gdb/
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "remote-notif.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "gdb_assert.h"
41 #include "observer.h"
42 #include "solib.h"
43 #include "cli/cli-decode.h"
44 #include "cli/cli-setshow.h"
45 #include "target-descriptions.h"
46 #include "gdb_bfd.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70 #include "agent.h"
71 #include "btrace.h"
72
73 /* Temp hacks for tracepoint encoding migration. */
74 static char *target_buf;
75 static long target_buf_size;
76
77 /* The size to align memory write packets, when practical. The protocol
78 does not guarantee any alignment, and gdb will generate short
79 writes and unaligned writes, but even as a best-effort attempt this
80 can improve bulk transfers. For instance, if a write is misaligned
81 relative to the target's data bus, the stub may need to make an extra
82 round trip fetching data from the target. This doesn't make a
83 huge difference, but it's easy to do, so we try to be helpful.
84
85 The alignment chosen is arbitrary; usually data bus width is
86 important here, not the possibly larger cache line size. */
87 enum { REMOTE_ALIGN_WRITES = 16 };
88
89 /* Prototypes for local functions. */
90 static void cleanup_sigint_signal_handler (void *dummy);
91 static void initialize_sigint_signal_handler (void);
92 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
93 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
94 int forever, int *is_notif);
95
96 static void handle_remote_sigint (int);
97 static void handle_remote_sigint_twice (int);
98 static void async_remote_interrupt (gdb_client_data);
99 void async_remote_interrupt_twice (gdb_client_data);
100
101 static void remote_files_info (struct target_ops *ignore);
102
103 static void remote_prepare_to_store (struct regcache *regcache);
104
105 static void remote_open (char *name, int from_tty);
106
107 static void extended_remote_open (char *name, int from_tty);
108
109 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
110
111 static void remote_close (void);
112
113 static void remote_mourn (struct target_ops *ops);
114
115 static void extended_remote_restart (void);
116
117 static void extended_remote_mourn (struct target_ops *);
118
119 static void remote_mourn_1 (struct target_ops *);
120
121 static void remote_send (char **buf, long *sizeof_buf_p);
122
123 static int readchar (int timeout);
124
125 static void remote_kill (struct target_ops *ops);
126
127 static int tohex (int nib);
128
129 static int remote_can_async_p (void);
130
131 static int remote_is_async_p (void);
132
133 static void remote_async (void (*callback) (enum inferior_event_type event_type,
134 void *context), void *context);
135
136 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_general_thread (struct ptid ptid);
145 static void set_continue_thread (struct ptid ptid);
146
147 static void get_offsets (void);
148
149 static void skip_frame (void);
150
151 static long read_frame (char **buf_p, long *sizeof_buf);
152
153 static int hexnumlen (ULONGEST num);
154
155 static void init_remote_ops (void);
156
157 static void init_extended_remote_ops (void);
158
159 static void remote_stop (ptid_t);
160
161 static int ishex (int ch, int *val);
162
163 static int stubhex (int ch);
164
165 static int hexnumstr (char *, ULONGEST);
166
167 static int hexnumnstr (char *, ULONGEST, int);
168
169 static CORE_ADDR remote_address_masked (CORE_ADDR);
170
171 static void print_packet (char *);
172
173 static void compare_sections_command (char *, int);
174
175 static void packet_command (char *, int);
176
177 static int stub_unpack_int (char *buff, int fieldlength);
178
179 static ptid_t remote_current_thread (ptid_t oldptid);
180
181 static void remote_find_new_threads (void);
182
183 static void record_currthread (ptid_t currthread);
184
185 static int fromhex (int a);
186
187 static int putpkt_binary (char *buf, int cnt);
188
189 static void check_binary_download (CORE_ADDR addr);
190
191 struct packet_config;
192
193 static void show_packet_config_cmd (struct packet_config *config);
194
195 static void update_packet_config (struct packet_config *config);
196
197 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
198 struct cmd_list_element *c);
199
200 static void show_remote_protocol_packet_cmd (struct ui_file *file,
201 int from_tty,
202 struct cmd_list_element *c,
203 const char *value);
204
205 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
206 static ptid_t read_ptid (char *buf, char **obuf);
207
208 static void remote_set_permissions (void);
209
210 struct remote_state;
211 static int remote_get_trace_status (struct trace_status *ts);
212
213 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
214
215 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
216
217 static void remote_query_supported (void);
218
219 static void remote_check_symbols (struct objfile *objfile);
220
221 void _initialize_remote (void);
222
223 struct stop_reply;
224 static void stop_reply_xfree (struct stop_reply *);
225 static void remote_parse_stop_reply (char *, struct stop_reply *);
226 static void push_stop_reply (struct stop_reply *);
227 static void discard_pending_stop_replies (struct inferior *);
228 static int peek_stop_reply (ptid_t ptid);
229
230 static void remote_async_inferior_event_handler (gdb_client_data);
231
232 static void remote_terminal_ours (void);
233
234 static int remote_read_description_p (struct target_ops *target);
235
236 static void remote_console_output (char *msg);
237
238 static int remote_supports_cond_breakpoints (void);
239
240 static int remote_can_run_breakpoint_commands (void);
241
242 /* For "remote". */
243
244 static struct cmd_list_element *remote_cmdlist;
245
246 /* For "set remote" and "show remote". */
247
248 static struct cmd_list_element *remote_set_cmdlist;
249 static struct cmd_list_element *remote_show_cmdlist;
250
251 /* Description of the remote protocol state for the currently
252 connected target. This is per-target state, and independent of the
253 selected architecture. */
254
255 struct remote_state
256 {
257 /* A buffer to use for incoming packets, and its current size. The
258 buffer is grown dynamically for larger incoming packets.
259 Outgoing packets may also be constructed in this buffer.
260 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
261 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
262 packets. */
263 char *buf;
264 long buf_size;
265
266 /* True if we're going through initial connection setup (finding out
267 about the remote side's threads, relocating symbols, etc.). */
268 int starting_up;
269
270 /* If we negotiated packet size explicitly (and thus can bypass
271 heuristics for the largest packet size that will not overflow
272 a buffer in the stub), this will be set to that packet size.
273 Otherwise zero, meaning to use the guessed size. */
274 long explicit_packet_size;
275
276 /* remote_wait is normally called when the target is running and
277 waits for a stop reply packet. But sometimes we need to call it
278 when the target is already stopped. We can send a "?" packet
279 and have remote_wait read the response. Or, if we already have
280 the response, we can stash it in BUF and tell remote_wait to
281 skip calling getpkt. This flag is set when BUF contains a
282 stop reply packet and the target is not waiting. */
283 int cached_wait_status;
284
285 /* True, if in no ack mode. That is, neither GDB nor the stub will
286 expect acks from each other. The connection is assumed to be
287 reliable. */
288 int noack_mode;
289
290 /* True if we're connected in extended remote mode. */
291 int extended;
292
293 /* True if the stub reported support for multi-process
294 extensions. */
295 int multi_process_aware;
296
297 /* True if we resumed the target and we're waiting for the target to
298 stop. In the mean time, we can't start another command/query.
299 The remote server wouldn't be ready to process it, so we'd
300 timeout waiting for a reply that would never come and eventually
301 we'd close the connection. This can happen in asynchronous mode
302 because we allow GDB commands while the target is running. */
303 int waiting_for_stop_reply;
304
305 /* True if the stub reports support for non-stop mode. */
306 int non_stop_aware;
307
308 /* True if the stub reports support for vCont;t. */
309 int support_vCont_t;
310
311 /* True if the stub reports support for conditional tracepoints. */
312 int cond_tracepoints;
313
314 /* True if the stub reports support for target-side breakpoint
315 conditions. */
316 int cond_breakpoints;
317
318 /* True if the stub reports support for target-side breakpoint
319 commands. */
320 int breakpoint_commands;
321
322 /* True if the stub reports support for fast tracepoints. */
323 int fast_tracepoints;
324
325 /* True if the stub reports support for static tracepoints. */
326 int static_tracepoints;
327
328 /* True if the stub reports support for installing tracepoint while
329 tracing. */
330 int install_in_trace;
331
332 /* True if the stub can continue running a trace while GDB is
333 disconnected. */
334 int disconnected_tracing;
335
336 /* True if the stub reports support for enabling and disabling
337 tracepoints while a trace experiment is running. */
338 int enable_disable_tracepoints;
339
340 /* True if the stub can collect strings using tracenz bytecode. */
341 int string_tracing;
342
343 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
344 responded to that. */
345 int ctrlc_pending_p;
346 };
347
348 /* Private data that we'll store in (struct thread_info)->private. */
349 struct private_thread_info
350 {
351 char *extra;
352 int core;
353 };
354
355 static void
356 free_private_thread_info (struct private_thread_info *info)
357 {
358 xfree (info->extra);
359 xfree (info);
360 }
361
362 /* Returns true if the multi-process extensions are in effect. */
363 static int
364 remote_multi_process_p (struct remote_state *rs)
365 {
366 return rs->multi_process_aware;
367 }
368
369 /* This data could be associated with a target, but we do not always
370 have access to the current target when we need it, so for now it is
371 static. This will be fine for as long as only one target is in use
372 at a time. */
373 static struct remote_state remote_state;
374
375 static struct remote_state *
376 get_remote_state_raw (void)
377 {
378 return &remote_state;
379 }
380
381 /* Description of the remote protocol for a given architecture. */
382
383 struct packet_reg
384 {
385 long offset; /* Offset into G packet. */
386 long regnum; /* GDB's internal register number. */
387 LONGEST pnum; /* Remote protocol register number. */
388 int in_g_packet; /* Always part of G packet. */
389 /* long size in bytes; == register_size (target_gdbarch (), regnum);
390 at present. */
391 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
392 at present. */
393 };
394
395 struct remote_arch_state
396 {
397 /* Description of the remote protocol registers. */
398 long sizeof_g_packet;
399
400 /* Description of the remote protocol registers indexed by REGNUM
401 (making an array gdbarch_num_regs in size). */
402 struct packet_reg *regs;
403
404 /* This is the size (in chars) of the first response to the ``g''
405 packet. It is used as a heuristic when determining the maximum
406 size of memory-read and memory-write packets. A target will
407 typically only reserve a buffer large enough to hold the ``g''
408 packet. The size does not include packet overhead (headers and
409 trailers). */
410 long actual_register_packet_size;
411
412 /* This is the maximum size (in chars) of a non read/write packet.
413 It is also used as a cap on the size of read/write packets. */
414 long remote_packet_size;
415 };
416
417 long sizeof_pkt = 2000;
418
419 /* Utility: generate error from an incoming stub packet. */
420 static void
421 trace_error (char *buf)
422 {
423 if (*buf++ != 'E')
424 return; /* not an error msg */
425 switch (*buf)
426 {
427 case '1': /* malformed packet error */
428 if (*++buf == '0') /* general case: */
429 error (_("remote.c: error in outgoing packet."));
430 else
431 error (_("remote.c: error in outgoing packet at field #%ld."),
432 strtol (buf, NULL, 16));
433 case '2':
434 error (_("trace API error 0x%s."), ++buf);
435 default:
436 error (_("Target returns error code '%s'."), buf);
437 }
438 }
439
440 /* Utility: wait for reply from stub, while accepting "O" packets. */
441 static char *
442 remote_get_noisy_reply (char **buf_p,
443 long *sizeof_buf)
444 {
445 do /* Loop on reply from remote stub. */
446 {
447 char *buf;
448
449 QUIT; /* Allow user to bail out with ^C. */
450 getpkt (buf_p, sizeof_buf, 0);
451 buf = *buf_p;
452 if (buf[0] == 'E')
453 trace_error (buf);
454 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
455 {
456 ULONGEST ul;
457 CORE_ADDR from, to, org_to;
458 char *p, *pp;
459 int adjusted_size = 0;
460 volatile struct gdb_exception ex;
461
462 p = buf + strlen ("qRelocInsn:");
463 pp = unpack_varlen_hex (p, &ul);
464 if (*pp != ';')
465 error (_("invalid qRelocInsn packet: %s"), buf);
466 from = ul;
467
468 p = pp + 1;
469 unpack_varlen_hex (p, &ul);
470 to = ul;
471
472 org_to = to;
473
474 TRY_CATCH (ex, RETURN_MASK_ALL)
475 {
476 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
477 }
478 if (ex.reason >= 0)
479 {
480 adjusted_size = to - org_to;
481
482 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
483 putpkt (buf);
484 }
485 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
486 {
487 /* Propagate memory errors silently back to the target.
488 The stub may have limited the range of addresses we
489 can write to, for example. */
490 putpkt ("E01");
491 }
492 else
493 {
494 /* Something unexpectedly bad happened. Be verbose so
495 we can tell what, and propagate the error back to the
496 stub, so it doesn't get stuck waiting for a
497 response. */
498 exception_fprintf (gdb_stderr, ex,
499 _("warning: relocating instruction: "));
500 putpkt ("E01");
501 }
502 }
503 else if (buf[0] == 'O' && buf[1] != 'K')
504 remote_console_output (buf + 1); /* 'O' message from stub */
505 else
506 return buf; /* Here's the actual reply. */
507 }
508 while (1);
509 }
510
511 /* Handle for retreving the remote protocol data from gdbarch. */
512 static struct gdbarch_data *remote_gdbarch_data_handle;
513
514 static struct remote_arch_state *
515 get_remote_arch_state (void)
516 {
517 return gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle);
518 }
519
520 /* Fetch the global remote target state. */
521
522 static struct remote_state *
523 get_remote_state (void)
524 {
525 /* Make sure that the remote architecture state has been
526 initialized, because doing so might reallocate rs->buf. Any
527 function which calls getpkt also needs to be mindful of changes
528 to rs->buf, but this call limits the number of places which run
529 into trouble. */
530 get_remote_arch_state ();
531
532 return get_remote_state_raw ();
533 }
534
535 static int
536 compare_pnums (const void *lhs_, const void *rhs_)
537 {
538 const struct packet_reg * const *lhs = lhs_;
539 const struct packet_reg * const *rhs = rhs_;
540
541 if ((*lhs)->pnum < (*rhs)->pnum)
542 return -1;
543 else if ((*lhs)->pnum == (*rhs)->pnum)
544 return 0;
545 else
546 return 1;
547 }
548
549 static int
550 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
551 {
552 int regnum, num_remote_regs, offset;
553 struct packet_reg **remote_regs;
554
555 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
556 {
557 struct packet_reg *r = &regs[regnum];
558
559 if (register_size (gdbarch, regnum) == 0)
560 /* Do not try to fetch zero-sized (placeholder) registers. */
561 r->pnum = -1;
562 else
563 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
564
565 r->regnum = regnum;
566 }
567
568 /* Define the g/G packet format as the contents of each register
569 with a remote protocol number, in order of ascending protocol
570 number. */
571
572 remote_regs = alloca (gdbarch_num_regs (gdbarch)
573 * sizeof (struct packet_reg *));
574 for (num_remote_regs = 0, regnum = 0;
575 regnum < gdbarch_num_regs (gdbarch);
576 regnum++)
577 if (regs[regnum].pnum != -1)
578 remote_regs[num_remote_regs++] = &regs[regnum];
579
580 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
581 compare_pnums);
582
583 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
584 {
585 remote_regs[regnum]->in_g_packet = 1;
586 remote_regs[regnum]->offset = offset;
587 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
588 }
589
590 return offset;
591 }
592
593 /* Given the architecture described by GDBARCH, return the remote
594 protocol register's number and the register's offset in the g/G
595 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
596 If the target does not have a mapping for REGNUM, return false,
597 otherwise, return true. */
598
599 int
600 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
601 int *pnum, int *poffset)
602 {
603 int sizeof_g_packet;
604 struct packet_reg *regs;
605 struct cleanup *old_chain;
606
607 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
608
609 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
610 old_chain = make_cleanup (xfree, regs);
611
612 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
613
614 *pnum = regs[regnum].pnum;
615 *poffset = regs[regnum].offset;
616
617 do_cleanups (old_chain);
618
619 return *pnum != -1;
620 }
621
622 static void *
623 init_remote_state (struct gdbarch *gdbarch)
624 {
625 struct remote_state *rs = get_remote_state_raw ();
626 struct remote_arch_state *rsa;
627
628 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
629
630 /* Use the architecture to build a regnum<->pnum table, which will be
631 1:1 unless a feature set specifies otherwise. */
632 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
633 gdbarch_num_regs (gdbarch),
634 struct packet_reg);
635
636 /* Record the maximum possible size of the g packet - it may turn out
637 to be smaller. */
638 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
639
640 /* Default maximum number of characters in a packet body. Many
641 remote stubs have a hardwired buffer size of 400 bytes
642 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
643 as the maximum packet-size to ensure that the packet and an extra
644 NUL character can always fit in the buffer. This stops GDB
645 trashing stubs that try to squeeze an extra NUL into what is
646 already a full buffer (As of 1999-12-04 that was most stubs). */
647 rsa->remote_packet_size = 400 - 1;
648
649 /* This one is filled in when a ``g'' packet is received. */
650 rsa->actual_register_packet_size = 0;
651
652 /* Should rsa->sizeof_g_packet needs more space than the
653 default, adjust the size accordingly. Remember that each byte is
654 encoded as two characters. 32 is the overhead for the packet
655 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
656 (``$NN:G...#NN'') is a better guess, the below has been padded a
657 little. */
658 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
659 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
660
661 /* Make sure that the packet buffer is plenty big enough for
662 this architecture. */
663 if (rs->buf_size < rsa->remote_packet_size)
664 {
665 rs->buf_size = 2 * rsa->remote_packet_size;
666 rs->buf = xrealloc (rs->buf, rs->buf_size);
667 }
668
669 return rsa;
670 }
671
672 /* Return the current allowed size of a remote packet. This is
673 inferred from the current architecture, and should be used to
674 limit the length of outgoing packets. */
675 static long
676 get_remote_packet_size (void)
677 {
678 struct remote_state *rs = get_remote_state ();
679 struct remote_arch_state *rsa = get_remote_arch_state ();
680
681 if (rs->explicit_packet_size)
682 return rs->explicit_packet_size;
683
684 return rsa->remote_packet_size;
685 }
686
687 static struct packet_reg *
688 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
689 {
690 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
691 return NULL;
692 else
693 {
694 struct packet_reg *r = &rsa->regs[regnum];
695
696 gdb_assert (r->regnum == regnum);
697 return r;
698 }
699 }
700
701 static struct packet_reg *
702 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
703 {
704 int i;
705
706 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
707 {
708 struct packet_reg *r = &rsa->regs[i];
709
710 if (r->pnum == pnum)
711 return r;
712 }
713 return NULL;
714 }
715
716 /* FIXME: graces/2002-08-08: These variables should eventually be
717 bound to an instance of the target object (as in gdbarch-tdep()),
718 when such a thing exists. */
719
720 /* This is set to the data address of the access causing the target
721 to stop for a watchpoint. */
722 static CORE_ADDR remote_watch_data_address;
723
724 /* This is non-zero if target stopped for a watchpoint. */
725 static int remote_stopped_by_watchpoint_p;
726
727 static struct target_ops remote_ops;
728
729 static struct target_ops extended_remote_ops;
730
731 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
732 ``forever'' still use the normal timeout mechanism. This is
733 currently used by the ASYNC code to guarentee that target reads
734 during the initial connect always time-out. Once getpkt has been
735 modified to return a timeout indication and, in turn
736 remote_wait()/wait_for_inferior() have gained a timeout parameter
737 this can go away. */
738 static int wait_forever_enabled_p = 1;
739
740 /* Allow the user to specify what sequence to send to the remote
741 when he requests a program interruption: Although ^C is usually
742 what remote systems expect (this is the default, here), it is
743 sometimes preferable to send a break. On other systems such
744 as the Linux kernel, a break followed by g, which is Magic SysRq g
745 is required in order to interrupt the execution. */
746 const char interrupt_sequence_control_c[] = "Ctrl-C";
747 const char interrupt_sequence_break[] = "BREAK";
748 const char interrupt_sequence_break_g[] = "BREAK-g";
749 static const char *const interrupt_sequence_modes[] =
750 {
751 interrupt_sequence_control_c,
752 interrupt_sequence_break,
753 interrupt_sequence_break_g,
754 NULL
755 };
756 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
757
758 static void
759 show_interrupt_sequence (struct ui_file *file, int from_tty,
760 struct cmd_list_element *c,
761 const char *value)
762 {
763 if (interrupt_sequence_mode == interrupt_sequence_control_c)
764 fprintf_filtered (file,
765 _("Send the ASCII ETX character (Ctrl-c) "
766 "to the remote target to interrupt the "
767 "execution of the program.\n"));
768 else if (interrupt_sequence_mode == interrupt_sequence_break)
769 fprintf_filtered (file,
770 _("send a break signal to the remote target "
771 "to interrupt the execution of the program.\n"));
772 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
773 fprintf_filtered (file,
774 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
775 "the remote target to interrupt the execution "
776 "of Linux kernel.\n"));
777 else
778 internal_error (__FILE__, __LINE__,
779 _("Invalid value for interrupt_sequence_mode: %s."),
780 interrupt_sequence_mode);
781 }
782
783 /* This boolean variable specifies whether interrupt_sequence is sent
784 to the remote target when gdb connects to it.
785 This is mostly needed when you debug the Linux kernel: The Linux kernel
786 expects BREAK g which is Magic SysRq g for connecting gdb. */
787 static int interrupt_on_connect = 0;
788
789 /* This variable is used to implement the "set/show remotebreak" commands.
790 Since these commands are now deprecated in favor of "set/show remote
791 interrupt-sequence", it no longer has any effect on the code. */
792 static int remote_break;
793
794 static void
795 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
796 {
797 if (remote_break)
798 interrupt_sequence_mode = interrupt_sequence_break;
799 else
800 interrupt_sequence_mode = interrupt_sequence_control_c;
801 }
802
803 static void
804 show_remotebreak (struct ui_file *file, int from_tty,
805 struct cmd_list_element *c,
806 const char *value)
807 {
808 }
809
810 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
811 remote_open knows that we don't have a file open when the program
812 starts. */
813 static struct serial *remote_desc = NULL;
814
815 /* This variable sets the number of bits in an address that are to be
816 sent in a memory ("M" or "m") packet. Normally, after stripping
817 leading zeros, the entire address would be sent. This variable
818 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
819 initial implementation of remote.c restricted the address sent in
820 memory packets to ``host::sizeof long'' bytes - (typically 32
821 bits). Consequently, for 64 bit targets, the upper 32 bits of an
822 address was never sent. Since fixing this bug may cause a break in
823 some remote targets this variable is principly provided to
824 facilitate backward compatibility. */
825
826 static unsigned int remote_address_size;
827
828 /* Temporary to track who currently owns the terminal. See
829 remote_terminal_* for more details. */
830
831 static int remote_async_terminal_ours_p;
832
833 /* The executable file to use for "run" on the remote side. */
834
835 static char *remote_exec_file = "";
836
837 \f
838 /* User configurable variables for the number of characters in a
839 memory read/write packet. MIN (rsa->remote_packet_size,
840 rsa->sizeof_g_packet) is the default. Some targets need smaller
841 values (fifo overruns, et.al.) and some users need larger values
842 (speed up transfers). The variables ``preferred_*'' (the user
843 request), ``current_*'' (what was actually set) and ``forced_*''
844 (Positive - a soft limit, negative - a hard limit). */
845
846 struct memory_packet_config
847 {
848 char *name;
849 long size;
850 int fixed_p;
851 };
852
853 /* Compute the current size of a read/write packet. Since this makes
854 use of ``actual_register_packet_size'' the computation is dynamic. */
855
856 static long
857 get_memory_packet_size (struct memory_packet_config *config)
858 {
859 struct remote_state *rs = get_remote_state ();
860 struct remote_arch_state *rsa = get_remote_arch_state ();
861
862 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
863 law?) that some hosts don't cope very well with large alloca()
864 calls. Eventually the alloca() code will be replaced by calls to
865 xmalloc() and make_cleanups() allowing this restriction to either
866 be lifted or removed. */
867 #ifndef MAX_REMOTE_PACKET_SIZE
868 #define MAX_REMOTE_PACKET_SIZE 16384
869 #endif
870 /* NOTE: 20 ensures we can write at least one byte. */
871 #ifndef MIN_REMOTE_PACKET_SIZE
872 #define MIN_REMOTE_PACKET_SIZE 20
873 #endif
874 long what_they_get;
875 if (config->fixed_p)
876 {
877 if (config->size <= 0)
878 what_they_get = MAX_REMOTE_PACKET_SIZE;
879 else
880 what_they_get = config->size;
881 }
882 else
883 {
884 what_they_get = get_remote_packet_size ();
885 /* Limit the packet to the size specified by the user. */
886 if (config->size > 0
887 && what_they_get > config->size)
888 what_they_get = config->size;
889
890 /* Limit it to the size of the targets ``g'' response unless we have
891 permission from the stub to use a larger packet size. */
892 if (rs->explicit_packet_size == 0
893 && rsa->actual_register_packet_size > 0
894 && what_they_get > rsa->actual_register_packet_size)
895 what_they_get = rsa->actual_register_packet_size;
896 }
897 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
898 what_they_get = MAX_REMOTE_PACKET_SIZE;
899 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
900 what_they_get = MIN_REMOTE_PACKET_SIZE;
901
902 /* Make sure there is room in the global buffer for this packet
903 (including its trailing NUL byte). */
904 if (rs->buf_size < what_they_get + 1)
905 {
906 rs->buf_size = 2 * what_they_get;
907 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
908 }
909
910 return what_they_get;
911 }
912
913 /* Update the size of a read/write packet. If they user wants
914 something really big then do a sanity check. */
915
916 static void
917 set_memory_packet_size (char *args, struct memory_packet_config *config)
918 {
919 int fixed_p = config->fixed_p;
920 long size = config->size;
921
922 if (args == NULL)
923 error (_("Argument required (integer, `fixed' or `limited')."));
924 else if (strcmp (args, "hard") == 0
925 || strcmp (args, "fixed") == 0)
926 fixed_p = 1;
927 else if (strcmp (args, "soft") == 0
928 || strcmp (args, "limit") == 0)
929 fixed_p = 0;
930 else
931 {
932 char *end;
933
934 size = strtoul (args, &end, 0);
935 if (args == end)
936 error (_("Invalid %s (bad syntax)."), config->name);
937 #if 0
938 /* Instead of explicitly capping the size of a packet to
939 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
940 instead allowed to set the size to something arbitrarily
941 large. */
942 if (size > MAX_REMOTE_PACKET_SIZE)
943 error (_("Invalid %s (too large)."), config->name);
944 #endif
945 }
946 /* Extra checks? */
947 if (fixed_p && !config->fixed_p)
948 {
949 if (! query (_("The target may not be able to correctly handle a %s\n"
950 "of %ld bytes. Change the packet size? "),
951 config->name, size))
952 error (_("Packet size not changed."));
953 }
954 /* Update the config. */
955 config->fixed_p = fixed_p;
956 config->size = size;
957 }
958
959 static void
960 show_memory_packet_size (struct memory_packet_config *config)
961 {
962 printf_filtered (_("The %s is %ld. "), config->name, config->size);
963 if (config->fixed_p)
964 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
965 get_memory_packet_size (config));
966 else
967 printf_filtered (_("Packets are limited to %ld bytes.\n"),
968 get_memory_packet_size (config));
969 }
970
971 static struct memory_packet_config memory_write_packet_config =
972 {
973 "memory-write-packet-size",
974 };
975
976 static void
977 set_memory_write_packet_size (char *args, int from_tty)
978 {
979 set_memory_packet_size (args, &memory_write_packet_config);
980 }
981
982 static void
983 show_memory_write_packet_size (char *args, int from_tty)
984 {
985 show_memory_packet_size (&memory_write_packet_config);
986 }
987
988 static long
989 get_memory_write_packet_size (void)
990 {
991 return get_memory_packet_size (&memory_write_packet_config);
992 }
993
994 static struct memory_packet_config memory_read_packet_config =
995 {
996 "memory-read-packet-size",
997 };
998
999 static void
1000 set_memory_read_packet_size (char *args, int from_tty)
1001 {
1002 set_memory_packet_size (args, &memory_read_packet_config);
1003 }
1004
1005 static void
1006 show_memory_read_packet_size (char *args, int from_tty)
1007 {
1008 show_memory_packet_size (&memory_read_packet_config);
1009 }
1010
1011 static long
1012 get_memory_read_packet_size (void)
1013 {
1014 long size = get_memory_packet_size (&memory_read_packet_config);
1015
1016 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1017 extra buffer size argument before the memory read size can be
1018 increased beyond this. */
1019 if (size > get_remote_packet_size ())
1020 size = get_remote_packet_size ();
1021 return size;
1022 }
1023
1024 \f
1025 /* Generic configuration support for packets the stub optionally
1026 supports. Allows the user to specify the use of the packet as well
1027 as allowing GDB to auto-detect support in the remote stub. */
1028
1029 enum packet_support
1030 {
1031 PACKET_SUPPORT_UNKNOWN = 0,
1032 PACKET_ENABLE,
1033 PACKET_DISABLE
1034 };
1035
1036 struct packet_config
1037 {
1038 const char *name;
1039 const char *title;
1040 enum auto_boolean detect;
1041 enum packet_support support;
1042 };
1043
1044 /* Analyze a packet's return value and update the packet config
1045 accordingly. */
1046
1047 enum packet_result
1048 {
1049 PACKET_ERROR,
1050 PACKET_OK,
1051 PACKET_UNKNOWN
1052 };
1053
1054 static void
1055 update_packet_config (struct packet_config *config)
1056 {
1057 switch (config->detect)
1058 {
1059 case AUTO_BOOLEAN_TRUE:
1060 config->support = PACKET_ENABLE;
1061 break;
1062 case AUTO_BOOLEAN_FALSE:
1063 config->support = PACKET_DISABLE;
1064 break;
1065 case AUTO_BOOLEAN_AUTO:
1066 config->support = PACKET_SUPPORT_UNKNOWN;
1067 break;
1068 }
1069 }
1070
1071 static void
1072 show_packet_config_cmd (struct packet_config *config)
1073 {
1074 char *support = "internal-error";
1075
1076 switch (config->support)
1077 {
1078 case PACKET_ENABLE:
1079 support = "enabled";
1080 break;
1081 case PACKET_DISABLE:
1082 support = "disabled";
1083 break;
1084 case PACKET_SUPPORT_UNKNOWN:
1085 support = "unknown";
1086 break;
1087 }
1088 switch (config->detect)
1089 {
1090 case AUTO_BOOLEAN_AUTO:
1091 printf_filtered (_("Support for the `%s' packet "
1092 "is auto-detected, currently %s.\n"),
1093 config->name, support);
1094 break;
1095 case AUTO_BOOLEAN_TRUE:
1096 case AUTO_BOOLEAN_FALSE:
1097 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1098 config->name, support);
1099 break;
1100 }
1101 }
1102
1103 static void
1104 add_packet_config_cmd (struct packet_config *config, const char *name,
1105 const char *title, int legacy)
1106 {
1107 char *set_doc;
1108 char *show_doc;
1109 char *cmd_name;
1110
1111 config->name = name;
1112 config->title = title;
1113 config->detect = AUTO_BOOLEAN_AUTO;
1114 config->support = PACKET_SUPPORT_UNKNOWN;
1115 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1116 name, title);
1117 show_doc = xstrprintf ("Show current use of remote "
1118 "protocol `%s' (%s) packet",
1119 name, title);
1120 /* set/show TITLE-packet {auto,on,off} */
1121 cmd_name = xstrprintf ("%s-packet", title);
1122 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1123 &config->detect, set_doc,
1124 show_doc, NULL, /* help_doc */
1125 set_remote_protocol_packet_cmd,
1126 show_remote_protocol_packet_cmd,
1127 &remote_set_cmdlist, &remote_show_cmdlist);
1128 /* The command code copies the documentation strings. */
1129 xfree (set_doc);
1130 xfree (show_doc);
1131 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1132 if (legacy)
1133 {
1134 char *legacy_name;
1135
1136 legacy_name = xstrprintf ("%s-packet", name);
1137 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1138 &remote_set_cmdlist);
1139 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1140 &remote_show_cmdlist);
1141 }
1142 }
1143
1144 static enum packet_result
1145 packet_check_result (const char *buf)
1146 {
1147 if (buf[0] != '\0')
1148 {
1149 /* The stub recognized the packet request. Check that the
1150 operation succeeded. */
1151 if (buf[0] == 'E'
1152 && isxdigit (buf[1]) && isxdigit (buf[2])
1153 && buf[3] == '\0')
1154 /* "Enn" - definitly an error. */
1155 return PACKET_ERROR;
1156
1157 /* Always treat "E." as an error. This will be used for
1158 more verbose error messages, such as E.memtypes. */
1159 if (buf[0] == 'E' && buf[1] == '.')
1160 return PACKET_ERROR;
1161
1162 /* The packet may or may not be OK. Just assume it is. */
1163 return PACKET_OK;
1164 }
1165 else
1166 /* The stub does not support the packet. */
1167 return PACKET_UNKNOWN;
1168 }
1169
1170 static enum packet_result
1171 packet_ok (const char *buf, struct packet_config *config)
1172 {
1173 enum packet_result result;
1174
1175 result = packet_check_result (buf);
1176 switch (result)
1177 {
1178 case PACKET_OK:
1179 case PACKET_ERROR:
1180 /* The stub recognized the packet request. */
1181 switch (config->support)
1182 {
1183 case PACKET_SUPPORT_UNKNOWN:
1184 if (remote_debug)
1185 fprintf_unfiltered (gdb_stdlog,
1186 "Packet %s (%s) is supported\n",
1187 config->name, config->title);
1188 config->support = PACKET_ENABLE;
1189 break;
1190 case PACKET_DISABLE:
1191 internal_error (__FILE__, __LINE__,
1192 _("packet_ok: attempt to use a disabled packet"));
1193 break;
1194 case PACKET_ENABLE:
1195 break;
1196 }
1197 break;
1198 case PACKET_UNKNOWN:
1199 /* The stub does not support the packet. */
1200 switch (config->support)
1201 {
1202 case PACKET_ENABLE:
1203 if (config->detect == AUTO_BOOLEAN_AUTO)
1204 /* If the stub previously indicated that the packet was
1205 supported then there is a protocol error.. */
1206 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1207 config->name, config->title);
1208 else
1209 /* The user set it wrong. */
1210 error (_("Enabled packet %s (%s) not recognized by stub"),
1211 config->name, config->title);
1212 break;
1213 case PACKET_SUPPORT_UNKNOWN:
1214 if (remote_debug)
1215 fprintf_unfiltered (gdb_stdlog,
1216 "Packet %s (%s) is NOT supported\n",
1217 config->name, config->title);
1218 config->support = PACKET_DISABLE;
1219 break;
1220 case PACKET_DISABLE:
1221 break;
1222 }
1223 break;
1224 }
1225
1226 return result;
1227 }
1228
1229 enum {
1230 PACKET_vCont = 0,
1231 PACKET_X,
1232 PACKET_qSymbol,
1233 PACKET_P,
1234 PACKET_p,
1235 PACKET_Z0,
1236 PACKET_Z1,
1237 PACKET_Z2,
1238 PACKET_Z3,
1239 PACKET_Z4,
1240 PACKET_vFile_open,
1241 PACKET_vFile_pread,
1242 PACKET_vFile_pwrite,
1243 PACKET_vFile_close,
1244 PACKET_vFile_unlink,
1245 PACKET_vFile_readlink,
1246 PACKET_qXfer_auxv,
1247 PACKET_qXfer_features,
1248 PACKET_qXfer_libraries,
1249 PACKET_qXfer_libraries_svr4,
1250 PACKET_qXfer_memory_map,
1251 PACKET_qXfer_spu_read,
1252 PACKET_qXfer_spu_write,
1253 PACKET_qXfer_osdata,
1254 PACKET_qXfer_threads,
1255 PACKET_qXfer_statictrace_read,
1256 PACKET_qXfer_traceframe_info,
1257 PACKET_qXfer_uib,
1258 PACKET_qGetTIBAddr,
1259 PACKET_qGetTLSAddr,
1260 PACKET_qSupported,
1261 PACKET_QPassSignals,
1262 PACKET_QProgramSignals,
1263 PACKET_qSearch_memory,
1264 PACKET_vAttach,
1265 PACKET_vRun,
1266 PACKET_QStartNoAckMode,
1267 PACKET_vKill,
1268 PACKET_qXfer_siginfo_read,
1269 PACKET_qXfer_siginfo_write,
1270 PACKET_qAttached,
1271 PACKET_ConditionalTracepoints,
1272 PACKET_ConditionalBreakpoints,
1273 PACKET_BreakpointCommands,
1274 PACKET_FastTracepoints,
1275 PACKET_StaticTracepoints,
1276 PACKET_InstallInTrace,
1277 PACKET_bc,
1278 PACKET_bs,
1279 PACKET_TracepointSource,
1280 PACKET_QAllow,
1281 PACKET_qXfer_fdpic,
1282 PACKET_QDisableRandomization,
1283 PACKET_QAgent,
1284 PACKET_QTBuffer_size,
1285 PACKET_Qbtrace_off,
1286 PACKET_Qbtrace_bts,
1287 PACKET_qXfer_btrace,
1288 PACKET_MAX
1289 };
1290
1291 static struct packet_config remote_protocol_packets[PACKET_MAX];
1292
1293 static void
1294 set_remote_protocol_packet_cmd (char *args, int from_tty,
1295 struct cmd_list_element *c)
1296 {
1297 struct packet_config *packet;
1298
1299 for (packet = remote_protocol_packets;
1300 packet < &remote_protocol_packets[PACKET_MAX];
1301 packet++)
1302 {
1303 if (&packet->detect == c->var)
1304 {
1305 update_packet_config (packet);
1306 return;
1307 }
1308 }
1309 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1310 c->name);
1311 }
1312
1313 static void
1314 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1315 struct cmd_list_element *c,
1316 const char *value)
1317 {
1318 struct packet_config *packet;
1319
1320 for (packet = remote_protocol_packets;
1321 packet < &remote_protocol_packets[PACKET_MAX];
1322 packet++)
1323 {
1324 if (&packet->detect == c->var)
1325 {
1326 show_packet_config_cmd (packet);
1327 return;
1328 }
1329 }
1330 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1331 c->name);
1332 }
1333
1334 /* Should we try one of the 'Z' requests? */
1335
1336 enum Z_packet_type
1337 {
1338 Z_PACKET_SOFTWARE_BP,
1339 Z_PACKET_HARDWARE_BP,
1340 Z_PACKET_WRITE_WP,
1341 Z_PACKET_READ_WP,
1342 Z_PACKET_ACCESS_WP,
1343 NR_Z_PACKET_TYPES
1344 };
1345
1346 /* For compatibility with older distributions. Provide a ``set remote
1347 Z-packet ...'' command that updates all the Z packet types. */
1348
1349 static enum auto_boolean remote_Z_packet_detect;
1350
1351 static void
1352 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1353 struct cmd_list_element *c)
1354 {
1355 int i;
1356
1357 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1358 {
1359 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1360 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1361 }
1362 }
1363
1364 static void
1365 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1366 struct cmd_list_element *c,
1367 const char *value)
1368 {
1369 int i;
1370
1371 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1372 {
1373 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1374 }
1375 }
1376
1377 /* Should we try the 'ThreadInfo' query packet?
1378
1379 This variable (NOT available to the user: auto-detect only!)
1380 determines whether GDB will use the new, simpler "ThreadInfo"
1381 query or the older, more complex syntax for thread queries.
1382 This is an auto-detect variable (set to true at each connect,
1383 and set to false when the target fails to recognize it). */
1384
1385 static int use_threadinfo_query;
1386 static int use_threadextra_query;
1387
1388 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1389 static struct async_signal_handler *sigint_remote_twice_token;
1390 static struct async_signal_handler *sigint_remote_token;
1391
1392 \f
1393 /* Asynchronous signal handle registered as event loop source for
1394 when we have pending events ready to be passed to the core. */
1395
1396 static struct async_event_handler *remote_async_inferior_event_token;
1397
1398 \f
1399
1400 static ptid_t magic_null_ptid;
1401 static ptid_t not_sent_ptid;
1402 static ptid_t any_thread_ptid;
1403
1404 /* These are the threads which we last sent to the remote system. The
1405 TID member will be -1 for all or -2 for not sent yet. */
1406
1407 static ptid_t general_thread;
1408 static ptid_t continue_thread;
1409
1410 /* This is the traceframe which we last selected on the remote system.
1411 It will be -1 if no traceframe is selected. */
1412 static int remote_traceframe_number = -1;
1413
1414 /* Find out if the stub attached to PID (and hence GDB should offer to
1415 detach instead of killing it when bailing out). */
1416
1417 static int
1418 remote_query_attached (int pid)
1419 {
1420 struct remote_state *rs = get_remote_state ();
1421 size_t size = get_remote_packet_size ();
1422
1423 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1424 return 0;
1425
1426 if (remote_multi_process_p (rs))
1427 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1428 else
1429 xsnprintf (rs->buf, size, "qAttached");
1430
1431 putpkt (rs->buf);
1432 getpkt (&rs->buf, &rs->buf_size, 0);
1433
1434 switch (packet_ok (rs->buf,
1435 &remote_protocol_packets[PACKET_qAttached]))
1436 {
1437 case PACKET_OK:
1438 if (strcmp (rs->buf, "1") == 0)
1439 return 1;
1440 break;
1441 case PACKET_ERROR:
1442 warning (_("Remote failure reply: %s"), rs->buf);
1443 break;
1444 case PACKET_UNKNOWN:
1445 break;
1446 }
1447
1448 return 0;
1449 }
1450
1451 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1452 has been invented by GDB, instead of reported by the target. Since
1453 we can be connected to a remote system before before knowing about
1454 any inferior, mark the target with execution when we find the first
1455 inferior. If ATTACHED is 1, then we had just attached to this
1456 inferior. If it is 0, then we just created this inferior. If it
1457 is -1, then try querying the remote stub to find out if it had
1458 attached to the inferior or not. */
1459
1460 static struct inferior *
1461 remote_add_inferior (int fake_pid_p, int pid, int attached)
1462 {
1463 struct inferior *inf;
1464
1465 /* Check whether this process we're learning about is to be
1466 considered attached, or if is to be considered to have been
1467 spawned by the stub. */
1468 if (attached == -1)
1469 attached = remote_query_attached (pid);
1470
1471 if (gdbarch_has_global_solist (target_gdbarch ()))
1472 {
1473 /* If the target shares code across all inferiors, then every
1474 attach adds a new inferior. */
1475 inf = add_inferior (pid);
1476
1477 /* ... and every inferior is bound to the same program space.
1478 However, each inferior may still have its own address
1479 space. */
1480 inf->aspace = maybe_new_address_space ();
1481 inf->pspace = current_program_space;
1482 }
1483 else
1484 {
1485 /* In the traditional debugging scenario, there's a 1-1 match
1486 between program/address spaces. We simply bind the inferior
1487 to the program space's address space. */
1488 inf = current_inferior ();
1489 inferior_appeared (inf, pid);
1490 }
1491
1492 inf->attach_flag = attached;
1493 inf->fake_pid_p = fake_pid_p;
1494
1495 return inf;
1496 }
1497
1498 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1499 according to RUNNING. */
1500
1501 static void
1502 remote_add_thread (ptid_t ptid, int running)
1503 {
1504 add_thread (ptid);
1505
1506 set_executing (ptid, running);
1507 set_running (ptid, running);
1508 }
1509
1510 /* Come here when we learn about a thread id from the remote target.
1511 It may be the first time we hear about such thread, so take the
1512 opportunity to add it to GDB's thread list. In case this is the
1513 first time we're noticing its corresponding inferior, add it to
1514 GDB's inferior list as well. */
1515
1516 static void
1517 remote_notice_new_inferior (ptid_t currthread, int running)
1518 {
1519 /* If this is a new thread, add it to GDB's thread list.
1520 If we leave it up to WFI to do this, bad things will happen. */
1521
1522 if (in_thread_list (currthread) && is_exited (currthread))
1523 {
1524 /* We're seeing an event on a thread id we knew had exited.
