* target.h (struct target_ops) <to_supports_multi_process>: New
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include "gdb_stat.h"
63
64 #include "memory-map.h"
65
66 /* The size to align memory write packets, when practical. The protocol
67 does not guarantee any alignment, and gdb will generate short
68 writes and unaligned writes, but even as a best-effort attempt this
69 can improve bulk transfers. For instance, if a write is misaligned
70 relative to the target's data bus, the stub may need to make an extra
71 round trip fetching data from the target. This doesn't make a
72 huge difference, but it's easy to do, so we try to be helpful.
73
74 The alignment chosen is arbitrary; usually data bus width is
75 important here, not the possibly larger cache line size. */
76 enum { REMOTE_ALIGN_WRITES = 16 };
77
78 /* Prototypes for local functions. */
79 static void cleanup_sigint_signal_handler (void *dummy);
80 static void initialize_sigint_signal_handler (void);
81 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
82 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
83 int forever);
84
85 static void handle_remote_sigint (int);
86 static void handle_remote_sigint_twice (int);
87 static void async_remote_interrupt (gdb_client_data);
88 void async_remote_interrupt_twice (gdb_client_data);
89
90 static void remote_files_info (struct target_ops *ignore);
91
92 static void remote_prepare_to_store (struct regcache *regcache);
93
94 static void remote_fetch_registers (struct regcache *regcache, int regno);
95
96 static void remote_resume (ptid_t ptid, int step,
97 enum target_signal siggnal);
98 static void remote_open (char *name, int from_tty);
99
100 static void extended_remote_open (char *name, int from_tty);
101
102 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
103
104 static void remote_close (int quitting);
105
106 static void remote_store_registers (struct regcache *regcache, int regno);
107
108 static void remote_mourn (void);
109
110 static void extended_remote_restart (void);
111
112 static void extended_remote_mourn (void);
113
114 static void remote_mourn_1 (struct target_ops *);
115
116 static void remote_send (char **buf, long *sizeof_buf_p);
117
118 static int readchar (int timeout);
119
120 static ptid_t remote_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122
123 static void remote_kill (void);
124
125 static int tohex (int nib);
126
127 static int remote_can_async_p (void);
128
129 static int remote_is_async_p (void);
130
131 static void remote_async (void (*callback) (enum inferior_event_type event_type,
132 void *context), void *context);
133
134 static int remote_async_mask (int new_mask);
135
136 static void remote_detach (char *args, int from_tty);
137
138 static void remote_interrupt (int signo);
139
140 static void remote_interrupt_twice (int signo);
141
142 static void interrupt_query (void);
143
144 static void set_general_thread (struct ptid ptid);
145 static void set_continue_thread (struct ptid ptid);
146
147 static int remote_thread_alive (ptid_t);
148
149 static void get_offsets (void);
150
151 static void skip_frame (void);
152
153 static long read_frame (char **buf_p, long *sizeof_buf);
154
155 static int hexnumlen (ULONGEST num);
156
157 static void init_remote_ops (void);
158
159 static void init_extended_remote_ops (void);
160
161 static void remote_stop (ptid_t);
162
163 static int ishex (int ch, int *val);
164
165 static int stubhex (int ch);
166
167 static int hexnumstr (char *, ULONGEST);
168
169 static int hexnumnstr (char *, ULONGEST, int);
170
171 static CORE_ADDR remote_address_masked (CORE_ADDR);
172
173 static void print_packet (char *);
174
175 static unsigned long crc32 (unsigned char *, int, unsigned int);
176
177 static void compare_sections_command (char *, int);
178
179 static void packet_command (char *, int);
180
181 static int stub_unpack_int (char *buff, int fieldlength);
182
183 static ptid_t remote_current_thread (ptid_t oldptid);
184
185 static void remote_find_new_threads (void);
186
187 static void record_currthread (ptid_t currthread);
188
189 static int fromhex (int a);
190
191 static int hex2bin (const char *hex, gdb_byte *bin, int count);
192
193 static int bin2hex (const gdb_byte *bin, char *hex, int count);
194
195 static int putpkt_binary (char *buf, int cnt);
196
197 static void check_binary_download (CORE_ADDR addr);
198
199 struct packet_config;
200
201 static void show_packet_config_cmd (struct packet_config *config);
202
203 static void update_packet_config (struct packet_config *config);
204
205 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
206 struct cmd_list_element *c);
207
208 static void show_remote_protocol_packet_cmd (struct ui_file *file,
209 int from_tty,
210 struct cmd_list_element *c,
211 const char *value);
212
213 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
214 static ptid_t read_ptid (char *buf, char **obuf);
215
216 static void remote_query_supported (void);
217
218 static void remote_check_symbols (struct objfile *objfile);
219
220 void _initialize_remote (void);
221
222 struct stop_reply;
223 static struct stop_reply *stop_reply_xmalloc (void);
224 static void stop_reply_xfree (struct stop_reply *);
225 static void do_stop_reply_xfree (void *arg);
226 static void remote_parse_stop_reply (char *buf, struct stop_reply *);
227 static void push_stop_reply (struct stop_reply *);
228 static void remote_get_pending_stop_replies (void);
229 static void discard_pending_stop_replies (int pid);
230 static int peek_stop_reply (ptid_t ptid);
231
232 static void remote_async_inferior_event_handler (gdb_client_data);
233 static void remote_async_get_pending_events_handler (gdb_client_data);
234
235 /* The non-stop remote protocol provisions for one pending stop reply.
236 This is where we keep it until it is acknowledged. */
237
238 static struct stop_reply *pending_stop_reply = NULL;
239
240 /* For "remote". */
241
242 static struct cmd_list_element *remote_cmdlist;
243
244 /* For "set remote" and "show remote". */
245
246 static struct cmd_list_element *remote_set_cmdlist;
247 static struct cmd_list_element *remote_show_cmdlist;
248
249 /* Description of the remote protocol state for the currently
250 connected target. This is per-target state, and independent of the
251 selected architecture. */
252
253 struct remote_state
254 {
255 /* A buffer to use for incoming packets, and its current size. The
256 buffer is grown dynamically for larger incoming packets.
257 Outgoing packets may also be constructed in this buffer.
258 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
259 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
260 packets. */
261 char *buf;
262 long buf_size;
263
264 /* If we negotiated packet size explicitly (and thus can bypass
265 heuristics for the largest packet size that will not overflow
266 a buffer in the stub), this will be set to that packet size.
267 Otherwise zero, meaning to use the guessed size. */
268 long explicit_packet_size;
269
270 /* remote_wait is normally called when the target is running and
271 waits for a stop reply packet. But sometimes we need to call it
272 when the target is already stopped. We can send a "?" packet
273 and have remote_wait read the response. Or, if we already have
274 the response, we can stash it in BUF and tell remote_wait to
275 skip calling getpkt. This flag is set when BUF contains a
276 stop reply packet and the target is not waiting. */
277 int cached_wait_status;
278
279 /* True, if in no ack mode. That is, neither GDB nor the stub will
280 expect acks from each other. The connection is assumed to be
281 reliable. */
282 int noack_mode;
283
284 /* True if we're connected in extended remote mode. */
285 int extended;
286
287 /* True if the stub reported support for multi-process
288 extensions. */
289 int multi_process_aware;
290
291 /* True if we resumed the target and we're waiting for the target to
292 stop. In the mean time, we can't start another command/query.
293 The remote server wouldn't be ready to process it, so we'd
294 timeout waiting for a reply that would never come and eventually
295 we'd close the connection. This can happen in asynchronous mode
296 because we allow GDB commands while the target is running. */
297 int waiting_for_stop_reply;
298
299 /* True if the stub reports support for non-stop mode. */
300 int non_stop_aware;
301
302 /* True if the stub reports support for vCont;t. */
303 int support_vCont_t;
304 };
305
306 /* Returns true if the multi-process extensions are in effect. */
307 static int
308 remote_multi_process_p (struct remote_state *rs)
309 {
310 return rs->extended && rs->multi_process_aware;
311 }
312
313 /* This data could be associated with a target, but we do not always
314 have access to the current target when we need it, so for now it is
315 static. This will be fine for as long as only one target is in use
316 at a time. */
317 static struct remote_state remote_state;
318
319 static struct remote_state *
320 get_remote_state_raw (void)
321 {
322 return &remote_state;
323 }
324
325 /* Description of the remote protocol for a given architecture. */
326
327 struct packet_reg
328 {
329 long offset; /* Offset into G packet. */
330 long regnum; /* GDB's internal register number. */
331 LONGEST pnum; /* Remote protocol register number. */
332 int in_g_packet; /* Always part of G packet. */
333 /* long size in bytes; == register_size (target_gdbarch, regnum);
334 at present. */
335 /* char *name; == gdbarch_register_name (target_gdbarch, regnum);
336 at present. */
337 };
338
339 struct remote_arch_state
340 {
341 /* Description of the remote protocol registers. */
342 long sizeof_g_packet;
343
344 /* Description of the remote protocol registers indexed by REGNUM
345 (making an array gdbarch_num_regs in size). */
346 struct packet_reg *regs;
347
348 /* This is the size (in chars) of the first response to the ``g''
349 packet. It is used as a heuristic when determining the maximum
350 size of memory-read and memory-write packets. A target will
351 typically only reserve a buffer large enough to hold the ``g''
352 packet. The size does not include packet overhead (headers and
353 trailers). */
354 long actual_register_packet_size;
355
356 /* This is the maximum size (in chars) of a non read/write packet.
357 It is also used as a cap on the size of read/write packets. */
358 long remote_packet_size;
359 };
360
361
362 /* Handle for retreving the remote protocol data from gdbarch. */
363 static struct gdbarch_data *remote_gdbarch_data_handle;
364
365 static struct remote_arch_state *
366 get_remote_arch_state (void)
367 {
368 return gdbarch_data (target_gdbarch, remote_gdbarch_data_handle);
369 }
370
371 /* Fetch the global remote target state. */
372
373 static struct remote_state *
374 get_remote_state (void)
375 {
376 /* Make sure that the remote architecture state has been
377 initialized, because doing so might reallocate rs->buf. Any
378 function which calls getpkt also needs to be mindful of changes
379 to rs->buf, but this call limits the number of places which run
380 into trouble. */
381 get_remote_arch_state ();
382
383 return get_remote_state_raw ();
384 }
385
386 static int
387 compare_pnums (const void *lhs_, const void *rhs_)
388 {
389 const struct packet_reg * const *lhs = lhs_;
390 const struct packet_reg * const *rhs = rhs_;
391
392 if ((*lhs)->pnum < (*rhs)->pnum)
393 return -1;
394 else if ((*lhs)->pnum == (*rhs)->pnum)
395 return 0;
396 else
397 return 1;
398 }
399
400 static void *
401 init_remote_state (struct gdbarch *gdbarch)
402 {
403 int regnum, num_remote_regs, offset;
404 struct remote_state *rs = get_remote_state_raw ();
405 struct remote_arch_state *rsa;
406 struct packet_reg **remote_regs;
407
408 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
409
410 /* Use the architecture to build a regnum<->pnum table, which will be
411 1:1 unless a feature set specifies otherwise. */
412 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
413 gdbarch_num_regs (gdbarch),
414 struct packet_reg);
415 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
416 {
417 struct packet_reg *r = &rsa->regs[regnum];
418
419 if (register_size (gdbarch, regnum) == 0)
420 /* Do not try to fetch zero-sized (placeholder) registers. */
421 r->pnum = -1;
422 else
423 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
424
425 r->regnum = regnum;
426 }
427
428 /* Define the g/G packet format as the contents of each register
429 with a remote protocol number, in order of ascending protocol
430 number. */
431
432 remote_regs = alloca (gdbarch_num_regs (gdbarch)
433 * sizeof (struct packet_reg *));
434 for (num_remote_regs = 0, regnum = 0;
435 regnum < gdbarch_num_regs (gdbarch);
436 regnum++)
437 if (rsa->regs[regnum].pnum != -1)
438 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
439
440 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
441 compare_pnums);
442
443 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
444 {
445 remote_regs[regnum]->in_g_packet = 1;
446 remote_regs[regnum]->offset = offset;
447 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
448 }
449
450 /* Record the maximum possible size of the g packet - it may turn out
451 to be smaller. */
452 rsa->sizeof_g_packet = offset;
453
454 /* Default maximum number of characters in a packet body. Many
455 remote stubs have a hardwired buffer size of 400 bytes
456 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
457 as the maximum packet-size to ensure that the packet and an extra
458 NUL character can always fit in the buffer. This stops GDB
459 trashing stubs that try to squeeze an extra NUL into what is
460 already a full buffer (As of 1999-12-04 that was most stubs). */
461 rsa->remote_packet_size = 400 - 1;
462
463 /* This one is filled in when a ``g'' packet is received. */
464 rsa->actual_register_packet_size = 0;
465
466 /* Should rsa->sizeof_g_packet needs more space than the
467 default, adjust the size accordingly. Remember that each byte is
468 encoded as two characters. 32 is the overhead for the packet
469 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
470 (``$NN:G...#NN'') is a better guess, the below has been padded a
471 little. */
472 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
473 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
474
475 /* Make sure that the packet buffer is plenty big enough for
476 this architecture. */
477 if (rs->buf_size < rsa->remote_packet_size)
478 {
479 rs->buf_size = 2 * rsa->remote_packet_size;
480 rs->buf = xrealloc (rs->buf, rs->buf_size);
481 }
482
483 return rsa;
484 }
485
486 /* Return the current allowed size of a remote packet. This is
487 inferred from the current architecture, and should be used to
488 limit the length of outgoing packets. */
489 static long
490 get_remote_packet_size (void)
491 {
492 struct remote_state *rs = get_remote_state ();
493 struct remote_arch_state *rsa = get_remote_arch_state ();
494
495 if (rs->explicit_packet_size)
496 return rs->explicit_packet_size;
497
498 return rsa->remote_packet_size;
499 }
500
501 static struct packet_reg *
502 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
503 {
504 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch))
505 return NULL;
506 else
507 {
508 struct packet_reg *r = &rsa->regs[regnum];
509 gdb_assert (r->regnum == regnum);
510 return r;
511 }
512 }
513
514 static struct packet_reg *
515 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
516 {
517 int i;
518 for (i = 0; i < gdbarch_num_regs (target_gdbarch); i++)
519 {
520 struct packet_reg *r = &rsa->regs[i];
521 if (r->pnum == pnum)
522 return r;
523 }
524 return NULL;
525 }
526
527 /* FIXME: graces/2002-08-08: These variables should eventually be
528 bound to an instance of the target object (as in gdbarch-tdep()),
529 when such a thing exists. */
530
531 /* This is set to the data address of the access causing the target
532 to stop for a watchpoint. */
533 static CORE_ADDR remote_watch_data_address;
534
535 /* This is non-zero if target stopped for a watchpoint. */
536 static int remote_stopped_by_watchpoint_p;
537
538 static struct target_ops remote_ops;
539
540 static struct target_ops extended_remote_ops;
541
542 static int remote_async_mask_value = 1;
543
544 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
545 ``forever'' still use the normal timeout mechanism. This is
546 currently used by the ASYNC code to guarentee that target reads
547 during the initial connect always time-out. Once getpkt has been
548 modified to return a timeout indication and, in turn
549 remote_wait()/wait_for_inferior() have gained a timeout parameter
550 this can go away. */
551 static int wait_forever_enabled_p = 1;
552
553
554 /* This variable chooses whether to send a ^C or a break when the user
555 requests program interruption. Although ^C is usually what remote
556 systems expect, and that is the default here, sometimes a break is
557 preferable instead. */
558
559 static int remote_break;
560
561 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
562 remote_open knows that we don't have a file open when the program
563 starts. */
564 static struct serial *remote_desc = NULL;
565
566 /* This variable sets the number of bits in an address that are to be
567 sent in a memory ("M" or "m") packet. Normally, after stripping
568 leading zeros, the entire address would be sent. This variable
569 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
570 initial implementation of remote.c restricted the address sent in
571 memory packets to ``host::sizeof long'' bytes - (typically 32
572 bits). Consequently, for 64 bit targets, the upper 32 bits of an
573 address was never sent. Since fixing this bug may cause a break in
574 some remote targets this variable is principly provided to
575 facilitate backward compatibility. */
576
577 static int remote_address_size;
578
579 /* Temporary to track who currently owns the terminal. See
580 remote_terminal_* for more details. */
581
582 static int remote_async_terminal_ours_p;
583
584 /* The executable file to use for "run" on the remote side. */
585
586 static char *remote_exec_file = "";
587
588 \f
589 /* User configurable variables for the number of characters in a
590 memory read/write packet. MIN (rsa->remote_packet_size,
591 rsa->sizeof_g_packet) is the default. Some targets need smaller
592 values (fifo overruns, et.al.) and some users need larger values
593 (speed up transfers). The variables ``preferred_*'' (the user
594 request), ``current_*'' (what was actually set) and ``forced_*''
595 (Positive - a soft limit, negative - a hard limit). */
596
597 struct memory_packet_config
598 {
599 char *name;
600 long size;
601 int fixed_p;
602 };
603
604 /* Compute the current size of a read/write packet. Since this makes
605 use of ``actual_register_packet_size'' the computation is dynamic. */
606
607 static long
608 get_memory_packet_size (struct memory_packet_config *config)
609 {
610 struct remote_state *rs = get_remote_state ();
611 struct remote_arch_state *rsa = get_remote_arch_state ();
612
613 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
614 law?) that some hosts don't cope very well with large alloca()
615 calls. Eventually the alloca() code will be replaced by calls to
616 xmalloc() and make_cleanups() allowing this restriction to either
617 be lifted or removed. */
618 #ifndef MAX_REMOTE_PACKET_SIZE
619 #define MAX_REMOTE_PACKET_SIZE 16384
620 #endif
621 /* NOTE: 20 ensures we can write at least one byte. */
622 #ifndef MIN_REMOTE_PACKET_SIZE
623 #define MIN_REMOTE_PACKET_SIZE 20
624 #endif
625 long what_they_get;
626 if (config->fixed_p)
627 {
628 if (config->size <= 0)
629 what_they_get = MAX_REMOTE_PACKET_SIZE;
630 else
631 what_they_get = config->size;
632 }
633 else
634 {
635 what_they_get = get_remote_packet_size ();
636 /* Limit the packet to the size specified by the user. */
637 if (config->size > 0
638 && what_they_get > config->size)
639 what_they_get = config->size;
640
641 /* Limit it to the size of the targets ``g'' response unless we have
642 permission from the stub to use a larger packet size. */
643 if (rs->explicit_packet_size == 0
644 && rsa->actual_register_packet_size > 0
645 && what_they_get > rsa->actual_register_packet_size)
646 what_they_get = rsa->actual_register_packet_size;
647 }
648 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
649 what_they_get = MAX_REMOTE_PACKET_SIZE;
650 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
651 what_they_get = MIN_REMOTE_PACKET_SIZE;
652
653 /* Make sure there is room in the global buffer for this packet
654 (including its trailing NUL byte). */
655 if (rs->buf_size < what_they_get + 1)
656 {
657 rs->buf_size = 2 * what_they_get;
658 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
659 }
660
661 return what_they_get;
662 }
663
664 /* Update the size of a read/write packet. If they user wants
665 something really big then do a sanity check. */
666
667 static void
668 set_memory_packet_size (char *args, struct memory_packet_config *config)
669 {
670 int fixed_p = config->fixed_p;
671 long size = config->size;
672 if (args == NULL)
673 error (_("Argument required (integer, `fixed' or `limited')."));
674 else if (strcmp (args, "hard") == 0
675 || strcmp (args, "fixed") == 0)
676 fixed_p = 1;
677 else if (strcmp (args, "soft") == 0
678 || strcmp (args, "limit") == 0)
679 fixed_p = 0;
680 else
681 {
682 char *end;
683 size = strtoul (args, &end, 0);
684 if (args == end)
685 error (_("Invalid %s (bad syntax)."), config->name);
686 #if 0
687 /* Instead of explicitly capping the size of a packet to
688 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
689 instead allowed to set the size to something arbitrarily
690 large. */
691 if (size > MAX_REMOTE_PACKET_SIZE)
692 error (_("Invalid %s (too large)."), config->name);
693 #endif
694 }
695 /* Extra checks? */
696 if (fixed_p && !config->fixed_p)
697 {
698 if (! query (_("The target may not be able to correctly handle a %s\n"
699 "of %ld bytes. Change the packet size? "),
700 config->name, size))
701 error (_("Packet size not changed."));
702 }
703 /* Update the config. */
704 config->fixed_p = fixed_p;
705 config->size = size;
706 }
707
708 static void
709 show_memory_packet_size (struct memory_packet_config *config)
710 {
711 printf_filtered (_("The %s is %ld. "), config->name, config->size);
712 if (config->fixed_p)
713 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
714 get_memory_packet_size (config));
715 else
716 printf_filtered (_("Packets are limited to %ld bytes.\n"),
717 get_memory_packet_size (config));
718 }
719
720 static struct memory_packet_config memory_write_packet_config =
721 {
722 "memory-write-packet-size",
723 };
724
725 static void
726 set_memory_write_packet_size (char *args, int from_tty)
727 {
728 set_memory_packet_size (args, &memory_write_packet_config);
729 }
730
731 static void
732 show_memory_write_packet_size (char *args, int from_tty)
733 {
734 show_memory_packet_size (&memory_write_packet_config);
735 }
736
737 static long
738 get_memory_write_packet_size (void)
739 {
740 return get_memory_packet_size (&memory_write_packet_config);
741 }
742
743 static struct memory_packet_config memory_read_packet_config =
744 {
745 "memory-read-packet-size",
746 };
747
748 static void
749 set_memory_read_packet_size (char *args, int from_tty)
750 {
751 set_memory_packet_size (args, &memory_read_packet_config);
752 }
753
754 static void
755 show_memory_read_packet_size (char *args, int from_tty)
756 {
757 show_memory_packet_size (&memory_read_packet_config);
758 }
759
760 static long
761 get_memory_read_packet_size (void)
762 {
763 long size = get_memory_packet_size (&memory_read_packet_config);
764 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
765 extra buffer size argument before the memory read size can be
766 increased beyond this. */
767 if (size > get_remote_packet_size ())
768 size = get_remote_packet_size ();
769 return size;
770 }
771
772 \f
773 /* Generic configuration support for packets the stub optionally
774 supports. Allows the user to specify the use of the packet as well
775 as allowing GDB to auto-detect support in the remote stub. */
776
777 enum packet_support
778 {
779 PACKET_SUPPORT_UNKNOWN = 0,
780 PACKET_ENABLE,
781 PACKET_DISABLE
782 };
783
784 struct packet_config
785 {
786 const char *name;
787 const char *title;
788 enum auto_boolean detect;
789 enum packet_support support;
790 };
791
792 /* Analyze a packet's return value and update the packet config
793 accordingly. */
794
795 enum packet_result
796 {
797 PACKET_ERROR,
798 PACKET_OK,
799 PACKET_UNKNOWN
800 };
801
802 static void
803 update_packet_config (struct packet_config *config)
804 {
805 switch (config->detect)
806 {
807 case AUTO_BOOLEAN_TRUE:
808 config->support = PACKET_ENABLE;
809 break;
810 case AUTO_BOOLEAN_FALSE:
811 config->support = PACKET_DISABLE;
812 break;
813 case AUTO_BOOLEAN_AUTO:
814 config->support = PACKET_SUPPORT_UNKNOWN;
815 break;
816 }
817 }
818
819 static void
820 show_packet_config_cmd (struct packet_config *config)
821 {
822 char *support = "internal-error";
823 switch (config->support)
824 {
825 case PACKET_ENABLE:
826 support = "enabled";
827 break;
828 case PACKET_DISABLE:
829 support = "disabled";
830 break;
831 case PACKET_SUPPORT_UNKNOWN:
832 support = "unknown";
833 break;
834 }
835 switch (config->detect)
836 {
837 case AUTO_BOOLEAN_AUTO:
838 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
839 config->name, support);
840 break;
841 case AUTO_BOOLEAN_TRUE:
842 case AUTO_BOOLEAN_FALSE:
843 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
844 config->name, support);
845 break;
846 }
847 }
848
849 static void
850 add_packet_config_cmd (struct packet_config *config, const char *name,
851 const char *title, int legacy)
852 {
853 char *set_doc;
854 char *show_doc;
855 char *cmd_name;
856
857 config->name = name;
858 config->title = title;
859 config->detect = AUTO_BOOLEAN_AUTO;
860 config->support = PACKET_SUPPORT_UNKNOWN;
861 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
862 name, title);
863 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
864 name, title);
865 /* set/show TITLE-packet {auto,on,off} */
866 cmd_name = xstrprintf ("%s-packet", title);
867 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
868 &config->detect, set_doc, show_doc, NULL, /* help_doc */
869 set_remote_protocol_packet_cmd,
870 show_remote_protocol_packet_cmd,
871 &remote_set_cmdlist, &remote_show_cmdlist);
872 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
873 if (legacy)
874 {
875 char *legacy_name;
876 legacy_name = xstrprintf ("%s-packet", name);
877 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
878 &remote_set_cmdlist);
879 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
880 &remote_show_cmdlist);
881 }
882 }
883
884 static enum packet_result
885 packet_check_result (const char *buf)
886 {
887 if (buf[0] != '\0')
888 {
889 /* The stub recognized the packet request. Check that the
890 operation succeeded. */
891 if (buf[0] == 'E'
892 && isxdigit (buf[1]) && isxdigit (buf[2])
893 && buf[3] == '\0')
894 /* "Enn" - definitly an error. */
895 return PACKET_ERROR;
896
897 /* Always treat "E." as an error. This will be used for
898 more verbose error messages, such as E.memtypes. */
899 if (buf[0] == 'E' && buf[1] == '.')
900 return PACKET_ERROR;
901
902 /* The packet may or may not be OK. Just assume it is. */
903 return PACKET_OK;
904 }
905 else
906 /* The stub does not support the packet. */
907 return PACKET_UNKNOWN;
908 }
909
910 static enum packet_result
911 packet_ok (const char *buf, struct packet_config *config)
912 {
913 enum packet_result result;
914
915 result = packet_check_result (buf);
916 switch (result)
917 {
918 case PACKET_OK:
919 case PACKET_ERROR:
920 /* The stub recognized the packet request. */
921 switch (config->support)
922 {
923 case PACKET_SUPPORT_UNKNOWN:
924 if (remote_debug)
925 fprintf_unfiltered (gdb_stdlog,
926 "Packet %s (%s) is supported\n",
927 config->name, config->title);
928 config->support = PACKET_ENABLE;
929 break;
930 case PACKET_DISABLE:
931 internal_error (__FILE__, __LINE__,
932 _("packet_ok: attempt to use a disabled packet"));
933 break;
934 case PACKET_ENABLE:
935 break;
936 }
937 break;
938 case PACKET_UNKNOWN:
939 /* The stub does not support the packet. */
940 switch (config->support)
941 {
942 case PACKET_ENABLE:
943 if (config->detect == AUTO_BOOLEAN_AUTO)
944 /* If the stub previously indicated that the packet was
945 supported then there is a protocol error.. */
946 error (_("Protocol error: %s (%s) conflicting enabled responses."),
947 config->name, config->title);
948 else
949 /* The user set it wrong. */
950 error (_("Enabled packet %s (%s) not recognized by stub"),
951 config->name, config->title);
952 break;
953 case PACKET_SUPPORT_UNKNOWN:
954 if (remote_debug)
955 fprintf_unfiltered (gdb_stdlog,
956 "Packet %s (%s) is NOT supported\n",
957 config->name, config->title);
958 config->support = PACKET_DISABLE;
959 break;
960 case PACKET_DISABLE:
961 break;
962 }
963 break;
964 }
965
966 return result;
967 }
968
969 enum {
970 PACKET_vCont = 0,
971 PACKET_X,
972 PACKET_qSymbol,
973 PACKET_P,
974 PACKET_p,
975 PACKET_Z0,
976 PACKET_Z1,
977 PACKET_Z2,
978 PACKET_Z3,
979 PACKET_Z4,
980 PACKET_vFile_open,
981 PACKET_vFile_pread,
982 PACKET_vFile_pwrite,
983 PACKET_vFile_close,
984 PACKET_vFile_unlink,
985 PACKET_qXfer_auxv,
986 PACKET_qXfer_features,
987 PACKET_qXfer_libraries,
988 PACKET_qXfer_memory_map,
989 PACKET_qXfer_spu_read,
990 PACKET_qXfer_spu_write,
991 PACKET_qGetTLSAddr,
992 PACKET_qSupported,
993 PACKET_QPassSignals,
994 PACKET_qSearch_memory,
995 PACKET_vAttach,
996 PACKET_vRun,
997 PACKET_QStartNoAckMode,
998 PACKET_vKill,
999 PACKET_MAX
1000 };
1001
1002 static struct packet_config remote_protocol_packets[PACKET_MAX];
1003
1004 static void
1005 set_remote_protocol_packet_cmd (char *args, int from_tty,
1006 struct cmd_list_element *c)
1007 {
1008 struct packet_config *packet;
1009
1010 for (packet = remote_protocol_packets;
1011 packet < &remote_protocol_packets[PACKET_MAX];
1012 packet++)
1013 {
1014 if (&packet->detect == c->var)
1015 {
1016 update_packet_config (packet);
1017 return;
1018 }
1019 }
1020 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1021 c->name);
1022 }
1023
1024 static void
1025 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1026 struct cmd_list_element *c,
1027 const char *value)
1028 {
1029 struct packet_config *packet;
1030
1031 for (packet = remote_protocol_packets;
1032 packet < &remote_protocol_packets[PACKET_MAX];
1033 packet++)
1034 {
1035 if (&packet->detect == c->var)
1036 {
1037 show_packet_config_cmd (packet);
1038 return;
1039 }
1040 }
1041 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1042 c->name);
1043 }
1044
1045 /* Should we try one of the 'Z' requests? */
1046
1047 enum Z_packet_type
1048 {
1049 Z_PACKET_SOFTWARE_BP,
1050 Z_PACKET_HARDWARE_BP,
1051 Z_PACKET_WRITE_WP,
1052 Z_PACKET_READ_WP,
1053 Z_PACKET_ACCESS_WP,
1054 NR_Z_PACKET_TYPES
1055 };
1056
1057 /* For compatibility with older distributions. Provide a ``set remote
1058 Z-packet ...'' command that updates all the Z packet types. */
1059
1060 static enum auto_boolean remote_Z_packet_detect;
1061
1062 static void
1063 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1064 struct cmd_list_element *c)
1065 {
1066 int i;
1067 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1068 {
1069 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1070 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1071 }
1072 }
1073
1074 static void
1075 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1076 struct cmd_list_element *c,
1077 const char *value)
1078 {
1079 int i;
1080 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1081 {
1082 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1083 }
1084 }
1085
1086 /* Should we try the 'ThreadInfo' query packet?
1087
1088 This variable (NOT available to the user: auto-detect only!)
1089 determines whether GDB will use the new, simpler "ThreadInfo"
1090 query or the older, more complex syntax for thread queries.
1091 This is an auto-detect variable (set to true at each connect,
1092 and set to false when the target fails to recognize it). */
1093
1094 static int use_threadinfo_query;
1095 static int use_threadextra_query;
1096
1097 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1098 static struct async_signal_handler *sigint_remote_twice_token;
1099 static struct async_signal_handler *sigint_remote_token;
1100
1101 \f
1102 /* Asynchronous signal handle registered as event loop source for
1103 when we have pending events ready to be passed to the core. */
1104
1105 static struct async_event_handler *remote_async_inferior_event_token;
1106
1107 /* Asynchronous signal handle registered as event loop source for when
1108 the remote sent us a %Stop notification. The registered callback
1109 will do a vStopped sequence to pull the rest of the events out of
1110 the remote side into our event queue. */
1111
1112 static struct async_event_handler *remote_async_get_pending_events_token;
1113 \f
1114
1115 static ptid_t magic_null_ptid;
1116 static ptid_t not_sent_ptid;
1117 static ptid_t any_thread_ptid;
1118
1119 /* These are the threads which we last sent to the remote system. The
1120 TID member will be -1 for all or -2 for not sent yet. */
1121
1122 static ptid_t general_thread;
1123 static ptid_t continue_thread;
1124
1125 static void
1126 notice_new_inferiors (ptid_t currthread)
1127 {
1128 /* When connecting to a target remote, or to a target
1129 extended-remote which already was debugging an inferior, we may
1130 not know about it yet. Add it before adding its child thread, so
1131 notifications are emitted in a sensible order. */
1132 if (!in_inferior_list (ptid_get_pid (currthread)))
1133 add_inferior (ptid_get_pid (currthread));
1134
1135 /* If this is a new thread, add it to GDB's thread list.
1136 If we leave it up to WFI to do this, bad things will happen. */
1137
1138 if (in_thread_list (currthread) && is_exited (currthread))
1139 {
1140 /* We're seeing an event on a thread id we knew had exited.
