* defs.h (quit_flag): Don't declare.
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "gdb_assert.h"
40 #include "observer.h"
41 #include "solib.h"
42 #include "cli/cli-decode.h"
43 #include "cli/cli-setshow.h"
44 #include "target-descriptions.h"
45 #include "gdb_bfd.h"
46
47 #include <ctype.h>
48 #include <sys/time.h>
49
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include "inf-loop.h"
53
54 #include <signal.h>
55 #include "serial.h"
56
57 #include "gdbcore.h" /* for exec_bfd */
58
59 #include "remote-fileio.h"
60 #include "gdb/fileio.h"
61 #include "gdb_stat.h"
62 #include "xml-support.h"
63
64 #include "memory-map.h"
65
66 #include "tracepoint.h"
67 #include "ax.h"
68 #include "ax-gdb.h"
69 #include "agent.h"
70
71 /* Temp hacks for tracepoint encoding migration. */
72 static char *target_buf;
73 static long target_buf_size;
74
75 /* The size to align memory write packets, when practical. The protocol
76 does not guarantee any alignment, and gdb will generate short
77 writes and unaligned writes, but even as a best-effort attempt this
78 can improve bulk transfers. For instance, if a write is misaligned
79 relative to the target's data bus, the stub may need to make an extra
80 round trip fetching data from the target. This doesn't make a
81 huge difference, but it's easy to do, so we try to be helpful.
82
83 The alignment chosen is arbitrary; usually data bus width is
84 important here, not the possibly larger cache line size. */
85 enum { REMOTE_ALIGN_WRITES = 16 };
86
87 /* Prototypes for local functions. */
88 static void cleanup_sigint_signal_handler (void *dummy);
89 static void initialize_sigint_signal_handler (void);
90 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
91 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
92 int forever);
93
94 static void handle_remote_sigint (int);
95 static void handle_remote_sigint_twice (int);
96 static void async_remote_interrupt (gdb_client_data);
97 void async_remote_interrupt_twice (gdb_client_data);
98
99 static void remote_files_info (struct target_ops *ignore);
100
101 static void remote_prepare_to_store (struct regcache *regcache);
102
103 static void remote_open (char *name, int from_tty);
104
105 static void extended_remote_open (char *name, int from_tty);
106
107 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
108
109 static void remote_close (int quitting);
110
111 static void remote_mourn (struct target_ops *ops);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (struct target_ops *);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static void remote_kill (struct target_ops *ops);
124
125 static int tohex (int nib);
126
127 static int remote_can_async_p (void);
128
129 static int remote_is_async_p (void);
130
131 static void remote_async (void (*callback) (enum inferior_event_type event_type,
132 void *context), void *context);
133
134 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
135
136 static void remote_interrupt (int signo);
137
138 static void remote_interrupt_twice (int signo);
139
140 static void interrupt_query (void);
141
142 static void set_general_thread (struct ptid ptid);
143 static void set_continue_thread (struct ptid ptid);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (ptid_t);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static void compare_sections_command (char *, int);
172
173 static void packet_command (char *, int);
174
175 static int stub_unpack_int (char *buff, int fieldlength);
176
177 static ptid_t remote_current_thread (ptid_t oldptid);
178
179 static void remote_find_new_threads (void);
180
181 static void record_currthread (ptid_t currthread);
182
183 static int fromhex (int a);
184
185 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
186
187 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
188
189 static int putpkt_binary (char *buf, int cnt);
190
191 static void check_binary_download (CORE_ADDR addr);
192
193 struct packet_config;
194
195 static void show_packet_config_cmd (struct packet_config *config);
196
197 static void update_packet_config (struct packet_config *config);
198
199 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
200 struct cmd_list_element *c);
201
202 static void show_remote_protocol_packet_cmd (struct ui_file *file,
203 int from_tty,
204 struct cmd_list_element *c,
205 const char *value);
206
207 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
208 static ptid_t read_ptid (char *buf, char **obuf);
209
210 static void remote_set_permissions (void);
211
212 struct remote_state;
213 static int remote_get_trace_status (struct trace_status *ts);
214
215 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
216
217 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
218
219 static void remote_query_supported (void);
220
221 static void remote_check_symbols (struct objfile *objfile);
222
223 void _initialize_remote (void);
224
225 struct stop_reply;
226 static struct stop_reply *stop_reply_xmalloc (void);
227 static void stop_reply_xfree (struct stop_reply *);
228 static void do_stop_reply_xfree (void *arg);
229 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
230 static void push_stop_reply (struct stop_reply *);
231 static void remote_get_pending_stop_replies (void);
232 static void discard_pending_stop_replies (int pid);
233 static int peek_stop_reply (ptid_t ptid);
234
235 static void remote_async_inferior_event_handler (gdb_client_data);
236 static void remote_async_get_pending_events_handler (gdb_client_data);
237
238 static void remote_terminal_ours (void);
239
240 static int remote_read_description_p (struct target_ops *target);
241
242 static void remote_console_output (char *msg);
243
244 static int remote_supports_cond_breakpoints (void);
245
246 static int remote_can_run_breakpoint_commands (void);
247
248 /* The non-stop remote protocol provisions for one pending stop reply.
249 This is where we keep it until it is acknowledged. */
250
251 static struct stop_reply *pending_stop_reply = NULL;
252
253 /* For "remote". */
254
255 static struct cmd_list_element *remote_cmdlist;
256
257 /* For "set remote" and "show remote". */
258
259 static struct cmd_list_element *remote_set_cmdlist;
260 static struct cmd_list_element *remote_show_cmdlist;
261
262 /* Description of the remote protocol state for the currently
263 connected target. This is per-target state, and independent of the
264 selected architecture. */
265
266 struct remote_state
267 {
268 /* A buffer to use for incoming packets, and its current size. The
269 buffer is grown dynamically for larger incoming packets.
270 Outgoing packets may also be constructed in this buffer.
271 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
272 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
273 packets. */
274 char *buf;
275 long buf_size;
276
277 /* True if we're going through initial connection setup (finding out
278 about the remote side's threads, relocating symbols, etc.). */
279 int starting_up;
280
281 /* If we negotiated packet size explicitly (and thus can bypass
282 heuristics for the largest packet size that will not overflow
283 a buffer in the stub), this will be set to that packet size.
284 Otherwise zero, meaning to use the guessed size. */
285 long explicit_packet_size;
286
287 /* remote_wait is normally called when the target is running and
288 waits for a stop reply packet. But sometimes we need to call it
289 when the target is already stopped. We can send a "?" packet
290 and have remote_wait read the response. Or, if we already have
291 the response, we can stash it in BUF and tell remote_wait to
292 skip calling getpkt. This flag is set when BUF contains a
293 stop reply packet and the target is not waiting. */
294 int cached_wait_status;
295
296 /* True, if in no ack mode. That is, neither GDB nor the stub will
297 expect acks from each other. The connection is assumed to be
298 reliable. */
299 int noack_mode;
300
301 /* True if we're connected in extended remote mode. */
302 int extended;
303
304 /* True if the stub reported support for multi-process
305 extensions. */
306 int multi_process_aware;
307
308 /* True if we resumed the target and we're waiting for the target to
309 stop. In the mean time, we can't start another command/query.
310 The remote server wouldn't be ready to process it, so we'd
311 timeout waiting for a reply that would never come and eventually
312 we'd close the connection. This can happen in asynchronous mode
313 because we allow GDB commands while the target is running. */
314 int waiting_for_stop_reply;
315
316 /* True if the stub reports support for non-stop mode. */
317 int non_stop_aware;
318
319 /* True if the stub reports support for vCont;t. */
320 int support_vCont_t;
321
322 /* True if the stub reports support for conditional tracepoints. */
323 int cond_tracepoints;
324
325 /* True if the stub reports support for target-side breakpoint
326 conditions. */
327 int cond_breakpoints;
328
329 /* True if the stub reports support for target-side breakpoint
330 commands. */
331 int breakpoint_commands;
332
333 /* True if the stub reports support for fast tracepoints. */
334 int fast_tracepoints;
335
336 /* True if the stub reports support for static tracepoints. */
337 int static_tracepoints;
338
339 /* True if the stub reports support for installing tracepoint while
340 tracing. */
341 int install_in_trace;
342
343 /* True if the stub can continue running a trace while GDB is
344 disconnected. */
345 int disconnected_tracing;
346
347 /* True if the stub reports support for enabling and disabling
348 tracepoints while a trace experiment is running. */
349 int enable_disable_tracepoints;
350
351 /* True if the stub can collect strings using tracenz bytecode. */
352 int string_tracing;
353
354 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
355 responded to that. */
356 int ctrlc_pending_p;
357 };
358
359 /* Private data that we'll store in (struct thread_info)->private. */
360 struct private_thread_info
361 {
362 char *extra;
363 int core;
364 };
365
366 static void
367 free_private_thread_info (struct private_thread_info *info)
368 {
369 xfree (info->extra);
370 xfree (info);
371 }
372
373 /* Returns true if the multi-process extensions are in effect. */
374 static int
375 remote_multi_process_p (struct remote_state *rs)
376 {
377 return rs->multi_process_aware;
378 }
379
380 /* This data could be associated with a target, but we do not always
381 have access to the current target when we need it, so for now it is
382 static. This will be fine for as long as only one target is in use
383 at a time. */
384 static struct remote_state remote_state;
385
386 static struct remote_state *
387 get_remote_state_raw (void)
388 {
389 return &remote_state;
390 }
391
392 /* Description of the remote protocol for a given architecture. */
393
394 struct packet_reg
395 {
396 long offset; /* Offset into G packet. */
397 long regnum; /* GDB's internal register number. */
398 LONGEST pnum; /* Remote protocol register number. */
399 int in_g_packet; /* Always part of G packet. */
400 /* long size in bytes; == register_size (target_gdbarch, regnum);
401 at present. */
402 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
403 at present. */
404 };
405
406 struct remote_arch_state
407 {
408 /* Description of the remote protocol registers. */
409 long sizeof_g_packet;
410
411 /* Description of the remote protocol registers indexed by REGNUM
412 (making an array gdbarch_num_regs in size). */
413 struct packet_reg *regs;
414
415 /* This is the size (in chars) of the first response to the ``g''
416 packet. It is used as a heuristic when determining the maximum
417 size of memory-read and memory-write packets. A target will
418 typically only reserve a buffer large enough to hold the ``g''
419 packet. The size does not include packet overhead (headers and
420 trailers). */
421 long actual_register_packet_size;
422
423 /* This is the maximum size (in chars) of a non read/write packet.
424 It is also used as a cap on the size of read/write packets. */
425 long remote_packet_size;
426 };
427
428 long sizeof_pkt = 2000;
429
430 /* Utility: generate error from an incoming stub packet. */
431 static void
432 trace_error (char *buf)
433 {
434 if (*buf++ != 'E')
435 return; /* not an error msg */
436 switch (*buf)
437 {
438 case '1': /* malformed packet error */
439 if (*++buf == '0') /* general case: */
440 error (_("remote.c: error in outgoing packet."));
441 else
442 error (_("remote.c: error in outgoing packet at field #%ld."),
443 strtol (buf, NULL, 16));
444 case '2':
445 error (_("trace API error 0x%s."), ++buf);
446 default:
447 error (_("Target returns error code '%s'."), buf);
448 }
449 }
450
451 /* Utility: wait for reply from stub, while accepting "O" packets. */
452 static char *
453 remote_get_noisy_reply (char **buf_p,
454 long *sizeof_buf)
455 {
456 do /* Loop on reply from remote stub. */
457 {
458 char *buf;
459
460 QUIT; /* Allow user to bail out with ^C. */
461 getpkt (buf_p, sizeof_buf, 0);
462 buf = *buf_p;
463 if (buf[0] == 'E')
464 trace_error (buf);
465 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
466 {
467 ULONGEST ul;
468 CORE_ADDR from, to, org_to;
469 char *p, *pp;
470 int adjusted_size = 0;
471 volatile struct gdb_exception ex;
472
473 p = buf + strlen ("qRelocInsn:");
474 pp = unpack_varlen_hex (p, &ul);
475 if (*pp != ';')
476 error (_("invalid qRelocInsn packet: %s"), buf);
477 from = ul;
478
479 p = pp + 1;
480 unpack_varlen_hex (p, &ul);
481 to = ul;
482
483 org_to = to;
484
485 TRY_CATCH (ex, RETURN_MASK_ALL)
486 {
487 gdbarch_relocate_instruction (target_gdbarch, &to, from);
488 }
489 if (ex.reason >= 0)
490 {
491 adjusted_size = to - org_to;
492
493 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
494 putpkt (buf);
495 }
496 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
497 {
498 /* Propagate memory errors silently back to the target.
499 The stub may have limited the range of addresses we
500 can write to, for example. */
501 putpkt ("E01");
502 }
503 else
504 {
505 /* Something unexpectedly bad happened. Be verbose so
506 we can tell what, and propagate the error back to the
507 stub, so it doesn't get stuck waiting for a
508 response. */
509 exception_fprintf (gdb_stderr, ex,
510 _("warning: relocating instruction: "));
511 putpkt ("E01");
512 }
513 }
514 else if (buf[0] == 'O' && buf[1] != 'K')
515 remote_console_output (buf + 1); /* 'O' message from stub */
516 else
517 return buf; /* Here's the actual reply. */
518 }
519 while (1);
520 }
521
522 /* Handle for retreving the remote protocol data from gdbarch. */
523 static struct gdbarch_data *remote_gdbarch_data_handle;
524
525 static struct remote_arch_state *
526 get_remote_arch_state (void)
527 {
528 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
529 }
530
531 /* Fetch the global remote target state. */
532
533 static struct remote_state *
534 get_remote_state (void)
535 {
536 /* Make sure that the remote architecture state has been
537 initialized, because doing so might reallocate rs->buf. Any
538 function which calls getpkt also needs to be mindful of changes
539 to rs->buf, but this call limits the number of places which run
540 into trouble. */
541 get_remote_arch_state ();
542
543 return get_remote_state_raw ();
544 }
545
546 static int
547 compare_pnums (const void *lhs_, const void *rhs_)
548 {
549 const struct packet_reg * const *lhs = lhs_;
550 const struct packet_reg * const *rhs = rhs_;
551
552 if ((*lhs)->pnum < (*rhs)->pnum)
553 return -1;
554 else if ((*lhs)->pnum == (*rhs)->pnum)
555 return 0;
556 else
557 return 1;
558 }
559
560 static int
561 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
562 {
563 int regnum, num_remote_regs, offset;
564 struct packet_reg **remote_regs;
565
566 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
567 {
568 struct packet_reg *r = &regs[regnum];
569
570 if (register_size (gdbarch, regnum) == 0)
571 /* Do not try to fetch zero-sized (placeholder) registers. */
572 r->pnum = -1;
573 else
574 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
575
576 r->regnum = regnum;
577 }
578
579 /* Define the g/G packet format as the contents of each register
580 with a remote protocol number, in order of ascending protocol
581 number. */
582
583 remote_regs = alloca (gdbarch_num_regs (gdbarch)
584 * sizeof (struct packet_reg *));
585 for (num_remote_regs = 0, regnum = 0;
586 regnum < gdbarch_num_regs (gdbarch);
587 regnum++)
588 if (regs[regnum].pnum != -1)
589 remote_regs[num_remote_regs++] = &regs[regnum];
590
591 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
592 compare_pnums);
593
594 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
595 {
596 remote_regs[regnum]->in_g_packet = 1;
597 remote_regs[regnum]->offset = offset;
598 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
599 }
600
601 return offset;
602 }
603
604 /* Given the architecture described by GDBARCH, return the remote
605 protocol register's number and the register's offset in the g/G
606 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
607 If the target does not have a mapping for REGNUM, return false,
608 otherwise, return true. */
609
610 int
611 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
612 int *pnum, int *poffset)
613 {
614 int sizeof_g_packet;
615 struct packet_reg *regs;
616 struct cleanup *old_chain;
617
618 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
619
620 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
621 old_chain = make_cleanup (xfree, regs);
622
623 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
624
625 *pnum = regs[regnum].pnum;
626 *poffset = regs[regnum].offset;
627
628 do_cleanups (old_chain);
629
630 return *pnum != -1;
631 }
632
633 static void *
634 init_remote_state (struct gdbarch *gdbarch)
635 {
636 struct remote_state *rs = get_remote_state_raw ();
637 struct remote_arch_state *rsa;
638
639 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
640
641 /* Use the architecture to build a regnum<->pnum table, which will be
642 1:1 unless a feature set specifies otherwise. */
643 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
644 gdbarch_num_regs (gdbarch),
645 struct packet_reg);
646
647 /* Record the maximum possible size of the g packet - it may turn out
648 to be smaller. */
649 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
650
651 /* Default maximum number of characters in a packet body. Many
652 remote stubs have a hardwired buffer size of 400 bytes
653 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
654 as the maximum packet-size to ensure that the packet and an extra
655 NUL character can always fit in the buffer. This stops GDB
656 trashing stubs that try to squeeze an extra NUL into what is
657 already a full buffer (As of 1999-12-04 that was most stubs). */
658 rsa->remote_packet_size = 400 - 1;
659
660 /* This one is filled in when a ``g'' packet is received. */
661 rsa->actual_register_packet_size = 0;
662
663 /* Should rsa->sizeof_g_packet needs more space than the
664 default, adjust the size accordingly. Remember that each byte is
665 encoded as two characters. 32 is the overhead for the packet
666 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
667 (``$NN:G...#NN'') is a better guess, the below has been padded a
668 little. */
669 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
670 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
671
672 /* Make sure that the packet buffer is plenty big enough for
673 this architecture. */
674 if (rs->buf_size < rsa->remote_packet_size)
675 {
676 rs->buf_size = 2 * rsa->remote_packet_size;
677 rs->buf = xrealloc (rs->buf, rs->buf_size);
678 }
679
680 return rsa;
681 }
682
683 /* Return the current allowed size of a remote packet. This is
684 inferred from the current architecture, and should be used to
685 limit the length of outgoing packets. */
686 static long
687 get_remote_packet_size (void)
688 {
689 struct remote_state *rs = get_remote_state ();
690 struct remote_arch_state *rsa = get_remote_arch_state ();
691
692 if (rs->explicit_packet_size)
693 return rs->explicit_packet_size;
694
695 return rsa->remote_packet_size;
696 }
697
698 static struct packet_reg *
699 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
700 {
701 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
702 return NULL;
703 else
704 {
705 struct packet_reg *r = &rsa->regs[regnum];
706
707 gdb_assert (r->regnum == regnum);
708 return r;
709 }
710 }
711
712 static struct packet_reg *
713 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
714 {
715 int i;
716
717 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
718 {
719 struct packet_reg *r = &rsa->regs[i];
720
721 if (r->pnum == pnum)
722 return r;
723 }
724 return NULL;
725 }
726
727 /* FIXME: graces/2002-08-08: These variables should eventually be
728 bound to an instance of the target object (as in gdbarch-tdep()),
729 when such a thing exists. */
730
731 /* This is set to the data address of the access causing the target
732 to stop for a watchpoint. */
733 static CORE_ADDR remote_watch_data_address;
734
735 /* This is non-zero if target stopped for a watchpoint. */
736 static int remote_stopped_by_watchpoint_p;
737
738 static struct target_ops remote_ops;
739
740 static struct target_ops extended_remote_ops;
741
742 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
743 ``forever'' still use the normal timeout mechanism. This is
744 currently used by the ASYNC code to guarentee that target reads
745 during the initial connect always time-out. Once getpkt has been
746 modified to return a timeout indication and, in turn
747 remote_wait()/wait_for_inferior() have gained a timeout parameter
748 this can go away. */
749 static int wait_forever_enabled_p = 1;
750
751 /* Allow the user to specify what sequence to send to the remote
752 when he requests a program interruption: Although ^C is usually
753 what remote systems expect (this is the default, here), it is
754 sometimes preferable to send a break. On other systems such
755 as the Linux kernel, a break followed by g, which is Magic SysRq g
756 is required in order to interrupt the execution. */
757 const char interrupt_sequence_control_c[] = "Ctrl-C";
758 const char interrupt_sequence_break[] = "BREAK";
759 const char interrupt_sequence_break_g[] = "BREAK-g";
760 static const char *const interrupt_sequence_modes[] =
761 {
762 interrupt_sequence_control_c,
763 interrupt_sequence_break,
764 interrupt_sequence_break_g,
765 NULL
766 };
767 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
768
769 static void
770 show_interrupt_sequence (struct ui_file *file, int from_tty,
771 struct cmd_list_element *c,
772 const char *value)
773 {
774 if (interrupt_sequence_mode == interrupt_sequence_control_c)
775 fprintf_filtered (file,
776 _("Send the ASCII ETX character (Ctrl-c) "
777 "to the remote target to interrupt the "
778 "execution of the program.\n"));
779 else if (interrupt_sequence_mode == interrupt_sequence_break)
780 fprintf_filtered (file,
781 _("send a break signal to the remote target "
782 "to interrupt the execution of the program.\n"));
783 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
784 fprintf_filtered (file,
785 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
786 "the remote target to interrupt the execution "
787 "of Linux kernel.\n"));
788 else
789 internal_error (__FILE__, __LINE__,
790 _("Invalid value for interrupt_sequence_mode: %s."),
791 interrupt_sequence_mode);
792 }
793
794 /* This boolean variable specifies whether interrupt_sequence is sent
795 to the remote target when gdb connects to it.
796 This is mostly needed when you debug the Linux kernel: The Linux kernel
797 expects BREAK g which is Magic SysRq g for connecting gdb. */
798 static int interrupt_on_connect = 0;
799
800 /* This variable is used to implement the "set/show remotebreak" commands.
801 Since these commands are now deprecated in favor of "set/show remote
802 interrupt-sequence", it no longer has any effect on the code. */
803 static int remote_break;
804
805 static void
806 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
807 {
808 if (remote_break)
809 interrupt_sequence_mode = interrupt_sequence_break;
810 else
811 interrupt_sequence_mode = interrupt_sequence_control_c;
812 }
813
814 static void
815 show_remotebreak (struct ui_file *file, int from_tty,
816 struct cmd_list_element *c,
817 const char *value)
818 {
819 }
820
821 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
822 remote_open knows that we don't have a file open when the program
823 starts. */
824 static struct serial *remote_desc = NULL;
825
826 /* This variable sets the number of bits in an address that are to be
827 sent in a memory ("M" or "m") packet. Normally, after stripping
828 leading zeros, the entire address would be sent. This variable
829 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
830 initial implementation of remote.c restricted the address sent in
831 memory packets to ``host::sizeof long'' bytes - (typically 32
832 bits). Consequently, for 64 bit targets, the upper 32 bits of an
833 address was never sent. Since fixing this bug may cause a break in
834 some remote targets this variable is principly provided to
835 facilitate backward compatibility. */
836
837 static int remote_address_size;
838
839 /* Temporary to track who currently owns the terminal. See
840 remote_terminal_* for more details. */
841
842 static int remote_async_terminal_ours_p;
843
844 /* The executable file to use for "run" on the remote side. */
845
846 static char *remote_exec_file = "";
847
848 \f
849 /* User configurable variables for the number of characters in a
850 memory read/write packet. MIN (rsa->remote_packet_size,
851 rsa->sizeof_g_packet) is the default. Some targets need smaller
852 values (fifo overruns, et.al.) and some users need larger values
853 (speed up transfers). The variables ``preferred_*'' (the user
854 request), ``current_*'' (what was actually set) and ``forced_*''
855 (Positive - a soft limit, negative - a hard limit). */
856
857 struct memory_packet_config
858 {
859 char *name;
860 long size;
861 int fixed_p;
862 };
863
864 /* Compute the current size of a read/write packet. Since this makes
865 use of ``actual_register_packet_size'' the computation is dynamic. */
866
867 static long
868 get_memory_packet_size (struct memory_packet_config *config)
869 {
870 struct remote_state *rs = get_remote_state ();
871 struct remote_arch_state *rsa = get_remote_arch_state ();
872
873 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
874 law?) that some hosts don't cope very well with large alloca()
875 calls. Eventually the alloca() code will be replaced by calls to
876 xmalloc() and make_cleanups() allowing this restriction to either
877 be lifted or removed. */
878 #ifndef MAX_REMOTE_PACKET_SIZE
879 #define MAX_REMOTE_PACKET_SIZE 16384
880 #endif
881 /* NOTE: 20 ensures we can write at least one byte. */
882 #ifndef MIN_REMOTE_PACKET_SIZE
883 #define MIN_REMOTE_PACKET_SIZE 20
884 #endif
885 long what_they_get;
886 if (config->fixed_p)
887 {
888 if (config->size <= 0)
889 what_they_get = MAX_REMOTE_PACKET_SIZE;
890 else
891 what_they_get = config->size;
892 }
893 else
894 {
895 what_they_get = get_remote_packet_size ();
896 /* Limit the packet to the size specified by the user. */
897 if (config->size > 0
898 && what_they_get > config->size)
899 what_they_get = config->size;
900
901 /* Limit it to the size of the targets ``g'' response unless we have
902 permission from the stub to use a larger packet size. */
903 if (rs->explicit_packet_size == 0
904 && rsa->actual_register_packet_size > 0
905 && what_they_get > rsa->actual_register_packet_size)
906 what_they_get = rsa->actual_register_packet_size;
907 }
908 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
909 what_they_get = MAX_REMOTE_PACKET_SIZE;
910 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
911 what_they_get = MIN_REMOTE_PACKET_SIZE;
912
913 /* Make sure there is room in the global buffer for this packet
914 (including its trailing NUL byte). */
915 if (rs->buf_size < what_they_get + 1)
916 {
917 rs->buf_size = 2 * what_they_get;
918 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
919 }
920
921 return what_they_get;
922 }
923
924 /* Update the size of a read/write packet. If they user wants
925 something really big then do a sanity check. */
926
927 static void
928 set_memory_packet_size (char *args, struct memory_packet_config *config)
929 {
930 int fixed_p = config->fixed_p;
931 long size = config->size;
932
933 if (args == NULL)
934 error (_("Argument required (integer, `fixed' or `limited')."));
935 else if (strcmp (args, "hard") == 0
936 || strcmp (args, "fixed") == 0)
937 fixed_p = 1;
938 else if (strcmp (args, "soft") == 0
939 || strcmp (args, "limit") == 0)
940 fixed_p = 0;
941 else
942 {
943 char *end;
944
945 size = strtoul (args, &end, 0);
946 if (args == end)
947 error (_("Invalid %s (bad syntax)."), config->name);
948 #if 0
949 /* Instead of explicitly capping the size of a packet to
950 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
951 instead allowed to set the size to something arbitrarily
952 large. */
953 if (size > MAX_REMOTE_PACKET_SIZE)
954 error (_("Invalid %s (too large)."), config->name);
955 #endif
956 }
957 /* Extra checks? */
958 if (fixed_p && !config->fixed_p)
959 {
960 if (! query (_("The target may not be able to correctly handle a %s\n"
961 "of %ld bytes. Change the packet size? "),
962 config->name, size))
963 error (_("Packet size not changed."));
964 }
965 /* Update the config. */
966 config->fixed_p = fixed_p;
967 config->size = size;
968 }
969
970 static void
971 show_memory_packet_size (struct memory_packet_config *config)
972 {
973 printf_filtered (_("The %s is %ld. "), config->name, config->size);
974 if (config->fixed_p)
975 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
976 get_memory_packet_size (config));
977 else
978 printf_filtered (_("Packets are limited to %ld bytes.\n"),
979 get_memory_packet_size (config));
980 }
981
982 static struct memory_packet_config memory_write_packet_config =
983 {
984 "memory-write-packet-size",
985 };
986
987 static void
988 set_memory_write_packet_size (char *args, int from_tty)
989 {
990 set_memory_packet_size (args, &memory_write_packet_config);
991 }
992
993 static void
994 show_memory_write_packet_size (char *args, int from_tty)
995 {
996 show_memory_packet_size (&memory_write_packet_config);
997 }
998
999 static long
1000 get_memory_write_packet_size (void)
1001 {
1002 return get_memory_packet_size (&memory_write_packet_config);
1003 }
1004
1005 static struct memory_packet_config memory_read_packet_config =
1006 {
1007 "memory-read-packet-size",
1008 };
1009
1010 static void
1011 set_memory_read_packet_size (char *args, int from_tty)
1012 {
1013 set_memory_packet_size (args, &memory_read_packet_config);
1014 }
1015
1016 static void
1017 show_memory_read_packet_size (char *args, int from_tty)
1018 {
1019 show_memory_packet_size (&memory_read_packet_config);
1020 }
1021
1022 static long
1023 get_memory_read_packet_size (void)
1024 {
1025 long size = get_memory_packet_size (&memory_read_packet_config);
1026
1027 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1028 extra buffer size argument before the memory read size can be
1029 increased beyond this. */
1030 if (size > get_remote_packet_size ())
1031 size = get_remote_packet_size ();
1032 return size;
1033 }
1034
1035 \f
1036 /* Generic configuration support for packets the stub optionally
1037 supports. Allows the user to specify the use of the packet as well
1038 as allowing GDB to auto-detect support in the remote stub. */
1039
1040 enum packet_support
1041 {
1042 PACKET_SUPPORT_UNKNOWN = 0,
1043 PACKET_ENABLE,
1044 PACKET_DISABLE
1045 };
1046
1047 struct packet_config
1048 {
1049 const char *name;
1050 const char *title;
1051 enum auto_boolean detect;
1052 enum packet_support support;
1053 };
1054
1055 /* Analyze a packet's return value and update the packet config
1056 accordingly. */
1057
1058 enum packet_result
1059 {
1060 PACKET_ERROR,
1061 PACKET_OK,
1062 PACKET_UNKNOWN
1063 };
1064
1065 static void
1066 update_packet_config (struct packet_config *config)
1067 {
1068 switch (config->detect)
1069 {
1070 case AUTO_BOOLEAN_TRUE:
1071 config->support = PACKET_ENABLE;
1072 break;
1073 case AUTO_BOOLEAN_FALSE:
1074 config->support = PACKET_DISABLE;
1075 break;
1076 case AUTO_BOOLEAN_AUTO:
1077 config->support = PACKET_SUPPORT_UNKNOWN;
1078 break;
1079 }
1080 }
1081
1082 static void
1083 show_packet_config_cmd (struct packet_config *config)
1084 {
1085 char *support = "internal-error";
1086
1087 switch (config->support)
1088 {
1089 case PACKET_ENABLE:
1090 support = "enabled";
1091 break;
1092 case PACKET_DISABLE:
1093 support = "disabled";
1094 break;
1095 case PACKET_SUPPORT_UNKNOWN:
1096 support = "unknown";
1097 break;
1098 }
1099 switch (config->detect)
1100 {
1101 case AUTO_BOOLEAN_AUTO:
1102 printf_filtered (_("Support for the `%s' packet "
1103 "is auto-detected, currently %s.\n"),
1104 config->name, support);
1105 break;
1106 case AUTO_BOOLEAN_TRUE:
1107 case AUTO_BOOLEAN_FALSE:
1108 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1109 config->name, support);
1110 break;
1111 }
1112 }
1113
1114 static void
1115 add_packet_config_cmd (struct packet_config *config, const char *name,
1116 const char *title, int legacy)
1117 {
1118 char *set_doc;
1119 char *show_doc;
1120 char *cmd_name;
1121
1122 config->name = name;
1123 config->title = title;
1124 config->detect = AUTO_BOOLEAN_AUTO;
1125 config->support = PACKET_SUPPORT_UNKNOWN;
1126 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1127 name, title);
1128 show_doc = xstrprintf ("Show current use of remote "
1129 "protocol `%s' (%s) packet",
1130 name, title);
1131 /* set/show TITLE-packet {auto,on,off} */
1132 cmd_name = xstrprintf ("%s-packet", title);
1133 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1134 &config->detect, set_doc,
1135 show_doc, NULL, /* help_doc */
1136 set_remote_protocol_packet_cmd,
1137 show_remote_protocol_packet_cmd,
1138 &remote_set_cmdlist, &remote_show_cmdlist);
1139 /* The command code copies the documentation strings. */
1140 xfree (set_doc);
1141 xfree (show_doc);
1142 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1143 if (legacy)
1144 {
1145 char *legacy_name;
1146
1147 legacy_name = xstrprintf ("%s-packet", name);
1148 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1149 &remote_set_cmdlist);
1150 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1151 &remote_show_cmdlist);
1152 }
1153 }
1154
1155 static enum packet_result
1156 packet_check_result (const char *buf)
1157 {
1158 if (buf[0] != '\0')
1159 {
1160 /* The stub recognized the packet request. Check that the
1161 operation succeeded. */
1162 if (buf[0] == 'E'
1163 && isxdigit (buf[1]) && isxdigit (buf[2])
1164 && buf[3] == '\0')
1165 /* "Enn" - definitly an error. */
1166 return PACKET_ERROR;
1167
1168 /* Always treat "E." as an error. This will be used for
1169 more verbose error messages, such as E.memtypes. */
1170 if (buf[0] == 'E' && buf[1] == '.')
1171 return PACKET_ERROR;
1172
1173 /* The packet may or may not be OK. Just assume it is. */
1174 return PACKET_OK;
1175 }
1176 else
1177 /* The stub does not support the packet. */
1178 return PACKET_UNKNOWN;
1179 }
1180
1181 static enum packet_result
1182 packet_ok (const char *buf, struct packet_config *config)
1183 {
1184 enum packet_result result;
1185
1186 result = packet_check_result (buf);
1187 switch (result)
1188 {
1189 case PACKET_OK:
1190 case PACKET_ERROR:
1191 /* The stub recognized the packet request. */
1192 switch (config->support)
1193 {
1194 case PACKET_SUPPORT_UNKNOWN:
1195 if (remote_debug)
1196 fprintf_unfiltered (gdb_stdlog,
1197 "Packet %s (%s) is supported\n",
1198 config->name, config->title);
1199 config->support = PACKET_ENABLE;
1200 break;
1201 case PACKET_DISABLE:
1202 internal_error (__FILE__, __LINE__,
1203 _("packet_ok: attempt to use a disabled packet"));
1204 break;
1205 case PACKET_ENABLE:
1206 break;
1207 }
1208 break;
1209 case PACKET_UNKNOWN:
1210 /* The stub does not support the packet. */
1211 switch (config->support)
1212 {
1213 case PACKET_ENABLE:
1214 if (config->detect == AUTO_BOOLEAN_AUTO)
1215 /* If the stub previously indicated that the packet was
1216 supported then there is a protocol error.. */
1217 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1218 config->name, config->title);
1219 else
1220 /* The user set it wrong. */
1221 error (_("Enabled packet %s (%s) not recognized by stub"),
1222 config->name, config->title);
1223 break;
1224 case PACKET_SUPPORT_UNKNOWN:
1225 if (remote_debug)
1226 fprintf_unfiltered (gdb_stdlog,
1227 "Packet %s (%s) is NOT supported\n",
1228 config->name, config->title);
1229 config->support = PACKET_DISABLE;
1230 break;
1231 case PACKET_DISABLE:
1232 break;
1233 }
1234 break;
1235 }
1236
1237 return result;
1238 }
1239
1240 enum {
1241 PACKET_vCont = 0,
1242 PACKET_X,
1243 PACKET_qSymbol,
1244 PACKET_P,
1245 PACKET_p,
1246 PACKET_Z0,
1247 PACKET_Z1,
1248 PACKET_Z2,
1249 PACKET_Z3,
1250 PACKET_Z4,
1251 PACKET_vFile_open,
1252 PACKET_vFile_pread,
1253 PACKET_vFile_pwrite,
1254 PACKET_vFile_close,
1255 PACKET_vFile_unlink,
1256 PACKET_vFile_readlink,
1257 PACKET_qXfer_auxv,
1258 PACKET_qXfer_features,
1259 PACKET_qXfer_libraries,
1260 PACKET_qXfer_libraries_svr4,
1261 PACKET_qXfer_memory_map,
1262 PACKET_qXfer_spu_read,
1263 PACKET_qXfer_spu_write,
1264 PACKET_qXfer_osdata,
1265 PACKET_qXfer_threads,
1266 PACKET_qXfer_statictrace_read,
1267 PACKET_qXfer_traceframe_info,
1268 PACKET_qXfer_uib,
1269 PACKET_qGetTIBAddr,
1270 PACKET_qGetTLSAddr,
1271 PACKET_qSupported,
1272 PACKET_QPassSignals,
1273 PACKET_QProgramSignals,
1274 PACKET_qSearch_memory,
1275 PACKET_vAttach,
1276 PACKET_vRun,
1277 PACKET_QStartNoAckMode,
1278 PACKET_vKill,
1279 PACKET_qXfer_siginfo_read,
1280 PACKET_qXfer_siginfo_write,
1281 PACKET_qAttached,
1282 PACKET_ConditionalTracepoints,
1283 PACKET_ConditionalBreakpoints,
1284 PACKET_BreakpointCommands,
1285 PACKET_FastTracepoints,
1286 PACKET_StaticTracepoints,
1287 PACKET_InstallInTrace,
1288 PACKET_bc,
1289 PACKET_bs,
1290 PACKET_TracepointSource,
1291 PACKET_QAllow,
1292 PACKET_qXfer_fdpic,
1293 PACKET_QDisableRandomization,
1294 PACKET_QAgent,
1295 PACKET_MAX
1296 };
1297
1298 static struct packet_config remote_protocol_packets[PACKET_MAX];
1299
1300 static void
1301 set_remote_protocol_packet_cmd (char *args, int from_tty,
1302 struct cmd_list_element *c)
1303 {
1304 struct packet_config *packet;
1305
1306 for (packet = remote_protocol_packets;
1307 packet < &remote_protocol_packets[PACKET_MAX];
1308 packet++)
1309 {
1310 if (&packet->detect == c->var)
1311 {
1312 update_packet_config (packet);
1313 return;
1314 }
1315 }
1316 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1317 c->name);
1318 }
1319
1320 static void
1321 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1322 struct cmd_list_element *c,
1323 const char *value)
1324 {
1325 struct packet_config *packet;
1326
1327 for (packet = remote_protocol_packets;
1328 packet < &remote_protocol_packets[PACKET_MAX];
1329 packet++)
1330 {
1331 if (&packet->detect == c->var)
1332 {
1333 show_packet_config_cmd (packet);
1334 return;
1335 }
1336 }
1337 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1338 c->name);
1339 }
1340
1341 /* Should we try one of the 'Z' requests? */
1342
1343 enum Z_packet_type
1344 {
1345 Z_PACKET_SOFTWARE_BP,
1346 Z_PACKET_HARDWARE_BP,
1347 Z_PACKET_WRITE_WP,
1348 Z_PACKET_READ_WP,
1349 Z_PACKET_ACCESS_WP,
1350 NR_Z_PACKET_TYPES
1351 };
1352
1353 /* For compatibility with older distributions. Provide a ``set remote
1354 Z-packet ...'' command that updates all the Z packet types. */
1355
1356 static enum auto_boolean remote_Z_packet_detect;
1357
1358 static void
1359 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1360 struct cmd_list_element *c)
1361 {
1362 int i;
1363
1364 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1365 {
1366 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1367 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1368 }
1369 }
1370
1371 static void
1372 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1373 struct cmd_list_element *c,
1374 const char *value)
1375 {
1376 int i;
1377
1378 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1379 {
1380 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1381 }
1382 }
1383
1384 /* Should we try the 'ThreadInfo' query packet?
1385
1386 This variable (NOT available to the user: auto-detect only!)
1387 determines whether GDB will use the new, simpler "ThreadInfo"
1388 query or the older, more complex syntax for thread queries.
1389 This is an auto-detect variable (set to true at each connect,
1390 and set to false when the target fails to recognize it). */
1391
1392 static int use_threadinfo_query;
1393 static int use_threadextra_query;
1394
1395 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1396 static struct async_signal_handler *sigint_remote_twice_token;
1397 static struct async_signal_handler *sigint_remote_token;
1398
1399 \f
1400 /* Asynchronous signal handle registered as event loop source for
1401 when we have pending events ready to be passed to the core. */
1402
1403 static struct async_event_handler *remote_async_inferior_event_token;
1404
1405 /* Asynchronous signal handle registered as event loop source for when
1406 the remote sent us a %Stop notification. The registered callback
1407 will do a vStopped sequence to pull the rest of the events out of
1408 the remote side into our event queue. */
1409
1410 static struct async_event_handler *remote_async_get_pending_events_token;
1411 \f
1412
1413 static ptid_t magic_null_ptid;
1414 static ptid_t not_sent_ptid;
1415 static ptid_t any_thread_ptid;
1416
1417 /* These are the threads which we last sent to the remote system. The
1418 TID member will be -1 for all or -2 for not sent yet. */
1419
1420 static ptid_t general_thread;
1421 static ptid_t continue_thread;
1422
1423 /* This is the traceframe which we last selected on the remote system.
1424 It will be -1 if no traceframe is selected. */
1425 static int remote_traceframe_number = -1;
1426
1427 /* Find out if the stub attached to PID (and hence GDB should offer to
1428 detach instead of killing it when bailing out). */
1429
1430 static int
1431 remote_query_attached (int pid)
1432 {
1433 struct remote_state *rs = get_remote_state ();
1434 size_t size = get_remote_packet_size ();
1435
1436 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1437 return 0;
1438
1439 if (remote_multi_process_p (rs))
1440 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1441 else
1442 xsnprintf (rs->buf, size, "qAttached");
1443
1444 putpkt (rs->buf);
1445 getpkt (&rs->buf, &rs->buf_size, 0);
1446
1447 switch (packet_ok (rs->buf,
1448 &remote_protocol_packets[PACKET_qAttached]))
1449 {
1450 case PACKET_OK:
1451 if (strcmp (rs->buf, "1") == 0)
1452 return 1;
1453 break;
1454 case PACKET_ERROR:
1455 warning (_("Remote failure reply: %s"), rs->buf);
1456 break;
1457 case PACKET_UNKNOWN:
1458 break;
1459 }
1460
1461 return 0;
1462 }
1463
1464 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1465 has been invented by GDB, instead of reported by the target. Since
1466 we can be connected to a remote system before before knowing about
1467 any inferior, mark the target with execution when we find the first
1468 inferior. If ATTACHED is 1, then we had just attached to this
1469 inferior. If it is 0, then we just created this inferior. If it
1470 is -1, then try querying the remote stub to find out if it had
1471 attached to the inferior or not. */
1472
1473 static struct inferior *
1474 remote_add_inferior (int fake_pid_p, int pid, int attached)
1475 {
1476 struct inferior *inf;
1477
1478 /* Check whether this process we're learning about is to be
1479 considered attached, or if is to be considered to have been
1480 spawned by the stub. */
1481 if (attached == -1)
1482 attached = remote_query_attached (pid);
1483
1484 if (gdbarch_has_global_solist (target_gdbarch))
1485 {
1486 /* If the target shares code across all inferiors, then every
1487 attach adds a new inferior. */
1488 inf = add_inferior (pid);
1489
1490 /* ... and every inferior is bound to the same program space.
1491 However, each inferior may still have its own address
1492 space. */
1493 inf->aspace = maybe_new_address_space ();
1494 inf->pspace = current_program_space;
1495 }
1496 else
1497 {
1498 /* In the traditional debugging scenario, there's a 1-1 match
1499 between program/address spaces. We simply bind the inferior
1500 to the program space's address space. */
1501 inf = current_inferior ();
1502 inferior_appeared (inf, pid);
1503 }
1504
1505 inf->attach_flag = attached;
1506 inf->fake_pid_p = fake_pid_p;
1507
1508 return inf;
1509 }
1510
1511 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1512 according to RUNNING. */
1513
1514 static void
1515 remote_add_thread (ptid_t ptid, int running)
1516 {
1517 add_thread (ptid);
1518
1519 set_executing (ptid, running);
1520 set_running (ptid, running);
1521 }
1522
1523 /* Come here when we learn about a thread id from the remote target.
