gdb/
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70
71 /* temp hacks for tracepoint encoding migration */
72 static char *target_buf;
73 static long target_buf_size;
74 /*static*/ void
75 encode_actions (struct breakpoint *t, char ***tdp_actions,
76 char ***stepping_actions);
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void cleanup_sigint_signal_handler (void *dummy);
92 static void initialize_sigint_signal_handler (void);
93 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
94 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
95 int forever);
96
97 static void handle_remote_sigint (int);
98 static void handle_remote_sigint_twice (int);
99 static void async_remote_interrupt (gdb_client_data);
100 void async_remote_interrupt_twice (gdb_client_data);
101
102 static void remote_files_info (struct target_ops *ignore);
103
104 static void remote_prepare_to_store (struct regcache *regcache);
105
106 static void remote_open (char *name, int from_tty);
107
108 static void extended_remote_open (char *name, int from_tty);
109
110 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
111
112 static void remote_close (int quitting);
113
114 static void remote_mourn (struct target_ops *ops);
115
116 static void extended_remote_restart (void);
117
118 static void extended_remote_mourn (struct target_ops *);
119
120 static void remote_mourn_1 (struct target_ops *);
121
122 static void remote_send (char **buf, long *sizeof_buf_p);
123
124 static int readchar (int timeout);
125
126 static void remote_kill (struct target_ops *ops);
127
128 static int tohex (int nib);
129
130 static int remote_can_async_p (void);
131
132 static int remote_is_async_p (void);
133
134 static void remote_async (void (*callback) (enum inferior_event_type event_type,
135 void *context), void *context);
136
137 static int remote_async_mask (int new_mask);
138
139 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
140
141 static void remote_interrupt (int signo);
142
143 static void remote_interrupt_twice (int signo);
144
145 static void interrupt_query (void);
146
147 static void set_general_thread (struct ptid ptid);
148 static void set_continue_thread (struct ptid ptid);
149
150 static void get_offsets (void);
151
152 static void skip_frame (void);
153
154 static long read_frame (char **buf_p, long *sizeof_buf);
155
156 static int hexnumlen (ULONGEST num);
157
158 static void init_remote_ops (void);
159
160 static void init_extended_remote_ops (void);
161
162 static void remote_stop (ptid_t);
163
164 static int ishex (int ch, int *val);
165
166 static int stubhex (int ch);
167
168 static int hexnumstr (char *, ULONGEST);
169
170 static int hexnumnstr (char *, ULONGEST, int);
171
172 static CORE_ADDR remote_address_masked (CORE_ADDR);
173
174 static void print_packet (char *);
175
176 static unsigned long crc32 (unsigned char *, int, unsigned int);
177
178 static void compare_sections_command (char *, int);
179
180 static void packet_command (char *, int);
181
182 static int stub_unpack_int (char *buff, int fieldlength);
183
184 static ptid_t remote_current_thread (ptid_t oldptid);
185
186 static void remote_find_new_threads (void);
187
188 static void record_currthread (ptid_t currthread);
189
190 static int fromhex (int a);
191
192 extern int hex2bin (const char *hex, gdb_byte *bin, int count);
193
194 extern int bin2hex (const gdb_byte *bin, char *hex, int count);
195
196 static int putpkt_binary (char *buf, int cnt);
197
198 static void check_binary_download (CORE_ADDR addr);
199
200 struct packet_config;
201
202 static void show_packet_config_cmd (struct packet_config *config);
203
204 static void update_packet_config (struct packet_config *config);
205
206 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
207 struct cmd_list_element *c);
208
209 static void show_remote_protocol_packet_cmd (struct ui_file *file,
210 int from_tty,
211 struct cmd_list_element *c,
212 const char *value);
213
214 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
215 static ptid_t read_ptid (char *buf, char **obuf);
216
217 struct remote_state;
218 static int remote_get_trace_status (struct trace_status *ts);
219
220 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
221
222 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
223
224 static void remote_query_supported (void);
225
226 static void remote_check_symbols (struct objfile *objfile);
227
228 void _initialize_remote (void);
229
230 struct stop_reply;
231 static struct stop_reply *stop_reply_xmalloc (void);
232 static void stop_reply_xfree (struct stop_reply *);
233 static void do_stop_reply_xfree (void *arg);
234 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
235 static void push_stop_reply (struct stop_reply *);
236 static void remote_get_pending_stop_replies (void);
237 static void discard_pending_stop_replies (int pid);
238 static int peek_stop_reply (ptid_t ptid);
239
240 static void remote_async_inferior_event_handler (gdb_client_data);
241 static void remote_async_get_pending_events_handler (gdb_client_data);
242
243 static void remote_terminal_ours (void);
244
245 static int remote_read_description_p (struct target_ops *target);
246
247 /* The non-stop remote protocol provisions for one pending stop reply.
248 This is where we keep it until it is acknowledged. */
249
250 static struct stop_reply *pending_stop_reply = NULL;
251
252 /* For "remote". */
253
254 static struct cmd_list_element *remote_cmdlist;
255
256 /* For "set remote" and "show remote". */
257
258 static struct cmd_list_element *remote_set_cmdlist;
259 static struct cmd_list_element *remote_show_cmdlist;
260
261 /* Description of the remote protocol state for the currently
262 connected target. This is per-target state, and independent of the
263 selected architecture. */
264
265 struct remote_state
266 {
267 /* A buffer to use for incoming packets, and its current size. The
268 buffer is grown dynamically for larger incoming packets.
269 Outgoing packets may also be constructed in this buffer.
270 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
271 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
272 packets. */
273 char *buf;
274 long buf_size;
275
276 /* If we negotiated packet size explicitly (and thus can bypass
277 heuristics for the largest packet size that will not overflow
278 a buffer in the stub), this will be set to that packet size.
279 Otherwise zero, meaning to use the guessed size. */
280 long explicit_packet_size;
281
282 /* remote_wait is normally called when the target is running and
283 waits for a stop reply packet. But sometimes we need to call it
284 when the target is already stopped. We can send a "?" packet
285 and have remote_wait read the response. Or, if we already have
286 the response, we can stash it in BUF and tell remote_wait to
287 skip calling getpkt. This flag is set when BUF contains a
288 stop reply packet and the target is not waiting. */
289 int cached_wait_status;
290
291 /* True, if in no ack mode. That is, neither GDB nor the stub will
292 expect acks from each other. The connection is assumed to be
293 reliable. */
294 int noack_mode;
295
296 /* True if we're connected in extended remote mode. */
297 int extended;
298
299 /* True if the stub reported support for multi-process
300 extensions. */
301 int multi_process_aware;
302
303 /* True if we resumed the target and we're waiting for the target to
304 stop. In the mean time, we can't start another command/query.
305 The remote server wouldn't be ready to process it, so we'd
306 timeout waiting for a reply that would never come and eventually
307 we'd close the connection. This can happen in asynchronous mode
308 because we allow GDB commands while the target is running. */
309 int waiting_for_stop_reply;
310
311 /* True if the stub reports support for non-stop mode. */
312 int non_stop_aware;
313
314 /* True if the stub reports support for vCont;t. */
315 int support_vCont_t;
316
317 /* True if the stub reports support for conditional tracepoints. */
318 int cond_tracepoints;
319
320 /* True if the stub reports support for fast tracepoints. */
321 int fast_tracepoints;
322
323 /* True if the stub can continue running a trace while GDB is
324 disconnected. */
325 int disconnected_tracing;
326
327 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
328 responded to that. */
329 int ctrlc_pending_p;
330 };
331
332 /* Private data that we'll store in (struct thread_info)->private. */
333 struct private_thread_info
334 {
335 char *extra;
336 int core;
337 };
338
339 static void
340 free_private_thread_info (struct private_thread_info *info)
341 {
342 xfree (info->extra);
343 xfree (info);
344 }
345
346 /* Returns true if the multi-process extensions are in effect. */
347 static int
348 remote_multi_process_p (struct remote_state *rs)
349 {
350 return rs->extended && rs->multi_process_aware;
351 }
352
353 /* This data could be associated with a target, but we do not always
354 have access to the current target when we need it, so for now it is
355 static. This will be fine for as long as only one target is in use
356 at a time. */
357 static struct remote_state remote_state;
358
359 static struct remote_state *
360 get_remote_state_raw (void)
361 {
362 return &remote_state;
363 }
364
365 /* Description of the remote protocol for a given architecture. */
366
367 struct packet_reg
368 {
369 long offset; /* Offset into G packet. */
370 long regnum; /* GDB's internal register number. */
371 LONGEST pnum; /* Remote protocol register number. */
372 int in_g_packet; /* Always part of G packet. */
373 /* long size in bytes; == register_size (target_gdbarch, regnum);
374 at present. */
375 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
376 at present. */
377 };
378
379 struct remote_arch_state
380 {
381 /* Description of the remote protocol registers. */
382 long sizeof_g_packet;
383
384 /* Description of the remote protocol registers indexed by REGNUM
385 (making an array gdbarch_num_regs in size). */
386 struct packet_reg *regs;
387
388 /* This is the size (in chars) of the first response to the ``g''
389 packet. It is used as a heuristic when determining the maximum
390 size of memory-read and memory-write packets. A target will
391 typically only reserve a buffer large enough to hold the ``g''
392 packet. The size does not include packet overhead (headers and
393 trailers). */
394 long actual_register_packet_size;
395
396 /* This is the maximum size (in chars) of a non read/write packet.
397 It is also used as a cap on the size of read/write packets. */
398 long remote_packet_size;
399 };
400
401 long sizeof_pkt = 2000;
402
403 /* Utility: generate error from an incoming stub packet. */
404 static void
405 trace_error (char *buf)
406 {
407 if (*buf++ != 'E')
408 return; /* not an error msg */
409 switch (*buf)
410 {
411 case '1': /* malformed packet error */
412 if (*++buf == '0') /* general case: */
413 error (_("remote.c: error in outgoing packet."));
414 else
415 error (_("remote.c: error in outgoing packet at field #%ld."),
416 strtol (buf, NULL, 16));
417 case '2':
418 error (_("trace API error 0x%s."), ++buf);
419 default:
420 error (_("Target returns error code '%s'."), buf);
421 }
422 }
423
424 /* Utility: wait for reply from stub, while accepting "O" packets. */
425 static char *
426 remote_get_noisy_reply (char **buf_p,
427 long *sizeof_buf)
428 {
429 do /* Loop on reply from remote stub. */
430 {
431 char *buf;
432 QUIT; /* allow user to bail out with ^C */
433 getpkt (buf_p, sizeof_buf, 0);
434 buf = *buf_p;
435 if (buf[0] == 0)
436 error (_("Target does not support this command."));
437 else if (buf[0] == 'E')
438 trace_error (buf);
439 else if (buf[0] == 'O' &&
440 buf[1] != 'K')
441 remote_console_output (buf + 1); /* 'O' message from stub */
442 else
443 return buf; /* here's the actual reply */
444 }
445 while (1);
446 }
447
448 /* Handle for retreving the remote protocol data from gdbarch. */
449 static struct gdbarch_data *remote_gdbarch_data_handle;
450
451 static struct remote_arch_state *
452 get_remote_arch_state (void)
453 {
454 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
455 }
456
457 /* Fetch the global remote target state. */
458
459 static struct remote_state *
460 get_remote_state (void)
461 {
462 /* Make sure that the remote architecture state has been
463 initialized, because doing so might reallocate rs->buf. Any
464 function which calls getpkt also needs to be mindful of changes
465 to rs->buf, but this call limits the number of places which run
466 into trouble. */
467 get_remote_arch_state ();
468
469 return get_remote_state_raw ();
470 }
471
472 static int
473 compare_pnums (const void *lhs_, const void *rhs_)
474 {
475 const struct packet_reg * const *lhs = lhs_;
476 const struct packet_reg * const *rhs = rhs_;
477
478 if ((*lhs)->pnum < (*rhs)->pnum)
479 return -1;
480 else if ((*lhs)->pnum == (*rhs)->pnum)
481 return 0;
482 else
483 return 1;
484 }
485
486 static void *
487 init_remote_state (struct gdbarch *gdbarch)
488 {
489 int regnum, num_remote_regs, offset;
490 struct remote_state *rs = get_remote_state_raw ();
491 struct remote_arch_state *rsa;
492 struct packet_reg **remote_regs;
493
494 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
495
496 /* Use the architecture to build a regnum<->pnum table, which will be
497 1:1 unless a feature set specifies otherwise. */
498 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
499 gdbarch_num_regs (gdbarch),
500 struct packet_reg);
501 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
502 {
503 struct packet_reg *r = &rsa->regs[regnum];
504
505 if (register_size (gdbarch, regnum) == 0)
506 /* Do not try to fetch zero-sized (placeholder) registers. */
507 r->pnum = -1;
508 else
509 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
510
511 r->regnum = regnum;
512 }
513
514 /* Define the g/G packet format as the contents of each register
515 with a remote protocol number, in order of ascending protocol
516 number. */
517
518 remote_regs = alloca (gdbarch_num_regs (gdbarch)
519 * sizeof (struct packet_reg *));
520 for (num_remote_regs = 0, regnum = 0;
521 regnum < gdbarch_num_regs (gdbarch);
522 regnum++)
523 if (rsa->regs[regnum].pnum != -1)
524 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
525
526 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
527 compare_pnums);
528
529 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
530 {
531 remote_regs[regnum]->in_g_packet = 1;
532 remote_regs[regnum]->offset = offset;
533 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
534 }
535
536 /* Record the maximum possible size of the g packet - it may turn out
537 to be smaller. */
538 rsa->sizeof_g_packet = offset;
539
540 /* Default maximum number of characters in a packet body. Many
541 remote stubs have a hardwired buffer size of 400 bytes
542 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
543 as the maximum packet-size to ensure that the packet and an extra
544 NUL character can always fit in the buffer. This stops GDB
545 trashing stubs that try to squeeze an extra NUL into what is
546 already a full buffer (As of 1999-12-04 that was most stubs). */
547 rsa->remote_packet_size = 400 - 1;
548
549 /* This one is filled in when a ``g'' packet is received. */
550 rsa->actual_register_packet_size = 0;
551
552 /* Should rsa->sizeof_g_packet needs more space than the
553 default, adjust the size accordingly. Remember that each byte is
554 encoded as two characters. 32 is the overhead for the packet
555 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
556 (``$NN:G...#NN'') is a better guess, the below has been padded a
557 little. */
558 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
559 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
560
561 /* Make sure that the packet buffer is plenty big enough for
562 this architecture. */
563 if (rs->buf_size < rsa->remote_packet_size)
564 {
565 rs->buf_size = 2 * rsa->remote_packet_size;
566 rs->buf = xrealloc (rs->buf, rs->buf_size);
567 }
568
569 return rsa;
570 }
571
572 /* Return the current allowed size of a remote packet. This is
573 inferred from the current architecture, and should be used to
574 limit the length of outgoing packets. */
575 static long
576 get_remote_packet_size (void)
577 {
578 struct remote_state *rs = get_remote_state ();
579 struct remote_arch_state *rsa = get_remote_arch_state ();
580
581 if (rs->explicit_packet_size)
582 return rs->explicit_packet_size;
583
584 return rsa->remote_packet_size;
585 }
586
587 static struct packet_reg *
588 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
589 {
590 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
591 return NULL;
592 else
593 {
594 struct packet_reg *r = &rsa->regs[regnum];
595 gdb_assert (r->regnum == regnum);
596 return r;
597 }
598 }
599
600 static struct packet_reg *
601 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
602 {
603 int i;
604 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
605 {
606 struct packet_reg *r = &rsa->regs[i];
607 if (r->pnum == pnum)
608 return r;
609 }
610 return NULL;
611 }
612
613 /* FIXME: graces/2002-08-08: These variables should eventually be
614 bound to an instance of the target object (as in gdbarch-tdep()),
615 when such a thing exists. */
616
617 /* This is set to the data address of the access causing the target
618 to stop for a watchpoint. */
619 static CORE_ADDR remote_watch_data_address;
620
621 /* This is non-zero if target stopped for a watchpoint. */
622 static int remote_stopped_by_watchpoint_p;
623
624 static struct target_ops remote_ops;
625
626 static struct target_ops extended_remote_ops;
627
628 static int remote_async_mask_value = 1;
629
630 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
631 ``forever'' still use the normal timeout mechanism. This is
632 currently used by the ASYNC code to guarentee that target reads
633 during the initial connect always time-out. Once getpkt has been
634 modified to return a timeout indication and, in turn
635 remote_wait()/wait_for_inferior() have gained a timeout parameter
636 this can go away. */
637 static int wait_forever_enabled_p = 1;
638
639 /* Allow the user to specify what sequence to send to the remote
640 when he requests a program interruption: Although ^C is usually
641 what remote systems expect (this is the default, here), it is
642 sometimes preferable to send a break. On other systems such
643 as the Linux kernel, a break followed by g, which is Magic SysRq g
644 is required in order to interrupt the execution. */
645 const char interrupt_sequence_control_c[] = "Ctrl-C";
646 const char interrupt_sequence_break[] = "BREAK";
647 const char interrupt_sequence_break_g[] = "BREAK-g";
648 static const char *interrupt_sequence_modes[] =
649 {
650 interrupt_sequence_control_c,
651 interrupt_sequence_break,
652 interrupt_sequence_break_g,
653 NULL
654 };
655 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
656
657 static void
658 show_interrupt_sequence (struct ui_file *file, int from_tty,
659 struct cmd_list_element *c,
660 const char *value)
661 {
662 if (interrupt_sequence_mode == interrupt_sequence_control_c)
663 fprintf_filtered (file,
664 _("Send the ASCII ETX character (Ctrl-c) "
665 "to the remote target to interrupt the "
666 "execution of the program.\n"));
667 else if (interrupt_sequence_mode == interrupt_sequence_break)
668 fprintf_filtered (file,
669 _("send a break signal to the remote target "
670 "to interrupt the execution of the program.\n"));
671 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
672 fprintf_filtered (file,
673 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
674 "the remote target to interrupt the execution "
675 "of Linux kernel.\n"));
676 else
677 internal_error (__FILE__, __LINE__,
678 _("Invalid value for interrupt_sequence_mode: %s."),
679 interrupt_sequence_mode);
680 }
681
682 /* This boolean variable specifies whether interrupt_sequence is sent
683 to the remote target when gdb connects to it.
684 This is mostly needed when you debug the Linux kernel: The Linux kernel
685 expects BREAK g which is Magic SysRq g for connecting gdb. */
686 static int interrupt_on_connect = 0;
687
688 /* This variable is used to implement the "set/show remotebreak" commands.
689 Since these commands are now deprecated in favor of "set/show remote
690 interrupt-sequence", it no longer has any effect on the code. */
691 static int remote_break;
692
693 static void
694 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
695 {
696 if (remote_break)
697 interrupt_sequence_mode = interrupt_sequence_break;
698 else
699 interrupt_sequence_mode = interrupt_sequence_control_c;
700 }
701
702 static void
703 show_remotebreak (struct ui_file *file, int from_tty,
704 struct cmd_list_element *c,
705 const char *value)
706 {
707 }
708
709 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
710 remote_open knows that we don't have a file open when the program
711 starts. */
712 static struct serial *remote_desc = NULL;
713
714 /* This variable sets the number of bits in an address that are to be
715 sent in a memory ("M" or "m") packet. Normally, after stripping
716 leading zeros, the entire address would be sent. This variable
717 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
718 initial implementation of remote.c restricted the address sent in
719 memory packets to ``host::sizeof long'' bytes - (typically 32
720 bits). Consequently, for 64 bit targets, the upper 32 bits of an
721 address was never sent. Since fixing this bug may cause a break in
722 some remote targets this variable is principly provided to
723 facilitate backward compatibility. */
724
725 static int remote_address_size;
726
727 /* Temporary to track who currently owns the terminal. See
728 remote_terminal_* for more details. */
729
730 static int remote_async_terminal_ours_p;
731
732 /* The executable file to use for "run" on the remote side. */
733
734 static char *remote_exec_file = "";
735
736 \f
737 /* User configurable variables for the number of characters in a
738 memory read/write packet. MIN (rsa->remote_packet_size,
739 rsa->sizeof_g_packet) is the default. Some targets need smaller
740 values (fifo overruns, et.al.) and some users need larger values
741 (speed up transfers). The variables ``preferred_*'' (the user
742 request), ``current_*'' (what was actually set) and ``forced_*''
743 (Positive - a soft limit, negative - a hard limit). */
744
745 struct memory_packet_config
746 {
747 char *name;
748 long size;
749 int fixed_p;
750 };
751
752 /* Compute the current size of a read/write packet. Since this makes
753 use of ``actual_register_packet_size'' the computation is dynamic. */
754
755 static long
756 get_memory_packet_size (struct memory_packet_config *config)
757 {
758 struct remote_state *rs = get_remote_state ();
759 struct remote_arch_state *rsa = get_remote_arch_state ();
760
761 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
762 law?) that some hosts don't cope very well with large alloca()
763 calls. Eventually the alloca() code will be replaced by calls to
764 xmalloc() and make_cleanups() allowing this restriction to either
765 be lifted or removed. */
766 #ifndef MAX_REMOTE_PACKET_SIZE
767 #define MAX_REMOTE_PACKET_SIZE 16384
768 #endif
769 /* NOTE: 20 ensures we can write at least one byte. */
770 #ifndef MIN_REMOTE_PACKET_SIZE
771 #define MIN_REMOTE_PACKET_SIZE 20
772 #endif
773 long what_they_get;
774 if (config->fixed_p)
775 {
776 if (config->size <= 0)
777 what_they_get = MAX_REMOTE_PACKET_SIZE;
778 else
779 what_they_get = config->size;
780 }
781 else
782 {
783 what_they_get = get_remote_packet_size ();
784 /* Limit the packet to the size specified by the user. */
785 if (config->size > 0
786 && what_they_get > config->size)
787 what_they_get = config->size;
788
789 /* Limit it to the size of the targets ``g'' response unless we have
790 permission from the stub to use a larger packet size. */
791 if (rs->explicit_packet_size == 0
792 && rsa->actual_register_packet_size > 0
793 && what_they_get > rsa->actual_register_packet_size)
794 what_they_get = rsa->actual_register_packet_size;
795 }
796 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
797 what_they_get = MAX_REMOTE_PACKET_SIZE;
798 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
799 what_they_get = MIN_REMOTE_PACKET_SIZE;
800
801 /* Make sure there is room in the global buffer for this packet
802 (including its trailing NUL byte). */
803 if (rs->buf_size < what_they_get + 1)
804 {
805 rs->buf_size = 2 * what_they_get;
806 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
807 }
808
809 return what_they_get;
810 }
811
812 /* Update the size of a read/write packet. If they user wants
813 something really big then do a sanity check. */
814
815 static void
816 set_memory_packet_size (char *args, struct memory_packet_config *config)
817 {
818 int fixed_p = config->fixed_p;
819 long size = config->size;
820 if (args == NULL)
821 error (_("Argument required (integer, `fixed' or `limited')."));
822 else if (strcmp (args, "hard") == 0
823 || strcmp (args, "fixed") == 0)
824 fixed_p = 1;
825 else if (strcmp (args, "soft") == 0
826 || strcmp (args, "limit") == 0)
827 fixed_p = 0;
828 else
829 {
830 char *end;
831 size = strtoul (args, &end, 0);
832 if (args == end)
833 error (_("Invalid %s (bad syntax)."), config->name);
834 #if 0
835 /* Instead of explicitly capping the size of a packet to
836 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
837 instead allowed to set the size to something arbitrarily
838 large. */
839 if (size > MAX_REMOTE_PACKET_SIZE)
840 error (_("Invalid %s (too large)."), config->name);
841 #endif
842 }
843 /* Extra checks? */
844 if (fixed_p && !config->fixed_p)
845 {
846 if (! query (_("The target may not be able to correctly handle a %s\n"
847 "of %ld bytes. Change the packet size? "),
848 config->name, size))
849 error (_("Packet size not changed."));
850 }
851 /* Update the config. */
852 config->fixed_p = fixed_p;
853 config->size = size;
854 }
855
856 static void
857 show_memory_packet_size (struct memory_packet_config *config)
858 {
859 printf_filtered (_("The %s is %ld. "), config->name, config->size);
860 if (config->fixed_p)
861 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
862 get_memory_packet_size (config));
863 else
864 printf_filtered (_("Packets are limited to %ld bytes.\n"),
865 get_memory_packet_size (config));
866 }
867
868 static struct memory_packet_config memory_write_packet_config =
869 {
870 "memory-write-packet-size",
871 };
872
873 static void
874 set_memory_write_packet_size (char *args, int from_tty)
875 {
876 set_memory_packet_size (args, &memory_write_packet_config);
877 }
878
879 static void
880 show_memory_write_packet_size (char *args, int from_tty)
881 {
882 show_memory_packet_size (&memory_write_packet_config);
883 }
884
885 static long
886 get_memory_write_packet_size (void)
887 {
888 return get_memory_packet_size (&memory_write_packet_config);
889 }
890
891 static struct memory_packet_config memory_read_packet_config =
892 {
893 "memory-read-packet-size",
894 };
895
896 static void
897 set_memory_read_packet_size (char *args, int from_tty)
898 {
899 set_memory_packet_size (args, &memory_read_packet_config);
900 }
901
902 static void
903 show_memory_read_packet_size (char *args, int from_tty)
904 {
905 show_memory_packet_size (&memory_read_packet_config);
906 }
907
908 static long
909 get_memory_read_packet_size (void)
910 {
911 long size = get_memory_packet_size (&memory_read_packet_config);
912 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
913 extra buffer size argument before the memory read size can be
914 increased beyond this. */
915 if (size > get_remote_packet_size ())
916 size = get_remote_packet_size ();
917 return size;
918 }
919
920 \f
921 /* Generic configuration support for packets the stub optionally
922 supports. Allows the user to specify the use of the packet as well
923 as allowing GDB to auto-detect support in the remote stub. */
924
925 enum packet_support
926 {
927 PACKET_SUPPORT_UNKNOWN = 0,
928 PACKET_ENABLE,
929 PACKET_DISABLE
930 };
931
932 struct packet_config
933 {
934 const char *name;
935 const char *title;
936 enum auto_boolean detect;
937 enum packet_support support;
938 };
939
940 /* Analyze a packet's return value and update the packet config
941 accordingly. */
942
943 enum packet_result
944 {
945 PACKET_ERROR,
946 PACKET_OK,
947 PACKET_UNKNOWN
948 };
949
950 static void
951 update_packet_config (struct packet_config *config)
952 {
953 switch (config->detect)
954 {
955 case AUTO_BOOLEAN_TRUE:
956 config->support = PACKET_ENABLE;
957 break;
958 case AUTO_BOOLEAN_FALSE:
959 config->support = PACKET_DISABLE;
960 break;
961 case AUTO_BOOLEAN_AUTO:
962 config->support = PACKET_SUPPORT_UNKNOWN;
963 break;
964 }
965 }
966
967 static void
968 show_packet_config_cmd (struct packet_config *config)
969 {
970 char *support = "internal-error";
971 switch (config->support)
972 {
973 case PACKET_ENABLE:
974 support = "enabled";
975 break;
976 case PACKET_DISABLE:
977 support = "disabled";
978 break;
979 case PACKET_SUPPORT_UNKNOWN:
980 support = "unknown";
981 break;
982 }
983 switch (config->detect)
984 {
985 case AUTO_BOOLEAN_AUTO:
986 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
987 config->name, support);
988 break;
989 case AUTO_BOOLEAN_TRUE:
990 case AUTO_BOOLEAN_FALSE:
991 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
992 config->name, support);
993 break;
994 }
995 }
996
997 static void
998 add_packet_config_cmd (struct packet_config *config, const char *name,
999 const char *title, int legacy)
1000 {
1001 char *set_doc;
1002 char *show_doc;
1003 char *cmd_name;
1004
1005 config->name = name;
1006 config->title = title;
1007 config->detect = AUTO_BOOLEAN_AUTO;
1008 config->support = PACKET_SUPPORT_UNKNOWN;
1009 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1010 name, title);
1011 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
1012 name, title);
1013 /* set/show TITLE-packet {auto,on,off} */
1014 cmd_name = xstrprintf ("%s-packet", title);
1015 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1016 &config->detect, set_doc, show_doc, NULL, /* help_doc */
1017 set_remote_protocol_packet_cmd,
1018 show_remote_protocol_packet_cmd,
1019 &remote_set_cmdlist, &remote_show_cmdlist);
1020 /* The command code copies the documentation strings. */
1021 xfree (set_doc);
1022 xfree (show_doc);
1023 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1024 if (legacy)
1025 {
1026 char *legacy_name;
1027 legacy_name = xstrprintf ("%s-packet", name);
1028 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1029 &remote_set_cmdlist);
1030 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1031 &remote_show_cmdlist);
1032 }
1033 }
1034
1035 static enum packet_result
1036 packet_check_result (const char *buf)
1037 {
1038 if (buf[0] != '\0')
1039 {
1040 /* The stub recognized the packet request. Check that the
1041 operation succeeded. */
1042 if (buf[0] == 'E'
1043 && isxdigit (buf[1]) && isxdigit (buf[2])
1044 && buf[3] == '\0')
1045 /* "Enn" - definitly an error. */
1046 return PACKET_ERROR;
1047
1048 /* Always treat "E." as an error. This will be used for
1049 more verbose error messages, such as E.memtypes. */
1050 if (buf[0] == 'E' && buf[1] == '.')
1051 return PACKET_ERROR;
1052
1053 /* The packet may or may not be OK. Just assume it is. */
1054 return PACKET_OK;
1055 }
1056 else
1057 /* The stub does not support the packet. */
1058 return PACKET_UNKNOWN;
1059 }
1060
1061 static enum packet_result
1062 packet_ok (const char *buf, struct packet_config *config)
1063 {
1064 enum packet_result result;
1065
1066 result = packet_check_result (buf);
1067 switch (result)
1068 {
1069 case PACKET_OK:
1070 case PACKET_ERROR:
1071 /* The stub recognized the packet request. */
1072 switch (config->support)
1073 {
1074 case PACKET_SUPPORT_UNKNOWN:
1075 if (remote_debug)
1076 fprintf_unfiltered (gdb_stdlog,
1077 "Packet %s (%s) is supported\n",
1078 config->name, config->title);
1079 config->support = PACKET_ENABLE;
1080 break;
1081 case PACKET_DISABLE:
1082 internal_error (__FILE__, __LINE__,
1083 _("packet_ok: attempt to use a disabled packet"));
1084 break;
1085 case PACKET_ENABLE:
1086 break;
1087 }
1088 break;
1089 case PACKET_UNKNOWN:
1090 /* The stub does not support the packet. */
1091 switch (config->support)
1092 {
1093 case PACKET_ENABLE:
1094 if (config->detect == AUTO_BOOLEAN_AUTO)
1095 /* If the stub previously indicated that the packet was
1096 supported then there is a protocol error.. */
1097 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1098 config->name, config->title);
1099 else
1100 /* The user set it wrong. */
1101 error (_("Enabled packet %s (%s) not recognized by stub"),
1102 config->name, config->title);
1103 break;
1104 case PACKET_SUPPORT_UNKNOWN:
1105 if (remote_debug)
1106 fprintf_unfiltered (gdb_stdlog,
1107 "Packet %s (%s) is NOT supported\n",
1108 config->name, config->title);
1109 config->support = PACKET_DISABLE;
1110 break;
1111 case PACKET_DISABLE:
1112 break;
1113 }
1114 break;
1115 }
1116
1117 return result;
1118 }
1119
1120 enum {
1121 PACKET_vCont = 0,
1122 PACKET_X,
1123 PACKET_qSymbol,
1124 PACKET_P,
1125 PACKET_p,
1126 PACKET_Z0,
1127 PACKET_Z1,
1128 PACKET_Z2,
1129 PACKET_Z3,
1130 PACKET_Z4,
1131 PACKET_vFile_open,
1132 PACKET_vFile_pread,
1133 PACKET_vFile_pwrite,
1134 PACKET_vFile_close,
1135 PACKET_vFile_unlink,
1136 PACKET_qXfer_auxv,
1137 PACKET_qXfer_features,
1138 PACKET_qXfer_libraries,
1139 PACKET_qXfer_memory_map,
1140 PACKET_qXfer_spu_read,
1141 PACKET_qXfer_spu_write,
1142 PACKET_qXfer_osdata,
1143 PACKET_qXfer_threads,
1144 PACKET_qGetTLSAddr,
1145 PACKET_qSupported,
1146 PACKET_QPassSignals,
1147 PACKET_qSearch_memory,
1148 PACKET_vAttach,
1149 PACKET_vRun,
1150 PACKET_QStartNoAckMode,
1151 PACKET_vKill,
1152 PACKET_qXfer_siginfo_read,
1153 PACKET_qXfer_siginfo_write,
1154 PACKET_qAttached,
1155 PACKET_ConditionalTracepoints,
1156 PACKET_FastTracepoints,
1157 PACKET_bc,
1158 PACKET_bs,
1159 PACKET_MAX
1160 };
1161
1162 static struct packet_config remote_protocol_packets[PACKET_MAX];
1163
1164 static void
1165 set_remote_protocol_packet_cmd (char *args, int from_tty,
1166 struct cmd_list_element *c)
1167 {
1168 struct packet_config *packet;
1169
1170 for (packet = remote_protocol_packets;
1171 packet < &remote_protocol_packets[PACKET_MAX];
1172 packet++)
1173 {
1174 if (&packet->detect == c->var)
1175 {
1176 update_packet_config (packet);
1177 return;
1178 }
1179 }
1180 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1181 c->name);
1182 }
1183
1184 static void
1185 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1186 struct cmd_list_element *c,
1187 const char *value)
1188 {
1189 struct packet_config *packet;
1190
1191 for (packet = remote_protocol_packets;
1192 packet < &remote_protocol_packets[PACKET_MAX];
1193 packet++)
1194 {
1195 if (&packet->detect == c->var)
1196 {
1197 show_packet_config_cmd (packet);
1198 return;
1199 }
1200 }
1201 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1202 c->name);
1203 }
1204
1205 /* Should we try one of the 'Z' requests? */
1206
1207 enum Z_packet_type
1208 {
1209 Z_PACKET_SOFTWARE_BP,
1210 Z_PACKET_HARDWARE_BP,
1211 Z_PACKET_WRITE_WP,
1212 Z_PACKET_READ_WP,
1213 Z_PACKET_ACCESS_WP,
1214 NR_Z_PACKET_TYPES
1215 };
1216
1217 /* For compatibility with older distributions. Provide a ``set remote
1218 Z-packet ...'' command that updates all the Z packet types. */
1219
1220 static enum auto_boolean remote_Z_packet_detect;
1221
1222 static void
1223 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1224 struct cmd_list_element *c)
1225 {
1226 int i;
1227 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1228 {
1229 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1230 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1231 }
1232 }
1233
1234 static void
1235 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1236 struct cmd_list_element *c,
1237 const char *value)
1238 {
1239 int i;
1240 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1241 {
1242 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1243 }
1244 }
1245
1246 /* Should we try the 'ThreadInfo' query packet?
1247
1248 This variable (NOT available to the user: auto-detect only!)
1249 determines whether GDB will use the new, simpler "ThreadInfo"
1250 query or the older, more complex syntax for thread queries.
1251 This is an auto-detect variable (set to true at each connect,
1252 and set to false when the target fails to recognize it). */
1253
1254 static int use_threadinfo_query;
1255 static int use_threadextra_query;
1256
1257 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1258 static struct async_signal_handler *sigint_remote_twice_token;
1259 static struct async_signal_handler *sigint_remote_token;
1260
1261 \f
1262 /* Asynchronous signal handle registered as event loop source for
1263 when we have pending events ready to be passed to the core. */
1264
1265 static struct async_event_handler *remote_async_inferior_event_token;
1266
1267 /* Asynchronous signal handle registered as event loop source for when
1268 the remote sent us a %Stop notification. The registered callback
1269 will do a vStopped sequence to pull the rest of the events out of
1270 the remote side into our event queue. */
1271
1272 static struct async_event_handler *remote_async_get_pending_events_token;
1273 \f
1274
1275 static ptid_t magic_null_ptid;
1276 static ptid_t not_sent_ptid;
1277 static ptid_t any_thread_ptid;
1278
1279 /* These are the threads which we last sent to the remote system. The
1280 TID member will be -1 for all or -2 for not sent yet. */
1281
1282 static ptid_t general_thread;
1283 static ptid_t continue_thread;
1284
1285 /* Find out if the stub attached to PID (and hence GDB should offer to
1286 detach instead of killing it when bailing out). */
1287
1288 static int
1289 remote_query_attached (int pid)
1290 {
1291 struct remote_state *rs = get_remote_state ();
1292
1293 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1294 return 0;
1295
1296 if (remote_multi_process_p (rs))
1297 sprintf (rs->buf, "qAttached:%x", pid);
1298 else
1299 sprintf (rs->buf, "qAttached");
1300
1301 putpkt (rs->buf);
1302 getpkt (&rs->buf, &rs->buf_size, 0);
1303
1304 switch (packet_ok (rs->buf,
1305 &remote_protocol_packets[PACKET_qAttached]))
1306 {
1307 case PACKET_OK:
1308 if (strcmp (rs->buf, "1") == 0)
1309 return 1;
1310 break;
1311 case PACKET_ERROR:
1312 warning (_("Remote failure reply: %s"), rs->buf);
1313 break;
1314 case PACKET_UNKNOWN:
1315 break;
1316 }
1317
1318 return 0;
1319 }
1320
1321 /* Add PID to GDB's inferior table. Since we can be connected to a
1322 remote system before before knowing about any inferior, mark the
1323 target with execution when we find the first inferior. If ATTACHED
1324 is 1, then we had just attached to this inferior. If it is 0, then
1325 we just created this inferior. If it is -1, then try querying the
1326 remote stub to find out if it had attached to the inferior or
1327 not. */
1328
1329 static struct inferior *
1330 remote_add_inferior (int pid, int attached)
1331 {
1332 struct inferior *inf;
1333
1334 /* Check whether this process we're learning about is to be
1335 considered attached, or if is to be considered to have been
1336 spawned by the stub. */
1337 if (attached == -1)
1338 attached = remote_query_attached (pid);
1339
1340 if (gdbarch_has_global_solist (target_gdbarch))
1341 {
1342 /* If the target shares code across all inferiors, then every
1343 attach adds a new inferior. */
1344 inf = add_inferior (pid);
1345
1346 /* ... and every inferior is bound to the same program space.
