2003-12-06 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /* See the GDB User Guide for details of the GDB remote protocol. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include <fcntl.h>
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42
43 #include <ctype.h>
44 #include <sys/time.h>
45 #ifdef USG
46 #include <sys/types.h>
47 #endif
48
49 #include "event-loop.h"
50 #include "event-top.h"
51 #include "inf-loop.h"
52
53 #include <signal.h>
54 #include "serial.h"
55
56 #include "gdbcore.h" /* for exec_bfd */
57
58 #include "remote-fileio.h"
59
60 /* Prototypes for local functions */
61 static void cleanup_sigint_signal_handler (void *dummy);
62 static void initialize_sigint_signal_handler (void);
63 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
64
65 static void handle_remote_sigint (int);
66 static void handle_remote_sigint_twice (int);
67 static void async_remote_interrupt (gdb_client_data);
68 void async_remote_interrupt_twice (gdb_client_data);
69
70 static void build_remote_gdbarch_data (void);
71
72 static void remote_files_info (struct target_ops *ignore);
73
74 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
75 int len, int should_write,
76 struct mem_attrib *attrib,
77 struct target_ops *target);
78
79 static void remote_prepare_to_store (void);
80
81 static void remote_fetch_registers (int regno);
82
83 static void remote_resume (ptid_t ptid, int step,
84 enum target_signal siggnal);
85 static void remote_async_resume (ptid_t ptid, int step,
86 enum target_signal siggnal);
87 static int remote_start_remote (struct ui_out *uiout, void *dummy);
88
89 static void remote_open (char *name, int from_tty);
90 static void remote_async_open (char *name, int from_tty);
91
92 static void extended_remote_open (char *name, int from_tty);
93 static void extended_remote_async_open (char *name, int from_tty);
94
95 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
96 int async_p);
97
98 static void remote_close (int quitting);
99
100 static void remote_store_registers (int regno);
101
102 static void remote_mourn (void);
103 static void remote_async_mourn (void);
104
105 static void extended_remote_restart (void);
106
107 static void extended_remote_mourn (void);
108
109 static void extended_remote_create_inferior (char *, char *, char **);
110 static void extended_remote_async_create_inferior (char *, char *, char **);
111
112 static void remote_mourn_1 (struct target_ops *);
113
114 static void remote_send (char *buf, long sizeof_buf);
115
116 static int readchar (int timeout);
117
118 static ptid_t remote_wait (ptid_t ptid,
119 struct target_waitstatus *status);
120 static ptid_t remote_async_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122
123 static void remote_kill (void);
124 static void remote_async_kill (void);
125
126 static int tohex (int nib);
127
128 static void remote_detach (char *args, int from_tty);
129
130 static void remote_interrupt (int signo);
131
132 static void remote_interrupt_twice (int signo);
133
134 static void interrupt_query (void);
135
136 static void set_thread (int, int);
137
138 static int remote_thread_alive (ptid_t);
139
140 static void get_offsets (void);
141
142 static long read_frame (char *buf, long sizeof_buf);
143
144 static int remote_insert_breakpoint (CORE_ADDR, char *);
145
146 static int remote_remove_breakpoint (CORE_ADDR, char *);
147
148 static int hexnumlen (ULONGEST num);
149
150 static void init_remote_ops (void);
151
152 static void init_extended_remote_ops (void);
153
154 static void init_remote_cisco_ops (void);
155
156 static struct target_ops remote_cisco_ops;
157
158 static void remote_stop (void);
159
160 static int ishex (int ch, int *val);
161
162 static int stubhex (int ch);
163
164 static int hexnumstr (char *, ULONGEST);
165
166 static int hexnumnstr (char *, ULONGEST, int);
167
168 static CORE_ADDR remote_address_masked (CORE_ADDR);
169
170 static void print_packet (char *);
171
172 static unsigned long crc32 (unsigned char *, int, unsigned int);
173
174 static void compare_sections_command (char *, int);
175
176 static void packet_command (char *, int);
177
178 static int stub_unpack_int (char *buff, int fieldlength);
179
180 static ptid_t remote_current_thread (ptid_t oldptid);
181
182 static void remote_find_new_threads (void);
183
184 static void record_currthread (int currthread);
185
186 static int fromhex (int a);
187
188 static int hex2bin (const char *hex, char *bin, int count);
189
190 static int bin2hex (const char *bin, char *hex, int count);
191
192 static int putpkt_binary (char *buf, int cnt);
193
194 static void check_binary_download (CORE_ADDR addr);
195
196 struct packet_config;
197
198 static void show_packet_config_cmd (struct packet_config *config);
199
200 static void update_packet_config (struct packet_config *config);
201
202 void _initialize_remote (void);
203
204 /* Description of the remote protocol. Strictly speaking, when the
205 target is open()ed, remote.c should create a per-target description
206 of the remote protocol using that target's architecture.
207 Unfortunately, the target stack doesn't include local state. For
208 the moment keep the information in the target's architecture
209 object. Sigh.. */
210
211 struct packet_reg
212 {
213 long offset; /* Offset into G packet. */
214 long regnum; /* GDB's internal register number. */
215 LONGEST pnum; /* Remote protocol register number. */
216 int in_g_packet; /* Always part of G packet. */
217 /* long size in bytes; == DEPRECATED_REGISTER_RAW_SIZE (regnum); at present. */
218 /* char *name; == REGISTER_NAME (regnum); at present. */
219 };
220
221 struct remote_state
222 {
223 /* Description of the remote protocol registers. */
224 long sizeof_g_packet;
225
226 /* Description of the remote protocol registers indexed by REGNUM
227 (making an array of NUM_REGS + NUM_PSEUDO_REGS in size). */
228 struct packet_reg *regs;
229
230 /* This is the size (in chars) of the first response to the ``g''
231 packet. It is used as a heuristic when determining the maximum
232 size of memory-read and memory-write packets. A target will
233 typically only reserve a buffer large enough to hold the ``g''
234 packet. The size does not include packet overhead (headers and
235 trailers). */
236 long actual_register_packet_size;
237
238 /* This is the maximum size (in chars) of a non read/write packet.
239 It is also used as a cap on the size of read/write packets. */
240 long remote_packet_size;
241 };
242
243
244 /* Handle for retreving the remote protocol data from gdbarch. */
245 static struct gdbarch_data *remote_gdbarch_data_handle;
246
247 static struct remote_state *
248 get_remote_state (void)
249 {
250 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
251 }
252
253 static void *
254 init_remote_state (struct gdbarch *gdbarch)
255 {
256 int regnum;
257 struct remote_state *rs = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_state);
258
259 if (DEPRECATED_REGISTER_BYTES != 0)
260 rs->sizeof_g_packet = DEPRECATED_REGISTER_BYTES;
261 else
262 rs->sizeof_g_packet = 0;
263
264 /* Assume a 1:1 regnum<->pnum table. */
265 rs->regs = GDBARCH_OBSTACK_CALLOC (gdbarch, NUM_REGS + NUM_PSEUDO_REGS,
266 struct packet_reg);
267 for (regnum = 0; regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
268 {
269 struct packet_reg *r = &rs->regs[regnum];
270 r->pnum = regnum;
271 r->regnum = regnum;
272 r->offset = DEPRECATED_REGISTER_BYTE (regnum);
273 r->in_g_packet = (regnum < NUM_REGS);
274 /* ...name = REGISTER_NAME (regnum); */
275
276 /* Compute packet size by accumulating the size of all registers. */
277 if (DEPRECATED_REGISTER_BYTES == 0)
278 rs->sizeof_g_packet += register_size (current_gdbarch, regnum);
279 }
280
281 /* Default maximum number of characters in a packet body. Many
282 remote stubs have a hardwired buffer size of 400 bytes
283 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
284 as the maximum packet-size to ensure that the packet and an extra
285 NUL character can always fit in the buffer. This stops GDB
286 trashing stubs that try to squeeze an extra NUL into what is
287 already a full buffer (As of 1999-12-04 that was most stubs. */
288 rs->remote_packet_size = 400 - 1;
289
290 /* Should rs->sizeof_g_packet needs more space than the
291 default, adjust the size accordingly. Remember that each byte is
292 encoded as two characters. 32 is the overhead for the packet
293 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
294 (``$NN:G...#NN'') is a better guess, the below has been padded a
295 little. */
296 if (rs->sizeof_g_packet > ((rs->remote_packet_size - 32) / 2))
297 rs->remote_packet_size = (rs->sizeof_g_packet * 2 + 32);
298
299 /* This one is filled in when a ``g'' packet is received. */
300 rs->actual_register_packet_size = 0;
301
302 return rs;
303 }
304
305 static struct packet_reg *
306 packet_reg_from_regnum (struct remote_state *rs, long regnum)
307 {
308 if (regnum < 0 && regnum >= NUM_REGS + NUM_PSEUDO_REGS)
309 return NULL;
310 else
311 {
312 struct packet_reg *r = &rs->regs[regnum];
313 gdb_assert (r->regnum == regnum);
314 return r;
315 }
316 }
317
318 static struct packet_reg *
319 packet_reg_from_pnum (struct remote_state *rs, LONGEST pnum)
320 {
321 int i;
322 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
323 {
324 struct packet_reg *r = &rs->regs[i];
325 if (r->pnum == pnum)
326 return r;
327 }
328 return NULL;
329 }
330
331 /* FIXME: graces/2002-08-08: These variables should eventually be
332 bound to an instance of the target object (as in gdbarch-tdep()),
333 when such a thing exists. */
334
335 /* This is set to the data address of the access causing the target
336 to stop for a watchpoint. */
337 static CORE_ADDR remote_watch_data_address;
338
339 /* This is non-zero if taregt stopped for a watchpoint. */
340 static int remote_stopped_by_watchpoint_p;
341
342
343 static struct target_ops remote_ops;
344
345 static struct target_ops extended_remote_ops;
346
347 /* Temporary target ops. Just like the remote_ops and
348 extended_remote_ops, but with asynchronous support. */
349 static struct target_ops remote_async_ops;
350
351 static struct target_ops extended_async_remote_ops;
352
353 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
354 ``forever'' still use the normal timeout mechanism. This is
355 currently used by the ASYNC code to guarentee that target reads
356 during the initial connect always time-out. Once getpkt has been
357 modified to return a timeout indication and, in turn
358 remote_wait()/wait_for_inferior() have gained a timeout parameter
359 this can go away. */
360 static int wait_forever_enabled_p = 1;
361
362
363 /* This variable chooses whether to send a ^C or a break when the user
364 requests program interruption. Although ^C is usually what remote
365 systems expect, and that is the default here, sometimes a break is
366 preferable instead. */
367
368 static int remote_break;
369
370 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
371 remote_open knows that we don't have a file open when the program
372 starts. */
373 static struct serial *remote_desc = NULL;
374
375 /* This is set by the target (thru the 'S' message)
376 to denote that the target is in kernel mode. */
377 static int cisco_kernel_mode = 0;
378
379 /* This variable sets the number of bits in an address that are to be
380 sent in a memory ("M" or "m") packet. Normally, after stripping
381 leading zeros, the entire address would be sent. This variable
382 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
383 initial implementation of remote.c restricted the address sent in
384 memory packets to ``host::sizeof long'' bytes - (typically 32
385 bits). Consequently, for 64 bit targets, the upper 32 bits of an
386 address was never sent. Since fixing this bug may cause a break in
387 some remote targets this variable is principly provided to
388 facilitate backward compatibility. */
389
390 static int remote_address_size;
391
392 /* Tempoary to track who currently owns the terminal. See
393 target_async_terminal_* for more details. */
394
395 static int remote_async_terminal_ours_p;
396
397 \f
398 /* User configurable variables for the number of characters in a
399 memory read/write packet. MIN ((rs->remote_packet_size),
400 rs->sizeof_g_packet) is the default. Some targets need smaller
401 values (fifo overruns, et.al.) and some users need larger values
402 (speed up transfers). The variables ``preferred_*'' (the user
403 request), ``current_*'' (what was actually set) and ``forced_*''
404 (Positive - a soft limit, negative - a hard limit). */
405
406 struct memory_packet_config
407 {
408 char *name;
409 long size;
410 int fixed_p;
411 };
412
413 /* Compute the current size of a read/write packet. Since this makes
414 use of ``actual_register_packet_size'' the computation is dynamic. */
415
416 static long
417 get_memory_packet_size (struct memory_packet_config *config)
418 {
419 struct remote_state *rs = get_remote_state ();
420 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
421 law?) that some hosts don't cope very well with large alloca()
422 calls. Eventually the alloca() code will be replaced by calls to
423 xmalloc() and make_cleanups() allowing this restriction to either
424 be lifted or removed. */
425 #ifndef MAX_REMOTE_PACKET_SIZE
426 #define MAX_REMOTE_PACKET_SIZE 16384
427 #endif
428 /* NOTE: 16 is just chosen at random. */
429 #ifndef MIN_REMOTE_PACKET_SIZE
430 #define MIN_REMOTE_PACKET_SIZE 16
431 #endif
432 long what_they_get;
433 if (config->fixed_p)
434 {
435 if (config->size <= 0)
436 what_they_get = MAX_REMOTE_PACKET_SIZE;
437 else
438 what_they_get = config->size;
439 }
440 else
441 {
442 what_they_get = (rs->remote_packet_size);
443 /* Limit the packet to the size specified by the user. */
444 if (config->size > 0
445 && what_they_get > config->size)
446 what_they_get = config->size;
447 /* Limit it to the size of the targets ``g'' response. */
448 if ((rs->actual_register_packet_size) > 0
449 && what_they_get > (rs->actual_register_packet_size))
450 what_they_get = (rs->actual_register_packet_size);
451 }
452 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
453 what_they_get = MAX_REMOTE_PACKET_SIZE;
454 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
455 what_they_get = MIN_REMOTE_PACKET_SIZE;
456 return what_they_get;
457 }
458
459 /* Update the size of a read/write packet. If they user wants
460 something really big then do a sanity check. */
461
462 static void
463 set_memory_packet_size (char *args, struct memory_packet_config *config)
464 {
465 int fixed_p = config->fixed_p;
466 long size = config->size;
467 if (args == NULL)
468 error ("Argument required (integer, `fixed' or `limited').");
469 else if (strcmp (args, "hard") == 0
470 || strcmp (args, "fixed") == 0)
471 fixed_p = 1;
