* remote.c (remote_start_remote): Add missing call to
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
83 int forever);
84
85 static void handle_remote_sigint (int);
86 static void handle_remote_sigint_twice (int);
87 static void async_remote_interrupt (gdb_client_data);
88 void async_remote_interrupt_twice (gdb_client_data);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_open (char *name, int from_tty);
95
96 static void extended_remote_open (char *name, int from_tty);
97
98 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
99
100 static void remote_close (int quitting);
101
102 static void remote_mourn (struct target_ops *ops);
103
104 static void extended_remote_restart (void);
105
106 static void extended_remote_mourn (struct target_ops *);
107
108 static void remote_mourn_1 (struct target_ops *);
109
110 static void remote_send (char **buf, long *sizeof_buf_p);
111
112 static int readchar (int timeout);
113
114 static void remote_kill (struct target_ops *ops);
115
116 static int tohex (int nib);
117
118 static int remote_can_async_p (void);
119
120 static int remote_is_async_p (void);
121
122 static void remote_async (void (*callback) (enum inferior_event_type event_type,
123 void *context), void *context);
124
125 static int remote_async_mask (int new_mask);
126
127 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
128
129 static void remote_interrupt (int signo);
130
131 static void remote_interrupt_twice (int signo);
132
133 static void interrupt_query (void);
134
135 static void set_general_thread (struct ptid ptid);
136 static void set_continue_thread (struct ptid ptid);
137
138 static void get_offsets (void);
139
140 static void skip_frame (void);
141
142 static long read_frame (char **buf_p, long *sizeof_buf);
143
144 static int hexnumlen (ULONGEST num);
145
146 static void init_remote_ops (void);
147
148 static void init_extended_remote_ops (void);
149
150 static void remote_stop (ptid_t);
151
152 static int ishex (int ch, int *val);
153
154 static int stubhex (int ch);
155
156 static int hexnumstr (char *, ULONGEST);
157
158 static int hexnumnstr (char *, ULONGEST, int);
159
160 static CORE_ADDR remote_address_masked (CORE_ADDR);
161
162 static void print_packet (char *);
163
164 static unsigned long crc32 (unsigned char *, int, unsigned int);
165
166 static void compare_sections_command (char *, int);
167
168 static void packet_command (char *, int);
169
170 static int stub_unpack_int (char *buff, int fieldlength);
171
172 static ptid_t remote_current_thread (ptid_t oldptid);
173
174 static void remote_find_new_threads (void);
175
176 static void record_currthread (ptid_t currthread);
177
178 static int fromhex (int a);
179
180 static int hex2bin (const char *hex, gdb_byte *bin, int count);
181
182 static int bin2hex (const gdb_byte *bin, char *hex, int count);
183
184 static int putpkt_binary (char *buf, int cnt);
185
186 static void check_binary_download (CORE_ADDR addr);
187
188 struct packet_config;
189
190 static void show_packet_config_cmd (struct packet_config *config);
191
192 static void update_packet_config (struct packet_config *config);
193
194 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
195 struct cmd_list_element *c);
196
197 static void show_remote_protocol_packet_cmd (struct ui_file *file,
198 int from_tty,
199 struct cmd_list_element *c,
200 const char *value);
201
202 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
203 static ptid_t read_ptid (char *buf, char **obuf);
204
205 static void remote_query_supported (void);
206
207 static void remote_check_symbols (struct objfile *objfile);
208
209 void _initialize_remote (void);
210
211 struct stop_reply;
212 static struct stop_reply *stop_reply_xmalloc (void);
213 static void stop_reply_xfree (struct stop_reply *);
214 static void do_stop_reply_xfree (void *arg);
215 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
216 static void push_stop_reply (struct stop_reply *);
217 static void remote_get_pending_stop_replies (void);
218 static void discard_pending_stop_replies (int pid);
219 static int peek_stop_reply (ptid_t ptid);
220
221 static void remote_async_inferior_event_handler (gdb_client_data);
222 static void remote_async_get_pending_events_handler (gdb_client_data);
223
224 static void remote_terminal_ours (void);
225
226 static int remote_read_description_p (struct target_ops *target);
227
228 /* The non-stop remote protocol provisions for one pending stop reply.
229 This is where we keep it until it is acknowledged. */
230
231 static struct stop_reply *pending_stop_reply = NULL;
232
233 /* For "remote". */
234
235 static struct cmd_list_element *remote_cmdlist;
236
237 /* For "set remote" and "show remote". */
238
239 static struct cmd_list_element *remote_set_cmdlist;
240 static struct cmd_list_element *remote_show_cmdlist;
241
242 /* Description of the remote protocol state for the currently
243 connected target. This is per-target state, and independent of the
244 selected architecture. */
245
246 struct remote_state
247 {
248 /* A buffer to use for incoming packets, and its current size. The
249 buffer is grown dynamically for larger incoming packets.
250 Outgoing packets may also be constructed in this buffer.
251 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
252 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
253 packets. */
254 char *buf;
255 long buf_size;
256
257 /* If we negotiated packet size explicitly (and thus can bypass
258 heuristics for the largest packet size that will not overflow
259 a buffer in the stub), this will be set to that packet size.
260 Otherwise zero, meaning to use the guessed size. */
261 long explicit_packet_size;
262
263 /* remote_wait is normally called when the target is running and
264 waits for a stop reply packet. But sometimes we need to call it
265 when the target is already stopped. We can send a "?" packet
266 and have remote_wait read the response. Or, if we already have
267 the response, we can stash it in BUF and tell remote_wait to
268 skip calling getpkt. This flag is set when BUF contains a
269 stop reply packet and the target is not waiting. */
270 int cached_wait_status;
271
272 /* True, if in no ack mode. That is, neither GDB nor the stub will
273 expect acks from each other. The connection is assumed to be
274 reliable. */
275 int noack_mode;
276
277 /* True if we're connected in extended remote mode. */
278 int extended;
279
280 /* True if the stub reported support for multi-process
281 extensions. */
282 int multi_process_aware;
283
284 /* True if we resumed the target and we're waiting for the target to
285 stop. In the mean time, we can't start another command/query.
286 The remote server wouldn't be ready to process it, so we'd
287 timeout waiting for a reply that would never come and eventually
288 we'd close the connection. This can happen in asynchronous mode
289 because we allow GDB commands while the target is running. */
290 int waiting_for_stop_reply;
291
292 /* True if the stub reports support for non-stop mode. */
293 int non_stop_aware;
294
295 /* True if the stub reports support for vCont;t. */
296 int support_vCont_t;
297 };
298
299 /* Returns true if the multi-process extensions are in effect. */
300 static int
301 remote_multi_process_p (struct remote_state *rs)
302 {
303 return rs->extended && rs->multi_process_aware;
304 }
305
306 /* This data could be associated with a target, but we do not always
307 have access to the current target when we need it, so for now it is
308 static. This will be fine for as long as only one target is in use
309 at a time. */
310 static struct remote_state remote_state;
311
312 static struct remote_state *
313 get_remote_state_raw (void)
314 {
315 return &remote_state;
316 }
317
318 /* Description of the remote protocol for a given architecture. */
319
320 struct packet_reg
321 {
322 long offset; /* Offset into G packet. */
323 long regnum; /* GDB's internal register number. */
324 LONGEST pnum; /* Remote protocol register number. */
325 int in_g_packet; /* Always part of G packet. */
326 /* long size in bytes; == register_size (target_gdbarch, regnum);
327 at present. */
328 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
329 at present. */
330 };
331
332 struct remote_arch_state
333 {
334 /* Description of the remote protocol registers. */
335 long sizeof_g_packet;
336
337 /* Description of the remote protocol registers indexed by REGNUM
338 (making an array gdbarch_num_regs in size). */
339 struct packet_reg *regs;
340
341 /* This is the size (in chars) of the first response to the ``g''
342 packet. It is used as a heuristic when determining the maximum
343 size of memory-read and memory-write packets. A target will
344 typically only reserve a buffer large enough to hold the ``g''
345 packet. The size does not include packet overhead (headers and
346 trailers). */
347 long actual_register_packet_size;
348
349 /* This is the maximum size (in chars) of a non read/write packet.
350 It is also used as a cap on the size of read/write packets. */
351 long remote_packet_size;
352 };
353
354
355 /* Handle for retreving the remote protocol data from gdbarch. */
356 static struct gdbarch_data *remote_gdbarch_data_handle;
357
358 static struct remote_arch_state *
359 get_remote_arch_state (void)
360 {
361 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
362 }
363
364 /* Fetch the global remote target state. */
365
366 static struct remote_state *
367 get_remote_state (void)
368 {
369 /* Make sure that the remote architecture state has been
370 initialized, because doing so might reallocate rs->buf. Any
371 function which calls getpkt also needs to be mindful of changes
372 to rs->buf, but this call limits the number of places which run
373 into trouble. */
374 get_remote_arch_state ();
375
376 return get_remote_state_raw ();
377 }
378
379 static int
380 compare_pnums (const void *lhs_, const void *rhs_)
381 {
382 const struct packet_reg * const *lhs = lhs_;
383 const struct packet_reg * const *rhs = rhs_;
384
385 if ((*lhs)->pnum < (*rhs)->pnum)
386 return -1;
387 else if ((*lhs)->pnum == (*rhs)->pnum)
388 return 0;
389 else
390 return 1;
391 }
392
393 static void *
394 init_remote_state (struct gdbarch *gdbarch)
395 {
396 int regnum, num_remote_regs, offset;
397 struct remote_state *rs = get_remote_state_raw ();
398 struct remote_arch_state *rsa;
399 struct packet_reg **remote_regs;
400
401 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
402
403 /* Use the architecture to build a regnum<->pnum table, which will be
404 1:1 unless a feature set specifies otherwise. */
405 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
406 gdbarch_num_regs (gdbarch),
407 struct packet_reg);
408 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
409 {
410 struct packet_reg *r = &rsa->regs[regnum];
411
412 if (register_size (gdbarch, regnum) == 0)
413 /* Do not try to fetch zero-sized (placeholder) registers. */
414 r->pnum = -1;
415 else
416 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
417
418 r->regnum = regnum;
419 }
420
421 /* Define the g/G packet format as the contents of each register
422 with a remote protocol number, in order of ascending protocol
423 number. */
424
425 remote_regs = alloca (gdbarch_num_regs (gdbarch)
426 * sizeof (struct packet_reg *));
427 for (num_remote_regs = 0, regnum = 0;
428 regnum < gdbarch_num_regs (gdbarch);
429 regnum++)
430 if (rsa->regs[regnum].pnum != -1)
431 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
432
433 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
434 compare_pnums);
435
436 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
437 {
438 remote_regs[regnum]->in_g_packet = 1;
439 remote_regs[regnum]->offset = offset;
440 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
441 }
442
443 /* Record the maximum possible size of the g packet - it may turn out
444 to be smaller. */
445 rsa->sizeof_g_packet = offset;
446
447 /* Default maximum number of characters in a packet body. Many
448 remote stubs have a hardwired buffer size of 400 bytes
449 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
450 as the maximum packet-size to ensure that the packet and an extra
451 NUL character can always fit in the buffer. This stops GDB
452 trashing stubs that try to squeeze an extra NUL into what is
453 already a full buffer (As of 1999-12-04 that was most stubs). */
454 rsa->remote_packet_size = 400 - 1;
455
456 /* This one is filled in when a ``g'' packet is received. */
457 rsa->actual_register_packet_size = 0;
458
459 /* Should rsa->sizeof_g_packet needs more space than the
460 default, adjust the size accordingly. Remember that each byte is
461 encoded as two characters. 32 is the overhead for the packet
462 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
463 (``$NN:G...#NN'') is a better guess, the below has been padded a
464 little. */
465 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
466 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
467
468 /* Make sure that the packet buffer is plenty big enough for
469 this architecture. */
470 if (rs->buf_size < rsa->remote_packet_size)
471 {
472 rs->buf_size = 2 * rsa->remote_packet_size;
473 rs->buf = xrealloc (rs->buf, rs->buf_size);
474 }
475
476 return rsa;
477 }
478
479 /* Return the current allowed size of a remote packet. This is
480 inferred from the current architecture, and should be used to
481 limit the length of outgoing packets. */
482 static long
483 get_remote_packet_size (void)
484 {
485 struct remote_state *rs = get_remote_state ();
486 struct remote_arch_state *rsa = get_remote_arch_state ();
487
488 if (rs->explicit_packet_size)
489 return rs->explicit_packet_size;
490
491 return rsa->remote_packet_size;
492 }
493
494 static struct packet_reg *
495 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
496 {
497 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
498 return NULL;
499 else
500 {
501 struct packet_reg *r = &rsa->regs[regnum];
502 gdb_assert (r->regnum == regnum);
503 return r;
504 }
505 }
506
507 static struct packet_reg *
508 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
509 {
510 int i;
511 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
512 {
513 struct packet_reg *r = &rsa->regs[i];
514 if (r->pnum == pnum)
515 return r;
516 }
517 return NULL;
518 }
519
520 /* FIXME: graces/2002-08-08: These variables should eventually be
521 bound to an instance of the target object (as in gdbarch-tdep()),
522 when such a thing exists. */
523
524 /* This is set to the data address of the access causing the target
525 to stop for a watchpoint. */
526 static CORE_ADDR remote_watch_data_address;
527
528 /* This is non-zero if target stopped for a watchpoint. */
529 static int remote_stopped_by_watchpoint_p;
530
531 static struct target_ops remote_ops;
532
533 static struct target_ops extended_remote_ops;
534
535 static int remote_async_mask_value = 1;
536
537 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
538 ``forever'' still use the normal timeout mechanism. This is
539 currently used by the ASYNC code to guarentee that target reads
540 during the initial connect always time-out. Once getpkt has been
541 modified to return a timeout indication and, in turn
542 remote_wait()/wait_for_inferior() have gained a timeout parameter
543 this can go away. */
544 static int wait_forever_enabled_p = 1;
545
546
547 /* This variable chooses whether to send a ^C or a break when the user
548 requests program interruption. Although ^C is usually what remote
549 systems expect, and that is the default here, sometimes a break is
550 preferable instead. */
551
552 static int remote_break;
553
554 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
555 remote_open knows that we don't have a file open when the program
556 starts. */
557 static struct serial *remote_desc = NULL;
558
559 /* This variable sets the number of bits in an address that are to be
560 sent in a memory ("M" or "m") packet. Normally, after stripping
561 leading zeros, the entire address would be sent. This variable
562 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
563 initial implementation of remote.c restricted the address sent in
564 memory packets to ``host::sizeof long'' bytes - (typically 32
565 bits). Consequently, for 64 bit targets, the upper 32 bits of an
566 address was never sent. Since fixing this bug may cause a break in
567 some remote targets this variable is principly provided to
568 facilitate backward compatibility. */
569
570 static int remote_address_size;
571
572 /* Temporary to track who currently owns the terminal. See
573 remote_terminal_* for more details. */
574
575 static int remote_async_terminal_ours_p;
576
577 /* The executable file to use for "run" on the remote side. */
578
579 static char *remote_exec_file = "";
580
581 \f
582 /* User configurable variables for the number of characters in a
583 memory read/write packet. MIN (rsa->remote_packet_size,
584 rsa->sizeof_g_packet) is the default. Some targets need smaller
585 values (fifo overruns, et.al.) and some users need larger values
586 (speed up transfers). The variables ``preferred_*'' (the user
587 request), ``current_*'' (what was actually set) and ``forced_*''
588 (Positive - a soft limit, negative - a hard limit). */
589
590 struct memory_packet_config
591 {
592 char *name;
593 long size;
594 int fixed_p;
595 };
596
597 /* Compute the current size of a read/write packet. Since this makes
598 use of ``actual_register_packet_size'' the computation is dynamic. */
599
600 static long
601 get_memory_packet_size (struct memory_packet_config *config)
602 {
603 struct remote_state *rs = get_remote_state ();
604 struct remote_arch_state *rsa = get_remote_arch_state ();
605
606 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
607 law?) that some hosts don't cope very well with large alloca()
608 calls. Eventually the alloca() code will be replaced by calls to
609 xmalloc() and make_cleanups() allowing this restriction to either
610 be lifted or removed. */
611 #ifndef MAX_REMOTE_PACKET_SIZE
612 #define MAX_REMOTE_PACKET_SIZE 16384
613 #endif
614 /* NOTE: 20 ensures we can write at least one byte. */
615 #ifndef MIN_REMOTE_PACKET_SIZE
616 #define MIN_REMOTE_PACKET_SIZE 20
617 #endif
618 long what_they_get;
619 if (config->fixed_p)
620 {
621 if (config->size <= 0)
622 what_they_get = MAX_REMOTE_PACKET_SIZE;
623 else
624 what_they_get = config->size;
625 }
626 else
627 {
628 what_they_get = get_remote_packet_size ();
629 /* Limit the packet to the size specified by the user. */
630 if (config->size > 0
631 && what_they_get > config->size)
632 what_they_get = config->size;
633
634 /* Limit it to the size of the targets ``g'' response unless we have
635 permission from the stub to use a larger packet size. */
636 if (rs->explicit_packet_size == 0
637 && rsa->actual_register_packet_size > 0
638 && what_they_get > rsa->actual_register_packet_size)
639 what_they_get = rsa->actual_register_packet_size;
640 }
641 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
642 what_they_get = MAX_REMOTE_PACKET_SIZE;
643 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
644 what_they_get = MIN_REMOTE_PACKET_SIZE;
645
646 /* Make sure there is room in the global buffer for this packet
647 (including its trailing NUL byte). */
648 if (rs->buf_size < what_they_get + 1)
649 {
650 rs->buf_size = 2 * what_they_get;
651 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
652 }
653
654 return what_they_get;
655 }
656
657 /* Update the size of a read/write packet. If they user wants
658 something really big then do a sanity check. */
659
660 static void
661 set_memory_packet_size (char *args, struct memory_packet_config *config)
662 {
663 int fixed_p = config->fixed_p;
664 long size = config->size;
665 if (args == NULL)
666 error (_("Argument required (integer, `fixed' or `limited')."));
667 else if (strcmp (args, "hard") == 0
668 || strcmp (args, "fixed") == 0)
669 fixed_p = 1;
670 else if (strcmp (args, "soft") == 0
671 || strcmp (args, "limit") == 0)
672 fixed_p = 0;
673 else
674 {
675 char *end;
676 size = strtoul (args, &end, 0);
677 if (args == end)
678 error (_("Invalid %s (bad syntax)."), config->name);
679 #if 0
680 /* Instead of explicitly capping the size of a packet to
681 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
682 instead allowed to set the size to something arbitrarily
683 large. */
684 if (size > MAX_REMOTE_PACKET_SIZE)
685 error (_("Invalid %s (too large)."), config->name);
686 #endif
687 }
688 /* Extra checks? */
689 if (fixed_p && !config->fixed_p)
690 {
691 if (! query (_("The target may not be able to correctly handle a %s\n"
692 "of %ld bytes. Change the packet size? "),
693 config->name, size))
694 error (_("Packet size not changed."));
695 }
696 /* Update the config. */
697 config->fixed_p = fixed_p;
698 config->size = size;
699 }
700
701 static void
702 show_memory_packet_size (struct memory_packet_config *config)
703 {
704 printf_filtered (_("The %s is %ld. "), config->name, config->size);
705 if (config->fixed_p)
706 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
707 get_memory_packet_size (config));
708 else
709 printf_filtered (_("Packets are limited to %ld bytes.\n"),
710 get_memory_packet_size (config));
711 }
712
713 static struct memory_packet_config memory_write_packet_config =
714 {
715 "memory-write-packet-size",
716 };
717
718 static void
719 set_memory_write_packet_size (char *args, int from_tty)
720 {
721 set_memory_packet_size (args, &memory_write_packet_config);
722 }
723
724 static void
725 show_memory_write_packet_size (char *args, int from_tty)
726 {
727 show_memory_packet_size (&memory_write_packet_config);
728 }
729
730 static long
731 get_memory_write_packet_size (void)
732 {
733 return get_memory_packet_size (&memory_write_packet_config);
734 }
735
736 static struct memory_packet_config memory_read_packet_config =
737 {
738 "memory-read-packet-size",
739 };
740
741 static void
742 set_memory_read_packet_size (char *args, int from_tty)
743 {
744 set_memory_packet_size (args, &memory_read_packet_config);
745 }
746
747 static void
748 show_memory_read_packet_size (char *args, int from_tty)
749 {
750 show_memory_packet_size (&memory_read_packet_config);
751 }
752
753 static long
754 get_memory_read_packet_size (void)
755 {
756 long size = get_memory_packet_size (&memory_read_packet_config);
757 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
758 extra buffer size argument before the memory read size can be
759 increased beyond this. */
760 if (size > get_remote_packet_size ())
761 size = get_remote_packet_size ();
762 return size;
763 }
764
765 \f
766 /* Generic configuration support for packets the stub optionally
767 supports. Allows the user to specify the use of the packet as well
768 as allowing GDB to auto-detect support in the remote stub. */
769
770 enum packet_support
771 {
772 PACKET_SUPPORT_UNKNOWN = 0,
773 PACKET_ENABLE,
774 PACKET_DISABLE
775 };
776
777 struct packet_config
778 {
779 const char *name;
780 const char *title;
781 enum auto_boolean detect;
782 enum packet_support support;
783 };
784
785 /* Analyze a packet's return value and update the packet config
786 accordingly. */
787
788 enum packet_result
789 {
790 PACKET_ERROR,
791 PACKET_OK,
792 PACKET_UNKNOWN
793 };
794
795 static void
796 update_packet_config (struct packet_config *config)
797 {
798 switch (config->detect)
799 {
800 case AUTO_BOOLEAN_TRUE:
801 config->support = PACKET_ENABLE;
802 break;
803 case AUTO_BOOLEAN_FALSE:
804 config->support = PACKET_DISABLE;
805 break;
806 case AUTO_BOOLEAN_AUTO:
807 config->support = PACKET_SUPPORT_UNKNOWN;
808 break;
809 }
810 }
811
812 static void
813 show_packet_config_cmd (struct packet_config *config)
814 {
815 char *support = "internal-error";
816 switch (config->support)
817 {
818 case PACKET_ENABLE:
819 support = "enabled";
820 break;
821 case PACKET_DISABLE:
822 support = "disabled";
823 break;
824 case PACKET_SUPPORT_UNKNOWN:
825 support = "unknown";
826 break;
827 }
828 switch (config->detect)
829 {
830 case AUTO_BOOLEAN_AUTO:
831 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
832 config->name, support);
833 break;
834 case AUTO_BOOLEAN_TRUE:
835 case AUTO_BOOLEAN_FALSE:
836 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
837 config->name, support);
838 break;
839 }
840 }
841
842 static void
843 add_packet_config_cmd (struct packet_config *config, const char *name,
844 const char *title, int legacy)
845 {
846 char *set_doc;
847 char *show_doc;
848 char *cmd_name;
849
850 config->name = name;
851 config->title = title;
852 config->detect = AUTO_BOOLEAN_AUTO;
853 config->support = PACKET_SUPPORT_UNKNOWN;
854 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
855 name, title);
856 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
857 name, title);
858 /* set/show TITLE-packet {auto,on,off} */
859 cmd_name = xstrprintf ("%s-packet", title);
860 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
861 &config->detect, set_doc, show_doc, NULL, /* help_doc */
862 set_remote_protocol_packet_cmd,
863 show_remote_protocol_packet_cmd,
864 &remote_set_cmdlist, &remote_show_cmdlist);
865 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
866 if (legacy)
867 {
868 char *legacy_name;
869 legacy_name = xstrprintf ("%s-packet", name);
870 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
871 &remote_set_cmdlist);
872 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
873 &remote_show_cmdlist);
874 }
875 }
876
877 static enum packet_result
878 packet_check_result (const char *buf)
879 {
880 if (buf[0] != '\0')
881 {
882 /* The stub recognized the packet request. Check that the
883 operation succeeded. */
884 if (buf[0] == 'E'
885 && isxdigit (buf[1]) && isxdigit (buf[2])
886 && buf[3] == '\0')
887 /* "Enn" - definitly an error. */
888 return PACKET_ERROR;
889
890 /* Always treat "E." as an error. This will be used for
891 more verbose error messages, such as E.memtypes. */
892 if (buf[0] == 'E' && buf[1] == '.')
893 return PACKET_ERROR;
894
895 /* The packet may or may not be OK. Just assume it is. */
896 return PACKET_OK;
897 }
898 else
899 /* The stub does not support the packet. */
900 return PACKET_UNKNOWN;
901 }
902
903 static enum packet_result
904 packet_ok (const char *buf, struct packet_config *config)
905 {
906 enum packet_result result;
907
908 result = packet_check_result (buf);
909 switch (result)
910 {
911 case PACKET_OK:
912 case PACKET_ERROR:
913 /* The stub recognized the packet request. */
914 switch (config->support)
915 {
916 case PACKET_SUPPORT_UNKNOWN:
917 if (remote_debug)
918 fprintf_unfiltered (gdb_stdlog,
919 "Packet %s (%s) is supported\n",
920 config->name, config->title);
921 config->support = PACKET_ENABLE;
922 break;
923 case PACKET_DISABLE:
924 internal_error (__FILE__, __LINE__,
925 _("packet_ok: attempt to use a disabled packet"));
926 break;
927 case PACKET_ENABLE:
928 break;
929 }
930 break;
931 case PACKET_UNKNOWN:
932 /* The stub does not support the packet. */
933 switch (config->support)
934 {
935 case PACKET_ENABLE:
936 if (config->detect == AUTO_BOOLEAN_AUTO)
937 /* If the stub previously indicated that the packet was
938 supported then there is a protocol error.. */
939 error (_("Protocol error: %s (%s) conflicting enabled responses."),
940 config->name, config->title);
941 else
942 /* The user set it wrong. */
943 error (_("Enabled packet %s (%s) not recognized by stub"),
944 config->name, config->title);
945 break;
946 case PACKET_SUPPORT_UNKNOWN:
947 if (remote_debug)
948 fprintf_unfiltered (gdb_stdlog,
949 "Packet %s (%s) is NOT supported\n",
950 config->name, config->title);
951 config->support = PACKET_DISABLE;
952 break;
953 case PACKET_DISABLE:
954 break;
955 }
956 break;
957 }
958
959 return result;
960 }
961
962 enum {
963 PACKET_vCont = 0,
964 PACKET_X,
965 PACKET_qSymbol,
966 PACKET_P,
967 PACKET_p,
968 PACKET_Z0,
969 PACKET_Z1,
970 PACKET_Z2,
971 PACKET_Z3,
972 PACKET_Z4,
973 PACKET_vFile_open,
974 PACKET_vFile_pread,
975 PACKET_vFile_pwrite,
976 PACKET_vFile_close,
977 PACKET_vFile_unlink,
978 PACKET_qXfer_auxv,
979 PACKET_qXfer_features,
980 PACKET_qXfer_libraries,
981 PACKET_qXfer_memory_map,
982 PACKET_qXfer_spu_read,
983 PACKET_qXfer_spu_write,
984 PACKET_qXfer_osdata,
985 PACKET_qGetTLSAddr,
986 PACKET_qSupported,
987 PACKET_QPassSignals,
988 PACKET_qSearch_memory,
989 PACKET_vAttach,
990 PACKET_vRun,
991 PACKET_QStartNoAckMode,
992 PACKET_vKill,
993 PACKET_qXfer_siginfo_read,
994 PACKET_qXfer_siginfo_write,
995 PACKET_qAttached,
996 PACKET_MAX
997 };
998
999 static struct packet_config remote_protocol_packets[PACKET_MAX];
1000
1001 static void
1002 set_remote_protocol_packet_cmd (char *args, int from_tty,
1003 struct cmd_list_element *c)
1004 {
1005 struct packet_config *packet;
1006
1007 for (packet = remote_protocol_packets;
1008 packet < &remote_protocol_packets[PACKET_MAX];
1009 packet++)
1010 {
1011 if (&packet->detect == c->var)
1012 {
1013 update_packet_config (packet);
1014 return;
1015 }
1016 }
1017 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1018 c->name);
1019 }
1020
1021 static void
1022 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1023 struct cmd_list_element *c,
1024 const char *value)
1025 {
1026 struct packet_config *packet;
1027
1028 for (packet = remote_protocol_packets;
1029 packet < &remote_protocol_packets[PACKET_MAX];
1030 packet++)
1031 {
1032 if (&packet->detect == c->var)
1033 {
1034 show_packet_config_cmd (packet);
1035 return;
1036 }
1037 }
1038 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1039 c->name);
1040 }
1041
1042 /* Should we try one of the 'Z' requests? */
1043
1044 enum Z_packet_type
1045 {
1046 Z_PACKET_SOFTWARE_BP,
1047 Z_PACKET_HARDWARE_BP,
1048 Z_PACKET_WRITE_WP,
1049 Z_PACKET_READ_WP,
1050 Z_PACKET_ACCESS_WP,
1051 NR_Z_PACKET_TYPES
1052 };
1053
1054 /* For compatibility with older distributions. Provide a ``set remote
1055 Z-packet ...'' command that updates all the Z packet types. */
1056
1057 static enum auto_boolean remote_Z_packet_detect;
1058
1059 static void
1060 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1061 struct cmd_list_element *c)
1062 {
1063 int i;
1064 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1065 {
1066 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1067 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1068 }
1069 }
1070
1071 static void
1072 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1073 struct cmd_list_element *c,
1074 const char *value)
1075 {
1076 int i;
1077 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1078 {
1079 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1080 }
1081 }
1082
1083 /* Should we try the 'ThreadInfo' query packet?
1084
1085 This variable (NOT available to the user: auto-detect only!)
1086 determines whether GDB will use the new, simpler "ThreadInfo"
1087 query or the older, more complex syntax for thread queries.
1088 This is an auto-detect variable (set to true at each connect,
1089 and set to false when the target fails to recognize it). */
1090
1091 static int use_threadinfo_query;
1092 static int use_threadextra_query;
1093
1094 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1095 static struct async_signal_handler *sigint_remote_twice_token;
1096 static struct async_signal_handler *sigint_remote_token;
1097
1098 \f
1099 /* Asynchronous signal handle registered as event loop source for
1100 when we have pending events ready to be passed to the core. */
1101
1102 static struct async_event_handler *remote_async_inferior_event_token;
1103
1104 /* Asynchronous signal handle registered as event loop source for when
1105 the remote sent us a %Stop notification. The registered callback
1106 will do a vStopped sequence to pull the rest of the events out of
1107 the remote side into our event queue. */
1108
1109 static struct async_event_handler *remote_async_get_pending_events_token;
1110 \f
1111
1112 static ptid_t magic_null_ptid;
1113 static ptid_t not_sent_ptid;
1114 static ptid_t any_thread_ptid;
1115
1116 /* These are the threads which we last sent to the remote system. The
1117 TID member will be -1 for all or -2 for not sent yet. */
1118
1119 static ptid_t general_thread;
1120 static ptid_t continue_thread;
1121
1122 /* Find out if the stub attached to PID (and hence GDB should offer to
1123 detach instead of killing it when bailing out). */
1124
1125 static int
1126 remote_query_attached (int pid)
1127 {
1128 struct remote_state *rs = get_remote_state ();
1129
1130 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1131 return 0;
1132
1133 if (remote_multi_process_p (rs))
1134 sprintf (rs->buf, "qAttached:%x", pid);
1135 else
1136 sprintf (rs->buf, "qAttached");
1137
1138 putpkt (rs->buf);
1139 getpkt (&rs->buf, &rs->buf_size, 0);
1140
1141 switch (packet_ok (rs->buf,
1142 &remote_protocol_packets[PACKET_qAttached]) == PACKET_OK)
1143 {
1144 case PACKET_OK:
1145 if (strcmp (rs->buf, "1") == 0)
1146 return 1;
1147 break;
1148 case PACKET_ERROR:
1149 warning (_("Remote failure reply: %s"), rs->buf);
1150 break;
1151 case PACKET_UNKNOWN:
1152 break;
1153 }
1154
1155 return 0;
1156 }
1157
1158 /* Add PID to GDB's inferior table. Since we can be connected to a
1159 remote system before before knowing about any inferior, mark the
1160 target with execution when we find the first inferior. If ATTACHED
1161 is 1, then we had just attached to this inferior. If it is 0, then
1162 we just created this inferior. If it is -1, then try querying the
1163 remote stub to find out if it had attached to the inferior or
1164 not. */
1165
1166 static struct inferior *
1167 remote_add_inferior (int pid, int attached)
1168 {
1169 struct remote_state *rs = get_remote_state ();
1170 struct inferior *inf;
1171
1172 /* Check whether this process we're learning about is to be
1173 considered attached, or if is to be considered to have been
1174 spawned by the stub. */
1175 if (attached == -1)
1176 attached = remote_query_attached (pid);
1177
1178 inf = add_inferior (pid);
1179
1180 inf->attach_flag = attached;
1181
1182 /* This may be the first inferior we hear about. */
1183 if (!target_has_execution)
1184 {
1185 if (rs->extended)
1186 target_mark_running (&extended_remote_ops);
1187 else
1188 target_mark_running (&remote_ops);
1189 }
1190
1191 return inf;
1192 }
1193
1194 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1195 according to RUNNING. */
1196
1197 static void
1198 remote_add_thread (ptid_t ptid, int running)
1199 {
1200 add_thread (ptid);
1201
1202 set_executing (ptid, running);
1203 set_running (ptid, running);
1204 }
1205
1206 /* Come here when we learn about a thread id from the remote target.
1207 It may be the first time we hear about such thread, so take the
1208 opportunity to add it to GDB's thread list. In case this is the
1209 first time we're noticing its corresponding inferior, add it to
1210 GDB's inferior list as well. */
1211
1212 static void
1213 remote_notice_new_inferior (ptid_t currthread, int running)
1214 {
1215 struct remote_state *rs = get_remote_state ();
1216
1217 /* If this is a new thread, add it to GDB's thread list.
1218 If we leave it up to WFI to do this, bad things will happen. */
1219
1220 if (in_thread_list (currthread) && is_exited (currthread))
1221 {
1222 /* We're seeing an event on a thread id we knew had exited.
