn't make a
71 huge difference, but it's easy to do, so we try to be helpful.
72
73 The alignment chosen is arbitrary; usually data bus width is
74 important here, not the possibly larger cache line size. */
75 enum { REMOTE_ALIGN_WRITES = 16 };
76
77 /* Prototypes for local functions. */
78 static void cleanup_sigint_signal_handler (void *dummy);
79 static void initialize_sigint_signal_handler (void);
80 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
81
82 static void handle_remote_sigint (int);
83 static void handle_remote_sigint_twice (int);
84 static void async_remote_interrupt (gdb_client_data);
85 void async_remote_interrupt_twice (gdb_client_data);
86
87 static void remote_files_info (struct target_ops *ignore);
88
89 static void remote_prepare_to_store (struct regcache *regcache);
90
91 static void remote_fetch_registers (struct regcache *regcache, int regno);
92
93 static void remote_resume (ptid_t ptid, int step,
94 enum target_signal siggnal);
95 static void remote_async_resume (ptid_t ptid, int step,
96 enum target_signal siggnal);
97 static void remote_open (char *name, int from_tty);
98 static void remote_async_open (char *name, int from_tty);
99
100 static void extended_remote_open (char *name, int from_tty);
101 static void extended_remote_async_open (char *name, int from_tty);
102
103 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
104 int async_p);
105
106 static void remote_close (int quitting);
107
108 static void remote_store_registers (struct regcache *regcache, int regno);
109
110 static void remote_mourn (void);
111 static void remote_async_mourn (void);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (void);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static ptid_t remote_wait (ptid_t ptid,
124 struct target_waitstatus *status);
125 static ptid_t remote_async_wait (ptid_t ptid,
126 struct target_waitstatus *status);
127
128 static void remote_kill (void);
129 static void remote_async_kill (void);
130
131 static int tohex (int nib);
132
133 static void remote_detach (char *args, int from_tty);
134
135 static void remote_interrupt (int signo);
136
137 static void remote_interrupt_twice (int signo);
138
139 static void interrupt_query (void);
140
141 static void set_thread (int, int);
142
143 static int remote_thread_alive (ptid_t);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (void);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static unsigned long crc32 (unsigned char *, int, unsigned int);
172
173 static void compare_sections_command (char *, int);
174
175 static void packet_command (char *, int);
176
177 static int stub_unpack_int (char *buff, int fieldlength);
178
179 static ptid_t remote_current_thread (ptid_t oldptid);
180
181 static void remote_find_new_threads (void);
182
183 static void record_currthread (int currthread);
184
185 static int fromhex (int a);
186
187 static int hex2bin (const char *hex, gdb_byte *bin, int count);
188
189 static int bin2hex (const gdb_byte *bin, char *hex, int count);
190
191 static int putpkt_binary (char *buf, int cnt);
192
193 static void check_binary_download (CORE_ADDR addr);
194
195 struct packet_config;
196
197 static void show_packet_config_cmd (struct packet_config *config);
198
199 static void update_packet_config (struct packet_config *config);
200
201 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
202 struct cmd_list_element *c);
203
204 static void show_remote_protocol_packet_cmd (struct ui_file *file,
205 int from_tty,
206 struct cmd_list_element *c,
207 const char *value);
208
209 void _initialize_remote (void);
210
211 /* For "remote". */
212
213 static struct cmd_list_element *remote_cmdlist;
214
215 /* For "set remote" and "show remote". */
216
217 static struct cmd_list_element *remote_set_cmdlist;
218 static struct cmd_list_element *remote_show_cmdlist;
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 struct remote_state
225 {
226 /* A buffer to use for incoming packets, and its current size. The
227 buffer is grown dynamically for larger incoming packets.
228 Outgoing packets may also be constructed in this buffer.
229 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
230 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
231 packets. */
232 char *buf;
233 long buf_size;
234
235 /* If we negotiated packet size explicitly (and thus can bypass
236 heuristics for the largest packet size that will not overflow
237 a buffer in the stub), this will be set to that packet size.
238 Otherwise zero, meaning to use the guessed size. */
239 long explicit_packet_size;
240
241 /* remote_wait is normally called when the target is running and
242 waits for a stop reply packet. But sometimes we need to call it
243 when the target is already stopped. We can send a "?" packet
244 and have remote_wait read the response. Or, if we already have
245 the response, we can stash it in BUF and tell remote_wait to
246 skip calling getpkt. This flag is set when BUF contains a
247 stop reply packet and the target is not waiting. */
248 int cached_wait_status;
249 };
250
251 /* This data could be associated with a target, but we do not always
252 have access to the current target when we need it, so for now it is
253 static. This will be fine for as long as only one target is in use
254 at a time. */
255 static struct remote_state remote_state;
256
257 static struct remote_state *
258 get_remote_state_raw (void)
259 {
260 return &remote_state;
261 }
262
263 /* Description of the remote protocol for a given architecture. */
264
265 struct packet_reg
266 {
267 long offset; /* Offset into G packet. */
268 long regnum; /* GDB's internal register number. */
269 LONGEST pnum; /* Remote protocol register number. */
270 int in_g_packet; /* Always part of G packet. */
271 /* long size in bytes; == register_size (current_gdbarch, regnum);
272 at present. */
273 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
274 at present. */
275 };
276
277 struct remote_arch_state
278 {
279 /* Description of the remote protocol registers. */
280 long sizeof_g_packet;
281
282 /* Description of the remote protocol registers indexed by REGNUM
283 (making an array gdbarch_num_regs in size). */
284 struct packet_reg *regs;
285
286 /* This is the size (in chars) of the first response to the ``g''
287 packet. It is used as a heuristic when determining the maximum
288 size of memory-read and memory-write packets. A target will
289 typically only reserve a buffer large enough to hold the ``g''
290 packet. The size does not include packet overhead (headers and
291 trailers). */
292 long actual_register_packet_size;
293
294 /* This is the maximum size (in chars) of a non read/write packet.
295 It is also used as a cap on the size of read/write packets. */
296 long remote_packet_size;
297 };
298
299
300 /* Handle for retreving the remote protocol data from gdbarch. */
301 static struct gdbarch_data *remote_gdbarch_data_handle;
302
303 static struct remote_arch_state *
304 get_remote_arch_state (void)
305 {
306 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
307 }
308
309 /* Fetch the global remote target state. */
310
311 static struct remote_state *
312 get_remote_state (void)
313 {
314 /* Make sure that the remote architecture state has been
315 initialized, because doing so might reallocate rs->buf. Any
316 function which calls getpkt also needs to be mindful of changes
317 to rs->buf, but this call limits the number of places which run
318 into trouble. */
319 get_remote_arch_state ();
320
321 return get_remote_state_raw ();
322 }
323
324 static int
325 compare_pnums (const void *lhs_, const void *rhs_)
326 {
327 const struct packet_reg * const *lhs = lhs_;
328 const struct packet_reg * const *rhs = rhs_;
329
330 if ((*lhs)->pnum < (*rhs)->pnum)
331 return -1;
332 else if ((*lhs)->pnum == (*rhs)->pnum)
333 return 0;
334 else
335 return 1;
336 }
337
338 static void *
339 init_remote_state (struct gdbarch *gdbarch)
340 {
341 int regnum, num_remote_regs, offset;
342 struct remote_state *rs = get_remote_state_raw ();
343 struct remote_arch_state *rsa;
344 struct packet_reg **remote_regs;
345
346 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
347
348 /* Use the architecture to build a regnum<->pnum table, which will be
349 1:1 unless a feature set specifies otherwise. */
350 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
351 gdbarch_num_regs (gdbarch),
352 struct packet_reg);
353 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
354 {
355 struct packet_reg *r = &rsa->regs[regnum];
356
357 if (register_size (gdbarch, regnum) == 0)
358 /* Do not try to fetch zero-sized (placeholder) registers. */
359 r->pnum = -1;
360 else
361 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
362
363 r->regnum = regnum;
364 }
365
366 /* Define the g/G packet format as the contents of each register
367 with a remote protocol number, in order of ascending protocol
368 number. */
369
370 remote_regs = alloca (gdbarch_num_regs (gdbarch)
371 * sizeof (struct packet_reg *));
372 for (num_remote_regs = 0, regnum = 0;
373 regnum < gdbarch_num_regs (gdbarch);
374 regnum++)
375 if (rsa->regs[regnum].pnum != -1)
376 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
377
378 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
379 compare_pnums);
380
381 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
382 {
383 remote_regs[regnum]->in_g_packet = 1;
384 remote_regs[regnum]->offset = offset;
385 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
386 }
387
388 /* Record the maximum possible size of the g packet - it may turn out
389 to be smaller. */
390 rsa->sizeof_g_packet = offset;
391
392 /* Default maximum number of characters in a packet body. Many
393 remote stubs have a hardwired buffer size of 400 bytes
394 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
395 as the maximum packet-size to ensure that the packet and an extra
396 NUL character can always fit in the buffer. This stops GDB
397 trashing stubs that try to squeeze an extra NUL into what is
398 already a full buffer (As of 1999-12-04 that was most stubs). */
399 rsa->remote_packet_size = 400 - 1;
400
401 /* This one is filled in when a ``g'' packet is received. */
402 rsa->actual_register_packet_size = 0;
403
404 /* Should rsa->sizeof_g_packet needs more space than the
405 default, adjust the size accordingly. Remember that each byte is
406 encoded as two characters. 32 is the overhead for the packet
407 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
408 (``$NN:G...#NN'') is a better guess, the below has been padded a
409 little. */
410 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
411 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
412
413 /* Make sure that the packet buffer is plenty big enough for
414 this architecture. */
415 if (rs->buf_size < rsa->remote_packet_size)
416 {
417 rs->buf_size = 2 * rsa->remote_packet_size;
418 rs->buf = xrealloc (rs->buf, rs->buf_size);
419 }
420
421 return rsa;
422 }
423
424 /* Return the current allowed size of a remote packet. This is
425 inferred from the current architecture, and should be used to
426 limit the length of outgoing packets. */
427 static long
428 get_remote_packet_size (void)
429 {
430 struct remote_state *rs = get_remote_state ();
431 struct remote_arch_state *rsa = get_remote_arch_state ();
432
433 if (rs->explicit_packet_size)
434 return rs->explicit_packet_size;
435
436 return rsa->remote_packet_size;
437 }
438
439 static struct packet_reg *
440 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
441 {
442 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
443 return NULL;
444 else
445 {
446 struct packet_reg *r = &rsa->regs[regnum];
447 gdb_assert (r->regnum == regnum);
448 return r;
449 }
450 }
451
452 static struct packet_reg *
453 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
454 {
455 int i;
456 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
457 {
458 struct packet_reg *r = &rsa->regs[i];
459 if (r->pnum == pnum)
460 return r;
461 }
462 return NULL;
463 }
464
465 /* FIXME: graces/2002-08-08: These variables should eventually be
466 bound to an instance of the target object (as in gdbarch-tdep()),
467 when such a thing exists. */
468
469 /* This is set to the data address of the access causing the target
470 to stop for a watchpoint. */
471 static CORE_ADDR remote_watch_data_address;
472
473 /* This is non-zero if target stopped for a watchpoint. */
474 static int remote_stopped_by_watchpoint_p;
475
476 static struct target_ops remote_ops;
477
478 static struct target_ops extended_remote_ops;
479
480 /* Temporary target ops. Just like the remote_ops and
481 extended_remote_ops, but with asynchronous support. */
482 static struct target_ops remote_async_ops;
483
484 static struct target_ops extended_async_remote_ops;
485
486 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
487 ``forever'' still use the normal timeout mechanism. This is
488 currently used by the ASYNC code to guarentee that target reads
489 during the initial connect always time-out. Once getpkt has been
490 modified to return a timeout indication and, in turn
491 remote_wait()/wait_for_inferior() have gained a timeout parameter
492 this can go away. */
493 static int wait_forever_enabled_p = 1;
494
495
496 /* This variable chooses whether to send a ^C or a break when the user
497 requests program interruption. Although ^C is usually what remote
498 systems expect, and that is the default here, sometimes a break is
499 preferable instead. */
500
501 static int remote_break;
502
503 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
504 remote_open knows that we don't have a file open when the program
505 starts. */
506 static struct serial *remote_desc = NULL;
507
508 /* This variable sets the number of bits in an address that are to be
509 sent in a memory ("M" or "m") packet. Normally, after stripping
510 leading zeros, the entire address would be sent. This variable
511 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
512 initial implementation of remote.c restricted the address sent in
513 memory packets to ``host::sizeof long'' bytes - (typically 32
514 bits). Consequently, for 64 bit targets, the upper 32 bits of an
515 address was never sent. Since fixing this bug may cause a break in
516 some remote targets this variable is principly provided to
517 facilitate backward compatibility. */
518
519 static int remote_address_size;
520
521 /* Tempoary to track who currently owns the terminal. See
522 target_async_terminal_* for more details. */
523
524 static int remote_async_terminal_ours_p;
525
526 /* The executable file to use for "run" on the remote side. */
527
528 static char *remote_exec_file = "";
529
530 \f
531 /* User configurable variables for the number of characters in a
532 memory read/write packet. MIN (rsa->remote_packet_size,
533 rsa->sizeof_g_packet) is the default. Some targets need smaller
534 values (fifo overruns, et.al.) and some users need larger values
535 (speed up transfers). The variables ``preferred_*'' (the user
536 request), ``current_*'' (what was actually set) and ``forced_*''
537 (Positive - a soft limit, negative - a hard limit). */
538
539 struct memory_packet_config
540 {
541 char *name;
542 long size;
543 int fixed_p;
544 };
545
546 /* Compute the current size of a read/write packet. Since this makes
547 use of ``actual_register_packet_size'' the computation is dynamic. */
548
549 static long
550 get_memory_packet_size (struct memory_packet_config *config)
551 {
552 struct remote_state *rs = get_remote_state ();
553 struct remote_arch_state *rsa = get_remote_arch_state ();
554
555 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
556 law?) that some hosts don't cope very well with large alloca()
557 calls. Eventually the alloca() code will be replaced by calls to
558 xmalloc() and make_cleanups() allowing this restriction to either
559 be lifted or removed. */
560 #ifndef MAX_REMOTE_PACKET_SIZE
561 #define MAX_REMOTE_PACKET_SIZE 16384
562 #endif
563 /* NOTE: 20 ensures we can write at least one byte. */
564 #ifndef MIN_REMOTE_PACKET_SIZE
565 #define MIN_REMOTE_PACKET_SIZE 20
566 #endif
567 long what_they_get;
568 if (config->fixed_p)
569 {
570 if (config->size <= 0)
571 what_they_get = MAX_REMOTE_PACKET_SIZE;
572 else
573 what_they_get = config->size;
574 }
575 else
576 {
577 what_they_get = get_remote_packet_size ();
578 /* Limit the packet to the size specified by the user. */
579 if (config->size > 0
580 && what_they_get > config->size)
581 what_they_get = config->size;
582
583 /* Limit it to the size of the targets ``g'' response unless we have
584 permission from the stub to use a larger packet size. */
585 if (rs->explicit_packet_size == 0
586 && rsa->actual_register_packet_size > 0
587 && what_they_get > rsa->actual_register_packet_size)
588 what_they_get = rsa->actual_register_packet_size;
589 }
590 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
591 what_they_get = MAX_REMOTE_PACKET_SIZE;
592 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
593 what_they_get = MIN_REMOTE_PACKET_SIZE;
594
595 /* Make sure there is room in the global buffer for this packet
596 (including its trailing NUL byte). */
597 if (rs->buf_size < what_they_get + 1)
598 {
599 rs->buf_size = 2 * what_they_get;
600 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
601 }
602
603 return what_they_get;
604 }
605
606 /* Update the size of a read/write packet. If they user wants
607 something really big then do a sanity check. */
608
609 static void
610 set_memory_packet_size (char *args, struct memory_packet_config *config)
611 {
612 int fixed_p = config->fixed_p;
613 long size = config->size;
614 if (args == NULL)
615 error (_("Argument required (integer, `fixed' or `limited')."));
616 else if (strcmp (args, "hard") == 0
617 || strcmp (args, "fixed") == 0)
618 fixed_p = 1;
619 else if (strcmp (args, "soft") == 0
620 || strcmp (args, "limit") == 0)
621 fixed_p = 0;
622 else
623 {
624 char *end;
625 size = strtoul (args, &end, 0);
626 if (args == end)
627 error (_("Invalid %s (bad syntax)."), config->name);
628 #if 0
629 /* Instead of explicitly capping the size of a packet to
630 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
631 instead allowed to set the size to something arbitrarily
632 large. */
633 if (size > MAX_REMOTE_PACKET_SIZE)
634 error (_("Invalid %s (too large)."), config->name);
635 #endif
636 }
637 /* Extra checks? */
638 if (fixed_p && !config->fixed_p)
639 {
640 if (! query (_("The target may not be able to correctly handle a %s\n"
641 "of %ld bytes. Change the packet size? "),
642 config->name, size))
643 error (_("Packet size not changed."));
644 }
645 /* Update the config. */
646 config->fixed_p = fixed_p;
647 config->size = size;
648 }
649
650 static void
651 show_memory_packet_size (struct memory_packet_config *config)
652 {
653 printf_filtered (_("The %s is %ld. "), config->name, config->size);
654 if (config->fixed_p)
655 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
656 get_memory_packet_size (config));
657 else
658 printf_filtered (_("Packets are limited to %ld bytes.\n"),
659 get_memory_packet_size (config));
660 }
661
662 static struct memory_packet_config memory_write_packet_config =
663 {
664 "memory-write-packet-size",
665 };
666
667 static void
668 set_memory_write_packet_size (char *args, int from_tty)
669 {
670 set_memory_packet_size (args, &memory_write_packet_config);
671 }
672
673 static void
674 show_memory_write_packet_size (char *args, int from_tty)
675 {
676 show_memory_packet_size (&memory_write_packet_config);
677 }
678
679 static long
680 get_memory_write_packet_size (void)
681 {
682 return get_memory_packet_size (&memory_write_packet_config);
683 }
684
685 static struct memory_packet_config memory_read_packet_config =
686 {
687 "memory-read-packet-size",
688 };
689
690 static void
691 set_memory_read_packet_size (char *args, int from_tty)
692 {
693 set_memory_packet_size (args, &memory_read_packet_config);
694 }
695
696 static void
697 show_memory_read_packet_size (char *args, int from_tty)
698 {
699 show_memory_packet_size (&memory_read_packet_config);
700 }
701
702 static long
703 get_memory_read_packet_size (void)
704 {
705 long size = get_memory_packet_size (&memory_read_packet_config);
706 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
707 extra buffer size argument before the memory read size can be
708 increased beyond this. */
709 if (size > get_remote_packet_size ())
710 size = get_remote_packet_size ();
711 return size;
712 }
713
714 \f
715 /* Generic configuration support for packets the stub optionally
716 supports. Allows the user to specify the use of the packet as well
717 as allowing GDB to auto-detect support in the remote stub. */
718
719 enum packet_support
720 {
721 PACKET_SUPPORT_UNKNOWN = 0,
722 PACKET_ENABLE,
723 PACKET_DISABLE
724 };
725
726 struct packet_config
727 {
728 const char *name;
729 const char *title;
730 enum auto_boolean detect;
731 enum packet_support support;
732 };
733
734 /* Analyze a packet's return value and update the packet config
735 accordingly. */
736
737 enum packet_result
738 {
739 PACKET_ERROR,
740 PACKET_OK,
741 PACKET_UNKNOWN
742 };
743
744 static void
745 update_packet_config (struct packet_config *config)
746 {
747 switch (config->detect)
748 {
749 case AUTO_BOOLEAN_TRUE:
750 config->support = PACKET_ENABLE;
751 break;
752 case AUTO_BOOLEAN_FALSE:
753 config->support = PACKET_DISABLE;
754 break;
755 case AUTO_BOOLEAN_AUTO:
756 config->support = PACKET_SUPPORT_UNKNOWN;
757 break;
758 }
759 }
760
761 static void
762 show_packet_config_cmd (struct packet_config *config)
763 {
764 char *support = "internal-error";
765 switch (config->support)
766 {
767 case PACKET_ENABLE:
768 support = "enabled";
769 break;
770 case PACKET_DISABLE:
771 support = "disabled";
772 break;
773 case PACKET_SUPPORT_UNKNOWN:
774 support = "unknown";
775 break;
776 }
777 switch (config->detect)
778 {
779 case AUTO_BOOLEAN_AUTO:
780 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
781 config->name, support);
782 break;
783 case AUTO_BOOLEAN_TRUE:
784 case AUTO_BOOLEAN_FALSE:
785 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
786 config->name, support);
787 break;
788 }
789 }
790
791 static void
792 add_packet_config_cmd (struct packet_config *config, const char *name,
793 const char *title, int legacy)
794 {
795 char *set_doc;
796 char *show_doc;
797 char *cmd_name;
798
799 config->name = name;
800 config->title = title;
801 config->detect = AUTO_BOOLEAN_AUTO;
802 config->support = PACKET_SUPPORT_UNKNOWN;
803 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
804 name, title);
805 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
806 name, title);
807 /* set/show TITLE-packet {auto,on,off} */
808 cmd_name = xstrprintf ("%s-packet", title);
809 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
810 &config->detect, set_doc, show_doc, NULL, /* help_doc */
811 set_remote_protocol_packet_cmd,
812 show_remote_protocol_packet_cmd,
813 &remote_set_cmdlist, &remote_show_cmdlist);
814 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
815 if (legacy)
816 {
817 char *legacy_name;
818 legacy_name = xstrprintf ("%s-packet", name);
819 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
820 &remote_set_cmdlist);
821 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
822 &remote_show_cmdlist);
823 }
824 }
825
826 static enum packet_result
827 packet_check_result (const char *buf)
828 {
829 if (buf[0] != '\0')
830 {
831 /* The stub recognized the packet request. Check that the
832 operation succeeded. */
833 if (buf[0] == 'E'
834 && isxdigit (buf[1]) && isxdigit (buf[2])
835 && buf[3] == '\0')
836 /* "Enn" - definitly an error. */
837 return PACKET_ERROR;
838
839 /* Always treat "E." as an error. This will be used for
840 more verbose error messages, such as E.memtypes. */
841 if (buf[0] == 'E' && buf[1] == '.')
842 return PACKET_ERROR;
843
844 /* The packet may or may not be OK. Just assume it is. */
845 return PACKET_OK;
846 }
847 else
848 /* The stub does not support the packet. */
849 return PACKET_UNKNOWN;
850 }
851
852 static enum packet_result
853 packet_ok (const char *buf, struct packet_config *config)
854 {
855 enum packet_result result;
856
857 result = packet_check_result (buf);
858 switch (result)
859 {
860 case PACKET_OK:
861 case PACKET_ERROR:
862 /* The stub recognized the packet request. */
863 switch (config->support)
864 {
865 case PACKET_SUPPORT_UNKNOWN:
866 if (remote_debug)
867 fprintf_unfiltered (gdb_stdlog,
868 "Packet %s (%s) is supported\n",
869 config->name, config->title);
870 config->support = PACKET_ENABLE;
871 break;
872 case PACKET_DISABLE:
873 internal_error (__FILE__, __LINE__,
874 _("packet_ok: attempt to use a disabled packet"));
875 break;
876 case PACKET_ENABLE:
877 break;
878 }
879 break;
880 case PACKET_UNKNOWN:
881 /* The stub does not support the packet. */
882 switch (config->support)
883 {
884 case PACKET_ENABLE:
885 if (config->detect == AUTO_BOOLEAN_AUTO)
886 /* If the stub previously indicated that the packet was
887 supported then there is a protocol error.. */
888 error (_("Protocol error: %s (%s) conflicting enabled responses."),
889 config->name, config->title);
890 else
891 /* The user set it wrong. */
892 error (_("Enabled packet %s (%s) not recognized by stub"),
893 config->name, config->title);
894 break;
895 case PACKET_SUPPORT_UNKNOWN:
896 if (remote_debug)
897 fprintf_unfiltered (gdb_stdlog,
898 "Packet %s (%s) is NOT supported\n",
899 config->name, config->title);
900 config->support = PACKET_DISABLE;
901 break;
902 case PACKET_DISABLE:
903 break;
904 }
905 break;
906 }
907
908 return result;
909 }
910
911 enum {
912 PACKET_vCont = 0,
913 PACKET_X,
914 PACKET_qSymbol,
915 PACKET_P,
916 PACKET_p,
917 PACKET_Z0,
918 PACKET_Z1,
919 PACKET_Z2,
920 PACKET_Z3,
921 PACKET_Z4,
922 PACKET_vFile_open,
923 PACKET_vFile_pread,
924 PACKET_vFile_pwrite,
925 PACKET_vFile_close,
926 PACKET_vFile_unlink,
927 PACKET_qXfer_auxv,
928 PACKET_qXfer_features,
929 PACKET_qXfer_libraries,
930 PACKET_qXfer_memory_map,
931 PACKET_qXfer_spu_read,
932 PACKET_qXfer_spu_write,
933 PACKET_qGetTLSAddr,
934 PACKET_qSupported,
935 PACKET_QPassSignals,
936 PACKET_vAttach,
937 PACKET_vRun,
938 PACKET_MAX
939 };
940
941 static struct packet_config remote_protocol_packets[PACKET_MAX];
942
943 static void
944 set_remote_protocol_packet_cmd (char *args, int from_tty,
945 struct cmd_list_element *c)
946 {
947 struct packet_config *packet;
948
949 for (packet = remote_protocol_packets;
950 packet < &remote_protocol_packets[PACKET_MAX];
951 packet++)
952 {
953 if (&packet->detect == c->var)
954 {
955 update_packet_config (packet);
956 return;
957 }
958 }
959 internal_error (__FILE__, __LINE__, "Could not find config for %s",
960 c->name);
961 }
962
963 static void
964 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
965 struct cmd_list_element *c,
966 const char *value)
967 {
968 struct packet_config *packet;
969
970 for (packet = remote_protocol_packets;
971 packet < &remote_protocol_packets[PACKET_MAX];
972 packet++)
973 {
974 if (&packet->detect == c->var)
975 {
976 show_packet_config_cmd (packet);
977 return;
978 }
979 }
980 internal_error (__FILE__, __LINE__, "Could not find config for %s",
981 c->name);
982 }
983
984 /* Should we try one of the 'Z' requests? */
985
986 enum Z_packet_type
987 {
988 Z_PACKET_SOFTWARE_BP,
989 Z_PACKET_HARDWARE_BP,
990 Z_PACKET_WRITE_WP,
991 Z_PACKET_READ_WP,
992 Z_PACKET_ACCESS_WP,
993 NR_Z_PACKET_TYPES
994 };
995
996 /* For compatibility with older distributions. Provide a ``set remote
997 Z-packet ...'' command that updates all the Z packet types. */
998
999 static enum auto_boolean remote_Z_packet_detect;
1000
1001 static void
1002 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1003 struct cmd_list_element *c)
1004 {
1005 int i;
1006 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1007 {
1008 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1009 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1010 }
1011 }
1012
1013 static void
1014 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1015 struct cmd_list_element *c,
1016 const char *value)
1017 {
1018 int i;
1019 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1020 {
1021 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1022 }
1023 }
1024
1025 /* Should we try the 'ThreadInfo' query packet?
1026
1027 This variable (NOT available to the user: auto-detect only!)
1028 determines whether GDB will use the new, simpler "ThreadInfo"
1029 query or the older, more complex syntax for thread queries.
1030 This is an auto-detect variable (set to true at each connect,
1031 and set to false when the target fails to recognize it). */
1032
1033 static int use_threadinfo_query;
1034 static int use_threadextra_query;
1035
1036 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1037 static struct async_signal_handler *sigint_remote_twice_token;
1038 static struct async_signal_handler *sigint_remote_token;
1039
1040 /* These are pointers to hook functions that may be set in order to
1041 modify resume/wait behavior for a particular architecture. */
1042
1043 void (*deprecated_target_resume_hook) (void);
1044 void (*deprecated_target_wait_loop_hook) (void);
1045 \f
1046
1047
1048 /* These are the threads which we last sent to the remote system.
1049 -1 for all or -2 for not sent yet. */
1050 static int general_thread;
1051 static int continue_thread;
1052
1053 /* Call this function as a result of
1054 1) A halt indication (T packet) containing a thread id
1055 2) A direct query of currthread
1056 3) Successful execution of set thread
1057 */
1058
1059 static void
1060 record_currthread (int currthread)
1061 {
1062 general_thread = currthread;
1063
1064 /* If this is a new thread, add it to GDB's thread list.