1141 This has to be a new thread reusing the old id. Add it. */
1142 add_thread (currthread);
1143 return;
1144 }
1145
1146 if (!in_thread_list (currthread))
1147 {
1148 if (ptid_equal (pid_to_ptid (ptid_get_pid (currthread)), inferior_ptid))
1149 {
1150 /* inferior_ptid has no thread member yet. This can happen
1151 with the vAttach -> remote_wait,"TAAthread:" path if the
1152 stub doesn't support qC. This is the first stop reported
1153 after an attach, so this is the main thread. Update the
1154 ptid in the thread list. */
1155 thread_change_ptid (inferior_ptid, currthread);
1156 return;
1157 }
1158
1159 if (ptid_equal (magic_null_ptid, inferior_ptid))
1160 {
1161 /* inferior_ptid is not set yet. This can happen with the
1162 vRun -> remote_wait,"TAAthread:" path if the stub
1163 doesn't support qC. This is the first stop reported
1164 after an attach, so this is the main thread. Update the
1165 ptid in the thread list. */
1166 thread_change_ptid (inferior_ptid, currthread);
1167 return;
1168 }
1169
1170 /* This is really a new thread. Add it. */
1171 add_thread (currthread);
1172 }
1173 }
1174
1175 /* Call this function as a result of
1176 1) A halt indication (T packet) containing a thread id
1177 2) A direct query of currthread
1178 3) Successful execution of set thread
1179 */
1180
1181 static void
1182 record_currthread (ptid_t currthread)
1183 {
1184 general_thread = currthread;
1185
1186 if (ptid_equal (currthread, minus_one_ptid))
1187 /* We're just invalidating the local thread mirror. */
1188 return;
1189
1190 notice_new_inferiors (currthread);
1191 }
1192
1193 static char *last_pass_packet;
1194
1195 /* If 'QPassSignals' is supported, tell the remote stub what signals
1196 it can simply pass through to the inferior without reporting. */
1197
1198 static void
1199 remote_pass_signals (void)
1200 {
1201 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1202 {
1203 char *pass_packet, *p;
1204 int numsigs = (int) TARGET_SIGNAL_LAST;
1205 int count = 0, i;
1206
1207 gdb_assert (numsigs < 256);
1208 for (i = 0; i < numsigs; i++)
1209 {
1210 if (signal_stop_state (i) == 0
1211 && signal_print_state (i) == 0
1212 && signal_pass_state (i) == 1)
1213 count++;
1214 }
1215 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1216 strcpy (pass_packet, "QPassSignals:");
1217 p = pass_packet + strlen (pass_packet);
1218 for (i = 0; i < numsigs; i++)
1219 {
1220 if (signal_stop_state (i) == 0
1221 && signal_print_state (i) == 0
1222 && signal_pass_state (i) == 1)
1223 {
1224 if (i >= 16)
1225 *p++ = tohex (i >> 4);
1226 *p++ = tohex (i & 15);
1227 if (count)
1228 *p++ = ';';
1229 else
1230 break;
1231 count--;
1232 }
1233 }
1234 *p = 0;
1235 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1236 {
1237 struct remote_state *rs = get_remote_state ();
1238 char *buf = rs->buf;
1239
1240 putpkt (pass_packet);
1241 getpkt (&rs->buf, &rs->buf_size, 0);
1242 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1243 if (last_pass_packet)
1244 xfree (last_pass_packet);
1245 last_pass_packet = pass_packet;
1246 }
1247 else
1248 xfree (pass_packet);
1249 }
1250 }
1251
1252 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1253 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1254 thread. If GEN is set, set the general thread, if not, then set
1255 the step/continue thread. */
1256 static void
1257 set_thread (struct ptid ptid, int gen)
1258 {
1259 struct remote_state *rs = get_remote_state ();
1260 ptid_t state = gen ? general_thread : continue_thread;
1261 char *buf = rs->buf;
1262 char *endbuf = rs->buf + get_remote_packet_size ();
1263
1264 if (ptid_equal (state, ptid))
1265 return;
1266
1267 *buf++ = 'H';
1268 *buf++ = gen ? 'g' : 'c';
1269 if (ptid_equal (ptid, magic_null_ptid))
1270 xsnprintf (buf, endbuf - buf, "0");
1271 else if (ptid_equal (ptid, any_thread_ptid))
1272 xsnprintf (buf, endbuf - buf, "0");
1273 else if (ptid_equal (ptid, minus_one_ptid))
1274 xsnprintf (buf, endbuf - buf, "-1");
1275 else
1276 write_ptid (buf, endbuf, ptid);
1277 putpkt (rs->buf);
1278 getpkt (&rs->buf, &rs->buf_size, 0);
1279 if (gen)
1280 general_thread = ptid;
1281 else
1282 continue_thread = ptid;
1283 }
1284
1285 static void
1286 set_general_thread (struct ptid ptid)
1287 {
1288 set_thread (ptid, 1);
1289 }
1290
1291 static void
1292 set_continue_thread (struct ptid ptid)
1293 {
1294 set_thread (ptid, 0);
1295 }
1296
1297 /* Change the remote current process. Which thread within the process
1298 ends up selected isn't important, as long as it is the same process
1299 as what INFERIOR_PTID points to.
1300
1301 This comes from that fact that there is no explicit notion of
1302 "selected process" in the protocol. The selected process for
1303 general operations is the process the selected general thread
1304 belongs to. */
1305
1306 static void
1307 set_general_process (void)
1308 {
1309 struct remote_state *rs = get_remote_state ();
1310
1311 /* If the remote can't handle multiple processes, don't bother. */
1312 if (!remote_multi_process_p (rs))
1313 return;
1314
1315 /* We only need to change the remote current thread if it's pointing
1316 at some other process. */
1317 if (ptid_get_pid (general_thread) != ptid_get_pid (inferior_ptid))
1318 set_general_thread (inferior_ptid);
1319 }
1320
1321 \f
1322 /* Return nonzero if the thread PTID is still alive on the remote
1323 system. */
1324
1325 static int
1326 remote_thread_alive (ptid_t ptid)
1327 {
1328 struct remote_state *rs = get_remote_state ();
1329 int tid = ptid_get_tid (ptid);
1330 char *p, *endp;
1331
1332 if (ptid_equal (ptid, magic_null_ptid))
1333 /* The main thread is always alive. */
1334 return 1;
1335
1336 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1337 /* The main thread is always alive. This can happen after a
1338 vAttach, if the remote side doesn't support
1339 multi-threading. */
1340 return 1;
1341
1342 p = rs->buf;
1343 endp = rs->buf + get_remote_packet_size ();
1344
1345 *p++ = 'T';
1346 write_ptid (p, endp, ptid);
1347
1348 putpkt (rs->buf);
1349 getpkt (&rs->buf, &rs->buf_size, 0);
1350 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1351 }
1352
1353 /* About these extended threadlist and threadinfo packets. They are
1354 variable length packets but, the fields within them are often fixed
1355 length. They are redundent enough to send over UDP as is the
1356 remote protocol in general. There is a matching unit test module
1357 in libstub. */
1358
1359 #define OPAQUETHREADBYTES 8
1360
1361 /* a 64 bit opaque identifier */
1362 typedef unsigned char threadref[OPAQUETHREADBYTES];
1363
1364 /* WARNING: This threadref data structure comes from the remote O.S.,
1365 libstub protocol encoding, and remote.c. it is not particularly
1366 changable. */
1367
1368 /* Right now, the internal structure is int. We want it to be bigger.
1369 Plan to fix this.
1370 */
1371
1372 typedef int gdb_threadref; /* Internal GDB thread reference. */
1373
1374 /* gdb_ext_thread_info is an internal GDB data structure which is
1375 equivalent to the reply of the remote threadinfo packet. */
1376
1377 struct gdb_ext_thread_info
1378 {
1379 threadref threadid; /* External form of thread reference. */
1380 int active; /* Has state interesting to GDB?
1381 regs, stack. */
1382 char display[256]; /* Brief state display, name,
1383 blocked/suspended. */
1384 char shortname[32]; /* To be used to name threads. */
1385 char more_display[256]; /* Long info, statistics, queue depth,
1386 whatever. */
1387 };
1388
1389 /* The volume of remote transfers can be limited by submitting
1390 a mask containing bits specifying the desired information.
1391 Use a union of these values as the 'selection' parameter to
1392 get_thread_info. FIXME: Make these TAG names more thread specific.
1393 */
1394
1395 #define TAG_THREADID 1
1396 #define TAG_EXISTS 2
1397 #define TAG_DISPLAY 4
1398 #define TAG_THREADNAME 8
1399 #define TAG_MOREDISPLAY 16
1400
1401 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1402
1403 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1404
1405 static char *unpack_nibble (char *buf, int *val);
1406
1407 static char *pack_nibble (char *buf, int nibble);
1408
1409 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1410
1411 static char *unpack_byte (char *buf, int *value);
1412
1413 static char *pack_int (char *buf, int value);
1414
1415 static char *unpack_int (char *buf, int *value);
1416
1417 static char *unpack_string (char *src, char *dest, int length);
1418
1419 static char *pack_threadid (char *pkt, threadref *id);
1420
1421 static char *unpack_threadid (char *inbuf, threadref *id);
1422
1423 void int_to_threadref (threadref *id, int value);
1424
1425 static int threadref_to_int (threadref *ref);
1426
1427 static void copy_threadref (threadref *dest, threadref *src);
1428
1429 static int threadmatch (threadref *dest, threadref *src);
1430
1431 static char *pack_threadinfo_request (char *pkt, int mode,
1432 threadref *id);
1433
1434 static int remote_unpack_thread_info_response (char *pkt,
1435 threadref *expectedref,
1436 struct gdb_ext_thread_info
1437 *info);
1438
1439
1440 static int remote_get_threadinfo (threadref *threadid,
1441 int fieldset, /*TAG mask */
1442 struct gdb_ext_thread_info *info);
1443
1444 static char *pack_threadlist_request (char *pkt, int startflag,
1445 int threadcount,
1446 threadref *nextthread);
1447
1448 static int parse_threadlist_response (char *pkt,
1449 int result_limit,
1450 threadref *original_echo,
1451 threadref *resultlist,
1452 int *doneflag);
1453
1454 static int remote_get_threadlist (int startflag,
1455 threadref *nextthread,
1456 int result_limit,
1457 int *done,
1458 int *result_count,
1459 threadref *threadlist);
1460
1461 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1462
1463 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1464 void *context, int looplimit);
1465
1466 static int remote_newthread_step (threadref *ref, void *context);
1467
1468
1469 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1470 buffer we're allowed to write to. Returns
1471 BUF+CHARACTERS_WRITTEN. */
1472
1473 static char *
1474 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1475 {
1476 int pid, tid;
1477 struct remote_state *rs = get_remote_state ();
1478
1479 if (remote_multi_process_p (rs))
1480 {
1481 pid = ptid_get_pid (ptid);
1482 if (pid < 0)
1483 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
1484 else
1485 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
1486 }
1487 tid = ptid_get_tid (ptid);
1488 if (tid < 0)
1489 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
1490 else
1491 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
1492
1493 return buf;
1494 }
1495
1496 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
1497 passed the last parsed char. Returns null_ptid on error. */
1498
1499 static ptid_t
1500 read_ptid (char *buf, char **obuf)
1501 {
1502 char *p = buf;
1503 char *pp;
1504 ULONGEST pid = 0, tid = 0;
1505 ptid_t ptid;
1506
1507 if (*p == 'p')
1508 {
1509 /* Multi-process ptid. */
1510 pp = unpack_varlen_hex (p + 1, &pid);
1511 if (*pp != '.')
1512 error (_("invalid remote ptid: %s\n"), p);
1513
1514 p = pp;
1515 pp = unpack_varlen_hex (p + 1, &tid);
1516 if (obuf)
1517 *obuf = pp;
1518 return ptid_build (pid, 0, tid);
1519 }
1520
1521 /* No multi-process. Just a tid. */
1522 pp = unpack_varlen_hex (p, &tid);
1523
1524 /* Since the stub is not sending a process id, then default to
1525 what's in inferior_ptid. */
1526 pid = ptid_get_pid (inferior_ptid);
1527
1528 if (obuf)
1529 *obuf = pp;
1530 return ptid_build (pid, 0, tid);
1531 }
1532
1533 /* Encode 64 bits in 16 chars of hex. */
1534
1535 static const char hexchars[] = "0123456789abcdef";
1536
1537 static int
1538 ishex (int ch, int *val)
1539 {
1540 if ((ch >= 'a') && (ch <= 'f'))
1541 {
1542 *val = ch - 'a' + 10;
1543 return 1;
1544 }
1545 if ((ch >= 'A') && (ch <= 'F'))
1546 {
1547 *val = ch - 'A' + 10;
1548 return 1;
1549 }
1550 if ((ch >= '0') && (ch <= '9'))
1551 {
1552 *val = ch - '0';
1553 return 1;
1554 }
1555 return 0;
1556 }
1557
1558 static int
1559 stubhex (int ch)
1560 {
1561 if (ch >= 'a' && ch <= 'f')
1562 return ch - 'a' + 10;
1563 if (ch >= '0' && ch <= '9')
1564 return ch - '0';
1565 if (ch >= 'A' && ch <= 'F')
1566 return ch - 'A' + 10;
1567 return -1;
1568 }
1569
1570 static int
1571 stub_unpack_int (char *buff, int fieldlength)
1572 {
1573 int nibble;
1574 int retval = 0;
1575
1576 while (fieldlength)
1577 {
1578 nibble = stubhex (*buff++);
1579 retval |= nibble;
1580 fieldlength--;
1581 if (fieldlength)
1582 retval = retval << 4;
1583 }
1584 return retval;
1585 }
1586
1587 char *
1588 unpack_varlen_hex (char *buff, /* packet to parse */
1589 ULONGEST *result)
1590 {
1591 int nibble;
1592 ULONGEST retval = 0;
1593
1594 while (ishex (*buff, &nibble))
1595 {
1596 buff++;
1597 retval = retval << 4;
1598 retval |= nibble & 0x0f;
1599 }
1600 *result = retval;
1601 return buff;
1602 }
1603
1604 static char *
1605 unpack_nibble (char *buf, int *val)
1606 {
1607 *val = fromhex (*buf++);
1608 return buf;
1609 }
1610
1611 static char *
1612 pack_nibble (char *buf, int nibble)
1613 {
1614 *buf++ = hexchars[(nibble & 0x0f)];
1615 return buf;
1616 }
1617
1618 static char *
1619 pack_hex_byte (char *pkt, int byte)
1620 {
1621 *pkt++ = hexchars[(byte >> 4) & 0xf];
1622 *pkt++ = hexchars[(byte & 0xf)];
1623 return pkt;
1624 }
1625
1626 static char *
1627 unpack_byte (char *buf, int *value)
1628 {
1629 *value = stub_unpack_int (buf, 2);
1630 return buf + 2;
1631 }
1632
1633 static char *
1634 pack_int (char *buf, int value)
1635 {
1636 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1637 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1638 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1639 buf = pack_hex_byte (buf, (value & 0xff));
1640 return buf;
1641 }
1642
1643 static char *
1644 unpack_int (char *buf, int *value)
1645 {
1646 *value = stub_unpack_int (buf, 8);
1647 return buf + 8;
1648 }
1649
1650 #if 0 /* Currently unused, uncomment when needed. */
1651 static char *pack_string (char *pkt, char *string);
1652
1653 static char *
1654 pack_string (char *pkt, char *string)
1655 {
1656 char ch;
1657 int len;
1658
1659 len = strlen (string);
1660 if (len > 200)
1661 len = 200; /* Bigger than most GDB packets, junk??? */
1662 pkt = pack_hex_byte (pkt, len);
1663 while (len-- > 0)
1664 {
1665 ch = *string++;
1666 if ((ch == '\0') || (ch == '#'))
1667 ch = '*'; /* Protect encapsulation. */
1668 *pkt++ = ch;
1669 }
1670 return pkt;
1671 }
1672 #endif /* 0 (unused) */
1673
1674 static char *
1675 unpack_string (char *src, char *dest, int length)
1676 {
1677 while (length--)
1678 *dest++ = *src++;
1679 *dest = '\0';
1680 return src;
1681 }
1682
1683 static char *
1684 pack_threadid (char *pkt, threadref *id)
1685 {
1686 char *limit;
1687 unsigned char *altid;
1688
1689 altid = (unsigned char *) id;
1690 limit = pkt + BUF_THREAD_ID_SIZE;
1691 while (pkt < limit)
1692 pkt = pack_hex_byte (pkt, *altid++);
1693 return pkt;
1694 }
1695
1696
1697 static char *
1698 unpack_threadid (char *inbuf, threadref *id)
1699 {
1700 char *altref;
1701 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1702 int x, y;
1703
1704 altref = (char *) id;
1705
1706 while (inbuf < limit)
1707 {
1708 x = stubhex (*inbuf++);
1709 y = stubhex (*inbuf++);
1710 *altref++ = (x << 4) | y;
1711 }
1712 return inbuf;
1713 }
1714
1715 /* Externally, threadrefs are 64 bits but internally, they are still
1716 ints. This is due to a mismatch of specifications. We would like
1717 to use 64bit thread references internally. This is an adapter
1718 function. */
1719
1720 void
1721 int_to_threadref (threadref *id, int value)
1722 {
1723 unsigned char *scan;
1724
1725 scan = (unsigned char *) id;
1726 {
1727 int i = 4;
1728 while (i--)
1729 *scan++ = 0;
1730 }
1731 *scan++ = (value >> 24) & 0xff;
1732 *scan++ = (value >> 16) & 0xff;
1733 *scan++ = (value >> 8) & 0xff;
1734 *scan++ = (value & 0xff);
1735 }
1736
1737 static int
1738 threadref_to_int (threadref *ref)
1739 {
1740 int i, value = 0;
1741 unsigned char *scan;
1742
1743 scan = *ref;
1744 scan += 4;
1745 i = 4;
1746 while (i-- > 0)
1747 value = (value << 8) | ((*scan++) & 0xff);
1748 return value;
1749 }
1750
1751 static void
1752 copy_threadref (threadref *dest, threadref *src)
1753 {
1754 int i;
1755 unsigned char *csrc, *cdest;
1756
1757 csrc = (unsigned char *) src;
1758 cdest = (unsigned char *) dest;
1759 i = 8;
1760 while (i--)
1761 *cdest++ = *csrc++;
1762 }
1763
1764 static int
1765 threadmatch (threadref *dest, threadref *src)
1766 {
1767 /* Things are broken right now, so just assume we got a match. */
1768 #if 0
1769 unsigned char *srcp, *destp;
1770 int i, result;
1771 srcp = (char *) src;
1772 destp = (char *) dest;
1773
1774 result = 1;
1775 while (i-- > 0)
1776 result &= (*srcp++ == *destp++) ? 1 : 0;
1777 return result;
1778 #endif
1779 return 1;
1780 }
1781
1782 /*
1783 threadid:1, # always request threadid
1784 context_exists:2,
1785 display:4,
1786 unique_name:8,
1787 more_display:16
1788 */
1789
1790 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1791
1792 static char *
1793 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1794 {
1795 *pkt++ = 'q'; /* Info Query */
1796 *pkt++ = 'P'; /* process or thread info */
1797 pkt = pack_int (pkt, mode); /* mode */
1798 pkt = pack_threadid (pkt, id); /* threadid */
1799 *pkt = '\0'; /* terminate */
1800 return pkt;
1801 }
1802
1803 /* These values tag the fields in a thread info response packet. */
1804 /* Tagging the fields allows us to request specific fields and to
1805 add more fields as time goes by. */
1806
1807 #define TAG_THREADID 1 /* Echo the thread identifier. */
1808 #define TAG_EXISTS 2 /* Is this process defined enough to
1809 fetch registers and its stack? */
1810 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1811 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1812 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1813 the process. */
1814
1815 static int
1816 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1817 struct gdb_ext_thread_info *info)
1818 {
1819 struct remote_state *rs = get_remote_state ();
1820 int mask, length;
1821 int tag;
1822 threadref ref;
1823 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1824 int retval = 1;
1825
1826 /* info->threadid = 0; FIXME: implement zero_threadref. */
1827 info->active = 0;
1828 info->display[0] = '\0';
1829 info->shortname[0] = '\0';
1830 info->more_display[0] = '\0';
1831
1832 /* Assume the characters indicating the packet type have been
1833 stripped. */
1834 pkt = unpack_int (pkt, &mask); /* arg mask */
1835 pkt = unpack_threadid (pkt, &ref);
1836
1837 if (mask == 0)
1838 warning (_("Incomplete response to threadinfo request."));
1839 if (!threadmatch (&ref, expectedref))
1840 { /* This is an answer to a different request. */
1841 warning (_("ERROR RMT Thread info mismatch."));
1842 return 0;
1843 }
1844 copy_threadref (&info->threadid, &ref);
1845
1846 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1847
1848 /* Packets are terminated with nulls. */
1849 while ((pkt < limit) && mask && *pkt)
1850 {
1851 pkt = unpack_int (pkt, &tag); /* tag */
1852 pkt = unpack_byte (pkt, &length); /* length */
1853 if (!(tag & mask)) /* Tags out of synch with mask. */
1854 {
1855 warning (_("ERROR RMT: threadinfo tag mismatch."));
1856 retval = 0;
1857 break;
1858 }
1859 if (tag == TAG_THREADID)
1860 {
1861 if (length != 16)
1862 {
1863 warning (_("ERROR RMT: length of threadid is not 16."));
1864 retval = 0;
1865 break;
1866 }
1867 pkt = unpack_threadid (pkt, &ref);
1868 mask = mask & ~TAG_THREADID;
1869 continue;
1870 }
1871 if (tag == TAG_EXISTS)
1872 {
1873 info->active = stub_unpack_int (pkt, length);
1874 pkt += length;
1875 mask = mask & ~(TAG_EXISTS);
1876 if (length > 8)
1877 {
1878 warning (_("ERROR RMT: 'exists' length too long."));
1879 retval = 0;
1880 break;
1881 }
1882 continue;
1883 }
1884 if (tag == TAG_THREADNAME)
1885 {
1886 pkt = unpack_string (pkt, &info->shortname[0], length);
1887 mask = mask & ~TAG_THREADNAME;
1888 continue;
1889 }
1890 if (tag == TAG_DISPLAY)
1891 {
1892 pkt = unpack_string (pkt, &info->display[0], length);
1893 mask = mask & ~TAG_DISPLAY;
1894 continue;
1895 }
1896 if (tag == TAG_MOREDISPLAY)
1897 {
1898 pkt = unpack_string (pkt, &info->more_display[0], length);
1899 mask = mask & ~TAG_MOREDISPLAY;
1900 continue;
1901 }
1902 warning (_("ERROR RMT: unknown thread info tag."));
1903 break; /* Not a tag we know about. */
1904 }
1905 return retval;
1906 }
1907
1908 static int
1909 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1910 struct gdb_ext_thread_info *info)
1911 {
1912 struct remote_state *rs = get_remote_state ();
1913 int result;
1914
1915 pack_threadinfo_request (rs->buf, fieldset, threadid);
1916 putpkt (rs->buf);
1917 getpkt (&rs->buf, &rs->buf_size, 0);
1918
1919 if (rs->buf[0] == '\0')
1920 return 0;
1921
1922 result = remote_unpack_thread_info_response (rs->buf + 2,
1923 threadid, info);
1924 return result;
1925 }
1926
1927 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1928
1929 static char *
1930 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1931 threadref *nextthread)
1932 {
1933 *pkt++ = 'q'; /* info query packet */
1934 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1935 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1936 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1937 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1938 *pkt = '\0';
1939 return pkt;
1940 }
1941
1942 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1943
1944 static int
1945 parse_threadlist_response (char *pkt, int result_limit,
1946 threadref *original_echo, threadref *resultlist,
1947 int *doneflag)
1948 {
1949 struct remote_state *rs = get_remote_state ();
1950 char *limit;
1951 int count, resultcount, done;
1952
1953 resultcount = 0;
1954 /* Assume the 'q' and 'M chars have been stripped. */
1955 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1956 /* done parse past here */
1957 pkt = unpack_byte (pkt, &count); /* count field */
1958 pkt = unpack_nibble (pkt, &done);
1959 /* The first threadid is the argument threadid. */
1960 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1961 while ((count-- > 0) && (pkt < limit))
1962 {
1963 pkt = unpack_threadid (pkt, resultlist++);
1964 if (resultcount++ >= result_limit)
1965 break;
1966 }
1967 if (doneflag)
1968 *doneflag = done;
1969 return resultcount;
1970 }
1971
1972 static int
1973 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1974 int *done, int *result_count, threadref *threadlist)
1975 {
1976 struct remote_state *rs = get_remote_state ();
1977 static threadref echo_nextthread;
1978 int result = 1;
1979
1980 /* Trancate result limit to be smaller than the packet size. */
1981 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1982 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1983
1984 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1985 putpkt (rs->buf);
1986 getpkt (&rs->buf, &rs->buf_size, 0);
1987
1988 if (*rs->buf == '\0')
1989 *result_count = 0;
1990 else
1991 *result_count =
1992 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1993 threadlist, done);
1994
1995 if (!threadmatch (&echo_nextthread, nextthread))
1996 {
1997 /* FIXME: This is a good reason to drop the packet. */
1998 /* Possably, there is a duplicate response. */
1999 /* Possabilities :
2000 retransmit immediatly - race conditions
2001 retransmit after timeout - yes
2002 exit
2003 wait for packet, then exit
2004 */
2005 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2006 return 0; /* I choose simply exiting. */
2007 }
2008 if (*result_count <= 0)
2009 {
2010 if (*done != 1)
2011 {
2012 warning (_("RMT ERROR : failed to get remote thread list."));
2013 result = 0;
2014 }
2015 return result; /* break; */
2016 }
2017 if (*result_count > result_limit)
2018 {
2019 *result_count = 0;
2020 warning (_("RMT ERROR: threadlist response longer than requested."));
2021 return 0;
2022 }
2023 return result;
2024 }
2025
2026 /* This is the interface between remote and threads, remotes upper
2027 interface. */
2028
2029 /* remote_find_new_threads retrieves the thread list and for each
2030 thread in the list, looks up the thread in GDB's internal list,
2031 adding the thread if it does not already exist. This involves
2032 getting partial thread lists from the remote target so, polling the
2033 quit_flag is required. */
2034
2035
2036 /* About this many threadisds fit in a packet. */
2037
2038 #define MAXTHREADLISTRESULTS 32
2039
2040 static int
2041 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2042 int looplimit)
2043 {
2044 int done, i, result_count;
2045 int startflag = 1;
2046 int result = 1;
2047 int loopcount = 0;
2048 static threadref nextthread;
2049 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2050
2051 done = 0;
2052 while (!done)
2053 {
2054 if (loopcount++ > looplimit)
2055 {
2056 result = 0;
2057 warning (_("Remote fetch threadlist -infinite loop-."));
2058 break;
2059 }
2060 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2061 &done, &result_count, resultthreadlist))
2062 {
2063 result = 0;
2064 break;
2065 }
2066 /* Clear for later iterations. */
2067 startflag = 0;
2068 /* Setup to resume next batch of thread references, set nextthread. */
2069 if (result_count >= 1)
2070 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2071 i = 0;
2072 while (result_count--)
2073 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2074 break;
2075 }
2076 return result;
2077 }
2078
2079 static int
2080 remote_newthread_step (threadref *ref, void *context)
2081 {
2082 int pid = ptid_get_pid (inferior_ptid);
2083 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2084
2085 if (!in_thread_list (ptid))
2086 add_thread (ptid);
2087 return 1; /* continue iterator */
2088 }
2089
2090 #define CRAZY_MAX_THREADS 1000
2091
2092 static ptid_t
2093 remote_current_thread (ptid_t oldpid)
2094 {
2095 struct remote_state *rs = get_remote_state ();
2096 char *p = rs->buf;
2097 int tid;
2098 int pid;
2099
2100 putpkt ("qC");
2101 getpkt (&rs->buf, &rs->buf_size, 0);
2102 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2103 return read_ptid (&rs->buf[2], NULL);
2104 else
2105 return oldpid;
2106 }
2107
2108 /* Find new threads for info threads command.
2109 * Original version, using John Metzler's thread protocol.
2110 */
2111
2112 static void
2113 remote_find_new_threads (void)
2114 {
2115 remote_threadlist_iterator (remote_newthread_step, 0,
2116 CRAZY_MAX_THREADS);
2117 }
2118
2119 /*
2120 * Find all threads for info threads command.
2121 * Uses new thread protocol contributed by Cisco.
2122 * Falls back and attempts to use the older method (above)
2123 * if the target doesn't respond to the new method.
2124 */
2125
2126 static void
2127 remote_threads_info (void)
2128 {
2129 struct remote_state *rs = get_remote_state ();
2130 char *bufp;
2131 ptid_t new_thread;
2132
2133 if (remote_desc == 0) /* paranoia */
2134 error (_("Command can only be used when connected to the remote target."));
2135
2136 if (use_threadinfo_query)
2137 {
2138 putpkt ("qfThreadInfo");
2139 getpkt (&rs->buf, &rs->buf_size, 0);
2140 bufp = rs->buf;
2141 if (bufp[0] != '\0') /* q packet recognized */
2142 {
2143 while (*bufp++ == 'm') /* reply contains one or more TID */
2144 {
2145 do
2146 {
2147 new_thread = read_ptid (bufp, &bufp);
2148 if (!ptid_equal (new_thread, null_ptid)
2149 && (!in_thread_list (new_thread)
2150 || is_exited (new_thread)))
2151 {
2152 /* When connected to a multi-process aware stub,
2153 "info threads" may show up threads of
2154 inferiors we didn't know about yet. Add them
2155 now, and before adding any of its child
2156 threads, so notifications are emitted in a
2157 sensible order. */
2158 if (!in_inferior_list (ptid_get_pid (new_thread)))
2159 add_inferior (ptid_get_pid (new_thread));
2160
2161 add_thread (new_thread);
2162
2163 /* In non-stop mode, we assume new found threads
2164 are running until we proven otherwise with a
2165 stop reply. In all-stop, we can only get
2166 here if all threads are stopped. */
2167 set_executing (new_thread, non_stop ? 1 : 0);
2168 set_running (new_thread, non_stop ? 1 : 0);
2169 }
2170 }
2171 while (*bufp++ == ','); /* comma-separated list */
2172 putpkt ("qsThreadInfo");
2173 getpkt (&rs->buf, &rs->buf_size, 0);
2174 bufp = rs->buf;
2175 }
2176 return; /* done */
2177 }
2178 }
2179
2180 /* Only qfThreadInfo is supported in non-stop mode. */
2181 if (non_stop)
2182 return;
2183
2184 /* Else fall back to old method based on jmetzler protocol. */
2185 use_threadinfo_query = 0;
2186 remote_find_new_threads ();
2187 return;
2188 }
2189
2190 /*
2191 * Collect a descriptive string about the given thread.
2192 * The target may say anything it wants to about the thread
2193 * (typically info about its blocked / runnable state, name, etc.).
2194 * This string will appear in the info threads display.
2195 *
2196 * Optional: targets are not required to implement this function.
