2007-07-03 Paul Gilliam <pgilliam@us.ibm.com>
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45 #include "solib.h"
46 #include "cli/cli-decode.h"
47 #include "cli/cli-setshow.h"
48 #include "target-descriptions.h"
49
50 #include <ctype.h>
51 #include <sys/time.h>
52
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include "inf-loop.h"
56
57 #include <signal.h>
58 #include "serial.h"
59
60 #include "gdbcore.h" /* for exec_bfd */
61
62 #include "remote-fileio.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82
83 static void handle_remote_sigint (int);
84 static void handle_remote_sigint_twice (int);
85 static void async_remote_interrupt (gdb_client_data);
86 void async_remote_interrupt_twice (gdb_client_data);
87
88 static void remote_files_info (struct target_ops *ignore);
89
90 static void remote_prepare_to_store (struct regcache *regcache);
91
92 static void remote_fetch_registers (struct regcache *regcache, int regno);
93
94 static void remote_resume (ptid_t ptid, int step,
95 enum target_signal siggnal);
96 static void remote_async_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_open (char *name, int from_tty);
99 static void remote_async_open (char *name, int from_tty);
100
101 static void extended_remote_open (char *name, int from_tty);
102 static void extended_remote_async_open (char *name, int from_tty);
103
104 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
105 int async_p);
106
107 static void remote_close (int quitting);
108
109 static void remote_store_registers (struct regcache *regcache, int regno);
110
111 static void remote_mourn (void);
112 static void remote_async_mourn (void);
113
114 static void extended_remote_restart (void);
115
116 static void extended_remote_mourn (void);
117
118 static void remote_mourn_1 (struct target_ops *);
119
120 static void remote_send (char **buf, long *sizeof_buf_p);
121
122 static int readchar (int timeout);
123
124 static ptid_t remote_wait (ptid_t ptid,
125 struct target_waitstatus *status);
126 static ptid_t remote_async_wait (ptid_t ptid,
127 struct target_waitstatus *status);
128
129 static void remote_kill (void);
130 static void remote_async_kill (void);
131
132 static int tohex (int nib);
133
134 static void remote_detach (char *args, int from_tty);
135
136 static void remote_interrupt (int signo);
137
138 static void remote_interrupt_twice (int signo);
139
140 static void interrupt_query (void);
141
142 static void set_thread (int, int);
143
144 static int remote_thread_alive (ptid_t);
145
146 static void get_offsets (void);
147
148 static void skip_frame (void);
149
150 static long read_frame (char **buf_p, long *sizeof_buf);
151
152 static int hexnumlen (ULONGEST num);
153
154 static void init_remote_ops (void);
155
156 static void init_extended_remote_ops (void);
157
158 static void remote_stop (void);
159
160 static int ishex (int ch, int *val);
161
162 static int stubhex (int ch);
163
164 static int hexnumstr (char *, ULONGEST);
165
166 static int hexnumnstr (char *, ULONGEST, int);
167
168 static CORE_ADDR remote_address_masked (CORE_ADDR);
169
170 static void print_packet (char *);
171
172 static unsigned long crc32 (unsigned char *, int, unsigned int);
173
174 static void compare_sections_command (char *, int);
175
176 static void packet_command (char *, int);
177
178 static int stub_unpack_int (char *buff, int fieldlength);
179
180 static ptid_t remote_current_thread (ptid_t oldptid);
181
182 static void remote_find_new_threads (void);
183
184 static void record_currthread (int currthread);
185
186 static int fromhex (int a);
187
188 static int hex2bin (const char *hex, gdb_byte *bin, int count);
189
190 static int bin2hex (const gdb_byte *bin, char *hex, int count);
191
192 static int putpkt_binary (char *buf, int cnt);
193
194 static void check_binary_download (CORE_ADDR addr);
195
196 struct packet_config;
197
198 static void show_packet_config_cmd (struct packet_config *config);
199
200 static void update_packet_config (struct packet_config *config);
201
202 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
203 struct cmd_list_element *c);
204
205 static void show_remote_protocol_packet_cmd (struct ui_file *file,
206 int from_tty,
207 struct cmd_list_element *c,
208 const char *value);
209
210 void _initialize_remote (void);
211
212 /* For "set remote" and "show remote". */
213
214 static struct cmd_list_element *remote_set_cmdlist;
215 static struct cmd_list_element *remote_show_cmdlist;
216
217 /* Description of the remote protocol state for the currently
218 connected target. This is per-target state, and independent of the
219 selected architecture. */
220
221 struct remote_state
222 {
223 /* A buffer to use for incoming packets, and its current size. The
224 buffer is grown dynamically for larger incoming packets.
225 Outgoing packets may also be constructed in this buffer.
226 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
227 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
228 packets. */
229 char *buf;
230 long buf_size;
231
232 /* If we negotiated packet size explicitly (and thus can bypass
233 heuristics for the largest packet size that will not overflow
234 a buffer in the stub), this will be set to that packet size.
235 Otherwise zero, meaning to use the guessed size. */
236 long explicit_packet_size;
237 };
238
239 /* This data could be associated with a target, but we do not always
240 have access to the current target when we need it, so for now it is
241 static. This will be fine for as long as only one target is in use
242 at a time. */
243 static struct remote_state remote_state;
244
245 static struct remote_state *
246 get_remote_state_raw (void)
247 {
248 return &remote_state;
249 }
250
251 /* Description of the remote protocol for a given architecture. */
252
253 struct packet_reg
254 {
255 long offset; /* Offset into G packet. */
256 long regnum; /* GDB's internal register number. */
257 LONGEST pnum; /* Remote protocol register number. */
258 int in_g_packet; /* Always part of G packet. */
259 /* long size in bytes; == register_size (current_gdbarch, regnum);
260 at present. */
261 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
262 at present. */
263 };
264
265 struct remote_arch_state
266 {
267 /* Description of the remote protocol registers. */
268 long sizeof_g_packet;
269
270 /* Description of the remote protocol registers indexed by REGNUM
271 (making an array gdbarch_num_regs in size). */
272 struct packet_reg *regs;
273
274 /* This is the size (in chars) of the first response to the ``g''
275 packet. It is used as a heuristic when determining the maximum
276 size of memory-read and memory-write packets. A target will
277 typically only reserve a buffer large enough to hold the ``g''
278 packet. The size does not include packet overhead (headers and
279 trailers). */
280 long actual_register_packet_size;
281
282 /* This is the maximum size (in chars) of a non read/write packet.
283 It is also used as a cap on the size of read/write packets. */
284 long remote_packet_size;
285 };
286
287
288 /* Handle for retreving the remote protocol data from gdbarch. */
289 static struct gdbarch_data *remote_gdbarch_data_handle;
290
291 static struct remote_arch_state *
292 get_remote_arch_state (void)
293 {
294 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
295 }
296
297 /* Fetch the global remote target state. */
298
299 static struct remote_state *
300 get_remote_state (void)
301 {
302 /* Make sure that the remote architecture state has been
303 initialized, because doing so might reallocate rs->buf. Any
304 function which calls getpkt also needs to be mindful of changes
305 to rs->buf, but this call limits the number of places which run
306 into trouble. */
307 get_remote_arch_state ();
308
309 return get_remote_state_raw ();
310 }
311
312 static int
313 compare_pnums (const void *lhs_, const void *rhs_)
314 {
315 const struct packet_reg * const *lhs = lhs_;
316 const struct packet_reg * const *rhs = rhs_;
317
318 if ((*lhs)->pnum < (*rhs)->pnum)
319 return -1;
320 else if ((*lhs)->pnum == (*rhs)->pnum)
321 return 0;
322 else
323 return 1;
324 }
325
326 static void *
327 init_remote_state (struct gdbarch *gdbarch)
328 {
329 int regnum, num_remote_regs, offset;
330 struct remote_state *rs = get_remote_state_raw ();
331 struct remote_arch_state *rsa;
332 struct packet_reg **remote_regs;
333
334 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
335
336 /* Use the architecture to build a regnum<->pnum table, which will be
337 1:1 unless a feature set specifies otherwise. */
338 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
339 gdbarch_num_regs (current_gdbarch),
340 struct packet_reg);
341 for (regnum = 0; regnum < gdbarch_num_regs (current_gdbarch); regnum++)
342 {
343 struct packet_reg *r = &rsa->regs[regnum];
344
345 if (register_size (current_gdbarch, regnum) == 0)
346 /* Do not try to fetch zero-sized (placeholder) registers. */
347 r->pnum = -1;
348 else
349 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
350
351 r->regnum = regnum;
352 }
353
354 /* Define the g/G packet format as the contents of each register
355 with a remote protocol number, in order of ascending protocol
356 number. */
357
358 remote_regs = alloca (gdbarch_num_regs (current_gdbarch)
359 * sizeof (struct packet_reg *));
360 for (num_remote_regs = 0, regnum = 0;
361 regnum < gdbarch_num_regs (current_gdbarch);
362 regnum++)
363 if (rsa->regs[regnum].pnum != -1)
364 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
365
366 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
367 compare_pnums);
368
369 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
370 {
371 remote_regs[regnum]->in_g_packet = 1;
372 remote_regs[regnum]->offset = offset;
373 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
374 }
375
376 /* Record the maximum possible size of the g packet - it may turn out
377 to be smaller. */
378 rsa->sizeof_g_packet = offset;
379
380 /* Default maximum number of characters in a packet body. Many
381 remote stubs have a hardwired buffer size of 400 bytes
382 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
383 as the maximum packet-size to ensure that the packet and an extra
384 NUL character can always fit in the buffer. This stops GDB
385 trashing stubs that try to squeeze an extra NUL into what is
386 already a full buffer (As of 1999-12-04 that was most stubs). */
387 rsa->remote_packet_size = 400 - 1;
388
389 /* This one is filled in when a ``g'' packet is received. */
390 rsa->actual_register_packet_size = 0;
391
392 /* Should rsa->sizeof_g_packet needs more space than the
393 default, adjust the size accordingly. Remember that each byte is
394 encoded as two characters. 32 is the overhead for the packet
395 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
396 (``$NN:G...#NN'') is a better guess, the below has been padded a
397 little. */
398 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
399 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
400
401 /* Make sure that the packet buffer is plenty big enough for
402 this architecture. */
403 if (rs->buf_size < rsa->remote_packet_size)
404 {
405 rs->buf_size = 2 * rsa->remote_packet_size;
406 rs->buf = xrealloc (rs->buf, rs->buf_size);
407 }
408
409 return rsa;
410 }
411
412 /* Return the current allowed size of a remote packet. This is
413 inferred from the current architecture, and should be used to
414 limit the length of outgoing packets. */
415 static long
416 get_remote_packet_size (void)
417 {
418 struct remote_state *rs = get_remote_state ();
419 struct remote_arch_state *rsa = get_remote_arch_state ();
420
421 if (rs->explicit_packet_size)
422 return rs->explicit_packet_size;
423
424 return rsa->remote_packet_size;
425 }
426
427 static struct packet_reg *
428 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
429 {
430 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
431 return NULL;
432 else
433 {
434 struct packet_reg *r = &rsa->regs[regnum];
435 gdb_assert (r->regnum == regnum);
436 return r;
437 }
438 }
439
440 static struct packet_reg *
441 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
442 {
443 int i;
444 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
445 {
446 struct packet_reg *r = &rsa->regs[i];
447 if (r->pnum == pnum)
448 return r;
449 }
450 return NULL;
451 }
452
453 /* FIXME: graces/2002-08-08: These variables should eventually be
454 bound to an instance of the target object (as in gdbarch-tdep()),
455 when such a thing exists. */
456
457 /* This is set to the data address of the access causing the target
458 to stop for a watchpoint. */
459 static CORE_ADDR remote_watch_data_address;
460
461 /* This is non-zero if target stopped for a watchpoint. */
462 static int remote_stopped_by_watchpoint_p;
463
464 static struct target_ops remote_ops;
465
466 static struct target_ops extended_remote_ops;
467
468 /* Temporary target ops. Just like the remote_ops and
469 extended_remote_ops, but with asynchronous support. */
470 static struct target_ops remote_async_ops;
471
472 static struct target_ops extended_async_remote_ops;
473
474 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
475 ``forever'' still use the normal timeout mechanism. This is
476 currently used by the ASYNC code to guarentee that target reads
477 during the initial connect always time-out. Once getpkt has been
478 modified to return a timeout indication and, in turn
479 remote_wait()/wait_for_inferior() have gained a timeout parameter
480 this can go away. */
481 static int wait_forever_enabled_p = 1;
482
483
484 /* This variable chooses whether to send a ^C or a break when the user
485 requests program interruption. Although ^C is usually what remote
486 systems expect, and that is the default here, sometimes a break is
487 preferable instead. */
488
489 static int remote_break;
490
491 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
492 remote_open knows that we don't have a file open when the program
493 starts. */
494 static struct serial *remote_desc = NULL;
495
496 /* This variable sets the number of bits in an address that are to be
497 sent in a memory ("M" or "m") packet. Normally, after stripping
498 leading zeros, the entire address would be sent. This variable
499 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
500 initial implementation of remote.c restricted the address sent in
501 memory packets to ``host::sizeof long'' bytes - (typically 32
502 bits). Consequently, for 64 bit targets, the upper 32 bits of an
503 address was never sent. Since fixing this bug may cause a break in
504 some remote targets this variable is principly provided to
505 facilitate backward compatibility. */
506
507 static int remote_address_size;
508
509 /* Tempoary to track who currently owns the terminal. See
510 target_async_terminal_* for more details. */
511
512 static int remote_async_terminal_ours_p;
513
514 \f
515 /* User configurable variables for the number of characters in a
516 memory read/write packet. MIN (rsa->remote_packet_size,
517 rsa->sizeof_g_packet) is the default. Some targets need smaller
518 values (fifo overruns, et.al.) and some users need larger values
519 (speed up transfers). The variables ``preferred_*'' (the user
520 request), ``current_*'' (what was actually set) and ``forced_*''
521 (Positive - a soft limit, negative - a hard limit). */
522
523 struct memory_packet_config
524 {
525 char *name;
526 long size;
527 int fixed_p;
528 };
529
530 /* Compute the current size of a read/write packet. Since this makes
531 use of ``actual_register_packet_size'' the computation is dynamic. */
532
533 static long
534 get_memory_packet_size (struct memory_packet_config *config)
535 {
536 struct remote_state *rs = get_remote_state ();
537 struct remote_arch_state *rsa = get_remote_arch_state ();
538
539 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
540 law?) that some hosts don't cope very well with large alloca()
541 calls. Eventually the alloca() code will be replaced by calls to
542 xmalloc() and make_cleanups() allowing this restriction to either
543 be lifted or removed. */
544 #ifndef MAX_REMOTE_PACKET_SIZE
545 #define MAX_REMOTE_PACKET_SIZE 16384
546 #endif
547 /* NOTE: 20 ensures we can write at least one byte. */
548 #ifndef MIN_REMOTE_PACKET_SIZE
549 #define MIN_REMOTE_PACKET_SIZE 20
550 #endif
551 long what_they_get;
552 if (config->fixed_p)
553 {
554 if (config->size <= 0)
555 what_they_get = MAX_REMOTE_PACKET_SIZE;
556 else
557 what_they_get = config->size;
558 }
559 else
560 {
561 what_they_get = get_remote_packet_size ();
562 /* Limit the packet to the size specified by the user. */
563 if (config->size > 0
564 && what_they_get > config->size)
565 what_they_get = config->size;
566
567 /* Limit it to the size of the targets ``g'' response unless we have
568 permission from the stub to use a larger packet size. */
569 if (rs->explicit_packet_size == 0
570 && rsa->actual_register_packet_size > 0
571 && what_they_get > rsa->actual_register_packet_size)
572 what_they_get = rsa->actual_register_packet_size;
573 }
574 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
575 what_they_get = MAX_REMOTE_PACKET_SIZE;
576 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
577 what_they_get = MIN_REMOTE_PACKET_SIZE;
578
579 /* Make sure there is room in the global buffer for this packet
580 (including its trailing NUL byte). */
581 if (rs->buf_size < what_they_get + 1)
582 {
583 rs->buf_size = 2 * what_they_get;
584 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
585 }
586
587 return what_they_get;
588 }
589
590 /* Update the size of a read/write packet. If they user wants
591 something really big then do a sanity check. */
592
593 static void
594 set_memory_packet_size (char *args, struct memory_packet_config *config)
595 {
596 int fixed_p = config->fixed_p;
597 long size = config->size;
598 if (args == NULL)
599 error (_("Argument required (integer, `fixed' or `limited')."));
600 else if (strcmp (args, "hard") == 0
601 || strcmp (args, "fixed") == 0)
602 fixed_p = 1;
603 else if (strcmp (args, "soft") == 0
604 || strcmp (args, "limit") == 0)
605 fixed_p = 0;
606 else
607 {
608 char *end;
609 size = strtoul (args, &end, 0);
610 if (args == end)
611 error (_("Invalid %s (bad syntax)."), config->name);
612 #if 0
613 /* Instead of explicitly capping the size of a packet to
614 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
615 instead allowed to set the size to something arbitrarily
616 large. */
617 if (size > MAX_REMOTE_PACKET_SIZE)
618 error (_("Invalid %s (too large)."), config->name);
619 #endif
620 }
621 /* Extra checks? */
622 if (fixed_p && !config->fixed_p)
623 {
624 if (! query (_("The target may not be able to correctly handle a %s\n"
625 "of %ld bytes. Change the packet size? "),
626 config->name, size))
627 error (_("Packet size not changed."));
628 }
629 /* Update the config. */
630 config->fixed_p = fixed_p;
631 config->size = size;
632 }
633
634 static void
635 show_memory_packet_size (struct memory_packet_config *config)
636 {
637 printf_filtered (_("The %s is %ld. "), config->name, config->size);
638 if (config->fixed_p)
639 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
640 get_memory_packet_size (config));
641 else
642 printf_filtered (_("Packets are limited to %ld bytes.\n"),
643 get_memory_packet_size (config));
644 }
645
646 static struct memory_packet_config memory_write_packet_config =
647 {
648 "memory-write-packet-size",
649 };
650
651 static void
652 set_memory_write_packet_size (char *args, int from_tty)
653 {
654 set_memory_packet_size (args, &memory_write_packet_config);
655 }
656
657 static void
658 show_memory_write_packet_size (char *args, int from_tty)
659 {
660 show_memory_packet_size (&memory_write_packet_config);
661 }
662
663 static long
664 get_memory_write_packet_size (void)
665 {
666 return get_memory_packet_size (&memory_write_packet_config);
667 }
668
669 static struct memory_packet_config memory_read_packet_config =
670 {
671 "memory-read-packet-size",
672 };
673
674 static void
675 set_memory_read_packet_size (char *args, int from_tty)
676 {
677 set_memory_packet_size (args, &memory_read_packet_config);
678 }
679
680 static void
681 show_memory_read_packet_size (char *args, int from_tty)
682 {
683 show_memory_packet_size (&memory_read_packet_config);
684 }
685
686 static long
687 get_memory_read_packet_size (void)
688 {
689 long size = get_memory_packet_size (&memory_read_packet_config);
690 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
691 extra buffer size argument before the memory read size can be
692 increased beyond this. */
693 if (size > get_remote_packet_size ())
694 size = get_remote_packet_size ();
695 return size;
696 }
697
698 \f
699 /* Generic configuration support for packets the stub optionally
700 supports. Allows the user to specify the use of the packet as well
701 as allowing GDB to auto-detect support in the remote stub. */
702
703 enum packet_support
704 {
705 PACKET_SUPPORT_UNKNOWN = 0,
706 PACKET_ENABLE,
707 PACKET_DISABLE
708 };
709
710 struct packet_config
711 {
712 const char *name;
713 const char *title;
714 enum auto_boolean detect;
715 enum packet_support support;
716 };
717
718 /* Analyze a packet's return value and update the packet config
719 accordingly. */
720
721 enum packet_result
722 {
723 PACKET_ERROR,
724 PACKET_OK,
725 PACKET_UNKNOWN
726 };
727
728 static void
729 update_packet_config (struct packet_config *config)
730 {
731 switch (config->detect)
732 {
733 case AUTO_BOOLEAN_TRUE:
734 config->support = PACKET_ENABLE;
735 break;
736 case AUTO_BOOLEAN_FALSE:
737 config->support = PACKET_DISABLE;
738 break;
739 case AUTO_BOOLEAN_AUTO:
740 config->support = PACKET_SUPPORT_UNKNOWN;
741 break;
742 }
743 }
744
745 static void
746 show_packet_config_cmd (struct packet_config *config)
747 {
748 char *support = "internal-error";
749 switch (config->support)
750 {
751 case PACKET_ENABLE:
752 support = "enabled";
753 break;
754 case PACKET_DISABLE:
755 support = "disabled";
756 break;
757 case PACKET_SUPPORT_UNKNOWN:
758 support = "unknown";
759 break;
760 }
761 switch (config->detect)
762 {
763 case AUTO_BOOLEAN_AUTO:
764 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
765 config->name, support);
766 break;
767 case AUTO_BOOLEAN_TRUE:
768 case AUTO_BOOLEAN_FALSE:
769 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
770 config->name, support);
771 break;
772 }
773 }
774
775 static void
776 add_packet_config_cmd (struct packet_config *config, const char *name,
777 const char *title, int legacy)
778 {
779 char *set_doc;
780 char *show_doc;
781 char *cmd_name;
782
783 config->name = name;
784 config->title = title;
785 config->detect = AUTO_BOOLEAN_AUTO;
786 config->support = PACKET_SUPPORT_UNKNOWN;
787 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
788 name, title);
789 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
790 name, title);
791 /* set/show TITLE-packet {auto,on,off} */
792 cmd_name = xstrprintf ("%s-packet", title);
793 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
794 &config->detect, set_doc, show_doc, NULL, /* help_doc */
795 set_remote_protocol_packet_cmd,
796 show_remote_protocol_packet_cmd,
797 &remote_set_cmdlist, &remote_show_cmdlist);
798 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
799 if (legacy)
800 {
801 char *legacy_name;
802 legacy_name = xstrprintf ("%s-packet", name);
803 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
804 &remote_set_cmdlist);
805 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
806 &remote_show_cmdlist);
807 }
808 }
809
810 static enum packet_result
811 packet_check_result (const char *buf)
812 {
813 if (buf[0] != '\0')
814 {
815 /* The stub recognized the packet request. Check that the
816 operation succeeded. */
817 if (buf[0] == 'E'
818 && isxdigit (buf[1]) && isxdigit (buf[2])
819 && buf[3] == '\0')
820 /* "Enn" - definitly an error. */
821 return PACKET_ERROR;
822
823 /* Always treat "E." as an error. This will be used for
824 more verbose error messages, such as E.memtypes. */
825 if (buf[0] == 'E' && buf[1] == '.')
