* remote.c (init_remote_state): Compute sizeof_g_packet by
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* See the GDB User Guide for details of the GDB remote protocol. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <fcntl.h>
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42
43 #include <ctype.h>
44 #include <sys/time.h>
45 #ifdef USG
46 #include <sys/types.h>
47 #endif
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 /* Prototypes for local functions */
59 static void cleanup_sigint_signal_handler (void *dummy);
60 static void initialize_sigint_signal_handler (void);
61 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
62
63 static void handle_remote_sigint (int);
64 static void handle_remote_sigint_twice (int);
65 static void async_remote_interrupt (gdb_client_data);
66 void async_remote_interrupt_twice (gdb_client_data);
67
68 static void build_remote_gdbarch_data (void);
69
70 static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len);
71
72 static int remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len);
73
74 static void remote_files_info (struct target_ops *ignore);
75
76 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
77 int len, int should_write,
78 struct mem_attrib *attrib,
79 struct target_ops *target);
80
81 static void remote_prepare_to_store (void);
82
83 static void remote_fetch_registers (int regno);
84
85 static void remote_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87 static void remote_async_resume (ptid_t ptid, int step,
88 enum target_signal siggnal);
89 static int remote_start_remote (struct ui_out *uiout, void *dummy);
90
91 static void remote_open (char *name, int from_tty);
92 static void remote_async_open (char *name, int from_tty);
93
94 static void extended_remote_open (char *name, int from_tty);
95 static void extended_remote_async_open (char *name, int from_tty);
96
97 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
98 int async_p);
99
100 static void remote_close (int quitting);
101
102 static void remote_store_registers (int regno);
103
104 static void remote_mourn (void);
105 static void remote_async_mourn (void);
106
107 static void extended_remote_restart (void);
108
109 static void extended_remote_mourn (void);
110
111 static void extended_remote_create_inferior (char *, char *, char **);
112 static void extended_remote_async_create_inferior (char *, char *, char **);
113
114 static void remote_mourn_1 (struct target_ops *);
115
116 static void remote_send (char *buf, long sizeof_buf);
117
118 static int readchar (int timeout);
119
120 static ptid_t remote_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122 static ptid_t remote_async_wait (ptid_t ptid,
123 struct target_waitstatus *status);
124
125 static void remote_kill (void);
126 static void remote_async_kill (void);
127
128 static int tohex (int nib);
129
130 static void remote_detach (char *args, int from_tty);
131 static void remote_async_detach (char *args, int from_tty);
132
133 static void remote_interrupt (int signo);
134
135 static void remote_interrupt_twice (int signo);
136
137 static void interrupt_query (void);
138
139 static void set_thread (int, int);
140
141 static int remote_thread_alive (ptid_t);
142
143 static void get_offsets (void);
144
145 static long read_frame (char *buf, long sizeof_buf);
146
147 static int remote_insert_breakpoint (CORE_ADDR, char *);
148
149 static int remote_remove_breakpoint (CORE_ADDR, char *);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void init_remote_cisco_ops (void);
158
159 static struct target_ops remote_cisco_ops;
160
161 static void remote_stop (void);
162
163 static int ishex (int ch, int *val);
164
165 static int stubhex (int ch);
166
167 static int remote_query (int /*char */ , char *, char *, int *);
168
169 static int hexnumstr (char *, ULONGEST);
170
171 static int hexnumnstr (char *, ULONGEST, int);
172
173 static CORE_ADDR remote_address_masked (CORE_ADDR);
174
175 static void print_packet (char *);
176
177 static unsigned long crc32 (unsigned char *, int, unsigned int);
178
179 static void compare_sections_command (char *, int);
180
181 static void packet_command (char *, int);
182
183 static int stub_unpack_int (char *buff, int fieldlength);
184
185 static ptid_t remote_current_thread (ptid_t oldptid);
186
187 static void remote_find_new_threads (void);
188
189 static void record_currthread (int currthread);
190
191 static int fromhex (int a);
192
193 static int hex2bin (const char *hex, char *bin, int count);
194
195 static int bin2hex (const char *bin, char *hex, int count);
196
197 static int putpkt_binary (char *buf, int cnt);
198
199 static void check_binary_download (CORE_ADDR addr);
200
201 struct packet_config;
202
203 static void show_packet_config_cmd (struct packet_config *config);
204
205 static void update_packet_config (struct packet_config *config);
206
207 void _initialize_remote (void);
208
209 /* Description of the remote protocol. Strictly speaking, when the
210 target is open()ed, remote.c should create a per-target description
211 of the remote protocol using that target's architecture.
212 Unfortunatly, the target stack doesn't include local state. For
213 the moment keep the information in the target's architecture
214 object. Sigh.. */
215
216 struct packet_reg
217 {
218 long offset; /* Offset into G packet. */
219 long regnum; /* GDB's internal register number. */
220 LONGEST pnum; /* Remote protocol register number. */
221 int in_g_packet; /* Always part of G packet. */
222 /* long size in bytes; == REGISTER_RAW_SIZE (regnum); at present. */
223 /* char *name; == REGISTER_NAME (regnum); at present. */
224 };
225
226 struct remote_state
227 {
228 /* Description of the remote protocol registers. */
229 long sizeof_g_packet;
230
231 /* Description of the remote protocol registers indexed by REGNUM
232 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
233 struct packet_reg *regs;
234
235 /* This is the size (in chars) of the first response to the ``g''
236 packet. It is used as a heuristic when determining the maximum
237 size of memory-read and memory-write packets. A target will
238 typically only reserve a buffer large enough to hold the ``g''
239 packet. The size does not include packet overhead (headers and
240 trailers). */
241 long actual_register_packet_size;
242
243 /* This is the maximum size (in chars) of a non read/write packet.
244 It is also used as a cap on the size of read/write packets. */
245 long remote_packet_size;
246 };
247
248
249 /* Handle for retreving the remote protocol data from gdbarch. */
250 static struct gdbarch_data *remote_gdbarch_data_handle;
251
252 static struct remote_state *
253 get_remote_state (void)
254 {
255 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
256 }
257
258 static void *
259 init_remote_state (struct gdbarch *gdbarch)
260 {
261 int regnum;
262 struct remote_state *rs = xmalloc (sizeof (struct remote_state));
263
264 if (DEPRECATED_REGISTER_BYTES != 0)
265 rs->sizeof_g_packet = DEPRECATED_REGISTER_BYTES;
266 else
267 rs->sizeof_g_packet = 0;
268
269 /* Assume a 1:1 regnum<->pnum table. */
270 rs->regs = xcalloc (NUM_REGS + NUM_PSEUDO_REGS, sizeof (struct packet_reg));
271 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
272 {
273 struct packet_reg *r = &rs->regs[regnum];
274 r->pnum = regnum;
275 r->regnum = regnum;
276 r->offset = REGISTER_BYTE (regnum);
277 r->in_g_packet = (regnum < NUM_REGS);
278 /* ...name = REGISTER_NAME (regnum); */
279
280 /* Compute packet size by accumulating the size of all registers. */
281 if (DEPRECATED_REGISTER_BYTES == 0)
282 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
283 }
284
285 /* Default maximum number of characters in a packet body. Many
286 remote stubs have a hardwired buffer size of 400 bytes
287 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
288 as the maximum packet-size to ensure that the packet and an extra
289 NUL character can always fit in the buffer. This stops GDB
290 trashing stubs that try to squeeze an extra NUL into what is
291 already a full buffer (As of 1999-12-04 that was most stubs. */
292 rs->remote_packet_size = 400 - 1;
293
294 /* Should rs->sizeof_g_packet needs more space than the
295 default, adjust the size accordingly. Remember that each byte is
296 encoded as two characters. 32 is the overhead for the packet
297 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
298 (``$NN:G...#NN'') is a better guess, the below has been padded a
299 little. */
300 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
301 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
302
303 /* This one is filled in when a ``g'' packet is received. */
304 rs->actual_register_packet_size = 0;
305
306 return rs;
307 }
308
309 static void
310 free_remote_state (struct gdbarch *gdbarch, void *pointer)
311 {
312 struct remote_state *data = pointer;
313 xfree (data->regs);
314 xfree (data);
315 }
316
317 static struct packet_reg *
318 packet_reg_from_regnum (struct remote_state *rs, long regnum)
319 {
320 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
321 return NULL;
322 else
323 {
324 struct packet_reg *r = &rs->regs[regnum];
325 gdb_assert (r->regnum == regnum);
326 return r;
327 }
328 }
329
330 static struct packet_reg *
331 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
332 {
333 int i;
334 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
335 {
336 struct packet_reg *r = &rs->regs[i];
337 if (r->pnum == pnum)
338 return r;
339 }
340 return NULL;
341 }
342
343 /* FIXME: graces/2002-08-08: These variables should eventually be
344 bound to an instance of the target object (as in gdbarch-tdep()),
345 when such a thing exists. */
346
347 /* This is set to the data address of the access causing the target
348 to stop for a watchpoint. */
349 static CORE_ADDR remote_watch_data_address;
350
351 /* This is non-zero if taregt stopped for a watchpoint. */
352 static int remote_stopped_by_watchpoint_p;
353
354
355 static struct target_ops remote_ops;
356
357 static struct target_ops extended_remote_ops;
358
359 /* Temporary target ops. Just like the remote_ops and
360 extended_remote_ops, but with asynchronous support. */
361 static struct target_ops remote_async_ops;
362
363 static struct target_ops extended_async_remote_ops;
364
365 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
366 ``forever'' still use the normal timeout mechanism. This is
367 currently used by the ASYNC code to guarentee that target reads
368 during the initial connect always time-out. Once getpkt has been
369 modified to return a timeout indication and, in turn
370 remote_wait()/wait_for_inferior() have gained a timeout parameter
371 this can go away. */
372 static int wait_forever_enabled_p = 1;
373
374
375 /* This variable chooses whether to send a ^C or a break when the user
376 requests program interruption. Although ^C is usually what remote
377 systems expect, and that is the default here, sometimes a break is
378 preferable instead. */
379
380 static int remote_break;
381
382 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
383 remote_open knows that we don't have a file open when the program
384 starts. */
385 static struct serial *remote_desc = NULL;
386
387 /* This is set by the target (thru the 'S' message)
388 to denote that the target is in kernel mode. */
389 static int cisco_kernel_mode = 0;
390
391 /* This variable sets the number of bits in an address that are to be
392 sent in a memory ("M" or "m") packet. Normally, after stripping
393 leading zeros, the entire address would be sent. This variable
394 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
395 initial implementation of remote.c restricted the address sent in
396 memory packets to ``host::sizeof long'' bytes - (typically 32
397 bits). Consequently, for 64 bit targets, the upper 32 bits of an
398 address was never sent. Since fixing this bug may cause a break in
399 some remote targets this variable is principly provided to
400 facilitate backward compatibility. */
401
402 static int remote_address_size;
403
404 /* Tempoary to track who currently owns the terminal. See
405 target_async_terminal_* for more details. */
406
407 static int remote_async_terminal_ours_p;
408
409 \f
410 /* User configurable variables for the number of characters in a
411 memory read/write packet. MIN ((rs->remote_packet_size),
412 rs->sizeof_g_packet) is the default. Some targets need smaller
413 values (fifo overruns, et.al.) and some users need larger values
414 (speed up transfers). The variables ``preferred_*'' (the user
415 request), ``current_*'' (what was actually set) and ``forced_*''
416 (Positive - a soft limit, negative - a hard limit). */
417
418 struct memory_packet_config
419 {
420 char *name;
421 long size;
422 int fixed_p;
423 };
424
425 /* Compute the current size of a read/write packet. Since this makes
426 use of ``actual_register_packet_size'' the computation is dynamic. */
427
428 static long
429 get_memory_packet_size (struct memory_packet_config *config)
430 {
431 struct remote_state *rs = get_remote_state ();
432 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
433 law?) that some hosts don't cope very well with large alloca()
434 calls. Eventually the alloca() code will be replaced by calls to
435 xmalloc() and make_cleanups() allowing this restriction to either
436 be lifted or removed. */
437 #ifndef MAX_REMOTE_PACKET_SIZE
438 #define MAX_REMOTE_PACKET_SIZE 16384
439 #endif
440 /* NOTE: 16 is just chosen at random. */
441 #ifndef MIN_REMOTE_PACKET_SIZE
442 #define MIN_REMOTE_PACKET_SIZE 16
443 #endif
444 long what_they_get;
445 if (config->fixed_p)
446 {
447 if (config->size <= 0)
448 what_they_get = MAX_REMOTE_PACKET_SIZE;
449 else
450 what_they_get = config->size;
451 }
452 else
453 {
454 what_they_get = (rs->remote_packet_size);
455 /* Limit the packet to the size specified by the user. */
456 if (config->size > 0
457 && what_they_get > config->size)
458 what_they_get = config->size;
459 /* Limit it to the size of the targets ``g'' response. */
460 if ((rs->actual_register_packet_size) > 0
461 && what_they_get > (rs->actual_register_packet_size))
462 what_they_get = (rs->actual_register_packet_size);
463 }
464 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
465 what_they_get = MAX_REMOTE_PACKET_SIZE;
466 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
467 what_they_get = MIN_REMOTE_PACKET_SIZE;
468 return what_they_get;
469 }
470
471 /* Update the size of a read/write packet. If they user wants
472 something really big then do a sanity check. */
473
474 static void
475 set_memory_packet_size (char *args, struct memory_packet_config *config)
476 {
477 int fixed_p = config->fixed_p;
478 long size = config->size;
479 if (args == NULL)
480 error ("Argument required (integer, `fixed' or `limited').");
481 else if (strcmp (args, "hard") == 0
482 || strcmp (args, "fixed") == 0)
483 fixed_p = 1;
484 else if (strcmp (args, "soft") == 0
485 || strcmp (args, "limit") == 0)
486 fixed_p = 0;
487 else
488 {
489 char *end;
490 size = strtoul (args, &end, 0);
491 if (args == end)
492 error ("Invalid %s (bad syntax).", config->name);
493 #if 0
494 /* Instead of explicitly capping the size of a packet to
495 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
496 instead allowed to set the size to something arbitrarily
497 large. */
498 if (size > MAX_REMOTE_PACKET_SIZE)
499 error ("Invalid %s (too large).", config->name);
500 #endif
501 }
502 /* Extra checks? */
503 if (fixed_p && !config->fixed_p)
504 {
505 if (! query ("The target may not be able to correctly handle a %s\n"
506 "of %ld bytes. Change the packet size? ",
507 config->name, size))
508 error ("Packet size not changed.");
509 }
510 /* Update the config. */
511 config->fixed_p = fixed_p;
512 config->size = size;
513 }
514
515 static void
516 show_memory_packet_size (struct memory_packet_config *config)
517 {
518 printf_filtered ("The %s is %ld. ", config->name, config->size);
519 if (config->fixed_p)
520 printf_filtered ("Packets are fixed at %ld bytes.\n",
521 get_memory_packet_size (config));
522 else
523 printf_filtered ("Packets are limited to %ld bytes.\n",
524 get_memory_packet_size (config));
525 }
526
527 static struct memory_packet_config memory_write_packet_config =
528 {
529 "memory-write-packet-size",
530 };
531
532 static void
533 set_memory_write_packet_size (char *args, int from_tty)
534 {
535 set_memory_packet_size (args, &memory_write_packet_config);
536 }
537
538 static void
539 show_memory_write_packet_size (char *args, int from_tty)
540 {
541 show_memory_packet_size (&memory_write_packet_config);
542 }
543
544 static long
545 get_memory_write_packet_size (void)
546 {
547 return get_memory_packet_size (&memory_write_packet_config);
548 }
549
550 static struct memory_packet_config memory_read_packet_config =
551 {
552 "memory-read-packet-size",
553 };
554
555 static void
556 set_memory_read_packet_size (char *args, int from_tty)
557 {
558 set_memory_packet_size (args, &memory_read_packet_config);
559 }
560
561 static void
562 show_memory_read_packet_size (char *args, int from_tty)
563 {
564 show_memory_packet_size (&memory_read_packet_config);
565 }
566
567 static long
568 get_memory_read_packet_size (void)
569 {
570 struct remote_state *rs = get_remote_state ();
571 long size = get_memory_packet_size (&memory_read_packet_config);
572 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
573 extra buffer size argument before the memory read size can be
574 increased beyond (rs->remote_packet_size). */
575 if (size > (rs->remote_packet_size))
576 size = (rs->remote_packet_size);
577 return size;
578 }
579
580 \f
581 /* Generic configuration support for packets the stub optionally
582 supports. Allows the user to specify the use of the packet as well
583 as allowing GDB to auto-detect support in the remote stub. */
584
585 enum packet_support
586 {
587 PACKET_SUPPORT_UNKNOWN = 0,
588 PACKET_ENABLE,
589 PACKET_DISABLE
590 };
591
592 struct packet_config
593 {
594 char *name;
595 char *title;
596 enum auto_boolean detect;
597 enum packet_support support;
598 };
599
600 /* Analyze a packet's return value and update the packet config
601 accordingly. */
602
603 enum packet_result
604 {
605 PACKET_ERROR,
606 PACKET_OK,
607 PACKET_UNKNOWN
608 };
609
610 static void
611 update_packet_config (struct packet_config *config)
612 {
613 switch (config->detect)
614 {
615 case AUTO_BOOLEAN_TRUE:
616 config->support = PACKET_ENABLE;
617 break;
618 case AUTO_BOOLEAN_FALSE:
619 config->support = PACKET_DISABLE;
620 break;
621 case AUTO_BOOLEAN_AUTO:
622 config->support = PACKET_SUPPORT_UNKNOWN;
623 break;
624 }
625 }
626
627 static void
628 show_packet_config_cmd (struct packet_config *config)
629 {
630 char *support = "internal-error";
631 switch (config->support)
632 {
633 case PACKET_ENABLE:
634 support = "enabled";
635 break;
636 case PACKET_DISABLE:
637 support = "disabled";
638 break;
639 case PACKET_SUPPORT_UNKNOWN:
640 support = "unknown";
641 break;
642 }
643 switch (config->detect)
644 {
645 case AUTO_BOOLEAN_AUTO:
646 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
647 config->name, config->title, support);
648 break;
649 case AUTO_BOOLEAN_TRUE:
650 case AUTO_BOOLEAN_FALSE:
651 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
652 config->name, config->title, support);
653 break;
654 }
655 }
656
657 static void
658 add_packet_config_cmd (struct packet_config *config,
659 char *name,
660 char *title,
661 cmd_sfunc_ftype *set_func,
662 cmd_sfunc_ftype *show_func,
663 struct cmd_list_element **set_remote_list,
664 struct cmd_list_element **show_remote_list,
665 int legacy)
666 {
667 struct cmd_list_element *set_cmd;
668 struct cmd_list_element *show_cmd;
669 char *set_doc;
670 char *show_doc;
671 char *cmd_name;
672 config->name = name;
673 config->title = title;
674 config->detect = AUTO_BOOLEAN_AUTO;
675 config->support = PACKET_SUPPORT_UNKNOWN;
676 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
677 name, title);
678 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
679 name, title);
680 /* set/show TITLE-packet {auto,on,off} */
681 xasprintf (&cmd_name, "%s-packet", title);
682 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
683 &config->detect, set_doc, show_doc,
684 set_func, show_func,
685 set_remote_list, show_remote_list);
686 /* set/show remote NAME-packet {auto,on,off} -- legacy */
687 if (legacy)
688 {
689 char *legacy_name;
690 xasprintf (&legacy_name, "%s-packet", name);
691 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
692 set_remote_list);
693 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
694 show_remote_list);
695 }
696 }
697
698 static enum packet_result
699 packet_ok (const char *buf, struct packet_config *config)
700 {
701 if (buf[0] != '\0')
702 {
703 /* The stub recognized the packet request. Check that the
704 operation succeeded. */
705 switch (config->support)
706 {
707 case PACKET_SUPPORT_UNKNOWN:
708 if (remote_debug)
709 fprintf_unfiltered (gdb_stdlog,
710 "Packet %s (%s) is supported\n",
711 config->name, config->title);
712 config->support = PACKET_ENABLE;
713 break;
714 case PACKET_DISABLE:
715 internal_error (__FILE__, __LINE__,
716 "packet_ok: attempt to use a disabled packet");
717 break;
718 case PACKET_ENABLE:
719 break;
720 }
721 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
722 /* "OK" - definitly OK. */
723 return PACKET_OK;
724 if (buf[0] == 'E'
725 && isxdigit (buf[1]) && isxdigit (buf[2])
726 && buf[3] == '\0')
727 /* "Enn" - definitly an error. */
728 return PACKET_ERROR;
729 /* The packet may or may not be OK. Just assume it is */
730 return PACKET_OK;
731 }
732 else
733 {
734 /* The stub does not support the packet. */
735 switch (config->support)
736 {
737 case PACKET_ENABLE:
738 if (config->detect == AUTO_BOOLEAN_AUTO)
739 /* If the stub previously indicated that the packet was
740 supported then there is a protocol error.. */
741 error ("Protocol error: %s (%s) conflicting enabled responses.",
742 config->name, config->title);
743 else
744 /* The user set it wrong. */
745 error ("Enabled packet %s (%s) not recognized by stub",
746 config->name, config->title);
747 break;
748 case PACKET_SUPPORT_UNKNOWN:
749 if (remote_debug)
750 fprintf_unfiltered (gdb_stdlog,
751 "Packet %s (%s) is NOT supported\n",
752 config->name, config->title);
753 config->support = PACKET_DISABLE;
754 break;
755 case PACKET_DISABLE:
756 break;
757 }
758 return PACKET_UNKNOWN;
759 }
760 }
761
762 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
763 static struct packet_config remote_protocol_qSymbol;
764
765 static void
766 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
767 struct cmd_list_element *c)
768 {
769 update_packet_config (&remote_protocol_qSymbol);
770 }
771
772 static void
773 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
774 struct cmd_list_element *c)
775 {
776 show_packet_config_cmd (&remote_protocol_qSymbol);
777 }
778
779 /* Should we try the 'e' (step over range) request? */
780 static struct packet_config remote_protocol_e;
781
782 static void
783 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
784 struct cmd_list_element *c)
785 {
786 update_packet_config (&remote_protocol_e);
787 }
788
789 static void
790 show_remote_protocol_e_packet_cmd (char *args, int from_tty,
791 struct cmd_list_element *c)
792 {
793 show_packet_config_cmd (&remote_protocol_e);
794 }
795
796
797 /* Should we try the 'E' (step over range / w signal #) request? */
798 static struct packet_config remote_protocol_E;
799
800 static void
801 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
802 struct cmd_list_element *c)
803 {
804 update_packet_config (&remote_protocol_E);
805 }
806
807 static void
808 show_remote_protocol_E_packet_cmd (char *args, int from_tty,
809 struct cmd_list_element *c)
810 {
811 show_packet_config_cmd (&remote_protocol_E);
812 }
813
814
815 /* Should we try the 'P' (set register) request? */
816
817 static struct packet_config remote_protocol_P;
818
819 static void
820 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
821 struct cmd_list_element *c)
822 {
823 update_packet_config (&remote_protocol_P);
824 }
825
826 static void
827 show_remote_protocol_P_packet_cmd (char *args, int from_tty,
828 struct cmd_list_element *c)
829 {
830 show_packet_config_cmd (&remote_protocol_P);
831 }
832
833 /* Should we try one of the 'Z' requests? */
834
835 enum Z_packet_type
836 {
837 Z_PACKET_SOFTWARE_BP,
838 Z_PACKET_HARDWARE_BP,
839 Z_PACKET_WRITE_WP,
840 Z_PACKET_READ_WP,
841 Z_PACKET_ACCESS_WP,
842 NR_Z_PACKET_TYPES
843 };
844
845 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
846
847 /* FIXME: Instead of having all these boiler plate functions, the
848 command callback should include a context argument. */
849
850 static void
851 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
852 struct cmd_list_element *c)
853 {
854 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
855 }
856
857 static void
858 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
859 struct cmd_list_element *c)
860 {
861 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
862 }
863
864 static void
865 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
866 struct cmd_list_element *c)
867 {
868 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
869 }
870
871 static void
872 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
873 struct cmd_list_element *c)
874 {
875 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
876 }
877
878 static void
879 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
880 struct cmd_list_element *c)
881 {
882 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
883 }
884
885 static void
886 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
887 struct cmd_list_element *c)
888 {
889 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
890 }
891
892 static void
893 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
894 struct cmd_list_element *c)
895 {
896 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
897 }
898
899 static void
900 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
901 struct cmd_list_element *c)
902 {
903 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
904 }
905
906 static void
907 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
908 struct cmd_list_element *c)
909 {
910 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
911 }
912
913 static void
914 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
915 struct cmd_list_element *c)
916 {
917 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
918 }
919
920 /* For compatibility with older distributions. Provide a ``set remote
921 Z-packet ...'' command that updates all the Z packet types. */
922
923 static enum auto_boolean remote_Z_packet_detect;
924
925 static void
926 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
927 struct cmd_list_element *c)
928 {
929 int i;
930 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
931 {
932 remote_protocol_Z[i].detect = remote_Z_packet_detect;
933 update_packet_config (&remote_protocol_Z[i]);
934 }
935 }
936
937 static void
938 show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
939 struct cmd_list_element *c)
940 {
941 int i;
942 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
943 {
944 show_packet_config_cmd (&remote_protocol_Z[i]);
945 }
946 }
947
948 /* Should we try the 'X' (remote binary download) packet?