2197 */
2198
2199 static char *
2200 remote_threads_extra_info (struct thread_info *tp)
2201 {
2202 struct remote_state *rs = get_remote_state ();
2203 int result;
2204 int set;
2205 threadref id;
2206 struct gdb_ext_thread_info threadinfo;
2207 static char display_buf[100]; /* arbitrary... */
2208 int n = 0; /* position in display_buf */
2209
2210 if (remote_desc == 0) /* paranoia */
2211 internal_error (__FILE__, __LINE__,
2212 _("remote_threads_extra_info"));
2213
2214 if (ptid_equal (tp->ptid, magic_null_ptid)
2215 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2216 /* This is the main thread which was added by GDB. The remote
2217 server doesn't know about it. */
2218 return NULL;
2219
2220 if (use_threadextra_query)
2221 {
2222 char *b = rs->buf;
2223 char *endb = rs->buf + get_remote_packet_size ();
2224
2225 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2226 b += strlen (b);
2227 write_ptid (b, endb, tp->ptid);
2228
2229 putpkt (rs->buf);
2230 getpkt (&rs->buf, &rs->buf_size, 0);
2231 if (rs->buf[0] != 0)
2232 {
2233 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2234 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2235 display_buf [result] = '\0';
2236 return display_buf;
2237 }
2238 }
2239
2240 /* If the above query fails, fall back to the old method. */
2241 use_threadextra_query = 0;
2242 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2243 | TAG_MOREDISPLAY | TAG_DISPLAY;
2244 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2245 if (remote_get_threadinfo (&id, set, &threadinfo))
2246 if (threadinfo.active)
2247 {
2248 if (*threadinfo.shortname)
2249 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2250 " Name: %s,", threadinfo.shortname);
2251 if (*threadinfo.display)
2252 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2253 " State: %s,", threadinfo.display);
2254 if (*threadinfo.more_display)
2255 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2256 " Priority: %s", threadinfo.more_display);
2257
2258 if (n > 0)
2259 {
2260 /* For purely cosmetic reasons, clear up trailing commas. */
2261 if (',' == display_buf[n-1])
2262 display_buf[n-1] = ' ';
2263 return display_buf;
2264 }
2265 }
2266 return NULL;
2267 }
2268 \f
2269
2270 /* Restart the remote side; this is an extended protocol operation. */
2271
2272 static void
2273 extended_remote_restart (void)
2274 {
2275 struct remote_state *rs = get_remote_state ();
2276
2277 /* Send the restart command; for reasons I don't understand the
2278 remote side really expects a number after the "R". */
2279 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2280 putpkt (rs->buf);
2281
2282 remote_fileio_reset ();
2283 }
2284 \f
2285 /* Clean up connection to a remote debugger. */
2286
2287 static void
2288 remote_close (int quitting)
2289 {
2290 if (remote_desc)
2291 {
2292 /* Unregister the file descriptor from the event loop. */
2293 if (target_is_async_p ())
2294 target_async (NULL, 0);
2295 serial_close (remote_desc);
2296 remote_desc = NULL;
2297 }
2298
2299 /* Make sure we don't leave the async SIGINT signal handler
2300 installed. */
2301 signal (SIGINT, handle_sigint);
2302
2303 /* We don't have a connection to the remote stub anymore. Get rid
2304 of all the inferiors and their threads we were controlling. */
2305 discard_all_inferiors ();
2306
2307 /* We're no longer interested in any of these events. */
2308 discard_pending_stop_replies (-1);
2309
2310 if (remote_async_inferior_event_token)
2311 delete_async_event_handler (&remote_async_inferior_event_token);
2312 if (remote_async_get_pending_events_token)
2313 delete_async_event_handler (&remote_async_get_pending_events_token);
2314
2315 generic_mourn_inferior ();
2316 }
2317
2318 /* Query the remote side for the text, data and bss offsets. */
2319
2320 static void
2321 get_offsets (void)
2322 {
2323 struct remote_state *rs = get_remote_state ();
2324 char *buf;
2325 char *ptr;
2326 int lose, num_segments = 0, do_sections, do_segments;
2327 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2328 struct section_offsets *offs;
2329 struct symfile_segment_data *data;
2330
2331 if (symfile_objfile == NULL)
2332 return;
2333
2334 putpkt ("qOffsets");
2335 getpkt (&rs->buf, &rs->buf_size, 0);
2336 buf = rs->buf;
2337
2338 if (buf[0] == '\000')
2339 return; /* Return silently. Stub doesn't support
2340 this command. */
2341 if (buf[0] == 'E')
2342 {
2343 warning (_("Remote failure reply: %s"), buf);
2344 return;
2345 }
2346
2347 /* Pick up each field in turn. This used to be done with scanf, but
2348 scanf will make trouble if CORE_ADDR size doesn't match
2349 conversion directives correctly. The following code will work
2350 with any size of CORE_ADDR. */
2351 text_addr = data_addr = bss_addr = 0;
2352 ptr = buf;
2353 lose = 0;
2354
2355 if (strncmp (ptr, "Text=", 5) == 0)
2356 {
2357 ptr += 5;
2358 /* Don't use strtol, could lose on big values. */
2359 while (*ptr && *ptr != ';')
2360 text_addr = (text_addr << 4) + fromhex (*ptr++);
2361
2362 if (strncmp (ptr, ";Data=", 6) == 0)
2363 {
2364 ptr += 6;
2365 while (*ptr && *ptr != ';')
2366 data_addr = (data_addr << 4) + fromhex (*ptr++);
2367 }
2368 else
2369 lose = 1;
2370
2371 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2372 {
2373 ptr += 5;
2374 while (*ptr && *ptr != ';')
2375 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2376
2377 if (bss_addr != data_addr)
2378 warning (_("Target reported unsupported offsets: %s"), buf);
2379 }
2380 else
2381 lose = 1;
2382 }
2383 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2384 {
2385 ptr += 8;
2386 /* Don't use strtol, could lose on big values. */
2387 while (*ptr && *ptr != ';')
2388 text_addr = (text_addr << 4) + fromhex (*ptr++);
2389 num_segments = 1;
2390
2391 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2392 {
2393 ptr += 9;
2394 while (*ptr && *ptr != ';')
2395 data_addr = (data_addr << 4) + fromhex (*ptr++);
2396 num_segments++;
2397 }
2398 }
2399 else
2400 lose = 1;
2401
2402 if (lose)
2403 error (_("Malformed response to offset query, %s"), buf);
2404 else if (*ptr != '\0')
2405 warning (_("Target reported unsupported offsets: %s"), buf);
2406
2407 offs = ((struct section_offsets *)
2408 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2409 memcpy (offs, symfile_objfile->section_offsets,
2410 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2411
2412 data = get_symfile_segment_data (symfile_objfile->obfd);
2413 do_segments = (data != NULL);
2414 do_sections = num_segments == 0;
2415
2416 if (num_segments > 0)
2417 {
2418 segments[0] = text_addr;
2419 segments[1] = data_addr;
2420 }
2421 /* If we have two segments, we can still try to relocate everything
2422 by assuming that the .text and .data offsets apply to the whole
2423 text and data segments. Convert the offsets given in the packet
2424 to base addresses for symfile_map_offsets_to_segments. */
2425 else if (data && data->num_segments == 2)
2426 {
2427 segments[0] = data->segment_bases[0] + text_addr;
2428 segments[1] = data->segment_bases[1] + data_addr;
2429 num_segments = 2;
2430 }
2431 /* If the object file has only one segment, assume that it is text
2432 rather than data; main programs with no writable data are rare,
2433 but programs with no code are useless. Of course the code might
2434 have ended up in the data segment... to detect that we would need
2435 the permissions here. */
2436 else if (data && data->num_segments == 1)
2437 {
2438 segments[0] = data->segment_bases[0] + text_addr;
2439 num_segments = 1;
2440 }
2441 /* There's no way to relocate by segment. */
2442 else
2443 do_segments = 0;
2444
2445 if (do_segments)
2446 {
2447 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2448 offs, num_segments, segments);
2449
2450 if (ret == 0 && !do_sections)
2451 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2452
2453 if (ret > 0)
2454 do_sections = 0;
2455 }
2456
2457 if (data)
2458 free_symfile_segment_data (data);
2459
2460 if (do_sections)
2461 {
2462 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2463
2464 /* This is a temporary kludge to force data and bss to use the same offsets
2465 because that's what nlmconv does now. The real solution requires changes
2466 to the stub and remote.c that I don't have time to do right now. */
2467
2468 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2469 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2470 }
2471
2472 objfile_relocate (symfile_objfile, offs);
2473 }
2474
2475 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
2476 threads we know are stopped already. This is used during the
2477 initial remote connection in non-stop mode --- threads that are
2478 reported as already being stopped are left stopped. */
2479
2480 static int
2481 set_stop_requested_callback (struct thread_info *thread, void *data)
2482 {
2483 /* If we have a stop reply for this thread, it must be stopped. */
2484 if (peek_stop_reply (thread->ptid))
2485 set_stop_requested (thread->ptid, 1);
2486
2487 return 0;
2488 }
2489
2490 /* Stub for catch_exception. */
2491
2492 struct start_remote_args
2493 {
2494 int from_tty;
2495
2496 /* The current target. */
2497 struct target_ops *target;
2498
2499 /* Non-zero if this is an extended-remote target. */
2500 int extended_p;
2501 };
2502
2503 static void
2504 remote_start_remote (struct ui_out *uiout, void *opaque)
2505 {
2506 struct start_remote_args *args = opaque;
2507 struct remote_state *rs = get_remote_state ();
2508 struct packet_config *noack_config;
2509 char *wait_status = NULL;
2510
2511 immediate_quit++; /* Allow user to interrupt it. */
2512
2513 /* Ack any packet which the remote side has already sent. */
2514 serial_write (remote_desc, "+", 1);
2515
2516 /* The first packet we send to the target is the optional "supported
2517 packets" request. If the target can answer this, it will tell us
2518 which later probes to skip. */
2519 remote_query_supported ();
2520
2521 /* Next, we possibly activate noack mode.
2522
2523 If the QStartNoAckMode packet configuration is set to AUTO,
2524 enable noack mode if the stub reported a wish for it with
2525 qSupported.
2526
2527 If set to TRUE, then enable noack mode even if the stub didn't
2528 report it in qSupported. If the stub doesn't reply OK, the
2529 session ends with an error.
2530
2531 If FALSE, then don't activate noack mode, regardless of what the
2532 stub claimed should be the default with qSupported. */
2533
2534 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
2535
2536 if (noack_config->detect == AUTO_BOOLEAN_TRUE
2537 || (noack_config->detect == AUTO_BOOLEAN_AUTO
2538 && noack_config->support == PACKET_ENABLE))
2539 {
2540 putpkt ("QStartNoAckMode");
2541 getpkt (&rs->buf, &rs->buf_size, 0);
2542 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
2543 rs->noack_mode = 1;
2544 }
2545
2546 if (args->extended_p)
2547 {
2548 /* Tell the remote that we are using the extended protocol. */
2549 putpkt ("!");
2550 getpkt (&rs->buf, &rs->buf_size, 0);
2551 }
2552
2553 /* Next, if the target can specify a description, read it. We do
2554 this before anything involving memory or registers. */
2555 target_find_description ();
2556
2557 if (non_stop)
2558 {
2559 if (!rs->non_stop_aware)
2560 error (_("Non-stop mode requested, but remote does not support non-stop"));
2561
2562 putpkt ("QNonStop:1");
2563 getpkt (&rs->buf, &rs->buf_size, 0);
2564
2565 if (strcmp (rs->buf, "OK") != 0)
2566 error ("Remote refused setting non-stop mode with: %s", rs->buf);
2567
2568 /* Find about threads and processes the stub is already
2569 controlling. We default to adding them in the running state.
2570 The '?' query below will then tell us about which threads are
2571 stopped. */
2572
2573 /* If we're not using the multi-process extensions, there's no
2574 way to know the pid of the reported threads; use the magic
2575 number. */
2576 if (!remote_multi_process_p (rs))
2577 inferior_ptid = magic_null_ptid;
2578
2579 remote_threads_info ();
2580 }
2581 else if (rs->non_stop_aware)
2582 {
2583 /* Don't assume that the stub can operate in all-stop mode.
2584 Request it explicitely. */
2585 putpkt ("QNonStop:0");
2586 getpkt (&rs->buf, &rs->buf_size, 0);
2587
2588 if (strcmp (rs->buf, "OK") != 0)
2589 error ("Remote refused setting all-stop mode with: %s", rs->buf);
2590 }
2591
2592 /* Check whether the target is running now. */
2593 putpkt ("?");
2594 getpkt (&rs->buf, &rs->buf_size, 0);
2595
2596 if (!non_stop)
2597 {
2598 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2599 {
2600 if (args->extended_p)
2601 {
2602 /* We're connected, but not running. Drop out before we
2603 call start_remote. */
2604 target_mark_exited (args->target);
2605 return;
2606 }
2607 else
2608 error (_("The target is not running (try extended-remote?)"));
2609 }
2610 else
2611 {
2612 if (args->extended_p)
2613 target_mark_running (args->target);
2614
2615 /* Save the reply for later. */
2616 wait_status = alloca (strlen (rs->buf) + 1);
2617 strcpy (wait_status, rs->buf);
2618 }
2619
2620 /* Let the stub know that we want it to return the thread. */
2621 set_continue_thread (minus_one_ptid);
2622
2623 /* Without this, some commands which require an active target
2624 (such as kill) won't work. This variable serves (at least)
2625 double duty as both the pid of the target process (if it has
2626 such), and as a flag indicating that a target is active.
2627 These functions should be split out into seperate variables,
2628 especially since GDB will someday have a notion of debugging
2629 several processes. */
2630 inferior_ptid = magic_null_ptid;
2631
2632 /* Now, if we have thread information, update inferior_ptid. */
2633 inferior_ptid = remote_current_thread (inferior_ptid);
2634
2635 add_inferior (ptid_get_pid (inferior_ptid));
2636
2637 /* Always add the main thread. */
2638 add_thread_silent (inferior_ptid);
2639
2640 get_offsets (); /* Get text, data & bss offsets. */
2641
2642 /* Use the previously fetched status. */
2643 gdb_assert (wait_status != NULL);
2644 strcpy (rs->buf, wait_status);
2645 rs->cached_wait_status = 1;
2646
2647 immediate_quit--;
2648 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2649 }
2650 else
2651 {
2652 /* In non-stop, we will either get an "OK", meaning that there
2653 are no stopped threads at this time; or, a regular stop
2654 reply. In the latter case, there may be more than one thread
2655 stopped --- we pull them all out using the vStopped
2656 mechanism. */
2657 if (strcmp (rs->buf, "OK") != 0)
2658 {
2659 struct stop_reply *stop_reply;
2660 struct cleanup *old_chain;
2661
2662 stop_reply = stop_reply_xmalloc ();
2663 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
2664
2665 remote_parse_stop_reply (rs->buf, stop_reply);
2666 discard_cleanups (old_chain);
2667
2668 /* get_pending_stop_replies acks this one, and gets the rest
2669 out. */
2670 pending_stop_reply = stop_reply;
2671 remote_get_pending_stop_replies ();
2672
2673 /* Make sure that threads that were stopped remain
2674 stopped. */
2675 iterate_over_threads (set_stop_requested_callback, NULL);
2676 }
2677
2678 if (target_can_async_p ())
2679 target_async (inferior_event_handler, 0);
2680
2681 if (thread_count () == 0)
2682 {
2683 if (args->extended_p)
2684 {
2685 /* We're connected, but not running. Drop out before we
2686 call start_remote. */
2687 target_mark_exited (args->target);
2688 return;
2689 }
2690 else
2691 error (_("The target is not running (try extended-remote?)"));
2692 }
2693
2694 if (args->extended_p)
2695 target_mark_running (args->target);
2696
2697 /* Let the stub know that we want it to return the thread. */
2698
2699 /* Force the stub to choose a thread. */
2700 set_general_thread (null_ptid);
2701
2702 /* Query it. */
2703 inferior_ptid = remote_current_thread (minus_one_ptid);
2704 if (ptid_equal (inferior_ptid, minus_one_ptid))
2705 error (_("remote didn't report the current thread in non-stop mode"));
2706
2707 get_offsets (); /* Get text, data & bss offsets. */
2708
2709 /* In non-stop mode, any cached wait status will be stored in
2710 the stop reply queue. */
2711 gdb_assert (wait_status == NULL);
2712 }
2713
2714 /* If we connected to a live target, do some additional setup. */
2715 if (target_has_execution)
2716 {
2717 if (exec_bfd) /* No use without an exec file. */
2718 remote_check_symbols (symfile_objfile);
2719 }
2720 }
2721
2722 /* Open a connection to a remote debugger.
2723 NAME is the filename used for communication. */
2724
2725 static void
2726 remote_open (char *name, int from_tty)
2727 {
2728 remote_open_1 (name, from_tty, &remote_ops, 0);
2729 }
2730
2731 /* Open a connection to a remote debugger using the extended
2732 remote gdb protocol. NAME is the filename used for communication. */
2733
2734 static void
2735 extended_remote_open (char *name, int from_tty)
2736 {
2737 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2738 }
2739
2740 /* Generic code for opening a connection to a remote target. */
2741
2742 static void
2743 init_all_packet_configs (void)
2744 {
2745 int i;
2746 for (i = 0; i < PACKET_MAX; i++)
2747 update_packet_config (&remote_protocol_packets[i]);
2748 }
2749
2750 /* Symbol look-up. */
2751
2752 static void
2753 remote_check_symbols (struct objfile *objfile)
2754 {
2755 struct remote_state *rs = get_remote_state ();
2756 char *msg, *reply, *tmp;
2757 struct minimal_symbol *sym;
2758 int end;
2759
2760 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2761 return;
2762
2763 /* Make sure the remote is pointing at the right process. */
2764 set_general_process ();
2765
2766 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2767 because we need both at the same time. */
2768 msg = alloca (get_remote_packet_size ());
2769
2770 /* Invite target to request symbol lookups. */
2771
2772 putpkt ("qSymbol::");
2773 getpkt (&rs->buf, &rs->buf_size, 0);
2774 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2775 reply = rs->buf;
2776
2777 while (strncmp (reply, "qSymbol:", 8) == 0)
2778 {
2779 tmp = &reply[8];
2780 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2781 msg[end] = '\0';
2782 sym = lookup_minimal_symbol (msg, NULL, NULL);
2783 if (sym == NULL)
2784 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2785 else
2786 {
2787 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2788
2789 /* If this is a function address, return the start of code
2790 instead of any data function descriptor. */
2791 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch,
2792 sym_addr,
2793 &current_target);
2794
2795 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2796 paddr_nz (sym_addr), &reply[8]);
2797 }
2798
2799 putpkt (msg);
2800 getpkt (&rs->buf, &rs->buf_size, 0);
2801 reply = rs->buf;
2802 }
2803 }
2804
2805 static struct serial *
2806 remote_serial_open (char *name)
2807 {
2808 static int udp_warning = 0;
2809
2810 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2811 of in ser-tcp.c, because it is the remote protocol assuming that the
2812 serial connection is reliable and not the serial connection promising
2813 to be. */
2814 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2815 {
2816 warning (_("\
2817 The remote protocol may be unreliable over UDP.\n\
2818 Some events may be lost, rendering further debugging impossible."));
2819 udp_warning = 1;
2820 }
2821
2822 return serial_open (name);
2823 }
2824
2825 /* This type describes each known response to the qSupported
2826 packet. */
2827 struct protocol_feature
2828 {
2829 /* The name of this protocol feature. */
2830 const char *name;
2831
2832 /* The default for this protocol feature. */
2833 enum packet_support default_support;
2834
2835 /* The function to call when this feature is reported, or after
2836 qSupported processing if the feature is not supported.
2837 The first argument points to this structure. The second
2838 argument indicates whether the packet requested support be
2839 enabled, disabled, or probed (or the default, if this function
2840 is being called at the end of processing and this feature was
2841 not reported). The third argument may be NULL; if not NULL, it
2842 is a NUL-terminated string taken from the packet following
2843 this feature's name and an equals sign. */
2844 void (*func) (const struct protocol_feature *, enum packet_support,
2845 const char *);
2846
2847 /* The corresponding packet for this feature. Only used if
2848 FUNC is remote_supported_packet. */
2849 int packet;
2850 };
2851
2852 static void
2853 remote_supported_packet (const struct protocol_feature *feature,
2854 enum packet_support support,
2855 const char *argument)
2856 {
2857 if (argument)
2858 {
2859 warning (_("Remote qSupported response supplied an unexpected value for"
2860 " \"%s\"."), feature->name);
2861 return;
2862 }
2863
2864 if (remote_protocol_packets[feature->packet].support
2865 == PACKET_SUPPORT_UNKNOWN)
2866 remote_protocol_packets[feature->packet].support = support;
2867 }
2868
2869 static void
2870 remote_packet_size (const struct protocol_feature *feature,
2871 enum packet_support support, const char *value)
2872 {
2873 struct remote_state *rs = get_remote_state ();
2874
2875 int packet_size;
2876 char *value_end;
2877
2878 if (support != PACKET_ENABLE)
2879 return;
2880
2881 if (value == NULL || *value == '\0')
2882 {
2883 warning (_("Remote target reported \"%s\" without a size."),
2884 feature->name);
2885 return;
2886 }
2887
2888 errno = 0;
2889 packet_size = strtol (value, &value_end, 16);
2890 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2891 {
2892 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2893 feature->name, value);
2894 return;
2895 }
2896
2897 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2898 {
2899 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2900 packet_size, MAX_REMOTE_PACKET_SIZE);
2901 packet_size = MAX_REMOTE_PACKET_SIZE;
2902 }
2903
2904 /* Record the new maximum packet size. */
2905 rs->explicit_packet_size = packet_size;
2906 }
2907
2908 static void
2909 remote_multi_process_feature (const struct protocol_feature *feature,
2910 enum packet_support support, const char *value)
2911 {
2912 struct remote_state *rs = get_remote_state ();
2913 rs->multi_process_aware = (support == PACKET_ENABLE);
2914 }
2915
2916 static void
2917 remote_non_stop_feature (const struct protocol_feature *feature,
2918 enum packet_support support, const char *value)
2919 {
2920 struct remote_state *rs = get_remote_state ();
2921 rs->non_stop_aware = (support == PACKET_ENABLE);
2922 }
2923
2924 static struct protocol_feature remote_protocol_features[] = {
2925 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2926 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2927 PACKET_qXfer_auxv },
2928 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2929 PACKET_qXfer_features },
2930 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2931 PACKET_qXfer_libraries },
2932 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2933 PACKET_qXfer_memory_map },
2934 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2935 PACKET_qXfer_spu_read },
2936 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2937 PACKET_qXfer_spu_write },
2938 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2939 PACKET_QPassSignals },
2940 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
2941 PACKET_QStartNoAckMode },
2942 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
2943 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
2944 };
2945
2946 static void
2947 remote_query_supported (void)
2948 {
2949 struct remote_state *rs = get_remote_state ();
2950 char *next;
2951 int i;
2952 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2953
2954 /* The packet support flags are handled differently for this packet
2955 than for most others. We treat an error, a disabled packet, and
2956 an empty response identically: any features which must be reported
2957 to be used will be automatically disabled. An empty buffer
2958 accomplishes this, since that is also the representation for a list
2959 containing no features. */
2960
2961 rs->buf[0] = 0;
2962 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2963 {
2964 if (rs->extended)
2965 putpkt ("qSupported:multiprocess+");
2966 else
2967 putpkt ("qSupported");
2968
2969 getpkt (&rs->buf, &rs->buf_size, 0);
2970
2971 /* If an error occured, warn, but do not return - just reset the
2972 buffer to empty and go on to disable features. */
2973 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2974 == PACKET_ERROR)
2975 {
2976 warning (_("Remote failure reply: %s"), rs->buf);
2977 rs->buf[0] = 0;
2978 }
2979 }
2980
2981 memset (seen, 0, sizeof (seen));
2982
2983 next = rs->buf;
2984 while (*next)
2985 {
2986 enum packet_support is_supported;
2987 char *p, *end, *name_end, *value;
2988
2989 /* First separate out this item from the rest of the packet. If
2990 there's another item after this, we overwrite the separator
2991 (terminated strings are much easier to work with). */
2992 p = next;
2993 end = strchr (p, ';');
2994 if (end == NULL)
2995 {
2996 end = p + strlen (p);
2997 next = end;
2998 }
2999 else
3000 {
3001 *end = '\0';
3002 next = end + 1;
3003
3004 if (end == p)
3005 {
3006 warning (_("empty item in \"qSupported\" response"));
3007 continue;
3008 }
3009 }
3010
3011 name_end = strchr (p, '=');
3012 if (name_end)
3013 {
3014 /* This is a name=value entry. */
3015 is_supported = PACKET_ENABLE;
3016 value = name_end + 1;
3017 *name_end = '\0';
3018 }
3019 else
3020 {
3021 value = NULL;
3022 switch (end[-1])
3023 {
3024 case '+':
3025 is_supported = PACKET_ENABLE;
3026 break;
3027
3028 case '-':
3029 is_supported = PACKET_DISABLE;
3030 break;
3031
3032 case '?':
3033 is_supported = PACKET_SUPPORT_UNKNOWN;
3034 break;
3035
3036 default:
3037 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
3038 continue;
3039 }
3040 end[-1] = '\0';
3041 }
3042
3043 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3044 if (strcmp (remote_protocol_features[i].name, p) == 0)
3045 {
3046 const struct protocol_feature *feature;
3047
3048 seen[i] = 1;
3049 feature = &remote_protocol_features[i];
3050 feature->func (feature, is_supported, value);
3051 break;
3052 }
3053 }
3054
3055 /* If we increased the packet size, make sure to increase the global
3056 buffer size also. We delay this until after parsing the entire
3057 qSupported packet, because this is the same buffer we were
3058 parsing. */
3059 if (rs->buf_size < rs->explicit_packet_size)
3060 {
3061 rs->buf_size = rs->explicit_packet_size;
3062 rs->buf = xrealloc (rs->buf, rs->buf_size);
3063 }
3064
3065 /* Handle the defaults for unmentioned features. */
3066 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
3067 if (!seen[i])
3068 {
3069 const struct protocol_feature *feature;
3070
3071 feature = &remote_protocol_features[i];
3072 feature->func (feature, feature->default_support, NULL);
3073 }
3074 }
3075
3076
3077 static void
3078 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
3079 {
3080 struct remote_state *rs = get_remote_state ();
3081
3082 if (name == 0)
3083 error (_("To open a remote debug connection, you need to specify what\n"
3084 "serial device is attached to the remote system\n"
3085 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
3086
3087 /* See FIXME above. */
3088 if (!target_async_permitted)
3089 wait_forever_enabled_p = 1;
3090
3091 /* If we're connected to a running target, target_preopen will kill it.
3092 But if we're connected to a target system with no running process,
3093 then we will still be connected when it returns. Ask this question
3094 first, before target_preopen has a chance to kill anything. */
3095 if (remote_desc != NULL && !target_has_execution)
3096 {
3097 if (!from_tty
3098 || query (_("Already connected to a remote target. Disconnect? ")))
3099 pop_target ();
3100 else
3101 error (_("Still connected."));
3102 }
3103
3104 target_preopen (from_tty);
3105
3106 unpush_target (target);
3107
3108 /* This time without a query. If we were connected to an
3109 extended-remote target and target_preopen killed the running
3110 process, we may still be connected. If we are starting "target
3111 remote" now, the extended-remote target will not have been
3112 removed by unpush_target. */
3113 if (remote_desc != NULL && !target_has_execution)
3114 pop_target ();
3115
3116 /* Make sure we send the passed signals list the next time we resume. */
3117 xfree (last_pass_packet);
3118 last_pass_packet = NULL;
3119
3120 remote_fileio_reset ();
3121 reopen_exec_file ();
3122 reread_symbols ();
3123
3124 remote_desc = remote_serial_open (name);
3125 if (!remote_desc)
3126 perror_with_name (name);
3127
3128 if (baud_rate != -1)
3129 {
3130 if (serial_setbaudrate (remote_desc, baud_rate))
3131 {
3132 /* The requested speed could not be set. Error out to
3133 top level after closing remote_desc. Take care to
3134 set remote_desc to NULL to avoid closing remote_desc
3135 more than once. */
3136 serial_close (remote_desc);
3137 remote_desc = NULL;
3138 perror_with_name (name);
3139 }
3140 }
3141
3142 serial_raw (remote_desc);
3143
3144 /* If there is something sitting in the buffer we might take it as a
3145 response to a command, which would be bad. */
3146 serial_flush_input (remote_desc);
3147
3148 if (from_tty)
3149 {
3150 puts_filtered ("Remote debugging using ");
3151 puts_filtered (name);
3152 puts_filtered ("\n");
3153 }
3154 push_target (target); /* Switch to using remote target now. */
3155
3156 /* Assume that the target is running, unless we learn otherwise. */
3157 target_mark_running (target);
3158
3159 /* Register extra event sources in the event loop. */
3160 remote_async_inferior_event_token
3161 = create_async_event_handler (remote_async_inferior_event_handler,
3162 NULL);
3163 remote_async_get_pending_events_token
3164 = create_async_event_handler (remote_async_get_pending_events_handler,
3165 NULL);
3166
3167 /* Reset the target state; these things will be queried either by
3168 remote_query_supported or as they are needed. */
3169 init_all_packet_configs ();
3170 rs->cached_wait_status = 0;
3171 rs->explicit_packet_size = 0;
3172 rs->noack_mode = 0;
3173 rs->multi_process_aware = 0;
3174 rs->extended = extended_p;
3175 rs->non_stop_aware = 0;
3176 rs->waiting_for_stop_reply = 0;
3177
3178 general_thread = not_sent_ptid;
3179 continue_thread = not_sent_ptid;
3180
3181 /* Probe for ability to use "ThreadInfo" query, as required. */
3182 use_threadinfo_query = 1;
3183 use_threadextra_query = 1;
3184
3185 if (target_async_permitted)
3186 {
3187 /* With this target we start out by owning the terminal. */
3188 remote_async_terminal_ours_p = 1;
3189
3190 /* FIXME: cagney/1999-09-23: During the initial connection it is
3191 assumed that the target is already ready and able to respond to
3192 requests. Unfortunately remote_start_remote() eventually calls
3193 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
3194 around this. Eventually a mechanism that allows
3195 wait_for_inferior() to expect/get timeouts will be
3196 implemented. */
3197 wait_forever_enabled_p = 0;
3198 }
3199
3200 /* First delete any symbols previously loaded from shared libraries. */
3201 no_shared_libraries (NULL, 0);
3202
3203 /* Start afresh. */
3204 init_thread_list ();
3205
3206 /* Start the remote connection. If error() or QUIT, discard this
3207 target (we'd otherwise be in an inconsistent state) and then
3208 propogate the error on up the exception chain. This ensures that
3209 the caller doesn't stumble along blindly assuming that the
3210 function succeeded. The CLI doesn't have this problem but other
3211 UI's, such as MI do.
3212
3213 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
3214 this function should return an error indication letting the
3215 caller restore the previous state. Unfortunately the command
3216 ``target remote'' is directly wired to this function making that
3217 impossible. On a positive note, the CLI side of this problem has
3218 been fixed - the function set_cmd_context() makes it possible for
3219 all the ``target ....'' commands to share a common callback
3220 function. See cli-dump.c. */
3221 {
3222 struct gdb_exception ex;
3223 struct start_remote_args args;
3224
3225 args.from_tty = from_tty;
3226 args.target = target;
3227 args.extended_p = extended_p;
3228
3229 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
3230 if (ex.reason < 0)
3231 {
3232 /* Pop the partially set up target - unless something else did
3233 already before throwing the exception. */
3234 if (remote_desc != NULL)
3235 pop_target ();
3236 if (target_async_permitted)
3237 wait_forever_enabled_p = 1;
3238 throw_exception (ex);
3239 }
3240 }
3241
3242 if (target_async_permitted)
3243 wait_forever_enabled_p = 1;
3244 }
3245
3246 /* This takes a program previously attached to and detaches it. After
3247 this is done, GDB can be used to debug some other program. We
3248 better not have left any breakpoints in the target program or it'll
3249 die when it hits one. */
3250
3251 static void
3252 remote_detach_1 (char *args, int from_tty, int extended)
3253 {
3254 int pid = ptid_get_pid (inferior_ptid);
3255 struct remote_state *rs = get_remote_state ();
3256
3257 if (args)
3258 error (_("Argument given to \"detach\" when remotely debugging."));
3259
3260 if (!target_has_execution)
3261 error (_("No process to detach from."));
3262
3263 /* Tell the remote target to detach. */
3264 if (remote_multi_process_p (rs))
3265 sprintf (rs->buf, "D;%x", pid);
3266 else
3267 strcpy (rs->buf, "D");
3268
3269 putpkt (rs->buf);
3270 getpkt (&rs->buf, &rs->buf_size, 0);
3271
3272 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
3273 ;
3274 else if (rs->buf[0] == '\0')
3275 error (_("Remote doesn't know how to detach"));
3276 else
3277 error (_("Can't detach process."));
3278
3279 if (from_tty)
3280 {
3281 if (remote_multi_process_p (rs))
3282 printf_filtered (_("Detached from remote %s.\n"),
3283 target_pid_to_str (pid_to_ptid (pid)));
3284 else
3285 {
3286 if (extended)
3287 puts_filtered (_("Detached from remote process.\n"));
3288 else
3289 puts_filtered (_("Ending remote debugging.\n"));
3290 }
3291 }
3292
3293 discard_pending_stop_replies (pid);
3294 detach_inferior (pid);
3295 target_mourn_inferior ();
3296 }
3297
3298 static void
3299 remote_detach (char *args, int from_tty)
3300 {
3301 remote_detach_1 (args, from_tty, 0);
3302 }
3303
3304 static void
3305 extended_remote_detach (char *args, int from_tty)
3306 {
3307 remote_detach_1 (args, from_tty, 1);
3308 }
3309
3310 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
3311
3312 static void
3313 remote_disconnect (struct target_ops *target, char *args, int from_tty)
3314 {
3315 if (args)
3316 error (_("Argument given to \"disconnect\" when remotely debugging."));
3317
3318 /* Make sure we unpush even the extended remote targets; mourn
3319 won't do it. So call remote_mourn_1 directly instead of
3320 target_mourn_inferior. */
3321 remote_mourn_1 (target);
3322
3323 if (from_tty)
3324 puts_filtered ("Ending remote debugging.\n");
3325 }
3326
3327 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
3328 be chatty about it. */
3329
3330 static void
3331 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
3332 {
3333 struct remote_state *rs = get_remote_state ();
3334 int pid;
3335 char *dummy;
3336 char *wait_status = NULL;
3337 struct inferior *inf;
3338
3339 if (!args)
3340 error_no_arg (_("process-id to attach"));
3341
3342 dummy = args;
3343 pid = strtol (args, &dummy, 0);
3344 /* Some targets don't set errno on errors, grrr! */
3345 if (pid == 0 && args == dummy)
3346 error (_("Illegal process-id: %s."), args);
3347
3348 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3349 error (_("This target does not support attaching to a process"));
3350
3351 sprintf (rs->buf, "vAttach;%x", pid);
3352 putpkt (rs->buf);
3353 getpkt (&rs->buf, &rs->buf_size, 0);
3354
3355 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
3356 {
3357 if (from_tty)
3358 printf_unfiltered (_("Attached to %s\n"),
3359 target_pid_to_str (pid_to_ptid (pid)));
3360
3361 if (!non_stop)
3362 {
3363 /* Save the reply for later. */
3364 wait_status = alloca (strlen (rs->buf) + 1);
3365 strcpy (wait_status, rs->buf);
3366 }
3367 else if (strcmp (rs->buf, "OK") != 0)
3368 error (_("Attaching to %s failed with: %s"),
3369 target_pid_to_str (pid_to_ptid (pid)),
3370 rs->buf);
3371 }
3372 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
3373 error (_("This target does not support attaching to a process"));
3374 else
3375 error (_("Attaching to %s failed"),
3376 target_pid_to_str (pid_to_ptid (pid)));
3377
3378 target_mark_running (target);
3379 inferior_ptid = pid_to_ptid (pid);
3380
3381 /* Now, if we have thread information, update inferior_ptid. */
3382 inferior_ptid = remote_current_thread (inferior_ptid);
3383
3384 inf = add_inferior (pid);
3385 inf->attach_flag = 1;
3386
3387 if (non_stop)
3388 /* Get list of threads. */
3389 remote_threads_info ();
3390 else
3391 /* Add the main thread to the thread list. */
3392 add_thread_silent (inferior_ptid);
3393
3394 /* Next, if the target can specify a description, read it. We do
3395 this before anything involving memory or registers. */
3396 target_find_description ();
3397
3398 if (!non_stop)
3399 {
3400 /* Use the previously fetched status. */
3401 gdb_assert (wait_status != NULL);
3402
3403 if (target_can_async_p ())
3404 {
3405 struct stop_reply *stop_reply;
3406 struct cleanup *old_chain;
3407
3408 stop_reply = stop_reply_xmalloc ();
3409 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
3410 remote_parse_stop_reply (wait_status, stop_reply);
3411 discard_cleanups (old_chain);
3412 push_stop_reply (stop_reply);
3413
3414 target_async (inferior_event_handler, 0);
3415 }
3416 else
3417 {
3418 gdb_assert (wait_status != NULL);
3419 strcpy (rs->buf, wait_status);
3420 rs->cached_wait_status = 1;
3421 }
3422 }
3423 else
3424 gdb_assert (wait_status == NULL);
3425 }
3426
3427 static void
3428 extended_remote_attach (char *args, int from_tty)
3429 {
3430 extended_remote_attach_1 (&extended_remote_ops, args, from_tty);
3431 }
3432
3433 /* Convert hex digit A to a number. */
3434
3435 static int
3436 fromhex (int a)
3437 {
3438 if (a >= '0' && a <= '9')
3439 return a - '0';
3440 else if (a >= 'a' && a <= 'f')
3441 return a - 'a' + 10;
3442 else if (a >= 'A' && a <= 'F')
3443 return a - 'A' + 10;
3444 else
3445 error (_("Reply contains invalid hex digit %d"), a);
3446 }
3447
3448 static int
3449 hex2bin (const char *hex, gdb_byte *bin, int count)
3450 {
3451 int i;
3452
3453 for (i = 0; i < count; i++)
3454 {
3455 if (hex[0] == 0 || hex[1] == 0)
3456 {
3457 /* Hex string is short, or of uneven length.