1347 However, each inferior may still have its own address
1348 space. */
1349 inf->aspace = maybe_new_address_space ();
1350 inf->pspace = current_program_space;
1351 }
1352 else
1353 {
1354 /* In the traditional debugging scenario, there's a 1-1 match
1355 between program/address spaces. We simply bind the inferior
1356 to the program space's address space. */
1357 inf = current_inferior ();
1358 inferior_appeared (inf, pid);
1359 }
1360
1361 inf->attach_flag = attached;
1362
1363 return inf;
1364 }
1365
1366 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1367 according to RUNNING. */
1368
1369 static void
1370 remote_add_thread (ptid_t ptid, int running)
1371 {
1372 add_thread (ptid);
1373
1374 set_executing (ptid, running);
1375 set_running (ptid, running);
1376 }
1377
1378 /* Come here when we learn about a thread id from the remote target.
1379 It may be the first time we hear about such thread, so take the
1380 opportunity to add it to GDB's thread list. In case this is the
1381 first time we're noticing its corresponding inferior, add it to
1382 GDB's inferior list as well. */
1383
1384 static void
1385 remote_notice_new_inferior (ptid_t currthread, int running)
1386 {
1387 /* If this is a new thread, add it to GDB's thread list.
1388 If we leave it up to WFI to do this, bad things will happen. */
1389
1390 if (in_thread_list (currthread) && is_exited (currthread))
1391 {
1392 /* We're seeing an event on a thread id we knew had exited.
1393 This has to be a new thread reusing the old id. Add it. */
1394 remote_add_thread (currthread, running);
1395 return;
1396 }
1397
1398 if (!in_thread_list (currthread))
1399 {
1400 struct inferior *inf = NULL;
1401 int pid = ptid_get_pid (currthread);
1402
1403 if (ptid_is_pid (inferior_ptid)
1404 && pid == ptid_get_pid (inferior_ptid))
1405 {
1406 /* inferior_ptid has no thread member yet. This can happen
1407 with the vAttach -> remote_wait,"TAAthread:" path if the
1408 stub doesn't support qC. This is the first stop reported
1409 after an attach, so this is the main thread. Update the
1410 ptid in the thread list. */
1411 if (in_thread_list (pid_to_ptid (pid)))
1412 thread_change_ptid (inferior_ptid, currthread);
1413 else
1414 {
1415 remote_add_thread (currthread, running);
1416 inferior_ptid = currthread;
1417 }
1418 return;
1419 }
1420
1421 if (ptid_equal (magic_null_ptid, inferior_ptid))
1422 {
1423 /* inferior_ptid is not set yet. This can happen with the
1424 vRun -> remote_wait,"TAAthread:" path if the stub
1425 doesn't support qC. This is the first stop reported
1426 after an attach, so this is the main thread. Update the
1427 ptid in the thread list. */
1428 thread_change_ptid (inferior_ptid, currthread);
1429 return;
1430 }
1431
1432 /* When connecting to a target remote, or to a target
1433 extended-remote which already was debugging an inferior, we
1434 may not know about it yet. Add it before adding its child
1435 thread, so notifications are emitted in a sensible order. */
1436 if (!in_inferior_list (ptid_get_pid (currthread)))
1437 inf = remote_add_inferior (ptid_get_pid (currthread), -1);
1438
1439 /* This is really a new thread. Add it. */
1440 remote_add_thread (currthread, running);
1441
1442 /* If we found a new inferior, let the common code do whatever
1443 it needs to with it (e.g., read shared libraries, insert
1444 breakpoints). */
1445 if (inf != NULL)
1446 notice_new_inferior (currthread, running, 0);
1447 }
1448 }
1449
1450 /* Return the private thread data, creating it if necessary. */
1451
1452 struct private_thread_info *
1453 demand_private_info (ptid_t ptid)
1454 {
1455 struct thread_info *info = find_thread_ptid (ptid);
1456
1457 gdb_assert (info);
1458
1459 if (!info->private)
1460 {
1461 info->private = xmalloc (sizeof (*(info->private)));
1462 info->private_dtor = free_private_thread_info;
1463 info->private->core = -1;
1464 info->private->extra = 0;
1465 }
1466
1467 return info->private;
1468 }
1469
1470 /* Call this function as a result of
1471 1) A halt indication (T packet) containing a thread id
1472 2) A direct query of currthread
1473 3) Successful execution of set thread
1474 */
1475
1476 static void
1477 record_currthread (ptid_t currthread)
1478 {
1479 general_thread = currthread;
1480 }
1481
1482 static char *last_pass_packet;
1483
1484 /* If 'QPassSignals' is supported, tell the remote stub what signals
1485 it can simply pass through to the inferior without reporting. */
1486
1487 static void
1488 remote_pass_signals (void)
1489 {
1490 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1491 {
1492 char *pass_packet, *p;
1493 int numsigs = (int) TARGET_SIGNAL_LAST;
1494 int count = 0, i;
1495
1496 gdb_assert (numsigs < 256);
1497 for (i = 0; i < numsigs; i++)
1498 {
1499 if (signal_stop_state (i) == 0
1500 && signal_print_state (i) == 0
1501 && signal_pass_state (i) == 1)
1502 count++;
1503 }
1504 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1505 strcpy (pass_packet, "QPassSignals:");
1506 p = pass_packet + strlen (pass_packet);
1507 for (i = 0; i < numsigs; i++)
1508 {
1509 if (signal_stop_state (i) == 0
1510 && signal_print_state (i) == 0
1511 && signal_pass_state (i) == 1)
1512 {
1513 if (i >= 16)
1514 *p++ = tohex (i >> 4);
1515 *p++ = tohex (i & 15);
1516 if (count)
1517 *p++ = ';';
1518 else
1519 break;
1520 count--;
1521 }
1522 }
1523 *p = 0;
1524 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1525 {
1526 struct remote_state *rs = get_remote_state ();
1527 char *buf = rs->buf;
1528
1529 putpkt (pass_packet);
1530 getpkt (&rs->buf, &rs->buf_size, 0);
1531 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1532 if (last_pass_packet)
1533 xfree (last_pass_packet);
1534 last_pass_packet = pass_packet;
1535 }
1536 else
1537 xfree (pass_packet);
1538 }
1539 }
1540
1541 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1542 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1543 thread. If GEN is set, set the general thread, if not, then set
1544 the step/continue thread. */
1545 static void
1546 set_thread (struct ptid ptid, int gen)
1547 {
1548 struct remote_state *rs = get_remote_state ();
1549 ptid_t state = gen ? general_thread : continue_thread;
1550 char *buf = rs->buf;
1551 char *endbuf = rs->buf + get_remote_packet_size ();
1552
1553 if (ptid_equal (state, ptid))
1554 return;
1555
1556 *buf++ = 'H';
1557 *buf++ = gen ? 'g' : 'c';
1558 if (ptid_equal (ptid, magic_null_ptid))
1559 xsnprintf (buf, endbuf - buf, "0");
1560 else if (ptid_equal (ptid, any_thread_ptid))
1561 xsnprintf (buf, endbuf - buf, "0");
1562 else if (ptid_equal (ptid, minus_one_ptid))
1563 xsnprintf (buf, endbuf - buf, "-1");
1564 else
1565 write_ptid (buf, endbuf, ptid);
1566 putpkt (rs->buf);
1567 getpkt (&rs->buf, &rs->buf_size, 0);
1568 if (gen)
1569 general_thread = ptid;
1570 else
1571 continue_thread = ptid;
1572 }
1573
1574 static void
1575 set_general_thread (struct ptid ptid)
1576 {
1577 set_thread (ptid, 1);
1578 }
1579
1580 static void
1581 set_continue_thread (struct ptid ptid)
1582 {
1583 set_thread (ptid, 0);
1584 }
1585
1586 /* Change the remote current process. Which thread within the process
1587 ends up selected isn't important, as long as it is the same process
1588 as what INFERIOR_PTID points to.
1589
1590 This comes from that fact that there is no explicit notion of
1591 "selected process" in the protocol. The selected process for
1592 general operations is the process the selected general thread
1593 belongs to. */
1594
1595 static void
1596 set_general_process (void)
1597 {
1598 struct remote_state *rs = get_remote_state ();
1599
1600 /* If the remote can't handle multiple processes, don't bother. */
1601 if (!remote_multi_process_p (rs))
1602 return;
1603
1604 /* We only need to change the remote current thread if it's pointing
1605 at some other process. */
1606 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1607 set_general_thread (inferior_ptid);
1608 }
1609
1610 \f
1611 /* Return nonzero if the thread PTID is still alive on the remote
1612 system. */
1613
1614 static int
1615 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1616 {
1617 struct remote_state *rs = get_remote_state ();
1618 char *p, *endp;
1619
1620 if (ptid_equal (ptid, magic_null_ptid))
1621 /* The main thread is always alive. */
1622 return 1;
1623
1624 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1625 /* The main thread is always alive. This can happen after a
1626 vAttach, if the remote side doesn't support
1627 multi-threading. */
1628 return 1;
1629
1630 p = rs->buf;
1631 endp = rs->buf + get_remote_packet_size ();
1632
1633 *p++ = 'T';
1634 write_ptid (p, endp, ptid);
1635
1636 putpkt (rs->buf);
1637 getpkt (&rs->buf, &rs->buf_size, 0);
1638 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1639 }
1640
1641 /* About these extended threadlist and threadinfo packets. They are
1642 variable length packets but, the fields within them are often fixed
1643 length. They are redundent enough to send over UDP as is the
1644 remote protocol in general. There is a matching unit test module
1645 in libstub. */
1646
1647 #define OPAQUETHREADBYTES 8
1648
1649 /* a 64 bit opaque identifier */
1650 typedef unsigned char threadref[OPAQUETHREADBYTES];
1651
1652 /* WARNING: This threadref data structure comes from the remote O.S.,
1653 libstub protocol encoding, and remote.c. it is not particularly
1654 changable. */
1655
1656 /* Right now, the internal structure is int. We want it to be bigger.
1657 Plan to fix this.
1658 */
1659
1660 typedef int gdb_threadref; /* Internal GDB thread reference. */
1661
1662 /* gdb_ext_thread_info is an internal GDB data structure which is
1663 equivalent to the reply of the remote threadinfo packet. */
1664
1665 struct gdb_ext_thread_info
1666 {
1667 threadref threadid; /* External form of thread reference. */
1668 int active; /* Has state interesting to GDB?
1669 regs, stack. */
1670 char display[256]; /* Brief state display, name,
1671 blocked/suspended. */
1672 char shortname[32]; /* To be used to name threads. */
1673 char more_display[256]; /* Long info, statistics, queue depth,
1674 whatever. */
1675 };
1676
1677 /* The volume of remote transfers can be limited by submitting
1678 a mask containing bits specifying the desired information.
1679 Use a union of these values as the 'selection' parameter to
1680 get_thread_info. FIXME: Make these TAG names more thread specific.
1681 */
1682
1683 #define TAG_THREADID 1
1684 #define TAG_EXISTS 2
1685 #define TAG_DISPLAY 4
1686 #define TAG_THREADNAME 8
1687 #define TAG_MOREDISPLAY 16
1688
1689 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1690
1691 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1692
1693 static char *unpack_nibble (char *buf, int *val);
1694
1695 static char *pack_nibble (char *buf, int nibble);
1696
1697 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1698
1699 static char *unpack_byte (char *buf, int *value);
1700
1701 static char *pack_int (char *buf, int value);
1702
1703 static char *unpack_int (char *buf, int *value);
1704
1705 static char *unpack_string (char *src, char *dest, int length);
1706
1707 static char *pack_threadid (char *pkt, threadref *id);
1708
1709 static char *unpack_threadid (char *inbuf, threadref *id);
1710
1711 void int_to_threadref (threadref *id, int value);
1712
1713 static int threadref_to_int (threadref *ref);
1714
1715 static void copy_threadref (threadref *dest, threadref *src);
1716
1717 static int threadmatch (threadref *dest, threadref *src);
1718
1719 static char *pack_threadinfo_request (char *pkt, int mode,
1720 threadref *id);
1721
1722 static int remote_unpack_thread_info_response (char *pkt,
1723 threadref *expectedref,
1724 struct gdb_ext_thread_info
1725 *info);
1726
1727
1728 static int remote_get_threadinfo (threadref *threadid,
1729 int fieldset, /*TAG mask */
1730 struct gdb_ext_thread_info *info);
1731
1732 static char *pack_threadlist_request (char *pkt, int startflag,
1733 int threadcount,
1734 threadref *nextthread);
1735
1736 static int parse_threadlist_response (char *pkt,
1737 int result_limit,
1738 threadref *original_echo,
1739 threadref *resultlist,
1740 int *doneflag);
1741
1742 static int remote_get_threadlist (int startflag,
1743 threadref *nextthread,
1744 int result_limit,
1745 int *done,
1746 int *result_count,
1747 threadref *threadlist);
1748
1749 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1750
1751 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1752 void *context, int looplimit);
1753
1754 static int remote_newthread_step (threadref *ref, void *context);
1755
1756
1757 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1758 buffer we're allowed to write to. Returns
1759 BUF+CHARACTERS_WRITTEN. */
1760
1761 static char *
1762 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1763 {
1764 int pid, tid;
1765 struct remote_state *rs = get_remote_state ();
1766
1767 if (remote_multi_process_p (rs))
1768 {
1769 pid = ptid_get_pid (ptid);
1770 if (pid < 0)
1771 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1772 else
1773 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1774 }
1775 tid = ptid_get_tid (ptid);
1776 if (tid < 0)
1777 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1778 else
1779 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1780
1781 return buf;
1782 }
1783
1784 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1785 passed the last parsed char. Returns null_ptid on error. */
1786
1787 static ptid_t
1788 read_ptid (char *buf, char **obuf)
1789 {
1790 char *p = buf;
1791 char *pp;
1792 ULONGEST pid = 0, tid = 0;
1793
1794 if (*p == 'p')
1795 {
1796 /* Multi-process ptid. */
1797 pp = unpack_varlen_hex (p + 1, &pid);
1798 if (*pp != '.')
1799 error (_("invalid remote ptid: %s\n"), p);
1800
1801 p = pp;
1802 pp = unpack_varlen_hex (p + 1, &tid);
1803 if (obuf)
1804 *obuf = pp;
1805 return ptid_build (pid, 0, tid);
1806 }
1807
1808 /* No multi-process. Just a tid. */
1809 pp = unpack_varlen_hex (p, &tid);
1810
1811 /* Since the stub is not sending a process id, then default to
1812 what's in inferior_ptid, unless it's null at this point. If so,
1813 then since there's no way to know the pid of the reported
1814 threads, use the magic number. */
1815 if (ptid_equal (inferior_ptid, null_ptid))
1816 pid = ptid_get_pid (magic_null_ptid);
1817 else
1818 pid = ptid_get_pid (inferior_ptid);
1819
1820 if (obuf)
1821 *obuf = pp;
1822 return ptid_build (pid, 0, tid);
1823 }
1824
1825 /* Encode 64 bits in 16 chars of hex. */
1826
1827 static const char hexchars[] = "0123456789abcdef";
1828
1829 static int
1830 ishex (int ch, int *val)
1831 {
1832 if ((ch >= 'a') && (ch <= 'f'))
1833 {
1834 *val = ch - 'a' + 10;
1835 return 1;
1836 }
1837 if ((ch >= 'A') && (ch <= 'F'))
1838 {
1839 *val = ch - 'A' + 10;
1840 return 1;
1841 }
1842 if ((ch >= '0') && (ch <= '9'))
1843 {
1844 *val = ch - '0';
1845 return 1;
1846 }
1847 return 0;
1848 }
1849
1850 static int
1851 stubhex (int ch)
1852 {
1853 if (ch >= 'a' && ch <= 'f')
1854 return ch - 'a' + 10;
1855 if (ch >= '0' && ch <= '9')
1856 return ch - '0';
1857 if (ch >= 'A' && ch <= 'F')
1858 return ch - 'A' + 10;
1859 return -1;
1860 }
1861
1862 static int
1863 stub_unpack_int (char *buff, int fieldlength)
1864 {
1865 int nibble;
1866 int retval = 0;
1867
1868 while (fieldlength)
1869 {
1870 nibble = stubhex (*buff++);
1871 retval |= nibble;
1872 fieldlength--;
1873 if (fieldlength)
1874 retval = retval << 4;
1875 }
1876 return retval;
1877 }
1878
1879 char *
1880 unpack_varlen_hex (char *buff, /* packet to parse */
1881 ULONGEST *result)
1882 {
1883 int nibble;
1884 ULONGEST retval = 0;
1885
1886 while (ishex (*buff, &nibble))
1887 {
1888 buff++;
1889 retval = retval << 4;
1890 retval |= nibble & 0x0f;
1891 }
1892 *result = retval;
1893 return buff;
1894 }
1895
1896 static char *
1897 unpack_nibble (char *buf, int *val)
1898 {
1899 *val = fromhex (*buf++);
1900 return buf;
1901 }
1902
1903 static char *
1904 pack_nibble (char *buf, int nibble)
1905 {
1906 *buf++ = hexchars[(nibble & 0x0f)];
1907 return buf;
1908 }
1909
1910 static char *
1911 pack_hex_byte (char *pkt, int byte)
1912 {
1913 *pkt++ = hexchars[(byte >> 4) & 0xf];
1914 *pkt++ = hexchars[(byte & 0xf)];
1915 return pkt;
1916 }
1917
1918 static char *
1919 unpack_byte (char *buf, int *value)
1920 {
1921 *value = stub_unpack_int (buf, 2);
1922 return buf + 2;
1923 }
1924
1925 static char *
1926 pack_int (char *buf, int value)
1927 {
1928 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1929 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1930 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1931 buf = pack_hex_byte (buf, (value & 0xff));
1932 return buf;
1933 }
1934
1935 static char *
1936 unpack_int (char *buf, int *value)
1937 {
1938 *value = stub_unpack_int (buf, 8);
1939 return buf + 8;
1940 }
1941
1942 #if 0 /* Currently unused, uncomment when needed. */
1943 static char *pack_string (char *pkt, char *string);
1944
1945 static char *
1946 pack_string (char *pkt, char *string)
1947 {
1948 char ch;
1949 int len;
1950
1951 len = strlen (string);
1952 if (len > 200)
1953 len = 200; /* Bigger than most GDB packets, junk??? */
1954 pkt = pack_hex_byte (pkt, len);
1955 while (len-- > 0)
1956 {
1957 ch = *string++;
1958 if ((ch == '\0') || (ch == '#'))
1959 ch = '*'; /* Protect encapsulation. */
1960 *pkt++ = ch;
1961 }
1962 return pkt;
1963 }
1964 #endif /* 0 (unused) */
1965
1966 static char *
1967 unpack_string (char *src, char *dest, int length)
1968 {
1969 while (length--)
1970 *dest++ = *src++;
1971 *dest = '\0';
1972 return src;
1973 }
1974
1975 static char *
1976 pack_threadid (char *pkt, threadref *id)
1977 {
1978 char *limit;
1979 unsigned char *altid;
1980
1981 altid = (unsigned char *) id;
1982 limit = pkt + BUF_THREAD_ID_SIZE;
1983 while (pkt < limit)
1984 pkt = pack_hex_byte (pkt, *altid++);
1985 return pkt;
1986 }
1987
1988
1989 static char *
1990 unpack_threadid (char *inbuf, threadref *id)
1991 {
1992 char *altref;
1993 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1994 int x, y;
1995
1996 altref = (char *) id;
1997
1998 while (inbuf < limit)
1999 {
2000 x = stubhex (*inbuf++);
2001 y = stubhex (*inbuf++);
2002 *altref++ = (x << 4) | y;
2003 }
2004 return inbuf;
2005 }
2006
2007 /* Externally, threadrefs are 64 bits but internally, they are still
2008 ints. This is due to a mismatch of specifications. We would like
2009 to use 64bit thread references internally. This is an adapter
2010 function. */
2011
2012 void
2013 int_to_threadref (threadref *id, int value)
2014 {
2015 unsigned char *scan;
2016
2017 scan = (unsigned char *) id;
2018 {
2019 int i = 4;
2020 while (i--)
2021 *scan++ = 0;
2022 }
2023 *scan++ = (value >> 24) & 0xff;
2024 *scan++ = (value >> 16) & 0xff;
2025 *scan++ = (value >> 8) & 0xff;
2026 *scan++ = (value & 0xff);
2027 }
2028
2029 static int
2030 threadref_to_int (threadref *ref)
2031 {
2032 int i, value = 0;
2033 unsigned char *scan;
2034
2035 scan = *ref;
2036 scan += 4;
2037 i = 4;
2038 while (i-- > 0)
2039 value = (value << 8) | ((*scan++) & 0xff);
2040 return value;
2041 }
2042
2043 static void
2044 copy_threadref (threadref *dest, threadref *src)
2045 {
2046 int i;
2047 unsigned char *csrc, *cdest;
2048
2049 csrc = (unsigned char *) src;
2050 cdest = (unsigned char *) dest;
2051 i = 8;
2052 while (i--)
2053 *cdest++ = *csrc++;
2054 }
2055
2056 static int
2057 threadmatch (threadref *dest, threadref *src)
2058 {
2059 /* Things are broken right now, so just assume we got a match. */
2060 #if 0
2061 unsigned char *srcp, *destp;
2062 int i, result;
2063 srcp = (char *) src;
2064 destp = (char *) dest;
2065
2066 result = 1;
2067 while (i-- > 0)
2068 result &= (*srcp++ == *destp++) ? 1 : 0;
2069 return result;
2070 #endif
2071 return 1;
2072 }
2073
2074 /*
2075 threadid:1, # always request threadid
2076 context_exists:2,
2077 display:4,
2078 unique_name:8,
2079 more_display:16
2080 */
2081
2082 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2083
2084 static char *
2085 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2086 {
2087 *pkt++ = 'q'; /* Info Query */
2088 *pkt++ = 'P'; /* process or thread info */
2089 pkt = pack_int (pkt, mode); /* mode */
2090 pkt = pack_threadid (pkt, id); /* threadid */
2091 *pkt = '\0'; /* terminate */
2092 return pkt;
2093 }
2094
2095 /* These values tag the fields in a thread info response packet. */
2096 /* Tagging the fields allows us to request specific fields and to
2097 add more fields as time goes by. */
2098
2099 #define TAG_THREADID 1 /* Echo the thread identifier. */
2100 #define TAG_EXISTS 2 /* Is this process defined enough to
2101 fetch registers and its stack? */
2102 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2103 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2104 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2105 the process. */
2106
2107 static int
2108 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2109 struct gdb_ext_thread_info *info)
2110 {
2111 struct remote_state *rs = get_remote_state ();
2112 int mask, length;
2113 int tag;
2114 threadref ref;
2115 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2116 int retval = 1;
2117
2118 /* info->threadid = 0; FIXME: implement zero_threadref. */
2119 info->active = 0;
2120 info->display[0] = '\0';
2121 info->shortname[0] = '\0';
2122 info->more_display[0] = '\0';
2123
2124 /* Assume the characters indicating the packet type have been
2125 stripped. */
2126 pkt = unpack_int (pkt, &mask); /* arg mask */
2127 pkt = unpack_threadid (pkt, &ref);
2128
2129 if (mask == 0)
2130 warning (_("Incomplete response to threadinfo request."));
2131 if (!threadmatch (&ref, expectedref))
2132 { /* This is an answer to a different request. */
2133 warning (_("ERROR RMT Thread info mismatch."));
2134 return 0;
2135 }
2136 copy_threadref (&info->threadid, &ref);
2137
2138 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2139
2140 /* Packets are terminated with nulls. */
2141 while ((pkt < limit) && mask && *pkt)
2142 {
2143 pkt = unpack_int (pkt, &tag); /* tag */
2144 pkt = unpack_byte (pkt, &length); /* length */
2145 if (!(tag & mask)) /* Tags out of synch with mask. */
2146 {
2147 warning (_("ERROR RMT: threadinfo tag mismatch."));
2148 retval = 0;
2149 break;
2150 }
2151 if (tag == TAG_THREADID)
2152 {
2153 if (length != 16)
2154 {
2155 warning (_("ERROR RMT: length of threadid is not 16."));
2156 retval = 0;
2157 break;
2158 }
2159 pkt = unpack_threadid (pkt, &ref);
2160 mask = mask & ~TAG_THREADID;
2161 continue;
2162 }
2163 if (tag == TAG_EXISTS)
2164 {
2165 info->active = stub_unpack_int (pkt, length);
2166 pkt += length;
2167 mask = mask & ~(TAG_EXISTS);
2168 if (length > 8)
2169 {
2170 warning (_("ERROR RMT: 'exists' length too long."));
2171 retval = 0;
2172 break;
2173 }
2174 continue;
2175 }
2176 if (tag == TAG_THREADNAME)
2177 {
2178 pkt = unpack_string (pkt, &info->shortname[0], length);
2179 mask = mask & ~TAG_THREADNAME;
2180 continue;
2181 }
2182 if (tag == TAG_DISPLAY)
2183 {
2184 pkt = unpack_string (pkt, &info->display[0], length);
2185 mask = mask & ~TAG_DISPLAY;
2186 continue;
2187 }
2188 if (tag == TAG_MOREDISPLAY)
2189 {
2190 pkt = unpack_string (pkt, &info->more_display[0], length);
2191 mask = mask & ~TAG_MOREDISPLAY;
2192 continue;
2193 }
2194 warning (_("ERROR RMT: unknown thread info tag."));
2195 break; /* Not a tag we know about. */
2196 }
2197 return retval;
2198 }
2199
2200 static int
2201 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2202 struct gdb_ext_thread_info *info)
2203 {
2204 struct remote_state *rs = get_remote_state ();
2205 int result;
2206
2207 pack_threadinfo_request (rs->buf, fieldset, threadid);
2208 putpkt (rs->buf);
2209 getpkt (&rs->buf, &rs->buf_size, 0);
2210
2211 if (rs->buf[0] == '\0')
2212 return 0;
2213
2214 result = remote_unpack_thread_info_response (rs->buf + 2,
2215 threadid, info);
2216 return result;
2217 }
2218
2219 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2220
2221 static char *
2222 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2223 threadref *nextthread)
2224 {
2225 *pkt++ = 'q'; /* info query packet */
2226 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2227 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2228 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2229 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2230 *pkt = '\0';
2231 return pkt;
2232 }
2233
2234 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2235
2236 static int
2237 parse_threadlist_response (char *pkt, int result_limit,
2238 threadref *original_echo, threadref *resultlist,
2239 int *doneflag)
2240 {
2241 struct remote_state *rs = get_remote_state ();
2242 char *limit;
2243 int count, resultcount, done;
2244
2245 resultcount = 0;
2246 /* Assume the 'q' and 'M chars have been stripped. */
2247 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2248 /* done parse past here */
2249 pkt = unpack_byte (pkt, &count); /* count field */
2250 pkt = unpack_nibble (pkt, &done);
2251 /* The first threadid is the argument threadid. */
2252 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2253 while ((count-- > 0) && (pkt < limit))
2254 {
2255 pkt = unpack_threadid (pkt, resultlist++);
2256 if (resultcount++ >= result_limit)
2257 break;
2258 }
2259 if (doneflag)
2260 *doneflag = done;
2261 return resultcount;
2262 }
2263
2264 static int
2265 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2266 int *done, int *result_count, threadref *threadlist)
2267 {
2268 struct remote_state *rs = get_remote_state ();
2269 static threadref echo_nextthread;
2270 int result = 1;
2271
2272 /* Trancate result limit to be smaller than the packet size. */
2273 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
2274 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2275
2276 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2277 putpkt (rs->buf);
2278 getpkt (&rs->buf, &rs->buf_size, 0);
2279
2280 if (*rs->buf == '\0')
2281 *result_count = 0;
2282 else
2283 *result_count =
2284 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2285 threadlist, done);
2286
2287 if (!threadmatch (&echo_nextthread, nextthread))
2288 {
2289 /* FIXME: This is a good reason to drop the packet. */
2290 /* Possably, there is a duplicate response. */
2291 /* Possabilities :
2292 retransmit immediatly - race conditions
2293 retransmit after timeout - yes
2294 exit
2295 wait for packet, then exit
2296 */
2297 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2298 return 0; /* I choose simply exiting. */
2299 }
2300 if (*result_count <= 0)
2301 {
2302 if (*done != 1)
2303 {
2304 warning (_("RMT ERROR : failed to get remote thread list."));
2305 result = 0;
2306 }
2307 return result; /* break; */
2308 }
2309 if (*result_count > result_limit)
2310 {
2311 *result_count = 0;
2312 warning (_("RMT ERROR: threadlist response longer than requested."));
2313 return 0;
2314 }
2315 return result;
2316 }
2317
2318 /* This is the interface between remote and threads, remotes upper
2319 interface. */
2320
2321 /* remote_find_new_threads retrieves the thread list and for each
2322 thread in the list, looks up the thread in GDB's internal list,
2323 adding the thread if it does not already exist. This involves
2324 getting partial thread lists from the remote target so, polling the
2325 quit_flag is required. */
2326
2327
2328 /* About this many threadisds fit in a packet. */
2329
2330 #define MAXTHREADLISTRESULTS 32
2331
2332 static int
2333 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2334 int looplimit)
2335 {
2336 int done, i, result_count;
2337 int startflag = 1;
2338 int result = 1;
2339 int loopcount = 0;
2340 static threadref nextthread;
2341 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2342
2343 done = 0;
2344 while (!done)
2345 {
2346 if (loopcount++ > looplimit)
2347 {
2348 result = 0;
2349 warning (_("Remote fetch threadlist -infinite loop-."));
2350 break;
2351 }
2352 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2353 &done, &result_count, resultthreadlist))
2354 {
2355 result = 0;
2356 break;
2357 }
2358 /* Clear for later iterations. */
2359 startflag = 0;
2360 /* Setup to resume next batch of thread references, set nextthread. */
2361 if (result_count >= 1)
2362 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2363 i = 0;
2364 while (result_count--)
2365 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2366 break;
2367 }
2368 return result;
2369 }
2370
2371 static int
2372 remote_newthread_step (threadref *ref, void *context)
2373 {
2374 int pid = ptid_get_pid (inferior_ptid);
2375 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2376
2377 if (!in_thread_list (ptid))
2378 add_thread (ptid);
2379 return 1; /* continue iterator */
2380 }
2381
2382 #define CRAZY_MAX_THREADS 1000
2383
2384 static ptid_t
2385 remote_current_thread (ptid_t oldpid)
2386 {
2387 struct remote_state *rs = get_remote_state ();
2388
2389 putpkt ("qC");
2390 getpkt (&rs->buf, &rs->buf_size, 0);
2391 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2392 return read_ptid (&rs->buf[2], NULL);
2393 else
2394 return oldpid;
2395 }
2396
2397 /* Find new threads for info threads command.
2398 * Original version, using John Metzler's thread protocol.
2399 */
2400
2401 static void
2402 remote_find_new_threads (void)
2403 {
2404 remote_threadlist_iterator (remote_newthread_step, 0,
2405 CRAZY_MAX_THREADS);
2406 }
2407
2408 #if defined(HAVE_LIBEXPAT)
2409
2410 typedef struct thread_item
2411 {
2412 ptid_t ptid;
2413 char *extra;
2414 int core;
2415 } thread_item_t;
2416 DEF_VEC_O(thread_item_t);
2417
2418 struct threads_parsing_context
2419 {
2420 VEC (thread_item_t) *items;
2421 };
2422
2423 static void
2424 start_thread (struct gdb_xml_parser *parser,
2425 const struct gdb_xml_element *element,
2426 void *user_data, VEC(gdb_xml_value_s) *attributes)
2427 {
2428 struct threads_parsing_context *data = user_data;
2429
2430 struct thread_item item;
2431 char *id;
2432
2433 id = VEC_index (gdb_xml_value_s, attributes, 0)->value;
2434 item.ptid = read_ptid (id, NULL);
2435
2436 if (VEC_length (gdb_xml_value_s, attributes) > 1)
2437 item.core = *(ULONGEST *) VEC_index (gdb_xml_value_s, attributes, 1)->value;
2438 else
2439 item.core = -1;
2440
2441 item.extra = 0;
2442
2443 VEC_safe_push (thread_item_t, data->items, &item);
2444 }
2445
2446 static void
2447 end_thread (struct gdb_xml_parser *parser,
2448 const struct gdb_xml_element *element,
2449 void *user_data, const char *body_text)
2450 {
2451 struct threads_parsing_context *data = user_data;
2452
2453 if (body_text && *body_text)
2454 VEC_last (thread_item_t, data->items)->extra = strdup (body_text);
2455 }
2456
2457 const struct gdb_xml_attribute thread_attributes[] = {
2458 { "id", GDB_XML_AF_NONE, NULL, NULL },
2459 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2460 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2461 };
2462
2463 const struct gdb_xml_element thread_children[] = {
2464 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2465 };
2466
2467 const struct gdb_xml_element threads_children[] = {
2468 { "thread", thread_attributes, thread_children,
2469 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2470 start_thread, end_thread },
2471 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2472 };
2473
2474 const struct gdb_xml_element threads_elements[] = {
2475 { "threads", NULL, threads_children,
2476 GDB_XML_EF_NONE, NULL, NULL },
2477 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2478 };
2479
2480 #endif
2481
2482 /*
2483 * Find all threads for info threads command.
2484 * Uses new thread protocol contributed by Cisco.
2485 * Falls back and attempts to use the older method (above)
2486 * if the target doesn't respond to the new method.
2487 */
2488
2489 static void
2490 remote_threads_info (struct target_ops *ops)
2491 {
2492 struct remote_state *rs = get_remote_state ();
2493 char *bufp;
2494 ptid_t new_thread;
2495
2496 if (remote_desc == 0) /* paranoia */
2497 error (_("Command can only be used when connected to the remote target."));
2498
2499 #if defined(HAVE_LIBEXPAT)
2500 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2501 {
2502 char *xml = target_read_stralloc (&current_target,
2503 TARGET_OBJECT_THREADS, NULL);
2504
2505 struct cleanup *back_to = make_cleanup (xfree, xml);
2506 if (xml && *xml)
2507 {
2508 struct gdb_xml_parser *parser;
2509 struct threads_parsing_context context;
2510 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
2511
2512 context.items = 0;
2513 parser = gdb_xml_create_parser_and_cleanup (_("threads"),
2514 threads_elements,
2515 &context);
2516
2517 gdb_xml_use_dtd (parser, "threads.dtd");
2518
2519 if (gdb_xml_parse (parser, xml) == 0)
2520 {
2521 int i;
2522 struct thread_item *item;
2523
2524 for (i = 0; VEC_iterate (thread_item_t, context.items, i, item); ++i)
2525 {
2526 if (!ptid_equal (item->ptid, null_ptid))
2527 {
2528 struct private_thread_info *info;
2529 /* In non-stop mode, we assume new found threads
2530 are running until proven otherwise with a
2531 stop reply. In all-stop, we can only get
2532 here if all threads are stopped. */
2533 int running = non_stop ? 1 : 0;
2534
2535 remote_notice_new_inferior (item->ptid, running);
2536
2537 info = demand_private_info (item->ptid);
2538 info->core = item->core;
2539 info->extra = item->extra;
2540 item->extra = 0;
2541 }
2542 xfree (item->extra);
2543 }
2544 }
2545
2546 VEC_free (thread_item_t, context.items);
2547 }
2548
2549 do_cleanups (back_to);
2550 return;
2551 }
2552 #endif
2553
2554 if (use_threadinfo_query)
2555 {
2556 putpkt ("qfThreadInfo");
2557 getpkt (&rs->buf, &rs->buf_size, 0);
2558 bufp = rs->buf;
2559 if (bufp[0] != '\0') /* q packet recognized */
2560 {
2561 while (*bufp++ == 'm') /* reply contains one or more TID */
2562 {
2563 do
2564 {
2565 new_thread = read_ptid (bufp, &bufp);
2566 if (!ptid_equal (new_thread, null_ptid))
2567 {
2568 /* In non-stop mode, we assume new found threads
2569 are running until proven otherwise with a
2570 stop reply. In all-stop, we can only get
2571 here if all threads are stopped. */
2572 int running = non_stop ? 1 : 0;
2573
2574 remote_notice_new_inferior (new_thread, running);
2575 }
2576 }
2577 while (*bufp++ == ','); /* comma-separated list */
2578 putpkt ("qsThreadInfo");
2579 getpkt (&rs->buf, &rs->buf_size, 0);
2580 bufp = rs->buf;
2581 }
2582 return; /* done */
2583 }
2584 }
2585
2586 /* Only qfThreadInfo is supported in non-stop mode. */
2587 if (non_stop)
2588 return;
2589
2590 /* Else fall back to old method based on jmetzler protocol. */
2591 use_threadinfo_query = 0;
2592 remote_find_new_threads ();
2593 return;
2594 }
2595
2596 /*
2597 * Collect a descriptive string about the given thread.
2598 * The target may say anything it wants to about the thread
2599 * (typically info about its blocked / runnable state, name, etc.).
2600 * This string will appear in the info threads display.
2601 *
2602 * Optional: targets are not required to implement this function.