949
950 This variable (available to the user via "set remote X-packet")
951 dictates whether downloads are sent in binary (via the 'X' packet).
952 We assume that the stub can, and attempt to do it. This will be
953 cleared if the stub does not understand it. This switch is still
954 needed, though in cases when the packet is supported in the stub,
955 but the connection does not allow it (i.e., 7-bit serial connection
956 only). */
957
958 static struct packet_config remote_protocol_binary_download;
959
960 /* Should we try the 'ThreadInfo' query packet?
961
962 This variable (NOT available to the user: auto-detect only!)
963 determines whether GDB will use the new, simpler "ThreadInfo"
964 query or the older, more complex syntax for thread queries.
965 This is an auto-detect variable (set to true at each connect,
966 and set to false when the target fails to recognize it). */
967
968 static int use_threadinfo_query;
969 static int use_threadextra_query;
970
971 static void
972 set_remote_protocol_binary_download_cmd (char *args,
973 int from_tty,
974 struct cmd_list_element *c)
975 {
976 update_packet_config (&remote_protocol_binary_download);
977 }
978
979 static void
980 show_remote_protocol_binary_download_cmd (char *args, int from_tty,
981 struct cmd_list_element *c)
982 {
983 show_packet_config_cmd (&remote_protocol_binary_download);
984 }
985
986
987 /* Tokens for use by the asynchronous signal handlers for SIGINT */
988 static void *sigint_remote_twice_token;
989 static void *sigint_remote_token;
990
991 /* These are pointers to hook functions that may be set in order to
992 modify resume/wait behavior for a particular architecture. */
993
994 void (*target_resume_hook) (void);
995 void (*target_wait_loop_hook) (void);
996 \f
997
998
999 /* These are the threads which we last sent to the remote system.
1000 -1 for all or -2 for not sent yet. */
1001 static int general_thread;
1002 static int continue_thread;
1003
1004 /* Call this function as a result of
1005 1) A halt indication (T packet) containing a thread id
1006 2) A direct query of currthread
1007 3) Successful execution of set thread
1008 */
1009
1010 static void
1011 record_currthread (int currthread)
1012 {
1013 general_thread = currthread;
1014
1015 /* If this is a new thread, add it to GDB's thread list.
1016 If we leave it up to WFI to do this, bad things will happen. */
1017 if (!in_thread_list (pid_to_ptid (currthread)))
1018 {
1019 add_thread (pid_to_ptid (currthread));
1020 ui_out_text (uiout, "[New ");
1021 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1022 ui_out_text (uiout, "]\n");
1023 }
1024 }
1025
1026 #define MAGIC_NULL_PID 42000
1027
1028 static void
1029 set_thread (int th, int gen)
1030 {
1031 struct remote_state *rs = get_remote_state ();
1032 char *buf = alloca (rs->remote_packet_size);
1033 int state = gen ? general_thread : continue_thread;
1034
1035 if (state == th)
1036 return;
1037
1038 buf[0] = 'H';
1039 buf[1] = gen ? 'g' : 'c';
1040 if (th == MAGIC_NULL_PID)
1041 {
1042 buf[2] = '0';
1043 buf[3] = '\0';
1044 }
1045 else if (th < 0)
1046 sprintf (&buf[2], "-%x", -th);
1047 else
1048 sprintf (&buf[2], "%x", th);
1049 putpkt (buf);
1050 getpkt (buf, (rs->remote_packet_size), 0);
1051 if (gen)
1052 general_thread = th;
1053 else
1054 continue_thread = th;
1055 }
1056 \f
1057 /* Return nonzero if the thread TH is still alive on the remote system. */
1058
1059 static int
1060 remote_thread_alive (ptid_t ptid)
1061 {
1062 int tid = PIDGET (ptid);
1063 char buf[16];
1064
1065 if (tid < 0)
1066 sprintf (buf, "T-%08x", -tid);
1067 else
1068 sprintf (buf, "T%08x", tid);
1069 putpkt (buf);
1070 getpkt (buf, sizeof (buf), 0);
1071 return (buf[0] == 'O' && buf[1] == 'K');
1072 }
1073
1074 /* About these extended threadlist and threadinfo packets. They are
1075 variable length packets but, the fields within them are often fixed
1076 length. They are redundent enough to send over UDP as is the
1077 remote protocol in general. There is a matching unit test module
1078 in libstub. */
1079
1080 #define OPAQUETHREADBYTES 8
1081
1082 /* a 64 bit opaque identifier */
1083 typedef unsigned char threadref[OPAQUETHREADBYTES];
1084
1085 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1086 protocol encoding, and remote.c. it is not particularly changable */
1087
1088 /* Right now, the internal structure is int. We want it to be bigger.
1089 Plan to fix this.
1090 */
1091
1092 typedef int gdb_threadref; /* internal GDB thread reference */
1093
1094 /* gdb_ext_thread_info is an internal GDB data structure which is
1095 equivalint to the reply of the remote threadinfo packet */
1096
1097 struct gdb_ext_thread_info
1098 {
1099 threadref threadid; /* External form of thread reference */
1100 int active; /* Has state interesting to GDB? , regs, stack */
1101 char display[256]; /* Brief state display, name, blocked/syspended */
1102 char shortname[32]; /* To be used to name threads */
1103 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1104 };
1105
1106 /* The volume of remote transfers can be limited by submitting
1107 a mask containing bits specifying the desired information.
1108 Use a union of these values as the 'selection' parameter to
1109 get_thread_info. FIXME: Make these TAG names more thread specific.
1110 */
1111
1112 #define TAG_THREADID 1
1113 #define TAG_EXISTS 2
1114 #define TAG_DISPLAY 4
1115 #define TAG_THREADNAME 8
1116 #define TAG_MOREDISPLAY 16
1117
1118 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1119
1120 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1121
1122 static char *unpack_nibble (char *buf, int *val);
1123
1124 static char *pack_nibble (char *buf, int nibble);
1125
1126 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1127
1128 static char *unpack_byte (char *buf, int *value);
1129
1130 static char *pack_int (char *buf, int value);
1131
1132 static char *unpack_int (char *buf, int *value);
1133
1134 static char *unpack_string (char *src, char *dest, int length);
1135
1136 static char *pack_threadid (char *pkt, threadref * id);
1137
1138 static char *unpack_threadid (char *inbuf, threadref * id);
1139
1140 void int_to_threadref (threadref * id, int value);
1141
1142 static int threadref_to_int (threadref * ref);
1143
1144 static void copy_threadref (threadref * dest, threadref * src);
1145
1146 static int threadmatch (threadref * dest, threadref * src);
1147
1148 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1149
1150 static int remote_unpack_thread_info_response (char *pkt,
1151 threadref * expectedref,
1152 struct gdb_ext_thread_info
1153 *info);
1154
1155
1156 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1157 struct gdb_ext_thread_info *info);
1158
1159 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1160 int selection,
1161 struct gdb_ext_thread_info *info);
1162
1163 static char *pack_threadlist_request (char *pkt, int startflag,
1164 int threadcount,
1165 threadref * nextthread);
1166
1167 static int parse_threadlist_response (char *pkt,
1168 int result_limit,
1169 threadref * original_echo,
1170 threadref * resultlist, int *doneflag);
1171
1172 static int remote_get_threadlist (int startflag,
1173 threadref * nextthread,
1174 int result_limit,
1175 int *done,
1176 int *result_count, threadref * threadlist);
1177
1178 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1179
1180 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1181 void *context, int looplimit);
1182
1183 static int remote_newthread_step (threadref * ref, void *context);
1184
1185 /* encode 64 bits in 16 chars of hex */
1186
1187 static const char hexchars[] = "0123456789abcdef";
1188
1189 static int
1190 ishex (int ch, int *val)
1191 {
1192 if ((ch >= 'a') && (ch <= 'f'))
1193 {
1194 *val = ch - 'a' + 10;
1195 return 1;
1196 }
1197 if ((ch >= 'A') && (ch <= 'F'))
1198 {
1199 *val = ch - 'A' + 10;
1200 return 1;
1201 }
1202 if ((ch >= '0') && (ch <= '9'))
1203 {
1204 *val = ch - '0';
1205 return 1;
1206 }
1207 return 0;
1208 }
1209
1210 static int
1211 stubhex (int ch)
1212 {
1213 if (ch >= 'a' && ch <= 'f')
1214 return ch - 'a' + 10;
1215 if (ch >= '0' && ch <= '9')
1216 return ch - '0';
1217 if (ch >= 'A' && ch <= 'F')
1218 return ch - 'A' + 10;
1219 return -1;
1220 }
1221
1222 static int
1223 stub_unpack_int (char *buff, int fieldlength)
1224 {
1225 int nibble;
1226 int retval = 0;
1227
1228 while (fieldlength)
1229 {
1230 nibble = stubhex (*buff++);
1231 retval |= nibble;
1232 fieldlength--;
1233 if (fieldlength)
1234 retval = retval << 4;
1235 }
1236 return retval;
1237 }
1238
1239 char *
1240 unpack_varlen_hex (char *buff, /* packet to parse */
1241 ULONGEST *result)
1242 {
1243 int nibble;
1244 int retval = 0;
1245
1246 while (ishex (*buff, &nibble))
1247 {
1248 buff++;
1249 retval = retval << 4;
1250 retval |= nibble & 0x0f;
1251 }
1252 *result = retval;
1253 return buff;
1254 }
1255
1256 static char *
1257 unpack_nibble (char *buf, int *val)
1258 {
1259 ishex (*buf++, val);
1260 return buf;
1261 }
1262
1263 static char *
1264 pack_nibble (char *buf, int nibble)
1265 {
1266 *buf++ = hexchars[(nibble & 0x0f)];
1267 return buf;
1268 }
1269
1270 static char *
1271 pack_hex_byte (char *pkt, int byte)
1272 {
1273 *pkt++ = hexchars[(byte >> 4) & 0xf];
1274 *pkt++ = hexchars[(byte & 0xf)];
1275 return pkt;
1276 }
1277
1278 static char *
1279 unpack_byte (char *buf, int *value)
1280 {
1281 *value = stub_unpack_int (buf, 2);
1282 return buf + 2;
1283 }
1284
1285 static char *
1286 pack_int (char *buf, int value)
1287 {
1288 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1289 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1290 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1291 buf = pack_hex_byte (buf, (value & 0xff));
1292 return buf;
1293 }
1294
1295 static char *
1296 unpack_int (char *buf, int *value)
1297 {
1298 *value = stub_unpack_int (buf, 8);
1299 return buf + 8;
1300 }
1301
1302 #if 0 /* currently unused, uncomment when needed */
1303 static char *pack_string (char *pkt, char *string);
1304
1305 static char *
1306 pack_string (char *pkt, char *string)
1307 {
1308 char ch;
1309 int len;
1310
1311 len = strlen (string);
1312 if (len > 200)
1313 len = 200; /* Bigger than most GDB packets, junk??? */
1314 pkt = pack_hex_byte (pkt, len);
1315 while (len-- > 0)
1316 {
1317 ch = *string++;
1318 if ((ch == '\0') || (ch == '#'))
1319 ch = '*'; /* Protect encapsulation */
1320 *pkt++ = ch;
1321 }
1322 return pkt;
1323 }
1324 #endif /* 0 (unused) */
1325
1326 static char *
1327 unpack_string (char *src, char *dest, int length)
1328 {
1329 while (length--)
1330 *dest++ = *src++;
1331 *dest = '\0';
1332 return src;
1333 }
1334
1335 static char *
1336 pack_threadid (char *pkt, threadref *id)
1337 {
1338 char *limit;
1339 unsigned char *altid;
1340
1341 altid = (unsigned char *) id;
1342 limit = pkt + BUF_THREAD_ID_SIZE;
1343 while (pkt < limit)
1344 pkt = pack_hex_byte (pkt, *altid++);
1345 return pkt;
1346 }
1347
1348
1349 static char *
1350 unpack_threadid (char *inbuf, threadref *id)
1351 {
1352 char *altref;
1353 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1354 int x, y;
1355
1356 altref = (char *) id;
1357
1358 while (inbuf < limit)
1359 {
1360 x = stubhex (*inbuf++);
1361 y = stubhex (*inbuf++);
1362 *altref++ = (x << 4) | y;
1363 }
1364 return inbuf;
1365 }
1366
1367 /* Externally, threadrefs are 64 bits but internally, they are still
1368 ints. This is due to a mismatch of specifications. We would like
1369 to use 64bit thread references internally. This is an adapter
1370 function. */
1371
1372 void
1373 int_to_threadref (threadref *id, int value)
1374 {
1375 unsigned char *scan;
1376
1377 scan = (unsigned char *) id;
1378 {
1379 int i = 4;
1380 while (i--)
1381 *scan++ = 0;
1382 }
1383 *scan++ = (value >> 24) & 0xff;
1384 *scan++ = (value >> 16) & 0xff;
1385 *scan++ = (value >> 8) & 0xff;
1386 *scan++ = (value & 0xff);
1387 }
1388
1389 static int
1390 threadref_to_int (threadref *ref)
1391 {
1392 int i, value = 0;
1393 unsigned char *scan;
1394
1395 scan = (char *) ref;
1396 scan += 4;
1397 i = 4;
1398 while (i-- > 0)
1399 value = (value << 8) | ((*scan++) & 0xff);
1400 return value;
1401 }
1402
1403 static void
1404 copy_threadref (threadref *dest, threadref *src)
1405 {
1406 int i;
1407 unsigned char *csrc, *cdest;
1408
1409 csrc = (unsigned char *) src;
1410 cdest = (unsigned char *) dest;
1411 i = 8;
1412 while (i--)
1413 *cdest++ = *csrc++;
1414 }
1415
1416 static int
1417 threadmatch (threadref *dest, threadref *src)
1418 {
1419 /* things are broken right now, so just assume we got a match */
1420 #if 0
1421 unsigned char *srcp, *destp;
1422 int i, result;
1423 srcp = (char *) src;
1424 destp = (char *) dest;
1425
1426 result = 1;
1427 while (i-- > 0)
1428 result &= (*srcp++ == *destp++) ? 1 : 0;
1429 return result;
1430 #endif
1431 return 1;
1432 }
1433
1434 /*
1435 threadid:1, # always request threadid
1436 context_exists:2,
1437 display:4,
1438 unique_name:8,
1439 more_display:16
1440 */
1441
1442 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1443
1444 static char *
1445 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1446 {
1447 *pkt++ = 'q'; /* Info Query */
1448 *pkt++ = 'P'; /* process or thread info */
1449 pkt = pack_int (pkt, mode); /* mode */
1450 pkt = pack_threadid (pkt, id); /* threadid */
1451 *pkt = '\0'; /* terminate */
1452 return pkt;
1453 }
1454
1455 /* These values tag the fields in a thread info response packet */
1456 /* Tagging the fields allows us to request specific fields and to
1457 add more fields as time goes by */
1458
1459 #define TAG_THREADID 1 /* Echo the thread identifier */
1460 #define TAG_EXISTS 2 /* Is this process defined enough to
1461 fetch registers and its stack */
1462 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1463 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1464 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1465 the process */
1466
1467 static int
1468 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1469 struct gdb_ext_thread_info *info)
1470 {
1471 struct remote_state *rs = get_remote_state ();
1472 int mask, length;
1473 unsigned int tag;
1474 threadref ref;
1475 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1476 int retval = 1;
1477
1478 /* info->threadid = 0; FIXME: implement zero_threadref */
1479 info->active = 0;
1480 info->display[0] = '\0';
1481 info->shortname[0] = '\0';
1482 info->more_display[0] = '\0';
1483
1484 /* Assume the characters indicating the packet type have been stripped */
1485 pkt = unpack_int (pkt, &mask); /* arg mask */
1486 pkt = unpack_threadid (pkt, &ref);
1487
1488 if (mask == 0)
1489 warning ("Incomplete response to threadinfo request\n");
1490 if (!threadmatch (&ref, expectedref))
1491 { /* This is an answer to a different request */
1492 warning ("ERROR RMT Thread info mismatch\n");
1493 return 0;
1494 }
1495 copy_threadref (&info->threadid, &ref);
1496
1497 /* Loop on tagged fields , try to bail if somthing goes wrong */
1498
1499 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1500 {
1501 pkt = unpack_int (pkt, &tag); /* tag */
1502 pkt = unpack_byte (pkt, &length); /* length */
1503 if (!(tag & mask)) /* tags out of synch with mask */
1504 {
1505 warning ("ERROR RMT: threadinfo tag mismatch\n");
1506 retval = 0;
1507 break;
1508 }
1509 if (tag == TAG_THREADID)
1510 {
1511 if (length != 16)
1512 {
1513 warning ("ERROR RMT: length of threadid is not 16\n");
1514 retval = 0;
1515 break;
1516 }
1517 pkt = unpack_threadid (pkt, &ref);
1518 mask = mask & ~TAG_THREADID;
1519 continue;
1520 }
1521 if (tag == TAG_EXISTS)
1522 {
1523 info->active = stub_unpack_int (pkt, length);
1524 pkt += length;
1525 mask = mask & ~(TAG_EXISTS);
1526 if (length > 8)
1527 {
1528 warning ("ERROR RMT: 'exists' length too long\n");
1529 retval = 0;
1530 break;
1531 }
1532 continue;
1533 }
1534 if (tag == TAG_THREADNAME)
1535 {
1536 pkt = unpack_string (pkt, &info->shortname[0], length);
1537 mask = mask & ~TAG_THREADNAME;
1538 continue;
1539 }
1540 if (tag == TAG_DISPLAY)
1541 {
1542 pkt = unpack_string (pkt, &info->display[0], length);
1543 mask = mask & ~TAG_DISPLAY;
1544 continue;
1545 }
1546 if (tag == TAG_MOREDISPLAY)
1547 {
1548 pkt = unpack_string (pkt, &info->more_display[0], length);
1549 mask = mask & ~TAG_MOREDISPLAY;
1550 continue;
1551 }
1552 warning ("ERROR RMT: unknown thread info tag\n");
1553 break; /* Not a tag we know about */
1554 }
1555 return retval;
1556 }
1557
1558 static int
1559 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1560 struct gdb_ext_thread_info *info)
1561 {
1562 struct remote_state *rs = get_remote_state ();
1563 int result;
1564 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1565
1566 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1567 putpkt (threadinfo_pkt);
1568 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1569 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1570 info);
1571 return result;
1572 }
1573
1574 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1575 representation of a threadid. */
1576
1577 static int
1578 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1579 struct gdb_ext_thread_info *info)
1580 {
1581 threadref lclref;
1582
1583 int_to_threadref (&lclref, *ref);
1584 return remote_get_threadinfo (&lclref, selection, info);
1585 }
1586
1587 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1588
1589 static char *
1590 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1591 threadref *nextthread)
1592 {
1593 *pkt++ = 'q'; /* info query packet */
1594 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1595 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1596 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1597 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1598 *pkt = '\0';
1599 return pkt;
1600 }
1601
1602 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1603
1604 static int
1605 parse_threadlist_response (char *pkt, int result_limit,
1606 threadref *original_echo, threadref *resultlist,
1607 int *doneflag)
1608 {
1609 struct remote_state *rs = get_remote_state ();
1610 char *limit;
1611 int count, resultcount, done;
1612
1613 resultcount = 0;
1614 /* Assume the 'q' and 'M chars have been stripped. */
1615 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1616 pkt = unpack_byte (pkt, &count); /* count field */
1617 pkt = unpack_nibble (pkt, &done);
1618 /* The first threadid is the argument threadid. */
1619 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1620 while ((count-- > 0) && (pkt < limit))
1621 {
1622 pkt = unpack_threadid (pkt, resultlist++);
1623 if (resultcount++ >= result_limit)
1624 break;
1625 }
1626 if (doneflag)
1627 *doneflag = done;
1628 return resultcount;
1629 }
1630
1631 static int
1632 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1633 int *done, int *result_count, threadref *threadlist)
1634 {
1635 struct remote_state *rs = get_remote_state ();
1636 static threadref echo_nextthread;
1637 char *threadlist_packet = alloca (rs->remote_packet_size);
1638 char *t_response = alloca (rs->remote_packet_size);
1639 int result = 1;
1640
1641 /* Trancate result limit to be smaller than the packet size */
1642 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1643 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1644
1645 pack_threadlist_request (threadlist_packet,
1646 startflag, result_limit, nextthread);
1647 putpkt (threadlist_packet);
1648 getpkt (t_response, (rs->remote_packet_size), 0);
1649
1650 *result_count =
1651 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1652 threadlist, done);
1653
1654 if (!threadmatch (&echo_nextthread, nextthread))
1655 {
1656 /* FIXME: This is a good reason to drop the packet */
1657 /* Possably, there is a duplicate response */
1658 /* Possabilities :
1659 retransmit immediatly - race conditions
1660 retransmit after timeout - yes
1661 exit
1662 wait for packet, then exit
1663 */
1664 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1665 return 0; /* I choose simply exiting */
1666 }
1667 if (*result_count <= 0)
1668 {
1669 if (*done != 1)
1670 {
1671 warning ("RMT ERROR : failed to get remote thread list\n");
1672 result = 0;
1673 }
1674 return result; /* break; */
1675 }
1676 if (*result_count > result_limit)
1677 {
1678 *result_count = 0;
1679 warning ("RMT ERROR: threadlist response longer than requested\n");
1680 return 0;
1681 }
1682 return result;
1683 }
1684
1685 /* This is the interface between remote and threads, remotes upper interface */
1686
1687 /* remote_find_new_threads retrieves the thread list and for each
1688 thread in the list, looks up the thread in GDB's internal list,
1689 ading the thread if it does not already exist. This involves
1690 getting partial thread lists from the remote target so, polling the
1691 quit_flag is required. */
1692
1693
1694 /* About this many threadisds fit in a packet. */
1695
1696 #define MAXTHREADLISTRESULTS 32
1697
1698 static int
1699 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1700 int looplimit)
1701 {
1702 int done, i, result_count;
1703 int startflag = 1;
1704 int result = 1;
1705 int loopcount = 0;
1706 static threadref nextthread;
1707 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1708
1709 done = 0;
1710 while (!done)
1711 {
1712 if (loopcount++ > looplimit)
1713 {
1714 result = 0;
1715 warning ("Remote fetch threadlist -infinite loop-\n");
1716 break;
1717 }
1718 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1719 &done, &result_count, resultthreadlist))
1720 {
1721 result = 0;
1722 break;
1723 }
1724 /* clear for later iterations */
1725 startflag = 0;
1726 /* Setup to resume next batch of thread references, set nextthread. */
1727 if (result_count >= 1)
1728 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1729 i = 0;
1730 while (result_count--)
1731 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1732 break;
1733 }
1734 return result;
1735 }
1736
1737 static int
1738 remote_newthread_step (threadref *ref, void *context)
1739 {
1740 ptid_t ptid;
1741
1742 ptid = pid_to_ptid (threadref_to_int (ref));
1743
1744 if (!in_thread_list (ptid))
1745 add_thread (ptid);
1746 return 1; /* continue iterator */
1747 }
1748
1749 #define CRAZY_MAX_THREADS 1000
1750
1751 static ptid_t
1752 remote_current_thread (ptid_t oldpid)
1753 {
1754 struct remote_state *rs = get_remote_state ();
1755 char *buf = alloca (rs->remote_packet_size);
1756
1757 putpkt ("qC");
1758 getpkt (buf, (rs->remote_packet_size), 0);
1759 if (buf[0] == 'Q' && buf[1] == 'C')
1760 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1761 else
1762 return oldpid;
1763 }
1764
1765 /* Find new threads for info threads command.