1524 It may be the first time we hear about such thread, so take the
1525 opportunity to add it to GDB's thread list. In case this is the
1526 first time we're noticing its corresponding inferior, add it to
1527 GDB's inferior list as well. */
1528
1529 static void
1530 remote_notice_new_inferior (ptid_t currthread, int running)
1531 {
1532 /* If this is a new thread, add it to GDB's thread list.
1533 If we leave it up to WFI to do this, bad things will happen. */
1534
1535 if (in_thread_list (currthread) && is_exited (currthread))
1536 {
1537 /* We're seeing an event on a thread id we knew had exited.
1538 This has to be a new thread reusing the old id. Add it. */
1539 remote_add_thread (currthread, running);
1540 return;
1541 }
1542
1543 if (!in_thread_list (currthread))
1544 {
1545 struct inferior *inf = NULL;
1546 int pid = ptid_get_pid (currthread);
1547
1548 if (ptid_is_pid (inferior_ptid)
1549 && pid == ptid_get_pid (inferior_ptid))
1550 {
1551 /* inferior_ptid has no thread member yet. This can happen
1552 with the vAttach -> remote_wait,"TAAthread:" path if the
1553 stub doesn't support qC. This is the first stop reported
1554 after an attach, so this is the main thread. Update the
1555 ptid in the thread list. */
1556 if (in_thread_list (pid_to_ptid (pid)))
1557 thread_change_ptid (inferior_ptid, currthread);
1558 else
1559 {
1560 remote_add_thread (currthread, running);
1561 inferior_ptid = currthread;
1562 }
1563 return;
1564 }
1565
1566 if (ptid_equal (magic_null_ptid, inferior_ptid))
1567 {
1568 /* inferior_ptid is not set yet. This can happen with the
1569 vRun -> remote_wait,"TAAthread:" path if the stub
1570 doesn't support qC. This is the first stop reported
1571 after an attach, so this is the main thread. Update the
1572 ptid in the thread list. */
1573 thread_change_ptid (inferior_ptid, currthread);
1574 return;
1575 }
1576
1577 /* When connecting to a target remote, or to a target
1578 extended-remote which already was debugging an inferior, we
1579 may not know about it yet. Add it before adding its child
1580 thread, so notifications are emitted in a sensible order. */
1581 if (!in_inferior_list (ptid_get_pid (currthread)))
1582 {
1583 struct remote_state *rs = get_remote_state ();
1584 int fake_pid_p = !remote_multi_process_p (rs);
1585
1586 inf = remote_add_inferior (fake_pid_p,
1587 ptid_get_pid (currthread), -1);
1588 }
1589
1590 /* This is really a new thread. Add it. */
1591 remote_add_thread (currthread, running);
1592
1593 /* If we found a new inferior, let the common code do whatever
1594 it needs to with it (e.g., read shared libraries, insert
1595 breakpoints). */
1596 if (inf != NULL)
1597 notice_new_inferior (currthread, running, 0);
1598 }
1599 }
1600
1601 /* Return the private thread data, creating it if necessary. */
1602
1603 static struct private_thread_info *
1604 demand_private_info (ptid_t ptid)
1605 {
1606 struct thread_info *info = find_thread_ptid (ptid);
1607
1608 gdb_assert (info);
1609
1610 if (!info->private)
1611 {
1612 info->private = xmalloc (sizeof (*(info->private)));
1613 info->private_dtor = free_private_thread_info;
1614 info->private->core = -1;
1615 info->private->extra = 0;
1616 }
1617
1618 return info->private;
1619 }
1620
1621 /* Call this function as a result of
1622 1) A halt indication (T packet) containing a thread id
1623 2) A direct query of currthread
1624 3) Successful execution of set thread */
1625
1626 static void
1627 record_currthread (ptid_t currthread)
1628 {
1629 general_thread = currthread;
1630 }
1631
1632 static char *last_pass_packet;
1633
1634 /* If 'QPassSignals' is supported, tell the remote stub what signals
1635 it can simply pass through to the inferior without reporting. */
1636
1637 static void
1638 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1639 {
1640 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1641 {
1642 char *pass_packet, *p;
1643 int count = 0, i;
1644
1645 gdb_assert (numsigs < 256);
1646 for (i = 0; i < numsigs; i++)
1647 {
1648 if (pass_signals[i])
1649 count++;
1650 }
1651 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1652 strcpy (pass_packet, "QPassSignals:");
1653 p = pass_packet + strlen (pass_packet);
1654 for (i = 0; i < numsigs; i++)
1655 {
1656 if (pass_signals[i])
1657 {
1658 if (i >= 16)
1659 *p++ = tohex (i >> 4);
1660 *p++ = tohex (i & 15);
1661 if (count)
1662 *p++ = ';';
1663 else
1664 break;
1665 count--;
1666 }
1667 }
1668 *p = 0;
1669 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1670 {
1671 struct remote_state *rs = get_remote_state ();
1672 char *buf = rs->buf;
1673
1674 putpkt (pass_packet);
1675 getpkt (&rs->buf, &rs->buf_size, 0);
1676 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1677 if (last_pass_packet)
1678 xfree (last_pass_packet);
1679 last_pass_packet = pass_packet;
1680 }
1681 else
1682 xfree (pass_packet);
1683 }
1684 }
1685
1686 /* The last QProgramSignals packet sent to the target. We bypass
1687 sending a new program signals list down to the target if the new
1688 packet is exactly the same as the last we sent. IOW, we only let
1689 the target know about program signals list changes. */
1690
1691 static char *last_program_signals_packet;
1692
1693 /* If 'QProgramSignals' is supported, tell the remote stub what
1694 signals it should pass through to the inferior when detaching. */
1695
1696 static void
1697 remote_program_signals (int numsigs, unsigned char *signals)
1698 {
1699 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1700 {
1701 char *packet, *p;
1702 int count = 0, i;
1703
1704 gdb_assert (numsigs < 256);
1705 for (i = 0; i < numsigs; i++)
1706 {
1707 if (signals[i])
1708 count++;
1709 }
1710 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1711 strcpy (packet, "QProgramSignals:");
1712 p = packet + strlen (packet);
1713 for (i = 0; i < numsigs; i++)
1714 {
1715 if (signal_pass_state (i))
1716 {
1717 if (i >= 16)
1718 *p++ = tohex (i >> 4);
1719 *p++ = tohex (i & 15);
1720 if (count)
1721 *p++ = ';';
1722 else
1723 break;
1724 count--;
1725 }
1726 }
1727 *p = 0;
1728 if (!last_program_signals_packet
1729 || strcmp (last_program_signals_packet, packet) != 0)
1730 {
1731 struct remote_state *rs = get_remote_state ();
1732 char *buf = rs->buf;
1733
1734 putpkt (packet);
1735 getpkt (&rs->buf, &rs->buf_size, 0);
1736 packet_ok (buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1737 xfree (last_program_signals_packet);
1738 last_program_signals_packet = packet;
1739 }
1740 else
1741 xfree (packet);
1742 }
1743 }
1744
1745 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1746 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1747 thread. If GEN is set, set the general thread, if not, then set
1748 the step/continue thread. */
1749 static void
1750 set_thread (struct ptid ptid, int gen)
1751 {
1752 struct remote_state *rs = get_remote_state ();
1753 ptid_t state = gen ? general_thread : continue_thread;
1754 char *buf = rs->buf;
1755 char *endbuf = rs->buf + get_remote_packet_size ();
1756
1757 if (ptid_equal (state, ptid))
1758 return;
1759
1760 *buf++ = 'H';
1761 *buf++ = gen ? 'g' : 'c';
1762 if (ptid_equal (ptid, magic_null_ptid))
1763 xsnprintf (buf, endbuf - buf, "0");
1764 else if (ptid_equal (ptid, any_thread_ptid))
1765 xsnprintf (buf, endbuf - buf, "0");
1766 else if (ptid_equal (ptid, minus_one_ptid))
1767 xsnprintf (buf, endbuf - buf, "-1");
1768 else
1769 write_ptid (buf, endbuf, ptid);
1770 putpkt (rs->buf);
1771 getpkt (&rs->buf, &rs->buf_size, 0);
1772 if (gen)
1773 general_thread = ptid;
1774 else
1775 continue_thread = ptid;
1776 }
1777
1778 static void
1779 set_general_thread (struct ptid ptid)
1780 {
1781 set_thread (ptid, 1);
1782 }
1783
1784 static void
1785 set_continue_thread (struct ptid ptid)
1786 {
1787 set_thread (ptid, 0);
1788 }
1789
1790 /* Change the remote current process. Which thread within the process
1791 ends up selected isn't important, as long as it is the same process
1792 as what INFERIOR_PTID points to.
1793
1794 This comes from that fact that there is no explicit notion of
1795 "selected process" in the protocol. The selected process for
1796 general operations is the process the selected general thread
1797 belongs to. */
1798
1799 static void
1800 set_general_process (void)
1801 {
1802 struct remote_state *rs = get_remote_state ();
1803
1804 /* If the remote can't handle multiple processes, don't bother. */
1805 if (!rs->extended || !remote_multi_process_p (rs))
1806 return;
1807
1808 /* We only need to change the remote current thread if it's pointing
1809 at some other process. */
1810 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1811 set_general_thread (inferior_ptid);
1812 }
1813
1814 \f
1815 /* Return nonzero if the thread PTID is still alive on the remote
1816 system. */
1817
1818 static int
1819 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1820 {
1821 struct remote_state *rs = get_remote_state ();
1822 char *p, *endp;
1823
1824 if (ptid_equal (ptid, magic_null_ptid))
1825 /* The main thread is always alive. */
1826 return 1;
1827
1828 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1829 /* The main thread is always alive. This can happen after a
1830 vAttach, if the remote side doesn't support
1831 multi-threading. */
1832 return 1;
1833
1834 p = rs->buf;
1835 endp = rs->buf + get_remote_packet_size ();
1836
1837 *p++ = 'T';
1838 write_ptid (p, endp, ptid);
1839
1840 putpkt (rs->buf);
1841 getpkt (&rs->buf, &rs->buf_size, 0);
1842 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1843 }
1844
1845 /* About these extended threadlist and threadinfo packets. They are
1846 variable length packets but, the fields within them are often fixed
1847 length. They are redundent enough to send over UDP as is the
1848 remote protocol in general. There is a matching unit test module
1849 in libstub. */
1850
1851 #define OPAQUETHREADBYTES 8
1852
1853 /* a 64 bit opaque identifier */
1854 typedef unsigned char threadref[OPAQUETHREADBYTES];
1855
1856 /* WARNING: This threadref data structure comes from the remote O.S.,
1857 libstub protocol encoding, and remote.c. It is not particularly
1858 changable. */
1859
1860 /* Right now, the internal structure is int. We want it to be bigger.
1861 Plan to fix this. */
1862
1863 typedef int gdb_threadref; /* Internal GDB thread reference. */
1864
1865 /* gdb_ext_thread_info is an internal GDB data structure which is
1866 equivalent to the reply of the remote threadinfo packet. */
1867
1868 struct gdb_ext_thread_info
1869 {
1870 threadref threadid; /* External form of thread reference. */
1871 int active; /* Has state interesting to GDB?
1872 regs, stack. */
1873 char display[256]; /* Brief state display, name,
1874 blocked/suspended. */
1875 char shortname[32]; /* To be used to name threads. */
1876 char more_display[256]; /* Long info, statistics, queue depth,
1877 whatever. */
1878 };
1879
1880 /* The volume of remote transfers can be limited by submitting
1881 a mask containing bits specifying the desired information.
1882 Use a union of these values as the 'selection' parameter to
1883 get_thread_info. FIXME: Make these TAG names more thread specific. */
1884
1885 #define TAG_THREADID 1
1886 #define TAG_EXISTS 2
1887 #define TAG_DISPLAY 4
1888 #define TAG_THREADNAME 8
1889 #define TAG_MOREDISPLAY 16
1890
1891 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1892
1893 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1894
1895 static char *unpack_nibble (char *buf, int *val);
1896
1897 static char *pack_nibble (char *buf, int nibble);
1898
1899 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1900
1901 static char *unpack_byte (char *buf, int *value);
1902
1903 static char *pack_int (char *buf, int value);
1904
1905 static char *unpack_int (char *buf, int *value);
1906
1907 static char *unpack_string (char *src, char *dest, int length);
1908
1909 static char *pack_threadid (char *pkt, threadref *id);
1910
1911 static char *unpack_threadid (char *inbuf, threadref *id);
1912
1913 void int_to_threadref (threadref *id, int value);
1914
1915 static int threadref_to_int (threadref *ref);
1916
1917 static void copy_threadref (threadref *dest, threadref *src);
1918
1919 static int threadmatch (threadref *dest, threadref *src);
1920
1921 static char *pack_threadinfo_request (char *pkt, int mode,
1922 threadref *id);
1923
1924 static int remote_unpack_thread_info_response (char *pkt,
1925 threadref *expectedref,
1926 struct gdb_ext_thread_info
1927 *info);
1928
1929
1930 static int remote_get_threadinfo (threadref *threadid,
1931 int fieldset, /*TAG mask */
1932 struct gdb_ext_thread_info *info);
1933
1934 static char *pack_threadlist_request (char *pkt, int startflag,
1935 int threadcount,
1936 threadref *nextthread);
1937
1938 static int parse_threadlist_response (char *pkt,
1939 int result_limit,
1940 threadref *original_echo,
1941 threadref *resultlist,
1942 int *doneflag);
1943
1944 static int remote_get_threadlist (int startflag,
1945 threadref *nextthread,
1946 int result_limit,
1947 int *done,
1948 int *result_count,
1949 threadref *threadlist);
1950
1951 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1952
1953 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1954 void *context, int looplimit);
1955
1956 static int remote_newthread_step (threadref *ref, void *context);
1957
1958
1959 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1960 buffer we're allowed to write to. Returns
1961 BUF+CHARACTERS_WRITTEN. */
1962
1963 static char *
1964 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1965 {
1966 int pid, tid;
1967 struct remote_state *rs = get_remote_state ();
1968
1969 if (remote_multi_process_p (rs))
1970 {
1971 pid = ptid_get_pid (ptid);
1972 if (pid < 0)
1973 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1974 else
1975 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1976 }
1977 tid = ptid_get_tid (ptid);
1978 if (tid < 0)
1979 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1980 else
1981 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1982
1983 return buf;
1984 }
1985
1986 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1987 passed the last parsed char. Returns null_ptid on error. */
1988
1989 static ptid_t
1990 read_ptid (char *buf, char **obuf)
1991 {
1992 char *p = buf;
1993 char *pp;
1994 ULONGEST pid = 0, tid = 0;
1995
1996 if (*p == 'p')
1997 {
1998 /* Multi-process ptid. */
1999 pp = unpack_varlen_hex (p + 1, &pid);
2000 if (*pp != '.')
2001 error (_("invalid remote ptid: %s"), p);
2002
2003 p = pp;
2004 pp = unpack_varlen_hex (p + 1, &tid);
2005 if (obuf)
2006 *obuf = pp;
2007 return ptid_build (pid, 0, tid);
2008 }
2009
2010 /* No multi-process. Just a tid. */
2011 pp = unpack_varlen_hex (p, &tid);
2012
2013 /* Since the stub is not sending a process id, then default to
2014 what's in inferior_ptid, unless it's null at this point. If so,
2015 then since there's no way to know the pid of the reported
2016 threads, use the magic number. */
2017 if (ptid_equal (inferior_ptid, null_ptid))
2018 pid = ptid_get_pid (magic_null_ptid);
2019 else
2020 pid = ptid_get_pid (inferior_ptid);
2021
2022 if (obuf)
2023 *obuf = pp;
2024 return ptid_build (pid, 0, tid);
2025 }
2026
2027 /* Encode 64 bits in 16 chars of hex. */
2028
2029 static const char hexchars[] = "0123456789abcdef";
2030
2031 static int
2032 ishex (int ch, int *val)
2033 {
2034 if ((ch >= 'a') && (ch <= 'f'))
2035 {
2036 *val = ch - 'a' + 10;
2037 return 1;
2038 }
2039 if ((ch >= 'A') && (ch <= 'F'))
2040 {
2041 *val = ch - 'A' + 10;
2042 return 1;
2043 }
2044 if ((ch >= '0') && (ch <= '9'))
2045 {
2046 *val = ch - '0';
2047 return 1;
2048 }
2049 return 0;
2050 }
2051
2052 static int
2053 stubhex (int ch)
2054 {
2055 if (ch >= 'a' && ch <= 'f')
2056 return ch - 'a' + 10;
2057 if (ch >= '0' && ch <= '9')
2058 return ch - '0';
2059 if (ch >= 'A' && ch <= 'F')
2060 return ch - 'A' + 10;
2061 return -1;
2062 }
2063
2064 static int
2065 stub_unpack_int (char *buff, int fieldlength)
2066 {
2067 int nibble;
2068 int retval = 0;
2069
2070 while (fieldlength)
2071 {
2072 nibble = stubhex (*buff++);
2073 retval |= nibble;
2074 fieldlength--;
2075 if (fieldlength)
2076 retval = retval << 4;
2077 }
2078 return retval;
2079 }
2080
2081 char *
2082 unpack_varlen_hex (char *buff, /* packet to parse */
2083 ULONGEST *result)
2084 {
2085 int nibble;
2086 ULONGEST retval = 0;
2087
2088 while (ishex (*buff, &nibble))
2089 {
2090 buff++;
2091 retval = retval << 4;
2092 retval |= nibble & 0x0f;
2093 }
2094 *result = retval;
2095 return buff;
2096 }
2097
2098 static char *
2099 unpack_nibble (char *buf, int *val)
2100 {
2101 *val = fromhex (*buf++);
2102 return buf;
2103 }
2104
2105 static char *
2106 pack_nibble (char *buf, int nibble)
2107 {
2108 *buf++ = hexchars[(nibble & 0x0f)];
2109 return buf;
2110 }
2111
2112 static char *
2113 pack_hex_byte (char *pkt, int byte)
2114 {
2115 *pkt++ = hexchars[(byte >> 4) & 0xf];
2116 *pkt++ = hexchars[(byte & 0xf)];
2117 return pkt;
2118 }
2119
2120 static char *
2121 unpack_byte (char *buf, int *value)
2122 {
2123 *value = stub_unpack_int (buf, 2);
2124 return buf + 2;
2125 }
2126
2127 static char *
2128 pack_int (char *buf, int value)
2129 {
2130 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2131 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2132 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2133 buf = pack_hex_byte (buf, (value & 0xff));
2134 return buf;
2135 }
2136
2137 static char *
2138 unpack_int (char *buf, int *value)
2139 {
2140 *value = stub_unpack_int (buf, 8);
2141 return buf + 8;
2142 }
2143
2144 #if 0 /* Currently unused, uncomment when needed. */
2145 static char *pack_string (char *pkt, char *string);
2146
2147 static char *
2148 pack_string (char *pkt, char *string)
2149 {
2150 char ch;
2151 int len;
2152
2153 len = strlen (string);
2154 if (len > 200)
2155 len = 200; /* Bigger than most GDB packets, junk??? */
2156 pkt = pack_hex_byte (pkt, len);
2157 while (len-- > 0)
2158 {
2159 ch = *string++;
2160 if ((ch == '\0') || (ch == '#'))
2161 ch = '*'; /* Protect encapsulation. */
2162 *pkt++ = ch;
2163 }
2164 return pkt;
2165 }
2166 #endif /* 0 (unused) */
2167
2168 static char *
2169 unpack_string (char *src, char *dest, int length)
2170 {
2171 while (length--)
2172 *dest++ = *src++;
2173 *dest = '\0';
2174 return src;
2175 }
2176
2177 static char *
2178 pack_threadid (char *pkt, threadref *id)
2179 {
2180 char *limit;
2181 unsigned char *altid;
2182
2183 altid = (unsigned char *) id;
2184 limit = pkt + BUF_THREAD_ID_SIZE;
2185 while (pkt < limit)
2186 pkt = pack_hex_byte (pkt, *altid++);
2187 return pkt;
2188 }
2189
2190
2191 static char *
2192 unpack_threadid (char *inbuf, threadref *id)
2193 {
2194 char *altref;
2195 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2196 int x, y;
2197
2198 altref = (char *) id;
2199
2200 while (inbuf < limit)
2201 {
2202 x = stubhex (*inbuf++);
2203 y = stubhex (*inbuf++);
2204 *altref++ = (x << 4) | y;
2205 }
2206 return inbuf;
2207 }
2208
2209 /* Externally, threadrefs are 64 bits but internally, they are still
2210 ints. This is due to a mismatch of specifications. We would like
2211 to use 64bit thread references internally. This is an adapter
2212 function. */
2213
2214 void
2215 int_to_threadref (threadref *id, int value)
2216 {
2217 unsigned char *scan;
2218
2219 scan = (unsigned char *) id;
2220 {
2221 int i = 4;
2222 while (i--)
2223 *scan++ = 0;
2224 }
2225 *scan++ = (value >> 24) & 0xff;
2226 *scan++ = (value >> 16) & 0xff;
2227 *scan++ = (value >> 8) & 0xff;
2228 *scan++ = (value & 0xff);
2229 }
2230
2231 static int
2232 threadref_to_int (threadref *ref)
2233 {
2234 int i, value = 0;
2235 unsigned char *scan;
2236
2237 scan = *ref;
2238 scan += 4;
2239 i = 4;
2240 while (i-- > 0)
2241 value = (value << 8) | ((*scan++) & 0xff);
2242 return value;
2243 }
2244
2245 static void
2246 copy_threadref (threadref *dest, threadref *src)
2247 {
2248 int i;
2249 unsigned char *csrc, *cdest;
2250
2251 csrc = (unsigned char *) src;
2252 cdest = (unsigned char *) dest;
2253 i = 8;
2254 while (i--)
2255 *cdest++ = *csrc++;
2256 }
2257
2258 static int
2259 threadmatch (threadref *dest, threadref *src)
2260 {
2261 /* Things are broken right now, so just assume we got a match. */
2262 #if 0
2263 unsigned char *srcp, *destp;
2264 int i, result;
2265 srcp = (char *) src;
2266 destp = (char *) dest;
2267
2268 result = 1;
2269 while (i-- > 0)
2270 result &= (*srcp++ == *destp++) ? 1 : 0;
2271 return result;
2272 #endif
2273 return 1;
2274 }
2275
2276 /*
2277 threadid:1, # always request threadid
2278 context_exists:2,
2279 display:4,
2280 unique_name:8,
2281 more_display:16
2282 */
2283
2284 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2285
2286 static char *
2287 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2288 {
2289 *pkt++ = 'q'; /* Info Query */
2290 *pkt++ = 'P'; /* process or thread info */
2291 pkt = pack_int (pkt, mode); /* mode */
2292 pkt = pack_threadid (pkt, id); /* threadid */
2293 *pkt = '\0'; /* terminate */
2294 return pkt;
2295 }
2296
2297 /* These values tag the fields in a thread info response packet. */
2298 /* Tagging the fields allows us to request specific fields and to
2299 add more fields as time goes by. */
2300
2301 #define TAG_THREADID 1 /* Echo the thread identifier. */
2302 #define TAG_EXISTS 2 /* Is this process defined enough to
2303 fetch registers and its stack? */
2304 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2305 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2306 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2307 the process. */
2308
2309 static int
2310 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2311 struct gdb_ext_thread_info *info)
2312 {
2313 struct remote_state *rs = get_remote_state ();
2314 int mask, length;
2315 int tag;
2316 threadref ref;
2317 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2318 int retval = 1;
2319
2320 /* info->threadid = 0; FIXME: implement zero_threadref. */
2321 info->active = 0;
2322 info->display[0] = '\0';
2323 info->shortname[0] = '\0';
2324 info->more_display[0] = '\0';
2325
2326 /* Assume the characters indicating the packet type have been
2327 stripped. */
2328 pkt = unpack_int (pkt, &mask); /* arg mask */
2329 pkt = unpack_threadid (pkt, &ref);
2330
2331 if (mask == 0)
2332 warning (_("Incomplete response to threadinfo request."));
2333 if (!threadmatch (&ref, expectedref))
2334 { /* This is an answer to a different request. */
2335 warning (_("ERROR RMT Thread info mismatch."));
2336 return 0;
2337 }
2338 copy_threadref (&info->threadid, &ref);
2339
2340 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2341
2342 /* Packets are terminated with nulls. */
2343 while ((pkt < limit) && mask && *pkt)
2344 {
2345 pkt = unpack_int (pkt, &tag); /* tag */
2346 pkt = unpack_byte (pkt, &length); /* length */
2347 if (!(tag & mask)) /* Tags out of synch with mask. */
2348 {
2349 warning (_("ERROR RMT: threadinfo tag mismatch."));
2350 retval = 0;
2351 break;
2352 }
2353 if (tag == TAG_THREADID)
2354 {
2355 if (length != 16)
2356 {
2357 warning (_("ERROR RMT: length of threadid is not 16."));
2358 retval = 0;
2359 break;
2360 }
2361 pkt = unpack_threadid (pkt, &ref);
2362 mask = mask & ~TAG_THREADID;
2363 continue;
2364 }
2365 if (tag == TAG_EXISTS)
2366 {
2367 info->active = stub_unpack_int (pkt, length);
2368 pkt += length;
2369 mask = mask & ~(TAG_EXISTS);
2370 if (length > 8)
2371 {
2372 warning (_("ERROR RMT: 'exists' length too long."));
2373 retval = 0;
2374 break;
2375 }
2376 continue;
2377 }
2378 if (tag == TAG_THREADNAME)
2379 {
2380 pkt = unpack_string (pkt, &info->shortname[0], length);
2381 mask = mask & ~TAG_THREADNAME;
2382 continue;
2383 }
2384 if (tag == TAG_DISPLAY)
2385 {
2386 pkt = unpack_string (pkt, &info->display[0], length);
2387 mask = mask & ~TAG_DISPLAY;
2388 continue;
2389 }
2390 if (tag == TAG_MOREDISPLAY)
2391 {
2392 pkt = unpack_string (pkt, &info->more_display[0], length);
2393 mask = mask & ~TAG_MOREDISPLAY;
2394 continue;
2395 }
2396 warning (_("ERROR RMT: unknown thread info tag."));
2397 break; /* Not a tag we know about. */
2398 }
2399 return retval;
2400 }
2401
2402 static int
2403 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2404 struct gdb_ext_thread_info *info)
2405 {
2406 struct remote_state *rs = get_remote_state ();
2407 int result;
2408
2409 pack_threadinfo_request (rs->buf, fieldset, threadid);
2410 putpkt (rs->buf);
2411 getpkt (&rs->buf, &rs->buf_size, 0);
2412
2413 if (rs->buf[0] == '\0')
2414 return 0;
2415
2416 result = remote_unpack_thread_info_response (rs->buf + 2,
2417 threadid, info);
2418 return result;
2419 }
2420
2421 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2422
2423 static char *
2424 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2425 threadref *nextthread)
2426 {
2427 *pkt++ = 'q'; /* info query packet */
2428 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2429 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2430 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2431 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2432 *pkt = '\0';
2433 return pkt;
2434 }
2435
2436 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2437
2438 static int
2439 parse_threadlist_response (char *pkt, int result_limit,
2440 threadref *original_echo, threadref *resultlist,
2441 int *doneflag)
2442 {
2443 struct remote_state *rs = get_remote_state ();
2444 char *limit;
2445 int count, resultcount, done;
2446
2447 resultcount = 0;
2448 /* Assume the 'q' and 'M chars have been stripped. */
2449 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2450 /* done parse past here */
2451 pkt = unpack_byte (pkt, &count); /* count field */
2452 pkt = unpack_nibble (pkt, &done);
2453 /* The first threadid is the argument threadid. */
2454 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2455 while ((count-- > 0) && (pkt < limit))
2456 {
2457 pkt = unpack_threadid (pkt, resultlist++);
2458 if (resultcount++ >= result_limit)
2459 break;
2460 }
2461 if (doneflag)
2462 *doneflag = done;
2463 return resultcount;
2464 }
2465
2466 static int
2467 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2468 int *done, int *result_count, threadref *threadlist)
2469 {
2470 struct remote_state *rs = get_remote_state ();
2471 static threadref echo_nextthread;
2472 int result = 1;
2473
2474 /* Trancate result limit to be smaller than the packet size. */
2475 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2476 >= get_remote_packet_size ())
2477 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2478
2479 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2480 putpkt (rs->buf);
2481 getpkt (&rs->buf, &rs->buf_size, 0);
2482
2483 if (*rs->buf == '\0')
2484 return 0;
2485 else
2486 *result_count =
2487 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2488 threadlist, done);
2489
2490 if (!threadmatch (&echo_nextthread, nextthread))
2491 {
2492 /* FIXME: This is a good reason to drop the packet. */
2493 /* Possably, there is a duplicate response. */
2494 /* Possabilities :
2495 retransmit immediatly - race conditions
2496 retransmit after timeout - yes
2497 exit
2498 wait for packet, then exit
2499 */
2500 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2501 return 0; /* I choose simply exiting. */
2502 }
2503 if (*result_count <= 0)
2504 {
2505 if (*done != 1)
2506 {
2507 warning (_("RMT ERROR : failed to get remote thread list."));
2508 result = 0;
2509 }
2510 return result; /* break; */
2511 }
2512 if (*result_count > result_limit)
2513 {
2514 *result_count = 0;
2515 warning (_("RMT ERROR: threadlist response longer than requested."));
2516 return 0;
2517 }
2518 return result;
2519 }
2520
2521 /* This is the interface between remote and threads, remotes upper
2522 interface. */
2523
2524 /* remote_find_new_threads retrieves the thread list and for each
2525 thread in the list, looks up the thread in GDB's internal list,
2526 adding the thread if it does not already exist. This involves
2527 getting partial thread lists from the remote target so, polling the
2528 quit_flag is required. */
2529
2530
2531 /* About this many threadisds fit in a packet. */
2532
2533 #define MAXTHREADLISTRESULTS 32
2534
2535 static int
2536 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2537 int looplimit)
2538 {
2539 int done, i, result_count;
2540 int startflag = 1;
2541 int result = 1;
2542 int loopcount = 0;
2543 static threadref nextthread;
2544 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2545
2546 done = 0;
2547 while (!done)
2548 {
2549 if (loopcount++ > looplimit)
2550 {
2551 result = 0;
2552 warning (_("Remote fetch threadlist -infinite loop-."));
2553 break;
2554 }
2555 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2556 &done, &result_count, resultthreadlist))
2557 {
2558 result = 0;
2559 break;
2560 }
2561 /* Clear for later iterations. */
2562 startflag = 0;
2563 /* Setup to resume next batch of thread references, set nextthread. */
2564 if (result_count >= 1)
2565 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2566 i = 0;
2567 while (result_count--)
2568 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2569 break;
2570 }
2571 return result;
2572 }
2573
2574 static int
2575 remote_newthread_step (threadref *ref, void *context)
2576 {
2577 int pid = ptid_get_pid (inferior_ptid);
2578 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2579
2580 if (!in_thread_list (ptid))
2581 add_thread (ptid);
2582 return 1; /* continue iterator */
2583 }
2584
2585 #define CRAZY_MAX_THREADS 1000
2586
2587 static ptid_t
2588 remote_current_thread (ptid_t oldpid)
2589 {
2590 struct remote_state *rs = get_remote_state ();
2591
2592 putpkt ("qC");
2593 getpkt (&rs->buf, &rs->buf_size, 0);
2594 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2595 return read_ptid (&rs->buf[2], NULL);
2596 else
2597 return oldpid;
2598 }
2599
2600 /* Find new threads for info threads command.
2601 * Original version, using John Metzler's thread protocol.
2602 */
2603
2604 static void
2605 remote_find_new_threads (void)
2606 {
2607 remote_threadlist_iterator (remote_newthread_step, 0,
2608 CRAZY_MAX_THREADS);
2609 }
2610
2611 #if defined(HAVE_LIBEXPAT)
2612
2613 typedef struct thread_item
2614 {
2615 ptid_t ptid;
2616 char *extra;
2617 int core;
2618 } thread_item_t;
2619 DEF_VEC_O(thread_item_t);
2620
2621 struct threads_parsing_context
2622 {
2623 VEC (thread_item_t) *items;
2624 };
2625
2626 static void
2627 start_thread (struct gdb_xml_parser *parser,
2628 const struct gdb_xml_element *element,
2629 void *user_data, VEC(gdb_xml_value_s) *attributes)
2630 {
2631 struct threads_parsing_context *data = user_data;
2632
2633 struct thread_item item;
2634 char *id;
2635 struct gdb_xml_value *attr;
2636
2637 id = xml_find_attribute (attributes, "id")->value;
2638 item.ptid = read_ptid (id, NULL);
2639
2640 attr = xml_find_attribute (attributes, "core");
2641 if (attr != NULL)
2642 item.core = *(ULONGEST *) attr->value;
2643 else
2644 item.core = -1;
2645
2646 item.extra = 0;
2647
2648 VEC_safe_push (thread_item_t, data->items, &item);
2649 }
2650
2651 static void
2652 end_thread (struct gdb_xml_parser *parser,
2653 const struct gdb_xml_element *element,
2654 void *user_data, const char *body_text)
2655 {
2656 struct threads_parsing_context *data = user_data;
2657
2658 if (body_text && *body_text)
2659 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2660 }
2661
2662 const struct gdb_xml_attribute thread_attributes[] = {
2663 { "id", GDB_XML_AF_NONE, NULL, NULL },
2664 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2665 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2666 };
2667
2668 const struct gdb_xml_element thread_children[] = {
2669 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2670 };
2671
2672 const struct gdb_xml_element threads_children[] = {
2673 { "thread", thread_attributes, thread_children,
2674 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2675 start_thread, end_thread },
2676 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2677 };
2678
2679 const struct gdb_xml_element threads_elements[] = {
2680 { "threads", NULL, threads_children,
2681 GDB_XML_EF_NONE, NULL, NULL },
2682 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2683 };
2684
2685 /* Discard the contents of the constructed thread info context. */
2686
2687 static void
2688 clear_threads_parsing_context (void *p)
2689 {
2690 struct threads_parsing_context *context = p;
2691 int i;
2692 struct thread_item *item;
2693
2694 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2695 xfree (item->extra);
2696
2697 VEC_free (thread_item_t, context->items);
2698 }
2699
2700 #endif
2701
2702 /*
2703 * Find all threads for info threads command.
2704 * Uses new thread protocol contributed by Cisco.
2705 * Falls back and attempts to use the older method (above)
2706 * if the target doesn't respond to the new method.
2707 */
2708
2709 static void
2710 remote_threads_info (struct target_ops *ops)
2711 {
2712 struct remote_state *rs = get_remote_state ();
2713 char *bufp;
2714 ptid_t new_thread;
2715
2716 if (remote_desc == 0) /* paranoia */
2717 error (_("Command can only be used when connected to the remote target."));
2718
2719 #if defined(HAVE_LIBEXPAT)
2720 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2721 {
2722 char *xml = target_read_stralloc (&current_target,
2723 TARGET_OBJECT_THREADS, NULL);
2724
2725 struct cleanup *back_to = make_cleanup (xfree, xml);
2726
2727 if (xml && *xml)
2728 {
2729 struct threads_parsing_context context;
2730
2731 context.items = NULL;
2732 make_cleanup (clear_threads_parsing_context, &context);
2733
2734 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2735 threads_elements, xml, &context) == 0)
2736 {
2737 int i;
2738 struct thread_item *item;
2739
2740 for (i = 0;
2741 VEC_iterate (thread_item_t, context.items, i, item);
2742 ++i)
2743 {
2744 if (!ptid_equal (item->ptid, null_ptid))
2745 {
2746 struct private_thread_info *info;
2747 /* In non-stop mode, we assume new found threads
2748 are running until proven otherwise with a
2749 stop reply. In all-stop, we can only get
2750 here if all threads are stopped. */
2751 int running = non_stop ? 1 : 0;
2752
2753 remote_notice_new_inferior (item->ptid, running);
2754
2755 info = demand_private_info (item->ptid);
2756 info->core = item->core;
2757 info->extra = item->extra;
2758 item->extra = NULL;
2759 }
2760 }
2761 }
2762 }
2763
2764 do_cleanups (back_to);
2765 return;
2766 }
2767 #endif
2768
2769 if (use_threadinfo_query)
2770 {
2771 putpkt ("qfThreadInfo");
2772 getpkt (&rs->buf, &rs->buf_size, 0);
2773 bufp = rs->buf;
2774 if (bufp[0] != '\0') /* q packet recognized */
2775 {
2776 while (*bufp++ == 'm') /* reply contains one or more TID */
2777 {
2778 do
2779 {
2780 new_thread = read_ptid (bufp, &bufp);
2781 if (!ptid_equal (new_thread, null_ptid))
2782 {
2783 /* In non-stop mode, we assume new found threads
2784 are running until proven otherwise with a
2785 stop reply. In all-stop, we can only get
2786 here if all threads are stopped. */
2787 int running = non_stop ? 1 : 0;
2788
2789 remote_notice_new_inferior (new_thread, running);
2790 }
2791 }
2792 while (*bufp++ == ','); /* comma-separated list */
2793 putpkt ("qsThreadInfo");
2794 getpkt (&rs->buf, &rs->buf_size, 0);
2795 bufp = rs->buf;
2796 }
2797 return; /* done */
2798 }
2799 }
2800
2801 /* Only qfThreadInfo is supported in non-stop mode. */
2802 if (non_stop)
2803 return;
2804
2805 /* Else fall back to old method based on jmetzler protocol. */
2806 use_threadinfo_query = 0;
2807 remote_find_new_threads ();
2808 return;
2809 }
2810
2811 /*
2812 * Collect a descriptive string about the given thread.
2813 * The target may say anything it wants to about the thread
2814 * (typically info about its blocked / runnable state, name, etc.).
2815 * This string will appear in the info threads display.
2816 *
2817 * Optional: targets are not required to implement this function.
2818 */
2819
2820 static char *
2821 remote_threads_extra_info (struct thread_info *tp)
2822 {
2823 struct remote_state *rs = get_remote_state ();
2824 int result;
2825 int set;
2826 threadref id;
2827 struct gdb_ext_thread_info threadinfo;
2828 static char display_buf[100]; /* arbitrary... */
2829 int n = 0; /* position in display_buf */
2830
2831 if (remote_desc == 0) /* paranoia */
2832 internal_error (__FILE__, __LINE__,
2833 _("remote_threads_extra_info"));
2834
2835 if (ptid_equal (tp->ptid, magic_null_ptid)
2836 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2837 /* This is the main thread which was added by GDB. The remote
2838 server doesn't know about it. */
2839 return NULL;
2840
2841 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2842 {
2843 struct thread_info *info = find_thread_ptid (tp->ptid);
2844
2845 if (info && info->private)
2846 return info->private->extra;
2847 else
2848 return NULL;
2849 }
2850
2851 if (use_threadextra_query)
2852 {
2853 char *b = rs->buf;
2854 char *endb = rs->buf + get_remote_packet_size ();
2855
2856 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2857 b += strlen (b);
2858 write_ptid (b, endb, tp->ptid);
2859
2860 putpkt (rs->buf);
2861 getpkt (&rs->buf, &rs->buf_size, 0);
2862 if (rs->buf[0] != 0)
2863 {
2864 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2865 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2866 display_buf [result] = '\0';
2867 return display_buf;
2868 }
2869 }
2870
2871 /* If the above query fails, fall back to the old method. */
2872 use_threadextra_query = 0;
2873 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2874 | TAG_MOREDISPLAY | TAG_DISPLAY;
2875 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2876 if (remote_get_threadinfo (&id, set, &threadinfo))
2877 if (threadinfo.active)
2878 {
2879 if (*threadinfo.shortname)
2880 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2881 " Name: %s,", threadinfo.shortname);
2882 if (*threadinfo.display)
2883 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2884 " State: %s,", threadinfo.display);
2885 if (*threadinfo.more_display)
2886 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2887 " Priority: %s", threadinfo.more_display);
2888
2889 if (n > 0)
2890 {
2891 /* For purely cosmetic reasons, clear up trailing commas. */
2892 if (',' == display_buf[n-1])
2893 display_buf[n-1] = ' ';
2894 return display_buf;
2895 }
2896 }
2897 return NULL;
2898 }
2899 \f
2900
2901 static int
2902 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2903 struct static_tracepoint_marker *marker)
2904 {
2905 struct remote_state *rs = get_remote_state ();
2906 char *p = rs->buf;
2907
2908 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2909 p += strlen (p);
2910 p += hexnumstr (p, addr);
2911 putpkt (rs->buf);
2912 getpkt (&rs->buf, &rs->buf_size, 0);
2913 p = rs->buf;
2914
2915 if (*p == 'E')
2916 error (_("Remote failure reply: %s"), p);
2917
2918 if (*p++ == 'm')
2919 {
2920 parse_static_tracepoint_marker_definition (p, &p, marker);
2921 return 1;
2922 }
2923
2924 return 0;
2925 }
2926
2927 static VEC(static_tracepoint_marker_p) *
2928 remote_static_tracepoint_markers_by_strid (const char *strid)
2929 {
2930 struct remote_state *rs = get_remote_state ();
2931 VEC(static_tracepoint_marker_p) *markers = NULL;
2932 struct static_tracepoint_marker *marker = NULL;
2933 struct cleanup *old_chain;
2934 char *p;
2935
2936 /* Ask for a first packet of static tracepoint marker
2937 definition. */
2938 putpkt ("qTfSTM");
2939 getpkt (&rs->buf, &rs->buf_size, 0);
2940 p = rs->buf;
2941 if (*p == 'E')
2942 error (_("Remote failure reply: %s"), p);
2943
2944 old_chain = make_cleanup (free_current_marker, &marker);
2945
2946 while (*p++ == 'm')
2947 {
2948 if (marker == NULL)
2949 marker = XCNEW (struct static_tracepoint_marker);
2950
2951 do
2952 {
2953 parse_static_tracepoint_marker_definition (p, &p, marker);
2954
2955 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2956 {
2957 VEC_safe_push (static_tracepoint_marker_p,
2958 markers, marker);
2959 marker = NULL;
2960 }
2961 else
2962 {
2963 release_static_tracepoint_marker (marker);
2964 memset (marker, 0, sizeof (*marker));
2965 }
2966 }
2967 while (*p++ == ','); /* comma-separated list */
2968 /* Ask for another packet of static tracepoint definition. */
2969 putpkt ("qTsSTM");
2970 getpkt (&rs->buf, &rs->buf_size, 0);
2971 p = rs->buf;
2972 }
2973
2974 do_cleanups (old_chain);
2975 return markers;
2976 }
2977
2978 \f
2979 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2980
2981 static ptid_t
2982 remote_get_ada_task_ptid (long lwp, long thread)
2983 {
2984 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2985 }
2986 \f
2987
2988 /* Restart the remote side; this is an extended protocol operation. */
2989
2990 static void
2991 extended_remote_restart (void)
2992 {
2993 struct remote_state *rs = get_remote_state ();
2994
2995 /* Send the restart command; for reasons I don't understand the
2996 remote side really expects a number after the "R". */
2997 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2998 putpkt (rs->buf);
2999
3000 remote_fileio_reset ();
3001 }
3002 \f
3003 /* Clean up connection to a remote debugger. */
3004
3005 static void
3006 remote_close (int quitting)
3007 {
3008 if (remote_desc == NULL)
3009 return; /* already closed */
3010
3011 /* Make sure we leave stdin registered in the event loop, and we
3012 don't leave the async SIGINT signal handler installed. */
3013 remote_terminal_ours ();
3014
3015 serial_close (remote_desc);
3016 remote_desc = NULL;
3017
3018 /* We don't have a connection to the remote stub anymore. Get rid
3019 of all the inferiors and their threads we were controlling.
