* coffread.c (coff_sym_fns): Add default_symfile_segments.
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45 #include "solib.h"
46 #include "cli/cli-decode.h"
47 #include "cli/cli-setshow.h"
48 #include "target-descriptions.h"
49
50 #include <ctype.h>
51 #include <sys/time.h>
52
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include "inf-loop.h"
56
57 #include <signal.h>
58 #include "serial.h"
59
60 #include "gdbcore.h" /* for exec_bfd */
61
62 #include "remote-fileio.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82
83 static void handle_remote_sigint (int);
84 static void handle_remote_sigint_twice (int);
85 static void async_remote_interrupt (gdb_client_data);
86 void async_remote_interrupt_twice (gdb_client_data);
87
88 static void build_remote_gdbarch_data (void);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_fetch_registers (struct regcache *regcache, int regno);
95
96 static void remote_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_async_resume (ptid_t ptid, int step,
99 enum target_signal siggnal);
100 static void remote_open (char *name, int from_tty);
101 static void remote_async_open (char *name, int from_tty);
102
103 static void extended_remote_open (char *name, int from_tty);
104 static void extended_remote_async_open (char *name, int from_tty);
105
106 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
107 int async_p);
108
109 static void remote_close (int quitting);
110
111 static void remote_store_registers (struct regcache *regcache, int regno);
112
113 static void remote_mourn (void);
114 static void remote_async_mourn (void);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (void);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static ptid_t remote_wait (ptid_t ptid,
127 struct target_waitstatus *status);
128 static ptid_t remote_async_wait (ptid_t ptid,
129 struct target_waitstatus *status);
130
131 static void remote_kill (void);
132 static void remote_async_kill (void);
133
134 static int tohex (int nib);
135
136 static void remote_detach (char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_thread (int, int);
145
146 static int remote_thread_alive (ptid_t);
147
148 static void get_offsets (void);
149
150 static void skip_frame (void);
151
152 static long read_frame (char **buf_p, long *sizeof_buf);
153
154 static int hexnumlen (ULONGEST num);
155
156 static void init_remote_ops (void);
157
158 static void init_extended_remote_ops (void);
159
160 static void remote_stop (void);
161
162 static int ishex (int ch, int *val);
163
164 static int stubhex (int ch);
165
166 static int hexnumstr (char *, ULONGEST);
167
168 static int hexnumnstr (char *, ULONGEST, int);
169
170 static CORE_ADDR remote_address_masked (CORE_ADDR);
171
172 static void print_packet (char *);
173
174 static unsigned long crc32 (unsigned char *, int, unsigned int);
175
176 static void compare_sections_command (char *, int);
177
178 static void packet_command (char *, int);
179
180 static int stub_unpack_int (char *buff, int fieldlength);
181
182 static ptid_t remote_current_thread (ptid_t oldptid);
183
184 static void remote_find_new_threads (void);
185
186 static void record_currthread (int currthread);
187
188 static int fromhex (int a);
189
190 static int hex2bin (const char *hex, gdb_byte *bin, int count);
191
192 static int bin2hex (const gdb_byte *bin, char *hex, int count);
193
194 static int putpkt_binary (char *buf, int cnt);
195
196 static void check_binary_download (CORE_ADDR addr);
197
198 struct packet_config;
199
200 static void show_packet_config_cmd (struct packet_config *config);
201
202 static void update_packet_config (struct packet_config *config);
203
204 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 struct cmd_list_element *c);
206
207 static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 int from_tty,
209 struct cmd_list_element *c,
210 const char *value);
211
212 void _initialize_remote (void);
213
214 /* For "set remote" and "show remote". */
215
216 static struct cmd_list_element *remote_set_cmdlist;
217 static struct cmd_list_element *remote_show_cmdlist;
218
219 /* Description of the remote protocol state for the currently
220 connected target. This is per-target state, and independent of the
221 selected architecture. */
222
223 struct remote_state
224 {
225 /* A buffer to use for incoming packets, and its current size. The
226 buffer is grown dynamically for larger incoming packets.
227 Outgoing packets may also be constructed in this buffer.
228 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
229 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
230 packets. */
231 char *buf;
232 long buf_size;
233
234 /* If we negotiated packet size explicitly (and thus can bypass
235 heuristics for the largest packet size that will not overflow
236 a buffer in the stub), this will be set to that packet size.
237 Otherwise zero, meaning to use the guessed size. */
238 long explicit_packet_size;
239 };
240
241 /* This data could be associated with a target, but we do not always
242 have access to the current target when we need it, so for now it is
243 static. This will be fine for as long as only one target is in use
244 at a time. */
245 static struct remote_state remote_state;
246
247 static struct remote_state *
248 get_remote_state_raw (void)
249 {
250 return &remote_state;
251 }
252
253 /* Description of the remote protocol for a given architecture. */
254
255 struct packet_reg
256 {
257 long offset; /* Offset into G packet. */
258 long regnum; /* GDB's internal register number. */
259 LONGEST pnum; /* Remote protocol register number. */
260 int in_g_packet; /* Always part of G packet. */
261 /* long size in bytes; == register_size (current_gdbarch, regnum);
262 at present. */
263 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
264 at present. */
265 };
266
267 struct remote_arch_state
268 {
269 /* Description of the remote protocol registers. */
270 long sizeof_g_packet;
271
272 /* Description of the remote protocol registers indexed by REGNUM
273 (making an array gdbarch_num_regs in size). */
274 struct packet_reg *regs;
275
276 /* This is the size (in chars) of the first response to the ``g''
277 packet. It is used as a heuristic when determining the maximum
278 size of memory-read and memory-write packets. A target will
279 typically only reserve a buffer large enough to hold the ``g''
280 packet. The size does not include packet overhead (headers and
281 trailers). */
282 long actual_register_packet_size;
283
284 /* This is the maximum size (in chars) of a non read/write packet.
285 It is also used as a cap on the size of read/write packets. */
286 long remote_packet_size;
287 };
288
289
290 /* Handle for retreving the remote protocol data from gdbarch. */
291 static struct gdbarch_data *remote_gdbarch_data_handle;
292
293 static struct remote_arch_state *
294 get_remote_arch_state (void)
295 {
296 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
297 }
298
299 /* Fetch the global remote target state. */
300
301 static struct remote_state *
302 get_remote_state (void)
303 {
304 /* Make sure that the remote architecture state has been
305 initialized, because doing so might reallocate rs->buf. Any
306 function which calls getpkt also needs to be mindful of changes
307 to rs->buf, but this call limits the number of places which run
308 into trouble. */
309 get_remote_arch_state ();
310
311 return get_remote_state_raw ();
312 }
313
314 static int
315 compare_pnums (const void *lhs_, const void *rhs_)
316 {
317 const struct packet_reg * const *lhs = lhs_;
318 const struct packet_reg * const *rhs = rhs_;
319
320 if ((*lhs)->pnum < (*rhs)->pnum)
321 return -1;
322 else if ((*lhs)->pnum == (*rhs)->pnum)
323 return 0;
324 else
325 return 1;
326 }
327
328 static void *
329 init_remote_state (struct gdbarch *gdbarch)
330 {
331 int regnum, num_remote_regs, offset;
332 struct remote_state *rs = get_remote_state_raw ();
333 struct remote_arch_state *rsa;
334 struct packet_reg **remote_regs;
335
336 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
337
338 /* Use the architecture to build a regnum<->pnum table, which will be
339 1:1 unless a feature set specifies otherwise. */
340 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
341 gdbarch_num_regs (current_gdbarch),
342 struct packet_reg);
343 for (regnum = 0; regnum < gdbarch_num_regs (current_gdbarch); regnum++)
344 {
345 struct packet_reg *r = &rsa->regs[regnum];
346
347 if (register_size (current_gdbarch, regnum) == 0)
348 /* Do not try to fetch zero-sized (placeholder) registers. */
349 r->pnum = -1;
350 else
351 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
352
353 r->regnum = regnum;
354 }
355
356 /* Define the g/G packet format as the contents of each register
357 with a remote protocol number, in order of ascending protocol
358 number. */
359
360 remote_regs = alloca (gdbarch_num_regs (current_gdbarch)
361 * sizeof (struct packet_reg *));
362 for (num_remote_regs = 0, regnum = 0;
363 regnum < gdbarch_num_regs (current_gdbarch);
364 regnum++)
365 if (rsa->regs[regnum].pnum != -1)
366 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
367
368 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
369 compare_pnums);
370
371 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
372 {
373 remote_regs[regnum]->in_g_packet = 1;
374 remote_regs[regnum]->offset = offset;
375 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
376 }
377
378 /* Record the maximum possible size of the g packet - it may turn out
379 to be smaller. */
380 rsa->sizeof_g_packet = offset;
381
382 /* Default maximum number of characters in a packet body. Many
383 remote stubs have a hardwired buffer size of 400 bytes
384 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
385 as the maximum packet-size to ensure that the packet and an extra
386 NUL character can always fit in the buffer. This stops GDB
387 trashing stubs that try to squeeze an extra NUL into what is
388 already a full buffer (As of 1999-12-04 that was most stubs). */
389 rsa->remote_packet_size = 400 - 1;
390
391 /* This one is filled in when a ``g'' packet is received. */
392 rsa->actual_register_packet_size = 0;
393
394 /* Should rsa->sizeof_g_packet needs more space than the
395 default, adjust the size accordingly. Remember that each byte is
396 encoded as two characters. 32 is the overhead for the packet
397 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
398 (``$NN:G...#NN'') is a better guess, the below has been padded a
399 little. */
400 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
401 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
402
403 /* Make sure that the packet buffer is plenty big enough for
404 this architecture. */
405 if (rs->buf_size < rsa->remote_packet_size)
406 {
407 rs->buf_size = 2 * rsa->remote_packet_size;
408 rs->buf = xrealloc (rs->buf, rs->buf_size);
409 }
410
411 return rsa;
412 }
413
414 /* Return the current allowed size of a remote packet. This is
415 inferred from the current architecture, and should be used to
416 limit the length of outgoing packets. */
417 static long
418 get_remote_packet_size (void)
419 {
420 struct remote_state *rs = get_remote_state ();
421 struct remote_arch_state *rsa = get_remote_arch_state ();
422
423 if (rs->explicit_packet_size)
424 return rs->explicit_packet_size;
425
426 return rsa->remote_packet_size;
427 }
428
429 static struct packet_reg *
430 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
431 {
432 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
433 return NULL;
434 else
435 {
436 struct packet_reg *r = &rsa->regs[regnum];
437 gdb_assert (r->regnum == regnum);
438 return r;
439 }
440 }
441
442 static struct packet_reg *
443 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
444 {
445 int i;
446 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
447 {
448 struct packet_reg *r = &rsa->regs[i];
449 if (r->pnum == pnum)
450 return r;
451 }
452 return NULL;
453 }
454
455 /* FIXME: graces/2002-08-08: These variables should eventually be
456 bound to an instance of the target object (as in gdbarch-tdep()),
457 when such a thing exists. */
458
459 /* This is set to the data address of the access causing the target
460 to stop for a watchpoint. */
461 static CORE_ADDR remote_watch_data_address;
462
463 /* This is non-zero if target stopped for a watchpoint. */
464 static int remote_stopped_by_watchpoint_p;
465
466 static struct target_ops remote_ops;
467
468 static struct target_ops extended_remote_ops;
469
470 /* Temporary target ops. Just like the remote_ops and
471 extended_remote_ops, but with asynchronous support. */
472 static struct target_ops remote_async_ops;
473
474 static struct target_ops extended_async_remote_ops;
475
476 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
477 ``forever'' still use the normal timeout mechanism. This is
478 currently used by the ASYNC code to guarentee that target reads
479 during the initial connect always time-out. Once getpkt has been
480 modified to return a timeout indication and, in turn
481 remote_wait()/wait_for_inferior() have gained a timeout parameter
482 this can go away. */
483 static int wait_forever_enabled_p = 1;
484
485
486 /* This variable chooses whether to send a ^C or a break when the user
487 requests program interruption. Although ^C is usually what remote
488 systems expect, and that is the default here, sometimes a break is
489 preferable instead. */
490
491 static int remote_break;
492
493 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
494 remote_open knows that we don't have a file open when the program
495 starts. */
496 static struct serial *remote_desc = NULL;
497
498 /* This variable sets the number of bits in an address that are to be
499 sent in a memory ("M" or "m") packet. Normally, after stripping
500 leading zeros, the entire address would be sent. This variable
501 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
502 initial implementation of remote.c restricted the address sent in
503 memory packets to ``host::sizeof long'' bytes - (typically 32
504 bits). Consequently, for 64 bit targets, the upper 32 bits of an
505 address was never sent. Since fixing this bug may cause a break in
506 some remote targets this variable is principly provided to
507 facilitate backward compatibility. */
508
509 static int remote_address_size;
510
511 /* Tempoary to track who currently owns the terminal. See
512 target_async_terminal_* for more details. */
513
514 static int remote_async_terminal_ours_p;
515
516 \f
517 /* User configurable variables for the number of characters in a
518 memory read/write packet. MIN (rsa->remote_packet_size,
519 rsa->sizeof_g_packet) is the default. Some targets need smaller
520 values (fifo overruns, et.al.) and some users need larger values
521 (speed up transfers). The variables ``preferred_*'' (the user
522 request), ``current_*'' (what was actually set) and ``forced_*''
523 (Positive - a soft limit, negative - a hard limit). */
524
525 struct memory_packet_config
526 {
527 char *name;
528 long size;
529 int fixed_p;
530 };
531
532 /* Compute the current size of a read/write packet. Since this makes
533 use of ``actual_register_packet_size'' the computation is dynamic. */
534
535 static long
536 get_memory_packet_size (struct memory_packet_config *config)
537 {
538 struct remote_state *rs = get_remote_state ();
539 struct remote_arch_state *rsa = get_remote_arch_state ();
540
541 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
542 law?) that some hosts don't cope very well with large alloca()
543 calls. Eventually the alloca() code will be replaced by calls to
544 xmalloc() and make_cleanups() allowing this restriction to either
545 be lifted or removed. */
546 #ifndef MAX_REMOTE_PACKET_SIZE
547 #define MAX_REMOTE_PACKET_SIZE 16384
548 #endif
549 /* NOTE: 20 ensures we can write at least one byte. */
550 #ifndef MIN_REMOTE_PACKET_SIZE
551 #define MIN_REMOTE_PACKET_SIZE 20
552 #endif
553 long what_they_get;
554 if (config->fixed_p)
555 {
556 if (config->size <= 0)
557 what_they_get = MAX_REMOTE_PACKET_SIZE;
558 else
559 what_they_get = config->size;
560 }
561 else
562 {
563 what_they_get = get_remote_packet_size ();
564 /* Limit the packet to the size specified by the user. */
565 if (config->size > 0
566 && what_they_get > config->size)
567 what_they_get = config->size;
568
569 /* Limit it to the size of the targets ``g'' response unless we have
570 permission from the stub to use a larger packet size. */
571 if (rs->explicit_packet_size == 0
572 && rsa->actual_register_packet_size > 0
573 && what_they_get > rsa->actual_register_packet_size)
574 what_they_get = rsa->actual_register_packet_size;
575 }
576 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
577 what_they_get = MAX_REMOTE_PACKET_SIZE;
578 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
579 what_they_get = MIN_REMOTE_PACKET_SIZE;
580
581 /* Make sure there is room in the global buffer for this packet
582 (including its trailing NUL byte). */
583 if (rs->buf_size < what_they_get + 1)
584 {
585 rs->buf_size = 2 * what_they_get;
586 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
587 }
588
589 return what_they_get;
590 }
591
592 /* Update the size of a read/write packet. If they user wants
593 something really big then do a sanity check. */
594
595 static void
596 set_memory_packet_size (char *args, struct memory_packet_config *config)
597 {
598 int fixed_p = config->fixed_p;
599 long size = config->size;
600 if (args == NULL)
601 error (_("Argument required (integer, `fixed' or `limited')."));
602 else if (strcmp (args, "hard") == 0
603 || strcmp (args, "fixed") == 0)
604 fixed_p = 1;
605 else if (strcmp (args, "soft") == 0
606 || strcmp (args, "limit") == 0)
607 fixed_p = 0;
608 else
609 {
610 char *end;
611 size = strtoul (args, &end, 0);
612 if (args == end)
613 error (_("Invalid %s (bad syntax)."), config->name);
614 #if 0
615 /* Instead of explicitly capping the size of a packet to
616 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
617 instead allowed to set the size to something arbitrarily
618 large. */
619 if (size > MAX_REMOTE_PACKET_SIZE)
620 error (_("Invalid %s (too large)."), config->name);
621 #endif
622 }
623 /* Extra checks? */
624 if (fixed_p && !config->fixed_p)
625 {
626 if (! query (_("The target may not be able to correctly handle a %s\n"
627 "of %ld bytes. Change the packet size? "),
628 config->name, size))
629 error (_("Packet size not changed."));
630 }
631 /* Update the config. */
632 config->fixed_p = fixed_p;
633 config->size = size;
634 }
635
636 static void
637 show_memory_packet_size (struct memory_packet_config *config)
638 {
639 printf_filtered (_("The %s is %ld. "), config->name, config->size);
640 if (config->fixed_p)
641 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
642 get_memory_packet_size (config));
643 else
644 printf_filtered (_("Packets are limited to %ld bytes.\n"),
645 get_memory_packet_size (config));
646 }
647
648 static struct memory_packet_config memory_write_packet_config =
649 {
650 "memory-write-packet-size",
651 };
652
653 static void
654 set_memory_write_packet_size (char *args, int from_tty)
655 {
656 set_memory_packet_size (args, &memory_write_packet_config);
657 }
658
659 static void
660 show_memory_write_packet_size (char *args, int from_tty)
661 {
662 show_memory_packet_size (&memory_write_packet_config);
663 }
664
665 static long
666 get_memory_write_packet_size (void)
667 {
668 return get_memory_packet_size (&memory_write_packet_config);
669 }
670
671 static struct memory_packet_config memory_read_packet_config =
672 {
673 "memory-read-packet-size",
674 };
675
676 static void
677 set_memory_read_packet_size (char *args, int from_tty)
678 {
679 set_memory_packet_size (args, &memory_read_packet_config);
680 }
681
682 static void
683 show_memory_read_packet_size (char *args, int from_tty)
684 {
685 show_memory_packet_size (&memory_read_packet_config);
686 }
687
688 static long
689 get_memory_read_packet_size (void)
690 {
691 long size = get_memory_packet_size (&memory_read_packet_config);
692 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
693 extra buffer size argument before the memory read size can be
694 increased beyond this. */
695 if (size > get_remote_packet_size ())
696 size = get_remote_packet_size ();
697 return size;
698 }
699
700 \f
701 /* Generic configuration support for packets the stub optionally
702 supports. Allows the user to specify the use of the packet as well
703 as allowing GDB to auto-detect support in the remote stub. */
704
705 enum packet_support
706 {
707 PACKET_SUPPORT_UNKNOWN = 0,
708 PACKET_ENABLE,
709 PACKET_DISABLE
710 };
711
712 struct packet_config
713 {
714 const char *name;
715 const char *title;
716 enum auto_boolean detect;
717 enum packet_support support;
718 };
719
720 /* Analyze a packet's return value and update the packet config
721 accordingly. */
722
723 enum packet_result
724 {
725 PACKET_ERROR,
726 PACKET_OK,
727 PACKET_UNKNOWN
728 };
729
730 static void
731 update_packet_config (struct packet_config *config)
732 {
733 switch (config->detect)
734 {
735 case AUTO_BOOLEAN_TRUE:
736 config->support = PACKET_ENABLE;
737 break;
738 case AUTO_BOOLEAN_FALSE:
739 config->support = PACKET_DISABLE;
740 break;
741 case AUTO_BOOLEAN_AUTO:
742 config->support = PACKET_SUPPORT_UNKNOWN;
743 break;
744 }
745 }
746
747 static void
748 show_packet_config_cmd (struct packet_config *config)
749 {
750 char *support = "internal-error";
751 switch (config->support)
752 {
753 case PACKET_ENABLE:
754 support = "enabled";
755 break;
756 case PACKET_DISABLE:
757 support = "disabled";
758 break;
759 case PACKET_SUPPORT_UNKNOWN:
760 support = "unknown";
761 break;
762 }
763 switch (config->detect)
764 {
765 case AUTO_BOOLEAN_AUTO:
766 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
767 config->name, support);
768 break;
769 case AUTO_BOOLEAN_TRUE:
770 case AUTO_BOOLEAN_FALSE:
771 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
772 config->name, support);
773 break;
774 }
775 }
776
777 static void
778 add_packet_config_cmd (struct packet_config *config, const char *name,
779 const char *title, int legacy)
780 {
781 char *set_doc;
782 char *show_doc;
783 char *cmd_name;
784
785 config->name = name;
786 config->title = title;
787 config->detect = AUTO_BOOLEAN_AUTO;
788 config->support = PACKET_SUPPORT_UNKNOWN;
789 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
790 name, title);
791 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
792 name, title);
793 /* set/show TITLE-packet {auto,on,off} */
794 cmd_name = xstrprintf ("%s-packet", title);
795 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
796 &config->detect, set_doc, show_doc, NULL, /* help_doc */
797 set_remote_protocol_packet_cmd,
798 show_remote_protocol_packet_cmd,
799 &remote_set_cmdlist, &remote_show_cmdlist);
800 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
801 if (legacy)
802 {
803 char *legacy_name;
804 legacy_name = xstrprintf ("%s-packet", name);
805 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
806 &remote_set_cmdlist);
807 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
808 &remote_show_cmdlist);
809 }
810 }
811
812 static enum packet_result
813 packet_check_result (const char *buf)
814 {
815 if (buf[0] != '\0')
816 {
817 /* The stub recognized the packet request. Check that the
818 operation succeeded. */
819 if (buf[0] == 'E'
820 && isxdigit (buf[1]) && isxdigit (buf[2])
821 && buf[3] == '\0')
822 /* "Enn" - definitly an error. */
823 return PACKET_ERROR;
824
825 /* Always treat "E." as an error. This will be used for
826 more verbose error messages, such as E.memtypes. */
827 if (buf[0] == 'E' && buf[1] == '.')
828 return PACKET_ERROR;
829
830 /* The packet may or may not be OK. Just assume it is. */
831 return PACKET_OK;
832 }
833 else
834 /* The stub does not support the packet. */
835 return PACKET_UNKNOWN;
836 }
837
838 static enum packet_result
839 packet_ok (const char *buf, struct packet_config *config)
840 {
841 enum packet_result result;
842
843 result = packet_check_result (buf);
844 switch (result)
845 {
846 case PACKET_OK:
847 case PACKET_ERROR:
848 /* The stub recognized the packet request. */
849 switch (config->support)
850 {
851 case PACKET_SUPPORT_UNKNOWN:
852 if (remote_debug)
853 fprintf_unfiltered (gdb_stdlog,
854 "Packet %s (%s) is supported\n",
855 config->name, config->title);
856 config->support = PACKET_ENABLE;
857 break;
858 case PACKET_DISABLE:
859 internal_error (__FILE__, __LINE__,
860 _("packet_ok: attempt to use a disabled packet"));
861 break;
862 case PACKET_ENABLE:
863 break;
864 }
865 break;
866 case PACKET_UNKNOWN:
867 /* The stub does not support the packet. */
868 switch (config->support)
869 {
870 case PACKET_ENABLE:
871 if (config->detect == AUTO_BOOLEAN_AUTO)
872 /* If the stub previously indicated that the packet was
873 supported then there is a protocol error.. */
874 error (_("Protocol error: %s (%s) conflicting enabled responses."),
875 config->name, config->title);
876 else
877 /* The user set it wrong. */
878 error (_("Enabled packet %s (%s) not recognized by stub"),
879 config->name, config->title);
880 break;
881 case PACKET_SUPPORT_UNKNOWN:
882 if (remote_debug)
883 fprintf_unfiltered (gdb_stdlog,
884 "Packet %s (%s) is NOT supported\n",
885 config->name, config->title);
886 config->support = PACKET_DISABLE;
887 break;
888 case PACKET_DISABLE:
889 break;
890 }
891 break;
892 }
893
894 return result;
895 }
896
897 enum {
898 PACKET_vCont = 0,
899 PACKET_X,
900 PACKET_qSymbol,
901 PACKET_P,
902 PACKET_p,
903 PACKET_Z0,
904 PACKET_Z1,
905 PACKET_Z2,
906 PACKET_Z3,
907 PACKET_Z4,
908 PACKET_qXfer_auxv,
909 PACKET_qXfer_features,
910 PACKET_qXfer_memory_map,
911 PACKET_qXfer_spu_read,
912 PACKET_qXfer_spu_write,
913 PACKET_qGetTLSAddr,
914 PACKET_qSupported,
915 PACKET_QPassSignals,
916 PACKET_MAX
917 };
918
919 static struct packet_config remote_protocol_packets[PACKET_MAX];
920
921 static void
922 set_remote_protocol_packet_cmd (char *args, int from_tty,
923 struct cmd_list_element *c)
924 {
925 struct packet_config *packet;
926
927 for (packet = remote_protocol_packets;
928 packet < &remote_protocol_packets[PACKET_MAX];
929 packet++)
930 {
931 if (&packet->detect == c->var)
932 {
933 update_packet_config (packet);
934 return;
935 }
936 }
937 internal_error (__FILE__, __LINE__, "Could not find config for %s",
938 c->name);
939 }
940
941 static void
942 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
943 struct cmd_list_element *c,
944 const char *value)
945 {
946 struct packet_config *packet;
947
948 for (packet = remote_protocol_packets;
949 packet < &remote_protocol_packets[PACKET_MAX];
950 packet++)
951 {
952 if (&packet->detect == c->var)
953 {
954 show_packet_config_cmd (packet);
955 return;
956 }
957 }
958 internal_error (__FILE__, __LINE__, "Could not find config for %s",
959 c->name);
960 }
961
962 /* Should we try one of the 'Z' requests? */
963
964 enum Z_packet_type
965 {
966 Z_PACKET_SOFTWARE_BP,
967 Z_PACKET_HARDWARE_BP,
968 Z_PACKET_WRITE_WP,
969 Z_PACKET_READ_WP,
970 Z_PACKET_ACCESS_WP,
971 NR_Z_PACKET_TYPES
972 };
973
974 /* For compatibility with older distributions. Provide a ``set remote
975 Z-packet ...'' command that updates all the Z packet types. */
976
977 static enum auto_boolean remote_Z_packet_detect;
978
979 static void
980 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
981 struct cmd_list_element *c)
982 {
983 int i;
984 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
985 {
986 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
987 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
988 }
989 }
990
991 static void
992 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
993 struct cmd_list_element *c,
994 const char *value)
995 {
996 int i;
997 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
998 {
999 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1000 }
1001 }
1002
1003 /* Should we try the 'ThreadInfo' query packet?