1525 This has to be a new thread reusing the old id. Add it. */
1526 remote_add_thread (currthread, running);
1527 return;
1528 }
1529
1530 if (!in_thread_list (currthread))
1531 {
1532 struct inferior *inf = NULL;
1533 int pid = ptid_get_pid (currthread);
1534
1535 if (ptid_is_pid (inferior_ptid)
1536 && pid == ptid_get_pid (inferior_ptid))
1537 {
1538 /* inferior_ptid has no thread member yet. This can happen
1539 with the vAttach -> remote_wait,"TAAthread:" path if the
1540 stub doesn't support qC. This is the first stop reported
1541 after an attach, so this is the main thread. Update the
1542 ptid in the thread list. */
1543 if (in_thread_list (pid_to_ptid (pid)))
1544 thread_change_ptid (inferior_ptid, currthread);
1545 else
1546 {
1547 remote_add_thread (currthread, running);
1548 inferior_ptid = currthread;
1549 }
1550 return;
1551 }
1552
1553 if (ptid_equal (magic_null_ptid, inferior_ptid))
1554 {
1555 /* inferior_ptid is not set yet. This can happen with the
1556 vRun -> remote_wait,"TAAthread:" path if the stub
1557 doesn't support qC. This is the first stop reported
1558 after an attach, so this is the main thread. Update the
1559 ptid in the thread list. */
1560 thread_change_ptid (inferior_ptid, currthread);
1561 return;
1562 }
1563
1564 /* When connecting to a target remote, or to a target
1565 extended-remote which already was debugging an inferior, we
1566 may not know about it yet. Add it before adding its child
1567 thread, so notifications are emitted in a sensible order. */
1568 if (!in_inferior_list (ptid_get_pid (currthread)))
1569 {
1570 struct remote_state *rs = get_remote_state ();
1571 int fake_pid_p = !remote_multi_process_p (rs);
1572
1573 inf = remote_add_inferior (fake_pid_p,
1574 ptid_get_pid (currthread), -1);
1575 }
1576
1577 /* This is really a new thread. Add it. */
1578 remote_add_thread (currthread, running);
1579
1580 /* If we found a new inferior, let the common code do whatever
1581 it needs to with it (e.g., read shared libraries, insert
1582 breakpoints). */
1583 if (inf != NULL)
1584 notice_new_inferior (currthread, running, 0);
1585 }
1586 }
1587
1588 /* Return the private thread data, creating it if necessary. */
1589
1590 static struct private_thread_info *
1591 demand_private_info (ptid_t ptid)
1592 {
1593 struct thread_info *info = find_thread_ptid (ptid);
1594
1595 gdb_assert (info);
1596
1597 if (!info->private)
1598 {
1599 info->private = xmalloc (sizeof (*(info->private)));
1600 info->private_dtor = free_private_thread_info;
1601 info->private->core = -1;
1602 info->private->extra = 0;
1603 }
1604
1605 return info->private;
1606 }
1607
1608 /* Call this function as a result of
1609 1) A halt indication (T packet) containing a thread id
1610 2) A direct query of currthread
1611 3) Successful execution of set thread */
1612
1613 static void
1614 record_currthread (ptid_t currthread)
1615 {
1616 general_thread = currthread;
1617 }
1618
1619 static char *last_pass_packet;
1620
1621 /* If 'QPassSignals' is supported, tell the remote stub what signals
1622 it can simply pass through to the inferior without reporting. */
1623
1624 static void
1625 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1626 {
1627 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1628 {
1629 char *pass_packet, *p;
1630 int count = 0, i;
1631
1632 gdb_assert (numsigs < 256);
1633 for (i = 0; i < numsigs; i++)
1634 {
1635 if (pass_signals[i])
1636 count++;
1637 }
1638 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1639 strcpy (pass_packet, "QPassSignals:");
1640 p = pass_packet + strlen (pass_packet);
1641 for (i = 0; i < numsigs; i++)
1642 {
1643 if (pass_signals[i])
1644 {
1645 if (i >= 16)
1646 *p++ = tohex (i >> 4);
1647 *p++ = tohex (i & 15);
1648 if (count)
1649 *p++ = ';';
1650 else
1651 break;
1652 count--;
1653 }
1654 }
1655 *p = 0;
1656 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1657 {
1658 struct remote_state *rs = get_remote_state ();
1659 char *buf = rs->buf;
1660
1661 putpkt (pass_packet);
1662 getpkt (&rs->buf, &rs->buf_size, 0);
1663 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1664 if (last_pass_packet)
1665 xfree (last_pass_packet);
1666 last_pass_packet = pass_packet;
1667 }
1668 else
1669 xfree (pass_packet);
1670 }
1671 }
1672
1673 /* The last QProgramSignals packet sent to the target. We bypass
1674 sending a new program signals list down to the target if the new
1675 packet is exactly the same as the last we sent. IOW, we only let
1676 the target know about program signals list changes. */
1677
1678 static char *last_program_signals_packet;
1679
1680 /* If 'QProgramSignals' is supported, tell the remote stub what
1681 signals it should pass through to the inferior when detaching. */
1682
1683 static void
1684 remote_program_signals (int numsigs, unsigned char *signals)
1685 {
1686 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1687 {
1688 char *packet, *p;
1689 int count = 0, i;
1690
1691 gdb_assert (numsigs < 256);
1692 for (i = 0; i < numsigs; i++)
1693 {
1694 if (signals[i])
1695 count++;
1696 }
1697 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1698 strcpy (packet, "QProgramSignals:");
1699 p = packet + strlen (packet);
1700 for (i = 0; i < numsigs; i++)
1701 {
1702 if (signal_pass_state (i))
1703 {
1704 if (i >= 16)
1705 *p++ = tohex (i >> 4);
1706 *p++ = tohex (i & 15);
1707 if (count)
1708 *p++ = ';';
1709 else
1710 break;
1711 count--;
1712 }
1713 }
1714 *p = 0;
1715 if (!last_program_signals_packet
1716 || strcmp (last_program_signals_packet, packet) != 0)
1717 {
1718 struct remote_state *rs = get_remote_state ();
1719 char *buf = rs->buf;
1720
1721 putpkt (packet);
1722 getpkt (&rs->buf, &rs->buf_size, 0);
1723 packet_ok (buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1724 xfree (last_program_signals_packet);
1725 last_program_signals_packet = packet;
1726 }
1727 else
1728 xfree (packet);
1729 }
1730 }
1731
1732 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1733 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1734 thread. If GEN is set, set the general thread, if not, then set
1735 the step/continue thread. */
1736 static void
1737 set_thread (struct ptid ptid, int gen)
1738 {
1739 struct remote_state *rs = get_remote_state ();
1740 ptid_t state = gen ? general_thread : continue_thread;
1741 char *buf = rs->buf;
1742 char *endbuf = rs->buf + get_remote_packet_size ();
1743
1744 if (ptid_equal (state, ptid))
1745 return;
1746
1747 *buf++ = 'H';
1748 *buf++ = gen ? 'g' : 'c';
1749 if (ptid_equal (ptid, magic_null_ptid))
1750 xsnprintf (buf, endbuf - buf, "0");
1751 else if (ptid_equal (ptid, any_thread_ptid))
1752 xsnprintf (buf, endbuf - buf, "0");
1753 else if (ptid_equal (ptid, minus_one_ptid))
1754 xsnprintf (buf, endbuf - buf, "-1");
1755 else
1756 write_ptid (buf, endbuf, ptid);
1757 putpkt (rs->buf);
1758 getpkt (&rs->buf, &rs->buf_size, 0);
1759 if (gen)
1760 general_thread = ptid;
1761 else
1762 continue_thread = ptid;
1763 }
1764
1765 static void
1766 set_general_thread (struct ptid ptid)
1767 {
1768 set_thread (ptid, 1);
1769 }
1770
1771 static void
1772 set_continue_thread (struct ptid ptid)
1773 {
1774 set_thread (ptid, 0);
1775 }
1776
1777 /* Change the remote current process. Which thread within the process
1778 ends up selected isn't important, as long as it is the same process
1779 as what INFERIOR_PTID points to.
1780
1781 This comes from that fact that there is no explicit notion of
1782 "selected process" in the protocol. The selected process for
1783 general operations is the process the selected general thread
1784 belongs to. */
1785
1786 static void
1787 set_general_process (void)
1788 {
1789 struct remote_state *rs = get_remote_state ();
1790
1791 /* If the remote can't handle multiple processes, don't bother. */
1792 if (!rs->extended || !remote_multi_process_p (rs))
1793 return;
1794
1795 /* We only need to change the remote current thread if it's pointing
1796 at some other process. */
1797 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1798 set_general_thread (inferior_ptid);
1799 }
1800
1801 \f
1802 /* Return nonzero if the thread PTID is still alive on the remote
1803 system. */
1804
1805 static int
1806 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1807 {
1808 struct remote_state *rs = get_remote_state ();
1809 char *p, *endp;
1810
1811 if (ptid_equal (ptid, magic_null_ptid))
1812 /* The main thread is always alive. */
1813 return 1;
1814
1815 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1816 /* The main thread is always alive. This can happen after a
1817 vAttach, if the remote side doesn't support
1818 multi-threading. */
1819 return 1;
1820
1821 p = rs->buf;
1822 endp = rs->buf + get_remote_packet_size ();
1823
1824 *p++ = 'T';
1825 write_ptid (p, endp, ptid);
1826
1827 putpkt (rs->buf);
1828 getpkt (&rs->buf, &rs->buf_size, 0);
1829 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1830 }
1831
1832 /* About these extended threadlist and threadinfo packets. They are
1833 variable length packets but, the fields within them are often fixed
1834 length. They are redundent enough to send over UDP as is the
1835 remote protocol in general. There is a matching unit test module
1836 in libstub. */
1837
1838 #define OPAQUETHREADBYTES 8
1839
1840 /* a 64 bit opaque identifier */
1841 typedef unsigned char threadref[OPAQUETHREADBYTES];
1842
1843 /* WARNING: This threadref data structure comes from the remote O.S.,
1844 libstub protocol encoding, and remote.c. It is not particularly
1845 changable. */
1846
1847 /* Right now, the internal structure is int. We want it to be bigger.
1848 Plan to fix this. */
1849
1850 typedef int gdb_threadref; /* Internal GDB thread reference. */
1851
1852 /* gdb_ext_thread_info is an internal GDB data structure which is
1853 equivalent to the reply of the remote threadinfo packet. */
1854
1855 struct gdb_ext_thread_info
1856 {
1857 threadref threadid; /* External form of thread reference. */
1858 int active; /* Has state interesting to GDB?
1859 regs, stack. */
1860 char display[256]; /* Brief state display, name,
1861 blocked/suspended. */
1862 char shortname[32]; /* To be used to name threads. */
1863 char more_display[256]; /* Long info, statistics, queue depth,
1864 whatever. */
1865 };
1866
1867 /* The volume of remote transfers can be limited by submitting
1868 a mask containing bits specifying the desired information.
1869 Use a union of these values as the 'selection' parameter to
1870 get_thread_info. FIXME: Make these TAG names more thread specific. */
1871
1872 #define TAG_THREADID 1
1873 #define TAG_EXISTS 2
1874 #define TAG_DISPLAY 4
1875 #define TAG_THREADNAME 8
1876 #define TAG_MOREDISPLAY 16
1877
1878 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1879
1880 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1881
1882 static char *unpack_nibble (char *buf, int *val);
1883
1884 static char *pack_nibble (char *buf, int nibble);
1885
1886 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1887
1888 static char *unpack_byte (char *buf, int *value);
1889
1890 static char *pack_int (char *buf, int value);
1891
1892 static char *unpack_int (char *buf, int *value);
1893
1894 static char *unpack_string (char *src, char *dest, int length);
1895
1896 static char *pack_threadid (char *pkt, threadref *id);
1897
1898 static char *unpack_threadid (char *inbuf, threadref *id);
1899
1900 void int_to_threadref (threadref *id, int value);
1901
1902 static int threadref_to_int (threadref *ref);
1903
1904 static void copy_threadref (threadref *dest, threadref *src);
1905
1906 static int threadmatch (threadref *dest, threadref *src);
1907
1908 static char *pack_threadinfo_request (char *pkt, int mode,
1909 threadref *id);
1910
1911 static int remote_unpack_thread_info_response (char *pkt,
1912 threadref *expectedref,
1913 struct gdb_ext_thread_info
1914 *info);
1915
1916
1917 static int remote_get_threadinfo (threadref *threadid,
1918 int fieldset, /*TAG mask */
1919 struct gdb_ext_thread_info *info);
1920
1921 static char *pack_threadlist_request (char *pkt, int startflag,
1922 int threadcount,
1923 threadref *nextthread);
1924
1925 static int parse_threadlist_response (char *pkt,
1926 int result_limit,
1927 threadref *original_echo,
1928 threadref *resultlist,
1929 int *doneflag);
1930
1931 static int remote_get_threadlist (int startflag,
1932 threadref *nextthread,
1933 int result_limit,
1934 int *done,
1935 int *result_count,
1936 threadref *threadlist);
1937
1938 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1939
1940 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1941 void *context, int looplimit);
1942
1943 static int remote_newthread_step (threadref *ref, void *context);
1944
1945
1946 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1947 buffer we're allowed to write to. Returns
1948 BUF+CHARACTERS_WRITTEN. */
1949
1950 static char *
1951 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1952 {
1953 int pid, tid;
1954 struct remote_state *rs = get_remote_state ();
1955
1956 if (remote_multi_process_p (rs))
1957 {
1958 pid = ptid_get_pid (ptid);
1959 if (pid < 0)
1960 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1961 else
1962 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1963 }
1964 tid = ptid_get_tid (ptid);
1965 if (tid < 0)
1966 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1967 else
1968 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1969
1970 return buf;
1971 }
1972
1973 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1974 passed the last parsed char. Returns null_ptid on error. */
1975
1976 static ptid_t
1977 read_ptid (char *buf, char **obuf)
1978 {
1979 char *p = buf;
1980 char *pp;
1981 ULONGEST pid = 0, tid = 0;
1982
1983 if (*p == 'p')
1984 {
1985 /* Multi-process ptid. */
1986 pp = unpack_varlen_hex (p + 1, &pid);
1987 if (*pp != '.')
1988 error (_("invalid remote ptid: %s"), p);
1989
1990 p = pp;
1991 pp = unpack_varlen_hex (p + 1, &tid);
1992 if (obuf)
1993 *obuf = pp;
1994 return ptid_build (pid, 0, tid);
1995 }
1996
1997 /* No multi-process. Just a tid. */
1998 pp = unpack_varlen_hex (p, &tid);
1999
2000 /* Since the stub is not sending a process id, then default to
2001 what's in inferior_ptid, unless it's null at this point. If so,
2002 then since there's no way to know the pid of the reported
2003 threads, use the magic number. */
2004 if (ptid_equal (inferior_ptid, null_ptid))
2005 pid = ptid_get_pid (magic_null_ptid);
2006 else
2007 pid = ptid_get_pid (inferior_ptid);
2008
2009 if (obuf)
2010 *obuf = pp;
2011 return ptid_build (pid, 0, tid);
2012 }
2013
2014 /* Encode 64 bits in 16 chars of hex. */
2015
2016 static const char hexchars[] = "0123456789abcdef";
2017
2018 static int
2019 ishex (int ch, int *val)
2020 {
2021 if ((ch >= 'a') && (ch <= 'f'))
2022 {
2023 *val = ch - 'a' + 10;
2024 return 1;
2025 }
2026 if ((ch >= 'A') && (ch <= 'F'))
2027 {
2028 *val = ch - 'A' + 10;
2029 return 1;
2030 }
2031 if ((ch >= '0') && (ch <= '9'))
2032 {
2033 *val = ch - '0';
2034 return 1;
2035 }
2036 return 0;
2037 }
2038
2039 static int
2040 stubhex (int ch)
2041 {
2042 if (ch >= 'a' && ch <= 'f')
2043 return ch - 'a' + 10;
2044 if (ch >= '0' && ch <= '9')
2045 return ch - '0';
2046 if (ch >= 'A' && ch <= 'F')
2047 return ch - 'A' + 10;
2048 return -1;
2049 }
2050
2051 static int
2052 stub_unpack_int (char *buff, int fieldlength)
2053 {
2054 int nibble;
2055 int retval = 0;
2056
2057 while (fieldlength)
2058 {
2059 nibble = stubhex (*buff++);
2060 retval |= nibble;
2061 fieldlength--;
2062 if (fieldlength)
2063 retval = retval << 4;
2064 }
2065 return retval;
2066 }
2067
2068 char *
2069 unpack_varlen_hex (char *buff, /* packet to parse */
2070 ULONGEST *result)
2071 {
2072 int nibble;
2073 ULONGEST retval = 0;
2074
2075 while (ishex (*buff, &nibble))
2076 {
2077 buff++;
2078 retval = retval << 4;
2079 retval |= nibble & 0x0f;
2080 }
2081 *result = retval;
2082 return buff;
2083 }
2084
2085 static char *
2086 unpack_nibble (char *buf, int *val)
2087 {
2088 *val = fromhex (*buf++);
2089 return buf;
2090 }
2091
2092 static char *
2093 pack_nibble (char *buf, int nibble)
2094 {
2095 *buf++ = hexchars[(nibble & 0x0f)];
2096 return buf;
2097 }
2098
2099 static char *
2100 pack_hex_byte (char *pkt, int byte)
2101 {
2102 *pkt++ = hexchars[(byte >> 4) & 0xf];
2103 *pkt++ = hexchars[(byte & 0xf)];
2104 return pkt;
2105 }
2106
2107 static char *
2108 unpack_byte (char *buf, int *value)
2109 {
2110 *value = stub_unpack_int (buf, 2);
2111 return buf + 2;
2112 }
2113
2114 static char *
2115 pack_int (char *buf, int value)
2116 {
2117 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2118 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2119 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2120 buf = pack_hex_byte (buf, (value & 0xff));
2121 return buf;
2122 }
2123
2124 static char *
2125 unpack_int (char *buf, int *value)
2126 {
2127 *value = stub_unpack_int (buf, 8);
2128 return buf + 8;
2129 }
2130
2131 #if 0 /* Currently unused, uncomment when needed. */
2132 static char *pack_string (char *pkt, char *string);
2133
2134 static char *
2135 pack_string (char *pkt, char *string)
2136 {
2137 char ch;
2138 int len;
2139
2140 len = strlen (string);
2141 if (len > 200)
2142 len = 200; /* Bigger than most GDB packets, junk??? */
2143 pkt = pack_hex_byte (pkt, len);
2144 while (len-- > 0)
2145 {
2146 ch = *string++;
2147 if ((ch == '\0') || (ch == '#'))
2148 ch = '*'; /* Protect encapsulation. */
2149 *pkt++ = ch;
2150 }
2151 return pkt;
2152 }
2153 #endif /* 0 (unused) */
2154
2155 static char *
2156 unpack_string (char *src, char *dest, int length)
2157 {
2158 while (length--)
2159 *dest++ = *src++;
2160 *dest = '\0';
2161 return src;
2162 }
2163
2164 static char *
2165 pack_threadid (char *pkt, threadref *id)
2166 {
2167 char *limit;
2168 unsigned char *altid;
2169
2170 altid = (unsigned char *) id;
2171 limit = pkt + BUF_THREAD_ID_SIZE;
2172 while (pkt < limit)
2173 pkt = pack_hex_byte (pkt, *altid++);
2174 return pkt;
2175 }
2176
2177
2178 static char *
2179 unpack_threadid (char *inbuf, threadref *id)
2180 {
2181 char *altref;
2182 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2183 int x, y;
2184
2185 altref = (char *) id;
2186
2187 while (inbuf < limit)
2188 {
2189 x = stubhex (*inbuf++);
2190 y = stubhex (*inbuf++);
2191 *altref++ = (x << 4) | y;
2192 }
2193 return inbuf;
2194 }
2195
2196 /* Externally, threadrefs are 64 bits but internally, they are still
2197 ints. This is due to a mismatch of specifications. We would like
2198 to use 64bit thread references internally. This is an adapter
2199 function. */
2200
2201 void
2202 int_to_threadref (threadref *id, int value)
2203 {
2204 unsigned char *scan;
2205
2206 scan = (unsigned char *) id;
2207 {
2208 int i = 4;
2209 while (i--)
2210 *scan++ = 0;
2211 }
2212 *scan++ = (value >> 24) & 0xff;
2213 *scan++ = (value >> 16) & 0xff;
2214 *scan++ = (value >> 8) & 0xff;
2215 *scan++ = (value & 0xff);
2216 }
2217
2218 static int
2219 threadref_to_int (threadref *ref)
2220 {
2221 int i, value = 0;
2222 unsigned char *scan;
2223
2224 scan = *ref;
2225 scan += 4;
2226 i = 4;
2227 while (i-- > 0)
2228 value = (value << 8) | ((*scan++) & 0xff);
2229 return value;
2230 }
2231
2232 static void
2233 copy_threadref (threadref *dest, threadref *src)
2234 {
2235 int i;
2236 unsigned char *csrc, *cdest;
2237
2238 csrc = (unsigned char *) src;
2239 cdest = (unsigned char *) dest;
2240 i = 8;
2241 while (i--)
2242 *cdest++ = *csrc++;
2243 }
2244
2245 static int
2246 threadmatch (threadref *dest, threadref *src)
2247 {
2248 /* Things are broken right now, so just assume we got a match. */
2249 #if 0
2250 unsigned char *srcp, *destp;
2251 int i, result;
2252 srcp = (char *) src;
2253 destp = (char *) dest;
2254
2255 result = 1;
2256 while (i-- > 0)
2257 result &= (*srcp++ == *destp++) ? 1 : 0;
2258 return result;
2259 #endif
2260 return 1;
2261 }
2262
2263 /*
2264 threadid:1, # always request threadid
2265 context_exists:2,
2266 display:4,
2267 unique_name:8,
2268 more_display:16
2269 */
2270
2271 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2272
2273 static char *
2274 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2275 {
2276 *pkt++ = 'q'; /* Info Query */
2277 *pkt++ = 'P'; /* process or thread info */
2278 pkt = pack_int (pkt, mode); /* mode */
2279 pkt = pack_threadid (pkt, id); /* threadid */
2280 *pkt = '\0'; /* terminate */
2281 return pkt;
2282 }
2283
2284 /* These values tag the fields in a thread info response packet. */
2285 /* Tagging the fields allows us to request specific fields and to
2286 add more fields as time goes by. */
2287
2288 #define TAG_THREADID 1 /* Echo the thread identifier. */
2289 #define TAG_EXISTS 2 /* Is this process defined enough to
2290 fetch registers and its stack? */
2291 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2292 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2293 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2294 the process. */
2295
2296 static int
2297 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2298 struct gdb_ext_thread_info *info)
2299 {
2300 struct remote_state *rs = get_remote_state ();
2301 int mask, length;
2302 int tag;
2303 threadref ref;
2304 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2305 int retval = 1;
2306
2307 /* info->threadid = 0; FIXME: implement zero_threadref. */
2308 info->active = 0;
2309 info->display[0] = '\0';
2310 info->shortname[0] = '\0';
2311 info->more_display[0] = '\0';
2312
2313 /* Assume the characters indicating the packet type have been
2314 stripped. */
2315 pkt = unpack_int (pkt, &mask); /* arg mask */
2316 pkt = unpack_threadid (pkt, &ref);
2317
2318 if (mask == 0)
2319 warning (_("Incomplete response to threadinfo request."));
2320 if (!threadmatch (&ref, expectedref))
2321 { /* This is an answer to a different request. */
2322 warning (_("ERROR RMT Thread info mismatch."));
2323 return 0;
2324 }
2325 copy_threadref (&info->threadid, &ref);
2326
2327 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2328
2329 /* Packets are terminated with nulls. */
2330 while ((pkt < limit) && mask && *pkt)
2331 {
2332 pkt = unpack_int (pkt, &tag); /* tag */
2333 pkt = unpack_byte (pkt, &length); /* length */
2334 if (!(tag & mask)) /* Tags out of synch with mask. */
2335 {
2336 warning (_("ERROR RMT: threadinfo tag mismatch."));
2337 retval = 0;
2338 break;
2339 }
2340 if (tag == TAG_THREADID)
2341 {
2342 if (length != 16)
2343 {
2344 warning (_("ERROR RMT: length of threadid is not 16."));
2345 retval = 0;
2346 break;
2347 }
2348 pkt = unpack_threadid (pkt, &ref);
2349 mask = mask & ~TAG_THREADID;
2350 continue;
2351 }
2352 if (tag == TAG_EXISTS)
2353 {
2354 info->active = stub_unpack_int (pkt, length);
2355 pkt += length;
2356 mask = mask & ~(TAG_EXISTS);
2357 if (length > 8)
2358 {
2359 warning (_("ERROR RMT: 'exists' length too long."));
2360 retval = 0;
2361 break;
2362 }
2363 continue;
2364 }
2365 if (tag == TAG_THREADNAME)
2366 {
2367 pkt = unpack_string (pkt, &info->shortname[0], length);
2368 mask = mask & ~TAG_THREADNAME;
2369 continue;
2370 }
2371 if (tag == TAG_DISPLAY)
2372 {
2373 pkt = unpack_string (pkt, &info->display[0], length);
2374 mask = mask & ~TAG_DISPLAY;
2375 continue;
2376 }
2377 if (tag == TAG_MOREDISPLAY)
2378 {
2379 pkt = unpack_string (pkt, &info->more_display[0], length);
2380 mask = mask & ~TAG_MOREDISPLAY;
2381 continue;
2382 }
2383 warning (_("ERROR RMT: unknown thread info tag."));
2384 break; /* Not a tag we know about. */
2385 }
2386 return retval;
2387 }
2388
2389 static int
2390 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2391 struct gdb_ext_thread_info *info)
2392 {
2393 struct remote_state *rs = get_remote_state ();
2394 int result;
2395
2396 pack_threadinfo_request (rs->buf, fieldset, threadid);
2397 putpkt (rs->buf);
2398 getpkt (&rs->buf, &rs->buf_size, 0);
2399
2400 if (rs->buf[0] == '\0')
2401 return 0;
2402
2403 result = remote_unpack_thread_info_response (rs->buf + 2,
2404 threadid, info);
2405 return result;
2406 }
2407
2408 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2409
2410 static char *
2411 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2412 threadref *nextthread)
2413 {
2414 *pkt++ = 'q'; /* info query packet */
2415 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2416 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2417 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2418 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2419 *pkt = '\0';
2420 return pkt;
2421 }
2422
2423 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2424
2425 static int
2426 parse_threadlist_response (char *pkt, int result_limit,
2427 threadref *original_echo, threadref *resultlist,
2428 int *doneflag)
2429 {
2430 struct remote_state *rs = get_remote_state ();
2431 char *limit;
2432 int count, resultcount, done;
2433
2434 resultcount = 0;
2435 /* Assume the 'q' and 'M chars have been stripped. */
2436 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2437 /* done parse past here */
2438 pkt = unpack_byte (pkt, &count); /* count field */
2439 pkt = unpack_nibble (pkt, &done);
2440 /* The first threadid is the argument threadid. */
2441 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2442 while ((count-- > 0) && (pkt < limit))
2443 {
2444 pkt = unpack_threadid (pkt, resultlist++);
2445 if (resultcount++ >= result_limit)
2446 break;
2447 }
2448 if (doneflag)
2449 *doneflag = done;
2450 return resultcount;
2451 }
2452
2453 static int
2454 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2455 int *done, int *result_count, threadref *threadlist)
2456 {
2457 struct remote_state *rs = get_remote_state ();
2458 static threadref echo_nextthread;
2459 int result = 1;
2460
2461 /* Trancate result limit to be smaller than the packet size. */
2462 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2463 >= get_remote_packet_size ())
2464 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2465
2466 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2467 putpkt (rs->buf);
2468 getpkt (&rs->buf, &rs->buf_size, 0);
2469
2470 if (*rs->buf == '\0')
2471 return 0;
2472 else
2473 *result_count =
2474 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2475 threadlist, done);
2476
2477 if (!threadmatch (&echo_nextthread, nextthread))
2478 {
2479 /* FIXME: This is a good reason to drop the packet. */
2480 /* Possably, there is a duplicate response. */
2481 /* Possabilities :
2482 retransmit immediatly - race conditions
2483 retransmit after timeout - yes
2484 exit
2485 wait for packet, then exit
2486 */
2487 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2488 return 0; /* I choose simply exiting. */
2489 }
2490 if (*result_count <= 0)
2491 {
2492 if (*done != 1)
2493 {
2494 warning (_("RMT ERROR : failed to get remote thread list."));
2495 result = 0;
2496 }
2497 return result; /* break; */
2498 }
2499 if (*result_count > result_limit)
2500 {
2501 *result_count = 0;
2502 warning (_("RMT ERROR: threadlist response longer than requested."));
2503 return 0;
2504 }
2505 return result;
2506 }
2507
2508 /* This is the interface between remote and threads, remotes upper
2509 interface. */
2510
2511 /* remote_find_new_threads retrieves the thread list and for each
2512 thread in the list, looks up the thread in GDB's internal list,
2513 adding the thread if it does not already exist. This involves
2514 getting partial thread lists from the remote target so, polling the
2515 quit_flag is required. */
2516
2517
2518 /* About this many threadisds fit in a packet. */
2519
2520 #define MAXTHREADLISTRESULTS 32
2521
2522 static int
2523 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2524 int looplimit)
2525 {
2526 int done, i, result_count;
2527 int startflag = 1;
2528 int result = 1;
2529 int loopcount = 0;
2530 static threadref nextthread;
2531 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2532
2533 done = 0;
2534 while (!done)
2535 {
2536 if (loopcount++ > looplimit)
2537 {
2538 result = 0;
2539 warning (_("Remote fetch threadlist -infinite loop-."));
2540 break;
2541 }
2542 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2543 &done, &result_count, resultthreadlist))
2544 {
2545 result = 0;
2546 break;
2547 }
2548 /* Clear for later iterations. */
2549 startflag = 0;
2550 /* Setup to resume next batch of thread references, set nextthread. */
2551 if (result_count >= 1)
2552 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2553 i = 0;
2554 while (result_count--)
2555 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2556 break;
2557 }
2558 return result;
2559 }
2560
2561 static int
2562 remote_newthread_step (threadref *ref, void *context)
2563 {
2564 int pid = ptid_get_pid (inferior_ptid);
2565 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2566
2567 if (!in_thread_list (ptid))
2568 add_thread (ptid);
2569 return 1; /* continue iterator */
2570 }
2571
2572 #define CRAZY_MAX_THREADS 1000
2573
2574 static ptid_t
2575 remote_current_thread (ptid_t oldpid)
2576 {
2577 struct remote_state *rs = get_remote_state ();
2578
2579 putpkt ("qC");
2580 getpkt (&rs->buf, &rs->buf_size, 0);
2581 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2582 return read_ptid (&rs->buf[2], NULL);
2583 else
2584 return oldpid;
2585 }
2586
2587 /* Find new threads for info threads command.
2588 * Original version, using John Metzler's thread protocol.
2589 */
2590
2591 static void
2592 remote_find_new_threads (void)
2593 {
2594 remote_threadlist_iterator (remote_newthread_step, 0,
2595 CRAZY_MAX_THREADS);
2596 }
2597
2598 #if defined(HAVE_LIBEXPAT)
2599
2600 typedef struct thread_item
2601 {
2602 ptid_t ptid;
2603 char *extra;
2604 int core;
2605 } thread_item_t;
2606 DEF_VEC_O(thread_item_t);
2607
2608 struct threads_parsing_context
2609 {
2610 VEC (thread_item_t) *items;
2611 };
2612
2613 static void
2614 start_thread (struct gdb_xml_parser *parser,
2615 const struct gdb_xml_element *element,
2616 void *user_data, VEC(gdb_xml_value_s) *attributes)
2617 {
2618 struct threads_parsing_context *data = user_data;
2619
2620 struct thread_item item;
2621 char *id;
2622 struct gdb_xml_value *attr;
2623
2624 id = xml_find_attribute (attributes, "id")->value;
2625 item.ptid = read_ptid (id, NULL);
2626
2627 attr = xml_find_attribute (attributes, "core");
2628 if (attr != NULL)
2629 item.core = *(ULONGEST *) attr->value;
2630 else
2631 item.core = -1;
2632
2633 item.extra = 0;
2634
2635 VEC_safe_push (thread_item_t, data->items, &item);
2636 }
2637
2638 static void
2639 end_thread (struct gdb_xml_parser *parser,
2640 const struct gdb_xml_element *element,
2641 void *user_data, const char *body_text)
2642 {
2643 struct threads_parsing_context *data = user_data;
2644
2645 if (body_text && *body_text)
2646 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2647 }
2648
2649 const struct gdb_xml_attribute thread_attributes[] = {
2650 { "id", GDB_XML_AF_NONE, NULL, NULL },
2651 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2652 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2653 };
2654
2655 const struct gdb_xml_element thread_children[] = {
2656 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2657 };
2658
2659 const struct gdb_xml_element threads_children[] = {
2660 { "thread", thread_attributes, thread_children,
2661 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2662 start_thread, end_thread },
2663 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2664 };
2665
2666 const struct gdb_xml_element threads_elements[] = {
2667 { "threads", NULL, threads_children,
2668 GDB_XML_EF_NONE, NULL, NULL },
2669 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2670 };
2671
2672 /* Discard the contents of the constructed thread info context. */
2673
2674 static void
2675 clear_threads_parsing_context (void *p)
2676 {
2677 struct threads_parsing_context *context = p;
2678 int i;
2679 struct thread_item *item;
2680
2681 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2682 xfree (item->extra);
2683
2684 VEC_free (thread_item_t, context->items);
2685 }
2686
2687 #endif
2688
2689 /*
2690 * Find all threads for info threads command.
2691 * Uses new thread protocol contributed by Cisco.
2692 * Falls back and attempts to use the older method (above)
2693 * if the target doesn't respond to the new method.
2694 */
2695
2696 static void
2697 remote_threads_info (struct target_ops *ops)
2698 {
2699 struct remote_state *rs = get_remote_state ();
2700 char *bufp;
2701 ptid_t new_thread;
2702
2703 if (remote_desc == 0) /* paranoia */
2704 error (_("Command can only be used when connected to the remote target."));
2705
2706 #if defined(HAVE_LIBEXPAT)
2707 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2708 {
2709 char *xml = target_read_stralloc (&current_target,
2710 TARGET_OBJECT_THREADS, NULL);
2711
2712 struct cleanup *back_to = make_cleanup (xfree, xml);
2713
2714 if (xml && *xml)
2715 {
2716 struct threads_parsing_context context;
2717
2718 context.items = NULL;
2719 make_cleanup (clear_threads_parsing_context, &context);
2720
2721 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2722 threads_elements, xml, &context) == 0)
2723 {
2724 int i;
2725 struct thread_item *item;
2726
2727 for (i = 0;
2728 VEC_iterate (thread_item_t, context.items, i, item);
2729 ++i)
2730 {
2731 if (!ptid_equal (item->ptid, null_ptid))
2732 {
2733 struct private_thread_info *info;
2734 /* In non-stop mode, we assume new found threads
2735 are running until proven otherwise with a
2736 stop reply. In all-stop, we can only get
2737 here if all threads are stopped. */
2738 int running = non_stop ? 1 : 0;
2739
2740 remote_notice_new_inferior (item->ptid, running);
2741
2742 info = demand_private_info (item->ptid);
2743 info->core = item->core;
2744 info->extra = item->extra;
2745 item->extra = NULL;
2746 }
2747 }
2748 }
2749 }
2750
2751 do_cleanups (back_to);
2752 return;
2753 }
2754 #endif
2755
2756 if (use_threadinfo_query)
2757 {
2758 putpkt ("qfThreadInfo");
2759 getpkt (&rs->buf, &rs->buf_size, 0);
2760 bufp = rs->buf;
2761 if (bufp[0] != '\0') /* q packet recognized */
2762 {
2763 struct cleanup *old_chain;
2764 char *saved_reply;
2765
2766 /* remote_notice_new_inferior (in the loop below) may make
2767 new RSP calls, which clobber rs->buf. Work with a
2768 copy. */
2769 bufp = saved_reply = xstrdup (rs->buf);
2770 old_chain = make_cleanup (free_current_contents, &saved_reply);
2771
2772 while (*bufp++ == 'm') /* reply contains one or more TID */
2773 {
2774 do
2775 {
2776 new_thread = read_ptid (bufp, &bufp);
2777 if (!ptid_equal (new_thread, null_ptid))
2778 {
2779 /* In non-stop mode, we assume new found threads
2780 are running until proven otherwise with a
2781 stop reply. In all-stop, we can only get
2782 here if all threads are stopped. */
2783 int running = non_stop ? 1 : 0;
2784
2785 remote_notice_new_inferior (new_thread, running);
2786 }
2787 }
2788 while (*bufp++ == ','); /* comma-separated list */
2789 free_current_contents (&saved_reply);
2790 putpkt ("qsThreadInfo");
2791 getpkt (&rs->buf, &rs->buf_size, 0);
2792 bufp = saved_reply = xstrdup (rs->buf);
2793 }
2794 do_cleanups (old_chain);
2795 return; /* done */
2796 }
2797 }
2798
2799 /* Only qfThreadInfo is supported in non-stop mode. */
2800 if (non_stop)
2801 return;
2802
2803 /* Else fall back to old method based on jmetzler protocol. */
2804 use_threadinfo_query = 0;
2805 remote_find_new_threads ();
2806 return;
2807 }
2808
2809 /*
2810 * Collect a descriptive string about the given thread.
2811 * The target may say anything it wants to about the thread
2812 * (typically info about its blocked / runnable state, name, etc.).
2813 * This string will appear in the info threads display.
2814 *
2815 * Optional: targets are not required to implement this function.
2816 */
2817
2818 static char *
2819 remote_threads_extra_info (struct thread_info *tp)
2820 {
2821 struct remote_state *rs = get_remote_state ();
2822 int result;
2823 int set;
2824 threadref id;
2825 struct gdb_ext_thread_info threadinfo;
2826 static char display_buf[100]; /* arbitrary... */
2827 int n = 0; /* position in display_buf */
2828
2829 if (remote_desc == 0) /* paranoia */
2830 internal_error (__FILE__, __LINE__,
2831 _("remote_threads_extra_info"));
2832
2833 if (ptid_equal (tp->ptid, magic_null_ptid)
2834 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2835 /* This is the main thread which was added by GDB. The remote
2836 server doesn't know about it. */
2837 return NULL;
2838
2839 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2840 {
2841 struct thread_info *info = find_thread_ptid (tp->ptid);
2842
2843 if (info && info->private)
2844 return info->private->extra;
2845 else
2846 return NULL;
2847 }
2848
2849 if (use_threadextra_query)
2850 {
2851 char *b = rs->buf;
2852 char *endb = rs->buf + get_remote_packet_size ();
2853
2854 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2855 b += strlen (b);
2856 write_ptid (b, endb, tp->ptid);
2857
2858 putpkt (rs->buf);
2859 getpkt (&rs->buf, &rs->buf_size, 0);
2860 if (rs->buf[0] != 0)
2861 {
2862 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2863 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2864 display_buf [result] = '\0';
2865 return display_buf;
2866 }
2867 }
2868
2869 /* If the above query fails, fall back to the old method. */
2870 use_threadextra_query = 0;
2871 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2872 | TAG_MOREDISPLAY | TAG_DISPLAY;
2873 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2874 if (remote_get_threadinfo (&id, set, &threadinfo))
2875 if (threadinfo.active)
2876 {
2877 if (*threadinfo.shortname)
2878 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2879 " Name: %s,", threadinfo.shortname);
2880 if (*threadinfo.display)
2881 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2882 " State: %s,", threadinfo.display);
2883 if (*threadinfo.more_display)
2884 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2885 " Priority: %s", threadinfo.more_display);
2886
2887 if (n > 0)
2888 {
2889 /* For purely cosmetic reasons, clear up trailing commas. */
2890 if (',' == display_buf[n-1])
2891 display_buf[n-1] = ' ';
2892 return display_buf;
2893 }
2894 }
2895 return NULL;
2896 }
2897 \f
2898
2899 static int
2900 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2901 struct static_tracepoint_marker *marker)
2902 {
2903 struct remote_state *rs = get_remote_state ();
2904 char *p = rs->buf;
2905
2906 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2907 p += strlen (p);
2908 p += hexnumstr (p, addr);
2909 putpkt (rs->buf);
2910 getpkt (&rs->buf, &rs->buf_size, 0);
2911 p = rs->buf;
2912
2913 if (*p == 'E')
2914 error (_("Remote failure reply: %s"), p);
2915
2916 if (*p++ == 'm')
2917 {
2918 parse_static_tracepoint_marker_definition (p, &p, marker);
2919 return 1;
2920 }
2921
2922 return 0;
2923 }
2924
2925 static VEC(static_tracepoint_marker_p) *
2926 remote_static_tracepoint_markers_by_strid (const char *strid)
2927 {
2928 struct remote_state *rs = get_remote_state ();
2929 VEC(static_tracepoint_marker_p) *markers = NULL;
2930 struct static_tracepoint_marker *marker = NULL;
2931 struct cleanup *old_chain;
2932 char *p;
2933
2934 /* Ask for a first packet of static tracepoint marker
2935 definition. */
2936 putpkt ("qTfSTM");
2937 getpkt (&rs->buf, &rs->buf_size, 0);
2938 p = rs->buf;
2939 if (*p == 'E')
2940 error (_("Remote failure reply: %s"), p);
2941
2942 old_chain = make_cleanup (free_current_marker, &marker);
2943
2944 while (*p++ == 'm')
2945 {
2946 if (marker == NULL)
2947 marker = XCNEW (struct static_tracepoint_marker);
2948
2949 do
2950 {
2951 parse_static_tracepoint_marker_definition (p, &p, marker);
2952
2953 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2954 {
2955 VEC_safe_push (static_tracepoint_marker_p,
2956 markers, marker);
2957 marker = NULL;
2958 }
2959 else
2960 {
2961 release_static_tracepoint_marker (marker);
2962 memset (marker, 0, sizeof (*marker));
2963 }
2964 }
2965 while (*p++ == ','); /* comma-separated list */
2966 /* Ask for another packet of static tracepoint definition. */
2967 putpkt ("qTsSTM");
2968 getpkt (&rs->buf, &rs->buf_size, 0);
2969 p = rs->buf;
2970 }
2971
2972 do_cleanups (old_chain);
2973 return markers;
2974 }
2975
2976 \f
2977 /* Implement the to_get_ada_task_ptid function for the remote targets. */
2978
2979 static ptid_t
2980 remote_get_ada_task_ptid (long lwp, long thread)
2981 {
2982 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
2983 }
2984 \f
2985
2986 /* Restart the remote side; this is an extended protocol operation. */
2987
2988 static void
2989 extended_remote_restart (void)
2990 {
2991 struct remote_state *rs = get_remote_state ();
2992
2993 /* Send the restart command; for reasons I don't understand the
2994 remote side really expects a number after the "R". */
2995 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2996 putpkt (rs->buf);
2997
2998 remote_fileio_reset ();
2999 }
3000 \f
3001 /* Clean up connection to a remote debugger. */
3002
3003 static void
3004 remote_close (void)
3005 {
3006 if (remote_desc == NULL)
3007 return; /* already closed */
3008
3009 /* Make sure we leave stdin registered in the event loop, and we
3010 don't leave the async SIGINT signal handler installed. */
3011 remote_terminal_ours ();
3012
3013 serial_close (remote_desc);
3014 remote_desc = NULL;
3015
3016 /* We don't have a connection to the remote stub anymore. Get rid
3017 of all the inferiors and their threads we were controlling.
3018 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3019 will be unable to find the thread corresponding to (pid, 0, 0). */
3020 inferior_ptid = null_ptid;
3021 discard_all_inferiors ();
3022
3023 /* Stop replies may from inferiors which are still unknown to GDB.
