2003-10-15 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* See the GDB User Guide for details of the GDB remote protocol. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <fcntl.h>
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42
43 #include <ctype.h>
44 #include <sys/time.h>
45 #ifdef USG
46 #include <sys/types.h>
47 #endif
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 #include "remote-fileio.h"
59
60 /* Prototypes for local functions */
61 static void cleanup_sigint_signal_handler (void *dummy);
62 static void initialize_sigint_signal_handler (void);
63 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
64
65 static void handle_remote_sigint (int);
66 static void handle_remote_sigint_twice (int);
67 static void async_remote_interrupt (gdb_client_data);
68 void async_remote_interrupt_twice (gdb_client_data);
69
70 static void build_remote_gdbarch_data (void);
71
72 static void remote_files_info (struct target_ops *ignore);
73
74 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
75 int len, int should_write,
76 struct mem_attrib *attrib,
77 struct target_ops *target);
78
79 static void remote_prepare_to_store (void);
80
81 static void remote_fetch_registers (int regno);
82
83 static void remote_resume (ptid_t ptid, int step,
84 enum target_signal siggnal);
85 static void remote_async_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87 static int remote_start_remote (struct ui_out *uiout, void *dummy);
88
89 static void remote_open (char *name, int from_tty);
90 static void remote_async_open (char *name, int from_tty);
91
92 static void extended_remote_open (char *name, int from_tty);
93 static void extended_remote_async_open (char *name, int from_tty);
94
95 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
96 int async_p);
97
98 static void remote_close (int quitting);
99
100 static void remote_store_registers (int regno);
101
102 static void remote_mourn (void);
103 static void remote_async_mourn (void);
104
105 static void extended_remote_restart (void);
106
107 static void extended_remote_mourn (void);
108
109 static void extended_remote_create_inferior (char *, char *, char **);
110 static void extended_remote_async_create_inferior (char *, char *, char **);
111
112 static void remote_mourn_1 (struct target_ops *);
113
114 static void remote_send (char *buf, long sizeof_buf);
115
116 static int readchar (int timeout);
117
118 static ptid_t remote_wait (ptid_t ptid,
119 struct target_waitstatus *status);
120 static ptid_t remote_async_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122
123 static void remote_kill (void);
124 static void remote_async_kill (void);
125
126 static int tohex (int nib);
127
128 static void remote_detach (char *args, int from_tty);
129
130 static void remote_interrupt (int signo);
131
132 static void remote_interrupt_twice (int signo);
133
134 static void interrupt_query (void);
135
136 static void set_thread (int, int);
137
138 static int remote_thread_alive (ptid_t);
139
140 static void get_offsets (void);
141
142 static long read_frame (char *buf, long sizeof_buf);
143
144 static int remote_insert_breakpoint (CORE_ADDR, char *);
145
146 static int remote_remove_breakpoint (CORE_ADDR, char *);
147
148 static int hexnumlen (ULONGEST num);
149
150 static void init_remote_ops (void);
151
152 static void init_extended_remote_ops (void);
153
154 static void init_remote_cisco_ops (void);
155
156 static struct target_ops remote_cisco_ops;
157
158 static void remote_stop (void);
159
160 static int ishex (int ch, int *val);
161
162 static int stubhex (int ch);
163
164 static int remote_query (int /*char */ , char *, char *, int *);
165
166 static int hexnumstr (char *, ULONGEST);
167
168 static int hexnumnstr (char *, ULONGEST, int);
169
170 static CORE_ADDR remote_address_masked (CORE_ADDR);
171
172 static void print_packet (char *);
173
174 static unsigned long crc32 (unsigned char *, int, unsigned int);
175
176 static void compare_sections_command (char *, int);
177
178 static void packet_command (char *, int);
179
180 static int stub_unpack_int (char *buff, int fieldlength);
181
182 static ptid_t remote_current_thread (ptid_t oldptid);
183
184 static void remote_find_new_threads (void);
185
186 static void record_currthread (int currthread);
187
188 static int fromhex (int a);
189
190 static int hex2bin (const char *hex, char *bin, int count);
191
192 static int bin2hex (const char *bin, char *hex, int count);
193
194 static int putpkt_binary (char *buf, int cnt);
195
196 static void check_binary_download (CORE_ADDR addr);
197
198 struct packet_config;
199
200 static void show_packet_config_cmd (struct packet_config *config);
201
202 static void update_packet_config (struct packet_config *config);
203
204 void _initialize_remote (void);
205
206 /* Description of the remote protocol. Strictly speaking, when the
207 target is open()ed, remote.c should create a per-target description
208 of the remote protocol using that target's architecture.
209 Unfortunatly, the target stack doesn't include local state. For
210 the moment keep the information in the target's architecture
211 object. Sigh.. */
212
213 struct packet_reg
214 {
215 long offset; /* Offset into G packet. */
216 long regnum; /* GDB's internal register number. */
217 LONGEST pnum; /* Remote protocol register number. */
218 int in_g_packet; /* Always part of G packet. */
219 /* long size in bytes; == DEPRECATED_REGISTER_RAW_SIZE (regnum); at present. */
220 /* char *name; == REGISTER_NAME (regnum); at present. */
221 };
222
223 struct remote_state
224 {
225 /* Description of the remote protocol registers. */
226 long sizeof_g_packet;
227
228 /* Description of the remote protocol registers indexed by REGNUM
229 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
230 struct packet_reg *regs;
231
232 /* This is the size (in chars) of the first response to the ``g''
233 packet. It is used as a heuristic when determining the maximum
234 size of memory-read and memory-write packets. A target will
235 typically only reserve a buffer large enough to hold the ``g''
236 packet. The size does not include packet overhead (headers and
237 trailers). */
238 long actual_register_packet_size;
239
240 /* This is the maximum size (in chars) of a non read/write packet.
241 It is also used as a cap on the size of read/write packets. */
242 long remote_packet_size;
243 };
244
245
246 /* Handle for retreving the remote protocol data from gdbarch. */
247 static struct gdbarch_data *remote_gdbarch_data_handle;
248
249 static struct remote_state *
250 get_remote_state (void)
251 {
252 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
253 }
254
255 static void *
256 init_remote_state (struct gdbarch *gdbarch)
257 {
258 int regnum;
259 struct remote_state *rs = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_state);
260
261 if (DEPRECATED_REGISTER_BYTES != 0)
262 rs->sizeof_g_packet = DEPRECATED_REGISTER_BYTES;
263 else
264 rs->sizeof_g_packet = 0;
265
266 /* Assume a 1:1 regnum<->pnum table. */
267 rs->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
268 struct packet_reg);
269 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
270 {
271 struct packet_reg *r = &rs->regs[regnum];
272 r->pnum = regnum;
273 r->regnum = regnum;
274 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
275 r->in_g_packet = (regnum < NUM_REGS);
276 /* ...name = REGISTER_NAME (regnum); */
277
278 /* Compute packet size by accumulating the size of all registers. */
279 if (DEPRECATED_REGISTER_BYTES == 0)
280 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
281 }
282
283 /* Default maximum number of characters in a packet body. Many
284 remote stubs have a hardwired buffer size of 400 bytes
285 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
286 as the maximum packet-size to ensure that the packet and an extra
287 NUL character can always fit in the buffer. This stops GDB
288 trashing stubs that try to squeeze an extra NUL into what is
289 already a full buffer (As of 1999-12-04 that was most stubs. */
290 rs->remote_packet_size = 400 - 1;
291
292 /* Should rs->sizeof_g_packet needs more space than the
293 default, adjust the size accordingly. Remember that each byte is
294 encoded as two characters. 32 is the overhead for the packet
295 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
296 (``$NN:G...#NN'') is a better guess, the below has been padded a
297 little. */
298 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
299 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
300
301 /* This one is filled in when a ``g'' packet is received. */
302 rs->actual_register_packet_size = 0;
303
304 return rs;
305 }
306
307 static struct packet_reg *
308 packet_reg_from_regnum (struct remote_state *rs, long regnum)
309 {
310 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
311 return NULL;
312 else
313 {
314 struct packet_reg *r = &rs->regs[regnum];
315 gdb_assert (r->regnum == regnum);
316 return r;
317 }
318 }
319
320 static struct packet_reg *
321 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
322 {
323 int i;
324 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
325 {
326 struct packet_reg *r = &rs->regs[i];
327 if (r->pnum == pnum)
328 return r;
329 }
330 return NULL;
331 }
332
333 /* FIXME: graces/2002-08-08: These variables should eventually be
334 bound to an instance of the target object (as in gdbarch-tdep()),
335 when such a thing exists. */
336
337 /* This is set to the data address of the access causing the target
338 to stop for a watchpoint. */
339 static CORE_ADDR remote_watch_data_address;
340
341 /* This is non-zero if taregt stopped for a watchpoint. */
342 static int remote_stopped_by_watchpoint_p;
343
344
345 static struct target_ops remote_ops;
346
347 static struct target_ops extended_remote_ops;
348
349 /* Temporary target ops. Just like the remote_ops and
350 extended_remote_ops, but with asynchronous support. */
351 static struct target_ops remote_async_ops;
352
353 static struct target_ops extended_async_remote_ops;
354
355 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
356 ``forever'' still use the normal timeout mechanism. This is
357 currently used by the ASYNC code to guarentee that target reads
358 during the initial connect always time-out. Once getpkt has been
359 modified to return a timeout indication and, in turn
360 remote_wait()/wait_for_inferior() have gained a timeout parameter
361 this can go away. */
362 static int wait_forever_enabled_p = 1;
363
364
365 /* This variable chooses whether to send a ^C or a break when the user
366 requests program interruption. Although ^C is usually what remote
367 systems expect, and that is the default here, sometimes a break is
368 preferable instead. */
369
370 static int remote_break;
371
372 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
373 remote_open knows that we don't have a file open when the program
374 starts. */
375 static struct serial *remote_desc = NULL;
376
377 /* This is set by the target (thru the 'S' message)
378 to denote that the target is in kernel mode. */
379 static int cisco_kernel_mode = 0;
380
381 /* This variable sets the number of bits in an address that are to be
382 sent in a memory ("M" or "m") packet. Normally, after stripping
383 leading zeros, the entire address would be sent. This variable
384 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
385 initial implementation of remote.c restricted the address sent in
386 memory packets to ``host::sizeof long'' bytes - (typically 32
387 bits). Consequently, for 64 bit targets, the upper 32 bits of an
388 address was never sent. Since fixing this bug may cause a break in
389 some remote targets this variable is principly provided to
390 facilitate backward compatibility. */
391
392 static int remote_address_size;
393
394 /* Tempoary to track who currently owns the terminal. See
395 target_async_terminal_* for more details. */
396
397 static int remote_async_terminal_ours_p;
398
399 \f
400 /* User configurable variables for the number of characters in a
401 memory read/write packet. MIN ((rs->remote_packet_size),
402 rs->sizeof_g_packet) is the default. Some targets need smaller
403 values (fifo overruns, et.al.) and some users need larger values
404 (speed up transfers). The variables ``preferred_*'' (the user
405 request), ``current_*'' (what was actually set) and ``forced_*''
406 (Positive - a soft limit, negative - a hard limit). */
407
408 struct memory_packet_config
409 {
410 char *name;
411 long size;
412 int fixed_p;
413 };
414
415 /* Compute the current size of a read/write packet. Since this makes
416 use of ``actual_register_packet_size'' the computation is dynamic. */
417
418 static long
419 get_memory_packet_size (struct memory_packet_config *config)
420 {
421 struct remote_state *rs = get_remote_state ();
422 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
423 law?) that some hosts don't cope very well with large alloca()
424 calls. Eventually the alloca() code will be replaced by calls to
425 xmalloc() and make_cleanups() allowing this restriction to either
426 be lifted or removed. */
427 #ifndef MAX_REMOTE_PACKET_SIZE
428 #define MAX_REMOTE_PACKET_SIZE 16384
429 #endif
430 /* NOTE: 16 is just chosen at random. */
431 #ifndef MIN_REMOTE_PACKET_SIZE
432 #define MIN_REMOTE_PACKET_SIZE 16
433 #endif
434 long what_they_get;
435 if (config->fixed_p)
436 {
437 if (config->size <= 0)
438 what_they_get = MAX_REMOTE_PACKET_SIZE;
439 else
440 what_they_get = config->size;
441 }
442 else
443 {
444 what_they_get = (rs->remote_packet_size);
445 /* Limit the packet to the size specified by the user. */
446 if (config->size > 0
447 && what_they_get > config->size)
448 what_they_get = config->size;
449 /* Limit it to the size of the targets ``g'' response. */
450 if ((rs->actual_register_packet_size) > 0
451 && what_they_get > (rs->actual_register_packet_size))
452 what_they_get = (rs->actual_register_packet_size);
453 }
454 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
455 what_they_get = MAX_REMOTE_PACKET_SIZE;
456 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
457 what_they_get = MIN_REMOTE_PACKET_SIZE;
458 return what_they_get;
459 }
460
461 /* Update the size of a read/write packet. If they user wants
462 something really big then do a sanity check. */
463
464 static void
465 set_memory_packet_size (char *args, struct memory_packet_config *config)
466 {
467 int fixed_p = config->fixed_p;
468 long size = config->size;
469 if (args == NULL)
470 error ("Argument required (integer, `fixed' or `limited').");
471 else if (strcmp (args, "hard") == 0
472 || strcmp (args, "fixed") == 0)
473 fixed_p = 1;
474 else if (strcmp (args, "soft") == 0
475 || strcmp (args, "limit") == 0)
476 fixed_p = 0;
477 else
478 {
479 char *end;
480 size = strtoul (args, &end, 0);
481 if (args == end)
482 error ("Invalid %s (bad syntax).", config->name);
483 #if 0
484 /* Instead of explicitly capping the size of a packet to
485 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
486 instead allowed to set the size to something arbitrarily
487 large. */
488 if (size > MAX_REMOTE_PACKET_SIZE)
489 error ("Invalid %s (too large).", config->name);
490 #endif
491 }
492 /* Extra checks? */
493 if (fixed_p && !config->fixed_p)
494 {
495 if (! query ("The target may not be able to correctly handle a %s\n"
496 "of %ld bytes. Change the packet size? ",
497 config->name, size))
498 error ("Packet size not changed.");
499 }
500 /* Update the config. */
501 config->fixed_p = fixed_p;
502 config->size = size;
503 }
504
505 static void
506 show_memory_packet_size (struct memory_packet_config *config)
507 {
508 printf_filtered ("The %s is %ld. ", config->name, config->size);
509 if (config->fixed_p)
510 printf_filtered ("Packets are fixed at %ld bytes.\n",
511 get_memory_packet_size (config));
512 else
513 printf_filtered ("Packets are limited to %ld bytes.\n",
514 get_memory_packet_size (config));
515 }
516
517 static struct memory_packet_config memory_write_packet_config =
518 {
519 "memory-write-packet-size",
520 };
521
522 static void
523 set_memory_write_packet_size (char *args, int from_tty)
524 {
525 set_memory_packet_size (args, &memory_write_packet_config);
526 }
527
528 static void
529 show_memory_write_packet_size (char *args, int from_tty)
530 {
531 show_memory_packet_size (&memory_write_packet_config);
532 }
533
534 static long
535 get_memory_write_packet_size (void)
536 {
537 return get_memory_packet_size (&memory_write_packet_config);
538 }
539
540 static struct memory_packet_config memory_read_packet_config =
541 {
542 "memory-read-packet-size",
543 };
544
545 static void
546 set_memory_read_packet_size (char *args, int from_tty)
547 {
548 set_memory_packet_size (args, &memory_read_packet_config);
549 }
550
551 static void
552 show_memory_read_packet_size (char *args, int from_tty)
553 {
554 show_memory_packet_size (&memory_read_packet_config);
555 }
556
557 static long
558 get_memory_read_packet_size (void)
559 {
560 struct remote_state *rs = get_remote_state ();
561 long size = get_memory_packet_size (&memory_read_packet_config);
562 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
563 extra buffer size argument before the memory read size can be
564 increased beyond (rs->remote_packet_size). */
565 if (size > (rs->remote_packet_size))
566 size = (rs->remote_packet_size);
567 return size;
568 }
569
570 \f
571 /* Generic configuration support for packets the stub optionally
572 supports. Allows the user to specify the use of the packet as well
573 as allowing GDB to auto-detect support in the remote stub. */
574
575 enum packet_support
576 {
577 PACKET_SUPPORT_UNKNOWN = 0,
578 PACKET_ENABLE,
579 PACKET_DISABLE
580 };
581
582 struct packet_config
583 {
584 char *name;
585 char *title;
586 enum auto_boolean detect;
587 enum packet_support support;
588 };
589
590 /* Analyze a packet's return value and update the packet config
591 accordingly. */
592
593 enum packet_result
594 {
595 PACKET_ERROR,
596 PACKET_OK,
597 PACKET_UNKNOWN
598 };
599
600 static void
601 update_packet_config (struct packet_config *config)
602 {
603 switch (config->detect)
604 {
605 case AUTO_BOOLEAN_TRUE:
606 config->support = PACKET_ENABLE;
607 break;
608 case AUTO_BOOLEAN_FALSE:
609 config->support = PACKET_DISABLE;
610 break;
611 case AUTO_BOOLEAN_AUTO:
612 config->support = PACKET_SUPPORT_UNKNOWN;
613 break;
614 }
615 }
616
617 static void
618 show_packet_config_cmd (struct packet_config *config)
619 {
620 char *support = "internal-error";
621 switch (config->support)
622 {
623 case PACKET_ENABLE:
624 support = "enabled";
625 break;
626 case PACKET_DISABLE:
627 support = "disabled";
628 break;
629 case PACKET_SUPPORT_UNKNOWN:
630 support = "unknown";
631 break;
632 }
633 switch (config->detect)
634 {
635 case AUTO_BOOLEAN_AUTO:
636 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
637 config->name, config->title, support);
638 break;
639 case AUTO_BOOLEAN_TRUE:
640 case AUTO_BOOLEAN_FALSE:
641 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
642 config->name, config->title, support);
643 break;
644 }
645 }
646
647 static void
648 add_packet_config_cmd (struct packet_config *config,
649 char *name,
650 char *title,
651 cmd_sfunc_ftype *set_func,
652 cmd_sfunc_ftype *show_func,
653 struct cmd_list_element **set_remote_list,
654 struct cmd_list_element **show_remote_list,
655 int legacy)
656 {
657 struct cmd_list_element *set_cmd;
658 struct cmd_list_element *show_cmd;
659 char *set_doc;
660 char *show_doc;
661 char *cmd_name;
662 config->name = name;
663 config->title = title;
664 config->detect = AUTO_BOOLEAN_AUTO;
665 config->support = PACKET_SUPPORT_UNKNOWN;
666 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
667 name, title);
668 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
669 name, title);
670 /* set/show TITLE-packet {auto,on,off} */
671 xasprintf (&cmd_name, "%s-packet", title);
672 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
673 &config->detect, set_doc, show_doc,
674 set_func, show_func,
675 set_remote_list, show_remote_list);
676 /* set/show remote NAME-packet {auto,on,off} -- legacy */
677 if (legacy)
678 {
679 char *legacy_name;
680 xasprintf (&legacy_name, "%s-packet", name);
681 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
682 set_remote_list);
683 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
684 show_remote_list);
685 }
686 }
687
688 static enum packet_result
689 packet_ok (const char *buf, struct packet_config *config)
690 {
691 if (buf[0] != '\0')
692 {
693 /* The stub recognized the packet request. Check that the
694 operation succeeded. */
695 switch (config->support)
696 {
697 case PACKET_SUPPORT_UNKNOWN:
698 if (remote_debug)
699 fprintf_unfiltered (gdb_stdlog,
700 "Packet %s (%s) is supported\n",
701 config->name, config->title);
702 config->support = PACKET_ENABLE;
703 break;
704 case PACKET_DISABLE:
705 internal_error (__FILE__, __LINE__,
706 "packet_ok: attempt to use a disabled packet");
707 break;
708 case PACKET_ENABLE:
709 break;
710 }
711 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
712 /* "OK" - definitly OK. */
713 return PACKET_OK;
714 if (buf[0] == 'E'
715 && isxdigit (buf[1]) && isxdigit (buf[2])
716 && buf[3] == '\0')
717 /* "Enn" - definitly an error. */
718 return PACKET_ERROR;
719 /* The packet may or may not be OK. Just assume it is */
720 return PACKET_OK;
721 }
722 else
723 {
724 /* The stub does not support the packet. */
725 switch (config->support)
726 {
727 case PACKET_ENABLE:
728 if (config->detect == AUTO_BOOLEAN_AUTO)
729 /* If the stub previously indicated that the packet was
730 supported then there is a protocol error.. */
731 error ("Protocol error: %s (%s) conflicting enabled responses.",
732 config->name, config->title);
733 else
734 /* The user set it wrong. */
735 error ("Enabled packet %s (%s) not recognized by stub",
736 config->name, config->title);
737 break;
738 case PACKET_SUPPORT_UNKNOWN:
739 if (remote_debug)
740 fprintf_unfiltered (gdb_stdlog,
741 "Packet %s (%s) is NOT supported\n",
742 config->name, config->title);
743 config->support = PACKET_DISABLE;
744 break;
745 case PACKET_DISABLE:
746 break;
747 }
748 return PACKET_UNKNOWN;
749 }
750 }
751
752 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
753 static struct packet_config remote_protocol_qSymbol;
754
755 static void
756 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
757 struct cmd_list_element *c)
758 {
759 update_packet_config (&remote_protocol_qSymbol);
760 }
761
762 static void
763 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
764 struct cmd_list_element *c)
765 {
766 show_packet_config_cmd (&remote_protocol_qSymbol);
767 }
768
769 /* Should we try the 'e' (step over range) request? */
770 static struct packet_config remote_protocol_e;
771
772 static void
773 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
774 struct cmd_list_element *c)
775 {
776 update_packet_config (&remote_protocol_e);
777 }
778
779 static void
780 show_remote_protocol_e_packet_cmd (char *args, int from_tty,
781 struct cmd_list_element *c)
782 {
783 show_packet_config_cmd (&remote_protocol_e);
784 }
785
786
787 /* Should we try the 'E' (step over range / w signal #) request? */
788 static struct packet_config remote_protocol_E;
789
790 static void
791 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
792 struct cmd_list_element *c)
793 {
794 update_packet_config (&remote_protocol_E);
795 }
796
797 static void
798 show_remote_protocol_E_packet_cmd (char *args, int from_tty,
799 struct cmd_list_element *c)
800 {
801 show_packet_config_cmd (&remote_protocol_E);
802 }
803
804
805 /* Should we try the 'P' (set register) request? */
806
807 static struct packet_config remote_protocol_P;
808
809 static void
810 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
811 struct cmd_list_element *c)
812 {
813 update_packet_config (&remote_protocol_P);
814 }
815
816 static void
817 show_remote_protocol_P_packet_cmd (char *args, int from_tty,
818 struct cmd_list_element *c)
819 {
820 show_packet_config_cmd (&remote_protocol_P);
821 }
822
823 /* Should we try one of the 'Z' requests? */
824
825 enum Z_packet_type
826 {
827 Z_PACKET_SOFTWARE_BP,
828 Z_PACKET_HARDWARE_BP,
829 Z_PACKET_WRITE_WP,
830 Z_PACKET_READ_WP,
831 Z_PACKET_ACCESS_WP,
832 NR_Z_PACKET_TYPES
833 };
834
835 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
836
837 /* FIXME: Instead of having all these boiler plate functions, the
838 command callback should include a context argument. */
839
840 static void
841 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
842 struct cmd_list_element *c)
843 {
844 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
845 }
846
847 static void
848 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
849 struct cmd_list_element *c)
850 {
851 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
852 }
853
854 static void
855 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
856 struct cmd_list_element *c)
857 {
858 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
859 }
860
861 static void
862 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
863 struct cmd_list_element *c)
864 {
865 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
866 }
867
868 static void
869 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
870 struct cmd_list_element *c)
871 {
872 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
873 }
874
875 static void
876 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
877 struct cmd_list_element *c)
878 {
879 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
880 }
881
882 static void
883 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
884 struct cmd_list_element *c)
885 {
886 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
887 }
888
889 static void
890 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
891 struct cmd_list_element *c)
892 {
893 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
894 }
895
896 static void
897 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
898 struct cmd_list_element *c)
899 {
900 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
901 }
902
903 static void
904 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
905 struct cmd_list_element *c)
906 {
907 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
908 }
909
910 /* For compatibility with older distributions. Provide a ``set remote
911 Z-packet ...'' command that updates all the Z packet types. */
912
913 static enum auto_boolean remote_Z_packet_detect;
914
915 static void
916 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
917 struct cmd_list_element *c)
918 {
919 int i;
920 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
921 {
922 remote_protocol_Z[i].detect = remote_Z_packet_detect;
923 update_packet_config (&remote_protocol_Z[i]);
924 }
925 }
926
927 static void
928 show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
929 struct cmd_list_element *c)
930 {
931 int i;
932 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
933 {
934 show_packet_config_cmd (&remote_protocol_Z[i]);
935 }
936 }
937
938 /* Should we try the 'X' (remote binary download) packet?
