* Makefile.in (SFILES): Add new and missed files.
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 /* See the GDB User Guide for details of the GDB remote protocol. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "exceptions.h"
34 #include "target.h"
35 /*#include "terminal.h" */
36 #include "gdbcmd.h"
37 #include "objfiles.h"
38 #include "gdb-stabs.h"
39 #include "gdbthread.h"
40 #include "remote.h"
41 #include "regcache.h"
42 #include "value.h"
43 #include "gdb_assert.h"
44 #include "observer.h"
45 #include "solib.h"
46 #include "cli/cli-decode.h"
47 #include "cli/cli-setshow.h"
48 #include "target-descriptions.h"
49
50 #include <ctype.h>
51 #include <sys/time.h>
52
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include "inf-loop.h"
56
57 #include <signal.h>
58 #include "serial.h"
59
60 #include "gdbcore.h" /* for exec_bfd */
61
62 #include "remote-fileio.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82
83 static void handle_remote_sigint (int);
84 static void handle_remote_sigint_twice (int);
85 static void async_remote_interrupt (gdb_client_data);
86 void async_remote_interrupt_twice (gdb_client_data);
87
88 static void build_remote_gdbarch_data (void);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (void);
93
94 static void remote_fetch_registers (int regno);
95
96 static void remote_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_async_resume (ptid_t ptid, int step,
99 enum target_signal siggnal);
100 static void remote_open (char *name, int from_tty);
101 static void remote_async_open (char *name, int from_tty);
102
103 static void extended_remote_open (char *name, int from_tty);
104 static void extended_remote_async_open (char *name, int from_tty);
105
106 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
107 int async_p);
108
109 static void remote_close (int quitting);
110
111 static void remote_store_registers (int regno);
112
113 static void remote_mourn (void);
114 static void remote_async_mourn (void);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (void);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static ptid_t remote_wait (ptid_t ptid,
127 struct target_waitstatus *status);
128 static ptid_t remote_async_wait (ptid_t ptid,
129 struct target_waitstatus *status);
130
131 static void remote_kill (void);
132 static void remote_async_kill (void);
133
134 static int tohex (int nib);
135
136 static void remote_detach (char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_thread (int, int);
145
146 static int remote_thread_alive (ptid_t);
147
148 static void get_offsets (void);
149
150 static void skip_frame (void);
151
152 static long read_frame (char **buf_p, long *sizeof_buf);
153
154 static int hexnumlen (ULONGEST num);
155
156 static void init_remote_ops (void);
157
158 static void init_extended_remote_ops (void);
159
160 static void remote_stop (void);
161
162 static int ishex (int ch, int *val);
163
164 static int stubhex (int ch);
165
166 static int hexnumstr (char *, ULONGEST);
167
168 static int hexnumnstr (char *, ULONGEST, int);
169
170 static CORE_ADDR remote_address_masked (CORE_ADDR);
171
172 static void print_packet (char *);
173
174 static unsigned long crc32 (unsigned char *, int, unsigned int);
175
176 static void compare_sections_command (char *, int);
177
178 static void packet_command (char *, int);
179
180 static int stub_unpack_int (char *buff, int fieldlength);
181
182 static ptid_t remote_current_thread (ptid_t oldptid);
183
184 static void remote_find_new_threads (void);
185
186 static void record_currthread (int currthread);
187
188 static int fromhex (int a);
189
190 static int hex2bin (const char *hex, gdb_byte *bin, int count);
191
192 static int bin2hex (const gdb_byte *bin, char *hex, int count);
193
194 static int putpkt_binary (char *buf, int cnt);
195
196 static void check_binary_download (CORE_ADDR addr);
197
198 struct packet_config;
199
200 static void show_packet_config_cmd (struct packet_config *config);
201
202 static void update_packet_config (struct packet_config *config);
203
204 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
205 struct cmd_list_element *c);
206
207 static void show_remote_protocol_packet_cmd (struct ui_file *file,
208 int from_tty,
209 struct cmd_list_element *c,
210 const char *value);
211
212 void _initialize_remote (void);
213
214 /* For "set remote" and "show remote". */
215
216 static struct cmd_list_element *remote_set_cmdlist;
217 static struct cmd_list_element *remote_show_cmdlist;
218
219 /* Description of the remote protocol state for the currently
220 connected target. This is per-target state, and independent of the
221 selected architecture. */
222
223 struct remote_state
224 {
225 /* A buffer to use for incoming packets, and its current size. The
226 buffer is grown dynamically for larger incoming packets.
227 Outgoing packets may also be constructed in this buffer.
228 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
229 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
230 packets. */
231 char *buf;
232 long buf_size;
233
234 /* If we negotiated packet size explicitly (and thus can bypass
235 heuristics for the largest packet size that will not overflow
236 a buffer in the stub), this will be set to that packet size.
237 Otherwise zero, meaning to use the guessed size. */
238 long explicit_packet_size;
239 };
240
241 /* This data could be associated with a target, but we do not always
242 have access to the current target when we need it, so for now it is
243 static. This will be fine for as long as only one target is in use
244 at a time. */
245 static struct remote_state remote_state;
246
247 static struct remote_state *
248 get_remote_state_raw (void)
249 {
250 return &remote_state;
251 }
252
253 /* Description of the remote protocol for a given architecture. */
254
255 struct packet_reg
256 {
257 long offset; /* Offset into G packet. */
258 long regnum; /* GDB's internal register number. */
259 LONGEST pnum; /* Remote protocol register number. */
260 int in_g_packet; /* Always part of G packet. */
261 /* long size in bytes; == register_size (current_gdbarch, regnum);
262 at present. */
263 /* char *name; == REGISTER_NAME (regnum); at present. */
264 };
265
266 struct remote_arch_state
267 {
268 /* Description of the remote protocol registers. */
269 long sizeof_g_packet;
270
271 /* Description of the remote protocol registers indexed by REGNUM
272 (making an array NUM_REGS in size). */
273 struct packet_reg *regs;
274
275 /* This is the size (in chars) of the first response to the ``g''
276 packet. It is used as a heuristic when determining the maximum
277 size of memory-read and memory-write packets. A target will
278 typically only reserve a buffer large enough to hold the ``g''
279 packet. The size does not include packet overhead (headers and
280 trailers). */
281 long actual_register_packet_size;
282
283 /* This is the maximum size (in chars) of a non read/write packet.
284 It is also used as a cap on the size of read/write packets. */
285 long remote_packet_size;
286 };
287
288
289 /* Handle for retreving the remote protocol data from gdbarch. */
290 static struct gdbarch_data *remote_gdbarch_data_handle;
291
292 static struct remote_arch_state *
293 get_remote_arch_state (void)
294 {
295 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
296 }
297
298 /* Fetch the global remote target state. */
299
300 static struct remote_state *
301 get_remote_state (void)
302 {
303 /* Make sure that the remote architecture state has been
304 initialized, because doing so might reallocate rs->buf. Any
305 function which calls getpkt also needs to be mindful of changes
306 to rs->buf, but this call limits the number of places which run
307 into trouble. */
308 get_remote_arch_state ();
309
310 return get_remote_state_raw ();
311 }
312
313 static int
314 compare_pnums (const void *lhs_, const void *rhs_)
315 {
316 const struct packet_reg * const *lhs = lhs_;
317 const struct packet_reg * const *rhs = rhs_;
318
319 if ((*lhs)->pnum < (*rhs)->pnum)
320 return -1;
321 else if ((*lhs)->pnum == (*rhs)->pnum)
322 return 0;
323 else
324 return 1;
325 }
326
327 static void *
328 init_remote_state (struct gdbarch *gdbarch)
329 {
330 int regnum, num_remote_regs, offset;
331 struct remote_state *rs = get_remote_state_raw ();
332 struct remote_arch_state *rsa;
333 struct packet_reg **remote_regs;
334
335 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
336
337 /* Assume a 1:1 regnum<->pnum table. */
338 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS, struct packet_reg);
339 for (regnum = 0; regnum < NUM_REGS; regnum++)
340 {
341 struct packet_reg *r = &rsa->regs[regnum];
342 r->pnum = regnum;
343 r->regnum = regnum;
344 }
345
346 /* Define the g/G packet format as the contents of each register
347 with a remote protocol number, in order of ascending protocol
348 number. */
349
350 remote_regs = alloca (NUM_REGS * sizeof (struct packet_reg *));
351 for (num_remote_regs = 0, regnum = 0; regnum < NUM_REGS; regnum++)
352 if (rsa->regs[regnum].pnum != -1)
353 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
354
355 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
356 compare_pnums);
357
358 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
359 {
360 remote_regs[regnum]->in_g_packet = 1;
361 remote_regs[regnum]->offset = offset;
362 offset += register_size (current_gdbarch, remote_regs[regnum]->regnum);
363 }
364
365 /* Record the maximum possible size of the g packet - it may turn out
366 to be smaller. */
367 rsa->sizeof_g_packet = offset;
368
369 /* Default maximum number of characters in a packet body. Many
370 remote stubs have a hardwired buffer size of 400 bytes
371 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
372 as the maximum packet-size to ensure that the packet and an extra
373 NUL character can always fit in the buffer. This stops GDB
374 trashing stubs that try to squeeze an extra NUL into what is
375 already a full buffer (As of 1999-12-04 that was most stubs). */
376 rsa->remote_packet_size = 400 - 1;
377
378 /* This one is filled in when a ``g'' packet is received. */
379 rsa->actual_register_packet_size = 0;
380
381 /* Should rsa->sizeof_g_packet needs more space than the
382 default, adjust the size accordingly. Remember that each byte is
383 encoded as two characters. 32 is the overhead for the packet
384 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
385 (``$NN:G...#NN'') is a better guess, the below has been padded a
386 little. */
387 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
388 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
389
390 /* Make sure that the packet buffer is plenty big enough for
391 this architecture. */
392 if (rs->buf_size < rsa->remote_packet_size)
393 {
394 rs->buf_size = 2 * rsa->remote_packet_size;
395 rs->buf = xrealloc (rs->buf, rs->buf_size);
396 }
397
398 return rsa;
399 }
400
401 /* Return the current allowed size of a remote packet. This is
402 inferred from the current architecture, and should be used to
403 limit the length of outgoing packets. */
404 static long
405 get_remote_packet_size (void)
406 {
407 struct remote_state *rs = get_remote_state ();
408 struct remote_arch_state *rsa = get_remote_arch_state ();
409
410 if (rs->explicit_packet_size)
411 return rs->explicit_packet_size;
412
413 return rsa->remote_packet_size;
414 }
415
416 static struct packet_reg *
417 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
418 {
419 if (regnum < 0 && regnum >= NUM_REGS)
420 return NULL;
421 else
422 {
423 struct packet_reg *r = &rsa->regs[regnum];
424 gdb_assert (r->regnum == regnum);
425 return r;
426 }
427 }
428
429 static struct packet_reg *
430 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
431 {
432 int i;
433 for (i = 0; i < NUM_REGS; i++)
434 {
435 struct packet_reg *r = &rsa->regs[i];
436 if (r->pnum == pnum)
437 return r;
438 }
439 return NULL;
440 }
441
442 /* FIXME: graces/2002-08-08: These variables should eventually be
443 bound to an instance of the target object (as in gdbarch-tdep()),
444 when such a thing exists. */
445
446 /* This is set to the data address of the access causing the target
447 to stop for a watchpoint. */
448 static CORE_ADDR remote_watch_data_address;
449
450 /* This is non-zero if target stopped for a watchpoint. */
451 static int remote_stopped_by_watchpoint_p;
452
453 static struct target_ops remote_ops;
454
455 static struct target_ops extended_remote_ops;
456
457 /* Temporary target ops. Just like the remote_ops and
458 extended_remote_ops, but with asynchronous support. */
459 static struct target_ops remote_async_ops;
460
461 static struct target_ops extended_async_remote_ops;
462
463 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
464 ``forever'' still use the normal timeout mechanism. This is
465 currently used by the ASYNC code to guarentee that target reads
466 during the initial connect always time-out. Once getpkt has been
467 modified to return a timeout indication and, in turn
468 remote_wait()/wait_for_inferior() have gained a timeout parameter
469 this can go away. */
470 static int wait_forever_enabled_p = 1;
471
472
473 /* This variable chooses whether to send a ^C or a break when the user
474 requests program interruption. Although ^C is usually what remote
475 systems expect, and that is the default here, sometimes a break is
476 preferable instead. */
477
478 static int remote_break;
479
480 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
481 remote_open knows that we don't have a file open when the program
482 starts. */
483 static struct serial *remote_desc = NULL;
484
485 /* This variable sets the number of bits in an address that are to be
486 sent in a memory ("M" or "m") packet. Normally, after stripping
487 leading zeros, the entire address would be sent. This variable
488 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
489 initial implementation of remote.c restricted the address sent in
490 memory packets to ``host::sizeof long'' bytes - (typically 32
491 bits). Consequently, for 64 bit targets, the upper 32 bits of an
492 address was never sent. Since fixing this bug may cause a break in
493 some remote targets this variable is principly provided to
494 facilitate backward compatibility. */
495
496 static int remote_address_size;
497
498 /* Tempoary to track who currently owns the terminal. See
499 target_async_terminal_* for more details. */
500
501 static int remote_async_terminal_ours_p;
502
503 \f
504 /* User configurable variables for the number of characters in a
505 memory read/write packet. MIN (rsa->remote_packet_size,
506 rsa->sizeof_g_packet) is the default. Some targets need smaller
507 values (fifo overruns, et.al.) and some users need larger values
508 (speed up transfers). The variables ``preferred_*'' (the user
509 request), ``current_*'' (what was actually set) and ``forced_*''
510 (Positive - a soft limit, negative - a hard limit). */
511
512 struct memory_packet_config
513 {
514 char *name;
515 long size;
516 int fixed_p;
517 };
518
519 /* Compute the current size of a read/write packet. Since this makes
520 use of ``actual_register_packet_size'' the computation is dynamic. */
521
522 static long
523 get_memory_packet_size (struct memory_packet_config *config)
524 {
525 struct remote_state *rs = get_remote_state ();
526 struct remote_arch_state *rsa = get_remote_arch_state ();
527
528 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
529 law?) that some hosts don't cope very well with large alloca()
530 calls. Eventually the alloca() code will be replaced by calls to
531 xmalloc() and make_cleanups() allowing this restriction to either
532 be lifted or removed. */
533 #ifndef MAX_REMOTE_PACKET_SIZE
534 #define MAX_REMOTE_PACKET_SIZE 16384
535 #endif
536 /* NOTE: 20 ensures we can write at least one byte. */
537 #ifndef MIN_REMOTE_PACKET_SIZE
538 #define MIN_REMOTE_PACKET_SIZE 20
539 #endif
540 long what_they_get;
541 if (config->fixed_p)
542 {
543 if (config->size <= 0)
544 what_they_get = MAX_REMOTE_PACKET_SIZE;
545 else
546 what_they_get = config->size;
547 }
548 else
549 {
550 what_they_get = get_remote_packet_size ();
551 /* Limit the packet to the size specified by the user. */
552 if (config->size > 0
553 && what_they_get > config->size)
554 what_they_get = config->size;
555
556 /* Limit it to the size of the targets ``g'' response unless we have
557 permission from the stub to use a larger packet size. */
558 if (rs->explicit_packet_size == 0
559 && rsa->actual_register_packet_size > 0
560 && what_they_get > rsa->actual_register_packet_size)
561 what_they_get = rsa->actual_register_packet_size;
562 }
563 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
564 what_they_get = MAX_REMOTE_PACKET_SIZE;
565 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
566 what_they_get = MIN_REMOTE_PACKET_SIZE;
567
568 /* Make sure there is room in the global buffer for this packet
569 (including its trailing NUL byte). */
570 if (rs->buf_size < what_they_get + 1)
571 {
572 rs->buf_size = 2 * what_they_get;
573 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
574 }
575
576 return what_they_get;
577 }
578
579 /* Update the size of a read/write packet. If they user wants
580 something really big then do a sanity check. */
581
582 static void
583 set_memory_packet_size (char *args, struct memory_packet_config *config)
584 {
585 int fixed_p = config->fixed_p;
586 long size = config->size;
587 if (args == NULL)
588 error (_("Argument required (integer, `fixed' or `limited')."));
589 else if (strcmp (args, "hard") == 0
590 || strcmp (args, "fixed") == 0)
591 fixed_p = 1;
592 else if (strcmp (args, "soft") == 0
593 || strcmp (args, "limit") == 0)
594 fixed_p = 0;
595 else
596 {
597 char *end;
598 size = strtoul (args, &end, 0);
599 if (args == end)
600 error (_("Invalid %s (bad syntax)."), config->name);
601 #if 0
602 /* Instead of explicitly capping the size of a packet to
603 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
604 instead allowed to set the size to something arbitrarily
605 large. */
606 if (size > MAX_REMOTE_PACKET_SIZE)
607 error (_("Invalid %s (too large)."), config->name);
608 #endif
609 }
610 /* Extra checks? */
611 if (fixed_p && !config->fixed_p)
612 {
613 if (! query (_("The target may not be able to correctly handle a %s\n"
614 "of %ld bytes. Change the packet size? "),
615 config->name, size))
616 error (_("Packet size not changed."));
617 }
618 /* Update the config. */
619 config->fixed_p = fixed_p;
620 config->size = size;
621 }
622
623 static void
624 show_memory_packet_size (struct memory_packet_config *config)
625 {
626 printf_filtered (_("The %s is %ld. "), config->name, config->size);
627 if (config->fixed_p)
628 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
629 get_memory_packet_size (config));
630 else
631 printf_filtered (_("Packets are limited to %ld bytes.\n"),
632 get_memory_packet_size (config));
633 }
634
635 static struct memory_packet_config memory_write_packet_config =
636 {
637 "memory-write-packet-size",
638 };
639
640 static void
641 set_memory_write_packet_size (char *args, int from_tty)
642 {
643 set_memory_packet_size (args, &memory_write_packet_config);
644 }
645
646 static void
647 show_memory_write_packet_size (char *args, int from_tty)
648 {
649 show_memory_packet_size (&memory_write_packet_config);
650 }
651
652 static long
653 get_memory_write_packet_size (void)
654 {
655 return get_memory_packet_size (&memory_write_packet_config);
656 }
657
658 static struct memory_packet_config memory_read_packet_config =
659 {
660 "memory-read-packet-size",
661 };
662
663 static void
664 set_memory_read_packet_size (char *args, int from_tty)
665 {
666 set_memory_packet_size (args, &memory_read_packet_config);
667 }
668
669 static void
670 show_memory_read_packet_size (char *args, int from_tty)
671 {
672 show_memory_packet_size (&memory_read_packet_config);
673 }
674
675 static long
676 get_memory_read_packet_size (void)
677 {
678 long size = get_memory_packet_size (&memory_read_packet_config);
679 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
680 extra buffer size argument before the memory read size can be
681 increased beyond this. */
682 if (size > get_remote_packet_size ())
683 size = get_remote_packet_size ();
684 return size;
685 }
686
687 \f
688 /* Generic configuration support for packets the stub optionally
689 supports. Allows the user to specify the use of the packet as well
690 as allowing GDB to auto-detect support in the remote stub. */
691
692 enum packet_support
693 {
694 PACKET_SUPPORT_UNKNOWN = 0,
695 PACKET_ENABLE,
696 PACKET_DISABLE
697 };
698
699 struct packet_config
700 {
701 const char *name;
702 const char *title;
703 enum auto_boolean detect;
704 enum packet_support support;
705 };
706
707 /* Analyze a packet's return value and update the packet config
708 accordingly. */
709
710 enum packet_result
711 {
712 PACKET_ERROR,
713 PACKET_OK,
714 PACKET_UNKNOWN
715 };
716
717 static void
718 update_packet_config (struct packet_config *config)
719 {
720 switch (config->detect)
721 {
722 case AUTO_BOOLEAN_TRUE:
723 config->support = PACKET_ENABLE;
724 break;
725 case AUTO_BOOLEAN_FALSE:
726 config->support = PACKET_DISABLE;
727 break;
728 case AUTO_BOOLEAN_AUTO:
729 config->support = PACKET_SUPPORT_UNKNOWN;
730 break;
731 }
732 }
733
734 static void
735 show_packet_config_cmd (struct packet_config *config)
736 {
737 char *support = "internal-error";
738 switch (config->support)
739 {
740 case PACKET_ENABLE:
741 support = "enabled";
742 break;
743 case PACKET_DISABLE:
744 support = "disabled";
745 break;
746 case PACKET_SUPPORT_UNKNOWN:
747 support = "unknown";
748 break;
749 }
750 switch (config->detect)
751 {
752 case AUTO_BOOLEAN_AUTO:
753 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
754 config->name, support);
755 break;
756 case AUTO_BOOLEAN_TRUE:
757 case AUTO_BOOLEAN_FALSE:
758 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
759 config->name, support);
760 break;
761 }
762 }
763
764 static void
765 add_packet_config_cmd (struct packet_config *config, const char *name,
766 const char *title, int legacy)
767 {
768 char *set_doc;
769 char *show_doc;
770 char *cmd_name;
771
772 config->name = name;
773 config->title = title;
774 config->detect = AUTO_BOOLEAN_AUTO;
775 config->support = PACKET_SUPPORT_UNKNOWN;
776 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
777 name, title);
778 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
779 name, title);
780 /* set/show TITLE-packet {auto,on,off} */
781 cmd_name = xstrprintf ("%s-packet", title);
782 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
783 &config->detect, set_doc, show_doc, NULL, /* help_doc */
784 set_remote_protocol_packet_cmd,
785 show_remote_protocol_packet_cmd,
786 &remote_set_cmdlist, &remote_show_cmdlist);
787 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
788 if (legacy)
789 {
790 char *legacy_name;
791 legacy_name = xstrprintf ("%s-packet", name);
792 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
793 &remote_set_cmdlist);
794 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
795 &remote_show_cmdlist);
796 }
797 }
798
799 static enum packet_result
800 packet_check_result (const char *buf)
801 {
802 if (buf[0] != '\0')
803 {
804 /* The stub recognized the packet request. Check that the
805 operation succeeded. */
806 if (buf[0] == 'E'
807 && isxdigit (buf[1]) && isxdigit (buf[2])
808 && buf[3] == '\0')
809 /* "Enn" - definitly an error. */
810 return PACKET_ERROR;
811
812 /* Always treat "E." as an error. This will be used for
813 more verbose error messages, such as E.memtypes. */
814 if (buf[0] == 'E' && buf[1] == '.')