1065 If we leave it up to WFI to do this, bad things will happen. */
1066 if (!in_thread_list (pid_to_ptid (currthread)))
1067 add_thread (pid_to_ptid (currthread));
1068 }
1069
1070 static char *last_pass_packet;
1071
1072 /* If 'QPassSignals' is supported, tell the remote stub what signals
1073 it can simply pass through to the inferior without reporting. */
1074
1075 static void
1076 remote_pass_signals (void)
1077 {
1078 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1079 {
1080 char *pass_packet, *p;
1081 int numsigs = (int) TARGET_SIGNAL_LAST;
1082 int count = 0, i;
1083
1084 gdb_assert (numsigs < 256);
1085 for (i = 0; i < numsigs; i++)
1086 {
1087 if (signal_stop_state (i) == 0
1088 && signal_print_state (i) == 0
1089 && signal_pass_state (i) == 1)
1090 count++;
1091 }
1092 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1093 strcpy (pass_packet, "QPassSignals:");
1094 p = pass_packet + strlen (pass_packet);
1095 for (i = 0; i < numsigs; i++)
1096 {
1097 if (signal_stop_state (i) == 0
1098 && signal_print_state (i) == 0
1099 && signal_pass_state (i) == 1)
1100 {
1101 if (i >= 16)
1102 *p++ = tohex (i >> 4);
1103 *p++ = tohex (i & 15);
1104 if (count)
1105 *p++ = ';';
1106 else
1107 break;
1108 count--;
1109 }
1110 }
1111 *p = 0;
1112 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1113 {
1114 struct remote_state *rs = get_remote_state ();
1115 char *buf = rs->buf;
1116
1117 putpkt (pass_packet);
1118 getpkt (&rs->buf, &rs->buf_size, 0);
1119 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1120 if (last_pass_packet)
1121 xfree (last_pass_packet);
1122 last_pass_packet = pass_packet;
1123 }
1124 else
1125 xfree (pass_packet);
1126 }
1127 }
1128
1129 #define MAGIC_NULL_PID 42000
1130
1131 static void
1132 set_thread (int th, int gen)
1133 {
1134 struct remote_state *rs = get_remote_state ();
1135 char *buf = rs->buf;
1136 int state = gen ? general_thread : continue_thread;
1137
1138 if (state == th)
1139 return;
1140
1141 buf[0] = 'H';
1142 buf[1] = gen ? 'g' : 'c';
1143 if (th == MAGIC_NULL_PID)
1144 {
1145 buf[2] = '0';
1146 buf[3] = '\0';
1147 }
1148 else if (th < 0)
1149 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1150 else
1151 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1152 putpkt (buf);
1153 getpkt (&rs->buf, &rs->buf_size, 0);
1154 if (gen)
1155 general_thread = th;
1156 else
1157 continue_thread = th;
1158 }
1159 \f
1160 /* Return nonzero if the thread TH is still alive on the remote system. */
1161
1162 static int
1163 remote_thread_alive (ptid_t ptid)
1164 {
1165 struct remote_state *rs = get_remote_state ();
1166 int tid = PIDGET (ptid);
1167
1168 if (tid < 0)
1169 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1170 else
1171 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1172 putpkt (rs->buf);
1173 getpkt (&rs->buf, &rs->buf_size, 0);
1174 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1175 }
1176
1177 /* About these extended threadlist and threadinfo packets. They are
1178 variable length packets but, the fields within them are often fixed
1179 length. They are redundent enough to send over UDP as is the
1180 remote protocol in general. There is a matching unit test module
1181 in libstub. */
1182
1183 #define OPAQUETHREADBYTES 8
1184
1185 /* a 64 bit opaque identifier */
1186 typedef unsigned char threadref[OPAQUETHREADBYTES];
1187
1188 /* WARNING: This threadref data structure comes from the remote O.S.,
1189 libstub protocol encoding, and remote.c. it is not particularly
1190 changable. */
1191
1192 /* Right now, the internal structure is int. We want it to be bigger.
1193 Plan to fix this.
1194 */
1195
1196 typedef int gdb_threadref; /* Internal GDB thread reference. */
1197
1198 /* gdb_ext_thread_info is an internal GDB data structure which is
1199 equivalent to the reply of the remote threadinfo packet. */
1200
1201 struct gdb_ext_thread_info
1202 {
1203 threadref threadid; /* External form of thread reference. */
1204 int active; /* Has state interesting to GDB?
1205 regs, stack. */
1206 char display[256]; /* Brief state display, name,
1207 blocked/suspended. */
1208 char shortname[32]; /* To be used to name threads. */
1209 char more_display[256]; /* Long info, statistics, queue depth,
1210 whatever. */
1211 };
1212
1213 /* The volume of remote transfers can be limited by submitting
1214 a mask containing bits specifying the desired information.
1215 Use a union of these values as the 'selection' parameter to
1216 get_thread_info. FIXME: Make these TAG names more thread specific.
1217 */
1218
1219 #define TAG_THREADID 1
1220 #define TAG_EXISTS 2
1221 #define TAG_DISPLAY 4
1222 #define TAG_THREADNAME 8
1223 #define TAG_MOREDISPLAY 16
1224
1225 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1226
1227 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1228
1229 static char *unpack_nibble (char *buf, int *val);
1230
1231 static char *pack_nibble (char *buf, int nibble);
1232
1233 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1234
1235 static char *unpack_byte (char *buf, int *value);
1236
1237 static char *pack_int (char *buf, int value);
1238
1239 static char *unpack_int (char *buf, int *value);
1240
1241 static char *unpack_string (char *src, char *dest, int length);
1242
1243 static char *pack_threadid (char *pkt, threadref *id);
1244
1245 static char *unpack_threadid (char *inbuf, threadref *id);
1246
1247 void int_to_threadref (threadref *id, int value);
1248
1249 static int threadref_to_int (threadref *ref);
1250
1251 static void copy_threadref (threadref *dest, threadref *src);
1252
1253 static int threadmatch (threadref *dest, threadref *src);
1254
1255 static char *pack_threadinfo_request (char *pkt, int mode,
1256 threadref *id);
1257
1258 static int remote_unpack_thread_info_response (char *pkt,
1259 threadref *expectedref,
1260 struct gdb_ext_thread_info
1261 *info);
1262
1263
1264 static int remote_get_threadinfo (threadref *threadid,
1265 int fieldset, /*TAG mask */
1266 struct gdb_ext_thread_info *info);
1267
1268 static char *pack_threadlist_request (char *pkt, int startflag,
1269 int threadcount,
1270 threadref *nextthread);
1271
1272 static int parse_threadlist_response (char *pkt,
1273 int result_limit,
1274 threadref *original_echo,
1275 threadref *resultlist,
1276 int *doneflag);
1277
1278 static int remote_get_threadlist (int startflag,
1279 threadref *nextthread,
1280 int result_limit,
1281 int *done,
1282 int *result_count,
1283 threadref *threadlist);
1284
1285 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1286
1287 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1288 void *context, int looplimit);
1289
1290 static int remote_newthread_step (threadref *ref, void *context);
1291
1292 /* Encode 64 bits in 16 chars of hex. */
1293
1294 static const char hexchars[] = "0123456789abcdef";
1295
1296 static int
1297 ishex (int ch, int *val)
1298 {
1299 if ((ch >= 'a') && (ch <= 'f'))
1300 {
1301 *val = ch - 'a' + 10;
1302 return 1;
1303 }
1304 if ((ch >= 'A') && (ch <= 'F'))
1305 {
1306 *val = ch - 'A' + 10;
1307 return 1;
1308 }
1309 if ((ch >= '0') && (ch <= '9'))
1310 {
1311 *val = ch - '0';
1312 return 1;
1313 }
1314 return 0;
1315 }
1316
1317 static int
1318 stubhex (int ch)
1319 {
1320 if (ch >= 'a' && ch <= 'f')
1321 return ch - 'a' + 10;
1322 if (ch >= '0' && ch <= '9')
1323 return ch - '0';
1324 if (ch >= 'A' && ch <= 'F')
1325 return ch - 'A' + 10;
1326 return -1;
1327 }
1328
1329 static int
1330 stub_unpack_int (char *buff, int fieldlength)
1331 {
1332 int nibble;
1333 int retval = 0;
1334
1335 while (fieldlength)
1336 {
1337 nibble = stubhex (*buff++);
1338 retval |= nibble;
1339 fieldlength--;
1340 if (fieldlength)
1341 retval = retval << 4;
1342 }
1343 return retval;
1344 }
1345
1346 char *
1347 unpack_varlen_hex (char *buff, /* packet to parse */
1348 ULONGEST *result)
1349 {
1350 int nibble;
1351 ULONGEST retval = 0;
1352
1353 while (ishex (*buff, &nibble))
1354 {
1355 buff++;
1356 retval = retval << 4;
1357 retval |= nibble & 0x0f;
1358 }
1359 *result = retval;
1360 return buff;
1361 }
1362
1363 static char *
1364 unpack_nibble (char *buf, int *val)
1365 {
1366 *val = fromhex (*buf++);
1367 return buf;
1368 }
1369
1370 static char *
1371 pack_nibble (char *buf, int nibble)
1372 {
1373 *buf++ = hexchars[(nibble & 0x0f)];
1374 return buf;
1375 }
1376
1377 static char *
1378 pack_hex_byte (char *pkt, int byte)
1379 {
1380 *pkt++ = hexchars[(byte >> 4) & 0xf];
1381 *pkt++ = hexchars[(byte & 0xf)];
1382 return pkt;
1383 }
1384
1385 static char *
1386 unpack_byte (char *buf, int *value)
1387 {
1388 *value = stub_unpack_int (buf, 2);
1389 return buf + 2;
1390 }
1391
1392 static char *
1393 pack_int (char *buf, int value)
1394 {
1395 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1396 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1397 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1398 buf = pack_hex_byte (buf, (value & 0xff));
1399 return buf;
1400 }
1401
1402 static char *
1403 unpack_int (char *buf, int *value)
1404 {
1405 *value = stub_unpack_int (buf, 8);
1406 return buf + 8;
1407 }
1408
1409 #if 0 /* Currently unused, uncomment when needed. */
1410 static char *pack_string (char *pkt, char *string);
1411
1412 static char *
1413 pack_string (char *pkt, char *string)
1414 {
1415 char ch;
1416 int len;
1417
1418 len = strlen (string);
1419 if (len > 200)
1420 len = 200; /* Bigger than most GDB packets, junk??? */
1421 pkt = pack_hex_byte (pkt, len);
1422 while (len-- > 0)
1423 {
1424 ch = *string++;
1425 if ((ch == '\0') || (ch == '#'))
1426 ch = '*'; /* Protect encapsulation. */
1427 *pkt++ = ch;
1428 }
1429 return pkt;
1430 }
1431 #endif /* 0 (unused) */
1432
1433 static char *
1434 unpack_string (char *src, char *dest, int length)
1435 {
1436 while (length--)
1437 *dest++ = *src++;
1438 *dest = '\0';
1439 return src;
1440 }
1441
1442 static char *
1443 pack_threadid (char *pkt, threadref *id)
1444 {
1445 char *limit;
1446 unsigned char *altid;
1447
1448 altid = (unsigned char *) id;
1449 limit = pkt + BUF_THREAD_ID_SIZE;
1450 while (pkt < limit)
1451 pkt = pack_hex_byte (pkt, *altid++);
1452 return pkt;
1453 }
1454
1455
1456 static char *
1457 unpack_threadid (char *inbuf, threadref *id)
1458 {
1459 char *altref;
1460 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1461 int x, y;
1462
1463 altref = (char *) id;
1464
1465 while (inbuf < limit)
1466 {
1467 x = stubhex (*inbuf++);
1468 y = stubhex (*inbuf++);
1469 *altref++ = (x << 4) | y;
1470 }
1471 return inbuf;
1472 }
1473
1474 /* Externally, threadrefs are 64 bits but internally, they are still
1475 ints. This is due to a mismatch of specifications. We would like
1476 to use 64bit thread references internally. This is an adapter
1477 function. */
1478
1479 void
1480 int_to_threadref (threadref *id, int value)
1481 {
1482 unsigned char *scan;
1483
1484 scan = (unsigned char *) id;
1485 {
1486 int i = 4;
1487 while (i--)
1488 *scan++ = 0;
1489 }
1490 *scan++ = (value >> 24) & 0xff;
1491 *scan++ = (value >> 16) & 0xff;
1492 *scan++ = (value >> 8) & 0xff;
1493 *scan++ = (value & 0xff);
1494 }
1495
1496 static int
1497 threadref_to_int (threadref *ref)
1498 {
1499 int i, value = 0;
1500 unsigned char *scan;
1501
1502 scan = *ref;
1503 scan += 4;
1504 i = 4;
1505 while (i-- > 0)
1506 value = (value << 8) | ((*scan++) & 0xff);
1507 return value;
1508 }
1509
1510 static void
1511 copy_threadref (threadref *dest, threadref *src)
1512 {
1513 int i;
1514 unsigned char *csrc, *cdest;
1515
1516 csrc = (unsigned char *) src;
1517 cdest = (unsigned char *) dest;
1518 i = 8;
1519 while (i--)
1520 *cdest++ = *csrc++;
1521 }
1522
1523 static int
1524 threadmatch (threadref *dest, threadref *src)
1525 {
1526 /* Things are broken right now, so just assume we got a match. */
1527 #if 0
1528 unsigned char *srcp, *destp;
1529 int i, result;
1530 srcp = (char *) src;
1531 destp = (char *) dest;
1532
1533 result = 1;
1534 while (i-- > 0)
1535 result &= (*srcp++ == *destp++) ? 1 : 0;
1536 return result;
1537 #endif
1538 return 1;
1539 }
1540
1541 /*
1542 threadid:1, # always request threadid
1543 context_exists:2,
1544 display:4,
1545 unique_name:8,
1546 more_display:16
1547 */
1548
1549 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1550
1551 static char *
1552 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1553 {
1554 *pkt++ = 'q'; /* Info Query */
1555 *pkt++ = 'P'; /* process or thread info */
1556 pkt = pack_int (pkt, mode); /* mode */
1557 pkt = pack_threadid (pkt, id); /* threadid */
1558 *pkt = '\0'; /* terminate */
1559 return pkt;
1560 }
1561
1562 /* These values tag the fields in a thread info response packet. */
1563 /* Tagging the fields allows us to request specific fields and to
1564 add more fields as time goes by. */
1565
1566 #define TAG_THREADID 1 /* Echo the thread identifier. */
1567 #define TAG_EXISTS 2 /* Is this process defined enough to
1568 fetch registers and its stack? */
1569 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1570 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1571 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1572 the process. */
1573
1574 static int
1575 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1576 struct gdb_ext_thread_info *info)
1577 {
1578 struct remote_state *rs = get_remote_state ();
1579 int mask, length;
1580 int tag;
1581 threadref ref;
1582 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1583 int retval = 1;
1584
1585 /* info->threadid = 0; FIXME: implement zero_threadref. */
1586 info->active = 0;
1587 info->display[0] = '\0';
1588 info->shortname[0] = '\0';
1589 info->more_display[0] = '\0';
1590
1591 /* Assume the characters indicating the packet type have been
1592 stripped. */
1593 pkt = unpack_int (pkt, &mask); /* arg mask */
1594 pkt = unpack_threadid (pkt, &ref);
1595
1596 if (mask == 0)
1597 warning (_("Incomplete response to threadinfo request."));
1598 if (!threadmatch (&ref, expectedref))
1599 { /* This is an answer to a different request. */
1600 warning (_("ERROR RMT Thread info mismatch."));
1601 return 0;
1602 }
1603 copy_threadref (&info->threadid, &ref);
1604
1605 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1606
1607 /* Packets are terminated with nulls. */
1608 while ((pkt < limit) && mask && *pkt)
1609 {
1610 pkt = unpack_int (pkt, &tag); /* tag */
1611 pkt = unpack_byte (pkt, &length); /* length */
1612 if (!(tag & mask)) /* Tags out of synch with mask. */
1613 {
1614 warning (_("ERROR RMT: threadinfo tag mismatch."));
1615 retval = 0;
1616 break;
1617 }
1618 if (tag == TAG_THREADID)
1619 {
1620 if (length != 16)
1621 {
1622 warning (_("ERROR RMT: length of threadid is not 16."));
1623 retval = 0;
1624 break;
1625 }
1626 pkt = unpack_threadid (pkt, &ref);
1627 mask = mask & ~TAG_THREADID;
1628 continue;
1629 }
1630 if (tag == TAG_EXISTS)
1631 {
1632 info->active = stub_unpack_int (pkt, length);
1633 pkt += length;
1634 mask = mask & ~(TAG_EXISTS);
1635 if (length > 8)
1636 {
1637 warning (_("ERROR RMT: 'exists' length too long."));
1638 retval = 0;
1639 break;
1640 }
1641 continue;
1642 }
1643 if (tag == TAG_THREADNAME)
1644 {
1645 pkt = unpack_string (pkt, &info->shortname[0], length);
1646 mask = mask & ~TAG_THREADNAME;
1647 continue;
1648 }
1649 if (tag == TAG_DISPLAY)
1650 {
1651 pkt = unpack_string (pkt, &info->display[0], length);
1652 mask = mask & ~TAG_DISPLAY;
1653 continue;
1654 }
1655 if (tag == TAG_MOREDISPLAY)
1656 {
1657 pkt = unpack_string (pkt, &info->more_display[0], length);
1658 mask = mask & ~TAG_MOREDISPLAY;
1659 continue;
1660 }
1661 warning (_("ERROR RMT: unknown thread info tag."));
1662 break; /* Not a tag we know about. */
1663 }
1664 return retval;
1665 }
1666
1667 static int
1668 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1669 struct gdb_ext_thread_info *info)
1670 {
1671 struct remote_state *rs = get_remote_state ();
1672 int result;
1673
1674 pack_threadinfo_request (rs->buf, fieldset, threadid);
1675 putpkt (rs->buf);
1676 getpkt (&rs->buf, &rs->buf_size, 0);
1677 result = remote_unpack_thread_info_response (rs->buf + 2,
1678 threadid, info);
1679 return result;
1680 }
1681
1682 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1683
1684 static char *
1685 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1686 threadref *nextthread)
1687 {
1688 *pkt++ = 'q'; /* info query packet */
1689 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1690 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1691 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1692 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1693 *pkt = '\0';
1694 return pkt;
1695 }
1696
1697 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1698
1699 static int
1700 parse_threadlist_response (char *pkt, int result_limit,
1701 threadref *original_echo, threadref *resultlist,
1702 int *doneflag)
1703 {
1704 struct remote_state *rs = get_remote_state ();
1705 char *limit;
1706 int count, resultcount, done;
1707
1708 resultcount = 0;
1709 /* Assume the 'q' and 'M chars have been stripped. */
1710 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1711 /* done parse past here */
1712 pkt = unpack_byte (pkt, &count); /* count field */
1713 pkt = unpack_nibble (pkt, &done);
1714 /* The first threadid is the argument threadid. */
1715 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1716 while ((count-- > 0) && (pkt < limit))
1717 {
1718 pkt = unpack_threadid (pkt, resultlist++);
1719 if (resultcount++ >= result_limit)
1720 break;
1721 }
1722 if (doneflag)
1723 *doneflag = done;
1724 return resultcount;
1725 }
1726
1727 static int
1728 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1729 int *done, int *result_count, threadref *threadlist)
1730 {
1731 struct remote_state *rs = get_remote_state ();
1732 static threadref echo_nextthread;
1733 int result = 1;
1734
1735 /* Trancate result limit to be smaller than the packet size. */
1736 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1737 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1738
1739 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1740 putpkt (rs->buf);
1741 getpkt (&rs->buf, &rs->buf_size, 0);
1742
1743 if (*rs->buf == '\0')
1744 *result_count = 0;
1745 else
1746 *result_count =
1747 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1748 threadlist, done);
1749
1750 if (!threadmatch (&echo_nextthread, nextthread))
1751 {
1752 /* FIXME: This is a good reason to drop the packet. */
1753 /* Possably, there is a duplicate response. */
1754 /* Possabilities :
1755 retransmit immediatly - race conditions
1756 retransmit after timeout - yes
1757 exit
1758 wait for packet, then exit
1759 */
1760 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1761 return 0; /* I choose simply exiting. */
1762 }
1763 if (*result_count <= 0)
1764 {
1765 if (*done != 1)
1766 {
1767 warning (_("RMT ERROR : failed to get remote thread list."));
1768 result = 0;
1769 }
1770 return result; /* break; */
1771 }
1772 if (*result_count > result_limit)
1773 {
1774 *result_count = 0;
1775 warning (_("RMT ERROR: threadlist response longer than requested."));
1776 return 0;
1777 }
1778 return result;
1779 }
1780
1781 /* This is the interface between remote and threads, remotes upper
1782 interface. */
1783
1784 /* remote_find_new_threads retrieves the thread list and for each
1785 thread in the list, looks up the thread in GDB's internal list,
1786 ading the thread if it does not already exist. This involves
1787 getting partial thread lists from the remote target so, polling the
1788 quit_flag is required. */
1789
1790
1791 /* About this many threadisds fit in a packet. */
1792
1793 #define MAXTHREADLISTRESULTS 32
1794
1795 static int
1796 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1797 int looplimit)
1798 {
1799 int done, i, result_count;
1800 int startflag = 1;
1801 int result = 1;
1802 int loopcount = 0;
1803 static threadref nextthread;
1804 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1805
1806 done = 0;
1807 while (!done)
1808 {
1809 if (loopcount++ > looplimit)
1810 {
1811 result = 0;
1812 warning (_("Remote fetch threadlist -infinite loop-."));
1813 break;
1814 }
1815 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1816 &done, &result_count, resultthreadlist))
1817 {
1818 result = 0;
1819 break;
1820 }
1821 /* Clear for later iterations. */
1822 startflag = 0;
1823 /* Setup to resume next batch of thread references, set nextthread. */
1824 if (result_count >= 1)
1825 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1826 i = 0;
1827 while (result_count--)
1828 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1829 break;
1830 }
1831 return result;
1832 }
1833
1834 static int
1835 remote_newthread_step (threadref *ref, void *context)
1836 {
1837 ptid_t ptid;
1838
1839 ptid = pid_to_ptid (threadref_to_int (ref));
1840
1841 if (!in_thread_list (ptid))
1842 add_thread (ptid);
1843 return 1; /* continue iterator */
1844 }
1845
1846 #define CRAZY_MAX_THREADS 1000
1847
1848 static ptid_t
1849 remote_current_thread (ptid_t oldpid)
1850 {
1851 struct remote_state *rs = get_remote_state ();
1852
1853 putpkt ("qC");
1854 getpkt (&rs->buf, &rs->buf_size, 0);
1855 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1856 /* Use strtoul here, so we'll correctly parse values whose highest
1857 bit is set. The protocol carries them as a simple series of
1858 hex digits; in the absence of a sign, strtol will see such
1859 values as positive numbers out of range for signed 'long', and
1860 return LONG_MAX to indicate an overflow. */
1861 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1862 else
1863 return oldpid;
1864 }
1865
1866 /* Find new threads for info threads command.
1867 * Original version, using John Metzler's thread protocol.
1868 */
1869
1870 static void
1871 remote_find_new_threads (void)
1872 {
1873 remote_threadlist_iterator (remote_newthread_step, 0,
1874 CRAZY_MAX_THREADS);
1875 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1876 inferior_ptid = remote_current_thread (inferior_ptid);
1877 }
1878
1879 /*
1880 * Find all threads for info threads command.
1881 * Uses new thread protocol contributed by Cisco.
1882 * Falls back and attempts to use the older method (above)
1883 * if the target doesn't respond to the new method.
1884 */
1885
1886 static void
1887 remote_threads_info (void)
1888 {
1889 struct remote_state *rs = get_remote_state ();
1890 char *bufp;
1891 int tid;
1892
1893 if (remote_desc == 0) /* paranoia */
1894 error (_("Command can only be used when connected to the remote target."));
1895
1896 if (use_threadinfo_query)
1897 {
1898 putpkt ("qfThreadInfo");
1899 getpkt (&rs->buf, &rs->buf_size, 0);
1900 bufp = rs->buf;
1901 if (bufp[0] != '\0') /* q packet recognized */
1902 {
1903 while (*bufp++ == 'm') /* reply contains one or more TID */
1904 {
1905 do
1906 {
1907 /* Use strtoul here, so we'll correctly parse values
1908 whose highest bit is set. The protocol carries
1909 them as a simple series of hex digits; in the
1910 absence of a sign, strtol will see such values as
1911 positive numbers out of range for signed 'long',
1912 and return LONG_MAX to indicate an overflow. */
1913 tid = strtoul (bufp, &bufp, 16);
1914 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1915 add_thread (pid_to_ptid (tid));
1916 }
1917 while (*bufp++ == ','); /* comma-separated list */
1918 putpkt ("qsThreadInfo");
1919 getpkt (&rs->buf, &rs->buf_size, 0);
1920 bufp = rs->buf;
1921 }
1922 return; /* done */
1923 }
1924 }
1925
1926 /* Else fall back to old method based on jmetzler protocol. */
1927 use_threadinfo_query = 0;
1928 remote_find_new_threads ();
1929 return;
1930 }
1931
1932 /*
1933 * Collect a descriptive string about the given thread.
1934 * The target may say anything it wants to about the thread
1935 * (typically info about its blocked / runnable state, name, etc.).
1936 * This string will appear in the info threads display.
1937 *
1938 * Optional: targets are not required to implement this function.