2603 */
2604
2605 static char *
2606 remote_threads_extra_info (struct thread_info *tp)
2607 {
2608 struct remote_state *rs = get_remote_state ();
2609 int result;
2610 int set;
2611 threadref id;
2612 struct gdb_ext_thread_info threadinfo;
2613 static char display_buf[100]; /* arbitrary... */
2614 int n = 0; /* position in display_buf */
2615
2616 if (remote_desc == 0) /* paranoia */
2617 internal_error (__FILE__, __LINE__,
2618 _("remote_threads_extra_info"));
2619
2620 if (ptid_equal (tp->ptid, magic_null_ptid)
2621 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2622 /* This is the main thread which was added by GDB. The remote
2623 server doesn't know about it. */
2624 return NULL;
2625
2626 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2627 {
2628 struct thread_info *info = find_thread_ptid (tp->ptid);
2629 if (info && info->private)
2630 return info->private->extra;
2631 else
2632 return NULL;
2633 }
2634
2635 if (use_threadextra_query)
2636 {
2637 char *b = rs->buf;
2638 char *endb = rs->buf + get_remote_packet_size ();
2639
2640 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2641 b += strlen (b);
2642 write_ptid (b, endb, tp->ptid);
2643
2644 putpkt (rs->buf);
2645 getpkt (&rs->buf, &rs->buf_size, 0);
2646 if (rs->buf[0] != 0)
2647 {
2648 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2649 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2650 display_buf [result] = '\0';
2651 return display_buf;
2652 }
2653 }
2654
2655 /* If the above query fails, fall back to the old method. */
2656 use_threadextra_query = 0;
2657 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2658 | TAG_MOREDISPLAY | TAG_DISPLAY;
2659 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2660 if (remote_get_threadinfo (&id, set, &threadinfo))
2661 if (threadinfo.active)
2662 {
2663 if (*threadinfo.shortname)
2664 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2665 " Name: %s,", threadinfo.shortname);
2666 if (*threadinfo.display)
2667 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2668 " State: %s,", threadinfo.display);
2669 if (*threadinfo.more_display)
2670 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2671 " Priority: %s", threadinfo.more_display);
2672
2673 if (n > 0)
2674 {
2675 /* For purely cosmetic reasons, clear up trailing commas. */
2676 if (',' == display_buf[n-1])
2677 display_buf[n-1] = ' ';
2678 return display_buf;
2679 }
2680 }
2681 return NULL;
2682 }
2683 \f
2684
2685 /* Restart the remote side; this is an extended protocol operation. */
2686
2687 static void
2688 extended_remote_restart (void)
2689 {
2690 struct remote_state *rs = get_remote_state ();
2691
2692 /* Send the restart command; for reasons I don't understand the
2693 remote side really expects a number after the "R". */
2694 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2695 putpkt (rs->buf);
2696
2697 remote_fileio_reset ();
2698 }
2699 \f
2700 /* Clean up connection to a remote debugger. */
2701
2702 static void
2703 remote_close (int quitting)
2704 {
2705 if (remote_desc == NULL)
2706 return; /* already closed */
2707
2708 /* Make sure we leave stdin registered in the event loop, and we
2709 don't leave the async SIGINT signal handler installed. */
2710 remote_terminal_ours ();
2711
2712 serial_close (remote_desc);
2713 remote_desc = NULL;
2714
2715 /* We don't have a connection to the remote stub anymore. Get rid
2716 of all the inferiors and their threads we were controlling. */
2717 discard_all_inferiors ();
2718
2719 /* We're no longer interested in any of these events. */
2720 discard_pending_stop_replies (-1);
2721
2722 if (remote_async_inferior_event_token)
2723 delete_async_event_handler (&remote_async_inferior_event_token);
2724 if (remote_async_get_pending_events_token)
2725 delete_async_event_handler (&remote_async_get_pending_events_token);
2726 }
2727
2728 /* Query the remote side for the text, data and bss offsets. */
2729
2730 static void
2731 get_offsets (void)
2732 {
2733 struct remote_state *rs = get_remote_state ();
2734 char *buf;
2735 char *ptr;
2736 int lose, num_segments = 0, do_sections, do_segments;
2737 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2738 struct section_offsets *offs;
2739 struct symfile_segment_data *data;
2740
2741 if (symfile_objfile == NULL)
2742 return;
2743
2744 putpkt ("qOffsets");
2745 getpkt (&rs->buf, &rs->buf_size, 0);
2746 buf = rs->buf;
2747
2748 if (buf[0] == '\000')
2749 return; /* Return silently. Stub doesn't support
2750 this command. */
2751 if (buf[0] == 'E')
2752 {
2753 warning (_("Remote failure reply: %s"), buf);
2754 return;
2755 }
2756
2757 /* Pick up each field in turn. This used to be done with scanf, but
2758 scanf will make trouble if CORE_ADDR size doesn't match
2759 conversion directives correctly. The following code will work
2760 with any size of CORE_ADDR. */
2761 text_addr = data_addr = bss_addr = 0;
2762 ptr = buf;
2763 lose = 0;
2764
2765 if (strncmp (ptr, "Text=", 5) == 0)
2766 {
2767 ptr += 5;
2768 /* Don't use strtol, could lose on big values. */
2769 while (*ptr && *ptr != ';')
2770 text_addr = (text_addr << 4) + fromhex (*ptr++);
2771
2772 if (strncmp (ptr, ";Data=", 6) == 0)
2773 {
2774 ptr += 6;
2775 while (*ptr && *ptr != ';')
2776 data_addr = (data_addr << 4) + fromhex (*ptr++);
2777 }
2778 else
2779 lose = 1;
2780
2781 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2782 {
2783 ptr += 5;
2784 while (*ptr && *ptr != ';')
2785 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2786
2787 if (bss_addr != data_addr)
2788 warning (_("Target reported unsupported offsets: %s"), buf);
2789 }
2790 else
2791 lose = 1;
2792 }
2793 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2794 {
2795 ptr += 8;
2796 /* Don't use strtol, could lose on big values. */
2797 while (*ptr && *ptr != ';')
2798 text_addr = (text_addr << 4) + fromhex (*ptr++);
2799 num_segments = 1;
2800
2801 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2802 {
2803 ptr += 9;
2804 while (*ptr && *ptr != ';')
2805 data_addr = (data_addr << 4) + fromhex (*ptr++);
2806 num_segments++;
2807 }
2808 }
2809 else
2810 lose = 1;
2811
2812 if (lose)
2813 error (_("Malformed response to offset query, %s"), buf);
2814 else if (*ptr != '\0')
2815 warning (_("Target reported unsupported offsets: %s"), buf);
2816
2817 offs = ((struct section_offsets *)
2818 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2819 memcpy (offs, symfile_objfile->section_offsets,
2820 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2821
2822 data = get_symfile_segment_data (symfile_objfile->obfd);
2823 do_segments = (data != NULL);
2824 do_sections = num_segments == 0;
2825
2826 if (num_segments > 0)
2827 {
2828 segments[0] = text_addr;
2829 segments[1] = data_addr;
2830 }
2831 /* If we have two segments, we can still try to relocate everything
2832 by assuming that the .text and .data offsets apply to the whole
2833 text and data segments. Convert the offsets given in the packet
2834 to base addresses for symfile_map_offsets_to_segments. */
2835 else if (data && data->num_segments == 2)
2836 {
2837 segments[0] = data->segment_bases[0] + text_addr;
2838 segments[1] = data->segment_bases[1] + data_addr;
2839 num_segments = 2;
2840 }
2841 /* If the object file has only one segment, assume that it is text
2842 rather than data; main programs with no writable data are rare,
2843 but programs with no code are useless. Of course the code might
2844 have ended up in the data segment... to detect that we would need
2845 the permissions here. */
2846 else if (data && data->num_segments == 1)
2847 {
2848 segments[0] = data->segment_bases[0] + text_addr;
2849 num_segments = 1;
2850 }
2851 /* There's no way to relocate by segment. */
2852 else
2853 do_segments = 0;
2854
2855 if (do_segments)
2856 {
2857 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2858 offs, num_segments, segments);
2859
2860 if (ret == 0 && !do_sections)
2861 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2862
2863 if (ret > 0)
2864 do_sections = 0;
2865 }
2866
2867 if (data)
2868 free_symfile_segment_data (data);
2869
2870 if (do_sections)
2871 {
2872 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2873
2874 /* This is a temporary kludge to force data and bss to use the same offsets
2875 because that's what nlmconv does now. The real solution requires changes
2876 to the stub and remote.c that I don't have time to do right now. */
2877
2878 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2879 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2880 }
2881
2882 objfile_relocate (symfile_objfile, offs);
2883 }
2884
2885 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2886 threads we know are stopped already. This is used during the
2887 initial remote connection in non-stop mode --- threads that are
2888 reported as already being stopped are left stopped. */
2889
2890 static int
2891 set_stop_requested_callback (struct thread_info *thread, void *data)
2892 {
2893 /* If we have a stop reply for this thread, it must be stopped. */
2894 if (peek_stop_reply (thread->ptid))
2895 set_stop_requested (thread->ptid, 1);
2896
2897 return 0;
2898 }
2899
2900 /* Stub for catch_exception. */
2901
2902 struct start_remote_args
2903 {
2904 int from_tty;
2905
2906 /* The current target. */
2907 struct target_ops *target;
2908
2909 /* Non-zero if this is an extended-remote target. */
2910 int extended_p;
2911 };
2912
2913 /* Send interrupt_sequence to remote target. */
2914 static void
2915 send_interrupt_sequence ()
2916 {
2917 if (interrupt_sequence_mode == interrupt_sequence_control_c)
2918 serial_write (remote_desc, "\x03", 1);
2919 else if (interrupt_sequence_mode == interrupt_sequence_break)
2920 serial_send_break (remote_desc);
2921 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
2922 {
2923 serial_send_break (remote_desc);
2924 serial_write (remote_desc, "g", 1);
2925 }
2926 else
2927 internal_error (__FILE__, __LINE__,
2928 _("Invalid value for interrupt_sequence_mode: %s."),
2929 interrupt_sequence_mode);
2930 }
2931
2932 static void
2933 remote_start_remote (struct ui_out *uiout, void *opaque)
2934 {
2935 struct start_remote_args *args = opaque;
2936 struct remote_state *rs = get_remote_state ();
2937 struct packet_config *noack_config;
2938 char *wait_status = NULL;
2939
2940 immediate_quit++; /* Allow user to interrupt it. */
2941
2942 /* Ack any packet which the remote side has already sent. */
2943 serial_write (remote_desc, "+", 1);
2944
2945 if (interrupt_on_connect)
2946 send_interrupt_sequence ();
2947
2948 /* The first packet we send to the target is the optional "supported
2949 packets" request. If the target can answer this, it will tell us
2950 which later probes to skip. */
2951 remote_query_supported ();
2952
2953 /* Next, we possibly activate noack mode.
2954
2955 If the QStartNoAckMode packet configuration is set to AUTO,
2956 enable noack mode if the stub reported a wish for it with
2957 qSupported.
2958
2959 If set to TRUE, then enable noack mode even if the stub didn't
2960 report it in qSupported. If the stub doesn't reply OK, the
2961 session ends with an error.
2962
2963 If FALSE, then don't activate noack mode, regardless of what the
2964 stub claimed should be the default with qSupported. */
2965
2966 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2967
2968 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2969 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2970 && noack_config->support == PACKET_ENABLE))
2971 {
2972 putpkt ("QStartNoAckMode");
2973 getpkt (&rs->buf, &rs->buf_size, 0);
2974 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2975 rs->noack_mode = 1;
2976 }
2977
2978 if (args->extended_p)
2979 {
2980 /* Tell the remote that we are using the extended protocol. */
2981 putpkt ("!");
2982 getpkt (&rs->buf, &rs->buf_size, 0);
2983 }
2984
2985 /* Next, if the target can specify a description, read it. We do
2986 this before anything involving memory or registers. */
2987 target_find_description ();
2988
2989 /* Next, now that we know something about the target, update the
2990 address spaces in the program spaces. */
2991 update_address_spaces ();
2992
2993 /* On OSs where the list of libraries is global to all
2994 processes, we fetch them early. */
2995 if (gdbarch_has_global_solist (target_gdbarch))
2996 solib_add (NULL, args->from_tty, args->target, auto_solib_add);
2997
2998 if (non_stop)
2999 {
3000 if (!rs->non_stop_aware)
3001 error (_("Non-stop mode requested, but remote does not support non-stop"));
3002
3003 putpkt ("QNonStop:1");
3004 getpkt (&rs->buf, &rs->buf_size, 0);
3005
3006 if (strcmp (rs->buf, "OK") != 0)
3007 error ("Remote refused setting non-stop mode with: %s", rs->buf);
3008
3009 /* Find about threads and processes the stub is already
3010 controlling. We default to adding them in the running state.
3011 The '?' query below will then tell us about which threads are
3012 stopped. */
3013 remote_threads_info (args->target);
3014 }
3015 else if (rs->non_stop_aware)
3016 {
3017 /* Don't assume that the stub can operate in all-stop mode.
3018 Request it explicitely. */
3019 putpkt ("QNonStop:0");
3020 getpkt (&rs->buf, &rs->buf_size, 0);
3021
3022 if (strcmp (rs->buf, "OK") != 0)
3023 error ("Remote refused setting all-stop mode with: %s", rs->buf);
3024 }
3025
3026 /* Check whether the target is running now. */
3027 putpkt ("?");
3028 getpkt (&rs->buf, &rs->buf_size, 0);
3029
3030 if (!non_stop)
3031 {
3032 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3033 {
3034 if (!args->extended_p)
3035 error (_("The target is not running (try extended-remote?)"));
3036
3037 /* We're connected, but not running. Drop out before we
3038 call start_remote. */
3039 return;
3040 }
3041 else
3042 {
3043 /* Save the reply for later. */
3044 wait_status = alloca (strlen (rs->buf) + 1);
3045 strcpy (wait_status, rs->buf);
3046 }
3047
3048 /* Let the stub know that we want it to return the thread. */
3049 set_continue_thread (minus_one_ptid);
3050
3051 /* Without this, some commands which require an active target
3052 (such as kill) won't work. This variable serves (at least)
3053 double duty as both the pid of the target process (if it has
3054 such), and as a flag indicating that a target is active.
3055 These functions should be split out into seperate variables,
3056 especially since GDB will someday have a notion of debugging
3057 several processes. */
3058 inferior_ptid = magic_null_ptid;
3059
3060 /* Now, if we have thread information, update inferior_ptid. */
3061 inferior_ptid = remote_current_thread (inferior_ptid);
3062
3063 remote_add_inferior (ptid_get_pid (inferior_ptid), -1);
3064
3065 /* Always add the main thread. */
3066 add_thread_silent (inferior_ptid);
3067
3068 get_offsets (); /* Get text, data & bss offsets. */
3069
3070 /* If we could not find a description using qXfer, and we know
3071 how to do it some other way, try again. This is not
3072 supported for non-stop; it could be, but it is tricky if
3073 there are no stopped threads when we connect. */
3074 if (remote_read_description_p (args->target)
3075 && gdbarch_target_desc (target_gdbarch) == NULL)
3076 {
3077 target_clear_description ();
3078 target_find_description ();
3079 }
3080
3081 /* Use the previously fetched status. */
3082 gdb_assert (wait_status != NULL);
3083 strcpy (rs->buf, wait_status);
3084 rs->cached_wait_status = 1;
3085
3086 immediate_quit--;
3087 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
3088 }
3089 else
3090 {
3091 /* Clear WFI global state. Do this before finding about new
3092 threads and inferiors, and setting the current inferior.
3093 Otherwise we would clear the proceed status of the current
3094 inferior when we want its stop_soon state to be preserved
3095 (see notice_new_inferior). */
3096 init_wait_for_inferior ();
3097
3098 /* In non-stop, we will either get an "OK", meaning that there
3099 are no stopped threads at this time; or, a regular stop
3100 reply. In the latter case, there may be more than one thread
3101 stopped --- we pull them all out using the vStopped
3102 mechanism. */
3103 if (strcmp (rs->buf, "OK") != 0)
3104 {
3105 struct stop_reply *stop_reply;
3106 struct cleanup *old_chain;
3107
3108 stop_reply = stop_reply_xmalloc ();
3109 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3110
3111 remote_parse_stop_reply (rs->buf, stop_reply);
3112 discard_cleanups (old_chain);
3113
3114 /* get_pending_stop_replies acks this one, and gets the rest
3115 out. */
3116 pending_stop_reply = stop_reply;
3117 remote_get_pending_stop_replies ();
3118
3119 /* Make sure that threads that were stopped remain
3120 stopped. */
3121 iterate_over_threads (set_stop_requested_callback, NULL);
3122 }
3123
3124 if (target_can_async_p ())
3125 target_async (inferior_event_handler, 0);
3126
3127 if (thread_count () == 0)
3128 {
3129 if (!args->extended_p)
3130 error (_("The target is not running (try extended-remote?)"));
3131
3132 /* We're connected, but not running. Drop out before we
3133 call start_remote. */
3134 return;
3135 }
3136
3137 /* Let the stub know that we want it to return the thread. */
3138
3139 /* Force the stub to choose a thread. */
3140 set_general_thread (null_ptid);
3141
3142 /* Query it. */
3143 inferior_ptid = remote_current_thread (minus_one_ptid);
3144 if (ptid_equal (inferior_ptid, minus_one_ptid))
3145 error (_("remote didn't report the current thread in non-stop mode"));
3146
3147 get_offsets (); /* Get text, data & bss offsets. */
3148
3149 /* In non-stop mode, any cached wait status will be stored in
3150 the stop reply queue. */
3151 gdb_assert (wait_status == NULL);
3152 }
3153
3154 /* If we connected to a live target, do some additional setup. */
3155 if (target_has_execution)
3156 {
3157 if (exec_bfd) /* No use without an exec file. */
3158 remote_check_symbols (symfile_objfile);
3159 }
3160
3161 /* Possibly the target has been engaged in a trace run started
3162 previously; find out where things are at. */
3163 if (rs->disconnected_tracing)
3164 {
3165 struct uploaded_tp *uploaded_tps = NULL;
3166 struct uploaded_tsv *uploaded_tsvs = NULL;
3167
3168 remote_get_trace_status (current_trace_status ());
3169 if (current_trace_status ()->running)
3170 printf_filtered (_("Trace is already running on the target.\n"));
3171
3172 /* Get trace state variables first, they may be checked when
3173 parsing uploaded commands. */
3174
3175 remote_upload_trace_state_variables (&uploaded_tsvs);
3176
3177 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3178
3179 remote_upload_tracepoints (&uploaded_tps);
3180
3181 merge_uploaded_tracepoints (&uploaded_tps);
3182 }
3183
3184 /* If breakpoints are global, insert them now. */
3185 if (gdbarch_has_global_breakpoints (target_gdbarch)
3186 && breakpoints_always_inserted_mode ())
3187 insert_breakpoints ();
3188 }
3189
3190 /* Open a connection to a remote debugger.
3191 NAME is the filename used for communication. */
3192
3193 static void
3194 remote_open (char *name, int from_tty)
3195 {
3196 remote_open_1 (name, from_tty, &remote_ops, 0);
3197 }
3198
3199 /* Open a connection to a remote debugger using the extended
3200 remote gdb protocol. NAME is the filename used for communication. */
3201
3202 static void
3203 extended_remote_open (char *name, int from_tty)
3204 {
3205 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3206 }
3207
3208 /* Generic code for opening a connection to a remote target. */
3209
3210 static void
3211 init_all_packet_configs (void)
3212 {
3213 int i;
3214 for (i = 0; i < PACKET_MAX; i++)
3215 update_packet_config (&remote_protocol_packets[i]);
3216 }
3217
3218 /* Symbol look-up. */
3219
3220 static void
3221 remote_check_symbols (struct objfile *objfile)
3222 {
3223 struct remote_state *rs = get_remote_state ();
3224 char *msg, *reply, *tmp;
3225 struct minimal_symbol *sym;
3226 int end;
3227
3228 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3229 return;
3230
3231 /* Make sure the remote is pointing at the right process. */
3232 set_general_process ();
3233
3234 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3235 because we need both at the same time. */
3236 msg = alloca (get_remote_packet_size ());
3237
3238 /* Invite target to request symbol lookups. */
3239
3240 putpkt ("qSymbol::");
3241 getpkt (&rs->buf, &rs->buf_size, 0);
3242 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3243 reply = rs->buf;
3244
3245 while (strncmp (reply, "qSymbol:", 8) == 0)
3246 {
3247 tmp = &reply[8];
3248 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3249 msg[end] = '\0';
3250 sym = lookup_minimal_symbol (msg, NULL, NULL);
3251 if (sym == NULL)
3252 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3253 else
3254 {
3255 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
3256 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3257
3258 /* If this is a function address, return the start of code
3259 instead of any data function descriptor. */
3260 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
3261 sym_addr,
3262 &current_target);
3263
3264 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3265 phex_nz (sym_addr, addr_size), &reply[8]);
3266 }
3267
3268 putpkt (msg);
3269 getpkt (&rs->buf, &rs->buf_size, 0);
3270 reply = rs->buf;
3271 }
3272 }
3273
3274 static struct serial *
3275 remote_serial_open (char *name)
3276 {
3277 static int udp_warning = 0;
3278
3279 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3280 of in ser-tcp.c, because it is the remote protocol assuming that the
3281 serial connection is reliable and not the serial connection promising
3282 to be. */
3283 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3284 {
3285 warning (_("\
3286 The remote protocol may be unreliable over UDP.\n\
3287 Some events may be lost, rendering further debugging impossible."));
3288 udp_warning = 1;
3289 }
3290
3291 return serial_open (name);
3292 }
3293
3294 /* This type describes each known response to the qSupported
3295 packet. */
3296 struct protocol_feature
3297 {
3298 /* The name of this protocol feature. */
3299 const char *name;
3300
3301 /* The default for this protocol feature. */
3302 enum packet_support default_support;
3303
3304 /* The function to call when this feature is reported, or after
3305 qSupported processing if the feature is not supported.
3306 The first argument points to this structure. The second
3307 argument indicates whether the packet requested support be
3308 enabled, disabled, or probed (or the default, if this function
3309 is being called at the end of processing and this feature was
3310 not reported). The third argument may be NULL; if not NULL, it
3311 is a NUL-terminated string taken from the packet following
3312 this feature's name and an equals sign. */
3313 void (*func) (const struct protocol_feature *, enum packet_support,
3314 const char *);
3315
3316 /* The corresponding packet for this feature. Only used if
3317 FUNC is remote_supported_packet. */
3318 int packet;
3319 };
3320
3321 static void
3322 remote_supported_packet (const struct protocol_feature *feature,
3323 enum packet_support support,
3324 const char *argument)
3325 {
3326 if (argument)
3327 {
3328 warning (_("Remote qSupported response supplied an unexpected value for"
3329 " \"%s\"."), feature->name);
3330 return;
3331 }
3332
3333 if (remote_protocol_packets[feature->packet].support
3334 == PACKET_SUPPORT_UNKNOWN)
3335 remote_protocol_packets[feature->packet].support = support;
3336 }
3337
3338 static void
3339 remote_packet_size (const struct protocol_feature *feature,
3340 enum packet_support support, const char *value)
3341 {
3342 struct remote_state *rs = get_remote_state ();
3343
3344 int packet_size;
3345 char *value_end;
3346
3347 if (support != PACKET_ENABLE)
3348 return;
3349
3350 if (value == NULL || *value == '\0')
3351 {
3352 warning (_("Remote target reported \"%s\" without a size."),
3353 feature->name);
3354 return;
3355 }
3356
3357 errno = 0;
3358 packet_size = strtol (value, &value_end, 16);
3359 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3360 {
3361 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3362 feature->name, value);
3363 return;
3364 }
3365
3366 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3367 {
3368 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3369 packet_size, MAX_REMOTE_PACKET_SIZE);
3370 packet_size = MAX_REMOTE_PACKET_SIZE;
3371 }
3372
3373 /* Record the new maximum packet size. */
3374 rs->explicit_packet_size = packet_size;
3375 }
3376
3377 static void
3378 remote_multi_process_feature (const struct protocol_feature *feature,
3379 enum packet_support support, const char *value)
3380 {
3381 struct remote_state *rs = get_remote_state ();
3382 rs->multi_process_aware = (support == PACKET_ENABLE);
3383 }
3384
3385 static void
3386 remote_non_stop_feature (const struct protocol_feature *feature,
3387 enum packet_support support, const char *value)
3388 {
3389 struct remote_state *rs = get_remote_state ();
3390 rs->non_stop_aware = (support == PACKET_ENABLE);
3391 }
3392
3393 static void
3394 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3395 enum packet_support support,
3396 const char *value)
3397 {
3398 struct remote_state *rs = get_remote_state ();
3399 rs->cond_tracepoints = (support == PACKET_ENABLE);
3400 }
3401
3402 static void
3403 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3404 enum packet_support support,
3405 const char *value)
3406 {
3407 struct remote_state *rs = get_remote_state ();
3408 rs->fast_tracepoints = (support == PACKET_ENABLE);
3409 }
3410
3411 static void
3412 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3413 enum packet_support support,
3414 const char *value)
3415 {
3416 struct remote_state *rs = get_remote_state ();
3417 rs->disconnected_tracing = (support == PACKET_ENABLE);
3418 }
3419
3420 static struct protocol_feature remote_protocol_features[] = {
3421 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3422 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3423 PACKET_qXfer_auxv },
3424 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3425 PACKET_qXfer_features },
3426 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3427 PACKET_qXfer_libraries },
3428 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3429 PACKET_qXfer_memory_map },
3430 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3431 PACKET_qXfer_spu_read },
3432 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3433 PACKET_qXfer_spu_write },
3434 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3435 PACKET_qXfer_osdata },
3436 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3437 PACKET_qXfer_threads },
3438 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3439 PACKET_QPassSignals },
3440 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3441 PACKET_QStartNoAckMode },
3442 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3443 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3444 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3445 PACKET_qXfer_siginfo_read },
3446 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3447 PACKET_qXfer_siginfo_write },
3448 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3449 PACKET_ConditionalTracepoints },
3450 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3451 PACKET_FastTracepoints },
3452 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3453 -1 },
3454 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3455 PACKET_bc },
3456 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3457 PACKET_bs },
3458 };
3459
3460 static void
3461 remote_query_supported (void)
3462 {
3463 struct remote_state *rs = get_remote_state ();
3464 char *next;
3465 int i;
3466 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
3467
3468 /* The packet support flags are handled differently for this packet
3469 than for most others. We treat an error, a disabled packet, and
3470 an empty response identically: any features which must be reported
3471 to be used will be automatically disabled. An empty buffer
3472 accomplishes this, since that is also the representation for a list
3473 containing no features. */
3474
3475 rs->buf[0] = 0;
3476 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
3477 {
3478 const char *qsupported = gdbarch_qsupported (target_gdbarch);
3479 if (qsupported)
3480 {
3481 char *q;
3482 if (rs->extended)
3483 q = concat ("qSupported:multiprocess+;", qsupported, NULL);
3484 else
3485 q = concat ("qSupported:", qsupported, NULL);
3486 putpkt (q);
3487 xfree (q);
3488 }
3489 else
3490 {
3491 if (rs->extended)
3492 putpkt ("qSupported:multiprocess+");
3493 else
3494 putpkt ("qSupported");
3495 }
3496
3497 getpkt (&rs->buf, &rs->buf_size, 0);
3498
3499 /* If an error occured, warn, but do not return - just reset the
3500 buffer to empty and go on to disable features. */
3501 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
3502 == PACKET_ERROR)
3503 {
3504 warning (_("Remote failure reply: %s"), rs->buf);
3505 rs->buf[0] = 0;
3506 }
3507 }
3508
3509 memset (seen, 0, sizeof (seen));
3510
3511 next = rs->buf;
3512 while (*next)
3513 {
3514 enum packet_support is_supported;
3515 char *p, *end, *name_end, *value;
3516
3517 /* First separate out this item from the rest of the packet. If
3518 there's another item after this, we overwrite the separator
3519 (terminated strings are much easier to work with). */
3520 p = next;
3521 end = strchr (p, ';');
3522 if (end == NULL)
3523 {
3524 end = p + strlen (p);
3525 next = end;
3526 }
3527 else
3528 {
3529 *end = '\0';
3530 next = end + 1;
3531
3532 if (end == p)
3533 {
3534 warning (_("empty item in \"qSupported\" response"));
3535 continue;
3536 }
3537 }
3538
3539 name_end = strchr (p, '=');
3540 if (name_end)
3541 {
3542 /* This is a name=value entry. */
3543 is_supported = PACKET_ENABLE;
3544 value = name_end + 1;
3545 *name_end = '\0';
3546 }
3547 else
3548 {
3549 value = NULL;
3550 switch (end[-1])
3551 {
3552 case '+':
3553 is_supported = PACKET_ENABLE;
3554 break;
3555
3556 case '-':
3557 is_supported = PACKET_DISABLE;
3558 break;
3559
3560 case '?':
3561 is_supported = PACKET_SUPPORT_UNKNOWN;
3562 break;
3563
3564 default:
3565 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3566 continue;
3567 }
3568 end[-1] = '\0';
3569 }
3570
3571 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3572 if (strcmp (remote_protocol_features[i].name, p) == 0)
3573 {
3574 const struct protocol_feature *feature;
3575
3576 seen[i] = 1;
3577 feature = &remote_protocol_features[i];
3578 feature->func (feature, is_supported, value);
3579 break;
3580 }
3581 }
3582
3583 /* If we increased the packet size, make sure to increase the global
3584 buffer size also. We delay this until after parsing the entire
3585 qSupported packet, because this is the same buffer we were
3586 parsing. */
3587 if (rs->buf_size < rs->explicit_packet_size)
3588 {
3589 rs->buf_size = rs->explicit_packet_size;
3590 rs->buf = xrealloc (rs->buf, rs->buf_size);
3591 }
3592
3593 /* Handle the defaults for unmentioned features. */
3594 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3595 if (!seen[i])
3596 {
3597 const struct protocol_feature *feature;
3598
3599 feature = &remote_protocol_features[i];
3600 feature->func (feature, feature->default_support, NULL);
3601 }
3602 }
3603
3604
3605 static void
3606 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3607 {
3608 struct remote_state *rs = get_remote_state ();
3609
3610 if (name == 0)
3611 error (_("To open a remote debug connection, you need to specify what\n"
3612 "serial device is attached to the remote system\n"
3613 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3614
3615 /* See FIXME above. */
3616 if (!target_async_permitted)
3617 wait_forever_enabled_p = 1;
3618
3619 /* If we're connected to a running target, target_preopen will kill it.
3620 But if we're connected to a target system with no running process,
3621 then we will still be connected when it returns. Ask this question
3622 first, before target_preopen has a chance to kill anything. */
3623 if (remote_desc != NULL && !have_inferiors ())
3624 {
3625 if (!from_tty
3626 || query (_("Already connected to a remote target. Disconnect? ")))
3627 pop_target ();
3628 else
3629 error (_("Still connected."));
3630 }
3631
3632 target_preopen (from_tty);
3633
3634 unpush_target (target);
3635
3636 /* This time without a query. If we were connected to an
3637 extended-remote target and target_preopen killed the running
3638 process, we may still be connected. If we are starting "target
3639 remote" now, the extended-remote target will not have been
3640 removed by unpush_target. */
3641 if (remote_desc != NULL && !have_inferiors ())
3642 pop_target ();
3643
3644 /* Make sure we send the passed signals list the next time we resume. */
3645 xfree (last_pass_packet);
3646 last_pass_packet = NULL;
3647
3648 remote_fileio_reset ();
3649 reopen_exec_file ();
3650 reread_symbols ();
3651
3652 remote_desc = remote_serial_open (name);
3653 if (!remote_desc)
3654 perror_with_name (name);
3655
3656 if (baud_rate != -1)
3657 {
3658 if (serial_setbaudrate (remote_desc, baud_rate))
3659 {
3660 /* The requested speed could not be set. Error out to
3661 top level after closing remote_desc. Take care to
3662 set remote_desc to NULL to avoid closing remote_desc
3663 more than once. */
3664 serial_close (remote_desc);
3665 remote_desc = NULL;
3666 perror_with_name (name);
3667 }
3668 }
3669
3670 serial_raw (remote_desc);
3671
3672 /* If there is something sitting in the buffer we might take it as a
3673 response to a command, which would be bad. */
3674 serial_flush_input (remote_desc);
3675
3676 if (from_tty)
3677 {
3678 puts_filtered ("Remote debugging using ");
3679 puts_filtered (name);
3680 puts_filtered ("\n");
3681 }
3682 push_target (target); /* Switch to using remote target now. */
3683
3684 /* Register extra event sources in the event loop. */
3685 remote_async_inferior_event_token
3686 = create_async_event_handler (remote_async_inferior_event_handler,
3687 NULL);
3688 remote_async_get_pending_events_token
3689 = create_async_event_handler (remote_async_get_pending_events_handler,
3690 NULL);
3691
3692 /* Reset the target state; these things will be queried either by
3693 remote_query_supported or as they are needed. */
3694 init_all_packet_configs ();
3695 rs->cached_wait_status = 0;
3696 rs->explicit_packet_size = 0;
3697 rs->noack_mode = 0;
3698 rs->multi_process_aware = 0;
3699 rs->extended = extended_p;
3700 rs->non_stop_aware = 0;
3701 rs->waiting_for_stop_reply = 0;
3702 rs->ctrlc_pending_p = 0;
3703
3704 general_thread = not_sent_ptid;
3705 continue_thread = not_sent_ptid;
3706
3707 /* Probe for ability to use "ThreadInfo" query, as required. */
3708 use_threadinfo_query = 1;
3709 use_threadextra_query = 1;
3710
3711 if (target_async_permitted)
3712 {
3713 /* With this target we start out by owning the terminal. */
3714 remote_async_terminal_ours_p = 1;
3715
3716 /* FIXME: cagney/1999-09-23: During the initial connection it is
3717 assumed that the target is already ready and able to respond to
3718 requests. Unfortunately remote_start_remote() eventually calls
3719 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3720 around this. Eventually a mechanism that allows
3721 wait_for_inferior() to expect/get timeouts will be
3722 implemented. */
3723 wait_forever_enabled_p = 0;
3724 }
3725
3726 /* First delete any symbols previously loaded from shared libraries. */
3727 no_shared_libraries (NULL, 0);
3728
3729 /* Start afresh. */
3730 init_thread_list ();
3731
3732 /* Start the remote connection. If error() or QUIT, discard this
3733 target (we'd otherwise be in an inconsistent state) and then
3734 propogate the error on up the exception chain. This ensures that
3735 the caller doesn't stumble along blindly assuming that the
3736 function succeeded. The CLI doesn't have this problem but other
3737 UI's, such as MI do.
3738
3739 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3740 this function should return an error indication letting the
3741 caller restore the previous state. Unfortunately the command
3742 ``target remote'' is directly wired to this function making that
3743 impossible. On a positive note, the CLI side of this problem has
3744 been fixed - the function set_cmd_context() makes it possible for
3745 all the ``target ....'' commands to share a common callback
3746 function. See cli-dump.c. */
3747 {
3748 struct gdb_exception ex;
3749 struct start_remote_args args;
3750
3751 args.from_tty = from_tty;
3752 args.target = target;
3753 args.extended_p = extended_p;
3754
3755 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3756 if (ex.reason < 0)
3757 {
3758 /* Pop the partially set up target - unless something else did
3759 already before throwing the exception. */
3760 if (remote_desc != NULL)
3761 pop_target ();
3762 if (target_async_permitted)
3763 wait_forever_enabled_p = 1;
3764 throw_exception (ex);
3765 }
3766 }
3767
3768 if (target_async_permitted)
3769 wait_forever_enabled_p = 1;
3770 }
3771
3772 /* This takes a program previously attached to and detaches it. After
3773 this is done, GDB can be used to debug some other program. We
3774 better not have left any breakpoints in the target program or it'll
3775 die when it hits one. */
3776
3777 static void
3778 remote_detach_1 (char *args, int from_tty, int extended)
3779 {
3780 int pid = ptid_get_pid (inferior_ptid);
3781 struct remote_state *rs = get_remote_state ();
3782
3783 if (args)
3784 error (_("Argument given to \"detach\" when remotely debugging."));
3785
3786 if (!target_has_execution)
3787 error (_("No process to detach from."));
3788
3789 /* Tell the remote target to detach. */
3790 if (remote_multi_process_p (rs))
3791 sprintf (rs->buf, "D;%x", pid);
3792 else
3793 strcpy (rs->buf, "D");
3794
3795 putpkt (rs->buf);
3796 getpkt (&rs->buf, &rs->buf_size, 0);
3797
3798 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3799 ;
3800 else if (rs->buf[0] == '\0')
3801 error (_("Remote doesn't know how to detach"));
3802 else
3803 error (_("Can't detach process."));
3804
3805 if (from_tty)
3806 {
3807 if (remote_multi_process_p (rs))
3808 printf_filtered (_("Detached from remote %s.\n"),
3809 target_pid_to_str (pid_to_ptid (pid)));
3810 else
3811 {
3812 if (extended)
3813 puts_filtered (_("Detached from remote process.\n"));
3814 else
3815 puts_filtered (_("Ending remote debugging.\n"));
3816 }
3817 }
3818
3819 discard_pending_stop_replies (pid);
3820 target_mourn_inferior ();
3821 }
3822
3823 static void
3824 remote_detach (struct target_ops *ops, char *args, int from_tty)
3825 {
3826 remote_detach_1 (args, from_tty, 0);
3827 }
3828
3829 static void
3830 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
3831 {
3832 remote_detach_1 (args, from_tty, 1);
3833 }
3834
3835 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3836
3837 static void
3838 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3839 {
3840 if (args)
3841 error (_("Argument given to \"disconnect\" when remotely debugging."));
3842
3843 /* Make sure we unpush even the extended remote targets; mourn
3844 won't do it. So call remote_mourn_1 directly instead of
3845 target_mourn_inferior. */
3846 remote_mourn_1 (target);
3847
3848 if (from_tty)
3849 puts_filtered ("Ending remote debugging.\n");
3850 }
3851
3852 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3853 be chatty about it. */
3854
3855 static void
3856 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3857 {
3858 struct remote_state *rs = get_remote_state ();
3859 int pid;
3860 char *wait_status = NULL;
3861
3862 pid = parse_pid_to_attach (args);
3863
3864 /* Remote PID can be freely equal to getpid, do not check it here the same
3865 way as in other targets. */
3866
3867 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3868 error (_("This target does not support attaching to a process"));
3869
3870 sprintf (rs->buf, "vAttach;%x", pid);
3871 putpkt (rs->buf);
3872 getpkt (&rs->buf, &rs->buf_size, 0);
3873
3874 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3875 {
3876 if (from_tty)
3877 printf_unfiltered (_("Attached to %s\n"),
3878 target_pid_to_str (pid_to_ptid (pid)));
3879
3880 if (!non_stop)
3881 {
3882 /* Save the reply for later. */
3883 wait_status = alloca (strlen (rs->buf) + 1);
3884 strcpy (wait_status, rs->buf);
3885 }
3886 else if (strcmp (rs->buf, "OK") != 0)
3887 error (_("Attaching to %s failed with: %s"),
3888 target_pid_to_str (pid_to_ptid (pid)),
3889 rs->buf);
3890 }
3891 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3892 error (_("This target does not support attaching to a process"));
3893 else
3894 error (_("Attaching to %s failed"),
3895 target_pid_to_str (pid_to_ptid (pid)));
3896
3897 set_current_inferior (remote_add_inferior (pid, 1));
3898
3899 inferior_ptid = pid_to_ptid (pid);
3900
3901 if (non_stop)
3902 {
3903 struct thread_info *thread;
3904
3905 /* Get list of threads. */
3906 remote_threads_info (target);
3907
3908 thread = first_thread_of_process (pid);
3909 if (thread)
3910 inferior_ptid = thread->ptid;
3911 else
3912 inferior_ptid = pid_to_ptid (pid);
3913
3914 /* Invalidate our notion of the remote current thread. */
3915 record_currthread (minus_one_ptid);
3916 }
3917 else
3918 {
3919 /* Now, if we have thread information, update inferior_ptid. */
3920 inferior_ptid = remote_current_thread (inferior_ptid);
3921
3922 /* Add the main thread to the thread list. */
3923 add_thread_silent (inferior_ptid);
3924 }
3925
3926 /* Next, if the target can specify a description, read it. We do
3927 this before anything involving memory or registers. */
3928 target_find_description ();
3929
3930 if (!non_stop)
3931 {
3932 /* Use the previously fetched status. */
3933 gdb_assert (wait_status != NULL);
3934
3935 if (target_can_async_p ())
3936 {
3937 struct stop_reply *stop_reply;
3938 struct cleanup *old_chain;
3939
3940 stop_reply = stop_reply_xmalloc ();
3941 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3942 remote_parse_stop_reply (wait_status, stop_reply);
3943 discard_cleanups (old_chain);
3944 push_stop_reply (stop_reply);
3945
3946 target_async (inferior_event_handler, 0);
3947 }
3948 else
3949 {
3950 gdb_assert (wait_status != NULL);
3951 strcpy (rs->buf, wait_status);
3952 rs->cached_wait_status = 1;
3953 }
3954 }
3955 else
3956 gdb_assert (wait_status == NULL);
3957 }
3958
3959 static void
3960 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
3961 {
3962 extended_remote_attach_1 (ops, args, from_tty);
3963 }
3964
3965 /* Convert hex digit A to a number. */
3966
3967 static int
3968 fromhex (int a)
3969 {
3970 if (a >= '0' && a <= '9')
3971 return a - '0';
3972 else if (a >= 'a' && a <= 'f')
3973 return a - 'a' + 10;
3974 else if (a >= 'A' && a <= 'F')
3975 return a - 'A' + 10;
3976 else
3977 error (_("Reply contains invalid hex digit %d"), a);
3978 }
3979
3980 int
3981 hex2bin (const char *hex, gdb_byte *bin, int count)
3982 {
3983 int i;
3984
3985 for (i = 0; i < count; i++)
3986 {
3987 if (hex[0] == 0 || hex[1] == 0)
3988 {
3989 /* Hex string is short, or of uneven length.