472 else if (strcmp (args, "soft") == 0
473 || strcmp (args, "limit") == 0)
474 fixed_p = 0;
475 else
476 {
477 char *end;
478 size = strtoul (args, &end, 0);
479 if (args == end)
480 error ("Invalid %s (bad syntax).", config->name);
481 #if 0
482 /* Instead of explicitly capping the size of a packet to
483 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
484 instead allowed to set the size to something arbitrarily
485 large. */
486 if (size > MAX_REMOTE_PACKET_SIZE)
487 error ("Invalid %s (too large).", config->name);
488 #endif
489 }
490 /* Extra checks? */
491 if (fixed_p && !config->fixed_p)
492 {
493 if (! query ("The target may not be able to correctly handle a %s\n"
494 "of %ld bytes. Change the packet size? ",
495 config->name, size))
496 error ("Packet size not changed.");
497 }
498 /* Update the config. */
499 config->fixed_p = fixed_p;
500 config->size = size;
501 }
502
503 static void
504 show_memory_packet_size (struct memory_packet_config *config)
505 {
506 printf_filtered ("The %s is %ld. ", config->name, config->size);
507 if (config->fixed_p)
508 printf_filtered ("Packets are fixed at %ld bytes.\n",
509 get_memory_packet_size (config));
510 else
511 printf_filtered ("Packets are limited to %ld bytes.\n",
512 get_memory_packet_size (config));
513 }
514
515 static struct memory_packet_config memory_write_packet_config =
516 {
517 "memory-write-packet-size",
518 };
519
520 static void
521 set_memory_write_packet_size (char *args, int from_tty)
522 {
523 set_memory_packet_size (args, &memory_write_packet_config);
524 }
525
526 static void
527 show_memory_write_packet_size (char *args, int from_tty)
528 {
529 show_memory_packet_size (&memory_write_packet_config);
530 }
531
532 static long
533 get_memory_write_packet_size (void)
534 {
535 return get_memory_packet_size (&memory_write_packet_config);
536 }
537
538 static struct memory_packet_config memory_read_packet_config =
539 {
540 "memory-read-packet-size",
541 };
542
543 static void
544 set_memory_read_packet_size (char *args, int from_tty)
545 {
546 set_memory_packet_size (args, &memory_read_packet_config);
547 }
548
549 static void
550 show_memory_read_packet_size (char *args, int from_tty)
551 {
552 show_memory_packet_size (&memory_read_packet_config);
553 }
554
555 static long
556 get_memory_read_packet_size (void)
557 {
558 struct remote_state *rs = get_remote_state ();
559 long size = get_memory_packet_size (&memory_read_packet_config);
560 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
561 extra buffer size argument before the memory read size can be
562 increased beyond (rs->remote_packet_size). */
563 if (size > (rs->remote_packet_size))
564 size = (rs->remote_packet_size);
565 return size;
566 }
567
568 \f
569 /* Generic configuration support for packets the stub optionally
570 supports. Allows the user to specify the use of the packet as well
571 as allowing GDB to auto-detect support in the remote stub. */
572
573 enum packet_support
574 {
575 PACKET_SUPPORT_UNKNOWN = 0,
576 PACKET_ENABLE,
577 PACKET_DISABLE
578 };
579
580 struct packet_config
581 {
582 char *name;
583 char *title;
584 enum auto_boolean detect;
585 enum packet_support support;
586 };
587
588 /* Analyze a packet's return value and update the packet config
589 accordingly. */
590
591 enum packet_result
592 {
593 PACKET_ERROR,
594 PACKET_OK,
595 PACKET_UNKNOWN
596 };
597
598 static void
599 update_packet_config (struct packet_config *config)
600 {
601 switch (config->detect)
602 {
603 case AUTO_BOOLEAN_TRUE:
604 config->support = PACKET_ENABLE;
605 break;
606 case AUTO_BOOLEAN_FALSE:
607 config->support = PACKET_DISABLE;
608 break;
609 case AUTO_BOOLEAN_AUTO:
610 config->support = PACKET_SUPPORT_UNKNOWN;
611 break;
612 }
613 }
614
615 static void
616 show_packet_config_cmd (struct packet_config *config)
617 {
618 char *support = "internal-error";
619 switch (config->support)
620 {
621 case PACKET_ENABLE:
622 support = "enabled";
623 break;
624 case PACKET_DISABLE:
625 support = "disabled";
626 break;
627 case PACKET_SUPPORT_UNKNOWN:
628 support = "unknown";
629 break;
630 }
631 switch (config->detect)
632 {
633 case AUTO_BOOLEAN_AUTO:
634 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
635 config->name, config->title, support);
636 break;
637 case AUTO_BOOLEAN_TRUE:
638 case AUTO_BOOLEAN_FALSE:
639 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
640 config->name, config->title, support);
641 break;
642 }
643 }
644
645 static void
646 add_packet_config_cmd (struct packet_config *config,
647 char *name,
648 char *title,
649 cmd_sfunc_ftype *set_func,
650 cmd_sfunc_ftype *show_func,
651 struct cmd_list_element **set_remote_list,
652 struct cmd_list_element **show_remote_list,
653 int legacy)
654 {
655 struct cmd_list_element *set_cmd;
656 struct cmd_list_element *show_cmd;
657 char *set_doc;
658 char *show_doc;
659 char *cmd_name;
660 config->name = name;
661 config->title = title;
662 config->detect = AUTO_BOOLEAN_AUTO;
663 config->support = PACKET_SUPPORT_UNKNOWN;
664 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
665 name, title);
666 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
667 name, title);
668 /* set/show TITLE-packet {auto,on,off} */
669 xasprintf (&cmd_name, "%s-packet", title);
670 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
671 &config->detect, set_doc, show_doc,
672 set_func, show_func,
673 set_remote_list, show_remote_list);
674 /* set/show remote NAME-packet {auto,on,off} -- legacy */
675 if (legacy)
676 {
677 char *legacy_name;
678 xasprintf (&legacy_name, "%s-packet", name);
679 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
680 set_remote_list);
681 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
682 show_remote_list);
683 }
684 }
685
686 static enum packet_result
687 packet_ok (const char *buf, struct packet_config *config)
688 {
689 if (buf[0] != '\0')
690 {
691 /* The stub recognized the packet request. Check that the
692 operation succeeded. */
693 switch (config->support)
694 {
695 case PACKET_SUPPORT_UNKNOWN:
696 if (remote_debug)
697 fprintf_unfiltered (gdb_stdlog,
698 "Packet %s (%s) is supported\n",
699 config->name, config->title);
700 config->support = PACKET_ENABLE;
701 break;
702 case PACKET_DISABLE:
703 internal_error (__FILE__, __LINE__,
704 "packet_ok: attempt to use a disabled packet");
705 break;
706 case PACKET_ENABLE:
707 break;
708 }
709 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
710 /* "OK" - definitly OK. */
711 return PACKET_OK;
712 if (buf[0] == 'E'
713 && isxdigit (buf[1]) && isxdigit (buf[2])
714 && buf[3] == '\0')
715 /* "Enn" - definitly an error. */
716 return PACKET_ERROR;
717 /* The packet may or may not be OK. Just assume it is */
718 return PACKET_OK;
719 }
720 else
721 {
722 /* The stub does not support the packet. */
723 switch (config->support)
724 {
725 case PACKET_ENABLE:
726 if (config->detect == AUTO_BOOLEAN_AUTO)
727 /* If the stub previously indicated that the packet was
728 supported then there is a protocol error.. */
729 error ("Protocol error: %s (%s) conflicting enabled responses.",
730 config->name, config->title);
731 else
732 /* The user set it wrong. */
733 error ("Enabled packet %s (%s) not recognized by stub",
734 config->name, config->title);
735 break;
736 case PACKET_SUPPORT_UNKNOWN:
737 if (remote_debug)
738 fprintf_unfiltered (gdb_stdlog,
739 "Packet %s (%s) is NOT supported\n",
740 config->name, config->title);
741 config->support = PACKET_DISABLE;
742 break;
743 case PACKET_DISABLE:
744 break;
745 }
746 return PACKET_UNKNOWN;
747 }
748 }
749
750 /* Should we try the 'vCont' (descriptive resume) request? */
751 static struct packet_config remote_protocol_vcont;
752
753 static void
754 set_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
755 struct cmd_list_element *c)
756 {
757 update_packet_config (&remote_protocol_vcont);
758 }
759
760 static void
761 show_remote_protocol_vcont_packet_cmd (char *args, int from_tty,
762 struct cmd_list_element *c)
763 {
764 show_packet_config_cmd (&remote_protocol_vcont);
765 }
766
767 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
768 static struct packet_config remote_protocol_qSymbol;
769
770 static void
771 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
772 struct cmd_list_element *c)
773 {
774 update_packet_config (&remote_protocol_qSymbol);
775 }
776
777 static void
778 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
779 struct cmd_list_element *c)
780 {
781 show_packet_config_cmd (&remote_protocol_qSymbol);
782 }
783
784 /* Should we try the 'e' (step over range) request? */
785 static struct packet_config remote_protocol_e;
786
787 static void
788 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
789 struct cmd_list_element *c)
790 {
791 update_packet_config (&remote_protocol_e);
792 }
793
794 static void
795 show_remote_protocol_e_packet_cmd (char *args, int from_tty,
796 struct cmd_list_element *c)
797 {
798 show_packet_config_cmd (&remote_protocol_e);
799 }
800
801
802 /* Should we try the 'E' (step over range / w signal #) request? */
803 static struct packet_config remote_protocol_E;
804
805 static void
806 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
807 struct cmd_list_element *c)
808 {
809 update_packet_config (&remote_protocol_E);
810 }
811
812 static void
813 show_remote_protocol_E_packet_cmd (char *args, int from_tty,
814 struct cmd_list_element *c)
815 {
816 show_packet_config_cmd (&remote_protocol_E);
817 }
818
819
820 /* Should we try the 'P' (set register) request? */
821
822 static struct packet_config remote_protocol_P;
823
824 static void
825 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
826 struct cmd_list_element *c)
827 {
828 update_packet_config (&remote_protocol_P);
829 }
830
831 static void
832 show_remote_protocol_P_packet_cmd (char *args, int from_tty,
833 struct cmd_list_element *c)
834 {
835 show_packet_config_cmd (&remote_protocol_P);
836 }
837
838 /* Should we try one of the 'Z' requests? */
839
840 enum Z_packet_type
841 {
842 Z_PACKET_SOFTWARE_BP,
843 Z_PACKET_HARDWARE_BP,
844 Z_PACKET_WRITE_WP,
845 Z_PACKET_READ_WP,
846 Z_PACKET_ACCESS_WP,
847 NR_Z_PACKET_TYPES
848 };
849
850 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
851
852 /* FIXME: Instead of having all these boiler plate functions, the
853 command callback should include a context argument. */
854
855 static void
856 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
857 struct cmd_list_element *c)
858 {
859 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
860 }
861
862 static void
863 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
864 struct cmd_list_element *c)
865 {
866 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
867 }
868
869 static void
870 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
871 struct cmd_list_element *c)
872 {
873 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
874 }
875
876 static void
877 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
878 struct cmd_list_element *c)
879 {
880 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
881 }
882
883 static void
884 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
885 struct cmd_list_element *c)
886 {
887 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
888 }
889
890 static void
891 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
892 struct cmd_list_element *c)
893 {
894 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
895 }
896
897 static void
898 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
899 struct cmd_list_element *c)
900 {
901 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
902 }
903
904 static void
905 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
906 struct cmd_list_element *c)
907 {
908 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
909 }
910
911 static void
912 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
913 struct cmd_list_element *c)
914 {
915 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
916 }
917
918 static void
919 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
920 struct cmd_list_element *c)
921 {
922 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
923 }
924
925 /* For compatibility with older distributions. Provide a ``set remote
926 Z-packet ...'' command that updates all the Z packet types. */
927
928 static enum auto_boolean remote_Z_packet_detect;
929
930 static void
931 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
932 struct cmd_list_element *c)
933 {
934 int i;
935 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
936 {
937 remote_protocol_Z[i].detect = remote_Z_packet_detect;
938 update_packet_config (&remote_protocol_Z[i]);
939 }
940 }
941
942 static void
943 show_remote_protocol_Z_packet_cmd (char *args, int from_tty,
944 struct cmd_list_element *c)
945 {
946 int i;
947 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
948 {
949 show_packet_config_cmd (&remote_protocol_Z[i]);
950 }
951 }
952
953 /* Should we try the 'X' (remote binary download) packet?
954
955 This variable (available to the user via "set remote X-packet")
956 dictates whether downloads are sent in binary (via the 'X' packet).
957 We assume that the stub can, and attempt to do it. This will be
958 cleared if the stub does not understand it. This switch is still
959 needed, though in cases when the packet is supported in the stub,
960 but the connection does not allow it (i.e., 7-bit serial connection
961 only). */
962
963 static struct packet_config remote_protocol_binary_download;
964
965 /* Should we try the 'ThreadInfo' query packet?
966
967 This variable (NOT available to the user: auto-detect only!)
968 determines whether GDB will use the new, simpler "ThreadInfo"
969 query or the older, more complex syntax for thread queries.
970 This is an auto-detect variable (set to true at each connect,
971 and set to false when the target fails to recognize it). */
972
973 static int use_threadinfo_query;
974 static int use_threadextra_query;
975
976 static void
977 set_remote_protocol_binary_download_cmd (char *args,
978 int from_tty,
979 struct cmd_list_element *c)
980 {
981 update_packet_config (&remote_protocol_binary_download);
982 }
983
984 static void
985 show_remote_protocol_binary_download_cmd (char *args, int from_tty,
986 struct cmd_list_element *c)
987 {
988 show_packet_config_cmd (&remote_protocol_binary_download);
989 }
990
991
992 /* Tokens for use by the asynchronous signal handlers for SIGINT */
993 static void *sigint_remote_twice_token;
994 static void *sigint_remote_token;
995
996 /* These are pointers to hook functions that may be set in order to
997 modify resume/wait behavior for a particular architecture. */
998
999 void (*target_resume_hook) (void);
1000 void (*target_wait_loop_hook) (void);
1001 \f
1002
1003
1004 /* These are the threads which we last sent to the remote system.