815 return PACKET_ERROR;
816
817 /* The packet may or may not be OK. Just assume it is. */
818 return PACKET_OK;
819 }
820 else
821 /* The stub does not support the packet. */
822 return PACKET_UNKNOWN;
823 }
824
825 static enum packet_result
826 packet_ok (const char *buf, struct packet_config *config)
827 {
828 enum packet_result result;
829
830 result = packet_check_result (buf);
831 switch (result)
832 {
833 case PACKET_OK:
834 case PACKET_ERROR:
835 /* The stub recognized the packet request. */
836 switch (config->support)
837 {
838 case PACKET_SUPPORT_UNKNOWN:
839 if (remote_debug)
840 fprintf_unfiltered (gdb_stdlog,
841 "Packet %s (%s) is supported\n",
842 config->name, config->title);
843 config->support = PACKET_ENABLE;
844 break;
845 case PACKET_DISABLE:
846 internal_error (__FILE__, __LINE__,
847 _("packet_ok: attempt to use a disabled packet"));
848 break;
849 case PACKET_ENABLE:
850 break;
851 }
852 break;
853 case PACKET_UNKNOWN:
854 /* The stub does not support the packet. */
855 switch (config->support)
856 {
857 case PACKET_ENABLE:
858 if (config->detect == AUTO_BOOLEAN_AUTO)
859 /* If the stub previously indicated that the packet was
860 supported then there is a protocol error.. */
861 error (_("Protocol error: %s (%s) conflicting enabled responses."),
862 config->name, config->title);
863 else
864 /* The user set it wrong. */
865 error (_("Enabled packet %s (%s) not recognized by stub"),
866 config->name, config->title);
867 break;
868 case PACKET_SUPPORT_UNKNOWN:
869 if (remote_debug)
870 fprintf_unfiltered (gdb_stdlog,
871 "Packet %s (%s) is NOT supported\n",
872 config->name, config->title);
873 config->support = PACKET_DISABLE;
874 break;
875 case PACKET_DISABLE:
876 break;
877 }
878 break;
879 }
880
881 return result;
882 }
883
884 enum {
885 PACKET_vCont = 0,
886 PACKET_X,
887 PACKET_qSymbol,
888 PACKET_P,
889 PACKET_p,
890 PACKET_Z0,
891 PACKET_Z1,
892 PACKET_Z2,
893 PACKET_Z3,
894 PACKET_Z4,
895 PACKET_qXfer_auxv,
896 PACKET_qXfer_memory_map,
897 PACKET_qGetTLSAddr,
898 PACKET_qSupported,
899 PACKET_QPassSignals,
900 PACKET_MAX
901 };
902
903 static struct packet_config remote_protocol_packets[PACKET_MAX];
904
905 static void
906 set_remote_protocol_packet_cmd (char *args, int from_tty,
907 struct cmd_list_element *c)
908 {
909 struct packet_config *packet;
910
911 for (packet = remote_protocol_packets;
912 packet < &remote_protocol_packets[PACKET_MAX];
913 packet++)
914 {
915 if (&packet->detect == c->var)
916 {
917 update_packet_config (packet);
918 return;
919 }
920 }
921 internal_error (__FILE__, __LINE__, "Could not find config for %s",
922 c->name);
923 }
924
925 static void
926 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
927 struct cmd_list_element *c,
928 const char *value)
929 {
930 struct packet_config *packet;
931
932 for (packet = remote_protocol_packets;
933 packet < &remote_protocol_packets[PACKET_MAX];
934 packet++)
935 {
936 if (&packet->detect == c->var)
937 {
938 show_packet_config_cmd (packet);
939 return;
940 }
941 }
942 internal_error (__FILE__, __LINE__, "Could not find config for %s",
943 c->name);
944 }
945
946 /* Should we try one of the 'Z' requests? */
947
948 enum Z_packet_type
949 {
950 Z_PACKET_SOFTWARE_BP,
951 Z_PACKET_HARDWARE_BP,
952 Z_PACKET_WRITE_WP,
953 Z_PACKET_READ_WP,
954 Z_PACKET_ACCESS_WP,
955 NR_Z_PACKET_TYPES
956 };
957
958 /* For compatibility with older distributions. Provide a ``set remote
959 Z-packet ...'' command that updates all the Z packet types. */
960
961 static enum auto_boolean remote_Z_packet_detect;
962
963 static void
964 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
965 struct cmd_list_element *c)
966 {
967 int i;
968 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
969 {
970 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
971 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
972 }
973 }
974
975 static void
976 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
977 struct cmd_list_element *c,
978 const char *value)
979 {
980 int i;
981 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
982 {
983 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
984 }
985 }
986
987 /* Should we try the 'ThreadInfo' query packet?
988
989 This variable (NOT available to the user: auto-detect only!)
990 determines whether GDB will use the new, simpler "ThreadInfo"
991 query or the older, more complex syntax for thread queries.
992 This is an auto-detect variable (set to true at each connect,
993 and set to false when the target fails to recognize it). */
994
995 static int use_threadinfo_query;
996 static int use_threadextra_query;
997
998 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
999 static void *sigint_remote_twice_token;
1000 static void *sigint_remote_token;
1001
1002 /* These are pointers to hook functions that may be set in order to
1003 modify resume/wait behavior for a particular architecture. */
1004
1005 void (*deprecated_target_resume_hook) (void);
1006 void (*deprecated_target_wait_loop_hook) (void);
1007 \f
1008
1009
1010 /* These are the threads which we last sent to the remote system.
1011 -1 for all or -2 for not sent yet. */
1012 static int general_thread;
1013 static int continue_thread;
1014
1015 /* Call this function as a result of
1016 1) A halt indication (T packet) containing a thread id
1017 2) A direct query of currthread
1018 3) Successful execution of set thread
1019 */
1020
1021 static void
1022 record_currthread (int currthread)
1023 {
1024 general_thread = currthread;
1025
1026 /* If this is a new thread, add it to GDB's thread list.
1027 If we leave it up to WFI to do this, bad things will happen. */
1028 if (!in_thread_list (pid_to_ptid (currthread)))
1029 {
1030 add_thread (pid_to_ptid (currthread));
1031 ui_out_text (uiout, "[New ");
1032 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1033 ui_out_text (uiout, "]\n");
1034 }
1035 }
1036
1037 static char *last_pass_packet;
1038
1039 /* If 'QPassSignals' is supported, tell the remote stub what signals
1040 it can simply pass through to the inferior without reporting. */
1041
1042 static void
1043 remote_pass_signals (void)
1044 {
1045 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1046 {
1047 char *pass_packet, *p;
1048 int numsigs = (int) TARGET_SIGNAL_LAST;
1049 int count = 0, i;
1050
1051 gdb_assert (numsigs < 256);
1052 for (i = 0; i < numsigs; i++)
1053 {
1054 if (signal_stop_state (i) == 0
1055 && signal_print_state (i) == 0
1056 && signal_pass_state (i) == 1)
1057 count++;
1058 }
1059 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1060 strcpy (pass_packet, "QPassSignals:");
1061 p = pass_packet + strlen (pass_packet);
1062 for (i = 0; i < numsigs; i++)
1063 {
1064 if (signal_stop_state (i) == 0
1065 && signal_print_state (i) == 0
1066 && signal_pass_state (i) == 1)
1067 {
1068 if (i >= 16)
1069 *p++ = tohex (i >> 4);
1070 *p++ = tohex (i & 15);
1071 if (count)
1072 *p++ = ';';
1073 else
1074 break;
1075 count--;
1076 }
1077 }
1078 *p = 0;
1079 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1080 {
1081 struct remote_state *rs = get_remote_state ();
1082 char *buf = rs->buf;
1083
1084 putpkt (pass_packet);
1085 getpkt (&rs->buf, &rs->buf_size, 0);
1086 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1087 if (last_pass_packet)
1088 xfree (last_pass_packet);
1089 last_pass_packet = pass_packet;
1090 }
1091 else
1092 xfree (pass_packet);
1093 }
1094 }
1095
1096 #define MAGIC_NULL_PID 42000
1097
1098 static void
1099 set_thread (int th, int gen)
1100 {
1101 struct remote_state *rs = get_remote_state ();
1102 char *buf = rs->buf;
1103 int state = gen ? general_thread : continue_thread;
1104
1105 if (state == th)
1106 return;
1107
1108 buf[0] = 'H';
1109 buf[1] = gen ? 'g' : 'c';
1110 if (th == MAGIC_NULL_PID)
1111 {
1112 buf[2] = '0';
1113 buf[3] = '\0';
1114 }
1115 else if (th < 0)
1116 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1117 else
1118 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1119 putpkt (buf);
1120 getpkt (&rs->buf, &rs->buf_size, 0);
1121 if (gen)
1122 general_thread = th;
1123 else
1124 continue_thread = th;
1125 }
1126 \f
1127 /* Return nonzero if the thread TH is still alive on the remote system. */
1128
1129 static int
1130 remote_thread_alive (ptid_t ptid)
1131 {
1132 struct remote_state *rs = get_remote_state ();
1133 int tid = PIDGET (ptid);
1134
1135 if (tid < 0)
1136 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1137 else
1138 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1139 putpkt (rs->buf);
1140 getpkt (&rs->buf, &rs->buf_size, 0);
1141 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1142 }
1143
1144 /* About these extended threadlist and threadinfo packets. They are
1145 variable length packets but, the fields within them are often fixed
1146 length. They are redundent enough to send over UDP as is the
1147 remote protocol in general. There is a matching unit test module
1148 in libstub. */
1149
1150 #define OPAQUETHREADBYTES 8
1151
1152 /* a 64 bit opaque identifier */
1153 typedef unsigned char threadref[OPAQUETHREADBYTES];
1154
1155 /* WARNING: This threadref data structure comes from the remote O.S.,
1156 libstub protocol encoding, and remote.c. it is not particularly
1157 changable. */
1158
1159 /* Right now, the internal structure is int. We want it to be bigger.
1160 Plan to fix this.
1161 */
1162
1163 typedef int gdb_threadref; /* Internal GDB thread reference. */
1164
1165 /* gdb_ext_thread_info is an internal GDB data structure which is
1166 equivalent to the reply of the remote threadinfo packet. */
1167
1168 struct gdb_ext_thread_info
1169 {
1170 threadref threadid; /* External form of thread reference. */
1171 int active; /* Has state interesting to GDB?
1172 regs, stack. */
1173 char display[256]; /* Brief state display, name,
1174 blocked/suspended. */
1175 char shortname[32]; /* To be used to name threads. */
1176 char more_display[256]; /* Long info, statistics, queue depth,
1177 whatever. */
1178 };
1179
1180 /* The volume of remote transfers can be limited by submitting
1181 a mask containing bits specifying the desired information.
1182 Use a union of these values as the 'selection' parameter to
1183 get_thread_info. FIXME: Make these TAG names more thread specific.
1184 */
1185
1186 #define TAG_THREADID 1
1187 #define TAG_EXISTS 2
1188 #define TAG_DISPLAY 4
1189 #define TAG_THREADNAME 8
1190 #define TAG_MOREDISPLAY 16
1191
1192 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1193
1194 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1195
1196 static char *unpack_nibble (char *buf, int *val);
1197
1198 static char *pack_nibble (char *buf, int nibble);
1199
1200 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1201
1202 static char *unpack_byte (char *buf, int *value);
1203
1204 static char *pack_int (char *buf, int value);
1205
1206 static char *unpack_int (char *buf, int *value);
1207
1208 static char *unpack_string (char *src, char *dest, int length);
1209
1210 static char *pack_threadid (char *pkt, threadref *id);
1211
1212 static char *unpack_threadid (char *inbuf, threadref *id);
1213
1214 void int_to_threadref (threadref *id, int value);
1215
1216 static int threadref_to_int (threadref *ref);
1217
1218 static void copy_threadref (threadref *dest, threadref *src);
1219
1220 static int threadmatch (threadref *dest, threadref *src);
1221
1222 static char *pack_threadinfo_request (char *pkt, int mode,
1223 threadref *id);
1224
1225 static int remote_unpack_thread_info_response (char *pkt,
1226 threadref *expectedref,
1227 struct gdb_ext_thread_info
1228 *info);
1229
1230
1231 static int remote_get_threadinfo (threadref *threadid,
1232 int fieldset, /*TAG mask */
1233 struct gdb_ext_thread_info *info);
1234
1235 static char *pack_threadlist_request (char *pkt, int startflag,
1236 int threadcount,
1237 threadref *nextthread);
1238
1239 static int parse_threadlist_response (char *pkt,
1240 int result_limit,
1241 threadref *original_echo,
1242 threadref *resultlist,
1243 int *doneflag);
1244
1245 static int remote_get_threadlist (int startflag,
1246 threadref *nextthread,
1247 int result_limit,
1248 int *done,
1249 int *result_count,
1250 threadref *threadlist);
1251
1252 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1253
1254 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1255 void *context, int looplimit);
1256
1257 static int remote_newthread_step (threadref *ref, void *context);
1258
1259 /* Encode 64 bits in 16 chars of hex. */
1260
1261 static const char hexchars[] = "0123456789abcdef";
1262
1263 static int
1264 ishex (int ch, int *val)
1265 {
1266 if ((ch >= 'a') && (ch <= 'f'))
1267 {
1268 *val = ch - 'a' + 10;
1269 return 1;
1270 }
1271 if ((ch >= 'A') && (ch <= 'F'))
1272 {
1273 *val = ch - 'A' + 10;
1274 return 1;
1275 }
1276 if ((ch >= '0') && (ch <= '9'))
1277 {
1278 *val = ch - '0';
1279 return 1;
1280 }
1281 return 0;
1282 }
1283
1284 static int
1285 stubhex (int ch)
1286 {
1287 if (ch >= 'a' && ch <= 'f')
1288 return ch - 'a' + 10;
1289 if (ch >= '0' && ch <= '9')
1290 return ch - '0';
1291 if (ch >= 'A' && ch <= 'F')
1292 return ch - 'A' + 10;
1293 return -1;
1294 }
1295
1296 static int
1297 stub_unpack_int (char *buff, int fieldlength)
1298 {
1299 int nibble;
1300 int retval = 0;
1301
1302 while (fieldlength)
1303 {
1304 nibble = stubhex (*buff++);
1305 retval |= nibble;
1306 fieldlength--;
1307 if (fieldlength)
1308 retval = retval << 4;
1309 }
1310 return retval;
1311 }
1312
1313 char *
1314 unpack_varlen_hex (char *buff, /* packet to parse */
1315 ULONGEST *result)
1316 {
1317 int nibble;
1318 ULONGEST retval = 0;
1319
1320 while (ishex (*buff, &nibble))
1321 {
1322 buff++;
1323 retval = retval << 4;
1324 retval |= nibble & 0x0f;
1325 }
1326 *result = retval;
1327 return buff;
1328 }
1329
1330 static char *
1331 unpack_nibble (char *buf, int *val)
1332 {
1333 ishex (*buf++, val);
1334 return buf;
1335 }
1336
1337 static char *
1338 pack_nibble (char *buf, int nibble)
1339 {
1340 *buf++ = hexchars[(nibble & 0x0f)];
1341 return buf;
1342 }
1343
1344 static char *
1345 pack_hex_byte (char *pkt, int byte)
1346 {
1347 *pkt++ = hexchars[(byte >> 4) & 0xf];
1348 *pkt++ = hexchars[(byte & 0xf)];
1349 return pkt;
1350 }
1351
1352 static char *
1353 unpack_byte (char *buf, int *value)
1354 {
1355 *value = stub_unpack_int (buf, 2);
1356 return buf + 2;
1357 }
1358
1359 static char *
1360 pack_int (char *buf, int value)
1361 {
1362 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1363 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1364 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1365 buf = pack_hex_byte (buf, (value & 0xff));
1366 return buf;
1367 }
1368
1369 static char *
1370 unpack_int (char *buf, int *value)
1371 {
1372 *value = stub_unpack_int (buf, 8);
1373 return buf + 8;
1374 }
1375
1376 #if 0 /* Currently unused, uncomment when needed. */
1377 static char *pack_string (char *pkt, char *string);
1378
1379 static char *
1380 pack_string (char *pkt, char *string)
1381 {
1382 char ch;
1383 int len;
1384
1385 len = strlen (string);
1386 if (len > 200)
1387 len = 200; /* Bigger than most GDB packets, junk??? */
1388 pkt = pack_hex_byte (pkt, len);
1389 while (len-- > 0)
1390 {
1391 ch = *string++;
1392 if ((ch == '\0') || (ch == '#'))
1393 ch = '*'; /* Protect encapsulation. */
1394 *pkt++ = ch;
1395 }
1396 return pkt;
1397 }
1398 #endif /* 0 (unused) */
1399
1400 static char *
1401 unpack_string (char *src, char *dest, int length)
1402 {
1403 while (length--)
1404 *dest++ = *src++;
1405 *dest = '\0';
1406 return src;
1407 }
1408
1409 static char *
1410 pack_threadid (char *pkt, threadref *id)
1411 {
1412 char *limit;
1413 unsigned char *altid;
1414
1415 altid = (unsigned char *) id;
1416 limit = pkt + BUF_THREAD_ID_SIZE;
1417 while (pkt < limit)
1418 pkt = pack_hex_byte (pkt, *altid++);
1419 return pkt;
1420 }
1421
1422
1423 static char *
1424 unpack_threadid (char *inbuf, threadref *id)
1425 {
1426 char *altref;
1427 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1428 int x, y;
1429
1430 altref = (char *) id;
1431
1432 while (inbuf < limit)
1433 {
1434 x = stubhex (*inbuf++);
1435 y = stubhex (*inbuf++);
1436 *altref++ = (x << 4) | y;
1437 }
1438 return inbuf;
1439 }
1440
1441 /* Externally, threadrefs are 64 bits but internally, they are still
1442 ints. This is due to a mismatch of specifications. We would like
1443 to use 64bit thread references internally. This is an adapter
1444 function. */
1445
1446 void
1447 int_to_threadref (threadref *id, int value)
1448 {
1449 unsigned char *scan;
1450
1451 scan = (unsigned char *) id;
1452 {
1453 int i = 4;
1454 while (i--)
1455 *scan++ = 0;
1456 }
1457 *scan++ = (value >> 24) & 0xff;
1458 *scan++ = (value >> 16) & 0xff;
1459 *scan++ = (value >> 8) & 0xff;
1460 *scan++ = (value & 0xff);
1461 }
1462
1463 static int
1464 threadref_to_int (threadref *ref)
1465 {
1466 int i, value = 0;
1467 unsigned char *scan;
1468
1469 scan = *ref;
1470 scan += 4;
1471 i = 4;
1472 while (i-- > 0)
1473 value = (value << 8) | ((*scan++) & 0xff);
1474 return value;
1475 }
1476
1477 static void
1478 copy_threadref (threadref *dest, threadref *src)
1479 {
1480 int i;
1481 unsigned char *csrc, *cdest;
1482
1483 csrc = (unsigned char *) src;
1484 cdest = (unsigned char *) dest;
1485 i = 8;
1486 while (i--)
1487 *cdest++ = *csrc++;
1488 }
1489
1490 static int
1491 threadmatch (threadref *dest, threadref *src)
1492 {
1493 /* Things are broken right now, so just assume we got a match. */
1494 #if 0
1495 unsigned char *srcp, *destp;
1496 int i, result;
1497 srcp = (char *) src;
1498 destp = (char *) dest;
1499
1500 result = 1;
1501 while (i-- > 0)
1502 result &= (*srcp++ == *destp++) ? 1 : 0;
1503 return result;
1504 #endif
1505 return 1;
1506 }
1507
1508 /*
1509 threadid:1, # always request threadid
1510 context_exists:2,
1511 display:4,
1512 unique_name:8,
1513 more_display:16
1514 */
1515
1516 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1517
1518 static char *
1519 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1520 {
1521 *pkt++ = 'q'; /* Info Query */
1522 *pkt++ = 'P'; /* process or thread info */
1523 pkt = pack_int (pkt, mode); /* mode */
1524 pkt = pack_threadid (pkt, id); /* threadid */
1525 *pkt = '\0'; /* terminate */
1526 return pkt;
1527 }
1528
1529 /* These values tag the fields in a thread info response packet. */
1530 /* Tagging the fields allows us to request specific fields and to
1531 add more fields as time goes by. */
1532
1533 #define TAG_THREADID 1 /* Echo the thread identifier. */
1534 #define TAG_EXISTS 2 /* Is this process defined enough to
1535 fetch registers and its stack? */
1536 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1537 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1538 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1539 the process. */
1540
1541 static int
1542 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1543 struct gdb_ext_thread_info *info)
1544 {
1545 struct remote_state *rs = get_remote_state ();
1546 int mask, length;
1547 int tag;
1548 threadref ref;
1549 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1550 int retval = 1;
1551
1552 /* info->threadid = 0; FIXME: implement zero_threadref. */
1553 info->active = 0;
1554 info->display[0] = '\0';
1555 info->shortname[0] = '\0';
1556 info->more_display[0] = '\0';
1557
1558 /* Assume the characters indicating the packet type have been
1559 stripped. */
1560 pkt = unpack_int (pkt, &mask); /* arg mask */
1561 pkt = unpack_threadid (pkt, &ref);
1562
1563 if (mask == 0)
1564 warning (_("Incomplete response to threadinfo request."));
1565 if (!threadmatch (&ref, expectedref))
1566 { /* This is an answer to a different request. */
1567 warning (_("ERROR RMT Thread info mismatch."));
1568 return 0;
1569 }
1570 copy_threadref (&info->threadid, &ref);
1571
1572 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1573
1574 /* Packets are terminated with nulls. */
1575 while ((pkt < limit) && mask && *pkt)
1576 {
1577 pkt = unpack_int (pkt, &tag); /* tag */
1578 pkt = unpack_byte (pkt, &length); /* length */
1579 if (!(tag & mask)) /* Tags out of synch with mask. */
1580 {
1581 warning (_("ERROR RMT: threadinfo tag mismatch."));
1582 retval = 0;
1583 break;
1584 }
1585 if (tag == TAG_THREADID)
1586 {
1587 if (length != 16)
1588 {
1589 warning (_("ERROR RMT: length of threadid is not 16."));
1590 retval = 0;
1591 break;
1592 }
1593 pkt = unpack_threadid (pkt, &ref);
1594 mask = mask & ~TAG_THREADID;
1595 continue;
1596 }
1597 if (tag == TAG_EXISTS)
1598 {
1599 info->active = stub_unpack_int (pkt, length);
1600 pkt += length;
1601 mask = mask & ~(TAG_EXISTS);
1602 if (length > 8)
1603 {
1604 warning (_("ERROR RMT: 'exists' length too long."));
1605 retval = 0;
1606 break;
1607 }
1608 continue;
1609 }
1610 if (tag == TAG_THREADNAME)
1611 {
1612 pkt = unpack_string (pkt, &info->shortname[0], length);
1613 mask = mask & ~TAG_THREADNAME;
1614 continue;
1615 }
1616 if (tag == TAG_DISPLAY)
1617 {
1618 pkt = unpack_string (pkt, &info->display[0], length);
1619 mask = mask & ~TAG_DISPLAY;
1620 continue;
1621 }
1622 if (tag == TAG_MOREDISPLAY)
1623 {
1624 pkt = unpack_string (pkt, &info->more_display[0], length);
1625 mask = mask & ~TAG_MOREDISPLAY;
1626 continue;
1627 }
1628 warning (_("ERROR RMT: unknown thread info tag."));
1629 break; /* Not a tag we know about. */
1630 }
1631 return retval;
1632 }
1633
1634 static int
1635 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1636 struct gdb_ext_thread_info *info)
1637 {
1638 struct remote_state *rs = get_remote_state ();
1639 int result;
1640
1641 pack_threadinfo_request (rs->buf, fieldset, threadid);
1642 putpkt (rs->buf);
1643 getpkt (&rs->buf, &rs->buf_size, 0);
1644 result = remote_unpack_thread_info_response (rs->buf + 2,
1645 threadid, info);
1646 return result;
1647 }
1648
1649 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1650
1651 static char *
1652 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1653 threadref *nextthread)
1654 {
1655 *pkt++ = 'q'; /* info query packet */
1656 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1657 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1658 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1659 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1660 *pkt = '\0';
1661 return pkt;
1662 }
1663
1664 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1665
1666 static int
1667 parse_threadlist_response (char *pkt, int result_limit,
1668 threadref *original_echo, threadref *resultlist,
1669 int *doneflag)
1670 {
1671 struct remote_state *rs = get_remote_state ();
1672 char *limit;
1673 int count, resultcount, done;
1674
1675 resultcount = 0;
1676 /* Assume the 'q' and 'M chars have been stripped. */
1677 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1678 /* done parse past here */
1679 pkt = unpack_byte (pkt, &count); /* count field */
1680 pkt = unpack_nibble (pkt, &done);
1681 /* The first threadid is the argument threadid. */
1682 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1683 while ((count-- > 0) && (pkt < limit))
1684 {
1685 pkt = unpack_threadid (pkt, resultlist++);
1686 if (resultcount++ >= result_limit)
1687 break;
1688 }
1689 if (doneflag)
1690 *doneflag = done;
1691 return resultcount;
1692 }
1693
1694 static int
1695 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1696 int *done, int *result_count, threadref *threadlist)
1697 {
1698 struct remote_state *rs = get_remote_state ();
1699 static threadref echo_nextthread;
1700 int result = 1;
1701
1702 /* Trancate result limit to be smaller than the packet size. */
1703 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1704 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1705
1706 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1707 putpkt (rs->buf);
1708 getpkt (&rs->buf, &rs->buf_size, 0);
1709
1710 *result_count =
1711 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1712 threadlist, done);
1713
1714 if (!threadmatch (&echo_nextthread, nextthread))
1715 {
1716 /* FIXME: This is a good reason to drop the packet. */
1717 /* Possably, there is a duplicate response. */
1718 /* Possabilities :
1719 retransmit immediatly - race conditions
1720 retransmit after timeout - yes
1721 exit
1722 wait for packet, then exit
1723 */
1724 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1725 return 0; /* I choose simply exiting. */
1726 }
1727 if (*result_count <= 0)
1728 {
1729 if (*done != 1)
1730 {
1731 warning (_("RMT ERROR : failed to get remote thread list."));
1732 result = 0;
1733 }
1734 return result; /* break; */
1735 }
1736 if (*result_count > result_limit)
1737 {
1738 *result_count = 0;
1739 warning (_("RMT ERROR: threadlist response longer than requested."));
1740 return 0;
1741 }
1742 return result;
1743 }
1744
1745 /* This is the interface between remote and threads, remotes upper
1746 interface. */
1747
1748 /* remote_find_new_threads retrieves the thread list and for each
1749 thread in the list, looks up the thread in GDB's internal list,
1750 ading the thread if it does not already exist. This involves
1751 getting partial thread lists from the remote target so, polling the
1752 quit_flag is required. */
1753
1754
1755 /* About this many threadisds fit in a packet. */
1756
1757 #define MAXTHREADLISTRESULTS 32
1758
1759 static int
1760 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1761 int looplimit)
1762 {
1763 int done, i, result_count;
1764 int startflag = 1;
1765 int result = 1;
1766 int loopcount = 0;
1767 static threadref nextthread;
1768 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1769
1770 done = 0;
1771 while (!done)
1772 {
1773 if (loopcount++ > looplimit)
1774 {
1775 result = 0;
1776 warning (_("Remote fetch threadlist -infinite loop-."));
1777 break;
1778 }
1779 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1780 &done, &result_count, resultthreadlist))
1781 {
1782 result = 0;
1783 break;
1784 }
1785 /* Clear for later iterations. */
1786 startflag = 0;
1787 /* Setup to resume next batch of thread references, set nextthread. */
1788 if (result_count >= 1)
1789 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1790 i = 0;
1791 while (result_count--)
1792 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1793 break;
1794 }
1795 return result;
1796 }
1797
1798 static int
1799 remote_newthread_step (threadref *ref, void *context)
1800 {
1801 ptid_t ptid;
1802
1803 ptid = pid_to_ptid (threadref_to_int (ref));
1804
1805 if (!in_thread_list (ptid))
1806 add_thread (ptid);
1807 return 1; /* continue iterator */
1808 }
1809
1810 #define CRAZY_MAX_THREADS 1000
1811
1812 static ptid_t
1813 remote_current_thread (ptid_t oldpid)
1814 {
1815 struct remote_state *rs = get_remote_state ();
1816
1817 putpkt ("qC");
1818 getpkt (&rs->buf, &rs->buf_size, 0);
1819 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1820 /* Use strtoul here, so we'll correctly parse values whose highest
1821 bit is set. The protocol carries them as a simple series of
1822 hex digits; in the absence of a sign, strtol will see such
1823 values as positive numbers out of range for signed 'long', and
1824 return LONG_MAX to indicate an overflow. */
1825 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1826 else
1827 return oldpid;
1828 }
1829
1830 /* Find new threads for info threads command.