3990 Return the count that has been converted so far. */
3991 return i;
3992 }
3993 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3994 hex += 2;
3995 }
3996 return i;
3997 }
3998
3999 /* Convert number NIB to a hex digit. */
4000
4001 static int
4002 tohex (int nib)
4003 {
4004 if (nib < 10)
4005 return '0' + nib;
4006 else
4007 return 'a' + nib - 10;
4008 }
4009
4010 int
4011 bin2hex (const gdb_byte *bin, char *hex, int count)
4012 {
4013 int i;
4014 /* May use a length, or a nul-terminated string as input. */
4015 if (count == 0)
4016 count = strlen ((char *) bin);
4017
4018 for (i = 0; i < count; i++)
4019 {
4020 *hex++ = tohex ((*bin >> 4) & 0xf);
4021 *hex++ = tohex (*bin++ & 0xf);
4022 }
4023 *hex = 0;
4024 return i;
4025 }
4026 \f
4027 /* Check for the availability of vCont. This function should also check
4028 the response. */
4029
4030 static void
4031 remote_vcont_probe (struct remote_state *rs)
4032 {
4033 char *buf;
4034
4035 strcpy (rs->buf, "vCont?");
4036 putpkt (rs->buf);
4037 getpkt (&rs->buf, &rs->buf_size, 0);
4038 buf = rs->buf;
4039
4040 /* Make sure that the features we assume are supported. */
4041 if (strncmp (buf, "vCont", 5) == 0)
4042 {
4043 char *p = &buf[5];
4044 int support_s, support_S, support_c, support_C;
4045
4046 support_s = 0;
4047 support_S = 0;
4048 support_c = 0;
4049 support_C = 0;
4050 rs->support_vCont_t = 0;
4051 while (p && *p == ';')
4052 {
4053 p++;
4054 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4055 support_s = 1;
4056 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4057 support_S = 1;
4058 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4059 support_c = 1;
4060 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4061 support_C = 1;
4062 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4063 rs->support_vCont_t = 1;
4064
4065 p = strchr (p, ';');
4066 }
4067
4068 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4069 BUF will make packet_ok disable the packet. */
4070 if (!support_s || !support_S || !support_c || !support_C)
4071 buf[0] = 0;
4072 }
4073
4074 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4075 }
4076
4077 /* Helper function for building "vCont" resumptions. Write a
4078 resumption to P. ENDP points to one-passed-the-end of the buffer
4079 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4080 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4081 resumed thread should be single-stepped and/or signalled. If PTID
4082 equals minus_one_ptid, then all threads are resumed; if PTID
4083 represents a process, then all threads of the process are resumed;
4084 the thread to be stepped and/or signalled is given in the global
4085 INFERIOR_PTID. */
4086
4087 static char *
4088 append_resumption (char *p, char *endp,
4089 ptid_t ptid, int step, enum target_signal siggnal)
4090 {
4091 struct remote_state *rs = get_remote_state ();
4092
4093 if (step && siggnal != TARGET_SIGNAL_0)
4094 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4095 else if (step)
4096 p += xsnprintf (p, endp - p, ";s");
4097 else if (siggnal != TARGET_SIGNAL_0)
4098 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4099 else
4100 p += xsnprintf (p, endp - p, ";c");
4101
4102 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4103 {
4104 ptid_t nptid;
4105
4106 /* All (-1) threads of process. */
4107 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4108
4109 p += xsnprintf (p, endp - p, ":");
4110 p = write_ptid (p, endp, nptid);
4111 }
4112 else if (!ptid_equal (ptid, minus_one_ptid))
4113 {
4114 p += xsnprintf (p, endp - p, ":");
4115 p = write_ptid (p, endp, ptid);
4116 }
4117
4118 return p;
4119 }
4120
4121 /* Resume the remote inferior by using a "vCont" packet. The thread
4122 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4123 resumed thread should be single-stepped and/or signalled. If PTID
4124 equals minus_one_ptid, then all threads are resumed; the thread to
4125 be stepped and/or signalled is given in the global INFERIOR_PTID.
4126 This function returns non-zero iff it resumes the inferior.
4127
4128 This function issues a strict subset of all possible vCont commands at the
4129 moment. */
4130
4131 static int
4132 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
4133 {
4134 struct remote_state *rs = get_remote_state ();
4135 char *p;
4136 char *endp;
4137
4138 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4139 remote_vcont_probe (rs);
4140
4141 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4142 return 0;
4143
4144 p = rs->buf;
4145 endp = rs->buf + get_remote_packet_size ();
4146
4147 /* If we could generate a wider range of packets, we'd have to worry
4148 about overflowing BUF. Should there be a generic
4149 "multi-part-packet" packet? */
4150
4151 p += xsnprintf (p, endp - p, "vCont");
4152
4153 if (ptid_equal (ptid, magic_null_ptid))
4154 {
4155 /* MAGIC_NULL_PTID means that we don't have any active threads,
4156 so we don't have any TID numbers the inferior will
4157 understand. Make sure to only send forms that do not specify
4158 a TID. */
4159 p = append_resumption (p, endp, minus_one_ptid, step, siggnal);
4160 }
4161 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4162 {
4163 /* Resume all threads (of all processes, or of a single
4164 process), with preference for INFERIOR_PTID. This assumes
4165 inferior_ptid belongs to the set of all threads we are about
4166 to resume. */
4167 if (step || siggnal != TARGET_SIGNAL_0)
4168 {
4169 /* Step inferior_ptid, with or without signal. */
4170 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4171 }
4172
4173 /* And continue others without a signal. */
4174 p = append_resumption (p, endp, ptid, /*step=*/ 0, TARGET_SIGNAL_0);
4175 }
4176 else
4177 {
4178 /* Scheduler locking; resume only PTID. */
4179 p = append_resumption (p, endp, ptid, step, siggnal);
4180 }
4181
4182 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4183 putpkt (rs->buf);
4184
4185 if (non_stop)
4186 {
4187 /* In non-stop, the stub replies to vCont with "OK". The stop
4188 reply will be reported asynchronously by means of a `%Stop'
4189 notification. */
4190 getpkt (&rs->buf, &rs->buf_size, 0);
4191 if (strcmp (rs->buf, "OK") != 0)
4192 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4193 }
4194
4195 return 1;
4196 }
4197
4198 /* Tell the remote machine to resume. */
4199
4200 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
4201
4202 static int last_sent_step;
4203
4204 static void
4205 remote_resume (struct target_ops *ops,
4206 ptid_t ptid, int step, enum target_signal siggnal)
4207 {
4208 struct remote_state *rs = get_remote_state ();
4209 char *buf;
4210
4211 last_sent_signal = siggnal;
4212 last_sent_step = step;
4213
4214 /* Update the inferior on signals to silently pass, if they've changed. */
4215 remote_pass_signals ();
4216
4217 /* The vCont packet doesn't need to specify threads via Hc. */
4218 /* No reverse support (yet) for vCont. */
4219 if (execution_direction != EXEC_REVERSE)
4220 if (remote_vcont_resume (ptid, step, siggnal))
4221 goto done;
4222
4223 /* All other supported resume packets do use Hc, so set the continue
4224 thread. */
4225 if (ptid_equal (ptid, minus_one_ptid))
4226 set_continue_thread (any_thread_ptid);
4227 else
4228 set_continue_thread (ptid);
4229
4230 buf = rs->buf;
4231 if (execution_direction == EXEC_REVERSE)
4232 {
4233 /* We don't pass signals to the target in reverse exec mode. */
4234 if (info_verbose && siggnal != TARGET_SIGNAL_0)
4235 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
4236 siggnal);
4237
4238 if (step
4239 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4240 error (_("Remote reverse-step not supported."));
4241 if (!step
4242 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4243 error (_("Remote reverse-continue not supported."));
4244
4245 strcpy (buf, step ? "bs" : "bc");
4246 }
4247 else if (siggnal != TARGET_SIGNAL_0)
4248 {
4249 buf[0] = step ? 'S' : 'C';
4250 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4251 buf[2] = tohex (((int) siggnal) & 0xf);
4252 buf[3] = '\0';
4253 }
4254 else
4255 strcpy (buf, step ? "s" : "c");
4256
4257 putpkt (buf);
4258
4259 done:
4260 /* We are about to start executing the inferior, let's register it
4261 with the event loop. NOTE: this is the one place where all the
4262 execution commands end up. We could alternatively do this in each
4263 of the execution commands in infcmd.c. */
4264 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4265 into infcmd.c in order to allow inferior function calls to work
4266 NOT asynchronously. */
4267 if (target_can_async_p ())
4268 target_async (inferior_event_handler, 0);
4269
4270 /* We've just told the target to resume. The remote server will
4271 wait for the inferior to stop, and then send a stop reply. In
4272 the mean time, we can't start another command/query ourselves
4273 because the stub wouldn't be ready to process it. This applies
4274 only to the base all-stop protocol, however. In non-stop (which
4275 only supports vCont), the stub replies with an "OK", and is
4276 immediate able to process further serial input. */
4277 if (!non_stop)
4278 rs->waiting_for_stop_reply = 1;
4279 }
4280 \f
4281
4282 /* Set up the signal handler for SIGINT, while the target is
4283 executing, ovewriting the 'regular' SIGINT signal handler. */
4284 static void
4285 initialize_sigint_signal_handler (void)
4286 {
4287 signal (SIGINT, handle_remote_sigint);
4288 }
4289
4290 /* Signal handler for SIGINT, while the target is executing. */
4291 static void
4292 handle_remote_sigint (int sig)
4293 {
4294 signal (sig, handle_remote_sigint_twice);
4295 mark_async_signal_handler_wrapper (sigint_remote_token);
4296 }
4297
4298 /* Signal handler for SIGINT, installed after SIGINT has already been
4299 sent once. It will take effect the second time that the user sends
4300 a ^C. */
4301 static void
4302 handle_remote_sigint_twice (int sig)
4303 {
4304 signal (sig, handle_remote_sigint);
4305 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
4306 }
4307
4308 /* Perform the real interruption of the target execution, in response
4309 to a ^C. */
4310 static void
4311 async_remote_interrupt (gdb_client_data arg)
4312 {
4313 if (remote_debug)
4314 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
4315
4316 target_stop (inferior_ptid);
4317 }
4318
4319 /* Perform interrupt, if the first attempt did not succeed. Just give
4320 up on the target alltogether. */
4321 void
4322 async_remote_interrupt_twice (gdb_client_data arg)
4323 {
4324 if (remote_debug)
4325 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
4326
4327 interrupt_query ();
4328 }
4329
4330 /* Reinstall the usual SIGINT handlers, after the target has
4331 stopped. */
4332 static void
4333 cleanup_sigint_signal_handler (void *dummy)
4334 {
4335 signal (SIGINT, handle_sigint);
4336 }
4337
4338 /* Send ^C to target to halt it. Target will respond, and send us a
4339 packet. */
4340 static void (*ofunc) (int);
4341
4342 /* The command line interface's stop routine. This function is installed
4343 as a signal handler for SIGINT. The first time a user requests a
4344 stop, we call remote_stop to send a break or ^C. If there is no
4345 response from the target (it didn't stop when the user requested it),
4346 we ask the user if he'd like to detach from the target. */
4347 static void
4348 remote_interrupt (int signo)
4349 {
4350 /* If this doesn't work, try more severe steps. */
4351 signal (signo, remote_interrupt_twice);
4352
4353 gdb_call_async_signal_handler (sigint_remote_token, 1);
4354 }
4355
4356 /* The user typed ^C twice. */
4357
4358 static void
4359 remote_interrupt_twice (int signo)
4360 {
4361 signal (signo, ofunc);
4362 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4363 signal (signo, remote_interrupt);
4364 }
4365
4366 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4367 thread, all threads of a remote process, or all threads of all
4368 processes. */
4369
4370 static void
4371 remote_stop_ns (ptid_t ptid)
4372 {
4373 struct remote_state *rs = get_remote_state ();
4374 char *p = rs->buf;
4375 char *endp = rs->buf + get_remote_packet_size ();
4376
4377 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4378 remote_vcont_probe (rs);
4379
4380 if (!rs->support_vCont_t)
4381 error (_("Remote server does not support stopping threads"));
4382
4383 if (ptid_equal (ptid, minus_one_ptid)
4384 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4385 p += xsnprintf (p, endp - p, "vCont;t");
4386 else
4387 {
4388 ptid_t nptid;
4389
4390 p += xsnprintf (p, endp - p, "vCont;t:");
4391
4392 if (ptid_is_pid (ptid))
4393 /* All (-1) threads of process. */
4394 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4395 else
4396 {
4397 /* Small optimization: if we already have a stop reply for
4398 this thread, no use in telling the stub we want this
4399 stopped. */
4400 if (peek_stop_reply (ptid))
4401 return;
4402
4403 nptid = ptid;
4404 }
4405
4406 p = write_ptid (p, endp, nptid);
4407 }
4408
4409 /* In non-stop, we get an immediate OK reply. The stop reply will
4410 come in asynchronously by notification. */
4411 putpkt (rs->buf);
4412 getpkt (&rs->buf, &rs->buf_size, 0);
4413 if (strcmp (rs->buf, "OK") != 0)
4414 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
4415 }
4416
4417 /* All-stop version of target_stop. Sends a break or a ^C to stop the
4418 remote target. It is undefined which thread of which process
4419 reports the stop. */
4420
4421 static void
4422 remote_stop_as (ptid_t ptid)
4423 {
4424 struct remote_state *rs = get_remote_state ();
4425
4426 rs->ctrlc_pending_p = 1;
4427
4428 /* If the inferior is stopped already, but the core didn't know
4429 about it yet, just ignore the request. The cached wait status
4430 will be collected in remote_wait. */
4431 if (rs->cached_wait_status)
4432 return;
4433
4434 /* Send interrupt_sequence to remote target. */
4435 send_interrupt_sequence ();
4436 }
4437
4438 /* This is the generic stop called via the target vector. When a target
4439 interrupt is requested, either by the command line or the GUI, we
4440 will eventually end up here. */
4441
4442 static void
4443 remote_stop (ptid_t ptid)
4444 {
4445 if (remote_debug)
4446 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
4447
4448 if (non_stop)
4449 remote_stop_ns (ptid);
4450 else
4451 remote_stop_as (ptid);
4452 }
4453
4454 /* Ask the user what to do when an interrupt is received. */
4455
4456 static void
4457 interrupt_query (void)
4458 {
4459 target_terminal_ours ();
4460
4461 if (target_can_async_p ())
4462 {
4463 signal (SIGINT, handle_sigint);
4464 deprecated_throw_reason (RETURN_QUIT);
4465 }
4466 else
4467 {
4468 if (query (_("Interrupted while waiting for the program.\n\
4469 Give up (and stop debugging it)? ")))
4470 {
4471 pop_target ();
4472 deprecated_throw_reason (RETURN_QUIT);
4473 }
4474 }
4475
4476 target_terminal_inferior ();
4477 }
4478
4479 /* Enable/disable target terminal ownership. Most targets can use
4480 terminal groups to control terminal ownership. Remote targets are
4481 different in that explicit transfer of ownership to/from GDB/target
4482 is required. */
4483
4484 static void
4485 remote_terminal_inferior (void)
4486 {
4487 if (!target_async_permitted)
4488 /* Nothing to do. */
4489 return;
4490
4491 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
4492 idempotent. The event-loop GDB talking to an asynchronous target
4493 with a synchronous command calls this function from both
4494 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
4495 transfer the terminal to the target when it shouldn't this guard
4496 can go away. */
4497 if (!remote_async_terminal_ours_p)
4498 return;
4499 delete_file_handler (input_fd);
4500 remote_async_terminal_ours_p = 0;
4501 initialize_sigint_signal_handler ();
4502 /* NOTE: At this point we could also register our selves as the
4503 recipient of all input. Any characters typed could then be
4504 passed on down to the target. */
4505 }
4506
4507 static void
4508 remote_terminal_ours (void)
4509 {
4510 if (!target_async_permitted)
4511 /* Nothing to do. */
4512 return;
4513
4514 /* See FIXME in remote_terminal_inferior. */
4515 if (remote_async_terminal_ours_p)
4516 return;
4517 cleanup_sigint_signal_handler (NULL);
4518 add_file_handler (input_fd, stdin_event_handler, 0);
4519 remote_async_terminal_ours_p = 1;
4520 }
4521
4522 void
4523 remote_console_output (char *msg)
4524 {
4525 char *p;
4526
4527 for (p = msg; p[0] && p[1]; p += 2)
4528 {
4529 char tb[2];
4530 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4531 tb[0] = c;
4532 tb[1] = 0;
4533 fputs_unfiltered (tb, gdb_stdtarg);
4534 }
4535 gdb_flush (gdb_stdtarg);
4536 }
4537
4538 typedef struct cached_reg
4539 {
4540 int num;
4541 gdb_byte data[MAX_REGISTER_SIZE];
4542 } cached_reg_t;
4543
4544 DEF_VEC_O(cached_reg_t);
4545
4546 struct stop_reply
4547 {
4548 struct stop_reply *next;
4549
4550 ptid_t ptid;
4551
4552 struct target_waitstatus ws;
4553
4554 VEC(cached_reg_t) *regcache;
4555
4556 int stopped_by_watchpoint_p;
4557 CORE_ADDR watch_data_address;
4558
4559 int solibs_changed;
4560 int replay_event;
4561
4562 int core;
4563 };
4564
4565 /* The list of already fetched and acknowledged stop events. */
4566 static struct stop_reply *stop_reply_queue;
4567
4568 static struct stop_reply *
4569 stop_reply_xmalloc (void)
4570 {
4571 struct stop_reply *r = XMALLOC (struct stop_reply);
4572 r->next = NULL;
4573 return r;
4574 }
4575
4576 static void
4577 stop_reply_xfree (struct stop_reply *r)
4578 {
4579 if (r != NULL)
4580 {
4581 VEC_free (cached_reg_t, r->regcache);
4582 xfree (r);
4583 }
4584 }
4585
4586 /* Discard all pending stop replies of inferior PID. If PID is -1,
4587 discard everything. */
4588
4589 static void
4590 discard_pending_stop_replies (int pid)
4591 {
4592 struct stop_reply *prev = NULL, *reply, *next;
4593
4594 /* Discard the in-flight notification. */
4595 if (pending_stop_reply != NULL
4596 && (pid == -1
4597 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4598 {
4599 stop_reply_xfree (pending_stop_reply);
4600 pending_stop_reply = NULL;
4601 }
4602
4603 /* Discard the stop replies we have already pulled with
4604 vStopped. */
4605 for (reply = stop_reply_queue; reply; reply = next)
4606 {
4607 next = reply->next;
4608 if (pid == -1
4609 || ptid_get_pid (reply->ptid) == pid)
4610 {
4611 if (reply == stop_reply_queue)
4612 stop_reply_queue = reply->next;
4613 else
4614 prev->next = reply->next;
4615
4616 stop_reply_xfree (reply);
4617 }
4618 else
4619 prev = reply;
4620 }
4621 }
4622
4623 /* Cleanup wrapper. */
4624
4625 static void
4626 do_stop_reply_xfree (void *arg)
4627 {
4628 struct stop_reply *r = arg;
4629 stop_reply_xfree (r);
4630 }
4631
4632 /* Look for a queued stop reply belonging to PTID. If one is found,
4633 remove it from the queue, and return it. Returns NULL if none is
4634 found. If there are still queued events left to process, tell the
4635 event loop to get back to target_wait soon. */
4636
4637 static struct stop_reply *
4638 queued_stop_reply (ptid_t ptid)
4639 {
4640 struct stop_reply *it, *prev;
4641 struct stop_reply head;
4642
4643 head.next = stop_reply_queue;
4644 prev = &head;
4645
4646 it = head.next;
4647
4648 if (!ptid_equal (ptid, minus_one_ptid))
4649 for (; it; prev = it, it = it->next)
4650 if (ptid_equal (ptid, it->ptid))
4651 break;
4652
4653 if (it)
4654 {
4655 prev->next = it->next;
4656 it->next = NULL;
4657 }
4658
4659 stop_reply_queue = head.next;
4660
4661 if (stop_reply_queue)
4662 /* There's still at least an event left. */
4663 mark_async_event_handler (remote_async_inferior_event_token);
4664
4665 return it;
4666 }
4667
4668 /* Push a fully parsed stop reply in the stop reply queue. Since we
4669 know that we now have at least one queued event left to pass to the
4670 core side, tell the event loop to get back to target_wait soon. */
4671
4672 static void
4673 push_stop_reply (struct stop_reply *new_event)
4674 {
4675 struct stop_reply *event;
4676
4677 if (stop_reply_queue)
4678 {
4679 for (event = stop_reply_queue;
4680 event && event->next;
4681 event = event->next)
4682 ;
4683
4684 event->next = new_event;
4685 }
4686 else
4687 stop_reply_queue = new_event;
4688
4689 mark_async_event_handler (remote_async_inferior_event_token);
4690 }
4691
4692 /* Returns true if we have a stop reply for PTID. */
4693
4694 static int
4695 peek_stop_reply (ptid_t ptid)
4696 {
4697 struct stop_reply *it;
4698
4699 for (it = stop_reply_queue; it; it = it->next)
4700 if (ptid_equal (ptid, it->ptid))
4701 {
4702 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4703 return 1;
4704 }
4705
4706 return 0;
4707 }
4708
4709 /* Parse the stop reply in BUF. Either the function succeeds, and the
4710 result is stored in EVENT, or throws an error. */
4711
4712 static void
4713 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4714 {
4715 struct remote_arch_state *rsa = get_remote_arch_state ();
4716 ULONGEST addr;
4717 char *p;
4718
4719 event->ptid = null_ptid;
4720 event->ws.kind = TARGET_WAITKIND_IGNORE;
4721 event->ws.value.integer = 0;
4722 event->solibs_changed = 0;
4723 event->replay_event = 0;
4724 event->stopped_by_watchpoint_p = 0;
4725 event->regcache = NULL;
4726 event->core = -1;
4727
4728 switch (buf[0])
4729 {
4730 case 'T': /* Status with PC, SP, FP, ... */
4731 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4732 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4733 ss = signal number
4734 n... = register number
4735 r... = register contents
4736 */
4737
4738 p = &buf[3]; /* after Txx */
4739 while (*p)
4740 {
4741 char *p1;
4742 char *p_temp;
4743 int fieldsize;
4744 LONGEST pnum = 0;
4745
4746 /* If the packet contains a register number, save it in
4747 pnum and set p1 to point to the character following it.
4748 Otherwise p1 points to p. */
4749
4750 /* If this packet is an awatch packet, don't parse the 'a'
4751 as a register number. */
4752
4753 if (strncmp (p, "awatch", strlen("awatch")) != 0
4754 && strncmp (p, "core", strlen ("core") != 0))
4755 {
4756 /* Read the ``P'' register number. */
4757 pnum = strtol (p, &p_temp, 16);
4758 p1 = p_temp;
4759 }
4760 else
4761 p1 = p;
4762
4763 if (p1 == p) /* No register number present here. */
4764 {
4765 p1 = strchr (p, ':');
4766 if (p1 == NULL)
4767 error (_("Malformed packet(a) (missing colon): %s\n\
4768 Packet: '%s'\n"),
4769 p, buf);
4770 if (strncmp (p, "thread", p1 - p) == 0)
4771 event->ptid = read_ptid (++p1, &p);
4772 else if ((strncmp (p, "watch", p1 - p) == 0)
4773 || (strncmp (p, "rwatch", p1 - p) == 0)
4774 || (strncmp (p, "awatch", p1 - p) == 0))
4775 {
4776 event->stopped_by_watchpoint_p = 1;
4777 p = unpack_varlen_hex (++p1, &addr);
4778 event->watch_data_address = (CORE_ADDR) addr;
4779 }
4780 else if (strncmp (p, "library", p1 - p) == 0)
4781 {
4782 p1++;
4783 p_temp = p1;
4784 while (*p_temp && *p_temp != ';')
4785 p_temp++;
4786
4787 event->solibs_changed = 1;
4788 p = p_temp;
4789 }
4790 else if (strncmp (p, "replaylog", p1 - p) == 0)
4791 {
4792 /* NO_HISTORY event.
4793 p1 will indicate "begin" or "end", but
4794 it makes no difference for now, so ignore it. */
4795 event->replay_event = 1;
4796 p_temp = strchr (p1 + 1, ';');
4797 if (p_temp)
4798 p = p_temp;
4799 }
4800 else if (strncmp (p, "core", p1 - p) == 0)
4801 {
4802 ULONGEST c;
4803 p = unpack_varlen_hex (++p1, &c);
4804 event->core = c;
4805 }
4806 else
4807 {
4808 /* Silently skip unknown optional info. */
4809 p_temp = strchr (p1 + 1, ';');
4810 if (p_temp)
4811 p = p_temp;
4812 }
4813 }
4814 else
4815 {
4816 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4817 cached_reg_t cached_reg;
4818
4819 p = p1;
4820
4821 if (*p != ':')
4822 error (_("Malformed packet(b) (missing colon): %s\n\
4823 Packet: '%s'\n"),
4824 p, buf);
4825 ++p;
4826
4827 if (reg == NULL)
4828 error (_("Remote sent bad register number %s: %s\n\
4829 Packet: '%s'\n"),
4830 phex_nz (pnum, 0), p, buf);
4831
4832 cached_reg.num = reg->regnum;
4833
4834 fieldsize = hex2bin (p, cached_reg.data,
4835 register_size (target_gdbarch,
4836 reg->regnum));
4837 p += 2 * fieldsize;
4838 if (fieldsize < register_size (target_gdbarch,
4839 reg->regnum))
4840 warning (_("Remote reply is too short: %s"), buf);
4841
4842 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4843 }
4844
4845 if (*p != ';')
4846 error (_("Remote register badly formatted: %s\nhere: %s"),
4847 buf, p);
4848 ++p;
4849 }
4850 /* fall through */
4851 case 'S': /* Old style status, just signal only. */
4852 if (event->solibs_changed)
4853 event->ws.kind = TARGET_WAITKIND_LOADED;
4854 else if (event->replay_event)
4855 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4856 else
4857 {
4858 event->ws.kind = TARGET_WAITKIND_STOPPED;
4859 event->ws.value.sig = (enum target_signal)
4860 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4861 }
4862 break;
4863 case 'W': /* Target exited. */
4864 case 'X':
4865 {
4866 char *p;
4867 int pid;
4868 ULONGEST value;
4869
4870 /* GDB used to accept only 2 hex chars here. Stubs should
4871 only send more if they detect GDB supports multi-process
4872 support. */
4873 p = unpack_varlen_hex (&buf[1], &value);
4874
4875 if (buf[0] == 'W')
4876 {
4877 /* The remote process exited. */
4878 event->ws.kind = TARGET_WAITKIND_EXITED;
4879 event->ws.value.integer = value;
4880 }
4881 else
4882 {
4883 /* The remote process exited with a signal. */
4884 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4885 event->ws.value.sig = (enum target_signal) value;
4886 }
4887
4888 /* If no process is specified, assume inferior_ptid. */
4889 pid = ptid_get_pid (inferior_ptid);
4890 if (*p == '\0')
4891 ;
4892 else if (*p == ';')
4893 {
4894 p++;
4895
4896 if (p == '\0')
4897 ;
4898 else if (strncmp (p,
4899 "process:", sizeof ("process:") - 1) == 0)
4900 {
4901 ULONGEST upid;
4902 p += sizeof ("process:") - 1;
4903 unpack_varlen_hex (p, &upid);
4904 pid = upid;
4905 }
4906 else
4907 error (_("unknown stop reply packet: %s"), buf);
4908 }
4909 else
4910 error (_("unknown stop reply packet: %s"), buf);
4911 event->ptid = pid_to_ptid (pid);
4912 }
4913 break;
4914 }
4915
4916 if (non_stop && ptid_equal (event->ptid, null_ptid))
4917 error (_("No process or thread specified in stop reply: %s"), buf);
4918 }
4919
4920 /* When the stub wants to tell GDB about a new stop reply, it sends a
4921 stop notification (%Stop). Those can come it at any time, hence,
4922 we have to make sure that any pending putpkt/getpkt sequence we're
4923 making is finished, before querying the stub for more events with
4924 vStopped. E.g., if we started a vStopped sequence immediatelly
4925 upon receiving the %Stop notification, something like this could
4926 happen:
4927
4928 1.1) --> Hg 1
4929 1.2) <-- OK
4930 1.3) --> g
4931 1.4) <-- %Stop
4932 1.5) --> vStopped
4933 1.6) <-- (registers reply to step #1.3)
4934
4935 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4936 query.
4937
4938 To solve this, whenever we parse a %Stop notification sucessfully,
4939 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4940 doing whatever we were doing:
4941
4942 2.1) --> Hg 1
4943 2.2) <-- OK
4944 2.3) --> g
4945 2.4) <-- %Stop
4946 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4947 2.5) <-- (registers reply to step #2.3)
4948
4949 Eventualy after step #2.5, we return to the event loop, which
4950 notices there's an event on the
4951 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4952 associated callback --- the function below. At this point, we're
4953 always safe to start a vStopped sequence. :
4954
4955 2.6) --> vStopped
4956 2.7) <-- T05 thread:2
4957 2.8) --> vStopped
4958 2.9) --> OK
4959 */
4960
4961 static void
4962 remote_get_pending_stop_replies (void)
4963 {
4964 struct remote_state *rs = get_remote_state ();
4965
4966 if (pending_stop_reply)
4967 {
4968 /* acknowledge */
4969 putpkt ("vStopped");
4970
4971 /* Now we can rely on it. */
4972 push_stop_reply (pending_stop_reply);
4973 pending_stop_reply = NULL;
4974
4975 while (1)
4976 {
4977 getpkt (&rs->buf, &rs->buf_size, 0);
4978 if (strcmp (rs->buf, "OK") == 0)
4979 break;
4980 else
4981 {
4982 struct cleanup *old_chain;
4983 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4984
4985 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4986 remote_parse_stop_reply (rs->buf, stop_reply);
4987
4988 /* acknowledge */
4989 putpkt ("vStopped");
4990
4991 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4992 {
4993 /* Now we can rely on it. */
4994 discard_cleanups (old_chain);
4995 push_stop_reply (stop_reply);
4996 }
4997 else
4998 /* We got an unknown stop reply. */
4999 do_cleanups (old_chain);
5000 }
5001 }
5002 }
5003 }
5004
5005
5006 /* Called when it is decided that STOP_REPLY holds the info of the
5007 event that is to be returned to the core. This function always
5008 destroys STOP_REPLY. */
5009
5010 static ptid_t
5011 process_stop_reply (struct stop_reply *stop_reply,
5012 struct target_waitstatus *status)
5013 {
5014 ptid_t ptid;
5015 struct thread_info *info;
5016
5017 *status = stop_reply->ws;
5018 ptid = stop_reply->ptid;
5019
5020 /* If no thread/process was reported by the stub, assume the current
5021 inferior. */
5022 if (ptid_equal (ptid, null_ptid))
5023 ptid = inferior_ptid;
5024
5025 if (status->kind != TARGET_WAITKIND_EXITED
5026 && status->kind != TARGET_WAITKIND_SIGNALLED)
5027 {
5028 /* Expedited registers. */
5029 if (stop_reply->regcache)
5030 {
5031 struct regcache *regcache
5032 = get_thread_arch_regcache (ptid, target_gdbarch);
5033 cached_reg_t *reg;
5034 int ix;
5035
5036 for (ix = 0;
5037 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5038 ix++)
5039 regcache_raw_supply (regcache, reg->num, reg->data);
5040 VEC_free (cached_reg_t, stop_reply->regcache);
5041 }
5042
5043 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5044 remote_watch_data_address = stop_reply->watch_data_address;
5045
5046 remote_notice_new_inferior (ptid, 0);
5047 demand_private_info (ptid)->core = stop_reply->core;
5048 }
5049
5050 stop_reply_xfree (stop_reply);
5051 return ptid;
5052 }
5053
5054 /* The non-stop mode version of target_wait. */
5055
5056 static ptid_t
5057 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5058 {
5059 struct remote_state *rs = get_remote_state ();
5060 struct stop_reply *stop_reply;
5061 int ret;
5062
5063 /* If in non-stop mode, get out of getpkt even if a
5064 notification is received. */
5065
5066 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5067 0 /* forever */);
5068 while (1)
5069 {
5070 if (ret != -1)
5071 switch (rs->buf[0])
5072 {
5073 case 'E': /* Error of some sort. */
5074 /* We're out of sync with the target now. Did it continue
5075 or not? We can't tell which thread it was in non-stop,
5076 so just ignore this. */
5077 warning (_("Remote failure reply: %s"), rs->buf);
5078 break;
5079 case 'O': /* Console output. */
5080 remote_console_output (rs->buf + 1);
5081 break;
5082 default:
5083 warning (_("Invalid remote reply: %s"), rs->buf);
5084 break;
5085 }
5086
5087 /* Acknowledge a pending stop reply that may have arrived in the
5088 mean time. */
5089 if (pending_stop_reply != NULL)
5090 remote_get_pending_stop_replies ();
5091
5092 /* If indeed we noticed a stop reply, we're done. */
5093 stop_reply = queued_stop_reply (ptid);
5094 if (stop_reply != NULL)
5095 return process_stop_reply (stop_reply, status);
5096
5097 /* Still no event. If we're just polling for an event, then
5098 return to the event loop. */
5099 if (options & TARGET_WNOHANG)
5100 {
5101 status->kind = TARGET_WAITKIND_IGNORE;
5102 return minus_one_ptid;
5103 }
5104
5105 /* Otherwise do a blocking wait. */
5106 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5107 1 /* forever */);
5108 }
5109 }
5110
5111 /* Wait until the remote machine stops, then return, storing status in
5112 STATUS just as `wait' would. */
5113
5114 static ptid_t
5115 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5116 {
5117 struct remote_state *rs = get_remote_state ();
5118 ptid_t event_ptid = null_ptid;
5119 char *buf;
5120 struct stop_reply *stop_reply;
5121
5122 again:
5123
5124 status->kind = TARGET_WAITKIND_IGNORE;
5125 status->value.integer = 0;
5126
5127 stop_reply = queued_stop_reply (ptid);
5128 if (stop_reply != NULL)
5129 return process_stop_reply (stop_reply, status);
5130
5131 if (rs->cached_wait_status)
5132 /* Use the cached wait status, but only once. */
5133 rs->cached_wait_status = 0;
5134 else
5135 {
5136 int ret;
5137
5138 if (!target_is_async_p ())
5139 {
5140 ofunc = signal (SIGINT, remote_interrupt);
5141 /* If the user hit C-c before this packet, or between packets,
5142 pretend that it was hit right here. */
5143 if (quit_flag)
5144 {
5145 quit_flag = 0;
5146 remote_interrupt (SIGINT);
5147 }
5148 }
5149
5150 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5151 _never_ wait for ever -> test on target_is_async_p().
