2005-01-12 Andrew Cagney <cagney@gnu.org>
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44
45 #include <ctype.h>
46 #include <sys/time.h>
47
48 #include "event-loop.h"
49 #include "event-top.h"
50 #include "inf-loop.h"
51
52 #include <signal.h>
53 #include "serial.h"
54
55 #include "gdbcore.h" /* for exec_bfd */
56
57 #include "remote-fileio.h"
58
59 /* Prototypes for local functions */
60 static void cleanup_sigint_signal_handler (void *dummy);
61 static void initialize_sigint_signal_handler (void);
62 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
63
64 static void handle_remote_sigint (int);
65 static void handle_remote_sigint_twice (int);
66 static void async_remote_interrupt (gdb_client_data);
67 void async_remote_interrupt_twice (gdb_client_data);
68
69 static void build_remote_gdbarch_data (void);
70
71 static void remote_files_info (struct target_ops *ignore);
72
73 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
74 int len, int should_write,
75 struct mem_attrib *attrib,
76 struct target_ops *target);
77
78 static void remote_prepare_to_store (void);
79
80 static void remote_fetch_registers (int regno);
81
82 static void remote_resume (ptid_t ptid, int step,
83 enum target_signal siggnal);
84 static void remote_async_resume (ptid_t ptid, int step,
85 enum target_signal siggnal);
86 static int remote_start_remote (struct ui_out *uiout, void *dummy);
87
88 static void remote_open (char *name, int from_tty);
89 static void remote_async_open (char *name, int from_tty);
90
91 static void extended_remote_open (char *name, int from_tty);
92 static void extended_remote_async_open (char *name, int from_tty);
93
94 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
95 int async_p);
96
97 static void remote_close (int quitting);
98
99 static void remote_store_registers (int regno);
100
101 static void remote_mourn (void);
102 static void remote_async_mourn (void);
103
104 static void extended_remote_restart (void);
105
106 static void extended_remote_mourn (void);
107
108 static void remote_mourn_1 (struct target_ops *);
109
110 static void remote_send (char *buf, long sizeof_buf);
111
112 static int readchar (int timeout);
113
114 static ptid_t remote_wait (ptid_t ptid,
115 struct target_waitstatus *status);
116 static ptid_t remote_async_wait (ptid_t ptid,
117 struct target_waitstatus *status);
118
119 static void remote_kill (void);
120 static void remote_async_kill (void);
121
122 static int tohex (int nib);
123
124 static void remote_detach (char *args, int from_tty);
125
126 static void remote_interrupt (int signo);
127
128 static void remote_interrupt_twice (int signo);
129
130 static void interrupt_query (void);
131
132 static void set_thread (int, int);
133
134 static int remote_thread_alive (ptid_t);
135
136 static void get_offsets (void);
137
138 static long read_frame (char *buf, long sizeof_buf);
139
140 static int remote_insert_breakpoint (CORE_ADDR, char *);
141
142 static int remote_remove_breakpoint (CORE_ADDR, char *);
143
144 static int hexnumlen (ULONGEST num);
145
146 static void init_remote_ops (void);
147
148 static void init_extended_remote_ops (void);
149
150 static void remote_stop (void);
151
152 static int ishex (int ch, int *val);
153
154 static int stubhex (int ch);
155
156 static int hexnumstr (char *, ULONGEST);
157
158 static int hexnumnstr (char *, ULONGEST, int);
159
160 static CORE_ADDR remote_address_masked (CORE_ADDR);
161
162 static void print_packet (char *);
163
164 static unsigned long crc32 (unsigned char *, int, unsigned int);
165
166 static void compare_sections_command (char *, int);
167
168 static void packet_command (char *, int);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static void remote_find_new_threads (void);
175
176 static void record_currthread (int currthread);
177
178 static int fromhex (int a);
179
180 static int hex2bin (const char *hex, char *bin, int count);
181
182 static int bin2hex (const char *bin, char *hex, int count);
183
184 static int putpkt_binary (char *buf, int cnt);
185
186 static void check_binary_download (CORE_ADDR addr);
187
188 struct packet_config;
189
190 static void show_packet_config_cmd (struct packet_config *config);
191
192 static void update_packet_config (struct packet_config *config);
193
194 void _initialize_remote (void);
195
196 /* Description of the remote protocol. Strictly speaking, when the
197 target is open()ed, remote.c should create a per-target description
198 of the remote protocol using that target's architecture.
199 Unfortunately, the target stack doesn't include local state. For
200 the moment keep the information in the target's architecture
201 object. Sigh.. */
202
203 struct packet_reg
204 {
205 long offset; /* Offset into G packet. */
206 long regnum; /* GDB's internal register number. */
207 LONGEST pnum; /* Remote protocol register number. */
208 int in_g_packet; /* Always part of G packet. */
209 /* long size in bytes; == register_size (current_gdbarch, regnum); at present. */
210 /* char *name; == REGISTER_NAME (regnum); at present. */
211 };
212
213 struct remote_state
214 {
215 /* Description of the remote protocol registers. */
216 long sizeof_g_packet;
217
218 /* Description of the remote protocol registers indexed by REGNUM
219 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
220 struct packet_reg *regs;
221
222 /* This is the size (in chars) of the first response to the ``g''
223 packet. It is used as a heuristic when determining the maximum
224 size of memory-read and memory-write packets. A target will
225 typically only reserve a buffer large enough to hold the ``g''
226 packet. The size does not include packet overhead (headers and
227 trailers). */
228 long actual_register_packet_size;
229
230 /* This is the maximum size (in chars) of a non read/write packet.
231 It is also used as a cap on the size of read/write packets. */
232 long remote_packet_size;
233 };
234
235
236 /* Handle for retreving the remote protocol data from gdbarch. */
237 static struct gdbarch_data *remote_gdbarch_data_handle;
238
239 static struct remote_state *
240 get_remote_state (void)
241 {
242 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
243 }
244
245 static void *
246 init_remote_state (struct gdbarch *gdbarch)
247 {
248 int regnum;
249 struct remote_state *rs = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_state);
250
251 if (deprecated_register_bytes () != 0)
252 rs->sizeof_g_packet = deprecated_register_bytes ();
253 else
254 rs->sizeof_g_packet = 0;
255
256 /* Assume a 1:1 regnum<->pnum table. */
257 rs->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
258 struct packet_reg);
259 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
260 {
261 struct packet_reg *r = &rs->regs[regnum];
262 r->pnum = regnum;
263 r->regnum = regnum;
264 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
265 r->in_g_packet = (regnum < NUM_REGS);
266 /* ...name = REGISTER_NAME (regnum); */
267
268 /* Compute packet size by accumulating the size of all registers. */
269 if (deprecated_register_bytes () == 0)
270 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
271 }
272
273 /* Default maximum number of characters in a packet body. Many
274 remote stubs have a hardwired buffer size of 400 bytes
275 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
276 as the maximum packet-size to ensure that the packet and an extra
277 NUL character can always fit in the buffer. This stops GDB
278 trashing stubs that try to squeeze an extra NUL into what is
279 already a full buffer (As of 1999-12-04 that was most stubs. */
280 rs->remote_packet_size = 400 - 1;
281
282 /* Should rs->sizeof_g_packet needs more space than the
283 default, adjust the size accordingly. Remember that each byte is
284 encoded as two characters. 32 is the overhead for the packet
285 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
286 (``$NN:G...#NN'') is a better guess, the below has been padded a
287 little. */
288 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
289 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
290
291 /* This one is filled in when a ``g'' packet is received. */
292 rs->actual_register_packet_size = 0;
293
294 return rs;
295 }
296
297 static struct packet_reg *
298 packet_reg_from_regnum (struct remote_state *rs, long regnum)
299 {
300 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
301 return NULL;
302 else
303 {
304 struct packet_reg *r = &rs->regs[regnum];
305 gdb_assert (r->regnum == regnum);
306 return r;
307 }
308 }
309
310 static struct packet_reg *
311 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
312 {
313 int i;
314 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
315 {
316 struct packet_reg *r = &rs->regs[i];
317 if (r->pnum == pnum)
318 return r;
319 }
320 return NULL;
321 }
322
323 /* FIXME: graces/2002-08-08: These variables should eventually be
324 bound to an instance of the target object (as in gdbarch-tdep()),
325 when such a thing exists. */
326
327 /* This is set to the data address of the access causing the target
328 to stop for a watchpoint. */
329 static CORE_ADDR remote_watch_data_address;
330
331 /* This is non-zero if taregt stopped for a watchpoint. */
332 static int remote_stopped_by_watchpoint_p;
333
334
335 static struct target_ops remote_ops;
336
337 static struct target_ops extended_remote_ops;
338
339 /* Temporary target ops. Just like the remote_ops and
340 extended_remote_ops, but with asynchronous support. */
341 static struct target_ops remote_async_ops;
342
343 static struct target_ops extended_async_remote_ops;
344
345 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
346 ``forever'' still use the normal timeout mechanism. This is
347 currently used by the ASYNC code to guarentee that target reads
348 during the initial connect always time-out. Once getpkt has been
349 modified to return a timeout indication and, in turn
350 remote_wait()/wait_for_inferior() have gained a timeout parameter
351 this can go away. */
352 static int wait_forever_enabled_p = 1;
353
354
355 /* This variable chooses whether to send a ^C or a break when the user
356 requests program interruption. Although ^C is usually what remote
357 systems expect, and that is the default here, sometimes a break is
358 preferable instead. */
359
360 static int remote_break;
361
362 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
363 remote_open knows that we don't have a file open when the program
364 starts. */
365 static struct serial *remote_desc = NULL;
366
367 /* This variable sets the number of bits in an address that are to be
368 sent in a memory ("M" or "m") packet. Normally, after stripping
369 leading zeros, the entire address would be sent. This variable
370 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
371 initial implementation of remote.c restricted the address sent in
372 memory packets to ``host::sizeof long'' bytes - (typically 32
373 bits). Consequently, for 64 bit targets, the upper 32 bits of an
374 address was never sent. Since fixing this bug may cause a break in
375 some remote targets this variable is principly provided to
376 facilitate backward compatibility. */
377
378 static int remote_address_size;
379
380 /* Tempoary to track who currently owns the terminal. See
381 target_async_terminal_* for more details. */
382
383 static int remote_async_terminal_ours_p;
384
385 \f
386 /* User configurable variables for the number of characters in a
387 memory read/write packet. MIN ((rs->remote_packet_size),
388 rs->sizeof_g_packet) is the default. Some targets need smaller
389 values (fifo overruns, et.al.) and some users need larger values
390 (speed up transfers). The variables ``preferred_*'' (the user
391 request), ``current_*'' (what was actually set) and ``forced_*''
392 (Positive - a soft limit, negative - a hard limit). */
393
394 struct memory_packet_config
395 {
396 char *name;
397 long size;
398 int fixed_p;
399 };
400
401 /* Compute the current size of a read/write packet. Since this makes
402 use of ``actual_register_packet_size'' the computation is dynamic. */
403
404 static long
405 get_memory_packet_size (struct memory_packet_config *config)
406 {
407 struct remote_state *rs = get_remote_state ();
408 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
409 law?) that some hosts don't cope very well with large alloca()
410 calls. Eventually the alloca() code will be replaced by calls to
411 xmalloc() and make_cleanups() allowing this restriction to either
412 be lifted or removed. */
413 #ifndef MAX_REMOTE_PACKET_SIZE
414 #define MAX_REMOTE_PACKET_SIZE 16384
415 #endif
416 /* NOTE: 16 is just chosen at random. */
417 #ifndef MIN_REMOTE_PACKET_SIZE
418 #define MIN_REMOTE_PACKET_SIZE 16
419 #endif
420 long what_they_get;
421 if (config->fixed_p)
422 {
423 if (config->size <= 0)
424 what_they_get = MAX_REMOTE_PACKET_SIZE;
425 else
426 what_they_get = config->size;
427 }
428 else
429 {
430 what_they_get = (rs->remote_packet_size);
431 /* Limit the packet to the size specified by the user. */
432 if (config->size > 0
433 && what_they_get > config->size)
434 what_they_get = config->size;
435 /* Limit it to the size of the targets ``g'' response. */
436 if ((rs->actual_register_packet_size) > 0
437 && what_they_get > (rs->actual_register_packet_size))
438 what_they_get = (rs->actual_register_packet_size);
439 }
440 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
441 what_they_get = MAX_REMOTE_PACKET_SIZE;
442 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
443 what_they_get = MIN_REMOTE_PACKET_SIZE;
444 return what_they_get;
445 }
446
447 /* Update the size of a read/write packet. If they user wants
448 something really big then do a sanity check. */
449
450 static void
451 set_memory_packet_size (char *args, struct memory_packet_config *config)
452 {
453 int fixed_p = config->fixed_p;
454 long size = config->size;
455 if (args == NULL)
456 error ("Argument required (integer, `fixed' or `limited').");
457 else if (strcmp (args, "hard") == 0
458 || strcmp (args, "fixed") == 0)
459 fixed_p = 1;
460 else if (strcmp (args, "soft") == 0
461 || strcmp (args, "limit") == 0)
462 fixed_p = 0;
463 else
464 {
465 char *end;
466 size = strtoul (args, &end, 0);
467 if (args == end)
468 error ("Invalid %s (bad syntax).", config->name);
469 #if 0
470 /* Instead of explicitly capping the size of a packet to
471 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
472 instead allowed to set the size to something arbitrarily
473 large. */
474 if (size > MAX_REMOTE_PACKET_SIZE)
475 error ("Invalid %s (too large).", config->name);
476 #endif
477 }
478 /* Extra checks? */
479 if (fixed_p && !config->fixed_p)
480 {
481 if (! query ("The target may not be able to correctly handle a %s\n"
482 "of %ld bytes. Change the packet size? ",
483 config->name, size))
484 error ("Packet size not changed.");
485 }
486 /* Update the config. */
487 config->fixed_p = fixed_p;
488 config->size = size;
489 }
490
491 static void
492 show_memory_packet_size (struct memory_packet_config *config)
493 {
494 printf_filtered ("The %s is %ld. ", config->name, config->size);
495 if (config->fixed_p)
496 printf_filtered ("Packets are fixed at %ld bytes.\n",
497 get_memory_packet_size (config));
498 else
499 printf_filtered ("Packets are limited to %ld bytes.\n",
500 get_memory_packet_size (config));
501 }
502
503 static struct memory_packet_config memory_write_packet_config =
504 {
505 "memory-write-packet-size",
506 };
507
508 static void
509 set_memory_write_packet_size (char *args, int from_tty)
510 {
511 set_memory_packet_size (args, &memory_write_packet_config);
512 }
513
514 static void
515 show_memory_write_packet_size (char *args, int from_tty)
516 {
517 show_memory_packet_size (&memory_write_packet_config);
518 }
519
520 static long
521 get_memory_write_packet_size (void)
522 {
523 return get_memory_packet_size (&memory_write_packet_config);
524 }
525
526 static struct memory_packet_config memory_read_packet_config =
527 {
528 "memory-read-packet-size",
529 };
530
531 static void
532 set_memory_read_packet_size (char *args, int from_tty)
533 {
534 set_memory_packet_size (args, &memory_read_packet_config);
535 }
536
537 static void
538 show_memory_read_packet_size (char *args, int from_tty)
539 {
540 show_memory_packet_size (&memory_read_packet_config);
541 }
542
543 static long
544 get_memory_read_packet_size (void)
545 {
546 struct remote_state *rs = get_remote_state ();
547 long size = get_memory_packet_size (&memory_read_packet_config);
548 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
549 extra buffer size argument before the memory read size can be
550 increased beyond (rs->remote_packet_size). */
551 if (size > (rs->remote_packet_size))
552 size = (rs->remote_packet_size);
553 return size;
554 }
555
556 \f
557 /* Generic configuration support for packets the stub optionally
558 supports. Allows the user to specify the use of the packet as well
559 as allowing GDB to auto-detect support in the remote stub. */
560
561 enum packet_support
562 {
563 PACKET_SUPPORT_UNKNOWN = 0,
564 PACKET_ENABLE,
565 PACKET_DISABLE
566 };
567
568 struct packet_config
569 {
570 char *name;
571 char *title;
572 enum auto_boolean detect;
573 enum packet_support support;
574 };
575
576 /* Analyze a packet's return value and update the packet config
577 accordingly. */
578
579 enum packet_result
580 {
581 PACKET_ERROR,
582 PACKET_OK,
583 PACKET_UNKNOWN
584 };
585
586 static void
587 update_packet_config (struct packet_config *config)
588 {
589 switch (config->detect)
590 {
591 case AUTO_BOOLEAN_TRUE:
592 config->support = PACKET_ENABLE;
593 break;
594 case AUTO_BOOLEAN_FALSE:
595 config->support = PACKET_DISABLE;
596 break;
597 case AUTO_BOOLEAN_AUTO:
598 config->support = PACKET_SUPPORT_UNKNOWN;
599 break;
600 }
601 }
602
603 static void
604 show_packet_config_cmd (struct packet_config *config)
605 {
606 char *support = "internal-error";
607 switch (config->support)
608 {
609 case PACKET_ENABLE:
610 support = "enabled";
611 break;
612 case PACKET_DISABLE:
613 support = "disabled";
614 break;
615 case PACKET_SUPPORT_UNKNOWN:
616 support = "unknown";
617 break;
618 }
619 switch (config->detect)
620 {
621 case AUTO_BOOLEAN_AUTO:
622 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
623 config->name, config->title, support);
624 break;
625 case AUTO_BOOLEAN_TRUE:
626 case AUTO_BOOLEAN_FALSE:
627 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
628 config->name, config->title, support);
629 break;
630 }
631 }
632
633 static void
634 add_packet_config_cmd (struct packet_config *config,
635 char *name,
636 char *title,
637 cmd_sfunc_ftype *set_func,
638 cmd_sfunc_ftype *show_func,
639 struct cmd_list_element **set_remote_list,
640 struct cmd_list_element **show_remote_list,
641 int legacy)
642 {
643 struct cmd_list_element *set_cmd;
644 struct cmd_list_element *show_cmd;
645 char *set_doc;
646 char *show_doc;
647 char *help_doc;
648 char *print;
649 char *cmd_name;
650 config->name = name;
651 config->title = title;
652 config->detect = AUTO_BOOLEAN_AUTO;
653 config->support = PACKET_SUPPORT_UNKNOWN;
654 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
655 name, title);
656 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
657 name, title);
658 print = xstrprintf ("Current use of remote protocol `%s' (%s) is %%s",
659 name, title);
660 /* set/show TITLE-packet {auto,on,off} */
661 cmd_name = xstrprintf ("%s-packet", title);
662 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
663 &config->detect, set_doc, show_doc,
664 "", print,
665 set_func, show_func,
666 set_remote_list, show_remote_list);
667 /* set/show remote NAME-packet {auto,on,off} -- legacy */
668 if (legacy)
669 {
670 char *legacy_name;
671 legacy_name = xstrprintf ("%s-packet", name);
672 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
673 set_remote_list);
674 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
675 show_remote_list);
676 }
677 }
678
679 static enum packet_result
680 packet_ok (const char *buf, struct packet_config *config)
681 {
682 if (buf[0] != '\0')
683 {
684 /* The stub recognized the packet request. Check that the
685 operation succeeded. */
686 switch (config->support)
687 {
688 case PACKET_SUPPORT_UNKNOWN:
689 if (remote_debug)
690 fprintf_unfiltered (gdb_stdlog,
691 "Packet %s (%s) is supported\n",
692 config->name, config->title);
693 config->support = PACKET_ENABLE;
694 break;
695 case PACKET_DISABLE:
696 internal_error (__FILE__, __LINE__,
697 "packet_ok: attempt to use a disabled packet");
698 break;
699 case PACKET_ENABLE:
700 break;
701 }
702 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
703 /* "OK" - definitly OK. */
704 return PACKET_OK;
705 if (buf[0] == 'E'
706 && isxdigit (buf[1]) && isxdigit (buf[2])
707 && buf[3] == '\0')
708 /* "Enn" - definitly an error. */
709 return PACKET_ERROR;
710 /* The packet may or may not be OK. Just assume it is */
711 return PACKET_OK;
712 }
713 else
714 {
715 /* The stub does not support the packet. */
716 switch (config->support)
717 {
718 case PACKET_ENABLE:
719 if (config->detect == AUTO_BOOLEAN_AUTO)
720 /* If the stub previously indicated that the packet was
721 supported then there is a protocol error.. */
722 error ("Protocol error: %s (%s) conflicting enabled responses.",
723 config->name, config->title);
724 else
725 /* The user set it wrong. */
726 error ("Enabled packet %s (%s) not recognized by stub",
727 config->name, config->title);
728 break;
729 case PACKET_SUPPORT_UNKNOWN:
730 if (remote_debug)
731 fprintf_unfiltered (gdb_stdlog,
732 "Packet %s (%s) is NOT supported\n",
733 config->name, config->title);
734 config->support = PACKET_DISABLE;
735 break;
736 case PACKET_DISABLE:
737 break;
738 }
739 return PACKET_UNKNOWN;
740 }
741 }
742
743 /* Should we try the 'vCont' (descriptive resume) request? */
744 static struct packet_config remote_protocol_vcont;
745
746 static void
747 set_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
748 struct cmd_list_element *c)
749 {
750 update_packet_config (&remote_protocol_vcont);
751 }
752
753 static void
754 show_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
755 struct cmd_list_element *c)
756 {
757 show_packet_config_cmd (&remote_protocol_vcont);
758 }
759
760 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
761 static struct packet_config remote_protocol_qSymbol;
762
763 static void
764 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
765 struct cmd_list_element *c)
766 {
767 update_packet_config (&remote_protocol_qSymbol);
768 }
769
770 static void
771 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
772 struct cmd_list_element *c)
773 {
774 show_packet_config_cmd (&remote_protocol_qSymbol);
775 }
776
777 /* Should we try the 'P' (set register) request? */
778
779 static struct packet_config remote_protocol_P;
780
781 static void
782 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
783 struct cmd_list_element *c)
784 {
785 update_packet_config (&remote_protocol_P);
786 }
787
788 static void
789 show_remote_protocol_P_packet_cmd (char *args, int from_tty,
790 struct cmd_list_element *c)
791 {
792 show_packet_config_cmd (&remote_protocol_P);
793 }
794
795 /* Should we try one of the 'Z' requests? */
796
797 enum Z_packet_type
798 {
799 Z_PACKET_SOFTWARE_BP,
800 Z_PACKET_HARDWARE_BP,
801 Z_PACKET_WRITE_WP,
802 Z_PACKET_READ_WP,
803 Z_PACKET_ACCESS_WP,
804 NR_Z_PACKET_TYPES
805 };
806
807 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
808
809 /* FIXME: Instead of having all these boiler plate functions, the
810 command callback should include a context argument. */
811
812 static void
813 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
814 struct cmd_list_element *c)
815 {
816 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
817 }
818
819 static void
820 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
821 struct cmd_list_element *c)
822 {
823 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
824 }
825
826 static void
827 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
828 struct cmd_list_element *c)
829 {
830 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
831 }
832
833 static void
834 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
835 struct cmd_list_element *c)
836 {
837 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
838 }
839
840 static void
841 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
842 struct cmd_list_element *c)
843 {
844 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
845 }
846
847 static void
848 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
849 struct cmd_list_element *c)
850 {
851 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
852 }
853
854 static void
855 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
856 struct cmd_list_element *c)
857 {
858 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
859 }
860
861 static void
862 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
863 struct cmd_list_element *c)
864 {
865 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
866 }
867
868 static void
869 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
870 struct cmd_list_element *c)
871 {
872 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
873 }
874
875 static void
876 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
877 struct cmd_list_element *c)
878 {
879 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
880 }
881
882 /* For compatibility with older distributions. Provide a ``set remote
883 Z-packet ...'' command that updates all the Z packet types. */
884
885 static enum auto_boolean remote_Z_packet_detect;
886
887 static void
888 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
889 struct cmd_list_element *c)
890 {
891 int i;
892 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
893 {
894 remote_protocol_Z[i].detect = remote_Z_packet_detect;
895 update_packet_config (&remote_protocol_Z[i]);
896 }
897 }
898
899 static void
900 show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
901 struct cmd_list_element *c)
902 {
903 int i;
904 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
905 {
906 show_packet_config_cmd (&remote_protocol_Z[i]);
907 }
908 }
909
910 /* Should we try the 'X' (remote binary download) packet?