1831 * Original version, using John Metzler's thread protocol.
1832 */
1833
1834 static void
1835 remote_find_new_threads (void)
1836 {
1837 remote_threadlist_iterator (remote_newthread_step, 0,
1838 CRAZY_MAX_THREADS);
1839 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1840 inferior_ptid = remote_current_thread (inferior_ptid);
1841 }
1842
1843 /*
1844 * Find all threads for info threads command.
1845 * Uses new thread protocol contributed by Cisco.
1846 * Falls back and attempts to use the older method (above)
1847 * if the target doesn't respond to the new method.
1848 */
1849
1850 static void
1851 remote_threads_info (void)
1852 {
1853 struct remote_state *rs = get_remote_state ();
1854 char *bufp;
1855 int tid;
1856
1857 if (remote_desc == 0) /* paranoia */
1858 error (_("Command can only be used when connected to the remote target."));
1859
1860 if (use_threadinfo_query)
1861 {
1862 putpkt ("qfThreadInfo");
1863 getpkt (&rs->buf, &rs->buf_size, 0);
1864 bufp = rs->buf;
1865 if (bufp[0] != '\0') /* q packet recognized */
1866 {
1867 while (*bufp++ == 'm') /* reply contains one or more TID */
1868 {
1869 do
1870 {
1871 /* Use strtoul here, so we'll correctly parse values
1872 whose highest bit is set. The protocol carries
1873 them as a simple series of hex digits; in the
1874 absence of a sign, strtol will see such values as
1875 positive numbers out of range for signed 'long',
1876 and return LONG_MAX to indicate an overflow. */
1877 tid = strtoul (bufp, &bufp, 16);
1878 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1879 add_thread (pid_to_ptid (tid));
1880 }
1881 while (*bufp++ == ','); /* comma-separated list */
1882 putpkt ("qsThreadInfo");
1883 getpkt (&rs->buf, &rs->buf_size, 0);
1884 bufp = rs->buf;
1885 }
1886 return; /* done */
1887 }
1888 }
1889
1890 /* Else fall back to old method based on jmetzler protocol. */
1891 use_threadinfo_query = 0;
1892 remote_find_new_threads ();
1893 return;
1894 }
1895
1896 /*
1897 * Collect a descriptive string about the given thread.
1898 * The target may say anything it wants to about the thread
1899 * (typically info about its blocked / runnable state, name, etc.).
1900 * This string will appear in the info threads display.
1901 *
1902 * Optional: targets are not required to implement this function.
1903 */
1904
1905 static char *
1906 remote_threads_extra_info (struct thread_info *tp)
1907 {
1908 struct remote_state *rs = get_remote_state ();
1909 int result;
1910 int set;
1911 threadref id;
1912 struct gdb_ext_thread_info threadinfo;
1913 static char display_buf[100]; /* arbitrary... */
1914 int n = 0; /* position in display_buf */
1915
1916 if (remote_desc == 0) /* paranoia */
1917 internal_error (__FILE__, __LINE__,
1918 _("remote_threads_extra_info"));
1919
1920 if (use_threadextra_query)
1921 {
1922 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1923 PIDGET (tp->ptid));
1924 putpkt (rs->buf);
1925 getpkt (&rs->buf, &rs->buf_size, 0);
1926 if (rs->buf[0] != 0)
1927 {
1928 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1929 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1930 display_buf [result] = '\0';
1931 return display_buf;
1932 }
1933 }
1934
1935 /* If the above query fails, fall back to the old method. */
1936 use_threadextra_query = 0;
1937 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1938 | TAG_MOREDISPLAY | TAG_DISPLAY;
1939 int_to_threadref (&id, PIDGET (tp->ptid));
1940 if (remote_get_threadinfo (&id, set, &threadinfo))
1941 if (threadinfo.active)
1942 {
1943 if (*threadinfo.shortname)
1944 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1945 " Name: %s,", threadinfo.shortname);
1946 if (*threadinfo.display)
1947 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1948 " State: %s,", threadinfo.display);
1949 if (*threadinfo.more_display)
1950 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1951 " Priority: %s", threadinfo.more_display);
1952
1953 if (n > 0)
1954 {
1955 /* For purely cosmetic reasons, clear up trailing commas. */
1956 if (',' == display_buf[n-1])
1957 display_buf[n-1] = ' ';
1958 return display_buf;
1959 }
1960 }
1961 return NULL;
1962 }
1963 \f
1964
1965 /* Restart the remote side; this is an extended protocol operation. */
1966
1967 static void
1968 extended_remote_restart (void)
1969 {
1970 struct remote_state *rs = get_remote_state ();
1971
1972 /* Send the restart command; for reasons I don't understand the
1973 remote side really expects a number after the "R". */
1974 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1975 putpkt (rs->buf);
1976
1977 remote_fileio_reset ();
1978
1979 /* Now query for status so this looks just like we restarted
1980 gdbserver from scratch. */
1981 putpkt ("?");
1982 getpkt (&rs->buf, &rs->buf_size, 0);
1983 }
1984 \f
1985 /* Clean up connection to a remote debugger. */
1986
1987 static void
1988 remote_close (int quitting)
1989 {
1990 if (remote_desc)
1991 serial_close (remote_desc);
1992 remote_desc = NULL;
1993 }
1994
1995 /* Query the remote side for the text, data and bss offsets. */
1996
1997 static void
1998 get_offsets (void)
1999 {
2000 struct remote_state *rs = get_remote_state ();
2001 char *buf;
2002 char *ptr;
2003 int lose;
2004 CORE_ADDR text_addr, data_addr, bss_addr;
2005 struct section_offsets *offs;
2006
2007 putpkt ("qOffsets");
2008 getpkt (&rs->buf, &rs->buf_size, 0);
2009 buf = rs->buf;
2010
2011 if (buf[0] == '\000')
2012 return; /* Return silently. Stub doesn't support
2013 this command. */
2014 if (buf[0] == 'E')
2015 {
2016 warning (_("Remote failure reply: %s"), buf);
2017 return;
2018 }
2019
2020 /* Pick up each field in turn. This used to be done with scanf, but
2021 scanf will make trouble if CORE_ADDR size doesn't match
2022 conversion directives correctly. The following code will work
2023 with any size of CORE_ADDR. */
2024 text_addr = data_addr = bss_addr = 0;
2025 ptr = buf;
2026 lose = 0;
2027
2028 if (strncmp (ptr, "Text=", 5) == 0)
2029 {
2030 ptr += 5;
2031 /* Don't use strtol, could lose on big values. */
2032 while (*ptr && *ptr != ';')
2033 text_addr = (text_addr << 4) + fromhex (*ptr++);
2034 }
2035 else
2036 lose = 1;
2037
2038 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
2039 {
2040 ptr += 6;
2041 while (*ptr && *ptr != ';')
2042 data_addr = (data_addr << 4) + fromhex (*ptr++);
2043 }
2044 else
2045 lose = 1;
2046
2047 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2048 {
2049 ptr += 5;
2050 while (*ptr && *ptr != ';')
2051 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2052 }
2053 else
2054 lose = 1;
2055
2056 if (lose)
2057 error (_("Malformed response to offset query, %s"), buf);
2058
2059 if (symfile_objfile == NULL)
2060 return;
2061
2062 offs = ((struct section_offsets *)
2063 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2064 memcpy (offs, symfile_objfile->section_offsets,
2065 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2066
2067 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2068
2069 /* This is a temporary kludge to force data and bss to use the same offsets
2070 because that's what nlmconv does now. The real solution requires changes
2071 to the stub and remote.c that I don't have time to do right now. */
2072
2073 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2074 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2075
2076 objfile_relocate (symfile_objfile, offs);
2077 }
2078
2079 /* Stub for catch_exception. */
2080
2081 static void
2082 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2083 {
2084 int from_tty = * (int *) from_tty_p;
2085
2086 immediate_quit++; /* Allow user to interrupt it. */
2087
2088 /* Ack any packet which the remote side has already sent. */
2089 serial_write (remote_desc, "+", 1);
2090
2091 /* Let the stub know that we want it to return the thread. */
2092 set_thread (-1, 0);
2093
2094 inferior_ptid = remote_current_thread (inferior_ptid);
2095
2096 get_offsets (); /* Get text, data & bss offsets. */
2097
2098 putpkt ("?"); /* Initiate a query from remote machine. */
2099 immediate_quit--;
2100
2101 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2102 }
2103
2104 /* Open a connection to a remote debugger.
2105 NAME is the filename used for communication. */
2106
2107 static void
2108 remote_open (char *name, int from_tty)
2109 {
2110 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2111 }
2112
2113 /* Just like remote_open, but with asynchronous support. */
2114 static void
2115 remote_async_open (char *name, int from_tty)
2116 {
2117 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2118 }
2119
2120 /* Open a connection to a remote debugger using the extended
2121 remote gdb protocol. NAME is the filename used for communication. */
2122
2123 static void
2124 extended_remote_open (char *name, int from_tty)
2125 {
2126 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2127 0 /* async_p */);
2128 }
2129
2130 /* Just like extended_remote_open, but with asynchronous support. */
2131 static void
2132 extended_remote_async_open (char *name, int from_tty)
2133 {
2134 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2135 1 /*extended_p */, 1 /* async_p */);
2136 }
2137
2138 /* Generic code for opening a connection to a remote target. */
2139
2140 static void
2141 init_all_packet_configs (void)
2142 {
2143 int i;
2144 for (i = 0; i < PACKET_MAX; i++)
2145 update_packet_config (&remote_protocol_packets[i]);
2146 }
2147
2148 /* Symbol look-up. */
2149
2150 static void
2151 remote_check_symbols (struct objfile *objfile)
2152 {
2153 struct remote_state *rs = get_remote_state ();
2154 char *msg, *reply, *tmp;
2155 struct minimal_symbol *sym;
2156 int end;
2157
2158 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2159 return;
2160
2161 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2162 because we need both at the same time. */
2163 msg = alloca (get_remote_packet_size ());
2164
2165 /* Invite target to request symbol lookups. */
2166
2167 putpkt ("qSymbol::");
2168 getpkt (&rs->buf, &rs->buf_size, 0);
2169 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2170 reply = rs->buf;
2171
2172 while (strncmp (reply, "qSymbol:", 8) == 0)
2173 {
2174 tmp = &reply[8];
2175 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2176 msg[end] = '\0';
2177 sym = lookup_minimal_symbol (msg, NULL, NULL);
2178 if (sym == NULL)
2179 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2180 else
2181 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2182 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2183 &reply[8]);
2184 putpkt (msg);
2185 getpkt (&rs->buf, &rs->buf_size, 0);
2186 reply = rs->buf;
2187 }
2188 }
2189
2190 static struct serial *
2191 remote_serial_open (char *name)
2192 {
2193 static int udp_warning = 0;
2194
2195 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2196 of in ser-tcp.c, because it is the remote protocol assuming that the
2197 serial connection is reliable and not the serial connection promising
2198 to be. */
2199 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2200 {
2201 warning (_("\
2202 The remote protocol may be unreliable over UDP.\n\
2203 Some events may be lost, rendering further debugging impossible."));
2204 udp_warning = 1;
2205 }
2206
2207 return serial_open (name);
2208 }
2209
2210 /* This type describes each known response to the qSupported
2211 packet. */
2212 struct protocol_feature
2213 {
2214 /* The name of this protocol feature. */
2215 const char *name;
2216
2217 /* The default for this protocol feature. */
2218 enum packet_support default_support;
2219
2220 /* The function to call when this feature is reported, or after
2221 qSupported processing if the feature is not supported.
2222 The first argument points to this structure. The second
2223 argument indicates whether the packet requested support be
2224 enabled, disabled, or probed (or the default, if this function
2225 is being called at the end of processing and this feature was
2226 not reported). The third argument may be NULL; if not NULL, it
2227 is a NUL-terminated string taken from the packet following
2228 this feature's name and an equals sign. */
2229 void (*func) (const struct protocol_feature *, enum packet_support,
2230 const char *);
2231
2232 /* The corresponding packet for this feature. Only used if
2233 FUNC is remote_supported_packet. */
2234 int packet;
2235 };
2236
2237 static void
2238 remote_supported_packet (const struct protocol_feature *feature,
2239 enum packet_support support,
2240 const char *argument)
2241 {
2242 if (argument)
2243 {
2244 warning (_("Remote qSupported response supplied an unexpected value for"
2245 " \"%s\"."), feature->name);
2246 return;
2247 }
2248
2249 if (remote_protocol_packets[feature->packet].support
2250 == PACKET_SUPPORT_UNKNOWN)
2251 remote_protocol_packets[feature->packet].support = support;
2252 }
2253
2254 static void
2255 remote_packet_size (const struct protocol_feature *feature,
2256 enum packet_support support, const char *value)
2257 {
2258 struct remote_state *rs = get_remote_state ();
2259
2260 int packet_size;
2261 char *value_end;
2262
2263 if (support != PACKET_ENABLE)
2264 return;
2265
2266 if (value == NULL || *value == '\0')
2267 {
2268 warning (_("Remote target reported \"%s\" without a size."),
2269 feature->name);
2270 return;
2271 }
2272
2273 errno = 0;
2274 packet_size = strtol (value, &value_end, 16);
2275 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2276 {
2277 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2278 feature->name, value);
2279 return;
2280 }
2281
2282 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2283 {
2284 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2285 packet_size, MAX_REMOTE_PACKET_SIZE);
2286 packet_size = MAX_REMOTE_PACKET_SIZE;
2287 }
2288
2289 /* Record the new maximum packet size. */
2290 rs->explicit_packet_size = packet_size;
2291 }
2292
2293 static struct protocol_feature remote_protocol_features[] = {
2294 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2295 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2296 PACKET_qXfer_auxv },
2297 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2298 PACKET_qXfer_memory_map },
2299 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2300 PACKET_QPassSignals },
2301 };
2302
2303 static void
2304 remote_query_supported (void)
2305 {
2306 struct remote_state *rs = get_remote_state ();
2307 char *next;
2308 int i;
2309 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2310
2311 /* The packet support flags are handled differently for this packet
2312 than for most others. We treat an error, a disabled packet, and
2313 an empty response identically: any features which must be reported
2314 to be used will be automatically disabled. An empty buffer
2315 accomplishes this, since that is also the representation for a list
2316 containing no features. */
2317
2318 rs->buf[0] = 0;
2319 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2320 {
2321 putpkt ("qSupported");
2322 getpkt (&rs->buf, &rs->buf_size, 0);
2323
2324 /* If an error occured, warn, but do not return - just reset the
2325 buffer to empty and go on to disable features. */
2326 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2327 == PACKET_ERROR)
2328 {
2329 warning (_("Remote failure reply: %s"), rs->buf);
2330 rs->buf[0] = 0;
2331 }
2332 }
2333
2334 memset (seen, 0, sizeof (seen));
2335
2336 next = rs->buf;
2337 while (*next)
2338 {
2339 enum packet_support is_supported;
2340 char *p, *end, *name_end, *value;
2341
2342 /* First separate out this item from the rest of the packet. If
2343 there's another item after this, we overwrite the separator
2344 (terminated strings are much easier to work with). */
2345 p = next;
2346 end = strchr (p, ';');
2347 if (end == NULL)
2348 {
2349 end = p + strlen (p);
2350 next = end;
2351 }
2352 else
2353 {
2354 *end = '\0';
2355 next = end + 1;
2356
2357 if (end == p)
2358 {
2359 warning (_("empty item in \"qSupported\" response"));
2360 continue;
2361 }
2362 }
2363
2364 name_end = strchr (p, '=');
2365 if (name_end)
2366 {
2367 /* This is a name=value entry. */
2368 is_supported = PACKET_ENABLE;
2369 value = name_end + 1;
2370 *name_end = '\0';
2371 }
2372 else
2373 {
2374 value = NULL;
2375 switch (end[-1])
2376 {
2377 case '+':
2378 is_supported = PACKET_ENABLE;
2379 break;
2380
2381 case '-':
2382 is_supported = PACKET_DISABLE;
2383 break;
2384
2385 case '?':
2386 is_supported = PACKET_SUPPORT_UNKNOWN;
2387 break;
2388
2389 default:
2390 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2391 continue;
2392 }
2393 end[-1] = '\0';
2394 }
2395
2396 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2397 if (strcmp (remote_protocol_features[i].name, p) == 0)
2398 {
2399 const struct protocol_feature *feature;
2400
2401 seen[i] = 1;
2402 feature = &remote_protocol_features[i];
2403 feature->func (feature, is_supported, value);
2404 break;
2405 }
2406 }
2407
2408 /* If we increased the packet size, make sure to increase the global
2409 buffer size also. We delay this until after parsing the entire
2410 qSupported packet, because this is the same buffer we were
2411 parsing. */
2412 if (rs->buf_size < rs->explicit_packet_size)
2413 {
2414 rs->buf_size = rs->explicit_packet_size;
2415 rs->buf = xrealloc (rs->buf, rs->buf_size);
2416 }
2417
2418 /* Handle the defaults for unmentioned features. */
2419 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2420 if (!seen[i])
2421 {
2422 const struct protocol_feature *feature;
2423
2424 feature = &remote_protocol_features[i];
2425 feature->func (feature, feature->default_support, NULL);
2426 }
2427 }
2428
2429
2430 static void
2431 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2432 int extended_p, int async_p)
2433 {
2434 struct remote_state *rs = get_remote_state ();
2435 if (name == 0)
2436 error (_("To open a remote debug connection, you need to specify what\n"
2437 "serial device is attached to the remote system\n"
2438 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2439
2440 /* See FIXME above. */
2441 if (!async_p)
2442 wait_forever_enabled_p = 1;
2443
2444 target_preopen (from_tty);
2445
2446 unpush_target (target);
2447
2448 /* Make sure we send the passed signals list the next time we resume. */
2449 xfree (last_pass_packet);
2450 last_pass_packet = NULL;
2451
2452 remote_fileio_reset ();
2453 reopen_exec_file ();
2454 reread_symbols ();
2455
2456 remote_desc = remote_serial_open (name);
2457 if (!remote_desc)
2458 perror_with_name (name);
2459
2460 if (baud_rate != -1)
2461 {
2462 if (serial_setbaudrate (remote_desc, baud_rate))
2463 {
2464 /* The requested speed could not be set. Error out to
2465 top level after closing remote_desc. Take care to
2466 set remote_desc to NULL to avoid closing remote_desc
2467 more than once. */
2468 serial_close (remote_desc);
2469 remote_desc = NULL;
2470 perror_with_name (name);
2471 }
2472 }
2473
2474 serial_raw (remote_desc);
2475
2476 /* If there is something sitting in the buffer we might take it as a
2477 response to a command, which would be bad. */
2478 serial_flush_input (remote_desc);
2479
2480 if (from_tty)
2481 {
2482 puts_filtered ("Remote debugging using ");
2483 puts_filtered (name);
2484 puts_filtered ("\n");
2485 }
2486 push_target (target); /* Switch to using remote target now. */
2487
2488 /* Reset the target state; these things will be queried either by
2489 remote_query_supported or as they are needed. */
2490 init_all_packet_configs ();
2491 rs->explicit_packet_size = 0;
2492
2493 general_thread = -2;
2494 continue_thread = -2;
2495
2496 /* Probe for ability to use "ThreadInfo" query, as required. */
2497 use_threadinfo_query = 1;
2498 use_threadextra_query = 1;
2499
2500 /* The first packet we send to the target is the optional "supported
2501 packets" request. If the target can answer this, it will tell us
2502 which later probes to skip. */
2503 remote_query_supported ();
2504
2505 /* Next, if the target can specify a description, read it. We do
2506 this before anything involving memory or registers. */
2507 target_find_description ();
2508
2509 /* Without this, some commands which require an active target (such
2510 as kill) won't work. This variable serves (at least) double duty
2511 as both the pid of the target process (if it has such), and as a
2512 flag indicating that a target is active. These functions should
2513 be split out into seperate variables, especially since GDB will
2514 someday have a notion of debugging several processes. */
2515
2516 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2517
2518 if (async_p)
2519 {
2520 /* With this target we start out by owning the terminal. */
2521 remote_async_terminal_ours_p = 1;
2522
2523 /* FIXME: cagney/1999-09-23: During the initial connection it is
2524 assumed that the target is already ready and able to respond to
2525 requests. Unfortunately remote_start_remote() eventually calls
2526 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2527 around this. Eventually a mechanism that allows
2528 wait_for_inferior() to expect/get timeouts will be
2529 implemented. */
2530 wait_forever_enabled_p = 0;
2531 }
2532
2533 /* First delete any symbols previously loaded from shared libraries. */
2534 no_shared_libraries (NULL, 0);
2535
2536 /* Start the remote connection. If error() or QUIT, discard this
2537 target (we'd otherwise be in an inconsistent state) and then
2538 propogate the error on up the exception chain. This ensures that
2539 the caller doesn't stumble along blindly assuming that the
2540 function succeeded. The CLI doesn't have this problem but other
2541 UI's, such as MI do.
2542
2543 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2544 this function should return an error indication letting the
2545 caller restore the previous state. Unfortunately the command
2546 ``target remote'' is directly wired to this function making that
2547 impossible. On a positive note, the CLI side of this problem has
2548 been fixed - the function set_cmd_context() makes it possible for
2549 all the ``target ....'' commands to share a common callback
2550 function. See cli-dump.c. */
2551 {
2552 struct gdb_exception ex
2553 = catch_exception (uiout, remote_start_remote, &from_tty,
2554 RETURN_MASK_ALL);
2555 if (ex.reason < 0)
2556 {
2557 pop_target ();
2558 if (async_p)
2559 wait_forever_enabled_p = 1;
2560 throw_exception (ex);
2561 }
2562 }
2563
2564 if (async_p)
2565 wait_forever_enabled_p = 1;
2566
2567 if (extended_p)
2568 {
2569 /* Tell the remote that we are using the extended protocol. */
2570 putpkt ("!");
2571 getpkt (&rs->buf, &rs->buf_size, 0);
2572 }
2573
2574 if (exec_bfd) /* No use without an exec file. */
2575 remote_check_symbols (symfile_objfile);
2576 }
2577
2578 /* This takes a program previously attached to and detaches it. After
2579 this is done, GDB can be used to debug some other program. We
2580 better not have left any breakpoints in the target program or it'll
2581 die when it hits one. */
2582
2583 static void
2584 remote_detach (char *args, int from_tty)
2585 {
2586 struct remote_state *rs = get_remote_state ();
2587
2588 if (args)
2589 error (_("Argument given to \"detach\" when remotely debugging."));
2590
2591 /* Tell the remote target to detach. */
2592 strcpy (rs->buf, "D");
2593 remote_send (&rs->buf, &rs->buf_size);
2594
2595 /* Unregister the file descriptor from the event loop. */
2596 if (target_is_async_p ())
2597 serial_async (remote_desc, NULL, 0);
2598
2599 target_mourn_inferior ();
2600 if (from_tty)
2601 puts_filtered ("Ending remote debugging.\n");
2602 }
2603
2604 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2605
2606 static void
2607 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2608 {
2609 if (args)
2610 error (_("Argument given to \"detach\" when remotely debugging."));
2611
2612 /* Unregister the file descriptor from the event loop. */
2613 if (target_is_async_p ())
2614 serial_async (remote_desc, NULL, 0);
2615
2616 target_mourn_inferior ();
2617 if (from_tty)
2618 puts_filtered ("Ending remote debugging.\n");
2619 }
2620
2621 /* Convert hex digit A to a number. */
2622
2623 static int
2624 fromhex (int a)
2625 {
2626 if (a >= '0' && a <= '9')
2627 return a - '0';
2628 else if (a >= 'a' && a <= 'f')
2629 return a - 'a' + 10;
2630 else if (a >= 'A' && a <= 'F')
2631 return a - 'A' + 10;
2632 else
2633 error (_("Reply contains invalid hex digit %d"), a);
2634 }
2635
2636 static int
2637 hex2bin (const char *hex, gdb_byte *bin, int count)
2638 {
2639 int i;
2640
2641 for (i = 0; i < count; i++)
2642 {
2643 if (hex[0] == 0 || hex[1] == 0)
2644 {
2645 /* Hex string is short, or of uneven length.