5152 However, before we do that we need to ensure that the caller
5153 knows how to take the target into/out of async mode. */
5154 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
5155 if (!target_is_async_p ())
5156 signal (SIGINT, ofunc);
5157 }
5158
5159 buf = rs->buf;
5160
5161 remote_stopped_by_watchpoint_p = 0;
5162
5163 /* We got something. */
5164 rs->waiting_for_stop_reply = 0;
5165
5166 /* Assume that the target has acknowledged Ctrl-C unless we receive
5167 an 'F' or 'O' packet. */
5168 if (buf[0] != 'F' && buf[0] != 'O')
5169 rs->ctrlc_pending_p = 0;
5170
5171 switch (buf[0])
5172 {
5173 case 'E': /* Error of some sort. */
5174 /* We're out of sync with the target now. Did it continue or
5175 not? Not is more likely, so report a stop. */
5176 warning (_("Remote failure reply: %s"), buf);
5177 status->kind = TARGET_WAITKIND_STOPPED;
5178 status->value.sig = TARGET_SIGNAL_0;
5179 break;
5180 case 'F': /* File-I/O request. */
5181 remote_fileio_request (buf, rs->ctrlc_pending_p);
5182 rs->ctrlc_pending_p = 0;
5183 break;
5184 case 'T': case 'S': case 'X': case 'W':
5185 {
5186 struct stop_reply *stop_reply;
5187 struct cleanup *old_chain;
5188
5189 stop_reply = stop_reply_xmalloc ();
5190 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
5191 remote_parse_stop_reply (buf, stop_reply);
5192 discard_cleanups (old_chain);
5193 event_ptid = process_stop_reply (stop_reply, status);
5194 break;
5195 }
5196 case 'O': /* Console output. */
5197 remote_console_output (buf + 1);
5198
5199 /* The target didn't really stop; keep waiting. */
5200 rs->waiting_for_stop_reply = 1;
5201
5202 break;
5203 case '\0':
5204 if (last_sent_signal != TARGET_SIGNAL_0)
5205 {
5206 /* Zero length reply means that we tried 'S' or 'C' and the
5207 remote system doesn't support it. */
5208 target_terminal_ours_for_output ();
5209 printf_filtered
5210 ("Can't send signals to this remote system. %s not sent.\n",
5211 target_signal_to_name (last_sent_signal));
5212 last_sent_signal = TARGET_SIGNAL_0;
5213 target_terminal_inferior ();
5214
5215 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5216 putpkt ((char *) buf);
5217
5218 /* We just told the target to resume, so a stop reply is in
5219 order. */
5220 rs->waiting_for_stop_reply = 1;
5221 break;
5222 }
5223 /* else fallthrough */
5224 default:
5225 warning (_("Invalid remote reply: %s"), buf);
5226 /* Keep waiting. */
5227 rs->waiting_for_stop_reply = 1;
5228 break;
5229 }
5230
5231 if (status->kind == TARGET_WAITKIND_IGNORE)
5232 {
5233 /* Nothing interesting happened. If we're doing a non-blocking
5234 poll, we're done. Otherwise, go back to waiting. */
5235 if (options & TARGET_WNOHANG)
5236 return minus_one_ptid;
5237 else
5238 goto again;
5239 }
5240 else if (status->kind != TARGET_WAITKIND_EXITED
5241 && status->kind != TARGET_WAITKIND_SIGNALLED)
5242 {
5243 if (!ptid_equal (event_ptid, null_ptid))
5244 record_currthread (event_ptid);
5245 else
5246 event_ptid = inferior_ptid;
5247 }
5248 else
5249 /* A process exit. Invalidate our notion of current thread. */
5250 record_currthread (minus_one_ptid);
5251
5252 return event_ptid;
5253 }
5254
5255 /* Wait until the remote machine stops, then return, storing status in
5256 STATUS just as `wait' would. */
5257
5258 static ptid_t
5259 remote_wait (struct target_ops *ops,
5260 ptid_t ptid, struct target_waitstatus *status, int options)
5261 {
5262 ptid_t event_ptid;
5263
5264 if (non_stop)
5265 event_ptid = remote_wait_ns (ptid, status, options);
5266 else
5267 event_ptid = remote_wait_as (ptid, status, options);
5268
5269 if (target_can_async_p ())
5270 {
5271 /* If there are are events left in the queue tell the event loop
5272 to return here. */
5273 if (stop_reply_queue)
5274 mark_async_event_handler (remote_async_inferior_event_token);
5275 }
5276
5277 return event_ptid;
5278 }
5279
5280 /* Fetch a single register using a 'p' packet. */
5281
5282 static int
5283 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
5284 {
5285 struct remote_state *rs = get_remote_state ();
5286 char *buf, *p;
5287 char regp[MAX_REGISTER_SIZE];
5288 int i;
5289
5290 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
5291 return 0;
5292
5293 if (reg->pnum == -1)
5294 return 0;
5295
5296 p = rs->buf;
5297 *p++ = 'p';
5298 p += hexnumstr (p, reg->pnum);
5299 *p++ = '\0';
5300 putpkt (rs->buf);
5301 getpkt (&rs->buf, &rs->buf_size, 0);
5302
5303 buf = rs->buf;
5304
5305 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
5306 {
5307 case PACKET_OK:
5308 break;
5309 case PACKET_UNKNOWN:
5310 return 0;
5311 case PACKET_ERROR:
5312 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
5313 gdbarch_register_name (get_regcache_arch (regcache),
5314 reg->regnum),
5315 buf);
5316 }
5317
5318 /* If this register is unfetchable, tell the regcache. */
5319 if (buf[0] == 'x')
5320 {
5321 regcache_raw_supply (regcache, reg->regnum, NULL);
5322 return 1;
5323 }
5324
5325 /* Otherwise, parse and supply the value. */
5326 p = buf;
5327 i = 0;
5328 while (p[0] != 0)
5329 {
5330 if (p[1] == 0)
5331 error (_("fetch_register_using_p: early buf termination"));
5332
5333 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
5334 p += 2;
5335 }
5336 regcache_raw_supply (regcache, reg->regnum, regp);
5337 return 1;
5338 }
5339
5340 /* Fetch the registers included in the target's 'g' packet. */
5341
5342 static int
5343 send_g_packet (void)
5344 {
5345 struct remote_state *rs = get_remote_state ();
5346 int buf_len;
5347
5348 sprintf (rs->buf, "g");
5349 remote_send (&rs->buf, &rs->buf_size);
5350
5351 /* We can get out of synch in various cases. If the first character
5352 in the buffer is not a hex character, assume that has happened
5353 and try to fetch another packet to read. */
5354 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
5355 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
5356 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
5357 && rs->buf[0] != 'x') /* New: unavailable register value. */
5358 {
5359 if (remote_debug)
5360 fprintf_unfiltered (gdb_stdlog,
5361 "Bad register packet; fetching a new packet\n");
5362 getpkt (&rs->buf, &rs->buf_size, 0);
5363 }
5364
5365 buf_len = strlen (rs->buf);
5366
5367 /* Sanity check the received packet. */
5368 if (buf_len % 2 != 0)
5369 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
5370
5371 return buf_len / 2;
5372 }
5373
5374 static void
5375 process_g_packet (struct regcache *regcache)
5376 {
5377 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5378 struct remote_state *rs = get_remote_state ();
5379 struct remote_arch_state *rsa = get_remote_arch_state ();
5380 int i, buf_len;
5381 char *p;
5382 char *regs;
5383
5384 buf_len = strlen (rs->buf);
5385
5386 /* Further sanity checks, with knowledge of the architecture. */
5387 if (buf_len > 2 * rsa->sizeof_g_packet)
5388 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
5389
5390 /* Save the size of the packet sent to us by the target. It is used
5391 as a heuristic when determining the max size of packets that the
5392 target can safely receive. */
5393 if (rsa->actual_register_packet_size == 0)
5394 rsa->actual_register_packet_size = buf_len;
5395
5396 /* If this is smaller than we guessed the 'g' packet would be,
5397 update our records. A 'g' reply that doesn't include a register's
5398 value implies either that the register is not available, or that
5399 the 'p' packet must be used. */
5400 if (buf_len < 2 * rsa->sizeof_g_packet)
5401 {
5402 rsa->sizeof_g_packet = buf_len / 2;
5403
5404 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5405 {
5406 if (rsa->regs[i].pnum == -1)
5407 continue;
5408
5409 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
5410 rsa->regs[i].in_g_packet = 0;
5411 else
5412 rsa->regs[i].in_g_packet = 1;
5413 }
5414 }
5415
5416 regs = alloca (rsa->sizeof_g_packet);
5417
5418 /* Unimplemented registers read as all bits zero. */
5419 memset (regs, 0, rsa->sizeof_g_packet);
5420
5421 /* Reply describes registers byte by byte, each byte encoded as two
5422 hex characters. Suck them all up, then supply them to the
5423 register cacheing/storage mechanism. */
5424
5425 p = rs->buf;
5426 for (i = 0; i < rsa->sizeof_g_packet; i++)
5427 {
5428 if (p[0] == 0 || p[1] == 0)
5429 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
5430 internal_error (__FILE__, __LINE__,
5431 "unexpected end of 'g' packet reply");
5432
5433 if (p[0] == 'x' && p[1] == 'x')
5434 regs[i] = 0; /* 'x' */
5435 else
5436 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
5437 p += 2;
5438 }
5439
5440 {
5441 int i;
5442 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
5443 {
5444 struct packet_reg *r = &rsa->regs[i];
5445 if (r->in_g_packet)
5446 {
5447 if (r->offset * 2 >= strlen (rs->buf))
5448 /* This shouldn't happen - we adjusted in_g_packet above. */
5449 internal_error (__FILE__, __LINE__,
5450 "unexpected end of 'g' packet reply");
5451 else if (rs->buf[r->offset * 2] == 'x')
5452 {
5453 gdb_assert (r->offset * 2 < strlen (rs->buf));
5454 /* The register isn't available, mark it as such (at
5455 the same time setting the value to zero). */
5456 regcache_raw_supply (regcache, r->regnum, NULL);
5457 }
5458 else
5459 regcache_raw_supply (regcache, r->regnum,
5460 regs + r->offset);
5461 }
5462 }
5463 }
5464 }
5465
5466 static void
5467 fetch_registers_using_g (struct regcache *regcache)
5468 {
5469 send_g_packet ();
5470 process_g_packet (regcache);
5471 }
5472
5473 static void
5474 remote_fetch_registers (struct target_ops *ops,
5475 struct regcache *regcache, int regnum)
5476 {
5477 struct remote_arch_state *rsa = get_remote_arch_state ();
5478 int i;
5479
5480 set_general_thread (inferior_ptid);
5481
5482 if (regnum >= 0)
5483 {
5484 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5485 gdb_assert (reg != NULL);
5486
5487 /* If this register might be in the 'g' packet, try that first -
5488 we are likely to read more than one register. If this is the
5489 first 'g' packet, we might be overly optimistic about its
5490 contents, so fall back to 'p'. */
5491 if (reg->in_g_packet)
5492 {
5493 fetch_registers_using_g (regcache);
5494 if (reg->in_g_packet)
5495 return;
5496 }
5497
5498 if (fetch_register_using_p (regcache, reg))
5499 return;
5500
5501 /* This register is not available. */
5502 regcache_raw_supply (regcache, reg->regnum, NULL);
5503
5504 return;
5505 }
5506
5507 fetch_registers_using_g (regcache);
5508
5509 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5510 if (!rsa->regs[i].in_g_packet)
5511 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
5512 {
5513 /* This register is not available. */
5514 regcache_raw_supply (regcache, i, NULL);
5515 }
5516 }
5517
5518 /* Prepare to store registers. Since we may send them all (using a
5519 'G' request), we have to read out the ones we don't want to change
5520 first. */
5521
5522 static void
5523 remote_prepare_to_store (struct regcache *regcache)
5524 {
5525 struct remote_arch_state *rsa = get_remote_arch_state ();
5526 int i;
5527 gdb_byte buf[MAX_REGISTER_SIZE];
5528
5529 /* Make sure the entire registers array is valid. */
5530 switch (remote_protocol_packets[PACKET_P].support)
5531 {
5532 case PACKET_DISABLE:
5533 case PACKET_SUPPORT_UNKNOWN:
5534 /* Make sure all the necessary registers are cached. */
5535 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5536 if (rsa->regs[i].in_g_packet)
5537 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5538 break;
5539 case PACKET_ENABLE:
5540 break;
5541 }
5542 }
5543
5544 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5545 packet was not recognized. */
5546
5547 static int
5548 store_register_using_P (const struct regcache *regcache,
5549 struct packet_reg *reg)
5550 {
5551 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5552 struct remote_state *rs = get_remote_state ();
5553 /* Try storing a single register. */
5554 char *buf = rs->buf;
5555 gdb_byte regp[MAX_REGISTER_SIZE];
5556 char *p;
5557
5558 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5559 return 0;
5560
5561 if (reg->pnum == -1)
5562 return 0;
5563
5564 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5565 p = buf + strlen (buf);
5566 regcache_raw_collect (regcache, reg->regnum, regp);
5567 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5568 putpkt (rs->buf);
5569 getpkt (&rs->buf, &rs->buf_size, 0);
5570
5571 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5572 {
5573 case PACKET_OK:
5574 return 1;
5575 case PACKET_ERROR:
5576 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
5577 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
5578 case PACKET_UNKNOWN:
5579 return 0;
5580 default:
5581 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5582 }
5583 }
5584
5585 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5586 contents of the register cache buffer. FIXME: ignores errors. */
5587
5588 static void
5589 store_registers_using_G (const struct regcache *regcache)
5590 {
5591 struct remote_state *rs = get_remote_state ();
5592 struct remote_arch_state *rsa = get_remote_arch_state ();
5593 gdb_byte *regs;
5594 char *p;
5595
5596 /* Extract all the registers in the regcache copying them into a
5597 local buffer. */
5598 {
5599 int i;
5600 regs = alloca (rsa->sizeof_g_packet);
5601 memset (regs, 0, rsa->sizeof_g_packet);
5602 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5603 {
5604 struct packet_reg *r = &rsa->regs[i];
5605 if (r->in_g_packet)
5606 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5607 }
5608 }
5609
5610 /* Command describes registers byte by byte,
5611 each byte encoded as two hex characters. */
5612 p = rs->buf;
5613 *p++ = 'G';
5614 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5615 updated. */
5616 bin2hex (regs, p, rsa->sizeof_g_packet);
5617 putpkt (rs->buf);
5618 getpkt (&rs->buf, &rs->buf_size, 0);
5619 if (packet_check_result (rs->buf) == PACKET_ERROR)
5620 error (_("Could not write registers; remote failure reply '%s'"),
5621 rs->buf);
5622 }
5623
5624 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5625 of the register cache buffer. FIXME: ignores errors. */
5626
5627 static void
5628 remote_store_registers (struct target_ops *ops,
5629 struct regcache *regcache, int regnum)
5630 {
5631 struct remote_arch_state *rsa = get_remote_arch_state ();
5632 int i;
5633
5634 set_general_thread (inferior_ptid);
5635
5636 if (regnum >= 0)
5637 {
5638 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5639 gdb_assert (reg != NULL);
5640
5641 /* Always prefer to store registers using the 'P' packet if
5642 possible; we often change only a small number of registers.
5643 Sometimes we change a larger number; we'd need help from a
5644 higher layer to know to use 'G'. */
5645 if (store_register_using_P (regcache, reg))
5646 return;
5647
5648 /* For now, don't complain if we have no way to write the
5649 register. GDB loses track of unavailable registers too
5650 easily. Some day, this may be an error. We don't have
5651 any way to read the register, either... */
5652 if (!reg->in_g_packet)
5653 return;
5654
5655 store_registers_using_G (regcache);
5656 return;
5657 }
5658
5659 store_registers_using_G (regcache);
5660
5661 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5662 if (!rsa->regs[i].in_g_packet)
5663 if (!store_register_using_P (regcache, &rsa->regs[i]))
5664 /* See above for why we do not issue an error here. */
5665 continue;
5666 }
5667 \f
5668
5669 /* Return the number of hex digits in num. */
5670
5671 static int
5672 hexnumlen (ULONGEST num)
5673 {
5674 int i;
5675
5676 for (i = 0; num != 0; i++)
5677 num >>= 4;
5678
5679 return max (i, 1);
5680 }
5681
5682 /* Set BUF to the minimum number of hex digits representing NUM. */
5683
5684 static int
5685 hexnumstr (char *buf, ULONGEST num)
5686 {
5687 int len = hexnumlen (num);
5688 return hexnumnstr (buf, num, len);
5689 }
5690
5691
5692 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5693
5694 static int
5695 hexnumnstr (char *buf, ULONGEST num, int width)
5696 {
5697 int i;
5698
5699 buf[width] = '\0';
5700
5701 for (i = width - 1; i >= 0; i--)
5702 {
5703 buf[i] = "0123456789abcdef"[(num & 0xf)];
5704 num >>= 4;
5705 }
5706
5707 return width;
5708 }
5709
5710 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5711
5712 static CORE_ADDR
5713 remote_address_masked (CORE_ADDR addr)
5714 {
5715 int address_size = remote_address_size;
5716 /* If "remoteaddresssize" was not set, default to target address size. */
5717 if (!address_size)
5718 address_size = gdbarch_addr_bit (target_gdbarch);
5719
5720 if (address_size > 0
5721 && address_size < (sizeof (ULONGEST) * 8))
5722 {
5723 /* Only create a mask when that mask can safely be constructed
5724 in a ULONGEST variable. */
5725 ULONGEST mask = 1;
5726 mask = (mask << address_size) - 1;
5727 addr &= mask;
5728 }
5729 return addr;
5730 }
5731
5732 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5733 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5734 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5735 (which may be more than *OUT_LEN due to escape characters). The
5736 total number of bytes in the output buffer will be at most
5737 OUT_MAXLEN. */
5738
5739 static int
5740 remote_escape_output (const gdb_byte *buffer, int len,
5741 gdb_byte *out_buf, int *out_len,
5742 int out_maxlen)
5743 {
5744 int input_index, output_index;
5745
5746 output_index = 0;
5747 for (input_index = 0; input_index < len; input_index++)
5748 {
5749 gdb_byte b = buffer[input_index];
5750
5751 if (b == '$' || b == '#' || b == '}')
5752 {
5753 /* These must be escaped. */
5754 if (output_index + 2 > out_maxlen)
5755 break;
5756 out_buf[output_index++] = '}';
5757 out_buf[output_index++] = b ^ 0x20;
5758 }
5759 else
5760 {
5761 if (output_index + 1 > out_maxlen)
5762 break;
5763 out_buf[output_index++] = b;
5764 }
5765 }
5766
5767 *out_len = input_index;
5768 return output_index;
5769 }
5770
5771 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5772 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5773 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5774
5775 This function reverses remote_escape_output. It allows more
5776 escaped characters than that function does, in particular because
5777 '*' must be escaped to avoid the run-length encoding processing
5778 in reading packets. */
5779
5780 static int
5781 remote_unescape_input (const gdb_byte *buffer, int len,
5782 gdb_byte *out_buf, int out_maxlen)
5783 {
5784 int input_index, output_index;
5785 int escaped;
5786
5787 output_index = 0;
5788 escaped = 0;
5789 for (input_index = 0; input_index < len; input_index++)
5790 {
5791 gdb_byte b = buffer[input_index];
5792
5793 if (output_index + 1 > out_maxlen)
5794 {
5795 warning (_("Received too much data from remote target;"
5796 " ignoring overflow."));
5797 return output_index;
5798 }
5799
5800 if (escaped)
5801 {
5802 out_buf[output_index++] = b ^ 0x20;
5803 escaped = 0;
5804 }
5805 else if (b == '}')
5806 escaped = 1;
5807 else
5808 out_buf[output_index++] = b;
5809 }
5810
5811 if (escaped)
5812 error (_("Unmatched escape character in target response."));
5813
5814 return output_index;
5815 }
5816
5817 /* Determine whether the remote target supports binary downloading.
5818 This is accomplished by sending a no-op memory write of zero length
5819 to the target at the specified address. It does not suffice to send
5820 the whole packet, since many stubs strip the eighth bit and
5821 subsequently compute a wrong checksum, which causes real havoc with
5822 remote_write_bytes.
5823
5824 NOTE: This can still lose if the serial line is not eight-bit
5825 clean. In cases like this, the user should clear "remote
5826 X-packet". */
5827
5828 static void
5829 check_binary_download (CORE_ADDR addr)
5830 {
5831 struct remote_state *rs = get_remote_state ();
5832
5833 switch (remote_protocol_packets[PACKET_X].support)
5834 {
5835 case PACKET_DISABLE:
5836 break;
5837 case PACKET_ENABLE:
5838 break;
5839 case PACKET_SUPPORT_UNKNOWN:
5840 {
5841 char *p;
5842
5843 p = rs->buf;
5844 *p++ = 'X';
5845 p += hexnumstr (p, (ULONGEST) addr);
5846 *p++ = ',';
5847 p += hexnumstr (p, (ULONGEST) 0);
5848 *p++ = ':';
5849 *p = '\0';
5850
5851 putpkt_binary (rs->buf, (int) (p - rs->buf));
5852 getpkt (&rs->buf, &rs->buf_size, 0);
5853
5854 if (rs->buf[0] == '\0')
5855 {
5856 if (remote_debug)
5857 fprintf_unfiltered (gdb_stdlog,
5858 "binary downloading NOT suppported by target\n");
5859 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5860 }
5861 else
5862 {
5863 if (remote_debug)
5864 fprintf_unfiltered (gdb_stdlog,
5865 "binary downloading suppported by target\n");
5866 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5867 }
5868 break;
5869 }
5870 }
5871 }
5872
5873 /* Write memory data directly to the remote machine.
5874 This does not inform the data cache; the data cache uses this.
5875 HEADER is the starting part of the packet.
5876 MEMADDR is the address in the remote memory space.
5877 MYADDR is the address of the buffer in our space.
5878 LEN is the number of bytes.
5879 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5880 should send data as binary ('X'), or hex-encoded ('M').
5881
5882 The function creates packet of the form
5883 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5884
5885 where encoding of <DATA> is termined by PACKET_FORMAT.
5886
5887 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5888 are omitted.
5889
5890 Returns the number of bytes transferred, or 0 (setting errno) for
5891 error. Only transfer a single packet. */
5892
5893 static int
5894 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5895 const gdb_byte *myaddr, int len,
5896 char packet_format, int use_length)
5897 {
5898 struct remote_state *rs = get_remote_state ();
5899 char *p;
5900 char *plen = NULL;
5901 int plenlen = 0;
5902 int todo;
5903 int nr_bytes;
5904 int payload_size;
5905 int payload_length;
5906 int header_length;
5907
5908 if (packet_format != 'X' && packet_format != 'M')
5909 internal_error (__FILE__, __LINE__,
5910 "remote_write_bytes_aux: bad packet format");
5911
5912 if (len <= 0)
5913 return 0;
5914
5915 payload_size = get_memory_write_packet_size ();
5916
5917 /* The packet buffer will be large enough for the payload;
5918 get_memory_packet_size ensures this. */
5919 rs->buf[0] = '\0';
5920
5921 /* Compute the size of the actual payload by subtracting out the
5922 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5923 */
5924 payload_size -= strlen ("$,:#NN");
5925 if (!use_length)
5926 /* The comma won't be used. */
5927 payload_size += 1;
5928 header_length = strlen (header);
5929 payload_size -= header_length;
5930 payload_size -= hexnumlen (memaddr);
5931
5932 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5933
5934 strcat (rs->buf, header);
5935 p = rs->buf + strlen (header);
5936
5937 /* Compute a best guess of the number of bytes actually transfered. */
5938 if (packet_format == 'X')
5939 {
5940 /* Best guess at number of bytes that will fit. */
5941 todo = min (len, payload_size);
5942 if (use_length)
5943 payload_size -= hexnumlen (todo);
5944 todo = min (todo, payload_size);
5945 }
5946 else
5947 {
5948 /* Num bytes that will fit. */
5949 todo = min (len, payload_size / 2);
5950 if (use_length)
5951 payload_size -= hexnumlen (todo);
5952 todo = min (todo, payload_size / 2);
5953 }
5954
5955 if (todo <= 0)
5956 internal_error (__FILE__, __LINE__,
5957 _("minumum packet size too small to write data"));
5958
5959 /* If we already need another packet, then try to align the end
5960 of this packet to a useful boundary. */
5961 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5962 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5963
5964 /* Append "<memaddr>". */
5965 memaddr = remote_address_masked (memaddr);
5966 p += hexnumstr (p, (ULONGEST) memaddr);
5967
5968 if (use_length)
5969 {
5970 /* Append ",". */
5971 *p++ = ',';
5972
5973 /* Append <len>. Retain the location/size of <len>. It may need to
5974 be adjusted once the packet body has been created. */
5975 plen = p;
5976 plenlen = hexnumstr (p, (ULONGEST) todo);
5977 p += plenlen;
5978 }
5979
5980 /* Append ":". */
5981 *p++ = ':';
5982 *p = '\0';
5983
5984 /* Append the packet body. */
5985 if (packet_format == 'X')
5986 {
5987 /* Binary mode. Send target system values byte by byte, in
5988 increasing byte addresses. Only escape certain critical
5989 characters. */
5990 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5991 payload_size);
5992
5993 /* If not all TODO bytes fit, then we'll need another packet. Make
5994 a second try to keep the end of the packet aligned. Don't do
5995 this if the packet is tiny. */
5996 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5997 {
5998 int new_nr_bytes;
5999
6000 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6001 - memaddr);
6002 if (new_nr_bytes != nr_bytes)
6003 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6004 p, &nr_bytes,
6005 payload_size);
6006 }
6007
6008 p += payload_length;
6009 if (use_length && nr_bytes < todo)
6010 {
6011 /* Escape chars have filled up the buffer prematurely,
6012 and we have actually sent fewer bytes than planned.
6013 Fix-up the length field of the packet. Use the same
6014 number of characters as before. */
6015 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6016 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6017 }
6018 }
6019 else
6020 {
6021 /* Normal mode: Send target system values byte by byte, in
6022 increasing byte addresses. Each byte is encoded as a two hex
6023 value. */
6024 nr_bytes = bin2hex (myaddr, p, todo);
6025 p += 2 * nr_bytes;
6026 }
6027
6028 putpkt_binary (rs->buf, (int) (p - rs->buf));
6029 getpkt (&rs->buf, &rs->buf_size, 0);
6030
6031 if (rs->buf[0] == 'E')
6032 {
6033 /* There is no correspondance between what the remote protocol
6034 uses for errors and errno codes. We would like a cleaner way
6035 of representing errors (big enough to include errno codes,
6036 bfd_error codes, and others). But for now just return EIO. */
6037 errno = EIO;
6038 return 0;
6039 }
6040
6041 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6042 fewer bytes than we'd planned. */
6043 return nr_bytes;
6044 }
6045
6046 /* Write memory data directly to the remote machine.
6047 This does not inform the data cache; the data cache uses this.
6048 MEMADDR is the address in the remote memory space.
6049 MYADDR is the address of the buffer in our space.
6050 LEN is the number of bytes.
6051
6052 Returns number of bytes transferred, or 0 (setting errno) for
6053 error. Only transfer a single packet. */
6054
6055 int
6056 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
6057 {
6058 char *packet_format = 0;
6059
6060 /* Check whether the target supports binary download. */
6061 check_binary_download (memaddr);
6062
6063 switch (remote_protocol_packets[PACKET_X].support)
6064 {
6065 case PACKET_ENABLE:
6066 packet_format = "X";
6067 break;
6068 case PACKET_DISABLE:
6069 packet_format = "M";
6070 break;
6071 case PACKET_SUPPORT_UNKNOWN:
6072 internal_error (__FILE__, __LINE__,
6073 _("remote_write_bytes: bad internal state"));
6074 default:
6075 internal_error (__FILE__, __LINE__, _("bad switch"));
6076 }
6077
6078 return remote_write_bytes_aux (packet_format,
6079 memaddr, myaddr, len, packet_format[0], 1);
6080 }
6081
6082 /* Read memory data directly from the remote machine.
6083 This does not use the data cache; the data cache uses this.
6084 MEMADDR is the address in the remote memory space.
6085 MYADDR is the address of the buffer in our space.
6086 LEN is the number of bytes.
6087
6088 Returns number of bytes transferred, or 0 for error. */
6089
6090 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
6091 remote targets) shouldn't attempt to read the entire buffer.
6092 Instead it should read a single packet worth of data and then
6093 return the byte size of that packet to the caller. The caller (its
6094 caller and its callers caller ;-) already contains code for
6095 handling partial reads. */
6096
6097 int
6098 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6099 {
6100 struct remote_state *rs = get_remote_state ();
6101 int max_buf_size; /* Max size of packet output buffer. */
6102 int origlen;
6103
6104 if (len <= 0)
6105 return 0;
6106
6107 max_buf_size = get_memory_read_packet_size ();
6108 /* The packet buffer will be large enough for the payload;
6109 get_memory_packet_size ensures this. */
6110
6111 origlen = len;
6112 while (len > 0)
6113 {
6114 char *p;
6115 int todo;
6116 int i;
6117
6118 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
6119
6120 /* construct "m"<memaddr>","<len>" */
6121 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
6122 memaddr = remote_address_masked (memaddr);
6123 p = rs->buf;
6124 *p++ = 'm';
6125 p += hexnumstr (p, (ULONGEST) memaddr);
6126 *p++ = ',';
6127 p += hexnumstr (p, (ULONGEST) todo);
6128 *p = '\0';
6129
6130 putpkt (rs->buf);
6131 getpkt (&rs->buf, &rs->buf_size, 0);
6132
6133 if (rs->buf[0] == 'E'
6134 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6135 && rs->buf[3] == '\0')
6136 {
6137 /* There is no correspondance between what the remote
6138 protocol uses for errors and errno codes. We would like
6139 a cleaner way of representing errors (big enough to
6140 include errno codes, bfd_error codes, and others). But
6141 for now just return EIO. */
6142 errno = EIO;
6143 return 0;
6144 }
6145
6146 /* Reply describes memory byte by byte,
6147 each byte encoded as two hex characters. */
6148
6149 p = rs->buf;
6150 if ((i = hex2bin (p, myaddr, todo)) < todo)
6151 {
6152 /* Reply is short. This means that we were able to read
6153 only part of what we wanted to. */
6154 return i + (origlen - len);
6155 }
6156 myaddr += todo;
6157 memaddr += todo;
6158 len -= todo;
6159 }
6160 return origlen;
6161 }
6162 \f
6163
6164 /* Remote notification handler. */
6165
6166 static void
6167 handle_notification (char *buf, size_t length)
6168 {
6169 if (strncmp (buf, "Stop:", 5) == 0)
6170 {
6171 if (pending_stop_reply)
6172 /* We've already parsed the in-flight stop-reply, but the stub
6173 for some reason thought we didn't, possibly due to timeout
6174 on its side. Just ignore it. */
6175 ;
6176 else
6177 {
6178 struct cleanup *old_chain;
6179 struct stop_reply *reply = stop_reply_xmalloc ();
6180 old_chain = make_cleanup (do_stop_reply_xfree, reply);
6181
6182 remote_parse_stop_reply (buf + 5, reply);
6183
6184 discard_cleanups (old_chain);
6185
6186 /* Be careful to only set it after parsing, since an error
6187 may be thrown then. */
6188 pending_stop_reply = reply;
6189
6190 /* Notify the event loop there's a stop reply to acknowledge
6191 and that there may be more events to fetch. */
6192 mark_async_event_handler (remote_async_get_pending_events_token);
6193 }
6194 }
6195 else
6196 /* We ignore notifications we don't recognize, for compatibility
6197 with newer stubs. */
6198 ;
6199 }
6200
6201 \f
6202 /* Read or write LEN bytes from inferior memory at MEMADDR,
6203 transferring to or from debugger address BUFFER. Write to inferior
6204 if SHOULD_WRITE is nonzero. Returns length of data written or
6205 read; 0 for error. TARGET is unused. */
6206
6207 static int
6208 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6209 int should_write, struct mem_attrib *attrib,
6210 struct target_ops *target)
6211 {
6212 int res;
6213
6214 set_general_thread (inferior_ptid);
6215
6216 if (should_write)
6217 res = remote_write_bytes (mem_addr, buffer, mem_len);
6218 else
6219 res = remote_read_bytes (mem_addr, buffer, mem_len);
6220
6221 return res;
6222 }
6223
6224 /* Sends a packet with content determined by the printf format string
6225 FORMAT and the remaining arguments, then gets the reply. Returns
6226 whether the packet was a success, a failure, or unknown. */
6227
6228 static enum packet_result
6229 remote_send_printf (const char *format, ...)
6230 {
6231 struct remote_state *rs = get_remote_state ();
6232 int max_size = get_remote_packet_size ();
6233
6234 va_list ap;
6235 va_start (ap, format);
6236
6237 rs->buf[0] = '\0';
6238 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6239 internal_error (__FILE__, __LINE__, "Too long remote packet.");
6240
6241 if (putpkt (rs->buf) < 0)
6242 error (_("Communication problem with target."));
6243
6244 rs->buf[0] = '\0';
6245 getpkt (&rs->buf, &rs->buf_size, 0);
6246
6247 return packet_check_result (rs->buf);
6248 }
6249
6250 static void
6251 restore_remote_timeout (void *p)
6252 {
6253 int value = *(int *)p;
6254 remote_timeout = value;
6255 }
6256
6257 /* Flash writing can take quite some time. We'll set
6258 effectively infinite timeout for flash operations.
6259 In future, we'll need to decide on a better approach. */
6260 static const int remote_flash_timeout = 1000;
6261
6262 static void
6263 remote_flash_erase (struct target_ops *ops,
6264 ULONGEST address, LONGEST length)
6265 {
6266 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
6267 int saved_remote_timeout = remote_timeout;
6268 enum packet_result ret;
6269
6270 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6271 &saved_remote_timeout);
6272 remote_timeout = remote_flash_timeout;
6273
6274 ret = remote_send_printf ("vFlashErase:%s,%s",
6275 phex (address, addr_size),
6276 phex (length, 4));
6277 switch (ret)
6278 {
6279 case PACKET_UNKNOWN:
6280 error (_("Remote target does not support flash erase"));
6281 case PACKET_ERROR:
6282 error (_("Error erasing flash with vFlashErase packet"));
6283 default:
6284 break;
6285 }
6286
6287 do_cleanups (back_to);
6288 }
6289
6290 static LONGEST
6291 remote_flash_write (struct target_ops *ops,
6292 ULONGEST address, LONGEST length,
6293 const gdb_byte *data)
6294 {
6295 int saved_remote_timeout = remote_timeout;
6296 int ret;
6297 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6298 &saved_remote_timeout);
6299
6300 remote_timeout = remote_flash_timeout;
6301 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6302 do_cleanups (back_to);
6303
6304 return ret;
6305 }
6306
6307 static void
6308 remote_flash_done (struct target_ops *ops)
6309 {
6310 int saved_remote_timeout = remote_timeout;
6311 int ret;
6312 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6313 &saved_remote_timeout);
6314
6315 remote_timeout = remote_flash_timeout;
6316 ret = remote_send_printf ("vFlashDone");
6317 do_cleanups (back_to);
6318
6319 switch (ret)
6320 {
6321 case PACKET_UNKNOWN:
6322 error (_("Remote target does not support vFlashDone"));
6323 case PACKET_ERROR:
6324 error (_("Error finishing flash operation"));
6325 default:
6326 break;
6327 }
6328 }
6329
6330 static void
6331 remote_files_info (struct target_ops *ignore)
6332 {
6333 puts_filtered ("Debugging a target over a serial line.\n");
6334 }
6335 \f
6336 /* Stuff for dealing with the packets which are part of this protocol.
6337 See comment at top of file for details. */
6338
6339 /* Read a single character from the remote end. */
6340
6341 static int
6342 readchar (int timeout)
6343 {
6344 int ch;
6345
6346 ch = serial_readchar (remote_desc, timeout);
6347
6348 if (ch >= 0)
6349 return ch;
6350
6351 switch ((enum serial_rc) ch)
6352 {
6353 case SERIAL_EOF:
6354 pop_target ();
6355 error (_("Remote connection closed"));
6356 /* no return */
6357 case SERIAL_ERROR:
6358 perror_with_name (_("Remote communication error"));
6359 /* no return */
6360 case SERIAL_TIMEOUT:
6361 break;
6362 }
6363 return ch;
6364 }
6365
6366 /* Send the command in *BUF to the remote machine, and read the reply
6367 into *BUF. Report an error if we get an error reply. Resize
6368 *BUF using xrealloc if necessary to hold the result, and update
6369 *SIZEOF_BUF. */
6370
6371 static void
6372 remote_send (char **buf,
6373 long *sizeof_buf)
6374 {
6375 putpkt (*buf);
6376 getpkt (buf, sizeof_buf, 0);
6377
6378 if ((*buf)[0] == 'E')
6379 error (_("Remote failure reply: %s"), *buf);
6380 }
6381
6382 /* Return a pointer to an xmalloc'ed string representing an escaped
6383 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
6384 etc. The caller is responsible for releasing the returned
6385 memory. */
6386
6387 static char *
6388 escape_buffer (const char *buf, int n)
6389 {
6390 struct cleanup *old_chain;
6391 struct ui_file *stb;
6392 char *str;
6393
6394 stb = mem_fileopen ();
6395 old_chain = make_cleanup_ui_file_delete (stb);
6396
6397 fputstrn_unfiltered (buf, n, 0, stb);
6398 str = ui_file_xstrdup (stb, NULL);
6399 do_cleanups (old_chain);
6400 return str;
6401 }
6402
6403 /* Display a null-terminated packet on stdout, for debugging, using C
6404 string notation. */
6405
6406 static void
6407 print_packet (char *buf)
6408 {
6409 puts_filtered ("\"");
6410 fputstr_filtered (buf, '"', gdb_stdout);
6411 puts_filtered ("\"");
6412 }
6413
6414 int
6415 putpkt (char *buf)
6416 {
6417 return putpkt_binary (buf, strlen (buf));
6418 }
6419
6420 /* Send a packet to the remote machine, with error checking. The data
6421 of the packet is in BUF. The string in BUF can be at most
6422 get_remote_packet_size () - 5 to account for the $, # and checksum,
6423 and for a possible /0 if we are debugging (remote_debug) and want
6424 to print the sent packet as a string. */
6425
6426 static int
6427 putpkt_binary (char *buf, int cnt)
6428 {
6429 struct remote_state *rs = get_remote_state ();
6430 int i;
6431 unsigned char csum = 0;
6432 char *buf2 = alloca (cnt + 6);
6433
6434 int ch;
6435 int tcount = 0;
6436 char *p;
6437
6438 /* Catch cases like trying to read memory or listing threads while
6439 we're waiting for a stop reply. The remote server wouldn't be
6440 ready to handle this request, so we'd hang and timeout. We don't
6441 have to worry about this in synchronous mode, because in that
6442 case it's not possible to issue a command while the target is
6443 running. This is not a problem in non-stop mode, because in that
6444 case, the stub is always ready to process serial input. */
6445 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
6446 error (_("Cannot execute this command while the target is running."));
6447
6448 /* We're sending out a new packet. Make sure we don't look at a
6449 stale cached response. */
6450 rs->cached_wait_status = 0;
6451
6452 /* Copy the packet into buffer BUF2, encapsulating it
6453 and giving it a checksum. */
6454
6455 p = buf2;
6456 *p++ = '$';
6457
6458 for (i = 0; i < cnt; i++)
6459 {
6460 csum += buf[i];
6461 *p++ = buf[i];
6462 }
6463 *p++ = '#';
6464 *p++ = tohex ((csum >> 4) & 0xf);
6465 *p++ = tohex (csum & 0xf);
6466
6467 /* Send it over and over until we get a positive ack. */
6468
6469 while (1)
6470 {
6471 int started_error_output = 0;
6472
6473 if (remote_debug)
6474 {
6475 struct cleanup *old_chain;
6476 char *str;
6477
6478 *p = '\0';
6479 str = escape_buffer (buf2, p - buf2);
6480 old_chain = make_cleanup (xfree, str);
6481 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
6482 gdb_flush (gdb_stdlog);
6483 do_cleanups (old_chain);
6484 }
6485 if (serial_write (remote_desc, buf2, p - buf2))
6486 perror_with_name (_("putpkt: write failed"));
6487
6488 /* If this is a no acks version of the remote protocol, send the
6489 packet and move on. */
6490 if (rs->noack_mode)
6491 break;
6492
6493 /* Read until either a timeout occurs (-2) or '+' is read.