1223 This has to be a new thread reusing the old id. Add it. */
1224 remote_add_thread (currthread, running);
1225 return;
1226 }
1227
1228 if (!in_thread_list (currthread))
1229 {
1230 struct inferior *inf = NULL;
1231
1232 if (ptid_equal (pid_to_ptid (ptid_get_pid (currthread)), inferior_ptid))
1233 {
1234 /* inferior_ptid has no thread member yet. This can happen
1235 with the vAttach -> remote_wait,"TAAthread:" path if the
1236 stub doesn't support qC. This is the first stop reported
1237 after an attach, so this is the main thread. Update the
1238 ptid in the thread list. */
1239 thread_change_ptid (inferior_ptid, currthread);
1240 return;
1241 }
1242
1243 if (ptid_equal (magic_null_ptid, inferior_ptid))
1244 {
1245 /* inferior_ptid is not set yet. This can happen with the
1246 vRun -> remote_wait,"TAAthread:" path if the stub
1247 doesn't support qC. This is the first stop reported
1248 after an attach, so this is the main thread. Update the
1249 ptid in the thread list. */
1250 thread_change_ptid (inferior_ptid, currthread);
1251 return;
1252 }
1253
1254 /* When connecting to a target remote, or to a target
1255 extended-remote which already was debugging an inferior, we
1256 may not know about it yet. Add it before adding its child
1257 thread, so notifications are emitted in a sensible order. */
1258 if (!in_inferior_list (ptid_get_pid (currthread)))
1259 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1260
1261 /* This is really a new thread. Add it. */
1262 remote_add_thread (currthread, running);
1263
1264 /* If we found a new inferior, let the common code do whatever
1265 it needs to with it (e.g., read shared libraries, insert
1266 breakpoints). */
1267 if (inf != NULL)
1268 notice_new_inferior (currthread, running, 0);
1269 }
1270 }
1271
1272 /* Call this function as a result of
1273 1) A halt indication (T packet) containing a thread id
1274 2) A direct query of currthread
1275 3) Successful execution of set thread
1276 */
1277
1278 static void
1279 record_currthread (ptid_t currthread)
1280 {
1281 general_thread = currthread;
1282
1283 if (ptid_equal (currthread, minus_one_ptid))
1284 /* We're just invalidating the local thread mirror. */
1285 return;
1286
1287 remote_notice_new_inferior (currthread, 0);
1288 }
1289
1290 static char *last_pass_packet;
1291
1292 /* If 'QPassSignals' is supported, tell the remote stub what signals
1293 it can simply pass through to the inferior without reporting. */
1294
1295 static void
1296 remote_pass_signals (void)
1297 {
1298 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1299 {
1300 char *pass_packet, *p;
1301 int numsigs = (int) TARGET_SIGNAL_LAST;
1302 int count = 0, i;
1303
1304 gdb_assert (numsigs < 256);
1305 for (i = 0; i < numsigs; i++)
1306 {
1307 if (signal_stop_state (i) == 0
1308 && signal_print_state (i) == 0
1309 && signal_pass_state (i) == 1)
1310 count++;
1311 }
1312 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1313 strcpy (pass_packet, "QPassSignals:");
1314 p = pass_packet + strlen (pass_packet);
1315 for (i = 0; i < numsigs; i++)
1316 {
1317 if (signal_stop_state (i) == 0
1318 && signal_print_state (i) == 0
1319 && signal_pass_state (i) == 1)
1320 {
1321 if (i >= 16)
1322 *p++ = tohex (i >> 4);
1323 *p++ = tohex (i & 15);
1324 if (count)
1325 *p++ = ';';
1326 else
1327 break;
1328 count--;
1329 }
1330 }
1331 *p = 0;
1332 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1333 {
1334 struct remote_state *rs = get_remote_state ();
1335 char *buf = rs->buf;
1336
1337 putpkt (pass_packet);
1338 getpkt (&rs->buf, &rs->buf_size, 0);
1339 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1340 if (last_pass_packet)
1341 xfree (last_pass_packet);
1342 last_pass_packet = pass_packet;
1343 }
1344 else
1345 xfree (pass_packet);
1346 }
1347 }
1348
1349 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1350 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1351 thread. If GEN is set, set the general thread, if not, then set
1352 the step/continue thread. */
1353 static void
1354 set_thread (struct ptid ptid, int gen)
1355 {
1356 struct remote_state *rs = get_remote_state ();
1357 ptid_t state = gen ? general_thread : continue_thread;
1358 char *buf = rs->buf;
1359 char *endbuf = rs->buf + get_remote_packet_size ();
1360
1361 if (ptid_equal (state, ptid))
1362 return;
1363
1364 *buf++ = 'H';
1365 *buf++ = gen ? 'g' : 'c';
1366 if (ptid_equal (ptid, magic_null_ptid))
1367 xsnprintf (buf, endbuf - buf, "0");
1368 else if (ptid_equal (ptid, any_thread_ptid))
1369 xsnprintf (buf, endbuf - buf, "0");
1370 else if (ptid_equal (ptid, minus_one_ptid))
1371 xsnprintf (buf, endbuf - buf, "-1");
1372 else
1373 write_ptid (buf, endbuf, ptid);
1374 putpkt (rs->buf);
1375 getpkt (&rs->buf, &rs->buf_size, 0);
1376 if (gen)
1377 general_thread = ptid;
1378 else
1379 continue_thread = ptid;
1380 }
1381
1382 static void
1383 set_general_thread (struct ptid ptid)
1384 {
1385 set_thread (ptid, 1);
1386 }
1387
1388 static void
1389 set_continue_thread (struct ptid ptid)
1390 {
1391 set_thread (ptid, 0);
1392 }
1393
1394 /* Change the remote current process. Which thread within the process
1395 ends up selected isn't important, as long as it is the same process
1396 as what INFERIOR_PTID points to.
1397
1398 This comes from that fact that there is no explicit notion of
1399 "selected process" in the protocol. The selected process for
1400 general operations is the process the selected general thread
1401 belongs to. */
1402
1403 static void
1404 set_general_process (void)
1405 {
1406 struct remote_state *rs = get_remote_state ();
1407
1408 /* If the remote can't handle multiple processes, don't bother. */
1409 if (!remote_multi_process_p (rs))
1410 return;
1411
1412 /* We only need to change the remote current thread if it's pointing
1413 at some other process. */
1414 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1415 set_general_thread (inferior_ptid);
1416 }
1417
1418 \f
1419 /* Return nonzero if the thread PTID is still alive on the remote
1420 system. */
1421
1422 static int
1423 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1424 {
1425 struct remote_state *rs = get_remote_state ();
1426 int tid = ptid_get_tid (ptid);
1427 char *p, *endp;
1428
1429 if (ptid_equal (ptid, magic_null_ptid))
1430 /* The main thread is always alive. */
1431 return 1;
1432
1433 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1434 /* The main thread is always alive. This can happen after a
1435 vAttach, if the remote side doesn't support
1436 multi-threading. */
1437 return 1;
1438
1439 p = rs->buf;
1440 endp = rs->buf + get_remote_packet_size ();
1441
1442 *p++ = 'T';
1443 write_ptid (p, endp, ptid);
1444
1445 putpkt (rs->buf);
1446 getpkt (&rs->buf, &rs->buf_size, 0);
1447 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1448 }
1449
1450 /* About these extended threadlist and threadinfo packets. They are
1451 variable length packets but, the fields within them are often fixed
1452 length. They are redundent enough to send over UDP as is the
1453 remote protocol in general. There is a matching unit test module
1454 in libstub. */
1455
1456 #define OPAQUETHREADBYTES 8
1457
1458 /* a 64 bit opaque identifier */
1459 typedef unsigned char threadref[OPAQUETHREADBYTES];
1460
1461 /* WARNING: This threadref data structure comes from the remote O.S.,
1462 libstub protocol encoding, and remote.c. it is not particularly
1463 changable. */
1464
1465 /* Right now, the internal structure is int. We want it to be bigger.
1466 Plan to fix this.
1467 */
1468
1469 typedef int gdb_threadref; /* Internal GDB thread reference. */
1470
1471 /* gdb_ext_thread_info is an internal GDB data structure which is
1472 equivalent to the reply of the remote threadinfo packet. */
1473
1474 struct gdb_ext_thread_info
1475 {
1476 threadref threadid; /* External form of thread reference. */
1477 int active; /* Has state interesting to GDB?
1478 regs, stack. */
1479 char display[256]; /* Brief state display, name,
1480 blocked/suspended. */
1481 char shortname[32]; /* To be used to name threads. */
1482 char more_display[256]; /* Long info, statistics, queue depth,
1483 whatever. */
1484 };
1485
1486 /* The volume of remote transfers can be limited by submitting
1487 a mask containing bits specifying the desired information.
1488 Use a union of these values as the 'selection' parameter to
1489 get_thread_info. FIXME: Make these TAG names more thread specific.
1490 */
1491
1492 #define TAG_THREADID 1
1493 #define TAG_EXISTS 2
1494 #define TAG_DISPLAY 4
1495 #define TAG_THREADNAME 8
1496 #define TAG_MOREDISPLAY 16
1497
1498 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1499
1500 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1501
1502 static char *unpack_nibble (char *buf, int *val);
1503
1504 static char *pack_nibble (char *buf, int nibble);
1505
1506 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1507
1508 static char *unpack_byte (char *buf, int *value);
1509
1510 static char *pack_int (char *buf, int value);
1511
1512 static char *unpack_int (char *buf, int *value);
1513
1514 static char *unpack_string (char *src, char *dest, int length);
1515
1516 static char *pack_threadid (char *pkt, threadref *id);
1517
1518 static char *unpack_threadid (char *inbuf, threadref *id);
1519
1520 void int_to_threadref (threadref *id, int value);
1521
1522 static int threadref_to_int (threadref *ref);
1523
1524 static void copy_threadref (threadref *dest, threadref *src);
1525
1526 static int threadmatch (threadref *dest, threadref *src);
1527
1528 static char *pack_threadinfo_request (char *pkt, int mode,
1529 threadref *id);
1530
1531 static int remote_unpack_thread_info_response (char *pkt,
1532 threadref *expectedref,
1533 struct gdb_ext_thread_info
1534 *info);
1535
1536
1537 static int remote_get_threadinfo (threadref *threadid,
1538 int fieldset, /*TAG mask */
1539 struct gdb_ext_thread_info *info);
1540
1541 static char *pack_threadlist_request (char *pkt, int startflag,
1542 int threadcount,
1543 threadref *nextthread);
1544
1545 static int parse_threadlist_response (char *pkt,
1546 int result_limit,
1547 threadref *original_echo,
1548 threadref *resultlist,
1549 int *doneflag);
1550
1551 static int remote_get_threadlist (int startflag,
1552 threadref *nextthread,
1553 int result_limit,
1554 int *done,
1555 int *result_count,
1556 threadref *threadlist);
1557
1558 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1559
1560 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1561 void *context, int looplimit);
1562
1563 static int remote_newthread_step (threadref *ref, void *context);
1564
1565
1566 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1567 buffer we're allowed to write to. Returns
1568 BUF+CHARACTERS_WRITTEN. */
1569
1570 static char *
1571 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1572 {
1573 int pid, tid;
1574 struct remote_state *rs = get_remote_state ();
1575
1576 if (remote_multi_process_p (rs))
1577 {
1578 pid = ptid_get_pid (ptid);
1579 if (pid < 0)
1580 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1581 else
1582 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1583 }
1584 tid = ptid_get_tid (ptid);
1585 if (tid < 0)
1586 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1587 else
1588 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1589
1590 return buf;
1591 }
1592
1593 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1594 passed the last parsed char. Returns null_ptid on error. */
1595
1596 static ptid_t
1597 read_ptid (char *buf, char **obuf)
1598 {
1599 char *p = buf;
1600 char *pp;
1601 ULONGEST pid = 0, tid = 0;
1602 ptid_t ptid;
1603
1604 if (*p == 'p')
1605 {
1606 /* Multi-process ptid. */
1607 pp = unpack_varlen_hex (p + 1, &pid);
1608 if (*pp != '.')
1609 error (_("invalid remote ptid: %s\n"), p);
1610
1611 p = pp;
1612 pp = unpack_varlen_hex (p + 1, &tid);
1613 if (obuf)
1614 *obuf = pp;
1615 return ptid_build (pid, 0, tid);
1616 }
1617
1618 /* No multi-process. Just a tid. */
1619 pp = unpack_varlen_hex (p, &tid);
1620
1621 /* Since the stub is not sending a process id, then default to
1622 what's in inferior_ptid, unless it's null at this point. If so,
1623 then since there's no way to know the pid of the reported
1624 threads, use the magic number. */
1625 if (ptid_equal (inferior_ptid, null_ptid))
1626 pid = ptid_get_pid (magic_null_ptid);
1627 else
1628 pid = ptid_get_pid (inferior_ptid);
1629
1630 if (obuf)
1631 *obuf = pp;
1632 return ptid_build (pid, 0, tid);
1633 }
1634
1635 /* Encode 64 bits in 16 chars of hex. */
1636
1637 static const char hexchars[] = "0123456789abcdef";
1638
1639 static int
1640 ishex (int ch, int *val)
1641 {
1642 if ((ch >= 'a') && (ch <= 'f'))
1643 {
1644 *val = ch - 'a' + 10;
1645 return 1;
1646 }
1647 if ((ch >= 'A') && (ch <= 'F'))
1648 {
1649 *val = ch - 'A' + 10;
1650 return 1;
1651 }
1652 if ((ch >= '0') && (ch <= '9'))
1653 {
1654 *val = ch - '0';
1655 return 1;
1656 }
1657 return 0;
1658 }
1659
1660 static int
1661 stubhex (int ch)
1662 {
1663 if (ch >= 'a' && ch <= 'f')
1664 return ch - 'a' + 10;
1665 if (ch >= '0' && ch <= '9')
1666 return ch - '0';
1667 if (ch >= 'A' && ch <= 'F')
1668 return ch - 'A' + 10;
1669 return -1;
1670 }
1671
1672 static int
1673 stub_unpack_int (char *buff, int fieldlength)
1674 {
1675 int nibble;
1676 int retval = 0;
1677
1678 while (fieldlength)
1679 {
1680 nibble = stubhex (*buff++);
1681 retval |= nibble;
1682 fieldlength--;
1683 if (fieldlength)
1684 retval = retval << 4;
1685 }
1686 return retval;
1687 }
1688
1689 char *
1690 unpack_varlen_hex (char *buff, /* packet to parse */
1691 ULONGEST *result)
1692 {
1693 int nibble;
1694 ULONGEST retval = 0;
1695
1696 while (ishex (*buff, &nibble))
1697 {
1698 buff++;
1699 retval = retval << 4;
1700 retval |= nibble & 0x0f;
1701 }
1702 *result = retval;
1703 return buff;
1704 }
1705
1706 static char *
1707 unpack_nibble (char *buf, int *val)
1708 {
1709 *val = fromhex (*buf++);
1710 return buf;
1711 }
1712
1713 static char *
1714 pack_nibble (char *buf, int nibble)
1715 {
1716 *buf++ = hexchars[(nibble & 0x0f)];
1717 return buf;
1718 }
1719
1720 static char *
1721 pack_hex_byte (char *pkt, int byte)
1722 {
1723 *pkt++ = hexchars[(byte >> 4) & 0xf];
1724 *pkt++ = hexchars[(byte & 0xf)];
1725 return pkt;
1726 }
1727
1728 static char *
1729 unpack_byte (char *buf, int *value)
1730 {
1731 *value = stub_unpack_int (buf, 2);
1732 return buf + 2;
1733 }
1734
1735 static char *
1736 pack_int (char *buf, int value)
1737 {
1738 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1739 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1740 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1741 buf = pack_hex_byte (buf, (value & 0xff));
1742 return buf;
1743 }
1744
1745 static char *
1746 unpack_int (char *buf, int *value)
1747 {
1748 *value = stub_unpack_int (buf, 8);
1749 return buf + 8;
1750 }
1751
1752 #if 0 /* Currently unused, uncomment when needed. */
1753 static char *pack_string (char *pkt, char *string);
1754
1755 static char *
1756 pack_string (char *pkt, char *string)
1757 {
1758 char ch;
1759 int len;
1760
1761 len = strlen (string);
1762 if (len > 200)
1763 len = 200; /* Bigger than most GDB packets, junk??? */
1764 pkt = pack_hex_byte (pkt, len);
1765 while (len-- > 0)
1766 {
1767 ch = *string++;
1768 if ((ch == '\0') || (ch == '#'))
1769 ch = '*'; /* Protect encapsulation. */
1770 *pkt++ = ch;
1771 }
1772 return pkt;
1773 }
1774 #endif /* 0 (unused) */
1775
1776 static char *
1777 unpack_string (char *src, char *dest, int length)
1778 {
1779 while (length--)
1780 *dest++ = *src++;
1781 *dest = '\0';
1782 return src;
1783 }
1784
1785 static char *
1786 pack_threadid (char *pkt, threadref *id)
1787 {
1788 char *limit;
1789 unsigned char *altid;
1790
1791 altid = (unsigned char *) id;
1792 limit = pkt + BUF_THREAD_ID_SIZE;
1793 while (pkt < limit)
1794 pkt = pack_hex_byte (pkt, *altid++);
1795 return pkt;
1796 }
1797
1798
1799 static char *
1800 unpack_threadid (char *inbuf, threadref *id)
1801 {
1802 char *altref;
1803 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1804 int x, y;
1805
1806 altref = (char *) id;
1807
1808 while (inbuf < limit)
1809 {
1810 x = stubhex (*inbuf++);
1811 y = stubhex (*inbuf++);
1812 *altref++ = (x << 4) | y;
1813 }
1814 return inbuf;
1815 }
1816
1817 /* Externally, threadrefs are 64 bits but internally, they are still
1818 ints. This is due to a mismatch of specifications. We would like
1819 to use 64bit thread references internally. This is an adapter
1820 function. */
1821
1822 void
1823 int_to_threadref (threadref *id, int value)
1824 {
1825 unsigned char *scan;
1826
1827 scan = (unsigned char *) id;
1828 {
1829 int i = 4;
1830 while (i--)
1831 *scan++ = 0;
1832 }
1833 *scan++ = (value >> 24) & 0xff;
1834 *scan++ = (value >> 16) & 0xff;
1835 *scan++ = (value >> 8) & 0xff;
1836 *scan++ = (value & 0xff);
1837 }
1838
1839 static int
1840 threadref_to_int (threadref *ref)
1841 {
1842 int i, value = 0;
1843 unsigned char *scan;
1844
1845 scan = *ref;
1846 scan += 4;
1847 i = 4;
1848 while (i-- > 0)
1849 value = (value << 8) | ((*scan++) & 0xff);
1850 return value;
1851 }
1852
1853 static void
1854 copy_threadref (threadref *dest, threadref *src)
1855 {
1856 int i;
1857 unsigned char *csrc, *cdest;
1858
1859 csrc = (unsigned char *) src;
1860 cdest = (unsigned char *) dest;
1861 i = 8;
1862 while (i--)
1863 *cdest++ = *csrc++;
1864 }
1865
1866 static int
1867 threadmatch (threadref *dest, threadref *src)
1868 {
1869 /* Things are broken right now, so just assume we got a match. */
1870 #if 0
1871 unsigned char *srcp, *destp;
1872 int i, result;
1873 srcp = (char *) src;
1874 destp = (char *) dest;
1875
1876 result = 1;
1877 while (i-- > 0)
1878 result &= (*srcp++ == *destp++) ? 1 : 0;
1879 return result;
1880 #endif
1881 return 1;
1882 }
1883
1884 /*
1885 threadid:1, # always request threadid
1886 context_exists:2,
1887 display:4,
1888 unique_name:8,
1889 more_display:16
1890 */
1891
1892 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1893
1894 static char *
1895 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1896 {
1897 *pkt++ = 'q'; /* Info Query */
1898 *pkt++ = 'P'; /* process or thread info */
1899 pkt = pack_int (pkt, mode); /* mode */
1900 pkt = pack_threadid (pkt, id); /* threadid */
1901 *pkt = '\0'; /* terminate */
1902 return pkt;
1903 }
1904
1905 /* These values tag the fields in a thread info response packet. */
1906 /* Tagging the fields allows us to request specific fields and to
1907 add more fields as time goes by. */
1908
1909 #define TAG_THREADID 1 /* Echo the thread identifier. */
1910 #define TAG_EXISTS 2 /* Is this process defined enough to
1911 fetch registers and its stack? */
1912 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1913 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1914 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1915 the process. */
1916
1917 static int
1918 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1919 struct gdb_ext_thread_info *info)
1920 {
1921 struct remote_state *rs = get_remote_state ();
1922 int mask, length;
1923 int tag;
1924 threadref ref;
1925 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1926 int retval = 1;
1927
1928 /* info->threadid = 0; FIXME: implement zero_threadref. */
1929 info->active = 0;
1930 info->display[0] = '\0';
1931 info->shortname[0] = '\0';
1932 info->more_display[0] = '\0';
1933
1934 /* Assume the characters indicating the packet type have been
1935 stripped. */
1936 pkt = unpack_int (pkt, &mask); /* arg mask */
1937 pkt = unpack_threadid (pkt, &ref);
1938
1939 if (mask == 0)
1940 warning (_("Incomplete response to threadinfo request."));
1941 if (!threadmatch (&ref, expectedref))
1942 { /* This is an answer to a different request. */
1943 warning (_("ERROR RMT Thread info mismatch."));
1944 return 0;
1945 }
1946 copy_threadref (&info->threadid, &ref);
1947
1948 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1949
1950 /* Packets are terminated with nulls. */
1951 while ((pkt < limit) && mask && *pkt)
1952 {
1953 pkt = unpack_int (pkt, &tag); /* tag */
1954 pkt = unpack_byte (pkt, &length); /* length */
1955 if (!(tag & mask)) /* Tags out of synch with mask. */
1956 {
1957 warning (_("ERROR RMT: threadinfo tag mismatch."));
1958 retval = 0;
1959 break;
1960 }
1961 if (tag == TAG_THREADID)
1962 {
1963 if (length != 16)
1964 {
1965 warning (_("ERROR RMT: length of threadid is not 16."));
1966 retval = 0;
1967 break;
1968 }
1969 pkt = unpack_threadid (pkt, &ref);
1970 mask = mask & ~TAG_THREADID;
1971 continue;
1972 }
1973 if (tag == TAG_EXISTS)
1974 {
1975 info->active = stub_unpack_int (pkt, length);
1976 pkt += length;
1977 mask = mask & ~(TAG_EXISTS);
1978 if (length > 8)
1979 {
1980 warning (_("ERROR RMT: 'exists' length too long."));
1981 retval = 0;
1982 break;
1983 }
1984 continue;
1985 }
1986 if (tag == TAG_THREADNAME)
1987 {
1988 pkt = unpack_string (pkt, &info->shortname[0], length);
1989 mask = mask & ~TAG_THREADNAME;
1990 continue;
1991 }
1992 if (tag == TAG_DISPLAY)
1993 {
1994 pkt = unpack_string (pkt, &info->display[0], length);
1995 mask = mask & ~TAG_DISPLAY;
1996 continue;
1997 }
1998 if (tag == TAG_MOREDISPLAY)
1999 {
2000 pkt = unpack_string (pkt, &info->more_display[0], length);
2001 mask = mask & ~TAG_MOREDISPLAY;
2002 continue;
2003 }
2004 warning (_("ERROR RMT: unknown thread info tag."));
2005 break; /* Not a tag we know about. */
2006 }
2007 return retval;
2008 }
2009
2010 static int
2011 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2012 struct gdb_ext_thread_info *info)
2013 {
2014 struct remote_state *rs = get_remote_state ();
2015 int result;
2016
2017 pack_threadinfo_request (rs->buf, fieldset, threadid);
2018 putpkt (rs->buf);
2019 getpkt (&rs->buf, &rs->buf_size, 0);
2020
2021 if (rs->buf[0] == '\0')
2022 return 0;
2023
2024 result = remote_unpack_thread_info_response (rs->buf + 2,
2025 threadid, info);
2026 return result;
2027 }
2028
2029 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2030
2031 static char *
2032 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2033 threadref *nextthread)
2034 {
2035 *pkt++ = 'q'; /* info query packet */
2036 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2037 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2038 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2039 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2040 *pkt = '\0';
2041 return pkt;
2042 }
2043
2044 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2045
2046 static int
2047 parse_threadlist_response (char *pkt, int result_limit,
2048 threadref *original_echo, threadref *resultlist,
2049 int *doneflag)
2050 {
2051 struct remote_state *rs = get_remote_state ();
2052 char *limit;
2053 int count, resultcount, done;
2054
2055 resultcount = 0;
2056 /* Assume the 'q' and 'M chars have been stripped. */
2057 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2058 /* done parse past here */
2059 pkt = unpack_byte (pkt, &count); /* count field */
2060 pkt = unpack_nibble (pkt, &done);
2061 /* The first threadid is the argument threadid. */
2062 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2063 while ((count-- > 0) && (pkt < limit))
2064 {
2065 pkt = unpack_threadid (pkt, resultlist++);
2066 if (resultcount++ >= result_limit)
2067 break;
2068 }
2069 if (doneflag)
2070 *doneflag = done;
2071 return resultcount;
2072 }
2073
2074 static int
2075 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2076 int *done, int *result_count, threadref *threadlist)
2077 {
2078 struct remote_state *rs = get_remote_state ();
2079 static threadref echo_nextthread;
2080 int result = 1;
2081
2082 /* Trancate result limit to be smaller than the packet size. */
2083 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
2084 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2085
2086 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2087 putpkt (rs->buf);
2088 getpkt (&rs->buf, &rs->buf_size, 0);
2089
2090 if (*rs->buf == '\0')
2091 *result_count = 0;
2092 else
2093 *result_count =
2094 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2095 threadlist, done);
2096
2097 if (!threadmatch (&echo_nextthread, nextthread))
2098 {
2099 /* FIXME: This is a good reason to drop the packet. */
2100 /* Possably, there is a duplicate response. */
2101 /* Possabilities :
2102 retransmit immediatly - race conditions
2103 retransmit after timeout - yes
2104 exit
2105 wait for packet, then exit
2106 */
2107 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2108 return 0; /* I choose simply exiting. */
2109 }
2110 if (*result_count <= 0)
2111 {
2112 if (*done != 1)
2113 {
2114 warning (_("RMT ERROR : failed to get remote thread list."));
2115 result = 0;
2116 }
2117 return result; /* break; */
2118 }
2119 if (*result_count > result_limit)
2120 {
2121 *result_count = 0;
2122 warning (_("RMT ERROR: threadlist response longer than requested."));
2123 return 0;
2124 }
2125 return result;
2126 }
2127
2128 /* This is the interface between remote and threads, remotes upper
2129 interface. */
2130
2131 /* remote_find_new_threads retrieves the thread list and for each
2132 thread in the list, looks up the thread in GDB's internal list,
2133 adding the thread if it does not already exist. This involves
2134 getting partial thread lists from the remote target so, polling the
2135 quit_flag is required. */
2136
2137
2138 /* About this many threadisds fit in a packet. */
2139
2140 #define MAXTHREADLISTRESULTS 32
2141
2142 static int
2143 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2144 int looplimit)
2145 {
2146 int done, i, result_count;
2147 int startflag = 1;
2148 int result = 1;
2149 int loopcount = 0;
2150 static threadref nextthread;
2151 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2152
2153 done = 0;
2154 while (!done)
2155 {
2156 if (loopcount++ > looplimit)
2157 {
2158 result = 0;
2159 warning (_("Remote fetch threadlist -infinite loop-."));
2160 break;
2161 }
2162 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2163 &done, &result_count, resultthreadlist))
2164 {
2165 result = 0;
2166 break;
2167 }
2168 /* Clear for later iterations. */
2169 startflag = 0;
2170 /* Setup to resume next batch of thread references, set nextthread. */
2171 if (result_count >= 1)
2172 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2173 i = 0;
2174 while (result_count--)
2175 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2176 break;
2177 }
2178 return result;
2179 }
2180
2181 static int
2182 remote_newthread_step (threadref *ref, void *context)
2183 {
2184 int pid = ptid_get_pid (inferior_ptid);
2185 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2186
2187 if (!in_thread_list (ptid))
2188 add_thread (ptid);
2189 return 1; /* continue iterator */
2190 }
2191
2192 #define CRAZY_MAX_THREADS 1000
2193
2194 static ptid_t
2195 remote_current_thread (ptid_t oldpid)
2196 {
2197 struct remote_state *rs = get_remote_state ();
2198 char *p = rs->buf;
2199 int tid;
2200 int pid;
2201
2202 putpkt ("qC");
2203 getpkt (&rs->buf, &rs->buf_size, 0);
2204 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2205 return read_ptid (&rs->buf[2], NULL);
2206 else
2207 return oldpid;
2208 }
2209
2210 /* Find new threads for info threads command.
2211 * Original version, using John Metzler's thread protocol.
2212 */
2213
2214 static void
2215 remote_find_new_threads (void)
2216 {
2217 remote_threadlist_iterator (remote_newthread_step, 0,
2218 CRAZY_MAX_THREADS);
2219 }
2220
2221 /*
2222 * Find all threads for info threads command.
2223 * Uses new thread protocol contributed by Cisco.
2224 * Falls back and attempts to use the older method (above)
2225 * if the target doesn't respond to the new method.
2226 */
2227
2228 static void
2229 remote_threads_info (struct target_ops *ops)
2230 {
2231 struct remote_state *rs = get_remote_state ();
2232 char *bufp;
2233 ptid_t new_thread;
2234
2235 if (remote_desc == 0) /* paranoia */
2236 error (_("Command can only be used when connected to the remote target."));
2237
2238 if (use_threadinfo_query)
2239 {
2240 putpkt ("qfThreadInfo");
2241 getpkt (&rs->buf, &rs->buf_size, 0);
2242 bufp = rs->buf;
2243 if (bufp[0] != '\0') /* q packet recognized */
2244 {
2245 while (*bufp++ == 'm') /* reply contains one or more TID */
2246 {
2247 do
2248 {
2249 new_thread = read_ptid (bufp, &bufp);
2250 if (!ptid_equal (new_thread, null_ptid))
2251 {
2252 /* In non-stop mode, we assume new found threads
2253 are running until proven otherwise with a
2254 stop reply. In all-stop, we can only get
2255 here if all threads are stopped. */
2256 int running = non_stop ? 1 : 0;
2257
2258 remote_notice_new_inferior (new_thread, running);
2259 }
2260 }
2261 while (*bufp++ == ','); /* comma-separated list */
2262 putpkt ("qsThreadInfo");
2263 getpkt (&rs->buf, &rs->buf_size, 0);
2264 bufp = rs->buf;
2265 }
2266 return; /* done */
2267 }
2268 }
2269
2270 /* Only qfThreadInfo is supported in non-stop mode. */
2271 if (non_stop)
2272 return;
2273
2274 /* Else fall back to old method based on jmetzler protocol. */
2275 use_threadinfo_query = 0;
2276 remote_find_new_threads ();
2277 return;
2278 }
2279
2280 /*
2281 * Collect a descriptive string about the given thread.
2282 * The target may say anything it wants to about the thread
2283 * (typically info about its blocked / runnable state, name, etc.).
2284 * This string will appear in the info threads display.
2285 *
2286 * Optional: targets are not required to implement this function.