1766 * Original version, using John Metzler's thread protocol.
1767 */
1768
1769 static void
1770 remote_find_new_threads (void)
1771 {
1772 remote_threadlist_iterator (remote_newthread_step, 0,
1773 CRAZY_MAX_THREADS);
1774 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1775 inferior_ptid = remote_current_thread (inferior_ptid);
1776 }
1777
1778 /*
1779 * Find all threads for info threads command.
1780 * Uses new thread protocol contributed by Cisco.
1781 * Falls back and attempts to use the older method (above)
1782 * if the target doesn't respond to the new method.
1783 */
1784
1785 static void
1786 remote_threads_info (void)
1787 {
1788 struct remote_state *rs = get_remote_state ();
1789 char *buf = alloca (rs->remote_packet_size);
1790 char *bufp;
1791 int tid;
1792
1793 if (remote_desc == 0) /* paranoia */
1794 error ("Command can only be used when connected to the remote target.");
1795
1796 if (use_threadinfo_query)
1797 {
1798 putpkt ("qfThreadInfo");
1799 bufp = buf;
1800 getpkt (bufp, (rs->remote_packet_size), 0);
1801 if (bufp[0] != '\0') /* q packet recognized */
1802 {
1803 while (*bufp++ == 'm') /* reply contains one or more TID */
1804 {
1805 do
1806 {
1807 tid = strtol (bufp, &bufp, 16);
1808 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1809 add_thread (pid_to_ptid (tid));
1810 }
1811 while (*bufp++ == ','); /* comma-separated list */
1812 putpkt ("qsThreadInfo");
1813 bufp = buf;
1814 getpkt (bufp, (rs->remote_packet_size), 0);
1815 }
1816 return; /* done */
1817 }
1818 }
1819
1820 /* Else fall back to old method based on jmetzler protocol. */
1821 use_threadinfo_query = 0;
1822 remote_find_new_threads ();
1823 return;
1824 }
1825
1826 /*
1827 * Collect a descriptive string about the given thread.
1828 * The target may say anything it wants to about the thread
1829 * (typically info about its blocked / runnable state, name, etc.).
1830 * This string will appear in the info threads display.
1831 *
1832 * Optional: targets are not required to implement this function.
1833 */
1834
1835 static char *
1836 remote_threads_extra_info (struct thread_info *tp)
1837 {
1838 struct remote_state *rs = get_remote_state ();
1839 int result;
1840 int set;
1841 threadref id;
1842 struct gdb_ext_thread_info threadinfo;
1843 static char display_buf[100]; /* arbitrary... */
1844 char *bufp = alloca (rs->remote_packet_size);
1845 int n = 0; /* position in display_buf */
1846
1847 if (remote_desc == 0) /* paranoia */
1848 internal_error (__FILE__, __LINE__,
1849 "remote_threads_extra_info");
1850
1851 if (use_threadextra_query)
1852 {
1853 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1854 putpkt (bufp);
1855 getpkt (bufp, (rs->remote_packet_size), 0);
1856 if (bufp[0] != 0)
1857 {
1858 n = min (strlen (bufp) / 2, sizeof (display_buf));
1859 result = hex2bin (bufp, display_buf, n);
1860 display_buf [result] = '\0';
1861 return display_buf;
1862 }
1863 }
1864
1865 /* If the above query fails, fall back to the old method. */
1866 use_threadextra_query = 0;
1867 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1868 | TAG_MOREDISPLAY | TAG_DISPLAY;
1869 int_to_threadref (&id, PIDGET (tp->ptid));
1870 if (remote_get_threadinfo (&id, set, &threadinfo))
1871 if (threadinfo.active)
1872 {
1873 if (*threadinfo.shortname)
1874 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1875 if (*threadinfo.display)
1876 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1877 if (*threadinfo.more_display)
1878 n += sprintf(&display_buf[n], " Priority: %s",
1879 threadinfo.more_display);
1880
1881 if (n > 0)
1882 {
1883 /* for purely cosmetic reasons, clear up trailing commas */
1884 if (',' == display_buf[n-1])
1885 display_buf[n-1] = ' ';
1886 return display_buf;
1887 }
1888 }
1889 return NULL;
1890 }
1891
1892 \f
1893
1894 /* Restart the remote side; this is an extended protocol operation. */
1895
1896 static void
1897 extended_remote_restart (void)
1898 {
1899 struct remote_state *rs = get_remote_state ();
1900 char *buf = alloca (rs->remote_packet_size);
1901
1902 /* Send the restart command; for reasons I don't understand the
1903 remote side really expects a number after the "R". */
1904 buf[0] = 'R';
1905 sprintf (&buf[1], "%x", 0);
1906 putpkt (buf);
1907
1908 /* Now query for status so this looks just like we restarted
1909 gdbserver from scratch. */
1910 putpkt ("?");
1911 getpkt (buf, (rs->remote_packet_size), 0);
1912 }
1913 \f
1914 /* Clean up connection to a remote debugger. */
1915
1916 /* ARGSUSED */
1917 static void
1918 remote_close (int quitting)
1919 {
1920 if (remote_desc)
1921 serial_close (remote_desc);
1922 remote_desc = NULL;
1923 }
1924
1925 /* Query the remote side for the text, data and bss offsets. */
1926
1927 static void
1928 get_offsets (void)
1929 {
1930 struct remote_state *rs = get_remote_state ();
1931 char *buf = alloca (rs->remote_packet_size);
1932 char *ptr;
1933 int lose;
1934 CORE_ADDR text_addr, data_addr, bss_addr;
1935 struct section_offsets *offs;
1936
1937 putpkt ("qOffsets");
1938
1939 getpkt (buf, (rs->remote_packet_size), 0);
1940
1941 if (buf[0] == '\000')
1942 return; /* Return silently. Stub doesn't support
1943 this command. */
1944 if (buf[0] == 'E')
1945 {
1946 warning ("Remote failure reply: %s", buf);
1947 return;
1948 }
1949
1950 /* Pick up each field in turn. This used to be done with scanf, but
1951 scanf will make trouble if CORE_ADDR size doesn't match
1952 conversion directives correctly. The following code will work
1953 with any size of CORE_ADDR. */
1954 text_addr = data_addr = bss_addr = 0;
1955 ptr = buf;
1956 lose = 0;
1957
1958 if (strncmp (ptr, "Text=", 5) == 0)
1959 {
1960 ptr += 5;
1961 /* Don't use strtol, could lose on big values. */
1962 while (*ptr && *ptr != ';')
1963 text_addr = (text_addr << 4) + fromhex (*ptr++);
1964 }
1965 else
1966 lose = 1;
1967
1968 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1969 {
1970 ptr += 6;
1971 while (*ptr && *ptr != ';')
1972 data_addr = (data_addr << 4) + fromhex (*ptr++);
1973 }
1974 else
1975 lose = 1;
1976
1977 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1978 {
1979 ptr += 5;
1980 while (*ptr && *ptr != ';')
1981 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1982 }
1983 else
1984 lose = 1;
1985
1986 if (lose)
1987 error ("Malformed response to offset query, %s", buf);
1988
1989 if (symfile_objfile == NULL)
1990 return;
1991
1992 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1993 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1994
1995 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1996
1997 /* This is a temporary kludge to force data and bss to use the same offsets
1998 because that's what nlmconv does now. The real solution requires changes
1999 to the stub and remote.c that I don't have time to do right now. */
2000
2001 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2002 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2003
2004 objfile_relocate (symfile_objfile, offs);
2005 }
2006
2007 /*
2008 * Cisco version of section offsets:
2009 *
2010 * Instead of having GDB query the target for the section offsets,
2011 * Cisco lets the target volunteer the information! It's also in
2012 * a different format, so here are the functions that will decode
2013 * a section offset packet from a Cisco target.
2014 */
2015
2016 /*
2017 * Function: remote_cisco_section_offsets
2018 *
2019 * Returns: zero for success, non-zero for failure
2020 */
2021
2022 static int
2023 remote_cisco_section_offsets (bfd_vma text_addr,
2024 bfd_vma data_addr,
2025 bfd_vma bss_addr,
2026 bfd_signed_vma *text_offs,
2027 bfd_signed_vma *data_offs,
2028 bfd_signed_vma *bss_offs)
2029 {
2030 bfd_vma text_base, data_base, bss_base;
2031 struct minimal_symbol *start;
2032 asection *sect;
2033 bfd *abfd;
2034 int len;
2035
2036 if (symfile_objfile == NULL)
2037 return -1; /* no can do nothin' */
2038
2039 start = lookup_minimal_symbol ("_start", NULL, NULL);
2040 if (start == NULL)
2041 return -1; /* Can't find "_start" symbol */
2042
2043 data_base = bss_base = 0;
2044 text_base = SYMBOL_VALUE_ADDRESS (start);
2045
2046 abfd = symfile_objfile->obfd;
2047 for (sect = abfd->sections;
2048 sect != 0;
2049 sect = sect->next)
2050 {
2051 const char *p = bfd_get_section_name (abfd, sect);
2052 len = strlen (p);
2053 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
2054 if (data_base == 0 ||
2055 data_base > bfd_get_section_vma (abfd, sect))
2056 data_base = bfd_get_section_vma (abfd, sect);
2057 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
2058 if (bss_base == 0 ||
2059 bss_base > bfd_get_section_vma (abfd, sect))
2060 bss_base = bfd_get_section_vma (abfd, sect);
2061 }
2062 *text_offs = text_addr - text_base;
2063 *data_offs = data_addr - data_base;
2064 *bss_offs = bss_addr - bss_base;
2065 if (remote_debug)
2066 {
2067 char tmp[128];
2068
2069 sprintf (tmp, "VMA: text = 0x");
2070 sprintf_vma (tmp + strlen (tmp), text_addr);
2071 sprintf (tmp + strlen (tmp), " data = 0x");
2072 sprintf_vma (tmp + strlen (tmp), data_addr);
2073 sprintf (tmp + strlen (tmp), " bss = 0x");
2074 sprintf_vma (tmp + strlen (tmp), bss_addr);
2075 fprintf_filtered (gdb_stdlog, tmp);
2076 fprintf_filtered (gdb_stdlog,
2077 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
2078 paddr_nz (*text_offs),
2079 paddr_nz (*data_offs),
2080 paddr_nz (*bss_offs));
2081 }
2082
2083 return 0;
2084 }
2085
2086 /*
2087 * Function: remote_cisco_objfile_relocate
2088 *
2089 * Relocate the symbol file for a remote target.
2090 */
2091
2092 void
2093 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
2094 bfd_signed_vma bss_off)
2095 {
2096 struct section_offsets *offs;
2097
2098 if (text_off != 0 || data_off != 0 || bss_off != 0)
2099 {
2100 /* FIXME: This code assumes gdb-stabs.h is being used; it's
2101 broken for xcoff, dwarf, sdb-coff, etc. But there is no
2102 simple canonical representation for this stuff. */
2103
2104 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
2105 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
2106
2107 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2108 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2109 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2110
2111 /* First call the standard objfile_relocate. */
2112 objfile_relocate (symfile_objfile, offs);
2113
2114 /* Now we need to fix up the section entries already attached to
2115 the exec target. These entries will control memory transfers
2116 from the exec file. */
2117
2118 exec_set_section_offsets (text_off, data_off, bss_off);
2119 }
2120 }
2121
2122 /* Stub for catch_errors. */
2123
2124 static int
2125 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2126 {
2127 start_remote (); /* Initialize gdb process mechanisms */
2128 /* NOTE: Return something >=0. A -ve value is reserved for
2129 catch_exceptions. */
2130 return 1;
2131 }
2132
2133 static int
2134 remote_start_remote (struct ui_out *uiout, void *dummy)
2135 {
2136 immediate_quit++; /* Allow user to interrupt it */
2137
2138 /* Ack any packet which the remote side has already sent. */
2139 serial_write (remote_desc, "+", 1);
2140
2141 /* Let the stub know that we want it to return the thread. */
2142 set_thread (-1, 0);
2143
2144 inferior_ptid = remote_current_thread (inferior_ptid);
2145
2146 get_offsets (); /* Get text, data & bss offsets */
2147
2148 putpkt ("?"); /* initiate a query from remote machine */
2149 immediate_quit--;
2150
2151 /* NOTE: See comment above in remote_start_remote_dummy(). This
2152 function returns something >=0. */
2153 return remote_start_remote_dummy (uiout, dummy);
2154 }
2155
2156 /* Open a connection to a remote debugger.
2157 NAME is the filename used for communication. */
2158
2159 static void
2160 remote_open (char *name, int from_tty)
2161 {
2162 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2163 }
2164
2165 /* Just like remote_open, but with asynchronous support. */
2166 static void
2167 remote_async_open (char *name, int from_tty)
2168 {
2169 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2170 }
2171
2172 /* Open a connection to a remote debugger using the extended
2173 remote gdb protocol. NAME is the filename used for communication. */
2174
2175 static void
2176 extended_remote_open (char *name, int from_tty)
2177 {
2178 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2179 0 /* async_p */);
2180 }
2181
2182 /* Just like extended_remote_open, but with asynchronous support. */
2183 static void
2184 extended_remote_async_open (char *name, int from_tty)
2185 {
2186 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2187 1 /*extended_p */, 1 /* async_p */);
2188 }
2189
2190 /* Generic code for opening a connection to a remote target. */
2191
2192 static void
2193 init_all_packet_configs (void)
2194 {
2195 int i;
2196 update_packet_config (&remote_protocol_e);
2197 update_packet_config (&remote_protocol_E);
2198 update_packet_config (&remote_protocol_P);
2199 update_packet_config (&remote_protocol_qSymbol);
2200 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2201 update_packet_config (&remote_protocol_Z[i]);
2202 /* Force remote_write_bytes to check whether target supports binary
2203 downloading. */
2204 update_packet_config (&remote_protocol_binary_download);
2205 }
2206
2207 /* Symbol look-up. */
2208
2209 static void
2210 remote_check_symbols (struct objfile *objfile)
2211 {
2212 struct remote_state *rs = get_remote_state ();
2213 char *msg, *reply, *tmp;
2214 struct minimal_symbol *sym;
2215 int end;
2216
2217 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2218 return;
2219
2220 msg = alloca (rs->remote_packet_size);
2221 reply = alloca (rs->remote_packet_size);
2222
2223 /* Invite target to request symbol lookups. */
2224
2225 putpkt ("qSymbol::");
2226 getpkt (reply, (rs->remote_packet_size), 0);
2227 packet_ok (reply, &remote_protocol_qSymbol);
2228
2229 while (strncmp (reply, "qSymbol:", 8) == 0)
2230 {
2231 tmp = &reply[8];
2232 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2233 msg[end] = '\0';
2234 sym = lookup_minimal_symbol (msg, NULL, NULL);
2235 if (sym == NULL)
2236 sprintf (msg, "qSymbol::%s", &reply[8]);
2237 else
2238 sprintf (msg, "qSymbol:%s:%s",
2239 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2240 &reply[8]);
2241 putpkt (msg);
2242 getpkt (reply, (rs->remote_packet_size), 0);
2243 }
2244 }
2245
2246 static struct serial *
2247 remote_serial_open (char *name)
2248 {
2249 static int udp_warning = 0;
2250
2251 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2252 of in ser-tcp.c, because it is the remote protocol assuming that the
2253 serial connection is reliable and not the serial connection promising
2254 to be. */
2255 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2256 {
2257 warning ("The remote protocol may be unreliable over UDP.");
2258 warning ("Some events may be lost, rendering further debugging "
2259 "impossible.");
2260 udp_warning = 1;
2261 }
2262
2263 return serial_open (name);
2264 }
2265
2266 static void
2267 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2268 int extended_p, int async_p)
2269 {
2270 int ex;
2271 struct remote_state *rs = get_remote_state ();
2272 if (name == 0)
2273 error ("To open a remote debug connection, you need to specify what\n"
2274 "serial device is attached to the remote system\n"
2275 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2276
2277 /* See FIXME above */
2278 if (!async_p)
2279 wait_forever_enabled_p = 1;
2280
2281 target_preopen (from_tty);
2282
2283 unpush_target (target);
2284
2285 remote_desc = remote_serial_open (name);
2286 if (!remote_desc)
2287 perror_with_name (name);
2288
2289 if (baud_rate != -1)
2290 {
2291 if (serial_setbaudrate (remote_desc, baud_rate))
2292 {
2293 serial_close (remote_desc);
2294 perror_with_name (name);
2295 }
2296 }
2297
2298 serial_raw (remote_desc);
2299
2300 /* If there is something sitting in the buffer we might take it as a
2301 response to a command, which would be bad. */
2302 serial_flush_input (remote_desc);
2303
2304 if (from_tty)
2305 {
2306 puts_filtered ("Remote debugging using ");
2307 puts_filtered (name);
2308 puts_filtered ("\n");
2309 }
2310 push_target (target); /* Switch to using remote target now */
2311
2312 init_all_packet_configs ();
2313
2314 general_thread = -2;
2315 continue_thread = -2;
2316
2317 /* Probe for ability to use "ThreadInfo" query, as required. */
2318 use_threadinfo_query = 1;
2319 use_threadextra_query = 1;
2320
2321 /* Without this, some commands which require an active target (such
2322 as kill) won't work. This variable serves (at least) double duty
2323 as both the pid of the target process (if it has such), and as a
2324 flag indicating that a target is active. These functions should
2325 be split out into seperate variables, especially since GDB will
2326 someday have a notion of debugging several processes. */
2327
2328 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2329
2330 if (async_p)
2331 {
2332 /* With this target we start out by owning the terminal. */
2333 remote_async_terminal_ours_p = 1;
2334
2335 /* FIXME: cagney/1999-09-23: During the initial connection it is
2336 assumed that the target is already ready and able to respond to
2337 requests. Unfortunately remote_start_remote() eventually calls
2338 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2339 around this. Eventually a mechanism that allows
2340 wait_for_inferior() to expect/get timeouts will be
2341 implemented. */
2342 wait_forever_enabled_p = 0;
2343 }
2344
2345 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2346 /* First delete any symbols previously loaded from shared libraries. */
2347 no_shared_libraries (NULL, 0);
2348 #endif
2349
2350 /* Start the remote connection. If error() or QUIT, discard this
2351 target (we'd otherwise be in an inconsistent state) and then
2352 propogate the error on up the exception chain. This ensures that
2353 the caller doesn't stumble along blindly assuming that the
2354 function succeeded. The CLI doesn't have this problem but other
2355 UI's, such as MI do.
2356
2357 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2358 this function should return an error indication letting the
2359 caller restore the previous state. Unfortunatly the command
2360 ``target remote'' is directly wired to this function making that
2361 impossible. On a positive note, the CLI side of this problem has
2362 been fixed - the function set_cmd_context() makes it possible for
2363 all the ``target ....'' commands to share a common callback
2364 function. See cli-dump.c. */
2365 ex = catch_exceptions (uiout,
2366 remote_start_remote, NULL,
2367 "Couldn't establish connection to remote"
2368 " target\n",
2369 RETURN_MASK_ALL);
2370 if (ex < 0)
2371 {
2372 pop_target ();
2373 if (async_p)
2374 wait_forever_enabled_p = 1;
2375 throw_exception (ex);
2376 }
2377
2378 if (async_p)
2379 wait_forever_enabled_p = 1;
2380
2381 if (extended_p)
2382 {
2383 /* Tell the remote that we are using the extended protocol. */
2384 char *buf = alloca (rs->remote_packet_size);
2385 putpkt ("!");
2386 getpkt (buf, (rs->remote_packet_size), 0);
2387 }
2388 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2389 /* FIXME: need a master target_open vector from which all
2390 remote_opens can be called, so that stuff like this can
2391 go there. Failing that, the following code must be copied
2392 to the open function for any remote target that wants to
2393 support svr4 shared libraries. */
2394
2395 /* Set up to detect and load shared libraries. */
2396 if (exec_bfd) /* No use without an exec file. */
2397 {
2398 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2399 remote_check_symbols (symfile_objfile);
2400 }
2401 #endif
2402 }
2403
2404 /* This takes a program previously attached to and detaches it. After
2405 this is done, GDB can be used to debug some other program. We
2406 better not have left any breakpoints in the target program or it'll
2407 die when it hits one. */
2408
2409 static void
2410 remote_detach (char *args, int from_tty)
2411 {
2412 struct remote_state *rs = get_remote_state ();
2413 char *buf = alloca (rs->remote_packet_size);
2414
2415 if (args)
2416 error ("Argument given to \"detach\" when remotely debugging.");
2417
2418 /* Tell the remote target to detach. */
2419 strcpy (buf, "D");
2420 remote_send (buf, (rs->remote_packet_size));
2421
2422 target_mourn_inferior ();
2423 if (from_tty)
2424 puts_filtered ("Ending remote debugging.\n");
2425
2426 }
2427
2428 /* Same as remote_detach, but with async support. */
2429 static void
2430 remote_async_detach (char *args, int from_tty)
2431 {
2432 struct remote_state *rs = get_remote_state ();
2433 char *buf = alloca (rs->remote_packet_size);
2434
2435 if (args)
2436 error ("Argument given to \"detach\" when remotely debugging.");
2437
2438 /* Tell the remote target to detach. */
2439 strcpy (buf, "D");
2440 remote_send (buf, (rs->remote_packet_size));
2441
2442 /* Unregister the file descriptor from the event loop. */
2443 if (target_is_async_p ())
2444 serial_async (remote_desc, NULL, 0);
2445
2446 target_mourn_inferior ();
2447 if (from_tty)
2448 puts_filtered ("Ending remote debugging.\n");
2449 }
2450
2451 /* Convert hex digit A to a number. */
2452
2453 static int
2454 fromhex (int a)
2455 {
2456 if (a >= '0' && a <= '9')
2457 return a - '0';
2458 else if (a >= 'a' && a <= 'f')
2459 return a - 'a' + 10;
2460 else if (a >= 'A' && a <= 'F')
2461 return a - 'A' + 10;
2462 else
2463 error ("Reply contains invalid hex digit %d", a);
2464 }
2465
2466 static int
2467 hex2bin (const char *hex, char *bin, int count)
2468 {
2469 int i;
2470
2471 for (i = 0; i < count; i++)
2472 {
2473 if (hex[0] == 0 || hex[1] == 0)
2474 {
2475 /* Hex string is short, or of uneven length.