939
940 This variable (available to the user via "set remote X-packet")
941 dictates whether downloads are sent in binary (via the 'X' packet).
942 We assume that the stub can, and attempt to do it. This will be
943 cleared if the stub does not understand it. This switch is still
944 needed, though in cases when the packet is supported in the stub,
945 but the connection does not allow it (i.e., 7-bit serial connection
946 only). */
947
948 static struct packet_config remote_protocol_binary_download;
949
950 /* Should we try the 'ThreadInfo' query packet?
951
952 This variable (NOT available to the user: auto-detect only!)
953 determines whether GDB will use the new, simpler "ThreadInfo"
954 query or the older, more complex syntax for thread queries.
955 This is an auto-detect variable (set to true at each connect,
956 and set to false when the target fails to recognize it). */
957
958 static int use_threadinfo_query;
959 static int use_threadextra_query;
960
961 static void
962 set_remote_protocol_binary_download_cmd (char *args,
963 int from_tty,
964 struct cmd_list_element *c)
965 {
966 update_packet_config (&remote_protocol_binary_download);
967 }
968
969 static void
970 show_remote_protocol_binary_download_cmd (char *args, int from_tty,
971 struct cmd_list_element *c)
972 {
973 show_packet_config_cmd (&remote_protocol_binary_download);
974 }
975
976
977 /* Tokens for use by the asynchronous signal handlers for SIGINT */
978 static void *sigint_remote_twice_token;
979 static void *sigint_remote_token;
980
981 /* These are pointers to hook functions that may be set in order to
982 modify resume/wait behavior for a particular architecture. */
983
984 void (*target_resume_hook) (void);
985 void (*target_wait_loop_hook) (void);
986 \f
987
988
989 /* These are the threads which we last sent to the remote system.
990 -1 for all or -2 for not sent yet. */
991 static int general_thread;
992 static int continue_thread;
993
994 /* Call this function as a result of
995 1) A halt indication (T packet) containing a thread id
996 2) A direct query of currthread
997 3) Successful execution of set thread
998 */
999
1000 static void
1001 record_currthread (int currthread)
1002 {
1003 general_thread = currthread;
1004
1005 /* If this is a new thread, add it to GDB's thread list.
1006 If we leave it up to WFI to do this, bad things will happen. */
1007 if (!in_thread_list (pid_to_ptid (currthread)))
1008 {
1009 add_thread (pid_to_ptid (currthread));
1010 ui_out_text (uiout, "[New ");
1011 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1012 ui_out_text (uiout, "]\n");
1013 }
1014 }
1015
1016 #define MAGIC_NULL_PID 42000
1017
1018 static void
1019 set_thread (int th, int gen)
1020 {
1021 struct remote_state *rs = get_remote_state ();
1022 char *buf = alloca (rs->remote_packet_size);
1023 int state = gen ? general_thread : continue_thread;
1024
1025 if (state == th)
1026 return;
1027
1028 buf[0] = 'H';
1029 buf[1] = gen ? 'g' : 'c';
1030 if (th == MAGIC_NULL_PID)
1031 {
1032 buf[2] = '0';
1033 buf[3] = '\0';
1034 }
1035 else if (th < 0)
1036 sprintf (&buf[2], "-%x", -th);
1037 else
1038 sprintf (&buf[2], "%x", th);
1039 putpkt (buf);
1040 getpkt (buf, (rs->remote_packet_size), 0);
1041 if (gen)
1042 general_thread = th;
1043 else
1044 continue_thread = th;
1045 }
1046 \f
1047 /* Return nonzero if the thread TH is still alive on the remote system. */
1048
1049 static int
1050 remote_thread_alive (ptid_t ptid)
1051 {
1052 int tid = PIDGET (ptid);
1053 char buf[16];
1054
1055 if (tid < 0)
1056 sprintf (buf, "T-%08x", -tid);
1057 else
1058 sprintf (buf, "T%08x", tid);
1059 putpkt (buf);
1060 getpkt (buf, sizeof (buf), 0);
1061 return (buf[0] == 'O' && buf[1] == 'K');
1062 }
1063
1064 /* About these extended threadlist and threadinfo packets. They are
1065 variable length packets but, the fields within them are often fixed
1066 length. They are redundent enough to send over UDP as is the
1067 remote protocol in general. There is a matching unit test module
1068 in libstub. */
1069
1070 #define OPAQUETHREADBYTES 8
1071
1072 /* a 64 bit opaque identifier */
1073 typedef unsigned char threadref[OPAQUETHREADBYTES];
1074
1075 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1076 protocol encoding, and remote.c. it is not particularly changable */
1077
1078 /* Right now, the internal structure is int. We want it to be bigger.
1079 Plan to fix this.
1080 */
1081
1082 typedef int gdb_threadref; /* internal GDB thread reference */
1083
1084 /* gdb_ext_thread_info is an internal GDB data structure which is
1085 equivalint to the reply of the remote threadinfo packet */
1086
1087 struct gdb_ext_thread_info
1088 {
1089 threadref threadid; /* External form of thread reference */
1090 int active; /* Has state interesting to GDB? , regs, stack */
1091 char display[256]; /* Brief state display, name, blocked/syspended */
1092 char shortname[32]; /* To be used to name threads */
1093 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1094 };
1095
1096 /* The volume of remote transfers can be limited by submitting
1097 a mask containing bits specifying the desired information.
1098 Use a union of these values as the 'selection' parameter to
1099 get_thread_info. FIXME: Make these TAG names more thread specific.
1100 */
1101
1102 #define TAG_THREADID 1
1103 #define TAG_EXISTS 2
1104 #define TAG_DISPLAY 4
1105 #define TAG_THREADNAME 8
1106 #define TAG_MOREDISPLAY 16
1107
1108 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1109
1110 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1111
1112 static char *unpack_nibble (char *buf, int *val);
1113
1114 static char *pack_nibble (char *buf, int nibble);
1115
1116 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1117
1118 static char *unpack_byte (char *buf, int *value);
1119
1120 static char *pack_int (char *buf, int value);
1121
1122 static char *unpack_int (char *buf, int *value);
1123
1124 static char *unpack_string (char *src, char *dest, int length);
1125
1126 static char *pack_threadid (char *pkt, threadref * id);
1127
1128 static char *unpack_threadid (char *inbuf, threadref * id);
1129
1130 void int_to_threadref (threadref * id, int value);
1131
1132 static int threadref_to_int (threadref * ref);
1133
1134 static void copy_threadref (threadref * dest, threadref * src);
1135
1136 static int threadmatch (threadref * dest, threadref * src);
1137
1138 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1139
1140 static int remote_unpack_thread_info_response (char *pkt,
1141 threadref * expectedref,
1142 struct gdb_ext_thread_info
1143 *info);
1144
1145
1146 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1147 struct gdb_ext_thread_info *info);
1148
1149 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1150 int selection,
1151 struct gdb_ext_thread_info *info);
1152
1153 static char *pack_threadlist_request (char *pkt, int startflag,
1154 int threadcount,
1155 threadref * nextthread);
1156
1157 static int parse_threadlist_response (char *pkt,
1158 int result_limit,
1159 threadref * original_echo,
1160 threadref * resultlist, int *doneflag);
1161
1162 static int remote_get_threadlist (int startflag,
1163 threadref * nextthread,
1164 int result_limit,
1165 int *done,
1166 int *result_count, threadref * threadlist);
1167
1168 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1169
1170 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1171 void *context, int looplimit);
1172
1173 static int remote_newthread_step (threadref * ref, void *context);
1174
1175 /* encode 64 bits in 16 chars of hex */
1176
1177 static const char hexchars[] = "0123456789abcdef";
1178
1179 static int
1180 ishex (int ch, int *val)
1181 {
1182 if ((ch >= 'a') && (ch <= 'f'))
1183 {
1184 *val = ch - 'a' + 10;
1185 return 1;
1186 }
1187 if ((ch >= 'A') && (ch <= 'F'))
1188 {
1189 *val = ch - 'A' + 10;
1190 return 1;
1191 }
1192 if ((ch >= '0') && (ch <= '9'))
1193 {
1194 *val = ch - '0';
1195 return 1;
1196 }
1197 return 0;
1198 }
1199
1200 static int
1201 stubhex (int ch)
1202 {
1203 if (ch >= 'a' && ch <= 'f')
1204 return ch - 'a' + 10;
1205 if (ch >= '0' && ch <= '9')
1206 return ch - '0';
1207 if (ch >= 'A' && ch <= 'F')
1208 return ch - 'A' + 10;
1209 return -1;
1210 }
1211
1212 static int
1213 stub_unpack_int (char *buff, int fieldlength)
1214 {
1215 int nibble;
1216 int retval = 0;
1217
1218 while (fieldlength)
1219 {
1220 nibble = stubhex (*buff++);
1221 retval |= nibble;
1222 fieldlength--;
1223 if (fieldlength)
1224 retval = retval << 4;
1225 }
1226 return retval;
1227 }
1228
1229 char *
1230 unpack_varlen_hex (char *buff, /* packet to parse */
1231 ULONGEST *result)
1232 {
1233 int nibble;
1234 int retval = 0;
1235
1236 while (ishex (*buff, &nibble))
1237 {
1238 buff++;
1239 retval = retval << 4;
1240 retval |= nibble & 0x0f;
1241 }
1242 *result = retval;
1243 return buff;
1244 }
1245
1246 static char *
1247 unpack_nibble (char *buf, int *val)
1248 {
1249 ishex (*buf++, val);
1250 return buf;
1251 }
1252
1253 static char *
1254 pack_nibble (char *buf, int nibble)
1255 {
1256 *buf++ = hexchars[(nibble & 0x0f)];
1257 return buf;
1258 }
1259
1260 static char *
1261 pack_hex_byte (char *pkt, int byte)
1262 {
1263 *pkt++ = hexchars[(byte >> 4) & 0xf];
1264 *pkt++ = hexchars[(byte & 0xf)];
1265 return pkt;
1266 }
1267
1268 static char *
1269 unpack_byte (char *buf, int *value)
1270 {
1271 *value = stub_unpack_int (buf, 2);
1272 return buf + 2;
1273 }
1274
1275 static char *
1276 pack_int (char *buf, int value)
1277 {
1278 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1279 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1280 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1281 buf = pack_hex_byte (buf, (value & 0xff));
1282 return buf;
1283 }
1284
1285 static char *
1286 unpack_int (char *buf, int *value)
1287 {
1288 *value = stub_unpack_int (buf, 8);
1289 return buf + 8;
1290 }
1291
1292 #if 0 /* currently unused, uncomment when needed */
1293 static char *pack_string (char *pkt, char *string);
1294
1295 static char *
1296 pack_string (char *pkt, char *string)
1297 {
1298 char ch;
1299 int len;
1300
1301 len = strlen (string);
1302 if (len > 200)
1303 len = 200; /* Bigger than most GDB packets, junk??? */
1304 pkt = pack_hex_byte (pkt, len);
1305 while (len-- > 0)
1306 {
1307 ch = *string++;
1308 if ((ch == '\0') || (ch == '#'))
1309 ch = '*'; /* Protect encapsulation */
1310 *pkt++ = ch;
1311 }
1312 return pkt;
1313 }
1314 #endif /* 0 (unused) */
1315
1316 static char *
1317 unpack_string (char *src, char *dest, int length)
1318 {
1319 while (length--)
1320 *dest++ = *src++;
1321 *dest = '\0';
1322 return src;
1323 }
1324
1325 static char *
1326 pack_threadid (char *pkt, threadref *id)
1327 {
1328 char *limit;
1329 unsigned char *altid;
1330
1331 altid = (unsigned char *) id;
1332 limit = pkt + BUF_THREAD_ID_SIZE;
1333 while (pkt < limit)
1334 pkt = pack_hex_byte (pkt, *altid++);
1335 return pkt;
1336 }
1337
1338
1339 static char *
1340 unpack_threadid (char *inbuf, threadref *id)
1341 {
1342 char *altref;
1343 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1344 int x, y;
1345
1346 altref = (char *) id;
1347
1348 while (inbuf < limit)
1349 {
1350 x = stubhex (*inbuf++);
1351 y = stubhex (*inbuf++);
1352 *altref++ = (x << 4) | y;
1353 }
1354 return inbuf;
1355 }
1356
1357 /* Externally, threadrefs are 64 bits but internally, they are still
1358 ints. This is due to a mismatch of specifications. We would like
1359 to use 64bit thread references internally. This is an adapter
1360 function. */
1361
1362 void
1363 int_to_threadref (threadref *id, int value)
1364 {
1365 unsigned char *scan;
1366
1367 scan = (unsigned char *) id;
1368 {
1369 int i = 4;
1370 while (i--)
1371 *scan++ = 0;
1372 }
1373 *scan++ = (value >> 24) & 0xff;
1374 *scan++ = (value >> 16) & 0xff;
1375 *scan++ = (value >> 8) & 0xff;
1376 *scan++ = (value & 0xff);
1377 }
1378
1379 static int
1380 threadref_to_int (threadref *ref)
1381 {
1382 int i, value = 0;
1383 unsigned char *scan;
1384
1385 scan = (char *) ref;
1386 scan += 4;
1387 i = 4;
1388 while (i-- > 0)
1389 value = (value << 8) | ((*scan++) & 0xff);
1390 return value;
1391 }
1392
1393 static void
1394 copy_threadref (threadref *dest, threadref *src)
1395 {
1396 int i;
1397 unsigned char *csrc, *cdest;
1398
1399 csrc = (unsigned char *) src;
1400 cdest = (unsigned char *) dest;
1401 i = 8;
1402 while (i--)
1403 *cdest++ = *csrc++;
1404 }
1405
1406 static int
1407 threadmatch (threadref *dest, threadref *src)
1408 {
1409 /* things are broken right now, so just assume we got a match */
1410 #if 0
1411 unsigned char *srcp, *destp;
1412 int i, result;
1413 srcp = (char *) src;
1414 destp = (char *) dest;
1415
1416 result = 1;
1417 while (i-- > 0)
1418 result &= (*srcp++ == *destp++) ? 1 : 0;
1419 return result;
1420 #endif
1421 return 1;
1422 }
1423
1424 /*
1425 threadid:1, # always request threadid
1426 context_exists:2,
1427 display:4,
1428 unique_name:8,
1429 more_display:16
1430 */
1431
1432 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1433
1434 static char *
1435 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1436 {
1437 *pkt++ = 'q'; /* Info Query */
1438 *pkt++ = 'P'; /* process or thread info */
1439 pkt = pack_int (pkt, mode); /* mode */
1440 pkt = pack_threadid (pkt, id); /* threadid */
1441 *pkt = '\0'; /* terminate */
1442 return pkt;
1443 }
1444
1445 /* These values tag the fields in a thread info response packet */
1446 /* Tagging the fields allows us to request specific fields and to
1447 add more fields as time goes by */
1448
1449 #define TAG_THREADID 1 /* Echo the thread identifier */
1450 #define TAG_EXISTS 2 /* Is this process defined enough to
1451 fetch registers and its stack */
1452 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1453 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1454 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1455 the process */
1456
1457 static int
1458 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1459 struct gdb_ext_thread_info *info)
1460 {
1461 struct remote_state *rs = get_remote_state ();
1462 int mask, length;
1463 unsigned int tag;
1464 threadref ref;
1465 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1466 int retval = 1;
1467
1468 /* info->threadid = 0; FIXME: implement zero_threadref */
1469 info->active = 0;
1470 info->display[0] = '\0';
1471 info->shortname[0] = '\0';
1472 info->more_display[0] = '\0';
1473
1474 /* Assume the characters indicating the packet type have been stripped */
1475 pkt = unpack_int (pkt, &mask); /* arg mask */
1476 pkt = unpack_threadid (pkt, &ref);
1477
1478 if (mask == 0)
1479 warning ("Incomplete response to threadinfo request\n");
1480 if (!threadmatch (&ref, expectedref))
1481 { /* This is an answer to a different request */
1482 warning ("ERROR RMT Thread info mismatch\n");
1483 return 0;
1484 }
1485 copy_threadref (&info->threadid, &ref);
1486
1487 /* Loop on tagged fields , try to bail if somthing goes wrong */
1488
1489 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1490 {
1491 pkt = unpack_int (pkt, &tag); /* tag */
1492 pkt = unpack_byte (pkt, &length); /* length */
1493 if (!(tag & mask)) /* tags out of synch with mask */
1494 {
1495 warning ("ERROR RMT: threadinfo tag mismatch\n");
1496 retval = 0;
1497 break;
1498 }
1499 if (tag == TAG_THREADID)
1500 {
1501 if (length != 16)
1502 {
1503 warning ("ERROR RMT: length of threadid is not 16\n");
1504 retval = 0;
1505 break;
1506 }
1507 pkt = unpack_threadid (pkt, &ref);
1508 mask = mask & ~TAG_THREADID;
1509 continue;
1510 }
1511 if (tag == TAG_EXISTS)
1512 {
1513 info->active = stub_unpack_int (pkt, length);
1514 pkt += length;
1515 mask = mask & ~(TAG_EXISTS);
1516 if (length > 8)
1517 {
1518 warning ("ERROR RMT: 'exists' length too long\n");
1519 retval = 0;
1520 break;
1521 }
1522 continue;
1523 }
1524 if (tag == TAG_THREADNAME)
1525 {
1526 pkt = unpack_string (pkt, &info->shortname[0], length);
1527 mask = mask & ~TAG_THREADNAME;
1528 continue;
1529 }
1530 if (tag == TAG_DISPLAY)
1531 {
1532 pkt = unpack_string (pkt, &info->display[0], length);
1533 mask = mask & ~TAG_DISPLAY;
1534 continue;
1535 }
1536 if (tag == TAG_MOREDISPLAY)
1537 {
1538 pkt = unpack_string (pkt, &info->more_display[0], length);
1539 mask = mask & ~TAG_MOREDISPLAY;
1540 continue;
1541 }
1542 warning ("ERROR RMT: unknown thread info tag\n");
1543 break; /* Not a tag we know about */
1544 }
1545 return retval;
1546 }
1547
1548 static int
1549 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1550 struct gdb_ext_thread_info *info)
1551 {
1552 struct remote_state *rs = get_remote_state ();
1553 int result;
1554 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1555
1556 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1557 putpkt (threadinfo_pkt);
1558 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1559 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1560 info);
1561 return result;
1562 }
1563
1564 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1565 representation of a threadid. */
1566
1567 static int
1568 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1569 struct gdb_ext_thread_info *info)
1570 {
1571 threadref lclref;
1572
1573 int_to_threadref (&lclref, *ref);
1574 return remote_get_threadinfo (&lclref, selection, info);
1575 }
1576
1577 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1578
1579 static char *
1580 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1581 threadref *nextthread)
1582 {
1583 *pkt++ = 'q'; /* info query packet */
1584 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1585 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1586 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1587 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1588 *pkt = '\0';
1589 return pkt;
1590 }
1591
1592 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1593
1594 static int
1595 parse_threadlist_response (char *pkt, int result_limit,
1596 threadref *original_echo, threadref *resultlist,
1597 int *doneflag)
1598 {
1599 struct remote_state *rs = get_remote_state ();
1600 char *limit;
1601 int count, resultcount, done;
1602
1603 resultcount = 0;
1604 /* Assume the 'q' and 'M chars have been stripped. */
1605 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1606 pkt = unpack_byte (pkt, &count); /* count field */
1607 pkt = unpack_nibble (pkt, &done);
1608 /* The first threadid is the argument threadid. */
1609 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1610 while ((count-- > 0) && (pkt < limit))
1611 {
1612 pkt = unpack_threadid (pkt, resultlist++);
1613 if (resultcount++ >= result_limit)
1614 break;
1615 }
1616 if (doneflag)
1617 *doneflag = done;
1618 return resultcount;
1619 }
1620
1621 static int
1622 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1623 int *done, int *result_count, threadref *threadlist)
1624 {
1625 struct remote_state *rs = get_remote_state ();
1626 static threadref echo_nextthread;
1627 char *threadlist_packet = alloca (rs->remote_packet_size);
1628 char *t_response = alloca (rs->remote_packet_size);
1629 int result = 1;
1630
1631 /* Trancate result limit to be smaller than the packet size */
1632 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1633 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1634
1635 pack_threadlist_request (threadlist_packet,
1636 startflag, result_limit, nextthread);
1637 putpkt (threadlist_packet);
1638 getpkt (t_response, (rs->remote_packet_size), 0);
1639
1640 *result_count =
1641 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1642 threadlist, done);
1643
1644 if (!threadmatch (&echo_nextthread, nextthread))
1645 {
1646 /* FIXME: This is a good reason to drop the packet */
1647 /* Possably, there is a duplicate response */
1648 /* Possabilities :
1649 retransmit immediatly - race conditions
1650 retransmit after timeout - yes
1651 exit
1652 wait for packet, then exit
1653 */
1654 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1655 return 0; /* I choose simply exiting */
1656 }
1657 if (*result_count <= 0)
1658 {
1659 if (*done != 1)
1660 {
1661 warning ("RMT ERROR : failed to get remote thread list\n");
1662 result = 0;
1663 }
1664 return result; /* break; */
1665 }
1666 if (*result_count > result_limit)
1667 {
1668 *result_count = 0;
1669 warning ("RMT ERROR: threadlist response longer than requested\n");
1670 return 0;
1671 }
1672 return result;
1673 }
1674
1675 /* This is the interface between remote and threads, remotes upper interface */
1676
1677 /* remote_find_new_threads retrieves the thread list and for each
1678 thread in the list, looks up the thread in GDB's internal list,
1679 ading the thread if it does not already exist. This involves
1680 getting partial thread lists from the remote target so, polling the
1681 quit_flag is required. */
1682
1683
1684 /* About this many threadisds fit in a packet. */
1685
1686 #define MAXTHREADLISTRESULTS 32
1687
1688 static int
1689 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1690 int looplimit)
1691 {
1692 int done, i, result_count;
1693 int startflag = 1;
1694 int result = 1;
1695 int loopcount = 0;
1696 static threadref nextthread;
1697 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1698
1699 done = 0;
1700 while (!done)
1701 {
1702 if (loopcount++ > looplimit)
1703 {
1704 result = 0;
1705 warning ("Remote fetch threadlist -infinite loop-\n");
1706 break;
1707 }
1708 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1709 &done, &result_count, resultthreadlist))
1710 {
1711 result = 0;
1712 break;
1713 }
1714 /* clear for later iterations */
1715 startflag = 0;
1716 /* Setup to resume next batch of thread references, set nextthread. */
1717 if (result_count >= 1)
1718 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1719 i = 0;
1720 while (result_count--)
1721 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1722 break;
1723 }
1724 return result;
1725 }
1726
1727 static int
1728 remote_newthread_step (threadref *ref, void *context)
1729 {
1730 ptid_t ptid;
1731
1732 ptid = pid_to_ptid (threadref_to_int (ref));
1733
1734 if (!in_thread_list (ptid))
1735 add_thread (ptid);
1736 return 1; /* continue iterator */
1737 }
1738
1739 #define CRAZY_MAX_THREADS 1000
1740
1741 static ptid_t
1742 remote_current_thread (ptid_t oldpid)
1743 {
1744 struct remote_state *rs = get_remote_state ();
1745 char *buf = alloca (rs->remote_packet_size);
1746
1747 putpkt ("qC");
1748 getpkt (buf, (rs->remote_packet_size), 0);
1749 if (buf[0] == 'Q' && buf[1] == 'C')
1750 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1751 else
1752 return oldpid;
1753 }
1754
1755 /* Find new threads for info threads command.