6494 Handle any notification that arrives in the mean time. */
6495 while (1)
6496 {
6497 ch = readchar (remote_timeout);
6498
6499 if (remote_debug)
6500 {
6501 switch (ch)
6502 {
6503 case '+':
6504 case '-':
6505 case SERIAL_TIMEOUT:
6506 case '$':
6507 case '%':
6508 if (started_error_output)
6509 {
6510 putchar_unfiltered ('\n');
6511 started_error_output = 0;
6512 }
6513 }
6514 }
6515
6516 switch (ch)
6517 {
6518 case '+':
6519 if (remote_debug)
6520 fprintf_unfiltered (gdb_stdlog, "Ack\n");
6521 return 1;
6522 case '-':
6523 if (remote_debug)
6524 fprintf_unfiltered (gdb_stdlog, "Nak\n");
6525 case SERIAL_TIMEOUT:
6526 tcount++;
6527 if (tcount > 3)
6528 return 0;
6529 break; /* Retransmit buffer. */
6530 case '$':
6531 {
6532 if (remote_debug)
6533 fprintf_unfiltered (gdb_stdlog,
6534 "Packet instead of Ack, ignoring it\n");
6535 /* It's probably an old response sent because an ACK
6536 was lost. Gobble up the packet and ack it so it
6537 doesn't get retransmitted when we resend this
6538 packet. */
6539 skip_frame ();
6540 serial_write (remote_desc, "+", 1);
6541 continue; /* Now, go look for +. */
6542 }
6543
6544 case '%':
6545 {
6546 int val;
6547
6548 /* If we got a notification, handle it, and go back to looking
6549 for an ack. */
6550 /* We've found the start of a notification. Now
6551 collect the data. */
6552 val = read_frame (&rs->buf, &rs->buf_size);
6553 if (val >= 0)
6554 {
6555 if (remote_debug)
6556 {
6557 struct cleanup *old_chain;
6558 char *str;
6559
6560 str = escape_buffer (rs->buf, val);
6561 old_chain = make_cleanup (xfree, str);
6562 fprintf_unfiltered (gdb_stdlog,
6563 " Notification received: %s\n",
6564 str);
6565 do_cleanups (old_chain);
6566 }
6567 handle_notification (rs->buf, val);
6568 /* We're in sync now, rewait for the ack. */
6569 tcount = 0;
6570 }
6571 else
6572 {
6573 if (remote_debug)
6574 {
6575 if (!started_error_output)
6576 {
6577 started_error_output = 1;
6578 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6579 }
6580 fputc_unfiltered (ch & 0177, gdb_stdlog);
6581 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6582 }
6583 }
6584 continue;
6585 }
6586 /* fall-through */
6587 default:
6588 if (remote_debug)
6589 {
6590 if (!started_error_output)
6591 {
6592 started_error_output = 1;
6593 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6594 }
6595 fputc_unfiltered (ch & 0177, gdb_stdlog);
6596 }
6597 continue;
6598 }
6599 break; /* Here to retransmit. */
6600 }
6601
6602 #if 0
6603 /* This is wrong. If doing a long backtrace, the user should be
6604 able to get out next time we call QUIT, without anything as
6605 violent as interrupt_query. If we want to provide a way out of
6606 here without getting to the next QUIT, it should be based on
6607 hitting ^C twice as in remote_wait. */
6608 if (quit_flag)
6609 {
6610 quit_flag = 0;
6611 interrupt_query ();
6612 }
6613 #endif
6614 }
6615 return 0;
6616 }
6617
6618 /* Come here after finding the start of a frame when we expected an
6619 ack. Do our best to discard the rest of this packet. */
6620
6621 static void
6622 skip_frame (void)
6623 {
6624 int c;
6625
6626 while (1)
6627 {
6628 c = readchar (remote_timeout);
6629 switch (c)
6630 {
6631 case SERIAL_TIMEOUT:
6632 /* Nothing we can do. */
6633 return;
6634 case '#':
6635 /* Discard the two bytes of checksum and stop. */
6636 c = readchar (remote_timeout);
6637 if (c >= 0)
6638 c = readchar (remote_timeout);
6639
6640 return;
6641 case '*': /* Run length encoding. */
6642 /* Discard the repeat count. */
6643 c = readchar (remote_timeout);
6644 if (c < 0)
6645 return;
6646 break;
6647 default:
6648 /* A regular character. */
6649 break;
6650 }
6651 }
6652 }
6653
6654 /* Come here after finding the start of the frame. Collect the rest
6655 into *BUF, verifying the checksum, length, and handling run-length
6656 compression. NUL terminate the buffer. If there is not enough room,
6657 expand *BUF using xrealloc.
6658
6659 Returns -1 on error, number of characters in buffer (ignoring the
6660 trailing NULL) on success. (could be extended to return one of the
6661 SERIAL status indications). */
6662
6663 static long
6664 read_frame (char **buf_p,
6665 long *sizeof_buf)
6666 {
6667 unsigned char csum;
6668 long bc;
6669 int c;
6670 char *buf = *buf_p;
6671 struct remote_state *rs = get_remote_state ();
6672
6673 csum = 0;
6674 bc = 0;
6675
6676 while (1)
6677 {
6678 c = readchar (remote_timeout);
6679 switch (c)
6680 {
6681 case SERIAL_TIMEOUT:
6682 if (remote_debug)
6683 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6684 return -1;
6685 case '$':
6686 if (remote_debug)
6687 fputs_filtered ("Saw new packet start in middle of old one\n",
6688 gdb_stdlog);
6689 return -1; /* Start a new packet, count retries. */
6690 case '#':
6691 {
6692 unsigned char pktcsum;
6693 int check_0 = 0;
6694 int check_1 = 0;
6695
6696 buf[bc] = '\0';
6697
6698 check_0 = readchar (remote_timeout);
6699 if (check_0 >= 0)
6700 check_1 = readchar (remote_timeout);
6701
6702 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6703 {
6704 if (remote_debug)
6705 fputs_filtered ("Timeout in checksum, retrying\n",
6706 gdb_stdlog);
6707 return -1;
6708 }
6709 else if (check_0 < 0 || check_1 < 0)
6710 {
6711 if (remote_debug)
6712 fputs_filtered ("Communication error in checksum\n",
6713 gdb_stdlog);
6714 return -1;
6715 }
6716
6717 /* Don't recompute the checksum; with no ack packets we
6718 don't have any way to indicate a packet retransmission
6719 is necessary. */
6720 if (rs->noack_mode)
6721 return bc;
6722
6723 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6724 if (csum == pktcsum)
6725 return bc;
6726
6727 if (remote_debug)
6728 {
6729 struct cleanup *old_chain;
6730 char *str;
6731
6732 str = escape_buffer (buf, bc);
6733 old_chain = make_cleanup (xfree, str);
6734 fprintf_unfiltered (gdb_stdlog,
6735 "\
6736 Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
6737 pktcsum, csum, str);
6738 do_cleanups (old_chain);
6739 }
6740 /* Number of characters in buffer ignoring trailing
6741 NULL. */
6742 return -1;
6743 }
6744 case '*': /* Run length encoding. */
6745 {
6746 int repeat;
6747 csum += c;
6748
6749 c = readchar (remote_timeout);
6750 csum += c;
6751 repeat = c - ' ' + 3; /* Compute repeat count. */
6752
6753 /* The character before ``*'' is repeated. */
6754
6755 if (repeat > 0 && repeat <= 255 && bc > 0)
6756 {
6757 if (bc + repeat - 1 >= *sizeof_buf - 1)
6758 {
6759 /* Make some more room in the buffer. */
6760 *sizeof_buf += repeat;
6761 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6762 buf = *buf_p;
6763 }
6764
6765 memset (&buf[bc], buf[bc - 1], repeat);
6766 bc += repeat;
6767 continue;
6768 }
6769
6770 buf[bc] = '\0';
6771 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6772 return -1;
6773 }
6774 default:
6775 if (bc >= *sizeof_buf - 1)
6776 {
6777 /* Make some more room in the buffer. */
6778 *sizeof_buf *= 2;
6779 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6780 buf = *buf_p;
6781 }
6782
6783 buf[bc++] = c;
6784 csum += c;
6785 continue;
6786 }
6787 }
6788 }
6789
6790 /* Read a packet from the remote machine, with error checking, and
6791 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6792 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6793 rather than timing out; this is used (in synchronous mode) to wait
6794 for a target that is is executing user code to stop. */
6795 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6796 don't have to change all the calls to getpkt to deal with the
6797 return value, because at the moment I don't know what the right
6798 thing to do it for those. */
6799 void
6800 getpkt (char **buf,
6801 long *sizeof_buf,
6802 int forever)
6803 {
6804 int timed_out;
6805
6806 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6807 }
6808
6809
6810 /* Read a packet from the remote machine, with error checking, and
6811 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6812 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6813 rather than timing out; this is used (in synchronous mode) to wait
6814 for a target that is is executing user code to stop. If FOREVER ==
6815 0, this function is allowed to time out gracefully and return an
6816 indication of this to the caller. Otherwise return the number of
6817 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6818 enough reason to return to the caller. */
6819
6820 static int
6821 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6822 int expecting_notif)
6823 {
6824 struct remote_state *rs = get_remote_state ();
6825 int c;
6826 int tries;
6827 int timeout;
6828 int val = -1;
6829
6830 /* We're reading a new response. Make sure we don't look at a
6831 previously cached response. */
6832 rs->cached_wait_status = 0;
6833
6834 strcpy (*buf, "timeout");
6835
6836 if (forever)
6837 timeout = watchdog > 0 ? watchdog : -1;
6838 else if (expecting_notif)
6839 timeout = 0; /* There should already be a char in the buffer. If
6840 not, bail out. */
6841 else
6842 timeout = remote_timeout;
6843
6844 #define MAX_TRIES 3
6845
6846 /* Process any number of notifications, and then return when
6847 we get a packet. */
6848 for (;;)
6849 {
6850 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6851 times. */
6852 for (tries = 1; tries <= MAX_TRIES; tries++)
6853 {
6854 /* This can loop forever if the remote side sends us
6855 characters continuously, but if it pauses, we'll get
6856 SERIAL_TIMEOUT from readchar because of timeout. Then
6857 we'll count that as a retry.
6858
6859 Note that even when forever is set, we will only wait
6860 forever prior to the start of a packet. After that, we
6861 expect characters to arrive at a brisk pace. They should
6862 show up within remote_timeout intervals. */
6863 do
6864 c = readchar (timeout);
6865 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6866
6867 if (c == SERIAL_TIMEOUT)
6868 {
6869 if (expecting_notif)
6870 return -1; /* Don't complain, it's normal to not get
6871 anything in this case. */
6872
6873 if (forever) /* Watchdog went off? Kill the target. */
6874 {
6875 QUIT;
6876 pop_target ();
6877 error (_("Watchdog timeout has expired. Target detached."));
6878 }
6879 if (remote_debug)
6880 fputs_filtered ("Timed out.\n", gdb_stdlog);
6881 }
6882 else
6883 {
6884 /* We've found the start of a packet or notification.
6885 Now collect the data. */
6886 val = read_frame (buf, sizeof_buf);
6887 if (val >= 0)
6888 break;
6889 }
6890
6891 serial_write (remote_desc, "-", 1);
6892 }
6893
6894 if (tries > MAX_TRIES)
6895 {
6896 /* We have tried hard enough, and just can't receive the
6897 packet/notification. Give up. */
6898 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6899
6900 /* Skip the ack char if we're in no-ack mode. */
6901 if (!rs->noack_mode)
6902 serial_write (remote_desc, "+", 1);
6903 return -1;
6904 }
6905
6906 /* If we got an ordinary packet, return that to our caller. */
6907 if (c == '$')
6908 {
6909 if (remote_debug)
6910 {
6911 struct cleanup *old_chain;
6912 char *str;
6913
6914 str = escape_buffer (*buf, val);
6915 old_chain = make_cleanup (xfree, str);
6916 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
6917 do_cleanups (old_chain);
6918 }
6919
6920 /* Skip the ack char if we're in no-ack mode. */
6921 if (!rs->noack_mode)
6922 serial_write (remote_desc, "+", 1);
6923 return val;
6924 }
6925
6926 /* If we got a notification, handle it, and go back to looking
6927 for a packet. */
6928 else
6929 {
6930 gdb_assert (c == '%');
6931
6932 if (remote_debug)
6933 {
6934 struct cleanup *old_chain;
6935 char *str;
6936
6937 str = escape_buffer (*buf, val);
6938 old_chain = make_cleanup (xfree, str);
6939 fprintf_unfiltered (gdb_stdlog,
6940 " Notification received: %s\n",
6941 str);
6942 do_cleanups (old_chain);
6943 }
6944
6945 handle_notification (*buf, val);
6946
6947 /* Notifications require no acknowledgement. */
6948
6949 if (expecting_notif)
6950 return -1;
6951 }
6952 }
6953 }
6954
6955 static int
6956 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6957 {
6958 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6959 }
6960
6961 static int
6962 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6963 {
6964 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6965 }
6966
6967 \f
6968 static void
6969 remote_kill (struct target_ops *ops)
6970 {
6971 /* Use catch_errors so the user can quit from gdb even when we
6972 aren't on speaking terms with the remote system. */
6973 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6974
6975 /* Don't wait for it to die. I'm not really sure it matters whether
6976 we do or not. For the existing stubs, kill is a noop. */
6977 target_mourn_inferior ();
6978 }
6979
6980 static int
6981 remote_vkill (int pid, struct remote_state *rs)
6982 {
6983 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6984 return -1;
6985
6986 /* Tell the remote target to detach. */
6987 sprintf (rs->buf, "vKill;%x", pid);
6988 putpkt (rs->buf);
6989 getpkt (&rs->buf, &rs->buf_size, 0);
6990
6991 if (packet_ok (rs->buf,
6992 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6993 return 0;
6994 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6995 return -1;
6996 else
6997 return 1;
6998 }
6999
7000 static void
7001 extended_remote_kill (struct target_ops *ops)
7002 {
7003 int res;
7004 int pid = ptid_get_pid (inferior_ptid);
7005 struct remote_state *rs = get_remote_state ();
7006
7007 res = remote_vkill (pid, rs);
7008 if (res == -1 && !remote_multi_process_p (rs))
7009 {
7010 /* Don't try 'k' on a multi-process aware stub -- it has no way
7011 to specify the pid. */
7012
7013 putpkt ("k");
7014 #if 0
7015 getpkt (&rs->buf, &rs->buf_size, 0);
7016 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7017 res = 1;
7018 #else
7019 /* Don't wait for it to die. I'm not really sure it matters whether
7020 we do or not. For the existing stubs, kill is a noop. */
7021 res = 0;
7022 #endif
7023 }
7024
7025 if (res != 0)
7026 error (_("Can't kill process"));
7027
7028 target_mourn_inferior ();
7029 }
7030
7031 static void
7032 remote_mourn (struct target_ops *ops)
7033 {
7034 remote_mourn_1 (ops);
7035 }
7036
7037 /* Worker function for remote_mourn. */
7038 static void
7039 remote_mourn_1 (struct target_ops *target)
7040 {
7041 unpush_target (target);
7042
7043 /* remote_close takes care of doing most of the clean up. */
7044 generic_mourn_inferior ();
7045 }
7046
7047 static void
7048 extended_remote_mourn_1 (struct target_ops *target)
7049 {
7050 struct remote_state *rs = get_remote_state ();
7051
7052 /* In case we got here due to an error, but we're going to stay
7053 connected. */
7054 rs->waiting_for_stop_reply = 0;
7055
7056 /* We're no longer interested in these events. */
7057 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
7058
7059 /* If the current general thread belonged to the process we just
7060 detached from or has exited, the remote side current general
7061 thread becomes undefined. Considering a case like this:
7062
7063 - We just got here due to a detach.
7064 - The process that we're detaching from happens to immediately
7065 report a global breakpoint being hit in non-stop mode, in the
7066 same thread we had selected before.
7067 - GDB attaches to this process again.
7068 - This event happens to be the next event we handle.
7069
7070 GDB would consider that the current general thread didn't need to
7071 be set on the stub side (with Hg), since for all it knew,
7072 GENERAL_THREAD hadn't changed.
7073
7074 Notice that although in all-stop mode, the remote server always
7075 sets the current thread to the thread reporting the stop event,
7076 that doesn't happen in non-stop mode; in non-stop, the stub *must
7077 not* change the current thread when reporting a breakpoint hit,
7078 due to the decoupling of event reporting and event handling.
7079
7080 To keep things simple, we always invalidate our notion of the
7081 current thread. */
7082 record_currthread (minus_one_ptid);
7083
7084 /* Unlike "target remote", we do not want to unpush the target; then
7085 the next time the user says "run", we won't be connected. */
7086
7087 /* Call common code to mark the inferior as not running. */
7088 generic_mourn_inferior ();
7089
7090 if (!have_inferiors ())
7091 {
7092 if (!remote_multi_process_p (rs))
7093 {
7094 /* Check whether the target is running now - some remote stubs
7095 automatically restart after kill. */
7096 putpkt ("?");
7097 getpkt (&rs->buf, &rs->buf_size, 0);
7098
7099 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7100 {
7101 /* Assume that the target has been restarted. Set inferior_ptid
7102 so that bits of core GDB realizes there's something here, e.g.,
7103 so that the user can say "kill" again. */
7104 inferior_ptid = magic_null_ptid;
7105 }
7106 }
7107 }
7108 }
7109
7110 static void
7111 extended_remote_mourn (struct target_ops *ops)
7112 {
7113 extended_remote_mourn_1 (ops);
7114 }
7115
7116 static int
7117 extended_remote_run (char *args)
7118 {
7119 struct remote_state *rs = get_remote_state ();
7120 int len;
7121
7122 /* If the user has disabled vRun support, or we have detected that
7123 support is not available, do not try it. */
7124 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7125 return -1;
7126
7127 strcpy (rs->buf, "vRun;");
7128 len = strlen (rs->buf);
7129
7130 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7131 error (_("Remote file name too long for run packet"));
7132 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7133
7134 gdb_assert (args != NULL);
7135 if (*args)
7136 {
7137 struct cleanup *back_to;
7138 int i;
7139 char **argv;
7140
7141 argv = gdb_buildargv (args);
7142 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7143 for (i = 0; argv[i] != NULL; i++)
7144 {
7145 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7146 error (_("Argument list too long for run packet"));
7147 rs->buf[len++] = ';';
7148 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7149 }
7150 do_cleanups (back_to);
7151 }
7152
7153 rs->buf[len++] = '\0';
7154
7155 putpkt (rs->buf);
7156 getpkt (&rs->buf, &rs->buf_size, 0);
7157
7158 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7159 {
7160 /* We have a wait response; we don't need it, though. All is well. */
7161 return 0;
7162 }
7163 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7164 /* It wasn't disabled before, but it is now. */
7165 return -1;
7166 else
7167 {
7168 if (remote_exec_file[0] == '\0')
7169 error (_("Running the default executable on the remote target failed; "
7170 "try \"set remote exec-file\"?"));
7171 else
7172 error (_("Running \"%s\" on the remote target failed"),
7173 remote_exec_file);
7174 }
7175 }
7176
7177 /* In the extended protocol we want to be able to do things like
7178 "run" and have them basically work as expected. So we need
7179 a special create_inferior function. We support changing the
7180 executable file and the command line arguments, but not the
7181 environment. */
7182
7183 static void
7184 extended_remote_create_inferior_1 (char *exec_file, char *args,
7185 char **env, int from_tty)
7186 {
7187 /* If running asynchronously, register the target file descriptor
7188 with the event loop. */
7189 if (target_can_async_p ())
7190 target_async (inferior_event_handler, 0);
7191
7192 /* Now restart the remote server. */
7193 if (extended_remote_run (args) == -1)
7194 {
7195 /* vRun was not supported. Fail if we need it to do what the
7196 user requested. */
7197 if (remote_exec_file[0])
7198 error (_("Remote target does not support \"set remote exec-file\""));
7199 if (args[0])
7200 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7201
7202 /* Fall back to "R". */
7203 extended_remote_restart ();
7204 }
7205
7206 if (!have_inferiors ())
7207 {
7208 /* Clean up from the last time we ran, before we mark the target
7209 running again. This will mark breakpoints uninserted, and
7210 get_offsets may insert breakpoints. */
7211 init_thread_list ();
7212 init_wait_for_inferior ();
7213 }
7214
7215 /* Now mark the inferior as running before we do anything else. */
7216 inferior_ptid = magic_null_ptid;
7217
7218 /* Now, if we have thread information, update inferior_ptid. */
7219 inferior_ptid = remote_current_thread (inferior_ptid);
7220
7221 remote_add_inferior (ptid_get_pid (inferior_ptid), 0);
7222 add_thread_silent (inferior_ptid);
7223
7224 /* Get updated offsets, if the stub uses qOffsets. */
7225 get_offsets ();
7226 }
7227
7228 static void
7229 extended_remote_create_inferior (struct target_ops *ops,
7230 char *exec_file, char *args,
7231 char **env, int from_tty)
7232 {
7233 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7234 }
7235 \f
7236
7237 /* Insert a breakpoint. On targets that have software breakpoint
7238 support, we ask the remote target to do the work; on targets
7239 which don't, we insert a traditional memory breakpoint. */
7240
7241 static int
7242 remote_insert_breakpoint (struct gdbarch *gdbarch,
7243 struct bp_target_info *bp_tgt)
7244 {
7245 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
7246 If it succeeds, then set the support to PACKET_ENABLE. If it
7247 fails, and the user has explicitly requested the Z support then
7248 report an error, otherwise, mark it disabled and go on. */
7249
7250 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7251 {
7252 CORE_ADDR addr = bp_tgt->placed_address;
7253 struct remote_state *rs;
7254 char *p;
7255 int bpsize;
7256
7257 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
7258
7259 rs = get_remote_state ();
7260 p = rs->buf;
7261
7262 *(p++) = 'Z';
7263 *(p++) = '0';
7264 *(p++) = ',';
7265 addr = (ULONGEST) remote_address_masked (addr);
7266 p += hexnumstr (p, addr);
7267 sprintf (p, ",%d", bpsize);
7268
7269 putpkt (rs->buf);
7270 getpkt (&rs->buf, &rs->buf_size, 0);
7271
7272 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
7273 {
7274 case PACKET_ERROR:
7275 return -1;
7276 case PACKET_OK:
7277 bp_tgt->placed_address = addr;
7278 bp_tgt->placed_size = bpsize;
7279 return 0;
7280 case PACKET_UNKNOWN:
7281 break;
7282 }
7283 }
7284
7285 return memory_insert_breakpoint (gdbarch, bp_tgt);
7286 }
7287
7288 static int
7289 remote_remove_breakpoint (struct gdbarch *gdbarch,
7290 struct bp_target_info *bp_tgt)
7291 {
7292 CORE_ADDR addr = bp_tgt->placed_address;
7293 struct remote_state *rs = get_remote_state ();
7294
7295 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
7296 {
7297 char *p = rs->buf;
7298
7299 *(p++) = 'z';
7300 *(p++) = '0';
7301 *(p++) = ',';
7302
7303 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
7304 p += hexnumstr (p, addr);
7305 sprintf (p, ",%d", bp_tgt->placed_size);
7306
7307 putpkt (rs->buf);
7308 getpkt (&rs->buf, &rs->buf_size, 0);
7309
7310 return (rs->buf[0] == 'E');
7311 }
7312
7313 return memory_remove_breakpoint (gdbarch, bp_tgt);
7314 }
7315
7316 static int
7317 watchpoint_to_Z_packet (int type)
7318 {
7319 switch (type)
7320 {
7321 case hw_write:
7322 return Z_PACKET_WRITE_WP;
7323 break;
7324 case hw_read:
7325 return Z_PACKET_READ_WP;
7326 break;
7327 case hw_access:
7328 return Z_PACKET_ACCESS_WP;
7329 break;
7330 default:
7331 internal_error (__FILE__, __LINE__,
7332 _("hw_bp_to_z: bad watchpoint type %d"), type);
7333 }
7334 }
7335
7336 static int
7337 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
7338 {
7339 struct remote_state *rs = get_remote_state ();
7340 char *p;
7341 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7342
7343 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7344 return -1;
7345
7346 sprintf (rs->buf, "Z%x,", packet);
7347 p = strchr (rs->buf, '\0');
7348 addr = remote_address_masked (addr);
7349 p += hexnumstr (p, (ULONGEST) addr);
7350 sprintf (p, ",%x", len);
7351
7352 putpkt (rs->buf);
7353 getpkt (&rs->buf, &rs->buf_size, 0);
7354
7355 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7356 {
7357 case PACKET_ERROR:
7358 case PACKET_UNKNOWN:
7359 return -1;
7360 case PACKET_OK:
7361 return 0;
7362 }
7363 internal_error (__FILE__, __LINE__,
7364 _("remote_insert_watchpoint: reached end of function"));
7365 }
7366
7367
7368 static int
7369 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
7370 {
7371 struct remote_state *rs = get_remote_state ();
7372 char *p;
7373 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
7374
7375 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
7376 return -1;
7377
7378 sprintf (rs->buf, "z%x,", packet);
7379 p = strchr (rs->buf, '\0');
7380 addr = remote_address_masked (addr);
7381 p += hexnumstr (p, (ULONGEST) addr);
7382 sprintf (p, ",%x", len);
7383 putpkt (rs->buf);
7384 getpkt (&rs->buf, &rs->buf_size, 0);
7385
7386 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
7387 {
7388 case PACKET_ERROR:
7389 case PACKET_UNKNOWN:
7390 return -1;
7391 case PACKET_OK:
7392 return 0;
7393 }
7394 internal_error (__FILE__, __LINE__,
7395 _("remote_remove_watchpoint: reached end of function"));
7396 }
7397
7398
7399 int remote_hw_watchpoint_limit = -1;
7400 int remote_hw_breakpoint_limit = -1;
7401
7402 static int
7403 remote_check_watch_resources (int type, int cnt, int ot)
7404 {
7405 if (type == bp_hardware_breakpoint)
7406 {
7407 if (remote_hw_breakpoint_limit == 0)
7408 return 0;
7409 else if (remote_hw_breakpoint_limit < 0)
7410 return 1;
7411 else if (cnt <= remote_hw_breakpoint_limit)
7412 return 1;
7413 }
7414 else
7415 {
7416 if (remote_hw_watchpoint_limit == 0)
7417 return 0;
7418 else if (remote_hw_watchpoint_limit < 0)
7419 return 1;
7420 else if (ot)
7421 return -1;
7422 else if (cnt <= remote_hw_watchpoint_limit)
7423 return 1;
7424 }
7425 return -1;
7426 }
7427
7428 static int
7429 remote_stopped_by_watchpoint (void)
7430 {
7431 return remote_stopped_by_watchpoint_p;
7432 }
7433
7434 static int
7435 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
7436 {
7437 int rc = 0;
7438 if (remote_stopped_by_watchpoint ())
7439 {
7440 *addr_p = remote_watch_data_address;
7441 rc = 1;
7442 }
7443
7444 return rc;
7445 }
7446
7447
7448 static int
7449 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
7450 struct bp_target_info *bp_tgt)
7451 {
7452 CORE_ADDR addr;
7453 struct remote_state *rs;
7454 char *p;
7455
7456 /* The length field should be set to the size of a breakpoint
7457 instruction, even though we aren't inserting one ourselves. */
7458
7459 gdbarch_remote_breakpoint_from_pc
7460 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
7461
7462 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7463 return -1;
7464
7465 rs = get_remote_state ();
7466 p = rs->buf;
7467
7468 *(p++) = 'Z';
7469 *(p++) = '1';
7470 *(p++) = ',';
7471
7472 addr = remote_address_masked (bp_tgt->placed_address);
7473 p += hexnumstr (p, (ULONGEST) addr);
7474 sprintf (p, ",%x", bp_tgt->placed_size);
7475
7476 putpkt (rs->buf);
7477 getpkt (&rs->buf, &rs->buf_size, 0);
7478
7479 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7480 {
7481 case PACKET_ERROR:
7482 case PACKET_UNKNOWN:
7483 return -1;
7484 case PACKET_OK:
7485 return 0;
7486 }
7487 internal_error (__FILE__, __LINE__,
7488 _("remote_insert_hw_breakpoint: reached end of function"));
7489 }
7490
7491
7492 static int
7493 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
7494 struct bp_target_info *bp_tgt)
7495 {
7496 CORE_ADDR addr;
7497 struct remote_state *rs = get_remote_state ();
7498 char *p = rs->buf;
7499
7500 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
7501 return -1;
7502
7503 *(p++) = 'z';
7504 *(p++) = '1';
7505 *(p++) = ',';
7506
7507 addr = remote_address_masked (bp_tgt->placed_address);
7508 p += hexnumstr (p, (ULONGEST) addr);
7509 sprintf (p, ",%x", bp_tgt->placed_size);
7510
7511 putpkt (rs->buf);
7512 getpkt (&rs->buf, &rs->buf_size, 0);
7513
7514 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
7515 {
7516 case PACKET_ERROR:
7517 case PACKET_UNKNOWN:
7518 return -1;
7519 case PACKET_OK:
7520 return 0;
7521 }
7522 internal_error (__FILE__, __LINE__,
7523 _("remote_remove_hw_breakpoint: reached end of function"));
7524 }
7525
7526 /* Table used by the crc32 function to calcuate the checksum. */
7527
7528 static unsigned long crc32_table[256] =
7529 {0, 0};
7530
7531 static unsigned long
7532 crc32 (unsigned char *buf, int len, unsigned int crc)
7533 {
7534 if (!crc32_table[1])
7535 {
7536 /* Initialize the CRC table and the decoding table. */
7537 int i, j;
7538 unsigned int c;
7539
7540 for (i = 0; i < 256; i++)
7541 {
7542 for (c = i << 24, j = 8; j > 0; --j)
7543 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
7544 crc32_table[i] = c;
7545 }
7546 }
7547
7548 while (len--)
7549 {
7550 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
7551 buf++;
7552 }
7553 return crc;
7554 }
7555
7556 /* compare-sections command
7557
7558 With no arguments, compares each loadable section in the exec bfd
7559 with the same memory range on the target, and reports mismatches.
7560 Useful for verifying the image on the target against the exec file.
7561 Depends on the target understanding the new "qCRC:" request. */
7562
7563 /* FIXME: cagney/1999-10-26: This command should be broken down into a
7564 target method (target verify memory) and generic version of the
7565 actual command. This will allow other high-level code (especially
7566 generic_load()) to make use of this target functionality. */
7567
7568 static void
7569 compare_sections_command (char *args, int from_tty)
7570 {
7571 struct remote_state *rs = get_remote_state ();
7572 asection *s;
7573 unsigned long host_crc, target_crc;
7574 struct cleanup *old_chain;
7575 char *tmp;
7576 char *sectdata;
7577 const char *sectname;
7578 bfd_size_type size;
7579 bfd_vma lma;
7580 int matched = 0;
7581 int mismatched = 0;
7582
7583 if (!exec_bfd)
7584 error (_("command cannot be used without an exec file"));
7585 if (!current_target.to_shortname ||
7586 strcmp (current_target.to_shortname, "remote") != 0)
7587 error (_("command can only be used with remote target"));
7588
7589 for (s = exec_bfd->sections; s; s = s->next)
7590 {
7591 if (!(s->flags & SEC_LOAD))
7592 continue; /* skip non-loadable section */
7593
7594 size = bfd_get_section_size (s);
7595 if (size == 0)
7596 continue; /* skip zero-length section */
7597
7598 sectname = bfd_get_section_name (exec_bfd, s);
7599 if (args && strcmp (args, sectname) != 0)
7600 continue; /* not the section selected by user */
7601
7602 matched = 1; /* do this section */
7603 lma = s->lma;
7604 /* FIXME: assumes lma can fit into long. */
7605 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7606 (long) lma, (long) size);
7607 putpkt (rs->buf);
7608
7609 /* Be clever; compute the host_crc before waiting for target
7610 reply. */
7611 sectdata = xmalloc (size);
7612 old_chain = make_cleanup (xfree, sectdata);
7613 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7614 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7615
7616 getpkt (&rs->buf, &rs->buf_size, 0);
7617 if (rs->buf[0] == 'E')
7618 error (_("target memory fault, section %s, range %s -- %s"), sectname,
7619 paddress (target_gdbarch, lma),
7620 paddress (target_gdbarch, lma + size));
7621 if (rs->buf[0] != 'C')
7622 error (_("remote target does not support this operation"));
7623
7624 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7625 target_crc = target_crc * 16 + fromhex (*tmp);
7626
7627 printf_filtered ("Section %s, range %s -- %s: ", sectname,
7628 paddress (target_gdbarch, lma),
7629 paddress (target_gdbarch, lma + size));
7630 if (host_crc == target_crc)
7631 printf_filtered ("matched.\n");
7632 else
7633 {
7634 printf_filtered ("MIS-MATCHED!\n");
7635 mismatched++;
7636 }
7637
7638 do_cleanups (old_chain);
7639 }
7640 if (mismatched > 0)
7641 warning (_("One or more sections of the remote executable does not match\n\
7642 the loaded file\n"));
7643 if (args && !matched)
7644 printf_filtered (_("No loaded section named '%s'.\n"), args);
7645 }
7646
7647 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7648 into remote target. The number of bytes written to the remote
7649 target is returned, or -1 for error. */
7650
7651 static LONGEST
7652 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7653 const char *annex, const gdb_byte *writebuf,
7654 ULONGEST offset, LONGEST len,
7655 struct packet_config *packet)
7656 {
7657 int i, buf_len;
7658 ULONGEST n;
7659 struct remote_state *rs = get_remote_state ();
7660 int max_size = get_memory_write_packet_size ();
7661
7662 if (packet->support == PACKET_DISABLE)
7663 return -1;
7664
7665 /* Insert header. */
7666 i = snprintf (rs->buf, max_size,
7667 "qXfer:%s:write:%s:%s:",
7668 object_name, annex ? annex : "",
7669 phex_nz (offset, sizeof offset));
7670 max_size -= (i + 1);
7671
7672 /* Escape as much data as fits into rs->buf. */
7673 buf_len = remote_escape_output
7674 (writebuf, len, (rs->buf + i), &max_size, max_size);
7675
7676 if (putpkt_binary (rs->buf, i + buf_len) < 0
7677 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7678 || packet_ok (rs->buf, packet) != PACKET_OK)
7679 return -1;
7680
7681 unpack_varlen_hex (rs->buf, &n);
7682 return n;
7683 }
7684
7685 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7686 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7687 number of bytes read is returned, or 0 for EOF, or -1 for error.