911
912 This variable (available to the user via "set remote X-packet")
913 dictates whether downloads are sent in binary (via the 'X' packet).
914 We assume that the stub can, and attempt to do it. This will be
915 cleared if the stub does not understand it. This switch is still
916 needed, though in cases when the packet is supported in the stub,
917 but the connection does not allow it (i.e., 7-bit serial connection
918 only). */
919
920 static struct packet_config remote_protocol_binary_download;
921
922 /* Should we try the 'ThreadInfo' query packet?
923
924 This variable (NOT available to the user: auto-detect only!)
925 determines whether GDB will use the new, simpler "ThreadInfo"
926 query or the older, more complex syntax for thread queries.
927 This is an auto-detect variable (set to true at each connect,
928 and set to false when the target fails to recognize it). */
929
930 static int use_threadinfo_query;
931 static int use_threadextra_query;
932
933 static void
934 set_remote_protocol_binary_download_cmd (char *args,
935 int from_tty,
936 struct cmd_list_element *c)
937 {
938 update_packet_config (&remote_protocol_binary_download);
939 }
940
941 static void
942 show_remote_protocol_binary_download_cmd (char *args, int from_tty,
943 struct cmd_list_element *c)
944 {
945 show_packet_config_cmd (&remote_protocol_binary_download);
946 }
947
948 /* Should we try the 'qPart:auxv' (target auxiliary vector read) request? */
949 static struct packet_config remote_protocol_qPart_auxv;
950
951 static void
952 set_remote_protocol_qPart_auxv_packet_cmd (char *args, int from_tty,
953 struct cmd_list_element *c)
954 {
955 update_packet_config (&remote_protocol_qPart_auxv);
956 }
957
958 static void
959 show_remote_protocol_qPart_auxv_packet_cmd (char *args, int from_tty,
960 struct cmd_list_element *c)
961 {
962 show_packet_config_cmd (&remote_protocol_qPart_auxv);
963 }
964
965 static struct packet_config remote_protocol_p;
966
967 static void
968 set_remote_protocol_p_packet_cmd (char *args, int from_tty,
969 struct cmd_list_element *c)
970 {
971 update_packet_config (&remote_protocol_p);
972 }
973
974 static void
975 show_remote_protocol_p_packet_cmd (char *args, int from_tty,
976 struct cmd_list_element *c)
977 {
978 show_packet_config_cmd (&remote_protocol_p);
979 }
980
981
982
983 /* Tokens for use by the asynchronous signal handlers for SIGINT */
984 static void *sigint_remote_twice_token;
985 static void *sigint_remote_token;
986
987 /* These are pointers to hook functions that may be set in order to
988 modify resume/wait behavior for a particular architecture. */
989
990 void (*deprecated_target_resume_hook) (void);
991 void (*deprecated_target_wait_loop_hook) (void);
992 \f
993
994
995 /* These are the threads which we last sent to the remote system.
996 -1 for all or -2 for not sent yet. */
997 static int general_thread;
998 static int continue_thread;
999
1000 /* Call this function as a result of
1001 1) A halt indication (T packet) containing a thread id
1002 2) A direct query of currthread
1003 3) Successful execution of set thread
1004 */
1005
1006 static void
1007 record_currthread (int currthread)
1008 {
1009 general_thread = currthread;
1010
1011 /* If this is a new thread, add it to GDB's thread list.
1012 If we leave it up to WFI to do this, bad things will happen. */
1013 if (!in_thread_list (pid_to_ptid (currthread)))
1014 {
1015 add_thread (pid_to_ptid (currthread));
1016 ui_out_text (uiout, "[New ");
1017 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1018 ui_out_text (uiout, "]\n");
1019 }
1020 }
1021
1022 #define MAGIC_NULL_PID 42000
1023
1024 static void
1025 set_thread (int th, int gen)
1026 {
1027 struct remote_state *rs = get_remote_state ();
1028 char *buf = alloca (rs->remote_packet_size);
1029 int state = gen ? general_thread : continue_thread;
1030
1031 if (state == th)
1032 return;
1033
1034 buf[0] = 'H';
1035 buf[1] = gen ? 'g' : 'c';
1036 if (th == MAGIC_NULL_PID)
1037 {
1038 buf[2] = '0';
1039 buf[3] = '\0';
1040 }
1041 else if (th < 0)
1042 sprintf (&buf[2], "-%x", -th);
1043 else
1044 sprintf (&buf[2], "%x", th);
1045 putpkt (buf);
1046 getpkt (buf, (rs->remote_packet_size), 0);
1047 if (gen)
1048 general_thread = th;
1049 else
1050 continue_thread = th;
1051 }
1052 \f
1053 /* Return nonzero if the thread TH is still alive on the remote system. */
1054
1055 static int
1056 remote_thread_alive (ptid_t ptid)
1057 {
1058 int tid = PIDGET (ptid);
1059 char buf[16];
1060
1061 if (tid < 0)
1062 sprintf (buf, "T-%08x", -tid);
1063 else
1064 sprintf (buf, "T%08x", tid);
1065 putpkt (buf);
1066 getpkt (buf, sizeof (buf), 0);
1067 return (buf[0] == 'O' && buf[1] == 'K');
1068 }
1069
1070 /* About these extended threadlist and threadinfo packets. They are
1071 variable length packets but, the fields within them are often fixed
1072 length. They are redundent enough to send over UDP as is the
1073 remote protocol in general. There is a matching unit test module
1074 in libstub. */
1075
1076 #define OPAQUETHREADBYTES 8
1077
1078 /* a 64 bit opaque identifier */
1079 typedef unsigned char threadref[OPAQUETHREADBYTES];
1080
1081 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1082 protocol encoding, and remote.c. it is not particularly changable */
1083
1084 /* Right now, the internal structure is int. We want it to be bigger.
1085 Plan to fix this.
1086 */
1087
1088 typedef int gdb_threadref; /* internal GDB thread reference */
1089
1090 /* gdb_ext_thread_info is an internal GDB data structure which is
1091 equivalint to the reply of the remote threadinfo packet */
1092
1093 struct gdb_ext_thread_info
1094 {
1095 threadref threadid; /* External form of thread reference */
1096 int active; /* Has state interesting to GDB? , regs, stack */
1097 char display[256]; /* Brief state display, name, blocked/syspended */
1098 char shortname[32]; /* To be used to name threads */
1099 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1100 };
1101
1102 /* The volume of remote transfers can be limited by submitting
1103 a mask containing bits specifying the desired information.
1104 Use a union of these values as the 'selection' parameter to
1105 get_thread_info. FIXME: Make these TAG names more thread specific.
1106 */
1107
1108 #define TAG_THREADID 1
1109 #define TAG_EXISTS 2
1110 #define TAG_DISPLAY 4
1111 #define TAG_THREADNAME 8
1112 #define TAG_MOREDISPLAY 16
1113
1114 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1115
1116 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1117
1118 static char *unpack_nibble (char *buf, int *val);
1119
1120 static char *pack_nibble (char *buf, int nibble);
1121
1122 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1123
1124 static char *unpack_byte (char *buf, int *value);
1125
1126 static char *pack_int (char *buf, int value);
1127
1128 static char *unpack_int (char *buf, int *value);
1129
1130 static char *unpack_string (char *src, char *dest, int length);
1131
1132 static char *pack_threadid (char *pkt, threadref * id);
1133
1134 static char *unpack_threadid (char *inbuf, threadref * id);
1135
1136 void int_to_threadref (threadref * id, int value);
1137
1138 static int threadref_to_int (threadref * ref);
1139
1140 static void copy_threadref (threadref * dest, threadref * src);
1141
1142 static int threadmatch (threadref * dest, threadref * src);
1143
1144 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1145
1146 static int remote_unpack_thread_info_response (char *pkt,
1147 threadref * expectedref,
1148 struct gdb_ext_thread_info
1149 *info);
1150
1151
1152 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1153 struct gdb_ext_thread_info *info);
1154
1155 static char *pack_threadlist_request (char *pkt, int startflag,
1156 int threadcount,
1157 threadref * nextthread);
1158
1159 static int parse_threadlist_response (char *pkt,
1160 int result_limit,
1161 threadref * original_echo,
1162 threadref * resultlist, int *doneflag);
1163
1164 static int remote_get_threadlist (int startflag,
1165 threadref * nextthread,
1166 int result_limit,
1167 int *done,
1168 int *result_count, threadref * threadlist);
1169
1170 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1171
1172 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1173 void *context, int looplimit);
1174
1175 static int remote_newthread_step (threadref * ref, void *context);
1176
1177 /* encode 64 bits in 16 chars of hex */
1178
1179 static const char hexchars[] = "0123456789abcdef";
1180
1181 static int
1182 ishex (int ch, int *val)
1183 {
1184 if ((ch >= 'a') && (ch <= 'f'))
1185 {
1186 *val = ch - 'a' + 10;
1187 return 1;
1188 }
1189 if ((ch >= 'A') && (ch <= 'F'))
1190 {
1191 *val = ch - 'A' + 10;
1192 return 1;
1193 }
1194 if ((ch >= '0') && (ch <= '9'))
1195 {
1196 *val = ch - '0';
1197 return 1;
1198 }
1199 return 0;
1200 }
1201
1202 static int
1203 stubhex (int ch)
1204 {
1205 if (ch >= 'a' && ch <= 'f')
1206 return ch - 'a' + 10;
1207 if (ch >= '0' && ch <= '9')
1208 return ch - '0';
1209 if (ch >= 'A' && ch <= 'F')
1210 return ch - 'A' + 10;
1211 return -1;
1212 }
1213
1214 static int
1215 stub_unpack_int (char *buff, int fieldlength)
1216 {
1217 int nibble;
1218 int retval = 0;
1219
1220 while (fieldlength)
1221 {
1222 nibble = stubhex (*buff++);
1223 retval |= nibble;
1224 fieldlength--;
1225 if (fieldlength)
1226 retval = retval << 4;
1227 }
1228 return retval;
1229 }
1230
1231 char *
1232 unpack_varlen_hex (char *buff, /* packet to parse */
1233 ULONGEST *result)
1234 {
1235 int nibble;
1236 int retval = 0;
1237
1238 while (ishex (*buff, &nibble))
1239 {
1240 buff++;
1241 retval = retval << 4;
1242 retval |= nibble & 0x0f;
1243 }
1244 *result = retval;
1245 return buff;
1246 }
1247
1248 static char *
1249 unpack_nibble (char *buf, int *val)
1250 {
1251 ishex (*buf++, val);
1252 return buf;
1253 }
1254
1255 static char *
1256 pack_nibble (char *buf, int nibble)
1257 {
1258 *buf++ = hexchars[(nibble & 0x0f)];
1259 return buf;
1260 }
1261
1262 static char *
1263 pack_hex_byte (char *pkt, int byte)
1264 {
1265 *pkt++ = hexchars[(byte >> 4) & 0xf];
1266 *pkt++ = hexchars[(byte & 0xf)];
1267 return pkt;
1268 }
1269
1270 static char *
1271 unpack_byte (char *buf, int *value)
1272 {
1273 *value = stub_unpack_int (buf, 2);
1274 return buf + 2;
1275 }
1276
1277 static char *
1278 pack_int (char *buf, int value)
1279 {
1280 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1281 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1282 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1283 buf = pack_hex_byte (buf, (value & 0xff));
1284 return buf;
1285 }
1286
1287 static char *
1288 unpack_int (char *buf, int *value)
1289 {
1290 *value = stub_unpack_int (buf, 8);
1291 return buf + 8;
1292 }
1293
1294 #if 0 /* currently unused, uncomment when needed */
1295 static char *pack_string (char *pkt, char *string);
1296
1297 static char *
1298 pack_string (char *pkt, char *string)
1299 {
1300 char ch;
1301 int len;
1302
1303 len = strlen (string);
1304 if (len > 200)
1305 len = 200; /* Bigger than most GDB packets, junk??? */
1306 pkt = pack_hex_byte (pkt, len);
1307 while (len-- > 0)
1308 {
1309 ch = *string++;
1310 if ((ch == '\0') || (ch == '#'))
1311 ch = '*'; /* Protect encapsulation */
1312 *pkt++ = ch;
1313 }
1314 return pkt;
1315 }
1316 #endif /* 0 (unused) */
1317
1318 static char *
1319 unpack_string (char *src, char *dest, int length)
1320 {
1321 while (length--)
1322 *dest++ = *src++;
1323 *dest = '\0';
1324 return src;
1325 }
1326
1327 static char *
1328 pack_threadid (char *pkt, threadref *id)
1329 {
1330 char *limit;
1331 unsigned char *altid;
1332
1333 altid = (unsigned char *) id;
1334 limit = pkt + BUF_THREAD_ID_SIZE;
1335 while (pkt < limit)
1336 pkt = pack_hex_byte (pkt, *altid++);
1337 return pkt;
1338 }
1339
1340
1341 static char *
1342 unpack_threadid (char *inbuf, threadref *id)
1343 {
1344 char *altref;
1345 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1346 int x, y;
1347
1348 altref = (char *) id;
1349
1350 while (inbuf < limit)
1351 {
1352 x = stubhex (*inbuf++);
1353 y = stubhex (*inbuf++);
1354 *altref++ = (x << 4) | y;
1355 }
1356 return inbuf;
1357 }
1358
1359 /* Externally, threadrefs are 64 bits but internally, they are still
1360 ints. This is due to a mismatch of specifications. We would like
1361 to use 64bit thread references internally. This is an adapter
1362 function. */
1363
1364 void
1365 int_to_threadref (threadref *id, int value)
1366 {
1367 unsigned char *scan;
1368
1369 scan = (unsigned char *) id;
1370 {
1371 int i = 4;
1372 while (i--)
1373 *scan++ = 0;
1374 }
1375 *scan++ = (value >> 24) & 0xff;
1376 *scan++ = (value >> 16) & 0xff;
1377 *scan++ = (value >> 8) & 0xff;
1378 *scan++ = (value & 0xff);
1379 }
1380
1381 static int
1382 threadref_to_int (threadref *ref)
1383 {
1384 int i, value = 0;
1385 unsigned char *scan;
1386
1387 scan = (char *) ref;
1388 scan += 4;
1389 i = 4;
1390 while (i-- > 0)
1391 value = (value << 8) | ((*scan++) & 0xff);
1392 return value;
1393 }
1394
1395 static void
1396 copy_threadref (threadref *dest, threadref *src)
1397 {
1398 int i;
1399 unsigned char *csrc, *cdest;
1400
1401 csrc = (unsigned char *) src;
1402 cdest = (unsigned char *) dest;
1403 i = 8;
1404 while (i--)
1405 *cdest++ = *csrc++;
1406 }
1407
1408 static int
1409 threadmatch (threadref *dest, threadref *src)
1410 {
1411 /* things are broken right now, so just assume we got a match */
1412 #if 0
1413 unsigned char *srcp, *destp;
1414 int i, result;
1415 srcp = (char *) src;
1416 destp = (char *) dest;
1417
1418 result = 1;
1419 while (i-- > 0)
1420 result &= (*srcp++ == *destp++) ? 1 : 0;
1421 return result;
1422 #endif
1423 return 1;
1424 }
1425
1426 /*
1427 threadid:1, # always request threadid
1428 context_exists:2,
1429 display:4,
1430 unique_name:8,
1431 more_display:16
1432 */
1433
1434 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1435
1436 static char *
1437 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1438 {
1439 *pkt++ = 'q'; /* Info Query */
1440 *pkt++ = 'P'; /* process or thread info */
1441 pkt = pack_int (pkt, mode); /* mode */
1442 pkt = pack_threadid (pkt, id); /* threadid */
1443 *pkt = '\0'; /* terminate */
1444 return pkt;
1445 }
1446
1447 /* These values tag the fields in a thread info response packet */
1448 /* Tagging the fields allows us to request specific fields and to
1449 add more fields as time goes by */
1450
1451 #define TAG_THREADID 1 /* Echo the thread identifier */
1452 #define TAG_EXISTS 2 /* Is this process defined enough to
1453 fetch registers and its stack */
1454 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1455 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1456 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1457 the process */
1458
1459 static int
1460 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1461 struct gdb_ext_thread_info *info)
1462 {
1463 struct remote_state *rs = get_remote_state ();
1464 int mask, length;
1465 unsigned int tag;
1466 threadref ref;
1467 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1468 int retval = 1;
1469
1470 /* info->threadid = 0; FIXME: implement zero_threadref */
1471 info->active = 0;
1472 info->display[0] = '\0';
1473 info->shortname[0] = '\0';
1474 info->more_display[0] = '\0';
1475
1476 /* Assume the characters indicating the packet type have been stripped */
1477 pkt = unpack_int (pkt, &mask); /* arg mask */
1478 pkt = unpack_threadid (pkt, &ref);
1479
1480 if (mask == 0)
1481 warning ("Incomplete response to threadinfo request\n");
1482 if (!threadmatch (&ref, expectedref))
1483 { /* This is an answer to a different request */
1484 warning ("ERROR RMT Thread info mismatch\n");
1485 return 0;
1486 }
1487 copy_threadref (&info->threadid, &ref);
1488
1489 /* Loop on tagged fields , try to bail if somthing goes wrong */
1490
1491 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1492 {
1493 pkt = unpack_int (pkt, &tag); /* tag */
1494 pkt = unpack_byte (pkt, &length); /* length */
1495 if (!(tag & mask)) /* tags out of synch with mask */
1496 {
1497 warning ("ERROR RMT: threadinfo tag mismatch\n");
1498 retval = 0;
1499 break;
1500 }
1501 if (tag == TAG_THREADID)
1502 {
1503 if (length != 16)
1504 {
1505 warning ("ERROR RMT: length of threadid is not 16\n");
1506 retval = 0;
1507 break;
1508 }
1509 pkt = unpack_threadid (pkt, &ref);
1510 mask = mask & ~TAG_THREADID;
1511 continue;
1512 }
1513 if (tag == TAG_EXISTS)
1514 {
1515 info->active = stub_unpack_int (pkt, length);
1516 pkt += length;
1517 mask = mask & ~(TAG_EXISTS);
1518 if (length > 8)
1519 {
1520 warning ("ERROR RMT: 'exists' length too long\n");
1521 retval = 0;
1522 break;
1523 }
1524 continue;
1525 }
1526 if (tag == TAG_THREADNAME)
1527 {
1528 pkt = unpack_string (pkt, &info->shortname[0], length);
1529 mask = mask & ~TAG_THREADNAME;
1530 continue;
1531 }
1532 if (tag == TAG_DISPLAY)
1533 {
1534 pkt = unpack_string (pkt, &info->display[0], length);
1535 mask = mask & ~TAG_DISPLAY;
1536 continue;
1537 }
1538 if (tag == TAG_MOREDISPLAY)
1539 {
1540 pkt = unpack_string (pkt, &info->more_display[0], length);
1541 mask = mask & ~TAG_MOREDISPLAY;
1542 continue;
1543 }
1544 warning ("ERROR RMT: unknown thread info tag\n");
1545 break; /* Not a tag we know about */
1546 }
1547 return retval;
1548 }
1549
1550 static int
1551 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1552 struct gdb_ext_thread_info *info)
1553 {
1554 struct remote_state *rs = get_remote_state ();
1555 int result;
1556 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1557
1558 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1559 putpkt (threadinfo_pkt);
1560 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1561 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1562 info);
1563 return result;
1564 }
1565
1566 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1567
1568 static char *
1569 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1570 threadref *nextthread)
1571 {
1572 *pkt++ = 'q'; /* info query packet */
1573 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1574 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1575 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1576 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1577 *pkt = '\0';
1578 return pkt;
1579 }
1580
1581 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1582
1583 static int
1584 parse_threadlist_response (char *pkt, int result_limit,
1585 threadref *original_echo, threadref *resultlist,
1586 int *doneflag)
1587 {
1588 struct remote_state *rs = get_remote_state ();
1589 char *limit;
1590 int count, resultcount, done;
1591
1592 resultcount = 0;
1593 /* Assume the 'q' and 'M chars have been stripped. */
1594 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1595 pkt = unpack_byte (pkt, &count); /* count field */
1596 pkt = unpack_nibble (pkt, &done);
1597 /* The first threadid is the argument threadid. */
1598 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1599 while ((count-- > 0) && (pkt < limit))
1600 {
1601 pkt = unpack_threadid (pkt, resultlist++);
1602 if (resultcount++ >= result_limit)
1603 break;
1604 }
1605 if (doneflag)
1606 *doneflag = done;
1607 return resultcount;
1608 }
1609
1610 static int
1611 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1612 int *done, int *result_count, threadref *threadlist)
1613 {
1614 struct remote_state *rs = get_remote_state ();
1615 static threadref echo_nextthread;
1616 char *threadlist_packet = alloca (rs->remote_packet_size);
1617 char *t_response = alloca (rs->remote_packet_size);
1618 int result = 1;
1619
1620 /* Trancate result limit to be smaller than the packet size */
1621 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1622 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1623
1624 pack_threadlist_request (threadlist_packet,
1625 startflag, result_limit, nextthread);
1626 putpkt (threadlist_packet);
1627 getpkt (t_response, (rs->remote_packet_size), 0);
1628
1629 *result_count =
1630 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1631 threadlist, done);
1632
1633 if (!threadmatch (&echo_nextthread, nextthread))
1634 {
1635 /* FIXME: This is a good reason to drop the packet */
1636 /* Possably, there is a duplicate response */
1637 /* Possabilities :
1638 retransmit immediatly - race conditions
1639 retransmit after timeout - yes
1640 exit
1641 wait for packet, then exit
1642 */
1643 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1644 return 0; /* I choose simply exiting */
1645 }
1646 if (*result_count <= 0)
1647 {
1648 if (*done != 1)
1649 {
1650 warning ("RMT ERROR : failed to get remote thread list\n");
1651 result = 0;
1652 }
1653 return result; /* break; */
1654 }
1655 if (*result_count > result_limit)
1656 {
1657 *result_count = 0;
1658 warning ("RMT ERROR: threadlist response longer than requested\n");
1659 return 0;
1660 }
1661 return result;
1662 }
1663
1664 /* This is the interface between remote and threads, remotes upper interface */
1665
1666 /* remote_find_new_threads retrieves the thread list and for each
1667 thread in the list, looks up the thread in GDB's internal list,
1668 ading the thread if it does not already exist. This involves
1669 getting partial thread lists from the remote target so, polling the
1670 quit_flag is required. */
1671
1672
1673 /* About this many threadisds fit in a packet. */
1674
1675 #define MAXTHREADLISTRESULTS 32
1676
1677 static int
1678 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1679 int looplimit)
1680 {
1681 int done, i, result_count;
1682 int startflag = 1;
1683 int result = 1;
1684 int loopcount = 0;
1685 static threadref nextthread;
1686 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1687
1688 done = 0;
1689 while (!done)
1690 {
1691 if (loopcount++ > looplimit)
1692 {
1693 result = 0;
1694 warning ("Remote fetch threadlist -infinite loop-\n");
1695 break;
1696 }
1697 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1698 &done, &result_count, resultthreadlist))
1699 {
1700 result = 0;
1701 break;
1702 }
1703 /* clear for later iterations */
1704 startflag = 0;
1705 /* Setup to resume next batch of thread references, set nextthread. */
1706 if (result_count >= 1)
1707 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1708 i = 0;
1709 while (result_count--)
1710 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1711 break;
1712 }
1713 return result;
1714 }
1715
1716 static int
1717 remote_newthread_step (threadref *ref, void *context)
1718 {
1719 ptid_t ptid;
1720
1721 ptid = pid_to_ptid (threadref_to_int (ref));
1722
1723 if (!in_thread_list (ptid))
1724 add_thread (ptid);
1725 return 1; /* continue iterator */
1726 }
1727
1728 #define CRAZY_MAX_THREADS 1000
1729
1730 static ptid_t
1731 remote_current_thread (ptid_t oldpid)
1732 {
1733 struct remote_state *rs = get_remote_state ();
1734 char *buf = alloca (rs->remote_packet_size);
1735
1736 putpkt ("qC");
1737 getpkt (buf, (rs->remote_packet_size), 0);
1738 if (buf[0] == 'Q' && buf[1] == 'C')
1739 /* Use strtoul here, so we'll correctly parse values whose highest
1740 bit is set. The protocol carries them as a simple series of
1741 hex digits; in the absence of a sign, strtol will see such
1742 values as positive numbers out of range for signed 'long', and
1743 return LONG_MAX to indicate an overflow. */
1744 return pid_to_ptid (strtoul (&buf[2], NULL, 16));
1745 else
1746 return oldpid;
1747 }
1748
1749 /* Find new threads for info threads command.