1756 * Original version, using John Metzler's thread protocol.
1757 */
1758
1759 static void
1760 remote_find_new_threads (void)
1761 {
1762 remote_threadlist_iterator (remote_newthread_step, 0,
1763 CRAZY_MAX_THREADS);
1764 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1765 inferior_ptid = remote_current_thread (inferior_ptid);
1766 }
1767
1768 /*
1769 * Find all threads for info threads command.
1770 * Uses new thread protocol contributed by Cisco.
1771 * Falls back and attempts to use the older method (above)
1772 * if the target doesn't respond to the new method.
1773 */
1774
1775 static void
1776 remote_threads_info (void)
1777 {
1778 struct remote_state *rs = get_remote_state ();
1779 char *buf = alloca (rs->remote_packet_size);
1780 char *bufp;
1781 int tid;
1782
1783 if (remote_desc == 0) /* paranoia */
1784 error ("Command can only be used when connected to the remote target.");
1785
1786 if (use_threadinfo_query)
1787 {
1788 putpkt ("qfThreadInfo");
1789 bufp = buf;
1790 getpkt (bufp, (rs->remote_packet_size), 0);
1791 if (bufp[0] != '\0') /* q packet recognized */
1792 {
1793 while (*bufp++ == 'm') /* reply contains one or more TID */
1794 {
1795 do
1796 {
1797 tid = strtol (bufp, &bufp, 16);
1798 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1799 add_thread (pid_to_ptid (tid));
1800 }
1801 while (*bufp++ == ','); /* comma-separated list */
1802 putpkt ("qsThreadInfo");
1803 bufp = buf;
1804 getpkt (bufp, (rs->remote_packet_size), 0);
1805 }
1806 return; /* done */
1807 }
1808 }
1809
1810 /* Else fall back to old method based on jmetzler protocol. */
1811 use_threadinfo_query = 0;
1812 remote_find_new_threads ();
1813 return;
1814 }
1815
1816 /*
1817 * Collect a descriptive string about the given thread.
1818 * The target may say anything it wants to about the thread
1819 * (typically info about its blocked / runnable state, name, etc.).
1820 * This string will appear in the info threads display.
1821 *
1822 * Optional: targets are not required to implement this function.
1823 */
1824
1825 static char *
1826 remote_threads_extra_info (struct thread_info *tp)
1827 {
1828 struct remote_state *rs = get_remote_state ();
1829 int result;
1830 int set;
1831 threadref id;
1832 struct gdb_ext_thread_info threadinfo;
1833 static char display_buf[100]; /* arbitrary... */
1834 char *bufp = alloca (rs->remote_packet_size);
1835 int n = 0; /* position in display_buf */
1836
1837 if (remote_desc == 0) /* paranoia */
1838 internal_error (__FILE__, __LINE__,
1839 "remote_threads_extra_info");
1840
1841 if (use_threadextra_query)
1842 {
1843 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1844 putpkt (bufp);
1845 getpkt (bufp, (rs->remote_packet_size), 0);
1846 if (bufp[0] != 0)
1847 {
1848 n = min (strlen (bufp) / 2, sizeof (display_buf));
1849 result = hex2bin (bufp, display_buf, n);
1850 display_buf [result] = '\0';
1851 return display_buf;
1852 }
1853 }
1854
1855 /* If the above query fails, fall back to the old method. */
1856 use_threadextra_query = 0;
1857 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1858 | TAG_MOREDISPLAY | TAG_DISPLAY;
1859 int_to_threadref (&id, PIDGET (tp->ptid));
1860 if (remote_get_threadinfo (&id, set, &threadinfo))
1861 if (threadinfo.active)
1862 {
1863 if (*threadinfo.shortname)
1864 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1865 if (*threadinfo.display)
1866 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1867 if (*threadinfo.more_display)
1868 n += sprintf(&display_buf[n], " Priority: %s",
1869 threadinfo.more_display);
1870
1871 if (n > 0)
1872 {
1873 /* for purely cosmetic reasons, clear up trailing commas */
1874 if (',' == display_buf[n-1])
1875 display_buf[n-1] = ' ';
1876 return display_buf;
1877 }
1878 }
1879 return NULL;
1880 }
1881
1882 \f
1883
1884 /* Restart the remote side; this is an extended protocol operation. */
1885
1886 static void
1887 extended_remote_restart (void)
1888 {
1889 struct remote_state *rs = get_remote_state ();
1890 char *buf = alloca (rs->remote_packet_size);
1891
1892 /* Send the restart command; for reasons I don't understand the
1893 remote side really expects a number after the "R". */
1894 buf[0] = 'R';
1895 sprintf (&buf[1], "%x", 0);
1896 putpkt (buf);
1897
1898 /* Now query for status so this looks just like we restarted
1899 gdbserver from scratch. */
1900 putpkt ("?");
1901 getpkt (buf, (rs->remote_packet_size), 0);
1902 }
1903 \f
1904 /* Clean up connection to a remote debugger. */
1905
1906 static void
1907 remote_close (int quitting)
1908 {
1909 if (remote_desc)
1910 serial_close (remote_desc);
1911 remote_desc = NULL;
1912 }
1913
1914 /* Query the remote side for the text, data and bss offsets. */
1915
1916 static void
1917 get_offsets (void)
1918 {
1919 struct remote_state *rs = get_remote_state ();
1920 char *buf = alloca (rs->remote_packet_size);
1921 char *ptr;
1922 int lose;
1923 CORE_ADDR text_addr, data_addr, bss_addr;
1924 struct section_offsets *offs;
1925
1926 putpkt ("qOffsets");
1927
1928 getpkt (buf, (rs->remote_packet_size), 0);
1929
1930 if (buf[0] == '\000')
1931 return; /* Return silently. Stub doesn't support
1932 this command. */
1933 if (buf[0] == 'E')
1934 {
1935 warning ("Remote failure reply: %s", buf);
1936 return;
1937 }
1938
1939 /* Pick up each field in turn. This used to be done with scanf, but
1940 scanf will make trouble if CORE_ADDR size doesn't match
1941 conversion directives correctly. The following code will work
1942 with any size of CORE_ADDR. */
1943 text_addr = data_addr = bss_addr = 0;
1944 ptr = buf;
1945 lose = 0;
1946
1947 if (strncmp (ptr, "Text=", 5) == 0)
1948 {
1949 ptr += 5;
1950 /* Don't use strtol, could lose on big values. */
1951 while (*ptr && *ptr != ';')
1952 text_addr = (text_addr << 4) + fromhex (*ptr++);
1953 }
1954 else
1955 lose = 1;
1956
1957 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1958 {
1959 ptr += 6;
1960 while (*ptr && *ptr != ';')
1961 data_addr = (data_addr << 4) + fromhex (*ptr++);
1962 }
1963 else
1964 lose = 1;
1965
1966 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1967 {
1968 ptr += 5;
1969 while (*ptr && *ptr != ';')
1970 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1971 }
1972 else
1973 lose = 1;
1974
1975 if (lose)
1976 error ("Malformed response to offset query, %s", buf);
1977
1978 if (symfile_objfile == NULL)
1979 return;
1980
1981 offs = ((struct section_offsets *)
1982 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
1983 memcpy (offs, symfile_objfile->section_offsets,
1984 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
1985
1986 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1987
1988 /* This is a temporary kludge to force data and bss to use the same offsets
1989 because that's what nlmconv does now. The real solution requires changes
1990 to the stub and remote.c that I don't have time to do right now. */
1991
1992 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1993 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1994
1995 objfile_relocate (symfile_objfile, offs);
1996 }
1997
1998 /*
1999 * Cisco version of section offsets:
2000 *
2001 * Instead of having GDB query the target for the section offsets,
2002 * Cisco lets the target volunteer the information! It's also in
2003 * a different format, so here are the functions that will decode
2004 * a section offset packet from a Cisco target.
2005 */
2006
2007 /*
2008 * Function: remote_cisco_section_offsets
2009 *
2010 * Returns: zero for success, non-zero for failure
2011 */
2012
2013 static int
2014 remote_cisco_section_offsets (bfd_vma text_addr,
2015 bfd_vma data_addr,
2016 bfd_vma bss_addr,
2017 bfd_signed_vma *text_offs,
2018 bfd_signed_vma *data_offs,
2019 bfd_signed_vma *bss_offs)
2020 {
2021 bfd_vma text_base, data_base, bss_base;
2022 struct minimal_symbol *start;
2023 asection *sect;
2024 bfd *abfd;
2025 int len;
2026
2027 if (symfile_objfile == NULL)
2028 return -1; /* no can do nothin' */
2029
2030 start = lookup_minimal_symbol ("_start", NULL, NULL);
2031 if (start == NULL)
2032 return -1; /* Can't find "_start" symbol */
2033
2034 data_base = bss_base = 0;
2035 text_base = SYMBOL_VALUE_ADDRESS (start);
2036
2037 abfd = symfile_objfile->obfd;
2038 for (sect = abfd->sections;
2039 sect != 0;
2040 sect = sect->next)
2041 {
2042 const char *p = bfd_get_section_name (abfd, sect);
2043 len = strlen (p);
2044 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
2045 if (data_base == 0 ||
2046 data_base > bfd_get_section_vma (abfd, sect))
2047 data_base = bfd_get_section_vma (abfd, sect);
2048 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
2049 if (bss_base == 0 ||
2050 bss_base > bfd_get_section_vma (abfd, sect))
2051 bss_base = bfd_get_section_vma (abfd, sect);
2052 }
2053 *text_offs = text_addr - text_base;
2054 *data_offs = data_addr - data_base;
2055 *bss_offs = bss_addr - bss_base;
2056 if (remote_debug)
2057 {
2058 char tmp[128];
2059
2060 sprintf (tmp, "VMA: text = 0x");
2061 sprintf_vma (tmp + strlen (tmp), text_addr);
2062 sprintf (tmp + strlen (tmp), " data = 0x");
2063 sprintf_vma (tmp + strlen (tmp), data_addr);
2064 sprintf (tmp + strlen (tmp), " bss = 0x");
2065 sprintf_vma (tmp + strlen (tmp), bss_addr);
2066 fputs_filtered (tmp, gdb_stdlog);
2067 fprintf_filtered (gdb_stdlog,
2068 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
2069 paddr_nz (*text_offs),
2070 paddr_nz (*data_offs),
2071 paddr_nz (*bss_offs));
2072 }
2073
2074 return 0;
2075 }
2076
2077 /*
2078 * Function: remote_cisco_objfile_relocate
2079 *
2080 * Relocate the symbol file for a remote target.
2081 */
2082
2083 void
2084 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
2085 bfd_signed_vma bss_off)
2086 {
2087 struct section_offsets *offs;
2088
2089 if (text_off != 0 || data_off != 0 || bss_off != 0)
2090 {
2091 /* FIXME: This code assumes gdb-stabs.h is being used; it's
2092 broken for xcoff, dwarf, sdb-coff, etc. But there is no
2093 simple canonical representation for this stuff. */
2094
2095 offs = (struct section_offsets *)
2096 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2097 memcpy (offs, symfile_objfile->section_offsets,
2098 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2099
2100 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2101 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2102 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2103
2104 /* First call the standard objfile_relocate. */
2105 objfile_relocate (symfile_objfile, offs);
2106
2107 /* Now we need to fix up the section entries already attached to
2108 the exec target. These entries will control memory transfers
2109 from the exec file. */
2110
2111 exec_set_section_offsets (text_off, data_off, bss_off);
2112 }
2113 }
2114
2115 /* Stub for catch_errors. */
2116
2117 static int
2118 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2119 {
2120 start_remote (); /* Initialize gdb process mechanisms */
2121 /* NOTE: Return something >=0. A -ve value is reserved for
2122 catch_exceptions. */
2123 return 1;
2124 }
2125
2126 static int
2127 remote_start_remote (struct ui_out *uiout, void *dummy)
2128 {
2129 immediate_quit++; /* Allow user to interrupt it */
2130
2131 /* Ack any packet which the remote side has already sent. */
2132 serial_write (remote_desc, "+", 1);
2133
2134 /* Let the stub know that we want it to return the thread. */
2135 set_thread (-1, 0);
2136
2137 inferior_ptid = remote_current_thread (inferior_ptid);
2138
2139 get_offsets (); /* Get text, data & bss offsets */
2140
2141 putpkt ("?"); /* initiate a query from remote machine */
2142 immediate_quit--;
2143
2144 /* NOTE: See comment above in remote_start_remote_dummy(). This
2145 function returns something >=0. */
2146 return remote_start_remote_dummy (uiout, dummy);
2147 }
2148
2149 /* Open a connection to a remote debugger.
2150 NAME is the filename used for communication. */
2151
2152 static void
2153 remote_open (char *name, int from_tty)
2154 {
2155 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2156 }
2157
2158 /* Just like remote_open, but with asynchronous support. */
2159 static void
2160 remote_async_open (char *name, int from_tty)
2161 {
2162 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2163 }
2164
2165 /* Open a connection to a remote debugger using the extended
2166 remote gdb protocol. NAME is the filename used for communication. */
2167
2168 static void
2169 extended_remote_open (char *name, int from_tty)
2170 {
2171 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2172 0 /* async_p */);
2173 }
2174
2175 /* Just like extended_remote_open, but with asynchronous support. */
2176 static void
2177 extended_remote_async_open (char *name, int from_tty)
2178 {
2179 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2180 1 /*extended_p */, 1 /* async_p */);
2181 }
2182
2183 /* Generic code for opening a connection to a remote target. */
2184
2185 static void
2186 init_all_packet_configs (void)
2187 {
2188 int i;
2189 update_packet_config (&remote_protocol_e);
2190 update_packet_config (&remote_protocol_E);
2191 update_packet_config (&remote_protocol_P);
2192 update_packet_config (&remote_protocol_qSymbol);
2193 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2194 update_packet_config (&remote_protocol_Z[i]);
2195 /* Force remote_write_bytes to check whether target supports binary
2196 downloading. */
2197 update_packet_config (&remote_protocol_binary_download);
2198 }
2199
2200 /* Symbol look-up. */
2201
2202 static void
2203 remote_check_symbols (struct objfile *objfile)
2204 {
2205 struct remote_state *rs = get_remote_state ();
2206 char *msg, *reply, *tmp;
2207 struct minimal_symbol *sym;
2208 int end;
2209
2210 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2211 return;
2212
2213 msg = alloca (rs->remote_packet_size);
2214 reply = alloca (rs->remote_packet_size);
2215
2216 /* Invite target to request symbol lookups. */
2217
2218 putpkt ("qSymbol::");
2219 getpkt (reply, (rs->remote_packet_size), 0);
2220 packet_ok (reply, &remote_protocol_qSymbol);
2221
2222 while (strncmp (reply, "qSymbol:", 8) == 0)
2223 {
2224 tmp = &reply[8];
2225 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2226 msg[end] = '\0';
2227 sym = lookup_minimal_symbol (msg, NULL, NULL);
2228 if (sym == NULL)
2229 sprintf (msg, "qSymbol::%s", &reply[8]);
2230 else
2231 sprintf (msg, "qSymbol:%s:%s",
2232 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2233 &reply[8]);
2234 putpkt (msg);
2235 getpkt (reply, (rs->remote_packet_size), 0);
2236 }
2237 }
2238
2239 static struct serial *
2240 remote_serial_open (char *name)
2241 {
2242 static int udp_warning = 0;
2243
2244 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2245 of in ser-tcp.c, because it is the remote protocol assuming that the
2246 serial connection is reliable and not the serial connection promising
2247 to be. */
2248 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2249 {
2250 warning ("The remote protocol may be unreliable over UDP.");
2251 warning ("Some events may be lost, rendering further debugging "
2252 "impossible.");
2253 udp_warning = 1;
2254 }
2255
2256 return serial_open (name);
2257 }
2258
2259 static void
2260 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2261 int extended_p, int async_p)
2262 {
2263 int ex;
2264 struct remote_state *rs = get_remote_state ();
2265 if (name == 0)
2266 error ("To open a remote debug connection, you need to specify what\n"
2267 "serial device is attached to the remote system\n"
2268 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2269
2270 /* See FIXME above */
2271 if (!async_p)
2272 wait_forever_enabled_p = 1;
2273
2274 target_preopen (from_tty);
2275
2276 unpush_target (target);
2277
2278 remote_desc = remote_serial_open (name);
2279 if (!remote_desc)
2280 perror_with_name (name);
2281
2282 if (baud_rate != -1)
2283 {
2284 if (serial_setbaudrate (remote_desc, baud_rate))
2285 {
2286 serial_close (remote_desc);
2287 perror_with_name (name);
2288 }
2289 }
2290
2291 serial_raw (remote_desc);
2292
2293 /* If there is something sitting in the buffer we might take it as a
2294 response to a command, which would be bad. */
2295 serial_flush_input (remote_desc);
2296
2297 if (from_tty)
2298 {
2299 puts_filtered ("Remote debugging using ");
2300 puts_filtered (name);
2301 puts_filtered ("\n");
2302 }
2303 push_target (target); /* Switch to using remote target now */
2304
2305 init_all_packet_configs ();
2306
2307 general_thread = -2;
2308 continue_thread = -2;
2309
2310 /* Probe for ability to use "ThreadInfo" query, as required. */
2311 use_threadinfo_query = 1;
2312 use_threadextra_query = 1;
2313
2314 /* Without this, some commands which require an active target (such
2315 as kill) won't work. This variable serves (at least) double duty
2316 as both the pid of the target process (if it has such), and as a
2317 flag indicating that a target is active. These functions should
2318 be split out into seperate variables, especially since GDB will
2319 someday have a notion of debugging several processes. */
2320
2321 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2322
2323 if (async_p)
2324 {
2325 /* With this target we start out by owning the terminal. */
2326 remote_async_terminal_ours_p = 1;
2327
2328 /* FIXME: cagney/1999-09-23: During the initial connection it is
2329 assumed that the target is already ready and able to respond to
2330 requests. Unfortunately remote_start_remote() eventually calls
2331 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2332 around this. Eventually a mechanism that allows
2333 wait_for_inferior() to expect/get timeouts will be
2334 implemented. */
2335 wait_forever_enabled_p = 0;
2336 }
2337
2338 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2339 /* First delete any symbols previously loaded from shared libraries. */
2340 no_shared_libraries (NULL, 0);
2341 #endif
2342
2343 /* Start the remote connection. If error() or QUIT, discard this
2344 target (we'd otherwise be in an inconsistent state) and then
2345 propogate the error on up the exception chain. This ensures that
2346 the caller doesn't stumble along blindly assuming that the
2347 function succeeded. The CLI doesn't have this problem but other
2348 UI's, such as MI do.
2349
2350 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2351 this function should return an error indication letting the
2352 caller restore the previous state. Unfortunatly the command
2353 ``target remote'' is directly wired to this function making that
2354 impossible. On a positive note, the CLI side of this problem has
2355 been fixed - the function set_cmd_context() makes it possible for
2356 all the ``target ....'' commands to share a common callback
2357 function. See cli-dump.c. */
2358 ex = catch_exceptions (uiout,
2359 remote_start_remote, NULL,
2360 "Couldn't establish connection to remote"
2361 " target\n",
2362 RETURN_MASK_ALL);
2363 if (ex < 0)
2364 {
2365 pop_target ();
2366 if (async_p)
2367 wait_forever_enabled_p = 1;
2368 throw_exception (ex);
2369 }
2370
2371 if (async_p)
2372 wait_forever_enabled_p = 1;
2373
2374 if (extended_p)
2375 {
2376 /* Tell the remote that we are using the extended protocol. */
2377 char *buf = alloca (rs->remote_packet_size);
2378 putpkt ("!");
2379 getpkt (buf, (rs->remote_packet_size), 0);
2380 }
2381 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2382 /* FIXME: need a master target_open vector from which all
2383 remote_opens can be called, so that stuff like this can
2384 go there. Failing that, the following code must be copied
2385 to the open function for any remote target that wants to
2386 support svr4 shared libraries. */
2387
2388 /* Set up to detect and load shared libraries. */
2389 if (exec_bfd) /* No use without an exec file. */
2390 {
2391 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2392 remote_check_symbols (symfile_objfile);
2393 }
2394 #endif
2395 }
2396
2397 /* This takes a program previously attached to and detaches it. After
2398 this is done, GDB can be used to debug some other program. We
2399 better not have left any breakpoints in the target program or it'll
2400 die when it hits one. */
2401
2402 static void
2403 remote_detach (char *args, int from_tty)
2404 {
2405 struct remote_state *rs = get_remote_state ();
2406 char *buf = alloca (rs->remote_packet_size);
2407
2408 if (args)
2409 error ("Argument given to \"detach\" when remotely debugging.");
2410
2411 /* Tell the remote target to detach. */
2412 strcpy (buf, "D");
2413 remote_send (buf, (rs->remote_packet_size));
2414
2415 /* Unregister the file descriptor from the event loop. */
2416 if (target_is_async_p ())
2417 serial_async (remote_desc, NULL, 0);
2418
2419 target_mourn_inferior ();
2420 if (from_tty)
2421 puts_filtered ("Ending remote debugging.\n");
2422 }
2423
2424 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2425
2426 static void
2427 remote_disconnect (char *args, int from_tty)
2428 {
2429 struct remote_state *rs = get_remote_state ();
2430 char *buf = alloca (rs->remote_packet_size);
2431
2432 if (args)
2433 error ("Argument given to \"detach\" when remotely debugging.");
2434
2435 /* Unregister the file descriptor from the event loop. */
2436 if (target_is_async_p ())
2437 serial_async (remote_desc, NULL, 0);
2438
2439 target_mourn_inferior ();
2440 if (from_tty)
2441 puts_filtered ("Ending remote debugging.\n");
2442 }
2443
2444 /* Convert hex digit A to a number. */
2445
2446 static int
2447 fromhex (int a)
2448 {
2449 if (a >= '0' && a <= '9')
2450 return a - '0';
2451 else if (a >= 'a' && a <= 'f')
2452 return a - 'a' + 10;
2453 else if (a >= 'A' && a <= 'F')
2454 return a - 'A' + 10;
2455 else
2456 error ("Reply contains invalid hex digit %d", a);
2457 }
2458
2459 static int
2460 hex2bin (const char *hex, char *bin, int count)
2461 {
2462 int i;
2463
2464 for (i = 0; i < count; i++)
2465 {
2466 if (hex[0] == 0 || hex[1] == 0)
2467 {
2468 /* Hex string is short, or of uneven length.