826 return PACKET_ERROR;
827
828 /* The packet may or may not be OK. Just assume it is. */
829 return PACKET_OK;
830 }
831 else
832 /* The stub does not support the packet. */
833 return PACKET_UNKNOWN;
834 }
835
836 static enum packet_result
837 packet_ok (const char *buf, struct packet_config *config)
838 {
839 enum packet_result result;
840
841 result = packet_check_result (buf);
842 switch (result)
843 {
844 case PACKET_OK:
845 case PACKET_ERROR:
846 /* The stub recognized the packet request. */
847 switch (config->support)
848 {
849 case PACKET_SUPPORT_UNKNOWN:
850 if (remote_debug)
851 fprintf_unfiltered (gdb_stdlog,
852 "Packet %s (%s) is supported\n",
853 config->name, config->title);
854 config->support = PACKET_ENABLE;
855 break;
856 case PACKET_DISABLE:
857 internal_error (__FILE__, __LINE__,
858 _("packet_ok: attempt to use a disabled packet"));
859 break;
860 case PACKET_ENABLE:
861 break;
862 }
863 break;
864 case PACKET_UNKNOWN:
865 /* The stub does not support the packet. */
866 switch (config->support)
867 {
868 case PACKET_ENABLE:
869 if (config->detect == AUTO_BOOLEAN_AUTO)
870 /* If the stub previously indicated that the packet was
871 supported then there is a protocol error.. */
872 error (_("Protocol error: %s (%s) conflicting enabled responses."),
873 config->name, config->title);
874 else
875 /* The user set it wrong. */
876 error (_("Enabled packet %s (%s) not recognized by stub"),
877 config->name, config->title);
878 break;
879 case PACKET_SUPPORT_UNKNOWN:
880 if (remote_debug)
881 fprintf_unfiltered (gdb_stdlog,
882 "Packet %s (%s) is NOT supported\n",
883 config->name, config->title);
884 config->support = PACKET_DISABLE;
885 break;
886 case PACKET_DISABLE:
887 break;
888 }
889 break;
890 }
891
892 return result;
893 }
894
895 enum {
896 PACKET_vCont = 0,
897 PACKET_X,
898 PACKET_qSymbol,
899 PACKET_P,
900 PACKET_p,
901 PACKET_Z0,
902 PACKET_Z1,
903 PACKET_Z2,
904 PACKET_Z3,
905 PACKET_Z4,
906 PACKET_qXfer_auxv,
907 PACKET_qXfer_features,
908 PACKET_qXfer_libraries,
909 PACKET_qXfer_memory_map,
910 PACKET_qXfer_spu_read,
911 PACKET_qXfer_spu_write,
912 PACKET_qGetTLSAddr,
913 PACKET_qSupported,
914 PACKET_QPassSignals,
915 PACKET_MAX
916 };
917
918 static struct packet_config remote_protocol_packets[PACKET_MAX];
919
920 static void
921 set_remote_protocol_packet_cmd (char *args, int from_tty,
922 struct cmd_list_element *c)
923 {
924 struct packet_config *packet;
925
926 for (packet = remote_protocol_packets;
927 packet < &remote_protocol_packets[PACKET_MAX];
928 packet++)
929 {
930 if (&packet->detect == c->var)
931 {
932 update_packet_config (packet);
933 return;
934 }
935 }
936 internal_error (__FILE__, __LINE__, "Could not find config for %s",
937 c->name);
938 }
939
940 static void
941 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
942 struct cmd_list_element *c,
943 const char *value)
944 {
945 struct packet_config *packet;
946
947 for (packet = remote_protocol_packets;
948 packet < &remote_protocol_packets[PACKET_MAX];
949 packet++)
950 {
951 if (&packet->detect == c->var)
952 {
953 show_packet_config_cmd (packet);
954 return;
955 }
956 }
957 internal_error (__FILE__, __LINE__, "Could not find config for %s",
958 c->name);
959 }
960
961 /* Should we try one of the 'Z' requests? */
962
963 enum Z_packet_type
964 {
965 Z_PACKET_SOFTWARE_BP,
966 Z_PACKET_HARDWARE_BP,
967 Z_PACKET_WRITE_WP,
968 Z_PACKET_READ_WP,
969 Z_PACKET_ACCESS_WP,
970 NR_Z_PACKET_TYPES
971 };
972
973 /* For compatibility with older distributions. Provide a ``set remote
974 Z-packet ...'' command that updates all the Z packet types. */
975
976 static enum auto_boolean remote_Z_packet_detect;
977
978 static void
979 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
980 struct cmd_list_element *c)
981 {
982 int i;
983 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
984 {
985 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
986 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
987 }
988 }
989
990 static void
991 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
992 struct cmd_list_element *c,
993 const char *value)
994 {
995 int i;
996 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
997 {
998 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
999 }
1000 }
1001
1002 /* Should we try the 'ThreadInfo' query packet?
1003
1004 This variable (NOT available to the user: auto-detect only!)
1005 determines whether GDB will use the new, simpler "ThreadInfo"
1006 query or the older, more complex syntax for thread queries.
1007 This is an auto-detect variable (set to true at each connect,
1008 and set to false when the target fails to recognize it). */
1009
1010 static int use_threadinfo_query;
1011 static int use_threadextra_query;
1012
1013 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1014 static struct async_signal_handler *sigint_remote_twice_token;
1015 static struct async_signal_handler *sigint_remote_token;
1016
1017 /* These are pointers to hook functions that may be set in order to
1018 modify resume/wait behavior for a particular architecture. */
1019
1020 void (*deprecated_target_resume_hook) (void);
1021 void (*deprecated_target_wait_loop_hook) (void);
1022 \f
1023
1024
1025 /* These are the threads which we last sent to the remote system.
1026 -1 for all or -2 for not sent yet. */
1027 static int general_thread;
1028 static int continue_thread;
1029
1030 /* Call this function as a result of
1031 1) A halt indication (T packet) containing a thread id
1032 2) A direct query of currthread
1033 3) Successful execution of set thread
1034 */
1035
1036 static void
1037 record_currthread (int currthread)
1038 {
1039 general_thread = currthread;
1040
1041 /* If this is a new thread, add it to GDB's thread list.
1042 If we leave it up to WFI to do this, bad things will happen. */
1043 if (!in_thread_list (pid_to_ptid (currthread)))
1044 {
1045 add_thread (pid_to_ptid (currthread));
1046 ui_out_text (uiout, "[New ");
1047 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1048 ui_out_text (uiout, "]\n");
1049 }
1050 }
1051
1052 static char *last_pass_packet;
1053
1054 /* If 'QPassSignals' is supported, tell the remote stub what signals
1055 it can simply pass through to the inferior without reporting. */
1056
1057 static void
1058 remote_pass_signals (void)
1059 {
1060 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1061 {
1062 char *pass_packet, *p;
1063 int numsigs = (int) TARGET_SIGNAL_LAST;
1064 int count = 0, i;
1065
1066 gdb_assert (numsigs < 256);
1067 for (i = 0; i < numsigs; i++)
1068 {
1069 if (signal_stop_state (i) == 0
1070 && signal_print_state (i) == 0
1071 && signal_pass_state (i) == 1)
1072 count++;
1073 }
1074 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1075 strcpy (pass_packet, "QPassSignals:");
1076 p = pass_packet + strlen (pass_packet);
1077 for (i = 0; i < numsigs; i++)
1078 {
1079 if (signal_stop_state (i) == 0
1080 && signal_print_state (i) == 0
1081 && signal_pass_state (i) == 1)
1082 {
1083 if (i >= 16)
1084 *p++ = tohex (i >> 4);
1085 *p++ = tohex (i & 15);
1086 if (count)
1087 *p++ = ';';
1088 else
1089 break;
1090 count--;
1091 }
1092 }
1093 *p = 0;
1094 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1095 {
1096 struct remote_state *rs = get_remote_state ();
1097 char *buf = rs->buf;
1098
1099 putpkt (pass_packet);
1100 getpkt (&rs->buf, &rs->buf_size, 0);
1101 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1102 if (last_pass_packet)
1103 xfree (last_pass_packet);
1104 last_pass_packet = pass_packet;
1105 }
1106 else
1107 xfree (pass_packet);
1108 }
1109 }
1110
1111 #define MAGIC_NULL_PID 42000
1112
1113 static void
1114 set_thread (int th, int gen)
1115 {
1116 struct remote_state *rs = get_remote_state ();
1117 char *buf = rs->buf;
1118 int state = gen ? general_thread : continue_thread;
1119
1120 if (state == th)
1121 return;
1122
1123 buf[0] = 'H';
1124 buf[1] = gen ? 'g' : 'c';
1125 if (th == MAGIC_NULL_PID)
1126 {
1127 buf[2] = '0';
1128 buf[3] = '\0';
1129 }
1130 else if (th < 0)
1131 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1132 else
1133 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1134 putpkt (buf);
1135 getpkt (&rs->buf, &rs->buf_size, 0);
1136 if (gen)
1137 general_thread = th;
1138 else
1139 continue_thread = th;
1140 }
1141 \f
1142 /* Return nonzero if the thread TH is still alive on the remote system. */
1143
1144 static int
1145 remote_thread_alive (ptid_t ptid)
1146 {
1147 struct remote_state *rs = get_remote_state ();
1148 int tid = PIDGET (ptid);
1149
1150 if (tid < 0)
1151 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1152 else
1153 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1154 putpkt (rs->buf);
1155 getpkt (&rs->buf, &rs->buf_size, 0);
1156 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1157 }
1158
1159 /* About these extended threadlist and threadinfo packets. They are
1160 variable length packets but, the fields within them are often fixed
1161 length. They are redundent enough to send over UDP as is the
1162 remote protocol in general. There is a matching unit test module
1163 in libstub. */
1164
1165 #define OPAQUETHREADBYTES 8
1166
1167 /* a 64 bit opaque identifier */
1168 typedef unsigned char threadref[OPAQUETHREADBYTES];
1169
1170 /* WARNING: This threadref data structure comes from the remote O.S.,
1171 libstub protocol encoding, and remote.c. it is not particularly
1172 changable. */
1173
1174 /* Right now, the internal structure is int. We want it to be bigger.
1175 Plan to fix this.
1176 */
1177
1178 typedef int gdb_threadref; /* Internal GDB thread reference. */
1179
1180 /* gdb_ext_thread_info is an internal GDB data structure which is
1181 equivalent to the reply of the remote threadinfo packet. */
1182
1183 struct gdb_ext_thread_info
1184 {
1185 threadref threadid; /* External form of thread reference. */
1186 int active; /* Has state interesting to GDB?
1187 regs, stack. */
1188 char display[256]; /* Brief state display, name,
1189 blocked/suspended. */
1190 char shortname[32]; /* To be used to name threads. */
1191 char more_display[256]; /* Long info, statistics, queue depth,
1192 whatever. */
1193 };
1194
1195 /* The volume of remote transfers can be limited by submitting
1196 a mask containing bits specifying the desired information.
1197 Use a union of these values as the 'selection' parameter to
1198 get_thread_info. FIXME: Make these TAG names more thread specific.
1199 */
1200
1201 #define TAG_THREADID 1
1202 #define TAG_EXISTS 2
1203 #define TAG_DISPLAY 4
1204 #define TAG_THREADNAME 8
1205 #define TAG_MOREDISPLAY 16
1206
1207 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1208
1209 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1210
1211 static char *unpack_nibble (char *buf, int *val);
1212
1213 static char *pack_nibble (char *buf, int nibble);
1214
1215 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1216
1217 static char *unpack_byte (char *buf, int *value);
1218
1219 static char *pack_int (char *buf, int value);
1220
1221 static char *unpack_int (char *buf, int *value);
1222
1223 static char *unpack_string (char *src, char *dest, int length);
1224
1225 static char *pack_threadid (char *pkt, threadref *id);
1226
1227 static char *unpack_threadid (char *inbuf, threadref *id);
1228
1229 void int_to_threadref (threadref *id, int value);
1230
1231 static int threadref_to_int (threadref *ref);
1232
1233 static void copy_threadref (threadref *dest, threadref *src);
1234
1235 static int threadmatch (threadref *dest, threadref *src);
1236
1237 static char *pack_threadinfo_request (char *pkt, int mode,
1238 threadref *id);
1239
1240 static int remote_unpack_thread_info_response (char *pkt,
1241 threadref *expectedref,
1242 struct gdb_ext_thread_info
1243 *info);
1244
1245
1246 static int remote_get_threadinfo (threadref *threadid,
1247 int fieldset, /*TAG mask */
1248 struct gdb_ext_thread_info *info);
1249
1250 static char *pack_threadlist_request (char *pkt, int startflag,
1251 int threadcount,
1252 threadref *nextthread);
1253
1254 static int parse_threadlist_response (char *pkt,
1255 int result_limit,
1256 threadref *original_echo,
1257 threadref *resultlist,
1258 int *doneflag);
1259
1260 static int remote_get_threadlist (int startflag,
1261 threadref *nextthread,
1262 int result_limit,
1263 int *done,
1264 int *result_count,
1265 threadref *threadlist);
1266
1267 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1268
1269 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1270 void *context, int looplimit);
1271
1272 static int remote_newthread_step (threadref *ref, void *context);
1273
1274 /* Encode 64 bits in 16 chars of hex. */
1275
1276 static const char hexchars[] = "0123456789abcdef";
1277
1278 static int
1279 ishex (int ch, int *val)
1280 {
1281 if ((ch >= 'a') && (ch <= 'f'))
1282 {
1283 *val = ch - 'a' + 10;
1284 return 1;
1285 }
1286 if ((ch >= 'A') && (ch <= 'F'))
1287 {
1288 *val = ch - 'A' + 10;
1289 return 1;
1290 }
1291 if ((ch >= '0') && (ch <= '9'))
1292 {
1293 *val = ch - '0';
1294 return 1;
1295 }
1296 return 0;
1297 }
1298
1299 static int
1300 stubhex (int ch)
1301 {
1302 if (ch >= 'a' && ch <= 'f')
1303 return ch - 'a' + 10;
1304 if (ch >= '0' && ch <= '9')
1305 return ch - '0';
1306 if (ch >= 'A' && ch <= 'F')
1307 return ch - 'A' + 10;
1308 return -1;
1309 }
1310
1311 static int
1312 stub_unpack_int (char *buff, int fieldlength)
1313 {
1314 int nibble;
1315 int retval = 0;
1316
1317 while (fieldlength)
1318 {
1319 nibble = stubhex (*buff++);
1320 retval |= nibble;
1321 fieldlength--;
1322 if (fieldlength)
1323 retval = retval << 4;
1324 }
1325 return retval;
1326 }
1327
1328 char *
1329 unpack_varlen_hex (char *buff, /* packet to parse */
1330 ULONGEST *result)
1331 {
1332 int nibble;
1333 ULONGEST retval = 0;
1334
1335 while (ishex (*buff, &nibble))
1336 {
1337 buff++;
1338 retval = retval << 4;
1339 retval |= nibble & 0x0f;
1340 }
1341 *result = retval;
1342 return buff;
1343 }
1344
1345 static char *
1346 unpack_nibble (char *buf, int *val)
1347 {
1348 ishex (*buf++, val);
1349 return buf;
1350 }
1351
1352 static char *
1353 pack_nibble (char *buf, int nibble)
1354 {
1355 *buf++ = hexchars[(nibble & 0x0f)];
1356 return buf;
1357 }
1358
1359 static char *
1360 pack_hex_byte (char *pkt, int byte)
1361 {
1362 *pkt++ = hexchars[(byte >> 4) & 0xf];
1363 *pkt++ = hexchars[(byte & 0xf)];
1364 return pkt;
1365 }
1366
1367 static char *
1368 unpack_byte (char *buf, int *value)
1369 {
1370 *value = stub_unpack_int (buf, 2);
1371 return buf + 2;
1372 }
1373
1374 static char *
1375 pack_int (char *buf, int value)
1376 {
1377 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1378 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1379 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1380 buf = pack_hex_byte (buf, (value & 0xff));
1381 return buf;
1382 }
1383
1384 static char *
1385 unpack_int (char *buf, int *value)
1386 {
1387 *value = stub_unpack_int (buf, 8);
1388 return buf + 8;
1389 }
1390
1391 #if 0 /* Currently unused, uncomment when needed. */
1392 static char *pack_string (char *pkt, char *string);
1393
1394 static char *
1395 pack_string (char *pkt, char *string)
1396 {
1397 char ch;
1398 int len;
1399
1400 len = strlen (string);
1401 if (len > 200)
1402 len = 200; /* Bigger than most GDB packets, junk??? */
1403 pkt = pack_hex_byte (pkt, len);
1404 while (len-- > 0)
1405 {
1406 ch = *string++;
1407 if ((ch == '\0') || (ch == '#'))
1408 ch = '*'; /* Protect encapsulation. */
1409 *pkt++ = ch;
1410 }
1411 return pkt;
1412 }
1413 #endif /* 0 (unused) */
1414
1415 static char *
1416 unpack_string (char *src, char *dest, int length)
1417 {
1418 while (length--)
1419 *dest++ = *src++;
1420 *dest = '\0';
1421 return src;
1422 }
1423
1424 static char *
1425 pack_threadid (char *pkt, threadref *id)
1426 {
1427 char *limit;
1428 unsigned char *altid;
1429
1430 altid = (unsigned char *) id;
1431 limit = pkt + BUF_THREAD_ID_SIZE;
1432 while (pkt < limit)
1433 pkt = pack_hex_byte (pkt, *altid++);
1434 return pkt;
1435 }
1436
1437
1438 static char *
1439 unpack_threadid (char *inbuf, threadref *id)
1440 {
1441 char *altref;
1442 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1443 int x, y;
1444
1445 altref = (char *) id;
1446
1447 while (inbuf < limit)
1448 {
1449 x = stubhex (*inbuf++);
1450 y = stubhex (*inbuf++);
1451 *altref++ = (x << 4) | y;
1452 }
1453 return inbuf;
1454 }
1455
1456 /* Externally, threadrefs are 64 bits but internally, they are still
1457 ints. This is due to a mismatch of specifications. We would like
1458 to use 64bit thread references internally. This is an adapter
1459 function. */
1460
1461 void
1462 int_to_threadref (threadref *id, int value)
1463 {
1464 unsigned char *scan;
1465
1466 scan = (unsigned char *) id;
1467 {
1468 int i = 4;
1469 while (i--)
1470 *scan++ = 0;
1471 }
1472 *scan++ = (value >> 24) & 0xff;
1473 *scan++ = (value >> 16) & 0xff;
1474 *scan++ = (value >> 8) & 0xff;
1475 *scan++ = (value & 0xff);
1476 }
1477
1478 static int
1479 threadref_to_int (threadref *ref)
1480 {
1481 int i, value = 0;
1482 unsigned char *scan;
1483
1484 scan = *ref;
1485 scan += 4;
1486 i = 4;
1487 while (i-- > 0)
1488 value = (value << 8) | ((*scan++) & 0xff);
1489 return value;
1490 }
1491
1492 static void
1493 copy_threadref (threadref *dest, threadref *src)
1494 {
1495 int i;
1496 unsigned char *csrc, *cdest;
1497
1498 csrc = (unsigned char *) src;
1499 cdest = (unsigned char *) dest;
1500 i = 8;
1501 while (i--)
1502 *cdest++ = *csrc++;
1503 }
1504
1505 static int
1506 threadmatch (threadref *dest, threadref *src)
1507 {
1508 /* Things are broken right now, so just assume we got a match. */
1509 #if 0
1510 unsigned char *srcp, *destp;
1511 int i, result;
1512 srcp = (char *) src;
1513 destp = (char *) dest;
1514
1515 result = 1;
1516 while (i-- > 0)
1517 result &= (*srcp++ == *destp++) ? 1 : 0;
1518 return result;
1519 #endif
1520 return 1;
1521 }
1522
1523 /*
1524 threadid:1, # always request threadid
1525 context_exists:2,
1526 display:4,
1527 unique_name:8,
1528 more_display:16
1529 */
1530
1531 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1532
1533 static char *
1534 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1535 {
1536 *pkt++ = 'q'; /* Info Query */
1537 *pkt++ = 'P'; /* process or thread info */
1538 pkt = pack_int (pkt, mode); /* mode */
1539 pkt = pack_threadid (pkt, id); /* threadid */
1540 *pkt = '\0'; /* terminate */
1541 return pkt;
1542 }
1543
1544 /* These values tag the fields in a thread info response packet. */
1545 /* Tagging the fields allows us to request specific fields and to
1546 add more fields as time goes by. */
1547
1548 #define TAG_THREADID 1 /* Echo the thread identifier. */
1549 #define TAG_EXISTS 2 /* Is this process defined enough to
1550 fetch registers and its stack? */
1551 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1552 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1553 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1554 the process. */
1555
1556 static int
1557 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1558 struct gdb_ext_thread_info *info)
1559 {
1560 struct remote_state *rs = get_remote_state ();
1561 int mask, length;
1562 int tag;
1563 threadref ref;
1564 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1565 int retval = 1;
1566
1567 /* info->threadid = 0; FIXME: implement zero_threadref. */
1568 info->active = 0;
1569 info->display[0] = '\0';
1570 info->shortname[0] = '\0';
1571 info->more_display[0] = '\0';
1572
1573 /* Assume the characters indicating the packet type have been
1574 stripped. */
1575 pkt = unpack_int (pkt, &mask); /* arg mask */
1576 pkt = unpack_threadid (pkt, &ref);
1577
1578 if (mask == 0)
1579 warning (_("Incomplete response to threadinfo request."));
1580 if (!threadmatch (&ref, expectedref))
1581 { /* This is an answer to a different request. */
1582 warning (_("ERROR RMT Thread info mismatch."));
1583 return 0;
1584 }
1585 copy_threadref (&info->threadid, &ref);
1586
1587 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1588
1589 /* Packets are terminated with nulls. */
1590 while ((pkt < limit) && mask && *pkt)
1591 {
1592 pkt = unpack_int (pkt, &tag); /* tag */
1593 pkt = unpack_byte (pkt, &length); /* length */
1594 if (!(tag & mask)) /* Tags out of synch with mask. */
1595 {
1596 warning (_("ERROR RMT: threadinfo tag mismatch."));
1597 retval = 0;
1598 break;
1599 }
1600 if (tag == TAG_THREADID)
1601 {
1602 if (length != 16)
1603 {
1604 warning (_("ERROR RMT: length of threadid is not 16."));
1605 retval = 0;
1606 break;
1607 }
1608 pkt = unpack_threadid (pkt, &ref);
1609 mask = mask & ~TAG_THREADID;
1610 continue;
1611 }
1612 if (tag == TAG_EXISTS)
1613 {
1614 info->active = stub_unpack_int (pkt, length);
1615 pkt += length;
1616 mask = mask & ~(TAG_EXISTS);
1617 if (length > 8)
1618 {
1619 warning (_("ERROR RMT: 'exists' length too long."));
1620 retval = 0;
1621 break;
1622 }
1623 continue;
1624 }
1625 if (tag == TAG_THREADNAME)
1626 {
1627 pkt = unpack_string (pkt, &info->shortname[0], length);
1628 mask = mask & ~TAG_THREADNAME;
1629 continue;
1630 }
1631 if (tag == TAG_DISPLAY)
1632 {
1633 pkt = unpack_string (pkt, &info->display[0], length);
1634 mask = mask & ~TAG_DISPLAY;
1635 continue;
1636 }
1637 if (tag == TAG_MOREDISPLAY)
1638 {
1639 pkt = unpack_string (pkt, &info->more_display[0], length);
1640 mask = mask & ~TAG_MOREDISPLAY;
1641 continue;
1642 }
1643 warning (_("ERROR RMT: unknown thread info tag."));
1644 break; /* Not a tag we know about. */
1645 }
1646 return retval;
1647 }
1648
1649 static int
1650 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1651 struct gdb_ext_thread_info *info)
1652 {
1653 struct remote_state *rs = get_remote_state ();
1654 int result;
1655
1656 pack_threadinfo_request (rs->buf, fieldset, threadid);
1657 putpkt (rs->buf);
1658 getpkt (&rs->buf, &rs->buf_size, 0);
1659 result = remote_unpack_thread_info_response (rs->buf + 2,
1660 threadid, info);
1661 return result;
1662 }
1663
1664 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1665
1666 static char *
1667 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1668 threadref *nextthread)
1669 {
1670 *pkt++ = 'q'; /* info query packet */
1671 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1672 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1673 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1674 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1675 *pkt = '\0';
1676 return pkt;
1677 }
1678
1679 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1680
1681 static int
1682 parse_threadlist_response (char *pkt, int result_limit,
1683 threadref *original_echo, threadref *resultlist,
1684 int *doneflag)
1685 {
1686 struct remote_state *rs = get_remote_state ();
1687 char *limit;
1688 int count, resultcount, done;
1689
1690 resultcount = 0;
1691 /* Assume the 'q' and 'M chars have been stripped. */
1692 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1693 /* done parse past here */
1694 pkt = unpack_byte (pkt, &count); /* count field */
1695 pkt = unpack_nibble (pkt, &done);
1696 /* The first threadid is the argument threadid. */
1697 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1698 while ((count-- > 0) && (pkt < limit))
1699 {
1700 pkt = unpack_threadid (pkt, resultlist++);
1701 if (resultcount++ >= result_limit)
1702 break;
1703 }
1704 if (doneflag)
1705 *doneflag = done;
1706 return resultcount;
1707 }
1708
1709 static int
1710 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1711 int *done, int *result_count, threadref *threadlist)
1712 {
1713 struct remote_state *rs = get_remote_state ();
1714 static threadref echo_nextthread;
1715 int result = 1;
1716
1717 /* Trancate result limit to be smaller than the packet size. */
1718 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1719 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1720
1721 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1722 putpkt (rs->buf);
1723 getpkt (&rs->buf, &rs->buf_size, 0);
1724
1725 *result_count =
1726 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1727 threadlist, done);
1728
1729 if (!threadmatch (&echo_nextthread, nextthread))
1730 {
1731 /* FIXME: This is a good reason to drop the packet. */
1732 /* Possably, there is a duplicate response. */
1733 /* Possabilities :
1734 retransmit immediatly - race conditions
1735 retransmit after timeout - yes
1736 exit
1737 wait for packet, then exit
1738 */
1739 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1740 return 0; /* I choose simply exiting. */
1741 }
1742 if (*result_count <= 0)
1743 {
1744 if (*done != 1)
1745 {
1746 warning (_("RMT ERROR : failed to get remote thread list."));
1747 result = 0;
1748 }
1749 return result; /* break; */
1750 }
1751 if (*result_count > result_limit)
1752 {
1753 *result_count = 0;
1754 warning (_("RMT ERROR: threadlist response longer than requested."));
1755 return 0;
1756 }
1757 return result;
1758 }
1759
1760 /* This is the interface between remote and threads, remotes upper
1761 interface. */
1762
1763 /* remote_find_new_threads retrieves the thread list and for each
1764 thread in the list, looks up the thread in GDB's internal list,
1765 ading the thread if it does not already exist. This involves
1766 getting partial thread lists from the remote target so, polling the
1767 quit_flag is required. */
1768
1769
1770 /* About this many threadisds fit in a packet. */
1771
1772 #define MAXTHREADLISTRESULTS 32
1773
1774 static int
1775 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1776 int looplimit)
1777 {
1778 int done, i, result_count;
1779 int startflag = 1;
1780 int result = 1;
1781 int loopcount = 0;
1782 static threadref nextthread;
1783 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1784
1785 done = 0;
1786 while (!done)
1787 {
1788 if (loopcount++ > looplimit)
1789 {
1790 result = 0;
1791 warning (_("Remote fetch threadlist -infinite loop-."));
1792 break;
1793 }
1794 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1795 &done, &result_count, resultthreadlist))
1796 {
1797 result = 0;
1798 break;
1799 }
1800 /* Clear for later iterations. */
1801 startflag = 0;
1802 /* Setup to resume next batch of thread references, set nextthread. */
1803 if (result_count >= 1)
1804 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1805 i = 0;
1806 while (result_count--)
1807 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1808 break;
1809 }
1810 return result;
1811 }
1812
1813 static int
1814 remote_newthread_step (threadref *ref, void *context)
1815 {
1816 ptid_t ptid;
1817
1818 ptid = pid_to_ptid (threadref_to_int (ref));
1819
1820 if (!in_thread_list (ptid))
1821 add_thread (ptid);
1822 return 1; /* continue iterator */
1823 }
1824
1825 #define CRAZY_MAX_THREADS 1000
1826
1827 static ptid_t
1828 remote_current_thread (ptid_t oldpid)
1829 {
1830 struct remote_state *rs = get_remote_state ();
1831
1832 putpkt ("qC");
1833 getpkt (&rs->buf, &rs->buf_size, 0);
1834 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1835 /* Use strtoul here, so we'll correctly parse values whose highest
1836 bit is set. The protocol carries them as a simple series of
1837 hex digits; in the absence of a sign, strtol will see such
1838 values as positive numbers out of range for signed 'long', and
1839 return LONG_MAX to indicate an overflow. */
1840 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1841 else
1842 return oldpid;
1843 }
1844
1845 /* Find new threads for info threads command.