1750 * Original version, using John Metzler's thread protocol.
1751 */
1752
1753 static void
1754 remote_find_new_threads (void)
1755 {
1756 remote_threadlist_iterator (remote_newthread_step, 0,
1757 CRAZY_MAX_THREADS);
1758 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1759 inferior_ptid = remote_current_thread (inferior_ptid);
1760 }
1761
1762 /*
1763 * Find all threads for info threads command.
1764 * Uses new thread protocol contributed by Cisco.
1765 * Falls back and attempts to use the older method (above)
1766 * if the target doesn't respond to the new method.
1767 */
1768
1769 static void
1770 remote_threads_info (void)
1771 {
1772 struct remote_state *rs = get_remote_state ();
1773 char *buf = alloca (rs->remote_packet_size);
1774 char *bufp;
1775 int tid;
1776
1777 if (remote_desc == 0) /* paranoia */
1778 error ("Command can only be used when connected to the remote target.");
1779
1780 if (use_threadinfo_query)
1781 {
1782 putpkt ("qfThreadInfo");
1783 bufp = buf;
1784 getpkt (bufp, (rs->remote_packet_size), 0);
1785 if (bufp[0] != '\0') /* q packet recognized */
1786 {
1787 while (*bufp++ == 'm') /* reply contains one or more TID */
1788 {
1789 do
1790 {
1791 /* Use strtoul here, so we'll correctly parse values
1792 whose highest bit is set. The protocol carries
1793 them as a simple series of hex digits; in the
1794 absence of a sign, strtol will see such values as
1795 positive numbers out of range for signed 'long',
1796 and return LONG_MAX to indicate an overflow. */
1797 tid = strtoul (bufp, &bufp, 16);
1798 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1799 add_thread (pid_to_ptid (tid));
1800 }
1801 while (*bufp++ == ','); /* comma-separated list */
1802 putpkt ("qsThreadInfo");
1803 bufp = buf;
1804 getpkt (bufp, (rs->remote_packet_size), 0);
1805 }
1806 return; /* done */
1807 }
1808 }
1809
1810 /* Else fall back to old method based on jmetzler protocol. */
1811 use_threadinfo_query = 0;
1812 remote_find_new_threads ();
1813 return;
1814 }
1815
1816 /*
1817 * Collect a descriptive string about the given thread.
1818 * The target may say anything it wants to about the thread
1819 * (typically info about its blocked / runnable state, name, etc.).
1820 * This string will appear in the info threads display.
1821 *
1822 * Optional: targets are not required to implement this function.
1823 */
1824
1825 static char *
1826 remote_threads_extra_info (struct thread_info *tp)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829 int result;
1830 int set;
1831 threadref id;
1832 struct gdb_ext_thread_info threadinfo;
1833 static char display_buf[100]; /* arbitrary... */
1834 char *bufp = alloca (rs->remote_packet_size);
1835 int n = 0; /* position in display_buf */
1836
1837 if (remote_desc == 0) /* paranoia */
1838 internal_error (__FILE__, __LINE__,
1839 "remote_threads_extra_info");
1840
1841 if (use_threadextra_query)
1842 {
1843 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1844 putpkt (bufp);
1845 getpkt (bufp, (rs->remote_packet_size), 0);
1846 if (bufp[0] != 0)
1847 {
1848 n = min (strlen (bufp) / 2, sizeof (display_buf));
1849 result = hex2bin (bufp, display_buf, n);
1850 display_buf [result] = '\0';
1851 return display_buf;
1852 }
1853 }
1854
1855 /* If the above query fails, fall back to the old method. */
1856 use_threadextra_query = 0;
1857 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1858 | TAG_MOREDISPLAY | TAG_DISPLAY;
1859 int_to_threadref (&id, PIDGET (tp->ptid));
1860 if (remote_get_threadinfo (&id, set, &threadinfo))
1861 if (threadinfo.active)
1862 {
1863 if (*threadinfo.shortname)
1864 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1865 if (*threadinfo.display)
1866 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1867 if (*threadinfo.more_display)
1868 n += sprintf(&display_buf[n], " Priority: %s",
1869 threadinfo.more_display);
1870
1871 if (n > 0)
1872 {
1873 /* for purely cosmetic reasons, clear up trailing commas */
1874 if (',' == display_buf[n-1])
1875 display_buf[n-1] = ' ';
1876 return display_buf;
1877 }
1878 }
1879 return NULL;
1880 }
1881
1882 \f
1883
1884 /* Restart the remote side; this is an extended protocol operation. */
1885
1886 static void
1887 extended_remote_restart (void)
1888 {
1889 struct remote_state *rs = get_remote_state ();
1890 char *buf = alloca (rs->remote_packet_size);
1891
1892 /* Send the restart command; for reasons I don't understand the
1893 remote side really expects a number after the "R". */
1894 buf[0] = 'R';
1895 sprintf (&buf[1], "%x", 0);
1896 putpkt (buf);
1897
1898 /* Now query for status so this looks just like we restarted
1899 gdbserver from scratch. */
1900 putpkt ("?");
1901 getpkt (buf, (rs->remote_packet_size), 0);
1902 }
1903 \f
1904 /* Clean up connection to a remote debugger. */
1905
1906 static void
1907 remote_close (int quitting)
1908 {
1909 if (remote_desc)
1910 serial_close (remote_desc);
1911 remote_desc = NULL;
1912 }
1913
1914 /* Query the remote side for the text, data and bss offsets. */
1915
1916 static void
1917 get_offsets (void)
1918 {
1919 struct remote_state *rs = get_remote_state ();
1920 char *buf = alloca (rs->remote_packet_size);
1921 char *ptr;
1922 int lose;
1923 CORE_ADDR text_addr, data_addr, bss_addr;
1924 struct section_offsets *offs;
1925
1926 putpkt ("qOffsets");
1927
1928 getpkt (buf, (rs->remote_packet_size), 0);
1929
1930 if (buf[0] == '\000')
1931 return; /* Return silently. Stub doesn't support
1932 this command. */
1933 if (buf[0] == 'E')
1934 {
1935 warning ("Remote failure reply: %s", buf);
1936 return;
1937 }
1938
1939 /* Pick up each field in turn. This used to be done with scanf, but
1940 scanf will make trouble if CORE_ADDR size doesn't match
1941 conversion directives correctly. The following code will work
1942 with any size of CORE_ADDR. */
1943 text_addr = data_addr = bss_addr = 0;
1944 ptr = buf;
1945 lose = 0;
1946
1947 if (strncmp (ptr, "Text=", 5) == 0)
1948 {
1949 ptr += 5;
1950 /* Don't use strtol, could lose on big values. */
1951 while (*ptr && *ptr != ';')
1952 text_addr = (text_addr << 4) + fromhex (*ptr++);
1953 }
1954 else
1955 lose = 1;
1956
1957 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1958 {
1959 ptr += 6;
1960 while (*ptr && *ptr != ';')
1961 data_addr = (data_addr << 4) + fromhex (*ptr++);
1962 }
1963 else
1964 lose = 1;
1965
1966 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1967 {
1968 ptr += 5;
1969 while (*ptr && *ptr != ';')
1970 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1971 }
1972 else
1973 lose = 1;
1974
1975 if (lose)
1976 error ("Malformed response to offset query, %s", buf);
1977
1978 if (symfile_objfile == NULL)
1979 return;
1980
1981 offs = ((struct section_offsets *)
1982 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
1983 memcpy (offs, symfile_objfile->section_offsets,
1984 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
1985
1986 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1987
1988 /* This is a temporary kludge to force data and bss to use the same offsets
1989 because that's what nlmconv does now. The real solution requires changes
1990 to the stub and remote.c that I don't have time to do right now. */
1991
1992 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1993 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1994
1995 objfile_relocate (symfile_objfile, offs);
1996 }
1997
1998 /* Stub for catch_errors. */
1999
2000 static int
2001 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2002 {
2003 start_remote (); /* Initialize gdb process mechanisms */
2004 /* NOTE: Return something >=0. A -ve value is reserved for
2005 catch_exceptions. */
2006 return 1;
2007 }
2008
2009 static int
2010 remote_start_remote (struct ui_out *uiout, void *dummy)
2011 {
2012 immediate_quit++; /* Allow user to interrupt it */
2013
2014 /* Ack any packet which the remote side has already sent. */
2015 serial_write (remote_desc, "+", 1);
2016
2017 /* Let the stub know that we want it to return the thread. */
2018 set_thread (-1, 0);
2019
2020 inferior_ptid = remote_current_thread (inferior_ptid);
2021
2022 get_offsets (); /* Get text, data & bss offsets */
2023
2024 putpkt ("?"); /* initiate a query from remote machine */
2025 immediate_quit--;
2026
2027 /* NOTE: See comment above in remote_start_remote_dummy(). This
2028 function returns something >=0. */
2029 return remote_start_remote_dummy (uiout, dummy);
2030 }
2031
2032 /* Open a connection to a remote debugger.
2033 NAME is the filename used for communication. */
2034
2035 static void
2036 remote_open (char *name, int from_tty)
2037 {
2038 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2039 }
2040
2041 /* Just like remote_open, but with asynchronous support. */
2042 static void
2043 remote_async_open (char *name, int from_tty)
2044 {
2045 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2046 }
2047
2048 /* Open a connection to a remote debugger using the extended
2049 remote gdb protocol. NAME is the filename used for communication. */
2050
2051 static void
2052 extended_remote_open (char *name, int from_tty)
2053 {
2054 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2055 0 /* async_p */);
2056 }
2057
2058 /* Just like extended_remote_open, but with asynchronous support. */
2059 static void
2060 extended_remote_async_open (char *name, int from_tty)
2061 {
2062 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2063 1 /*extended_p */, 1 /* async_p */);
2064 }
2065
2066 /* Generic code for opening a connection to a remote target. */
2067
2068 static void
2069 init_all_packet_configs (void)
2070 {
2071 int i;
2072 update_packet_config (&remote_protocol_P);
2073 update_packet_config (&remote_protocol_p);
2074 update_packet_config (&remote_protocol_qSymbol);
2075 update_packet_config (&remote_protocol_vcont);
2076 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2077 update_packet_config (&remote_protocol_Z[i]);
2078 /* Force remote_write_bytes to check whether target supports binary
2079 downloading. */
2080 update_packet_config (&remote_protocol_binary_download);
2081 update_packet_config (&remote_protocol_qPart_auxv);
2082 }
2083
2084 /* Symbol look-up. */
2085
2086 static void
2087 remote_check_symbols (struct objfile *objfile)
2088 {
2089 struct remote_state *rs = get_remote_state ();
2090 char *msg, *reply, *tmp;
2091 struct minimal_symbol *sym;
2092 int end;
2093
2094 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2095 return;
2096
2097 msg = alloca (rs->remote_packet_size);
2098 reply = alloca (rs->remote_packet_size);
2099
2100 /* Invite target to request symbol lookups. */
2101
2102 putpkt ("qSymbol::");
2103 getpkt (reply, (rs->remote_packet_size), 0);
2104 packet_ok (reply, &remote_protocol_qSymbol);
2105
2106 while (strncmp (reply, "qSymbol:", 8) == 0)
2107 {
2108 tmp = &reply[8];
2109 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2110 msg[end] = '\0';
2111 sym = lookup_minimal_symbol (msg, NULL, NULL);
2112 if (sym == NULL)
2113 sprintf (msg, "qSymbol::%s", &reply[8]);
2114 else
2115 sprintf (msg, "qSymbol:%s:%s",
2116 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2117 &reply[8]);
2118 putpkt (msg);
2119 getpkt (reply, (rs->remote_packet_size), 0);
2120 }
2121 }
2122
2123 static struct serial *
2124 remote_serial_open (char *name)
2125 {
2126 static int udp_warning = 0;
2127
2128 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2129 of in ser-tcp.c, because it is the remote protocol assuming that the
2130 serial connection is reliable and not the serial connection promising
2131 to be. */
2132 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2133 {
2134 warning ("The remote protocol may be unreliable over UDP.");
2135 warning ("Some events may be lost, rendering further debugging "
2136 "impossible.");
2137 udp_warning = 1;
2138 }
2139
2140 return serial_open (name);
2141 }
2142
2143 static void
2144 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2145 int extended_p, int async_p)
2146 {
2147 int ex;
2148 struct remote_state *rs = get_remote_state ();
2149 if (name == 0)
2150 error ("To open a remote debug connection, you need to specify what\n"
2151 "serial device is attached to the remote system\n"
2152 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2153
2154 /* See FIXME above */
2155 if (!async_p)
2156 wait_forever_enabled_p = 1;
2157
2158 reopen_exec_file ();
2159 reread_symbols ();
2160
2161 target_preopen (from_tty);
2162
2163 unpush_target (target);
2164
2165 remote_desc = remote_serial_open (name);
2166 if (!remote_desc)
2167 perror_with_name (name);
2168
2169 if (baud_rate != -1)
2170 {
2171 if (serial_setbaudrate (remote_desc, baud_rate))
2172 {
2173 /* The requested speed could not be set. Error out to
2174 top level after closing remote_desc. Take care to
2175 set remote_desc to NULL to avoid closing remote_desc
2176 more than once. */
2177 serial_close (remote_desc);
2178 remote_desc = NULL;
2179 perror_with_name (name);
2180 }
2181 }
2182
2183 serial_raw (remote_desc);
2184
2185 /* If there is something sitting in the buffer we might take it as a
2186 response to a command, which would be bad. */
2187 serial_flush_input (remote_desc);
2188
2189 if (from_tty)
2190 {
2191 puts_filtered ("Remote debugging using ");
2192 puts_filtered (name);
2193 puts_filtered ("\n");
2194 }
2195 push_target (target); /* Switch to using remote target now */
2196
2197 init_all_packet_configs ();
2198
2199 general_thread = -2;
2200 continue_thread = -2;
2201
2202 /* Probe for ability to use "ThreadInfo" query, as required. */
2203 use_threadinfo_query = 1;
2204 use_threadextra_query = 1;
2205
2206 /* Without this, some commands which require an active target (such
2207 as kill) won't work. This variable serves (at least) double duty
2208 as both the pid of the target process (if it has such), and as a
2209 flag indicating that a target is active. These functions should
2210 be split out into seperate variables, especially since GDB will
2211 someday have a notion of debugging several processes. */
2212
2213 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2214
2215 if (async_p)
2216 {
2217 /* With this target we start out by owning the terminal. */
2218 remote_async_terminal_ours_p = 1;
2219
2220 /* FIXME: cagney/1999-09-23: During the initial connection it is
2221 assumed that the target is already ready and able to respond to
2222 requests. Unfortunately remote_start_remote() eventually calls
2223 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2224 around this. Eventually a mechanism that allows
2225 wait_for_inferior() to expect/get timeouts will be
2226 implemented. */
2227 wait_forever_enabled_p = 0;
2228 }
2229
2230 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2231 /* First delete any symbols previously loaded from shared libraries. */
2232 no_shared_libraries (NULL, 0);
2233 #endif
2234
2235 /* Start the remote connection. If error() or QUIT, discard this
2236 target (we'd otherwise be in an inconsistent state) and then
2237 propogate the error on up the exception chain. This ensures that
2238 the caller doesn't stumble along blindly assuming that the
2239 function succeeded. The CLI doesn't have this problem but other
2240 UI's, such as MI do.
2241
2242 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2243 this function should return an error indication letting the
2244 caller restore the previous state. Unfortunately the command
2245 ``target remote'' is directly wired to this function making that
2246 impossible. On a positive note, the CLI side of this problem has
2247 been fixed - the function set_cmd_context() makes it possible for
2248 all the ``target ....'' commands to share a common callback
2249 function. See cli-dump.c. */
2250 ex = catch_exceptions (uiout,
2251 remote_start_remote, NULL,
2252 "Couldn't establish connection to remote"
2253 " target\n",
2254 RETURN_MASK_ALL);
2255 if (ex < 0)
2256 {
2257 pop_target ();
2258 if (async_p)
2259 wait_forever_enabled_p = 1;
2260 throw_reason (ex);
2261 }
2262
2263 if (async_p)
2264 wait_forever_enabled_p = 1;
2265
2266 if (extended_p)
2267 {
2268 /* Tell the remote that we are using the extended protocol. */
2269 char *buf = alloca (rs->remote_packet_size);
2270 putpkt ("!");
2271 getpkt (buf, (rs->remote_packet_size), 0);
2272 }
2273 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2274 /* FIXME: need a master target_open vector from which all
2275 remote_opens can be called, so that stuff like this can
2276 go there. Failing that, the following code must be copied
2277 to the open function for any remote target that wants to
2278 support svr4 shared libraries. */
2279
2280 /* Set up to detect and load shared libraries. */
2281 if (exec_bfd) /* No use without an exec file. */
2282 {
2283 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2284 remote_check_symbols (symfile_objfile);
2285 }
2286 #endif
2287 }
2288
2289 /* This takes a program previously attached to and detaches it. After
2290 this is done, GDB can be used to debug some other program. We
2291 better not have left any breakpoints in the target program or it'll
2292 die when it hits one. */
2293
2294 static void
2295 remote_detach (char *args, int from_tty)
2296 {
2297 struct remote_state *rs = get_remote_state ();
2298 char *buf = alloca (rs->remote_packet_size);
2299
2300 if (args)
2301 error ("Argument given to \"detach\" when remotely debugging.");
2302
2303 /* Tell the remote target to detach. */
2304 strcpy (buf, "D");
2305 remote_send (buf, (rs->remote_packet_size));
2306
2307 /* Unregister the file descriptor from the event loop. */
2308 if (target_is_async_p ())
2309 serial_async (remote_desc, NULL, 0);
2310
2311 target_mourn_inferior ();
2312 if (from_tty)
2313 puts_filtered ("Ending remote debugging.\n");
2314 }
2315
2316 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2317
2318 static void
2319 remote_disconnect (char *args, int from_tty)
2320 {
2321 struct remote_state *rs = get_remote_state ();
2322 char *buf = alloca (rs->remote_packet_size);
2323
2324 if (args)
2325 error ("Argument given to \"detach\" when remotely debugging.");
2326
2327 /* Unregister the file descriptor from the event loop. */
2328 if (target_is_async_p ())
2329 serial_async (remote_desc, NULL, 0);
2330
2331 target_mourn_inferior ();
2332 if (from_tty)
2333 puts_filtered ("Ending remote debugging.\n");
2334 }
2335
2336 /* Convert hex digit A to a number. */
2337
2338 static int
2339 fromhex (int a)
2340 {
2341 if (a >= '0' && a <= '9')
2342 return a - '0';
2343 else if (a >= 'a' && a <= 'f')
2344 return a - 'a' + 10;
2345 else if (a >= 'A' && a <= 'F')
2346 return a - 'A' + 10;
2347 else
2348 error ("Reply contains invalid hex digit %d", a);
2349 }
2350
2351 static int
2352 hex2bin (const char *hex, char *bin, int count)
2353 {
2354 int i;
2355
2356 for (i = 0; i < count; i++)
2357 {
2358 if (hex[0] == 0 || hex[1] == 0)
2359 {
2360 /* Hex string is short, or of uneven length.