2646 Return the count that has been converted so far. */
2647 return i;
2648 }
2649 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2650 hex += 2;
2651 }
2652 return i;
2653 }
2654
2655 /* Convert number NIB to a hex digit. */
2656
2657 static int
2658 tohex (int nib)
2659 {
2660 if (nib < 10)
2661 return '0' + nib;
2662 else
2663 return 'a' + nib - 10;
2664 }
2665
2666 static int
2667 bin2hex (const gdb_byte *bin, char *hex, int count)
2668 {
2669 int i;
2670 /* May use a length, or a nul-terminated string as input. */
2671 if (count == 0)
2672 count = strlen ((char *) bin);
2673
2674 for (i = 0; i < count; i++)
2675 {
2676 *hex++ = tohex ((*bin >> 4) & 0xf);
2677 *hex++ = tohex (*bin++ & 0xf);
2678 }
2679 *hex = 0;
2680 return i;
2681 }
2682 \f
2683 /* Check for the availability of vCont. This function should also check
2684 the response. */
2685
2686 static void
2687 remote_vcont_probe (struct remote_state *rs)
2688 {
2689 char *buf;
2690
2691 strcpy (rs->buf, "vCont?");
2692 putpkt (rs->buf);
2693 getpkt (&rs->buf, &rs->buf_size, 0);
2694 buf = rs->buf;
2695
2696 /* Make sure that the features we assume are supported. */
2697 if (strncmp (buf, "vCont", 5) == 0)
2698 {
2699 char *p = &buf[5];
2700 int support_s, support_S, support_c, support_C;
2701
2702 support_s = 0;
2703 support_S = 0;
2704 support_c = 0;
2705 support_C = 0;
2706 while (p && *p == ';')
2707 {
2708 p++;
2709 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2710 support_s = 1;
2711 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2712 support_S = 1;
2713 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2714 support_c = 1;
2715 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2716 support_C = 1;
2717
2718 p = strchr (p, ';');
2719 }
2720
2721 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2722 BUF will make packet_ok disable the packet. */
2723 if (!support_s || !support_S || !support_c || !support_C)
2724 buf[0] = 0;
2725 }
2726
2727 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2728 }
2729
2730 /* Resume the remote inferior by using a "vCont" packet. The thread
2731 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2732 resumed thread should be single-stepped and/or signalled. If PTID's
2733 PID is -1, then all threads are resumed; the thread to be stepped and/or
2734 signalled is given in the global INFERIOR_PTID. This function returns
2735 non-zero iff it resumes the inferior.
2736
2737 This function issues a strict subset of all possible vCont commands at the
2738 moment. */
2739
2740 static int
2741 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2742 {
2743 struct remote_state *rs = get_remote_state ();
2744 int pid = PIDGET (ptid);
2745 char *buf = NULL, *outbuf;
2746 struct cleanup *old_cleanup;
2747
2748 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2749 remote_vcont_probe (rs);
2750
2751 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2752 return 0;
2753
2754 /* If we could generate a wider range of packets, we'd have to worry
2755 about overflowing BUF. Should there be a generic
2756 "multi-part-packet" packet? */
2757
2758 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2759 {
2760 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2761 don't have any PID numbers the inferior will understand. Make sure
2762 to only send forms that do not specify a PID. */
2763 if (step && siggnal != TARGET_SIGNAL_0)
2764 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2765 else if (step)
2766 outbuf = xstrprintf ("vCont;s");
2767 else if (siggnal != TARGET_SIGNAL_0)
2768 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2769 else
2770 outbuf = xstrprintf ("vCont;c");
2771 }
2772 else if (pid == -1)
2773 {
2774 /* Resume all threads, with preference for INFERIOR_PTID. */
2775 if (step && siggnal != TARGET_SIGNAL_0)
2776 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2777 PIDGET (inferior_ptid));
2778 else if (step)
2779 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2780 else if (siggnal != TARGET_SIGNAL_0)
2781 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2782 PIDGET (inferior_ptid));
2783 else
2784 outbuf = xstrprintf ("vCont;c");
2785 }
2786 else
2787 {
2788 /* Scheduler locking; resume only PTID. */
2789 if (step && siggnal != TARGET_SIGNAL_0)
2790 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2791 else if (step)
2792 outbuf = xstrprintf ("vCont;s:%x", pid);
2793 else if (siggnal != TARGET_SIGNAL_0)
2794 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2795 else
2796 outbuf = xstrprintf ("vCont;c:%x", pid);
2797 }
2798
2799 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2800 old_cleanup = make_cleanup (xfree, outbuf);
2801
2802 putpkt (outbuf);
2803
2804 do_cleanups (old_cleanup);
2805
2806 return 1;
2807 }
2808
2809 /* Tell the remote machine to resume. */
2810
2811 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2812
2813 static int last_sent_step;
2814
2815 static void
2816 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2817 {
2818 struct remote_state *rs = get_remote_state ();
2819 char *buf;
2820 int pid = PIDGET (ptid);
2821
2822 last_sent_signal = siggnal;
2823 last_sent_step = step;
2824
2825 /* A hook for when we need to do something at the last moment before
2826 resumption. */
2827 if (deprecated_target_resume_hook)
2828 (*deprecated_target_resume_hook) ();
2829
2830 /* Update the inferior on signals to silently pass, if they've changed. */
2831 remote_pass_signals ();
2832
2833 /* The vCont packet doesn't need to specify threads via Hc. */
2834 if (remote_vcont_resume (ptid, step, siggnal))
2835 return;
2836
2837 /* All other supported resume packets do use Hc, so call set_thread. */
2838 if (pid == -1)
2839 set_thread (0, 0); /* Run any thread. */
2840 else
2841 set_thread (pid, 0); /* Run this thread. */
2842
2843 buf = rs->buf;
2844 if (siggnal != TARGET_SIGNAL_0)
2845 {
2846 buf[0] = step ? 'S' : 'C';
2847 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2848 buf[2] = tohex (((int) siggnal) & 0xf);
2849 buf[3] = '\0';
2850 }
2851 else
2852 strcpy (buf, step ? "s" : "c");
2853
2854 putpkt (buf);
2855 }
2856
2857 /* Same as remote_resume, but with async support. */
2858 static void
2859 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2860 {
2861 remote_resume (ptid, step, siggnal);
2862
2863 /* We are about to start executing the inferior, let's register it
2864 with the event loop. NOTE: this is the one place where all the
2865 execution commands end up. We could alternatively do this in each
2866 of the execution commands in infcmd.c. */
2867 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2868 into infcmd.c in order to allow inferior function calls to work
2869 NOT asynchronously. */
2870 if (target_can_async_p ())
2871 target_async (inferior_event_handler, 0);
2872 /* Tell the world that the target is now executing. */
2873 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2874 this? Instead, should the client of target just assume (for
2875 async targets) that the target is going to start executing? Is
2876 this information already found in the continuation block? */
2877 if (target_is_async_p ())
2878 target_executing = 1;
2879 }
2880 \f
2881
2882 /* Set up the signal handler for SIGINT, while the target is
2883 executing, ovewriting the 'regular' SIGINT signal handler. */
2884 static void
2885 initialize_sigint_signal_handler (void)
2886 {
2887 sigint_remote_token =
2888 create_async_signal_handler (async_remote_interrupt, NULL);
2889 signal (SIGINT, handle_remote_sigint);
2890 }
2891
2892 /* Signal handler for SIGINT, while the target is executing. */
2893 static void
2894 handle_remote_sigint (int sig)
2895 {
2896 signal (sig, handle_remote_sigint_twice);
2897 sigint_remote_twice_token =
2898 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2899 mark_async_signal_handler_wrapper (sigint_remote_token);
2900 }
2901
2902 /* Signal handler for SIGINT, installed after SIGINT has already been
2903 sent once. It will take effect the second time that the user sends
2904 a ^C. */
2905 static void
2906 handle_remote_sigint_twice (int sig)
2907 {
2908 signal (sig, handle_sigint);
2909 sigint_remote_twice_token =
2910 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2911 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2912 }
2913
2914 /* Perform the real interruption of the target execution, in response
2915 to a ^C. */
2916 static void
2917 async_remote_interrupt (gdb_client_data arg)
2918 {
2919 if (remote_debug)
2920 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2921
2922 target_stop ();
2923 }
2924
2925 /* Perform interrupt, if the first attempt did not succeed. Just give
2926 up on the target alltogether. */
2927 void
2928 async_remote_interrupt_twice (gdb_client_data arg)
2929 {
2930 if (remote_debug)
2931 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2932 /* Do something only if the target was not killed by the previous
2933 cntl-C. */
2934 if (target_executing)
2935 {
2936 interrupt_query ();
2937 signal (SIGINT, handle_remote_sigint);
2938 }
2939 }
2940
2941 /* Reinstall the usual SIGINT handlers, after the target has
2942 stopped. */
2943 static void
2944 cleanup_sigint_signal_handler (void *dummy)
2945 {
2946 signal (SIGINT, handle_sigint);
2947 if (sigint_remote_twice_token)
2948 delete_async_signal_handler ((struct async_signal_handler **)
2949 &sigint_remote_twice_token);
2950 if (sigint_remote_token)
2951 delete_async_signal_handler ((struct async_signal_handler **)
2952 &sigint_remote_token);
2953 }
2954
2955 /* Send ^C to target to halt it. Target will respond, and send us a
2956 packet. */
2957 static void (*ofunc) (int);
2958
2959 /* The command line interface's stop routine. This function is installed
2960 as a signal handler for SIGINT. The first time a user requests a
2961 stop, we call remote_stop to send a break or ^C. If there is no
2962 response from the target (it didn't stop when the user requested it),
2963 we ask the user if he'd like to detach from the target. */
2964 static void
2965 remote_interrupt (int signo)
2966 {
2967 /* If this doesn't work, try more severe steps. */
2968 signal (signo, remote_interrupt_twice);
2969
2970 if (remote_debug)
2971 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2972
2973 target_stop ();
2974 }
2975
2976 /* The user typed ^C twice. */
2977
2978 static void
2979 remote_interrupt_twice (int signo)
2980 {
2981 signal (signo, ofunc);
2982 interrupt_query ();
2983 signal (signo, remote_interrupt);
2984 }
2985
2986 /* This is the generic stop called via the target vector. When a target
2987 interrupt is requested, either by the command line or the GUI, we
2988 will eventually end up here. */
2989 static void
2990 remote_stop (void)
2991 {
2992 /* Send a break or a ^C, depending on user preference. */
2993 if (remote_debug)
2994 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2995
2996 if (remote_break)
2997 serial_send_break (remote_desc);
2998 else
2999 serial_write (remote_desc, "\003", 1);
3000 }
3001
3002 /* Ask the user what to do when an interrupt is received. */
3003
3004 static void
3005 interrupt_query (void)
3006 {
3007 target_terminal_ours ();
3008
3009 if (query ("Interrupted while waiting for the program.\n\
3010 Give up (and stop debugging it)? "))
3011 {
3012 target_mourn_inferior ();
3013 deprecated_throw_reason (RETURN_QUIT);
3014 }
3015
3016 target_terminal_inferior ();
3017 }
3018
3019 /* Enable/disable target terminal ownership. Most targets can use
3020 terminal groups to control terminal ownership. Remote targets are
3021 different in that explicit transfer of ownership to/from GDB/target
3022 is required. */
3023
3024 static void
3025 remote_async_terminal_inferior (void)
3026 {
3027 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3028 sync_execution here. This function should only be called when
3029 GDB is resuming the inferior in the forground. A background
3030 resume (``run&'') should leave GDB in control of the terminal and
3031 consequently should not call this code. */
3032 if (!sync_execution)
3033 return;
3034 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3035 calls target_terminal_*() idenpotent. The event-loop GDB talking
3036 to an asynchronous target with a synchronous command calls this
3037 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3038 stops trying to transfer the terminal to the target when it
3039 shouldn't this guard can go away. */
3040 if (!remote_async_terminal_ours_p)
3041 return;
3042 delete_file_handler (input_fd);
3043 remote_async_terminal_ours_p = 0;
3044 initialize_sigint_signal_handler ();
3045 /* NOTE: At this point we could also register our selves as the
3046 recipient of all input. Any characters typed could then be
3047 passed on down to the target. */
3048 }
3049
3050 static void
3051 remote_async_terminal_ours (void)
3052 {
3053 /* See FIXME in remote_async_terminal_inferior. */
3054 if (!sync_execution)
3055 return;
3056 /* See FIXME in remote_async_terminal_inferior. */
3057 if (remote_async_terminal_ours_p)
3058 return;
3059 cleanup_sigint_signal_handler (NULL);
3060 add_file_handler (input_fd, stdin_event_handler, 0);
3061 remote_async_terminal_ours_p = 1;
3062 }
3063
3064 /* If nonzero, ignore the next kill. */
3065
3066 int kill_kludge;
3067
3068 void
3069 remote_console_output (char *msg)
3070 {
3071 char *p;
3072
3073 for (p = msg; p[0] && p[1]; p += 2)
3074 {
3075 char tb[2];
3076 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3077 tb[0] = c;
3078 tb[1] = 0;
3079 fputs_unfiltered (tb, gdb_stdtarg);
3080 }
3081 gdb_flush (gdb_stdtarg);
3082 }
3083
3084 /* Wait until the remote machine stops, then return,
3085 storing status in STATUS just as `wait' would.
3086 Returns "pid", which in the case of a multi-threaded
3087 remote OS, is the thread-id. */
3088
3089 static ptid_t
3090 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3091 {
3092 struct remote_state *rs = get_remote_state ();
3093 struct remote_arch_state *rsa = get_remote_arch_state ();
3094 ULONGEST thread_num = -1;
3095 ULONGEST addr;
3096
3097 status->kind = TARGET_WAITKIND_EXITED;
3098 status->value.integer = 0;
3099
3100 while (1)
3101 {
3102 char *buf, *p;
3103
3104 ofunc = signal (SIGINT, remote_interrupt);
3105 getpkt (&rs->buf, &rs->buf_size, 1);
3106 signal (SIGINT, ofunc);
3107
3108 buf = rs->buf;
3109
3110 /* This is a hook for when we need to do something (perhaps the
3111 collection of trace data) every time the target stops. */
3112 if (deprecated_target_wait_loop_hook)
3113 (*deprecated_target_wait_loop_hook) ();
3114
3115 remote_stopped_by_watchpoint_p = 0;
3116
3117 switch (buf[0])
3118 {
3119 case 'E': /* Error of some sort. */
3120 warning (_("Remote failure reply: %s"), buf);
3121 continue;
3122 case 'F': /* File-I/O request. */
3123 remote_fileio_request (buf);
3124 continue;
3125 case 'T': /* Status with PC, SP, FP, ... */
3126 {
3127 gdb_byte regs[MAX_REGISTER_SIZE];
3128
3129 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3130 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3131 ss = signal number
3132 n... = register number
3133 r... = register contents
3134 */
3135 p = &buf[3]; /* after Txx */
3136
3137 while (*p)
3138 {
3139 char *p1;
3140 char *p_temp;
3141 int fieldsize;
3142 LONGEST pnum = 0;
3143
3144 /* If the packet contains a register number save it in
3145 pnum and set p1 to point to the character following
3146 it. Otherwise p1 points to p. */
3147
3148 /* If this packet is an awatch packet, don't parse the
3149 'a' as a register number. */
3150
3151 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3152 {
3153 /* Read the ``P'' register number. */
3154 pnum = strtol (p, &p_temp, 16);
3155 p1 = p_temp;
3156 }
3157 else
3158 p1 = p;
3159
3160 if (p1 == p) /* No register number present here. */
3161 {
3162 p1 = strchr (p, ':');
3163 if (p1 == NULL)
3164 error (_("Malformed packet(a) (missing colon): %s\n\
3165 Packet: '%s'\n"),
3166 p, buf);
3167 if (strncmp (p, "thread", p1 - p) == 0)
3168 {
3169 p_temp = unpack_varlen_hex (++p1, &thread_num);
3170 record_currthread (thread_num);
3171 p = p_temp;
3172 }
3173 else if ((strncmp (p, "watch", p1 - p) == 0)
3174 || (strncmp (p, "rwatch", p1 - p) == 0)
3175 || (strncmp (p, "awatch", p1 - p) == 0))
3176 {
3177 remote_stopped_by_watchpoint_p = 1;
3178 p = unpack_varlen_hex (++p1, &addr);
3179 remote_watch_data_address = (CORE_ADDR)addr;
3180 }
3181 else
3182 {
3183 /* Silently skip unknown optional info. */
3184 p_temp = strchr (p1 + 1, ';');
3185 if (p_temp)
3186 p = p_temp;
3187 }
3188 }
3189 else
3190 {
3191 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3192 p = p1;
3193
3194 if (*p++ != ':')
3195 error (_("Malformed packet(b) (missing colon): %s\n\
3196 Packet: '%s'\n"),
3197 p, buf);
3198
3199 if (reg == NULL)
3200 error (_("Remote sent bad register number %s: %s\n\
3201 Packet: '%s'\n"),
3202 phex_nz (pnum, 0), p, buf);
3203
3204 fieldsize = hex2bin (p, regs,
3205 register_size (current_gdbarch,
3206 reg->regnum));
3207 p += 2 * fieldsize;
3208 if (fieldsize < register_size (current_gdbarch,
3209 reg->regnum))
3210 warning (_("Remote reply is too short: %s"), buf);
3211 regcache_raw_supply (current_regcache,
3212 reg->regnum, regs);
3213 }
3214
3215 if (*p++ != ';')
3216 error (_("Remote register badly formatted: %s\nhere: %s"),
3217 buf, p);
3218 }
3219 }
3220 /* fall through */
3221 case 'S': /* Old style status, just signal only. */
3222 status->kind = TARGET_WAITKIND_STOPPED;
3223 status->value.sig = (enum target_signal)
3224 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3225
3226 if (buf[3] == 'p')
3227 {
3228 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3229 record_currthread (thread_num);
3230 }
3231 goto got_status;
3232 case 'W': /* Target exited. */
3233 {
3234 /* The remote process exited. */
3235 status->kind = TARGET_WAITKIND_EXITED;
3236 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3237 goto got_status;
3238 }
3239 case 'X':
3240 status->kind = TARGET_WAITKIND_SIGNALLED;
3241 status->value.sig = (enum target_signal)
3242 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3243 kill_kludge = 1;
3244
3245 goto got_status;
3246 case 'O': /* Console output. */
3247 remote_console_output (buf + 1);
3248 continue;
3249 case '\0':
3250 if (last_sent_signal != TARGET_SIGNAL_0)
3251 {
3252 /* Zero length reply means that we tried 'S' or 'C' and
3253 the remote system doesn't support it. */
3254 target_terminal_ours_for_output ();
3255 printf_filtered
3256 ("Can't send signals to this remote system. %s not sent.\n",
3257 target_signal_to_name (last_sent_signal));
3258 last_sent_signal = TARGET_SIGNAL_0;
3259 target_terminal_inferior ();
3260
3261 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3262 putpkt ((char *) buf);
3263 continue;
3264 }
3265 /* else fallthrough */
3266 default:
3267 warning (_("Invalid remote reply: %s"), buf);
3268 continue;
3269 }
3270 }
3271 got_status:
3272 if (thread_num != -1)
3273 {
3274 return pid_to_ptid (thread_num);
3275 }
3276 return inferior_ptid;
3277 }
3278
3279 /* Async version of remote_wait. */
3280 static ptid_t
3281 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3282 {
3283 struct remote_state *rs = get_remote_state ();
3284 struct remote_arch_state *rsa = get_remote_arch_state ();
3285 ULONGEST thread_num = -1;
3286 ULONGEST addr;
3287
3288 status->kind = TARGET_WAITKIND_EXITED;
3289 status->value.integer = 0;
3290
3291 remote_stopped_by_watchpoint_p = 0;
3292
3293 while (1)
3294 {
3295 char *buf, *p;
3296
3297 if (!target_is_async_p ())
3298 ofunc = signal (SIGINT, remote_interrupt);
3299 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3300 _never_ wait for ever -> test on target_is_async_p().