1846 * Original version, using John Metzler's thread protocol.
1847 */
1848
1849 static void
1850 remote_find_new_threads (void)
1851 {
1852 remote_threadlist_iterator (remote_newthread_step, 0,
1853 CRAZY_MAX_THREADS);
1854 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1855 inferior_ptid = remote_current_thread (inferior_ptid);
1856 }
1857
1858 /*
1859 * Find all threads for info threads command.
1860 * Uses new thread protocol contributed by Cisco.
1861 * Falls back and attempts to use the older method (above)
1862 * if the target doesn't respond to the new method.
1863 */
1864
1865 static void
1866 remote_threads_info (void)
1867 {
1868 struct remote_state *rs = get_remote_state ();
1869 char *bufp;
1870 int tid;
1871
1872 if (remote_desc == 0) /* paranoia */
1873 error (_("Command can only be used when connected to the remote target."));
1874
1875 if (use_threadinfo_query)
1876 {
1877 putpkt ("qfThreadInfo");
1878 getpkt (&rs->buf, &rs->buf_size, 0);
1879 bufp = rs->buf;
1880 if (bufp[0] != '\0') /* q packet recognized */
1881 {
1882 while (*bufp++ == 'm') /* reply contains one or more TID */
1883 {
1884 do
1885 {
1886 /* Use strtoul here, so we'll correctly parse values
1887 whose highest bit is set. The protocol carries
1888 them as a simple series of hex digits; in the
1889 absence of a sign, strtol will see such values as
1890 positive numbers out of range for signed 'long',
1891 and return LONG_MAX to indicate an overflow. */
1892 tid = strtoul (bufp, &bufp, 16);
1893 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1894 add_thread (pid_to_ptid (tid));
1895 }
1896 while (*bufp++ == ','); /* comma-separated list */
1897 putpkt ("qsThreadInfo");
1898 getpkt (&rs->buf, &rs->buf_size, 0);
1899 bufp = rs->buf;
1900 }
1901 return; /* done */
1902 }
1903 }
1904
1905 /* Else fall back to old method based on jmetzler protocol. */
1906 use_threadinfo_query = 0;
1907 remote_find_new_threads ();
1908 return;
1909 }
1910
1911 /*
1912 * Collect a descriptive string about the given thread.
1913 * The target may say anything it wants to about the thread
1914 * (typically info about its blocked / runnable state, name, etc.).
1915 * This string will appear in the info threads display.
1916 *
1917 * Optional: targets are not required to implement this function.
1918 */
1919
1920 static char *
1921 remote_threads_extra_info (struct thread_info *tp)
1922 {
1923 struct remote_state *rs = get_remote_state ();
1924 int result;
1925 int set;
1926 threadref id;
1927 struct gdb_ext_thread_info threadinfo;
1928 static char display_buf[100]; /* arbitrary... */
1929 int n = 0; /* position in display_buf */
1930
1931 if (remote_desc == 0) /* paranoia */
1932 internal_error (__FILE__, __LINE__,
1933 _("remote_threads_extra_info"));
1934
1935 if (use_threadextra_query)
1936 {
1937 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1938 PIDGET (tp->ptid));
1939 putpkt (rs->buf);
1940 getpkt (&rs->buf, &rs->buf_size, 0);
1941 if (rs->buf[0] != 0)
1942 {
1943 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1944 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1945 display_buf [result] = '\0';
1946 return display_buf;
1947 }
1948 }
1949
1950 /* If the above query fails, fall back to the old method. */
1951 use_threadextra_query = 0;
1952 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1953 | TAG_MOREDISPLAY | TAG_DISPLAY;
1954 int_to_threadref (&id, PIDGET (tp->ptid));
1955 if (remote_get_threadinfo (&id, set, &threadinfo))
1956 if (threadinfo.active)
1957 {
1958 if (*threadinfo.shortname)
1959 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1960 " Name: %s,", threadinfo.shortname);
1961 if (*threadinfo.display)
1962 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1963 " State: %s,", threadinfo.display);
1964 if (*threadinfo.more_display)
1965 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1966 " Priority: %s", threadinfo.more_display);
1967
1968 if (n > 0)
1969 {
1970 /* For purely cosmetic reasons, clear up trailing commas. */
1971 if (',' == display_buf[n-1])
1972 display_buf[n-1] = ' ';
1973 return display_buf;
1974 }
1975 }
1976 return NULL;
1977 }
1978 \f
1979
1980 /* Restart the remote side; this is an extended protocol operation. */
1981
1982 static void
1983 extended_remote_restart (void)
1984 {
1985 struct remote_state *rs = get_remote_state ();
1986
1987 /* Send the restart command; for reasons I don't understand the
1988 remote side really expects a number after the "R". */
1989 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1990 putpkt (rs->buf);
1991
1992 remote_fileio_reset ();
1993
1994 /* Now query for status so this looks just like we restarted
1995 gdbserver from scratch. */
1996 putpkt ("?");
1997 getpkt (&rs->buf, &rs->buf_size, 0);
1998 }
1999 \f
2000 /* Clean up connection to a remote debugger. */
2001
2002 static void
2003 remote_close (int quitting)
2004 {
2005 if (remote_desc)
2006 serial_close (remote_desc);
2007 remote_desc = NULL;
2008 }
2009
2010 /* Query the remote side for the text, data and bss offsets. */
2011
2012 static void
2013 get_offsets (void)
2014 {
2015 struct remote_state *rs = get_remote_state ();
2016 char *buf;
2017 char *ptr;
2018 int lose, num_segments = 0, do_sections, do_segments;
2019 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2020 struct section_offsets *offs;
2021 struct symfile_segment_data *data;
2022
2023 if (symfile_objfile == NULL)
2024 return;
2025
2026 putpkt ("qOffsets");
2027 getpkt (&rs->buf, &rs->buf_size, 0);
2028 buf = rs->buf;
2029
2030 if (buf[0] == '\000')
2031 return; /* Return silently. Stub doesn't support
2032 this command. */
2033 if (buf[0] == 'E')
2034 {
2035 warning (_("Remote failure reply: %s"), buf);
2036 return;
2037 }
2038
2039 /* Pick up each field in turn. This used to be done with scanf, but
2040 scanf will make trouble if CORE_ADDR size doesn't match
2041 conversion directives correctly. The following code will work
2042 with any size of CORE_ADDR. */
2043 text_addr = data_addr = bss_addr = 0;
2044 ptr = buf;
2045 lose = 0;
2046
2047 if (strncmp (ptr, "Text=", 5) == 0)
2048 {
2049 ptr += 5;
2050 /* Don't use strtol, could lose on big values. */
2051 while (*ptr && *ptr != ';')
2052 text_addr = (text_addr << 4) + fromhex (*ptr++);
2053
2054 if (strncmp (ptr, ";Data=", 6) == 0)
2055 {
2056 ptr += 6;
2057 while (*ptr && *ptr != ';')
2058 data_addr = (data_addr << 4) + fromhex (*ptr++);
2059 }
2060 else
2061 lose = 1;
2062
2063 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2064 {
2065 ptr += 5;
2066 while (*ptr && *ptr != ';')
2067 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2068
2069 if (bss_addr != data_addr)
2070 warning (_("Target reported unsupported offsets: %s"), buf);
2071 }
2072 else
2073 lose = 1;
2074 }
2075 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2076 {
2077 ptr += 8;
2078 /* Don't use strtol, could lose on big values. */
2079 while (*ptr && *ptr != ';')
2080 text_addr = (text_addr << 4) + fromhex (*ptr++);
2081 num_segments = 1;
2082
2083 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2084 {
2085 ptr += 9;
2086 while (*ptr && *ptr != ';')
2087 data_addr = (data_addr << 4) + fromhex (*ptr++);
2088 num_segments++;
2089 }
2090 }
2091 else
2092 lose = 1;
2093
2094 if (lose)
2095 error (_("Malformed response to offset query, %s"), buf);
2096 else if (*ptr != '\0')
2097 warning (_("Target reported unsupported offsets: %s"), buf);
2098
2099 offs = ((struct section_offsets *)
2100 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2101 memcpy (offs, symfile_objfile->section_offsets,
2102 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2103
2104 data = get_symfile_segment_data (symfile_objfile->obfd);
2105 do_segments = (data != NULL);
2106 do_sections = num_segments == 0;
2107
2108 /* Text= and Data= specify offsets for the text and data sections,
2109 but symfile_map_offsets_to_segments expects base addresses
2110 instead of offsets. If we have two segments, we can still
2111 try to relocate the whole segments instead of just ".text"
2112 and ".data". */
2113 if (num_segments == 0)
2114 {
2115 do_sections = 1;
2116 if (data == NULL || data->num_segments != 2)
2117 do_segments = 0;
2118 else
2119 {
2120 segments[0] = data->segment_bases[0] + text_addr;
2121 segments[1] = data->segment_bases[1] + data_addr;
2122 }
2123 }
2124 else
2125 {
2126 do_sections = 0;
2127 segments[0] = text_addr;
2128 segments[1] = data_addr;
2129 }
2130
2131 if (do_segments)
2132 {
2133 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2134 offs, num_segments, segments);
2135
2136 if (ret == 0 && !do_sections)
2137 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2138
2139 if (ret > 0)
2140 do_sections = 0;
2141 }
2142
2143 free_symfile_segment_data (data);
2144
2145 if (do_sections)
2146 {
2147 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2148
2149 /* This is a temporary kludge to force data and bss to use the same offsets
2150 because that's what nlmconv does now. The real solution requires changes
2151 to the stub and remote.c that I don't have time to do right now. */
2152
2153 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2154 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2155 }
2156
2157 objfile_relocate (symfile_objfile, offs);
2158 }
2159
2160 /* Stub for catch_exception. */
2161
2162 static void
2163 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2164 {
2165 int from_tty = * (int *) from_tty_p;
2166
2167 immediate_quit++; /* Allow user to interrupt it. */
2168
2169 /* Ack any packet which the remote side has already sent. */
2170 serial_write (remote_desc, "+", 1);
2171
2172 /* Let the stub know that we want it to return the thread. */
2173 set_thread (-1, 0);
2174
2175 inferior_ptid = remote_current_thread (inferior_ptid);
2176
2177 get_offsets (); /* Get text, data & bss offsets. */
2178
2179 putpkt ("?"); /* Initiate a query from remote machine. */
2180 immediate_quit--;
2181
2182 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2183 }
2184
2185 /* Open a connection to a remote debugger.
2186 NAME is the filename used for communication. */
2187
2188 static void
2189 remote_open (char *name, int from_tty)
2190 {
2191 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2192 }
2193
2194 /* Just like remote_open, but with asynchronous support. */
2195 static void
2196 remote_async_open (char *name, int from_tty)
2197 {
2198 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2199 }
2200
2201 /* Open a connection to a remote debugger using the extended
2202 remote gdb protocol. NAME is the filename used for communication. */
2203
2204 static void
2205 extended_remote_open (char *name, int from_tty)
2206 {
2207 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2208 0 /* async_p */);
2209 }
2210
2211 /* Just like extended_remote_open, but with asynchronous support. */
2212 static void
2213 extended_remote_async_open (char *name, int from_tty)
2214 {
2215 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2216 1 /*extended_p */, 1 /* async_p */);
2217 }
2218
2219 /* Generic code for opening a connection to a remote target. */
2220
2221 static void
2222 init_all_packet_configs (void)
2223 {
2224 int i;
2225 for (i = 0; i < PACKET_MAX; i++)
2226 update_packet_config (&remote_protocol_packets[i]);
2227 }
2228
2229 /* Symbol look-up. */
2230
2231 static void
2232 remote_check_symbols (struct objfile *objfile)
2233 {
2234 struct remote_state *rs = get_remote_state ();
2235 char *msg, *reply, *tmp;
2236 struct minimal_symbol *sym;
2237 int end;
2238
2239 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2240 return;
2241
2242 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2243 because we need both at the same time. */
2244 msg = alloca (get_remote_packet_size ());
2245
2246 /* Invite target to request symbol lookups. */
2247
2248 putpkt ("qSymbol::");
2249 getpkt (&rs->buf, &rs->buf_size, 0);
2250 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2251 reply = rs->buf;
2252
2253 while (strncmp (reply, "qSymbol:", 8) == 0)
2254 {
2255 tmp = &reply[8];
2256 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2257 msg[end] = '\0';
2258 sym = lookup_minimal_symbol (msg, NULL, NULL);
2259 if (sym == NULL)
2260 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2261 else
2262 {
2263 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2264
2265 /* If this is a function address, return the start of code
2266 instead of any data function descriptor. */
2267 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2268 sym_addr,
2269 &current_target);
2270
2271 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2272 paddr_nz (sym_addr), &reply[8]);
2273 }
2274
2275 putpkt (msg);
2276 getpkt (&rs->buf, &rs->buf_size, 0);
2277 reply = rs->buf;
2278 }
2279 }
2280
2281 static struct serial *
2282 remote_serial_open (char *name)
2283 {
2284 static int udp_warning = 0;
2285
2286 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2287 of in ser-tcp.c, because it is the remote protocol assuming that the
2288 serial connection is reliable and not the serial connection promising
2289 to be. */
2290 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2291 {
2292 warning (_("\
2293 The remote protocol may be unreliable over UDP.\n\
2294 Some events may be lost, rendering further debugging impossible."));
2295 udp_warning = 1;
2296 }
2297
2298 return serial_open (name);
2299 }
2300
2301 /* This type describes each known response to the qSupported
2302 packet. */
2303 struct protocol_feature
2304 {
2305 /* The name of this protocol feature. */
2306 const char *name;
2307
2308 /* The default for this protocol feature. */
2309 enum packet_support default_support;
2310
2311 /* The function to call when this feature is reported, or after
2312 qSupported processing if the feature is not supported.
2313 The first argument points to this structure. The second
2314 argument indicates whether the packet requested support be
2315 enabled, disabled, or probed (or the default, if this function
2316 is being called at the end of processing and this feature was
2317 not reported). The third argument may be NULL; if not NULL, it
2318 is a NUL-terminated string taken from the packet following
2319 this feature's name and an equals sign. */
2320 void (*func) (const struct protocol_feature *, enum packet_support,
2321 const char *);
2322
2323 /* The corresponding packet for this feature. Only used if
2324 FUNC is remote_supported_packet. */
2325 int packet;
2326 };
2327
2328 static void
2329 remote_supported_packet (const struct protocol_feature *feature,
2330 enum packet_support support,
2331 const char *argument)
2332 {
2333 if (argument)
2334 {
2335 warning (_("Remote qSupported response supplied an unexpected value for"
2336 " \"%s\"."), feature->name);
2337 return;
2338 }
2339
2340 if (remote_protocol_packets[feature->packet].support
2341 == PACKET_SUPPORT_UNKNOWN)
2342 remote_protocol_packets[feature->packet].support = support;
2343 }
2344
2345 static void
2346 remote_packet_size (const struct protocol_feature *feature,
2347 enum packet_support support, const char *value)
2348 {
2349 struct remote_state *rs = get_remote_state ();
2350
2351 int packet_size;
2352 char *value_end;
2353
2354 if (support != PACKET_ENABLE)
2355 return;
2356
2357 if (value == NULL || *value == '\0')
2358 {
2359 warning (_("Remote target reported \"%s\" without a size."),
2360 feature->name);
2361 return;
2362 }
2363
2364 errno = 0;
2365 packet_size = strtol (value, &value_end, 16);
2366 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2367 {
2368 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2369 feature->name, value);
2370 return;
2371 }
2372
2373 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2374 {
2375 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2376 packet_size, MAX_REMOTE_PACKET_SIZE);
2377 packet_size = MAX_REMOTE_PACKET_SIZE;
2378 }
2379
2380 /* Record the new maximum packet size. */
2381 rs->explicit_packet_size = packet_size;
2382 }
2383
2384 static struct protocol_feature remote_protocol_features[] = {
2385 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2386 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2387 PACKET_qXfer_auxv },
2388 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2389 PACKET_qXfer_features },
2390 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2391 PACKET_qXfer_libraries },
2392 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2393 PACKET_qXfer_memory_map },
2394 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2395 PACKET_qXfer_spu_read },
2396 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2397 PACKET_qXfer_spu_write },
2398 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2399 PACKET_QPassSignals },
2400 };
2401
2402 static void
2403 remote_query_supported (void)
2404 {
2405 struct remote_state *rs = get_remote_state ();
2406 char *next;
2407 int i;
2408 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2409
2410 /* The packet support flags are handled differently for this packet
2411 than for most others. We treat an error, a disabled packet, and
2412 an empty response identically: any features which must be reported
2413 to be used will be automatically disabled. An empty buffer
2414 accomplishes this, since that is also the representation for a list
2415 containing no features. */
2416
2417 rs->buf[0] = 0;
2418 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2419 {
2420 putpkt ("qSupported");
2421 getpkt (&rs->buf, &rs->buf_size, 0);
2422
2423 /* If an error occured, warn, but do not return - just reset the
2424 buffer to empty and go on to disable features. */
2425 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2426 == PACKET_ERROR)
2427 {
2428 warning (_("Remote failure reply: %s"), rs->buf);
2429 rs->buf[0] = 0;
2430 }
2431 }
2432
2433 memset (seen, 0, sizeof (seen));
2434
2435 next = rs->buf;
2436 while (*next)
2437 {
2438 enum packet_support is_supported;
2439 char *p, *end, *name_end, *value;
2440
2441 /* First separate out this item from the rest of the packet. If
2442 there's another item after this, we overwrite the separator
2443 (terminated strings are much easier to work with). */
2444 p = next;
2445 end = strchr (p, ';');
2446 if (end == NULL)
2447 {
2448 end = p + strlen (p);
2449 next = end;
2450 }
2451 else
2452 {
2453 *end = '\0';
2454 next = end + 1;
2455
2456 if (end == p)
2457 {
2458 warning (_("empty item in \"qSupported\" response"));
2459 continue;
2460 }
2461 }
2462
2463 name_end = strchr (p, '=');
2464 if (name_end)
2465 {
2466 /* This is a name=value entry. */
2467 is_supported = PACKET_ENABLE;
2468 value = name_end + 1;
2469 *name_end = '\0';
2470 }
2471 else
2472 {
2473 value = NULL;
2474 switch (end[-1])
2475 {
2476 case '+':
2477 is_supported = PACKET_ENABLE;
2478 break;
2479
2480 case '-':
2481 is_supported = PACKET_DISABLE;
2482 break;
2483
2484 case '?':
2485 is_supported = PACKET_SUPPORT_UNKNOWN;
2486 break;
2487
2488 default:
2489 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2490 continue;
2491 }
2492 end[-1] = '\0';
2493 }
2494
2495 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2496 if (strcmp (remote_protocol_features[i].name, p) == 0)
2497 {
2498 const struct protocol_feature *feature;
2499
2500 seen[i] = 1;
2501 feature = &remote_protocol_features[i];
2502 feature->func (feature, is_supported, value);
2503 break;
2504 }
2505 }
2506
2507 /* If we increased the packet size, make sure to increase the global
2508 buffer size also. We delay this until after parsing the entire
2509 qSupported packet, because this is the same buffer we were
2510 parsing. */
2511 if (rs->buf_size < rs->explicit_packet_size)
2512 {
2513 rs->buf_size = rs->explicit_packet_size;
2514 rs->buf = xrealloc (rs->buf, rs->buf_size);
2515 }
2516
2517 /* Handle the defaults for unmentioned features. */
2518 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2519 if (!seen[i])
2520 {
2521 const struct protocol_feature *feature;
2522
2523 feature = &remote_protocol_features[i];
2524 feature->func (feature, feature->default_support, NULL);
2525 }
2526 }
2527
2528
2529 static void
2530 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2531 int extended_p, int async_p)
2532 {
2533 struct remote_state *rs = get_remote_state ();
2534 if (name == 0)
2535 error (_("To open a remote debug connection, you need to specify what\n"
2536 "serial device is attached to the remote system\n"
2537 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2538
2539 /* See FIXME above. */
2540 if (!async_p)
2541 wait_forever_enabled_p = 1;
2542
2543 target_preopen (from_tty);
2544
2545 unpush_target (target);
2546
2547 /* Make sure we send the passed signals list the next time we resume. */
2548 xfree (last_pass_packet);
2549 last_pass_packet = NULL;
2550
2551 remote_fileio_reset ();
2552 reopen_exec_file ();
2553 reread_symbols ();
2554
2555 remote_desc = remote_serial_open (name);
2556 if (!remote_desc)
2557 perror_with_name (name);
2558
2559 if (baud_rate != -1)
2560 {
2561 if (serial_setbaudrate (remote_desc, baud_rate))
2562 {
2563 /* The requested speed could not be set. Error out to
2564 top level after closing remote_desc. Take care to
2565 set remote_desc to NULL to avoid closing remote_desc
2566 more than once. */
2567 serial_close (remote_desc);
2568 remote_desc = NULL;
2569 perror_with_name (name);
2570 }
2571 }
2572
2573 serial_raw (remote_desc);
2574
2575 /* If there is something sitting in the buffer we might take it as a
2576 response to a command, which would be bad. */
2577 serial_flush_input (remote_desc);
2578
2579 if (from_tty)
2580 {
2581 puts_filtered ("Remote debugging using ");
2582 puts_filtered (name);
2583 puts_filtered ("\n");
2584 }
2585 push_target (target); /* Switch to using remote target now. */
2586
2587 /* Reset the target state; these things will be queried either by
2588 remote_query_supported or as they are needed. */
2589 init_all_packet_configs ();
2590 rs->explicit_packet_size = 0;
2591
2592 general_thread = -2;
2593 continue_thread = -2;
2594
2595 /* Probe for ability to use "ThreadInfo" query, as required. */
2596 use_threadinfo_query = 1;
2597 use_threadextra_query = 1;
2598
2599 /* The first packet we send to the target is the optional "supported
2600 packets" request. If the target can answer this, it will tell us
2601 which later probes to skip. */
2602 remote_query_supported ();
2603
2604 /* Next, if the target can specify a description, read it. We do
2605 this before anything involving memory or registers. */
2606 target_find_description ();
2607
2608 /* Without this, some commands which require an active target (such
2609 as kill) won't work. This variable serves (at least) double duty
2610 as both the pid of the target process (if it has such), and as a
2611 flag indicating that a target is active. These functions should
2612 be split out into seperate variables, especially since GDB will
2613 someday have a notion of debugging several processes. */
2614
2615 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2616
2617 if (async_p)
2618 {
2619 /* With this target we start out by owning the terminal. */
2620 remote_async_terminal_ours_p = 1;
2621
2622 /* FIXME: cagney/1999-09-23: During the initial connection it is
2623 assumed that the target is already ready and able to respond to
2624 requests. Unfortunately remote_start_remote() eventually calls
2625 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2626 around this. Eventually a mechanism that allows
2627 wait_for_inferior() to expect/get timeouts will be
2628 implemented. */
2629 wait_forever_enabled_p = 0;
2630 }
2631
2632 /* First delete any symbols previously loaded from shared libraries. */
2633 no_shared_libraries (NULL, 0);