1005 -1 for all or -2 for not sent yet. */
1006 static int general_thread;
1007 static int continue_thread;
1008
1009 /* Call this function as a result of
1010 1) A halt indication (T packet) containing a thread id
1011 2) A direct query of currthread
1012 3) Successful execution of set thread
1013 */
1014
1015 static void
1016 record_currthread (int currthread)
1017 {
1018 general_thread = currthread;
1019
1020 /* If this is a new thread, add it to GDB's thread list.
1021 If we leave it up to WFI to do this, bad things will happen. */
1022 if (!in_thread_list (pid_to_ptid (currthread)))
1023 {
1024 add_thread (pid_to_ptid (currthread));
1025 ui_out_text (uiout, "[New ");
1026 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
1027 ui_out_text (uiout, "]\n");
1028 }
1029 }
1030
1031 #define MAGIC_NULL_PID 42000
1032
1033 static void
1034 set_thread (int th, int gen)
1035 {
1036 struct remote_state *rs = get_remote_state ();
1037 char *buf = alloca (rs->remote_packet_size);
1038 int state = gen ? general_thread : continue_thread;
1039
1040 if (state == th)
1041 return;
1042
1043 buf[0] = 'H';
1044 buf[1] = gen ? 'g' : 'c';
1045 if (th == MAGIC_NULL_PID)
1046 {
1047 buf[2] = '0';
1048 buf[3] = '\0';
1049 }
1050 else if (th < 0)
1051 sprintf (&buf[2], "-%x", -th);
1052 else
1053 sprintf (&buf[2], "%x", th);
1054 putpkt (buf);
1055 getpkt (buf, (rs->remote_packet_size), 0);
1056 if (gen)
1057 general_thread = th;
1058 else
1059 continue_thread = th;
1060 }
1061 \f
1062 /* Return nonzero if the thread TH is still alive on the remote system. */
1063
1064 static int
1065 remote_thread_alive (ptid_t ptid)
1066 {
1067 int tid = PIDGET (ptid);
1068 char buf[16];
1069
1070 if (tid < 0)
1071 sprintf (buf, "T-%08x", -tid);
1072 else
1073 sprintf (buf, "T%08x", tid);
1074 putpkt (buf);
1075 getpkt (buf, sizeof (buf), 0);
1076 return (buf[0] == 'O' && buf[1] == 'K');
1077 }
1078
1079 /* About these extended threadlist and threadinfo packets. They are
1080 variable length packets but, the fields within them are often fixed
1081 length. They are redundent enough to send over UDP as is the
1082 remote protocol in general. There is a matching unit test module
1083 in libstub. */
1084
1085 #define OPAQUETHREADBYTES 8
1086
1087 /* a 64 bit opaque identifier */
1088 typedef unsigned char threadref[OPAQUETHREADBYTES];
1089
1090 /* WARNING: This threadref data structure comes from the remote O.S., libstub
1091 protocol encoding, and remote.c. it is not particularly changable */
1092
1093 /* Right now, the internal structure is int. We want it to be bigger.
1094 Plan to fix this.
1095 */
1096
1097 typedef int gdb_threadref; /* internal GDB thread reference */
1098
1099 /* gdb_ext_thread_info is an internal GDB data structure which is
1100 equivalint to the reply of the remote threadinfo packet */
1101
1102 struct gdb_ext_thread_info
1103 {
1104 threadref threadid; /* External form of thread reference */
1105 int active; /* Has state interesting to GDB? , regs, stack */
1106 char display[256]; /* Brief state display, name, blocked/syspended */
1107 char shortname[32]; /* To be used to name threads */
1108 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1109 };
1110
1111 /* The volume of remote transfers can be limited by submitting
1112 a mask containing bits specifying the desired information.
1113 Use a union of these values as the 'selection' parameter to
1114 get_thread_info. FIXME: Make these TAG names more thread specific.
1115 */
1116
1117 #define TAG_THREADID 1
1118 #define TAG_EXISTS 2
1119 #define TAG_DISPLAY 4
1120 #define TAG_THREADNAME 8
1121 #define TAG_MOREDISPLAY 16
1122
1123 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1124
1125 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1126
1127 static char *unpack_nibble (char *buf, int *val);
1128
1129 static char *pack_nibble (char *buf, int nibble);
1130
1131 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1132
1133 static char *unpack_byte (char *buf, int *value);
1134
1135 static char *pack_int (char *buf, int value);
1136
1137 static char *unpack_int (char *buf, int *value);
1138
1139 static char *unpack_string (char *src, char *dest, int length);
1140
1141 static char *pack_threadid (char *pkt, threadref * id);
1142
1143 static char *unpack_threadid (char *inbuf, threadref * id);
1144
1145 void int_to_threadref (threadref * id, int value);
1146
1147 static int threadref_to_int (threadref * ref);
1148
1149 static void copy_threadref (threadref * dest, threadref * src);
1150
1151 static int threadmatch (threadref * dest, threadref * src);
1152
1153 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1154
1155 static int remote_unpack_thread_info_response (char *pkt,
1156 threadref * expectedref,
1157 struct gdb_ext_thread_info
1158 *info);
1159
1160
1161 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1162 struct gdb_ext_thread_info *info);
1163
1164 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1165 int selection,
1166 struct gdb_ext_thread_info *info);
1167
1168 static char *pack_threadlist_request (char *pkt, int startflag,
1169 int threadcount,
1170 threadref * nextthread);
1171
1172 static int parse_threadlist_response (char *pkt,
1173 int result_limit,
1174 threadref * original_echo,
1175 threadref * resultlist, int *doneflag);
1176
1177 static int remote_get_threadlist (int startflag,
1178 threadref * nextthread,
1179 int result_limit,
1180 int *done,
1181 int *result_count, threadref * threadlist);
1182
1183 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1184
1185 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1186 void *context, int looplimit);
1187
1188 static int remote_newthread_step (threadref * ref, void *context);
1189
1190 /* encode 64 bits in 16 chars of hex */
1191
1192 static const char hexchars[] = "0123456789abcdef";
1193
1194 static int
1195 ishex (int ch, int *val)
1196 {
1197 if ((ch >= 'a') && (ch <= 'f'))
1198 {
1199 *val = ch - 'a' + 10;
1200 return 1;
1201 }
1202 if ((ch >= 'A') && (ch <= 'F'))
1203 {
1204 *val = ch - 'A' + 10;
1205 return 1;
1206 }
1207 if ((ch >= '0') && (ch <= '9'))
1208 {
1209 *val = ch - '0';
1210 return 1;
1211 }
1212 return 0;
1213 }
1214
1215 static int
1216 stubhex (int ch)
1217 {
1218 if (ch >= 'a' && ch <= 'f')
1219 return ch - 'a' + 10;
1220 if (ch >= '0' && ch <= '9')
1221 return ch - '0';
1222 if (ch >= 'A' && ch <= 'F')
1223 return ch - 'A' + 10;
1224 return -1;
1225 }
1226
1227 static int
1228 stub_unpack_int (char *buff, int fieldlength)
1229 {
1230 int nibble;
1231 int retval = 0;
1232
1233 while (fieldlength)
1234 {
1235 nibble = stubhex (*buff++);
1236 retval |= nibble;
1237 fieldlength--;
1238 if (fieldlength)
1239 retval = retval << 4;
1240 }
1241 return retval;
1242 }
1243
1244 char *
1245 unpack_varlen_hex (char *buff, /* packet to parse */
1246 ULONGEST *result)
1247 {
1248 int nibble;
1249 int retval = 0;
1250
1251 while (ishex (*buff, &nibble))
1252 {
1253 buff++;
1254 retval = retval << 4;
1255 retval |= nibble & 0x0f;
1256 }
1257 *result = retval;
1258 return buff;
1259 }
1260
1261 static char *
1262 unpack_nibble (char *buf, int *val)
1263 {
1264 ishex (*buf++, val);
1265 return buf;
1266 }
1267
1268 static char *
1269 pack_nibble (char *buf, int nibble)
1270 {
1271 *buf++ = hexchars[(nibble & 0x0f)];
1272 return buf;
1273 }
1274
1275 static char *
1276 pack_hex_byte (char *pkt, int byte)
1277 {
1278 *pkt++ = hexchars[(byte >> 4) & 0xf];
1279 *pkt++ = hexchars[(byte & 0xf)];
1280 return pkt;
1281 }
1282
1283 static char *
1284 unpack_byte (char *buf, int *value)
1285 {
1286 *value = stub_unpack_int (buf, 2);
1287 return buf + 2;
1288 }
1289
1290 static char *
1291 pack_int (char *buf, int value)
1292 {
1293 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1294 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1295 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1296 buf = pack_hex_byte (buf, (value & 0xff));
1297 return buf;
1298 }
1299
1300 static char *
1301 unpack_int (char *buf, int *value)
1302 {
1303 *value = stub_unpack_int (buf, 8);
1304 return buf + 8;
1305 }
1306
1307 #if 0 /* currently unused, uncomment when needed */
1308 static char *pack_string (char *pkt, char *string);
1309
1310 static char *
1311 pack_string (char *pkt, char *string)
1312 {
1313 char ch;
1314 int len;
1315
1316 len = strlen (string);
1317 if (len > 200)
1318 len = 200; /* Bigger than most GDB packets, junk??? */
1319 pkt = pack_hex_byte (pkt, len);
1320 while (len-- > 0)
1321 {
1322 ch = *string++;
1323 if ((ch == '\0') || (ch == '#'))
1324 ch = '*'; /* Protect encapsulation */
1325 *pkt++ = ch;
1326 }
1327 return pkt;
1328 }
1329 #endif /* 0 (unused) */
1330
1331 static char *
1332 unpack_string (char *src, char *dest, int length)
1333 {
1334 while (length--)
1335 *dest++ = *src++;
1336 *dest = '\0';
1337 return src;
1338 }
1339
1340 static char *
1341 pack_threadid (char *pkt, threadref *id)
1342 {
1343 char *limit;
1344 unsigned char *altid;
1345
1346 altid = (unsigned char *) id;
1347 limit = pkt + BUF_THREAD_ID_SIZE;
1348 while (pkt < limit)
1349 pkt = pack_hex_byte (pkt, *altid++);
1350 return pkt;
1351 }
1352
1353
1354 static char *
1355 unpack_threadid (char *inbuf, threadref *id)
1356 {
1357 char *altref;
1358 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1359 int x, y;
1360
1361 altref = (char *) id;
1362
1363 while (inbuf < limit)
1364 {
1365 x = stubhex (*inbuf++);
1366 y = stubhex (*inbuf++);
1367 *altref++ = (x << 4) | y;
1368 }
1369 return inbuf;
1370 }
1371
1372 /* Externally, threadrefs are 64 bits but internally, they are still
1373 ints. This is due to a mismatch of specifications. We would like
1374 to use 64bit thread references internally. This is an adapter
1375 function. */
1376
1377 void
1378 int_to_threadref (threadref *id, int value)
1379 {
1380 unsigned char *scan;
1381
1382 scan = (unsigned char *) id;
1383 {
1384 int i = 4;
1385 while (i--)
1386 *scan++ = 0;
1387 }
1388 *scan++ = (value >> 24) & 0xff;
1389 *scan++ = (value >> 16) & 0xff;
1390 *scan++ = (value >> 8) & 0xff;
1391 *scan++ = (value & 0xff);
1392 }
1393
1394 static int
1395 threadref_to_int (threadref *ref)
1396 {
1397 int i, value = 0;
1398 unsigned char *scan;
1399
1400 scan = (char *) ref;
1401 scan += 4;
1402 i = 4;
1403 while (i-- > 0)
1404 value = (value << 8) | ((*scan++) & 0xff);
1405 return value;
1406 }
1407
1408 static void
1409 copy_threadref (threadref *dest, threadref *src)
1410 {
1411 int i;
1412 unsigned char *csrc, *cdest;
1413
1414 csrc = (unsigned char *) src;
1415 cdest = (unsigned char *) dest;
1416 i = 8;
1417 while (i--)
1418 *cdest++ = *csrc++;
1419 }
1420
1421 static int
1422 threadmatch (threadref *dest, threadref *src)
1423 {
1424 /* things are broken right now, so just assume we got a match */
1425 #if 0
1426 unsigned char *srcp, *destp;
1427 int i, result;
1428 srcp = (char *) src;
1429 destp = (char *) dest;
1430
1431 result = 1;
1432 while (i-- > 0)
1433 result &= (*srcp++ == *destp++) ? 1 : 0;
1434 return result;
1435 #endif
1436 return 1;
1437 }
1438
1439 /*
1440 threadid:1, # always request threadid
1441 context_exists:2,
1442 display:4,
1443 unique_name:8,
1444 more_display:16
1445 */
1446
1447 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1448
1449 static char *
1450 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1451 {
1452 *pkt++ = 'q'; /* Info Query */
1453 *pkt++ = 'P'; /* process or thread info */
1454 pkt = pack_int (pkt, mode); /* mode */
1455 pkt = pack_threadid (pkt, id); /* threadid */
1456 *pkt = '\0'; /* terminate */
1457 return pkt;
1458 }
1459
1460 /* These values tag the fields in a thread info response packet */
1461 /* Tagging the fields allows us to request specific fields and to
1462 add more fields as time goes by */
1463
1464 #define TAG_THREADID 1 /* Echo the thread identifier */
1465 #define TAG_EXISTS 2 /* Is this process defined enough to
1466 fetch registers and its stack */
1467 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1468 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1469 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1470 the process */
1471
1472 static int
1473 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1474 struct gdb_ext_thread_info *info)
1475 {
1476 struct remote_state *rs = get_remote_state ();
1477 int mask, length;
1478 unsigned int tag;
1479 threadref ref;
1480 char *limit = pkt + (rs->remote_packet_size); /* plausable parsing limit */
1481 int retval = 1;
1482
1483 /* info->threadid = 0; FIXME: implement zero_threadref */
1484 info->active = 0;
1485 info->display[0] = '\0';
1486 info->shortname[0] = '\0';
1487 info->more_display[0] = '\0';
1488
1489 /* Assume the characters indicating the packet type have been stripped */
1490 pkt = unpack_int (pkt, &mask); /* arg mask */
1491 pkt = unpack_threadid (pkt, &ref);
1492
1493 if (mask == 0)
1494 warning ("Incomplete response to threadinfo request\n");
1495 if (!threadmatch (&ref, expectedref))
1496 { /* This is an answer to a different request */
1497 warning ("ERROR RMT Thread info mismatch\n");
1498 return 0;
1499 }
1500 copy_threadref (&info->threadid, &ref);
1501
1502 /* Loop on tagged fields , try to bail if somthing goes wrong */
1503
1504 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1505 {
1506 pkt = unpack_int (pkt, &tag); /* tag */
1507 pkt = unpack_byte (pkt, &length); /* length */
1508 if (!(tag & mask)) /* tags out of synch with mask */
1509 {
1510 warning ("ERROR RMT: threadinfo tag mismatch\n");
1511 retval = 0;
1512 break;
1513 }
1514 if (tag == TAG_THREADID)
1515 {
1516 if (length != 16)
1517 {
1518 warning ("ERROR RMT: length of threadid is not 16\n");
1519 retval = 0;
1520 break;
1521 }
1522 pkt = unpack_threadid (pkt, &ref);
1523 mask = mask & ~TAG_THREADID;
1524 continue;
1525 }
1526 if (tag == TAG_EXISTS)
1527 {
1528 info->active = stub_unpack_int (pkt, length);
1529 pkt += length;
1530 mask = mask & ~(TAG_EXISTS);
1531 if (length > 8)
1532 {
1533 warning ("ERROR RMT: 'exists' length too long\n");
1534 retval = 0;
1535 break;
1536 }
1537 continue;
1538 }
1539 if (tag == TAG_THREADNAME)
1540 {
1541 pkt = unpack_string (pkt, &info->shortname[0], length);