1004
1005 This variable (NOT available to the user: auto-detect only!)
1006 determines whether GDB will use the new, simpler "ThreadInfo"
1007 query or the older, more complex syntax for thread queries.
1008 This is an auto-detect variable (set to true at each connect,
1009 and set to false when the target fails to recognize it). */
1010
1011 static int use_threadinfo_query;
1012 static int use_threadextra_query;
1013
1014 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1015 static struct async_signal_handler *sigint_remote_twice_token;
1016 static struct async_signal_handler *sigint_remote_token;
1017
1018 /* These are pointers to hook functions that may be set in order to
1019 modify resume/wait behavior for a particular architecture. */
1020
1021 void (*deprecated_target_resume_hook) (void);
1022 void (*deprecated_target_wait_loop_hook) (void);
1023 \f
1024
1025
1026 /* These are the threads which we last sent to the remote system.
1027 -1 for all or -2 for not sent yet. */
1028 static int general_thread;
1029 static int continue_thread;
1030
1031 /* Call this function as a result of
1032 1) A halt indication (T packet) containing a thread id
1033 2) A direct query of currthread
1034 3) Successful execution of set thread
1035 */
1036
1037 static void
1038 record_currthread (int currthread)
1039 {
1040 general_thread = currthread;
1041
1042 /* If this is a new thread, add it to GDB's thread list.
1043 If we leave it up to WFI to do this, bad things will happen. */
1044 if (!in_thread_list (pid_to_ptid (currthread)))
1045 {
1046 add_thread (pid_to_ptid (currthread));
1047 ui_out_text (uiout, "[New ");
1048 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1049 ui_out_text (uiout, "]\n");
1050 }
1051 }
1052
1053 static char *last_pass_packet;
1054
1055 /* If 'QPassSignals' is supported, tell the remote stub what signals
1056 it can simply pass through to the inferior without reporting. */
1057
1058 static void
1059 remote_pass_signals (void)
1060 {
1061 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1062 {
1063 char *pass_packet, *p;
1064 int numsigs = (int) TARGET_SIGNAL_LAST;
1065 int count = 0, i;
1066
1067 gdb_assert (numsigs < 256);
1068 for (i = 0; i < numsigs; i++)
1069 {
1070 if (signal_stop_state (i) == 0
1071 && signal_print_state (i) == 0
1072 && signal_pass_state (i) == 1)
1073 count++;
1074 }
1075 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1076 strcpy (pass_packet, "QPassSignals:");
1077 p = pass_packet + strlen (pass_packet);
1078 for (i = 0; i < numsigs; i++)
1079 {
1080 if (signal_stop_state (i) == 0
1081 && signal_print_state (i) == 0
1082 && signal_pass_state (i) == 1)
1083 {
1084 if (i >= 16)
1085 *p++ = tohex (i >> 4);
1086 *p++ = tohex (i & 15);
1087 if (count)
1088 *p++ = ';';
1089 else
1090 break;
1091 count--;
1092 }
1093 }
1094 *p = 0;
1095 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1096 {
1097 struct remote_state *rs = get_remote_state ();
1098 char *buf = rs->buf;
1099
1100 putpkt (pass_packet);
1101 getpkt (&rs->buf, &rs->buf_size, 0);
1102 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1103 if (last_pass_packet)
1104 xfree (last_pass_packet);
1105 last_pass_packet = pass_packet;
1106 }
1107 else
1108 xfree (pass_packet);
1109 }
1110 }
1111
1112 #define MAGIC_NULL_PID 42000
1113
1114 static void
1115 set_thread (int th, int gen)
1116 {
1117 struct remote_state *rs = get_remote_state ();
1118 char *buf = rs->buf;
1119 int state = gen ? general_thread : continue_thread;
1120
1121 if (state == th)
1122 return;
1123
1124 buf[0] = 'H';
1125 buf[1] = gen ? 'g' : 'c';
1126 if (th == MAGIC_NULL_PID)
1127 {
1128 buf[2] = '0';
1129 buf[3] = '\0';
1130 }
1131 else if (th < 0)
1132 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1133 else
1134 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1135 putpkt (buf);
1136 getpkt (&rs->buf, &rs->buf_size, 0);
1137 if (gen)
1138 general_thread = th;
1139 else
1140 continue_thread = th;
1141 }
1142 \f
1143 /* Return nonzero if the thread TH is still alive on the remote system. */
1144
1145 static int
1146 remote_thread_alive (ptid_t ptid)
1147 {
1148 struct remote_state *rs = get_remote_state ();
1149 int tid = PIDGET (ptid);
1150
1151 if (tid < 0)
1152 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1153 else
1154 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1155 putpkt (rs->buf);
1156 getpkt (&rs->buf, &rs->buf_size, 0);
1157 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1158 }
1159
1160 /* About these extended threadlist and threadinfo packets. They are
1161 variable length packets but, the fields within them are often fixed
1162 length. They are redundent enough to send over UDP as is the
1163 remote protocol in general. There is a matching unit test module
1164 in libstub. */
1165
1166 #define OPAQUETHREADBYTES 8
1167
1168 /* a 64 bit opaque identifier */
1169 typedef unsigned char threadref[OPAQUETHREADBYTES];
1170
1171 /* WARNING: This threadref data structure comes from the remote O.S.,
1172 libstub protocol encoding, and remote.c. it is not particularly
1173 changable. */
1174
1175 /* Right now, the internal structure is int. We want it to be bigger.
1176 Plan to fix this.
1177 */
1178
1179 typedef int gdb_threadref; /* Internal GDB thread reference. */
1180
1181 /* gdb_ext_thread_info is an internal GDB data structure which is
1182 equivalent to the reply of the remote threadinfo packet. */
1183
1184 struct gdb_ext_thread_info
1185 {
1186 threadref threadid; /* External form of thread reference. */
1187 int active; /* Has state interesting to GDB?
1188 regs, stack. */
1189 char display[256]; /* Brief state display, name,
1190 blocked/suspended. */
1191 char shortname[32]; /* To be used to name threads. */
1192 char more_display[256]; /* Long info, statistics, queue depth,
1193 whatever. */
1194 };
1195
1196 /* The volume of remote transfers can be limited by submitting
1197 a mask containing bits specifying the desired information.
1198 Use a union of these values as the 'selection' parameter to
1199 get_thread_info. FIXME: Make these TAG names more thread specific.
1200 */
1201
1202 #define TAG_THREADID 1
1203 #define TAG_EXISTS 2
1204 #define TAG_DISPLAY 4
1205 #define TAG_THREADNAME 8
1206 #define TAG_MOREDISPLAY 16
1207
1208 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1209
1210 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1211
1212 static char *unpack_nibble (char *buf, int *val);
1213
1214 static char *pack_nibble (char *buf, int nibble);
1215
1216 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1217
1218 static char *unpack_byte (char *buf, int *value);
1219
1220 static char *pack_int (char *buf, int value);
1221
1222 static char *unpack_int (char *buf, int *value);
1223
1224 static char *unpack_string (char *src, char *dest, int length);
1225
1226 static char *pack_threadid (char *pkt, threadref *id);
1227
1228 static char *unpack_threadid (char *inbuf, threadref *id);
1229
1230 void int_to_threadref (threadref *id, int value);
1231
1232 static int threadref_to_int (threadref *ref);
1233
1234 static void copy_threadref (threadref *dest, threadref *src);
1235
1236 static int threadmatch (threadref *dest, threadref *src);
1237
1238 static char *pack_threadinfo_request (char *pkt, int mode,
1239 threadref *id);
1240
1241 static int remote_unpack_thread_info_response (char *pkt,
1242 threadref *expectedref,
1243 struct gdb_ext_thread_info
1244 *info);
1245
1246
1247 static int remote_get_threadinfo (threadref *threadid,
1248 int fieldset, /*TAG mask */
1249 struct gdb_ext_thread_info *info);
1250
1251 static char *pack_threadlist_request (char *pkt, int startflag,
1252 int threadcount,
1253 threadref *nextthread);
1254
1255 static int parse_threadlist_response (char *pkt,
1256 int result_limit,
1257 threadref *original_echo,
1258 threadref *resultlist,
1259 int *doneflag);
1260
1261 static int remote_get_threadlist (int startflag,
1262 threadref *nextthread,
1263 int result_limit,
1264 int *done,
1265 int *result_count,
1266 threadref *threadlist);
1267
1268 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1269
1270 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1271 void *context, int looplimit);
1272
1273 static int remote_newthread_step (threadref *ref, void *context);
1274
1275 /* Encode 64 bits in 16 chars of hex. */
1276
1277 static const char hexchars[] = "0123456789abcdef";
1278
1279 static int
1280 ishex (int ch, int *val)
1281 {
1282 if ((ch >= 'a') && (ch <= 'f'))
1283 {
1284 *val = ch - 'a' + 10;
1285 return 1;
1286 }
1287 if ((ch >= 'A') && (ch <= 'F'))
1288 {
1289 *val = ch - 'A' + 10;
1290 return 1;
1291 }
1292 if ((ch >= '0') && (ch <= '9'))
1293 {
1294 *val = ch - '0';
1295 return 1;
1296 }
1297 return 0;
1298 }
1299
1300 static int
1301 stubhex (int ch)
1302 {
1303 if (ch >= 'a' && ch <= 'f')
1304 return ch - 'a' + 10;
1305 if (ch >= '0' && ch <= '9')
1306 return ch - '0';
1307 if (ch >= 'A' && ch <= 'F')
1308 return ch - 'A' + 10;
1309 return -1;
1310 }
1311
1312 static int
1313 stub_unpack_int (char *buff, int fieldlength)
1314 {
1315 int nibble;
1316 int retval = 0;
1317
1318 while (fieldlength)
1319 {
1320 nibble = stubhex (*buff++);
1321 retval |= nibble;
1322 fieldlength--;
1323 if (fieldlength)
1324 retval = retval << 4;
1325 }
1326 return retval;
1327 }
1328
1329 char *
1330 unpack_varlen_hex (char *buff, /* packet to parse */
1331 ULONGEST *result)
1332 {
1333 int nibble;
1334 ULONGEST retval = 0;
1335
1336 while (ishex (*buff, &nibble))
1337 {
1338 buff++;
1339 retval = retval << 4;
1340 retval |= nibble & 0x0f;
1341 }
1342 *result = retval;
1343 return buff;
1344 }
1345
1346 static char *
1347 unpack_nibble (char *buf, int *val)
1348 {
1349 ishex (*buf++, val);
1350 return buf;
1351 }
1352
1353 static char *
1354 pack_nibble (char *buf, int nibble)
1355 {
1356 *buf++ = hexchars[(nibble & 0x0f)];
1357 return buf;
1358 }
1359
1360 static char *
1361 pack_hex_byte (char *pkt, int byte)
1362 {
1363 *pkt++ = hexchars[(byte >> 4) & 0xf];
1364 *pkt++ = hexchars[(byte & 0xf)];
1365 return pkt;
1366 }
1367
1368 static char *
1369 unpack_byte (char *buf, int *value)
1370 {
1371 *value = stub_unpack_int (buf, 2);
1372 return buf + 2;
1373 }
1374
1375 static char *
1376 pack_int (char *buf, int value)
1377 {
1378 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1379 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1380 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1381 buf = pack_hex_byte (buf, (value & 0xff));
1382 return buf;
1383 }
1384
1385 static char *
1386 unpack_int (char *buf, int *value)
1387 {
1388 *value = stub_unpack_int (buf, 8);
1389 return buf + 8;
1390 }
1391
1392 #if 0 /* Currently unused, uncomment when needed. */
1393 static char *pack_string (char *pkt, char *string);
1394
1395 static char *
1396 pack_string (char *pkt, char *string)
1397 {
1398 char ch;
1399 int len;
1400
1401 len = strlen (string);
1402 if (len > 200)
1403 len = 200; /* Bigger than most GDB packets, junk??? */
1404 pkt = pack_hex_byte (pkt, len);
1405 while (len-- > 0)
1406 {
1407 ch = *string++;
1408 if ((ch == '\0') || (ch == '#'))
1409 ch = '*'; /* Protect encapsulation. */
1410 *pkt++ = ch;
1411 }
1412 return pkt;
1413 }
1414 #endif /* 0 (unused) */
1415
1416 static char *
1417 unpack_string (char *src, char *dest, int length)
1418 {
1419 while (length--)
1420 *dest++ = *src++;
1421 *dest = '\0';
1422 return src;
1423 }
1424
1425 static char *
1426 pack_threadid (char *pkt, threadref *id)
1427 {
1428 char *limit;
1429 unsigned char *altid;
1430
1431 altid = (unsigned char *) id;
1432 limit = pkt + BUF_THREAD_ID_SIZE;
1433 while (pkt < limit)
1434 pkt = pack_hex_byte (pkt, *altid++);
1435 return pkt;
1436 }
1437
1438
1439 static char *
1440 unpack_threadid (char *inbuf, threadref *id)
1441 {
1442 char *altref;
1443 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1444 int x, y;
1445
1446 altref = (char *) id;
1447
1448 while (inbuf < limit)
1449 {
1450 x = stubhex (*inbuf++);
1451 y = stubhex (*inbuf++);
1452 *altref++ = (x << 4) | y;
1453 }
1454 return inbuf;
1455 }
1456
1457 /* Externally, threadrefs are 64 bits but internally, they are still
1458 ints. This is due to a mismatch of specifications. We would like
1459 to use 64bit thread references internally. This is an adapter
1460 function. */
1461
1462 void
1463 int_to_threadref (threadref *id, int value)
1464 {
1465 unsigned char *scan;
1466
1467 scan = (unsigned char *) id;
1468 {
1469 int i = 4;
1470 while (i--)
1471 *scan++ = 0;
1472 }
1473 *scan++ = (value >> 24) & 0xff;
1474 *scan++ = (value >> 16) & 0xff;
1475 *scan++ = (value >> 8) & 0xff;
1476 *scan++ = (value & 0xff);
1477 }
1478
1479 static int
1480 threadref_to_int (threadref *ref)
1481 {
1482 int i, value = 0;
1483 unsigned char *scan;
1484
1485 scan = *ref;
1486 scan += 4;
1487 i = 4;
1488 while (i-- > 0)
1489 value = (value << 8) | ((*scan++) & 0xff);
1490 return value;
1491 }
1492
1493 static void
1494 copy_threadref (threadref *dest, threadref *src)
1495 {
1496 int i;
1497 unsigned char *csrc, *cdest;
1498
1499 csrc = (unsigned char *) src;
1500 cdest = (unsigned char *) dest;
1501 i = 8;
1502 while (i--)
1503 *cdest++ = *csrc++;
1504 }
1505
1506 static int
1507 threadmatch (threadref *dest, threadref *src)
1508 {
1509 /* Things are broken right now, so just assume we got a match. */
1510 #if 0
1511 unsigned char *srcp, *destp;
1512 int i, result;
1513 srcp = (char *) src;
1514 destp = (char *) dest;
1515
1516 result = 1;
1517 while (i-- > 0)
1518 result &= (*srcp++ == *destp++) ? 1 : 0;
1519 return result;
1520 #endif
1521 return 1;
1522 }
1523
1524 /*
1525 threadid:1, # always request threadid
1526 context_exists:2,
1527 display:4,
1528 unique_name:8,
1529 more_display:16
1530 */
1531
1532 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1533
1534 static char *
1535 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1536 {
1537 *pkt++ = 'q'; /* Info Query */
1538 *pkt++ = 'P'; /* process or thread info */
1539 pkt = pack_int (pkt, mode); /* mode */
1540 pkt = pack_threadid (pkt, id); /* threadid */
1541 *pkt = '\0'; /* terminate */
1542 return pkt;
1543 }
1544
1545 /* These values tag the fields in a thread info response packet. */
1546 /* Tagging the fields allows us to request specific fields and to
1547 add more fields as time goes by. */
1548
1549 #define TAG_THREADID 1 /* Echo the thread identifier. */
1550 #define TAG_EXISTS 2 /* Is this process defined enough to
1551 fetch registers and its stack? */
1552 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1553 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1554 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1555 the process. */
1556
1557 static int
1558 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1559 struct gdb_ext_thread_info *info)
1560 {
1561 struct remote_state *rs = get_remote_state ();
1562 int mask, length;
1563 int tag;
1564 threadref ref;
1565 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1566 int retval = 1;
1567
1568 /* info->threadid = 0; FIXME: implement zero_threadref. */
1569 info->active = 0;
1570 info->display[0] = '\0';
1571 info->shortname[0] = '\0';
1572 info->more_display[0] = '\0';
1573
1574 /* Assume the characters indicating the packet type have been
1575 stripped. */
1576 pkt = unpack_int (pkt, &mask); /* arg mask */
1577 pkt = unpack_threadid (pkt, &ref);
1578
1579 if (mask == 0)
1580 warning (_("Incomplete response to threadinfo request."));
1581 if (!threadmatch (&ref, expectedref))
1582 { /* This is an answer to a different request. */
1583 warning (_("ERROR RMT Thread info mismatch."));
1584 return 0;
1585 }
1586 copy_threadref (&info->threadid, &ref);
1587
1588 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1589
1590 /* Packets are terminated with nulls. */
1591 while ((pkt < limit) && mask && *pkt)
1592 {
1593 pkt = unpack_int (pkt, &tag); /* tag */
1594 pkt = unpack_byte (pkt, &length); /* length */
1595 if (!(tag & mask)) /* Tags out of synch with mask. */
1596 {
1597 warning (_("ERROR RMT: threadinfo tag mismatch."));
1598 retval = 0;
1599 break;
1600 }
1601 if (tag == TAG_THREADID)
1602 {
1603 if (length != 16)
1604 {
1605 warning (_("ERROR RMT: length of threadid is not 16."));
1606 retval = 0;
1607 break;
1608 }
1609 pkt = unpack_threadid (pkt, &ref);
1610 mask = mask & ~TAG_THREADID;
1611 continue;
1612 }
1613 if (tag == TAG_EXISTS)
1614 {
1615 info->active = stub_unpack_int (pkt, length);
1616 pkt += length;
1617 mask = mask & ~(TAG_EXISTS);
1618 if (length > 8)
1619 {
1620 warning (_("ERROR RMT: 'exists' length too long."));
1621 retval = 0;
1622 break;
1623 }
1624 continue;
1625 }
1626 if (tag == TAG_THREADNAME)
1627 {
1628 pkt = unpack_string (pkt, &info->shortname[0], length);
1629 mask = mask & ~TAG_THREADNAME;
1630 continue;
1631 }
1632 if (tag == TAG_DISPLAY)
1633 {
1634 pkt = unpack_string (pkt, &info->display[0], length);
1635 mask = mask & ~TAG_DISPLAY;
1636 continue;
1637 }
1638 if (tag == TAG_MOREDISPLAY)
1639 {
1640 pkt = unpack_string (pkt, &info->more_display[0], length);
1641 mask = mask & ~TAG_MOREDISPLAY;
1642 continue;
1643 }
1644 warning (_("ERROR RMT: unknown thread info tag."));
1645 break; /* Not a tag we know about. */
1646 }
1647 return retval;
1648 }
1649
1650 static int
1651 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1652 struct gdb_ext_thread_info *info)
1653 {
1654 struct remote_state *rs = get_remote_state ();
1655 int result;
1656
1657 pack_threadinfo_request (rs->buf, fieldset, threadid);
1658 putpkt (rs->buf);
1659 getpkt (&rs->buf, &rs->buf_size, 0);
1660 result = remote_unpack_thread_info_response (rs->buf + 2,
1661 threadid, info);
1662 return result;
1663 }
1664
1665 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1666
1667 static char *
1668 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1669 threadref *nextthread)
1670 {
1671 *pkt++ = 'q'; /* info query packet */
1672 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1673 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1674 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1675 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1676 *pkt = '\0';
1677 return pkt;
1678 }
1679
1680 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1681
1682 static int
1683 parse_threadlist_response (char *pkt, int result_limit,
1684 threadref *original_echo, threadref *resultlist,
1685 int *doneflag)
1686 {
1687 struct remote_state *rs = get_remote_state ();
1688 char *limit;
1689 int count, resultcount, done;
1690
1691 resultcount = 0;
1692 /* Assume the 'q' and 'M chars have been stripped. */
1693 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1694 /* done parse past here */
1695 pkt = unpack_byte (pkt, &count); /* count field */
1696 pkt = unpack_nibble (pkt, &done);
1697 /* The first threadid is the argument threadid. */
1698 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1699 while ((count-- > 0) && (pkt < limit))
1700 {
1701 pkt = unpack_threadid (pkt, resultlist++);
1702 if (resultcount++ >= result_limit)
1703 break;
1704 }
1705 if (doneflag)
1706 *doneflag = done;
1707 return resultcount;
1708 }
1709
1710 static int
1711 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1712 int *done, int *result_count, threadref *threadlist)
1713 {
1714 struct remote_state *rs = get_remote_state ();
1715 static threadref echo_nextthread;
1716 int result = 1;
1717
1718 /* Trancate result limit to be smaller than the packet size. */
1719 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1720 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1721
1722 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1723 putpkt (rs->buf);
1724 getpkt (&rs->buf, &rs->buf_size, 0);
1725
1726 *result_count =
1727 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1728 threadlist, done);
1729
1730 if (!threadmatch (&echo_nextthread, nextthread))
1731 {
1732 /* FIXME: This is a good reason to drop the packet. */
1733 /* Possably, there is a duplicate response. */
1734 /* Possabilities :
1735 retransmit immediatly - race conditions
1736 retransmit after timeout - yes
1737 exit
1738 wait for packet, then exit
1739 */
1740 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1741 return 0; /* I choose simply exiting. */
1742 }
1743 if (*result_count <= 0)
1744 {
1745 if (*done != 1)
1746 {
1747 warning (_("RMT ERROR : failed to get remote thread list."));
1748 result = 0;
1749 }
1750 return result; /* break; */
1751 }
1752 if (*result_count > result_limit)
1753 {
1754 *result_count = 0;
1755 warning (_("RMT ERROR: threadlist response longer than requested."));
1756 return 0;
1757 }
1758 return result;
1759 }
1760
1761 /* This is the interface between remote and threads, remotes upper
1762 interface. */
1763
1764 /* remote_find_new_threads retrieves the thread list and for each
1765 thread in the list, looks up the thread in GDB's internal list,
1766 ading the thread if it does not already exist. This involves
1767 getting partial thread lists from the remote target so, polling the
1768 quit_flag is required. */
1769
1770
1771 /* About this many threadisds fit in a packet. */
1772
1773 #define MAXTHREADLISTRESULTS 32
1774
1775 static int
1776 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1777 int looplimit)
1778 {
1779 int done, i, result_count;
1780 int startflag = 1;
1781 int result = 1;
1782 int loopcount = 0;
1783 static threadref nextthread;
1784 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1785
1786 done = 0;
1787 while (!done)
1788 {
1789 if (loopcount++ > looplimit)
1790 {
1791 result = 0;
1792 warning (_("Remote fetch threadlist -infinite loop-."));
1793 break;
1794 }
1795 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1796 &done, &result_count, resultthreadlist))
1797 {
1798 result = 0;
1799 break;
1800 }
1801 /* Clear for later iterations. */
1802 startflag = 0;
1803 /* Setup to resume next batch of thread references, set nextthread. */
1804 if (result_count >= 1)
1805 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1806 i = 0;
1807 while (result_count--)
1808 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1809 break;
1810 }
1811 return result;
1812 }
1813
1814 static int
1815 remote_newthread_step (threadref *ref, void *context)
1816 {
1817 ptid_t ptid;
1818
1819 ptid = pid_to_ptid (threadref_to_int (ref));
1820
1821 if (!in_thread_list (ptid))
1822 add_thread (ptid);
1823 return 1; /* continue iterator */
1824 }
1825
1826 #define CRAZY_MAX_THREADS 1000
1827
1828 static ptid_t
1829 remote_current_thread (ptid_t oldpid)
1830 {
1831 struct remote_state *rs = get_remote_state ();
1832
1833 putpkt ("qC");
1834 getpkt (&rs->buf, &rs->buf_size, 0);
1835 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1836 /* Use strtoul here, so we'll correctly parse values whose highest
1837 bit is set. The protocol carries them as a simple series of
1838 hex digits; in the absence of a sign, strtol will see such
1839 values as positive numbers out of range for signed 'long', and
1840 return LONG_MAX to indicate an overflow. */
1841 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1842 else
1843 return oldpid;
1844 }
1845
1846 /* Find new threads for info threads command.