2361 Return the count that has been converted so far. */
2362 return i;
2363 }
2364 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2365 hex += 2;
2366 }
2367 return i;
2368 }
2369
2370 /* Convert number NIB to a hex digit. */
2371
2372 static int
2373 tohex (int nib)
2374 {
2375 if (nib < 10)
2376 return '0' + nib;
2377 else
2378 return 'a' + nib - 10;
2379 }
2380
2381 static int
2382 bin2hex (const char *bin, char *hex, int count)
2383 {
2384 int i;
2385 /* May use a length, or a nul-terminated string as input. */
2386 if (count == 0)
2387 count = strlen (bin);
2388
2389 for (i = 0; i < count; i++)
2390 {
2391 *hex++ = tohex ((*bin >> 4) & 0xf);
2392 *hex++ = tohex (*bin++ & 0xf);
2393 }
2394 *hex = 0;
2395 return i;
2396 }
2397 \f
2398 /* Check for the availability of vCont. This function should also check
2399 the response. */
2400
2401 static void
2402 remote_vcont_probe (struct remote_state *rs, char *buf)
2403 {
2404 strcpy (buf, "vCont?");
2405 putpkt (buf);
2406 getpkt (buf, rs->remote_packet_size, 0);
2407
2408 /* Make sure that the features we assume are supported. */
2409 if (strncmp (buf, "vCont", 5) == 0)
2410 {
2411 char *p = &buf[5];
2412 int support_s, support_S, support_c, support_C;
2413
2414 support_s = 0;
2415 support_S = 0;
2416 support_c = 0;
2417 support_C = 0;
2418 while (p && *p == ';')
2419 {
2420 p++;
2421 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2422 support_s = 1;
2423 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2424 support_S = 1;
2425 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2426 support_c = 1;
2427 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2428 support_C = 1;
2429
2430 p = strchr (p, ';');
2431 }
2432
2433 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2434 BUF will make packet_ok disable the packet. */
2435 if (!support_s || !support_S || !support_c || !support_C)
2436 buf[0] = 0;
2437 }
2438
2439 packet_ok (buf, &remote_protocol_vcont);
2440 }
2441
2442 /* Resume the remote inferior by using a "vCont" packet. The thread
2443 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2444 resumed thread should be single-stepped and/or signalled. If PTID's
2445 PID is -1, then all threads are resumed; the thread to be stepped and/or
2446 signalled is given in the global INFERIOR_PTID. This function returns
2447 non-zero iff it resumes the inferior.
2448
2449 This function issues a strict subset of all possible vCont commands at the
2450 moment. */
2451
2452 static int
2453 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2454 {
2455 struct remote_state *rs = get_remote_state ();
2456 int pid = PIDGET (ptid);
2457 char *buf = NULL, *outbuf;
2458 struct cleanup *old_cleanup;
2459
2460 buf = xmalloc (rs->remote_packet_size);
2461 old_cleanup = make_cleanup (xfree, buf);
2462
2463 if (remote_protocol_vcont.support == PACKET_SUPPORT_UNKNOWN)
2464 remote_vcont_probe (rs, buf);
2465
2466 if (remote_protocol_vcont.support == PACKET_DISABLE)
2467 {
2468 do_cleanups (old_cleanup);
2469 return 0;
2470 }
2471
2472 /* If we could generate a wider range of packets, we'd have to worry
2473 about overflowing BUF. Should there be a generic
2474 "multi-part-packet" packet? */
2475
2476 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2477 {
2478 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2479 don't have any PID numbers the inferior will understand. Make sure
2480 to only send forms that do not specify a PID. */
2481 if (step && siggnal != TARGET_SIGNAL_0)
2482 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2483 else if (step)
2484 outbuf = xstrprintf ("vCont;s");
2485 else if (siggnal != TARGET_SIGNAL_0)
2486 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2487 else
2488 outbuf = xstrprintf ("vCont;c");
2489 }
2490 else if (pid == -1)
2491 {
2492 /* Resume all threads, with preference for INFERIOR_PTID. */
2493 if (step && siggnal != TARGET_SIGNAL_0)
2494 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2495 PIDGET (inferior_ptid));
2496 else if (step)
2497 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2498 else if (siggnal != TARGET_SIGNAL_0)
2499 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2500 PIDGET (inferior_ptid));
2501 else
2502 outbuf = xstrprintf ("vCont;c");
2503 }
2504 else
2505 {
2506 /* Scheduler locking; resume only PTID. */
2507 if (step && siggnal != TARGET_SIGNAL_0)
2508 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2509 else if (step)
2510 outbuf = xstrprintf ("vCont;s:%x", pid);
2511 else if (siggnal != TARGET_SIGNAL_0)
2512 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2513 else
2514 outbuf = xstrprintf ("vCont;c:%x", pid);
2515 }
2516
2517 gdb_assert (outbuf && strlen (outbuf) < rs->remote_packet_size);
2518 make_cleanup (xfree, outbuf);
2519
2520 putpkt (outbuf);
2521
2522 do_cleanups (old_cleanup);
2523
2524 return 1;
2525 }
2526
2527 /* Tell the remote machine to resume. */
2528
2529 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2530
2531 static int last_sent_step;
2532
2533 static void
2534 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2535 {
2536 struct remote_state *rs = get_remote_state ();
2537 char *buf = alloca (rs->remote_packet_size);
2538 int pid = PIDGET (ptid);
2539 char *p;
2540
2541 last_sent_signal = siggnal;
2542 last_sent_step = step;
2543
2544 /* A hook for when we need to do something at the last moment before
2545 resumption. */
2546 if (deprecated_target_resume_hook)
2547 (*deprecated_target_resume_hook) ();
2548
2549 /* The vCont packet doesn't need to specify threads via Hc. */
2550 if (remote_vcont_resume (ptid, step, siggnal))
2551 return;
2552
2553 /* All other supported resume packets do use Hc, so call set_thread. */
2554 if (pid == -1)
2555 set_thread (0, 0); /* run any thread */
2556 else
2557 set_thread (pid, 0); /* run this thread */
2558
2559 if (siggnal != TARGET_SIGNAL_0)
2560 {
2561 buf[0] = step ? 'S' : 'C';
2562 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2563 buf[2] = tohex (((int) siggnal) & 0xf);
2564 buf[3] = '\0';
2565 }
2566 else
2567 strcpy (buf, step ? "s" : "c");
2568
2569 putpkt (buf);
2570 }
2571
2572 /* Same as remote_resume, but with async support. */
2573 static void
2574 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2575 {
2576 remote_resume (ptid, step, siggnal);
2577
2578 /* We are about to start executing the inferior, let's register it
2579 with the event loop. NOTE: this is the one place where all the
2580 execution commands end up. We could alternatively do this in each
2581 of the execution commands in infcmd.c.*/
2582 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2583 into infcmd.c in order to allow inferior function calls to work
2584 NOT asynchronously. */
2585 if (target_can_async_p ())
2586 target_async (inferior_event_handler, 0);
2587 /* Tell the world that the target is now executing. */
2588 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2589 this? Instead, should the client of target just assume (for
2590 async targets) that the target is going to start executing? Is
2591 this information already found in the continuation block? */
2592 if (target_is_async_p ())
2593 target_executing = 1;
2594 }
2595 \f
2596
2597 /* Set up the signal handler for SIGINT, while the target is
2598 executing, ovewriting the 'regular' SIGINT signal handler. */
2599 static void
2600 initialize_sigint_signal_handler (void)
2601 {
2602 sigint_remote_token =
2603 create_async_signal_handler (async_remote_interrupt, NULL);
2604 signal (SIGINT, handle_remote_sigint);
2605 }
2606
2607 /* Signal handler for SIGINT, while the target is executing. */
2608 static void
2609 handle_remote_sigint (int sig)
2610 {
2611 signal (sig, handle_remote_sigint_twice);
2612 sigint_remote_twice_token =
2613 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2614 mark_async_signal_handler_wrapper (sigint_remote_token);
2615 }
2616
2617 /* Signal handler for SIGINT, installed after SIGINT has already been
2618 sent once. It will take effect the second time that the user sends
2619 a ^C. */
2620 static void
2621 handle_remote_sigint_twice (int sig)
2622 {
2623 signal (sig, handle_sigint);
2624 sigint_remote_twice_token =
2625 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2626 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2627 }
2628
2629 /* Perform the real interruption of the target execution, in response
2630 to a ^C. */
2631 static void
2632 async_remote_interrupt (gdb_client_data arg)
2633 {
2634 if (remote_debug)
2635 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2636
2637 target_stop ();
2638 }
2639
2640 /* Perform interrupt, if the first attempt did not succeed. Just give
2641 up on the target alltogether. */
2642 void
2643 async_remote_interrupt_twice (gdb_client_data arg)
2644 {
2645 if (remote_debug)
2646 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2647 /* Do something only if the target was not killed by the previous
2648 cntl-C. */
2649 if (target_executing)
2650 {
2651 interrupt_query ();
2652 signal (SIGINT, handle_remote_sigint);
2653 }
2654 }
2655
2656 /* Reinstall the usual SIGINT handlers, after the target has
2657 stopped. */
2658 static void
2659 cleanup_sigint_signal_handler (void *dummy)
2660 {
2661 signal (SIGINT, handle_sigint);
2662 if (sigint_remote_twice_token)
2663 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2664 if (sigint_remote_token)
2665 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2666 }
2667
2668 /* Send ^C to target to halt it. Target will respond, and send us a
2669 packet. */
2670 static void (*ofunc) (int);
2671
2672 /* The command line interface's stop routine. This function is installed
2673 as a signal handler for SIGINT. The first time a user requests a
2674 stop, we call remote_stop to send a break or ^C. If there is no
2675 response from the target (it didn't stop when the user requested it),
2676 we ask the user if he'd like to detach from the target. */
2677 static void
2678 remote_interrupt (int signo)
2679 {
2680 /* If this doesn't work, try more severe steps. */
2681 signal (signo, remote_interrupt_twice);
2682
2683 if (remote_debug)
2684 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2685
2686 target_stop ();
2687 }
2688
2689 /* The user typed ^C twice. */
2690
2691 static void
2692 remote_interrupt_twice (int signo)
2693 {
2694 signal (signo, ofunc);
2695 interrupt_query ();
2696 signal (signo, remote_interrupt);
2697 }
2698
2699 /* This is the generic stop called via the target vector. When a target
2700 interrupt is requested, either by the command line or the GUI, we
2701 will eventually end up here. */
2702 static void
2703 remote_stop (void)
2704 {
2705 /* Send a break or a ^C, depending on user preference. */
2706 if (remote_debug)
2707 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2708
2709 if (remote_break)
2710 serial_send_break (remote_desc);
2711 else
2712 serial_write (remote_desc, "\003", 1);
2713 }
2714
2715 /* Ask the user what to do when an interrupt is received. */
2716
2717 static void
2718 interrupt_query (void)
2719 {
2720 target_terminal_ours ();
2721
2722 if (query ("Interrupted while waiting for the program.\n\
2723 Give up (and stop debugging it)? "))
2724 {
2725 target_mourn_inferior ();
2726 throw_reason (RETURN_QUIT);
2727 }
2728
2729 target_terminal_inferior ();
2730 }
2731
2732 /* Enable/disable target terminal ownership. Most targets can use
2733 terminal groups to control terminal ownership. Remote targets are
2734 different in that explicit transfer of ownership to/from GDB/target
2735 is required. */
2736
2737 static void
2738 remote_async_terminal_inferior (void)
2739 {
2740 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2741 sync_execution here. This function should only be called when
2742 GDB is resuming the inferior in the forground. A background
2743 resume (``run&'') should leave GDB in control of the terminal and
2744 consequently should not call this code. */
2745 if (!sync_execution)
2746 return;
2747 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2748 calls target_terminal_*() idenpotent. The event-loop GDB talking
2749 to an asynchronous target with a synchronous command calls this
2750 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2751 stops trying to transfer the terminal to the target when it
2752 shouldn't this guard can go away. */
2753 if (!remote_async_terminal_ours_p)
2754 return;
2755 delete_file_handler (input_fd);
2756 remote_async_terminal_ours_p = 0;
2757 initialize_sigint_signal_handler ();
2758 /* NOTE: At this point we could also register our selves as the
2759 recipient of all input. Any characters typed could then be
2760 passed on down to the target. */
2761 }
2762
2763 static void
2764 remote_async_terminal_ours (void)
2765 {
2766 /* See FIXME in remote_async_terminal_inferior. */
2767 if (!sync_execution)
2768 return;
2769 /* See FIXME in remote_async_terminal_inferior. */
2770 if (remote_async_terminal_ours_p)
2771 return;
2772 cleanup_sigint_signal_handler (NULL);
2773 add_file_handler (input_fd, stdin_event_handler, 0);
2774 remote_async_terminal_ours_p = 1;
2775 }
2776
2777 /* If nonzero, ignore the next kill. */
2778
2779 int kill_kludge;
2780
2781 void
2782 remote_console_output (char *msg)
2783 {
2784 char *p;
2785
2786 for (p = msg; p[0] && p[1]; p += 2)
2787 {
2788 char tb[2];
2789 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2790 tb[0] = c;
2791 tb[1] = 0;
2792 fputs_unfiltered (tb, gdb_stdtarg);
2793 }
2794 gdb_flush (gdb_stdtarg);
2795 }
2796
2797 /* Wait until the remote machine stops, then return,
2798 storing status in STATUS just as `wait' would.
2799 Returns "pid", which in the case of a multi-threaded
2800 remote OS, is the thread-id. */
2801
2802 static ptid_t
2803 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2804 {
2805 struct remote_state *rs = get_remote_state ();
2806 unsigned char *buf = alloca (rs->remote_packet_size);
2807 ULONGEST thread_num = -1;
2808 ULONGEST addr;
2809
2810 status->kind = TARGET_WAITKIND_EXITED;
2811 status->value.integer = 0;
2812
2813 while (1)
2814 {
2815 unsigned char *p;
2816
2817 ofunc = signal (SIGINT, remote_interrupt);
2818 getpkt (buf, (rs->remote_packet_size), 1);
2819 signal (SIGINT, ofunc);
2820
2821 /* This is a hook for when we need to do something (perhaps the
2822 collection of trace data) every time the target stops. */
2823 if (deprecated_target_wait_loop_hook)
2824 (*deprecated_target_wait_loop_hook) ();
2825
2826 remote_stopped_by_watchpoint_p = 0;
2827
2828 switch (buf[0])
2829 {
2830 case 'E': /* Error of some sort */
2831 warning ("Remote failure reply: %s", buf);
2832 continue;
2833 case 'F': /* File-I/O request */
2834 remote_fileio_request (buf);
2835 continue;
2836 case 'T': /* Status with PC, SP, FP, ... */
2837 {
2838 int i;
2839 char regs[MAX_REGISTER_SIZE];
2840
2841 /* Expedited reply, containing Signal, {regno, reg} repeat */
2842 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2843 ss = signal number
2844 n... = register number
2845 r... = register contents
2846 */
2847 p = &buf[3]; /* after Txx */
2848
2849 while (*p)
2850 {
2851 unsigned char *p1;
2852 char *p_temp;
2853 int fieldsize;
2854 LONGEST pnum = 0;
2855
2856 /* If the packet contains a register number save it in pnum
2857 and set p1 to point to the character following it.
2858 Otherwise p1 points to p. */
2859
2860 /* If this packet is an awatch packet, don't parse the 'a'
2861 as a register number. */
2862
2863 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2864 {
2865 /* Read the ``P'' register number. */
2866 pnum = strtol (p, &p_temp, 16);
2867 p1 = (unsigned char *) p_temp;
2868 }
2869 else
2870 p1 = p;
2871
2872 if (p1 == p) /* No register number present here */
2873 {
2874 p1 = (unsigned char *) strchr (p, ':');
2875 if (p1 == NULL)
2876 warning ("Malformed packet(a) (missing colon): %s\n\
2877 Packet: '%s'\n",
2878 p, buf);
2879 if (strncmp (p, "thread", p1 - p) == 0)
2880 {
2881 p_temp = unpack_varlen_hex (++p1, &thread_num);
2882 record_currthread (thread_num);
2883 p = (unsigned char *) p_temp;
2884 }
2885 else if ((strncmp (p, "watch", p1 - p) == 0)
2886 || (strncmp (p, "rwatch", p1 - p) == 0)
2887 || (strncmp (p, "awatch", p1 - p) == 0))
2888 {
2889 remote_stopped_by_watchpoint_p = 1;
2890 p = unpack_varlen_hex (++p1, &addr);
2891 remote_watch_data_address = (CORE_ADDR)addr;
2892 }
2893 else
2894 {
2895 /* Silently skip unknown optional info. */
2896 p_temp = strchr (p1 + 1, ';');
2897 if (p_temp)
2898 p = (unsigned char *) p_temp;
2899 }
2900 }
2901 else
2902 {
2903 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
2904 p = p1;
2905
2906 if (*p++ != ':')
2907 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
2908 p, buf);
2909
2910 if (reg == NULL)
2911 error ("Remote sent bad register number %s: %s\nPacket: '%s'\n",
2912 phex_nz (pnum, 0), p, buf);
2913
2914 fieldsize = hex2bin (p, regs, register_size (current_gdbarch, reg->regnum));
2915 p += 2 * fieldsize;
2916 if (fieldsize < register_size (current_gdbarch, reg->regnum))
2917 warning ("Remote reply is too short: %s", buf);
2918 regcache_raw_supply (current_regcache, reg->regnum, regs);
2919 }
2920
2921 if (*p++ != ';')
2922 error ("Remote register badly formatted: %s\nhere: %s", buf, p);
2923 }
2924 }
2925 /* fall through */
2926 case 'S': /* Old style status, just signal only */
2927 status->kind = TARGET_WAITKIND_STOPPED;
2928 status->value.sig = (enum target_signal)
2929 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2930
2931 if (buf[3] == 'p')
2932 {
2933 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2934 record_currthread (thread_num);
2935 }
2936 goto got_status;
2937 case 'W': /* Target exited */
2938 {
2939 /* The remote process exited. */
2940 status->kind = TARGET_WAITKIND_EXITED;
2941 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
2942 goto got_status;
2943 }
2944 case 'X':
2945 status->kind = TARGET_WAITKIND_SIGNALLED;
2946 status->value.sig = (enum target_signal)
2947 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2948 kill_kludge = 1;
2949
2950 goto got_status;
2951 case 'O': /* Console output */
2952 remote_console_output (buf + 1);
2953 continue;
2954 case '\0':
2955 if (last_sent_signal != TARGET_SIGNAL_0)
2956 {
2957 /* Zero length reply means that we tried 'S' or 'C' and
2958 the remote system doesn't support it. */
2959 target_terminal_ours_for_output ();
2960 printf_filtered
2961 ("Can't send signals to this remote system. %s not sent.\n",
2962 target_signal_to_name (last_sent_signal));
2963 last_sent_signal = TARGET_SIGNAL_0;
2964 target_terminal_inferior ();
2965
2966 strcpy ((char *) buf, last_sent_step ? "s" : "c");
2967 putpkt ((char *) buf);
2968 continue;
2969 }
2970 /* else fallthrough */
2971 default:
2972 warning ("Invalid remote reply: %s", buf);
2973 continue;
2974 }
2975 }
2976 got_status:
2977 if (thread_num != -1)
2978 {
2979 return pid_to_ptid (thread_num);
2980 }
2981 return inferior_ptid;
2982 }
2983
2984 /* Async version of remote_wait. */
2985 static ptid_t
2986 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
2987 {
2988 struct remote_state *rs = get_remote_state ();
2989 unsigned char *buf = alloca (rs->remote_packet_size);
2990 ULONGEST thread_num = -1;
2991 ULONGEST addr;
2992
2993 status->kind = TARGET_WAITKIND_EXITED;
2994 status->value.integer = 0;
2995
2996 remote_stopped_by_watchpoint_p = 0;
2997
2998 while (1)
2999 {
3000 unsigned char *p;
3001
3002 if (!target_is_async_p ())
3003 ofunc = signal (SIGINT, remote_interrupt);
3004 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3005 _never_ wait for ever -> test on target_is_async_p().