3024 We are closing the remote target, so we should discard
3025 everything, including the stop replies from GDB-unknown
3026 inferiors. */
3027 discard_pending_stop_replies (NULL);
3028
3029 if (remote_async_inferior_event_token)
3030 delete_async_event_handler (&remote_async_inferior_event_token);
3031
3032 remote_notif_unregister_async_event_handler ();
3033 }
3034
3035 /* Query the remote side for the text, data and bss offsets. */
3036
3037 static void
3038 get_offsets (void)
3039 {
3040 struct remote_state *rs = get_remote_state ();
3041 char *buf;
3042 char *ptr;
3043 int lose, num_segments = 0, do_sections, do_segments;
3044 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3045 struct section_offsets *offs;
3046 struct symfile_segment_data *data;
3047
3048 if (symfile_objfile == NULL)
3049 return;
3050
3051 putpkt ("qOffsets");
3052 getpkt (&rs->buf, &rs->buf_size, 0);
3053 buf = rs->buf;
3054
3055 if (buf[0] == '\000')
3056 return; /* Return silently. Stub doesn't support
3057 this command. */
3058 if (buf[0] == 'E')
3059 {
3060 warning (_("Remote failure reply: %s"), buf);
3061 return;
3062 }
3063
3064 /* Pick up each field in turn. This used to be done with scanf, but
3065 scanf will make trouble if CORE_ADDR size doesn't match
3066 conversion directives correctly. The following code will work
3067 with any size of CORE_ADDR. */
3068 text_addr = data_addr = bss_addr = 0;
3069 ptr = buf;
3070 lose = 0;
3071
3072 if (strncmp (ptr, "Text=", 5) == 0)
3073 {
3074 ptr += 5;
3075 /* Don't use strtol, could lose on big values. */
3076 while (*ptr && *ptr != ';')
3077 text_addr = (text_addr << 4) + fromhex (*ptr++);
3078
3079 if (strncmp (ptr, ";Data=", 6) == 0)
3080 {
3081 ptr += 6;
3082 while (*ptr && *ptr != ';')
3083 data_addr = (data_addr << 4) + fromhex (*ptr++);
3084 }
3085 else
3086 lose = 1;
3087
3088 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3089 {
3090 ptr += 5;
3091 while (*ptr && *ptr != ';')
3092 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3093
3094 if (bss_addr != data_addr)
3095 warning (_("Target reported unsupported offsets: %s"), buf);
3096 }
3097 else
3098 lose = 1;
3099 }
3100 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3101 {
3102 ptr += 8;
3103 /* Don't use strtol, could lose on big values. */
3104 while (*ptr && *ptr != ';')
3105 text_addr = (text_addr << 4) + fromhex (*ptr++);
3106 num_segments = 1;
3107
3108 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3109 {
3110 ptr += 9;
3111 while (*ptr && *ptr != ';')
3112 data_addr = (data_addr << 4) + fromhex (*ptr++);
3113 num_segments++;
3114 }
3115 }
3116 else
3117 lose = 1;
3118
3119 if (lose)
3120 error (_("Malformed response to offset query, %s"), buf);
3121 else if (*ptr != '\0')
3122 warning (_("Target reported unsupported offsets: %s"), buf);
3123
3124 offs = ((struct section_offsets *)
3125 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3126 memcpy (offs, symfile_objfile->section_offsets,
3127 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3128
3129 data = get_symfile_segment_data (symfile_objfile->obfd);
3130 do_segments = (data != NULL);
3131 do_sections = num_segments == 0;
3132
3133 if (num_segments > 0)
3134 {
3135 segments[0] = text_addr;
3136 segments[1] = data_addr;
3137 }
3138 /* If we have two segments, we can still try to relocate everything
3139 by assuming that the .text and .data offsets apply to the whole
3140 text and data segments. Convert the offsets given in the packet
3141 to base addresses for symfile_map_offsets_to_segments. */
3142 else if (data && data->num_segments == 2)
3143 {
3144 segments[0] = data->segment_bases[0] + text_addr;
3145 segments[1] = data->segment_bases[1] + data_addr;
3146 num_segments = 2;
3147 }
3148 /* If the object file has only one segment, assume that it is text
3149 rather than data; main programs with no writable data are rare,
3150 but programs with no code are useless. Of course the code might
3151 have ended up in the data segment... to detect that we would need
3152 the permissions here. */
3153 else if (data && data->num_segments == 1)
3154 {
3155 segments[0] = data->segment_bases[0] + text_addr;
3156 num_segments = 1;
3157 }
3158 /* There's no way to relocate by segment. */
3159 else
3160 do_segments = 0;
3161
3162 if (do_segments)
3163 {
3164 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3165 offs, num_segments, segments);
3166
3167 if (ret == 0 && !do_sections)
3168 error (_("Can not handle qOffsets TextSeg "
3169 "response with this symbol file"));
3170
3171 if (ret > 0)
3172 do_sections = 0;
3173 }
3174
3175 if (data)
3176 free_symfile_segment_data (data);
3177
3178 if (do_sections)
3179 {
3180 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3181
3182 /* This is a temporary kludge to force data and bss to use the
3183 same offsets because that's what nlmconv does now. The real
3184 solution requires changes to the stub and remote.c that I
3185 don't have time to do right now. */
3186
3187 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3188 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3189 }
3190
3191 objfile_relocate (symfile_objfile, offs);
3192 }
3193
3194 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3195 threads we know are stopped already. This is used during the
3196 initial remote connection in non-stop mode --- threads that are
3197 reported as already being stopped are left stopped. */
3198
3199 static int
3200 set_stop_requested_callback (struct thread_info *thread, void *data)
3201 {
3202 /* If we have a stop reply for this thread, it must be stopped. */
3203 if (peek_stop_reply (thread->ptid))
3204 set_stop_requested (thread->ptid, 1);
3205
3206 return 0;
3207 }
3208
3209 /* Send interrupt_sequence to remote target. */
3210 static void
3211 send_interrupt_sequence (void)
3212 {
3213 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3214 serial_write (remote_desc, "\x03", 1);
3215 else if (interrupt_sequence_mode == interrupt_sequence_break)
3216 serial_send_break (remote_desc);
3217 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3218 {
3219 serial_send_break (remote_desc);
3220 serial_write (remote_desc, "g", 1);
3221 }
3222 else
3223 internal_error (__FILE__, __LINE__,
3224 _("Invalid value for interrupt_sequence_mode: %s."),
3225 interrupt_sequence_mode);
3226 }
3227
3228
3229 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3230 and extract the PTID. Returns NULL_PTID if not found. */
3231
3232 static ptid_t
3233 stop_reply_extract_thread (char *stop_reply)
3234 {
3235 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3236 {
3237 char *p;
3238
3239 /* Txx r:val ; r:val (...) */
3240 p = &stop_reply[3];
3241
3242 /* Look for "register" named "thread". */
3243 while (*p != '\0')
3244 {
3245 char *p1;
3246
3247 p1 = strchr (p, ':');
3248 if (p1 == NULL)
3249 return null_ptid;
3250
3251 if (strncmp (p, "thread", p1 - p) == 0)
3252 return read_ptid (++p1, &p);
3253
3254 p1 = strchr (p, ';');
3255 if (p1 == NULL)
3256 return null_ptid;
3257 p1++;
3258
3259 p = p1;
3260 }
3261 }
3262
3263 return null_ptid;
3264 }
3265
3266 /* Query the remote target for which is the current thread/process,
3267 add it to our tables, and update INFERIOR_PTID. The caller is
3268 responsible for setting the state such that the remote end is ready
3269 to return the current thread.
3270
3271 This function is called after handling the '?' or 'vRun' packets,
3272 whose response is a stop reply from which we can also try
3273 extracting the thread. If the target doesn't support the explicit
3274 qC query, we infer the current thread from that stop reply, passed
3275 in in WAIT_STATUS, which may be NULL. */
3276
3277 static void
3278 add_current_inferior_and_thread (char *wait_status)
3279 {
3280 struct remote_state *rs = get_remote_state ();
3281 int fake_pid_p = 0;
3282 ptid_t ptid = null_ptid;
3283
3284 inferior_ptid = null_ptid;
3285
3286 /* Now, if we have thread information, update inferior_ptid. First
3287 if we have a stop reply handy, maybe it's a T stop reply with a
3288 "thread" register we can extract the current thread from. If
3289 not, ask the remote which is the current thread, with qC. The
3290 former method avoids a roundtrip. Note we don't use
3291 remote_parse_stop_reply as that makes use of the target
3292 architecture, which we haven't yet fully determined at this
3293 point. */
3294 if (wait_status != NULL)
3295 ptid = stop_reply_extract_thread (wait_status);
3296 if (ptid_equal (ptid, null_ptid))
3297 ptid = remote_current_thread (inferior_ptid);
3298
3299 if (!ptid_equal (ptid, null_ptid))
3300 {
3301 if (!remote_multi_process_p (rs))
3302 fake_pid_p = 1;
3303
3304 inferior_ptid = ptid;
3305 }
3306 else
3307 {
3308 /* Without this, some commands which require an active target
3309 (such as kill) won't work. This variable serves (at least)
3310 double duty as both the pid of the target process (if it has
3311 such), and as a flag indicating that a target is active. */
3312 inferior_ptid = magic_null_ptid;
3313 fake_pid_p = 1;
3314 }
3315
3316 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3317
3318 /* Add the main thread. */
3319 add_thread_silent (inferior_ptid);
3320 }
3321
3322 static void
3323 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3324 {
3325 struct remote_state *rs = get_remote_state ();
3326 struct packet_config *noack_config;
3327 char *wait_status = NULL;
3328
3329 immediate_quit++; /* Allow user to interrupt it. */
3330 QUIT;
3331
3332 if (interrupt_on_connect)
3333 send_interrupt_sequence ();
3334
3335 /* Ack any packet which the remote side has already sent. */
3336 serial_write (remote_desc, "+", 1);
3337
3338 /* Signal other parts that we're going through the initial setup,
3339 and so things may not be stable yet. */
3340 rs->starting_up = 1;
3341
3342 /* The first packet we send to the target is the optional "supported
3343 packets" request. If the target can answer this, it will tell us
3344 which later probes to skip. */
3345 remote_query_supported ();
3346
3347 /* If the stub wants to get a QAllow, compose one and send it. */
3348 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3349 remote_set_permissions ();
3350
3351 /* Next, we possibly activate noack mode.
3352
3353 If the QStartNoAckMode packet configuration is set to AUTO,
3354 enable noack mode if the stub reported a wish for it with
3355 qSupported.
3356
3357 If set to TRUE, then enable noack mode even if the stub didn't
3358 report it in qSupported. If the stub doesn't reply OK, the
3359 session ends with an error.
3360
3361 If FALSE, then don't activate noack mode, regardless of what the
3362 stub claimed should be the default with qSupported. */
3363
3364 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3365
3366 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3367 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3368 && noack_config->support == PACKET_ENABLE))
3369 {
3370 putpkt ("QStartNoAckMode");
3371 getpkt (&rs->buf, &rs->buf_size, 0);
3372 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3373 rs->noack_mode = 1;
3374 }
3375
3376 if (extended_p)
3377 {
3378 /* Tell the remote that we are using the extended protocol. */
3379 putpkt ("!");
3380 getpkt (&rs->buf, &rs->buf_size, 0);
3381 }
3382
3383 /* Let the target know which signals it is allowed to pass down to
3384 the program. */
3385 update_signals_program_target ();
3386
3387 /* Next, if the target can specify a description, read it. We do
3388 this before anything involving memory or registers. */
3389 target_find_description ();
3390
3391 /* Next, now that we know something about the target, update the
3392 address spaces in the program spaces. */
3393 update_address_spaces ();
3394
3395 /* On OSs where the list of libraries is global to all
3396 processes, we fetch them early. */
3397 if (gdbarch_has_global_solist (target_gdbarch ()))
3398 solib_add (NULL, from_tty, target, auto_solib_add);
3399
3400 if (non_stop)
3401 {
3402 if (!rs->non_stop_aware)
3403 error (_("Non-stop mode requested, but remote "
3404 "does not support non-stop"));
3405
3406 putpkt ("QNonStop:1");
3407 getpkt (&rs->buf, &rs->buf_size, 0);
3408
3409 if (strcmp (rs->buf, "OK") != 0)
3410 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3411
3412 /* Find about threads and processes the stub is already
3413 controlling. We default to adding them in the running state.
3414 The '?' query below will then tell us about which threads are
3415 stopped. */
3416 remote_threads_info (target);
3417 }
3418 else if (rs->non_stop_aware)
3419 {
3420 /* Don't assume that the stub can operate in all-stop mode.
3421 Request it explicitly. */
3422 putpkt ("QNonStop:0");
3423 getpkt (&rs->buf, &rs->buf_size, 0);
3424
3425 if (strcmp (rs->buf, "OK") != 0)
3426 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3427 }
3428
3429 /* Check whether the target is running now. */
3430 putpkt ("?");
3431 getpkt (&rs->buf, &rs->buf_size, 0);
3432
3433 if (!non_stop)
3434 {
3435 ptid_t ptid;
3436 int fake_pid_p = 0;
3437 struct inferior *inf;
3438
3439 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3440 {
3441 if (!extended_p)
3442 error (_("The target is not running (try extended-remote?)"));
3443
3444 /* We're connected, but not running. Drop out before we
3445 call start_remote. */
3446 rs->starting_up = 0;
3447 return;
3448 }
3449 else
3450 {
3451 /* Save the reply for later. */
3452 wait_status = alloca (strlen (rs->buf) + 1);
3453 strcpy (wait_status, rs->buf);
3454 }
3455
3456 /* Let the stub know that we want it to return the thread. */
3457 set_continue_thread (minus_one_ptid);
3458
3459 add_current_inferior_and_thread (wait_status);
3460
3461 /* init_wait_for_inferior should be called before get_offsets in order
3462 to manage `inserted' flag in bp loc in a correct state.
3463 breakpoint_init_inferior, called from init_wait_for_inferior, set
3464 `inserted' flag to 0, while before breakpoint_re_set, called from
3465 start_remote, set `inserted' flag to 1. In the initialization of
3466 inferior, breakpoint_init_inferior should be called first, and then
3467 breakpoint_re_set can be called. If this order is broken, state of
3468 `inserted' flag is wrong, and cause some problems on breakpoint
3469 manipulation. */
3470 init_wait_for_inferior ();
3471
3472 get_offsets (); /* Get text, data & bss offsets. */
3473
3474 /* If we could not find a description using qXfer, and we know
3475 how to do it some other way, try again. This is not
3476 supported for non-stop; it could be, but it is tricky if
3477 there are no stopped threads when we connect. */
3478 if (remote_read_description_p (target)
3479 && gdbarch_target_desc (target_gdbarch ()) == NULL)
3480 {
3481 target_clear_description ();
3482 target_find_description ();
3483 }
3484
3485 /* Use the previously fetched status. */
3486 gdb_assert (wait_status != NULL);
3487 strcpy (rs->buf, wait_status);
3488 rs->cached_wait_status = 1;
3489
3490 immediate_quit--;
3491 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3492 }
3493 else
3494 {
3495 /* Clear WFI global state. Do this before finding about new
3496 threads and inferiors, and setting the current inferior.
3497 Otherwise we would clear the proceed status of the current
3498 inferior when we want its stop_soon state to be preserved
3499 (see notice_new_inferior). */
3500 init_wait_for_inferior ();
3501
3502 /* In non-stop, we will either get an "OK", meaning that there
3503 are no stopped threads at this time; or, a regular stop
3504 reply. In the latter case, there may be more than one thread
3505 stopped --- we pull them all out using the vStopped
3506 mechanism. */
3507 if (strcmp (rs->buf, "OK") != 0)
3508 {
3509 struct notif_client *notif = &notif_client_stop;
3510
3511 /* remote_notif_get_pending_replies acks this one, and gets
3512 the rest out. */
3513 notif_client_stop.pending_event
3514 = remote_notif_parse (notif, rs->buf);
3515 remote_notif_get_pending_events (notif);
3516
3517 /* Make sure that threads that were stopped remain
3518 stopped. */
3519 iterate_over_threads (set_stop_requested_callback, NULL);
3520 }
3521
3522 if (target_can_async_p ())
3523 target_async (inferior_event_handler, 0);
3524
3525 if (thread_count () == 0)
3526 {
3527 if (!extended_p)
3528 error (_("The target is not running (try extended-remote?)"));
3529
3530 /* We're connected, but not running. Drop out before we
3531 call start_remote. */
3532 rs->starting_up = 0;
3533 return;
3534 }
3535
3536 /* Let the stub know that we want it to return the thread. */
3537
3538 /* Force the stub to choose a thread. */
3539 set_general_thread (null_ptid);
3540
3541 /* Query it. */
3542 inferior_ptid = remote_current_thread (minus_one_ptid);
3543 if (ptid_equal (inferior_ptid, minus_one_ptid))
3544 error (_("remote didn't report the current thread in non-stop mode"));
3545
3546 get_offsets (); /* Get text, data & bss offsets. */
3547
3548 /* In non-stop mode, any cached wait status will be stored in
3549 the stop reply queue. */
3550 gdb_assert (wait_status == NULL);
3551
3552 /* Report all signals during attach/startup. */
3553 remote_pass_signals (0, NULL);
3554 }
3555
3556 /* If we connected to a live target, do some additional setup. */
3557 if (target_has_execution)
3558 {
3559 if (exec_bfd) /* No use without an exec file. */
3560 remote_check_symbols (symfile_objfile);
3561 }
3562
3563 /* Possibly the target has been engaged in a trace run started
3564 previously; find out where things are at. */
3565 if (remote_get_trace_status (current_trace_status ()) != -1)
3566 {
3567 struct uploaded_tp *uploaded_tps = NULL;
3568 struct uploaded_tsv *uploaded_tsvs = NULL;
3569
3570 if (current_trace_status ()->running)
3571 printf_filtered (_("Trace is already running on the target.\n"));
3572
3573 /* Get trace state variables first, they may be checked when
3574 parsing uploaded commands. */
3575
3576 remote_upload_trace_state_variables (&uploaded_tsvs);
3577
3578 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3579
3580 remote_upload_tracepoints (&uploaded_tps);
3581
3582 merge_uploaded_tracepoints (&uploaded_tps);
3583 }
3584
3585 /* The thread and inferior lists are now synchronized with the
3586 target, our symbols have been relocated, and we're merged the
3587 target's tracepoints with ours. We're done with basic start
3588 up. */
3589 rs->starting_up = 0;
3590
3591 /* If breakpoints are global, insert them now. */
3592 if (gdbarch_has_global_breakpoints (target_gdbarch ())
3593 && breakpoints_always_inserted_mode ())
3594 insert_breakpoints ();
3595 }
3596
3597 /* Open a connection to a remote debugger.
3598 NAME is the filename used for communication. */
3599
3600 static void
3601 remote_open (char *name, int from_tty)
3602 {
3603 remote_open_1 (name, from_tty, &remote_ops, 0);
3604 }
3605
3606 /* Open a connection to a remote debugger using the extended
3607 remote gdb protocol. NAME is the filename used for communication. */
3608
3609 static void
3610 extended_remote_open (char *name, int from_tty)
3611 {
3612 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3613 }
3614
3615 /* Generic code for opening a connection to a remote target. */
3616
3617 static void
3618 init_all_packet_configs (void)
3619 {
3620 int i;
3621
3622 for (i = 0; i < PACKET_MAX; i++)
3623 update_packet_config (&remote_protocol_packets[i]);
3624 }
3625
3626 /* Symbol look-up. */
3627
3628 static void
3629 remote_check_symbols (struct objfile *objfile)
3630 {
3631 struct remote_state *rs = get_remote_state ();
3632 char *msg, *reply, *tmp;
3633 struct minimal_symbol *sym;
3634 int end;
3635
3636 /* The remote side has no concept of inferiors that aren't running
3637 yet, it only knows about running processes. If we're connected
3638 but our current inferior is not running, we should not invite the
3639 remote target to request symbol lookups related to its
3640 (unrelated) current process. */
3641 if (!target_has_execution)
3642 return;
3643
3644 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3645 return;
3646
3647 /* Make sure the remote is pointing at the right process. Note
3648 there's no way to select "no process". */
3649 set_general_process ();
3650
3651 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3652 because we need both at the same time. */
3653 msg = alloca (get_remote_packet_size ());
3654
3655 /* Invite target to request symbol lookups. */
3656
3657 putpkt ("qSymbol::");
3658 getpkt (&rs->buf, &rs->buf_size, 0);
3659 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3660 reply = rs->buf;
3661
3662 while (strncmp (reply, "qSymbol:", 8) == 0)
3663 {
3664 tmp = &reply[8];
3665 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3666 msg[end] = '\0';
3667 sym = lookup_minimal_symbol (msg, NULL, NULL);
3668 if (sym == NULL)
3669 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3670 else
3671 {
3672 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
3673 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3674
3675 /* If this is a function address, return the start of code
3676 instead of any data function descriptor. */
3677 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3678 sym_addr,
3679 &current_target);
3680
3681 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3682 phex_nz (sym_addr, addr_size), &reply[8]);
3683 }
3684
3685 putpkt (msg);
3686 getpkt (&rs->buf, &rs->buf_size, 0);
3687 reply = rs->buf;
3688 }
3689 }
3690
3691 static struct serial *
3692 remote_serial_open (char *name)
3693 {
3694 static int udp_warning = 0;
3695
3696 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3697 of in ser-tcp.c, because it is the remote protocol assuming that the
3698 serial connection is reliable and not the serial connection promising
3699 to be. */
3700 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3701 {
3702 warning (_("The remote protocol may be unreliable over UDP.\n"
3703 "Some events may be lost, rendering further debugging "
3704 "impossible."));
3705 udp_warning = 1;
3706 }
3707
3708 return serial_open (name);
3709 }
3710
3711 /* Inform the target of our permission settings. The permission flags
3712 work without this, but if the target knows the settings, it can do
3713 a couple things. First, it can add its own check, to catch cases
3714 that somehow manage to get by the permissions checks in target
3715 methods. Second, if the target is wired to disallow particular
3716 settings (for instance, a system in the field that is not set up to
3717 be able to stop at a breakpoint), it can object to any unavailable
3718 permissions. */
3719
3720 void
3721 remote_set_permissions (void)
3722 {
3723 struct remote_state *rs = get_remote_state ();
3724
3725 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3726 "WriteReg:%x;WriteMem:%x;"
3727 "InsertBreak:%x;InsertTrace:%x;"
3728 "InsertFastTrace:%x;Stop:%x",
3729 may_write_registers, may_write_memory,
3730 may_insert_breakpoints, may_insert_tracepoints,
3731 may_insert_fast_tracepoints, may_stop);
3732 putpkt (rs->buf);
3733 getpkt (&rs->buf, &rs->buf_size, 0);
3734
3735 /* If the target didn't like the packet, warn the user. Do not try
3736 to undo the user's settings, that would just be maddening. */
3737 if (strcmp (rs->buf, "OK") != 0)
3738 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3739 }
3740
3741 /* This type describes each known response to the qSupported
3742 packet. */
3743 struct protocol_feature
3744 {
3745 /* The name of this protocol feature. */
3746 const char *name;
3747
3748 /* The default for this protocol feature. */
3749 enum packet_support default_support;
3750
3751 /* The function to call when this feature is reported, or after
3752 qSupported processing if the feature is not supported.
3753 The first argument points to this structure. The second
3754 argument indicates whether the packet requested support be
3755 enabled, disabled, or probed (or the default, if this function
3756 is being called at the end of processing and this feature was
3757 not reported). The third argument may be NULL; if not NULL, it
3758 is a NUL-terminated string taken from the packet following
3759 this feature's name and an equals sign. */
3760 void (*func) (const struct protocol_feature *, enum packet_support,
3761 const char *);
3762
3763 /* The corresponding packet for this feature. Only used if
3764 FUNC is remote_supported_packet. */
3765 int packet;
3766 };
3767
3768 static void
3769 remote_supported_packet (const struct protocol_feature *feature,
3770 enum packet_support support,
3771 const char *argument)
3772 {
3773 if (argument)
3774 {
3775 warning (_("Remote qSupported response supplied an unexpected value for"
3776 " \"%s\"."), feature->name);
3777 return;
3778 }
3779
3780 if (remote_protocol_packets[feature->packet].support
3781 == PACKET_SUPPORT_UNKNOWN)
3782 remote_protocol_packets[feature->packet].support = support;
3783 }
3784
3785 static void
3786 remote_packet_size (const struct protocol_feature *feature,
3787 enum packet_support support, const char *value)
3788 {
3789 struct remote_state *rs = get_remote_state ();
3790
3791 int packet_size;
3792 char *value_end;
3793
3794 if (support != PACKET_ENABLE)
3795 return;
3796
3797 if (value == NULL || *value == '\0')
3798 {
3799 warning (_("Remote target reported \"%s\" without a size."),
3800 feature->name);
3801 return;
3802 }
3803
3804 errno = 0;
3805 packet_size = strtol (value, &value_end, 16);
3806 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3807 {
3808 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3809 feature->name, value);
3810 return;
3811 }
3812
3813 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3814 {
3815 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3816 packet_size, MAX_REMOTE_PACKET_SIZE);
3817 packet_size = MAX_REMOTE_PACKET_SIZE;
3818 }
3819
3820 /* Record the new maximum packet size. */
3821 rs->explicit_packet_size = packet_size;
3822 }
3823
3824 static void
3825 remote_multi_process_feature (const struct protocol_feature *feature,
3826 enum packet_support support, const char *value)
3827 {
3828 struct remote_state *rs = get_remote_state ();
3829
3830 rs->multi_process_aware = (support == PACKET_ENABLE);
3831 }
3832
3833 static void
3834 remote_non_stop_feature (const struct protocol_feature *feature,
3835 enum packet_support support, const char *value)
3836 {
3837 struct remote_state *rs = get_remote_state ();
3838
3839 rs->non_stop_aware = (support == PACKET_ENABLE);
3840 }
3841
3842 static void
3843 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3844 enum packet_support support,
3845 const char *value)
3846 {
3847 struct remote_state *rs = get_remote_state ();
3848
3849 rs->cond_tracepoints = (support == PACKET_ENABLE);
3850 }
3851
3852 static void
3853 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3854 enum packet_support support,
3855 const char *value)
3856 {
3857 struct remote_state *rs = get_remote_state ();
3858
3859 rs->cond_breakpoints = (support == PACKET_ENABLE);
3860 }
3861
3862 static void
3863 remote_breakpoint_commands_feature (const struct protocol_feature *feature,
3864 enum packet_support support,
3865 const char *value)
3866 {
3867 struct remote_state *rs = get_remote_state ();
3868
3869 rs->breakpoint_commands = (support == PACKET_ENABLE);
3870 }
3871
3872 static void
3873 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3874 enum packet_support support,
3875 const char *value)
3876 {
3877 struct remote_state *rs = get_remote_state ();
3878
3879 rs->fast_tracepoints = (support == PACKET_ENABLE);
3880 }
3881
3882 static void
3883 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3884 enum packet_support support,
3885 const char *value)
3886 {
3887 struct remote_state *rs = get_remote_state ();
3888
3889 rs->static_tracepoints = (support == PACKET_ENABLE);
3890 }
3891
3892 static void
3893 remote_install_in_trace_feature (const struct protocol_feature *feature,
3894 enum packet_support support,
3895 const char *value)
3896 {
3897 struct remote_state *rs = get_remote_state ();
3898
3899 rs->install_in_trace = (support == PACKET_ENABLE);
3900 }
3901
3902 static void
3903 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3904 enum packet_support support,
3905 const char *value)
3906 {
3907 struct remote_state *rs = get_remote_state ();
3908
3909 rs->disconnected_tracing = (support == PACKET_ENABLE);
3910 }
3911
3912 static void
3913 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3914 enum packet_support support,
3915 const char *value)
3916 {
3917 struct remote_state *rs = get_remote_state ();
3918
3919 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3920 }
3921
3922 static void
3923 remote_string_tracing_feature (const struct protocol_feature *feature,
3924 enum packet_support support,
3925 const char *value)
3926 {
3927 struct remote_state *rs = get_remote_state ();
3928
3929 rs->string_tracing = (support == PACKET_ENABLE);
3930 }
3931
3932 static struct protocol_feature remote_protocol_features[] = {
3933 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3934 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3935 PACKET_qXfer_auxv },
3936 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3937 PACKET_qXfer_features },
3938 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3939 PACKET_qXfer_libraries },
3940 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
3941 PACKET_qXfer_libraries_svr4 },
3942 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
3943 PACKET_qXfer_memory_map },
3944 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
3945 PACKET_qXfer_spu_read },
3946 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
3947 PACKET_qXfer_spu_write },
3948 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
3949 PACKET_qXfer_osdata },
3950 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
3951 PACKET_qXfer_threads },
3952 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
3953 PACKET_qXfer_traceframe_info },
3954 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
3955 PACKET_QPassSignals },
3956 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
3957 PACKET_QProgramSignals },
3958 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
3959 PACKET_QStartNoAckMode },
3960 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
3961 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
3962 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
3963 PACKET_qXfer_siginfo_read },
3964 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
3965 PACKET_qXfer_siginfo_write },
3966 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
3967 PACKET_ConditionalTracepoints },
3968 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
3969 PACKET_ConditionalBreakpoints },
3970 { "BreakpointCommands", PACKET_DISABLE, remote_breakpoint_commands_feature,
3971 PACKET_BreakpointCommands },
3972 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
3973 PACKET_FastTracepoints },
3974 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
3975 PACKET_StaticTracepoints },
3976 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
3977 PACKET_InstallInTrace},
3978 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
3979 -1 },
3980 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
3981 PACKET_bc },
3982 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
3983 PACKET_bs },
3984 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
3985 PACKET_TracepointSource },
3986 { "QAllow", PACKET_DISABLE, remote_supported_packet,
3987 PACKET_QAllow },
3988 { "EnableDisableTracepoints", PACKET_DISABLE,
3989 remote_enable_disable_tracepoint_feature, -1 },
3990 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
3991 PACKET_qXfer_fdpic },
3992 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
3993 PACKET_qXfer_uib },
3994 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
3995 PACKET_QDisableRandomization },
3996 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
3997 { "QTBuffer:size", PACKET_DISABLE,
3998 remote_supported_packet, PACKET_QTBuffer_size},
3999 { "tracenz", PACKET_DISABLE,
4000 remote_string_tracing_feature, -1 },
4001 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4002 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4003 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4004 PACKET_qXfer_btrace }
4005 };
4006
4007 static char *remote_support_xml;
4008
4009 /* Register string appended to "xmlRegisters=" in qSupported query. */
4010
4011 void
4012 register_remote_support_xml (const char *xml)
4013 {
4014 #if defined(HAVE_LIBEXPAT)
4015 if (remote_support_xml == NULL)
4016 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4017 else
4018 {
4019 char *copy = xstrdup (remote_support_xml + 13);
4020 char *p = strtok (copy, ",");
4021
4022 do
4023 {
4024 if (strcmp (p, xml) == 0)
4025 {
4026 /* already there */
4027 xfree (copy);
4028 return;
4029 }
4030 }
4031 while ((p = strtok (NULL, ",")) != NULL);
4032 xfree (copy);
4033
4034 remote_support_xml = reconcat (remote_support_xml,
4035 remote_support_xml, ",", xml,
4036 (char *) NULL);
4037 }
4038 #endif
4039 }
4040
4041 static char *
4042 remote_query_supported_append (char *msg, const char *append)
4043 {
4044 if (msg)
4045 return reconcat (msg, msg, ";", append, (char *) NULL);
4046 else
4047 return xstrdup (append);
4048 }
4049
4050 static void
4051 remote_query_supported (void)
4052 {
4053 struct remote_state *rs = get_remote_state ();
4054 char *next;
4055 int i;
4056 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4057
4058 /* The packet support flags are handled differently for this packet
4059 than for most others. We treat an error, a disabled packet, and
4060 an empty response identically: any features which must be reported
4061 to be used will be automatically disabled. An empty buffer
4062 accomplishes this, since that is also the representation for a list
4063 containing no features. */
4064
4065 rs->buf[0] = 0;
4066 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
4067 {
4068 char *q = NULL;
4069 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4070
4071 q = remote_query_supported_append (q, "multiprocess+");
4072
4073 if (remote_support_xml)
4074 q = remote_query_supported_append (q, remote_support_xml);
4075
4076 q = remote_query_supported_append (q, "qRelocInsn+");
4077
4078 q = reconcat (q, "qSupported:", q, (char *) NULL);
4079 putpkt (q);
4080
4081 do_cleanups (old_chain);
4082
4083 getpkt (&rs->buf, &rs->buf_size, 0);
4084
4085 /* If an error occured, warn, but do not return - just reset the
4086 buffer to empty and go on to disable features. */
4087 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4088 == PACKET_ERROR)
4089 {
4090 warning (_("Remote failure reply: %s"), rs->buf);
4091 rs->buf[0] = 0;
4092 }
4093 }
4094
4095 memset (seen, 0, sizeof (seen));
4096
4097 next = rs->buf;
4098 while (*next)
4099 {
4100 enum packet_support is_supported;
4101 char *p, *end, *name_end, *value;
4102
4103 /* First separate out this item from the rest of the packet. If
4104 there's another item after this, we overwrite the separator
4105 (terminated strings are much easier to work with). */
4106 p = next;
4107 end = strchr (p, ';');
4108 if (end == NULL)
4109 {
4110 end = p + strlen (p);
4111 next = end;
4112 }
4113 else
4114 {
4115 *end = '\0';
4116 next = end + 1;
4117
4118 if (end == p)
4119 {
4120 warning (_("empty item in \"qSupported\" response"));
4121 continue;
4122 }
4123 }
4124
4125 name_end = strchr (p, '=');
4126 if (name_end)
4127 {
4128 /* This is a name=value entry. */
4129 is_supported = PACKET_ENABLE;
4130 value = name_end + 1;
4131 *name_end = '\0';
4132 }
4133 else
4134 {
4135 value = NULL;
4136 switch (end[-1])
4137 {
4138 case '+':
4139 is_supported = PACKET_ENABLE;
4140 break;
4141
4142 case '-':
4143 is_supported = PACKET_DISABLE;
4144 break;
4145
4146 case '?':
4147 is_supported = PACKET_SUPPORT_UNKNOWN;
4148 break;
4149
4150 default:
4151 warning (_("unrecognized item \"%s\" "
4152 "in \"qSupported\" response"), p);
4153 continue;
4154 }
4155 end[-1] = '\0';
4156 }
4157
4158 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4159 if (strcmp (remote_protocol_features[i].name, p) == 0)
4160 {
4161 const struct protocol_feature *feature;
4162
4163 seen[i] = 1;
4164 feature = &remote_protocol_features[i];
4165 feature->func (feature, is_supported, value);
4166 break;
4167 }
4168 }
4169
4170 /* If we increased the packet size, make sure to increase the global
4171 buffer size also. We delay this until after parsing the entire
4172 qSupported packet, because this is the same buffer we were
4173 parsing. */
4174 if (rs->buf_size < rs->explicit_packet_size)
4175 {
4176 rs->buf_size = rs->explicit_packet_size;
4177 rs->buf = xrealloc (rs->buf, rs->buf_size);
4178 }
4179
4180 /* Handle the defaults for unmentioned features. */
4181 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4182 if (!seen[i])
4183 {
4184 const struct protocol_feature *feature;
4185
4186 feature = &remote_protocol_features[i];
4187 feature->func (feature, feature->default_support, NULL);
4188 }
4189 }
4190
4191 /* Remove any of the remote.c targets from target stack. Upper targets depend
4192 on it so remove them first. */
4193
4194 static void
4195 remote_unpush_target (void)
4196 {
4197 pop_all_targets_above (process_stratum - 1);
4198 }
4199
4200 static void
4201 remote_open_1 (char *name, int from_tty,
4202 struct target_ops *target, int extended_p)
4203 {
4204 struct remote_state *rs = get_remote_state ();
4205
4206 if (name == 0)
4207 error (_("To open a remote debug connection, you need to specify what\n"
4208 "serial device is attached to the remote system\n"
4209 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4210
4211 /* See FIXME above. */
4212 if (!target_async_permitted)
4213 wait_forever_enabled_p = 1;
4214
4215 /* If we're connected to a running target, target_preopen will kill it.
4216 Ask this question first, before target_preopen has a chance to kill
4217 anything. */
4218 if (remote_desc != NULL && !have_inferiors ())
4219 {
4220 if (from_tty
4221 && !query (_("Already connected to a remote target. Disconnect? ")))
4222 error (_("Still connected."));
4223 }
4224
4225 /* Here the possibly existing remote target gets unpushed. */
4226 target_preopen (from_tty);
4227
4228 /* Make sure we send the passed signals list the next time we resume. */
4229 xfree (last_pass_packet);
4230 last_pass_packet = NULL;
4231
4232 /* Make sure we send the program signals list the next time we
4233 resume. */
4234 xfree (last_program_signals_packet);
4235 last_program_signals_packet = NULL;
4236
4237 remote_fileio_reset ();
4238 reopen_exec_file ();
4239 reread_symbols ();
4240
4241 remote_desc = remote_serial_open (name);
4242 if (!remote_desc)
4243 perror_with_name (name);
4244
4245 if (baud_rate != -1)
4246 {
4247 if (serial_setbaudrate (remote_desc, baud_rate))
4248 {
4249 /* The requested speed could not be set. Error out to
4250 top level after closing remote_desc. Take care to
4251 set remote_desc to NULL to avoid closing remote_desc
4252 more than once. */
4253 serial_close (remote_desc);
4254 remote_desc = NULL;
4255 perror_with_name (name);
4256 }
4257 }
4258
4259 serial_raw (remote_desc);
4260
4261 /* If there is something sitting in the buffer we might take it as a
4262 response to a command, which would be bad. */
4263 serial_flush_input (remote_desc);
4264
4265 if (from_tty)
4266 {
4267 puts_filtered ("Remote debugging using ");
4268 puts_filtered (name);
4269 puts_filtered ("\n");
4270 }
4271 push_target (target); /* Switch to using remote target now. */
4272
4273 /* Register extra event sources in the event loop. */
4274 remote_async_inferior_event_token
4275 = create_async_event_handler (remote_async_inferior_event_handler,
4276 NULL);
4277 remote_notif_register_async_event_handler ();
4278
4279 /* Reset the target state; these things will be queried either by
4280 remote_query_supported or as they are needed. */
4281 init_all_packet_configs ();
4282 rs->cached_wait_status = 0;
4283 rs->explicit_packet_size = 0;
4284 rs->noack_mode = 0;
4285 rs->multi_process_aware = 0;
4286 rs->extended = extended_p;
4287 rs->non_stop_aware = 0;
4288 rs->waiting_for_stop_reply = 0;
4289 rs->ctrlc_pending_p = 0;
4290
4291 general_thread = not_sent_ptid;
4292 continue_thread = not_sent_ptid;
4293 remote_traceframe_number = -1;
4294
4295 /* Probe for ability to use "ThreadInfo" query, as required. */
4296 use_threadinfo_query = 1;
4297 use_threadextra_query = 1;
4298
4299 if (target_async_permitted)
4300 {
4301 /* With this target we start out by owning the terminal. */
4302 remote_async_terminal_ours_p = 1;
4303
4304 /* FIXME: cagney/1999-09-23: During the initial connection it is
4305 assumed that the target is already ready and able to respond to
4306 requests. Unfortunately remote_start_remote() eventually calls
4307 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4308 around this. Eventually a mechanism that allows
4309 wait_for_inferior() to expect/get timeouts will be
4310 implemented. */
4311 wait_forever_enabled_p = 0;
4312 }
4313
4314 /* First delete any symbols previously loaded from shared libraries. */
4315 no_shared_libraries (NULL, 0);
4316
4317 /* Start afresh. */
4318 init_thread_list ();
4319
4320 /* Start the remote connection. If error() or QUIT, discard this
4321 target (we'd otherwise be in an inconsistent state) and then
4322 propogate the error on up the exception chain. This ensures that
4323 the caller doesn't stumble along blindly assuming that the
4324 function succeeded. The CLI doesn't have this problem but other
4325 UI's, such as MI do.
4326
4327 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4328 this function should return an error indication letting the
4329 caller restore the previous state. Unfortunately the command
4330 ``target remote'' is directly wired to this function making that
4331 impossible. On a positive note, the CLI side of this problem has
4332 been fixed - the function set_cmd_context() makes it possible for
4333 all the ``target ....'' commands to share a common callback
4334 function. See cli-dump.c. */
4335 {
4336 volatile struct gdb_exception ex;
4337
4338 TRY_CATCH (ex, RETURN_MASK_ALL)
4339 {
4340 remote_start_remote (from_tty, target, extended_p);
4341 }
4342 if (ex.reason < 0)
4343 {
4344 /* Pop the partially set up target - unless something else did
4345 already before throwing the exception. */
4346 if (remote_desc != NULL)
4347 remote_unpush_target ();
4348 if (target_async_permitted)
4349 wait_forever_enabled_p = 1;
4350 throw_exception (ex);
4351 }
4352 }
4353
4354 if (target_async_permitted)
4355 wait_forever_enabled_p = 1;
4356 }
4357
4358 /* This takes a program previously attached to and detaches it. After
4359 this is done, GDB can be used to debug some other program. We
4360 better not have left any breakpoints in the target program or it'll
4361 die when it hits one. */
4362
4363 static void
4364 remote_detach_1 (char *args, int from_tty, int extended)
4365 {
4366 int pid = ptid_get_pid (inferior_ptid);
4367 struct remote_state *rs = get_remote_state ();
4368
4369 if (args)
4370 error (_("Argument given to \"detach\" when remotely debugging."));
4371
4372 if (!target_has_execution)
4373 error (_("No process to detach from."));
4374
4375 if (from_tty)
4376 {
4377 char *exec_file = get_exec_file (0);
4378 if (exec_file == NULL)
4379 exec_file = "";
4380 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4381 target_pid_to_str (pid_to_ptid (pid)));
4382 gdb_flush (gdb_stdout);
4383 }
4384
4385 /* Tell the remote target to detach. */
4386 if (remote_multi_process_p (rs))
4387 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4388 else
4389 strcpy (rs->buf, "D");
4390
4391 putpkt (rs->buf);
4392 getpkt (&rs->buf, &rs->buf_size, 0);
4393
4394 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4395 ;
4396 else if (rs->buf[0] == '\0')
4397 error (_("Remote doesn't know how to detach"));
4398 else
4399 error (_("Can't detach process."));
4400
4401 if (from_tty && !extended)
4402 puts_filtered (_("Ending remote debugging.\n"));
4403
4404 target_mourn_inferior ();
4405 }
4406
4407 static void
4408 remote_detach (struct target_ops *ops, char *args, int from_tty)
4409 {
4410 remote_detach_1 (args, from_tty, 0);
4411 }
4412
4413 static void
4414 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4415 {
4416 remote_detach_1 (args, from_tty, 1);
4417 }
4418
4419 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4420
4421 static void
4422 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4423 {
4424 if (args)
4425 error (_("Argument given to \"disconnect\" when remotely debugging."));
4426
4427 /* Make sure we unpush even the extended remote targets; mourn
4428 won't do it. So call remote_mourn_1 directly instead of
4429 target_mourn_inferior. */
4430 remote_mourn_1 (target);
4431
4432 if (from_tty)
4433 puts_filtered ("Ending remote debugging.\n");
4434 }
4435
4436 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4437 be chatty about it. */
4438
4439 static void
4440 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4441 {
4442 struct remote_state *rs = get_remote_state ();
4443 int pid;
4444 char *wait_status = NULL;
4445
4446 pid = parse_pid_to_attach (args);
4447
4448 /* Remote PID can be freely equal to getpid, do not check it here the same
4449 way as in other targets. */
4450
4451 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4452 error (_("This target does not support attaching to a process"));
4453
4454 if (from_tty)
4455 {
4456 char *exec_file = get_exec_file (0);
4457
4458 if (exec_file)
4459 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4460 target_pid_to_str (pid_to_ptid (pid)));
4461 else
4462 printf_unfiltered (_("Attaching to %s\n"),
4463 target_pid_to_str (pid_to_ptid (pid)));
4464
4465 gdb_flush (gdb_stdout);
4466 }
4467
4468 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4469 putpkt (rs->buf);
4470 getpkt (&rs->buf, &rs->buf_size, 0);
4471
4472 if (packet_ok (rs->buf,
4473 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4474 {
4475 if (!non_stop)
4476 {
4477 /* Save the reply for later. */
4478 wait_status = alloca (strlen (rs->buf) + 1);
4479 strcpy (wait_status, rs->buf);
4480 }
4481 else if (strcmp (rs->buf, "OK") != 0)
4482 error (_("Attaching to %s failed with: %s"),
4483 target_pid_to_str (pid_to_ptid (pid)),
4484 rs->buf);
4485 }
4486 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4487 error (_("This target does not support attaching to a process"));
4488 else
4489 error (_("Attaching to %s failed"),
4490 target_pid_to_str (pid_to_ptid (pid)));
4491
4492 set_current_inferior (remote_add_inferior (0, pid, 1));
4493
4494 inferior_ptid = pid_to_ptid (pid);
4495
4496 if (non_stop)
4497 {
4498 struct thread_info *thread;
4499
4500 /* Get list of threads. */
4501 remote_threads_info (target);
4502
4503 thread = first_thread_of_process (pid);
4504 if (thread)
4505 inferior_ptid = thread->ptid;
4506 else
4507 inferior_ptid = pid_to_ptid (pid);
4508
4509 /* Invalidate our notion of the remote current thread. */
4510 record_currthread (minus_one_ptid);
4511 }
4512 else
4513 {
4514 /* Now, if we have thread information, update inferior_ptid. */
4515 inferior_ptid = remote_current_thread (inferior_ptid);
4516
4517 /* Add the main thread to the thread list. */
4518 add_thread_silent (inferior_ptid);
4519 }
4520
4521 /* Next, if the target can specify a description, read it. We do
4522 this before anything involving memory or registers. */
4523 target_find_description ();
4524
4525 if (!non_stop)
4526 {
4527 /* Use the previously fetched status. */
4528 gdb_assert (wait_status != NULL);
4529
4530 if (target_can_async_p ())
4531 {
4532 struct notif_event *reply
4533 = remote_notif_parse (&notif_client_stop, wait_status);
4534
4535 push_stop_reply ((struct stop_reply *) reply);
4536
4537 target_async (inferior_event_handler, 0);
4538 }
4539 else
4540 {
4541 gdb_assert (wait_status != NULL);
4542 strcpy (rs->buf, wait_status);
4543 rs->cached_wait_status = 1;
4544 }
4545 }
4546 else
4547 gdb_assert (wait_status == NULL);
4548 }
4549
4550 static void
4551 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4552 {
4553 extended_remote_attach_1 (ops, args, from_tty);
4554 }
4555
4556 /* Convert hex digit A to a number. */
4557
4558 static int
4559 fromhex (int a)
4560 {
4561 if (a >= '0' && a <= '9')
4562 return a - '0';
4563 else if (a >= 'a' && a <= 'f')
4564 return a - 'a' + 10;
4565 else if (a >= 'A' && a <= 'F')
4566 return a - 'A' + 10;
4567 else
4568 error (_("Reply contains invalid hex digit %d"), a);
4569 }
4570
4571 int
4572 hex2bin (const char *hex, gdb_byte *bin, int count)
4573 {
4574 int i;
4575
4576 for (i = 0; i < count; i++)
4577 {
4578 if (hex[0] == 0 || hex[1] == 0)
4579 {
4580 /* Hex string is short, or of uneven length.