1939 */
1940
1941 static char *
1942 remote_threads_extra_info (struct thread_info *tp)
1943 {
1944 struct remote_state *rs = get_remote_state ();
1945 int result;
1946 int set;
1947 threadref id;
1948 struct gdb_ext_thread_info threadinfo;
1949 static char display_buf[100]; /* arbitrary... */
1950 int n = 0; /* position in display_buf */
1951
1952 if (remote_desc == 0) /* paranoia */
1953 internal_error (__FILE__, __LINE__,
1954 _("remote_threads_extra_info"));
1955
1956 if (use_threadextra_query)
1957 {
1958 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1959 PIDGET (tp->ptid));
1960 putpkt (rs->buf);
1961 getpkt (&rs->buf, &rs->buf_size, 0);
1962 if (rs->buf[0] != 0)
1963 {
1964 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1965 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1966 display_buf [result] = '\0';
1967 return display_buf;
1968 }
1969 }
1970
1971 /* If the above query fails, fall back to the old method. */
1972 use_threadextra_query = 0;
1973 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1974 | TAG_MOREDISPLAY | TAG_DISPLAY;
1975 int_to_threadref (&id, PIDGET (tp->ptid));
1976 if (remote_get_threadinfo (&id, set, &threadinfo))
1977 if (threadinfo.active)
1978 {
1979 if (*threadinfo.shortname)
1980 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1981 " Name: %s,", threadinfo.shortname);
1982 if (*threadinfo.display)
1983 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1984 " State: %s,", threadinfo.display);
1985 if (*threadinfo.more_display)
1986 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1987 " Priority: %s", threadinfo.more_display);
1988
1989 if (n > 0)
1990 {
1991 /* For purely cosmetic reasons, clear up trailing commas. */
1992 if (',' == display_buf[n-1])
1993 display_buf[n-1] = ' ';
1994 return display_buf;
1995 }
1996 }
1997 return NULL;
1998 }
1999 \f
2000
2001 /* Restart the remote side; this is an extended protocol operation. */
2002
2003 static void
2004 extended_remote_restart (void)
2005 {
2006 struct remote_state *rs = get_remote_state ();
2007
2008 /* Send the restart command; for reasons I don't understand the
2009 remote side really expects a number after the "R". */
2010 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2011 putpkt (rs->buf);
2012
2013 remote_fileio_reset ();
2014 }
2015 \f
2016 /* Clean up connection to a remote debugger. */
2017
2018 static void
2019 remote_close (int quitting)
2020 {
2021 if (remote_desc)
2022 serial_close (remote_desc);
2023 remote_desc = NULL;
2024 }
2025
2026 /* Query the remote side for the text, data and bss offsets. */
2027
2028 static void
2029 get_offsets (void)
2030 {
2031 struct remote_state *rs = get_remote_state ();
2032 char *buf;
2033 char *ptr;
2034 int lose, num_segments = 0, do_sections, do_segments;
2035 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2036 struct section_offsets *offs;
2037 struct symfile_segment_data *data;
2038
2039 if (symfile_objfile == NULL)
2040 return;
2041
2042 putpkt ("qOffsets");
2043 getpkt (&rs->buf, &rs->buf_size, 0);
2044 buf = rs->buf;
2045
2046 if (buf[0] == '\000')
2047 return; /* Return silently. Stub doesn't support
2048 this command. */
2049 if (buf[0] == 'E')
2050 {
2051 warning (_("Remote failure reply: %s"), buf);
2052 return;
2053 }
2054
2055 /* Pick up each field in turn. This used to be done with scanf, but
2056 scanf will make trouble if CORE_ADDR size doesn't match
2057 conversion directives correctly. The following code will work
2058 with any size of CORE_ADDR. */
2059 text_addr = data_addr = bss_addr = 0;
2060 ptr = buf;
2061 lose = 0;
2062
2063 if (strncmp (ptr, "Text=", 5) == 0)
2064 {
2065 ptr += 5;
2066 /* Don't use strtol, could lose on big values. */
2067 while (*ptr && *ptr != ';')
2068 text_addr = (text_addr << 4) + fromhex (*ptr++);
2069
2070 if (strncmp (ptr, ";Data=", 6) == 0)
2071 {
2072 ptr += 6;
2073 while (*ptr && *ptr != ';')
2074 data_addr = (data_addr << 4) + fromhex (*ptr++);
2075 }
2076 else
2077 lose = 1;
2078
2079 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2080 {
2081 ptr += 5;
2082 while (*ptr && *ptr != ';')
2083 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2084
2085 if (bss_addr != data_addr)
2086 warning (_("Target reported unsupported offsets: %s"), buf);
2087 }
2088 else
2089 lose = 1;
2090 }
2091 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2092 {
2093 ptr += 8;
2094 /* Don't use strtol, could lose on big values. */
2095 while (*ptr && *ptr != ';')
2096 text_addr = (text_addr << 4) + fromhex (*ptr++);
2097 num_segments = 1;
2098
2099 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2100 {
2101 ptr += 9;
2102 while (*ptr && *ptr != ';')
2103 data_addr = (data_addr << 4) + fromhex (*ptr++);
2104 num_segments++;
2105 }
2106 }
2107 else
2108 lose = 1;
2109
2110 if (lose)
2111 error (_("Malformed response to offset query, %s"), buf);
2112 else if (*ptr != '\0')
2113 warning (_("Target reported unsupported offsets: %s"), buf);
2114
2115 offs = ((struct section_offsets *)
2116 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2117 memcpy (offs, symfile_objfile->section_offsets,
2118 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2119
2120 data = get_symfile_segment_data (symfile_objfile->obfd);
2121 do_segments = (data != NULL);
2122 do_sections = num_segments == 0;
2123
2124 if (num_segments > 0)
2125 {
2126 segments[0] = text_addr;
2127 segments[1] = data_addr;
2128 }
2129 /* If we have two segments, we can still try to relocate everything
2130 by assuming that the .text and .data offsets apply to the whole
2131 text and data segments. Convert the offsets given in the packet
2132 to base addresses for symfile_map_offsets_to_segments. */
2133 else if (data && data->num_segments == 2)
2134 {
2135 segments[0] = data->segment_bases[0] + text_addr;
2136 segments[1] = data->segment_bases[1] + data_addr;
2137 num_segments = 2;
2138 }
2139 /* There's no way to relocate by segment. */
2140 else
2141 do_segments = 0;
2142
2143 if (do_segments)
2144 {
2145 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2146 offs, num_segments, segments);
2147
2148 if (ret == 0 && !do_sections)
2149 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2150
2151 if (ret > 0)
2152 do_sections = 0;
2153 }
2154
2155 if (data)
2156 free_symfile_segment_data (data);
2157
2158 if (do_sections)
2159 {
2160 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2161
2162 /* This is a temporary kludge to force data and bss to use the same offsets
2163 because that's what nlmconv does now. The real solution requires changes
2164 to the stub and remote.c that I don't have time to do right now. */
2165
2166 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2167 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2168 }
2169
2170 objfile_relocate (symfile_objfile, offs);
2171 }
2172
2173 /* Stub for catch_exception. */
2174
2175 struct start_remote_args
2176 {
2177 int from_tty;
2178
2179 /* The current target. */
2180 struct target_ops *target;
2181
2182 /* Non-zero if this is an extended-remote target. */
2183 int extended_p;
2184 };
2185
2186 static void
2187 remote_start_remote (struct ui_out *uiout, void *opaque)
2188 {
2189 struct remote_state *rs = get_remote_state ();
2190 struct start_remote_args *args = opaque;
2191 char *wait_status = NULL;
2192
2193 immediate_quit++; /* Allow user to interrupt it. */
2194
2195 /* Ack any packet which the remote side has already sent. */
2196 serial_write (remote_desc, "+", 1);
2197
2198 /* Check whether the target is running now. */
2199 putpkt ("?");
2200 getpkt (&rs->buf, &rs->buf_size, 0);
2201
2202 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2203 {
2204 if (args->extended_p)
2205 {
2206 /* We're connected, but not running. Drop out before we
2207 call start_remote. */
2208 target_mark_exited (args->target);
2209 return;
2210 }
2211 else
2212 error (_("The target is not running (try extended-remote?)"));
2213 }
2214 else
2215 {
2216 if (args->extended_p)
2217 target_mark_running (args->target);
2218
2219 /* Save the reply for later. */
2220 wait_status = alloca (strlen (rs->buf) + 1);
2221 strcpy (wait_status, rs->buf);
2222 }
2223
2224 /* Let the stub know that we want it to return the thread. */
2225 set_thread (-1, 0);
2226
2227 /* Without this, some commands which require an active target
2228 (such as kill) won't work. This variable serves (at least)
2229 double duty as both the pid of the target process (if it has
2230 such), and as a flag indicating that a target is active.
2231 These functions should be split out into seperate variables,
2232 especially since GDB will someday have a notion of debugging
2233 several processes. */
2234 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2235
2236 /* Now, if we have thread information, update inferior_ptid. */
2237 inferior_ptid = remote_current_thread (inferior_ptid);
2238
2239 get_offsets (); /* Get text, data & bss offsets. */
2240
2241 /* Use the previously fetched status. */
2242 gdb_assert (wait_status != NULL);
2243 strcpy (rs->buf, wait_status);
2244 rs->cached_wait_status = 1;
2245
2246 immediate_quit--;
2247 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2248 }
2249
2250 /* Open a connection to a remote debugger.
2251 NAME is the filename used for communication. */
2252
2253 static void
2254 remote_open (char *name, int from_tty)
2255 {
2256 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2257 }
2258
2259 /* Just like remote_open, but with asynchronous support. */
2260 static void
2261 remote_async_open (char *name, int from_tty)
2262 {
2263 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2264 }
2265
2266 /* Open a connection to a remote debugger using the extended
2267 remote gdb protocol. NAME is the filename used for communication. */
2268
2269 static void
2270 extended_remote_open (char *name, int from_tty)
2271 {
2272 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2273 0 /* async_p */);
2274 }
2275
2276 /* Just like extended_remote_open, but with asynchronous support. */
2277 static void
2278 extended_remote_async_open (char *name, int from_tty)
2279 {
2280 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2281 1 /*extended_p */, 1 /* async_p */);
2282 }
2283
2284 /* Generic code for opening a connection to a remote target. */
2285
2286 static void
2287 init_all_packet_configs (void)
2288 {
2289 int i;
2290 for (i = 0; i < PACKET_MAX; i++)
2291 update_packet_config (&remote_protocol_packets[i]);
2292 }
2293
2294 /* Symbol look-up. */
2295
2296 static void
2297 remote_check_symbols (struct objfile *objfile)
2298 {
2299 struct remote_state *rs = get_remote_state ();
2300 char *msg, *reply, *tmp;
2301 struct minimal_symbol *sym;
2302 int end;
2303
2304 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2305 return;
2306
2307 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2308 because we need both at the same time. */
2309 msg = alloca (get_remote_packet_size ());
2310
2311 /* Invite target to request symbol lookups. */
2312
2313 putpkt ("qSymbol::");
2314 getpkt (&rs->buf, &rs->buf_size, 0);
2315 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2316 reply = rs->buf;
2317
2318 while (strncmp (reply, "qSymbol:", 8) == 0)
2319 {
2320 tmp = &reply[8];
2321 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2322 msg[end] = '\0';
2323 sym = lookup_minimal_symbol (msg, NULL, NULL);
2324 if (sym == NULL)
2325 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2326 else
2327 {
2328 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2329
2330 /* If this is a function address, return the start of code
2331 instead of any data function descriptor. */
2332 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2333 sym_addr,
2334 &current_target);
2335
2336 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2337 paddr_nz (sym_addr), &reply[8]);
2338 }
2339
2340 putpkt (msg);
2341 getpkt (&rs->buf, &rs->buf_size, 0);
2342 reply = rs->buf;
2343 }
2344 }
2345
2346 static struct serial *
2347 remote_serial_open (char *name)
2348 {
2349 static int udp_warning = 0;
2350
2351 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2352 of in ser-tcp.c, because it is the remote protocol assuming that the
2353 serial connection is reliable and not the serial connection promising
2354 to be. */
2355 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2356 {
2357 warning (_("\
2358 The remote protocol may be unreliable over UDP.\n\
2359 Some events may be lost, rendering further debugging impossible."));
2360 udp_warning = 1;
2361 }
2362
2363 return serial_open (name);
2364 }
2365
2366 /* This type describes each known response to the qSupported
2367 packet. */
2368 struct protocol_feature
2369 {
2370 /* The name of this protocol feature. */
2371 const char *name;
2372
2373 /* The default for this protocol feature. */
2374 enum packet_support default_support;
2375
2376 /* The function to call when this feature is reported, or after
2377 qSupported processing if the feature is not supported.
2378 The first argument points to this structure. The second
2379 argument indicates whether the packet requested support be
2380 enabled, disabled, or probed (or the default, if this function
2381 is being called at the end of processing and this feature was
2382 not reported). The third argument may be NULL; if not NULL, it
2383 is a NUL-terminated string taken from the packet following
2384 this feature's name and an equals sign. */
2385 void (*func) (const struct protocol_feature *, enum packet_support,
2386 const char *);
2387
2388 /* The corresponding packet for this feature. Only used if
2389 FUNC is remote_supported_packet. */
2390 int packet;
2391 };
2392
2393 static void
2394 remote_supported_packet (const struct protocol_feature *feature,
2395 enum packet_support support,
2396 const char *argument)
2397 {
2398 if (argument)
2399 {
2400 warning (_("Remote qSupported response supplied an unexpected value for"
2401 " \"%s\"."), feature->name);
2402 return;
2403 }
2404
2405 if (remote_protocol_packets[feature->packet].support
2406 == PACKET_SUPPORT_UNKNOWN)
2407 remote_protocol_packets[feature->packet].support = support;
2408 }
2409
2410 static void
2411 remote_packet_size (const struct protocol_feature *feature,
2412 enum packet_support support, const char *value)
2413 {
2414 struct remote_state *rs = get_remote_state ();
2415
2416 int packet_size;
2417 char *value_end;
2418
2419 if (support != PACKET_ENABLE)
2420 return;
2421
2422 if (value == NULL || *value == '\0')
2423 {
2424 warning (_("Remote target reported \"%s\" without a size."),
2425 feature->name);
2426 return;
2427 }
2428
2429 errno = 0;
2430 packet_size = strtol (value, &value_end, 16);
2431 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2432 {
2433 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2434 feature->name, value);
2435 return;
2436 }
2437
2438 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2439 {
2440 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2441 packet_size, MAX_REMOTE_PACKET_SIZE);
2442 packet_size = MAX_REMOTE_PACKET_SIZE;
2443 }
2444
2445 /* Record the new maximum packet size. */
2446 rs->explicit_packet_size = packet_size;
2447 }
2448
2449 static struct protocol_feature remote_protocol_features[] = {
2450 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2451 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2452 PACKET_qXfer_auxv },
2453 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2454 PACKET_qXfer_features },
2455 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2456 PACKET_qXfer_libraries },
2457 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2458 PACKET_qXfer_memory_map },
2459 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2460 PACKET_qXfer_spu_read },
2461 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2462 PACKET_qXfer_spu_write },
2463 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2464 PACKET_QPassSignals },
2465 };
2466
2467 static void
2468 remote_query_supported (void)
2469 {
2470 struct remote_state *rs = get_remote_state ();
2471 char *next;
2472 int i;
2473 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2474
2475 /* The packet support flags are handled differently for this packet
2476 than for most others. We treat an error, a disabled packet, and
2477 an empty response identically: any features which must be reported
2478 to be used will be automatically disabled. An empty buffer
2479 accomplishes this, since that is also the representation for a list
2480 containing no features. */
2481
2482 rs->buf[0] = 0;
2483 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2484 {
2485 putpkt ("qSupported");
2486 getpkt (&rs->buf, &rs->buf_size, 0);
2487
2488 /* If an error occured, warn, but do not return - just reset the
2489 buffer to empty and go on to disable features. */
2490 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2491 == PACKET_ERROR)
2492 {
2493 warning (_("Remote failure reply: %s"), rs->buf);
2494 rs->buf[0] = 0;
2495 }
2496 }
2497
2498 memset (seen, 0, sizeof (seen));
2499
2500 next = rs->buf;
2501 while (*next)
2502 {
2503 enum packet_support is_supported;
2504 char *p, *end, *name_end, *value;
2505
2506 /* First separate out this item from the rest of the packet. If
2507 there's another item after this, we overwrite the separator
2508 (terminated strings are much easier to work with). */
2509 p = next;
2510 end = strchr (p, ';');
2511 if (end == NULL)
2512 {
2513 end = p + strlen (p);
2514 next = end;
2515 }
2516 else
2517 {
2518 *end = '\0';
2519 next = end + 1;
2520
2521 if (end == p)
2522 {
2523 warning (_("empty item in \"qSupported\" response"));
2524 continue;
2525 }
2526 }
2527
2528 name_end = strchr (p, '=');
2529 if (name_end)
2530 {
2531 /* This is a name=value entry. */
2532 is_supported = PACKET_ENABLE;
2533 value = name_end + 1;
2534 *name_end = '\0';
2535 }
2536 else
2537 {
2538 value = NULL;
2539 switch (end[-1])
2540 {
2541 case '+':
2542 is_supported = PACKET_ENABLE;
2543 break;
2544
2545 case '-':
2546 is_supported = PACKET_DISABLE;
2547 break;
2548
2549 case '?':
2550 is_supported = PACKET_SUPPORT_UNKNOWN;
2551 break;
2552
2553 default:
2554 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2555 continue;
2556 }
2557 end[-1] = '\0';
2558 }
2559
2560 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2561 if (strcmp (remote_protocol_features[i].name, p) == 0)
2562 {
2563 const struct protocol_feature *feature;
2564
2565 seen[i] = 1;
2566 feature = &remote_protocol_features[i];
2567 feature->func (feature, is_supported, value);
2568 break;
2569 }
2570 }
2571
2572 /* If we increased the packet size, make sure to increase the global
2573 buffer size also. We delay this until after parsing the entire
2574 qSupported packet, because this is the same buffer we were
2575 parsing. */
2576 if (rs->buf_size < rs->explicit_packet_size)
2577 {
2578 rs->buf_size = rs->explicit_packet_size;
2579 rs->buf = xrealloc (rs->buf, rs->buf_size);
2580 }
2581
2582 /* Handle the defaults for unmentioned features. */
2583 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2584 if (!seen[i])
2585 {
2586 const struct protocol_feature *feature;
2587
2588 feature = &remote_protocol_features[i];
2589 feature->func (feature, feature->default_support, NULL);
2590 }
2591 }
2592
2593
2594 static void
2595 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2596 int extended_p, int async_p)
2597 {
2598 struct remote_state *rs = get_remote_state ();
2599 if (name == 0)
2600 error (_("To open a remote debug connection, you need to specify what\n"
2601 "serial device is attached to the remote system\n"
2602 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2603
2604 /* See FIXME above. */
2605 if (!async_p)
2606 wait_forever_enabled_p = 1;
2607
2608 /* If we're connected to a running target, target_preopen will kill it.
2609 But if we're connected to a target system with no running process,
2610 then we will still be connected when it returns. Ask this question
2611 first, before target_preopen has a chance to kill anything. */
2612 if (remote_desc != NULL && !target_has_execution)
2613 {
2614 if (!from_tty
2615 || query (_("Already connected to a remote target. Disconnect? ")))
2616 pop_target ();
2617 else
2618 error (_("Still connected."));
2619 }
2620
2621 target_preopen (from_tty);
2622
2623 unpush_target (target);
2624
2625 /* This time without a query. If we were connected to an
2626 extended-remote target and target_preopen killed the running
2627 process, we may still be connected. If we are starting "target
2628 remote" now, the extended-remote target will not have been
2629 removed by unpush_target. */
2630 if (remote_desc != NULL && !target_has_execution)
2631 pop_target ();
2632
2633 /* Make sure we send the passed signals list the next time we resume. */
2634 xfree (last_pass_packet);
2635 last_pass_packet = NULL;
2636
2637 remote_fileio_reset ();
2638 reopen_exec_file ();
2639 reread_symbols ();
2640
2641 remote_desc = remote_serial_open (name);
2642 if (!remote_desc)
2643 perror_with_name (name);
2644
2645 if (baud_rate != -1)
2646 {
2647 if (serial_setbaudrate (remote_desc, baud_rate))
2648 {
2649 /* The requested speed could not be set. Error out to
2650 top level after closing remote_desc. Take care to
2651 set remote_desc to NULL to avoid closing remote_desc
2652 more than once. */
2653 serial_close (remote_desc);
2654 remote_desc = NULL;
2655 perror_with_name (name);
2656 }
2657 }
2658
2659 serial_raw (remote_desc);
2660
2661 /* If there is something sitting in the buffer we might take it as a
2662 response to a command, which would be bad. */
2663 serial_flush_input (remote_desc);
2664
2665 if (from_tty)
2666 {
2667 puts_filtered ("Remote debugging using ");
2668 puts_filtered (name);
2669 puts_filtered ("\n");
2670 }
2671 push_target (target); /* Switch to using remote target now. */
2672
2673 /* Assume that the target is running, unless we learn otherwise. */
2674 target_mark_running (target);
2675
2676 /* Reset the target state; these things will be queried either by
2677 remote_query_supported or as they are needed. */
2678 init_all_packet_configs ();
2679 rs->explicit_packet_size = 0;
2680
2681 general_thread = -2;
2682 continue_thread = -2;
2683
2684 /* Probe for ability to use "ThreadInfo" query, as required. */
2685 use_threadinfo_query = 1;
2686 use_threadextra_query = 1;
2687
2688 /* The first packet we send to the target is the optional "supported
2689 packets" request. If the target can answer this, it will tell us
2690 which later probes to skip. */
2691 remote_query_supported ();
2692
2693 /* Next, if the target can specify a description, read it. We do
2694 this before anything involving memory or registers. */
2695 target_find_description ();
2696
2697 if (async_p)
2698 {
2699 /* With this target we start out by owning the terminal. */
2700 remote_async_terminal_ours_p = 1;
2701
2702 /* FIXME: cagney/1999-09-23: During the initial connection it is
2703 assumed that the target is already ready and able to respond to
2704 requests. Unfortunately remote_start_remote() eventually calls
2705 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2706 around this. Eventually a mechanism that allows
2707 wait_for_inferior() to expect/get timeouts will be
2708 implemented. */
2709 wait_forever_enabled_p = 0;
2710 }
2711
2712 /* First delete any symbols previously loaded from shared libraries. */
2713 no_shared_libraries (NULL, 0);
2714
2715 /* Start the remote connection. If error() or QUIT, discard this
2716 target (we'd otherwise be in an inconsistent state) and then
2717 propogate the error on up the exception chain. This ensures that
2718 the caller doesn't stumble along blindly assuming that the
2719 function succeeded. The CLI doesn't have this problem but other
2720 UI's, such as MI do.
2721
2722 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2723 this function should return an error indication letting the
2724 caller restore the previous state. Unfortunately the command
2725 ``target remote'' is directly wired to this function making that
2726 impossible. On a positive note, the CLI side of this problem has
2727 been fixed - the function set_cmd_context() makes it possible for
2728 all the ``target ....'' commands to share a common callback
2729 function. See cli-dump.c. */
2730 {
2731 struct gdb_exception ex;
2732 struct start_remote_args args;
2733
2734 args.from_tty = from_tty;
2735 args.target = target;
2736 args.extended_p = extended_p;
2737
2738 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
2739 if (ex.reason < 0)
2740 {
2741 pop_target ();
2742 if (async_p)
2743 wait_forever_enabled_p = 1;
2744 throw_exception (ex);
2745 }
2746 }
2747
2748 if (async_p)
2749 wait_forever_enabled_p = 1;
2750
2751 if (extended_p)
2752 {
2753 /* Tell the remote that we are using the extended protocol. */
2754 putpkt ("!");
2755 getpkt (&rs->buf, &rs->buf_size, 0);
2756 }
2757
2758 /* If we connected to a live target, do some additional setup. */
2759 if (target_has_execution)
2760 {
2761 if (exec_bfd) /* No use without an exec file. */
2762 remote_check_symbols (symfile_objfile);
2763 }
2764 }
2765
2766 /* This takes a program previously attached to and detaches it. After
2767 this is done, GDB can be used to debug some other program. We
2768 better not have left any breakpoints in the target program or it'll
2769 die when it hits one. */
2770
2771 static void
2772 remote_detach_1 (char *args, int from_tty, int extended)
2773 {
2774 struct remote_state *rs = get_remote_state ();
2775
2776 if (args)
2777 error (_("Argument given to \"detach\" when remotely debugging."));
2778
2779 if (!target_has_execution)
2780 error (_("No process to detach from."));
2781
2782 /* Tell the remote target to detach. */
2783 strcpy (rs->buf, "D");
2784 putpkt (rs->buf);
2785 getpkt (&rs->buf, &rs->buf_size, 0);
2786
2787 if (rs->buf[0] == 'E')
2788 error (_("Can't detach process."));
2789
2790 /* Unregister the file descriptor from the event loop. */
2791 if (target_is_async_p ())
2792 serial_async (remote_desc, NULL, 0);
2793
2794 target_mourn_inferior ();
2795 if (from_tty)
2796 {
2797 if (extended)
2798 puts_filtered ("Detached from remote process.\n");
2799 else
2800 puts_filtered ("Ending remote debugging.\n");
2801 }
2802 }
2803
2804 static void
2805 remote_detach (char *args, int from_tty)
2806 {
2807 remote_detach_1 (args, from_tty, 0);
2808 }
2809
2810 static void
2811 extended_remote_detach (char *args, int from_tty)
2812 {
2813 remote_detach_1 (args, from_tty, 1);
2814 }
2815
2816 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2817
2818 static void
2819 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2820 {
2821 if (args)
2822 error (_("Argument given to \"disconnect\" when remotely debugging."));
2823
2824 /* Unregister the file descriptor from the event loop. */
2825 if (target_is_async_p ())
2826 serial_async (remote_desc, NULL, 0);
2827
2828 /* Make sure we unpush even the extended remote targets; mourn
2829 won't do it. So call remote_mourn_1 directly instead of
2830 target_mourn_inferior. */
2831 remote_mourn_1 (target);
2832
2833 if (from_tty)
2834 puts_filtered ("Ending remote debugging.\n");
2835 }
2836
2837 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
2838 be chatty about it. */
2839
2840 static void
2841 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
2842 {
2843 struct remote_state *rs = get_remote_state ();
2844 pid_t pid;
2845 char *dummy;
2846
2847 if (!args)
2848 error_no_arg (_("process-id to attach"));
2849
2850 dummy = args;
2851 pid = strtol (args, &dummy, 0);
2852 /* Some targets don't set errno on errors, grrr! */
2853 if (pid == 0 && args == dummy)
2854 error (_("Illegal process-id: %s."), args);
2855
2856 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2857 error (_("This target does not support attaching to a process"));
2858
2859 sprintf (rs->buf, "vAttach;%x", pid);
2860 putpkt (rs->buf);
2861 getpkt (&rs->buf, &rs->buf_size, 0);
2862
2863 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
2864 {
2865 if (from_tty)
2866 printf_unfiltered (_("Attached to %s\n"),
2867 target_pid_to_str (pid_to_ptid (pid)));
2868
2869 /* We have a wait response; reuse it. */
2870 rs->cached_wait_status = 1;
2871 }
2872 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2873 error (_("This target does not support attaching to a process"));
2874 else
2875 error (_("Attaching to %s failed"),
2876 target_pid_to_str (pid_to_ptid (pid)));
2877
2878 target_mark_running (target);
2879 inferior_ptid = pid_to_ptid (pid);
2880 attach_flag = 1;
2881 }
2882
2883 static void
2884 extended_remote_attach (char *args, int from_tty)
2885 {
2886 extended_remote_attach_1 (&extended_remote_ops, args, from_tty);
2887 }
2888
2889 static void
2890 extended_async_remote_attach (char *args, int from_tty)
2891 {
2892 extended_remote_attach_1 (&extended_async_remote_ops, args, from_tty);
2893 }
2894
2895 /* Convert hex digit A to a number. */
2896
2897 static int
2898 fromhex (int a)
2899 {
2900 if (a >= '0' && a <= '9')
2901 return a - '0';
2902 else if (a >= 'a' && a <= 'f')
2903 return a - 'a' + 10;
2904 else if (a >= 'A' && a <= 'F')
2905 return a - 'A' + 10;
2906 else
2907 error (_("Reply contains invalid hex digit %d"), a);
2908 }
2909
2910 static int
2911 hex2bin (const char *hex, gdb_byte *bin, int count)
2912 {
2913 int i;
2914
2915 for (i = 0; i < count; i++)
2916 {
2917 if (hex[0] == 0 || hex[1] == 0)
2918 {
2919 /* Hex string is short, or of uneven length.
2920 Return the count that has been converted so far. */
2921 return i;
2922 }
2923 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2924 hex += 2;
2925 }
2926 return i;
2927 }
2928
2929 /* Convert number NIB to a hex digit. */
2930
2931 static int
2932 tohex (int nib)
2933 {
2934 if (nib < 10)
2935 return '0' + nib;
2936 else
2937 return 'a' + nib - 10;
2938 }
2939
2940 static int
2941 bin2hex (const gdb_byte *bin, char *hex, int count)
2942 {
2943 int i;
2944 /* May use a length, or a nul-terminated string as input. */
2945 if (count == 0)
2946 count = strlen ((char *) bin);
2947
2948 for (i = 0; i < count; i++)
2949 {
2950 *hex++ = tohex ((*bin >> 4) & 0xf);
2951 *hex++ = tohex (*bin++ & 0xf);
2952 }
2953 *hex = 0;
2954 return i;
2955 }
2956 \f
2957 /* Check for the availability of vCont. This function should also check
2958 the response. */
2959
2960 static void
2961 remote_vcont_probe (struct remote_state *rs)
2962 {
2963 char *buf;
2964
2965 strcpy (rs->buf, "vCont?");
2966 putpkt (rs->buf);
2967 getpkt (&rs->buf, &rs->buf_size, 0);
2968 buf = rs->buf;
2969
2970 /* Make sure that the features we assume are supported. */
2971 if (strncmp (buf, "vCont", 5) == 0)
2972 {
2973 char *p = &buf[5];
2974 int support_s, support_S, support_c, support_C;
2975
2976 support_s = 0;
2977 support_S = 0;
2978 support_c = 0;
2979 support_C = 0;
2980 while (p && *p == ';')
2981 {
2982 p++;
2983 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2984 support_s = 1;
2985 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2986 support_S = 1;
2987 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2988 support_c = 1;
2989 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2990 support_C = 1;
2991
2992 p = strchr (p, ';');
2993 }
2994
2995 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2996 BUF will make packet_ok disable the packet. */
2997 if (!support_s || !support_S || !support_c || !support_C)
2998 buf[0] = 0;
2999 }
3000
3001 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3002 }
3003
3004 /* Resume the remote inferior by using a "vCont" packet. The thread
3005 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3006 resumed thread should be single-stepped and/or signalled. If PTID's
3007 PID is -1, then all threads are resumed; the thread to be stepped and/or
3008 signalled is given in the global INFERIOR_PTID. This function returns
3009 non-zero iff it resumes the inferior.