3020 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3021 will be unable to find the thread corresponding to (pid, 0, 0). */
3022 inferior_ptid = null_ptid;
3023 discard_all_inferiors ();
3024
3025 /* We're no longer interested in any of these events. */
3026 discard_pending_stop_replies (-1);
3027
3028 if (remote_async_inferior_event_token)
3029 delete_async_event_handler (&remote_async_inferior_event_token);
3030 if (remote_async_get_pending_events_token)
3031 delete_async_event_handler (&remote_async_get_pending_events_token);
3032 }
3033
3034 /* Query the remote side for the text, data and bss offsets. */
3035
3036 static void
3037 get_offsets (void)
3038 {
3039 struct remote_state *rs = get_remote_state ();
3040 char *buf;
3041 char *ptr;
3042 int lose, num_segments = 0, do_sections, do_segments;
3043 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3044 struct section_offsets *offs;
3045 struct symfile_segment_data *data;
3046
3047 if (symfile_objfile == NULL)
3048 return;
3049
3050 putpkt ("qOffsets");
3051 getpkt (&rs->buf, &rs->buf_size, 0);
3052 buf = rs->buf;
3053
3054 if (buf[0] == '\000')
3055 return; /* Return silently. Stub doesn't support
3056 this command. */
3057 if (buf[0] == 'E')
3058 {
3059 warning (_("Remote failure reply: %s"), buf);
3060 return;
3061 }
3062
3063 /* Pick up each field in turn. This used to be done with scanf, but
3064 scanf will make trouble if CORE_ADDR size doesn't match
3065 conversion directives correctly. The following code will work
3066 with any size of CORE_ADDR. */
3067 text_addr = data_addr = bss_addr = 0;
3068 ptr = buf;
3069 lose = 0;
3070
3071 if (strncmp (ptr, "Text=", 5) == 0)
3072 {
3073 ptr += 5;
3074 /* Don't use strtol, could lose on big values. */
3075 while (*ptr && *ptr != ';')
3076 text_addr = (text_addr << 4) + fromhex (*ptr++);
3077
3078 if (strncmp (ptr, ";Data=", 6) == 0)
3079 {
3080 ptr += 6;
3081 while (*ptr && *ptr != ';')
3082 data_addr = (data_addr << 4) + fromhex (*ptr++);
3083 }
3084 else
3085 lose = 1;
3086
3087 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3088 {
3089 ptr += 5;
3090 while (*ptr && *ptr != ';')
3091 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3092
3093 if (bss_addr != data_addr)
3094 warning (_("Target reported unsupported offsets: %s"), buf);
3095 }
3096 else
3097 lose = 1;
3098 }
3099 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3100 {
3101 ptr += 8;
3102 /* Don't use strtol, could lose on big values. */
3103 while (*ptr && *ptr != ';')
3104 text_addr = (text_addr << 4) + fromhex (*ptr++);
3105 num_segments = 1;
3106
3107 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3108 {
3109 ptr += 9;
3110 while (*ptr && *ptr != ';')
3111 data_addr = (data_addr << 4) + fromhex (*ptr++);
3112 num_segments++;
3113 }
3114 }
3115 else
3116 lose = 1;
3117
3118 if (lose)
3119 error (_("Malformed response to offset query, %s"), buf);
3120 else if (*ptr != '\0')
3121 warning (_("Target reported unsupported offsets: %s"), buf);
3122
3123 offs = ((struct section_offsets *)
3124 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3125 memcpy (offs, symfile_objfile->section_offsets,
3126 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3127
3128 data = get_symfile_segment_data (symfile_objfile->obfd);
3129 do_segments = (data != NULL);
3130 do_sections = num_segments == 0;
3131
3132 if (num_segments > 0)
3133 {
3134 segments[0] = text_addr;
3135 segments[1] = data_addr;
3136 }
3137 /* If we have two segments, we can still try to relocate everything
3138 by assuming that the .text and .data offsets apply to the whole
3139 text and data segments. Convert the offsets given in the packet
3140 to base addresses for symfile_map_offsets_to_segments. */
3141 else if (data && data->num_segments == 2)
3142 {
3143 segments[0] = data->segment_bases[0] + text_addr;
3144 segments[1] = data->segment_bases[1] + data_addr;
3145 num_segments = 2;
3146 }
3147 /* If the object file has only one segment, assume that it is text
3148 rather than data; main programs with no writable data are rare,
3149 but programs with no code are useless. Of course the code might
3150 have ended up in the data segment... to detect that we would need
3151 the permissions here. */
3152 else if (data && data->num_segments == 1)
3153 {
3154 segments[0] = data->segment_bases[0] + text_addr;
3155 num_segments = 1;
3156 }
3157 /* There's no way to relocate by segment. */
3158 else
3159 do_segments = 0;
3160
3161 if (do_segments)
3162 {
3163 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3164 offs, num_segments, segments);
3165
3166 if (ret == 0 && !do_sections)
3167 error (_("Can not handle qOffsets TextSeg "
3168 "response with this symbol file"));
3169
3170 if (ret > 0)
3171 do_sections = 0;
3172 }
3173
3174 if (data)
3175 free_symfile_segment_data (data);
3176
3177 if (do_sections)
3178 {
3179 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3180
3181 /* This is a temporary kludge to force data and bss to use the
3182 same offsets because that's what nlmconv does now. The real
3183 solution requires changes to the stub and remote.c that I
3184 don't have time to do right now. */
3185
3186 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3187 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3188 }
3189
3190 objfile_relocate (symfile_objfile, offs);
3191 }
3192
3193 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3194 threads we know are stopped already. This is used during the
3195 initial remote connection in non-stop mode --- threads that are
3196 reported as already being stopped are left stopped. */
3197
3198 static int
3199 set_stop_requested_callback (struct thread_info *thread, void *data)
3200 {
3201 /* If we have a stop reply for this thread, it must be stopped. */
3202 if (peek_stop_reply (thread->ptid))
3203 set_stop_requested (thread->ptid, 1);
3204
3205 return 0;
3206 }
3207
3208 /* Send interrupt_sequence to remote target. */
3209 static void
3210 send_interrupt_sequence (void)
3211 {
3212 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3213 serial_write (remote_desc, "\x03", 1);
3214 else if (interrupt_sequence_mode == interrupt_sequence_break)
3215 serial_send_break (remote_desc);
3216 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3217 {
3218 serial_send_break (remote_desc);
3219 serial_write (remote_desc, "g", 1);
3220 }
3221 else
3222 internal_error (__FILE__, __LINE__,
3223 _("Invalid value for interrupt_sequence_mode: %s."),
3224 interrupt_sequence_mode);
3225 }
3226
3227 /* Query the remote target for which is the current thread/process,
3228 add it to our tables, and update INFERIOR_PTID. The caller is
3229 responsible for setting the state such that the remote end is ready
3230 to return the current thread. */
3231
3232 static void
3233 add_current_inferior_and_thread (void)
3234 {
3235 struct remote_state *rs = get_remote_state ();
3236 int fake_pid_p = 0;
3237 ptid_t ptid;
3238
3239 inferior_ptid = null_ptid;
3240
3241 /* Now, if we have thread information, update inferior_ptid. */
3242 ptid = remote_current_thread (inferior_ptid);
3243 if (!ptid_equal (ptid, null_ptid))
3244 {
3245 if (!remote_multi_process_p (rs))
3246 fake_pid_p = 1;
3247
3248 inferior_ptid = ptid;
3249 }
3250 else
3251 {
3252 /* Without this, some commands which require an active target
3253 (such as kill) won't work. This variable serves (at least)
3254 double duty as both the pid of the target process (if it has
3255 such), and as a flag indicating that a target is active. */
3256 inferior_ptid = magic_null_ptid;
3257 fake_pid_p = 1;
3258 }
3259
3260 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3261
3262 /* Add the main thread. */
3263 add_thread_silent (inferior_ptid);
3264 }
3265
3266 static void
3267 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3268 {
3269 struct remote_state *rs = get_remote_state ();
3270 struct packet_config *noack_config;
3271 char *wait_status = NULL;
3272
3273 immediate_quit++; /* Allow user to interrupt it. */
3274 QUIT;
3275
3276 if (interrupt_on_connect)
3277 send_interrupt_sequence ();
3278
3279 /* Ack any packet which the remote side has already sent. */
3280 serial_write (remote_desc, "+", 1);
3281
3282 /* Signal other parts that we're going through the initial setup,
3283 and so things may not be stable yet. */
3284 rs->starting_up = 1;
3285
3286 /* The first packet we send to the target is the optional "supported
3287 packets" request. If the target can answer this, it will tell us
3288 which later probes to skip. */
3289 remote_query_supported ();
3290
3291 /* If the stub wants to get a QAllow, compose one and send it. */
3292 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3293 remote_set_permissions ();
3294
3295 /* Next, we possibly activate noack mode.
3296
3297 If the QStartNoAckMode packet configuration is set to AUTO,
3298 enable noack mode if the stub reported a wish for it with
3299 qSupported.
3300
3301 If set to TRUE, then enable noack mode even if the stub didn't
3302 report it in qSupported. If the stub doesn't reply OK, the
3303 session ends with an error.
3304
3305 If FALSE, then don't activate noack mode, regardless of what the
3306 stub claimed should be the default with qSupported. */
3307
3308 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3309
3310 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3311 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3312 && noack_config->support == PACKET_ENABLE))
3313 {
3314 putpkt ("QStartNoAckMode");
3315 getpkt (&rs->buf, &rs->buf_size, 0);
3316 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3317 rs->noack_mode = 1;
3318 }
3319
3320 if (extended_p)
3321 {
3322 /* Tell the remote that we are using the extended protocol. */
3323 putpkt ("!");
3324 getpkt (&rs->buf, &rs->buf_size, 0);
3325 }
3326
3327 /* Let the target know which signals it is allowed to pass down to
3328 the program. */
3329 update_signals_program_target ();
3330
3331 /* Next, if the target can specify a description, read it. We do
3332 this before anything involving memory or registers. */
3333 target_find_description ();
3334
3335 /* Next, now that we know something about the target, update the
3336 address spaces in the program spaces. */
3337 update_address_spaces ();
3338
3339 /* On OSs where the list of libraries is global to all
3340 processes, we fetch them early. */
3341 if (gdbarch_has_global_solist (target_gdbarch))
3342 solib_add (NULL, from_tty, target, auto_solib_add);
3343
3344 if (non_stop)
3345 {
3346 if (!rs->non_stop_aware)
3347 error (_("Non-stop mode requested, but remote "
3348 "does not support non-stop"));
3349
3350 putpkt ("QNonStop:1");
3351 getpkt (&rs->buf, &rs->buf_size, 0);
3352
3353 if (strcmp (rs->buf, "OK") != 0)
3354 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3355
3356 /* Find about threads and processes the stub is already
3357 controlling. We default to adding them in the running state.
3358 The '?' query below will then tell us about which threads are
3359 stopped. */
3360 remote_threads_info (target);
3361 }
3362 else if (rs->non_stop_aware)
3363 {
3364 /* Don't assume that the stub can operate in all-stop mode.
3365 Request it explicitely. */
3366 putpkt ("QNonStop:0");
3367 getpkt (&rs->buf, &rs->buf_size, 0);
3368
3369 if (strcmp (rs->buf, "OK") != 0)
3370 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3371 }
3372
3373 /* Check whether the target is running now. */
3374 putpkt ("?");
3375 getpkt (&rs->buf, &rs->buf_size, 0);
3376
3377 if (!non_stop)
3378 {
3379 ptid_t ptid;
3380 int fake_pid_p = 0;
3381 struct inferior *inf;
3382
3383 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3384 {
3385 if (!extended_p)
3386 error (_("The target is not running (try extended-remote?)"));
3387
3388 /* We're connected, but not running. Drop out before we
3389 call start_remote. */
3390 rs->starting_up = 0;
3391 return;
3392 }
3393 else
3394 {
3395 /* Save the reply for later. */
3396 wait_status = alloca (strlen (rs->buf) + 1);
3397 strcpy (wait_status, rs->buf);
3398 }
3399
3400 /* Let the stub know that we want it to return the thread. */
3401 set_continue_thread (minus_one_ptid);
3402
3403 add_current_inferior_and_thread ();
3404
3405 /* init_wait_for_inferior should be called before get_offsets in order
3406 to manage `inserted' flag in bp loc in a correct state.
3407 breakpoint_init_inferior, called from init_wait_for_inferior, set
3408 `inserted' flag to 0, while before breakpoint_re_set, called from
3409 start_remote, set `inserted' flag to 1. In the initialization of
3410 inferior, breakpoint_init_inferior should be called first, and then
3411 breakpoint_re_set can be called. If this order is broken, state of
3412 `inserted' flag is wrong, and cause some problems on breakpoint
3413 manipulation. */
3414 init_wait_for_inferior ();
3415
3416 get_offsets (); /* Get text, data & bss offsets. */
3417
3418 /* If we could not find a description using qXfer, and we know
3419 how to do it some other way, try again. This is not
3420 supported for non-stop; it could be, but it is tricky if
3421 there are no stopped threads when we connect. */
3422 if (remote_read_description_p (target)
3423 && gdbarch_target_desc (target_gdbarch) == NULL)
3424 {
3425 target_clear_description ();
3426 target_find_description ();
3427 }
3428
3429 /* Use the previously fetched status. */
3430 gdb_assert (wait_status != NULL);
3431 strcpy (rs->buf, wait_status);
3432 rs->cached_wait_status = 1;
3433
3434 immediate_quit--;
3435 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3436 }
3437 else
3438 {
3439 /* Clear WFI global state. Do this before finding about new
3440 threads and inferiors, and setting the current inferior.
3441 Otherwise we would clear the proceed status of the current
3442 inferior when we want its stop_soon state to be preserved
3443 (see notice_new_inferior). */
3444 init_wait_for_inferior ();
3445
3446 /* In non-stop, we will either get an "OK", meaning that there
3447 are no stopped threads at this time; or, a regular stop
3448 reply. In the latter case, there may be more than one thread
3449 stopped --- we pull them all out using the vStopped
3450 mechanism. */
3451 if (strcmp (rs->buf, "OK") != 0)
3452 {
3453 struct stop_reply *stop_reply;
3454 struct cleanup *old_chain;
3455
3456 stop_reply = stop_reply_xmalloc ();
3457 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3458
3459 remote_parse_stop_reply (rs->buf, stop_reply);
3460 discard_cleanups (old_chain);
3461
3462 /* get_pending_stop_replies acks this one, and gets the rest
3463 out. */
3464 pending_stop_reply = stop_reply;
3465 remote_get_pending_stop_replies ();
3466
3467 /* Make sure that threads that were stopped remain
3468 stopped. */
3469 iterate_over_threads (set_stop_requested_callback, NULL);
3470 }
3471
3472 if (target_can_async_p ())
3473 target_async (inferior_event_handler, 0);
3474
3475 if (thread_count () == 0)
3476 {
3477 if (!extended_p)
3478 error (_("The target is not running (try extended-remote?)"));
3479
3480 /* We're connected, but not running. Drop out before we
3481 call start_remote. */
3482 rs->starting_up = 0;
3483 return;
3484 }
3485
3486 /* Let the stub know that we want it to return the thread. */
3487
3488 /* Force the stub to choose a thread. */
3489 set_general_thread (null_ptid);
3490
3491 /* Query it. */
3492 inferior_ptid = remote_current_thread (minus_one_ptid);
3493 if (ptid_equal (inferior_ptid, minus_one_ptid))
3494 error (_("remote didn't report the current thread in non-stop mode"));
3495
3496 get_offsets (); /* Get text, data & bss offsets. */
3497
3498 /* In non-stop mode, any cached wait status will be stored in
3499 the stop reply queue. */
3500 gdb_assert (wait_status == NULL);
3501
3502 /* Report all signals during attach/startup. */
3503 remote_pass_signals (0, NULL);
3504 }
3505
3506 /* If we connected to a live target, do some additional setup. */
3507 if (target_has_execution)
3508 {
3509 if (exec_bfd) /* No use without an exec file. */
3510 remote_check_symbols (symfile_objfile);
3511 }
3512
3513 /* Possibly the target has been engaged in a trace run started
3514 previously; find out where things are at. */
3515 if (remote_get_trace_status (current_trace_status ()) != -1)
3516 {
3517 struct uploaded_tp *uploaded_tps = NULL;
3518 struct uploaded_tsv *uploaded_tsvs = NULL;
3519
3520 if (current_trace_status ()->running)
3521 printf_filtered (_("Trace is already running on the target.\n"));
3522
3523 /* Get trace state variables first, they may be checked when
3524 parsing uploaded commands. */
3525
3526 remote_upload_trace_state_variables (&uploaded_tsvs);
3527
3528 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3529
3530 remote_upload_tracepoints (&uploaded_tps);
3531
3532 merge_uploaded_tracepoints (&uploaded_tps);
3533 }
3534
3535 /* The thread and inferior lists are now synchronized with the
3536 target, our symbols have been relocated, and we're merged the
3537 target's tracepoints with ours. We're done with basic start
3538 up. */
3539 rs->starting_up = 0;
3540
3541 /* If breakpoints are global, insert them now. */
3542 if (gdbarch_has_global_breakpoints (target_gdbarch)
3543 && breakpoints_always_inserted_mode ())
3544 insert_breakpoints ();
3545 }
3546
3547 /* Open a connection to a remote debugger.
3548 NAME is the filename used for communication. */
3549
3550 static void
3551 remote_open (char *name, int from_tty)
3552 {
3553 remote_open_1 (name, from_tty, &remote_ops, 0);
3554 }
3555
3556 /* Open a connection to a remote debugger using the extended
3557 remote gdb protocol. NAME is the filename used for communication. */
3558
3559 static void
3560 extended_remote_open (char *name, int from_tty)
3561 {
3562 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3563 }
3564
3565 /* Generic code for opening a connection to a remote target. */
3566
3567 static void
3568 init_all_packet_configs (void)
3569 {
3570 int i;
3571
3572 for (i = 0; i < PACKET_MAX; i++)
3573 update_packet_config (&remote_protocol_packets[i]);
3574 }
3575
3576 /* Symbol look-up. */
3577
3578 static void
3579 remote_check_symbols (struct objfile *objfile)
3580 {
3581 struct remote_state *rs = get_remote_state ();
3582 char *msg, *reply, *tmp;
3583 struct minimal_symbol *sym;
3584 int end;
3585
3586 /* The remote side has no concept of inferiors that aren't running
3587 yet, it only knows about running processes. If we're connected
3588 but our current inferior is not running, we should not invite the
3589 remote target to request symbol lookups related to its
3590 (unrelated) current process. */
3591 if (!target_has_execution)
3592 return;
3593
3594 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3595 return;
3596
3597 /* Make sure the remote is pointing at the right process. Note
3598 there's no way to select "no process". */
3599 set_general_process ();
3600
3601 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3602 because we need both at the same time. */
3603 msg = alloca (get_remote_packet_size ());
3604
3605 /* Invite target to request symbol lookups. */
3606
3607 putpkt ("qSymbol::");
3608 getpkt (&rs->buf, &rs->buf_size, 0);
3609 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3610 reply = rs->buf;
3611
3612 while (strncmp (reply, "qSymbol:", 8) == 0)
3613 {
3614 tmp = &reply[8];
3615 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3616 msg[end] = '\0';
3617 sym = lookup_minimal_symbol (msg, NULL, NULL);
3618 if (sym == NULL)
3619 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3620 else
3621 {
3622 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3623 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3624
3625 /* If this is a function address, return the start of code
3626 instead of any data function descriptor. */
3627 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3628 sym_addr,
3629 &current_target);
3630
3631 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3632 phex_nz (sym_addr, addr_size), &reply[8]);
3633 }
3634
3635 putpkt (msg);
3636 getpkt (&rs->buf, &rs->buf_size, 0);
3637 reply = rs->buf;
3638 }
3639 }
3640
3641 static struct serial *
3642 remote_serial_open (char *name)
3643 {
3644 static int udp_warning = 0;
3645
3646 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3647 of in ser-tcp.c, because it is the remote protocol assuming that the
3648 serial connection is reliable and not the serial connection promising
3649 to be. */
3650 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3651 {
3652 warning (_("The remote protocol may be unreliable over UDP.\n"
3653 "Some events may be lost, rendering further debugging "
3654 "impossible."));
3655 udp_warning = 1;
3656 }
3657
3658 return serial_open (name);
3659 }
3660
3661 /* Inform the target of our permission settings. The permission flags
3662 work without this, but if the target knows the settings, it can do
3663 a couple things. First, it can add its own check, to catch cases
3664 that somehow manage to get by the permissions checks in target
3665 methods. Second, if the target is wired to disallow particular
3666 settings (for instance, a system in the field that is not set up to
3667 be able to stop at a breakpoint), it can object to any unavailable
3668 permissions. */
3669
3670 void
3671 remote_set_permissions (void)
3672 {
3673 struct remote_state *rs = get_remote_state ();
3674
3675 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3676 "WriteReg:%x;WriteMem:%x;"
3677 "InsertBreak:%x;InsertTrace:%x;"
3678 "InsertFastTrace:%x;Stop:%x",
3679 may_write_registers, may_write_memory,
3680 may_insert_breakpoints, may_insert_tracepoints,
3681 may_insert_fast_tracepoints, may_stop);
3682 putpkt (rs->buf);
3683 getpkt (&rs->buf, &rs->buf_size, 0);
3684
3685 /* If the target didn't like the packet, warn the user. Do not try
3686 to undo the user's settings, that would just be maddening. */
3687 if (strcmp (rs->buf, "OK") != 0)
3688 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3689 }
3690
3691 /* This type describes each known response to the qSupported
3692 packet. */
3693 struct protocol_feature
3694 {
3695 /* The name of this protocol feature. */
3696 const char *name;
3697
3698 /* The default for this protocol feature. */
3699 enum packet_support default_support;
3700
3701 /* The function to call when this feature is reported, or after
3702 qSupported processing if the feature is not supported.
3703 The first argument points to this structure. The second
3704 argument indicates whether the packet requested support be
3705 enabled, disabled, or probed (or the default, if this function
3706 is being called at the end of processing and this feature was
3707 not reported). The third argument may be NULL; if not NULL, it
3708 is a NUL-terminated string taken from the packet following
3709 this feature's name and an equals sign. */
3710 void (*func) (const struct protocol_feature *, enum packet_support,
3711 const char *);
3712
3713 /* The corresponding packet for this feature. Only used if
3714 FUNC is remote_supported_packet. */
3715 int packet;
3716 };
3717
3718 static void
3719 remote_supported_packet (const struct protocol_feature *feature,
3720 enum packet_support support,
3721 const char *argument)
3722 {
3723 if (argument)
3724 {
3725 warning (_("Remote qSupported response supplied an unexpected value for"
3726 " \"%s\"."), feature->name);
3727 return;
3728 }
3729
3730 if (remote_protocol_packets[feature->packet].support
3731 == PACKET_SUPPORT_UNKNOWN)
3732 remote_protocol_packets[feature->packet].support = support;
3733 }
3734
3735 static void
3736 remote_packet_size (const struct protocol_feature *feature,
3737 enum packet_support support, const char *value)
3738 {
3739 struct remote_state *rs = get_remote_state ();
3740
3741 int packet_size;
3742 char *value_end;
3743
3744 if (support != PACKET_ENABLE)
3745 return;
3746
3747 if (value == NULL || *value == '\0')
3748 {
3749 warning (_("Remote target reported \"%s\" without a size."),
3750 feature->name);
3751 return;
3752 }
3753
3754 errno = 0;
3755 packet_size = strtol (value, &value_end, 16);
3756 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3757 {
3758 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3759 feature->name, value);
3760 return;
3761 }
3762
3763 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3764 {
3765 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3766 packet_size, MAX_REMOTE_PACKET_SIZE);
3767 packet_size = MAX_REMOTE_PACKET_SIZE;
3768 }
3769
3770 /* Record the new maximum packet size. */
3771 rs->explicit_packet_size = packet_size;
3772 }
3773
3774 static void
3775 remote_multi_process_feature (const struct protocol_feature *feature,
3776 enum packet_support support, const char *value)
3777 {
3778 struct remote_state *rs = get_remote_state ();
3779
3780 rs->multi_process_aware = (support == PACKET_ENABLE);
3781 }
3782
3783 static void
3784 remote_non_stop_feature (const struct protocol_feature *feature,
3785 enum packet_support support, const char *value)
3786 {
3787 struct remote_state *rs = get_remote_state ();
3788
3789 rs->non_stop_aware = (support == PACKET_ENABLE);
3790 }
3791
3792 static void
3793 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3794 enum packet_support support,
3795 const char *value)
3796 {
3797 struct remote_state *rs = get_remote_state ();
3798
3799 rs->cond_tracepoints = (support == PACKET_ENABLE);
3800 }
3801
3802 static void
3803 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3804 enum packet_support support,
3805 const char *value)
3806 {
3807 struct remote_state *rs = get_remote_state ();
3808
3809 rs->cond_breakpoints = (support == PACKET_ENABLE);
3810 }
3811
3812 static void
3813 remote_breakpoint_commands_feature (const struct protocol_feature *feature,
3814 enum packet_support support,
3815 const char *value)
3816 {
3817 struct remote_state *rs = get_remote_state ();
3818
3819 rs->breakpoint_commands = (support == PACKET_ENABLE);
3820 }
3821
3822 static void
3823 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3824 enum packet_support support,
3825 const char *value)
3826 {
3827 struct remote_state *rs = get_remote_state ();
3828
3829 rs->fast_tracepoints = (support == PACKET_ENABLE);
3830 }
3831
3832 static void
3833 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3834 enum packet_support support,
3835 const char *value)
3836 {
3837 struct remote_state *rs = get_remote_state ();
3838
3839 rs->static_tracepoints = (support == PACKET_ENABLE);
3840 }
3841
3842 static void
3843 remote_install_in_trace_feature (const struct protocol_feature *feature,
3844 enum packet_support support,
3845 const char *value)
3846 {
3847 struct remote_state *rs = get_remote_state ();
3848
3849 rs->install_in_trace = (support == PACKET_ENABLE);
3850 }
3851
3852 static void
3853 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3854 enum packet_support support,
3855 const char *value)
3856 {
3857 struct remote_state *rs = get_remote_state ();
3858
3859 rs->disconnected_tracing = (support == PACKET_ENABLE);
3860 }
3861
3862 static void
3863 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3864 enum packet_support support,
3865 const char *value)
3866 {
3867 struct remote_state *rs = get_remote_state ();
3868
3869 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3870 }
3871
3872 static void
3873 remote_string_tracing_feature (const struct protocol_feature *feature,
3874 enum packet_support support,
3875 const char *value)
3876 {
3877 struct remote_state *rs = get_remote_state ();
3878
3879 rs->string_tracing = (support == PACKET_ENABLE);
3880 }
3881
3882 static struct protocol_feature remote_protocol_features[] = {
3883 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3884 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3885 PACKET_qXfer_auxv },
3886 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3887 PACKET_qXfer_features },
3888 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3889 PACKET_qXfer_libraries },
3890 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
3891 PACKET_qXfer_libraries_svr4 },
3892 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3893 PACKET_qXfer_memory_map },
3894 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3895 PACKET_qXfer_spu_read },
3896 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3897 PACKET_qXfer_spu_write },
3898 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3899 PACKET_qXfer_osdata },
3900 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3901 PACKET_qXfer_threads },
3902 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3903 PACKET_qXfer_traceframe_info },
3904 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3905 PACKET_QPassSignals },
3906 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
3907 PACKET_QProgramSignals },
3908 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3909 PACKET_QStartNoAckMode },
3910 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3911 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3912 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3913 PACKET_qXfer_siginfo_read },
3914 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3915 PACKET_qXfer_siginfo_write },
3916 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3917 PACKET_ConditionalTracepoints },
3918 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
3919 PACKET_ConditionalBreakpoints },
3920 { "BreakpointCommands", PACKET_DISABLE, remote_breakpoint_commands_feature,
3921 PACKET_BreakpointCommands },
3922 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3923 PACKET_FastTracepoints },
3924 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3925 PACKET_StaticTracepoints },
3926 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
3927 PACKET_InstallInTrace},
3928 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3929 -1 },
3930 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3931 PACKET_bc },
3932 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3933 PACKET_bs },
3934 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3935 PACKET_TracepointSource },
3936 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3937 PACKET_QAllow },
3938 { "EnableDisableTracepoints", PACKET_DISABLE,
3939 remote_enable_disable_tracepoint_feature, -1 },
3940 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
3941 PACKET_qXfer_fdpic },
3942 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
3943 PACKET_qXfer_uib },
3944 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
3945 PACKET_QDisableRandomization },
3946 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
3947 { "tracenz", PACKET_DISABLE,
3948 remote_string_tracing_feature, -1 },
3949 };
3950
3951 static char *remote_support_xml;
3952
3953 /* Register string appended to "xmlRegisters=" in qSupported query. */
3954
3955 void
3956 register_remote_support_xml (const char *xml)
3957 {
3958 #if defined(HAVE_LIBEXPAT)
3959 if (remote_support_xml == NULL)
3960 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
3961 else
3962 {
3963 char *copy = xstrdup (remote_support_xml + 13);
3964 char *p = strtok (copy, ",");
3965
3966 do
3967 {
3968 if (strcmp (p, xml) == 0)
3969 {
3970 /* already there */
3971 xfree (copy);
3972 return;
3973 }
3974 }
3975 while ((p = strtok (NULL, ",")) != NULL);
3976 xfree (copy);
3977
3978 remote_support_xml = reconcat (remote_support_xml,
3979 remote_support_xml, ",", xml,
3980 (char *) NULL);
3981 }
3982 #endif
3983 }
3984
3985 static char *
3986 remote_query_supported_append (char *msg, const char *append)
3987 {
3988 if (msg)
3989 return reconcat (msg, msg, ";", append, (char *) NULL);
3990 else
3991 return xstrdup (append);
3992 }
3993
3994 static void
3995 remote_query_supported (void)
3996 {
3997 struct remote_state *rs = get_remote_state ();
3998 char *next;
3999 int i;
4000 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4001
4002 /* The packet support flags are handled differently for this packet
4003 than for most others. We treat an error, a disabled packet, and
4004 an empty response identically: any features which must be reported
4005 to be used will be automatically disabled. An empty buffer
4006 accomplishes this, since that is also the representation for a list
4007 containing no features. */
4008
4009 rs->buf[0] = 0;
4010 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
4011 {
4012 char *q = NULL;
4013 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4014
4015 q = remote_query_supported_append (q, "multiprocess+");
4016
4017 if (remote_support_xml)
4018 q = remote_query_supported_append (q, remote_support_xml);
4019
4020 q = remote_query_supported_append (q, "qRelocInsn+");
4021
4022 q = reconcat (q, "qSupported:", q, (char *) NULL);
4023 putpkt (q);
4024
4025 do_cleanups (old_chain);
4026
4027 getpkt (&rs->buf, &rs->buf_size, 0);
4028
4029 /* If an error occured, warn, but do not return - just reset the
4030 buffer to empty and go on to disable features. */
4031 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4032 == PACKET_ERROR)
4033 {
4034 warning (_("Remote failure reply: %s"), rs->buf);
4035 rs->buf[0] = 0;
4036 }
4037 }
4038
4039 memset (seen, 0, sizeof (seen));
4040
4041 next = rs->buf;
4042 while (*next)
4043 {
4044 enum packet_support is_supported;
4045 char *p, *end, *name_end, *value;
4046
4047 /* First separate out this item from the rest of the packet. If
4048 there's another item after this, we overwrite the separator
4049 (terminated strings are much easier to work with). */
4050 p = next;
4051 end = strchr (p, ';');
4052 if (end == NULL)
4053 {
4054 end = p + strlen (p);
4055 next = end;
4056 }
4057 else
4058 {
4059 *end = '\0';
4060 next = end + 1;
4061
4062 if (end == p)
4063 {
4064 warning (_("empty item in \"qSupported\" response"));
4065 continue;
4066 }
4067 }
4068
4069 name_end = strchr (p, '=');
4070 if (name_end)
4071 {
4072 /* This is a name=value entry. */
4073 is_supported = PACKET_ENABLE;
4074 value = name_end + 1;
4075 *name_end = '\0';
4076 }
4077 else
4078 {
4079 value = NULL;
4080 switch (end[-1])
4081 {
4082 case '+':
4083 is_supported = PACKET_ENABLE;
4084 break;
4085
4086 case '-':
4087 is_supported = PACKET_DISABLE;
4088 break;
4089
4090 case '?':
4091 is_supported = PACKET_SUPPORT_UNKNOWN;
4092 break;
4093
4094 default:
4095 warning (_("unrecognized item \"%s\" "
4096 "in \"qSupported\" response"), p);
4097 continue;
4098 }
4099 end[-1] = '\0';
4100 }
4101
4102 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4103 if (strcmp (remote_protocol_features[i].name, p) == 0)
4104 {
4105 const struct protocol_feature *feature;
4106
4107 seen[i] = 1;
4108 feature = &remote_protocol_features[i];
4109 feature->func (feature, is_supported, value);
4110 break;
4111 }
4112 }
4113
4114 /* If we increased the packet size, make sure to increase the global
4115 buffer size also. We delay this until after parsing the entire
4116 qSupported packet, because this is the same buffer we were
4117 parsing. */
4118 if (rs->buf_size < rs->explicit_packet_size)
4119 {
4120 rs->buf_size = rs->explicit_packet_size;
4121 rs->buf = xrealloc (rs->buf, rs->buf_size);
4122 }
4123
4124 /* Handle the defaults for unmentioned features. */
4125 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4126 if (!seen[i])
4127 {
4128 const struct protocol_feature *feature;
4129
4130 feature = &remote_protocol_features[i];
4131 feature->func (feature, feature->default_support, NULL);
4132 }
4133 }
4134
4135
4136 static void
4137 remote_open_1 (char *name, int from_tty,
4138 struct target_ops *target, int extended_p)
4139 {
4140 struct remote_state *rs = get_remote_state ();
4141
4142 if (name == 0)
4143 error (_("To open a remote debug connection, you need to specify what\n"
4144 "serial device is attached to the remote system\n"
4145 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4146
4147 /* See FIXME above. */
4148 if (!target_async_permitted)
4149 wait_forever_enabled_p = 1;
4150
4151 /* If we're connected to a running target, target_preopen will kill it.
4152 But if we're connected to a target system with no running process,
4153 then we will still be connected when it returns. Ask this question
4154 first, before target_preopen has a chance to kill anything. */
4155 if (remote_desc != NULL && !have_inferiors ())
4156 {
4157 if (!from_tty
4158 || query (_("Already connected to a remote target. Disconnect? ")))
4159 pop_target ();
4160 else
4161 error (_("Still connected."));
4162 }
4163
4164 target_preopen (from_tty);
4165
4166 unpush_target (target);
4167
4168 /* This time without a query. If we were connected to an
4169 extended-remote target and target_preopen killed the running
4170 process, we may still be connected. If we are starting "target
4171 remote" now, the extended-remote target will not have been
4172 removed by unpush_target. */
4173 if (remote_desc != NULL && !have_inferiors ())
4174 pop_target ();
4175
4176 /* Make sure we send the passed signals list the next time we resume. */
4177 xfree (last_pass_packet);
4178 last_pass_packet = NULL;
4179
4180 /* Make sure we send the program signals list the next time we
4181 resume. */
4182 xfree (last_program_signals_packet);
4183 last_program_signals_packet = NULL;
4184
4185 remote_fileio_reset ();
4186 reopen_exec_file ();
4187 reread_symbols ();
4188
4189 remote_desc = remote_serial_open (name);
4190 if (!remote_desc)
4191 perror_with_name (name);
4192
4193 if (baud_rate != -1)
4194 {
4195 if (serial_setbaudrate (remote_desc, baud_rate))
4196 {
4197 /* The requested speed could not be set. Error out to
4198 top level after closing remote_desc. Take care to
4199 set remote_desc to NULL to avoid closing remote_desc
4200 more than once. */
4201 serial_close (remote_desc);
4202 remote_desc = NULL;
4203 perror_with_name (name);
4204 }
4205 }
4206
4207 serial_raw (remote_desc);
4208
4209 /* If there is something sitting in the buffer we might take it as a
4210 response to a command, which would be bad. */
4211 serial_flush_input (remote_desc);
4212
4213 if (from_tty)
4214 {
4215 puts_filtered ("Remote debugging using ");
4216 puts_filtered (name);
4217 puts_filtered ("\n");
4218 }
4219 push_target (target); /* Switch to using remote target now. */
4220
4221 /* Register extra event sources in the event loop. */
4222 remote_async_inferior_event_token
4223 = create_async_event_handler (remote_async_inferior_event_handler,
4224 NULL);
4225 remote_async_get_pending_events_token
4226 = create_async_event_handler (remote_async_get_pending_events_handler,
4227 NULL);
4228
4229 /* Reset the target state; these things will be queried either by
4230 remote_query_supported or as they are needed. */
4231 init_all_packet_configs ();
4232 rs->cached_wait_status = 0;
4233 rs->explicit_packet_size = 0;
4234 rs->noack_mode = 0;
4235 rs->multi_process_aware = 0;
4236 rs->extended = extended_p;
4237 rs->non_stop_aware = 0;
4238 rs->waiting_for_stop_reply = 0;
4239 rs->ctrlc_pending_p = 0;
4240
4241 general_thread = not_sent_ptid;
4242 continue_thread = not_sent_ptid;
4243 remote_traceframe_number = -1;
4244
4245 /* Probe for ability to use "ThreadInfo" query, as required. */
4246 use_threadinfo_query = 1;
4247 use_threadextra_query = 1;
4248
4249 if (target_async_permitted)
4250 {
4251 /* With this target we start out by owning the terminal. */
4252 remote_async_terminal_ours_p = 1;
4253
4254 /* FIXME: cagney/1999-09-23: During the initial connection it is
4255 assumed that the target is already ready and able to respond to
4256 requests. Unfortunately remote_start_remote() eventually calls
4257 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4258 around this. Eventually a mechanism that allows
4259 wait_for_inferior() to expect/get timeouts will be
4260 implemented. */
4261 wait_forever_enabled_p = 0;
4262 }
4263
4264 /* First delete any symbols previously loaded from shared libraries. */
4265 no_shared_libraries (NULL, 0);
4266
4267 /* Start afresh. */
4268 init_thread_list ();
4269
4270 /* Start the remote connection. If error() or QUIT, discard this
4271 target (we'd otherwise be in an inconsistent state) and then
4272 propogate the error on up the exception chain. This ensures that
4273 the caller doesn't stumble along blindly assuming that the
4274 function succeeded. The CLI doesn't have this problem but other
4275 UI's, such as MI do.
4276
4277 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4278 this function should return an error indication letting the
4279 caller restore the previous state. Unfortunately the command
4280 ``target remote'' is directly wired to this function making that
4281 impossible. On a positive note, the CLI side of this problem has
4282 been fixed - the function set_cmd_context() makes it possible for
4283 all the ``target ....'' commands to share a common callback
4284 function. See cli-dump.c. */
4285 {
4286 volatile struct gdb_exception ex;
4287
4288 TRY_CATCH (ex, RETURN_MASK_ALL)
4289 {
4290 remote_start_remote (from_tty, target, extended_p);
4291 }
4292 if (ex.reason < 0)
4293 {
4294 /* Pop the partially set up target - unless something else did
4295 already before throwing the exception. */
4296 if (remote_desc != NULL)
4297 pop_target ();
4298 if (target_async_permitted)
4299 wait_forever_enabled_p = 1;
4300 throw_exception (ex);
4301 }
4302 }
4303
4304 if (target_async_permitted)
4305 wait_forever_enabled_p = 1;
4306 }
4307
4308 /* This takes a program previously attached to and detaches it. After
4309 this is done, GDB can be used to debug some other program. We
4310 better not have left any breakpoints in the target program or it'll
4311 die when it hits one. */
4312
4313 static void
4314 remote_detach_1 (char *args, int from_tty, int extended)
4315 {
4316 int pid = ptid_get_pid (inferior_ptid);
4317 struct remote_state *rs = get_remote_state ();
4318
4319 if (args)
4320 error (_("Argument given to \"detach\" when remotely debugging."));
4321
4322 if (!target_has_execution)
4323 error (_("No process to detach from."));
4324
4325 if (from_tty)
4326 {
4327 char *exec_file = get_exec_file (0);
4328 if (exec_file == NULL)
4329 exec_file = "";
4330 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4331 target_pid_to_str (pid_to_ptid (pid)));
4332 gdb_flush (gdb_stdout);
4333 }
4334
4335 /* Tell the remote target to detach. */
4336 if (remote_multi_process_p (rs))
4337 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4338 else
4339 strcpy (rs->buf, "D");
4340
4341 putpkt (rs->buf);
4342 getpkt (&rs->buf, &rs->buf_size, 0);
4343
4344 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4345 ;
4346 else if (rs->buf[0] == '\0')
4347 error (_("Remote doesn't know how to detach"));
4348 else
4349 error (_("Can't detach process."));
4350
4351 if (from_tty && !extended)
4352 puts_filtered (_("Ending remote debugging.\n"));
4353
4354 discard_pending_stop_replies (pid);
4355 target_mourn_inferior ();
4356 }
4357
4358 static void
4359 remote_detach (struct target_ops *ops, char *args, int from_tty)
4360 {
4361 remote_detach_1 (args, from_tty, 0);
4362 }
4363
4364 static void
4365 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4366 {
4367 remote_detach_1 (args, from_tty, 1);
4368 }
4369
4370 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4371
4372 static void
4373 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4374 {
4375 if (args)
4376 error (_("Argument given to \"disconnect\" when remotely debugging."));
4377
4378 /* Make sure we unpush even the extended remote targets; mourn
4379 won't do it. So call remote_mourn_1 directly instead of
4380 target_mourn_inferior. */
4381 remote_mourn_1 (target);
4382
4383 if (from_tty)
4384 puts_filtered ("Ending remote debugging.\n");
4385 }
4386
4387 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4388 be chatty about it. */
4389
4390 static void
4391 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4392 {
4393 struct remote_state *rs = get_remote_state ();
4394 int pid;
4395 char *wait_status = NULL;
4396
4397 pid = parse_pid_to_attach (args);
4398
4399 /* Remote PID can be freely equal to getpid, do not check it here the same
4400 way as in other targets. */
4401
4402 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4403 error (_("This target does not support attaching to a process"));
4404
4405 if (from_tty)
4406 {
4407 char *exec_file = get_exec_file (0);
4408
4409 if (exec_file)
4410 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4411 target_pid_to_str (pid_to_ptid (pid)));
4412 else
4413 printf_unfiltered (_("Attaching to %s\n"),
4414 target_pid_to_str (pid_to_ptid (pid)));
4415
4416 gdb_flush (gdb_stdout);
4417 }
4418
4419 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4420 putpkt (rs->buf);
4421 getpkt (&rs->buf, &rs->buf_size, 0);
4422
4423 if (packet_ok (rs->buf,
4424 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4425 {
4426 if (!non_stop)
4427 {
4428 /* Save the reply for later. */
4429 wait_status = alloca (strlen (rs->buf) + 1);
4430 strcpy (wait_status, rs->buf);
4431 }
4432 else if (strcmp (rs->buf, "OK") != 0)
4433 error (_("Attaching to %s failed with: %s"),
4434 target_pid_to_str (pid_to_ptid (pid)),
4435 rs->buf);
4436 }
4437 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4438 error (_("This target does not support attaching to a process"));
4439 else
4440 error (_("Attaching to %s failed"),
4441 target_pid_to_str (pid_to_ptid (pid)));
4442
4443 set_current_inferior (remote_add_inferior (0, pid, 1));
4444
4445 inferior_ptid = pid_to_ptid (pid);
4446
4447 if (non_stop)
4448 {
4449 struct thread_info *thread;
4450
4451 /* Get list of threads. */
4452 remote_threads_info (target);
4453
4454 thread = first_thread_of_process (pid);
4455 if (thread)
4456 inferior_ptid = thread->ptid;
4457 else
4458 inferior_ptid = pid_to_ptid (pid);
4459
4460 /* Invalidate our notion of the remote current thread. */
4461 record_currthread (minus_one_ptid);
4462 }
4463 else
4464 {
4465 /* Now, if we have thread information, update inferior_ptid. */
4466 inferior_ptid = remote_current_thread (inferior_ptid);
4467
4468 /* Add the main thread to the thread list. */
4469 add_thread_silent (inferior_ptid);
4470 }
4471
4472 /* Next, if the target can specify a description, read it. We do
4473 this before anything involving memory or registers. */
4474 target_find_description ();
4475
4476 if (!non_stop)
4477 {
4478 /* Use the previously fetched status. */
4479 gdb_assert (wait_status != NULL);
4480
4481 if (target_can_async_p ())
4482 {
4483 struct stop_reply *stop_reply;
4484 struct cleanup *old_chain;
4485
4486 stop_reply = stop_reply_xmalloc ();
4487 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4488 remote_parse_stop_reply (wait_status, stop_reply);
4489 discard_cleanups (old_chain);
4490 push_stop_reply (stop_reply);
4491
4492 target_async (inferior_event_handler, 0);
4493 }
4494 else
4495 {
4496 gdb_assert (wait_status != NULL);
4497 strcpy (rs->buf, wait_status);
4498 rs->cached_wait_status = 1;
4499 }
4500 }
4501 else
4502 gdb_assert (wait_status == NULL);
4503 }
4504
4505 static void
4506 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4507 {
4508 extended_remote_attach_1 (ops, args, from_tty);
4509 }
4510
4511 /* Convert hex digit A to a number. */
4512
4513 static int
4514 fromhex (int a)
4515 {
4516 if (a >= '0' && a <= '9')
4517 return a - '0';
4518 else if (a >= 'a' && a <= 'f')
4519 return a - 'a' + 10;
4520 else if (a >= 'A' && a <= 'F')
4521 return a - 'A' + 10;
4522 else
4523 error (_("Reply contains invalid hex digit %d"), a);
4524 }
4525
4526 int
4527 hex2bin (const char *hex, gdb_byte *bin, int count)
4528 {
4529 int i;
4530
4531 for (i = 0; i < count; i++)
4532 {
4533 if (hex[0] == 0 || hex[1] == 0)
4534 {
4535 /* Hex string is short, or of uneven length.