4581 Return the count that has been converted so far. */
4582 return i;
4583 }
4584 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4585 hex += 2;
4586 }
4587 return i;
4588 }
4589
4590 /* Convert number NIB to a hex digit. */
4591
4592 static int
4593 tohex (int nib)
4594 {
4595 if (nib < 10)
4596 return '0' + nib;
4597 else
4598 return 'a' + nib - 10;
4599 }
4600
4601 int
4602 bin2hex (const gdb_byte *bin, char *hex, int count)
4603 {
4604 int i;
4605
4606 /* May use a length, or a nul-terminated string as input. */
4607 if (count == 0)
4608 count = strlen ((char *) bin);
4609
4610 for (i = 0; i < count; i++)
4611 {
4612 *hex++ = tohex ((*bin >> 4) & 0xf);
4613 *hex++ = tohex (*bin++ & 0xf);
4614 }
4615 *hex = 0;
4616 return i;
4617 }
4618 \f
4619 /* Check for the availability of vCont. This function should also check
4620 the response. */
4621
4622 static void
4623 remote_vcont_probe (struct remote_state *rs)
4624 {
4625 char *buf;
4626
4627 strcpy (rs->buf, "vCont?");
4628 putpkt (rs->buf);
4629 getpkt (&rs->buf, &rs->buf_size, 0);
4630 buf = rs->buf;
4631
4632 /* Make sure that the features we assume are supported. */
4633 if (strncmp (buf, "vCont", 5) == 0)
4634 {
4635 char *p = &buf[5];
4636 int support_s, support_S, support_c, support_C;
4637
4638 support_s = 0;
4639 support_S = 0;
4640 support_c = 0;
4641 support_C = 0;
4642 rs->support_vCont_t = 0;
4643 while (p && *p == ';')
4644 {
4645 p++;
4646 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4647 support_s = 1;
4648 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4649 support_S = 1;
4650 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4651 support_c = 1;
4652 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4653 support_C = 1;
4654 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4655 rs->support_vCont_t = 1;
4656
4657 p = strchr (p, ';');
4658 }
4659
4660 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4661 BUF will make packet_ok disable the packet. */
4662 if (!support_s || !support_S || !support_c || !support_C)
4663 buf[0] = 0;
4664 }
4665
4666 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4667 }
4668
4669 /* Helper function for building "vCont" resumptions. Write a
4670 resumption to P. ENDP points to one-passed-the-end of the buffer
4671 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4672 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4673 resumed thread should be single-stepped and/or signalled. If PTID
4674 equals minus_one_ptid, then all threads are resumed; if PTID
4675 represents a process, then all threads of the process are resumed;
4676 the thread to be stepped and/or signalled is given in the global
4677 INFERIOR_PTID. */
4678
4679 static char *
4680 append_resumption (char *p, char *endp,
4681 ptid_t ptid, int step, enum gdb_signal siggnal)
4682 {
4683 struct remote_state *rs = get_remote_state ();
4684
4685 if (step && siggnal != GDB_SIGNAL_0)
4686 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4687 else if (step)
4688 p += xsnprintf (p, endp - p, ";s");
4689 else if (siggnal != GDB_SIGNAL_0)
4690 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4691 else
4692 p += xsnprintf (p, endp - p, ";c");
4693
4694 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4695 {
4696 ptid_t nptid;
4697
4698 /* All (-1) threads of process. */
4699 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4700
4701 p += xsnprintf (p, endp - p, ":");
4702 p = write_ptid (p, endp, nptid);
4703 }
4704 else if (!ptid_equal (ptid, minus_one_ptid))
4705 {
4706 p += xsnprintf (p, endp - p, ":");
4707 p = write_ptid (p, endp, ptid);
4708 }
4709
4710 return p;
4711 }
4712
4713 /* Append a vCont continue-with-signal action for threads that have a
4714 non-zero stop signal. */
4715
4716 static char *
4717 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4718 {
4719 struct thread_info *thread;
4720
4721 ALL_THREADS (thread)
4722 if (ptid_match (thread->ptid, ptid)
4723 && !ptid_equal (inferior_ptid, thread->ptid)
4724 && thread->suspend.stop_signal != GDB_SIGNAL_0
4725 && signal_pass_state (thread->suspend.stop_signal))
4726 {
4727 p = append_resumption (p, endp, thread->ptid,
4728 0, thread->suspend.stop_signal);
4729 thread->suspend.stop_signal = GDB_SIGNAL_0;
4730 }
4731
4732 return p;
4733 }
4734
4735 /* Resume the remote inferior by using a "vCont" packet. The thread
4736 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4737 resumed thread should be single-stepped and/or signalled. If PTID
4738 equals minus_one_ptid, then all threads are resumed; the thread to
4739 be stepped and/or signalled is given in the global INFERIOR_PTID.
4740 This function returns non-zero iff it resumes the inferior.
4741
4742 This function issues a strict subset of all possible vCont commands at the
4743 moment. */
4744
4745 static int
4746 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
4747 {
4748 struct remote_state *rs = get_remote_state ();
4749 char *p;
4750 char *endp;
4751
4752 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4753 remote_vcont_probe (rs);
4754
4755 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4756 return 0;
4757
4758 p = rs->buf;
4759 endp = rs->buf + get_remote_packet_size ();
4760
4761 /* If we could generate a wider range of packets, we'd have to worry
4762 about overflowing BUF. Should there be a generic
4763 "multi-part-packet" packet? */
4764
4765 p += xsnprintf (p, endp - p, "vCont");
4766
4767 if (ptid_equal (ptid, magic_null_ptid))
4768 {
4769 /* MAGIC_NULL_PTID means that we don't have any active threads,
4770 so we don't have any TID numbers the inferior will
4771 understand. Make sure to only send forms that do not specify
4772 a TID. */
4773 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4774 }
4775 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4776 {
4777 /* Resume all threads (of all processes, or of a single
4778 process), with preference for INFERIOR_PTID. This assumes
4779 inferior_ptid belongs to the set of all threads we are about
4780 to resume. */
4781 if (step || siggnal != GDB_SIGNAL_0)
4782 {
4783 /* Step inferior_ptid, with or without signal. */
4784 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4785 }
4786
4787 /* Also pass down any pending signaled resumption for other
4788 threads not the current. */
4789 p = append_pending_thread_resumptions (p, endp, ptid);
4790
4791 /* And continue others without a signal. */
4792 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
4793 }
4794 else
4795 {
4796 /* Scheduler locking; resume only PTID. */
4797 append_resumption (p, endp, ptid, step, siggnal);
4798 }
4799
4800 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4801 putpkt (rs->buf);
4802
4803 if (non_stop)
4804 {
4805 /* In non-stop, the stub replies to vCont with "OK". The stop
4806 reply will be reported asynchronously by means of a `%Stop'
4807 notification. */
4808 getpkt (&rs->buf, &rs->buf_size, 0);
4809 if (strcmp (rs->buf, "OK") != 0)
4810 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4811 }
4812
4813 return 1;
4814 }
4815
4816 /* Tell the remote machine to resume. */
4817
4818 static enum gdb_signal last_sent_signal = GDB_SIGNAL_0;
4819
4820 static int last_sent_step;
4821
4822 static void
4823 remote_resume (struct target_ops *ops,
4824 ptid_t ptid, int step, enum gdb_signal siggnal)
4825 {
4826 struct remote_state *rs = get_remote_state ();
4827 char *buf;
4828
4829 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
4830 (explained in remote-notif.c:handle_notification) so
4831 remote_notif_process is not called. We need find a place where
4832 it is safe to start a 'vNotif' sequence. It is good to do it
4833 before resuming inferior, because inferior was stopped and no RSP
4834 traffic at that moment. */
4835 if (!non_stop)
4836 remote_notif_process (&notif_client_stop);
4837
4838 last_sent_signal = siggnal;
4839 last_sent_step = step;
4840
4841 /* The vCont packet doesn't need to specify threads via Hc. */
4842 /* No reverse support (yet) for vCont. */
4843 if (execution_direction != EXEC_REVERSE)
4844 if (remote_vcont_resume (ptid, step, siggnal))
4845 goto done;
4846
4847 /* All other supported resume packets do use Hc, so set the continue
4848 thread. */
4849 if (ptid_equal (ptid, minus_one_ptid))
4850 set_continue_thread (any_thread_ptid);
4851 else
4852 set_continue_thread (ptid);
4853
4854 buf = rs->buf;
4855 if (execution_direction == EXEC_REVERSE)
4856 {
4857 /* We don't pass signals to the target in reverse exec mode. */
4858 if (info_verbose && siggnal != GDB_SIGNAL_0)
4859 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4860 siggnal);
4861
4862 if (step
4863 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4864 error (_("Remote reverse-step not supported."));
4865 if (!step
4866 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4867 error (_("Remote reverse-continue not supported."));
4868
4869 strcpy (buf, step ? "bs" : "bc");
4870 }
4871 else if (siggnal != GDB_SIGNAL_0)
4872 {
4873 buf[0] = step ? 'S' : 'C';
4874 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4875 buf[2] = tohex (((int) siggnal) & 0xf);
4876 buf[3] = '\0';
4877 }
4878 else
4879 strcpy (buf, step ? "s" : "c");
4880
4881 putpkt (buf);
4882
4883 done:
4884 /* We are about to start executing the inferior, let's register it
4885 with the event loop. NOTE: this is the one place where all the
4886 execution commands end up. We could alternatively do this in each
4887 of the execution commands in infcmd.c. */
4888 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4889 into infcmd.c in order to allow inferior function calls to work
4890 NOT asynchronously. */
4891 if (target_can_async_p ())
4892 target_async (inferior_event_handler, 0);
4893
4894 /* We've just told the target to resume. The remote server will
4895 wait for the inferior to stop, and then send a stop reply. In
4896 the mean time, we can't start another command/query ourselves
4897 because the stub wouldn't be ready to process it. This applies
4898 only to the base all-stop protocol, however. In non-stop (which
4899 only supports vCont), the stub replies with an "OK", and is
4900 immediate able to process further serial input. */
4901 if (!non_stop)
4902 rs->waiting_for_stop_reply = 1;
4903 }
4904 \f
4905
4906 /* Set up the signal handler for SIGINT, while the target is
4907 executing, ovewriting the 'regular' SIGINT signal handler. */
4908 static void
4909 initialize_sigint_signal_handler (void)
4910 {
4911 signal (SIGINT, handle_remote_sigint);
4912 }
4913
4914 /* Signal handler for SIGINT, while the target is executing. */
4915 static void
4916 handle_remote_sigint (int sig)
4917 {
4918 signal (sig, handle_remote_sigint_twice);
4919 mark_async_signal_handler (sigint_remote_token);
4920 }
4921
4922 /* Signal handler for SIGINT, installed after SIGINT has already been
4923 sent once. It will take effect the second time that the user sends
4924 a ^C. */
4925 static void
4926 handle_remote_sigint_twice (int sig)
4927 {
4928 signal (sig, handle_remote_sigint);
4929 mark_async_signal_handler (sigint_remote_twice_token);
4930 }
4931
4932 /* Perform the real interruption of the target execution, in response
4933 to a ^C. */
4934 static void
4935 async_remote_interrupt (gdb_client_data arg)
4936 {
4937 if (remote_debug)
4938 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
4939
4940 target_stop (inferior_ptid);
4941 }
4942
4943 /* Perform interrupt, if the first attempt did not succeed. Just give
4944 up on the target alltogether. */
4945 void
4946 async_remote_interrupt_twice (gdb_client_data arg)
4947 {
4948 if (remote_debug)
4949 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
4950
4951 interrupt_query ();
4952 }
4953
4954 /* Reinstall the usual SIGINT handlers, after the target has
4955 stopped. */
4956 static void
4957 cleanup_sigint_signal_handler (void *dummy)
4958 {
4959 signal (SIGINT, handle_sigint);
4960 }
4961
4962 /* Send ^C to target to halt it. Target will respond, and send us a
4963 packet. */
4964 static void (*ofunc) (int);
4965
4966 /* The command line interface's stop routine. This function is installed
4967 as a signal handler for SIGINT. The first time a user requests a
4968 stop, we call remote_stop to send a break or ^C. If there is no
4969 response from the target (it didn't stop when the user requested it),
4970 we ask the user if he'd like to detach from the target. */
4971 static void
4972 remote_interrupt (int signo)
4973 {
4974 /* If this doesn't work, try more severe steps. */
4975 signal (signo, remote_interrupt_twice);
4976
4977 gdb_call_async_signal_handler (sigint_remote_token, 1);
4978 }
4979
4980 /* The user typed ^C twice. */
4981
4982 static void
4983 remote_interrupt_twice (int signo)
4984 {
4985 signal (signo, ofunc);
4986 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
4987 signal (signo, remote_interrupt);
4988 }
4989
4990 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
4991 thread, all threads of a remote process, or all threads of all
4992 processes. */
4993
4994 static void
4995 remote_stop_ns (ptid_t ptid)
4996 {
4997 struct remote_state *rs = get_remote_state ();
4998 char *p = rs->buf;
4999 char *endp = rs->buf + get_remote_packet_size ();
5000
5001 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
5002 remote_vcont_probe (rs);
5003
5004 if (!rs->support_vCont_t)
5005 error (_("Remote server does not support stopping threads"));
5006
5007 if (ptid_equal (ptid, minus_one_ptid)
5008 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5009 p += xsnprintf (p, endp - p, "vCont;t");
5010 else
5011 {
5012 ptid_t nptid;
5013
5014 p += xsnprintf (p, endp - p, "vCont;t:");
5015
5016 if (ptid_is_pid (ptid))
5017 /* All (-1) threads of process. */
5018 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
5019 else
5020 {
5021 /* Small optimization: if we already have a stop reply for
5022 this thread, no use in telling the stub we want this
5023 stopped. */
5024 if (peek_stop_reply (ptid))
5025 return;
5026
5027 nptid = ptid;
5028 }
5029
5030 write_ptid (p, endp, nptid);
5031 }
5032
5033 /* In non-stop, we get an immediate OK reply. The stop reply will
5034 come in asynchronously by notification. */
5035 putpkt (rs->buf);
5036 getpkt (&rs->buf, &rs->buf_size, 0);
5037 if (strcmp (rs->buf, "OK") != 0)
5038 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
5039 }
5040
5041 /* All-stop version of target_stop. Sends a break or a ^C to stop the
5042 remote target. It is undefined which thread of which process
5043 reports the stop. */
5044
5045 static void
5046 remote_stop_as (ptid_t ptid)
5047 {
5048 struct remote_state *rs = get_remote_state ();
5049
5050 rs->ctrlc_pending_p = 1;
5051
5052 /* If the inferior is stopped already, but the core didn't know
5053 about it yet, just ignore the request. The cached wait status
5054 will be collected in remote_wait. */
5055 if (rs->cached_wait_status)
5056 return;
5057
5058 /* Send interrupt_sequence to remote target. */
5059 send_interrupt_sequence ();
5060 }
5061
5062 /* This is the generic stop called via the target vector. When a target
5063 interrupt is requested, either by the command line or the GUI, we
5064 will eventually end up here. */
5065
5066 static void
5067 remote_stop (ptid_t ptid)
5068 {
5069 if (remote_debug)
5070 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5071
5072 if (non_stop)
5073 remote_stop_ns (ptid);
5074 else
5075 remote_stop_as (ptid);
5076 }
5077
5078 /* Ask the user what to do when an interrupt is received. */
5079
5080 static void
5081 interrupt_query (void)
5082 {
5083 target_terminal_ours ();
5084
5085 if (target_can_async_p ())
5086 {
5087 signal (SIGINT, handle_sigint);
5088 deprecated_throw_reason (RETURN_QUIT);
5089 }
5090 else
5091 {
5092 if (query (_("Interrupted while waiting for the program.\n\
5093 Give up (and stop debugging it)? ")))
5094 {
5095 remote_unpush_target ();
5096 deprecated_throw_reason (RETURN_QUIT);
5097 }
5098 }
5099
5100 target_terminal_inferior ();
5101 }
5102
5103 /* Enable/disable target terminal ownership. Most targets can use
5104 terminal groups to control terminal ownership. Remote targets are
5105 different in that explicit transfer of ownership to/from GDB/target
5106 is required. */
5107
5108 static void
5109 remote_terminal_inferior (void)
5110 {
5111 if (!target_async_permitted)
5112 /* Nothing to do. */
5113 return;
5114
5115 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5116 idempotent. The event-loop GDB talking to an asynchronous target
5117 with a synchronous command calls this function from both
5118 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5119 transfer the terminal to the target when it shouldn't this guard
5120 can go away. */
5121 if (!remote_async_terminal_ours_p)
5122 return;
5123 delete_file_handler (input_fd);
5124 remote_async_terminal_ours_p = 0;
5125 initialize_sigint_signal_handler ();
5126 /* NOTE: At this point we could also register our selves as the
5127 recipient of all input. Any characters typed could then be
5128 passed on down to the target. */
5129 }
5130
5131 static void
5132 remote_terminal_ours (void)
5133 {
5134 if (!target_async_permitted)
5135 /* Nothing to do. */
5136 return;
5137
5138 /* See FIXME in remote_terminal_inferior. */
5139 if (remote_async_terminal_ours_p)
5140 return;
5141 cleanup_sigint_signal_handler (NULL);
5142 add_file_handler (input_fd, stdin_event_handler, 0);
5143 remote_async_terminal_ours_p = 1;
5144 }
5145
5146 static void
5147 remote_console_output (char *msg)
5148 {
5149 char *p;
5150
5151 for (p = msg; p[0] && p[1]; p += 2)
5152 {
5153 char tb[2];
5154 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5155
5156 tb[0] = c;
5157 tb[1] = 0;
5158 fputs_unfiltered (tb, gdb_stdtarg);
5159 }
5160 gdb_flush (gdb_stdtarg);
5161 }
5162
5163 typedef struct cached_reg
5164 {
5165 int num;
5166 gdb_byte data[MAX_REGISTER_SIZE];
5167 } cached_reg_t;
5168
5169 DEF_VEC_O(cached_reg_t);
5170
5171 typedef struct stop_reply
5172 {
5173 struct notif_event base;
5174
5175 /* The identifier of the thread about this event */
5176 ptid_t ptid;
5177
5178 struct target_waitstatus ws;
5179
5180 /* Expedited registers. This makes remote debugging a bit more
5181 efficient for those targets that provide critical registers as
5182 part of their normal status mechanism (as another roundtrip to
5183 fetch them is avoided). */
5184 VEC(cached_reg_t) *regcache;
5185
5186 int stopped_by_watchpoint_p;
5187 CORE_ADDR watch_data_address;
5188
5189 int solibs_changed;
5190 int replay_event;
5191
5192 int core;
5193 } *stop_reply_p;
5194
5195 DECLARE_QUEUE_P (stop_reply_p);
5196 DEFINE_QUEUE_P (stop_reply_p);
5197 /* The list of already fetched and acknowledged stop events. This
5198 queue is used for notification Stop, and other notifications
5199 don't need queue for their events, because the notification events
5200 of Stop can't be consumed immediately, so that events should be
5201 queued first, and be consumed by remote_wait_{ns,as} one per
5202 time. Other notifications can consume their events immediately,
5203 so queue is not needed for them. */
5204 static QUEUE (stop_reply_p) *stop_reply_queue;
5205
5206 static void
5207 stop_reply_xfree (struct stop_reply *r)
5208 {
5209 if (r != NULL)
5210 {
5211 VEC_free (cached_reg_t, r->regcache);
5212 xfree (r);
5213 }
5214 }
5215
5216 static void
5217 remote_notif_stop_parse (struct notif_client *self, char *buf,
5218 struct notif_event *event)
5219 {
5220 remote_parse_stop_reply (buf, (struct stop_reply *) event);
5221 }
5222
5223 static void
5224 remote_notif_stop_ack (struct notif_client *self, char *buf,
5225 struct notif_event *event)
5226 {
5227 struct stop_reply *stop_reply = (struct stop_reply *) event;
5228
5229 /* acknowledge */
5230 putpkt ((char *) self->ack_command);
5231
5232 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
5233 /* We got an unknown stop reply. */
5234 error (_("Unknown stop reply"));
5235
5236 push_stop_reply (stop_reply);
5237 }
5238
5239 static int
5240 remote_notif_stop_can_get_pending_events (struct notif_client *self)
5241 {
5242 /* We can't get pending events in remote_notif_process for
5243 notification stop, and we have to do this in remote_wait_ns
5244 instead. If we fetch all queued events from stub, remote stub
5245 may exit and we have no chance to process them back in
5246 remote_wait_ns. */
5247 mark_async_event_handler (remote_async_inferior_event_token);
5248 return 0;
5249 }
5250
5251 static void
5252 stop_reply_dtr (struct notif_event *event)
5253 {
5254 struct stop_reply *r = (struct stop_reply *) event;
5255
5256 VEC_free (cached_reg_t, r->regcache);
5257 }
5258
5259 static struct notif_event *
5260 remote_notif_stop_alloc_reply (void)
5261 {
5262 struct notif_event *r
5263 = (struct notif_event *) XMALLOC (struct stop_reply);
5264
5265 r->dtr = stop_reply_dtr;
5266
5267 return r;
5268 }
5269
5270 /* A client of notification Stop. */
5271
5272 struct notif_client notif_client_stop =
5273 {
5274 "Stop",
5275 "vStopped",
5276 remote_notif_stop_parse,
5277 remote_notif_stop_ack,
5278 remote_notif_stop_can_get_pending_events,
5279 remote_notif_stop_alloc_reply,
5280 NULL,
5281 };
5282
5283 /* A parameter to pass data in and out. */
5284
5285 struct queue_iter_param
5286 {
5287 void *input;
5288 struct stop_reply *output;
5289 };
5290
5291 /* Remove all queue elements meet the condition it checks. */
5292
5293 static int
5294 remote_notif_remove_all (QUEUE (stop_reply_p) *q,
5295 QUEUE_ITER (stop_reply_p) *iter,
5296 stop_reply_p event,
5297 void *data)
5298 {
5299 struct queue_iter_param *param = data;
5300 struct inferior *inf = param->input;
5301
5302 if (inf == NULL || ptid_get_pid (event->ptid) == inf->pid)
5303 {
5304 stop_reply_xfree (event);
5305 QUEUE_remove_elem (stop_reply_p, q, iter);
5306 }
5307
5308 return 1;
5309 }
5310
5311 /* Discard all pending stop replies of inferior INF. If INF is NULL,
5312 discard everything. */
5313
5314 static void
5315 discard_pending_stop_replies (struct inferior *inf)
5316 {
5317 int i;
5318 struct queue_iter_param param;
5319 struct stop_reply *reply
5320 = (struct stop_reply *) notif_client_stop.pending_event;
5321
5322 /* Discard the in-flight notification. */
5323 if (reply != NULL
5324 && (inf == NULL
5325 || ptid_get_pid (reply->ptid) == inf->pid))
5326 {
5327 stop_reply_xfree (reply);
5328 notif_client_stop.pending_event = NULL;
5329 }
5330
5331 param.input = inf;
5332 param.output = NULL;
5333 /* Discard the stop replies we have already pulled with
5334 vStopped. */
5335 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5336 remote_notif_remove_all, &param);
5337 }
5338
5339 /* A parameter to pass data in and out. */
5340
5341 static int
5342 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
5343 QUEUE_ITER (stop_reply_p) *iter,
5344 stop_reply_p event,
5345 void *data)
5346 {
5347 struct queue_iter_param *param = data;
5348 ptid_t *ptid = param->input;
5349
5350 if (ptid_match (event->ptid, *ptid))
5351 {
5352 param->output = event;
5353 QUEUE_remove_elem (stop_reply_p, q, iter);
5354 return 0;
5355 }
5356
5357 return 1;
5358 }
5359
5360 /* Remove the first reply in 'stop_reply_queue' which matches
5361 PTID. */
5362
5363 static struct stop_reply *
5364 remote_notif_remove_queued_reply (ptid_t ptid)
5365 {
5366 struct queue_iter_param param;
5367
5368 param.input = &ptid;
5369 param.output = NULL;
5370
5371 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5372 remote_notif_remove_once_on_match, &param);
5373 if (notif_debug)
5374 fprintf_unfiltered (gdb_stdlog,
5375 "notif: discard queued event: 'Stop' in %s\n",
5376 target_pid_to_str (ptid));
5377
5378 return param.output;
5379 }
5380
5381 /* Look for a queued stop reply belonging to PTID. If one is found,
5382 remove it from the queue, and return it. Returns NULL if none is
5383 found. If there are still queued events left to process, tell the
5384 event loop to get back to target_wait soon. */
5385
5386 static struct stop_reply *
5387 queued_stop_reply (ptid_t ptid)
5388 {
5389 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
5390
5391 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
5392 /* There's still at least an event left. */
5393 mark_async_event_handler (remote_async_inferior_event_token);
5394
5395 return r;
5396 }
5397
5398 /* Push a fully parsed stop reply in the stop reply queue. Since we
5399 know that we now have at least one queued event left to pass to the
5400 core side, tell the event loop to get back to target_wait soon. */
5401
5402 static void
5403 push_stop_reply (struct stop_reply *new_event)
5404 {
5405 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
5406
5407 if (notif_debug)
5408 fprintf_unfiltered (gdb_stdlog,
5409 "notif: push 'Stop' %s to queue %d\n",
5410 target_pid_to_str (new_event->ptid),
5411 QUEUE_length (stop_reply_p,
5412 stop_reply_queue));
5413
5414 mark_async_event_handler (remote_async_inferior_event_token);
5415 }
5416
5417 static int
5418 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
5419 QUEUE_ITER (stop_reply_p) *iter,
5420 struct stop_reply *event,
5421 void *data)
5422 {
5423 ptid_t *ptid = data;
5424
5425 return !(ptid_equal (*ptid, event->ptid)
5426 && event->ws.kind == TARGET_WAITKIND_STOPPED);
5427 }
5428
5429 /* Returns true if we have a stop reply for PTID. */
5430
5431 static int
5432 peek_stop_reply (ptid_t ptid)
5433 {
5434 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
5435 stop_reply_match_ptid_and_ws, &ptid);
5436 }
5437
5438 /* Parse the stop reply in BUF. Either the function succeeds, and the
5439 result is stored in EVENT, or throws an error. */
5440
5441 static void
5442 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5443 {
5444 struct remote_arch_state *rsa = get_remote_arch_state ();
5445 ULONGEST addr;
5446 char *p;
5447
5448 event->ptid = null_ptid;
5449 event->ws.kind = TARGET_WAITKIND_IGNORE;
5450 event->ws.value.integer = 0;
5451 event->solibs_changed = 0;
5452 event->replay_event = 0;
5453 event->stopped_by_watchpoint_p = 0;
5454 event->regcache = NULL;
5455 event->core = -1;
5456
5457 switch (buf[0])
5458 {
5459 case 'T': /* Status with PC, SP, FP, ... */
5460 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5461 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5462 ss = signal number
5463 n... = register number
5464 r... = register contents
5465 */
5466
5467 p = &buf[3]; /* after Txx */
5468 while (*p)
5469 {
5470 char *p1;
5471 char *p_temp;
5472 int fieldsize;
5473 LONGEST pnum = 0;
5474
5475 /* If the packet contains a register number, save it in
5476 pnum and set p1 to point to the character following it.
5477 Otherwise p1 points to p. */
5478
5479 /* If this packet is an awatch packet, don't parse the 'a'
5480 as a register number. */
5481
5482 if (strncmp (p, "awatch", strlen("awatch")) != 0
5483 && strncmp (p, "core", strlen ("core") != 0))
5484 {
5485 /* Read the ``P'' register number. */
5486 pnum = strtol (p, &p_temp, 16);
5487 p1 = p_temp;
5488 }
5489 else
5490 p1 = p;
5491
5492 if (p1 == p) /* No register number present here. */
5493 {
5494 p1 = strchr (p, ':');
5495 if (p1 == NULL)
5496 error (_("Malformed packet(a) (missing colon): %s\n\
5497 Packet: '%s'\n"),
5498 p, buf);
5499 if (strncmp (p, "thread", p1 - p) == 0)
5500 event->ptid = read_ptid (++p1, &p);
5501 else if ((strncmp (p, "watch", p1 - p) == 0)
5502 || (strncmp (p, "rwatch", p1 - p) == 0)
5503 || (strncmp (p, "awatch", p1 - p) == 0))
5504 {
5505 event->stopped_by_watchpoint_p = 1;
5506 p = unpack_varlen_hex (++p1, &addr);
5507 event->watch_data_address = (CORE_ADDR) addr;
5508 }
5509 else if (strncmp (p, "library", p1 - p) == 0)
5510 {
5511 p1++;
5512 p_temp = p1;
5513 while (*p_temp && *p_temp != ';')
5514 p_temp++;
5515
5516 event->solibs_changed = 1;
5517 p = p_temp;
5518 }
5519 else if (strncmp (p, "replaylog", p1 - p) == 0)
5520 {
5521 /* NO_HISTORY event.
5522 p1 will indicate "begin" or "end", but
5523 it makes no difference for now, so ignore it. */
5524 event->replay_event = 1;
5525 p_temp = strchr (p1 + 1, ';');
5526 if (p_temp)
5527 p = p_temp;
5528 }
5529 else if (strncmp (p, "core", p1 - p) == 0)
5530 {
5531 ULONGEST c;
5532
5533 p = unpack_varlen_hex (++p1, &c);
5534 event->core = c;
5535 }
5536 else
5537 {
5538 /* Silently skip unknown optional info. */
5539 p_temp = strchr (p1 + 1, ';');
5540 if (p_temp)
5541 p = p_temp;
5542 }
5543 }
5544 else
5545 {
5546 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5547 cached_reg_t cached_reg;
5548
5549 p = p1;
5550
5551 if (*p != ':')
5552 error (_("Malformed packet(b) (missing colon): %s\n\
5553 Packet: '%s'\n"),
5554 p, buf);
5555 ++p;
5556
5557 if (reg == NULL)
5558 error (_("Remote sent bad register number %s: %s\n\
5559 Packet: '%s'\n"),
5560 hex_string (pnum), p, buf);
5561
5562 cached_reg.num = reg->regnum;
5563
5564 fieldsize = hex2bin (p, cached_reg.data,
5565 register_size (target_gdbarch (),
5566 reg->regnum));
5567 p += 2 * fieldsize;
5568 if (fieldsize < register_size (target_gdbarch (),
5569 reg->regnum))
5570 warning (_("Remote reply is too short: %s"), buf);
5571
5572 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5573 }
5574
5575 if (*p != ';')
5576 error (_("Remote register badly formatted: %s\nhere: %s"),
5577 buf, p);
5578 ++p;
5579 }
5580 /* fall through */
5581 case 'S': /* Old style status, just signal only. */
5582 if (event->solibs_changed)
5583 event->ws.kind = TARGET_WAITKIND_LOADED;
5584 else if (event->replay_event)
5585 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5586 else
5587 {
5588 event->ws.kind = TARGET_WAITKIND_STOPPED;
5589 event->ws.value.sig = (enum gdb_signal)
5590 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5591 }
5592 break;
5593 case 'W': /* Target exited. */
5594 case 'X':
5595 {
5596 char *p;
5597 int pid;
5598 ULONGEST value;
5599
5600 /* GDB used to accept only 2 hex chars here. Stubs should
5601 only send more if they detect GDB supports multi-process
5602 support. */
5603 p = unpack_varlen_hex (&buf[1], &value);
5604
5605 if (buf[0] == 'W')
5606 {
5607 /* The remote process exited. */
5608 event->ws.kind = TARGET_WAITKIND_EXITED;
5609 event->ws.value.integer = value;
5610 }
5611 else
5612 {
5613 /* The remote process exited with a signal. */
5614 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5615 event->ws.value.sig = (enum gdb_signal) value;
5616 }
5617
5618 /* If no process is specified, assume inferior_ptid. */
5619 pid = ptid_get_pid (inferior_ptid);
5620 if (*p == '\0')
5621 ;
5622 else if (*p == ';')
5623 {
5624 p++;
5625
5626 if (p == '\0')
5627 ;
5628 else if (strncmp (p,
5629 "process:", sizeof ("process:") - 1) == 0)
5630 {
5631 ULONGEST upid;
5632
5633 p += sizeof ("process:") - 1;
5634 unpack_varlen_hex (p, &upid);
5635 pid = upid;
5636 }
5637 else
5638 error (_("unknown stop reply packet: %s"), buf);
5639 }
5640 else
5641 error (_("unknown stop reply packet: %s"), buf);
5642 event->ptid = pid_to_ptid (pid);
5643 }
5644 break;
5645 }
5646
5647 if (non_stop && ptid_equal (event->ptid, null_ptid))
5648 error (_("No process or thread specified in stop reply: %s"), buf);
5649 }
5650
5651 /* When the stub wants to tell GDB about a new notification reply, it
5652 sends a notification (%Stop, for example). Those can come it at
5653 any time, hence, we have to make sure that any pending
5654 putpkt/getpkt sequence we're making is finished, before querying
5655 the stub for more events with the corresponding ack command
5656 (vStopped, for example). E.g., if we started a vStopped sequence
5657 immediately upon receiving the notification, something like this
5658 could happen:
5659
5660 1.1) --> Hg 1
5661 1.2) <-- OK
5662 1.3) --> g
5663 1.4) <-- %Stop
5664 1.5) --> vStopped
5665 1.6) <-- (registers reply to step #1.3)
5666
5667 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5668 query.
5669
5670 To solve this, whenever we parse a %Stop notification successfully,
5671 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5672 doing whatever we were doing:
5673
5674 2.1) --> Hg 1
5675 2.2) <-- OK
5676 2.3) --> g
5677 2.4) <-- %Stop
5678 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5679 2.5) <-- (registers reply to step #2.3)
5680
5681 Eventualy after step #2.5, we return to the event loop, which
5682 notices there's an event on the
5683 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5684 associated callback --- the function below. At this point, we're
5685 always safe to start a vStopped sequence. :
5686
5687 2.6) --> vStopped
5688 2.7) <-- T05 thread:2
5689 2.8) --> vStopped
5690 2.9) --> OK
5691 */
5692
5693 void
5694 remote_notif_get_pending_events (struct notif_client *nc)
5695 {
5696 struct remote_state *rs = get_remote_state ();
5697
5698 if (nc->pending_event)
5699 {
5700 if (notif_debug)
5701 fprintf_unfiltered (gdb_stdlog,
5702 "notif: process: '%s' ack pending event\n",
5703 nc->name);
5704
5705 /* acknowledge */
5706 nc->ack (nc, rs->buf, nc->pending_event);
5707 nc->pending_event = NULL;
5708
5709 while (1)
5710 {
5711 getpkt (&rs->buf, &rs->buf_size, 0);
5712 if (strcmp (rs->buf, "OK") == 0)
5713 break;
5714 else
5715 remote_notif_ack (nc, rs->buf);
5716 }
5717 }
5718 else
5719 {
5720 if (notif_debug)
5721 fprintf_unfiltered (gdb_stdlog,
5722 "notif: process: '%s' no pending reply\n",
5723 nc->name);
5724 }
5725 }
5726
5727 /* Called when it is decided that STOP_REPLY holds the info of the
5728 event that is to be returned to the core. This function always
5729 destroys STOP_REPLY. */
5730
5731 static ptid_t
5732 process_stop_reply (struct stop_reply *stop_reply,
5733 struct target_waitstatus *status)
5734 {
5735 ptid_t ptid;
5736
5737 *status = stop_reply->ws;
5738 ptid = stop_reply->ptid;
5739
5740 /* If no thread/process was reported by the stub, assume the current
5741 inferior. */
5742 if (ptid_equal (ptid, null_ptid))
5743 ptid = inferior_ptid;
5744
5745 if (status->kind != TARGET_WAITKIND_EXITED
5746 && status->kind != TARGET_WAITKIND_SIGNALLED)
5747 {
5748 /* Expedited registers. */
5749 if (stop_reply->regcache)
5750 {
5751 struct regcache *regcache
5752 = get_thread_arch_regcache (ptid, target_gdbarch ());
5753 cached_reg_t *reg;
5754 int ix;
5755
5756 for (ix = 0;
5757 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5758 ix++)
5759 regcache_raw_supply (regcache, reg->num, reg->data);
5760 VEC_free (cached_reg_t, stop_reply->regcache);
5761 }
5762
5763 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5764 remote_watch_data_address = stop_reply->watch_data_address;
5765
5766 remote_notice_new_inferior (ptid, 0);
5767 demand_private_info (ptid)->core = stop_reply->core;
5768 }
5769
5770 stop_reply_xfree (stop_reply);
5771 return ptid;
5772 }
5773
5774 /* The non-stop mode version of target_wait. */
5775
5776 static ptid_t
5777 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5778 {
5779 struct remote_state *rs = get_remote_state ();
5780 struct stop_reply *stop_reply;
5781 int ret;
5782 int is_notif = 0;
5783
5784 /* If in non-stop mode, get out of getpkt even if a
5785 notification is received. */
5786
5787 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5788 0 /* forever */, &is_notif);
5789 while (1)
5790 {
5791 if (ret != -1 && !is_notif)
5792 switch (rs->buf[0])
5793 {
5794 case 'E': /* Error of some sort. */
5795 /* We're out of sync with the target now. Did it continue
5796 or not? We can't tell which thread it was in non-stop,
5797 so just ignore this. */
5798 warning (_("Remote failure reply: %s"), rs->buf);
5799 break;
5800 case 'O': /* Console output. */
5801 remote_console_output (rs->buf + 1);
5802 break;
5803 default:
5804 warning (_("Invalid remote reply: %s"), rs->buf);
5805 break;
5806 }
5807
5808 /* Acknowledge a pending stop reply that may have arrived in the
5809 mean time. */
5810 if (notif_client_stop.pending_event != NULL)
5811 remote_notif_get_pending_events (&notif_client_stop);
5812
5813 /* If indeed we noticed a stop reply, we're done. */
5814 stop_reply = queued_stop_reply (ptid);
5815 if (stop_reply != NULL)
5816 return process_stop_reply (stop_reply, status);
5817
5818 /* Still no event. If we're just polling for an event, then
5819 return to the event loop. */
5820 if (options & TARGET_WNOHANG)
5821 {
5822 status->kind = TARGET_WAITKIND_IGNORE;
5823 return minus_one_ptid;
5824 }
5825
5826 /* Otherwise do a blocking wait. */
5827 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5828 1 /* forever */, &is_notif);
5829 }
5830 }
5831
5832 /* Wait until the remote machine stops, then return, storing status in
5833 STATUS just as `wait' would. */
5834
5835 static ptid_t
5836 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5837 {
5838 struct remote_state *rs = get_remote_state ();
5839 ptid_t event_ptid = null_ptid;
5840 char *buf;
5841 struct stop_reply *stop_reply;
5842
5843 again:
5844
5845 status->kind = TARGET_WAITKIND_IGNORE;
5846 status->value.integer = 0;
5847
5848 stop_reply = queued_stop_reply (ptid);
5849 if (stop_reply != NULL)
5850 return process_stop_reply (stop_reply, status);
5851
5852 if (rs->cached_wait_status)
5853 /* Use the cached wait status, but only once. */
5854 rs->cached_wait_status = 0;
5855 else
5856 {
5857 int ret;
5858 int is_notif;
5859
5860 if (!target_is_async_p ())
5861 {
5862 ofunc = signal (SIGINT, remote_interrupt);
5863 /* If the user hit C-c before this packet, or between packets,
5864 pretend that it was hit right here. */
5865 if (check_quit_flag ())
5866 {
5867 clear_quit_flag ();
5868 remote_interrupt (SIGINT);
5869 }
5870 }
5871
5872 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5873 _never_ wait for ever -> test on target_is_async_p().