2287 */
2288
2289 static char *
2290 remote_threads_extra_info (struct thread_info *tp)
2291 {
2292 struct remote_state *rs = get_remote_state ();
2293 int result;
2294 int set;
2295 threadref id;
2296 struct gdb_ext_thread_info threadinfo;
2297 static char display_buf[100]; /* arbitrary... */
2298 int n = 0; /* position in display_buf */
2299
2300 if (remote_desc == 0) /* paranoia */
2301 internal_error (__FILE__, __LINE__,
2302 _("remote_threads_extra_info"));
2303
2304 if (ptid_equal (tp->ptid, magic_null_ptid)
2305 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2306 /* This is the main thread which was added by GDB. The remote
2307 server doesn't know about it. */
2308 return NULL;
2309
2310 if (use_threadextra_query)
2311 {
2312 char *b = rs->buf;
2313 char *endb = rs->buf + get_remote_packet_size ();
2314
2315 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2316 b += strlen (b);
2317 write_ptid (b, endb, tp->ptid);
2318
2319 putpkt (rs->buf);
2320 getpkt (&rs->buf, &rs->buf_size, 0);
2321 if (rs->buf[0] != 0)
2322 {
2323 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2324 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2325 display_buf [result] = '\0';
2326 return display_buf;
2327 }
2328 }
2329
2330 /* If the above query fails, fall back to the old method. */
2331 use_threadextra_query = 0;
2332 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2333 | TAG_MOREDISPLAY | TAG_DISPLAY;
2334 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2335 if (remote_get_threadinfo (&id, set, &threadinfo))
2336 if (threadinfo.active)
2337 {
2338 if (*threadinfo.shortname)
2339 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2340 " Name: %s,", threadinfo.shortname);
2341 if (*threadinfo.display)
2342 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2343 " State: %s,", threadinfo.display);
2344 if (*threadinfo.more_display)
2345 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2346 " Priority: %s", threadinfo.more_display);
2347
2348 if (n > 0)
2349 {
2350 /* For purely cosmetic reasons, clear up trailing commas. */
2351 if (',' == display_buf[n-1])
2352 display_buf[n-1] = ' ';
2353 return display_buf;
2354 }
2355 }
2356 return NULL;
2357 }
2358 \f
2359
2360 /* Restart the remote side; this is an extended protocol operation. */
2361
2362 static void
2363 extended_remote_restart (void)
2364 {
2365 struct remote_state *rs = get_remote_state ();
2366
2367 /* Send the restart command; for reasons I don't understand the
2368 remote side really expects a number after the "R". */
2369 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2370 putpkt (rs->buf);
2371
2372 remote_fileio_reset ();
2373 }
2374 \f
2375 /* Clean up connection to a remote debugger. */
2376
2377 static void
2378 remote_close (int quitting)
2379 {
2380 if (remote_desc == NULL)
2381 return; /* already closed */
2382
2383 /* Make sure we leave stdin registered in the event loop, and we
2384 don't leave the async SIGINT signal handler installed. */
2385 remote_terminal_ours ();
2386
2387 serial_close (remote_desc);
2388 remote_desc = NULL;
2389
2390 /* We don't have a connection to the remote stub anymore. Get rid
2391 of all the inferiors and their threads we were controlling. */
2392 discard_all_inferiors ();
2393
2394 /* We're no longer interested in any of these events. */
2395 discard_pending_stop_replies (-1);
2396
2397 if (remote_async_inferior_event_token)
2398 delete_async_event_handler (&remote_async_inferior_event_token);
2399 if (remote_async_get_pending_events_token)
2400 delete_async_event_handler (&remote_async_get_pending_events_token);
2401
2402 generic_mourn_inferior ();
2403 }
2404
2405 /* Query the remote side for the text, data and bss offsets. */
2406
2407 static void
2408 get_offsets (void)
2409 {
2410 struct remote_state *rs = get_remote_state ();
2411 char *buf;
2412 char *ptr;
2413 int lose, num_segments = 0, do_sections, do_segments;
2414 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2415 struct section_offsets *offs;
2416 struct symfile_segment_data *data;
2417
2418 if (symfile_objfile == NULL)
2419 return;
2420
2421 putpkt ("qOffsets");
2422 getpkt (&rs->buf, &rs->buf_size, 0);
2423 buf = rs->buf;
2424
2425 if (buf[0] == '\000')
2426 return; /* Return silently. Stub doesn't support
2427 this command. */
2428 if (buf[0] == 'E')
2429 {
2430 warning (_("Remote failure reply: %s"), buf);
2431 return;
2432 }
2433
2434 /* Pick up each field in turn. This used to be done with scanf, but
2435 scanf will make trouble if CORE_ADDR size doesn't match
2436 conversion directives correctly. The following code will work
2437 with any size of CORE_ADDR. */
2438 text_addr = data_addr = bss_addr = 0;
2439 ptr = buf;
2440 lose = 0;
2441
2442 if (strncmp (ptr, "Text=", 5) == 0)
2443 {
2444 ptr += 5;
2445 /* Don't use strtol, could lose on big values. */
2446 while (*ptr && *ptr != ';')
2447 text_addr = (text_addr << 4) + fromhex (*ptr++);
2448
2449 if (strncmp (ptr, ";Data=", 6) == 0)
2450 {
2451 ptr += 6;
2452 while (*ptr && *ptr != ';')
2453 data_addr = (data_addr << 4) + fromhex (*ptr++);
2454 }
2455 else
2456 lose = 1;
2457
2458 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2459 {
2460 ptr += 5;
2461 while (*ptr && *ptr != ';')
2462 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2463
2464 if (bss_addr != data_addr)
2465 warning (_("Target reported unsupported offsets: %s"), buf);
2466 }
2467 else
2468 lose = 1;
2469 }
2470 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2471 {
2472 ptr += 8;
2473 /* Don't use strtol, could lose on big values. */
2474 while (*ptr && *ptr != ';')
2475 text_addr = (text_addr << 4) + fromhex (*ptr++);
2476 num_segments = 1;
2477
2478 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2479 {
2480 ptr += 9;
2481 while (*ptr && *ptr != ';')
2482 data_addr = (data_addr << 4) + fromhex (*ptr++);
2483 num_segments++;
2484 }
2485 }
2486 else
2487 lose = 1;
2488
2489 if (lose)
2490 error (_("Malformed response to offset query, %s"), buf);
2491 else if (*ptr != '\0')
2492 warning (_("Target reported unsupported offsets: %s"), buf);
2493
2494 offs = ((struct section_offsets *)
2495 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2496 memcpy (offs, symfile_objfile->section_offsets,
2497 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2498
2499 data = get_symfile_segment_data (symfile_objfile->obfd);
2500 do_segments = (data != NULL);
2501 do_sections = num_segments == 0;
2502
2503 if (num_segments > 0)
2504 {
2505 segments[0] = text_addr;
2506 segments[1] = data_addr;
2507 }
2508 /* If we have two segments, we can still try to relocate everything
2509 by assuming that the .text and .data offsets apply to the whole
2510 text and data segments. Convert the offsets given in the packet
2511 to base addresses for symfile_map_offsets_to_segments. */
2512 else if (data && data->num_segments == 2)
2513 {
2514 segments[0] = data->segment_bases[0] + text_addr;
2515 segments[1] = data->segment_bases[1] + data_addr;
2516 num_segments = 2;
2517 }
2518 /* If the object file has only one segment, assume that it is text
2519 rather than data; main programs with no writable data are rare,
2520 but programs with no code are useless. Of course the code might
2521 have ended up in the data segment... to detect that we would need
2522 the permissions here. */
2523 else if (data && data->num_segments == 1)
2524 {
2525 segments[0] = data->segment_bases[0] + text_addr;
2526 num_segments = 1;
2527 }
2528 /* There's no way to relocate by segment. */
2529 else
2530 do_segments = 0;
2531
2532 if (do_segments)
2533 {
2534 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2535 offs, num_segments, segments);
2536
2537 if (ret == 0 && !do_sections)
2538 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2539
2540 if (ret > 0)
2541 do_sections = 0;
2542 }
2543
2544 if (data)
2545 free_symfile_segment_data (data);
2546
2547 if (do_sections)
2548 {
2549 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2550
2551 /* This is a temporary kludge to force data and bss to use the same offsets
2552 because that's what nlmconv does now. The real solution requires changes
2553 to the stub and remote.c that I don't have time to do right now. */
2554
2555 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2556 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2557 }
2558
2559 objfile_relocate (symfile_objfile, offs);
2560 }
2561
2562 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2563 threads we know are stopped already. This is used during the
2564 initial remote connection in non-stop mode --- threads that are
2565 reported as already being stopped are left stopped. */
2566
2567 static int
2568 set_stop_requested_callback (struct thread_info *thread, void *data)
2569 {
2570 /* If we have a stop reply for this thread, it must be stopped. */
2571 if (peek_stop_reply (thread->ptid))
2572 set_stop_requested (thread->ptid, 1);
2573
2574 return 0;
2575 }
2576
2577 /* Stub for catch_exception. */
2578
2579 struct start_remote_args
2580 {
2581 int from_tty;
2582
2583 /* The current target. */
2584 struct target_ops *target;
2585
2586 /* Non-zero if this is an extended-remote target. */
2587 int extended_p;
2588 };
2589
2590 static void
2591 remote_start_remote (struct ui_out *uiout, void *opaque)
2592 {
2593 struct start_remote_args *args = opaque;
2594 struct remote_state *rs = get_remote_state ();
2595 struct packet_config *noack_config;
2596 char *wait_status = NULL;
2597
2598 immediate_quit++; /* Allow user to interrupt it. */
2599
2600 /* Ack any packet which the remote side has already sent. */
2601 serial_write (remote_desc, "+", 1);
2602
2603 /* The first packet we send to the target is the optional "supported
2604 packets" request. If the target can answer this, it will tell us
2605 which later probes to skip. */
2606 remote_query_supported ();
2607
2608 /* Next, we possibly activate noack mode.
2609
2610 If the QStartNoAckMode packet configuration is set to AUTO,
2611 enable noack mode if the stub reported a wish for it with
2612 qSupported.
2613
2614 If set to TRUE, then enable noack mode even if the stub didn't
2615 report it in qSupported. If the stub doesn't reply OK, the
2616 session ends with an error.
2617
2618 If FALSE, then don't activate noack mode, regardless of what the
2619 stub claimed should be the default with qSupported. */
2620
2621 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2622
2623 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2624 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2625 && noack_config->support == PACKET_ENABLE))
2626 {
2627 putpkt ("QStartNoAckMode");
2628 getpkt (&rs->buf, &rs->buf_size, 0);
2629 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2630 rs->noack_mode = 1;
2631 }
2632
2633 if (args->extended_p)
2634 {
2635 /* Tell the remote that we are using the extended protocol. */
2636 putpkt ("!");
2637 getpkt (&rs->buf, &rs->buf_size, 0);
2638 }
2639
2640 /* Next, if the target can specify a description, read it. We do
2641 this before anything involving memory or registers. */
2642 target_find_description ();
2643
2644 /* On OSs where the list of libraries is global to all
2645 processes, we fetch them early. */
2646 if (gdbarch_has_global_solist (target_gdbarch))
2647 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2648
2649 if (non_stop)
2650 {
2651 if (!rs->non_stop_aware)
2652 error (_("Non-stop mode requested, but remote does not support non-stop"));
2653
2654 putpkt ("QNonStop:1");
2655 getpkt (&rs->buf, &rs->buf_size, 0);
2656
2657 if (strcmp (rs->buf, "OK") != 0)
2658 error ("Remote refused setting non-stop mode with: %s", rs->buf);
2659
2660 /* Find about threads and processes the stub is already
2661 controlling. We default to adding them in the running state.
2662 The '?' query below will then tell us about which threads are
2663 stopped. */
2664 remote_threads_info (args->target);
2665 }
2666 else if (rs->non_stop_aware)
2667 {
2668 /* Don't assume that the stub can operate in all-stop mode.
2669 Request it explicitely. */
2670 putpkt ("QNonStop:0");
2671 getpkt (&rs->buf, &rs->buf_size, 0);
2672
2673 if (strcmp (rs->buf, "OK") != 0)
2674 error ("Remote refused setting all-stop mode with: %s", rs->buf);
2675 }
2676
2677 /* Check whether the target is running now. */
2678 putpkt ("?");
2679 getpkt (&rs->buf, &rs->buf_size, 0);
2680
2681 if (!non_stop)
2682 {
2683 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2684 {
2685 if (args->extended_p)
2686 {
2687 /* We're connected, but not running. Drop out before we
2688 call start_remote. */
2689 target_mark_exited (args->target);
2690 return;
2691 }
2692 else
2693 error (_("The target is not running (try extended-remote?)"));
2694 }
2695 else
2696 {
2697 /* Save the reply for later. */
2698 wait_status = alloca (strlen (rs->buf) + 1);
2699 strcpy (wait_status, rs->buf);
2700 }
2701
2702 /* Let the stub know that we want it to return the thread. */
2703 set_continue_thread (minus_one_ptid);
2704
2705 /* Without this, some commands which require an active target
2706 (such as kill) won't work. This variable serves (at least)
2707 double duty as both the pid of the target process (if it has
2708 such), and as a flag indicating that a target is active.
2709 These functions should be split out into seperate variables,
2710 especially since GDB will someday have a notion of debugging
2711 several processes. */
2712 inferior_ptid = magic_null_ptid;
2713
2714 /* Now, if we have thread information, update inferior_ptid. */
2715 inferior_ptid = remote_current_thread (inferior_ptid);
2716
2717 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
2718
2719 /* Always add the main thread. */
2720 add_thread_silent (inferior_ptid);
2721
2722 get_offsets (); /* Get text, data & bss offsets. */
2723
2724 /* If we could not find a description using qXfer, and we know
2725 how to do it some other way, try again. This is not
2726 supported for non-stop; it could be, but it is tricky if
2727 there are no stopped threads when we connect. */
2728 if (remote_read_description_p (args->target)
2729 && gdbarch_target_desc (target_gdbarch) == NULL)
2730 {
2731 target_clear_description ();
2732 target_find_description ();
2733 }
2734
2735 /* Use the previously fetched status. */
2736 gdb_assert (wait_status != NULL);
2737 strcpy (rs->buf, wait_status);
2738 rs->cached_wait_status = 1;
2739
2740 immediate_quit--;
2741 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2742 }
2743 else
2744 {
2745 /* In non-stop, we will either get an "OK", meaning that there
2746 are no stopped threads at this time; or, a regular stop
2747 reply. In the latter case, there may be more than one thread
2748 stopped --- we pull them all out using the vStopped
2749 mechanism. */
2750 if (strcmp (rs->buf, "OK") != 0)
2751 {
2752 struct stop_reply *stop_reply;
2753 struct cleanup *old_chain;
2754
2755 stop_reply = stop_reply_xmalloc ();
2756 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
2757
2758 remote_parse_stop_reply (rs->buf, stop_reply);
2759 discard_cleanups (old_chain);
2760
2761 /* get_pending_stop_replies acks this one, and gets the rest
2762 out. */
2763 pending_stop_reply = stop_reply;
2764 remote_get_pending_stop_replies ();
2765
2766 /* Make sure that threads that were stopped remain
2767 stopped. */
2768 iterate_over_threads (set_stop_requested_callback, NULL);
2769 }
2770
2771 if (target_can_async_p ())
2772 target_async (inferior_event_handler, 0);
2773
2774 if (thread_count () == 0)
2775 {
2776 if (args->extended_p)
2777 {
2778 /* We're connected, but not running. Drop out before we
2779 call start_remote. */
2780 target_mark_exited (args->target);
2781 return;
2782 }
2783 else
2784 error (_("The target is not running (try extended-remote?)"));
2785 }
2786
2787 if (args->extended_p)
2788 target_mark_running (args->target);
2789
2790 /* Let the stub know that we want it to return the thread. */
2791
2792 /* Force the stub to choose a thread. */
2793 set_general_thread (null_ptid);
2794
2795 /* Query it. */
2796 inferior_ptid = remote_current_thread (minus_one_ptid);
2797 if (ptid_equal (inferior_ptid, minus_one_ptid))
2798 error (_("remote didn't report the current thread in non-stop mode"));
2799
2800 get_offsets (); /* Get text, data & bss offsets. */
2801
2802 /* In non-stop mode, any cached wait status will be stored in
2803 the stop reply queue. */
2804 gdb_assert (wait_status == NULL);
2805
2806 init_wait_for_inferior ();
2807 }
2808
2809 /* If we connected to a live target, do some additional setup. */
2810 if (target_has_execution)
2811 {
2812 if (exec_bfd) /* No use without an exec file. */
2813 remote_check_symbols (symfile_objfile);
2814 }
2815
2816 /* If code is shared between processes, then breakpoints are global
2817 too; Insert them now. */
2818 if (gdbarch_has_global_solist (target_gdbarch)
2819 && breakpoints_always_inserted_mode ())
2820 insert_breakpoints ();
2821 }
2822
2823 /* Open a connection to a remote debugger.
2824 NAME is the filename used for communication. */
2825
2826 static void
2827 remote_open (char *name, int from_tty)
2828 {
2829 remote_open_1 (name, from_tty, &remote_ops, 0);
2830 }
2831
2832 /* Open a connection to a remote debugger using the extended
2833 remote gdb protocol. NAME is the filename used for communication. */
2834
2835 static void
2836 extended_remote_open (char *name, int from_tty)
2837 {
2838 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2839 }
2840
2841 /* Generic code for opening a connection to a remote target. */
2842
2843 static void
2844 init_all_packet_configs (void)
2845 {
2846 int i;
2847 for (i = 0; i < PACKET_MAX; i++)
2848 update_packet_config (&remote_protocol_packets[i]);
2849 }
2850
2851 /* Symbol look-up. */
2852
2853 static void
2854 remote_check_symbols (struct objfile *objfile)
2855 {
2856 struct remote_state *rs = get_remote_state ();
2857 char *msg, *reply, *tmp;
2858 struct minimal_symbol *sym;
2859 int end;
2860
2861 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2862 return;
2863
2864 /* Make sure the remote is pointing at the right process. */
2865 set_general_process ();
2866
2867 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2868 because we need both at the same time. */
2869 msg = alloca (get_remote_packet_size ());
2870
2871 /* Invite target to request symbol lookups. */
2872
2873 putpkt ("qSymbol::");
2874 getpkt (&rs->buf, &rs->buf_size, 0);
2875 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2876 reply = rs->buf;
2877
2878 while (strncmp (reply, "qSymbol:", 8) == 0)
2879 {
2880 tmp = &reply[8];
2881 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2882 msg[end] = '\0';
2883 sym = lookup_minimal_symbol (msg, NULL, NULL);
2884 if (sym == NULL)
2885 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2886 else
2887 {
2888 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2889
2890 /* If this is a function address, return the start of code
2891 instead of any data function descriptor. */
2892 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2893 sym_addr,
2894 &current_target);
2895
2896 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2897 paddr_nz (sym_addr), &reply[8]);
2898 }
2899
2900 putpkt (msg);
2901 getpkt (&rs->buf, &rs->buf_size, 0);
2902 reply = rs->buf;
2903 }
2904 }
2905
2906 static struct serial *
2907 remote_serial_open (char *name)
2908 {
2909 static int udp_warning = 0;
2910
2911 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2912 of in ser-tcp.c, because it is the remote protocol assuming that the
2913 serial connection is reliable and not the serial connection promising
2914 to be. */
2915 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2916 {
2917 warning (_("\
2918 The remote protocol may be unreliable over UDP.\n\
2919 Some events may be lost, rendering further debugging impossible."));
2920 udp_warning = 1;
2921 }
2922
2923 return serial_open (name);
2924 }
2925
2926 /* This type describes each known response to the qSupported
2927 packet. */
2928 struct protocol_feature
2929 {
2930 /* The name of this protocol feature. */
2931 const char *name;
2932
2933 /* The default for this protocol feature. */
2934 enum packet_support default_support;
2935
2936 /* The function to call when this feature is reported, or after
2937 qSupported processing if the feature is not supported.
2938 The first argument points to this structure. The second
2939 argument indicates whether the packet requested support be
2940 enabled, disabled, or probed (or the default, if this function
2941 is being called at the end of processing and this feature was
2942 not reported). The third argument may be NULL; if not NULL, it
2943 is a NUL-terminated string taken from the packet following
2944 this feature's name and an equals sign. */
2945 void (*func) (const struct protocol_feature *, enum packet_support,
2946 const char *);
2947
2948 /* The corresponding packet for this feature. Only used if
2949 FUNC is remote_supported_packet. */
2950 int packet;
2951 };
2952
2953 static void
2954 remote_supported_packet (const struct protocol_feature *feature,
2955 enum packet_support support,
2956 const char *argument)
2957 {
2958 if (argument)
2959 {
2960 warning (_("Remote qSupported response supplied an unexpected value for"
2961 " \"%s\"."), feature->name);
2962 return;
2963 }
2964
2965 if (remote_protocol_packets[feature->packet].support
2966 == PACKET_SUPPORT_UNKNOWN)
2967 remote_protocol_packets[feature->packet].support = support;
2968 }
2969
2970 static void
2971 remote_packet_size (const struct protocol_feature *feature,
2972 enum packet_support support, const char *value)
2973 {
2974 struct remote_state *rs = get_remote_state ();
2975
2976 int packet_size;
2977 char *value_end;
2978
2979 if (support != PACKET_ENABLE)
2980 return;
2981
2982 if (value == NULL || *value == '\0')
2983 {
2984 warning (_("Remote target reported \"%s\" without a size."),
2985 feature->name);
2986 return;
2987 }
2988
2989 errno = 0;
2990 packet_size = strtol (value, &value_end, 16);
2991 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2992 {
2993 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2994 feature->name, value);
2995 return;
2996 }
2997
2998 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2999 {
3000 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3001 packet_size, MAX_REMOTE_PACKET_SIZE);
3002 packet_size = MAX_REMOTE_PACKET_SIZE;
3003 }
3004
3005 /* Record the new maximum packet size. */
3006 rs->explicit_packet_size = packet_size;
3007 }
3008
3009 static void
3010 remote_multi_process_feature (const struct protocol_feature *feature,
3011 enum packet_support support, const char *value)
3012 {
3013 struct remote_state *rs = get_remote_state ();
3014 rs->multi_process_aware = (support == PACKET_ENABLE);
3015 }
3016
3017 static void
3018 remote_non_stop_feature (const struct protocol_feature *feature,
3019 enum packet_support support, const char *value)
3020 {
3021 struct remote_state *rs = get_remote_state ();
3022 rs->non_stop_aware = (support == PACKET_ENABLE);
3023 }
3024
3025 static struct protocol_feature remote_protocol_features[] = {
3026 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3027 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3028 PACKET_qXfer_auxv },
3029 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3030 PACKET_qXfer_features },
3031 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3032 PACKET_qXfer_libraries },
3033 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3034 PACKET_qXfer_memory_map },
3035 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3036 PACKET_qXfer_spu_read },
3037 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3038 PACKET_qXfer_spu_write },
3039 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3040 PACKET_qXfer_osdata },
3041 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3042 PACKET_QPassSignals },
3043 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3044 PACKET_QStartNoAckMode },
3045 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3046 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3047 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3048 PACKET_qXfer_siginfo_read },
3049 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3050 PACKET_qXfer_siginfo_write },
3051 };
3052
3053 static void
3054 remote_query_supported (void)
3055 {
3056 struct remote_state *rs = get_remote_state ();
3057 char *next;
3058 int i;
3059 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3060
3061 /* The packet support flags are handled differently for this packet
3062 than for most others. We treat an error, a disabled packet, and
3063 an empty response identically: any features which must be reported
3064 to be used will be automatically disabled. An empty buffer
3065 accomplishes this, since that is also the representation for a list
3066 containing no features. */
3067
3068 rs->buf[0] = 0;
3069 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3070 {
3071 if (rs->extended)
3072 putpkt ("qSupported:multiprocess+");
3073 else
3074 putpkt ("qSupported");
3075
3076 getpkt (&rs->buf, &rs->buf_size, 0);
3077
3078 /* If an error occured, warn, but do not return - just reset the
3079 buffer to empty and go on to disable features. */
3080 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3081 == PACKET_ERROR)
3082 {
3083 warning (_("Remote failure reply: %s"), rs->buf);
3084 rs->buf[0] = 0;
3085 }
3086 }
3087
3088 memset (seen, 0, sizeof (seen));
3089
3090 next = rs->buf;
3091 while (*next)
3092 {
3093 enum packet_support is_supported;
3094 char *p, *end, *name_end, *value;
3095
3096 /* First separate out this item from the rest of the packet. If
3097 there's another item after this, we overwrite the separator
3098 (terminated strings are much easier to work with). */
3099 p = next;
3100 end = strchr (p, ';');
3101 if (end == NULL)
3102 {
3103 end = p + strlen (p);
3104 next = end;
3105 }
3106 else
3107 {
3108 *end = '\0';
3109 next = end + 1;
3110
3111 if (end == p)
3112 {
3113 warning (_("empty item in \"qSupported\" response"));
3114 continue;
3115 }
3116 }
3117
3118 name_end = strchr (p, '=');
3119 if (name_end)
3120 {
3121 /* This is a name=value entry. */
3122 is_supported = PACKET_ENABLE;
3123 value = name_end + 1;
3124 *name_end = '\0';
3125 }
3126 else
3127 {
3128 value = NULL;
3129 switch (end[-1])
3130 {
3131 case '+':
3132 is_supported = PACKET_ENABLE;
3133 break;
3134
3135 case '-':
3136 is_supported = PACKET_DISABLE;
3137 break;
3138
3139 case '?':
3140 is_supported = PACKET_SUPPORT_UNKNOWN;
3141 break;
3142
3143 default:
3144 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3145 continue;
3146 }
3147 end[-1] = '\0';
3148 }
3149
3150 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3151 if (strcmp (remote_protocol_features[i].name, p) == 0)
3152 {
3153 const struct protocol_feature *feature;
3154
3155 seen[i] = 1;
3156 feature = &remote_protocol_features[i];
3157 feature->func (feature, is_supported, value);
3158 break;
3159 }
3160 }
3161
3162 /* If we increased the packet size, make sure to increase the global
3163 buffer size also. We delay this until after parsing the entire
3164 qSupported packet, because this is the same buffer we were
3165 parsing. */
3166 if (rs->buf_size < rs->explicit_packet_size)
3167 {
3168 rs->buf_size = rs->explicit_packet_size;
3169 rs->buf = xrealloc (rs->buf, rs->buf_size);
3170 }
3171
3172 /* Handle the defaults for unmentioned features. */
3173 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3174 if (!seen[i])
3175 {
3176 const struct protocol_feature *feature;
3177
3178 feature = &remote_protocol_features[i];
3179 feature->func (feature, feature->default_support, NULL);
3180 }
3181 }
3182
3183
3184 static void
3185 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3186 {
3187 struct remote_state *rs = get_remote_state ();
3188
3189 if (name == 0)
3190 error (_("To open a remote debug connection, you need to specify what\n"
3191 "serial device is attached to the remote system\n"
3192 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3193
3194 /* See FIXME above. */
3195 if (!target_async_permitted)
3196 wait_forever_enabled_p = 1;
3197
3198 /* If we're connected to a running target, target_preopen will kill it.
3199 But if we're connected to a target system with no running process,
3200 then we will still be connected when it returns. Ask this question
3201 first, before target_preopen has a chance to kill anything. */
3202 if (remote_desc != NULL && !target_has_execution)
3203 {
3204 if (!from_tty
3205 || query (_("Already connected to a remote target. Disconnect? ")))
3206 pop_target ();
3207 else
3208 error (_("Still connected."));
3209 }
3210
3211 target_preopen (from_tty);
3212
3213 unpush_target (target);
3214
3215 /* This time without a query. If we were connected to an
3216 extended-remote target and target_preopen killed the running
3217 process, we may still be connected. If we are starting "target
3218 remote" now, the extended-remote target will not have been
3219 removed by unpush_target. */
3220 if (remote_desc != NULL && !target_has_execution)
3221 pop_target ();
3222
3223 /* Make sure we send the passed signals list the next time we resume. */
3224 xfree (last_pass_packet);
3225 last_pass_packet = NULL;
3226
3227 remote_fileio_reset ();
3228 reopen_exec_file ();
3229 reread_symbols ();
3230
3231 remote_desc = remote_serial_open (name);
3232 if (!remote_desc)
3233 perror_with_name (name);
3234
3235 if (baud_rate != -1)
3236 {
3237 if (serial_setbaudrate (remote_desc, baud_rate))
3238 {
3239 /* The requested speed could not be set. Error out to
3240 top level after closing remote_desc. Take care to
3241 set remote_desc to NULL to avoid closing remote_desc
3242 more than once. */
3243 serial_close (remote_desc);
3244 remote_desc = NULL;
3245 perror_with_name (name);
3246 }
3247 }
3248
3249 serial_raw (remote_desc);
3250
3251 /* If there is something sitting in the buffer we might take it as a
3252 response to a command, which would be bad. */
3253 serial_flush_input (remote_desc);
3254
3255 if (from_tty)
3256 {
3257 puts_filtered ("Remote debugging using ");
3258 puts_filtered (name);
3259 puts_filtered ("\n");
3260 }
3261 push_target (target); /* Switch to using remote target now. */
3262
3263 /* Assume that the target is not running, until we learn otherwise. */
3264 if (extended_p)
3265 target_mark_exited (target);
3266
3267 /* Register extra event sources in the event loop. */
3268 remote_async_inferior_event_token
3269 = create_async_event_handler (remote_async_inferior_event_handler,
3270 NULL);
3271 remote_async_get_pending_events_token
3272 = create_async_event_handler (remote_async_get_pending_events_handler,
3273 NULL);
3274
3275 /* Reset the target state; these things will be queried either by
3276 remote_query_supported or as they are needed. */
3277 init_all_packet_configs ();
3278 rs->cached_wait_status = 0;
3279 rs->explicit_packet_size = 0;
3280 rs->noack_mode = 0;
3281 rs->multi_process_aware = 0;
3282 rs->extended = extended_p;
3283 rs->non_stop_aware = 0;
3284 rs->waiting_for_stop_reply = 0;
3285
3286 general_thread = not_sent_ptid;
3287 continue_thread = not_sent_ptid;
3288
3289 /* Probe for ability to use "ThreadInfo" query, as required. */
3290 use_threadinfo_query = 1;
3291 use_threadextra_query = 1;
3292
3293 if (target_async_permitted)
3294 {
3295 /* With this target we start out by owning the terminal. */
3296 remote_async_terminal_ours_p = 1;
3297
3298 /* FIXME: cagney/1999-09-23: During the initial connection it is
3299 assumed that the target is already ready and able to respond to
3300 requests. Unfortunately remote_start_remote() eventually calls
3301 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3302 around this. Eventually a mechanism that allows
3303 wait_for_inferior() to expect/get timeouts will be
3304 implemented. */
3305 wait_forever_enabled_p = 0;
3306 }
3307
3308 /* First delete any symbols previously loaded from shared libraries. */
3309 no_shared_libraries (NULL, 0);
3310
3311 /* Start afresh. */
3312 init_thread_list ();
3313
3314 /* Start the remote connection. If error() or QUIT, discard this
3315 target (we'd otherwise be in an inconsistent state) and then
3316 propogate the error on up the exception chain. This ensures that
3317 the caller doesn't stumble along blindly assuming that the
3318 function succeeded. The CLI doesn't have this problem but other
3319 UI's, such as MI do.
3320
3321 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3322 this function should return an error indication letting the
3323 caller restore the previous state. Unfortunately the command
3324 ``target remote'' is directly wired to this function making that
3325 impossible. On a positive note, the CLI side of this problem has
3326 been fixed - the function set_cmd_context() makes it possible for
3327 all the ``target ....'' commands to share a common callback
3328 function. See cli-dump.c. */
3329 {
3330 struct gdb_exception ex;
3331 struct start_remote_args args;
3332
3333 args.from_tty = from_tty;
3334 args.target = target;
3335 args.extended_p = extended_p;
3336
3337 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3338 if (ex.reason < 0)
3339 {
3340 /* Pop the partially set up target - unless something else did
3341 already before throwing the exception. */
3342 if (remote_desc != NULL)
3343 pop_target ();
3344 if (target_async_permitted)
3345 wait_forever_enabled_p = 1;
3346 throw_exception (ex);
3347 }
3348 }
3349
3350 if (target_async_permitted)
3351 wait_forever_enabled_p = 1;
3352 }
3353
3354 /* This takes a program previously attached to and detaches it. After
3355 this is done, GDB can be used to debug some other program. We
3356 better not have left any breakpoints in the target program or it'll
3357 die when it hits one. */
3358
3359 static void
3360 remote_detach_1 (char *args, int from_tty, int extended)
3361 {
3362 int pid = ptid_get_pid (inferior_ptid);
3363 struct remote_state *rs = get_remote_state ();
3364
3365 if (args)
3366 error (_("Argument given to \"detach\" when remotely debugging."));
3367
3368 if (!target_has_execution)
3369 error (_("No process to detach from."));
3370
3371 /* Tell the remote target to detach. */
3372 if (remote_multi_process_p (rs))
3373 sprintf (rs->buf, "D;%x", pid);
3374 else
3375 strcpy (rs->buf, "D");
3376
3377 putpkt (rs->buf);
3378 getpkt (&rs->buf, &rs->buf_size, 0);
3379
3380 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3381 ;
3382 else if (rs->buf[0] == '\0')
3383 error (_("Remote doesn't know how to detach"));
3384 else
3385 error (_("Can't detach process."));
3386
3387 if (from_tty)
3388 {
3389 if (remote_multi_process_p (rs))
3390 printf_filtered (_("Detached from remote %s.\n"),
3391 target_pid_to_str (pid_to_ptid (pid)));
3392 else
3393 {
3394 if (extended)
3395 puts_filtered (_("Detached from remote process.\n"));
3396 else
3397 puts_filtered (_("Ending remote debugging.\n"));
3398 }
3399 }
3400
3401 discard_pending_stop_replies (pid);
3402 target_mourn_inferior ();
3403 }
3404
3405 static void
3406 remote_detach (struct target_ops *ops, char *args, int from_tty)
3407 {
3408 remote_detach_1 (args, from_tty, 0);
3409 }
3410
3411 static void
3412 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3413 {
3414 remote_detach_1 (args, from_tty, 1);
3415 }
3416
3417 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3418
3419 static void
3420 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3421 {
3422 if (args)
3423 error (_("Argument given to \"disconnect\" when remotely debugging."));
3424
3425 /* Make sure we unpush even the extended remote targets; mourn
3426 won't do it. So call remote_mourn_1 directly instead of
3427 target_mourn_inferior. */
3428 remote_mourn_1 (target);
3429
3430 if (from_tty)
3431 puts_filtered ("Ending remote debugging.\n");
3432 }
3433
3434 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3435 be chatty about it. */
3436
3437 static void
3438 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3439 {
3440 struct remote_state *rs = get_remote_state ();
3441 int pid;
3442 char *dummy;
3443 char *wait_status = NULL;
3444
3445 if (!args)
3446 error_no_arg (_("process-id to attach"));
3447
3448 dummy = args;
3449 pid = strtol (args, &dummy, 0);
3450 /* Some targets don't set errno on errors, grrr! */
3451 if (pid == 0 && args == dummy)
3452 error (_("Illegal process-id: %s."), args);
3453
3454 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3455 error (_("This target does not support attaching to a process"));
3456
3457 sprintf (rs->buf, "vAttach;%x", pid);
3458 putpkt (rs->buf);
3459 getpkt (&rs->buf, &rs->buf_size, 0);
3460
3461 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3462 {
3463 if (from_tty)
3464 printf_unfiltered (_("Attached to %s\n"),
3465 target_pid_to_str (pid_to_ptid (pid)));
3466
3467 if (!non_stop)
3468 {
3469 /* Save the reply for later. */
3470 wait_status = alloca (strlen (rs->buf) + 1);
3471 strcpy (wait_status, rs->buf);
3472 }
3473 else if (strcmp (rs->buf, "OK") != 0)
3474 error (_("Attaching to %s failed with: %s"),
3475 target_pid_to_str (pid_to_ptid (pid)),
3476 rs->buf);
3477 }
3478 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3479 error (_("This target does not support attaching to a process"));
3480 else
3481 error (_("Attaching to %s failed"),
3482 target_pid_to_str (pid_to_ptid (pid)));
3483
3484 inferior_ptid = pid_to_ptid (pid);
3485
3486 /* Now, if we have thread information, update inferior_ptid. */
3487 inferior_ptid = remote_current_thread (inferior_ptid);
3488
3489 remote_add_inferior (pid, 1);
3490
3491 if (non_stop)
3492 /* Get list of threads. */
3493 remote_threads_info (target);
3494 else
3495 /* Add the main thread to the thread list. */
3496 add_thread_silent (inferior_ptid);
3497
3498 /* Next, if the target can specify a description, read it. We do
3499 this before anything involving memory or registers. */
3500 target_find_description ();
3501
3502 if (!non_stop)
3503 {
3504 /* Use the previously fetched status. */
3505 gdb_assert (wait_status != NULL);
3506
3507 if (target_can_async_p ())
3508 {
3509 struct stop_reply *stop_reply;
3510 struct cleanup *old_chain;
3511
3512 stop_reply = stop_reply_xmalloc ();
3513 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3514 remote_parse_stop_reply (wait_status, stop_reply);
3515 discard_cleanups (old_chain);
3516 push_stop_reply (stop_reply);
3517
3518 target_async (inferior_event_handler, 0);
3519 }
3520 else
3521 {
3522 gdb_assert (wait_status != NULL);
3523 strcpy (rs->buf, wait_status);
3524 rs->cached_wait_status = 1;
3525 }
3526 }
3527 else
3528 gdb_assert (wait_status == NULL);
3529 }
3530
3531 static void
3532 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3533 {
3534 extended_remote_attach_1 (ops, args, from_tty);
3535 }
3536
3537 /* Convert hex digit A to a number. */
3538
3539 static int
3540 fromhex (int a)
3541 {
3542 if (a >= '0' && a <= '9')
3543 return a - '0';
3544 else if (a >= 'a' && a <= 'f')
3545 return a - 'a' + 10;
3546 else if (a >= 'A' && a <= 'F')
3547 return a - 'A' + 10;
3548 else
3549 error (_("Reply contains invalid hex digit %d"), a);
3550 }
3551
3552 static int
3553 hex2bin (const char *hex, gdb_byte *bin, int count)
3554 {
3555 int i;
3556
3557 for (i = 0; i < count; i++)
3558 {
3559 if (hex[0] == 0 || hex[1] == 0)
3560 {
3561 /* Hex string is short, or of uneven length.