3006 However, before we do that we need to ensure that the caller
3007 knows how to take the target into/out of async mode. */
3008 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3009 if (!target_is_async_p ())
3010 signal (SIGINT, ofunc);
3011
3012 /* This is a hook for when we need to do something (perhaps the
3013 collection of trace data) every time the target stops. */
3014 if (deprecated_target_wait_loop_hook)
3015 (*deprecated_target_wait_loop_hook) ();
3016
3017 switch (buf[0])
3018 {
3019 case 'E': /* Error of some sort */
3020 warning ("Remote failure reply: %s", buf);
3021 continue;
3022 case 'F': /* File-I/O request */
3023 remote_fileio_request (buf);
3024 continue;
3025 case 'T': /* Status with PC, SP, FP, ... */
3026 {
3027 int i;
3028 char regs[MAX_REGISTER_SIZE];
3029
3030 /* Expedited reply, containing Signal, {regno, reg} repeat */
3031 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3032 ss = signal number
3033 n... = register number
3034 r... = register contents
3035 */
3036 p = &buf[3]; /* after Txx */
3037
3038 while (*p)
3039 {
3040 unsigned char *p1;
3041 char *p_temp;
3042 int fieldsize;
3043 long pnum = 0;
3044
3045 /* If the packet contains a register number, save it in pnum
3046 and set p1 to point to the character following it.
3047 Otherwise p1 points to p. */
3048
3049 /* If this packet is an awatch packet, don't parse the 'a'
3050 as a register number. */
3051
3052 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3053 {
3054 /* Read the register number. */
3055 pnum = strtol (p, &p_temp, 16);
3056 p1 = (unsigned char *) p_temp;
3057 }
3058 else
3059 p1 = p;
3060
3061 if (p1 == p) /* No register number present here */
3062 {
3063 p1 = (unsigned char *) strchr (p, ':');
3064 if (p1 == NULL)
3065 error ("Malformed packet(a) (missing colon): %s\nPacket: '%s'\n",
3066 p, buf);
3067 if (strncmp (p, "thread", p1 - p) == 0)
3068 {
3069 p_temp = unpack_varlen_hex (++p1, &thread_num);
3070 record_currthread (thread_num);
3071 p = (unsigned char *) p_temp;
3072 }
3073 else if ((strncmp (p, "watch", p1 - p) == 0)
3074 || (strncmp (p, "rwatch", p1 - p) == 0)
3075 || (strncmp (p, "awatch", p1 - p) == 0))
3076 {
3077 remote_stopped_by_watchpoint_p = 1;
3078 p = unpack_varlen_hex (++p1, &addr);
3079 remote_watch_data_address = (CORE_ADDR)addr;
3080 }
3081 else
3082 {
3083 /* Silently skip unknown optional info. */
3084 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3085 if (p_temp)
3086 p = p_temp;
3087 }
3088 }
3089
3090 else
3091 {
3092 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3093 p = p1;
3094 if (*p++ != ':')
3095 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
3096 p, buf);
3097
3098 if (reg == NULL)
3099 error ("Remote sent bad register number %ld: %s\nPacket: '%s'\n",
3100 pnum, p, buf);
3101
3102 fieldsize = hex2bin (p, regs, register_size (current_gdbarch, reg->regnum));
3103 p += 2 * fieldsize;
3104 if (fieldsize < register_size (current_gdbarch, reg->regnum))
3105 warning ("Remote reply is too short: %s", buf);
3106 regcache_raw_supply (current_regcache, reg->regnum, regs);
3107 }
3108
3109 if (*p++ != ';')
3110 error ("Remote register badly formatted: %s\nhere: %s",
3111 buf, p);
3112 }
3113 }
3114 /* fall through */
3115 case 'S': /* Old style status, just signal only */
3116 status->kind = TARGET_WAITKIND_STOPPED;
3117 status->value.sig = (enum target_signal)
3118 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3119
3120 if (buf[3] == 'p')
3121 {
3122 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3123 record_currthread (thread_num);
3124 }
3125 goto got_status;
3126 case 'W': /* Target exited */
3127 {
3128 /* The remote process exited. */
3129 status->kind = TARGET_WAITKIND_EXITED;
3130 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3131 goto got_status;
3132 }
3133 case 'X':
3134 status->kind = TARGET_WAITKIND_SIGNALLED;
3135 status->value.sig = (enum target_signal)
3136 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3137 kill_kludge = 1;
3138
3139 goto got_status;
3140 case 'O': /* Console output */
3141 remote_console_output (buf + 1);
3142 /* Return immediately to the event loop. The event loop will
3143 still be waiting on the inferior afterwards. */
3144 status->kind = TARGET_WAITKIND_IGNORE;
3145 goto got_status;
3146 case '\0':
3147 if (last_sent_signal != TARGET_SIGNAL_0)
3148 {
3149 /* Zero length reply means that we tried 'S' or 'C' and
3150 the remote system doesn't support it. */
3151 target_terminal_ours_for_output ();
3152 printf_filtered
3153 ("Can't send signals to this remote system. %s not sent.\n",
3154 target_signal_to_name (last_sent_signal));
3155 last_sent_signal = TARGET_SIGNAL_0;
3156 target_terminal_inferior ();
3157
3158 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3159 putpkt ((char *) buf);
3160 continue;
3161 }
3162 /* else fallthrough */
3163 default:
3164 warning ("Invalid remote reply: %s", buf);
3165 continue;
3166 }
3167 }
3168 got_status:
3169 if (thread_num != -1)
3170 {
3171 return pid_to_ptid (thread_num);
3172 }
3173 return inferior_ptid;
3174 }
3175
3176 /* Number of bytes of registers this stub implements. */
3177
3178 static int register_bytes_found;
3179
3180 /* Read the remote registers into the block REGS. */
3181 /* Currently we just read all the registers, so we don't use regnum. */
3182
3183 static int
3184 fetch_register_using_p (int regnum)
3185 {
3186 struct remote_state *rs = get_remote_state ();
3187 char *buf = alloca (rs->remote_packet_size), *p;
3188 char regp[MAX_REGISTER_SIZE];
3189 int i;
3190
3191 p = buf;
3192 *p++ = 'p';
3193 p += hexnumstr (p, regnum);
3194 *p++ = '\0';
3195 remote_send (buf, rs->remote_packet_size);
3196
3197 /* If the stub didn't recognize the packet, or if we got an error,
3198 tell our caller. */
3199 if (buf[0] == '\0' || buf[0] == 'E')
3200 return 0;
3201
3202 /* If this register is unfetchable, tell the regcache. */
3203 if (buf[0] == 'x')
3204 {
3205 regcache_raw_supply (current_regcache, regnum, NULL);
3206 set_register_cached (regnum, -1);
3207 return 1;
3208 }
3209
3210 /* Otherwise, parse and supply the value. */
3211 p = buf;
3212 i = 0;
3213 while (p[0] != 0)
3214 {
3215 if (p[1] == 0)
3216 {
3217 error("fetch_register_using_p: early buf termination");
3218 return 0;
3219 }
3220
3221 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3222 p += 2;
3223 }
3224 regcache_raw_supply (current_regcache, regnum, regp);
3225 return 1;
3226 }
3227
3228 static void
3229 remote_fetch_registers (int regnum)
3230 {
3231 struct remote_state *rs = get_remote_state ();
3232 char *buf = alloca (rs->remote_packet_size);
3233 int i;
3234 char *p;
3235 char *regs = alloca (rs->sizeof_g_packet);
3236
3237 set_thread (PIDGET (inferior_ptid), 1);
3238
3239 if (regnum >= 0)
3240 {
3241 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3242 gdb_assert (reg != NULL);
3243 if (!reg->in_g_packet)
3244 internal_error (__FILE__, __LINE__,
3245 "Attempt to fetch a non G-packet register when this "
3246 "remote.c does not support the p-packet.");
3247 }
3248 switch (remote_protocol_p.support)
3249 {
3250 case PACKET_DISABLE:
3251 break;
3252 case PACKET_ENABLE:
3253 if (fetch_register_using_p (regnum))
3254 return;
3255 else
3256 error ("Protocol error: p packet not recognized by stub");
3257 case PACKET_SUPPORT_UNKNOWN:
3258 if (fetch_register_using_p (regnum))
3259 {
3260 /* The stub recognized the 'p' packet. Remember this. */
3261 remote_protocol_p.support = PACKET_ENABLE;
3262 return;
3263 }
3264 else
3265 {
3266 /* The stub does not support the 'P' packet. Use 'G'
3267 instead, and don't try using 'P' in the future (it
3268 will just waste our time). */
3269 remote_protocol_p.support = PACKET_DISABLE;
3270 break;
3271 }
3272 }
3273
3274 sprintf (buf, "g");
3275 remote_send (buf, (rs->remote_packet_size));
3276
3277 /* Save the size of the packet sent to us by the target. Its used
3278 as a heuristic when determining the max size of packets that the
3279 target can safely receive. */
3280 if ((rs->actual_register_packet_size) == 0)
3281 (rs->actual_register_packet_size) = strlen (buf);
3282
3283 /* Unimplemented registers read as all bits zero. */
3284 memset (regs, 0, rs->sizeof_g_packet);
3285
3286 /* We can get out of synch in various cases. If the first character
3287 in the buffer is not a hex character, assume that has happened
3288 and try to fetch another packet to read. */
3289 while ((buf[0] < '0' || buf[0] > '9')
3290 && (buf[0] < 'a' || buf[0] > 'f')
3291 && buf[0] != 'x') /* New: unavailable register value */
3292 {
3293 if (remote_debug)
3294 fprintf_unfiltered (gdb_stdlog,
3295 "Bad register packet; fetching a new packet\n");
3296 getpkt (buf, (rs->remote_packet_size), 0);
3297 }
3298
3299 /* Reply describes registers byte by byte, each byte encoded as two
3300 hex characters. Suck them all up, then supply them to the
3301 register cacheing/storage mechanism. */
3302
3303 p = buf;
3304 for (i = 0; i < rs->sizeof_g_packet; i++)
3305 {
3306 if (p[0] == 0)
3307 break;
3308 if (p[1] == 0)
3309 {
3310 warning ("Remote reply is of odd length: %s", buf);
3311 /* Don't change register_bytes_found in this case, and don't
3312 print a second warning. */
3313 goto supply_them;
3314 }
3315 if (p[0] == 'x' && p[1] == 'x')
3316 regs[i] = 0; /* 'x' */
3317 else
3318 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3319 p += 2;
3320 }
3321
3322 if (i != register_bytes_found)
3323 {
3324 register_bytes_found = i;
3325 if (REGISTER_BYTES_OK_P ()
3326 && !REGISTER_BYTES_OK (i))
3327 warning ("Remote reply is too short: %s", buf);
3328 }
3329
3330 supply_them:
3331 {
3332 int i;
3333 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3334 {
3335 struct packet_reg *r = &rs->regs[i];
3336 if (r->in_g_packet)
3337 {
3338 if (r->offset * 2 >= strlen (buf))
3339 /* A short packet that didn't include the register's
3340 value, this implies that the register is zero (and
3341 not that the register is unavailable). Supply that
3342 zero value. */
3343 regcache_raw_supply (current_regcache, r->regnum, NULL);
3344 else if (buf[r->offset * 2] == 'x')
3345 {
3346 gdb_assert (r->offset * 2 < strlen (buf));
3347 /* The register isn't available, mark it as such (at
3348 the same time setting the value to zero). */
3349 regcache_raw_supply (current_regcache, r->regnum, NULL);
3350 set_register_cached (i, -1);
3351 }
3352 else
3353 regcache_raw_supply (current_regcache, r->regnum,
3354 regs + r->offset);
3355 }
3356 }
3357 }
3358 }
3359
3360 /* Prepare to store registers. Since we may send them all (using a
3361 'G' request), we have to read out the ones we don't want to change
3362 first. */
3363
3364 static void
3365 remote_prepare_to_store (void)
3366 {
3367 struct remote_state *rs = get_remote_state ();
3368 int i;
3369 char buf[MAX_REGISTER_SIZE];
3370
3371 /* Make sure the entire registers array is valid. */
3372 switch (remote_protocol_P.support)
3373 {
3374 case PACKET_DISABLE:
3375 case PACKET_SUPPORT_UNKNOWN:
3376 /* Make sure all the necessary registers are cached. */
3377 for (i = 0; i < NUM_REGS; i++)
3378 if (rs->regs[i].in_g_packet)
3379 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf);
3380 break;
3381 case PACKET_ENABLE:
3382 break;
3383 }
3384 }
3385
3386 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3387 packet was not recognized. */
3388
3389 static int
3390 store_register_using_P (int regnum)
3391 {
3392 struct remote_state *rs = get_remote_state ();
3393 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3394 /* Try storing a single register. */
3395 char *buf = alloca (rs->remote_packet_size);
3396 char regp[MAX_REGISTER_SIZE];
3397 char *p;
3398 int i;
3399
3400 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3401 p = buf + strlen (buf);
3402 regcache_raw_collect (current_regcache, reg->regnum, regp);
3403 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3404 remote_send (buf, rs->remote_packet_size);
3405
3406 return buf[0] != '\0';
3407 }
3408
3409
3410 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3411 of the register cache buffer. FIXME: ignores errors. */
3412
3413 static void
3414 remote_store_registers (int regnum)
3415 {
3416 struct remote_state *rs = get_remote_state ();
3417 char *buf;
3418 char *regs;
3419 int i;
3420 char *p;
3421
3422 set_thread (PIDGET (inferior_ptid), 1);
3423
3424 if (regnum >= 0)
3425 {
3426 switch (remote_protocol_P.support)
3427 {
3428 case PACKET_DISABLE:
3429 break;
3430 case PACKET_ENABLE:
3431 if (store_register_using_P (regnum))
3432 return;
3433 else
3434 error ("Protocol error: P packet not recognized by stub");
3435 case PACKET_SUPPORT_UNKNOWN:
3436 if (store_register_using_P (regnum))
3437 {
3438 /* The stub recognized the 'P' packet. Remember this. */
3439 remote_protocol_P.support = PACKET_ENABLE;
3440 return;
3441 }
3442 else
3443 {
3444 /* The stub does not support the 'P' packet. Use 'G'
3445 instead, and don't try using 'P' in the future (it
3446 will just waste our time). */
3447 remote_protocol_P.support = PACKET_DISABLE;
3448 break;
3449 }
3450 }
3451 }
3452
3453 /* Extract all the registers in the regcache copying them into a
3454 local buffer. */
3455 {
3456 int i;
3457 regs = alloca (rs->sizeof_g_packet);
3458 memset (regs, rs->sizeof_g_packet, 0);
3459 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3460 {
3461 struct packet_reg *r = &rs->regs[i];
3462 if (r->in_g_packet)
3463 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset);
3464 }
3465 }
3466
3467 /* Command describes registers byte by byte,
3468 each byte encoded as two hex characters. */
3469 buf = alloca (rs->remote_packet_size);
3470 p = buf;
3471 *p++ = 'G';
3472 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3473 bin2hex (regs, p, register_bytes_found);
3474 remote_send (buf, (rs->remote_packet_size));
3475 }
3476 \f
3477
3478 /* Return the number of hex digits in num. */
3479
3480 static int
3481 hexnumlen (ULONGEST num)
3482 {
3483 int i;
3484
3485 for (i = 0; num != 0; i++)
3486 num >>= 4;
3487
3488 return max (i, 1);
3489 }
3490
3491 /* Set BUF to the minimum number of hex digits representing NUM. */
3492
3493 static int
3494 hexnumstr (char *buf, ULONGEST num)
3495 {
3496 int len = hexnumlen (num);
3497 return hexnumnstr (buf, num, len);
3498 }
3499
3500
3501 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3502
3503 static int
3504 hexnumnstr (char *buf, ULONGEST num, int width)
3505 {
3506 int i;
3507
3508 buf[width] = '\0';
3509
3510 for (i = width - 1; i >= 0; i--)
3511 {
3512 buf[i] = "0123456789abcdef"[(num & 0xf)];
3513 num >>= 4;
3514 }
3515
3516 return width;
3517 }
3518
3519 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3520
3521 static CORE_ADDR
3522 remote_address_masked (CORE_ADDR addr)
3523 {
3524 if (remote_address_size > 0
3525 && remote_address_size < (sizeof (ULONGEST) * 8))
3526 {
3527 /* Only create a mask when that mask can safely be constructed
3528 in a ULONGEST variable. */
3529 ULONGEST mask = 1;
3530 mask = (mask << remote_address_size) - 1;
3531 addr &= mask;
3532 }
3533 return addr;
3534 }
3535
3536 /* Determine whether the remote target supports binary downloading.
3537 This is accomplished by sending a no-op memory write of zero length
3538 to the target at the specified address. It does not suffice to send
3539 the whole packet, since many stubs strip the eighth bit and subsequently
3540 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3541
3542 NOTE: This can still lose if the serial line is not eight-bit
3543 clean. In cases like this, the user should clear "remote
3544 X-packet". */
3545
3546 static void
3547 check_binary_download (CORE_ADDR addr)
3548 {
3549 struct remote_state *rs = get_remote_state ();
3550 switch (remote_protocol_binary_download.support)
3551 {
3552 case PACKET_DISABLE:
3553 break;
3554 case PACKET_ENABLE:
3555 break;
3556 case PACKET_SUPPORT_UNKNOWN:
3557 {
3558 char *buf = alloca (rs->remote_packet_size);
3559 char *p;
3560
3561 p = buf;
3562 *p++ = 'X';
3563 p += hexnumstr (p, (ULONGEST) addr);
3564 *p++ = ',';
3565 p += hexnumstr (p, (ULONGEST) 0);
3566 *p++ = ':';
3567 *p = '\0';
3568
3569 putpkt_binary (buf, (int) (p - buf));
3570 getpkt (buf, (rs->remote_packet_size), 0);
3571
3572 if (buf[0] == '\0')
3573 {
3574 if (remote_debug)
3575 fprintf_unfiltered (gdb_stdlog,
3576 "binary downloading NOT suppported by target\n");
3577 remote_protocol_binary_download.support = PACKET_DISABLE;
3578 }
3579 else
3580 {
3581 if (remote_debug)
3582 fprintf_unfiltered (gdb_stdlog,
3583 "binary downloading suppported by target\n");
3584 remote_protocol_binary_download.support = PACKET_ENABLE;
3585 }
3586 break;
3587 }
3588 }
3589 }
3590
3591 /* Write memory data directly to the remote machine.
3592 This does not inform the data cache; the data cache uses this.
3593 MEMADDR is the address in the remote memory space.
3594 MYADDR is the address of the buffer in our space.
3595 LEN is the number of bytes.
3596
3597 Returns number of bytes transferred, or 0 (setting errno) for
3598 error. Only transfer a single packet. */
3599
3600 int
3601 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3602 {
3603 unsigned char *buf;
3604 unsigned char *p;
3605 unsigned char *plen;
3606 long sizeof_buf;
3607 int plenlen;
3608 int todo;
3609 int nr_bytes;
3610 int payload_size;
3611 unsigned char *payload_start;
3612
3613 /* Verify that the target can support a binary download. */
3614 check_binary_download (memaddr);
3615
3616 /* Compute the size, and then allocate space for the largest
3617 possible packet. Include space for an extra trailing NUL. */
3618 sizeof_buf = get_memory_write_packet_size () + 1;
3619 buf = alloca (sizeof_buf);
3620
3621 /* Compute the size of the actual payload by subtracting out the
3622 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
3623 payload_size = (get_memory_write_packet_size () - (strlen ("$M,:#NN")
3624 + hexnumlen (memaddr)
3625 + hexnumlen (len)));
3626
3627 /* Construct the packet header: "[MX]<memaddr>,<len>:". */
3628
3629 /* Append "[XM]". Compute a best guess of the number of bytes
3630 actually transfered. */
3631 p = buf;
3632 switch (remote_protocol_binary_download.support)
3633 {
3634 case PACKET_ENABLE:
3635 *p++ = 'X';
3636 /* Best guess at number of bytes that will fit. */
3637 todo = min (len, payload_size);
3638 break;
3639 case PACKET_DISABLE:
3640 *p++ = 'M';
3641 /* num bytes that will fit */
3642 todo = min (len, payload_size / 2);
3643 break;
3644 case PACKET_SUPPORT_UNKNOWN:
3645 internal_error (__FILE__, __LINE__,
3646 "remote_write_bytes: bad internal state");
3647 default:
3648 internal_error (__FILE__, __LINE__, "bad switch");
3649 }
3650
3651 /* Append "<memaddr>". */
3652 memaddr = remote_address_masked (memaddr);
3653 p += hexnumstr (p, (ULONGEST) memaddr);
3654
3655 /* Append ",". */
3656 *p++ = ',';
3657
3658 /* Append <len>. Retain the location/size of <len>. It may need to
3659 be adjusted once the packet body has been created. */
3660 plen = p;
3661 plenlen = hexnumstr (p, (ULONGEST) todo);
3662 p += plenlen;
3663
3664 /* Append ":". */
3665 *p++ = ':';
3666 *p = '\0';
3667
3668 /* Append the packet body. */
3669 payload_start = p;
3670 switch (remote_protocol_binary_download.support)
3671 {
3672 case PACKET_ENABLE:
3673 /* Binary mode. Send target system values byte by byte, in
3674 increasing byte addresses. Only escape certain critical
3675 characters. */
3676 for (nr_bytes = 0;
3677 (nr_bytes < todo) && (p - payload_start) < payload_size;
3678 nr_bytes++)
3679 {
3680 switch (myaddr[nr_bytes] & 0xff)
3681 {
3682 case '$':
3683 case '#':
3684 case 0x7d:
3685 /* These must be escaped */
3686 *p++ = 0x7d;
3687 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3688 break;
3689 default:
3690 *p++ = myaddr[nr_bytes] & 0xff;
3691 break;
3692 }
3693 }
3694 if (nr_bytes < todo)
3695 {
3696 /* Escape chars have filled up the buffer prematurely,
3697 and we have actually sent fewer bytes than planned.