7688 The number of bytes read may be less than LEN without indicating an
7689 EOF. PACKET is checked and updated to indicate whether the remote
7690 target supports this object. */
7691
7692 static LONGEST
7693 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7694 const char *annex,
7695 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7696 struct packet_config *packet)
7697 {
7698 static char *finished_object;
7699 static char *finished_annex;
7700 static ULONGEST finished_offset;
7701
7702 struct remote_state *rs = get_remote_state ();
7703 LONGEST i, n, packet_len;
7704
7705 if (packet->support == PACKET_DISABLE)
7706 return -1;
7707
7708 /* Check whether we've cached an end-of-object packet that matches
7709 this request. */
7710 if (finished_object)
7711 {
7712 if (strcmp (object_name, finished_object) == 0
7713 && strcmp (annex ? annex : "", finished_annex) == 0
7714 && offset == finished_offset)
7715 return 0;
7716
7717 /* Otherwise, we're now reading something different. Discard
7718 the cache. */
7719 xfree (finished_object);
7720 xfree (finished_annex);
7721 finished_object = NULL;
7722 finished_annex = NULL;
7723 }
7724
7725 /* Request only enough to fit in a single packet. The actual data
7726 may not, since we don't know how much of it will need to be escaped;
7727 the target is free to respond with slightly less data. We subtract
7728 five to account for the response type and the protocol frame. */
7729 n = min (get_remote_packet_size () - 5, len);
7730 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7731 object_name, annex ? annex : "",
7732 phex_nz (offset, sizeof offset),
7733 phex_nz (n, sizeof n));
7734 i = putpkt (rs->buf);
7735 if (i < 0)
7736 return -1;
7737
7738 rs->buf[0] = '\0';
7739 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7740 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7741 return -1;
7742
7743 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7744 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7745
7746 /* 'm' means there is (or at least might be) more data after this
7747 batch. That does not make sense unless there's at least one byte
7748 of data in this reply. */
7749 if (rs->buf[0] == 'm' && packet_len == 1)
7750 error (_("Remote qXfer reply contained no data."));
7751
7752 /* Got some data. */
7753 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7754
7755 /* 'l' is an EOF marker, possibly including a final block of data,
7756 or possibly empty. If we have the final block of a non-empty
7757 object, record this fact to bypass a subsequent partial read. */
7758 if (rs->buf[0] == 'l' && offset + i > 0)
7759 {
7760 finished_object = xstrdup (object_name);
7761 finished_annex = xstrdup (annex ? annex : "");
7762 finished_offset = offset + i;
7763 }
7764
7765 return i;
7766 }
7767
7768 static LONGEST
7769 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7770 const char *annex, gdb_byte *readbuf,
7771 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7772 {
7773 struct remote_state *rs;
7774 int i;
7775 char *p2;
7776 char query_type;
7777
7778 set_general_thread (inferior_ptid);
7779
7780 rs = get_remote_state ();
7781
7782 /* Handle memory using the standard memory routines. */
7783 if (object == TARGET_OBJECT_MEMORY)
7784 {
7785 int xfered;
7786 errno = 0;
7787
7788 /* If the remote target is connected but not running, we should
7789 pass this request down to a lower stratum (e.g. the executable
7790 file). */
7791 if (!target_has_execution)
7792 return 0;
7793
7794 if (writebuf != NULL)
7795 xfered = remote_write_bytes (offset, writebuf, len);
7796 else
7797 xfered = remote_read_bytes (offset, readbuf, len);
7798
7799 if (xfered > 0)
7800 return xfered;
7801 else if (xfered == 0 && errno == 0)
7802 return 0;
7803 else
7804 return -1;
7805 }
7806
7807 /* Handle SPU memory using qxfer packets. */
7808 if (object == TARGET_OBJECT_SPU)
7809 {
7810 if (readbuf)
7811 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7812 &remote_protocol_packets
7813 [PACKET_qXfer_spu_read]);
7814 else
7815 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7816 &remote_protocol_packets
7817 [PACKET_qXfer_spu_write]);
7818 }
7819
7820 /* Handle extra signal info using qxfer packets. */
7821 if (object == TARGET_OBJECT_SIGNAL_INFO)
7822 {
7823 if (readbuf)
7824 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
7825 &remote_protocol_packets
7826 [PACKET_qXfer_siginfo_read]);
7827 else
7828 return remote_write_qxfer (ops, "siginfo", annex, writebuf, offset, len,
7829 &remote_protocol_packets
7830 [PACKET_qXfer_siginfo_write]);
7831 }
7832
7833 /* Only handle flash writes. */
7834 if (writebuf != NULL)
7835 {
7836 LONGEST xfered;
7837
7838 switch (object)
7839 {
7840 case TARGET_OBJECT_FLASH:
7841 xfered = remote_flash_write (ops, offset, len, writebuf);
7842
7843 if (xfered > 0)
7844 return xfered;
7845 else if (xfered == 0 && errno == 0)
7846 return 0;
7847 else
7848 return -1;
7849
7850 default:
7851 return -1;
7852 }
7853 }
7854
7855 /* Map pre-existing objects onto letters. DO NOT do this for new
7856 objects!!! Instead specify new query packets. */
7857 switch (object)
7858 {
7859 case TARGET_OBJECT_AVR:
7860 query_type = 'R';
7861 break;
7862
7863 case TARGET_OBJECT_AUXV:
7864 gdb_assert (annex == NULL);
7865 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7866 &remote_protocol_packets[PACKET_qXfer_auxv]);
7867
7868 case TARGET_OBJECT_AVAILABLE_FEATURES:
7869 return remote_read_qxfer
7870 (ops, "features", annex, readbuf, offset, len,
7871 &remote_protocol_packets[PACKET_qXfer_features]);
7872
7873 case TARGET_OBJECT_LIBRARIES:
7874 return remote_read_qxfer
7875 (ops, "libraries", annex, readbuf, offset, len,
7876 &remote_protocol_packets[PACKET_qXfer_libraries]);
7877
7878 case TARGET_OBJECT_MEMORY_MAP:
7879 gdb_assert (annex == NULL);
7880 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7881 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7882
7883 case TARGET_OBJECT_OSDATA:
7884 /* Should only get here if we're connected. */
7885 gdb_assert (remote_desc);
7886 return remote_read_qxfer
7887 (ops, "osdata", annex, readbuf, offset, len,
7888 &remote_protocol_packets[PACKET_qXfer_osdata]);
7889
7890 case TARGET_OBJECT_THREADS:
7891 gdb_assert (annex == NULL);
7892 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
7893 &remote_protocol_packets[PACKET_qXfer_threads]);
7894
7895 default:
7896 return -1;
7897 }
7898
7899 /* Note: a zero OFFSET and LEN can be used to query the minimum
7900 buffer size. */
7901 if (offset == 0 && len == 0)
7902 return (get_remote_packet_size ());
7903 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7904 large enough let the caller deal with it. */
7905 if (len < get_remote_packet_size ())
7906 return -1;
7907 len = get_remote_packet_size ();
7908
7909 /* Except for querying the minimum buffer size, target must be open. */
7910 if (!remote_desc)
7911 error (_("remote query is only available after target open"));
7912
7913 gdb_assert (annex != NULL);
7914 gdb_assert (readbuf != NULL);
7915
7916 p2 = rs->buf;
7917 *p2++ = 'q';
7918 *p2++ = query_type;
7919
7920 /* We used one buffer char for the remote protocol q command and
7921 another for the query type. As the remote protocol encapsulation
7922 uses 4 chars plus one extra in case we are debugging
7923 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7924 string. */
7925 i = 0;
7926 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7927 {
7928 /* Bad caller may have sent forbidden characters. */
7929 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7930 *p2++ = annex[i];
7931 i++;
7932 }
7933 *p2 = '\0';
7934 gdb_assert (annex[i] == '\0');
7935
7936 i = putpkt (rs->buf);
7937 if (i < 0)
7938 return i;
7939
7940 getpkt (&rs->buf, &rs->buf_size, 0);
7941 strcpy ((char *) readbuf, rs->buf);
7942
7943 return strlen ((char *) readbuf);
7944 }
7945
7946 static int
7947 remote_search_memory (struct target_ops* ops,
7948 CORE_ADDR start_addr, ULONGEST search_space_len,
7949 const gdb_byte *pattern, ULONGEST pattern_len,
7950 CORE_ADDR *found_addrp)
7951 {
7952 int addr_size = gdbarch_addr_bit (target_gdbarch) / 8;
7953 struct remote_state *rs = get_remote_state ();
7954 int max_size = get_memory_write_packet_size ();
7955 struct packet_config *packet =
7956 &remote_protocol_packets[PACKET_qSearch_memory];
7957 /* number of packet bytes used to encode the pattern,
7958 this could be more than PATTERN_LEN due to escape characters */
7959 int escaped_pattern_len;
7960 /* amount of pattern that was encodable in the packet */
7961 int used_pattern_len;
7962 int i;
7963 int found;
7964 ULONGEST found_addr;
7965
7966 /* Don't go to the target if we don't have to.
7967 This is done before checking packet->support to avoid the possibility that
7968 a success for this edge case means the facility works in general. */
7969 if (pattern_len > search_space_len)
7970 return 0;
7971 if (pattern_len == 0)
7972 {
7973 *found_addrp = start_addr;
7974 return 1;
7975 }
7976
7977 /* If we already know the packet isn't supported, fall back to the simple
7978 way of searching memory. */
7979
7980 if (packet->support == PACKET_DISABLE)
7981 {
7982 /* Target doesn't provided special support, fall back and use the
7983 standard support (copy memory and do the search here). */
7984 return simple_search_memory (ops, start_addr, search_space_len,
7985 pattern, pattern_len, found_addrp);
7986 }
7987
7988 /* Insert header. */
7989 i = snprintf (rs->buf, max_size,
7990 "qSearch:memory:%s;%s;",
7991 phex_nz (start_addr, addr_size),
7992 phex_nz (search_space_len, sizeof (search_space_len)));
7993 max_size -= (i + 1);
7994
7995 /* Escape as much data as fits into rs->buf. */
7996 escaped_pattern_len =
7997 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7998 &used_pattern_len, max_size);
7999
8000 /* Bail if the pattern is too large. */
8001 if (used_pattern_len != pattern_len)
8002 error ("Pattern is too large to transmit to remote target.");
8003
8004 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8005 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8006 || packet_ok (rs->buf, packet) != PACKET_OK)
8007 {
8008 /* The request may not have worked because the command is not
8009 supported. If so, fall back to the simple way. */
8010 if (packet->support == PACKET_DISABLE)
8011 {
8012 return simple_search_memory (ops, start_addr, search_space_len,
8013 pattern, pattern_len, found_addrp);
8014 }
8015 return -1;
8016 }
8017
8018 if (rs->buf[0] == '0')
8019 found = 0;
8020 else if (rs->buf[0] == '1')
8021 {
8022 found = 1;
8023 if (rs->buf[1] != ',')
8024 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8025 unpack_varlen_hex (rs->buf + 2, &found_addr);
8026 *found_addrp = found_addr;
8027 }
8028 else
8029 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8030
8031 return found;
8032 }
8033
8034 static void
8035 remote_rcmd (char *command,
8036 struct ui_file *outbuf)
8037 {
8038 struct remote_state *rs = get_remote_state ();
8039 char *p = rs->buf;
8040
8041 if (!remote_desc)
8042 error (_("remote rcmd is only available after target open"));
8043
8044 /* Send a NULL command across as an empty command. */
8045 if (command == NULL)
8046 command = "";
8047
8048 /* The query prefix. */
8049 strcpy (rs->buf, "qRcmd,");
8050 p = strchr (rs->buf, '\0');
8051
8052 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
8053 error (_("\"monitor\" command ``%s'' is too long."), command);
8054
8055 /* Encode the actual command. */
8056 bin2hex ((gdb_byte *) command, p, 0);
8057
8058 if (putpkt (rs->buf) < 0)
8059 error (_("Communication problem with target."));
8060
8061 /* get/display the response */
8062 while (1)
8063 {
8064 char *buf;
8065
8066 /* XXX - see also remote_get_noisy_reply(). */
8067 rs->buf[0] = '\0';
8068 getpkt (&rs->buf, &rs->buf_size, 0);
8069 buf = rs->buf;
8070 if (buf[0] == '\0')
8071 error (_("Target does not support this command."));
8072 if (buf[0] == 'O' && buf[1] != 'K')
8073 {
8074 remote_console_output (buf + 1); /* 'O' message from stub. */
8075 continue;
8076 }
8077 if (strcmp (buf, "OK") == 0)
8078 break;
8079 if (strlen (buf) == 3 && buf[0] == 'E'
8080 && isdigit (buf[1]) && isdigit (buf[2]))
8081 {
8082 error (_("Protocol error with Rcmd"));
8083 }
8084 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
8085 {
8086 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
8087 fputc_unfiltered (c, outbuf);
8088 }
8089 break;
8090 }
8091 }
8092
8093 static VEC(mem_region_s) *
8094 remote_memory_map (struct target_ops *ops)
8095 {
8096 VEC(mem_region_s) *result = NULL;
8097 char *text = target_read_stralloc (&current_target,
8098 TARGET_OBJECT_MEMORY_MAP, NULL);
8099
8100 if (text)
8101 {
8102 struct cleanup *back_to = make_cleanup (xfree, text);
8103 result = parse_memory_map (text);
8104 do_cleanups (back_to);
8105 }
8106
8107 return result;
8108 }
8109
8110 static void
8111 packet_command (char *args, int from_tty)
8112 {
8113 struct remote_state *rs = get_remote_state ();
8114
8115 if (!remote_desc)
8116 error (_("command can only be used with remote target"));
8117
8118 if (!args)
8119 error (_("remote-packet command requires packet text as argument"));
8120
8121 puts_filtered ("sending: ");
8122 print_packet (args);
8123 puts_filtered ("\n");
8124 putpkt (args);
8125
8126 getpkt (&rs->buf, &rs->buf_size, 0);
8127 puts_filtered ("received: ");
8128 print_packet (rs->buf);
8129 puts_filtered ("\n");
8130 }
8131
8132 #if 0
8133 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
8134
8135 static void display_thread_info (struct gdb_ext_thread_info *info);
8136
8137 static void threadset_test_cmd (char *cmd, int tty);
8138
8139 static void threadalive_test (char *cmd, int tty);
8140
8141 static void threadlist_test_cmd (char *cmd, int tty);
8142
8143 int get_and_display_threadinfo (threadref *ref);
8144
8145 static void threadinfo_test_cmd (char *cmd, int tty);
8146
8147 static int thread_display_step (threadref *ref, void *context);
8148
8149 static void threadlist_update_test_cmd (char *cmd, int tty);
8150
8151 static void init_remote_threadtests (void);
8152
8153 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
8154
8155 static void
8156 threadset_test_cmd (char *cmd, int tty)
8157 {
8158 int sample_thread = SAMPLE_THREAD;
8159
8160 printf_filtered (_("Remote threadset test\n"));
8161 set_general_thread (sample_thread);
8162 }
8163
8164
8165 static void
8166 threadalive_test (char *cmd, int tty)
8167 {
8168 int sample_thread = SAMPLE_THREAD;
8169 int pid = ptid_get_pid (inferior_ptid);
8170 ptid_t ptid = ptid_build (pid, 0, sample_thread);
8171
8172 if (remote_thread_alive (ptid))
8173 printf_filtered ("PASS: Thread alive test\n");
8174 else
8175 printf_filtered ("FAIL: Thread alive test\n");
8176 }
8177
8178 void output_threadid (char *title, threadref *ref);
8179
8180 void
8181 output_threadid (char *title, threadref *ref)
8182 {
8183 char hexid[20];
8184
8185 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
8186 hexid[16] = 0;
8187 printf_filtered ("%s %s\n", title, (&hexid[0]));
8188 }
8189
8190 static void
8191 threadlist_test_cmd (char *cmd, int tty)
8192 {
8193 int startflag = 1;
8194 threadref nextthread;
8195 int done, result_count;
8196 threadref threadlist[3];
8197
8198 printf_filtered ("Remote Threadlist test\n");
8199 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
8200 &result_count, &threadlist[0]))
8201 printf_filtered ("FAIL: threadlist test\n");
8202 else
8203 {
8204 threadref *scan = threadlist;
8205 threadref *limit = scan + result_count;
8206
8207 while (scan < limit)
8208 output_threadid (" thread ", scan++);
8209 }
8210 }
8211
8212 void
8213 display_thread_info (struct gdb_ext_thread_info *info)
8214 {
8215 output_threadid ("Threadid: ", &info->threadid);
8216 printf_filtered ("Name: %s\n ", info->shortname);
8217 printf_filtered ("State: %s\n", info->display);
8218 printf_filtered ("other: %s\n\n", info->more_display);
8219 }
8220
8221 int
8222 get_and_display_threadinfo (threadref *ref)
8223 {
8224 int result;
8225 int set;
8226 struct gdb_ext_thread_info threadinfo;
8227
8228 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
8229 | TAG_MOREDISPLAY | TAG_DISPLAY;
8230 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
8231 display_thread_info (&threadinfo);
8232 return result;
8233 }
8234
8235 static void
8236 threadinfo_test_cmd (char *cmd, int tty)
8237 {
8238 int athread = SAMPLE_THREAD;
8239 threadref thread;
8240 int set;
8241
8242 int_to_threadref (&thread, athread);
8243 printf_filtered ("Remote Threadinfo test\n");
8244 if (!get_and_display_threadinfo (&thread))
8245 printf_filtered ("FAIL cannot get thread info\n");
8246 }
8247
8248 static int
8249 thread_display_step (threadref *ref, void *context)
8250 {
8251 /* output_threadid(" threadstep ",ref); *//* simple test */
8252 return get_and_display_threadinfo (ref);
8253 }
8254
8255 static void
8256 threadlist_update_test_cmd (char *cmd, int tty)
8257 {
8258 printf_filtered ("Remote Threadlist update test\n");
8259 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
8260 }
8261
8262 static void
8263 init_remote_threadtests (void)
8264 {
8265 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
8266 Fetch and print the remote list of thread identifiers, one pkt only"));
8267 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
8268 _("Fetch and display info about one thread"));
8269 add_com ("tset", class_obscure, threadset_test_cmd,
8270 _("Test setting to a different thread"));
8271 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
8272 _("Iterate through updating all remote thread info"));
8273 add_com ("talive", class_obscure, threadalive_test,
8274 _(" Remote thread alive test "));
8275 }
8276
8277 #endif /* 0 */
8278
8279 /* Convert a thread ID to a string. Returns the string in a static
8280 buffer. */
8281
8282 static char *
8283 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
8284 {
8285 static char buf[64];
8286 struct remote_state *rs = get_remote_state ();
8287
8288 if (ptid_is_pid (ptid))
8289 {
8290 /* Printing an inferior target id. */
8291
8292 /* When multi-process extensions are off, there's no way in the
8293 remote protocol to know the remote process id, if there's any
8294 at all. There's one exception --- when we're connected with
8295 target extended-remote, and we manually attached to a process
8296 with "attach PID". We don't record anywhere a flag that
8297 allows us to distinguish that case from the case of
8298 connecting with extended-remote and the stub already being
8299 attached to a process, and reporting yes to qAttached, hence
8300 no smart special casing here. */
8301 if (!remote_multi_process_p (rs))
8302 {
8303 xsnprintf (buf, sizeof buf, "Remote target");
8304 return buf;
8305 }
8306
8307 return normal_pid_to_str (ptid);
8308 }
8309 else
8310 {
8311 if (ptid_equal (magic_null_ptid, ptid))
8312 xsnprintf (buf, sizeof buf, "Thread <main>");
8313 else if (remote_multi_process_p (rs))
8314 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
8315 ptid_get_pid (ptid), ptid_get_tid (ptid));
8316 else
8317 xsnprintf (buf, sizeof buf, "Thread %ld",
8318 ptid_get_tid (ptid));
8319 return buf;
8320 }
8321 }
8322
8323 /* Get the address of the thread local variable in OBJFILE which is
8324 stored at OFFSET within the thread local storage for thread PTID. */
8325
8326 static CORE_ADDR
8327 remote_get_thread_local_address (struct target_ops *ops,
8328 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
8329 {
8330 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
8331 {
8332 struct remote_state *rs = get_remote_state ();
8333 char *p = rs->buf;
8334 char *endp = rs->buf + get_remote_packet_size ();
8335 enum packet_result result;
8336
8337 strcpy (p, "qGetTLSAddr:");
8338 p += strlen (p);
8339 p = write_ptid (p, endp, ptid);
8340 *p++ = ',';
8341 p += hexnumstr (p, offset);
8342 *p++ = ',';
8343 p += hexnumstr (p, lm);
8344 *p++ = '\0';
8345
8346 putpkt (rs->buf);
8347 getpkt (&rs->buf, &rs->buf_size, 0);
8348 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
8349 if (result == PACKET_OK)
8350 {
8351 ULONGEST result;
8352
8353 unpack_varlen_hex (rs->buf, &result);
8354 return result;
8355 }
8356 else if (result == PACKET_UNKNOWN)
8357 throw_error (TLS_GENERIC_ERROR,
8358 _("Remote target doesn't support qGetTLSAddr packet"));
8359 else
8360 throw_error (TLS_GENERIC_ERROR,
8361 _("Remote target failed to process qGetTLSAddr request"));
8362 }
8363 else
8364 throw_error (TLS_GENERIC_ERROR,
8365 _("TLS not supported or disabled on this target"));
8366 /* Not reached. */
8367 return 0;
8368 }
8369
8370 /* Support for inferring a target description based on the current
8371 architecture and the size of a 'g' packet. While the 'g' packet
8372 can have any size (since optional registers can be left off the
8373 end), some sizes are easily recognizable given knowledge of the
8374 approximate architecture. */
8375
8376 struct remote_g_packet_guess
8377 {
8378 int bytes;
8379 const struct target_desc *tdesc;
8380 };
8381 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
8382 DEF_VEC_O(remote_g_packet_guess_s);
8383
8384 struct remote_g_packet_data
8385 {
8386 VEC(remote_g_packet_guess_s) *guesses;
8387 };
8388
8389 static struct gdbarch_data *remote_g_packet_data_handle;
8390
8391 static void *
8392 remote_g_packet_data_init (struct obstack *obstack)
8393 {
8394 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
8395 }
8396
8397 void
8398 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
8399 const struct target_desc *tdesc)
8400 {
8401 struct remote_g_packet_data *data
8402 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
8403 struct remote_g_packet_guess new_guess, *guess;
8404 int ix;
8405
8406 gdb_assert (tdesc != NULL);
8407
8408 for (ix = 0;
8409 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8410 ix++)
8411 if (guess->bytes == bytes)
8412 internal_error (__FILE__, __LINE__,
8413 "Duplicate g packet description added for size %d",
8414 bytes);
8415
8416 new_guess.bytes = bytes;
8417 new_guess.tdesc = tdesc;
8418 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
8419 }
8420
8421 /* Return 1 if remote_read_description would do anything on this target
8422 and architecture, 0 otherwise. */
8423
8424 static int
8425 remote_read_description_p (struct target_ops *target)
8426 {
8427 struct remote_g_packet_data *data
8428 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8429
8430 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8431 return 1;
8432
8433 return 0;
8434 }
8435
8436 static const struct target_desc *
8437 remote_read_description (struct target_ops *target)
8438 {
8439 struct remote_g_packet_data *data
8440 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
8441
8442 /* Do not try this during initial connection, when we do not know
8443 whether there is a running but stopped thread. */
8444 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
8445 return NULL;
8446
8447 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
8448 {
8449 struct remote_g_packet_guess *guess;
8450 int ix;
8451 int bytes = send_g_packet ();
8452
8453 for (ix = 0;
8454 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
8455 ix++)
8456 if (guess->bytes == bytes)
8457 return guess->tdesc;
8458
8459 /* We discard the g packet. A minor optimization would be to
8460 hold on to it, and fill the register cache once we have selected
8461 an architecture, but it's too tricky to do safely. */
8462 }
8463
8464 return NULL;
8465 }
8466
8467 /* Remote file transfer support. This is host-initiated I/O, not
8468 target-initiated; for target-initiated, see remote-fileio.c. */
8469
8470 /* If *LEFT is at least the length of STRING, copy STRING to
8471 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8472 decrease *LEFT. Otherwise raise an error. */
8473
8474 static void
8475 remote_buffer_add_string (char **buffer, int *left, char *string)
8476 {
8477 int len = strlen (string);
8478
8479 if (len > *left)
8480 error (_("Packet too long for target."));
8481
8482 memcpy (*buffer, string, len);
8483 *buffer += len;
8484 *left -= len;
8485
8486 /* NUL-terminate the buffer as a convenience, if there is
8487 room. */
8488 if (*left)
8489 **buffer = '\0';
8490 }
8491
8492 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
8493 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8494 decrease *LEFT. Otherwise raise an error. */
8495
8496 static void
8497 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
8498 int len)
8499 {
8500 if (2 * len > *left)
8501 error (_("Packet too long for target."));
8502
8503 bin2hex (bytes, *buffer, len);
8504 *buffer += 2 * len;
8505 *left -= 2 * len;
8506
8507 /* NUL-terminate the buffer as a convenience, if there is
8508 room. */
8509 if (*left)
8510 **buffer = '\0';
8511 }
8512
8513 /* If *LEFT is large enough, convert VALUE to hex and add it to
8514 *BUFFER, update *BUFFER to point to the new end of the buffer, and
8515 decrease *LEFT. Otherwise raise an error. */
8516
8517 static void
8518 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
8519 {
8520 int len = hexnumlen (value);
8521
8522 if (len > *left)
8523 error (_("Packet too long for target."));
8524
8525 hexnumstr (*buffer, value);
8526 *buffer += len;
8527 *left -= len;
8528
8529 /* NUL-terminate the buffer as a convenience, if there is
8530 room. */
8531 if (*left)
8532 **buffer = '\0';
8533 }
8534
8535 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
8536 value, *REMOTE_ERRNO to the remote error number or zero if none
8537 was included, and *ATTACHMENT to point to the start of the annex
8538 if any. The length of the packet isn't needed here; there may
8539 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
8540
8541 Return 0 if the packet could be parsed, -1 if it could not. If
8542 -1 is returned, the other variables may not be initialized. */
8543
8544 static int
8545 remote_hostio_parse_result (char *buffer, int *retcode,
8546 int *remote_errno, char **attachment)
8547 {
8548 char *p, *p2;
8549
8550 *remote_errno = 0;
8551 *attachment = NULL;
8552
8553 if (buffer[0] != 'F')
8554 return -1;
8555
8556 errno = 0;
8557 *retcode = strtol (&buffer[1], &p, 16);
8558 if (errno != 0 || p == &buffer[1])
8559 return -1;
8560
8561 /* Check for ",errno". */
8562 if (*p == ',')
8563 {
8564 errno = 0;
8565 *remote_errno = strtol (p + 1, &p2, 16);
8566 if (errno != 0 || p + 1 == p2)
8567 return -1;
8568 p = p2;
8569 }
8570
8571 /* Check for ";attachment". If there is no attachment, the
8572 packet should end here. */
8573 if (*p == ';')
8574 {
8575 *attachment = p + 1;
8576 return 0;
8577 }
8578 else if (*p == '\0')
8579 return 0;
8580 else
8581 return -1;
8582 }
8583
8584 /* Send a prepared I/O packet to the target and read its response.
8585 The prepared packet is in the global RS->BUF before this function
8586 is called, and the answer is there when we return.
8587
8588 COMMAND_BYTES is the length of the request to send, which may include
8589 binary data. WHICH_PACKET is the packet configuration to check
8590 before attempting a packet. If an error occurs, *REMOTE_ERRNO
8591 is set to the error number and -1 is returned. Otherwise the value
8592 returned by the function is returned.
8593
8594 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
8595 attachment is expected; an error will be reported if there's a
8596 mismatch. If one is found, *ATTACHMENT will be set to point into
8597 the packet buffer and *ATTACHMENT_LEN will be set to the
8598 attachment's length. */
8599
8600 static int
8601 remote_hostio_send_command (int command_bytes, int which_packet,
8602 int *remote_errno, char **attachment,
8603 int *attachment_len)
8604 {
8605 struct remote_state *rs = get_remote_state ();
8606 int ret, bytes_read;
8607 char *attachment_tmp;
8608
8609 if (!remote_desc
8610 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
8611 {
8612 *remote_errno = FILEIO_ENOSYS;
8613 return -1;
8614 }
8615
8616 putpkt_binary (rs->buf, command_bytes);
8617 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8618
8619 /* If it timed out, something is wrong. Don't try to parse the
8620 buffer. */
8621 if (bytes_read < 0)
8622 {
8623 *remote_errno = FILEIO_EINVAL;
8624 return -1;
8625 }
8626
8627 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
8628 {
8629 case PACKET_ERROR:
8630 *remote_errno = FILEIO_EINVAL;
8631 return -1;
8632 case PACKET_UNKNOWN:
8633 *remote_errno = FILEIO_ENOSYS;
8634 return -1;
8635 case PACKET_OK:
8636 break;
8637 }
8638
8639 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
8640 &attachment_tmp))
8641 {
8642 *remote_errno = FILEIO_EINVAL;
8643 return -1;
8644 }
8645
8646 /* Make sure we saw an attachment if and only if we expected one. */
8647 if ((attachment_tmp == NULL && attachment != NULL)
8648 || (attachment_tmp != NULL && attachment == NULL))
8649 {
8650 *remote_errno = FILEIO_EINVAL;
8651 return -1;
8652 }
8653
8654 /* If an attachment was found, it must point into the packet buffer;
8655 work out how many bytes there were. */
8656 if (attachment_tmp != NULL)
8657 {
8658 *attachment = attachment_tmp;
8659 *attachment_len = bytes_read - (*attachment - rs->buf);
8660 }
8661
8662 return ret;
8663 }
8664
8665 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8666 remote file descriptor, or -1 if an error occurs (and set
8667 *REMOTE_ERRNO). */
8668
8669 static int
8670 remote_hostio_open (const char *filename, int flags, int mode,
8671 int *remote_errno)
8672 {
8673 struct remote_state *rs = get_remote_state ();
8674 char *p = rs->buf;
8675 int left = get_remote_packet_size () - 1;
8676
8677 remote_buffer_add_string (&p, &left, "vFile:open:");
8678
8679 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8680 strlen (filename));
8681 remote_buffer_add_string (&p, &left, ",");
8682
8683 remote_buffer_add_int (&p, &left, flags);
8684 remote_buffer_add_string (&p, &left, ",");
8685
8686 remote_buffer_add_int (&p, &left, mode);
8687
8688 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8689 remote_errno, NULL, NULL);
8690 }
8691
8692 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8693 Return the number of bytes written, or -1 if an error occurs (and
8694 set *REMOTE_ERRNO). */
8695
8696 static int
8697 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8698 ULONGEST offset, int *remote_errno)
8699 {
8700 struct remote_state *rs = get_remote_state ();
8701 char *p = rs->buf;
8702 int left = get_remote_packet_size ();
8703 int out_len;
8704
8705 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8706
8707 remote_buffer_add_int (&p, &left, fd);
8708 remote_buffer_add_string (&p, &left, ",");
8709
8710 remote_buffer_add_int (&p, &left, offset);
8711 remote_buffer_add_string (&p, &left, ",");
8712
8713 p += remote_escape_output (write_buf, len, p, &out_len,
8714 get_remote_packet_size () - (p - rs->buf));
8715
8716 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8717 remote_errno, NULL, NULL);
8718 }
8719
8720 /* Read up to LEN bytes FD on the remote target into READ_BUF
8721 Return the number of bytes read, or -1 if an error occurs (and
8722 set *REMOTE_ERRNO). */
8723
8724 static int
8725 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8726 ULONGEST offset, int *remote_errno)
8727 {
8728 struct remote_state *rs = get_remote_state ();
8729 char *p = rs->buf;
8730 char *attachment;
8731 int left = get_remote_packet_size ();
8732 int ret, attachment_len;
8733 int read_len;
8734
8735 remote_buffer_add_string (&p, &left, "vFile:pread:");
8736
8737 remote_buffer_add_int (&p, &left, fd);
8738 remote_buffer_add_string (&p, &left, ",");
8739
8740 remote_buffer_add_int (&p, &left, len);
8741 remote_buffer_add_string (&p, &left, ",");
8742
8743 remote_buffer_add_int (&p, &left, offset);
8744
8745 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8746 remote_errno, &attachment,
8747 &attachment_len);
8748
8749 if (ret < 0)
8750 return ret;
8751
8752 read_len = remote_unescape_input (attachment, attachment_len,
8753 read_buf, len);
8754 if (read_len != ret)
8755 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8756
8757 return ret;
8758 }
8759
8760 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8761 (and set *REMOTE_ERRNO). */
8762
8763 static int
8764 remote_hostio_close (int fd, int *remote_errno)
8765 {
8766 struct remote_state *rs = get_remote_state ();
8767 char *p = rs->buf;
8768 int left = get_remote_packet_size () - 1;
8769
8770 remote_buffer_add_string (&p, &left, "vFile:close:");
8771
8772 remote_buffer_add_int (&p, &left, fd);
8773
8774 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8775 remote_errno, NULL, NULL);
8776 }
8777
8778 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8779 occurs (and set *REMOTE_ERRNO). */
8780
8781 static int
8782 remote_hostio_unlink (const char *filename, int *remote_errno)
8783 {
8784 struct remote_state *rs = get_remote_state ();
8785 char *p = rs->buf;
8786 int left = get_remote_packet_size () - 1;
8787
8788 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8789
8790 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8791 strlen (filename));
8792
8793 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8794 remote_errno, NULL, NULL);
8795 }
8796
8797 static int
8798 remote_fileio_errno_to_host (int errnum)
8799 {
8800 switch (errnum)
8801 {
8802 case FILEIO_EPERM:
8803 return EPERM;
8804 case FILEIO_ENOENT:
8805 return ENOENT;
8806 case FILEIO_EINTR:
8807 return EINTR;
8808 case FILEIO_EIO:
8809 return EIO;
8810 case FILEIO_EBADF:
8811 return EBADF;
8812 case FILEIO_EACCES:
8813 return EACCES;
8814 case FILEIO_EFAULT:
8815 return EFAULT;
8816 case FILEIO_EBUSY:
8817 return EBUSY;
8818 case FILEIO_EEXIST:
8819 return EEXIST;
8820 case FILEIO_ENODEV:
8821 return ENODEV;
8822 case FILEIO_ENOTDIR:
8823 return ENOTDIR;
8824 case FILEIO_EISDIR:
8825 return EISDIR;
8826 case FILEIO_EINVAL:
8827 return EINVAL;
8828 case FILEIO_ENFILE:
8829 return ENFILE;
8830 case FILEIO_EMFILE:
8831 return EMFILE;
8832 case FILEIO_EFBIG:
8833 return EFBIG;
8834 case FILEIO_ENOSPC:
8835 return ENOSPC;
8836 case FILEIO_ESPIPE:
8837 return ESPIPE;
8838 case FILEIO_EROFS:
8839 return EROFS;
8840 case FILEIO_ENOSYS:
8841 return ENOSYS;
8842 case FILEIO_ENAMETOOLONG:
8843 return ENAMETOOLONG;
8844 }
8845 return -1;
8846 }
8847
8848 static char *
8849 remote_hostio_error (int errnum)
8850 {
8851 int host_error = remote_fileio_errno_to_host (errnum);
8852
8853 if (host_error == -1)
8854 error (_("Unknown remote I/O error %d"), errnum);
8855 else
8856 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8857 }
8858
8859 static void
8860 remote_hostio_close_cleanup (void *opaque)
8861 {
8862 int fd = *(int *) opaque;
8863 int remote_errno;
8864
8865 remote_hostio_close (fd, &remote_errno);
8866 }
8867
8868
8869 static void *
8870 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8871 {
8872 const char *filename = bfd_get_filename (abfd);
8873 int fd, remote_errno;
8874 int *stream;
8875
8876 gdb_assert (remote_filename_p (filename));
8877
8878 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8879 if (fd == -1)
8880 {
8881 errno = remote_fileio_errno_to_host (remote_errno);
8882 bfd_set_error (bfd_error_system_call);
8883 return NULL;
8884 }
8885
8886 stream = xmalloc (sizeof (int));
8887 *stream = fd;
8888 return stream;
8889 }
8890
8891 static int
8892 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8893 {
8894 int fd = *(int *)stream;
8895 int remote_errno;
8896
8897 xfree (stream);
8898
8899 /* Ignore errors on close; these may happen if the remote
8900 connection was already torn down. */
8901 remote_hostio_close (fd, &remote_errno);
8902
8903 return 1;
8904 }
8905
8906 static file_ptr
8907 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8908 file_ptr nbytes, file_ptr offset)
8909 {
8910 int fd = *(int *)stream;
8911 int remote_errno;
8912 file_ptr pos, bytes;
8913
8914 pos = 0;
8915 while (nbytes > pos)
8916 {
8917 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8918 offset + pos, &remote_errno);
8919 if (bytes == 0)
8920 /* Success, but no bytes, means end-of-file. */
8921 break;
8922 if (bytes == -1)
8923 {
8924 errno = remote_fileio_errno_to_host (remote_errno);
8925 bfd_set_error (bfd_error_system_call);
8926 return -1;
8927 }
8928
8929 pos += bytes;
8930 }
8931
8932 return pos;
8933 }
8934
8935 static int
8936 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8937 {
8938 /* FIXME: We should probably implement remote_hostio_stat. */
8939 sb->st_size = INT_MAX;
8940 return 0;
8941 }
8942
8943 int
8944 remote_filename_p (const char *filename)
8945 {
8946 return strncmp (filename, "remote:", 7) == 0;
8947 }
8948
8949 bfd *
8950 remote_bfd_open (const char *remote_file, const char *target)
8951 {
8952 return bfd_openr_iovec (remote_file, target,
8953 remote_bfd_iovec_open, NULL,
8954 remote_bfd_iovec_pread,
8955 remote_bfd_iovec_close,
8956 remote_bfd_iovec_stat);
8957 }
8958
8959 void
8960 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8961 {
8962 struct cleanup *back_to, *close_cleanup;
8963 int retcode, fd, remote_errno, bytes, io_size;
8964 FILE *file;
8965 gdb_byte *buffer;
8966 int bytes_in_buffer;
8967 int saw_eof;
8968 ULONGEST offset;
8969
8970 if (!remote_desc)
8971 error (_("command can only be used with remote target"));
8972
8973 file = fopen (local_file, "rb");
8974 if (file == NULL)
8975 perror_with_name (local_file);
8976 back_to = make_cleanup_fclose (file);
8977
8978 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8979 | FILEIO_O_TRUNC),
8980 0700, &remote_errno);
8981 if (fd == -1)
8982 remote_hostio_error (remote_errno);
8983
8984 /* Send up to this many bytes at once. They won't all fit in the
8985 remote packet limit, so we'll transfer slightly fewer. */
8986 io_size = get_remote_packet_size ();
8987 buffer = xmalloc (io_size);
8988 make_cleanup (xfree, buffer);
8989
8990 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8991
8992 bytes_in_buffer = 0;
8993 saw_eof = 0;
8994 offset = 0;
8995 while (bytes_in_buffer || !saw_eof)
8996 {
8997 if (!saw_eof)
8998 {
8999 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
9000 file);
9001 if (bytes == 0)
9002 {
9003 if (ferror (file))
9004 error (_("Error reading %s."), local_file);
9005 else
9006 {
9007 /* EOF. Unless there is something still in the
9008 buffer from the last iteration, we are done. */
9009 saw_eof = 1;
9010 if (bytes_in_buffer == 0)
9011 break;
9012 }
9013 }
9014 }
9015 else
9016 bytes = 0;
9017
9018 bytes += bytes_in_buffer;
9019 bytes_in_buffer = 0;
9020
9021 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
9022
9023 if (retcode < 0)
9024 remote_hostio_error (remote_errno);
9025 else if (retcode == 0)
9026 error (_("Remote write of %d bytes returned 0!"), bytes);
9027 else if (retcode < bytes)
9028 {
9029 /* Short write. Save the rest of the read data for the next
9030 write. */
9031 bytes_in_buffer = bytes - retcode;
9032 memmove (buffer, buffer + retcode, bytes_in_buffer);
9033 }
9034
9035 offset += retcode;
9036 }
9037
9038 discard_cleanups (close_cleanup);
9039 if (remote_hostio_close (fd, &remote_errno))
9040 remote_hostio_error (remote_errno);
9041
9042 if (from_tty)
9043 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
9044 do_cleanups (back_to);
9045 }
9046
9047 void
9048 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
9049 {
9050 struct cleanup *back_to, *close_cleanup;
9051 int fd, remote_errno, bytes, io_size;
9052 FILE *file;
9053 gdb_byte *buffer;
9054 ULONGEST offset;
9055
9056 if (!remote_desc)
9057 error (_("command can only be used with remote target"));
9058
9059 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