3010
3011 This function issues a strict subset of all possible vCont commands at the
3012 moment. */
3013
3014 static int
3015 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3016 {
3017 struct remote_state *rs = get_remote_state ();
3018 int pid = PIDGET (ptid);
3019 char *outbuf;
3020 struct cleanup *old_cleanup;
3021
3022 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3023 remote_vcont_probe (rs);
3024
3025 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3026 return 0;
3027
3028 /* If we could generate a wider range of packets, we'd have to worry
3029 about overflowing BUF. Should there be a generic
3030 "multi-part-packet" packet? */
3031
3032 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
3033 {
3034 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
3035 don't have any PID numbers the inferior will understand. Make sure
3036 to only send forms that do not specify a PID. */
3037 if (step && siggnal != TARGET_SIGNAL_0)
3038 outbuf = xstrprintf ("vCont;S%02x", siggnal);
3039 else if (step)
3040 outbuf = xstrprintf ("vCont;s");
3041 else if (siggnal != TARGET_SIGNAL_0)
3042 outbuf = xstrprintf ("vCont;C%02x", siggnal);
3043 else
3044 outbuf = xstrprintf ("vCont;c");
3045 }
3046 else if (pid == -1)
3047 {
3048 /* Resume all threads, with preference for INFERIOR_PTID. */
3049 if (step && siggnal != TARGET_SIGNAL_0)
3050 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
3051 PIDGET (inferior_ptid));
3052 else if (step)
3053 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
3054 else if (siggnal != TARGET_SIGNAL_0)
3055 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
3056 PIDGET (inferior_ptid));
3057 else
3058 outbuf = xstrprintf ("vCont;c");
3059 }
3060 else
3061 {
3062 /* Scheduler locking; resume only PTID. */
3063 if (step && siggnal != TARGET_SIGNAL_0)
3064 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
3065 else if (step)
3066 outbuf = xstrprintf ("vCont;s:%x", pid);
3067 else if (siggnal != TARGET_SIGNAL_0)
3068 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
3069 else
3070 outbuf = xstrprintf ("vCont;c:%x", pid);
3071 }
3072
3073 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
3074 old_cleanup = make_cleanup (xfree, outbuf);
3075
3076 putpkt (outbuf);
3077
3078 do_cleanups (old_cleanup);
3079
3080 return 1;
3081 }
3082
3083 /* Tell the remote machine to resume. */
3084
3085 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3086
3087 static int last_sent_step;
3088
3089 static void
3090 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3091 {
3092 struct remote_state *rs = get_remote_state ();
3093 char *buf;
3094 int pid = PIDGET (ptid);
3095
3096 last_sent_signal = siggnal;
3097 last_sent_step = step;
3098
3099 /* A hook for when we need to do something at the last moment before
3100 resumption. */
3101 if (deprecated_target_resume_hook)
3102 (*deprecated_target_resume_hook) ();
3103
3104 /* Update the inferior on signals to silently pass, if they've changed. */
3105 remote_pass_signals ();
3106
3107 /* The vCont packet doesn't need to specify threads via Hc. */
3108 if (remote_vcont_resume (ptid, step, siggnal))
3109 return;
3110
3111 /* All other supported resume packets do use Hc, so call set_thread. */
3112 if (pid == -1)
3113 set_thread (0, 0); /* Run any thread. */
3114 else
3115 set_thread (pid, 0); /* Run this thread. */
3116
3117 buf = rs->buf;
3118 if (siggnal != TARGET_SIGNAL_0)
3119 {
3120 buf[0] = step ? 'S' : 'C';
3121 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3122 buf[2] = tohex (((int) siggnal) & 0xf);
3123 buf[3] = '\0';
3124 }
3125 else
3126 strcpy (buf, step ? "s" : "c");
3127
3128 putpkt (buf);
3129 }
3130
3131 /* Same as remote_resume, but with async support. */
3132 static void
3133 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
3134 {
3135 remote_resume (ptid, step, siggnal);
3136
3137 /* We are about to start executing the inferior, let's register it
3138 with the event loop. NOTE: this is the one place where all the
3139 execution commands end up. We could alternatively do this in each
3140 of the execution commands in infcmd.c. */
3141 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3142 into infcmd.c in order to allow inferior function calls to work
3143 NOT asynchronously. */
3144 if (target_can_async_p ())
3145 target_async (inferior_event_handler, 0);
3146 /* Tell the world that the target is now executing. */
3147 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
3148 this? Instead, should the client of target just assume (for
3149 async targets) that the target is going to start executing? Is
3150 this information already found in the continuation block? */
3151 if (target_is_async_p ())
3152 target_executing = 1;
3153 }
3154 \f
3155
3156 /* Set up the signal handler for SIGINT, while the target is
3157 executing, ovewriting the 'regular' SIGINT signal handler. */
3158 static void
3159 initialize_sigint_signal_handler (void)
3160 {
3161 sigint_remote_token =
3162 create_async_signal_handler (async_remote_interrupt, NULL);
3163 signal (SIGINT, handle_remote_sigint);
3164 }
3165
3166 /* Signal handler for SIGINT, while the target is executing. */
3167 static void
3168 handle_remote_sigint (int sig)
3169 {
3170 signal (sig, handle_remote_sigint_twice);
3171 sigint_remote_twice_token =
3172 create_async_signal_handler (async_remote_interrupt_twice, NULL);
3173 mark_async_signal_handler_wrapper (sigint_remote_token);
3174 }
3175
3176 /* Signal handler for SIGINT, installed after SIGINT has already been
3177 sent once. It will take effect the second time that the user sends
3178 a ^C. */
3179 static void
3180 handle_remote_sigint_twice (int sig)
3181 {
3182 signal (sig, handle_sigint);
3183 sigint_remote_twice_token =
3184 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
3185 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3186 }
3187
3188 /* Perform the real interruption of the target execution, in response
3189 to a ^C. */
3190 static void
3191 async_remote_interrupt (gdb_client_data arg)
3192 {
3193 if (remote_debug)
3194 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3195
3196 target_stop ();
3197 }
3198
3199 /* Perform interrupt, if the first attempt did not succeed. Just give
3200 up on the target alltogether. */
3201 void
3202 async_remote_interrupt_twice (gdb_client_data arg)
3203 {
3204 if (remote_debug)
3205 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3206 /* Do something only if the target was not killed by the previous
3207 cntl-C. */
3208 if (target_executing)
3209 {
3210 interrupt_query ();
3211 signal (SIGINT, handle_remote_sigint);
3212 }
3213 }
3214
3215 /* Reinstall the usual SIGINT handlers, after the target has
3216 stopped. */
3217 static void
3218 cleanup_sigint_signal_handler (void *dummy)
3219 {
3220 signal (SIGINT, handle_sigint);
3221 if (sigint_remote_twice_token)
3222 delete_async_signal_handler (&sigint_remote_twice_token);
3223 if (sigint_remote_token)
3224 delete_async_signal_handler (&sigint_remote_token);
3225 }
3226
3227 /* Send ^C to target to halt it. Target will respond, and send us a
3228 packet. */
3229 static void (*ofunc) (int);
3230
3231 /* The command line interface's stop routine. This function is installed
3232 as a signal handler for SIGINT. The first time a user requests a
3233 stop, we call remote_stop to send a break or ^C. If there is no
3234 response from the target (it didn't stop when the user requested it),
3235 we ask the user if he'd like to detach from the target. */
3236 static void
3237 remote_interrupt (int signo)
3238 {
3239 /* If this doesn't work, try more severe steps. */
3240 signal (signo, remote_interrupt_twice);
3241
3242 if (remote_debug)
3243 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3244
3245 target_stop ();
3246 }
3247
3248 /* The user typed ^C twice. */
3249
3250 static void
3251 remote_interrupt_twice (int signo)
3252 {
3253 signal (signo, ofunc);
3254 interrupt_query ();
3255 signal (signo, remote_interrupt);
3256 }
3257
3258 /* This is the generic stop called via the target vector. When a target
3259 interrupt is requested, either by the command line or the GUI, we
3260 will eventually end up here. */
3261 static void
3262 remote_stop (void)
3263 {
3264 /* Send a break or a ^C, depending on user preference. */
3265 if (remote_debug)
3266 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3267
3268 if (remote_break)
3269 serial_send_break (remote_desc);
3270 else
3271 serial_write (remote_desc, "\003", 1);
3272 }
3273
3274 /* Ask the user what to do when an interrupt is received. */
3275
3276 static void
3277 interrupt_query (void)
3278 {
3279 target_terminal_ours ();
3280
3281 if (query ("Interrupted while waiting for the program.\n\
3282 Give up (and stop debugging it)? "))
3283 {
3284 target_mourn_inferior ();
3285 deprecated_throw_reason (RETURN_QUIT);
3286 }
3287
3288 target_terminal_inferior ();
3289 }
3290
3291 /* Enable/disable target terminal ownership. Most targets can use
3292 terminal groups to control terminal ownership. Remote targets are
3293 different in that explicit transfer of ownership to/from GDB/target
3294 is required. */
3295
3296 static void
3297 remote_async_terminal_inferior (void)
3298 {
3299 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3300 sync_execution here. This function should only be called when
3301 GDB is resuming the inferior in the forground. A background
3302 resume (``run&'') should leave GDB in control of the terminal and
3303 consequently should not call this code. */
3304 if (!sync_execution)
3305 return;
3306 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3307 calls target_terminal_*() idenpotent. The event-loop GDB talking
3308 to an asynchronous target with a synchronous command calls this
3309 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3310 stops trying to transfer the terminal to the target when it
3311 shouldn't this guard can go away. */
3312 if (!remote_async_terminal_ours_p)
3313 return;
3314 delete_file_handler (input_fd);
3315 remote_async_terminal_ours_p = 0;
3316 initialize_sigint_signal_handler ();
3317 /* NOTE: At this point we could also register our selves as the
3318 recipient of all input. Any characters typed could then be
3319 passed on down to the target. */
3320 }
3321
3322 static void
3323 remote_async_terminal_ours (void)
3324 {
3325 /* See FIXME in remote_async_terminal_inferior. */
3326 if (!sync_execution)
3327 return;
3328 /* See FIXME in remote_async_terminal_inferior. */
3329 if (remote_async_terminal_ours_p)
3330 return;
3331 cleanup_sigint_signal_handler (NULL);
3332 add_file_handler (input_fd, stdin_event_handler, 0);
3333 remote_async_terminal_ours_p = 1;
3334 }
3335
3336 /* If nonzero, ignore the next kill. */
3337
3338 int kill_kludge;
3339
3340 void
3341 remote_console_output (char *msg)
3342 {
3343 char *p;
3344
3345 for (p = msg; p[0] && p[1]; p += 2)
3346 {
3347 char tb[2];
3348 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3349 tb[0] = c;
3350 tb[1] = 0;
3351 fputs_unfiltered (tb, gdb_stdtarg);
3352 }
3353 gdb_flush (gdb_stdtarg);
3354 }
3355
3356 /* Wait until the remote machine stops, then return,
3357 storing status in STATUS just as `wait' would.
3358 Returns "pid", which in the case of a multi-threaded
3359 remote OS, is the thread-id. */
3360
3361 static ptid_t
3362 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3363 {
3364 struct remote_state *rs = get_remote_state ();
3365 struct remote_arch_state *rsa = get_remote_arch_state ();
3366 ULONGEST thread_num = -1;
3367 ULONGEST addr;
3368 int solibs_changed = 0;
3369
3370 status->kind = TARGET_WAITKIND_EXITED;
3371 status->value.integer = 0;
3372
3373 while (1)
3374 {
3375 char *buf, *p;
3376
3377 if (rs->cached_wait_status)
3378 /* Use the cached wait status, but only once. */
3379 rs->cached_wait_status = 0;
3380 else
3381 {
3382 ofunc = signal (SIGINT, remote_interrupt);
3383 /* If the user hit C-c before this packet, or between packets,
3384 pretend that it was hit right here. */
3385 if (quit_flag)
3386 {
3387 quit_flag = 0;
3388 remote_interrupt (SIGINT);
3389 }
3390 getpkt (&rs->buf, &rs->buf_size, 1);
3391 signal (SIGINT, ofunc);
3392 }
3393
3394 buf = rs->buf;
3395
3396 /* This is a hook for when we need to do something (perhaps the
3397 collection of trace data) every time the target stops. */
3398 if (deprecated_target_wait_loop_hook)
3399 (*deprecated_target_wait_loop_hook) ();
3400
3401 remote_stopped_by_watchpoint_p = 0;
3402
3403 switch (buf[0])
3404 {
3405 case 'E': /* Error of some sort. */
3406 /* We're out of sync with the target now. Did it continue or not?
3407 Not is more likely, so report a stop. */
3408 warning (_("Remote failure reply: %s"), buf);
3409 status->kind = TARGET_WAITKIND_STOPPED;
3410 status->value.sig = TARGET_SIGNAL_0;
3411 goto got_status;
3412 case 'F': /* File-I/O request. */
3413 remote_fileio_request (buf);
3414 continue;
3415 case 'T': /* Status with PC, SP, FP, ... */
3416 {
3417 gdb_byte regs[MAX_REGISTER_SIZE];
3418
3419 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3420 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3421 ss = signal number
3422 n... = register number
3423 r... = register contents
3424 */
3425 p = &buf[3]; /* after Txx */
3426
3427 while (*p)
3428 {
3429 char *p1;
3430 char *p_temp;
3431 int fieldsize;
3432 LONGEST pnum = 0;
3433
3434 /* If the packet contains a register number save it in
3435 pnum and set p1 to point to the character following
3436 it. Otherwise p1 points to p. */
3437
3438 /* If this packet is an awatch packet, don't parse the
3439 'a' as a register number. */
3440
3441 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3442 {
3443 /* Read the ``P'' register number. */
3444 pnum = strtol (p, &p_temp, 16);
3445 p1 = p_temp;
3446 }
3447 else
3448 p1 = p;
3449
3450 if (p1 == p) /* No register number present here. */
3451 {
3452 p1 = strchr (p, ':');
3453 if (p1 == NULL)
3454 error (_("Malformed packet(a) (missing colon): %s\n\
3455 Packet: '%s'\n"),
3456 p, buf);
3457 if (strncmp (p, "thread", p1 - p) == 0)
3458 {
3459 p_temp = unpack_varlen_hex (++p1, &thread_num);
3460 record_currthread (thread_num);
3461 p = p_temp;
3462 }
3463 else if ((strncmp (p, "watch", p1 - p) == 0)
3464 || (strncmp (p, "rwatch", p1 - p) == 0)
3465 || (strncmp (p, "awatch", p1 - p) == 0))
3466 {
3467 remote_stopped_by_watchpoint_p = 1;
3468 p = unpack_varlen_hex (++p1, &addr);
3469 remote_watch_data_address = (CORE_ADDR)addr;
3470 }
3471 else if (strncmp (p, "library", p1 - p) == 0)
3472 {
3473 p1++;
3474 p_temp = p1;
3475 while (*p_temp && *p_temp != ';')
3476 p_temp++;
3477
3478 solibs_changed = 1;
3479 p = p_temp;
3480 }
3481 else
3482 {
3483 /* Silently skip unknown optional info. */
3484 p_temp = strchr (p1 + 1, ';');
3485 if (p_temp)
3486 p = p_temp;
3487 }
3488 }
3489 else
3490 {
3491 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3492 p = p1;
3493
3494 if (*p++ != ':')
3495 error (_("Malformed packet(b) (missing colon): %s\n\
3496 Packet: '%s'\n"),
3497 p, buf);
3498
3499 if (reg == NULL)
3500 error (_("Remote sent bad register number %s: %s\n\
3501 Packet: '%s'\n"),
3502 phex_nz (pnum, 0), p, buf);
3503
3504 fieldsize = hex2bin (p, regs,
3505 register_size (current_gdbarch,
3506 reg->regnum));
3507 p += 2 * fieldsize;
3508 if (fieldsize < register_size (current_gdbarch,
3509 reg->regnum))
3510 warning (_("Remote reply is too short: %s"), buf);
3511 regcache_raw_supply (get_current_regcache (),
3512 reg->regnum, regs);
3513 }
3514
3515 if (*p++ != ';')
3516 error (_("Remote register badly formatted: %s\nhere: %s"),
3517 buf, p);
3518 }
3519 }
3520 /* fall through */
3521 case 'S': /* Old style status, just signal only. */
3522 if (solibs_changed)
3523 status->kind = TARGET_WAITKIND_LOADED;
3524 else
3525 {
3526 status->kind = TARGET_WAITKIND_STOPPED;
3527 status->value.sig = (enum target_signal)
3528 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3529 }
3530
3531 if (buf[3] == 'p')
3532 {
3533 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3534 record_currthread (thread_num);
3535 }
3536 goto got_status;
3537 case 'W': /* Target exited. */
3538 {
3539 /* The remote process exited. */
3540 status->kind = TARGET_WAITKIND_EXITED;
3541 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3542 goto got_status;
3543 }
3544 case 'X':
3545 status->kind = TARGET_WAITKIND_SIGNALLED;
3546 status->value.sig = (enum target_signal)
3547 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3548 kill_kludge = 1;
3549
3550 goto got_status;
3551 case 'O': /* Console output. */
3552 remote_console_output (buf + 1);
3553 continue;
3554 case '\0':
3555 if (last_sent_signal != TARGET_SIGNAL_0)
3556 {
3557 /* Zero length reply means that we tried 'S' or 'C' and
3558 the remote system doesn't support it. */
3559 target_terminal_ours_for_output ();
3560 printf_filtered
3561 ("Can't send signals to this remote system. %s not sent.\n",
3562 target_signal_to_name (last_sent_signal));
3563 last_sent_signal = TARGET_SIGNAL_0;
3564 target_terminal_inferior ();
3565
3566 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3567 putpkt ((char *) buf);
3568 continue;
3569 }
3570 /* else fallthrough */
3571 default:
3572 warning (_("Invalid remote reply: %s"), buf);
3573 continue;
3574 }
3575 }
3576 got_status:
3577 if (thread_num != -1)
3578 {
3579 return pid_to_ptid (thread_num);
3580 }
3581 return inferior_ptid;
3582 }
3583
3584 /* Async version of remote_wait. */
3585 static ptid_t
3586 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3587 {
3588 struct remote_state *rs = get_remote_state ();
3589 struct remote_arch_state *rsa = get_remote_arch_state ();
3590 ULONGEST thread_num = -1;
3591 ULONGEST addr;
3592 int solibs_changed = 0;
3593
3594 status->kind = TARGET_WAITKIND_EXITED;
3595 status->value.integer = 0;
3596
3597 remote_stopped_by_watchpoint_p = 0;
3598
3599 while (1)
3600 {
3601 char *buf, *p;
3602
3603 if (rs->cached_wait_status)
3604 /* Use the cached wait status, but only once. */
3605 rs->cached_wait_status = 0;
3606 else
3607 {
3608 if (!target_is_async_p ())
3609 {
3610 ofunc = signal (SIGINT, remote_interrupt);
3611 /* If the user hit C-c before this packet, or between packets,
3612 pretend that it was hit right here. */
3613 if (quit_flag)
3614 {
3615 quit_flag = 0;
3616 remote_interrupt (SIGINT);
3617 }
3618 }
3619 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3620 _never_ wait for ever -> test on target_is_async_p().
3621 However, before we do that we need to ensure that the caller
3622 knows how to take the target into/out of async mode. */
3623 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3624 if (!target_is_async_p ())
3625 signal (SIGINT, ofunc);
3626 }
3627
3628 buf = rs->buf;
3629
3630 /* This is a hook for when we need to do something (perhaps the
3631 collection of trace data) every time the target stops. */
3632 if (deprecated_target_wait_loop_hook)
3633 (*deprecated_target_wait_loop_hook) ();
3634
3635 switch (buf[0])
3636 {
3637 case 'E': /* Error of some sort. */
3638 /* We're out of sync with the target now. Did it continue or not?
3639 Not is more likely, so report a stop. */
3640 warning (_("Remote failure reply: %s"), buf);
3641 status->kind = TARGET_WAITKIND_STOPPED;
3642 status->value.sig = TARGET_SIGNAL_0;
3643 goto got_status;
3644 case 'F': /* File-I/O request. */
3645 remote_fileio_request (buf);
3646 continue;
3647 case 'T': /* Status with PC, SP, FP, ... */
3648 {
3649 gdb_byte regs[MAX_REGISTER_SIZE];
3650
3651 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3652 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3653 ss = signal number
3654 n... = register number
3655 r... = register contents
3656 */
3657 p = &buf[3]; /* after Txx */
3658
3659 while (*p)
3660 {
3661 char *p1;
3662 char *p_temp;
3663 int fieldsize;
3664 long pnum = 0;
3665
3666 /* If the packet contains a register number, save it
3667 in pnum and set p1 to point to the character
3668 following it. Otherwise p1 points to p. */
3669
3670 /* If this packet is an awatch packet, don't parse the 'a'
3671 as a register number. */
3672
3673 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3674 {
3675 /* Read the register number. */
3676 pnum = strtol (p, &p_temp, 16);
3677 p1 = p_temp;
3678 }
3679 else
3680 p1 = p;
3681
3682 if (p1 == p) /* No register number present here. */
3683 {
3684 p1 = strchr (p, ':');
3685 if (p1 == NULL)
3686 error (_("Malformed packet(a) (missing colon): %s\n\
3687 Packet: '%s'\n"),
3688 p, buf);
3689 if (strncmp (p, "thread", p1 - p) == 0)
3690 {
3691 p_temp = unpack_varlen_hex (++p1, &thread_num);
3692 record_currthread (thread_num);
3693 p = p_temp;
3694 }
3695 else if ((strncmp (p, "watch", p1 - p) == 0)
3696 || (strncmp (p, "rwatch", p1 - p) == 0)
3697 || (strncmp (p, "awatch", p1 - p) == 0))
3698 {
3699 remote_stopped_by_watchpoint_p = 1;
3700 p = unpack_varlen_hex (++p1, &addr);
3701 remote_watch_data_address = (CORE_ADDR)addr;
3702 }
3703 else if (strncmp (p, "library", p1 - p) == 0)
3704 {
3705 p1++;
3706 p_temp = p1;
3707 while (*p_temp && *p_temp != ';')
3708 p_temp++;
3709
3710 solibs_changed = 1;
3711 p = p_temp;
3712 }
3713 else
3714 {
3715 /* Silently skip unknown optional info. */
3716 p_temp = strchr (p1 + 1, ';');
3717 if (p_temp)
3718 p = p_temp;
3719 }
3720 }
3721
3722 else
3723 {
3724 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3725 p = p1;
3726 if (*p++ != ':')
3727 error (_("Malformed packet(b) (missing colon): %s\n\
3728 Packet: '%s'\n"),
3729 p, buf);
3730
3731 if (reg == NULL)
3732 error (_("Remote sent bad register number %ld: %s\n\
3733 Packet: '%s'\n"),
3734 pnum, p, buf);
3735
3736 fieldsize = hex2bin (p, regs,
3737 register_size (current_gdbarch,
3738 reg->regnum));
3739 p += 2 * fieldsize;
3740 if (fieldsize < register_size (current_gdbarch,
3741 reg->regnum))
3742 warning (_("Remote reply is too short: %s"), buf);
3743 regcache_raw_supply (get_current_regcache (),
3744 reg->regnum, regs);
3745 }
3746
3747 if (*p++ != ';')
3748 error (_("Remote register badly formatted: %s\nhere: %s"),
3749 buf, p);
3750 }
3751 }
3752 /* fall through */
3753 case 'S': /* Old style status, just signal only. */
3754 if (solibs_changed)
3755 status->kind = TARGET_WAITKIND_LOADED;
3756 else
3757 {
3758 status->kind = TARGET_WAITKIND_STOPPED;
3759 status->value.sig = (enum target_signal)
3760 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3761 }
3762
3763 if (buf[3] == 'p')
3764 {
3765 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3766 record_currthread (thread_num);
3767 }
3768 goto got_status;
3769 case 'W': /* Target exited. */
3770 {
3771 /* The remote process exited. */
3772 status->kind = TARGET_WAITKIND_EXITED;
3773 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3774 goto got_status;
3775 }
3776 case 'X':
3777 status->kind = TARGET_WAITKIND_SIGNALLED;
3778 status->value.sig = (enum target_signal)
3779 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3780 kill_kludge = 1;
3781
3782 goto got_status;
3783 case 'O': /* Console output. */
3784 remote_console_output (buf + 1);
3785 /* Return immediately to the event loop. The event loop will
3786 still be waiting on the inferior afterwards. */
3787 status->kind = TARGET_WAITKIND_IGNORE;
3788 goto got_status;
3789 case '\0':
3790 if (last_sent_signal != TARGET_SIGNAL_0)
3791 {
3792 /* Zero length reply means that we tried 'S' or 'C' and
3793 the remote system doesn't support it. */
3794 target_terminal_ours_for_output ();
3795 printf_filtered
3796 ("Can't send signals to this remote system. %s not sent.\n",
3797 target_signal_to_name (last_sent_signal));
3798 last_sent_signal = TARGET_SIGNAL_0;
3799 target_terminal_inferior ();
3800
3801 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3802 putpkt ((char *) buf);
3803 continue;
3804 }
3805 /* else fallthrough */
3806 default:
3807 warning (_("Invalid remote reply: %s"), buf);
3808 continue;
3809 }
3810 }
3811 got_status:
3812 if (thread_num != -1)
3813 {
3814 return pid_to_ptid (thread_num);
3815 }
3816 return inferior_ptid;
3817 }
3818
3819 /* Fetch a single register using a 'p' packet. */
3820
3821 static int
3822 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3823 {
3824 struct remote_state *rs = get_remote_state ();
3825 char *buf, *p;
3826 char regp[MAX_REGISTER_SIZE];
3827 int i;
3828
3829 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3830 return 0;
3831
3832 if (reg->pnum == -1)
3833 return 0;
3834
3835 p = rs->buf;
3836 *p++ = 'p';
3837 p += hexnumstr (p, reg->pnum);
3838 *p++ = '\0';
3839 remote_send (&rs->buf, &rs->buf_size);
3840
3841 buf = rs->buf;
3842
3843 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3844 {
3845 case PACKET_OK:
3846 break;
3847 case PACKET_UNKNOWN:
3848 return 0;
3849 case PACKET_ERROR:
3850 error (_("Could not fetch register \"%s\""),
3851 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
3852 }
3853
3854 /* If this register is unfetchable, tell the regcache. */
3855 if (buf[0] == 'x')
3856 {
3857 regcache_raw_supply (regcache, reg->regnum, NULL);
3858 return 1;
3859 }
3860
3861 /* Otherwise, parse and supply the value. */
3862 p = buf;
3863 i = 0;
3864 while (p[0] != 0)
3865 {
3866 if (p[1] == 0)
3867 error (_("fetch_register_using_p: early buf termination"));
3868
3869 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3870 p += 2;
3871 }
3872 regcache_raw_supply (regcache, reg->regnum, regp);
3873 return 1;
3874 }
3875
3876 /* Fetch the registers included in the target's 'g' packet. */
3877
3878 static int
3879 send_g_packet (void)
3880 {
3881 struct remote_state *rs = get_remote_state ();
3882 int i, buf_len;
3883 char *p;
3884 char *regs;
3885
3886 sprintf (rs->buf, "g");
3887 remote_send (&rs->buf, &rs->buf_size);
3888
3889 /* We can get out of synch in various cases. If the first character
3890 in the buffer is not a hex character, assume that has happened
3891 and try to fetch another packet to read. */
3892 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3893 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3894 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3895 && rs->buf[0] != 'x') /* New: unavailable register value. */
3896 {
3897 if (remote_debug)
3898 fprintf_unfiltered (gdb_stdlog,
3899 "Bad register packet; fetching a new packet\n");
3900 getpkt (&rs->buf, &rs->buf_size, 0);
3901 }
3902
3903 buf_len = strlen (rs->buf);
3904
3905 /* Sanity check the received packet. */
3906 if (buf_len % 2 != 0)
3907 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3908
3909 return buf_len / 2;
3910 }
3911
3912 static void
3913 process_g_packet (struct regcache *regcache)
3914 {
3915 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3916 struct remote_state *rs = get_remote_state ();
3917 struct remote_arch_state *rsa = get_remote_arch_state ();
3918 int i, buf_len;
3919 char *p;
3920 char *regs;
3921
3922 buf_len = strlen (rs->buf);
3923
3924 /* Further sanity checks, with knowledge of the architecture. */
3925 if (buf_len > 2 * rsa->sizeof_g_packet)
3926 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3927
3928 /* Save the size of the packet sent to us by the target. It is used
3929 as a heuristic when determining the max size of packets that the
3930 target can safely receive. */
3931 if (rsa->actual_register_packet_size == 0)
3932 rsa->actual_register_packet_size = buf_len;
3933
3934 /* If this is smaller than we guessed the 'g' packet would be,
3935 update our records. A 'g' reply that doesn't include a register's
3936 value implies either that the register is not available, or that
3937 the 'p' packet must be used. */
3938 if (buf_len < 2 * rsa->sizeof_g_packet)
3939 {
3940 rsa->sizeof_g_packet = buf_len / 2;
3941
3942 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3943 {
3944 if (rsa->regs[i].pnum == -1)
3945 continue;
3946
3947 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3948 rsa->regs[i].in_g_packet = 0;
3949 else
3950 rsa->regs[i].in_g_packet = 1;
3951 }
3952 }
3953
3954 regs = alloca (rsa->sizeof_g_packet);
3955
3956 /* Unimplemented registers read as all bits zero. */
3957 memset (regs, 0, rsa->sizeof_g_packet);
3958
3959 /* Reply describes registers byte by byte, each byte encoded as two
3960 hex characters. Suck them all up, then supply them to the
3961 register cacheing/storage mechanism. */
3962
3963 p = rs->buf;
3964 for (i = 0; i < rsa->sizeof_g_packet; i++)
3965 {
3966 if (p[0] == 0 || p[1] == 0)
3967 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3968 internal_error (__FILE__, __LINE__,
3969 "unexpected end of 'g' packet reply");
3970
3971 if (p[0] == 'x' && p[1] == 'x')
3972 regs[i] = 0; /* 'x' */
3973 else
3974 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3975 p += 2;
3976 }
3977
3978 {
3979 int i;
3980 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3981 {
3982 struct packet_reg *r = &rsa->regs[i];
3983 if (r->in_g_packet)
3984 {
3985 if (r->offset * 2 >= strlen (rs->buf))
3986 /* This shouldn't happen - we adjusted in_g_packet above. */
3987 internal_error (__FILE__, __LINE__,
3988 "unexpected end of 'g' packet reply");
3989 else if (rs->buf[r->offset * 2] == 'x')
3990 {
3991 gdb_assert (r->offset * 2 < strlen (rs->buf));
3992 /* The register isn't available, mark it as such (at
3993 the same time setting the value to zero). */
3994 regcache_raw_supply (regcache, r->regnum, NULL);
3995 }
3996 else
3997 regcache_raw_supply (regcache, r->regnum,
3998 regs + r->offset);
3999 }
4000 }
4001 }
4002 }
4003
4004 static void
4005 fetch_registers_using_g (struct regcache *regcache)
4006 {
4007 send_g_packet ();
4008 process_g_packet (regcache);
4009 }
4010
4011 static void
4012 remote_fetch_registers (struct regcache *regcache, int regnum)
4013 {
4014 struct remote_state *rs = get_remote_state ();
4015 struct remote_arch_state *rsa = get_remote_arch_state ();
4016 int i;
4017
4018 set_thread (PIDGET (inferior_ptid), 1);
4019
4020 if (regnum >= 0)
4021 {
4022 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4023 gdb_assert (reg != NULL);
4024
4025 /* If this register might be in the 'g' packet, try that first -
4026 we are likely to read more than one register. If this is the
4027 first 'g' packet, we might be overly optimistic about its
4028 contents, so fall back to 'p'. */
4029 if (reg->in_g_packet)
4030 {
4031 fetch_registers_using_g (regcache);
4032 if (reg->in_g_packet)
4033 return;
4034 }
4035
4036 if (fetch_register_using_p (regcache, reg))
4037 return;
4038
4039 /* This register is not available. */
4040 regcache_raw_supply (regcache, reg->regnum, NULL);
4041
4042 return;
4043 }
4044
4045 fetch_registers_using_g (regcache);
4046
4047 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4048 if (!rsa->regs[i].in_g_packet)
4049 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
4050 {
4051 /* This register is not available. */
4052 regcache_raw_supply (regcache, i, NULL);
4053 }
4054 }
4055
4056 /* Prepare to store registers. Since we may send them all (using a
4057 'G' request), we have to read out the ones we don't want to change
4058 first. */
4059
4060 static void
4061 remote_prepare_to_store (struct regcache *regcache)
4062 {
4063 struct remote_arch_state *rsa = get_remote_arch_state ();
4064 int i;
4065 gdb_byte buf[MAX_REGISTER_SIZE];
4066
4067 /* Make sure the entire registers array is valid. */
4068 switch (remote_protocol_packets[PACKET_P].support)
4069 {
4070 case PACKET_DISABLE:
4071 case PACKET_SUPPORT_UNKNOWN:
4072 /* Make sure all the necessary registers are cached. */
4073 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4074 if (rsa->regs[i].in_g_packet)
4075 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
4076 break;
4077 case PACKET_ENABLE:
4078 break;
4079 }
4080 }
4081
4082 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
4083 packet was not recognized. */
4084
4085 static int
4086 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
4087 {
4088 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4089 struct remote_state *rs = get_remote_state ();
4090 struct remote_arch_state *rsa = get_remote_arch_state ();
4091 /* Try storing a single register. */
4092 char *buf = rs->buf;
4093 gdb_byte regp[MAX_REGISTER_SIZE];
4094 char *p;
4095
4096 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
4097 return 0;
4098
4099 if (reg->pnum == -1)
4100 return 0;
4101
4102 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
4103 p = buf + strlen (buf);
4104 regcache_raw_collect (regcache, reg->regnum, regp);
4105 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
4106 remote_send (&rs->buf, &rs->buf_size);
4107
4108 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
4109 {
4110 case PACKET_OK:
4111 return 1;
4112 case PACKET_ERROR:
4113 error (_("Could not write register \"%s\""),
4114 gdbarch_register_name (gdbarch, reg->regnum));
4115 case PACKET_UNKNOWN:
4116 return 0;
4117 default:
4118 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
4119 }
4120 }
4121
4122 /* Store register REGNUM, or all registers if REGNUM == -1, from the
4123 contents of the register cache buffer. FIXME: ignores errors. */
4124
4125 static void
4126 store_registers_using_G (const struct regcache *regcache)
4127 {
4128 struct remote_state *rs = get_remote_state ();
4129 struct remote_arch_state *rsa = get_remote_arch_state ();
4130 gdb_byte *regs;
4131 char *p;
4132
4133 /* Extract all the registers in the regcache copying them into a
4134 local buffer. */
4135 {
4136 int i;
4137 regs = alloca (rsa->sizeof_g_packet);
4138 memset (regs, 0, rsa->sizeof_g_packet);
4139 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4140 {
4141 struct packet_reg *r = &rsa->regs[i];
4142 if (r->in_g_packet)
4143 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
4144 }
4145 }
4146
4147 /* Command describes registers byte by byte,
4148 each byte encoded as two hex characters. */
4149 p = rs->buf;
4150 *p++ = 'G';
4151 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
4152 updated. */
4153 bin2hex (regs, p, rsa->sizeof_g_packet);
4154 remote_send (&rs->buf, &rs->buf_size);
4155 }
4156
4157 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
4158 of the register cache buffer. FIXME: ignores errors. */
4159
4160 static void
4161 remote_store_registers (struct regcache *regcache, int regnum)
4162 {
4163 struct remote_state *rs = get_remote_state ();
4164 struct remote_arch_state *rsa = get_remote_arch_state ();
4165 int i;
4166
4167 set_thread (PIDGET (inferior_ptid), 1);
4168
4169 if (regnum >= 0)
4170 {
4171 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4172 gdb_assert (reg != NULL);
4173
4174 /* Always prefer to store registers using the 'P' packet if
4175 possible; we often change only a small number of registers.