3562 Return the count that has been converted so far. */
3563 return i;
3564 }
3565 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3566 hex += 2;
3567 }
3568 return i;
3569 }
3570
3571 /* Convert number NIB to a hex digit. */
3572
3573 static int
3574 tohex (int nib)
3575 {
3576 if (nib < 10)
3577 return '0' + nib;
3578 else
3579 return 'a' + nib - 10;
3580 }
3581
3582 static int
3583 bin2hex (const gdb_byte *bin, char *hex, int count)
3584 {
3585 int i;
3586 /* May use a length, or a nul-terminated string as input. */
3587 if (count == 0)
3588 count = strlen ((char *) bin);
3589
3590 for (i = 0; i < count; i++)
3591 {
3592 *hex++ = tohex ((*bin >> 4) & 0xf);
3593 *hex++ = tohex (*bin++ & 0xf);
3594 }
3595 *hex = 0;
3596 return i;
3597 }
3598 \f
3599 /* Check for the availability of vCont. This function should also check
3600 the response. */
3601
3602 static void
3603 remote_vcont_probe (struct remote_state *rs)
3604 {
3605 char *buf;
3606
3607 strcpy (rs->buf, "vCont?");
3608 putpkt (rs->buf);
3609 getpkt (&rs->buf, &rs->buf_size, 0);
3610 buf = rs->buf;
3611
3612 /* Make sure that the features we assume are supported. */
3613 if (strncmp (buf, "vCont", 5) == 0)
3614 {
3615 char *p = &buf[5];
3616 int support_s, support_S, support_c, support_C;
3617
3618 support_s = 0;
3619 support_S = 0;
3620 support_c = 0;
3621 support_C = 0;
3622 rs->support_vCont_t = 0;
3623 while (p && *p == ';')
3624 {
3625 p++;
3626 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3627 support_s = 1;
3628 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3629 support_S = 1;
3630 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3631 support_c = 1;
3632 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3633 support_C = 1;
3634 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
3635 rs->support_vCont_t = 1;
3636
3637 p = strchr (p, ';');
3638 }
3639
3640 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3641 BUF will make packet_ok disable the packet. */
3642 if (!support_s || !support_S || !support_c || !support_C)
3643 buf[0] = 0;
3644 }
3645
3646 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3647 }
3648
3649 /* Resume the remote inferior by using a "vCont" packet. The thread
3650 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3651 resumed thread should be single-stepped and/or signalled. If PTID
3652 equals minus_one_ptid, then all threads are resumed; the thread to
3653 be stepped and/or signalled is given in the global INFERIOR_PTID.
3654 This function returns non-zero iff it resumes the inferior.
3655
3656 This function issues a strict subset of all possible vCont commands at the
3657 moment. */
3658
3659 static int
3660 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3661 {
3662 struct remote_state *rs = get_remote_state ();
3663 char *p;
3664 char *endp;
3665
3666 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3667 remote_vcont_probe (rs);
3668
3669 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3670 return 0;
3671
3672 p = rs->buf;
3673 endp = rs->buf + get_remote_packet_size ();
3674
3675 /* If we could generate a wider range of packets, we'd have to worry
3676 about overflowing BUF. Should there be a generic
3677 "multi-part-packet" packet? */
3678
3679 if (ptid_equal (ptid, magic_null_ptid))
3680 {
3681 /* MAGIC_NULL_PTID means that we don't have any active threads,
3682 so we don't have any TID numbers the inferior will
3683 understand. Make sure to only send forms that do not specify
3684 a TID. */
3685 if (step && siggnal != TARGET_SIGNAL_0)
3686 xsnprintf (p, endp - p, "vCont;S%02x", siggnal);
3687 else if (step)
3688 xsnprintf (p, endp - p, "vCont;s");
3689 else if (siggnal != TARGET_SIGNAL_0)
3690 xsnprintf (p, endp - p, "vCont;C%02x", siggnal);
3691 else
3692 xsnprintf (p, endp - p, "vCont;c");
3693 }
3694 else if (ptid_equal (ptid, minus_one_ptid))
3695 {
3696 /* Resume all threads, with preference for INFERIOR_PTID. */
3697 if (step && siggnal != TARGET_SIGNAL_0)
3698 {
3699 /* Step inferior_ptid with signal. */
3700 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3701 p = write_ptid (p, endp, inferior_ptid);
3702 /* And continue others. */
3703 p += xsnprintf (p, endp - p, ";c");
3704 }
3705 else if (step)
3706 {
3707 /* Step inferior_ptid. */
3708 p += xsnprintf (p, endp - p, "vCont;s:");
3709 p = write_ptid (p, endp, inferior_ptid);
3710 /* And continue others. */
3711 p += xsnprintf (p, endp - p, ";c");
3712 }
3713 else if (siggnal != TARGET_SIGNAL_0)
3714 {
3715 /* Continue inferior_ptid with signal. */
3716 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3717 p = write_ptid (p, endp, inferior_ptid);
3718 /* And continue others. */
3719 p += xsnprintf (p, endp - p, ";c");
3720 }
3721 else
3722 xsnprintf (p, endp - p, "vCont;c");
3723 }
3724 else
3725 {
3726 /* Scheduler locking; resume only PTID. */
3727 if (step && siggnal != TARGET_SIGNAL_0)
3728 {
3729 /* Step ptid with signal. */
3730 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3731 p = write_ptid (p, endp, ptid);
3732 }
3733 else if (step)
3734 {
3735 /* Step ptid. */
3736 p += xsnprintf (p, endp - p, "vCont;s:");
3737 p = write_ptid (p, endp, ptid);
3738 }
3739 else if (siggnal != TARGET_SIGNAL_0)
3740 {
3741 /* Continue ptid with signal. */
3742 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3743 p = write_ptid (p, endp, ptid);
3744 }
3745 else
3746 {
3747 /* Continue ptid. */
3748 p += xsnprintf (p, endp - p, "vCont;c:");
3749 p = write_ptid (p, endp, ptid);
3750 }
3751 }
3752
3753 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3754 putpkt (rs->buf);
3755
3756 if (non_stop)
3757 {
3758 /* In non-stop, the stub replies to vCont with "OK". The stop
3759 reply will be reported asynchronously by means of a `%Stop'
3760 notification. */
3761 getpkt (&rs->buf, &rs->buf_size, 0);
3762 if (strcmp (rs->buf, "OK") != 0)
3763 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
3764 }
3765
3766 return 1;
3767 }
3768
3769 /* Tell the remote machine to resume. */
3770
3771 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3772
3773 static int last_sent_step;
3774
3775 static void
3776 remote_resume (struct target_ops *ops,
3777 ptid_t ptid, int step, enum target_signal siggnal)
3778 {
3779 struct remote_state *rs = get_remote_state ();
3780 char *buf;
3781
3782 last_sent_signal = siggnal;
3783 last_sent_step = step;
3784
3785 /* Update the inferior on signals to silently pass, if they've changed. */
3786 remote_pass_signals ();
3787
3788 /* The vCont packet doesn't need to specify threads via Hc. */
3789 if (remote_vcont_resume (ptid, step, siggnal))
3790 goto done;
3791
3792 /* All other supported resume packets do use Hc, so set the continue
3793 thread. */
3794 if (ptid_equal (ptid, minus_one_ptid))
3795 set_continue_thread (any_thread_ptid);
3796 else
3797 set_continue_thread (ptid);
3798
3799 buf = rs->buf;
3800 if (execution_direction == EXEC_REVERSE)
3801 {
3802 /* We don't pass signals to the target in reverse exec mode. */
3803 if (info_verbose && siggnal != TARGET_SIGNAL_0)
3804 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
3805 siggnal);
3806 strcpy (buf, step ? "bs" : "bc");
3807 }
3808 else if (siggnal != TARGET_SIGNAL_0)
3809 {
3810 buf[0] = step ? 'S' : 'C';
3811 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3812 buf[2] = tohex (((int) siggnal) & 0xf);
3813 buf[3] = '\0';
3814 }
3815 else
3816 strcpy (buf, step ? "s" : "c");
3817
3818 putpkt (buf);
3819
3820 done:
3821 /* We are about to start executing the inferior, let's register it
3822 with the event loop. NOTE: this is the one place where all the
3823 execution commands end up. We could alternatively do this in each
3824 of the execution commands in infcmd.c. */
3825 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3826 into infcmd.c in order to allow inferior function calls to work
3827 NOT asynchronously. */
3828 if (target_can_async_p ())
3829 target_async (inferior_event_handler, 0);
3830
3831 /* We've just told the target to resume. The remote server will
3832 wait for the inferior to stop, and then send a stop reply. In
3833 the mean time, we can't start another command/query ourselves
3834 because the stub wouldn't be ready to process it. This applies
3835 only to the base all-stop protocol, however. In non-stop (which
3836 only supports vCont), the stub replies with an "OK", and is
3837 immediate able to process further serial input. */
3838 if (!non_stop)
3839 rs->waiting_for_stop_reply = 1;
3840 }
3841 \f
3842
3843 /* Set up the signal handler for SIGINT, while the target is
3844 executing, ovewriting the 'regular' SIGINT signal handler. */
3845 static void
3846 initialize_sigint_signal_handler (void)
3847 {
3848 signal (SIGINT, handle_remote_sigint);
3849 }
3850
3851 /* Signal handler for SIGINT, while the target is executing. */
3852 static void
3853 handle_remote_sigint (int sig)
3854 {
3855 signal (sig, handle_remote_sigint_twice);
3856 mark_async_signal_handler_wrapper (sigint_remote_token);
3857 }
3858
3859 /* Signal handler for SIGINT, installed after SIGINT has already been
3860 sent once. It will take effect the second time that the user sends
3861 a ^C. */
3862 static void
3863 handle_remote_sigint_twice (int sig)
3864 {
3865 signal (sig, handle_remote_sigint);
3866 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3867 }
3868
3869 /* Perform the real interruption of the target execution, in response
3870 to a ^C. */
3871 static void
3872 async_remote_interrupt (gdb_client_data arg)
3873 {
3874 if (remote_debug)
3875 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3876
3877 target_stop (inferior_ptid);
3878 }
3879
3880 /* Perform interrupt, if the first attempt did not succeed. Just give
3881 up on the target alltogether. */
3882 void
3883 async_remote_interrupt_twice (gdb_client_data arg)
3884 {
3885 if (remote_debug)
3886 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3887
3888 interrupt_query ();
3889 }
3890
3891 /* Reinstall the usual SIGINT handlers, after the target has
3892 stopped. */
3893 static void
3894 cleanup_sigint_signal_handler (void *dummy)
3895 {
3896 signal (SIGINT, handle_sigint);
3897 }
3898
3899 /* Send ^C to target to halt it. Target will respond, and send us a
3900 packet. */
3901 static void (*ofunc) (int);
3902
3903 /* The command line interface's stop routine. This function is installed
3904 as a signal handler for SIGINT. The first time a user requests a
3905 stop, we call remote_stop to send a break or ^C. If there is no
3906 response from the target (it didn't stop when the user requested it),
3907 we ask the user if he'd like to detach from the target. */
3908 static void
3909 remote_interrupt (int signo)
3910 {
3911 /* If this doesn't work, try more severe steps. */
3912 signal (signo, remote_interrupt_twice);
3913
3914 gdb_call_async_signal_handler (sigint_remote_token, 1);
3915 }
3916
3917 /* The user typed ^C twice. */
3918
3919 static void
3920 remote_interrupt_twice (int signo)
3921 {
3922 signal (signo, ofunc);
3923 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3924 signal (signo, remote_interrupt);
3925 }
3926
3927 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
3928 thread, all threads of a remote process, or all threads of all
3929 processes. */
3930
3931 static void
3932 remote_stop_ns (ptid_t ptid)
3933 {
3934 struct remote_state *rs = get_remote_state ();
3935 char *p = rs->buf;
3936 char *endp = rs->buf + get_remote_packet_size ();
3937 struct stop_reply *reply, *next;
3938
3939 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3940 remote_vcont_probe (rs);
3941
3942 if (!rs->support_vCont_t)
3943 error (_("Remote server does not support stopping threads"));
3944
3945 if (ptid_equal (ptid, minus_one_ptid))
3946 p += xsnprintf (p, endp - p, "vCont;t");
3947 else
3948 {
3949 ptid_t nptid;
3950
3951 /* Step inferior_ptid. */
3952 p += xsnprintf (p, endp - p, "vCont;t:");
3953
3954 if (ptid_is_pid (ptid))
3955 /* All (-1) threads of process. */
3956 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3957 else
3958 {
3959 /* Small optimization: if we already have a stop reply for
3960 this thread, no use in telling the stub we want this
3961 stopped. */
3962 if (peek_stop_reply (ptid))
3963 return;
3964
3965 nptid = ptid;
3966 }
3967
3968 p = write_ptid (p, endp, nptid);
3969 }
3970
3971 /* In non-stop, we get an immediate OK reply. The stop reply will
3972 come in asynchronously by notification. */
3973 putpkt (rs->buf);
3974 getpkt (&rs->buf, &rs->buf_size, 0);
3975 if (strcmp (rs->buf, "OK") != 0)
3976 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
3977 }
3978
3979 /* All-stop version of target_stop. Sends a break or a ^C to stop the
3980 remote target. It is undefined which thread of which process
3981 reports the stop. */
3982
3983 static void
3984 remote_stop_as (ptid_t ptid)
3985 {
3986 struct remote_state *rs = get_remote_state ();
3987
3988 /* If the inferior is stopped already, but the core didn't know
3989 about it yet, just ignore the request. The cached wait status
3990 will be collected in remote_wait. */
3991 if (rs->cached_wait_status)
3992 return;
3993
3994 /* Send a break or a ^C, depending on user preference. */
3995
3996 if (remote_break)
3997 serial_send_break (remote_desc);
3998 else
3999 serial_write (remote_desc, "\003", 1);
4000 }
4001
4002 /* This is the generic stop called via the target vector. When a target
4003 interrupt is requested, either by the command line or the GUI, we
4004 will eventually end up here. */
4005
4006 static void
4007 remote_stop (ptid_t ptid)
4008 {
4009 if (remote_debug)
4010 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4011
4012 if (non_stop)
4013 remote_stop_ns (ptid);
4014 else
4015 remote_stop_as (ptid);
4016 }
4017
4018 /* Ask the user what to do when an interrupt is received. */
4019
4020 static void
4021 interrupt_query (void)
4022 {
4023 target_terminal_ours ();
4024
4025 if (target_can_async_p ())
4026 {
4027 signal (SIGINT, handle_sigint);
4028 deprecated_throw_reason (RETURN_QUIT);
4029 }
4030 else
4031 {
4032 if (query (_("Interrupted while waiting for the program.\n\
4033 Give up (and stop debugging it)? ")))
4034 {
4035 pop_target ();
4036 deprecated_throw_reason (RETURN_QUIT);
4037 }
4038 }
4039
4040 target_terminal_inferior ();
4041 }
4042
4043 /* Enable/disable target terminal ownership. Most targets can use
4044 terminal groups to control terminal ownership. Remote targets are
4045 different in that explicit transfer of ownership to/from GDB/target
4046 is required. */
4047
4048 static void
4049 remote_terminal_inferior (void)
4050 {
4051 if (!target_async_permitted)
4052 /* Nothing to do. */
4053 return;
4054
4055 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
4056 sync_execution here. This function should only be called when
4057 GDB is resuming the inferior in the forground. A background
4058 resume (``run&'') should leave GDB in control of the terminal and
4059 consequently should not call this code. */
4060 if (!sync_execution)
4061 return;
4062 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
4063 calls target_terminal_*() idenpotent. The event-loop GDB talking
4064 to an asynchronous target with a synchronous command calls this
4065 function from both event-top.c and infrun.c/infcmd.c. Once GDB
4066 stops trying to transfer the terminal to the target when it
4067 shouldn't this guard can go away. */
4068 if (!remote_async_terminal_ours_p)
4069 return;
4070 delete_file_handler (input_fd);
4071 remote_async_terminal_ours_p = 0;
4072 initialize_sigint_signal_handler ();
4073 /* NOTE: At this point we could also register our selves as the
4074 recipient of all input. Any characters typed could then be
4075 passed on down to the target. */
4076 }
4077
4078 static void
4079 remote_terminal_ours (void)
4080 {
4081 if (!target_async_permitted)
4082 /* Nothing to do. */
4083 return;
4084
4085 /* See FIXME in remote_terminal_inferior. */
4086 if (!sync_execution)
4087 return;
4088 /* See FIXME in remote_terminal_inferior. */
4089 if (remote_async_terminal_ours_p)
4090 return;
4091 cleanup_sigint_signal_handler (NULL);
4092 add_file_handler (input_fd, stdin_event_handler, 0);
4093 remote_async_terminal_ours_p = 1;
4094 }
4095
4096 void
4097 remote_console_output (char *msg)
4098 {
4099 char *p;
4100
4101 for (p = msg; p[0] && p[1]; p += 2)
4102 {
4103 char tb[2];
4104 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4105 tb[0] = c;
4106 tb[1] = 0;
4107 fputs_unfiltered (tb, gdb_stdtarg);
4108 }
4109 gdb_flush (gdb_stdtarg);
4110 }
4111
4112 typedef struct cached_reg
4113 {
4114 int num;
4115 gdb_byte data[MAX_REGISTER_SIZE];
4116 } cached_reg_t;
4117
4118 DEF_VEC_O(cached_reg_t);
4119
4120 struct stop_reply
4121 {
4122 struct stop_reply *next;
4123
4124 ptid_t ptid;
4125
4126 struct target_waitstatus ws;
4127
4128 VEC(cached_reg_t) *regcache;
4129
4130 int stopped_by_watchpoint_p;
4131 CORE_ADDR watch_data_address;
4132
4133 int solibs_changed;
4134 int replay_event;
4135 };
4136
4137 /* The list of already fetched and acknowledged stop events. */
4138 static struct stop_reply *stop_reply_queue;
4139
4140 static struct stop_reply *
4141 stop_reply_xmalloc (void)
4142 {
4143 struct stop_reply *r = XMALLOC (struct stop_reply);
4144 r->next = NULL;
4145 return r;
4146 }
4147
4148 static void
4149 stop_reply_xfree (struct stop_reply *r)
4150 {
4151 if (r != NULL)
4152 {
4153 VEC_free (cached_reg_t, r->regcache);
4154 xfree (r);
4155 }
4156 }
4157
4158 /* Discard all pending stop replies of inferior PID. If PID is -1,
4159 discard everything. */
4160
4161 static void
4162 discard_pending_stop_replies (int pid)
4163 {
4164 struct stop_reply *prev = NULL, *reply, *next;
4165
4166 /* Discard the in-flight notification. */
4167 if (pending_stop_reply != NULL
4168 && (pid == -1
4169 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4170 {
4171 stop_reply_xfree (pending_stop_reply);
4172 pending_stop_reply = NULL;
4173 }
4174
4175 /* Discard the stop replies we have already pulled with
4176 vStopped. */
4177 for (reply = stop_reply_queue; reply; reply = next)
4178 {
4179 next = reply->next;
4180 if (pid == -1
4181 || ptid_get_pid (reply->ptid) == pid)
4182 {
4183 if (reply == stop_reply_queue)
4184 stop_reply_queue = reply->next;
4185 else
4186 prev->next = reply->next;
4187
4188 stop_reply_xfree (reply);
4189 }
4190 else
4191 prev = reply;
4192 }
4193 }
4194
4195 /* Cleanup wrapper. */
4196
4197 static void
4198 do_stop_reply_xfree (void *arg)
4199 {
4200 struct stop_reply *r = arg;
4201 stop_reply_xfree (r);
4202 }
4203
4204 /* Look for a queued stop reply belonging to PTID. If one is found,
4205 remove it from the queue, and return it. Returns NULL if none is
4206 found. If there are still queued events left to process, tell the
4207 event loop to get back to target_wait soon. */
4208
4209 static struct stop_reply *
4210 queued_stop_reply (ptid_t ptid)
4211 {
4212 struct stop_reply *it, *prev;
4213 struct stop_reply head;
4214
4215 head.next = stop_reply_queue;
4216 prev = &head;
4217
4218 it = head.next;
4219
4220 if (!ptid_equal (ptid, minus_one_ptid))
4221 for (; it; prev = it, it = it->next)
4222 if (ptid_equal (ptid, it->ptid))
4223 break;
4224
4225 if (it)
4226 {
4227 prev->next = it->next;
4228 it->next = NULL;
4229 }
4230
4231 stop_reply_queue = head.next;
4232
4233 if (stop_reply_queue)
4234 /* There's still at least an event left. */
4235 mark_async_event_handler (remote_async_inferior_event_token);
4236
4237 return it;
4238 }
4239
4240 /* Push a fully parsed stop reply in the stop reply queue. Since we
4241 know that we now have at least one queued event left to pass to the
4242 core side, tell the event loop to get back to target_wait soon. */
4243
4244 static void
4245 push_stop_reply (struct stop_reply *new_event)
4246 {
4247 struct stop_reply *event;
4248
4249 if (stop_reply_queue)
4250 {
4251 for (event = stop_reply_queue;
4252 event && event->next;
4253 event = event->next)
4254 ;
4255
4256 event->next = new_event;
4257 }
4258 else
4259 stop_reply_queue = new_event;
4260
4261 mark_async_event_handler (remote_async_inferior_event_token);
4262 }
4263
4264 /* Returns true if we have a stop reply for PTID. */
4265
4266 static int
4267 peek_stop_reply (ptid_t ptid)
4268 {
4269 struct stop_reply *it;
4270
4271 for (it = stop_reply_queue; it; it = it->next)
4272 if (ptid_equal (ptid, it->ptid))
4273 {
4274 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4275 return 1;
4276 }
4277
4278 return 0;
4279 }
4280
4281 /* Parse the stop reply in BUF. Either the function succeeds, and the
4282 result is stored in EVENT, or throws an error. */
4283
4284 static void
4285 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4286 {
4287 struct remote_arch_state *rsa = get_remote_arch_state ();
4288 ULONGEST addr;
4289 char *p;
4290
4291 event->ptid = null_ptid;
4292 event->ws.kind = TARGET_WAITKIND_IGNORE;
4293 event->ws.value.integer = 0;
4294 event->solibs_changed = 0;
4295 event->replay_event = 0;
4296 event->stopped_by_watchpoint_p = 0;
4297 event->regcache = NULL;
4298
4299 switch (buf[0])
4300 {
4301 case 'T': /* Status with PC, SP, FP, ... */
4302 {
4303 gdb_byte regs[MAX_REGISTER_SIZE];
4304
4305 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4306 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4307 ss = signal number
4308 n... = register number
4309 r... = register contents
4310 */
4311
4312 p = &buf[3]; /* after Txx */
4313 while (*p)
4314 {
4315 char *p1;
4316 char *p_temp;
4317 int fieldsize;
4318 LONGEST pnum = 0;
4319
4320 /* If the packet contains a register number, save it in
4321 pnum and set p1 to point to the character following it.
4322 Otherwise p1 points to p. */
4323
4324 /* If this packet is an awatch packet, don't parse the 'a'
4325 as a register number. */
4326
4327 if (strncmp (p, "awatch", strlen("awatch")) != 0)
4328 {
4329 /* Read the ``P'' register number. */
4330 pnum = strtol (p, &p_temp, 16);
4331 p1 = p_temp;
4332 }
4333 else
4334 p1 = p;
4335
4336 if (p1 == p) /* No register number present here. */
4337 {
4338 p1 = strchr (p, ':');
4339 if (p1 == NULL)
4340 error (_("Malformed packet(a) (missing colon): %s\n\
4341 Packet: '%s'\n"),
4342 p, buf);
4343 if (strncmp (p, "thread", p1 - p) == 0)
4344 event->ptid = read_ptid (++p1, &p);
4345 else if ((strncmp (p, "watch", p1 - p) == 0)
4346 || (strncmp (p, "rwatch", p1 - p) == 0)
4347 || (strncmp (p, "awatch", p1 - p) == 0))
4348 {
4349 event->stopped_by_watchpoint_p = 1;
4350 p = unpack_varlen_hex (++p1, &addr);
4351 event->watch_data_address = (CORE_ADDR) addr;
4352 }
4353 else if (strncmp (p, "library", p1 - p) == 0)
4354 {
4355 p1++;
4356 p_temp = p1;
4357 while (*p_temp && *p_temp != ';')
4358 p_temp++;
4359
4360 event->solibs_changed = 1;
4361 p = p_temp;
4362 }
4363 else if (strncmp (p, "replaylog", p1 - p) == 0)
4364 {
4365 /* NO_HISTORY event.
4366 p1 will indicate "begin" or "end", but
4367 it makes no difference for now, so ignore it. */
4368 event->replay_event = 1;
4369 p_temp = strchr (p1 + 1, ';');
4370 if (p_temp)
4371 p = p_temp;
4372 }
4373 else
4374 {
4375 /* Silently skip unknown optional info. */
4376 p_temp = strchr (p1 + 1, ';');
4377 if (p_temp)
4378 p = p_temp;
4379 }
4380 }
4381 else
4382 {
4383 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4384 cached_reg_t cached_reg;
4385
4386 p = p1;
4387
4388 if (*p != ':')
4389 error (_("Malformed packet(b) (missing colon): %s\n\
4390 Packet: '%s'\n"),
4391 p, buf);
4392 ++p;
4393
4394 if (reg == NULL)
4395 error (_("Remote sent bad register number %s: %s\n\
4396 Packet: '%s'\n"),
4397 phex_nz (pnum, 0), p, buf);
4398
4399 cached_reg.num = reg->regnum;
4400
4401 fieldsize = hex2bin (p, cached_reg.data,
4402 register_size (target_gdbarch,
4403 reg->regnum));
4404 p += 2 * fieldsize;
4405 if (fieldsize < register_size (target_gdbarch,
4406 reg->regnum))
4407 warning (_("Remote reply is too short: %s"), buf);
4408
4409 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4410 }
4411
4412 if (*p != ';')
4413 error (_("Remote register badly formatted: %s\nhere: %s"),
4414 buf, p);
4415 ++p;
4416 }
4417 }
4418 /* fall through */
4419 case 'S': /* Old style status, just signal only. */
4420 if (event->solibs_changed)
4421 event->ws.kind = TARGET_WAITKIND_LOADED;
4422 else if (event->replay_event)
4423 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4424 else
4425 {
4426 event->ws.kind = TARGET_WAITKIND_STOPPED;
4427 event->ws.value.sig = (enum target_signal)
4428 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4429 }
4430 break;
4431 case 'W': /* Target exited. */
4432 case 'X':
4433 {
4434 char *p;
4435 int pid;
4436 ULONGEST value;
4437
4438 /* GDB used to accept only 2 hex chars here. Stubs should
4439 only send more if they detect GDB supports multi-process
4440 support. */
4441 p = unpack_varlen_hex (&buf[1], &value);
4442
4443 if (buf[0] == 'W')
4444 {
4445 /* The remote process exited. */
4446 event->ws.kind = TARGET_WAITKIND_EXITED;
4447 event->ws.value.integer = value;
4448 }
4449 else
4450 {
4451 /* The remote process exited with a signal. */
4452 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4453 event->ws.value.sig = (enum target_signal) value;
4454 }
4455
4456 /* If no process is specified, assume inferior_ptid. */
4457 pid = ptid_get_pid (inferior_ptid);
4458 if (*p == '\0')
4459 ;
4460 else if (*p == ';')
4461 {
4462 p++;
4463
4464 if (p == '\0')
4465 ;
4466 else if (strncmp (p,
4467 "process:", sizeof ("process:") - 1) == 0)
4468 {
4469 ULONGEST upid;
4470 p += sizeof ("process:") - 1;
4471 unpack_varlen_hex (p, &upid);
4472 pid = upid;
4473 }
4474 else
4475 error (_("unknown stop reply packet: %s"), buf);
4476 }
4477 else
4478 error (_("unknown stop reply packet: %s"), buf);
4479 event->ptid = pid_to_ptid (pid);
4480 }
4481 break;
4482 }
4483
4484 if (non_stop && ptid_equal (event->ptid, null_ptid))
4485 error (_("No process or thread specified in stop reply: %s"), buf);
4486 }
4487
4488 /* When the stub wants to tell GDB about a new stop reply, it sends a
4489 stop notification (%Stop). Those can come it at any time, hence,
4490 we have to make sure that any pending putpkt/getpkt sequence we're
4491 making is finished, before querying the stub for more events with
4492 vStopped. E.g., if we started a vStopped sequence immediatelly
4493 upon receiving the %Stop notification, something like this could
4494 happen:
4495
4496 1.1) --> Hg 1
4497 1.2) <-- OK
4498 1.3) --> g
4499 1.4) <-- %Stop
4500 1.5) --> vStopped
4501 1.6) <-- (registers reply to step #1.3)
4502
4503 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4504 query.
4505
4506 To solve this, whenever we parse a %Stop notification sucessfully,
4507 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4508 doing whatever we were doing:
4509
4510 2.1) --> Hg 1
4511 2.2) <-- OK
4512 2.3) --> g
4513 2.4) <-- %Stop
4514 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4515 2.5) <-- (registers reply to step #2.3)
4516
4517 Eventualy after step #2.5, we return to the event loop, which
4518 notices there's an event on the
4519 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4520 associated callback --- the function below. At this point, we're
4521 always safe to start a vStopped sequence. :
4522
4523 2.6) --> vStopped
4524 2.7) <-- T05 thread:2
4525 2.8) --> vStopped
4526 2.9) --> OK
4527 */
4528
4529 static void
4530 remote_get_pending_stop_replies (void)
4531 {
4532 struct remote_state *rs = get_remote_state ();
4533 int ret;
4534
4535 if (pending_stop_reply)
4536 {
4537 /* acknowledge */
4538 putpkt ("vStopped");
4539
4540 /* Now we can rely on it. */
4541 push_stop_reply (pending_stop_reply);
4542 pending_stop_reply = NULL;
4543
4544 while (1)
4545 {
4546 getpkt (&rs->buf, &rs->buf_size, 0);
4547 if (strcmp (rs->buf, "OK") == 0)
4548 break;
4549 else
4550 {
4551 struct cleanup *old_chain;
4552 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4553
4554 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4555 remote_parse_stop_reply (rs->buf, stop_reply);
4556
4557 /* acknowledge */
4558 putpkt ("vStopped");
4559
4560 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4561 {
4562 /* Now we can rely on it. */
4563 discard_cleanups (old_chain);
4564 push_stop_reply (stop_reply);
4565 }
4566 else
4567 /* We got an unknown stop reply. */
4568 do_cleanups (old_chain);
4569 }
4570 }
4571 }
4572 }
4573
4574
4575 /* Called when it is decided that STOP_REPLY holds the info of the
4576 event that is to be returned to the core. This function always
4577 destroys STOP_REPLY. */
4578
4579 static ptid_t
4580 process_stop_reply (struct stop_reply *stop_reply,
4581 struct target_waitstatus *status)
4582 {
4583 ptid_t ptid;
4584
4585 *status = stop_reply->ws;
4586 ptid = stop_reply->ptid;
4587
4588 /* If no thread/process was reported by the stub, assume the current
4589 inferior. */
4590 if (ptid_equal (ptid, null_ptid))
4591 ptid = inferior_ptid;
4592
4593 if (status->kind != TARGET_WAITKIND_EXITED
4594 && status->kind != TARGET_WAITKIND_SIGNALLED)
4595 {
4596 /* Expedited registers. */
4597 if (stop_reply->regcache)
4598 {
4599 cached_reg_t *reg;
4600 int ix;
4601
4602 for (ix = 0;
4603 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
4604 ix++)
4605 regcache_raw_supply (get_thread_regcache (ptid),
4606 reg->num, reg->data);
4607 VEC_free (cached_reg_t, stop_reply->regcache);
4608 }
4609
4610 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
4611 remote_watch_data_address = stop_reply->watch_data_address;
4612
4613 remote_notice_new_inferior (ptid, 0);
4614 }
4615
4616 stop_reply_xfree (stop_reply);
4617 return ptid;
4618 }
4619
4620 /* The non-stop mode version of target_wait. */
4621
4622 static ptid_t
4623 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status)
4624 {
4625 struct remote_state *rs = get_remote_state ();
4626 struct remote_arch_state *rsa = get_remote_arch_state ();
4627 ptid_t event_ptid = null_ptid;
4628 struct stop_reply *stop_reply;
4629 int ret;
4630
4631 /* If in non-stop mode, get out of getpkt even if a
4632 notification is received. */
4633
4634 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4635 0 /* forever */);
4636 while (1)
4637 {
4638 if (ret != -1)
4639 switch (rs->buf[0])
4640 {
4641 case 'E': /* Error of some sort. */
4642 /* We're out of sync with the target now. Did it continue
4643 or not? We can't tell which thread it was in non-stop,
4644 so just ignore this. */
4645 warning (_("Remote failure reply: %s"), rs->buf);
4646 break;
4647 case 'O': /* Console output. */
4648 remote_console_output (rs->buf + 1);
4649 break;
4650 default:
4651 warning (_("Invalid remote reply: %s"), rs->buf);
4652 break;
4653 }
4654
4655 /* Acknowledge a pending stop reply that may have arrived in the
4656 mean time. */
4657 if (pending_stop_reply != NULL)
4658 remote_get_pending_stop_replies ();
4659
4660 /* If indeed we noticed a stop reply, we're done. */
4661 stop_reply = queued_stop_reply (ptid);
4662 if (stop_reply != NULL)
4663 return process_stop_reply (stop_reply, status);
4664
4665 /* Still no event. If we're in asynchronous mode, then just
4666 return to the event loop. */
4667 if (remote_is_async_p ())
4668 {
4669 status->kind = TARGET_WAITKIND_IGNORE;
4670 return minus_one_ptid;
4671 }
4672
4673 /* Otherwise, asynchronous mode is masked, so do a blocking
4674 wait. */
4675 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4676 1 /* forever */);
4677 }
4678 }
4679
4680 /* Wait until the remote machine stops, then return, storing status in
4681 STATUS just as `wait' would. */
4682
4683 static ptid_t
4684 remote_wait_as (ptid_t ptid, struct target_waitstatus *status)
4685 {
4686 struct remote_state *rs = get_remote_state ();
4687 struct remote_arch_state *rsa = get_remote_arch_state ();
4688 ptid_t event_ptid = null_ptid;
4689 ULONGEST addr;
4690 int solibs_changed = 0;
4691 char *buf, *p;
4692 struct stop_reply *stop_reply;
4693
4694 status->kind = TARGET_WAITKIND_IGNORE;
4695 status->value.integer = 0;
4696
4697 stop_reply = queued_stop_reply (ptid);
4698 if (stop_reply != NULL)
4699 return process_stop_reply (stop_reply, status);
4700
4701 if (rs->cached_wait_status)
4702 /* Use the cached wait status, but only once. */
4703 rs->cached_wait_status = 0;
4704 else
4705 {
4706 int ret;
4707
4708 if (!target_is_async_p ())
4709 {
4710 ofunc = signal (SIGINT, remote_interrupt);
4711 /* If the user hit C-c before this packet, or between packets,
4712 pretend that it was hit right here. */
4713 if (quit_flag)
4714 {
4715 quit_flag = 0;
4716 remote_interrupt (SIGINT);
4717 }
4718 }
4719
4720 /* FIXME: cagney/1999-09-27: If we're in async mode we should
4721 _never_ wait for ever -> test on target_is_async_p().