2476 Return the count that has been converted so far. */
2477 return i;
2478 }
2479 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2480 hex += 2;
2481 }
2482 return i;
2483 }
2484
2485 /* Convert number NIB to a hex digit. */
2486
2487 static int
2488 tohex (int nib)
2489 {
2490 if (nib < 10)
2491 return '0' + nib;
2492 else
2493 return 'a' + nib - 10;
2494 }
2495
2496 static int
2497 bin2hex (const char *bin, char *hex, int count)
2498 {
2499 int i;
2500 /* May use a length, or a nul-terminated string as input. */
2501 if (count == 0)
2502 count = strlen (bin);
2503
2504 for (i = 0; i < count; i++)
2505 {
2506 *hex++ = tohex ((*bin >> 4) & 0xf);
2507 *hex++ = tohex (*bin++ & 0xf);
2508 }
2509 *hex = 0;
2510 return i;
2511 }
2512 \f
2513 /* Tell the remote machine to resume. */
2514
2515 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2516
2517 static int last_sent_step;
2518
2519 static void
2520 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2521 {
2522 struct remote_state *rs = get_remote_state ();
2523 char *buf = alloca (rs->remote_packet_size);
2524 int pid = PIDGET (ptid);
2525 char *p;
2526
2527 if (pid == -1)
2528 set_thread (0, 0); /* run any thread */
2529 else
2530 set_thread (pid, 0); /* run this thread */
2531
2532 last_sent_signal = siggnal;
2533 last_sent_step = step;
2534
2535 /* A hook for when we need to do something at the last moment before
2536 resumption. */
2537 if (target_resume_hook)
2538 (*target_resume_hook) ();
2539
2540
2541 /* The s/S/c/C packets do not return status. So if the target does
2542 not support the S or C packets, the debug agent returns an empty
2543 string which is detected in remote_wait(). This protocol defect
2544 is fixed in the e/E packets. */
2545
2546 if (step && step_range_end)
2547 {
2548 /* If the target does not support the 'E' packet, we try the 'S'
2549 packet. Ideally we would fall back to the 'e' packet if that
2550 too is not supported. But that would require another copy of
2551 the code to issue the 'e' packet (and fall back to 's' if not
2552 supported) in remote_wait(). */
2553
2554 if (siggnal != TARGET_SIGNAL_0)
2555 {
2556 if (remote_protocol_E.support != PACKET_DISABLE)
2557 {
2558 p = buf;
2559 *p++ = 'E';
2560 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2561 *p++ = tohex (((int) siggnal) & 0xf);
2562 *p++ = ',';
2563 p += hexnumstr (p, (ULONGEST) step_range_start);
2564 *p++ = ',';
2565 p += hexnumstr (p, (ULONGEST) step_range_end);
2566 *p++ = 0;
2567
2568 putpkt (buf);
2569 getpkt (buf, (rs->remote_packet_size), 0);
2570
2571 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2572 return;
2573 }
2574 }
2575 else
2576 {
2577 if (remote_protocol_e.support != PACKET_DISABLE)
2578 {
2579 p = buf;
2580 *p++ = 'e';
2581 p += hexnumstr (p, (ULONGEST) step_range_start);
2582 *p++ = ',';
2583 p += hexnumstr (p, (ULONGEST) step_range_end);
2584 *p++ = 0;
2585
2586 putpkt (buf);
2587 getpkt (buf, (rs->remote_packet_size), 0);
2588
2589 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2590 return;
2591 }
2592 }
2593 }
2594
2595 if (siggnal != TARGET_SIGNAL_0)
2596 {
2597 buf[0] = step ? 'S' : 'C';
2598 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2599 buf[2] = tohex (((int) siggnal) & 0xf);
2600 buf[3] = '\0';
2601 }
2602 else
2603 strcpy (buf, step ? "s" : "c");
2604
2605 putpkt (buf);
2606 }
2607
2608 /* Same as remote_resume, but with async support. */
2609 static void
2610 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2611 {
2612 struct remote_state *rs = get_remote_state ();
2613 char *buf = alloca (rs->remote_packet_size);
2614 int pid = PIDGET (ptid);
2615 char *p;
2616
2617 if (pid == -1)
2618 set_thread (0, 0); /* run any thread */
2619 else
2620 set_thread (pid, 0); /* run this thread */
2621
2622 last_sent_signal = siggnal;
2623 last_sent_step = step;
2624
2625 /* A hook for when we need to do something at the last moment before
2626 resumption. */
2627 if (target_resume_hook)
2628 (*target_resume_hook) ();
2629
2630 /* The s/S/c/C packets do not return status. So if the target does
2631 not support the S or C packets, the debug agent returns an empty
2632 string which is detected in remote_wait(). This protocol defect
2633 is fixed in the e/E packets. */
2634
2635 if (step && step_range_end)
2636 {
2637 /* If the target does not support the 'E' packet, we try the 'S'
2638 packet. Ideally we would fall back to the 'e' packet if that
2639 too is not supported. But that would require another copy of
2640 the code to issue the 'e' packet (and fall back to 's' if not
2641 supported) in remote_wait(). */
2642
2643 if (siggnal != TARGET_SIGNAL_0)
2644 {
2645 if (remote_protocol_E.support != PACKET_DISABLE)
2646 {
2647 p = buf;
2648 *p++ = 'E';
2649 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2650 *p++ = tohex (((int) siggnal) & 0xf);
2651 *p++ = ',';
2652 p += hexnumstr (p, (ULONGEST) step_range_start);
2653 *p++ = ',';
2654 p += hexnumstr (p, (ULONGEST) step_range_end);
2655 *p++ = 0;
2656
2657 putpkt (buf);
2658 getpkt (buf, (rs->remote_packet_size), 0);
2659
2660 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2661 goto register_event_loop;
2662 }
2663 }
2664 else
2665 {
2666 if (remote_protocol_e.support != PACKET_DISABLE)
2667 {
2668 p = buf;
2669 *p++ = 'e';
2670 p += hexnumstr (p, (ULONGEST) step_range_start);
2671 *p++ = ',';
2672 p += hexnumstr (p, (ULONGEST) step_range_end);
2673 *p++ = 0;
2674
2675 putpkt (buf);
2676 getpkt (buf, (rs->remote_packet_size), 0);
2677
2678 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2679 goto register_event_loop;
2680 }
2681 }
2682 }
2683
2684 if (siggnal != TARGET_SIGNAL_0)
2685 {
2686 buf[0] = step ? 'S' : 'C';
2687 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2688 buf[2] = tohex ((int) siggnal & 0xf);
2689 buf[3] = '\0';
2690 }
2691 else
2692 strcpy (buf, step ? "s" : "c");
2693
2694 putpkt (buf);
2695
2696 register_event_loop:
2697 /* We are about to start executing the inferior, let's register it
2698 with the event loop. NOTE: this is the one place where all the
2699 execution commands end up. We could alternatively do this in each
2700 of the execution commands in infcmd.c.*/
2701 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2702 into infcmd.c in order to allow inferior function calls to work
2703 NOT asynchronously. */
2704 if (event_loop_p && target_can_async_p ())
2705 target_async (inferior_event_handler, 0);
2706 /* Tell the world that the target is now executing. */
2707 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2708 this? Instead, should the client of target just assume (for
2709 async targets) that the target is going to start executing? Is
2710 this information already found in the continuation block? */
2711 if (target_is_async_p ())
2712 target_executing = 1;
2713 }
2714 \f
2715
2716 /* Set up the signal handler for SIGINT, while the target is
2717 executing, ovewriting the 'regular' SIGINT signal handler. */
2718 static void
2719 initialize_sigint_signal_handler (void)
2720 {
2721 sigint_remote_token =
2722 create_async_signal_handler (async_remote_interrupt, NULL);
2723 signal (SIGINT, handle_remote_sigint);
2724 }
2725
2726 /* Signal handler for SIGINT, while the target is executing. */
2727 static void
2728 handle_remote_sigint (int sig)
2729 {
2730 signal (sig, handle_remote_sigint_twice);
2731 sigint_remote_twice_token =
2732 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2733 mark_async_signal_handler_wrapper (sigint_remote_token);
2734 }
2735
2736 /* Signal handler for SIGINT, installed after SIGINT has already been
2737 sent once. It will take effect the second time that the user sends
2738 a ^C. */
2739 static void
2740 handle_remote_sigint_twice (int sig)
2741 {
2742 signal (sig, handle_sigint);
2743 sigint_remote_twice_token =
2744 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2745 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2746 }
2747
2748 /* Perform the real interruption of the target execution, in response
2749 to a ^C. */
2750 static void
2751 async_remote_interrupt (gdb_client_data arg)
2752 {
2753 if (remote_debug)
2754 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2755
2756 target_stop ();
2757 }
2758
2759 /* Perform interrupt, if the first attempt did not succeed. Just give
2760 up on the target alltogether. */
2761 void
2762 async_remote_interrupt_twice (gdb_client_data arg)
2763 {
2764 if (remote_debug)
2765 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2766 /* Do something only if the target was not killed by the previous
2767 cntl-C. */
2768 if (target_executing)
2769 {
2770 interrupt_query ();
2771 signal (SIGINT, handle_remote_sigint);
2772 }
2773 }
2774
2775 /* Reinstall the usual SIGINT handlers, after the target has
2776 stopped. */
2777 static void
2778 cleanup_sigint_signal_handler (void *dummy)
2779 {
2780 signal (SIGINT, handle_sigint);
2781 if (sigint_remote_twice_token)
2782 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2783 if (sigint_remote_token)
2784 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2785 }
2786
2787 /* Send ^C to target to halt it. Target will respond, and send us a
2788 packet. */
2789 static void (*ofunc) (int);
2790
2791 /* The command line interface's stop routine. This function is installed
2792 as a signal handler for SIGINT. The first time a user requests a
2793 stop, we call remote_stop to send a break or ^C. If there is no
2794 response from the target (it didn't stop when the user requested it),
2795 we ask the user if he'd like to detach from the target. */
2796 static void
2797 remote_interrupt (int signo)
2798 {
2799 /* If this doesn't work, try more severe steps. */
2800 signal (signo, remote_interrupt_twice);
2801
2802 if (remote_debug)
2803 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2804
2805 target_stop ();
2806 }
2807
2808 /* The user typed ^C twice. */
2809
2810 static void
2811 remote_interrupt_twice (int signo)
2812 {
2813 signal (signo, ofunc);
2814 interrupt_query ();
2815 signal (signo, remote_interrupt);
2816 }
2817
2818 /* This is the generic stop called via the target vector. When a target
2819 interrupt is requested, either by the command line or the GUI, we
2820 will eventually end up here. */
2821 static void
2822 remote_stop (void)
2823 {
2824 /* Send a break or a ^C, depending on user preference. */
2825 if (remote_debug)
2826 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2827
2828 if (remote_break)
2829 serial_send_break (remote_desc);
2830 else
2831 serial_write (remote_desc, "\003", 1);
2832 }
2833
2834 /* Ask the user what to do when an interrupt is received. */
2835
2836 static void
2837 interrupt_query (void)
2838 {
2839 target_terminal_ours ();
2840
2841 if (query ("Interrupted while waiting for the program.\n\
2842 Give up (and stop debugging it)? "))
2843 {
2844 target_mourn_inferior ();
2845 throw_exception (RETURN_QUIT);
2846 }
2847
2848 target_terminal_inferior ();
2849 }
2850
2851 /* Enable/disable target terminal ownership. Most targets can use
2852 terminal groups to control terminal ownership. Remote targets are
2853 different in that explicit transfer of ownership to/from GDB/target
2854 is required. */
2855
2856 static void
2857 remote_async_terminal_inferior (void)
2858 {
2859 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2860 sync_execution here. This function should only be called when
2861 GDB is resuming the inferior in the forground. A background
2862 resume (``run&'') should leave GDB in control of the terminal and
2863 consequently should not call this code. */
2864 if (!sync_execution)
2865 return;
2866 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2867 calls target_terminal_*() idenpotent. The event-loop GDB talking
2868 to an asynchronous target with a synchronous command calls this
2869 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2870 stops trying to transfer the terminal to the target when it
2871 shouldn't this guard can go away. */
2872 if (!remote_async_terminal_ours_p)
2873 return;
2874 delete_file_handler (input_fd);
2875 remote_async_terminal_ours_p = 0;
2876 initialize_sigint_signal_handler ();
2877 /* NOTE: At this point we could also register our selves as the
2878 recipient of all input. Any characters typed could then be
2879 passed on down to the target. */
2880 }
2881
2882 static void
2883 remote_async_terminal_ours (void)
2884 {
2885 /* See FIXME in remote_async_terminal_inferior. */
2886 if (!sync_execution)
2887 return;
2888 /* See FIXME in remote_async_terminal_inferior. */
2889 if (remote_async_terminal_ours_p)
2890 return;
2891 cleanup_sigint_signal_handler (NULL);
2892 add_file_handler (input_fd, stdin_event_handler, 0);
2893 remote_async_terminal_ours_p = 1;
2894 }
2895
2896 /* If nonzero, ignore the next kill. */
2897
2898 int kill_kludge;
2899
2900 void
2901 remote_console_output (char *msg)
2902 {
2903 char *p;
2904
2905 for (p = msg; p[0] && p[1]; p += 2)
2906 {
2907 char tb[2];
2908 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2909 tb[0] = c;
2910 tb[1] = 0;
2911 fputs_unfiltered (tb, gdb_stdtarg);
2912 }
2913 gdb_flush (gdb_stdtarg);
2914 }
2915
2916 /* Wait until the remote machine stops, then return,
2917 storing status in STATUS just as `wait' would.
2918 Returns "pid", which in the case of a multi-threaded
2919 remote OS, is the thread-id. */
2920
2921 static ptid_t
2922 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2923 {
2924 struct remote_state *rs = get_remote_state ();
2925 unsigned char *buf = alloca (rs->remote_packet_size);
2926 ULONGEST thread_num = -1;
2927 ULONGEST addr;
2928
2929 status->kind = TARGET_WAITKIND_EXITED;
2930 status->value.integer = 0;
2931
2932 while (1)
2933 {
2934 unsigned char *p;
2935
2936 ofunc = signal (SIGINT, remote_interrupt);
2937 getpkt (buf, (rs->remote_packet_size), 1);
2938 signal (SIGINT, ofunc);
2939
2940 /* This is a hook for when we need to do something (perhaps the
2941 collection of trace data) every time the target stops. */
2942 if (target_wait_loop_hook)
2943 (*target_wait_loop_hook) ();
2944
2945 remote_stopped_by_watchpoint_p = 0;
2946
2947 switch (buf[0])
2948 {
2949 case 'E': /* Error of some sort */
2950 warning ("Remote failure reply: %s", buf);
2951 continue;
2952 case 'T': /* Status with PC, SP, FP, ... */
2953 {
2954 int i;
2955 char regs[MAX_REGISTER_SIZE];
2956
2957 /* Expedited reply, containing Signal, {regno, reg} repeat */
2958 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2959 ss = signal number
2960 n... = register number
2961 r... = register contents
2962 */
2963 p = &buf[3]; /* after Txx */
2964
2965 while (*p)
2966 {
2967 unsigned char *p1;
2968 char *p_temp;
2969 int fieldsize;
2970 LONGEST pnum = 0;
2971
2972 /* If the packet contains a register number save it in pnum
2973 and set p1 to point to the character following it.
2974 Otherwise p1 points to p. */
2975
2976 /* If this packet is an awatch packet, don't parse the 'a'
2977 as a register number. */
2978
2979 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2980 {
2981 /* Read the ``P'' register number. */
2982 pnum = strtol (p, &p_temp, 16);
2983 p1 = (unsigned char *) p_temp;
2984 }
2985 else
2986 p1 = p;
2987
2988 if (p1 == p) /* No register number present here */
2989 {
2990 p1 = (unsigned char *) strchr (p, ':');
2991 if (p1 == NULL)
2992 warning ("Malformed packet(a) (missing colon): %s\n\
2993 Packet: '%s'\n",
2994 p, buf);
2995 if (strncmp (p, "thread", p1 - p) == 0)
2996 {
2997 p_temp = unpack_varlen_hex (++p1, &thread_num);
2998 record_currthread (thread_num);
2999 p = (unsigned char *) p_temp;
3000 }
3001 else if ((strncmp (p, "watch", p1 - p) == 0)
3002 || (strncmp (p, "rwatch", p1 - p) == 0)
3003 || (strncmp (p, "awatch", p1 - p) == 0))
3004 {
3005 remote_stopped_by_watchpoint_p = 1;
3006 p = unpack_varlen_hex (++p1, &addr);
3007 remote_watch_data_address = (CORE_ADDR)addr;
3008 }
3009 else
3010 {
3011 /* Silently skip unknown optional info. */
3012 p_temp = strchr (p1 + 1, ';');
3013 if (p_temp)
3014 p = (unsigned char *) p_temp;
3015 }
3016 }
3017 else
3018 {
3019 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3020 p = p1;
3021
3022 if (*p++ != ':')
3023 warning ("Malformed packet(b) (missing colon): %s\n\
3024 Packet: '%s'\n",
3025 p, buf);
3026
3027 if (reg == NULL)
3028 warning ("Remote sent bad register number %s: %s\n\
3029 Packet: '%s'\n",
3030 phex_nz (pnum, 0), p, buf);
3031
3032 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3033 p += 2 * fieldsize;
3034 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3035 warning ("Remote reply is too short: %s", buf);
3036 supply_register (reg->regnum, regs);
3037 }
3038
3039 if (*p++ != ';')
3040 {
3041 warning ("Remote register badly formatted: %s", buf);
3042 warning (" here: %s", p);
3043 }
3044 }
3045 }
3046 /* fall through */
3047 case 'S': /* Old style status, just signal only */
3048 status->kind = TARGET_WAITKIND_STOPPED;
3049 status->value.sig = (enum target_signal)
3050 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3051
3052 if (buf[3] == 'p')
3053 {
3054 /* Export Cisco kernel mode as a convenience variable
3055 (so that it can be used in the GDB prompt if desired). */
3056
3057 if (cisco_kernel_mode == 1)
3058 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3059 value_from_string ("PDEBUG-"));
3060 cisco_kernel_mode = 0;
3061 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3062 record_currthread (thread_num);
3063 }
3064 else if (buf[3] == 'k')
3065 {
3066 /* Export Cisco kernel mode as a convenience variable
3067 (so that it can be used in the GDB prompt if desired). */
3068
3069 if (cisco_kernel_mode == 1)
3070 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3071 value_from_string ("KDEBUG-"));
3072 cisco_kernel_mode = 1;
3073 }
3074 goto got_status;
3075 case 'N': /* Cisco special: status and offsets */
3076 {
3077 bfd_vma text_addr, data_addr, bss_addr;
3078 bfd_signed_vma text_off, data_off, bss_off;
3079 unsigned char *p1;
3080
3081 status->kind = TARGET_WAITKIND_STOPPED;
3082 status->value.sig = (enum target_signal)
3083 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3084
3085 if (symfile_objfile == NULL)
3086 {
3087 warning ("Relocation packet received with no symbol file. \
3088 Packet Dropped");
3089 goto got_status;
3090 }
3091
3092 /* Relocate object file. Buffer format is NAATT;DD;BB
3093 * where AA is the signal number, TT is the new text
3094 * address, DD * is the new data address, and BB is the
3095 * new bss address. */
3096
3097 p = &buf[3];
3098 text_addr = strtoul (p, (char **) &p1, 16);
3099 if (p1 == p || *p1 != ';')
3100 warning ("Malformed relocation packet: Packet '%s'", buf);
3101 p = p1 + 1;
3102 data_addr = strtoul (p, (char **) &p1, 16);
3103 if (p1 == p || *p1 != ';')
3104 warning ("Malformed relocation packet: Packet '%s'", buf);
3105 p = p1 + 1;
3106 bss_addr = strtoul (p, (char **) &p1, 16);
3107 if (p1 == p)
3108 warning ("Malformed relocation packet: Packet '%s'", buf);
3109
3110 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3111 &text_off, &data_off, &bss_off)
3112 == 0)
3113 if (text_off != 0 || data_off != 0 || bss_off != 0)
3114 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3115
3116 goto got_status;
3117 }
3118 case 'W': /* Target exited */
3119 {
3120 /* The remote process exited. */
3121 status->kind = TARGET_WAITKIND_EXITED;
3122 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3123 goto got_status;
3124 }
3125 case 'X':
3126 status->kind = TARGET_WAITKIND_SIGNALLED;
3127 status->value.sig = (enum target_signal)
3128 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3129 kill_kludge = 1;
3130
3131 goto got_status;
3132 case 'O': /* Console output */
3133 remote_console_output (buf + 1);
3134 continue;
3135 case '\0':
3136 if (last_sent_signal != TARGET_SIGNAL_0)
3137 {
3138 /* Zero length reply means that we tried 'S' or 'C' and
3139 the remote system doesn't support it. */
3140 target_terminal_ours_for_output ();
3141 printf_filtered
3142 ("Can't send signals to this remote system. %s not sent.\n",
3143 target_signal_to_name (last_sent_signal));
3144 last_sent_signal = TARGET_SIGNAL_0;
3145 target_terminal_inferior ();
3146
3147 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3148 putpkt ((char *) buf);
3149 continue;
3150 }
3151 /* else fallthrough */
3152 default:
3153 warning ("Invalid remote reply: %s", buf);
3154 continue;
3155 }
3156 }
3157 got_status:
3158 if (thread_num != -1)
3159 {
3160 return pid_to_ptid (thread_num);
3161 }
3162 return inferior_ptid;
3163 }
3164
3165 /* Async version of remote_wait. */
3166 static ptid_t
3167 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3168 {
3169 struct remote_state *rs = get_remote_state ();
3170 unsigned char *buf = alloca (rs->remote_packet_size);
3171 ULONGEST thread_num = -1;
3172 ULONGEST addr;
3173
3174 status->kind = TARGET_WAITKIND_EXITED;
3175 status->value.integer = 0;
3176
3177 remote_stopped_by_watchpoint_p = 0;
3178
3179 while (1)
3180 {
3181 unsigned char *p;
3182
3183 if (!target_is_async_p ())
3184 ofunc = signal (SIGINT, remote_interrupt);
3185 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3186 _never_ wait for ever -> test on target_is_async_p().
3187 However, before we do that we need to ensure that the caller
3188 knows how to take the target into/out of async mode. */
3189 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3190 if (!target_is_async_p ())
3191 signal (SIGINT, ofunc);
3192
3193 /* This is a hook for when we need to do something (perhaps the
3194 collection of trace data) every time the target stops. */
3195 if (target_wait_loop_hook)
3196 (*target_wait_loop_hook) ();
3197
3198 switch (buf[0])
3199 {
3200 case 'E': /* Error of some sort */
3201 warning ("Remote failure reply: %s", buf);
3202 continue;
3203 case 'T': /* Status with PC, SP, FP, ... */
3204 {
3205 int i;
3206 char regs[MAX_REGISTER_SIZE];
3207
3208 /* Expedited reply, containing Signal, {regno, reg} repeat */
3209 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3210 ss = signal number
3211 n... = register number
3212 r... = register contents
3213 */
3214 p = &buf[3]; /* after Txx */
3215
3216 while (*p)
3217 {
3218 unsigned char *p1;
3219 char *p_temp;
3220 int fieldsize;
3221 long pnum = 0;
3222
3223 /* If the packet contains a register number, save it in pnum
3224 and set p1 to point to the character following it.