3301 However, before we do that we need to ensure that the caller
3302 knows how to take the target into/out of async mode. */
3303 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3304 if (!target_is_async_p ())
3305 signal (SIGINT, ofunc);
3306
3307 buf = rs->buf;
3308
3309 /* This is a hook for when we need to do something (perhaps the
3310 collection of trace data) every time the target stops. */
3311 if (deprecated_target_wait_loop_hook)
3312 (*deprecated_target_wait_loop_hook) ();
3313
3314 switch (buf[0])
3315 {
3316 case 'E': /* Error of some sort. */
3317 warning (_("Remote failure reply: %s"), buf);
3318 continue;
3319 case 'F': /* File-I/O request. */
3320 remote_fileio_request (buf);
3321 continue;
3322 case 'T': /* Status with PC, SP, FP, ... */
3323 {
3324 gdb_byte regs[MAX_REGISTER_SIZE];
3325
3326 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3327 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3328 ss = signal number
3329 n... = register number
3330 r... = register contents
3331 */
3332 p = &buf[3]; /* after Txx */
3333
3334 while (*p)
3335 {
3336 char *p1;
3337 char *p_temp;
3338 int fieldsize;
3339 long pnum = 0;
3340
3341 /* If the packet contains a register number, save it
3342 in pnum and set p1 to point to the character
3343 following it. Otherwise p1 points to p. */
3344
3345 /* If this packet is an awatch packet, don't parse the 'a'
3346 as a register number. */
3347
3348 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3349 {
3350 /* Read the register number. */
3351 pnum = strtol (p, &p_temp, 16);
3352 p1 = p_temp;
3353 }
3354 else
3355 p1 = p;
3356
3357 if (p1 == p) /* No register number present here. */
3358 {
3359 p1 = strchr (p, ':');
3360 if (p1 == NULL)
3361 error (_("Malformed packet(a) (missing colon): %s\n\
3362 Packet: '%s'\n"),
3363 p, buf);
3364 if (strncmp (p, "thread", p1 - p) == 0)
3365 {
3366 p_temp = unpack_varlen_hex (++p1, &thread_num);
3367 record_currthread (thread_num);
3368 p = p_temp;
3369 }
3370 else if ((strncmp (p, "watch", p1 - p) == 0)
3371 || (strncmp (p, "rwatch", p1 - p) == 0)
3372 || (strncmp (p, "awatch", p1 - p) == 0))
3373 {
3374 remote_stopped_by_watchpoint_p = 1;
3375 p = unpack_varlen_hex (++p1, &addr);
3376 remote_watch_data_address = (CORE_ADDR)addr;
3377 }
3378 else
3379 {
3380 /* Silently skip unknown optional info. */
3381 p_temp = strchr (p1 + 1, ';');
3382 if (p_temp)
3383 p = p_temp;
3384 }
3385 }
3386
3387 else
3388 {
3389 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3390 p = p1;
3391 if (*p++ != ':')
3392 error (_("Malformed packet(b) (missing colon): %s\n\
3393 Packet: '%s'\n"),
3394 p, buf);
3395
3396 if (reg == NULL)
3397 error (_("Remote sent bad register number %ld: %s\n\
3398 Packet: '%s'\n"),
3399 pnum, p, buf);
3400
3401 fieldsize = hex2bin (p, regs,
3402 register_size (current_gdbarch,
3403 reg->regnum));
3404 p += 2 * fieldsize;
3405 if (fieldsize < register_size (current_gdbarch,
3406 reg->regnum))
3407 warning (_("Remote reply is too short: %s"), buf);
3408 regcache_raw_supply (current_regcache, reg->regnum, regs);
3409 }
3410
3411 if (*p++ != ';')
3412 error (_("Remote register badly formatted: %s\nhere: %s"),
3413 buf, p);
3414 }
3415 }
3416 /* fall through */
3417 case 'S': /* Old style status, just signal only. */
3418 status->kind = TARGET_WAITKIND_STOPPED;
3419 status->value.sig = (enum target_signal)
3420 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3421
3422 if (buf[3] == 'p')
3423 {
3424 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3425 record_currthread (thread_num);
3426 }
3427 goto got_status;
3428 case 'W': /* Target exited. */
3429 {
3430 /* The remote process exited. */
3431 status->kind = TARGET_WAITKIND_EXITED;
3432 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3433 goto got_status;
3434 }
3435 case 'X':
3436 status->kind = TARGET_WAITKIND_SIGNALLED;
3437 status->value.sig = (enum target_signal)
3438 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3439 kill_kludge = 1;
3440
3441 goto got_status;
3442 case 'O': /* Console output. */
3443 remote_console_output (buf + 1);
3444 /* Return immediately to the event loop. The event loop will
3445 still be waiting on the inferior afterwards. */
3446 status->kind = TARGET_WAITKIND_IGNORE;
3447 goto got_status;
3448 case '\0':
3449 if (last_sent_signal != TARGET_SIGNAL_0)
3450 {
3451 /* Zero length reply means that we tried 'S' or 'C' and
3452 the remote system doesn't support it. */
3453 target_terminal_ours_for_output ();
3454 printf_filtered
3455 ("Can't send signals to this remote system. %s not sent.\n",
3456 target_signal_to_name (last_sent_signal));
3457 last_sent_signal = TARGET_SIGNAL_0;
3458 target_terminal_inferior ();
3459
3460 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3461 putpkt ((char *) buf);
3462 continue;
3463 }
3464 /* else fallthrough */
3465 default:
3466 warning (_("Invalid remote reply: %s"), buf);
3467 continue;
3468 }
3469 }
3470 got_status:
3471 if (thread_num != -1)
3472 {
3473 return pid_to_ptid (thread_num);
3474 }
3475 return inferior_ptid;
3476 }
3477
3478 /* Fetch a single register using a 'p' packet. */
3479
3480 static int
3481 fetch_register_using_p (struct packet_reg *reg)
3482 {
3483 struct remote_state *rs = get_remote_state ();
3484 char *buf, *p;
3485 char regp[MAX_REGISTER_SIZE];
3486 int i;
3487
3488 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3489 return 0;
3490
3491 if (reg->pnum == -1)
3492 return 0;
3493
3494 p = rs->buf;
3495 *p++ = 'p';
3496 p += hexnumstr (p, reg->pnum);
3497 *p++ = '\0';
3498 remote_send (&rs->buf, &rs->buf_size);
3499
3500 buf = rs->buf;
3501
3502 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3503 {
3504 case PACKET_OK:
3505 break;
3506 case PACKET_UNKNOWN:
3507 return 0;
3508 case PACKET_ERROR:
3509 error (_("Could not fetch register \"%s\""),
3510 gdbarch_register_name (current_gdbarch, reg->regnum));
3511 }
3512
3513 /* If this register is unfetchable, tell the regcache. */
3514 if (buf[0] == 'x')
3515 {
3516 regcache_raw_supply (current_regcache, reg->regnum, NULL);
3517 set_register_cached (reg->regnum, -1);
3518 return 1;
3519 }
3520
3521 /* Otherwise, parse and supply the value. */
3522 p = buf;
3523 i = 0;
3524 while (p[0] != 0)
3525 {
3526 if (p[1] == 0)
3527 error (_("fetch_register_using_p: early buf termination"));
3528
3529 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3530 p += 2;
3531 }
3532 regcache_raw_supply (current_regcache, reg->regnum, regp);
3533 return 1;
3534 }
3535
3536 /* Fetch the registers included in the target's 'g' packet. */
3537
3538 static void
3539 fetch_registers_using_g (void)
3540 {
3541 struct remote_state *rs = get_remote_state ();
3542 struct remote_arch_state *rsa = get_remote_arch_state ();
3543 int i, buf_len;
3544 char *p;
3545 char *regs;
3546
3547 sprintf (rs->buf, "g");
3548 remote_send (&rs->buf, &rs->buf_size);
3549
3550 buf_len = strlen (rs->buf);
3551
3552 /* Sanity check the received packet. */
3553 if (buf_len % 2 != 0)
3554 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3555 if (REGISTER_BYTES_OK_P () && !REGISTER_BYTES_OK (buf_len / 2))
3556 error (_("Remote 'g' packet reply is wrong length: %s"), rs->buf);
3557 if (buf_len > 2 * rsa->sizeof_g_packet)
3558 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3559
3560 /* Save the size of the packet sent to us by the target. It is used
3561 as a heuristic when determining the max size of packets that the
3562 target can safely receive. */
3563 if (rsa->actual_register_packet_size == 0)
3564 rsa->actual_register_packet_size = buf_len;
3565
3566 /* If this is smaller than we guessed the 'g' packet would be,
3567 update our records. A 'g' reply that doesn't include a register's
3568 value implies either that the register is not available, or that
3569 the 'p' packet must be used. */
3570 if (buf_len < 2 * rsa->sizeof_g_packet)
3571 {
3572 rsa->sizeof_g_packet = buf_len / 2;
3573
3574 for (i = 0; i < NUM_REGS; i++)
3575 {
3576 if (rsa->regs[i].pnum == -1)
3577 continue;
3578
3579 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3580 rsa->regs[i].in_g_packet = 0;
3581 else
3582 rsa->regs[i].in_g_packet = 1;
3583 }
3584 }
3585
3586 regs = alloca (rsa->sizeof_g_packet);
3587
3588 /* Unimplemented registers read as all bits zero. */
3589 memset (regs, 0, rsa->sizeof_g_packet);
3590
3591 /* We can get out of synch in various cases. If the first character
3592 in the buffer is not a hex character, assume that has happened
3593 and try to fetch another packet to read. */
3594 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3595 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3596 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3597 && rs->buf[0] != 'x') /* New: unavailable register value. */
3598 {
3599 if (remote_debug)
3600 fprintf_unfiltered (gdb_stdlog,
3601 "Bad register packet; fetching a new packet\n");
3602 getpkt (&rs->buf, &rs->buf_size, 0);
3603 }
3604
3605 /* Reply describes registers byte by byte, each byte encoded as two
3606 hex characters. Suck them all up, then supply them to the
3607 register cacheing/storage mechanism. */
3608
3609 p = rs->buf;
3610 for (i = 0; i < rsa->sizeof_g_packet; i++)
3611 {
3612 if (p[0] == 0 || p[1] == 0)
3613 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3614 internal_error (__FILE__, __LINE__,
3615 "unexpected end of 'g' packet reply");
3616
3617 if (p[0] == 'x' && p[1] == 'x')
3618 regs[i] = 0; /* 'x' */
3619 else
3620 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3621 p += 2;
3622 }
3623
3624 {
3625 int i;
3626 for (i = 0; i < NUM_REGS; i++)
3627 {
3628 struct packet_reg *r = &rsa->regs[i];
3629 if (r->in_g_packet)
3630 {
3631 if (r->offset * 2 >= strlen (rs->buf))
3632 /* This shouldn't happen - we adjusted in_g_packet above. */
3633 internal_error (__FILE__, __LINE__,
3634 "unexpected end of 'g' packet reply");
3635 else if (rs->buf[r->offset * 2] == 'x')
3636 {
3637 gdb_assert (r->offset * 2 < strlen (rs->buf));
3638 /* The register isn't available, mark it as such (at
3639 the same time setting the value to zero). */
3640 regcache_raw_supply (current_regcache, r->regnum, NULL);
3641 set_register_cached (i, -1);
3642 }
3643 else
3644 regcache_raw_supply (current_regcache, r->regnum,
3645 regs + r->offset);
3646 }
3647 }
3648 }
3649 }
3650
3651 static void
3652 remote_fetch_registers (int regnum)
3653 {
3654 struct remote_state *rs = get_remote_state ();
3655 struct remote_arch_state *rsa = get_remote_arch_state ();
3656 int i;
3657
3658 set_thread (PIDGET (inferior_ptid), 1);
3659
3660 if (regnum >= 0)
3661 {
3662 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3663 gdb_assert (reg != NULL);
3664
3665 /* If this register might be in the 'g' packet, try that first -
3666 we are likely to read more than one register. If this is the
3667 first 'g' packet, we might be overly optimistic about its
3668 contents, so fall back to 'p'. */
3669 if (reg->in_g_packet)
3670 {
3671 fetch_registers_using_g ();
3672 if (reg->in_g_packet)
3673 return;
3674 }
3675
3676 if (fetch_register_using_p (reg))
3677 return;
3678
3679 /* This register is not available. */
3680 regcache_raw_supply (current_regcache, reg->regnum, NULL);
3681 set_register_cached (reg->regnum, -1);
3682
3683 return;
3684 }
3685
3686 fetch_registers_using_g ();
3687
3688 for (i = 0; i < NUM_REGS; i++)
3689 if (!rsa->regs[i].in_g_packet)
3690 if (!fetch_register_using_p (&rsa->regs[i]))
3691 {
3692 /* This register is not available. */
3693 regcache_raw_supply (current_regcache, i, NULL);
3694 set_register_cached (i, -1);
3695 }
3696 }
3697
3698 /* Prepare to store registers. Since we may send them all (using a
3699 'G' request), we have to read out the ones we don't want to change
3700 first. */
3701
3702 static void
3703 remote_prepare_to_store (void)
3704 {
3705 struct remote_arch_state *rsa = get_remote_arch_state ();
3706 int i;
3707 gdb_byte buf[MAX_REGISTER_SIZE];
3708
3709 /* Make sure the entire registers array is valid. */
3710 switch (remote_protocol_packets[PACKET_P].support)
3711 {
3712 case PACKET_DISABLE:
3713 case PACKET_SUPPORT_UNKNOWN:
3714 /* Make sure all the necessary registers are cached. */
3715 for (i = 0; i < NUM_REGS; i++)
3716 if (rsa->regs[i].in_g_packet)
3717 regcache_raw_read (current_regcache, rsa->regs[i].regnum, buf);
3718 break;
3719 case PACKET_ENABLE:
3720 break;
3721 }
3722 }
3723
3724 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3725 packet was not recognized. */
3726
3727 static int
3728 store_register_using_P (struct packet_reg *reg)
3729 {
3730 struct remote_state *rs = get_remote_state ();
3731 struct remote_arch_state *rsa = get_remote_arch_state ();
3732 /* Try storing a single register. */
3733 char *buf = rs->buf;
3734 gdb_byte regp[MAX_REGISTER_SIZE];
3735 char *p;
3736
3737 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3738 return 0;
3739
3740 if (reg->pnum == -1)
3741 return 0;
3742
3743 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3744 p = buf + strlen (buf);
3745 regcache_raw_collect (current_regcache, reg->regnum, regp);
3746 bin2hex (regp, p, register_size (current_gdbarch, reg->regnum));
3747 remote_send (&rs->buf, &rs->buf_size);
3748
3749 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3750 {
3751 case PACKET_OK:
3752 return 1;
3753 case PACKET_ERROR:
3754 error (_("Could not write register \"%s\""),
3755 gdbarch_register_name (current_gdbarch, reg->regnum));
3756 case PACKET_UNKNOWN:
3757 return 0;
3758 default:
3759 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3760 }
3761 }
3762
3763 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3764 contents of the register cache buffer. FIXME: ignores errors. */
3765
3766 static void
3767 store_registers_using_G (void)
3768 {
3769 struct remote_state *rs = get_remote_state ();
3770 struct remote_arch_state *rsa = get_remote_arch_state ();
3771 gdb_byte *regs;
3772 char *p;
3773
3774 /* Extract all the registers in the regcache copying them into a
3775 local buffer. */
3776 {
3777 int i;
3778 regs = alloca (rsa->sizeof_g_packet);
3779 memset (regs, 0, rsa->sizeof_g_packet);
3780 for (i = 0; i < NUM_REGS; i++)
3781 {
3782 struct packet_reg *r = &rsa->regs[i];
3783 if (r->in_g_packet)
3784 regcache_raw_collect (current_regcache, r->regnum, regs + r->offset);
3785 }
3786 }
3787
3788 /* Command describes registers byte by byte,
3789 each byte encoded as two hex characters. */
3790 p = rs->buf;
3791 *p++ = 'G';
3792 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3793 updated. */
3794 bin2hex (regs, p, rsa->sizeof_g_packet);
3795 remote_send (&rs->buf, &rs->buf_size);
3796 }
3797
3798 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3799 of the register cache buffer. FIXME: ignores errors. */
3800
3801 static void
3802 remote_store_registers (int regnum)
3803 {
3804 struct remote_state *rs = get_remote_state ();
3805 struct remote_arch_state *rsa = get_remote_arch_state ();
3806 int i;
3807
3808 set_thread (PIDGET (inferior_ptid), 1);
3809
3810 if (regnum >= 0)
3811 {
3812 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3813 gdb_assert (reg != NULL);
3814
3815 /* Always prefer to store registers using the 'P' packet if
3816 possible; we often change only a small number of registers.
3817 Sometimes we change a larger number; we'd need help from a
3818 higher layer to know to use 'G'. */
3819 if (store_register_using_P (reg))
3820 return;
3821
3822 /* For now, don't complain if we have no way to write the
3823 register. GDB loses track of unavailable registers too
3824 easily. Some day, this may be an error. We don't have
3825 any way to read the register, either... */
3826 if (!reg->in_g_packet)
3827 return;
3828
3829 store_registers_using_G ();
3830 return;
3831 }
3832
3833 store_registers_using_G ();
3834
3835 for (i = 0; i < NUM_REGS; i++)
3836 if (!rsa->regs[i].in_g_packet)
3837 if (!store_register_using_P (&rsa->regs[i]))
3838 /* See above for why we do not issue an error here. */
3839 continue;
3840 }
3841 \f
3842
3843 /* Return the number of hex digits in num. */
3844
3845 static int
3846 hexnumlen (ULONGEST num)
3847 {
3848 int i;
3849
3850 for (i = 0; num != 0; i++)
3851 num >>= 4;
3852
3853 return max (i, 1);
3854 }
3855
3856 /* Set BUF to the minimum number of hex digits representing NUM. */
3857
3858 static int
3859 hexnumstr (char *buf, ULONGEST num)
3860 {
3861 int len = hexnumlen (num);
3862 return hexnumnstr (buf, num, len);
3863 }
3864
3865
3866 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3867
3868 static int
3869 hexnumnstr (char *buf, ULONGEST num, int width)
3870 {
3871 int i;
3872
3873 buf[width] = '\0';
3874
3875 for (i = width - 1; i >= 0; i--)
3876 {
3877 buf[i] = "0123456789abcdef"[(num & 0xf)];
3878 num >>= 4;
3879 }
3880
3881 return width;
3882 }
3883
3884 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3885
3886 static CORE_ADDR
3887 remote_address_masked (CORE_ADDR addr)
3888 {
3889 if (remote_address_size > 0
3890 && remote_address_size < (sizeof (ULONGEST) * 8))
3891 {
3892 /* Only create a mask when that mask can safely be constructed
3893 in a ULONGEST variable. */
3894 ULONGEST mask = 1;
3895 mask = (mask << remote_address_size) - 1;
3896 addr &= mask;
3897 }
3898 return addr;
3899 }
3900
3901 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
3902 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
3903 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
3904 (which may be more than *OUT_LEN due to escape characters). The
3905 total number of bytes in the output buffer will be at most
3906 OUT_MAXLEN. */
3907
3908 static int
3909 remote_escape_output (const gdb_byte *buffer, int len,
3910 gdb_byte *out_buf, int *out_len,
3911 int out_maxlen)
3912 {
3913 int input_index, output_index;
3914
3915 output_index = 0;
3916 for (input_index = 0; input_index < len; input_index++)
3917 {
3918 gdb_byte b = buffer[input_index];
3919
3920 if (b == '$' || b == '#' || b == '}')
3921 {
3922 /* These must be escaped. */
3923 if (output_index + 2 > out_maxlen)
3924 break;
3925 out_buf[output_index++] = '}';
3926 out_buf[output_index++] = b ^ 0x20;
3927 }
3928 else
3929 {
3930 if (output_index + 1 > out_maxlen)
3931 break;
3932 out_buf[output_index++] = b;
3933 }
3934 }
3935
3936 *out_len = input_index;
3937 return output_index;
3938 }
3939
3940 /* Convert BUFFER, escaped data LEN bytes long, into binary data
3941 in OUT_BUF. Return the number of bytes written to OUT_BUF.
3942 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
3943
3944 This function reverses remote_escape_output. It allows more
3945 escaped characters than that function does, in particular because
3946 '*' must be escaped to avoid the run-length encoding processing
3947 in reading packets. */
3948
3949 static int
3950 remote_unescape_input (const gdb_byte *buffer, int len,
3951 gdb_byte *out_buf, int out_maxlen)
3952 {
3953 int input_index, output_index;
3954 int escaped;
3955
3956 output_index = 0;
3957 escaped = 0;
3958 for (input_index = 0; input_index < len; input_index++)
3959 {
3960 gdb_byte b = buffer[input_index];
3961
3962 if (output_index + 1 > out_maxlen)
3963 {
3964 warning (_("Received too much data from remote target;"
3965 " ignoring overflow."));
3966 return output_index;
3967 }
3968
3969 if (escaped)
3970 {
3971 out_buf[output_index++] = b ^ 0x20;
3972 escaped = 0;
3973 }
3974 else if (b == '}')
3975 escaped = 1;
3976 else
3977 out_buf[output_index++] = b;
3978 }
3979
3980 if (escaped)
3981 error (_("Unmatched escape character in target response."));
3982
3983 return output_index;
3984 }
3985
3986 /* Determine whether the remote target supports binary downloading.
3987 This is accomplished by sending a no-op memory write of zero length
3988 to the target at the specified address. It does not suffice to send
3989 the whole packet, since many stubs strip the eighth bit and
3990 subsequently compute a wrong checksum, which causes real havoc with
3991 remote_write_bytes.
3992
3993 NOTE: This can still lose if the serial line is not eight-bit
3994 clean. In cases like this, the user should clear "remote
3995 X-packet". */
3996
3997 static void
3998 check_binary_download (CORE_ADDR addr)
3999 {
4000 struct remote_state *rs = get_remote_state ();
4001
4002 switch (remote_protocol_packets[PACKET_X].support)
4003 {
4004 case PACKET_DISABLE:
4005 break;
4006 case PACKET_ENABLE:
4007 break;
4008 case PACKET_SUPPORT_UNKNOWN:
4009 {
4010 char *p;
4011
4012 p = rs->buf;
4013 *p++ = 'X';
4014 p += hexnumstr (p, (ULONGEST) addr);
4015 *p++ = ',';
4016 p += hexnumstr (p, (ULONGEST) 0);
4017 *p++ = ':';
4018 *p = '\0';
4019
4020 putpkt_binary (rs->buf, (int) (p - rs->buf));
4021 getpkt (&rs->buf, &rs->buf_size, 0);
4022
4023 if (rs->buf[0] == '\0')
4024 {
4025 if (remote_debug)
4026 fprintf_unfiltered (gdb_stdlog,
4027 "binary downloading NOT suppported by target\n");
4028 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4029 }
4030 else
4031 {
4032 if (remote_debug)
4033 fprintf_unfiltered (gdb_stdlog,
4034 "binary downloading suppported by target\n");
4035 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4036 }
4037 break;
4038 }
4039 }
4040 }
4041
4042 /* Write memory data directly to the remote machine.
4043 This does not inform the data cache; the data cache uses this.
4044 HEADER is the starting part of the packet.
4045 MEMADDR is the address in the remote memory space.
4046 MYADDR is the address of the buffer in our space.
4047 LEN is the number of bytes.
4048 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4049 should send data as binary ('X'), or hex-encoded ('M').
4050
4051 The function creates packet of the form
4052 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4053
4054 where encoding of <DATA> is termined by PACKET_FORMAT.
4055
4056 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4057 are omitted.
4058
4059 Returns the number of bytes transferred, or 0 (setting errno) for
4060 error. Only transfer a single packet. */
4061
4062 static int
4063 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4064 const gdb_byte *myaddr, int len,
4065 char packet_format, int use_length)
4066 {
4067 struct remote_state *rs = get_remote_state ();
4068 char *p;
4069 char *plen = NULL;
4070 int plenlen = 0;
4071 int todo;
4072 int nr_bytes;
4073 int payload_size;
4074 int payload_length;
4075 int header_length;
4076
4077 if (packet_format != 'X' && packet_format != 'M')
4078 internal_error (__FILE__, __LINE__,
4079 "remote_write_bytes_aux: bad packet format");
4080
4081 /* Should this be the selected frame? */
4082 gdbarch_remote_translate_xfer_address (current_gdbarch,
4083 current_regcache,
4084 memaddr, len,
4085 &memaddr, &len);
4086
4087 if (len <= 0)
4088 return 0;
4089
4090 payload_size = get_memory_write_packet_size ();
4091
4092 /* The packet buffer will be large enough for the payload;
4093 get_memory_packet_size ensures this. */
4094 rs->buf[0] = '\0';
4095
4096 /* Compute the size of the actual payload by subtracting out the
4097 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4098 */
4099 payload_size -= strlen ("$,:#NN");
4100 if (!use_length)
4101 /* The comma won't be used. */
4102 payload_size += 1;
4103 header_length = strlen (header);
4104 payload_size -= header_length;
4105 payload_size -= hexnumlen (memaddr);
4106
4107 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4108
4109 strcat (rs->buf, header);
4110 p = rs->buf + strlen (header);
4111
4112 /* Compute a best guess of the number of bytes actually transfered. */
4113 if (packet_format == 'X')
4114 {
4115 /* Best guess at number of bytes that will fit. */
4116 todo = min (len, payload_size);
4117 if (use_length)
4118 payload_size -= hexnumlen (todo);
4119 todo = min (todo, payload_size);
4120 }
4121 else
4122 {
4123 /* Num bytes that will fit. */
4124 todo = min (len, payload_size / 2);
4125 if (use_length)
4126 payload_size -= hexnumlen (todo);
4127 todo = min (todo, payload_size / 2);
4128 }
4129
4130 if (todo <= 0)
4131 internal_error (__FILE__, __LINE__,
4132 _("minumum packet size too small to write data"));
4133
4134 /* If we already need another packet, then try to align the end
4135 of this packet to a useful boundary. */
4136 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4137 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4138
4139 /* Append "<memaddr>". */
4140 memaddr = remote_address_masked (memaddr);
4141 p += hexnumstr (p, (ULONGEST) memaddr);
4142
4143 if (use_length)
4144 {
4145 /* Append ",". */
4146 *p++ = ',';
4147
4148 /* Append <len>. Retain the location/size of <len>. It may need to
4149 be adjusted once the packet body has been created. */
4150 plen = p;
4151 plenlen = hexnumstr (p, (ULONGEST) todo);
4152 p += plenlen;
4153 }
4154
4155 /* Append ":". */
4156 *p++ = ':';
4157 *p = '\0';
4158
4159 /* Append the packet body. */
4160 if (packet_format == 'X')
4161 {
4162 /* Binary mode. Send target system values byte by byte, in
4163 increasing byte addresses. Only escape certain critical
4164 characters. */
4165 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4166 payload_size);
4167
4168 /* If not all TODO bytes fit, then we'll need another packet. Make
4169 a second try to keep the end of the packet aligned. Don't do
4170 this if the packet is tiny. */
4171 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4172 {
4173 int new_nr_bytes;
4174
4175 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4176 - memaddr);
4177 if (new_nr_bytes != nr_bytes)
4178 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4179 p, &nr_bytes,
4180 payload_size);
4181 }
4182
4183 p += payload_length;
4184 if (use_length && nr_bytes < todo)
4185 {
4186 /* Escape chars have filled up the buffer prematurely,
4187 and we have actually sent fewer bytes than planned.