3458 Return the count that has been converted so far. */
3459 return i;
3460 }
3461 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
3462 hex += 2;
3463 }
3464 return i;
3465 }
3466
3467 /* Convert number NIB to a hex digit. */
3468
3469 static int
3470 tohex (int nib)
3471 {
3472 if (nib < 10)
3473 return '0' + nib;
3474 else
3475 return 'a' + nib - 10;
3476 }
3477
3478 static int
3479 bin2hex (const gdb_byte *bin, char *hex, int count)
3480 {
3481 int i;
3482 /* May use a length, or a nul-terminated string as input. */
3483 if (count == 0)
3484 count = strlen ((char *) bin);
3485
3486 for (i = 0; i < count; i++)
3487 {
3488 *hex++ = tohex ((*bin >> 4) & 0xf);
3489 *hex++ = tohex (*bin++ & 0xf);
3490 }
3491 *hex = 0;
3492 return i;
3493 }
3494 \f
3495 /* Check for the availability of vCont. This function should also check
3496 the response. */
3497
3498 static void
3499 remote_vcont_probe (struct remote_state *rs)
3500 {
3501 char *buf;
3502
3503 strcpy (rs->buf, "vCont?");
3504 putpkt (rs->buf);
3505 getpkt (&rs->buf, &rs->buf_size, 0);
3506 buf = rs->buf;
3507
3508 /* Make sure that the features we assume are supported. */
3509 if (strncmp (buf, "vCont", 5) == 0)
3510 {
3511 char *p = &buf[5];
3512 int support_s, support_S, support_c, support_C;
3513
3514 support_s = 0;
3515 support_S = 0;
3516 support_c = 0;
3517 support_C = 0;
3518 rs->support_vCont_t = 0;
3519 while (p && *p == ';')
3520 {
3521 p++;
3522 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3523 support_s = 1;
3524 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3525 support_S = 1;
3526 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3527 support_c = 1;
3528 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3529 support_C = 1;
3530 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
3531 rs->support_vCont_t = 1;
3532
3533 p = strchr (p, ';');
3534 }
3535
3536 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3537 BUF will make packet_ok disable the packet. */
3538 if (!support_s || !support_S || !support_c || !support_C)
3539 buf[0] = 0;
3540 }
3541
3542 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3543 }
3544
3545 /* Resume the remote inferior by using a "vCont" packet. The thread
3546 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3547 resumed thread should be single-stepped and/or signalled. If PTID
3548 equals minus_one_ptid, then all threads are resumed; the thread to
3549 be stepped and/or signalled is given in the global INFERIOR_PTID.
3550 This function returns non-zero iff it resumes the inferior.
3551
3552 This function issues a strict subset of all possible vCont commands at the
3553 moment. */
3554
3555 static int
3556 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3557 {
3558 struct remote_state *rs = get_remote_state ();
3559 char *p;
3560 char *endp;
3561
3562 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3563 remote_vcont_probe (rs);
3564
3565 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3566 return 0;
3567
3568 p = rs->buf;
3569 endp = rs->buf + get_remote_packet_size ();
3570
3571 /* If we could generate a wider range of packets, we'd have to worry
3572 about overflowing BUF. Should there be a generic
3573 "multi-part-packet" packet? */
3574
3575 if (ptid_equal (ptid, magic_null_ptid))
3576 {
3577 /* MAGIC_NULL_PTID means that we don't have any active threads,
3578 so we don't have any TID numbers the inferior will
3579 understand. Make sure to only send forms that do not specify
3580 a TID. */
3581 if (step && siggnal != TARGET_SIGNAL_0)
3582 xsnprintf (p, endp - p, "vCont;S%02x", siggnal);
3583 else if (step)
3584 xsnprintf (p, endp - p, "vCont;s");
3585 else if (siggnal != TARGET_SIGNAL_0)
3586 xsnprintf (p, endp - p, "vCont;C%02x", siggnal);
3587 else
3588 xsnprintf (p, endp - p, "vCont;c");
3589 }
3590 else if (ptid_equal (ptid, minus_one_ptid))
3591 {
3592 /* Resume all threads, with preference for INFERIOR_PTID. */
3593 if (step && siggnal != TARGET_SIGNAL_0)
3594 {
3595 /* Step inferior_ptid with signal. */
3596 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3597 p = write_ptid (p, endp, inferior_ptid);
3598 /* And continue others. */
3599 p += xsnprintf (p, endp - p, ";c");
3600 }
3601 else if (step)
3602 {
3603 /* Step inferior_ptid. */
3604 p += xsnprintf (p, endp - p, "vCont;s:");
3605 p = write_ptid (p, endp, inferior_ptid);
3606 /* And continue others. */
3607 p += xsnprintf (p, endp - p, ";c");
3608 }
3609 else if (siggnal != TARGET_SIGNAL_0)
3610 {
3611 /* Continue inferior_ptid with signal. */
3612 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3613 p = write_ptid (p, endp, inferior_ptid);
3614 /* And continue others. */
3615 p += xsnprintf (p, endp - p, ";c");
3616 }
3617 else
3618 xsnprintf (p, endp - p, "vCont;c");
3619 }
3620 else
3621 {
3622 /* Scheduler locking; resume only PTID. */
3623 if (step && siggnal != TARGET_SIGNAL_0)
3624 {
3625 /* Step ptid with signal. */
3626 p += xsnprintf (p, endp - p, "vCont;S%02x:", siggnal);
3627 p = write_ptid (p, endp, ptid);
3628 }
3629 else if (step)
3630 {
3631 /* Step ptid. */
3632 p += xsnprintf (p, endp - p, "vCont;s:");
3633 p = write_ptid (p, endp, ptid);
3634 }
3635 else if (siggnal != TARGET_SIGNAL_0)
3636 {
3637 /* Continue ptid with signal. */
3638 p += xsnprintf (p, endp - p, "vCont;C%02x:", siggnal);
3639 p = write_ptid (p, endp, ptid);
3640 }
3641 else
3642 {
3643 /* Continue ptid. */
3644 p += xsnprintf (p, endp - p, "vCont;c:");
3645 p = write_ptid (p, endp, ptid);
3646 }
3647 }
3648
3649 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
3650 putpkt (rs->buf);
3651
3652 if (non_stop)
3653 {
3654 /* In non-stop, the stub replies to vCont with "OK". The stop
3655 reply will be reported asynchronously by means of a `%Stop'
3656 notification. */
3657 getpkt (&rs->buf, &rs->buf_size, 0);
3658 if (strcmp (rs->buf, "OK") != 0)
3659 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
3660 }
3661
3662 return 1;
3663 }
3664
3665 /* Tell the remote machine to resume. */
3666
3667 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3668
3669 static int last_sent_step;
3670
3671 static void
3672 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3673 {
3674 struct remote_state *rs = get_remote_state ();
3675 char *buf;
3676
3677 last_sent_signal = siggnal;
3678 last_sent_step = step;
3679
3680 /* Update the inferior on signals to silently pass, if they've changed. */
3681 remote_pass_signals ();
3682
3683 /* The vCont packet doesn't need to specify threads via Hc. */
3684 if (remote_vcont_resume (ptid, step, siggnal))
3685 goto done;
3686
3687 /* All other supported resume packets do use Hc, so set the continue
3688 thread. */
3689 if (ptid_equal (ptid, minus_one_ptid))
3690 set_continue_thread (any_thread_ptid);
3691 else
3692 set_continue_thread (ptid);
3693
3694 buf = rs->buf;
3695 if (execution_direction == EXEC_REVERSE)
3696 {
3697 /* We don't pass signals to the target in reverse exec mode. */
3698 if (info_verbose && siggnal != TARGET_SIGNAL_0)
3699 warning (" - Can't pass signal %d to target in reverse: ignored.\n",
3700 siggnal);
3701 strcpy (buf, step ? "bs" : "bc");
3702 }
3703 else if (siggnal != TARGET_SIGNAL_0)
3704 {
3705 buf[0] = step ? 'S' : 'C';
3706 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3707 buf[2] = tohex (((int) siggnal) & 0xf);
3708 buf[3] = '\0';
3709 }
3710 else
3711 strcpy (buf, step ? "s" : "c");
3712
3713 putpkt (buf);
3714
3715 done:
3716 /* We are about to start executing the inferior, let's register it
3717 with the event loop. NOTE: this is the one place where all the
3718 execution commands end up. We could alternatively do this in each
3719 of the execution commands in infcmd.c. */
3720 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3721 into infcmd.c in order to allow inferior function calls to work
3722 NOT asynchronously. */
3723 if (target_can_async_p ())
3724 target_async (inferior_event_handler, 0);
3725
3726 /* We've just told the target to resume. The remote server will
3727 wait for the inferior to stop, and then send a stop reply. In
3728 the mean time, we can't start another command/query ourselves
3729 because the stub wouldn't be ready to process it. This applies
3730 only to the base all-stop protocol, however. In non-stop (which
3731 only supports vCont), the stub replies with an "OK", and is
3732 immediate able to process further serial input. */
3733 if (!non_stop)
3734 rs->waiting_for_stop_reply = 1;
3735 }
3736 \f
3737
3738 /* Set up the signal handler for SIGINT, while the target is
3739 executing, ovewriting the 'regular' SIGINT signal handler. */
3740 static void
3741 initialize_sigint_signal_handler (void)
3742 {
3743 signal (SIGINT, handle_remote_sigint);
3744 }
3745
3746 /* Signal handler for SIGINT, while the target is executing. */
3747 static void
3748 handle_remote_sigint (int sig)
3749 {
3750 signal (sig, handle_remote_sigint_twice);
3751 mark_async_signal_handler_wrapper (sigint_remote_token);
3752 }
3753
3754 /* Signal handler for SIGINT, installed after SIGINT has already been
3755 sent once. It will take effect the second time that the user sends
3756 a ^C. */
3757 static void
3758 handle_remote_sigint_twice (int sig)
3759 {
3760 signal (sig, handle_remote_sigint);
3761 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3762 }
3763
3764 /* Perform the real interruption of the target execution, in response
3765 to a ^C. */
3766 static void
3767 async_remote_interrupt (gdb_client_data arg)
3768 {
3769 if (remote_debug)
3770 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3771
3772 target_stop (inferior_ptid);
3773 }
3774
3775 /* Perform interrupt, if the first attempt did not succeed. Just give
3776 up on the target alltogether. */
3777 void
3778 async_remote_interrupt_twice (gdb_client_data arg)
3779 {
3780 if (remote_debug)
3781 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3782
3783 interrupt_query ();
3784 }
3785
3786 /* Reinstall the usual SIGINT handlers, after the target has
3787 stopped. */
3788 static void
3789 cleanup_sigint_signal_handler (void *dummy)
3790 {
3791 signal (SIGINT, handle_sigint);
3792 }
3793
3794 /* Send ^C to target to halt it. Target will respond, and send us a
3795 packet. */
3796 static void (*ofunc) (int);
3797
3798 /* The command line interface's stop routine. This function is installed
3799 as a signal handler for SIGINT. The first time a user requests a
3800 stop, we call remote_stop to send a break or ^C. If there is no
3801 response from the target (it didn't stop when the user requested it),
3802 we ask the user if he'd like to detach from the target. */
3803 static void
3804 remote_interrupt (int signo)
3805 {
3806 /* If this doesn't work, try more severe steps. */
3807 signal (signo, remote_interrupt_twice);
3808
3809 gdb_call_async_signal_handler (sigint_remote_token, 1);
3810 }
3811
3812 /* The user typed ^C twice. */
3813
3814 static void
3815 remote_interrupt_twice (int signo)
3816 {
3817 signal (signo, ofunc);
3818 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3819 signal (signo, remote_interrupt);
3820 }
3821
3822 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
3823 thread, all threads of a remote process, or all threads of all
3824 processes. */
3825
3826 static void
3827 remote_stop_ns (ptid_t ptid)
3828 {
3829 struct remote_state *rs = get_remote_state ();
3830 char *p = rs->buf;
3831 char *endp = rs->buf + get_remote_packet_size ();
3832 struct stop_reply *reply, *next;
3833
3834 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3835 remote_vcont_probe (rs);
3836
3837 if (!rs->support_vCont_t)
3838 error (_("Remote server does not support stopping threads"));
3839
3840 if (ptid_equal (ptid, minus_one_ptid))
3841 p += xsnprintf (p, endp - p, "vCont;t");
3842 else
3843 {
3844 ptid_t nptid;
3845
3846 /* Step inferior_ptid. */
3847 p += xsnprintf (p, endp - p, "vCont;t:");
3848
3849 if (ptid_is_pid (ptid))
3850 /* All (-1) threads of process. */
3851 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
3852 else
3853 {
3854 /* Small optimization: if we already have a stop reply for
3855 this thread, no use in telling the stub we want this
3856 stopped. */
3857 if (peek_stop_reply (ptid))
3858 return;
3859
3860 nptid = ptid;
3861 }
3862
3863 p = write_ptid (p, endp, nptid);
3864 }
3865
3866 /* In non-stop, we get an immediate OK reply. The stop reply will
3867 come in asynchronously by notification. */
3868 putpkt (rs->buf);
3869 getpkt (&rs->buf, &rs->buf_size, 0);
3870 if (strcmp (rs->buf, "OK") != 0)
3871 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
3872 }
3873
3874 /* All-stop version of target_stop. Sends a break or a ^C to stop the
3875 remote target. It is undefined which thread of which process
3876 reports the stop. */
3877
3878 static void
3879 remote_stop_as (ptid_t ptid)
3880 {
3881 struct remote_state *rs = get_remote_state ();
3882
3883 /* If the inferior is stopped already, but the core didn't know
3884 about it yet, just ignore the request. The cached wait status
3885 will be collected in remote_wait. */
3886 if (rs->cached_wait_status)
3887 return;
3888
3889 /* Send a break or a ^C, depending on user preference. */
3890
3891 if (remote_break)
3892 serial_send_break (remote_desc);
3893 else
3894 serial_write (remote_desc, "\003", 1);
3895 }
3896
3897 /* This is the generic stop called via the target vector. When a target
3898 interrupt is requested, either by the command line or the GUI, we
3899 will eventually end up here. */
3900
3901 static void
3902 remote_stop (ptid_t ptid)
3903 {
3904 if (remote_debug)
3905 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3906
3907 if (non_stop)
3908 remote_stop_ns (ptid);
3909 else
3910 remote_stop_as (ptid);
3911 }
3912
3913 /* Ask the user what to do when an interrupt is received. */
3914
3915 static void
3916 interrupt_query (void)
3917 {
3918 target_terminal_ours ();
3919
3920 if (target_can_async_p ())
3921 {
3922 signal (SIGINT, handle_sigint);
3923 deprecated_throw_reason (RETURN_QUIT);
3924 }
3925 else
3926 {
3927 if (query ("Interrupted while waiting for the program.\n\
3928 Give up (and stop debugging it)? "))
3929 {
3930 pop_target ();
3931 deprecated_throw_reason (RETURN_QUIT);
3932 }
3933 }
3934
3935 target_terminal_inferior ();
3936 }
3937
3938 /* Enable/disable target terminal ownership. Most targets can use
3939 terminal groups to control terminal ownership. Remote targets are
3940 different in that explicit transfer of ownership to/from GDB/target
3941 is required. */
3942
3943 static void
3944 remote_terminal_inferior (void)
3945 {
3946 if (!target_async_permitted)
3947 /* Nothing to do. */
3948 return;
3949
3950 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3951 sync_execution here. This function should only be called when
3952 GDB is resuming the inferior in the forground. A background
3953 resume (``run&'') should leave GDB in control of the terminal and
3954 consequently should not call this code. */
3955 if (!sync_execution)
3956 return;
3957 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3958 calls target_terminal_*() idenpotent. The event-loop GDB talking
3959 to an asynchronous target with a synchronous command calls this
3960 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3961 stops trying to transfer the terminal to the target when it
3962 shouldn't this guard can go away. */
3963 if (!remote_async_terminal_ours_p)
3964 return;
3965 delete_file_handler (input_fd);
3966 remote_async_terminal_ours_p = 0;
3967 initialize_sigint_signal_handler ();
3968 /* NOTE: At this point we could also register our selves as the
3969 recipient of all input. Any characters typed could then be
3970 passed on down to the target. */
3971 }
3972
3973 static void
3974 remote_terminal_ours (void)
3975 {
3976 if (!target_async_permitted)
3977 /* Nothing to do. */
3978 return;
3979
3980 /* See FIXME in remote_terminal_inferior. */
3981 if (!sync_execution)
3982 return;
3983 /* See FIXME in remote_terminal_inferior. */
3984 if (remote_async_terminal_ours_p)
3985 return;
3986 cleanup_sigint_signal_handler (NULL);
3987 add_file_handler (input_fd, stdin_event_handler, 0);
3988 remote_async_terminal_ours_p = 1;
3989 }
3990
3991 void
3992 remote_console_output (char *msg)
3993 {
3994 char *p;
3995
3996 for (p = msg; p[0] && p[1]; p += 2)
3997 {
3998 char tb[2];
3999 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
4000 tb[0] = c;
4001 tb[1] = 0;
4002 fputs_unfiltered (tb, gdb_stdtarg);
4003 }
4004 gdb_flush (gdb_stdtarg);
4005 }
4006
4007 typedef struct cached_reg
4008 {
4009 int num;
4010 gdb_byte data[MAX_REGISTER_SIZE];
4011 } cached_reg_t;
4012
4013 DEF_VEC_O(cached_reg_t);
4014
4015 struct stop_reply
4016 {
4017 struct stop_reply *next;
4018
4019 ptid_t ptid;
4020
4021 struct target_waitstatus ws;
4022
4023 VEC(cached_reg_t) *regcache;
4024
4025 int stopped_by_watchpoint_p;
4026 CORE_ADDR watch_data_address;
4027
4028 int solibs_changed;
4029 int replay_event;
4030 };
4031
4032 /* The list of already fetched and acknowledged stop events. */
4033 static struct stop_reply *stop_reply_queue;
4034
4035 static struct stop_reply *
4036 stop_reply_xmalloc (void)
4037 {
4038 struct stop_reply *r = XMALLOC (struct stop_reply);
4039 r->next = NULL;
4040 return r;
4041 }
4042
4043 static void
4044 stop_reply_xfree (struct stop_reply *r)
4045 {
4046 if (r != NULL)
4047 {
4048 VEC_free (cached_reg_t, r->regcache);
4049 xfree (r);
4050 }
4051 }
4052
4053 /* Discard all pending stop replies of inferior PID. If PID is -1,
4054 discard everything. */
4055
4056 static void
4057 discard_pending_stop_replies (int pid)
4058 {
4059 struct stop_reply *prev = NULL, *reply, *next;
4060
4061 /* Discard the in-flight notification. */
4062 if (pending_stop_reply != NULL
4063 && (pid == -1
4064 || ptid_get_pid (pending_stop_reply->ptid) == pid))
4065 {
4066 stop_reply_xfree (pending_stop_reply);
4067 pending_stop_reply = NULL;
4068 }
4069
4070 /* Discard the stop replies we have already pulled with
4071 vStopped. */
4072 for (reply = stop_reply_queue; reply; reply = next)
4073 {
4074 next = reply->next;
4075 if (pid == -1
4076 || ptid_get_pid (reply->ptid) == pid)
4077 {
4078 if (reply == stop_reply_queue)
4079 stop_reply_queue = reply->next;
4080 else
4081 prev->next = reply->next;
4082
4083 stop_reply_xfree (reply);
4084 }
4085 else
4086 prev = reply;
4087 }
4088 }
4089
4090 /* Cleanup wrapper. */
4091
4092 static void
4093 do_stop_reply_xfree (void *arg)
4094 {
4095 struct stop_reply *r = arg;
4096 stop_reply_xfree (r);
4097 }
4098
4099 /* Look for a queued stop reply belonging to PTID. If one is found,
4100 remove it from the queue, and return it. Returns NULL if none is
4101 found. If there are still queued events left to process, tell the
4102 event loop to get back to target_wait soon. */
4103
4104 static struct stop_reply *
4105 queued_stop_reply (ptid_t ptid)
4106 {
4107 struct stop_reply *it, *prev;
4108 struct stop_reply head;
4109
4110 head.next = stop_reply_queue;
4111 prev = &head;
4112
4113 it = head.next;
4114
4115 if (!ptid_equal (ptid, minus_one_ptid))
4116 for (; it; prev = it, it = it->next)
4117 if (ptid_equal (ptid, it->ptid))
4118 break;
4119
4120 if (it)
4121 {
4122 prev->next = it->next;
4123 it->next = NULL;
4124 }
4125
4126 stop_reply_queue = head.next;
4127
4128 if (stop_reply_queue)
4129 /* There's still at least an event left. */
4130 mark_async_event_handler (remote_async_inferior_event_token);
4131
4132 return it;
4133 }
4134
4135 /* Push a fully parsed stop reply in the stop reply queue. Since we
4136 know that we now have at least one queued event left to pass to the
4137 core side, tell the event loop to get back to target_wait soon. */
4138
4139 static void
4140 push_stop_reply (struct stop_reply *new_event)
4141 {
4142 struct stop_reply *event;
4143
4144 if (stop_reply_queue)
4145 {
4146 for (event = stop_reply_queue;
4147 event && event->next;
4148 event = event->next)
4149 ;
4150
4151 event->next = new_event;
4152 }
4153 else
4154 stop_reply_queue = new_event;
4155
4156 mark_async_event_handler (remote_async_inferior_event_token);
4157 }
4158
4159 /* Returns true if we have a stop reply for PTID. */
4160
4161 static int
4162 peek_stop_reply (ptid_t ptid)
4163 {
4164 struct stop_reply *it;
4165
4166 for (it = stop_reply_queue; it; it = it->next)
4167 if (ptid_equal (ptid, it->ptid))
4168 {
4169 if (it->ws.kind == TARGET_WAITKIND_STOPPED)
4170 return 1;
4171 }
4172
4173 return 0;
4174 }
4175
4176 /* Parse the stop reply in BUF. Either the function succeeds, and the
4177 result is stored in EVENT, or throws an error. */
4178
4179 static void
4180 remote_parse_stop_reply (char *buf, struct stop_reply *event)
4181 {
4182 struct remote_arch_state *rsa = get_remote_arch_state ();
4183 ULONGEST addr;
4184 char *p;
4185
4186 event->ptid = null_ptid;
4187 event->ws.kind = TARGET_WAITKIND_IGNORE;
4188 event->ws.value.integer = 0;
4189 event->solibs_changed = 0;
4190 event->replay_event = 0;
4191 event->stopped_by_watchpoint_p = 0;
4192 event->regcache = NULL;
4193
4194 switch (buf[0])
4195 {
4196 case 'T': /* Status with PC, SP, FP, ... */
4197 {
4198 gdb_byte regs[MAX_REGISTER_SIZE];
4199
4200 /* Expedited reply, containing Signal, {regno, reg} repeat. */
4201 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
4202 ss = signal number
4203 n... = register number
4204 r... = register contents
4205 */
4206
4207 p = &buf[3]; /* after Txx */
4208 while (*p)
4209 {
4210 char *p1;
4211 char *p_temp;
4212 int fieldsize;
4213 LONGEST pnum = 0;
4214
4215 /* If the packet contains a register number, save it in
4216 pnum and set p1 to point to the character following it.
4217 Otherwise p1 points to p. */
4218
4219 /* If this packet is an awatch packet, don't parse the 'a'
4220 as a register number. */
4221
4222 if (strncmp (p, "awatch", strlen("awatch")) != 0)
4223 {
4224 /* Read the ``P'' register number. */
4225 pnum = strtol (p, &p_temp, 16);
4226 p1 = p_temp;
4227 }
4228 else
4229 p1 = p;
4230
4231 if (p1 == p) /* No register number present here. */
4232 {
4233 p1 = strchr (p, ':');
4234 if (p1 == NULL)
4235 error (_("Malformed packet(a) (missing colon): %s\n\
4236 Packet: '%s'\n"),
4237 p, buf);
4238 if (strncmp (p, "thread", p1 - p) == 0)
4239 event->ptid = read_ptid (++p1, &p);
4240 else if ((strncmp (p, "watch", p1 - p) == 0)
4241 || (strncmp (p, "rwatch", p1 - p) == 0)
4242 || (strncmp (p, "awatch", p1 - p) == 0))
4243 {
4244 event->stopped_by_watchpoint_p = 1;
4245 p = unpack_varlen_hex (++p1, &addr);
4246 event->watch_data_address = (CORE_ADDR) addr;
4247 }
4248 else if (strncmp (p, "library", p1 - p) == 0)
4249 {
4250 p1++;
4251 p_temp = p1;
4252 while (*p_temp && *p_temp != ';')
4253 p_temp++;
4254
4255 event->solibs_changed = 1;
4256 p = p_temp;
4257 }
4258 else if (strncmp (p, "replaylog", p1 - p) == 0)
4259 {
4260 /* NO_HISTORY event.
4261 p1 will indicate "begin" or "end", but
4262 it makes no difference for now, so ignore it. */
4263 event->replay_event = 1;
4264 p_temp = strchr (p1 + 1, ';');
4265 if (p_temp)
4266 p = p_temp;
4267 }
4268 else
4269 {
4270 /* Silently skip unknown optional info. */
4271 p_temp = strchr (p1 + 1, ';');
4272 if (p_temp)
4273 p = p_temp;
4274 }
4275 }
4276 else
4277 {
4278 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
4279 cached_reg_t cached_reg;
4280
4281 cached_reg.num = reg->regnum;
4282
4283 p = p1;
4284
4285 if (*p != ':')
4286 error (_("Malformed packet(b) (missing colon): %s\n\
4287 Packet: '%s'\n"),
4288 p, buf);
4289 ++p;
4290
4291 if (reg == NULL)
4292 error (_("Remote sent bad register number %s: %s\n\
4293 Packet: '%s'\n"),
4294 phex_nz (pnum, 0), p, buf);
4295
4296 fieldsize = hex2bin (p, cached_reg.data,
4297 register_size (target_gdbarch,
4298 reg->regnum));
4299 p += 2 * fieldsize;
4300 if (fieldsize < register_size (target_gdbarch,
4301 reg->regnum))
4302 warning (_("Remote reply is too short: %s"), buf);
4303
4304 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
4305 }
4306
4307 if (*p != ';')
4308 error (_("Remote register badly formatted: %s\nhere: %s"),
4309 buf, p);
4310 ++p;
4311 }
4312 }
4313 /* fall through */
4314 case 'S': /* Old style status, just signal only. */
4315 if (event->solibs_changed)
4316 event->ws.kind = TARGET_WAITKIND_LOADED;
4317 else if (event->replay_event)
4318 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
4319 else
4320 {
4321 event->ws.kind = TARGET_WAITKIND_STOPPED;
4322 event->ws.value.sig = (enum target_signal)
4323 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
4324 }
4325 break;
4326 case 'W': /* Target exited. */
4327 case 'X':
4328 {
4329 char *p;
4330 int pid;
4331 ULONGEST value;
4332
4333 /* GDB used to accept only 2 hex chars here. Stubs should
4334 only send more if they detect GDB supports multi-process
4335 support. */
4336 p = unpack_varlen_hex (&buf[1], &value);
4337
4338 if (buf[0] == 'W')
4339 {
4340 /* The remote process exited. */
4341 event->ws.kind = TARGET_WAITKIND_EXITED;
4342 event->ws.value.integer = value;
4343 }
4344 else
4345 {
4346 /* The remote process exited with a signal. */
4347 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
4348 event->ws.value.sig = (enum target_signal) value;
4349 }
4350
4351 /* If no process is specified, assume inferior_ptid. */
4352 pid = ptid_get_pid (inferior_ptid);
4353 if (*p == '\0')
4354 ;
4355 else if (*p == ';')
4356 {
4357 p++;
4358
4359 if (p == '\0')
4360 ;
4361 else if (strncmp (p,
4362 "process:", sizeof ("process:") - 1) == 0)
4363 {
4364 ULONGEST upid;
4365 p += sizeof ("process:") - 1;
4366 unpack_varlen_hex (p, &upid);
4367 pid = upid;
4368 }
4369 else
4370 error (_("unknown stop reply packet: %s"), buf);
4371 }
4372 else
4373 error (_("unknown stop reply packet: %s"), buf);
4374 event->ptid = pid_to_ptid (pid);
4375 }
4376 break;
4377 }
4378
4379 if (non_stop && ptid_equal (event->ptid, null_ptid))
4380 error (_("No process or thread specified in stop reply: %s"), buf);
4381 }
4382
4383 /* When the stub wants to tell GDB about a new stop reply, it sends a
4384 stop notification (%Stop). Those can come it at any time, hence,
4385 we have to make sure that any pending putpkt/getpkt sequence we're
4386 making is finished, before querying the stub for more events with
4387 vStopped. E.g., if we started a vStopped sequence immediatelly
4388 upon receiving the %Stop notification, something like this could
4389 happen:
4390
4391 1.1) --> Hg 1
4392 1.2) <-- OK
4393 1.3) --> g
4394 1.4) <-- %Stop
4395 1.5) --> vStopped
4396 1.6) <-- (registers reply to step #1.3)
4397
4398 Obviously, the reply in step #1.6 would be unexpected to a vStopped
4399 query.
4400
4401 To solve this, whenever we parse a %Stop notification sucessfully,
4402 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
4403 doing whatever we were doing:
4404
4405 2.1) --> Hg 1
4406 2.2) <-- OK
4407 2.3) --> g
4408 2.4) <-- %Stop
4409 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
4410 2.5) <-- (registers reply to step #2.3)
4411
4412 Eventualy after step #2.5, we return to the event loop, which
4413 notices there's an event on the
4414 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
4415 associated callback --- the function below. At this point, we're
4416 always safe to start a vStopped sequence. :
4417
4418 2.6) --> vStopped
4419 2.7) <-- T05 thread:2
4420 2.8) --> vStopped
4421 2.9) --> OK
4422 */
4423
4424 static void
4425 remote_get_pending_stop_replies (void)
4426 {
4427 struct remote_state *rs = get_remote_state ();
4428 int ret;
4429
4430 if (pending_stop_reply)
4431 {
4432 /* acknowledge */
4433 putpkt ("vStopped");
4434
4435 /* Now we can rely on it. */
4436 push_stop_reply (pending_stop_reply);
4437 pending_stop_reply = NULL;
4438
4439 while (1)
4440 {
4441 getpkt (&rs->buf, &rs->buf_size, 0);
4442 if (strcmp (rs->buf, "OK") == 0)
4443 break;
4444 else
4445 {
4446 struct cleanup *old_chain;
4447 struct stop_reply *stop_reply = stop_reply_xmalloc ();
4448
4449 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4450 remote_parse_stop_reply (rs->buf, stop_reply);
4451
4452 /* acknowledge */
4453 putpkt ("vStopped");
4454
4455 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
4456 {
4457 /* Now we can rely on it. */
4458 discard_cleanups (old_chain);
4459 push_stop_reply (stop_reply);
4460 }
4461 else
4462 /* We got an unknown stop reply. */
4463 do_cleanups (old_chain);
4464 }
4465 }
4466 }
4467 }
4468
4469
4470 /* Called when it is decided that STOP_REPLY holds the info of the
4471 event that is to be returned to the core. This function always
4472 destroys STOP_REPLY. */
4473
4474 static ptid_t
4475 process_stop_reply (struct stop_reply *stop_reply,
4476 struct target_waitstatus *status)
4477 {
4478 ptid_t ptid;
4479
4480 *status = stop_reply->ws;
4481 ptid = stop_reply->ptid;
4482
4483 /* If no thread/process was reported by the stub, assume the current
4484 inferior. */
4485 if (ptid_equal (ptid, null_ptid))
4486 ptid = inferior_ptid;
4487
4488 if (status->kind == TARGET_WAITKIND_EXITED
4489 || status->kind == TARGET_WAITKIND_SIGNALLED)
4490 {
4491 int pid = ptid_get_pid (ptid);
4492 delete_inferior (pid);
4493 }
4494 else
4495 notice_new_inferiors (ptid);
4496
4497 /* Expedited registers. */
4498 if (stop_reply->regcache)
4499 {
4500 cached_reg_t *reg;
4501 int ix;
4502
4503 for (ix = 0;
4504 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
4505 ix++)
4506 regcache_raw_supply (get_thread_regcache (ptid),
4507 reg->num, reg->data);
4508 VEC_free (cached_reg_t, stop_reply->regcache);
4509 }
4510
4511 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
4512 remote_watch_data_address = stop_reply->watch_data_address;
4513
4514 stop_reply_xfree (stop_reply);
4515 return ptid;
4516 }
4517
4518 /* The non-stop mode version of target_wait. */
4519
4520 static ptid_t
4521 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status)
4522 {
4523 struct remote_state *rs = get_remote_state ();
4524 struct remote_arch_state *rsa = get_remote_arch_state ();
4525 ptid_t event_ptid = null_ptid;
4526 struct stop_reply *stop_reply;
4527 int ret;
4528
4529 /* If in non-stop mode, get out of getpkt even if a
4530 notification is received. */
4531
4532 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4533 0 /* forever */);
4534 while (1)
4535 {
4536 if (ret != -1)
4537 switch (rs->buf[0])
4538 {
4539 case 'E': /* Error of some sort. */
4540 /* We're out of sync with the target now. Did it continue
4541 or not? We can't tell which thread it was in non-stop,
4542 so just ignore this. */
4543 warning (_("Remote failure reply: %s"), rs->buf);
4544 break;
4545 case 'O': /* Console output. */
4546 remote_console_output (rs->buf + 1);
4547 break;
4548 default:
4549 warning (_("Invalid remote reply: %s"), rs->buf);
4550 break;
4551 }
4552
4553 /* Acknowledge a pending stop reply that may have arrived in the
4554 mean time. */
4555 if (pending_stop_reply != NULL)
4556 remote_get_pending_stop_replies ();
4557
4558 /* If indeed we noticed a stop reply, we're done. */
4559 stop_reply = queued_stop_reply (ptid);
4560 if (stop_reply != NULL)
4561 return process_stop_reply (stop_reply, status);
4562
4563 /* Still no event. If we're in asynchronous mode, then just
4564 return to the event loop. */
4565 if (remote_is_async_p ())
4566 {
4567 status->kind = TARGET_WAITKIND_IGNORE;
4568 return minus_one_ptid;
4569 }
4570
4571 /* Otherwise, asynchronous mode is masked, so do a blocking
4572 wait. */
4573 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
4574 1 /* forever */);
4575 }
4576 }
4577
4578 /* Wait until the remote machine stops, then return, storing status in
4579 STATUS just as `wait' would. */
4580
4581 static ptid_t
4582 remote_wait_as (ptid_t ptid, struct target_waitstatus *status)
4583 {
4584 struct remote_state *rs = get_remote_state ();
4585 struct remote_arch_state *rsa = get_remote_arch_state ();
4586 ptid_t event_ptid = null_ptid;
4587 ULONGEST addr;
4588 int solibs_changed = 0;
4589 char *buf, *p;
4590 struct stop_reply *stop_reply;
4591
4592 status->kind = TARGET_WAITKIND_IGNORE;
4593 status->value.integer = 0;
4594
4595 stop_reply = queued_stop_reply (ptid);
4596 if (stop_reply != NULL)
4597 return process_stop_reply (stop_reply, status);
4598
4599 if (rs->cached_wait_status)
4600 /* Use the cached wait status, but only once. */
4601 rs->cached_wait_status = 0;
4602 else
4603 {
4604 int ret;
4605
4606 if (!target_is_async_p ())
4607 {
4608 ofunc = signal (SIGINT, remote_interrupt);
4609 /* If the user hit C-c before this packet, or between packets,
4610 pretend that it was hit right here. */
4611 if (quit_flag)
4612 {
4613 quit_flag = 0;
4614 remote_interrupt (SIGINT);
4615 }
4616 }
4617
4618 /* FIXME: cagney/1999-09-27: If we're in async mode we should
4619 _never_ wait for ever -> test on target_is_async_p().