2469 Return the count that has been converted so far. */
2470 return i;
2471 }
2472 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2473 hex += 2;
2474 }
2475 return i;
2476 }
2477
2478 /* Convert number NIB to a hex digit. */
2479
2480 static int
2481 tohex (int nib)
2482 {
2483 if (nib < 10)
2484 return '0' + nib;
2485 else
2486 return 'a' + nib - 10;
2487 }
2488
2489 static int
2490 bin2hex (const char *bin, char *hex, int count)
2491 {
2492 int i;
2493 /* May use a length, or a nul-terminated string as input. */
2494 if (count == 0)
2495 count = strlen (bin);
2496
2497 for (i = 0; i < count; i++)
2498 {
2499 *hex++ = tohex ((*bin >> 4) & 0xf);
2500 *hex++ = tohex (*bin++ & 0xf);
2501 }
2502 *hex = 0;
2503 return i;
2504 }
2505 \f
2506 /* Tell the remote machine to resume. */
2507
2508 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2509
2510 static int last_sent_step;
2511
2512 static void
2513 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2514 {
2515 struct remote_state *rs = get_remote_state ();
2516 char *buf = alloca (rs->remote_packet_size);
2517 int pid = PIDGET (ptid);
2518 char *p;
2519
2520 if (pid == -1)
2521 set_thread (0, 0); /* run any thread */
2522 else
2523 set_thread (pid, 0); /* run this thread */
2524
2525 last_sent_signal = siggnal;
2526 last_sent_step = step;
2527
2528 /* A hook for when we need to do something at the last moment before
2529 resumption. */
2530 if (target_resume_hook)
2531 (*target_resume_hook) ();
2532
2533
2534 /* The s/S/c/C packets do not return status. So if the target does
2535 not support the S or C packets, the debug agent returns an empty
2536 string which is detected in remote_wait(). This protocol defect
2537 is fixed in the e/E packets. */
2538
2539 if (step && step_range_end)
2540 {
2541 /* If the target does not support the 'E' packet, we try the 'S'
2542 packet. Ideally we would fall back to the 'e' packet if that
2543 too is not supported. But that would require another copy of
2544 the code to issue the 'e' packet (and fall back to 's' if not
2545 supported) in remote_wait(). */
2546
2547 if (siggnal != TARGET_SIGNAL_0)
2548 {
2549 if (remote_protocol_E.support != PACKET_DISABLE)
2550 {
2551 p = buf;
2552 *p++ = 'E';
2553 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2554 *p++ = tohex (((int) siggnal) & 0xf);
2555 *p++ = ',';
2556 p += hexnumstr (p, (ULONGEST) step_range_start);
2557 *p++ = ',';
2558 p += hexnumstr (p, (ULONGEST) step_range_end);
2559 *p++ = 0;
2560
2561 putpkt (buf);
2562 getpkt (buf, (rs->remote_packet_size), 0);
2563
2564 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2565 return;
2566 }
2567 }
2568 else
2569 {
2570 if (remote_protocol_e.support != PACKET_DISABLE)
2571 {
2572 p = buf;
2573 *p++ = 'e';
2574 p += hexnumstr (p, (ULONGEST) step_range_start);
2575 *p++ = ',';
2576 p += hexnumstr (p, (ULONGEST) step_range_end);
2577 *p++ = 0;
2578
2579 putpkt (buf);
2580 getpkt (buf, (rs->remote_packet_size), 0);
2581
2582 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2583 return;
2584 }
2585 }
2586 }
2587
2588 if (siggnal != TARGET_SIGNAL_0)
2589 {
2590 buf[0] = step ? 'S' : 'C';
2591 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2592 buf[2] = tohex (((int) siggnal) & 0xf);
2593 buf[3] = '\0';
2594 }
2595 else
2596 strcpy (buf, step ? "s" : "c");
2597
2598 putpkt (buf);
2599 }
2600
2601 /* Same as remote_resume, but with async support. */
2602 static void
2603 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2604 {
2605 struct remote_state *rs = get_remote_state ();
2606 char *buf = alloca (rs->remote_packet_size);
2607 int pid = PIDGET (ptid);
2608 char *p;
2609
2610 if (pid == -1)
2611 set_thread (0, 0); /* run any thread */
2612 else
2613 set_thread (pid, 0); /* run this thread */
2614
2615 last_sent_signal = siggnal;
2616 last_sent_step = step;
2617
2618 /* A hook for when we need to do something at the last moment before
2619 resumption. */
2620 if (target_resume_hook)
2621 (*target_resume_hook) ();
2622
2623 /* The s/S/c/C packets do not return status. So if the target does
2624 not support the S or C packets, the debug agent returns an empty
2625 string which is detected in remote_wait(). This protocol defect
2626 is fixed in the e/E packets. */
2627
2628 if (step && step_range_end)
2629 {
2630 /* If the target does not support the 'E' packet, we try the 'S'
2631 packet. Ideally we would fall back to the 'e' packet if that
2632 too is not supported. But that would require another copy of
2633 the code to issue the 'e' packet (and fall back to 's' if not
2634 supported) in remote_wait(). */
2635
2636 if (siggnal != TARGET_SIGNAL_0)
2637 {
2638 if (remote_protocol_E.support != PACKET_DISABLE)
2639 {
2640 p = buf;
2641 *p++ = 'E';
2642 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2643 *p++ = tohex (((int) siggnal) & 0xf);
2644 *p++ = ',';
2645 p += hexnumstr (p, (ULONGEST) step_range_start);
2646 *p++ = ',';
2647 p += hexnumstr (p, (ULONGEST) step_range_end);
2648 *p++ = 0;
2649
2650 putpkt (buf);
2651 getpkt (buf, (rs->remote_packet_size), 0);
2652
2653 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2654 goto register_event_loop;
2655 }
2656 }
2657 else
2658 {
2659 if (remote_protocol_e.support != PACKET_DISABLE)
2660 {
2661 p = buf;
2662 *p++ = 'e';
2663 p += hexnumstr (p, (ULONGEST) step_range_start);
2664 *p++ = ',';
2665 p += hexnumstr (p, (ULONGEST) step_range_end);
2666 *p++ = 0;
2667
2668 putpkt (buf);
2669 getpkt (buf, (rs->remote_packet_size), 0);
2670
2671 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2672 goto register_event_loop;
2673 }
2674 }
2675 }
2676
2677 if (siggnal != TARGET_SIGNAL_0)
2678 {
2679 buf[0] = step ? 'S' : 'C';
2680 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2681 buf[2] = tohex ((int) siggnal & 0xf);
2682 buf[3] = '\0';
2683 }
2684 else
2685 strcpy (buf, step ? "s" : "c");
2686
2687 putpkt (buf);
2688
2689 register_event_loop:
2690 /* We are about to start executing the inferior, let's register it
2691 with the event loop. NOTE: this is the one place where all the
2692 execution commands end up. We could alternatively do this in each
2693 of the execution commands in infcmd.c.*/
2694 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2695 into infcmd.c in order to allow inferior function calls to work
2696 NOT asynchronously. */
2697 if (event_loop_p && target_can_async_p ())
2698 target_async (inferior_event_handler, 0);
2699 /* Tell the world that the target is now executing. */
2700 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2701 this? Instead, should the client of target just assume (for
2702 async targets) that the target is going to start executing? Is
2703 this information already found in the continuation block? */
2704 if (target_is_async_p ())
2705 target_executing = 1;
2706 }
2707 \f
2708
2709 /* Set up the signal handler for SIGINT, while the target is
2710 executing, ovewriting the 'regular' SIGINT signal handler. */
2711 static void
2712 initialize_sigint_signal_handler (void)
2713 {
2714 sigint_remote_token =
2715 create_async_signal_handler (async_remote_interrupt, NULL);
2716 signal (SIGINT, handle_remote_sigint);
2717 }
2718
2719 /* Signal handler for SIGINT, while the target is executing. */
2720 static void
2721 handle_remote_sigint (int sig)
2722 {
2723 signal (sig, handle_remote_sigint_twice);
2724 sigint_remote_twice_token =
2725 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2726 mark_async_signal_handler_wrapper (sigint_remote_token);
2727 }
2728
2729 /* Signal handler for SIGINT, installed after SIGINT has already been
2730 sent once. It will take effect the second time that the user sends
2731 a ^C. */
2732 static void
2733 handle_remote_sigint_twice (int sig)
2734 {
2735 signal (sig, handle_sigint);
2736 sigint_remote_twice_token =
2737 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2738 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2739 }
2740
2741 /* Perform the real interruption of the target execution, in response
2742 to a ^C. */
2743 static void
2744 async_remote_interrupt (gdb_client_data arg)
2745 {
2746 if (remote_debug)
2747 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2748
2749 target_stop ();
2750 }
2751
2752 /* Perform interrupt, if the first attempt did not succeed. Just give
2753 up on the target alltogether. */
2754 void
2755 async_remote_interrupt_twice (gdb_client_data arg)
2756 {
2757 if (remote_debug)
2758 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2759 /* Do something only if the target was not killed by the previous
2760 cntl-C. */
2761 if (target_executing)
2762 {
2763 interrupt_query ();
2764 signal (SIGINT, handle_remote_sigint);
2765 }
2766 }
2767
2768 /* Reinstall the usual SIGINT handlers, after the target has
2769 stopped. */
2770 static void
2771 cleanup_sigint_signal_handler (void *dummy)
2772 {
2773 signal (SIGINT, handle_sigint);
2774 if (sigint_remote_twice_token)
2775 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2776 if (sigint_remote_token)
2777 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2778 }
2779
2780 /* Send ^C to target to halt it. Target will respond, and send us a
2781 packet. */
2782 static void (*ofunc) (int);
2783
2784 /* The command line interface's stop routine. This function is installed
2785 as a signal handler for SIGINT. The first time a user requests a
2786 stop, we call remote_stop to send a break or ^C. If there is no
2787 response from the target (it didn't stop when the user requested it),
2788 we ask the user if he'd like to detach from the target. */
2789 static void
2790 remote_interrupt (int signo)
2791 {
2792 /* If this doesn't work, try more severe steps. */
2793 signal (signo, remote_interrupt_twice);
2794
2795 if (remote_debug)
2796 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2797
2798 target_stop ();
2799 }
2800
2801 /* The user typed ^C twice. */
2802
2803 static void
2804 remote_interrupt_twice (int signo)
2805 {
2806 signal (signo, ofunc);
2807 interrupt_query ();
2808 signal (signo, remote_interrupt);
2809 }
2810
2811 /* This is the generic stop called via the target vector. When a target
2812 interrupt is requested, either by the command line or the GUI, we
2813 will eventually end up here. */
2814 static void
2815 remote_stop (void)
2816 {
2817 /* Send a break or a ^C, depending on user preference. */
2818 if (remote_debug)
2819 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2820
2821 if (remote_break)
2822 serial_send_break (remote_desc);
2823 else
2824 serial_write (remote_desc, "\003", 1);
2825 }
2826
2827 /* Ask the user what to do when an interrupt is received. */
2828
2829 static void
2830 interrupt_query (void)
2831 {
2832 target_terminal_ours ();
2833
2834 if (query ("Interrupted while waiting for the program.\n\
2835 Give up (and stop debugging it)? "))
2836 {
2837 target_mourn_inferior ();
2838 throw_exception (RETURN_QUIT);
2839 }
2840
2841 target_terminal_inferior ();
2842 }
2843
2844 /* Enable/disable target terminal ownership. Most targets can use
2845 terminal groups to control terminal ownership. Remote targets are
2846 different in that explicit transfer of ownership to/from GDB/target
2847 is required. */
2848
2849 static void
2850 remote_async_terminal_inferior (void)
2851 {
2852 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2853 sync_execution here. This function should only be called when
2854 GDB is resuming the inferior in the forground. A background
2855 resume (``run&'') should leave GDB in control of the terminal and
2856 consequently should not call this code. */
2857 if (!sync_execution)
2858 return;
2859 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2860 calls target_terminal_*() idenpotent. The event-loop GDB talking
2861 to an asynchronous target with a synchronous command calls this
2862 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2863 stops trying to transfer the terminal to the target when it
2864 shouldn't this guard can go away. */
2865 if (!remote_async_terminal_ours_p)
2866 return;
2867 delete_file_handler (input_fd);
2868 remote_async_terminal_ours_p = 0;
2869 initialize_sigint_signal_handler ();
2870 /* NOTE: At this point we could also register our selves as the
2871 recipient of all input. Any characters typed could then be
2872 passed on down to the target. */
2873 }
2874
2875 static void
2876 remote_async_terminal_ours (void)
2877 {
2878 /* See FIXME in remote_async_terminal_inferior. */
2879 if (!sync_execution)
2880 return;
2881 /* See FIXME in remote_async_terminal_inferior. */
2882 if (remote_async_terminal_ours_p)
2883 return;
2884 cleanup_sigint_signal_handler (NULL);
2885 add_file_handler (input_fd, stdin_event_handler, 0);
2886 remote_async_terminal_ours_p = 1;
2887 }
2888
2889 /* If nonzero, ignore the next kill. */
2890
2891 int kill_kludge;
2892
2893 void
2894 remote_console_output (char *msg)
2895 {
2896 char *p;
2897
2898 for (p = msg; p[0] && p[1]; p += 2)
2899 {
2900 char tb[2];
2901 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2902 tb[0] = c;
2903 tb[1] = 0;
2904 fputs_unfiltered (tb, gdb_stdtarg);
2905 }
2906 gdb_flush (gdb_stdtarg);
2907 }
2908
2909 /* Wait until the remote machine stops, then return,
2910 storing status in STATUS just as `wait' would.
2911 Returns "pid", which in the case of a multi-threaded
2912 remote OS, is the thread-id. */
2913
2914 static ptid_t
2915 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2916 {
2917 struct remote_state *rs = get_remote_state ();
2918 unsigned char *buf = alloca (rs->remote_packet_size);
2919 ULONGEST thread_num = -1;
2920 ULONGEST addr;
2921
2922 status->kind = TARGET_WAITKIND_EXITED;
2923 status->value.integer = 0;
2924
2925 while (1)
2926 {
2927 unsigned char *p;
2928
2929 ofunc = signal (SIGINT, remote_interrupt);
2930 getpkt (buf, (rs->remote_packet_size), 1);
2931 signal (SIGINT, ofunc);
2932
2933 /* This is a hook for when we need to do something (perhaps the
2934 collection of trace data) every time the target stops. */
2935 if (target_wait_loop_hook)
2936 (*target_wait_loop_hook) ();
2937
2938 remote_stopped_by_watchpoint_p = 0;
2939
2940 switch (buf[0])
2941 {
2942 case 'E': /* Error of some sort */
2943 warning ("Remote failure reply: %s", buf);
2944 continue;
2945 case 'F': /* File-I/O request */
2946 remote_fileio_request (buf);
2947 continue;
2948 case 'T': /* Status with PC, SP, FP, ... */
2949 {
2950 int i;
2951 char regs[MAX_REGISTER_SIZE];
2952
2953 /* Expedited reply, containing Signal, {regno, reg} repeat */
2954 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2955 ss = signal number
2956 n... = register number
2957 r... = register contents
2958 */
2959 p = &buf[3]; /* after Txx */
2960
2961 while (*p)
2962 {
2963 unsigned char *p1;
2964 char *p_temp;
2965 int fieldsize;
2966 LONGEST pnum = 0;
2967
2968 /* If the packet contains a register number save it in pnum
2969 and set p1 to point to the character following it.
2970 Otherwise p1 points to p. */
2971
2972 /* If this packet is an awatch packet, don't parse the 'a'
2973 as a register number. */
2974
2975 if (strncmp (p, "awatch", strlen("awatch")) != 0)
2976 {
2977 /* Read the ``P'' register number. */
2978 pnum = strtol (p, &p_temp, 16);
2979 p1 = (unsigned char *) p_temp;
2980 }
2981 else
2982 p1 = p;
2983
2984 if (p1 == p) /* No register number present here */
2985 {
2986 p1 = (unsigned char *) strchr (p, ':');
2987 if (p1 == NULL)
2988 warning ("Malformed packet(a) (missing colon): %s\n\
2989 Packet: '%s'\n",
2990 p, buf);
2991 if (strncmp (p, "thread", p1 - p) == 0)
2992 {
2993 p_temp = unpack_varlen_hex (++p1, &thread_num);
2994 record_currthread (thread_num);
2995 p = (unsigned char *) p_temp;
2996 }
2997 else if ((strncmp (p, "watch", p1 - p) == 0)
2998 || (strncmp (p, "rwatch", p1 - p) == 0)
2999 || (strncmp (p, "awatch", p1 - p) == 0))
3000 {
3001 remote_stopped_by_watchpoint_p = 1;
3002 p = unpack_varlen_hex (++p1, &addr);
3003 remote_watch_data_address = (CORE_ADDR)addr;
3004 }
3005 else
3006 {
3007 /* Silently skip unknown optional info. */
3008 p_temp = strchr (p1 + 1, ';');
3009 if (p_temp)
3010 p = (unsigned char *) p_temp;
3011 }
3012 }
3013 else
3014 {
3015 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3016 p = p1;
3017
3018 if (*p++ != ':')
3019 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
3020 p, buf);
3021
3022 if (reg == NULL)
3023 error ("Remote sent bad register number %s: %s\nPacket: '%s'\n",
3024 phex_nz (pnum, 0), p, buf);
3025
3026 fieldsize = hex2bin (p, regs, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3027 p += 2 * fieldsize;
3028 if (fieldsize < DEPRECATED_REGISTER_RAW_SIZE (reg->regnum))
3029 warning ("Remote reply is too short: %s", buf);
3030 supply_register (reg->regnum, regs);
3031 }
3032
3033 if (*p++ != ';')
3034 error ("Remote register badly formatted: %s\nhere: %s", buf, p);
3035 }
3036 }
3037 /* fall through */
3038 case 'S': /* Old style status, just signal only */
3039 status->kind = TARGET_WAITKIND_STOPPED;
3040 status->value.sig = (enum target_signal)
3041 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3042
3043 if (buf[3] == 'p')
3044 {
3045 /* Export Cisco kernel mode as a convenience variable
3046 (so that it can be used in the GDB prompt if desired). */
3047
3048 if (cisco_kernel_mode == 1)
3049 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3050 value_from_string ("PDEBUG-"));
3051 cisco_kernel_mode = 0;
3052 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3053 record_currthread (thread_num);
3054 }
3055 else if (buf[3] == 'k')
3056 {
3057 /* Export Cisco kernel mode as a convenience variable
3058 (so that it can be used in the GDB prompt if desired). */
3059
3060 if (cisco_kernel_mode == 1)
3061 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3062 value_from_string ("KDEBUG-"));
3063 cisco_kernel_mode = 1;
3064 }
3065 goto got_status;
3066 case 'N': /* Cisco special: status and offsets */
3067 {
3068 bfd_vma text_addr, data_addr, bss_addr;
3069 bfd_signed_vma text_off, data_off, bss_off;
3070 unsigned char *p1;
3071
3072 status->kind = TARGET_WAITKIND_STOPPED;
3073 status->value.sig = (enum target_signal)
3074 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3075
3076 if (symfile_objfile == NULL)
3077 {
3078 warning ("Relocation packet received with no symbol file. \
3079 Packet Dropped");
3080 goto got_status;
3081 }
3082
3083 /* Relocate object file. Buffer format is NAATT;DD;BB
3084 * where AA is the signal number, TT is the new text
3085 * address, DD * is the new data address, and BB is the
3086 * new bss address. */
3087
3088 p = &buf[3];
3089 text_addr = strtoul (p, (char **) &p1, 16);
3090 if (p1 == p || *p1 != ';')
3091 warning ("Malformed relocation packet: Packet '%s'", buf);
3092 p = p1 + 1;
3093 data_addr = strtoul (p, (char **) &p1, 16);
3094 if (p1 == p || *p1 != ';')
3095 warning ("Malformed relocation packet: Packet '%s'", buf);
3096 p = p1 + 1;
3097 bss_addr = strtoul (p, (char **) &p1, 16);
3098 if (p1 == p)
3099 warning ("Malformed relocation packet: Packet '%s'", buf);
3100
3101 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3102 &text_off, &data_off, &bss_off)
3103 == 0)
3104 if (text_off != 0 || data_off != 0 || bss_off != 0)
3105 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3106
3107 goto got_status;
3108 }
3109 case 'W': /* Target exited */
3110 {
3111 /* The remote process exited. */
3112 status->kind = TARGET_WAITKIND_EXITED;
3113 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3114 goto got_status;
3115 }
3116 case 'X':
3117 status->kind = TARGET_WAITKIND_SIGNALLED;
3118 status->value.sig = (enum target_signal)
3119 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3120 kill_kludge = 1;
3121
3122 goto got_status;
3123 case 'O': /* Console output */
3124 remote_console_output (buf + 1);
3125 continue;
3126 case '\0':
3127 if (last_sent_signal != TARGET_SIGNAL_0)
3128 {
3129 /* Zero length reply means that we tried 'S' or 'C' and
3130 the remote system doesn't support it. */
3131 target_terminal_ours_for_output ();
3132 printf_filtered
3133 ("Can't send signals to this remote system. %s not sent.\n",
3134 target_signal_to_name (last_sent_signal));
3135 last_sent_signal = TARGET_SIGNAL_0;
3136 target_terminal_inferior ();
3137
3138 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3139 putpkt ((char *) buf);
3140 continue;
3141 }
3142 /* else fallthrough */
3143 default:
3144 warning ("Invalid remote reply: %s", buf);
3145 continue;
3146 }
3147 }
3148 got_status:
3149 if (thread_num != -1)
3150 {
3151 return pid_to_ptid (thread_num);
3152 }
3153 return inferior_ptid;
3154 }
3155
3156 /* Async version of remote_wait. */
3157 static ptid_t
3158 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3159 {
3160 struct remote_state *rs = get_remote_state ();
3161 unsigned char *buf = alloca (rs->remote_packet_size);
3162 ULONGEST thread_num = -1;
3163 ULONGEST addr;
3164
3165 status->kind = TARGET_WAITKIND_EXITED;
3166 status->value.integer = 0;
3167
3168 remote_stopped_by_watchpoint_p = 0;
3169
3170 while (1)
3171 {
3172 unsigned char *p;
3173
3174 if (!target_is_async_p ())
3175 ofunc = signal (SIGINT, remote_interrupt);
3176 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3177 _never_ wait for ever -> test on target_is_async_p().