3698 Fix-up the length field of the packet. Use the same
3699 number of characters as before. */
3700 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3701 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3702 }
3703 break;
3704 case PACKET_DISABLE:
3705 /* Normal mode: Send target system values byte by byte, in
3706 increasing byte addresses. Each byte is encoded as a two hex
3707 value. */
3708 nr_bytes = bin2hex (myaddr, p, todo);
3709 p += 2 * nr_bytes;
3710 break;
3711 case PACKET_SUPPORT_UNKNOWN:
3712 internal_error (__FILE__, __LINE__,
3713 "remote_write_bytes: bad internal state");
3714 default:
3715 internal_error (__FILE__, __LINE__, "bad switch");
3716 }
3717
3718 putpkt_binary (buf, (int) (p - buf));
3719 getpkt (buf, sizeof_buf, 0);
3720
3721 if (buf[0] == 'E')
3722 {
3723 /* There is no correspondance between what the remote protocol
3724 uses for errors and errno codes. We would like a cleaner way
3725 of representing errors (big enough to include errno codes,
3726 bfd_error codes, and others). But for now just return EIO. */
3727 errno = EIO;
3728 return 0;
3729 }
3730
3731 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3732 bytes than we'd planned. */
3733 return nr_bytes;
3734 }
3735
3736 /* Read memory data directly from the remote machine.
3737 This does not use the data cache; the data cache uses this.
3738 MEMADDR is the address in the remote memory space.
3739 MYADDR is the address of the buffer in our space.
3740 LEN is the number of bytes.
3741
3742 Returns number of bytes transferred, or 0 for error. */
3743
3744 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3745 remote targets) shouldn't attempt to read the entire buffer.
3746 Instead it should read a single packet worth of data and then
3747 return the byte size of that packet to the caller. The caller (its
3748 caller and its callers caller ;-) already contains code for
3749 handling partial reads. */
3750
3751 int
3752 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3753 {
3754 char *buf;
3755 int max_buf_size; /* Max size of packet output buffer */
3756 long sizeof_buf;
3757 int origlen;
3758
3759 /* Create a buffer big enough for this packet. */
3760 max_buf_size = get_memory_read_packet_size ();
3761 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3762 buf = alloca (sizeof_buf);
3763
3764 origlen = len;
3765 while (len > 0)
3766 {
3767 char *p;
3768 int todo;
3769 int i;
3770
3771 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3772
3773 /* construct "m"<memaddr>","<len>" */
3774 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3775 memaddr = remote_address_masked (memaddr);
3776 p = buf;
3777 *p++ = 'm';
3778 p += hexnumstr (p, (ULONGEST) memaddr);
3779 *p++ = ',';
3780 p += hexnumstr (p, (ULONGEST) todo);
3781 *p = '\0';
3782
3783 putpkt (buf);
3784 getpkt (buf, sizeof_buf, 0);
3785
3786 if (buf[0] == 'E'
3787 && isxdigit (buf[1]) && isxdigit (buf[2])
3788 && buf[3] == '\0')
3789 {
3790 /* There is no correspondance between what the remote protocol uses
3791 for errors and errno codes. We would like a cleaner way of
3792 representing errors (big enough to include errno codes, bfd_error
3793 codes, and others). But for now just return EIO. */
3794 errno = EIO;
3795 return 0;
3796 }
3797
3798 /* Reply describes memory byte by byte,
3799 each byte encoded as two hex characters. */
3800
3801 p = buf;
3802 if ((i = hex2bin (p, myaddr, todo)) < todo)
3803 {
3804 /* Reply is short. This means that we were able to read
3805 only part of what we wanted to. */
3806 return i + (origlen - len);
3807 }
3808 myaddr += todo;
3809 memaddr += todo;
3810 len -= todo;
3811 }
3812 return origlen;
3813 }
3814 \f
3815 /* Read or write LEN bytes from inferior memory at MEMADDR,
3816 transferring to or from debugger address BUFFER. Write to inferior if
3817 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3818 for error. TARGET is unused. */
3819
3820 static int
3821 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3822 int should_write, struct mem_attrib *attrib,
3823 struct target_ops *target)
3824 {
3825 CORE_ADDR targ_addr;
3826 int targ_len;
3827 int res;
3828
3829 /* Should this be the selected frame? */
3830 gdbarch_remote_translate_xfer_address (current_gdbarch, current_regcache,
3831 mem_addr, mem_len,
3832 &targ_addr, &targ_len);
3833 if (targ_len <= 0)
3834 return 0;
3835
3836 if (should_write)
3837 res = remote_write_bytes (targ_addr, buffer, targ_len);
3838 else
3839 res = remote_read_bytes (targ_addr, buffer, targ_len);
3840
3841 return res;
3842 }
3843
3844 static void
3845 remote_files_info (struct target_ops *ignore)
3846 {
3847 puts_filtered ("Debugging a target over a serial line.\n");
3848 }
3849 \f
3850 /* Stuff for dealing with the packets which are part of this protocol.
3851 See comment at top of file for details. */
3852
3853 /* Read a single character from the remote end, masking it down to 7 bits. */
3854
3855 static int
3856 readchar (int timeout)
3857 {
3858 int ch;
3859
3860 ch = serial_readchar (remote_desc, timeout);
3861
3862 if (ch >= 0)
3863 return (ch & 0x7f);
3864
3865 switch ((enum serial_rc) ch)
3866 {
3867 case SERIAL_EOF:
3868 target_mourn_inferior ();
3869 error ("Remote connection closed");
3870 /* no return */
3871 case SERIAL_ERROR:
3872 perror_with_name ("Remote communication error");
3873 /* no return */
3874 case SERIAL_TIMEOUT:
3875 break;
3876 }
3877 return ch;
3878 }
3879
3880 /* Send the command in BUF to the remote machine, and read the reply
3881 into BUF. Report an error if we get an error reply. */
3882
3883 static void
3884 remote_send (char *buf,
3885 long sizeof_buf)
3886 {
3887 putpkt (buf);
3888 getpkt (buf, sizeof_buf, 0);
3889
3890 if (buf[0] == 'E')
3891 error ("Remote failure reply: %s", buf);
3892 }
3893
3894 /* Display a null-terminated packet on stdout, for debugging, using C
3895 string notation. */
3896
3897 static void
3898 print_packet (char *buf)
3899 {
3900 puts_filtered ("\"");
3901 fputstr_filtered (buf, '"', gdb_stdout);
3902 puts_filtered ("\"");
3903 }
3904
3905 int
3906 putpkt (char *buf)
3907 {
3908 return putpkt_binary (buf, strlen (buf));
3909 }
3910
3911 /* Send a packet to the remote machine, with error checking. The data
3912 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
3913 to account for the $, # and checksum, and for a possible /0 if we are
3914 debugging (remote_debug) and want to print the sent packet as a string */
3915
3916 static int
3917 putpkt_binary (char *buf, int cnt)
3918 {
3919 struct remote_state *rs = get_remote_state ();
3920 int i;
3921 unsigned char csum = 0;
3922 char *buf2 = alloca (cnt + 6);
3923 long sizeof_junkbuf = (rs->remote_packet_size);
3924 char *junkbuf = alloca (sizeof_junkbuf);
3925
3926 int ch;
3927 int tcount = 0;
3928 char *p;
3929
3930 /* Copy the packet into buffer BUF2, encapsulating it
3931 and giving it a checksum. */
3932
3933 p = buf2;
3934 *p++ = '$';
3935
3936 for (i = 0; i < cnt; i++)
3937 {
3938 csum += buf[i];
3939 *p++ = buf[i];
3940 }
3941 *p++ = '#';
3942 *p++ = tohex ((csum >> 4) & 0xf);
3943 *p++ = tohex (csum & 0xf);
3944
3945 /* Send it over and over until we get a positive ack. */
3946
3947 while (1)
3948 {
3949 int started_error_output = 0;
3950
3951 if (remote_debug)
3952 {
3953 *p = '\0';
3954 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
3955 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
3956 fprintf_unfiltered (gdb_stdlog, "...");
3957 gdb_flush (gdb_stdlog);
3958 }
3959 if (serial_write (remote_desc, buf2, p - buf2))
3960 perror_with_name ("putpkt: write failed");
3961
3962 /* read until either a timeout occurs (-2) or '+' is read */
3963 while (1)
3964 {
3965 ch = readchar (remote_timeout);
3966
3967 if (remote_debug)
3968 {
3969 switch (ch)
3970 {
3971 case '+':
3972 case '-':
3973 case SERIAL_TIMEOUT:
3974 case '$':
3975 if (started_error_output)
3976 {
3977 putchar_unfiltered ('\n');
3978 started_error_output = 0;
3979 }
3980 }
3981 }
3982
3983 switch (ch)
3984 {
3985 case '+':
3986 if (remote_debug)
3987 fprintf_unfiltered (gdb_stdlog, "Ack\n");
3988 return 1;
3989 case '-':
3990 if (remote_debug)
3991 fprintf_unfiltered (gdb_stdlog, "Nak\n");
3992 case SERIAL_TIMEOUT:
3993 tcount++;
3994 if (tcount > 3)
3995 return 0;
3996 break; /* Retransmit buffer */
3997 case '$':
3998 {
3999 if (remote_debug)
4000 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4001 /* It's probably an old response sent because an ACK
4002 was lost. Gobble up the packet and ack it so it
4003 doesn't get retransmitted when we resend this
4004 packet. */
4005 read_frame (junkbuf, sizeof_junkbuf);
4006 serial_write (remote_desc, "+", 1);
4007 continue; /* Now, go look for + */
4008 }
4009 default:
4010 if (remote_debug)
4011 {
4012 if (!started_error_output)
4013 {
4014 started_error_output = 1;
4015 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4016 }
4017 fputc_unfiltered (ch & 0177, gdb_stdlog);
4018 }
4019 continue;
4020 }
4021 break; /* Here to retransmit */
4022 }
4023
4024 #if 0
4025 /* This is wrong. If doing a long backtrace, the user should be
4026 able to get out next time we call QUIT, without anything as
4027 violent as interrupt_query. If we want to provide a way out of
4028 here without getting to the next QUIT, it should be based on
4029 hitting ^C twice as in remote_wait. */
4030 if (quit_flag)
4031 {
4032 quit_flag = 0;
4033 interrupt_query ();
4034 }
4035 #endif
4036 }
4037 }
4038
4039 /* Come here after finding the start of the frame. Collect the rest
4040 into BUF, verifying the checksum, length, and handling run-length
4041 compression. No more than sizeof_buf-1 characters are read so that
4042 the buffer can be NUL terminated.
4043
4044 Returns -1 on error, number of characters in buffer (ignoring the
4045 trailing NULL) on success. (could be extended to return one of the
4046 SERIAL status indications). */
4047
4048 static long
4049 read_frame (char *buf,
4050 long sizeof_buf)
4051 {
4052 unsigned char csum;
4053 long bc;
4054 int c;
4055
4056 csum = 0;
4057 bc = 0;
4058
4059 while (1)
4060 {
4061 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4062 c = readchar (remote_timeout);
4063 switch (c)
4064 {
4065 case SERIAL_TIMEOUT:
4066 if (remote_debug)
4067 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4068 return -1;
4069 case '$':
4070 if (remote_debug)
4071 fputs_filtered ("Saw new packet start in middle of old one\n",
4072 gdb_stdlog);
4073 return -1; /* Start a new packet, count retries */
4074 case '#':
4075 {
4076 unsigned char pktcsum;
4077 int check_0 = 0;
4078 int check_1 = 0;
4079
4080 buf[bc] = '\0';
4081
4082 check_0 = readchar (remote_timeout);
4083 if (check_0 >= 0)
4084 check_1 = readchar (remote_timeout);
4085
4086 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4087 {
4088 if (remote_debug)
4089 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4090 return -1;
4091 }
4092 else if (check_0 < 0 || check_1 < 0)
4093 {
4094 if (remote_debug)
4095 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4096 return -1;
4097 }
4098
4099 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4100 if (csum == pktcsum)
4101 return bc;
4102
4103 if (remote_debug)
4104 {
4105 fprintf_filtered (gdb_stdlog,
4106 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4107 pktcsum, csum);
4108 fputs_filtered (buf, gdb_stdlog);
4109 fputs_filtered ("\n", gdb_stdlog);
4110 }
4111 /* Number of characters in buffer ignoring trailing
4112 NUL. */
4113 return -1;
4114 }
4115 case '*': /* Run length encoding */
4116 {
4117 int repeat;
4118 csum += c;
4119
4120 c = readchar (remote_timeout);
4121 csum += c;
4122 repeat = c - ' ' + 3; /* Compute repeat count */
4123
4124 /* The character before ``*'' is repeated. */
4125
4126 if (repeat > 0 && repeat <= 255
4127 && bc > 0
4128 && bc + repeat - 1 < sizeof_buf - 1)
4129 {
4130 memset (&buf[bc], buf[bc - 1], repeat);
4131 bc += repeat;
4132 continue;
4133 }
4134
4135 buf[bc] = '\0';
4136 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4137 puts_filtered (buf);
4138 puts_filtered ("\n");
4139 return -1;
4140 }
4141 default:
4142 if (bc < sizeof_buf - 1)
4143 {
4144 buf[bc++] = c;
4145 csum += c;
4146 continue;
4147 }
4148
4149 buf[bc] = '\0';
4150 puts_filtered ("Remote packet too long: ");
4151 puts_filtered (buf);
4152 puts_filtered ("\n");
4153
4154 return -1;
4155 }
4156 }
4157 }
4158
4159 /* Read a packet from the remote machine, with error checking, and
4160 store it in BUF. If FOREVER, wait forever rather than timing out;
4161 this is used (in synchronous mode) to wait for a target that is is
4162 executing user code to stop. */
4163 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4164 don't have to change all the calls to getpkt to deal with the
4165 return value, because at the moment I don't know what the right
4166 thing to do it for those. */
4167 void
4168 getpkt (char *buf,
4169 long sizeof_buf,
4170 int forever)
4171 {
4172 int timed_out;
4173
4174 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4175 }
4176
4177
4178 /* Read a packet from the remote machine, with error checking, and
4179 store it in BUF. If FOREVER, wait forever rather than timing out;
4180 this is used (in synchronous mode) to wait for a target that is is
4181 executing user code to stop. If FOREVER == 0, this function is
4182 allowed to time out gracefully and return an indication of this to
4183 the caller. */
4184 static int
4185 getpkt_sane (char *buf,
4186 long sizeof_buf,
4187 int forever)
4188 {
4189 int c;
4190 int tries;
4191 int timeout;
4192 int val;
4193
4194 strcpy (buf, "timeout");
4195
4196 if (forever)
4197 {
4198 timeout = watchdog > 0 ? watchdog : -1;
4199 }
4200
4201 else
4202 timeout = remote_timeout;
4203
4204 #define MAX_TRIES 3
4205
4206 for (tries = 1; tries <= MAX_TRIES; tries++)
4207 {
4208 /* This can loop forever if the remote side sends us characters
4209 continuously, but if it pauses, we'll get a zero from readchar
4210 because of timeout. Then we'll count that as a retry. */
4211
4212 /* Note that we will only wait forever prior to the start of a packet.
4213 After that, we expect characters to arrive at a brisk pace. They
4214 should show up within remote_timeout intervals. */
4215
4216 do
4217 {
4218 c = readchar (timeout);
4219
4220 if (c == SERIAL_TIMEOUT)
4221 {
4222 if (forever) /* Watchdog went off? Kill the target. */
4223 {
4224 QUIT;
4225 target_mourn_inferior ();
4226 error ("Watchdog has expired. Target detached.\n");
4227 }
4228 if (remote_debug)
4229 fputs_filtered ("Timed out.\n", gdb_stdlog);
4230 goto retry;
4231 }
4232 }
4233 while (c != '$');
4234
4235 /* We've found the start of a packet, now collect the data. */
4236
4237 val = read_frame (buf, sizeof_buf);
4238
4239 if (val >= 0)
4240 {
4241 if (remote_debug)
4242 {
4243 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4244 fputstr_unfiltered (buf, 0, gdb_stdlog);
4245 fprintf_unfiltered (gdb_stdlog, "\n");
4246 }
4247 serial_write (remote_desc, "+", 1);
4248 return 0;
4249 }
4250
4251 /* Try the whole thing again. */
4252 retry:
4253 serial_write (remote_desc, "-", 1);
4254 }
4255
4256 /* We have tried hard enough, and just can't receive the packet. Give up. */
4257
4258 printf_unfiltered ("Ignoring packet error, continuing...\n");
4259 serial_write (remote_desc, "+", 1);
4260 return 1;
4261 }
4262 \f
4263 static void
4264 remote_kill (void)
4265 {
4266 /* For some mysterious reason, wait_for_inferior calls kill instead of
4267 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4268 if (kill_kludge)
4269 {
4270 kill_kludge = 0;
4271 target_mourn_inferior ();
4272 return;
4273 }
4274
4275 /* Use catch_errors so the user can quit from gdb even when we aren't on
4276 speaking terms with the remote system. */
4277 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4278
4279 /* Don't wait for it to die. I'm not really sure it matters whether
4280 we do or not. For the existing stubs, kill is a noop. */
4281 target_mourn_inferior ();
4282 }
4283
4284 /* Async version of remote_kill. */
4285 static void
4286 remote_async_kill (void)
4287 {
4288 /* Unregister the file descriptor from the event loop. */
4289 if (target_is_async_p ())
4290 serial_async (remote_desc, NULL, 0);
4291
4292 /* For some mysterious reason, wait_for_inferior calls kill instead of
4293 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4294 if (kill_kludge)
4295 {
4296 kill_kludge = 0;
4297 target_mourn_inferior ();
4298 return;
4299 }
4300
4301 /* Use catch_errors so the user can quit from gdb even when we aren't on
4302 speaking terms with the remote system. */
4303 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4304
4305 /* Don't wait for it to die. I'm not really sure it matters whether
4306 we do or not. For the existing stubs, kill is a noop. */
4307 target_mourn_inferior ();
4308 }
4309
4310 static void
4311 remote_mourn (void)
4312 {
4313 remote_mourn_1 (&remote_ops);
4314 }
4315
4316 static void
4317 remote_async_mourn (void)
4318 {
4319 remote_mourn_1 (&remote_async_ops);
4320 }
4321
4322 static void
4323 extended_remote_mourn (void)
4324 {
4325 /* We do _not_ want to mourn the target like this; this will
4326 remove the extended remote target from the target stack,
4327 and the next time the user says "run" it'll fail.
4328
4329 FIXME: What is the right thing to do here? */
4330 #if 0
4331 remote_mourn_1 (&extended_remote_ops);
4332 #endif
4333 }
4334
4335 /* Worker function for remote_mourn. */
4336 static void
4337 remote_mourn_1 (struct target_ops *target)
4338 {
4339 unpush_target (target);
4340 generic_mourn_inferior ();
4341 }
4342
4343 /* In the extended protocol we want to be able to do things like
4344 "run" and have them basically work as expected. So we need
4345 a special create_inferior function.
4346
4347 FIXME: One day add support for changing the exec file
4348 we're debugging, arguments and an environment. */
4349
4350 static void
4351 extended_remote_create_inferior (char *exec_file, char *args, char **env,
4352 int from_tty)
4353 {
4354 /* Rip out the breakpoints; we'll reinsert them after restarting
4355 the remote server. */
4356 remove_breakpoints ();
4357
4358 /* Now restart the remote server. */
4359 extended_remote_restart ();
4360
4361 /* Now put the breakpoints back in. This way we're safe if the
4362 restart function works via a unix fork on the remote side. */
4363 insert_breakpoints ();
4364
4365 /* Clean up from the last time we were running. */
4366 clear_proceed_status ();
4367
4368 /* Let the remote process run. */
4369 proceed (-1, TARGET_SIGNAL_0, 0);
4370 }
4371
4372 /* Async version of extended_remote_create_inferior. */
4373 static void
4374 extended_remote_async_create_inferior (char *exec_file, char *args, char **env,
4375 int from_tty)
4376 {
4377 /* Rip out the breakpoints; we'll reinsert them after restarting
4378 the remote server. */
4379 remove_breakpoints ();
4380
4381 /* If running asynchronously, register the target file descriptor
4382 with the event loop. */
4383 if (target_can_async_p ())
4384 target_async (inferior_event_handler, 0);
4385
4386 /* Now restart the remote server. */
4387 extended_remote_restart ();
4388
4389 /* Now put the breakpoints back in. This way we're safe if the
4390 restart function works via a unix fork on the remote side. */
4391 insert_breakpoints ();
4392
4393 /* Clean up from the last time we were running. */
4394 clear_proceed_status ();
4395
4396 /* Let the remote process run. */
4397 proceed (-1, TARGET_SIGNAL_0, 0);
4398 }
4399 \f
4400
4401 /* On some machines, e.g. 68k, we may use a different breakpoint
4402 instruction than other targets; in those use
4403 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4404 Also, bi-endian targets may define
4405 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4406 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4407 just call the standard routines that are in mem-break.c. */
4408
4409 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4410 target should use an identical BREAKPOINT_FROM_PC. As for native,
4411 the ARCH-OS-tdep.c code can override the default. */
4412
4413 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4414 #define DEPRECATED_REMOTE_BREAKPOINT
4415 #endif
4416
4417 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4418
4419 /* If the target isn't bi-endian, just pretend it is. */
4420 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4421 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4422 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4423 #endif
4424
4425 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4426 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4427
4428 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4429
4430 /* Insert a breakpoint on targets that don't have any better
4431 breakpoint support. We read the contents of the target location
4432 and stash it, then overwrite it with a breakpoint instruction.