1847 * Original version, using John Metzler's thread protocol.
1848 */
1849
1850 static void
1851 remote_find_new_threads (void)
1852 {
1853 remote_threadlist_iterator (remote_newthread_step, 0,
1854 CRAZY_MAX_THREADS);
1855 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1856 inferior_ptid = remote_current_thread (inferior_ptid);
1857 }
1858
1859 /*
1860 * Find all threads for info threads command.
1861 * Uses new thread protocol contributed by Cisco.
1862 * Falls back and attempts to use the older method (above)
1863 * if the target doesn't respond to the new method.
1864 */
1865
1866 static void
1867 remote_threads_info (void)
1868 {
1869 struct remote_state *rs = get_remote_state ();
1870 char *bufp;
1871 int tid;
1872
1873 if (remote_desc == 0) /* paranoia */
1874 error (_("Command can only be used when connected to the remote target."));
1875
1876 if (use_threadinfo_query)
1877 {
1878 putpkt ("qfThreadInfo");
1879 getpkt (&rs->buf, &rs->buf_size, 0);
1880 bufp = rs->buf;
1881 if (bufp[0] != '\0') /* q packet recognized */
1882 {
1883 while (*bufp++ == 'm') /* reply contains one or more TID */
1884 {
1885 do
1886 {
1887 /* Use strtoul here, so we'll correctly parse values
1888 whose highest bit is set. The protocol carries
1889 them as a simple series of hex digits; in the
1890 absence of a sign, strtol will see such values as
1891 positive numbers out of range for signed 'long',
1892 and return LONG_MAX to indicate an overflow. */
1893 tid = strtoul (bufp, &bufp, 16);
1894 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1895 add_thread (pid_to_ptid (tid));
1896 }
1897 while (*bufp++ == ','); /* comma-separated list */
1898 putpkt ("qsThreadInfo");
1899 getpkt (&rs->buf, &rs->buf_size, 0);
1900 bufp = rs->buf;
1901 }
1902 return; /* done */
1903 }
1904 }
1905
1906 /* Else fall back to old method based on jmetzler protocol. */
1907 use_threadinfo_query = 0;
1908 remote_find_new_threads ();
1909 return;
1910 }
1911
1912 /*
1913 * Collect a descriptive string about the given thread.
1914 * The target may say anything it wants to about the thread
1915 * (typically info about its blocked / runnable state, name, etc.).
1916 * This string will appear in the info threads display.
1917 *
1918 * Optional: targets are not required to implement this function.
1919 */
1920
1921 static char *
1922 remote_threads_extra_info (struct thread_info *tp)
1923 {
1924 struct remote_state *rs = get_remote_state ();
1925 int result;
1926 int set;
1927 threadref id;
1928 struct gdb_ext_thread_info threadinfo;
1929 static char display_buf[100]; /* arbitrary... */
1930 int n = 0; /* position in display_buf */
1931
1932 if (remote_desc == 0) /* paranoia */
1933 internal_error (__FILE__, __LINE__,
1934 _("remote_threads_extra_info"));
1935
1936 if (use_threadextra_query)
1937 {
1938 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1939 PIDGET (tp->ptid));
1940 putpkt (rs->buf);
1941 getpkt (&rs->buf, &rs->buf_size, 0);
1942 if (rs->buf[0] != 0)
1943 {
1944 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1945 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1946 display_buf [result] = '\0';
1947 return display_buf;
1948 }
1949 }
1950
1951 /* If the above query fails, fall back to the old method. */
1952 use_threadextra_query = 0;
1953 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1954 | TAG_MOREDISPLAY | TAG_DISPLAY;
1955 int_to_threadref (&id, PIDGET (tp->ptid));
1956 if (remote_get_threadinfo (&id, set, &threadinfo))
1957 if (threadinfo.active)
1958 {
1959 if (*threadinfo.shortname)
1960 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1961 " Name: %s,", threadinfo.shortname);
1962 if (*threadinfo.display)
1963 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1964 " State: %s,", threadinfo.display);
1965 if (*threadinfo.more_display)
1966 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1967 " Priority: %s", threadinfo.more_display);
1968
1969 if (n > 0)
1970 {
1971 /* For purely cosmetic reasons, clear up trailing commas. */
1972 if (',' == display_buf[n-1])
1973 display_buf[n-1] = ' ';
1974 return display_buf;
1975 }
1976 }
1977 return NULL;
1978 }
1979 \f
1980
1981 /* Restart the remote side; this is an extended protocol operation. */
1982
1983 static void
1984 extended_remote_restart (void)
1985 {
1986 struct remote_state *rs = get_remote_state ();
1987
1988 /* Send the restart command; for reasons I don't understand the
1989 remote side really expects a number after the "R". */
1990 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1991 putpkt (rs->buf);
1992
1993 remote_fileio_reset ();
1994
1995 /* Now query for status so this looks just like we restarted
1996 gdbserver from scratch. */
1997 putpkt ("?");
1998 getpkt (&rs->buf, &rs->buf_size, 0);
1999 }
2000 \f
2001 /* Clean up connection to a remote debugger. */
2002
2003 static void
2004 remote_close (int quitting)
2005 {
2006 if (remote_desc)
2007 serial_close (remote_desc);
2008 remote_desc = NULL;
2009 }
2010
2011 /* Query the remote side for the text, data and bss offsets. */
2012
2013 static void
2014 get_offsets (void)
2015 {
2016 struct remote_state *rs = get_remote_state ();
2017 char *buf;
2018 char *ptr;
2019 int lose, num_segments = 0, do_sections, do_segments;
2020 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2021 struct section_offsets *offs;
2022 struct symfile_segment_data *data;
2023
2024 if (symfile_objfile == NULL)
2025 return;
2026
2027 putpkt ("qOffsets");
2028 getpkt (&rs->buf, &rs->buf_size, 0);
2029 buf = rs->buf;
2030
2031 if (buf[0] == '\000')
2032 return; /* Return silently. Stub doesn't support
2033 this command. */
2034 if (buf[0] == 'E')
2035 {
2036 warning (_("Remote failure reply: %s"), buf);
2037 return;
2038 }
2039
2040 /* Pick up each field in turn. This used to be done with scanf, but
2041 scanf will make trouble if CORE_ADDR size doesn't match
2042 conversion directives correctly. The following code will work
2043 with any size of CORE_ADDR. */
2044 text_addr = data_addr = bss_addr = 0;
2045 ptr = buf;
2046 lose = 0;
2047
2048 if (strncmp (ptr, "Text=", 5) == 0)
2049 {
2050 ptr += 5;
2051 /* Don't use strtol, could lose on big values. */
2052 while (*ptr && *ptr != ';')
2053 text_addr = (text_addr << 4) + fromhex (*ptr++);
2054
2055 if (strncmp (ptr, ";Data=", 6) == 0)
2056 {
2057 ptr += 6;
2058 while (*ptr && *ptr != ';')
2059 data_addr = (data_addr << 4) + fromhex (*ptr++);
2060 }
2061 else
2062 lose = 1;
2063
2064 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2065 {
2066 ptr += 5;
2067 while (*ptr && *ptr != ';')
2068 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2069
2070 if (bss_addr != data_addr)
2071 warning (_("Target reported unsupported offsets: %s"), buf);
2072 }
2073 else
2074 lose = 1;
2075 }
2076 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2077 {
2078 ptr += 8;
2079 /* Don't use strtol, could lose on big values. */
2080 while (*ptr && *ptr != ';')
2081 text_addr = (text_addr << 4) + fromhex (*ptr++);
2082 num_segments = 1;
2083
2084 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2085 {
2086 ptr += 9;
2087 while (*ptr && *ptr != ';')
2088 data_addr = (data_addr << 4) + fromhex (*ptr++);
2089 num_segments++;
2090 }
2091 }
2092 else
2093 lose = 1;
2094
2095 if (lose)
2096 error (_("Malformed response to offset query, %s"), buf);
2097 else if (*ptr != '\0')
2098 warning (_("Target reported unsupported offsets: %s"), buf);
2099
2100 offs = ((struct section_offsets *)
2101 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2102 memcpy (offs, symfile_objfile->section_offsets,
2103 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2104
2105 data = get_symfile_segment_data (symfile_objfile->obfd);
2106 do_segments = (data != NULL);
2107 do_sections = num_segments == 0;
2108
2109 /* Text= and Data= specify offsets for the text and data sections,
2110 but symfile_map_offsets_to_segments expects base addresses
2111 instead of offsets. If we have two segments, we can still
2112 try to relocate the whole segments instead of just ".text"
2113 and ".data". */
2114 if (num_segments == 0)
2115 {
2116 do_sections = 1;
2117 if (data == NULL || data->num_segments != 2)
2118 do_segments = 0;
2119 else
2120 {
2121 segments[0] = data->segment_bases[0] + text_addr;
2122 segments[1] = data->segment_bases[1] + data_addr;
2123 }
2124 }
2125 else
2126 {
2127 do_sections = 0;
2128 segments[0] = text_addr;
2129 segments[1] = data_addr;
2130 }
2131
2132 if (do_segments)
2133 {
2134 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2135 offs, num_segments, segments);
2136
2137 if (ret == 0 && !do_sections)
2138 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2139
2140 if (ret > 0)
2141 do_sections = 0;
2142 }
2143
2144 free_symfile_segment_data (data);
2145
2146 if (do_sections)
2147 {
2148 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2149
2150 /* This is a temporary kludge to force data and bss to use the same offsets
2151 because that's what nlmconv does now. The real solution requires changes
2152 to the stub and remote.c that I don't have time to do right now. */
2153
2154 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2155 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2156 }
2157
2158 objfile_relocate (symfile_objfile, offs);
2159 }
2160
2161 /* Stub for catch_exception. */
2162
2163 static void
2164 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2165 {
2166 int from_tty = * (int *) from_tty_p;
2167
2168 immediate_quit++; /* Allow user to interrupt it. */
2169
2170 /* Ack any packet which the remote side has already sent. */
2171 serial_write (remote_desc, "+", 1);
2172
2173 /* Let the stub know that we want it to return the thread. */
2174 set_thread (-1, 0);
2175
2176 inferior_ptid = remote_current_thread (inferior_ptid);
2177
2178 get_offsets (); /* Get text, data & bss offsets. */
2179
2180 putpkt ("?"); /* Initiate a query from remote machine. */
2181 immediate_quit--;
2182
2183 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2184 }
2185
2186 /* Open a connection to a remote debugger.
2187 NAME is the filename used for communication. */
2188
2189 static void
2190 remote_open (char *name, int from_tty)
2191 {
2192 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2193 }
2194
2195 /* Just like remote_open, but with asynchronous support. */
2196 static void
2197 remote_async_open (char *name, int from_tty)
2198 {
2199 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2200 }
2201
2202 /* Open a connection to a remote debugger using the extended
2203 remote gdb protocol. NAME is the filename used for communication. */
2204
2205 static void
2206 extended_remote_open (char *name, int from_tty)
2207 {
2208 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2209 0 /* async_p */);
2210 }
2211
2212 /* Just like extended_remote_open, but with asynchronous support. */
2213 static void
2214 extended_remote_async_open (char *name, int from_tty)
2215 {
2216 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2217 1 /*extended_p */, 1 /* async_p */);
2218 }
2219
2220 /* Generic code for opening a connection to a remote target. */
2221
2222 static void
2223 init_all_packet_configs (void)
2224 {
2225 int i;
2226 for (i = 0; i < PACKET_MAX; i++)
2227 update_packet_config (&remote_protocol_packets[i]);
2228 }
2229
2230 /* Symbol look-up. */
2231
2232 static void
2233 remote_check_symbols (struct objfile *objfile)
2234 {
2235 struct remote_state *rs = get_remote_state ();
2236 char *msg, *reply, *tmp;
2237 struct minimal_symbol *sym;
2238 int end;
2239
2240 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2241 return;
2242
2243 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2244 because we need both at the same time. */
2245 msg = alloca (get_remote_packet_size ());
2246
2247 /* Invite target to request symbol lookups. */
2248
2249 putpkt ("qSymbol::");
2250 getpkt (&rs->buf, &rs->buf_size, 0);
2251 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2252 reply = rs->buf;
2253
2254 while (strncmp (reply, "qSymbol:", 8) == 0)
2255 {
2256 tmp = &reply[8];
2257 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2258 msg[end] = '\0';
2259 sym = lookup_minimal_symbol (msg, NULL, NULL);
2260 if (sym == NULL)
2261 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2262 else
2263 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2264 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2265 &reply[8]);
2266 putpkt (msg);
2267 getpkt (&rs->buf, &rs->buf_size, 0);
2268 reply = rs->buf;
2269 }
2270 }
2271
2272 static struct serial *
2273 remote_serial_open (char *name)
2274 {
2275 static int udp_warning = 0;
2276
2277 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2278 of in ser-tcp.c, because it is the remote protocol assuming that the
2279 serial connection is reliable and not the serial connection promising
2280 to be. */
2281 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2282 {
2283 warning (_("\
2284 The remote protocol may be unreliable over UDP.\n\
2285 Some events may be lost, rendering further debugging impossible."));
2286 udp_warning = 1;
2287 }
2288
2289 return serial_open (name);
2290 }
2291
2292 /* This type describes each known response to the qSupported
2293 packet. */
2294 struct protocol_feature
2295 {
2296 /* The name of this protocol feature. */
2297 const char *name;
2298
2299 /* The default for this protocol feature. */
2300 enum packet_support default_support;
2301
2302 /* The function to call when this feature is reported, or after
2303 qSupported processing if the feature is not supported.
2304 The first argument points to this structure. The second
2305 argument indicates whether the packet requested support be
2306 enabled, disabled, or probed (or the default, if this function
2307 is being called at the end of processing and this feature was
2308 not reported). The third argument may be NULL; if not NULL, it
2309 is a NUL-terminated string taken from the packet following
2310 this feature's name and an equals sign. */
2311 void (*func) (const struct protocol_feature *, enum packet_support,
2312 const char *);
2313
2314 /* The corresponding packet for this feature. Only used if
2315 FUNC is remote_supported_packet. */
2316 int packet;
2317 };
2318
2319 static void
2320 remote_supported_packet (const struct protocol_feature *feature,
2321 enum packet_support support,
2322 const char *argument)
2323 {
2324 if (argument)
2325 {
2326 warning (_("Remote qSupported response supplied an unexpected value for"
2327 " \"%s\"."), feature->name);
2328 return;
2329 }
2330
2331 if (remote_protocol_packets[feature->packet].support
2332 == PACKET_SUPPORT_UNKNOWN)
2333 remote_protocol_packets[feature->packet].support = support;
2334 }
2335
2336 static void
2337 remote_packet_size (const struct protocol_feature *feature,
2338 enum packet_support support, const char *value)
2339 {
2340 struct remote_state *rs = get_remote_state ();
2341
2342 int packet_size;
2343 char *value_end;
2344
2345 if (support != PACKET_ENABLE)
2346 return;
2347
2348 if (value == NULL || *value == '\0')
2349 {
2350 warning (_("Remote target reported \"%s\" without a size."),
2351 feature->name);
2352 return;
2353 }
2354
2355 errno = 0;
2356 packet_size = strtol (value, &value_end, 16);
2357 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2358 {
2359 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2360 feature->name, value);
2361 return;
2362 }
2363
2364 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2365 {
2366 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2367 packet_size, MAX_REMOTE_PACKET_SIZE);
2368 packet_size = MAX_REMOTE_PACKET_SIZE;
2369 }
2370
2371 /* Record the new maximum packet size. */
2372 rs->explicit_packet_size = packet_size;
2373 }
2374
2375 static struct protocol_feature remote_protocol_features[] = {
2376 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2377 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2378 PACKET_qXfer_auxv },
2379 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2380 PACKET_qXfer_features },
2381 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2382 PACKET_qXfer_memory_map },
2383 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2384 PACKET_qXfer_spu_read },
2385 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2386 PACKET_qXfer_spu_write },
2387 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2388 PACKET_QPassSignals },
2389 };
2390
2391 static void
2392 remote_query_supported (void)
2393 {
2394 struct remote_state *rs = get_remote_state ();
2395 char *next;
2396 int i;
2397 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2398
2399 /* The packet support flags are handled differently for this packet
2400 than for most others. We treat an error, a disabled packet, and
2401 an empty response identically: any features which must be reported
2402 to be used will be automatically disabled. An empty buffer
2403 accomplishes this, since that is also the representation for a list
2404 containing no features. */
2405
2406 rs->buf[0] = 0;
2407 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2408 {
2409 putpkt ("qSupported");
2410 getpkt (&rs->buf, &rs->buf_size, 0);
2411
2412 /* If an error occured, warn, but do not return - just reset the
2413 buffer to empty and go on to disable features. */
2414 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2415 == PACKET_ERROR)
2416 {
2417 warning (_("Remote failure reply: %s"), rs->buf);
2418 rs->buf[0] = 0;
2419 }
2420 }
2421
2422 memset (seen, 0, sizeof (seen));
2423
2424 next = rs->buf;
2425 while (*next)
2426 {
2427 enum packet_support is_supported;
2428 char *p, *end, *name_end, *value;
2429
2430 /* First separate out this item from the rest of the packet. If
2431 there's another item after this, we overwrite the separator
2432 (terminated strings are much easier to work with). */
2433 p = next;
2434 end = strchr (p, ';');
2435 if (end == NULL)
2436 {
2437 end = p + strlen (p);
2438 next = end;
2439 }
2440 else
2441 {
2442 *end = '\0';
2443 next = end + 1;
2444
2445 if (end == p)
2446 {
2447 warning (_("empty item in \"qSupported\" response"));
2448 continue;
2449 }
2450 }
2451
2452 name_end = strchr (p, '=');
2453 if (name_end)
2454 {
2455 /* This is a name=value entry. */
2456 is_supported = PACKET_ENABLE;
2457 value = name_end + 1;
2458 *name_end = '\0';
2459 }
2460 else
2461 {
2462 value = NULL;
2463 switch (end[-1])
2464 {
2465 case '+':
2466 is_supported = PACKET_ENABLE;
2467 break;
2468
2469 case '-':
2470 is_supported = PACKET_DISABLE;
2471 break;
2472
2473 case '?':
2474 is_supported = PACKET_SUPPORT_UNKNOWN;
2475 break;
2476
2477 default:
2478 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2479 continue;
2480 }
2481 end[-1] = '\0';
2482 }
2483
2484 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2485 if (strcmp (remote_protocol_features[i].name, p) == 0)
2486 {
2487 const struct protocol_feature *feature;
2488
2489 seen[i] = 1;
2490 feature = &remote_protocol_features[i];
2491 feature->func (feature, is_supported, value);
2492 break;
2493 }
2494 }
2495
2496 /* If we increased the packet size, make sure to increase the global
2497 buffer size also. We delay this until after parsing the entire
2498 qSupported packet, because this is the same buffer we were
2499 parsing. */
2500 if (rs->buf_size < rs->explicit_packet_size)
2501 {
2502 rs->buf_size = rs->explicit_packet_size;
2503 rs->buf = xrealloc (rs->buf, rs->buf_size);
2504 }
2505
2506 /* Handle the defaults for unmentioned features. */
2507 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2508 if (!seen[i])
2509 {
2510 const struct protocol_feature *feature;
2511
2512 feature = &remote_protocol_features[i];
2513 feature->func (feature, feature->default_support, NULL);
2514 }
2515 }
2516
2517
2518 static void
2519 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2520 int extended_p, int async_p)
2521 {
2522 struct remote_state *rs = get_remote_state ();
2523 if (name == 0)
2524 error (_("To open a remote debug connection, you need to specify what\n"
2525 "serial device is attached to the remote system\n"
2526 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2527
2528 /* See FIXME above. */
2529 if (!async_p)
2530 wait_forever_enabled_p = 1;
2531
2532 target_preopen (from_tty);
2533
2534 unpush_target (target);
2535
2536 /* Make sure we send the passed signals list the next time we resume. */
2537 xfree (last_pass_packet);
2538 last_pass_packet = NULL;
2539
2540 remote_fileio_reset ();
2541 reopen_exec_file ();
2542 reread_symbols ();
2543
2544 remote_desc = remote_serial_open (name);
2545 if (!remote_desc)
2546 perror_with_name (name);
2547
2548 if (baud_rate != -1)
2549 {
2550 if (serial_setbaudrate (remote_desc, baud_rate))
2551 {
2552 /* The requested speed could not be set. Error out to
2553 top level after closing remote_desc. Take care to
2554 set remote_desc to NULL to avoid closing remote_desc
2555 more than once. */
2556 serial_close (remote_desc);
2557 remote_desc = NULL;
2558 perror_with_name (name);
2559 }
2560 }
2561
2562 serial_raw (remote_desc);
2563
2564 /* If there is something sitting in the buffer we might take it as a
2565 response to a command, which would be bad. */
2566 serial_flush_input (remote_desc);
2567
2568 if (from_tty)
2569 {
2570 puts_filtered ("Remote debugging using ");
2571 puts_filtered (name);
2572 puts_filtered ("\n");
2573 }
2574 push_target (target); /* Switch to using remote target now. */
2575
2576 /* Reset the target state; these things will be queried either by
2577 remote_query_supported or as they are needed. */
2578 init_all_packet_configs ();
2579 rs->explicit_packet_size = 0;
2580
2581 general_thread = -2;
2582 continue_thread = -2;
2583
2584 /* Probe for ability to use "ThreadInfo" query, as required. */
2585 use_threadinfo_query = 1;
2586 use_threadextra_query = 1;
2587
2588 /* The first packet we send to the target is the optional "supported
2589 packets" request. If the target can answer this, it will tell us
2590 which later probes to skip. */
2591 remote_query_supported ();
2592
2593 /* Next, if the target can specify a description, read it. We do
2594 this before anything involving memory or registers. */
2595 target_find_description ();
2596
2597 /* Without this, some commands which require an active target (such
2598 as kill) won't work. This variable serves (at least) double duty
2599 as both the pid of the target process (if it has such), and as a
2600 flag indicating that a target is active. These functions should
2601 be split out into seperate variables, especially since GDB will
2602 someday have a notion of debugging several processes. */
2603
2604 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2605
2606 if (async_p)
2607 {
2608 /* With this target we start out by owning the terminal. */
2609 remote_async_terminal_ours_p = 1;
2610
2611 /* FIXME: cagney/1999-09-23: During the initial connection it is
2612 assumed that the target is already ready and able to respond to
2613 requests. Unfortunately remote_start_remote() eventually calls
2614 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2615 around this. Eventually a mechanism that allows
2616 wait_for_inferior() to expect/get timeouts will be
2617 implemented. */
2618 wait_forever_enabled_p = 0;
2619 }
2620
2621 /* First delete any symbols previously loaded from shared libraries. */
2622 no_shared_libraries (NULL, 0);