4620 However, before we do that we need to ensure that the caller
4621 knows how to take the target into/out of async mode. */
4622 ret = getpkt_sane (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
4623 if (!target_is_async_p ())
4624 signal (SIGINT, ofunc);
4625 }
4626
4627 buf = rs->buf;
4628
4629 remote_stopped_by_watchpoint_p = 0;
4630
4631 /* We got something. */
4632 rs->waiting_for_stop_reply = 0;
4633
4634 switch (buf[0])
4635 {
4636 case 'E': /* Error of some sort. */
4637 /* We're out of sync with the target now. Did it continue or
4638 not? Not is more likely, so report a stop. */
4639 warning (_("Remote failure reply: %s"), buf);
4640 status->kind = TARGET_WAITKIND_STOPPED;
4641 status->value.sig = TARGET_SIGNAL_0;
4642 break;
4643 case 'F': /* File-I/O request. */
4644 remote_fileio_request (buf);
4645 break;
4646 case 'T': case 'S': case 'X': case 'W':
4647 {
4648 struct stop_reply *stop_reply;
4649 struct cleanup *old_chain;
4650
4651 stop_reply = stop_reply_xmalloc ();
4652 old_chain = make_cleanup (do_stop_reply_xfree, stop_reply);
4653 remote_parse_stop_reply (buf, stop_reply);
4654 discard_cleanups (old_chain);
4655 event_ptid = process_stop_reply (stop_reply, status);
4656 break;
4657 }
4658 case 'O': /* Console output. */
4659 remote_console_output (buf + 1);
4660
4661 /* The target didn't really stop; keep waiting. */
4662 rs->waiting_for_stop_reply = 1;
4663
4664 break;
4665 case '\0':
4666 if (last_sent_signal != TARGET_SIGNAL_0)
4667 {
4668 /* Zero length reply means that we tried 'S' or 'C' and the
4669 remote system doesn't support it. */
4670 target_terminal_ours_for_output ();
4671 printf_filtered
4672 ("Can't send signals to this remote system. %s not sent.\n",
4673 target_signal_to_name (last_sent_signal));
4674 last_sent_signal = TARGET_SIGNAL_0;
4675 target_terminal_inferior ();
4676
4677 strcpy ((char *) buf, last_sent_step ? "s" : "c");
4678 putpkt ((char *) buf);
4679
4680 /* We just told the target to resume, so a stop reply is in
4681 order. */
4682 rs->waiting_for_stop_reply = 1;
4683 break;
4684 }
4685 /* else fallthrough */
4686 default:
4687 warning (_("Invalid remote reply: %s"), buf);
4688 /* Keep waiting. */
4689 rs->waiting_for_stop_reply = 1;
4690 break;
4691 }
4692
4693 if (status->kind == TARGET_WAITKIND_IGNORE)
4694 /* Nothing interesting happened. */
4695 return minus_one_ptid;
4696 else if (status->kind != TARGET_WAITKIND_EXITED
4697 && status->kind != TARGET_WAITKIND_SIGNALLED)
4698 {
4699 if (!ptid_equal (event_ptid, null_ptid))
4700 record_currthread (event_ptid);
4701 else
4702 event_ptid = inferior_ptid;
4703 }
4704 else
4705 /* A process exit. Invalidate our notion of current thread. */
4706 record_currthread (minus_one_ptid);
4707
4708 return event_ptid;
4709 }
4710
4711 /* Wait until the remote machine stops, then return, storing status in
4712 STATUS just as `wait' would. */
4713
4714 static ptid_t
4715 remote_wait (ptid_t ptid, struct target_waitstatus *status)
4716 {
4717 ptid_t event_ptid;
4718
4719 if (non_stop)
4720 event_ptid = remote_wait_ns (ptid, status);
4721 else
4722 {
4723 /* In synchronous mode, keep waiting until the target stops. In
4724 asynchronous mode, always return to the event loop. */
4725
4726 do
4727 {
4728 event_ptid = remote_wait_as (ptid, status);
4729 }
4730 while (status->kind == TARGET_WAITKIND_IGNORE
4731 && !target_can_async_p ());
4732 }
4733
4734 if (target_can_async_p ())
4735 {
4736 /* If there are are events left in the queue tell the event loop
4737 to return here. */
4738 if (stop_reply_queue)
4739 mark_async_event_handler (remote_async_inferior_event_token);
4740 }
4741
4742 return event_ptid;
4743 }
4744
4745 /* Fetch a single register using a 'p' packet. */
4746
4747 static int
4748 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
4749 {
4750 struct remote_state *rs = get_remote_state ();
4751 char *buf, *p;
4752 char regp[MAX_REGISTER_SIZE];
4753 int i;
4754
4755 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
4756 return 0;
4757
4758 if (reg->pnum == -1)
4759 return 0;
4760
4761 p = rs->buf;
4762 *p++ = 'p';
4763 p += hexnumstr (p, reg->pnum);
4764 *p++ = '\0';
4765 remote_send (&rs->buf, &rs->buf_size);
4766
4767 buf = rs->buf;
4768
4769 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
4770 {
4771 case PACKET_OK:
4772 break;
4773 case PACKET_UNKNOWN:
4774 return 0;
4775 case PACKET_ERROR:
4776 error (_("Could not fetch register \"%s\""),
4777 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
4778 }
4779
4780 /* If this register is unfetchable, tell the regcache. */
4781 if (buf[0] == 'x')
4782 {
4783 regcache_raw_supply (regcache, reg->regnum, NULL);
4784 return 1;
4785 }
4786
4787 /* Otherwise, parse and supply the value. */
4788 p = buf;
4789 i = 0;
4790 while (p[0] != 0)
4791 {
4792 if (p[1] == 0)
4793 error (_("fetch_register_using_p: early buf termination"));
4794
4795 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
4796 p += 2;
4797 }
4798 regcache_raw_supply (regcache, reg->regnum, regp);
4799 return 1;
4800 }
4801
4802 /* Fetch the registers included in the target's 'g' packet. */
4803
4804 static int
4805 send_g_packet (void)
4806 {
4807 struct remote_state *rs = get_remote_state ();
4808 int i, buf_len;
4809 char *p;
4810 char *regs;
4811
4812 sprintf (rs->buf, "g");
4813 remote_send (&rs->buf, &rs->buf_size);
4814
4815 /* We can get out of synch in various cases. If the first character
4816 in the buffer is not a hex character, assume that has happened
4817 and try to fetch another packet to read. */
4818 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
4819 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
4820 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
4821 && rs->buf[0] != 'x') /* New: unavailable register value. */
4822 {
4823 if (remote_debug)
4824 fprintf_unfiltered (gdb_stdlog,
4825 "Bad register packet; fetching a new packet\n");
4826 getpkt (&rs->buf, &rs->buf_size, 0);
4827 }
4828
4829 buf_len = strlen (rs->buf);
4830
4831 /* Sanity check the received packet. */
4832 if (buf_len % 2 != 0)
4833 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
4834
4835 return buf_len / 2;
4836 }
4837
4838 static void
4839 process_g_packet (struct regcache *regcache)
4840 {
4841 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4842 struct remote_state *rs = get_remote_state ();
4843 struct remote_arch_state *rsa = get_remote_arch_state ();
4844 int i, buf_len;
4845 char *p;
4846 char *regs;
4847
4848 buf_len = strlen (rs->buf);
4849
4850 /* Further sanity checks, with knowledge of the architecture. */
4851 if (buf_len > 2 * rsa->sizeof_g_packet)
4852 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
4853
4854 /* Save the size of the packet sent to us by the target. It is used
4855 as a heuristic when determining the max size of packets that the
4856 target can safely receive. */
4857 if (rsa->actual_register_packet_size == 0)
4858 rsa->actual_register_packet_size = buf_len;
4859
4860 /* If this is smaller than we guessed the 'g' packet would be,
4861 update our records. A 'g' reply that doesn't include a register's
4862 value implies either that the register is not available, or that
4863 the 'p' packet must be used. */
4864 if (buf_len < 2 * rsa->sizeof_g_packet)
4865 {
4866 rsa->sizeof_g_packet = buf_len / 2;
4867
4868 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4869 {
4870 if (rsa->regs[i].pnum == -1)
4871 continue;
4872
4873 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
4874 rsa->regs[i].in_g_packet = 0;
4875 else
4876 rsa->regs[i].in_g_packet = 1;
4877 }
4878 }
4879
4880 regs = alloca (rsa->sizeof_g_packet);
4881
4882 /* Unimplemented registers read as all bits zero. */
4883 memset (regs, 0, rsa->sizeof_g_packet);
4884
4885 /* Reply describes registers byte by byte, each byte encoded as two
4886 hex characters. Suck them all up, then supply them to the
4887 register cacheing/storage mechanism. */
4888
4889 p = rs->buf;
4890 for (i = 0; i < rsa->sizeof_g_packet; i++)
4891 {
4892 if (p[0] == 0 || p[1] == 0)
4893 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
4894 internal_error (__FILE__, __LINE__,
4895 "unexpected end of 'g' packet reply");
4896
4897 if (p[0] == 'x' && p[1] == 'x')
4898 regs[i] = 0; /* 'x' */
4899 else
4900 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
4901 p += 2;
4902 }
4903
4904 {
4905 int i;
4906 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
4907 {
4908 struct packet_reg *r = &rsa->regs[i];
4909 if (r->in_g_packet)
4910 {
4911 if (r->offset * 2 >= strlen (rs->buf))
4912 /* This shouldn't happen - we adjusted in_g_packet above. */
4913 internal_error (__FILE__, __LINE__,
4914 "unexpected end of 'g' packet reply");
4915 else if (rs->buf[r->offset * 2] == 'x')
4916 {
4917 gdb_assert (r->offset * 2 < strlen (rs->buf));
4918 /* The register isn't available, mark it as such (at
4919 the same time setting the value to zero). */
4920 regcache_raw_supply (regcache, r->regnum, NULL);
4921 }
4922 else
4923 regcache_raw_supply (regcache, r->regnum,
4924 regs + r->offset);
4925 }
4926 }
4927 }
4928 }
4929
4930 static void
4931 fetch_registers_using_g (struct regcache *regcache)
4932 {
4933 send_g_packet ();
4934 process_g_packet (regcache);
4935 }
4936
4937 static void
4938 remote_fetch_registers (struct regcache *regcache, int regnum)
4939 {
4940 struct remote_state *rs = get_remote_state ();
4941 struct remote_arch_state *rsa = get_remote_arch_state ();
4942 int i;
4943
4944 set_general_thread (inferior_ptid);
4945
4946 if (regnum >= 0)
4947 {
4948 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4949 gdb_assert (reg != NULL);
4950
4951 /* If this register might be in the 'g' packet, try that first -
4952 we are likely to read more than one register. If this is the
4953 first 'g' packet, we might be overly optimistic about its
4954 contents, so fall back to 'p'. */
4955 if (reg->in_g_packet)
4956 {
4957 fetch_registers_using_g (regcache);
4958 if (reg->in_g_packet)
4959 return;
4960 }
4961
4962 if (fetch_register_using_p (regcache, reg))
4963 return;
4964
4965 /* This register is not available. */
4966 regcache_raw_supply (regcache, reg->regnum, NULL);
4967
4968 return;
4969 }
4970
4971 fetch_registers_using_g (regcache);
4972
4973 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4974 if (!rsa->regs[i].in_g_packet)
4975 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
4976 {
4977 /* This register is not available. */
4978 regcache_raw_supply (regcache, i, NULL);
4979 }
4980 }
4981
4982 /* Prepare to store registers. Since we may send them all (using a
4983 'G' request), we have to read out the ones we don't want to change
4984 first. */
4985
4986 static void
4987 remote_prepare_to_store (struct regcache *regcache)
4988 {
4989 struct remote_arch_state *rsa = get_remote_arch_state ();
4990 int i;
4991 gdb_byte buf[MAX_REGISTER_SIZE];
4992
4993 /* Make sure the entire registers array is valid. */
4994 switch (remote_protocol_packets[PACKET_P].support)
4995 {
4996 case PACKET_DISABLE:
4997 case PACKET_SUPPORT_UNKNOWN:
4998 /* Make sure all the necessary registers are cached. */
4999 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5000 if (rsa->regs[i].in_g_packet)
5001 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
5002 break;
5003 case PACKET_ENABLE:
5004 break;
5005 }
5006 }
5007
5008 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
5009 packet was not recognized. */
5010
5011 static int
5012 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
5013 {
5014 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5015 struct remote_state *rs = get_remote_state ();
5016 struct remote_arch_state *rsa = get_remote_arch_state ();
5017 /* Try storing a single register. */
5018 char *buf = rs->buf;
5019 gdb_byte regp[MAX_REGISTER_SIZE];
5020 char *p;
5021
5022 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
5023 return 0;
5024
5025 if (reg->pnum == -1)
5026 return 0;
5027
5028 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
5029 p = buf + strlen (buf);
5030 regcache_raw_collect (regcache, reg->regnum, regp);
5031 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
5032 remote_send (&rs->buf, &rs->buf_size);
5033
5034 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
5035 {
5036 case PACKET_OK:
5037 return 1;
5038 case PACKET_ERROR:
5039 error (_("Could not write register \"%s\""),
5040 gdbarch_register_name (gdbarch, reg->regnum));
5041 case PACKET_UNKNOWN:
5042 return 0;
5043 default:
5044 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
5045 }
5046 }
5047
5048 /* Store register REGNUM, or all registers if REGNUM == -1, from the
5049 contents of the register cache buffer. FIXME: ignores errors. */
5050
5051 static void
5052 store_registers_using_G (const struct regcache *regcache)
5053 {
5054 struct remote_state *rs = get_remote_state ();
5055 struct remote_arch_state *rsa = get_remote_arch_state ();
5056 gdb_byte *regs;
5057 char *p;
5058
5059 /* Extract all the registers in the regcache copying them into a
5060 local buffer. */
5061 {
5062 int i;
5063 regs = alloca (rsa->sizeof_g_packet);
5064 memset (regs, 0, rsa->sizeof_g_packet);
5065 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5066 {
5067 struct packet_reg *r = &rsa->regs[i];
5068 if (r->in_g_packet)
5069 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
5070 }
5071 }
5072
5073 /* Command describes registers byte by byte,
5074 each byte encoded as two hex characters. */
5075 p = rs->buf;
5076 *p++ = 'G';
5077 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
5078 updated. */
5079 bin2hex (regs, p, rsa->sizeof_g_packet);
5080 remote_send (&rs->buf, &rs->buf_size);
5081 }
5082
5083 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
5084 of the register cache buffer. FIXME: ignores errors. */
5085
5086 static void
5087 remote_store_registers (struct regcache *regcache, int regnum)
5088 {
5089 struct remote_state *rs = get_remote_state ();
5090 struct remote_arch_state *rsa = get_remote_arch_state ();
5091 int i;
5092
5093 set_general_thread (inferior_ptid);
5094
5095 if (regnum >= 0)
5096 {
5097 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
5098 gdb_assert (reg != NULL);
5099
5100 /* Always prefer to store registers using the 'P' packet if
5101 possible; we often change only a small number of registers.
5102 Sometimes we change a larger number; we'd need help from a
5103 higher layer to know to use 'G'. */
5104 if (store_register_using_P (regcache, reg))
5105 return;
5106
5107 /* For now, don't complain if we have no way to write the
5108 register. GDB loses track of unavailable registers too
5109 easily. Some day, this may be an error. We don't have
5110 any way to read the register, either... */
5111 if (!reg->in_g_packet)
5112 return;
5113
5114 store_registers_using_G (regcache);
5115 return;
5116 }
5117
5118 store_registers_using_G (regcache);
5119
5120 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
5121 if (!rsa->regs[i].in_g_packet)
5122 if (!store_register_using_P (regcache, &rsa->regs[i]))
5123 /* See above for why we do not issue an error here. */
5124 continue;
5125 }
5126 \f
5127
5128 /* Return the number of hex digits in num. */
5129
5130 static int
5131 hexnumlen (ULONGEST num)
5132 {
5133 int i;
5134
5135 for (i = 0; num != 0; i++)
5136 num >>= 4;
5137
5138 return max (i, 1);
5139 }
5140
5141 /* Set BUF to the minimum number of hex digits representing NUM. */
5142
5143 static int
5144 hexnumstr (char *buf, ULONGEST num)
5145 {
5146 int len = hexnumlen (num);
5147 return hexnumnstr (buf, num, len);
5148 }
5149
5150
5151 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
5152
5153 static int
5154 hexnumnstr (char *buf, ULONGEST num, int width)
5155 {
5156 int i;
5157
5158 buf[width] = '\0';
5159
5160 for (i = width - 1; i >= 0; i--)
5161 {
5162 buf[i] = "0123456789abcdef"[(num & 0xf)];
5163 num >>= 4;
5164 }
5165
5166 return width;
5167 }
5168
5169 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
5170
5171 static CORE_ADDR
5172 remote_address_masked (CORE_ADDR addr)
5173 {
5174 int address_size = remote_address_size;
5175 /* If "remoteaddresssize" was not set, default to target address size. */
5176 if (!address_size)
5177 address_size = gdbarch_addr_bit (target_gdbarch);
5178
5179 if (address_size > 0
5180 && address_size < (sizeof (ULONGEST) * 8))
5181 {
5182 /* Only create a mask when that mask can safely be constructed
5183 in a ULONGEST variable. */
5184 ULONGEST mask = 1;
5185 mask = (mask << address_size) - 1;
5186 addr &= mask;
5187 }
5188 return addr;
5189 }
5190
5191 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
5192 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
5193 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
5194 (which may be more than *OUT_LEN due to escape characters). The
5195 total number of bytes in the output buffer will be at most
5196 OUT_MAXLEN. */
5197
5198 static int
5199 remote_escape_output (const gdb_byte *buffer, int len,
5200 gdb_byte *out_buf, int *out_len,
5201 int out_maxlen)
5202 {
5203 int input_index, output_index;
5204
5205 output_index = 0;
5206 for (input_index = 0; input_index < len; input_index++)
5207 {
5208 gdb_byte b = buffer[input_index];
5209
5210 if (b == '$' || b == '#' || b == '}')
5211 {
5212 /* These must be escaped. */
5213 if (output_index + 2 > out_maxlen)
5214 break;
5215 out_buf[output_index++] = '}';
5216 out_buf[output_index++] = b ^ 0x20;
5217 }
5218 else
5219 {
5220 if (output_index + 1 > out_maxlen)
5221 break;
5222 out_buf[output_index++] = b;
5223 }
5224 }
5225
5226 *out_len = input_index;
5227 return output_index;
5228 }
5229
5230 /* Convert BUFFER, escaped data LEN bytes long, into binary data
5231 in OUT_BUF. Return the number of bytes written to OUT_BUF.
5232 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
5233
5234 This function reverses remote_escape_output. It allows more
5235 escaped characters than that function does, in particular because
5236 '*' must be escaped to avoid the run-length encoding processing
5237 in reading packets. */
5238
5239 static int
5240 remote_unescape_input (const gdb_byte *buffer, int len,
5241 gdb_byte *out_buf, int out_maxlen)
5242 {
5243 int input_index, output_index;
5244 int escaped;
5245
5246 output_index = 0;
5247 escaped = 0;
5248 for (input_index = 0; input_index < len; input_index++)
5249 {
5250 gdb_byte b = buffer[input_index];
5251
5252 if (output_index + 1 > out_maxlen)
5253 {
5254 warning (_("Received too much data from remote target;"
5255 " ignoring overflow."));
5256 return output_index;
5257 }
5258
5259 if (escaped)
5260 {
5261 out_buf[output_index++] = b ^ 0x20;
5262 escaped = 0;
5263 }
5264 else if (b == '}')
5265 escaped = 1;
5266 else
5267 out_buf[output_index++] = b;
5268 }
5269
5270 if (escaped)
5271 error (_("Unmatched escape character in target response."));
5272
5273 return output_index;
5274 }
5275
5276 /* Determine whether the remote target supports binary downloading.
5277 This is accomplished by sending a no-op memory write of zero length
5278 to the target at the specified address. It does not suffice to send
5279 the whole packet, since many stubs strip the eighth bit and
5280 subsequently compute a wrong checksum, which causes real havoc with
5281 remote_write_bytes.
5282
5283 NOTE: This can still lose if the serial line is not eight-bit
5284 clean. In cases like this, the user should clear "remote
5285 X-packet". */
5286
5287 static void
5288 check_binary_download (CORE_ADDR addr)
5289 {
5290 struct remote_state *rs = get_remote_state ();
5291
5292 switch (remote_protocol_packets[PACKET_X].support)
5293 {
5294 case PACKET_DISABLE:
5295 break;
5296 case PACKET_ENABLE:
5297 break;
5298 case PACKET_SUPPORT_UNKNOWN:
5299 {
5300 char *p;
5301
5302 p = rs->buf;
5303 *p++ = 'X';
5304 p += hexnumstr (p, (ULONGEST) addr);
5305 *p++ = ',';
5306 p += hexnumstr (p, (ULONGEST) 0);
5307 *p++ = ':';
5308 *p = '\0';
5309
5310 putpkt_binary (rs->buf, (int) (p - rs->buf));
5311 getpkt (&rs->buf, &rs->buf_size, 0);
5312
5313 if (rs->buf[0] == '\0')
5314 {
5315 if (remote_debug)
5316 fprintf_unfiltered (gdb_stdlog,
5317 "binary downloading NOT suppported by target\n");
5318 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
5319 }
5320 else
5321 {
5322 if (remote_debug)
5323 fprintf_unfiltered (gdb_stdlog,
5324 "binary downloading suppported by target\n");
5325 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
5326 }
5327 break;
5328 }
5329 }
5330 }
5331
5332 /* Write memory data directly to the remote machine.
5333 This does not inform the data cache; the data cache uses this.
5334 HEADER is the starting part of the packet.
5335 MEMADDR is the address in the remote memory space.
5336 MYADDR is the address of the buffer in our space.
5337 LEN is the number of bytes.
5338 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
5339 should send data as binary ('X'), or hex-encoded ('M').
5340
5341 The function creates packet of the form
5342 <HEADER><ADDRESS>,<LENGTH>:<DATA>
5343
5344 where encoding of <DATA> is termined by PACKET_FORMAT.
5345
5346 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
5347 are omitted.
5348
5349 Returns the number of bytes transferred, or 0 (setting errno) for
5350 error. Only transfer a single packet. */
5351
5352 static int
5353 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
5354 const gdb_byte *myaddr, int len,
5355 char packet_format, int use_length)
5356 {
5357 struct remote_state *rs = get_remote_state ();
5358 char *p;
5359 char *plen = NULL;
5360 int plenlen = 0;
5361 int todo;
5362 int nr_bytes;
5363 int payload_size;
5364 int payload_length;
5365 int header_length;
5366
5367 if (packet_format != 'X' && packet_format != 'M')
5368 internal_error (__FILE__, __LINE__,
5369 "remote_write_bytes_aux: bad packet format");
5370
5371 if (len <= 0)
5372 return 0;
5373
5374 payload_size = get_memory_write_packet_size ();
5375
5376 /* The packet buffer will be large enough for the payload;
5377 get_memory_packet_size ensures this. */
5378 rs->buf[0] = '\0';
5379
5380 /* Compute the size of the actual payload by subtracting out the
5381 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
5382 */
5383 payload_size -= strlen ("$,:#NN");
5384 if (!use_length)
5385 /* The comma won't be used. */
5386 payload_size += 1;
5387 header_length = strlen (header);
5388 payload_size -= header_length;
5389 payload_size -= hexnumlen (memaddr);
5390
5391 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
5392
5393 strcat (rs->buf, header);
5394 p = rs->buf + strlen (header);
5395
5396 /* Compute a best guess of the number of bytes actually transfered. */
5397 if (packet_format == 'X')
5398 {
5399 /* Best guess at number of bytes that will fit. */
5400 todo = min (len, payload_size);
5401 if (use_length)
5402 payload_size -= hexnumlen (todo);
5403 todo = min (todo, payload_size);
5404 }
5405 else
5406 {
5407 /* Num bytes that will fit. */
5408 todo = min (len, payload_size / 2);
5409 if (use_length)
5410 payload_size -= hexnumlen (todo);
5411 todo = min (todo, payload_size / 2);
5412 }
5413
5414 if (todo <= 0)
5415 internal_error (__FILE__, __LINE__,
5416 _("minumum packet size too small to write data"));
5417
5418 /* If we already need another packet, then try to align the end
5419 of this packet to a useful boundary. */
5420 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
5421 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
5422
5423 /* Append "<memaddr>". */
5424 memaddr = remote_address_masked (memaddr);
5425 p += hexnumstr (p, (ULONGEST) memaddr);
5426
5427 if (use_length)
5428 {
5429 /* Append ",". */
5430 *p++ = ',';
5431
5432 /* Append <len>. Retain the location/size of <len>. It may need to
5433 be adjusted once the packet body has been created. */
5434 plen = p;
5435 plenlen = hexnumstr (p, (ULONGEST) todo);
5436 p += plenlen;
5437 }
5438
5439 /* Append ":". */
5440 *p++ = ':';
5441 *p = '\0';
5442
5443 /* Append the packet body. */
5444 if (packet_format == 'X')
5445 {
5446 /* Binary mode. Send target system values byte by byte, in
5447 increasing byte addresses. Only escape certain critical
5448 characters. */
5449 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
5450 payload_size);
5451
5452 /* If not all TODO bytes fit, then we'll need another packet. Make
5453 a second try to keep the end of the packet aligned. Don't do
5454 this if the packet is tiny. */
5455 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
5456 {
5457 int new_nr_bytes;
5458
5459 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
5460 - memaddr);
5461 if (new_nr_bytes != nr_bytes)
5462 payload_length = remote_escape_output (myaddr, new_nr_bytes,
5463 p, &nr_bytes,
5464 payload_size);
5465 }
5466
5467 p += payload_length;
5468 if (use_length && nr_bytes < todo)
5469 {
5470 /* Escape chars have filled up the buffer prematurely,
5471 and we have actually sent fewer bytes than planned.
5472 Fix-up the length field of the packet. Use the same
5473 number of characters as before. */
5474 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
5475 *plen = ':'; /* overwrite \0 from hexnumnstr() */
5476 }
5477 }
5478 else
5479 {
5480 /* Normal mode: Send target system values byte by byte, in
5481 increasing byte addresses. Each byte is encoded as a two hex
5482 value. */
5483 nr_bytes = bin2hex (myaddr, p, todo);
5484 p += 2 * nr_bytes;
5485 }
5486
5487 putpkt_binary (rs->buf, (int) (p - rs->buf));
5488 getpkt (&rs->buf, &rs->buf_size, 0);
5489
5490 if (rs->buf[0] == 'E')
5491 {
5492 /* There is no correspondance between what the remote protocol
5493 uses for errors and errno codes. We would like a cleaner way
5494 of representing errors (big enough to include errno codes,
5495 bfd_error codes, and others). But for now just return EIO. */
5496 errno = EIO;
5497 return 0;
5498 }
5499
5500 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
5501 fewer bytes than we'd planned. */
5502 return nr_bytes;
5503 }
5504
5505 /* Write memory data directly to the remote machine.
5506 This does not inform the data cache; the data cache uses this.
5507 MEMADDR is the address in the remote memory space.
5508 MYADDR is the address of the buffer in our space.
5509 LEN is the number of bytes.
5510
5511 Returns number of bytes transferred, or 0 (setting errno) for
5512 error. Only transfer a single packet. */
5513
5514 int
5515 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
5516 {
5517 char *packet_format = 0;
5518
5519 /* Check whether the target supports binary download. */
5520 check_binary_download (memaddr);
5521
5522 switch (remote_protocol_packets[PACKET_X].support)
5523 {
5524 case PACKET_ENABLE:
5525 packet_format = "X";
5526 break;
5527 case PACKET_DISABLE:
5528 packet_format = "M";
5529 break;
5530 case PACKET_SUPPORT_UNKNOWN:
5531 internal_error (__FILE__, __LINE__,
5532 _("remote_write_bytes: bad internal state"));
5533 default:
5534 internal_error (__FILE__, __LINE__, _("bad switch"));
5535 }
5536
5537 return remote_write_bytes_aux (packet_format,
5538 memaddr, myaddr, len, packet_format[0], 1);
5539 }
5540
5541 /* Read memory data directly from the remote machine.
5542 This does not use the data cache; the data cache uses this.
5543 MEMADDR is the address in the remote memory space.
5544 MYADDR is the address of the buffer in our space.
5545 LEN is the number of bytes.
5546
5547 Returns number of bytes transferred, or 0 for error. */
5548
5549 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
5550 remote targets) shouldn't attempt to read the entire buffer.
5551 Instead it should read a single packet worth of data and then
5552 return the byte size of that packet to the caller. The caller (its
5553 caller and its callers caller ;-) already contains code for
5554 handling partial reads. */
5555
5556 int
5557 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
5558 {
5559 struct remote_state *rs = get_remote_state ();
5560 int max_buf_size; /* Max size of packet output buffer. */
5561 int origlen;
5562
5563 if (len <= 0)
5564 return 0;
5565
5566 max_buf_size = get_memory_read_packet_size ();
5567 /* The packet buffer will be large enough for the payload;
5568 get_memory_packet_size ensures this. */
5569
5570 origlen = len;
5571 while (len > 0)
5572 {
5573 char *p;
5574 int todo;
5575 int i;
5576
5577 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
5578
5579 /* construct "m"<memaddr>","<len>" */
5580 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
5581 memaddr = remote_address_masked (memaddr);
5582 p = rs->buf;
5583 *p++ = 'm';
5584 p += hexnumstr (p, (ULONGEST) memaddr);
5585 *p++ = ',';
5586 p += hexnumstr (p, (ULONGEST) todo);
5587 *p = '\0';
5588
5589 putpkt (rs->buf);
5590 getpkt (&rs->buf, &rs->buf_size, 0);
5591
5592 if (rs->buf[0] == 'E'
5593 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
5594 && rs->buf[3] == '\0')
5595 {
5596 /* There is no correspondance between what the remote
5597 protocol uses for errors and errno codes. We would like
5598 a cleaner way of representing errors (big enough to
5599 include errno codes, bfd_error codes, and others). But
5600 for now just return EIO. */
5601 errno = EIO;
5602 return 0;
5603 }
5604
5605 /* Reply describes memory byte by byte,
5606 each byte encoded as two hex characters. */
5607
5608 p = rs->buf;
5609 if ((i = hex2bin (p, myaddr, todo)) < todo)
5610 {
5611 /* Reply is short. This means that we were able to read
5612 only part of what we wanted to. */
5613 return i + (origlen - len);
5614 }
5615 myaddr += todo;
5616 memaddr += todo;
5617 len -= todo;
5618 }
5619 return origlen;
5620 }
5621 \f
5622
5623 /* Remote notification handler. */
5624
5625 static void
5626 handle_notification (char *buf, size_t length)
5627 {
5628 if (strncmp (buf, "Stop:", 5) == 0)
5629 {
5630 if (pending_stop_reply)
5631 /* We've already parsed the in-flight stop-reply, but the stub
5632 for some reason thought we didn't, possibly due to timeout
5633 on its side. Just ignore it. */
5634 ;
5635 else
5636 {
5637 struct cleanup *old_chain;
5638 struct stop_reply *reply = stop_reply_xmalloc ();
5639 old_chain = make_cleanup (do_stop_reply_xfree, reply);
5640
5641 remote_parse_stop_reply (buf + 5, reply);
5642
5643 discard_cleanups (old_chain);
5644
5645 /* Be careful to only set it after parsing, since an error
5646 may be thrown then. */
5647 pending_stop_reply = reply;
5648
5649 /* Notify the event loop there's a stop reply to acknowledge
5650 and that there may be more events to fetch. */
5651 mark_async_event_handler (remote_async_get_pending_events_token);
5652 }
5653 }
5654 else
5655 /* We ignore notifications we don't recognize, for compatibility
5656 with newer stubs. */
5657 ;
5658 }
5659
5660 \f
5661 /* Read or write LEN bytes from inferior memory at MEMADDR,
5662 transferring to or from debugger address BUFFER. Write to inferior
5663 if SHOULD_WRITE is nonzero. Returns length of data written or
5664 read; 0 for error. TARGET is unused. */
5665
5666 static int
5667 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
5668 int should_write, struct mem_attrib *attrib,
5669 struct target_ops *target)
5670 {
5671 int res;
5672
5673 set_general_thread (inferior_ptid);
5674
5675 if (should_write)
5676 res = remote_write_bytes (mem_addr, buffer, mem_len);
5677 else
5678 res = remote_read_bytes (mem_addr, buffer, mem_len);
5679
5680 return res;
5681 }
5682
5683 /* Sends a packet with content determined by the printf format string
5684 FORMAT and the remaining arguments, then gets the reply. Returns
5685 whether the packet was a success, a failure, or unknown. */
5686
5687 enum packet_result
5688 remote_send_printf (const char *format, ...)