4536 Return the count that has been converted so far. */
4537 return i;
4538 }
4539 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4540 hex += 2;
4541 }
4542 return i;
4543 }
4544
4545 /* Convert number NIB to a hex digit. */
4546
4547 static int
4548 tohex (int nib)
4549 {
4550 if (nib < 10)
4551 return '0' + nib;
4552 else
4553 return 'a' + nib - 10;
4554 }
4555
4556 int
4557 bin2hex (const gdb_byte *bin, char *hex, int count)
4558 {
4559 int i;
4560
4561 /* May use a length, or a nul-terminated string as input. */
4562 if (count == 0)
4563 count = strlen ((char *) bin);
4564
4565 for (i = 0; i < count; i++)
4566 {
4567 *hex++ = tohex ((*bin >> 4) & 0xf);
4568 *hex++ = tohex (*bin++ & 0xf);
4569 }
4570 *hex = 0;
4571 return i;
4572 }
4573 \f
4574 /* Check for the availability of vCont. This function should also check
4575 the response. */
4576
4577 static void
4578 remote_vcont_probe (struct remote_state *rs)
4579 {
4580 char *buf;
4581
4582 strcpy (rs->buf, "vCont?");
4583 putpkt (rs->buf);
4584 getpkt (&rs->buf, &rs->buf_size, 0);
4585 buf = rs->buf;
4586
4587 /* Make sure that the features we assume are supported. */
4588 if (strncmp (buf, "vCont", 5) == 0)
4589 {
4590 char *p = &buf[5];
4591 int support_s, support_S, support_c, support_C;
4592
4593 support_s = 0;
4594 support_S = 0;
4595 support_c = 0;
4596 support_C = 0;
4597 rs->support_vCont_t = 0;
4598 while (p && *p == ';')
4599 {
4600 p++;
4601 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4602 support_s = 1;
4603 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4604 support_S = 1;
4605 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4606 support_c = 1;
4607 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4608 support_C = 1;
4609 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4610 rs->support_vCont_t = 1;
4611
4612 p = strchr (p, ';');
4613 }
4614
4615 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4616 BUF will make packet_ok disable the packet. */
4617 if (!support_s || !support_S || !support_c || !support_C)
4618 buf[0] = 0;
4619 }
4620
4621 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4622 }
4623
4624 /* Helper function for building "vCont" resumptions. Write a
4625 resumption to P. ENDP points to one-passed-the-end of the buffer
4626 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4627 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4628 resumed thread should be single-stepped and/or signalled. If PTID
4629 equals minus_one_ptid, then all threads are resumed; if PTID
4630 represents a process, then all threads of the process are resumed;
4631 the thread to be stepped and/or signalled is given in the global
4632 INFERIOR_PTID. */
4633
4634 static char *
4635 append_resumption (char *p, char *endp,
4636 ptid_t ptid, int step, enum gdb_signal siggnal)
4637 {
4638 struct remote_state *rs = get_remote_state ();
4639
4640 if (step && siggnal != GDB_SIGNAL_0)
4641 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4642 else if (step)
4643 p += xsnprintf (p, endp - p, ";s");
4644 else if (siggnal != GDB_SIGNAL_0)
4645 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4646 else
4647 p += xsnprintf (p, endp - p, ";c");
4648
4649 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4650 {
4651 ptid_t nptid;
4652
4653 /* All (-1) threads of process. */
4654 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4655
4656 p += xsnprintf (p, endp - p, ":");
4657 p = write_ptid (p, endp, nptid);
4658 }
4659 else if (!ptid_equal (ptid, minus_one_ptid))
4660 {
4661 p += xsnprintf (p, endp - p, ":");
4662 p = write_ptid (p, endp, ptid);
4663 }
4664
4665 return p;
4666 }
4667
4668 /* Append a vCont continue-with-signal action for threads that have a
4669 non-zero stop signal. */
4670
4671 static char *
4672 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4673 {
4674 struct thread_info *thread;
4675
4676 ALL_THREADS (thread)
4677 if (ptid_match (thread->ptid, ptid)
4678 && !ptid_equal (inferior_ptid, thread->ptid)
4679 && thread->suspend.stop_signal != GDB_SIGNAL_0
4680 && signal_pass_state (thread->suspend.stop_signal))
4681 {
4682 p = append_resumption (p, endp, thread->ptid,
4683 0, thread->suspend.stop_signal);
4684 thread->suspend.stop_signal = GDB_SIGNAL_0;
4685 }
4686
4687 return p;
4688 }
4689
4690 /* Resume the remote inferior by using a "vCont" packet. The thread
4691 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4692 resumed thread should be single-stepped and/or signalled. If PTID
4693 equals minus_one_ptid, then all threads are resumed; the thread to
4694 be stepped and/or signalled is given in the global INFERIOR_PTID.
4695 This function returns non-zero iff it resumes the inferior.
4696
4697 This function issues a strict subset of all possible vCont commands at the
4698 moment. */
4699
4700 static int
4701 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
4702 {
4703 struct remote_state *rs = get_remote_state ();
4704 char *p;
4705 char *endp;
4706
4707 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4708 remote_vcont_probe (rs);
4709
4710 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4711 return 0;
4712
4713 p = rs->buf;
4714 endp = rs->buf + get_remote_packet_size ();
4715
4716 /* If we could generate a wider range of packets, we'd have to worry
4717 about overflowing BUF. Should there be a generic
4718 "multi-part-packet" packet? */
4719
4720 p += xsnprintf (p, endp - p, "vCont");
4721
4722 if (ptid_equal (ptid, magic_null_ptid))
4723 {
4724 /* MAGIC_NULL_PTID means that we don't have any active threads,
4725 so we don't have any TID numbers the inferior will
4726 understand. Make sure to only send forms that do not specify
4727 a TID. */
4728 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4729 }
4730 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4731 {
4732 /* Resume all threads (of all processes, or of a single
4733 process), with preference for INFERIOR_PTID. This assumes
4734 inferior_ptid belongs to the set of all threads we are about
4735 to resume. */
4736 if (step || siggnal != GDB_SIGNAL_0)
4737 {
4738 /* Step inferior_ptid, with or without signal. */
4739 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4740 }
4741
4742 /* Also pass down any pending signaled resumption for other
4743 threads not the current. */
4744 p = append_pending_thread_resumptions (p, endp, ptid);
4745
4746 /* And continue others without a signal. */
4747 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
4748 }
4749 else
4750 {
4751 /* Scheduler locking; resume only PTID. */
4752 append_resumption (p, endp, ptid, step, siggnal);
4753 }
4754
4755 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4756 putpkt (rs->buf);
4757
4758 if (non_stop)
4759 {
4760 /* In non-stop, the stub replies to vCont with "OK". The stop
4761 reply will be reported asynchronously by means of a `%Stop'
4762 notification. */
4763 getpkt (&rs->buf, &rs->buf_size, 0);
4764 if (strcmp (rs->buf, "OK") != 0)
4765 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4766 }
4767
4768 return 1;
4769 }
4770
4771 /* Tell the remote machine to resume. */
4772
4773 static enum gdb_signal last_sent_signal = GDB_SIGNAL_0;
4774
4775 static int last_sent_step;
4776
4777 static void
4778 remote_resume (struct target_ops *ops,
4779 ptid_t ptid, int step, enum gdb_signal siggnal)
4780 {
4781 struct remote_state *rs = get_remote_state ();
4782 char *buf;
4783
4784 last_sent_signal = siggnal;
4785 last_sent_step = step;
4786
4787 /* The vCont packet doesn't need to specify threads via Hc. */
4788 /* No reverse support (yet) for vCont. */
4789 if (execution_direction != EXEC_REVERSE)
4790 if (remote_vcont_resume (ptid, step, siggnal))
4791 goto done;
4792
4793 /* All other supported resume packets do use Hc, so set the continue
4794 thread. */
4795 if (ptid_equal (ptid, minus_one_ptid))
4796 set_continue_thread (any_thread_ptid);
4797 else
4798 set_continue_thread (ptid);
4799
4800 buf = rs->buf;
4801 if (execution_direction == EXEC_REVERSE)
4802 {
4803 /* We don't pass signals to the target in reverse exec mode. */
4804 if (info_verbose && siggnal != GDB_SIGNAL_0)
4805 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4806 siggnal);
4807
4808 if (step
4809 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4810 error (_("Remote reverse-step not supported."));
4811 if (!step
4812 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4813 error (_("Remote reverse-continue not supported."));
4814
4815 strcpy (buf, step ? "bs" : "bc");
4816 }
4817 else if (siggnal != GDB_SIGNAL_0)
4818 {
4819 buf[0] = step ? 'S' : 'C';
4820 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4821 buf[2] = tohex (((int) siggnal) & 0xf);
4822 buf[3] = '\0';
4823 }
4824 else
4825 strcpy (buf, step ? "s" : "c");
4826
4827 putpkt (buf);
4828
4829 done:
4830 /* We are about to start executing the inferior, let's register it
4831 with the event loop. NOTE: this is the one place where all the
4832 execution commands end up. We could alternatively do this in each
4833 of the execution commands in infcmd.c. */
4834 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4835 into infcmd.c in order to allow inferior function calls to work
4836 NOT asynchronously. */
4837 if (target_can_async_p ())
4838 target_async (inferior_event_handler, 0);
4839
4840 /* We've just told the target to resume. The remote server will
4841 wait for the inferior to stop, and then send a stop reply. In
4842 the mean time, we can't start another command/query ourselves
4843 because the stub wouldn't be ready to process it. This applies
4844 only to the base all-stop protocol, however. In non-stop (which
4845 only supports vCont), the stub replies with an "OK", and is
4846 immediate able to process further serial input. */
4847 if (!non_stop)
4848 rs->waiting_for_stop_reply = 1;
4849 }
4850 \f
4851
4852 /* Set up the signal handler for SIGINT, while the target is
4853 executing, ovewriting the 'regular' SIGINT signal handler. */
4854 static void
4855 initialize_sigint_signal_handler (void)
4856 {
4857 signal (SIGINT, handle_remote_sigint);
4858 }
4859
4860 /* Signal handler for SIGINT, while the target is executing. */
4861 static void
4862 handle_remote_sigint (int sig)
4863 {
4864 signal (sig, handle_remote_sigint_twice);
4865 mark_async_signal_handler_wrapper (sigint_remote_token);
4866 }
4867
4868 /* Signal handler for SIGINT, installed after SIGINT has already been
4869 sent once. It will take effect the second time that the user sends
4870 a ^C. */
4871 static void
4872 handle_remote_sigint_twice (int sig)
4873 {
4874 signal (sig, handle_remote_sigint);
4875 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4876 }
4877
4878 /* Perform the real interruption of the target execution, in response
4879 to a ^C. */
4880 static void
4881 async_remote_interrupt (gdb_client_data arg)
4882 {
4883 if (remote_debug)
4884 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
4885
4886 target_stop (inferior_ptid);
4887 }
4888
4889 /* Perform interrupt, if the first attempt did not succeed. Just give
4890 up on the target alltogether. */
4891 void
4892 async_remote_interrupt_twice (gdb_client_data arg)
4893 {
4894 if (remote_debug)
4895 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
4896
4897 interrupt_query ();
4898 }
4899
4900 /* Reinstall the usual SIGINT handlers, after the target has
4901 stopped. */
4902 static void
4903 cleanup_sigint_signal_handler (void *dummy)
4904 {
4905 signal (SIGINT, handle_sigint);
4906 }
4907
4908 /* Send ^C to target to halt it. Target will respond, and send us a
4909 packet. */
4910 static void (*ofunc) (int);
4911
4912 /* The command line interface's stop routine. This function is installed
4913 as a signal handler for SIGINT. The first time a user requests a
4914 stop, we call remote_stop to send a break or ^C. If there is no
4915 response from the target (it didn't stop when the user requested it),
4916 we ask the user if he'd like to detach from the target. */
4917 static void
4918 remote_interrupt (int signo)
4919 {
4920 /* If this doesn't work, try more severe steps. */
4921 signal (signo, remote_interrupt_twice);
4922
4923 gdb_call_async_signal_handler (sigint_remote_token, 1);
4924 }
4925
4926 /* The user typed ^C twice. */
4927
4928 static void
4929 remote_interrupt_twice (int signo)
4930 {
4931 signal (signo, ofunc);
4932 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4933 signal (signo, remote_interrupt);
4934 }
4935
4936 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4937 thread, all threads of a remote process, or all threads of all
4938 processes. */
4939
4940 static void
4941 remote_stop_ns (ptid_t ptid)
4942 {
4943 struct remote_state *rs = get_remote_state ();
4944 char *p = rs->buf;
4945 char *endp = rs->buf + get_remote_packet_size ();
4946
4947 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4948 remote_vcont_probe (rs);
4949
4950 if (!rs->support_vCont_t)
4951 error (_("Remote server does not support stopping threads"));
4952
4953 if (ptid_equal (ptid, minus_one_ptid)
4954 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4955 p += xsnprintf (p, endp - p, "vCont;t");
4956 else
4957 {
4958 ptid_t nptid;
4959
4960 p += xsnprintf (p, endp - p, "vCont;t:");
4961
4962 if (ptid_is_pid (ptid))
4963 /* All (-1) threads of process. */
4964 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4965 else
4966 {
4967 /* Small optimization: if we already have a stop reply for
4968 this thread, no use in telling the stub we want this
4969 stopped. */
4970 if (peek_stop_reply (ptid))
4971 return;
4972
4973 nptid = ptid;
4974 }
4975
4976 write_ptid (p, endp, nptid);
4977 }
4978
4979 /* In non-stop, we get an immediate OK reply. The stop reply will
4980 come in asynchronously by notification. */
4981 putpkt (rs->buf);
4982 getpkt (&rs->buf, &rs->buf_size, 0);
4983 if (strcmp (rs->buf, "OK") != 0)
4984 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4985 }
4986
4987 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4988 remote target. It is undefined which thread of which process
4989 reports the stop. */
4990
4991 static void
4992 remote_stop_as (ptid_t ptid)
4993 {
4994 struct remote_state *rs = get_remote_state ();
4995
4996 rs->ctrlc_pending_p = 1;
4997
4998 /* If the inferior is stopped already, but the core didn't know
4999 about it yet, just ignore the request. The cached wait status
5000 will be collected in remote_wait. */
5001 if (rs->cached_wait_status)
5002 return;
5003
5004 /* Send interrupt_sequence to remote target. */
5005 send_interrupt_sequence ();
5006 }
5007
5008 /* This is the generic stop called via the target vector. When a target
5009 interrupt is requested, either by the command line or the GUI, we
5010 will eventually end up here. */
5011
5012 static void
5013 remote_stop (ptid_t ptid)
5014 {
5015 if (remote_debug)
5016 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5017
5018 if (non_stop)
5019 remote_stop_ns (ptid);
5020 else
5021 remote_stop_as (ptid);
5022 }
5023
5024 /* Ask the user what to do when an interrupt is received. */
5025
5026 static void
5027 interrupt_query (void)
5028 {
5029 target_terminal_ours ();
5030
5031 if (target_can_async_p ())
5032 {
5033 signal (SIGINT, handle_sigint);
5034 deprecated_throw_reason (RETURN_QUIT);
5035 }
5036 else
5037 {
5038 if (query (_("Interrupted while waiting for the program.\n\
5039 Give up (and stop debugging it)? ")))
5040 {
5041 pop_target ();
5042 deprecated_throw_reason (RETURN_QUIT);
5043 }
5044 }
5045
5046 target_terminal_inferior ();
5047 }
5048
5049 /* Enable/disable target terminal ownership. Most targets can use
5050 terminal groups to control terminal ownership. Remote targets are
5051 different in that explicit transfer of ownership to/from GDB/target
5052 is required. */
5053
5054 static void
5055 remote_terminal_inferior (void)
5056 {
5057 if (!target_async_permitted)
5058 /* Nothing to do. */
5059 return;
5060
5061 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5062 idempotent. The event-loop GDB talking to an asynchronous target
5063 with a synchronous command calls this function from both
5064 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5065 transfer the terminal to the target when it shouldn't this guard
5066 can go away. */
5067 if (!remote_async_terminal_ours_p)
5068 return;
5069 delete_file_handler (input_fd);
5070 remote_async_terminal_ours_p = 0;
5071 initialize_sigint_signal_handler ();
5072 /* NOTE: At this point we could also register our selves as the
5073 recipient of all input. Any characters typed could then be
5074 passed on down to the target. */
5075 }
5076
5077 static void
5078 remote_terminal_ours (void)
5079 {
5080 if (!target_async_permitted)
5081 /* Nothing to do. */
5082 return;
5083
5084 /* See FIXME in remote_terminal_inferior. */
5085 if (remote_async_terminal_ours_p)
5086 return;
5087 cleanup_sigint_signal_handler (NULL);
5088 add_file_handler (input_fd, stdin_event_handler, 0);
5089 remote_async_terminal_ours_p = 1;
5090 }
5091
5092 static void
5093 remote_console_output (char *msg)
5094 {
5095 char *p;
5096
5097 for (p = msg; p[0] && p[1]; p += 2)
5098 {
5099 char tb[2];
5100 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5101
5102 tb[0] = c;
5103 tb[1] = 0;
5104 fputs_unfiltered (tb, gdb_stdtarg);
5105 }
5106 gdb_flush (gdb_stdtarg);
5107 }
5108
5109 typedef struct cached_reg
5110 {
5111 int num;
5112 gdb_byte data[MAX_REGISTER_SIZE];
5113 } cached_reg_t;
5114
5115 DEF_VEC_O(cached_reg_t);
5116
5117 struct stop_reply
5118 {
5119 struct stop_reply *next;
5120
5121 ptid_t ptid;
5122
5123 struct target_waitstatus ws;
5124
5125 /* Expedited registers. This makes remote debugging a bit more
5126 efficient for those targets that provide critical registers as
5127 part of their normal status mechanism (as another roundtrip to
5128 fetch them is avoided). */
5129 VEC(cached_reg_t) *regcache;
5130
5131 int stopped_by_watchpoint_p;
5132 CORE_ADDR watch_data_address;
5133
5134 int solibs_changed;
5135 int replay_event;
5136
5137 int core;
5138 };
5139
5140 /* The list of already fetched and acknowledged stop events. */
5141 static struct stop_reply *stop_reply_queue;
5142
5143 static struct stop_reply *
5144 stop_reply_xmalloc (void)
5145 {
5146 struct stop_reply *r = XMALLOC (struct stop_reply);
5147
5148 r->next = NULL;
5149 return r;
5150 }
5151
5152 static void
5153 stop_reply_xfree (struct stop_reply *r)
5154 {
5155 if (r != NULL)
5156 {
5157 VEC_free (cached_reg_t, r->regcache);
5158 xfree (r);
5159 }
5160 }
5161
5162 /* Discard all pending stop replies of inferior PID. If PID is -1,
5163 discard everything. */
5164
5165 static void
5166 discard_pending_stop_replies (int pid)
5167 {
5168 struct stop_reply *prev = NULL, *reply, *next;
5169
5170 /* Discard the in-flight notification. */
5171 if (pending_stop_reply != NULL
5172 && (pid == -1
5173 || ptid_get_pid (pending_stop_reply->ptid) == pid))
5174 {
5175 stop_reply_xfree (pending_stop_reply);
5176 pending_stop_reply = NULL;
5177 }
5178
5179 /* Discard the stop replies we have already pulled with
5180 vStopped. */
5181 for (reply = stop_reply_queue; reply; reply = next)
5182 {
5183 next = reply->next;
5184 if (pid == -1
5185 || ptid_get_pid (reply->ptid) == pid)
5186 {
5187 if (reply == stop_reply_queue)
5188 stop_reply_queue = reply->next;
5189 else
5190 prev->next = reply->next;
5191
5192 stop_reply_xfree (reply);
5193 }
5194 else
5195 prev = reply;
5196 }
5197 }
5198
5199 /* Cleanup wrapper. */
5200
5201 static void
5202 do_stop_reply_xfree (void *arg)
5203 {
5204 struct stop_reply *r = arg;
5205
5206 stop_reply_xfree (r);
5207 }
5208
5209 /* Look for a queued stop reply belonging to PTID. If one is found,
5210 remove it from the queue, and return it. Returns NULL if none is
5211 found. If there are still queued events left to process, tell the
5212 event loop to get back to target_wait soon. */
5213
5214 static struct stop_reply *
5215 queued_stop_reply (ptid_t ptid)
5216 {
5217 struct stop_reply *it;
5218 struct stop_reply **it_link;
5219
5220 it = stop_reply_queue;
5221 it_link = &stop_reply_queue;
5222 while (it)
5223 {
5224 if (ptid_match (it->ptid, ptid))
5225 {
5226 *it_link = it->next;
5227 it->next = NULL;
5228 break;
5229 }
5230
5231 it_link = &it->next;
5232 it = *it_link;
5233 }
5234
5235 if (stop_reply_queue)
5236 /* There's still at least an event left. */
5237 mark_async_event_handler (remote_async_inferior_event_token);
5238
5239 return it;
5240 }
5241
5242 /* Push a fully parsed stop reply in the stop reply queue. Since we
5243 know that we now have at least one queued event left to pass to the
5244 core side, tell the event loop to get back to target_wait soon. */
5245
5246 static void
5247 push_stop_reply (struct stop_reply *new_event)
5248 {
5249 struct stop_reply *event;
5250
5251 if (stop_reply_queue)
5252 {
5253 for (event = stop_reply_queue;
5254 event && event->next;
5255 event = event->next)
5256 ;
5257
5258 event->next = new_event;
5259 }
5260 else
5261 stop_reply_queue = new_event;
5262
5263 mark_async_event_handler (remote_async_inferior_event_token);
5264 }
5265
5266 /* Returns true if we have a stop reply for PTID. */
5267
5268 static int
5269 peek_stop_reply (ptid_t ptid)
5270 {
5271 struct stop_reply *it;
5272
5273 for (it = stop_reply_queue; it; it = it->next)
5274 if (ptid_equal (ptid, it->ptid))
5275 {
5276 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
5277 return 1;
5278 }
5279
5280 return 0;
5281 }
5282
5283 /* Parse the stop reply in BUF. Either the function succeeds, and the
5284 result is stored in EVENT, or throws an error. */
5285
5286 static void
5287 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5288 {
5289 struct remote_arch_state *rsa = get_remote_arch_state ();
5290 ULONGEST addr;
5291 char *p;
5292
5293 event->ptid = null_ptid;
5294 event->ws.kind = TARGET_WAITKIND_IGNORE;
5295 event->ws.value.integer = 0;
5296 event->solibs_changed = 0;
5297 event->replay_event = 0;
5298 event->stopped_by_watchpoint_p = 0;
5299 event->regcache = NULL;
5300 event->core = -1;
5301
5302 switch (buf[0])
5303 {
5304 case 'T': /* Status with PC, SP, FP, ... */
5305 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5306 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5307 ss = signal number
5308 n... = register number
5309 r... = register contents
5310 */
5311
5312 p = &buf[3]; /* after Txx */
5313 while (*p)
5314 {
5315 char *p1;
5316 char *p_temp;
5317 int fieldsize;
5318 LONGEST pnum = 0;
5319
5320 /* If the packet contains a register number, save it in
5321 pnum and set p1 to point to the character following it.
5322 Otherwise p1 points to p. */
5323
5324 /* If this packet is an awatch packet, don't parse the 'a'
5325 as a register number. */
5326
5327 if (strncmp (p, "awatch", strlen("awatch")) != 0
5328 && strncmp (p, "core", strlen ("core") != 0))
5329 {
5330 /* Read the ``P'' register number. */
5331 pnum = strtol (p, &p_temp, 16);
5332 p1 = p_temp;
5333 }
5334 else
5335 p1 = p;
5336
5337 if (p1 == p) /* No register number present here. */
5338 {
5339 p1 = strchr (p, ':');
5340 if (p1 == NULL)
5341 error (_("Malformed packet(a) (missing colon): %s\n\
5342 Packet: '%s'\n"),
5343 p, buf);
5344 if (strncmp (p, "thread", p1 - p) == 0)
5345 event->ptid = read_ptid (++p1, &p);
5346 else if ((strncmp (p, "watch", p1 - p) == 0)
5347 || (strncmp (p, "rwatch", p1 - p) == 0)
5348 || (strncmp (p, "awatch", p1 - p) == 0))
5349 {
5350 event->stopped_by_watchpoint_p = 1;
5351 p = unpack_varlen_hex (++p1, &addr);
5352 event->watch_data_address = (CORE_ADDR) addr;
5353 }
5354 else if (strncmp (p, "library", p1 - p) == 0)
5355 {
5356 p1++;
5357 p_temp = p1;
5358 while (*p_temp && *p_temp != ';')
5359 p_temp++;
5360
5361 event->solibs_changed = 1;
5362 p = p_temp;
5363 }
5364 else if (strncmp (p, "replaylog", p1 - p) == 0)
5365 {
5366 /* NO_HISTORY event.
5367 p1 will indicate "begin" or "end", but
5368 it makes no difference for now, so ignore it. */
5369 event->replay_event = 1;
5370 p_temp = strchr (p1 + 1, ';');
5371 if (p_temp)
5372 p = p_temp;
5373 }
5374 else if (strncmp (p, "core", p1 - p) == 0)
5375 {
5376 ULONGEST c;
5377
5378 p = unpack_varlen_hex (++p1, &c);
5379 event->core = c;
5380 }
5381 else
5382 {
5383 /* Silently skip unknown optional info. */
5384 p_temp = strchr (p1 + 1, ';');
5385 if (p_temp)
5386 p = p_temp;
5387 }
5388 }
5389 else
5390 {
5391 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5392 cached_reg_t cached_reg;
5393
5394 p = p1;
5395
5396 if (*p != ':')
5397 error (_("Malformed packet(b) (missing colon): %s\n\
5398 Packet: '%s'\n"),
5399 p, buf);
5400 ++p;
5401
5402 if (reg == NULL)
5403 error (_("Remote sent bad register number %s: %s\n\
5404 Packet: '%s'\n"),
5405 hex_string (pnum), p, buf);
5406
5407 cached_reg.num = reg->regnum;
5408
5409 fieldsize = hex2bin (p, cached_reg.data,
5410 register_size (target_gdbarch,
5411 reg->regnum));
5412 p += 2 * fieldsize;
5413 if (fieldsize < register_size (target_gdbarch,
5414 reg->regnum))
5415 warning (_("Remote reply is too short: %s"), buf);
5416
5417 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5418 }
5419
5420 if (*p != ';')
5421 error (_("Remote register badly formatted: %s\nhere: %s"),
5422 buf, p);
5423 ++p;
5424 }
5425 /* fall through */
5426 case 'S': /* Old style status, just signal only. */
5427 if (event->solibs_changed)
5428 event->ws.kind = TARGET_WAITKIND_LOADED;
5429 else if (event->replay_event)
5430 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5431 else
5432 {
5433 event->ws.kind = TARGET_WAITKIND_STOPPED;
5434 event->ws.value.sig = (enum gdb_signal)
5435 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5436 }
5437 break;
5438 case 'W': /* Target exited. */
5439 case 'X':
5440 {
5441 char *p;
5442 int pid;
5443 ULONGEST value;
5444
5445 /* GDB used to accept only 2 hex chars here. Stubs should
5446 only send more if they detect GDB supports multi-process
5447 support. */
5448 p = unpack_varlen_hex (&buf[1], &value);
5449
5450 if (buf[0] == 'W')
5451 {
5452 /* The remote process exited. */
5453 event->ws.kind = TARGET_WAITKIND_EXITED;
5454 event->ws.value.integer = value;
5455 }
5456 else
5457 {
5458 /* The remote process exited with a signal. */
5459 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5460 event->ws.value.sig = (enum gdb_signal) value;
5461 }
5462
5463 /* If no process is specified, assume inferior_ptid. */
5464 pid = ptid_get_pid (inferior_ptid);
5465 if (*p == '\0')
5466 ;
5467 else if (*p == ';')
5468 {
5469 p++;
5470
5471 if (p == '\0')
5472 ;
5473 else if (strncmp (p,
5474 "process:", sizeof ("process:") - 1) == 0)
5475 {
5476 ULONGEST upid;
5477
5478 p += sizeof ("process:") - 1;
5479 unpack_varlen_hex (p, &upid);
5480 pid = upid;
5481 }
5482 else
5483 error (_("unknown stop reply packet: %s"), buf);
5484 }
5485 else
5486 error (_("unknown stop reply packet: %s"), buf);
5487 event->ptid = pid_to_ptid (pid);
5488 }
5489 break;
5490 }
5491
5492 if (non_stop && ptid_equal (event->ptid, null_ptid))
5493 error (_("No process or thread specified in stop reply: %s"), buf);
5494 }
5495
5496 /* When the stub wants to tell GDB about a new stop reply, it sends a
5497 stop notification (%Stop). Those can come it at any time, hence,
5498 we have to make sure that any pending putpkt/getpkt sequence we're
5499 making is finished, before querying the stub for more events with
5500 vStopped. E.g., if we started a vStopped sequence immediatelly
5501 upon receiving the %Stop notification, something like this could
5502 happen:
5503
5504 1.1) --> Hg 1
5505 1.2) <-- OK
5506 1.3) --> g
5507 1.4) <-- %Stop
5508 1.5) --> vStopped
5509 1.6) <-- (registers reply to step #1.3)
5510
5511 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5512 query.
5513
5514 To solve this, whenever we parse a %Stop notification sucessfully,
5515 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5516 doing whatever we were doing:
5517
5518 2.1) --> Hg 1
5519 2.2) <-- OK
5520 2.3) --> g
5521 2.4) <-- %Stop
5522 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5523 2.5) <-- (registers reply to step #2.3)
5524
5525 Eventualy after step #2.5, we return to the event loop, which
5526 notices there's an event on the
5527 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5528 associated callback --- the function below. At this point, we're
5529 always safe to start a vStopped sequence. :
5530
5531 2.6) --> vStopped
5532 2.7) <-- T05 thread:2
5533 2.8) --> vStopped
5534 2.9) --> OK
5535 */
5536
5537 static void
5538 remote_get_pending_stop_replies (void)
5539 {
5540 struct remote_state *rs = get_remote_state ();
5541
5542 if (pending_stop_reply)
5543 {
5544 /* acknowledge */
5545 putpkt ("vStopped");
5546
5547 /* Now we can rely on it. */
5548 push_stop_reply (pending_stop_reply);
5549 pending_stop_reply = NULL;
5550
5551 while (1)
5552 {
5553 getpkt (&rs->buf, &rs->buf_size, 0);
5554 if (strcmp (rs->buf, "OK") == 0)
5555 break;
5556 else
5557 {
5558 struct cleanup *old_chain;
5559 struct stop_reply *stop_reply = stop_reply_xmalloc ();
5560
5561 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5562 remote_parse_stop_reply (rs->buf, stop_reply);
5563
5564 /* acknowledge */
5565 putpkt ("vStopped");
5566
5567 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
5568 {
5569 /* Now we can rely on it. */
5570 discard_cleanups (old_chain);
5571 push_stop_reply (stop_reply);
5572 }
5573 else
5574 /* We got an unknown stop reply. */
5575 do_cleanups (old_chain);
5576 }
5577 }
5578 }
5579 }
5580
5581
5582 /* Called when it is decided that STOP_REPLY holds the info of the
5583 event that is to be returned to the core. This function always
5584 destroys STOP_REPLY. */
5585
5586 static ptid_t
5587 process_stop_reply (struct stop_reply *stop_reply,
5588 struct target_waitstatus *status)
5589 {
5590 ptid_t ptid;
5591
5592 *status = stop_reply->ws;
5593 ptid = stop_reply->ptid;
5594
5595 /* If no thread/process was reported by the stub, assume the current
5596 inferior. */
5597 if (ptid_equal (ptid, null_ptid))
5598 ptid = inferior_ptid;
5599
5600 if (status->kind != TARGET_WAITKIND_EXITED
5601 && status->kind != TARGET_WAITKIND_SIGNALLED)
5602 {
5603 /* Expedited registers. */
5604 if (stop_reply->regcache)
5605 {
5606 struct regcache *regcache
5607 = get_thread_arch_regcache (ptid, target_gdbarch);
5608 cached_reg_t *reg;
5609 int ix;
5610
5611 for (ix = 0;
5612 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5613 ix++)
5614 regcache_raw_supply (regcache, reg->num, reg->data);
5615 VEC_free (cached_reg_t, stop_reply->regcache);
5616 }
5617
5618 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5619 remote_watch_data_address = stop_reply->watch_data_address;
5620
5621 remote_notice_new_inferior (ptid, 0);
5622 demand_private_info (ptid)->core = stop_reply->core;
5623 }
5624
5625 stop_reply_xfree (stop_reply);
5626 return ptid;
5627 }
5628
5629 /* The non-stop mode version of target_wait. */
5630
5631 static ptid_t
5632 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5633 {
5634 struct remote_state *rs = get_remote_state ();
5635 struct stop_reply *stop_reply;
5636 int ret;
5637
5638 /* If in non-stop mode, get out of getpkt even if a
5639 notification is received. */
5640
5641 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5642 0 /* forever */);
5643 while (1)
5644 {
5645 if (ret != -1)
5646 switch (rs->buf[0])
5647 {
5648 case 'E': /* Error of some sort. */
5649 /* We're out of sync with the target now. Did it continue
5650 or not? We can't tell which thread it was in non-stop,
5651 so just ignore this. */
5652 warning (_("Remote failure reply: %s"), rs->buf);
5653 break;
5654 case 'O': /* Console output. */
5655 remote_console_output (rs->buf + 1);
5656 break;
5657 default:
5658 warning (_("Invalid remote reply: %s"), rs->buf);
5659 break;
5660 }
5661
5662 /* Acknowledge a pending stop reply that may have arrived in the
5663 mean time. */
5664 if (pending_stop_reply != NULL)
5665 remote_get_pending_stop_replies ();
5666
5667 /* If indeed we noticed a stop reply, we're done. */
5668 stop_reply = queued_stop_reply (ptid);
5669 if (stop_reply != NULL)
5670 return process_stop_reply (stop_reply, status);
5671
5672 /* Still no event. If we're just polling for an event, then
5673 return to the event loop. */
5674 if (options & TARGET_WNOHANG)
5675 {
5676 status->kind = TARGET_WAITKIND_IGNORE;
5677 return minus_one_ptid;
5678 }
5679
5680 /* Otherwise do a blocking wait. */
5681 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5682 1 /* forever */);
5683 }
5684 }
5685
5686 /* Wait until the remote machine stops, then return, storing status in
5687 STATUS just as `wait' would. */
5688
5689 static ptid_t
5690 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5691 {
5692 struct remote_state *rs = get_remote_state ();
5693 ptid_t event_ptid = null_ptid;
5694 char *buf;
5695 struct stop_reply *stop_reply;
5696
5697 again:
5698
5699 status->kind = TARGET_WAITKIND_IGNORE;
5700 status->value.integer = 0;
5701
5702 stop_reply = queued_stop_reply (ptid);
5703 if (stop_reply != NULL)
5704 return process_stop_reply (stop_reply, status);
5705
5706 if (rs->cached_wait_status)
5707 /* Use the cached wait status, but only once. */
5708 rs->cached_wait_status = 0;
5709 else
5710 {
5711 int ret;
5712
5713 if (!target_is_async_p ())
5714 {
5715 ofunc = signal (SIGINT, remote_interrupt);
5716 /* If the user hit C-c before this packet, or between packets,
5717 pretend that it was hit right here. */
5718 if (check_quit_flag ())
5719 {
5720 clear_quit_flag ();
5721 remote_interrupt (SIGINT);
5722 }
5723 }
5724
5725 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5726 _never_ wait for ever -> test on target_is_async_p().