2623
2624 /* Start the remote connection. If error() or QUIT, discard this
2625 target (we'd otherwise be in an inconsistent state) and then
2626 propogate the error on up the exception chain. This ensures that
2627 the caller doesn't stumble along blindly assuming that the
2628 function succeeded. The CLI doesn't have this problem but other
2629 UI's, such as MI do.
2630
2631 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2632 this function should return an error indication letting the
2633 caller restore the previous state. Unfortunately the command
2634 ``target remote'' is directly wired to this function making that
2635 impossible. On a positive note, the CLI side of this problem has
2636 been fixed - the function set_cmd_context() makes it possible for
2637 all the ``target ....'' commands to share a common callback
2638 function. See cli-dump.c. */
2639 {
2640 struct gdb_exception ex
2641 = catch_exception (uiout, remote_start_remote, &from_tty,
2642 RETURN_MASK_ALL);
2643 if (ex.reason < 0)
2644 {
2645 pop_target ();
2646 if (async_p)
2647 wait_forever_enabled_p = 1;
2648 throw_exception (ex);
2649 }
2650 }
2651
2652 if (async_p)
2653 wait_forever_enabled_p = 1;
2654
2655 if (extended_p)
2656 {
2657 /* Tell the remote that we are using the extended protocol. */
2658 putpkt ("!");
2659 getpkt (&rs->buf, &rs->buf_size, 0);
2660 }
2661
2662 if (exec_bfd) /* No use without an exec file. */
2663 remote_check_symbols (symfile_objfile);
2664 }
2665
2666 /* This takes a program previously attached to and detaches it. After
2667 this is done, GDB can be used to debug some other program. We
2668 better not have left any breakpoints in the target program or it'll
2669 die when it hits one. */
2670
2671 static void
2672 remote_detach (char *args, int from_tty)
2673 {
2674 struct remote_state *rs = get_remote_state ();
2675
2676 if (args)
2677 error (_("Argument given to \"detach\" when remotely debugging."));
2678
2679 /* Tell the remote target to detach. */
2680 strcpy (rs->buf, "D");
2681 putpkt (rs->buf);
2682 getpkt (&rs->buf, &rs->buf_size, 0);
2683
2684 if (rs->buf[0] == 'E')
2685 error (_("Can't detach process."));
2686
2687 /* Unregister the file descriptor from the event loop. */
2688 if (target_is_async_p ())
2689 serial_async (remote_desc, NULL, 0);
2690
2691 target_mourn_inferior ();
2692 if (from_tty)
2693 puts_filtered ("Ending remote debugging.\n");
2694 }
2695
2696 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2697
2698 static void
2699 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2700 {
2701 if (args)
2702 error (_("Argument given to \"detach\" when remotely debugging."));
2703
2704 /* Unregister the file descriptor from the event loop. */
2705 if (target_is_async_p ())
2706 serial_async (remote_desc, NULL, 0);
2707
2708 target_mourn_inferior ();
2709 if (from_tty)
2710 puts_filtered ("Ending remote debugging.\n");
2711 }
2712
2713 /* Convert hex digit A to a number. */
2714
2715 static int
2716 fromhex (int a)
2717 {
2718 if (a >= '0' && a <= '9')
2719 return a - '0';
2720 else if (a >= 'a' && a <= 'f')
2721 return a - 'a' + 10;
2722 else if (a >= 'A' && a <= 'F')
2723 return a - 'A' + 10;
2724 else
2725 error (_("Reply contains invalid hex digit %d"), a);
2726 }
2727
2728 static int
2729 hex2bin (const char *hex, gdb_byte *bin, int count)
2730 {
2731 int i;
2732
2733 for (i = 0; i < count; i++)
2734 {
2735 if (hex[0] == 0 || hex[1] == 0)
2736 {
2737 /* Hex string is short, or of uneven length.
2738 Return the count that has been converted so far. */
2739 return i;
2740 }
2741 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2742 hex += 2;
2743 }
2744 return i;
2745 }
2746
2747 /* Convert number NIB to a hex digit. */
2748
2749 static int
2750 tohex (int nib)
2751 {
2752 if (nib < 10)
2753 return '0' + nib;
2754 else
2755 return 'a' + nib - 10;
2756 }
2757
2758 static int
2759 bin2hex (const gdb_byte *bin, char *hex, int count)
2760 {
2761 int i;
2762 /* May use a length, or a nul-terminated string as input. */
2763 if (count == 0)
2764 count = strlen ((char *) bin);
2765
2766 for (i = 0; i < count; i++)
2767 {
2768 *hex++ = tohex ((*bin >> 4) & 0xf);
2769 *hex++ = tohex (*bin++ & 0xf);
2770 }
2771 *hex = 0;
2772 return i;
2773 }
2774 \f
2775 /* Check for the availability of vCont. This function should also check
2776 the response. */
2777
2778 static void
2779 remote_vcont_probe (struct remote_state *rs)
2780 {
2781 char *buf;
2782
2783 strcpy (rs->buf, "vCont?");
2784 putpkt (rs->buf);
2785 getpkt (&rs->buf, &rs->buf_size, 0);
2786 buf = rs->buf;
2787
2788 /* Make sure that the features we assume are supported. */
2789 if (strncmp (buf, "vCont", 5) == 0)
2790 {
2791 char *p = &buf[5];
2792 int support_s, support_S, support_c, support_C;
2793
2794 support_s = 0;
2795 support_S = 0;
2796 support_c = 0;
2797 support_C = 0;
2798 while (p && *p == ';')
2799 {
2800 p++;
2801 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2802 support_s = 1;
2803 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2804 support_S = 1;
2805 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2806 support_c = 1;
2807 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2808 support_C = 1;
2809
2810 p = strchr (p, ';');
2811 }
2812
2813 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2814 BUF will make packet_ok disable the packet. */
2815 if (!support_s || !support_S || !support_c || !support_C)
2816 buf[0] = 0;
2817 }
2818
2819 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2820 }
2821
2822 /* Resume the remote inferior by using a "vCont" packet. The thread
2823 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2824 resumed thread should be single-stepped and/or signalled. If PTID's
2825 PID is -1, then all threads are resumed; the thread to be stepped and/or
2826 signalled is given in the global INFERIOR_PTID. This function returns
2827 non-zero iff it resumes the inferior.
2828
2829 This function issues a strict subset of all possible vCont commands at the
2830 moment. */
2831
2832 static int
2833 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2834 {
2835 struct remote_state *rs = get_remote_state ();
2836 int pid = PIDGET (ptid);
2837 char *buf = NULL, *outbuf;
2838 struct cleanup *old_cleanup;
2839
2840 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2841 remote_vcont_probe (rs);
2842
2843 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2844 return 0;
2845
2846 /* If we could generate a wider range of packets, we'd have to worry
2847 about overflowing BUF. Should there be a generic
2848 "multi-part-packet" packet? */
2849
2850 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2851 {
2852 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2853 don't have any PID numbers the inferior will understand. Make sure
2854 to only send forms that do not specify a PID. */
2855 if (step && siggnal != TARGET_SIGNAL_0)
2856 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2857 else if (step)
2858 outbuf = xstrprintf ("vCont;s");
2859 else if (siggnal != TARGET_SIGNAL_0)
2860 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2861 else
2862 outbuf = xstrprintf ("vCont;c");
2863 }
2864 else if (pid == -1)
2865 {
2866 /* Resume all threads, with preference for INFERIOR_PTID. */
2867 if (step && siggnal != TARGET_SIGNAL_0)
2868 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2869 PIDGET (inferior_ptid));
2870 else if (step)
2871 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2872 else if (siggnal != TARGET_SIGNAL_0)
2873 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2874 PIDGET (inferior_ptid));
2875 else
2876 outbuf = xstrprintf ("vCont;c");
2877 }
2878 else
2879 {
2880 /* Scheduler locking; resume only PTID. */
2881 if (step && siggnal != TARGET_SIGNAL_0)
2882 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2883 else if (step)
2884 outbuf = xstrprintf ("vCont;s:%x", pid);
2885 else if (siggnal != TARGET_SIGNAL_0)
2886 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2887 else
2888 outbuf = xstrprintf ("vCont;c:%x", pid);
2889 }
2890
2891 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2892 old_cleanup = make_cleanup (xfree, outbuf);
2893
2894 putpkt (outbuf);
2895
2896 do_cleanups (old_cleanup);
2897
2898 return 1;
2899 }
2900
2901 /* Tell the remote machine to resume. */
2902
2903 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2904
2905 static int last_sent_step;
2906
2907 static void
2908 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2909 {
2910 struct remote_state *rs = get_remote_state ();
2911 char *buf;
2912 int pid = PIDGET (ptid);
2913
2914 last_sent_signal = siggnal;
2915 last_sent_step = step;
2916
2917 /* A hook for when we need to do something at the last moment before
2918 resumption. */
2919 if (deprecated_target_resume_hook)
2920 (*deprecated_target_resume_hook) ();
2921
2922 /* Update the inferior on signals to silently pass, if they've changed. */
2923 remote_pass_signals ();
2924
2925 /* The vCont packet doesn't need to specify threads via Hc. */
2926 if (remote_vcont_resume (ptid, step, siggnal))
2927 return;
2928
2929 /* All other supported resume packets do use Hc, so call set_thread. */
2930 if (pid == -1)
2931 set_thread (0, 0); /* Run any thread. */
2932 else
2933 set_thread (pid, 0); /* Run this thread. */
2934
2935 buf = rs->buf;
2936 if (siggnal != TARGET_SIGNAL_0)
2937 {
2938 buf[0] = step ? 'S' : 'C';
2939 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2940 buf[2] = tohex (((int) siggnal) & 0xf);
2941 buf[3] = '\0';
2942 }
2943 else
2944 strcpy (buf, step ? "s" : "c");
2945
2946 putpkt (buf);
2947 }
2948
2949 /* Same as remote_resume, but with async support. */
2950 static void
2951 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2952 {
2953 remote_resume (ptid, step, siggnal);
2954
2955 /* We are about to start executing the inferior, let's register it
2956 with the event loop. NOTE: this is the one place where all the
2957 execution commands end up. We could alternatively do this in each
2958 of the execution commands in infcmd.c. */
2959 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2960 into infcmd.c in order to allow inferior function calls to work
2961 NOT asynchronously. */
2962 if (target_can_async_p ())
2963 target_async (inferior_event_handler, 0);
2964 /* Tell the world that the target is now executing. */
2965 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2966 this? Instead, should the client of target just assume (for
2967 async targets) that the target is going to start executing? Is
2968 this information already found in the continuation block? */
2969 if (target_is_async_p ())
2970 target_executing = 1;
2971 }
2972 \f
2973
2974 /* Set up the signal handler for SIGINT, while the target is
2975 executing, ovewriting the 'regular' SIGINT signal handler. */
2976 static void
2977 initialize_sigint_signal_handler (void)
2978 {
2979 sigint_remote_token =
2980 create_async_signal_handler (async_remote_interrupt, NULL);
2981 signal (SIGINT, handle_remote_sigint);
2982 }
2983
2984 /* Signal handler for SIGINT, while the target is executing. */
2985 static void
2986 handle_remote_sigint (int sig)
2987 {
2988 signal (sig, handle_remote_sigint_twice);
2989 sigint_remote_twice_token =
2990 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2991 mark_async_signal_handler_wrapper (sigint_remote_token);
2992 }
2993
2994 /* Signal handler for SIGINT, installed after SIGINT has already been
2995 sent once. It will take effect the second time that the user sends
2996 a ^C. */
2997 static void
2998 handle_remote_sigint_twice (int sig)
2999 {
3000 signal (sig, handle_sigint);
3001 sigint_remote_twice_token =
3002 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
3003 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3004 }
3005
3006 /* Perform the real interruption of the target execution, in response
3007 to a ^C. */
3008 static void
3009 async_remote_interrupt (gdb_client_data arg)
3010 {
3011 if (remote_debug)
3012 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3013
3014 target_stop ();
3015 }
3016
3017 /* Perform interrupt, if the first attempt did not succeed. Just give
3018 up on the target alltogether. */
3019 void
3020 async_remote_interrupt_twice (gdb_client_data arg)
3021 {
3022 if (remote_debug)
3023 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3024 /* Do something only if the target was not killed by the previous
3025 cntl-C. */
3026 if (target_executing)
3027 {
3028 interrupt_query ();
3029 signal (SIGINT, handle_remote_sigint);
3030 }
3031 }
3032
3033 /* Reinstall the usual SIGINT handlers, after the target has
3034 stopped. */
3035 static void
3036 cleanup_sigint_signal_handler (void *dummy)
3037 {
3038 signal (SIGINT, handle_sigint);
3039 if (sigint_remote_twice_token)
3040 delete_async_signal_handler (&sigint_remote_twice_token);
3041 if (sigint_remote_token)
3042 delete_async_signal_handler (&sigint_remote_token);
3043 }
3044
3045 /* Send ^C to target to halt it. Target will respond, and send us a
3046 packet. */
3047 static void (*ofunc) (int);
3048
3049 /* The command line interface's stop routine. This function is installed
3050 as a signal handler for SIGINT. The first time a user requests a
3051 stop, we call remote_stop to send a break or ^C. If there is no
3052 response from the target (it didn't stop when the user requested it),
3053 we ask the user if he'd like to detach from the target. */
3054 static void
3055 remote_interrupt (int signo)
3056 {
3057 /* If this doesn't work, try more severe steps. */
3058 signal (signo, remote_interrupt_twice);
3059
3060 if (remote_debug)
3061 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3062
3063 target_stop ();
3064 }
3065
3066 /* The user typed ^C twice. */
3067
3068 static void
3069 remote_interrupt_twice (int signo)
3070 {
3071 signal (signo, ofunc);
3072 interrupt_query ();
3073 signal (signo, remote_interrupt);
3074 }
3075
3076 /* This is the generic stop called via the target vector. When a target
3077 interrupt is requested, either by the command line or the GUI, we
3078 will eventually end up here. */
3079 static void
3080 remote_stop (void)
3081 {
3082 /* Send a break or a ^C, depending on user preference. */
3083 if (remote_debug)
3084 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3085
3086 if (remote_break)
3087 serial_send_break (remote_desc);
3088 else
3089 serial_write (remote_desc, "\003", 1);
3090 }
3091
3092 /* Ask the user what to do when an interrupt is received. */
3093
3094 static void
3095 interrupt_query (void)
3096 {
3097 target_terminal_ours ();
3098
3099 if (query ("Interrupted while waiting for the program.\n\
3100 Give up (and stop debugging it)? "))
3101 {
3102 target_mourn_inferior ();
3103 deprecated_throw_reason (RETURN_QUIT);
3104 }
3105
3106 target_terminal_inferior ();
3107 }
3108
3109 /* Enable/disable target terminal ownership. Most targets can use
3110 terminal groups to control terminal ownership. Remote targets are
3111 different in that explicit transfer of ownership to/from GDB/target
3112 is required. */
3113
3114 static void
3115 remote_async_terminal_inferior (void)
3116 {
3117 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3118 sync_execution here. This function should only be called when
3119 GDB is resuming the inferior in the forground. A background
3120 resume (``run&'') should leave GDB in control of the terminal and
3121 consequently should not call this code. */
3122 if (!sync_execution)
3123 return;
3124 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3125 calls target_terminal_*() idenpotent. The event-loop GDB talking
3126 to an asynchronous target with a synchronous command calls this
3127 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3128 stops trying to transfer the terminal to the target when it
3129 shouldn't this guard can go away. */
3130 if (!remote_async_terminal_ours_p)
3131 return;
3132 delete_file_handler (input_fd);
3133 remote_async_terminal_ours_p = 0;
3134 initialize_sigint_signal_handler ();
3135 /* NOTE: At this point we could also register our selves as the
3136 recipient of all input. Any characters typed could then be
3137 passed on down to the target. */
3138 }
3139
3140 static void
3141 remote_async_terminal_ours (void)
3142 {
3143 /* See FIXME in remote_async_terminal_inferior. */
3144 if (!sync_execution)
3145 return;
3146 /* See FIXME in remote_async_terminal_inferior. */
3147 if (remote_async_terminal_ours_p)
3148 return;
3149 cleanup_sigint_signal_handler (NULL);
3150 add_file_handler (input_fd, stdin_event_handler, 0);
3151 remote_async_terminal_ours_p = 1;
3152 }
3153
3154 /* If nonzero, ignore the next kill. */
3155
3156 int kill_kludge;
3157
3158 void
3159 remote_console_output (char *msg)
3160 {
3161 char *p;
3162
3163 for (p = msg; p[0] && p[1]; p += 2)
3164 {
3165 char tb[2];
3166 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3167 tb[0] = c;
3168 tb[1] = 0;
3169 fputs_unfiltered (tb, gdb_stdtarg);
3170 }
3171 gdb_flush (gdb_stdtarg);
3172 }
3173
3174 /* Wait until the remote machine stops, then return,
3175 storing status in STATUS just as `wait' would.
3176 Returns "pid", which in the case of a multi-threaded
3177 remote OS, is the thread-id. */
3178
3179 static ptid_t
3180 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3181 {
3182 struct remote_state *rs = get_remote_state ();
3183 struct remote_arch_state *rsa = get_remote_arch_state ();
3184 ULONGEST thread_num = -1;
3185 ULONGEST addr;
3186
3187 status->kind = TARGET_WAITKIND_EXITED;
3188 status->value.integer = 0;
3189
3190 while (1)
3191 {
3192 char *buf, *p;
3193
3194 ofunc = signal (SIGINT, remote_interrupt);
3195 getpkt (&rs->buf, &rs->buf_size, 1);
3196 signal (SIGINT, ofunc);
3197
3198 buf = rs->buf;
3199
3200 /* This is a hook for when we need to do something (perhaps the
3201 collection of trace data) every time the target stops. */
3202 if (deprecated_target_wait_loop_hook)
3203 (*deprecated_target_wait_loop_hook) ();
3204
3205 remote_stopped_by_watchpoint_p = 0;
3206
3207 switch (buf[0])
3208 {
3209 case 'E': /* Error of some sort. */
3210 warning (_("Remote failure reply: %s"), buf);
3211 continue;
3212 case 'F': /* File-I/O request. */
3213 remote_fileio_request (buf);
3214 continue;
3215 case 'T': /* Status with PC, SP, FP, ... */
3216 {
3217 gdb_byte regs[MAX_REGISTER_SIZE];
3218
3219 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3220 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3221 ss = signal number
3222 n... = register number
3223 r... = register contents
3224 */
3225 p = &buf[3]; /* after Txx */
3226
3227 while (*p)
3228 {
3229 char *p1;
3230 char *p_temp;
3231 int fieldsize;
3232 LONGEST pnum = 0;
3233
3234 /* If the packet contains a register number save it in
3235 pnum and set p1 to point to the character following
3236 it. Otherwise p1 points to p. */
3237
3238 /* If this packet is an awatch packet, don't parse the
3239 'a' as a register number. */
3240
3241 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3242 {
3243 /* Read the ``P'' register number. */
3244 pnum = strtol (p, &p_temp, 16);
3245 p1 = p_temp;
3246 }
3247 else
3248 p1 = p;
3249
3250 if (p1 == p) /* No register number present here. */
3251 {
3252 p1 = strchr (p, ':');
3253 if (p1 == NULL)
3254 error (_("Malformed packet(a) (missing colon): %s\n\
3255 Packet: '%s'\n"),
3256 p, buf);
3257 if (strncmp (p, "thread", p1 - p) == 0)
3258 {
3259 p_temp = unpack_varlen_hex (++p1, &thread_num);
3260 record_currthread (thread_num);
3261 p = p_temp;
3262 }
3263 else if ((strncmp (p, "watch", p1 - p) == 0)
3264 || (strncmp (p, "rwatch", p1 - p) == 0)
3265 || (strncmp (p, "awatch", p1 - p) == 0))
3266 {
3267 remote_stopped_by_watchpoint_p = 1;
3268 p = unpack_varlen_hex (++p1, &addr);
3269 remote_watch_data_address = (CORE_ADDR)addr;
3270 }
3271 else
3272 {
3273 /* Silently skip unknown optional info. */
3274 p_temp = strchr (p1 + 1, ';');
3275 if (p_temp)
3276 p = p_temp;
3277 }
3278 }
3279 else
3280 {
3281 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3282 p = p1;
3283
3284 if (*p++ != ':')
3285 error (_("Malformed packet(b) (missing colon): %s\n\
3286 Packet: '%s'\n"),
3287 p, buf);
3288
3289 if (reg == NULL)
3290 error (_("Remote sent bad register number %s: %s\n\
3291 Packet: '%s'\n"),
3292 phex_nz (pnum, 0), p, buf);
3293
3294 fieldsize = hex2bin (p, regs,
3295 register_size (current_gdbarch,
3296 reg->regnum));
3297 p += 2 * fieldsize;
3298 if (fieldsize < register_size (current_gdbarch,
3299 reg->regnum))
3300 warning (_("Remote reply is too short: %s"), buf);
3301 regcache_raw_supply (get_current_regcache (),
3302 reg->regnum, regs);
3303 }
3304
3305 if (*p++ != ';')
3306 error (_("Remote register badly formatted: %s\nhere: %s"),
3307 buf, p);
3308 }
3309 }
3310 /* fall through */
3311 case 'S': /* Old style status, just signal only. */
3312 status->kind = TARGET_WAITKIND_STOPPED;
3313 status->value.sig = (enum target_signal)
3314 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3315
3316 if (buf[3] == 'p')
3317 {
3318 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3319 record_currthread (thread_num);
3320 }
3321 goto got_status;
3322 case 'W': /* Target exited. */
3323 {
3324 /* The remote process exited. */
3325 status->kind = TARGET_WAITKIND_EXITED;
3326 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3327 goto got_status;
3328 }
3329 case 'X':
3330 status->kind = TARGET_WAITKIND_SIGNALLED;
3331 status->value.sig = (enum target_signal)
3332 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3333 kill_kludge = 1;
3334
3335 goto got_status;
3336 case 'O': /* Console output. */
3337 remote_console_output (buf + 1);
3338 continue;
3339 case '\0':
3340 if (last_sent_signal != TARGET_SIGNAL_0)
3341 {
3342 /* Zero length reply means that we tried 'S' or 'C' and
3343 the remote system doesn't support it. */
3344 target_terminal_ours_for_output ();
3345 printf_filtered
3346 ("Can't send signals to this remote system. %s not sent.\n",
3347 target_signal_to_name (last_sent_signal));
3348 last_sent_signal = TARGET_SIGNAL_0;
3349 target_terminal_inferior ();
3350
3351 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3352 putpkt ((char *) buf);
3353 continue;
3354 }
3355 /* else fallthrough */
3356 default:
3357 warning (_("Invalid remote reply: %s"), buf);
3358 continue;
3359 }
3360 }
3361 got_status:
3362 if (thread_num != -1)
3363 {
3364 return pid_to_ptid (thread_num);
3365 }
3366 return inferior_ptid;
3367 }
3368
3369 /* Async version of remote_wait. */
3370 static ptid_t
3371 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3372 {
3373 struct remote_state *rs = get_remote_state ();
3374 struct remote_arch_state *rsa = get_remote_arch_state ();
3375 ULONGEST thread_num = -1;
3376 ULONGEST addr;
3377
3378 status->kind = TARGET_WAITKIND_EXITED;
3379 status->value.integer = 0;
3380
3381 remote_stopped_by_watchpoint_p = 0;
3382
3383 while (1)
3384 {
3385 char *buf, *p;
3386
3387 if (!target_is_async_p ())
3388 ofunc = signal (SIGINT, remote_interrupt);
3389 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3390 _never_ wait for ever -> test on target_is_async_p().