1542 mask = mask & ~TAG_THREADNAME;
1543 continue;
1544 }
1545 if (tag == TAG_DISPLAY)
1546 {
1547 pkt = unpack_string (pkt, &info->display[0], length);
1548 mask = mask & ~TAG_DISPLAY;
1549 continue;
1550 }
1551 if (tag == TAG_MOREDISPLAY)
1552 {
1553 pkt = unpack_string (pkt, &info->more_display[0], length);
1554 mask = mask & ~TAG_MOREDISPLAY;
1555 continue;
1556 }
1557 warning ("ERROR RMT: unknown thread info tag\n");
1558 break; /* Not a tag we know about */
1559 }
1560 return retval;
1561 }
1562
1563 static int
1564 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1565 struct gdb_ext_thread_info *info)
1566 {
1567 struct remote_state *rs = get_remote_state ();
1568 int result;
1569 char *threadinfo_pkt = alloca (rs->remote_packet_size);
1570
1571 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1572 putpkt (threadinfo_pkt);
1573 getpkt (threadinfo_pkt, (rs->remote_packet_size), 0);
1574 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1575 info);
1576 return result;
1577 }
1578
1579 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1580 representation of a threadid. */
1581
1582 static int
1583 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1584 struct gdb_ext_thread_info *info)
1585 {
1586 threadref lclref;
1587
1588 int_to_threadref (&lclref, *ref);
1589 return remote_get_threadinfo (&lclref, selection, info);
1590 }
1591
1592 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1593
1594 static char *
1595 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1596 threadref *nextthread)
1597 {
1598 *pkt++ = 'q'; /* info query packet */
1599 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1600 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1601 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1602 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1603 *pkt = '\0';
1604 return pkt;
1605 }
1606
1607 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1608
1609 static int
1610 parse_threadlist_response (char *pkt, int result_limit,
1611 threadref *original_echo, threadref *resultlist,
1612 int *doneflag)
1613 {
1614 struct remote_state *rs = get_remote_state ();
1615 char *limit;
1616 int count, resultcount, done;
1617
1618 resultcount = 0;
1619 /* Assume the 'q' and 'M chars have been stripped. */
1620 limit = pkt + ((rs->remote_packet_size) - BUF_THREAD_ID_SIZE); /* done parse past here */
1621 pkt = unpack_byte (pkt, &count); /* count field */
1622 pkt = unpack_nibble (pkt, &done);
1623 /* The first threadid is the argument threadid. */
1624 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1625 while ((count-- > 0) && (pkt < limit))
1626 {
1627 pkt = unpack_threadid (pkt, resultlist++);
1628 if (resultcount++ >= result_limit)
1629 break;
1630 }
1631 if (doneflag)
1632 *doneflag = done;
1633 return resultcount;
1634 }
1635
1636 static int
1637 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1638 int *done, int *result_count, threadref *threadlist)
1639 {
1640 struct remote_state *rs = get_remote_state ();
1641 static threadref echo_nextthread;
1642 char *threadlist_packet = alloca (rs->remote_packet_size);
1643 char *t_response = alloca (rs->remote_packet_size);
1644 int result = 1;
1645
1646 /* Trancate result limit to be smaller than the packet size */
1647 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= (rs->remote_packet_size))
1648 result_limit = ((rs->remote_packet_size) / BUF_THREAD_ID_SIZE) - 2;
1649
1650 pack_threadlist_request (threadlist_packet,
1651 startflag, result_limit, nextthread);
1652 putpkt (threadlist_packet);
1653 getpkt (t_response, (rs->remote_packet_size), 0);
1654
1655 *result_count =
1656 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1657 threadlist, done);
1658
1659 if (!threadmatch (&echo_nextthread, nextthread))
1660 {
1661 /* FIXME: This is a good reason to drop the packet */
1662 /* Possably, there is a duplicate response */
1663 /* Possabilities :
1664 retransmit immediatly - race conditions
1665 retransmit after timeout - yes
1666 exit
1667 wait for packet, then exit
1668 */
1669 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1670 return 0; /* I choose simply exiting */
1671 }
1672 if (*result_count <= 0)
1673 {
1674 if (*done != 1)
1675 {
1676 warning ("RMT ERROR : failed to get remote thread list\n");
1677 result = 0;
1678 }
1679 return result; /* break; */
1680 }
1681 if (*result_count > result_limit)
1682 {
1683 *result_count = 0;
1684 warning ("RMT ERROR: threadlist response longer than requested\n");
1685 return 0;
1686 }
1687 return result;
1688 }
1689
1690 /* This is the interface between remote and threads, remotes upper interface */
1691
1692 /* remote_find_new_threads retrieves the thread list and for each
1693 thread in the list, looks up the thread in GDB's internal list,
1694 ading the thread if it does not already exist. This involves
1695 getting partial thread lists from the remote target so, polling the
1696 quit_flag is required. */
1697
1698
1699 /* About this many threadisds fit in a packet. */
1700
1701 #define MAXTHREADLISTRESULTS 32
1702
1703 static int
1704 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1705 int looplimit)
1706 {
1707 int done, i, result_count;
1708 int startflag = 1;
1709 int result = 1;
1710 int loopcount = 0;
1711 static threadref nextthread;
1712 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1713
1714 done = 0;
1715 while (!done)
1716 {
1717 if (loopcount++ > looplimit)
1718 {
1719 result = 0;
1720 warning ("Remote fetch threadlist -infinite loop-\n");
1721 break;
1722 }
1723 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1724 &done, &result_count, resultthreadlist))
1725 {
1726 result = 0;
1727 break;
1728 }
1729 /* clear for later iterations */
1730 startflag = 0;
1731 /* Setup to resume next batch of thread references, set nextthread. */
1732 if (result_count >= 1)
1733 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1734 i = 0;
1735 while (result_count--)
1736 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1737 break;
1738 }
1739 return result;
1740 }
1741
1742 static int
1743 remote_newthread_step (threadref *ref, void *context)
1744 {
1745 ptid_t ptid;
1746
1747 ptid = pid_to_ptid (threadref_to_int (ref));
1748
1749 if (!in_thread_list (ptid))
1750 add_thread (ptid);
1751 return 1; /* continue iterator */
1752 }
1753
1754 #define CRAZY_MAX_THREADS 1000
1755
1756 static ptid_t
1757 remote_current_thread (ptid_t oldpid)
1758 {
1759 struct remote_state *rs = get_remote_state ();
1760 char *buf = alloca (rs->remote_packet_size);
1761
1762 putpkt ("qC");
1763 getpkt (buf, (rs->remote_packet_size), 0);
1764 if (buf[0] == 'Q' && buf[1] == 'C')
1765 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1766 else
1767 return oldpid;
1768 }
1769
1770 /* Find new threads for info threads command.
1771 * Original version, using John Metzler's thread protocol.
1772 */
1773
1774 static void
1775 remote_find_new_threads (void)
1776 {
1777 remote_threadlist_iterator (remote_newthread_step, 0,
1778 CRAZY_MAX_THREADS);
1779 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1780 inferior_ptid = remote_current_thread (inferior_ptid);
1781 }
1782
1783 /*
1784 * Find all threads for info threads command.
1785 * Uses new thread protocol contributed by Cisco.
1786 * Falls back and attempts to use the older method (above)
1787 * if the target doesn't respond to the new method.
1788 */
1789
1790 static void
1791 remote_threads_info (void)
1792 {
1793 struct remote_state *rs = get_remote_state ();
1794 char *buf = alloca (rs->remote_packet_size);
1795 char *bufp;
1796 int tid;
1797
1798 if (remote_desc == 0) /* paranoia */
1799 error ("Command can only be used when connected to the remote target.");
1800
1801 if (use_threadinfo_query)
1802 {
1803 putpkt ("qfThreadInfo");
1804 bufp = buf;
1805 getpkt (bufp, (rs->remote_packet_size), 0);
1806 if (bufp[0] != '\0') /* q packet recognized */
1807 {
1808 while (*bufp++ == 'm') /* reply contains one or more TID */
1809 {
1810 do
1811 {
1812 tid = strtol (bufp, &bufp, 16);
1813 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1814 add_thread (pid_to_ptid (tid));
1815 }
1816 while (*bufp++ == ','); /* comma-separated list */
1817 putpkt ("qsThreadInfo");
1818 bufp = buf;
1819 getpkt (bufp, (rs->remote_packet_size), 0);
1820 }
1821 return; /* done */
1822 }
1823 }
1824
1825 /* Else fall back to old method based on jmetzler protocol. */
1826 use_threadinfo_query = 0;
1827 remote_find_new_threads ();
1828 return;
1829 }
1830
1831 /*
1832 * Collect a descriptive string about the given thread.
1833 * The target may say anything it wants to about the thread
1834 * (typically info about its blocked / runnable state, name, etc.).
1835 * This string will appear in the info threads display.
1836 *
1837 * Optional: targets are not required to implement this function.
1838 */
1839
1840 static char *
1841 remote_threads_extra_info (struct thread_info *tp)
1842 {
1843 struct remote_state *rs = get_remote_state ();
1844 int result;
1845 int set;
1846 threadref id;
1847 struct gdb_ext_thread_info threadinfo;
1848 static char display_buf[100]; /* arbitrary... */
1849 char *bufp = alloca (rs->remote_packet_size);
1850 int n = 0; /* position in display_buf */
1851
1852 if (remote_desc == 0) /* paranoia */
1853 internal_error (__FILE__, __LINE__,
1854 "remote_threads_extra_info");
1855
1856 if (use_threadextra_query)
1857 {
1858 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1859 putpkt (bufp);
1860 getpkt (bufp, (rs->remote_packet_size), 0);
1861 if (bufp[0] != 0)
1862 {
1863 n = min (strlen (bufp) / 2, sizeof (display_buf));
1864 result = hex2bin (bufp, display_buf, n);
1865 display_buf [result] = '\0';
1866 return display_buf;
1867 }
1868 }
1869
1870 /* If the above query fails, fall back to the old method. */
1871 use_threadextra_query = 0;
1872 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1873 | TAG_MOREDISPLAY | TAG_DISPLAY;
1874 int_to_threadref (&id, PIDGET (tp->ptid));
1875 if (remote_get_threadinfo (&id, set, &threadinfo))
1876 if (threadinfo.active)
1877 {
1878 if (*threadinfo.shortname)
1879 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1880 if (*threadinfo.display)
1881 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1882 if (*threadinfo.more_display)
1883 n += sprintf(&display_buf[n], " Priority: %s",
1884 threadinfo.more_display);
1885
1886 if (n > 0)
1887 {
1888 /* for purely cosmetic reasons, clear up trailing commas */
1889 if (',' == display_buf[n-1])
1890 display_buf[n-1] = ' ';
1891 return display_buf;
1892 }
1893 }
1894 return NULL;
1895 }
1896
1897 \f
1898
1899 /* Restart the remote side; this is an extended protocol operation. */
1900
1901 static void
1902 extended_remote_restart (void)
1903 {
1904 struct remote_state *rs = get_remote_state ();
1905 char *buf = alloca (rs->remote_packet_size);
1906
1907 /* Send the restart command; for reasons I don't understand the
1908 remote side really expects a number after the "R". */
1909 buf[0] = 'R';
1910 sprintf (&buf[1], "%x", 0);
1911 putpkt (buf);
1912
1913 /* Now query for status so this looks just like we restarted
1914 gdbserver from scratch. */
1915 putpkt ("?");
1916 getpkt (buf, (rs->remote_packet_size), 0);
1917 }
1918 \f
1919 /* Clean up connection to a remote debugger. */
1920
1921 static void
1922 remote_close (int quitting)
1923 {
1924 if (remote_desc)
1925 serial_close (remote_desc);
1926 remote_desc = NULL;
1927 }
1928
1929 /* Query the remote side for the text, data and bss offsets. */
1930
1931 static void
1932 get_offsets (void)
1933 {
1934 struct remote_state *rs = get_remote_state ();
1935 char *buf = alloca (rs->remote_packet_size);
1936 char *ptr;
1937 int lose;
1938 CORE_ADDR text_addr, data_addr, bss_addr;
1939 struct section_offsets *offs;
1940
1941 putpkt ("qOffsets");
1942
1943 getpkt (buf, (rs->remote_packet_size), 0);
1944
1945 if (buf[0] == '\000')
1946 return; /* Return silently. Stub doesn't support
1947 this command. */
1948 if (buf[0] == 'E')
1949 {
1950 warning ("Remote failure reply: %s", buf);
1951 return;
1952 }
1953
1954 /* Pick up each field in turn. This used to be done with scanf, but
1955 scanf will make trouble if CORE_ADDR size doesn't match
1956 conversion directives correctly. The following code will work
1957 with any size of CORE_ADDR. */
1958 text_addr = data_addr = bss_addr = 0;
1959 ptr = buf;
1960 lose = 0;
1961
1962 if (strncmp (ptr, "Text=", 5) == 0)
1963 {
1964 ptr += 5;
1965 /* Don't use strtol, could lose on big values. */
1966 while (*ptr && *ptr != ';')
1967 text_addr = (text_addr << 4) + fromhex (*ptr++);
1968 }
1969 else
1970 lose = 1;
1971
1972 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1973 {
1974 ptr += 6;
1975 while (*ptr && *ptr != ';')
1976 data_addr = (data_addr << 4) + fromhex (*ptr++);
1977 }
1978 else
1979 lose = 1;
1980
1981 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1982 {
1983 ptr += 5;
1984 while (*ptr && *ptr != ';')
1985 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1986 }
1987 else
1988 lose = 1;
1989
1990 if (lose)
1991 error ("Malformed response to offset query, %s", buf);
1992
1993 if (symfile_objfile == NULL)
1994 return;
1995
1996 offs = ((struct section_offsets *)
1997 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
1998 memcpy (offs, symfile_objfile->section_offsets,
1999 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2000
2001 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2002
2003 /* This is a temporary kludge to force data and bss to use the same offsets
2004 because that's what nlmconv does now. The real solution requires changes
2005 to the stub and remote.c that I don't have time to do right now. */
2006
2007 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2008 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2009
2010 objfile_relocate (symfile_objfile, offs);
2011 }
2012
2013 /*
2014 * Cisco version of section offsets:
2015 *
2016 * Instead of having GDB query the target for the section offsets,
2017 * Cisco lets the target volunteer the information! It's also in
2018 * a different format, so here are the functions that will decode
2019 * a section offset packet from a Cisco target.