5727 However, before we do that we need to ensure that the caller
5728 knows how to take the target into/out of async mode. */
5729 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5730 if (!target_is_async_p ())
5731 signal (SIGINT, ofunc);
5732 }
5733
5734 buf = rs->buf;
5735
5736 remote_stopped_by_watchpoint_p = 0;
5737
5738 /* We got something. */
5739 rs->waiting_for_stop_reply = 0;
5740
5741 /* Assume that the target has acknowledged Ctrl-C unless we receive
5742 an 'F' or 'O' packet. */
5743 if (buf[0] != 'F' && buf[0] != 'O')
5744 rs->ctrlc_pending_p = 0;
5745
5746 switch (buf[0])
5747 {
5748 case 'E': /* Error of some sort. */
5749 /* We're out of sync with the target now. Did it continue or
5750 not? Not is more likely, so report a stop. */
5751 warning (_("Remote failure reply: %s"), buf);
5752 status->kind = TARGET_WAITKIND_STOPPED;
5753 status->value.sig = GDB_SIGNAL_0;
5754 break;
5755 case 'F': /* File-I/O request. */
5756 remote_fileio_request (buf, rs->ctrlc_pending_p);
5757 rs->ctrlc_pending_p = 0;
5758 break;
5759 case 'T': case 'S': case 'X': case 'W':
5760 {
5761 struct stop_reply *stop_reply;
5762 struct cleanup *old_chain;
5763
5764 stop_reply = stop_reply_xmalloc ();
5765 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5766 remote_parse_stop_reply (buf, stop_reply);
5767 discard_cleanups (old_chain);
5768 event_ptid = process_stop_reply (stop_reply, status);
5769 break;
5770 }
5771 case 'O': /* Console output. */
5772 remote_console_output (buf + 1);
5773
5774 /* The target didn't really stop; keep waiting. */
5775 rs->waiting_for_stop_reply = 1;
5776
5777 break;
5778 case '\0':
5779 if (last_sent_signal != GDB_SIGNAL_0)
5780 {
5781 /* Zero length reply means that we tried 'S' or 'C' and the
5782 remote system doesn't support it. */
5783 target_terminal_ours_for_output ();
5784 printf_filtered
5785 ("Can't send signals to this remote system. %s not sent.\n",
5786 gdb_signal_to_name (last_sent_signal));
5787 last_sent_signal = GDB_SIGNAL_0;
5788 target_terminal_inferior ();
5789
5790 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5791 putpkt ((char *) buf);
5792
5793 /* We just told the target to resume, so a stop reply is in
5794 order. */
5795 rs->waiting_for_stop_reply = 1;
5796 break;
5797 }
5798 /* else fallthrough */
5799 default:
5800 warning (_("Invalid remote reply: %s"), buf);
5801 /* Keep waiting. */
5802 rs->waiting_for_stop_reply = 1;
5803 break;
5804 }
5805
5806 if (status->kind == TARGET_WAITKIND_IGNORE)
5807 {
5808 /* Nothing interesting happened. If we're doing a non-blocking
5809 poll, we're done. Otherwise, go back to waiting. */
5810 if (options & TARGET_WNOHANG)
5811 return minus_one_ptid;
5812 else
5813 goto again;
5814 }
5815 else if (status->kind != TARGET_WAITKIND_EXITED
5816 && status->kind != TARGET_WAITKIND_SIGNALLED)
5817 {
5818 if (!ptid_equal (event_ptid, null_ptid))
5819 record_currthread (event_ptid);
5820 else
5821 event_ptid = inferior_ptid;
5822 }
5823 else
5824 /* A process exit. Invalidate our notion of current thread. */
5825 record_currthread (minus_one_ptid);
5826
5827 return event_ptid;
5828 }
5829
5830 /* Wait until the remote machine stops, then return, storing status in
5831 STATUS just as `wait' would. */
5832
5833 static ptid_t
5834 remote_wait (struct target_ops *ops,
5835 ptid_t ptid, struct target_waitstatus *status, int options)
5836 {
5837 ptid_t event_ptid;
5838
5839 if (non_stop)
5840 event_ptid = remote_wait_ns (ptid, status, options);
5841 else
5842 event_ptid = remote_wait_as (ptid, status, options);
5843
5844 if (target_can_async_p ())
5845 {
5846 /* If there are are events left in the queue tell the event loop
5847 to return here. */
5848 if (stop_reply_queue)
5849 mark_async_event_handler (remote_async_inferior_event_token);
5850 }
5851
5852 return event_ptid;
5853 }
5854
5855 /* Fetch a single register using a 'p' packet. */
5856
5857 static int
5858 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5859 {
5860 struct remote_state *rs = get_remote_state ();
5861 char *buf, *p;
5862 char regp[MAX_REGISTER_SIZE];
5863 int i;
5864
5865 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5866 return 0;
5867
5868 if (reg->pnum == -1)
5869 return 0;
5870
5871 p = rs->buf;
5872 *p++ = 'p';
5873 p += hexnumstr (p, reg->pnum);
5874 *p++ = '\0';
5875 putpkt (rs->buf);
5876 getpkt (&rs->buf, &rs->buf_size, 0);
5877
5878 buf = rs->buf;
5879
5880 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5881 {
5882 case PACKET_OK:
5883 break;
5884 case PACKET_UNKNOWN:
5885 return 0;
5886 case PACKET_ERROR:
5887 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5888 gdbarch_register_name (get_regcache_arch (regcache),
5889 reg->regnum),
5890 buf);
5891 }
5892
5893 /* If this register is unfetchable, tell the regcache. */
5894 if (buf[0] == 'x')
5895 {
5896 regcache_raw_supply (regcache, reg->regnum, NULL);
5897 return 1;
5898 }
5899
5900 /* Otherwise, parse and supply the value. */
5901 p = buf;
5902 i = 0;
5903 while (p[0] != 0)
5904 {
5905 if (p[1] == 0)
5906 error (_("fetch_register_using_p: early buf termination"));
5907
5908 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5909 p += 2;
5910 }
5911 regcache_raw_supply (regcache, reg->regnum, regp);
5912 return 1;
5913 }
5914
5915 /* Fetch the registers included in the target's 'g' packet. */
5916
5917 static int
5918 send_g_packet (void)
5919 {
5920 struct remote_state *rs = get_remote_state ();
5921 int buf_len;
5922
5923 xsnprintf (rs->buf, get_remote_packet_size (), "g");
5924 remote_send (&rs->buf, &rs->buf_size);
5925
5926 /* We can get out of synch in various cases. If the first character
5927 in the buffer is not a hex character, assume that has happened
5928 and try to fetch another packet to read. */
5929 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5930 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5931 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5932 && rs->buf[0] != 'x') /* New: unavailable register value. */
5933 {
5934 if (remote_debug)
5935 fprintf_unfiltered (gdb_stdlog,
5936 "Bad register packet; fetching a new packet\n");
5937 getpkt (&rs->buf, &rs->buf_size, 0);
5938 }
5939
5940 buf_len = strlen (rs->buf);
5941
5942 /* Sanity check the received packet. */
5943 if (buf_len % 2 != 0)
5944 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5945
5946 return buf_len / 2;
5947 }
5948
5949 static void
5950 process_g_packet (struct regcache *regcache)
5951 {
5952 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5953 struct remote_state *rs = get_remote_state ();
5954 struct remote_arch_state *rsa = get_remote_arch_state ();
5955 int i, buf_len;
5956 char *p;
5957 char *regs;
5958
5959 buf_len = strlen (rs->buf);
5960
5961 /* Further sanity checks, with knowledge of the architecture. */
5962 if (buf_len > 2 * rsa->sizeof_g_packet)
5963 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5964
5965 /* Save the size of the packet sent to us by the target. It is used
5966 as a heuristic when determining the max size of packets that the
5967 target can safely receive. */
5968 if (rsa->actual_register_packet_size == 0)
5969 rsa->actual_register_packet_size = buf_len;
5970
5971 /* If this is smaller than we guessed the 'g' packet would be,
5972 update our records. A 'g' reply that doesn't include a register's
5973 value implies either that the register is not available, or that
5974 the 'p' packet must be used. */
5975 if (buf_len < 2 * rsa->sizeof_g_packet)
5976 {
5977 rsa->sizeof_g_packet = buf_len / 2;
5978
5979 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5980 {
5981 if (rsa->regs[i].pnum == -1)
5982 continue;
5983
5984 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5985 rsa->regs[i].in_g_packet = 0;
5986 else
5987 rsa->regs[i].in_g_packet = 1;
5988 }
5989 }
5990
5991 regs = alloca (rsa->sizeof_g_packet);
5992
5993 /* Unimplemented registers read as all bits zero. */
5994 memset (regs, 0, rsa->sizeof_g_packet);
5995
5996 /* Reply describes registers byte by byte, each byte encoded as two
5997 hex characters. Suck them all up, then supply them to the
5998 register cacheing/storage mechanism. */
5999
6000 p = rs->buf;
6001 for (i = 0; i < rsa->sizeof_g_packet; i++)
6002 {
6003 if (p[0] == 0 || p[1] == 0)
6004 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6005 internal_error (__FILE__, __LINE__,
6006 _("unexpected end of 'g' packet reply"));
6007
6008 if (p[0] == 'x' && p[1] == 'x')
6009 regs[i] = 0; /* 'x' */
6010 else
6011 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6012 p += 2;
6013 }
6014
6015 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6016 {
6017 struct packet_reg *r = &rsa->regs[i];
6018
6019 if (r->in_g_packet)
6020 {
6021 if (r->offset * 2 >= strlen (rs->buf))
6022 /* This shouldn't happen - we adjusted in_g_packet above. */
6023 internal_error (__FILE__, __LINE__,
6024 _("unexpected end of 'g' packet reply"));
6025 else if (rs->buf[r->offset * 2] == 'x')
6026 {
6027 gdb_assert (r->offset * 2 < strlen (rs->buf));
6028 /* The register isn't available, mark it as such (at
6029 the same time setting the value to zero). */
6030 regcache_raw_supply (regcache, r->regnum, NULL);
6031 }
6032 else
6033 regcache_raw_supply (regcache, r->regnum,
6034 regs + r->offset);
6035 }
6036 }
6037 }
6038
6039 static void
6040 fetch_registers_using_g (struct regcache *regcache)
6041 {
6042 send_g_packet ();
6043 process_g_packet (regcache);
6044 }
6045
6046 /* Make the remote selected traceframe match GDB's selected
6047 traceframe. */
6048
6049 static void
6050 set_remote_traceframe (void)
6051 {
6052 int newnum;
6053
6054 if (remote_traceframe_number == get_traceframe_number ())
6055 return;
6056
6057 /* Avoid recursion, remote_trace_find calls us again. */
6058 remote_traceframe_number = get_traceframe_number ();
6059
6060 newnum = target_trace_find (tfind_number,
6061 get_traceframe_number (), 0, 0, NULL);
6062
6063 /* Should not happen. If it does, all bets are off. */
6064 if (newnum != get_traceframe_number ())
6065 warning (_("could not set remote traceframe"));
6066 }
6067
6068 static void
6069 remote_fetch_registers (struct target_ops *ops,
6070 struct regcache *regcache, int regnum)
6071 {
6072 struct remote_arch_state *rsa = get_remote_arch_state ();
6073 int i;
6074
6075 set_remote_traceframe ();
6076 set_general_thread (inferior_ptid);
6077
6078 if (regnum >= 0)
6079 {
6080 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6081
6082 gdb_assert (reg != NULL);
6083
6084 /* If this register might be in the 'g' packet, try that first -
6085 we are likely to read more than one register. If this is the
6086 first 'g' packet, we might be overly optimistic about its
6087 contents, so fall back to 'p'. */
6088 if (reg->in_g_packet)
6089 {
6090 fetch_registers_using_g (regcache);
6091 if (reg->in_g_packet)
6092 return;
6093 }
6094
6095 if (fetch_register_using_p (regcache, reg))
6096 return;
6097
6098 /* This register is not available. */
6099 regcache_raw_supply (regcache, reg->regnum, NULL);
6100
6101 return;
6102 }
6103
6104 fetch_registers_using_g (regcache);
6105
6106 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6107 if (!rsa->regs[i].in_g_packet)
6108 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6109 {
6110 /* This register is not available. */
6111 regcache_raw_supply (regcache, i, NULL);
6112 }
6113 }
6114
6115 /* Prepare to store registers. Since we may send them all (using a
6116 'G' request), we have to read out the ones we don't want to change
6117 first. */
6118
6119 static void
6120 remote_prepare_to_store (struct regcache *regcache)
6121 {
6122 struct remote_arch_state *rsa = get_remote_arch_state ();
6123 int i;
6124 gdb_byte buf[MAX_REGISTER_SIZE];
6125
6126 /* Make sure the entire registers array is valid. */
6127 switch (remote_protocol_packets[PACKET_P].support)
6128 {
6129 case PACKET_DISABLE:
6130 case PACKET_SUPPORT_UNKNOWN:
6131 /* Make sure all the necessary registers are cached. */
6132 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6133 if (rsa->regs[i].in_g_packet)
6134 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6135 break;
6136 case PACKET_ENABLE:
6137 break;
6138 }
6139 }
6140
6141 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6142 packet was not recognized. */
6143
6144 static int
6145 store_register_using_P (const struct regcache *regcache,
6146 struct packet_reg *reg)
6147 {
6148 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6149 struct remote_state *rs = get_remote_state ();
6150 /* Try storing a single register. */
6151 char *buf = rs->buf;
6152 gdb_byte regp[MAX_REGISTER_SIZE];
6153 char *p;
6154
6155 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6156 return 0;
6157
6158 if (reg->pnum == -1)
6159 return 0;
6160
6161 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6162 p = buf + strlen (buf);
6163 regcache_raw_collect (regcache, reg->regnum, regp);
6164 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6165 putpkt (rs->buf);
6166 getpkt (&rs->buf, &rs->buf_size, 0);
6167
6168 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6169 {
6170 case PACKET_OK:
6171 return 1;
6172 case PACKET_ERROR:
6173 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6174 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6175 case PACKET_UNKNOWN:
6176 return 0;
6177 default:
6178 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6179 }
6180 }
6181
6182 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6183 contents of the register cache buffer. FIXME: ignores errors. */
6184
6185 static void
6186 store_registers_using_G (const struct regcache *regcache)
6187 {
6188 struct remote_state *rs = get_remote_state ();
6189 struct remote_arch_state *rsa = get_remote_arch_state ();
6190 gdb_byte *regs;
6191 char *p;
6192
6193 /* Extract all the registers in the regcache copying them into a
6194 local buffer. */
6195 {
6196 int i;
6197
6198 regs = alloca (rsa->sizeof_g_packet);
6199 memset (regs, 0, rsa->sizeof_g_packet);
6200 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6201 {
6202 struct packet_reg *r = &rsa->regs[i];
6203
6204 if (r->in_g_packet)
6205 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6206 }
6207 }
6208
6209 /* Command describes registers byte by byte,
6210 each byte encoded as two hex characters. */
6211 p = rs->buf;
6212 *p++ = 'G';
6213 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6214 updated. */
6215 bin2hex (regs, p, rsa->sizeof_g_packet);
6216 putpkt (rs->buf);
6217 getpkt (&rs->buf, &rs->buf_size, 0);
6218 if (packet_check_result (rs->buf) == PACKET_ERROR)
6219 error (_("Could not write registers; remote failure reply '%s'"),
6220 rs->buf);
6221 }
6222
6223 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6224 of the register cache buffer. FIXME: ignores errors. */
6225
6226 static void
6227 remote_store_registers (struct target_ops *ops,
6228 struct regcache *regcache, int regnum)
6229 {
6230 struct remote_arch_state *rsa = get_remote_arch_state ();
6231 int i;
6232
6233 set_remote_traceframe ();
6234 set_general_thread (inferior_ptid);
6235
6236 if (regnum >= 0)
6237 {
6238 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6239
6240 gdb_assert (reg != NULL);
6241
6242 /* Always prefer to store registers using the 'P' packet if
6243 possible; we often change only a small number of registers.
6244 Sometimes we change a larger number; we'd need help from a
6245 higher layer to know to use 'G'. */
6246 if (store_register_using_P (regcache, reg))
6247 return;
6248
6249 /* For now, don't complain if we have no way to write the
6250 register. GDB loses track of unavailable registers too
6251 easily. Some day, this may be an error. We don't have
6252 any way to read the register, either... */
6253 if (!reg->in_g_packet)
6254 return;
6255
6256 store_registers_using_G (regcache);
6257 return;
6258 }
6259
6260 store_registers_using_G (regcache);
6261
6262 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6263 if (!rsa->regs[i].in_g_packet)
6264 if (!store_register_using_P (regcache, &rsa->regs[i]))
6265 /* See above for why we do not issue an error here. */
6266 continue;
6267 }
6268 \f
6269
6270 /* Return the number of hex digits in num. */
6271
6272 static int
6273 hexnumlen (ULONGEST num)
6274 {
6275 int i;
6276
6277 for (i = 0; num != 0; i++)
6278 num >>= 4;
6279
6280 return max (i, 1);
6281 }
6282
6283 /* Set BUF to the minimum number of hex digits representing NUM. */
6284
6285 static int
6286 hexnumstr (char *buf, ULONGEST num)
6287 {
6288 int len = hexnumlen (num);
6289
6290 return hexnumnstr (buf, num, len);
6291 }
6292
6293
6294 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6295
6296 static int
6297 hexnumnstr (char *buf, ULONGEST num, int width)
6298 {
6299 int i;
6300
6301 buf[width] = '\0';
6302
6303 for (i = width - 1; i >= 0; i--)
6304 {
6305 buf[i] = "0123456789abcdef"[(num & 0xf)];
6306 num >>= 4;
6307 }
6308
6309 return width;
6310 }
6311
6312 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6313
6314 static CORE_ADDR
6315 remote_address_masked (CORE_ADDR addr)
6316 {
6317 int address_size = remote_address_size;
6318
6319 /* If "remoteaddresssize" was not set, default to target address size. */
6320 if (!address_size)
6321 address_size = gdbarch_addr_bit (target_gdbarch);
6322
6323 if (address_size > 0
6324 && address_size < (sizeof (ULONGEST) * 8))
6325 {
6326 /* Only create a mask when that mask can safely be constructed
6327 in a ULONGEST variable. */
6328 ULONGEST mask = 1;
6329
6330 mask = (mask << address_size) - 1;
6331 addr &= mask;
6332 }
6333 return addr;
6334 }
6335
6336 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6337 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6338 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6339 (which may be more than *OUT_LEN due to escape characters). The
6340 total number of bytes in the output buffer will be at most
6341 OUT_MAXLEN. */
6342
6343 static int
6344 remote_escape_output (const gdb_byte *buffer, int len,
6345 gdb_byte *out_buf, int *out_len,
6346 int out_maxlen)
6347 {
6348 int input_index, output_index;
6349
6350 output_index = 0;
6351 for (input_index = 0; input_index < len; input_index++)
6352 {
6353 gdb_byte b = buffer[input_index];
6354
6355 if (b == '$' || b == '#' || b == '}')
6356 {
6357 /* These must be escaped. */
6358 if (output_index + 2 > out_maxlen)
6359 break;
6360 out_buf[output_index++] = '}';
6361 out_buf[output_index++] = b ^ 0x20;
6362 }
6363 else
6364 {
6365 if (output_index + 1 > out_maxlen)
6366 break;
6367 out_buf[output_index++] = b;
6368 }
6369 }
6370
6371 *out_len = input_index;
6372 return output_index;
6373 }
6374
6375 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6376 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6377 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6378
6379 This function reverses remote_escape_output. It allows more
6380 escaped characters than that function does, in particular because
6381 '*' must be escaped to avoid the run-length encoding processing
6382 in reading packets. */
6383
6384 static int
6385 remote_unescape_input (const gdb_byte *buffer, int len,
6386 gdb_byte *out_buf, int out_maxlen)
6387 {
6388 int input_index, output_index;
6389 int escaped;
6390
6391 output_index = 0;
6392 escaped = 0;
6393 for (input_index = 0; input_index < len; input_index++)
6394 {
6395 gdb_byte b = buffer[input_index];
6396
6397 if (output_index + 1 > out_maxlen)
6398 {
6399 warning (_("Received too much data from remote target;"
6400 " ignoring overflow."));
6401 return output_index;
6402 }
6403
6404 if (escaped)
6405 {
6406 out_buf[output_index++] = b ^ 0x20;
6407 escaped = 0;
6408 }
6409 else if (b == '}')
6410 escaped = 1;
6411 else
6412 out_buf[output_index++] = b;
6413 }
6414
6415 if (escaped)
6416 error (_("Unmatched escape character in target response."));
6417
6418 return output_index;
6419 }
6420
6421 /* Determine whether the remote target supports binary downloading.
6422 This is accomplished by sending a no-op memory write of zero length
6423 to the target at the specified address. It does not suffice to send
6424 the whole packet, since many stubs strip the eighth bit and
6425 subsequently compute a wrong checksum, which causes real havoc with
6426 remote_write_bytes.
6427
6428 NOTE: This can still lose if the serial line is not eight-bit
6429 clean. In cases like this, the user should clear "remote
6430 X-packet". */
6431
6432 static void
6433 check_binary_download (CORE_ADDR addr)
6434 {
6435 struct remote_state *rs = get_remote_state ();
6436
6437 switch (remote_protocol_packets[PACKET_X].support)
6438 {
6439 case PACKET_DISABLE:
6440 break;
6441 case PACKET_ENABLE:
6442 break;
6443 case PACKET_SUPPORT_UNKNOWN:
6444 {
6445 char *p;
6446
6447 p = rs->buf;
6448 *p++ = 'X';
6449 p += hexnumstr (p, (ULONGEST) addr);
6450 *p++ = ',';
6451 p += hexnumstr (p, (ULONGEST) 0);
6452 *p++ = ':';
6453 *p = '\0';
6454
6455 putpkt_binary (rs->buf, (int) (p - rs->buf));
6456 getpkt (&rs->buf, &rs->buf_size, 0);
6457
6458 if (rs->buf[0] == '\0')
6459 {
6460 if (remote_debug)
6461 fprintf_unfiltered (gdb_stdlog,
6462 "binary downloading NOT "
6463 "supported by target\n");
6464 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6465 }
6466 else
6467 {
6468 if (remote_debug)
6469 fprintf_unfiltered (gdb_stdlog,
6470 "binary downloading supported by target\n");
6471 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6472 }
6473 break;
6474 }
6475 }
6476 }
6477
6478 /* Write memory data directly to the remote machine.
6479 This does not inform the data cache; the data cache uses this.
6480 HEADER is the starting part of the packet.
6481 MEMADDR is the address in the remote memory space.
6482 MYADDR is the address of the buffer in our space.
6483 LEN is the number of bytes.
6484 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6485 should send data as binary ('X'), or hex-encoded ('M').
6486
6487 The function creates packet of the form
6488 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6489
6490 where encoding of <DATA> is termined by PACKET_FORMAT.
6491
6492 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6493 are omitted.
6494
6495 Returns the number of bytes transferred, or 0 (setting errno) for
6496 error. Only transfer a single packet. */
6497
6498 static int
6499 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6500 const gdb_byte *myaddr, ssize_t len,
6501 char packet_format, int use_length)
6502 {
6503 struct remote_state *rs = get_remote_state ();
6504 char *p;
6505 char *plen = NULL;
6506 int plenlen = 0;
6507 int todo;
6508 int nr_bytes;
6509 int payload_size;
6510 int payload_length;
6511 int header_length;
6512
6513 if (packet_format != 'X' && packet_format != 'M')
6514 internal_error (__FILE__, __LINE__,
6515 _("remote_write_bytes_aux: bad packet format"));
6516
6517 if (len <= 0)
6518 return 0;
6519
6520 payload_size = get_memory_write_packet_size ();
6521
6522 /* The packet buffer will be large enough for the payload;
6523 get_memory_packet_size ensures this. */
6524 rs->buf[0] = '\0';
6525
6526 /* Compute the size of the actual payload by subtracting out the
6527 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6528
6529 payload_size -= strlen ("$,:#NN");
6530 if (!use_length)
6531 /* The comma won't be used. */
6532 payload_size += 1;
6533 header_length = strlen (header);
6534 payload_size -= header_length;
6535 payload_size -= hexnumlen (memaddr);
6536
6537 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6538
6539 strcat (rs->buf, header);
6540 p = rs->buf + strlen (header);
6541
6542 /* Compute a best guess of the number of bytes actually transfered. */
6543 if (packet_format == 'X')
6544 {
6545 /* Best guess at number of bytes that will fit. */
6546 todo = min (len, payload_size);
6547 if (use_length)
6548 payload_size -= hexnumlen (todo);
6549 todo = min (todo, payload_size);
6550 }
6551 else
6552 {
6553 /* Num bytes that will fit. */
6554 todo = min (len, payload_size / 2);
6555 if (use_length)
6556 payload_size -= hexnumlen (todo);
6557 todo = min (todo, payload_size / 2);
6558 }
6559
6560 if (todo <= 0)
6561 internal_error (__FILE__, __LINE__,
6562 _("minimum packet size too small to write data"));
6563
6564 /* If we already need another packet, then try to align the end
6565 of this packet to a useful boundary. */
6566 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6567 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6568
6569 /* Append "<memaddr>". */
6570 memaddr = remote_address_masked (memaddr);
6571 p += hexnumstr (p, (ULONGEST) memaddr);
6572
6573 if (use_length)
6574 {
6575 /* Append ",". */
6576 *p++ = ',';
6577
6578 /* Append <len>. Retain the location/size of <len>. It may need to
6579 be adjusted once the packet body has been created. */
6580 plen = p;
6581 plenlen = hexnumstr (p, (ULONGEST) todo);
6582 p += plenlen;
6583 }
6584
6585 /* Append ":". */
6586 *p++ = ':';
6587 *p = '\0';
6588
6589 /* Append the packet body. */
6590 if (packet_format == 'X')
6591 {
6592 /* Binary mode. Send target system values byte by byte, in
6593 increasing byte addresses. Only escape certain critical
6594 characters. */
6595 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6596 payload_size);
6597
6598 /* If not all TODO bytes fit, then we'll need another packet. Make
6599 a second try to keep the end of the packet aligned. Don't do
6600 this if the packet is tiny. */
6601 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6602 {
6603 int new_nr_bytes;
6604
6605 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6606 - memaddr);
6607 if (new_nr_bytes != nr_bytes)
6608 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6609 p, &nr_bytes,
6610 payload_size);
6611 }
6612
6613 p += payload_length;
6614 if (use_length && nr_bytes < todo)
6615 {
6616 /* Escape chars have filled up the buffer prematurely,
6617 and we have actually sent fewer bytes than planned.
6618 Fix-up the length field of the packet. Use the same
6619 number of characters as before. */
6620 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6621 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6622 }
6623 }
6624 else
6625 {
6626 /* Normal mode: Send target system values byte by byte, in
6627 increasing byte addresses. Each byte is encoded as a two hex
6628 value. */
6629 nr_bytes = bin2hex (myaddr, p, todo);
6630 p += 2 * nr_bytes;
6631 }
6632
6633 putpkt_binary (rs->buf, (int) (p - rs->buf));
6634 getpkt (&rs->buf, &rs->buf_size, 0);
6635
6636 if (rs->buf[0] == 'E')
6637 {
6638 /* There is no correspondance between what the remote protocol
6639 uses for errors and errno codes. We would like a cleaner way
6640 of representing errors (big enough to include errno codes,
6641 bfd_error codes, and others). But for now just return EIO. */
6642 errno = EIO;
6643 return 0;
6644 }
6645
6646 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6647 fewer bytes than we'd planned. */
6648 return nr_bytes;
6649 }
6650
6651 /* Write memory data directly to the remote machine.
6652 This does not inform the data cache; the data cache uses this.
6653 MEMADDR is the address in the remote memory space.
6654 MYADDR is the address of the buffer in our space.
6655 LEN is the number of bytes.
6656
6657 Returns number of bytes transferred, or 0 (setting errno) for
6658 error. Only transfer a single packet. */
6659
6660 static int
6661 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
6662 {
6663 char *packet_format = 0;
6664
6665 /* Check whether the target supports binary download. */
6666 check_binary_download (memaddr);
6667
6668 switch (remote_protocol_packets[PACKET_X].support)
6669 {
6670 case PACKET_ENABLE:
6671 packet_format = "X";
6672 break;
6673 case PACKET_DISABLE:
6674 packet_format = "M";
6675 break;
6676 case PACKET_SUPPORT_UNKNOWN:
6677 internal_error (__FILE__, __LINE__,
6678 _("remote_write_bytes: bad internal state"));
6679 default:
6680 internal_error (__FILE__, __LINE__, _("bad switch"));
6681 }
6682
6683 return remote_write_bytes_aux (packet_format,
6684 memaddr, myaddr, len, packet_format[0], 1);
6685 }
6686
6687 /* Read memory data directly from the remote machine.
6688 This does not use the data cache; the data cache uses this.
6689 MEMADDR is the address in the remote memory space.
6690 MYADDR is the address of the buffer in our space.
6691 LEN is the number of bytes.
6692
6693 Returns number of bytes transferred, or 0 for error. */
6694
6695 static int
6696 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6697 {
6698 struct remote_state *rs = get_remote_state ();
6699 int max_buf_size; /* Max size of packet output buffer. */
6700 char *p;
6701 int todo;
6702 int i;
6703
6704 if (len <= 0)
6705 return 0;
6706
6707 max_buf_size = get_memory_read_packet_size ();
6708 /* The packet buffer will be large enough for the payload;
6709 get_memory_packet_size ensures this. */
6710
6711 /* Number if bytes that will fit. */
6712 todo = min (len, max_buf_size / 2);
6713
6714 /* Construct "m"<memaddr>","<len>". */
6715 memaddr = remote_address_masked (memaddr);
6716 p = rs->buf;
6717 *p++ = 'm';
6718 p += hexnumstr (p, (ULONGEST) memaddr);
6719 *p++ = ',';
6720 p += hexnumstr (p, (ULONGEST) todo);
6721 *p = '\0';
6722 putpkt (rs->buf);
6723 getpkt (&rs->buf, &rs->buf_size, 0);
6724 if (rs->buf[0] == 'E'
6725 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6726 && rs->buf[3] == '\0')
6727 {
6728 /* There is no correspondance between what the remote protocol
6729 uses for errors and errno codes. We would like a cleaner way
6730 of representing errors (big enough to include errno codes,
6731 bfd_error codes, and others). But for now just return
6732 EIO. */
6733 errno = EIO;
6734 return 0;
6735 }
6736 /* Reply describes memory byte by byte, each byte encoded as two hex
6737 characters. */
6738 p = rs->buf;
6739 i = hex2bin (p, myaddr, todo);
6740 /* Return what we have. Let higher layers handle partial reads. */
6741 return i;
6742 }
6743 \f
6744
6745 /* Remote notification handler. */
6746
6747 static void
6748 handle_notification (char *buf)
6749 {
6750 if (strncmp (buf, "Stop:", 5) == 0)
6751 {
6752 if (pending_stop_reply)
6753 {
6754 /* We've already parsed the in-flight stop-reply, but the
6755 stub for some reason thought we didn't, possibly due to
6756 timeout on its side. Just ignore it. */
6757 if (remote_debug)
6758 fprintf_unfiltered (gdb_stdlog, "ignoring resent notification\n");
6759 }
6760 else
6761 {
6762 struct cleanup *old_chain;
6763 struct stop_reply *reply = stop_reply_xmalloc ();
6764
6765 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6766
6767 remote_parse_stop_reply (buf + 5, reply);
6768
6769 discard_cleanups (old_chain);
6770
6771 /* Be careful to only set it after parsing, since an error
6772 may be thrown then. */
6773 pending_stop_reply = reply;
6774
6775 /* Notify the event loop there's a stop reply to acknowledge
6776 and that there may be more events to fetch. */
6777 mark_async_event_handler (remote_async_get_pending_events_token);
6778
6779 if (remote_debug)
6780 fprintf_unfiltered (gdb_stdlog, "stop notification captured\n");
6781 }
6782 }
6783 else
6784 /* We ignore notifications we don't recognize, for compatibility
6785 with newer stubs. */
6786 ;
6787 }
6788
6789 \f
6790 /* Read or write LEN bytes from inferior memory at MEMADDR,
6791 transferring to or from debugger address BUFFER. Write to inferior
6792 if SHOULD_WRITE is nonzero. Returns length of data written or
6793 read; 0 for error. TARGET is unused. */
6794
6795 static int
6796 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6797 int should_write, struct mem_attrib *attrib,
6798 struct target_ops *target)
6799 {
6800 int res;
6801
6802 set_remote_traceframe ();
6803 set_general_thread (inferior_ptid);
6804
6805 if (should_write)
6806 res = remote_write_bytes (mem_addr, buffer, mem_len);
6807 else
6808 res = remote_read_bytes (mem_addr, buffer, mem_len);
6809
6810 return res;
6811 }
6812
6813 /* Sends a packet with content determined by the printf format string
6814 FORMAT and the remaining arguments, then gets the reply. Returns
6815 whether the packet was a success, a failure, or unknown. */
6816
6817 static enum packet_result
6818 remote_send_printf (const char *format, ...)
6819 {
6820 struct remote_state *rs = get_remote_state ();
6821 int max_size = get_remote_packet_size ();
6822 va_list ap;
6823
6824 va_start (ap, format);
6825
6826 rs->buf[0] = '\0';
6827 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6828 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6829
6830 if (putpkt (rs->buf) < 0)
6831 error (_("Communication problem with target."));
6832
6833 rs->buf[0] = '\0';
6834 getpkt (&rs->buf, &rs->buf_size, 0);
6835
6836 return packet_check_result (rs->buf);
6837 }
6838
6839 static void
6840 restore_remote_timeout (void *p)
6841 {
6842 int value = *(int *)p;
6843
6844 remote_timeout = value;
6845 }
6846
6847 /* Flash writing can take quite some time. We'll set
6848 effectively infinite timeout for flash operations.
6849 In future, we'll need to decide on a better approach. */
6850 static const int remote_flash_timeout = 1000;
6851
6852 static void
6853 remote_flash_erase (struct target_ops *ops,
6854 ULONGEST address, LONGEST length)
6855 {
6856 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6857 int saved_remote_timeout = remote_timeout;
6858 enum packet_result ret;
6859 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6860 &saved_remote_timeout);
6861
6862 remote_timeout = remote_flash_timeout;
6863
6864 ret = remote_send_printf ("vFlashErase:%s,%s",
6865 phex (address, addr_size),
6866 phex (length, 4));
6867 switch (ret)
6868 {
6869 case PACKET_UNKNOWN:
6870 error (_("Remote target does not support flash erase"));
6871 case PACKET_ERROR:
6872 error (_("Error erasing flash with vFlashErase packet"));
6873 default:
6874 break;
6875 }
6876
6877 do_cleanups (back_to);
6878 }
6879
6880 static LONGEST
6881 remote_flash_write (struct target_ops *ops,
6882 ULONGEST address, LONGEST length,
6883 const gdb_byte *data)
6884 {
6885 int saved_remote_timeout = remote_timeout;
6886 int ret;
6887 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6888 &saved_remote_timeout);
6889
6890 remote_timeout = remote_flash_timeout;
6891 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6892 do_cleanups (back_to);
6893
6894 return ret;
6895 }
6896
6897 static void
6898 remote_flash_done (struct target_ops *ops)
6899 {
6900 int saved_remote_timeout = remote_timeout;
6901 int ret;
6902 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6903 &saved_remote_timeout);
6904
6905 remote_timeout = remote_flash_timeout;
6906 ret = remote_send_printf ("vFlashDone");
6907 do_cleanups (back_to);
6908
6909 switch (ret)
6910 {
6911 case PACKET_UNKNOWN:
6912 error (_("Remote target does not support vFlashDone"));
6913 case PACKET_ERROR:
6914 error (_("Error finishing flash operation"));
6915 default:
6916 break;
6917 }
6918 }
6919
6920 static void
6921 remote_files_info (struct target_ops *ignore)
6922 {
6923 puts_filtered ("Debugging a target over a serial line.\n");
6924 }
6925 \f
6926 /* Stuff for dealing with the packets which are part of this protocol.
6927 See comment at top of file for details. */
6928
6929 /* Read a single character from the remote end. */
6930
6931 static int
6932 readchar (int timeout)
6933 {
6934 int ch;
6935
6936 ch = serial_readchar (remote_desc, timeout);
6937
6938 if (ch >= 0)
6939 return ch;
6940
6941 switch ((enum serial_rc) ch)
6942 {
6943 case SERIAL_EOF:
6944 pop_target ();
6945 error (_("Remote connection closed"));
6946 /* no return */
6947 case SERIAL_ERROR:
6948 pop_target ();
6949 perror_with_name (_("Remote communication error. "
6950 "Target disconnected."));
6951 /* no return */
6952 case SERIAL_TIMEOUT:
6953 break;
6954 }
6955 return ch;
6956 }
6957
6958 /* Send the command in *BUF to the remote machine, and read the reply
6959 into *BUF. Report an error if we get an error reply. Resize
6960 *BUF using xrealloc if necessary to hold the result, and update
6961 *SIZEOF_BUF. */
6962
6963 static void
6964 remote_send (char **buf,
6965 long *sizeof_buf)
6966 {
6967 putpkt (*buf);
6968 getpkt (buf, sizeof_buf, 0);
6969
6970 if ((*buf)[0] == 'E')
6971 error (_("Remote failure reply: %s"), *buf);
6972 }
6973
6974 /* Return a pointer to an xmalloc'ed string representing an escaped
6975 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6976 etc. The caller is responsible for releasing the returned
6977 memory. */
6978
6979 static char *
6980 escape_buffer (const char *buf, int n)
6981 {
6982 struct cleanup *old_chain;
6983 struct ui_file *stb;
6984 char *str;
6985
6986 stb = mem_fileopen ();
6987 old_chain = make_cleanup_ui_file_delete (stb);
6988
6989 fputstrn_unfiltered (buf, n, 0, stb);
6990 str = ui_file_xstrdup (stb, NULL);
6991 do_cleanups (old_chain);
6992 return str;
6993 }
6994
6995 /* Display a null-terminated packet on stdout, for debugging, using C
6996 string notation. */
6997
6998 static void
6999 print_packet (char *buf)
7000 {
7001 puts_filtered ("\"");
7002 fputstr_filtered (buf, '"', gdb_stdout);
7003 puts_filtered ("\"");
7004 }
7005
7006 int
7007 putpkt (char *buf)
7008 {
7009 return putpkt_binary (buf, strlen (buf));
7010 }
7011
7012 /* Send a packet to the remote machine, with error checking. The data
7013 of the packet is in BUF. The string in BUF can be at most
7014 get_remote_packet_size () - 5 to account for the $, # and checksum,
7015 and for a possible /0 if we are debugging (remote_debug) and want
7016 to print the sent packet as a string. */
7017
7018 static int
7019 putpkt_binary (char *buf, int cnt)
7020 {
7021 struct remote_state *rs = get_remote_state ();
7022 int i;
7023 unsigned char csum = 0;
7024 char *buf2 = alloca (cnt + 6);
7025
7026 int ch;
7027 int tcount = 0;
7028 char *p;
7029
7030 /* Catch cases like trying to read memory or listing threads while
7031 we're waiting for a stop reply. The remote server wouldn't be
7032 ready to handle this request, so we'd hang and timeout. We don't
7033 have to worry about this in synchronous mode, because in that
7034 case it's not possible to issue a command while the target is
7035 running. This is not a problem in non-stop mode, because in that
7036 case, the stub is always ready to process serial input. */
7037 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
7038 error (_("Cannot execute this command while the target is running."));
7039
7040 /* We're sending out a new packet. Make sure we don't look at a
7041 stale cached response. */
7042 rs->cached_wait_status = 0;
7043
7044 /* Copy the packet into buffer BUF2, encapsulating it
7045 and giving it a checksum. */
7046
7047 p = buf2;
7048 *p++ = '$';
7049
7050 for (i = 0; i < cnt; i++)
7051 {
7052 csum += buf[i];
7053 *p++ = buf[i];
7054 }
7055 *p++ = '#';
7056 *p++ = tohex ((csum >> 4) & 0xf);
7057 *p++ = tohex (csum & 0xf);
7058
7059 /* Send it over and over until we get a positive ack. */
7060
7061 while (1)
7062 {
7063 int started_error_output = 0;
7064
7065 if (remote_debug)
7066 {
7067 struct cleanup *old_chain;
7068 char *str;
7069
7070 *p = '\0';
7071 str = escape_buffer (buf2, p - buf2);
7072 old_chain = make_cleanup (xfree, str);
7073 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7074 gdb_flush (gdb_stdlog);
7075 do_cleanups (old_chain);
7076 }
7077 if (serial_write (remote_desc, buf2, p - buf2))
7078 perror_with_name (_("putpkt: write failed"));
7079
7080 /* If this is a no acks version of the remote protocol, send the
7081 packet and move on. */
7082 if (rs->noack_mode)
7083 break;
7084
7085 /* Read until either a timeout occurs (-2) or '+' is read.
7086 Handle any notification that arrives in the mean time. */
7087 while (1)
7088 {
7089 ch = readchar (remote_timeout);
7090
7091 if (remote_debug)
7092 {
7093 switch (ch)
7094 {
7095 case '+':
7096 case '-':
7097 case SERIAL_TIMEOUT:
7098 case '$':
7099 case '%':
7100 if (started_error_output)
7101 {
7102 putchar_unfiltered ('\n');
7103 started_error_output = 0;
7104 }
7105 }
7106 }
7107
7108 switch (ch)
7109 {
7110 case '+':
7111 if (remote_debug)
7112 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7113 return 1;
7114 case '-':
7115 if (remote_debug)
7116 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7117 /* FALLTHROUGH */
7118 case SERIAL_TIMEOUT:
7119 tcount++;
7120 if (tcount > 3)
7121 return 0;
7122 break; /* Retransmit buffer. */
7123 case '$':
7124 {
7125 if (remote_debug)
7126 fprintf_unfiltered (gdb_stdlog,
7127 "Packet instead of Ack, ignoring it\n");
7128 /* It's probably an old response sent because an ACK
7129 was lost. Gobble up the packet and ack it so it
7130 doesn't get retransmitted when we resend this
7131 packet. */
7132 skip_frame ();
7133 serial_write (remote_desc, "+", 1);
7134 continue; /* Now, go look for +. */
7135 }
7136
7137 case '%':
7138 {
7139 int val;
7140
7141 /* If we got a notification, handle it, and go back to looking
7142 for an ack. */
7143 /* We've found the start of a notification. Now
7144 collect the data. */
7145 val = read_frame (&rs->buf, &rs->buf_size);
7146 if (val >= 0)
7147 {
7148 if (remote_debug)
7149 {
7150 struct cleanup *old_chain;
7151 char *str;
7152
7153 str = escape_buffer (rs->buf, val);
7154 old_chain = make_cleanup (xfree, str);
7155 fprintf_unfiltered (gdb_stdlog,
7156 " Notification received: %s\n",
7157 str);
7158 do_cleanups (old_chain);
7159 }
7160 handle_notification (rs->buf);
7161 /* We're in sync now, rewait for the ack. */
7162 tcount = 0;
7163 }
7164 else
7165 {
7166 if (remote_debug)
7167 {
7168 if (!started_error_output)
7169 {
7170 started_error_output = 1;
7171 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7172 }
7173 fputc_unfiltered (ch & 0177, gdb_stdlog);
7174 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7175 }
7176 }
7177 continue;
7178 }
7179 /* fall-through */
7180 default:
7181 if (remote_debug)
7182 {
7183 if (!started_error_output)
7184 {
7185 started_error_output = 1;
7186 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7187 }
7188 fputc_unfiltered (ch & 0177, gdb_stdlog);
7189 }
7190 continue;
7191 }
7192 break; /* Here to retransmit. */
7193 }
7194
7195 #if 0
7196 /* This is wrong. If doing a long backtrace, the user should be
7197 able to get out next time we call QUIT, without anything as
7198 violent as interrupt_query. If we want to provide a way out of
7199 here without getting to the next QUIT, it should be based on
7200 hitting ^C twice as in remote_wait. */
7201 if (quit_flag)
7202 {
7203 quit_flag = 0;
7204 interrupt_query ();
7205 }
7206 #endif
7207 }
7208 return 0;
7209 }
7210
7211 /* Come here after finding the start of a frame when we expected an
7212 ack. Do our best to discard the rest of this packet. */
7213
7214 static void
7215 skip_frame (void)
7216 {
7217 int c;
7218
7219 while (1)
7220 {
7221 c = readchar (remote_timeout);
7222 switch (c)
7223 {
7224 case SERIAL_TIMEOUT:
7225 /* Nothing we can do. */
7226 return;
7227 case '#':
7228 /* Discard the two bytes of checksum and stop. */
7229 c = readchar (remote_timeout);
7230 if (c >= 0)
7231 c = readchar (remote_timeout);
7232
7233 return;
7234 case '*': /* Run length encoding. */
7235 /* Discard the repeat count. */
7236 c = readchar (remote_timeout);
7237 if (c < 0)
7238 return;
7239 break;
7240 default:
7241 /* A regular character. */
7242 break;
7243 }
7244 }
7245 }
7246
7247 /* Come here after finding the start of the frame. Collect the rest
7248 into *BUF, verifying the checksum, length, and handling run-length
7249 compression. NUL terminate the buffer. If there is not enough room,
7250 expand *BUF using xrealloc.
7251
7252 Returns -1 on error, number of characters in buffer (ignoring the
7253 trailing NULL) on success. (could be extended to return one of the
7254 SERIAL status indications). */
7255
7256 static long
7257 read_frame (char **buf_p,
7258 long *sizeof_buf)
7259 {
7260 unsigned char csum;
7261 long bc;
7262 int c;
7263 char *buf = *buf_p;
7264 struct remote_state *rs = get_remote_state ();
7265
7266 csum = 0;
7267 bc = 0;
7268
7269 while (1)
7270 {
7271 c = readchar (remote_timeout);
7272 switch (c)
7273 {
7274 case SERIAL_TIMEOUT:
7275 if (remote_debug)
7276 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7277 return -1;
7278 case '$':
7279 if (remote_debug)
7280 fputs_filtered ("Saw new packet start in middle of old one\n",
7281 gdb_stdlog);
7282 return -1; /* Start a new packet, count retries. */
7283 case '#':
7284 {
7285 unsigned char pktcsum;
7286 int check_0 = 0;
7287 int check_1 = 0;
7288
7289 buf[bc] = '\0';
7290
7291 check_0 = readchar (remote_timeout);
7292 if (check_0 >= 0)
7293 check_1 = readchar (remote_timeout);
7294
7295 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7296 {
7297 if (remote_debug)
7298 fputs_filtered ("Timeout in checksum, retrying\n",
7299 gdb_stdlog);
7300 return -1;
7301 }
7302 else if (check_0 < 0 || check_1 < 0)
7303 {
7304 if (remote_debug)
7305 fputs_filtered ("Communication error in checksum\n",
7306 gdb_stdlog);
7307 return -1;
7308 }
7309
7310 /* Don't recompute the checksum; with no ack packets we
7311 don't have any way to indicate a packet retransmission
7312 is necessary. */
7313 if (rs->noack_mode)
7314 return bc;
7315
7316 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7317 if (csum == pktcsum)
7318 return bc;
7319
7320 if (remote_debug)
7321 {
7322 struct cleanup *old_chain;
7323 char *str;
7324
7325 str = escape_buffer (buf, bc);
7326 old_chain = make_cleanup (xfree, str);
7327 fprintf_unfiltered (gdb_stdlog,
7328 "Bad checksum, sentsum=0x%x, "
7329 "csum=0x%x, buf=%s\n",
7330 pktcsum, csum, str);
7331 do_cleanups (old_chain);
7332 }
7333 /* Number of characters in buffer ignoring trailing
7334 NULL. */
7335 return -1;
7336 }
7337 case '*': /* Run length encoding. */
7338 {
7339 int repeat;
7340
7341 csum += c;
7342 c = readchar (remote_timeout);
7343 csum += c;
7344 repeat = c - ' ' + 3; /* Compute repeat count. */
7345
7346 /* The character before ``*'' is repeated. */
7347
7348 if (repeat > 0 && repeat <= 255 && bc > 0)
7349 {
7350 if (bc + repeat - 1 >= *sizeof_buf - 1)
7351 {
7352 /* Make some more room in the buffer. */
7353 *sizeof_buf += repeat;
7354 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7355 buf = *buf_p;
7356 }
7357
7358 memset (&buf[bc], buf[bc - 1], repeat);
7359 bc += repeat;
7360 continue;
7361 }
7362
7363 buf[bc] = '\0';
7364 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7365 return -1;
7366 }
7367 default:
7368 if (bc >= *sizeof_buf - 1)
7369 {
7370 /* Make some more room in the buffer. */
7371 *sizeof_buf *= 2;
7372 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7373 buf = *buf_p;
7374 }
7375
7376 buf[bc++] = c;
7377 csum += c;
7378 continue;
7379 }
7380 }
7381 }
7382
7383 /* Read a packet from the remote machine, with error checking, and
7384 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7385 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7386 rather than timing out; this is used (in synchronous mode) to wait
7387 for a target that is is executing user code to stop. */
7388 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7389 don't have to change all the calls to getpkt to deal with the
7390 return value, because at the moment I don't know what the right
7391 thing to do it for those. */
7392 void
7393 getpkt (char **buf,
7394 long *sizeof_buf,
7395 int forever)
7396 {
7397 int timed_out;
7398
7399 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7400 }
7401
7402
7403 /* Read a packet from the remote machine, with error checking, and
7404 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7405 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7406 rather than timing out; this is used (in synchronous mode) to wait
7407 for a target that is is executing user code to stop. If FOREVER ==
7408 0, this function is allowed to time out gracefully and return an
7409 indication of this to the caller. Otherwise return the number of
7410 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7411 enough reason to return to the caller. */
7412
7413 static int
7414 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7415 int expecting_notif)
7416 {
7417 struct remote_state *rs = get_remote_state ();
7418 int c;
7419 int tries;
7420 int timeout;
7421 int val = -1;
7422
7423 /* We're reading a new response. Make sure we don't look at a
7424 previously cached response. */
7425 rs->cached_wait_status = 0;
7426
7427 strcpy (*buf, "timeout");
7428
7429 if (forever)
7430 timeout = watchdog > 0 ? watchdog : -1;
7431 else if (expecting_notif)
7432 timeout = 0; /* There should already be a char in the buffer. If
7433 not, bail out. */
7434 else
7435 timeout = remote_timeout;
7436
7437 #define MAX_TRIES 3
7438
7439 /* Process any number of notifications, and then return when
7440 we get a packet. */
7441 for (;;)
7442 {
7443 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7444 times. */
7445 for (tries = 1; tries <= MAX_TRIES; tries++)
7446 {
7447 /* This can loop forever if the remote side sends us
7448 characters continuously, but if it pauses, we'll get
7449 SERIAL_TIMEOUT from readchar because of timeout. Then
7450 we'll count that as a retry.