4433 ADDR is the target location in the target machine. CONTENTS_CACHE
4434 is a pointer to memory allocated for saving the target contents.
4435 It is guaranteed by the caller to be long enough to save the number
4436 of bytes returned by BREAKPOINT_FROM_PC. */
4437
4438 static int
4439 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4440 {
4441 struct remote_state *rs = get_remote_state ();
4442 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4443 int val;
4444 #endif
4445 int bp_size;
4446
4447 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4448 If it succeeds, then set the support to PACKET_ENABLE. If it
4449 fails, and the user has explicitly requested the Z support then
4450 report an error, otherwise, mark it disabled and go on. */
4451
4452 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4453 {
4454 char *buf = alloca (rs->remote_packet_size);
4455 char *p = buf;
4456
4457 addr = remote_address_masked (addr);
4458 *(p++) = 'Z';
4459 *(p++) = '0';
4460 *(p++) = ',';
4461 p += hexnumstr (p, (ULONGEST) addr);
4462 BREAKPOINT_FROM_PC (&addr, &bp_size);
4463 sprintf (p, ",%d", bp_size);
4464
4465 putpkt (buf);
4466 getpkt (buf, (rs->remote_packet_size), 0);
4467
4468 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4469 {
4470 case PACKET_ERROR:
4471 return -1;
4472 case PACKET_OK:
4473 return 0;
4474 case PACKET_UNKNOWN:
4475 break;
4476 }
4477 }
4478
4479 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4480 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4481
4482 if (val == 0)
4483 {
4484 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4485 val = target_write_memory (addr, (char *) big_break_insn,
4486 sizeof big_break_insn);
4487 else
4488 val = target_write_memory (addr, (char *) little_break_insn,
4489 sizeof little_break_insn);
4490 }
4491
4492 return val;
4493 #else
4494 return memory_insert_breakpoint (addr, contents_cache);
4495 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4496 }
4497
4498 static int
4499 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4500 {
4501 struct remote_state *rs = get_remote_state ();
4502 int bp_size;
4503
4504 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4505 {
4506 char *buf = alloca (rs->remote_packet_size);
4507 char *p = buf;
4508
4509 *(p++) = 'z';
4510 *(p++) = '0';
4511 *(p++) = ',';
4512
4513 addr = remote_address_masked (addr);
4514 p += hexnumstr (p, (ULONGEST) addr);
4515 BREAKPOINT_FROM_PC (&addr, &bp_size);
4516 sprintf (p, ",%d", bp_size);
4517
4518 putpkt (buf);
4519 getpkt (buf, (rs->remote_packet_size), 0);
4520
4521 return (buf[0] == 'E');
4522 }
4523
4524 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4525 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4526 #else
4527 return memory_remove_breakpoint (addr, contents_cache);
4528 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4529 }
4530
4531 static int
4532 watchpoint_to_Z_packet (int type)
4533 {
4534 switch (type)
4535 {
4536 case hw_write:
4537 return 2;
4538 break;
4539 case hw_read:
4540 return 3;
4541 break;
4542 case hw_access:
4543 return 4;
4544 break;
4545 default:
4546 internal_error (__FILE__, __LINE__,
4547 "hw_bp_to_z: bad watchpoint type %d", type);
4548 }
4549 }
4550
4551 static int
4552 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4553 {
4554 struct remote_state *rs = get_remote_state ();
4555 char *buf = alloca (rs->remote_packet_size);
4556 char *p;
4557 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4558
4559 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4560 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4561 remote_protocol_Z[packet].name,
4562 remote_protocol_Z[packet].title);
4563
4564 sprintf (buf, "Z%x,", packet);
4565 p = strchr (buf, '\0');
4566 addr = remote_address_masked (addr);
4567 p += hexnumstr (p, (ULONGEST) addr);
4568 sprintf (p, ",%x", len);
4569
4570 putpkt (buf);
4571 getpkt (buf, (rs->remote_packet_size), 0);
4572
4573 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4574 {
4575 case PACKET_ERROR:
4576 case PACKET_UNKNOWN:
4577 return -1;
4578 case PACKET_OK:
4579 return 0;
4580 }
4581 internal_error (__FILE__, __LINE__,
4582 "remote_insert_watchpoint: reached end of function");
4583 }
4584
4585
4586 static int
4587 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4588 {
4589 struct remote_state *rs = get_remote_state ();
4590 char *buf = alloca (rs->remote_packet_size);
4591 char *p;
4592 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4593
4594 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4595 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4596 remote_protocol_Z[packet].name,
4597 remote_protocol_Z[packet].title);
4598
4599 sprintf (buf, "z%x,", packet);
4600 p = strchr (buf, '\0');
4601 addr = remote_address_masked (addr);
4602 p += hexnumstr (p, (ULONGEST) addr);
4603 sprintf (p, ",%x", len);
4604 putpkt (buf);
4605 getpkt (buf, (rs->remote_packet_size), 0);
4606
4607 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4608 {
4609 case PACKET_ERROR:
4610 case PACKET_UNKNOWN:
4611 return -1;
4612 case PACKET_OK:
4613 return 0;
4614 }
4615 internal_error (__FILE__, __LINE__,
4616 "remote_remove_watchpoint: reached end of function");
4617 }
4618
4619
4620 int remote_hw_watchpoint_limit = -1;
4621 int remote_hw_breakpoint_limit = -1;
4622
4623 static int
4624 remote_check_watch_resources (int type, int cnt, int ot)
4625 {
4626 if (type == bp_hardware_breakpoint)
4627 {
4628 if (remote_hw_breakpoint_limit == 0)
4629 return 0;
4630 else if (remote_hw_breakpoint_limit < 0)
4631 return 1;
4632 else if (cnt <= remote_hw_breakpoint_limit)
4633 return 1;
4634 }
4635 else
4636 {
4637 if (remote_hw_watchpoint_limit == 0)
4638 return 0;
4639 else if (remote_hw_watchpoint_limit < 0)
4640 return 1;
4641 else if (ot)
4642 return -1;
4643 else if (cnt <= remote_hw_watchpoint_limit)
4644 return 1;
4645 }
4646 return -1;
4647 }
4648
4649 static int
4650 remote_stopped_by_watchpoint (void)
4651 {
4652 return remote_stopped_by_watchpoint_p;
4653 }
4654
4655 extern int stepped_after_stopped_by_watchpoint;
4656
4657 static int
4658 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
4659 {
4660 int rc = 0;
4661 if (remote_stopped_by_watchpoint ()
4662 || stepped_after_stopped_by_watchpoint)
4663 {
4664 *addr_p = remote_watch_data_address;
4665 rc = 1;
4666 }
4667
4668 return rc;
4669 }
4670
4671
4672 static int
4673 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4674 {
4675 int len = 0;
4676 struct remote_state *rs = get_remote_state ();
4677 char *buf = alloca (rs->remote_packet_size);
4678 char *p = buf;
4679
4680 /* The length field should be set to the size of a breakpoint
4681 instruction. */
4682
4683 BREAKPOINT_FROM_PC (&addr, &len);
4684
4685 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4686 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4687 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4688 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4689
4690 *(p++) = 'Z';
4691 *(p++) = '1';
4692 *(p++) = ',';
4693
4694 addr = remote_address_masked (addr);
4695 p += hexnumstr (p, (ULONGEST) addr);
4696 sprintf (p, ",%x", len);
4697
4698 putpkt (buf);
4699 getpkt (buf, (rs->remote_packet_size), 0);
4700
4701 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4702 {
4703 case PACKET_ERROR:
4704 case PACKET_UNKNOWN:
4705 return -1;
4706 case PACKET_OK:
4707 return 0;
4708 }
4709 internal_error (__FILE__, __LINE__,
4710 "remote_insert_hw_breakpoint: reached end of function");
4711 }
4712
4713
4714 static int
4715 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4716 {
4717 int len;
4718 struct remote_state *rs = get_remote_state ();
4719 char *buf = alloca (rs->remote_packet_size);
4720 char *p = buf;
4721
4722 /* The length field should be set to the size of a breakpoint
4723 instruction. */
4724
4725 BREAKPOINT_FROM_PC (&addr, &len);
4726
4727 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4728 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4729 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4730 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4731
4732 *(p++) = 'z';
4733 *(p++) = '1';
4734 *(p++) = ',';
4735
4736 addr = remote_address_masked (addr);
4737 p += hexnumstr (p, (ULONGEST) addr);
4738 sprintf (p, ",%x", len);
4739
4740 putpkt(buf);
4741 getpkt (buf, (rs->remote_packet_size), 0);
4742
4743 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4744 {
4745 case PACKET_ERROR:
4746 case PACKET_UNKNOWN:
4747 return -1;
4748 case PACKET_OK:
4749 return 0;
4750 }
4751 internal_error (__FILE__, __LINE__,
4752 "remote_remove_hw_breakpoint: reached end of function");
4753 }
4754
4755 /* Some targets are only capable of doing downloads, and afterwards
4756 they switch to the remote serial protocol. This function provides
4757 a clean way to get from the download target to the remote target.
4758 It's basically just a wrapper so that we don't have to expose any
4759 of the internal workings of remote.c.
4760
4761 Prior to calling this routine, you should shutdown the current
4762 target code, else you will get the "A program is being debugged
4763 already..." message. Usually a call to pop_target() suffices. */
4764
4765 void
4766 push_remote_target (char *name, int from_tty)
4767 {
4768 printf_filtered ("Switching to remote protocol\n");
4769 remote_open (name, from_tty);
4770 }
4771
4772 /* Table used by the crc32 function to calcuate the checksum. */
4773
4774 static unsigned long crc32_table[256] =
4775 {0, 0};
4776
4777 static unsigned long
4778 crc32 (unsigned char *buf, int len, unsigned int crc)
4779 {
4780 if (!crc32_table[1])
4781 {
4782 /* Initialize the CRC table and the decoding table. */
4783 int i, j;
4784 unsigned int c;
4785
4786 for (i = 0; i < 256; i++)
4787 {
4788 for (c = i << 24, j = 8; j > 0; --j)
4789 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4790 crc32_table[i] = c;
4791 }
4792 }
4793
4794 while (len--)
4795 {
4796 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4797 buf++;
4798 }
4799 return crc;
4800 }
4801
4802 /* compare-sections command
4803
4804 With no arguments, compares each loadable section in the exec bfd
4805 with the same memory range on the target, and reports mismatches.
4806 Useful for verifying the image on the target against the exec file.
4807 Depends on the target understanding the new "qCRC:" request. */
4808
4809 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4810 target method (target verify memory) and generic version of the
4811 actual command. This will allow other high-level code (especially
4812 generic_load()) to make use of this target functionality. */
4813
4814 static void
4815 compare_sections_command (char *args, int from_tty)
4816 {
4817 struct remote_state *rs = get_remote_state ();
4818 asection *s;
4819 unsigned long host_crc, target_crc;
4820 extern bfd *exec_bfd;
4821 struct cleanup *old_chain;
4822 char *tmp;
4823 char *sectdata;
4824 const char *sectname;
4825 char *buf = alloca (rs->remote_packet_size);
4826 bfd_size_type size;
4827 bfd_vma lma;
4828 int matched = 0;
4829 int mismatched = 0;
4830
4831 if (!exec_bfd)
4832 error ("command cannot be used without an exec file");
4833 if (!current_target.to_shortname ||
4834 strcmp (current_target.to_shortname, "remote") != 0)
4835 error ("command can only be used with remote target");
4836
4837 for (s = exec_bfd->sections; s; s = s->next)
4838 {
4839 if (!(s->flags & SEC_LOAD))
4840 continue; /* skip non-loadable section */
4841
4842 size = bfd_get_section_size (s);
4843 if (size == 0)
4844 continue; /* skip zero-length section */
4845
4846 sectname = bfd_get_section_name (exec_bfd, s);
4847 if (args && strcmp (args, sectname) != 0)
4848 continue; /* not the section selected by user */
4849
4850 matched = 1; /* do this section */
4851 lma = s->lma;
4852 /* FIXME: assumes lma can fit into long */
4853 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
4854 putpkt (buf);
4855
4856 /* be clever; compute the host_crc before waiting for target reply */
4857 sectdata = xmalloc (size);
4858 old_chain = make_cleanup (xfree, sectdata);
4859 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
4860 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
4861
4862 getpkt (buf, (rs->remote_packet_size), 0);
4863 if (buf[0] == 'E')
4864 error ("target memory fault, section %s, range 0x%s -- 0x%s",
4865 sectname, paddr (lma), paddr (lma + size));
4866 if (buf[0] != 'C')
4867 error ("remote target does not support this operation");
4868
4869 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
4870 target_crc = target_crc * 16 + fromhex (*tmp);
4871
4872 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
4873 sectname, paddr (lma), paddr (lma + size));
4874 if (host_crc == target_crc)
4875 printf_filtered ("matched.\n");
4876 else
4877 {
4878 printf_filtered ("MIS-MATCHED!\n");
4879 mismatched++;
4880 }
4881
4882 do_cleanups (old_chain);
4883 }
4884 if (mismatched > 0)
4885 warning ("One or more sections of the remote executable does not match\n\
4886 the loaded file\n");
4887 if (args && !matched)
4888 printf_filtered ("No loaded section named '%s'.\n", args);
4889 }
4890
4891 static LONGEST
4892 remote_xfer_partial (struct target_ops *ops, enum target_object object,
4893 const char *annex, void *readbuf, const void *writebuf,
4894 ULONGEST offset, LONGEST len)
4895 {
4896 struct remote_state *rs = get_remote_state ();
4897 int i;
4898 char *buf2 = alloca (rs->remote_packet_size);
4899 char *p2 = &buf2[0];
4900 char query_type;
4901
4902 /* Handle memory using remote_xfer_memory. */
4903 if (object == TARGET_OBJECT_MEMORY)
4904 {
4905 int xfered;
4906 errno = 0;
4907
4908 if (writebuf != NULL)
4909 {
4910 void *buffer = xmalloc (len);
4911 struct cleanup *cleanup = make_cleanup (xfree, buffer);
4912 memcpy (buffer, writebuf, len);
4913 xfered = remote_xfer_memory (offset, buffer, len, 1, NULL, ops);
4914 do_cleanups (cleanup);
4915 }
4916 else
4917 xfered = remote_xfer_memory (offset, readbuf, len, 0, NULL, ops);
4918
4919 if (xfered > 0)
4920 return xfered;
4921 else if (xfered == 0 && errno == 0)
4922 return 0;
4923 else
4924 return -1;
4925 }
4926
4927 /* Only handle reads. */
4928 if (writebuf != NULL || readbuf == NULL)
4929 return -1;
4930
4931 /* Map pre-existing objects onto letters. DO NOT do this for new
4932 objects!!! Instead specify new query packets. */
4933 switch (object)
4934 {
4935 case TARGET_OBJECT_KOD:
4936 query_type = 'K';
4937 break;
4938 case TARGET_OBJECT_AVR:
4939 query_type = 'R';
4940 break;
4941
4942 case TARGET_OBJECT_AUXV:
4943 if (remote_protocol_qPart_auxv.support != PACKET_DISABLE)
4944 {
4945 unsigned int total = 0;
4946 while (len > 0)
4947 {
4948 LONGEST n = min ((rs->remote_packet_size - 2) / 2, len);
4949 snprintf (buf2, rs->remote_packet_size,
4950 "qPart:auxv:read::%s,%s",
4951 phex_nz (offset, sizeof offset),
4952 phex_nz (n, sizeof n));
4953 i = putpkt (buf2);
4954 if (i < 0)
4955 return total > 0 ? total : i;
4956 buf2[0] = '\0';
4957 getpkt (buf2, rs->remote_packet_size, 0);
4958 if (packet_ok (buf2, &remote_protocol_qPart_auxv) != PACKET_OK)
4959 return total > 0 ? total : -1;
4960 if (buf2[0] == 'O' && buf2[1] == 'K' && buf2[2] == '\0')
4961 break; /* Got EOF indicator. */
4962 /* Got some data. */
4963 i = hex2bin (buf2, readbuf, len);
4964 if (i > 0)
4965 {
4966 readbuf = (void *) ((char *) readbuf + i);
4967 offset += i;
4968 len -= i;
4969 total += i;
4970 }
4971 }
4972 return total;
4973 }
4974 return -1;
4975
4976 default:
4977 return -1;
4978 }
4979
4980 /* Note: a zero OFFSET and LEN can be used to query the minimum
4981 buffer size. */
4982 if (offset == 0 && len == 0)
4983 return (rs->remote_packet_size);
4984 /* Minimum outbuf size is (rs->remote_packet_size) - if bufsiz is
4985 not large enough let the caller. */
4986 if (len < (rs->remote_packet_size))
4987 return -1;
4988 len = rs->remote_packet_size;
4989
4990 /* except for querying the minimum buffer size, target must be open */
4991 if (!remote_desc)
4992 error ("remote query is only available after target open");
4993
4994 gdb_assert (annex != NULL);
4995 gdb_assert (readbuf != NULL);
4996
4997 *p2++ = 'q';
4998 *p2++ = query_type;
4999
5000 /* we used one buffer char for the remote protocol q command and another
5001 for the query type. As the remote protocol encapsulation uses 4 chars
5002 plus one extra in case we are debugging (remote_debug),
5003 we have PBUFZIZ - 7 left to pack the query string */
5004 i = 0;
5005 while (annex[i] && (i < ((rs->remote_packet_size) - 8)))
5006 {
5007 /* Bad caller may have sent forbidden characters. */
5008 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5009 *p2++ = annex[i];
5010 i++;
5011 }
5012 *p2 = '\0';
5013 gdb_assert (annex[i] == '\0');
5014
5015 i = putpkt (buf2);
5016 if (i < 0)
5017 return i;
5018
5019 getpkt (readbuf, len, 0);
5020
5021 return strlen (readbuf);
5022 }
5023
5024 static void
5025 remote_rcmd (char *command,
5026 struct ui_file *outbuf)
5027 {
5028 struct remote_state *rs = get_remote_state ();
5029 int i;
5030 char *buf = alloca (rs->remote_packet_size);
5031 char *p = buf;
5032
5033 if (!remote_desc)
5034 error ("remote rcmd is only available after target open");
5035
5036 /* Send a NULL command across as an empty command */
5037 if (command == NULL)
5038 command = "";
5039
5040 /* The query prefix */
5041 strcpy (buf, "qRcmd,");
5042 p = strchr (buf, '\0');
5043
5044 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5045 error ("\"monitor\" command ``%s'' is too long\n", command);
5046
5047 /* Encode the actual command */
5048 bin2hex (command, p, 0);
5049
5050 if (putpkt (buf) < 0)
5051 error ("Communication problem with target\n");
5052
5053 /* get/display the response */
5054 while (1)
5055 {
5056 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5057 buf[0] = '\0';
5058 getpkt (buf, (rs->remote_packet_size), 0);
5059 if (buf[0] == '\0')
5060 error ("Target does not support this command\n");
5061 if (buf[0] == 'O' && buf[1] != 'K')
5062 {
5063 remote_console_output (buf + 1); /* 'O' message from stub */
5064 continue;
5065 }
5066 if (strcmp (buf, "OK") == 0)
5067 break;
5068 if (strlen (buf) == 3 && buf[0] == 'E'
5069 && isdigit (buf[1]) && isdigit (buf[2]))
5070 {
5071 error ("Protocol error with Rcmd");
5072 }
5073 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5074 {
5075 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5076 fputc_unfiltered (c, outbuf);
5077 }
5078 break;
5079 }
5080 }
5081
5082 static void
5083 packet_command (char *args, int from_tty)
5084 {
5085 struct remote_state *rs = get_remote_state ();
5086 char *buf = alloca (rs->remote_packet_size);
5087
5088 if (!remote_desc)
5089 error ("command can only be used with remote target");
5090
5091 if (!args)
5092 error ("remote-packet command requires packet text as argument");
5093
5094 puts_filtered ("sending: ");
5095 print_packet (args);
5096 puts_filtered ("\n");
5097 putpkt (args);
5098
5099 getpkt (buf, (rs->remote_packet_size), 0);
5100 puts_filtered ("received: ");
5101 print_packet (buf);
5102 puts_filtered ("\n");
5103 }
5104
5105 #if 0
5106 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5107
5108 static void display_thread_info (struct gdb_ext_thread_info *info);
5109
5110 static void threadset_test_cmd (char *cmd, int tty);
5111
5112 static void threadalive_test (char *cmd, int tty);
5113
5114 static void threadlist_test_cmd (char *cmd, int tty);
5115
5116 int get_and_display_threadinfo (threadref * ref);
5117
5118 static void threadinfo_test_cmd (char *cmd, int tty);
5119
5120 static int thread_display_step (threadref * ref, void *context);
5121
5122 static void threadlist_update_test_cmd (char *cmd, int tty);
5123
5124 static void init_remote_threadtests (void);
5125
5126 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5127
5128 static void
5129 threadset_test_cmd (char *cmd, int tty)
5130 {
5131 int sample_thread = SAMPLE_THREAD;
5132
5133 printf_filtered ("Remote threadset test\n");
5134 set_thread (sample_thread, 1);
5135 }
5136
5137
5138 static void
5139 threadalive_test (char *cmd, int tty)
5140 {
5141 int sample_thread = SAMPLE_THREAD;
5142
5143 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5144 printf_filtered ("PASS: Thread alive test\n");
5145 else
5146 printf_filtered ("FAIL: Thread alive test\n");
5147 }
5148
5149 void output_threadid (char *title, threadref * ref);
5150
5151 void
5152 output_threadid (char *title, threadref *ref)
5153 {
5154 char hexid[20];
5155
5156 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5157 hexid[16] = 0;
5158 printf_filtered ("%s %s\n", title, (&hexid[0]));
5159 }
5160
5161 static void
5162 threadlist_test_cmd (char *cmd, int tty)
5163 {
5164 int startflag = 1;
5165 threadref nextthread;
5166 int done, result_count;
5167 threadref threadlist[3];
5168
5169 printf_filtered ("Remote Threadlist test\n");
5170 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5171 &result_count, &threadlist[0]))
5172 printf_filtered ("FAIL: threadlist test\n");
5173 else
5174 {
5175 threadref *scan = threadlist;
5176 threadref *limit = scan + result_count;