5689 {
5690 struct remote_state *rs = get_remote_state ();
5691 int max_size = get_remote_packet_size ();
5692
5693 va_list ap;
5694 va_start (ap, format);
5695
5696 rs->buf[0] = '\0';
5697 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
5698 internal_error (__FILE__, __LINE__, "Too long remote packet.");
5699
5700 if (putpkt (rs->buf) < 0)
5701 error (_("Communication problem with target."));
5702
5703 rs->buf[0] = '\0';
5704 getpkt (&rs->buf, &rs->buf_size, 0);
5705
5706 return packet_check_result (rs->buf);
5707 }
5708
5709 static void
5710 restore_remote_timeout (void *p)
5711 {
5712 int value = *(int *)p;
5713 remote_timeout = value;
5714 }
5715
5716 /* Flash writing can take quite some time. We'll set
5717 effectively infinite timeout for flash operations.
5718 In future, we'll need to decide on a better approach. */
5719 static const int remote_flash_timeout = 1000;
5720
5721 static void
5722 remote_flash_erase (struct target_ops *ops,
5723 ULONGEST address, LONGEST length)
5724 {
5725 int saved_remote_timeout = remote_timeout;
5726 enum packet_result ret;
5727
5728 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5729 &saved_remote_timeout);
5730 remote_timeout = remote_flash_timeout;
5731
5732 ret = remote_send_printf ("vFlashErase:%s,%s",
5733 paddr (address),
5734 phex (length, 4));
5735 switch (ret)
5736 {
5737 case PACKET_UNKNOWN:
5738 error (_("Remote target does not support flash erase"));
5739 case PACKET_ERROR:
5740 error (_("Error erasing flash with vFlashErase packet"));
5741 default:
5742 break;
5743 }
5744
5745 do_cleanups (back_to);
5746 }
5747
5748 static LONGEST
5749 remote_flash_write (struct target_ops *ops,
5750 ULONGEST address, LONGEST length,
5751 const gdb_byte *data)
5752 {
5753 int saved_remote_timeout = remote_timeout;
5754 int ret;
5755 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5756 &saved_remote_timeout);
5757
5758 remote_timeout = remote_flash_timeout;
5759 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
5760 do_cleanups (back_to);
5761
5762 return ret;
5763 }
5764
5765 static void
5766 remote_flash_done (struct target_ops *ops)
5767 {
5768 int saved_remote_timeout = remote_timeout;
5769 int ret;
5770 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
5771 &saved_remote_timeout);
5772
5773 remote_timeout = remote_flash_timeout;
5774 ret = remote_send_printf ("vFlashDone");
5775 do_cleanups (back_to);
5776
5777 switch (ret)
5778 {
5779 case PACKET_UNKNOWN:
5780 error (_("Remote target does not support vFlashDone"));
5781 case PACKET_ERROR:
5782 error (_("Error finishing flash operation"));
5783 default:
5784 break;
5785 }
5786 }
5787
5788 static void
5789 remote_files_info (struct target_ops *ignore)
5790 {
5791 puts_filtered ("Debugging a target over a serial line.\n");
5792 }
5793 \f
5794 /* Stuff for dealing with the packets which are part of this protocol.
5795 See comment at top of file for details. */
5796
5797 /* Read a single character from the remote end. */
5798
5799 static int
5800 readchar (int timeout)
5801 {
5802 int ch;
5803
5804 ch = serial_readchar (remote_desc, timeout);
5805
5806 if (ch >= 0)
5807 return ch;
5808
5809 switch ((enum serial_rc) ch)
5810 {
5811 case SERIAL_EOF:
5812 pop_target ();
5813 error (_("Remote connection closed"));
5814 /* no return */
5815 case SERIAL_ERROR:
5816 perror_with_name (_("Remote communication error"));
5817 /* no return */
5818 case SERIAL_TIMEOUT:
5819 break;
5820 }
5821 return ch;
5822 }
5823
5824 /* Send the command in *BUF to the remote machine, and read the reply
5825 into *BUF. Report an error if we get an error reply. Resize
5826 *BUF using xrealloc if necessary to hold the result, and update
5827 *SIZEOF_BUF. */
5828
5829 static void
5830 remote_send (char **buf,
5831 long *sizeof_buf)
5832 {
5833 putpkt (*buf);
5834 getpkt (buf, sizeof_buf, 0);
5835
5836 if ((*buf)[0] == 'E')
5837 error (_("Remote failure reply: %s"), *buf);
5838 }
5839
5840 /* Display a null-terminated packet on stdout, for debugging, using C
5841 string notation. */
5842
5843 static void
5844 print_packet (char *buf)
5845 {
5846 puts_filtered ("\"");
5847 fputstr_filtered (buf, '"', gdb_stdout);
5848 puts_filtered ("\"");
5849 }
5850
5851 int
5852 putpkt (char *buf)
5853 {
5854 return putpkt_binary (buf, strlen (buf));
5855 }
5856
5857 /* Send a packet to the remote machine, with error checking. The data
5858 of the packet is in BUF. The string in BUF can be at most
5859 get_remote_packet_size () - 5 to account for the $, # and checksum,
5860 and for a possible /0 if we are debugging (remote_debug) and want
5861 to print the sent packet as a string. */
5862
5863 static int
5864 putpkt_binary (char *buf, int cnt)
5865 {
5866 struct remote_state *rs = get_remote_state ();
5867 int i;
5868 unsigned char csum = 0;
5869 char *buf2 = alloca (cnt + 6);
5870
5871 int ch;
5872 int tcount = 0;
5873 char *p;
5874
5875 /* Catch cases like trying to read memory or listing threads while
5876 we're waiting for a stop reply. The remote server wouldn't be
5877 ready to handle this request, so we'd hang and timeout. We don't
5878 have to worry about this in synchronous mode, because in that
5879 case it's not possible to issue a command while the target is
5880 running. This is not a problem in non-stop mode, because in that
5881 case, the stub is always ready to process serial input. */
5882 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
5883 error (_("Cannot execute this command while the target is running."));
5884
5885 /* We're sending out a new packet. Make sure we don't look at a
5886 stale cached response. */
5887 rs->cached_wait_status = 0;
5888
5889 /* Copy the packet into buffer BUF2, encapsulating it
5890 and giving it a checksum. */
5891
5892 p = buf2;
5893 *p++ = '$';
5894
5895 for (i = 0; i < cnt; i++)
5896 {
5897 csum += buf[i];
5898 *p++ = buf[i];
5899 }
5900 *p++ = '#';
5901 *p++ = tohex ((csum >> 4) & 0xf);
5902 *p++ = tohex (csum & 0xf);
5903
5904 /* Send it over and over until we get a positive ack. */
5905
5906 while (1)
5907 {
5908 int started_error_output = 0;
5909
5910 if (remote_debug)
5911 {
5912 *p = '\0';
5913 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
5914 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
5915 fprintf_unfiltered (gdb_stdlog, "...");
5916 gdb_flush (gdb_stdlog);
5917 }
5918 if (serial_write (remote_desc, buf2, p - buf2))
5919 perror_with_name (_("putpkt: write failed"));
5920
5921 /* If this is a no acks version of the remote protocol, send the
5922 packet and move on. */
5923 if (rs->noack_mode)
5924 break;
5925
5926 /* Read until either a timeout occurs (-2) or '+' is read.
5927 Handle any notification that arrives in the mean time. */
5928 while (1)
5929 {
5930 ch = readchar (remote_timeout);
5931
5932 if (remote_debug)
5933 {
5934 switch (ch)
5935 {
5936 case '+':
5937 case '-':
5938 case SERIAL_TIMEOUT:
5939 case '$':
5940 case '%':
5941 if (started_error_output)
5942 {
5943 putchar_unfiltered ('\n');
5944 started_error_output = 0;
5945 }
5946 }
5947 }
5948
5949 switch (ch)
5950 {
5951 case '+':
5952 if (remote_debug)
5953 fprintf_unfiltered (gdb_stdlog, "Ack\n");
5954 return 1;
5955 case '-':
5956 if (remote_debug)
5957 fprintf_unfiltered (gdb_stdlog, "Nak\n");
5958 case SERIAL_TIMEOUT:
5959 tcount++;
5960 if (tcount > 3)
5961 return 0;
5962 break; /* Retransmit buffer. */
5963 case '$':
5964 {
5965 if (remote_debug)
5966 fprintf_unfiltered (gdb_stdlog,
5967 "Packet instead of Ack, ignoring it\n");
5968 /* It's probably an old response sent because an ACK
5969 was lost. Gobble up the packet and ack it so it
5970 doesn't get retransmitted when we resend this
5971 packet. */
5972 skip_frame ();
5973 serial_write (remote_desc, "+", 1);
5974 continue; /* Now, go look for +. */
5975 }
5976
5977 case '%':
5978 {
5979 int val;
5980
5981 /* If we got a notification, handle it, and go back to looking
5982 for an ack. */
5983 /* We've found the start of a notification. Now
5984 collect the data. */
5985 val = read_frame (&rs->buf, &rs->buf_size);
5986 if (val >= 0)
5987 {
5988 if (remote_debug)
5989 {
5990 fprintf_unfiltered (gdb_stdlog, " Notification received: ");
5991 fputstrn_unfiltered (rs->buf, val, 0, gdb_stdlog);
5992 fprintf_unfiltered (gdb_stdlog, "\n");
5993 }
5994 handle_notification (rs->buf, val);
5995 /* We're in sync now, rewait for the ack. */
5996 tcount = 0;
5997 }
5998 else
5999 {
6000 if (remote_debug)
6001 {
6002 if (!started_error_output)
6003 {
6004 started_error_output = 1;
6005 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6006 }
6007 fputc_unfiltered (ch & 0177, gdb_stdlog);
6008 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
6009 }
6010 }
6011 continue;
6012 }
6013 /* fall-through */
6014 default:
6015 if (remote_debug)
6016 {
6017 if (!started_error_output)
6018 {
6019 started_error_output = 1;
6020 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
6021 }
6022 fputc_unfiltered (ch & 0177, gdb_stdlog);
6023 }
6024 continue;
6025 }
6026 break; /* Here to retransmit. */
6027 }
6028
6029 #if 0
6030 /* This is wrong. If doing a long backtrace, the user should be
6031 able to get out next time we call QUIT, without anything as
6032 violent as interrupt_query. If we want to provide a way out of
6033 here without getting to the next QUIT, it should be based on
6034 hitting ^C twice as in remote_wait. */
6035 if (quit_flag)
6036 {
6037 quit_flag = 0;
6038 interrupt_query ();
6039 }
6040 #endif
6041 }
6042 return 0;
6043 }
6044
6045 /* Come here after finding the start of a frame when we expected an
6046 ack. Do our best to discard the rest of this packet. */
6047
6048 static void
6049 skip_frame (void)
6050 {
6051 int c;
6052
6053 while (1)
6054 {
6055 c = readchar (remote_timeout);
6056 switch (c)
6057 {
6058 case SERIAL_TIMEOUT:
6059 /* Nothing we can do. */
6060 return;
6061 case '#':
6062 /* Discard the two bytes of checksum and stop. */
6063 c = readchar (remote_timeout);
6064 if (c >= 0)
6065 c = readchar (remote_timeout);
6066
6067 return;
6068 case '*': /* Run length encoding. */
6069 /* Discard the repeat count. */
6070 c = readchar (remote_timeout);
6071 if (c < 0)
6072 return;
6073 break;
6074 default:
6075 /* A regular character. */
6076 break;
6077 }
6078 }
6079 }
6080
6081 /* Come here after finding the start of the frame. Collect the rest
6082 into *BUF, verifying the checksum, length, and handling run-length
6083 compression. NUL terminate the buffer. If there is not enough room,
6084 expand *BUF using xrealloc.
6085
6086 Returns -1 on error, number of characters in buffer (ignoring the
6087 trailing NULL) on success. (could be extended to return one of the
6088 SERIAL status indications). */
6089
6090 static long
6091 read_frame (char **buf_p,
6092 long *sizeof_buf)
6093 {
6094 unsigned char csum;
6095 long bc;
6096 int c;
6097 char *buf = *buf_p;
6098 struct remote_state *rs = get_remote_state ();
6099
6100 csum = 0;
6101 bc = 0;
6102
6103 while (1)
6104 {
6105 c = readchar (remote_timeout);
6106 switch (c)
6107 {
6108 case SERIAL_TIMEOUT:
6109 if (remote_debug)
6110 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
6111 return -1;
6112 case '$':
6113 if (remote_debug)
6114 fputs_filtered ("Saw new packet start in middle of old one\n",
6115 gdb_stdlog);
6116 return -1; /* Start a new packet, count retries. */
6117 case '#':
6118 {
6119 unsigned char pktcsum;
6120 int check_0 = 0;
6121 int check_1 = 0;
6122
6123 buf[bc] = '\0';
6124
6125 check_0 = readchar (remote_timeout);
6126 if (check_0 >= 0)
6127 check_1 = readchar (remote_timeout);
6128
6129 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
6130 {
6131 if (remote_debug)
6132 fputs_filtered ("Timeout in checksum, retrying\n",
6133 gdb_stdlog);
6134 return -1;
6135 }
6136 else if (check_0 < 0 || check_1 < 0)
6137 {
6138 if (remote_debug)
6139 fputs_filtered ("Communication error in checksum\n",
6140 gdb_stdlog);
6141 return -1;
6142 }
6143
6144 /* Don't recompute the checksum; with no ack packets we
6145 don't have any way to indicate a packet retransmission
6146 is necessary. */
6147 if (rs->noack_mode)
6148 return bc;
6149
6150 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
6151 if (csum == pktcsum)
6152 return bc;
6153
6154 if (remote_debug)
6155 {
6156 fprintf_filtered (gdb_stdlog,
6157 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
6158 pktcsum, csum);
6159 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
6160 fputs_filtered ("\n", gdb_stdlog);
6161 }
6162 /* Number of characters in buffer ignoring trailing
6163 NULL. */
6164 return -1;
6165 }
6166 case '*': /* Run length encoding. */
6167 {
6168 int repeat;
6169 csum += c;
6170
6171 c = readchar (remote_timeout);
6172 csum += c;
6173 repeat = c - ' ' + 3; /* Compute repeat count. */
6174
6175 /* The character before ``*'' is repeated. */
6176
6177 if (repeat > 0 && repeat <= 255 && bc > 0)
6178 {
6179 if (bc + repeat - 1 >= *sizeof_buf - 1)
6180 {
6181 /* Make some more room in the buffer. */
6182 *sizeof_buf += repeat;
6183 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6184 buf = *buf_p;
6185 }
6186
6187 memset (&buf[bc], buf[bc - 1], repeat);
6188 bc += repeat;
6189 continue;
6190 }
6191
6192 buf[bc] = '\0';
6193 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
6194 return -1;
6195 }
6196 default:
6197 if (bc >= *sizeof_buf - 1)
6198 {
6199 /* Make some more room in the buffer. */
6200 *sizeof_buf *= 2;
6201 *buf_p = xrealloc (*buf_p, *sizeof_buf);
6202 buf = *buf_p;
6203 }
6204
6205 buf[bc++] = c;
6206 csum += c;
6207 continue;
6208 }
6209 }
6210 }
6211
6212 /* Read a packet from the remote machine, with error checking, and
6213 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6214 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6215 rather than timing out; this is used (in synchronous mode) to wait
6216 for a target that is is executing user code to stop. */
6217 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
6218 don't have to change all the calls to getpkt to deal with the
6219 return value, because at the moment I don't know what the right
6220 thing to do it for those. */
6221 void
6222 getpkt (char **buf,
6223 long *sizeof_buf,
6224 int forever)
6225 {
6226 int timed_out;
6227
6228 timed_out = getpkt_sane (buf, sizeof_buf, forever);
6229 }
6230
6231
6232 /* Read a packet from the remote machine, with error checking, and
6233 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
6234 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
6235 rather than timing out; this is used (in synchronous mode) to wait
6236 for a target that is is executing user code to stop. If FOREVER ==
6237 0, this function is allowed to time out gracefully and return an
6238 indication of this to the caller. Otherwise return the number of
6239 bytes read. If EXPECTING_NOTIF, consider receiving a notification
6240 enough reason to return to the caller. */
6241
6242 static int
6243 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
6244 int expecting_notif)
6245 {
6246 struct remote_state *rs = get_remote_state ();
6247 int c;
6248 int tries;
6249 int timeout;
6250 int val;
6251
6252 /* We're reading a new response. Make sure we don't look at a
6253 previously cached response. */
6254 rs->cached_wait_status = 0;
6255
6256 strcpy (*buf, "timeout");
6257
6258 if (forever)
6259 timeout = watchdog > 0 ? watchdog : -1;
6260 else if (expecting_notif)
6261 timeout = 0; /* There should already be a char in the buffer. If
6262 not, bail out. */
6263 else
6264 timeout = remote_timeout;
6265
6266 #define MAX_TRIES 3
6267
6268 /* Process any number of notifications, and then return when
6269 we get a packet. */
6270 for (;;)
6271 {
6272 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
6273 times. */
6274 for (tries = 1; tries <= MAX_TRIES; tries++)
6275 {
6276 /* This can loop forever if the remote side sends us
6277 characters continuously, but if it pauses, we'll get
6278 SERIAL_TIMEOUT from readchar because of timeout. Then
6279 we'll count that as a retry.
6280
6281 Note that even when forever is set, we will only wait
6282 forever prior to the start of a packet. After that, we
6283 expect characters to arrive at a brisk pace. They should
6284 show up within remote_timeout intervals. */
6285 do
6286 c = readchar (timeout);
6287 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
6288
6289 if (c == SERIAL_TIMEOUT)
6290 {
6291 if (expecting_notif)
6292 return -1; /* Don't complain, it's normal to not get
6293 anything in this case. */
6294
6295 if (forever) /* Watchdog went off? Kill the target. */
6296 {
6297 QUIT;
6298 pop_target ();
6299 error (_("Watchdog timeout has expired. Target detached."));
6300 }
6301 if (remote_debug)
6302 fputs_filtered ("Timed out.\n", gdb_stdlog);
6303 }
6304 else
6305 {
6306 /* We've found the start of a packet or notification.
6307 Now collect the data. */
6308 val = read_frame (buf, sizeof_buf);
6309 if (val >= 0)
6310 break;
6311 }
6312
6313 serial_write (remote_desc, "-", 1);
6314 }
6315
6316 if (tries > MAX_TRIES)
6317 {
6318 /* We have tried hard enough, and just can't receive the
6319 packet/notification. Give up. */
6320 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
6321
6322 /* Skip the ack char if we're in no-ack mode. */
6323 if (!rs->noack_mode)
6324 serial_write (remote_desc, "+", 1);
6325 return -1;
6326 }
6327
6328 /* If we got an ordinary packet, return that to our caller. */
6329 if (c == '$')
6330 {
6331 if (remote_debug)
6332 {
6333 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
6334 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
6335 fprintf_unfiltered (gdb_stdlog, "\n");
6336 }
6337
6338 /* Skip the ack char if we're in no-ack mode. */
6339 if (!rs->noack_mode)
6340 serial_write (remote_desc, "+", 1);
6341 return val;
6342 }
6343
6344 /* If we got a notification, handle it, and go back to looking
6345 for a packet. */
6346 else
6347 {
6348 gdb_assert (c == '%');
6349
6350 if (remote_debug)
6351 {
6352 fprintf_unfiltered (gdb_stdlog, " Notification received: ");
6353 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
6354 fprintf_unfiltered (gdb_stdlog, "\n");
6355 }
6356
6357 handle_notification (*buf, val);
6358
6359 /* Notifications require no acknowledgement. */
6360
6361 if (expecting_notif)
6362 return -1;
6363 }
6364 }
6365 }
6366
6367 static int
6368 getpkt_sane (char **buf, long *sizeof_buf, int forever)
6369 {
6370 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0);
6371 }
6372
6373 static int
6374 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever)
6375 {
6376 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1);
6377 }
6378
6379 \f
6380 static void
6381 remote_kill (void)
6382 {
6383 /* Use catch_errors so the user can quit from gdb even when we
6384 aren't on speaking terms with the remote system. */
6385 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
6386
6387 /* Don't wait for it to die. I'm not really sure it matters whether
6388 we do or not. For the existing stubs, kill is a noop. */
6389 target_mourn_inferior ();
6390 }
6391
6392 static int
6393 remote_vkill (int pid, struct remote_state *rs)
6394 {
6395 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6396 return -1;
6397
6398 /* Tell the remote target to detach. */
6399 sprintf (rs->buf, "vKill;%x", pid);
6400 putpkt (rs->buf);
6401 getpkt (&rs->buf, &rs->buf_size, 0);
6402
6403 if (packet_ok (rs->buf,
6404 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
6405 return 0;
6406 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
6407 return -1;
6408 else
6409 return 1;
6410 }
6411
6412 static void
6413 extended_remote_kill (void)
6414 {
6415 int res;
6416 int pid = ptid_get_pid (inferior_ptid);
6417 struct remote_state *rs = get_remote_state ();
6418
6419 res = remote_vkill (pid, rs);
6420 if (res == -1 && !remote_multi_process_p (rs))
6421 {
6422 /* Don't try 'k' on a multi-process aware stub -- it has no way
6423 to specify the pid. */
6424
6425 putpkt ("k");
6426 #if 0
6427 getpkt (&rs->buf, &rs->buf_size, 0);
6428 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
6429 res = 1;
6430 #else
6431 /* Don't wait for it to die. I'm not really sure it matters whether
6432 we do or not. For the existing stubs, kill is a noop. */
6433 res = 0;
6434 #endif
6435 }
6436
6437 if (res != 0)
6438 error (_("Can't kill process"));
6439
6440 delete_inferior (pid);
6441 target_mourn_inferior ();
6442 }
6443
6444 static void
6445 remote_mourn (void)
6446 {
6447 remote_mourn_1 (&remote_ops);
6448 }
6449
6450 /* Worker function for remote_mourn. */
6451 static void
6452 remote_mourn_1 (struct target_ops *target)
6453 {
6454 unpush_target (target);
6455
6456 /* remote_close takes care of cleaning up. */
6457 }
6458
6459 static int
6460 select_new_thread_callback (struct thread_info *th, void* data)
6461 {
6462 if (!is_exited (th->ptid))
6463 {
6464 switch_to_thread (th->ptid);
6465 printf_filtered (_("[Switching to %s]\n"),
6466 target_pid_to_str (inferior_ptid));
6467 return 1;
6468 }
6469 return 0;
6470 }
6471
6472 static void
6473 extended_remote_mourn_1 (struct target_ops *target)
6474 {
6475 struct remote_state *rs = get_remote_state ();
6476
6477 /* In case we got here due to an error, but we're going to stay
6478 connected. */
6479 rs->waiting_for_stop_reply = 0;
6480
6481 /* We're no longer interested in these events. */
6482 discard_pending_stop_replies (ptid_get_pid (inferior_ptid));
6483
6484 /* Unlike "target remote", we do not want to unpush the target; then
6485 the next time the user says "run", we won't be connected. */
6486
6487 if (have_inferiors ())
6488 {
6489 extern void nullify_last_target_wait_ptid ();
6490 /* Multi-process case. The current process has exited, but
6491 there are other processes to debug. Switch to the first
6492 available. */
6493 iterate_over_threads (select_new_thread_callback, NULL);
6494 nullify_last_target_wait_ptid ();
6495 }
6496 else
6497 {
6498 struct remote_state *rs = get_remote_state ();
6499
6500 /* Call common code to mark the inferior as not running. */
6501 generic_mourn_inferior ();
6502 if (!remote_multi_process_p (rs))
6503 {
6504 /* Check whether the target is running now - some remote stubs
6505 automatically restart after kill. */
6506 putpkt ("?");
6507 getpkt (&rs->buf, &rs->buf_size, 0);
6508
6509 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
6510 {
6511 /* Assume that the target has been restarted. Set inferior_ptid
6512 so that bits of core GDB realizes there's something here, e.g.,
6513 so that the user can say "kill" again. */
6514 inferior_ptid = magic_null_ptid;
6515 }
6516 else
6517 {
6518 /* Mark this (still pushed) target as not executable until we
6519 restart it. */
6520 target_mark_exited (target);
6521 }
6522 }
6523 else
6524 /* Always remove execution if this was the last process. */
6525 target_mark_exited (target);
6526 }
6527 }
6528
6529 static void
6530 extended_remote_mourn (void)
6531 {
6532 extended_remote_mourn_1 (&extended_remote_ops);
6533 }
6534
6535 static int
6536 extended_remote_run (char *args)
6537 {
6538 struct remote_state *rs = get_remote_state ();
6539 char *p;
6540 int len;
6541
6542 /* If the user has disabled vRun support, or we have detected that
6543 support is not available, do not try it. */
6544 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6545 return -1;
6546
6547 strcpy (rs->buf, "vRun;");
6548 len = strlen (rs->buf);
6549
6550 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
6551 error (_("Remote file name too long for run packet"));
6552 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
6553
6554 gdb_assert (args != NULL);
6555 if (*args)
6556 {
6557 struct cleanup *back_to;
6558 int i;
6559 char **argv;
6560
6561 argv = gdb_buildargv (args);
6562 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
6563 for (i = 0; argv[i] != NULL; i++)
6564 {
6565 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
6566 error (_("Argument list too long for run packet"));
6567 rs->buf[len++] = ';';
6568 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
6569 }
6570 do_cleanups (back_to);
6571 }
6572
6573 rs->buf[len++] = '\0';
6574
6575 putpkt (rs->buf);
6576 getpkt (&rs->buf, &rs->buf_size, 0);
6577
6578 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
6579 {
6580 /* We have a wait response; we don't need it, though. All is well. */
6581 return 0;
6582 }
6583 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
6584 /* It wasn't disabled before, but it is now. */
6585 return -1;
6586 else
6587 {
6588 if (remote_exec_file[0] == '\0')
6589 error (_("Running the default executable on the remote target failed; "
6590 "try \"set remote exec-file\"?"));
6591 else
6592 error (_("Running \"%s\" on the remote target failed"),
6593 remote_exec_file);
6594 }
6595 }
6596
6597 /* In the extended protocol we want to be able to do things like
6598 "run" and have them basically work as expected. So we need
6599 a special create_inferior function. We support changing the
6600 executable file and the command line arguments, but not the
6601 environment. */
6602
6603 static void
6604 extended_remote_create_inferior_1 (char *exec_file, char *args,
6605 char **env, int from_tty)
6606 {
6607 /* If running asynchronously, register the target file descriptor
6608 with the event loop. */
6609 if (target_can_async_p ())
6610 target_async (inferior_event_handler, 0);
6611
6612 /* Now restart the remote server. */
6613 if (extended_remote_run (args) == -1)
6614 {
6615 /* vRun was not supported. Fail if we need it to do what the
6616 user requested. */
6617 if (remote_exec_file[0])
6618 error (_("Remote target does not support \"set remote exec-file\""));
6619 if (args[0])
6620 error (_("Remote target does not support \"set args\" or run <ARGS>"));
6621
6622 /* Fall back to "R". */
6623 extended_remote_restart ();
6624 }
6625
6626 /* Clean up from the last time we ran, before we mark the target
6627 running again. This will mark breakpoints uninserted, and
6628 get_offsets may insert breakpoints. */
6629 init_thread_list ();
6630 init_wait_for_inferior ();
6631
6632 /* Now mark the inferior as running before we do anything else. */
6633 inferior_ptid = magic_null_ptid;
6634
6635 /* Now, if we have thread information, update inferior_ptid. */
6636 inferior_ptid = remote_current_thread (inferior_ptid);
6637
6638 add_inferior (ptid_get_pid (inferior_ptid));
6639 add_thread_silent (inferior_ptid);
6640
6641 target_mark_running (&extended_remote_ops);
6642
6643 /* Get updated offsets, if the stub uses qOffsets. */
6644 get_offsets ();
6645 }
6646
6647 static void
6648 extended_remote_create_inferior (char *exec_file, char *args,
6649 char **env, int from_tty)
6650 {
6651 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
6652 }
6653 \f
6654
6655 /* Insert a breakpoint. On targets that have software breakpoint
6656 support, we ask the remote target to do the work; on targets
6657 which don't, we insert a traditional memory breakpoint. */
6658
6659 static int
6660 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
6661 {
6662 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
6663 If it succeeds, then set the support to PACKET_ENABLE. If it
6664 fails, and the user has explicitly requested the Z support then
6665 report an error, otherwise, mark it disabled and go on. */
6666
6667 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6668 {
6669 CORE_ADDR addr = bp_tgt->placed_address;
6670 struct remote_state *rs;
6671 char *p;
6672 int bpsize;
6673
6674 gdbarch_breakpoint_from_pc (target_gdbarch, &addr, &bpsize);
6675
6676 rs = get_remote_state ();
6677 p = rs->buf;
6678
6679 *(p++) = 'Z';
6680 *(p++) = '0';
6681 *(p++) = ',';
6682 addr = (ULONGEST) remote_address_masked (addr);
6683 p += hexnumstr (p, addr);
6684 sprintf (p, ",%d", bpsize);
6685
6686 putpkt (rs->buf);
6687 getpkt (&rs->buf, &rs->buf_size, 0);
6688
6689 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
6690 {
6691 case PACKET_ERROR:
6692 return -1;
6693 case PACKET_OK:
6694 bp_tgt->placed_address = addr;
6695 bp_tgt->placed_size = bpsize;
6696 return 0;
6697 case PACKET_UNKNOWN:
6698 break;
6699 }
6700 }
6701
6702 return memory_insert_breakpoint (bp_tgt);
6703 }
6704
6705 static int
6706 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
6707 {
6708 CORE_ADDR addr = bp_tgt->placed_address;
6709 struct remote_state *rs = get_remote_state ();
6710 int bp_size;
6711
6712 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
6713 {
6714 char *p = rs->buf;
6715
6716 *(p++) = 'z';
6717 *(p++) = '0';
6718 *(p++) = ',';
6719
6720 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
6721 p += hexnumstr (p, addr);
6722 sprintf (p, ",%d", bp_tgt->placed_size);
6723
6724 putpkt (rs->buf);
6725 getpkt (&rs->buf, &rs->buf_size, 0);
6726
6727 return (rs->buf[0] == 'E');
6728 }
6729
6730 return memory_remove_breakpoint (bp_tgt);
6731 }
6732
6733 static int
6734 watchpoint_to_Z_packet (int type)
6735 {
6736 switch (type)
6737 {
6738 case hw_write:
6739 return Z_PACKET_WRITE_WP;
6740 break;
6741 case hw_read:
6742 return Z_PACKET_READ_WP;
6743 break;
6744 case hw_access:
6745 return Z_PACKET_ACCESS_WP;
6746 break;
6747 default:
6748 internal_error (__FILE__, __LINE__,
6749 _("hw_bp_to_z: bad watchpoint type %d"), type);
6750 }
6751 }
6752
6753 static int
6754 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
6755 {
6756 struct remote_state *rs = get_remote_state ();
6757 char *p;
6758 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6759
6760 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6761 return -1;
6762
6763 sprintf (rs->buf, "Z%x,", packet);
6764 p = strchr (rs->buf, '\0');
6765 addr = remote_address_masked (addr);
6766 p += hexnumstr (p, (ULONGEST) addr);
6767 sprintf (p, ",%x", len);
6768
6769 putpkt (rs->buf);
6770 getpkt (&rs->buf, &rs->buf_size, 0);
6771
6772 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6773 {
6774 case PACKET_ERROR:
6775 case PACKET_UNKNOWN:
6776 return -1;
6777 case PACKET_OK:
6778 return 0;
6779 }
6780 internal_error (__FILE__, __LINE__,
6781 _("remote_insert_watchpoint: reached end of function"));
6782 }
6783
6784
6785 static int
6786 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
6787 {
6788 struct remote_state *rs = get_remote_state ();
6789 char *p;
6790 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
6791
6792 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
6793 return -1;
6794
6795 sprintf (rs->buf, "z%x,", packet);
6796 p = strchr (rs->buf, '\0');
6797 addr = remote_address_masked (addr);
6798 p += hexnumstr (p, (ULONGEST) addr);
6799 sprintf (p, ",%x", len);
6800 putpkt (rs->buf);
6801 getpkt (&rs->buf, &rs->buf_size, 0);
6802
6803 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
6804 {
6805 case PACKET_ERROR:
6806 case PACKET_UNKNOWN:
6807 return -1;
6808 case PACKET_OK:
6809 return 0;
6810 }
6811 internal_error (__FILE__, __LINE__,
6812 _("remote_remove_watchpoint: reached end of function"));
6813 }
6814
6815
6816 int remote_hw_watchpoint_limit = -1;
6817 int remote_hw_breakpoint_limit = -1;
6818
6819 static int
6820 remote_check_watch_resources (int type, int cnt, int ot)
6821 {
6822 if (type == bp_hardware_breakpoint)
6823 {
6824 if (remote_hw_breakpoint_limit == 0)
6825 return 0;
6826 else if (remote_hw_breakpoint_limit < 0)
6827 return 1;
6828 else if (cnt <= remote_hw_breakpoint_limit)
6829 return 1;
6830 }
6831 else
6832 {
6833 if (remote_hw_watchpoint_limit == 0)
6834 return 0;
6835 else if (remote_hw_watchpoint_limit < 0)
6836 return 1;
6837 else if (ot)
6838 return -1;
6839 else if (cnt <= remote_hw_watchpoint_limit)
6840 return 1;
6841 }
6842 return -1;
6843 }
6844
6845 static int
6846 remote_stopped_by_watchpoint (void)
6847 {
6848 return remote_stopped_by_watchpoint_p;
6849 }
6850
6851 static int
6852 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
6853 {
6854 int rc = 0;
6855 if (remote_stopped_by_watchpoint ())
6856 {
6857 *addr_p = remote_watch_data_address;
6858 rc = 1;
6859 }
6860
6861 return rc;
6862 }
6863
6864
6865 static int
6866 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
6867 {
6868 CORE_ADDR addr;
6869 struct remote_state *rs;
6870 char *p;
6871
6872 /* The length field should be set to the size of a breakpoint
6873 instruction, even though we aren't inserting one ourselves. */
6874
6875 gdbarch_breakpoint_from_pc
6876 (target_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
6877
6878 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
6879 return -1;
6880
6881 rs = get_remote_state ();
6882 p = rs->buf;
6883
6884 *(p++) = 'Z';
6885 *(p++) = '1';
6886 *(p++) = ',';
6887
6888 addr = remote_address_masked (bp_tgt->placed_address);
6889 p += hexnumstr (p, (ULONGEST) addr);
6890 sprintf (p, ",%x", bp_tgt->placed_size);
6891
6892 putpkt (rs->buf);
6893 getpkt (&rs->buf, &rs->buf_size, 0);
6894
6895 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
6896 {
6897 case PACKET_ERROR:
6898 case PACKET_UNKNOWN:
6899 return -1;
6900 case PACKET_OK:
6901 return 0;
6902 }
6903 internal_error (__FILE__, __LINE__,
6904 _("remote_insert_hw_breakpoint: reached end of function"));
6905 }
6906
6907
6908 static int
6909 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
6910 {
6911 CORE_ADDR addr;
6912 struct remote_state *rs = get_remote_state ();
6913 char *p = rs->buf;
6914
6915 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
6916 return -1;
6917
6918 *(p++) = 'z';
6919 *(p++) = '1';
6920 *(p++) = ',';
6921
6922 addr = remote_address_masked (bp_tgt->placed_address);
6923 p += hexnumstr (p, (ULONGEST) addr);
6924 sprintf (p, ",%x", bp_tgt->placed_size);
6925
6926 putpkt (rs->buf);
6927 getpkt (&rs->buf, &rs->buf_size, 0);
6928
6929 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
6930 {
6931 case PACKET_ERROR:
6932 case PACKET_UNKNOWN:
6933 return -1;
6934 case PACKET_OK:
6935 return 0;
6936 }
6937 internal_error (__FILE__, __LINE__,
6938 _("remote_remove_hw_breakpoint: reached end of function"));
6939 }
6940
6941 /* Table used by the crc32 function to calcuate the checksum. */
6942
6943 static unsigned long crc32_table[256] =
6944 {0, 0};
6945
6946 static unsigned long
6947 crc32 (unsigned char *buf, int len, unsigned int crc)
6948 {
6949 if (!crc32_table[1])
6950 {
6951 /* Initialize the CRC table and the decoding table. */
6952 int i, j;
6953 unsigned int c;
6954
6955 for (i = 0; i < 256; i++)
6956 {
6957 for (c = i << 24, j = 8; j > 0; --j)
6958 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
6959 crc32_table[i] = c;
6960 }
6961 }
6962
6963 while (len--)
6964 {
6965 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
6966 buf++;
6967 }
6968 return crc;
6969 }
6970
6971 /* compare-sections command
6972
6973 With no arguments, compares each loadable section in the exec bfd
6974 with the same memory range on the target, and reports mismatches.