4176 Sometimes we change a larger number; we'd need help from a
4177 higher layer to know to use 'G'. */
4178 if (store_register_using_P (regcache, reg))
4179 return;
4180
4181 /* For now, don't complain if we have no way to write the
4182 register. GDB loses track of unavailable registers too
4183 easily. Some day, this may be an error. We don't have
4184 any way to read the register, either... */
4185 if (!reg->in_g_packet)
4186 return;
4187
4188 store_registers_using_G (regcache);
4189 return;
4190 }
4191
4192 store_registers_using_G (regcache);
4193
4194 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4195 if (!rsa->regs[i].in_g_packet)
4196 if (!store_register_using_P (regcache, &rsa->regs[i]))
4197 /* See above for why we do not issue an error here. */
4198 continue;
4199 }
4200 \f
4201
4202 /* Return the number of hex digits in num. */
4203
4204 static int
4205 hexnumlen (ULONGEST num)
4206 {
4207 int i;
4208
4209 for (i = 0; num != 0; i++)
4210 num >>= 4;
4211
4212 return max (i, 1);
4213 }
4214
4215 /* Set BUF to the minimum number of hex digits representing NUM. */
4216
4217 static int
4218 hexnumstr (char *buf, ULONGEST num)
4219 {
4220 int len = hexnumlen (num);
4221 return hexnumnstr (buf, num, len);
4222 }
4223
4224
4225 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4226
4227 static int
4228 hexnumnstr (char *buf, ULONGEST num, int width)
4229 {
4230 int i;
4231
4232 buf[width] = '\0';
4233
4234 for (i = width - 1; i >= 0; i--)
4235 {
4236 buf[i] = "0123456789abcdef"[(num & 0xf)];
4237 num >>= 4;
4238 }
4239
4240 return width;
4241 }
4242
4243 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4244
4245 static CORE_ADDR
4246 remote_address_masked (CORE_ADDR addr)
4247 {
4248 int address_size = remote_address_size;
4249 /* If "remoteaddresssize" was not set, default to target address size. */
4250 if (!address_size)
4251 address_size = gdbarch_addr_bit (current_gdbarch);
4252
4253 if (address_size > 0
4254 && address_size < (sizeof (ULONGEST) * 8))
4255 {
4256 /* Only create a mask when that mask can safely be constructed
4257 in a ULONGEST variable. */
4258 ULONGEST mask = 1;
4259 mask = (mask << address_size) - 1;
4260 addr &= mask;
4261 }
4262 return addr;
4263 }
4264
4265 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4266 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4267 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4268 (which may be more than *OUT_LEN due to escape characters). The
4269 total number of bytes in the output buffer will be at most
4270 OUT_MAXLEN. */
4271
4272 static int
4273 remote_escape_output (const gdb_byte *buffer, int len,
4274 gdb_byte *out_buf, int *out_len,
4275 int out_maxlen)
4276 {
4277 int input_index, output_index;
4278
4279 output_index = 0;
4280 for (input_index = 0; input_index < len; input_index++)
4281 {
4282 gdb_byte b = buffer[input_index];
4283
4284 if (b == '$' || b == '#' || b == '}')
4285 {
4286 /* These must be escaped. */
4287 if (output_index + 2 > out_maxlen)
4288 break;
4289 out_buf[output_index++] = '}';
4290 out_buf[output_index++] = b ^ 0x20;
4291 }
4292 else
4293 {
4294 if (output_index + 1 > out_maxlen)
4295 break;
4296 out_buf[output_index++] = b;
4297 }
4298 }
4299
4300 *out_len = input_index;
4301 return output_index;
4302 }
4303
4304 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4305 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4306 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4307
4308 This function reverses remote_escape_output. It allows more
4309 escaped characters than that function does, in particular because
4310 '*' must be escaped to avoid the run-length encoding processing
4311 in reading packets. */
4312
4313 static int
4314 remote_unescape_input (const gdb_byte *buffer, int len,
4315 gdb_byte *out_buf, int out_maxlen)
4316 {
4317 int input_index, output_index;
4318 int escaped;
4319
4320 output_index = 0;
4321 escaped = 0;
4322 for (input_index = 0; input_index < len; input_index++)
4323 {
4324 gdb_byte b = buffer[input_index];
4325
4326 if (output_index + 1 > out_maxlen)
4327 {
4328 warning (_("Received too much data from remote target;"
4329 " ignoring overflow."));
4330 return output_index;
4331 }
4332
4333 if (escaped)
4334 {
4335 out_buf[output_index++] = b ^ 0x20;
4336 escaped = 0;
4337 }
4338 else if (b == '}')
4339 escaped = 1;
4340 else
4341 out_buf[output_index++] = b;
4342 }
4343
4344 if (escaped)
4345 error (_("Unmatched escape character in target response."));
4346
4347 return output_index;
4348 }
4349
4350 /* Determine whether the remote target supports binary downloading.
4351 This is accomplished by sending a no-op memory write of zero length
4352 to the target at the specified address. It does not suffice to send
4353 the whole packet, since many stubs strip the eighth bit and
4354 subsequently compute a wrong checksum, which causes real havoc with
4355 remote_write_bytes.
4356
4357 NOTE: This can still lose if the serial line is not eight-bit
4358 clean. In cases like this, the user should clear "remote
4359 X-packet". */
4360
4361 static void
4362 check_binary_download (CORE_ADDR addr)
4363 {
4364 struct remote_state *rs = get_remote_state ();
4365
4366 switch (remote_protocol_packets[PACKET_X].support)
4367 {
4368 case PACKET_DISABLE:
4369 break;
4370 case PACKET_ENABLE:
4371 break;
4372 case PACKET_SUPPORT_UNKNOWN:
4373 {
4374 char *p;
4375
4376 p = rs->buf;
4377 *p++ = 'X';
4378 p += hexnumstr (p, (ULONGEST) addr);
4379 *p++ = ',';
4380 p += hexnumstr (p, (ULONGEST) 0);
4381 *p++ = ':';
4382 *p = '\0';
4383
4384 putpkt_binary (rs->buf, (int) (p - rs->buf));
4385 getpkt (&rs->buf, &rs->buf_size, 0);
4386
4387 if (rs->buf[0] == '\0')
4388 {
4389 if (remote_debug)
4390 fprintf_unfiltered (gdb_stdlog,
4391 "binary downloading NOT suppported by target\n");
4392 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4393 }
4394 else
4395 {
4396 if (remote_debug)
4397 fprintf_unfiltered (gdb_stdlog,
4398 "binary downloading suppported by target\n");
4399 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4400 }
4401 break;
4402 }
4403 }
4404 }
4405
4406 /* Write memory data directly to the remote machine.
4407 This does not inform the data cache; the data cache uses this.
4408 HEADER is the starting part of the packet.
4409 MEMADDR is the address in the remote memory space.
4410 MYADDR is the address of the buffer in our space.
4411 LEN is the number of bytes.
4412 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4413 should send data as binary ('X'), or hex-encoded ('M').
4414
4415 The function creates packet of the form
4416 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4417
4418 where encoding of <DATA> is termined by PACKET_FORMAT.
4419
4420 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4421 are omitted.
4422
4423 Returns the number of bytes transferred, or 0 (setting errno) for
4424 error. Only transfer a single packet. */
4425
4426 static int
4427 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4428 const gdb_byte *myaddr, int len,
4429 char packet_format, int use_length)
4430 {
4431 struct remote_state *rs = get_remote_state ();
4432 char *p;
4433 char *plen = NULL;
4434 int plenlen = 0;
4435 int todo;
4436 int nr_bytes;
4437 int payload_size;
4438 int payload_length;
4439 int header_length;
4440
4441 if (packet_format != 'X' && packet_format != 'M')
4442 internal_error (__FILE__, __LINE__,
4443 "remote_write_bytes_aux: bad packet format");
4444
4445 if (len <= 0)
4446 return 0;
4447
4448 payload_size = get_memory_write_packet_size ();
4449
4450 /* The packet buffer will be large enough for the payload;
4451 get_memory_packet_size ensures this. */
4452 rs->buf[0] = '\0';
4453
4454 /* Compute the size of the actual payload by subtracting out the
4455 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4456 */
4457 payload_size -= strlen ("$,:#NN");
4458 if (!use_length)
4459 /* The comma won't be used. */
4460 payload_size += 1;
4461 header_length = strlen (header);
4462 payload_size -= header_length;
4463 payload_size -= hexnumlen (memaddr);
4464
4465 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4466
4467 strcat (rs->buf, header);
4468 p = rs->buf + strlen (header);
4469
4470 /* Compute a best guess of the number of bytes actually transfered. */
4471 if (packet_format == 'X')
4472 {
4473 /* Best guess at number of bytes that will fit. */
4474 todo = min (len, payload_size);
4475 if (use_length)
4476 payload_size -= hexnumlen (todo);
4477 todo = min (todo, payload_size);
4478 }
4479 else
4480 {
4481 /* Num bytes that will fit. */
4482 todo = min (len, payload_size / 2);
4483 if (use_length)
4484 payload_size -= hexnumlen (todo);
4485 todo = min (todo, payload_size / 2);
4486 }
4487
4488 if (todo <= 0)
4489 internal_error (__FILE__, __LINE__,
4490 _("minumum packet size too small to write data"));
4491
4492 /* If we already need another packet, then try to align the end
4493 of this packet to a useful boundary. */
4494 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4495 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4496
4497 /* Append "<memaddr>". */
4498 memaddr = remote_address_masked (memaddr);
4499 p += hexnumstr (p, (ULONGEST) memaddr);
4500
4501 if (use_length)
4502 {
4503 /* Append ",". */
4504 *p++ = ',';
4505
4506 /* Append <len>. Retain the location/size of <len>. It may need to
4507 be adjusted once the packet body has been created. */
4508 plen = p;
4509 plenlen = hexnumstr (p, (ULONGEST) todo);
4510 p += plenlen;
4511 }
4512
4513 /* Append ":". */
4514 *p++ = ':';
4515 *p = '\0';
4516
4517 /* Append the packet body. */
4518 if (packet_format == 'X')
4519 {
4520 /* Binary mode. Send target system values byte by byte, in
4521 increasing byte addresses. Only escape certain critical
4522 characters. */
4523 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4524 payload_size);
4525
4526 /* If not all TODO bytes fit, then we'll need another packet. Make
4527 a second try to keep the end of the packet aligned. Don't do
4528 this if the packet is tiny. */
4529 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4530 {
4531 int new_nr_bytes;
4532
4533 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4534 - memaddr);
4535 if (new_nr_bytes != nr_bytes)
4536 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4537 p, &nr_bytes,
4538 payload_size);
4539 }
4540
4541 p += payload_length;
4542 if (use_length && nr_bytes < todo)
4543 {
4544 /* Escape chars have filled up the buffer prematurely,
4545 and we have actually sent fewer bytes than planned.
4546 Fix-up the length field of the packet. Use the same
4547 number of characters as before. */
4548 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4549 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4550 }
4551 }
4552 else
4553 {
4554 /* Normal mode: Send target system values byte by byte, in
4555 increasing byte addresses. Each byte is encoded as a two hex
4556 value. */
4557 nr_bytes = bin2hex (myaddr, p, todo);
4558 p += 2 * nr_bytes;
4559 }
4560
4561 putpkt_binary (rs->buf, (int) (p - rs->buf));
4562 getpkt (&rs->buf, &rs->buf_size, 0);
4563
4564 if (rs->buf[0] == 'E')
4565 {
4566 /* There is no correspondance between what the remote protocol
4567 uses for errors and errno codes. We would like a cleaner way
4568 of representing errors (big enough to include errno codes,
4569 bfd_error codes, and others). But for now just return EIO. */
4570 errno = EIO;
4571 return 0;
4572 }
4573
4574 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4575 fewer bytes than we'd planned. */
4576 return nr_bytes;
4577 }
4578
4579 /* Write memory data directly to the remote machine.
4580 This does not inform the data cache; the data cache uses this.
4581 MEMADDR is the address in the remote memory space.
4582 MYADDR is the address of the buffer in our space.
4583 LEN is the number of bytes.
4584
4585 Returns number of bytes transferred, or 0 (setting errno) for
4586 error. Only transfer a single packet. */
4587
4588 int
4589 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4590 {
4591 char *packet_format = 0;
4592
4593 /* Check whether the target supports binary download. */
4594 check_binary_download (memaddr);
4595
4596 switch (remote_protocol_packets[PACKET_X].support)
4597 {
4598 case PACKET_ENABLE:
4599 packet_format = "X";
4600 break;
4601 case PACKET_DISABLE:
4602 packet_format = "M";
4603 break;
4604 case PACKET_SUPPORT_UNKNOWN:
4605 internal_error (__FILE__, __LINE__,
4606 _("remote_write_bytes: bad internal state"));
4607 default:
4608 internal_error (__FILE__, __LINE__, _("bad switch"));
4609 }
4610
4611 return remote_write_bytes_aux (packet_format,
4612 memaddr, myaddr, len, packet_format[0], 1);
4613 }
4614
4615 /* Read memory data directly from the remote machine.
4616 This does not use the data cache; the data cache uses this.
4617 MEMADDR is the address in the remote memory space.
4618 MYADDR is the address of the buffer in our space.
4619 LEN is the number of bytes.
4620
4621 Returns number of bytes transferred, or 0 for error. */
4622
4623 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4624 remote targets) shouldn't attempt to read the entire buffer.
4625 Instead it should read a single packet worth of data and then
4626 return the byte size of that packet to the caller. The caller (its
4627 caller and its callers caller ;-) already contains code for
4628 handling partial reads. */
4629
4630 int
4631 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4632 {
4633 struct remote_state *rs = get_remote_state ();
4634 int max_buf_size; /* Max size of packet output buffer. */
4635 int origlen;
4636
4637 if (len <= 0)
4638 return 0;
4639
4640 max_buf_size = get_memory_read_packet_size ();
4641 /* The packet buffer will be large enough for the payload;
4642 get_memory_packet_size ensures this. */
4643
4644 origlen = len;
4645 while (len > 0)
4646 {
4647 char *p;
4648 int todo;
4649 int i;
4650
4651 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4652
4653 /* construct "m"<memaddr>","<len>" */
4654 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4655 memaddr = remote_address_masked (memaddr);
4656 p = rs->buf;
4657 *p++ = 'm';
4658 p += hexnumstr (p, (ULONGEST) memaddr);
4659 *p++ = ',';
4660 p += hexnumstr (p, (ULONGEST) todo);
4661 *p = '\0';
4662
4663 putpkt (rs->buf);
4664 getpkt (&rs->buf, &rs->buf_size, 0);
4665
4666 if (rs->buf[0] == 'E'
4667 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4668 && rs->buf[3] == '\0')
4669 {
4670 /* There is no correspondance between what the remote
4671 protocol uses for errors and errno codes. We would like
4672 a cleaner way of representing errors (big enough to
4673 include errno codes, bfd_error codes, and others). But
4674 for now just return EIO. */
4675 errno = EIO;
4676 return 0;
4677 }
4678
4679 /* Reply describes memory byte by byte,
4680 each byte encoded as two hex characters. */
4681
4682 p = rs->buf;
4683 if ((i = hex2bin (p, myaddr, todo)) < todo)
4684 {
4685 /* Reply is short. This means that we were able to read
4686 only part of what we wanted to. */
4687 return i + (origlen - len);
4688 }
4689 myaddr += todo;
4690 memaddr += todo;
4691 len -= todo;
4692 }
4693 return origlen;
4694 }
4695 \f
4696 /* Read or write LEN bytes from inferior memory at MEMADDR,
4697 transferring to or from debugger address BUFFER. Write to inferior
4698 if SHOULD_WRITE is nonzero. Returns length of data written or
4699 read; 0 for error. TARGET is unused. */
4700
4701 static int
4702 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4703 int should_write, struct mem_attrib *attrib,
4704 struct target_ops *target)
4705 {
4706 int res;
4707
4708 if (should_write)
4709 res = remote_write_bytes (mem_addr, buffer, mem_len);
4710 else
4711 res = remote_read_bytes (mem_addr, buffer, mem_len);
4712
4713 return res;
4714 }
4715
4716 /* Sends a packet with content determined by the printf format string
4717 FORMAT and the remaining arguments, then gets the reply. Returns
4718 whether the packet was a success, a failure, or unknown. */
4719
4720 enum packet_result
4721 remote_send_printf (const char *format, ...)
4722 {
4723 struct remote_state *rs = get_remote_state ();
4724 int max_size = get_remote_packet_size ();
4725
4726 va_list ap;
4727 va_start (ap, format);
4728
4729 rs->buf[0] = '\0';
4730 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4731 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4732
4733 if (putpkt (rs->buf) < 0)
4734 error (_("Communication problem with target."));
4735
4736 rs->buf[0] = '\0';
4737 getpkt (&rs->buf, &rs->buf_size, 0);
4738
4739 return packet_check_result (rs->buf);
4740 }
4741
4742 static void
4743 restore_remote_timeout (void *p)
4744 {
4745 int value = *(int *)p;
4746 remote_timeout = value;
4747 }
4748
4749 /* Flash writing can take quite some time. We'll set
4750 effectively infinite timeout for flash operations.
4751 In future, we'll need to decide on a better approach. */
4752 static const int remote_flash_timeout = 1000;
4753
4754 static void
4755 remote_flash_erase (struct target_ops *ops,
4756 ULONGEST address, LONGEST length)
4757 {
4758 int saved_remote_timeout = remote_timeout;
4759 enum packet_result ret;
4760
4761 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4762 &saved_remote_timeout);
4763 remote_timeout = remote_flash_timeout;
4764
4765 ret = remote_send_printf ("vFlashErase:%s,%s",
4766 paddr (address),
4767 phex (length, 4));
4768 switch (ret)
4769 {
4770 case PACKET_UNKNOWN:
4771 error (_("Remote target does not support flash erase"));
4772 case PACKET_ERROR:
4773 error (_("Error erasing flash with vFlashErase packet"));
4774 default:
4775 break;
4776 }
4777
4778 do_cleanups (back_to);
4779 }
4780
4781 static LONGEST
4782 remote_flash_write (struct target_ops *ops,
4783 ULONGEST address, LONGEST length,
4784 const gdb_byte *data)
4785 {
4786 int saved_remote_timeout = remote_timeout;
4787 int ret;
4788 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4789 &saved_remote_timeout);
4790
4791 remote_timeout = remote_flash_timeout;
4792 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4793 do_cleanups (back_to);
4794
4795 return ret;
4796 }
4797
4798 static void
4799 remote_flash_done (struct target_ops *ops)
4800 {
4801 int saved_remote_timeout = remote_timeout;
4802 int ret;
4803 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4804 &saved_remote_timeout);
4805
4806 remote_timeout = remote_flash_timeout;
4807 ret = remote_send_printf ("vFlashDone");
4808 do_cleanups (back_to);
4809
4810 switch (ret)
4811 {
4812 case PACKET_UNKNOWN:
4813 error (_("Remote target does not support vFlashDone"));
4814 case PACKET_ERROR:
4815 error (_("Error finishing flash operation"));
4816 default:
4817 break;
4818 }
4819 }
4820
4821 static void
4822 remote_files_info (struct target_ops *ignore)
4823 {
4824 puts_filtered ("Debugging a target over a serial line.\n");
4825 }
4826 \f
4827 /* Stuff for dealing with the packets which are part of this protocol.