4188 Fix-up the length field of the packet. Use the same
4189 number of characters as before. */
4190 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4191 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4192 }
4193 }
4194 else
4195 {
4196 /* Normal mode: Send target system values byte by byte, in
4197 increasing byte addresses. Each byte is encoded as a two hex
4198 value. */
4199 nr_bytes = bin2hex (myaddr, p, todo);
4200 p += 2 * nr_bytes;
4201 }
4202
4203 putpkt_binary (rs->buf, (int) (p - rs->buf));
4204 getpkt (&rs->buf, &rs->buf_size, 0);
4205
4206 if (rs->buf[0] == 'E')
4207 {
4208 /* There is no correspondance between what the remote protocol
4209 uses for errors and errno codes. We would like a cleaner way
4210 of representing errors (big enough to include errno codes,
4211 bfd_error codes, and others). But for now just return EIO. */
4212 errno = EIO;
4213 return 0;
4214 }
4215
4216 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4217 fewer bytes than we'd planned. */
4218 return nr_bytes;
4219 }
4220
4221 /* Write memory data directly to the remote machine.
4222 This does not inform the data cache; the data cache uses this.
4223 MEMADDR is the address in the remote memory space.
4224 MYADDR is the address of the buffer in our space.
4225 LEN is the number of bytes.
4226
4227 Returns number of bytes transferred, or 0 (setting errno) for
4228 error. Only transfer a single packet. */
4229
4230 int
4231 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4232 {
4233 char *packet_format = 0;
4234
4235 /* Check whether the target supports binary download. */
4236 check_binary_download (memaddr);
4237
4238 switch (remote_protocol_packets[PACKET_X].support)
4239 {
4240 case PACKET_ENABLE:
4241 packet_format = "X";
4242 break;
4243 case PACKET_DISABLE:
4244 packet_format = "M";
4245 break;
4246 case PACKET_SUPPORT_UNKNOWN:
4247 internal_error (__FILE__, __LINE__,
4248 _("remote_write_bytes: bad internal state"));
4249 default:
4250 internal_error (__FILE__, __LINE__, _("bad switch"));
4251 }
4252
4253 return remote_write_bytes_aux (packet_format,
4254 memaddr, myaddr, len, packet_format[0], 1);
4255 }
4256
4257 /* Read memory data directly from the remote machine.
4258 This does not use the data cache; the data cache uses this.
4259 MEMADDR is the address in the remote memory space.
4260 MYADDR is the address of the buffer in our space.
4261 LEN is the number of bytes.
4262
4263 Returns number of bytes transferred, or 0 for error. */
4264
4265 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4266 remote targets) shouldn't attempt to read the entire buffer.
4267 Instead it should read a single packet worth of data and then
4268 return the byte size of that packet to the caller. The caller (its
4269 caller and its callers caller ;-) already contains code for
4270 handling partial reads. */
4271
4272 int
4273 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4274 {
4275 struct remote_state *rs = get_remote_state ();
4276 int max_buf_size; /* Max size of packet output buffer. */
4277 int origlen;
4278
4279 /* Should this be the selected frame? */
4280 gdbarch_remote_translate_xfer_address (current_gdbarch,
4281 current_regcache,
4282 memaddr, len,
4283 &memaddr, &len);
4284
4285 if (len <= 0)
4286 return 0;
4287
4288 max_buf_size = get_memory_read_packet_size ();
4289 /* The packet buffer will be large enough for the payload;
4290 get_memory_packet_size ensures this. */
4291
4292 origlen = len;
4293 while (len > 0)
4294 {
4295 char *p;
4296 int todo;
4297 int i;
4298
4299 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4300
4301 /* construct "m"<memaddr>","<len>" */
4302 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4303 memaddr = remote_address_masked (memaddr);
4304 p = rs->buf;
4305 *p++ = 'm';
4306 p += hexnumstr (p, (ULONGEST) memaddr);
4307 *p++ = ',';
4308 p += hexnumstr (p, (ULONGEST) todo);
4309 *p = '\0';
4310
4311 putpkt (rs->buf);
4312 getpkt (&rs->buf, &rs->buf_size, 0);
4313
4314 if (rs->buf[0] == 'E'
4315 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4316 && rs->buf[3] == '\0')
4317 {
4318 /* There is no correspondance between what the remote
4319 protocol uses for errors and errno codes. We would like
4320 a cleaner way of representing errors (big enough to
4321 include errno codes, bfd_error codes, and others). But
4322 for now just return EIO. */
4323 errno = EIO;
4324 return 0;
4325 }
4326
4327 /* Reply describes memory byte by byte,
4328 each byte encoded as two hex characters. */
4329
4330 p = rs->buf;
4331 if ((i = hex2bin (p, myaddr, todo)) < todo)
4332 {
4333 /* Reply is short. This means that we were able to read
4334 only part of what we wanted to. */
4335 return i + (origlen - len);
4336 }
4337 myaddr += todo;
4338 memaddr += todo;
4339 len -= todo;
4340 }
4341 return origlen;
4342 }
4343 \f
4344 /* Read or write LEN bytes from inferior memory at MEMADDR,
4345 transferring to or from debugger address BUFFER. Write to inferior
4346 if SHOULD_WRITE is nonzero. Returns length of data written or
4347 read; 0 for error. TARGET is unused. */
4348
4349 static int
4350 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4351 int should_write, struct mem_attrib *attrib,
4352 struct target_ops *target)
4353 {
4354 int res;
4355
4356 if (should_write)
4357 res = remote_write_bytes (mem_addr, buffer, mem_len);
4358 else
4359 res = remote_read_bytes (mem_addr, buffer, mem_len);
4360
4361 return res;
4362 }
4363
4364 /* Sends a packet with content determined by the printf format string
4365 FORMAT and the remaining arguments, then gets the reply. Returns
4366 whether the packet was a success, a failure, or unknown. */
4367
4368 enum packet_result
4369 remote_send_printf (const char *format, ...)
4370 {
4371 struct remote_state *rs = get_remote_state ();
4372 int max_size = get_remote_packet_size ();
4373
4374 va_list ap;
4375 va_start (ap, format);
4376
4377 rs->buf[0] = '\0';
4378 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4379 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4380
4381 if (putpkt (rs->buf) < 0)
4382 error (_("Communication problem with target."));
4383
4384 rs->buf[0] = '\0';
4385 getpkt (&rs->buf, &rs->buf_size, 0);
4386
4387 return packet_check_result (rs->buf);
4388 }
4389
4390 static void
4391 restore_remote_timeout (void *p)
4392 {
4393 int value = *(int *)p;
4394 remote_timeout = value;
4395 }
4396
4397 /* Flash writing can take quite some time. We'll set
4398 effectively infinite timeout for flash operations.
4399 In future, we'll need to decide on a better approach. */
4400 static const int remote_flash_timeout = 1000;
4401
4402 static void
4403 remote_flash_erase (struct target_ops *ops,
4404 ULONGEST address, LONGEST length)
4405 {
4406 int saved_remote_timeout = remote_timeout;
4407 enum packet_result ret;
4408
4409 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4410 &saved_remote_timeout);
4411 remote_timeout = remote_flash_timeout;
4412
4413 ret = remote_send_printf ("vFlashErase:%s,%s",
4414 paddr (address),
4415 phex (length, 4));
4416 switch (ret)
4417 {
4418 case PACKET_UNKNOWN:
4419 error (_("Remote target does not support flash erase"));
4420 case PACKET_ERROR:
4421 error (_("Error erasing flash with vFlashErase packet"));
4422 default:
4423 break;
4424 }
4425
4426 do_cleanups (back_to);
4427 }
4428
4429 static LONGEST
4430 remote_flash_write (struct target_ops *ops,
4431 ULONGEST address, LONGEST length,
4432 const gdb_byte *data)
4433 {
4434 int saved_remote_timeout = remote_timeout;
4435 int ret;
4436 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4437 &saved_remote_timeout);
4438
4439 remote_timeout = remote_flash_timeout;
4440 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4441 do_cleanups (back_to);
4442
4443 return ret;
4444 }
4445
4446 static void
4447 remote_flash_done (struct target_ops *ops)
4448 {
4449 int saved_remote_timeout = remote_timeout;
4450 int ret;
4451 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4452 &saved_remote_timeout);
4453
4454 remote_timeout = remote_flash_timeout;
4455 ret = remote_send_printf ("vFlashDone");
4456 do_cleanups (back_to);
4457
4458 switch (ret)
4459 {
4460 case PACKET_UNKNOWN:
4461 error (_("Remote target does not support vFlashDone"));
4462 case PACKET_ERROR:
4463 error (_("Error finishing flash operation"));
4464 default:
4465 break;
4466 }
4467 }
4468
4469 static void
4470 remote_files_info (struct target_ops *ignore)
4471 {
4472 puts_filtered ("Debugging a target over a serial line.\n");
4473 }
4474 \f
4475 /* Stuff for dealing with the packets which are part of this protocol.
4476 See comment at top of file for details. */
4477
4478 /* Read a single character from the remote end. */
4479
4480 static int
4481 readchar (int timeout)
4482 {
4483 int ch;
4484
4485 ch = serial_readchar (remote_desc, timeout);
4486
4487 if (ch >= 0)
4488 return ch;
4489
4490 switch ((enum serial_rc) ch)
4491 {
4492 case SERIAL_EOF:
4493 target_mourn_inferior ();
4494 error (_("Remote connection closed"));
4495 /* no return */
4496 case SERIAL_ERROR:
4497 perror_with_name (_("Remote communication error"));
4498 /* no return */
4499 case SERIAL_TIMEOUT:
4500 break;
4501 }
4502 return ch;
4503 }
4504
4505 /* Send the command in *BUF to the remote machine, and read the reply
4506 into *BUF. Report an error if we get an error reply. Resize
4507 *BUF using xrealloc if necessary to hold the result, and update
4508 *SIZEOF_BUF. */
4509
4510 static void
4511 remote_send (char **buf,
4512 long *sizeof_buf)
4513 {
4514 putpkt (*buf);
4515 getpkt (buf, sizeof_buf, 0);
4516
4517 if ((*buf)[0] == 'E')
4518 error (_("Remote failure reply: %s"), *buf);
4519 }
4520
4521 /* Display a null-terminated packet on stdout, for debugging, using C
4522 string notation. */
4523
4524 static void
4525 print_packet (char *buf)
4526 {
4527 puts_filtered ("\"");
4528 fputstr_filtered (buf, '"', gdb_stdout);
4529 puts_filtered ("\"");
4530 }
4531
4532 int
4533 putpkt (char *buf)
4534 {
4535 return putpkt_binary (buf, strlen (buf));
4536 }
4537
4538 /* Send a packet to the remote machine, with error checking. The data
4539 of the packet is in BUF. The string in BUF can be at most
4540 get_remote_packet_size () - 5 to account for the $, # and checksum,
4541 and for a possible /0 if we are debugging (remote_debug) and want
4542 to print the sent packet as a string. */
4543
4544 static int
4545 putpkt_binary (char *buf, int cnt)
4546 {
4547 int i;
4548 unsigned char csum = 0;
4549 char *buf2 = alloca (cnt + 6);
4550
4551 int ch;
4552 int tcount = 0;
4553 char *p;
4554
4555 /* Copy the packet into buffer BUF2, encapsulating it
4556 and giving it a checksum. */
4557
4558 p = buf2;
4559 *p++ = '$';
4560
4561 for (i = 0; i < cnt; i++)
4562 {
4563 csum += buf[i];
4564 *p++ = buf[i];
4565 }
4566 *p++ = '#';
4567 *p++ = tohex ((csum >> 4) & 0xf);
4568 *p++ = tohex (csum & 0xf);
4569
4570 /* Send it over and over until we get a positive ack. */
4571
4572 while (1)
4573 {
4574 int started_error_output = 0;
4575
4576 if (remote_debug)
4577 {
4578 *p = '\0';
4579 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4580 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4581 fprintf_unfiltered (gdb_stdlog, "...");
4582 gdb_flush (gdb_stdlog);
4583 }
4584 if (serial_write (remote_desc, buf2, p - buf2))
4585 perror_with_name (_("putpkt: write failed"));
4586
4587 /* Read until either a timeout occurs (-2) or '+' is read. */
4588 while (1)
4589 {
4590 ch = readchar (remote_timeout);
4591
4592 if (remote_debug)
4593 {
4594 switch (ch)
4595 {
4596 case '+':
4597 case '-':
4598 case SERIAL_TIMEOUT:
4599 case '$':
4600 if (started_error_output)
4601 {
4602 putchar_unfiltered ('\n');
4603 started_error_output = 0;
4604 }
4605 }
4606 }
4607
4608 switch (ch)
4609 {
4610 case '+':
4611 if (remote_debug)
4612 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4613 return 1;
4614 case '-':
4615 if (remote_debug)
4616 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4617 case SERIAL_TIMEOUT:
4618 tcount++;
4619 if (tcount > 3)
4620 return 0;
4621 break; /* Retransmit buffer. */
4622 case '$':
4623 {
4624 if (remote_debug)
4625 fprintf_unfiltered (gdb_stdlog,
4626 "Packet instead of Ack, ignoring it\n");
4627 /* It's probably an old response sent because an ACK
4628 was lost. Gobble up the packet and ack it so it
4629 doesn't get retransmitted when we resend this
4630 packet. */
4631 skip_frame ();
4632 serial_write (remote_desc, "+", 1);
4633 continue; /* Now, go look for +. */
4634 }
4635 default:
4636 if (remote_debug)
4637 {
4638 if (!started_error_output)
4639 {
4640 started_error_output = 1;
4641 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4642 }
4643 fputc_unfiltered (ch & 0177, gdb_stdlog);
4644 }
4645 continue;
4646 }
4647 break; /* Here to retransmit. */
4648 }
4649
4650 #if 0
4651 /* This is wrong. If doing a long backtrace, the user should be
4652 able to get out next time we call QUIT, without anything as
4653 violent as interrupt_query. If we want to provide a way out of
4654 here without getting to the next QUIT, it should be based on
4655 hitting ^C twice as in remote_wait. */
4656 if (quit_flag)
4657 {
4658 quit_flag = 0;
4659 interrupt_query ();
4660 }
4661 #endif
4662 }
4663 }
4664
4665 /* Come here after finding the start of a frame when we expected an
4666 ack. Do our best to discard the rest of this packet. */
4667
4668 static void
4669 skip_frame (void)
4670 {
4671 int c;
4672
4673 while (1)
4674 {
4675 c = readchar (remote_timeout);
4676 switch (c)
4677 {
4678 case SERIAL_TIMEOUT:
4679 /* Nothing we can do. */
4680 return;
4681 case '#':
4682 /* Discard the two bytes of checksum and stop. */
4683 c = readchar (remote_timeout);
4684 if (c >= 0)
4685 c = readchar (remote_timeout);
4686
4687 return;
4688 case '*': /* Run length encoding. */
4689 /* Discard the repeat count. */
4690 c = readchar (remote_timeout);
4691 if (c < 0)
4692 return;
4693 break;
4694 default:
4695 /* A regular character. */
4696 break;
4697 }
4698 }
4699 }
4700
4701 /* Come here after finding the start of the frame. Collect the rest
4702 into *BUF, verifying the checksum, length, and handling run-length
4703 compression. NUL terminate the buffer. If there is not enough room,
4704 expand *BUF using xrealloc.
4705
4706 Returns -1 on error, number of characters in buffer (ignoring the
4707 trailing NULL) on success. (could be extended to return one of the
4708 SERIAL status indications). */
4709
4710 static long
4711 read_frame (char **buf_p,
4712 long *sizeof_buf)
4713 {
4714 unsigned char csum;
4715 long bc;
4716 int c;
4717 char *buf = *buf_p;
4718
4719 csum = 0;
4720 bc = 0;
4721
4722 while (1)
4723 {
4724 c = readchar (remote_timeout);
4725 switch (c)
4726 {
4727 case SERIAL_TIMEOUT:
4728 if (remote_debug)
4729 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4730 return -1;
4731 case '$':
4732 if (remote_debug)
4733 fputs_filtered ("Saw new packet start in middle of old one\n",
4734 gdb_stdlog);
4735 return -1; /* Start a new packet, count retries. */
4736 case '#':
4737 {
4738 unsigned char pktcsum;
4739 int check_0 = 0;
4740 int check_1 = 0;
4741
4742 buf[bc] = '\0';
4743
4744 check_0 = readchar (remote_timeout);
4745 if (check_0 >= 0)
4746 check_1 = readchar (remote_timeout);
4747
4748 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4749 {
4750 if (remote_debug)
4751 fputs_filtered ("Timeout in checksum, retrying\n",
4752 gdb_stdlog);
4753 return -1;
4754 }
4755 else if (check_0 < 0 || check_1 < 0)
4756 {
4757 if (remote_debug)
4758 fputs_filtered ("Communication error in checksum\n",
4759 gdb_stdlog);
4760 return -1;
4761 }
4762
4763 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4764 if (csum == pktcsum)
4765 return bc;
4766
4767 if (remote_debug)
4768 {
4769 fprintf_filtered (gdb_stdlog,
4770 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4771 pktcsum, csum);
4772 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4773 fputs_filtered ("\n", gdb_stdlog);
4774 }
4775 /* Number of characters in buffer ignoring trailing
4776 NULL. */
4777 return -1;
4778 }
4779 case '*': /* Run length encoding. */
4780 {
4781 int repeat;
4782 csum += c;
4783
4784 c = readchar (remote_timeout);
4785 csum += c;
4786 repeat = c - ' ' + 3; /* Compute repeat count. */
4787
4788 /* The character before ``*'' is repeated. */
4789
4790 if (repeat > 0 && repeat <= 255 && bc > 0)
4791 {
4792 if (bc + repeat - 1 >= *sizeof_buf - 1)
4793 {
4794 /* Make some more room in the buffer. */
4795 *sizeof_buf += repeat;
4796 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4797 buf = *buf_p;
4798 }
4799
4800 memset (&buf[bc], buf[bc - 1], repeat);
4801 bc += repeat;
4802 continue;
4803 }
4804
4805 buf[bc] = '\0';
4806 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4807 return -1;
4808 }
4809 default:
4810 if (bc >= *sizeof_buf - 1)
4811 {
4812 /* Make some more room in the buffer. */
4813 *sizeof_buf *= 2;
4814 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4815 buf = *buf_p;
4816 }
4817
4818 buf[bc++] = c;
4819 csum += c;
4820 continue;
4821 }
4822 }
4823 }
4824
4825 /* Read a packet from the remote machine, with error checking, and
4826 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4827 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4828 rather than timing out; this is used (in synchronous mode) to wait
4829 for a target that is is executing user code to stop. */
4830 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4831 don't have to change all the calls to getpkt to deal with the
4832 return value, because at the moment I don't know what the right
4833 thing to do it for those. */
4834 void
4835 getpkt (char **buf,
4836 long *sizeof_buf,
4837 int forever)
4838 {
4839 int timed_out;
4840
4841 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4842 }
4843
4844
4845 /* Read a packet from the remote machine, with error checking, and
4846 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4847 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4848 rather than timing out; this is used (in synchronous mode) to wait
4849 for a target that is is executing user code to stop. If FOREVER ==
4850 0, this function is allowed to time out gracefully and return an
4851 indication of this to the caller. Otherwise return the number
4852 of bytes read. */
4853 static int
4854 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4855 {
4856 int c;
4857 int tries;
4858 int timeout;
4859 int val;
4860
4861 strcpy (*buf, "timeout");
4862
4863 if (forever)
4864 {
4865 timeout = watchdog > 0 ? watchdog : -1;
4866 }
4867
4868 else
4869 timeout = remote_timeout;
4870
4871 #define MAX_TRIES 3
4872
4873 for (tries = 1; tries <= MAX_TRIES; tries++)
4874 {
4875 /* This can loop forever if the remote side sends us characters
4876 continuously, but if it pauses, we'll get a zero from
4877 readchar because of timeout. Then we'll count that as a
4878 retry. */
4879
4880 /* Note that we will only wait forever prior to the start of a
4881 packet. After that, we expect characters to arrive at a
4882 brisk pace. They should show up within remote_timeout
4883 intervals. */
4884
4885 do
4886 {
4887 c = readchar (timeout);
4888
4889 if (c == SERIAL_TIMEOUT)
4890 {
4891 if (forever) /* Watchdog went off? Kill the target. */
4892 {
4893 QUIT;
4894 target_mourn_inferior ();
4895 error (_("Watchdog has expired. Target detached."));
4896 }
4897 if (remote_debug)
4898 fputs_filtered ("Timed out.\n", gdb_stdlog);
4899 goto retry;
4900 }
4901 }
4902 while (c != '$');
4903
4904 /* We've found the start of a packet, now collect the data. */
4905
4906 val = read_frame (buf, sizeof_buf);
4907
4908 if (val >= 0)
4909 {
4910 if (remote_debug)
4911 {
4912 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4913 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
4914 fprintf_unfiltered (gdb_stdlog, "\n");
4915 }
4916 serial_write (remote_desc, "+", 1);
4917 return val;
4918 }
4919
4920 /* Try the whole thing again. */
4921 retry:
4922 serial_write (remote_desc, "-", 1);
4923 }
4924
4925 /* We have tried hard enough, and just can't receive the packet.
4926 Give up. */
4927
4928 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
4929 serial_write (remote_desc, "+", 1);
4930 return -1;
4931 }
4932 \f
4933 static void
4934 remote_kill (void)
4935 {
4936 /* For some mysterious reason, wait_for_inferior calls kill instead of
4937 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4938 if (kill_kludge)
4939 {
4940 kill_kludge = 0;
4941 target_mourn_inferior ();
4942 return;
4943 }
4944
4945 /* Use catch_errors so the user can quit from gdb even when we aren't on
4946 speaking terms with the remote system. */
4947 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4948
4949 /* Don't wait for it to die. I'm not really sure it matters whether
4950 we do or not. For the existing stubs, kill is a noop. */
4951 target_mourn_inferior ();
4952 }
4953
4954 /* Async version of remote_kill. */
4955 static void
4956 remote_async_kill (void)
4957 {
4958 /* Unregister the file descriptor from the event loop. */
4959 if (target_is_async_p ())
4960 serial_async (remote_desc, NULL, 0);
4961
4962 /* For some mysterious reason, wait_for_inferior calls kill instead of
4963 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4964 if (kill_kludge)
4965 {
4966 kill_kludge = 0;
4967 target_mourn_inferior ();
4968 return;
4969 }
4970
4971 /* Use catch_errors so the user can quit from gdb even when we
4972 aren't on speaking terms with the remote system. */
4973 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4974
4975 /* Don't wait for it to die. I'm not really sure it matters whether
4976 we do or not. For the existing stubs, kill is a noop. */
4977 target_mourn_inferior ();
4978 }
4979
4980 static void
4981 remote_mourn (void)
4982 {
4983 remote_mourn_1 (&remote_ops);
4984 }
4985
4986 static void
4987 remote_async_mourn (void)
4988 {
4989 remote_mourn_1 (&remote_async_ops);
4990 }
4991
4992 static void
4993 extended_remote_mourn (void)
4994 {
4995 /* We do _not_ want to mourn the target like this; this will
4996 remove the extended remote target from the target stack,
4997 and the next time the user says "run" it'll fail.