3391 However, before we do that we need to ensure that the caller
3392 knows how to take the target into/out of async mode. */
3393 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3394 if (!target_is_async_p ())
3395 signal (SIGINT, ofunc);
3396
3397 buf = rs->buf;
3398
3399 /* This is a hook for when we need to do something (perhaps the
3400 collection of trace data) every time the target stops. */
3401 if (deprecated_target_wait_loop_hook)
3402 (*deprecated_target_wait_loop_hook) ();
3403
3404 switch (buf[0])
3405 {
3406 case 'E': /* Error of some sort. */
3407 warning (_("Remote failure reply: %s"), buf);
3408 continue;
3409 case 'F': /* File-I/O request. */
3410 remote_fileio_request (buf);
3411 continue;
3412 case 'T': /* Status with PC, SP, FP, ... */
3413 {
3414 gdb_byte regs[MAX_REGISTER_SIZE];
3415
3416 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3417 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3418 ss = signal number
3419 n... = register number
3420 r... = register contents
3421 */
3422 p = &buf[3]; /* after Txx */
3423
3424 while (*p)
3425 {
3426 char *p1;
3427 char *p_temp;
3428 int fieldsize;
3429 long pnum = 0;
3430
3431 /* If the packet contains a register number, save it
3432 in pnum and set p1 to point to the character
3433 following it. Otherwise p1 points to p. */
3434
3435 /* If this packet is an awatch packet, don't parse the 'a'
3436 as a register number. */
3437
3438 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3439 {
3440 /* Read the register number. */
3441 pnum = strtol (p, &p_temp, 16);
3442 p1 = p_temp;
3443 }
3444 else
3445 p1 = p;
3446
3447 if (p1 == p) /* No register number present here. */
3448 {
3449 p1 = strchr (p, ':');
3450 if (p1 == NULL)
3451 error (_("Malformed packet(a) (missing colon): %s\n\
3452 Packet: '%s'\n"),
3453 p, buf);
3454 if (strncmp (p, "thread", p1 - p) == 0)
3455 {
3456 p_temp = unpack_varlen_hex (++p1, &thread_num);
3457 record_currthread (thread_num);
3458 p = p_temp;
3459 }
3460 else if ((strncmp (p, "watch", p1 - p) == 0)
3461 || (strncmp (p, "rwatch", p1 - p) == 0)
3462 || (strncmp (p, "awatch", p1 - p) == 0))
3463 {
3464 remote_stopped_by_watchpoint_p = 1;
3465 p = unpack_varlen_hex (++p1, &addr);
3466 remote_watch_data_address = (CORE_ADDR)addr;
3467 }
3468 else
3469 {
3470 /* Silently skip unknown optional info. */
3471 p_temp = strchr (p1 + 1, ';');
3472 if (p_temp)
3473 p = p_temp;
3474 }
3475 }
3476
3477 else
3478 {
3479 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3480 p = p1;
3481 if (*p++ != ':')
3482 error (_("Malformed packet(b) (missing colon): %s\n\
3483 Packet: '%s'\n"),
3484 p, buf);
3485
3486 if (reg == NULL)
3487 error (_("Remote sent bad register number %ld: %s\n\
3488 Packet: '%s'\n"),
3489 pnum, p, buf);
3490
3491 fieldsize = hex2bin (p, regs,
3492 register_size (current_gdbarch,
3493 reg->regnum));
3494 p += 2 * fieldsize;
3495 if (fieldsize < register_size (current_gdbarch,
3496 reg->regnum))
3497 warning (_("Remote reply is too short: %s"), buf);
3498 regcache_raw_supply (get_current_regcache (),
3499 reg->regnum, regs);
3500 }
3501
3502 if (*p++ != ';')
3503 error (_("Remote register badly formatted: %s\nhere: %s"),
3504 buf, p);
3505 }
3506 }
3507 /* fall through */
3508 case 'S': /* Old style status, just signal only. */
3509 status->kind = TARGET_WAITKIND_STOPPED;
3510 status->value.sig = (enum target_signal)
3511 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3512
3513 if (buf[3] == 'p')
3514 {
3515 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3516 record_currthread (thread_num);
3517 }
3518 goto got_status;
3519 case 'W': /* Target exited. */
3520 {
3521 /* The remote process exited. */
3522 status->kind = TARGET_WAITKIND_EXITED;
3523 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3524 goto got_status;
3525 }
3526 case 'X':
3527 status->kind = TARGET_WAITKIND_SIGNALLED;
3528 status->value.sig = (enum target_signal)
3529 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3530 kill_kludge = 1;
3531
3532 goto got_status;
3533 case 'O': /* Console output. */
3534 remote_console_output (buf + 1);
3535 /* Return immediately to the event loop. The event loop will
3536 still be waiting on the inferior afterwards. */
3537 status->kind = TARGET_WAITKIND_IGNORE;
3538 goto got_status;
3539 case '\0':
3540 if (last_sent_signal != TARGET_SIGNAL_0)
3541 {
3542 /* Zero length reply means that we tried 'S' or 'C' and
3543 the remote system doesn't support it. */
3544 target_terminal_ours_for_output ();
3545 printf_filtered
3546 ("Can't send signals to this remote system. %s not sent.\n",
3547 target_signal_to_name (last_sent_signal));
3548 last_sent_signal = TARGET_SIGNAL_0;
3549 target_terminal_inferior ();
3550
3551 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3552 putpkt ((char *) buf);
3553 continue;
3554 }
3555 /* else fallthrough */
3556 default:
3557 warning (_("Invalid remote reply: %s"), buf);
3558 continue;
3559 }
3560 }
3561 got_status:
3562 if (thread_num != -1)
3563 {
3564 return pid_to_ptid (thread_num);
3565 }
3566 return inferior_ptid;
3567 }
3568
3569 /* Fetch a single register using a 'p' packet. */
3570
3571 static int
3572 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3573 {
3574 struct remote_state *rs = get_remote_state ();
3575 char *buf, *p;
3576 char regp[MAX_REGISTER_SIZE];
3577 int i;
3578
3579 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3580 return 0;
3581
3582 if (reg->pnum == -1)
3583 return 0;
3584
3585 p = rs->buf;
3586 *p++ = 'p';
3587 p += hexnumstr (p, reg->pnum);
3588 *p++ = '\0';
3589 remote_send (&rs->buf, &rs->buf_size);
3590
3591 buf = rs->buf;
3592
3593 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3594 {
3595 case PACKET_OK:
3596 break;
3597 case PACKET_UNKNOWN:
3598 return 0;
3599 case PACKET_ERROR:
3600 error (_("Could not fetch register \"%s\""),
3601 gdbarch_register_name (current_gdbarch, reg->regnum));
3602 }
3603
3604 /* If this register is unfetchable, tell the regcache. */
3605 if (buf[0] == 'x')
3606 {
3607 regcache_raw_supply (regcache, reg->regnum, NULL);
3608 return 1;
3609 }
3610
3611 /* Otherwise, parse and supply the value. */
3612 p = buf;
3613 i = 0;
3614 while (p[0] != 0)
3615 {
3616 if (p[1] == 0)
3617 error (_("fetch_register_using_p: early buf termination"));
3618
3619 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3620 p += 2;
3621 }
3622 regcache_raw_supply (regcache, reg->regnum, regp);
3623 return 1;
3624 }
3625
3626 /* Fetch the registers included in the target's 'g' packet. */
3627
3628 static int
3629 send_g_packet (void)
3630 {
3631 struct remote_state *rs = get_remote_state ();
3632 int i, buf_len;
3633 char *p;
3634 char *regs;
3635
3636 sprintf (rs->buf, "g");
3637 remote_send (&rs->buf, &rs->buf_size);
3638
3639 /* We can get out of synch in various cases. If the first character
3640 in the buffer is not a hex character, assume that has happened
3641 and try to fetch another packet to read. */
3642 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3643 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3644 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3645 && rs->buf[0] != 'x') /* New: unavailable register value. */
3646 {
3647 if (remote_debug)
3648 fprintf_unfiltered (gdb_stdlog,
3649 "Bad register packet; fetching a new packet\n");
3650 getpkt (&rs->buf, &rs->buf_size, 0);
3651 }
3652
3653 buf_len = strlen (rs->buf);
3654
3655 /* Sanity check the received packet. */
3656 if (buf_len % 2 != 0)
3657 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3658
3659 return buf_len / 2;
3660 }
3661
3662 static void
3663 process_g_packet (struct regcache *regcache)
3664 {
3665 struct remote_state *rs = get_remote_state ();
3666 struct remote_arch_state *rsa = get_remote_arch_state ();
3667 int i, buf_len;
3668 char *p;
3669 char *regs;
3670
3671 buf_len = strlen (rs->buf);
3672
3673 /* Further sanity checks, with knowledge of the architecture. */
3674 if (buf_len > 2 * rsa->sizeof_g_packet)
3675 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3676
3677 /* Save the size of the packet sent to us by the target. It is used
3678 as a heuristic when determining the max size of packets that the
3679 target can safely receive. */
3680 if (rsa->actual_register_packet_size == 0)
3681 rsa->actual_register_packet_size = buf_len;
3682
3683 /* If this is smaller than we guessed the 'g' packet would be,
3684 update our records. A 'g' reply that doesn't include a register's
3685 value implies either that the register is not available, or that
3686 the 'p' packet must be used. */
3687 if (buf_len < 2 * rsa->sizeof_g_packet)
3688 {
3689 rsa->sizeof_g_packet = buf_len / 2;
3690
3691 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3692 {
3693 if (rsa->regs[i].pnum == -1)
3694 continue;
3695
3696 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3697 rsa->regs[i].in_g_packet = 0;
3698 else
3699 rsa->regs[i].in_g_packet = 1;
3700 }
3701 }
3702
3703 regs = alloca (rsa->sizeof_g_packet);
3704
3705 /* Unimplemented registers read as all bits zero. */
3706 memset (regs, 0, rsa->sizeof_g_packet);
3707
3708 /* Reply describes registers byte by byte, each byte encoded as two
3709 hex characters. Suck them all up, then supply them to the
3710 register cacheing/storage mechanism. */
3711
3712 p = rs->buf;
3713 for (i = 0; i < rsa->sizeof_g_packet; i++)
3714 {
3715 if (p[0] == 0 || p[1] == 0)
3716 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3717 internal_error (__FILE__, __LINE__,
3718 "unexpected end of 'g' packet reply");
3719
3720 if (p[0] == 'x' && p[1] == 'x')
3721 regs[i] = 0; /* 'x' */
3722 else
3723 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3724 p += 2;
3725 }
3726
3727 {
3728 int i;
3729 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3730 {
3731 struct packet_reg *r = &rsa->regs[i];
3732 if (r->in_g_packet)
3733 {
3734 if (r->offset * 2 >= strlen (rs->buf))
3735 /* This shouldn't happen - we adjusted in_g_packet above. */
3736 internal_error (__FILE__, __LINE__,
3737 "unexpected end of 'g' packet reply");
3738 else if (rs->buf[r->offset * 2] == 'x')
3739 {
3740 gdb_assert (r->offset * 2 < strlen (rs->buf));
3741 /* The register isn't available, mark it as such (at
3742 the same time setting the value to zero). */
3743 regcache_raw_supply (regcache, r->regnum, NULL);
3744 }
3745 else
3746 regcache_raw_supply (regcache, r->regnum,
3747 regs + r->offset);
3748 }
3749 }
3750 }
3751 }
3752
3753 static void
3754 fetch_registers_using_g (struct regcache *regcache)
3755 {
3756 send_g_packet ();
3757 process_g_packet (regcache);
3758 }
3759
3760 static void
3761 remote_fetch_registers (struct regcache *regcache, int regnum)
3762 {
3763 struct remote_state *rs = get_remote_state ();
3764 struct remote_arch_state *rsa = get_remote_arch_state ();
3765 int i;
3766
3767 set_thread (PIDGET (inferior_ptid), 1);
3768
3769 if (regnum >= 0)
3770 {
3771 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3772 gdb_assert (reg != NULL);
3773
3774 /* If this register might be in the 'g' packet, try that first -
3775 we are likely to read more than one register. If this is the
3776 first 'g' packet, we might be overly optimistic about its
3777 contents, so fall back to 'p'. */
3778 if (reg->in_g_packet)
3779 {
3780 fetch_registers_using_g (regcache);
3781 if (reg->in_g_packet)
3782 return;
3783 }
3784
3785 if (fetch_register_using_p (regcache, reg))
3786 return;
3787
3788 /* This register is not available. */
3789 regcache_raw_supply (regcache, reg->regnum, NULL);
3790
3791 return;
3792 }
3793
3794 fetch_registers_using_g (regcache);
3795
3796 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3797 if (!rsa->regs[i].in_g_packet)
3798 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3799 {
3800 /* This register is not available. */
3801 regcache_raw_supply (regcache, i, NULL);
3802 }
3803 }
3804
3805 /* Prepare to store registers. Since we may send them all (using a
3806 'G' request), we have to read out the ones we don't want to change
3807 first. */
3808
3809 static void
3810 remote_prepare_to_store (struct regcache *regcache)
3811 {
3812 struct remote_arch_state *rsa = get_remote_arch_state ();
3813 int i;
3814 gdb_byte buf[MAX_REGISTER_SIZE];
3815
3816 /* Make sure the entire registers array is valid. */
3817 switch (remote_protocol_packets[PACKET_P].support)
3818 {
3819 case PACKET_DISABLE:
3820 case PACKET_SUPPORT_UNKNOWN:
3821 /* Make sure all the necessary registers are cached. */
3822 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3823 if (rsa->regs[i].in_g_packet)
3824 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3825 break;
3826 case PACKET_ENABLE:
3827 break;
3828 }
3829 }
3830
3831 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3832 packet was not recognized. */
3833
3834 static int
3835 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3836 {
3837 struct remote_state *rs = get_remote_state ();
3838 struct remote_arch_state *rsa = get_remote_arch_state ();
3839 /* Try storing a single register. */
3840 char *buf = rs->buf;
3841 gdb_byte regp[MAX_REGISTER_SIZE];
3842 char *p;
3843
3844 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3845 return 0;
3846
3847 if (reg->pnum == -1)
3848 return 0;
3849
3850 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3851 p = buf + strlen (buf);
3852 regcache_raw_collect (regcache, reg->regnum, regp);
3853 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3854 remote_send (&rs->buf, &rs->buf_size);
3855
3856 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3857 {
3858 case PACKET_OK:
3859 return 1;
3860 case PACKET_ERROR:
3861 error (_("Could not write register \"%s\""),
3862 gdbarch_register_name (current_gdbarch, reg->regnum));
3863 case PACKET_UNKNOWN:
3864 return 0;
3865 default:
3866 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3867 }
3868 }
3869
3870 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3871 contents of the register cache buffer. FIXME: ignores errors. */
3872
3873 static void
3874 store_registers_using_G (const struct regcache *regcache)
3875 {
3876 struct remote_state *rs = get_remote_state ();
3877 struct remote_arch_state *rsa = get_remote_arch_state ();
3878 gdb_byte *regs;
3879 char *p;
3880
3881 /* Extract all the registers in the regcache copying them into a
3882 local buffer. */
3883 {
3884 int i;
3885 regs = alloca (rsa->sizeof_g_packet);
3886 memset (regs, 0, rsa->sizeof_g_packet);
3887 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3888 {
3889 struct packet_reg *r = &rsa->regs[i];
3890 if (r->in_g_packet)
3891 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3892 }
3893 }
3894
3895 /* Command describes registers byte by byte,
3896 each byte encoded as two hex characters. */
3897 p = rs->buf;
3898 *p++ = 'G';
3899 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3900 updated. */
3901 bin2hex (regs, p, rsa->sizeof_g_packet);
3902 remote_send (&rs->buf, &rs->buf_size);
3903 }
3904
3905 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3906 of the register cache buffer. FIXME: ignores errors. */
3907
3908 static void
3909 remote_store_registers (struct regcache *regcache, int regnum)
3910 {
3911 struct remote_state *rs = get_remote_state ();
3912 struct remote_arch_state *rsa = get_remote_arch_state ();
3913 int i;
3914
3915 set_thread (PIDGET (inferior_ptid), 1);
3916
3917 if (regnum >= 0)
3918 {
3919 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3920 gdb_assert (reg != NULL);
3921
3922 /* Always prefer to store registers using the 'P' packet if
3923 possible; we often change only a small number of registers.
3924 Sometimes we change a larger number; we'd need help from a
3925 higher layer to know to use 'G'. */
3926 if (store_register_using_P (regcache, reg))
3927 return;
3928
3929 /* For now, don't complain if we have no way to write the
3930 register. GDB loses track of unavailable registers too
3931 easily. Some day, this may be an error. We don't have
3932 any way to read the register, either... */
3933 if (!reg->in_g_packet)
3934 return;
3935
3936 store_registers_using_G (regcache);
3937 return;
3938 }
3939
3940 store_registers_using_G (regcache);
3941
3942 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
3943 if (!rsa->regs[i].in_g_packet)
3944 if (!store_register_using_P (regcache, &rsa->regs[i]))
3945 /* See above for why we do not issue an error here. */
3946 continue;
3947 }
3948 \f
3949
3950 /* Return the number of hex digits in num. */
3951
3952 static int
3953 hexnumlen (ULONGEST num)
3954 {
3955 int i;
3956
3957 for (i = 0; num != 0; i++)
3958 num >>= 4;
3959
3960 return max (i, 1);
3961 }
3962
3963 /* Set BUF to the minimum number of hex digits representing NUM. */
3964
3965 static int
3966 hexnumstr (char *buf, ULONGEST num)
3967 {
3968 int len = hexnumlen (num);
3969 return hexnumnstr (buf, num, len);
3970 }
3971
3972
3973 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3974
3975 static int
3976 hexnumnstr (char *buf, ULONGEST num, int width)
3977 {
3978 int i;
3979
3980 buf[width] = '\0';
3981
3982 for (i = width - 1; i >= 0; i--)
3983 {
3984 buf[i] = "0123456789abcdef"[(num & 0xf)];
3985 num >>= 4;
3986 }
3987
3988 return width;
3989 }
3990
3991 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3992
3993 static CORE_ADDR
3994 remote_address_masked (CORE_ADDR addr)
3995 {
3996 if (remote_address_size > 0
3997 && remote_address_size < (sizeof (ULONGEST) * 8))
3998 {
3999 /* Only create a mask when that mask can safely be constructed
4000 in a ULONGEST variable. */
4001 ULONGEST mask = 1;
4002 mask = (mask << remote_address_size) - 1;
4003 addr &= mask;
4004 }
4005 return addr;
4006 }
4007
4008 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4009 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4010 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4011 (which may be more than *OUT_LEN due to escape characters). The
4012 total number of bytes in the output buffer will be at most
4013 OUT_MAXLEN. */
4014
4015 static int
4016 remote_escape_output (const gdb_byte *buffer, int len,
4017 gdb_byte *out_buf, int *out_len,
4018 int out_maxlen)
4019 {
4020 int input_index, output_index;
4021
4022 output_index = 0;
4023 for (input_index = 0; input_index < len; input_index++)
4024 {
4025 gdb_byte b = buffer[input_index];
4026
4027 if (b == '$' || b == '#' || b == '}')
4028 {
4029 /* These must be escaped. */
4030 if (output_index + 2 > out_maxlen)
4031 break;
4032 out_buf[output_index++] = '}';
4033 out_buf[output_index++] = b ^ 0x20;
4034 }
4035 else
4036 {
4037 if (output_index + 1 > out_maxlen)
4038 break;
4039 out_buf[output_index++] = b;
4040 }
4041 }
4042
4043 *out_len = input_index;
4044 return output_index;
4045 }
4046
4047 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4048 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4049 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4050
4051 This function reverses remote_escape_output. It allows more
4052 escaped characters than that function does, in particular because
4053 '*' must be escaped to avoid the run-length encoding processing
4054 in reading packets. */
4055
4056 static int
4057 remote_unescape_input (const gdb_byte *buffer, int len,
4058 gdb_byte *out_buf, int out_maxlen)
4059 {
4060 int input_index, output_index;
4061 int escaped;
4062
4063 output_index = 0;
4064 escaped = 0;
4065 for (input_index = 0; input_index < len; input_index++)
4066 {
4067 gdb_byte b = buffer[input_index];
4068
4069 if (output_index + 1 > out_maxlen)
4070 {
4071 warning (_("Received too much data from remote target;"
4072 " ignoring overflow."));
4073 return output_index;
4074 }
4075
4076 if (escaped)
4077 {
4078 out_buf[output_index++] = b ^ 0x20;
4079 escaped = 0;
4080 }
4081 else if (b == '}')
4082 escaped = 1;
4083 else
4084 out_buf[output_index++] = b;
4085 }
4086
4087 if (escaped)
4088 error (_("Unmatched escape character in target response."));
4089
4090 return output_index;
4091 }
4092
4093 /* Determine whether the remote target supports binary downloading.
4094 This is accomplished by sending a no-op memory write of zero length
4095 to the target at the specified address. It does not suffice to send
4096 the whole packet, since many stubs strip the eighth bit and
4097 subsequently compute a wrong checksum, which causes real havoc with
4098 remote_write_bytes.
4099
4100 NOTE: This can still lose if the serial line is not eight-bit
4101 clean. In cases like this, the user should clear "remote
4102 X-packet". */
4103
4104 static void
4105 check_binary_download (CORE_ADDR addr)
4106 {
4107 struct remote_state *rs = get_remote_state ();
4108
4109 switch (remote_protocol_packets[PACKET_X].support)
4110 {
4111 case PACKET_DISABLE:
4112 break;
4113 case PACKET_ENABLE:
4114 break;
4115 case PACKET_SUPPORT_UNKNOWN:
4116 {
4117 char *p;
4118
4119 p = rs->buf;
4120 *p++ = 'X';
4121 p += hexnumstr (p, (ULONGEST) addr);
4122 *p++ = ',';
4123 p += hexnumstr (p, (ULONGEST) 0);
4124 *p++ = ':';
4125 *p = '\0';
4126
4127 putpkt_binary (rs->buf, (int) (p - rs->buf));
4128 getpkt (&rs->buf, &rs->buf_size, 0);
4129
4130 if (rs->buf[0] == '\0')
4131 {
4132 if (remote_debug)
4133 fprintf_unfiltered (gdb_stdlog,
4134 "binary downloading NOT suppported by target\n");
4135 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4136 }
4137 else
4138 {
4139 if (remote_debug)
4140 fprintf_unfiltered (gdb_stdlog,
4141 "binary downloading suppported by target\n");
4142 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4143 }
4144 break;
4145 }
4146 }
4147 }
4148
4149 /* Write memory data directly to the remote machine.
4150 This does not inform the data cache; the data cache uses this.
4151 HEADER is the starting part of the packet.
4152 MEMADDR is the address in the remote memory space.
4153 MYADDR is the address of the buffer in our space.
4154 LEN is the number of bytes.
4155 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4156 should send data as binary ('X'), or hex-encoded ('M').
4157
4158 The function creates packet of the form
4159 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4160
4161 where encoding of <DATA> is termined by PACKET_FORMAT.
4162
4163 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4164 are omitted.
4165
4166 Returns the number of bytes transferred, or 0 (setting errno) for
4167 error. Only transfer a single packet. */
4168
4169 static int
4170 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4171 const gdb_byte *myaddr, int len,
4172 char packet_format, int use_length)
4173 {
4174 struct remote_state *rs = get_remote_state ();
4175 char *p;
4176 char *plen = NULL;
4177 int plenlen = 0;
4178 int todo;
4179 int nr_bytes;
4180 int payload_size;
4181 int payload_length;
4182 int header_length;
4183
4184 if (packet_format != 'X' && packet_format != 'M')
4185 internal_error (__FILE__, __LINE__,
4186 "remote_write_bytes_aux: bad packet format");
4187
4188 if (len <= 0)
4189 return 0;
4190
4191 payload_size = get_memory_write_packet_size ();
4192
4193 /* The packet buffer will be large enough for the payload;
4194 get_memory_packet_size ensures this. */
4195 rs->buf[0] = '\0';
4196
4197 /* Compute the size of the actual payload by subtracting out the
4198 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4199 */
4200 payload_size -= strlen ("$,:#NN");
4201 if (!use_length)
4202 /* The comma won't be used. */
4203 payload_size += 1;
4204 header_length = strlen (header);
4205 payload_size -= header_length;
4206 payload_size -= hexnumlen (memaddr);
4207
4208 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4209
4210 strcat (rs->buf, header);
4211 p = rs->buf + strlen (header);
4212
4213 /* Compute a best guess of the number of bytes actually transfered. */
4214 if (packet_format == 'X')
4215 {
4216 /* Best guess at number of bytes that will fit. */
4217 todo = min (len, payload_size);
4218 if (use_length)
4219 payload_size -= hexnumlen (todo);
4220 todo = min (todo, payload_size);
4221 }
4222 else
4223 {
4224 /* Num bytes that will fit. */
4225 todo = min (len, payload_size / 2);
4226 if (use_length)
4227 payload_size -= hexnumlen (todo);
4228 todo = min (todo, payload_size / 2);
4229 }
4230
4231 if (todo <= 0)
4232 internal_error (__FILE__, __LINE__,
4233 _("minumum packet size too small to write data"));
4234
4235 /* If we already need another packet, then try to align the end
4236 of this packet to a useful boundary. */
4237 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4238 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4239
4240 /* Append "<memaddr>". */
4241 memaddr = remote_address_masked (memaddr);
4242 p += hexnumstr (p, (ULONGEST) memaddr);
4243
4244 if (use_length)
4245 {
4246 /* Append ",". */
4247 *p++ = ',';
4248
4249 /* Append <len>. Retain the location/size of <len>. It may need to
4250 be adjusted once the packet body has been created. */
4251 plen = p;
4252 plenlen = hexnumstr (p, (ULONGEST) todo);
4253 p += plenlen;
4254 }
4255
4256 /* Append ":". */
4257 *p++ = ':';
4258 *p = '\0';
4259
4260 /* Append the packet body. */
4261 if (packet_format == 'X')
4262 {
4263 /* Binary mode. Send target system values byte by byte, in
4264 increasing byte addresses. Only escape certain critical
4265 characters. */
4266 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4267 payload_size);
4268
4269 /* If not all TODO bytes fit, then we'll need another packet. Make
4270 a second try to keep the end of the packet aligned. Don't do
4271 this if the packet is tiny. */
4272 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4273 {
4274 int new_nr_bytes;
4275
4276 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4277 - memaddr);
4278 if (new_nr_bytes != nr_bytes)
4279 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4280 p, &nr_bytes,
4281 payload_size);
4282 }
4283
4284 p += payload_length;
4285 if (use_length && nr_bytes < todo)
4286 {
4287 /* Escape chars have filled up the buffer prematurely,
4288 and we have actually sent fewer bytes than planned.