4828 See comment at top of file for details. */
4829
4830 /* Read a single character from the remote end. */
4831
4832 static int
4833 readchar (int timeout)
4834 {
4835 int ch;
4836
4837 ch = serial_readchar (remote_desc, timeout);
4838
4839 if (ch >= 0)
4840 return ch;
4841
4842 switch ((enum serial_rc) ch)
4843 {
4844 case SERIAL_EOF:
4845 target_mourn_inferior ();
4846 error (_("Remote connection closed"));
4847 /* no return */
4848 case SERIAL_ERROR:
4849 perror_with_name (_("Remote communication error"));
4850 /* no return */
4851 case SERIAL_TIMEOUT:
4852 break;
4853 }
4854 return ch;
4855 }
4856
4857 /* Send the command in *BUF to the remote machine, and read the reply
4858 into *BUF. Report an error if we get an error reply. Resize
4859 *BUF using xrealloc if necessary to hold the result, and update
4860 *SIZEOF_BUF. */
4861
4862 static void
4863 remote_send (char **buf,
4864 long *sizeof_buf)
4865 {
4866 putpkt (*buf);
4867 getpkt (buf, sizeof_buf, 0);
4868
4869 if ((*buf)[0] == 'E')
4870 error (_("Remote failure reply: %s"), *buf);
4871 }
4872
4873 /* Display a null-terminated packet on stdout, for debugging, using C
4874 string notation. */
4875
4876 static void
4877 print_packet (char *buf)
4878 {
4879 puts_filtered ("\"");
4880 fputstr_filtered (buf, '"', gdb_stdout);
4881 puts_filtered ("\"");
4882 }
4883
4884 int
4885 putpkt (char *buf)
4886 {
4887 return putpkt_binary (buf, strlen (buf));
4888 }
4889
4890 /* Send a packet to the remote machine, with error checking. The data
4891 of the packet is in BUF. The string in BUF can be at most
4892 get_remote_packet_size () - 5 to account for the $, # and checksum,
4893 and for a possible /0 if we are debugging (remote_debug) and want
4894 to print the sent packet as a string. */
4895
4896 static int
4897 putpkt_binary (char *buf, int cnt)
4898 {
4899 struct remote_state *rs = get_remote_state ();
4900 int i;
4901 unsigned char csum = 0;
4902 char *buf2 = alloca (cnt + 6);
4903
4904 int ch;
4905 int tcount = 0;
4906 char *p;
4907
4908 /* We're sending out a new packet. Make sure we don't look at a
4909 stale cached response. */
4910 rs->cached_wait_status = 0;
4911
4912 /* Copy the packet into buffer BUF2, encapsulating it
4913 and giving it a checksum. */
4914
4915 p = buf2;
4916 *p++ = '$';
4917
4918 for (i = 0; i < cnt; i++)
4919 {
4920 csum += buf[i];
4921 *p++ = buf[i];
4922 }
4923 *p++ = '#';
4924 *p++ = tohex ((csum >> 4) & 0xf);
4925 *p++ = tohex (csum & 0xf);
4926
4927 /* Send it over and over until we get a positive ack. */
4928
4929 while (1)
4930 {
4931 int started_error_output = 0;
4932
4933 if (remote_debug)
4934 {
4935 *p = '\0';
4936 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4937 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4938 fprintf_unfiltered (gdb_stdlog, "...");
4939 gdb_flush (gdb_stdlog);
4940 }
4941 if (serial_write (remote_desc, buf2, p - buf2))
4942 perror_with_name (_("putpkt: write failed"));
4943
4944 /* Read until either a timeout occurs (-2) or '+' is read. */
4945 while (1)
4946 {
4947 ch = readchar (remote_timeout);
4948
4949 if (remote_debug)
4950 {
4951 switch (ch)
4952 {
4953 case '+':
4954 case '-':
4955 case SERIAL_TIMEOUT:
4956 case '$':
4957 if (started_error_output)
4958 {
4959 putchar_unfiltered ('\n');
4960 started_error_output = 0;
4961 }
4962 }
4963 }
4964
4965 switch (ch)
4966 {
4967 case '+':
4968 if (remote_debug)
4969 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4970 return 1;
4971 case '-':
4972 if (remote_debug)
4973 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4974 case SERIAL_TIMEOUT:
4975 tcount++;
4976 if (tcount > 3)
4977 return 0;
4978 break; /* Retransmit buffer. */
4979 case '$':
4980 {
4981 if (remote_debug)
4982 fprintf_unfiltered (gdb_stdlog,
4983 "Packet instead of Ack, ignoring it\n");
4984 /* It's probably an old response sent because an ACK
4985 was lost. Gobble up the packet and ack it so it
4986 doesn't get retransmitted when we resend this
4987 packet. */
4988 skip_frame ();
4989 serial_write (remote_desc, "+", 1);
4990 continue; /* Now, go look for +. */
4991 }
4992 default:
4993 if (remote_debug)
4994 {
4995 if (!started_error_output)
4996 {
4997 started_error_output = 1;
4998 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4999 }
5000 fputc_unfiltered (ch & 0177, gdb_stdlog);
5001 }
5002 continue;
5003 }
5004 break; /* Here to retransmit. */
5005 }
5006
5007 #if 0
5008 /* This is wrong. If doing a long backtrace, the user should be
5009 able to get out next time we call QUIT, without anything as
5010 violent as interrupt_query. If we want to provide a way out of
5011 here without getting to the next QUIT, it should be based on
5012 hitting ^C twice as in remote_wait. */
5013 if (quit_flag)
5014 {
5015 quit_flag = 0;
5016 interrupt_query ();
5017 }
5018 #endif
5019 }
5020 }
5021
5022 /* Come here after finding the start of a frame when we expected an
5023 ack. Do our best to discard the rest of this packet. */
5024
5025 static void
5026 skip_frame (void)
5027 {
5028 int c;
5029
5030 while (1)
5031 {
5032 c = readchar (remote_timeout);
5033 switch (c)
5034 {
5035 case SERIAL_TIMEOUT:
5036 /* Nothing we can do. */
5037 return;
5038 case '#':
5039 /* Discard the two bytes of checksum and stop. */
5040 c = readchar (remote_timeout);
5041 if (c >= 0)
5042 c = readchar (remote_timeout);
5043
5044 return;
5045 case '*': /* Run length encoding. */
5046 /* Discard the repeat count. */
5047 c = readchar (remote_timeout);
5048 if (c < 0)
5049 return;
5050 break;
5051 default:
5052 /* A regular character. */
5053 break;
5054 }
5055 }
5056 }
5057
5058 /* Come here after finding the start of the frame. Collect the rest
5059 into *BUF, verifying the checksum, length, and handling run-length
5060 compression. NUL terminate the buffer. If there is not enough room,
5061 expand *BUF using xrealloc.
5062
5063 Returns -1 on error, number of characters in buffer (ignoring the
5064 trailing NULL) on success. (could be extended to return one of the
5065 SERIAL status indications). */
5066
5067 static long
5068 read_frame (char **buf_p,
5069 long *sizeof_buf)
5070 {
5071 unsigned char csum;
5072 long bc;
5073 int c;
5074 char *buf = *buf_p;
5075
5076 csum = 0;
5077 bc = 0;
5078
5079 while (1)
5080 {
5081 c = readchar (remote_timeout);
5082 switch (c)
5083 {
5084 case SERIAL_TIMEOUT:
5085 if (remote_debug)
5086 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
5087 return -1;
5088 case '$':
5089 if (remote_debug)
5090 fputs_filtered ("Saw new packet start in middle of old one\n",
5091 gdb_stdlog);
5092 return -1; /* Start a new packet, count retries. */
5093 case '#':
5094 {
5095 unsigned char pktcsum;
5096 int check_0 = 0;
5097 int check_1 = 0;
5098
5099 buf[bc] = '\0';
5100
5101 check_0 = readchar (remote_timeout);
5102 if (check_0 >= 0)
5103 check_1 = readchar (remote_timeout);
5104
5105 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
5106 {
5107 if (remote_debug)
5108 fputs_filtered ("Timeout in checksum, retrying\n",
5109 gdb_stdlog);
5110 return -1;
5111 }
5112 else if (check_0 < 0 || check_1 < 0)
5113 {
5114 if (remote_debug)
5115 fputs_filtered ("Communication error in checksum\n",
5116 gdb_stdlog);
5117 return -1;
5118 }
5119
5120 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
5121 if (csum == pktcsum)
5122 return bc;
5123
5124 if (remote_debug)
5125 {
5126 fprintf_filtered (gdb_stdlog,
5127 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
5128 pktcsum, csum);
5129 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
5130 fputs_filtered ("\n", gdb_stdlog);
5131 }
5132 /* Number of characters in buffer ignoring trailing
5133 NULL. */
5134 return -1;
5135 }
5136 case '*': /* Run length encoding. */
5137 {
5138 int repeat;
5139 csum += c;
5140
5141 c = readchar (remote_timeout);
5142 csum += c;
5143 repeat = c - ' ' + 3; /* Compute repeat count. */
5144
5145 /* The character before ``*'' is repeated. */
5146
5147 if (repeat > 0 && repeat <= 255 && bc > 0)
5148 {
5149 if (bc + repeat - 1 >= *sizeof_buf - 1)
5150 {
5151 /* Make some more room in the buffer. */
5152 *sizeof_buf += repeat;
5153 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5154 buf = *buf_p;
5155 }
5156
5157 memset (&buf[bc], buf[bc - 1], repeat);
5158 bc += repeat;
5159 continue;
5160 }
5161
5162 buf[bc] = '\0';
5163 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
5164 return -1;
5165 }
5166 default:
5167 if (bc >= *sizeof_buf - 1)
5168 {
5169 /* Make some more room in the buffer. */
5170 *sizeof_buf *= 2;
5171 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5172 buf = *buf_p;
5173 }
5174
5175 buf[bc++] = c;
5176 csum += c;
5177 continue;
5178 }
5179 }
5180 }
5181
5182 /* Read a packet from the remote machine, with error checking, and
5183 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5184 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5185 rather than timing out; this is used (in synchronous mode) to wait
5186 for a target that is is executing user code to stop. */
5187 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
5188 don't have to change all the calls to getpkt to deal with the
5189 return value, because at the moment I don't know what the right
5190 thing to do it for those. */
5191 void
5192 getpkt (char **buf,
5193 long *sizeof_buf,
5194 int forever)
5195 {
5196 int timed_out;
5197
5198 timed_out = getpkt_sane (buf, sizeof_buf, forever);
5199 }
5200
5201
5202 /* Read a packet from the remote machine, with error checking, and
5203 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5204 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5205 rather than timing out; this is used (in synchronous mode) to wait
5206 for a target that is is executing user code to stop. If FOREVER ==
5207 0, this function is allowed to time out gracefully and return an
5208 indication of this to the caller. Otherwise return the number
5209 of bytes read. */
5210 static int
5211 getpkt_sane (char **buf, long *sizeof_buf, int forever)
5212 {
5213 struct remote_state *rs = get_remote_state ();
5214 int c;
5215 int tries;
5216 int timeout;
5217 int val;
5218
5219 /* We're reading a new response. Make sure we don't look at a
5220 previously cached response. */
5221 rs->cached_wait_status = 0;
5222
5223 strcpy (*buf, "timeout");
5224
5225 if (forever)
5226 {
5227 timeout = watchdog > 0 ? watchdog : -1;
5228 }
5229
5230 else
5231 timeout = remote_timeout;
5232
5233 #define MAX_TRIES 3
5234
5235 for (tries = 1; tries <= MAX_TRIES; tries++)
5236 {
5237 /* This can loop forever if the remote side sends us characters
5238 continuously, but if it pauses, we'll get a zero from
5239 readchar because of timeout. Then we'll count that as a
5240 retry. */
5241
5242 /* Note that we will only wait forever prior to the start of a
5243 packet. After that, we expect characters to arrive at a
5244 brisk pace. They should show up within remote_timeout
5245 intervals. */
5246
5247 do
5248 {
5249 c = readchar (timeout);
5250
5251 if (c == SERIAL_TIMEOUT)
5252 {
5253 if (forever) /* Watchdog went off? Kill the target. */
5254 {
5255 QUIT;
5256 target_mourn_inferior ();
5257 error (_("Watchdog timeout has expired. Target detached."));
5258 }
5259 if (remote_debug)
5260 fputs_filtered ("Timed out.\n", gdb_stdlog);
5261 goto retry;
5262 }
5263 }
5264 while (c != '$');
5265
5266 /* We've found the start of a packet, now collect the data. */
5267
5268 val = read_frame (buf, sizeof_buf);
5269
5270 if (val >= 0)
5271 {
5272 if (remote_debug)
5273 {
5274 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5275 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5276 fprintf_unfiltered (gdb_stdlog, "\n");
5277 }
5278 serial_write (remote_desc, "+", 1);
5279 return val;
5280 }
5281
5282 /* Try the whole thing again. */
5283 retry:
5284 serial_write (remote_desc, "-", 1);
5285 }
5286
5287 /* We have tried hard enough, and just can't receive the packet.
5288 Give up. */
5289
5290 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5291 serial_write (remote_desc, "+", 1);
5292 return -1;
5293 }
5294 \f
5295 static void
5296 remote_kill (void)
5297 {
5298 /* For some mysterious reason, wait_for_inferior calls kill instead of
5299 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5300 if (kill_kludge)
5301 {
5302 kill_kludge = 0;
5303 target_mourn_inferior ();
5304 return;
5305 }
5306
5307 /* Use catch_errors so the user can quit from gdb even when we aren't on
5308 speaking terms with the remote system. */
5309 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5310
5311 /* Don't wait for it to die. I'm not really sure it matters whether
5312 we do or not. For the existing stubs, kill is a noop. */
5313 target_mourn_inferior ();
5314 }
5315
5316 /* Async version of remote_kill. */
5317 static void
5318 remote_async_kill (void)
5319 {
5320 /* Unregister the file descriptor from the event loop. */
5321 if (target_is_async_p ())
5322 serial_async (remote_desc, NULL, 0);
5323
5324 /* For some mysterious reason, wait_for_inferior calls kill instead of
5325 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5326 if (kill_kludge)
5327 {
5328 kill_kludge = 0;
5329 target_mourn_inferior ();
5330 return;
5331 }
5332
5333 /* Use catch_errors so the user can quit from gdb even when we
5334 aren't on speaking terms with the remote system. */
5335 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5336
5337 /* Don't wait for it to die. I'm not really sure it matters whether
5338 we do or not. For the existing stubs, kill is a noop. */
5339 target_mourn_inferior ();
5340 }
5341
5342 static void
5343 remote_mourn (void)
5344 {
5345 remote_mourn_1 (&remote_ops);
5346 }
5347
5348 static void
5349 remote_async_mourn (void)
5350 {
5351 remote_mourn_1 (&remote_async_ops);
5352 }
5353
5354 /* Worker function for remote_mourn. */
5355 static void
5356 remote_mourn_1 (struct target_ops *target)
5357 {
5358 unpush_target (target);
5359 generic_mourn_inferior ();
5360 }
5361
5362 static void
5363 extended_remote_mourn_1 (struct target_ops *target)
5364 {
5365 struct remote_state *rs = get_remote_state ();
5366
5367 /* Unlike "target remote", we do not want to unpush the target; then
5368 the next time the user says "run", we won't be connected. */
5369
5370 /* Call common code to mark the inferior as not running. */
5371 generic_mourn_inferior ();
5372
5373 /* Check whether the target is running now - some remote stubs
5374 automatically restart after kill. */
5375 putpkt ("?");
5376 getpkt (&rs->buf, &rs->buf_size, 0);
5377
5378 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
5379 {
5380 /* Assume that the target has been restarted. Set inferior_ptid
5381 so that bits of core GDB realizes there's something here, e.g.,
5382 so that the user can say "kill" again. */
5383 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5384 }
5385 else
5386 {
5387 /* Mark this (still pushed) target as not executable until we
5388 restart it. */
5389 target_mark_exited (target);
5390 }
5391 }
5392
5393 static void
5394 extended_remote_mourn (void)
5395 {
5396 extended_remote_mourn_1 (&extended_remote_ops);
5397 }
5398
5399 static void
5400 extended_async_remote_mourn (void)
5401 {
5402 extended_remote_mourn_1 (&extended_async_remote_ops);
5403 }
5404
5405 static int
5406 extended_remote_run (char *args)
5407 {
5408 struct remote_state *rs = get_remote_state ();
5409 char *p;
5410 int len;
5411
5412 /* If the user has disabled vRun support, or we have detected that
5413 support is not available, do not try it. */
5414 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5415 return -1;
5416
5417 strcpy (rs->buf, "vRun;");
5418 len = strlen (rs->buf);
5419
5420 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
5421 error (_("Remote file name too long for run packet"));
5422 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
5423
5424 if (*args)
5425 {
5426 struct cleanup *back_to;
5427 int i;
5428 char **argv;
5429
5430 argv = buildargv (args);
5431 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
5432 for (i = 0; argv[i] != NULL; i++)
5433 {
5434 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
5435 error (_("Argument list too long for run packet"));
5436 rs->buf[len++] = ';';
5437 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
5438 }
5439 do_cleanups (back_to);
5440 }
5441
5442 rs->buf[len++] = '\0';
5443
5444 putpkt (rs->buf);
5445 getpkt (&rs->buf, &rs->buf_size, 0);
5446
5447 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
5448 {
5449 /* We have a wait response; we don't need it, though. All is well. */
5450 return 0;
5451 }
5452 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5453 /* It wasn't disabled before, but it is now. */
5454 return -1;
5455 else
5456 {
5457 if (remote_exec_file[0] == '\0')
5458 error (_("Running the default executable on the remote target failed; "
5459 "try \"set remote exec-file\"?"));
5460 else
5461 error (_("Running \"%s\" on the remote target failed"),
5462 remote_exec_file);
5463 }
5464 }
5465
5466 /* In the extended protocol we want to be able to do things like
5467 "run" and have them basically work as expected. So we need
5468 a special create_inferior function. We support changing the
5469 executable file and the command line arguments, but not the
5470 environment. */
5471
5472 static void
5473 extended_remote_create_inferior_1 (char *exec_file, char *args,
5474 char **env, int from_tty,
5475 int async_p)
5476 {
5477 /* If running asynchronously, register the target file descriptor
5478 with the event loop. */
5479 if (async_p && target_can_async_p ())
5480 target_async (inferior_event_handler, 0);
5481
5482 /* Now restart the remote server. */
5483 if (extended_remote_run (args) == -1)
5484 {
5485 /* vRun was not supported. Fail if we need it to do what the
5486 user requested. */
5487 if (remote_exec_file[0])
5488 error (_("Remote target does not support \"set remote exec-file\""));
5489 if (args[0])
5490 error (_("Remote target does not support \"set args\" or run <ARGS>"));
5491
5492 /* Fall back to "R". */
5493 extended_remote_restart ();
5494 }
5495
5496 /* Now mark the inferior as running before we do anything else. */
5497 attach_flag = 0;
5498 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5499 if (async_p)
5500 target_mark_running (&extended_async_remote_ops);
5501 else
5502 target_mark_running (&extended_remote_ops);
5503
5504 /* Get updated offsets, if the stub uses qOffsets. */
5505 get_offsets ();
5506
5507 /* Clean up from the last time we were running. */
5508 init_thread_list ();
5509 init_wait_for_inferior ();
5510 }
5511
5512 static void
5513 extended_remote_create_inferior (char *exec_file, char *args,
5514 char **env, int from_tty)
5515 {
5516 extended_remote_create_inferior_1 (exec_file, args, env, from_tty, 0);
5517 }
5518
5519 static void
5520 extended_remote_async_create_inferior (char *exec_file, char *args,
5521 char **env, int from_tty)
5522 {
5523 extended_remote_create_inferior_1 (exec_file, args, env, from_tty, 1);
5524 }
5525 \f
5526
5527 /* Insert a breakpoint. On targets that have software breakpoint
5528 support, we ask the remote target to do the work; on targets
5529 which don't, we insert a traditional memory breakpoint. */
5530
5531 static int
5532 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5533 {
5534 CORE_ADDR addr = bp_tgt->placed_address;
5535 struct remote_state *rs = get_remote_state ();
5536
5537 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5538 If it succeeds, then set the support to PACKET_ENABLE. If it
5539 fails, and the user has explicitly requested the Z support then
5540 report an error, otherwise, mark it disabled and go on. */
5541
5542 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5543 {
5544 char *p = rs->buf;
5545
5546 *(p++) = 'Z';
5547 *(p++) = '0';
5548 *(p++) = ',';
5549 gdbarch_breakpoint_from_pc
5550 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5551 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5552 p += hexnumstr (p, addr);
5553 sprintf (p, ",%d", bp_tgt->placed_size);
5554
5555 putpkt (rs->buf);
5556 getpkt (&rs->buf, &rs->buf_size, 0);
5557
5558 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5559 {
5560 case PACKET_ERROR:
5561 return -1;
5562 case PACKET_OK:
5563 return 0;
5564 case PACKET_UNKNOWN:
5565 break;
5566 }
5567 }
5568
5569 return memory_insert_breakpoint (bp_tgt);
5570 }
5571
5572 static int
5573 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5574 {
5575 CORE_ADDR addr = bp_tgt->placed_address;
5576 struct remote_state *rs = get_remote_state ();
5577 int bp_size;
5578
5579 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5580 {
5581 char *p = rs->buf;
5582
5583 *(p++) = 'z';
5584 *(p++) = '0';
5585 *(p++) = ',';
5586
5587 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5588 p += hexnumstr (p, addr);
5589 sprintf (p, ",%d", bp_tgt->placed_size);
5590
5591 putpkt (rs->buf);
5592 getpkt (&rs->buf, &rs->buf_size, 0);
5593
5594 return (rs->buf[0] == 'E');
5595 }
5596
5597 return memory_remove_breakpoint (bp_tgt);
5598 }
5599
5600 static int
5601 watchpoint_to_Z_packet (int type)
5602 {
5603 switch (type)
5604 {
5605 case hw_write:
5606 return Z_PACKET_WRITE_WP;
5607 break;
5608 case hw_read:
5609 return Z_PACKET_READ_WP;
5610 break;
5611 case hw_access:
5612 return Z_PACKET_ACCESS_WP;
5613 break;
5614 default:
5615 internal_error (__FILE__, __LINE__,
5616 _("hw_bp_to_z: bad watchpoint type %d"), type);
5617 }
5618 }
5619
5620 static int
5621 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5622 {
5623 struct remote_state *rs = get_remote_state ();
5624 char *p;
5625 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5626
5627 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5628 return -1;
5629
5630 sprintf (rs->buf, "Z%x,", packet);
5631 p = strchr (rs->buf, '\0');
5632 addr = remote_address_masked (addr);
5633 p += hexnumstr (p, (ULONGEST) addr);
5634 sprintf (p, ",%x", len);
5635
5636 putpkt (rs->buf);
5637 getpkt (&rs->buf, &rs->buf_size, 0);
5638
5639 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5640 {
5641 case PACKET_ERROR:
5642 case PACKET_UNKNOWN:
5643 return -1;
5644 case PACKET_OK:
5645 return 0;
5646 }
5647 internal_error (__FILE__, __LINE__,
5648 _("remote_insert_watchpoint: reached end of function"));
5649 }
5650
5651
5652 static int
5653 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5654 {
5655 struct remote_state *rs = get_remote_state ();
5656 char *p;
5657 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5658
5659 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5660 return -1;
5661
5662 sprintf (rs->buf, "z%x,", packet);
5663 p = strchr (rs->buf, '\0');
5664 addr = remote_address_masked (addr);
5665 p += hexnumstr (p, (ULONGEST) addr);
5666 sprintf (p, ",%x", len);
5667 putpkt (rs->buf);
5668 getpkt (&rs->buf, &rs->buf_size, 0);
5669
5670 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5671 {
5672 case PACKET_ERROR:
5673 case PACKET_UNKNOWN:
5674 return -1;
5675 case PACKET_OK:
5676 return 0;
5677 }
5678 internal_error (__FILE__, __LINE__,
5679 _("remote_remove_watchpoint: reached end of function"));
5680 }
5681
5682
5683 int remote_hw_watchpoint_limit = -1;
5684 int remote_hw_breakpoint_limit = -1;
5685
5686 static int
5687 remote_check_watch_resources (int type, int cnt, int ot)
5688 {
5689 if (type == bp_hardware_breakpoint)
5690 {
5691 if (remote_hw_breakpoint_limit == 0)
5692 return 0;
5693 else if (remote_hw_breakpoint_limit < 0)
5694 return 1;
5695 else if (cnt <= remote_hw_breakpoint_limit)
5696 return 1;
5697 }
5698 else
5699 {
5700 if (remote_hw_watchpoint_limit == 0)
5701 return 0;
5702 else if (remote_hw_watchpoint_limit < 0)
5703 return 1;
5704 else if (ot)
5705 return -1;
5706 else if (cnt <= remote_hw_watchpoint_limit)
5707 return 1;
5708 }
5709 return -1;
5710 }
5711
5712 static int
5713 remote_stopped_by_watchpoint (void)
5714 {
5715 return remote_stopped_by_watchpoint_p;
5716 }
5717
5718 static int
5719 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5720 {
5721 int rc = 0;
5722 if (remote_stopped_by_watchpoint ())
5723 {
5724 *addr_p = remote_watch_data_address;
5725 rc = 1;
5726 }
5727
5728 return rc;
5729 }
5730
5731
5732 static int
5733 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5734 {
5735 CORE_ADDR addr;
5736 struct remote_state *rs = get_remote_state ();
5737 char *p = rs->buf;
5738
5739 /* The length field should be set to the size of a breakpoint
5740 instruction, even though we aren't inserting one ourselves. */
5741
5742 gdbarch_breakpoint_from_pc
5743 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5744
5745 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5746 return -1;
5747
5748 *(p++) = 'Z';
5749 *(p++) = '1';
5750 *(p++) = ',';
5751
5752 addr = remote_address_masked (bp_tgt->placed_address);
5753 p += hexnumstr (p, (ULONGEST) addr);
5754 sprintf (p, ",%x", bp_tgt->placed_size);
5755
5756 putpkt (rs->buf);
5757 getpkt (&rs->buf, &rs->buf_size, 0);
5758
5759 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5760 {
5761 case PACKET_ERROR:
5762 case PACKET_UNKNOWN:
5763 return -1;
5764 case PACKET_OK:
5765 return 0;
5766 }
5767 internal_error (__FILE__, __LINE__,
5768 _("remote_insert_hw_breakpoint: reached end of function"));
5769 }
5770
5771
5772 static int
5773 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5774 {
5775 CORE_ADDR addr;
5776 struct remote_state *rs = get_remote_state ();
5777 char *p = rs->buf;
5778
5779 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5780 return -1;
5781
5782 *(p++) = 'z';
5783 *(p++) = '1';
5784 *(p++) = ',';
5785
5786 addr = remote_address_masked (bp_tgt->placed_address);
5787 p += hexnumstr (p, (ULONGEST) addr);
5788 sprintf (p, ",%x", bp_tgt->placed_size);
5789
5790 putpkt (rs->buf);
5791 getpkt (&rs->buf, &rs->buf_size, 0);
5792
5793 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5794 {
5795 case PACKET_ERROR:
5796 case PACKET_UNKNOWN:
5797 return -1;
5798 case PACKET_OK:
5799 return 0;
5800 }
5801 internal_error (__FILE__, __LINE__,
5802 _("remote_remove_hw_breakpoint: reached end of function"));
5803 }
5804
5805 /* Some targets are only capable of doing downloads, and afterwards
5806 they switch to the remote serial protocol. This function provides
5807 a clean way to get from the download target to the remote target.
5808 It's basically just a wrapper so that we don't have to expose any
5809 of the internal workings of remote.c.
5810
5811 Prior to calling this routine, you should shutdown the current
5812 target code, else you will get the "A program is being debugged
5813 already..." message. Usually a call to pop_target() suffices. */
5814
5815 void
5816 push_remote_target (char *name, int from_tty)
5817 {
5818 printf_filtered (_("Switching to remote protocol\n"));
5819 remote_open (name, from_tty);
5820 }
5821
5822 /* Table used by the crc32 function to calcuate the checksum. */
5823
5824 static unsigned long crc32_table[256] =
5825 {0, 0};
5826
5827 static unsigned long
5828 crc32 (unsigned char *buf, int len, unsigned int crc)
5829 {
5830 if (!crc32_table[1])
5831 {
5832 /* Initialize the CRC table and the decoding table. */
5833 int i, j;
5834 unsigned int c;
5835
5836 for (i = 0; i < 256; i++)
5837 {
5838 for (c = i << 24, j = 8; j > 0; --j)
5839 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5840 crc32_table[i] = c;
5841 }
5842 }
5843
5844 while (len--)
5845 {
5846 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5847 buf++;
5848 }
5849 return crc;
5850 }
5851
5852 /* compare-sections command
5853
5854 With no arguments, compares each loadable section in the exec bfd
5855 with the same memory range on the target, and reports mismatches.