4722 However, before we do that we need to ensure that the caller
4723 knows how to take the target into/out of async mode. */
4724 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
4725 if (!target_is_async_p ())
4726 signal (SIGINT, ofunc);
4727 }
4728
4729 buf = rs->buf;
4730
4731 remote_stopped_by_watchpoint_p = 0;
4732
4733 /* We got something. */
4734 rs->waiting_for_stop_reply = 0;
4735
4736 switch (buf[0])
4737 {
4738 case 'E': /* Error of some sort. */
4739 /* We're out of sync with the target now. Did it continue or
4740 not? Not is more likely, so report a stop. */
4741 warning (_("Remote failure reply: %s"), buf);
4742 status->kind = TARGET_WAITKIND_STOPPED;
4743 status->value.sig = TARGET_SIGNAL_0;
4744 break;
4745 case 'F': /* File-I/O request. */
4746 remote_fileio_request (buf);
4747 break;
4748 case 'T': case 'S': case 'X': case 'W':
4749 {
4750 struct stop_reply *stop_reply;
4751 struct cleanup *old_chain;
4752
4753 stop_reply = stop_reply_xmalloc ();
4754 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4755 remote_parse_stop_reply (buf, stop_reply);
4756 discard_cleanups (old_chain);
4757 event_ptid = process_stop_reply (stop_reply, status);
4758 break;
4759 }
4760 case 'O': /* Console output. */
4761 remote_console_output (buf + 1);
4762
4763 /* The target didn't really stop; keep waiting. */
4764 rs->waiting_for_stop_reply = 1;
4765
4766 break;
4767 case '\0':
4768 if (last_sent_signal != TARGET_SIGNAL_0)
4769 {
4770 /* Zero length reply means that we tried 'S' or 'C' and the
4771 remote system doesn't support it. */
4772 target_terminal_ours_for_output ();
4773 printf_filtered
4774 ("Can't send signals to this remote system. %s not sent.\n",
4775 target_signal_to_name (last_sent_signal));
4776 last_sent_signal = TARGET_SIGNAL_0;
4777 target_terminal_inferior ();
4778
4779 strcpy ((char *) buf, last_sent_step ? "s" : "c");
4780 putpkt ((char *) buf);
4781
4782 /* We just told the target to resume, so a stop reply is in
4783 order. */
4784 rs->waiting_for_stop_reply = 1;
4785 break;
4786 }
4787 /* else fallthrough */
4788 default:
4789 warning (_("Invalid remote reply: %s"), buf);
4790 /* Keep waiting. */
4791 rs->waiting_for_stop_reply = 1;
4792 break;
4793 }
4794
4795 if (status->kind == TARGET_WAITKIND_IGNORE)
4796 /* Nothing interesting happened. */
4797 return minus_one_ptid;
4798 else if (status->kind != TARGET_WAITKIND_EXITED
4799 && status->kind != TARGET_WAITKIND_SIGNALLED)
4800 {
4801 if (!ptid_equal (event_ptid, null_ptid))
4802 record_currthread (event_ptid);
4803 else
4804 event_ptid = inferior_ptid;
4805 }
4806 else
4807 /* A process exit. Invalidate our notion of current thread. */
4808 record_currthread (minus_one_ptid);
4809
4810 return event_ptid;
4811 }
4812
4813 /* Wait until the remote machine stops, then return, storing status in
4814 STATUS just as `wait' would. */
4815
4816 static ptid_t
4817 remote_wait (struct target_ops *ops,
4818 ptid_t ptid, struct target_waitstatus *status)
4819 {
4820 ptid_t event_ptid;
4821
4822 if (non_stop)
4823 event_ptid = remote_wait_ns (ptid, status);
4824 else
4825 {
4826 /* In synchronous mode, keep waiting until the target stops. In
4827 asynchronous mode, always return to the event loop. */
4828
4829 do
4830 {
4831 event_ptid = remote_wait_as (ptid, status);
4832 }
4833 while (status->kind == TARGET_WAITKIND_IGNORE
4834 && !target_can_async_p ());
4835 }
4836
4837 if (target_can_async_p ())
4838 {
4839 /* If there are are events left in the queue tell the event loop
4840 to return here. */
4841 if (stop_reply_queue)
4842 mark_async_event_handler (remote_async_inferior_event_token);
4843 }
4844
4845 return event_ptid;
4846 }
4847
4848 /* Fetch a single register using a 'p' packet. */
4849
4850 static int
4851 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
4852 {
4853 struct remote_state *rs = get_remote_state ();
4854 char *buf, *p;
4855 char regp[MAX_REGISTER_SIZE];
4856 int i;
4857
4858 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
4859 return 0;
4860
4861 if (reg->pnum == -1)
4862 return 0;
4863
4864 p = rs->buf;
4865 *p++ = 'p';
4866 p += hexnumstr (p, reg->pnum);
4867 *p++ = '\0';
4868 remote_send (&rs->buf, &rs->buf_size);
4869
4870 buf = rs->buf;
4871
4872 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
4873 {
4874 case PACKET_OK:
4875 break;
4876 case PACKET_UNKNOWN:
4877 return 0;
4878 case PACKET_ERROR:
4879 error (_("Could not fetch register \"%s\""),
4880 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
4881 }
4882
4883 /* If this register is unfetchable, tell the regcache. */
4884 if (buf[0] == 'x')
4885 {
4886 regcache_raw_supply (regcache, reg->regnum, NULL);
4887 return 1;
4888 }
4889
4890 /* Otherwise, parse and supply the value. */
4891 p = buf;
4892 i = 0;
4893 while (p[0] != 0)
4894 {
4895 if (p[1] == 0)
4896 error (_("fetch_register_using_p: early buf termination"));
4897
4898 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
4899 p += 2;
4900 }
4901 regcache_raw_supply (regcache, reg->regnum, regp);
4902 return 1;
4903 }
4904
4905 /* Fetch the registers included in the target's 'g' packet. */
4906
4907 static int
4908 send_g_packet (void)
4909 {
4910 struct remote_state *rs = get_remote_state ();
4911 int i, buf_len;
4912 char *p;
4913 char *regs;
4914
4915 sprintf (rs->buf, "g");
4916 remote_send (&rs->buf, &rs->buf_size);
4917
4918 /* We can get out of synch in various cases. If the first character
4919 in the buffer is not a hex character, assume that has happened
4920 and try to fetch another packet to read. */
4921 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
4922 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
4923 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
4924 && rs->buf[0] != 'x') /* New: unavailable register value. */
4925 {
4926 if (remote_debug)
4927 fprintf_unfiltered (gdb_stdlog,
4928 "Bad register packet; fetching a new packet\n");
4929 getpkt (&rs->buf, &rs->buf_size, 0);
4930 }
4931
4932 buf_len = strlen (rs->buf);
4933
4934 /* Sanity check the received packet. */
4935 if (buf_len % 2 != 0)
4936 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4937
4938 return buf_len / 2;
4939 }
4940
4941 static void
4942 process_g_packet (struct regcache *regcache)
4943 {
4944 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4945 struct remote_state *rs = get_remote_state ();
4946 struct remote_arch_state *rsa = get_remote_arch_state ();
4947 int i, buf_len;
4948 char *p;
4949 char *regs;
4950
4951 buf_len = strlen (rs->buf);
4952
4953 /* Further sanity checks, with knowledge of the architecture. */
4954 if (buf_len > 2 * rsa->sizeof_g_packet)
4955 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4956
4957 /* Save the size of the packet sent to us by the target. It is used
4958 as a heuristic when determining the max size of packets that the
4959 target can safely receive. */
4960 if (rsa->actual_register_packet_size == 0)
4961 rsa->actual_register_packet_size = buf_len;
4962
4963 /* If this is smaller than we guessed the 'g' packet would be,
4964 update our records. A 'g' reply that doesn't include a register's
4965 value implies either that the register is not available, or that
4966 the 'p' packet must be used. */
4967 if (buf_len < 2 * rsa->sizeof_g_packet)
4968 {
4969 rsa->sizeof_g_packet = buf_len / 2;
4970
4971 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4972 {
4973 if (rsa->regs[i].pnum == -1)
4974 continue;
4975
4976 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
4977 rsa->regs[i].in_g_packet = 0;
4978 else
4979 rsa->regs[i].in_g_packet = 1;
4980 }
4981 }
4982
4983 regs = alloca (rsa->sizeof_g_packet);
4984
4985 /* Unimplemented registers read as all bits zero. */
4986 memset (regs, 0, rsa->sizeof_g_packet);
4987
4988 /* Reply describes registers byte by byte, each byte encoded as two
4989 hex characters. Suck them all up, then supply them to the
4990 register cacheing/storage mechanism. */
4991
4992 p = rs->buf;
4993 for (i = 0; i < rsa->sizeof_g_packet; i++)
4994 {
4995 if (p[0] == 0 || p[1] == 0)
4996 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
4997 internal_error (__FILE__, __LINE__,
4998 "unexpected end of 'g' packet reply");
4999
5000 if (p[0] == 'x' && p[1] == 'x')
5001 regs[i] = 0; /* 'x' */
5002 else
5003 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5004 p += 2;
5005 }
5006
5007 {
5008 int i;
5009 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5010 {
5011 struct packet_reg *r = &rsa->regs[i];
5012 if (r->in_g_packet)
5013 {
5014 if (r->offset * 2 >= strlen (rs->buf))
5015 /* This shouldn't happen - we adjusted in_g_packet above. */
5016 internal_error (__FILE__, __LINE__,
5017 "unexpected end of 'g' packet reply");
5018 else if (rs->buf[r->offset * 2] == 'x')
5019 {
5020 gdb_assert (r->offset * 2 < strlen (rs->buf));
5021 /* The register isn't available, mark it as such (at
5022 the same time setting the value to zero). */
5023 regcache_raw_supply (regcache, r->regnum, NULL);
5024 }
5025 else
5026 regcache_raw_supply (regcache, r->regnum,
5027 regs + r->offset);
5028 }
5029 }
5030 }
5031 }
5032
5033 static void
5034 fetch_registers_using_g (struct regcache *regcache)
5035 {
5036 send_g_packet ();
5037 process_g_packet (regcache);
5038 }
5039
5040 static void
5041 remote_fetch_registers (struct target_ops *ops,
5042 struct regcache *regcache, int regnum)
5043 {
5044 struct remote_state *rs = get_remote_state ();
5045 struct remote_arch_state *rsa = get_remote_arch_state ();
5046 int i;
5047
5048 set_general_thread (inferior_ptid);
5049
5050 if (regnum >= 0)
5051 {
5052 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5053 gdb_assert (reg != NULL);
5054
5055 /* If this register might be in the 'g' packet, try that first -
5056 we are likely to read more than one register. If this is the
5057 first 'g' packet, we might be overly optimistic about its
5058 contents, so fall back to 'p'. */
5059 if (reg->in_g_packet)
5060 {
5061 fetch_registers_using_g (regcache);
5062 if (reg->in_g_packet)
5063 return;
5064 }
5065
5066 if (fetch_register_using_p (regcache, reg))
5067 return;
5068
5069 /* This register is not available. */
5070 regcache_raw_supply (regcache, reg->regnum, NULL);
5071
5072 return;
5073 }
5074
5075 fetch_registers_using_g (regcache);
5076
5077 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5078 if (!rsa->regs[i].in_g_packet)
5079 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5080 {
5081 /* This register is not available. */
5082 regcache_raw_supply (regcache, i, NULL);
5083 }
5084 }
5085
5086 /* Prepare to store registers. Since we may send them all (using a
5087 'G' request), we have to read out the ones we don't want to change
5088 first. */
5089
5090 static void
5091 remote_prepare_to_store (struct regcache *regcache)
5092 {
5093 struct remote_arch_state *rsa = get_remote_arch_state ();
5094 int i;
5095 gdb_byte buf[MAX_REGISTER_SIZE];
5096
5097 /* Make sure the entire registers array is valid. */
5098 switch (remote_protocol_packets[PACKET_P].support)
5099 {
5100 case PACKET_DISABLE:
5101 case PACKET_SUPPORT_UNKNOWN:
5102 /* Make sure all the necessary registers are cached. */
5103 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5104 if (rsa->regs[i].in_g_packet)
5105 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5106 break;
5107 case PACKET_ENABLE:
5108 break;
5109 }
5110 }
5111
5112 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5113 packet was not recognized. */
5114
5115 static int
5116 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
5117 {
5118 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5119 struct remote_state *rs = get_remote_state ();
5120 struct remote_arch_state *rsa = get_remote_arch_state ();
5121 /* Try storing a single register. */
5122 char *buf = rs->buf;
5123 gdb_byte regp[MAX_REGISTER_SIZE];
5124 char *p;
5125
5126 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5127 return 0;
5128
5129 if (reg->pnum == -1)
5130 return 0;
5131
5132 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5133 p = buf + strlen (buf);
5134 regcache_raw_collect (regcache, reg->regnum, regp);
5135 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5136 remote_send (&rs->buf, &rs->buf_size);
5137
5138 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5139 {
5140 case PACKET_OK:
5141 return 1;
5142 case PACKET_ERROR:
5143 error (_("Could not write register \"%s\""),
5144 gdbarch_register_name (gdbarch, reg->regnum));
5145 case PACKET_UNKNOWN:
5146 return 0;
5147 default:
5148 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5149 }
5150 }
5151
5152 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5153 contents of the register cache buffer. FIXME: ignores errors. */
5154
5155 static void
5156 store_registers_using_G (const struct regcache *regcache)
5157 {
5158 struct remote_state *rs = get_remote_state ();
5159 struct remote_arch_state *rsa = get_remote_arch_state ();
5160 gdb_byte *regs;
5161 char *p;
5162
5163 /* Extract all the registers in the regcache copying them into a
5164 local buffer. */
5165 {
5166 int i;
5167 regs = alloca (rsa->sizeof_g_packet);
5168 memset (regs, 0, rsa->sizeof_g_packet);
5169 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5170 {
5171 struct packet_reg *r = &rsa->regs[i];
5172 if (r->in_g_packet)
5173 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5174 }
5175 }
5176
5177 /* Command describes registers byte by byte,
5178 each byte encoded as two hex characters. */
5179 p = rs->buf;
5180 *p++ = 'G';
5181 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5182 updated. */
5183 bin2hex (regs, p, rsa->sizeof_g_packet);
5184 remote_send (&rs->buf, &rs->buf_size);
5185 }
5186
5187 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5188 of the register cache buffer. FIXME: ignores errors. */
5189
5190 static void
5191 remote_store_registers (struct target_ops *ops,
5192 struct regcache *regcache, int regnum)
5193 {
5194 struct remote_state *rs = get_remote_state ();
5195 struct remote_arch_state *rsa = get_remote_arch_state ();
5196 int i;
5197
5198 set_general_thread (inferior_ptid);
5199
5200 if (regnum >= 0)
5201 {
5202 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5203 gdb_assert (reg != NULL);
5204
5205 /* Always prefer to store registers using the 'P' packet if
5206 possible; we often change only a small number of registers.
5207 Sometimes we change a larger number; we'd need help from a
5208 higher layer to know to use 'G'. */
5209 if (store_register_using_P (regcache, reg))
5210 return;
5211
5212 /* For now, don't complain if we have no way to write the
5213 register. GDB loses track of unavailable registers too
5214 easily. Some day, this may be an error. We don't have
5215 any way to read the register, either... */
5216 if (!reg->in_g_packet)
5217 return;
5218
5219 store_registers_using_G (regcache);
5220 return;
5221 }
5222
5223 store_registers_using_G (regcache);
5224
5225 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5226 if (!rsa->regs[i].in_g_packet)
5227 if (!store_register_using_P (regcache, &rsa->regs[i]))
5228 /* See above for why we do not issue an error here. */
5229 continue;
5230 }
5231 \f
5232
5233 /* Return the number of hex digits in num. */
5234
5235 static int
5236 hexnumlen (ULONGEST num)
5237 {
5238 int i;
5239
5240 for (i = 0; num != 0; i++)
5241 num >>= 4;
5242
5243 return max (i, 1);
5244 }
5245
5246 /* Set BUF to the minimum number of hex digits representing NUM. */
5247
5248 static int
5249 hexnumstr (char *buf, ULONGEST num)
5250 {
5251 int len = hexnumlen (num);
5252 return hexnumnstr (buf, num, len);
5253 }
5254
5255
5256 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5257
5258 static int
5259 hexnumnstr (char *buf, ULONGEST num, int width)
5260 {
5261 int i;
5262
5263 buf[width] = '\0';
5264
5265 for (i = width - 1; i >= 0; i--)
5266 {
5267 buf[i] = "0123456789abcdef"[(num & 0xf)];
5268 num >>= 4;
5269 }
5270
5271 return width;
5272 }
5273
5274 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5275
5276 static CORE_ADDR
5277 remote_address_masked (CORE_ADDR addr)
5278 {
5279 int address_size = remote_address_size;
5280 /* If "remoteaddresssize" was not set, default to target address size. */
5281 if (!address_size)
5282 address_size = gdbarch_addr_bit (target_gdbarch);
5283
5284 if (address_size > 0
5285 && address_size < (sizeof (ULONGEST) * 8))
5286 {
5287 /* Only create a mask when that mask can safely be constructed
5288 in a ULONGEST variable. */
5289 ULONGEST mask = 1;
5290 mask = (mask << address_size) - 1;
5291 addr &= mask;
5292 }
5293 return addr;
5294 }
5295
5296 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5297 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5298 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5299 (which may be more than *OUT_LEN due to escape characters). The
5300 total number of bytes in the output buffer will be at most
5301 OUT_MAXLEN. */
5302
5303 static int
5304 remote_escape_output (const gdb_byte *buffer, int len,
5305 gdb_byte *out_buf, int *out_len,
5306 int out_maxlen)
5307 {
5308 int input_index, output_index;
5309
5310 output_index = 0;
5311 for (input_index = 0; input_index < len; input_index++)
5312 {
5313 gdb_byte b = buffer[input_index];
5314
5315 if (b == '$' || b == '#' || b == '}')
5316 {
5317 /* These must be escaped. */
5318 if (output_index + 2 > out_maxlen)
5319 break;
5320 out_buf[output_index++] = '}';
5321 out_buf[output_index++] = b ^ 0x20;
5322 }
5323 else
5324 {
5325 if (output_index + 1 > out_maxlen)
5326 break;
5327 out_buf[output_index++] = b;
5328 }
5329 }
5330
5331 *out_len = input_index;
5332 return output_index;
5333 }
5334
5335 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5336 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5337 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5338
5339 This function reverses remote_escape_output. It allows more
5340 escaped characters than that function does, in particular because
5341 '*' must be escaped to avoid the run-length encoding processing
5342 in reading packets. */
5343
5344 static int
5345 remote_unescape_input (const gdb_byte *buffer, int len,
5346 gdb_byte *out_buf, int out_maxlen)
5347 {
5348 int input_index, output_index;
5349 int escaped;
5350
5351 output_index = 0;
5352 escaped = 0;
5353 for (input_index = 0; input_index < len; input_index++)
5354 {
5355 gdb_byte b = buffer[input_index];
5356
5357 if (output_index + 1 > out_maxlen)
5358 {
5359 warning (_("Received too much data from remote target;"
5360 " ignoring overflow."));
5361 return output_index;
5362 }
5363
5364 if (escaped)
5365 {
5366 out_buf[output_index++] = b ^ 0x20;
5367 escaped = 0;
5368 }
5369 else if (b == '}')
5370 escaped = 1;
5371 else
5372 out_buf[output_index++] = b;
5373 }
5374
5375 if (escaped)
5376 error (_("Unmatched escape character in target response."));
5377
5378 return output_index;
5379 }
5380
5381 /* Determine whether the remote target supports binary downloading.
5382 This is accomplished by sending a no-op memory write of zero length
5383 to the target at the specified address. It does not suffice to send
5384 the whole packet, since many stubs strip the eighth bit and
5385 subsequently compute a wrong checksum, which causes real havoc with
5386 remote_write_bytes.
5387
5388 NOTE: This can still lose if the serial line is not eight-bit
5389 clean. In cases like this, the user should clear "remote
5390 X-packet". */
5391
5392 static void
5393 check_binary_download (CORE_ADDR addr)
5394 {
5395 struct remote_state *rs = get_remote_state ();
5396
5397 switch (remote_protocol_packets[PACKET_X].support)
5398 {
5399 case PACKET_DISABLE:
5400 break;
5401 case PACKET_ENABLE:
5402 break;
5403 case PACKET_SUPPORT_UNKNOWN:
5404 {
5405 char *p;
5406
5407 p = rs->buf;
5408 *p++ = 'X';
5409 p += hexnumstr (p, (ULONGEST) addr);
5410 *p++ = ',';
5411 p += hexnumstr (p, (ULONGEST) 0);
5412 *p++ = ':';
5413 *p = '\0';
5414
5415 putpkt_binary (rs->buf, (int) (p - rs->buf));
5416 getpkt (&rs->buf, &rs->buf_size, 0);
5417
5418 if (rs->buf[0] == '\0')
5419 {
5420 if (remote_debug)
5421 fprintf_unfiltered (gdb_stdlog,
5422 "binary downloading NOT suppported by target\n");
5423 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5424 }
5425 else
5426 {
5427 if (remote_debug)
5428 fprintf_unfiltered (gdb_stdlog,
5429 "binary downloading suppported by target\n");
5430 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5431 }
5432 break;
5433 }
5434 }
5435 }
5436
5437 /* Write memory data directly to the remote machine.
5438 This does not inform the data cache; the data cache uses this.
5439 HEADER is the starting part of the packet.
5440 MEMADDR is the address in the remote memory space.
5441 MYADDR is the address of the buffer in our space.
5442 LEN is the number of bytes.
5443 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5444 should send data as binary ('X'), or hex-encoded ('M').
5445
5446 The function creates packet of the form
5447 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5448
5449 where encoding of <DATA> is termined by PACKET_FORMAT.
5450
5451 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5452 are omitted.
5453
5454 Returns the number of bytes transferred, or 0 (setting errno) for
5455 error. Only transfer a single packet. */
5456
5457 static int
5458 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5459 const gdb_byte *myaddr, int len,
5460 char packet_format, int use_length)
5461 {
5462 struct remote_state *rs = get_remote_state ();
5463 char *p;
5464 char *plen = NULL;
5465 int plenlen = 0;
5466 int todo;
5467 int nr_bytes;
5468 int payload_size;
5469 int payload_length;
5470 int header_length;
5471
5472 if (packet_format != 'X' && packet_format != 'M')
5473 internal_error (__FILE__, __LINE__,
5474 "remote_write_bytes_aux: bad packet format");
5475
5476 if (len <= 0)
5477 return 0;
5478
5479 payload_size = get_memory_write_packet_size ();
5480
5481 /* The packet buffer will be large enough for the payload;
5482 get_memory_packet_size ensures this. */
5483 rs->buf[0] = '\0';
5484
5485 /* Compute the size of the actual payload by subtracting out the
5486 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5487 */
5488 payload_size -= strlen ("$,:#NN");
5489 if (!use_length)
5490 /* The comma won't be used. */
5491 payload_size += 1;
5492 header_length = strlen (header);
5493 payload_size -= header_length;
5494 payload_size -= hexnumlen (memaddr);
5495
5496 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5497
5498 strcat (rs->buf, header);
5499 p = rs->buf + strlen (header);
5500
5501 /* Compute a best guess of the number of bytes actually transfered. */
5502 if (packet_format == 'X')
5503 {
5504 /* Best guess at number of bytes that will fit. */
5505 todo = min (len, payload_size);
5506 if (use_length)
5507 payload_size -= hexnumlen (todo);
5508 todo = min (todo, payload_size);
5509 }
5510 else
5511 {
5512 /* Num bytes that will fit. */
5513 todo = min (len, payload_size / 2);
5514 if (use_length)
5515 payload_size -= hexnumlen (todo);
5516 todo = min (todo, payload_size / 2);
5517 }
5518
5519 if (todo <= 0)
5520 internal_error (__FILE__, __LINE__,
5521 _("minumum packet size too small to write data"));
5522
5523 /* If we already need another packet, then try to align the end
5524 of this packet to a useful boundary. */
5525 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5526 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5527
5528 /* Append "<memaddr>". */
5529 memaddr = remote_address_masked (memaddr);
5530 p += hexnumstr (p, (ULONGEST) memaddr);
5531
5532 if (use_length)
5533 {
5534 /* Append ",". */
5535 *p++ = ',';
5536
5537 /* Append <len>. Retain the location/size of <len>. It may need to
5538 be adjusted once the packet body has been created. */
5539 plen = p;
5540 plenlen = hexnumstr (p, (ULONGEST) todo);
5541 p += plenlen;
5542 }
5543
5544 /* Append ":". */
5545 *p++ = ':';
5546 *p = '\0';
5547
5548 /* Append the packet body. */
5549 if (packet_format == 'X')
5550 {
5551 /* Binary mode. Send target system values byte by byte, in
5552 increasing byte addresses. Only escape certain critical
5553 characters. */
5554 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5555 payload_size);
5556
5557 /* If not all TODO bytes fit, then we'll need another packet. Make
5558 a second try to keep the end of the packet aligned. Don't do
5559 this if the packet is tiny. */
5560 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5561 {
5562 int new_nr_bytes;
5563
5564 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5565 - memaddr);
5566 if (new_nr_bytes != nr_bytes)
5567 payload_length = remote_escape_output (myaddr, new_nr_bytes,
5568 p, &nr_bytes,
5569 payload_size);
5570 }
5571
5572 p += payload_length;
5573 if (use_length && nr_bytes < todo)
5574 {
5575 /* Escape chars have filled up the buffer prematurely,
5576 and we have actually sent fewer bytes than planned.
5577 Fix-up the length field of the packet. Use the same
5578 number of characters as before. */
5579 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
5580 *plen = ':'; /* overwrite \0 from hexnumnstr() */
5581 }
5582 }
5583 else
5584 {
5585 /* Normal mode: Send target system values byte by byte, in
5586 increasing byte addresses. Each byte is encoded as a two hex
5587 value. */
5588 nr_bytes = bin2hex (myaddr, p, todo);
5589 p += 2 * nr_bytes;
5590 }
5591
5592 putpkt_binary (rs->buf, (int) (p - rs->buf));
5593 getpkt (&rs->buf, &rs->buf_size, 0);
5594
5595 if (rs->buf[0] == 'E')
5596 {
5597 /* There is no correspondance between what the remote protocol
5598 uses for errors and errno codes. We would like a cleaner way
5599 of representing errors (big enough to include errno codes,
5600 bfd_error codes, and others). But for now just return EIO. */
5601 errno = EIO;
5602 return 0;
5603 }
5604
5605 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
5606 fewer bytes than we'd planned. */
5607 return nr_bytes;
5608 }
5609
5610 /* Write memory data directly to the remote machine.
5611 This does not inform the data cache; the data cache uses this.
5612 MEMADDR is the address in the remote memory space.
5613 MYADDR is the address of the buffer in our space.
5614 LEN is the number of bytes.
5615
5616 Returns number of bytes transferred, or 0 (setting errno) for
5617 error. Only transfer a single packet. */
5618
5619 int
5620 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
5621 {
5622 char *packet_format = 0;
5623
5624 /* Check whether the target supports binary download. */
5625 check_binary_download (memaddr);
5626
5627 switch (remote_protocol_packets[PACKET_X].support)
5628 {
5629 case PACKET_ENABLE:
5630 packet_format = "X";
5631 break;
5632 case PACKET_DISABLE:
5633 packet_format = "M";
5634 break;
5635 case PACKET_SUPPORT_UNKNOWN:
5636 internal_error (__FILE__, __LINE__,
5637 _("remote_write_bytes: bad internal state"));
5638 default:
5639 internal_error (__FILE__, __LINE__, _("bad switch"));
5640 }
5641
5642 return remote_write_bytes_aux (packet_format,
5643 memaddr, myaddr, len, packet_format[0], 1);
5644 }
5645
5646 /* Read memory data directly from the remote machine.
5647 This does not use the data cache; the data cache uses this.
5648 MEMADDR is the address in the remote memory space.
5649 MYADDR is the address of the buffer in our space.
5650 LEN is the number of bytes.
5651
5652 Returns number of bytes transferred, or 0 for error. */
5653
5654 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
5655 remote targets) shouldn't attempt to read the entire buffer.
5656 Instead it should read a single packet worth of data and then
5657 return the byte size of that packet to the caller. The caller (its
5658 caller and its callers caller ;-) already contains code for
5659 handling partial reads. */
5660
5661 int
5662 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
5663 {
5664 struct remote_state *rs = get_remote_state ();
5665 int max_buf_size; /* Max size of packet output buffer. */
5666 int origlen;
5667
5668 if (len <= 0)
5669 return 0;
5670
5671 max_buf_size = get_memory_read_packet_size ();
5672 /* The packet buffer will be large enough for the payload;
5673 get_memory_packet_size ensures this. */
5674
5675 origlen = len;
5676 while (len > 0)
5677 {
5678 char *p;
5679 int todo;
5680 int i;
5681
5682 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
5683
5684 /* construct "m"<memaddr>","<len>" */
5685 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
5686 memaddr = remote_address_masked (memaddr);
5687 p = rs->buf;
5688 *p++ = 'm';
5689 p += hexnumstr (p, (ULONGEST) memaddr);
5690 *p++ = ',';
5691 p += hexnumstr (p, (ULONGEST) todo);
5692 *p = '\0';
5693
5694 putpkt (rs->buf);
5695 getpkt (&rs->buf, &rs->buf_size, 0);
5696
5697 if (rs->buf[0] == 'E'
5698 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
5699 && rs->buf[3] == '\0')
5700 {
5701 /* There is no correspondance between what the remote
5702 protocol uses for errors and errno codes. We would like
5703 a cleaner way of representing errors (big enough to
5704 include errno codes, bfd_error codes, and others). But
5705 for now just return EIO. */
5706 errno = EIO;
5707 return 0;
5708 }
5709
5710 /* Reply describes memory byte by byte,
5711 each byte encoded as two hex characters. */
5712
5713 p = rs->buf;
5714 if ((i = hex2bin (p, myaddr, todo)) < todo)
5715 {
5716 /* Reply is short. This means that we were able to read
5717 only part of what we wanted to. */
5718 return i + (origlen - len);
5719 }
5720 myaddr += todo;
5721 memaddr += todo;
5722 len -= todo;
5723 }
5724 return origlen;
5725 }
5726 \f
5727
5728 /* Remote notification handler. */
5729
5730 static void
5731 handle_notification (char *buf, size_t length)
5732 {
5733 if (strncmp (buf, "Stop:", 5) == 0)
5734 {
5735 if (pending_stop_reply)
5736 /* We've already parsed the in-flight stop-reply, but the stub
5737 for some reason thought we didn't, possibly due to timeout
5738 on its side. Just ignore it. */
5739 ;
5740 else
5741 {
5742 struct cleanup *old_chain;
5743 struct stop_reply *reply = stop_reply_xmalloc ();
5744 old_chain = make_cleanup (do_stop_reply_xfree, reply);
5745
5746 remote_parse_stop_reply (buf + 5, reply);
5747
5748 discard_cleanups (old_chain);
5749
5750 /* Be careful to only set it after parsing, since an error
5751 may be thrown then. */
5752 pending_stop_reply = reply;
5753
5754 /* Notify the event loop there's a stop reply to acknowledge
5755 and that there may be more events to fetch. */
5756 mark_async_event_handler (remote_async_get_pending_events_token);
5757 }
5758 }
5759 else
5760 /* We ignore notifications we don't recognize, for compatibility
5761 with newer stubs. */
5762 ;
5763 }
5764
5765 \f
5766 /* Read or write LEN bytes from inferior memory at MEMADDR,
5767 transferring to or from debugger address BUFFER. Write to inferior
5768 if SHOULD_WRITE is nonzero. Returns length of data written or
5769 read; 0 for error. TARGET is unused. */
5770
5771 static int
5772 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
5773 int should_write, struct mem_attrib *attrib,
5774 struct target_ops *target)
5775 {
5776 int res;
5777
5778 set_general_thread (inferior_ptid);
5779
5780 if (should_write)
5781 res = remote_write_bytes (mem_addr, buffer, mem_len);
5782 else
5783 res = remote_read_bytes (mem_addr, buffer, mem_len);
5784
5785 return res;
5786 }
5787
5788 /* Sends a packet with content determined by the printf format string
5789 FORMAT and the remaining arguments, then gets the reply. Returns
5790 whether the packet was a success, a failure, or unknown. */
5791
5792 static enum packet_result
5793 remote_send_printf (const char *format, ...)