2634
2635 /* Start the remote connection. If error() or QUIT, discard this
2636 target (we'd otherwise be in an inconsistent state) and then
2637 propogate the error on up the exception chain. This ensures that
2638 the caller doesn't stumble along blindly assuming that the
2639 function succeeded. The CLI doesn't have this problem but other
2640 UI's, such as MI do.
2641
2642 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2643 this function should return an error indication letting the
2644 caller restore the previous state. Unfortunately the command
2645 ``target remote'' is directly wired to this function making that
2646 impossible. On a positive note, the CLI side of this problem has
2647 been fixed - the function set_cmd_context() makes it possible for
2648 all the ``target ....'' commands to share a common callback
2649 function. See cli-dump.c. */
2650 {
2651 struct gdb_exception ex
2652 = catch_exception (uiout, remote_start_remote, &from_tty,
2653 RETURN_MASK_ALL);
2654 if (ex.reason < 0)
2655 {
2656 pop_target ();
2657 if (async_p)
2658 wait_forever_enabled_p = 1;
2659 throw_exception (ex);
2660 }
2661 }
2662
2663 if (async_p)
2664 wait_forever_enabled_p = 1;
2665
2666 if (extended_p)
2667 {
2668 /* Tell the remote that we are using the extended protocol. */
2669 putpkt ("!");
2670 getpkt (&rs->buf, &rs->buf_size, 0);
2671 }
2672
2673 if (exec_bfd) /* No use without an exec file. */
2674 remote_check_symbols (symfile_objfile);
2675 }
2676
2677 /* This takes a program previously attached to and detaches it. After
2678 this is done, GDB can be used to debug some other program. We
2679 better not have left any breakpoints in the target program or it'll
2680 die when it hits one. */
2681
2682 static void
2683 remote_detach (char *args, int from_tty)
2684 {
2685 struct remote_state *rs = get_remote_state ();
2686
2687 if (args)
2688 error (_("Argument given to \"detach\" when remotely debugging."));
2689
2690 /* Tell the remote target to detach. */
2691 strcpy (rs->buf, "D");
2692 putpkt (rs->buf);
2693 getpkt (&rs->buf, &rs->buf_size, 0);
2694
2695 if (rs->buf[0] == 'E')
2696 error (_("Can't detach process."));
2697
2698 /* Unregister the file descriptor from the event loop. */
2699 if (target_is_async_p ())
2700 serial_async (remote_desc, NULL, 0);
2701
2702 target_mourn_inferior ();
2703 if (from_tty)
2704 puts_filtered ("Ending remote debugging.\n");
2705 }
2706
2707 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2708
2709 static void
2710 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2711 {
2712 if (args)
2713 error (_("Argument given to \"detach\" when remotely debugging."));
2714
2715 /* Unregister the file descriptor from the event loop. */
2716 if (target_is_async_p ())
2717 serial_async (remote_desc, NULL, 0);
2718
2719 target_mourn_inferior ();
2720 if (from_tty)
2721 puts_filtered ("Ending remote debugging.\n");
2722 }
2723
2724 /* Convert hex digit A to a number. */
2725
2726 static int
2727 fromhex (int a)
2728 {
2729 if (a >= '0' && a <= '9')
2730 return a - '0';
2731 else if (a >= 'a' && a <= 'f')
2732 return a - 'a' + 10;
2733 else if (a >= 'A' && a <= 'F')
2734 return a - 'A' + 10;
2735 else
2736 error (_("Reply contains invalid hex digit %d"), a);
2737 }
2738
2739 static int
2740 hex2bin (const char *hex, gdb_byte *bin, int count)
2741 {
2742 int i;
2743
2744 for (i = 0; i < count; i++)
2745 {
2746 if (hex[0] == 0 || hex[1] == 0)
2747 {
2748 /* Hex string is short, or of uneven length.
2749 Return the count that has been converted so far. */
2750 return i;
2751 }
2752 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2753 hex += 2;
2754 }
2755 return i;
2756 }
2757
2758 /* Convert number NIB to a hex digit. */
2759
2760 static int
2761 tohex (int nib)
2762 {
2763 if (nib < 10)
2764 return '0' + nib;
2765 else
2766 return 'a' + nib - 10;
2767 }
2768
2769 static int
2770 bin2hex (const gdb_byte *bin, char *hex, int count)
2771 {
2772 int i;
2773 /* May use a length, or a nul-terminated string as input. */
2774 if (count == 0)
2775 count = strlen ((char *) bin);
2776
2777 for (i = 0; i < count; i++)
2778 {
2779 *hex++ = tohex ((*bin >> 4) & 0xf);
2780 *hex++ = tohex (*bin++ & 0xf);
2781 }
2782 *hex = 0;
2783 return i;
2784 }
2785 \f
2786 /* Check for the availability of vCont. This function should also check
2787 the response. */
2788
2789 static void
2790 remote_vcont_probe (struct remote_state *rs)
2791 {
2792 char *buf;
2793
2794 strcpy (rs->buf, "vCont?");
2795 putpkt (rs->buf);
2796 getpkt (&rs->buf, &rs->buf_size, 0);
2797 buf = rs->buf;
2798
2799 /* Make sure that the features we assume are supported. */
2800 if (strncmp (buf, "vCont", 5) == 0)
2801 {
2802 char *p = &buf[5];
2803 int support_s, support_S, support_c, support_C;
2804
2805 support_s = 0;
2806 support_S = 0;
2807 support_c = 0;
2808 support_C = 0;
2809 while (p && *p == ';')
2810 {
2811 p++;
2812 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2813 support_s = 1;
2814 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2815 support_S = 1;
2816 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2817 support_c = 1;
2818 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2819 support_C = 1;
2820
2821 p = strchr (p, ';');
2822 }
2823
2824 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2825 BUF will make packet_ok disable the packet. */
2826 if (!support_s || !support_S || !support_c || !support_C)
2827 buf[0] = 0;
2828 }
2829
2830 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2831 }
2832
2833 /* Resume the remote inferior by using a "vCont" packet. The thread
2834 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2835 resumed thread should be single-stepped and/or signalled. If PTID's
2836 PID is -1, then all threads are resumed; the thread to be stepped and/or
2837 signalled is given in the global INFERIOR_PTID. This function returns
2838 non-zero iff it resumes the inferior.
2839
2840 This function issues a strict subset of all possible vCont commands at the
2841 moment. */
2842
2843 static int
2844 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2845 {
2846 struct remote_state *rs = get_remote_state ();
2847 int pid = PIDGET (ptid);
2848 char *buf = NULL, *outbuf;
2849 struct cleanup *old_cleanup;
2850
2851 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2852 remote_vcont_probe (rs);
2853
2854 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2855 return 0;
2856
2857 /* If we could generate a wider range of packets, we'd have to worry
2858 about overflowing BUF. Should there be a generic
2859 "multi-part-packet" packet? */
2860
2861 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2862 {
2863 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2864 don't have any PID numbers the inferior will understand. Make sure
2865 to only send forms that do not specify a PID. */
2866 if (step && siggnal != TARGET_SIGNAL_0)
2867 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2868 else if (step)
2869 outbuf = xstrprintf ("vCont;s");
2870 else if (siggnal != TARGET_SIGNAL_0)
2871 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2872 else
2873 outbuf = xstrprintf ("vCont;c");
2874 }
2875 else if (pid == -1)
2876 {
2877 /* Resume all threads, with preference for INFERIOR_PTID. */
2878 if (step && siggnal != TARGET_SIGNAL_0)
2879 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2880 PIDGET (inferior_ptid));
2881 else if (step)
2882 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2883 else if (siggnal != TARGET_SIGNAL_0)
2884 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2885 PIDGET (inferior_ptid));
2886 else
2887 outbuf = xstrprintf ("vCont;c");
2888 }
2889 else
2890 {
2891 /* Scheduler locking; resume only PTID. */
2892 if (step && siggnal != TARGET_SIGNAL_0)
2893 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2894 else if (step)
2895 outbuf = xstrprintf ("vCont;s:%x", pid);
2896 else if (siggnal != TARGET_SIGNAL_0)
2897 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2898 else
2899 outbuf = xstrprintf ("vCont;c:%x", pid);
2900 }
2901
2902 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2903 old_cleanup = make_cleanup (xfree, outbuf);
2904
2905 putpkt (outbuf);
2906
2907 do_cleanups (old_cleanup);
2908
2909 return 1;
2910 }
2911
2912 /* Tell the remote machine to resume. */
2913
2914 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2915
2916 static int last_sent_step;
2917
2918 static void
2919 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2920 {
2921 struct remote_state *rs = get_remote_state ();
2922 char *buf;
2923 int pid = PIDGET (ptid);
2924
2925 last_sent_signal = siggnal;
2926 last_sent_step = step;
2927
2928 /* A hook for when we need to do something at the last moment before
2929 resumption. */
2930 if (deprecated_target_resume_hook)
2931 (*deprecated_target_resume_hook) ();
2932
2933 /* Update the inferior on signals to silently pass, if they've changed. */
2934 remote_pass_signals ();
2935
2936 /* The vCont packet doesn't need to specify threads via Hc. */
2937 if (remote_vcont_resume (ptid, step, siggnal))
2938 return;
2939
2940 /* All other supported resume packets do use Hc, so call set_thread. */
2941 if (pid == -1)
2942 set_thread (0, 0); /* Run any thread. */
2943 else
2944 set_thread (pid, 0); /* Run this thread. */
2945
2946 buf = rs->buf;
2947 if (siggnal != TARGET_SIGNAL_0)
2948 {
2949 buf[0] = step ? 'S' : 'C';
2950 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2951 buf[2] = tohex (((int) siggnal) & 0xf);
2952 buf[3] = '\0';
2953 }
2954 else
2955 strcpy (buf, step ? "s" : "c");
2956
2957 putpkt (buf);
2958 }
2959
2960 /* Same as remote_resume, but with async support. */
2961 static void
2962 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2963 {
2964 remote_resume (ptid, step, siggnal);
2965
2966 /* We are about to start executing the inferior, let's register it
2967 with the event loop. NOTE: this is the one place where all the
2968 execution commands end up. We could alternatively do this in each
2969 of the execution commands in infcmd.c. */
2970 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2971 into infcmd.c in order to allow inferior function calls to work
2972 NOT asynchronously. */
2973 if (target_can_async_p ())
2974 target_async (inferior_event_handler, 0);
2975 /* Tell the world that the target is now executing. */
2976 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2977 this? Instead, should the client of target just assume (for
2978 async targets) that the target is going to start executing? Is
2979 this information already found in the continuation block? */
2980 if (target_is_async_p ())
2981 target_executing = 1;
2982 }
2983 \f
2984
2985 /* Set up the signal handler for SIGINT, while the target is
2986 executing, ovewriting the 'regular' SIGINT signal handler. */
2987 static void
2988 initialize_sigint_signal_handler (void)
2989 {
2990 sigint_remote_token =
2991 create_async_signal_handler (async_remote_interrupt, NULL);
2992 signal (SIGINT, handle_remote_sigint);
2993 }
2994
2995 /* Signal handler for SIGINT, while the target is executing. */
2996 static void
2997 handle_remote_sigint (int sig)
2998 {
2999 signal (sig, handle_remote_sigint_twice);
3000 sigint_remote_twice_token =
3001 create_async_signal_handler (async_remote_interrupt_twice, NULL);
3002 mark_async_signal_handler_wrapper (sigint_remote_token);
3003 }
3004
3005 /* Signal handler for SIGINT, installed after SIGINT has already been
3006 sent once. It will take effect the second time that the user sends
3007 a ^C. */
3008 static void
3009 handle_remote_sigint_twice (int sig)
3010 {
3011 signal (sig, handle_sigint);
3012 sigint_remote_twice_token =
3013 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
3014 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3015 }
3016
3017 /* Perform the real interruption of the target execution, in response
3018 to a ^C. */
3019 static void
3020 async_remote_interrupt (gdb_client_data arg)
3021 {
3022 if (remote_debug)
3023 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3024
3025 target_stop ();
3026 }
3027
3028 /* Perform interrupt, if the first attempt did not succeed. Just give
3029 up on the target alltogether. */
3030 void
3031 async_remote_interrupt_twice (gdb_client_data arg)
3032 {
3033 if (remote_debug)
3034 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3035 /* Do something only if the target was not killed by the previous
3036 cntl-C. */
3037 if (target_executing)
3038 {
3039 interrupt_query ();
3040 signal (SIGINT, handle_remote_sigint);
3041 }
3042 }
3043
3044 /* Reinstall the usual SIGINT handlers, after the target has
3045 stopped. */
3046 static void
3047 cleanup_sigint_signal_handler (void *dummy)
3048 {
3049 signal (SIGINT, handle_sigint);
3050 if (sigint_remote_twice_token)
3051 delete_async_signal_handler (&sigint_remote_twice_token);
3052 if (sigint_remote_token)
3053 delete_async_signal_handler (&sigint_remote_token);
3054 }
3055
3056 /* Send ^C to target to halt it. Target will respond, and send us a
3057 packet. */
3058 static void (*ofunc) (int);
3059
3060 /* The command line interface's stop routine. This function is installed
3061 as a signal handler for SIGINT. The first time a user requests a
3062 stop, we call remote_stop to send a break or ^C. If there is no
3063 response from the target (it didn't stop when the user requested it),
3064 we ask the user if he'd like to detach from the target. */
3065 static void
3066 remote_interrupt (int signo)
3067 {
3068 /* If this doesn't work, try more severe steps. */
3069 signal (signo, remote_interrupt_twice);
3070
3071 if (remote_debug)
3072 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3073
3074 target_stop ();
3075 }
3076
3077 /* The user typed ^C twice. */
3078
3079 static void
3080 remote_interrupt_twice (int signo)
3081 {
3082 signal (signo, ofunc);
3083 interrupt_query ();
3084 signal (signo, remote_interrupt);
3085 }
3086
3087 /* This is the generic stop called via the target vector. When a target
3088 interrupt is requested, either by the command line or the GUI, we
3089 will eventually end up here. */
3090 static void
3091 remote_stop (void)
3092 {
3093 /* Send a break or a ^C, depending on user preference. */
3094 if (remote_debug)
3095 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3096
3097 if (remote_break)
3098 serial_send_break (remote_desc);
3099 else
3100 serial_write (remote_desc, "\003", 1);
3101 }
3102
3103 /* Ask the user what to do when an interrupt is received. */
3104
3105 static void
3106 interrupt_query (void)
3107 {
3108 target_terminal_ours ();
3109
3110 if (query ("Interrupted while waiting for the program.\n\
3111 Give up (and stop debugging it)? "))
3112 {
3113 target_mourn_inferior ();
3114 deprecated_throw_reason (RETURN_QUIT);
3115 }
3116
3117 target_terminal_inferior ();
3118 }
3119
3120 /* Enable/disable target terminal ownership. Most targets can use
3121 terminal groups to control terminal ownership. Remote targets are
3122 different in that explicit transfer of ownership to/from GDB/target
3123 is required. */
3124
3125 static void
3126 remote_async_terminal_inferior (void)
3127 {
3128 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3129 sync_execution here. This function should only be called when
3130 GDB is resuming the inferior in the forground. A background
3131 resume (``run&'') should leave GDB in control of the terminal and
3132 consequently should not call this code. */
3133 if (!sync_execution)
3134 return;
3135 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3136 calls target_terminal_*() idenpotent. The event-loop GDB talking
3137 to an asynchronous target with a synchronous command calls this
3138 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3139 stops trying to transfer the terminal to the target when it
3140 shouldn't this guard can go away. */
3141 if (!remote_async_terminal_ours_p)
3142 return;
3143 delete_file_handler (input_fd);
3144 remote_async_terminal_ours_p = 0;
3145 initialize_sigint_signal_handler ();
3146 /* NOTE: At this point we could also register our selves as the
3147 recipient of all input. Any characters typed could then be
3148 passed on down to the target. */
3149 }
3150
3151 static void
3152 remote_async_terminal_ours (void)
3153 {
3154 /* See FIXME in remote_async_terminal_inferior. */
3155 if (!sync_execution)
3156 return;
3157 /* See FIXME in remote_async_terminal_inferior. */
3158 if (remote_async_terminal_ours_p)
3159 return;
3160 cleanup_sigint_signal_handler (NULL);
3161 add_file_handler (input_fd, stdin_event_handler, 0);
3162 remote_async_terminal_ours_p = 1;
3163 }
3164
3165 /* If nonzero, ignore the next kill. */
3166
3167 int kill_kludge;
3168
3169 void
3170 remote_console_output (char *msg)
3171 {
3172 char *p;
3173
3174 for (p = msg; p[0] && p[1]; p += 2)
3175 {
3176 char tb[2];
3177 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3178 tb[0] = c;
3179 tb[1] = 0;
3180 fputs_unfiltered (tb, gdb_stdtarg);
3181 }
3182 gdb_flush (gdb_stdtarg);
3183 }
3184
3185 /* Wait until the remote machine stops, then return,
3186 storing status in STATUS just as `wait' would.
3187 Returns "pid", which in the case of a multi-threaded
3188 remote OS, is the thread-id. */
3189
3190 static ptid_t
3191 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3192 {
3193 struct remote_state *rs = get_remote_state ();
3194 struct remote_arch_state *rsa = get_remote_arch_state ();
3195 ULONGEST thread_num = -1;
3196 ULONGEST addr;
3197 int solibs_changed = 0;
3198
3199 status->kind = TARGET_WAITKIND_EXITED;
3200 status->value.integer = 0;
3201
3202 while (1)
3203 {
3204 char *buf, *p;
3205
3206 ofunc = signal (SIGINT, remote_interrupt);
3207 getpkt (&rs->buf, &rs->buf_size, 1);
3208 signal (SIGINT, ofunc);
3209
3210 buf = rs->buf;
3211
3212 /* This is a hook for when we need to do something (perhaps the
3213 collection of trace data) every time the target stops. */
3214 if (deprecated_target_wait_loop_hook)
3215 (*deprecated_target_wait_loop_hook) ();
3216
3217 remote_stopped_by_watchpoint_p = 0;
3218
3219 switch (buf[0])
3220 {
3221 case 'E': /* Error of some sort. */
3222 warning (_("Remote failure reply: %s"), buf);
3223 continue;
3224 case 'F': /* File-I/O request. */
3225 remote_fileio_request (buf);
3226 continue;
3227 case 'T': /* Status with PC, SP, FP, ... */
3228 {
3229 gdb_byte regs[MAX_REGISTER_SIZE];
3230
3231 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3232 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3233 ss = signal number
3234 n... = register number
3235 r... = register contents
3236 */
3237 p = &buf[3]; /* after Txx */
3238
3239 while (*p)
3240 {
3241 char *p1;
3242 char *p_temp;
3243 int fieldsize;
3244 LONGEST pnum = 0;
3245
3246 /* If the packet contains a register number save it in
3247 pnum and set p1 to point to the character following
3248 it. Otherwise p1 points to p. */
3249
3250 /* If this packet is an awatch packet, don't parse the
3251 'a' as a register number. */
3252
3253 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3254 {
3255 /* Read the ``P'' register number. */
3256 pnum = strtol (p, &p_temp, 16);
3257 p1 = p_temp;
3258 }
3259 else
3260 p1 = p;
3261
3262 if (p1 == p) /* No register number present here. */
3263 {
3264 p1 = strchr (p, ':');
3265 if (p1 == NULL)
3266 error (_("Malformed packet(a) (missing colon): %s\n\
3267 Packet: '%s'\n"),
3268 p, buf);
3269 if (strncmp (p, "thread", p1 - p) == 0)
3270 {
3271 p_temp = unpack_varlen_hex (++p1, &thread_num);
3272 record_currthread (thread_num);
3273 p = p_temp;
3274 }
3275 else if ((strncmp (p, "watch", p1 - p) == 0)
3276 || (strncmp (p, "rwatch", p1 - p) == 0)
3277 || (strncmp (p, "awatch", p1 - p) == 0))
3278 {
3279 remote_stopped_by_watchpoint_p = 1;
3280 p = unpack_varlen_hex (++p1, &addr);
3281 remote_watch_data_address = (CORE_ADDR)addr;
3282 }
3283 else if (strncmp (p, "library", p1 - p) == 0)
3284 {
3285 p1++;
3286 p_temp = p1;
3287 while (*p_temp && *p_temp != ';')
3288 p_temp++;
3289
3290 solibs_changed = 1;
3291 p = p_temp;
3292 }
3293 else
3294 {
3295 /* Silently skip unknown optional info. */
3296 p_temp = strchr (p1 + 1, ';');
3297 if (p_temp)
3298 p = p_temp;
3299 }
3300 }
3301 else
3302 {
3303 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3304 p = p1;
3305
3306 if (*p++ != ':')
3307 error (_("Malformed packet(b) (missing colon): %s\n\
3308 Packet: '%s'\n"),
3309 p, buf);
3310
3311 if (reg == NULL)
3312 error (_("Remote sent bad register number %s: %s\n\
3313 Packet: '%s'\n"),
3314 phex_nz (pnum, 0), p, buf);
3315
3316 fieldsize = hex2bin (p, regs,
3317 register_size (current_gdbarch,
3318 reg->regnum));
3319 p += 2 * fieldsize;
3320 if (fieldsize < register_size (current_gdbarch,
3321 reg->regnum))
3322 warning (_("Remote reply is too short: %s"), buf);
3323 regcache_raw_supply (get_current_regcache (),
3324 reg->regnum, regs);
3325 }
3326
3327 if (*p++ != ';')
3328 error (_("Remote register badly formatted: %s\nhere: %s"),
3329 buf, p);
3330 }
3331 }
3332 /* fall through */
3333 case 'S': /* Old style status, just signal only. */
3334 if (solibs_changed)
3335 status->kind = TARGET_WAITKIND_LOADED;
3336 else
3337 {
3338 status->kind = TARGET_WAITKIND_STOPPED;
3339 status->value.sig = (enum target_signal)
3340 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3341 }
3342
3343 if (buf[3] == 'p')
3344 {
3345 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3346 record_currthread (thread_num);
3347 }
3348 goto got_status;
3349 case 'W': /* Target exited. */
3350 {
3351 /* The remote process exited. */
3352 status->kind = TARGET_WAITKIND_EXITED;
3353 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3354 goto got_status;
3355 }
3356 case 'X':
3357 status->kind = TARGET_WAITKIND_SIGNALLED;
3358 status->value.sig = (enum target_signal)
3359 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3360 kill_kludge = 1;
3361
3362 goto got_status;
3363 case 'O': /* Console output. */
3364 remote_console_output (buf + 1);
3365 continue;
3366 case '\0':
3367 if (last_sent_signal != TARGET_SIGNAL_0)
3368 {
3369 /* Zero length reply means that we tried 'S' or 'C' and
3370 the remote system doesn't support it. */
3371 target_terminal_ours_for_output ();
3372 printf_filtered
3373 ("Can't send signals to this remote system. %s not sent.\n",
3374 target_signal_to_name (last_sent_signal));
3375 last_sent_signal = TARGET_SIGNAL_0;
3376 target_terminal_inferior ();
3377
3378 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3379 putpkt ((char *) buf);
3380 continue;
3381 }
3382 /* else fallthrough */
3383 default:
3384 warning (_("Invalid remote reply: %s"), buf);
3385 continue;
3386 }
3387 }
3388 got_status:
3389 if (thread_num != -1)
3390 {
3391 return pid_to_ptid (thread_num);
3392 }
3393 return inferior_ptid;
3394 }
3395
3396 /* Async version of remote_wait. */
3397 static ptid_t
3398 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3399 {
3400 struct remote_state *rs = get_remote_state ();
3401 struct remote_arch_state *rsa = get_remote_arch_state ();
3402 ULONGEST thread_num = -1;
3403 ULONGEST addr;
3404 int solibs_changed = 0;
3405
3406 status->kind = TARGET_WAITKIND_EXITED;
3407 status->value.integer = 0;
3408
3409 remote_stopped_by_watchpoint_p = 0;
3410
3411 while (1)
3412 {
3413 char *buf, *p;
3414
3415 if (!target_is_async_p ())
3416 ofunc = signal (SIGINT, remote_interrupt);
3417 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3418 _never_ wait for ever -> test on target_is_async_p().