6975 Useful for verifying the image on the target against the exec file.
6976 Depends on the target understanding the new "qCRC:" request. */
6977
6978 /* FIXME: cagney/1999-10-26: This command should be broken down into a
6979 target method (target verify memory) and generic version of the
6980 actual command. This will allow other high-level code (especially
6981 generic_load()) to make use of this target functionality. */
6982
6983 static void
6984 compare_sections_command (char *args, int from_tty)
6985 {
6986 struct remote_state *rs = get_remote_state ();
6987 asection *s;
6988 unsigned long host_crc, target_crc;
6989 extern bfd *exec_bfd;
6990 struct cleanup *old_chain;
6991 char *tmp;
6992 char *sectdata;
6993 const char *sectname;
6994 bfd_size_type size;
6995 bfd_vma lma;
6996 int matched = 0;
6997 int mismatched = 0;
6998
6999 if (!exec_bfd)
7000 error (_("command cannot be used without an exec file"));
7001 if (!current_target.to_shortname ||
7002 strcmp (current_target.to_shortname, "remote") != 0)
7003 error (_("command can only be used with remote target"));
7004
7005 for (s = exec_bfd->sections; s; s = s->next)
7006 {
7007 if (!(s->flags & SEC_LOAD))
7008 continue; /* skip non-loadable section */
7009
7010 size = bfd_get_section_size (s);
7011 if (size == 0)
7012 continue; /* skip zero-length section */
7013
7014 sectname = bfd_get_section_name (exec_bfd, s);
7015 if (args && strcmp (args, sectname) != 0)
7016 continue; /* not the section selected by user */
7017
7018 matched = 1; /* do this section */
7019 lma = s->lma;
7020 /* FIXME: assumes lma can fit into long. */
7021 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
7022 (long) lma, (long) size);
7023 putpkt (rs->buf);
7024
7025 /* Be clever; compute the host_crc before waiting for target
7026 reply. */
7027 sectdata = xmalloc (size);
7028 old_chain = make_cleanup (xfree, sectdata);
7029 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
7030 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
7031
7032 getpkt (&rs->buf, &rs->buf_size, 0);
7033 if (rs->buf[0] == 'E')
7034 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
7035 sectname, paddr (lma), paddr (lma + size));
7036 if (rs->buf[0] != 'C')
7037 error (_("remote target does not support this operation"));
7038
7039 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
7040 target_crc = target_crc * 16 + fromhex (*tmp);
7041
7042 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
7043 sectname, paddr (lma), paddr (lma + size));
7044 if (host_crc == target_crc)
7045 printf_filtered ("matched.\n");
7046 else
7047 {
7048 printf_filtered ("MIS-MATCHED!\n");
7049 mismatched++;
7050 }
7051
7052 do_cleanups (old_chain);
7053 }
7054 if (mismatched > 0)
7055 warning (_("One or more sections of the remote executable does not match\n\
7056 the loaded file\n"));
7057 if (args && !matched)
7058 printf_filtered (_("No loaded section named '%s'.\n"), args);
7059 }
7060
7061 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
7062 into remote target. The number of bytes written to the remote
7063 target is returned, or -1 for error. */
7064
7065 static LONGEST
7066 remote_write_qxfer (struct target_ops *ops, const char *object_name,
7067 const char *annex, const gdb_byte *writebuf,
7068 ULONGEST offset, LONGEST len,
7069 struct packet_config *packet)
7070 {
7071 int i, buf_len;
7072 ULONGEST n;
7073 gdb_byte *wbuf;
7074 struct remote_state *rs = get_remote_state ();
7075 int max_size = get_memory_write_packet_size ();
7076
7077 if (packet->support == PACKET_DISABLE)
7078 return -1;
7079
7080 /* Insert header. */
7081 i = snprintf (rs->buf, max_size,
7082 "qXfer:%s:write:%s:%s:",
7083 object_name, annex ? annex : "",
7084 phex_nz (offset, sizeof offset));
7085 max_size -= (i + 1);
7086
7087 /* Escape as much data as fits into rs->buf. */
7088 buf_len = remote_escape_output
7089 (writebuf, len, (rs->buf + i), &max_size, max_size);
7090
7091 if (putpkt_binary (rs->buf, i + buf_len) < 0
7092 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7093 || packet_ok (rs->buf, packet) != PACKET_OK)
7094 return -1;
7095
7096 unpack_varlen_hex (rs->buf, &n);
7097 return n;
7098 }
7099
7100 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
7101 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
7102 number of bytes read is returned, or 0 for EOF, or -1 for error.
7103 The number of bytes read may be less than LEN without indicating an
7104 EOF. PACKET is checked and updated to indicate whether the remote
7105 target supports this object. */
7106
7107 static LONGEST
7108 remote_read_qxfer (struct target_ops *ops, const char *object_name,
7109 const char *annex,
7110 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
7111 struct packet_config *packet)
7112 {
7113 static char *finished_object;
7114 static char *finished_annex;
7115 static ULONGEST finished_offset;
7116
7117 struct remote_state *rs = get_remote_state ();
7118 unsigned int total = 0;
7119 LONGEST i, n, packet_len;
7120
7121 if (packet->support == PACKET_DISABLE)
7122 return -1;
7123
7124 /* Check whether we've cached an end-of-object packet that matches
7125 this request. */
7126 if (finished_object)
7127 {
7128 if (strcmp (object_name, finished_object) == 0
7129 && strcmp (annex ? annex : "", finished_annex) == 0
7130 && offset == finished_offset)
7131 return 0;
7132
7133 /* Otherwise, we're now reading something different. Discard
7134 the cache. */
7135 xfree (finished_object);
7136 xfree (finished_annex);
7137 finished_object = NULL;
7138 finished_annex = NULL;
7139 }
7140
7141 /* Request only enough to fit in a single packet. The actual data
7142 may not, since we don't know how much of it will need to be escaped;
7143 the target is free to respond with slightly less data. We subtract
7144 five to account for the response type and the protocol frame. */
7145 n = min (get_remote_packet_size () - 5, len);
7146 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
7147 object_name, annex ? annex : "",
7148 phex_nz (offset, sizeof offset),
7149 phex_nz (n, sizeof n));
7150 i = putpkt (rs->buf);
7151 if (i < 0)
7152 return -1;
7153
7154 rs->buf[0] = '\0';
7155 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7156 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
7157 return -1;
7158
7159 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
7160 error (_("Unknown remote qXfer reply: %s"), rs->buf);
7161
7162 /* 'm' means there is (or at least might be) more data after this
7163 batch. That does not make sense unless there's at least one byte
7164 of data in this reply. */
7165 if (rs->buf[0] == 'm' && packet_len == 1)
7166 error (_("Remote qXfer reply contained no data."));
7167
7168 /* Got some data. */
7169 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
7170
7171 /* 'l' is an EOF marker, possibly including a final block of data,
7172 or possibly empty. If we have the final block of a non-empty
7173 object, record this fact to bypass a subsequent partial read. */
7174 if (rs->buf[0] == 'l' && offset + i > 0)
7175 {
7176 finished_object = xstrdup (object_name);
7177 finished_annex = xstrdup (annex ? annex : "");
7178 finished_offset = offset + i;
7179 }
7180
7181 return i;
7182 }
7183
7184 static LONGEST
7185 remote_xfer_partial (struct target_ops *ops, enum target_object object,
7186 const char *annex, gdb_byte *readbuf,
7187 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
7188 {
7189 struct remote_state *rs;
7190 int i;
7191 char *p2;
7192 char query_type;
7193
7194 set_general_thread (inferior_ptid);
7195
7196 rs = get_remote_state ();
7197
7198 /* Handle memory using the standard memory routines. */
7199 if (object == TARGET_OBJECT_MEMORY)
7200 {
7201 int xfered;
7202 errno = 0;
7203
7204 /* If the remote target is connected but not running, we should
7205 pass this request down to a lower stratum (e.g. the executable
7206 file). */
7207 if (!target_has_execution)
7208 return 0;
7209
7210 if (writebuf != NULL)
7211 xfered = remote_write_bytes (offset, writebuf, len);
7212 else
7213 xfered = remote_read_bytes (offset, readbuf, len);
7214
7215 if (xfered > 0)
7216 return xfered;
7217 else if (xfered == 0 && errno == 0)
7218 return 0;
7219 else
7220 return -1;
7221 }
7222
7223 /* Handle SPU memory using qxfer packets. */
7224 if (object == TARGET_OBJECT_SPU)
7225 {
7226 if (readbuf)
7227 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
7228 &remote_protocol_packets
7229 [PACKET_qXfer_spu_read]);
7230 else
7231 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
7232 &remote_protocol_packets
7233 [PACKET_qXfer_spu_write]);
7234 }
7235
7236 /* Only handle flash writes. */
7237 if (writebuf != NULL)
7238 {
7239 LONGEST xfered;
7240
7241 switch (object)
7242 {
7243 case TARGET_OBJECT_FLASH:
7244 xfered = remote_flash_write (ops, offset, len, writebuf);
7245
7246 if (xfered > 0)
7247 return xfered;
7248 else if (xfered == 0 && errno == 0)
7249 return 0;
7250 else
7251 return -1;
7252
7253 default:
7254 return -1;
7255 }
7256 }
7257
7258 /* Map pre-existing objects onto letters. DO NOT do this for new
7259 objects!!! Instead specify new query packets. */
7260 switch (object)
7261 {
7262 case TARGET_OBJECT_AVR:
7263 query_type = 'R';
7264 break;
7265
7266 case TARGET_OBJECT_AUXV:
7267 gdb_assert (annex == NULL);
7268 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
7269 &remote_protocol_packets[PACKET_qXfer_auxv]);
7270
7271 case TARGET_OBJECT_AVAILABLE_FEATURES:
7272 return remote_read_qxfer
7273 (ops, "features", annex, readbuf, offset, len,
7274 &remote_protocol_packets[PACKET_qXfer_features]);
7275
7276 case TARGET_OBJECT_LIBRARIES:
7277 return remote_read_qxfer
7278 (ops, "libraries", annex, readbuf, offset, len,
7279 &remote_protocol_packets[PACKET_qXfer_libraries]);
7280
7281 case TARGET_OBJECT_MEMORY_MAP:
7282 gdb_assert (annex == NULL);
7283 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
7284 &remote_protocol_packets[PACKET_qXfer_memory_map]);
7285
7286 default:
7287 return -1;
7288 }
7289
7290 /* Note: a zero OFFSET and LEN can be used to query the minimum
7291 buffer size. */
7292 if (offset == 0 && len == 0)
7293 return (get_remote_packet_size ());
7294 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
7295 large enough let the caller deal with it. */
7296 if (len < get_remote_packet_size ())
7297 return -1;
7298 len = get_remote_packet_size ();
7299
7300 /* Except for querying the minimum buffer size, target must be open. */
7301 if (!remote_desc)
7302 error (_("remote query is only available after target open"));
7303
7304 gdb_assert (annex != NULL);
7305 gdb_assert (readbuf != NULL);
7306
7307 p2 = rs->buf;
7308 *p2++ = 'q';
7309 *p2++ = query_type;
7310
7311 /* We used one buffer char for the remote protocol q command and
7312 another for the query type. As the remote protocol encapsulation
7313 uses 4 chars plus one extra in case we are debugging
7314 (remote_debug), we have PBUFZIZ - 7 left to pack the query
7315 string. */
7316 i = 0;
7317 while (annex[i] && (i < (get_remote_packet_size () - 8)))
7318 {
7319 /* Bad caller may have sent forbidden characters. */
7320 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
7321 *p2++ = annex[i];
7322 i++;
7323 }
7324 *p2 = '\0';
7325 gdb_assert (annex[i] == '\0');
7326
7327 i = putpkt (rs->buf);
7328 if (i < 0)
7329 return i;
7330
7331 getpkt (&rs->buf, &rs->buf_size, 0);
7332 strcpy ((char *) readbuf, rs->buf);
7333
7334 return strlen ((char *) readbuf);
7335 }
7336
7337 static int
7338 remote_search_memory (struct target_ops* ops,
7339 CORE_ADDR start_addr, ULONGEST search_space_len,
7340 const gdb_byte *pattern, ULONGEST pattern_len,
7341 CORE_ADDR *found_addrp)
7342 {
7343 struct remote_state *rs = get_remote_state ();
7344 int max_size = get_memory_write_packet_size ();
7345 struct packet_config *packet =
7346 &remote_protocol_packets[PACKET_qSearch_memory];
7347 /* number of packet bytes used to encode the pattern,
7348 this could be more than PATTERN_LEN due to escape characters */
7349 int escaped_pattern_len;
7350 /* amount of pattern that was encodable in the packet */
7351 int used_pattern_len;
7352 int i;
7353 int found;
7354 ULONGEST found_addr;
7355
7356 /* Don't go to the target if we don't have to.
7357 This is done before checking packet->support to avoid the possibility that
7358 a success for this edge case means the facility works in general. */
7359 if (pattern_len > search_space_len)
7360 return 0;
7361 if (pattern_len == 0)
7362 {
7363 *found_addrp = start_addr;
7364 return 1;
7365 }
7366
7367 /* If we already know the packet isn't supported, fall back to the simple
7368 way of searching memory. */
7369
7370 if (packet->support == PACKET_DISABLE)
7371 {
7372 /* Target doesn't provided special support, fall back and use the
7373 standard support (copy memory and do the search here). */
7374 return simple_search_memory (ops, start_addr, search_space_len,
7375 pattern, pattern_len, found_addrp);
7376 }
7377
7378 /* Insert header. */
7379 i = snprintf (rs->buf, max_size,
7380 "qSearch:memory:%s;%s;",
7381 paddr_nz (start_addr),
7382 phex_nz (search_space_len, sizeof (search_space_len)));
7383 max_size -= (i + 1);
7384
7385 /* Escape as much data as fits into rs->buf. */
7386 escaped_pattern_len =
7387 remote_escape_output (pattern, pattern_len, (rs->buf + i),
7388 &used_pattern_len, max_size);
7389
7390 /* Bail if the pattern is too large. */
7391 if (used_pattern_len != pattern_len)
7392 error ("Pattern is too large to transmit to remote target.");
7393
7394 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
7395 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
7396 || packet_ok (rs->buf, packet) != PACKET_OK)
7397 {
7398 /* The request may not have worked because the command is not
7399 supported. If so, fall back to the simple way. */
7400 if (packet->support == PACKET_DISABLE)
7401 {
7402 return simple_search_memory (ops, start_addr, search_space_len,
7403 pattern, pattern_len, found_addrp);
7404 }
7405 return -1;
7406 }
7407
7408 if (rs->buf[0] == '0')
7409 found = 0;
7410 else if (rs->buf[0] == '1')
7411 {
7412 found = 1;
7413 if (rs->buf[1] != ',')
7414 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7415 unpack_varlen_hex (rs->buf + 2, &found_addr);
7416 *found_addrp = found_addr;
7417 }
7418 else
7419 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
7420
7421 return found;
7422 }
7423
7424 static void
7425 remote_rcmd (char *command,
7426 struct ui_file *outbuf)
7427 {
7428 struct remote_state *rs = get_remote_state ();
7429 char *p = rs->buf;
7430
7431 if (!remote_desc)
7432 error (_("remote rcmd is only available after target open"));
7433
7434 /* Send a NULL command across as an empty command. */
7435 if (command == NULL)
7436 command = "";
7437
7438 /* The query prefix. */
7439 strcpy (rs->buf, "qRcmd,");
7440 p = strchr (rs->buf, '\0');
7441
7442 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
7443 error (_("\"monitor\" command ``%s'' is too long."), command);
7444
7445 /* Encode the actual command. */
7446 bin2hex ((gdb_byte *) command, p, 0);
7447
7448 if (putpkt (rs->buf) < 0)
7449 error (_("Communication problem with target."));
7450
7451 /* get/display the response */
7452 while (1)
7453 {
7454 char *buf;
7455
7456 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
7457 rs->buf[0] = '\0';
7458 getpkt (&rs->buf, &rs->buf_size, 0);
7459 buf = rs->buf;
7460 if (buf[0] == '\0')
7461 error (_("Target does not support this command."));
7462 if (buf[0] == 'O' && buf[1] != 'K')
7463 {
7464 remote_console_output (buf + 1); /* 'O' message from stub. */
7465 continue;
7466 }
7467 if (strcmp (buf, "OK") == 0)
7468 break;
7469 if (strlen (buf) == 3 && buf[0] == 'E'
7470 && isdigit (buf[1]) && isdigit (buf[2]))
7471 {
7472 error (_("Protocol error with Rcmd"));
7473 }
7474 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
7475 {
7476 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
7477 fputc_unfiltered (c, outbuf);
7478 }
7479 break;
7480 }
7481 }
7482
7483 static VEC(mem_region_s) *
7484 remote_memory_map (struct target_ops *ops)
7485 {
7486 VEC(mem_region_s) *result = NULL;
7487 char *text = target_read_stralloc (&current_target,
7488 TARGET_OBJECT_MEMORY_MAP, NULL);
7489
7490 if (text)
7491 {
7492 struct cleanup *back_to = make_cleanup (xfree, text);
7493 result = parse_memory_map (text);
7494 do_cleanups (back_to);
7495 }
7496
7497 return result;
7498 }
7499
7500 static void
7501 packet_command (char *args, int from_tty)
7502 {
7503 struct remote_state *rs = get_remote_state ();
7504
7505 if (!remote_desc)
7506 error (_("command can only be used with remote target"));
7507
7508 if (!args)
7509 error (_("remote-packet command requires packet text as argument"));
7510
7511 puts_filtered ("sending: ");
7512 print_packet (args);
7513 puts_filtered ("\n");
7514 putpkt (args);
7515
7516 getpkt (&rs->buf, &rs->buf_size, 0);
7517 puts_filtered ("received: ");
7518 print_packet (rs->buf);
7519 puts_filtered ("\n");
7520 }
7521
7522 #if 0
7523 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
7524
7525 static void display_thread_info (struct gdb_ext_thread_info *info);
7526
7527 static void threadset_test_cmd (char *cmd, int tty);
7528
7529 static void threadalive_test (char *cmd, int tty);
7530
7531 static void threadlist_test_cmd (char *cmd, int tty);
7532
7533 int get_and_display_threadinfo (threadref *ref);
7534
7535 static void threadinfo_test_cmd (char *cmd, int tty);
7536
7537 static int thread_display_step (threadref *ref, void *context);
7538
7539 static void threadlist_update_test_cmd (char *cmd, int tty);
7540
7541 static void init_remote_threadtests (void);
7542
7543 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
7544
7545 static void
7546 threadset_test_cmd (char *cmd, int tty)
7547 {
7548 int sample_thread = SAMPLE_THREAD;
7549
7550 printf_filtered (_("Remote threadset test\n"));
7551 set_general_thread (sample_thread);
7552 }
7553
7554
7555 static void
7556 threadalive_test (char *cmd, int tty)
7557 {
7558 int sample_thread = SAMPLE_THREAD;
7559 int pid = ptid_get_pid (inferior_ptid);
7560 ptid_t ptid = ptid_build (pid, 0, sample_thread);
7561
7562 if (remote_thread_alive (ptid))
7563 printf_filtered ("PASS: Thread alive test\n");
7564 else
7565 printf_filtered ("FAIL: Thread alive test\n");
7566 }
7567
7568 void output_threadid (char *title, threadref *ref);
7569
7570 void
7571 output_threadid (char *title, threadref *ref)
7572 {
7573 char hexid[20];
7574
7575 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
7576 hexid[16] = 0;
7577 printf_filtered ("%s %s\n", title, (&hexid[0]));
7578 }
7579
7580 static void
7581 threadlist_test_cmd (char *cmd, int tty)
7582 {
7583 int startflag = 1;
7584 threadref nextthread;
7585 int done, result_count;
7586 threadref threadlist[3];
7587
7588 printf_filtered ("Remote Threadlist test\n");
7589 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
7590 &result_count, &threadlist[0]))
7591 printf_filtered ("FAIL: threadlist test\n");
7592 else
7593 {
7594 threadref *scan = threadlist;
7595 threadref *limit = scan + result_count;
7596
7597 while (scan < limit)
7598 output_threadid (" thread ", scan++);
7599 }
7600 }
7601
7602 void
7603 display_thread_info (struct gdb_ext_thread_info *info)
7604 {
7605 output_threadid ("Threadid: ", &info->threadid);
7606 printf_filtered ("Name: %s\n ", info->shortname);
7607 printf_filtered ("State: %s\n", info->display);
7608 printf_filtered ("other: %s\n\n", info->more_display);
7609 }
7610
7611 int
7612 get_and_display_threadinfo (threadref *ref)
7613 {
7614 int result;
7615 int set;
7616 struct gdb_ext_thread_info threadinfo;
7617
7618 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
7619 | TAG_MOREDISPLAY | TAG_DISPLAY;
7620 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
7621 display_thread_info (&threadinfo);
7622 return result;
7623 }
7624
7625 static void
7626 threadinfo_test_cmd (char *cmd, int tty)
7627 {
7628 int athread = SAMPLE_THREAD;
7629 threadref thread;
7630 int set;
7631
7632 int_to_threadref (&thread, athread);
7633 printf_filtered ("Remote Threadinfo test\n");
7634 if (!get_and_display_threadinfo (&thread))
7635 printf_filtered ("FAIL cannot get thread info\n");
7636 }
7637
7638 static int
7639 thread_display_step (threadref *ref, void *context)
7640 {
7641 /* output_threadid(" threadstep ",ref); *//* simple test */
7642 return get_and_display_threadinfo (ref);
7643 }
7644
7645 static void
7646 threadlist_update_test_cmd (char *cmd, int tty)
7647 {
7648 printf_filtered ("Remote Threadlist update test\n");
7649 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
7650 }
7651
7652 static void
7653 init_remote_threadtests (void)
7654 {
7655 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
7656 Fetch and print the remote list of thread identifiers, one pkt only"));
7657 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
7658 _("Fetch and display info about one thread"));
7659 add_com ("tset", class_obscure, threadset_test_cmd,
7660 _("Test setting to a different thread"));
7661 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
7662 _("Iterate through updating all remote thread info"));
7663 add_com ("talive", class_obscure, threadalive_test,
7664 _(" Remote thread alive test "));
7665 }
7666
7667 #endif /* 0 */
7668
7669 /* Convert a thread ID to a string. Returns the string in a static
7670 buffer. */
7671
7672 static char *
7673 remote_pid_to_str (ptid_t ptid)
7674 {
7675 static char buf[64];
7676 struct remote_state *rs = get_remote_state ();
7677
7678 if (ptid_equal (magic_null_ptid, ptid))
7679 {
7680 xsnprintf (buf, sizeof buf, "Thread <main>");
7681 return buf;
7682 }
7683 else if (remote_multi_process_p (rs)
7684 && ptid_get_tid (ptid) != 0 && ptid_get_pid (ptid) != 0)
7685 {
7686 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
7687 ptid_get_pid (ptid), ptid_get_tid (ptid));
7688 return buf;
7689 }
7690 else if (ptid_get_tid (ptid) != 0)
7691 {
7692 xsnprintf (buf, sizeof buf, "Thread %ld",
7693 ptid_get_tid (ptid));
7694 return buf;
7695 }
7696
7697 return normal_pid_to_str (ptid);
7698 }
7699
7700 /* Get the address of the thread local variable in OBJFILE which is
7701 stored at OFFSET within the thread local storage for thread PTID. */
7702
7703 static CORE_ADDR
7704 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
7705 {
7706 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
7707 {
7708 struct remote_state *rs = get_remote_state ();
7709 char *p = rs->buf;
7710 char *endp = rs->buf + get_remote_packet_size ();
7711 enum packet_result result;
7712
7713 strcpy (p, "qGetTLSAddr:");
7714 p += strlen (p);
7715 p = write_ptid (p, endp, ptid);
7716 *p++ = ',';
7717 p += hexnumstr (p, offset);
7718 *p++ = ',';
7719 p += hexnumstr (p, lm);
7720 *p++ = '\0';
7721
7722 putpkt (rs->buf);
7723 getpkt (&rs->buf, &rs->buf_size, 0);
7724 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
7725 if (result == PACKET_OK)
7726 {
7727 ULONGEST result;
7728
7729 unpack_varlen_hex (rs->buf, &result);
7730 return result;
7731 }
7732 else if (result == PACKET_UNKNOWN)
7733 throw_error (TLS_GENERIC_ERROR,
7734 _("Remote target doesn't support qGetTLSAddr packet"));
7735 else
7736 throw_error (TLS_GENERIC_ERROR,
7737 _("Remote target failed to process qGetTLSAddr request"));
7738 }
7739 else
7740 throw_error (TLS_GENERIC_ERROR,
7741 _("TLS not supported or disabled on this target"));
7742 /* Not reached. */
7743 return 0;
7744 }
7745
7746 /* Support for inferring a target description based on the current
7747 architecture and the size of a 'g' packet. While the 'g' packet
7748 can have any size (since optional registers can be left off the
7749 end), some sizes are easily recognizable given knowledge of the
7750 approximate architecture. */
7751
7752 struct remote_g_packet_guess
7753 {
7754 int bytes;
7755 const struct target_desc *tdesc;
7756 };
7757 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
7758 DEF_VEC_O(remote_g_packet_guess_s);
7759
7760 struct remote_g_packet_data
7761 {
7762 VEC(remote_g_packet_guess_s) *guesses;
7763 };
7764
7765 static struct gdbarch_data *remote_g_packet_data_handle;
7766
7767 static void *
7768 remote_g_packet_data_init (struct obstack *obstack)
7769 {
7770 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
7771 }
7772
7773 void
7774 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
7775 const struct target_desc *tdesc)
7776 {
7777 struct remote_g_packet_data *data
7778 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
7779 struct remote_g_packet_guess new_guess, *guess;
7780 int ix;
7781
7782 gdb_assert (tdesc != NULL);
7783
7784 for (ix = 0;
7785 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7786 ix++)
7787 if (guess->bytes == bytes)
7788 internal_error (__FILE__, __LINE__,
7789 "Duplicate g packet description added for size %d",
7790 bytes);
7791
7792 new_guess.bytes = bytes;
7793 new_guess.tdesc = tdesc;
7794 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
7795 }
7796
7797 static const struct target_desc *
7798 remote_read_description (struct target_ops *target)
7799 {
7800 struct remote_g_packet_data *data
7801 = gdbarch_data (target_gdbarch, remote_g_packet_data_handle);
7802
7803 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
7804 {
7805 struct remote_g_packet_guess *guess;
7806 int ix;
7807 int bytes = send_g_packet ();
7808
7809 for (ix = 0;
7810 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
7811 ix++)
7812 if (guess->bytes == bytes)
7813 return guess->tdesc;
7814
7815 /* We discard the g packet. A minor optimization would be to
7816 hold on to it, and fill the register cache once we have selected
7817 an architecture, but it's too tricky to do safely. */
7818 }
7819
7820 return NULL;
7821 }
7822
7823 /* Remote file transfer support. This is host-initiated I/O, not
7824 target-initiated; for target-initiated, see remote-fileio.c. */
7825
7826 /* If *LEFT is at least the length of STRING, copy STRING to
7827 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7828 decrease *LEFT. Otherwise raise an error. */
7829
7830 static void
7831 remote_buffer_add_string (char **buffer, int *left, char *string)
7832 {
7833 int len = strlen (string);
7834
7835 if (len > *left)
7836 error (_("Packet too long for target."));
7837
7838 memcpy (*buffer, string, len);
7839 *buffer += len;
7840 *left -= len;
7841
7842 /* NUL-terminate the buffer as a convenience, if there is
7843 room. */
7844 if (*left)
7845 **buffer = '\0';
7846 }
7847
7848 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
7849 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7850 decrease *LEFT. Otherwise raise an error. */
7851
7852 static void
7853 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
7854 int len)
7855 {
7856 if (2 * len > *left)
7857 error (_("Packet too long for target."));
7858
7859 bin2hex (bytes, *buffer, len);
7860 *buffer += 2 * len;
7861 *left -= 2 * len;
7862
7863 /* NUL-terminate the buffer as a convenience, if there is
7864 room. */
7865 if (*left)
7866 **buffer = '\0';
7867 }
7868
7869 /* If *LEFT is large enough, convert VALUE to hex and add it to
7870 *BUFFER, update *BUFFER to point to the new end of the buffer, and
7871 decrease *LEFT. Otherwise raise an error. */
7872
7873 static void
7874 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
7875 {
7876 int len = hexnumlen (value);
7877
7878 if (len > *left)
7879 error (_("Packet too long for target."));
7880
7881 hexnumstr (*buffer, value);
7882 *buffer += len;
7883 *left -= len;
7884
7885 /* NUL-terminate the buffer as a convenience, if there is
7886 room. */
7887 if (*left)
7888 **buffer = '\0';
7889 }
7890
7891 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
7892 value, *REMOTE_ERRNO to the remote error number or zero if none
7893 was included, and *ATTACHMENT to point to the start of the annex
7894 if any. The length of the packet isn't needed here; there may
7895 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
7896
7897 Return 0 if the packet could be parsed, -1 if it could not. If
7898 -1 is returned, the other variables may not be initialized. */
7899
7900 static int
7901 remote_hostio_parse_result (char *buffer, int *retcode,
7902 int *remote_errno, char **attachment)
7903 {
7904 char *p, *p2;
7905
7906 *remote_errno = 0;
7907 *attachment = NULL;
7908
7909 if (buffer[0] != 'F')
7910 return -1;
7911
7912 errno = 0;
7913 *retcode = strtol (&buffer[1], &p, 16);
7914 if (errno != 0 || p == &buffer[1])
7915 return -1;
7916
7917 /* Check for ",errno". */
7918 if (*p == ',')
7919 {
7920 errno = 0;
7921 *remote_errno = strtol (p + 1, &p2, 16);
7922 if (errno != 0 || p + 1 == p2)
7923 return -1;
7924 p = p2;
7925 }
7926
7927 /* Check for ";attachment". If there is no attachment, the
7928 packet should end here. */
7929 if (*p == ';')
7930 {
7931 *attachment = p + 1;
7932 return 0;
7933 }
7934 else if (*p == '\0')
7935 return 0;
7936 else
7937 return -1;
7938 }
7939
7940 /* Send a prepared I/O packet to the target and read its response.
7941 The prepared packet is in the global RS->BUF before this function
7942 is called, and the answer is there when we return.
7943
7944 COMMAND_BYTES is the length of the request to send, which may include
7945 binary data. WHICH_PACKET is the packet configuration to check
7946 before attempting a packet. If an error occurs, *REMOTE_ERRNO
7947 is set to the error number and -1 is returned. Otherwise the value
7948 returned by the function is returned.