5794 {
5795 struct remote_state *rs = get_remote_state ();
5796 int max_size = get_remote_packet_size ();
5797
5798 va_list ap;
5799 va_start (ap, format);
5800
5801 rs->buf[0] = '\0';
5802 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
5803 internal_error (__FILE__, __LINE__, "Too long remote packet.");
5804
5805 if (putpkt (rs->buf) < 0)
5806 error (_("Communication problem with target."));
5807
5808 rs->buf[0] = '\0';
5809 getpkt (&rs->buf, &rs->buf_size, 0);
5810
5811 return packet_check_result (rs->buf);
5812 }
5813
5814 static void
5815 restore_remote_timeout (void *p)
5816 {
5817 int value = *(int *)p;
5818 remote_timeout = value;
5819 }
5820
5821 /* Flash writing can take quite some time. We'll set
5822 effectively infinite timeout for flash operations.
5823 In future, we'll need to decide on a better approach. */
5824 static const int remote_flash_timeout = 1000;
5825
5826 static void
5827 remote_flash_erase (struct target_ops *ops,
5828 ULONGEST address, LONGEST length)
5829 {
5830 int saved_remote_timeout = remote_timeout;
5831 enum packet_result ret;
5832
5833 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5834 &saved_remote_timeout);
5835 remote_timeout = remote_flash_timeout;
5836
5837 ret = remote_send_printf ("vFlashErase:%s,%s",
5838 paddr (address),
5839 phex (length, 4));
5840 switch (ret)
5841 {
5842 case PACKET_UNKNOWN:
5843 error (_("Remote target does not support flash erase"));
5844 case PACKET_ERROR:
5845 error (_("Error erasing flash with vFlashErase packet"));
5846 default:
5847 break;
5848 }
5849
5850 do_cleanups (back_to);
5851 }
5852
5853 static LONGEST
5854 remote_flash_write (struct target_ops *ops,
5855 ULONGEST address, LONGEST length,
5856 const gdb_byte *data)
5857 {
5858 int saved_remote_timeout = remote_timeout;
5859 int ret;
5860 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5861 &saved_remote_timeout);
5862
5863 remote_timeout = remote_flash_timeout;
5864 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
5865 do_cleanups (back_to);
5866
5867 return ret;
5868 }
5869
5870 static void
5871 remote_flash_done (struct target_ops *ops)
5872 {
5873 int saved_remote_timeout = remote_timeout;
5874 int ret;
5875 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5876 &saved_remote_timeout);
5877
5878 remote_timeout = remote_flash_timeout;
5879 ret = remote_send_printf ("vFlashDone");
5880 do_cleanups (back_to);
5881
5882 switch (ret)
5883 {
5884 case PACKET_UNKNOWN:
5885 error (_("Remote target does not support vFlashDone"));
5886 case PACKET_ERROR:
5887 error (_("Error finishing flash operation"));
5888 default:
5889 break;
5890 }
5891 }
5892
5893 static void
5894 remote_files_info (struct target_ops *ignore)
5895 {
5896 puts_filtered ("Debugging a target over a serial line.\n");
5897 }
5898 \f
5899 /* Stuff for dealing with the packets which are part of this protocol.
5900 See comment at top of file for details. */
5901
5902 /* Read a single character from the remote end. */
5903
5904 static int
5905 readchar (int timeout)
5906 {
5907 int ch;
5908
5909 ch = serial_readchar (remote_desc, timeout);
5910
5911 if (ch >= 0)
5912 return ch;
5913
5914 switch ((enum serial_rc) ch)
5915 {
5916 case SERIAL_EOF:
5917 pop_target ();
5918 error (_("Remote connection closed"));
5919 /* no return */
5920 case SERIAL_ERROR:
5921 perror_with_name (_("Remote communication error"));
5922 /* no return */
5923 case SERIAL_TIMEOUT:
5924 break;
5925 }
5926 return ch;
5927 }
5928
5929 /* Send the command in *BUF to the remote machine, and read the reply
5930 into *BUF. Report an error if we get an error reply. Resize
5931 *BUF using xrealloc if necessary to hold the result, and update
5932 *SIZEOF_BUF. */
5933
5934 static void
5935 remote_send (char **buf,
5936 long *sizeof_buf)
5937 {
5938 putpkt (*buf);
5939 getpkt (buf, sizeof_buf, 0);
5940
5941 if ((*buf)[0] == 'E')
5942 error (_("Remote failure reply: %s"), *buf);
5943 }
5944
5945 /* Return a pointer to an xmalloc'ed string representing an escaped
5946 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
5947 etc. The caller is responsible for releasing the returned
5948 memory. */
5949
5950 static char *
5951 escape_buffer (const char *buf, int n)
5952 {
5953 struct cleanup *old_chain;
5954 struct ui_file *stb;
5955 char *str;
5956 long length;
5957
5958 stb = mem_fileopen ();
5959 old_chain = make_cleanup_ui_file_delete (stb);
5960
5961 fputstrn_unfiltered (buf, n, 0, stb);
5962 str = ui_file_xstrdup (stb, &length);
5963 do_cleanups (old_chain);
5964 return str;
5965 }
5966
5967 /* Display a null-terminated packet on stdout, for debugging, using C
5968 string notation. */
5969
5970 static void
5971 print_packet (char *buf)
5972 {
5973 puts_filtered ("\"");
5974 fputstr_filtered (buf, '"', gdb_stdout);
5975 puts_filtered ("\"");
5976 }
5977
5978 int
5979 putpkt (char *buf)
5980 {
5981 return putpkt_binary (buf, strlen (buf));
5982 }
5983
5984 /* Send a packet to the remote machine, with error checking. The data
5985 of the packet is in BUF. The string in BUF can be at most
5986 get_remote_packet_size () - 5 to account for the $, # and checksum,
5987 and for a possible /0 if we are debugging (remote_debug) and want
5988 to print the sent packet as a string. */
5989
5990 static int
5991 putpkt_binary (char *buf, int cnt)
5992 {
5993 struct remote_state *rs = get_remote_state ();
5994 int i;
5995 unsigned char csum = 0;
5996 char *buf2 = alloca (cnt + 6);
5997
5998 int ch;
5999 int tcount = 0;
6000 char *p;
6001
6002 /* Catch cases like trying to read memory or listing threads while
6003 we're waiting for a stop reply. The remote server wouldn't be
6004 ready to handle this request, so we'd hang and timeout. We don't
6005 have to worry about this in synchronous mode, because in that
6006 case it's not possible to issue a command while the target is
6007 running. This is not a problem in non-stop mode, because in that
6008 case, the stub is always ready to process serial input. */
6009 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6010 error (_("Cannot execute this command while the target is running."));
6011
6012 /* We're sending out a new packet. Make sure we don't look at a
6013 stale cached response. */
6014 rs->cached_wait_status = 0;
6015
6016 /* Copy the packet into buffer BUF2, encapsulating it
6017 and giving it a checksum. */
6018
6019 p = buf2;
6020 *p++ = '$';
6021
6022 for (i = 0; i < cnt; i++)
6023 {
6024 csum += buf[i];
6025 *p++ = buf[i];
6026 }
6027 *p++ = '#';
6028 *p++ = tohex ((csum >> 4) & 0xf);
6029 *p++ = tohex (csum & 0xf);
6030
6031 /* Send it over and over until we get a positive ack. */
6032
6033 while (1)
6034 {
6035 int started_error_output = 0;
6036
6037 if (remote_debug)
6038 {
6039 struct cleanup *old_chain;
6040 char *str;
6041
6042 *p = '\0';
6043 str = escape_buffer (buf2, p - buf2);
6044 old_chain = make_cleanup (xfree, str);
6045 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6046 gdb_flush (gdb_stdlog);
6047 do_cleanups (old_chain);
6048 }
6049 if (serial_write (remote_desc, buf2, p - buf2))
6050 perror_with_name (_("putpkt: write failed"));
6051
6052 /* If this is a no acks version of the remote protocol, send the
6053 packet and move on. */
6054 if (rs->noack_mode)
6055 break;
6056
6057 /* Read until either a timeout occurs (-2) or '+' is read.
6058 Handle any notification that arrives in the mean time. */
6059 while (1)
6060 {
6061 ch = readchar (remote_timeout);
6062
6063 if (remote_debug)
6064 {
6065 switch (ch)
6066 {
6067 case '+':
6068 case '-':
6069 case SERIAL_TIMEOUT:
6070 case '$':
6071 case '%':
6072 if (started_error_output)
6073 {
6074 putchar_unfiltered ('\n');
6075 started_error_output = 0;
6076 }
6077 }
6078 }
6079
6080 switch (ch)
6081 {
6082 case '+':
6083 if (remote_debug)
6084 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6085 return 1;
6086 case '-':
6087 if (remote_debug)
6088 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6089 case SERIAL_TIMEOUT:
6090 tcount++;
6091 if (tcount > 3)
6092 return 0;
6093 break; /* Retransmit buffer. */
6094 case '$':
6095 {
6096 if (remote_debug)
6097 fprintf_unfiltered (gdb_stdlog,
6098 "Packet instead of Ack, ignoring it\n");
6099 /* It's probably an old response sent because an ACK
6100 was lost. Gobble up the packet and ack it so it
6101 doesn't get retransmitted when we resend this
6102 packet. */
6103 skip_frame ();
6104 serial_write (remote_desc, "+", 1);
6105 continue; /* Now, go look for +. */
6106 }
6107
6108 case '%':
6109 {
6110 int val;
6111
6112 /* If we got a notification, handle it, and go back to looking
6113 for an ack. */
6114 /* We've found the start of a notification. Now
6115 collect the data. */
6116 val = read_frame (&rs->buf, &rs->buf_size);
6117 if (val >= 0)
6118 {
6119 if (remote_debug)
6120 {
6121 struct cleanup *old_chain;
6122 char *str;
6123
6124 str = escape_buffer (rs->buf, val);
6125 old_chain = make_cleanup (xfree, str);
6126 fprintf_unfiltered (gdb_stdlog,
6127 " Notification received: %s\n",
6128 str);
6129 do_cleanups (old_chain);
6130 }
6131 handle_notification (rs->buf, val);
6132 /* We're in sync now, rewait for the ack. */
6133 tcount = 0;
6134 }
6135 else
6136 {
6137 if (remote_debug)
6138 {
6139 if (!started_error_output)
6140 {
6141 started_error_output = 1;
6142 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6143 }
6144 fputc_unfiltered (ch & 0177, gdb_stdlog);
6145 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6146 }
6147 }
6148 continue;
6149 }
6150 /* fall-through */
6151 default:
6152 if (remote_debug)
6153 {
6154 if (!started_error_output)
6155 {
6156 started_error_output = 1;
6157 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6158 }
6159 fputc_unfiltered (ch & 0177, gdb_stdlog);
6160 }
6161 continue;
6162 }
6163 break; /* Here to retransmit. */
6164 }
6165
6166 #if 0
6167 /* This is wrong. If doing a long backtrace, the user should be
6168 able to get out next time we call QUIT, without anything as
6169 violent as interrupt_query. If we want to provide a way out of
6170 here without getting to the next QUIT, it should be based on
6171 hitting ^C twice as in remote_wait. */
6172 if (quit_flag)
6173 {
6174 quit_flag = 0;
6175 interrupt_query ();
6176 }
6177 #endif
6178 }
6179 return 0;
6180 }
6181
6182 /* Come here after finding the start of a frame when we expected an
6183 ack. Do our best to discard the rest of this packet. */
6184
6185 static void
6186 skip_frame (void)
6187 {
6188 int c;
6189
6190 while (1)
6191 {
6192 c = readchar (remote_timeout);
6193 switch (c)
6194 {
6195 case SERIAL_TIMEOUT:
6196 /* Nothing we can do. */
6197 return;
6198 case '#':
6199 /* Discard the two bytes of checksum and stop. */
6200 c = readchar (remote_timeout);
6201 if (c >= 0)
6202 c = readchar (remote_timeout);
6203
6204 return;
6205 case '*': /* Run length encoding. */
6206 /* Discard the repeat count. */
6207 c = readchar (remote_timeout);
6208 if (c < 0)
6209 return;
6210 break;
6211 default:
6212 /* A regular character. */
6213 break;
6214 }
6215 }
6216 }
6217
6218 /* Come here after finding the start of the frame. Collect the rest
6219 into *BUF, verifying the checksum, length, and handling run-length
6220 compression. NUL terminate the buffer. If there is not enough room,
6221 expand *BUF using xrealloc.
6222
6223 Returns -1 on error, number of characters in buffer (ignoring the
6224 trailing NULL) on success. (could be extended to return one of the
6225 SERIAL status indications). */
6226
6227 static long
6228 read_frame (char **buf_p,
6229 long *sizeof_buf)
6230 {
6231 unsigned char csum;
6232 long bc;
6233 int c;
6234 char *buf = *buf_p;
6235 struct remote_state *rs = get_remote_state ();
6236
6237 csum = 0;
6238 bc = 0;
6239
6240 while (1)
6241 {
6242 c = readchar (remote_timeout);
6243 switch (c)
6244 {
6245 case SERIAL_TIMEOUT:
6246 if (remote_debug)
6247 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6248 return -1;
6249 case '$':
6250 if (remote_debug)
6251 fputs_filtered ("Saw new packet start in middle of old one\n",
6252 gdb_stdlog);
6253 return -1; /* Start a new packet, count retries. */
6254 case '#':
6255 {
6256 unsigned char pktcsum;
6257 int check_0 = 0;
6258 int check_1 = 0;
6259
6260 buf[bc] = '\0';
6261
6262 check_0 = readchar (remote_timeout);
6263 if (check_0 >= 0)
6264 check_1 = readchar (remote_timeout);
6265
6266 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6267 {
6268 if (remote_debug)
6269 fputs_filtered ("Timeout in checksum, retrying\n",
6270 gdb_stdlog);
6271 return -1;
6272 }
6273 else if (check_0 < 0 || check_1 < 0)
6274 {
6275 if (remote_debug)
6276 fputs_filtered ("Communication error in checksum\n",
6277 gdb_stdlog);
6278 return -1;
6279 }
6280
6281 /* Don't recompute the checksum; with no ack packets we
6282 don't have any way to indicate a packet retransmission
6283 is necessary. */
6284 if (rs->noack_mode)
6285 return bc;
6286
6287 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6288 if (csum == pktcsum)
6289 return bc;
6290
6291 if (remote_debug)
6292 {
6293 struct cleanup *old_chain;
6294 char *str;
6295
6296 str = escape_buffer (buf, bc);
6297 old_chain = make_cleanup (xfree, str);
6298 fprintf_unfiltered (gdb_stdlog,
6299 "\
6300 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6301 pktcsum, csum, str);
6302 do_cleanups (old_chain);
6303 }
6304 /* Number of characters in buffer ignoring trailing
6305 NULL. */
6306 return -1;
6307 }
6308 case '*': /* Run length encoding. */
6309 {
6310 int repeat;
6311 csum += c;
6312
6313 c = readchar (remote_timeout);
6314 csum += c;
6315 repeat = c - ' ' + 3; /* Compute repeat count. */
6316
6317 /* The character before ``*'' is repeated. */
6318
6319 if (repeat > 0 && repeat <= 255 && bc > 0)
6320 {
6321 if (bc + repeat - 1 >= *sizeof_buf - 1)
6322 {
6323 /* Make some more room in the buffer. */
6324 *sizeof_buf += repeat;
6325 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6326 buf = *buf_p;
6327 }
6328
6329 memset (&buf[bc], buf[bc - 1], repeat);
6330 bc += repeat;
6331 continue;
6332 }
6333
6334 buf[bc] = '\0';
6335 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6336 return -1;
6337 }
6338 default:
6339 if (bc >= *sizeof_buf - 1)
6340 {
6341 /* Make some more room in the buffer. */
6342 *sizeof_buf *= 2;
6343 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6344 buf = *buf_p;
6345 }
6346
6347 buf[bc++] = c;
6348 csum += c;
6349 continue;
6350 }
6351 }
6352 }
6353
6354 /* Read a packet from the remote machine, with error checking, and
6355 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6356 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6357 rather than timing out; this is used (in synchronous mode) to wait
6358 for a target that is is executing user code to stop. */
6359 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6360 don't have to change all the calls to getpkt to deal with the
6361 return value, because at the moment I don't know what the right
6362 thing to do it for those. */
6363 void
6364 getpkt (char **buf,
6365 long *sizeof_buf,
6366 int forever)
6367 {
6368 int timed_out;
6369
6370 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6371 }
6372
6373
6374 /* Read a packet from the remote machine, with error checking, and
6375 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6376 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6377 rather than timing out; this is used (in synchronous mode) to wait
6378 for a target that is is executing user code to stop. If FOREVER ==
6379 0, this function is allowed to time out gracefully and return an
6380 indication of this to the caller. Otherwise return the number of
6381 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6382 enough reason to return to the caller. */
6383
6384 static int
6385 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6386 int expecting_notif)
6387 {
6388 struct remote_state *rs = get_remote_state ();
6389 int c;
6390 int tries;
6391 int timeout;
6392 int val;
6393
6394 /* We're reading a new response. Make sure we don't look at a
6395 previously cached response. */
6396 rs->cached_wait_status = 0;
6397
6398 strcpy (*buf, "timeout");
6399
6400 if (forever)
6401 timeout = watchdog > 0 ? watchdog : -1;
6402 else if (expecting_notif)
6403 timeout = 0; /* There should already be a char in the buffer. If
6404 not, bail out. */
6405 else
6406 timeout = remote_timeout;
6407
6408 #define MAX_TRIES 3
6409
6410 /* Process any number of notifications, and then return when
6411 we get a packet. */
6412 for (;;)
6413 {
6414 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6415 times. */
6416 for (tries = 1; tries <= MAX_TRIES; tries++)
6417 {
6418 /* This can loop forever if the remote side sends us
6419 characters continuously, but if it pauses, we'll get
6420 SERIAL_TIMEOUT from readchar because of timeout. Then
6421 we'll count that as a retry.
6422
6423 Note that even when forever is set, we will only wait
6424 forever prior to the start of a packet. After that, we
6425 expect characters to arrive at a brisk pace. They should
6426 show up within remote_timeout intervals. */
6427 do
6428 c = readchar (timeout);
6429 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6430
6431 if (c == SERIAL_TIMEOUT)
6432 {
6433 if (expecting_notif)
6434 return -1; /* Don't complain, it's normal to not get
6435 anything in this case. */
6436
6437 if (forever) /* Watchdog went off? Kill the target. */
6438 {
6439 QUIT;
6440 pop_target ();
6441 error (_("Watchdog timeout has expired. Target detached."));
6442 }
6443 if (remote_debug)
6444 fputs_filtered ("Timed out.\n", gdb_stdlog);
6445 }
6446 else
6447 {
6448 /* We've found the start of a packet or notification.
6449 Now collect the data. */
6450 val = read_frame (buf, sizeof_buf);
6451 if (val >= 0)
6452 break;
6453 }
6454
6455 serial_write (remote_desc, "-", 1);
6456 }
6457
6458 if (tries > MAX_TRIES)
6459 {
6460 /* We have tried hard enough, and just can't receive the
6461 packet/notification. Give up. */
6462 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6463
6464 /* Skip the ack char if we're in no-ack mode. */
6465 if (!rs->noack_mode)
6466 serial_write (remote_desc, "+", 1);
6467 return -1;
6468 }
6469
6470 /* If we got an ordinary packet, return that to our caller. */
6471 if (c == '$')
6472 {
6473 if (remote_debug)
6474 {
6475 struct cleanup *old_chain;
6476 char *str;
6477
6478 str = escape_buffer (*buf, val);
6479 old_chain = make_cleanup (xfree, str);
6480 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6481 do_cleanups (old_chain);
6482 }
6483
6484 /* Skip the ack char if we're in no-ack mode. */
6485 if (!rs->noack_mode)
6486 serial_write (remote_desc, "+", 1);
6487 return val;
6488 }
6489
6490 /* If we got a notification, handle it, and go back to looking
6491 for a packet. */
6492 else
6493 {
6494 gdb_assert (c == '%');
6495
6496 if (remote_debug)
6497 {
6498 struct cleanup *old_chain;
6499 char *str;
6500
6501 str = escape_buffer (*buf, val);
6502 old_chain = make_cleanup (xfree, str);
6503 fprintf_unfiltered (gdb_stdlog,
6504 " Notification received: %s\n",
6505 str);
6506 do_cleanups (old_chain);
6507 }
6508
6509 handle_notification (*buf, val);
6510
6511 /* Notifications require no acknowledgement. */
6512
6513 if (expecting_notif)
6514 return -1;
6515 }
6516 }
6517 }
6518
6519 static int
6520 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6521 {
6522 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6523 }
6524
6525 static int
6526 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6527 {
6528 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6529 }
6530
6531 \f
6532 static void
6533 remote_kill (struct target_ops *ops)
6534 {
6535 /* Use catch_errors so the user can quit from gdb even when we
6536 aren't on speaking terms with the remote system. */
6537 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6538
6539 /* Don't wait for it to die. I'm not really sure it matters whether
6540 we do or not. For the existing stubs, kill is a noop. */
6541 target_mourn_inferior ();
6542 }
6543
6544 static int
6545 remote_vkill (int pid, struct remote_state *rs)
6546 {
6547 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6548 return -1;
6549
6550 /* Tell the remote target to detach. */
6551 sprintf (rs->buf, "vKill;%x", pid);
6552 putpkt (rs->buf);
6553 getpkt (&rs->buf, &rs->buf_size, 0);
6554
6555 if (packet_ok (rs->buf,
6556 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6557 return 0;
6558 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6559 return -1;
6560 else
6561 return 1;
6562 }
6563
6564 static void
6565 extended_remote_kill (struct target_ops *ops)
6566 {
6567 int res;
6568 int pid = ptid_get_pid (inferior_ptid);
6569 struct remote_state *rs = get_remote_state ();
6570
6571 res = remote_vkill (pid, rs);
6572 if (res == -1 && !remote_multi_process_p (rs))
6573 {
6574 /* Don't try 'k' on a multi-process aware stub -- it has no way
6575 to specify the pid. */
6576
6577 putpkt ("k");
6578 #if 0
6579 getpkt (&rs->buf, &rs->buf_size, 0);
6580 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
6581 res = 1;
6582 #else
6583 /* Don't wait for it to die. I'm not really sure it matters whether
6584 we do or not. For the existing stubs, kill is a noop. */
6585 res = 0;
6586 #endif
6587 }
6588
6589 if (res != 0)
6590 error (_("Can't kill process"));
6591
6592 target_mourn_inferior ();
6593 }
6594
6595 static void
6596 remote_mourn (struct target_ops *ops)
6597 {
6598 remote_mourn_1 (ops);
6599 }
6600
6601 /* Worker function for remote_mourn. */
6602 static void
6603 remote_mourn_1 (struct target_ops *target)
6604 {
6605 unpush_target (target);
6606
6607 /* remote_close takes care of cleaning up. */
6608 }
6609
6610 static int
6611 select_new_thread_callback (struct thread_info *th, void* data)
6612 {
6613 if (!is_exited (th->ptid))
6614 {
6615 switch_to_thread (th->ptid);
6616 printf_filtered (_("[Switching to %s]\n"),
6617 target_pid_to_str (inferior_ptid));
6618 return 1;
6619 }
6620 return 0;
6621 }
6622
6623 static void
6624 extended_remote_mourn_1 (struct target_ops *target)
6625 {
6626 struct remote_state *rs = get_remote_state ();
6627
6628 /* In case we got here due to an error, but we're going to stay
6629 connected. */
6630 rs->waiting_for_stop_reply = 0;
6631
6632 /* We're no longer interested in these events. */
6633 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
6634
6635 /* If the current general thread belonged to the process we just
6636 detached from or has exited, the remote side current general
6637 thread becomes undefined. Considering a case like this:
6638
6639 - We just got here due to a detach.
6640 - The process that we're detaching from happens to immediately
6641 report a global breakpoint being hit in non-stop mode, in the
6642 same thread we had selected before.
6643 - GDB attaches to this process again.
6644 - This event happens to be the next event we handle.
6645
6646 GDB would consider that the current general thread didn't need to
6647 be set on the stub side (with Hg), since for all it knew,
6648 GENERAL_THREAD hadn't changed.
6649
6650 Notice that although in all-stop mode, the remote server always
6651 sets the current thread to the thread reporting the stop event,
6652 that doesn't happen in non-stop mode; in non-stop, the stub *must
6653 not* change the current thread when reporting a breakpoint hit,
6654 due to the decoupling of event reporting and event handling.
6655
6656 To keep things simple, we always invalidate our notion of the
6657 current thread. */
6658 record_currthread (minus_one_ptid);
6659
6660 /* Unlike "target remote", we do not want to unpush the target; then
6661 the next time the user says "run", we won't be connected. */
6662
6663 /* Call common code to mark the inferior as not running. */
6664 generic_mourn_inferior ();
6665
6666 if (have_inferiors ())
6667 {
6668 extern void nullify_last_target_wait_ptid ();
6669 /* Multi-process case. The current process has exited, but
6670 there are other processes to debug. Switch to the first
6671 available. */
6672 iterate_over_threads (select_new_thread_callback, NULL);
6673 nullify_last_target_wait_ptid ();
6674 }
6675 else
6676 {
6677 if (!remote_multi_process_p (rs))
6678 {
6679 /* Check whether the target is running now - some remote stubs
6680 automatically restart after kill. */
6681 putpkt ("?");
6682 getpkt (&rs->buf, &rs->buf_size, 0);
6683
6684 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
6685 {
6686 /* Assume that the target has been restarted. Set inferior_ptid
6687 so that bits of core GDB realizes there's something here, e.g.,
6688 so that the user can say "kill" again. */
6689 inferior_ptid = magic_null_ptid;
6690 }
6691 else
6692 {
6693 /* Mark this (still pushed) target as not executable until we
6694 restart it. */
6695 target_mark_exited (target);
6696 }
6697 }
6698 else
6699 /* Always remove execution if this was the last process. */
6700 target_mark_exited (target);
6701 }
6702 }
6703
6704 static void
6705 extended_remote_mourn (struct target_ops *ops)
6706 {
6707 extended_remote_mourn_1 (ops);
6708 }
6709
6710 static int
6711 extended_remote_run (char *args)
6712 {
6713 struct remote_state *rs = get_remote_state ();
6714 char *p;
6715 int len;
6716
6717 /* If the user has disabled vRun support, or we have detected that
6718 support is not available, do not try it. */
6719 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6720 return -1;
6721
6722 strcpy (rs->buf, "vRun;");
6723 len = strlen (rs->buf);
6724
6725 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
6726 error (_("Remote file name too long for run packet"));
6727 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
6728
6729 gdb_assert (args != NULL);
6730 if (*args)
6731 {
6732 struct cleanup *back_to;
6733 int i;
6734 char **argv;
6735
6736 argv = gdb_buildargv (args);
6737 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
6738 for (i = 0; argv[i] != NULL; i++)
6739 {
6740 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
6741 error (_("Argument list too long for run packet"));
6742 rs->buf[len++] = ';';
6743 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
6744 }
6745 do_cleanups (back_to);
6746 }
6747
6748 rs->buf[len++] = '\0';
6749
6750 putpkt (rs->buf);
6751 getpkt (&rs->buf, &rs->buf_size, 0);
6752
6753 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
6754 {
6755 /* We have a wait response; we don't need it, though. All is well. */
6756 return 0;
6757 }
6758 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6759 /* It wasn't disabled before, but it is now. */
6760 return -1;
6761 else
6762 {
6763 if (remote_exec_file[0] == '\0')
6764 error (_("Running the default executable on the remote target failed; "
6765 "try \"set remote exec-file\"?"));
6766 else
6767 error (_("Running \"%s\" on the remote target failed"),
6768 remote_exec_file);
6769 }
6770 }
6771
6772 /* In the extended protocol we want to be able to do things like
6773 "run" and have them basically work as expected. So we need
6774 a special create_inferior function. We support changing the
6775 executable file and the command line arguments, but not the
6776 environment. */
6777
6778 static void
6779 extended_remote_create_inferior_1 (char *exec_file, char *args,
6780 char **env, int from_tty)
6781 {
6782 /* If running asynchronously, register the target file descriptor
6783 with the event loop. */
6784 if (target_can_async_p ())
6785 target_async (inferior_event_handler, 0);
6786
6787 /* Now restart the remote server. */
6788 if (extended_remote_run (args) == -1)
6789 {
6790 /* vRun was not supported. Fail if we need it to do what the
6791 user requested. */
6792 if (remote_exec_file[0])
6793 error (_("Remote target does not support \"set remote exec-file\""));
6794 if (args[0])
6795 error (_("Remote target does not support \"set args\" or run <ARGS>"));
6796
6797 /* Fall back to "R". */
6798 extended_remote_restart ();
6799 }
6800
6801 /* Clean up from the last time we ran, before we mark the target
6802 running again. This will mark breakpoints uninserted, and
6803 get_offsets may insert breakpoints. */
6804 init_thread_list ();
6805 init_wait_for_inferior ();
6806
6807 /* Now mark the inferior as running before we do anything else. */
6808 inferior_ptid = magic_null_ptid;
6809
6810 /* Now, if we have thread information, update inferior_ptid. */
6811 inferior_ptid = remote_current_thread (inferior_ptid);
6812
6813 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
6814 add_thread_silent (inferior_ptid);
6815
6816 /* Get updated offsets, if the stub uses qOffsets. */
6817 get_offsets ();
6818 }
6819
6820 static void
6821 extended_remote_create_inferior (struct target_ops *ops,
6822 char *exec_file, char *args,
6823 char **env, int from_tty)
6824 {
6825 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
6826 }
6827 \f
6828
6829 /* Insert a breakpoint. On targets that have software breakpoint
6830 support, we ask the remote target to do the work; on targets
6831 which don't, we insert a traditional memory breakpoint. */
6832
6833 static int
6834 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
6835 {
6836 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
6837 If it succeeds, then set the support to PACKET_ENABLE. If it
6838 fails, and the user has explicitly requested the Z support then
6839 report an error, otherwise, mark it disabled and go on. */
6840
6841 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6842 {
6843 CORE_ADDR addr = bp_tgt->placed_address;
6844 struct remote_state *rs;
6845 char *p;
6846 int bpsize;
6847
6848 gdbarch_breakpoint_from_pc (target_gdbarch, &addr, &bpsize);
6849
6850 rs = get_remote_state ();
6851 p = rs->buf;
6852
6853 *(p++) = 'Z';
6854 *(p++) = '0';
6855 *(p++) = ',';
6856 addr = (ULONGEST) remote_address_masked (addr);
6857 p += hexnumstr (p, addr);
6858 sprintf (p, ",%d", bpsize);
6859
6860 putpkt (rs->buf);
6861 getpkt (&rs->buf, &rs->buf_size, 0);
6862
6863 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
6864 {
6865 case PACKET_ERROR:
6866 return -1;
6867 case PACKET_OK:
6868 bp_tgt->placed_address = addr;
6869 bp_tgt->placed_size = bpsize;
6870 return 0;
6871 case PACKET_UNKNOWN:
6872 break;
6873 }
6874 }
6875
6876 return memory_insert_breakpoint (bp_tgt);
6877 }
6878
6879 static int
6880 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
6881 {
6882 CORE_ADDR addr = bp_tgt->placed_address;
6883 struct remote_state *rs = get_remote_state ();
6884 int bp_size;
6885
6886 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6887 {
6888 char *p = rs->buf;
6889
6890 *(p++) = 'z';
6891 *(p++) = '0';
6892 *(p++) = ',';
6893
6894 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
6895 p += hexnumstr (p, addr);
6896 sprintf (p, ",%d", bp_tgt->placed_size);
6897
6898 putpkt (rs->buf);
6899 getpkt (&rs->buf, &rs->buf_size, 0);
6900
6901 return (rs->buf[0] == 'E');
6902 }
6903
6904 return memory_remove_breakpoint (bp_tgt);
6905 }
6906
6907 static int
6908 watchpoint_to_Z_packet (int type)
6909 {
6910 switch (type)
6911 {
6912 case hw_write:
6913 return Z_PACKET_WRITE_WP;
6914 break;
6915 case hw_read:
6916 return Z_PACKET_READ_WP;
6917 break;
6918 case hw_access:
6919 return Z_PACKET_ACCESS_WP;
6920 break;
6921 default:
6922 internal_error (__FILE__, __LINE__,
6923 _("hw_bp_to_z: bad watchpoint type %d"), type);
6924 }
6925 }
6926
6927 static int
6928 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
6929 {
6930 struct remote_state *rs = get_remote_state ();
6931 char *p;
6932 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6933
6934 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6935 return -1;
6936
6937 sprintf (rs->buf, "Z%x,", packet);
6938 p = strchr (rs->buf, '\0');
6939 addr = remote_address_masked (addr);
6940 p += hexnumstr (p, (ULONGEST) addr);
6941 sprintf (p, ",%x", len);
6942
6943 putpkt (rs->buf);
6944 getpkt (&rs->buf, &rs->buf_size, 0);
6945
6946 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6947 {
6948 case PACKET_ERROR:
6949 case PACKET_UNKNOWN:
6950 return -1;
6951 case PACKET_OK:
6952 return 0;
6953 }
6954 internal_error (__FILE__, __LINE__,
6955 _("remote_insert_watchpoint: reached end of function"));
6956 }
6957
6958
6959 static int
6960 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
6961 {
6962 struct remote_state *rs = get_remote_state ();
6963 char *p;
6964 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6965
6966 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6967 return -1;
6968
6969 sprintf (rs->buf, "z%x,", packet);
6970 p = strchr (rs->buf, '\0');
6971 addr = remote_address_masked (addr);
6972 p += hexnumstr (p, (ULONGEST) addr);
6973 sprintf (p, ",%x", len);
6974 putpkt (rs->buf);
6975 getpkt (&rs->buf, &rs->buf_size, 0);
6976
6977 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6978 {
6979 case PACKET_ERROR:
6980 case PACKET_UNKNOWN:
6981 return -1;
6982 case PACKET_OK:
6983 return 0;
6984 }
6985 internal_error (__FILE__, __LINE__,
6986 _("remote_remove_watchpoint: reached end of function"));
6987 }
6988
6989
6990 int remote_hw_watchpoint_limit = -1;
6991 int remote_hw_breakpoint_limit = -1;
6992
6993 static int
6994 remote_check_watch_resources (int type, int cnt, int ot)
6995 {
6996 if (type == bp_hardware_breakpoint)
6997 {
6998 if (remote_hw_breakpoint_limit == 0)
6999 return 0;
7000 else if (remote_hw_breakpoint_limit < 0)
7001 return 1;
7002 else if (cnt <= remote_hw_breakpoint_limit)
7003 return 1;
7004 }
7005 else
7006 {
7007 if (remote_hw_watchpoint_limit == 0)
7008 return 0;
7009 else if (remote_hw_watchpoint_limit < 0)
7010 return 1;
7011 else if (ot)
7012 return -1;
7013 else if (cnt <= remote_hw_watchpoint_limit)
7014 return 1;
7015 }
7016 return -1;
7017 }
7018
7019 static int
7020 remote_stopped_by_watchpoint (void)
7021 {
7022 return remote_stopped_by_watchpoint_p;
7023 }
7024
7025 static int
7026 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7027 {
7028 int rc = 0;
7029 if (remote_stopped_by_watchpoint ())
7030 {
7031 *addr_p = remote_watch_data_address;
7032 rc = 1;
7033 }
7034
7035 return rc;
7036 }
7037
7038
7039 static int
7040 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
7041 {
7042 CORE_ADDR addr;
7043 struct remote_state *rs;
7044 char *p;
7045
7046 /* The length field should be set to the size of a breakpoint
7047 instruction, even though we aren't inserting one ourselves. */
7048
7049 gdbarch_breakpoint_from_pc
7050 (target_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7051
7052 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7053 return -1;
7054
7055 rs = get_remote_state ();
7056 p = rs->buf;
7057
7058 *(p++) = 'Z';
7059 *(p++) = '1';
7060 *(p++) = ',';
7061
7062 addr = remote_address_masked (bp_tgt->placed_address);
7063 p += hexnumstr (p, (ULONGEST) addr);
7064 sprintf (p, ",%x", bp_tgt->placed_size);
7065
7066 putpkt (rs->buf);
7067 getpkt (&rs->buf, &rs->buf_size, 0);
7068
7069 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7070 {
7071 case PACKET_ERROR:
7072 case PACKET_UNKNOWN:
7073 return -1;
7074 case PACKET_OK:
7075 return 0;
7076 }
7077 internal_error (__FILE__, __LINE__,
7078 _("remote_insert_hw_breakpoint: reached end of function"));
7079 }
7080
7081
7082 static int
7083 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
7084 {
7085 CORE_ADDR addr;
7086 struct remote_state *rs = get_remote_state ();
7087 char *p = rs->buf;
7088
7089 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7090 return -1;
7091
7092 *(p++) = 'z';
7093 *(p++) = '1';
7094 *(p++) = ',';
7095
7096 addr = remote_address_masked (bp_tgt->placed_address);
7097 p += hexnumstr (p, (ULONGEST) addr);
7098 sprintf (p, ",%x", bp_tgt->placed_size);
7099
7100 putpkt (rs->buf);
7101 getpkt (&rs->buf, &rs->buf_size, 0);
7102
7103 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7104 {
7105 case PACKET_ERROR:
7106 case PACKET_UNKNOWN:
7107 return -1;
7108 case PACKET_OK:
7109 return 0;
7110 }
7111 internal_error (__FILE__, __LINE__,
7112 _("remote_remove_hw_breakpoint: reached end of function"));
7113 }
7114
7115 /* Table used by the crc32 function to calcuate the checksum. */
7116
7117 static unsigned long crc32_table[256] =
7118 {0, 0};
7119
7120 static unsigned long
7121 crc32 (unsigned char *buf, int len, unsigned int crc)
7122 {
7123 if (!crc32_table[1])
7124 {
7125 /* Initialize the CRC table and the decoding table. */
7126 int i, j;
7127 unsigned int c;
7128
7129 for (i = 0; i < 256; i++)
7130 {
7131 for (c = i << 24, j = 8; j > 0; --j)
7132 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7133 crc32_table[i] = c;
7134 }
7135 }
7136
7137 while (len--)
7138 {
7139 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7140 buf++;
7141 }
7142 return crc;
7143 }
7144
7145 /* compare-sections command
7146
7147 With no arguments, compares each loadable section in the exec bfd
7148 with the same memory range on the target, and reports mismatches.