2020 */
2021
2022 /*
2023 * Function: remote_cisco_section_offsets
2024 *
2025 * Returns: zero for success, non-zero for failure
2026 */
2027
2028 static int
2029 remote_cisco_section_offsets (bfd_vma text_addr,
2030 bfd_vma data_addr,
2031 bfd_vma bss_addr,
2032 bfd_signed_vma *text_offs,
2033 bfd_signed_vma *data_offs,
2034 bfd_signed_vma *bss_offs)
2035 {
2036 bfd_vma text_base, data_base, bss_base;
2037 struct minimal_symbol *start;
2038 asection *sect;
2039 bfd *abfd;
2040 int len;
2041
2042 if (symfile_objfile == NULL)
2043 return -1; /* no can do nothin' */
2044
2045 start = lookup_minimal_symbol ("_start", NULL, NULL);
2046 if (start == NULL)
2047 return -1; /* Can't find "_start" symbol */
2048
2049 data_base = bss_base = 0;
2050 text_base = SYMBOL_VALUE_ADDRESS (start);
2051
2052 abfd = symfile_objfile->obfd;
2053 for (sect = abfd->sections;
2054 sect != 0;
2055 sect = sect->next)
2056 {
2057 const char *p = bfd_get_section_name (abfd, sect);
2058 len = strlen (p);
2059 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
2060 if (data_base == 0 ||
2061 data_base > bfd_get_section_vma (abfd, sect))
2062 data_base = bfd_get_section_vma (abfd, sect);
2063 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
2064 if (bss_base == 0 ||
2065 bss_base > bfd_get_section_vma (abfd, sect))
2066 bss_base = bfd_get_section_vma (abfd, sect);
2067 }
2068 *text_offs = text_addr - text_base;
2069 *data_offs = data_addr - data_base;
2070 *bss_offs = bss_addr - bss_base;
2071 if (remote_debug)
2072 {
2073 char tmp[128];
2074
2075 sprintf (tmp, "VMA: text = 0x");
2076 sprintf_vma (tmp + strlen (tmp), text_addr);
2077 sprintf (tmp + strlen (tmp), " data = 0x");
2078 sprintf_vma (tmp + strlen (tmp), data_addr);
2079 sprintf (tmp + strlen (tmp), " bss = 0x");
2080 sprintf_vma (tmp + strlen (tmp), bss_addr);
2081 fputs_filtered (tmp, gdb_stdlog);
2082 fprintf_filtered (gdb_stdlog,
2083 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
2084 paddr_nz (*text_offs),
2085 paddr_nz (*data_offs),
2086 paddr_nz (*bss_offs));
2087 }
2088
2089 return 0;
2090 }
2091
2092 /*
2093 * Function: remote_cisco_objfile_relocate
2094 *
2095 * Relocate the symbol file for a remote target.
2096 */
2097
2098 void
2099 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
2100 bfd_signed_vma bss_off)
2101 {
2102 struct section_offsets *offs;
2103
2104 if (text_off != 0 || data_off != 0 || bss_off != 0)
2105 {
2106 /* FIXME: This code assumes gdb-stabs.h is being used; it's
2107 broken for xcoff, dwarf, sdb-coff, etc. But there is no
2108 simple canonical representation for this stuff. */
2109
2110 offs = (struct section_offsets *)
2111 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2112 memcpy (offs, symfile_objfile->section_offsets,
2113 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2114
2115 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2116 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2117 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2118
2119 /* First call the standard objfile_relocate. */
2120 objfile_relocate (symfile_objfile, offs);
2121
2122 /* Now we need to fix up the section entries already attached to
2123 the exec target. These entries will control memory transfers
2124 from the exec file. */
2125
2126 exec_set_section_offsets (text_off, data_off, bss_off);
2127 }
2128 }
2129
2130 /* Stub for catch_errors. */
2131
2132 static int
2133 remote_start_remote_dummy (struct ui_out *uiout, void *dummy)
2134 {
2135 start_remote (); /* Initialize gdb process mechanisms */
2136 /* NOTE: Return something >=0. A -ve value is reserved for
2137 catch_exceptions. */
2138 return 1;
2139 }
2140
2141 static int
2142 remote_start_remote (struct ui_out *uiout, void *dummy)
2143 {
2144 immediate_quit++; /* Allow user to interrupt it */
2145
2146 /* Ack any packet which the remote side has already sent. */
2147 serial_write (remote_desc, "+", 1);
2148
2149 /* Let the stub know that we want it to return the thread. */
2150 set_thread (-1, 0);
2151
2152 inferior_ptid = remote_current_thread (inferior_ptid);
2153
2154 get_offsets (); /* Get text, data & bss offsets */
2155
2156 putpkt ("?"); /* initiate a query from remote machine */
2157 immediate_quit--;
2158
2159 /* NOTE: See comment above in remote_start_remote_dummy(). This
2160 function returns something >=0. */
2161 return remote_start_remote_dummy (uiout, dummy);
2162 }
2163
2164 /* Open a connection to a remote debugger.
2165 NAME is the filename used for communication. */
2166
2167 static void
2168 remote_open (char *name, int from_tty)
2169 {
2170 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2171 }
2172
2173 /* Just like remote_open, but with asynchronous support. */
2174 static void
2175 remote_async_open (char *name, int from_tty)
2176 {
2177 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2178 }
2179
2180 /* Open a connection to a remote debugger using the extended
2181 remote gdb protocol. NAME is the filename used for communication. */
2182
2183 static void
2184 extended_remote_open (char *name, int from_tty)
2185 {
2186 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2187 0 /* async_p */);
2188 }
2189
2190 /* Just like extended_remote_open, but with asynchronous support. */
2191 static void
2192 extended_remote_async_open (char *name, int from_tty)
2193 {
2194 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2195 1 /*extended_p */, 1 /* async_p */);
2196 }
2197
2198 /* Generic code for opening a connection to a remote target. */
2199
2200 static void
2201 init_all_packet_configs (void)
2202 {
2203 int i;
2204 update_packet_config (&remote_protocol_e);
2205 update_packet_config (&remote_protocol_E);
2206 update_packet_config (&remote_protocol_P);
2207 update_packet_config (&remote_protocol_qSymbol);
2208 update_packet_config (&remote_protocol_vcont);
2209 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2210 update_packet_config (&remote_protocol_Z[i]);
2211 /* Force remote_write_bytes to check whether target supports binary
2212 downloading. */
2213 update_packet_config (&remote_protocol_binary_download);
2214 }
2215
2216 /* Symbol look-up. */
2217
2218 static void
2219 remote_check_symbols (struct objfile *objfile)
2220 {
2221 struct remote_state *rs = get_remote_state ();
2222 char *msg, *reply, *tmp;
2223 struct minimal_symbol *sym;
2224 int end;
2225
2226 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2227 return;
2228
2229 msg = alloca (rs->remote_packet_size);
2230 reply = alloca (rs->remote_packet_size);
2231
2232 /* Invite target to request symbol lookups. */
2233
2234 putpkt ("qSymbol::");
2235 getpkt (reply, (rs->remote_packet_size), 0);
2236 packet_ok (reply, &remote_protocol_qSymbol);
2237
2238 while (strncmp (reply, "qSymbol:", 8) == 0)
2239 {
2240 tmp = &reply[8];
2241 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2242 msg[end] = '\0';
2243 sym = lookup_minimal_symbol (msg, NULL, NULL);
2244 if (sym == NULL)
2245 sprintf (msg, "qSymbol::%s", &reply[8]);
2246 else
2247 sprintf (msg, "qSymbol:%s:%s",
2248 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2249 &reply[8]);
2250 putpkt (msg);
2251 getpkt (reply, (rs->remote_packet_size), 0);
2252 }
2253 }
2254
2255 static struct serial *
2256 remote_serial_open (char *name)
2257 {
2258 static int udp_warning = 0;
2259
2260 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2261 of in ser-tcp.c, because it is the remote protocol assuming that the
2262 serial connection is reliable and not the serial connection promising
2263 to be. */
2264 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2265 {
2266 warning ("The remote protocol may be unreliable over UDP.");
2267 warning ("Some events may be lost, rendering further debugging "
2268 "impossible.");
2269 udp_warning = 1;
2270 }
2271
2272 return serial_open (name);
2273 }
2274
2275 static void
2276 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2277 int extended_p, int async_p)
2278 {
2279 int ex;
2280 struct remote_state *rs = get_remote_state ();
2281 if (name == 0)
2282 error ("To open a remote debug connection, you need to specify what\n"
2283 "serial device is attached to the remote system\n"
2284 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2285
2286 /* See FIXME above */
2287 if (!async_p)
2288 wait_forever_enabled_p = 1;
2289
2290 target_preopen (from_tty);
2291
2292 unpush_target (target);
2293
2294 remote_desc = remote_serial_open (name);
2295 if (!remote_desc)
2296 perror_with_name (name);
2297
2298 if (baud_rate != -1)
2299 {
2300 if (serial_setbaudrate (remote_desc, baud_rate))
2301 {
2302 serial_close (remote_desc);
2303 perror_with_name (name);
2304 }
2305 }
2306
2307 serial_raw (remote_desc);
2308
2309 /* If there is something sitting in the buffer we might take it as a
2310 response to a command, which would be bad. */
2311 serial_flush_input (remote_desc);
2312
2313 if (from_tty)
2314 {
2315 puts_filtered ("Remote debugging using ");
2316 puts_filtered (name);
2317 puts_filtered ("\n");
2318 }
2319 push_target (target); /* Switch to using remote target now */
2320
2321 init_all_packet_configs ();
2322
2323 general_thread = -2;
2324 continue_thread = -2;
2325
2326 /* Probe for ability to use "ThreadInfo" query, as required. */
2327 use_threadinfo_query = 1;
2328 use_threadextra_query = 1;
2329
2330 /* Without this, some commands which require an active target (such
2331 as kill) won't work. This variable serves (at least) double duty
2332 as both the pid of the target process (if it has such), and as a
2333 flag indicating that a target is active. These functions should
2334 be split out into seperate variables, especially since GDB will
2335 someday have a notion of debugging several processes. */
2336
2337 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2338
2339 if (async_p)
2340 {
2341 /* With this target we start out by owning the terminal. */
2342 remote_async_terminal_ours_p = 1;
2343
2344 /* FIXME: cagney/1999-09-23: During the initial connection it is
2345 assumed that the target is already ready and able to respond to
2346 requests. Unfortunately remote_start_remote() eventually calls
2347 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2348 around this. Eventually a mechanism that allows
2349 wait_for_inferior() to expect/get timeouts will be
2350 implemented. */
2351 wait_forever_enabled_p = 0;
2352 }
2353
2354 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2355 /* First delete any symbols previously loaded from shared libraries. */
2356 no_shared_libraries (NULL, 0);