7949
7950 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
7951 attachment is expected; an error will be reported if there's a
7952 mismatch. If one is found, *ATTACHMENT will be set to point into
7953 the packet buffer and *ATTACHMENT_LEN will be set to the
7954 attachment's length. */
7955
7956 static int
7957 remote_hostio_send_command (int command_bytes, int which_packet,
7958 int *remote_errno, char **attachment,
7959 int *attachment_len)
7960 {
7961 struct remote_state *rs = get_remote_state ();
7962 int ret, bytes_read;
7963 char *attachment_tmp;
7964
7965 if (!remote_desc
7966 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
7967 {
7968 *remote_errno = FILEIO_ENOSYS;
7969 return -1;
7970 }
7971
7972 putpkt_binary (rs->buf, command_bytes);
7973 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
7974
7975 /* If it timed out, something is wrong. Don't try to parse the
7976 buffer. */
7977 if (bytes_read < 0)
7978 {
7979 *remote_errno = FILEIO_EINVAL;
7980 return -1;
7981 }
7982
7983 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
7984 {
7985 case PACKET_ERROR:
7986 *remote_errno = FILEIO_EINVAL;
7987 return -1;
7988 case PACKET_UNKNOWN:
7989 *remote_errno = FILEIO_ENOSYS;
7990 return -1;
7991 case PACKET_OK:
7992 break;
7993 }
7994
7995 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
7996 &attachment_tmp))
7997 {
7998 *remote_errno = FILEIO_EINVAL;
7999 return -1;
8000 }
8001
8002 /* Make sure we saw an attachment if and only if we expected one. */
8003 if ((attachment_tmp == NULL && attachment != NULL)
8004 || (attachment_tmp != NULL && attachment == NULL))
8005 {
8006 *remote_errno = FILEIO_EINVAL;
8007 return -1;
8008 }
8009
8010 /* If an attachment was found, it must point into the packet buffer;
8011 work out how many bytes there were. */
8012 if (attachment_tmp != NULL)
8013 {
8014 *attachment = attachment_tmp;
8015 *attachment_len = bytes_read - (*attachment - rs->buf);
8016 }
8017
8018 return ret;
8019 }
8020
8021 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
8022 remote file descriptor, or -1 if an error occurs (and set
8023 *REMOTE_ERRNO). */
8024
8025 static int
8026 remote_hostio_open (const char *filename, int flags, int mode,
8027 int *remote_errno)
8028 {
8029 struct remote_state *rs = get_remote_state ();
8030 char *p = rs->buf;
8031 int left = get_remote_packet_size () - 1;
8032
8033 remote_buffer_add_string (&p, &left, "vFile:open:");
8034
8035 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8036 strlen (filename));
8037 remote_buffer_add_string (&p, &left, ",");
8038
8039 remote_buffer_add_int (&p, &left, flags);
8040 remote_buffer_add_string (&p, &left, ",");
8041
8042 remote_buffer_add_int (&p, &left, mode);
8043
8044 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
8045 remote_errno, NULL, NULL);
8046 }
8047
8048 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
8049 Return the number of bytes written, or -1 if an error occurs (and
8050 set *REMOTE_ERRNO). */
8051
8052 static int
8053 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
8054 ULONGEST offset, int *remote_errno)
8055 {
8056 struct remote_state *rs = get_remote_state ();
8057 char *p = rs->buf;
8058 int left = get_remote_packet_size ();
8059 int out_len;
8060
8061 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
8062
8063 remote_buffer_add_int (&p, &left, fd);
8064 remote_buffer_add_string (&p, &left, ",");
8065
8066 remote_buffer_add_int (&p, &left, offset);
8067 remote_buffer_add_string (&p, &left, ",");
8068
8069 p += remote_escape_output (write_buf, len, p, &out_len,
8070 get_remote_packet_size () - (p - rs->buf));
8071
8072 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
8073 remote_errno, NULL, NULL);
8074 }
8075
8076 /* Read up to LEN bytes FD on the remote target into READ_BUF
8077 Return the number of bytes read, or -1 if an error occurs (and
8078 set *REMOTE_ERRNO). */
8079
8080 static int
8081 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
8082 ULONGEST offset, int *remote_errno)
8083 {
8084 struct remote_state *rs = get_remote_state ();
8085 char *p = rs->buf;
8086 char *attachment;
8087 int left = get_remote_packet_size ();
8088 int ret, attachment_len;
8089 int read_len;
8090
8091 remote_buffer_add_string (&p, &left, "vFile:pread:");
8092
8093 remote_buffer_add_int (&p, &left, fd);
8094 remote_buffer_add_string (&p, &left, ",");
8095
8096 remote_buffer_add_int (&p, &left, len);
8097 remote_buffer_add_string (&p, &left, ",");
8098
8099 remote_buffer_add_int (&p, &left, offset);
8100
8101 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
8102 remote_errno, &attachment,
8103 &attachment_len);
8104
8105 if (ret < 0)
8106 return ret;
8107
8108 read_len = remote_unescape_input (attachment, attachment_len,
8109 read_buf, len);
8110 if (read_len != ret)
8111 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
8112
8113 return ret;
8114 }
8115
8116 /* Close FD on the remote target. Return 0, or -1 if an error occurs
8117 (and set *REMOTE_ERRNO). */
8118
8119 static int
8120 remote_hostio_close (int fd, int *remote_errno)
8121 {
8122 struct remote_state *rs = get_remote_state ();
8123 char *p = rs->buf;
8124 int left = get_remote_packet_size () - 1;
8125
8126 remote_buffer_add_string (&p, &left, "vFile:close:");
8127
8128 remote_buffer_add_int (&p, &left, fd);
8129
8130 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
8131 remote_errno, NULL, NULL);
8132 }
8133
8134 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
8135 occurs (and set *REMOTE_ERRNO). */
8136
8137 static int
8138 remote_hostio_unlink (const char *filename, int *remote_errno)
8139 {
8140 struct remote_state *rs = get_remote_state ();
8141 char *p = rs->buf;
8142 int left = get_remote_packet_size () - 1;
8143
8144 remote_buffer_add_string (&p, &left, "vFile:unlink:");
8145
8146 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
8147 strlen (filename));
8148
8149 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
8150 remote_errno, NULL, NULL);
8151 }
8152
8153 static int
8154 remote_fileio_errno_to_host (int errnum)
8155 {
8156 switch (errnum)
8157 {
8158 case FILEIO_EPERM:
8159 return EPERM;
8160 case FILEIO_ENOENT:
8161 return ENOENT;
8162 case FILEIO_EINTR:
8163 return EINTR;
8164 case FILEIO_EIO:
8165 return EIO;
8166 case FILEIO_EBADF:
8167 return EBADF;
8168 case FILEIO_EACCES:
8169 return EACCES;
8170 case FILEIO_EFAULT:
8171 return EFAULT;
8172 case FILEIO_EBUSY:
8173 return EBUSY;
8174 case FILEIO_EEXIST:
8175 return EEXIST;
8176 case FILEIO_ENODEV:
8177 return ENODEV;
8178 case FILEIO_ENOTDIR:
8179 return ENOTDIR;
8180 case FILEIO_EISDIR:
8181 return EISDIR;
8182 case FILEIO_EINVAL:
8183 return EINVAL;
8184 case FILEIO_ENFILE:
8185 return ENFILE;
8186 case FILEIO_EMFILE:
8187 return EMFILE;
8188 case FILEIO_EFBIG:
8189 return EFBIG;
8190 case FILEIO_ENOSPC:
8191 return ENOSPC;
8192 case FILEIO_ESPIPE:
8193 return ESPIPE;
8194 case FILEIO_EROFS:
8195 return EROFS;
8196 case FILEIO_ENOSYS:
8197 return ENOSYS;
8198 case FILEIO_ENAMETOOLONG:
8199 return ENAMETOOLONG;
8200 }
8201 return -1;
8202 }
8203
8204 static char *
8205 remote_hostio_error (int errnum)
8206 {
8207 int host_error = remote_fileio_errno_to_host (errnum);
8208
8209 if (host_error == -1)
8210 error (_("Unknown remote I/O error %d"), errnum);
8211 else
8212 error (_("Remote I/O error: %s"), safe_strerror (host_error));
8213 }
8214
8215 static void
8216 fclose_cleanup (void *file)
8217 {
8218 fclose (file);
8219 }
8220
8221 static void
8222 remote_hostio_close_cleanup (void *opaque)
8223 {
8224 int fd = *(int *) opaque;
8225 int remote_errno;
8226
8227 remote_hostio_close (fd, &remote_errno);
8228 }
8229
8230
8231 static void *
8232 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
8233 {
8234 const char *filename = bfd_get_filename (abfd);
8235 int fd, remote_errno;
8236 int *stream;
8237
8238 gdb_assert (remote_filename_p (filename));
8239
8240 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
8241 if (fd == -1)
8242 {
8243 errno = remote_fileio_errno_to_host (remote_errno);
8244 bfd_set_error (bfd_error_system_call);
8245 return NULL;
8246 }
8247
8248 stream = xmalloc (sizeof (int));
8249 *stream = fd;
8250 return stream;
8251 }
8252
8253 static int
8254 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
8255 {
8256 int fd = *(int *)stream;
8257 int remote_errno;
8258
8259 xfree (stream);
8260
8261 /* Ignore errors on close; these may happen if the remote
8262 connection was already torn down. */
8263 remote_hostio_close (fd, &remote_errno);
8264
8265 return 1;
8266 }
8267
8268 static file_ptr
8269 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
8270 file_ptr nbytes, file_ptr offset)
8271 {
8272 int fd = *(int *)stream;
8273 int remote_errno;
8274 file_ptr pos, bytes;
8275
8276 pos = 0;
8277 while (nbytes > pos)
8278 {
8279 bytes = remote_hostio_pread (fd, (char *)buf + pos, nbytes - pos,
8280 offset + pos, &remote_errno);
8281 if (bytes == 0)
8282 /* Success, but no bytes, means end-of-file. */
8283 break;
8284 if (bytes == -1)
8285 {
8286 errno = remote_fileio_errno_to_host (remote_errno);
8287 bfd_set_error (bfd_error_system_call);
8288 return -1;
8289 }
8290
8291 pos += bytes;
8292 }
8293
8294 return pos;
8295 }
8296
8297 static int
8298 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
8299 {
8300 /* FIXME: We should probably implement remote_hostio_stat. */
8301 sb->st_size = INT_MAX;
8302 return 0;
8303 }
8304
8305 int
8306 remote_filename_p (const char *filename)
8307 {
8308 return strncmp (filename, "remote:", 7) == 0;
8309 }
8310
8311 bfd *
8312 remote_bfd_open (const char *remote_file, const char *target)
8313 {
8314 return bfd_openr_iovec (remote_file, target,
8315 remote_bfd_iovec_open, NULL,
8316 remote_bfd_iovec_pread,
8317 remote_bfd_iovec_close,
8318 remote_bfd_iovec_stat);
8319 }
8320
8321 void
8322 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
8323 {
8324 struct cleanup *back_to, *close_cleanup;
8325 int retcode, fd, remote_errno, bytes, io_size;
8326 FILE *file;
8327 gdb_byte *buffer;
8328 int bytes_in_buffer;
8329 int saw_eof;
8330 ULONGEST offset;
8331
8332 if (!remote_desc)
8333 error (_("command can only be used with remote target"));
8334
8335 file = fopen (local_file, "rb");
8336 if (file == NULL)
8337 perror_with_name (local_file);
8338 back_to = make_cleanup (fclose_cleanup, file);
8339
8340 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
8341 | FILEIO_O_TRUNC),
8342 0700, &remote_errno);
8343 if (fd == -1)
8344 remote_hostio_error (remote_errno);
8345
8346 /* Send up to this many bytes at once. They won't all fit in the
8347 remote packet limit, so we'll transfer slightly fewer. */
8348 io_size = get_remote_packet_size ();
8349 buffer = xmalloc (io_size);
8350 make_cleanup (xfree, buffer);
8351
8352 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8353
8354 bytes_in_buffer = 0;
8355 saw_eof = 0;
8356 offset = 0;
8357 while (bytes_in_buffer || !saw_eof)
8358 {
8359 if (!saw_eof)
8360 {
8361 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
8362 file);
8363 if (bytes == 0)
8364 {
8365 if (ferror (file))
8366 error (_("Error reading %s."), local_file);
8367 else
8368 {
8369 /* EOF. Unless there is something still in the
8370 buffer from the last iteration, we are done. */
8371 saw_eof = 1;
8372 if (bytes_in_buffer == 0)
8373 break;
8374 }
8375 }
8376 }
8377 else
8378 bytes = 0;
8379
8380 bytes += bytes_in_buffer;
8381 bytes_in_buffer = 0;
8382
8383 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
8384
8385 if (retcode < 0)
8386 remote_hostio_error (remote_errno);
8387 else if (retcode == 0)
8388 error (_("Remote write of %d bytes returned 0!"), bytes);
8389 else if (retcode < bytes)
8390 {
8391 /* Short write. Save the rest of the read data for the next
8392 write. */
8393 bytes_in_buffer = bytes - retcode;
8394 memmove (buffer, buffer + retcode, bytes_in_buffer);
8395 }
8396
8397 offset += retcode;
8398 }
8399
8400 discard_cleanups (close_cleanup);
8401 if (remote_hostio_close (fd, &remote_errno))
8402 remote_hostio_error (remote_errno);
8403
8404 if (from_tty)
8405 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
8406 do_cleanups (back_to);
8407 }
8408
8409 void
8410 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
8411 {
8412 struct cleanup *back_to, *close_cleanup;
8413 int retcode, fd, remote_errno, bytes, io_size;
8414 FILE *file;
8415 gdb_byte *buffer;
8416 ULONGEST offset;
8417
8418 if (!remote_desc)
8419 error (_("command can only be used with remote target"));
8420
8421 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
8422 if (fd == -1)
8423 remote_hostio_error (remote_errno);
8424
8425 file = fopen (local_file, "wb");
8426 if (file == NULL)
8427 perror_with_name (local_file);
8428 back_to = make_cleanup (fclose_cleanup, file);
8429
8430 /* Send up to this many bytes at once. They won't all fit in the
8431 remote packet limit, so we'll transfer slightly fewer. */
8432 io_size = get_remote_packet_size ();
8433 buffer = xmalloc (io_size);
8434 make_cleanup (xfree, buffer);
8435
8436 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
8437
8438 offset = 0;
8439 while (1)
8440 {
8441 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
8442 if (bytes == 0)
8443 /* Success, but no bytes, means end-of-file. */
8444 break;
8445 if (bytes == -1)
8446 remote_hostio_error (remote_errno);
8447
8448 offset += bytes;
8449
8450 bytes = fwrite (buffer, 1, bytes, file);
8451 if (bytes == 0)
8452 perror_with_name (local_file);
8453 }
8454
8455 discard_cleanups (close_cleanup);
8456 if (remote_hostio_close (fd, &remote_errno))
8457 remote_hostio_error (remote_errno);
8458
8459 if (from_tty)
8460 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
8461 do_cleanups (back_to);
8462 }
8463
8464 void
8465 remote_file_delete (const char *remote_file, int from_tty)
8466 {
8467 int retcode, remote_errno;
8468
8469 if (!remote_desc)
8470 error (_("command can only be used with remote target"));
8471
8472 retcode = remote_hostio_unlink (remote_file, &remote_errno);
8473 if (retcode == -1)
8474 remote_hostio_error (remote_errno);
8475
8476 if (from_tty)
8477 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
8478 }
8479
8480 static void
8481 remote_put_command (char *args, int from_tty)
8482 {
8483 struct cleanup *back_to;
8484 char **argv;
8485
8486 if (args == NULL)
8487 error_no_arg (_("file to put"));
8488
8489 argv = gdb_buildargv (args);
8490 back_to = make_cleanup_freeargv (argv);
8491 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8492 error (_("Invalid parameters to remote put"));
8493
8494 remote_file_put (argv[0], argv[1], from_tty);
8495
8496 do_cleanups (back_to);
8497 }
8498
8499 static void
8500 remote_get_command (char *args, int from_tty)
8501 {
8502 struct cleanup *back_to;
8503 char **argv;
8504
8505 if (args == NULL)
8506 error_no_arg (_("file to get"));
8507
8508 argv = gdb_buildargv (args);
8509 back_to = make_cleanup_freeargv (argv);
8510 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
8511 error (_("Invalid parameters to remote get"));
8512
8513 remote_file_get (argv[0], argv[1], from_tty);
8514
8515 do_cleanups (back_to);
8516 }
8517
8518 static void
8519 remote_delete_command (char *args, int from_tty)
8520 {
8521 struct cleanup *back_to;
8522 char **argv;
8523
8524 if (args == NULL)
8525 error_no_arg (_("file to delete"));
8526
8527 argv = gdb_buildargv (args);
8528 back_to = make_cleanup_freeargv (argv);
8529 if (argv[0] == NULL || argv[1] != NULL)
8530 error (_("Invalid parameters to remote delete"));
8531
8532 remote_file_delete (argv[0], from_tty);
8533
8534 do_cleanups (back_to);
8535 }
8536
8537 static void
8538 remote_command (char *args, int from_tty)
8539 {
8540 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
8541 }
8542
8543 static int remote_target_can_reverse = 1;
8544
8545 static int
8546 remote_can_execute_reverse (void)
8547 {
8548 return remote_target_can_reverse;
8549 }
8550
8551 static int
8552 remote_supports_non_stop (void)
8553 {
8554 return 1;
8555 }
8556
8557 static int
8558 remote_supports_multi_process (void)
8559 {
8560 struct remote_state *rs = get_remote_state ();
8561 return remote_multi_process_p (rs);
8562 }
8563
8564 static void
8565 init_remote_ops (void)
8566 {
8567 remote_ops.to_shortname = "remote";
8568 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
8569 remote_ops.to_doc =
8570 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8571 Specify the serial device it is connected to\n\
8572 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
8573 remote_ops.to_open = remote_open;
8574 remote_ops.to_close = remote_close;
8575 remote_ops.to_detach = remote_detach;
8576 remote_ops.to_disconnect = remote_disconnect;
8577 remote_ops.to_resume = remote_resume;
8578 remote_ops.to_wait = remote_wait;
8579 remote_ops.to_fetch_registers = remote_fetch_registers;
8580 remote_ops.to_store_registers = remote_store_registers;
8581 remote_ops.to_prepare_to_store = remote_prepare_to_store;
8582 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
8583 remote_ops.to_files_info = remote_files_info;
8584 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
8585 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
8586 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
8587 remote_ops.to_stopped_data_address = remote_stopped_data_address;
8588 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
8589 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
8590 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
8591 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
8592 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
8593 remote_ops.to_kill = remote_kill;
8594 remote_ops.to_load = generic_load;
8595 remote_ops.to_mourn_inferior = remote_mourn;
8596 remote_ops.to_thread_alive = remote_thread_alive;
8597 remote_ops.to_find_new_threads = remote_threads_info;
8598 remote_ops.to_pid_to_str = remote_pid_to_str;
8599 remote_ops.to_extra_thread_info = remote_threads_extra_info;
8600 remote_ops.to_stop = remote_stop;
8601 remote_ops.to_xfer_partial = remote_xfer_partial;
8602 remote_ops.to_rcmd = remote_rcmd;
8603 remote_ops.to_log_command = serial_log_command;
8604 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
8605 remote_ops.to_stratum = process_stratum;
8606 remote_ops.to_has_all_memory = 1;
8607 remote_ops.to_has_memory = 1;
8608 remote_ops.to_has_stack = 1;
8609 remote_ops.to_has_registers = 1;
8610 remote_ops.to_has_execution = 1;
8611 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
8612 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
8613 remote_ops.to_magic = OPS_MAGIC;
8614 remote_ops.to_memory_map = remote_memory_map;
8615 remote_ops.to_flash_erase = remote_flash_erase;
8616 remote_ops.to_flash_done = remote_flash_done;
8617 remote_ops.to_read_description = remote_read_description;
8618 remote_ops.to_search_memory = remote_search_memory;
8619 remote_ops.to_can_async_p = remote_can_async_p;
8620 remote_ops.to_is_async_p = remote_is_async_p;
8621 remote_ops.to_async = remote_async;
8622 remote_ops.to_async_mask = remote_async_mask;
8623 remote_ops.to_terminal_inferior = remote_terminal_inferior;
8624 remote_ops.to_terminal_ours = remote_terminal_ours;
8625 remote_ops.to_supports_non_stop = remote_supports_non_stop;
8626 remote_ops.to_supports_multi_process = remote_supports_multi_process;
8627 }
8628
8629 /* Set up the extended remote vector by making a copy of the standard
8630 remote vector and adding to it. */
8631
8632 static void
8633 init_extended_remote_ops (void)
8634 {
8635 extended_remote_ops = remote_ops;
8636
8637 extended_remote_ops.to_shortname = "extended-remote";
8638 extended_remote_ops.to_longname =
8639 "Extended remote serial target in gdb-specific protocol";
8640 extended_remote_ops.to_doc =
8641 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
8642 Specify the serial device it is connected to (e.g. /dev/ttya).";
8643 extended_remote_ops.to_open = extended_remote_open;
8644 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
8645 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
8646 extended_remote_ops.to_detach = extended_remote_detach;
8647 extended_remote_ops.to_attach = extended_remote_attach;
8648 extended_remote_ops.to_kill = extended_remote_kill;
8649 }
8650
8651 static int
8652 remote_can_async_p (void)
8653 {
8654 if (!target_async_permitted)
8655 /* We only enable async when the user specifically asks for it. */
8656 return 0;
8657
8658 /* We're async whenever the serial device is. */
8659 return remote_async_mask_value && serial_can_async_p (remote_desc);
8660 }
8661
8662 static int
8663 remote_is_async_p (void)
8664 {
8665 if (!target_async_permitted)
8666 /* We only enable async when the user specifically asks for it. */
8667 return 0;
8668
8669 /* We're async whenever the serial device is. */
8670 return remote_async_mask_value && serial_is_async_p (remote_desc);
8671 }
8672
8673 /* Pass the SERIAL event on and up to the client. One day this code
8674 will be able to delay notifying the client of an event until the
8675 point where an entire packet has been received. */
8676
8677 static void (*async_client_callback) (enum inferior_event_type event_type,
8678 void *context);
8679 static void *async_client_context;
8680 static serial_event_ftype remote_async_serial_handler;
8681
8682 static void
8683 remote_async_serial_handler (struct serial *scb, void *context)
8684 {
8685 /* Don't propogate error information up to the client. Instead let
8686 the client find out about the error by querying the target. */
8687 async_client_callback (INF_REG_EVENT, async_client_context);
8688 }
8689
8690 static void
8691 remote_async_inferior_event_handler (gdb_client_data data)
8692 {
8693 inferior_event_handler (INF_REG_EVENT, NULL);
8694 }
8695
8696 static void
8697 remote_async_get_pending_events_handler (gdb_client_data data)
8698 {
8699 remote_get_pending_stop_replies ();
8700 }
8701
8702 static void
8703 remote_async (void (*callback) (enum inferior_event_type event_type,
8704 void *context), void *context)
8705 {
8706 if (remote_async_mask_value == 0)
8707 internal_error (__FILE__, __LINE__,
8708 _("Calling remote_async when async is masked"));
8709
8710 if (callback != NULL)
8711 {
8712 serial_async (remote_desc, remote_async_serial_handler, NULL);
8713 async_client_callback = callback;
8714 async_client_context = context;
8715 }
8716 else
8717 serial_async (remote_desc, NULL, NULL);
8718 }
8719
8720 static int
8721 remote_async_mask (int new_mask)
8722 {
8723 int curr_mask = remote_async_mask_value;
8724 remote_async_mask_value = new_mask;
8725 return curr_mask;
8726 }
8727
8728 static void
8729 set_remote_cmd (char *args, int from_tty)
8730 {
8731 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
8732 }
8733
8734 static void
8735 show_remote_cmd (char *args, int from_tty)
8736 {
8737 /* We can't just use cmd_show_list here, because we want to skip
8738 the redundant "show remote Z-packet" and the legacy aliases. */
8739 struct cleanup *showlist_chain;
8740 struct cmd_list_element *list = remote_show_cmdlist;
8741
8742 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
8743 for (; list != NULL; list = list->next)
8744 if (strcmp (list->name, "Z-packet") == 0)
8745 continue;
8746 else if (list->type == not_set_cmd)
8747 /* Alias commands are exactly like the original, except they
8748 don't have the normal type. */
8749 continue;
8750 else
8751 {
8752 struct cleanup *option_chain
8753 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
8754 ui_out_field_string (uiout, "name", list->name);
8755 ui_out_text (uiout, ": ");
8756 if (list->type == show_cmd)
8757 do_setshow_command ((char *) NULL, from_tty, list);
8758 else
8759 cmd_func (list, NULL, from_tty);
8760 /* Close the tuple. */
8761 do_cleanups (option_chain);
8762 }
8763
8764 /* Close the tuple. */
8765 do_cleanups (showlist_chain);
8766 }
8767
8768
8769 /* Function to be called whenever a new objfile (shlib) is detected. */
8770 static void
8771 remote_new_objfile (struct objfile *objfile)
8772 {
8773 if (remote_desc != 0) /* Have a remote connection. */
8774 remote_check_symbols (objfile);
8775 }
8776
8777 void
8778 _initialize_remote (void)
8779 {
8780 struct remote_state *rs;
8781
8782 /* architecture specific data */
8783 remote_gdbarch_data_handle =
8784 gdbarch_data_register_post_init (init_remote_state);
8785 remote_g_packet_data_handle =
8786 gdbarch_data_register_pre_init (remote_g_packet_data_init);
8787
8788 /* Initialize the per-target state. At the moment there is only one
8789 of these, not one per target. Only one target is active at a
8790 time. The default buffer size is unimportant; it will be expanded
8791 whenever a larger buffer is needed. */
8792 rs = get_remote_state_raw ();
8793 rs->buf_size = 400;
8794 rs->buf = xmalloc (rs->buf_size);
8795
8796 init_remote_ops ();
8797 add_target (&remote_ops);
8798
8799 init_extended_remote_ops ();
8800 add_target (&extended_remote_ops);
8801
8802 /* Hook into new objfile notification. */
8803 observer_attach_new_objfile (remote_new_objfile);
8804
8805 /* Set up signal handlers. */
8806 sigint_remote_token =
8807 create_async_signal_handler (async_remote_interrupt, NULL);
8808 sigint_remote_twice_token =
8809 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
8810
8811 #if 0
8812 init_remote_threadtests ();
8813 #endif
8814
8815 /* set/show remote ... */
8816
8817 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
8818 Remote protocol specific variables\n\
8819 Configure various remote-protocol specific variables such as\n\
8820 the packets being used"),
8821 &remote_set_cmdlist, "set remote ",
8822 0 /* allow-unknown */, &setlist);
8823 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
8824 Remote protocol specific variables\n\
8825 Configure various remote-protocol specific variables such as\n\
8826 the packets being used"),
8827 &remote_show_cmdlist, "show remote ",
8828 0 /* allow-unknown */, &showlist);
8829
8830 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
8831 Compare section data on target to the exec file.\n\
8832 Argument is a single section name (default: all loaded sections)."),
8833 &cmdlist);
8834
8835 add_cmd ("packet", class_maintenance, packet_command, _("\
8836 Send an arbitrary packet to a remote target.\n\
8837 maintenance packet TEXT\n\
8838 If GDB is talking to an inferior via the GDB serial protocol, then\n\
8839 this command sends the string TEXT to the inferior, and displays the\n\
8840 response packet. GDB supplies the initial `$' character, and the\n\
8841 terminating `#' character and checksum."),
8842 &maintenancelist);
8843
8844 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
8845 Set whether to send break if interrupted."), _("\
8846 Show whether to send break if interrupted."), _("\
8847 If set, a break, instead of a cntrl-c, is sent to the remote target."),
8848 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
8849 &setlist, &showlist);
8850
8851 /* Install commands for configuring memory read/write packets. */
8852
8853 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
8854 Set the maximum number of bytes per memory write packet (deprecated)."),
8855 &setlist);
8856 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
8857 Show the maximum number of bytes per memory write packet (deprecated)."),
8858 &showlist);
8859 add_cmd ("memory-write-packet-size", no_class,
8860 set_memory_write_packet_size, _("\
8861 Set the maximum number of bytes per memory-write packet.\n\
8862 Specify the number of bytes in a packet or 0 (zero) for the\n\
8863 default packet size. The actual limit is further reduced\n\
8864 dependent on the target. Specify ``fixed'' to disable the\n\
8865 further restriction and ``limit'' to enable that restriction."),
8866 &remote_set_cmdlist);
8867 add_cmd ("memory-read-packet-size", no_class,
8868 set_memory_read_packet_size, _("\
8869 Set the maximum number of bytes per memory-read packet.\n\
8870 Specify the number of bytes in a packet or 0 (zero) for the\n\
8871 default packet size. The actual limit is further reduced\n\
8872 dependent on the target. Specify ``fixed'' to disable the\n\
8873 further restriction and ``limit'' to enable that restriction."),
8874 &remote_set_cmdlist);
8875 add_cmd ("memory-write-packet-size", no_class,
8876 show_memory_write_packet_size,
8877 _("Show the maximum number of bytes per memory-write packet."),
8878 &remote_show_cmdlist);
8879 add_cmd ("memory-read-packet-size", no_class,
8880 show_memory_read_packet_size,
8881 _("Show the maximum number of bytes per memory-read packet."),
8882 &remote_show_cmdlist);
8883
8884 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
8885 &remote_hw_watchpoint_limit, _("\
8886 Set the maximum number of target hardware watchpoints."), _("\
8887 Show the maximum number of target hardware watchpoints."), _("\
8888 Specify a negative limit for unlimited."),
8889 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
8890 &remote_set_cmdlist, &remote_show_cmdlist);
8891 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
8892 &remote_hw_breakpoint_limit, _("\
8893 Set the maximum number of target hardware breakpoints."), _("\
8894 Show the maximum number of target hardware breakpoints."), _("\
8895 Specify a negative limit for unlimited."),
8896 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
8897 &remote_set_cmdlist, &remote_show_cmdlist);
8898
8899 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
8900 &remote_address_size, _("\
8901 Set the maximum size of the address (in bits) in a memory packet."), _("\
8902 Show the maximum size of the address (in bits) in a memory packet."), NULL,
8903 NULL,
8904 NULL, /* FIXME: i18n: */
8905 &setlist, &showlist);
8906
8907 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
8908 "X", "binary-download", 1);
8909
8910 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
8911 "vCont", "verbose-resume", 0);
8912
8913 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
8914 "QPassSignals", "pass-signals", 0);
8915
8916 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
8917 "qSymbol", "symbol-lookup", 0);
8918
8919 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
8920 "P", "set-register", 1);
8921
8922 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
8923 "p", "fetch-register", 1);
8924
8925 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
8926 "Z0", "software-breakpoint", 0);
8927
8928 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
8929 "Z1", "hardware-breakpoint", 0);
8930
8931 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
8932 "Z2", "write-watchpoint", 0);
8933
8934 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
8935 "Z3", "read-watchpoint", 0);
8936
8937 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
8938 "Z4", "access-watchpoint", 0);
8939
8940 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
8941 "qXfer:auxv:read", "read-aux-vector", 0);
8942
8943 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
8944 "qXfer:features:read", "target-features", 0);
8945
8946 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
8947 "qXfer:libraries:read", "library-info", 0);
8948
8949 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
8950 "qXfer:memory-map:read", "memory-map", 0);
8951
8952 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
8953 "qXfer:spu:read", "read-spu-object", 0);
8954
8955 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
8956 "qXfer:spu:write", "write-spu-object", 0);
8957
8958 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
8959 "qGetTLSAddr", "get-thread-local-storage-address",
8960 0);
8961
8962 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
8963 "qSupported", "supported-packets", 0);
8964
8965 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
8966 "qSearch:memory", "search-memory", 0);
8967
8968 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
8969 "vFile:open", "hostio-open", 0);
8970
8971 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
8972 "vFile:pread", "hostio-pread", 0);
8973
8974 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
8975 "vFile:pwrite", "hostio-pwrite", 0);
8976
8977 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
8978 "vFile:close", "hostio-close", 0);
8979
8980 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
8981 "vFile:unlink", "hostio-unlink", 0);
8982
8983 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
8984 "vAttach", "attach", 0);
8985
8986 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
8987 "vRun", "run", 0);
8988
8989 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
8990 "QStartNoAckMode", "noack", 0);
8991
8992 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
8993 "vKill", "kill", 0);
8994
8995 /* Keep the old ``set remote Z-packet ...'' working. Each individual
8996 Z sub-packet has its own set and show commands, but users may
8997 have sets to this variable in their .gdbinit files (or in their
8998 documentation). */
8999 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
9000 &remote_Z_packet_detect, _("\
9001 Set use of remote protocol `Z' packets"), _("\
9002 Show use of remote protocol `Z' packets "), _("\
9003 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
9004 packets."),
9005 set_remote_protocol_Z_packet_cmd,
9006 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
9007 &remote_set_cmdlist, &remote_show_cmdlist);
9008
9009 add_prefix_cmd ("remote", class_files, remote_command, _("\
9010 Manipulate files on the remote system\n\
9011 Transfer files to and from the remote target system."),
9012 &remote_cmdlist, "remote ",
9013 0 /* allow-unknown */, &cmdlist);
9014
9015 add_cmd ("put", class_files, remote_put_command,
9016 _("Copy a local file to the remote system."),
9017 &remote_cmdlist);
9018
9019 add_cmd ("get", class_files, remote_get_command,
9020 _("Copy a remote file to the local system."),
9021 &remote_cmdlist);
9022
9023 add_cmd ("delete", class_files, remote_delete_command,
9024 _("Delete a remote file."),
9025 &remote_cmdlist);
9026
9027 remote_exec_file = xstrdup ("");
9028 add_setshow_string_noescape_cmd ("exec-file", class_files,
9029 &remote_exec_file, _("\
9030 Set the remote pathname for \"run\""), _("\
9031 Show the remote pathname for \"run\""), NULL, NULL, NULL,
9032 &remote_set_cmdlist, &remote_show_cmdlist);
9033
9034 /* Eventually initialize fileio. See fileio.c */
9035 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
9036
9037 /* Take advantage of the fact that the LWP field is not used, to tag
9038 special ptids with it set to != 0. */
9039 magic_null_ptid = ptid_build (42000, 1, -1);
9040 not_sent_ptid = ptid_build (42000, 1, -2);
9041 any_thread_ptid = ptid_build (42000, 1, 0);
9042 }