3178 However, before we do that we need to ensure that the caller
3179 knows how to take the target into/out of async mode. */
3180 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3181 if (!target_is_async_p ())
3182 signal (SIGINT, ofunc);
3183
3184 /* This is a hook for when we need to do something (perhaps the
3185 collection of trace data) every time the target stops. */
3186 if (target_wait_loop_hook)
3187 (*target_wait_loop_hook) ();
3188
3189 switch (buf[0])
3190 {
3191 case 'E': /* Error of some sort */
3192 warning ("Remote failure reply: %s", buf);
3193 continue;
3194 case 'F': /* File-I/O request */
3195 remote_fileio_request (buf);
3196 continue;
3197 case 'T': /* Status with PC, SP, FP, ... */
3198 {
3199 int i;
3200 char regs[MAX_REGISTER_SIZE];
3201
3202 /* Expedited reply, containing Signal, {regno, reg} repeat */
3203 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3204 ss = signal number
3205 n... = register number
3206 r... = register contents
3207 */
3208 p = &buf[3]; /* after Txx */
3209
3210 while (*p)
3211 {
3212 unsigned char *p1;
3213 char *p_temp;
3214 int fieldsize;
3215 long pnum = 0;
3216
3217 /* If the packet contains a register number, save it in pnum
3218 and set p1 to point to the character following it.
3219 Otherwise p1 points to p. */
3220
3221 /* If this packet is an awatch packet, don't parse the 'a'
3222 as a register number. */
3223
3224 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3225 {
3226 /* Read the register number. */
3227 pnum = strtol (p, &p_temp, 16);
3228 p1 = (unsigned char *) p_temp;
3229 }
3230 else
3231 p1 = p;
3232
3233 if (p1 == p) /* No register number present here */
3234 {
3235 p1 = (unsigned char *) strchr (p, ':');
3236 if (p1 == NULL)
3237 error ("Malformed packet(a) (missing colon): %s\nPacket: '%s'\n",
3238 p, buf);
3239 if (strncmp (p, "thread", p1 - p) == 0)
3240 {
3241 p_temp = unpack_varlen_hex (++p1, &thread_num);
3242 record_currthread (thread_num);
3243 p = (unsigned char *) p_temp;
3244 }
3245 else if ((strncmp (p, "watch", p1 - p) == 0)
3246 || (strncmp (p, "rwatch", p1 - p) == 0)
3247 || (strncmp (p, "awatch", p1 - p) == 0))
3248 {
3249 remote_stopped_by_watchpoint_p = 1;
3250 p = unpack_varlen_hex (++p1, &addr);
3251 remote_watch_data_address = (CORE_ADDR)addr;
3252 }
3253 else
3254 {
3255 /* Silently skip unknown optional info. */
3256 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3257 if (p_temp)
3258 p = p_temp;
3259 }
3260 }
3261
3262 else
3263 {
3264 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3265 p = p1;
3266 if (*p++ != ':')
3267 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
3268 p, buf);
3269
3270 if (reg == NULL)
3271 error ("Remote sent bad register number %ld: %s\nPacket: '%s'\n",
3272 pnum, p, buf);
3273
3274 fieldsize = hex2bin (p, regs, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3275 p += 2 * fieldsize;
3276 if (fieldsize < DEPRECATED_REGISTER_RAW_SIZE (reg->regnum))
3277 warning ("Remote reply is too short: %s", buf);
3278 supply_register (reg->regnum, regs);
3279 }
3280
3281 if (*p++ != ';')
3282 error ("Remote register badly formatted: %s\nhere: %s",
3283 buf, p);
3284 }
3285 }
3286 /* fall through */
3287 case 'S': /* Old style status, just signal only */
3288 status->kind = TARGET_WAITKIND_STOPPED;
3289 status->value.sig = (enum target_signal)
3290 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3291
3292 if (buf[3] == 'p')
3293 {
3294 /* Export Cisco kernel mode as a convenience variable
3295 (so that it can be used in the GDB prompt if desired). */
3296
3297 if (cisco_kernel_mode == 1)
3298 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3299 value_from_string ("PDEBUG-"));
3300 cisco_kernel_mode = 0;
3301 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3302 record_currthread (thread_num);
3303 }
3304 else if (buf[3] == 'k')
3305 {
3306 /* Export Cisco kernel mode as a convenience variable
3307 (so that it can be used in the GDB prompt if desired). */
3308
3309 if (cisco_kernel_mode == 1)
3310 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3311 value_from_string ("KDEBUG-"));
3312 cisco_kernel_mode = 1;
3313 }
3314 goto got_status;
3315 case 'N': /* Cisco special: status and offsets */
3316 {
3317 bfd_vma text_addr, data_addr, bss_addr;
3318 bfd_signed_vma text_off, data_off, bss_off;
3319 unsigned char *p1;
3320
3321 status->kind = TARGET_WAITKIND_STOPPED;
3322 status->value.sig = (enum target_signal)
3323 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3324
3325 if (symfile_objfile == NULL)
3326 {
3327 warning ("Relocation packet recieved with no symbol file. \
3328 Packet Dropped");
3329 goto got_status;
3330 }
3331
3332 /* Relocate object file. Buffer format is NAATT;DD;BB
3333 * where AA is the signal number, TT is the new text
3334 * address, DD * is the new data address, and BB is the
3335 * new bss address. */
3336
3337 p = &buf[3];
3338 text_addr = strtoul (p, (char **) &p1, 16);
3339 if (p1 == p || *p1 != ';')
3340 warning ("Malformed relocation packet: Packet '%s'", buf);
3341 p = p1 + 1;
3342 data_addr = strtoul (p, (char **) &p1, 16);
3343 if (p1 == p || *p1 != ';')
3344 warning ("Malformed relocation packet: Packet '%s'", buf);
3345 p = p1 + 1;
3346 bss_addr = strtoul (p, (char **) &p1, 16);
3347 if (p1 == p)
3348 warning ("Malformed relocation packet: Packet '%s'", buf);
3349
3350 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3351 &text_off, &data_off, &bss_off)
3352 == 0)
3353 if (text_off != 0 || data_off != 0 || bss_off != 0)
3354 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3355
3356 goto got_status;
3357 }
3358 case 'W': /* Target exited */
3359 {
3360 /* The remote process exited. */
3361 status->kind = TARGET_WAITKIND_EXITED;
3362 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3363 goto got_status;
3364 }
3365 case 'X':
3366 status->kind = TARGET_WAITKIND_SIGNALLED;
3367 status->value.sig = (enum target_signal)
3368 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3369 kill_kludge = 1;
3370
3371 goto got_status;
3372 case 'O': /* Console output */
3373 remote_console_output (buf + 1);
3374 /* Return immediately to the event loop. The event loop will
3375 still be waiting on the inferior afterwards. */
3376 status->kind = TARGET_WAITKIND_IGNORE;
3377 goto got_status;
3378 case '\0':
3379 if (last_sent_signal != TARGET_SIGNAL_0)
3380 {
3381 /* Zero length reply means that we tried 'S' or 'C' and
3382 the remote system doesn't support it. */
3383 target_terminal_ours_for_output ();
3384 printf_filtered
3385 ("Can't send signals to this remote system. %s not sent.\n",
3386 target_signal_to_name (last_sent_signal));
3387 last_sent_signal = TARGET_SIGNAL_0;
3388 target_terminal_inferior ();
3389
3390 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3391 putpkt ((char *) buf);
3392 continue;
3393 }
3394 /* else fallthrough */
3395 default:
3396 warning ("Invalid remote reply: %s", buf);
3397 continue;
3398 }
3399 }
3400 got_status:
3401 if (thread_num != -1)
3402 {
3403 return pid_to_ptid (thread_num);
3404 }
3405 return inferior_ptid;
3406 }
3407
3408 /* Number of bytes of registers this stub implements. */
3409
3410 static int register_bytes_found;
3411
3412 /* Read the remote registers into the block REGS. */
3413 /* Currently we just read all the registers, so we don't use regnum. */
3414
3415 static void
3416 remote_fetch_registers (int regnum)
3417 {
3418 struct remote_state *rs = get_remote_state ();
3419 char *buf = alloca (rs->remote_packet_size);
3420 int i;
3421 char *p;
3422 char *regs = alloca (rs->sizeof_g_packet);
3423
3424 set_thread (PIDGET (inferior_ptid), 1);
3425
3426 if (regnum >= 0)
3427 {
3428 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3429 gdb_assert (reg != NULL);
3430 if (!reg->in_g_packet)
3431 internal_error (__FILE__, __LINE__,
3432 "Attempt to fetch a non G-packet register when this "
3433 "remote.c does not support the p-packet.");
3434 }
3435
3436 sprintf (buf, "g");
3437 remote_send (buf, (rs->remote_packet_size));
3438
3439 /* Save the size of the packet sent to us by the target. Its used
3440 as a heuristic when determining the max size of packets that the
3441 target can safely receive. */
3442 if ((rs->actual_register_packet_size) == 0)
3443 (rs->actual_register_packet_size) = strlen (buf);
3444
3445 /* Unimplemented registers read as all bits zero. */
3446 memset (regs, 0, rs->sizeof_g_packet);
3447
3448 /* We can get out of synch in various cases. If the first character
3449 in the buffer is not a hex character, assume that has happened
3450 and try to fetch another packet to read. */
3451 while ((buf[0] < '0' || buf[0] > '9')
3452 && (buf[0] < 'a' || buf[0] > 'f')
3453 && buf[0] != 'x') /* New: unavailable register value */
3454 {
3455 if (remote_debug)
3456 fprintf_unfiltered (gdb_stdlog,
3457 "Bad register packet; fetching a new packet\n");
3458 getpkt (buf, (rs->remote_packet_size), 0);
3459 }
3460
3461 /* Reply describes registers byte by byte, each byte encoded as two
3462 hex characters. Suck them all up, then supply them to the
3463 register cacheing/storage mechanism. */
3464
3465 p = buf;
3466 for (i = 0; i < rs->sizeof_g_packet; i++)
3467 {
3468 if (p[0] == 0)
3469 break;
3470 if (p[1] == 0)
3471 {
3472 warning ("Remote reply is of odd length: %s", buf);
3473 /* Don't change register_bytes_found in this case, and don't
3474 print a second warning. */
3475 goto supply_them;
3476 }
3477 if (p[0] == 'x' && p[1] == 'x')
3478 regs[i] = 0; /* 'x' */
3479 else
3480 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3481 p += 2;
3482 }
3483
3484 if (i != register_bytes_found)
3485 {
3486 register_bytes_found = i;
3487 if (REGISTER_BYTES_OK_P ()
3488 && !REGISTER_BYTES_OK (i))
3489 warning ("Remote reply is too short: %s", buf);
3490 }
3491
3492 supply_them:
3493 {
3494 int i;
3495 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3496 {
3497 struct packet_reg *r = &rs->regs[i];
3498 if (r->in_g_packet)
3499 {
3500 supply_register (r->regnum, regs + r->offset);
3501 if (buf[r->offset * 2] == 'x')
3502 set_register_cached (i, -1);
3503 }
3504 }
3505 }
3506 }
3507
3508 /* Prepare to store registers. Since we may send them all (using a
3509 'G' request), we have to read out the ones we don't want to change
3510 first. */
3511
3512 static void
3513 remote_prepare_to_store (void)
3514 {
3515 struct remote_state *rs = get_remote_state ();
3516 int i;
3517 char buf[MAX_REGISTER_SIZE];
3518
3519 /* Make sure the entire registers array is valid. */
3520 switch (remote_protocol_P.support)
3521 {
3522 case PACKET_DISABLE:
3523 case PACKET_SUPPORT_UNKNOWN:
3524 /* Make sure all the necessary registers are cached. */
3525 for (i = 0; i < NUM_REGS; i++)
3526 if (rs->regs[i].in_g_packet)
3527 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf);
3528 break;
3529 case PACKET_ENABLE:
3530 break;
3531 }
3532 }
3533
3534 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3535 packet was not recognized. */
3536
3537 static int
3538 store_register_using_P (int regnum)
3539 {
3540 struct remote_state *rs = get_remote_state ();
3541 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3542 /* Try storing a single register. */
3543 char *buf = alloca (rs->remote_packet_size);
3544 char regp[MAX_REGISTER_SIZE];
3545 char *p;
3546 int i;
3547
3548 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3549 p = buf + strlen (buf);
3550 regcache_collect (reg->regnum, regp);
3551 bin2hex (regp, p, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3552 remote_send (buf, rs->remote_packet_size);
3553
3554 return buf[0] != '\0';
3555 }
3556
3557
3558 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3559 of the register cache buffer. FIXME: ignores errors. */
3560
3561 static void
3562 remote_store_registers (int regnum)
3563 {
3564 struct remote_state *rs = get_remote_state ();
3565 char *buf;
3566 char *regs;
3567 int i;
3568 char *p;
3569
3570 set_thread (PIDGET (inferior_ptid), 1);
3571
3572 if (regnum >= 0)
3573 {
3574 switch (remote_protocol_P.support)
3575 {
3576 case PACKET_DISABLE:
3577 break;
3578 case PACKET_ENABLE:
3579 if (store_register_using_P (regnum))
3580 return;
3581 else
3582 error ("Protocol error: P packet not recognized by stub");
3583 case PACKET_SUPPORT_UNKNOWN:
3584 if (store_register_using_P (regnum))
3585 {
3586 /* The stub recognized the 'P' packet. Remember this. */
3587 remote_protocol_P.support = PACKET_ENABLE;
3588 return;
3589 }
3590 else
3591 {
3592 /* The stub does not support the 'P' packet. Use 'G'
3593 instead, and don't try using 'P' in the future (it
3594 will just waste our time). */
3595 remote_protocol_P.support = PACKET_DISABLE;
3596 break;
3597 }
3598 }
3599 }
3600
3601 /* Extract all the registers in the regcache copying them into a
3602 local buffer. */
3603 {
3604 int i;
3605 regs = alloca (rs->sizeof_g_packet);
3606 memset (regs, rs->sizeof_g_packet, 0);
3607 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3608 {
3609 struct packet_reg *r = &rs->regs[i];
3610 if (r->in_g_packet)
3611 regcache_collect (r->regnum, regs + r->offset);
3612 }
3613 }
3614
3615 /* Command describes registers byte by byte,
3616 each byte encoded as two hex characters. */
3617 buf = alloca (rs->remote_packet_size);
3618 p = buf;
3619 *p++ = 'G';
3620 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3621 bin2hex (regs, p, register_bytes_found);
3622 remote_send (buf, (rs->remote_packet_size));
3623 }
3624 \f
3625
3626 /* Return the number of hex digits in num. */
3627
3628 static int
3629 hexnumlen (ULONGEST num)
3630 {
3631 int i;
3632
3633 for (i = 0; num != 0; i++)
3634 num >>= 4;
3635
3636 return max (i, 1);
3637 }
3638
3639 /* Set BUF to the minimum number of hex digits representing NUM. */
3640
3641 static int
3642 hexnumstr (char *buf, ULONGEST num)
3643 {
3644 int len = hexnumlen (num);
3645 return hexnumnstr (buf, num, len);
3646 }
3647
3648
3649 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3650
3651 static int
3652 hexnumnstr (char *buf, ULONGEST num, int width)
3653 {
3654 int i;
3655
3656 buf[width] = '\0';
3657
3658 for (i = width - 1; i >= 0; i--)
3659 {
3660 buf[i] = "0123456789abcdef"[(num & 0xf)];
3661 num >>= 4;
3662 }
3663
3664 return width;
3665 }
3666
3667 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3668
3669 static CORE_ADDR
3670 remote_address_masked (CORE_ADDR addr)
3671 {
3672 if (remote_address_size > 0
3673 && remote_address_size < (sizeof (ULONGEST) * 8))
3674 {
3675 /* Only create a mask when that mask can safely be constructed
3676 in a ULONGEST variable. */
3677 ULONGEST mask = 1;
3678 mask = (mask << remote_address_size) - 1;
3679 addr &= mask;
3680 }
3681 return addr;
3682 }
3683
3684 /* Determine whether the remote target supports binary downloading.
3685 This is accomplished by sending a no-op memory write of zero length
3686 to the target at the specified address. It does not suffice to send
3687 the whole packet, since many stubs strip the eighth bit and subsequently
3688 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3689
3690 NOTE: This can still lose if the serial line is not eight-bit
3691 clean. In cases like this, the user should clear "remote
3692 X-packet". */
3693
3694 static void
3695 check_binary_download (CORE_ADDR addr)
3696 {
3697 struct remote_state *rs = get_remote_state ();
3698 switch (remote_protocol_binary_download.support)
3699 {
3700 case PACKET_DISABLE:
3701 break;
3702 case PACKET_ENABLE:
3703 break;
3704 case PACKET_SUPPORT_UNKNOWN:
3705 {
3706 char *buf = alloca (rs->remote_packet_size);
3707 char *p;
3708
3709 p = buf;
3710 *p++ = 'X';
3711 p += hexnumstr (p, (ULONGEST) addr);
3712 *p++ = ',';
3713 p += hexnumstr (p, (ULONGEST) 0);
3714 *p++ = ':';
3715 *p = '\0';
3716
3717 putpkt_binary (buf, (int) (p - buf));
3718 getpkt (buf, (rs->remote_packet_size), 0);
3719
3720 if (buf[0] == '\0')
3721 {
3722 if (remote_debug)
3723 fprintf_unfiltered (gdb_stdlog,
3724 "binary downloading NOT suppported by target\n");
3725 remote_protocol_binary_download.support = PACKET_DISABLE;
3726 }
3727 else
3728 {
3729 if (remote_debug)
3730 fprintf_unfiltered (gdb_stdlog,
3731 "binary downloading suppported by target\n");
3732 remote_protocol_binary_download.support = PACKET_ENABLE;
3733 }
3734 break;
3735 }
3736 }
3737 }
3738
3739 /* Write memory data directly to the remote machine.
3740 This does not inform the data cache; the data cache uses this.
3741 MEMADDR is the address in the remote memory space.
3742 MYADDR is the address of the buffer in our space.
3743 LEN is the number of bytes.
3744
3745 Returns number of bytes transferred, or 0 (setting errno) for
3746 error. Only transfer a single packet. */
3747
3748 int
3749 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3750 {
3751 unsigned char *buf;
3752 unsigned char *p;
3753 unsigned char *plen;
3754 long sizeof_buf;
3755 int plenlen;
3756 int todo;
3757 int nr_bytes;
3758 int payload_size;
3759 unsigned char *payload_start;
3760
3761 /* Verify that the target can support a binary download. */
3762 check_binary_download (memaddr);
3763
3764 /* Compute the size, and then allocate space for the largest
3765 possible packet. Include space for an extra trailing NUL. */
3766 sizeof_buf = get_memory_write_packet_size () + 1;
3767 buf = alloca (sizeof_buf);
3768
3769 /* Compute the size of the actual payload by subtracting out the
3770 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
3771 payload_size = (get_memory_write_packet_size () - (strlen ("$M,:#NN")
3772 + hexnumlen (memaddr)
3773 + hexnumlen (len)));
3774
3775 /* Construct the packet header: "[MX]<memaddr>,<len>:". */
3776
3777 /* Append "[XM]". Compute a best guess of the number of bytes
3778 actually transfered. */
3779 p = buf;
3780 switch (remote_protocol_binary_download.support)
3781 {
3782 case PACKET_ENABLE:
3783 *p++ = 'X';
3784 /* Best guess at number of bytes that will fit. */
3785 todo = min (len, payload_size);
3786 break;
3787 case PACKET_DISABLE:
3788 *p++ = 'M';
3789 /* num bytes that will fit */
3790 todo = min (len, payload_size / 2);
3791 break;
3792 case PACKET_SUPPORT_UNKNOWN:
3793 internal_error (__FILE__, __LINE__,
3794 "remote_write_bytes: bad internal state");
3795 default:
3796 internal_error (__FILE__, __LINE__, "bad switch");
3797 }
3798
3799 /* Append "<memaddr>". */
3800 memaddr = remote_address_masked (memaddr);
3801 p += hexnumstr (p, (ULONGEST) memaddr);
3802
3803 /* Append ",". */
3804 *p++ = ',';
3805
3806 /* Append <len>. Retain the location/size of <len>. It may need to
3807 be adjusted once the packet body has been created. */
3808 plen = p;
3809 plenlen = hexnumstr (p, (ULONGEST) todo);
3810 p += plenlen;
3811
3812 /* Append ":". */
3813 *p++ = ':';
3814 *p = '\0';
3815
3816 /* Append the packet body. */
3817 payload_start = p;
3818 switch (remote_protocol_binary_download.support)
3819 {
3820 case PACKET_ENABLE:
3821 /* Binary mode. Send target system values byte by byte, in
3822 increasing byte addresses. Only escape certain critical
3823 characters. */
3824 for (nr_bytes = 0;
3825 (nr_bytes < todo) && (p - payload_start) < payload_size;
3826 nr_bytes++)
3827 {
3828 switch (myaddr[nr_bytes] & 0xff)
3829 {
3830 case '$':
3831 case '#':
3832 case 0x7d:
3833 /* These must be escaped */
3834 *p++ = 0x7d;
3835 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3836 break;
3837 default:
3838 *p++ = myaddr[nr_bytes] & 0xff;
3839 break;
3840 }
3841 }
3842 if (nr_bytes < todo)
3843 {
3844 /* Escape chars have filled up the buffer prematurely,
3845 and we have actually sent fewer bytes than planned.
3846 Fix-up the length field of the packet. Use the same
3847 number of characters as before. */
3848 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3849 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3850 }
3851 break;
3852 case PACKET_DISABLE:
3853 /* Normal mode: Send target system values byte by byte, in
3854 increasing byte addresses. Each byte is encoded as a two hex
3855 value. */
3856 nr_bytes = bin2hex (myaddr, p, todo);
3857 p += 2 * nr_bytes;
3858 break;
3859 case PACKET_SUPPORT_UNKNOWN:
3860 internal_error (__FILE__, __LINE__,
3861 "remote_write_bytes: bad internal state");
3862 default:
3863 internal_error (__FILE__, __LINE__, "bad switch");
3864 }
3865
3866 putpkt_binary (buf, (int) (p - buf));
3867 getpkt (buf, sizeof_buf, 0);
3868
3869 if (buf[0] == 'E')
3870 {
3871 /* There is no correspondance between what the remote protocol
3872 uses for errors and errno codes. We would like a cleaner way
3873 of representing errors (big enough to include errno codes,
3874 bfd_error codes, and others). But for now just return EIO. */
3875 errno = EIO;
3876 return 0;
3877 }
3878
3879 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3880 bytes than we'd planned. */
3881 return nr_bytes;
3882 }
3883
3884 /* Read memory data directly from the remote machine.
3885 This does not use the data cache; the data cache uses this.
3886 MEMADDR is the address in the remote memory space.
3887 MYADDR is the address of the buffer in our space.
3888 LEN is the number of bytes.
3889
3890 Returns number of bytes transferred, or 0 for error. */
3891
3892 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3893 remote targets) shouldn't attempt to read the entire buffer.