5874 However, before we do that we need to ensure that the caller
5875 knows how to take the target into/out of async mode. */
5876 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5877 wait_forever_enabled_p, &is_notif);
5878
5879 /* GDB gets a notification. Return to core as this event is
5880 not interesting. */
5881 if (ret != -1 && is_notif)
5882 return minus_one_ptid;
5883
5884 if (!target_is_async_p ())
5885 signal (SIGINT, ofunc);
5886 }
5887
5888 buf = rs->buf;
5889
5890 remote_stopped_by_watchpoint_p = 0;
5891
5892 /* We got something. */
5893 rs->waiting_for_stop_reply = 0;
5894
5895 /* Assume that the target has acknowledged Ctrl-C unless we receive
5896 an 'F' or 'O' packet. */
5897 if (buf[0] != 'F' && buf[0] != 'O')
5898 rs->ctrlc_pending_p = 0;
5899
5900 switch (buf[0])
5901 {
5902 case 'E': /* Error of some sort. */
5903 /* We're out of sync with the target now. Did it continue or
5904 not? Not is more likely, so report a stop. */
5905 warning (_("Remote failure reply: %s"), buf);
5906 status->kind = TARGET_WAITKIND_STOPPED;
5907 status->value.sig = GDB_SIGNAL_0;
5908 break;
5909 case 'F': /* File-I/O request. */
5910 remote_fileio_request (buf, rs->ctrlc_pending_p);
5911 rs->ctrlc_pending_p = 0;
5912 break;
5913 case 'T': case 'S': case 'X': case 'W':
5914 {
5915 struct stop_reply *stop_reply
5916 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
5917 rs->buf);
5918
5919 event_ptid = process_stop_reply (stop_reply, status);
5920 break;
5921 }
5922 case 'O': /* Console output. */
5923 remote_console_output (buf + 1);
5924
5925 /* The target didn't really stop; keep waiting. */
5926 rs->waiting_for_stop_reply = 1;
5927
5928 break;
5929 case '\0':
5930 if (last_sent_signal != GDB_SIGNAL_0)
5931 {
5932 /* Zero length reply means that we tried 'S' or 'C' and the
5933 remote system doesn't support it. */
5934 target_terminal_ours_for_output ();
5935 printf_filtered
5936 ("Can't send signals to this remote system. %s not sent.\n",
5937 gdb_signal_to_name (last_sent_signal));
5938 last_sent_signal = GDB_SIGNAL_0;
5939 target_terminal_inferior ();
5940
5941 strcpy ((char *) buf, last_sent_step ? "s" : "c");
5942 putpkt ((char *) buf);
5943
5944 /* We just told the target to resume, so a stop reply is in
5945 order. */
5946 rs->waiting_for_stop_reply = 1;
5947 break;
5948 }
5949 /* else fallthrough */
5950 default:
5951 warning (_("Invalid remote reply: %s"), buf);
5952 /* Keep waiting. */
5953 rs->waiting_for_stop_reply = 1;
5954 break;
5955 }
5956
5957 if (status->kind == TARGET_WAITKIND_IGNORE)
5958 {
5959 /* Nothing interesting happened. If we're doing a non-blocking
5960 poll, we're done. Otherwise, go back to waiting. */
5961 if (options & TARGET_WNOHANG)
5962 return minus_one_ptid;
5963 else
5964 goto again;
5965 }
5966 else if (status->kind != TARGET_WAITKIND_EXITED
5967 && status->kind != TARGET_WAITKIND_SIGNALLED)
5968 {
5969 if (!ptid_equal (event_ptid, null_ptid))
5970 record_currthread (event_ptid);
5971 else
5972 event_ptid = inferior_ptid;
5973 }
5974 else
5975 /* A process exit. Invalidate our notion of current thread. */
5976 record_currthread (minus_one_ptid);
5977
5978 return event_ptid;
5979 }
5980
5981 /* Wait until the remote machine stops, then return, storing status in
5982 STATUS just as `wait' would. */
5983
5984 static ptid_t
5985 remote_wait (struct target_ops *ops,
5986 ptid_t ptid, struct target_waitstatus *status, int options)
5987 {
5988 ptid_t event_ptid;
5989
5990 if (non_stop)
5991 event_ptid = remote_wait_ns (ptid, status, options);
5992 else
5993 event_ptid = remote_wait_as (ptid, status, options);
5994
5995 if (target_can_async_p ())
5996 {
5997 /* If there are are events left in the queue tell the event loop
5998 to return here. */
5999 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6000 mark_async_event_handler (remote_async_inferior_event_token);
6001 }
6002
6003 return event_ptid;
6004 }
6005
6006 /* Fetch a single register using a 'p' packet. */
6007
6008 static int
6009 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
6010 {
6011 struct remote_state *rs = get_remote_state ();
6012 char *buf, *p;
6013 char regp[MAX_REGISTER_SIZE];
6014 int i;
6015
6016 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
6017 return 0;
6018
6019 if (reg->pnum == -1)
6020 return 0;
6021
6022 p = rs->buf;
6023 *p++ = 'p';
6024 p += hexnumstr (p, reg->pnum);
6025 *p++ = '\0';
6026 putpkt (rs->buf);
6027 getpkt (&rs->buf, &rs->buf_size, 0);
6028
6029 buf = rs->buf;
6030
6031 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
6032 {
6033 case PACKET_OK:
6034 break;
6035 case PACKET_UNKNOWN:
6036 return 0;
6037 case PACKET_ERROR:
6038 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
6039 gdbarch_register_name (get_regcache_arch (regcache),
6040 reg->regnum),
6041 buf);
6042 }
6043
6044 /* If this register is unfetchable, tell the regcache. */
6045 if (buf[0] == 'x')
6046 {
6047 regcache_raw_supply (regcache, reg->regnum, NULL);
6048 return 1;
6049 }
6050
6051 /* Otherwise, parse and supply the value. */
6052 p = buf;
6053 i = 0;
6054 while (p[0] != 0)
6055 {
6056 if (p[1] == 0)
6057 error (_("fetch_register_using_p: early buf termination"));
6058
6059 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
6060 p += 2;
6061 }
6062 regcache_raw_supply (regcache, reg->regnum, regp);
6063 return 1;
6064 }
6065
6066 /* Fetch the registers included in the target's 'g' packet. */
6067
6068 static int
6069 send_g_packet (void)
6070 {
6071 struct remote_state *rs = get_remote_state ();
6072 int buf_len;
6073
6074 xsnprintf (rs->buf, get_remote_packet_size (), "g");
6075 remote_send (&rs->buf, &rs->buf_size);
6076
6077 /* We can get out of synch in various cases. If the first character
6078 in the buffer is not a hex character, assume that has happened
6079 and try to fetch another packet to read. */
6080 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
6081 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
6082 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
6083 && rs->buf[0] != 'x') /* New: unavailable register value. */
6084 {
6085 if (remote_debug)
6086 fprintf_unfiltered (gdb_stdlog,
6087 "Bad register packet; fetching a new packet\n");
6088 getpkt (&rs->buf, &rs->buf_size, 0);
6089 }
6090
6091 buf_len = strlen (rs->buf);
6092
6093 /* Sanity check the received packet. */
6094 if (buf_len % 2 != 0)
6095 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
6096
6097 return buf_len / 2;
6098 }
6099
6100 static void
6101 process_g_packet (struct regcache *regcache)
6102 {
6103 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6104 struct remote_state *rs = get_remote_state ();
6105 struct remote_arch_state *rsa = get_remote_arch_state ();
6106 int i, buf_len;
6107 char *p;
6108 char *regs;
6109
6110 buf_len = strlen (rs->buf);
6111
6112 /* Further sanity checks, with knowledge of the architecture. */
6113 if (buf_len > 2 * rsa->sizeof_g_packet)
6114 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
6115
6116 /* Save the size of the packet sent to us by the target. It is used
6117 as a heuristic when determining the max size of packets that the
6118 target can safely receive. */
6119 if (rsa->actual_register_packet_size == 0)
6120 rsa->actual_register_packet_size = buf_len;
6121
6122 /* If this is smaller than we guessed the 'g' packet would be,
6123 update our records. A 'g' reply that doesn't include a register's
6124 value implies either that the register is not available, or that
6125 the 'p' packet must be used. */
6126 if (buf_len < 2 * rsa->sizeof_g_packet)
6127 {
6128 rsa->sizeof_g_packet = buf_len / 2;
6129
6130 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6131 {
6132 if (rsa->regs[i].pnum == -1)
6133 continue;
6134
6135 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
6136 rsa->regs[i].in_g_packet = 0;
6137 else
6138 rsa->regs[i].in_g_packet = 1;
6139 }
6140 }
6141
6142 regs = alloca (rsa->sizeof_g_packet);
6143
6144 /* Unimplemented registers read as all bits zero. */
6145 memset (regs, 0, rsa->sizeof_g_packet);
6146
6147 /* Reply describes registers byte by byte, each byte encoded as two
6148 hex characters. Suck them all up, then supply them to the
6149 register cacheing/storage mechanism. */
6150
6151 p = rs->buf;
6152 for (i = 0; i < rsa->sizeof_g_packet; i++)
6153 {
6154 if (p[0] == 0 || p[1] == 0)
6155 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6156 internal_error (__FILE__, __LINE__,
6157 _("unexpected end of 'g' packet reply"));
6158
6159 if (p[0] == 'x' && p[1] == 'x')
6160 regs[i] = 0; /* 'x' */
6161 else
6162 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6163 p += 2;
6164 }
6165
6166 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6167 {
6168 struct packet_reg *r = &rsa->regs[i];
6169
6170 if (r->in_g_packet)
6171 {
6172 if (r->offset * 2 >= strlen (rs->buf))
6173 /* This shouldn't happen - we adjusted in_g_packet above. */
6174 internal_error (__FILE__, __LINE__,
6175 _("unexpected end of 'g' packet reply"));
6176 else if (rs->buf[r->offset * 2] == 'x')
6177 {
6178 gdb_assert (r->offset * 2 < strlen (rs->buf));
6179 /* The register isn't available, mark it as such (at
6180 the same time setting the value to zero). */
6181 regcache_raw_supply (regcache, r->regnum, NULL);
6182 }
6183 else
6184 regcache_raw_supply (regcache, r->regnum,
6185 regs + r->offset);
6186 }
6187 }
6188 }
6189
6190 static void
6191 fetch_registers_using_g (struct regcache *regcache)
6192 {
6193 send_g_packet ();
6194 process_g_packet (regcache);
6195 }
6196
6197 /* Make the remote selected traceframe match GDB's selected
6198 traceframe. */
6199
6200 static void
6201 set_remote_traceframe (void)
6202 {
6203 int newnum;
6204
6205 if (remote_traceframe_number == get_traceframe_number ())
6206 return;
6207
6208 /* Avoid recursion, remote_trace_find calls us again. */
6209 remote_traceframe_number = get_traceframe_number ();
6210
6211 newnum = target_trace_find (tfind_number,
6212 get_traceframe_number (), 0, 0, NULL);
6213
6214 /* Should not happen. If it does, all bets are off. */
6215 if (newnum != get_traceframe_number ())
6216 warning (_("could not set remote traceframe"));
6217 }
6218
6219 static void
6220 remote_fetch_registers (struct target_ops *ops,
6221 struct regcache *regcache, int regnum)
6222 {
6223 struct remote_arch_state *rsa = get_remote_arch_state ();
6224 int i;
6225
6226 set_remote_traceframe ();
6227 set_general_thread (inferior_ptid);
6228
6229 if (regnum >= 0)
6230 {
6231 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6232
6233 gdb_assert (reg != NULL);
6234
6235 /* If this register might be in the 'g' packet, try that first -
6236 we are likely to read more than one register. If this is the
6237 first 'g' packet, we might be overly optimistic about its
6238 contents, so fall back to 'p'. */
6239 if (reg->in_g_packet)
6240 {
6241 fetch_registers_using_g (regcache);
6242 if (reg->in_g_packet)
6243 return;
6244 }
6245
6246 if (fetch_register_using_p (regcache, reg))
6247 return;
6248
6249 /* This register is not available. */
6250 regcache_raw_supply (regcache, reg->regnum, NULL);
6251
6252 return;
6253 }
6254
6255 fetch_registers_using_g (regcache);
6256
6257 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6258 if (!rsa->regs[i].in_g_packet)
6259 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6260 {
6261 /* This register is not available. */
6262 regcache_raw_supply (regcache, i, NULL);
6263 }
6264 }
6265
6266 /* Prepare to store registers. Since we may send them all (using a
6267 'G' request), we have to read out the ones we don't want to change
6268 first. */
6269
6270 static void
6271 remote_prepare_to_store (struct regcache *regcache)
6272 {
6273 struct remote_arch_state *rsa = get_remote_arch_state ();
6274 int i;
6275 gdb_byte buf[MAX_REGISTER_SIZE];
6276
6277 /* Make sure the entire registers array is valid. */
6278 switch (remote_protocol_packets[PACKET_P].support)
6279 {
6280 case PACKET_DISABLE:
6281 case PACKET_SUPPORT_UNKNOWN:
6282 /* Make sure all the necessary registers are cached. */
6283 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6284 if (rsa->regs[i].in_g_packet)
6285 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6286 break;
6287 case PACKET_ENABLE:
6288 break;
6289 }
6290 }
6291
6292 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6293 packet was not recognized. */
6294
6295 static int
6296 store_register_using_P (const struct regcache *regcache,
6297 struct packet_reg *reg)
6298 {
6299 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6300 struct remote_state *rs = get_remote_state ();
6301 /* Try storing a single register. */
6302 char *buf = rs->buf;
6303 gdb_byte regp[MAX_REGISTER_SIZE];
6304 char *p;
6305
6306 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6307 return 0;
6308
6309 if (reg->pnum == -1)
6310 return 0;
6311
6312 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6313 p = buf + strlen (buf);
6314 regcache_raw_collect (regcache, reg->regnum, regp);
6315 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6316 putpkt (rs->buf);
6317 getpkt (&rs->buf, &rs->buf_size, 0);
6318
6319 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6320 {
6321 case PACKET_OK:
6322 return 1;
6323 case PACKET_ERROR:
6324 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6325 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6326 case PACKET_UNKNOWN:
6327 return 0;
6328 default:
6329 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6330 }
6331 }
6332
6333 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6334 contents of the register cache buffer. FIXME: ignores errors. */
6335
6336 static void
6337 store_registers_using_G (const struct regcache *regcache)
6338 {
6339 struct remote_state *rs = get_remote_state ();
6340 struct remote_arch_state *rsa = get_remote_arch_state ();
6341 gdb_byte *regs;
6342 char *p;
6343
6344 /* Extract all the registers in the regcache copying them into a
6345 local buffer. */
6346 {
6347 int i;
6348
6349 regs = alloca (rsa->sizeof_g_packet);
6350 memset (regs, 0, rsa->sizeof_g_packet);
6351 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6352 {
6353 struct packet_reg *r = &rsa->regs[i];
6354
6355 if (r->in_g_packet)
6356 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6357 }
6358 }
6359
6360 /* Command describes registers byte by byte,
6361 each byte encoded as two hex characters. */
6362 p = rs->buf;
6363 *p++ = 'G';
6364 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6365 updated. */
6366 bin2hex (regs, p, rsa->sizeof_g_packet);
6367 putpkt (rs->buf);
6368 getpkt (&rs->buf, &rs->buf_size, 0);
6369 if (packet_check_result (rs->buf) == PACKET_ERROR)
6370 error (_("Could not write registers; remote failure reply '%s'"),
6371 rs->buf);
6372 }
6373
6374 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6375 of the register cache buffer. FIXME: ignores errors. */
6376
6377 static void
6378 remote_store_registers (struct target_ops *ops,
6379 struct regcache *regcache, int regnum)
6380 {
6381 struct remote_arch_state *rsa = get_remote_arch_state ();
6382 int i;
6383
6384 set_remote_traceframe ();
6385 set_general_thread (inferior_ptid);
6386
6387 if (regnum >= 0)
6388 {
6389 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6390
6391 gdb_assert (reg != NULL);
6392
6393 /* Always prefer to store registers using the 'P' packet if
6394 possible; we often change only a small number of registers.
6395 Sometimes we change a larger number; we'd need help from a
6396 higher layer to know to use 'G'. */
6397 if (store_register_using_P (regcache, reg))
6398 return;
6399
6400 /* For now, don't complain if we have no way to write the
6401 register. GDB loses track of unavailable registers too
6402 easily. Some day, this may be an error. We don't have
6403 any way to read the register, either... */
6404 if (!reg->in_g_packet)
6405 return;
6406
6407 store_registers_using_G (regcache);
6408 return;
6409 }
6410
6411 store_registers_using_G (regcache);
6412
6413 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6414 if (!rsa->regs[i].in_g_packet)
6415 if (!store_register_using_P (regcache, &rsa->regs[i]))
6416 /* See above for why we do not issue an error here. */
6417 continue;
6418 }
6419 \f
6420
6421 /* Return the number of hex digits in num. */
6422
6423 static int
6424 hexnumlen (ULONGEST num)
6425 {
6426 int i;
6427
6428 for (i = 0; num != 0; i++)
6429 num >>= 4;
6430
6431 return max (i, 1);
6432 }
6433
6434 /* Set BUF to the minimum number of hex digits representing NUM. */
6435
6436 static int
6437 hexnumstr (char *buf, ULONGEST num)
6438 {
6439 int len = hexnumlen (num);
6440
6441 return hexnumnstr (buf, num, len);
6442 }
6443
6444
6445 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6446
6447 static int
6448 hexnumnstr (char *buf, ULONGEST num, int width)
6449 {
6450 int i;
6451
6452 buf[width] = '\0';
6453
6454 for (i = width - 1; i >= 0; i--)
6455 {
6456 buf[i] = "0123456789abcdef"[(num & 0xf)];
6457 num >>= 4;
6458 }
6459
6460 return width;
6461 }
6462
6463 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6464
6465 static CORE_ADDR
6466 remote_address_masked (CORE_ADDR addr)
6467 {
6468 unsigned int address_size = remote_address_size;
6469
6470 /* If "remoteaddresssize" was not set, default to target address size. */
6471 if (!address_size)
6472 address_size = gdbarch_addr_bit (target_gdbarch ());
6473
6474 if (address_size > 0
6475 && address_size < (sizeof (ULONGEST) * 8))
6476 {
6477 /* Only create a mask when that mask can safely be constructed
6478 in a ULONGEST variable. */
6479 ULONGEST mask = 1;
6480
6481 mask = (mask << address_size) - 1;
6482 addr &= mask;
6483 }
6484 return addr;
6485 }
6486
6487 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6488 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6489 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6490 (which may be more than *OUT_LEN due to escape characters). The
6491 total number of bytes in the output buffer will be at most
6492 OUT_MAXLEN. */
6493
6494 static int
6495 remote_escape_output (const gdb_byte *buffer, int len,
6496 gdb_byte *out_buf, int *out_len,
6497 int out_maxlen)
6498 {
6499 int input_index, output_index;
6500
6501 output_index = 0;
6502 for (input_index = 0; input_index < len; input_index++)
6503 {
6504 gdb_byte b = buffer[input_index];
6505
6506 if (b == '$' || b == '#' || b == '}')
6507 {
6508 /* These must be escaped. */
6509 if (output_index + 2 > out_maxlen)
6510 break;
6511 out_buf[output_index++] = '}';
6512 out_buf[output_index++] = b ^ 0x20;
6513 }
6514 else
6515 {
6516 if (output_index + 1 > out_maxlen)
6517 break;
6518 out_buf[output_index++] = b;
6519 }
6520 }
6521
6522 *out_len = input_index;
6523 return output_index;
6524 }
6525
6526 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6527 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6528 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6529
6530 This function reverses remote_escape_output. It allows more
6531 escaped characters than that function does, in particular because
6532 '*' must be escaped to avoid the run-length encoding processing
6533 in reading packets. */
6534
6535 static int
6536 remote_unescape_input (const gdb_byte *buffer, int len,
6537 gdb_byte *out_buf, int out_maxlen)
6538 {
6539 int input_index, output_index;
6540 int escaped;
6541
6542 output_index = 0;
6543 escaped = 0;
6544 for (input_index = 0; input_index < len; input_index++)
6545 {
6546 gdb_byte b = buffer[input_index];
6547
6548 if (output_index + 1 > out_maxlen)
6549 {
6550 warning (_("Received too much data from remote target;"
6551 " ignoring overflow."));
6552 return output_index;
6553 }
6554
6555 if (escaped)
6556 {
6557 out_buf[output_index++] = b ^ 0x20;
6558 escaped = 0;
6559 }
6560 else if (b == '}')
6561 escaped = 1;
6562 else
6563 out_buf[output_index++] = b;
6564 }
6565
6566 if (escaped)
6567 error (_("Unmatched escape character in target response."));
6568
6569 return output_index;
6570 }
6571
6572 /* Determine whether the remote target supports binary downloading.
6573 This is accomplished by sending a no-op memory write of zero length
6574 to the target at the specified address. It does not suffice to send
6575 the whole packet, since many stubs strip the eighth bit and
6576 subsequently compute a wrong checksum, which causes real havoc with
6577 remote_write_bytes.
6578
6579 NOTE: This can still lose if the serial line is not eight-bit
6580 clean. In cases like this, the user should clear "remote
6581 X-packet". */
6582
6583 static void
6584 check_binary_download (CORE_ADDR addr)
6585 {
6586 struct remote_state *rs = get_remote_state ();
6587
6588 switch (remote_protocol_packets[PACKET_X].support)
6589 {
6590 case PACKET_DISABLE:
6591 break;
6592 case PACKET_ENABLE:
6593 break;
6594 case PACKET_SUPPORT_UNKNOWN:
6595 {
6596 char *p;
6597
6598 p = rs->buf;
6599 *p++ = 'X';
6600 p += hexnumstr (p, (ULONGEST) addr);
6601 *p++ = ',';
6602 p += hexnumstr (p, (ULONGEST) 0);
6603 *p++ = ':';
6604 *p = '\0';
6605
6606 putpkt_binary (rs->buf, (int) (p - rs->buf));
6607 getpkt (&rs->buf, &rs->buf_size, 0);
6608
6609 if (rs->buf[0] == '\0')
6610 {
6611 if (remote_debug)
6612 fprintf_unfiltered (gdb_stdlog,
6613 "binary downloading NOT "
6614 "supported by target\n");
6615 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6616 }
6617 else
6618 {
6619 if (remote_debug)
6620 fprintf_unfiltered (gdb_stdlog,
6621 "binary downloading supported by target\n");
6622 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6623 }
6624 break;
6625 }
6626 }
6627 }
6628
6629 /* Write memory data directly to the remote machine.
6630 This does not inform the data cache; the data cache uses this.
6631 HEADER is the starting part of the packet.
6632 MEMADDR is the address in the remote memory space.
6633 MYADDR is the address of the buffer in our space.
6634 LEN is the number of bytes.
6635 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6636 should send data as binary ('X'), or hex-encoded ('M').
6637
6638 The function creates packet of the form
6639 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6640
6641 where encoding of <DATA> is termined by PACKET_FORMAT.
6642
6643 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6644 are omitted.
6645
6646 Returns the number of bytes transferred, or 0 (setting errno) for
6647 error. Only transfer a single packet. */
6648
6649 static int
6650 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6651 const gdb_byte *myaddr, ssize_t len,
6652 char packet_format, int use_length)
6653 {
6654 struct remote_state *rs = get_remote_state ();
6655 char *p;
6656 char *plen = NULL;
6657 int plenlen = 0;
6658 int todo;
6659 int nr_bytes;
6660 int payload_size;
6661 int payload_length;
6662 int header_length;
6663
6664 if (packet_format != 'X' && packet_format != 'M')
6665 internal_error (__FILE__, __LINE__,
6666 _("remote_write_bytes_aux: bad packet format"));
6667
6668 if (len <= 0)
6669 return 0;
6670
6671 payload_size = get_memory_write_packet_size ();
6672
6673 /* The packet buffer will be large enough for the payload;
6674 get_memory_packet_size ensures this. */
6675 rs->buf[0] = '\0';
6676
6677 /* Compute the size of the actual payload by subtracting out the
6678 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6679
6680 payload_size -= strlen ("$,:#NN");
6681 if (!use_length)
6682 /* The comma won't be used. */
6683 payload_size += 1;
6684 header_length = strlen (header);
6685 payload_size -= header_length;
6686 payload_size -= hexnumlen (memaddr);
6687
6688 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6689
6690 strcat (rs->buf, header);
6691 p = rs->buf + strlen (header);
6692
6693 /* Compute a best guess of the number of bytes actually transfered. */
6694 if (packet_format == 'X')
6695 {
6696 /* Best guess at number of bytes that will fit. */
6697 todo = min (len, payload_size);
6698 if (use_length)
6699 payload_size -= hexnumlen (todo);
6700 todo = min (todo, payload_size);
6701 }
6702 else
6703 {
6704 /* Num bytes that will fit. */
6705 todo = min (len, payload_size / 2);
6706 if (use_length)
6707 payload_size -= hexnumlen (todo);
6708 todo = min (todo, payload_size / 2);
6709 }
6710
6711 if (todo <= 0)
6712 internal_error (__FILE__, __LINE__,
6713 _("minimum packet size too small to write data"));
6714
6715 /* If we already need another packet, then try to align the end
6716 of this packet to a useful boundary. */
6717 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6718 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6719
6720 /* Append "<memaddr>". */
6721 memaddr = remote_address_masked (memaddr);
6722 p += hexnumstr (p, (ULONGEST) memaddr);
6723
6724 if (use_length)
6725 {
6726 /* Append ",". */
6727 *p++ = ',';
6728
6729 /* Append <len>. Retain the location/size of <len>. It may need to
6730 be adjusted once the packet body has been created. */
6731 plen = p;
6732 plenlen = hexnumstr (p, (ULONGEST) todo);
6733 p += plenlen;
6734 }
6735
6736 /* Append ":". */
6737 *p++ = ':';
6738 *p = '\0';
6739
6740 /* Append the packet body. */
6741 if (packet_format == 'X')
6742 {
6743 /* Binary mode. Send target system values byte by byte, in
6744 increasing byte addresses. Only escape certain critical
6745 characters. */
6746 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
6747 payload_size);
6748
6749 /* If not all TODO bytes fit, then we'll need another packet. Make
6750 a second try to keep the end of the packet aligned. Don't do
6751 this if the packet is tiny. */
6752 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6753 {
6754 int new_nr_bytes;
6755
6756 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6757 - memaddr);
6758 if (new_nr_bytes != nr_bytes)
6759 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6760 p, &nr_bytes,
6761 payload_size);
6762 }
6763
6764 p += payload_length;
6765 if (use_length && nr_bytes < todo)
6766 {
6767 /* Escape chars have filled up the buffer prematurely,
6768 and we have actually sent fewer bytes than planned.
6769 Fix-up the length field of the packet. Use the same
6770 number of characters as before. */
6771 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6772 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6773 }
6774 }
6775 else
6776 {
6777 /* Normal mode: Send target system values byte by byte, in
6778 increasing byte addresses. Each byte is encoded as a two hex
6779 value. */
6780 nr_bytes = bin2hex (myaddr, p, todo);
6781 p += 2 * nr_bytes;
6782 }
6783
6784 putpkt_binary (rs->buf, (int) (p - rs->buf));
6785 getpkt (&rs->buf, &rs->buf_size, 0);
6786
6787 if (rs->buf[0] == 'E')
6788 {
6789 /* There is no correspondance between what the remote protocol
6790 uses for errors and errno codes. We would like a cleaner way
6791 of representing errors (big enough to include errno codes,
6792 bfd_error codes, and others). But for now just return EIO. */
6793 errno = EIO;
6794 return 0;
6795 }
6796
6797 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6798 fewer bytes than we'd planned. */
6799 return nr_bytes;
6800 }
6801
6802 /* Write memory data directly to the remote machine.
6803 This does not inform the data cache; the data cache uses this.
6804 MEMADDR is the address in the remote memory space.
6805 MYADDR is the address of the buffer in our space.
6806 LEN is the number of bytes.
6807
6808 Returns number of bytes transferred, or 0 (setting errno) for
6809 error. Only transfer a single packet. */
6810
6811 static int
6812 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
6813 {
6814 char *packet_format = 0;
6815
6816 /* Check whether the target supports binary download. */
6817 check_binary_download (memaddr);
6818
6819 switch (remote_protocol_packets[PACKET_X].support)
6820 {
6821 case PACKET_ENABLE:
6822 packet_format = "X";
6823 break;
6824 case PACKET_DISABLE:
6825 packet_format = "M";
6826 break;
6827 case PACKET_SUPPORT_UNKNOWN:
6828 internal_error (__FILE__, __LINE__,
6829 _("remote_write_bytes: bad internal state"));
6830 default:
6831 internal_error (__FILE__, __LINE__, _("bad switch"));
6832 }
6833
6834 return remote_write_bytes_aux (packet_format,
6835 memaddr, myaddr, len, packet_format[0], 1);
6836 }
6837
6838 /* Read memory data directly from the remote machine.
6839 This does not use the data cache; the data cache uses this.
6840 MEMADDR is the address in the remote memory space.
6841 MYADDR is the address of the buffer in our space.
6842 LEN is the number of bytes.
6843
6844 Returns number of bytes transferred, or 0 for error. */
6845
6846 static int
6847 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6848 {
6849 struct remote_state *rs = get_remote_state ();
6850 int max_buf_size; /* Max size of packet output buffer. */
6851 char *p;
6852 int todo;
6853 int i;
6854
6855 if (len <= 0)
6856 return 0;
6857
6858 max_buf_size = get_memory_read_packet_size ();
6859 /* The packet buffer will be large enough for the payload;
6860 get_memory_packet_size ensures this. */
6861
6862 /* Number if bytes that will fit. */
6863 todo = min (len, max_buf_size / 2);
6864
6865 /* Construct "m"<memaddr>","<len>". */
6866 memaddr = remote_address_masked (memaddr);
6867 p = rs->buf;
6868 *p++ = 'm';
6869 p += hexnumstr (p, (ULONGEST) memaddr);
6870 *p++ = ',';
6871 p += hexnumstr (p, (ULONGEST) todo);
6872 *p = '\0';
6873 putpkt (rs->buf);
6874 getpkt (&rs->buf, &rs->buf_size, 0);
6875 if (rs->buf[0] == 'E'
6876 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6877 && rs->buf[3] == '\0')
6878 {
6879 /* There is no correspondance between what the remote protocol
6880 uses for errors and errno codes. We would like a cleaner way
6881 of representing errors (big enough to include errno codes,
6882 bfd_error codes, and others). But for now just return
6883 EIO. */
6884 errno = EIO;
6885 return 0;
6886 }
6887 /* Reply describes memory byte by byte, each byte encoded as two hex
6888 characters. */
6889 p = rs->buf;
6890 i = hex2bin (p, myaddr, todo);
6891 /* Return what we have. Let higher layers handle partial reads. */
6892 return i;
6893 }
6894
6895 \f
6896 /* Read or write LEN bytes from inferior memory at MEMADDR,
6897 transferring to or from debugger address BUFFER. Write to inferior
6898 if SHOULD_WRITE is nonzero. Returns length of data written or
6899 read; 0 for error. TARGET is unused. */
6900
6901 static int
6902 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
6903 int should_write, struct mem_attrib *attrib,
6904 struct target_ops *target)
6905 {
6906 int res;
6907
6908 set_remote_traceframe ();
6909 set_general_thread (inferior_ptid);
6910
6911 if (should_write)
6912 res = remote_write_bytes (mem_addr, buffer, mem_len);
6913 else
6914 res = remote_read_bytes (mem_addr, buffer, mem_len);
6915
6916 return res;
6917 }
6918
6919 /* Sends a packet with content determined by the printf format string
6920 FORMAT and the remaining arguments, then gets the reply. Returns
6921 whether the packet was a success, a failure, or unknown. */
6922
6923 static enum packet_result
6924 remote_send_printf (const char *format, ...)
6925 {
6926 struct remote_state *rs = get_remote_state ();
6927 int max_size = get_remote_packet_size ();
6928 va_list ap;
6929
6930 va_start (ap, format);
6931
6932 rs->buf[0] = '\0';
6933 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
6934 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
6935
6936 if (putpkt (rs->buf) < 0)
6937 error (_("Communication problem with target."));
6938
6939 rs->buf[0] = '\0';
6940 getpkt (&rs->buf, &rs->buf_size, 0);
6941
6942 return packet_check_result (rs->buf);
6943 }
6944
6945 static void
6946 restore_remote_timeout (void *p)
6947 {
6948 int value = *(int *)p;
6949
6950 remote_timeout = value;
6951 }
6952
6953 /* Flash writing can take quite some time. We'll set
6954 effectively infinite timeout for flash operations.
6955 In future, we'll need to decide on a better approach. */
6956 static const int remote_flash_timeout = 1000;
6957
6958 static void
6959 remote_flash_erase (struct target_ops *ops,
6960 ULONGEST address, LONGEST length)
6961 {
6962 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6963 int saved_remote_timeout = remote_timeout;
6964 enum packet_result ret;
6965 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6966 &saved_remote_timeout);
6967
6968 remote_timeout = remote_flash_timeout;
6969
6970 ret = remote_send_printf ("vFlashErase:%s,%s",
6971 phex (address, addr_size),
6972 phex (length, 4));
6973 switch (ret)
6974 {
6975 case PACKET_UNKNOWN:
6976 error (_("Remote target does not support flash erase"));
6977 case PACKET_ERROR:
6978 error (_("Error erasing flash with vFlashErase packet"));
6979 default:
6980 break;
6981 }
6982
6983 do_cleanups (back_to);
6984 }
6985
6986 static LONGEST
6987 remote_flash_write (struct target_ops *ops,
6988 ULONGEST address, LONGEST length,
6989 const gdb_byte *data)
6990 {
6991 int saved_remote_timeout = remote_timeout;
6992 int ret;
6993 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
6994 &saved_remote_timeout);
6995
6996 remote_timeout = remote_flash_timeout;
6997 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
6998 do_cleanups (back_to);
6999
7000 return ret;
7001 }
7002
7003 static void
7004 remote_flash_done (struct target_ops *ops)
7005 {
7006 int saved_remote_timeout = remote_timeout;
7007 int ret;
7008 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7009 &saved_remote_timeout);
7010
7011 remote_timeout = remote_flash_timeout;
7012 ret = remote_send_printf ("vFlashDone");
7013 do_cleanups (back_to);
7014
7015 switch (ret)
7016 {
7017 case PACKET_UNKNOWN:
7018 error (_("Remote target does not support vFlashDone"));
7019 case PACKET_ERROR:
7020 error (_("Error finishing flash operation"));
7021 default:
7022 break;
7023 }
7024 }
7025
7026 static void
7027 remote_files_info (struct target_ops *ignore)
7028 {
7029 puts_filtered ("Debugging a target over a serial line.\n");
7030 }
7031 \f
7032 /* Stuff for dealing with the packets which are part of this protocol.
7033 See comment at top of file for details. */
7034
7035 /* Read a single character from the remote end. */
7036
7037 static int
7038 readchar (int timeout)
7039 {
7040 int ch;
7041
7042 ch = serial_readchar (remote_desc, timeout);
7043
7044 if (ch >= 0)
7045 return ch;
7046
7047 switch ((enum serial_rc) ch)
7048 {
7049 case SERIAL_EOF:
7050 remote_unpush_target ();
7051 error (_("Remote connection closed"));
7052 /* no return */
7053 case SERIAL_ERROR:
7054 remote_unpush_target ();
7055 perror_with_name (_("Remote communication error. "
7056 "Target disconnected."));
7057 /* no return */
7058 case SERIAL_TIMEOUT:
7059 break;
7060 }
7061 return ch;
7062 }
7063
7064 /* Send the command in *BUF to the remote machine, and read the reply
7065 into *BUF. Report an error if we get an error reply. Resize
7066 *BUF using xrealloc if necessary to hold the result, and update
7067 *SIZEOF_BUF. */
7068
7069 static void
7070 remote_send (char **buf,
7071 long *sizeof_buf)
7072 {
7073 putpkt (*buf);
7074 getpkt (buf, sizeof_buf, 0);
7075
7076 if ((*buf)[0] == 'E')
7077 error (_("Remote failure reply: %s"), *buf);
7078 }
7079
7080 /* Return a pointer to an xmalloc'ed string representing an escaped
7081 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
7082 etc. The caller is responsible for releasing the returned
7083 memory. */
7084
7085 static char *
7086 escape_buffer (const char *buf, int n)
7087 {
7088 struct cleanup *old_chain;
7089 struct ui_file *stb;
7090 char *str;
7091
7092 stb = mem_fileopen ();
7093 old_chain = make_cleanup_ui_file_delete (stb);
7094
7095 fputstrn_unfiltered (buf, n, 0, stb);
7096 str = ui_file_xstrdup (stb, NULL);
7097 do_cleanups (old_chain);
7098 return str;
7099 }
7100
7101 /* Display a null-terminated packet on stdout, for debugging, using C
7102 string notation. */
7103
7104 static void
7105 print_packet (char *buf)
7106 {
7107 puts_filtered ("\"");
7108 fputstr_filtered (buf, '"', gdb_stdout);
7109 puts_filtered ("\"");
7110 }
7111
7112 int
7113 putpkt (char *buf)
7114 {
7115 return putpkt_binary (buf, strlen (buf));
7116 }
7117
7118 /* Send a packet to the remote machine, with error checking. The data
7119 of the packet is in BUF. The string in BUF can be at most
7120 get_remote_packet_size () - 5 to account for the $, # and checksum,
7121 and for a possible /0 if we are debugging (remote_debug) and want
7122 to print the sent packet as a string. */
7123
7124 static int
7125 putpkt_binary (char *buf, int cnt)
7126 {
7127 struct remote_state *rs = get_remote_state ();
7128 int i;
7129 unsigned char csum = 0;
7130 char *buf2 = alloca (cnt + 6);
7131
7132 int ch;
7133 int tcount = 0;
7134 char *p;
7135 char *message;
7136
7137 /* Catch cases like trying to read memory or listing threads while
7138 we're waiting for a stop reply. The remote server wouldn't be
7139 ready to handle this request, so we'd hang and timeout. We don't
7140 have to worry about this in synchronous mode, because in that
7141 case it's not possible to issue a command while the target is
7142 running. This is not a problem in non-stop mode, because in that
7143 case, the stub is always ready to process serial input. */
7144 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
7145 error (_("Cannot execute this command while the target is running."));
7146
7147 /* We're sending out a new packet. Make sure we don't look at a
7148 stale cached response. */
7149 rs->cached_wait_status = 0;
7150
7151 /* Copy the packet into buffer BUF2, encapsulating it
7152 and giving it a checksum. */
7153
7154 p = buf2;
7155 *p++ = '$';
7156
7157 for (i = 0; i < cnt; i++)
7158 {
7159 csum += buf[i];
7160 *p++ = buf[i];
7161 }
7162 *p++ = '#';
7163 *p++ = tohex ((csum >> 4) & 0xf);
7164 *p++ = tohex (csum & 0xf);
7165
7166 /* Send it over and over until we get a positive ack. */
7167
7168 while (1)
7169 {
7170 int started_error_output = 0;
7171
7172 if (remote_debug)
7173 {
7174 struct cleanup *old_chain;
7175 char *str;
7176
7177 *p = '\0';
7178 str = escape_buffer (buf2, p - buf2);
7179 old_chain = make_cleanup (xfree, str);
7180 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7181 gdb_flush (gdb_stdlog);
7182 do_cleanups (old_chain);
7183 }
7184 if (serial_write (remote_desc, buf2, p - buf2))
7185 perror_with_name (_("putpkt: write failed"));
7186
7187 /* If this is a no acks version of the remote protocol, send the
7188 packet and move on. */
7189 if (rs->noack_mode)
7190 break;
7191
7192 /* Read until either a timeout occurs (-2) or '+' is read.
7193 Handle any notification that arrives in the mean time. */
7194 while (1)
7195 {
7196 ch = readchar (remote_timeout);
7197
7198 if (remote_debug)
7199 {
7200 switch (ch)
7201 {
7202 case '+':
7203 case '-':
7204 case SERIAL_TIMEOUT:
7205 case '$':
7206 case '%':
7207 if (started_error_output)
7208 {
7209 putchar_unfiltered ('\n');
7210 started_error_output = 0;
7211 }
7212 }
7213 }
7214
7215 switch (ch)
7216 {
7217 case '+':
7218 if (remote_debug)
7219 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7220 return 1;
7221 case '-':
7222 if (remote_debug)
7223 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7224 /* FALLTHROUGH */
7225 case SERIAL_TIMEOUT:
7226 tcount++;
7227 if (tcount > 3)
7228 return 0;
7229 break; /* Retransmit buffer. */
7230 case '$':
7231 {
7232 if (remote_debug)
7233 fprintf_unfiltered (gdb_stdlog,
7234 "Packet instead of Ack, ignoring it\n");
7235 /* It's probably an old response sent because an ACK
7236 was lost. Gobble up the packet and ack it so it
7237 doesn't get retransmitted when we resend this
7238 packet. */
7239 skip_frame ();
7240 serial_write (remote_desc, "+", 1);
7241 continue; /* Now, go look for +. */
7242 }
7243
7244 case '%':
7245 {
7246 int val;
7247
7248 /* If we got a notification, handle it, and go back to looking
7249 for an ack. */
7250 /* We've found the start of a notification. Now
7251 collect the data. */
7252 val = read_frame (&rs->buf, &rs->buf_size);
7253 if (val >= 0)
7254 {
7255 if (remote_debug)
7256 {
7257 struct cleanup *old_chain;
7258 char *str;
7259
7260 str = escape_buffer (rs->buf, val);
7261 old_chain = make_cleanup (xfree, str);
7262 fprintf_unfiltered (gdb_stdlog,
7263 " Notification received: %s\n",
7264 str);
7265 do_cleanups (old_chain);
7266 }
7267 handle_notification (rs->buf);
7268 /* We're in sync now, rewait for the ack. */
7269 tcount = 0;
7270 }
7271 else
7272 {
7273 if (remote_debug)
7274 {
7275 if (!started_error_output)
7276 {
7277 started_error_output = 1;
7278 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7279 }
7280 fputc_unfiltered (ch & 0177, gdb_stdlog);
7281 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7282 }
7283 }
7284 continue;
7285 }
7286 /* fall-through */
7287 default:
7288 if (remote_debug)
7289 {
7290 if (!started_error_output)
7291 {
7292 started_error_output = 1;
7293 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7294 }
7295 fputc_unfiltered (ch & 0177, gdb_stdlog);
7296 }
7297 continue;
7298 }
7299 break; /* Here to retransmit. */
7300 }
7301
7302 #if 0
7303 /* This is wrong. If doing a long backtrace, the user should be
7304 able to get out next time we call QUIT, without anything as
7305 violent as interrupt_query. If we want to provide a way out of
7306 here without getting to the next QUIT, it should be based on
7307 hitting ^C twice as in remote_wait. */
7308 if (quit_flag)
7309 {
7310 quit_flag = 0;
7311 interrupt_query ();
7312 }
7313 #endif
7314 }
7315 return 0;
7316 }
7317
7318 /* Come here after finding the start of a frame when we expected an
7319 ack. Do our best to discard the rest of this packet. */
7320
7321 static void
7322 skip_frame (void)
7323 {
7324 int c;
7325
7326 while (1)
7327 {
7328 c = readchar (remote_timeout);
7329 switch (c)
7330 {
7331 case SERIAL_TIMEOUT:
7332 /* Nothing we can do. */
7333 return;
7334 case '#':
7335 /* Discard the two bytes of checksum and stop. */
7336 c = readchar (remote_timeout);
7337 if (c >= 0)
7338 c = readchar (remote_timeout);
7339
7340 return;
7341 case '*': /* Run length encoding. */
7342 /* Discard the repeat count. */
7343 c = readchar (remote_timeout);
7344 if (c < 0)
7345 return;
7346 break;
7347 default:
7348 /* A regular character. */
7349 break;
7350 }
7351 }
7352 }
7353
7354 /* Come here after finding the start of the frame. Collect the rest
7355 into *BUF, verifying the checksum, length, and handling run-length
7356 compression. NUL terminate the buffer. If there is not enough room,
7357 expand *BUF using xrealloc.
7358
7359 Returns -1 on error, number of characters in buffer (ignoring the
7360 trailing NULL) on success. (could be extended to return one of the
7361 SERIAL status indications). */
7362
7363 static long
7364 read_frame (char **buf_p,
7365 long *sizeof_buf)
7366 {
7367 unsigned char csum;
7368 long bc;
7369 int c;
7370 char *buf = *buf_p;
7371 struct remote_state *rs = get_remote_state ();
7372
7373 csum = 0;
7374 bc = 0;
7375
7376 while (1)
7377 {
7378 c = readchar (remote_timeout);
7379 switch (c)
7380 {
7381 case SERIAL_TIMEOUT:
7382 if (remote_debug)
7383 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7384 return -1;
7385 case '$':
7386 if (remote_debug)
7387 fputs_filtered ("Saw new packet start in middle of old one\n",
7388 gdb_stdlog);
7389 return -1; /* Start a new packet, count retries. */
7390 case '#':
7391 {
7392 unsigned char pktcsum;
7393 int check_0 = 0;
7394 int check_1 = 0;
7395
7396 buf[bc] = '\0';
7397
7398 check_0 = readchar (remote_timeout);
7399 if (check_0 >= 0)
7400 check_1 = readchar (remote_timeout);
7401
7402 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7403 {
7404 if (remote_debug)
7405 fputs_filtered ("Timeout in checksum, retrying\n",
7406 gdb_stdlog);
7407 return -1;
7408 }
7409 else if (check_0 < 0 || check_1 < 0)
7410 {
7411 if (remote_debug)
7412 fputs_filtered ("Communication error in checksum\n",
7413 gdb_stdlog);
7414 return -1;
7415 }
7416
7417 /* Don't recompute the checksum; with no ack packets we
7418 don't have any way to indicate a packet retransmission
7419 is necessary. */
7420 if (rs->noack_mode)
7421 return bc;
7422
7423 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7424 if (csum == pktcsum)
7425 return bc;
7426
7427 if (remote_debug)
7428 {
7429 struct cleanup *old_chain;
7430 char *str;
7431
7432 str = escape_buffer (buf, bc);
7433 old_chain = make_cleanup (xfree, str);
7434 fprintf_unfiltered (gdb_stdlog,
7435 "Bad checksum, sentsum=0x%x, "
7436 "csum=0x%x, buf=%s\n",
7437 pktcsum, csum, str);
7438 do_cleanups (old_chain);
7439 }
7440 /* Number of characters in buffer ignoring trailing
7441 NULL. */
7442 return -1;
7443 }
7444 case '*': /* Run length encoding. */
7445 {
7446 int repeat;
7447
7448 csum += c;
7449 c = readchar (remote_timeout);
7450 csum += c;
7451 repeat = c - ' ' + 3; /* Compute repeat count. */
7452
7453 /* The character before ``*'' is repeated. */
7454
7455 if (repeat > 0 && repeat <= 255 && bc > 0)
7456 {
7457 if (bc + repeat - 1 >= *sizeof_buf - 1)
7458 {
7459 /* Make some more room in the buffer. */
7460 *sizeof_buf += repeat;
7461 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7462 buf = *buf_p;
7463 }
7464
7465 memset (&buf[bc], buf[bc - 1], repeat);
7466 bc += repeat;
7467 continue;
7468 }
7469
7470 buf[bc] = '\0';
7471 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7472 return -1;
7473 }
7474 default:
7475 if (bc >= *sizeof_buf - 1)
7476 {
7477 /* Make some more room in the buffer. */
7478 *sizeof_buf *= 2;
7479 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7480 buf = *buf_p;
7481 }
7482
7483 buf[bc++] = c;
7484 csum += c;
7485 continue;
7486 }
7487 }
7488 }
7489
7490 /* Read a packet from the remote machine, with error checking, and
7491 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7492 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7493 rather than timing out; this is used (in synchronous mode) to wait
7494 for a target that is is executing user code to stop. */
7495 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7496 don't have to change all the calls to getpkt to deal with the
7497 return value, because at the moment I don't know what the right
7498 thing to do it for those. */
7499 void
7500 getpkt (char **buf,
7501 long *sizeof_buf,
7502 int forever)
7503 {
7504 int timed_out;
7505
7506 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7507 }
7508
7509
7510 /* Read a packet from the remote machine, with error checking, and
7511 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7512 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7513 rather than timing out; this is used (in synchronous mode) to wait
7514 for a target that is is executing user code to stop. If FOREVER ==
7515 0, this function is allowed to time out gracefully and return an
7516 indication of this to the caller. Otherwise return the number of
7517 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7518 enough reason to return to the caller. *IS_NOTIF is an output
7519 boolean that indicates whether *BUF holds a notification or not
7520 (a regular packet). */
7521
7522 static int
7523 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7524 int expecting_notif, int *is_notif)
7525 {
7526 struct remote_state *rs = get_remote_state ();
7527 int c;
7528 int tries;
7529 int timeout;
7530 int val = -1;
7531
7532 /* We're reading a new response. Make sure we don't look at a
7533 previously cached response. */
7534 rs->cached_wait_status = 0;
7535
7536 strcpy (*buf, "timeout");
7537
7538 if (forever)
7539 timeout = watchdog > 0 ? watchdog : -1;
7540 else if (expecting_notif)
7541 timeout = 0; /* There should already be a char in the buffer. If
7542 not, bail out. */
7543 else
7544 timeout = remote_timeout;
7545
7546 #define MAX_TRIES 3
7547
7548 /* Process any number of notifications, and then return when
7549 we get a packet. */
7550 for (;;)
7551 {
7552 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7553 times. */
7554 for (tries = 1; tries <= MAX_TRIES; tries++)
7555 {
7556 /* This can loop forever if the remote side sends us
7557 characters continuously, but if it pauses, we'll get
7558 SERIAL_TIMEOUT from readchar because of timeout. Then
7559 we'll count that as a retry.