2357 #endif
2358
2359 /* Start the remote connection. If error() or QUIT, discard this
2360 target (we'd otherwise be in an inconsistent state) and then
2361 propogate the error on up the exception chain. This ensures that
2362 the caller doesn't stumble along blindly assuming that the
2363 function succeeded. The CLI doesn't have this problem but other
2364 UI's, such as MI do.
2365
2366 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2367 this function should return an error indication letting the
2368 caller restore the previous state. Unfortunately the command
2369 ``target remote'' is directly wired to this function making that
2370 impossible. On a positive note, the CLI side of this problem has
2371 been fixed - the function set_cmd_context() makes it possible for
2372 all the ``target ....'' commands to share a common callback
2373 function. See cli-dump.c. */
2374 ex = catch_exceptions (uiout,
2375 remote_start_remote, NULL,
2376 "Couldn't establish connection to remote"
2377 " target\n",
2378 RETURN_MASK_ALL);
2379 if (ex < 0)
2380 {
2381 pop_target ();
2382 if (async_p)
2383 wait_forever_enabled_p = 1;
2384 throw_exception (ex);
2385 }
2386
2387 if (async_p)
2388 wait_forever_enabled_p = 1;
2389
2390 if (extended_p)
2391 {
2392 /* Tell the remote that we are using the extended protocol. */
2393 char *buf = alloca (rs->remote_packet_size);
2394 putpkt ("!");
2395 getpkt (buf, (rs->remote_packet_size), 0);
2396 }
2397 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2398 /* FIXME: need a master target_open vector from which all
2399 remote_opens can be called, so that stuff like this can
2400 go there. Failing that, the following code must be copied
2401 to the open function for any remote target that wants to
2402 support svr4 shared libraries. */
2403
2404 /* Set up to detect and load shared libraries. */
2405 if (exec_bfd) /* No use without an exec file. */
2406 {
2407 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2408 remote_check_symbols (symfile_objfile);
2409 }
2410 #endif
2411 }
2412
2413 /* This takes a program previously attached to and detaches it. After
2414 this is done, GDB can be used to debug some other program. We
2415 better not have left any breakpoints in the target program or it'll
2416 die when it hits one. */
2417
2418 static void
2419 remote_detach (char *args, int from_tty)
2420 {
2421 struct remote_state *rs = get_remote_state ();
2422 char *buf = alloca (rs->remote_packet_size);
2423
2424 if (args)
2425 error ("Argument given to \"detach\" when remotely debugging.");
2426
2427 /* Tell the remote target to detach. */
2428 strcpy (buf, "D");
2429 remote_send (buf, (rs->remote_packet_size));
2430
2431 /* Unregister the file descriptor from the event loop. */
2432 if (target_is_async_p ())
2433 serial_async (remote_desc, NULL, 0);
2434
2435 target_mourn_inferior ();
2436 if (from_tty)
2437 puts_filtered ("Ending remote debugging.\n");
2438 }
2439
2440 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2441
2442 static void
2443 remote_disconnect (char *args, int from_tty)
2444 {
2445 struct remote_state *rs = get_remote_state ();
2446 char *buf = alloca (rs->remote_packet_size);
2447
2448 if (args)
2449 error ("Argument given to \"detach\" when remotely debugging.");
2450
2451 /* Unregister the file descriptor from the event loop. */
2452 if (target_is_async_p ())
2453 serial_async (remote_desc, NULL, 0);
2454
2455 target_mourn_inferior ();
2456 if (from_tty)
2457 puts_filtered ("Ending remote debugging.\n");
2458 }
2459
2460 /* Convert hex digit A to a number. */
2461
2462 static int
2463 fromhex (int a)
2464 {
2465 if (a >= '0' && a <= '9')
2466 return a - '0';
2467 else if (a >= 'a' && a <= 'f')
2468 return a - 'a' + 10;
2469 else if (a >= 'A' && a <= 'F')
2470 return a - 'A' + 10;
2471 else
2472 error ("Reply contains invalid hex digit %d", a);
2473 }
2474
2475 static int
2476 hex2bin (const char *hex, char *bin, int count)
2477 {
2478 int i;
2479
2480 for (i = 0; i < count; i++)
2481 {
2482 if (hex[0] == 0 || hex[1] == 0)
2483 {
2484 /* Hex string is short, or of uneven length.
2485 Return the count that has been converted so far. */
2486 return i;
2487 }
2488 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2489 hex += 2;
2490 }
2491 return i;
2492 }
2493
2494 /* Convert number NIB to a hex digit. */
2495
2496 static int
2497 tohex (int nib)
2498 {
2499 if (nib < 10)
2500 return '0' + nib;
2501 else
2502 return 'a' + nib - 10;
2503 }
2504
2505 static int
2506 bin2hex (const char *bin, char *hex, int count)
2507 {
2508 int i;
2509 /* May use a length, or a nul-terminated string as input. */
2510 if (count == 0)
2511 count = strlen (bin);
2512
2513 for (i = 0; i < count; i++)
2514 {
2515 *hex++ = tohex ((*bin >> 4) & 0xf);
2516 *hex++ = tohex (*bin++ & 0xf);
2517 }
2518 *hex = 0;
2519 return i;
2520 }
2521 \f
2522 /* Check for the availability of vCont. This function should also check
2523 the response. */
2524
2525 static void
2526 remote_vcont_probe (struct remote_state *rs, char *buf)
2527 {
2528 strcpy (buf, "vCont?");
2529 putpkt (buf);
2530 getpkt (buf, rs->remote_packet_size, 0);
2531
2532 /* Make sure that the features we assume are supported. */
2533 if (strncmp (buf, "vCont", 5) == 0)
2534 {
2535 char *p = &buf[5];
2536 int support_s, support_S, support_c, support_C;
2537
2538 support_s = 0;
2539 support_S = 0;
2540 support_c = 0;
2541 support_C = 0;
2542 while (p && *p == ';')
2543 {
2544 p++;
2545 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2546 support_s = 1;
2547 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2548 support_S = 1;
2549 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2550 support_c = 1;
2551 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2552 support_C = 1;
2553
2554 p = strchr (p, ';');
2555 }
2556
2557 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2558 BUF will make packet_ok disable the packet. */
2559 if (!support_s || !support_S || !support_c || !support_C)
2560 buf[0] = 0;
2561 }
2562
2563 packet_ok (buf, &remote_protocol_vcont);
2564 }
2565
2566 /* Resume the remote inferior by using a "vCont" packet. The thread
2567 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2568 resumed thread should be single-stepped and/or signalled. If PTID's
2569 PID is -1, then all threads are resumed; the thread to be stepped and/or
2570 signalled is given in the global INFERIOR_PTID. This function returns
2571 non-zero iff it resumes the inferior.
2572
2573 This function issues a strict subset of all possible vCont commands at the
2574 moment. */
2575
2576 static int
2577 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2578 {
2579 struct remote_state *rs = get_remote_state ();
2580 int pid = PIDGET (ptid);
2581 char *buf = NULL;
2582 struct cleanup *old_cleanup;
2583
2584 buf = xmalloc (rs->remote_packet_size);
2585 old_cleanup = make_cleanup (xfree, buf);
2586
2587 if (remote_protocol_vcont.support == PACKET_SUPPORT_UNKNOWN)
2588 remote_vcont_probe (rs, buf);
2589
2590 if (remote_protocol_vcont.support == PACKET_DISABLE)
2591 {
2592 do_cleanups (old_cleanup);
2593 return 0;
2594 }
2595
2596 /* If we could generate a wider range of packets, we'd have to worry
2597 about overflowing BUF. Should there be a generic
2598 "multi-part-packet" packet? */
2599
2600 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2601 {
2602 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2603 don't have any PID numbers the inferior will understand. Make sure
2604 to only send forms that do not specify a PID. */
2605 if (step && siggnal != TARGET_SIGNAL_0)
2606 sprintf (buf, "vCont;S%02x", siggnal);
2607 else if (step)
2608 sprintf (buf, "vCont;s");
2609 else if (siggnal != TARGET_SIGNAL_0)
2610 sprintf (buf, "vCont;C%02x", siggnal);
2611 else
2612 sprintf (buf, "vCont;c");
2613 }
2614 else if (pid == -1)
2615 {
2616 /* Resume all threads, with preference for INFERIOR_PTID. */
2617 if (step && siggnal != TARGET_SIGNAL_0)
2618 sprintf (buf, "vCont;S%02x:%x;c", siggnal, PIDGET (inferior_ptid));
2619 else if (step)
2620 sprintf (buf, "vCont;s:%x;c", PIDGET (inferior_ptid));
2621 else if (siggnal != TARGET_SIGNAL_0)
2622 sprintf (buf, "vCont;C%02x:%x;c", siggnal, PIDGET (inferior_ptid));
2623 else
2624 sprintf (buf, "vCont;c");
2625 }
2626 else
2627 {
2628 /* Scheduler locking; resume only PTID. */
2629 if (step && siggnal != TARGET_SIGNAL_0)
2630 sprintf (buf, "vCont;S%02x:%x", siggnal, pid);
2631 else if (step)
2632 sprintf (buf, "vCont;s:%x", pid);
2633 else if (siggnal != TARGET_SIGNAL_0)
2634 sprintf (buf, "vCont;C%02x:%x", siggnal, pid);
2635 else
2636 sprintf (buf, "vCont;c:%x", pid);
2637 }
2638
2639 putpkt (buf);
2640
2641 do_cleanups (old_cleanup);
2642
2643 return 1;
2644 }
2645
2646 /* Tell the remote machine to resume. */
2647
2648 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2649
2650 static int last_sent_step;
2651
2652 static void
2653 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2654 {
2655 struct remote_state *rs = get_remote_state ();
2656 char *buf = alloca (rs->remote_packet_size);
2657 int pid = PIDGET (ptid);
2658 char *p;
2659
2660 last_sent_signal = siggnal;
2661 last_sent_step = step;
2662
2663 /* A hook for when we need to do something at the last moment before
2664 resumption. */
2665 if (target_resume_hook)
2666 (*target_resume_hook) ();
2667
2668 /* The vCont packet doesn't need to specify threads via Hc. */
2669 if (remote_vcont_resume (ptid, step, siggnal))
2670 return;
2671
2672 /* All other supported resume packets do use Hc, so call set_thread. */
2673 if (pid == -1)
2674 set_thread (0, 0); /* run any thread */
2675 else
2676 set_thread (pid, 0); /* run this thread */
2677
2678 /* The s/S/c/C packets do not return status. So if the target does
2679 not support the S or C packets, the debug agent returns an empty
2680 string which is detected in remote_wait(). This protocol defect
2681 is fixed in the e/E packets. */
2682
2683 if (step && step_range_end)
2684 {
2685 /* If the target does not support the 'E' packet, we try the 'S'
2686 packet. Ideally we would fall back to the 'e' packet if that
2687 too is not supported. But that would require another copy of
2688 the code to issue the 'e' packet (and fall back to 's' if not
2689 supported) in remote_wait(). */
2690
2691 if (siggnal != TARGET_SIGNAL_0)
2692 {
2693 if (remote_protocol_E.support != PACKET_DISABLE)
2694 {
2695 p = buf;
2696 *p++ = 'E';
2697 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2698 *p++ = tohex (((int) siggnal) & 0xf);
2699 *p++ = ',';
2700 p += hexnumstr (p, (ULONGEST) step_range_start);
2701 *p++ = ',';
2702 p += hexnumstr (p, (ULONGEST) step_range_end);
2703 *p++ = 0;
2704
2705 putpkt (buf);
2706 getpkt (buf, (rs->remote_packet_size), 0);
2707
2708 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2709 return;
2710 }
2711 }
2712 else
2713 {
2714 if (remote_protocol_e.support != PACKET_DISABLE)
2715 {
2716 p = buf;
2717 *p++ = 'e';
2718 p += hexnumstr (p, (ULONGEST) step_range_start);
2719 *p++ = ',';
2720 p += hexnumstr (p, (ULONGEST) step_range_end);
2721 *p++ = 0;
2722
2723 putpkt (buf);
2724 getpkt (buf, (rs->remote_packet_size), 0);
2725
2726 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2727 return;
2728 }
2729 }
2730 }
2731
2732 if (siggnal != TARGET_SIGNAL_0)
2733 {
2734 buf[0] = step ? 'S' : 'C';
2735 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2736 buf[2] = tohex (((int) siggnal) & 0xf);
2737 buf[3] = '\0';
2738 }
2739 else
2740 strcpy (buf, step ? "s" : "c");
2741
2742 putpkt (buf);
2743 }
2744
2745 /* Same as remote_resume, but with async support. */
2746 static void
2747 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2748 {
2749 remote_resume (ptid, step, siggnal);
2750
2751 /* We are about to start executing the inferior, let's register it
2752 with the event loop. NOTE: this is the one place where all the
2753 execution commands end up. We could alternatively do this in each
2754 of the execution commands in infcmd.c.*/
2755 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2756 into infcmd.c in order to allow inferior function calls to work
2757 NOT asynchronously. */
2758 if (event_loop_p && target_can_async_p ())
2759 target_async (inferior_event_handler, 0);
2760 /* Tell the world that the target is now executing. */
2761 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2762 this? Instead, should the client of target just assume (for
2763 async targets) that the target is going to start executing? Is
2764 this information already found in the continuation block? */
2765 if (target_is_async_p ())
2766 target_executing = 1;
2767 }
2768 \f
2769
2770 /* Set up the signal handler for SIGINT, while the target is
2771 executing, ovewriting the 'regular' SIGINT signal handler. */
2772 static void
2773 initialize_sigint_signal_handler (void)
2774 {
2775 sigint_remote_token =
2776 create_async_signal_handler (async_remote_interrupt, NULL);
2777 signal (SIGINT, handle_remote_sigint);
2778 }
2779
2780 /* Signal handler for SIGINT, while the target is executing. */
2781 static void
2782 handle_remote_sigint (int sig)
2783 {
2784 signal (sig, handle_remote_sigint_twice);
2785 sigint_remote_twice_token =
2786 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2787 mark_async_signal_handler_wrapper (sigint_remote_token);
2788 }
2789
2790 /* Signal handler for SIGINT, installed after SIGINT has already been
2791 sent once. It will take effect the second time that the user sends
2792 a ^C. */
2793 static void
2794 handle_remote_sigint_twice (int sig)