3894 Instead it should read a single packet worth of data and then
3895 return the byte size of that packet to the caller. The caller (its
3896 caller and its callers caller ;-) already contains code for
3897 handling partial reads. */
3898
3899 int
3900 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3901 {
3902 char *buf;
3903 int max_buf_size; /* Max size of packet output buffer */
3904 long sizeof_buf;
3905 int origlen;
3906
3907 /* Create a buffer big enough for this packet. */
3908 max_buf_size = get_memory_read_packet_size ();
3909 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3910 buf = alloca (sizeof_buf);
3911
3912 origlen = len;
3913 while (len > 0)
3914 {
3915 char *p;
3916 int todo;
3917 int i;
3918
3919 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3920
3921 /* construct "m"<memaddr>","<len>" */
3922 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3923 memaddr = remote_address_masked (memaddr);
3924 p = buf;
3925 *p++ = 'm';
3926 p += hexnumstr (p, (ULONGEST) memaddr);
3927 *p++ = ',';
3928 p += hexnumstr (p, (ULONGEST) todo);
3929 *p = '\0';
3930
3931 putpkt (buf);
3932 getpkt (buf, sizeof_buf, 0);
3933
3934 if (buf[0] == 'E'
3935 && isxdigit (buf[1]) && isxdigit (buf[2])
3936 && buf[3] == '\0')
3937 {
3938 /* There is no correspondance between what the remote protocol uses
3939 for errors and errno codes. We would like a cleaner way of
3940 representing errors (big enough to include errno codes, bfd_error
3941 codes, and others). But for now just return EIO. */
3942 errno = EIO;
3943 return 0;
3944 }
3945
3946 /* Reply describes memory byte by byte,
3947 each byte encoded as two hex characters. */
3948
3949 p = buf;
3950 if ((i = hex2bin (p, myaddr, todo)) < todo)
3951 {
3952 /* Reply is short. This means that we were able to read
3953 only part of what we wanted to. */
3954 return i + (origlen - len);
3955 }
3956 myaddr += todo;
3957 memaddr += todo;
3958 len -= todo;
3959 }
3960 return origlen;
3961 }
3962 \f
3963 /* Read or write LEN bytes from inferior memory at MEMADDR,
3964 transferring to or from debugger address BUFFER. Write to inferior if
3965 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3966 for error. TARGET is unused. */
3967
3968 static int
3969 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3970 int should_write, struct mem_attrib *attrib,
3971 struct target_ops *target)
3972 {
3973 CORE_ADDR targ_addr;
3974 int targ_len;
3975 int res;
3976
3977 /* Should this be the selected frame? */
3978 gdbarch_remote_translate_xfer_address (current_gdbarch, current_regcache,
3979 mem_addr, mem_len,
3980 &targ_addr, &targ_len);
3981 if (targ_len <= 0)
3982 return 0;
3983
3984 if (should_write)
3985 res = remote_write_bytes (targ_addr, buffer, targ_len);
3986 else
3987 res = remote_read_bytes (targ_addr, buffer, targ_len);
3988
3989 return res;
3990 }
3991
3992 static void
3993 remote_files_info (struct target_ops *ignore)
3994 {
3995 puts_filtered ("Debugging a target over a serial line.\n");
3996 }
3997 \f
3998 /* Stuff for dealing with the packets which are part of this protocol.
3999 See comment at top of file for details. */
4000
4001 /* Read a single character from the remote end, masking it down to 7 bits. */
4002
4003 static int
4004 readchar (int timeout)
4005 {
4006 int ch;
4007
4008 ch = serial_readchar (remote_desc, timeout);
4009
4010 if (ch >= 0)
4011 return (ch & 0x7f);
4012
4013 switch ((enum serial_rc) ch)
4014 {
4015 case SERIAL_EOF:
4016 target_mourn_inferior ();
4017 error ("Remote connection closed");
4018 /* no return */
4019 case SERIAL_ERROR:
4020 perror_with_name ("Remote communication error");
4021 /* no return */
4022 case SERIAL_TIMEOUT:
4023 break;
4024 }
4025 return ch;
4026 }
4027
4028 /* Send the command in BUF to the remote machine, and read the reply
4029 into BUF. Report an error if we get an error reply. */
4030
4031 static void
4032 remote_send (char *buf,
4033 long sizeof_buf)
4034 {
4035 putpkt (buf);
4036 getpkt (buf, sizeof_buf, 0);
4037
4038 if (buf[0] == 'E')
4039 error ("Remote failure reply: %s", buf);
4040 }
4041
4042 /* Display a null-terminated packet on stdout, for debugging, using C
4043 string notation. */
4044
4045 static void
4046 print_packet (char *buf)
4047 {
4048 puts_filtered ("\"");
4049 fputstr_filtered (buf, '"', gdb_stdout);
4050 puts_filtered ("\"");
4051 }
4052
4053 int
4054 putpkt (char *buf)
4055 {
4056 return putpkt_binary (buf, strlen (buf));
4057 }
4058
4059 /* Send a packet to the remote machine, with error checking. The data
4060 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
4061 to account for the $, # and checksum, and for a possible /0 if we are
4062 debugging (remote_debug) and want to print the sent packet as a string */
4063
4064 static int
4065 putpkt_binary (char *buf, int cnt)
4066 {
4067 struct remote_state *rs = get_remote_state ();
4068 int i;
4069 unsigned char csum = 0;
4070 char *buf2 = alloca (cnt + 6);
4071 long sizeof_junkbuf = (rs->remote_packet_size);
4072 char *junkbuf = alloca (sizeof_junkbuf);
4073
4074 int ch;
4075 int tcount = 0;
4076 char *p;
4077
4078 /* Copy the packet into buffer BUF2, encapsulating it
4079 and giving it a checksum. */
4080
4081 p = buf2;
4082 *p++ = '$';
4083
4084 for (i = 0; i < cnt; i++)
4085 {
4086 csum += buf[i];
4087 *p++ = buf[i];
4088 }
4089 *p++ = '#';
4090 *p++ = tohex ((csum >> 4) & 0xf);
4091 *p++ = tohex (csum & 0xf);
4092
4093 /* Send it over and over until we get a positive ack. */
4094
4095 while (1)
4096 {
4097 int started_error_output = 0;
4098
4099 if (remote_debug)
4100 {
4101 *p = '\0';
4102 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4103 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4104 fprintf_unfiltered (gdb_stdlog, "...");
4105 gdb_flush (gdb_stdlog);
4106 }
4107 if (serial_write (remote_desc, buf2, p - buf2))
4108 perror_with_name ("putpkt: write failed");
4109
4110 /* read until either a timeout occurs (-2) or '+' is read */
4111 while (1)
4112 {
4113 ch = readchar (remote_timeout);
4114
4115 if (remote_debug)
4116 {
4117 switch (ch)
4118 {
4119 case '+':
4120 case '-':
4121 case SERIAL_TIMEOUT:
4122 case '$':
4123 if (started_error_output)
4124 {
4125 putchar_unfiltered ('\n');
4126 started_error_output = 0;
4127 }
4128 }
4129 }
4130
4131 switch (ch)
4132 {
4133 case '+':
4134 if (remote_debug)
4135 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4136 return 1;
4137 case '-':
4138 if (remote_debug)
4139 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4140 case SERIAL_TIMEOUT:
4141 tcount++;
4142 if (tcount > 3)
4143 return 0;
4144 break; /* Retransmit buffer */
4145 case '$':
4146 {
4147 if (remote_debug)
4148 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4149 /* It's probably an old response, and we're out of sync.
4150 Just gobble up the packet and ignore it. */
4151 read_frame (junkbuf, sizeof_junkbuf);
4152 continue; /* Now, go look for + */
4153 }
4154 default:
4155 if (remote_debug)
4156 {
4157 if (!started_error_output)
4158 {
4159 started_error_output = 1;
4160 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4161 }
4162 fputc_unfiltered (ch & 0177, gdb_stdlog);
4163 }
4164 continue;
4165 }
4166 break; /* Here to retransmit */
4167 }
4168
4169 #if 0
4170 /* This is wrong. If doing a long backtrace, the user should be
4171 able to get out next time we call QUIT, without anything as
4172 violent as interrupt_query. If we want to provide a way out of
4173 here without getting to the next QUIT, it should be based on
4174 hitting ^C twice as in remote_wait. */
4175 if (quit_flag)
4176 {
4177 quit_flag = 0;
4178 interrupt_query ();
4179 }
4180 #endif
4181 }
4182 }
4183
4184 static int remote_cisco_mode;
4185
4186 /* Come here after finding the start of the frame. Collect the rest
4187 into BUF, verifying the checksum, length, and handling run-length
4188 compression. No more than sizeof_buf-1 characters are read so that
4189 the buffer can be NUL terminated.
4190
4191 Returns -1 on error, number of characters in buffer (ignoring the
4192 trailing NULL) on success. (could be extended to return one of the
4193 SERIAL status indications). */
4194
4195 static long
4196 read_frame (char *buf,
4197 long sizeof_buf)
4198 {
4199 unsigned char csum;
4200 long bc;
4201 int c;
4202
4203 csum = 0;
4204 bc = 0;
4205
4206 while (1)
4207 {
4208 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4209 c = readchar (remote_timeout);
4210 switch (c)
4211 {
4212 case SERIAL_TIMEOUT:
4213 if (remote_debug)
4214 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4215 return -1;
4216 case '$':
4217 if (remote_debug)
4218 fputs_filtered ("Saw new packet start in middle of old one\n",
4219 gdb_stdlog);
4220 return -1; /* Start a new packet, count retries */
4221 case '#':
4222 {
4223 unsigned char pktcsum;
4224 int check_0 = 0;
4225 int check_1 = 0;
4226
4227 buf[bc] = '\0';
4228
4229 check_0 = readchar (remote_timeout);
4230 if (check_0 >= 0)
4231 check_1 = readchar (remote_timeout);
4232
4233 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4234 {
4235 if (remote_debug)
4236 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4237 return -1;
4238 }
4239 else if (check_0 < 0 || check_1 < 0)
4240 {
4241 if (remote_debug)
4242 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4243 return -1;
4244 }
4245
4246 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4247 if (csum == pktcsum)
4248 return bc;
4249
4250 if (remote_debug)
4251 {
4252 fprintf_filtered (gdb_stdlog,
4253 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4254 pktcsum, csum);
4255 fputs_filtered (buf, gdb_stdlog);
4256 fputs_filtered ("\n", gdb_stdlog);
4257 }
4258 /* Number of characters in buffer ignoring trailing
4259 NUL. */
4260 return -1;
4261 }
4262 case '*': /* Run length encoding */
4263 {
4264 int repeat;
4265 csum += c;
4266
4267 if (remote_cisco_mode == 0)
4268 {
4269 c = readchar (remote_timeout);
4270 csum += c;
4271 repeat = c - ' ' + 3; /* Compute repeat count */
4272 }
4273 else
4274 {
4275 /* Cisco's run-length encoding variant uses two
4276 hex chars to represent the repeat count. */
4277
4278 c = readchar (remote_timeout);
4279 csum += c;
4280 repeat = fromhex (c) << 4;
4281 c = readchar (remote_timeout);
4282 csum += c;
4283 repeat += fromhex (c);
4284 }
4285
4286 /* The character before ``*'' is repeated. */
4287
4288 if (repeat > 0 && repeat <= 255
4289 && bc > 0
4290 && bc + repeat - 1 < sizeof_buf - 1)
4291 {
4292 memset (&buf[bc], buf[bc - 1], repeat);
4293 bc += repeat;
4294 continue;
4295 }
4296
4297 buf[bc] = '\0';
4298 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4299 puts_filtered (buf);
4300 puts_filtered ("\n");
4301 return -1;
4302 }
4303 default:
4304 if (bc < sizeof_buf - 1)
4305 {
4306 buf[bc++] = c;
4307 csum += c;
4308 continue;
4309 }
4310
4311 buf[bc] = '\0';
4312 puts_filtered ("Remote packet too long: ");
4313 puts_filtered (buf);
4314 puts_filtered ("\n");
4315
4316 return -1;
4317 }
4318 }
4319 }
4320
4321 /* Read a packet from the remote machine, with error checking, and
4322 store it in BUF. If FOREVER, wait forever rather than timing out;
4323 this is used (in synchronous mode) to wait for a target that is is
4324 executing user code to stop. */
4325 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4326 don't have to change all the calls to getpkt to deal with the
4327 return value, because at the moment I don't know what the right
4328 thing to do it for those. */
4329 void
4330 getpkt (char *buf,
4331 long sizeof_buf,
4332 int forever)
4333 {
4334 int timed_out;
4335
4336 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4337 }
4338
4339
4340 /* Read a packet from the remote machine, with error checking, and
4341 store it in BUF. If FOREVER, wait forever rather than timing out;
4342 this is used (in synchronous mode) to wait for a target that is is
4343 executing user code to stop. If FOREVER == 0, this function is
4344 allowed to time out gracefully and return an indication of this to
4345 the caller. */
4346 static int
4347 getpkt_sane (char *buf,
4348 long sizeof_buf,
4349 int forever)
4350 {
4351 int c;
4352 int tries;
4353 int timeout;
4354 int val;
4355
4356 strcpy (buf, "timeout");
4357
4358 if (forever)
4359 {
4360 timeout = watchdog > 0 ? watchdog : -1;
4361 }
4362
4363 else
4364 timeout = remote_timeout;
4365
4366 #define MAX_TRIES 3
4367
4368 for (tries = 1; tries <= MAX_TRIES; tries++)
4369 {
4370 /* This can loop forever if the remote side sends us characters
4371 continuously, but if it pauses, we'll get a zero from readchar
4372 because of timeout. Then we'll count that as a retry. */
4373
4374 /* Note that we will only wait forever prior to the start of a packet.
4375 After that, we expect characters to arrive at a brisk pace. They
4376 should show up within remote_timeout intervals. */
4377
4378 do
4379 {
4380 c = readchar (timeout);
4381
4382 if (c == SERIAL_TIMEOUT)
4383 {
4384 if (forever) /* Watchdog went off? Kill the target. */
4385 {
4386 QUIT;
4387 target_mourn_inferior ();
4388 error ("Watchdog has expired. Target detached.\n");
4389 }
4390 if (remote_debug)
4391 fputs_filtered ("Timed out.\n", gdb_stdlog);
4392 goto retry;
4393 }
4394 }
4395 while (c != '$');
4396
4397 /* We've found the start of a packet, now collect the data. */
4398
4399 val = read_frame (buf, sizeof_buf);
4400
4401 if (val >= 0)
4402 {
4403 if (remote_debug)
4404 {
4405 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4406 fputstr_unfiltered (buf, 0, gdb_stdlog);
4407 fprintf_unfiltered (gdb_stdlog, "\n");
4408 }
4409 serial_write (remote_desc, "+", 1);
4410 return 0;
4411 }
4412
4413 /* Try the whole thing again. */
4414 retry:
4415 serial_write (remote_desc, "-", 1);
4416 }
4417
4418 /* We have tried hard enough, and just can't receive the packet. Give up. */
4419
4420 printf_unfiltered ("Ignoring packet error, continuing...\n");
4421 serial_write (remote_desc, "+", 1);
4422 return 1;
4423 }
4424 \f
4425 static void
4426 remote_kill (void)
4427 {
4428 /* For some mysterious reason, wait_for_inferior calls kill instead of
4429 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4430 if (kill_kludge)
4431 {
4432 kill_kludge = 0;
4433 target_mourn_inferior ();
4434 return;
4435 }
4436
4437 /* Use catch_errors so the user can quit from gdb even when we aren't on
4438 speaking terms with the remote system. */
4439 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4440
4441 /* Don't wait for it to die. I'm not really sure it matters whether
4442 we do or not. For the existing stubs, kill is a noop. */
4443 target_mourn_inferior ();
4444 }
4445
4446 /* Async version of remote_kill. */
4447 static void
4448 remote_async_kill (void)
4449 {
4450 /* Unregister the file descriptor from the event loop. */
4451 if (target_is_async_p ())
4452 serial_async (remote_desc, NULL, 0);
4453
4454 /* For some mysterious reason, wait_for_inferior calls kill instead of
4455 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4456 if (kill_kludge)
4457 {
4458 kill_kludge = 0;
4459 target_mourn_inferior ();
4460 return;
4461 }
4462
4463 /* Use catch_errors so the user can quit from gdb even when we aren't on
4464 speaking terms with the remote system. */
4465 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4466
4467 /* Don't wait for it to die. I'm not really sure it matters whether
4468 we do or not. For the existing stubs, kill is a noop. */
4469 target_mourn_inferior ();
4470 }
4471
4472 static void
4473 remote_mourn (void)
4474 {
4475 remote_mourn_1 (&remote_ops);
4476 }
4477
4478 static void
4479 remote_async_mourn (void)
4480 {
4481 remote_mourn_1 (&remote_async_ops);
4482 }
4483
4484 static void
4485 extended_remote_mourn (void)
4486 {
4487 /* We do _not_ want to mourn the target like this; this will
4488 remove the extended remote target from the target stack,
4489 and the next time the user says "run" it'll fail.
4490
4491 FIXME: What is the right thing to do here? */
4492 #if 0
4493 remote_mourn_1 (&extended_remote_ops);
4494 #endif
4495 }
4496
4497 /* Worker function for remote_mourn. */
4498 static void
4499 remote_mourn_1 (struct target_ops *target)
4500 {
4501 unpush_target (target);
4502 generic_mourn_inferior ();
4503 }
4504
4505 /* In the extended protocol we want to be able to do things like
4506 "run" and have them basically work as expected. So we need
4507 a special create_inferior function.
4508
4509 FIXME: One day add support for changing the exec file
4510 we're debugging, arguments and an environment. */
4511
4512 static void
4513 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4514 {
4515 /* Rip out the breakpoints; we'll reinsert them after restarting
4516 the remote server. */
4517 remove_breakpoints ();
4518
4519 /* Now restart the remote server. */
4520 extended_remote_restart ();
4521
4522 /* Now put the breakpoints back in. This way we're safe if the
4523 restart function works via a unix fork on the remote side. */
4524 insert_breakpoints ();
4525
4526 /* Clean up from the last time we were running. */
4527 clear_proceed_status ();
4528
4529 /* Let the remote process run. */
4530 proceed (-1, TARGET_SIGNAL_0, 0);
4531 }
4532
4533 /* Async version of extended_remote_create_inferior. */
4534 static void
4535 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4536 {
4537 /* Rip out the breakpoints; we'll reinsert them after restarting
4538 the remote server. */
4539 remove_breakpoints ();
4540
4541 /* If running asynchronously, register the target file descriptor
4542 with the event loop. */
4543 if (event_loop_p && target_can_async_p ())
4544 target_async (inferior_event_handler, 0);
4545
4546 /* Now restart the remote server. */
4547 extended_remote_restart ();
4548
4549 /* Now put the breakpoints back in. This way we're safe if the
4550 restart function works via a unix fork on the remote side. */
4551 insert_breakpoints ();
4552
4553 /* Clean up from the last time we were running. */
4554 clear_proceed_status ();
4555
4556 /* Let the remote process run. */
4557 proceed (-1, TARGET_SIGNAL_0, 0);
4558 }
4559 \f
4560
4561 /* On some machines, e.g. 68k, we may use a different breakpoint
4562 instruction than other targets; in those use
4563 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4564 Also, bi-endian targets may define
4565 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4566 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4567 just call the standard routines that are in mem-break.c. */
4568
4569 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4570 target should use an identical BREAKPOINT_FROM_PC. As for native,
4571 the ARCH-OS-tdep.c code can override the default. */
4572
4573 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4574 #define DEPRECATED_REMOTE_BREAKPOINT
4575 #endif
4576
4577 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4578
4579 /* If the target isn't bi-endian, just pretend it is. */
4580 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4581 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4582 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4583 #endif
4584
4585 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4586 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4587
4588 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4589
4590 /* Insert a breakpoint on targets that don't have any better
4591 breakpoint support. We read the contents of the target location
4592 and stash it, then overwrite it with a breakpoint instruction.
4593 ADDR is the target location in the target machine. CONTENTS_CACHE
4594 is a pointer to memory allocated for saving the target contents.
4595 It is guaranteed by the caller to be long enough to save the number
4596 of bytes returned by BREAKPOINT_FROM_PC. */
4597
4598 static int
4599 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4600 {
4601 struct remote_state *rs = get_remote_state ();
4602 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4603 int val;
4604 #endif
4605 int bp_size;
4606
4607 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4608 If it succeeds, then set the support to PACKET_ENABLE. If it
4609 fails, and the user has explicitly requested the Z support then
4610 report an error, otherwise, mark it disabled and go on. */
4611
4612 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4613 {
4614 char *buf = alloca (rs->remote_packet_size);
4615 char *p = buf;
4616
4617 addr = remote_address_masked (addr);
4618 *(p++) = 'Z';
4619 *(p++) = '0';
4620 *(p++) = ',';
4621 p += hexnumstr (p, (ULONGEST) addr);
4622 BREAKPOINT_FROM_PC (&addr, &bp_size);
4623 sprintf (p, ",%d", bp_size);
4624
4625 putpkt (buf);
4626 getpkt (buf, (rs->remote_packet_size), 0);
4627
4628 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4629 {
4630 case PACKET_ERROR:
4631 return -1;
4632 case PACKET_OK:
4633 return 0;
4634 case PACKET_UNKNOWN:
4635 break;
4636 }
4637 }
4638
4639 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4640 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4641
4642 if (val == 0)
4643 {
4644 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4645 val = target_write_memory (addr, (char *) big_break_insn,
4646 sizeof big_break_insn);
4647 else
4648 val = target_write_memory (addr, (char *) little_break_insn,
4649 sizeof little_break_insn);
4650 }
4651
4652 return val;
4653 #else
4654 return memory_insert_breakpoint (addr, contents_cache);
4655 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4656 }
4657
4658 static int
4659 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4660 {
4661 struct remote_state *rs = get_remote_state ();
4662 int bp_size;
4663
4664 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4665 {
4666 char *buf = alloca (rs->remote_packet_size);
4667 char *p = buf;
4668
4669 *(p++) = 'z';
4670 *(p++) = '0';
4671 *(p++) = ',';
4672
4673 addr = remote_address_masked (addr);
4674 p += hexnumstr (p, (ULONGEST) addr);
4675 BREAKPOINT_FROM_PC (&addr, &bp_size);
4676 sprintf (p, ",%d", bp_size);
4677
4678 putpkt (buf);
4679 getpkt (buf, (rs->remote_packet_size), 0);
4680
4681 return (buf[0] == 'E');
4682 }
4683
4684 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4685 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4686 #else
4687 return memory_remove_breakpoint (addr, contents_cache);
4688 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4689 }
4690
4691 static int
4692 watchpoint_to_Z_packet (int type)
4693 {
4694 switch (type)
4695 {
4696 case hw_write:
4697 return 2;
4698 break;
4699 case hw_read:
4700 return 3;
4701 break;
4702 case hw_access:
4703 return 4;
4704 break;
4705 default:
4706 internal_error (__FILE__, __LINE__,
4707 "hw_bp_to_z: bad watchpoint type %d", type);
4708 }
4709 }
4710
4711 static int
4712 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4713 {
4714 struct remote_state *rs = get_remote_state ();
4715 char *buf = alloca (rs->remote_packet_size);
4716 char *p;
4717 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4718
4719 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4720 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4721 remote_protocol_Z[packet].name,
4722 remote_protocol_Z[packet].title);
4723
4724 sprintf (buf, "Z%x,", packet);
4725 p = strchr (buf, '\0');
4726 addr = remote_address_masked (addr);
4727 p += hexnumstr (p, (ULONGEST) addr);
4728 sprintf (p, ",%x", len);
4729
4730 putpkt (buf);
4731 getpkt (buf, (rs->remote_packet_size), 0);
4732
4733 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4734 {
4735 case PACKET_ERROR:
4736 case PACKET_UNKNOWN:
4737 return -1;
4738 case PACKET_OK:
4739 return 0;
4740 }
4741 internal_error (__FILE__, __LINE__,
4742 "remote_insert_watchpoint: reached end of function");
4743 }
4744
4745
4746 static int
4747 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4748 {
4749 struct remote_state *rs = get_remote_state ();
4750 char *buf = alloca (rs->remote_packet_size);
4751 char *p;
4752 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4753
4754 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4755 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4756 remote_protocol_Z[packet].name,
4757 remote_protocol_Z[packet].title);
4758
4759 sprintf (buf, "z%x,", packet);
4760 p = strchr (buf, '\0');
4761 addr = remote_address_masked (addr);
4762 p += hexnumstr (p, (ULONGEST) addr);
4763 sprintf (p, ",%x", len);
4764 putpkt (buf);
4765 getpkt (buf, (rs->remote_packet_size), 0);
4766
4767 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4768 {
4769 case PACKET_ERROR:
4770 case PACKET_UNKNOWN:
4771 return -1;
4772 case PACKET_OK:
4773 return 0;
4774 }
4775 internal_error (__FILE__, __LINE__,
4776 "remote_remove_watchpoint: reached end of function");
4777 }
4778
4779
4780 int remote_hw_watchpoint_limit = -1;
4781 int remote_hw_breakpoint_limit = -1;
4782
4783 static int
4784 remote_check_watch_resources (int type, int cnt, int ot)
4785 {
4786 if (type == bp_hardware_breakpoint)
4787 {
4788 if (remote_hw_breakpoint_limit == 0)
4789 return 0;
4790 else if (remote_hw_breakpoint_limit < 0)
4791 return 1;
4792 else if (cnt <= remote_hw_breakpoint_limit)
4793 return 1;
4794 }
4795 else
4796 {
4797 if (remote_hw_watchpoint_limit == 0)
4798 return 0;
4799 else if (remote_hw_watchpoint_limit < 0)
4800 return 1;
4801 else if (ot)
4802 return -1;
4803 else if (cnt <= remote_hw_watchpoint_limit)
4804 return 1;
4805 }
4806 return -1;
4807 }
4808
4809 static int
4810 remote_stopped_by_watchpoint (void)
4811 {
4812 return remote_stopped_by_watchpoint_p;
4813 }
4814
4815 static CORE_ADDR
4816 remote_stopped_data_address (void)
4817 {
4818 if (remote_stopped_by_watchpoint ())
4819 return remote_watch_data_address;
4820 return (CORE_ADDR)0;
4821 }
4822
4823
4824 static int
4825 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4826 {
4827 int len = 0;
4828 struct remote_state *rs = get_remote_state ();
4829 char *buf = alloca (rs->remote_packet_size);
4830 char *p = buf;
4831
4832 /* The length field should be set to the size of a breakpoint
4833 instruction. */
4834
4835 BREAKPOINT_FROM_PC (&addr, &len);
4836
4837 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4838 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4839 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4840 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4841
4842 *(p++) = 'Z';
4843 *(p++) = '1';
4844 *(p++) = ',';
4845
4846 addr = remote_address_masked (addr);
4847 p += hexnumstr (p, (ULONGEST) addr);
4848 sprintf (p, ",%x", len);
4849
4850 putpkt (buf);
4851 getpkt (buf, (rs->remote_packet_size), 0);
4852
4853 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4854 {
4855 case PACKET_ERROR:
4856 case PACKET_UNKNOWN:
4857 return -1;
4858 case PACKET_OK:
4859 return 0;
4860 }
4861 internal_error (__FILE__, __LINE__,
4862 "remote_insert_hw_breakpoint: reached end of function");
4863 }
4864
4865
4866 static int
4867 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4868 {
4869 int len;
4870 struct remote_state *rs = get_remote_state ();
4871 char *buf = alloca (rs->remote_packet_size);
4872 char *p = buf;
4873
4874 /* The length field should be set to the size of a breakpoint
4875 instruction. */
4876
4877 BREAKPOINT_FROM_PC (&addr, &len);
4878
4879 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4880 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4881 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4882 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4883
4884 *(p++) = 'z';
4885 *(p++) = '1';
4886 *(p++) = ',';
4887
4888 addr = remote_address_masked (addr);
4889 p += hexnumstr (p, (ULONGEST) addr);
4890 sprintf (p, ",%x", len);
4891
4892 putpkt(buf);
4893 getpkt (buf, (rs->remote_packet_size), 0);
4894
4895 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4896 {
4897 case PACKET_ERROR:
4898 case PACKET_UNKNOWN:
4899 return -1;
4900 case PACKET_OK:
4901 return 0;
4902 }
4903 internal_error (__FILE__, __LINE__,
4904 "remote_remove_hw_breakpoint: reached end of function");
4905 }
4906
4907 /* Some targets are only capable of doing downloads, and afterwards
4908 they switch to the remote serial protocol. This function provides
4909 a clean way to get from the download target to the remote target.