9060 if (fd == -1)
9061 remote_hostio_error (remote_errno);
9062
9063 file = fopen (local_file, "wb");
9064 if (file == NULL)
9065 perror_with_name (local_file);
9066 back_to = make_cleanup_fclose (file);
9067
9068 /* Send up to this many bytes at once. They won't all fit in the
9069 remote packet limit, so we'll transfer slightly fewer. */
9070 io_size = get_remote_packet_size ();
9071 buffer = xmalloc (io_size);
9072 make_cleanup (xfree, buffer);
9073
9074 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
9075
9076 offset = 0;
9077 while (1)
9078 {
9079 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
9080 if (bytes == 0)
9081 /* Success, but no bytes, means end-of-file. */
9082 break;
9083 if (bytes == -1)
9084 remote_hostio_error (remote_errno);
9085
9086 offset += bytes;
9087
9088 bytes = fwrite (buffer, 1, bytes, file);
9089 if (bytes == 0)
9090 perror_with_name (local_file);
9091 }
9092
9093 discard_cleanups (close_cleanup);
9094 if (remote_hostio_close (fd, &remote_errno))
9095 remote_hostio_error (remote_errno);
9096
9097 if (from_tty)
9098 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
9099 do_cleanups (back_to);
9100 }
9101
9102 void
9103 remote_file_delete (const char *remote_file, int from_tty)
9104 {
9105 int retcode, remote_errno;
9106
9107 if (!remote_desc)
9108 error (_("command can only be used with remote target"));
9109
9110 retcode = remote_hostio_unlink (remote_file, &remote_errno);
9111 if (retcode == -1)
9112 remote_hostio_error (remote_errno);
9113
9114 if (from_tty)
9115 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
9116 }
9117
9118 static void
9119 remote_put_command (char *args, int from_tty)
9120 {
9121 struct cleanup *back_to;
9122 char **argv;
9123
9124 if (args == NULL)
9125 error_no_arg (_("file to put"));
9126
9127 argv = gdb_buildargv (args);
9128 back_to = make_cleanup_freeargv (argv);
9129 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9130 error (_("Invalid parameters to remote put"));
9131
9132 remote_file_put (argv[0], argv[1], from_tty);
9133
9134 do_cleanups (back_to);
9135 }
9136
9137 static void
9138 remote_get_command (char *args, int from_tty)
9139 {
9140 struct cleanup *back_to;
9141 char **argv;
9142
9143 if (args == NULL)
9144 error_no_arg (_("file to get"));
9145
9146 argv = gdb_buildargv (args);
9147 back_to = make_cleanup_freeargv (argv);
9148 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
9149 error (_("Invalid parameters to remote get"));
9150
9151 remote_file_get (argv[0], argv[1], from_tty);
9152
9153 do_cleanups (back_to);
9154 }
9155
9156 static void
9157 remote_delete_command (char *args, int from_tty)
9158 {
9159 struct cleanup *back_to;
9160 char **argv;
9161
9162 if (args == NULL)
9163 error_no_arg (_("file to delete"));
9164
9165 argv = gdb_buildargv (args);
9166 back_to = make_cleanup_freeargv (argv);
9167 if (argv[0] == NULL || argv[1] != NULL)
9168 error (_("Invalid parameters to remote delete"));
9169
9170 remote_file_delete (argv[0], from_tty);
9171
9172 do_cleanups (back_to);
9173 }
9174
9175 static void
9176 remote_command (char *args, int from_tty)
9177 {
9178 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
9179 }
9180
9181 static int
9182 remote_can_execute_reverse (void)
9183 {
9184 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
9185 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
9186 return 1;
9187 else
9188 return 0;
9189 }
9190
9191 static int
9192 remote_supports_non_stop (void)
9193 {
9194 return 1;
9195 }
9196
9197 static int
9198 remote_supports_multi_process (void)
9199 {
9200 struct remote_state *rs = get_remote_state ();
9201 return remote_multi_process_p (rs);
9202 }
9203
9204 int
9205 remote_supports_cond_tracepoints (void)
9206 {
9207 struct remote_state *rs = get_remote_state ();
9208 return rs->cond_tracepoints;
9209 }
9210
9211 int
9212 remote_supports_fast_tracepoints (void)
9213 {
9214 struct remote_state *rs = get_remote_state ();
9215 return rs->fast_tracepoints;
9216 }
9217
9218 static void
9219 remote_trace_init ()
9220 {
9221 putpkt ("QTinit");
9222 remote_get_noisy_reply (&target_buf, &target_buf_size);
9223 if (strcmp (target_buf, "OK"))
9224 error (_("Target does not support this command."));
9225 }
9226
9227 static void free_actions_list (char **actions_list);
9228 static void free_actions_list_cleanup_wrapper (void *);
9229 static void
9230 free_actions_list_cleanup_wrapper (void *al)
9231 {
9232 free_actions_list (al);
9233 }
9234
9235 static void
9236 free_actions_list (char **actions_list)
9237 {
9238 int ndx;
9239
9240 if (actions_list == 0)
9241 return;
9242
9243 for (ndx = 0; actions_list[ndx]; ndx++)
9244 xfree (actions_list[ndx]);
9245
9246 xfree (actions_list);
9247 }
9248
9249 static void
9250 remote_download_tracepoint (struct breakpoint *t)
9251 {
9252 CORE_ADDR tpaddr;
9253 char tmp[40];
9254 char buf[2048];
9255 char **tdp_actions;
9256 char **stepping_actions;
9257 int ndx;
9258 struct cleanup *old_chain = NULL;
9259 struct agent_expr *aexpr;
9260 struct cleanup *aexpr_chain = NULL;
9261 char *pkt;
9262
9263 encode_actions (t, &tdp_actions, &stepping_actions);
9264 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
9265 tdp_actions);
9266 (void) make_cleanup (free_actions_list_cleanup_wrapper, stepping_actions);
9267
9268 tpaddr = t->loc->address;
9269 sprintf_vma (tmp, (t->loc ? tpaddr : 0));
9270 sprintf (buf, "QTDP:%x:%s:%c:%lx:%x", t->number,
9271 tmp, /* address */
9272 (t->enable_state == bp_enabled ? 'E' : 'D'),
9273 t->step_count, t->pass_count);
9274 /* Fast tracepoints are mostly handled by the target, but we can
9275 tell the target how big of an instruction block should be moved
9276 around. */
9277 if (t->type == bp_fast_tracepoint)
9278 {
9279 /* Only test for support at download time; we may not know
9280 target capabilities at definition time. */
9281 if (remote_supports_fast_tracepoints ())
9282 {
9283 int isize;
9284
9285 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch,
9286 tpaddr, &isize, NULL))
9287 sprintf (buf + strlen (buf), ":F%x", isize);
9288 else
9289 /* If it passed validation at definition but fails now,
9290 something is very wrong. */
9291 internal_error (__FILE__, __LINE__,
9292 "Fast tracepoint not valid during download");
9293 }
9294 else
9295 /* Fast tracepoints are functionally identical to regular
9296 tracepoints, so don't take lack of support as a reason to
9297 give up on the trace run. */
9298 warning (_("Target does not support fast tracepoints, downloading %d as regular tracepoint"), t->number);
9299 }
9300 /* If the tracepoint has a conditional, make it into an agent
9301 expression and append to the definition. */
9302 if (t->loc->cond)
9303 {
9304 /* Only test support at download time, we may not know target
9305 capabilities at definition time. */
9306 if (remote_supports_cond_tracepoints ())
9307 {
9308 aexpr = gen_eval_for_expr (t->loc->address, t->loc->cond);
9309 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
9310 sprintf (buf + strlen (buf), ":X%x,", aexpr->len);
9311 pkt = buf + strlen (buf);
9312 for (ndx = 0; ndx < aexpr->len; ++ndx)
9313 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
9314 *pkt = '\0';
9315 do_cleanups (aexpr_chain);
9316 }
9317 else
9318 warning (_("Target does not support conditional tracepoints, ignoring tp %d cond"), t->number);
9319 }
9320
9321 if (t->actions || *default_collect)
9322 strcat (buf, "-");
9323 putpkt (buf);
9324 remote_get_noisy_reply (&target_buf, &target_buf_size);
9325 if (strcmp (target_buf, "OK"))
9326 error (_("Target does not support tracepoints."));
9327
9328 if (!t->actions && !*default_collect)
9329 return;
9330
9331 /* do_single_steps (t); */
9332 if (tdp_actions)
9333 {
9334 for (ndx = 0; tdp_actions[ndx]; ndx++)
9335 {
9336 QUIT; /* allow user to bail out with ^C */
9337 sprintf (buf, "QTDP:-%x:%s:%s%c",
9338 t->number, tmp, /* address */
9339 tdp_actions[ndx],
9340 ((tdp_actions[ndx + 1] || stepping_actions)
9341 ? '-' : 0));
9342 putpkt (buf);
9343 remote_get_noisy_reply (&target_buf,
9344 &target_buf_size);
9345 if (strcmp (target_buf, "OK"))
9346 error (_("Error on target while setting tracepoints."));
9347 }
9348 }
9349 if (stepping_actions)
9350 {
9351 for (ndx = 0; stepping_actions[ndx]; ndx++)
9352 {
9353 QUIT; /* allow user to bail out with ^C */
9354 sprintf (buf, "QTDP:-%x:%s:%s%s%s",
9355 t->number, tmp, /* address */
9356 ((ndx == 0) ? "S" : ""),
9357 stepping_actions[ndx],
9358 (stepping_actions[ndx + 1] ? "-" : ""));
9359 putpkt (buf);
9360 remote_get_noisy_reply (&target_buf,
9361 &target_buf_size);
9362 if (strcmp (target_buf, "OK"))
9363 error (_("Error on target while setting tracepoints."));
9364 }
9365 }
9366 do_cleanups (old_chain);
9367 return;
9368 }
9369
9370 static void
9371 remote_download_trace_state_variable (struct trace_state_variable *tsv)
9372 {
9373 struct remote_state *rs = get_remote_state ();
9374 char *p;
9375
9376 sprintf (rs->buf, "QTDV:%x:%s:%x:",
9377 tsv->number, phex ((ULONGEST) tsv->initial_value, 8), tsv->builtin);
9378 p = rs->buf + strlen (rs->buf);
9379 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
9380 error (_("Trace state variable name too long for tsv definition packet"));
9381 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
9382 *p++ = '\0';
9383 putpkt (rs->buf);
9384 remote_get_noisy_reply (&target_buf, &target_buf_size);
9385 }
9386
9387 static void
9388 remote_trace_set_readonly_regions ()
9389 {
9390 asection *s;
9391 bfd_size_type size;
9392 bfd_vma lma;
9393 int anysecs = 0;
9394
9395 if (!exec_bfd)
9396 return; /* No information to give. */
9397
9398 strcpy (target_buf, "QTro");
9399 for (s = exec_bfd->sections; s; s = s->next)
9400 {
9401 char tmp1[40], tmp2[40];
9402
9403 if ((s->flags & SEC_LOAD) == 0 ||
9404 /* (s->flags & SEC_CODE) == 0 || */
9405 (s->flags & SEC_READONLY) == 0)
9406 continue;
9407
9408 anysecs = 1;
9409 lma = s->lma;
9410 size = bfd_get_section_size (s);
9411 sprintf_vma (tmp1, lma);
9412 sprintf_vma (tmp2, lma + size);
9413 sprintf (target_buf + strlen (target_buf),
9414 ":%s,%s", tmp1, tmp2);
9415 }
9416 if (anysecs)
9417 {
9418 putpkt (target_buf);
9419 getpkt (&target_buf, &target_buf_size, 0);
9420 }
9421 }
9422
9423 static void
9424 remote_trace_start ()
9425 {
9426 putpkt ("QTStart");
9427 remote_get_noisy_reply (&target_buf, &target_buf_size);
9428 if (strcmp (target_buf, "OK"))
9429 error (_("Bogus reply from target: %s"), target_buf);
9430 }
9431
9432 static int
9433 remote_get_trace_status (struct trace_status *ts)
9434 {
9435 char *p, *p1, *p_temp;
9436 ULONGEST val;
9437 /* FIXME we need to get register block size some other way */
9438 extern int trace_regblock_size;
9439 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
9440
9441 putpkt ("qTStatus");
9442 getpkt (&target_buf, &target_buf_size, 0);
9443 /* FIXME should handle more variety of replies */
9444
9445 p = target_buf;
9446
9447 /* If the remote target doesn't do tracing, flag it. */
9448 if (*p == '\0')
9449 return -1;
9450
9451 /* We're working with a live target. */
9452 ts->from_file = 0;
9453
9454 /* Set some defaults. */
9455 ts->running_known = 0;
9456 ts->stop_reason = trace_stop_reason_unknown;
9457 ts->traceframe_count = -1;
9458 ts->buffer_free = 0;
9459
9460 if (*p++ != 'T')
9461 error (_("Bogus trace status reply from target: %s"), target_buf);
9462
9463 parse_trace_status (p, ts);
9464
9465 return ts->running;
9466 }
9467
9468 static void
9469 remote_trace_stop ()
9470 {
9471 putpkt ("QTStop");
9472 remote_get_noisy_reply (&target_buf, &target_buf_size);
9473 if (strcmp (target_buf, "OK"))
9474 error (_("Bogus reply from target: %s"), target_buf);
9475 }
9476
9477 static int
9478 remote_trace_find (enum trace_find_type type, int num,
9479 ULONGEST addr1, ULONGEST addr2,
9480 int *tpp)
9481 {
9482 struct remote_state *rs = get_remote_state ();
9483 char *p, *reply;
9484 int target_frameno = -1, target_tracept = -1;
9485
9486 p = rs->buf;
9487 strcpy (p, "QTFrame:");
9488 p = strchr (p, '\0');
9489 switch (type)
9490 {
9491 case tfind_number:
9492 sprintf (p, "%x", num);
9493 break;
9494 case tfind_pc:
9495 sprintf (p, "pc:%s", phex_nz (addr1, 0));
9496 break;
9497 case tfind_tp:
9498 sprintf (p, "tdp:%x", num);
9499 break;
9500 case tfind_range:
9501 sprintf (p, "range:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
9502 break;
9503 case tfind_outside:
9504 sprintf (p, "outside:%s:%s", phex_nz (addr1, 0), phex_nz (addr2, 0));
9505 break;
9506 default:
9507 error ("Unknown trace find type %d", type);
9508 }
9509
9510 putpkt (rs->buf);
9511 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
9512
9513 while (reply && *reply)
9514 switch (*reply)
9515 {
9516 case 'F':
9517 if ((target_frameno = (int) strtol (++reply, &reply, 16)) == -1)
9518 error (_("Target failed to find requested trace frame."));
9519 break;
9520 case 'T':
9521 if ((target_tracept = (int) strtol (++reply, &reply, 16)) == -1)
9522 error (_("Target failed to find requested trace frame."));
9523 break;
9524 case 'O': /* "OK"? */
9525 if (reply[1] == 'K' && reply[2] == '\0')
9526 reply += 2;
9527 else
9528 error (_("Bogus reply from target: %s"), reply);
9529 break;
9530 default:
9531 error (_("Bogus reply from target: %s"), reply);
9532 }
9533 if (tpp)
9534 *tpp = target_tracept;
9535 return target_frameno;
9536 }
9537
9538 static int
9539 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
9540 {
9541 struct remote_state *rs = get_remote_state ();
9542 char *reply;
9543 ULONGEST uval;
9544
9545 sprintf (rs->buf, "qTV:%x", tsvnum);
9546 putpkt (rs->buf);
9547 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
9548 if (reply && *reply)
9549 {
9550 if (*reply == 'V')
9551 {
9552 unpack_varlen_hex (reply + 1, &uval);
9553 *val = (LONGEST) uval;
9554 return 1;
9555 }
9556 }
9557 return 0;
9558 }
9559
9560 static int
9561 remote_save_trace_data (char *filename)
9562 {
9563 struct remote_state *rs = get_remote_state ();
9564 char *p, *reply;
9565
9566 p = rs->buf;
9567 strcpy (p, "QTSave:");
9568 p += strlen (p);
9569 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
9570 error (_("Remote file name too long for trace save packet"));
9571 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
9572 *p++ = '\0';
9573 putpkt (rs->buf);
9574 remote_get_noisy_reply (&target_buf, &target_buf_size);
9575 return 0;
9576 }
9577
9578 /* This is basically a memory transfer, but needs to be its own packet
9579 because we don't know how the target actually organizes its trace
9580 memory, plus we want to be able to ask for as much as possible, but
9581 not be unhappy if we don't get as much as we ask for. */
9582
9583 static LONGEST
9584 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
9585 {
9586 struct remote_state *rs = get_remote_state ();
9587 char *reply;
9588 char *p;
9589 int rslt;
9590
9591 p = rs->buf;
9592 strcpy (p, "qTBuffer:");
9593 p += strlen (p);
9594 p += hexnumstr (p, offset);
9595 *p++ = ',';
9596 p += hexnumstr (p, len);
9597 *p++ = '\0';
9598
9599 putpkt (rs->buf);
9600 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
9601 if (reply && *reply)
9602 {
9603 /* 'l' by itself means we're at the end of the buffer and
9604 there is nothing more to get. */
9605 if (*reply == 'l')
9606 return 0;
9607
9608 /* Convert the reply into binary. Limit the number of bytes to
9609 convert according to our passed-in buffer size, rather than
9610 what was returned in the packet; if the target is
9611 unexpectedly generous and gives us a bigger reply than we
9612 asked for, we don't want to crash. */
9613 rslt = hex2bin (target_buf, buf, len);
9614 return rslt;
9615 }
9616
9617 /* Something went wrong, flag as an error. */
9618 return -1;
9619 }
9620
9621 static void
9622 remote_set_disconnected_tracing (int val)
9623 {
9624 struct remote_state *rs = get_remote_state ();
9625
9626 sprintf (rs->buf, "QTDisconnected:%x", val);
9627 putpkt (rs->buf);
9628 remote_get_noisy_reply (&target_buf, &target_buf_size);
9629 if (strcmp (target_buf, "OK"))
9630 error (_("Target does not support this command."));
9631 }
9632
9633 static int
9634 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
9635 {
9636 struct thread_info *info = find_thread_ptid (ptid);
9637 if (info && info->private)
9638 return info->private->core;
9639 return -1;
9640 }
9641
9642 static void
9643 init_remote_ops (void)
9644 {
9645 remote_ops.to_shortname = "remote";
9646 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
9647 remote_ops.to_doc =
9648 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
9649 Specify the serial device it is connected to\n\
9650 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
9651 remote_ops.to_open = remote_open;
9652 remote_ops.to_close = remote_close;
9653 remote_ops.to_detach = remote_detach;
9654 remote_ops.to_disconnect = remote_disconnect;
9655 remote_ops.to_resume = remote_resume;
9656 remote_ops.to_wait = remote_wait;
9657 remote_ops.to_fetch_registers = remote_fetch_registers;
9658 remote_ops.to_store_registers = remote_store_registers;
9659 remote_ops.to_prepare_to_store = remote_prepare_to_store;
9660 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
9661 remote_ops.to_files_info = remote_files_info;
9662 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
9663 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
9664 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
9665 remote_ops.to_stopped_data_address = remote_stopped_data_address;
9666 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
9667 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
9668 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
9669 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
9670 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
9671 remote_ops.to_kill = remote_kill;
9672 remote_ops.to_load = generic_load;
9673 remote_ops.to_mourn_inferior = remote_mourn;
9674 remote_ops.to_thread_alive = remote_thread_alive;
9675 remote_ops.to_find_new_threads = remote_threads_info;
9676 remote_ops.to_pid_to_str = remote_pid_to_str;
9677 remote_ops.to_extra_thread_info = remote_threads_extra_info;
9678 remote_ops.to_stop = remote_stop;
9679 remote_ops.to_xfer_partial = remote_xfer_partial;
9680 remote_ops.to_rcmd = remote_rcmd;
9681 remote_ops.to_log_command = serial_log_command;
9682 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
9683 remote_ops.to_stratum = process_stratum;
9684 remote_ops.to_has_all_memory = default_child_has_all_memory;
9685 remote_ops.to_has_memory = default_child_has_memory;
9686 remote_ops.to_has_stack = default_child_has_stack;
9687 remote_ops.to_has_registers = default_child_has_registers;
9688 remote_ops.to_has_execution = default_child_has_execution;
9689 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
9690 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
9691 remote_ops.to_magic = OPS_MAGIC;
9692 remote_ops.to_memory_map = remote_memory_map;
9693 remote_ops.to_flash_erase = remote_flash_erase;
9694 remote_ops.to_flash_done = remote_flash_done;
9695 remote_ops.to_read_description = remote_read_description;
9696 remote_ops.to_search_memory = remote_search_memory;
9697 remote_ops.to_can_async_p = remote_can_async_p;
9698 remote_ops.to_is_async_p = remote_is_async_p;
9699 remote_ops.to_async = remote_async;
9700 remote_ops.to_async_mask = remote_async_mask;
9701 remote_ops.to_terminal_inferior = remote_terminal_inferior;
9702 remote_ops.to_terminal_ours = remote_terminal_ours;
9703 remote_ops.to_supports_non_stop = remote_supports_non_stop;
9704 remote_ops.to_supports_multi_process = remote_supports_multi_process;
9705 remote_ops.to_trace_init = remote_trace_init;
9706 remote_ops.to_download_tracepoint = remote_download_tracepoint;
9707 remote_ops.to_download_trace_state_variable = remote_download_trace_state_variable;
9708 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
9709 remote_ops.to_trace_start = remote_trace_start;
9710 remote_ops.to_get_trace_status = remote_get_trace_status;
9711 remote_ops.to_trace_stop = remote_trace_stop;
9712 remote_ops.to_trace_find = remote_trace_find;
9713 remote_ops.to_get_trace_state_variable_value = remote_get_trace_state_variable_value;
9714 remote_ops.to_save_trace_data = remote_save_trace_data;
9715 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
9716 remote_ops.to_upload_trace_state_variables = remote_upload_trace_state_variables;
9717 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
9718 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
9719 remote_ops.to_core_of_thread = remote_core_of_thread;
9720 }
9721
9722 /* Set up the extended remote vector by making a copy of the standard
9723 remote vector and adding to it. */
9724
9725 static void
9726 init_extended_remote_ops (void)
9727 {
9728 extended_remote_ops = remote_ops;
9729
9730 extended_remote_ops.to_shortname = "extended-remote";
9731 extended_remote_ops.to_longname =
9732 "Extended remote serial target in gdb-specific protocol";
9733 extended_remote_ops.to_doc =
9734 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
9735 Specify the serial device it is connected to (e.g. /dev/ttya).";
9736 extended_remote_ops.to_open = extended_remote_open;
9737 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
9738 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
9739 extended_remote_ops.to_detach = extended_remote_detach;
9740 extended_remote_ops.to_attach = extended_remote_attach;
9741 extended_remote_ops.to_kill = extended_remote_kill;
9742 }
9743
9744 static int
9745 remote_can_async_p (void)
9746 {
9747 if (!target_async_permitted)
9748 /* We only enable async when the user specifically asks for it. */
9749 return 0;
9750
9751 /* We're async whenever the serial device is. */
9752 return remote_async_mask_value && serial_can_async_p (remote_desc);
9753 }
9754
9755 static int
9756 remote_is_async_p (void)
9757 {
9758 if (!target_async_permitted)
9759 /* We only enable async when the user specifically asks for it. */
9760 return 0;
9761
9762 /* We're async whenever the serial device is. */
9763 return remote_async_mask_value && serial_is_async_p (remote_desc);
9764 }
9765
9766 /* Pass the SERIAL event on and up to the client. One day this code
9767 will be able to delay notifying the client of an event until the
9768 point where an entire packet has been received. */
9769
9770 static void (*async_client_callback) (enum inferior_event_type event_type,
9771 void *context);
9772 static void *async_client_context;
9773 static serial_event_ftype remote_async_serial_handler;
9774
9775 static void
9776 remote_async_serial_handler (struct serial *scb, void *context)
9777 {
9778 /* Don't propogate error information up to the client. Instead let
9779 the client find out about the error by querying the target. */
9780 async_client_callback (INF_REG_EVENT, async_client_context);
9781 }
9782
9783 static void
9784 remote_async_inferior_event_handler (gdb_client_data data)
9785 {
9786 inferior_event_handler (INF_REG_EVENT, NULL);
9787 }
9788
9789 static void
9790 remote_async_get_pending_events_handler (gdb_client_data data)
9791 {
9792 remote_get_pending_stop_replies ();
9793 }
9794
9795 static void
9796 remote_async (void (*callback) (enum inferior_event_type event_type,
9797 void *context), void *context)
9798 {
9799 if (remote_async_mask_value == 0)
9800 internal_error (__FILE__, __LINE__,
9801 _("Calling remote_async when async is masked"));
9802
9803 if (callback != NULL)
9804 {
9805 serial_async (remote_desc, remote_async_serial_handler, NULL);
9806 async_client_callback = callback;
9807 async_client_context = context;
9808 }
9809 else
9810 serial_async (remote_desc, NULL, NULL);
9811 }
9812
9813 static int
9814 remote_async_mask (int new_mask)
9815 {
9816 int curr_mask = remote_async_mask_value;
9817 remote_async_mask_value = new_mask;
9818 return curr_mask;
9819 }
9820
9821 static void
9822 set_remote_cmd (char *args, int from_tty)
9823 {
9824 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
9825 }
9826
9827 static void
9828 show_remote_cmd (char *args, int from_tty)
9829 {
9830 /* We can't just use cmd_show_list here, because we want to skip
9831 the redundant "show remote Z-packet" and the legacy aliases. */
9832 struct cleanup *showlist_chain;
9833 struct cmd_list_element *list = remote_show_cmdlist;
9834
9835 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
9836 for (; list != NULL; list = list->next)
9837 if (strcmp (list->name, "Z-packet") == 0)
9838 continue;
9839 else if (list->type == not_set_cmd)
9840 /* Alias commands are exactly like the original, except they
9841 don't have the normal type. */
9842 continue;
9843 else
9844 {
9845 struct cleanup *option_chain
9846 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
9847 ui_out_field_string (uiout, "name", list->name);
9848 ui_out_text (uiout, ": ");
9849 if (list->type == show_cmd)
9850 do_setshow_command ((char *) NULL, from_tty, list);
9851 else
9852 cmd_func (list, NULL, from_tty);
9853 /* Close the tuple. */
9854 do_cleanups (option_chain);
9855 }
9856
9857 /* Close the tuple. */
9858 do_cleanups (showlist_chain);
9859 }
9860
9861
9862 /* Function to be called whenever a new objfile (shlib) is detected. */
9863 static void
9864 remote_new_objfile (struct objfile *objfile)
9865 {
9866 if (remote_desc != 0) /* Have a remote connection. */
9867 remote_check_symbols (objfile);
9868 }
9869
9870 /* Pull all the tracepoints defined on the target and create local
9871 data structures representing them. We don't want to create real
9872 tracepoints yet, we don't want to mess up the user's existing
9873 collection. */
9874
9875 static int
9876 remote_upload_tracepoints (struct uploaded_tp **utpp)
9877 {
9878 struct remote_state *rs = get_remote_state ();
9879 char *p;
9880
9881 /* Ask for a first packet of tracepoint definition. */
9882 putpkt ("qTfP");
9883 getpkt (&rs->buf, &rs->buf_size, 0);
9884 p = rs->buf;
9885 while (*p && *p != 'l')
9886 {
9887 parse_tracepoint_definition (p, utpp);
9888 /* Ask for another packet of tracepoint definition. */
9889 putpkt ("qTsP");
9890 getpkt (&rs->buf, &rs->buf_size, 0);
9891 p = rs->buf;
9892 }
9893 return 0;
9894 }
9895
9896 static int
9897 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
9898 {
9899 struct remote_state *rs = get_remote_state ();
9900 char *p;
9901
9902 /* Ask for a first packet of variable definition. */
9903 putpkt ("qTfV");
9904 getpkt (&rs->buf, &rs->buf_size, 0);
9905 p = rs->buf;
9906 while (*p && *p != 'l')
9907 {
9908 parse_tsv_definition (p, utsvp);
9909 /* Ask for another packet of variable definition. */
9910 putpkt ("qTsV");
9911 getpkt (&rs->buf, &rs->buf_size, 0);
9912 p = rs->buf;
9913 }
9914 return 0;
9915 }
9916
9917 void
9918 _initialize_remote (void)
9919 {
9920 struct remote_state *rs;
9921 struct cmd_list_element *cmd;
9922 char *cmd_name;
9923
9924 /* architecture specific data */
9925 remote_gdbarch_data_handle =
9926 gdbarch_data_register_post_init (init_remote_state);
9927 remote_g_packet_data_handle =
9928 gdbarch_data_register_pre_init (remote_g_packet_data_init);
9929
9930 /* Initialize the per-target state. At the moment there is only one
9931 of these, not one per target. Only one target is active at a
9932 time. The default buffer size is unimportant; it will be expanded
9933 whenever a larger buffer is needed. */
9934 rs = get_remote_state_raw ();
9935 rs->buf_size = 400;
9936 rs->buf = xmalloc (rs->buf_size);
9937
9938 init_remote_ops ();
9939 add_target (&remote_ops);
9940
9941 init_extended_remote_ops ();
9942 add_target (&extended_remote_ops);
9943
9944 /* Hook into new objfile notification. */
9945 observer_attach_new_objfile (remote_new_objfile);
9946
9947 /* Set up signal handlers. */
9948 sigint_remote_token =
9949 create_async_signal_handler (async_remote_interrupt, NULL);
9950 sigint_remote_twice_token =
9951 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
9952
9953 #if 0
9954 init_remote_threadtests ();
9955 #endif
9956
9957 /* set/show remote ... */
9958
9959 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
9960 Remote protocol specific variables\n\
9961 Configure various remote-protocol specific variables such as\n\
9962 the packets being used"),
9963 &remote_set_cmdlist, "set remote ",
9964 0 /* allow-unknown */, &setlist);
9965 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
9966 Remote protocol specific variables\n\
9967 Configure various remote-protocol specific variables such as\n\
9968 the packets being used"),
9969 &remote_show_cmdlist, "show remote ",
9970 0 /* allow-unknown */, &showlist);
9971
9972 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
9973 Compare section data on target to the exec file.\n\
9974 Argument is a single section name (default: all loaded sections)."),
9975 &cmdlist);
9976
9977 add_cmd ("packet", class_maintenance, packet_command, _("\
9978 Send an arbitrary packet to a remote target.\n\
9979 maintenance packet TEXT\n\
9980 If GDB is talking to an inferior via the GDB serial protocol, then\n\
9981 this command sends the string TEXT to the inferior, and displays the\n\
9982 response packet. GDB supplies the initial `$' character, and the\n\
9983 terminating `#' character and checksum."),
9984 &maintenancelist);
9985
9986 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
9987 Set whether to send break if interrupted."), _("\
9988 Show whether to send break if interrupted."), _("\
9989 If set, a break, instead of a cntrl-c, is sent to the remote target."),
9990 set_remotebreak, show_remotebreak,
9991 &setlist, &showlist);
9992 cmd_name = "remotebreak";
9993 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
9994 deprecate_cmd (cmd, "set remote interrupt-sequence");
9995 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
9996 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
9997 deprecate_cmd (cmd, "show remote interrupt-sequence");
9998
9999 add_setshow_enum_cmd ("interrupt-sequence", class_support,
10000 interrupt_sequence_modes, &interrupt_sequence_mode, _("\
10001 Set interrupt sequence to remote target."), _("\
10002 Show interrupt sequence to remote target."), _("\
10003 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
10004 NULL, show_interrupt_sequence,
10005 &remote_set_cmdlist,
10006 &remote_show_cmdlist);
10007
10008 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
10009 &interrupt_on_connect, _("\
10010 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10011 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
10012 If set, interrupt sequence is sent to remote target."),
10013 NULL, NULL,
10014 &remote_set_cmdlist, &remote_show_cmdlist);
10015
10016 /* Install commands for configuring memory read/write packets. */
10017
10018 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
10019 Set the maximum number of bytes per memory write packet (deprecated)."),
10020 &setlist);
10021 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
10022 Show the maximum number of bytes per memory write packet (deprecated)."),
10023 &showlist);
10024 add_cmd ("memory-write-packet-size", no_class,
10025 set_memory_write_packet_size, _("\
10026 Set the maximum number of bytes per memory-write packet.\n\
10027 Specify the number of bytes in a packet or 0 (zero) for the\n\
10028 default packet size. The actual limit is further reduced\n\
10029 dependent on the target. Specify ``fixed'' to disable the\n\
10030 further restriction and ``limit'' to enable that restriction."),
10031 &remote_set_cmdlist);
10032 add_cmd ("memory-read-packet-size", no_class,
10033 set_memory_read_packet_size, _("\
10034 Set the maximum number of bytes per memory-read packet.\n\
10035 Specify the number of bytes in a packet or 0 (zero) for the\n\
10036 default packet size. The actual limit is further reduced\n\
10037 dependent on the target. Specify ``fixed'' to disable the\n\
10038 further restriction and ``limit'' to enable that restriction."),
10039 &remote_set_cmdlist);
10040 add_cmd ("memory-write-packet-size", no_class,
10041 show_memory_write_packet_size,
10042 _("Show the maximum number of bytes per memory-write packet."),
10043 &remote_show_cmdlist);
10044 add_cmd ("memory-read-packet-size", no_class,
10045 show_memory_read_packet_size,
10046 _("Show the maximum number of bytes per memory-read packet."),
10047 &remote_show_cmdlist);
10048
10049 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
10050 &remote_hw_watchpoint_limit, _("\
10051 Set the maximum number of target hardware watchpoints."), _("\
10052 Show the maximum number of target hardware watchpoints."), _("\
10053 Specify a negative limit for unlimited."),
10054 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
10055 &remote_set_cmdlist, &remote_show_cmdlist);
10056 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
10057 &remote_hw_breakpoint_limit, _("\
10058 Set the maximum number of target hardware breakpoints."), _("\
10059 Show the maximum number of target hardware breakpoints."), _("\
10060 Specify a negative limit for unlimited."),
10061 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
10062 &remote_set_cmdlist, &remote_show_cmdlist);
10063
10064 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
10065 &remote_address_size, _("\
10066 Set the maximum size of the address (in bits) in a memory packet."), _("\
10067 Show the maximum size of the address (in bits) in a memory packet."), NULL,
10068 NULL,
10069 NULL, /* FIXME: i18n: */
10070 &setlist, &showlist);
10071
10072 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
10073 "X", "binary-download", 1);
10074
10075 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
10076 "vCont", "verbose-resume", 0);
10077
10078 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
10079 "QPassSignals", "pass-signals", 0);
10080
10081 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
10082 "qSymbol", "symbol-lookup", 0);
10083
10084 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
10085 "P", "set-register", 1);
10086
10087 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
10088 "p", "fetch-register", 1);
10089
10090 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
10091 "Z0", "software-breakpoint", 0);
10092
10093 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
10094 "Z1", "hardware-breakpoint", 0);
10095
10096 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
10097 "Z2", "write-watchpoint", 0);
10098
10099 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
10100 "Z3", "read-watchpoint", 0);
10101
10102 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
10103 "Z4", "access-watchpoint", 0);
10104
10105 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
10106 "qXfer:auxv:read", "read-aux-vector", 0);
10107
10108 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
10109 "qXfer:features:read", "target-features", 0);
10110
10111 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
10112 "qXfer:libraries:read", "library-info", 0);
10113
10114 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
10115 "qXfer:memory-map:read", "memory-map", 0);
10116
10117 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
10118 "qXfer:spu:read", "read-spu-object", 0);
10119
10120 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
10121 "qXfer:spu:write", "write-spu-object", 0);
10122
10123 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
10124 "qXfer:osdata:read", "osdata", 0);
10125
10126 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
10127 "qXfer:threads:read", "threads", 0);
10128
10129 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
10130 "qXfer:siginfo:read", "read-siginfo-object", 0);
10131
10132 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
10133 "qXfer:siginfo:write", "write-siginfo-object", 0);
10134
10135 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
10136 "qGetTLSAddr", "get-thread-local-storage-address",
10137 0);
10138
10139 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
10140 "bc", "reverse-continue", 0);
10141
10142 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
10143 "bs", "reverse-step", 0);
10144
10145 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
10146 "qSupported", "supported-packets", 0);
10147
10148 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
10149 "qSearch:memory", "search-memory", 0);
10150
10151 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
10152 "vFile:open", "hostio-open", 0);
10153
10154 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
10155 "vFile:pread", "hostio-pread", 0);
10156
10157 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
10158 "vFile:pwrite", "hostio-pwrite", 0);
10159
10160 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
10161 "vFile:close", "hostio-close", 0);
10162
10163 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
10164 "vFile:unlink", "hostio-unlink", 0);
10165
10166 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
10167 "vAttach", "attach", 0);
10168
10169 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
10170 "vRun", "run", 0);
10171
10172 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
10173 "QStartNoAckMode", "noack", 0);
10174
10175 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
10176 "vKill", "kill", 0);
10177
10178 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
10179 "qAttached", "query-attached", 0);
10180
10181 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
10182 "ConditionalTracepoints", "conditional-tracepoints", 0);
10183 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
10184 "FastTracepoints", "fast-tracepoints", 0);
10185
10186 /* Keep the old ``set remote Z-packet ...'' working. Each individual
10187 Z sub-packet has its own set and show commands, but users may
10188 have sets to this variable in their .gdbinit files (or in their
10189 documentation). */
10190 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
10191 &remote_Z_packet_detect, _("\
10192 Set use of remote protocol `Z' packets"), _("\
10193 Show use of remote protocol `Z' packets "), _("\
10194 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
10195 packets."),
10196 set_remote_protocol_Z_packet_cmd,
10197 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
10198 &remote_set_cmdlist, &remote_show_cmdlist);
10199
10200 add_prefix_cmd ("remote", class_files, remote_command, _("\
10201 Manipulate files on the remote system\n\
10202 Transfer files to and from the remote target system."),
10203 &remote_cmdlist, "remote ",
10204 0 /* allow-unknown */, &cmdlist);
10205
10206 add_cmd ("put", class_files, remote_put_command,
10207 _("Copy a local file to the remote system."),
10208 &remote_cmdlist);
10209
10210 add_cmd ("get", class_files, remote_get_command,
10211 _("Copy a remote file to the local system."),
10212 &remote_cmdlist);
10213
10214 add_cmd ("delete", class_files, remote_delete_command,
10215 _("Delete a remote file."),
10216 &remote_cmdlist);
10217
10218 remote_exec_file = xstrdup ("");
10219 add_setshow_string_noescape_cmd ("exec-file", class_files,
10220 &remote_exec_file, _("\
10221 Set the remote pathname for \"run\""), _("\
10222 Show the remote pathname for \"run\""), NULL, NULL, NULL,
10223 &remote_set_cmdlist, &remote_show_cmdlist);
10224
10225 /* Eventually initialize fileio. See fileio.c */
10226 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
10227
10228 /* Take advantage of the fact that the LWP field is not used, to tag
10229 special ptids with it set to != 0. */
10230 magic_null_ptid = ptid_build (42000, 1, -1);
10231 not_sent_ptid = ptid_build (42000, 1, -2);
10232 any_thread_ptid = ptid_build (42000, 1, 0);
10233
10234 target_buf_size = 2048;
10235 target_buf = xmalloc (target_buf_size);
10236 }