2795 {
2796 signal (sig, handle_sigint);
2797 sigint_remote_twice_token =
2798 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2799 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2800 }
2801
2802 /* Perform the real interruption of the target execution, in response
2803 to a ^C. */
2804 static void
2805 async_remote_interrupt (gdb_client_data arg)
2806 {
2807 if (remote_debug)
2808 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2809
2810 target_stop ();
2811 }
2812
2813 /* Perform interrupt, if the first attempt did not succeed. Just give
2814 up on the target alltogether. */
2815 void
2816 async_remote_interrupt_twice (gdb_client_data arg)
2817 {
2818 if (remote_debug)
2819 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2820 /* Do something only if the target was not killed by the previous
2821 cntl-C. */
2822 if (target_executing)
2823 {
2824 interrupt_query ();
2825 signal (SIGINT, handle_remote_sigint);
2826 }
2827 }
2828
2829 /* Reinstall the usual SIGINT handlers, after the target has
2830 stopped. */
2831 static void
2832 cleanup_sigint_signal_handler (void *dummy)
2833 {
2834 signal (SIGINT, handle_sigint);
2835 if (sigint_remote_twice_token)
2836 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2837 if (sigint_remote_token)
2838 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2839 }
2840
2841 /* Send ^C to target to halt it. Target will respond, and send us a
2842 packet. */
2843 static void (*ofunc) (int);
2844
2845 /* The command line interface's stop routine. This function is installed
2846 as a signal handler for SIGINT. The first time a user requests a
2847 stop, we call remote_stop to send a break or ^C. If there is no
2848 response from the target (it didn't stop when the user requested it),
2849 we ask the user if he'd like to detach from the target. */
2850 static void
2851 remote_interrupt (int signo)
2852 {
2853 /* If this doesn't work, try more severe steps. */
2854 signal (signo, remote_interrupt_twice);
2855
2856 if (remote_debug)
2857 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2858
2859 target_stop ();
2860 }
2861
2862 /* The user typed ^C twice. */
2863
2864 static void
2865 remote_interrupt_twice (int signo)
2866 {
2867 signal (signo, ofunc);
2868 interrupt_query ();
2869 signal (signo, remote_interrupt);
2870 }
2871
2872 /* This is the generic stop called via the target vector. When a target
2873 interrupt is requested, either by the command line or the GUI, we
2874 will eventually end up here. */
2875 static void
2876 remote_stop (void)
2877 {
2878 /* Send a break or a ^C, depending on user preference. */
2879 if (remote_debug)
2880 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2881
2882 if (remote_break)
2883 serial_send_break (remote_desc);
2884 else
2885 serial_write (remote_desc, "\003", 1);
2886 }
2887
2888 /* Ask the user what to do when an interrupt is received. */
2889
2890 static void
2891 interrupt_query (void)
2892 {
2893 target_terminal_ours ();
2894
2895 if (query ("Interrupted while waiting for the program.\n\
2896 Give up (and stop debugging it)? "))
2897 {
2898 target_mourn_inferior ();
2899 throw_exception (RETURN_QUIT);
2900 }
2901
2902 target_terminal_inferior ();
2903 }
2904
2905 /* Enable/disable target terminal ownership. Most targets can use
2906 terminal groups to control terminal ownership. Remote targets are
2907 different in that explicit transfer of ownership to/from GDB/target
2908 is required. */
2909
2910 static void
2911 remote_async_terminal_inferior (void)
2912 {
2913 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2914 sync_execution here. This function should only be called when
2915 GDB is resuming the inferior in the forground. A background
2916 resume (``run&'') should leave GDB in control of the terminal and
2917 consequently should not call this code. */
2918 if (!sync_execution)
2919 return;
2920 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2921 calls target_terminal_*() idenpotent. The event-loop GDB talking
2922 to an asynchronous target with a synchronous command calls this
2923 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2924 stops trying to transfer the terminal to the target when it
2925 shouldn't this guard can go away. */
2926 if (!remote_async_terminal_ours_p)
2927 return;
2928 delete_file_handler (input_fd);
2929 remote_async_terminal_ours_p = 0;
2930 initialize_sigint_signal_handler ();
2931 /* NOTE: At this point we could also register our selves as the
2932 recipient of all input. Any characters typed could then be
2933 passed on down to the target. */
2934 }
2935
2936 static void
2937 remote_async_terminal_ours (void)
2938 {
2939 /* See FIXME in remote_async_terminal_inferior. */
2940 if (!sync_execution)
2941 return;
2942 /* See FIXME in remote_async_terminal_inferior. */
2943 if (remote_async_terminal_ours_p)
2944 return;
2945 cleanup_sigint_signal_handler (NULL);
2946 add_file_handler (input_fd, stdin_event_handler, 0);
2947 remote_async_terminal_ours_p = 1;
2948 }
2949
2950 /* If nonzero, ignore the next kill. */
2951
2952 int kill_kludge;
2953
2954 void
2955 remote_console_output (char *msg)
2956 {
2957 char *p;
2958
2959 for (p = msg; p[0] && p[1]; p += 2)
2960 {
2961 char tb[2];
2962 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2963 tb[0] = c;
2964 tb[1] = 0;
2965 fputs_unfiltered (tb, gdb_stdtarg);
2966 }
2967 gdb_flush (gdb_stdtarg);
2968 }
2969
2970 /* Wait until the remote machine stops, then return,
2971 storing status in STATUS just as `wait' would.
2972 Returns "pid", which in the case of a multi-threaded
2973 remote OS, is the thread-id. */
2974
2975 static ptid_t
2976 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2977 {
2978 struct remote_state *rs = get_remote_state ();
2979 unsigned char *buf = alloca (rs->remote_packet_size);
2980 ULONGEST thread_num = -1;
2981 ULONGEST addr;
2982
2983 status->kind = TARGET_WAITKIND_EXITED;
2984 status->value.integer = 0;
2985
2986 while (1)
2987 {
2988 unsigned char *p;
2989
2990 ofunc = signal (SIGINT, remote_interrupt);
2991 getpkt (buf, (rs->remote_packet_size), 1);
2992 signal (SIGINT, ofunc);
2993
2994 /* This is a hook for when we need to do something (perhaps the
2995 collection of trace data) every time the target stops. */
2996 if (target_wait_loop_hook)
2997 (*target_wait_loop_hook) ();
2998
2999 remote_stopped_by_watchpoint_p = 0;
3000
3001 switch (buf[0])
3002 {
3003 case 'E': /* Error of some sort */
3004 warning ("Remote failure reply: %s", buf);
3005 continue;
3006 case 'F': /* File-I/O request */
3007 remote_fileio_request (buf);
3008 continue;
3009 case 'T': /* Status with PC, SP, FP, ... */
3010 {
3011 int i;
3012 char regs[MAX_REGISTER_SIZE];
3013
3014 /* Expedited reply, containing Signal, {regno, reg} repeat */
3015 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3016 ss = signal number
3017 n... = register number
3018 r... = register contents
3019 */
3020 p = &buf[3]; /* after Txx */
3021
3022 while (*p)
3023 {
3024 unsigned char *p1;
3025 char *p_temp;
3026 int fieldsize;
3027 LONGEST pnum = 0;
3028
3029 /* If the packet contains a register number save it in pnum
3030 and set p1 to point to the character following it.
3031 Otherwise p1 points to p. */
3032
3033 /* If this packet is an awatch packet, don't parse the 'a'
3034 as a register number. */
3035
3036 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3037 {
3038 /* Read the ``P'' register number. */
3039 pnum = strtol (p, &p_temp, 16);
3040 p1 = (unsigned char *) p_temp;
3041 }
3042 else
3043 p1 = p;
3044
3045 if (p1 == p) /* No register number present here */
3046 {
3047 p1 = (unsigned char *) strchr (p, ':');
3048 if (p1 == NULL)
3049 warning ("Malformed packet(a) (missing colon): %s\n\
3050 Packet: '%s'\n",
3051 p, buf);
3052 if (strncmp (p, "thread", p1 - p) == 0)
3053 {
3054 p_temp = unpack_varlen_hex (++p1, &thread_num);
3055 record_currthread (thread_num);
3056 p = (unsigned char *) p_temp;
3057 }
3058 else if ((strncmp (p, "watch", p1 - p) == 0)
3059 || (strncmp (p, "rwatch", p1 - p) == 0)
3060 || (strncmp (p, "awatch", p1 - p) == 0))
3061 {
3062 remote_stopped_by_watchpoint_p = 1;
3063 p = unpack_varlen_hex (++p1, &addr);
3064 remote_watch_data_address = (CORE_ADDR)addr;
3065 }
3066 else
3067 {
3068 /* Silently skip unknown optional info. */
3069 p_temp = strchr (p1 + 1, ';');
3070 if (p_temp)
3071 p = (unsigned char *) p_temp;
3072 }
3073 }
3074 else
3075 {
3076 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3077 p = p1;
3078
3079 if (*p++ != ':')
3080 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
3081 p, buf);
3082
3083 if (reg == NULL)
3084 error ("Remote sent bad register number %s: %s\nPacket: '%s'\n",
3085 phex_nz (pnum, 0), p, buf);
3086
3087 fieldsize = hex2bin (p, regs, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3088 p += 2 * fieldsize;
3089 if (fieldsize < DEPRECATED_REGISTER_RAW_SIZE (reg->regnum))
3090 warning ("Remote reply is too short: %s", buf);
3091 supply_register (reg->regnum, regs);
3092 }
3093
3094 if (*p++ != ';')
3095 error ("Remote register badly formatted: %s\nhere: %s", buf, p);
3096 }
3097 }
3098 /* fall through */
3099 case 'S': /* Old style status, just signal only */
3100 status->kind = TARGET_WAITKIND_STOPPED;
3101 status->value.sig = (enum target_signal)
3102 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3103
3104 if (buf[3] == 'p')
3105 {
3106 /* Export Cisco kernel mode as a convenience variable
3107 (so that it can be used in the GDB prompt if desired). */
3108
3109 if (cisco_kernel_mode == 1)
3110 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3111 value_from_string ("PDEBUG-"));
3112 cisco_kernel_mode = 0;
3113 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3114 record_currthread (thread_num);
3115 }
3116 else if (buf[3] == 'k')
3117 {
3118 /* Export Cisco kernel mode as a convenience variable
3119 (so that it can be used in the GDB prompt if desired). */
3120
3121 if (cisco_kernel_mode == 1)
3122 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3123 value_from_string ("KDEBUG-"));
3124 cisco_kernel_mode = 1;
3125 }
3126 goto got_status;
3127 case 'N': /* Cisco special: status and offsets */
3128 {
3129 bfd_vma text_addr, data_addr, bss_addr;
3130 bfd_signed_vma text_off, data_off, bss_off;
3131 unsigned char *p1;
3132
3133 status->kind = TARGET_WAITKIND_STOPPED;
3134 status->value.sig = (enum target_signal)
3135 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3136
3137 if (symfile_objfile == NULL)
3138 {
3139 warning ("Relocation packet received with no symbol file. \
3140 Packet Dropped");
3141 goto got_status;
3142 }
3143
3144 /* Relocate object file. Buffer format is NAATT;DD;BB
3145 * where AA is the signal number, TT is the new text
3146 * address, DD * is the new data address, and BB is the
3147 * new bss address. */
3148
3149 p = &buf[3];
3150 text_addr = strtoul (p, (char **) &p1, 16);
3151 if (p1 == p || *p1 != ';')
3152 warning ("Malformed relocation packet: Packet '%s'", buf);
3153 p = p1 + 1;
3154 data_addr = strtoul (p, (char **) &p1, 16);
3155 if (p1 == p || *p1 != ';')
3156 warning ("Malformed relocation packet: Packet '%s'", buf);
3157 p = p1 + 1;
3158 bss_addr = strtoul (p, (char **) &p1, 16);
3159 if (p1 == p)
3160 warning ("Malformed relocation packet: Packet '%s'", buf);
3161
3162 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3163 &text_off, &data_off, &bss_off)
3164 == 0)
3165 if (text_off != 0 || data_off != 0 || bss_off != 0)
3166 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3167
3168 goto got_status;
3169 }
3170 case 'W': /* Target exited */
3171 {
3172 /* The remote process exited. */
3173 status->kind = TARGET_WAITKIND_EXITED;
3174 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3175 goto got_status;
3176 }
3177 case 'X':
3178 status->kind = TARGET_WAITKIND_SIGNALLED;
3179 status->value.sig = (enum target_signal)
3180 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3181 kill_kludge = 1;
3182
3183 goto got_status;
3184 case 'O': /* Console output */
3185 remote_console_output (buf + 1);
3186 continue;
3187 case '\0':
3188 if (last_sent_signal != TARGET_SIGNAL_0)
3189 {
3190 /* Zero length reply means that we tried 'S' or 'C' and
3191 the remote system doesn't support it. */
3192 target_terminal_ours_for_output ();
3193 printf_filtered
3194 ("Can't send signals to this remote system. %s not sent.\n",
3195 target_signal_to_name (last_sent_signal));
3196 last_sent_signal = TARGET_SIGNAL_0;
3197 target_terminal_inferior ();
3198
3199 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3200 putpkt ((char *) buf);
3201 continue;
3202 }
3203 /* else fallthrough */
3204 default:
3205 warning ("Invalid remote reply: %s", buf);
3206 continue;
3207 }
3208 }
3209 got_status:
3210 if (thread_num != -1)
3211 {
3212 return pid_to_ptid (thread_num);
3213 }
3214 return inferior_ptid;
3215 }
3216
3217 /* Async version of remote_wait. */
3218 static ptid_t
3219 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3220 {
3221 struct remote_state *rs = get_remote_state ();
3222 unsigned char *buf = alloca (rs->remote_packet_size);
3223 ULONGEST thread_num = -1;
3224 ULONGEST addr;
3225
3226 status->kind = TARGET_WAITKIND_EXITED;
3227 status->value.integer = 0;
3228
3229 remote_stopped_by_watchpoint_p = 0;
3230
3231 while (1)
3232 {
3233 unsigned char *p;
3234
3235 if (!target_is_async_p ())
3236 ofunc = signal (SIGINT, remote_interrupt);
3237 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3238 _never_ wait for ever -> test on target_is_async_p().