5177
5178 while (scan < limit)
5179 output_threadid (" thread ", scan++);
5180 }
5181 }
5182
5183 void
5184 display_thread_info (struct gdb_ext_thread_info *info)
5185 {
5186 output_threadid ("Threadid: ", &info->threadid);
5187 printf_filtered ("Name: %s\n ", info->shortname);
5188 printf_filtered ("State: %s\n", info->display);
5189 printf_filtered ("other: %s\n\n", info->more_display);
5190 }
5191
5192 int
5193 get_and_display_threadinfo (threadref *ref)
5194 {
5195 int result;
5196 int set;
5197 struct gdb_ext_thread_info threadinfo;
5198
5199 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5200 | TAG_MOREDISPLAY | TAG_DISPLAY;
5201 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5202 display_thread_info (&threadinfo);
5203 return result;
5204 }
5205
5206 static void
5207 threadinfo_test_cmd (char *cmd, int tty)
5208 {
5209 int athread = SAMPLE_THREAD;
5210 threadref thread;
5211 int set;
5212
5213 int_to_threadref (&thread, athread);
5214 printf_filtered ("Remote Threadinfo test\n");
5215 if (!get_and_display_threadinfo (&thread))
5216 printf_filtered ("FAIL cannot get thread info\n");
5217 }
5218
5219 static int
5220 thread_display_step (threadref *ref, void *context)
5221 {
5222 /* output_threadid(" threadstep ",ref); *//* simple test */
5223 return get_and_display_threadinfo (ref);
5224 }
5225
5226 static void
5227 threadlist_update_test_cmd (char *cmd, int tty)
5228 {
5229 printf_filtered ("Remote Threadlist update test\n");
5230 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5231 }
5232
5233 static void
5234 init_remote_threadtests (void)
5235 {
5236 add_com ("tlist", class_obscure, threadlist_test_cmd,
5237 "Fetch and print the remote list of thread identifiers, one pkt only");
5238 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5239 "Fetch and display info about one thread");
5240 add_com ("tset", class_obscure, threadset_test_cmd,
5241 "Test setting to a different thread");
5242 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5243 "Iterate through updating all remote thread info");
5244 add_com ("talive", class_obscure, threadalive_test,
5245 " Remote thread alive test ");
5246 }
5247
5248 #endif /* 0 */
5249
5250 /* Convert a thread ID to a string. Returns the string in a static
5251 buffer. */
5252
5253 static char *
5254 remote_pid_to_str (ptid_t ptid)
5255 {
5256 static char buf[30];
5257
5258 sprintf (buf, "Thread %d", PIDGET (ptid));
5259 return buf;
5260 }
5261
5262 static void
5263 init_remote_ops (void)
5264 {
5265 remote_ops.to_shortname = "remote";
5266 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5267 remote_ops.to_doc =
5268 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5269 Specify the serial device it is connected to\n\
5270 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5271 remote_ops.to_open = remote_open;
5272 remote_ops.to_close = remote_close;
5273 remote_ops.to_detach = remote_detach;
5274 remote_ops.to_disconnect = remote_disconnect;
5275 remote_ops.to_resume = remote_resume;
5276 remote_ops.to_wait = remote_wait;
5277 remote_ops.to_fetch_registers = remote_fetch_registers;
5278 remote_ops.to_store_registers = remote_store_registers;
5279 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5280 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
5281 remote_ops.to_files_info = remote_files_info;
5282 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5283 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5284 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5285 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5286 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5287 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5288 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5289 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5290 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5291 remote_ops.to_kill = remote_kill;
5292 remote_ops.to_load = generic_load;
5293 remote_ops.to_mourn_inferior = remote_mourn;
5294 remote_ops.to_thread_alive = remote_thread_alive;
5295 remote_ops.to_find_new_threads = remote_threads_info;
5296 remote_ops.to_pid_to_str = remote_pid_to_str;
5297 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5298 remote_ops.to_stop = remote_stop;
5299 remote_ops.to_xfer_partial = remote_xfer_partial;
5300 remote_ops.to_rcmd = remote_rcmd;
5301 remote_ops.to_stratum = process_stratum;
5302 remote_ops.to_has_all_memory = 1;
5303 remote_ops.to_has_memory = 1;
5304 remote_ops.to_has_stack = 1;
5305 remote_ops.to_has_registers = 1;
5306 remote_ops.to_has_execution = 1;
5307 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5308 remote_ops.to_magic = OPS_MAGIC;
5309 }
5310
5311 /* Set up the extended remote vector by making a copy of the standard
5312 remote vector and adding to it. */
5313
5314 static void
5315 init_extended_remote_ops (void)
5316 {
5317 extended_remote_ops = remote_ops;
5318
5319 extended_remote_ops.to_shortname = "extended-remote";
5320 extended_remote_ops.to_longname =
5321 "Extended remote serial target in gdb-specific protocol";
5322 extended_remote_ops.to_doc =
5323 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5324 Specify the serial device it is connected to (e.g. /dev/ttya).",
5325 extended_remote_ops.to_open = extended_remote_open;
5326 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5327 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5328 }
5329
5330 static int
5331 remote_can_async_p (void)
5332 {
5333 /* We're async whenever the serial device is. */
5334 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5335 }
5336
5337 static int
5338 remote_is_async_p (void)
5339 {
5340 /* We're async whenever the serial device is. */
5341 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5342 }
5343
5344 /* Pass the SERIAL event on and up to the client. One day this code
5345 will be able to delay notifying the client of an event until the
5346 point where an entire packet has been received. */
5347
5348 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5349 static void *async_client_context;
5350 static serial_event_ftype remote_async_serial_handler;
5351
5352 static void
5353 remote_async_serial_handler (struct serial *scb, void *context)
5354 {
5355 /* Don't propogate error information up to the client. Instead let
5356 the client find out about the error by querying the target. */
5357 async_client_callback (INF_REG_EVENT, async_client_context);
5358 }
5359
5360 static void
5361 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5362 {
5363 if (current_target.to_async_mask_value == 0)
5364 internal_error (__FILE__, __LINE__,
5365 "Calling remote_async when async is masked");
5366
5367 if (callback != NULL)
5368 {
5369 serial_async (remote_desc, remote_async_serial_handler, NULL);
5370 async_client_callback = callback;
5371 async_client_context = context;
5372 }
5373 else
5374 serial_async (remote_desc, NULL, NULL);
5375 }
5376
5377 /* Target async and target extended-async.
5378
5379 This are temporary targets, until it is all tested. Eventually
5380 async support will be incorporated int the usual 'remote'
5381 target. */
5382
5383 static void
5384 init_remote_async_ops (void)
5385 {
5386 remote_async_ops.to_shortname = "async";
5387 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5388 remote_async_ops.to_doc =
5389 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5390 Specify the serial device it is connected to (e.g. /dev/ttya).";
5391 remote_async_ops.to_open = remote_async_open;
5392 remote_async_ops.to_close = remote_close;
5393 remote_async_ops.to_detach = remote_detach;
5394 remote_async_ops.to_disconnect = remote_disconnect;
5395 remote_async_ops.to_resume = remote_async_resume;
5396 remote_async_ops.to_wait = remote_async_wait;
5397 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5398 remote_async_ops.to_store_registers = remote_store_registers;
5399 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5400 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
5401 remote_async_ops.to_files_info = remote_files_info;
5402 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5403 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5404 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5405 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5406 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5407 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5408 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5409 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5410 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5411 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5412 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5413 remote_async_ops.to_kill = remote_async_kill;
5414 remote_async_ops.to_load = generic_load;
5415 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5416 remote_async_ops.to_thread_alive = remote_thread_alive;
5417 remote_async_ops.to_find_new_threads = remote_threads_info;
5418 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5419 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5420 remote_async_ops.to_stop = remote_stop;
5421 remote_async_ops.to_xfer_partial = remote_xfer_partial;
5422 remote_async_ops.to_rcmd = remote_rcmd;
5423 remote_async_ops.to_stratum = process_stratum;
5424 remote_async_ops.to_has_all_memory = 1;
5425 remote_async_ops.to_has_memory = 1;
5426 remote_async_ops.to_has_stack = 1;
5427 remote_async_ops.to_has_registers = 1;
5428 remote_async_ops.to_has_execution = 1;
5429 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5430 remote_async_ops.to_can_async_p = remote_can_async_p;
5431 remote_async_ops.to_is_async_p = remote_is_async_p;
5432 remote_async_ops.to_async = remote_async;
5433 remote_async_ops.to_async_mask_value = 1;
5434 remote_async_ops.to_magic = OPS_MAGIC;
5435 }
5436
5437 /* Set up the async extended remote vector by making a copy of the standard
5438 remote vector and adding to it. */
5439
5440 static void
5441 init_extended_async_remote_ops (void)
5442 {
5443 extended_async_remote_ops = remote_async_ops;
5444
5445 extended_async_remote_ops.to_shortname = "extended-async";
5446 extended_async_remote_ops.to_longname =
5447 "Extended remote serial target in async gdb-specific protocol";
5448 extended_async_remote_ops.to_doc =
5449 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5450 Specify the serial device it is connected to (e.g. /dev/ttya).",
5451 extended_async_remote_ops.to_open = extended_remote_async_open;
5452 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5453 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5454 }
5455
5456 static void
5457 set_remote_cmd (char *args, int from_tty)
5458 {
5459 }
5460
5461 static void
5462 show_remote_cmd (char *args, int from_tty)
5463 {
5464 /* FIXME: cagney/2002-06-15: This function should iterate over
5465 remote_show_cmdlist for a list of sub commands to show. */
5466 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
5467 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
5468 show_remote_protocol_p_packet_cmd (args, from_tty, NULL);
5469 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
5470 show_remote_protocol_vcont_packet_cmd (args, from_tty, NULL);
5471 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
5472 show_remote_protocol_qPart_auxv_packet_cmd (args, from_tty, NULL);
5473 }
5474
5475 static void
5476 build_remote_gdbarch_data (void)
5477 {
5478 remote_address_size = TARGET_ADDR_BIT;
5479 }
5480
5481 /* Saved pointer to previous owner of the new_objfile event. */
5482 static void (*remote_new_objfile_chain) (struct objfile *);
5483
5484 /* Function to be called whenever a new objfile (shlib) is detected. */
5485 static void
5486 remote_new_objfile (struct objfile *objfile)
5487 {
5488 if (remote_desc != 0) /* Have a remote connection */
5489 {
5490 remote_check_symbols (objfile);
5491 }
5492 /* Call predecessor on chain, if any. */
5493 if (remote_new_objfile_chain != 0 &&
5494 remote_desc == 0)
5495 remote_new_objfile_chain (objfile);
5496 }
5497
5498 void
5499 _initialize_remote (void)
5500 {
5501 static struct cmd_list_element *remote_set_cmdlist;
5502 static struct cmd_list_element *remote_show_cmdlist;
5503 struct cmd_list_element *tmpcmd;
5504
5505 /* architecture specific data */
5506 remote_gdbarch_data_handle = gdbarch_data_register_post_init (init_remote_state);
5507
5508 /* Old tacky stuff. NOTE: This comes after the remote protocol so
5509 that the remote protocol has been initialized. */
5510 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
5511 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5512
5513 init_remote_ops ();
5514 add_target (&remote_ops);
5515
5516 init_extended_remote_ops ();
5517 add_target (&extended_remote_ops);
5518
5519 init_remote_async_ops ();
5520 add_target (&remote_async_ops);
5521
5522 init_extended_async_remote_ops ();
5523 add_target (&extended_async_remote_ops);
5524
5525 /* Hook into new objfile notification. */
5526 remote_new_objfile_chain = deprecated_target_new_objfile_hook;
5527 deprecated_target_new_objfile_hook = remote_new_objfile;
5528
5529 #if 0
5530 init_remote_threadtests ();
5531 #endif
5532
5533 /* set/show remote ... */
5534
5535 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
5536 Remote protocol specific variables\n\
5537 Configure various remote-protocol specific variables such as\n\
5538 the packets being used",
5539 &remote_set_cmdlist, "set remote ",
5540 0/*allow-unknown*/, &setlist);
5541 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
5542 Remote protocol specific variables\n\
5543 Configure various remote-protocol specific variables such as\n\
5544 the packets being used",
5545 &remote_show_cmdlist, "show remote ",
5546 0/*allow-unknown*/, &showlist);
5547
5548 add_cmd ("compare-sections", class_obscure, compare_sections_command,
5549 "Compare section data on target to the exec file.\n\
5550 Argument is a single section name (default: all loaded sections).",
5551 &cmdlist);
5552
5553 add_cmd ("packet", class_maintenance, packet_command,
5554 "Send an arbitrary packet to a remote target.\n\
5555 maintenance packet TEXT\n\
5556 If GDB is talking to an inferior via the GDB serial protocol, then\n\
5557 this command sends the string TEXT to the inferior, and displays the\n\
5558 response packet. GDB supplies the initial `$' character, and the\n\
5559 terminating `#' character and checksum.",
5560 &maintenancelist);
5561
5562 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, "\
5563 Set whether to send break if interrupted.", "\
5564 Show whether to send break if interrupted.", "\
5565 If set, a break, instead of a cntrl-c, is sent to the remote target.", "\
5566 Whether to send break if interrupted is %s.",
5567 NULL, NULL,
5568 &setlist, &showlist);
5569
5570 /* Install commands for configuring memory read/write packets. */
5571
5572 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
5573 "Set the maximum number of bytes per memory write packet (deprecated).\n",
5574 &setlist);
5575 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
5576 "Show the maximum number of bytes per memory write packet (deprecated).\n",
5577 &showlist);
5578 add_cmd ("memory-write-packet-size", no_class,
5579 set_memory_write_packet_size,
5580 "Set the maximum number of bytes per memory-write packet.\n"
5581 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5582 "default packet size. The actual limit is further reduced\n"
5583 "dependent on the target. Specify ``fixed'' to disable the\n"
5584 "further restriction and ``limit'' to enable that restriction\n",
5585 &remote_set_cmdlist);
5586 add_cmd ("memory-read-packet-size", no_class,
5587 set_memory_read_packet_size,
5588 "Set the maximum number of bytes per memory-read packet.\n"
5589 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5590 "default packet size. The actual limit is further reduced\n"
5591 "dependent on the target. Specify ``fixed'' to disable the\n"
5592 "further restriction and ``limit'' to enable that restriction\n",
5593 &remote_set_cmdlist);
5594 add_cmd ("memory-write-packet-size", no_class,
5595 show_memory_write_packet_size,
5596 "Show the maximum number of bytes per memory-write packet.\n",
5597 &remote_show_cmdlist);
5598 add_cmd ("memory-read-packet-size", no_class,
5599 show_memory_read_packet_size,
5600 "Show the maximum number of bytes per memory-read packet.\n",
5601 &remote_show_cmdlist);
5602
5603 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
5604 &remote_hw_watchpoint_limit, "\
5605 Set the maximum number of target hardware watchpoints.", "\
5606 Show the maximum number of target hardware watchpoints.", "\
5607 Specify a negative limit for unlimited.", "\
5608 The maximum number of target hardware watchpoints is %s.",
5609 NULL, NULL,
5610 &remote_set_cmdlist, &remote_show_cmdlist);
5611 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
5612 &remote_hw_breakpoint_limit, "\
5613 Set the maximum number of target hardware breakpoints.", "\
5614 Show the maximum number of target hardware breakpoints.", "\
5615 Specify a negative limit for unlimited.", "\
5616 The maximum number of target hardware breakpoints is %s.",
5617 NULL, NULL,
5618 &remote_set_cmdlist, &remote_show_cmdlist);
5619
5620 deprecated_add_show_from_set
5621 (add_set_cmd ("remoteaddresssize", class_obscure,
5622 var_integer, (char *) &remote_address_size,
5623 "Set the maximum size of the address (in bits) \
5624 in a memory packet.\n",
5625 &setlist),
5626 &showlist);
5627
5628 add_packet_config_cmd (&remote_protocol_binary_download,
5629 "X", "binary-download",
5630 set_remote_protocol_binary_download_cmd,
5631 show_remote_protocol_binary_download_cmd,
5632 &remote_set_cmdlist, &remote_show_cmdlist,
5633 1);
5634 #if 0
5635 /* XXXX - should ``set remotebinarydownload'' be retained for
5636 compatibility. */
5637 deprecated_add_show_from_set
5638 (add_set_cmd ("remotebinarydownload", no_class,
5639 var_boolean, (char *) &remote_binary_download,
5640 "Set binary downloads.\n", &setlist),
5641 &showlist);
5642 #endif
5643
5644 add_packet_config_cmd (&remote_protocol_vcont,
5645 "vCont", "verbose-resume",
5646 set_remote_protocol_vcont_packet_cmd,
5647 show_remote_protocol_vcont_packet_cmd,
5648 &remote_set_cmdlist, &remote_show_cmdlist,
5649 0);
5650
5651 add_packet_config_cmd (&remote_protocol_qSymbol,
5652 "qSymbol", "symbol-lookup",
5653 set_remote_protocol_qSymbol_packet_cmd,
5654 show_remote_protocol_qSymbol_packet_cmd,
5655 &remote_set_cmdlist, &remote_show_cmdlist,
5656 0);
5657
5658 add_packet_config_cmd (&remote_protocol_P,
5659 "P", "set-register",
5660 set_remote_protocol_P_packet_cmd,
5661 show_remote_protocol_P_packet_cmd,
5662 &remote_set_cmdlist, &remote_show_cmdlist,
5663 1);
5664
5665 add_packet_config_cmd (&remote_protocol_p,
5666 "p", "fetch-register",
5667 set_remote_protocol_p_packet_cmd,
5668 show_remote_protocol_p_packet_cmd,
5669 &remote_set_cmdlist, &remote_show_cmdlist,
5670 1);
5671
5672 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
5673 "Z0", "software-breakpoint",
5674 set_remote_protocol_Z_software_bp_packet_cmd,
5675 show_remote_protocol_Z_software_bp_packet_cmd,
5676 &remote_set_cmdlist, &remote_show_cmdlist,
5677 0);
5678
5679 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
5680 "Z1", "hardware-breakpoint",
5681 set_remote_protocol_Z_hardware_bp_packet_cmd,
5682 show_remote_protocol_Z_hardware_bp_packet_cmd,
5683 &remote_set_cmdlist, &remote_show_cmdlist,
5684 0);
5685
5686 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
5687 "Z2", "write-watchpoint",
5688 set_remote_protocol_Z_write_wp_packet_cmd,
5689 show_remote_protocol_Z_write_wp_packet_cmd,
5690 &remote_set_cmdlist, &remote_show_cmdlist,
5691 0);
5692
5693 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
5694 "Z3", "read-watchpoint",
5695 set_remote_protocol_Z_read_wp_packet_cmd,
5696 show_remote_protocol_Z_read_wp_packet_cmd,
5697 &remote_set_cmdlist, &remote_show_cmdlist,
5698 0);
5699
5700 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
5701 "Z4", "access-watchpoint",
5702 set_remote_protocol_Z_access_wp_packet_cmd,
5703 show_remote_protocol_Z_access_wp_packet_cmd,
5704 &remote_set_cmdlist, &remote_show_cmdlist,
5705 0);
5706
5707 add_packet_config_cmd (&remote_protocol_qPart_auxv,
5708 "qPart_auxv", "read-aux-vector",
5709 set_remote_protocol_qPart_auxv_packet_cmd,
5710 show_remote_protocol_qPart_auxv_packet_cmd,
5711 &remote_set_cmdlist, &remote_show_cmdlist,
5712 0);
5713
5714 /* Keep the old ``set remote Z-packet ...'' working. */
5715 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
5716 &remote_Z_packet_detect, "\
5717 Set use of remote protocol `Z' packets", "\
5718 Show use of remote protocol `Z' packets ", "\
5719 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
5720 packets.", "\
5721 Use of remote protocol `Z' packets is %s",
5722 set_remote_protocol_Z_packet_cmd,
5723 show_remote_protocol_Z_packet_cmd,
5724 &remote_set_cmdlist, &remote_show_cmdlist);
5725
5726 /* Eventually initialize fileio. See fileio.c */
5727 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
5728 }