3419 However, before we do that we need to ensure that the caller
3420 knows how to take the target into/out of async mode. */
3421 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3422 if (!target_is_async_p ())
3423 signal (SIGINT, ofunc);
3424
3425 buf = rs->buf;
3426
3427 /* This is a hook for when we need to do something (perhaps the
3428 collection of trace data) every time the target stops. */
3429 if (deprecated_target_wait_loop_hook)
3430 (*deprecated_target_wait_loop_hook) ();
3431
3432 switch (buf[0])
3433 {
3434 case 'E': /* Error of some sort. */
3435 warning (_("Remote failure reply: %s"), buf);
3436 continue;
3437 case 'F': /* File-I/O request. */
3438 remote_fileio_request (buf);
3439 continue;
3440 case 'T': /* Status with PC, SP, FP, ... */
3441 {
3442 gdb_byte regs[MAX_REGISTER_SIZE];
3443
3444 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3445 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3446 ss = signal number
3447 n... = register number
3448 r... = register contents
3449 */
3450 p = &buf[3]; /* after Txx */
3451
3452 while (*p)
3453 {
3454 char *p1;
3455 char *p_temp;
3456 int fieldsize;
3457 long pnum = 0;
3458
3459 /* If the packet contains a register number, save it
3460 in pnum and set p1 to point to the character
3461 following it. Otherwise p1 points to p. */
3462
3463 /* If this packet is an awatch packet, don't parse the 'a'
3464 as a register number. */
3465
3466 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3467 {
3468 /* Read the register number. */
3469 pnum = strtol (p, &p_temp, 16);
3470 p1 = p_temp;
3471 }
3472 else
3473 p1 = p;
3474
3475 if (p1 == p) /* No register number present here. */
3476 {
3477 p1 = strchr (p, ':');
3478 if (p1 == NULL)
3479 error (_("Malformed packet(a) (missing colon): %s\n\
3480 Packet: '%s'\n"),
3481 p, buf);
3482 if (strncmp (p, "thread", p1 - p) == 0)
3483 {
3484 p_temp = unpack_varlen_hex (++p1, &thread_num);
3485 record_currthread (thread_num);
3486 p = p_temp;
3487 }
3488 else if ((strncmp (p, "watch", p1 - p) == 0)
3489 || (strncmp (p, "rwatch", p1 - p) == 0)
3490 || (strncmp (p, "awatch", p1 - p) == 0))
3491 {
3492 remote_stopped_by_watchpoint_p = 1;
3493 p = unpack_varlen_hex (++p1, &addr);
3494 remote_watch_data_address = (CORE_ADDR)addr;
3495 }
3496 else if (strncmp (p, "library", p1 - p) == 0)
3497 {
3498 p1++;
3499 p_temp = p1;
3500 while (*p_temp && *p_temp != ';')
3501 p_temp++;
3502
3503 solibs_changed = 1;
3504 p = p_temp;
3505 }
3506 else
3507 {
3508 /* Silently skip unknown optional info. */
3509 p_temp = strchr (p1 + 1, ';');
3510 if (p_temp)
3511 p = p_temp;
3512 }
3513 }
3514
3515 else
3516 {
3517 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3518 p = p1;
3519 if (*p++ != ':')
3520 error (_("Malformed packet(b) (missing colon): %s\n\
3521 Packet: '%s'\n"),
3522 p, buf);
3523
3524 if (reg == NULL)
3525 error (_("Remote sent bad register number %ld: %s\n\
3526 Packet: '%s'\n"),
3527 pnum, p, buf);
3528
3529 fieldsize = hex2bin (p, regs,
3530 register_size (current_gdbarch,
3531 reg->regnum));
3532 p += 2 * fieldsize;
3533 if (fieldsize < register_size (current_gdbarch,
3534 reg->regnum))
3535 warning (_("Remote reply is too short: %s"), buf);
3536 regcache_raw_supply (get_current_regcache (),
3537 reg->regnum, regs);
3538 }
3539
3540 if (*p++ != ';')
3541 error (_("Remote register badly formatted: %s\nhere: %s"),
3542 buf, p);
3543 }
3544 }
3545 /* fall through */
3546 case 'S': /* Old style status, just signal only. */
3547 if (solibs_changed)
3548 status->kind = TARGET_WAITKIND_LOADED;
3549 else
3550 {
3551 status->kind = TARGET_WAITKIND_STOPPED;
3552 status->value.sig = (enum target_signal)
3553 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3554 }
3555
3556 if (buf[3] == 'p')
3557 {
3558 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3559 record_currthread (thread_num);
3560 }
3561 goto got_status;
3562 case 'W': /* Target exited. */
3563 {
3564 /* The remote process exited. */
3565 status->kind = TARGET_WAITKIND_EXITED;
3566 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3567 goto got_status;
3568 }
3569 case 'X':
3570 status->kind = TARGET_WAITKIND_SIGNALLED;
3571 status->value.sig = (enum target_signal)
3572 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3573 kill_kludge = 1;
3574
3575 goto got_status;
3576 case 'O': /* Console output. */
3577 remote_console_output (buf + 1);
3578 /* Return immediately to the event loop. The event loop will
3579 still be waiting on the inferior afterwards. */
3580 status->kind = TARGET_WAITKIND_IGNORE;
3581 goto got_status;
3582 case '\0':
3583 if (last_sent_signal != TARGET_SIGNAL_0)
3584 {
3585 /* Zero length reply means that we tried 'S' or 'C' and
3586 the remote system doesn't support it. */
3587 target_terminal_ours_for_output ();
3588 printf_filtered
3589 ("Can't send signals to this remote system. %s not sent.\n",
3590 target_signal_to_name (last_sent_signal));
3591 last_sent_signal = TARGET_SIGNAL_0;
3592 target_terminal_inferior ();
3593
3594 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3595 putpkt ((char *) buf);
3596 continue;
3597 }
3598 /* else fallthrough */
3599 default:
3600 warning (_("Invalid remote reply: %s"), buf);
3601 continue;
3602 }
3603 }
3604 got_status:
3605 if (thread_num != -1)
3606 {
3607 return pid_to_ptid (thread_num);
3608 }
3609 return inferior_ptid;
3610 }
3611
3612 /* Fetch a single register using a 'p' packet. */
3613
3614 static int
3615 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3616 {
3617 struct remote_state *rs = get_remote_state ();
3618 char *buf, *p;
3619 char regp[MAX_REGISTER_SIZE];
3620 int i;
3621
3622 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3623 return 0;
3624
3625 if (reg->pnum == -1)
3626 return 0;
3627
3628 p = rs->buf;
3629 *p++ = 'p';
3630 p += hexnumstr (p, reg->pnum);
3631 *p++ = '\0';
3632 remote_send (&rs->buf, &rs->buf_size);
3633
3634 buf = rs->buf;
3635
3636 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3637 {
3638 case PACKET_OK:
3639 break;
3640 case PACKET_UNKNOWN:
3641 return 0;
3642 case PACKET_ERROR:
3643 error (_("Could not fetch register \"%s\""),
3644 gdbarch_register_name (current_gdbarch, reg->regnum));
3645 }
3646
3647 /* If this register is unfetchable, tell the regcache. */
3648 if (buf[0] == 'x')
3649 {
3650 regcache_raw_supply (regcache, reg->regnum, NULL);
3651 return 1;
3652 }
3653
3654 /* Otherwise, parse and supply the value. */
3655 p = buf;
3656 i = 0;
3657 while (p[0] != 0)
3658 {
3659 if (p[1] == 0)
3660 error (_("fetch_register_using_p: early buf termination"));
3661
3662 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3663 p += 2;
3664 }
3665 regcache_raw_supply (regcache, reg->regnum, regp);
3666 return 1;
3667 }
3668
3669 /* Fetch the registers included in the target's 'g' packet. */
3670
3671 static int
3672 send_g_packet (void)
3673 {
3674 struct remote_state *rs = get_remote_state ();
3675 int i, buf_len;
3676 char *p;
3677 char *regs;
3678
3679 sprintf (rs->buf, "g");
3680 remote_send (&rs->buf, &rs->buf_size);
3681
3682 /* We can get out of synch in various cases. If the first character
3683 in the buffer is not a hex character, assume that has happened
3684 and try to fetch another packet to read. */
3685 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3686 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3687 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3688 && rs->buf[0] != 'x') /* New: unavailable register value. */
3689 {
3690 if (remote_debug)
3691 fprintf_unfiltered (gdb_stdlog,
3692 "Bad register packet; fetching a new packet\n");
3693 getpkt (&rs->buf, &rs->buf_size, 0);
3694 }
3695
3696 buf_len = strlen (rs->buf);
3697
3698 /* Sanity check the received packet. */
3699 if (buf_len % 2 != 0)
3700 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3701
3702 return buf_len / 2;
3703 }
3704
3705 static void
3706 process_g_packet (struct regcache *regcache)
3707 {
3708 struct remote_state *rs = get_remote_state ();
3709 struct remote_arch_state *rsa = get_remote_arch_state ();
3710 int i, buf_len;
3711 char *p;
3712 char *regs;
3713
3714 buf_len = strlen (rs->buf);
3715
3716 /* Further sanity checks, with knowledge of the architecture. */
3717 if (buf_len > 2 * rsa->sizeof_g_packet)
3718 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3719
3720 /* Save the size of the packet sent to us by the target. It is used
3721 as a heuristic when determining the max size of packets that the
3722 target can safely receive. */
3723 if (rsa->actual_register_packet_size == 0)
3724 rsa->actual_register_packet_size = buf_len;
3725
3726 /* If this is smaller than we guessed the 'g' packet would be,
3727 update our records. A 'g' reply that doesn't include a register's
3728 value implies either that the register is not available, or that
3729 the 'p' packet must be used. */
3730 if (buf_len < 2 * rsa->sizeof_g_packet)
3731 {
3732 rsa->sizeof_g_packet = buf_len / 2;
3733
3734 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3735 {
3736 if (rsa->regs[i].pnum == -1)
3737 continue;
3738
3739 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3740 rsa->regs[i].in_g_packet = 0;
3741 else
3742 rsa->regs[i].in_g_packet = 1;
3743 }
3744 }
3745
3746 regs = alloca (rsa->sizeof_g_packet);
3747
3748 /* Unimplemented registers read as all bits zero. */
3749 memset (regs, 0, rsa->sizeof_g_packet);
3750
3751 /* Reply describes registers byte by byte, each byte encoded as two
3752 hex characters. Suck them all up, then supply them to the
3753 register cacheing/storage mechanism. */
3754
3755 p = rs->buf;
3756 for (i = 0; i < rsa->sizeof_g_packet; i++)
3757 {
3758 if (p[0] == 0 || p[1] == 0)
3759 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3760 internal_error (__FILE__, __LINE__,
3761 "unexpected end of 'g' packet reply");
3762
3763 if (p[0] == 'x' && p[1] == 'x')
3764 regs[i] = 0; /* 'x' */
3765 else
3766 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3767 p += 2;
3768 }
3769
3770 {
3771 int i;
3772 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3773 {
3774 struct packet_reg *r = &rsa->regs[i];
3775 if (r->in_g_packet)
3776 {
3777 if (r->offset * 2 >= strlen (rs->buf))
3778 /* This shouldn't happen - we adjusted in_g_packet above. */
3779 internal_error (__FILE__, __LINE__,
3780 "unexpected end of 'g' packet reply");
3781 else if (rs->buf[r->offset * 2] == 'x')
3782 {
3783 gdb_assert (r->offset * 2 < strlen (rs->buf));
3784 /* The register isn't available, mark it as such (at
3785 the same time setting the value to zero). */
3786 regcache_raw_supply (regcache, r->regnum, NULL);
3787 }
3788 else
3789 regcache_raw_supply (regcache, r->regnum,
3790 regs + r->offset);
3791 }
3792 }
3793 }
3794 }
3795
3796 static void
3797 fetch_registers_using_g (struct regcache *regcache)
3798 {
3799 send_g_packet ();
3800 process_g_packet (regcache);
3801 }
3802
3803 static void
3804 remote_fetch_registers (struct regcache *regcache, int regnum)
3805 {
3806 struct remote_state *rs = get_remote_state ();
3807 struct remote_arch_state *rsa = get_remote_arch_state ();
3808 int i;
3809
3810 set_thread (PIDGET (inferior_ptid), 1);
3811
3812 if (regnum >= 0)
3813 {
3814 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3815 gdb_assert (reg != NULL);
3816
3817 /* If this register might be in the 'g' packet, try that first -
3818 we are likely to read more than one register. If this is the
3819 first 'g' packet, we might be overly optimistic about its
3820 contents, so fall back to 'p'. */
3821 if (reg->in_g_packet)
3822 {
3823 fetch_registers_using_g (regcache);
3824 if (reg->in_g_packet)
3825 return;
3826 }
3827
3828 if (fetch_register_using_p (regcache, reg))
3829 return;
3830
3831 /* This register is not available. */
3832 regcache_raw_supply (regcache, reg->regnum, NULL);
3833
3834 return;
3835 }
3836
3837 fetch_registers_using_g (regcache);
3838
3839 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3840 if (!rsa->regs[i].in_g_packet)
3841 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3842 {
3843 /* This register is not available. */
3844 regcache_raw_supply (regcache, i, NULL);
3845 }
3846 }
3847
3848 /* Prepare to store registers. Since we may send them all (using a
3849 'G' request), we have to read out the ones we don't want to change
3850 first. */
3851
3852 static void
3853 remote_prepare_to_store (struct regcache *regcache)
3854 {
3855 struct remote_arch_state *rsa = get_remote_arch_state ();
3856 int i;
3857 gdb_byte buf[MAX_REGISTER_SIZE];
3858
3859 /* Make sure the entire registers array is valid. */
3860 switch (remote_protocol_packets[PACKET_P].support)
3861 {
3862 case PACKET_DISABLE:
3863 case PACKET_SUPPORT_UNKNOWN:
3864 /* Make sure all the necessary registers are cached. */
3865 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3866 if (rsa->regs[i].in_g_packet)
3867 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3868 break;
3869 case PACKET_ENABLE:
3870 break;
3871 }
3872 }
3873
3874 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3875 packet was not recognized. */
3876
3877 static int
3878 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3879 {
3880 struct remote_state *rs = get_remote_state ();
3881 struct remote_arch_state *rsa = get_remote_arch_state ();
3882 /* Try storing a single register. */
3883 char *buf = rs->buf;
3884 gdb_byte regp[MAX_REGISTER_SIZE];
3885 char *p;
3886
3887 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3888 return 0;
3889
3890 if (reg->pnum == -1)
3891 return 0;
3892
3893 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3894 p = buf + strlen (buf);
3895 regcache_raw_collect (regcache, reg->regnum, regp);
3896 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3897 remote_send (&rs->buf, &rs->buf_size);
3898
3899 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3900 {
3901 case PACKET_OK:
3902 return 1;
3903 case PACKET_ERROR:
3904 error (_("Could not write register \"%s\""),
3905 gdbarch_register_name (current_gdbarch, reg->regnum));
3906 case PACKET_UNKNOWN:
3907 return 0;
3908 default:
3909 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3910 }
3911 }
3912
3913 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3914 contents of the register cache buffer. FIXME: ignores errors. */
3915
3916 static void
3917 store_registers_using_G (const struct regcache *regcache)
3918 {
3919 struct remote_state *rs = get_remote_state ();
3920 struct remote_arch_state *rsa = get_remote_arch_state ();
3921 gdb_byte *regs;
3922 char *p;
3923
3924 /* Extract all the registers in the regcache copying them into a
3925 local buffer. */
3926 {
3927 int i;
3928 regs = alloca (rsa->sizeof_g_packet);
3929 memset (regs, 0, rsa->sizeof_g_packet);
3930 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3931 {
3932 struct packet_reg *r = &rsa->regs[i];
3933 if (r->in_g_packet)
3934 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3935 }
3936 }
3937
3938 /* Command describes registers byte by byte,
3939 each byte encoded as two hex characters. */
3940 p = rs->buf;
3941 *p++ = 'G';
3942 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3943 updated. */
3944 bin2hex (regs, p, rsa->sizeof_g_packet);
3945 remote_send (&rs->buf, &rs->buf_size);
3946 }
3947
3948 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3949 of the register cache buffer. FIXME: ignores errors. */
3950
3951 static void
3952 remote_store_registers (struct regcache *regcache, int regnum)
3953 {
3954 struct remote_state *rs = get_remote_state ();
3955 struct remote_arch_state *rsa = get_remote_arch_state ();
3956 int i;
3957
3958 set_thread (PIDGET (inferior_ptid), 1);
3959
3960 if (regnum >= 0)
3961 {
3962 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3963 gdb_assert (reg != NULL);
3964
3965 /* Always prefer to store registers using the 'P' packet if
3966 possible; we often change only a small number of registers.
3967 Sometimes we change a larger number; we'd need help from a
3968 higher layer to know to use 'G'. */
3969 if (store_register_using_P (regcache, reg))
3970 return;
3971
3972 /* For now, don't complain if we have no way to write the
3973 register. GDB loses track of unavailable registers too
3974 easily. Some day, this may be an error. We don't have
3975 any way to read the register, either... */
3976 if (!reg->in_g_packet)
3977 return;
3978
3979 store_registers_using_G (regcache);
3980 return;
3981 }
3982
3983 store_registers_using_G (regcache);
3984
3985 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3986 if (!rsa->regs[i].in_g_packet)
3987 if (!store_register_using_P (regcache, &rsa->regs[i]))
3988 /* See above for why we do not issue an error here. */
3989 continue;
3990 }
3991 \f
3992
3993 /* Return the number of hex digits in num. */
3994
3995 static int
3996 hexnumlen (ULONGEST num)
3997 {
3998 int i;
3999
4000 for (i = 0; num != 0; i++)
4001 num >>= 4;
4002
4003 return max (i, 1);
4004 }
4005
4006 /* Set BUF to the minimum number of hex digits representing NUM. */
4007
4008 static int
4009 hexnumstr (char *buf, ULONGEST num)
4010 {
4011 int len = hexnumlen (num);
4012 return hexnumnstr (buf, num, len);
4013 }
4014
4015
4016 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4017
4018 static int
4019 hexnumnstr (char *buf, ULONGEST num, int width)
4020 {
4021 int i;
4022
4023 buf[width] = '\0';
4024
4025 for (i = width - 1; i >= 0; i--)
4026 {
4027 buf[i] = "0123456789abcdef"[(num & 0xf)];
4028 num >>= 4;
4029 }
4030
4031 return width;
4032 }
4033
4034 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4035
4036 static CORE_ADDR
4037 remote_address_masked (CORE_ADDR addr)
4038 {
4039 int address_size = remote_address_size;
4040 /* If "remoteaddresssize" was not set, default to target address size. */
4041 if (!address_size)
4042 address_size = gdbarch_addr_bit (current_gdbarch);
4043
4044 if (address_size > 0
4045 && address_size < (sizeof (ULONGEST) * 8))
4046 {
4047 /* Only create a mask when that mask can safely be constructed
4048 in a ULONGEST variable. */
4049 ULONGEST mask = 1;
4050 mask = (mask << address_size) - 1;
4051 addr &= mask;
4052 }
4053 return addr;
4054 }
4055
4056 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4057 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4058 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4059 (which may be more than *OUT_LEN due to escape characters). The
4060 total number of bytes in the output buffer will be at most
4061 OUT_MAXLEN. */
4062
4063 static int
4064 remote_escape_output (const gdb_byte *buffer, int len,
4065 gdb_byte *out_buf, int *out_len,
4066 int out_maxlen)
4067 {
4068 int input_index, output_index;
4069
4070 output_index = 0;
4071 for (input_index = 0; input_index < len; input_index++)
4072 {
4073 gdb_byte b = buffer[input_index];
4074
4075 if (b == '$' || b == '#' || b == '}')
4076 {
4077 /* These must be escaped. */
4078 if (output_index + 2 > out_maxlen)
4079 break;
4080 out_buf[output_index++] = '}';
4081 out_buf[output_index++] = b ^ 0x20;
4082 }
4083 else
4084 {
4085 if (output_index + 1 > out_maxlen)
4086 break;
4087 out_buf[output_index++] = b;
4088 }
4089 }
4090
4091 *out_len = input_index;
4092 return output_index;
4093 }
4094
4095 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4096 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4097 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4098
4099 This function reverses remote_escape_output. It allows more
4100 escaped characters than that function does, in particular because
4101 '*' must be escaped to avoid the run-length encoding processing
4102 in reading packets. */
4103
4104 static int
4105 remote_unescape_input (const gdb_byte *buffer, int len,
4106 gdb_byte *out_buf, int out_maxlen)
4107 {
4108 int input_index, output_index;
4109 int escaped;
4110
4111 output_index = 0;
4112 escaped = 0;
4113 for (input_index = 0; input_index < len; input_index++)
4114 {
4115 gdb_byte b = buffer[input_index];
4116
4117 if (output_index + 1 > out_maxlen)
4118 {
4119 warning (_("Received too much data from remote target;"
4120 " ignoring overflow."));
4121 return output_index;
4122 }
4123
4124 if (escaped)
4125 {
4126 out_buf[output_index++] = b ^ 0x20;
4127 escaped = 0;
4128 }
4129 else if (b == '}')
4130 escaped = 1;
4131 else
4132 out_buf[output_index++] = b;
4133 }
4134
4135 if (escaped)
4136 error (_("Unmatched escape character in target response."));
4137
4138 return output_index;
4139 }
4140
4141 /* Determine whether the remote target supports binary downloading.
4142 This is accomplished by sending a no-op memory write of zero length
4143 to the target at the specified address. It does not suffice to send
4144 the whole packet, since many stubs strip the eighth bit and
4145 subsequently compute a wrong checksum, which causes real havoc with
4146 remote_write_bytes.
4147
4148 NOTE: This can still lose if the serial line is not eight-bit
4149 clean. In cases like this, the user should clear "remote
4150 X-packet". */
4151
4152 static void
4153 check_binary_download (CORE_ADDR addr)
4154 {
4155 struct remote_state *rs = get_remote_state ();
4156
4157 switch (remote_protocol_packets[PACKET_X].support)
4158 {
4159 case PACKET_DISABLE:
4160 break;
4161 case PACKET_ENABLE:
4162 break;
4163 case PACKET_SUPPORT_UNKNOWN:
4164 {
4165 char *p;
4166
4167 p = rs->buf;
4168 *p++ = 'X';
4169 p += hexnumstr (p, (ULONGEST) addr);
4170 *p++ = ',';
4171 p += hexnumstr (p, (ULONGEST) 0);
4172 *p++ = ':';
4173 *p = '\0';
4174
4175 putpkt_binary (rs->buf, (int) (p - rs->buf));
4176 getpkt (&rs->buf, &rs->buf_size, 0);
4177
4178 if (rs->buf[0] == '\0')
4179 {
4180 if (remote_debug)
4181 fprintf_unfiltered (gdb_stdlog,
4182 "binary downloading NOT suppported by target\n");
4183 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4184 }
4185 else
4186 {
4187 if (remote_debug)
4188 fprintf_unfiltered (gdb_stdlog,
4189 "binary downloading suppported by target\n");
4190 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4191 }
4192 break;
4193 }
4194 }
4195 }
4196
4197 /* Write memory data directly to the remote machine.
4198 This does not inform the data cache; the data cache uses this.
4199 HEADER is the starting part of the packet.
4200 MEMADDR is the address in the remote memory space.
4201 MYADDR is the address of the buffer in our space.
4202 LEN is the number of bytes.
4203 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4204 should send data as binary ('X'), or hex-encoded ('M').
4205
4206 The function creates packet of the form
4207 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4208
4209 where encoding of <DATA> is termined by PACKET_FORMAT.
4210
4211 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4212 are omitted.