3225 Otherwise p1 points to p. */
3226
3227 /* If this packet is an awatch packet, don't parse the 'a'
3228 as a register number. */
3229
3230 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3231 {
3232 /* Read the register number. */
3233 pnum = strtol (p, &p_temp, 16);
3234 p1 = (unsigned char *) p_temp;
3235 }
3236 else
3237 p1 = p;
3238
3239 if (p1 == p) /* No register number present here */
3240 {
3241 p1 = (unsigned char *) strchr (p, ':');
3242 if (p1 == NULL)
3243 warning ("Malformed packet(a) (missing colon): %s\n\
3244 Packet: '%s'\n",
3245 p, buf);
3246 if (strncmp (p, "thread", p1 - p) == 0)
3247 {
3248 p_temp = unpack_varlen_hex (++p1, &thread_num);
3249 record_currthread (thread_num);
3250 p = (unsigned char *) p_temp;
3251 }
3252 else if ((strncmp (p, "watch", p1 - p) == 0)
3253 || (strncmp (p, "rwatch", p1 - p) == 0)
3254 || (strncmp (p, "awatch", p1 - p) == 0))
3255 {
3256 remote_stopped_by_watchpoint_p = 1;
3257 p = unpack_varlen_hex (++p1, &addr);
3258 remote_watch_data_address = (CORE_ADDR)addr;
3259 }
3260 else
3261 {
3262 /* Silently skip unknown optional info. */
3263 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3264 if (p_temp)
3265 p = p_temp;
3266 }
3267 }
3268
3269 else
3270 {
3271 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3272 p = p1;
3273 if (*p++ != ':')
3274 warning ("Malformed packet(b) (missing colon): %s\n\
3275 Packet: '%s'\n",
3276 p, buf);
3277
3278 if (reg == NULL)
3279 warning ("Remote sent bad register number %ld: %s\n\
3280 Packet: '%s'\n",
3281 pnum, p, buf);
3282
3283 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (reg->regnum));
3284 p += 2 * fieldsize;
3285 if (fieldsize < REGISTER_RAW_SIZE (reg->regnum))
3286 warning ("Remote reply is too short: %s", buf);
3287 supply_register (reg->regnum, regs);
3288 }
3289
3290 if (*p++ != ';')
3291 {
3292 warning ("Remote register badly formatted: %s", buf);
3293 warning (" here: %s", p);
3294 }
3295 }
3296 }
3297 /* fall through */
3298 case 'S': /* Old style status, just signal only */
3299 status->kind = TARGET_WAITKIND_STOPPED;
3300 status->value.sig = (enum target_signal)
3301 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3302
3303 if (buf[3] == 'p')
3304 {
3305 /* Export Cisco kernel mode as a convenience variable
3306 (so that it can be used in the GDB prompt if desired). */
3307
3308 if (cisco_kernel_mode == 1)
3309 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3310 value_from_string ("PDEBUG-"));
3311 cisco_kernel_mode = 0;
3312 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3313 record_currthread (thread_num);
3314 }
3315 else if (buf[3] == 'k')
3316 {
3317 /* Export Cisco kernel mode as a convenience variable
3318 (so that it can be used in the GDB prompt if desired). */
3319
3320 if (cisco_kernel_mode == 1)
3321 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3322 value_from_string ("KDEBUG-"));
3323 cisco_kernel_mode = 1;
3324 }
3325 goto got_status;
3326 case 'N': /* Cisco special: status and offsets */
3327 {
3328 bfd_vma text_addr, data_addr, bss_addr;
3329 bfd_signed_vma text_off, data_off, bss_off;
3330 unsigned char *p1;
3331
3332 status->kind = TARGET_WAITKIND_STOPPED;
3333 status->value.sig = (enum target_signal)
3334 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3335
3336 if (symfile_objfile == NULL)
3337 {
3338 warning ("Relocation packet recieved with no symbol file. \
3339 Packet Dropped");
3340 goto got_status;
3341 }
3342
3343 /* Relocate object file. Buffer format is NAATT;DD;BB
3344 * where AA is the signal number, TT is the new text
3345 * address, DD * is the new data address, and BB is the
3346 * new bss address. */
3347
3348 p = &buf[3];
3349 text_addr = strtoul (p, (char **) &p1, 16);
3350 if (p1 == p || *p1 != ';')
3351 warning ("Malformed relocation packet: Packet '%s'", buf);
3352 p = p1 + 1;
3353 data_addr = strtoul (p, (char **) &p1, 16);
3354 if (p1 == p || *p1 != ';')
3355 warning ("Malformed relocation packet: Packet '%s'", buf);
3356 p = p1 + 1;
3357 bss_addr = strtoul (p, (char **) &p1, 16);
3358 if (p1 == p)
3359 warning ("Malformed relocation packet: Packet '%s'", buf);
3360
3361 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3362 &text_off, &data_off, &bss_off)
3363 == 0)
3364 if (text_off != 0 || data_off != 0 || bss_off != 0)
3365 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3366
3367 goto got_status;
3368 }
3369 case 'W': /* Target exited */
3370 {
3371 /* The remote process exited. */
3372 status->kind = TARGET_WAITKIND_EXITED;
3373 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3374 goto got_status;
3375 }
3376 case 'X':
3377 status->kind = TARGET_WAITKIND_SIGNALLED;
3378 status->value.sig = (enum target_signal)
3379 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3380 kill_kludge = 1;
3381
3382 goto got_status;
3383 case 'O': /* Console output */
3384 remote_console_output (buf + 1);
3385 /* Return immediately to the event loop. The event loop will
3386 still be waiting on the inferior afterwards. */
3387 status->kind = TARGET_WAITKIND_IGNORE;
3388 goto got_status;
3389 case '\0':
3390 if (last_sent_signal != TARGET_SIGNAL_0)
3391 {
3392 /* Zero length reply means that we tried 'S' or 'C' and
3393 the remote system doesn't support it. */
3394 target_terminal_ours_for_output ();
3395 printf_filtered
3396 ("Can't send signals to this remote system. %s not sent.\n",
3397 target_signal_to_name (last_sent_signal));
3398 last_sent_signal = TARGET_SIGNAL_0;
3399 target_terminal_inferior ();
3400
3401 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3402 putpkt ((char *) buf);
3403 continue;
3404 }
3405 /* else fallthrough */
3406 default:
3407 warning ("Invalid remote reply: %s", buf);
3408 continue;
3409 }
3410 }
3411 got_status:
3412 if (thread_num != -1)
3413 {
3414 return pid_to_ptid (thread_num);
3415 }
3416 return inferior_ptid;
3417 }
3418
3419 /* Number of bytes of registers this stub implements. */
3420
3421 static int register_bytes_found;
3422
3423 /* Read the remote registers into the block REGS. */
3424 /* Currently we just read all the registers, so we don't use regnum. */
3425
3426 /* ARGSUSED */
3427 static void
3428 remote_fetch_registers (int regnum)
3429 {
3430 struct remote_state *rs = get_remote_state ();
3431 char *buf = alloca (rs->remote_packet_size);
3432 int i;
3433 char *p;
3434 char *regs = alloca (rs->sizeof_g_packet);
3435
3436 set_thread (PIDGET (inferior_ptid), 1);
3437
3438 if (regnum >= 0)
3439 {
3440 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3441 gdb_assert (reg != NULL);
3442 if (!reg->in_g_packet)
3443 internal_error (__FILE__, __LINE__,
3444 "Attempt to fetch a non G-packet register when this "
3445 "remote.c does not support the p-packet.");
3446 }
3447
3448 sprintf (buf, "g");
3449 remote_send (buf, (rs->remote_packet_size));
3450
3451 /* Save the size of the packet sent to us by the target. Its used
3452 as a heuristic when determining the max size of packets that the
3453 target can safely receive. */
3454 if ((rs->actual_register_packet_size) == 0)
3455 (rs->actual_register_packet_size) = strlen (buf);
3456
3457 /* Unimplemented registers read as all bits zero. */
3458 memset (regs, 0, rs->sizeof_g_packet);
3459
3460 /* We can get out of synch in various cases. If the first character
3461 in the buffer is not a hex character, assume that has happened
3462 and try to fetch another packet to read. */
3463 while ((buf[0] < '0' || buf[0] > '9')
3464 && (buf[0] < 'a' || buf[0] > 'f')
3465 && buf[0] != 'x') /* New: unavailable register value */
3466 {
3467 if (remote_debug)
3468 fprintf_unfiltered (gdb_stdlog,
3469 "Bad register packet; fetching a new packet\n");
3470 getpkt (buf, (rs->remote_packet_size), 0);
3471 }
3472
3473 /* Reply describes registers byte by byte, each byte encoded as two
3474 hex characters. Suck them all up, then supply them to the
3475 register cacheing/storage mechanism. */
3476
3477 p = buf;
3478 for (i = 0; i < rs->sizeof_g_packet; i++)
3479 {
3480 if (p[0] == 0)
3481 break;
3482 if (p[1] == 0)
3483 {
3484 warning ("Remote reply is of odd length: %s", buf);
3485 /* Don't change register_bytes_found in this case, and don't
3486 print a second warning. */
3487 goto supply_them;
3488 }
3489 if (p[0] == 'x' && p[1] == 'x')
3490 regs[i] = 0; /* 'x' */
3491 else
3492 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3493 p += 2;
3494 }
3495
3496 if (i != register_bytes_found)
3497 {
3498 register_bytes_found = i;
3499 if (REGISTER_BYTES_OK_P ()
3500 && !REGISTER_BYTES_OK (i))
3501 warning ("Remote reply is too short: %s", buf);
3502 }
3503
3504 supply_them:
3505 {
3506 int i;
3507 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3508 {
3509 struct packet_reg *r = &rs->regs[i];
3510 if (r->in_g_packet)
3511 {
3512 supply_register (r->regnum, regs + r->offset);
3513 if (buf[r->offset * 2] == 'x')
3514 set_register_cached (i, -1);
3515 }
3516 }
3517 }
3518 }
3519
3520 /* Prepare to store registers. Since we may send them all (using a
3521 'G' request), we have to read out the ones we don't want to change
3522 first. */
3523
3524 static void
3525 remote_prepare_to_store (void)
3526 {
3527 /* Make sure the entire registers array is valid. */
3528 switch (remote_protocol_P.support)
3529 {
3530 case PACKET_DISABLE:
3531 case PACKET_SUPPORT_UNKNOWN:
3532 /* NOTE: This isn't rs->sizeof_g_packet because here, we are
3533 forcing the register cache to read its and not the target
3534 registers. */
3535 deprecated_read_register_bytes (0, (char *) NULL,
3536 DEPRECATED_REGISTER_BYTES); /* OK */
3537 break;
3538 case PACKET_ENABLE:
3539 break;
3540 }
3541 }
3542
3543 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3544 packet was not recognized. */
3545
3546 static int
3547 store_register_using_P (int regnum)
3548 {
3549 struct remote_state *rs = get_remote_state ();
3550 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3551 /* Try storing a single register. */
3552 char *buf = alloca (rs->remote_packet_size);
3553 char regp[MAX_REGISTER_SIZE];
3554 char *p;
3555 int i;
3556
3557 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3558 p = buf + strlen (buf);
3559 regcache_collect (reg->regnum, regp);
3560 bin2hex (regp, p, REGISTER_RAW_SIZE (reg->regnum));
3561 remote_send (buf, rs->remote_packet_size);
3562
3563 return buf[0] != '\0';
3564 }
3565
3566
3567 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3568 of the register cache buffer. FIXME: ignores errors. */
3569
3570 static void
3571 remote_store_registers (int regnum)
3572 {
3573 struct remote_state *rs = get_remote_state ();
3574 char *buf;
3575 char *regs;
3576 int i;
3577 char *p;
3578
3579 set_thread (PIDGET (inferior_ptid), 1);
3580
3581 if (regnum >= 0)
3582 {
3583 switch (remote_protocol_P.support)
3584 {
3585 case PACKET_DISABLE:
3586 break;
3587 case PACKET_ENABLE:
3588 if (store_register_using_P (regnum))
3589 return;
3590 else
3591 error ("Protocol error: P packet not recognized by stub");
3592 case PACKET_SUPPORT_UNKNOWN:
3593 if (store_register_using_P (regnum))
3594 {
3595 /* The stub recognized the 'P' packet. Remember this. */
3596 remote_protocol_P.support = PACKET_ENABLE;
3597 return;
3598 }
3599 else
3600 {
3601 /* The stub does not support the 'P' packet. Use 'G'
3602 instead, and don't try using 'P' in the future (it
3603 will just waste our time). */
3604 remote_protocol_P.support = PACKET_DISABLE;
3605 break;
3606 }
3607 }
3608 }
3609
3610 /* Extract all the registers in the regcache copying them into a
3611 local buffer. */
3612 {
3613 int i;
3614 regs = alloca (rs->sizeof_g_packet);
3615 memset (regs, rs->sizeof_g_packet, 0);
3616 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3617 {
3618 struct packet_reg *r = &rs->regs[i];
3619 if (r->in_g_packet)
3620 regcache_collect (r->regnum, regs + r->offset);
3621 }
3622 }
3623
3624 /* Command describes registers byte by byte,
3625 each byte encoded as two hex characters. */
3626 buf = alloca (rs->remote_packet_size);
3627 p = buf;
3628 *p++ = 'G';
3629 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3630 bin2hex (regs, p, register_bytes_found);
3631 remote_send (buf, (rs->remote_packet_size));
3632 }
3633 \f
3634
3635 /* Return the number of hex digits in num. */
3636
3637 static int
3638 hexnumlen (ULONGEST num)
3639 {
3640 int i;
3641
3642 for (i = 0; num != 0; i++)
3643 num >>= 4;
3644
3645 return max (i, 1);
3646 }
3647
3648 /* Set BUF to the minimum number of hex digits representing NUM. */
3649
3650 static int
3651 hexnumstr (char *buf, ULONGEST num)
3652 {
3653 int len = hexnumlen (num);
3654 return hexnumnstr (buf, num, len);
3655 }
3656
3657
3658 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3659
3660 static int
3661 hexnumnstr (char *buf, ULONGEST num, int width)
3662 {
3663 int i;
3664
3665 buf[width] = '\0';
3666
3667 for (i = width - 1; i >= 0; i--)
3668 {
3669 buf[i] = "0123456789abcdef"[(num & 0xf)];
3670 num >>= 4;
3671 }
3672
3673 return width;
3674 }
3675
3676 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3677
3678 static CORE_ADDR
3679 remote_address_masked (CORE_ADDR addr)
3680 {
3681 if (remote_address_size > 0
3682 && remote_address_size < (sizeof (ULONGEST) * 8))
3683 {
3684 /* Only create a mask when that mask can safely be constructed
3685 in a ULONGEST variable. */
3686 ULONGEST mask = 1;
3687 mask = (mask << remote_address_size) - 1;
3688 addr &= mask;
3689 }
3690 return addr;
3691 }
3692
3693 /* Determine whether the remote target supports binary downloading.
3694 This is accomplished by sending a no-op memory write of zero length
3695 to the target at the specified address. It does not suffice to send
3696 the whole packet, since many stubs strip the eighth bit and subsequently
3697 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3698
3699 NOTE: This can still lose if the serial line is not eight-bit
3700 clean. In cases like this, the user should clear "remote
3701 X-packet". */
3702
3703 static void
3704 check_binary_download (CORE_ADDR addr)
3705 {
3706 struct remote_state *rs = get_remote_state ();
3707 switch (remote_protocol_binary_download.support)
3708 {
3709 case PACKET_DISABLE:
3710 break;
3711 case PACKET_ENABLE:
3712 break;
3713 case PACKET_SUPPORT_UNKNOWN:
3714 {
3715 char *buf = alloca (rs->remote_packet_size);
3716 char *p;
3717
3718 p = buf;
3719 *p++ = 'X';
3720 p += hexnumstr (p, (ULONGEST) addr);
3721 *p++ = ',';
3722 p += hexnumstr (p, (ULONGEST) 0);
3723 *p++ = ':';
3724 *p = '\0';
3725
3726 putpkt_binary (buf, (int) (p - buf));
3727 getpkt (buf, (rs->remote_packet_size), 0);
3728
3729 if (buf[0] == '\0')
3730 {
3731 if (remote_debug)
3732 fprintf_unfiltered (gdb_stdlog,
3733 "binary downloading NOT suppported by target\n");
3734 remote_protocol_binary_download.support = PACKET_DISABLE;
3735 }
3736 else
3737 {
3738 if (remote_debug)
3739 fprintf_unfiltered (gdb_stdlog,
3740 "binary downloading suppported by target\n");
3741 remote_protocol_binary_download.support = PACKET_ENABLE;
3742 }
3743 break;
3744 }
3745 }
3746 }
3747
3748 /* Write memory data directly to the remote machine.
3749 This does not inform the data cache; the data cache uses this.
3750 MEMADDR is the address in the remote memory space.
3751 MYADDR is the address of the buffer in our space.
3752 LEN is the number of bytes.
3753
3754 Returns number of bytes transferred, or 0 (setting errno) for
3755 error. Only transfer a single packet. */
3756
3757 static int
3758 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3759 {
3760 unsigned char *buf;
3761 int max_buf_size; /* Max size of packet output buffer */
3762 unsigned char *p;
3763 unsigned char *plen;
3764 long sizeof_buf;
3765 int plenlen;
3766 int todo;
3767 int nr_bytes;
3768
3769 /* Verify that the target can support a binary download */
3770 check_binary_download (memaddr);
3771
3772 /* Determine the max packet size. */
3773 max_buf_size = get_memory_write_packet_size ();
3774 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3775 buf = alloca (sizeof_buf);
3776
3777 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
3778 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
3779
3780 /* construct "M"<memaddr>","<len>":" */
3781 /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
3782 p = buf;
3783
3784 /* Append [XM]. Compute a best guess of the number of bytes
3785 actually transfered. */
3786 switch (remote_protocol_binary_download.support)
3787 {
3788 case PACKET_ENABLE:
3789 *p++ = 'X';
3790 /* Best guess at number of bytes that will fit. */
3791 todo = min (len, max_buf_size);
3792 break;
3793 case PACKET_DISABLE:
3794 *p++ = 'M';
3795 /* num bytes that will fit */
3796 todo = min (len, max_buf_size / 2);
3797 break;
3798 case PACKET_SUPPORT_UNKNOWN:
3799 internal_error (__FILE__, __LINE__,
3800 "remote_write_bytes: bad internal state");
3801 default:
3802 internal_error (__FILE__, __LINE__, "bad switch");
3803 }
3804
3805 /* Append <memaddr> */
3806 memaddr = remote_address_masked (memaddr);
3807 p += hexnumstr (p, (ULONGEST) memaddr);
3808 *p++ = ',';
3809
3810 /* Append <len>. Retain the location/size of <len>. It may
3811 need to be adjusted once the packet body has been created. */
3812 plen = p;
3813 plenlen = hexnumstr (p, (ULONGEST) todo);
3814 p += plenlen;
3815 *p++ = ':';
3816 *p = '\0';
3817
3818 /* Append the packet body. */
3819 switch (remote_protocol_binary_download.support)
3820 {
3821 case PACKET_ENABLE:
3822 /* Binary mode. Send target system values byte by byte, in
3823 increasing byte addresses. Only escape certain critical
3824 characters. */
3825 for (nr_bytes = 0;
3826 (nr_bytes < todo) && (p - buf) < (max_buf_size - 2);
3827 nr_bytes++)
3828 {
3829 switch (myaddr[nr_bytes] & 0xff)
3830 {
3831 case '$':
3832 case '#':
3833 case 0x7d:
3834 /* These must be escaped */
3835 *p++ = 0x7d;
3836 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3837 break;
3838 default:
3839 *p++ = myaddr[nr_bytes] & 0xff;
3840 break;
3841 }
3842 }
3843 if (nr_bytes < todo)
3844 {
3845 /* Escape chars have filled up the buffer prematurely,
3846 and we have actually sent fewer bytes than planned.
3847 Fix-up the length field of the packet. Use the same
3848 number of characters as before. */
3849
3850 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3851 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3852 }
3853 break;
3854 case PACKET_DISABLE:
3855 /* Normal mode: Send target system values byte by byte, in
3856 increasing byte addresses. Each byte is encoded as a two hex
3857 value. */
3858 nr_bytes = bin2hex (myaddr, p, todo);
3859 p += 2 * nr_bytes;
3860 break;
3861 case PACKET_SUPPORT_UNKNOWN:
3862 internal_error (__FILE__, __LINE__,
3863 "remote_write_bytes: bad internal state");
3864 default:
3865 internal_error (__FILE__, __LINE__, "bad switch");
3866 }
3867
3868 putpkt_binary (buf, (int) (p - buf));
3869 getpkt (buf, sizeof_buf, 0);
3870
3871 if (buf[0] == 'E')
3872 {
3873 /* There is no correspondance between what the remote protocol
3874 uses for errors and errno codes. We would like a cleaner way
3875 of representing errors (big enough to include errno codes,
3876 bfd_error codes, and others). But for now just return EIO. */
3877 errno = EIO;
3878 return 0;
3879 }
3880
3881 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3882 bytes than we'd planned. */
3883 return nr_bytes;
3884 }
3885
3886 /* Read memory data directly from the remote machine.
3887 This does not use the data cache; the data cache uses this.
3888 MEMADDR is the address in the remote memory space.
3889 MYADDR is the address of the buffer in our space.
3890 LEN is the number of bytes.
3891
3892 Returns number of bytes transferred, or 0 for error. */
3893
3894 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3895 remote targets) shouldn't attempt to read the entire buffer.