7451
7452 Note that even when forever is set, we will only wait
7453 forever prior to the start of a packet. After that, we
7454 expect characters to arrive at a brisk pace. They should
7455 show up within remote_timeout intervals. */
7456 do
7457 c = readchar (timeout);
7458 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7459
7460 if (c == SERIAL_TIMEOUT)
7461 {
7462 if (expecting_notif)
7463 return -1; /* Don't complain, it's normal to not get
7464 anything in this case. */
7465
7466 if (forever) /* Watchdog went off? Kill the target. */
7467 {
7468 QUIT;
7469 pop_target ();
7470 error (_("Watchdog timeout has expired. Target detached."));
7471 }
7472 if (remote_debug)
7473 fputs_filtered ("Timed out.\n", gdb_stdlog);
7474 }
7475 else
7476 {
7477 /* We've found the start of a packet or notification.
7478 Now collect the data. */
7479 val = read_frame (buf, sizeof_buf);
7480 if (val >= 0)
7481 break;
7482 }
7483
7484 serial_write (remote_desc, "-", 1);
7485 }
7486
7487 if (tries > MAX_TRIES)
7488 {
7489 /* We have tried hard enough, and just can't receive the
7490 packet/notification. Give up. */
7491 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7492
7493 /* Skip the ack char if we're in no-ack mode. */
7494 if (!rs->noack_mode)
7495 serial_write (remote_desc, "+", 1);
7496 return -1;
7497 }
7498
7499 /* If we got an ordinary packet, return that to our caller. */
7500 if (c == '$')
7501 {
7502 if (remote_debug)
7503 {
7504 struct cleanup *old_chain;
7505 char *str;
7506
7507 str = escape_buffer (*buf, val);
7508 old_chain = make_cleanup (xfree, str);
7509 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7510 do_cleanups (old_chain);
7511 }
7512
7513 /* Skip the ack char if we're in no-ack mode. */
7514 if (!rs->noack_mode)
7515 serial_write (remote_desc, "+", 1);
7516 return val;
7517 }
7518
7519 /* If we got a notification, handle it, and go back to looking
7520 for a packet. */
7521 else
7522 {
7523 gdb_assert (c == '%');
7524
7525 if (remote_debug)
7526 {
7527 struct cleanup *old_chain;
7528 char *str;
7529
7530 str = escape_buffer (*buf, val);
7531 old_chain = make_cleanup (xfree, str);
7532 fprintf_unfiltered (gdb_stdlog,
7533 " Notification received: %s\n",
7534 str);
7535 do_cleanups (old_chain);
7536 }
7537
7538 handle_notification (*buf);
7539
7540 /* Notifications require no acknowledgement. */
7541
7542 if (expecting_notif)
7543 return -1;
7544 }
7545 }
7546 }
7547
7548 static int
7549 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7550 {
7551 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
7552 }
7553
7554 static int
7555 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
7556 {
7557 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
7558 }
7559
7560 \f
7561 /* A helper function that just calls putpkt; for type correctness. */
7562
7563 static int
7564 putpkt_for_catch_errors (void *arg)
7565 {
7566 return putpkt (arg);
7567 }
7568
7569 static void
7570 remote_kill (struct target_ops *ops)
7571 {
7572 /* Use catch_errors so the user can quit from gdb even when we
7573 aren't on speaking terms with the remote system. */
7574 catch_errors (putpkt_for_catch_errors, "k", "", RETURN_MASK_ERROR);
7575
7576 /* Don't wait for it to die. I'm not really sure it matters whether
7577 we do or not. For the existing stubs, kill is a noop. */
7578 target_mourn_inferior ();
7579 }
7580
7581 static int
7582 remote_vkill (int pid, struct remote_state *rs)
7583 {
7584 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7585 return -1;
7586
7587 /* Tell the remote target to detach. */
7588 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7589 putpkt (rs->buf);
7590 getpkt (&rs->buf, &rs->buf_size, 0);
7591
7592 if (packet_ok (rs->buf,
7593 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7594 return 0;
7595 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7596 return -1;
7597 else
7598 return 1;
7599 }
7600
7601 static void
7602 extended_remote_kill (struct target_ops *ops)
7603 {
7604 int res;
7605 int pid = ptid_get_pid (inferior_ptid);
7606 struct remote_state *rs = get_remote_state ();
7607
7608 res = remote_vkill (pid, rs);
7609 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7610 {
7611 /* Don't try 'k' on a multi-process aware stub -- it has no way
7612 to specify the pid. */
7613
7614 putpkt ("k");
7615 #if 0
7616 getpkt (&rs->buf, &rs->buf_size, 0);
7617 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7618 res = 1;
7619 #else
7620 /* Don't wait for it to die. I'm not really sure it matters whether
7621 we do or not. For the existing stubs, kill is a noop. */
7622 res = 0;
7623 #endif
7624 }
7625
7626 if (res != 0)
7627 error (_("Can't kill process"));
7628
7629 target_mourn_inferior ();
7630 }
7631
7632 static void
7633 remote_mourn (struct target_ops *ops)
7634 {
7635 remote_mourn_1 (ops);
7636 }
7637
7638 /* Worker function for remote_mourn. */
7639 static void
7640 remote_mourn_1 (struct target_ops *target)
7641 {
7642 unpush_target (target);
7643
7644 /* remote_close takes care of doing most of the clean up. */
7645 generic_mourn_inferior ();
7646 }
7647
7648 static void
7649 extended_remote_mourn_1 (struct target_ops *target)
7650 {
7651 struct remote_state *rs = get_remote_state ();
7652
7653 /* In case we got here due to an error, but we're going to stay
7654 connected. */
7655 rs->waiting_for_stop_reply = 0;
7656
7657 /* We're no longer interested in these events. */
7658 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7659
7660 /* If the current general thread belonged to the process we just
7661 detached from or has exited, the remote side current general
7662 thread becomes undefined. Considering a case like this:
7663
7664 - We just got here due to a detach.
7665 - The process that we're detaching from happens to immediately
7666 report a global breakpoint being hit in non-stop mode, in the
7667 same thread we had selected before.
7668 - GDB attaches to this process again.
7669 - This event happens to be the next event we handle.
7670
7671 GDB would consider that the current general thread didn't need to
7672 be set on the stub side (with Hg), since for all it knew,
7673 GENERAL_THREAD hadn't changed.
7674
7675 Notice that although in all-stop mode, the remote server always
7676 sets the current thread to the thread reporting the stop event,
7677 that doesn't happen in non-stop mode; in non-stop, the stub *must
7678 not* change the current thread when reporting a breakpoint hit,
7679 due to the decoupling of event reporting and event handling.
7680
7681 To keep things simple, we always invalidate our notion of the
7682 current thread. */
7683 record_currthread (minus_one_ptid);
7684
7685 /* Unlike "target remote", we do not want to unpush the target; then
7686 the next time the user says "run", we won't be connected. */
7687
7688 /* Call common code to mark the inferior as not running. */
7689 generic_mourn_inferior ();
7690
7691 if (!have_inferiors ())
7692 {
7693 if (!remote_multi_process_p (rs))
7694 {
7695 /* Check whether the target is running now - some remote stubs
7696 automatically restart after kill. */
7697 putpkt ("?");
7698 getpkt (&rs->buf, &rs->buf_size, 0);
7699
7700 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7701 {
7702 /* Assume that the target has been restarted. Set
7703 inferior_ptid so that bits of core GDB realizes
7704 there's something here, e.g., so that the user can
7705 say "kill" again. */
7706 inferior_ptid = magic_null_ptid;
7707 }
7708 }
7709 }
7710 }
7711
7712 static void
7713 extended_remote_mourn (struct target_ops *ops)
7714 {
7715 extended_remote_mourn_1 (ops);
7716 }
7717
7718 static int
7719 extended_remote_supports_disable_randomization (void)
7720 {
7721 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7722 == PACKET_ENABLE);
7723 }
7724
7725 static void
7726 extended_remote_disable_randomization (int val)
7727 {
7728 struct remote_state *rs = get_remote_state ();
7729 char *reply;
7730
7731 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
7732 val);
7733 putpkt (rs->buf);
7734 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7735 if (*reply == '\0')
7736 error (_("Target does not support QDisableRandomization."));
7737 if (strcmp (reply, "OK") != 0)
7738 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7739 }
7740
7741 static int
7742 extended_remote_run (char *args)
7743 {
7744 struct remote_state *rs = get_remote_state ();
7745 int len;
7746
7747 /* If the user has disabled vRun support, or we have detected that
7748 support is not available, do not try it. */
7749 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7750 return -1;
7751
7752 strcpy (rs->buf, "vRun;");
7753 len = strlen (rs->buf);
7754
7755 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7756 error (_("Remote file name too long for run packet"));
7757 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7758
7759 gdb_assert (args != NULL);
7760 if (*args)
7761 {
7762 struct cleanup *back_to;
7763 int i;
7764 char **argv;
7765
7766 argv = gdb_buildargv (args);
7767 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7768 for (i = 0; argv[i] != NULL; i++)
7769 {
7770 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7771 error (_("Argument list too long for run packet"));
7772 rs->buf[len++] = ';';
7773 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7774 }
7775 do_cleanups (back_to);
7776 }
7777
7778 rs->buf[len++] = '\0';
7779
7780 putpkt (rs->buf);
7781 getpkt (&rs->buf, &rs->buf_size, 0);
7782
7783 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7784 {
7785 /* We have a wait response; we don't need it, though. All is well. */
7786 return 0;
7787 }
7788 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7789 /* It wasn't disabled before, but it is now. */
7790 return -1;
7791 else
7792 {
7793 if (remote_exec_file[0] == '\0')
7794 error (_("Running the default executable on the remote target failed; "
7795 "try \"set remote exec-file\"?"));
7796 else
7797 error (_("Running \"%s\" on the remote target failed"),
7798 remote_exec_file);
7799 }
7800 }
7801
7802 /* In the extended protocol we want to be able to do things like
7803 "run" and have them basically work as expected. So we need
7804 a special create_inferior function. We support changing the
7805 executable file and the command line arguments, but not the
7806 environment. */
7807
7808 static void
7809 extended_remote_create_inferior_1 (char *exec_file, char *args,
7810 char **env, int from_tty)
7811 {
7812 /* If running asynchronously, register the target file descriptor
7813 with the event loop. */
7814 if (target_can_async_p ())
7815 target_async (inferior_event_handler, 0);
7816
7817 /* Disable address space randomization if requested (and supported). */
7818 if (extended_remote_supports_disable_randomization ())
7819 extended_remote_disable_randomization (disable_randomization);
7820
7821 /* Now restart the remote server. */
7822 if (extended_remote_run (args) == -1)
7823 {
7824 /* vRun was not supported. Fail if we need it to do what the
7825 user requested. */
7826 if (remote_exec_file[0])
7827 error (_("Remote target does not support \"set remote exec-file\""));
7828 if (args[0])
7829 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7830
7831 /* Fall back to "R". */
7832 extended_remote_restart ();
7833 }
7834
7835 if (!have_inferiors ())
7836 {
7837 /* Clean up from the last time we ran, before we mark the target
7838 running again. This will mark breakpoints uninserted, and
7839 get_offsets may insert breakpoints. */
7840 init_thread_list ();
7841 init_wait_for_inferior ();
7842 }
7843
7844 add_current_inferior_and_thread ();
7845
7846 /* Get updated offsets, if the stub uses qOffsets. */
7847 get_offsets ();
7848 }
7849
7850 static void
7851 extended_remote_create_inferior (struct target_ops *ops,
7852 char *exec_file, char *args,
7853 char **env, int from_tty)
7854 {
7855 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7856 }
7857 \f
7858
7859 /* Given a location's target info BP_TGT and the packet buffer BUF, output
7860 the list of conditions (in agent expression bytecode format), if any, the
7861 target needs to evaluate. The output is placed into the packet buffer
7862 started from BUF and ended at BUF_END. */
7863
7864 static int
7865 remote_add_target_side_condition (struct gdbarch *gdbarch,
7866 struct bp_target_info *bp_tgt, char *buf,
7867 char *buf_end)
7868 {
7869 struct agent_expr *aexpr = NULL;
7870 int i, ix;
7871 char *pkt;
7872 char *buf_start = buf;
7873
7874 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
7875 return 0;
7876
7877 buf += strlen (buf);
7878 xsnprintf (buf, buf_end - buf, "%s", ";");
7879 buf++;
7880
7881 /* Send conditions to the target and free the vector. */
7882 for (ix = 0;
7883 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
7884 ix++)
7885 {
7886 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
7887 buf += strlen (buf);
7888 for (i = 0; i < aexpr->len; ++i)
7889 buf = pack_hex_byte (buf, aexpr->buf[i]);
7890 *buf = '\0';
7891 }
7892
7893 VEC_free (agent_expr_p, bp_tgt->conditions);
7894 return 0;
7895 }
7896
7897 static void
7898 remote_add_target_side_commands (struct gdbarch *gdbarch,
7899 struct bp_target_info *bp_tgt, char *buf)
7900 {
7901 struct agent_expr *aexpr = NULL;
7902 int i, ix;
7903
7904 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
7905 return;
7906
7907 buf += strlen (buf);
7908
7909 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
7910 buf += strlen (buf);
7911
7912 /* Concatenate all the agent expressions that are commands into the
7913 cmds parameter. */
7914 for (ix = 0;
7915 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
7916 ix++)
7917 {
7918 sprintf (buf, "X%x,", aexpr->len);
7919 buf += strlen (buf);
7920 for (i = 0; i < aexpr->len; ++i)
7921 buf = pack_hex_byte (buf, aexpr->buf[i]);
7922 *buf = '\0';
7923 }
7924
7925 VEC_free (agent_expr_p, bp_tgt->tcommands);
7926 }
7927
7928 /* Insert a breakpoint. On targets that have software breakpoint
7929 support, we ask the remote target to do the work; on targets
7930 which don't, we insert a traditional memory breakpoint. */
7931
7932 static int
7933 remote_insert_breakpoint (struct gdbarch *gdbarch,
7934 struct bp_target_info *bp_tgt)
7935 {
7936 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7937 If it succeeds, then set the support to PACKET_ENABLE. If it
7938 fails, and the user has explicitly requested the Z support then
7939 report an error, otherwise, mark it disabled and go on. */
7940
7941 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7942 {
7943 CORE_ADDR addr = bp_tgt->placed_address;
7944 struct remote_state *rs;
7945 char *p, *endbuf;
7946 int bpsize;
7947 struct condition_list *cond = NULL;
7948
7949 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7950
7951 rs = get_remote_state ();
7952 p = rs->buf;
7953 endbuf = rs->buf + get_remote_packet_size ();
7954
7955 *(p++) = 'Z';
7956 *(p++) = '0';
7957 *(p++) = ',';
7958 addr = (ULONGEST) remote_address_masked (addr);
7959 p += hexnumstr (p, addr);
7960 xsnprintf (p, endbuf - p, ",%d", bpsize);
7961
7962 if (remote_supports_cond_breakpoints ())
7963 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
7964
7965 if (remote_can_run_breakpoint_commands ())
7966 remote_add_target_side_commands (gdbarch, bp_tgt, p);
7967
7968 putpkt (rs->buf);
7969 getpkt (&rs->buf, &rs->buf_size, 0);
7970
7971 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7972 {
7973 case PACKET_ERROR:
7974 return -1;
7975 case PACKET_OK:
7976 bp_tgt->placed_address = addr;
7977 bp_tgt->placed_size = bpsize;
7978 return 0;
7979 case PACKET_UNKNOWN:
7980 break;
7981 }
7982 }
7983
7984 return memory_insert_breakpoint (gdbarch, bp_tgt);
7985 }
7986
7987 static int
7988 remote_remove_breakpoint (struct gdbarch *gdbarch,
7989 struct bp_target_info *bp_tgt)
7990 {
7991 CORE_ADDR addr = bp_tgt->placed_address;
7992 struct remote_state *rs = get_remote_state ();
7993
7994 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7995 {
7996 char *p = rs->buf;
7997 char *endbuf = rs->buf + get_remote_packet_size ();
7998
7999 *(p++) = 'z';
8000 *(p++) = '0';
8001 *(p++) = ',';
8002
8003 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8004 p += hexnumstr (p, addr);
8005 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8006
8007 putpkt (rs->buf);
8008 getpkt (&rs->buf, &rs->buf_size, 0);
8009
8010 return (rs->buf[0] == 'E');
8011 }
8012
8013 return memory_remove_breakpoint (gdbarch, bp_tgt);
8014 }
8015
8016 static int
8017 watchpoint_to_Z_packet (int type)
8018 {
8019 switch (type)
8020 {
8021 case hw_write:
8022 return Z_PACKET_WRITE_WP;
8023 break;
8024 case hw_read:
8025 return Z_PACKET_READ_WP;
8026 break;
8027 case hw_access:
8028 return Z_PACKET_ACCESS_WP;
8029 break;
8030 default:
8031 internal_error (__FILE__, __LINE__,
8032 _("hw_bp_to_z: bad watchpoint type %d"), type);
8033 }
8034 }
8035
8036 static int
8037 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
8038 struct expression *cond)
8039 {
8040 struct remote_state *rs = get_remote_state ();
8041 char *endbuf = rs->buf + get_remote_packet_size ();
8042 char *p;
8043 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8044
8045 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8046 return 1;
8047
8048 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8049 p = strchr (rs->buf, '\0');
8050 addr = remote_address_masked (addr);
8051 p += hexnumstr (p, (ULONGEST) addr);
8052 xsnprintf (p, endbuf - p, ",%x", len);
8053
8054 putpkt (rs->buf);
8055 getpkt (&rs->buf, &rs->buf_size, 0);
8056
8057 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8058 {
8059 case PACKET_ERROR:
8060 return -1;
8061 case PACKET_UNKNOWN:
8062 return 1;
8063 case PACKET_OK:
8064 return 0;
8065 }
8066 internal_error (__FILE__, __LINE__,
8067 _("remote_insert_watchpoint: reached end of function"));
8068 }
8069
8070 static int
8071 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8072 CORE_ADDR start, int length)
8073 {
8074 CORE_ADDR diff = remote_address_masked (addr - start);
8075
8076 return diff < length;
8077 }
8078
8079
8080 static int
8081 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
8082 struct expression *cond)
8083 {
8084 struct remote_state *rs = get_remote_state ();
8085 char *endbuf = rs->buf + get_remote_packet_size ();
8086 char *p;
8087 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8088
8089 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8090 return -1;
8091
8092 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8093 p = strchr (rs->buf, '\0');
8094 addr = remote_address_masked (addr);
8095 p += hexnumstr (p, (ULONGEST) addr);
8096 xsnprintf (p, endbuf - p, ",%x", len);
8097 putpkt (rs->buf);
8098 getpkt (&rs->buf, &rs->buf_size, 0);
8099
8100 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8101 {
8102 case PACKET_ERROR:
8103 case PACKET_UNKNOWN:
8104 return -1;
8105 case PACKET_OK:
8106 return 0;
8107 }
8108 internal_error (__FILE__, __LINE__,
8109 _("remote_remove_watchpoint: reached end of function"));
8110 }
8111
8112
8113 int remote_hw_watchpoint_limit = -1;
8114 int remote_hw_watchpoint_length_limit = -1;
8115 int remote_hw_breakpoint_limit = -1;
8116
8117 static int
8118 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
8119 {
8120 if (remote_hw_watchpoint_length_limit == 0)
8121 return 0;
8122 else if (remote_hw_watchpoint_length_limit < 0)
8123 return 1;
8124 else if (len <= remote_hw_watchpoint_length_limit)
8125 return 1;
8126 else
8127 return 0;
8128 }
8129
8130 static int
8131 remote_check_watch_resources (int type, int cnt, int ot)
8132 {
8133 if (type == bp_hardware_breakpoint)
8134 {
8135 if (remote_hw_breakpoint_limit == 0)
8136 return 0;
8137 else if (remote_hw_breakpoint_limit < 0)
8138 return 1;
8139 else if (cnt <= remote_hw_breakpoint_limit)
8140 return 1;
8141 }
8142 else
8143 {
8144 if (remote_hw_watchpoint_limit == 0)
8145 return 0;
8146 else if (remote_hw_watchpoint_limit < 0)
8147 return 1;
8148 else if (ot)
8149 return -1;
8150 else if (cnt <= remote_hw_watchpoint_limit)
8151 return 1;
8152 }
8153 return -1;
8154 }
8155
8156 static int
8157 remote_stopped_by_watchpoint (void)
8158 {
8159 return remote_stopped_by_watchpoint_p;
8160 }
8161
8162 static int
8163 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8164 {
8165 int rc = 0;
8166
8167 if (remote_stopped_by_watchpoint ())
8168 {
8169 *addr_p = remote_watch_data_address;
8170 rc = 1;
8171 }
8172
8173 return rc;
8174 }
8175
8176
8177 static int
8178 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8179 struct bp_target_info *bp_tgt)
8180 {
8181 CORE_ADDR addr;
8182 struct remote_state *rs;
8183 char *p, *endbuf;
8184
8185 /* The length field should be set to the size of a breakpoint
8186 instruction, even though we aren't inserting one ourselves. */
8187
8188 gdbarch_remote_breakpoint_from_pc
8189 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8190
8191 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8192 return -1;
8193
8194 rs = get_remote_state ();
8195 p = rs->buf;
8196 endbuf = rs->buf + get_remote_packet_size ();
8197
8198 *(p++) = 'Z';
8199 *(p++) = '1';
8200 *(p++) = ',';
8201
8202 addr = remote_address_masked (bp_tgt->placed_address);
8203 p += hexnumstr (p, (ULONGEST) addr);
8204 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8205
8206 if (remote_supports_cond_breakpoints ())
8207 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8208
8209 if (remote_can_run_breakpoint_commands ())
8210 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8211
8212 putpkt (rs->buf);
8213 getpkt (&rs->buf, &rs->buf_size, 0);
8214
8215 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8216 {
8217 case PACKET_ERROR:
8218 case PACKET_UNKNOWN:
8219 return -1;
8220 case PACKET_OK:
8221 return 0;
8222 }
8223 internal_error (__FILE__, __LINE__,
8224 _("remote_insert_hw_breakpoint: reached end of function"));
8225 }
8226
8227
8228 static int
8229 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8230 struct bp_target_info *bp_tgt)
8231 {
8232 CORE_ADDR addr;
8233 struct remote_state *rs = get_remote_state ();
8234 char *p = rs->buf;
8235 char *endbuf = rs->buf + get_remote_packet_size ();
8236
8237 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8238 return -1;
8239
8240 *(p++) = 'z';
8241 *(p++) = '1';
8242 *(p++) = ',';
8243
8244 addr = remote_address_masked (bp_tgt->placed_address);
8245 p += hexnumstr (p, (ULONGEST) addr);
8246 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8247
8248 putpkt (rs->buf);
8249 getpkt (&rs->buf, &rs->buf_size, 0);
8250
8251 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8252 {
8253 case PACKET_ERROR:
8254 case PACKET_UNKNOWN:
8255 return -1;
8256 case PACKET_OK:
8257 return 0;
8258 }
8259 internal_error (__FILE__, __LINE__,
8260 _("remote_remove_hw_breakpoint: reached end of function"));
8261 }
8262
8263 /* Table used by the crc32 function to calcuate the checksum. */
8264
8265 static unsigned long crc32_table[256] =
8266 {0, 0};
8267
8268 static unsigned long
8269 crc32 (const unsigned char *buf, int len, unsigned int crc)
8270 {
8271 if (!crc32_table[1])
8272 {
8273 /* Initialize the CRC table and the decoding table. */
8274 int i, j;
8275 unsigned int c;
8276
8277 for (i = 0; i < 256; i++)
8278 {
8279 for (c = i << 24, j = 8; j > 0; --j)
8280 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
8281 crc32_table[i] = c;
8282 }
8283 }
8284
8285 while (len--)
8286 {
8287 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
8288 buf++;
8289 }
8290 return crc;
8291 }
8292
8293 /* Verify memory using the "qCRC:" request. */
8294
8295 static int
8296 remote_verify_memory (struct target_ops *ops,
8297 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8298 {
8299 struct remote_state *rs = get_remote_state ();
8300 unsigned long host_crc, target_crc;
8301 char *tmp;
8302
8303 /* FIXME: assumes lma can fit into long. */
8304 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8305 (long) lma, (long) size);
8306 putpkt (rs->buf);
8307
8308 /* Be clever; compute the host_crc before waiting for target
8309 reply. */
8310 host_crc = crc32 (data, size, 0xffffffff);
8311
8312 getpkt (&rs->buf, &rs->buf_size, 0);
8313 if (rs->buf[0] == 'E')
8314 return -1;
8315
8316 if (rs->buf[0] != 'C')
8317 error (_("remote target does not support this operation"));
8318
8319 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8320 target_crc = target_crc * 16 + fromhex (*tmp);
8321
8322 return (host_crc == target_crc);
8323 }
8324
8325 /* compare-sections command
8326
8327 With no arguments, compares each loadable section in the exec bfd
8328 with the same memory range on the target, and reports mismatches.
8329 Useful for verifying the image on the target against the exec file. */
8330
8331 static void
8332 compare_sections_command (char *args, int from_tty)
8333 {
8334 asection *s;
8335 struct cleanup *old_chain;
8336 char *sectdata;
8337 const char *sectname;
8338 bfd_size_type size;
8339 bfd_vma lma;
8340 int matched = 0;
8341 int mismatched = 0;
8342 int res;
8343
8344 if (!exec_bfd)
8345 error (_("command cannot be used without an exec file"));
8346
8347 for (s = exec_bfd->sections; s; s = s->next)
8348 {
8349 if (!(s->flags & SEC_LOAD))
8350 continue; /* Skip non-loadable section. */
8351
8352 size = bfd_get_section_size (s);
8353 if (size == 0)
8354 continue; /* Skip zero-length section. */
8355
8356 sectname = bfd_get_section_name (exec_bfd, s);
8357 if (args && strcmp (args, sectname) != 0)
8358 continue; /* Not the section selected by user. */
8359
8360 matched = 1; /* Do this section. */
8361 lma = s->lma;
8362
8363 sectdata = xmalloc (size);
8364 old_chain = make_cleanup (xfree, sectdata);
8365 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8366
8367 res = target_verify_memory (sectdata, lma, size);
8368
8369 if (res == -1)
8370 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8371 paddress (target_gdbarch, lma),
8372 paddress (target_gdbarch, lma + size));
8373
8374 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8375 paddress (target_gdbarch, lma),
8376 paddress (target_gdbarch, lma + size));
8377 if (res)
8378 printf_filtered ("matched.\n");
8379 else
8380 {
8381 printf_filtered ("MIS-MATCHED!\n");
8382 mismatched++;
8383 }
8384
8385 do_cleanups (old_chain);
8386 }
8387 if (mismatched > 0)
8388 warning (_("One or more sections of the remote executable does not match\n\
8389 the loaded file\n"));
8390 if (args && !matched)
8391 printf_filtered (_("No loaded section named '%s'.\n"), args);
8392 }
8393
8394 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8395 into remote target. The number of bytes written to the remote
8396 target is returned, or -1 for error. */
8397
8398 static LONGEST
8399 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8400 const char *annex, const gdb_byte *writebuf,
8401 ULONGEST offset, LONGEST len,
8402 struct packet_config *packet)
8403 {
8404 int i, buf_len;
8405 ULONGEST n;
8406 struct remote_state *rs = get_remote_state ();
8407 int max_size = get_memory_write_packet_size ();
8408
8409 if (packet->support == PACKET_DISABLE)
8410 return -1;
8411
8412 /* Insert header. */
8413 i = snprintf (rs->buf, max_size,
8414 "qXfer:%s:write:%s:%s:",
8415 object_name, annex ? annex : "",
8416 phex_nz (offset, sizeof offset));
8417 max_size -= (i + 1);
8418
8419 /* Escape as much data as fits into rs->buf. */
8420 buf_len = remote_escape_output
8421 (writebuf, len, (rs->buf + i), &max_size, max_size);
8422
8423 if (putpkt_binary (rs->buf, i + buf_len) < 0
8424 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8425 || packet_ok (rs->buf, packet) != PACKET_OK)
8426 return -1;
8427
8428 unpack_varlen_hex (rs->buf, &n);
8429 return n;
8430 }
8431
8432 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8433 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8434 number of bytes read is returned, or 0 for EOF, or -1 for error.
8435 The number of bytes read may be less than LEN without indicating an
8436 EOF. PACKET is checked and updated to indicate whether the remote
8437 target supports this object. */
8438
8439 static LONGEST
8440 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8441 const char *annex,
8442 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8443 struct packet_config *packet)
8444 {
8445 static char *finished_object;
8446 static char *finished_annex;
8447 static ULONGEST finished_offset;
8448
8449 struct remote_state *rs = get_remote_state ();
8450 LONGEST i, n, packet_len;
8451
8452 if (packet->support == PACKET_DISABLE)
8453 return -1;
8454
8455 /* Check whether we've cached an end-of-object packet that matches
8456 this request. */
8457 if (finished_object)
8458 {
8459 if (strcmp (object_name, finished_object) == 0
8460 && strcmp (annex ? annex : "", finished_annex) == 0
8461 && offset == finished_offset)
8462 return 0;
8463
8464 /* Otherwise, we're now reading something different. Discard
8465 the cache. */
8466 xfree (finished_object);
8467 xfree (finished_annex);
8468 finished_object = NULL;
8469 finished_annex = NULL;
8470 }
8471
8472 /* Request only enough to fit in a single packet. The actual data
8473 may not, since we don't know how much of it will need to be escaped;
8474 the target is free to respond with slightly less data. We subtract
8475 five to account for the response type and the protocol frame. */
8476 n = min (get_remote_packet_size () - 5, len);
8477 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8478 object_name, annex ? annex : "",
8479 phex_nz (offset, sizeof offset),
8480 phex_nz (n, sizeof n));
8481 i = putpkt (rs->buf);
8482 if (i < 0)
8483 return -1;
8484
8485 rs->buf[0] = '\0';
8486 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8487 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8488 return -1;
8489
8490 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8491 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8492
8493 /* 'm' means there is (or at least might be) more data after this
8494 batch. That does not make sense unless there's at least one byte
8495 of data in this reply. */
8496 if (rs->buf[0] == 'm' && packet_len == 1)
8497 error (_("Remote qXfer reply contained no data."));
8498
8499 /* Got some data. */
8500 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8501
8502 /* 'l' is an EOF marker, possibly including a final block of data,
8503 or possibly empty. If we have the final block of a non-empty
8504 object, record this fact to bypass a subsequent partial read. */
8505 if (rs->buf[0] == 'l' && offset + i > 0)
8506 {
8507 finished_object = xstrdup (object_name);
8508 finished_annex = xstrdup (annex ? annex : "");
8509 finished_offset = offset + i;
8510 }
8511
8512 return i;
8513 }
8514
8515 static LONGEST
8516 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8517 const char *annex, gdb_byte *readbuf,
8518 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8519 {
8520 struct remote_state *rs;
8521 int i;
8522 char *p2;
8523 char query_type;
8524
8525 set_remote_traceframe ();
8526 set_general_thread (inferior_ptid);
8527
8528 rs = get_remote_state ();
8529
8530 /* Handle memory using the standard memory routines. */
8531 if (object == TARGET_OBJECT_MEMORY)
8532 {
8533 int xfered;
8534
8535 errno = 0;
8536
8537 /* If the remote target is connected but not running, we should
8538 pass this request down to a lower stratum (e.g. the executable
8539 file). */
8540 if (!target_has_execution)
8541 return 0;
8542
8543 if (writebuf != NULL)
8544 xfered = remote_write_bytes (offset, writebuf, len);
8545 else
8546 xfered = remote_read_bytes (offset, readbuf, len);
8547
8548 if (xfered > 0)
8549 return xfered;
8550 else if (xfered == 0 && errno == 0)
8551 return 0;
8552 else
8553 return -1;
8554 }
8555
8556 /* Handle SPU memory using qxfer packets. */
8557 if (object == TARGET_OBJECT_SPU)
8558 {
8559 if (readbuf)
8560 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8561 &remote_protocol_packets
8562 [PACKET_qXfer_spu_read]);
8563 else
8564 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8565 &remote_protocol_packets
8566 [PACKET_qXfer_spu_write]);
8567 }
8568
8569 /* Handle extra signal info using qxfer packets. */
8570 if (object == TARGET_OBJECT_SIGNAL_INFO)
8571 {
8572 if (readbuf)
8573 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8574 &remote_protocol_packets
8575 [PACKET_qXfer_siginfo_read]);
8576 else
8577 return remote_write_qxfer (ops, "siginfo", annex,
8578 writebuf, offset, len,
8579 &remote_protocol_packets
8580 [PACKET_qXfer_siginfo_write]);
8581 }
8582
8583 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8584 {
8585 if (readbuf)
8586 return remote_read_qxfer (ops, "statictrace", annex,
8587 readbuf, offset, len,
8588 &remote_protocol_packets
8589 [PACKET_qXfer_statictrace_read]);
8590 else
8591 return -1;
8592 }
8593
8594 /* Only handle flash writes. */
8595 if (writebuf != NULL)
8596 {
8597 LONGEST xfered;
8598
8599 switch (object)
8600 {
8601 case TARGET_OBJECT_FLASH:
8602 xfered = remote_flash_write (ops, offset, len, writebuf);
8603
8604 if (xfered > 0)
8605 return xfered;
8606 else if (xfered == 0 && errno == 0)
8607 return 0;
8608 else
8609 return -1;
8610
8611 default:
8612 return -1;
8613 }
8614 }
8615
8616 /* Map pre-existing objects onto letters. DO NOT do this for new
8617 objects!!! Instead specify new query packets. */
8618 switch (object)
8619 {
8620 case TARGET_OBJECT_AVR:
8621 query_type = 'R';
8622 break;
8623
8624 case TARGET_OBJECT_AUXV:
8625 gdb_assert (annex == NULL);
8626 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8627 &remote_protocol_packets[PACKET_qXfer_auxv]);
8628
8629 case TARGET_OBJECT_AVAILABLE_FEATURES:
8630 return remote_read_qxfer
8631 (ops, "features", annex, readbuf, offset, len,
8632 &remote_protocol_packets[PACKET_qXfer_features]);
8633
8634 case TARGET_OBJECT_LIBRARIES:
8635 return remote_read_qxfer
8636 (ops, "libraries", annex, readbuf, offset, len,
8637 &remote_protocol_packets[PACKET_qXfer_libraries]);
8638
8639 case TARGET_OBJECT_LIBRARIES_SVR4:
8640 return remote_read_qxfer
8641 (ops, "libraries-svr4", annex, readbuf, offset, len,
8642 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8643
8644 case TARGET_OBJECT_MEMORY_MAP:
8645 gdb_assert (annex == NULL);
8646 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8647 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8648
8649 case TARGET_OBJECT_OSDATA:
8650 /* Should only get here if we're connected. */
8651 gdb_assert (remote_desc);
8652 return remote_read_qxfer
8653 (ops, "osdata", annex, readbuf, offset, len,
8654 &remote_protocol_packets[PACKET_qXfer_osdata]);
8655
8656 case TARGET_OBJECT_THREADS:
8657 gdb_assert (annex == NULL);
8658 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8659 &remote_protocol_packets[PACKET_qXfer_threads]);
8660
8661 case TARGET_OBJECT_TRACEFRAME_INFO:
8662 gdb_assert (annex == NULL);
8663 return remote_read_qxfer
8664 (ops, "traceframe-info", annex, readbuf, offset, len,
8665 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8666
8667 case TARGET_OBJECT_FDPIC:
8668 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8669 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8670
8671 case TARGET_OBJECT_OPENVMS_UIB:
8672 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
8673 &remote_protocol_packets[PACKET_qXfer_uib]);
8674
8675 default:
8676 return -1;
8677 }
8678
8679 /* Note: a zero OFFSET and LEN can be used to query the minimum
8680 buffer size. */
8681 if (offset == 0 && len == 0)
8682 return (get_remote_packet_size ());
8683 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8684 large enough let the caller deal with it. */
8685 if (len < get_remote_packet_size ())
8686 return -1;
8687 len = get_remote_packet_size ();
8688
8689 /* Except for querying the minimum buffer size, target must be open. */
8690 if (!remote_desc)
8691 error (_("remote query is only available after target open"));
8692
8693 gdb_assert (annex != NULL);
8694 gdb_assert (readbuf != NULL);
8695
8696 p2 = rs->buf;
8697 *p2++ = 'q';
8698 *p2++ = query_type;
8699
8700 /* We used one buffer char for the remote protocol q command and
8701 another for the query type. As the remote protocol encapsulation
8702 uses 4 chars plus one extra in case we are debugging
8703 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8704 string. */
8705 i = 0;
8706 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8707 {
8708 /* Bad caller may have sent forbidden characters. */
8709 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8710 *p2++ = annex[i];
8711 i++;
8712 }
8713 *p2 = '\0';
8714 gdb_assert (annex[i] == '\0');
8715
8716 i = putpkt (rs->buf);
8717 if (i < 0)
8718 return i;
8719
8720 getpkt (&rs->buf, &rs->buf_size, 0);
8721 strcpy ((char *) readbuf, rs->buf);
8722
8723 return strlen ((char *) readbuf);
8724 }
8725
8726 static int
8727 remote_search_memory (struct target_ops* ops,
8728 CORE_ADDR start_addr, ULONGEST search_space_len,
8729 const gdb_byte *pattern, ULONGEST pattern_len,
8730 CORE_ADDR *found_addrp)
8731 {
8732 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
8733 struct remote_state *rs = get_remote_state ();
8734 int max_size = get_memory_write_packet_size ();
8735 struct packet_config *packet =
8736 &remote_protocol_packets[PACKET_qSearch_memory];
8737 /* Number of packet bytes used to encode the pattern;
8738 this could be more than PATTERN_LEN due to escape characters. */
8739 int escaped_pattern_len;
8740 /* Amount of pattern that was encodable in the packet. */
8741 int used_pattern_len;
8742 int i;
8743 int found;
8744 ULONGEST found_addr;
8745
8746 /* Don't go to the target if we don't have to.
8747 This is done before checking packet->support to avoid the possibility that
8748 a success for this edge case means the facility works in general. */
8749 if (pattern_len > search_space_len)
8750 return 0;
8751 if (pattern_len == 0)
8752 {
8753 *found_addrp = start_addr;
8754 return 1;
8755 }
8756
8757 /* If we already know the packet isn't supported, fall back to the simple
8758 way of searching memory. */
8759
8760 if (packet->support == PACKET_DISABLE)
8761 {
8762 /* Target doesn't provided special support, fall back and use the
8763 standard support (copy memory and do the search here). */
8764 return simple_search_memory (ops, start_addr, search_space_len,
8765 pattern, pattern_len, found_addrp);
8766 }
8767
8768 /* Insert header. */
8769 i = snprintf (rs->buf, max_size,
8770 "qSearch:memory:%s;%s;",
8771 phex_nz (start_addr, addr_size),
8772 phex_nz (search_space_len, sizeof (search_space_len)));
8773 max_size -= (i + 1);
8774
8775 /* Escape as much data as fits into rs->buf. */
8776 escaped_pattern_len =
8777 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8778 &used_pattern_len, max_size);
8779
8780 /* Bail if the pattern is too large. */
8781 if (used_pattern_len != pattern_len)
8782 error (_("Pattern is too large to transmit to remote target."));
8783
8784 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8785 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8786 || packet_ok (rs->buf, packet) != PACKET_OK)
8787 {
8788 /* The request may not have worked because the command is not
8789 supported. If so, fall back to the simple way. */
8790 if (packet->support == PACKET_DISABLE)
8791 {
8792 return simple_search_memory (ops, start_addr, search_space_len,
8793 pattern, pattern_len, found_addrp);
8794 }
8795 return -1;
8796 }
8797
8798 if (rs->buf[0] == '0')
8799 found = 0;
8800 else if (rs->buf[0] == '1')
8801 {
8802 found = 1;
8803 if (rs->buf[1] != ',')
8804 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8805 unpack_varlen_hex (rs->buf + 2, &found_addr);
8806 *found_addrp = found_addr;
8807 }
8808 else
8809 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8810
8811 return found;
8812 }
8813
8814 static void
8815 remote_rcmd (char *command,
8816 struct ui_file *outbuf)
8817 {
8818 struct remote_state *rs = get_remote_state ();
8819 char *p = rs->buf;
8820
8821 if (!remote_desc)
8822 error (_("remote rcmd is only available after target open"));
8823
8824 /* Send a NULL command across as an empty command. */
8825 if (command == NULL)
8826 command = "";
8827
8828 /* The query prefix. */
8829 strcpy (rs->buf, "qRcmd,");
8830 p = strchr (rs->buf, '\0');
8831
8832 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8833 > get_remote_packet_size ())
8834 error (_("\"monitor\" command ``%s'' is too long."), command);
8835
8836 /* Encode the actual command. */
8837 bin2hex ((gdb_byte *) command, p, 0);
8838
8839 if (putpkt (rs->buf) < 0)
8840 error (_("Communication problem with target."));
8841
8842 /* get/display the response */
8843 while (1)
8844 {
8845 char *buf;
8846
8847 /* XXX - see also remote_get_noisy_reply(). */
8848 QUIT; /* Allow user to bail out with ^C. */
8849 rs->buf[0] = '\0';
8850 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
8851 {
8852 /* Timeout. Continue to (try to) read responses.