7149 Useful for verifying the image on the target against the exec file.
7150 Depends on the target understanding the new "qCRC:" request. */
7151
7152 /* FIXME: cagney/1999-10-26: This command should be broken down into a
7153 target method (target verify memory) and generic version of the
7154 actual command. This will allow other high-level code (especially
7155 generic_load()) to make use of this target functionality. */
7156
7157 static void
7158 compare_sections_command (char *args, int from_tty)
7159 {
7160 struct remote_state *rs = get_remote_state ();
7161 asection *s;
7162 unsigned long host_crc, target_crc;
7163 extern bfd *exec_bfd;
7164 struct cleanup *old_chain;
7165 char *tmp;
7166 char *sectdata;
7167 const char *sectname;
7168 bfd_size_type size;
7169 bfd_vma lma;
7170 int matched = 0;
7171 int mismatched = 0;
7172
7173 if (!exec_bfd)
7174 error (_("command cannot be used without an exec file"));
7175 if (!current_target.to_shortname ||
7176 strcmp (current_target.to_shortname, "remote") != 0)
7177 error (_("command can only be used with remote target"));
7178
7179 for (s = exec_bfd->sections; s; s = s->next)
7180 {
7181 if (!(s->flags & SEC_LOAD))
7182 continue; /* skip non-loadable section */
7183
7184 size = bfd_get_section_size (s);
7185 if (size == 0)
7186 continue; /* skip zero-length section */
7187
7188 sectname = bfd_get_section_name (exec_bfd, s);
7189 if (args && strcmp (args, sectname) != 0)
7190 continue; /* not the section selected by user */
7191
7192 matched = 1; /* do this section */
7193 lma = s->lma;
7194 /* FIXME: assumes lma can fit into long. */
7195 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7196 (long) lma, (long) size);
7197 putpkt (rs->buf);
7198
7199 /* Be clever; compute the host_crc before waiting for target
7200 reply. */
7201 sectdata = xmalloc (size);
7202 old_chain = make_cleanup (xfree, sectdata);
7203 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7204 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7205
7206 getpkt (&rs->buf, &rs->buf_size, 0);
7207 if (rs->buf[0] == 'E')
7208 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
7209 sectname, paddr (lma), paddr (lma + size));
7210 if (rs->buf[0] != 'C')
7211 error (_("remote target does not support this operation"));
7212
7213 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7214 target_crc = target_crc * 16 + fromhex (*tmp);
7215
7216 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
7217 sectname, paddr (lma), paddr (lma + size));
7218 if (host_crc == target_crc)
7219 printf_filtered ("matched.\n");
7220 else
7221 {
7222 printf_filtered ("MIS-MATCHED!\n");
7223 mismatched++;
7224 }
7225
7226 do_cleanups (old_chain);
7227 }
7228 if (mismatched > 0)
7229 warning (_("One or more sections of the remote executable does not match\n\
7230 the loaded file\n"));
7231 if (args && !matched)
7232 printf_filtered (_("No loaded section named '%s'.\n"), args);
7233 }
7234
7235 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7236 into remote target. The number of bytes written to the remote
7237 target is returned, or -1 for error. */
7238
7239 static LONGEST
7240 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7241 const char *annex, const gdb_byte *writebuf,
7242 ULONGEST offset, LONGEST len,
7243 struct packet_config *packet)
7244 {
7245 int i, buf_len;
7246 ULONGEST n;
7247 gdb_byte *wbuf;
7248 struct remote_state *rs = get_remote_state ();
7249 int max_size = get_memory_write_packet_size ();
7250
7251 if (packet->support == PACKET_DISABLE)
7252 return -1;
7253
7254 /* Insert header. */
7255 i = snprintf (rs->buf, max_size,
7256 "qXfer:%s:write:%s:%s:",
7257 object_name, annex ? annex : "",
7258 phex_nz (offset, sizeof offset));
7259 max_size -= (i + 1);
7260
7261 /* Escape as much data as fits into rs->buf. */
7262 buf_len = remote_escape_output
7263 (writebuf, len, (rs->buf + i), &max_size, max_size);
7264
7265 if (putpkt_binary (rs->buf, i + buf_len) < 0
7266 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7267 || packet_ok (rs->buf, packet) != PACKET_OK)
7268 return -1;
7269
7270 unpack_varlen_hex (rs->buf, &n);
7271 return n;
7272 }
7273
7274 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7275 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7276 number of bytes read is returned, or 0 for EOF, or -1 for error.
7277 The number of bytes read may be less than LEN without indicating an
7278 EOF. PACKET is checked and updated to indicate whether the remote
7279 target supports this object. */
7280
7281 static LONGEST
7282 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7283 const char *annex,
7284 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7285 struct packet_config *packet)
7286 {
7287 static char *finished_object;
7288 static char *finished_annex;
7289 static ULONGEST finished_offset;
7290
7291 struct remote_state *rs = get_remote_state ();
7292 unsigned int total = 0;
7293 LONGEST i, n, packet_len;
7294
7295 if (packet->support == PACKET_DISABLE)
7296 return -1;
7297
7298 /* Check whether we've cached an end-of-object packet that matches
7299 this request. */
7300 if (finished_object)
7301 {
7302 if (strcmp (object_name, finished_object) == 0
7303 && strcmp (annex ? annex : "", finished_annex) == 0
7304 && offset == finished_offset)
7305 return 0;
7306
7307 /* Otherwise, we're now reading something different. Discard
7308 the cache. */
7309 xfree (finished_object);
7310 xfree (finished_annex);
7311 finished_object = NULL;
7312 finished_annex = NULL;
7313 }
7314
7315 /* Request only enough to fit in a single packet. The actual data
7316 may not, since we don't know how much of it will need to be escaped;
7317 the target is free to respond with slightly less data. We subtract
7318 five to account for the response type and the protocol frame. */
7319 n = min (get_remote_packet_size () - 5, len);
7320 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7321 object_name, annex ? annex : "",
7322 phex_nz (offset, sizeof offset),
7323 phex_nz (n, sizeof n));
7324 i = putpkt (rs->buf);
7325 if (i < 0)
7326 return -1;
7327
7328 rs->buf[0] = '\0';
7329 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7330 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7331 return -1;
7332
7333 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7334 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7335
7336 /* 'm' means there is (or at least might be) more data after this
7337 batch. That does not make sense unless there's at least one byte
7338 of data in this reply. */
7339 if (rs->buf[0] == 'm' && packet_len == 1)
7340 error (_("Remote qXfer reply contained no data."));
7341
7342 /* Got some data. */
7343 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7344
7345 /* 'l' is an EOF marker, possibly including a final block of data,
7346 or possibly empty. If we have the final block of a non-empty
7347 object, record this fact to bypass a subsequent partial read. */
7348 if (rs->buf[0] == 'l' && offset + i > 0)
7349 {
7350 finished_object = xstrdup (object_name);
7351 finished_annex = xstrdup (annex ? annex : "");
7352 finished_offset = offset + i;
7353 }
7354
7355 return i;
7356 }
7357
7358 static LONGEST
7359 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7360 const char *annex, gdb_byte *readbuf,
7361 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7362 {
7363 struct remote_state *rs;
7364 int i;
7365 char *p2;
7366 char query_type;
7367
7368 set_general_thread (inferior_ptid);
7369
7370 rs = get_remote_state ();
7371
7372 /* Handle memory using the standard memory routines. */
7373 if (object == TARGET_OBJECT_MEMORY)
7374 {
7375 int xfered;
7376 errno = 0;
7377
7378 /* If the remote target is connected but not running, we should
7379 pass this request down to a lower stratum (e.g. the executable
7380 file). */
7381 if (!target_has_execution)
7382 return 0;
7383
7384 if (writebuf != NULL)
7385 xfered = remote_write_bytes (offset, writebuf, len);
7386 else
7387 xfered = remote_read_bytes (offset, readbuf, len);
7388
7389 if (xfered > 0)
7390 return xfered;
7391 else if (xfered == 0 && errno == 0)
7392 return 0;
7393 else
7394 return -1;
7395 }
7396
7397 /* Handle SPU memory using qxfer packets. */
7398 if (object == TARGET_OBJECT_SPU)
7399 {
7400 if (readbuf)
7401 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7402 &remote_protocol_packets
7403 [PACKET_qXfer_spu_read]);
7404 else
7405 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7406 &remote_protocol_packets
7407 [PACKET_qXfer_spu_write]);
7408 }
7409
7410 /* Handle extra signal info using qxfer packets. */
7411 if (object == TARGET_OBJECT_SIGNAL_INFO)
7412 {
7413 if (readbuf)
7414 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
7415 &remote_protocol_packets
7416 [PACKET_qXfer_siginfo_read]);
7417 else
7418 return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len,
7419 &remote_protocol_packets
7420 [PACKET_qXfer_siginfo_write]);
7421 }
7422
7423 /* Only handle flash writes. */
7424 if (writebuf != NULL)
7425 {
7426 LONGEST xfered;
7427
7428 switch (object)
7429 {
7430 case TARGET_OBJECT_FLASH:
7431 xfered = remote_flash_write (ops, offset, len, writebuf);
7432
7433 if (xfered > 0)
7434 return xfered;
7435 else if (xfered == 0 && errno == 0)
7436 return 0;
7437 else
7438 return -1;
7439
7440 default:
7441 return -1;
7442 }
7443 }
7444
7445 /* Map pre-existing objects onto letters. DO NOT do this for new
7446 objects!!! Instead specify new query packets. */
7447 switch (object)
7448 {
7449 case TARGET_OBJECT_AVR:
7450 query_type = 'R';
7451 break;
7452
7453 case TARGET_OBJECT_AUXV:
7454 gdb_assert (annex == NULL);
7455 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7456 &remote_protocol_packets[PACKET_qXfer_auxv]);
7457
7458 case TARGET_OBJECT_AVAILABLE_FEATURES:
7459 return remote_read_qxfer
7460 (ops, "features", annex, readbuf, offset, len,
7461 &remote_protocol_packets[PACKET_qXfer_features]);
7462
7463 case TARGET_OBJECT_LIBRARIES:
7464 return remote_read_qxfer
7465 (ops, "libraries", annex, readbuf, offset, len,
7466 &remote_protocol_packets[PACKET_qXfer_libraries]);
7467
7468 case TARGET_OBJECT_MEMORY_MAP:
7469 gdb_assert (annex == NULL);
7470 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7471 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7472
7473 case TARGET_OBJECT_OSDATA:
7474 /* Should only get here if we're connected. */
7475 gdb_assert (remote_desc);
7476 return remote_read_qxfer
7477 (ops, "osdata", annex, readbuf, offset, len,
7478 &remote_protocol_packets[PACKET_qXfer_osdata]);
7479
7480 default:
7481 return -1;
7482 }
7483
7484 /* Note: a zero OFFSET and LEN can be used to query the minimum
7485 buffer size. */
7486 if (offset == 0 && len == 0)
7487 return (get_remote_packet_size ());
7488 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7489 large enough let the caller deal with it. */
7490 if (len < get_remote_packet_size ())
7491 return -1;
7492 len = get_remote_packet_size ();
7493
7494 /* Except for querying the minimum buffer size, target must be open. */
7495 if (!remote_desc)
7496 error (_("remote query is only available after target open"));
7497
7498 gdb_assert (annex != NULL);
7499 gdb_assert (readbuf != NULL);
7500
7501 p2 = rs->buf;
7502 *p2++ = 'q';
7503 *p2++ = query_type;
7504
7505 /* We used one buffer char for the remote protocol q command and
7506 another for the query type. As the remote protocol encapsulation
7507 uses 4 chars plus one extra in case we are debugging
7508 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7509 string. */
7510 i = 0;
7511 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7512 {
7513 /* Bad caller may have sent forbidden characters. */
7514 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7515 *p2++ = annex[i];
7516 i++;
7517 }
7518 *p2 = '\0';
7519 gdb_assert (annex[i] == '\0');
7520
7521 i = putpkt (rs->buf);
7522 if (i < 0)
7523 return i;
7524
7525 getpkt (&rs->buf, &rs->buf_size, 0);
7526 strcpy ((char *) readbuf, rs->buf);
7527
7528 return strlen ((char *) readbuf);
7529 }
7530
7531 static int
7532 remote_search_memory (struct target_ops* ops,
7533 CORE_ADDR start_addr, ULONGEST search_space_len,
7534 const gdb_byte *pattern, ULONGEST pattern_len,
7535 CORE_ADDR *found_addrp)
7536 {
7537 struct remote_state *rs = get_remote_state ();
7538 int max_size = get_memory_write_packet_size ();
7539 struct packet_config *packet =
7540 &remote_protocol_packets[PACKET_qSearch_memory];
7541 /* number of packet bytes used to encode the pattern,
7542 this could be more than PATTERN_LEN due to escape characters */
7543 int escaped_pattern_len;
7544 /* amount of pattern that was encodable in the packet */
7545 int used_pattern_len;
7546 int i;
7547 int found;
7548 ULONGEST found_addr;
7549
7550 /* Don't go to the target if we don't have to.
7551 This is done before checking packet->support to avoid the possibility that
7552 a success for this edge case means the facility works in general. */
7553 if (pattern_len > search_space_len)
7554 return 0;
7555 if (pattern_len == 0)
7556 {
7557 *found_addrp = start_addr;
7558 return 1;
7559 }
7560
7561 /* If we already know the packet isn't supported, fall back to the simple
7562 way of searching memory. */
7563
7564 if (packet->support == PACKET_DISABLE)
7565 {
7566 /* Target doesn't provided special support, fall back and use the
7567 standard support (copy memory and do the search here). */
7568 return simple_search_memory (ops, start_addr, search_space_len,
7569 pattern, pattern_len, found_addrp);
7570 }
7571
7572 /* Insert header. */
7573 i = snprintf (rs->buf, max_size,
7574 "qSearch:memory:%s;%s;",
7575 paddr_nz (start_addr),
7576 phex_nz (search_space_len, sizeof (search_space_len)));
7577 max_size -= (i + 1);
7578
7579 /* Escape as much data as fits into rs->buf. */
7580 escaped_pattern_len =
7581 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7582 &used_pattern_len, max_size);
7583
7584 /* Bail if the pattern is too large. */
7585 if (used_pattern_len != pattern_len)
7586 error ("Pattern is too large to transmit to remote target.");
7587
7588 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
7589 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7590 || packet_ok (rs->buf, packet) != PACKET_OK)
7591 {
7592 /* The request may not have worked because the command is not
7593 supported. If so, fall back to the simple way. */
7594 if (packet->support == PACKET_DISABLE)
7595 {
7596 return simple_search_memory (ops, start_addr, search_space_len,
7597 pattern, pattern_len, found_addrp);
7598 }
7599 return -1;
7600 }
7601
7602 if (rs->buf[0] == '0')
7603 found = 0;
7604 else if (rs->buf[0] == '1')
7605 {
7606 found = 1;
7607 if (rs->buf[1] != ',')
7608 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7609 unpack_varlen_hex (rs->buf + 2, &found_addr);
7610 *found_addrp = found_addr;
7611 }
7612 else
7613 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7614
7615 return found;
7616 }
7617
7618 static void
7619 remote_rcmd (char *command,
7620 struct ui_file *outbuf)
7621 {
7622 struct remote_state *rs = get_remote_state ();
7623 char *p = rs->buf;
7624
7625 if (!remote_desc)
7626 error (_("remote rcmd is only available after target open"));
7627
7628 /* Send a NULL command across as an empty command. */
7629 if (command == NULL)
7630 command = "";
7631
7632 /* The query prefix. */
7633 strcpy (rs->buf, "qRcmd,");
7634 p = strchr (rs->buf, '\0');
7635
7636 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
7637 error (_("\"monitor\" command ``%s'' is too long."), command);
7638
7639 /* Encode the actual command. */
7640 bin2hex ((gdb_byte *) command, p, 0);
7641
7642 if (putpkt (rs->buf) < 0)
7643 error (_("Communication problem with target."));
7644
7645 /* get/display the response */
7646 while (1)
7647 {
7648 char *buf;
7649
7650 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
7651 rs->buf[0] = '\0';
7652 getpkt (&rs->buf, &rs->buf_size, 0);
7653 buf = rs->buf;
7654 if (buf[0] == '\0')
7655 error (_("Target does not support this command."));
7656 if (buf[0] == 'O' && buf[1] != 'K')
7657 {
7658 remote_console_output (buf + 1); /* 'O' message from stub. */
7659 continue;
7660 }
7661 if (strcmp (buf, "OK") == 0)
7662 break;
7663 if (strlen (buf) == 3 && buf[0] == 'E'
7664 && isdigit (buf[1]) && isdigit (buf[2]))
7665 {
7666 error (_("Protocol error with Rcmd"));
7667 }
7668 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
7669 {
7670 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
7671 fputc_unfiltered (c, outbuf);
7672 }
7673 break;
7674 }
7675 }
7676
7677 static VEC(mem_region_s) *
7678 remote_memory_map (struct target_ops *ops)
7679 {
7680 VEC(mem_region_s) *result = NULL;
7681 char *text = target_read_stralloc (&current_target,
7682 TARGET_OBJECT_MEMORY_MAP, NULL);
7683
7684 if (text)
7685 {
7686 struct cleanup *back_to = make_cleanup (xfree, text);
7687 result = parse_memory_map (text);
7688 do_cleanups (back_to);
7689 }
7690
7691 return result;
7692 }
7693
7694 static void
7695 packet_command (char *args, int from_tty)
7696 {
7697 struct remote_state *rs = get_remote_state ();
7698
7699 if (!remote_desc)
7700 error (_("command can only be used with remote target"));
7701
7702 if (!args)
7703 error (_("remote-packet command requires packet text as argument"));
7704
7705 puts_filtered ("sending: ");
7706 print_packet (args);
7707 puts_filtered ("\n");
7708 putpkt (args);
7709
7710 getpkt (&rs->buf, &rs->buf_size, 0);
7711 puts_filtered ("received: ");
7712 print_packet (rs->buf);
7713 puts_filtered ("\n");
7714 }
7715
7716 #if 0
7717 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
7718
7719 static void display_thread_info (struct gdb_ext_thread_info *info);
7720
7721 static void threadset_test_cmd (char *cmd, int tty);
7722
7723 static void threadalive_test (char *cmd, int tty);
7724
7725 static void threadlist_test_cmd (char *cmd, int tty);
7726
7727 int get_and_display_threadinfo (threadref *ref);
7728
7729 static void threadinfo_test_cmd (char *cmd, int tty);
7730
7731 static int thread_display_step (threadref *ref, void *context);
7732
7733 static void threadlist_update_test_cmd (char *cmd, int tty);
7734
7735 static void init_remote_threadtests (void);
7736
7737 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
7738
7739 static void
7740 threadset_test_cmd (char *cmd, int tty)
7741 {
7742 int sample_thread = SAMPLE_THREAD;
7743
7744 printf_filtered (_("Remote threadset test\n"));
7745 set_general_thread (sample_thread);
7746 }
7747
7748
7749 static void
7750 threadalive_test (char *cmd, int tty)
7751 {
7752 int sample_thread = SAMPLE_THREAD;
7753 int pid = ptid_get_pid (inferior_ptid);
7754 ptid_t ptid = ptid_build (pid, 0, sample_thread);
7755
7756 if (remote_thread_alive (ptid))
7757 printf_filtered ("PASS: Thread alive test\n");
7758 else
7759 printf_filtered ("FAIL: Thread alive test\n");
7760 }
7761
7762 void output_threadid (char *title, threadref *ref);
7763
7764 void
7765 output_threadid (char *title, threadref *ref)
7766 {
7767 char hexid[20];
7768
7769 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
7770 hexid[16] = 0;
7771 printf_filtered ("%s %s\n", title, (&hexid[0]));
7772 }
7773
7774 static void
7775 threadlist_test_cmd (char *cmd, int tty)
7776 {
7777 int startflag = 1;
7778 threadref nextthread;
7779 int done, result_count;
7780 threadref threadlist[3];
7781
7782 printf_filtered ("Remote Threadlist test\n");
7783 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
7784 &result_count, &threadlist[0]))
7785 printf_filtered ("FAIL: threadlist test\n");
7786 else
7787 {
7788 threadref *scan = threadlist;
7789 threadref *limit = scan + result_count;
7790
7791 while (scan < limit)
7792 output_threadid (" thread ", scan++);
7793 }
7794 }
7795
7796 void
7797 display_thread_info (struct gdb_ext_thread_info *info)
7798 {
7799 output_threadid ("Threadid: ", &info->threadid);
7800 printf_filtered ("Name: %s\n ", info->shortname);
7801 printf_filtered ("State: %s\n", info->display);
7802 printf_filtered ("other: %s\n\n", info->more_display);
7803 }
7804
7805 int
7806 get_and_display_threadinfo (threadref *ref)
7807 {
7808 int result;
7809 int set;
7810 struct gdb_ext_thread_info threadinfo;
7811
7812 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
7813 | TAG_MOREDISPLAY | TAG_DISPLAY;
7814 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
7815 display_thread_info (&threadinfo);
7816 return result;
7817 }
7818
7819 static void
7820 threadinfo_test_cmd (char *cmd, int tty)
7821 {
7822 int athread = SAMPLE_THREAD;
7823 threadref thread;
7824 int set;
7825
7826 int_to_threadref (&thread, athread);
7827 printf_filtered ("Remote Threadinfo test\n");
7828 if (!get_and_display_threadinfo (&thread))
7829 printf_filtered ("FAIL cannot get thread info\n");
7830 }
7831
7832 static int
7833 thread_display_step (threadref *ref, void *context)
7834 {
7835 /* output_threadid(" threadstep ",ref); *//* simple test */
7836 return get_and_display_threadinfo (ref);
7837 }
7838
7839 static void
7840 threadlist_update_test_cmd (char *cmd, int tty)
7841 {
7842 printf_filtered ("Remote Threadlist update test\n");
7843 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
7844 }
7845
7846 static void
7847 init_remote_threadtests (void)
7848 {
7849 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
7850 Fetch and print the remote list of thread identifiers, one pkt only"));
7851 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
7852 _("Fetch and display info about one thread"));
7853 add_com ("tset", class_obscure, threadset_test_cmd,
7854 _("Test setting to a different thread"));
7855 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
7856 _("Iterate through updating all remote thread info"));
7857 add_com ("talive", class_obscure, threadalive_test,
7858 _(" Remote thread alive test "));
7859 }
7860
7861 #endif /* 0 */
7862
7863 /* Convert a thread ID to a string. Returns the string in a static
7864 buffer. */
7865
7866 static char *
7867 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
7868 {
7869 static char buf[64];
7870 struct remote_state *rs = get_remote_state ();
7871
7872 if (ptid_equal (magic_null_ptid, ptid))
7873 {
7874 xsnprintf (buf, sizeof buf, "Thread <main>");
7875 return buf;
7876 }
7877 else if (remote_multi_process_p (rs)
7878 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
7879 {
7880 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
7881 ptid_get_pid (ptid), ptid_get_tid (ptid));
7882 return buf;
7883 }
7884 else if (ptid_get_tid (ptid) != 0)
7885 {
7886 xsnprintf (buf, sizeof buf, "Thread %ld",
7887 ptid_get_tid (ptid));
7888 return buf;
7889 }
7890
7891 return normal_pid_to_str (ptid);
7892 }
7893
7894 /* Get the address of the thread local variable in OBJFILE which is
7895 stored at OFFSET within the thread local storage for thread PTID. */
7896
7897 static CORE_ADDR
7898 remote_get_thread_local_address (struct target_ops *ops,
7899 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
7900 {
7901 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
7902 {
7903 struct remote_state *rs = get_remote_state ();
7904 char *p = rs->buf;
7905 char *endp = rs->buf + get_remote_packet_size ();
7906 enum packet_result result;
7907
7908 strcpy (p, "qGetTLSAddr:");
7909 p += strlen (p);
7910 p = write_ptid (p, endp, ptid);
7911 *p++ = ',';
7912 p += hexnumstr (p, offset);
7913 *p++ = ',';
7914 p += hexnumstr (p, lm);
7915 *p++ = '\0';
7916
7917 putpkt (rs->buf);
7918 getpkt (&rs->buf, &rs->buf_size, 0);
7919 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
7920 if (result == PACKET_OK)
7921 {
7922 ULONGEST result;
7923
7924 unpack_varlen_hex (rs->buf, &result);
7925 return result;
7926 }
7927 else if (result == PACKET_UNKNOWN)
7928 throw_error (TLS_GENERIC_ERROR,
7929 _("Remote target doesn't support qGetTLSAddr packet"));
7930 else
7931 throw_error (TLS_GENERIC_ERROR,
7932 _("Remote target failed to process qGetTLSAddr request"));
7933 }
7934 else
7935 throw_error (TLS_GENERIC_ERROR,
7936 _("TLS not supported or disabled on this target"));
7937 /* Not reached. */
7938 return 0;
7939 }
7940
7941 /* Support for inferring a target description based on the current
7942 architecture and the size of a 'g' packet. While the 'g' packet
7943 can have any size (since optional registers can be left off the
7944 end), some sizes are easily recognizable given knowledge of the
7945 approximate architecture. */
7946
7947 struct remote_g_packet_guess
7948 {
7949 int bytes;
7950 const struct target_desc *tdesc;
7951 };
7952 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
7953 DEF_VEC_O(remote_g_packet_guess_s);
7954
7955 struct remote_g_packet_data
7956 {
7957 VEC(remote_g_packet_guess_s) *guesses;
7958 };
7959
7960 static struct gdbarch_data *remote_g_packet_data_handle;
7961
7962 static void *
7963 remote_g_packet_data_init (struct obstack *obstack)
7964 {
7965 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
7966 }
7967
7968 void
7969 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
7970 const struct target_desc *tdesc)
7971 {
7972 struct remote_g_packet_data *data
7973 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
7974 struct remote_g_packet_guess new_guess, *guess;
7975 int ix;
7976
7977 gdb_assert (tdesc != NULL);
7978
7979 for (ix = 0;
7980 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7981 ix++)
7982 if (guess->bytes == bytes)
7983 internal_error (__FILE__, __LINE__,
7984 "Duplicate g packet description added for size %d",
7985 bytes);
7986
7987 new_guess.bytes = bytes;
7988 new_guess.tdesc = tdesc;
7989 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
7990 }
7991
7992 /* Return 1 if remote_read_description would do anything on this target
7993 and architecture, 0 otherwise. */
7994
7995 static int
7996 remote_read_description_p (struct target_ops *target)
7997 {
7998 struct remote_g_packet_data *data
7999 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8000
8001 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8002 return 1;
8003
8004 return 0;
8005 }
8006
8007 static const struct target_desc *
8008 remote_read_description (struct target_ops *target)
8009 {
8010 struct remote_g_packet_data *data
8011 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8012
8013 /* Do not try this during initial connection, when we do not know
8014 whether there is a running but stopped thread. */
8015 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8016 return NULL;
8017
8018 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8019 {
8020 struct remote_g_packet_guess *guess;
8021 int ix;
8022 int bytes = send_g_packet ();
8023
8024 for (ix = 0;
8025 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8026 ix++)
8027 if (guess->bytes == bytes)
8028 return guess->tdesc;
8029
8030 /* We discard the g packet. A minor optimization would be to
8031 hold on to it, and fill the register cache once we have selected
8032 an architecture, but it's too tricky to do safely. */
8033 }
8034
8035 return NULL;
8036 }
8037
8038 /* Remote file transfer support. This is host-initiated I/O, not
8039 target-initiated; for target-initiated, see remote-fileio.c. */
8040
8041 /* If *LEFT is at least the length of STRING, copy STRING to
8042 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8043 decrease *LEFT. Otherwise raise an error. */
8044
8045 static void
8046 remote_buffer_add_string (char **buffer, int *left, char *string)
8047 {
8048 int len = strlen (string);
8049
8050 if (len > *left)
8051 error (_("Packet too long for target."));
8052
8053 memcpy (*buffer, string, len);
8054 *buffer += len;
8055 *left -= len;
8056
8057 /* NUL-terminate the buffer as a convenience, if there is
8058 room. */
8059 if (*left)
8060 **buffer = '\0';
8061 }
8062
8063 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8064 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8065 decrease *LEFT. Otherwise raise an error. */
8066
8067 static void
8068 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8069 int len)
8070 {
8071 if (2 * len > *left)
8072 error (_("Packet too long for target."));
8073
8074 bin2hex (bytes, *buffer, len);
8075 *buffer += 2 * len;
8076 *left -= 2 * len;
8077
8078 /* NUL-terminate the buffer as a convenience, if there is
8079 room. */
8080 if (*left)
8081 **buffer = '\0';
8082 }
8083
8084 /* If *LEFT is large enough, convert VALUE to hex and add it to
8085 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8086 decrease *LEFT. Otherwise raise an error. */
8087
8088 static void
8089 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8090 {
8091 int len = hexnumlen (value);
8092
8093 if (len > *left)
8094 error (_("Packet too long for target."));
8095
8096 hexnumstr (*buffer, value);
8097 *buffer += len;
8098 *left -= len;
8099
8100 /* NUL-terminate the buffer as a convenience, if there is
8101 room. */
8102 if (*left)
8103 **buffer = '\0';
8104 }
8105
8106 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8107 value, *REMOTE_ERRNO to the remote error number or zero if none
8108 was included, and *ATTACHMENT to point to the start of the annex
8109 if any. The length of the packet isn't needed here; there may
8110 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8111
8112 Return 0 if the packet could be parsed, -1 if it could not. If
8113 -1 is returned, the other variables may not be initialized. */
8114
8115 static int
8116 remote_hostio_parse_result (char *buffer, int *retcode,
8117 int *remote_errno, char **attachment)
8118 {
8119 char *p, *p2;
8120
8121 *remote_errno = 0;
8122 *attachment = NULL;
8123
8124 if (buffer[0] != 'F')
8125 return -1;
8126
8127 errno = 0;
8128 *retcode = strtol (&buffer[1], &p, 16);
8129 if (errno != 0 || p == &buffer[1])
8130 return -1;
8131
8132 /* Check for ",errno". */
8133 if (*p == ',')
8134 {
8135 errno = 0;
8136 *remote_errno = strtol (p + 1, &p2, 16);
8137 if (errno != 0 || p + 1 == p2)
8138 return -1;
8139 p = p2;
8140 }
8141
8142 /* Check for ";attachment". If there is no attachment, the
8143 packet should end here. */
8144 if (*p == ';')
8145 {
8146 *attachment = p + 1;
8147 return 0;
8148 }
8149 else if (*p == '\0')
8150 return 0;
8151 else
8152 return -1;
8153 }
8154
8155 /* Send a prepared I/O packet to the target and read its response.
8156 The prepared packet is in the global RS->BUF before this function
8157 is called, and the answer is there when we return.
8158
8159 COMMAND_BYTES is the length of the request to send, which may include
8160 binary data. WHICH_PACKET is the packet configuration to check
8161 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8162 is set to the error number and -1 is returned. Otherwise the value
8163 returned by the function is returned.