3896 Instead it should read a single packet worth of data and then
3897 return the byte size of that packet to the caller. The caller (its
3898 caller and its callers caller ;-) already contains code for
3899 handling partial reads. */
3900
3901 static int
3902 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3903 {
3904 char *buf;
3905 int max_buf_size; /* Max size of packet output buffer */
3906 long sizeof_buf;
3907 int origlen;
3908
3909 /* Create a buffer big enough for this packet. */
3910 max_buf_size = get_memory_read_packet_size ();
3911 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3912 buf = alloca (sizeof_buf);
3913
3914 origlen = len;
3915 while (len > 0)
3916 {
3917 char *p;
3918 int todo;
3919 int i;
3920
3921 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3922
3923 /* construct "m"<memaddr>","<len>" */
3924 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3925 memaddr = remote_address_masked (memaddr);
3926 p = buf;
3927 *p++ = 'm';
3928 p += hexnumstr (p, (ULONGEST) memaddr);
3929 *p++ = ',';
3930 p += hexnumstr (p, (ULONGEST) todo);
3931 *p = '\0';
3932
3933 putpkt (buf);
3934 getpkt (buf, sizeof_buf, 0);
3935
3936 if (buf[0] == 'E'
3937 && isxdigit (buf[1]) && isxdigit (buf[2])
3938 && buf[3] == '\0')
3939 {
3940 /* There is no correspondance between what the remote protocol uses
3941 for errors and errno codes. We would like a cleaner way of
3942 representing errors (big enough to include errno codes, bfd_error
3943 codes, and others). But for now just return EIO. */
3944 errno = EIO;
3945 return 0;
3946 }
3947
3948 /* Reply describes memory byte by byte,
3949 each byte encoded as two hex characters. */
3950
3951 p = buf;
3952 if ((i = hex2bin (p, myaddr, todo)) < todo)
3953 {
3954 /* Reply is short. This means that we were able to read
3955 only part of what we wanted to. */
3956 return i + (origlen - len);
3957 }
3958 myaddr += todo;
3959 memaddr += todo;
3960 len -= todo;
3961 }
3962 return origlen;
3963 }
3964 \f
3965 /* Read or write LEN bytes from inferior memory at MEMADDR,
3966 transferring to or from debugger address BUFFER. Write to inferior if
3967 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3968 for error. TARGET is unused. */
3969
3970 /* ARGSUSED */
3971 static int
3972 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3973 int should_write, struct mem_attrib *attrib,
3974 struct target_ops *target)
3975 {
3976 CORE_ADDR targ_addr;
3977 int targ_len;
3978 int res;
3979
3980 /* Should this be the selected frame? */
3981 gdbarch_remote_translate_xfer_address (current_gdbarch, current_regcache,
3982 mem_addr, mem_len,
3983 &targ_addr, &targ_len);
3984 if (targ_len <= 0)
3985 return 0;
3986
3987 if (should_write)
3988 res = remote_write_bytes (targ_addr, buffer, targ_len);
3989 else
3990 res = remote_read_bytes (targ_addr, buffer, targ_len);
3991
3992 return res;
3993 }
3994
3995
3996 #if 0
3997 /* Enable after 4.12. */
3998
3999 void
4000 remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
4001 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
4002 CORE_ADDR *addr_found, char *data_found)
4003 {
4004 if (increment == -4 && len == 4)
4005 {
4006 long mask_long, data_long;
4007 long data_found_long;
4008 CORE_ADDR addr_we_found;
4009 char *buf = alloca (rs->remote_packet_size);
4010 long returned_long[2];
4011 char *p;
4012
4013 mask_long = extract_unsigned_integer (mask, len);
4014 data_long = extract_unsigned_integer (data, len);
4015 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
4016 putpkt (buf);
4017 getpkt (buf, (rs->remote_packet_size), 0);
4018 if (buf[0] == '\0')
4019 {
4020 /* The stub doesn't support the 't' request. We might want to
4021 remember this fact, but on the other hand the stub could be
4022 switched on us. Maybe we should remember it only until
4023 the next "target remote". */
4024 generic_search (len, data, mask, startaddr, increment, lorange,
4025 hirange, addr_found, data_found);
4026 return;
4027 }
4028
4029 if (buf[0] == 'E')
4030 /* There is no correspondance between what the remote protocol uses
4031 for errors and errno codes. We would like a cleaner way of
4032 representing errors (big enough to include errno codes, bfd_error
4033 codes, and others). But for now just use EIO. */
4034 memory_error (EIO, startaddr);
4035 p = buf;
4036 addr_we_found = 0;
4037 while (*p != '\0' && *p != ',')
4038 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
4039 if (*p == '\0')
4040 error ("Protocol error: short return for search");
4041
4042 data_found_long = 0;
4043 while (*p != '\0' && *p != ',')
4044 data_found_long = (data_found_long << 4) + fromhex (*p++);
4045 /* Ignore anything after this comma, for future extensions. */
4046
4047 if (addr_we_found < lorange || addr_we_found >= hirange)
4048 {
4049 *addr_found = 0;
4050 return;
4051 }
4052
4053 *addr_found = addr_we_found;
4054 *data_found = store_unsigned_integer (data_we_found, len);
4055 return;
4056 }
4057 generic_search (len, data, mask, startaddr, increment, lorange,
4058 hirange, addr_found, data_found);
4059 }
4060 #endif /* 0 */
4061 \f
4062 static void
4063 remote_files_info (struct target_ops *ignore)
4064 {
4065 puts_filtered ("Debugging a target over a serial line.\n");
4066 }
4067 \f
4068 /* Stuff for dealing with the packets which are part of this protocol.
4069 See comment at top of file for details. */
4070
4071 /* Read a single character from the remote end, masking it down to 7 bits. */
4072
4073 static int
4074 readchar (int timeout)
4075 {
4076 int ch;
4077
4078 ch = serial_readchar (remote_desc, timeout);
4079
4080 if (ch >= 0)
4081 return (ch & 0x7f);
4082
4083 switch ((enum serial_rc) ch)
4084 {
4085 case SERIAL_EOF:
4086 target_mourn_inferior ();
4087 error ("Remote connection closed");
4088 /* no return */
4089 case SERIAL_ERROR:
4090 perror_with_name ("Remote communication error");
4091 /* no return */
4092 case SERIAL_TIMEOUT:
4093 break;
4094 }
4095 return ch;
4096 }
4097
4098 /* Send the command in BUF to the remote machine, and read the reply
4099 into BUF. Report an error if we get an error reply. */
4100
4101 static void
4102 remote_send (char *buf,
4103 long sizeof_buf)
4104 {
4105 putpkt (buf);
4106 getpkt (buf, sizeof_buf, 0);
4107
4108 if (buf[0] == 'E')
4109 error ("Remote failure reply: %s", buf);
4110 }
4111
4112 /* Display a null-terminated packet on stdout, for debugging, using C
4113 string notation. */
4114
4115 static void
4116 print_packet (char *buf)
4117 {
4118 puts_filtered ("\"");
4119 fputstr_filtered (buf, '"', gdb_stdout);
4120 puts_filtered ("\"");
4121 }
4122
4123 int
4124 putpkt (char *buf)
4125 {
4126 return putpkt_binary (buf, strlen (buf));
4127 }
4128
4129 /* Send a packet to the remote machine, with error checking. The data
4130 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
4131 to account for the $, # and checksum, and for a possible /0 if we are
4132 debugging (remote_debug) and want to print the sent packet as a string */
4133
4134 static int
4135 putpkt_binary (char *buf, int cnt)
4136 {
4137 struct remote_state *rs = get_remote_state ();
4138 int i;
4139 unsigned char csum = 0;
4140 char *buf2 = alloca (cnt + 6);
4141 long sizeof_junkbuf = (rs->remote_packet_size);
4142 char *junkbuf = alloca (sizeof_junkbuf);
4143
4144 int ch;
4145 int tcount = 0;
4146 char *p;
4147
4148 /* Copy the packet into buffer BUF2, encapsulating it
4149 and giving it a checksum. */
4150
4151 p = buf2;
4152 *p++ = '$';
4153
4154 for (i = 0; i < cnt; i++)
4155 {
4156 csum += buf[i];
4157 *p++ = buf[i];
4158 }
4159 *p++ = '#';
4160 *p++ = tohex ((csum >> 4) & 0xf);
4161 *p++ = tohex (csum & 0xf);
4162
4163 /* Send it over and over until we get a positive ack. */
4164
4165 while (1)
4166 {
4167 int started_error_output = 0;
4168
4169 if (remote_debug)
4170 {
4171 *p = '\0';
4172 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4173 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4174 fprintf_unfiltered (gdb_stdlog, "...");
4175 gdb_flush (gdb_stdlog);
4176 }
4177 if (serial_write (remote_desc, buf2, p - buf2))
4178 perror_with_name ("putpkt: write failed");
4179
4180 /* read until either a timeout occurs (-2) or '+' is read */
4181 while (1)
4182 {
4183 ch = readchar (remote_timeout);
4184
4185 if (remote_debug)
4186 {
4187 switch (ch)
4188 {
4189 case '+':
4190 case '-':
4191 case SERIAL_TIMEOUT:
4192 case '$':
4193 if (started_error_output)
4194 {
4195 putchar_unfiltered ('\n');
4196 started_error_output = 0;
4197 }
4198 }
4199 }
4200
4201 switch (ch)
4202 {
4203 case '+':
4204 if (remote_debug)
4205 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4206 return 1;
4207 case '-':
4208 if (remote_debug)
4209 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4210 case SERIAL_TIMEOUT:
4211 tcount++;
4212 if (tcount > 3)
4213 return 0;
4214 break; /* Retransmit buffer */
4215 case '$':
4216 {
4217 if (remote_debug)
4218 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4219 /* It's probably an old response, and we're out of sync.
4220 Just gobble up the packet and ignore it. */
4221 read_frame (junkbuf, sizeof_junkbuf);
4222 continue; /* Now, go look for + */
4223 }
4224 default:
4225 if (remote_debug)
4226 {
4227 if (!started_error_output)
4228 {
4229 started_error_output = 1;
4230 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4231 }
4232 fputc_unfiltered (ch & 0177, gdb_stdlog);
4233 }
4234 continue;
4235 }
4236 break; /* Here to retransmit */
4237 }
4238
4239 #if 0
4240 /* This is wrong. If doing a long backtrace, the user should be
4241 able to get out next time we call QUIT, without anything as
4242 violent as interrupt_query. If we want to provide a way out of
4243 here without getting to the next QUIT, it should be based on
4244 hitting ^C twice as in remote_wait. */
4245 if (quit_flag)
4246 {
4247 quit_flag = 0;
4248 interrupt_query ();
4249 }
4250 #endif
4251 }
4252 }
4253
4254 static int remote_cisco_mode;
4255
4256 /* Come here after finding the start of the frame. Collect the rest
4257 into BUF, verifying the checksum, length, and handling run-length
4258 compression. No more than sizeof_buf-1 characters are read so that
4259 the buffer can be NUL terminated.
4260
4261 Returns -1 on error, number of characters in buffer (ignoring the
4262 trailing NULL) on success. (could be extended to return one of the
4263 SERIAL status indications). */
4264
4265 static long
4266 read_frame (char *buf,
4267 long sizeof_buf)
4268 {
4269 unsigned char csum;
4270 long bc;
4271 int c;
4272
4273 csum = 0;
4274 bc = 0;
4275
4276 while (1)
4277 {
4278 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4279 c = readchar (remote_timeout);
4280 switch (c)
4281 {
4282 case SERIAL_TIMEOUT:
4283 if (remote_debug)
4284 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4285 return -1;
4286 case '$':
4287 if (remote_debug)
4288 fputs_filtered ("Saw new packet start in middle of old one\n",
4289 gdb_stdlog);
4290 return -1; /* Start a new packet, count retries */
4291 case '#':
4292 {
4293 unsigned char pktcsum;
4294 int check_0 = 0;
4295 int check_1 = 0;
4296
4297 buf[bc] = '\0';
4298
4299 check_0 = readchar (remote_timeout);
4300 if (check_0 >= 0)
4301 check_1 = readchar (remote_timeout);
4302
4303 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4304 {
4305 if (remote_debug)
4306 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4307 return -1;
4308 }
4309 else if (check_0 < 0 || check_1 < 0)
4310 {
4311 if (remote_debug)
4312 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4313 return -1;
4314 }
4315
4316 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4317 if (csum == pktcsum)
4318 return bc;
4319
4320 if (remote_debug)
4321 {
4322 fprintf_filtered (gdb_stdlog,
4323 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4324 pktcsum, csum);
4325 fputs_filtered (buf, gdb_stdlog);
4326 fputs_filtered ("\n", gdb_stdlog);
4327 }
4328 /* Number of characters in buffer ignoring trailing
4329 NUL. */
4330 return -1;
4331 }
4332 case '*': /* Run length encoding */
4333 {
4334 int repeat;
4335 csum += c;
4336
4337 if (remote_cisco_mode == 0)
4338 {
4339 c = readchar (remote_timeout);
4340 csum += c;
4341 repeat = c - ' ' + 3; /* Compute repeat count */
4342 }
4343 else
4344 {
4345 /* Cisco's run-length encoding variant uses two
4346 hex chars to represent the repeat count. */
4347
4348 c = readchar (remote_timeout);
4349 csum += c;
4350 repeat = fromhex (c) << 4;
4351 c = readchar (remote_timeout);
4352 csum += c;
4353 repeat += fromhex (c);
4354 }
4355
4356 /* The character before ``*'' is repeated. */
4357
4358 if (repeat > 0 && repeat <= 255
4359 && bc > 0
4360 && bc + repeat - 1 < sizeof_buf - 1)
4361 {
4362 memset (&buf[bc], buf[bc - 1], repeat);
4363 bc += repeat;
4364 continue;
4365 }
4366
4367 buf[bc] = '\0';
4368 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4369 puts_filtered (buf);
4370 puts_filtered ("\n");
4371 return -1;
4372 }
4373 default:
4374 if (bc < sizeof_buf - 1)
4375 {
4376 buf[bc++] = c;
4377 csum += c;
4378 continue;
4379 }
4380
4381 buf[bc] = '\0';
4382 puts_filtered ("Remote packet too long: ");
4383 puts_filtered (buf);
4384 puts_filtered ("\n");
4385
4386 return -1;
4387 }
4388 }
4389 }
4390
4391 /* Read a packet from the remote machine, with error checking, and
4392 store it in BUF. If FOREVER, wait forever rather than timing out;
4393 this is used (in synchronous mode) to wait for a target that is is
4394 executing user code to stop. */
4395 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4396 don't have to change all the calls to getpkt to deal with the
4397 return value, because at the moment I don't know what the right
4398 thing to do it for those. */
4399 void
4400 getpkt (char *buf,
4401 long sizeof_buf,
4402 int forever)
4403 {
4404 int timed_out;
4405
4406 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4407 }
4408
4409
4410 /* Read a packet from the remote machine, with error checking, and
4411 store it in BUF. If FOREVER, wait forever rather than timing out;
4412 this is used (in synchronous mode) to wait for a target that is is
4413 executing user code to stop. If FOREVER == 0, this function is
4414 allowed to time out gracefully and return an indication of this to
4415 the caller. */
4416 static int
4417 getpkt_sane (char *buf,
4418 long sizeof_buf,
4419 int forever)
4420 {
4421 int c;
4422 int tries;
4423 int timeout;
4424 int val;
4425
4426 strcpy (buf, "timeout");
4427
4428 if (forever)
4429 {
4430 timeout = watchdog > 0 ? watchdog : -1;
4431 }
4432
4433 else
4434 timeout = remote_timeout;
4435
4436 #define MAX_TRIES 3
4437
4438 for (tries = 1; tries <= MAX_TRIES; tries++)
4439 {
4440 /* This can loop forever if the remote side sends us characters
4441 continuously, but if it pauses, we'll get a zero from readchar
4442 because of timeout. Then we'll count that as a retry. */
4443
4444 /* Note that we will only wait forever prior to the start of a packet.
4445 After that, we expect characters to arrive at a brisk pace. They
4446 should show up within remote_timeout intervals. */
4447
4448 do
4449 {
4450 c = readchar (timeout);
4451
4452 if (c == SERIAL_TIMEOUT)
4453 {
4454 if (forever) /* Watchdog went off? Kill the target. */
4455 {
4456 QUIT;
4457 target_mourn_inferior ();
4458 error ("Watchdog has expired. Target detached.\n");
4459 }
4460 if (remote_debug)
4461 fputs_filtered ("Timed out.\n", gdb_stdlog);
4462 goto retry;
4463 }
4464 }
4465 while (c != '$');
4466
4467 /* We've found the start of a packet, now collect the data. */
4468
4469 val = read_frame (buf, sizeof_buf);
4470
4471 if (val >= 0)
4472 {
4473 if (remote_debug)
4474 {
4475 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4476 fputstr_unfiltered (buf, 0, gdb_stdlog);
4477 fprintf_unfiltered (gdb_stdlog, "\n");
4478 }
4479 serial_write (remote_desc, "+", 1);
4480 return 0;
4481 }
4482
4483 /* Try the whole thing again. */
4484 retry:
4485 serial_write (remote_desc, "-", 1);
4486 }
4487
4488 /* We have tried hard enough, and just can't receive the packet. Give up. */
4489
4490 printf_unfiltered ("Ignoring packet error, continuing...\n");
4491 serial_write (remote_desc, "+", 1);
4492 return 1;
4493 }
4494 \f
4495 static void
4496 remote_kill (void)
4497 {
4498 /* For some mysterious reason, wait_for_inferior calls kill instead of
4499 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4500 if (kill_kludge)
4501 {
4502 kill_kludge = 0;
4503 target_mourn_inferior ();
4504 return;
4505 }
4506
4507 /* Use catch_errors so the user can quit from gdb even when we aren't on
4508 speaking terms with the remote system. */
4509 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4510
4511 /* Don't wait for it to die. I'm not really sure it matters whether
4512 we do or not. For the existing stubs, kill is a noop. */
4513 target_mourn_inferior ();
4514 }
4515
4516 /* Async version of remote_kill. */
4517 static void
4518 remote_async_kill (void)
4519 {
4520 /* Unregister the file descriptor from the event loop. */
4521 if (target_is_async_p ())
4522 serial_async (remote_desc, NULL, 0);
4523
4524 /* For some mysterious reason, wait_for_inferior calls kill instead of
4525 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4526 if (kill_kludge)
4527 {
4528 kill_kludge = 0;
4529 target_mourn_inferior ();
4530 return;
4531 }
4532
4533 /* Use catch_errors so the user can quit from gdb even when we aren't on
4534 speaking terms with the remote system. */
4535 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4536
4537 /* Don't wait for it to die. I'm not really sure it matters whether
4538 we do or not. For the existing stubs, kill is a noop. */
4539 target_mourn_inferior ();
4540 }
4541
4542 static void
4543 remote_mourn (void)
4544 {
4545 remote_mourn_1 (&remote_ops);
4546 }
4547
4548 static void
4549 remote_async_mourn (void)
4550 {
4551 remote_mourn_1 (&remote_async_ops);
4552 }
4553
4554 static void
4555 extended_remote_mourn (void)
4556 {
4557 /* We do _not_ want to mourn the target like this; this will
4558 remove the extended remote target from the target stack,
4559 and the next time the user says "run" it'll fail.
4560
4561 FIXME: What is the right thing to do here? */
4562 #if 0
4563 remote_mourn_1 (&extended_remote_ops);
4564 #endif
4565 }
4566
4567 /* Worker function for remote_mourn. */
4568 static void
4569 remote_mourn_1 (struct target_ops *target)
4570 {
4571 unpush_target (target);
4572 generic_mourn_inferior ();
4573 }
4574
4575 /* In the extended protocol we want to be able to do things like
4576 "run" and have them basically work as expected. So we need
4577 a special create_inferior function.
4578
4579 FIXME: One day add support for changing the exec file
4580 we're debugging, arguments and an environment. */
4581
4582 static void
4583 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4584 {
4585 /* Rip out the breakpoints; we'll reinsert them after restarting
4586 the remote server. */
4587 remove_breakpoints ();
4588
4589 /* Now restart the remote server. */
4590 extended_remote_restart ();
4591
4592 /* Now put the breakpoints back in. This way we're safe if the
4593 restart function works via a unix fork on the remote side. */
4594 insert_breakpoints ();
4595
4596 /* Clean up from the last time we were running. */
4597 clear_proceed_status ();
4598
4599 /* Let the remote process run. */
4600 proceed (-1, TARGET_SIGNAL_0, 0);
4601 }
4602
4603 /* Async version of extended_remote_create_inferior. */
4604 static void
4605 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4606 {
4607 /* Rip out the breakpoints; we'll reinsert them after restarting
4608 the remote server. */
4609 remove_breakpoints ();
4610
4611 /* If running asynchronously, register the target file descriptor
4612 with the event loop. */
4613 if (event_loop_p && target_can_async_p ())
4614 target_async (inferior_event_handler, 0);
4615
4616 /* Now restart the remote server. */
4617 extended_remote_restart ();
4618
4619 /* Now put the breakpoints back in. This way we're safe if the
4620 restart function works via a unix fork on the remote side. */
4621 insert_breakpoints ();
4622
4623 /* Clean up from the last time we were running. */
4624 clear_proceed_status ();
4625
4626 /* Let the remote process run. */
4627 proceed (-1, TARGET_SIGNAL_0, 0);
4628 }
4629 \f
4630
4631 /* On some machines, e.g. 68k, we may use a different breakpoint
4632 instruction than other targets; in those use REMOTE_BREAKPOINT
4633 instead of just BREAKPOINT_FROM_PC. Also, bi-endian targets may
4634 define LITTLE_REMOTE_BREAKPOINT and BIG_REMOTE_BREAKPOINT. If none
4635 of these are defined, we just call the standard routines that are
4636 in mem-break.c. */
4637
4638 /* FIXME, these ought to be done in a more dynamic fashion. For instance,
4639 the choice of breakpoint instruction affects target program design and
4640 vice versa, and by making it user-tweakable, the special code here
4641 goes away and we need fewer special GDB configurations. */
4642
4643 #if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
4644 #define REMOTE_BREAKPOINT
4645 #endif
4646
4647 #ifdef REMOTE_BREAKPOINT
4648
4649 /* If the target isn't bi-endian, just pretend it is. */
4650 #if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
4651 #define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4652 #define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4653 #endif
4654
4655 static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
4656 static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
4657
4658 #endif /* REMOTE_BREAKPOINT */
4659
4660 /* Insert a breakpoint on targets that don't have any better
4661 breakpoint support. We read the contents of the target location
4662 and stash it, then overwrite it with a breakpoint instruction.
4663 ADDR is the target location in the target machine. CONTENTS_CACHE
4664 is a pointer to memory allocated for saving the target contents.