4998
4999 FIXME: What is the right thing to do here? */
5000 #if 0
5001 remote_mourn_1 (&extended_remote_ops);
5002 #endif
5003 }
5004
5005 /* Worker function for remote_mourn. */
5006 static void
5007 remote_mourn_1 (struct target_ops *target)
5008 {
5009 unpush_target (target);
5010 generic_mourn_inferior ();
5011 }
5012
5013 /* In the extended protocol we want to be able to do things like
5014 "run" and have them basically work as expected. So we need
5015 a special create_inferior function.
5016
5017 FIXME: One day add support for changing the exec file
5018 we're debugging, arguments and an environment. */
5019
5020 static void
5021 extended_remote_create_inferior (char *exec_file, char *args,
5022 char **env, int from_tty)
5023 {
5024 /* Rip out the breakpoints; we'll reinsert them after restarting
5025 the remote server. */
5026 remove_breakpoints ();
5027
5028 /* Now restart the remote server. */
5029 extended_remote_restart ();
5030
5031 /* NOTE: We don't need to recheck for a target description here; but
5032 if we gain the ability to switch the remote executable we may
5033 need to, if for instance we are running a process which requested
5034 different emulated hardware from the operating system. A
5035 concrete example of this is ARM GNU/Linux, where some binaries
5036 will have a legacy FPA coprocessor emulated and others may have
5037 access to a hardware VFP unit. */
5038
5039 /* Now put the breakpoints back in. This way we're safe if the
5040 restart function works via a unix fork on the remote side. */
5041 insert_breakpoints ();
5042
5043 /* Clean up from the last time we were running. */
5044 clear_proceed_status ();
5045 }
5046
5047 /* Async version of extended_remote_create_inferior. */
5048 static void
5049 extended_remote_async_create_inferior (char *exec_file, char *args,
5050 char **env, int from_tty)
5051 {
5052 /* Rip out the breakpoints; we'll reinsert them after restarting
5053 the remote server. */
5054 remove_breakpoints ();
5055
5056 /* If running asynchronously, register the target file descriptor
5057 with the event loop. */
5058 if (target_can_async_p ())
5059 target_async (inferior_event_handler, 0);
5060
5061 /* Now restart the remote server. */
5062 extended_remote_restart ();
5063
5064 /* NOTE: We don't need to recheck for a target description here; but
5065 if we gain the ability to switch the remote executable we may
5066 need to, if for instance we are running a process which requested
5067 different emulated hardware from the operating system. A
5068 concrete example of this is ARM GNU/Linux, where some binaries
5069 will have a legacy FPA coprocessor emulated and others may have
5070 access to a hardware VFP unit. */
5071
5072 /* Now put the breakpoints back in. This way we're safe if the
5073 restart function works via a unix fork on the remote side. */
5074 insert_breakpoints ();
5075
5076 /* Clean up from the last time we were running. */
5077 clear_proceed_status ();
5078 }
5079 \f
5080
5081 /* On some machines, e.g. 68k, we may use a different breakpoint
5082 instruction than other targets; in those use
5083 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
5084 Also, bi-endian targets may define
5085 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
5086 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
5087 just call the standard routines that are in mem-break.c. */
5088
5089 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
5090 target should use an identical BREAKPOINT_FROM_PC. As for native,
5091 the ARCH-OS-tdep.c code can override the default. */
5092
5093 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
5094 #define DEPRECATED_REMOTE_BREAKPOINT
5095 #endif
5096
5097 #ifdef DEPRECATED_REMOTE_BREAKPOINT
5098
5099 /* If the target isn't bi-endian, just pretend it is. */
5100 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
5101 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
5102 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
5103 #endif
5104
5105 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
5106 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
5107
5108 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
5109
5110 /* Insert a breakpoint. On targets that have software breakpoint
5111 support, we ask the remote target to do the work; on targets
5112 which don't, we insert a traditional memory breakpoint. */
5113
5114 static int
5115 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5116 {
5117 CORE_ADDR addr = bp_tgt->placed_address;
5118 struct remote_state *rs = get_remote_state ();
5119 #ifdef DEPRECATED_REMOTE_BREAKPOINT
5120 int val;
5121 #endif
5122
5123 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5124 If it succeeds, then set the support to PACKET_ENABLE. If it
5125 fails, and the user has explicitly requested the Z support then
5126 report an error, otherwise, mark it disabled and go on. */
5127
5128 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5129 {
5130 char *p = rs->buf;
5131
5132 *(p++) = 'Z';
5133 *(p++) = '0';
5134 *(p++) = ',';
5135 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5136 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5137 p += hexnumstr (p, addr);
5138 sprintf (p, ",%d", bp_tgt->placed_size);
5139
5140 putpkt (rs->buf);
5141 getpkt (&rs->buf, &rs->buf_size, 0);
5142
5143 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5144 {
5145 case PACKET_ERROR:
5146 return -1;
5147 case PACKET_OK:
5148 return 0;
5149 case PACKET_UNKNOWN:
5150 break;
5151 }
5152 }
5153
5154 #ifdef DEPRECATED_REMOTE_BREAKPOINT
5155 bp_tgt->placed_size = bp_tgt->shadow_len = sizeof big_break_insn;
5156 val = target_read_memory (addr, bp_tgt->shadow_contents, bp_tgt->shadow_len);
5157
5158 if (val == 0)
5159 {
5160 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5161 val = target_write_memory (addr, (char *) big_break_insn,
5162 sizeof big_break_insn);
5163 else
5164 val = target_write_memory (addr, (char *) little_break_insn,
5165 sizeof little_break_insn);
5166 }
5167
5168 return val;
5169 #else
5170 return memory_insert_breakpoint (bp_tgt);
5171 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
5172 }
5173
5174 static int
5175 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5176 {
5177 CORE_ADDR addr = bp_tgt->placed_address;
5178 struct remote_state *rs = get_remote_state ();
5179 int bp_size;
5180
5181 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5182 {
5183 char *p = rs->buf;
5184
5185 *(p++) = 'z';
5186 *(p++) = '0';
5187 *(p++) = ',';
5188
5189 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5190 p += hexnumstr (p, addr);
5191 sprintf (p, ",%d", bp_tgt->placed_size);
5192
5193 putpkt (rs->buf);
5194 getpkt (&rs->buf, &rs->buf_size, 0);
5195
5196 return (rs->buf[0] == 'E');
5197 }
5198
5199 #ifdef DEPRECATED_REMOTE_BREAKPOINT
5200 return target_write_memory (bp_tgt->placed_address, bp_tgt->shadow_contents,
5201 bp_tgt->shadow_len);
5202 #else
5203 return memory_remove_breakpoint (bp_tgt);
5204 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
5205 }
5206
5207 static int
5208 watchpoint_to_Z_packet (int type)
5209 {
5210 switch (type)
5211 {
5212 case hw_write:
5213 return Z_PACKET_WRITE_WP;
5214 break;
5215 case hw_read:
5216 return Z_PACKET_READ_WP;
5217 break;
5218 case hw_access:
5219 return Z_PACKET_ACCESS_WP;
5220 break;
5221 default:
5222 internal_error (__FILE__, __LINE__,
5223 _("hw_bp_to_z: bad watchpoint type %d"), type);
5224 }
5225 }
5226
5227 static int
5228 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5229 {
5230 struct remote_state *rs = get_remote_state ();
5231 char *p;
5232 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5233
5234 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5235 return -1;
5236
5237 sprintf (rs->buf, "Z%x,", packet);
5238 p = strchr (rs->buf, '\0');
5239 addr = remote_address_masked (addr);
5240 p += hexnumstr (p, (ULONGEST) addr);
5241 sprintf (p, ",%x", len);
5242
5243 putpkt (rs->buf);
5244 getpkt (&rs->buf, &rs->buf_size, 0);
5245
5246 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5247 {
5248 case PACKET_ERROR:
5249 case PACKET_UNKNOWN:
5250 return -1;
5251 case PACKET_OK:
5252 return 0;
5253 }
5254 internal_error (__FILE__, __LINE__,
5255 _("remote_insert_watchpoint: reached end of function"));
5256 }
5257
5258
5259 static int
5260 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5261 {
5262 struct remote_state *rs = get_remote_state ();
5263 char *p;
5264 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5265
5266 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5267 return -1;
5268
5269 sprintf (rs->buf, "z%x,", packet);
5270 p = strchr (rs->buf, '\0');
5271 addr = remote_address_masked (addr);
5272 p += hexnumstr (p, (ULONGEST) addr);
5273 sprintf (p, ",%x", len);
5274 putpkt (rs->buf);
5275 getpkt (&rs->buf, &rs->buf_size, 0);
5276
5277 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5278 {
5279 case PACKET_ERROR:
5280 case PACKET_UNKNOWN:
5281 return -1;
5282 case PACKET_OK:
5283 return 0;
5284 }
5285 internal_error (__FILE__, __LINE__,
5286 _("remote_remove_watchpoint: reached end of function"));
5287 }
5288
5289
5290 int remote_hw_watchpoint_limit = -1;
5291 int remote_hw_breakpoint_limit = -1;
5292
5293 static int
5294 remote_check_watch_resources (int type, int cnt, int ot)
5295 {
5296 if (type == bp_hardware_breakpoint)
5297 {
5298 if (remote_hw_breakpoint_limit == 0)
5299 return 0;
5300 else if (remote_hw_breakpoint_limit < 0)
5301 return 1;
5302 else if (cnt <= remote_hw_breakpoint_limit)
5303 return 1;
5304 }
5305 else
5306 {
5307 if (remote_hw_watchpoint_limit == 0)
5308 return 0;
5309 else if (remote_hw_watchpoint_limit < 0)
5310 return 1;
5311 else if (ot)
5312 return -1;
5313 else if (cnt <= remote_hw_watchpoint_limit)
5314 return 1;
5315 }
5316 return -1;
5317 }
5318
5319 static int
5320 remote_stopped_by_watchpoint (void)
5321 {
5322 return remote_stopped_by_watchpoint_p;
5323 }
5324
5325 extern int stepped_after_stopped_by_watchpoint;
5326
5327 static int
5328 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5329 {
5330 int rc = 0;
5331 if (remote_stopped_by_watchpoint ()
5332 || stepped_after_stopped_by_watchpoint)
5333 {
5334 *addr_p = remote_watch_data_address;
5335 rc = 1;
5336 }
5337
5338 return rc;
5339 }
5340
5341
5342 static int
5343 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5344 {
5345 CORE_ADDR addr;
5346 struct remote_state *rs = get_remote_state ();
5347 char *p = rs->buf;
5348
5349 /* The length field should be set to the size of a breakpoint
5350 instruction, even though we aren't inserting one ourselves. */
5351
5352 BREAKPOINT_FROM_PC (&bp_tgt->placed_address, &bp_tgt->placed_size);
5353
5354 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5355 return -1;
5356
5357 *(p++) = 'Z';
5358 *(p++) = '1';
5359 *(p++) = ',';
5360
5361 addr = remote_address_masked (bp_tgt->placed_address);
5362 p += hexnumstr (p, (ULONGEST) addr);
5363 sprintf (p, ",%x", bp_tgt->placed_size);
5364
5365 putpkt (rs->buf);
5366 getpkt (&rs->buf, &rs->buf_size, 0);
5367
5368 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5369 {
5370 case PACKET_ERROR:
5371 case PACKET_UNKNOWN:
5372 return -1;
5373 case PACKET_OK:
5374 return 0;
5375 }
5376 internal_error (__FILE__, __LINE__,
5377 _("remote_insert_hw_breakpoint: reached end of function"));
5378 }
5379
5380
5381 static int
5382 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5383 {
5384 CORE_ADDR addr;
5385 struct remote_state *rs = get_remote_state ();
5386 char *p = rs->buf;
5387
5388 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5389 return -1;
5390
5391 *(p++) = 'z';
5392 *(p++) = '1';
5393 *(p++) = ',';
5394
5395 addr = remote_address_masked (bp_tgt->placed_address);
5396 p += hexnumstr (p, (ULONGEST) addr);
5397 sprintf (p, ",%x", bp_tgt->placed_size);
5398
5399 putpkt (rs->buf);
5400 getpkt (&rs->buf, &rs->buf_size, 0);
5401
5402 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5403 {
5404 case PACKET_ERROR:
5405 case PACKET_UNKNOWN:
5406 return -1;
5407 case PACKET_OK:
5408 return 0;
5409 }
5410 internal_error (__FILE__, __LINE__,
5411 _("remote_remove_hw_breakpoint: reached end of function"));
5412 }
5413
5414 /* Some targets are only capable of doing downloads, and afterwards
5415 they switch to the remote serial protocol. This function provides
5416 a clean way to get from the download target to the remote target.
5417 It's basically just a wrapper so that we don't have to expose any
5418 of the internal workings of remote.c.
5419
5420 Prior to calling this routine, you should shutdown the current
5421 target code, else you will get the "A program is being debugged
5422 already..." message. Usually a call to pop_target() suffices. */
5423
5424 void
5425 push_remote_target (char *name, int from_tty)
5426 {
5427 printf_filtered (_("Switching to remote protocol\n"));
5428 remote_open (name, from_tty);
5429 }
5430
5431 /* Table used by the crc32 function to calcuate the checksum. */
5432
5433 static unsigned long crc32_table[256] =
5434 {0, 0};
5435
5436 static unsigned long
5437 crc32 (unsigned char *buf, int len, unsigned int crc)
5438 {
5439 if (!crc32_table[1])
5440 {
5441 /* Initialize the CRC table and the decoding table. */
5442 int i, j;
5443 unsigned int c;
5444
5445 for (i = 0; i < 256; i++)
5446 {
5447 for (c = i << 24, j = 8; j > 0; --j)
5448 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5449 crc32_table[i] = c;
5450 }
5451 }
5452
5453 while (len--)
5454 {
5455 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5456 buf++;
5457 }
5458 return crc;
5459 }
5460
5461 /* compare-sections command
5462
5463 With no arguments, compares each loadable section in the exec bfd
5464 with the same memory range on the target, and reports mismatches.
5465 Useful for verifying the image on the target against the exec file.
5466 Depends on the target understanding the new "qCRC:" request. */
5467
5468 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5469 target method (target verify memory) and generic version of the
5470 actual command. This will allow other high-level code (especially
5471 generic_load()) to make use of this target functionality. */
5472
5473 static void
5474 compare_sections_command (char *args, int from_tty)
5475 {
5476 struct remote_state *rs = get_remote_state ();
5477 asection *s;
5478 unsigned long host_crc, target_crc;
5479 extern bfd *exec_bfd;
5480 struct cleanup *old_chain;
5481 char *tmp;
5482 char *sectdata;
5483 const char *sectname;
5484 bfd_size_type size;
5485 bfd_vma lma;
5486 int matched = 0;
5487 int mismatched = 0;
5488
5489 if (!exec_bfd)
5490 error (_("command cannot be used without an exec file"));
5491 if (!current_target.to_shortname ||
5492 strcmp (current_target.to_shortname, "remote") != 0)
5493 error (_("command can only be used with remote target"));
5494
5495 for (s = exec_bfd->sections; s; s = s->next)
5496 {
5497 if (!(s->flags & SEC_LOAD))
5498 continue; /* skip non-loadable section */
5499
5500 size = bfd_get_section_size (s);
5501 if (size == 0)
5502 continue; /* skip zero-length section */
5503
5504 sectname = bfd_get_section_name (exec_bfd, s);
5505 if (args && strcmp (args, sectname) != 0)
5506 continue; /* not the section selected by user */
5507
5508 matched = 1; /* do this section */
5509 lma = s->lma;
5510 /* FIXME: assumes lma can fit into long. */
5511 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5512 (long) lma, (long) size);
5513 putpkt (rs->buf);
5514
5515 /* Be clever; compute the host_crc before waiting for target
5516 reply. */
5517 sectdata = xmalloc (size);
5518 old_chain = make_cleanup (xfree, sectdata);
5519 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5520 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5521
5522 getpkt (&rs->buf, &rs->buf_size, 0);
5523 if (rs->buf[0] == 'E')
5524 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5525 sectname, paddr (lma), paddr (lma + size));
5526 if (rs->buf[0] != 'C')
5527 error (_("remote target does not support this operation"));
5528
5529 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5530 target_crc = target_crc * 16 + fromhex (*tmp);
5531
5532 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5533 sectname, paddr (lma), paddr (lma + size));
5534 if (host_crc == target_crc)
5535 printf_filtered ("matched.\n");
5536 else
5537 {
5538 printf_filtered ("MIS-MATCHED!\n");
5539 mismatched++;
5540 }
5541
5542 do_cleanups (old_chain);
5543 }
5544 if (mismatched > 0)
5545 warning (_("One or more sections of the remote executable does not match\n\
5546 the loaded file\n"));
5547 if (args && !matched)
5548 printf_filtered (_("No loaded section named '%s'.\n"), args);
5549 }
5550
5551 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5552 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5553 number of bytes read is returned, or 0 for EOF, or -1 for error.