8164
8165 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8166 attachment is expected; an error will be reported if there's a
8167 mismatch. If one is found, *ATTACHMENT will be set to point into
8168 the packet buffer and *ATTACHMENT_LEN will be set to the
8169 attachment's length. */
8170
8171 static int
8172 remote_hostio_send_command (int command_bytes, int which_packet,
8173 int *remote_errno, char **attachment,
8174 int *attachment_len)
8175 {
8176 struct remote_state *rs = get_remote_state ();
8177 int ret, bytes_read;
8178 char *attachment_tmp;
8179
8180 if (!remote_desc
8181 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8182 {
8183 *remote_errno = FILEIO_ENOSYS;
8184 return -1;
8185 }
8186
8187 putpkt_binary (rs->buf, command_bytes);
8188 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8189
8190 /* If it timed out, something is wrong. Don't try to parse the
8191 buffer. */
8192 if (bytes_read < 0)
8193 {
8194 *remote_errno = FILEIO_EINVAL;
8195 return -1;
8196 }
8197
8198 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8199 {
8200 case PACKET_ERROR:
8201 *remote_errno = FILEIO_EINVAL;
8202 return -1;
8203 case PACKET_UNKNOWN:
8204 *remote_errno = FILEIO_ENOSYS;
8205 return -1;
8206 case PACKET_OK:
8207 break;
8208 }
8209
8210 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8211 &attachment_tmp))
8212 {
8213 *remote_errno = FILEIO_EINVAL;
8214 return -1;
8215 }
8216
8217 /* Make sure we saw an attachment if and only if we expected one. */
8218 if ((attachment_tmp == NULL && attachment != NULL)
8219 || (attachment_tmp != NULL && attachment == NULL))
8220 {
8221 *remote_errno = FILEIO_EINVAL;
8222 return -1;
8223 }
8224
8225 /* If an attachment was found, it must point into the packet buffer;
8226 work out how many bytes there were. */
8227 if (attachment_tmp != NULL)
8228 {
8229 *attachment = attachment_tmp;
8230 *attachment_len = bytes_read - (*attachment - rs->buf);
8231 }
8232
8233 return ret;
8234 }
8235
8236 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8237 remote file descriptor, or -1 if an error occurs (and set
8238 *REMOTE_ERRNO). */
8239
8240 static int
8241 remote_hostio_open (const char *filename, int flags, int mode,
8242 int *remote_errno)
8243 {
8244 struct remote_state *rs = get_remote_state ();
8245 char *p = rs->buf;
8246 int left = get_remote_packet_size () - 1;
8247
8248 remote_buffer_add_string (&p, &left, "vFile:open:");
8249
8250 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8251 strlen (filename));
8252 remote_buffer_add_string (&p, &left, ",");
8253
8254 remote_buffer_add_int (&p, &left, flags);
8255 remote_buffer_add_string (&p, &left, ",");
8256
8257 remote_buffer_add_int (&p, &left, mode);
8258
8259 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8260 remote_errno, NULL, NULL);
8261 }
8262
8263 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8264 Return the number of bytes written, or -1 if an error occurs (and
8265 set *REMOTE_ERRNO). */
8266
8267 static int
8268 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8269 ULONGEST offset, int *remote_errno)
8270 {
8271 struct remote_state *rs = get_remote_state ();
8272 char *p = rs->buf;
8273 int left = get_remote_packet_size ();
8274 int out_len;
8275
8276 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8277
8278 remote_buffer_add_int (&p, &left, fd);
8279 remote_buffer_add_string (&p, &left, ",");
8280
8281 remote_buffer_add_int (&p, &left, offset);
8282 remote_buffer_add_string (&p, &left, ",");
8283
8284 p += remote_escape_output (write_buf, len, p, &out_len,
8285 get_remote_packet_size () - (p - rs->buf));
8286
8287 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8288 remote_errno, NULL, NULL);
8289 }
8290
8291 /* Read up to LEN bytes FD on the remote target into READ_BUF
8292 Return the number of bytes read, or -1 if an error occurs (and
8293 set *REMOTE_ERRNO). */
8294
8295 static int
8296 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8297 ULONGEST offset, int *remote_errno)
8298 {
8299 struct remote_state *rs = get_remote_state ();
8300 char *p = rs->buf;
8301 char *attachment;
8302 int left = get_remote_packet_size ();
8303 int ret, attachment_len;
8304 int read_len;
8305
8306 remote_buffer_add_string (&p, &left, "vFile:pread:");
8307
8308 remote_buffer_add_int (&p, &left, fd);
8309 remote_buffer_add_string (&p, &left, ",");
8310
8311 remote_buffer_add_int (&p, &left, len);
8312 remote_buffer_add_string (&p, &left, ",");
8313
8314 remote_buffer_add_int (&p, &left, offset);
8315
8316 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8317 remote_errno, &attachment,
8318 &attachment_len);
8319
8320 if (ret < 0)
8321 return ret;
8322
8323 read_len = remote_unescape_input (attachment, attachment_len,
8324 read_buf, len);
8325 if (read_len != ret)
8326 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8327
8328 return ret;
8329 }
8330
8331 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8332 (and set *REMOTE_ERRNO). */
8333
8334 static int
8335 remote_hostio_close (int fd, int *remote_errno)
8336 {
8337 struct remote_state *rs = get_remote_state ();
8338 char *p = rs->buf;
8339 int left = get_remote_packet_size () - 1;
8340
8341 remote_buffer_add_string (&p, &left, "vFile:close:");
8342
8343 remote_buffer_add_int (&p, &left, fd);
8344
8345 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8346 remote_errno, NULL, NULL);
8347 }
8348
8349 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8350 occurs (and set *REMOTE_ERRNO). */
8351
8352 static int
8353 remote_hostio_unlink (const char *filename, int *remote_errno)
8354 {
8355 struct remote_state *rs = get_remote_state ();
8356 char *p = rs->buf;
8357 int left = get_remote_packet_size () - 1;
8358
8359 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8360
8361 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8362 strlen (filename));
8363
8364 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8365 remote_errno, NULL, NULL);
8366 }
8367
8368 static int
8369 remote_fileio_errno_to_host (int errnum)
8370 {
8371 switch (errnum)
8372 {
8373 case FILEIO_EPERM:
8374 return EPERM;
8375 case FILEIO_ENOENT:
8376 return ENOENT;
8377 case FILEIO_EINTR:
8378 return EINTR;
8379 case FILEIO_EIO:
8380 return EIO;
8381 case FILEIO_EBADF:
8382 return EBADF;
8383 case FILEIO_EACCES:
8384 return EACCES;
8385 case FILEIO_EFAULT:
8386 return EFAULT;
8387 case FILEIO_EBUSY:
8388 return EBUSY;
8389 case FILEIO_EEXIST:
8390 return EEXIST;
8391 case FILEIO_ENODEV:
8392 return ENODEV;
8393 case FILEIO_ENOTDIR:
8394 return ENOTDIR;
8395 case FILEIO_EISDIR:
8396 return EISDIR;
8397 case FILEIO_EINVAL:
8398 return EINVAL;
8399 case FILEIO_ENFILE:
8400 return ENFILE;
8401 case FILEIO_EMFILE:
8402 return EMFILE;
8403 case FILEIO_EFBIG:
8404 return EFBIG;
8405 case FILEIO_ENOSPC:
8406 return ENOSPC;
8407 case FILEIO_ESPIPE:
8408 return ESPIPE;
8409 case FILEIO_EROFS:
8410 return EROFS;
8411 case FILEIO_ENOSYS:
8412 return ENOSYS;
8413 case FILEIO_ENAMETOOLONG:
8414 return ENAMETOOLONG;
8415 }
8416 return -1;
8417 }
8418
8419 static char *
8420 remote_hostio_error (int errnum)
8421 {
8422 int host_error = remote_fileio_errno_to_host (errnum);
8423
8424 if (host_error == -1)
8425 error (_("Unknown remote I/O error %d"), errnum);
8426 else
8427 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8428 }
8429
8430 static void
8431 remote_hostio_close_cleanup (void *opaque)
8432 {
8433 int fd = *(int *) opaque;
8434 int remote_errno;
8435
8436 remote_hostio_close (fd, &remote_errno);
8437 }
8438
8439
8440 static void *
8441 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8442 {
8443 const char *filename = bfd_get_filename (abfd);
8444 int fd, remote_errno;
8445 int *stream;
8446
8447 gdb_assert (remote_filename_p (filename));
8448
8449 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8450 if (fd == -1)
8451 {
8452 errno = remote_fileio_errno_to_host (remote_errno);
8453 bfd_set_error (bfd_error_system_call);
8454 return NULL;
8455 }
8456
8457 stream = xmalloc (sizeof (int));
8458 *stream = fd;
8459 return stream;
8460 }
8461
8462 static int
8463 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8464 {
8465 int fd = *(int *)stream;
8466 int remote_errno;
8467
8468 xfree (stream);
8469
8470 /* Ignore errors on close; these may happen if the remote
8471 connection was already torn down. */
8472 remote_hostio_close (fd, &remote_errno);
8473
8474 return 1;
8475 }
8476
8477 static file_ptr
8478 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8479 file_ptr nbytes, file_ptr offset)
8480 {
8481 int fd = *(int *)stream;
8482 int remote_errno;
8483 file_ptr pos, bytes;
8484
8485 pos = 0;
8486 while (nbytes > pos)
8487 {
8488 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8489 offset + pos, &remote_errno);
8490 if (bytes == 0)
8491 /* Success, but no bytes, means end-of-file. */
8492 break;
8493 if (bytes == -1)
8494 {
8495 errno = remote_fileio_errno_to_host (remote_errno);
8496 bfd_set_error (bfd_error_system_call);
8497 return -1;
8498 }
8499
8500 pos += bytes;
8501 }
8502
8503 return pos;
8504 }
8505
8506 static int
8507 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8508 {
8509 /* FIXME: We should probably implement remote_hostio_stat. */
8510 sb->st_size = INT_MAX;
8511 return 0;
8512 }
8513
8514 int
8515 remote_filename_p (const char *filename)
8516 {
8517 return strncmp (filename, "remote:", 7) == 0;
8518 }
8519
8520 bfd *
8521 remote_bfd_open (const char *remote_file, const char *target)
8522 {
8523 return bfd_openr_iovec (remote_file, target,
8524 remote_bfd_iovec_open, NULL,
8525 remote_bfd_iovec_pread,
8526 remote_bfd_iovec_close,
8527 remote_bfd_iovec_stat);
8528 }
8529
8530 void
8531 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8532 {
8533 struct cleanup *back_to, *close_cleanup;
8534 int retcode, fd, remote_errno, bytes, io_size;
8535 FILE *file;
8536 gdb_byte *buffer;
8537 int bytes_in_buffer;
8538 int saw_eof;
8539 ULONGEST offset;
8540
8541 if (!remote_desc)
8542 error (_("command can only be used with remote target"));
8543
8544 file = fopen (local_file, "rb");
8545 if (file == NULL)
8546 perror_with_name (local_file);
8547 back_to = make_cleanup_fclose (file);
8548
8549 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8550 | FILEIO_O_TRUNC),
8551 0700, &remote_errno);
8552 if (fd == -1)
8553 remote_hostio_error (remote_errno);
8554
8555 /* Send up to this many bytes at once. They won't all fit in the
8556 remote packet limit, so we'll transfer slightly fewer. */
8557 io_size = get_remote_packet_size ();
8558 buffer = xmalloc (io_size);
8559 make_cleanup (xfree, buffer);
8560
8561 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8562
8563 bytes_in_buffer = 0;
8564 saw_eof = 0;
8565 offset = 0;
8566 while (bytes_in_buffer || !saw_eof)
8567 {
8568 if (!saw_eof)
8569 {
8570 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
8571 file);
8572 if (bytes == 0)
8573 {
8574 if (ferror (file))
8575 error (_("Error reading %s."), local_file);
8576 else
8577 {
8578 /* EOF. Unless there is something still in the
8579 buffer from the last iteration, we are done. */
8580 saw_eof = 1;
8581 if (bytes_in_buffer == 0)
8582 break;
8583 }
8584 }
8585 }
8586 else
8587 bytes = 0;
8588
8589 bytes += bytes_in_buffer;
8590 bytes_in_buffer = 0;
8591
8592 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
8593
8594 if (retcode < 0)
8595 remote_hostio_error (remote_errno);
8596 else if (retcode == 0)
8597 error (_("Remote write of %d bytes returned 0!"), bytes);
8598 else if (retcode < bytes)
8599 {
8600 /* Short write. Save the rest of the read data for the next
8601 write. */
8602 bytes_in_buffer = bytes - retcode;
8603 memmove (buffer, buffer + retcode, bytes_in_buffer);
8604 }
8605
8606 offset += retcode;
8607 }
8608
8609 discard_cleanups (close_cleanup);
8610 if (remote_hostio_close (fd, &remote_errno))
8611 remote_hostio_error (remote_errno);
8612
8613 if (from_tty)
8614 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
8615 do_cleanups (back_to);
8616 }
8617
8618 void
8619 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
8620 {
8621 struct cleanup *back_to, *close_cleanup;
8622 int retcode, fd, remote_errno, bytes, io_size;
8623 FILE *file;
8624 gdb_byte *buffer;
8625 ULONGEST offset;
8626
8627 if (!remote_desc)
8628 error (_("command can only be used with remote target"));
8629
8630 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
8631 if (fd == -1)
8632 remote_hostio_error (remote_errno);
8633
8634 file = fopen (local_file, "wb");
8635 if (file == NULL)
8636 perror_with_name (local_file);
8637 back_to = make_cleanup_fclose (file);
8638
8639 /* Send up to this many bytes at once. They won't all fit in the
8640 remote packet limit, so we'll transfer slightly fewer. */
8641 io_size = get_remote_packet_size ();
8642 buffer = xmalloc (io_size);
8643 make_cleanup (xfree, buffer);
8644
8645 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8646
8647 offset = 0;
8648 while (1)
8649 {
8650 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
8651 if (bytes == 0)
8652 /* Success, but no bytes, means end-of-file. */
8653 break;
8654 if (bytes == -1)
8655 remote_hostio_error (remote_errno);
8656
8657 offset += bytes;
8658
8659 bytes = fwrite (buffer, 1, bytes, file);
8660 if (bytes == 0)
8661 perror_with_name (local_file);
8662 }
8663
8664 discard_cleanups (close_cleanup);
8665 if (remote_hostio_close (fd, &remote_errno))
8666 remote_hostio_error (remote_errno);
8667
8668 if (from_tty)
8669 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
8670 do_cleanups (back_to);
8671 }
8672
8673 void
8674 remote_file_delete (const char *remote_file, int from_tty)
8675 {
8676 int retcode, remote_errno;
8677
8678 if (!remote_desc)
8679 error (_("command can only be used with remote target"));
8680
8681 retcode = remote_hostio_unlink (remote_file, &remote_errno);
8682 if (retcode == -1)
8683 remote_hostio_error (remote_errno);
8684
8685 if (from_tty)
8686 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
8687 }
8688
8689 static void
8690 remote_put_command (char *args, int from_tty)
8691 {
8692 struct cleanup *back_to;
8693 char **argv;
8694
8695 if (args == NULL)
8696 error_no_arg (_("file to put"));
8697
8698 argv = gdb_buildargv (args);
8699 back_to = make_cleanup_freeargv (argv);
8700 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8701 error (_("Invalid parameters to remote put"));
8702
8703 remote_file_put (argv[0], argv[1], from_tty);
8704
8705 do_cleanups (back_to);
8706 }
8707
8708 static void
8709 remote_get_command (char *args, int from_tty)
8710 {
8711 struct cleanup *back_to;
8712 char **argv;
8713
8714 if (args == NULL)
8715 error_no_arg (_("file to get"));
8716
8717 argv = gdb_buildargv (args);
8718 back_to = make_cleanup_freeargv (argv);
8719 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8720 error (_("Invalid parameters to remote get"));
8721
8722 remote_file_get (argv[0], argv[1], from_tty);
8723
8724 do_cleanups (back_to);
8725 }
8726
8727 static void
8728 remote_delete_command (char *args, int from_tty)
8729 {
8730 struct cleanup *back_to;
8731 char **argv;
8732
8733 if (args == NULL)
8734 error_no_arg (_("file to delete"));
8735
8736 argv = gdb_buildargv (args);
8737 back_to = make_cleanup_freeargv (argv);
8738 if (argv[0] == NULL || argv[1] != NULL)
8739 error (_("Invalid parameters to remote delete"));
8740
8741 remote_file_delete (argv[0], from_tty);
8742
8743 do_cleanups (back_to);
8744 }
8745
8746 static void
8747 remote_command (char *args, int from_tty)
8748 {
8749 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
8750 }
8751
8752 static int remote_target_can_reverse = 1;
8753
8754 static int
8755 remote_can_execute_reverse (void)
8756 {
8757 return remote_target_can_reverse;
8758 }
8759
8760 static int
8761 remote_supports_non_stop (void)
8762 {
8763 return 1;
8764 }
8765
8766 static int
8767 remote_supports_multi_process (void)
8768 {
8769 struct remote_state *rs = get_remote_state ();
8770 return remote_multi_process_p (rs);
8771 }
8772
8773 static void
8774 init_remote_ops (void)
8775 {
8776 remote_ops.to_shortname = "remote";
8777 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
8778 remote_ops.to_doc =
8779 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8780 Specify the serial device it is connected to\n\
8781 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
8782 remote_ops.to_open = remote_open;
8783 remote_ops.to_close = remote_close;
8784 remote_ops.to_detach = remote_detach;
8785 remote_ops.to_disconnect = remote_disconnect;
8786 remote_ops.to_resume = remote_resume;
8787 remote_ops.to_wait = remote_wait;
8788 remote_ops.to_fetch_registers = remote_fetch_registers;
8789 remote_ops.to_store_registers = remote_store_registers;
8790 remote_ops.to_prepare_to_store = remote_prepare_to_store;
8791 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
8792 remote_ops.to_files_info = remote_files_info;
8793 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
8794 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
8795 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
8796 remote_ops.to_stopped_data_address = remote_stopped_data_address;
8797 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
8798 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
8799 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
8800 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
8801 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
8802 remote_ops.to_kill = remote_kill;
8803 remote_ops.to_load = generic_load;
8804 remote_ops.to_mourn_inferior = remote_mourn;
8805 remote_ops.to_thread_alive = remote_thread_alive;
8806 remote_ops.to_find_new_threads = remote_threads_info;
8807 remote_ops.to_pid_to_str = remote_pid_to_str;
8808 remote_ops.to_extra_thread_info = remote_threads_extra_info;
8809 remote_ops.to_stop = remote_stop;
8810 remote_ops.to_xfer_partial = remote_xfer_partial;
8811 remote_ops.to_rcmd = remote_rcmd;
8812 remote_ops.to_log_command = serial_log_command;
8813 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
8814 remote_ops.to_stratum = process_stratum;
8815 remote_ops.to_has_all_memory = 1;
8816 remote_ops.to_has_memory = 1;
8817 remote_ops.to_has_stack = 1;
8818 remote_ops.to_has_registers = 1;
8819 remote_ops.to_has_execution = 1;
8820 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
8821 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
8822 remote_ops.to_magic = OPS_MAGIC;
8823 remote_ops.to_memory_map = remote_memory_map;
8824 remote_ops.to_flash_erase = remote_flash_erase;
8825 remote_ops.to_flash_done = remote_flash_done;
8826 remote_ops.to_read_description = remote_read_description;
8827 remote_ops.to_search_memory = remote_search_memory;
8828 remote_ops.to_can_async_p = remote_can_async_p;
8829 remote_ops.to_is_async_p = remote_is_async_p;
8830 remote_ops.to_async = remote_async;
8831 remote_ops.to_async_mask = remote_async_mask;
8832 remote_ops.to_terminal_inferior = remote_terminal_inferior;
8833 remote_ops.to_terminal_ours = remote_terminal_ours;
8834 remote_ops.to_supports_non_stop = remote_supports_non_stop;
8835 remote_ops.to_supports_multi_process = remote_supports_multi_process;
8836 }
8837
8838 /* Set up the extended remote vector by making a copy of the standard
8839 remote vector and adding to it. */
8840
8841 static void
8842 init_extended_remote_ops (void)
8843 {
8844 extended_remote_ops = remote_ops;
8845
8846 extended_remote_ops.to_shortname = "extended-remote";
8847 extended_remote_ops.to_longname =
8848 "Extended remote serial target in gdb-specific protocol";
8849 extended_remote_ops.to_doc =
8850 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8851 Specify the serial device it is connected to (e.g. /dev/ttya).";
8852 extended_remote_ops.to_open = extended_remote_open;
8853 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
8854 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
8855 extended_remote_ops.to_detach = extended_remote_detach;
8856 extended_remote_ops.to_attach = extended_remote_attach;
8857 extended_remote_ops.to_kill = extended_remote_kill;
8858 }
8859
8860 static int
8861 remote_can_async_p (void)
8862 {
8863 if (!target_async_permitted)
8864 /* We only enable async when the user specifically asks for it. */
8865 return 0;
8866
8867 /* We're async whenever the serial device is. */
8868 return remote_async_mask_value && serial_can_async_p (remote_desc);
8869 }
8870
8871 static int
8872 remote_is_async_p (void)
8873 {
8874 if (!target_async_permitted)
8875 /* We only enable async when the user specifically asks for it. */
8876 return 0;
8877
8878 /* We're async whenever the serial device is. */
8879 return remote_async_mask_value && serial_is_async_p (remote_desc);
8880 }
8881
8882 /* Pass the SERIAL event on and up to the client. One day this code
8883 will be able to delay notifying the client of an event until the
8884 point where an entire packet has been received. */
8885
8886 static void (*async_client_callback) (enum inferior_event_type event_type,
8887 void *context);
8888 static void *async_client_context;
8889 static serial_event_ftype remote_async_serial_handler;
8890
8891 static void
8892 remote_async_serial_handler (struct serial *scb, void *context)
8893 {
8894 /* Don't propogate error information up to the client. Instead let
8895 the client find out about the error by querying the target. */
8896 async_client_callback (INF_REG_EVENT, async_client_context);
8897 }
8898
8899 static void
8900 remote_async_inferior_event_handler (gdb_client_data data)
8901 {
8902 inferior_event_handler (INF_REG_EVENT, NULL);
8903 }
8904
8905 static void
8906 remote_async_get_pending_events_handler (gdb_client_data data)
8907 {
8908 remote_get_pending_stop_replies ();
8909 }
8910
8911 static void
8912 remote_async (void (*callback) (enum inferior_event_type event_type,
8913 void *context), void *context)
8914 {
8915 if (remote_async_mask_value == 0)
8916 internal_error (__FILE__, __LINE__,
8917 _("Calling remote_async when async is masked"));
8918
8919 if (callback != NULL)
8920 {
8921 serial_async (remote_desc, remote_async_serial_handler, NULL);
8922 async_client_callback = callback;
8923 async_client_context = context;
8924 }
8925 else
8926 serial_async (remote_desc, NULL, NULL);
8927 }
8928
8929 static int
8930 remote_async_mask (int new_mask)
8931 {
8932 int curr_mask = remote_async_mask_value;
8933 remote_async_mask_value = new_mask;
8934 return curr_mask;
8935 }
8936
8937 static void
8938 set_remote_cmd (char *args, int from_tty)
8939 {
8940 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
8941 }
8942
8943 static void
8944 show_remote_cmd (char *args, int from_tty)
8945 {
8946 /* We can't just use cmd_show_list here, because we want to skip
8947 the redundant "show remote Z-packet" and the legacy aliases. */
8948 struct cleanup *showlist_chain;
8949 struct cmd_list_element *list = remote_show_cmdlist;
8950
8951 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
8952 for (; list != NULL; list = list->next)
8953 if (strcmp (list->name, "Z-packet") == 0)
8954 continue;
8955 else if (list->type == not_set_cmd)
8956 /* Alias commands are exactly like the original, except they
8957 don't have the normal type. */
8958 continue;
8959 else
8960 {
8961 struct cleanup *option_chain
8962 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
8963 ui_out_field_string (uiout, "name", list->name);
8964 ui_out_text (uiout, ": ");
8965 if (list->type == show_cmd)
8966 do_setshow_command ((char *) NULL, from_tty, list);
8967 else
8968 cmd_func (list, NULL, from_tty);
8969 /* Close the tuple. */
8970 do_cleanups (option_chain);
8971 }
8972
8973 /* Close the tuple. */
8974 do_cleanups (showlist_chain);
8975 }
8976
8977
8978 /* Function to be called whenever a new objfile (shlib) is detected. */
8979 static void
8980 remote_new_objfile (struct objfile *objfile)
8981 {
8982 if (remote_desc != 0) /* Have a remote connection. */
8983 remote_check_symbols (objfile);
8984 }
8985
8986 void
8987 _initialize_remote (void)
8988 {
8989 struct remote_state *rs;
8990
8991 /* architecture specific data */
8992 remote_gdbarch_data_handle =
8993 gdbarch_data_register_post_init (init_remote_state);
8994 remote_g_packet_data_handle =
8995 gdbarch_data_register_pre_init (remote_g_packet_data_init);
8996
8997 /* Initialize the per-target state. At the moment there is only one
8998 of these, not one per target. Only one target is active at a
8999 time. The default buffer size is unimportant; it will be expanded
9000 whenever a larger buffer is needed. */
9001 rs = get_remote_state_raw ();
9002 rs->buf_size = 400;
9003 rs->buf = xmalloc (rs->buf_size);
9004
9005 init_remote_ops ();
9006 add_target (&remote_ops);
9007
9008 init_extended_remote_ops ();
9009 add_target (&extended_remote_ops);
9010
9011 /* Hook into new objfile notification. */
9012 observer_attach_new_objfile (remote_new_objfile);
9013
9014 /* Set up signal handlers. */
9015 sigint_remote_token =
9016 create_async_signal_handler (async_remote_interrupt, NULL);
9017 sigint_remote_twice_token =
9018 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
9019
9020 #if 0
9021 init_remote_threadtests ();
9022 #endif
9023
9024 /* set/show remote ... */
9025
9026 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
9027 Remote protocol specific variables\n\
9028 Configure various remote-protocol specific variables such as\n\
9029 the packets being used"),
9030 &remote_set_cmdlist, "set remote ",
9031 0 /* allow-unknown */, &setlist);
9032 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
9033 Remote protocol specific variables\n\
9034 Configure various remote-protocol specific variables such as\n\
9035 the packets being used"),
9036 &remote_show_cmdlist, "show remote ",
9037 0 /* allow-unknown */, &showlist);
9038
9039 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
9040 Compare section data on target to the exec file.\n\
9041 Argument is a single section name (default: all loaded sections)."),
9042 &cmdlist);
9043
9044 add_cmd ("packet", class_maintenance, packet_command, _("\
9045 Send an arbitrary packet to a remote target.\n\
9046 maintenance packet TEXT\n\
9047 If GDB is talking to an inferior via the GDB serial protocol, then\n\
9048 this command sends the string TEXT to the inferior, and displays the\n\
9049 response packet. GDB supplies the initial `$' character, and the\n\
9050 terminating `#' character and checksum."),
9051 &maintenancelist);
9052
9053 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
9054 Set whether to send break if interrupted."), _("\
9055 Show whether to send break if interrupted."), _("\
9056 If set, a break, instead of a cntrl-c, is sent to the remote target."),
9057 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
9058 &setlist, &showlist);
9059
9060 /* Install commands for configuring memory read/write packets. */
9061
9062 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
9063 Set the maximum number of bytes per memory write packet (deprecated)."),
9064 &setlist);
9065 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
9066 Show the maximum number of bytes per memory write packet (deprecated)."),
9067 &showlist);
9068 add_cmd ("memory-write-packet-size", no_class,
9069 set_memory_write_packet_size, _("\
9070 Set the maximum number of bytes per memory-write packet.\n\
9071 Specify the number of bytes in a packet or 0 (zero) for the\n\
9072 default packet size. The actual limit is further reduced\n\
9073 dependent on the target. Specify ``fixed'' to disable the\n\
9074 further restriction and ``limit'' to enable that restriction."),
9075 &remote_set_cmdlist);
9076 add_cmd ("memory-read-packet-size", no_class,
9077 set_memory_read_packet_size, _("\
9078 Set the maximum number of bytes per memory-read packet.\n\
9079 Specify the number of bytes in a packet or 0 (zero) for the\n\
9080 default packet size. The actual limit is further reduced\n\
9081 dependent on the target. Specify ``fixed'' to disable the\n\
9082 further restriction and ``limit'' to enable that restriction."),
9083 &remote_set_cmdlist);
9084 add_cmd ("memory-write-packet-size", no_class,
9085 show_memory_write_packet_size,
9086 _("Show the maximum number of bytes per memory-write packet."),
9087 &remote_show_cmdlist);
9088 add_cmd ("memory-read-packet-size", no_class,
9089 show_memory_read_packet_size,
9090 _("Show the maximum number of bytes per memory-read packet."),
9091 &remote_show_cmdlist);
9092
9093 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
9094 &remote_hw_watchpoint_limit, _("\
9095 Set the maximum number of target hardware watchpoints."), _("\
9096 Show the maximum number of target hardware watchpoints."), _("\
9097 Specify a negative limit for unlimited."),
9098 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
9099 &remote_set_cmdlist, &remote_show_cmdlist);
9100 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
9101 &remote_hw_breakpoint_limit, _("\
9102 Set the maximum number of target hardware breakpoints."), _("\
9103 Show the maximum number of target hardware breakpoints."), _("\
9104 Specify a negative limit for unlimited."),
9105 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
9106 &remote_set_cmdlist, &remote_show_cmdlist);
9107
9108 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
9109 &remote_address_size, _("\
9110 Set the maximum size of the address (in bits) in a memory packet."), _("\
9111 Show the maximum size of the address (in bits) in a memory packet."), NULL,
9112 NULL,
9113 NULL, /* FIXME: i18n: */
9114 &setlist, &showlist);
9115
9116 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
9117 "X", "binary-download", 1);
9118
9119 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
9120 "vCont", "verbose-resume", 0);
9121
9122 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
9123 "QPassSignals", "pass-signals", 0);
9124
9125 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
9126 "qSymbol", "symbol-lookup", 0);
9127
9128 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
9129 "P", "set-register", 1);
9130
9131 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
9132 "p", "fetch-register", 1);
9133
9134 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
9135 "Z0", "software-breakpoint", 0);
9136
9137 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
9138 "Z1", "hardware-breakpoint", 0);
9139
9140 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
9141 "Z2", "write-watchpoint", 0);
9142
9143 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
9144 "Z3", "read-watchpoint", 0);
9145
9146 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
9147 "Z4", "access-watchpoint", 0);
9148
9149 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
9150 "qXfer:auxv:read", "read-aux-vector", 0);
9151
9152 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
9153 "qXfer:features:read", "target-features", 0);
9154
9155 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
9156 "qXfer:libraries:read", "library-info", 0);
9157
9158 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
9159 "qXfer:memory-map:read", "memory-map", 0);
9160
9161 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
9162 "qXfer:spu:read", "read-spu-object", 0);
9163
9164 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
9165 "qXfer:spu:write", "write-spu-object", 0);
9166
9167 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
9168 "qXfer:osdata:read", "osdata", 0);
9169
9170 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
9171 "qXfer:siginfo:read", "read-siginfo-object", 0);
9172
9173 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
9174 "qXfer:siginfo:write", "write-siginfo-object", 0);
9175
9176 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
9177 "qGetTLSAddr", "get-thread-local-storage-address",
9178 0);
9179
9180 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
9181 "qSupported", "supported-packets", 0);
9182
9183 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
9184 "qSearch:memory", "search-memory", 0);
9185
9186 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
9187 "vFile:open", "hostio-open", 0);
9188
9189 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
9190 "vFile:pread", "hostio-pread", 0);
9191
9192 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
9193 "vFile:pwrite", "hostio-pwrite", 0);
9194
9195 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
9196 "vFile:close", "hostio-close", 0);
9197
9198 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
9199 "vFile:unlink", "hostio-unlink", 0);
9200
9201 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
9202 "vAttach", "attach", 0);
9203
9204 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
9205 "vRun", "run", 0);
9206
9207 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
9208 "QStartNoAckMode", "noack", 0);
9209
9210 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
9211 "vKill", "kill", 0);
9212
9213 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
9214 "qAttached", "query-attached", 0);
9215
9216 /* Keep the old ``set remote Z-packet ...'' working. Each individual
9217 Z sub-packet has its own set and show commands, but users may
9218 have sets to this variable in their .gdbinit files (or in their
9219 documentation). */
9220 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
9221 &remote_Z_packet_detect, _("\
9222 Set use of remote protocol `Z' packets"), _("\
9223 Show use of remote protocol `Z' packets "), _("\
9224 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
9225 packets."),
9226 set_remote_protocol_Z_packet_cmd,
9227 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
9228 &remote_set_cmdlist, &remote_show_cmdlist);
9229
9230 add_prefix_cmd ("remote", class_files, remote_command, _("\
9231 Manipulate files on the remote system\n\
9232 Transfer files to and from the remote target system."),
9233 &remote_cmdlist, "remote ",
9234 0 /* allow-unknown */, &cmdlist);
9235
9236 add_cmd ("put", class_files, remote_put_command,
9237 _("Copy a local file to the remote system."),
9238 &remote_cmdlist);
9239
9240 add_cmd ("get", class_files, remote_get_command,
9241 _("Copy a remote file to the local system."),
9242 &remote_cmdlist);
9243
9244 add_cmd ("delete", class_files, remote_delete_command,
9245 _("Delete a remote file."),
9246 &remote_cmdlist);
9247
9248 remote_exec_file = xstrdup ("");
9249 add_setshow_string_noescape_cmd ("exec-file", class_files,
9250 &remote_exec_file, _("\
9251 Set the remote pathname for \"run\""), _("\
9252 Show the remote pathname for \"run\""), NULL, NULL, NULL,
9253 &remote_set_cmdlist, &remote_show_cmdlist);
9254
9255 /* Eventually initialize fileio. See fileio.c */
9256 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
9257
9258 /* Take advantage of the fact that the LWP field is not used, to tag
9259 special ptids with it set to != 0. */
9260 magic_null_ptid = ptid_build (42000, 1, -1);
9261 not_sent_ptid = ptid_build (42000, 1, -2);
9262 any_thread_ptid = ptid_build (42000, 1, 0);
9263 }