4213
4214 Returns the number of bytes transferred, or 0 (setting errno) for
4215 error. Only transfer a single packet. */
4216
4217 static int
4218 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4219 const gdb_byte *myaddr, int len,
4220 char packet_format, int use_length)
4221 {
4222 struct remote_state *rs = get_remote_state ();
4223 char *p;
4224 char *plen = NULL;
4225 int plenlen = 0;
4226 int todo;
4227 int nr_bytes;
4228 int payload_size;
4229 int payload_length;
4230 int header_length;
4231
4232 if (packet_format != 'X' && packet_format != 'M')
4233 internal_error (__FILE__, __LINE__,
4234 "remote_write_bytes_aux: bad packet format");
4235
4236 if (len <= 0)
4237 return 0;
4238
4239 payload_size = get_memory_write_packet_size ();
4240
4241 /* The packet buffer will be large enough for the payload;
4242 get_memory_packet_size ensures this. */
4243 rs->buf[0] = '\0';
4244
4245 /* Compute the size of the actual payload by subtracting out the
4246 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4247 */
4248 payload_size -= strlen ("$,:#NN");
4249 if (!use_length)
4250 /* The comma won't be used. */
4251 payload_size += 1;
4252 header_length = strlen (header);
4253 payload_size -= header_length;
4254 payload_size -= hexnumlen (memaddr);
4255
4256 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4257
4258 strcat (rs->buf, header);
4259 p = rs->buf + strlen (header);
4260
4261 /* Compute a best guess of the number of bytes actually transfered. */
4262 if (packet_format == 'X')
4263 {
4264 /* Best guess at number of bytes that will fit. */
4265 todo = min (len, payload_size);
4266 if (use_length)
4267 payload_size -= hexnumlen (todo);
4268 todo = min (todo, payload_size);
4269 }
4270 else
4271 {
4272 /* Num bytes that will fit. */
4273 todo = min (len, payload_size / 2);
4274 if (use_length)
4275 payload_size -= hexnumlen (todo);
4276 todo = min (todo, payload_size / 2);
4277 }
4278
4279 if (todo <= 0)
4280 internal_error (__FILE__, __LINE__,
4281 _("minumum packet size too small to write data"));
4282
4283 /* If we already need another packet, then try to align the end
4284 of this packet to a useful boundary. */
4285 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4286 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4287
4288 /* Append "<memaddr>". */
4289 memaddr = remote_address_masked (memaddr);
4290 p += hexnumstr (p, (ULONGEST) memaddr);
4291
4292 if (use_length)
4293 {
4294 /* Append ",". */
4295 *p++ = ',';
4296
4297 /* Append <len>. Retain the location/size of <len>. It may need to
4298 be adjusted once the packet body has been created. */
4299 plen = p;
4300 plenlen = hexnumstr (p, (ULONGEST) todo);
4301 p += plenlen;
4302 }
4303
4304 /* Append ":". */
4305 *p++ = ':';
4306 *p = '\0';
4307
4308 /* Append the packet body. */
4309 if (packet_format == 'X')
4310 {
4311 /* Binary mode. Send target system values byte by byte, in
4312 increasing byte addresses. Only escape certain critical
4313 characters. */
4314 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4315 payload_size);
4316
4317 /* If not all TODO bytes fit, then we'll need another packet. Make
4318 a second try to keep the end of the packet aligned. Don't do
4319 this if the packet is tiny. */
4320 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4321 {
4322 int new_nr_bytes;
4323
4324 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4325 - memaddr);
4326 if (new_nr_bytes != nr_bytes)
4327 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4328 p, &nr_bytes,
4329 payload_size);
4330 }
4331
4332 p += payload_length;
4333 if (use_length && nr_bytes < todo)
4334 {
4335 /* Escape chars have filled up the buffer prematurely,
4336 and we have actually sent fewer bytes than planned.
4337 Fix-up the length field of the packet. Use the same
4338 number of characters as before. */
4339 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4340 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4341 }
4342 }
4343 else
4344 {
4345 /* Normal mode: Send target system values byte by byte, in
4346 increasing byte addresses. Each byte is encoded as a two hex
4347 value. */
4348 nr_bytes = bin2hex (myaddr, p, todo);
4349 p += 2 * nr_bytes;
4350 }
4351
4352 putpkt_binary (rs->buf, (int) (p - rs->buf));
4353 getpkt (&rs->buf, &rs->buf_size, 0);
4354
4355 if (rs->buf[0] == 'E')
4356 {
4357 /* There is no correspondance between what the remote protocol
4358 uses for errors and errno codes. We would like a cleaner way
4359 of representing errors (big enough to include errno codes,
4360 bfd_error codes, and others). But for now just return EIO. */
4361 errno = EIO;
4362 return 0;
4363 }
4364
4365 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4366 fewer bytes than we'd planned. */
4367 return nr_bytes;
4368 }
4369
4370 /* Write memory data directly to the remote machine.
4371 This does not inform the data cache; the data cache uses this.
4372 MEMADDR is the address in the remote memory space.
4373 MYADDR is the address of the buffer in our space.
4374 LEN is the number of bytes.
4375
4376 Returns number of bytes transferred, or 0 (setting errno) for
4377 error. Only transfer a single packet. */
4378
4379 int
4380 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4381 {
4382 char *packet_format = 0;
4383
4384 /* Check whether the target supports binary download. */
4385 check_binary_download (memaddr);
4386
4387 switch (remote_protocol_packets[PACKET_X].support)
4388 {
4389 case PACKET_ENABLE:
4390 packet_format = "X";
4391 break;
4392 case PACKET_DISABLE:
4393 packet_format = "M";
4394 break;
4395 case PACKET_SUPPORT_UNKNOWN:
4396 internal_error (__FILE__, __LINE__,
4397 _("remote_write_bytes: bad internal state"));
4398 default:
4399 internal_error (__FILE__, __LINE__, _("bad switch"));
4400 }
4401
4402 return remote_write_bytes_aux (packet_format,
4403 memaddr, myaddr, len, packet_format[0], 1);
4404 }
4405
4406 /* Read memory data directly from the remote machine.
4407 This does not use the data cache; the data cache uses this.
4408 MEMADDR is the address in the remote memory space.
4409 MYADDR is the address of the buffer in our space.
4410 LEN is the number of bytes.
4411
4412 Returns number of bytes transferred, or 0 for error. */
4413
4414 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4415 remote targets) shouldn't attempt to read the entire buffer.
4416 Instead it should read a single packet worth of data and then
4417 return the byte size of that packet to the caller. The caller (its
4418 caller and its callers caller ;-) already contains code for
4419 handling partial reads. */
4420
4421 int
4422 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4423 {
4424 struct remote_state *rs = get_remote_state ();
4425 int max_buf_size; /* Max size of packet output buffer. */
4426 int origlen;
4427
4428 if (len <= 0)
4429 return 0;
4430
4431 max_buf_size = get_memory_read_packet_size ();
4432 /* The packet buffer will be large enough for the payload;
4433 get_memory_packet_size ensures this. */
4434
4435 origlen = len;
4436 while (len > 0)
4437 {
4438 char *p;
4439 int todo;
4440 int i;
4441
4442 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4443
4444 /* construct "m"<memaddr>","<len>" */
4445 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4446 memaddr = remote_address_masked (memaddr);
4447 p = rs->buf;
4448 *p++ = 'm';
4449 p += hexnumstr (p, (ULONGEST) memaddr);
4450 *p++ = ',';
4451 p += hexnumstr (p, (ULONGEST) todo);
4452 *p = '\0';
4453
4454 putpkt (rs->buf);
4455 getpkt (&rs->buf, &rs->buf_size, 0);
4456
4457 if (rs->buf[0] == 'E'
4458 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4459 && rs->buf[3] == '\0')
4460 {
4461 /* There is no correspondance between what the remote
4462 protocol uses for errors and errno codes. We would like
4463 a cleaner way of representing errors (big enough to
4464 include errno codes, bfd_error codes, and others). But
4465 for now just return EIO. */
4466 errno = EIO;
4467 return 0;
4468 }
4469
4470 /* Reply describes memory byte by byte,
4471 each byte encoded as two hex characters. */
4472
4473 p = rs->buf;
4474 if ((i = hex2bin (p, myaddr, todo)) < todo)
4475 {
4476 /* Reply is short. This means that we were able to read
4477 only part of what we wanted to. */
4478 return i + (origlen - len);
4479 }
4480 myaddr += todo;
4481 memaddr += todo;
4482 len -= todo;
4483 }
4484 return origlen;
4485 }
4486 \f
4487 /* Read or write LEN bytes from inferior memory at MEMADDR,
4488 transferring to or from debugger address BUFFER. Write to inferior
4489 if SHOULD_WRITE is nonzero. Returns length of data written or
4490 read; 0 for error. TARGET is unused. */
4491
4492 static int
4493 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4494 int should_write, struct mem_attrib *attrib,
4495 struct target_ops *target)
4496 {
4497 int res;
4498
4499 if (should_write)
4500 res = remote_write_bytes (mem_addr, buffer, mem_len);
4501 else
4502 res = remote_read_bytes (mem_addr, buffer, mem_len);
4503
4504 return res;
4505 }
4506
4507 /* Sends a packet with content determined by the printf format string
4508 FORMAT and the remaining arguments, then gets the reply. Returns
4509 whether the packet was a success, a failure, or unknown. */
4510
4511 enum packet_result
4512 remote_send_printf (const char *format, ...)
4513 {
4514 struct remote_state *rs = get_remote_state ();
4515 int max_size = get_remote_packet_size ();
4516
4517 va_list ap;
4518 va_start (ap, format);
4519
4520 rs->buf[0] = '\0';
4521 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4522 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4523
4524 if (putpkt (rs->buf) < 0)
4525 error (_("Communication problem with target."));
4526
4527 rs->buf[0] = '\0';
4528 getpkt (&rs->buf, &rs->buf_size, 0);
4529
4530 return packet_check_result (rs->buf);
4531 }
4532
4533 static void
4534 restore_remote_timeout (void *p)
4535 {
4536 int value = *(int *)p;
4537 remote_timeout = value;
4538 }
4539
4540 /* Flash writing can take quite some time. We'll set
4541 effectively infinite timeout for flash operations.
4542 In future, we'll need to decide on a better approach. */
4543 static const int remote_flash_timeout = 1000;
4544
4545 static void
4546 remote_flash_erase (struct target_ops *ops,
4547 ULONGEST address, LONGEST length)
4548 {
4549 int saved_remote_timeout = remote_timeout;
4550 enum packet_result ret;
4551
4552 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4553 &saved_remote_timeout);
4554 remote_timeout = remote_flash_timeout;
4555
4556 ret = remote_send_printf ("vFlashErase:%s,%s",
4557 paddr (address),
4558 phex (length, 4));
4559 switch (ret)
4560 {
4561 case PACKET_UNKNOWN:
4562 error (_("Remote target does not support flash erase"));
4563 case PACKET_ERROR:
4564 error (_("Error erasing flash with vFlashErase packet"));
4565 default:
4566 break;
4567 }
4568
4569 do_cleanups (back_to);
4570 }
4571
4572 static LONGEST
4573 remote_flash_write (struct target_ops *ops,
4574 ULONGEST address, LONGEST length,
4575 const gdb_byte *data)
4576 {
4577 int saved_remote_timeout = remote_timeout;
4578 int ret;
4579 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4580 &saved_remote_timeout);
4581
4582 remote_timeout = remote_flash_timeout;
4583 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4584 do_cleanups (back_to);
4585
4586 return ret;
4587 }
4588
4589 static void
4590 remote_flash_done (struct target_ops *ops)
4591 {
4592 int saved_remote_timeout = remote_timeout;
4593 int ret;
4594 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4595 &saved_remote_timeout);
4596
4597 remote_timeout = remote_flash_timeout;
4598 ret = remote_send_printf ("vFlashDone");
4599 do_cleanups (back_to);
4600
4601 switch (ret)
4602 {
4603 case PACKET_UNKNOWN:
4604 error (_("Remote target does not support vFlashDone"));
4605 case PACKET_ERROR:
4606 error (_("Error finishing flash operation"));
4607 default:
4608 break;
4609 }
4610 }
4611
4612 static void
4613 remote_files_info (struct target_ops *ignore)
4614 {
4615 puts_filtered ("Debugging a target over a serial line.\n");
4616 }
4617 \f
4618 /* Stuff for dealing with the packets which are part of this protocol.
4619 See comment at top of file for details. */
4620
4621 /* Read a single character from the remote end. */
4622
4623 static int
4624 readchar (int timeout)
4625 {
4626 int ch;
4627
4628 ch = serial_readchar (remote_desc, timeout);
4629
4630 if (ch >= 0)
4631 return ch;
4632
4633 switch ((enum serial_rc) ch)
4634 {
4635 case SERIAL_EOF:
4636 target_mourn_inferior ();
4637 error (_("Remote connection closed"));
4638 /* no return */
4639 case SERIAL_ERROR:
4640 perror_with_name (_("Remote communication error"));
4641 /* no return */
4642 case SERIAL_TIMEOUT:
4643 break;
4644 }
4645 return ch;
4646 }
4647
4648 /* Send the command in *BUF to the remote machine, and read the reply
4649 into *BUF. Report an error if we get an error reply. Resize
4650 *BUF using xrealloc if necessary to hold the result, and update
4651 *SIZEOF_BUF. */
4652
4653 static void
4654 remote_send (char **buf,
4655 long *sizeof_buf)
4656 {
4657 putpkt (*buf);
4658 getpkt (buf, sizeof_buf, 0);
4659
4660 if ((*buf)[0] == 'E')
4661 error (_("Remote failure reply: %s"), *buf);
4662 }
4663
4664 /* Display a null-terminated packet on stdout, for debugging, using C
4665 string notation. */
4666
4667 static void
4668 print_packet (char *buf)
4669 {
4670 puts_filtered ("\"");
4671 fputstr_filtered (buf, '"', gdb_stdout);
4672 puts_filtered ("\"");
4673 }
4674
4675 int
4676 putpkt (char *buf)
4677 {
4678 return putpkt_binary (buf, strlen (buf));
4679 }
4680
4681 /* Send a packet to the remote machine, with error checking. The data
4682 of the packet is in BUF. The string in BUF can be at most
4683 get_remote_packet_size () - 5 to account for the $, # and checksum,
4684 and for a possible /0 if we are debugging (remote_debug) and want
4685 to print the sent packet as a string. */
4686
4687 static int
4688 putpkt_binary (char *buf, int cnt)
4689 {
4690 int i;
4691 unsigned char csum = 0;
4692 char *buf2 = alloca (cnt + 6);
4693
4694 int ch;
4695 int tcount = 0;
4696 char *p;
4697
4698 /* Copy the packet into buffer BUF2, encapsulating it
4699 and giving it a checksum. */
4700
4701 p = buf2;
4702 *p++ = '$';
4703
4704 for (i = 0; i < cnt; i++)
4705 {
4706 csum += buf[i];
4707 *p++ = buf[i];
4708 }
4709 *p++ = '#';
4710 *p++ = tohex ((csum >> 4) & 0xf);
4711 *p++ = tohex (csum & 0xf);
4712
4713 /* Send it over and over until we get a positive ack. */
4714
4715 while (1)
4716 {
4717 int started_error_output = 0;
4718
4719 if (remote_debug)
4720 {
4721 *p = '\0';
4722 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4723 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4724 fprintf_unfiltered (gdb_stdlog, "...");
4725 gdb_flush (gdb_stdlog);
4726 }
4727 if (serial_write (remote_desc, buf2, p - buf2))
4728 perror_with_name (_("putpkt: write failed"));
4729
4730 /* Read until either a timeout occurs (-2) or '+' is read. */
4731 while (1)
4732 {
4733 ch = readchar (remote_timeout);
4734
4735 if (remote_debug)
4736 {
4737 switch (ch)
4738 {
4739 case '+':
4740 case '-':
4741 case SERIAL_TIMEOUT:
4742 case '$':
4743 if (started_error_output)
4744 {
4745 putchar_unfiltered ('\n');
4746 started_error_output = 0;
4747 }
4748 }
4749 }
4750
4751 switch (ch)
4752 {
4753 case '+':
4754 if (remote_debug)
4755 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4756 return 1;
4757 case '-':
4758 if (remote_debug)
4759 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4760 case SERIAL_TIMEOUT:
4761 tcount++;
4762 if (tcount > 3)
4763 return 0;
4764 break; /* Retransmit buffer. */
4765 case '$':
4766 {
4767 if (remote_debug)
4768 fprintf_unfiltered (gdb_stdlog,
4769 "Packet instead of Ack, ignoring it\n");
4770 /* It's probably an old response sent because an ACK
4771 was lost. Gobble up the packet and ack it so it
4772 doesn't get retransmitted when we resend this
4773 packet. */
4774 skip_frame ();
4775 serial_write (remote_desc, "+", 1);
4776 continue; /* Now, go look for +. */
4777 }
4778 default:
4779 if (remote_debug)
4780 {
4781 if (!started_error_output)
4782 {
4783 started_error_output = 1;
4784 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4785 }
4786 fputc_unfiltered (ch & 0177, gdb_stdlog);
4787 }
4788 continue;
4789 }
4790 break; /* Here to retransmit. */
4791 }
4792
4793 #if 0
4794 /* This is wrong. If doing a long backtrace, the user should be
4795 able to get out next time we call QUIT, without anything as
4796 violent as interrupt_query. If we want to provide a way out of
4797 here without getting to the next QUIT, it should be based on
4798 hitting ^C twice as in remote_wait. */
4799 if (quit_flag)
4800 {
4801 quit_flag = 0;
4802 interrupt_query ();
4803 }
4804 #endif
4805 }
4806 }
4807
4808 /* Come here after finding the start of a frame when we expected an
4809 ack. Do our best to discard the rest of this packet. */
4810
4811 static void
4812 skip_frame (void)
4813 {
4814 int c;
4815
4816 while (1)
4817 {
4818 c = readchar (remote_timeout);
4819 switch (c)
4820 {
4821 case SERIAL_TIMEOUT:
4822 /* Nothing we can do. */
4823 return;
4824 case '#':
4825 /* Discard the two bytes of checksum and stop. */
4826 c = readchar (remote_timeout);
4827 if (c >= 0)
4828 c = readchar (remote_timeout);
4829
4830 return;
4831 case '*': /* Run length encoding. */
4832 /* Discard the repeat count. */
4833 c = readchar (remote_timeout);
4834 if (c < 0)
4835 return;
4836 break;
4837 default:
4838 /* A regular character. */
4839 break;
4840 }
4841 }
4842 }
4843
4844 /* Come here after finding the start of the frame. Collect the rest
4845 into *BUF, verifying the checksum, length, and handling run-length
4846 compression. NUL terminate the buffer. If there is not enough room,
4847 expand *BUF using xrealloc.
4848
4849 Returns -1 on error, number of characters in buffer (ignoring the
4850 trailing NULL) on success. (could be extended to return one of the
4851 SERIAL status indications). */
4852
4853 static long
4854 read_frame (char **buf_p,
4855 long *sizeof_buf)
4856 {
4857 unsigned char csum;
4858 long bc;
4859 int c;
4860 char *buf = *buf_p;
4861
4862 csum = 0;
4863 bc = 0;
4864
4865 while (1)
4866 {
4867 c = readchar (remote_timeout);
4868 switch (c)
4869 {
4870 case SERIAL_TIMEOUT:
4871 if (remote_debug)
4872 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4873 return -1;
4874 case '$':
4875 if (remote_debug)
4876 fputs_filtered ("Saw new packet start in middle of old one\n",
4877 gdb_stdlog);
4878 return -1; /* Start a new packet, count retries. */
4879 case '#':
4880 {
4881 unsigned char pktcsum;
4882 int check_0 = 0;
4883 int check_1 = 0;
4884
4885 buf[bc] = '\0';
4886
4887 check_0 = readchar (remote_timeout);
4888 if (check_0 >= 0)
4889 check_1 = readchar (remote_timeout);
4890
4891 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4892 {
4893 if (remote_debug)
4894 fputs_filtered ("Timeout in checksum, retrying\n",
4895 gdb_stdlog);
4896 return -1;
4897 }
4898 else if (check_0 < 0 || check_1 < 0)
4899 {
4900 if (remote_debug)
4901 fputs_filtered ("Communication error in checksum\n",
4902 gdb_stdlog);
4903 return -1;
4904 }
4905
4906 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4907 if (csum == pktcsum)
4908 return bc;
4909
4910 if (remote_debug)
4911 {
4912 fprintf_filtered (gdb_stdlog,
4913 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4914 pktcsum, csum);
4915 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4916 fputs_filtered ("\n", gdb_stdlog);
4917 }
4918 /* Number of characters in buffer ignoring trailing
4919 NULL. */
4920 return -1;
4921 }
4922 case '*': /* Run length encoding. */
4923 {
4924 int repeat;
4925 csum += c;
4926
4927 c = readchar (remote_timeout);
4928 csum += c;
4929 repeat = c - ' ' + 3; /* Compute repeat count. */
4930
4931 /* The character before ``*'' is repeated. */
4932
4933 if (repeat > 0 && repeat <= 255 && bc > 0)
4934 {
4935 if (bc + repeat - 1 >= *sizeof_buf - 1)
4936 {
4937 /* Make some more room in the buffer. */
4938 *sizeof_buf += repeat;
4939 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4940 buf = *buf_p;
4941 }
4942
4943 memset (&buf[bc], buf[bc - 1], repeat);
4944 bc += repeat;
4945 continue;
4946 }
4947
4948 buf[bc] = '\0';
4949 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4950 return -1;
4951 }
4952 default:
4953 if (bc >= *sizeof_buf - 1)
4954 {
4955 /* Make some more room in the buffer. */
4956 *sizeof_buf *= 2;
4957 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4958 buf = *buf_p;
4959 }
4960
4961 buf[bc++] = c;
4962 csum += c;
4963 continue;
4964 }
4965 }
4966 }
4967
4968 /* Read a packet from the remote machine, with error checking, and
4969 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4970 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4971 rather than timing out; this is used (in synchronous mode) to wait
4972 for a target that is is executing user code to stop. */
4973 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4974 don't have to change all the calls to getpkt to deal with the
4975 return value, because at the moment I don't know what the right
4976 thing to do it for those. */
4977 void
4978 getpkt (char **buf,
4979 long *sizeof_buf,
4980 int forever)
4981 {
4982 int timed_out;
4983
4984 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4985 }
4986
4987
4988 /* Read a packet from the remote machine, with error checking, and
4989 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4990 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4991 rather than timing out; this is used (in synchronous mode) to wait
4992 for a target that is is executing user code to stop. If FOREVER ==
4993 0, this function is allowed to time out gracefully and return an
4994 indication of this to the caller. Otherwise return the number
4995 of bytes read. */
4996 static int
4997 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4998 {
4999 int c;
5000 int tries;
5001 int timeout;
5002 int val;
5003
5004 strcpy (*buf, "timeout");
5005
5006 if (forever)
5007 {
5008 timeout = watchdog > 0 ? watchdog : -1;
5009 }
5010
5011 else
5012 timeout = remote_timeout;
5013
5014 #define MAX_TRIES 3
5015
5016 for (tries = 1; tries <= MAX_TRIES; tries++)
5017 {
5018 /* This can loop forever if the remote side sends us characters
5019 continuously, but if it pauses, we'll get a zero from
5020 readchar because of timeout. Then we'll count that as a
5021 retry. */
5022
5023 /* Note that we will only wait forever prior to the start of a
5024 packet. After that, we expect characters to arrive at a
5025 brisk pace. They should show up within remote_timeout
5026 intervals. */
5027
5028 do
5029 {
5030 c = readchar (timeout);
5031
5032 if (c == SERIAL_TIMEOUT)
5033 {
5034 if (forever) /* Watchdog went off? Kill the target. */
5035 {
5036 QUIT;
5037 target_mourn_inferior ();
5038 error (_("Watchdog has expired. Target detached."));
5039 }
5040 if (remote_debug)
5041 fputs_filtered ("Timed out.\n", gdb_stdlog);
5042 goto retry;
5043 }
5044 }
5045 while (c != '$');
5046
5047 /* We've found the start of a packet, now collect the data. */
5048
5049 val = read_frame (buf, sizeof_buf);
5050
5051 if (val >= 0)
5052 {
5053 if (remote_debug)
5054 {
5055 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5056 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5057 fprintf_unfiltered (gdb_stdlog, "\n");
5058 }
5059 serial_write (remote_desc, "+", 1);
5060 return val;
5061 }
5062
5063 /* Try the whole thing again. */
5064 retry:
5065 serial_write (remote_desc, "-", 1);
5066 }
5067
5068 /* We have tried hard enough, and just can't receive the packet.
5069 Give up. */
5070
5071 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5072 serial_write (remote_desc, "+", 1);
5073 return -1;
5074 }
5075 \f
5076 static void
5077 remote_kill (void)
5078 {
5079 /* For some mysterious reason, wait_for_inferior calls kill instead of
5080 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5081 if (kill_kludge)
5082 {
5083 kill_kludge = 0;
5084 target_mourn_inferior ();
5085 return;
5086 }
5087
5088 /* Use catch_errors so the user can quit from gdb even when we aren't on
5089 speaking terms with the remote system. */
5090 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5091
5092 /* Don't wait for it to die. I'm not really sure it matters whether
5093 we do or not. For the existing stubs, kill is a noop. */
5094 target_mourn_inferior ();
5095 }
5096
5097 /* Async version of remote_kill. */
5098 static void
5099 remote_async_kill (void)
5100 {
5101 /* Unregister the file descriptor from the event loop. */
5102 if (target_is_async_p ())
5103 serial_async (remote_desc, NULL, 0);
5104
5105 /* For some mysterious reason, wait_for_inferior calls kill instead of
5106 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5107 if (kill_kludge)
5108 {
5109 kill_kludge = 0;
5110 target_mourn_inferior ();
5111 return;
5112 }
5113
5114 /* Use catch_errors so the user can quit from gdb even when we
5115 aren't on speaking terms with the remote system. */
5116 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5117
5118 /* Don't wait for it to die. I'm not really sure it matters whether
5119 we do or not. For the existing stubs, kill is a noop. */
5120 target_mourn_inferior ();
5121 }
5122
5123 static void
5124 remote_mourn (void)
5125 {
5126 remote_mourn_1 (&remote_ops);
5127 }
5128
5129 static void
5130 remote_async_mourn (void)
5131 {
5132 remote_mourn_1 (&remote_async_ops);
5133 }
5134
5135 static void
5136 extended_remote_mourn (void)
5137 {
5138 /* We do _not_ want to mourn the target like this; this will
5139 remove the extended remote target from the target stack,
5140 and the next time the user says "run" it'll fail.