7560
7561 Note that even when forever is set, we will only wait
7562 forever prior to the start of a packet. After that, we
7563 expect characters to arrive at a brisk pace. They should
7564 show up within remote_timeout intervals. */
7565 do
7566 c = readchar (timeout);
7567 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7568
7569 if (c == SERIAL_TIMEOUT)
7570 {
7571 if (expecting_notif)
7572 return -1; /* Don't complain, it's normal to not get
7573 anything in this case. */
7574
7575 if (forever) /* Watchdog went off? Kill the target. */
7576 {
7577 QUIT;
7578 remote_unpush_target ();
7579 error (_("Watchdog timeout has expired. Target detached."));
7580 }
7581 if (remote_debug)
7582 fputs_filtered ("Timed out.\n", gdb_stdlog);
7583 }
7584 else
7585 {
7586 /* We've found the start of a packet or notification.
7587 Now collect the data. */
7588 val = read_frame (buf, sizeof_buf);
7589 if (val >= 0)
7590 break;
7591 }
7592
7593 serial_write (remote_desc, "-", 1);
7594 }
7595
7596 if (tries > MAX_TRIES)
7597 {
7598 /* We have tried hard enough, and just can't receive the
7599 packet/notification. Give up. */
7600 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7601
7602 /* Skip the ack char if we're in no-ack mode. */
7603 if (!rs->noack_mode)
7604 serial_write (remote_desc, "+", 1);
7605 return -1;
7606 }
7607
7608 /* If we got an ordinary packet, return that to our caller. */
7609 if (c == '$')
7610 {
7611 if (remote_debug)
7612 {
7613 struct cleanup *old_chain;
7614 char *str;
7615
7616 str = escape_buffer (*buf, val);
7617 old_chain = make_cleanup (xfree, str);
7618 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7619 do_cleanups (old_chain);
7620 }
7621
7622 /* Skip the ack char if we're in no-ack mode. */
7623 if (!rs->noack_mode)
7624 serial_write (remote_desc, "+", 1);
7625 if (is_notif != NULL)
7626 *is_notif = 0;
7627 return val;
7628 }
7629
7630 /* If we got a notification, handle it, and go back to looking
7631 for a packet. */
7632 else
7633 {
7634 gdb_assert (c == '%');
7635
7636 if (remote_debug)
7637 {
7638 struct cleanup *old_chain;
7639 char *str;
7640
7641 str = escape_buffer (*buf, val);
7642 old_chain = make_cleanup (xfree, str);
7643 fprintf_unfiltered (gdb_stdlog,
7644 " Notification received: %s\n",
7645 str);
7646 do_cleanups (old_chain);
7647 }
7648 if (is_notif != NULL)
7649 *is_notif = 1;
7650
7651 handle_notification (*buf);
7652
7653 /* Notifications require no acknowledgement. */
7654
7655 if (expecting_notif)
7656 return val;
7657 }
7658 }
7659 }
7660
7661 static int
7662 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7663 {
7664 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
7665 }
7666
7667 static int
7668 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
7669 int *is_notif)
7670 {
7671 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
7672 is_notif);
7673 }
7674
7675 \f
7676 /* A helper function that just calls putpkt; for type correctness. */
7677
7678 static int
7679 putpkt_for_catch_errors (void *arg)
7680 {
7681 return putpkt (arg);
7682 }
7683
7684 static void
7685 remote_kill (struct target_ops *ops)
7686 {
7687 /* Use catch_errors so the user can quit from gdb even when we
7688 aren't on speaking terms with the remote system. */
7689 catch_errors (putpkt_for_catch_errors, "k", "", RETURN_MASK_ERROR);
7690
7691 /* Don't wait for it to die. I'm not really sure it matters whether
7692 we do or not. For the existing stubs, kill is a noop. */
7693 target_mourn_inferior ();
7694 }
7695
7696 static int
7697 remote_vkill (int pid, struct remote_state *rs)
7698 {
7699 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7700 return -1;
7701
7702 /* Tell the remote target to detach. */
7703 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7704 putpkt (rs->buf);
7705 getpkt (&rs->buf, &rs->buf_size, 0);
7706
7707 if (packet_ok (rs->buf,
7708 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7709 return 0;
7710 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7711 return -1;
7712 else
7713 return 1;
7714 }
7715
7716 static void
7717 extended_remote_kill (struct target_ops *ops)
7718 {
7719 int res;
7720 int pid = ptid_get_pid (inferior_ptid);
7721 struct remote_state *rs = get_remote_state ();
7722
7723 res = remote_vkill (pid, rs);
7724 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7725 {
7726 /* Don't try 'k' on a multi-process aware stub -- it has no way
7727 to specify the pid. */
7728
7729 putpkt ("k");
7730 #if 0
7731 getpkt (&rs->buf, &rs->buf_size, 0);
7732 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7733 res = 1;
7734 #else
7735 /* Don't wait for it to die. I'm not really sure it matters whether
7736 we do or not. For the existing stubs, kill is a noop. */
7737 res = 0;
7738 #endif
7739 }
7740
7741 if (res != 0)
7742 error (_("Can't kill process"));
7743
7744 target_mourn_inferior ();
7745 }
7746
7747 static void
7748 remote_mourn (struct target_ops *ops)
7749 {
7750 remote_mourn_1 (ops);
7751 }
7752
7753 /* Worker function for remote_mourn. */
7754 static void
7755 remote_mourn_1 (struct target_ops *target)
7756 {
7757 unpush_target (target);
7758
7759 /* remote_close takes care of doing most of the clean up. */
7760 generic_mourn_inferior ();
7761 }
7762
7763 static void
7764 extended_remote_mourn_1 (struct target_ops *target)
7765 {
7766 struct remote_state *rs = get_remote_state ();
7767
7768 /* In case we got here due to an error, but we're going to stay
7769 connected. */
7770 rs->waiting_for_stop_reply = 0;
7771
7772 /* If the current general thread belonged to the process we just
7773 detached from or has exited, the remote side current general
7774 thread becomes undefined. Considering a case like this:
7775
7776 - We just got here due to a detach.
7777 - The process that we're detaching from happens to immediately
7778 report a global breakpoint being hit in non-stop mode, in the
7779 same thread we had selected before.
7780 - GDB attaches to this process again.
7781 - This event happens to be the next event we handle.
7782
7783 GDB would consider that the current general thread didn't need to
7784 be set on the stub side (with Hg), since for all it knew,
7785 GENERAL_THREAD hadn't changed.
7786
7787 Notice that although in all-stop mode, the remote server always
7788 sets the current thread to the thread reporting the stop event,
7789 that doesn't happen in non-stop mode; in non-stop, the stub *must
7790 not* change the current thread when reporting a breakpoint hit,
7791 due to the decoupling of event reporting and event handling.
7792
7793 To keep things simple, we always invalidate our notion of the
7794 current thread. */
7795 record_currthread (minus_one_ptid);
7796
7797 /* Unlike "target remote", we do not want to unpush the target; then
7798 the next time the user says "run", we won't be connected. */
7799
7800 /* Call common code to mark the inferior as not running. */
7801 generic_mourn_inferior ();
7802
7803 if (!have_inferiors ())
7804 {
7805 if (!remote_multi_process_p (rs))
7806 {
7807 /* Check whether the target is running now - some remote stubs
7808 automatically restart after kill. */
7809 putpkt ("?");
7810 getpkt (&rs->buf, &rs->buf_size, 0);
7811
7812 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7813 {
7814 /* Assume that the target has been restarted. Set
7815 inferior_ptid so that bits of core GDB realizes
7816 there's something here, e.g., so that the user can
7817 say "kill" again. */
7818 inferior_ptid = magic_null_ptid;
7819 }
7820 }
7821 }
7822 }
7823
7824 static void
7825 extended_remote_mourn (struct target_ops *ops)
7826 {
7827 extended_remote_mourn_1 (ops);
7828 }
7829
7830 static int
7831 extended_remote_supports_disable_randomization (void)
7832 {
7833 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7834 == PACKET_ENABLE);
7835 }
7836
7837 static void
7838 extended_remote_disable_randomization (int val)
7839 {
7840 struct remote_state *rs = get_remote_state ();
7841 char *reply;
7842
7843 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
7844 val);
7845 putpkt (rs->buf);
7846 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7847 if (*reply == '\0')
7848 error (_("Target does not support QDisableRandomization."));
7849 if (strcmp (reply, "OK") != 0)
7850 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7851 }
7852
7853 static int
7854 extended_remote_run (char *args)
7855 {
7856 struct remote_state *rs = get_remote_state ();
7857 int len;
7858
7859 /* If the user has disabled vRun support, or we have detected that
7860 support is not available, do not try it. */
7861 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7862 return -1;
7863
7864 strcpy (rs->buf, "vRun;");
7865 len = strlen (rs->buf);
7866
7867 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7868 error (_("Remote file name too long for run packet"));
7869 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
7870
7871 gdb_assert (args != NULL);
7872 if (*args)
7873 {
7874 struct cleanup *back_to;
7875 int i;
7876 char **argv;
7877
7878 argv = gdb_buildargv (args);
7879 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
7880 for (i = 0; argv[i] != NULL; i++)
7881 {
7882 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
7883 error (_("Argument list too long for run packet"));
7884 rs->buf[len++] = ';';
7885 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
7886 }
7887 do_cleanups (back_to);
7888 }
7889
7890 rs->buf[len++] = '\0';
7891
7892 putpkt (rs->buf);
7893 getpkt (&rs->buf, &rs->buf_size, 0);
7894
7895 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
7896 {
7897 /* We have a wait response. All is well. */
7898 return 0;
7899 }
7900 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7901 /* It wasn't disabled before, but it is now. */
7902 return -1;
7903 else
7904 {
7905 if (remote_exec_file[0] == '\0')
7906 error (_("Running the default executable on the remote target failed; "
7907 "try \"set remote exec-file\"?"));
7908 else
7909 error (_("Running \"%s\" on the remote target failed"),
7910 remote_exec_file);
7911 }
7912 }
7913
7914 /* In the extended protocol we want to be able to do things like
7915 "run" and have them basically work as expected. So we need
7916 a special create_inferior function. We support changing the
7917 executable file and the command line arguments, but not the
7918 environment. */
7919
7920 static void
7921 extended_remote_create_inferior_1 (char *exec_file, char *args,
7922 char **env, int from_tty)
7923 {
7924 int run_worked;
7925 char *stop_reply;
7926 struct remote_state *rs = get_remote_state ();
7927
7928 /* If running asynchronously, register the target file descriptor
7929 with the event loop. */
7930 if (target_can_async_p ())
7931 target_async (inferior_event_handler, 0);
7932
7933 /* Disable address space randomization if requested (and supported). */
7934 if (extended_remote_supports_disable_randomization ())
7935 extended_remote_disable_randomization (disable_randomization);
7936
7937 /* Now restart the remote server. */
7938 run_worked = extended_remote_run (args) != -1;
7939 if (!run_worked)
7940 {
7941 /* vRun was not supported. Fail if we need it to do what the
7942 user requested. */
7943 if (remote_exec_file[0])
7944 error (_("Remote target does not support \"set remote exec-file\""));
7945 if (args[0])
7946 error (_("Remote target does not support \"set args\" or run <ARGS>"));
7947
7948 /* Fall back to "R". */
7949 extended_remote_restart ();
7950 }
7951
7952 if (!have_inferiors ())
7953 {
7954 /* Clean up from the last time we ran, before we mark the target
7955 running again. This will mark breakpoints uninserted, and
7956 get_offsets may insert breakpoints. */
7957 init_thread_list ();
7958 init_wait_for_inferior ();
7959 }
7960
7961 /* vRun's success return is a stop reply. */
7962 stop_reply = run_worked ? rs->buf : NULL;
7963 add_current_inferior_and_thread (stop_reply);
7964
7965 /* Get updated offsets, if the stub uses qOffsets. */
7966 get_offsets ();
7967 }
7968
7969 static void
7970 extended_remote_create_inferior (struct target_ops *ops,
7971 char *exec_file, char *args,
7972 char **env, int from_tty)
7973 {
7974 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
7975 }
7976 \f
7977
7978 /* Given a location's target info BP_TGT and the packet buffer BUF, output
7979 the list of conditions (in agent expression bytecode format), if any, the
7980 target needs to evaluate. The output is placed into the packet buffer
7981 started from BUF and ended at BUF_END. */
7982
7983 static int
7984 remote_add_target_side_condition (struct gdbarch *gdbarch,
7985 struct bp_target_info *bp_tgt, char *buf,
7986 char *buf_end)
7987 {
7988 struct agent_expr *aexpr = NULL;
7989 int i, ix;
7990 char *pkt;
7991 char *buf_start = buf;
7992
7993 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
7994 return 0;
7995
7996 buf += strlen (buf);
7997 xsnprintf (buf, buf_end - buf, "%s", ";");
7998 buf++;
7999
8000 /* Send conditions to the target and free the vector. */
8001 for (ix = 0;
8002 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
8003 ix++)
8004 {
8005 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
8006 buf += strlen (buf);
8007 for (i = 0; i < aexpr->len; ++i)
8008 buf = pack_hex_byte (buf, aexpr->buf[i]);
8009 *buf = '\0';
8010 }
8011
8012 VEC_free (agent_expr_p, bp_tgt->conditions);
8013 return 0;
8014 }
8015
8016 static void
8017 remote_add_target_side_commands (struct gdbarch *gdbarch,
8018 struct bp_target_info *bp_tgt, char *buf)
8019 {
8020 struct agent_expr *aexpr = NULL;
8021 int i, ix;
8022
8023 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
8024 return;
8025
8026 buf += strlen (buf);
8027
8028 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
8029 buf += strlen (buf);
8030
8031 /* Concatenate all the agent expressions that are commands into the
8032 cmds parameter. */
8033 for (ix = 0;
8034 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
8035 ix++)
8036 {
8037 sprintf (buf, "X%x,", aexpr->len);
8038 buf += strlen (buf);
8039 for (i = 0; i < aexpr->len; ++i)
8040 buf = pack_hex_byte (buf, aexpr->buf[i]);
8041 *buf = '\0';
8042 }
8043
8044 VEC_free (agent_expr_p, bp_tgt->tcommands);
8045 }
8046
8047 /* Insert a breakpoint. On targets that have software breakpoint
8048 support, we ask the remote target to do the work; on targets
8049 which don't, we insert a traditional memory breakpoint. */
8050
8051 static int
8052 remote_insert_breakpoint (struct gdbarch *gdbarch,
8053 struct bp_target_info *bp_tgt)
8054 {
8055 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
8056 If it succeeds, then set the support to PACKET_ENABLE. If it
8057 fails, and the user has explicitly requested the Z support then
8058 report an error, otherwise, mark it disabled and go on. */
8059
8060 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8061 {
8062 CORE_ADDR addr = bp_tgt->placed_address;
8063 struct remote_state *rs;
8064 char *p, *endbuf;
8065 int bpsize;
8066 struct condition_list *cond = NULL;
8067
8068 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
8069
8070 rs = get_remote_state ();
8071 p = rs->buf;
8072 endbuf = rs->buf + get_remote_packet_size ();
8073
8074 *(p++) = 'Z';
8075 *(p++) = '0';
8076 *(p++) = ',';
8077 addr = (ULONGEST) remote_address_masked (addr);
8078 p += hexnumstr (p, addr);
8079 xsnprintf (p, endbuf - p, ",%d", bpsize);
8080
8081 if (remote_supports_cond_breakpoints ())
8082 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8083
8084 if (remote_can_run_breakpoint_commands ())
8085 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8086
8087 putpkt (rs->buf);
8088 getpkt (&rs->buf, &rs->buf_size, 0);
8089
8090 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
8091 {
8092 case PACKET_ERROR:
8093 return -1;
8094 case PACKET_OK:
8095 bp_tgt->placed_address = addr;
8096 bp_tgt->placed_size = bpsize;
8097 return 0;
8098 case PACKET_UNKNOWN:
8099 break;
8100 }
8101 }
8102
8103 return memory_insert_breakpoint (gdbarch, bp_tgt);
8104 }
8105
8106 static int
8107 remote_remove_breakpoint (struct gdbarch *gdbarch,
8108 struct bp_target_info *bp_tgt)
8109 {
8110 CORE_ADDR addr = bp_tgt->placed_address;
8111 struct remote_state *rs = get_remote_state ();
8112
8113 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8114 {
8115 char *p = rs->buf;
8116 char *endbuf = rs->buf + get_remote_packet_size ();
8117
8118 *(p++) = 'z';
8119 *(p++) = '0';
8120 *(p++) = ',';
8121
8122 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8123 p += hexnumstr (p, addr);
8124 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8125
8126 putpkt (rs->buf);
8127 getpkt (&rs->buf, &rs->buf_size, 0);
8128
8129 return (rs->buf[0] == 'E');
8130 }
8131
8132 return memory_remove_breakpoint (gdbarch, bp_tgt);
8133 }
8134
8135 static int
8136 watchpoint_to_Z_packet (int type)
8137 {
8138 switch (type)
8139 {
8140 case hw_write:
8141 return Z_PACKET_WRITE_WP;
8142 break;
8143 case hw_read:
8144 return Z_PACKET_READ_WP;
8145 break;
8146 case hw_access:
8147 return Z_PACKET_ACCESS_WP;
8148 break;
8149 default:
8150 internal_error (__FILE__, __LINE__,
8151 _("hw_bp_to_z: bad watchpoint type %d"), type);
8152 }
8153 }
8154
8155 static int
8156 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
8157 struct expression *cond)
8158 {
8159 struct remote_state *rs = get_remote_state ();
8160 char *endbuf = rs->buf + get_remote_packet_size ();
8161 char *p;
8162 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8163
8164 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8165 return 1;
8166
8167 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8168 p = strchr (rs->buf, '\0');
8169 addr = remote_address_masked (addr);
8170 p += hexnumstr (p, (ULONGEST) addr);
8171 xsnprintf (p, endbuf - p, ",%x", len);
8172
8173 putpkt (rs->buf);
8174 getpkt (&rs->buf, &rs->buf_size, 0);
8175
8176 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8177 {
8178 case PACKET_ERROR:
8179 return -1;
8180 case PACKET_UNKNOWN:
8181 return 1;
8182 case PACKET_OK:
8183 return 0;
8184 }
8185 internal_error (__FILE__, __LINE__,
8186 _("remote_insert_watchpoint: reached end of function"));
8187 }
8188
8189 static int
8190 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8191 CORE_ADDR start, int length)
8192 {
8193 CORE_ADDR diff = remote_address_masked (addr - start);
8194
8195 return diff < length;
8196 }
8197
8198
8199 static int
8200 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
8201 struct expression *cond)
8202 {
8203 struct remote_state *rs = get_remote_state ();
8204 char *endbuf = rs->buf + get_remote_packet_size ();
8205 char *p;
8206 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8207
8208 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8209 return -1;
8210
8211 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8212 p = strchr (rs->buf, '\0');
8213 addr = remote_address_masked (addr);
8214 p += hexnumstr (p, (ULONGEST) addr);
8215 xsnprintf (p, endbuf - p, ",%x", len);
8216 putpkt (rs->buf);
8217 getpkt (&rs->buf, &rs->buf_size, 0);
8218
8219 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8220 {
8221 case PACKET_ERROR:
8222 case PACKET_UNKNOWN:
8223 return -1;
8224 case PACKET_OK:
8225 return 0;
8226 }
8227 internal_error (__FILE__, __LINE__,
8228 _("remote_remove_watchpoint: reached end of function"));
8229 }
8230
8231
8232 int remote_hw_watchpoint_limit = -1;
8233 int remote_hw_watchpoint_length_limit = -1;
8234 int remote_hw_breakpoint_limit = -1;
8235
8236 static int
8237 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
8238 {
8239 if (remote_hw_watchpoint_length_limit == 0)
8240 return 0;
8241 else if (remote_hw_watchpoint_length_limit < 0)
8242 return 1;
8243 else if (len <= remote_hw_watchpoint_length_limit)
8244 return 1;
8245 else
8246 return 0;
8247 }
8248
8249 static int
8250 remote_check_watch_resources (int type, int cnt, int ot)
8251 {
8252 if (type == bp_hardware_breakpoint)
8253 {
8254 if (remote_hw_breakpoint_limit == 0)
8255 return 0;
8256 else if (remote_hw_breakpoint_limit < 0)
8257 return 1;
8258 else if (cnt <= remote_hw_breakpoint_limit)
8259 return 1;
8260 }
8261 else
8262 {
8263 if (remote_hw_watchpoint_limit == 0)
8264 return 0;
8265 else if (remote_hw_watchpoint_limit < 0)
8266 return 1;
8267 else if (ot)
8268 return -1;
8269 else if (cnt <= remote_hw_watchpoint_limit)
8270 return 1;
8271 }
8272 return -1;
8273 }
8274
8275 static int
8276 remote_stopped_by_watchpoint (void)
8277 {
8278 return remote_stopped_by_watchpoint_p;
8279 }
8280
8281 static int
8282 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8283 {
8284 int rc = 0;
8285
8286 if (remote_stopped_by_watchpoint ())
8287 {
8288 *addr_p = remote_watch_data_address;
8289 rc = 1;
8290 }
8291
8292 return rc;
8293 }
8294
8295
8296 static int
8297 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8298 struct bp_target_info *bp_tgt)
8299 {
8300 CORE_ADDR addr;
8301 struct remote_state *rs;
8302 char *p, *endbuf;
8303 char *message;
8304
8305 /* The length field should be set to the size of a breakpoint
8306 instruction, even though we aren't inserting one ourselves. */
8307
8308 gdbarch_remote_breakpoint_from_pc
8309 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8310
8311 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8312 return -1;
8313
8314 rs = get_remote_state ();
8315 p = rs->buf;
8316 endbuf = rs->buf + get_remote_packet_size ();
8317
8318 *(p++) = 'Z';
8319 *(p++) = '1';
8320 *(p++) = ',';
8321
8322 addr = remote_address_masked (bp_tgt->placed_address);
8323 p += hexnumstr (p, (ULONGEST) addr);
8324 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8325
8326 if (remote_supports_cond_breakpoints ())
8327 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8328
8329 if (remote_can_run_breakpoint_commands ())
8330 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8331
8332 putpkt (rs->buf);
8333 getpkt (&rs->buf, &rs->buf_size, 0);
8334
8335 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8336 {
8337 case PACKET_ERROR:
8338 if (rs->buf[1] == '.')
8339 {
8340 message = strchr (rs->buf + 2, '.');
8341 if (message)
8342 error (_("Remote failure reply: %s"), message + 1);
8343 }
8344 return -1;
8345 case PACKET_UNKNOWN:
8346 return -1;
8347 case PACKET_OK:
8348 return 0;
8349 }
8350 internal_error (__FILE__, __LINE__,
8351 _("remote_insert_hw_breakpoint: reached end of function"));
8352 }
8353
8354
8355 static int
8356 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8357 struct bp_target_info *bp_tgt)
8358 {
8359 CORE_ADDR addr;
8360 struct remote_state *rs = get_remote_state ();
8361 char *p = rs->buf;
8362 char *endbuf = rs->buf + get_remote_packet_size ();
8363
8364 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8365 return -1;
8366
8367 *(p++) = 'z';
8368 *(p++) = '1';
8369 *(p++) = ',';
8370
8371 addr = remote_address_masked (bp_tgt->placed_address);
8372 p += hexnumstr (p, (ULONGEST) addr);
8373 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8374
8375 putpkt (rs->buf);
8376 getpkt (&rs->buf, &rs->buf_size, 0);
8377
8378 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8379 {
8380 case PACKET_ERROR:
8381 case PACKET_UNKNOWN:
8382 return -1;
8383 case PACKET_OK:
8384 return 0;
8385 }
8386 internal_error (__FILE__, __LINE__,
8387 _("remote_remove_hw_breakpoint: reached end of function"));
8388 }
8389
8390 /* Table used by the crc32 function to calcuate the checksum. */
8391
8392 static unsigned long crc32_table[256] =
8393 {0, 0};
8394
8395 static unsigned long
8396 crc32 (const unsigned char *buf, int len, unsigned int crc)
8397 {
8398 if (!crc32_table[1])
8399 {
8400 /* Initialize the CRC table and the decoding table. */
8401 int i, j;
8402 unsigned int c;
8403
8404 for (i = 0; i < 256; i++)
8405 {
8406 for (c = i << 24, j = 8; j > 0; --j)
8407 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
8408 crc32_table[i] = c;
8409 }
8410 }
8411
8412 while (len--)
8413 {
8414 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
8415 buf++;
8416 }
8417 return crc;
8418 }
8419
8420 /* Verify memory using the "qCRC:" request. */
8421
8422 static int
8423 remote_verify_memory (struct target_ops *ops,
8424 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8425 {
8426 struct remote_state *rs = get_remote_state ();
8427 unsigned long host_crc, target_crc;
8428 char *tmp;
8429
8430 /* FIXME: assumes lma can fit into long. */
8431 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8432 (long) lma, (long) size);
8433 putpkt (rs->buf);
8434
8435 /* Be clever; compute the host_crc before waiting for target
8436 reply. */
8437 host_crc = crc32 (data, size, 0xffffffff);
8438
8439 getpkt (&rs->buf, &rs->buf_size, 0);
8440 if (rs->buf[0] == 'E')
8441 return -1;
8442
8443 if (rs->buf[0] != 'C')
8444 error (_("remote target does not support this operation"));
8445
8446 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8447 target_crc = target_crc * 16 + fromhex (*tmp);
8448
8449 return (host_crc == target_crc);
8450 }
8451
8452 /* compare-sections command
8453
8454 With no arguments, compares each loadable section in the exec bfd
8455 with the same memory range on the target, and reports mismatches.
8456 Useful for verifying the image on the target against the exec file. */
8457
8458 static void
8459 compare_sections_command (char *args, int from_tty)
8460 {
8461 asection *s;
8462 struct cleanup *old_chain;
8463 char *sectdata;
8464 const char *sectname;
8465 bfd_size_type size;
8466 bfd_vma lma;
8467 int matched = 0;
8468 int mismatched = 0;
8469 int res;
8470
8471 if (!exec_bfd)
8472 error (_("command cannot be used without an exec file"));
8473
8474 for (s = exec_bfd->sections; s; s = s->next)
8475 {
8476 if (!(s->flags & SEC_LOAD))
8477 continue; /* Skip non-loadable section. */
8478
8479 size = bfd_get_section_size (s);
8480 if (size == 0)
8481 continue; /* Skip zero-length section. */
8482
8483 sectname = bfd_get_section_name (exec_bfd, s);
8484 if (args && strcmp (args, sectname) != 0)
8485 continue; /* Not the section selected by user. */
8486
8487 matched = 1; /* Do this section. */
8488 lma = s->lma;
8489
8490 sectdata = xmalloc (size);
8491 old_chain = make_cleanup (xfree, sectdata);
8492 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8493
8494 res = target_verify_memory (sectdata, lma, size);
8495
8496 if (res == -1)
8497 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8498 paddress (target_gdbarch (), lma),
8499 paddress (target_gdbarch (), lma + size));
8500
8501 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8502 paddress (target_gdbarch (), lma),
8503 paddress (target_gdbarch (), lma + size));
8504 if (res)
8505 printf_filtered ("matched.\n");
8506 else
8507 {
8508 printf_filtered ("MIS-MATCHED!\n");
8509 mismatched++;
8510 }
8511
8512 do_cleanups (old_chain);
8513 }
8514 if (mismatched > 0)
8515 warning (_("One or more sections of the remote executable does not match\n\
8516 the loaded file\n"));
8517 if (args && !matched)
8518 printf_filtered (_("No loaded section named '%s'.\n"), args);
8519 }
8520
8521 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8522 into remote target. The number of bytes written to the remote
8523 target is returned, or -1 for error. */
8524
8525 static LONGEST
8526 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8527 const char *annex, const gdb_byte *writebuf,
8528 ULONGEST offset, LONGEST len,
8529 struct packet_config *packet)
8530 {
8531 int i, buf_len;
8532 ULONGEST n;
8533 struct remote_state *rs = get_remote_state ();
8534 int max_size = get_memory_write_packet_size ();
8535
8536 if (packet->support == PACKET_DISABLE)
8537 return -1;
8538
8539 /* Insert header. */
8540 i = snprintf (rs->buf, max_size,
8541 "qXfer:%s:write:%s:%s:",
8542 object_name, annex ? annex : "",
8543 phex_nz (offset, sizeof offset));
8544 max_size -= (i + 1);
8545
8546 /* Escape as much data as fits into rs->buf. */
8547 buf_len = remote_escape_output
8548 (writebuf, len, (rs->buf + i), &max_size, max_size);
8549
8550 if (putpkt_binary (rs->buf, i + buf_len) < 0
8551 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8552 || packet_ok (rs->buf, packet) != PACKET_OK)
8553 return -1;
8554
8555 unpack_varlen_hex (rs->buf, &n);
8556 return n;
8557 }
8558
8559 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8560 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8561 number of bytes read is returned, or 0 for EOF, or -1 for error.
8562 The number of bytes read may be less than LEN without indicating an
8563 EOF. PACKET is checked and updated to indicate whether the remote
8564 target supports this object. */
8565
8566 static LONGEST
8567 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8568 const char *annex,
8569 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8570 struct packet_config *packet)
8571 {
8572 static char *finished_object;
8573 static char *finished_annex;
8574 static ULONGEST finished_offset;
8575
8576 struct remote_state *rs = get_remote_state ();
8577 LONGEST i, n, packet_len;
8578
8579 if (packet->support == PACKET_DISABLE)
8580 return -1;
8581
8582 /* Check whether we've cached an end-of-object packet that matches
8583 this request. */
8584 if (finished_object)
8585 {
8586 if (strcmp (object_name, finished_object) == 0
8587 && strcmp (annex ? annex : "", finished_annex) == 0
8588 && offset == finished_offset)
8589 return 0;
8590
8591 /* Otherwise, we're now reading something different. Discard
8592 the cache. */
8593 xfree (finished_object);
8594 xfree (finished_annex);
8595 finished_object = NULL;
8596 finished_annex = NULL;
8597 }
8598
8599 /* Request only enough to fit in a single packet. The actual data
8600 may not, since we don't know how much of it will need to be escaped;
8601 the target is free to respond with slightly less data. We subtract
8602 five to account for the response type and the protocol frame. */
8603 n = min (get_remote_packet_size () - 5, len);
8604 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8605 object_name, annex ? annex : "",
8606 phex_nz (offset, sizeof offset),
8607 phex_nz (n, sizeof n));
8608 i = putpkt (rs->buf);
8609 if (i < 0)
8610 return -1;
8611
8612 rs->buf[0] = '\0';
8613 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8614 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8615 return -1;
8616
8617 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8618 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8619
8620 /* 'm' means there is (or at least might be) more data after this
8621 batch. That does not make sense unless there's at least one byte
8622 of data in this reply. */
8623 if (rs->buf[0] == 'm' && packet_len == 1)
8624 error (_("Remote qXfer reply contained no data."));
8625
8626 /* Got some data. */
8627 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
8628
8629 /* 'l' is an EOF marker, possibly including a final block of data,
8630 or possibly empty. If we have the final block of a non-empty
8631 object, record this fact to bypass a subsequent partial read. */
8632 if (rs->buf[0] == 'l' && offset + i > 0)
8633 {
8634 finished_object = xstrdup (object_name);
8635 finished_annex = xstrdup (annex ? annex : "");
8636 finished_offset = offset + i;
8637 }
8638
8639 return i;
8640 }
8641
8642 static LONGEST
8643 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8644 const char *annex, gdb_byte *readbuf,
8645 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8646 {
8647 struct remote_state *rs;
8648 int i;
8649 char *p2;
8650 char query_type;
8651
8652 set_remote_traceframe ();
8653 set_general_thread (inferior_ptid);
8654
8655 rs = get_remote_state ();
8656
8657 /* Handle memory using the standard memory routines. */
8658 if (object == TARGET_OBJECT_MEMORY)
8659 {
8660 int xfered;
8661
8662 errno = 0;
8663
8664 /* If the remote target is connected but not running, we should
8665 pass this request down to a lower stratum (e.g. the executable
8666 file). */
8667 if (!target_has_execution)
8668 return 0;
8669
8670 if (writebuf != NULL)
8671 xfered = remote_write_bytes (offset, writebuf, len);
8672 else
8673 xfered = remote_read_bytes (offset, readbuf, len);
8674
8675 if (xfered > 0)
8676 return xfered;
8677 else if (xfered == 0 && errno == 0)
8678 return 0;
8679 else
8680 return -1;
8681 }
8682
8683 /* Handle SPU memory using qxfer packets. */
8684 if (object == TARGET_OBJECT_SPU)
8685 {
8686 if (readbuf)
8687 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8688 &remote_protocol_packets
8689 [PACKET_qXfer_spu_read]);
8690 else
8691 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8692 &remote_protocol_packets
8693 [PACKET_qXfer_spu_write]);
8694 }
8695
8696 /* Handle extra signal info using qxfer packets. */
8697 if (object == TARGET_OBJECT_SIGNAL_INFO)
8698 {
8699 if (readbuf)
8700 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8701 &remote_protocol_packets
8702 [PACKET_qXfer_siginfo_read]);
8703 else
8704 return remote_write_qxfer (ops, "siginfo", annex,
8705 writebuf, offset, len,
8706 &remote_protocol_packets
8707 [PACKET_qXfer_siginfo_write]);
8708 }
8709
8710 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8711 {
8712 if (readbuf)
8713 return remote_read_qxfer (ops, "statictrace", annex,
8714 readbuf, offset, len,
8715 &remote_protocol_packets
8716 [PACKET_qXfer_statictrace_read]);
8717 else
8718 return -1;
8719 }
8720
8721 /* Only handle flash writes. */
8722 if (writebuf != NULL)
8723 {
8724 LONGEST xfered;
8725
8726 switch (object)
8727 {
8728 case TARGET_OBJECT_FLASH:
8729 xfered = remote_flash_write (ops, offset, len, writebuf);
8730
8731 if (xfered > 0)
8732 return xfered;
8733 else if (xfered == 0 && errno == 0)
8734 return 0;
8735 else
8736 return -1;
8737
8738 default:
8739 return -1;
8740 }
8741 }
8742
8743 /* Map pre-existing objects onto letters. DO NOT do this for new
8744 objects!!! Instead specify new query packets. */
8745 switch (object)
8746 {
8747 case TARGET_OBJECT_AVR:
8748 query_type = 'R';
8749 break;
8750
8751 case TARGET_OBJECT_AUXV:
8752 gdb_assert (annex == NULL);
8753 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8754 &remote_protocol_packets[PACKET_qXfer_auxv]);
8755
8756 case TARGET_OBJECT_AVAILABLE_FEATURES:
8757 return remote_read_qxfer
8758 (ops, "features", annex, readbuf, offset, len,
8759 &remote_protocol_packets[PACKET_qXfer_features]);
8760
8761 case TARGET_OBJECT_LIBRARIES:
8762 return remote_read_qxfer
8763 (ops, "libraries", annex, readbuf, offset, len,
8764 &remote_protocol_packets[PACKET_qXfer_libraries]);
8765
8766 case TARGET_OBJECT_LIBRARIES_SVR4:
8767 return remote_read_qxfer
8768 (ops, "libraries-svr4", annex, readbuf, offset, len,
8769 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8770
8771 case TARGET_OBJECT_MEMORY_MAP:
8772 gdb_assert (annex == NULL);
8773 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8774 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8775
8776 case TARGET_OBJECT_OSDATA:
8777 /* Should only get here if we're connected. */
8778 gdb_assert (remote_desc);
8779 return remote_read_qxfer
8780 (ops, "osdata", annex, readbuf, offset, len,
8781 &remote_protocol_packets[PACKET_qXfer_osdata]);
8782
8783 case TARGET_OBJECT_THREADS:
8784 gdb_assert (annex == NULL);
8785 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8786 &remote_protocol_packets[PACKET_qXfer_threads]);
8787
8788 case TARGET_OBJECT_TRACEFRAME_INFO:
8789 gdb_assert (annex == NULL);
8790 return remote_read_qxfer
8791 (ops, "traceframe-info", annex, readbuf, offset, len,
8792 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8793
8794 case TARGET_OBJECT_FDPIC:
8795 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8796 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8797
8798 case TARGET_OBJECT_OPENVMS_UIB:
8799 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
8800 &remote_protocol_packets[PACKET_qXfer_uib]);
8801
8802 case TARGET_OBJECT_BTRACE:
8803 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
8804 &remote_protocol_packets[PACKET_qXfer_btrace]);
8805
8806 default:
8807 return -1;
8808 }
8809
8810 /* Note: a zero OFFSET and LEN can be used to query the minimum
8811 buffer size. */
8812 if (offset == 0 && len == 0)
8813 return (get_remote_packet_size ());
8814 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8815 large enough let the caller deal with it. */
8816 if (len < get_remote_packet_size ())
8817 return -1;
8818 len = get_remote_packet_size ();
8819
8820 /* Except for querying the minimum buffer size, target must be open. */
8821 if (!remote_desc)
8822 error (_("remote query is only available after target open"));
8823
8824 gdb_assert (annex != NULL);
8825 gdb_assert (readbuf != NULL);
8826
8827 p2 = rs->buf;
8828 *p2++ = 'q';
8829 *p2++ = query_type;
8830
8831 /* We used one buffer char for the remote protocol q command and
8832 another for the query type. As the remote protocol encapsulation
8833 uses 4 chars plus one extra in case we are debugging
8834 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8835 string. */
8836 i = 0;
8837 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8838 {
8839 /* Bad caller may have sent forbidden characters. */
8840 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8841 *p2++ = annex[i];
8842 i++;
8843 }
8844 *p2 = '\0';
8845 gdb_assert (annex[i] == '\0');
8846
8847 i = putpkt (rs->buf);
8848 if (i < 0)
8849 return i;
8850
8851 getpkt (&rs->buf, &rs->buf_size, 0);
8852 strcpy ((char *) readbuf, rs->buf);
8853
8854 return strlen ((char *) readbuf);
8855 }
8856
8857 static int
8858 remote_search_memory (struct target_ops* ops,
8859 CORE_ADDR start_addr, ULONGEST search_space_len,
8860 const gdb_byte *pattern, ULONGEST pattern_len,
8861 CORE_ADDR *found_addrp)
8862 {
8863 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8864 struct remote_state *rs = get_remote_state ();
8865 int max_size = get_memory_write_packet_size ();
8866 struct packet_config *packet =
8867 &remote_protocol_packets[PACKET_qSearch_memory];
8868 /* Number of packet bytes used to encode the pattern;
8869 this could be more than PATTERN_LEN due to escape characters. */
8870 int escaped_pattern_len;
8871 /* Amount of pattern that was encodable in the packet. */
8872 int used_pattern_len;
8873 int i;
8874 int found;
8875 ULONGEST found_addr;
8876
8877 /* Don't go to the target if we don't have to.
8878 This is done before checking packet->support to avoid the possibility that
8879 a success for this edge case means the facility works in general. */
8880 if (pattern_len > search_space_len)
8881 return 0;
8882 if (pattern_len == 0)
8883 {
8884 *found_addrp = start_addr;
8885 return 1;
8886 }
8887
8888 /* If we already know the packet isn't supported, fall back to the simple
8889 way of searching memory. */
8890
8891 if (packet->support == PACKET_DISABLE)
8892 {
8893 /* Target doesn't provided special support, fall back and use the
8894 standard support (copy memory and do the search here). */
8895 return simple_search_memory (ops, start_addr, search_space_len,
8896 pattern, pattern_len, found_addrp);
8897 }
8898
8899 /* Insert header. */
8900 i = snprintf (rs->buf, max_size,
8901 "qSearch:memory:%s;%s;",
8902 phex_nz (start_addr, addr_size),
8903 phex_nz (search_space_len, sizeof (search_space_len)));
8904 max_size -= (i + 1);
8905
8906 /* Escape as much data as fits into rs->buf. */
8907 escaped_pattern_len =
8908 remote_escape_output (pattern, pattern_len, (rs->buf + i),
8909 &used_pattern_len, max_size);
8910
8911 /* Bail if the pattern is too large. */
8912 if (used_pattern_len != pattern_len)
8913 error (_("Pattern is too large to transmit to remote target."));
8914
8915 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
8916 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8917 || packet_ok (rs->buf, packet) != PACKET_OK)
8918 {
8919 /* The request may not have worked because the command is not
8920 supported. If so, fall back to the simple way. */
8921 if (packet->support == PACKET_DISABLE)
8922 {
8923 return simple_search_memory (ops, start_addr, search_space_len,
8924 pattern, pattern_len, found_addrp);
8925 }
8926 return -1;
8927 }
8928
8929 if (rs->buf[0] == '0')
8930 found = 0;
8931 else if (rs->buf[0] == '1')
8932 {
8933 found = 1;
8934 if (rs->buf[1] != ',')
8935 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8936 unpack_varlen_hex (rs->buf + 2, &found_addr);
8937 *found_addrp = found_addr;
8938 }
8939 else
8940 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
8941
8942 return found;
8943 }
8944
8945 static void
8946 remote_rcmd (char *command,
8947 struct ui_file *outbuf)
8948 {
8949 struct remote_state *rs = get_remote_state ();
8950 char *p = rs->buf;
8951
8952 if (!remote_desc)
8953 error (_("remote rcmd is only available after target open"));
8954
8955 /* Send a NULL command across as an empty command. */
8956 if (command == NULL)
8957 command = "";
8958
8959 /* The query prefix. */
8960 strcpy (rs->buf, "qRcmd,");
8961 p = strchr (rs->buf, '\0');
8962
8963 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
8964 > get_remote_packet_size ())
8965 error (_("\"monitor\" command ``%s'' is too long."), command);
8966
8967 /* Encode the actual command. */
8968 bin2hex ((gdb_byte *) command, p, 0);
8969
8970 if (putpkt (rs->buf) < 0)
8971 error (_("Communication problem with target."));
8972
8973 /* get/display the response */
8974 while (1)
8975 {
8976 char *buf;
8977
8978 /* XXX - see also remote_get_noisy_reply(). */
8979 QUIT; /* Allow user to bail out with ^C. */
8980 rs->buf[0] = '\0';
8981 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
8982 {
8983 /* Timeout. Continue to (try to) read responses.
8984 This is better than stopping with an error, assuming the stub
8985 is still executing the (long) monitor command.