4910 It's basically just a wrapper so that we don't have to expose any
4911 of the internal workings of remote.c.
4912
4913 Prior to calling this routine, you should shutdown the current
4914 target code, else you will get the "A program is being debugged
4915 already..." message. Usually a call to pop_target() suffices. */
4916
4917 void
4918 push_remote_target (char *name, int from_tty)
4919 {
4920 printf_filtered ("Switching to remote protocol\n");
4921 remote_open (name, from_tty);
4922 }
4923
4924 /* Table used by the crc32 function to calcuate the checksum. */
4925
4926 static unsigned long crc32_table[256] =
4927 {0, 0};
4928
4929 static unsigned long
4930 crc32 (unsigned char *buf, int len, unsigned int crc)
4931 {
4932 if (!crc32_table[1])
4933 {
4934 /* Initialize the CRC table and the decoding table. */
4935 int i, j;
4936 unsigned int c;
4937
4938 for (i = 0; i < 256; i++)
4939 {
4940 for (c = i << 24, j = 8; j > 0; --j)
4941 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4942 crc32_table[i] = c;
4943 }
4944 }
4945
4946 while (len--)
4947 {
4948 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4949 buf++;
4950 }
4951 return crc;
4952 }
4953
4954 /* compare-sections command
4955
4956 With no arguments, compares each loadable section in the exec bfd
4957 with the same memory range on the target, and reports mismatches.
4958 Useful for verifying the image on the target against the exec file.
4959 Depends on the target understanding the new "qCRC:" request. */
4960
4961 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4962 target method (target verify memory) and generic version of the
4963 actual command. This will allow other high-level code (especially
4964 generic_load()) to make use of this target functionality. */
4965
4966 static void
4967 compare_sections_command (char *args, int from_tty)
4968 {
4969 struct remote_state *rs = get_remote_state ();
4970 asection *s;
4971 unsigned long host_crc, target_crc;
4972 extern bfd *exec_bfd;
4973 struct cleanup *old_chain;
4974 char *tmp;
4975 char *sectdata;
4976 const char *sectname;
4977 char *buf = alloca (rs->remote_packet_size);
4978 bfd_size_type size;
4979 bfd_vma lma;
4980 int matched = 0;
4981 int mismatched = 0;
4982
4983 if (!exec_bfd)
4984 error ("command cannot be used without an exec file");
4985 if (!current_target.to_shortname ||
4986 strcmp (current_target.to_shortname, "remote") != 0)
4987 error ("command can only be used with remote target");
4988
4989 for (s = exec_bfd->sections; s; s = s->next)
4990 {
4991 if (!(s->flags & SEC_LOAD))
4992 continue; /* skip non-loadable section */
4993
4994 size = bfd_get_section_size_before_reloc (s);
4995 if (size == 0)
4996 continue; /* skip zero-length section */
4997
4998 sectname = bfd_get_section_name (exec_bfd, s);
4999 if (args && strcmp (args, sectname) != 0)
5000 continue; /* not the section selected by user */
5001
5002 matched = 1; /* do this section */
5003 lma = s->lma;
5004 /* FIXME: assumes lma can fit into long */
5005 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
5006 putpkt (buf);
5007
5008 /* be clever; compute the host_crc before waiting for target reply */
5009 sectdata = xmalloc (size);
5010 old_chain = make_cleanup (xfree, sectdata);
5011 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5012 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5013
5014 getpkt (buf, (rs->remote_packet_size), 0);
5015 if (buf[0] == 'E')
5016 error ("target memory fault, section %s, range 0x%s -- 0x%s",
5017 sectname, paddr (lma), paddr (lma + size));
5018 if (buf[0] != 'C')
5019 error ("remote target does not support this operation");
5020
5021 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
5022 target_crc = target_crc * 16 + fromhex (*tmp);
5023
5024 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5025 sectname, paddr (lma), paddr (lma + size));
5026 if (host_crc == target_crc)
5027 printf_filtered ("matched.\n");
5028 else
5029 {
5030 printf_filtered ("MIS-MATCHED!\n");
5031 mismatched++;
5032 }
5033
5034 do_cleanups (old_chain);
5035 }
5036 if (mismatched > 0)
5037 warning ("One or more sections of the remote executable does not match\n\
5038 the loaded file\n");
5039 if (args && !matched)
5040 printf_filtered ("No loaded section named '%s'.\n", args);
5041 }
5042
5043 static int
5044 remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
5045 {
5046 struct remote_state *rs = get_remote_state ();
5047 int i;
5048 char *buf2 = alloca (rs->remote_packet_size);
5049 char *p2 = &buf2[0];
5050
5051 if (!bufsiz)
5052 error ("null pointer to remote bufer size specified");
5053
5054 /* minimum outbuf size is (rs->remote_packet_size) - if bufsiz is not large enough let
5055 the caller know and return what the minimum size is */
5056 /* Note: a zero bufsiz can be used to query the minimum buffer size */
5057 if (*bufsiz < (rs->remote_packet_size))
5058 {
5059 *bufsiz = (rs->remote_packet_size);
5060 return -1;
5061 }
5062
5063 /* except for querying the minimum buffer size, target must be open */
5064 if (!remote_desc)
5065 error ("remote query is only available after target open");
5066
5067 /* we only take uppercase letters as query types, at least for now */
5068 if ((query_type < 'A') || (query_type > 'Z'))
5069 error ("invalid remote query type");
5070
5071 if (!buf)
5072 error ("null remote query specified");
5073
5074 if (!outbuf)
5075 error ("remote query requires a buffer to receive data");
5076
5077 outbuf[0] = '\0';
5078
5079 *p2++ = 'q';
5080 *p2++ = query_type;
5081
5082 /* we used one buffer char for the remote protocol q command and another
5083 for the query type. As the remote protocol encapsulation uses 4 chars
5084 plus one extra in case we are debugging (remote_debug),
5085 we have PBUFZIZ - 7 left to pack the query string */
5086 i = 0;
5087 while (buf[i] && (i < ((rs->remote_packet_size) - 8)))
5088 {
5089 /* bad caller may have sent forbidden characters */
5090 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
5091 error ("illegal characters in query string");
5092
5093 *p2++ = buf[i];
5094 i++;
5095 }
5096 *p2 = buf[i];
5097
5098 if (buf[i])
5099 error ("query larger than available buffer");
5100
5101 i = putpkt (buf2);
5102 if (i < 0)
5103 return i;
5104
5105 getpkt (outbuf, *bufsiz, 0);
5106
5107 return 0;
5108 }
5109
5110 static void
5111 remote_rcmd (char *command,
5112 struct ui_file *outbuf)
5113 {
5114 struct remote_state *rs = get_remote_state ();
5115 int i;
5116 char *buf = alloca (rs->remote_packet_size);
5117 char *p = buf;
5118
5119 if (!remote_desc)
5120 error ("remote rcmd is only available after target open");
5121
5122 /* Send a NULL command across as an empty command */
5123 if (command == NULL)
5124 command = "";
5125
5126 /* The query prefix */
5127 strcpy (buf, "qRcmd,");
5128 p = strchr (buf, '\0');
5129
5130 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5131 error ("\"monitor\" command ``%s'' is too long\n", command);
5132
5133 /* Encode the actual command */
5134 bin2hex (command, p, 0);
5135
5136 if (putpkt (buf) < 0)
5137 error ("Communication problem with target\n");
5138
5139 /* get/display the response */
5140 while (1)
5141 {
5142 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5143 buf[0] = '\0';
5144 getpkt (buf, (rs->remote_packet_size), 0);
5145 if (buf[0] == '\0')
5146 error ("Target does not support this command\n");
5147 if (buf[0] == 'O' && buf[1] != 'K')
5148 {
5149 remote_console_output (buf + 1); /* 'O' message from stub */
5150 continue;
5151 }
5152 if (strcmp (buf, "OK") == 0)
5153 break;
5154 if (strlen (buf) == 3 && buf[0] == 'E'
5155 && isdigit (buf[1]) && isdigit (buf[2]))
5156 {
5157 error ("Protocol error with Rcmd");
5158 }
5159 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5160 {
5161 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5162 fputc_unfiltered (c, outbuf);
5163 }
5164 break;
5165 }
5166 }
5167
5168 static void
5169 packet_command (char *args, int from_tty)
5170 {
5171 struct remote_state *rs = get_remote_state ();
5172 char *buf = alloca (rs->remote_packet_size);
5173
5174 if (!remote_desc)
5175 error ("command can only be used with remote target");
5176
5177 if (!args)
5178 error ("remote-packet command requires packet text as argument");
5179
5180 puts_filtered ("sending: ");
5181 print_packet (args);
5182 puts_filtered ("\n");
5183 putpkt (args);
5184
5185 getpkt (buf, (rs->remote_packet_size), 0);
5186 puts_filtered ("received: ");
5187 print_packet (buf);
5188 puts_filtered ("\n");
5189 }
5190
5191 #if 0
5192 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5193
5194 static void display_thread_info (struct gdb_ext_thread_info *info);
5195
5196 static void threadset_test_cmd (char *cmd, int tty);
5197
5198 static void threadalive_test (char *cmd, int tty);
5199
5200 static void threadlist_test_cmd (char *cmd, int tty);
5201
5202 int get_and_display_threadinfo (threadref * ref);
5203
5204 static void threadinfo_test_cmd (char *cmd, int tty);
5205
5206 static int thread_display_step (threadref * ref, void *context);
5207
5208 static void threadlist_update_test_cmd (char *cmd, int tty);
5209
5210 static void init_remote_threadtests (void);
5211
5212 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5213
5214 static void
5215 threadset_test_cmd (char *cmd, int tty)
5216 {
5217 int sample_thread = SAMPLE_THREAD;
5218
5219 printf_filtered ("Remote threadset test\n");
5220 set_thread (sample_thread, 1);
5221 }
5222
5223
5224 static void
5225 threadalive_test (char *cmd, int tty)
5226 {
5227 int sample_thread = SAMPLE_THREAD;
5228
5229 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5230 printf_filtered ("PASS: Thread alive test\n");
5231 else
5232 printf_filtered ("FAIL: Thread alive test\n");
5233 }
5234
5235 void output_threadid (char *title, threadref * ref);
5236
5237 void
5238 output_threadid (char *title, threadref *ref)
5239 {
5240 char hexid[20];
5241
5242 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5243 hexid[16] = 0;
5244 printf_filtered ("%s %s\n", title, (&hexid[0]));
5245 }
5246
5247 static void
5248 threadlist_test_cmd (char *cmd, int tty)
5249 {
5250 int startflag = 1;
5251 threadref nextthread;
5252 int done, result_count;
5253 threadref threadlist[3];
5254
5255 printf_filtered ("Remote Threadlist test\n");
5256 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5257 &result_count, &threadlist[0]))
5258 printf_filtered ("FAIL: threadlist test\n");
5259 else
5260 {
5261 threadref *scan = threadlist;
5262 threadref *limit = scan + result_count;
5263
5264 while (scan < limit)
5265 output_threadid (" thread ", scan++);
5266 }
5267 }
5268
5269 void
5270 display_thread_info (struct gdb_ext_thread_info *info)
5271 {
5272 output_threadid ("Threadid: ", &info->threadid);
5273 printf_filtered ("Name: %s\n ", info->shortname);
5274 printf_filtered ("State: %s\n", info->display);
5275 printf_filtered ("other: %s\n\n", info->more_display);
5276 }
5277
5278 int
5279 get_and_display_threadinfo (threadref *ref)
5280 {
5281 int result;
5282 int set;
5283 struct gdb_ext_thread_info threadinfo;
5284
5285 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5286 | TAG_MOREDISPLAY | TAG_DISPLAY;
5287 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5288 display_thread_info (&threadinfo);
5289 return result;
5290 }
5291
5292 static void
5293 threadinfo_test_cmd (char *cmd, int tty)
5294 {
5295 int athread = SAMPLE_THREAD;
5296 threadref thread;
5297 int set;
5298
5299 int_to_threadref (&thread, athread);
5300 printf_filtered ("Remote Threadinfo test\n");
5301 if (!get_and_display_threadinfo (&thread))
5302 printf_filtered ("FAIL cannot get thread info\n");
5303 }
5304
5305 static int
5306 thread_display_step (threadref *ref, void *context)
5307 {
5308 /* output_threadid(" threadstep ",ref); *//* simple test */
5309 return get_and_display_threadinfo (ref);
5310 }
5311
5312 static void
5313 threadlist_update_test_cmd (char *cmd, int tty)
5314 {
5315 printf_filtered ("Remote Threadlist update test\n");
5316 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5317 }
5318
5319 static void
5320 init_remote_threadtests (void)
5321 {
5322 add_com ("tlist", class_obscure, threadlist_test_cmd,
5323 "Fetch and print the remote list of thread identifiers, one pkt only");
5324 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5325 "Fetch and display info about one thread");
5326 add_com ("tset", class_obscure, threadset_test_cmd,
5327 "Test setting to a different thread");
5328 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5329 "Iterate through updating all remote thread info");
5330 add_com ("talive", class_obscure, threadalive_test,
5331 " Remote thread alive test ");
5332 }
5333
5334 #endif /* 0 */
5335
5336 /* Convert a thread ID to a string. Returns the string in a static
5337 buffer. */
5338
5339 static char *
5340 remote_pid_to_str (ptid_t ptid)
5341 {
5342 static char buf[30];
5343
5344 sprintf (buf, "Thread %d", PIDGET (ptid));
5345 return buf;
5346 }
5347
5348 static void
5349 init_remote_ops (void)
5350 {
5351 remote_ops.to_shortname = "remote";
5352 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5353 remote_ops.to_doc =
5354 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5355 Specify the serial device it is connected to\n\
5356 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5357 remote_ops.to_open = remote_open;
5358 remote_ops.to_close = remote_close;
5359 remote_ops.to_detach = remote_detach;
5360 remote_ops.to_disconnect = remote_disconnect;
5361 remote_ops.to_resume = remote_resume;
5362 remote_ops.to_wait = remote_wait;
5363 remote_ops.to_fetch_registers = remote_fetch_registers;
5364 remote_ops.to_store_registers = remote_store_registers;
5365 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5366 remote_ops.to_xfer_memory = remote_xfer_memory;
5367 remote_ops.to_files_info = remote_files_info;
5368 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5369 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5370 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5371 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5372 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5373 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5374 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5375 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5376 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5377 remote_ops.to_kill = remote_kill;
5378 remote_ops.to_load = generic_load;
5379 remote_ops.to_mourn_inferior = remote_mourn;
5380 remote_ops.to_thread_alive = remote_thread_alive;
5381 remote_ops.to_find_new_threads = remote_threads_info;
5382 remote_ops.to_pid_to_str = remote_pid_to_str;
5383 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5384 remote_ops.to_stop = remote_stop;
5385 remote_ops.to_query = remote_query;
5386 remote_ops.to_rcmd = remote_rcmd;
5387 remote_ops.to_stratum = process_stratum;
5388 remote_ops.to_has_all_memory = 1;
5389 remote_ops.to_has_memory = 1;
5390 remote_ops.to_has_stack = 1;
5391 remote_ops.to_has_registers = 1;
5392 remote_ops.to_has_execution = 1;
5393 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5394 remote_ops.to_magic = OPS_MAGIC;
5395 }
5396
5397 /* Set up the extended remote vector by making a copy of the standard
5398 remote vector and adding to it. */
5399
5400 static void
5401 init_extended_remote_ops (void)
5402 {
5403 extended_remote_ops = remote_ops;
5404
5405 extended_remote_ops.to_shortname = "extended-remote";
5406 extended_remote_ops.to_longname =
5407 "Extended remote serial target in gdb-specific protocol";
5408 extended_remote_ops.to_doc =
5409 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5410 Specify the serial device it is connected to (e.g. /dev/ttya).",
5411 extended_remote_ops.to_open = extended_remote_open;
5412 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5413 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5414 }
5415
5416 /*
5417 * Command: info remote-process
5418 *
5419 * This implements Cisco's version of the "info proc" command.
5420 *
5421 * This query allows the target stub to return an arbitrary string
5422 * (or strings) giving arbitrary information about the target process.
5423 * This is optional; the target stub isn't required to implement it.
5424 *
5425 * Syntax: qfProcessInfo request first string
5426 * qsProcessInfo request subsequent string
5427 * reply: 'O'<hex-encoded-string>
5428 * 'l' last reply (empty)
5429 */
5430
5431 static void
5432 remote_info_process (char *args, int from_tty)
5433 {
5434 struct remote_state *rs = get_remote_state ();
5435 char *buf = alloca (rs->remote_packet_size);
5436
5437 if (remote_desc == 0)
5438 error ("Command can only be used when connected to the remote target.");
5439
5440 putpkt ("qfProcessInfo");
5441 getpkt (buf, (rs->remote_packet_size), 0);
5442 if (buf[0] == 0)
5443 return; /* Silently: target does not support this feature. */
5444
5445 if (buf[0] == 'E')
5446 error ("info proc: target error.");
5447
5448 while (buf[0] == 'O') /* Capitol-O packet */
5449 {
5450 remote_console_output (&buf[1]);
5451 putpkt ("qsProcessInfo");
5452 getpkt (buf, (rs->remote_packet_size), 0);
5453 }
5454 }
5455
5456 /*
5457 * Target Cisco
5458 */
5459
5460 static void
5461 remote_cisco_open (char *name, int from_tty)
5462 {
5463 int ex;
5464 if (name == 0)
5465 error ("To open a remote debug connection, you need to specify what \n"
5466 "device is attached to the remote system (e.g. host:port).");
5467
5468 /* See FIXME above */
5469 wait_forever_enabled_p = 1;
5470
5471 target_preopen (from_tty);
5472
5473 unpush_target (&remote_cisco_ops);
5474
5475 remote_desc = remote_serial_open (name);
5476 if (!remote_desc)
5477 perror_with_name (name);
5478
5479 /*
5480 * If a baud rate was specified on the gdb command line it will
5481 * be greater than the initial value of -1. If it is, use it otherwise
5482 * default to 9600
5483 */
5484
5485 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5486 if (serial_setbaudrate (remote_desc, baud_rate))
5487 {
5488 serial_close (remote_desc);
5489 perror_with_name (name);
5490 }
5491
5492 serial_raw (remote_desc);
5493
5494 /* If there is something sitting in the buffer we might take it as a
5495 response to a command, which would be bad. */
5496 serial_flush_input (remote_desc);
5497
5498 if (from_tty)
5499 {
5500 puts_filtered ("Remote debugging using ");
5501 puts_filtered (name);
5502 puts_filtered ("\n");
5503 }
5504
5505 remote_cisco_mode = 1;
5506
5507 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5508
5509 init_all_packet_configs ();
5510
5511 general_thread = -2;
5512 continue_thread = -2;
5513
5514 /* Probe for ability to use "ThreadInfo" query, as required. */
5515 use_threadinfo_query = 1;
5516 use_threadextra_query = 1;
5517
5518 /* Without this, some commands which require an active target (such
5519 as kill) won't work. This variable serves (at least) double duty
5520 as both the pid of the target process (if it has such), and as a
5521 flag indicating that a target is active. These functions should
5522 be split out into seperate variables, especially since GDB will
5523 someday have a notion of debugging several processes. */
5524 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5525
5526 /* Start the remote connection; if error, discard this target. See
5527 the comments in remote_open_1() for further details such as the
5528 need to re-throw the exception. */
5529 ex = catch_exceptions (uiout,
5530 remote_start_remote_dummy, NULL,
5531 "Couldn't establish connection to remote"
5532 " target\n",
5533 RETURN_MASK_ALL);
5534 if (ex < 0)
5535 {
5536 pop_target ();
5537 throw_exception (ex);
5538 }
5539 }
5540
5541 static void
5542 remote_cisco_close (int quitting)
5543 {
5544 remote_cisco_mode = 0;
5545 remote_close (quitting);
5546 }
5547
5548 static void
5549 remote_cisco_mourn (void)
5550 {
5551 remote_mourn_1 (&remote_cisco_ops);
5552 }
5553
5554 enum
5555 {
5556 READ_MORE,
5557 FATAL_ERROR,
5558 ENTER_DEBUG,
5559 DISCONNECT_TELNET
5560 }
5561 minitelnet_return;
5562
5563 /* Shared between readsocket() and readtty(). The size is arbitrary,
5564 however all targets are known to support a 400 character packet. */
5565 static char tty_input[400];
5566
5567 static int escape_count;
5568 static int echo_check;
5569 extern int quit_flag;
5570
5571 static int
5572 readsocket (void)
5573 {
5574 int data;
5575
5576 /* Loop until the socket doesn't have any more data */
5577
5578 while ((data = readchar (0)) >= 0)
5579 {
5580 /* Check for the escape sequence */
5581 if (data == '|')
5582 {
5583 /* If this is the fourth escape, get out */
5584 if (++escape_count == 4)
5585 {
5586 return ENTER_DEBUG;
5587 }
5588 else
5589 { /* This is a '|', but not the fourth in a row.