5141
5142 FIXME: What is the right thing to do here? */
5143 #if 0
5144 remote_mourn_1 (&extended_remote_ops);
5145 #endif
5146 }
5147
5148 /* Worker function for remote_mourn. */
5149 static void
5150 remote_mourn_1 (struct target_ops *target)
5151 {
5152 unpush_target (target);
5153 generic_mourn_inferior ();
5154 }
5155
5156 /* In the extended protocol we want to be able to do things like
5157 "run" and have them basically work as expected. So we need
5158 a special create_inferior function.
5159
5160 FIXME: One day add support for changing the exec file
5161 we're debugging, arguments and an environment. */
5162
5163 static void
5164 extended_remote_create_inferior (char *exec_file, char *args,
5165 char **env, int from_tty)
5166 {
5167 /* Rip out the breakpoints; we'll reinsert them after restarting
5168 the remote server. */
5169 remove_breakpoints ();
5170
5171 /* Now restart the remote server. */
5172 extended_remote_restart ();
5173
5174 /* NOTE: We don't need to recheck for a target description here; but
5175 if we gain the ability to switch the remote executable we may
5176 need to, if for instance we are running a process which requested
5177 different emulated hardware from the operating system. A
5178 concrete example of this is ARM GNU/Linux, where some binaries
5179 will have a legacy FPA coprocessor emulated and others may have
5180 access to a hardware VFP unit. */
5181
5182 /* Now put the breakpoints back in. This way we're safe if the
5183 restart function works via a unix fork on the remote side. */
5184 insert_breakpoints ();
5185
5186 /* Clean up from the last time we were running. */
5187 clear_proceed_status ();
5188 }
5189
5190 /* Async version of extended_remote_create_inferior. */
5191 static void
5192 extended_remote_async_create_inferior (char *exec_file, char *args,
5193 char **env, int from_tty)
5194 {
5195 /* Rip out the breakpoints; we'll reinsert them after restarting
5196 the remote server. */
5197 remove_breakpoints ();
5198
5199 /* If running asynchronously, register the target file descriptor
5200 with the event loop. */
5201 if (target_can_async_p ())
5202 target_async (inferior_event_handler, 0);
5203
5204 /* Now restart the remote server. */
5205 extended_remote_restart ();
5206
5207 /* NOTE: We don't need to recheck for a target description here; but
5208 if we gain the ability to switch the remote executable we may
5209 need to, if for instance we are running a process which requested
5210 different emulated hardware from the operating system. A
5211 concrete example of this is ARM GNU/Linux, where some binaries
5212 will have a legacy FPA coprocessor emulated and others may have
5213 access to a hardware VFP unit. */
5214
5215 /* Now put the breakpoints back in. This way we're safe if the
5216 restart function works via a unix fork on the remote side. */
5217 insert_breakpoints ();
5218
5219 /* Clean up from the last time we were running. */
5220 clear_proceed_status ();
5221 }
5222 \f
5223
5224 /* Insert a breakpoint. On targets that have software breakpoint
5225 support, we ask the remote target to do the work; on targets
5226 which don't, we insert a traditional memory breakpoint. */
5227
5228 static int
5229 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5230 {
5231 CORE_ADDR addr = bp_tgt->placed_address;
5232 struct remote_state *rs = get_remote_state ();
5233
5234 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5235 If it succeeds, then set the support to PACKET_ENABLE. If it
5236 fails, and the user has explicitly requested the Z support then
5237 report an error, otherwise, mark it disabled and go on. */
5238
5239 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5240 {
5241 char *p = rs->buf;
5242
5243 *(p++) = 'Z';
5244 *(p++) = '0';
5245 *(p++) = ',';
5246 gdbarch_breakpoint_from_pc
5247 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5248 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5249 p += hexnumstr (p, addr);
5250 sprintf (p, ",%d", bp_tgt->placed_size);
5251
5252 putpkt (rs->buf);
5253 getpkt (&rs->buf, &rs->buf_size, 0);
5254
5255 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5256 {
5257 case PACKET_ERROR:
5258 return -1;
5259 case PACKET_OK:
5260 return 0;
5261 case PACKET_UNKNOWN:
5262 break;
5263 }
5264 }
5265
5266 return memory_insert_breakpoint (bp_tgt);
5267 }
5268
5269 static int
5270 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5271 {
5272 CORE_ADDR addr = bp_tgt->placed_address;
5273 struct remote_state *rs = get_remote_state ();
5274 int bp_size;
5275
5276 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5277 {
5278 char *p = rs->buf;
5279
5280 *(p++) = 'z';
5281 *(p++) = '0';
5282 *(p++) = ',';
5283
5284 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5285 p += hexnumstr (p, addr);
5286 sprintf (p, ",%d", bp_tgt->placed_size);
5287
5288 putpkt (rs->buf);
5289 getpkt (&rs->buf, &rs->buf_size, 0);
5290
5291 return (rs->buf[0] == 'E');
5292 }
5293
5294 return memory_remove_breakpoint (bp_tgt);
5295 }
5296
5297 static int
5298 watchpoint_to_Z_packet (int type)
5299 {
5300 switch (type)
5301 {
5302 case hw_write:
5303 return Z_PACKET_WRITE_WP;
5304 break;
5305 case hw_read:
5306 return Z_PACKET_READ_WP;
5307 break;
5308 case hw_access:
5309 return Z_PACKET_ACCESS_WP;
5310 break;
5311 default:
5312 internal_error (__FILE__, __LINE__,
5313 _("hw_bp_to_z: bad watchpoint type %d"), type);
5314 }
5315 }
5316
5317 static int
5318 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5319 {
5320 struct remote_state *rs = get_remote_state ();
5321 char *p;
5322 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5323
5324 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5325 return -1;
5326
5327 sprintf (rs->buf, "Z%x,", packet);
5328 p = strchr (rs->buf, '\0');
5329 addr = remote_address_masked (addr);
5330 p += hexnumstr (p, (ULONGEST) addr);
5331 sprintf (p, ",%x", len);
5332
5333 putpkt (rs->buf);
5334 getpkt (&rs->buf, &rs->buf_size, 0);
5335
5336 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5337 {
5338 case PACKET_ERROR:
5339 case PACKET_UNKNOWN:
5340 return -1;
5341 case PACKET_OK:
5342 return 0;
5343 }
5344 internal_error (__FILE__, __LINE__,
5345 _("remote_insert_watchpoint: reached end of function"));
5346 }
5347
5348
5349 static int
5350 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5351 {
5352 struct remote_state *rs = get_remote_state ();
5353 char *p;
5354 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5355
5356 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5357 return -1;
5358
5359 sprintf (rs->buf, "z%x,", packet);
5360 p = strchr (rs->buf, '\0');
5361 addr = remote_address_masked (addr);
5362 p += hexnumstr (p, (ULONGEST) addr);
5363 sprintf (p, ",%x", len);
5364 putpkt (rs->buf);
5365 getpkt (&rs->buf, &rs->buf_size, 0);
5366
5367 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5368 {
5369 case PACKET_ERROR:
5370 case PACKET_UNKNOWN:
5371 return -1;
5372 case PACKET_OK:
5373 return 0;
5374 }
5375 internal_error (__FILE__, __LINE__,
5376 _("remote_remove_watchpoint: reached end of function"));
5377 }
5378
5379
5380 int remote_hw_watchpoint_limit = -1;
5381 int remote_hw_breakpoint_limit = -1;
5382
5383 static int
5384 remote_check_watch_resources (int type, int cnt, int ot)
5385 {
5386 if (type == bp_hardware_breakpoint)
5387 {
5388 if (remote_hw_breakpoint_limit == 0)
5389 return 0;
5390 else if (remote_hw_breakpoint_limit < 0)
5391 return 1;
5392 else if (cnt <= remote_hw_breakpoint_limit)
5393 return 1;
5394 }
5395 else
5396 {
5397 if (remote_hw_watchpoint_limit == 0)
5398 return 0;
5399 else if (remote_hw_watchpoint_limit < 0)
5400 return 1;
5401 else if (ot)
5402 return -1;
5403 else if (cnt <= remote_hw_watchpoint_limit)
5404 return 1;
5405 }
5406 return -1;
5407 }
5408
5409 static int
5410 remote_stopped_by_watchpoint (void)
5411 {
5412 return remote_stopped_by_watchpoint_p;
5413 }
5414
5415 extern int stepped_after_stopped_by_watchpoint;
5416
5417 static int
5418 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5419 {
5420 int rc = 0;
5421 if (remote_stopped_by_watchpoint ()
5422 || stepped_after_stopped_by_watchpoint)
5423 {
5424 *addr_p = remote_watch_data_address;
5425 rc = 1;
5426 }
5427
5428 return rc;
5429 }
5430
5431
5432 static int
5433 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5434 {
5435 CORE_ADDR addr;
5436 struct remote_state *rs = get_remote_state ();
5437 char *p = rs->buf;
5438
5439 /* The length field should be set to the size of a breakpoint
5440 instruction, even though we aren't inserting one ourselves. */
5441
5442 gdbarch_breakpoint_from_pc
5443 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5444
5445 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5446 return -1;
5447
5448 *(p++) = 'Z';
5449 *(p++) = '1';
5450 *(p++) = ',';
5451
5452 addr = remote_address_masked (bp_tgt->placed_address);
5453 p += hexnumstr (p, (ULONGEST) addr);
5454 sprintf (p, ",%x", bp_tgt->placed_size);
5455
5456 putpkt (rs->buf);
5457 getpkt (&rs->buf, &rs->buf_size, 0);
5458
5459 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5460 {
5461 case PACKET_ERROR:
5462 case PACKET_UNKNOWN:
5463 return -1;
5464 case PACKET_OK:
5465 return 0;
5466 }
5467 internal_error (__FILE__, __LINE__,
5468 _("remote_insert_hw_breakpoint: reached end of function"));
5469 }
5470
5471
5472 static int
5473 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5474 {
5475 CORE_ADDR addr;
5476 struct remote_state *rs = get_remote_state ();
5477 char *p = rs->buf;
5478
5479 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5480 return -1;
5481
5482 *(p++) = 'z';
5483 *(p++) = '1';
5484 *(p++) = ',';
5485
5486 addr = remote_address_masked (bp_tgt->placed_address);
5487 p += hexnumstr (p, (ULONGEST) addr);
5488 sprintf (p, ",%x", bp_tgt->placed_size);
5489
5490 putpkt (rs->buf);
5491 getpkt (&rs->buf, &rs->buf_size, 0);
5492
5493 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5494 {
5495 case PACKET_ERROR:
5496 case PACKET_UNKNOWN:
5497 return -1;
5498 case PACKET_OK:
5499 return 0;
5500 }
5501 internal_error (__FILE__, __LINE__,
5502 _("remote_remove_hw_breakpoint: reached end of function"));
5503 }
5504
5505 /* Some targets are only capable of doing downloads, and afterwards
5506 they switch to the remote serial protocol. This function provides
5507 a clean way to get from the download target to the remote target.
5508 It's basically just a wrapper so that we don't have to expose any
5509 of the internal workings of remote.c.
5510
5511 Prior to calling this routine, you should shutdown the current
5512 target code, else you will get the "A program is being debugged
5513 already..." message. Usually a call to pop_target() suffices. */
5514
5515 void
5516 push_remote_target (char *name, int from_tty)
5517 {
5518 printf_filtered (_("Switching to remote protocol\n"));
5519 remote_open (name, from_tty);
5520 }
5521
5522 /* Table used by the crc32 function to calcuate the checksum. */
5523
5524 static unsigned long crc32_table[256] =
5525 {0, 0};
5526
5527 static unsigned long
5528 crc32 (unsigned char *buf, int len, unsigned int crc)
5529 {
5530 if (!crc32_table[1])
5531 {
5532 /* Initialize the CRC table and the decoding table. */
5533 int i, j;
5534 unsigned int c;
5535
5536 for (i = 0; i < 256; i++)
5537 {
5538 for (c = i << 24, j = 8; j > 0; --j)
5539 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5540 crc32_table[i] = c;
5541 }
5542 }
5543
5544 while (len--)
5545 {
5546 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5547 buf++;
5548 }
5549 return crc;
5550 }
5551
5552 /* compare-sections command
5553
5554 With no arguments, compares each loadable section in the exec bfd
5555 with the same memory range on the target, and reports mismatches.
5556 Useful for verifying the image on the target against the exec file.
5557 Depends on the target understanding the new "qCRC:" request. */
5558
5559 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5560 target method (target verify memory) and generic version of the
5561 actual command. This will allow other high-level code (especially
5562 generic_load()) to make use of this target functionality. */
5563
5564 static void
5565 compare_sections_command (char *args, int from_tty)
5566 {
5567 struct remote_state *rs = get_remote_state ();
5568 asection *s;
5569 unsigned long host_crc, target_crc;
5570 extern bfd *exec_bfd;
5571 struct cleanup *old_chain;
5572 char *tmp;
5573 char *sectdata;
5574 const char *sectname;
5575 bfd_size_type size;
5576 bfd_vma lma;
5577 int matched = 0;
5578 int mismatched = 0;
5579
5580 if (!exec_bfd)
5581 error (_("command cannot be used without an exec file"));
5582 if (!current_target.to_shortname ||
5583 strcmp (current_target.to_shortname, "remote") != 0)
5584 error (_("command can only be used with remote target"));
5585
5586 for (s = exec_bfd->sections; s; s = s->next)
5587 {
5588 if (!(s->flags & SEC_LOAD))
5589 continue; /* skip non-loadable section */
5590
5591 size = bfd_get_section_size (s);
5592 if (size == 0)
5593 continue; /* skip zero-length section */
5594
5595 sectname = bfd_get_section_name (exec_bfd, s);
5596 if (args && strcmp (args, sectname) != 0)
5597 continue; /* not the section selected by user */
5598
5599 matched = 1; /* do this section */
5600 lma = s->lma;
5601 /* FIXME: assumes lma can fit into long. */
5602 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5603 (long) lma, (long) size);
5604 putpkt (rs->buf);
5605
5606 /* Be clever; compute the host_crc before waiting for target
5607 reply. */
5608 sectdata = xmalloc (size);
5609 old_chain = make_cleanup (xfree, sectdata);
5610 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5611 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5612
5613 getpkt (&rs->buf, &rs->buf_size, 0);
5614 if (rs->buf[0] == 'E')
5615 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5616 sectname, paddr (lma), paddr (lma + size));
5617 if (rs->buf[0] != 'C')
5618 error (_("remote target does not support this operation"));
5619
5620 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5621 target_crc = target_crc * 16 + fromhex (*tmp);
5622
5623 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5624 sectname, paddr (lma), paddr (lma + size));
5625 if (host_crc == target_crc)
5626 printf_filtered ("matched.\n");
5627 else
5628 {
5629 printf_filtered ("MIS-MATCHED!\n");
5630 mismatched++;
5631 }
5632
5633 do_cleanups (old_chain);
5634 }
5635 if (mismatched > 0)
5636 warning (_("One or more sections of the remote executable does not match\n\
5637 the loaded file\n"));
5638 if (args && !matched)
5639 printf_filtered (_("No loaded section named '%s'.\n"), args);
5640 }
5641
5642 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5643 into remote target. The number of bytes written to the remote
5644 target is returned, or -1 for error. */
5645
5646 static LONGEST
5647 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5648 const char *annex, const gdb_byte *writebuf,
5649 ULONGEST offset, LONGEST len,
5650 struct packet_config *packet)
5651 {
5652 int i, buf_len;
5653 ULONGEST n;
5654 gdb_byte *wbuf;
5655 struct remote_state *rs = get_remote_state ();
5656 int max_size = get_memory_write_packet_size ();
5657
5658 if (packet->support == PACKET_DISABLE)
5659 return -1;
5660
5661 /* Insert header. */
5662 i = snprintf (rs->buf, max_size,
5663 "qXfer:%s:write:%s:%s:",
5664 object_name, annex ? annex : "",
5665 phex_nz (offset, sizeof offset));
5666 max_size -= (i + 1);
5667
5668 /* Escape as much data as fits into rs->buf. */
5669 buf_len = remote_escape_output
5670 (writebuf, len, (rs->buf + i), &max_size, max_size);
5671
5672 if (putpkt_binary (rs->buf, i + buf_len) < 0
5673 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5674 || packet_ok (rs->buf, packet) != PACKET_OK)
5675 return -1;
5676
5677 unpack_varlen_hex (rs->buf, &n);
5678 return n;
5679 }
5680
5681 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5682 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5683 number of bytes read is returned, or 0 for EOF, or -1 for error.
5684 The number of bytes read may be less than LEN without indicating an
5685 EOF. PACKET is checked and updated to indicate whether the remote
5686 target supports this object. */
5687
5688 static LONGEST
5689 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5690 const char *annex,
5691 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5692 struct packet_config *packet)
5693 {
5694 static char *finished_object;
5695 static char *finished_annex;
5696 static ULONGEST finished_offset;
5697
5698 struct remote_state *rs = get_remote_state ();
5699 unsigned int total = 0;
5700 LONGEST i, n, packet_len;
5701
5702 if (packet->support == PACKET_DISABLE)
5703 return -1;
5704
5705 /* Check whether we've cached an end-of-object packet that matches
5706 this request. */
5707 if (finished_object)
5708 {
5709 if (strcmp (object_name, finished_object) == 0
5710 && strcmp (annex ? annex : "", finished_annex) == 0
5711 && offset == finished_offset)
5712 return 0;
5713
5714 /* Otherwise, we're now reading something different. Discard
5715 the cache. */
5716 xfree (finished_object);
5717 xfree (finished_annex);
5718 finished_object = NULL;
5719 finished_annex = NULL;
5720 }
5721
5722 /* Request only enough to fit in a single packet. The actual data
5723 may not, since we don't know how much of it will need to be escaped;
5724 the target is free to respond with slightly less data. We subtract
5725 five to account for the response type and the protocol frame. */
5726 n = min (get_remote_packet_size () - 5, len);
5727 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5728 object_name, annex ? annex : "",
5729 phex_nz (offset, sizeof offset),
5730 phex_nz (n, sizeof n));
5731 i = putpkt (rs->buf);
5732 if (i < 0)
5733 return -1;
5734
5735 rs->buf[0] = '\0';
5736 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5737 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5738 return -1;
5739
5740 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5741 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5742
5743 /* 'm' means there is (or at least might be) more data after this
5744 batch. That does not make sense unless there's at least one byte
5745 of data in this reply. */
5746 if (rs->buf[0] == 'm' && packet_len == 1)
5747 error (_("Remote qXfer reply contained no data."));
5748
5749 /* Got some data. */
5750 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5751
5752 /* 'l' is an EOF marker, possibly including a final block of data,
5753 or possibly empty. If we have the final block of a non-empty
5754 object, record this fact to bypass a subsequent partial read. */
5755 if (rs->buf[0] == 'l' && offset + i > 0)
5756 {
5757 finished_object = xstrdup (object_name);
5758 finished_annex = xstrdup (annex ? annex : "");
5759 finished_offset = offset + i;
5760 }
5761
5762 return i;
5763 }
5764
5765 static LONGEST
5766 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5767 const char *annex, gdb_byte *readbuf,
5768 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5769 {
5770 struct remote_state *rs = get_remote_state ();
5771 int i;
5772 char *p2;
5773 char query_type;
5774
5775 /* Handle memory using the standard memory routines. */
5776 if (object == TARGET_OBJECT_MEMORY)
5777 {
5778 int xfered;
5779 errno = 0;
5780
5781 if (writebuf != NULL)
5782 xfered = remote_write_bytes (offset, writebuf, len);
5783 else
5784 xfered = remote_read_bytes (offset, readbuf, len);
5785
5786 if (xfered > 0)
5787 return xfered;
5788 else if (xfered == 0 && errno == 0)
5789 return 0;
5790 else
5791 return -1;
5792 }
5793
5794 /* Handle SPU memory using qxfer packets. */
5795 if (object == TARGET_OBJECT_SPU)
5796 {
5797 if (readbuf)
5798 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
5799 &remote_protocol_packets
5800 [PACKET_qXfer_spu_read]);
5801 else
5802 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
5803 &remote_protocol_packets
5804 [PACKET_qXfer_spu_write]);
5805 }
5806
5807 /* Only handle flash writes. */
5808 if (writebuf != NULL)
5809 {
5810 LONGEST xfered;
5811
5812 switch (object)
5813 {
5814 case TARGET_OBJECT_FLASH:
5815 xfered = remote_flash_write (ops, offset, len, writebuf);
5816
5817 if (xfered > 0)
5818 return xfered;
5819 else if (xfered == 0 && errno == 0)
5820 return 0;
5821 else
5822 return -1;
5823
5824 default:
5825 return -1;
5826 }
5827 }
5828
5829 /* Map pre-existing objects onto letters. DO NOT do this for new
5830 objects!!! Instead specify new query packets. */
5831 switch (object)
5832 {
5833 case TARGET_OBJECT_AVR:
5834 query_type = 'R';
5835 break;
5836
5837 case TARGET_OBJECT_AUXV:
5838 gdb_assert (annex == NULL);
5839 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5840 &remote_protocol_packets[PACKET_qXfer_auxv]);
5841
5842 case TARGET_OBJECT_AVAILABLE_FEATURES:
5843 return remote_read_qxfer
5844 (ops, "features", annex, readbuf, offset, len,
5845 &remote_protocol_packets[PACKET_qXfer_features]);
5846
5847 case TARGET_OBJECT_LIBRARIES:
5848 return remote_read_qxfer
5849 (ops, "libraries", annex, readbuf, offset, len,
5850 &remote_protocol_packets[PACKET_qXfer_libraries]);
5851
5852 case TARGET_OBJECT_MEMORY_MAP:
5853 gdb_assert (annex == NULL);
5854 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5855 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5856
5857 default:
5858 return -1;
5859 }
5860
5861 /* Note: a zero OFFSET and LEN can be used to query the minimum
5862 buffer size. */
5863 if (offset == 0 && len == 0)
5864 return (get_remote_packet_size ());
5865 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5866 large enough let the caller deal with it. */
5867 if (len < get_remote_packet_size ())
5868 return -1;
5869 len = get_remote_packet_size ();
5870
5871 /* Except for querying the minimum buffer size, target must be open. */
5872 if (!remote_desc)
5873 error (_("remote query is only available after target open"));
5874
5875 gdb_assert (annex != NULL);
5876 gdb_assert (readbuf != NULL);
5877
5878 p2 = rs->buf;
5879 *p2++ = 'q';
5880 *p2++ = query_type;
5881
5882 /* We used one buffer char for the remote protocol q command and
5883 another for the query type. As the remote protocol encapsulation
5884 uses 4 chars plus one extra in case we are debugging
5885 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5886 string. */
5887 i = 0;
5888 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5889 {
5890 /* Bad caller may have sent forbidden characters. */
5891 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5892 *p2++ = annex[i];
5893 i++;
5894 }
5895 *p2 = '\0';
5896 gdb_assert (annex[i] == '\0');
5897
5898 i = putpkt (rs->buf);
5899 if (i < 0)
5900 return i;
5901
5902 getpkt (&rs->buf, &rs->buf_size, 0);
5903 strcpy ((char *) readbuf, rs->buf);
5904
5905 return strlen ((char *) readbuf);
5906 }
5907
5908 static void
5909 remote_rcmd (char *command,
5910 struct ui_file *outbuf)
5911 {
5912 struct remote_state *rs = get_remote_state ();
5913 char *p = rs->buf;
5914
5915 if (!remote_desc)
5916 error (_("remote rcmd is only available after target open"));
5917
5918 /* Send a NULL command across as an empty command. */
5919 if (command == NULL)
5920 command = "";
5921
5922 /* The query prefix. */
5923 strcpy (rs->buf, "qRcmd,");
5924 p = strchr (rs->buf, '\0');
5925
5926 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5927 error (_("\"monitor\" command ``%s'' is too long."), command);
5928
5929 /* Encode the actual command. */
5930 bin2hex ((gdb_byte *) command, p, 0);
5931
5932 if (putpkt (rs->buf) < 0)
5933 error (_("Communication problem with target."));
5934
5935 /* get/display the response */
5936 while (1)
5937 {
5938 char *buf;
5939
5940 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5941 rs->buf[0] = '\0';
5942 getpkt (&rs->buf, &rs->buf_size, 0);
5943 buf = rs->buf;
5944 if (buf[0] == '\0')
5945 error (_("Target does not support this command."));
5946 if (buf[0] == 'O' && buf[1] != 'K')
5947 {
5948 remote_console_output (buf + 1); /* 'O' message from stub. */
5949 continue;
5950 }
5951 if (strcmp (buf, "OK") == 0)
5952 break;
5953 if (strlen (buf) == 3 && buf[0] == 'E'
5954 && isdigit (buf[1]) && isdigit (buf[2]))
5955 {
5956 error (_("Protocol error with Rcmd"));
5957 }
5958 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5959 {
5960 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5961 fputc_unfiltered (c, outbuf);
5962 }
5963 break;
5964 }
5965 }
5966
5967 static VEC(mem_region_s) *
5968 remote_memory_map (struct target_ops *ops)
5969 {
5970 VEC(mem_region_s) *result = NULL;
5971 char *text = target_read_stralloc (&current_target,
5972 TARGET_OBJECT_MEMORY_MAP, NULL);
5973
5974 if (text)
5975 {
5976 struct cleanup *back_to = make_cleanup (xfree, text);
5977 result = parse_memory_map (text);
5978 do_cleanups (back_to);
5979 }
5980
5981 return result;
5982 }
5983
5984 static void
5985 packet_command (char *args, int from_tty)
5986 {
5987 struct remote_state *rs = get_remote_state ();
5988
5989 if (!remote_desc)
5990 error (_("command can only be used with remote target"));
5991
5992 if (!args)
5993 error (_("remote-packet command requires packet text as argument"));
5994
5995 puts_filtered ("sending: ");
5996 print_packet (args);
5997 puts_filtered ("\n");
5998 putpkt (args);
5999
6000 getpkt (&rs->buf, &rs->buf_size, 0);
6001 puts_filtered ("received: ");
6002 print_packet (rs->buf);
6003 puts_filtered ("\n");
6004 }
6005
6006 #if 0
6007 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6008
6009 static void display_thread_info (struct gdb_ext_thread_info *info);
6010
6011 static void threadset_test_cmd (char *cmd, int tty);
6012
6013 static void threadalive_test (char *cmd, int tty);
6014
6015 static void threadlist_test_cmd (char *cmd, int tty);
6016
6017 int get_and_display_threadinfo (threadref *ref);
6018
6019 static void threadinfo_test_cmd (char *cmd, int tty);
6020
6021 static int thread_display_step (threadref *ref, void *context);
6022
6023 static void threadlist_update_test_cmd (char *cmd, int tty);