8986 If needed, the user can interrupt gdb using C-c, obtaining
8987 an effect similar to stop on timeout. */
8988 continue;
8989 }
8990 buf = rs->buf;
8991 if (buf[0] == '\0')
8992 error (_("Target does not support this command."));
8993 if (buf[0] == 'O' && buf[1] != 'K')
8994 {
8995 remote_console_output (buf + 1); /* 'O' message from stub. */
8996 continue;
8997 }
8998 if (strcmp (buf, "OK") == 0)
8999 break;
9000 if (strlen (buf) == 3 && buf[0] == 'E'
9001 && isdigit (buf[1]) && isdigit (buf[2]))
9002 {
9003 error (_("Protocol error with Rcmd"));
9004 }
9005 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
9006 {
9007 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
9008
9009 fputc_unfiltered (c, outbuf);
9010 }
9011 break;
9012 }
9013 }
9014
9015 static VEC(mem_region_s) *
9016 remote_memory_map (struct target_ops *ops)
9017 {
9018 VEC(mem_region_s) *result = NULL;
9019 char *text = target_read_stralloc (&current_target,
9020 TARGET_OBJECT_MEMORY_MAP, NULL);
9021
9022 if (text)
9023 {
9024 struct cleanup *back_to = make_cleanup (xfree, text);
9025
9026 result = parse_memory_map (text);
9027 do_cleanups (back_to);
9028 }
9029
9030 return result;
9031 }
9032
9033 static void
9034 packet_command (char *args, int from_tty)
9035 {
9036 struct remote_state *rs = get_remote_state ();
9037
9038 if (!remote_desc)
9039 error (_("command can only be used with remote target"));
9040
9041 if (!args)
9042 error (_("remote-packet command requires packet text as argument"));
9043
9044 puts_filtered ("sending: ");
9045 print_packet (args);
9046 puts_filtered ("\n");
9047 putpkt (args);
9048
9049 getpkt (&rs->buf, &rs->buf_size, 0);
9050 puts_filtered ("received: ");
9051 print_packet (rs->buf);
9052 puts_filtered ("\n");
9053 }
9054
9055 #if 0
9056 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
9057
9058 static void display_thread_info (struct gdb_ext_thread_info *info);
9059
9060 static void threadset_test_cmd (char *cmd, int tty);
9061
9062 static void threadalive_test (char *cmd, int tty);
9063
9064 static void threadlist_test_cmd (char *cmd, int tty);
9065
9066 int get_and_display_threadinfo (threadref *ref);
9067
9068 static void threadinfo_test_cmd (char *cmd, int tty);
9069
9070 static int thread_display_step (threadref *ref, void *context);
9071
9072 static void threadlist_update_test_cmd (char *cmd, int tty);
9073
9074 static void init_remote_threadtests (void);
9075
9076 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
9077
9078 static void
9079 threadset_test_cmd (char *cmd, int tty)
9080 {
9081 int sample_thread = SAMPLE_THREAD;
9082
9083 printf_filtered (_("Remote threadset test\n"));
9084 set_general_thread (sample_thread);
9085 }
9086
9087
9088 static void
9089 threadalive_test (char *cmd, int tty)
9090 {
9091 int sample_thread = SAMPLE_THREAD;
9092 int pid = ptid_get_pid (inferior_ptid);
9093 ptid_t ptid = ptid_build (pid, 0, sample_thread);
9094
9095 if (remote_thread_alive (ptid))
9096 printf_filtered ("PASS: Thread alive test\n");
9097 else
9098 printf_filtered ("FAIL: Thread alive test\n");
9099 }
9100
9101 void output_threadid (char *title, threadref *ref);
9102
9103 void
9104 output_threadid (char *title, threadref *ref)
9105 {
9106 char hexid[20];
9107
9108 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
9109 hexid[16] = 0;
9110 printf_filtered ("%s %s\n", title, (&hexid[0]));
9111 }
9112
9113 static void
9114 threadlist_test_cmd (char *cmd, int tty)
9115 {
9116 int startflag = 1;
9117 threadref nextthread;
9118 int done, result_count;
9119 threadref threadlist[3];
9120
9121 printf_filtered ("Remote Threadlist test\n");
9122 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
9123 &result_count, &threadlist[0]))
9124 printf_filtered ("FAIL: threadlist test\n");
9125 else
9126 {
9127 threadref *scan = threadlist;
9128 threadref *limit = scan + result_count;
9129
9130 while (scan < limit)
9131 output_threadid (" thread ", scan++);
9132 }
9133 }
9134
9135 void
9136 display_thread_info (struct gdb_ext_thread_info *info)
9137 {
9138 output_threadid ("Threadid: ", &info->threadid);
9139 printf_filtered ("Name: %s\n ", info->shortname);
9140 printf_filtered ("State: %s\n", info->display);
9141 printf_filtered ("other: %s\n\n", info->more_display);
9142 }
9143
9144 int
9145 get_and_display_threadinfo (threadref *ref)
9146 {
9147 int result;
9148 int set;
9149 struct gdb_ext_thread_info threadinfo;
9150
9151 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9152 | TAG_MOREDISPLAY | TAG_DISPLAY;
9153 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9154 display_thread_info (&threadinfo);
9155 return result;
9156 }
9157
9158 static void
9159 threadinfo_test_cmd (char *cmd, int tty)
9160 {
9161 int athread = SAMPLE_THREAD;
9162 threadref thread;
9163 int set;
9164
9165 int_to_threadref (&thread, athread);
9166 printf_filtered ("Remote Threadinfo test\n");
9167 if (!get_and_display_threadinfo (&thread))
9168 printf_filtered ("FAIL cannot get thread info\n");
9169 }
9170
9171 static int
9172 thread_display_step (threadref *ref, void *context)
9173 {
9174 /* output_threadid(" threadstep ",ref); *//* simple test */
9175 return get_and_display_threadinfo (ref);
9176 }
9177
9178 static void
9179 threadlist_update_test_cmd (char *cmd, int tty)
9180 {
9181 printf_filtered ("Remote Threadlist update test\n");
9182 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9183 }
9184
9185 static void
9186 init_remote_threadtests (void)
9187 {
9188 add_com ("tlist", class_obscure, threadlist_test_cmd,
9189 _("Fetch and print the remote list of "
9190 "thread identifiers, one pkt only"));
9191 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9192 _("Fetch and display info about one thread"));
9193 add_com ("tset", class_obscure, threadset_test_cmd,
9194 _("Test setting to a different thread"));
9195 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9196 _("Iterate through updating all remote thread info"));
9197 add_com ("talive", class_obscure, threadalive_test,
9198 _(" Remote thread alive test "));
9199 }
9200
9201 #endif /* 0 */
9202
9203 /* Convert a thread ID to a string. Returns the string in a static
9204 buffer. */
9205
9206 static char *
9207 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9208 {
9209 static char buf[64];
9210 struct remote_state *rs = get_remote_state ();
9211
9212 if (ptid_equal (ptid, null_ptid))
9213 return normal_pid_to_str (ptid);
9214 else if (ptid_is_pid (ptid))
9215 {
9216 /* Printing an inferior target id. */
9217
9218 /* When multi-process extensions are off, there's no way in the
9219 remote protocol to know the remote process id, if there's any
9220 at all. There's one exception --- when we're connected with
9221 target extended-remote, and we manually attached to a process
9222 with "attach PID". We don't record anywhere a flag that
9223 allows us to distinguish that case from the case of
9224 connecting with extended-remote and the stub already being
9225 attached to a process, and reporting yes to qAttached, hence
9226 no smart special casing here. */
9227 if (!remote_multi_process_p (rs))
9228 {
9229 xsnprintf (buf, sizeof buf, "Remote target");
9230 return buf;
9231 }
9232
9233 return normal_pid_to_str (ptid);
9234 }
9235 else
9236 {
9237 if (ptid_equal (magic_null_ptid, ptid))
9238 xsnprintf (buf, sizeof buf, "Thread <main>");
9239 else if (rs->extended && remote_multi_process_p (rs))
9240 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9241 ptid_get_pid (ptid), ptid_get_tid (ptid));
9242 else
9243 xsnprintf (buf, sizeof buf, "Thread %ld",
9244 ptid_get_tid (ptid));
9245 return buf;
9246 }
9247 }
9248
9249 /* Get the address of the thread local variable in OBJFILE which is
9250 stored at OFFSET within the thread local storage for thread PTID. */
9251
9252 static CORE_ADDR
9253 remote_get_thread_local_address (struct target_ops *ops,
9254 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9255 {
9256 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9257 {
9258 struct remote_state *rs = get_remote_state ();
9259 char *p = rs->buf;
9260 char *endp = rs->buf + get_remote_packet_size ();
9261 enum packet_result result;
9262
9263 strcpy (p, "qGetTLSAddr:");
9264 p += strlen (p);
9265 p = write_ptid (p, endp, ptid);
9266 *p++ = ',';
9267 p += hexnumstr (p, offset);
9268 *p++ = ',';
9269 p += hexnumstr (p, lm);
9270 *p++ = '\0';
9271
9272 putpkt (rs->buf);
9273 getpkt (&rs->buf, &rs->buf_size, 0);
9274 result = packet_ok (rs->buf,
9275 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9276 if (result == PACKET_OK)
9277 {
9278 ULONGEST result;
9279
9280 unpack_varlen_hex (rs->buf, &result);
9281 return result;
9282 }
9283 else if (result == PACKET_UNKNOWN)
9284 throw_error (TLS_GENERIC_ERROR,
9285 _("Remote target doesn't support qGetTLSAddr packet"));
9286 else
9287 throw_error (TLS_GENERIC_ERROR,
9288 _("Remote target failed to process qGetTLSAddr request"));
9289 }
9290 else
9291 throw_error (TLS_GENERIC_ERROR,
9292 _("TLS not supported or disabled on this target"));
9293 /* Not reached. */
9294 return 0;
9295 }
9296
9297 /* Provide thread local base, i.e. Thread Information Block address.
9298 Returns 1 if ptid is found and thread_local_base is non zero. */
9299
9300 static int
9301 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
9302 {
9303 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9304 {
9305 struct remote_state *rs = get_remote_state ();
9306 char *p = rs->buf;
9307 char *endp = rs->buf + get_remote_packet_size ();
9308 enum packet_result result;
9309
9310 strcpy (p, "qGetTIBAddr:");
9311 p += strlen (p);
9312 p = write_ptid (p, endp, ptid);
9313 *p++ = '\0';
9314
9315 putpkt (rs->buf);
9316 getpkt (&rs->buf, &rs->buf_size, 0);
9317 result = packet_ok (rs->buf,
9318 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9319 if (result == PACKET_OK)
9320 {
9321 ULONGEST result;
9322
9323 unpack_varlen_hex (rs->buf, &result);
9324 if (addr)
9325 *addr = (CORE_ADDR) result;
9326 return 1;
9327 }
9328 else if (result == PACKET_UNKNOWN)
9329 error (_("Remote target doesn't support qGetTIBAddr packet"));
9330 else
9331 error (_("Remote target failed to process qGetTIBAddr request"));
9332 }
9333 else
9334 error (_("qGetTIBAddr not supported or disabled on this target"));
9335 /* Not reached. */
9336 return 0;
9337 }
9338
9339 /* Support for inferring a target description based on the current
9340 architecture and the size of a 'g' packet. While the 'g' packet
9341 can have any size (since optional registers can be left off the
9342 end), some sizes are easily recognizable given knowledge of the
9343 approximate architecture. */
9344
9345 struct remote_g_packet_guess
9346 {
9347 int bytes;
9348 const struct target_desc *tdesc;
9349 };
9350 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9351 DEF_VEC_O(remote_g_packet_guess_s);
9352
9353 struct remote_g_packet_data
9354 {
9355 VEC(remote_g_packet_guess_s) *guesses;
9356 };
9357
9358 static struct gdbarch_data *remote_g_packet_data_handle;
9359
9360 static void *
9361 remote_g_packet_data_init (struct obstack *obstack)
9362 {
9363 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9364 }
9365
9366 void
9367 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9368 const struct target_desc *tdesc)
9369 {
9370 struct remote_g_packet_data *data
9371 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9372 struct remote_g_packet_guess new_guess, *guess;
9373 int ix;
9374
9375 gdb_assert (tdesc != NULL);
9376
9377 for (ix = 0;
9378 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9379 ix++)
9380 if (guess->bytes == bytes)
9381 internal_error (__FILE__, __LINE__,
9382 _("Duplicate g packet description added for size %d"),
9383 bytes);
9384
9385 new_guess.bytes = bytes;
9386 new_guess.tdesc = tdesc;
9387 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9388 }
9389
9390 /* Return 1 if remote_read_description would do anything on this target
9391 and architecture, 0 otherwise. */
9392
9393 static int
9394 remote_read_description_p (struct target_ops *target)
9395 {
9396 struct remote_g_packet_data *data
9397 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9398
9399 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9400 return 1;
9401
9402 return 0;
9403 }
9404
9405 static const struct target_desc *
9406 remote_read_description (struct target_ops *target)
9407 {
9408 struct remote_g_packet_data *data
9409 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9410
9411 /* Do not try this during initial connection, when we do not know
9412 whether there is a running but stopped thread. */
9413 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9414 return NULL;
9415
9416 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9417 {
9418 struct remote_g_packet_guess *guess;
9419 int ix;
9420 int bytes = send_g_packet ();
9421
9422 for (ix = 0;
9423 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9424 ix++)
9425 if (guess->bytes == bytes)
9426 return guess->tdesc;
9427
9428 /* We discard the g packet. A minor optimization would be to
9429 hold on to it, and fill the register cache once we have selected
9430 an architecture, but it's too tricky to do safely. */
9431 }
9432
9433 return NULL;
9434 }
9435
9436 /* Remote file transfer support. This is host-initiated I/O, not
9437 target-initiated; for target-initiated, see remote-fileio.c. */
9438
9439 /* If *LEFT is at least the length of STRING, copy STRING to
9440 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9441 decrease *LEFT. Otherwise raise an error. */
9442
9443 static void
9444 remote_buffer_add_string (char **buffer, int *left, char *string)
9445 {
9446 int len = strlen (string);
9447
9448 if (len > *left)
9449 error (_("Packet too long for target."));
9450
9451 memcpy (*buffer, string, len);
9452 *buffer += len;
9453 *left -= len;
9454
9455 /* NUL-terminate the buffer as a convenience, if there is
9456 room. */
9457 if (*left)
9458 **buffer = '\0';
9459 }
9460
9461 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9462 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9463 decrease *LEFT. Otherwise raise an error. */
9464
9465 static void
9466 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9467 int len)
9468 {
9469 if (2 * len > *left)
9470 error (_("Packet too long for target."));
9471
9472 bin2hex (bytes, *buffer, len);
9473 *buffer += 2 * len;
9474 *left -= 2 * len;
9475
9476 /* NUL-terminate the buffer as a convenience, if there is
9477 room. */
9478 if (*left)
9479 **buffer = '\0';
9480 }
9481
9482 /* If *LEFT is large enough, convert VALUE to hex and add it to
9483 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9484 decrease *LEFT. Otherwise raise an error. */
9485
9486 static void
9487 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9488 {
9489 int len = hexnumlen (value);
9490
9491 if (len > *left)
9492 error (_("Packet too long for target."));
9493
9494 hexnumstr (*buffer, value);
9495 *buffer += len;
9496 *left -= len;
9497
9498 /* NUL-terminate the buffer as a convenience, if there is
9499 room. */
9500 if (*left)
9501 **buffer = '\0';
9502 }
9503
9504 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9505 value, *REMOTE_ERRNO to the remote error number or zero if none
9506 was included, and *ATTACHMENT to point to the start of the annex
9507 if any. The length of the packet isn't needed here; there may
9508 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9509
9510 Return 0 if the packet could be parsed, -1 if it could not. If
9511 -1 is returned, the other variables may not be initialized. */
9512
9513 static int
9514 remote_hostio_parse_result (char *buffer, int *retcode,
9515 int *remote_errno, char **attachment)
9516 {
9517 char *p, *p2;
9518
9519 *remote_errno = 0;
9520 *attachment = NULL;
9521
9522 if (buffer[0] != 'F')
9523 return -1;
9524
9525 errno = 0;
9526 *retcode = strtol (&buffer[1], &p, 16);
9527 if (errno != 0 || p == &buffer[1])
9528 return -1;
9529
9530 /* Check for ",errno". */
9531 if (*p == ',')
9532 {
9533 errno = 0;
9534 *remote_errno = strtol (p + 1, &p2, 16);
9535 if (errno != 0 || p + 1 == p2)
9536 return -1;
9537 p = p2;
9538 }
9539
9540 /* Check for ";attachment". If there is no attachment, the
9541 packet should end here. */
9542 if (*p == ';')
9543 {
9544 *attachment = p + 1;
9545 return 0;
9546 }
9547 else if (*p == '\0')
9548 return 0;
9549 else
9550 return -1;
9551 }
9552
9553 /* Send a prepared I/O packet to the target and read its response.
9554 The prepared packet is in the global RS->BUF before this function
9555 is called, and the answer is there when we return.
9556
9557 COMMAND_BYTES is the length of the request to send, which may include
9558 binary data. WHICH_PACKET is the packet configuration to check
9559 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9560 is set to the error number and -1 is returned. Otherwise the value
9561 returned by the function is returned.
9562
9563 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9564 attachment is expected; an error will be reported if there's a
9565 mismatch. If one is found, *ATTACHMENT will be set to point into
9566 the packet buffer and *ATTACHMENT_LEN will be set to the
9567 attachment's length. */
9568
9569 static int
9570 remote_hostio_send_command (int command_bytes, int which_packet,
9571 int *remote_errno, char **attachment,
9572 int *attachment_len)
9573 {
9574 struct remote_state *rs = get_remote_state ();
9575 int ret, bytes_read;
9576 char *attachment_tmp;
9577
9578 if (!remote_desc
9579 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9580 {
9581 *remote_errno = FILEIO_ENOSYS;
9582 return -1;
9583 }
9584
9585 putpkt_binary (rs->buf, command_bytes);
9586 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9587
9588 /* If it timed out, something is wrong. Don't try to parse the
9589 buffer. */
9590 if (bytes_read < 0)
9591 {
9592 *remote_errno = FILEIO_EINVAL;
9593 return -1;
9594 }
9595
9596 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9597 {
9598 case PACKET_ERROR:
9599 *remote_errno = FILEIO_EINVAL;
9600 return -1;
9601 case PACKET_UNKNOWN:
9602 *remote_errno = FILEIO_ENOSYS;
9603 return -1;
9604 case PACKET_OK:
9605 break;
9606 }
9607
9608 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9609 &attachment_tmp))
9610 {
9611 *remote_errno = FILEIO_EINVAL;
9612 return -1;
9613 }
9614
9615 /* Make sure we saw an attachment if and only if we expected one. */
9616 if ((attachment_tmp == NULL && attachment != NULL)
9617 || (attachment_tmp != NULL && attachment == NULL))
9618 {
9619 *remote_errno = FILEIO_EINVAL;
9620 return -1;
9621 }
9622
9623 /* If an attachment was found, it must point into the packet buffer;
9624 work out how many bytes there were. */
9625 if (attachment_tmp != NULL)
9626 {
9627 *attachment = attachment_tmp;
9628 *attachment_len = bytes_read - (*attachment - rs->buf);
9629 }
9630
9631 return ret;
9632 }
9633
9634 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9635 remote file descriptor, or -1 if an error occurs (and set
9636 *REMOTE_ERRNO). */
9637
9638 static int
9639 remote_hostio_open (const char *filename, int flags, int mode,
9640 int *remote_errno)
9641 {
9642 struct remote_state *rs = get_remote_state ();
9643 char *p = rs->buf;
9644 int left = get_remote_packet_size () - 1;
9645
9646 remote_buffer_add_string (&p, &left, "vFile:open:");
9647
9648 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9649 strlen (filename));
9650 remote_buffer_add_string (&p, &left, ",");
9651
9652 remote_buffer_add_int (&p, &left, flags);
9653 remote_buffer_add_string (&p, &left, ",");
9654
9655 remote_buffer_add_int (&p, &left, mode);
9656
9657 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9658 remote_errno, NULL, NULL);
9659 }
9660
9661 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9662 Return the number of bytes written, or -1 if an error occurs (and
9663 set *REMOTE_ERRNO). */
9664
9665 static int
9666 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9667 ULONGEST offset, int *remote_errno)
9668 {
9669 struct remote_state *rs = get_remote_state ();
9670 char *p = rs->buf;
9671 int left = get_remote_packet_size ();
9672 int out_len;
9673
9674 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9675
9676 remote_buffer_add_int (&p, &left, fd);
9677 remote_buffer_add_string (&p, &left, ",");
9678
9679 remote_buffer_add_int (&p, &left, offset);
9680 remote_buffer_add_string (&p, &left, ",");
9681
9682 p += remote_escape_output (write_buf, len, p, &out_len,
9683 get_remote_packet_size () - (p - rs->buf));
9684
9685 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9686 remote_errno, NULL, NULL);
9687 }
9688
9689 /* Read up to LEN bytes FD on the remote target into READ_BUF
9690 Return the number of bytes read, or -1 if an error occurs (and
9691 set *REMOTE_ERRNO). */
9692
9693 static int
9694 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9695 ULONGEST offset, int *remote_errno)
9696 {
9697 struct remote_state *rs = get_remote_state ();
9698 char *p = rs->buf;
9699 char *attachment;
9700 int left = get_remote_packet_size ();
9701 int ret, attachment_len;
9702 int read_len;
9703
9704 remote_buffer_add_string (&p, &left, "vFile:pread:");
9705
9706 remote_buffer_add_int (&p, &left, fd);
9707 remote_buffer_add_string (&p, &left, ",");
9708
9709 remote_buffer_add_int (&p, &left, len);
9710 remote_buffer_add_string (&p, &left, ",");
9711
9712 remote_buffer_add_int (&p, &left, offset);
9713
9714 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9715 remote_errno, &attachment,
9716 &attachment_len);
9717
9718 if (ret < 0)
9719 return ret;
9720
9721 read_len = remote_unescape_input (attachment, attachment_len,
9722 read_buf, len);
9723 if (read_len != ret)
9724 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9725
9726 return ret;
9727 }
9728
9729 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9730 (and set *REMOTE_ERRNO). */
9731
9732 static int
9733 remote_hostio_close (int fd, int *remote_errno)
9734 {
9735 struct remote_state *rs = get_remote_state ();
9736 char *p = rs->buf;
9737 int left = get_remote_packet_size () - 1;
9738
9739 remote_buffer_add_string (&p, &left, "vFile:close:");
9740
9741 remote_buffer_add_int (&p, &left, fd);
9742
9743 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9744 remote_errno, NULL, NULL);
9745 }
9746
9747 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9748 occurs (and set *REMOTE_ERRNO). */
9749
9750 static int
9751 remote_hostio_unlink (const char *filename, int *remote_errno)
9752 {
9753 struct remote_state *rs = get_remote_state ();
9754 char *p = rs->buf;
9755 int left = get_remote_packet_size () - 1;
9756
9757 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9758
9759 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9760 strlen (filename));
9761
9762 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9763 remote_errno, NULL, NULL);
9764 }
9765
9766 /* Read value of symbolic link FILENAME on the remote target. Return
9767 a null-terminated string allocated via xmalloc, or NULL if an error
9768 occurs (and set *REMOTE_ERRNO). */
9769
9770 static char *
9771 remote_hostio_readlink (const char *filename, int *remote_errno)
9772 {
9773 struct remote_state *rs = get_remote_state ();
9774 char *p = rs->buf;
9775 char *attachment;
9776 int left = get_remote_packet_size ();
9777 int len, attachment_len;
9778 int read_len;
9779 char *ret;
9780
9781 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9782
9783 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9784 strlen (filename));
9785
9786 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9787 remote_errno, &attachment,
9788 &attachment_len);
9789
9790 if (len < 0)
9791 return NULL;
9792
9793 ret = xmalloc (len + 1);
9794
9795 read_len = remote_unescape_input (attachment, attachment_len,
9796 ret, len);
9797 if (read_len != len)
9798 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9799
9800 ret[len] = '\0';
9801 return ret;
9802 }
9803
9804 static int
9805 remote_fileio_errno_to_host (int errnum)
9806 {
9807 switch (errnum)
9808 {
9809 case FILEIO_EPERM:
9810 return EPERM;
9811 case FILEIO_ENOENT:
9812 return ENOENT;
9813 case FILEIO_EINTR:
9814 return EINTR;
9815 case FILEIO_EIO:
9816 return EIO;
9817 case FILEIO_EBADF:
9818 return EBADF;
9819 case FILEIO_EACCES:
9820 return EACCES;
9821 case FILEIO_EFAULT:
9822 return EFAULT;
9823 case FILEIO_EBUSY:
9824 return EBUSY;
9825 case FILEIO_EEXIST:
9826 return EEXIST;
9827 case FILEIO_ENODEV:
9828 return ENODEV;
9829 case FILEIO_ENOTDIR:
9830 return ENOTDIR;
9831 case FILEIO_EISDIR:
9832 return EISDIR;
9833 case FILEIO_EINVAL:
9834 return EINVAL;
9835 case FILEIO_ENFILE:
9836 return ENFILE;
9837 case FILEIO_EMFILE:
9838 return EMFILE;
9839 case FILEIO_EFBIG:
9840 return EFBIG;
9841 case FILEIO_ENOSPC:
9842 return ENOSPC;
9843 case FILEIO_ESPIPE:
9844 return ESPIPE;
9845 case FILEIO_EROFS:
9846 return EROFS;
9847 case FILEIO_ENOSYS:
9848 return ENOSYS;
9849 case FILEIO_ENAMETOOLONG:
9850 return ENAMETOOLONG;
9851 }
9852 return -1;
9853 }
9854
9855 static char *
9856 remote_hostio_error (int errnum)
9857 {
9858 int host_error = remote_fileio_errno_to_host (errnum);
9859
9860 if (host_error == -1)
9861 error (_("Unknown remote I/O error %d"), errnum);
9862 else
9863 error (_("Remote I/O error: %s"), safe_strerror (host_error));
9864 }
9865
9866 static void
9867 remote_hostio_close_cleanup (void *opaque)
9868 {
9869 int fd = *(int *) opaque;
9870 int remote_errno;
9871
9872 remote_hostio_close (fd, &remote_errno);
9873 }
9874
9875
9876 static void *
9877 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
9878 {
9879 const char *filename = bfd_get_filename (abfd);
9880 int fd, remote_errno;
9881 int *stream;
9882
9883 gdb_assert (remote_filename_p (filename));
9884
9885 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
9886 if (fd == -1)
9887 {
9888 errno = remote_fileio_errno_to_host (remote_errno);
9889 bfd_set_error (bfd_error_system_call);
9890 return NULL;
9891 }
9892
9893 stream = xmalloc (sizeof (int));
9894 *stream = fd;
9895 return stream;
9896 }
9897
9898 static int
9899 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
9900 {
9901 int fd = *(int *)stream;
9902 int remote_errno;
9903
9904 xfree (stream);
9905
9906 /* Ignore errors on close; these may happen if the remote
9907 connection was already torn down. */
9908 remote_hostio_close (fd, &remote_errno);
9909
9910 return 1;
9911 }
9912
9913 static file_ptr
9914 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
9915 file_ptr nbytes, file_ptr offset)
9916 {
9917 int fd = *(int *)stream;
9918 int remote_errno;
9919 file_ptr pos, bytes;
9920
9921 pos = 0;
9922 while (nbytes > pos)
9923 {
9924 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
9925 offset + pos, &remote_errno);
9926 if (bytes == 0)
9927 /* Success, but no bytes, means end-of-file. */
9928 break;
9929 if (bytes == -1)
9930 {
9931 errno = remote_fileio_errno_to_host (remote_errno);
9932 bfd_set_error (bfd_error_system_call);
9933 return -1;
9934 }
9935
9936 pos += bytes;
9937 }
9938
9939 return pos;
9940 }
9941
9942 static int
9943 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
9944 {
9945 /* FIXME: We should probably implement remote_hostio_stat. */
9946 sb->st_size = INT_MAX;
9947 return 0;
9948 }
9949
9950 int
9951 remote_filename_p (const char *filename)
9952 {
9953 return strncmp (filename, "remote:", 7) == 0;
9954 }
9955
9956 bfd *
9957 remote_bfd_open (const char *remote_file, const char *target)
9958 {
9959 bfd *abfd = gdb_bfd_openr_iovec (remote_file, target,
9960 remote_bfd_iovec_open, NULL,
9961 remote_bfd_iovec_pread,
9962 remote_bfd_iovec_close,
9963 remote_bfd_iovec_stat);
9964
9965 return abfd;
9966 }
9967
9968 void
9969 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
9970 {
9971 struct cleanup *back_to, *close_cleanup;
9972 int retcode, fd, remote_errno, bytes, io_size;
9973 FILE *file;
9974 gdb_byte *buffer;
9975 int bytes_in_buffer;
9976 int saw_eof;
9977 ULONGEST offset;
9978
9979 if (!remote_desc)
9980 error (_("command can only be used with remote target"));
9981
9982 file = fopen (local_file, "rb");
9983 if (file == NULL)
9984 perror_with_name (local_file);
9985 back_to = make_cleanup_fclose (file);
9986
9987 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
9988 | FILEIO_O_TRUNC),
9989 0700, &remote_errno);
9990 if (fd == -1)
9991 remote_hostio_error (remote_errno);
9992
9993 /* Send up to this many bytes at once. They won't all fit in the
9994 remote packet limit, so we'll transfer slightly fewer. */
9995 io_size = get_remote_packet_size ();
9996 buffer = xmalloc (io_size);
9997 make_cleanup (xfree, buffer);
9998
9999 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10000
10001 bytes_in_buffer = 0;
10002 saw_eof = 0;
10003 offset = 0;
10004 while (bytes_in_buffer || !saw_eof)
10005 {
10006 if (!saw_eof)
10007 {
10008 bytes = fread (buffer + bytes_in_buffer, 1,
10009 io_size - bytes_in_buffer,
10010 file);
10011 if (bytes == 0)
10012 {
10013 if (ferror (file))
10014 error (_("Error reading %s."), local_file);
10015 else
10016 {
10017 /* EOF. Unless there is something still in the
10018 buffer from the last iteration, we are done. */
10019 saw_eof = 1;
10020 if (bytes_in_buffer == 0)
10021 break;
10022 }
10023 }
10024 }
10025 else
10026 bytes = 0;
10027
10028 bytes += bytes_in_buffer;
10029 bytes_in_buffer = 0;
10030
10031 retcode = remote_hostio_pwrite (fd, buffer, bytes,
10032 offset, &remote_errno);
10033
10034 if (retcode < 0)
10035 remote_hostio_error (remote_errno);
10036 else if (retcode == 0)
10037 error (_("Remote write of %d bytes returned 0!"), bytes);
10038 else if (retcode < bytes)
10039 {
10040 /* Short write. Save the rest of the read data for the next
10041 write. */
10042 bytes_in_buffer = bytes - retcode;
10043 memmove (buffer, buffer + retcode, bytes_in_buffer);
10044 }
10045
10046 offset += retcode;
10047 }
10048
10049 discard_cleanups (close_cleanup);
10050 if (remote_hostio_close (fd, &remote_errno))
10051 remote_hostio_error (remote_errno);
10052
10053 if (from_tty)
10054 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
10055 do_cleanups (back_to);
10056 }
10057
10058 void
10059 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
10060 {
10061 struct cleanup *back_to, *close_cleanup;
10062 int fd, remote_errno, bytes, io_size;
10063 FILE *file;
10064 gdb_byte *buffer;
10065 ULONGEST offset;
10066
10067 if (!remote_desc)
10068 error (_("command can only be used with remote target"));
10069
10070 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
10071 if (fd == -1)
10072 remote_hostio_error (remote_errno);
10073
10074 file = fopen (local_file, "wb");
10075 if (file == NULL)
10076 perror_with_name (local_file);
10077 back_to = make_cleanup_fclose (file);
10078
10079 /* Send up to this many bytes at once. They won't all fit in the
10080 remote packet limit, so we'll transfer slightly fewer. */
10081 io_size = get_remote_packet_size ();
10082 buffer = xmalloc (io_size);
10083 make_cleanup (xfree, buffer);
10084
10085 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10086
10087 offset = 0;
10088 while (1)
10089 {
10090 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
10091 if (bytes == 0)
10092 /* Success, but no bytes, means end-of-file. */
10093 break;
10094 if (bytes == -1)
10095 remote_hostio_error (remote_errno);
10096
10097 offset += bytes;
10098
10099 bytes = fwrite (buffer, 1, bytes, file);
10100 if (bytes == 0)
10101 perror_with_name (local_file);
10102 }
10103
10104 discard_cleanups (close_cleanup);
10105 if (remote_hostio_close (fd, &remote_errno))
10106 remote_hostio_error (remote_errno);
10107
10108 if (from_tty)
10109 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
10110 do_cleanups (back_to);
10111 }
10112
10113 void
10114 remote_file_delete (const char *remote_file, int from_tty)
10115 {
10116 int retcode, remote_errno;
10117
10118 if (!remote_desc)
10119 error (_("command can only be used with remote target"));
10120
10121 retcode = remote_hostio_unlink (remote_file, &remote_errno);
10122 if (retcode == -1)
10123 remote_hostio_error (remote_errno);
10124
10125 if (from_tty)
10126 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
10127 }
10128
10129 static void
10130 remote_put_command (char *args, int from_tty)
10131 {
10132 struct cleanup *back_to;
10133 char **argv;
10134
10135 if (args == NULL)
10136 error_no_arg (_("file to put"));
10137
10138 argv = gdb_buildargv (args);
10139 back_to = make_cleanup_freeargv (argv);
10140 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10141 error (_("Invalid parameters to remote put"));
10142
10143 remote_file_put (argv[0], argv[1], from_tty);
10144
10145 do_cleanups (back_to);
10146 }
10147
10148 static void
10149 remote_get_command (char *args, int from_tty)
10150 {
10151 struct cleanup *back_to;
10152 char **argv;
10153
10154 if (args == NULL)
10155 error_no_arg (_("file to get"));
10156
10157 argv = gdb_buildargv (args);
10158 back_to = make_cleanup_freeargv (argv);
10159 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10160 error (_("Invalid parameters to remote get"));
10161
10162 remote_file_get (argv[0], argv[1], from_tty);
10163
10164 do_cleanups (back_to);
10165 }
10166
10167 static void
10168 remote_delete_command (char *args, int from_tty)
10169 {
10170 struct cleanup *back_to;
10171 char **argv;
10172
10173 if (args == NULL)
10174 error_no_arg (_("file to delete"));
10175
10176 argv = gdb_buildargv (args);
10177 back_to = make_cleanup_freeargv (argv);
10178 if (argv[0] == NULL || argv[1] != NULL)
10179 error (_("Invalid parameters to remote delete"));
10180
10181 remote_file_delete (argv[0], from_tty);
10182
10183 do_cleanups (back_to);
10184 }
10185
10186 static void
10187 remote_command (char *args, int from_tty)
10188 {
10189 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
10190 }
10191
10192 static int
10193 remote_can_execute_reverse (void)
10194 {
10195 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
10196 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
10197 return 1;
10198 else
10199 return 0;
10200 }
10201
10202 static int
10203 remote_supports_non_stop (void)
10204 {
10205 return 1;
10206 }
10207
10208 static int
10209 remote_supports_disable_randomization (void)
10210 {
10211 /* Only supported in extended mode. */
10212 return 0;
10213 }
10214
10215 static int
10216 remote_supports_multi_process (void)
10217 {
10218 struct remote_state *rs = get_remote_state ();
10219
10220 /* Only extended-remote handles being attached to multiple
10221 processes, even though plain remote can use the multi-process
10222 thread id extensions, so that GDB knows the target process's
10223 PID. */
10224 return rs->extended && remote_multi_process_p (rs);
10225 }
10226
10227 static int
10228 remote_supports_cond_tracepoints (void)
10229 {
10230 struct remote_state *rs = get_remote_state ();
10231
10232 return rs->cond_tracepoints;
10233 }
10234
10235 static int
10236 remote_supports_cond_breakpoints (void)
10237 {
10238 struct remote_state *rs = get_remote_state ();
10239
10240 return rs->cond_breakpoints;
10241 }
10242
10243 static int
10244 remote_supports_fast_tracepoints (void)
10245 {
10246 struct remote_state *rs = get_remote_state ();
10247
10248 return rs->fast_tracepoints;
10249 }
10250
10251 static int
10252 remote_supports_static_tracepoints (void)
10253 {
10254 struct remote_state *rs = get_remote_state ();
10255
10256 return rs->static_tracepoints;
10257 }
10258
10259 static int
10260 remote_supports_install_in_trace (void)
10261 {
10262 struct remote_state *rs = get_remote_state ();
10263
10264 return rs->install_in_trace;
10265 }
10266
10267 static int
10268 remote_supports_enable_disable_tracepoint (void)
10269 {
10270 struct remote_state *rs = get_remote_state ();
10271
10272 return rs->enable_disable_tracepoints;
10273 }
10274
10275 static int
10276 remote_supports_string_tracing (void)
10277 {
10278 struct remote_state *rs = get_remote_state ();
10279
10280 return rs->string_tracing;
10281 }
10282
10283 static int
10284 remote_can_run_breakpoint_commands (void)
10285 {
10286 struct remote_state *rs = get_remote_state ();
10287
10288 return rs->breakpoint_commands;
10289 }
10290
10291 static void
10292 remote_trace_init (void)
10293 {
10294 putpkt ("QTinit");
10295 remote_get_noisy_reply (&target_buf, &target_buf_size);
10296 if (strcmp (target_buf, "OK") != 0)
10297 error (_("Target does not support this command."));
10298 }
10299
10300 static void free_actions_list (char **actions_list);
10301 static void free_actions_list_cleanup_wrapper (void *);
10302 static void
10303 free_actions_list_cleanup_wrapper (void *al)
10304 {
10305 free_actions_list (al);
10306 }
10307
10308 static void
10309 free_actions_list (char **actions_list)
10310 {
10311 int ndx;
10312
10313 if (actions_list == 0)
10314 return;
10315
10316 for (ndx = 0; actions_list[ndx]; ndx++)
10317 xfree (actions_list[ndx]);
10318
10319 xfree (actions_list);
10320 }
10321
10322 /* Recursive routine to walk through command list including loops, and
10323 download packets for each command. */
10324
10325 static void
10326 remote_download_command_source (int num, ULONGEST addr,
10327 struct command_line *cmds)
10328 {
10329 struct remote_state *rs = get_remote_state ();
10330 struct command_line *cmd;
10331
10332 for (cmd = cmds; cmd; cmd = cmd->next)
10333 {
10334 QUIT; /* Allow user to bail out with ^C. */
10335 strcpy (rs->buf, "QTDPsrc:");
10336 encode_source_string (num, addr, "cmd", cmd->line,
10337 rs->buf + strlen (rs->buf),
10338 rs->buf_size - strlen (rs->buf));
10339 putpkt (rs->buf);
10340 remote_get_noisy_reply (&target_buf, &target_buf_size);
10341 if (strcmp (target_buf, "OK"))
10342 warning (_("Target does not support source download."));
10343
10344 if (cmd->control_type == while_control
10345 || cmd->control_type == while_stepping_control)
10346 {
10347 remote_download_command_source (num, addr, *cmd->body_list);
10348
10349 QUIT; /* Allow user to bail out with ^C. */
10350 strcpy (rs->buf, "QTDPsrc:");
10351 encode_source_string (num, addr, "cmd", "end",
10352 rs->buf + strlen (rs->buf),
10353 rs->buf_size - strlen (rs->buf));
10354 putpkt (rs->buf);
10355 remote_get_noisy_reply (&target_buf, &target_buf_size);
10356 if (strcmp (target_buf, "OK"))
10357 warning (_("Target does not support source download."));
10358 }
10359 }
10360 }
10361
10362 static void
10363 remote_download_tracepoint (struct bp_location *loc)
10364 {
10365 #define BUF_SIZE 2048
10366
10367 CORE_ADDR tpaddr;
10368 char addrbuf[40];
10369 char buf[BUF_SIZE];
10370 char **tdp_actions;
10371 char **stepping_actions;
10372 int ndx;
10373 struct cleanup *old_chain = NULL;
10374 struct agent_expr *aexpr;
10375 struct cleanup *aexpr_chain = NULL;
10376 char *pkt;
10377 struct breakpoint *b = loc->owner;
10378 struct tracepoint *t = (struct tracepoint *) b;
10379
10380 encode_actions (loc->owner, loc, &tdp_actions, &stepping_actions);
10381 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10382 tdp_actions);
10383 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10384 stepping_actions);
10385
10386 tpaddr = loc->address;
10387 sprintf_vma (addrbuf, tpaddr);
10388 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10389 addrbuf, /* address */
10390 (b->enable_state == bp_enabled ? 'E' : 'D'),
10391 t->step_count, t->pass_count);
10392 /* Fast tracepoints are mostly handled by the target, but we can
10393 tell the target how big of an instruction block should be moved
10394 around. */
10395 if (b->type == bp_fast_tracepoint)
10396 {
10397 /* Only test for support at download time; we may not know
10398 target capabilities at definition time. */
10399 if (remote_supports_fast_tracepoints ())
10400 {
10401 int isize;
10402
10403 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (),
10404 tpaddr, &isize, NULL))
10405 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10406 isize);
10407 else
10408 /* If it passed validation at definition but fails now,
10409 something is very wrong. */
10410 internal_error (__FILE__, __LINE__,
10411 _("Fast tracepoint not "
10412 "valid during download"));
10413 }
10414 else
10415 /* Fast tracepoints are functionally identical to regular
10416 tracepoints, so don't take lack of support as a reason to
10417 give up on the trace run. */
10418 warning (_("Target does not support fast tracepoints, "
10419 "downloading %d as regular tracepoint"), b->number);
10420 }
10421 else if (b->type == bp_static_tracepoint)
10422 {
10423 /* Only test for support at download time; we may not know
10424 target capabilities at definition time. */
10425 if (remote_supports_static_tracepoints ())
10426 {
10427 struct static_tracepoint_marker marker;
10428
10429 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10430 strcat (buf, ":S");
10431 else
10432 error (_("Static tracepoint not valid during download"));
10433 }
10434 else
10435 /* Fast tracepoints are functionally identical to regular
10436 tracepoints, so don't take lack of support as a reason
10437 to give up on the trace run. */
10438 error (_("Target does not support static tracepoints"));
10439 }
10440 /* If the tracepoint has a conditional, make it into an agent
10441 expression and append to the definition. */
10442 if (loc->cond)
10443 {
10444 /* Only test support at download time, we may not know target
10445 capabilities at definition time. */
10446 if (remote_supports_cond_tracepoints ())
10447 {
10448 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10449 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10450 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10451 aexpr->len);
10452 pkt = buf + strlen (buf);
10453 for (ndx = 0; ndx < aexpr->len; ++ndx)
10454 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10455 *pkt = '\0';
10456 do_cleanups (aexpr_chain);
10457 }
10458 else
10459 warning (_("Target does not support conditional tracepoints, "
10460 "ignoring tp %d cond"), b->number);
10461 }
10462
10463 if (b->commands || *default_collect)
10464 strcat (buf, "-");
10465 putpkt (buf);
10466 remote_get_noisy_reply (&target_buf, &target_buf_size);
10467 if (strcmp (target_buf, "OK"))
10468 error (_("Target does not support tracepoints."));
10469
10470 /* do_single_steps (t); */
10471 if (tdp_actions)
10472 {
10473 for (ndx = 0; tdp_actions[ndx]; ndx++)
10474 {
10475 QUIT; /* Allow user to bail out with ^C. */
10476 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10477 b->number, addrbuf, /* address */
10478 tdp_actions[ndx],
10479 ((tdp_actions[ndx + 1] || stepping_actions)
10480 ? '-' : 0));
10481 putpkt (buf);
10482 remote_get_noisy_reply (&target_buf,
10483 &target_buf_size);
10484 if (strcmp (target_buf, "OK"))
10485 error (_("Error on target while setting tracepoints."));
10486 }
10487 }
10488 if (stepping_actions)
10489 {
10490 for (ndx = 0; stepping_actions[ndx]; ndx++)
10491 {
10492 QUIT; /* Allow user to bail out with ^C. */
10493 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10494 b->number, addrbuf, /* address */
10495 ((ndx == 0) ? "S" : ""),
10496 stepping_actions[ndx],
10497 (stepping_actions[ndx + 1] ? "-" : ""));
10498 putpkt (buf);
10499 remote_get_noisy_reply (&target_buf,
10500 &target_buf_size);
10501 if (strcmp (target_buf, "OK"))
10502 error (_("Error on target while setting tracepoints."));
10503 }
10504 }
10505
10506 if (remote_protocol_packets[PACKET_TracepointSource].support
10507 == PACKET_ENABLE)
10508 {
10509 if (b->addr_string)
10510 {
10511 strcpy (buf, "QTDPsrc:");
10512 encode_source_string (b->number, loc->address,
10513 "at", b->addr_string, buf + strlen (buf),
10514 2048 - strlen (buf));
10515
10516 putpkt (buf);
10517 remote_get_noisy_reply (&target_buf, &target_buf_size);
10518 if (strcmp (target_buf, "OK"))
10519 warning (_("Target does not support source download."));
10520 }
10521 if (b->cond_string)
10522 {
10523 strcpy (buf, "QTDPsrc:");
10524 encode_source_string (b->number, loc->address,
10525 "cond", b->cond_string, buf + strlen (buf),
10526 2048 - strlen (buf));
10527 putpkt (buf);
10528 remote_get_noisy_reply (&target_buf, &target_buf_size);
10529 if (strcmp (target_buf, "OK"))
10530 warning (_("Target does not support source download."));
10531 }
10532 remote_download_command_source (b->number, loc->address,
10533 breakpoint_commands (b));
10534 }
10535
10536 do_cleanups (old_chain);
10537 }
10538
10539 static int
10540 remote_can_download_tracepoint (void)
10541 {
10542 struct remote_state *rs = get_remote_state ();
10543 struct trace_status *ts;
10544 int status;
10545
10546 /* Don't try to install tracepoints until we've relocated our
10547 symbols, and fetched and merged the target's tracepoint list with
10548 ours. */
10549 if (rs->starting_up)
10550 return 0;
10551
10552 ts = current_trace_status ();
10553 status = remote_get_trace_status (ts);
10554
10555 if (status == -1 || !ts->running_known || !ts->running)
10556 return 0;
10557
10558 /* If we are in a tracing experiment, but remote stub doesn't support
10559 installing tracepoint in trace, we have to return. */
10560 if (!remote_supports_install_in_trace ())
10561 return 0;
10562
10563 return 1;
10564 }
10565
10566
10567 static void
10568 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10569 {
10570 struct remote_state *rs = get_remote_state ();
10571 char *p;
10572
10573 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10574 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10575 tsv->builtin);
10576 p = rs->buf + strlen (rs->buf);
10577 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10578 error (_("Trace state variable name too long for tsv definition packet"));
10579 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10580 *p++ = '\0';
10581 putpkt (rs->buf);
10582 remote_get_noisy_reply (&target_buf, &target_buf_size);
10583 if (*target_buf == '\0')
10584 error (_("Target does not support this command."));
10585 if (strcmp (target_buf, "OK") != 0)
10586 error (_("Error on target while downloading trace state variable."));
10587 }
10588
10589 static void
10590 remote_enable_tracepoint (struct bp_location *location)
10591 {
10592 struct remote_state *rs = get_remote_state ();
10593 char addr_buf[40];
10594
10595 sprintf_vma (addr_buf, location->address);
10596 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10597 location->owner->number, addr_buf);
10598 putpkt (rs->buf);
10599 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10600 if (*rs->buf == '\0')
10601 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10602 if (strcmp (rs->buf, "OK") != 0)
10603 error (_("Error on target while enabling tracepoint."));
10604 }
10605
10606 static void
10607 remote_disable_tracepoint (struct bp_location *location)
10608 {
10609 struct remote_state *rs = get_remote_state ();
10610 char addr_buf[40];
10611
10612 sprintf_vma (addr_buf, location->address);
10613 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10614 location->owner->number, addr_buf);
10615 putpkt (rs->buf);
10616 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10617 if (*rs->buf == '\0')
10618 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10619 if (strcmp (rs->buf, "OK") != 0)
10620 error (_("Error on target while disabling tracepoint."));
10621 }
10622
10623 static void
10624 remote_trace_set_readonly_regions (void)
10625 {
10626 asection *s;
10627 bfd *abfd = NULL;
10628 bfd_size_type size;
10629 bfd_vma vma;
10630 int anysecs = 0;
10631 int offset = 0;
10632
10633 if (!exec_bfd)
10634 return; /* No information to give. */
10635
10636 strcpy (target_buf, "QTro");
10637 for (s = exec_bfd->sections; s; s = s->next)
10638 {
10639 char tmp1[40], tmp2[40];
10640 int sec_length;
10641
10642 if ((s->flags & SEC_LOAD) == 0 ||