5590 Continue without echoing it. If it isn't actually
5591 one of four in a row, it'll be echoed later. */
5592 continue;
5593 }
5594 }
5595 else
5596 /* Not a '|' */
5597 {
5598 /* Ensure any pending '|'s are flushed. */
5599
5600 for (; escape_count > 0; escape_count--)
5601 putchar ('|');
5602 }
5603
5604 if (data == '\r') /* If this is a return character, */
5605 continue; /* - just supress it. */
5606
5607 if (echo_check != -1) /* Check for echo of user input. */
5608 {
5609 if (tty_input[echo_check] == data)
5610 {
5611 gdb_assert (echo_check <= sizeof (tty_input));
5612 echo_check++; /* Character matched user input: */
5613 continue; /* Continue without echoing it. */
5614 }
5615 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5616 { /* End of the line (and of echo checking). */
5617 echo_check = -1; /* No more echo supression */
5618 continue; /* Continue without echoing. */
5619 }
5620 else
5621 { /* Failed check for echo of user input.
5622 We now have some suppressed output to flush! */
5623 int j;
5624
5625 for (j = 0; j < echo_check; j++)
5626 putchar (tty_input[j]);
5627 echo_check = -1;
5628 }
5629 }
5630 putchar (data); /* Default case: output the char. */
5631 }
5632
5633 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5634 return READ_MORE; /* Try to read some more */
5635 else
5636 return FATAL_ERROR; /* Trouble, bail out */
5637 }
5638
5639 static int
5640 readtty (void)
5641 {
5642 int tty_bytecount;
5643
5644 /* First, read a buffer full from the terminal */
5645 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5646 if (tty_bytecount == -1)
5647 {
5648 perror ("readtty: read failed");
5649 return FATAL_ERROR;
5650 }
5651
5652 /* Remove a quoted newline. */
5653 if (tty_input[tty_bytecount - 1] == '\n' &&
5654 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5655 {
5656 tty_input[--tty_bytecount] = 0; /* remove newline */
5657 tty_input[--tty_bytecount] = 0; /* remove backslash */
5658 }
5659
5660 /* Turn trailing newlines into returns */
5661 if (tty_input[tty_bytecount - 1] == '\n')
5662 tty_input[tty_bytecount - 1] = '\r';
5663
5664 /* If the line consists of a ~, enter debugging mode. */
5665 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5666 return ENTER_DEBUG;
5667
5668 /* Make this a zero terminated string and write it out */
5669 tty_input[tty_bytecount] = 0;
5670 if (serial_write (remote_desc, tty_input, tty_bytecount))
5671 {
5672 perror_with_name ("readtty: write failed");
5673 return FATAL_ERROR;
5674 }
5675
5676 return READ_MORE;
5677 }
5678
5679 static int
5680 minitelnet (void)
5681 {
5682 fd_set input; /* file descriptors for select */
5683 int tablesize; /* max number of FDs for select */
5684 int status;
5685 int quit_count = 0;
5686
5687 escape_count = 0;
5688 echo_check = -1;
5689
5690 tablesize = 8 * sizeof (input);
5691
5692 for (;;)
5693 {
5694 /* Check for anything from our socket - doesn't block. Note that
5695 this must be done *before* the select as there may be
5696 buffered I/O waiting to be processed. */
5697
5698 if ((status = readsocket ()) == FATAL_ERROR)
5699 {
5700 error ("Debugging terminated by communications error");
5701 }
5702 else if (status != READ_MORE)
5703 {
5704 return (status);
5705 }
5706
5707 fflush (stdout); /* Flush output before blocking */
5708
5709 /* Now block on more socket input or TTY input */
5710
5711 FD_ZERO (&input);
5712 FD_SET (fileno (stdin), &input);
5713 FD_SET (deprecated_serial_fd (remote_desc), &input);
5714
5715 status = select (tablesize, &input, 0, 0, 0);
5716 if ((status == -1) && (errno != EINTR))
5717 {
5718 error ("Communications error on select %d", errno);
5719 }
5720
5721 /* Handle Control-C typed */
5722
5723 if (quit_flag)
5724 {
5725 if ((++quit_count) == 2)
5726 {
5727 if (query ("Interrupt GDB? "))
5728 {
5729 printf_filtered ("Interrupted by user.\n");
5730 throw_exception (RETURN_QUIT);
5731 }
5732 quit_count = 0;
5733 }
5734 quit_flag = 0;
5735
5736 if (remote_break)
5737 serial_send_break (remote_desc);
5738 else
5739 serial_write (remote_desc, "\003", 1);
5740
5741 continue;
5742 }
5743
5744 /* Handle console input */
5745
5746 if (FD_ISSET (fileno (stdin), &input))
5747 {
5748 quit_count = 0;
5749 echo_check = 0;
5750 status = readtty ();
5751 if (status == READ_MORE)
5752 continue;
5753
5754 return status; /* telnet session ended */
5755 }
5756 }
5757 }
5758
5759 static ptid_t
5760 remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5761 {
5762 if (minitelnet () != ENTER_DEBUG)
5763 {
5764 error ("Debugging session terminated by protocol error");
5765 }
5766 putpkt ("?");
5767 return remote_wait (ptid, status);
5768 }
5769
5770 static void
5771 init_remote_cisco_ops (void)
5772 {
5773 remote_cisco_ops.to_shortname = "cisco";
5774 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5775 remote_cisco_ops.to_doc =
5776 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5777 Specify the serial device it is connected to (e.g. host:2020).";
5778 remote_cisco_ops.to_open = remote_cisco_open;
5779 remote_cisco_ops.to_close = remote_cisco_close;
5780 remote_cisco_ops.to_detach = remote_detach;
5781 remote_cisco_ops.to_disconnect = remote_disconnect;
5782 remote_cisco_ops.to_resume = remote_resume;
5783 remote_cisco_ops.to_wait = remote_cisco_wait;
5784 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5785 remote_cisco_ops.to_store_registers = remote_store_registers;
5786 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5787 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5788 remote_cisco_ops.to_files_info = remote_files_info;
5789 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5790 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5791 remote_cisco_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5792 remote_cisco_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5793 remote_cisco_ops.to_insert_watchpoint = remote_insert_watchpoint;
5794 remote_cisco_ops.to_remove_watchpoint = remote_remove_watchpoint;
5795 remote_cisco_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5796 remote_cisco_ops.to_stopped_data_address = remote_stopped_data_address;
5797 remote_cisco_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5798 remote_cisco_ops.to_kill = remote_kill;
5799 remote_cisco_ops.to_load = generic_load;
5800 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5801 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5802 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5803 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5804 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5805 remote_cisco_ops.to_stratum = process_stratum;
5806 remote_cisco_ops.to_has_all_memory = 1;
5807 remote_cisco_ops.to_has_memory = 1;
5808 remote_cisco_ops.to_has_stack = 1;
5809 remote_cisco_ops.to_has_registers = 1;
5810 remote_cisco_ops.to_has_execution = 1;
5811 remote_cisco_ops.to_magic = OPS_MAGIC;
5812 }
5813
5814 static int
5815 remote_can_async_p (void)
5816 {
5817 /* We're async whenever the serial device is. */
5818 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5819 }
5820
5821 static int
5822 remote_is_async_p (void)
5823 {
5824 /* We're async whenever the serial device is. */
5825 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5826 }
5827
5828 /* Pass the SERIAL event on and up to the client. One day this code
5829 will be able to delay notifying the client of an event until the
5830 point where an entire packet has been received. */
5831
5832 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5833 static void *async_client_context;
5834 static serial_event_ftype remote_async_serial_handler;
5835
5836 static void
5837 remote_async_serial_handler (struct serial *scb, void *context)
5838 {
5839 /* Don't propogate error information up to the client. Instead let
5840 the client find out about the error by querying the target. */
5841 async_client_callback (INF_REG_EVENT, async_client_context);
5842 }
5843
5844 static void
5845 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5846 {
5847 if (current_target.to_async_mask_value == 0)
5848 internal_error (__FILE__, __LINE__,
5849 "Calling remote_async when async is masked");
5850
5851 if (callback != NULL)
5852 {
5853 serial_async (remote_desc, remote_async_serial_handler, NULL);
5854 async_client_callback = callback;
5855 async_client_context = context;
5856 }
5857 else
5858 serial_async (remote_desc, NULL, NULL);
5859 }
5860
5861 /* Target async and target extended-async.
5862
5863 This are temporary targets, until it is all tested. Eventually
5864 async support will be incorporated int the usual 'remote'
5865 target. */
5866
5867 static void
5868 init_remote_async_ops (void)
5869 {
5870 remote_async_ops.to_shortname = "async";
5871 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5872 remote_async_ops.to_doc =
5873 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5874 Specify the serial device it is connected to (e.g. /dev/ttya).";
5875 remote_async_ops.to_open = remote_async_open;
5876 remote_async_ops.to_close = remote_close;
5877 remote_async_ops.to_detach = remote_detach;
5878 remote_async_ops.to_disconnect = remote_disconnect;
5879 remote_async_ops.to_resume = remote_async_resume;
5880 remote_async_ops.to_wait = remote_async_wait;
5881 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5882 remote_async_ops.to_store_registers = remote_store_registers;
5883 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5884 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5885 remote_async_ops.to_files_info = remote_files_info;
5886 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5887 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5888 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5889 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5890 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5891 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5892 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5893 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5894 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5895 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5896 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5897 remote_async_ops.to_kill = remote_async_kill;
5898 remote_async_ops.to_load = generic_load;
5899 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5900 remote_async_ops.to_thread_alive = remote_thread_alive;
5901 remote_async_ops.to_find_new_threads = remote_threads_info;
5902 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5903 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5904 remote_async_ops.to_stop = remote_stop;
5905 remote_async_ops.to_query = remote_query;
5906 remote_async_ops.to_rcmd = remote_rcmd;
5907 remote_async_ops.to_stratum = process_stratum;
5908 remote_async_ops.to_has_all_memory = 1;
5909 remote_async_ops.to_has_memory = 1;
5910 remote_async_ops.to_has_stack = 1;
5911 remote_async_ops.to_has_registers = 1;
5912 remote_async_ops.to_has_execution = 1;
5913 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5914 remote_async_ops.to_can_async_p = remote_can_async_p;
5915 remote_async_ops.to_is_async_p = remote_is_async_p;
5916 remote_async_ops.to_async = remote_async;
5917 remote_async_ops.to_async_mask_value = 1;
5918 remote_async_ops.to_magic = OPS_MAGIC;
5919 }
5920
5921 /* Set up the async extended remote vector by making a copy of the standard
5922 remote vector and adding to it. */
5923
5924 static void
5925 init_extended_async_remote_ops (void)
5926 {
5927 extended_async_remote_ops = remote_async_ops;
5928
5929 extended_async_remote_ops.to_shortname = "extended-async";
5930 extended_async_remote_ops.to_longname =
5931 "Extended remote serial target in async gdb-specific protocol";
5932 extended_async_remote_ops.to_doc =
5933 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5934 Specify the serial device it is connected to (e.g. /dev/ttya).",
5935 extended_async_remote_ops.to_open = extended_remote_async_open;
5936 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5937 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5938 }
5939
5940 static void
5941 set_remote_cmd (char *args, int from_tty)
5942 {
5943 }
5944
5945 static void
5946 show_remote_cmd (char *args, int from_tty)
5947 {
5948 /* FIXME: cagney/2002-06-15: This function should iterate over
5949 remote_show_cmdlist for a list of sub commands to show. */
5950 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
5951 show_remote_protocol_e_packet_cmd (args, from_tty, NULL);
5952 show_remote_protocol_E_packet_cmd (args, from_tty, NULL);
5953 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
5954 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
5955 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
5956 }
5957
5958 static void
5959 build_remote_gdbarch_data (void)
5960 {
5961 remote_address_size = TARGET_ADDR_BIT;
5962 }
5963
5964 /* Saved pointer to previous owner of the new_objfile event. */
5965 static void (*remote_new_objfile_chain) (struct objfile *);
5966
5967 /* Function to be called whenever a new objfile (shlib) is detected. */
5968 static void
5969 remote_new_objfile (struct objfile *objfile)
5970 {
5971 if (remote_desc != 0) /* Have a remote connection */
5972 {
5973 remote_check_symbols (objfile);
5974 }
5975 /* Call predecessor on chain, if any. */
5976 if (remote_new_objfile_chain != 0 &&
5977 remote_desc == 0)
5978 remote_new_objfile_chain (objfile);
5979 }
5980
5981 void
5982 _initialize_remote (void)
5983 {
5984 static struct cmd_list_element *remote_set_cmdlist;
5985 static struct cmd_list_element *remote_show_cmdlist;
5986 struct cmd_list_element *tmpcmd;
5987
5988 /* architecture specific data */
5989 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state);
5990
5991 /* Old tacky stuff. NOTE: This comes after the remote protocol so
5992 that the remote protocol has been initialized. */
5993 register_gdbarch_swap (&remote_address_size,
5994 sizeof (&remote_address_size), NULL);
5995 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5996
5997 init_remote_ops ();
5998 add_target (&remote_ops);
5999
6000 init_extended_remote_ops ();
6001 add_target (&extended_remote_ops);
6002
6003 init_remote_async_ops ();
6004 add_target (&remote_async_ops);
6005
6006 init_extended_async_remote_ops ();
6007 add_target (&extended_async_remote_ops);
6008
6009 init_remote_cisco_ops ();
6010 add_target (&remote_cisco_ops);
6011
6012 /* Hook into new objfile notification. */
6013 remote_new_objfile_chain = target_new_objfile_hook;
6014 target_new_objfile_hook = remote_new_objfile;
6015
6016 #if 0
6017 init_remote_threadtests ();
6018 #endif
6019
6020 /* set/show remote ... */
6021
6022 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
6023 Remote protocol specific variables\n\
6024 Configure various remote-protocol specific variables such as\n\
6025 the packets being used",
6026 &remote_set_cmdlist, "set remote ",
6027 0/*allow-unknown*/, &setlist);
6028 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
6029 Remote protocol specific variables\n\
6030 Configure various remote-protocol specific variables such as\n\
6031 the packets being used",
6032 &remote_show_cmdlist, "show remote ",
6033 0/*allow-unknown*/, &showlist);
6034
6035 add_cmd ("compare-sections", class_obscure, compare_sections_command,
6036 "Compare section data on target to the exec file.\n\
6037 Argument is a single section name (default: all loaded sections).",
6038 &cmdlist);
6039
6040 add_cmd ("packet", class_maintenance, packet_command,
6041 "Send an arbitrary packet to a remote target.\n\
6042 maintenance packet TEXT\n\
6043 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6044 this command sends the string TEXT to the inferior, and displays the\n\
6045 response packet. GDB supplies the initial `$' character, and the\n\
6046 terminating `#' character and checksum.",
6047 &maintenancelist);
6048
6049 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break,
6050 "Set whether to send break if interrupted.\n",
6051 "Show whether to send break if interrupted.\n",
6052 NULL, NULL,
6053 &setlist, &showlist);
6054
6055 /* Install commands for configuring memory read/write packets. */
6056
6057 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
6058 "Set the maximum number of bytes per memory write packet (deprecated).\n",
6059 &setlist);
6060 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
6061 "Show the maximum number of bytes per memory write packet (deprecated).\n",
6062 &showlist);
6063 add_cmd ("memory-write-packet-size", no_class,
6064 set_memory_write_packet_size,
6065 "Set the maximum number of bytes per memory-write packet.\n"
6066 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6067 "default packet size. The actual limit is further reduced\n"
6068 "dependent on the target. Specify ``fixed'' to disable the\n"
6069 "further restriction and ``limit'' to enable that restriction\n",
6070 &remote_set_cmdlist);
6071 add_cmd ("memory-read-packet-size", no_class,
6072 set_memory_read_packet_size,
6073 "Set the maximum number of bytes per memory-read packet.\n"
6074 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6075 "default packet size. The actual limit is further reduced\n"
6076 "dependent on the target. Specify ``fixed'' to disable the\n"
6077 "further restriction and ``limit'' to enable that restriction\n",
6078 &remote_set_cmdlist);
6079 add_cmd ("memory-write-packet-size", no_class,
6080 show_memory_write_packet_size,
6081 "Show the maximum number of bytes per memory-write packet.\n",
6082 &remote_show_cmdlist);
6083 add_cmd ("memory-read-packet-size", no_class,
6084 show_memory_read_packet_size,
6085 "Show the maximum number of bytes per memory-read packet.\n",
6086 &remote_show_cmdlist);
6087
6088 add_setshow_cmd ("hardware-watchpoint-limit", no_class,
6089 var_zinteger, &remote_hw_watchpoint_limit, "\
6090 Set the maximum number of target hardware watchpoints.\n\
6091 Specify a negative limit for unlimited.", "\
6092 Show the maximum number of target hardware watchpoints.\n",
6093 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6094 add_setshow_cmd ("hardware-breakpoint-limit", no_class,
6095 var_zinteger, &remote_hw_breakpoint_limit, "\
6096 Set the maximum number of target hardware breakpoints.\n\
6097 Specify a negative limit for unlimited.", "\
6098 Show the maximum number of target hardware breakpoints.\n",
6099 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6100
6101 add_show_from_set
6102 (add_set_cmd ("remoteaddresssize", class_obscure,
6103 var_integer, (char *) &remote_address_size,
6104 "Set the maximum size of the address (in bits) \
6105 in a memory packet.\n",
6106 &setlist),
6107 &showlist);
6108
6109 add_packet_config_cmd (&remote_protocol_binary_download,
6110 "X", "binary-download",
6111 set_remote_protocol_binary_download_cmd,
6112 show_remote_protocol_binary_download_cmd,
6113 &remote_set_cmdlist, &remote_show_cmdlist,
6114 1);
6115 #if 0
6116 /* XXXX - should ``set remotebinarydownload'' be retained for
6117 compatibility. */
6118 add_show_from_set
6119 (add_set_cmd ("remotebinarydownload", no_class,
6120 var_boolean, (char *) &remote_binary_download,
6121 "Set binary downloads.\n", &setlist),
6122 &showlist);
6123 #endif
6124
6125 add_info ("remote-process", remote_info_process,
6126 "Query the remote system for process info.");
6127
6128 add_packet_config_cmd (&remote_protocol_qSymbol,
6129 "qSymbol", "symbol-lookup",
6130 set_remote_protocol_qSymbol_packet_cmd,
6131 show_remote_protocol_qSymbol_packet_cmd,
6132 &remote_set_cmdlist, &remote_show_cmdlist,
6133 0);
6134
6135 add_packet_config_cmd (&remote_protocol_e,
6136 "e", "step-over-range",
6137 set_remote_protocol_e_packet_cmd,
6138 show_remote_protocol_e_packet_cmd,
6139 &remote_set_cmdlist, &remote_show_cmdlist,
6140 0);
6141 /* Disable by default. The ``e'' packet has nasty interactions with
6142 the threading code - it relies on global state. */
6143 remote_protocol_e.detect = AUTO_BOOLEAN_FALSE;
6144 update_packet_config (&remote_protocol_e);
6145
6146 add_packet_config_cmd (&remote_protocol_E,
6147 "E", "step-over-range-w-signal",
6148 set_remote_protocol_E_packet_cmd,
6149 show_remote_protocol_E_packet_cmd,
6150 &remote_set_cmdlist, &remote_show_cmdlist,
6151 0);
6152 /* Disable by default. The ``e'' packet has nasty interactions with
6153 the threading code - it relies on global state. */
6154 remote_protocol_E.detect = AUTO_BOOLEAN_FALSE;
6155 update_packet_config (&remote_protocol_E);
6156
6157 add_packet_config_cmd (&remote_protocol_P,
6158 "P", "set-register",
6159 set_remote_protocol_P_packet_cmd,
6160 show_remote_protocol_P_packet_cmd,
6161 &remote_set_cmdlist, &remote_show_cmdlist,
6162 1);
6163
6164 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
6165 "Z0", "software-breakpoint",
6166 set_remote_protocol_Z_software_bp_packet_cmd,
6167 show_remote_protocol_Z_software_bp_packet_cmd,
6168 &remote_set_cmdlist, &remote_show_cmdlist,
6169 0);
6170
6171 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
6172 "Z1", "hardware-breakpoint",
6173 set_remote_protocol_Z_hardware_bp_packet_cmd,
6174 show_remote_protocol_Z_hardware_bp_packet_cmd,
6175 &remote_set_cmdlist, &remote_show_cmdlist,
6176 0);
6177
6178 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
6179 "Z2", "write-watchpoint",
6180 set_remote_protocol_Z_write_wp_packet_cmd,
6181 show_remote_protocol_Z_write_wp_packet_cmd,
6182 &remote_set_cmdlist, &remote_show_cmdlist,
6183 0);
6184
6185 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6186 "Z3", "read-watchpoint",
6187 set_remote_protocol_Z_read_wp_packet_cmd,
6188 show_remote_protocol_Z_read_wp_packet_cmd,
6189 &remote_set_cmdlist, &remote_show_cmdlist,
6190 0);
6191
6192 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6193 "Z4", "access-watchpoint",
6194 set_remote_protocol_Z_access_wp_packet_cmd,
6195 show_remote_protocol_Z_access_wp_packet_cmd,
6196 &remote_set_cmdlist, &remote_show_cmdlist,
6197 0);
6198
6199 /* Keep the old ``set remote Z-packet ...'' working. */
6200 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6201 &remote_Z_packet_detect, "\
6202 Set use of remote protocol `Z' packets",
6203 "Show use of remote protocol `Z' packets ",
6204 set_remote_protocol_Z_packet_cmd,
6205 show_remote_protocol_Z_packet_cmd,
6206 &remote_set_cmdlist, &remote_show_cmdlist);
6207
6208 /* Eventually initialize fileio. See fileio.c */
6209 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6210 }