8853 This is better than stopping with an error, assuming the stub
8854 is still executing the (long) monitor command.
8855 If needed, the user can interrupt gdb using C-c, obtaining
8856 an effect similar to stop on timeout. */
8857 continue;
8858 }
8859 buf = rs->buf;
8860 if (buf[0] == '\0')
8861 error (_("Target does not support this command."));
8862 if (buf[0] == 'O' && buf[1] != 'K')
8863 {
8864 remote_console_output (buf + 1); /* 'O' message from stub. */
8865 continue;
8866 }
8867 if (strcmp (buf, "OK") == 0)
8868 break;
8869 if (strlen (buf) == 3 && buf[0] == 'E'
8870 && isdigit (buf[1]) && isdigit (buf[2]))
8871 {
8872 error (_("Protocol error with Rcmd"));
8873 }
8874 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8875 {
8876 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8877
8878 fputc_unfiltered (c, outbuf);
8879 }
8880 break;
8881 }
8882 }
8883
8884 static VEC(mem_region_s) *
8885 remote_memory_map (struct target_ops *ops)
8886 {
8887 VEC(mem_region_s) *result = NULL;
8888 char *text = target_read_stralloc (&current_target,
8889 TARGET_OBJECT_MEMORY_MAP, NULL);
8890
8891 if (text)
8892 {
8893 struct cleanup *back_to = make_cleanup (xfree, text);
8894
8895 result = parse_memory_map (text);
8896 do_cleanups (back_to);
8897 }
8898
8899 return result;
8900 }
8901
8902 static void
8903 packet_command (char *args, int from_tty)
8904 {
8905 struct remote_state *rs = get_remote_state ();
8906
8907 if (!remote_desc)
8908 error (_("command can only be used with remote target"));
8909
8910 if (!args)
8911 error (_("remote-packet command requires packet text as argument"));
8912
8913 puts_filtered ("sending: ");
8914 print_packet (args);
8915 puts_filtered ("\n");
8916 putpkt (args);
8917
8918 getpkt (&rs->buf, &rs->buf_size, 0);
8919 puts_filtered ("received: ");
8920 print_packet (rs->buf);
8921 puts_filtered ("\n");
8922 }
8923
8924 #if 0
8925 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8926
8927 static void display_thread_info (struct gdb_ext_thread_info *info);
8928
8929 static void threadset_test_cmd (char *cmd, int tty);
8930
8931 static void threadalive_test (char *cmd, int tty);
8932
8933 static void threadlist_test_cmd (char *cmd, int tty);
8934
8935 int get_and_display_threadinfo (threadref *ref);
8936
8937 static void threadinfo_test_cmd (char *cmd, int tty);
8938
8939 static int thread_display_step (threadref *ref, void *context);
8940
8941 static void threadlist_update_test_cmd (char *cmd, int tty);
8942
8943 static void init_remote_threadtests (void);
8944
8945 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8946
8947 static void
8948 threadset_test_cmd (char *cmd, int tty)
8949 {
8950 int sample_thread = SAMPLE_THREAD;
8951
8952 printf_filtered (_("Remote threadset test\n"));
8953 set_general_thread (sample_thread);
8954 }
8955
8956
8957 static void
8958 threadalive_test (char *cmd, int tty)
8959 {
8960 int sample_thread = SAMPLE_THREAD;
8961 int pid = ptid_get_pid (inferior_ptid);
8962 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8963
8964 if (remote_thread_alive (ptid))
8965 printf_filtered ("PASS: Thread alive test\n");
8966 else
8967 printf_filtered ("FAIL: Thread alive test\n");
8968 }
8969
8970 void output_threadid (char *title, threadref *ref);
8971
8972 void
8973 output_threadid (char *title, threadref *ref)
8974 {
8975 char hexid[20];
8976
8977 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8978 hexid[16] = 0;
8979 printf_filtered ("%s %s\n", title, (&hexid[0]));
8980 }
8981
8982 static void
8983 threadlist_test_cmd (char *cmd, int tty)
8984 {
8985 int startflag = 1;
8986 threadref nextthread;
8987 int done, result_count;
8988 threadref threadlist[3];
8989
8990 printf_filtered ("Remote Threadlist test\n");
8991 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8992 &result_count, &threadlist[0]))
8993 printf_filtered ("FAIL: threadlist test\n");
8994 else
8995 {
8996 threadref *scan = threadlist;
8997 threadref *limit = scan + result_count;
8998
8999 while (scan < limit)
9000 output_threadid (" thread ", scan++);
9001 }
9002 }
9003
9004 void
9005 display_thread_info (struct gdb_ext_thread_info *info)
9006 {
9007 output_threadid ("Threadid: ", &info->threadid);
9008 printf_filtered ("Name: %s\n ", info->shortname);
9009 printf_filtered ("State: %s\n", info->display);
9010 printf_filtered ("other: %s\n\n", info->more_display);
9011 }
9012
9013 int
9014 get_and_display_threadinfo (threadref *ref)
9015 {
9016 int result;
9017 int set;
9018 struct gdb_ext_thread_info threadinfo;
9019
9020 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9021 | TAG_MOREDISPLAY | TAG_DISPLAY;
9022 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9023 display_thread_info (&threadinfo);
9024 return result;
9025 }
9026
9027 static void
9028 threadinfo_test_cmd (char *cmd, int tty)
9029 {
9030 int athread = SAMPLE_THREAD;
9031 threadref thread;
9032 int set;
9033
9034 int_to_threadref (&thread, athread);
9035 printf_filtered ("Remote Threadinfo test\n");
9036 if (!get_and_display_threadinfo (&thread))
9037 printf_filtered ("FAIL cannot get thread info\n");
9038 }
9039
9040 static int
9041 thread_display_step (threadref *ref, void *context)
9042 {
9043 /* output_threadid(" threadstep ",ref); *//* simple test */
9044 return get_and_display_threadinfo (ref);
9045 }
9046
9047 static void
9048 threadlist_update_test_cmd (char *cmd, int tty)
9049 {
9050 printf_filtered ("Remote Threadlist update test\n");
9051 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9052 }
9053
9054 static void
9055 init_remote_threadtests (void)
9056 {
9057 add_com ("tlist", class_obscure, threadlist_test_cmd,
9058 _("Fetch and print the remote list of "
9059 "thread identifiers, one pkt only"));
9060 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9061 _("Fetch and display info about one thread"));
9062 add_com ("tset", class_obscure, threadset_test_cmd,
9063 _("Test setting to a different thread"));
9064 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9065 _("Iterate through updating all remote thread info"));
9066 add_com ("talive", class_obscure, threadalive_test,
9067 _(" Remote thread alive test "));
9068 }
9069
9070 #endif /* 0 */
9071
9072 /* Convert a thread ID to a string. Returns the string in a static
9073 buffer. */
9074
9075 static char *
9076 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9077 {
9078 static char buf[64];
9079 struct remote_state *rs = get_remote_state ();
9080
9081 if (ptid_equal (ptid, null_ptid))
9082 return normal_pid_to_str (ptid);
9083 else if (ptid_is_pid (ptid))
9084 {
9085 /* Printing an inferior target id. */
9086
9087 /* When multi-process extensions are off, there's no way in the
9088 remote protocol to know the remote process id, if there's any
9089 at all. There's one exception --- when we're connected with
9090 target extended-remote, and we manually attached to a process
9091 with "attach PID". We don't record anywhere a flag that
9092 allows us to distinguish that case from the case of
9093 connecting with extended-remote and the stub already being
9094 attached to a process, and reporting yes to qAttached, hence
9095 no smart special casing here. */
9096 if (!remote_multi_process_p (rs))
9097 {
9098 xsnprintf (buf, sizeof buf, "Remote target");
9099 return buf;
9100 }
9101
9102 return normal_pid_to_str (ptid);
9103 }
9104 else
9105 {
9106 if (ptid_equal (magic_null_ptid, ptid))
9107 xsnprintf (buf, sizeof buf, "Thread <main>");
9108 else if (rs->extended && remote_multi_process_p (rs))
9109 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9110 ptid_get_pid (ptid), ptid_get_tid (ptid));
9111 else
9112 xsnprintf (buf, sizeof buf, "Thread %ld",
9113 ptid_get_tid (ptid));
9114 return buf;
9115 }
9116 }
9117
9118 /* Get the address of the thread local variable in OBJFILE which is
9119 stored at OFFSET within the thread local storage for thread PTID. */
9120
9121 static CORE_ADDR
9122 remote_get_thread_local_address (struct target_ops *ops,
9123 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9124 {
9125 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9126 {
9127 struct remote_state *rs = get_remote_state ();
9128 char *p = rs->buf;
9129 char *endp = rs->buf + get_remote_packet_size ();
9130 enum packet_result result;
9131
9132 strcpy (p, "qGetTLSAddr:");
9133 p += strlen (p);
9134 p = write_ptid (p, endp, ptid);
9135 *p++ = ',';
9136 p += hexnumstr (p, offset);
9137 *p++ = ',';
9138 p += hexnumstr (p, lm);
9139 *p++ = '\0';
9140
9141 putpkt (rs->buf);
9142 getpkt (&rs->buf, &rs->buf_size, 0);
9143 result = packet_ok (rs->buf,
9144 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9145 if (result == PACKET_OK)
9146 {
9147 ULONGEST result;
9148
9149 unpack_varlen_hex (rs->buf, &result);
9150 return result;
9151 }
9152 else if (result == PACKET_UNKNOWN)
9153 throw_error (TLS_GENERIC_ERROR,
9154 _("Remote target doesn't support qGetTLSAddr packet"));
9155 else
9156 throw_error (TLS_GENERIC_ERROR,
9157 _("Remote target failed to process qGetTLSAddr request"));
9158 }
9159 else
9160 throw_error (TLS_GENERIC_ERROR,
9161 _("TLS not supported or disabled on this target"));
9162 /* Not reached. */
9163 return 0;
9164 }
9165
9166 /* Provide thread local base, i.e. Thread Information Block address.
9167 Returns 1 if ptid is found and thread_local_base is non zero. */
9168
9169 static int
9170 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
9171 {
9172 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9173 {
9174 struct remote_state *rs = get_remote_state ();
9175 char *p = rs->buf;
9176 char *endp = rs->buf + get_remote_packet_size ();
9177 enum packet_result result;
9178
9179 strcpy (p, "qGetTIBAddr:");
9180 p += strlen (p);
9181 p = write_ptid (p, endp, ptid);
9182 *p++ = '\0';
9183
9184 putpkt (rs->buf);
9185 getpkt (&rs->buf, &rs->buf_size, 0);
9186 result = packet_ok (rs->buf,
9187 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9188 if (result == PACKET_OK)
9189 {
9190 ULONGEST result;
9191
9192 unpack_varlen_hex (rs->buf, &result);
9193 if (addr)
9194 *addr = (CORE_ADDR) result;
9195 return 1;
9196 }
9197 else if (result == PACKET_UNKNOWN)
9198 error (_("Remote target doesn't support qGetTIBAddr packet"));
9199 else
9200 error (_("Remote target failed to process qGetTIBAddr request"));
9201 }
9202 else
9203 error (_("qGetTIBAddr not supported or disabled on this target"));
9204 /* Not reached. */
9205 return 0;
9206 }
9207
9208 /* Support for inferring a target description based on the current
9209 architecture and the size of a 'g' packet. While the 'g' packet
9210 can have any size (since optional registers can be left off the
9211 end), some sizes are easily recognizable given knowledge of the
9212 approximate architecture. */
9213
9214 struct remote_g_packet_guess
9215 {
9216 int bytes;
9217 const struct target_desc *tdesc;
9218 };
9219 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9220 DEF_VEC_O(remote_g_packet_guess_s);
9221
9222 struct remote_g_packet_data
9223 {
9224 VEC(remote_g_packet_guess_s) *guesses;
9225 };
9226
9227 static struct gdbarch_data *remote_g_packet_data_handle;
9228
9229 static void *
9230 remote_g_packet_data_init (struct obstack *obstack)
9231 {
9232 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9233 }
9234
9235 void
9236 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9237 const struct target_desc *tdesc)
9238 {
9239 struct remote_g_packet_data *data
9240 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9241 struct remote_g_packet_guess new_guess, *guess;
9242 int ix;
9243
9244 gdb_assert (tdesc != NULL);
9245
9246 for (ix = 0;
9247 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9248 ix++)
9249 if (guess->bytes == bytes)
9250 internal_error (__FILE__, __LINE__,
9251 _("Duplicate g packet description added for size %d"),
9252 bytes);
9253
9254 new_guess.bytes = bytes;
9255 new_guess.tdesc = tdesc;
9256 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9257 }
9258
9259 /* Return 1 if remote_read_description would do anything on this target
9260 and architecture, 0 otherwise. */
9261
9262 static int
9263 remote_read_description_p (struct target_ops *target)
9264 {
9265 struct remote_g_packet_data *data
9266 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
9267
9268 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9269 return 1;
9270
9271 return 0;
9272 }
9273
9274 static const struct target_desc *
9275 remote_read_description (struct target_ops *target)
9276 {
9277 struct remote_g_packet_data *data
9278 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
9279
9280 /* Do not try this during initial connection, when we do not know
9281 whether there is a running but stopped thread. */
9282 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9283 return NULL;
9284
9285 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9286 {
9287 struct remote_g_packet_guess *guess;
9288 int ix;
9289 int bytes = send_g_packet ();
9290
9291 for (ix = 0;
9292 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9293 ix++)
9294 if (guess->bytes == bytes)
9295 return guess->tdesc;
9296
9297 /* We discard the g packet. A minor optimization would be to
9298 hold on to it, and fill the register cache once we have selected
9299 an architecture, but it's too tricky to do safely. */
9300 }
9301
9302 return NULL;
9303 }
9304
9305 /* Remote file transfer support. This is host-initiated I/O, not
9306 target-initiated; for target-initiated, see remote-fileio.c. */
9307
9308 /* If *LEFT is at least the length of STRING, copy STRING to
9309 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9310 decrease *LEFT. Otherwise raise an error. */
9311
9312 static void
9313 remote_buffer_add_string (char **buffer, int *left, char *string)
9314 {
9315 int len = strlen (string);
9316
9317 if (len > *left)
9318 error (_("Packet too long for target."));
9319
9320 memcpy (*buffer, string, len);
9321 *buffer += len;
9322 *left -= len;
9323
9324 /* NUL-terminate the buffer as a convenience, if there is
9325 room. */
9326 if (*left)
9327 **buffer = '\0';
9328 }
9329
9330 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9331 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9332 decrease *LEFT. Otherwise raise an error. */
9333
9334 static void
9335 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9336 int len)
9337 {
9338 if (2 * len > *left)
9339 error (_("Packet too long for target."));
9340
9341 bin2hex (bytes, *buffer, len);
9342 *buffer += 2 * len;
9343 *left -= 2 * len;
9344
9345 /* NUL-terminate the buffer as a convenience, if there is
9346 room. */
9347 if (*left)
9348 **buffer = '\0';
9349 }
9350
9351 /* If *LEFT is large enough, convert VALUE to hex and add it to
9352 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9353 decrease *LEFT. Otherwise raise an error. */
9354
9355 static void
9356 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9357 {
9358 int len = hexnumlen (value);
9359
9360 if (len > *left)
9361 error (_("Packet too long for target."));
9362
9363 hexnumstr (*buffer, value);
9364 *buffer += len;
9365 *left -= len;
9366
9367 /* NUL-terminate the buffer as a convenience, if there is
9368 room. */
9369 if (*left)
9370 **buffer = '\0';
9371 }
9372
9373 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9374 value, *REMOTE_ERRNO to the remote error number or zero if none
9375 was included, and *ATTACHMENT to point to the start of the annex
9376 if any. The length of the packet isn't needed here; there may
9377 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9378
9379 Return 0 if the packet could be parsed, -1 if it could not. If
9380 -1 is returned, the other variables may not be initialized. */
9381
9382 static int
9383 remote_hostio_parse_result (char *buffer, int *retcode,
9384 int *remote_errno, char **attachment)
9385 {
9386 char *p, *p2;
9387
9388 *remote_errno = 0;
9389 *attachment = NULL;
9390
9391 if (buffer[0] != 'F')
9392 return -1;
9393
9394 errno = 0;
9395 *retcode = strtol (&buffer[1], &p, 16);
9396 if (errno != 0 || p == &buffer[1])
9397 return -1;
9398
9399 /* Check for ",errno". */
9400 if (*p == ',')
9401 {
9402 errno = 0;
9403 *remote_errno = strtol (p + 1, &p2, 16);
9404 if (errno != 0 || p + 1 == p2)
9405 return -1;
9406 p = p2;
9407 }
9408
9409 /* Check for ";attachment". If there is no attachment, the
9410 packet should end here. */
9411 if (*p == ';')
9412 {
9413 *attachment = p + 1;
9414 return 0;
9415 }
9416 else if (*p == '\0')
9417 return 0;
9418 else
9419 return -1;
9420 }
9421
9422 /* Send a prepared I/O packet to the target and read its response.
9423 The prepared packet is in the global RS->BUF before this function
9424 is called, and the answer is there when we return.
9425
9426 COMMAND_BYTES is the length of the request to send, which may include
9427 binary data. WHICH_PACKET is the packet configuration to check
9428 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9429 is set to the error number and -1 is returned. Otherwise the value
9430 returned by the function is returned.
9431
9432 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9433 attachment is expected; an error will be reported if there's a
9434 mismatch. If one is found, *ATTACHMENT will be set to point into
9435 the packet buffer and *ATTACHMENT_LEN will be set to the
9436 attachment's length. */
9437
9438 static int
9439 remote_hostio_send_command (int command_bytes, int which_packet,
9440 int *remote_errno, char **attachment,
9441 int *attachment_len)
9442 {
9443 struct remote_state *rs = get_remote_state ();
9444 int ret, bytes_read;
9445 char *attachment_tmp;
9446
9447 if (!remote_desc
9448 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9449 {
9450 *remote_errno = FILEIO_ENOSYS;
9451 return -1;
9452 }
9453
9454 putpkt_binary (rs->buf, command_bytes);
9455 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9456
9457 /* If it timed out, something is wrong. Don't try to parse the
9458 buffer. */
9459 if (bytes_read < 0)
9460 {
9461 *remote_errno = FILEIO_EINVAL;
9462 return -1;
9463 }
9464
9465 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9466 {
9467 case PACKET_ERROR:
9468 *remote_errno = FILEIO_EINVAL;
9469 return -1;
9470 case PACKET_UNKNOWN:
9471 *remote_errno = FILEIO_ENOSYS;
9472 return -1;
9473 case PACKET_OK:
9474 break;
9475 }
9476
9477 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9478 &attachment_tmp))
9479 {
9480 *remote_errno = FILEIO_EINVAL;
9481 return -1;
9482 }
9483
9484 /* Make sure we saw an attachment if and only if we expected one. */
9485 if ((attachment_tmp == NULL && attachment != NULL)
9486 || (attachment_tmp != NULL && attachment == NULL))
9487 {
9488 *remote_errno = FILEIO_EINVAL;
9489 return -1;
9490 }
9491
9492 /* If an attachment was found, it must point into the packet buffer;
9493 work out how many bytes there were. */
9494 if (attachment_tmp != NULL)
9495 {
9496 *attachment = attachment_tmp;
9497 *attachment_len = bytes_read - (*attachment - rs->buf);
9498 }
9499
9500 return ret;
9501 }
9502
9503 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9504 remote file descriptor, or -1 if an error occurs (and set
9505 *REMOTE_ERRNO). */
9506
9507 static int
9508 remote_hostio_open (const char *filename, int flags, int mode,
9509 int *remote_errno)
9510 {
9511 struct remote_state *rs = get_remote_state ();
9512 char *p = rs->buf;
9513 int left = get_remote_packet_size () - 1;
9514
9515 remote_buffer_add_string (&p, &left, "vFile:open:");
9516
9517 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9518 strlen (filename));
9519 remote_buffer_add_string (&p, &left, ",");
9520
9521 remote_buffer_add_int (&p, &left, flags);
9522 remote_buffer_add_string (&p, &left, ",");
9523
9524 remote_buffer_add_int (&p, &left, mode);
9525
9526 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9527 remote_errno, NULL, NULL);
9528 }
9529
9530 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9531 Return the number of bytes written, or -1 if an error occurs (and
9532 set *REMOTE_ERRNO). */
9533
9534 static int
9535 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9536 ULONGEST offset, int *remote_errno)
9537 {
9538 struct remote_state *rs = get_remote_state ();
9539 char *p = rs->buf;
9540 int left = get_remote_packet_size ();
9541 int out_len;
9542
9543 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9544
9545 remote_buffer_add_int (&p, &left, fd);
9546 remote_buffer_add_string (&p, &left, ",");
9547
9548 remote_buffer_add_int (&p, &left, offset);
9549 remote_buffer_add_string (&p, &left, ",");
9550
9551 p += remote_escape_output (write_buf, len, p, &out_len,
9552 get_remote_packet_size () - (p - rs->buf));
9553
9554 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9555 remote_errno, NULL, NULL);
9556 }
9557
9558 /* Read up to LEN bytes FD on the remote target into READ_BUF
9559 Return the number of bytes read, or -1 if an error occurs (and
9560 set *REMOTE_ERRNO). */
9561
9562 static int
9563 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9564 ULONGEST offset, int *remote_errno)
9565 {
9566 struct remote_state *rs = get_remote_state ();
9567 char *p = rs->buf;
9568 char *attachment;
9569 int left = get_remote_packet_size ();
9570 int ret, attachment_len;
9571 int read_len;
9572
9573 remote_buffer_add_string (&p, &left, "vFile:pread:");
9574
9575 remote_buffer_add_int (&p, &left, fd);
9576 remote_buffer_add_string (&p, &left, ",");
9577
9578 remote_buffer_add_int (&p, &left, len);
9579 remote_buffer_add_string (&p, &left, ",");
9580
9581 remote_buffer_add_int (&p, &left, offset);
9582
9583 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9584 remote_errno, &attachment,
9585 &attachment_len);
9586
9587 if (ret < 0)
9588 return ret;
9589
9590 read_len = remote_unescape_input (attachment, attachment_len,
9591 read_buf, len);
9592 if (read_len != ret)
9593 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9594
9595 return ret;
9596 }
9597
9598 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9599 (and set *REMOTE_ERRNO). */
9600
9601 static int
9602 remote_hostio_close (int fd, int *remote_errno)
9603 {
9604 struct remote_state *rs = get_remote_state ();
9605 char *p = rs->buf;
9606 int left = get_remote_packet_size () - 1;
9607
9608 remote_buffer_add_string (&p, &left, "vFile:close:");
9609
9610 remote_buffer_add_int (&p, &left, fd);
9611
9612 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9613 remote_errno, NULL, NULL);
9614 }
9615
9616 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9617 occurs (and set *REMOTE_ERRNO). */
9618
9619 static int
9620 remote_hostio_unlink (const char *filename, int *remote_errno)
9621 {
9622 struct remote_state *rs = get_remote_state ();
9623 char *p = rs->buf;
9624 int left = get_remote_packet_size () - 1;
9625
9626 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9627
9628 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9629 strlen (filename));
9630
9631 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9632 remote_errno, NULL, NULL);
9633 }
9634
9635 /* Read value of symbolic link FILENAME on the remote target. Return
9636 a null-terminated string allocated via xmalloc, or NULL if an error
9637 occurs (and set *REMOTE_ERRNO). */
9638
9639 static char *
9640 remote_hostio_readlink (const char *filename, int *remote_errno)
9641 {
9642 struct remote_state *rs = get_remote_state ();
9643 char *p = rs->buf;
9644 char *attachment;
9645 int left = get_remote_packet_size ();
9646 int len, attachment_len;
9647 int read_len;
9648 char *ret;
9649
9650 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9651
9652 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9653 strlen (filename));
9654
9655 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9656 remote_errno, &attachment,
9657 &attachment_len);
9658
9659 if (len < 0)
9660 return NULL;
9661
9662 ret = xmalloc (len + 1);
9663
9664 read_len = remote_unescape_input (attachment, attachment_len,
9665 ret, len);
9666 if (read_len != len)
9667 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9668
9669 ret[len] = '\0';
9670 return ret;
9671 }
9672
9673 static int
9674 remote_fileio_errno_to_host (int errnum)
9675 {
9676 switch (errnum)
9677 {
9678 case FILEIO_EPERM:
9679 return EPERM;
9680 case FILEIO_ENOENT:
9681 return ENOENT;
9682 case FILEIO_EINTR:
9683 return EINTR;
9684 case FILEIO_EIO:
9685 return EIO;
9686 case FILEIO_EBADF:
9687 return EBADF;
9688 case FILEIO_EACCES:
9689 return EACCES;
9690 case FILEIO_EFAULT:
9691 return EFAULT;
9692 case FILEIO_EBUSY:
9693 return EBUSY;
9694 case FILEIO_EEXIST:
9695 return EEXIST;
9696 case FILEIO_ENODEV:
9697 return ENODEV;
9698 case FILEIO_ENOTDIR:
9699 return ENOTDIR;
9700 case FILEIO_EISDIR:
9701 return EISDIR;
9702 case FILEIO_EINVAL:
9703 return EINVAL;
9704 case FILEIO_ENFILE:
9705 return ENFILE;
9706 case FILEIO_EMFILE:
9707 return EMFILE;
9708 case FILEIO_EFBIG:
9709 return EFBIG;
9710 case FILEIO_ENOSPC:
9711 return ENOSPC;
9712 case FILEIO_ESPIPE:
9713 return ESPIPE;
9714 case FILEIO_EROFS:
9715 return EROFS;
9716 case FILEIO_ENOSYS:
9717 return ENOSYS;
9718 case FILEIO_ENAMETOOLONG:
9719 return ENAMETOOLONG;
9720 }
9721 return -1;
9722 }
9723
9724 static char *
9725 remote_hostio_error (int errnum)
9726 {
9727 int host_error = remote_fileio_errno_to_host (errnum);
9728
9729 if (host_error == -1)
9730 error (_("Unknown remote I/O error %d"), errnum);
9731 else
9732 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9733 }
9734
9735 static void
9736 remote_hostio_close_cleanup (void *opaque)
9737 {
9738 int fd = *(int *) opaque;
9739 int remote_errno;
9740
9741 remote_hostio_close (fd, &remote_errno);
9742 }
9743
9744
9745 static void *
9746 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9747 {
9748 const char *filename = bfd_get_filename (abfd);
9749 int fd, remote_errno;
9750 int *stream;
9751
9752 gdb_assert (remote_filename_p (filename));
9753
9754 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9755 if (fd == -1)
9756 {
9757 errno = remote_fileio_errno_to_host (remote_errno);
9758 bfd_set_error (bfd_error_system_call);
9759 return NULL;
9760 }
9761
9762 stream = xmalloc (sizeof (int));
9763 *stream = fd;
9764 return stream;
9765 }
9766
9767 static int
9768 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9769 {
9770 int fd = *(int *)stream;
9771 int remote_errno;
9772
9773 xfree (stream);
9774
9775 /* Ignore errors on close; these may happen if the remote
9776 connection was already torn down. */
9777 remote_hostio_close (fd, &remote_errno);
9778
9779 return 1;
9780 }
9781
9782 static file_ptr
9783 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9784 file_ptr nbytes, file_ptr offset)
9785 {
9786 int fd = *(int *)stream;
9787 int remote_errno;
9788 file_ptr pos, bytes;
9789
9790 pos = 0;
9791 while (nbytes > pos)
9792 {
9793 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9794 offset + pos, &remote_errno);
9795 if (bytes == 0)
9796 /* Success, but no bytes, means end-of-file. */
9797 break;
9798 if (bytes == -1)
9799 {
9800 errno = remote_fileio_errno_to_host (remote_errno);
9801 bfd_set_error (bfd_error_system_call);
9802 return -1;
9803 }
9804
9805 pos += bytes;
9806 }
9807
9808 return pos;
9809 }
9810
9811 static int
9812 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9813 {
9814 /* FIXME: We should probably implement remote_hostio_stat. */
9815 sb->st_size = INT_MAX;
9816 return 0;
9817 }
9818
9819 int
9820 remote_filename_p (const char *filename)
9821 {
9822 return strncmp (filename, "remote:", 7) == 0;
9823 }
9824
9825 bfd *
9826 remote_bfd_open (const char *remote_file, const char *target)
9827 {
9828 bfd *abfd = gdb_bfd_openr_iovec (remote_file, target,
9829 remote_bfd_iovec_open, NULL,
9830 remote_bfd_iovec_pread,
9831 remote_bfd_iovec_close,
9832 remote_bfd_iovec_stat);
9833
9834 return abfd;
9835 }
9836
9837 void
9838 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9839 {
9840 struct cleanup *back_to, *close_cleanup;
9841 int retcode, fd, remote_errno, bytes, io_size;
9842 FILE *file;
9843 gdb_byte *buffer;
9844 int bytes_in_buffer;
9845 int saw_eof;
9846 ULONGEST offset;
9847
9848 if (!remote_desc)
9849 error (_("command can only be used with remote target"));
9850
9851 file = fopen (local_file, "rb");
9852 if (file == NULL)
9853 perror_with_name (local_file);
9854 back_to = make_cleanup_fclose (file);
9855
9856 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9857 | FILEIO_O_TRUNC),
9858 0700, &remote_errno);
9859 if (fd == -1)
9860 remote_hostio_error (remote_errno);
9861
9862 /* Send up to this many bytes at once. They won't all fit in the
9863 remote packet limit, so we'll transfer slightly fewer. */
9864 io_size = get_remote_packet_size ();
9865 buffer = xmalloc (io_size);
9866 make_cleanup (xfree, buffer);
9867
9868 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9869
9870 bytes_in_buffer = 0;
9871 saw_eof = 0;
9872 offset = 0;
9873 while (bytes_in_buffer || !saw_eof)
9874 {
9875 if (!saw_eof)
9876 {
9877 bytes = fread (buffer + bytes_in_buffer, 1,
9878 io_size - bytes_in_buffer,
9879 file);
9880 if (bytes == 0)
9881 {
9882 if (ferror (file))
9883 error (_("Error reading %s."), local_file);
9884 else
9885 {
9886 /* EOF. Unless there is something still in the
9887 buffer from the last iteration, we are done. */
9888 saw_eof = 1;
9889 if (bytes_in_buffer == 0)
9890 break;
9891 }
9892 }
9893 }
9894 else
9895 bytes = 0;
9896
9897 bytes += bytes_in_buffer;
9898 bytes_in_buffer = 0;
9899
9900 retcode = remote_hostio_pwrite (fd, buffer, bytes,
9901 offset, &remote_errno);
9902
9903 if (retcode < 0)
9904 remote_hostio_error (remote_errno);
9905 else if (retcode == 0)
9906 error (_("Remote write of %d bytes returned 0!"), bytes);
9907 else if (retcode < bytes)
9908 {
9909 /* Short write. Save the rest of the read data for the next
9910 write. */
9911 bytes_in_buffer = bytes - retcode;
9912 memmove (buffer, buffer + retcode, bytes_in_buffer);
9913 }
9914
9915 offset += retcode;
9916 }
9917
9918 discard_cleanups (close_cleanup);
9919 if (remote_hostio_close (fd, &remote_errno))
9920 remote_hostio_error (remote_errno);
9921
9922 if (from_tty)
9923 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9924 do_cleanups (back_to);
9925 }
9926
9927 void
9928 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9929 {
9930 struct cleanup *back_to, *close_cleanup;
9931 int fd, remote_errno, bytes, io_size;
9932 FILE *file;
9933 gdb_byte *buffer;
9934 ULONGEST offset;
9935
9936 if (!remote_desc)
9937 error (_("command can only be used with remote target"));
9938
9939 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9940 if (fd == -1)
9941 remote_hostio_error (remote_errno);
9942
9943 file = fopen (local_file, "wb");
9944 if (file == NULL)
9945 perror_with_name (local_file);
9946 back_to = make_cleanup_fclose (file);
9947
9948 /* Send up to this many bytes at once. They won't all fit in the
9949 remote packet limit, so we'll transfer slightly fewer. */
9950 io_size = get_remote_packet_size ();
9951 buffer = xmalloc (io_size);
9952 make_cleanup (xfree, buffer);
9953
9954 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9955
9956 offset = 0;
9957 while (1)
9958 {
9959 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9960 if (bytes == 0)
9961 /* Success, but no bytes, means end-of-file. */
9962 break;
9963 if (bytes == -1)
9964 remote_hostio_error (remote_errno);
9965
9966 offset += bytes;
9967
9968 bytes = fwrite (buffer, 1, bytes, file);
9969 if (bytes == 0)
9970 perror_with_name (local_file);
9971 }
9972
9973 discard_cleanups (close_cleanup);
9974 if (remote_hostio_close (fd, &remote_errno))
9975 remote_hostio_error (remote_errno);
9976
9977 if (from_tty)
9978 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9979 do_cleanups (back_to);
9980 }
9981
9982 void
9983 remote_file_delete (const char *remote_file, int from_tty)
9984 {
9985 int retcode, remote_errno;
9986
9987 if (!remote_desc)
9988 error (_("command can only be used with remote target"));
9989
9990 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9991 if (retcode == -1)
9992 remote_hostio_error (remote_errno);
9993
9994 if (from_tty)
9995 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9996 }
9997
9998 static void
9999 remote_put_command (char *args, int from_tty)
10000 {
10001 struct cleanup *back_to;
10002 char **argv;
10003
10004 if (args == NULL)
10005 error_no_arg (_("file to put"));
10006
10007 argv = gdb_buildargv (args);
10008 back_to = make_cleanup_freeargv (argv);
10009 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10010 error (_("Invalid parameters to remote put"));
10011
10012 remote_file_put (argv[0], argv[1], from_tty);
10013
10014 do_cleanups (back_to);
10015 }
10016
10017 static void
10018 remote_get_command (char *args, int from_tty)
10019 {
10020 struct cleanup *back_to;
10021 char **argv;
10022
10023 if (args == NULL)
10024 error_no_arg (_("file to get"));
10025
10026 argv = gdb_buildargv (args);
10027 back_to = make_cleanup_freeargv (argv);
10028 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10029 error (_("Invalid parameters to remote get"));
10030
10031 remote_file_get (argv[0], argv[1], from_tty);
10032
10033 do_cleanups (back_to);
10034 }
10035
10036 static void
10037 remote_delete_command (char *args, int from_tty)
10038 {
10039 struct cleanup *back_to;
10040 char **argv;
10041
10042 if (args == NULL)
10043 error_no_arg (_("file to delete"));
10044
10045 argv = gdb_buildargv (args);
10046 back_to = make_cleanup_freeargv (argv);
10047 if (argv[0] == NULL || argv[1] != NULL)
10048 error (_("Invalid parameters to remote delete"));
10049
10050 remote_file_delete (argv[0], from_tty);
10051
10052 do_cleanups (back_to);
10053 }
10054
10055 static void
10056 remote_command (char *args, int from_tty)
10057 {
10058 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
10059 }
10060
10061 static int
10062 remote_can_execute_reverse (void)
10063 {
10064 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
10065 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
10066 return 1;
10067 else
10068 return 0;
10069 }
10070
10071 static int
10072 remote_supports_non_stop (void)
10073 {
10074 return 1;
10075 }
10076
10077 static int
10078 remote_supports_disable_randomization (void)
10079 {
10080 /* Only supported in extended mode. */
10081 return 0;
10082 }
10083
10084 static int
10085 remote_supports_multi_process (void)
10086 {
10087 struct remote_state *rs = get_remote_state ();
10088
10089 /* Only extended-remote handles being attached to multiple
10090 processes, even though plain remote can use the multi-process
10091 thread id extensions, so that GDB knows the target process's
10092 PID. */
10093 return rs->extended && remote_multi_process_p (rs);
10094 }
10095
10096 static int
10097 remote_supports_cond_tracepoints (void)
10098 {
10099 struct remote_state *rs = get_remote_state ();
10100
10101 return rs->cond_tracepoints;
10102 }
10103
10104 static int
10105 remote_supports_cond_breakpoints (void)
10106 {
10107 struct remote_state *rs = get_remote_state ();
10108
10109 return rs->cond_breakpoints;
10110 }
10111
10112 static int
10113 remote_supports_fast_tracepoints (void)
10114 {
10115 struct remote_state *rs = get_remote_state ();
10116
10117 return rs->fast_tracepoints;
10118 }
10119
10120 static int
10121 remote_supports_static_tracepoints (void)
10122 {
10123 struct remote_state *rs = get_remote_state ();
10124
10125 return rs->static_tracepoints;
10126 }
10127
10128 static int
10129 remote_supports_install_in_trace (void)
10130 {
10131 struct remote_state *rs = get_remote_state ();
10132
10133 return rs->install_in_trace;
10134 }
10135
10136 static int
10137 remote_supports_enable_disable_tracepoint (void)
10138 {
10139 struct remote_state *rs = get_remote_state ();
10140
10141 return rs->enable_disable_tracepoints;
10142 }
10143
10144 static int
10145 remote_supports_string_tracing (void)
10146 {
10147 struct remote_state *rs = get_remote_state ();
10148
10149 return rs->string_tracing;
10150 }
10151
10152 static int
10153 remote_can_run_breakpoint_commands (void)
10154 {
10155 struct remote_state *rs = get_remote_state ();
10156
10157 return rs->breakpoint_commands;
10158 }
10159
10160 static void
10161 remote_trace_init (void)
10162 {
10163 putpkt ("QTinit");
10164 remote_get_noisy_reply (&target_buf, &target_buf_size);
10165 if (strcmp (target_buf, "OK") != 0)
10166 error (_("Target does not support this command."));
10167 }
10168
10169 static void free_actions_list (char **actions_list);
10170 static void free_actions_list_cleanup_wrapper (void *);
10171 static void
10172 free_actions_list_cleanup_wrapper (void *al)
10173 {
10174 free_actions_list (al);
10175 }
10176
10177 static void
10178 free_actions_list (char **actions_list)
10179 {
10180 int ndx;
10181
10182 if (actions_list == 0)
10183 return;
10184
10185 for (ndx = 0; actions_list[ndx]; ndx++)
10186 xfree (actions_list[ndx]);
10187
10188 xfree (actions_list);
10189 }
10190
10191 /* Recursive routine to walk through command list including loops, and
10192 download packets for each command. */
10193
10194 static void
10195 remote_download_command_source (int num, ULONGEST addr,
10196 struct command_line *cmds)
10197 {
10198 struct remote_state *rs = get_remote_state ();
10199 struct command_line *cmd;
10200
10201 for (cmd = cmds; cmd; cmd = cmd->next)
10202 {
10203 QUIT; /* Allow user to bail out with ^C. */
10204 strcpy (rs->buf, "QTDPsrc:");
10205 encode_source_string (num, addr, "cmd", cmd->line,
10206 rs->buf + strlen (rs->buf),
10207 rs->buf_size - strlen (rs->buf));
10208 putpkt (rs->buf);
10209 remote_get_noisy_reply (&target_buf, &target_buf_size);
10210 if (strcmp (target_buf, "OK"))
10211 warning (_("Target does not support source download."));
10212
10213 if (cmd->control_type == while_control
10214 || cmd->control_type == while_stepping_control)
10215 {
10216 remote_download_command_source (num, addr, *cmd->body_list);
10217
10218 QUIT; /* Allow user to bail out with ^C. */
10219 strcpy (rs->buf, "QTDPsrc:");
10220 encode_source_string (num, addr, "cmd", "end",
10221 rs->buf + strlen (rs->buf),
10222 rs->buf_size - strlen (rs->buf));
10223 putpkt (rs->buf);
10224 remote_get_noisy_reply (&target_buf, &target_buf_size);
10225 if (strcmp (target_buf, "OK"))
10226 warning (_("Target does not support source download."));
10227 }
10228 }
10229 }
10230
10231 static void
10232 remote_download_tracepoint (struct bp_location *loc)
10233 {
10234 #define BUF_SIZE 2048
10235
10236 CORE_ADDR tpaddr;
10237 char addrbuf[40];
10238 char buf[BUF_SIZE];
10239 char **tdp_actions;
10240 char **stepping_actions;
10241 int ndx;
10242 struct cleanup *old_chain = NULL;
10243 struct agent_expr *aexpr;
10244 struct cleanup *aexpr_chain = NULL;
10245 char *pkt;
10246 struct breakpoint *b = loc->owner;
10247 struct tracepoint *t = (struct tracepoint *) b;
10248
10249 encode_actions (loc->owner, loc, &tdp_actions, &stepping_actions);
10250 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10251 tdp_actions);
10252 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10253 stepping_actions);
10254
10255 tpaddr = loc->address;
10256 sprintf_vma (addrbuf, tpaddr);
10257 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10258 addrbuf, /* address */
10259 (b->enable_state == bp_enabled ? 'E' : 'D'),
10260 t->step_count, t->pass_count);
10261 /* Fast tracepoints are mostly handled by the target, but we can
10262 tell the target how big of an instruction block should be moved
10263 around. */
10264 if (b->type == bp_fast_tracepoint)
10265 {
10266 /* Only test for support at download time; we may not know
10267 target capabilities at definition time. */
10268 if (remote_supports_fast_tracepoints ())
10269 {
10270 int isize;
10271
10272 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
10273 tpaddr, &isize, NULL))
10274 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10275 isize);
10276 else
10277 /* If it passed validation at definition but fails now,
10278 something is very wrong. */
10279 internal_error (__FILE__, __LINE__,
10280 _("Fast tracepoint not "
10281 "valid during download"));
10282 }
10283 else
10284 /* Fast tracepoints are functionally identical to regular
10285 tracepoints, so don't take lack of support as a reason to
10286 give up on the trace run. */
10287 warning (_("Target does not support fast tracepoints, "
10288 "downloading %d as regular tracepoint"), b->number);
10289 }
10290 else if (b->type == bp_static_tracepoint)
10291 {
10292 /* Only test for support at download time; we may not know
10293 target capabilities at definition time. */
10294 if (remote_supports_static_tracepoints ())
10295 {
10296 struct static_tracepoint_marker marker;
10297
10298 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10299 strcat (buf, ":S");
10300 else
10301 error (_("Static tracepoint not valid during download"));
10302 }
10303 else
10304 /* Fast tracepoints are functionally identical to regular
10305 tracepoints, so don't take lack of support as a reason
10306 to give up on the trace run. */
10307 error (_("Target does not support static tracepoints"));
10308 }
10309 /* If the tracepoint has a conditional, make it into an agent
10310 expression and append to the definition. */
10311 if (loc->cond)
10312 {
10313 /* Only test support at download time, we may not know target
10314 capabilities at definition time. */
10315 if (remote_supports_cond_tracepoints ())
10316 {
10317 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10318 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10319 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10320 aexpr->len);
10321 pkt = buf + strlen (buf);
10322 for (ndx = 0; ndx < aexpr->len; ++ndx)
10323 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10324 *pkt = '\0';
10325 do_cleanups (aexpr_chain);
10326 }
10327 else
10328 warning (_("Target does not support conditional tracepoints, "
10329 "ignoring tp %d cond"), b->number);
10330 }
10331
10332 if (b->commands || *default_collect)
10333 strcat (buf, "-");
10334 putpkt (buf);
10335 remote_get_noisy_reply (&target_buf, &target_buf_size);
10336 if (strcmp (target_buf, "OK"))
10337 error (_("Target does not support tracepoints."));
10338
10339 /* do_single_steps (t); */
10340 if (tdp_actions)
10341 {
10342 for (ndx = 0; tdp_actions[ndx]; ndx++)
10343 {
10344 QUIT; /* Allow user to bail out with ^C. */
10345 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10346 b->number, addrbuf, /* address */
10347 tdp_actions[ndx],
10348 ((tdp_actions[ndx + 1] || stepping_actions)
10349 ? '-' : 0));
10350 putpkt (buf);
10351 remote_get_noisy_reply (&target_buf,
10352 &target_buf_size);
10353 if (strcmp (target_buf, "OK"))
10354 error (_("Error on target while setting tracepoints."));
10355 }
10356 }
10357 if (stepping_actions)
10358 {
10359 for (ndx = 0; stepping_actions[ndx]; ndx++)
10360 {
10361 QUIT; /* Allow user to bail out with ^C. */
10362 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10363 b->number, addrbuf, /* address */
10364 ((ndx == 0) ? "S" : ""),
10365 stepping_actions[ndx],
10366 (stepping_actions[ndx + 1] ? "-" : ""));
10367 putpkt (buf);
10368 remote_get_noisy_reply (&target_buf,
10369 &target_buf_size);
10370 if (strcmp (target_buf, "OK"))
10371 error (_("Error on target while setting tracepoints."));
10372 }
10373 }
10374
10375 if (remote_protocol_packets[PACKET_TracepointSource].support
10376 == PACKET_ENABLE)
10377 {
10378 if (b->addr_string)
10379 {
10380 strcpy (buf, "QTDPsrc:");
10381 encode_source_string (b->number, loc->address,
10382 "at", b->addr_string, buf + strlen (buf),
10383 2048 - strlen (buf));
10384
10385 putpkt (buf);
10386 remote_get_noisy_reply (&target_buf, &target_buf_size);
10387 if (strcmp (target_buf, "OK"))
10388 warning (_("Target does not support source download."));
10389 }
10390 if (b->cond_string)
10391 {
10392 strcpy (buf, "QTDPsrc:");
10393 encode_source_string (b->number, loc->address,
10394 "cond", b->cond_string, buf + strlen (buf),
10395 2048 - strlen (buf));
10396 putpkt (buf);
10397 remote_get_noisy_reply (&target_buf, &target_buf_size);
10398 if (strcmp (target_buf, "OK"))
10399 warning (_("Target does not support source download."));
10400 }
10401 remote_download_command_source (b->number, loc->address,
10402 breakpoint_commands (b));
10403 }
10404
10405 do_cleanups (old_chain);
10406 }
10407
10408 static int
10409 remote_can_download_tracepoint (void)
10410 {
10411 struct remote_state *rs = get_remote_state ();
10412 struct trace_status *ts;
10413 int status;
10414
10415 /* Don't try to install tracepoints until we've relocated our
10416 symbols, and fetched and merged the target's tracepoint list with
10417 ours. */
10418 if (rs->starting_up)
10419 return 0;