5554 The number of bytes read may be less than LEN without indicating an
5555 EOF. PACKET is checked and updated to indicate whether the remote
5556 target supports this object. */
5557
5558 static LONGEST
5559 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5560 const char *annex,
5561 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5562 struct packet_config *packet)
5563 {
5564 static char *finished_object;
5565 static char *finished_annex;
5566 static ULONGEST finished_offset;
5567
5568 struct remote_state *rs = get_remote_state ();
5569 unsigned int total = 0;
5570 LONGEST i, n, packet_len;
5571
5572 if (packet->support == PACKET_DISABLE)
5573 return -1;
5574
5575 /* Check whether we've cached an end-of-object packet that matches
5576 this request. */
5577 if (finished_object)
5578 {
5579 if (strcmp (object_name, finished_object) == 0
5580 && strcmp (annex ? annex : "", finished_annex) == 0
5581 && offset == finished_offset)
5582 return 0;
5583
5584 /* Otherwise, we're now reading something different. Discard
5585 the cache. */
5586 xfree (finished_object);
5587 xfree (finished_annex);
5588 finished_object = NULL;
5589 finished_annex = NULL;
5590 }
5591
5592 /* Request only enough to fit in a single packet. The actual data
5593 may not, since we don't know how much of it will need to be escaped;
5594 the target is free to respond with slightly less data. We subtract
5595 five to account for the response type and the protocol frame. */
5596 n = min (get_remote_packet_size () - 5, len);
5597 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5598 object_name, annex ? annex : "",
5599 phex_nz (offset, sizeof offset),
5600 phex_nz (n, sizeof n));
5601 i = putpkt (rs->buf);
5602 if (i < 0)
5603 return -1;
5604
5605 rs->buf[0] = '\0';
5606 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5607 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5608 return -1;
5609
5610 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5611 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5612
5613 /* 'm' means there is (or at least might be) more data after this
5614 batch. That does not make sense unless there's at least one byte
5615 of data in this reply. */
5616 if (rs->buf[0] == 'm' && packet_len == 1)
5617 error (_("Remote qXfer reply contained no data."));
5618
5619 /* Got some data. */
5620 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5621
5622 /* 'l' is an EOF marker, possibly including a final block of data,
5623 or possibly empty. Record it to bypass the next read, if one is
5624 issued. */
5625 if (rs->buf[0] == 'l')
5626 {
5627 finished_object = xstrdup (object_name);
5628 finished_annex = xstrdup (annex ? annex : "");
5629 finished_offset = offset + i;
5630 }
5631
5632 return i;
5633 }
5634
5635 static LONGEST
5636 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5637 const char *annex, gdb_byte *readbuf,
5638 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5639 {
5640 struct remote_state *rs = get_remote_state ();
5641 int i;
5642 char *p2;
5643 char query_type;
5644
5645 /* Handle memory using the standard memory routines. */
5646 if (object == TARGET_OBJECT_MEMORY)
5647 {
5648 int xfered;
5649 errno = 0;
5650
5651 if (writebuf != NULL)
5652 xfered = remote_write_bytes (offset, writebuf, len);
5653 else
5654 xfered = remote_read_bytes (offset, readbuf, len);
5655
5656 if (xfered > 0)
5657 return xfered;
5658 else if (xfered == 0 && errno == 0)
5659 return 0;
5660 else
5661 return -1;
5662 }
5663
5664 /* Only handle flash writes. */
5665 if (writebuf != NULL)
5666 {
5667 LONGEST xfered;
5668
5669 switch (object)
5670 {
5671 case TARGET_OBJECT_FLASH:
5672 xfered = remote_flash_write (ops, offset, len, writebuf);
5673
5674 if (xfered > 0)
5675 return xfered;
5676 else if (xfered == 0 && errno == 0)
5677 return 0;
5678 else
5679 return -1;
5680
5681 default:
5682 return -1;
5683 }
5684 }
5685
5686 /* Map pre-existing objects onto letters. DO NOT do this for new
5687 objects!!! Instead specify new query packets. */
5688 switch (object)
5689 {
5690 case TARGET_OBJECT_AVR:
5691 query_type = 'R';
5692 break;
5693
5694 case TARGET_OBJECT_AUXV:
5695 gdb_assert (annex == NULL);
5696 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5697 &remote_protocol_packets[PACKET_qXfer_auxv]);
5698
5699 case TARGET_OBJECT_MEMORY_MAP:
5700 gdb_assert (annex == NULL);
5701 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5702 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5703
5704 default:
5705 return -1;
5706 }
5707
5708 /* Note: a zero OFFSET and LEN can be used to query the minimum
5709 buffer size. */
5710 if (offset == 0 && len == 0)
5711 return (get_remote_packet_size ());
5712 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5713 large enough let the caller deal with it. */
5714 if (len < get_remote_packet_size ())
5715 return -1;
5716 len = get_remote_packet_size ();
5717
5718 /* Except for querying the minimum buffer size, target must be open. */
5719 if (!remote_desc)
5720 error (_("remote query is only available after target open"));
5721
5722 gdb_assert (annex != NULL);
5723 gdb_assert (readbuf != NULL);
5724
5725 p2 = rs->buf;
5726 *p2++ = 'q';
5727 *p2++ = query_type;
5728
5729 /* We used one buffer char for the remote protocol q command and
5730 another for the query type. As the remote protocol encapsulation
5731 uses 4 chars plus one extra in case we are debugging
5732 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5733 string. */
5734 i = 0;
5735 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5736 {
5737 /* Bad caller may have sent forbidden characters. */
5738 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5739 *p2++ = annex[i];
5740 i++;
5741 }
5742 *p2 = '\0';
5743 gdb_assert (annex[i] == '\0');
5744
5745 i = putpkt (rs->buf);
5746 if (i < 0)
5747 return i;
5748
5749 getpkt (&rs->buf, &rs->buf_size, 0);
5750 strcpy ((char *) readbuf, rs->buf);
5751
5752 return strlen ((char *) readbuf);
5753 }
5754
5755 static void
5756 remote_rcmd (char *command,
5757 struct ui_file *outbuf)
5758 {
5759 struct remote_state *rs = get_remote_state ();
5760 char *p = rs->buf;
5761
5762 if (!remote_desc)
5763 error (_("remote rcmd is only available after target open"));
5764
5765 /* Send a NULL command across as an empty command. */
5766 if (command == NULL)
5767 command = "";
5768
5769 /* The query prefix. */
5770 strcpy (rs->buf, "qRcmd,");
5771 p = strchr (rs->buf, '\0');
5772
5773 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5774 error (_("\"monitor\" command ``%s'' is too long."), command);
5775
5776 /* Encode the actual command. */
5777 bin2hex ((gdb_byte *) command, p, 0);
5778
5779 if (putpkt (rs->buf) < 0)
5780 error (_("Communication problem with target."));
5781
5782 /* get/display the response */
5783 while (1)
5784 {
5785 char *buf;
5786
5787 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5788 rs->buf[0] = '\0';
5789 getpkt (&rs->buf, &rs->buf_size, 0);
5790 buf = rs->buf;
5791 if (buf[0] == '\0')
5792 error (_("Target does not support this command."));
5793 if (buf[0] == 'O' && buf[1] != 'K')
5794 {
5795 remote_console_output (buf + 1); /* 'O' message from stub. */
5796 continue;
5797 }
5798 if (strcmp (buf, "OK") == 0)
5799 break;
5800 if (strlen (buf) == 3 && buf[0] == 'E'
5801 && isdigit (buf[1]) && isdigit (buf[2]))
5802 {
5803 error (_("Protocol error with Rcmd"));
5804 }
5805 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5806 {
5807 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5808 fputc_unfiltered (c, outbuf);
5809 }
5810 break;
5811 }
5812 }
5813
5814 static VEC(mem_region_s) *
5815 remote_memory_map (struct target_ops *ops)
5816 {
5817 VEC(mem_region_s) *result = NULL;
5818 char *text = target_read_stralloc (&current_target,
5819 TARGET_OBJECT_MEMORY_MAP, NULL);
5820
5821 if (text)
5822 {
5823 struct cleanup *back_to = make_cleanup (xfree, text);
5824 result = parse_memory_map (text);
5825 do_cleanups (back_to);
5826 }
5827
5828 return result;
5829 }
5830
5831 static void
5832 packet_command (char *args, int from_tty)
5833 {
5834 struct remote_state *rs = get_remote_state ();
5835
5836 if (!remote_desc)
5837 error (_("command can only be used with remote target"));
5838
5839 if (!args)
5840 error (_("remote-packet command requires packet text as argument"));
5841
5842 puts_filtered ("sending: ");
5843 print_packet (args);
5844 puts_filtered ("\n");
5845 putpkt (args);
5846
5847 getpkt (&rs->buf, &rs->buf_size, 0);
5848 puts_filtered ("received: ");
5849 print_packet (rs->buf);
5850 puts_filtered ("\n");
5851 }
5852
5853 #if 0
5854 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
5855
5856 static void display_thread_info (struct gdb_ext_thread_info *info);
5857
5858 static void threadset_test_cmd (char *cmd, int tty);
5859
5860 static void threadalive_test (char *cmd, int tty);
5861
5862 static void threadlist_test_cmd (char *cmd, int tty);
5863
5864 int get_and_display_threadinfo (threadref *ref);
5865
5866 static void threadinfo_test_cmd (char *cmd, int tty);
5867
5868 static int thread_display_step (threadref *ref, void *context);
5869
5870 static void threadlist_update_test_cmd (char *cmd, int tty);
5871
5872 static void init_remote_threadtests (void);
5873
5874 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
5875
5876 static void
5877 threadset_test_cmd (char *cmd, int tty)
5878 {
5879 int sample_thread = SAMPLE_THREAD;
5880
5881 printf_filtered (_("Remote threadset test\n"));
5882 set_thread (sample_thread, 1);
5883 }
5884
5885
5886 static void
5887 threadalive_test (char *cmd, int tty)
5888 {
5889 int sample_thread = SAMPLE_THREAD;
5890
5891 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5892 printf_filtered ("PASS: Thread alive test\n");
5893 else
5894 printf_filtered ("FAIL: Thread alive test\n");
5895 }
5896
5897 void output_threadid (char *title, threadref *ref);
5898
5899 void
5900 output_threadid (char *title, threadref *ref)
5901 {
5902 char hexid[20];
5903
5904 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
5905 hexid[16] = 0;
5906 printf_filtered ("%s %s\n", title, (&hexid[0]));
5907 }
5908
5909 static void
5910 threadlist_test_cmd (char *cmd, int tty)
5911 {
5912 int startflag = 1;
5913 threadref nextthread;
5914 int done, result_count;
5915 threadref threadlist[3];
5916
5917 printf_filtered ("Remote Threadlist test\n");
5918 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5919 &result_count, &threadlist[0]))
5920 printf_filtered ("FAIL: threadlist test\n");
5921 else
5922 {
5923 threadref *scan = threadlist;
5924 threadref *limit = scan + result_count;
5925
5926 while (scan < limit)
5927 output_threadid (" thread ", scan++);
5928 }
5929 }
5930
5931 void
5932 display_thread_info (struct gdb_ext_thread_info *info)
5933 {
5934 output_threadid ("Threadid: ", &info->threadid);
5935 printf_filtered ("Name: %s\n ", info->shortname);
5936 printf_filtered ("State: %s\n", info->display);
5937 printf_filtered ("other: %s\n\n", info->more_display);
5938 }
5939
5940 int
5941 get_and_display_threadinfo (threadref *ref)
5942 {
5943 int result;
5944 int set;
5945 struct gdb_ext_thread_info threadinfo;
5946
5947 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5948 | TAG_MOREDISPLAY | TAG_DISPLAY;
5949 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5950 display_thread_info (&threadinfo);
5951 return result;
5952 }
5953
5954 static void
5955 threadinfo_test_cmd (char *cmd, int tty)
5956 {
5957 int athread = SAMPLE_THREAD;
5958 threadref thread;
5959 int set;
5960
5961 int_to_threadref (&thread, athread);
5962 printf_filtered ("Remote Threadinfo test\n");
5963 if (!get_and_display_threadinfo (&thread))
5964 printf_filtered ("FAIL cannot get thread info\n");
5965 }
5966
5967 static int
5968 thread_display_step (threadref *ref, void *context)
5969 {
5970 /* output_threadid(" threadstep ",ref); *//* simple test */
5971 return get_and_display_threadinfo (ref);
5972 }
5973
5974 static void
5975 threadlist_update_test_cmd (char *cmd, int tty)
5976 {
5977 printf_filtered ("Remote Threadlist update test\n");
5978 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5979 }
5980
5981 static void
5982 init_remote_threadtests (void)
5983 {
5984 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
5985 Fetch and print the remote list of thread identifiers, one pkt only"));
5986 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5987 _("Fetch and display info about one thread"));
5988 add_com ("tset", class_obscure, threadset_test_cmd,
5989 _("Test setting to a different thread"));
5990 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5991 _("Iterate through updating all remote thread info"));
5992 add_com ("talive", class_obscure, threadalive_test,
5993 _(" Remote thread alive test "));
5994 }
5995
5996 #endif /* 0 */
5997
5998 /* Convert a thread ID to a string. Returns the string in a static
5999 buffer. */
6000
6001 static char *
6002 remote_pid_to_str (ptid_t ptid)
6003 {
6004 static char buf[32];
6005
6006 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6007 return buf;
6008 }
6009
6010 /* Get the address of the thread local variable in OBJFILE which is
6011 stored at OFFSET within the thread local storage for thread PTID. */
6012
6013 static CORE_ADDR
6014 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6015 {
6016 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6017 {
6018 struct remote_state *rs = get_remote_state ();
6019 char *p = rs->buf;
6020 enum packet_result result;
6021
6022 strcpy (p, "qGetTLSAddr:");
6023 p += strlen (p);
6024 p += hexnumstr (p, PIDGET (ptid));
6025 *p++ = ',';
6026 p += hexnumstr (p, offset);
6027 *p++ = ',';
6028 p += hexnumstr (p, lm);
6029 *p++ = '\0';
6030
6031 putpkt (rs->buf);
6032 getpkt (&rs->buf, &rs->buf_size, 0);
6033 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6034 if (result == PACKET_OK)
6035 {
6036 ULONGEST result;
6037
6038 unpack_varlen_hex (rs->buf, &result);
6039 return result;
6040 }
6041 else if (result == PACKET_UNKNOWN)
6042 throw_error (TLS_GENERIC_ERROR,
6043 _("Remote target doesn't support qGetTLSAddr packet"));
6044 else
6045 throw_error (TLS_GENERIC_ERROR,
6046 _("Remote target failed to process qGetTLSAddr request"));
6047 }
6048 else
6049 throw_error (TLS_GENERIC_ERROR,
6050 _("TLS not supported or disabled on this target"));
6051 /* Not reached. */
6052 return 0;
6053 }
6054
6055 static void
6056 init_remote_ops (void)
6057 {
6058 remote_ops.to_shortname = "remote";
6059 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6060 remote_ops.to_doc =
6061 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6062 Specify the serial device it is connected to\n\
6063 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6064 remote_ops.to_open = remote_open;
6065 remote_ops.to_close = remote_close;
6066 remote_ops.to_detach = remote_detach;
6067 remote_ops.to_disconnect = remote_disconnect;
6068 remote_ops.to_resume = remote_resume;
6069 remote_ops.to_wait = remote_wait;
6070 remote_ops.to_fetch_registers = remote_fetch_registers;
6071 remote_ops.to_store_registers = remote_store_registers;
6072 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6073 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6074 remote_ops.to_files_info = remote_files_info;
6075 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6076 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6077 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6078 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6079 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6080 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6081 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6082 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6083 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6084 remote_ops.to_kill = remote_kill;
6085 remote_ops.to_load = generic_load;
6086 remote_ops.to_mourn_inferior = remote_mourn;
6087 remote_ops.to_thread_alive = remote_thread_alive;
6088 remote_ops.to_find_new_threads = remote_threads_info;
6089 remote_ops.to_pid_to_str = remote_pid_to_str;
6090 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6091 remote_ops.to_stop = remote_stop;
6092 remote_ops.to_xfer_partial = remote_xfer_partial;
6093 remote_ops.to_rcmd = remote_rcmd;
6094 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6095 remote_ops.to_stratum = process_stratum;
6096 remote_ops.to_has_all_memory = 1;
6097 remote_ops.to_has_memory = 1;
6098 remote_ops.to_has_stack = 1;
6099 remote_ops.to_has_registers = 1;
6100 remote_ops.to_has_execution = 1;
6101 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6102 remote_ops.to_magic = OPS_MAGIC;
6103 remote_ops.to_memory_map = remote_memory_map;
6104 remote_ops.to_flash_erase = remote_flash_erase;
6105 remote_ops.to_flash_done = remote_flash_done;
6106 }
6107
6108 /* Set up the extended remote vector by making a copy of the standard
6109 remote vector and adding to it. */
6110
6111 static void
6112 init_extended_remote_ops (void)
6113 {
6114 extended_remote_ops = remote_ops;
6115
6116 extended_remote_ops.to_shortname = "extended-remote";
6117 extended_remote_ops.to_longname =
6118 "Extended remote serial target in gdb-specific protocol";
6119 extended_remote_ops.to_doc =
6120 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6121 Specify the serial device it is connected to (e.g. /dev/ttya).",
6122 extended_remote_ops.to_open = extended_remote_open;
6123 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6124 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6125 }
6126
6127 static int
6128 remote_can_async_p (void)
6129 {
6130 /* We're async whenever the serial device is. */
6131 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6132 }
6133
6134 static int
6135 remote_is_async_p (void)
6136 {
6137 /* We're async whenever the serial device is. */
6138 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6139 }
6140
6141 /* Pass the SERIAL event on and up to the client. One day this code
6142 will be able to delay notifying the client of an event until the
6143 point where an entire packet has been received. */
6144
6145 static void (*async_client_callback) (enum inferior_event_type event_type,
6146 void *context);
6147 static void *async_client_context;
6148 static serial_event_ftype remote_async_serial_handler;
6149
6150 static void
6151 remote_async_serial_handler (struct serial *scb, void *context)
6152 {
6153 /* Don't propogate error information up to the client. Instead let
6154 the client find out about the error by querying the target. */
6155 async_client_callback (INF_REG_EVENT, async_client_context);
6156 }
6157
6158 static void
6159 remote_async (void (*callback) (enum inferior_event_type event_type,
6160 void *context), void *context)
6161 {
6162 if (current_target.to_async_mask_value == 0)
6163 internal_error (__FILE__, __LINE__,
6164 _("Calling remote_async when async is masked"));
6165
6166 if (callback != NULL)
6167 {
6168 serial_async (remote_desc, remote_async_serial_handler, NULL);
6169 async_client_callback = callback;
6170 async_client_context = context;
6171 }
6172 else
6173 serial_async (remote_desc, NULL, NULL);
6174 }
6175
6176 /* Target async and target extended-async.
6177
6178 This are temporary targets, until it is all tested. Eventually
6179 async support will be incorporated int the usual 'remote'
6180 target. */
6181
6182 static void
6183 init_remote_async_ops (void)
6184 {
6185 remote_async_ops.to_shortname = "async";
6186 remote_async_ops.to_longname =
6187 "Remote serial target in async version of the gdb-specific protocol";
6188 remote_async_ops.to_doc =
6189 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6190 Specify the serial device it is connected to (e.g. /dev/ttya).";
6191 remote_async_ops.to_open = remote_async_open;
6192 remote_async_ops.to_close = remote_close;
6193 remote_async_ops.to_detach = remote_detach;
6194 remote_async_ops.to_disconnect = remote_disconnect;
6195 remote_async_ops.to_resume = remote_async_resume;
6196 remote_async_ops.to_wait = remote_async_wait;
6197 remote_async_ops.to_fetch_registers = remote_fetch_registers;
6198 remote_async_ops.to_store_registers = remote_store_registers;
6199 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
6200 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
6201 remote_async_ops.to_files_info = remote_files_info;
6202 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
6203 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
6204 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6205 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6206 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6207 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
6208 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
6209 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6210 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
6211 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
6212 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
6213 remote_async_ops.to_kill = remote_async_kill;
6214 remote_async_ops.to_load = generic_load;
6215 remote_async_ops.to_mourn_inferior = remote_async_mourn;
6216 remote_async_ops.to_thread_alive = remote_thread_alive;
6217 remote_async_ops.to_find_new_threads = remote_threads_info;
6218 remote_async_ops.to_pid_to_str = remote_pid_to_str;
6219 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
6220 remote_async_ops.to_stop = remote_stop;
6221 remote_async_ops.to_xfer_partial = remote_xfer_partial;
6222 remote_async_ops.to_rcmd = remote_rcmd;
6223 remote_async_ops.to_stratum = process_stratum;
6224 remote_async_ops.to_has_all_memory = 1;
6225 remote_async_ops.to_has_memory = 1;
6226 remote_async_ops.to_has_stack = 1;
6227 remote_async_ops.to_has_registers = 1;
6228 remote_async_ops.to_has_execution = 1;
6229 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6230 remote_async_ops.to_can_async_p = remote_can_async_p;
6231 remote_async_ops.to_is_async_p = remote_is_async_p;
6232 remote_async_ops.to_async = remote_async;
6233 remote_async_ops.to_async_mask_value = 1;
6234 remote_async_ops.to_magic = OPS_MAGIC;
6235 remote_async_ops.to_memory_map = remote_memory_map;
6236 remote_async_ops.to_flash_erase = remote_flash_erase;
6237 remote_async_ops.to_flash_done = remote_flash_done;
6238 }
6239
6240 /* Set up the async extended remote vector by making a copy of the standard
6241 remote vector and adding to it. */
6242
6243 static void
6244 init_extended_async_remote_ops (void)
6245 {
6246 extended_async_remote_ops = remote_async_ops;
6247
6248 extended_async_remote_ops.to_shortname = "extended-async";
6249 extended_async_remote_ops.to_longname =
6250 "Extended remote serial target in async gdb-specific protocol";
6251 extended_async_remote_ops.to_doc =
6252 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6253 Specify the serial device it is connected to (e.g. /dev/ttya).",
6254 extended_async_remote_ops.to_open = extended_remote_async_open;
6255 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6256 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6257 }
6258
6259 static void
6260 set_remote_cmd (char *args, int from_tty)
6261 {
6262 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
6263 }
6264
6265 static void
6266 show_remote_cmd (char *args, int from_tty)
6267 {
6268 /* We can't just use cmd_show_list here, because we want to skip
6269 the redundant "show remote Z-packet" and the legacy aliases. */
6270 struct cleanup *showlist_chain;
6271 struct cmd_list_element *list = remote_show_cmdlist;
6272
6273 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
6274 for (; list != NULL; list = list->next)
6275 if (strcmp (list->name, "Z-packet") == 0)
6276 continue;
6277 else if (list->type == not_set_cmd)
6278 /* Alias commands are exactly like the original, except they
6279 don't have the normal type. */
6280 continue;
6281 else
6282 {
6283 struct cleanup *option_chain
6284 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
6285 ui_out_field_string (uiout, "name", list->name);
6286 ui_out_text (uiout, ": ");
6287 if (list->type == show_cmd)
6288 do_setshow_command ((char *) NULL, from_tty, list);
6289 else
6290 cmd_func (list, NULL, from_tty);
6291 /* Close the tuple. */
6292 do_cleanups (option_chain);
6293 }
6294
6295 /* Close the tuple. */
6296 do_cleanups (showlist_chain);
6297 }
6298
6299 static void
6300 build_remote_gdbarch_data (void)
6301 {
6302 remote_address_size = TARGET_ADDR_BIT;
6303 }
6304
6305 /* Saved pointer to previous owner of the new_objfile event. */
6306 static void (*remote_new_objfile_chain) (struct objfile *);
6307
6308 /* Function to be called whenever a new objfile (shlib) is detected. */
6309 static void
6310 remote_new_objfile (struct objfile *objfile)
6311 {
6312 if (remote_desc != 0) /* Have a remote connection. */
6313 {
6314 remote_check_symbols (objfile);
6315 }
6316 /* Call predecessor on chain, if any. */
6317 if (remote_new_objfile_chain)
6318 remote_new_objfile_chain (objfile);
6319 }
6320
6321 void
6322 _initialize_remote (void)
6323 {
6324 struct remote_state *rs;
6325
6326 /* architecture specific data */
6327 remote_gdbarch_data_handle =
6328 gdbarch_data_register_post_init (init_remote_state);
6329
6330 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6331 that the remote protocol has been initialized. */
6332 DEPRECATED_REGISTER_GDBARCH_SWAP (remote_address_size);
6333 deprecated_register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6334
6335 /* Initialize the per-target state. At the moment there is only one
6336 of these, not one per target. Only one target is active at a
6337 time. The default buffer size is unimportant; it will be expanded
6338 whenever a larger buffer is needed. */
6339 rs = get_remote_state_raw ();
6340 rs->buf_size = 400;
6341 rs->buf = xmalloc (rs->buf_size);
6342
6343 init_remote_ops ();
6344 add_target (&remote_ops);
6345
6346 init_extended_remote_ops ();
6347 add_target (&extended_remote_ops);
6348
6349 init_remote_async_ops ();
6350 add_target (&remote_async_ops);
6351
6352 init_extended_async_remote_ops ();
6353 add_target (&extended_async_remote_ops);
6354
6355 /* Hook into new objfile notification. */
6356 remote_new_objfile_chain = deprecated_target_new_objfile_hook;
6357 deprecated_target_new_objfile_hook = remote_new_objfile;
6358
6359 #if 0
6360 init_remote_threadtests ();
6361 #endif
6362
6363 /* set/show remote ... */
6364
6365 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
6366 Remote protocol specific variables\n\
6367 Configure various remote-protocol specific variables such as\n\
6368 the packets being used"),
6369 &remote_set_cmdlist, "set remote ",
6370 0 /* allow-unknown */, &setlist);
6371 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
6372 Remote protocol specific variables\n\
6373 Configure various remote-protocol specific variables such as\n\
6374 the packets being used"),
6375 &remote_show_cmdlist, "show remote ",
6376 0 /* allow-unknown */, &showlist);
6377
6378 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
6379 Compare section data on target to the exec file.\n\
6380 Argument is a single section name (default: all loaded sections)."),
6381 &cmdlist);
6382
6383 add_cmd ("packet", class_maintenance, packet_command, _("\
6384 Send an arbitrary packet to a remote target.\n\
6385 maintenance packet TEXT\n\
6386 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6387 this command sends the string TEXT to the inferior, and displays the\n\
6388 response packet. GDB supplies the initial `$' character, and the\n\
6389 terminating `#' character and checksum."),
6390 &maintenancelist);
6391
6392 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
6393 Set whether to send break if interrupted."), _("\
6394 Show whether to send break if interrupted."), _("\
6395 If set, a break, instead of a cntrl-c, is sent to the remote target."),
6396 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
6397 &setlist, &showlist);
6398
6399 /* Install commands for configuring memory read/write packets. */
6400
6401 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
6402 Set the maximum number of bytes per memory write packet (deprecated)."),
6403 &setlist);
6404 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
6405 Show the maximum number of bytes per memory write packet (deprecated)."),
6406 &showlist);
6407 add_cmd ("memory-write-packet-size", no_class,
6408 set_memory_write_packet_size, _("\
6409 Set the maximum number of bytes per memory-write packet.\n\
6410 Specify the number of bytes in a packet or 0 (zero) for the\n\
6411 default packet size. The actual limit is further reduced\n\
6412 dependent on the target. Specify ``fixed'' to disable the\n\
6413 further restriction and ``limit'' to enable that restriction."),
6414 &remote_set_cmdlist);
6415 add_cmd ("memory-read-packet-size", no_class,
6416 set_memory_read_packet_size, _("\
6417 Set the maximum number of bytes per memory-read packet.\n\
6418 Specify the number of bytes in a packet or 0 (zero) for the\n\
6419 default packet size. The actual limit is further reduced\n\
6420 dependent on the target. Specify ``fixed'' to disable the\n\
6421 further restriction and ``limit'' to enable that restriction."),
6422 &remote_set_cmdlist);
6423 add_cmd ("memory-write-packet-size", no_class,
6424 show_memory_write_packet_size,
6425 _("Show the maximum number of bytes per memory-write packet."),
6426 &remote_show_cmdlist);
6427 add_cmd ("memory-read-packet-size", no_class,
6428 show_memory_read_packet_size,
6429 _("Show the maximum number of bytes per memory-read packet."),
6430 &remote_show_cmdlist);
6431
6432 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
6433 &remote_hw_watchpoint_limit, _("\
6434 Set the maximum number of target hardware watchpoints."), _("\
6435 Show the maximum number of target hardware watchpoints."), _("\
6436 Specify a negative limit for unlimited."),
6437 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
6438 &remote_set_cmdlist, &remote_show_cmdlist);
6439 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
6440 &remote_hw_breakpoint_limit, _("\
6441 Set the maximum number of target hardware breakpoints."), _("\
6442 Show the maximum number of target hardware breakpoints."), _("\
6443 Specify a negative limit for unlimited."),
6444 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
6445 &remote_set_cmdlist, &remote_show_cmdlist);
6446
6447 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
6448 &remote_address_size, _("\
6449 Set the maximum size of the address (in bits) in a memory packet."), _("\
6450 Show the maximum size of the address (in bits) in a memory packet."), NULL,
6451 NULL,
6452 NULL, /* FIXME: i18n: */
6453 &setlist, &showlist);
6454
6455 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
6456 "X", "binary-download", 1);
6457
6458 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
6459 "vCont", "verbose-resume", 0);
6460
6461 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
6462 "QPassSignals", "pass-signals", 0);
6463
6464 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
6465 "qSymbol", "symbol-lookup", 0);
6466
6467 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
6468 "P", "set-register", 1);
6469
6470 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
6471 "p", "fetch-register", 1);
6472
6473 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
6474 "Z0", "software-breakpoint", 0);
6475
6476 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
6477 "Z1", "hardware-breakpoint", 0);
6478
6479 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
6480 "Z2", "write-watchpoint", 0);
6481
6482 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
6483 "Z3", "read-watchpoint", 0);
6484
6485 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
6486 "Z4", "access-watchpoint", 0);
6487
6488 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
6489 "qXfer:auxv:read", "read-aux-vector", 0);
6490
6491 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
6492 "qXfer:memory-map:read", "memory-map", 0);
6493
6494 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
6495 "qGetTLSAddr", "get-thread-local-storage-address",
6496 0);
6497
6498 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
6499 "qSupported", "supported-packets", 0);
6500
6501 /* Keep the old ``set remote Z-packet ...'' working. Each individual
6502 Z sub-packet has its own set and show commands, but users may
6503 have sets to this variable in their .gdbinit files (or in their
6504 documentation). */
6505 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6506 &remote_Z_packet_detect, _("\
6507 Set use of remote protocol `Z' packets"), _("\
6508 Show use of remote protocol `Z' packets "), _("\
6509 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
6510 packets."),
6511 set_remote_protocol_Z_packet_cmd,
6512 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
6513 &remote_set_cmdlist, &remote_show_cmdlist);
6514
6515 /* Eventually initialize fileio. See fileio.c */
6516 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6517 }