4289 Fix-up the length field of the packet. Use the same
4290 number of characters as before. */
4291 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4292 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4293 }
4294 }
4295 else
4296 {
4297 /* Normal mode: Send target system values byte by byte, in
4298 increasing byte addresses. Each byte is encoded as a two hex
4299 value. */
4300 nr_bytes = bin2hex (myaddr, p, todo);
4301 p += 2 * nr_bytes;
4302 }
4303
4304 putpkt_binary (rs->buf, (int) (p - rs->buf));
4305 getpkt (&rs->buf, &rs->buf_size, 0);
4306
4307 if (rs->buf[0] == 'E')
4308 {
4309 /* There is no correspondance between what the remote protocol
4310 uses for errors and errno codes. We would like a cleaner way
4311 of representing errors (big enough to include errno codes,
4312 bfd_error codes, and others). But for now just return EIO. */
4313 errno = EIO;
4314 return 0;
4315 }
4316
4317 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4318 fewer bytes than we'd planned. */
4319 return nr_bytes;
4320 }
4321
4322 /* Write memory data directly to the remote machine.
4323 This does not inform the data cache; the data cache uses this.
4324 MEMADDR is the address in the remote memory space.
4325 MYADDR is the address of the buffer in our space.
4326 LEN is the number of bytes.
4327
4328 Returns number of bytes transferred, or 0 (setting errno) for
4329 error. Only transfer a single packet. */
4330
4331 int
4332 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4333 {
4334 char *packet_format = 0;
4335
4336 /* Check whether the target supports binary download. */
4337 check_binary_download (memaddr);
4338
4339 switch (remote_protocol_packets[PACKET_X].support)
4340 {
4341 case PACKET_ENABLE:
4342 packet_format = "X";
4343 break;
4344 case PACKET_DISABLE:
4345 packet_format = "M";
4346 break;
4347 case PACKET_SUPPORT_UNKNOWN:
4348 internal_error (__FILE__, __LINE__,
4349 _("remote_write_bytes: bad internal state"));
4350 default:
4351 internal_error (__FILE__, __LINE__, _("bad switch"));
4352 }
4353
4354 return remote_write_bytes_aux (packet_format,
4355 memaddr, myaddr, len, packet_format[0], 1);
4356 }
4357
4358 /* Read memory data directly from the remote machine.
4359 This does not use the data cache; the data cache uses this.
4360 MEMADDR is the address in the remote memory space.
4361 MYADDR is the address of the buffer in our space.
4362 LEN is the number of bytes.
4363
4364 Returns number of bytes transferred, or 0 for error. */
4365
4366 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4367 remote targets) shouldn't attempt to read the entire buffer.
4368 Instead it should read a single packet worth of data and then
4369 return the byte size of that packet to the caller. The caller (its
4370 caller and its callers caller ;-) already contains code for
4371 handling partial reads. */
4372
4373 int
4374 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4375 {
4376 struct remote_state *rs = get_remote_state ();
4377 int max_buf_size; /* Max size of packet output buffer. */
4378 int origlen;
4379
4380 if (len <= 0)
4381 return 0;
4382
4383 max_buf_size = get_memory_read_packet_size ();
4384 /* The packet buffer will be large enough for the payload;
4385 get_memory_packet_size ensures this. */
4386
4387 origlen = len;
4388 while (len > 0)
4389 {
4390 char *p;
4391 int todo;
4392 int i;
4393
4394 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4395
4396 /* construct "m"<memaddr>","<len>" */
4397 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4398 memaddr = remote_address_masked (memaddr);
4399 p = rs->buf;
4400 *p++ = 'm';
4401 p += hexnumstr (p, (ULONGEST) memaddr);
4402 *p++ = ',';
4403 p += hexnumstr (p, (ULONGEST) todo);
4404 *p = '\0';
4405
4406 putpkt (rs->buf);
4407 getpkt (&rs->buf, &rs->buf_size, 0);
4408
4409 if (rs->buf[0] == 'E'
4410 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4411 && rs->buf[3] == '\0')
4412 {
4413 /* There is no correspondance between what the remote
4414 protocol uses for errors and errno codes. We would like
4415 a cleaner way of representing errors (big enough to
4416 include errno codes, bfd_error codes, and others). But
4417 for now just return EIO. */
4418 errno = EIO;
4419 return 0;
4420 }
4421
4422 /* Reply describes memory byte by byte,
4423 each byte encoded as two hex characters. */
4424
4425 p = rs->buf;
4426 if ((i = hex2bin (p, myaddr, todo)) < todo)
4427 {
4428 /* Reply is short. This means that we were able to read
4429 only part of what we wanted to. */
4430 return i + (origlen - len);
4431 }
4432 myaddr += todo;
4433 memaddr += todo;
4434 len -= todo;
4435 }
4436 return origlen;
4437 }
4438 \f
4439 /* Read or write LEN bytes from inferior memory at MEMADDR,
4440 transferring to or from debugger address BUFFER. Write to inferior
4441 if SHOULD_WRITE is nonzero. Returns length of data written or
4442 read; 0 for error. TARGET is unused. */
4443
4444 static int
4445 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4446 int should_write, struct mem_attrib *attrib,
4447 struct target_ops *target)
4448 {
4449 int res;
4450
4451 if (should_write)
4452 res = remote_write_bytes (mem_addr, buffer, mem_len);
4453 else
4454 res = remote_read_bytes (mem_addr, buffer, mem_len);
4455
4456 return res;
4457 }
4458
4459 /* Sends a packet with content determined by the printf format string
4460 FORMAT and the remaining arguments, then gets the reply. Returns
4461 whether the packet was a success, a failure, or unknown. */
4462
4463 enum packet_result
4464 remote_send_printf (const char *format, ...)
4465 {
4466 struct remote_state *rs = get_remote_state ();
4467 int max_size = get_remote_packet_size ();
4468
4469 va_list ap;
4470 va_start (ap, format);
4471
4472 rs->buf[0] = '\0';
4473 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4474 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4475
4476 if (putpkt (rs->buf) < 0)
4477 error (_("Communication problem with target."));
4478
4479 rs->buf[0] = '\0';
4480 getpkt (&rs->buf, &rs->buf_size, 0);
4481
4482 return packet_check_result (rs->buf);
4483 }
4484
4485 static void
4486 restore_remote_timeout (void *p)
4487 {
4488 int value = *(int *)p;
4489 remote_timeout = value;
4490 }
4491
4492 /* Flash writing can take quite some time. We'll set
4493 effectively infinite timeout for flash operations.
4494 In future, we'll need to decide on a better approach. */
4495 static const int remote_flash_timeout = 1000;
4496
4497 static void
4498 remote_flash_erase (struct target_ops *ops,
4499 ULONGEST address, LONGEST length)
4500 {
4501 int saved_remote_timeout = remote_timeout;
4502 enum packet_result ret;
4503
4504 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4505 &saved_remote_timeout);
4506 remote_timeout = remote_flash_timeout;
4507
4508 ret = remote_send_printf ("vFlashErase:%s,%s",
4509 paddr (address),
4510 phex (length, 4));
4511 switch (ret)
4512 {
4513 case PACKET_UNKNOWN:
4514 error (_("Remote target does not support flash erase"));
4515 case PACKET_ERROR:
4516 error (_("Error erasing flash with vFlashErase packet"));
4517 default:
4518 break;
4519 }
4520
4521 do_cleanups (back_to);
4522 }
4523
4524 static LONGEST
4525 remote_flash_write (struct target_ops *ops,
4526 ULONGEST address, LONGEST length,
4527 const gdb_byte *data)
4528 {
4529 int saved_remote_timeout = remote_timeout;
4530 int ret;
4531 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4532 &saved_remote_timeout);
4533
4534 remote_timeout = remote_flash_timeout;
4535 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4536 do_cleanups (back_to);
4537
4538 return ret;
4539 }
4540
4541 static void
4542 remote_flash_done (struct target_ops *ops)
4543 {
4544 int saved_remote_timeout = remote_timeout;
4545 int ret;
4546 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4547 &saved_remote_timeout);
4548
4549 remote_timeout = remote_flash_timeout;
4550 ret = remote_send_printf ("vFlashDone");
4551 do_cleanups (back_to);
4552
4553 switch (ret)
4554 {
4555 case PACKET_UNKNOWN:
4556 error (_("Remote target does not support vFlashDone"));
4557 case PACKET_ERROR:
4558 error (_("Error finishing flash operation"));
4559 default:
4560 break;
4561 }
4562 }
4563
4564 static void
4565 remote_files_info (struct target_ops *ignore)
4566 {
4567 puts_filtered ("Debugging a target over a serial line.\n");
4568 }
4569 \f
4570 /* Stuff for dealing with the packets which are part of this protocol.
4571 See comment at top of file for details. */
4572
4573 /* Read a single character from the remote end. */
4574
4575 static int
4576 readchar (int timeout)
4577 {
4578 int ch;
4579
4580 ch = serial_readchar (remote_desc, timeout);
4581
4582 if (ch >= 0)
4583 return ch;
4584
4585 switch ((enum serial_rc) ch)
4586 {
4587 case SERIAL_EOF:
4588 target_mourn_inferior ();
4589 error (_("Remote connection closed"));
4590 /* no return */
4591 case SERIAL_ERROR:
4592 perror_with_name (_("Remote communication error"));
4593 /* no return */
4594 case SERIAL_TIMEOUT:
4595 break;
4596 }
4597 return ch;
4598 }
4599
4600 /* Send the command in *BUF to the remote machine, and read the reply
4601 into *BUF. Report an error if we get an error reply. Resize
4602 *BUF using xrealloc if necessary to hold the result, and update
4603 *SIZEOF_BUF. */
4604
4605 static void
4606 remote_send (char **buf,
4607 long *sizeof_buf)
4608 {
4609 putpkt (*buf);
4610 getpkt (buf, sizeof_buf, 0);
4611
4612 if ((*buf)[0] == 'E')
4613 error (_("Remote failure reply: %s"), *buf);
4614 }
4615
4616 /* Display a null-terminated packet on stdout, for debugging, using C
4617 string notation. */
4618
4619 static void
4620 print_packet (char *buf)
4621 {
4622 puts_filtered ("\"");
4623 fputstr_filtered (buf, '"', gdb_stdout);
4624 puts_filtered ("\"");
4625 }
4626
4627 int
4628 putpkt (char *buf)
4629 {
4630 return putpkt_binary (buf, strlen (buf));
4631 }
4632
4633 /* Send a packet to the remote machine, with error checking. The data
4634 of the packet is in BUF. The string in BUF can be at most
4635 get_remote_packet_size () - 5 to account for the $, # and checksum,
4636 and for a possible /0 if we are debugging (remote_debug) and want
4637 to print the sent packet as a string. */
4638
4639 static int
4640 putpkt_binary (char *buf, int cnt)
4641 {
4642 int i;
4643 unsigned char csum = 0;
4644 char *buf2 = alloca (cnt + 6);
4645
4646 int ch;
4647 int tcount = 0;
4648 char *p;
4649
4650 /* Copy the packet into buffer BUF2, encapsulating it
4651 and giving it a checksum. */
4652
4653 p = buf2;
4654 *p++ = '$';
4655
4656 for (i = 0; i < cnt; i++)
4657 {
4658 csum += buf[i];
4659 *p++ = buf[i];
4660 }
4661 *p++ = '#';
4662 *p++ = tohex ((csum >> 4) & 0xf);
4663 *p++ = tohex (csum & 0xf);
4664
4665 /* Send it over and over until we get a positive ack. */
4666
4667 while (1)
4668 {
4669 int started_error_output = 0;
4670
4671 if (remote_debug)
4672 {
4673 *p = '\0';
4674 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4675 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4676 fprintf_unfiltered (gdb_stdlog, "...");
4677 gdb_flush (gdb_stdlog);
4678 }
4679 if (serial_write (remote_desc, buf2, p - buf2))
4680 perror_with_name (_("putpkt: write failed"));
4681
4682 /* Read until either a timeout occurs (-2) or '+' is read. */
4683 while (1)
4684 {
4685 ch = readchar (remote_timeout);
4686
4687 if (remote_debug)
4688 {
4689 switch (ch)
4690 {
4691 case '+':
4692 case '-':
4693 case SERIAL_TIMEOUT:
4694 case '$':
4695 if (started_error_output)
4696 {
4697 putchar_unfiltered ('\n');
4698 started_error_output = 0;
4699 }
4700 }
4701 }
4702
4703 switch (ch)
4704 {
4705 case '+':
4706 if (remote_debug)
4707 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4708 return 1;
4709 case '-':
4710 if (remote_debug)
4711 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4712 case SERIAL_TIMEOUT:
4713 tcount++;
4714 if (tcount > 3)
4715 return 0;
4716 break; /* Retransmit buffer. */
4717 case '$':
4718 {
4719 if (remote_debug)
4720 fprintf_unfiltered (gdb_stdlog,
4721 "Packet instead of Ack, ignoring it\n");
4722 /* It's probably an old response sent because an ACK
4723 was lost. Gobble up the packet and ack it so it
4724 doesn't get retransmitted when we resend this
4725 packet. */
4726 skip_frame ();
4727 serial_write (remote_desc, "+", 1);
4728 continue; /* Now, go look for +. */
4729 }
4730 default:
4731 if (remote_debug)
4732 {
4733 if (!started_error_output)
4734 {
4735 started_error_output = 1;
4736 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4737 }
4738 fputc_unfiltered (ch & 0177, gdb_stdlog);
4739 }
4740 continue;
4741 }
4742 break; /* Here to retransmit. */
4743 }
4744
4745 #if 0
4746 /* This is wrong. If doing a long backtrace, the user should be
4747 able to get out next time we call QUIT, without anything as
4748 violent as interrupt_query. If we want to provide a way out of
4749 here without getting to the next QUIT, it should be based on
4750 hitting ^C twice as in remote_wait. */
4751 if (quit_flag)
4752 {
4753 quit_flag = 0;
4754 interrupt_query ();
4755 }
4756 #endif
4757 }
4758 }
4759
4760 /* Come here after finding the start of a frame when we expected an
4761 ack. Do our best to discard the rest of this packet. */
4762
4763 static void
4764 skip_frame (void)
4765 {
4766 int c;
4767
4768 while (1)
4769 {
4770 c = readchar (remote_timeout);
4771 switch (c)
4772 {
4773 case SERIAL_TIMEOUT:
4774 /* Nothing we can do. */
4775 return;
4776 case '#':
4777 /* Discard the two bytes of checksum and stop. */
4778 c = readchar (remote_timeout);
4779 if (c >= 0)
4780 c = readchar (remote_timeout);
4781
4782 return;
4783 case '*': /* Run length encoding. */
4784 /* Discard the repeat count. */
4785 c = readchar (remote_timeout);
4786 if (c < 0)
4787 return;
4788 break;
4789 default:
4790 /* A regular character. */
4791 break;
4792 }
4793 }
4794 }
4795
4796 /* Come here after finding the start of the frame. Collect the rest
4797 into *BUF, verifying the checksum, length, and handling run-length
4798 compression. NUL terminate the buffer. If there is not enough room,
4799 expand *BUF using xrealloc.
4800
4801 Returns -1 on error, number of characters in buffer (ignoring the
4802 trailing NULL) on success. (could be extended to return one of the
4803 SERIAL status indications). */
4804
4805 static long
4806 read_frame (char **buf_p,
4807 long *sizeof_buf)
4808 {
4809 unsigned char csum;
4810 long bc;
4811 int c;
4812 char *buf = *buf_p;
4813
4814 csum = 0;
4815 bc = 0;
4816
4817 while (1)
4818 {
4819 c = readchar (remote_timeout);
4820 switch (c)
4821 {
4822 case SERIAL_TIMEOUT:
4823 if (remote_debug)
4824 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4825 return -1;
4826 case '$':
4827 if (remote_debug)
4828 fputs_filtered ("Saw new packet start in middle of old one\n",
4829 gdb_stdlog);
4830 return -1; /* Start a new packet, count retries. */
4831 case '#':
4832 {
4833 unsigned char pktcsum;
4834 int check_0 = 0;
4835 int check_1 = 0;
4836
4837 buf[bc] = '\0';
4838
4839 check_0 = readchar (remote_timeout);
4840 if (check_0 >= 0)
4841 check_1 = readchar (remote_timeout);
4842
4843 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4844 {
4845 if (remote_debug)
4846 fputs_filtered ("Timeout in checksum, retrying\n",
4847 gdb_stdlog);
4848 return -1;
4849 }
4850 else if (check_0 < 0 || check_1 < 0)
4851 {
4852 if (remote_debug)
4853 fputs_filtered ("Communication error in checksum\n",
4854 gdb_stdlog);
4855 return -1;
4856 }
4857
4858 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4859 if (csum == pktcsum)
4860 return bc;
4861
4862 if (remote_debug)
4863 {
4864 fprintf_filtered (gdb_stdlog,
4865 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4866 pktcsum, csum);
4867 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4868 fputs_filtered ("\n", gdb_stdlog);
4869 }
4870 /* Number of characters in buffer ignoring trailing
4871 NULL. */
4872 return -1;
4873 }
4874 case '*': /* Run length encoding. */
4875 {
4876 int repeat;
4877 csum += c;
4878
4879 c = readchar (remote_timeout);
4880 csum += c;
4881 repeat = c - ' ' + 3; /* Compute repeat count. */
4882
4883 /* The character before ``*'' is repeated. */
4884
4885 if (repeat > 0 && repeat <= 255 && bc > 0)
4886 {
4887 if (bc + repeat - 1 >= *sizeof_buf - 1)
4888 {
4889 /* Make some more room in the buffer. */
4890 *sizeof_buf += repeat;
4891 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4892 buf = *buf_p;
4893 }
4894
4895 memset (&buf[bc], buf[bc - 1], repeat);
4896 bc += repeat;
4897 continue;
4898 }
4899
4900 buf[bc] = '\0';
4901 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4902 return -1;
4903 }
4904 default:
4905 if (bc >= *sizeof_buf - 1)
4906 {
4907 /* Make some more room in the buffer. */
4908 *sizeof_buf *= 2;
4909 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4910 buf = *buf_p;
4911 }
4912
4913 buf[bc++] = c;
4914 csum += c;
4915 continue;
4916 }
4917 }
4918 }
4919
4920 /* Read a packet from the remote machine, with error checking, and
4921 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4922 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4923 rather than timing out; this is used (in synchronous mode) to wait
4924 for a target that is is executing user code to stop. */
4925 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4926 don't have to change all the calls to getpkt to deal with the
4927 return value, because at the moment I don't know what the right
4928 thing to do it for those. */
4929 void
4930 getpkt (char **buf,
4931 long *sizeof_buf,
4932 int forever)
4933 {
4934 int timed_out;
4935
4936 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4937 }
4938
4939
4940 /* Read a packet from the remote machine, with error checking, and
4941 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4942 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4943 rather than timing out; this is used (in synchronous mode) to wait
4944 for a target that is is executing user code to stop. If FOREVER ==
4945 0, this function is allowed to time out gracefully and return an
4946 indication of this to the caller. Otherwise return the number
4947 of bytes read. */
4948 static int
4949 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4950 {
4951 int c;
4952 int tries;
4953 int timeout;
4954 int val;
4955
4956 strcpy (*buf, "timeout");
4957
4958 if (forever)
4959 {
4960 timeout = watchdog > 0 ? watchdog : -1;
4961 }
4962
4963 else
4964 timeout = remote_timeout;
4965
4966 #define MAX_TRIES 3
4967
4968 for (tries = 1; tries <= MAX_TRIES; tries++)
4969 {
4970 /* This can loop forever if the remote side sends us characters
4971 continuously, but if it pauses, we'll get a zero from
4972 readchar because of timeout. Then we'll count that as a
4973 retry. */
4974
4975 /* Note that we will only wait forever prior to the start of a
4976 packet. After that, we expect characters to arrive at a
4977 brisk pace. They should show up within remote_timeout
4978 intervals. */
4979
4980 do
4981 {
4982 c = readchar (timeout);
4983
4984 if (c == SERIAL_TIMEOUT)
4985 {
4986 if (forever) /* Watchdog went off? Kill the target. */
4987 {
4988 QUIT;
4989 target_mourn_inferior ();
4990 error (_("Watchdog has expired. Target detached."));
4991 }
4992 if (remote_debug)
4993 fputs_filtered ("Timed out.\n", gdb_stdlog);
4994 goto retry;
4995 }
4996 }
4997 while (c != '$');
4998
4999 /* We've found the start of a packet, now collect the data. */
5000
5001 val = read_frame (buf, sizeof_buf);
5002
5003 if (val >= 0)
5004 {
5005 if (remote_debug)
5006 {
5007 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5008 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5009 fprintf_unfiltered (gdb_stdlog, "\n");
5010 }
5011 serial_write (remote_desc, "+", 1);
5012 return val;
5013 }
5014
5015 /* Try the whole thing again. */
5016 retry:
5017 serial_write (remote_desc, "-", 1);
5018 }
5019
5020 /* We have tried hard enough, and just can't receive the packet.
5021 Give up. */
5022
5023 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5024 serial_write (remote_desc, "+", 1);
5025 return -1;
5026 }
5027 \f
5028 static void
5029 remote_kill (void)
5030 {
5031 /* For some mysterious reason, wait_for_inferior calls kill instead of
5032 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5033 if (kill_kludge)
5034 {
5035 kill_kludge = 0;
5036 target_mourn_inferior ();
5037 return;
5038 }
5039
5040 /* Use catch_errors so the user can quit from gdb even when we aren't on
5041 speaking terms with the remote system. */
5042 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5043
5044 /* Don't wait for it to die. I'm not really sure it matters whether
5045 we do or not. For the existing stubs, kill is a noop. */
5046 target_mourn_inferior ();
5047 }
5048
5049 /* Async version of remote_kill. */
5050 static void
5051 remote_async_kill (void)
5052 {
5053 /* Unregister the file descriptor from the event loop. */
5054 if (target_is_async_p ())
5055 serial_async (remote_desc, NULL, 0);
5056
5057 /* For some mysterious reason, wait_for_inferior calls kill instead of
5058 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5059 if (kill_kludge)
5060 {
5061 kill_kludge = 0;
5062 target_mourn_inferior ();
5063 return;
5064 }
5065
5066 /* Use catch_errors so the user can quit from gdb even when we
5067 aren't on speaking terms with the remote system. */
5068 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5069
5070 /* Don't wait for it to die. I'm not really sure it matters whether
5071 we do or not. For the existing stubs, kill is a noop. */
5072 target_mourn_inferior ();
5073 }
5074
5075 static void
5076 remote_mourn (void)
5077 {
5078 remote_mourn_1 (&remote_ops);
5079 }
5080
5081 static void
5082 remote_async_mourn (void)
5083 {
5084 remote_mourn_1 (&remote_async_ops);
5085 }
5086
5087 static void
5088 extended_remote_mourn (void)
5089 {
5090 /* We do _not_ want to mourn the target like this; this will
5091 remove the extended remote target from the target stack,
5092 and the next time the user says "run" it'll fail.
5093
5094 FIXME: What is the right thing to do here? */
5095 #if 0
5096 remote_mourn_1 (&extended_remote_ops);
5097 #endif
5098 }
5099
5100 /* Worker function for remote_mourn. */
5101 static void
5102 remote_mourn_1 (struct target_ops *target)
5103 {
5104 unpush_target (target);
5105 generic_mourn_inferior ();
5106 }
5107
5108 /* In the extended protocol we want to be able to do things like
5109 "run" and have them basically work as expected. So we need
5110 a special create_inferior function.