5856 Useful for verifying the image on the target against the exec file.
5857 Depends on the target understanding the new "qCRC:" request. */
5858
5859 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5860 target method (target verify memory) and generic version of the
5861 actual command. This will allow other high-level code (especially
5862 generic_load()) to make use of this target functionality. */
5863
5864 static void
5865 compare_sections_command (char *args, int from_tty)
5866 {
5867 struct remote_state *rs = get_remote_state ();
5868 asection *s;
5869 unsigned long host_crc, target_crc;
5870 extern bfd *exec_bfd;
5871 struct cleanup *old_chain;
5872 char *tmp;
5873 char *sectdata;
5874 const char *sectname;
5875 bfd_size_type size;
5876 bfd_vma lma;
5877 int matched = 0;
5878 int mismatched = 0;
5879
5880 if (!exec_bfd)
5881 error (_("command cannot be used without an exec file"));
5882 if (!current_target.to_shortname ||
5883 strcmp (current_target.to_shortname, "remote") != 0)
5884 error (_("command can only be used with remote target"));
5885
5886 for (s = exec_bfd->sections; s; s = s->next)
5887 {
5888 if (!(s->flags & SEC_LOAD))
5889 continue; /* skip non-loadable section */
5890
5891 size = bfd_get_section_size (s);
5892 if (size == 0)
5893 continue; /* skip zero-length section */
5894
5895 sectname = bfd_get_section_name (exec_bfd, s);
5896 if (args && strcmp (args, sectname) != 0)
5897 continue; /* not the section selected by user */
5898
5899 matched = 1; /* do this section */
5900 lma = s->lma;
5901 /* FIXME: assumes lma can fit into long. */
5902 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5903 (long) lma, (long) size);
5904 putpkt (rs->buf);
5905
5906 /* Be clever; compute the host_crc before waiting for target
5907 reply. */
5908 sectdata = xmalloc (size);
5909 old_chain = make_cleanup (xfree, sectdata);
5910 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5911 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5912
5913 getpkt (&rs->buf, &rs->buf_size, 0);
5914 if (rs->buf[0] == 'E')
5915 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5916 sectname, paddr (lma), paddr (lma + size));
5917 if (rs->buf[0] != 'C')
5918 error (_("remote target does not support this operation"));
5919
5920 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5921 target_crc = target_crc * 16 + fromhex (*tmp);
5922
5923 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5924 sectname, paddr (lma), paddr (lma + size));
5925 if (host_crc == target_crc)
5926 printf_filtered ("matched.\n");
5927 else
5928 {
5929 printf_filtered ("MIS-MATCHED!\n");
5930 mismatched++;
5931 }
5932
5933 do_cleanups (old_chain);
5934 }
5935 if (mismatched > 0)
5936 warning (_("One or more sections of the remote executable does not match\n\
5937 the loaded file\n"));
5938 if (args && !matched)
5939 printf_filtered (_("No loaded section named '%s'.\n"), args);
5940 }
5941
5942 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5943 into remote target. The number of bytes written to the remote
5944 target is returned, or -1 for error. */
5945
5946 static LONGEST
5947 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5948 const char *annex, const gdb_byte *writebuf,
5949 ULONGEST offset, LONGEST len,
5950 struct packet_config *packet)
5951 {
5952 int i, buf_len;
5953 ULONGEST n;
5954 gdb_byte *wbuf;
5955 struct remote_state *rs = get_remote_state ();
5956 int max_size = get_memory_write_packet_size ();
5957
5958 if (packet->support == PACKET_DISABLE)
5959 return -1;
5960
5961 /* Insert header. */
5962 i = snprintf (rs->buf, max_size,
5963 "qXfer:%s:write:%s:%s:",
5964 object_name, annex ? annex : "",
5965 phex_nz (offset, sizeof offset));
5966 max_size -= (i + 1);
5967
5968 /* Escape as much data as fits into rs->buf. */
5969 buf_len = remote_escape_output
5970 (writebuf, len, (rs->buf + i), &max_size, max_size);
5971
5972 if (putpkt_binary (rs->buf, i + buf_len) < 0
5973 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5974 || packet_ok (rs->buf, packet) != PACKET_OK)
5975 return -1;
5976
5977 unpack_varlen_hex (rs->buf, &n);
5978 return n;
5979 }
5980
5981 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5982 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5983 number of bytes read is returned, or 0 for EOF, or -1 for error.
5984 The number of bytes read may be less than LEN without indicating an
5985 EOF. PACKET is checked and updated to indicate whether the remote
5986 target supports this object. */
5987
5988 static LONGEST
5989 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5990 const char *annex,
5991 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5992 struct packet_config *packet)
5993 {
5994 static char *finished_object;
5995 static char *finished_annex;
5996 static ULONGEST finished_offset;
5997
5998 struct remote_state *rs = get_remote_state ();
5999 unsigned int total = 0;
6000 LONGEST i, n, packet_len;
6001
6002 if (packet->support == PACKET_DISABLE)
6003 return -1;
6004
6005 /* Check whether we've cached an end-of-object packet that matches
6006 this request. */
6007 if (finished_object)
6008 {
6009 if (strcmp (object_name, finished_object) == 0
6010 && strcmp (annex ? annex : "", finished_annex) == 0
6011 && offset == finished_offset)
6012 return 0;
6013
6014 /* Otherwise, we're now reading something different. Discard
6015 the cache. */
6016 xfree (finished_object);
6017 xfree (finished_annex);
6018 finished_object = NULL;
6019 finished_annex = NULL;
6020 }
6021
6022 /* Request only enough to fit in a single packet. The actual data
6023 may not, since we don't know how much of it will need to be escaped;
6024 the target is free to respond with slightly less data. We subtract
6025 five to account for the response type and the protocol frame. */
6026 n = min (get_remote_packet_size () - 5, len);
6027 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
6028 object_name, annex ? annex : "",
6029 phex_nz (offset, sizeof offset),
6030 phex_nz (n, sizeof n));
6031 i = putpkt (rs->buf);
6032 if (i < 0)
6033 return -1;
6034
6035 rs->buf[0] = '\0';
6036 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6037 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
6038 return -1;
6039
6040 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
6041 error (_("Unknown remote qXfer reply: %s"), rs->buf);
6042
6043 /* 'm' means there is (or at least might be) more data after this
6044 batch. That does not make sense unless there's at least one byte
6045 of data in this reply. */
6046 if (rs->buf[0] == 'm' && packet_len == 1)
6047 error (_("Remote qXfer reply contained no data."));
6048
6049 /* Got some data. */
6050 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
6051
6052 /* 'l' is an EOF marker, possibly including a final block of data,
6053 or possibly empty. If we have the final block of a non-empty
6054 object, record this fact to bypass a subsequent partial read. */
6055 if (rs->buf[0] == 'l' && offset + i > 0)
6056 {
6057 finished_object = xstrdup (object_name);
6058 finished_annex = xstrdup (annex ? annex : "");
6059 finished_offset = offset + i;
6060 }
6061
6062 return i;
6063 }
6064
6065 static LONGEST
6066 remote_xfer_partial (struct target_ops *ops, enum target_object object,
6067 const char *annex, gdb_byte *readbuf,
6068 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
6069 {
6070 struct remote_state *rs = get_remote_state ();
6071 int i;
6072 char *p2;
6073 char query_type;
6074
6075 /* Handle memory using the standard memory routines. */
6076 if (object == TARGET_OBJECT_MEMORY)
6077 {
6078 int xfered;
6079 errno = 0;
6080
6081 /* If the remote target is connected but not running, we should
6082 pass this request down to a lower stratum (e.g. the executable
6083 file). */
6084 if (!target_has_execution)
6085 return 0;
6086
6087 if (writebuf != NULL)
6088 xfered = remote_write_bytes (offset, writebuf, len);
6089 else
6090 xfered = remote_read_bytes (offset, readbuf, len);
6091
6092 if (xfered > 0)
6093 return xfered;
6094 else if (xfered == 0 && errno == 0)
6095 return 0;
6096 else
6097 return -1;
6098 }
6099
6100 /* Handle SPU memory using qxfer packets. */
6101 if (object == TARGET_OBJECT_SPU)
6102 {
6103 if (readbuf)
6104 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
6105 &remote_protocol_packets
6106 [PACKET_qXfer_spu_read]);
6107 else
6108 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
6109 &remote_protocol_packets
6110 [PACKET_qXfer_spu_write]);
6111 }
6112
6113 /* Only handle flash writes. */
6114 if (writebuf != NULL)
6115 {
6116 LONGEST xfered;
6117
6118 switch (object)
6119 {
6120 case TARGET_OBJECT_FLASH:
6121 xfered = remote_flash_write (ops, offset, len, writebuf);
6122
6123 if (xfered > 0)
6124 return xfered;
6125 else if (xfered == 0 && errno == 0)
6126 return 0;
6127 else
6128 return -1;
6129
6130 default:
6131 return -1;
6132 }
6133 }
6134
6135 /* Map pre-existing objects onto letters. DO NOT do this for new
6136 objects!!! Instead specify new query packets. */
6137 switch (object)
6138 {
6139 case TARGET_OBJECT_AVR:
6140 query_type = 'R';
6141 break;
6142
6143 case TARGET_OBJECT_AUXV:
6144 gdb_assert (annex == NULL);
6145 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
6146 &remote_protocol_packets[PACKET_qXfer_auxv]);
6147
6148 case TARGET_OBJECT_AVAILABLE_FEATURES:
6149 return remote_read_qxfer
6150 (ops, "features", annex, readbuf, offset, len,
6151 &remote_protocol_packets[PACKET_qXfer_features]);
6152
6153 case TARGET_OBJECT_LIBRARIES:
6154 return remote_read_qxfer
6155 (ops, "libraries", annex, readbuf, offset, len,
6156 &remote_protocol_packets[PACKET_qXfer_libraries]);
6157
6158 case TARGET_OBJECT_MEMORY_MAP:
6159 gdb_assert (annex == NULL);
6160 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
6161 &remote_protocol_packets[PACKET_qXfer_memory_map]);
6162
6163 default:
6164 return -1;
6165 }
6166
6167 /* Note: a zero OFFSET and LEN can be used to query the minimum
6168 buffer size. */
6169 if (offset == 0 && len == 0)
6170 return (get_remote_packet_size ());
6171 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
6172 large enough let the caller deal with it. */
6173 if (len < get_remote_packet_size ())
6174 return -1;
6175 len = get_remote_packet_size ();
6176
6177 /* Except for querying the minimum buffer size, target must be open. */
6178 if (!remote_desc)
6179 error (_("remote query is only available after target open"));
6180
6181 gdb_assert (annex != NULL);
6182 gdb_assert (readbuf != NULL);
6183
6184 p2 = rs->buf;
6185 *p2++ = 'q';
6186 *p2++ = query_type;
6187
6188 /* We used one buffer char for the remote protocol q command and
6189 another for the query type. As the remote protocol encapsulation
6190 uses 4 chars plus one extra in case we are debugging
6191 (remote_debug), we have PBUFZIZ - 7 left to pack the query
6192 string. */
6193 i = 0;
6194 while (annex[i] && (i < (get_remote_packet_size () - 8)))
6195 {
6196 /* Bad caller may have sent forbidden characters. */
6197 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
6198 *p2++ = annex[i];
6199 i++;
6200 }
6201 *p2 = '\0';
6202 gdb_assert (annex[i] == '\0');
6203
6204 i = putpkt (rs->buf);
6205 if (i < 0)
6206 return i;
6207
6208 getpkt (&rs->buf, &rs->buf_size, 0);
6209 strcpy ((char *) readbuf, rs->buf);
6210
6211 return strlen ((char *) readbuf);
6212 }
6213
6214 static void
6215 remote_rcmd (char *command,
6216 struct ui_file *outbuf)
6217 {
6218 struct remote_state *rs = get_remote_state ();
6219 char *p = rs->buf;
6220
6221 if (!remote_desc)
6222 error (_("remote rcmd is only available after target open"));
6223
6224 /* Send a NULL command across as an empty command. */
6225 if (command == NULL)
6226 command = "";
6227
6228 /* The query prefix. */
6229 strcpy (rs->buf, "qRcmd,");
6230 p = strchr (rs->buf, '\0');
6231
6232 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
6233 error (_("\"monitor\" command ``%s'' is too long."), command);
6234
6235 /* Encode the actual command. */
6236 bin2hex ((gdb_byte *) command, p, 0);
6237
6238 if (putpkt (rs->buf) < 0)
6239 error (_("Communication problem with target."));
6240
6241 /* get/display the response */
6242 while (1)
6243 {
6244 char *buf;
6245
6246 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
6247 rs->buf[0] = '\0';
6248 getpkt (&rs->buf, &rs->buf_size, 0);
6249 buf = rs->buf;
6250 if (buf[0] == '\0')
6251 error (_("Target does not support this command."));
6252 if (buf[0] == 'O' && buf[1] != 'K')
6253 {
6254 remote_console_output (buf + 1); /* 'O' message from stub. */
6255 continue;
6256 }
6257 if (strcmp (buf, "OK") == 0)
6258 break;
6259 if (strlen (buf) == 3 && buf[0] == 'E'
6260 && isdigit (buf[1]) && isdigit (buf[2]))
6261 {
6262 error (_("Protocol error with Rcmd"));
6263 }
6264 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
6265 {
6266 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
6267 fputc_unfiltered (c, outbuf);
6268 }
6269 break;
6270 }
6271 }
6272
6273 static VEC(mem_region_s) *
6274 remote_memory_map (struct target_ops *ops)
6275 {
6276 VEC(mem_region_s) *result = NULL;
6277 char *text = target_read_stralloc (&current_target,
6278 TARGET_OBJECT_MEMORY_MAP, NULL);
6279
6280 if (text)
6281 {
6282 struct cleanup *back_to = make_cleanup (xfree, text);
6283 result = parse_memory_map (text);
6284 do_cleanups (back_to);
6285 }
6286
6287 return result;
6288 }
6289
6290 static void
6291 packet_command (char *args, int from_tty)
6292 {
6293 struct remote_state *rs = get_remote_state ();
6294
6295 if (!remote_desc)
6296 error (_("command can only be used with remote target"));
6297
6298 if (!args)
6299 error (_("remote-packet command requires packet text as argument"));
6300
6301 puts_filtered ("sending: ");
6302 print_packet (args);
6303 puts_filtered ("\n");
6304 putpkt (args);
6305
6306 getpkt (&rs->buf, &rs->buf_size, 0);
6307 puts_filtered ("received: ");
6308 print_packet (rs->buf);
6309 puts_filtered ("\n");
6310 }
6311
6312 #if 0
6313 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6314
6315 static void display_thread_info (struct gdb_ext_thread_info *info);
6316
6317 static void threadset_test_cmd (char *cmd, int tty);
6318
6319 static void threadalive_test (char *cmd, int tty);
6320
6321 static void threadlist_test_cmd (char *cmd, int tty);
6322
6323 int get_and_display_threadinfo (threadref *ref);
6324
6325 static void threadinfo_test_cmd (char *cmd, int tty);
6326
6327 static int thread_display_step (threadref *ref, void *context);
6328
6329 static void threadlist_update_test_cmd (char *cmd, int tty);
6330
6331 static void init_remote_threadtests (void);
6332
6333 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6334
6335 static void
6336 threadset_test_cmd (char *cmd, int tty)
6337 {
6338 int sample_thread = SAMPLE_THREAD;
6339
6340 printf_filtered (_("Remote threadset test\n"));
6341 set_thread (sample_thread, 1);
6342 }
6343
6344
6345 static void
6346 threadalive_test (char *cmd, int tty)
6347 {
6348 int sample_thread = SAMPLE_THREAD;
6349
6350 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6351 printf_filtered ("PASS: Thread alive test\n");
6352 else
6353 printf_filtered ("FAIL: Thread alive test\n");
6354 }
6355
6356 void output_threadid (char *title, threadref *ref);
6357
6358 void
6359 output_threadid (char *title, threadref *ref)
6360 {
6361 char hexid[20];
6362
6363 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6364 hexid[16] = 0;
6365 printf_filtered ("%s %s\n", title, (&hexid[0]));
6366 }
6367
6368 static void
6369 threadlist_test_cmd (char *cmd, int tty)
6370 {
6371 int startflag = 1;
6372 threadref nextthread;
6373 int done, result_count;
6374 threadref threadlist[3];
6375
6376 printf_filtered ("Remote Threadlist test\n");
6377 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6378 &result_count, &threadlist[0]))
6379 printf_filtered ("FAIL: threadlist test\n");
6380 else
6381 {
6382 threadref *scan = threadlist;
6383 threadref *limit = scan + result_count;
6384
6385 while (scan < limit)
6386 output_threadid (" thread ", scan++);
6387 }
6388 }
6389
6390 void
6391 display_thread_info (struct gdb_ext_thread_info *info)
6392 {
6393 output_threadid ("Threadid: ", &info->threadid);
6394 printf_filtered ("Name: %s\n ", info->shortname);
6395 printf_filtered ("State: %s\n", info->display);
6396 printf_filtered ("other: %s\n\n", info->more_display);
6397 }
6398
6399 int
6400 get_and_display_threadinfo (threadref *ref)
6401 {
6402 int result;
6403 int set;
6404 struct gdb_ext_thread_info threadinfo;
6405
6406 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6407 | TAG_MOREDISPLAY | TAG_DISPLAY;
6408 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6409 display_thread_info (&threadinfo);
6410 return result;
6411 }
6412
6413 static void
6414 threadinfo_test_cmd (char *cmd, int tty)
6415 {
6416 int athread = SAMPLE_THREAD;
6417 threadref thread;
6418 int set;
6419
6420 int_to_threadref (&thread, athread);
6421 printf_filtered ("Remote Threadinfo test\n");
6422 if (!get_and_display_threadinfo (&thread))
6423 printf_filtered ("FAIL cannot get thread info\n");
6424 }
6425
6426 static int
6427 thread_display_step (threadref *ref, void *context)
6428 {
6429 /* output_threadid(" threadstep ",ref); *//* simple test */
6430 return get_and_display_threadinfo (ref);
6431 }
6432
6433 static void
6434 threadlist_update_test_cmd (char *cmd, int tty)
6435 {
6436 printf_filtered ("Remote Threadlist update test\n");
6437 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6438 }
6439
6440 static void
6441 init_remote_threadtests (void)
6442 {
6443 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6444 Fetch and print the remote list of thread identifiers, one pkt only"));
6445 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6446 _("Fetch and display info about one thread"));
6447 add_com ("tset", class_obscure, threadset_test_cmd,
6448 _("Test setting to a different thread"));
6449 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6450 _("Iterate through updating all remote thread info"));
6451 add_com ("talive", class_obscure, threadalive_test,
6452 _(" Remote thread alive test "));
6453 }
6454
6455 #endif /* 0 */
6456
6457 /* Convert a thread ID to a string. Returns the string in a static
6458 buffer. */
6459
6460 static char *
6461 remote_pid_to_str (ptid_t ptid)
6462 {
6463 static char buf[32];
6464
6465 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6466 return buf;
6467 }
6468
6469 /* Get the address of the thread local variable in OBJFILE which is
6470 stored at OFFSET within the thread local storage for thread PTID. */
6471
6472 static CORE_ADDR
6473 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6474 {
6475 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6476 {
6477 struct remote_state *rs = get_remote_state ();
6478 char *p = rs->buf;
6479 enum packet_result result;
6480
6481 strcpy (p, "qGetTLSAddr:");
6482 p += strlen (p);
6483 p += hexnumstr (p, PIDGET (ptid));
6484 *p++ = ',';
6485 p += hexnumstr (p, offset);
6486 *p++ = ',';
6487 p += hexnumstr (p, lm);
6488 *p++ = '\0';
6489
6490 putpkt (rs->buf);
6491 getpkt (&rs->buf, &rs->buf_size, 0);
6492 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6493 if (result == PACKET_OK)
6494 {
6495 ULONGEST result;
6496
6497 unpack_varlen_hex (rs->buf, &result);
6498 return result;
6499 }
6500 else if (result == PACKET_UNKNOWN)
6501 throw_error (TLS_GENERIC_ERROR,
6502 _("Remote target doesn't support qGetTLSAddr packet"));
6503 else
6504 throw_error (TLS_GENERIC_ERROR,
6505 _("Remote target failed to process qGetTLSAddr request"));
6506 }
6507 else
6508 throw_error (TLS_GENERIC_ERROR,
6509 _("TLS not supported or disabled on this target"));
6510 /* Not reached. */
6511 return 0;
6512 }
6513
6514 /* Support for inferring a target description based on the current
6515 architecture and the size of a 'g' packet. While the 'g' packet
6516 can have any size (since optional registers can be left off the
6517 end), some sizes are easily recognizable given knowledge of the
6518 approximate architecture. */
6519
6520 struct remote_g_packet_guess
6521 {
6522 int bytes;
6523 const struct target_desc *tdesc;
6524 };
6525 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6526 DEF_VEC_O(remote_g_packet_guess_s);
6527
6528 struct remote_g_packet_data
6529 {
6530 VEC(remote_g_packet_guess_s) *guesses;
6531 };
6532
6533 static struct gdbarch_data *remote_g_packet_data_handle;
6534
6535 static void *
6536 remote_g_packet_data_init (struct obstack *obstack)
6537 {
6538 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6539 }
6540
6541 void
6542 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6543 const struct target_desc *tdesc)
6544 {
6545 struct remote_g_packet_data *data
6546 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6547 struct remote_g_packet_guess new_guess, *guess;
6548 int ix;
6549
6550 gdb_assert (tdesc != NULL);
6551
6552 for (ix = 0;
6553 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6554 ix++)
6555 if (guess->bytes == bytes)
6556 internal_error (__FILE__, __LINE__,
6557 "Duplicate g packet description added for size %d",
6558 bytes);
6559
6560 new_guess.bytes = bytes;
6561 new_guess.tdesc = tdesc;
6562 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6563 }
6564
6565 static const struct target_desc *
6566 remote_read_description (struct target_ops *target)
6567 {
6568 struct remote_g_packet_data *data
6569 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6570
6571 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6572 {
6573 struct remote_g_packet_guess *guess;
6574 int ix;
6575 int bytes = send_g_packet ();
6576
6577 for (ix = 0;
6578 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6579 ix++)
6580 if (guess->bytes == bytes)
6581 return guess->tdesc;
6582
6583 /* We discard the g packet. A minor optimization would be to
6584 hold on to it, and fill the register cache once we have selected
6585 an architecture, but it's too tricky to do safely. */
6586 }
6587
6588 return NULL;
6589 }
6590
6591 /* Remote file transfer support. This is host-initiated I/O, not
6592 target-initiated; for target-initiated, see remote-fileio.c. */
6593
6594 /* If *LEFT is at least the length of STRING, copy STRING to
6595 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6596 decrease *LEFT. Otherwise raise an error. */
6597
6598 static void
6599 remote_buffer_add_string (char **buffer, int *left, char *string)
6600 {
6601 int len = strlen (string);
6602
6603 if (len > *left)
6604 error (_("Packet too long for target."));
6605
6606 memcpy (*buffer, string, len);
6607 *buffer += len;
6608 *left -= len;
6609
6610 /* NUL-terminate the buffer as a convenience, if there is
6611 room. */
6612 if (*left)
6613 **buffer = '\0';
6614 }
6615
6616 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
6617 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6618 decrease *LEFT. Otherwise raise an error. */
6619
6620 static void
6621 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
6622 int len)
6623 {
6624 if (2 * len > *left)
6625 error (_("Packet too long for target."));
6626
6627 bin2hex (bytes, *buffer, len);
6628 *buffer += 2 * len;
6629 *left -= 2 * len;
6630
6631 /* NUL-terminate the buffer as a convenience, if there is
6632 room. */
6633 if (*left)
6634 **buffer = '\0';
6635 }
6636
6637 /* If *LEFT is large enough, convert VALUE to hex and add it to
6638 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6639 decrease *LEFT. Otherwise raise an error. */
6640
6641 static void
6642 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
6643 {
6644 int len = hexnumlen (value);
6645
6646 if (len > *left)
6647 error (_("Packet too long for target."));
6648
6649 hexnumstr (*buffer, value);
6650 *buffer += len;
6651 *left -= len;
6652
6653 /* NUL-terminate the buffer as a convenience, if there is
6654 room. */
6655 if (*left)
6656 **buffer = '\0';
6657 }
6658
6659 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
6660 value, *REMOTE_ERRNO to the remote error number or zero if none
6661 was included, and *ATTACHMENT to point to the start of the annex
6662 if any. The length of the packet isn't needed here; there may
6663 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
6664
6665 Return 0 if the packet could be parsed, -1 if it could not. If
6666 -1 is returned, the other variables may not be initialized. */
6667
6668 static int
6669 remote_hostio_parse_result (char *buffer, int *retcode,
6670 int *remote_errno, char **attachment)
6671 {
6672 char *p, *p2;
6673
6674 *remote_errno = 0;
6675 *attachment = NULL;
6676
6677 if (buffer[0] != 'F')
6678 return -1;
6679
6680 errno = 0;
6681 *retcode = strtol (&buffer[1], &p, 16);
6682 if (errno != 0 || p == &buffer[1])
6683 return -1;
6684
6685 /* Check for ",errno". */
6686 if (*p == ',')
6687 {
6688 errno = 0;
6689 *remote_errno = strtol (p + 1, &p2, 16);
6690 if (errno != 0 || p + 1 == p2)
6691 return -1;
6692 p = p2;
6693 }
6694
6695 /* Check for ";attachment". If there is no attachment, the
6696 packet should end here. */
6697 if (*p == ';')
6698 {
6699 *attachment = p + 1;
6700 return 0;
6701 }
6702 else if (*p == '\0')
6703 return 0;
6704 else
6705 return -1;
6706 }
6707
6708 /* Send a prepared I/O packet to the target and read its response.
6709 The prepared packet is in the global RS->BUF before this function
6710 is called, and the answer is there when we return.
6711
6712 COMMAND_BYTES is the length of the request to send, which may include
6713 binary data. WHICH_PACKET is the packet configuration to check
6714 before attempting a packet. If an error occurs, *REMOTE_ERRNO
6715 is set to the error number and -1 is returned. Otherwise the value
6716 returned by the function is returned.