6024
6025 static void init_remote_threadtests (void);
6026
6027 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6028
6029 static void
6030 threadset_test_cmd (char *cmd, int tty)
6031 {
6032 int sample_thread = SAMPLE_THREAD;
6033
6034 printf_filtered (_("Remote threadset test\n"));
6035 set_thread (sample_thread, 1);
6036 }
6037
6038
6039 static void
6040 threadalive_test (char *cmd, int tty)
6041 {
6042 int sample_thread = SAMPLE_THREAD;
6043
6044 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6045 printf_filtered ("PASS: Thread alive test\n");
6046 else
6047 printf_filtered ("FAIL: Thread alive test\n");
6048 }
6049
6050 void output_threadid (char *title, threadref *ref);
6051
6052 void
6053 output_threadid (char *title, threadref *ref)
6054 {
6055 char hexid[20];
6056
6057 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6058 hexid[16] = 0;
6059 printf_filtered ("%s %s\n", title, (&hexid[0]));
6060 }
6061
6062 static void
6063 threadlist_test_cmd (char *cmd, int tty)
6064 {
6065 int startflag = 1;
6066 threadref nextthread;
6067 int done, result_count;
6068 threadref threadlist[3];
6069
6070 printf_filtered ("Remote Threadlist test\n");
6071 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6072 &result_count, &threadlist[0]))
6073 printf_filtered ("FAIL: threadlist test\n");
6074 else
6075 {
6076 threadref *scan = threadlist;
6077 threadref *limit = scan + result_count;
6078
6079 while (scan < limit)
6080 output_threadid (" thread ", scan++);
6081 }
6082 }
6083
6084 void
6085 display_thread_info (struct gdb_ext_thread_info *info)
6086 {
6087 output_threadid ("Threadid: ", &info->threadid);
6088 printf_filtered ("Name: %s\n ", info->shortname);
6089 printf_filtered ("State: %s\n", info->display);
6090 printf_filtered ("other: %s\n\n", info->more_display);
6091 }
6092
6093 int
6094 get_and_display_threadinfo (threadref *ref)
6095 {
6096 int result;
6097 int set;
6098 struct gdb_ext_thread_info threadinfo;
6099
6100 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6101 | TAG_MOREDISPLAY | TAG_DISPLAY;
6102 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6103 display_thread_info (&threadinfo);
6104 return result;
6105 }
6106
6107 static void
6108 threadinfo_test_cmd (char *cmd, int tty)
6109 {
6110 int athread = SAMPLE_THREAD;
6111 threadref thread;
6112 int set;
6113
6114 int_to_threadref (&thread, athread);
6115 printf_filtered ("Remote Threadinfo test\n");
6116 if (!get_and_display_threadinfo (&thread))
6117 printf_filtered ("FAIL cannot get thread info\n");
6118 }
6119
6120 static int
6121 thread_display_step (threadref *ref, void *context)
6122 {
6123 /* output_threadid(" threadstep ",ref); *//* simple test */
6124 return get_and_display_threadinfo (ref);
6125 }
6126
6127 static void
6128 threadlist_update_test_cmd (char *cmd, int tty)
6129 {
6130 printf_filtered ("Remote Threadlist update test\n");
6131 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6132 }
6133
6134 static void
6135 init_remote_threadtests (void)
6136 {
6137 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6138 Fetch and print the remote list of thread identifiers, one pkt only"));
6139 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6140 _("Fetch and display info about one thread"));
6141 add_com ("tset", class_obscure, threadset_test_cmd,
6142 _("Test setting to a different thread"));
6143 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6144 _("Iterate through updating all remote thread info"));
6145 add_com ("talive", class_obscure, threadalive_test,
6146 _(" Remote thread alive test "));
6147 }
6148
6149 #endif /* 0 */
6150
6151 /* Convert a thread ID to a string. Returns the string in a static
6152 buffer. */
6153
6154 static char *
6155 remote_pid_to_str (ptid_t ptid)
6156 {
6157 static char buf[32];
6158
6159 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6160 return buf;
6161 }
6162
6163 /* Get the address of the thread local variable in OBJFILE which is
6164 stored at OFFSET within the thread local storage for thread PTID. */
6165
6166 static CORE_ADDR
6167 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6168 {
6169 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6170 {
6171 struct remote_state *rs = get_remote_state ();
6172 char *p = rs->buf;
6173 enum packet_result result;
6174
6175 strcpy (p, "qGetTLSAddr:");
6176 p += strlen (p);
6177 p += hexnumstr (p, PIDGET (ptid));
6178 *p++ = ',';
6179 p += hexnumstr (p, offset);
6180 *p++ = ',';
6181 p += hexnumstr (p, lm);
6182 *p++ = '\0';
6183
6184 putpkt (rs->buf);
6185 getpkt (&rs->buf, &rs->buf_size, 0);
6186 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6187 if (result == PACKET_OK)
6188 {
6189 ULONGEST result;
6190
6191 unpack_varlen_hex (rs->buf, &result);
6192 return result;
6193 }
6194 else if (result == PACKET_UNKNOWN)
6195 throw_error (TLS_GENERIC_ERROR,
6196 _("Remote target doesn't support qGetTLSAddr packet"));
6197 else
6198 throw_error (TLS_GENERIC_ERROR,
6199 _("Remote target failed to process qGetTLSAddr request"));
6200 }
6201 else
6202 throw_error (TLS_GENERIC_ERROR,
6203 _("TLS not supported or disabled on this target"));
6204 /* Not reached. */
6205 return 0;
6206 }
6207
6208 /* Support for inferring a target description based on the current
6209 architecture and the size of a 'g' packet. While the 'g' packet
6210 can have any size (since optional registers can be left off the
6211 end), some sizes are easily recognizable given knowledge of the
6212 approximate architecture. */
6213
6214 struct remote_g_packet_guess
6215 {
6216 int bytes;
6217 const struct target_desc *tdesc;
6218 };
6219 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6220 DEF_VEC_O(remote_g_packet_guess_s);
6221
6222 struct remote_g_packet_data
6223 {
6224 VEC(remote_g_packet_guess_s) *guesses;
6225 };
6226
6227 static struct gdbarch_data *remote_g_packet_data_handle;
6228
6229 static void *
6230 remote_g_packet_data_init (struct obstack *obstack)
6231 {
6232 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6233 }
6234
6235 void
6236 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6237 const struct target_desc *tdesc)
6238 {
6239 struct remote_g_packet_data *data
6240 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6241 struct remote_g_packet_guess new_guess, *guess;
6242 int ix;
6243
6244 gdb_assert (tdesc != NULL);
6245
6246 for (ix = 0;
6247 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6248 ix++)
6249 if (guess->bytes == bytes)
6250 internal_error (__FILE__, __LINE__,
6251 "Duplicate g packet description added for size %d",
6252 bytes);
6253
6254 new_guess.bytes = bytes;
6255 new_guess.tdesc = tdesc;
6256 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6257 }
6258
6259 static const struct target_desc *
6260 remote_read_description (struct target_ops *target)
6261 {
6262 struct remote_g_packet_data *data
6263 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6264
6265 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6266 {
6267 struct remote_g_packet_guess *guess;
6268 int ix;
6269 int bytes = send_g_packet ();
6270
6271 for (ix = 0;
6272 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6273 ix++)
6274 if (guess->bytes == bytes)
6275 return guess->tdesc;
6276
6277 /* We discard the g packet. A minor optimization would be to
6278 hold on to it, and fill the register cache once we have selected
6279 an architecture, but it's too tricky to do safely. */
6280 }
6281
6282 return NULL;
6283 }
6284
6285 static void
6286 init_remote_ops (void)
6287 {
6288 remote_ops.to_shortname = "remote";
6289 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6290 remote_ops.to_doc =
6291 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6292 Specify the serial device it is connected to\n\
6293 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6294 remote_ops.to_open = remote_open;
6295 remote_ops.to_close = remote_close;
6296 remote_ops.to_detach = remote_detach;
6297 remote_ops.to_disconnect = remote_disconnect;
6298 remote_ops.to_resume = remote_resume;
6299 remote_ops.to_wait = remote_wait;
6300 remote_ops.to_fetch_registers = remote_fetch_registers;
6301 remote_ops.to_store_registers = remote_store_registers;
6302 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6303 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6304 remote_ops.to_files_info = remote_files_info;
6305 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6306 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6307 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6308 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6309 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6310 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6311 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6312 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6313 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6314 remote_ops.to_kill = remote_kill;
6315 remote_ops.to_load = generic_load;
6316 remote_ops.to_mourn_inferior = remote_mourn;
6317 remote_ops.to_thread_alive = remote_thread_alive;
6318 remote_ops.to_find_new_threads = remote_threads_info;
6319 remote_ops.to_pid_to_str = remote_pid_to_str;
6320 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6321 remote_ops.to_stop = remote_stop;
6322 remote_ops.to_xfer_partial = remote_xfer_partial;
6323 remote_ops.to_rcmd = remote_rcmd;
6324 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6325 remote_ops.to_stratum = process_stratum;
6326 remote_ops.to_has_all_memory = 1;
6327 remote_ops.to_has_memory = 1;
6328 remote_ops.to_has_stack = 1;
6329 remote_ops.to_has_registers = 1;
6330 remote_ops.to_has_execution = 1;
6331 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6332 remote_ops.to_magic = OPS_MAGIC;
6333 remote_ops.to_memory_map = remote_memory_map;
6334 remote_ops.to_flash_erase = remote_flash_erase;
6335 remote_ops.to_flash_done = remote_flash_done;
6336 remote_ops.to_read_description = remote_read_description;
6337 }
6338
6339 /* Set up the extended remote vector by making a copy of the standard
6340 remote vector and adding to it. */
6341
6342 static void
6343 init_extended_remote_ops (void)
6344 {
6345 extended_remote_ops = remote_ops;
6346
6347 extended_remote_ops.to_shortname = "extended-remote";
6348 extended_remote_ops.to_longname =
6349 "Extended remote serial target in gdb-specific protocol";
6350 extended_remote_ops.to_doc =
6351 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6352 Specify the serial device it is connected to (e.g. /dev/ttya).",
6353 extended_remote_ops.to_open = extended_remote_open;
6354 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6355 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6356 }
6357
6358 static int
6359 remote_can_async_p (void)
6360 {
6361 /* We're async whenever the serial device is. */
6362 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6363 }
6364
6365 static int
6366 remote_is_async_p (void)
6367 {
6368 /* We're async whenever the serial device is. */
6369 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6370 }
6371
6372 /* Pass the SERIAL event on and up to the client. One day this code
6373 will be able to delay notifying the client of an event until the
6374 point where an entire packet has been received. */
6375
6376 static void (*async_client_callback) (enum inferior_event_type event_type,
6377 void *context);
6378 static void *async_client_context;
6379 static serial_event_ftype remote_async_serial_handler;
6380
6381 static void
6382 remote_async_serial_handler (struct serial *scb, void *context)
6383 {
6384 /* Don't propogate error information up to the client. Instead let
6385 the client find out about the error by querying the target. */
6386 async_client_callback (INF_REG_EVENT, async_client_context);
6387 }
6388
6389 static void
6390 remote_async (void (*callback) (enum inferior_event_type event_type,
6391 void *context), void *context)
6392 {
6393 if (current_target.to_async_mask_value == 0)
6394 internal_error (__FILE__, __LINE__,
6395 _("Calling remote_async when async is masked"));
6396
6397 if (callback != NULL)
6398 {
6399 serial_async (remote_desc, remote_async_serial_handler, NULL);
6400 async_client_callback = callback;
6401 async_client_context = context;
6402 }
6403 else
6404 serial_async (remote_desc, NULL, NULL);
6405 }
6406
6407 /* Target async and target extended-async.
6408
6409 This are temporary targets, until it is all tested. Eventually
6410 async support will be incorporated int the usual 'remote'
6411 target. */
6412
6413 static void
6414 init_remote_async_ops (void)
6415 {
6416 remote_async_ops.to_shortname = "async";
6417 remote_async_ops.to_longname =
6418 "Remote serial target in async version of the gdb-specific protocol";
6419 remote_async_ops.to_doc =
6420 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6421 Specify the serial device it is connected to (e.g. /dev/ttya).";
6422 remote_async_ops.to_open = remote_async_open;
6423 remote_async_ops.to_close = remote_close;
6424 remote_async_ops.to_detach = remote_detach;
6425 remote_async_ops.to_disconnect = remote_disconnect;
6426 remote_async_ops.to_resume = remote_async_resume;
6427 remote_async_ops.to_wait = remote_async_wait;
6428 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6429 remote_async_ops.to_store_registers = remote_store_registers;
6430 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6431 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6432 remote_async_ops.to_files_info = remote_files_info;
6433 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6434 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6435 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6436 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6437 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6438 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6439 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6440 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6441 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6442 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6443 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6444 remote_async_ops.to_kill = remote_async_kill;
6445 remote_async_ops.to_load = generic_load;
6446 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6447 remote_async_ops.to_thread_alive = remote_thread_alive;
6448 remote_async_ops.to_find_new_threads = remote_threads_info;
6449 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6450 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6451 remote_async_ops.to_stop = remote_stop;
6452 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6453 remote_async_ops.to_rcmd = remote_rcmd;
6454 remote_async_ops.to_stratum = process_stratum;
6455 remote_async_ops.to_has_all_memory = 1;
6456 remote_async_ops.to_has_memory = 1;
6457 remote_async_ops.to_has_stack = 1;
6458 remote_async_ops.to_has_registers = 1;
6459 remote_async_ops.to_has_execution = 1;
6460 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6461 remote_async_ops.to_can_async_p = remote_can_async_p;
6462 remote_async_ops.to_is_async_p = remote_is_async_p;
6463 remote_async_ops.to_async = remote_async;
6464 remote_async_ops.to_async_mask_value = 1;
6465 remote_async_ops.to_magic = OPS_MAGIC;
6466 remote_async_ops.to_memory_map = remote_memory_map;
6467 remote_async_ops.to_flash_erase = remote_flash_erase;
6468 remote_async_ops.to_flash_done = remote_flash_done;
6469 remote_async_ops.to_read_description = remote_read_description;
6470 }
6471
6472 /* Set up the async extended remote vector by making a copy of the standard
6473 remote vector and adding to it. */
6474
6475 static void
6476 init_extended_async_remote_ops (void)
6477 {
6478 extended_async_remote_ops = remote_async_ops;
6479
6480 extended_async_remote_ops.to_shortname = "extended-async";
6481 extended_async_remote_ops.to_longname =
6482 "Extended remote serial target in async gdb-specific protocol";
6483 extended_async_remote_ops.to_doc =
6484 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6485 Specify the serial device it is connected to (e.g. /dev/ttya).",
6486 extended_async_remote_ops.to_open = extended_remote_async_open;
6487 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6488 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6489 }
6490
6491 static void
6492 set_remote_cmd (char *args, int from_tty)
6493 {
6494 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6495 }
6496
6497 static void
6498 show_remote_cmd (char *args, int from_tty)
6499 {
6500 /* We can't just use cmd_show_list here, because we want to skip
6501 the redundant "show remote Z-packet" and the legacy aliases. */
6502 struct cleanup *showlist_chain;
6503 struct cmd_list_element *list = remote_show_cmdlist;
6504
6505 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6506 for (; list != NULL; list = list->next)
6507 if (strcmp (list->name, "Z-packet") == 0)
6508 continue;
6509 else if (list->type == not_set_cmd)
6510 /* Alias commands are exactly like the original, except they
6511 don't have the normal type. */
6512 continue;
6513 else
6514 {
6515 struct cleanup *option_chain
6516 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6517 ui_out_field_string (uiout, "name", list->name);
6518 ui_out_text (uiout, ": ");
6519 if (list->type == show_cmd)
6520 do_setshow_command ((char *) NULL, from_tty, list);
6521 else
6522 cmd_func (list, NULL, from_tty);
6523 /* Close the tuple. */
6524 do_cleanups (option_chain);
6525 }
6526
6527 /* Close the tuple. */
6528 do_cleanups (showlist_chain);
6529 }
6530
6531
6532 /* Function to be called whenever a new objfile (shlib) is detected. */
6533 static void
6534 remote_new_objfile (struct objfile *objfile)
6535 {
6536 if (remote_desc != 0) /* Have a remote connection. */
6537 remote_check_symbols (objfile);
6538 }
6539
6540 void
6541 _initialize_remote (void)
6542 {
6543 struct remote_state *rs;
6544
6545 /* architecture specific data */
6546 remote_gdbarch_data_handle =
6547 gdbarch_data_register_post_init (init_remote_state);
6548 remote_g_packet_data_handle =
6549 gdbarch_data_register_pre_init (remote_g_packet_data_init);
6550
6551 /* Initialize the per-target state. At the moment there is only one
6552 of these, not one per target. Only one target is active at a
6553 time. The default buffer size is unimportant; it will be expanded
6554 whenever a larger buffer is needed. */
6555 rs = get_remote_state_raw ();
6556 rs->buf_size = 400;
6557 rs->buf = xmalloc (rs->buf_size);
6558
6559 init_remote_ops ();
6560 add_target (&remote_ops);
6561
6562 init_extended_remote_ops ();
6563 add_target (&extended_remote_ops);
6564
6565 init_remote_async_ops ();
6566 add_target (&remote_async_ops);
6567
6568 init_extended_async_remote_ops ();
6569 add_target (&extended_async_remote_ops);
6570
6571 /* Hook into new objfile notification. */
6572 observer_attach_new_objfile (remote_new_objfile);
6573
6574 #if 0
6575 init_remote_threadtests ();
6576 #endif
6577
6578 /* set/show remote ... */
6579
6580 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6581 Remote protocol specific variables\n\
6582 Configure various remote-protocol specific variables such as\n\
6583 the packets being used"),
6584 &remote_set_cmdlist, "set remote ",
6585 0 /* allow-unknown */, &setlist);
6586 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6587 Remote protocol specific variables\n\
6588 Configure various remote-protocol specific variables such as\n\
6589 the packets being used"),
6590 &remote_show_cmdlist, "show remote ",
6591 0 /* allow-unknown */, &showlist);
6592
6593 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6594 Compare section data on target to the exec file.\n\
6595 Argument is a single section name (default: all loaded sections)."),
6596 &cmdlist);
6597
6598 add_cmd ("packet", class_maintenance, packet_command, _("\
6599 Send an arbitrary packet to a remote target.\n\
6600 maintenance packet TEXT\n\
6601 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6602 this command sends the string TEXT to the inferior, and displays the\n\
6603 response packet. GDB supplies the initial `$' character, and the\n\
6604 terminating `#' character and checksum."),
6605 &maintenancelist);
6606
6607 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6608 Set whether to send break if interrupted."), _("\
6609 Show whether to send break if interrupted."), _("\
6610 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6611 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6612 &setlist, &showlist);
6613
6614 /* Install commands for configuring memory read/write packets. */
6615
6616 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6617 Set the maximum number of bytes per memory write packet (deprecated)."),
6618 &setlist);
6619 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6620 Show the maximum number of bytes per memory write packet (deprecated)."),
6621 &showlist);
6622 add_cmd ("memory-write-packet-size", no_class,
6623 set_memory_write_packet_size, _("\
6624 Set the maximum number of bytes per memory-write packet.\n\
6625 Specify the number of bytes in a packet or 0 (zero) for the\n\
6626 default packet size. The actual limit is further reduced\n\
6627 dependent on the target. Specify ``fixed'' to disable the\n\
6628 further restriction and ``limit'' to enable that restriction."),
6629 &remote_set_cmdlist);
6630 add_cmd ("memory-read-packet-size", no_class,
6631 set_memory_read_packet_size, _("\
6632 Set the maximum number of bytes per memory-read packet.\n\
6633 Specify the number of bytes in a packet or 0 (zero) for the\n\
6634 default packet size. The actual limit is further reduced\n\
6635 dependent on the target. Specify ``fixed'' to disable the\n\
6636 further restriction and ``limit'' to enable that restriction."),
6637 &remote_set_cmdlist);
6638 add_cmd ("memory-write-packet-size", no_class,
6639 show_memory_write_packet_size,
6640 _("Show the maximum number of bytes per memory-write packet."),
6641 &remote_show_cmdlist);
6642 add_cmd ("memory-read-packet-size", no_class,
6643 show_memory_read_packet_size,
6644 _("Show the maximum number of bytes per memory-read packet."),
6645 &remote_show_cmdlist);
6646
6647 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6648 &remote_hw_watchpoint_limit, _("\
6649 Set the maximum number of target hardware watchpoints."), _("\
6650 Show the maximum number of target hardware watchpoints."), _("\
6651 Specify a negative limit for unlimited."),
6652 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6653 &remote_set_cmdlist, &remote_show_cmdlist);
6654 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6655 &remote_hw_breakpoint_limit, _("\
6656 Set the maximum number of target hardware breakpoints."), _("\
6657 Show the maximum number of target hardware breakpoints."), _("\
6658 Specify a negative limit for unlimited."),
6659 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6660 &remote_set_cmdlist, &remote_show_cmdlist);
6661
6662 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6663 &remote_address_size, _("\
6664 Set the maximum size of the address (in bits) in a memory packet."), _("\
6665 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6666 NULL,
6667 NULL, /* FIXME: i18n: */
6668 &setlist, &showlist);
6669
6670 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6671 "X", "binary-download", 1);
6672
6673 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6674 "vCont", "verbose-resume", 0);
6675
6676 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6677 "QPassSignals", "pass-signals", 0);
6678
6679 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6680 "qSymbol", "symbol-lookup", 0);
6681
6682 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6683 "P", "set-register", 1);
6684
6685 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6686 "p", "fetch-register", 1);
6687
6688 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6689 "Z0", "software-breakpoint", 0);
6690
6691 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6692 "Z1", "hardware-breakpoint", 0);
6693
6694 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6695 "Z2", "write-watchpoint", 0);
6696
6697 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6698 "Z3", "read-watchpoint", 0);
6699
6700 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6701 "Z4", "access-watchpoint", 0);
6702
6703 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6704 "qXfer:auxv:read", "read-aux-vector", 0);
6705
6706 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
6707 "qXfer:features:read", "target-features", 0);
6708
6709 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
6710 "qXfer:libraries:read", "library-info", 0);
6711
6712 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6713 "qXfer:memory-map:read", "memory-map", 0);
6714
6715 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
6716 "qXfer:spu:read", "read-spu-object", 0);
6717
6718 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
6719 "qXfer:spu:write", "write-spu-object", 0);
6720
6721 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6722 "qGetTLSAddr", "get-thread-local-storage-address",
6723 0);
6724
6725 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6726 "qSupported", "supported-packets", 0);
6727
6728 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6729 Z sub-packet has its own set and show commands, but users may
6730 have sets to this variable in their .gdbinit files (or in their
6731 documentation). */
6732 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6733 &remote_Z_packet_detect, _("\
6734 Set use of remote protocol `Z' packets"), _("\
6735 Show use of remote protocol `Z' packets "), _("\
6736 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6737 packets."),
6738 set_remote_protocol_Z_packet_cmd,
6739 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6740 &remote_set_cmdlist, &remote_show_cmdlist);
6741
6742 /* Eventually initialize fileio. See fileio.c */
6743 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6744 }