5111
5112 FIXME: One day add support for changing the exec file
5113 we're debugging, arguments and an environment. */
5114
5115 static void
5116 extended_remote_create_inferior (char *exec_file, char *args,
5117 char **env, int from_tty)
5118 {
5119 /* Rip out the breakpoints; we'll reinsert them after restarting
5120 the remote server. */
5121 remove_breakpoints ();
5122
5123 /* Now restart the remote server. */
5124 extended_remote_restart ();
5125
5126 /* NOTE: We don't need to recheck for a target description here; but
5127 if we gain the ability to switch the remote executable we may
5128 need to, if for instance we are running a process which requested
5129 different emulated hardware from the operating system. A
5130 concrete example of this is ARM GNU/Linux, where some binaries
5131 will have a legacy FPA coprocessor emulated and others may have
5132 access to a hardware VFP unit. */
5133
5134 /* Now put the breakpoints back in. This way we're safe if the
5135 restart function works via a unix fork on the remote side. */
5136 insert_breakpoints ();
5137
5138 /* Clean up from the last time we were running. */
5139 clear_proceed_status ();
5140 }
5141
5142 /* Async version of extended_remote_create_inferior. */
5143 static void
5144 extended_remote_async_create_inferior (char *exec_file, char *args,
5145 char **env, int from_tty)
5146 {
5147 /* Rip out the breakpoints; we'll reinsert them after restarting
5148 the remote server. */
5149 remove_breakpoints ();
5150
5151 /* If running asynchronously, register the target file descriptor
5152 with the event loop. */
5153 if (target_can_async_p ())
5154 target_async (inferior_event_handler, 0);
5155
5156 /* Now restart the remote server. */
5157 extended_remote_restart ();
5158
5159 /* NOTE: We don't need to recheck for a target description here; but
5160 if we gain the ability to switch the remote executable we may
5161 need to, if for instance we are running a process which requested
5162 different emulated hardware from the operating system. A
5163 concrete example of this is ARM GNU/Linux, where some binaries
5164 will have a legacy FPA coprocessor emulated and others may have
5165 access to a hardware VFP unit. */
5166
5167 /* Now put the breakpoints back in. This way we're safe if the
5168 restart function works via a unix fork on the remote side. */
5169 insert_breakpoints ();
5170
5171 /* Clean up from the last time we were running. */
5172 clear_proceed_status ();
5173 }
5174 \f
5175
5176 /* Insert a breakpoint. On targets that have software breakpoint
5177 support, we ask the remote target to do the work; on targets
5178 which don't, we insert a traditional memory breakpoint. */
5179
5180 static int
5181 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5182 {
5183 CORE_ADDR addr = bp_tgt->placed_address;
5184 struct remote_state *rs = get_remote_state ();
5185
5186 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5187 If it succeeds, then set the support to PACKET_ENABLE. If it
5188 fails, and the user has explicitly requested the Z support then
5189 report an error, otherwise, mark it disabled and go on. */
5190
5191 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5192 {
5193 char *p = rs->buf;
5194
5195 *(p++) = 'Z';
5196 *(p++) = '0';
5197 *(p++) = ',';
5198 gdbarch_breakpoint_from_pc
5199 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5200 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5201 p += hexnumstr (p, addr);
5202 sprintf (p, ",%d", bp_tgt->placed_size);
5203
5204 putpkt (rs->buf);
5205 getpkt (&rs->buf, &rs->buf_size, 0);
5206
5207 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5208 {
5209 case PACKET_ERROR:
5210 return -1;
5211 case PACKET_OK:
5212 return 0;
5213 case PACKET_UNKNOWN:
5214 break;
5215 }
5216 }
5217
5218 return memory_insert_breakpoint (bp_tgt);
5219 }
5220
5221 static int
5222 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5223 {
5224 CORE_ADDR addr = bp_tgt->placed_address;
5225 struct remote_state *rs = get_remote_state ();
5226 int bp_size;
5227
5228 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5229 {
5230 char *p = rs->buf;
5231
5232 *(p++) = 'z';
5233 *(p++) = '0';
5234 *(p++) = ',';
5235
5236 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5237 p += hexnumstr (p, addr);
5238 sprintf (p, ",%d", bp_tgt->placed_size);
5239
5240 putpkt (rs->buf);
5241 getpkt (&rs->buf, &rs->buf_size, 0);
5242
5243 return (rs->buf[0] == 'E');
5244 }
5245
5246 return memory_remove_breakpoint (bp_tgt);
5247 }
5248
5249 static int
5250 watchpoint_to_Z_packet (int type)
5251 {
5252 switch (type)
5253 {
5254 case hw_write:
5255 return Z_PACKET_WRITE_WP;
5256 break;
5257 case hw_read:
5258 return Z_PACKET_READ_WP;
5259 break;
5260 case hw_access:
5261 return Z_PACKET_ACCESS_WP;
5262 break;
5263 default:
5264 internal_error (__FILE__, __LINE__,
5265 _("hw_bp_to_z: bad watchpoint type %d"), type);
5266 }
5267 }
5268
5269 static int
5270 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5271 {
5272 struct remote_state *rs = get_remote_state ();
5273 char *p;
5274 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5275
5276 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5277 return -1;
5278
5279 sprintf (rs->buf, "Z%x,", packet);
5280 p = strchr (rs->buf, '\0');
5281 addr = remote_address_masked (addr);
5282 p += hexnumstr (p, (ULONGEST) addr);
5283 sprintf (p, ",%x", len);
5284
5285 putpkt (rs->buf);
5286 getpkt (&rs->buf, &rs->buf_size, 0);
5287
5288 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5289 {
5290 case PACKET_ERROR:
5291 case PACKET_UNKNOWN:
5292 return -1;
5293 case PACKET_OK:
5294 return 0;
5295 }
5296 internal_error (__FILE__, __LINE__,
5297 _("remote_insert_watchpoint: reached end of function"));
5298 }
5299
5300
5301 static int
5302 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5303 {
5304 struct remote_state *rs = get_remote_state ();
5305 char *p;
5306 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5307
5308 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5309 return -1;
5310
5311 sprintf (rs->buf, "z%x,", packet);
5312 p = strchr (rs->buf, '\0');
5313 addr = remote_address_masked (addr);
5314 p += hexnumstr (p, (ULONGEST) addr);
5315 sprintf (p, ",%x", len);
5316 putpkt (rs->buf);
5317 getpkt (&rs->buf, &rs->buf_size, 0);
5318
5319 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5320 {
5321 case PACKET_ERROR:
5322 case PACKET_UNKNOWN:
5323 return -1;
5324 case PACKET_OK:
5325 return 0;
5326 }
5327 internal_error (__FILE__, __LINE__,
5328 _("remote_remove_watchpoint: reached end of function"));
5329 }
5330
5331
5332 int remote_hw_watchpoint_limit = -1;
5333 int remote_hw_breakpoint_limit = -1;
5334
5335 static int
5336 remote_check_watch_resources (int type, int cnt, int ot)
5337 {
5338 if (type == bp_hardware_breakpoint)
5339 {
5340 if (remote_hw_breakpoint_limit == 0)
5341 return 0;
5342 else if (remote_hw_breakpoint_limit < 0)
5343 return 1;
5344 else if (cnt <= remote_hw_breakpoint_limit)
5345 return 1;
5346 }
5347 else
5348 {
5349 if (remote_hw_watchpoint_limit == 0)
5350 return 0;
5351 else if (remote_hw_watchpoint_limit < 0)
5352 return 1;
5353 else if (ot)
5354 return -1;
5355 else if (cnt <= remote_hw_watchpoint_limit)
5356 return 1;
5357 }
5358 return -1;
5359 }
5360
5361 static int
5362 remote_stopped_by_watchpoint (void)
5363 {
5364 return remote_stopped_by_watchpoint_p;
5365 }
5366
5367 extern int stepped_after_stopped_by_watchpoint;
5368
5369 static int
5370 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5371 {
5372 int rc = 0;
5373 if (remote_stopped_by_watchpoint ()
5374 || stepped_after_stopped_by_watchpoint)
5375 {
5376 *addr_p = remote_watch_data_address;
5377 rc = 1;
5378 }
5379
5380 return rc;
5381 }
5382
5383
5384 static int
5385 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5386 {
5387 CORE_ADDR addr;
5388 struct remote_state *rs = get_remote_state ();
5389 char *p = rs->buf;
5390
5391 /* The length field should be set to the size of a breakpoint
5392 instruction, even though we aren't inserting one ourselves. */
5393
5394 gdbarch_breakpoint_from_pc
5395 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5396
5397 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5398 return -1;
5399
5400 *(p++) = 'Z';
5401 *(p++) = '1';
5402 *(p++) = ',';
5403
5404 addr = remote_address_masked (bp_tgt->placed_address);
5405 p += hexnumstr (p, (ULONGEST) addr);
5406 sprintf (p, ",%x", bp_tgt->placed_size);
5407
5408 putpkt (rs->buf);
5409 getpkt (&rs->buf, &rs->buf_size, 0);
5410
5411 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5412 {
5413 case PACKET_ERROR:
5414 case PACKET_UNKNOWN:
5415 return -1;
5416 case PACKET_OK:
5417 return 0;
5418 }
5419 internal_error (__FILE__, __LINE__,
5420 _("remote_insert_hw_breakpoint: reached end of function"));
5421 }
5422
5423
5424 static int
5425 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5426 {
5427 CORE_ADDR addr;
5428 struct remote_state *rs = get_remote_state ();
5429 char *p = rs->buf;
5430
5431 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5432 return -1;
5433
5434 *(p++) = 'z';
5435 *(p++) = '1';
5436 *(p++) = ',';
5437
5438 addr = remote_address_masked (bp_tgt->placed_address);
5439 p += hexnumstr (p, (ULONGEST) addr);
5440 sprintf (p, ",%x", bp_tgt->placed_size);
5441
5442 putpkt (rs->buf);
5443 getpkt (&rs->buf, &rs->buf_size, 0);
5444
5445 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5446 {
5447 case PACKET_ERROR:
5448 case PACKET_UNKNOWN:
5449 return -1;
5450 case PACKET_OK:
5451 return 0;
5452 }
5453 internal_error (__FILE__, __LINE__,
5454 _("remote_remove_hw_breakpoint: reached end of function"));
5455 }
5456
5457 /* Some targets are only capable of doing downloads, and afterwards
5458 they switch to the remote serial protocol. This function provides
5459 a clean way to get from the download target to the remote target.
5460 It's basically just a wrapper so that we don't have to expose any
5461 of the internal workings of remote.c.
5462
5463 Prior to calling this routine, you should shutdown the current
5464 target code, else you will get the "A program is being debugged
5465 already..." message. Usually a call to pop_target() suffices. */
5466
5467 void
5468 push_remote_target (char *name, int from_tty)
5469 {
5470 printf_filtered (_("Switching to remote protocol\n"));
5471 remote_open (name, from_tty);
5472 }
5473
5474 /* Table used by the crc32 function to calcuate the checksum. */
5475
5476 static unsigned long crc32_table[256] =
5477 {0, 0};
5478
5479 static unsigned long
5480 crc32 (unsigned char *buf, int len, unsigned int crc)
5481 {
5482 if (!crc32_table[1])
5483 {
5484 /* Initialize the CRC table and the decoding table. */
5485 int i, j;
5486 unsigned int c;
5487
5488 for (i = 0; i < 256; i++)
5489 {
5490 for (c = i << 24, j = 8; j > 0; --j)
5491 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5492 crc32_table[i] = c;
5493 }
5494 }
5495
5496 while (len--)
5497 {
5498 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5499 buf++;
5500 }
5501 return crc;
5502 }
5503
5504 /* compare-sections command
5505
5506 With no arguments, compares each loadable section in the exec bfd
5507 with the same memory range on the target, and reports mismatches.
5508 Useful for verifying the image on the target against the exec file.
5509 Depends on the target understanding the new "qCRC:" request. */
5510
5511 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5512 target method (target verify memory) and generic version of the
5513 actual command. This will allow other high-level code (especially
5514 generic_load()) to make use of this target functionality. */
5515
5516 static void
5517 compare_sections_command (char *args, int from_tty)
5518 {
5519 struct remote_state *rs = get_remote_state ();
5520 asection *s;
5521 unsigned long host_crc, target_crc;
5522 extern bfd *exec_bfd;
5523 struct cleanup *old_chain;
5524 char *tmp;
5525 char *sectdata;
5526 const char *sectname;
5527 bfd_size_type size;
5528 bfd_vma lma;
5529 int matched = 0;
5530 int mismatched = 0;
5531
5532 if (!exec_bfd)
5533 error (_("command cannot be used without an exec file"));
5534 if (!current_target.to_shortname ||
5535 strcmp (current_target.to_shortname, "remote") != 0)
5536 error (_("command can only be used with remote target"));
5537
5538 for (s = exec_bfd->sections; s; s = s->next)
5539 {
5540 if (!(s->flags & SEC_LOAD))
5541 continue; /* skip non-loadable section */
5542
5543 size = bfd_get_section_size (s);
5544 if (size == 0)
5545 continue; /* skip zero-length section */
5546
5547 sectname = bfd_get_section_name (exec_bfd, s);
5548 if (args && strcmp (args, sectname) != 0)
5549 continue; /* not the section selected by user */
5550
5551 matched = 1; /* do this section */
5552 lma = s->lma;
5553 /* FIXME: assumes lma can fit into long. */
5554 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5555 (long) lma, (long) size);
5556 putpkt (rs->buf);
5557
5558 /* Be clever; compute the host_crc before waiting for target
5559 reply. */
5560 sectdata = xmalloc (size);
5561 old_chain = make_cleanup (xfree, sectdata);
5562 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5563 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5564
5565 getpkt (&rs->buf, &rs->buf_size, 0);
5566 if (rs->buf[0] == 'E')
5567 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5568 sectname, paddr (lma), paddr (lma + size));
5569 if (rs->buf[0] != 'C')
5570 error (_("remote target does not support this operation"));
5571
5572 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5573 target_crc = target_crc * 16 + fromhex (*tmp);
5574
5575 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5576 sectname, paddr (lma), paddr (lma + size));
5577 if (host_crc == target_crc)
5578 printf_filtered ("matched.\n");
5579 else
5580 {
5581 printf_filtered ("MIS-MATCHED!\n");
5582 mismatched++;
5583 }
5584
5585 do_cleanups (old_chain);
5586 }
5587 if (mismatched > 0)
5588 warning (_("One or more sections of the remote executable does not match\n\
5589 the loaded file\n"));
5590 if (args && !matched)
5591 printf_filtered (_("No loaded section named '%s'.\n"), args);
5592 }
5593
5594 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5595 into remote target. The number of bytes written to the remote
5596 target is returned, or -1 for error. */
5597
5598 static LONGEST
5599 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5600 const char *annex, const gdb_byte *writebuf,
5601 ULONGEST offset, LONGEST len,
5602 struct packet_config *packet)
5603 {
5604 int i, buf_len;
5605 ULONGEST n;
5606 gdb_byte *wbuf;
5607 struct remote_state *rs = get_remote_state ();
5608 int max_size = get_memory_write_packet_size ();
5609
5610 if (packet->support == PACKET_DISABLE)
5611 return -1;
5612
5613 /* Insert header. */
5614 i = snprintf (rs->buf, max_size,
5615 "qXfer:%s:write:%s:%s:",
5616 object_name, annex ? annex : "",
5617 phex_nz (offset, sizeof offset));
5618 max_size -= (i + 1);
5619
5620 /* Escape as much data as fits into rs->buf. */
5621 buf_len = remote_escape_output
5622 (writebuf, len, (rs->buf + i), &max_size, max_size);
5623
5624 if (putpkt_binary (rs->buf, i + buf_len) < 0
5625 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5626 || packet_ok (rs->buf, packet) != PACKET_OK)
5627 return -1;
5628
5629 unpack_varlen_hex (rs->buf, &n);
5630 return n;
5631 }
5632
5633 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5634 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5635 number of bytes read is returned, or 0 for EOF, or -1 for error.
5636 The number of bytes read may be less than LEN without indicating an
5637 EOF. PACKET is checked and updated to indicate whether the remote
5638 target supports this object. */
5639
5640 static LONGEST
5641 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5642 const char *annex,
5643 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5644 struct packet_config *packet)
5645 {
5646 static char *finished_object;
5647 static char *finished_annex;
5648 static ULONGEST finished_offset;
5649
5650 struct remote_state *rs = get_remote_state ();
5651 unsigned int total = 0;
5652 LONGEST i, n, packet_len;
5653
5654 if (packet->support == PACKET_DISABLE)
5655 return -1;
5656
5657 /* Check whether we've cached an end-of-object packet that matches
5658 this request. */
5659 if (finished_object)
5660 {
5661 if (strcmp (object_name, finished_object) == 0
5662 && strcmp (annex ? annex : "", finished_annex) == 0
5663 && offset == finished_offset)
5664 return 0;
5665
5666 /* Otherwise, we're now reading something different. Discard
5667 the cache. */
5668 xfree (finished_object);
5669 xfree (finished_annex);
5670 finished_object = NULL;
5671 finished_annex = NULL;
5672 }
5673
5674 /* Request only enough to fit in a single packet. The actual data
5675 may not, since we don't know how much of it will need to be escaped;
5676 the target is free to respond with slightly less data. We subtract
5677 five to account for the response type and the protocol frame. */
5678 n = min (get_remote_packet_size () - 5, len);
5679 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5680 object_name, annex ? annex : "",
5681 phex_nz (offset, sizeof offset),
5682 phex_nz (n, sizeof n));
5683 i = putpkt (rs->buf);
5684 if (i < 0)
5685 return -1;
5686
5687 rs->buf[0] = '\0';
5688 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5689 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5690 return -1;
5691
5692 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5693 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5694
5695 /* 'm' means there is (or at least might be) more data after this
5696 batch. That does not make sense unless there's at least one byte
5697 of data in this reply. */
5698 if (rs->buf[0] == 'm' && packet_len == 1)
5699 error (_("Remote qXfer reply contained no data."));
5700
5701 /* Got some data. */
5702 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5703
5704 /* 'l' is an EOF marker, possibly including a final block of data,
5705 or possibly empty. If we have the final block of a non-empty
5706 object, record this fact to bypass a subsequent partial read. */
5707 if (rs->buf[0] == 'l' && offset + i > 0)
5708 {
5709 finished_object = xstrdup (object_name);
5710 finished_annex = xstrdup (annex ? annex : "");
5711 finished_offset = offset + i;
5712 }
5713
5714 return i;
5715 }
5716
5717 static LONGEST
5718 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5719 const char *annex, gdb_byte *readbuf,
5720 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5721 {
5722 struct remote_state *rs = get_remote_state ();
5723 int i;
5724 char *p2;
5725 char query_type;
5726
5727 /* Handle memory using the standard memory routines. */
5728 if (object == TARGET_OBJECT_MEMORY)
5729 {
5730 int xfered;
5731 errno = 0;
5732
5733 if (writebuf != NULL)
5734 xfered = remote_write_bytes (offset, writebuf, len);
5735 else
5736 xfered = remote_read_bytes (offset, readbuf, len);
5737
5738 if (xfered > 0)
5739 return xfered;
5740 else if (xfered == 0 && errno == 0)
5741 return 0;
5742 else
5743 return -1;
5744 }
5745
5746 /* Handle SPU memory using qxfer packets. */
5747 if (object == TARGET_OBJECT_SPU)
5748 {
5749 if (readbuf)
5750 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
5751 &remote_protocol_packets
5752 [PACKET_qXfer_spu_read]);
5753 else
5754 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
5755 &remote_protocol_packets
5756 [PACKET_qXfer_spu_write]);
5757 }
5758
5759 /* Only handle flash writes. */
5760 if (writebuf != NULL)
5761 {
5762 LONGEST xfered;
5763
5764 switch (object)
5765 {
5766 case TARGET_OBJECT_FLASH:
5767 xfered = remote_flash_write (ops, offset, len, writebuf);
5768
5769 if (xfered > 0)
5770 return xfered;
5771 else if (xfered == 0 && errno == 0)
5772 return 0;
5773 else
5774 return -1;
5775
5776 default:
5777 return -1;
5778 }
5779 }
5780
5781 /* Map pre-existing objects onto letters. DO NOT do this for new
5782 objects!!! Instead specify new query packets. */
5783 switch (object)
5784 {
5785 case TARGET_OBJECT_AVR:
5786 query_type = 'R';
5787 break;
5788
5789 case TARGET_OBJECT_AUXV:
5790 gdb_assert (annex == NULL);
5791 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5792 &remote_protocol_packets[PACKET_qXfer_auxv]);
5793
5794 case TARGET_OBJECT_AVAILABLE_FEATURES:
5795 return remote_read_qxfer
5796 (ops, "features", annex, readbuf, offset, len,
5797 &remote_protocol_packets[PACKET_qXfer_features]);
5798
5799 case TARGET_OBJECT_MEMORY_MAP:
5800 gdb_assert (annex == NULL);
5801 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5802 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5803
5804 default:
5805 return -1;
5806 }
5807
5808 /* Note: a zero OFFSET and LEN can be used to query the minimum
5809 buffer size. */
5810 if (offset == 0 && len == 0)
5811 return (get_remote_packet_size ());
5812 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5813 large enough let the caller deal with it. */
5814 if (len < get_remote_packet_size ())
5815 return -1;
5816 len = get_remote_packet_size ();
5817
5818 /* Except for querying the minimum buffer size, target must be open. */
5819 if (!remote_desc)
5820 error (_("remote query is only available after target open"));
5821
5822 gdb_assert (annex != NULL);
5823 gdb_assert (readbuf != NULL);
5824
5825 p2 = rs->buf;
5826 *p2++ = 'q';
5827 *p2++ = query_type;
5828
5829 /* We used one buffer char for the remote protocol q command and
5830 another for the query type. As the remote protocol encapsulation
5831 uses 4 chars plus one extra in case we are debugging
5832 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5833 string. */
5834 i = 0;
5835 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5836 {
5837 /* Bad caller may have sent forbidden characters. */
5838 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5839 *p2++ = annex[i];
5840 i++;
5841 }
5842 *p2 = '\0';
5843 gdb_assert (annex[i] == '\0');
5844
5845 i = putpkt (rs->buf);
5846 if (i < 0)
5847 return i;
5848
5849 getpkt (&rs->buf, &rs->buf_size, 0);
5850 strcpy ((char *) readbuf, rs->buf);
5851
5852 return strlen ((char *) readbuf);
5853 }
5854
5855 static void
5856 remote_rcmd (char *command,
5857 struct ui_file *outbuf)
5858 {
5859 struct remote_state *rs = get_remote_state ();
5860 char *p = rs->buf;
5861
5862 if (!remote_desc)
5863 error (_("remote rcmd is only available after target open"));
5864
5865 /* Send a NULL command across as an empty command. */
5866 if (command == NULL)
5867 command = "";
5868
5869 /* The query prefix. */
5870 strcpy (rs->buf, "qRcmd,");
5871 p = strchr (rs->buf, '\0');
5872
5873 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5874 error (_("\"monitor\" command ``%s'' is too long."), command);
5875
5876 /* Encode the actual command. */
5877 bin2hex ((gdb_byte *) command, p, 0);
5878
5879 if (putpkt (rs->buf) < 0)
5880 error (_("Communication problem with target."));
5881
5882 /* get/display the response */
5883 while (1)
5884 {
5885 char *buf;
5886
5887 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5888 rs->buf[0] = '\0';
5889 getpkt (&rs->buf, &rs->buf_size, 0);
5890 buf = rs->buf;
5891 if (buf[0] == '\0')
5892 error (_("Target does not support this command."));
5893 if (buf[0] == 'O' && buf[1] != 'K')
5894 {
5895 remote_console_output (buf + 1); /* 'O' message from stub. */
5896 continue;
5897 }
5898 if (strcmp (buf, "OK") == 0)
5899 break;
5900 if (strlen (buf) == 3 && buf[0] == 'E'
5901 && isdigit (buf[1]) && isdigit (buf[2]))
5902 {
5903 error (_("Protocol error with Rcmd"));
5904 }
5905 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5906 {
5907 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5908 fputc_unfiltered (c, outbuf);
5909 }
5910 break;
5911 }
5912 }
5913
5914 static VEC(mem_region_s) *
5915 remote_memory_map (struct target_ops *ops)
5916 {
5917 VEC(mem_region_s) *result = NULL;
5918 char *text = target_read_stralloc (&current_target,
5919 TARGET_OBJECT_MEMORY_MAP, NULL);
5920
5921 if (text)
5922 {
5923 struct cleanup *back_to = make_cleanup (xfree, text);
5924 result = parse_memory_map (text);
5925 do_cleanups (back_to);
5926 }
5927
5928 return result;
5929 }
5930
5931 static void
5932 packet_command (char *args, int from_tty)
5933 {
5934 struct remote_state *rs = get_remote_state ();
5935
5936 if (!remote_desc)
5937 error (_("command can only be used with remote target"));
5938
5939 if (!args)
5940 error (_("remote-packet command requires packet text as argument"));
5941
5942 puts_filtered ("sending: ");
5943 print_packet (args);
5944 puts_filtered ("\n");
5945 putpkt (args);
5946
5947 getpkt (&rs->buf, &rs->buf_size, 0);
5948 puts_filtered ("received: ");
5949 print_packet (rs->buf);
5950 puts_filtered ("\n");
5951 }
5952
5953 #if 0
5954 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5955
5956 static void display_thread_info (struct gdb_ext_thread_info *info);
5957
5958 static void threadset_test_cmd (char *cmd, int tty);
5959
5960 static void threadalive_test (char *cmd, int tty);
5961
5962 static void threadlist_test_cmd (char *cmd, int tty);
5963
5964 int get_and_display_threadinfo (threadref *ref);
5965
5966 static void threadinfo_test_cmd (char *cmd, int tty);
5967
5968 static int thread_display_step (threadref *ref, void *context);
5969
5970 static void threadlist_update_test_cmd (char *cmd, int tty);
5971
5972 static void init_remote_threadtests (void);
5973
5974 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5975
5976 static void
5977 threadset_test_cmd (char *cmd, int tty)
5978 {
5979 int sample_thread = SAMPLE_THREAD;
5980
5981 printf_filtered (_("Remote threadset test\n"));
5982 set_thread (sample_thread, 1);
5983 }
5984
5985
5986 static void
5987 threadalive_test (char *cmd, int tty)
5988 {
5989 int sample_thread = SAMPLE_THREAD;