4665 It is guaranteed by the caller to be long enough to save the number
4666 of bytes returned by BREAKPOINT_FROM_PC. */
4667
4668 static int
4669 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4670 {
4671 struct remote_state *rs = get_remote_state ();
4672 #ifdef REMOTE_BREAKPOINT
4673 int val;
4674 #endif
4675 int bp_size;
4676
4677 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4678 If it succeeds, then set the support to PACKET_ENABLE. If it
4679 fails, and the user has explicitly requested the Z support then
4680 report an error, otherwise, mark it disabled and go on. */
4681
4682 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4683 {
4684 char *buf = alloca (rs->remote_packet_size);
4685 char *p = buf;
4686
4687 addr = remote_address_masked (addr);
4688 *(p++) = 'Z';
4689 *(p++) = '0';
4690 *(p++) = ',';
4691 p += hexnumstr (p, (ULONGEST) addr);
4692 BREAKPOINT_FROM_PC (&addr, &bp_size);
4693 sprintf (p, ",%d", bp_size);
4694
4695 putpkt (buf);
4696 getpkt (buf, (rs->remote_packet_size), 0);
4697
4698 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4699 {
4700 case PACKET_ERROR:
4701 return -1;
4702 case PACKET_OK:
4703 return 0;
4704 case PACKET_UNKNOWN:
4705 break;
4706 }
4707 }
4708
4709 #ifdef REMOTE_BREAKPOINT
4710 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4711
4712 if (val == 0)
4713 {
4714 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4715 val = target_write_memory (addr, (char *) big_break_insn,
4716 sizeof big_break_insn);
4717 else
4718 val = target_write_memory (addr, (char *) little_break_insn,
4719 sizeof little_break_insn);
4720 }
4721
4722 return val;
4723 #else
4724 return memory_insert_breakpoint (addr, contents_cache);
4725 #endif /* REMOTE_BREAKPOINT */
4726 }
4727
4728 static int
4729 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4730 {
4731 struct remote_state *rs = get_remote_state ();
4732 int bp_size;
4733
4734 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4735 {
4736 char *buf = alloca (rs->remote_packet_size);
4737 char *p = buf;
4738
4739 *(p++) = 'z';
4740 *(p++) = '0';
4741 *(p++) = ',';
4742
4743 addr = remote_address_masked (addr);
4744 p += hexnumstr (p, (ULONGEST) addr);
4745 BREAKPOINT_FROM_PC (&addr, &bp_size);
4746 sprintf (p, ",%d", bp_size);
4747
4748 putpkt (buf);
4749 getpkt (buf, (rs->remote_packet_size), 0);
4750
4751 return (buf[0] == 'E');
4752 }
4753
4754 #ifdef REMOTE_BREAKPOINT
4755 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4756 #else
4757 return memory_remove_breakpoint (addr, contents_cache);
4758 #endif /* REMOTE_BREAKPOINT */
4759 }
4760
4761 static int
4762 watchpoint_to_Z_packet (int type)
4763 {
4764 switch (type)
4765 {
4766 case hw_write:
4767 return 2;
4768 break;
4769 case hw_read:
4770 return 3;
4771 break;
4772 case hw_access:
4773 return 4;
4774 break;
4775 default:
4776 internal_error (__FILE__, __LINE__,
4777 "hw_bp_to_z: bad watchpoint type %d", type);
4778 }
4779 }
4780
4781 static int
4782 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4783 {
4784 struct remote_state *rs = get_remote_state ();
4785 char *buf = alloca (rs->remote_packet_size);
4786 char *p;
4787 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4788
4789 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4790 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4791 remote_protocol_Z[packet].name,
4792 remote_protocol_Z[packet].title);
4793
4794 sprintf (buf, "Z%x,", packet);
4795 p = strchr (buf, '\0');
4796 addr = remote_address_masked (addr);
4797 p += hexnumstr (p, (ULONGEST) addr);
4798 sprintf (p, ",%x", len);
4799
4800 putpkt (buf);
4801 getpkt (buf, (rs->remote_packet_size), 0);
4802
4803 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4804 {
4805 case PACKET_ERROR:
4806 case PACKET_UNKNOWN:
4807 return -1;
4808 case PACKET_OK:
4809 return 0;
4810 }
4811 internal_error (__FILE__, __LINE__,
4812 "remote_insert_watchpoint: reached end of function");
4813 }
4814
4815
4816 static int
4817 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4818 {
4819 struct remote_state *rs = get_remote_state ();
4820 char *buf = alloca (rs->remote_packet_size);
4821 char *p;
4822 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4823
4824 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4825 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4826 remote_protocol_Z[packet].name,
4827 remote_protocol_Z[packet].title);
4828
4829 sprintf (buf, "z%x,", packet);
4830 p = strchr (buf, '\0');
4831 addr = remote_address_masked (addr);
4832 p += hexnumstr (p, (ULONGEST) addr);
4833 sprintf (p, ",%x", len);
4834 putpkt (buf);
4835 getpkt (buf, (rs->remote_packet_size), 0);
4836
4837 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4838 {
4839 case PACKET_ERROR:
4840 case PACKET_UNKNOWN:
4841 return -1;
4842 case PACKET_OK:
4843 return 0;
4844 }
4845 internal_error (__FILE__, __LINE__,
4846 "remote_remove_watchpoint: reached end of function");
4847 }
4848
4849
4850 int remote_hw_watchpoint_limit = -1;
4851 int remote_hw_breakpoint_limit = -1;
4852
4853 int
4854 remote_check_watch_resources (int type, int cnt, int ot)
4855 {
4856 if (type == bp_hardware_breakpoint)
4857 {
4858 if (remote_hw_breakpoint_limit == 0)
4859 return 0;
4860 else if (remote_hw_breakpoint_limit < 0)
4861 return 1;
4862 else if (cnt <= remote_hw_breakpoint_limit)
4863 return 1;
4864 }
4865 else
4866 {
4867 if (remote_hw_watchpoint_limit == 0)
4868 return 0;
4869 else if (remote_hw_watchpoint_limit < 0)
4870 return 1;
4871 else if (ot)
4872 return -1;
4873 else if (cnt <= remote_hw_watchpoint_limit)
4874 return 1;
4875 }
4876 return -1;
4877 }
4878
4879 int
4880 remote_stopped_by_watchpoint (void)
4881 {
4882 return remote_stopped_by_watchpoint_p;
4883 }
4884
4885 CORE_ADDR
4886 remote_stopped_data_address (void)
4887 {
4888 if (remote_stopped_by_watchpoint ())
4889 return remote_watch_data_address;
4890 return (CORE_ADDR)0;
4891 }
4892
4893
4894 static int
4895 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4896 {
4897 int len = 0;
4898 struct remote_state *rs = get_remote_state ();
4899 char *buf = alloca (rs->remote_packet_size);
4900 char *p = buf;
4901
4902 /* The length field should be set to the size of a breakpoint
4903 instruction. */
4904
4905 BREAKPOINT_FROM_PC (&addr, &len);
4906
4907 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4908 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4909 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4910 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4911
4912 *(p++) = 'Z';
4913 *(p++) = '1';
4914 *(p++) = ',';
4915
4916 addr = remote_address_masked (addr);
4917 p += hexnumstr (p, (ULONGEST) addr);
4918 sprintf (p, ",%x", len);
4919
4920 putpkt (buf);
4921 getpkt (buf, (rs->remote_packet_size), 0);
4922
4923 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4924 {
4925 case PACKET_ERROR:
4926 case PACKET_UNKNOWN:
4927 return -1;
4928 case PACKET_OK:
4929 return 0;
4930 }
4931 internal_error (__FILE__, __LINE__,
4932 "remote_insert_hw_breakpoint: reached end of function");
4933 }
4934
4935
4936 static int
4937 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4938 {
4939 int len;
4940 struct remote_state *rs = get_remote_state ();
4941 char *buf = alloca (rs->remote_packet_size);
4942 char *p = buf;
4943
4944 /* The length field should be set to the size of a breakpoint
4945 instruction. */
4946
4947 BREAKPOINT_FROM_PC (&addr, &len);
4948
4949 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4950 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4951 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4952 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4953
4954 *(p++) = 'z';
4955 *(p++) = '1';
4956 *(p++) = ',';
4957
4958 addr = remote_address_masked (addr);
4959 p += hexnumstr (p, (ULONGEST) addr);
4960 sprintf (p, ",%x", len);
4961
4962 putpkt(buf);
4963 getpkt (buf, (rs->remote_packet_size), 0);
4964
4965 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4966 {
4967 case PACKET_ERROR:
4968 case PACKET_UNKNOWN:
4969 return -1;
4970 case PACKET_OK:
4971 return 0;
4972 }
4973 internal_error (__FILE__, __LINE__,
4974 "remote_remove_hw_breakpoint: reached end of function");
4975 }
4976
4977 /* Some targets are only capable of doing downloads, and afterwards
4978 they switch to the remote serial protocol. This function provides
4979 a clean way to get from the download target to the remote target.
4980 It's basically just a wrapper so that we don't have to expose any
4981 of the internal workings of remote.c.
4982
4983 Prior to calling this routine, you should shutdown the current
4984 target code, else you will get the "A program is being debugged
4985 already..." message. Usually a call to pop_target() suffices. */
4986
4987 void
4988 push_remote_target (char *name, int from_tty)
4989 {
4990 printf_filtered ("Switching to remote protocol\n");
4991 remote_open (name, from_tty);
4992 }
4993
4994 /* Table used by the crc32 function to calcuate the checksum. */
4995
4996 static unsigned long crc32_table[256] =
4997 {0, 0};
4998
4999 static unsigned long
5000 crc32 (unsigned char *buf, int len, unsigned int crc)
5001 {
5002 if (!crc32_table[1])
5003 {
5004 /* Initialize the CRC table and the decoding table. */
5005 int i, j;
5006 unsigned int c;
5007
5008 for (i = 0; i < 256; i++)
5009 {
5010 for (c = i << 24, j = 8; j > 0; --j)
5011 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5012 crc32_table[i] = c;
5013 }
5014 }
5015
5016 while (len--)
5017 {
5018 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5019 buf++;
5020 }
5021 return crc;
5022 }
5023
5024 /* compare-sections command
5025
5026 With no arguments, compares each loadable section in the exec bfd
5027 with the same memory range on the target, and reports mismatches.
5028 Useful for verifying the image on the target against the exec file.
5029 Depends on the target understanding the new "qCRC:" request. */
5030
5031 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5032 target method (target verify memory) and generic version of the
5033 actual command. This will allow other high-level code (especially
5034 generic_load()) to make use of this target functionality. */
5035
5036 static void
5037 compare_sections_command (char *args, int from_tty)
5038 {
5039 struct remote_state *rs = get_remote_state ();
5040 asection *s;
5041 unsigned long host_crc, target_crc;
5042 extern bfd *exec_bfd;
5043 struct cleanup *old_chain;
5044 char *tmp;
5045 char *sectdata;
5046 const char *sectname;
5047 char *buf = alloca (rs->remote_packet_size);
5048 bfd_size_type size;
5049 bfd_vma lma;
5050 int matched = 0;
5051 int mismatched = 0;
5052
5053 if (!exec_bfd)
5054 error ("command cannot be used without an exec file");
5055 if (!current_target.to_shortname ||
5056 strcmp (current_target.to_shortname, "remote") != 0)
5057 error ("command can only be used with remote target");
5058
5059 for (s = exec_bfd->sections; s; s = s->next)
5060 {
5061 if (!(s->flags & SEC_LOAD))
5062 continue; /* skip non-loadable section */
5063
5064 size = bfd_get_section_size_before_reloc (s);
5065 if (size == 0)
5066 continue; /* skip zero-length section */
5067
5068 sectname = bfd_get_section_name (exec_bfd, s);
5069 if (args && strcmp (args, sectname) != 0)
5070 continue; /* not the section selected by user */
5071
5072 matched = 1; /* do this section */
5073 lma = s->lma;
5074 /* FIXME: assumes lma can fit into long */
5075 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
5076 putpkt (buf);
5077
5078 /* be clever; compute the host_crc before waiting for target reply */
5079 sectdata = xmalloc (size);
5080 old_chain = make_cleanup (xfree, sectdata);
5081 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5082 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5083
5084 getpkt (buf, (rs->remote_packet_size), 0);
5085 if (buf[0] == 'E')
5086 error ("target memory fault, section %s, range 0x%s -- 0x%s",
5087 sectname, paddr (lma), paddr (lma + size));
5088 if (buf[0] != 'C')
5089 error ("remote target does not support this operation");
5090
5091 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
5092 target_crc = target_crc * 16 + fromhex (*tmp);
5093
5094 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5095 sectname, paddr (lma), paddr (lma + size));
5096 if (host_crc == target_crc)
5097 printf_filtered ("matched.\n");
5098 else
5099 {
5100 printf_filtered ("MIS-MATCHED!\n");
5101 mismatched++;
5102 }
5103
5104 do_cleanups (old_chain);
5105 }
5106 if (mismatched > 0)
5107 warning ("One or more sections of the remote executable does not match\n\
5108 the loaded file\n");
5109 if (args && !matched)
5110 printf_filtered ("No loaded section named '%s'.\n", args);
5111 }
5112
5113 static int
5114 remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
5115 {
5116 struct remote_state *rs = get_remote_state ();
5117 int i;
5118 char *buf2 = alloca (rs->remote_packet_size);
5119 char *p2 = &buf2[0];
5120
5121 if (!bufsiz)
5122 error ("null pointer to remote bufer size specified");
5123
5124 /* minimum outbuf size is (rs->remote_packet_size) - if bufsiz is not large enough let
5125 the caller know and return what the minimum size is */
5126 /* Note: a zero bufsiz can be used to query the minimum buffer size */
5127 if (*bufsiz < (rs->remote_packet_size))
5128 {
5129 *bufsiz = (rs->remote_packet_size);
5130 return -1;
5131 }
5132
5133 /* except for querying the minimum buffer size, target must be open */
5134 if (!remote_desc)
5135 error ("remote query is only available after target open");
5136
5137 /* we only take uppercase letters as query types, at least for now */
5138 if ((query_type < 'A') || (query_type > 'Z'))
5139 error ("invalid remote query type");
5140
5141 if (!buf)
5142 error ("null remote query specified");
5143
5144 if (!outbuf)
5145 error ("remote query requires a buffer to receive data");
5146
5147 outbuf[0] = '\0';
5148
5149 *p2++ = 'q';
5150 *p2++ = query_type;
5151
5152 /* we used one buffer char for the remote protocol q command and another
5153 for the query type. As the remote protocol encapsulation uses 4 chars
5154 plus one extra in case we are debugging (remote_debug),
5155 we have PBUFZIZ - 7 left to pack the query string */
5156 i = 0;
5157 while (buf[i] && (i < ((rs->remote_packet_size) - 8)))
5158 {
5159 /* bad caller may have sent forbidden characters */
5160 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
5161 error ("illegal characters in query string");
5162
5163 *p2++ = buf[i];
5164 i++;
5165 }
5166 *p2 = buf[i];
5167
5168 if (buf[i])
5169 error ("query larger than available buffer");
5170
5171 i = putpkt (buf2);
5172 if (i < 0)
5173 return i;
5174
5175 getpkt (outbuf, *bufsiz, 0);
5176
5177 return 0;
5178 }
5179
5180 static void
5181 remote_rcmd (char *command,
5182 struct ui_file *outbuf)
5183 {
5184 struct remote_state *rs = get_remote_state ();
5185 int i;
5186 char *buf = alloca (rs->remote_packet_size);
5187 char *p = buf;
5188
5189 if (!remote_desc)
5190 error ("remote rcmd is only available after target open");
5191
5192 /* Send a NULL command across as an empty command */
5193 if (command == NULL)
5194 command = "";
5195
5196 /* The query prefix */
5197 strcpy (buf, "qRcmd,");
5198 p = strchr (buf, '\0');
5199
5200 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5201 error ("\"monitor\" command ``%s'' is too long\n", command);
5202
5203 /* Encode the actual command */
5204 bin2hex (command, p, 0);
5205
5206 if (putpkt (buf) < 0)
5207 error ("Communication problem with target\n");
5208
5209 /* get/display the response */
5210 while (1)
5211 {
5212 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5213 buf[0] = '\0';
5214 getpkt (buf, (rs->remote_packet_size), 0);
5215 if (buf[0] == '\0')
5216 error ("Target does not support this command\n");
5217 if (buf[0] == 'O' && buf[1] != 'K')
5218 {
5219 remote_console_output (buf + 1); /* 'O' message from stub */
5220 continue;
5221 }
5222 if (strcmp (buf, "OK") == 0)
5223 break;
5224 if (strlen (buf) == 3 && buf[0] == 'E'
5225 && isdigit (buf[1]) && isdigit (buf[2]))
5226 {
5227 error ("Protocol error with Rcmd");
5228 }
5229 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5230 {
5231 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5232 fputc_unfiltered (c, outbuf);
5233 }
5234 break;
5235 }
5236 }
5237
5238 static void
5239 packet_command (char *args, int from_tty)
5240 {
5241 struct remote_state *rs = get_remote_state ();
5242 char *buf = alloca (rs->remote_packet_size);
5243
5244 if (!remote_desc)
5245 error ("command can only be used with remote target");
5246
5247 if (!args)
5248 error ("remote-packet command requires packet text as argument");
5249
5250 puts_filtered ("sending: ");
5251 print_packet (args);
5252 puts_filtered ("\n");
5253 putpkt (args);
5254
5255 getpkt (buf, (rs->remote_packet_size), 0);
5256 puts_filtered ("received: ");
5257 print_packet (buf);
5258 puts_filtered ("\n");
5259 }
5260
5261 #if 0
5262 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5263
5264 static void display_thread_info (struct gdb_ext_thread_info *info);
5265
5266 static void threadset_test_cmd (char *cmd, int tty);
5267
5268 static void threadalive_test (char *cmd, int tty);
5269
5270 static void threadlist_test_cmd (char *cmd, int tty);
5271
5272 int get_and_display_threadinfo (threadref * ref);
5273
5274 static void threadinfo_test_cmd (char *cmd, int tty);
5275
5276 static int thread_display_step (threadref * ref, void *context);
5277
5278 static void threadlist_update_test_cmd (char *cmd, int tty);
5279
5280 static void init_remote_threadtests (void);
5281
5282 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5283
5284 static void
5285 threadset_test_cmd (char *cmd, int tty)
5286 {
5287 int sample_thread = SAMPLE_THREAD;
5288
5289 printf_filtered ("Remote threadset test\n");
5290 set_thread (sample_thread, 1);
5291 }
5292
5293
5294 static void
5295 threadalive_test (char *cmd, int tty)
5296 {
5297 int sample_thread = SAMPLE_THREAD;
5298
5299 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5300 printf_filtered ("PASS: Thread alive test\n");
5301 else
5302 printf_filtered ("FAIL: Thread alive test\n");
5303 }
5304
5305 void output_threadid (char *title, threadref * ref);
5306
5307 void
5308 output_threadid (char *title, threadref *ref)
5309 {
5310 char hexid[20];
5311
5312 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5313 hexid[16] = 0;
5314 printf_filtered ("%s %s\n", title, (&hexid[0]));
5315 }
5316
5317 static void
5318 threadlist_test_cmd (char *cmd, int tty)
5319 {
5320 int startflag = 1;
5321 threadref nextthread;
5322 int done, result_count;
5323 threadref threadlist[3];
5324
5325 printf_filtered ("Remote Threadlist test\n");
5326 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5327 &result_count, &threadlist[0]))
5328 printf_filtered ("FAIL: threadlist test\n");
5329 else
5330 {
5331 threadref *scan = threadlist;
5332 threadref *limit = scan + result_count;
5333
5334 while (scan < limit)
5335 output_threadid (" thread ", scan++);
5336 }
5337 }
5338
5339 void
5340 display_thread_info (struct gdb_ext_thread_info *info)
5341 {
5342 output_threadid ("Threadid: ", &info->threadid);
5343 printf_filtered ("Name: %s\n ", info->shortname);
5344 printf_filtered ("State: %s\n", info->display);
5345 printf_filtered ("other: %s\n\n", info->more_display);
5346 }
5347
5348 int
5349 get_and_display_threadinfo (threadref *ref)
5350 {
5351 int result;
5352 int set;
5353 struct gdb_ext_thread_info threadinfo;
5354
5355 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5356 | TAG_MOREDISPLAY | TAG_DISPLAY;
5357 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5358 display_thread_info (&threadinfo);
5359 return result;
5360 }
5361
5362 static void
5363 threadinfo_test_cmd (char *cmd, int tty)
5364 {
5365 int athread = SAMPLE_THREAD;
5366 threadref thread;
5367 int set;
5368
5369 int_to_threadref (&thread, athread);
5370 printf_filtered ("Remote Threadinfo test\n");
5371 if (!get_and_display_threadinfo (&thread))
5372 printf_filtered ("FAIL cannot get thread info\n");
5373 }
5374
5375 static int
5376 thread_display_step (threadref *ref, void *context)
5377 {
5378 /* output_threadid(" threadstep ",ref); *//* simple test */
5379 return get_and_display_threadinfo (ref);
5380 }
5381
5382 static void
5383 threadlist_update_test_cmd (char *cmd, int tty)
5384 {
5385 printf_filtered ("Remote Threadlist update test\n");
5386 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5387 }
5388
5389 static void
5390 init_remote_threadtests (void)
5391 {
5392 add_com ("tlist", class_obscure, threadlist_test_cmd,
5393 "Fetch and print the remote list of thread identifiers, one pkt only");
5394 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5395 "Fetch and display info about one thread");
5396 add_com ("tset", class_obscure, threadset_test_cmd,
5397 "Test setting to a different thread");
5398 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5399 "Iterate through updating all remote thread info");
5400 add_com ("talive", class_obscure, threadalive_test,
5401 " Remote thread alive test ");
5402 }
5403
5404 #endif /* 0 */
5405
5406 /* Convert a thread ID to a string. Returns the string in a static
5407 buffer. */
5408
5409 static char *
5410 remote_pid_to_str (ptid_t ptid)
5411 {
5412 static char buf[30];
5413
5414 sprintf (buf, "Thread %d", PIDGET (ptid));
5415 return buf;
5416 }
5417
5418 static void
5419 init_remote_ops (void)
5420 {
5421 remote_ops.to_shortname = "remote";
5422 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5423 remote_ops.to_doc =
5424 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5425 Specify the serial device it is connected to\n\
5426 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5427 remote_ops.to_open = remote_open;
5428 remote_ops.to_close = remote_close;
5429 remote_ops.to_detach = remote_detach;
5430 remote_ops.to_resume = remote_resume;
5431 remote_ops.to_wait = remote_wait;
5432 remote_ops.to_fetch_registers = remote_fetch_registers;
5433 remote_ops.to_store_registers = remote_store_registers;
5434 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5435 remote_ops.to_xfer_memory = remote_xfer_memory;
5436 remote_ops.to_files_info = remote_files_info;
5437 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5438 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5439 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5440 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5441 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5442 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5443 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5444 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5445 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5446 remote_ops.to_kill = remote_kill;
5447 remote_ops.to_load = generic_load;
5448 remote_ops.to_mourn_inferior = remote_mourn;
5449 remote_ops.to_thread_alive = remote_thread_alive;
5450 remote_ops.to_find_new_threads = remote_threads_info;
5451 remote_ops.to_pid_to_str = remote_pid_to_str;
5452 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5453 remote_ops.to_stop = remote_stop;
5454 remote_ops.to_query = remote_query;
5455 remote_ops.to_rcmd = remote_rcmd;
5456 remote_ops.to_stratum = process_stratum;
5457 remote_ops.to_has_all_memory = 1;
5458 remote_ops.to_has_memory = 1;
5459 remote_ops.to_has_stack = 1;
5460 remote_ops.to_has_registers = 1;
5461 remote_ops.to_has_execution = 1;
5462 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5463 remote_ops.to_magic = OPS_MAGIC;
5464 }
5465
5466 /* Set up the extended remote vector by making a copy of the standard
5467 remote vector and adding to it. */
5468
5469 static void
5470 init_extended_remote_ops (void)
5471 {
5472 extended_remote_ops = remote_ops;
5473
5474 extended_remote_ops.to_shortname = "extended-remote";
5475 extended_remote_ops.to_longname =
5476 "Extended remote serial target in gdb-specific protocol";
5477 extended_remote_ops.to_doc =
5478 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5479 Specify the serial device it is connected to (e.g. /dev/ttya).",
5480 extended_remote_ops.to_open = extended_remote_open;
5481 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5482 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5483 }
5484
5485 /*
5486 * Command: info remote-process
5487 *
5488 * This implements Cisco's version of the "info proc" command.
5489 *
5490 * This query allows the target stub to return an arbitrary string
5491 * (or strings) giving arbitrary information about the target process.
5492 * This is optional; the target stub isn't required to implement it.
5493 *
5494 * Syntax: qfProcessInfo request first string
5495 * qsProcessInfo request subsequent string
5496 * reply: 'O'<hex-encoded-string>
5497 * 'l' last reply (empty)
5498 */
5499
5500 static void
5501 remote_info_process (char *args, int from_tty)
5502 {
5503 struct remote_state *rs = get_remote_state ();
5504 char *buf = alloca (rs->remote_packet_size);
5505
5506 if (remote_desc == 0)
5507 error ("Command can only be used when connected to the remote target.");
5508
5509 putpkt ("qfProcessInfo");
5510 getpkt (buf, (rs->remote_packet_size), 0);
5511 if (buf[0] == 0)
5512 return; /* Silently: target does not support this feature. */
5513
5514 if (buf[0] == 'E')
5515 error ("info proc: target error.");
5516
5517 while (buf[0] == 'O') /* Capitol-O packet */
5518 {
5519 remote_console_output (&buf[1]);
5520 putpkt ("qsProcessInfo");
5521 getpkt (buf, (rs->remote_packet_size), 0);
5522 }
5523 }
5524
5525 /*
5526 * Target Cisco
5527 */
5528
5529 static void
5530 remote_cisco_open (char *name, int from_tty)
5531 {
5532 int ex;
5533 if (name == 0)
5534 error ("To open a remote debug connection, you need to specify what \n"
5535 "device is attached to the remote system (e.g. host:port).");
5536
5537 /* See FIXME above */
5538 wait_forever_enabled_p = 1;
5539
5540 target_preopen (from_tty);
5541
5542 unpush_target (&remote_cisco_ops);
5543
5544 remote_desc = remote_serial_open (name);
5545 if (!remote_desc)
5546 perror_with_name (name);
5547
5548 /*
5549 * If a baud rate was specified on the gdb command line it will
5550 * be greater than the initial value of -1. If it is, use it otherwise
5551 * default to 9600
5552 */
5553
5554 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5555 if (serial_setbaudrate (remote_desc, baud_rate))
5556 {
5557 serial_close (remote_desc);
5558 perror_with_name (name);
5559 }
5560
5561 serial_raw (remote_desc);
5562
5563 /* If there is something sitting in the buffer we might take it as a
5564 response to a command, which would be bad. */
5565 serial_flush_input (remote_desc);
5566
5567 if (from_tty)
5568 {
5569 puts_filtered ("Remote debugging using ");
5570 puts_filtered (name);
5571 puts_filtered ("\n");
5572 }
5573
5574 remote_cisco_mode = 1;
5575
5576 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5577
5578 init_all_packet_configs ();
5579
5580 general_thread = -2;
5581 continue_thread = -2;
5582
5583 /* Probe for ability to use "ThreadInfo" query, as required. */
5584 use_threadinfo_query = 1;
5585 use_threadextra_query = 1;
5586
5587 /* Without this, some commands which require an active target (such
5588 as kill) won't work. This variable serves (at least) double duty
5589 as both the pid of the target process (if it has such), and as a
5590 flag indicating that a target is active. These functions should
5591 be split out into seperate variables, especially since GDB will
5592 someday have a notion of debugging several processes. */
5593 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5594
5595 /* Start the remote connection; if error, discard this target. See
5596 the comments in remote_open_1() for further details such as the
5597 need to re-throw the exception. */
5598 ex = catch_exceptions (uiout,
5599 remote_start_remote_dummy, NULL,
5600 "Couldn't establish connection to remote"
5601 " target\n",
5602 RETURN_MASK_ALL);
5603 if (ex < 0)
5604 {
5605 pop_target ();
5606 throw_exception (ex);
5607 }
5608 }
5609
5610 static void
5611 remote_cisco_close (int quitting)
5612 {
5613 remote_cisco_mode = 0;
5614 remote_close (quitting);
5615 }
5616
5617 static void
5618 remote_cisco_mourn (void)
5619 {
5620 remote_mourn_1 (&remote_cisco_ops);
5621 }
5622
5623 enum
5624 {
5625 READ_MORE,
5626 FATAL_ERROR,
5627 ENTER_DEBUG,
5628 DISCONNECT_TELNET
5629 }
5630 minitelnet_return;
5631
5632 /* Shared between readsocket() and readtty(). The size is arbitrary,
5633 however all targets are known to support a 400 character packet. */
5634 static char tty_input[400];
5635
5636 static int escape_count;
5637 static int echo_check;
5638 extern int quit_flag;
5639
5640 static int
5641 readsocket (void)
5642 {
5643 int data;
5644
5645 /* Loop until the socket doesn't have any more data */
5646
5647 while ((data = readchar (0)) >= 0)
5648 {
5649 /* Check for the escape sequence */
5650 if (data == '|')
5651 {
5652 /* If this is the fourth escape, get out */
5653 if (++escape_count == 4)
5654 {
5655 return ENTER_DEBUG;
5656 }
5657 else
5658 { /* This is a '|', but not the fourth in a row.