10420
10421 ts = current_trace_status ();
10422 status = remote_get_trace_status (ts);
10423
10424 if (status == -1 || !ts->running_known || !ts->running)
10425 return 0;
10426
10427 /* If we are in a tracing experiment, but remote stub doesn't support
10428 installing tracepoint in trace, we have to return. */
10429 if (!remote_supports_install_in_trace ())
10430 return 0;
10431
10432 return 1;
10433 }
10434
10435
10436 static void
10437 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10438 {
10439 struct remote_state *rs = get_remote_state ();
10440 char *p;
10441
10442 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10443 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10444 tsv->builtin);
10445 p = rs->buf + strlen (rs->buf);
10446 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10447 error (_("Trace state variable name too long for tsv definition packet"));
10448 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10449 *p++ = '\0';
10450 putpkt (rs->buf);
10451 remote_get_noisy_reply (&target_buf, &target_buf_size);
10452 if (*target_buf == '\0')
10453 error (_("Target does not support this command."));
10454 if (strcmp (target_buf, "OK") != 0)
10455 error (_("Error on target while downloading trace state variable."));
10456 }
10457
10458 static void
10459 remote_enable_tracepoint (struct bp_location *location)
10460 {
10461 struct remote_state *rs = get_remote_state ();
10462 char addr_buf[40];
10463
10464 sprintf_vma (addr_buf, location->address);
10465 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10466 location->owner->number, addr_buf);
10467 putpkt (rs->buf);
10468 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10469 if (*rs->buf == '\0')
10470 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10471 if (strcmp (rs->buf, "OK") != 0)
10472 error (_("Error on target while enabling tracepoint."));
10473 }
10474
10475 static void
10476 remote_disable_tracepoint (struct bp_location *location)
10477 {
10478 struct remote_state *rs = get_remote_state ();
10479 char addr_buf[40];
10480
10481 sprintf_vma (addr_buf, location->address);
10482 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10483 location->owner->number, addr_buf);
10484 putpkt (rs->buf);
10485 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10486 if (*rs->buf == '\0')
10487 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10488 if (strcmp (rs->buf, "OK") != 0)
10489 error (_("Error on target while disabling tracepoint."));
10490 }
10491
10492 static void
10493 remote_trace_set_readonly_regions (void)
10494 {
10495 asection *s;
10496 bfd *abfd = NULL;
10497 bfd_size_type size;
10498 bfd_vma vma;
10499 int anysecs = 0;
10500 int offset = 0;
10501
10502 if (!exec_bfd)
10503 return; /* No information to give. */
10504
10505 strcpy (target_buf, "QTro");
10506 for (s = exec_bfd->sections; s; s = s->next)
10507 {
10508 char tmp1[40], tmp2[40];
10509 int sec_length;
10510
10511 if ((s->flags & SEC_LOAD) == 0 ||
10512 /* (s->flags & SEC_CODE) == 0 || */
10513 (s->flags & SEC_READONLY) == 0)
10514 continue;
10515
10516 anysecs = 1;
10517 vma = bfd_get_section_vma (abfd, s);
10518 size = bfd_get_section_size (s);
10519 sprintf_vma (tmp1, vma);
10520 sprintf_vma (tmp2, vma + size);
10521 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10522 if (offset + sec_length + 1 > target_buf_size)
10523 {
10524 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10525 != PACKET_ENABLE)
10526 warning (_("\
10527 Too many sections for read-only sections definition packet."));
10528 break;
10529 }
10530 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10531 tmp1, tmp2);
10532 offset += sec_length;
10533 }
10534 if (anysecs)
10535 {
10536 putpkt (target_buf);
10537 getpkt (&target_buf, &target_buf_size, 0);
10538 }
10539 }
10540
10541 static void
10542 remote_trace_start (void)
10543 {
10544 putpkt ("QTStart");
10545 remote_get_noisy_reply (&target_buf, &target_buf_size);
10546 if (*target_buf == '\0')
10547 error (_("Target does not support this command."));
10548 if (strcmp (target_buf, "OK") != 0)
10549 error (_("Bogus reply from target: %s"), target_buf);
10550 }
10551
10552 static int
10553 remote_get_trace_status (struct trace_status *ts)
10554 {
10555 /* Initialize it just to avoid a GCC false warning. */
10556 char *p = NULL;
10557 /* FIXME we need to get register block size some other way. */
10558 extern int trace_regblock_size;
10559 volatile struct gdb_exception ex;
10560
10561 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10562
10563 putpkt ("qTStatus");
10564
10565 TRY_CATCH (ex, RETURN_MASK_ERROR)
10566 {
10567 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10568 }
10569 if (ex.reason < 0)
10570 {
10571 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10572 return -1;
10573 }
10574
10575 /* If the remote target doesn't do tracing, flag it. */
10576 if (*p == '\0')
10577 return -1;
10578
10579 /* We're working with a live target. */
10580 ts->from_file = 0;
10581
10582 /* Set some defaults. */
10583 ts->running_known = 0;
10584 ts->stop_reason = trace_stop_reason_unknown;
10585 ts->traceframe_count = -1;
10586 ts->buffer_free = 0;
10587
10588 if (*p++ != 'T')
10589 error (_("Bogus trace status reply from target: %s"), target_buf);
10590
10591 parse_trace_status (p, ts);
10592
10593 return ts->running;
10594 }
10595
10596 static void
10597 remote_get_tracepoint_status (struct breakpoint *bp,
10598 struct uploaded_tp *utp)
10599 {
10600 struct remote_state *rs = get_remote_state ();
10601 char *reply;
10602 struct bp_location *loc;
10603 struct tracepoint *tp = (struct tracepoint *) bp;
10604 size_t size = get_remote_packet_size ();
10605
10606 if (tp)
10607 {
10608 tp->base.hit_count = 0;
10609 tp->traceframe_usage = 0;
10610 for (loc = tp->base.loc; loc; loc = loc->next)
10611 {
10612 /* If the tracepoint was never downloaded, don't go asking for
10613 any status. */
10614 if (tp->number_on_target == 0)
10615 continue;
10616 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10617 phex_nz (loc->address, 0));
10618 putpkt (rs->buf);
10619 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10620 if (reply && *reply)
10621 {
10622 if (*reply == 'V')
10623 parse_tracepoint_status (reply + 1, bp, utp);
10624 }
10625 }
10626 }
10627 else if (utp)
10628 {
10629 utp->hit_count = 0;
10630 utp->traceframe_usage = 0;
10631 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
10632 phex_nz (utp->addr, 0));
10633 putpkt (rs->buf);
10634 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10635 if (reply && *reply)
10636 {
10637 if (*reply == 'V')
10638 parse_tracepoint_status (reply + 1, bp, utp);
10639 }
10640 }
10641 }
10642
10643 static void
10644 remote_trace_stop (void)
10645 {
10646 putpkt ("QTStop");
10647 remote_get_noisy_reply (&target_buf, &target_buf_size);
10648 if (*target_buf == '\0')
10649 error (_("Target does not support this command."));
10650 if (strcmp (target_buf, "OK") != 0)
10651 error (_("Bogus reply from target: %s"), target_buf);
10652 }
10653
10654 static int
10655 remote_trace_find (enum trace_find_type type, int num,
10656 ULONGEST addr1, ULONGEST addr2,
10657 int *tpp)
10658 {
10659 struct remote_state *rs = get_remote_state ();
10660 char *endbuf = rs->buf + get_remote_packet_size ();
10661 char *p, *reply;
10662 int target_frameno = -1, target_tracept = -1;
10663
10664 /* Lookups other than by absolute frame number depend on the current
10665 trace selected, so make sure it is correct on the remote end
10666 first. */
10667 if (type != tfind_number)
10668 set_remote_traceframe ();
10669
10670 p = rs->buf;
10671 strcpy (p, "QTFrame:");
10672 p = strchr (p, '\0');
10673 switch (type)
10674 {
10675 case tfind_number:
10676 xsnprintf (p, endbuf - p, "%x", num);
10677 break;
10678 case tfind_pc:
10679 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
10680 break;
10681 case tfind_tp:
10682 xsnprintf (p, endbuf - p, "tdp:%x", num);
10683 break;
10684 case tfind_range:
10685 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
10686 phex_nz (addr2, 0));
10687 break;
10688 case tfind_outside:
10689 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
10690 phex_nz (addr2, 0));
10691 break;
10692 default:
10693 error (_("Unknown trace find type %d"), type);
10694 }
10695
10696 putpkt (rs->buf);
10697 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10698 if (*reply == '\0')
10699 error (_("Target does not support this command."));
10700
10701 while (reply && *reply)
10702 switch (*reply)
10703 {
10704 case 'F':
10705 p = ++reply;
10706 target_frameno = (int) strtol (p, &reply, 16);
10707 if (reply == p)
10708 error (_("Unable to parse trace frame number"));
10709 /* Don't update our remote traceframe number cache on failure
10710 to select a remote traceframe. */
10711 if (target_frameno == -1)
10712 return -1;
10713 break;
10714 case 'T':
10715 p = ++reply;
10716 target_tracept = (int) strtol (p, &reply, 16);
10717 if (reply == p)
10718 error (_("Unable to parse tracepoint number"));
10719 break;
10720 case 'O': /* "OK"? */
10721 if (reply[1] == 'K' && reply[2] == '\0')
10722 reply += 2;
10723 else
10724 error (_("Bogus reply from target: %s"), reply);
10725 break;
10726 default:
10727 error (_("Bogus reply from target: %s"), reply);
10728 }
10729 if (tpp)
10730 *tpp = target_tracept;
10731
10732 remote_traceframe_number = target_frameno;
10733 return target_frameno;
10734 }
10735
10736 static int
10737 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10738 {
10739 struct remote_state *rs = get_remote_state ();
10740 char *reply;
10741 ULONGEST uval;
10742
10743 set_remote_traceframe ();
10744
10745 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
10746 putpkt (rs->buf);
10747 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10748 if (reply && *reply)
10749 {
10750 if (*reply == 'V')
10751 {
10752 unpack_varlen_hex (reply + 1, &uval);
10753 *val = (LONGEST) uval;
10754 return 1;
10755 }
10756 }
10757 return 0;
10758 }
10759
10760 static int
10761 remote_save_trace_data (const char *filename)
10762 {
10763 struct remote_state *rs = get_remote_state ();
10764 char *p, *reply;
10765
10766 p = rs->buf;
10767 strcpy (p, "QTSave:");
10768 p += strlen (p);
10769 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10770 error (_("Remote file name too long for trace save packet"));
10771 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10772 *p++ = '\0';
10773 putpkt (rs->buf);
10774 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10775 if (*reply == '\0')
10776 error (_("Target does not support this command."));
10777 if (strcmp (reply, "OK") != 0)
10778 error (_("Bogus reply from target: %s"), reply);
10779 return 0;
10780 }
10781
10782 /* This is basically a memory transfer, but needs to be its own packet
10783 because we don't know how the target actually organizes its trace
10784 memory, plus we want to be able to ask for as much as possible, but
10785 not be unhappy if we don't get as much as we ask for. */
10786
10787 static LONGEST
10788 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10789 {
10790 struct remote_state *rs = get_remote_state ();
10791 char *reply;
10792 char *p;
10793 int rslt;
10794
10795 p = rs->buf;
10796 strcpy (p, "qTBuffer:");
10797 p += strlen (p);
10798 p += hexnumstr (p, offset);
10799 *p++ = ',';
10800 p += hexnumstr (p, len);
10801 *p++ = '\0';
10802
10803 putpkt (rs->buf);
10804 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10805 if (reply && *reply)
10806 {
10807 /* 'l' by itself means we're at the end of the buffer and
10808 there is nothing more to get. */
10809 if (*reply == 'l')
10810 return 0;
10811
10812 /* Convert the reply into binary. Limit the number of bytes to
10813 convert according to our passed-in buffer size, rather than
10814 what was returned in the packet; if the target is
10815 unexpectedly generous and gives us a bigger reply than we
10816 asked for, we don't want to crash. */
10817 rslt = hex2bin (target_buf, buf, len);
10818 return rslt;
10819 }
10820
10821 /* Something went wrong, flag as an error. */
10822 return -1;
10823 }
10824
10825 static void
10826 remote_set_disconnected_tracing (int val)
10827 {
10828 struct remote_state *rs = get_remote_state ();
10829
10830 if (rs->disconnected_tracing)
10831 {
10832 char *reply;
10833
10834 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
10835 putpkt (rs->buf);
10836 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10837 if (*reply == '\0')
10838 error (_("Target does not support this command."));
10839 if (strcmp (reply, "OK") != 0)
10840 error (_("Bogus reply from target: %s"), reply);
10841 }
10842 else if (val)
10843 warning (_("Target does not support disconnected tracing."));
10844 }
10845
10846 static int
10847 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10848 {
10849 struct thread_info *info = find_thread_ptid (ptid);
10850
10851 if (info && info->private)
10852 return info->private->core;
10853 return -1;
10854 }
10855
10856 static void
10857 remote_set_circular_trace_buffer (int val)
10858 {
10859 struct remote_state *rs = get_remote_state ();
10860 char *reply;
10861
10862 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
10863 putpkt (rs->buf);
10864 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10865 if (*reply == '\0')
10866 error (_("Target does not support this command."));
10867 if (strcmp (reply, "OK") != 0)
10868 error (_("Bogus reply from target: %s"), reply);
10869 }
10870
10871 static struct traceframe_info *
10872 remote_traceframe_info (void)
10873 {
10874 char *text;
10875
10876 text = target_read_stralloc (&current_target,
10877 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
10878 if (text != NULL)
10879 {
10880 struct traceframe_info *info;
10881 struct cleanup *back_to = make_cleanup (xfree, text);
10882
10883 info = parse_traceframe_info (text);
10884 do_cleanups (back_to);
10885 return info;
10886 }
10887
10888 return NULL;
10889 }
10890
10891 /* Handle the qTMinFTPILen packet. Returns the minimum length of
10892 instruction on which a fast tracepoint may be placed. Returns -1
10893 if the packet is not supported, and 0 if the minimum instruction
10894 length is unknown. */
10895
10896 static int
10897 remote_get_min_fast_tracepoint_insn_len (void)
10898 {
10899 struct remote_state *rs = get_remote_state ();
10900 char *reply;
10901
10902 /* If we're not debugging a process yet, the IPA can't be
10903 loaded. */
10904 if (!target_has_execution)
10905 return 0;
10906
10907 /* Make sure the remote is pointing at the right process. */
10908 set_general_process ();
10909
10910 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
10911 putpkt (rs->buf);
10912 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10913 if (*reply == '\0')
10914 return -1;
10915 else
10916 {
10917 ULONGEST min_insn_len;
10918
10919 unpack_varlen_hex (reply, &min_insn_len);
10920
10921 return (int) min_insn_len;
10922 }
10923 }
10924
10925 static int
10926 remote_set_trace_notes (char *user, char *notes, char *stop_notes)
10927 {
10928 struct remote_state *rs = get_remote_state ();
10929 char *reply;
10930 char *buf = rs->buf;
10931 char *endbuf = rs->buf + get_remote_packet_size ();
10932 int nbytes;
10933
10934 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
10935 if (user)
10936 {
10937 buf += xsnprintf (buf, endbuf - buf, "user:");
10938 nbytes = bin2hex (user, buf, 0);
10939 buf += 2 * nbytes;
10940 *buf++ = ';';
10941 }
10942 if (notes)
10943 {
10944 buf += xsnprintf (buf, endbuf - buf, "notes:");
10945 nbytes = bin2hex (notes, buf, 0);
10946 buf += 2 * nbytes;
10947 *buf++ = ';';
10948 }
10949 if (stop_notes)
10950 {
10951 buf += xsnprintf (buf, endbuf - buf, "tstop:");
10952 nbytes = bin2hex (stop_notes, buf, 0);
10953 buf += 2 * nbytes;
10954 *buf++ = ';';
10955 }
10956 /* Ensure the buffer is terminated. */
10957 *buf = '\0';
10958
10959 putpkt (rs->buf);
10960 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10961 if (*reply == '\0')
10962 return 0;
10963
10964 if (strcmp (reply, "OK") != 0)
10965 error (_("Bogus reply from target: %s"), reply);
10966
10967 return 1;
10968 }
10969
10970 static int
10971 remote_use_agent (int use)
10972 {
10973 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
10974 {
10975 struct remote_state *rs = get_remote_state ();
10976
10977 /* If the stub supports QAgent. */
10978 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
10979 putpkt (rs->buf);
10980 getpkt (&rs->buf, &rs->buf_size, 0);
10981
10982 if (strcmp (rs->buf, "OK") == 0)
10983 {
10984 use_agent = use;
10985 return 1;
10986 }
10987 }
10988
10989 return 0;
10990 }
10991
10992 static int
10993 remote_can_use_agent (void)
10994 {
10995 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
10996 }
10997
10998 static void
10999 init_remote_ops (void)
11000 {
11001 remote_ops.to_shortname = "remote";
11002 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
11003 remote_ops.to_doc =
11004 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11005 Specify the serial device it is connected to\n\
11006 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
11007 remote_ops.to_open = remote_open;
11008 remote_ops.to_close = remote_close;
11009 remote_ops.to_detach = remote_detach;
11010 remote_ops.to_disconnect = remote_disconnect;
11011 remote_ops.to_resume = remote_resume;
11012 remote_ops.to_wait = remote_wait;
11013 remote_ops.to_fetch_registers = remote_fetch_registers;
11014 remote_ops.to_store_registers = remote_store_registers;
11015 remote_ops.to_prepare_to_store = remote_prepare_to_store;
11016 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
11017 remote_ops.to_files_info = remote_files_info;
11018 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
11019 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
11020 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
11021 remote_ops.to_stopped_data_address = remote_stopped_data_address;
11022 remote_ops.to_watchpoint_addr_within_range =
11023 remote_watchpoint_addr_within_range;
11024 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
11025 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
11026 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
11027 remote_ops.to_region_ok_for_hw_watchpoint
11028 = remote_region_ok_for_hw_watchpoint;
11029 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
11030 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
11031 remote_ops.to_kill = remote_kill;
11032 remote_ops.to_load = generic_load;
11033 remote_ops.to_mourn_inferior = remote_mourn;
11034 remote_ops.to_pass_signals = remote_pass_signals;
11035 remote_ops.to_program_signals = remote_program_signals;
11036 remote_ops.to_thread_alive = remote_thread_alive;
11037 remote_ops.to_find_new_threads = remote_threads_info;
11038 remote_ops.to_pid_to_str = remote_pid_to_str;
11039 remote_ops.to_extra_thread_info = remote_threads_extra_info;
11040 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
11041 remote_ops.to_stop = remote_stop;
11042 remote_ops.to_xfer_partial = remote_xfer_partial;
11043 remote_ops.to_rcmd = remote_rcmd;
11044 remote_ops.to_log_command = serial_log_command;
11045 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
11046 remote_ops.to_stratum = process_stratum;
11047 remote_ops.to_has_all_memory = default_child_has_all_memory;
11048 remote_ops.to_has_memory = default_child_has_memory;
11049 remote_ops.to_has_stack = default_child_has_stack;
11050 remote_ops.to_has_registers = default_child_has_registers;
11051 remote_ops.to_has_execution = default_child_has_execution;
11052 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
11053 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
11054 remote_ops.to_magic = OPS_MAGIC;
11055 remote_ops.to_memory_map = remote_memory_map;
11056 remote_ops.to_flash_erase = remote_flash_erase;
11057 remote_ops.to_flash_done = remote_flash_done;
11058 remote_ops.to_read_description = remote_read_description;
11059 remote_ops.to_search_memory = remote_search_memory;
11060 remote_ops.to_can_async_p = remote_can_async_p;
11061 remote_ops.to_is_async_p = remote_is_async_p;
11062 remote_ops.to_async = remote_async;
11063 remote_ops.to_terminal_inferior = remote_terminal_inferior;
11064 remote_ops.to_terminal_ours = remote_terminal_ours;
11065 remote_ops.to_supports_non_stop = remote_supports_non_stop;
11066 remote_ops.to_supports_multi_process = remote_supports_multi_process;
11067 remote_ops.to_supports_disable_randomization
11068 = remote_supports_disable_randomization;
11069 remote_ops.to_fileio_open = remote_hostio_open;
11070 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
11071 remote_ops.to_fileio_pread = remote_hostio_pread;
11072 remote_ops.to_fileio_close = remote_hostio_close;
11073 remote_ops.to_fileio_unlink = remote_hostio_unlink;
11074 remote_ops.to_fileio_readlink = remote_hostio_readlink;
11075 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
11076 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
11077 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
11078 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
11079 remote_ops.to_trace_init = remote_trace_init;
11080 remote_ops.to_download_tracepoint = remote_download_tracepoint;
11081 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
11082 remote_ops.to_download_trace_state_variable
11083 = remote_download_trace_state_variable;
11084 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
11085 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
11086 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
11087 remote_ops.to_trace_start = remote_trace_start;
11088 remote_ops.to_get_trace_status = remote_get_trace_status;
11089 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
11090 remote_ops.to_trace_stop = remote_trace_stop;
11091 remote_ops.to_trace_find = remote_trace_find;
11092 remote_ops.to_get_trace_state_variable_value
11093 = remote_get_trace_state_variable_value;
11094 remote_ops.to_save_trace_data = remote_save_trace_data;
11095 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11096 remote_ops.to_upload_trace_state_variables
11097 = remote_upload_trace_state_variables;
11098 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11099 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11100 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11101 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11102 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11103 remote_ops.to_core_of_thread = remote_core_of_thread;
11104 remote_ops.to_verify_memory = remote_verify_memory;
11105 remote_ops.to_get_tib_address = remote_get_tib_address;
11106 remote_ops.to_set_permissions = remote_set_permissions;
11107 remote_ops.to_static_tracepoint_marker_at
11108 = remote_static_tracepoint_marker_at;
11109 remote_ops.to_static_tracepoint_markers_by_strid
11110 = remote_static_tracepoint_markers_by_strid;
11111 remote_ops.to_traceframe_info = remote_traceframe_info;
11112 remote_ops.to_use_agent = remote_use_agent;
11113 remote_ops.to_can_use_agent = remote_can_use_agent;
11114 }
11115
11116 /* Set up the extended remote vector by making a copy of the standard
11117 remote vector and adding to it. */
11118
11119 static void
11120 init_extended_remote_ops (void)
11121 {
11122 extended_remote_ops = remote_ops;
11123
11124 extended_remote_ops.to_shortname = "extended-remote";
11125 extended_remote_ops.to_longname =
11126 "Extended remote serial target in gdb-specific protocol";
11127 extended_remote_ops.to_doc =
11128 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11129 Specify the serial device it is connected to (e.g. /dev/ttya).";
11130 extended_remote_ops.to_open = extended_remote_open;
11131 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11132 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11133 extended_remote_ops.to_detach = extended_remote_detach;
11134 extended_remote_ops.to_attach = extended_remote_attach;
11135 extended_remote_ops.to_kill = extended_remote_kill;
11136 extended_remote_ops.to_supports_disable_randomization
11137 = extended_remote_supports_disable_randomization;
11138 }
11139
11140 static int
11141 remote_can_async_p (void)
11142 {
11143 if (!target_async_permitted)
11144 /* We only enable async when the user specifically asks for it. */
11145 return 0;
11146
11147 /* We're async whenever the serial device is. */
11148 return serial_can_async_p (remote_desc);
11149 }
11150
11151 static int
11152 remote_is_async_p (void)
11153 {
11154 if (!target_async_permitted)
11155 /* We only enable async when the user specifically asks for it. */
11156 return 0;
11157
11158 /* We're async whenever the serial device is. */
11159 return serial_is_async_p (remote_desc);
11160 }
11161
11162 /* Pass the SERIAL event on and up to the client. One day this code
11163 will be able to delay notifying the client of an event until the
11164 point where an entire packet has been received. */
11165
11166 static void (*async_client_callback) (enum inferior_event_type event_type,
11167 void *context);
11168 static void *async_client_context;
11169 static serial_event_ftype remote_async_serial_handler;
11170
11171 static void
11172 remote_async_serial_handler (struct serial *scb, void *context)
11173 {
11174 /* Don't propogate error information up to the client. Instead let
11175 the client find out about the error by querying the target. */
11176 async_client_callback (INF_REG_EVENT, async_client_context);
11177 }
11178
11179 static void
11180 remote_async_inferior_event_handler (gdb_client_data data)
11181 {
11182 inferior_event_handler (INF_REG_EVENT, NULL);
11183 }
11184
11185 static void
11186 remote_async_get_pending_events_handler (gdb_client_data data)
11187 {
11188 remote_get_pending_stop_replies ();
11189 }
11190
11191 static void
11192 remote_async (void (*callback) (enum inferior_event_type event_type,
11193 void *context), void *context)
11194 {
11195 if (callback != NULL)
11196 {
11197 serial_async (remote_desc, remote_async_serial_handler, NULL);
11198 async_client_callback = callback;
11199 async_client_context = context;
11200 }
11201 else
11202 serial_async (remote_desc, NULL, NULL);
11203 }
11204
11205 static void
11206 set_remote_cmd (char *args, int from_tty)
11207 {
11208 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11209 }
11210
11211 static void
11212 show_remote_cmd (char *args, int from_tty)
11213 {
11214 /* We can't just use cmd_show_list here, because we want to skip
11215 the redundant "show remote Z-packet" and the legacy aliases. */
11216 struct cleanup *showlist_chain;
11217 struct cmd_list_element *list = remote_show_cmdlist;
11218 struct ui_out *uiout = current_uiout;
11219
11220 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11221 for (; list != NULL; list = list->next)
11222 if (strcmp (list->name, "Z-packet") == 0)
11223 continue;
11224 else if (list->type == not_set_cmd)
11225 /* Alias commands are exactly like the original, except they
11226 don't have the normal type. */
11227 continue;
11228 else
11229 {
11230 struct cleanup *option_chain
11231 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11232
11233 ui_out_field_string (uiout, "name", list->name);
11234 ui_out_text (uiout, ": ");
11235 if (list->type == show_cmd)
11236 do_show_command ((char *) NULL, from_tty, list);
11237 else
11238 cmd_func (list, NULL, from_tty);
11239 /* Close the tuple. */
11240 do_cleanups (option_chain);
11241 }
11242
11243 /* Close the tuple. */
11244 do_cleanups (showlist_chain);
11245 }
11246
11247
11248 /* Function to be called whenever a new objfile (shlib) is detected. */
11249 static void
11250 remote_new_objfile (struct objfile *objfile)
11251 {
11252 if (remote_desc != 0) /* Have a remote connection. */
11253 remote_check_symbols (objfile);
11254 }
11255
11256 /* Pull all the tracepoints defined on the target and create local
11257 data structures representing them. We don't want to create real
11258 tracepoints yet, we don't want to mess up the user's existing
11259 collection. */
11260
11261 static int
11262 remote_upload_tracepoints (struct uploaded_tp **utpp)
11263 {
11264 struct remote_state *rs = get_remote_state ();
11265 char *p;
11266
11267 /* Ask for a first packet of tracepoint definition. */
11268 putpkt ("qTfP");
11269 getpkt (&rs->buf, &rs->buf_size, 0);
11270 p = rs->buf;
11271 while (*p && *p != 'l')
11272 {
11273 parse_tracepoint_definition (p, utpp);
11274 /* Ask for another packet of tracepoint definition. */
11275 putpkt ("qTsP");
11276 getpkt (&rs->buf, &rs->buf_size, 0);
11277 p = rs->buf;
11278 }
11279 return 0;
11280 }
11281
11282 static int
11283 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11284 {
11285 struct remote_state *rs = get_remote_state ();
11286 char *p;
11287
11288 /* Ask for a first packet of variable definition. */
11289 putpkt ("qTfV");
11290 getpkt (&rs->buf, &rs->buf_size, 0);
11291 p = rs->buf;
11292 while (*p && *p != 'l')
11293 {
11294 parse_tsv_definition (p, utsvp);
11295 /* Ask for another packet of variable definition. */
11296 putpkt ("qTsV");
11297 getpkt (&rs->buf, &rs->buf_size, 0);
11298 p = rs->buf;
11299 }
11300 return 0;
11301 }
11302
11303 void
11304 _initialize_remote (void)
11305 {
11306 struct remote_state *rs;
11307 struct cmd_list_element *cmd;
11308 char *cmd_name;
11309
11310 /* architecture specific data */
11311 remote_gdbarch_data_handle =
11312 gdbarch_data_register_post_init (init_remote_state);
11313 remote_g_packet_data_handle =
11314 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11315
11316 /* Initialize the per-target state. At the moment there is only one
11317 of these, not one per target. Only one target is active at a
11318 time. The default buffer size is unimportant; it will be expanded
11319 whenever a larger buffer is needed. */
11320 rs = get_remote_state_raw ();
11321 rs->buf_size = 400;
11322 rs->buf = xmalloc (rs->buf_size);
11323
11324 init_remote_ops ();
11325 add_target (&remote_ops);
11326
11327 init_extended_remote_ops ();
11328 add_target (&extended_remote_ops);
11329
11330 /* Hook into new objfile notification. */
11331 observer_attach_new_objfile (remote_new_objfile);
11332
11333 /* Set up signal handlers. */
11334 sigint_remote_token =
11335 create_async_signal_handler (async_remote_interrupt, NULL);
11336 sigint_remote_twice_token =
11337 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11338
11339 #if 0
11340 init_remote_threadtests ();
11341 #endif
11342
11343 /* set/show remote ... */
11344
11345 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11346 Remote protocol specific variables\n\
11347 Configure various remote-protocol specific variables such as\n\
11348 the packets being used"),
11349 &remote_set_cmdlist, "set remote ",
11350 0 /* allow-unknown */, &setlist);
11351 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11352 Remote protocol specific variables\n\
11353 Configure various remote-protocol specific variables such as\n\
11354 the packets being used"),
11355 &remote_show_cmdlist, "show remote ",
11356 0 /* allow-unknown */, &showlist);
11357
11358 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11359 Compare section data on target to the exec file.\n\
11360 Argument is a single section name (default: all loaded sections)."),
11361 &cmdlist);
11362
11363 add_cmd ("packet", class_maintenance, packet_command, _("\
11364 Send an arbitrary packet to a remote target.\n\
11365 maintenance packet TEXT\n\
11366 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11367 this command sends the string TEXT to the inferior, and displays the\n\
11368 response packet. GDB supplies the initial `$' character, and the\n\
11369 terminating `#' character and checksum."),
11370 &maintenancelist);
11371
11372 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11373 Set whether to send break if interrupted."), _("\
11374 Show whether to send break if interrupted."), _("\
11375 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11376 set_remotebreak, show_remotebreak,
11377 &setlist, &showlist);
11378 cmd_name = "remotebreak";
11379 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11380 deprecate_cmd (cmd, "set remote interrupt-sequence");
11381 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11382 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11383 deprecate_cmd (cmd, "show remote interrupt-sequence");
11384
11385 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11386 interrupt_sequence_modes, &interrupt_sequence_mode,
11387 _("\
11388 Set interrupt sequence to remote target."), _("\
11389 Show interrupt sequence to remote target."), _("\
11390 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11391 NULL, show_interrupt_sequence,
11392 &remote_set_cmdlist,
11393 &remote_show_cmdlist);
11394
11395 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11396 &interrupt_on_connect, _("\
11397 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11398 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11399 If set, interrupt sequence is sent to remote target."),
11400 NULL, NULL,
11401 &remote_set_cmdlist, &remote_show_cmdlist);
11402
11403 /* Install commands for configuring memory read/write packets. */
11404
11405 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11406 Set the maximum number of bytes per memory write packet (deprecated)."),
11407 &setlist);
11408 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11409 Show the maximum number of bytes per memory write packet (deprecated)."),
11410 &showlist);
11411 add_cmd ("memory-write-packet-size", no_class,
11412 set_memory_write_packet_size, _("\
11413 Set the maximum number of bytes per memory-write packet.\n\
11414 Specify the number of bytes in a packet or 0 (zero) for the\n\
11415 default packet size. The actual limit is further reduced\n\
11416 dependent on the target. Specify ``fixed'' to disable the\n\
11417 further restriction and ``limit'' to enable that restriction."),
11418 &remote_set_cmdlist);
11419 add_cmd ("memory-read-packet-size", no_class,
11420 set_memory_read_packet_size, _("\
11421 Set the maximum number of bytes per memory-read packet.\n\
11422 Specify the number of bytes in a packet or 0 (zero) for the\n\
11423 default packet size. The actual limit is further reduced\n\
11424 dependent on the target. Specify ``fixed'' to disable the\n\
11425 further restriction and ``limit'' to enable that restriction."),
11426 &remote_set_cmdlist);
11427 add_cmd ("memory-write-packet-size", no_class,
11428 show_memory_write_packet_size,
11429 _("Show the maximum number of bytes per memory-write packet."),
11430 &remote_show_cmdlist);
11431 add_cmd ("memory-read-packet-size", no_class,
11432 show_memory_read_packet_size,
11433 _("Show the maximum number of bytes per memory-read packet."),
11434 &remote_show_cmdlist);
11435
11436 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11437 &remote_hw_watchpoint_limit, _("\
11438 Set the maximum number of target hardware watchpoints."), _("\
11439 Show the maximum number of target hardware watchpoints."), _("\
11440 Specify a negative limit for unlimited."),
11441 NULL, NULL, /* FIXME: i18n: The maximum
11442 number of target hardware
11443 watchpoints is %s. */
11444 &remote_set_cmdlist, &remote_show_cmdlist);
11445 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11446 &remote_hw_watchpoint_length_limit, _("\
11447 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11448 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11449 Specify a negative limit for unlimited."),
11450 NULL, NULL, /* FIXME: i18n: The maximum
11451 length (in bytes) of a target
11452 hardware watchpoint is %s. */
11453 &remote_set_cmdlist, &remote_show_cmdlist);
11454 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11455 &remote_hw_breakpoint_limit, _("\
11456 Set the maximum number of target hardware breakpoints."), _("\
11457 Show the maximum number of target hardware breakpoints."), _("\
11458 Specify a negative limit for unlimited."),
11459 NULL, NULL, /* FIXME: i18n: The maximum
11460 number of target hardware
11461 breakpoints is %s. */
11462 &remote_set_cmdlist, &remote_show_cmdlist);
11463
11464 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
11465 &remote_address_size, _("\
11466 Set the maximum size of the address (in bits) in a memory packet."), _("\
11467 Show the maximum size of the address (in bits) in a memory packet."), NULL,
11468 NULL,
11469 NULL, /* FIXME: i18n: */
11470 &setlist, &showlist);
11471
11472 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
11473 "X", "binary-download", 1);
11474
11475 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
11476 "vCont", "verbose-resume", 0);
11477
11478 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
11479 "QPassSignals", "pass-signals", 0);
11480
11481 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
11482 "QProgramSignals", "program-signals", 0);
11483
11484 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
11485 "qSymbol", "symbol-lookup", 0);
11486
11487 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
11488 "P", "set-register", 1);
11489
11490 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
11491 "p", "fetch-register", 1);
11492
11493 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
11494 "Z0", "software-breakpoint", 0);
11495
11496 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
11497 "Z1", "hardware-breakpoint", 0);
11498
11499 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
11500 "Z2", "write-watchpoint", 0);
11501
11502 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
11503 "Z3", "read-watchpoint", 0);
11504
11505 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
11506 "Z4", "access-watchpoint", 0);
11507
11508 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
11509 "qXfer:auxv:read", "read-aux-vector", 0);
11510
11511 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
11512 "qXfer:features:read", "target-features", 0);
11513
11514 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
11515 "qXfer:libraries:read", "library-info", 0);
11516
11517 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
11518 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
11519
11520 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
11521 "qXfer:memory-map:read", "memory-map", 0);
11522
11523 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
11524 "qXfer:spu:read", "read-spu-object", 0);
11525
11526 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
11527 "qXfer:spu:write", "write-spu-object", 0);
11528
11529 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
11530 "qXfer:osdata:read", "osdata", 0);
11531
11532 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
11533 "qXfer:threads:read", "threads", 0);
11534
11535 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
11536 "qXfer:siginfo:read", "read-siginfo-object", 0);
11537
11538 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
11539 "qXfer:siginfo:write", "write-siginfo-object", 0);
11540
11541 add_packet_config_cmd
11542 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
11543 "qXfer:trace-frame-info:read", "traceframe-info", 0);
11544
11545 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
11546 "qXfer:uib:read", "unwind-info-block", 0);
11547
11548 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
11549 "qGetTLSAddr", "get-thread-local-storage-address",
11550 0);
11551
11552 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
11553 "qGetTIBAddr", "get-thread-information-block-address",
11554 0);
11555
11556 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
11557 "bc", "reverse-continue", 0);
11558
11559 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
11560 "bs", "reverse-step", 0);
11561
11562 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
11563 "qSupported", "supported-packets", 0);
11564
11565 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
11566 "qSearch:memory", "search-memory", 0);
11567
11568 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
11569 "vFile:open", "hostio-open", 0);
11570
11571 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
11572 "vFile:pread", "hostio-pread", 0);
11573
11574 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
11575 "vFile:pwrite", "hostio-pwrite", 0);
11576
11577 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
11578 "vFile:close", "hostio-close", 0);
11579
11580 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
11581 "vFile:unlink", "hostio-unlink", 0);
11582
11583 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
11584 "vFile:readlink", "hostio-readlink", 0);
11585
11586 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
11587 "vAttach", "attach", 0);
11588
11589 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
11590 "vRun", "run", 0);
11591
11592 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
11593 "QStartNoAckMode", "noack", 0);
11594
11595 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
11596 "vKill", "kill", 0);
11597
11598 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
11599 "qAttached", "query-attached", 0);
11600
11601 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
11602 "ConditionalTracepoints",
11603 "conditional-tracepoints", 0);
11604
11605 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
11606 "ConditionalBreakpoints",
11607 "conditional-breakpoints", 0);
11608
11609 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
11610 "BreakpointCommands",
11611 "breakpoint-commands", 0);
11612
11613 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
11614 "FastTracepoints", "fast-tracepoints", 0);
11615
11616 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
11617 "TracepointSource", "TracepointSource", 0);
11618
11619 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
11620 "QAllow", "allow", 0);
11621
11622 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
11623 "StaticTracepoints", "static-tracepoints", 0);
11624
11625 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
11626 "InstallInTrace", "install-in-trace", 0);
11627
11628 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
11629 "qXfer:statictrace:read", "read-sdata-object", 0);
11630
11631 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
11632 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
11633
11634 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
11635 "QDisableRandomization", "disable-randomization", 0);
11636
11637 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
11638 "QAgent", "agent", 0);
11639
11640 /* Keep the old ``set remote Z-packet ...'' working. Each individual
11641 Z sub-packet has its own set and show commands, but users may
11642 have sets to this variable in their .gdbinit files (or in their
11643 documentation). */
11644 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
11645 &remote_Z_packet_detect, _("\
11646 Set use of remote protocol `Z' packets"), _("\
11647 Show use of remote protocol `Z' packets "), _("\
11648 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
11649 packets."),
11650 set_remote_protocol_Z_packet_cmd,
11651 show_remote_protocol_Z_packet_cmd,
11652 /* FIXME: i18n: Use of remote protocol
11653 `Z' packets is %s. */
11654 &remote_set_cmdlist, &remote_show_cmdlist);
11655
11656 add_prefix_cmd ("remote", class_files, remote_command, _("\
11657 Manipulate files on the remote system\n\
11658 Transfer files to and from the remote target system."),
11659 &remote_cmdlist, "remote ",
11660 0 /* allow-unknown */, &cmdlist);
11661
11662 add_cmd ("put", class_files, remote_put_command,
11663 _("Copy a local file to the remote system."),
11664 &remote_cmdlist);
11665
11666 add_cmd ("get", class_files, remote_get_command,
11667 _("Copy a remote file to the local system."),
11668 &remote_cmdlist);
11669
11670 add_cmd ("delete", class_files, remote_delete_command,
11671 _("Delete a remote file."),
11672 &remote_cmdlist);
11673
11674 remote_exec_file = xstrdup ("");
11675 add_setshow_string_noescape_cmd ("exec-file", class_files,
11676 &remote_exec_file, _("\
11677 Set the remote pathname for \"run\""), _("\
11678 Show the remote pathname for \"run\""), NULL, NULL, NULL,
11679 &remote_set_cmdlist, &remote_show_cmdlist);
11680
11681 /* Eventually initialize fileio. See fileio.c */
11682 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
11683
11684 /* Take advantage of the fact that the LWP field is not used, to tag
11685 special ptids with it set to != 0. */
11686 magic_null_ptid = ptid_build (42000, 1, -1);
11687 not_sent_ptid = ptid_build (42000, 1, -2);
11688 any_thread_ptid = ptid_build (42000, 1, 0);
11689
11690 target_buf_size = 2048;
11691 target_buf = xmalloc (target_buf_size);
11692 }
11693