5990
5991 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5992 printf_filtered ("PASS: Thread alive test\n");
5993 else
5994 printf_filtered ("FAIL: Thread alive test\n");
5995 }
5996
5997 void output_threadid (char *title, threadref *ref);
5998
5999 void
6000 output_threadid (char *title, threadref *ref)
6001 {
6002 char hexid[20];
6003
6004 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6005 hexid[16] = 0;
6006 printf_filtered ("%s %s\n", title, (&hexid[0]));
6007 }
6008
6009 static void
6010 threadlist_test_cmd (char *cmd, int tty)
6011 {
6012 int startflag = 1;
6013 threadref nextthread;
6014 int done, result_count;
6015 threadref threadlist[3];
6016
6017 printf_filtered ("Remote Threadlist test\n");
6018 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6019 &result_count, &threadlist[0]))
6020 printf_filtered ("FAIL: threadlist test\n");
6021 else
6022 {
6023 threadref *scan = threadlist;
6024 threadref *limit = scan + result_count;
6025
6026 while (scan < limit)
6027 output_threadid (" thread ", scan++);
6028 }
6029 }
6030
6031 void
6032 display_thread_info (struct gdb_ext_thread_info *info)
6033 {
6034 output_threadid ("Threadid: ", &info->threadid);
6035 printf_filtered ("Name: %s\n ", info->shortname);
6036 printf_filtered ("State: %s\n", info->display);
6037 printf_filtered ("other: %s\n\n", info->more_display);
6038 }
6039
6040 int
6041 get_and_display_threadinfo (threadref *ref)
6042 {
6043 int result;
6044 int set;
6045 struct gdb_ext_thread_info threadinfo;
6046
6047 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6048 | TAG_MOREDISPLAY | TAG_DISPLAY;
6049 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6050 display_thread_info (&threadinfo);
6051 return result;
6052 }
6053
6054 static void
6055 threadinfo_test_cmd (char *cmd, int tty)
6056 {
6057 int athread = SAMPLE_THREAD;
6058 threadref thread;
6059 int set;
6060
6061 int_to_threadref (&thread, athread);
6062 printf_filtered ("Remote Threadinfo test\n");
6063 if (!get_and_display_threadinfo (&thread))
6064 printf_filtered ("FAIL cannot get thread info\n");
6065 }
6066
6067 static int
6068 thread_display_step (threadref *ref, void *context)
6069 {
6070 /* output_threadid(" threadstep ",ref); *//* simple test */
6071 return get_and_display_threadinfo (ref);
6072 }
6073
6074 static void
6075 threadlist_update_test_cmd (char *cmd, int tty)
6076 {
6077 printf_filtered ("Remote Threadlist update test\n");
6078 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6079 }
6080
6081 static void
6082 init_remote_threadtests (void)
6083 {
6084 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6085 Fetch and print the remote list of thread identifiers, one pkt only"));
6086 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6087 _("Fetch and display info about one thread"));
6088 add_com ("tset", class_obscure, threadset_test_cmd,
6089 _("Test setting to a different thread"));
6090 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6091 _("Iterate through updating all remote thread info"));
6092 add_com ("talive", class_obscure, threadalive_test,
6093 _(" Remote thread alive test "));
6094 }
6095
6096 #endif /* 0 */
6097
6098 /* Convert a thread ID to a string. Returns the string in a static
6099 buffer. */
6100
6101 static char *
6102 remote_pid_to_str (ptid_t ptid)
6103 {
6104 static char buf[32];
6105
6106 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6107 return buf;
6108 }
6109
6110 /* Get the address of the thread local variable in OBJFILE which is
6111 stored at OFFSET within the thread local storage for thread PTID. */
6112
6113 static CORE_ADDR
6114 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6115 {
6116 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6117 {
6118 struct remote_state *rs = get_remote_state ();
6119 char *p = rs->buf;
6120 enum packet_result result;
6121
6122 strcpy (p, "qGetTLSAddr:");
6123 p += strlen (p);
6124 p += hexnumstr (p, PIDGET (ptid));
6125 *p++ = ',';
6126 p += hexnumstr (p, offset);
6127 *p++ = ',';
6128 p += hexnumstr (p, lm);
6129 *p++ = '\0';
6130
6131 putpkt (rs->buf);
6132 getpkt (&rs->buf, &rs->buf_size, 0);
6133 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6134 if (result == PACKET_OK)
6135 {
6136 ULONGEST result;
6137
6138 unpack_varlen_hex (rs->buf, &result);
6139 return result;
6140 }
6141 else if (result == PACKET_UNKNOWN)
6142 throw_error (TLS_GENERIC_ERROR,
6143 _("Remote target doesn't support qGetTLSAddr packet"));
6144 else
6145 throw_error (TLS_GENERIC_ERROR,
6146 _("Remote target failed to process qGetTLSAddr request"));
6147 }
6148 else
6149 throw_error (TLS_GENERIC_ERROR,
6150 _("TLS not supported or disabled on this target"));
6151 /* Not reached. */
6152 return 0;
6153 }
6154
6155 /* Support for inferring a target description based on the current
6156 architecture and the size of a 'g' packet. While the 'g' packet
6157 can have any size (since optional registers can be left off the
6158 end), some sizes are easily recognizable given knowledge of the
6159 approximate architecture. */
6160
6161 struct remote_g_packet_guess
6162 {
6163 int bytes;
6164 const struct target_desc *tdesc;
6165 };
6166 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6167 DEF_VEC_O(remote_g_packet_guess_s);
6168
6169 struct remote_g_packet_data
6170 {
6171 VEC(remote_g_packet_guess_s) *guesses;
6172 };
6173
6174 static struct gdbarch_data *remote_g_packet_data_handle;
6175
6176 static void *
6177 remote_g_packet_data_init (struct obstack *obstack)
6178 {
6179 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6180 }
6181
6182 void
6183 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6184 const struct target_desc *tdesc)
6185 {
6186 struct remote_g_packet_data *data
6187 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6188 struct remote_g_packet_guess new_guess, *guess;
6189 int ix;
6190
6191 gdb_assert (tdesc != NULL);
6192
6193 for (ix = 0;
6194 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6195 ix++)
6196 if (guess->bytes == bytes)
6197 internal_error (__FILE__, __LINE__,
6198 "Duplicate g packet description added for size %d",
6199 bytes);
6200
6201 new_guess.bytes = bytes;
6202 new_guess.tdesc = tdesc;
6203 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6204 }
6205
6206 static const struct target_desc *
6207 remote_read_description (struct target_ops *target)
6208 {
6209 struct remote_g_packet_data *data
6210 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6211
6212 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6213 {
6214 struct remote_g_packet_guess *guess;
6215 int ix;
6216 int bytes = send_g_packet ();
6217
6218 for (ix = 0;
6219 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6220 ix++)
6221 if (guess->bytes == bytes)
6222 return guess->tdesc;
6223
6224 /* We discard the g packet. A minor optimization would be to
6225 hold on to it, and fill the register cache once we have selected
6226 an architecture, but it's too tricky to do safely. */
6227 }
6228
6229 return NULL;
6230 }
6231
6232 static void
6233 init_remote_ops (void)
6234 {
6235 remote_ops.to_shortname = "remote";
6236 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6237 remote_ops.to_doc =
6238 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6239 Specify the serial device it is connected to\n\
6240 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6241 remote_ops.to_open = remote_open;
6242 remote_ops.to_close = remote_close;
6243 remote_ops.to_detach = remote_detach;
6244 remote_ops.to_disconnect = remote_disconnect;
6245 remote_ops.to_resume = remote_resume;
6246 remote_ops.to_wait = remote_wait;
6247 remote_ops.to_fetch_registers = remote_fetch_registers;
6248 remote_ops.to_store_registers = remote_store_registers;
6249 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6250 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6251 remote_ops.to_files_info = remote_files_info;
6252 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6253 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6254 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6255 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6256 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6257 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6258 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6259 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6260 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6261 remote_ops.to_kill = remote_kill;
6262 remote_ops.to_load = generic_load;
6263 remote_ops.to_mourn_inferior = remote_mourn;
6264 remote_ops.to_thread_alive = remote_thread_alive;
6265 remote_ops.to_find_new_threads = remote_threads_info;
6266 remote_ops.to_pid_to_str = remote_pid_to_str;
6267 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6268 remote_ops.to_stop = remote_stop;
6269 remote_ops.to_xfer_partial = remote_xfer_partial;
6270 remote_ops.to_rcmd = remote_rcmd;
6271 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6272 remote_ops.to_stratum = process_stratum;
6273 remote_ops.to_has_all_memory = 1;
6274 remote_ops.to_has_memory = 1;
6275 remote_ops.to_has_stack = 1;
6276 remote_ops.to_has_registers = 1;
6277 remote_ops.to_has_execution = 1;
6278 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6279 remote_ops.to_magic = OPS_MAGIC;
6280 remote_ops.to_memory_map = remote_memory_map;
6281 remote_ops.to_flash_erase = remote_flash_erase;
6282 remote_ops.to_flash_done = remote_flash_done;
6283 remote_ops.to_read_description = remote_read_description;
6284 }
6285
6286 /* Set up the extended remote vector by making a copy of the standard
6287 remote vector and adding to it. */
6288
6289 static void
6290 init_extended_remote_ops (void)
6291 {
6292 extended_remote_ops = remote_ops;
6293
6294 extended_remote_ops.to_shortname = "extended-remote";
6295 extended_remote_ops.to_longname =
6296 "Extended remote serial target in gdb-specific protocol";
6297 extended_remote_ops.to_doc =
6298 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6299 Specify the serial device it is connected to (e.g. /dev/ttya).",
6300 extended_remote_ops.to_open = extended_remote_open;
6301 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6302 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6303 }
6304
6305 static int
6306 remote_can_async_p (void)
6307 {
6308 /* We're async whenever the serial device is. */
6309 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6310 }
6311
6312 static int
6313 remote_is_async_p (void)
6314 {
6315 /* We're async whenever the serial device is. */
6316 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6317 }
6318
6319 /* Pass the SERIAL event on and up to the client. One day this code
6320 will be able to delay notifying the client of an event until the
6321 point where an entire packet has been received. */
6322
6323 static void (*async_client_callback) (enum inferior_event_type event_type,
6324 void *context);
6325 static void *async_client_context;
6326 static serial_event_ftype remote_async_serial_handler;
6327
6328 static void
6329 remote_async_serial_handler (struct serial *scb, void *context)
6330 {
6331 /* Don't propogate error information up to the client. Instead let
6332 the client find out about the error by querying the target. */
6333 async_client_callback (INF_REG_EVENT, async_client_context);
6334 }
6335
6336 static void
6337 remote_async (void (*callback) (enum inferior_event_type event_type,
6338 void *context), void *context)
6339 {
6340 if (current_target.to_async_mask_value == 0)
6341 internal_error (__FILE__, __LINE__,
6342 _("Calling remote_async when async is masked"));
6343
6344 if (callback != NULL)
6345 {
6346 serial_async (remote_desc, remote_async_serial_handler, NULL);
6347 async_client_callback = callback;
6348 async_client_context = context;
6349 }
6350 else
6351 serial_async (remote_desc, NULL, NULL);
6352 }
6353
6354 /* Target async and target extended-async.
6355
6356 This are temporary targets, until it is all tested. Eventually
6357 async support will be incorporated int the usual 'remote'
6358 target. */
6359
6360 static void
6361 init_remote_async_ops (void)
6362 {
6363 remote_async_ops.to_shortname = "async";
6364 remote_async_ops.to_longname =
6365 "Remote serial target in async version of the gdb-specific protocol";
6366 remote_async_ops.to_doc =
6367 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6368 Specify the serial device it is connected to (e.g. /dev/ttya).";
6369 remote_async_ops.to_open = remote_async_open;
6370 remote_async_ops.to_close = remote_close;
6371 remote_async_ops.to_detach = remote_detach;
6372 remote_async_ops.to_disconnect = remote_disconnect;
6373 remote_async_ops.to_resume = remote_async_resume;
6374 remote_async_ops.to_wait = remote_async_wait;
6375 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6376 remote_async_ops.to_store_registers = remote_store_registers;
6377 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6378 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6379 remote_async_ops.to_files_info = remote_files_info;
6380 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6381 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6382 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6383 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6384 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6385 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6386 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6387 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6388 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6389 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6390 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6391 remote_async_ops.to_kill = remote_async_kill;
6392 remote_async_ops.to_load = generic_load;
6393 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6394 remote_async_ops.to_thread_alive = remote_thread_alive;
6395 remote_async_ops.to_find_new_threads = remote_threads_info;
6396 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6397 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6398 remote_async_ops.to_stop = remote_stop;
6399 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6400 remote_async_ops.to_rcmd = remote_rcmd;
6401 remote_async_ops.to_stratum = process_stratum;
6402 remote_async_ops.to_has_all_memory = 1;
6403 remote_async_ops.to_has_memory = 1;
6404 remote_async_ops.to_has_stack = 1;
6405 remote_async_ops.to_has_registers = 1;
6406 remote_async_ops.to_has_execution = 1;
6407 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6408 remote_async_ops.to_can_async_p = remote_can_async_p;
6409 remote_async_ops.to_is_async_p = remote_is_async_p;
6410 remote_async_ops.to_async = remote_async;
6411 remote_async_ops.to_async_mask_value = 1;
6412 remote_async_ops.to_magic = OPS_MAGIC;
6413 remote_async_ops.to_memory_map = remote_memory_map;
6414 remote_async_ops.to_flash_erase = remote_flash_erase;
6415 remote_async_ops.to_flash_done = remote_flash_done;
6416 remote_ops.to_read_description = remote_read_description;
6417 }
6418
6419 /* Set up the async extended remote vector by making a copy of the standard
6420 remote vector and adding to it. */
6421
6422 static void
6423 init_extended_async_remote_ops (void)
6424 {
6425 extended_async_remote_ops = remote_async_ops;
6426
6427 extended_async_remote_ops.to_shortname = "extended-async";
6428 extended_async_remote_ops.to_longname =
6429 "Extended remote serial target in async gdb-specific protocol";
6430 extended_async_remote_ops.to_doc =
6431 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6432 Specify the serial device it is connected to (e.g. /dev/ttya).",
6433 extended_async_remote_ops.to_open = extended_remote_async_open;
6434 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6435 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6436 }
6437
6438 static void
6439 set_remote_cmd (char *args, int from_tty)
6440 {
6441 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6442 }
6443
6444 static void
6445 show_remote_cmd (char *args, int from_tty)
6446 {
6447 /* We can't just use cmd_show_list here, because we want to skip
6448 the redundant "show remote Z-packet" and the legacy aliases. */
6449 struct cleanup *showlist_chain;
6450 struct cmd_list_element *list = remote_show_cmdlist;
6451
6452 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6453 for (; list != NULL; list = list->next)
6454 if (strcmp (list->name, "Z-packet") == 0)
6455 continue;
6456 else if (list->type == not_set_cmd)
6457 /* Alias commands are exactly like the original, except they
6458 don't have the normal type. */
6459 continue;
6460 else
6461 {
6462 struct cleanup *option_chain
6463 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6464 ui_out_field_string (uiout, "name", list->name);
6465 ui_out_text (uiout, ": ");
6466 if (list->type == show_cmd)
6467 do_setshow_command ((char *) NULL, from_tty, list);
6468 else
6469 cmd_func (list, NULL, from_tty);
6470 /* Close the tuple. */
6471 do_cleanups (option_chain);
6472 }
6473
6474 /* Close the tuple. */
6475 do_cleanups (showlist_chain);
6476 }
6477
6478 static void
6479 build_remote_gdbarch_data (void)
6480 {
6481 remote_address_size = gdbarch_addr_bit (current_gdbarch);
6482 }
6483
6484 /* Function to be called whenever a new objfile (shlib) is detected. */
6485 static void
6486 remote_new_objfile (struct objfile *objfile)
6487 {
6488 if (remote_desc != 0) /* Have a remote connection. */
6489 remote_check_symbols (objfile);
6490 }
6491
6492 void
6493 _initialize_remote (void)
6494 {
6495 struct remote_state *rs;
6496
6497 /* architecture specific data */
6498 remote_gdbarch_data_handle =
6499 gdbarch_data_register_post_init (init_remote_state);
6500 remote_g_packet_data_handle =
6501 gdbarch_data_register_pre_init (remote_g_packet_data_init);
6502
6503 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6504 that the remote protocol has been initialized. */
6505 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
6506 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6507
6508 /* Initialize the per-target state. At the moment there is only one
6509 of these, not one per target. Only one target is active at a
6510 time. The default buffer size is unimportant; it will be expanded
6511 whenever a larger buffer is needed. */
6512 rs = get_remote_state_raw ();
6513 rs->buf_size = 400;
6514 rs->buf = xmalloc (rs->buf_size);
6515
6516 init_remote_ops ();
6517 add_target (&remote_ops);
6518
6519 init_extended_remote_ops ();
6520 add_target (&extended_remote_ops);
6521
6522 init_remote_async_ops ();
6523 add_target (&remote_async_ops);
6524
6525 init_extended_async_remote_ops ();
6526 add_target (&extended_async_remote_ops);
6527
6528 /* Hook into new objfile notification. */
6529 observer_attach_new_objfile (remote_new_objfile);
6530
6531 #if 0
6532 init_remote_threadtests ();
6533 #endif
6534
6535 /* set/show remote ... */
6536
6537 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6538 Remote protocol specific variables\n\
6539 Configure various remote-protocol specific variables such as\n\
6540 the packets being used"),
6541 &remote_set_cmdlist, "set remote ",
6542 0 /* allow-unknown */, &setlist);
6543 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6544 Remote protocol specific variables\n\
6545 Configure various remote-protocol specific variables such as\n\
6546 the packets being used"),
6547 &remote_show_cmdlist, "show remote ",
6548 0 /* allow-unknown */, &showlist);
6549
6550 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6551 Compare section data on target to the exec file.\n\
6552 Argument is a single section name (default: all loaded sections)."),
6553 &cmdlist);
6554
6555 add_cmd ("packet", class_maintenance, packet_command, _("\
6556 Send an arbitrary packet to a remote target.\n\
6557 maintenance packet TEXT\n\
6558 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6559 this command sends the string TEXT to the inferior, and displays the\n\
6560 response packet. GDB supplies the initial `$' character, and the\n\
6561 terminating `#' character and checksum."),
6562 &maintenancelist);
6563
6564 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6565 Set whether to send break if interrupted."), _("\
6566 Show whether to send break if interrupted."), _("\
6567 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6568 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6569 &setlist, &showlist);
6570
6571 /* Install commands for configuring memory read/write packets. */
6572
6573 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6574 Set the maximum number of bytes per memory write packet (deprecated)."),
6575 &setlist);
6576 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6577 Show the maximum number of bytes per memory write packet (deprecated)."),
6578 &showlist);
6579 add_cmd ("memory-write-packet-size", no_class,
6580 set_memory_write_packet_size, _("\
6581 Set the maximum number of bytes per memory-write packet.\n\
6582 Specify the number of bytes in a packet or 0 (zero) for the\n\
6583 default packet size. The actual limit is further reduced\n\
6584 dependent on the target. Specify ``fixed'' to disable the\n\
6585 further restriction and ``limit'' to enable that restriction."),
6586 &remote_set_cmdlist);
6587 add_cmd ("memory-read-packet-size", no_class,
6588 set_memory_read_packet_size, _("\
6589 Set the maximum number of bytes per memory-read packet.\n\
6590 Specify the number of bytes in a packet or 0 (zero) for the\n\
6591 default packet size. The actual limit is further reduced\n\
6592 dependent on the target. Specify ``fixed'' to disable the\n\
6593 further restriction and ``limit'' to enable that restriction."),
6594 &remote_set_cmdlist);
6595 add_cmd ("memory-write-packet-size", no_class,
6596 show_memory_write_packet_size,
6597 _("Show the maximum number of bytes per memory-write packet."),
6598 &remote_show_cmdlist);
6599 add_cmd ("memory-read-packet-size", no_class,
6600 show_memory_read_packet_size,
6601 _("Show the maximum number of bytes per memory-read packet."),
6602 &remote_show_cmdlist);
6603
6604 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6605 &remote_hw_watchpoint_limit, _("\
6606 Set the maximum number of target hardware watchpoints."), _("\
6607 Show the maximum number of target hardware watchpoints."), _("\
6608 Specify a negative limit for unlimited."),
6609 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6610 &remote_set_cmdlist, &remote_show_cmdlist);
6611 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6612 &remote_hw_breakpoint_limit, _("\
6613 Set the maximum number of target hardware breakpoints."), _("\
6614 Show the maximum number of target hardware breakpoints."), _("\
6615 Specify a negative limit for unlimited."),
6616 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6617 &remote_set_cmdlist, &remote_show_cmdlist);
6618
6619 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6620 &remote_address_size, _("\
6621 Set the maximum size of the address (in bits) in a memory packet."), _("\
6622 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6623 NULL,
6624 NULL, /* FIXME: i18n: */
6625 &setlist, &showlist);
6626
6627 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6628 "X", "binary-download", 1);
6629
6630 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6631 "vCont", "verbose-resume", 0);
6632
6633 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6634 "QPassSignals", "pass-signals", 0);
6635
6636 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6637 "qSymbol", "symbol-lookup", 0);
6638
6639 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6640 "P", "set-register", 1);
6641
6642 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6643 "p", "fetch-register", 1);
6644
6645 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6646 "Z0", "software-breakpoint", 0);
6647
6648 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6649 "Z1", "hardware-breakpoint", 0);
6650
6651 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6652 "Z2", "write-watchpoint", 0);
6653
6654 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6655 "Z3", "read-watchpoint", 0);
6656
6657 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6658 "Z4", "access-watchpoint", 0);
6659
6660 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6661 "qXfer:auxv:read", "read-aux-vector", 0);
6662
6663 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
6664 "qXfer:features:read", "target-features", 0);
6665
6666 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6667 "qXfer:memory-map:read", "memory-map", 0);
6668
6669 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
6670 "qXfer:spu:read", "read-spu-object", 0);
6671
6672 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
6673 "qXfer:spu:write", "write-spu-object", 0);
6674
6675 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6676 "qGetTLSAddr", "get-thread-local-storage-address",
6677 0);
6678
6679 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6680 "qSupported", "supported-packets", 0);
6681
6682 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6683 Z sub-packet has its own set and show commands, but users may
6684 have sets to this variable in their .gdbinit files (or in their
6685 documentation). */
6686 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6687 &remote_Z_packet_detect, _("\
6688 Set use of remote protocol `Z' packets"), _("\
6689 Show use of remote protocol `Z' packets "), _("\
6690 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6691 packets."),
6692 set_remote_protocol_Z_packet_cmd,
6693 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6694 &remote_set_cmdlist, &remote_show_cmdlist);
6695
6696 /* Eventually initialize fileio. See fileio.c */
6697 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6698 }