5659 Continue without echoing it. If it isn't actually
5660 one of four in a row, it'll be echoed later. */
5661 continue;
5662 }
5663 }
5664 else
5665 /* Not a '|' */
5666 {
5667 /* Ensure any pending '|'s are flushed. */
5668
5669 for (; escape_count > 0; escape_count--)
5670 putchar ('|');
5671 }
5672
5673 if (data == '\r') /* If this is a return character, */
5674 continue; /* - just supress it. */
5675
5676 if (echo_check != -1) /* Check for echo of user input. */
5677 {
5678 if (tty_input[echo_check] == data)
5679 {
5680 gdb_assert (echo_check <= sizeof (tty_input));
5681 echo_check++; /* Character matched user input: */
5682 continue; /* Continue without echoing it. */
5683 }
5684 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5685 { /* End of the line (and of echo checking). */
5686 echo_check = -1; /* No more echo supression */
5687 continue; /* Continue without echoing. */
5688 }
5689 else
5690 { /* Failed check for echo of user input.
5691 We now have some suppressed output to flush! */
5692 int j;
5693
5694 for (j = 0; j < echo_check; j++)
5695 putchar (tty_input[j]);
5696 echo_check = -1;
5697 }
5698 }
5699 putchar (data); /* Default case: output the char. */
5700 }
5701
5702 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5703 return READ_MORE; /* Try to read some more */
5704 else
5705 return FATAL_ERROR; /* Trouble, bail out */
5706 }
5707
5708 static int
5709 readtty (void)
5710 {
5711 int tty_bytecount;
5712
5713 /* First, read a buffer full from the terminal */
5714 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5715 if (tty_bytecount == -1)
5716 {
5717 perror ("readtty: read failed");
5718 return FATAL_ERROR;
5719 }
5720
5721 /* Remove a quoted newline. */
5722 if (tty_input[tty_bytecount - 1] == '\n' &&
5723 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5724 {
5725 tty_input[--tty_bytecount] = 0; /* remove newline */
5726 tty_input[--tty_bytecount] = 0; /* remove backslash */
5727 }
5728
5729 /* Turn trailing newlines into returns */
5730 if (tty_input[tty_bytecount - 1] == '\n')
5731 tty_input[tty_bytecount - 1] = '\r';
5732
5733 /* If the line consists of a ~, enter debugging mode. */
5734 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5735 return ENTER_DEBUG;
5736
5737 /* Make this a zero terminated string and write it out */
5738 tty_input[tty_bytecount] = 0;
5739 if (serial_write (remote_desc, tty_input, tty_bytecount))
5740 {
5741 perror_with_name ("readtty: write failed");
5742 return FATAL_ERROR;
5743 }
5744
5745 return READ_MORE;
5746 }
5747
5748 static int
5749 minitelnet (void)
5750 {
5751 fd_set input; /* file descriptors for select */
5752 int tablesize; /* max number of FDs for select */
5753 int status;
5754 int quit_count = 0;
5755
5756 escape_count = 0;
5757 echo_check = -1;
5758
5759 tablesize = 8 * sizeof (input);
5760
5761 for (;;)
5762 {
5763 /* Check for anything from our socket - doesn't block. Note that
5764 this must be done *before* the select as there may be
5765 buffered I/O waiting to be processed. */
5766
5767 if ((status = readsocket ()) == FATAL_ERROR)
5768 {
5769 error ("Debugging terminated by communications error");
5770 }
5771 else if (status != READ_MORE)
5772 {
5773 return (status);
5774 }
5775
5776 fflush (stdout); /* Flush output before blocking */
5777
5778 /* Now block on more socket input or TTY input */
5779
5780 FD_ZERO (&input);
5781 FD_SET (fileno (stdin), &input);
5782 FD_SET (deprecated_serial_fd (remote_desc), &input);
5783
5784 status = select (tablesize, &input, 0, 0, 0);
5785 if ((status == -1) && (errno != EINTR))
5786 {
5787 error ("Communications error on select %d", errno);
5788 }
5789
5790 /* Handle Control-C typed */
5791
5792 if (quit_flag)
5793 {
5794 if ((++quit_count) == 2)
5795 {
5796 if (query ("Interrupt GDB? "))
5797 {
5798 printf_filtered ("Interrupted by user.\n");
5799 throw_exception (RETURN_QUIT);
5800 }
5801 quit_count = 0;
5802 }
5803 quit_flag = 0;
5804
5805 if (remote_break)
5806 serial_send_break (remote_desc);
5807 else
5808 serial_write (remote_desc, "\003", 1);
5809
5810 continue;
5811 }
5812
5813 /* Handle console input */
5814
5815 if (FD_ISSET (fileno (stdin), &input))
5816 {
5817 quit_count = 0;
5818 echo_check = 0;
5819 status = readtty ();
5820 if (status == READ_MORE)
5821 continue;
5822
5823 return status; /* telnet session ended */
5824 }
5825 }
5826 }
5827
5828 static ptid_t
5829 remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5830 {
5831 if (minitelnet () != ENTER_DEBUG)
5832 {
5833 error ("Debugging session terminated by protocol error");
5834 }
5835 putpkt ("?");
5836 return remote_wait (ptid, status);
5837 }
5838
5839 static void
5840 init_remote_cisco_ops (void)
5841 {
5842 remote_cisco_ops.to_shortname = "cisco";
5843 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5844 remote_cisco_ops.to_doc =
5845 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5846 Specify the serial device it is connected to (e.g. host:2020).";
5847 remote_cisco_ops.to_open = remote_cisco_open;
5848 remote_cisco_ops.to_close = remote_cisco_close;
5849 remote_cisco_ops.to_detach = remote_detach;
5850 remote_cisco_ops.to_resume = remote_resume;
5851 remote_cisco_ops.to_wait = remote_cisco_wait;
5852 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5853 remote_cisco_ops.to_store_registers = remote_store_registers;
5854 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5855 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5856 remote_cisco_ops.to_files_info = remote_files_info;
5857 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5858 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5859 remote_cisco_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5860 remote_cisco_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5861 remote_cisco_ops.to_insert_watchpoint = remote_insert_watchpoint;
5862 remote_cisco_ops.to_remove_watchpoint = remote_remove_watchpoint;
5863 remote_cisco_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5864 remote_cisco_ops.to_stopped_data_address = remote_stopped_data_address;
5865 remote_cisco_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5866 remote_cisco_ops.to_kill = remote_kill;
5867 remote_cisco_ops.to_load = generic_load;
5868 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5869 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5870 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5871 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5872 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5873 remote_cisco_ops.to_stratum = process_stratum;
5874 remote_cisco_ops.to_has_all_memory = 1;
5875 remote_cisco_ops.to_has_memory = 1;
5876 remote_cisco_ops.to_has_stack = 1;
5877 remote_cisco_ops.to_has_registers = 1;
5878 remote_cisco_ops.to_has_execution = 1;
5879 remote_cisco_ops.to_magic = OPS_MAGIC;
5880 }
5881
5882 static int
5883 remote_can_async_p (void)
5884 {
5885 /* We're async whenever the serial device is. */
5886 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5887 }
5888
5889 static int
5890 remote_is_async_p (void)
5891 {
5892 /* We're async whenever the serial device is. */
5893 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5894 }
5895
5896 /* Pass the SERIAL event on and up to the client. One day this code
5897 will be able to delay notifying the client of an event until the
5898 point where an entire packet has been received. */
5899
5900 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5901 static void *async_client_context;
5902 static serial_event_ftype remote_async_serial_handler;
5903
5904 static void
5905 remote_async_serial_handler (struct serial *scb, void *context)
5906 {
5907 /* Don't propogate error information up to the client. Instead let
5908 the client find out about the error by querying the target. */
5909 async_client_callback (INF_REG_EVENT, async_client_context);
5910 }
5911
5912 static void
5913 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5914 {
5915 if (current_target.to_async_mask_value == 0)
5916 internal_error (__FILE__, __LINE__,
5917 "Calling remote_async when async is masked");
5918
5919 if (callback != NULL)
5920 {
5921 serial_async (remote_desc, remote_async_serial_handler, NULL);
5922 async_client_callback = callback;
5923 async_client_context = context;
5924 }
5925 else
5926 serial_async (remote_desc, NULL, NULL);
5927 }
5928
5929 /* Target async and target extended-async.
5930
5931 This are temporary targets, until it is all tested. Eventually
5932 async support will be incorporated int the usual 'remote'
5933 target. */
5934
5935 static void
5936 init_remote_async_ops (void)
5937 {
5938 remote_async_ops.to_shortname = "async";
5939 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5940 remote_async_ops.to_doc =
5941 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5942 Specify the serial device it is connected to (e.g. /dev/ttya).";
5943 remote_async_ops.to_open = remote_async_open;
5944 remote_async_ops.to_close = remote_close;
5945 remote_async_ops.to_detach = remote_async_detach;
5946 remote_async_ops.to_resume = remote_async_resume;
5947 remote_async_ops.to_wait = remote_async_wait;
5948 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5949 remote_async_ops.to_store_registers = remote_store_registers;
5950 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5951 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5952 remote_async_ops.to_files_info = remote_files_info;
5953 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5954 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5955 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5956 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5957 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5958 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5959 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5960 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5961 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5962 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5963 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5964 remote_async_ops.to_kill = remote_async_kill;
5965 remote_async_ops.to_load = generic_load;
5966 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5967 remote_async_ops.to_thread_alive = remote_thread_alive;
5968 remote_async_ops.to_find_new_threads = remote_threads_info;
5969 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5970 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5971 remote_async_ops.to_stop = remote_stop;
5972 remote_async_ops.to_query = remote_query;
5973 remote_async_ops.to_rcmd = remote_rcmd;
5974 remote_async_ops.to_stratum = process_stratum;
5975 remote_async_ops.to_has_all_memory = 1;
5976 remote_async_ops.to_has_memory = 1;
5977 remote_async_ops.to_has_stack = 1;
5978 remote_async_ops.to_has_registers = 1;
5979 remote_async_ops.to_has_execution = 1;
5980 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5981 remote_async_ops.to_can_async_p = remote_can_async_p;
5982 remote_async_ops.to_is_async_p = remote_is_async_p;
5983 remote_async_ops.to_async = remote_async;
5984 remote_async_ops.to_async_mask_value = 1;
5985 remote_async_ops.to_magic = OPS_MAGIC;
5986 }
5987
5988 /* Set up the async extended remote vector by making a copy of the standard
5989 remote vector and adding to it. */
5990
5991 static void
5992 init_extended_async_remote_ops (void)
5993 {
5994 extended_async_remote_ops = remote_async_ops;
5995
5996 extended_async_remote_ops.to_shortname = "extended-async";
5997 extended_async_remote_ops.to_longname =
5998 "Extended remote serial target in async gdb-specific protocol";
5999 extended_async_remote_ops.to_doc =
6000 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6001 Specify the serial device it is connected to (e.g. /dev/ttya).",
6002 extended_async_remote_ops.to_open = extended_remote_async_open;
6003 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6004 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6005 }
6006
6007 static void
6008 set_remote_cmd (char *args, int from_tty)
6009 {
6010 }
6011
6012 static void
6013 show_remote_cmd (char *args, int from_tty)
6014 {
6015 /* FIXME: cagney/2002-06-15: This function should iterate over
6016 remote_show_cmdlist for a list of sub commands to show. */
6017 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
6018 show_remote_protocol_e_packet_cmd (args, from_tty, NULL);
6019 show_remote_protocol_E_packet_cmd (args, from_tty, NULL);
6020 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
6021 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
6022 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
6023 }
6024
6025 static void
6026 build_remote_gdbarch_data (void)
6027 {
6028 remote_address_size = TARGET_ADDR_BIT;
6029 }
6030
6031 /* Saved pointer to previous owner of the new_objfile event. */
6032 static void (*remote_new_objfile_chain) (struct objfile *);
6033
6034 /* Function to be called whenever a new objfile (shlib) is detected. */
6035 static void
6036 remote_new_objfile (struct objfile *objfile)
6037 {
6038 if (remote_desc != 0) /* Have a remote connection */
6039 {
6040 remote_check_symbols (objfile);
6041 }
6042 /* Call predecessor on chain, if any. */
6043 if (remote_new_objfile_chain != 0 &&
6044 remote_desc == 0)
6045 remote_new_objfile_chain (objfile);
6046 }
6047
6048 void
6049 _initialize_remote (void)
6050 {
6051 static struct cmd_list_element *remote_set_cmdlist;
6052 static struct cmd_list_element *remote_show_cmdlist;
6053 struct cmd_list_element *tmpcmd;
6054
6055 /* architecture specific data */
6056 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state,
6057 free_remote_state);
6058
6059 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6060 that the remote protocol has been initialized. */
6061 register_gdbarch_swap (&remote_address_size,
6062 sizeof (&remote_address_size), NULL);
6063 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6064
6065 init_remote_ops ();
6066 add_target (&remote_ops);
6067
6068 init_extended_remote_ops ();
6069 add_target (&extended_remote_ops);
6070
6071 init_remote_async_ops ();
6072 add_target (&remote_async_ops);
6073
6074 init_extended_async_remote_ops ();
6075 add_target (&extended_async_remote_ops);
6076
6077 init_remote_cisco_ops ();
6078 add_target (&remote_cisco_ops);
6079
6080 /* Hook into new objfile notification. */
6081 remote_new_objfile_chain = target_new_objfile_hook;
6082 target_new_objfile_hook = remote_new_objfile;
6083
6084 #if 0
6085 init_remote_threadtests ();
6086 #endif
6087
6088 /* set/show remote ... */
6089
6090 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
6091 Remote protocol specific variables\n\
6092 Configure various remote-protocol specific variables such as\n\
6093 the packets being used",
6094 &remote_set_cmdlist, "set remote ",
6095 0/*allow-unknown*/, &setlist);
6096 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
6097 Remote protocol specific variables\n\
6098 Configure various remote-protocol specific variables such as\n\
6099 the packets being used",
6100 &remote_show_cmdlist, "show remote ",
6101 0/*allow-unknown*/, &showlist);
6102
6103 add_cmd ("compare-sections", class_obscure, compare_sections_command,
6104 "Compare section data on target to the exec file.\n\
6105 Argument is a single section name (default: all loaded sections).",
6106 &cmdlist);
6107
6108 add_cmd ("packet", class_maintenance, packet_command,
6109 "Send an arbitrary packet to a remote target.\n\
6110 maintenance packet TEXT\n\
6111 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6112 this command sends the string TEXT to the inferior, and displays the\n\
6113 response packet. GDB supplies the initial `$' character, and the\n\
6114 terminating `#' character and checksum.",
6115 &maintenancelist);
6116
6117 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break,
6118 "Set whether to send break if interrupted.\n",
6119 "Show whether to send break if interrupted.\n",
6120 NULL, NULL,
6121 &setlist, &showlist);
6122
6123 /* Install commands for configuring memory read/write packets. */
6124
6125 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
6126 "Set the maximum number of bytes per memory write packet (deprecated).\n",
6127 &setlist);
6128 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
6129 "Show the maximum number of bytes per memory write packet (deprecated).\n",
6130 &showlist);
6131 add_cmd ("memory-write-packet-size", no_class,
6132 set_memory_write_packet_size,
6133 "Set the maximum number of bytes per memory-write packet.\n"
6134 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6135 "default packet size. The actual limit is further reduced\n"
6136 "dependent on the target. Specify ``fixed'' to disable the\n"
6137 "further restriction and ``limit'' to enable that restriction\n",
6138 &remote_set_cmdlist);
6139 add_cmd ("memory-read-packet-size", no_class,
6140 set_memory_read_packet_size,
6141 "Set the maximum number of bytes per memory-read packet.\n"
6142 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6143 "default packet size. The actual limit is further reduced\n"
6144 "dependent on the target. Specify ``fixed'' to disable the\n"
6145 "further restriction and ``limit'' to enable that restriction\n",
6146 &remote_set_cmdlist);
6147 add_cmd ("memory-write-packet-size", no_class,
6148 show_memory_write_packet_size,
6149 "Show the maximum number of bytes per memory-write packet.\n",
6150 &remote_show_cmdlist);
6151 add_cmd ("memory-read-packet-size", no_class,
6152 show_memory_read_packet_size,
6153 "Show the maximum number of bytes per memory-read packet.\n",
6154 &remote_show_cmdlist);
6155
6156 add_setshow_cmd ("hardware-watchpoint-limit", no_class,
6157 var_zinteger, &remote_hw_watchpoint_limit, "\
6158 Set the maximum number of target hardware watchpoints.\n\
6159 Specify a negative limit for unlimited.", "\
6160 Show the maximum number of target hardware watchpoints.\n",
6161 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6162 add_setshow_cmd ("hardware-breakpoint-limit", no_class,
6163 var_zinteger, &remote_hw_breakpoint_limit, "\
6164 Set the maximum number of target hardware breakpoints.\n\
6165 Specify a negative limit for unlimited.", "\
6166 Show the maximum number of target hardware breakpoints.\n",
6167 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6168
6169 add_show_from_set
6170 (add_set_cmd ("remoteaddresssize", class_obscure,
6171 var_integer, (char *) &remote_address_size,
6172 "Set the maximum size of the address (in bits) \
6173 in a memory packet.\n",
6174 &setlist),
6175 &showlist);
6176
6177 add_packet_config_cmd (&remote_protocol_binary_download,
6178 "X", "binary-download",
6179 set_remote_protocol_binary_download_cmd,
6180 show_remote_protocol_binary_download_cmd,
6181 &remote_set_cmdlist, &remote_show_cmdlist,
6182 1);
6183 #if 0
6184 /* XXXX - should ``set remotebinarydownload'' be retained for
6185 compatibility. */
6186 add_show_from_set
6187 (add_set_cmd ("remotebinarydownload", no_class,
6188 var_boolean, (char *) &remote_binary_download,
6189 "Set binary downloads.\n", &setlist),
6190 &showlist);
6191 #endif
6192
6193 add_info ("remote-process", remote_info_process,
6194 "Query the remote system for process info.");
6195
6196 add_packet_config_cmd (&remote_protocol_qSymbol,
6197 "qSymbol", "symbol-lookup",
6198 set_remote_protocol_qSymbol_packet_cmd,
6199 show_remote_protocol_qSymbol_packet_cmd,
6200 &remote_set_cmdlist, &remote_show_cmdlist,
6201 0);
6202
6203 add_packet_config_cmd (&remote_protocol_e,
6204 "e", "step-over-range",
6205 set_remote_protocol_e_packet_cmd,
6206 show_remote_protocol_e_packet_cmd,
6207 &remote_set_cmdlist, &remote_show_cmdlist,
6208 0);
6209 /* Disable by default. The ``e'' packet has nasty interactions with
6210 the threading code - it relies on global state. */
6211 remote_protocol_e.detect = AUTO_BOOLEAN_FALSE;
6212 update_packet_config (&remote_protocol_e);
6213
6214 add_packet_config_cmd (&remote_protocol_E,
6215 "E", "step-over-range-w-signal",
6216 set_remote_protocol_E_packet_cmd,
6217 show_remote_protocol_E_packet_cmd,
6218 &remote_set_cmdlist, &remote_show_cmdlist,
6219 0);
6220 /* Disable by default. The ``e'' packet has nasty interactions with
6221 the threading code - it relies on global state. */
6222 remote_protocol_E.detect = AUTO_BOOLEAN_FALSE;
6223 update_packet_config (&remote_protocol_E);
6224
6225 add_packet_config_cmd (&remote_protocol_P,
6226 "P", "set-register",
6227 set_remote_protocol_P_packet_cmd,
6228 show_remote_protocol_P_packet_cmd,
6229 &remote_set_cmdlist, &remote_show_cmdlist,
6230 1);
6231
6232 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
6233 "Z0", "software-breakpoint",
6234 set_remote_protocol_Z_software_bp_packet_cmd,
6235 show_remote_protocol_Z_software_bp_packet_cmd,
6236 &remote_set_cmdlist, &remote_show_cmdlist,
6237 0);
6238
6239 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
6240 "Z1", "hardware-breakpoint",
6241 set_remote_protocol_Z_hardware_bp_packet_cmd,
6242 show_remote_protocol_Z_hardware_bp_packet_cmd,
6243 &remote_set_cmdlist, &remote_show_cmdlist,
6244 0);
6245
6246 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
6247 "Z2", "write-watchpoint",
6248 set_remote_protocol_Z_write_wp_packet_cmd,
6249 show_remote_protocol_Z_write_wp_packet_cmd,
6250 &remote_set_cmdlist, &remote_show_cmdlist,
6251 0);
6252
6253 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6254 "Z3", "read-watchpoint",
6255 set_remote_protocol_Z_read_wp_packet_cmd,
6256 show_remote_protocol_Z_read_wp_packet_cmd,
6257 &remote_set_cmdlist, &remote_show_cmdlist,
6258 0);
6259
6260 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6261 "Z4", "access-watchpoint",
6262 set_remote_protocol_Z_access_wp_packet_cmd,
6263 show_remote_protocol_Z_access_wp_packet_cmd,
6264 &remote_set_cmdlist, &remote_show_cmdlist,
6265 0);
6266
6267 /* Keep the old ``set remote Z-packet ...'' working. */
6268 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6269 &remote_Z_packet_detect, "\
6270 Set use of remote protocol `Z' packets",
6271 "Show use of remote protocol `Z' packets ",
6272 set_remote_protocol_Z_packet_cmd,
6273 show_remote_protocol_Z_packet_cmd,
6274 &remote_set_cmdlist, &remote_show_cmdlist);
6275 }