10643 /* (s->flags & SEC_CODE) == 0 || */
10644 (s->flags & SEC_READONLY) == 0)
10645 continue;
10646
10647 anysecs = 1;
10648 vma = bfd_get_section_vma (abfd, s);
10649 size = bfd_get_section_size (s);
10650 sprintf_vma (tmp1, vma);
10651 sprintf_vma (tmp2, vma + size);
10652 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10653 if (offset + sec_length + 1 > target_buf_size)
10654 {
10655 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10656 != PACKET_ENABLE)
10657 warning (_("\
10658 Too many sections for read-only sections definition packet."));
10659 break;
10660 }
10661 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10662 tmp1, tmp2);
10663 offset += sec_length;
10664 }
10665 if (anysecs)
10666 {
10667 putpkt (target_buf);
10668 getpkt (&target_buf, &target_buf_size, 0);
10669 }
10670 }
10671
10672 static void
10673 remote_trace_start (void)
10674 {
10675 putpkt ("QTStart");
10676 remote_get_noisy_reply (&target_buf, &target_buf_size);
10677 if (*target_buf == '\0')
10678 error (_("Target does not support this command."));
10679 if (strcmp (target_buf, "OK") != 0)
10680 error (_("Bogus reply from target: %s"), target_buf);
10681 }
10682
10683 static int
10684 remote_get_trace_status (struct trace_status *ts)
10685 {
10686 /* Initialize it just to avoid a GCC false warning. */
10687 char *p = NULL;
10688 /* FIXME we need to get register block size some other way. */
10689 extern int trace_regblock_size;
10690 volatile struct gdb_exception ex;
10691
10692 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10693
10694 putpkt ("qTStatus");
10695
10696 TRY_CATCH (ex, RETURN_MASK_ERROR)
10697 {
10698 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10699 }
10700 if (ex.reason < 0)
10701 {
10702 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10703 return -1;
10704 }
10705
10706 /* If the remote target doesn't do tracing, flag it. */
10707 if (*p == '\0')
10708 return -1;
10709
10710 /* We're working with a live target. */
10711 ts->filename = NULL;
10712
10713 if (*p++ != 'T')
10714 error (_("Bogus trace status reply from target: %s"), target_buf);
10715
10716 /* Function 'parse_trace_status' sets default value of each field of
10717 'ts' at first, so we don't have to do it here. */
10718 parse_trace_status (p, ts);
10719
10720 return ts->running;
10721 }
10722
10723 static void
10724 remote_get_tracepoint_status (struct breakpoint *bp,
10725 struct uploaded_tp *utp)
10726 {
10727 struct remote_state *rs = get_remote_state ();
10728 char *reply;
10729 struct bp_location *loc;
10730 struct tracepoint *tp = (struct tracepoint *) bp;
10731 size_t size = get_remote_packet_size ();
10732
10733 if (tp)
10734 {
10735 tp->base.hit_count = 0;
10736 tp->traceframe_usage = 0;
10737 for (loc = tp->base.loc; loc; loc = loc->next)
10738 {
10739 /* If the tracepoint was never downloaded, don't go asking for
10740 any status. */
10741 if (tp->number_on_target == 0)
10742 continue;
10743 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10744 phex_nz (loc->address, 0));
10745 putpkt (rs->buf);
10746 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10747 if (reply && *reply)
10748 {
10749 if (*reply == 'V')
10750 parse_tracepoint_status (reply + 1, bp, utp);
10751 }
10752 }
10753 }
10754 else if (utp)
10755 {
10756 utp->hit_count = 0;
10757 utp->traceframe_usage = 0;
10758 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
10759 phex_nz (utp->addr, 0));
10760 putpkt (rs->buf);
10761 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10762 if (reply && *reply)
10763 {
10764 if (*reply == 'V')
10765 parse_tracepoint_status (reply + 1, bp, utp);
10766 }
10767 }
10768 }
10769
10770 static void
10771 remote_trace_stop (void)
10772 {
10773 putpkt ("QTStop");
10774 remote_get_noisy_reply (&target_buf, &target_buf_size);
10775 if (*target_buf == '\0')
10776 error (_("Target does not support this command."));
10777 if (strcmp (target_buf, "OK") != 0)
10778 error (_("Bogus reply from target: %s"), target_buf);
10779 }
10780
10781 static int
10782 remote_trace_find (enum trace_find_type type, int num,
10783 ULONGEST addr1, ULONGEST addr2,
10784 int *tpp)
10785 {
10786 struct remote_state *rs = get_remote_state ();
10787 char *endbuf = rs->buf + get_remote_packet_size ();
10788 char *p, *reply;
10789 int target_frameno = -1, target_tracept = -1;
10790
10791 /* Lookups other than by absolute frame number depend on the current
10792 trace selected, so make sure it is correct on the remote end
10793 first. */
10794 if (type != tfind_number)
10795 set_remote_traceframe ();
10796
10797 p = rs->buf;
10798 strcpy (p, "QTFrame:");
10799 p = strchr (p, '\0');
10800 switch (type)
10801 {
10802 case tfind_number:
10803 xsnprintf (p, endbuf - p, "%x", num);
10804 break;
10805 case tfind_pc:
10806 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
10807 break;
10808 case tfind_tp:
10809 xsnprintf (p, endbuf - p, "tdp:%x", num);
10810 break;
10811 case tfind_range:
10812 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
10813 phex_nz (addr2, 0));
10814 break;
10815 case tfind_outside:
10816 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
10817 phex_nz (addr2, 0));
10818 break;
10819 default:
10820 error (_("Unknown trace find type %d"), type);
10821 }
10822
10823 putpkt (rs->buf);
10824 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10825 if (*reply == '\0')
10826 error (_("Target does not support this command."));
10827
10828 while (reply && *reply)
10829 switch (*reply)
10830 {
10831 case 'F':
10832 p = ++reply;
10833 target_frameno = (int) strtol (p, &reply, 16);
10834 if (reply == p)
10835 error (_("Unable to parse trace frame number"));
10836 /* Don't update our remote traceframe number cache on failure
10837 to select a remote traceframe. */
10838 if (target_frameno == -1)
10839 return -1;
10840 break;
10841 case 'T':
10842 p = ++reply;
10843 target_tracept = (int) strtol (p, &reply, 16);
10844 if (reply == p)
10845 error (_("Unable to parse tracepoint number"));
10846 break;
10847 case 'O': /* "OK"? */
10848 if (reply[1] == 'K' && reply[2] == '\0')
10849 reply += 2;
10850 else
10851 error (_("Bogus reply from target: %s"), reply);
10852 break;
10853 default:
10854 error (_("Bogus reply from target: %s"), reply);
10855 }
10856 if (tpp)
10857 *tpp = target_tracept;
10858
10859 remote_traceframe_number = target_frameno;
10860 return target_frameno;
10861 }
10862
10863 static int
10864 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
10865 {
10866 struct remote_state *rs = get_remote_state ();
10867 char *reply;
10868 ULONGEST uval;
10869
10870 set_remote_traceframe ();
10871
10872 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
10873 putpkt (rs->buf);
10874 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10875 if (reply && *reply)
10876 {
10877 if (*reply == 'V')
10878 {
10879 unpack_varlen_hex (reply + 1, &uval);
10880 *val = (LONGEST) uval;
10881 return 1;
10882 }
10883 }
10884 return 0;
10885 }
10886
10887 static int
10888 remote_save_trace_data (const char *filename)
10889 {
10890 struct remote_state *rs = get_remote_state ();
10891 char *p, *reply;
10892
10893 p = rs->buf;
10894 strcpy (p, "QTSave:");
10895 p += strlen (p);
10896 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
10897 error (_("Remote file name too long for trace save packet"));
10898 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
10899 *p++ = '\0';
10900 putpkt (rs->buf);
10901 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10902 if (*reply == '\0')
10903 error (_("Target does not support this command."));
10904 if (strcmp (reply, "OK") != 0)
10905 error (_("Bogus reply from target: %s"), reply);
10906 return 0;
10907 }
10908
10909 /* This is basically a memory transfer, but needs to be its own packet
10910 because we don't know how the target actually organizes its trace
10911 memory, plus we want to be able to ask for as much as possible, but
10912 not be unhappy if we don't get as much as we ask for. */
10913
10914 static LONGEST
10915 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
10916 {
10917 struct remote_state *rs = get_remote_state ();
10918 char *reply;
10919 char *p;
10920 int rslt;
10921
10922 p = rs->buf;
10923 strcpy (p, "qTBuffer:");
10924 p += strlen (p);
10925 p += hexnumstr (p, offset);
10926 *p++ = ',';
10927 p += hexnumstr (p, len);
10928 *p++ = '\0';
10929
10930 putpkt (rs->buf);
10931 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10932 if (reply && *reply)
10933 {
10934 /* 'l' by itself means we're at the end of the buffer and
10935 there is nothing more to get. */
10936 if (*reply == 'l')
10937 return 0;
10938
10939 /* Convert the reply into binary. Limit the number of bytes to
10940 convert according to our passed-in buffer size, rather than
10941 what was returned in the packet; if the target is
10942 unexpectedly generous and gives us a bigger reply than we
10943 asked for, we don't want to crash. */
10944 rslt = hex2bin (target_buf, buf, len);
10945 return rslt;
10946 }
10947
10948 /* Something went wrong, flag as an error. */
10949 return -1;
10950 }
10951
10952 static void
10953 remote_set_disconnected_tracing (int val)
10954 {
10955 struct remote_state *rs = get_remote_state ();
10956
10957 if (rs->disconnected_tracing)
10958 {
10959 char *reply;
10960
10961 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
10962 putpkt (rs->buf);
10963 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10964 if (*reply == '\0')
10965 error (_("Target does not support this command."));
10966 if (strcmp (reply, "OK") != 0)
10967 error (_("Bogus reply from target: %s"), reply);
10968 }
10969 else if (val)
10970 warning (_("Target does not support disconnected tracing."));
10971 }
10972
10973 static int
10974 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
10975 {
10976 struct thread_info *info = find_thread_ptid (ptid);
10977
10978 if (info && info->private)
10979 return info->private->core;
10980 return -1;
10981 }
10982
10983 static void
10984 remote_set_circular_trace_buffer (int val)
10985 {
10986 struct remote_state *rs = get_remote_state ();
10987 char *reply;
10988
10989 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
10990 putpkt (rs->buf);
10991 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10992 if (*reply == '\0')
10993 error (_("Target does not support this command."));
10994 if (strcmp (reply, "OK") != 0)
10995 error (_("Bogus reply from target: %s"), reply);
10996 }
10997
10998 static struct traceframe_info *
10999 remote_traceframe_info (void)
11000 {
11001 char *text;
11002
11003 text = target_read_stralloc (&current_target,
11004 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
11005 if (text != NULL)
11006 {
11007 struct traceframe_info *info;
11008 struct cleanup *back_to = make_cleanup (xfree, text);
11009
11010 info = parse_traceframe_info (text);
11011 do_cleanups (back_to);
11012 return info;
11013 }
11014
11015 return NULL;
11016 }
11017
11018 /* Handle the qTMinFTPILen packet. Returns the minimum length of
11019 instruction on which a fast tracepoint may be placed. Returns -1
11020 if the packet is not supported, and 0 if the minimum instruction
11021 length is unknown. */
11022
11023 static int
11024 remote_get_min_fast_tracepoint_insn_len (void)
11025 {
11026 struct remote_state *rs = get_remote_state ();
11027 char *reply;
11028
11029 /* If we're not debugging a process yet, the IPA can't be
11030 loaded. */
11031 if (!target_has_execution)
11032 return 0;
11033
11034 /* Make sure the remote is pointing at the right process. */
11035 set_general_process ();
11036
11037 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
11038 putpkt (rs->buf);
11039 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11040 if (*reply == '\0')
11041 return -1;
11042 else
11043 {
11044 ULONGEST min_insn_len;
11045
11046 unpack_varlen_hex (reply, &min_insn_len);
11047
11048 return (int) min_insn_len;
11049 }
11050 }
11051
11052 static void
11053 remote_set_trace_buffer_size (LONGEST val)
11054 {
11055 if (remote_protocol_packets[PACKET_QTBuffer_size].support
11056 != PACKET_DISABLE)
11057 {
11058 struct remote_state *rs = get_remote_state ();
11059 char *buf = rs->buf;
11060 char *endbuf = rs->buf + get_remote_packet_size ();
11061 enum packet_result result;
11062
11063 gdb_assert (val >= 0 || val == -1);
11064 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
11065 /* Send -1 as literal "-1" to avoid host size dependency. */
11066 if (val < 0)
11067 {
11068 *buf++ = '-';
11069 buf += hexnumstr (buf, (ULONGEST) -val);
11070 }
11071 else
11072 buf += hexnumstr (buf, (ULONGEST) val);
11073
11074 putpkt (rs->buf);
11075 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
11076 result = packet_ok (rs->buf,
11077 &remote_protocol_packets[PACKET_QTBuffer_size]);
11078
11079 if (result != PACKET_OK)
11080 warning (_("Bogus reply from target: %s"), rs->buf);
11081 }
11082 }
11083
11084 static int
11085 remote_set_trace_notes (char *user, char *notes, char *stop_notes)
11086 {
11087 struct remote_state *rs = get_remote_state ();
11088 char *reply;
11089 char *buf = rs->buf;
11090 char *endbuf = rs->buf + get_remote_packet_size ();
11091 int nbytes;
11092
11093 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
11094 if (user)
11095 {
11096 buf += xsnprintf (buf, endbuf - buf, "user:");
11097 nbytes = bin2hex (user, buf, 0);
11098 buf += 2 * nbytes;
11099 *buf++ = ';';
11100 }
11101 if (notes)
11102 {
11103 buf += xsnprintf (buf, endbuf - buf, "notes:");
11104 nbytes = bin2hex (notes, buf, 0);
11105 buf += 2 * nbytes;
11106 *buf++ = ';';
11107 }
11108 if (stop_notes)
11109 {
11110 buf += xsnprintf (buf, endbuf - buf, "tstop:");
11111 nbytes = bin2hex (stop_notes, buf, 0);
11112 buf += 2 * nbytes;
11113 *buf++ = ';';
11114 }
11115 /* Ensure the buffer is terminated. */
11116 *buf = '\0';
11117
11118 putpkt (rs->buf);
11119 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11120 if (*reply == '\0')
11121 return 0;
11122
11123 if (strcmp (reply, "OK") != 0)
11124 error (_("Bogus reply from target: %s"), reply);
11125
11126 return 1;
11127 }
11128
11129 static int
11130 remote_use_agent (int use)
11131 {
11132 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
11133 {
11134 struct remote_state *rs = get_remote_state ();
11135
11136 /* If the stub supports QAgent. */
11137 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
11138 putpkt (rs->buf);
11139 getpkt (&rs->buf, &rs->buf_size, 0);
11140
11141 if (strcmp (rs->buf, "OK") == 0)
11142 {
11143 use_agent = use;
11144 return 1;
11145 }
11146 }
11147
11148 return 0;
11149 }
11150
11151 static int
11152 remote_can_use_agent (void)
11153 {
11154 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
11155 }
11156
11157 struct btrace_target_info
11158 {
11159 /* The ptid of the traced thread. */
11160 ptid_t ptid;
11161 };
11162
11163 /* Check whether the target supports branch tracing. */
11164
11165 static int
11166 remote_supports_btrace (void)
11167 {
11168 if (remote_protocol_packets[PACKET_Qbtrace_off].support != PACKET_ENABLE)
11169 return 0;
11170 if (remote_protocol_packets[PACKET_Qbtrace_bts].support != PACKET_ENABLE)
11171 return 0;
11172 if (remote_protocol_packets[PACKET_qXfer_btrace].support != PACKET_ENABLE)
11173 return 0;
11174
11175 return 1;
11176 }
11177
11178 /* Enable branch tracing. */
11179
11180 static struct btrace_target_info *
11181 remote_enable_btrace (ptid_t ptid)
11182 {
11183 struct btrace_target_info *tinfo = NULL;
11184 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
11185 struct remote_state *rs = get_remote_state ();
11186 char *buf = rs->buf;
11187 char *endbuf = rs->buf + get_remote_packet_size ();
11188
11189 if (packet->support != PACKET_ENABLE)
11190 error (_("Target does not support branch tracing."));
11191
11192 set_general_thread (ptid);
11193
11194 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11195 putpkt (rs->buf);
11196 getpkt (&rs->buf, &rs->buf_size, 0);
11197
11198 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11199 {
11200 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11201 error (_("Could not enable branch tracing for %s: %s"),
11202 target_pid_to_str (ptid), rs->buf + 2);
11203 else
11204 error (_("Could not enable branch tracing for %s."),
11205 target_pid_to_str (ptid));
11206 }
11207
11208 tinfo = xzalloc (sizeof (*tinfo));
11209 tinfo->ptid = ptid;
11210
11211 return tinfo;
11212 }
11213
11214 /* Disable branch tracing. */
11215
11216 static void
11217 remote_disable_btrace (struct btrace_target_info *tinfo)
11218 {
11219 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
11220 struct remote_state *rs = get_remote_state ();
11221 char *buf = rs->buf;
11222 char *endbuf = rs->buf + get_remote_packet_size ();
11223
11224 if (packet->support != PACKET_ENABLE)
11225 error (_("Target does not support branch tracing."));
11226
11227 set_general_thread (tinfo->ptid);
11228
11229 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11230 putpkt (rs->buf);
11231 getpkt (&rs->buf, &rs->buf_size, 0);
11232
11233 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11234 {
11235 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11236 error (_("Could not disable branch tracing for %s: %s"),
11237 target_pid_to_str (tinfo->ptid), rs->buf + 2);
11238 else
11239 error (_("Could not disable branch tracing for %s."),
11240 target_pid_to_str (tinfo->ptid));
11241 }
11242
11243 xfree (tinfo);
11244 }
11245
11246 /* Teardown branch tracing. */
11247
11248 static void
11249 remote_teardown_btrace (struct btrace_target_info *tinfo)
11250 {
11251 /* We must not talk to the target during teardown. */
11252 xfree (tinfo);
11253 }
11254
11255 /* Read the branch trace. */
11256
11257 static VEC (btrace_block_s) *
11258 remote_read_btrace (struct btrace_target_info *tinfo,
11259 enum btrace_read_type type)
11260 {
11261 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
11262 struct remote_state *rs = get_remote_state ();
11263 VEC (btrace_block_s) *btrace = NULL;
11264 const char *annex;
11265 char *xml;
11266
11267 if (packet->support != PACKET_ENABLE)
11268 error (_("Target does not support branch tracing."));
11269
11270 #if !defined(HAVE_LIBEXPAT)
11271 error (_("Cannot process branch tracing result. XML parsing not supported."));
11272 #endif
11273
11274 switch (type)
11275 {
11276 case btrace_read_all:
11277 annex = "all";
11278 break;
11279 case btrace_read_new:
11280 annex = "new";
11281 break;
11282 default:
11283 internal_error (__FILE__, __LINE__,
11284 _("Bad branch tracing read type: %u."),
11285 (unsigned int) type);
11286 }
11287
11288 xml = target_read_stralloc (&current_target,
11289 TARGET_OBJECT_BTRACE, annex);
11290 if (xml != NULL)
11291 {
11292 struct cleanup *cleanup = make_cleanup (xfree, xml);
11293
11294 btrace = parse_xml_btrace (xml);
11295 do_cleanups (cleanup);
11296 }
11297
11298 return btrace;
11299 }
11300
11301 static void
11302 init_remote_ops (void)
11303 {
11304 remote_ops.to_shortname = "remote";
11305 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
11306 remote_ops.to_doc =
11307 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11308 Specify the serial device it is connected to\n\
11309 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
11310 remote_ops.to_open = remote_open;
11311 remote_ops.to_close = remote_close;
11312 remote_ops.to_detach = remote_detach;
11313 remote_ops.to_disconnect = remote_disconnect;
11314 remote_ops.to_resume = remote_resume;
11315 remote_ops.to_wait = remote_wait;
11316 remote_ops.to_fetch_registers = remote_fetch_registers;
11317 remote_ops.to_store_registers = remote_store_registers;
11318 remote_ops.to_prepare_to_store = remote_prepare_to_store;
11319 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
11320 remote_ops.to_files_info = remote_files_info;
11321 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
11322 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
11323 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
11324 remote_ops.to_stopped_data_address = remote_stopped_data_address;
11325 remote_ops.to_watchpoint_addr_within_range =
11326 remote_watchpoint_addr_within_range;
11327 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
11328 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
11329 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
11330 remote_ops.to_region_ok_for_hw_watchpoint
11331 = remote_region_ok_for_hw_watchpoint;
11332 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
11333 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
11334 remote_ops.to_kill = remote_kill;
11335 remote_ops.to_load = generic_load;
11336 remote_ops.to_mourn_inferior = remote_mourn;
11337 remote_ops.to_pass_signals = remote_pass_signals;
11338 remote_ops.to_program_signals = remote_program_signals;
11339 remote_ops.to_thread_alive = remote_thread_alive;
11340 remote_ops.to_find_new_threads = remote_threads_info;
11341 remote_ops.to_pid_to_str = remote_pid_to_str;
11342 remote_ops.to_extra_thread_info = remote_threads_extra_info;
11343 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
11344 remote_ops.to_stop = remote_stop;
11345 remote_ops.to_xfer_partial = remote_xfer_partial;
11346 remote_ops.to_rcmd = remote_rcmd;
11347 remote_ops.to_log_command = serial_log_command;
11348 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
11349 remote_ops.to_stratum = process_stratum;
11350 remote_ops.to_has_all_memory = default_child_has_all_memory;
11351 remote_ops.to_has_memory = default_child_has_memory;
11352 remote_ops.to_has_stack = default_child_has_stack;
11353 remote_ops.to_has_registers = default_child_has_registers;
11354 remote_ops.to_has_execution = default_child_has_execution;
11355 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
11356 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
11357 remote_ops.to_magic = OPS_MAGIC;
11358 remote_ops.to_memory_map = remote_memory_map;
11359 remote_ops.to_flash_erase = remote_flash_erase;
11360 remote_ops.to_flash_done = remote_flash_done;
11361 remote_ops.to_read_description = remote_read_description;
11362 remote_ops.to_search_memory = remote_search_memory;
11363 remote_ops.to_can_async_p = remote_can_async_p;
11364 remote_ops.to_is_async_p = remote_is_async_p;
11365 remote_ops.to_async = remote_async;
11366 remote_ops.to_terminal_inferior = remote_terminal_inferior;
11367 remote_ops.to_terminal_ours = remote_terminal_ours;
11368 remote_ops.to_supports_non_stop = remote_supports_non_stop;
11369 remote_ops.to_supports_multi_process = remote_supports_multi_process;
11370 remote_ops.to_supports_disable_randomization
11371 = remote_supports_disable_randomization;
11372 remote_ops.to_fileio_open = remote_hostio_open;
11373 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
11374 remote_ops.to_fileio_pread = remote_hostio_pread;
11375 remote_ops.to_fileio_close = remote_hostio_close;
11376 remote_ops.to_fileio_unlink = remote_hostio_unlink;
11377 remote_ops.to_fileio_readlink = remote_hostio_readlink;
11378 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
11379 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
11380 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
11381 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
11382 remote_ops.to_trace_init = remote_trace_init;
11383 remote_ops.to_download_tracepoint = remote_download_tracepoint;
11384 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
11385 remote_ops.to_download_trace_state_variable
11386 = remote_download_trace_state_variable;
11387 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
11388 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
11389 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
11390 remote_ops.to_trace_start = remote_trace_start;
11391 remote_ops.to_get_trace_status = remote_get_trace_status;
11392 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
11393 remote_ops.to_trace_stop = remote_trace_stop;
11394 remote_ops.to_trace_find = remote_trace_find;
11395 remote_ops.to_get_trace_state_variable_value
11396 = remote_get_trace_state_variable_value;
11397 remote_ops.to_save_trace_data = remote_save_trace_data;
11398 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11399 remote_ops.to_upload_trace_state_variables
11400 = remote_upload_trace_state_variables;
11401 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11402 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11403 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11404 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11405 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
11406 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11407 remote_ops.to_core_of_thread = remote_core_of_thread;
11408 remote_ops.to_verify_memory = remote_verify_memory;
11409 remote_ops.to_get_tib_address = remote_get_tib_address;
11410 remote_ops.to_set_permissions = remote_set_permissions;
11411 remote_ops.to_static_tracepoint_marker_at
11412 = remote_static_tracepoint_marker_at;
11413 remote_ops.to_static_tracepoint_markers_by_strid
11414 = remote_static_tracepoint_markers_by_strid;
11415 remote_ops.to_traceframe_info = remote_traceframe_info;
11416 remote_ops.to_use_agent = remote_use_agent;
11417 remote_ops.to_can_use_agent = remote_can_use_agent;
11418 remote_ops.to_supports_btrace = remote_supports_btrace;
11419 remote_ops.to_enable_btrace = remote_enable_btrace;
11420 remote_ops.to_disable_btrace = remote_disable_btrace;
11421 remote_ops.to_teardown_btrace = remote_teardown_btrace;
11422 remote_ops.to_read_btrace = remote_read_btrace;
11423 }
11424
11425 /* Set up the extended remote vector by making a copy of the standard
11426 remote vector and adding to it. */
11427
11428 static void
11429 init_extended_remote_ops (void)
11430 {
11431 extended_remote_ops = remote_ops;
11432
11433 extended_remote_ops.to_shortname = "extended-remote";
11434 extended_remote_ops.to_longname =
11435 "Extended remote serial target in gdb-specific protocol";
11436 extended_remote_ops.to_doc =
11437 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11438 Specify the serial device it is connected to (e.g. /dev/ttya).";
11439 extended_remote_ops.to_open = extended_remote_open;
11440 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11441 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11442 extended_remote_ops.to_detach = extended_remote_detach;
11443 extended_remote_ops.to_attach = extended_remote_attach;
11444 extended_remote_ops.to_kill = extended_remote_kill;
11445 extended_remote_ops.to_supports_disable_randomization
11446 = extended_remote_supports_disable_randomization;
11447 }
11448
11449 static int
11450 remote_can_async_p (void)
11451 {
11452 if (!target_async_permitted)
11453 /* We only enable async when the user specifically asks for it. */
11454 return 0;
11455
11456 /* We're async whenever the serial device is. */
11457 return serial_can_async_p (remote_desc);
11458 }
11459
11460 static int
11461 remote_is_async_p (void)
11462 {
11463 if (!target_async_permitted)
11464 /* We only enable async when the user specifically asks for it. */
11465 return 0;
11466
11467 /* We're async whenever the serial device is. */
11468 return serial_is_async_p (remote_desc);
11469 }
11470
11471 /* Pass the SERIAL event on and up to the client. One day this code
11472 will be able to delay notifying the client of an event until the
11473 point where an entire packet has been received. */
11474
11475 static void (*async_client_callback) (enum inferior_event_type event_type,
11476 void *context);
11477 static void *async_client_context;
11478 static serial_event_ftype remote_async_serial_handler;
11479
11480 static void
11481 remote_async_serial_handler (struct serial *scb, void *context)
11482 {
11483 /* Don't propogate error information up to the client. Instead let
11484 the client find out about the error by querying the target. */
11485 async_client_callback (INF_REG_EVENT, async_client_context);
11486 }
11487
11488 static void
11489 remote_async_inferior_event_handler (gdb_client_data data)
11490 {
11491 inferior_event_handler (INF_REG_EVENT, NULL);
11492 }
11493
11494 static void
11495 remote_async (void (*callback) (enum inferior_event_type event_type,
11496 void *context), void *context)
11497 {
11498 if (callback != NULL)
11499 {
11500 serial_async (remote_desc, remote_async_serial_handler, NULL);
11501 async_client_callback = callback;
11502 async_client_context = context;
11503 }
11504 else
11505 serial_async (remote_desc, NULL, NULL);
11506 }
11507
11508 static void
11509 set_remote_cmd (char *args, int from_tty)
11510 {
11511 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11512 }
11513
11514 static void
11515 show_remote_cmd (char *args, int from_tty)
11516 {
11517 /* We can't just use cmd_show_list here, because we want to skip
11518 the redundant "show remote Z-packet" and the legacy aliases. */
11519 struct cleanup *showlist_chain;
11520 struct cmd_list_element *list = remote_show_cmdlist;
11521 struct ui_out *uiout = current_uiout;
11522
11523 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11524 for (; list != NULL; list = list->next)
11525 if (strcmp (list->name, "Z-packet") == 0)
11526 continue;
11527 else if (list->type == not_set_cmd)
11528 /* Alias commands are exactly like the original, except they
11529 don't have the normal type. */
11530 continue;
11531 else
11532 {
11533 struct cleanup *option_chain
11534 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11535
11536 ui_out_field_string (uiout, "name", list->name);
11537 ui_out_text (uiout, ": ");
11538 if (list->type == show_cmd)
11539 do_show_command ((char *) NULL, from_tty, list);
11540 else
11541 cmd_func (list, NULL, from_tty);
11542 /* Close the tuple. */
11543 do_cleanups (option_chain);
11544 }
11545
11546 /* Close the tuple. */
11547 do_cleanups (showlist_chain);
11548 }
11549
11550
11551 /* Function to be called whenever a new objfile (shlib) is detected. */
11552 static void
11553 remote_new_objfile (struct objfile *objfile)
11554 {
11555 if (remote_desc != 0) /* Have a remote connection. */
11556 remote_check_symbols (objfile);
11557 }
11558
11559 /* Pull all the tracepoints defined on the target and create local
11560 data structures representing them. We don't want to create real
11561 tracepoints yet, we don't want to mess up the user's existing
11562 collection. */
11563
11564 static int
11565 remote_upload_tracepoints (struct uploaded_tp **utpp)
11566 {
11567 struct remote_state *rs = get_remote_state ();
11568 char *p;
11569
11570 /* Ask for a first packet of tracepoint definition. */
11571 putpkt ("qTfP");
11572 getpkt (&rs->buf, &rs->buf_size, 0);
11573 p = rs->buf;
11574 while (*p && *p != 'l')
11575 {
11576 parse_tracepoint_definition (p, utpp);
11577 /* Ask for another packet of tracepoint definition. */
11578 putpkt ("qTsP");
11579 getpkt (&rs->buf, &rs->buf_size, 0);
11580 p = rs->buf;
11581 }
11582 return 0;
11583 }
11584
11585 static int
11586 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11587 {
11588 struct remote_state *rs = get_remote_state ();
11589 char *p;
11590
11591 /* Ask for a first packet of variable definition. */
11592 putpkt ("qTfV");
11593 getpkt (&rs->buf, &rs->buf_size, 0);
11594 p = rs->buf;
11595 while (*p && *p != 'l')
11596 {
11597 parse_tsv_definition (p, utsvp);
11598 /* Ask for another packet of variable definition. */
11599 putpkt ("qTsV");
11600 getpkt (&rs->buf, &rs->buf_size, 0);
11601 p = rs->buf;
11602 }
11603 return 0;
11604 }
11605
11606 void
11607 _initialize_remote (void)
11608 {
11609 struct remote_state *rs;
11610 struct cmd_list_element *cmd;
11611 const char *cmd_name;
11612
11613 /* architecture specific data */
11614 remote_gdbarch_data_handle =
11615 gdbarch_data_register_post_init (init_remote_state);
11616 remote_g_packet_data_handle =
11617 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11618
11619 /* Initialize the per-target state. At the moment there is only one
11620 of these, not one per target. Only one target is active at a
11621 time. The default buffer size is unimportant; it will be expanded
11622 whenever a larger buffer is needed. */
11623 rs = get_remote_state_raw ();
11624 rs->buf_size = 400;
11625 rs->buf = xmalloc (rs->buf_size);
11626
11627 init_remote_ops ();
11628 add_target (&remote_ops);
11629
11630 init_extended_remote_ops ();
11631 add_target (&extended_remote_ops);
11632
11633 /* Hook into new objfile notification. */
11634 observer_attach_new_objfile (remote_new_objfile);
11635 /* We're no longer interested in notification events of an inferior
11636 when it exits. */
11637 observer_attach_inferior_exit (discard_pending_stop_replies);
11638
11639 /* Set up signal handlers. */
11640 sigint_remote_token =
11641 create_async_signal_handler (async_remote_interrupt, NULL);
11642 sigint_remote_twice_token =
11643 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11644
11645 #if 0
11646 init_remote_threadtests ();
11647 #endif
11648
11649 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
11650 /* set/show remote ... */
11651
11652 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11653 Remote protocol specific variables\n\
11654 Configure various remote-protocol specific variables such as\n\
11655 the packets being used"),
11656 &remote_set_cmdlist, "set remote ",
11657 0 /* allow-unknown */, &setlist);
11658 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11659 Remote protocol specific variables\n\
11660 Configure various remote-protocol specific variables such as\n\
11661 the packets being used"),
11662 &remote_show_cmdlist, "show remote ",
11663 0 /* allow-unknown */, &showlist);
11664
11665 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11666 Compare section data on target to the exec file.\n\
11667 Argument is a single section name (default: all loaded sections)."),
11668 &cmdlist);
11669
11670 add_cmd ("packet", class_maintenance, packet_command, _("\
11671 Send an arbitrary packet to a remote target.\n\
11672 maintenance packet TEXT\n\
11673 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11674 this command sends the string TEXT to the inferior, and displays the\n\
11675 response packet. GDB supplies the initial `$' character, and the\n\
11676 terminating `#' character and checksum."),
11677 &maintenancelist);
11678
11679 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11680 Set whether to send break if interrupted."), _("\
11681 Show whether to send break if interrupted."), _("\
11682 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11683 set_remotebreak, show_remotebreak,
11684 &setlist, &showlist);
11685 cmd_name = "remotebreak";
11686 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11687 deprecate_cmd (cmd, "set remote interrupt-sequence");
11688 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11689 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11690 deprecate_cmd (cmd, "show remote interrupt-sequence");
11691
11692 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11693 interrupt_sequence_modes, &interrupt_sequence_mode,
11694 _("\
11695 Set interrupt sequence to remote target."), _("\
11696 Show interrupt sequence to remote target."), _("\
11697 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11698 NULL, show_interrupt_sequence,
11699 &remote_set_cmdlist,
11700 &remote_show_cmdlist);
11701
11702 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11703 &interrupt_on_connect, _("\
11704 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11705 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11706 If set, interrupt sequence is sent to remote target."),
11707 NULL, NULL,
11708 &remote_set_cmdlist, &remote_show_cmdlist);
11709
11710 /* Install commands for configuring memory read/write packets. */
11711
11712 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11713 Set the maximum number of bytes per memory write packet (deprecated)."),
11714 &setlist);
11715 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11716 Show the maximum number of bytes per memory write packet (deprecated)."),
11717 &showlist);
11718 add_cmd ("memory-write-packet-size", no_class,
11719 set_memory_write_packet_size, _("\
11720 Set the maximum number of bytes per memory-write packet.\n\
11721 Specify the number of bytes in a packet or 0 (zero) for the\n\
11722 default packet size. The actual limit is further reduced\n\
11723 dependent on the target. Specify ``fixed'' to disable the\n\
11724 further restriction and ``limit'' to enable that restriction."),
11725 &remote_set_cmdlist);
11726 add_cmd ("memory-read-packet-size", no_class,
11727 set_memory_read_packet_size, _("\
11728 Set the maximum number of bytes per memory-read packet.\n\
11729 Specify the number of bytes in a packet or 0 (zero) for the\n\
11730 default packet size. The actual limit is further reduced\n\
11731 dependent on the target. Specify ``fixed'' to disable the\n\
11732 further restriction and ``limit'' to enable that restriction."),
11733 &remote_set_cmdlist);
11734 add_cmd ("memory-write-packet-size", no_class,
11735 show_memory_write_packet_size,
11736 _("Show the maximum number of bytes per memory-write packet."),
11737 &remote_show_cmdlist);
11738 add_cmd ("memory-read-packet-size", no_class,
11739 show_memory_read_packet_size,
11740 _("Show the maximum number of bytes per memory-read packet."),
11741 &remote_show_cmdlist);
11742
11743 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11744 &remote_hw_watchpoint_limit, _("\
11745 Set the maximum number of target hardware watchpoints."), _("\
11746 Show the maximum number of target hardware watchpoints."), _("\
11747 Specify a negative limit for unlimited."),
11748 NULL, NULL, /* FIXME: i18n: The maximum
11749 number of target hardware
11750 watchpoints is %s. */
11751 &remote_set_cmdlist, &remote_show_cmdlist);
11752 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11753 &remote_hw_watchpoint_length_limit, _("\
11754 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11755 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11756 Specify a negative limit for unlimited."),
11757 NULL, NULL, /* FIXME: i18n: The maximum
11758 length (in bytes) of a target
11759 hardware watchpoint is %s. */
11760 &remote_set_cmdlist, &remote_show_cmdlist);
11761 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11762 &remote_hw_breakpoint_limit, _("\
11763 Set the maximum number of target hardware breakpoints."), _("\
11764 Show the maximum number of target hardware breakpoints."), _("\
11765 Specify a negative limit for unlimited."),
11766 NULL, NULL, /* FIXME: i18n: The maximum
11767 number of target hardware
11768 breakpoints is %s. */
11769 &remote_set_cmdlist, &remote_show_cmdlist);
11770
11771 add_setshow_uinteger_cmd ("remoteaddresssize", class_obscure,
11772 &remote_address_size, _("\
11773 Set the maximum size of the address (in bits) in a memory packet."), _("\
11774 Show the maximum size of the address (in bits) in a memory packet."), NULL,
11775 NULL,
11776 NULL, /* FIXME: i18n: */
11777 &setlist, &showlist);
11778
11779 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
11780 "X", "binary-download", 1);
11781
11782 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
11783 "vCont", "verbose-resume", 0);
11784
11785 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
11786 "QPassSignals", "pass-signals", 0);
11787
11788 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
11789 "QProgramSignals", "program-signals", 0);
11790
11791 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
11792 "qSymbol", "symbol-lookup", 0);
11793
11794 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
11795 "P", "set-register", 1);
11796
11797 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
11798 "p", "fetch-register", 1);
11799
11800 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
11801 "Z0", "software-breakpoint", 0);
11802
11803 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
11804 "Z1", "hardware-breakpoint", 0);
11805
11806 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
11807 "Z2", "write-watchpoint", 0);
11808
11809 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
11810 "Z3", "read-watchpoint", 0);
11811
11812 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
11813 "Z4", "access-watchpoint", 0);
11814
11815 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
11816 "qXfer:auxv:read", "read-aux-vector", 0);
11817
11818 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
11819 "qXfer:features:read", "target-features", 0);
11820
11821 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
11822 "qXfer:libraries:read", "library-info", 0);
11823
11824 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
11825 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
11826
11827 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
11828 "qXfer:memory-map:read", "memory-map", 0);
11829
11830 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
11831 "qXfer:spu:read", "read-spu-object", 0);
11832
11833 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
11834 "qXfer:spu:write", "write-spu-object", 0);
11835
11836 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
11837 "qXfer:osdata:read", "osdata", 0);
11838
11839 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
11840 "qXfer:threads:read", "threads", 0);
11841
11842 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
11843 "qXfer:siginfo:read", "read-siginfo-object", 0);
11844
11845 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
11846 "qXfer:siginfo:write", "write-siginfo-object", 0);
11847
11848 add_packet_config_cmd
11849 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
11850 "qXfer:trace-frame-info:read", "traceframe-info", 0);
11851
11852 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
11853 "qXfer:uib:read", "unwind-info-block", 0);
11854
11855 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
11856 "qGetTLSAddr", "get-thread-local-storage-address",
11857 0);
11858
11859 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
11860 "qGetTIBAddr", "get-thread-information-block-address",
11861 0);
11862
11863 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
11864 "bc", "reverse-continue", 0);
11865
11866 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
11867 "bs", "reverse-step", 0);
11868
11869 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
11870 "qSupported", "supported-packets", 0);
11871
11872 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
11873 "qSearch:memory", "search-memory", 0);
11874
11875 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
11876 "vFile:open", "hostio-open", 0);
11877
11878 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
11879 "vFile:pread", "hostio-pread", 0);
11880
11881 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
11882 "vFile:pwrite", "hostio-pwrite", 0);
11883
11884 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
11885 "vFile:close", "hostio-close", 0);
11886
11887 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
11888 "vFile:unlink", "hostio-unlink", 0);
11889
11890 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
11891 "vFile:readlink", "hostio-readlink", 0);
11892
11893 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
11894 "vAttach", "attach", 0);
11895
11896 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
11897 "vRun", "run", 0);
11898
11899 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
11900 "QStartNoAckMode", "noack", 0);
11901
11902 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
11903 "vKill", "kill", 0);
11904
11905 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
11906 "qAttached", "query-attached", 0);
11907
11908 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
11909 "ConditionalTracepoints",
11910 "conditional-tracepoints", 0);
11911
11912 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
11913 "ConditionalBreakpoints",
11914 "conditional-breakpoints", 0);
11915
11916 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
11917 "BreakpointCommands",
11918 "breakpoint-commands", 0);
11919
11920 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
11921 "FastTracepoints", "fast-tracepoints", 0);
11922
11923 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
11924 "TracepointSource", "TracepointSource", 0);
11925
11926 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
11927 "QAllow", "allow", 0);
11928
11929 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
11930 "StaticTracepoints", "static-tracepoints", 0);
11931
11932 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
11933 "InstallInTrace", "install-in-trace", 0);
11934
11935 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
11936 "qXfer:statictrace:read", "read-sdata-object", 0);
11937
11938 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
11939 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
11940
11941 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
11942 "QDisableRandomization", "disable-randomization", 0);
11943
11944 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
11945 "QAgent", "agent", 0);
11946
11947 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
11948 "QTBuffer:size", "trace-buffer-size", 0);
11949
11950 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
11951 "Qbtrace:off", "disable-btrace", 0);
11952
11953 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
11954 "Qbtrace:bts", "enable-btrace", 0);
11955
11956 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
11957 "qXfer:btrace", "read-btrace", 0);
11958
11959 /* Keep the old ``set remote Z-packet ...'' working. Each individual
11960 Z sub-packet has its own set and show commands, but users may
11961 have sets to this variable in their .gdbinit files (or in their
11962 documentation). */
11963 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
11964 &remote_Z_packet_detect, _("\
11965 Set use of remote protocol `Z' packets"), _("\
11966 Show use of remote protocol `Z' packets "), _("\
11967 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
11968 packets."),
11969 set_remote_protocol_Z_packet_cmd,
11970 show_remote_protocol_Z_packet_cmd,
11971 /* FIXME: i18n: Use of remote protocol
11972 `Z' packets is %s. */
11973 &remote_set_cmdlist, &remote_show_cmdlist);
11974
11975 add_prefix_cmd ("remote", class_files, remote_command, _("\
11976 Manipulate files on the remote system\n\
11977 Transfer files to and from the remote target system."),
11978 &remote_cmdlist, "remote ",
11979 0 /* allow-unknown */, &cmdlist);
11980
11981 add_cmd ("put", class_files, remote_put_command,
11982 _("Copy a local file to the remote system."),
11983 &remote_cmdlist);
11984
11985 add_cmd ("get", class_files, remote_get_command,
11986 _("Copy a remote file to the local system."),
11987 &remote_cmdlist);
11988
11989 add_cmd ("delete", class_files, remote_delete_command,
11990 _("Delete a remote file."),
11991 &remote_cmdlist);
11992
11993 remote_exec_file = xstrdup ("");
11994 add_setshow_string_noescape_cmd ("exec-file", class_files,
11995 &remote_exec_file, _("\
11996 Set the remote pathname for \"run\""), _("\
11997 Show the remote pathname for \"run\""), NULL, NULL, NULL,
11998 &remote_set_cmdlist, &remote_show_cmdlist);
11999
12000 /* Eventually initialize fileio. See fileio.c */
12001 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
12002
12003 /* Take advantage of the fact that the LWP field is not used, to tag
12004 special ptids with it set to != 0. */
12005 magic_null_ptid = ptid_build (42000, 1, -1);
12006 not_sent_ptid = ptid_build (42000, 1, -2);
12007 any_thread_ptid = ptid_build (42000, 1, 0);
12008
12009 target_buf_size = 2048;
12010 target_buf = xmalloc (target_buf_size);
12011 }
12012