6717
6718 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
6719 attachment is expected; an error will be reported if there's a
6720 mismatch. If one is found, *ATTACHMENT will be set to point into
6721 the packet buffer and *ATTACHMENT_LEN will be set to the
6722 attachment's length. */
6723
6724 static int
6725 remote_hostio_send_command (int command_bytes, int which_packet,
6726 int *remote_errno, char **attachment,
6727 int *attachment_len)
6728 {
6729 struct remote_state *rs = get_remote_state ();
6730 int ret, bytes_read;
6731 char *attachment_tmp;
6732
6733 if (remote_protocol_packets[which_packet].support == PACKET_DISABLE)
6734 {
6735 *remote_errno = FILEIO_ENOSYS;
6736 return -1;
6737 }
6738
6739 putpkt_binary (rs->buf, command_bytes);
6740 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6741
6742 /* If it timed out, something is wrong. Don't try to parse the
6743 buffer. */
6744 if (bytes_read < 0)
6745 {
6746 *remote_errno = FILEIO_EINVAL;
6747 return -1;
6748 }
6749
6750 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
6751 {
6752 case PACKET_ERROR:
6753 *remote_errno = FILEIO_EINVAL;
6754 return -1;
6755 case PACKET_UNKNOWN:
6756 *remote_errno = FILEIO_ENOSYS;
6757 return -1;
6758 case PACKET_OK:
6759 break;
6760 }
6761
6762 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
6763 &attachment_tmp))
6764 {
6765 *remote_errno = FILEIO_EINVAL;
6766 return -1;
6767 }
6768
6769 /* Make sure we saw an attachment if and only if we expected one. */
6770 if ((attachment_tmp == NULL && attachment != NULL)
6771 || (attachment_tmp != NULL && attachment == NULL))
6772 {
6773 *remote_errno = FILEIO_EINVAL;
6774 return -1;
6775 }
6776
6777 /* If an attachment was found, it must point into the packet buffer;
6778 work out how many bytes there were. */
6779 if (attachment_tmp != NULL)
6780 {
6781 *attachment = attachment_tmp;
6782 *attachment_len = bytes_read - (*attachment - rs->buf);
6783 }
6784
6785 return ret;
6786 }
6787
6788 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
6789 remote file descriptor, or -1 if an error occurs (and set
6790 *REMOTE_ERRNO). */
6791
6792 static int
6793 remote_hostio_open (const char *filename, int flags, int mode,
6794 int *remote_errno)
6795 {
6796 struct remote_state *rs = get_remote_state ();
6797 char *p = rs->buf;
6798 int left = get_remote_packet_size () - 1;
6799
6800 remote_buffer_add_string (&p, &left, "vFile:open:");
6801
6802 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6803 strlen (filename));
6804 remote_buffer_add_string (&p, &left, ",");
6805
6806 remote_buffer_add_int (&p, &left, flags);
6807 remote_buffer_add_string (&p, &left, ",");
6808
6809 remote_buffer_add_int (&p, &left, mode);
6810
6811 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
6812 remote_errno, NULL, NULL);
6813 }
6814
6815 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
6816 Return the number of bytes written, or -1 if an error occurs (and
6817 set *REMOTE_ERRNO). */
6818
6819 static int
6820 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
6821 ULONGEST offset, int *remote_errno)
6822 {
6823 struct remote_state *rs = get_remote_state ();
6824 char *p = rs->buf;
6825 int left = get_remote_packet_size ();
6826 int out_len;
6827
6828 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
6829
6830 remote_buffer_add_int (&p, &left, fd);
6831 remote_buffer_add_string (&p, &left, ",");
6832
6833 remote_buffer_add_int (&p, &left, offset);
6834 remote_buffer_add_string (&p, &left, ",");
6835
6836 p += remote_escape_output (write_buf, len, p, &out_len,
6837 get_remote_packet_size () - (p - rs->buf));
6838
6839 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
6840 remote_errno, NULL, NULL);
6841 }
6842
6843 /* Read up to LEN bytes FD on the remote target into READ_BUF
6844 Return the number of bytes read, or -1 if an error occurs (and
6845 set *REMOTE_ERRNO). */
6846
6847 static int
6848 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
6849 ULONGEST offset, int *remote_errno)
6850 {
6851 struct remote_state *rs = get_remote_state ();
6852 char *p = rs->buf;
6853 char *attachment;
6854 int left = get_remote_packet_size ();
6855 int ret, attachment_len;
6856 int read_len;
6857
6858 remote_buffer_add_string (&p, &left, "vFile:pread:");
6859
6860 remote_buffer_add_int (&p, &left, fd);
6861 remote_buffer_add_string (&p, &left, ",");
6862
6863 remote_buffer_add_int (&p, &left, len);
6864 remote_buffer_add_string (&p, &left, ",");
6865
6866 remote_buffer_add_int (&p, &left, offset);
6867
6868 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
6869 remote_errno, &attachment,
6870 &attachment_len);
6871
6872 if (ret < 0)
6873 return ret;
6874
6875 read_len = remote_unescape_input (attachment, attachment_len,
6876 read_buf, len);
6877 if (read_len != ret)
6878 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
6879
6880 return ret;
6881 }
6882
6883 /* Close FD on the remote target. Return 0, or -1 if an error occurs
6884 (and set *REMOTE_ERRNO). */
6885
6886 static int
6887 remote_hostio_close (int fd, int *remote_errno)
6888 {
6889 struct remote_state *rs = get_remote_state ();
6890 char *p = rs->buf;
6891 int left = get_remote_packet_size () - 1;
6892
6893 remote_buffer_add_string (&p, &left, "vFile:close:");
6894
6895 remote_buffer_add_int (&p, &left, fd);
6896
6897 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
6898 remote_errno, NULL, NULL);
6899 }
6900
6901 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
6902 occurs (and set *REMOTE_ERRNO). */
6903
6904 static int
6905 remote_hostio_unlink (const char *filename, int *remote_errno)
6906 {
6907 struct remote_state *rs = get_remote_state ();
6908 char *p = rs->buf;
6909 int left = get_remote_packet_size () - 1;
6910
6911 remote_buffer_add_string (&p, &left, "vFile:unlink:");
6912
6913 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6914 strlen (filename));
6915
6916 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
6917 remote_errno, NULL, NULL);
6918 }
6919
6920 static int
6921 remote_fileio_errno_to_host (int errnum)
6922 {
6923 switch (errnum)
6924 {
6925 case FILEIO_EPERM:
6926 return EPERM;
6927 case FILEIO_ENOENT:
6928 return ENOENT;
6929 case FILEIO_EINTR:
6930 return EINTR;
6931 case FILEIO_EIO:
6932 return EIO;
6933 case FILEIO_EBADF:
6934 return EBADF;
6935 case FILEIO_EACCES:
6936 return EACCES;
6937 case FILEIO_EFAULT:
6938 return EFAULT;
6939 case FILEIO_EBUSY:
6940 return EBUSY;
6941 case FILEIO_EEXIST:
6942 return EEXIST;
6943 case FILEIO_ENODEV:
6944 return ENODEV;
6945 case FILEIO_ENOTDIR:
6946 return ENOTDIR;
6947 case FILEIO_EISDIR:
6948 return EISDIR;
6949 case FILEIO_EINVAL:
6950 return EINVAL;
6951 case FILEIO_ENFILE:
6952 return ENFILE;
6953 case FILEIO_EMFILE:
6954 return EMFILE;
6955 case FILEIO_EFBIG:
6956 return EFBIG;
6957 case FILEIO_ENOSPC:
6958 return ENOSPC;
6959 case FILEIO_ESPIPE:
6960 return ESPIPE;
6961 case FILEIO_EROFS:
6962 return EROFS;
6963 case FILEIO_ENOSYS:
6964 return ENOSYS;
6965 case FILEIO_ENAMETOOLONG:
6966 return ENAMETOOLONG;
6967 }
6968 return -1;
6969 }
6970
6971 static char *
6972 remote_hostio_error (int errnum)
6973 {
6974 int host_error = remote_fileio_errno_to_host (errnum);
6975
6976 if (host_error == -1)
6977 error (_("Unknown remote I/O error %d"), errnum);
6978 else
6979 error (_("Remote I/O error: %s"), safe_strerror (host_error));
6980 }
6981
6982 static void
6983 fclose_cleanup (void *file)
6984 {
6985 fclose (file);
6986 }
6987
6988 static void
6989 remote_hostio_close_cleanup (void *opaque)
6990 {
6991 int fd = *(int *) opaque;
6992 int remote_errno;
6993
6994 remote_hostio_close (fd, &remote_errno);
6995 }
6996
6997 void
6998 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
6999 {
7000 struct cleanup *back_to, *close_cleanup;
7001 int retcode, fd, remote_errno, bytes, io_size;
7002 FILE *file;
7003 gdb_byte *buffer;
7004 int bytes_in_buffer;
7005 int saw_eof;
7006 ULONGEST offset;
7007
7008 if (!remote_desc)
7009 error (_("command can only be used with remote target"));
7010
7011 file = fopen (local_file, "rb");
7012 if (file == NULL)
7013 perror_with_name (local_file);
7014 back_to = make_cleanup (fclose_cleanup, file);
7015
7016 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
7017 | FILEIO_O_TRUNC),
7018 0700, &remote_errno);
7019 if (fd == -1)
7020 remote_hostio_error (remote_errno);
7021
7022 /* Send up to this many bytes at once. They won't all fit in the
7023 remote packet limit, so we'll transfer slightly fewer. */
7024 io_size = get_remote_packet_size ();
7025 buffer = xmalloc (io_size);
7026 make_cleanup (xfree, buffer);
7027
7028 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7029
7030 bytes_in_buffer = 0;
7031 saw_eof = 0;
7032 offset = 0;
7033 while (bytes_in_buffer || !saw_eof)
7034 {
7035 if (!saw_eof)
7036 {
7037 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
7038 file);
7039 if (bytes == 0)
7040 {
7041 if (ferror (file))
7042 error (_("Error reading %s."), local_file);
7043 else
7044 {
7045 /* EOF. Unless there is something still in the
7046 buffer from the last iteration, we are done. */
7047 saw_eof = 1;
7048 if (bytes_in_buffer == 0)
7049 break;
7050 }
7051 }
7052 }
7053 else
7054 bytes = 0;
7055
7056 bytes += bytes_in_buffer;
7057 bytes_in_buffer = 0;
7058
7059 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
7060
7061 if (retcode < 0)
7062 remote_hostio_error (remote_errno);
7063 else if (retcode == 0)
7064 error (_("Remote write of %d bytes returned 0!"), bytes);
7065 else if (retcode < bytes)
7066 {
7067 /* Short write. Save the rest of the read data for the next
7068 write. */
7069 bytes_in_buffer = bytes - retcode;
7070 memmove (buffer, buffer + retcode, bytes_in_buffer);
7071 }
7072
7073 offset += retcode;
7074 }
7075
7076 discard_cleanups (close_cleanup);
7077 if (remote_hostio_close (fd, &remote_errno))
7078 remote_hostio_error (remote_errno);
7079
7080 if (from_tty)
7081 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
7082 do_cleanups (back_to);
7083 }
7084
7085 void
7086 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
7087 {
7088 struct cleanup *back_to, *close_cleanup;
7089 int retcode, fd, remote_errno, bytes, io_size;
7090 FILE *file;
7091 gdb_byte *buffer;
7092 ULONGEST offset;
7093
7094 if (!remote_desc)
7095 error (_("command can only be used with remote target"));
7096
7097 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
7098 if (fd == -1)
7099 remote_hostio_error (remote_errno);
7100
7101 file = fopen (local_file, "wb");
7102 if (file == NULL)
7103 perror_with_name (local_file);
7104 back_to = make_cleanup (fclose_cleanup, file);
7105
7106 /* Send up to this many bytes at once. They won't all fit in the
7107 remote packet limit, so we'll transfer slightly fewer. */
7108 io_size = get_remote_packet_size ();
7109 buffer = xmalloc (io_size);
7110 make_cleanup (xfree, buffer);
7111
7112 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7113
7114 offset = 0;
7115 while (1)
7116 {
7117 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
7118 if (bytes == 0)
7119 /* Success, but no bytes, means end-of-file. */
7120 break;
7121 if (bytes == -1)
7122 remote_hostio_error (remote_errno);
7123
7124 offset += bytes;
7125
7126 bytes = fwrite (buffer, 1, bytes, file);
7127 if (bytes == 0)
7128 perror_with_name (local_file);
7129 }
7130
7131 discard_cleanups (close_cleanup);
7132 if (remote_hostio_close (fd, &remote_errno))
7133 remote_hostio_error (remote_errno);
7134
7135 if (from_tty)
7136 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
7137 do_cleanups (back_to);
7138 }
7139
7140 void
7141 remote_file_delete (const char *remote_file, int from_tty)
7142 {
7143 int retcode, remote_errno;
7144
7145 if (!remote_desc)
7146 error (_("command can only be used with remote target"));
7147
7148 retcode = remote_hostio_unlink (remote_file, &remote_errno);
7149 if (retcode == -1)
7150 remote_hostio_error (remote_errno);
7151
7152 if (from_tty)
7153 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
7154 }
7155
7156 static void
7157 remote_put_command (char *args, int from_tty)
7158 {
7159 struct cleanup *back_to;
7160 char **argv;
7161
7162 argv = buildargv (args);
7163 if (argv == NULL)
7164 nomem (0);
7165 back_to = make_cleanup_freeargv (argv);
7166 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7167 error (_("Invalid parameters to remote put"));
7168
7169 remote_file_put (argv[0], argv[1], from_tty);
7170
7171 do_cleanups (back_to);
7172 }
7173
7174 static void
7175 remote_get_command (char *args, int from_tty)
7176 {
7177 struct cleanup *back_to;
7178 char **argv;
7179
7180 argv = buildargv (args);
7181 if (argv == NULL)
7182 nomem (0);
7183 back_to = make_cleanup_freeargv (argv);
7184 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7185 error (_("Invalid parameters to remote get"));
7186
7187 remote_file_get (argv[0], argv[1], from_tty);
7188
7189 do_cleanups (back_to);
7190 }
7191
7192 static void
7193 remote_delete_command (char *args, int from_tty)
7194 {
7195 struct cleanup *back_to;
7196 char **argv;
7197
7198 argv = buildargv (args);
7199 if (argv == NULL)
7200 nomem (0);
7201 back_to = make_cleanup_freeargv (argv);
7202 if (argv[0] == NULL || argv[1] != NULL)
7203 error (_("Invalid parameters to remote delete"));
7204
7205 remote_file_delete (argv[0], from_tty);
7206
7207 do_cleanups (back_to);
7208 }
7209
7210 static void
7211 remote_command (char *args, int from_tty)
7212 {
7213 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
7214 }
7215
7216 static void
7217 init_remote_ops (void)
7218 {
7219 remote_ops.to_shortname = "remote";
7220 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
7221 remote_ops.to_doc =
7222 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7223 Specify the serial device it is connected to\n\
7224 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
7225 remote_ops.to_open = remote_open;
7226 remote_ops.to_close = remote_close;
7227 remote_ops.to_detach = remote_detach;
7228 remote_ops.to_disconnect = remote_disconnect;
7229 remote_ops.to_resume = remote_resume;
7230 remote_ops.to_wait = remote_wait;
7231 remote_ops.to_fetch_registers = remote_fetch_registers;
7232 remote_ops.to_store_registers = remote_store_registers;
7233 remote_ops.to_prepare_to_store = remote_prepare_to_store;
7234 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
7235 remote_ops.to_files_info = remote_files_info;
7236 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
7237 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
7238 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7239 remote_ops.to_stopped_data_address = remote_stopped_data_address;
7240 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7241 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7242 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7243 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
7244 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
7245 remote_ops.to_kill = remote_kill;
7246 remote_ops.to_load = generic_load;
7247 remote_ops.to_mourn_inferior = remote_mourn;
7248 remote_ops.to_thread_alive = remote_thread_alive;
7249 remote_ops.to_find_new_threads = remote_threads_info;
7250 remote_ops.to_pid_to_str = remote_pid_to_str;
7251 remote_ops.to_extra_thread_info = remote_threads_extra_info;
7252 remote_ops.to_stop = remote_stop;
7253 remote_ops.to_xfer_partial = remote_xfer_partial;
7254 remote_ops.to_rcmd = remote_rcmd;
7255 remote_ops.to_log_command = serial_log_command;
7256 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
7257 remote_ops.to_stratum = process_stratum;
7258 remote_ops.to_has_all_memory = 1;
7259 remote_ops.to_has_memory = 1;
7260 remote_ops.to_has_stack = 1;
7261 remote_ops.to_has_registers = 1;
7262 remote_ops.to_has_execution = 1;
7263 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7264 remote_ops.to_magic = OPS_MAGIC;
7265 remote_ops.to_memory_map = remote_memory_map;
7266 remote_ops.to_flash_erase = remote_flash_erase;
7267 remote_ops.to_flash_done = remote_flash_done;
7268 remote_ops.to_read_description = remote_read_description;
7269 }
7270
7271 /* Set up the extended remote vector by making a copy of the standard
7272 remote vector and adding to it. */
7273
7274 static void
7275 init_extended_remote_ops (void)
7276 {
7277 extended_remote_ops = remote_ops;
7278
7279 extended_remote_ops.to_shortname = "extended-remote";
7280 extended_remote_ops.to_longname =
7281 "Extended remote serial target in gdb-specific protocol";
7282 extended_remote_ops.to_doc =
7283 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7284 Specify the serial device it is connected to (e.g. /dev/ttya).",
7285 extended_remote_ops.to_open = extended_remote_open;
7286 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
7287 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
7288 extended_remote_ops.to_detach = extended_remote_detach;
7289 extended_remote_ops.to_attach = extended_remote_attach;
7290 }
7291
7292 static int
7293 remote_can_async_p (void)
7294 {
7295 /* We're async whenever the serial device is. */
7296 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
7297 }
7298
7299 static int
7300 remote_is_async_p (void)
7301 {
7302 /* We're async whenever the serial device is. */
7303 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
7304 }
7305
7306 /* Pass the SERIAL event on and up to the client. One day this code
7307 will be able to delay notifying the client of an event until the
7308 point where an entire packet has been received. */
7309
7310 static void (*async_client_callback) (enum inferior_event_type event_type,
7311 void *context);
7312 static void *async_client_context;
7313 static serial_event_ftype remote_async_serial_handler;
7314
7315 static void
7316 remote_async_serial_handler (struct serial *scb, void *context)
7317 {
7318 /* Don't propogate error information up to the client. Instead let
7319 the client find out about the error by querying the target. */
7320 async_client_callback (INF_REG_EVENT, async_client_context);
7321 }
7322
7323 static void
7324 remote_async (void (*callback) (enum inferior_event_type event_type,
7325 void *context), void *context)
7326 {
7327 if (current_target.to_async_mask_value == 0)
7328 internal_error (__FILE__, __LINE__,
7329 _("Calling remote_async when async is masked"));
7330
7331 if (callback != NULL)
7332 {
7333 serial_async (remote_desc, remote_async_serial_handler, NULL);
7334 async_client_callback = callback;
7335 async_client_context = context;
7336 }
7337 else
7338 serial_async (remote_desc, NULL, NULL);
7339 }
7340
7341 /* Target async and target extended-async.
7342
7343 This are temporary targets, until it is all tested. Eventually
7344 async support will be incorporated int the usual 'remote'
7345 target. */
7346
7347 static void
7348 init_remote_async_ops (void)
7349 {
7350 remote_async_ops.to_shortname = "async";
7351 remote_async_ops.to_longname =
7352 "Remote serial target in async version of the gdb-specific protocol";
7353 remote_async_ops.to_doc =
7354 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7355 Specify the serial device it is connected to (e.g. /dev/ttya).";
7356 remote_async_ops.to_open = remote_async_open;
7357 remote_async_ops.to_close = remote_close;
7358 remote_async_ops.to_detach = remote_detach;
7359 remote_async_ops.to_disconnect = remote_disconnect;
7360 remote_async_ops.to_resume = remote_async_resume;
7361 remote_async_ops.to_wait = remote_async_wait;
7362 remote_async_ops.to_fetch_registers = remote_fetch_registers;
7363 remote_async_ops.to_store_registers = remote_store_registers;
7364 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
7365 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
7366 remote_async_ops.to_files_info = remote_files_info;
7367 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
7368 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
7369 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7370 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7371 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7372 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
7373 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
7374 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7375 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
7376 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
7377 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
7378 remote_async_ops.to_kill = remote_async_kill;
7379 remote_async_ops.to_load = generic_load;
7380 remote_async_ops.to_mourn_inferior = remote_async_mourn;
7381 remote_async_ops.to_thread_alive = remote_thread_alive;
7382 remote_async_ops.to_find_new_threads = remote_threads_info;
7383 remote_async_ops.to_pid_to_str = remote_pid_to_str;
7384 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
7385 remote_async_ops.to_stop = remote_stop;
7386 remote_async_ops.to_xfer_partial = remote_xfer_partial;
7387 remote_async_ops.to_rcmd = remote_rcmd;
7388 remote_async_ops.to_stratum = process_stratum;
7389 remote_async_ops.to_has_all_memory = 1;
7390 remote_async_ops.to_has_memory = 1;
7391 remote_async_ops.to_has_stack = 1;
7392 remote_async_ops.to_has_registers = 1;
7393 remote_async_ops.to_has_execution = 1;
7394 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7395 remote_async_ops.to_can_async_p = remote_can_async_p;
7396 remote_async_ops.to_is_async_p = remote_is_async_p;
7397 remote_async_ops.to_async = remote_async;
7398 remote_async_ops.to_async_mask_value = 1;
7399 remote_async_ops.to_magic = OPS_MAGIC;
7400 remote_async_ops.to_memory_map = remote_memory_map;
7401 remote_async_ops.to_flash_erase = remote_flash_erase;
7402 remote_async_ops.to_flash_done = remote_flash_done;
7403 remote_async_ops.to_read_description = remote_read_description;
7404 }
7405
7406 /* Set up the async extended remote vector by making a copy of the standard
7407 remote vector and adding to it. */
7408
7409 static void
7410 init_extended_async_remote_ops (void)
7411 {
7412 extended_async_remote_ops = remote_async_ops;
7413
7414 extended_async_remote_ops.to_shortname = "extended-async";
7415 extended_async_remote_ops.to_longname =
7416 "Extended remote serial target in async gdb-specific protocol";
7417 extended_async_remote_ops.to_doc =
7418 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
7419 Specify the serial device it is connected to (e.g. /dev/ttya).",
7420 extended_async_remote_ops.to_open = extended_remote_async_open;
7421 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
7422 extended_async_remote_ops.to_mourn_inferior = extended_async_remote_mourn;
7423 extended_async_remote_ops.to_detach = extended_remote_detach;
7424 extended_async_remote_ops.to_attach = extended_async_remote_attach;
7425 }
7426
7427 static void
7428 set_remote_cmd (char *args, int from_tty)
7429 {
7430 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
7431 }
7432
7433 static void
7434 show_remote_cmd (char *args, int from_tty)
7435 {
7436 /* We can't just use cmd_show_list here, because we want to skip
7437 the redundant "show remote Z-packet" and the legacy aliases. */
7438 struct cleanup *showlist_chain;
7439 struct cmd_list_element *list = remote_show_cmdlist;
7440
7441 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
7442 for (; list != NULL; list = list->next)
7443 if (strcmp (list->name, "Z-packet") == 0)
7444 continue;
7445 else if (list->type == not_set_cmd)
7446 /* Alias commands are exactly like the original, except they
7447 don't have the normal type. */
7448 continue;
7449 else
7450 {
7451 struct cleanup *option_chain
7452 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
7453 ui_out_field_string (uiout, "name", list->name);
7454 ui_out_text (uiout, ": ");
7455 if (list->type == show_cmd)
7456 do_setshow_command ((char *) NULL, from_tty, list);
7457 else
7458 cmd_func (list, NULL, from_tty);
7459 /* Close the tuple. */
7460 do_cleanups (option_chain);
7461 }
7462
7463 /* Close the tuple. */
7464 do_cleanups (showlist_chain);
7465 }
7466
7467
7468 /* Function to be called whenever a new objfile (shlib) is detected. */
7469 static void
7470 remote_new_objfile (struct objfile *objfile)
7471 {
7472 if (remote_desc != 0) /* Have a remote connection. */
7473 remote_check_symbols (objfile);
7474 }
7475
7476 void
7477 _initialize_remote (void)
7478 {
7479 struct remote_state *rs;
7480
7481 /* architecture specific data */
7482 remote_gdbarch_data_handle =
7483 gdbarch_data_register_post_init (init_remote_state);
7484 remote_g_packet_data_handle =
7485 gdbarch_data_register_pre_init (remote_g_packet_data_init);
7486
7487 /* Initialize the per-target state. At the moment there is only one
7488 of these, not one per target. Only one target is active at a
7489 time. The default buffer size is unimportant; it will be expanded
7490 whenever a larger buffer is needed. */
7491 rs = get_remote_state_raw ();
7492 rs->buf_size = 400;
7493 rs->buf = xmalloc (rs->buf_size);
7494
7495 init_remote_ops ();
7496 add_target (&remote_ops);
7497
7498 init_extended_remote_ops ();
7499 add_target (&extended_remote_ops);
7500
7501 init_remote_async_ops ();
7502 add_target (&remote_async_ops);
7503
7504 init_extended_async_remote_ops ();
7505 add_target (&extended_async_remote_ops);
7506
7507 /* Hook into new objfile notification. */
7508 observer_attach_new_objfile (remote_new_objfile);
7509
7510 #if 0
7511 init_remote_threadtests ();
7512 #endif
7513
7514 /* set/show remote ... */
7515
7516 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
7517 Remote protocol specific variables\n\
7518 Configure various remote-protocol specific variables such as\n\
7519 the packets being used"),
7520 &remote_set_cmdlist, "set remote ",
7521 0 /* allow-unknown */, &setlist);
7522 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
7523 Remote protocol specific variables\n\
7524 Configure various remote-protocol specific variables such as\n\
7525 the packets being used"),
7526 &remote_show_cmdlist, "show remote ",
7527 0 /* allow-unknown */, &showlist);
7528
7529 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
7530 Compare section data on target to the exec file.\n\
7531 Argument is a single section name (default: all loaded sections)."),
7532 &cmdlist);
7533
7534 add_cmd ("packet", class_maintenance, packet_command, _("\
7535 Send an arbitrary packet to a remote target.\n\
7536 maintenance packet TEXT\n\
7537 If GDB is talking to an inferior via the GDB serial protocol, then\n\
7538 this command sends the string TEXT to the inferior, and displays the\n\
7539 response packet. GDB supplies the initial `$' character, and the\n\
7540 terminating `#' character and checksum."),
7541 &maintenancelist);
7542
7543 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
7544 Set whether to send break if interrupted."), _("\
7545 Show whether to send break if interrupted."), _("\
7546 If set, a break, instead of a cntrl-c, is sent to the remote target."),
7547 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
7548 &setlist, &showlist);
7549
7550 /* Install commands for configuring memory read/write packets. */
7551
7552 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
7553 Set the maximum number of bytes per memory write packet (deprecated)."),
7554 &setlist);
7555 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
7556 Show the maximum number of bytes per memory write packet (deprecated)."),
7557 &showlist);
7558 add_cmd ("memory-write-packet-size", no_class,
7559 set_memory_write_packet_size, _("\
7560 Set the maximum number of bytes per memory-write packet.\n\
7561 Specify the number of bytes in a packet or 0 (zero) for the\n\
7562 default packet size. The actual limit is further reduced\n\
7563 dependent on the target. Specify ``fixed'' to disable the\n\
7564 further restriction and ``limit'' to enable that restriction."),
7565 &remote_set_cmdlist);
7566 add_cmd ("memory-read-packet-size", no_class,
7567 set_memory_read_packet_size, _("\
7568 Set the maximum number of bytes per memory-read packet.\n\
7569 Specify the number of bytes in a packet or 0 (zero) for the\n\
7570 default packet size. The actual limit is further reduced\n\
7571 dependent on the target. Specify ``fixed'' to disable the\n\
7572 further restriction and ``limit'' to enable that restriction."),
7573 &remote_set_cmdlist);
7574 add_cmd ("memory-write-packet-size", no_class,
7575 show_memory_write_packet_size,
7576 _("Show the maximum number of bytes per memory-write packet."),
7577 &remote_show_cmdlist);
7578 add_cmd ("memory-read-packet-size", no_class,
7579 show_memory_read_packet_size,
7580 _("Show the maximum number of bytes per memory-read packet."),
7581 &remote_show_cmdlist);
7582
7583 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
7584 &remote_hw_watchpoint_limit, _("\
7585 Set the maximum number of target hardware watchpoints."), _("\
7586 Show the maximum number of target hardware watchpoints."), _("\
7587 Specify a negative limit for unlimited."),
7588 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
7589 &remote_set_cmdlist, &remote_show_cmdlist);
7590 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
7591 &remote_hw_breakpoint_limit, _("\
7592 Set the maximum number of target hardware breakpoints."), _("\
7593 Show the maximum number of target hardware breakpoints."), _("\
7594 Specify a negative limit for unlimited."),
7595 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
7596 &remote_set_cmdlist, &remote_show_cmdlist);
7597
7598 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
7599 &remote_address_size, _("\
7600 Set the maximum size of the address (in bits) in a memory packet."), _("\
7601 Show the maximum size of the address (in bits) in a memory packet."), NULL,
7602 NULL,
7603 NULL, /* FIXME: i18n: */
7604 &setlist, &showlist);
7605
7606 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
7607 "X", "binary-download", 1);
7608
7609 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
7610 "vCont", "verbose-resume", 0);
7611
7612 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
7613 "QPassSignals", "pass-signals", 0);
7614
7615 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
7616 "qSymbol", "symbol-lookup", 0);
7617
7618 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
7619 "P", "set-register", 1);
7620
7621 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
7622 "p", "fetch-register", 1);
7623
7624 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
7625 "Z0", "software-breakpoint", 0);
7626
7627 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
7628 "Z1", "hardware-breakpoint", 0);
7629
7630 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
7631 "Z2", "write-watchpoint", 0);
7632
7633 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
7634 "Z3", "read-watchpoint", 0);
7635
7636 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
7637 "Z4", "access-watchpoint", 0);
7638
7639 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
7640 "qXfer:auxv:read", "read-aux-vector", 0);
7641
7642 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
7643 "qXfer:features:read", "target-features", 0);
7644
7645 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
7646 "qXfer:libraries:read", "library-info", 0);
7647
7648 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
7649 "qXfer:memory-map:read", "memory-map", 0);
7650
7651 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
7652 "qXfer:spu:read", "read-spu-object", 0);
7653
7654 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
7655 "qXfer:spu:write", "write-spu-object", 0);
7656
7657 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
7658 "qGetTLSAddr", "get-thread-local-storage-address",
7659 0);
7660
7661 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
7662 "qSupported", "supported-packets", 0);
7663
7664 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
7665 "vFile:open", "hostio-open", 0);
7666
7667 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
7668 "vFile:pread", "hostio-pread", 0);
7669
7670 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
7671 "vFile:pwrite", "hostio-pwrite", 0);
7672
7673 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
7674 "vFile:close", "hostio-close", 0);
7675
7676 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
7677 "vFile:unlink", "hostio-unlink", 0);
7678
7679 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
7680 "vAttach", "attach", 0);
7681
7682 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
7683 "vRun", "run", 0);
7684
7685 /* Keep the old ``set remote Z-packet ...'' working. Each individual
7686 Z sub-packet has its own set and show commands, but users may
7687 have sets to this variable in their .gdbinit files (or in their
7688 documentation). */
7689 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
7690 &remote_Z_packet_detect, _("\
7691 Set use of remote protocol `Z' packets"), _("\
7692 Show use of remote protocol `Z' packets "), _("\
7693 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
7694 packets."),
7695 set_remote_protocol_Z_packet_cmd,
7696 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
7697 &remote_set_cmdlist, &remote_show_cmdlist);
7698
7699 add_prefix_cmd ("remote", class_files, remote_command, _("\
7700 Manipulate files on the remote system\n\
7701 Transfer files to and from the remote target system."),
7702 &remote_cmdlist, "remote ",
7703 0 /* allow-unknown */, &cmdlist);
7704
7705 add_cmd ("put", class_files, remote_put_command,
7706 _("Copy a local file to the remote system."),
7707 &remote_cmdlist);
7708
7709 add_cmd ("get", class_files, remote_get_command,
7710 _("Copy a remote file to the local system."),
7711 &remote_cmdlist);
7712
7713 add_cmd ("delete", class_files, remote_delete_command,
7714 _("Delete a remote file."),
7715 &remote_cmdlist);
7716
7717 remote_exec_file = xstrdup ("");
7718 add_setshow_string_noescape_cmd ("exec-file", class_files,
7719 &remote_exec_file, _("\
7720 Set the remote pathname for \"run\""), _("\
7721 Show the remote pathname for \"run\""), NULL, NULL, NULL,
7722 &remote_set_cmdlist, &remote_show_cmdlist);
7723
7724 /* Eventually initialize fileio. See fileio.c */
7725 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
7726 }