3239 However, before we do that we need to ensure that the caller
3240 knows how to take the target into/out of async mode. */
3241 getpkt (buf, (rs->remote_packet_size), wait_forever_enabled_p);
3242 if (!target_is_async_p ())
3243 signal (SIGINT, ofunc);
3244
3245 /* This is a hook for when we need to do something (perhaps the
3246 collection of trace data) every time the target stops. */
3247 if (target_wait_loop_hook)
3248 (*target_wait_loop_hook) ();
3249
3250 switch (buf[0])
3251 {
3252 case 'E': /* Error of some sort */
3253 warning ("Remote failure reply: %s", buf);
3254 continue;
3255 case 'F': /* File-I/O request */
3256 remote_fileio_request (buf);
3257 continue;
3258 case 'T': /* Status with PC, SP, FP, ... */
3259 {
3260 int i;
3261 char regs[MAX_REGISTER_SIZE];
3262
3263 /* Expedited reply, containing Signal, {regno, reg} repeat */
3264 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3265 ss = signal number
3266 n... = register number
3267 r... = register contents
3268 */
3269 p = &buf[3]; /* after Txx */
3270
3271 while (*p)
3272 {
3273 unsigned char *p1;
3274 char *p_temp;
3275 int fieldsize;
3276 long pnum = 0;
3277
3278 /* If the packet contains a register number, save it in pnum
3279 and set p1 to point to the character following it.
3280 Otherwise p1 points to p. */
3281
3282 /* If this packet is an awatch packet, don't parse the 'a'
3283 as a register number. */
3284
3285 if (!strncmp (p, "awatch", strlen ("awatch")) != 0)
3286 {
3287 /* Read the register number. */
3288 pnum = strtol (p, &p_temp, 16);
3289 p1 = (unsigned char *) p_temp;
3290 }
3291 else
3292 p1 = p;
3293
3294 if (p1 == p) /* No register number present here */
3295 {
3296 p1 = (unsigned char *) strchr (p, ':');
3297 if (p1 == NULL)
3298 error ("Malformed packet(a) (missing colon): %s\nPacket: '%s'\n",
3299 p, buf);
3300 if (strncmp (p, "thread", p1 - p) == 0)
3301 {
3302 p_temp = unpack_varlen_hex (++p1, &thread_num);
3303 record_currthread (thread_num);
3304 p = (unsigned char *) p_temp;
3305 }
3306 else if ((strncmp (p, "watch", p1 - p) == 0)
3307 || (strncmp (p, "rwatch", p1 - p) == 0)
3308 || (strncmp (p, "awatch", p1 - p) == 0))
3309 {
3310 remote_stopped_by_watchpoint_p = 1;
3311 p = unpack_varlen_hex (++p1, &addr);
3312 remote_watch_data_address = (CORE_ADDR)addr;
3313 }
3314 else
3315 {
3316 /* Silently skip unknown optional info. */
3317 p_temp = (unsigned char *) strchr (p1 + 1, ';');
3318 if (p_temp)
3319 p = p_temp;
3320 }
3321 }
3322
3323 else
3324 {
3325 struct packet_reg *reg = packet_reg_from_pnum (rs, pnum);
3326 p = p1;
3327 if (*p++ != ':')
3328 error ("Malformed packet(b) (missing colon): %s\nPacket: '%s'\n",
3329 p, buf);
3330
3331 if (reg == NULL)
3332 error ("Remote sent bad register number %ld: %s\nPacket: '%s'\n",
3333 pnum, p, buf);
3334
3335 fieldsize = hex2bin (p, regs, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3336 p += 2 * fieldsize;
3337 if (fieldsize < DEPRECATED_REGISTER_RAW_SIZE (reg->regnum))
3338 warning ("Remote reply is too short: %s", buf);
3339 supply_register (reg->regnum, regs);
3340 }
3341
3342 if (*p++ != ';')
3343 error ("Remote register badly formatted: %s\nhere: %s",
3344 buf, p);
3345 }
3346 }
3347 /* fall through */
3348 case 'S': /* Old style status, just signal only */
3349 status->kind = TARGET_WAITKIND_STOPPED;
3350 status->value.sig = (enum target_signal)
3351 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3352
3353 if (buf[3] == 'p')
3354 {
3355 /* Export Cisco kernel mode as a convenience variable
3356 (so that it can be used in the GDB prompt if desired). */
3357
3358 if (cisco_kernel_mode == 1)
3359 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3360 value_from_string ("PDEBUG-"));
3361 cisco_kernel_mode = 0;
3362 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3363 record_currthread (thread_num);
3364 }
3365 else if (buf[3] == 'k')
3366 {
3367 /* Export Cisco kernel mode as a convenience variable
3368 (so that it can be used in the GDB prompt if desired). */
3369
3370 if (cisco_kernel_mode == 1)
3371 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3372 value_from_string ("KDEBUG-"));
3373 cisco_kernel_mode = 1;
3374 }
3375 goto got_status;
3376 case 'N': /* Cisco special: status and offsets */
3377 {
3378 bfd_vma text_addr, data_addr, bss_addr;
3379 bfd_signed_vma text_off, data_off, bss_off;
3380 unsigned char *p1;
3381
3382 status->kind = TARGET_WAITKIND_STOPPED;
3383 status->value.sig = (enum target_signal)
3384 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3385
3386 if (symfile_objfile == NULL)
3387 {
3388 warning ("Relocation packet recieved with no symbol file. \
3389 Packet Dropped");
3390 goto got_status;
3391 }
3392
3393 /* Relocate object file. Buffer format is NAATT;DD;BB
3394 * where AA is the signal number, TT is the new text
3395 * address, DD * is the new data address, and BB is the
3396 * new bss address. */
3397
3398 p = &buf[3];
3399 text_addr = strtoul (p, (char **) &p1, 16);
3400 if (p1 == p || *p1 != ';')
3401 warning ("Malformed relocation packet: Packet '%s'", buf);
3402 p = p1 + 1;
3403 data_addr = strtoul (p, (char **) &p1, 16);
3404 if (p1 == p || *p1 != ';')
3405 warning ("Malformed relocation packet: Packet '%s'", buf);
3406 p = p1 + 1;
3407 bss_addr = strtoul (p, (char **) &p1, 16);
3408 if (p1 == p)
3409 warning ("Malformed relocation packet: Packet '%s'", buf);
3410
3411 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3412 &text_off, &data_off, &bss_off)
3413 == 0)
3414 if (text_off != 0 || data_off != 0 || bss_off != 0)
3415 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3416
3417 goto got_status;
3418 }
3419 case 'W': /* Target exited */
3420 {
3421 /* The remote process exited. */
3422 status->kind = TARGET_WAITKIND_EXITED;
3423 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3424 goto got_status;
3425 }
3426 case 'X':
3427 status->kind = TARGET_WAITKIND_SIGNALLED;
3428 status->value.sig = (enum target_signal)
3429 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3430 kill_kludge = 1;
3431
3432 goto got_status;
3433 case 'O': /* Console output */
3434 remote_console_output (buf + 1);
3435 /* Return immediately to the event loop. The event loop will
3436 still be waiting on the inferior afterwards. */
3437 status->kind = TARGET_WAITKIND_IGNORE;
3438 goto got_status;
3439 case '\0':
3440 if (last_sent_signal != TARGET_SIGNAL_0)
3441 {
3442 /* Zero length reply means that we tried 'S' or 'C' and
3443 the remote system doesn't support it. */
3444 target_terminal_ours_for_output ();
3445 printf_filtered
3446 ("Can't send signals to this remote system. %s not sent.\n",
3447 target_signal_to_name (last_sent_signal));
3448 last_sent_signal = TARGET_SIGNAL_0;
3449 target_terminal_inferior ();
3450
3451 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3452 putpkt ((char *) buf);
3453 continue;
3454 }
3455 /* else fallthrough */
3456 default:
3457 warning ("Invalid remote reply: %s", buf);
3458 continue;
3459 }
3460 }
3461 got_status:
3462 if (thread_num != -1)
3463 {
3464 return pid_to_ptid (thread_num);
3465 }
3466 return inferior_ptid;
3467 }
3468
3469 /* Number of bytes of registers this stub implements. */
3470
3471 static int register_bytes_found;
3472
3473 /* Read the remote registers into the block REGS. */
3474 /* Currently we just read all the registers, so we don't use regnum. */
3475
3476 static void
3477 remote_fetch_registers (int regnum)
3478 {
3479 struct remote_state *rs = get_remote_state ();
3480 char *buf = alloca (rs->remote_packet_size);
3481 int i;
3482 char *p;
3483 char *regs = alloca (rs->sizeof_g_packet);
3484
3485 set_thread (PIDGET (inferior_ptid), 1);
3486
3487 if (regnum >= 0)
3488 {
3489 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3490 gdb_assert (reg != NULL);
3491 if (!reg->in_g_packet)
3492 internal_error (__FILE__, __LINE__,
3493 "Attempt to fetch a non G-packet register when this "
3494 "remote.c does not support the p-packet.");
3495 }
3496
3497 sprintf (buf, "g");
3498 remote_send (buf, (rs->remote_packet_size));
3499
3500 /* Save the size of the packet sent to us by the target. Its used
3501 as a heuristic when determining the max size of packets that the
3502 target can safely receive. */
3503 if ((rs->actual_register_packet_size) == 0)
3504 (rs->actual_register_packet_size) = strlen (buf);
3505
3506 /* Unimplemented registers read as all bits zero. */
3507 memset (regs, 0, rs->sizeof_g_packet);
3508
3509 /* We can get out of synch in various cases. If the first character
3510 in the buffer is not a hex character, assume that has happened
3511 and try to fetch another packet to read. */
3512 while ((buf[0] < '0' || buf[0] > '9')
3513 && (buf[0] < 'a' || buf[0] > 'f')
3514 && buf[0] != 'x') /* New: unavailable register value */
3515 {
3516 if (remote_debug)
3517 fprintf_unfiltered (gdb_stdlog,
3518 "Bad register packet; fetching a new packet\n");
3519 getpkt (buf, (rs->remote_packet_size), 0);
3520 }
3521
3522 /* Reply describes registers byte by byte, each byte encoded as two
3523 hex characters. Suck them all up, then supply them to the
3524 register cacheing/storage mechanism. */
3525
3526 p = buf;
3527 for (i = 0; i < rs->sizeof_g_packet; i++)
3528 {
3529 if (p[0] == 0)
3530 break;
3531 if (p[1] == 0)
3532 {
3533 warning ("Remote reply is of odd length: %s", buf);
3534 /* Don't change register_bytes_found in this case, and don't
3535 print a second warning. */
3536 goto supply_them;
3537 }
3538 if (p[0] == 'x' && p[1] == 'x')
3539 regs[i] = 0; /* 'x' */
3540 else
3541 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3542 p += 2;
3543 }
3544
3545 if (i != register_bytes_found)
3546 {
3547 register_bytes_found = i;
3548 if (REGISTER_BYTES_OK_P ()
3549 && !REGISTER_BYTES_OK (i))
3550 warning ("Remote reply is too short: %s", buf);
3551 }
3552
3553 supply_them:
3554 {
3555 int i;
3556 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3557 {
3558 struct packet_reg *r = &rs->regs[i];
3559 if (r->in_g_packet)
3560 {
3561 if (r->offset * 2 >= strlen (buf))
3562 /* A short packet that didn't include the register's
3563 value, this implies that the register is zero (and
3564 not that the register is unavailable). Supply that
3565 zero value. */
3566 regcache_raw_supply (current_regcache, r->regnum, NULL);
3567 else if (buf[r->offset * 2] == 'x')
3568 {
3569 gdb_assert (r->offset * 2 < strlen (buf));
3570 /* The register isn't available, mark it as such (at
3571 the same time setting the value to zero). */
3572 regcache_raw_supply (current_regcache, r->regnum, NULL);
3573 set_register_cached (i, -1);
3574 }
3575 else
3576 regcache_raw_supply (current_regcache, r->regnum,
3577 regs + r->offset);
3578 }
3579 }
3580 }
3581 }
3582
3583 /* Prepare to store registers. Since we may send them all (using a
3584 'G' request), we have to read out the ones we don't want to change
3585 first. */
3586
3587 static void
3588 remote_prepare_to_store (void)
3589 {
3590 struct remote_state *rs = get_remote_state ();
3591 int i;
3592 char buf[MAX_REGISTER_SIZE];
3593
3594 /* Make sure the entire registers array is valid. */
3595 switch (remote_protocol_P.support)
3596 {
3597 case PACKET_DISABLE:
3598 case PACKET_SUPPORT_UNKNOWN:
3599 /* Make sure all the necessary registers are cached. */
3600 for (i = 0; i < NUM_REGS; i++)
3601 if (rs->regs[i].in_g_packet)
3602 regcache_raw_read (current_regcache, rs->regs[i].regnum, buf);
3603 break;
3604 case PACKET_ENABLE:
3605 break;
3606 }
3607 }
3608
3609 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3610 packet was not recognized. */
3611
3612 static int
3613 store_register_using_P (int regnum)
3614 {
3615 struct remote_state *rs = get_remote_state ();
3616 struct packet_reg *reg = packet_reg_from_regnum (rs, regnum);
3617 /* Try storing a single register. */
3618 char *buf = alloca (rs->remote_packet_size);
3619 char regp[MAX_REGISTER_SIZE];
3620 char *p;
3621 int i;
3622
3623 sprintf (buf, "P%s=", phex_nz (reg->pnum, 0));
3624 p = buf + strlen (buf);
3625 regcache_collect (reg->regnum, regp);
3626 bin2hex (regp, p, DEPRECATED_REGISTER_RAW_SIZE (reg->regnum));
3627 remote_send (buf, rs->remote_packet_size);
3628
3629 return buf[0] != '\0';
3630 }
3631
3632
3633 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3634 of the register cache buffer. FIXME: ignores errors. */
3635
3636 static void
3637 remote_store_registers (int regnum)
3638 {
3639 struct remote_state *rs = get_remote_state ();
3640 char *buf;
3641 char *regs;
3642 int i;
3643 char *p;
3644
3645 set_thread (PIDGET (inferior_ptid), 1);
3646
3647 if (regnum >= 0)
3648 {
3649 switch (remote_protocol_P.support)
3650 {
3651 case PACKET_DISABLE:
3652 break;
3653 case PACKET_ENABLE:
3654 if (store_register_using_P (regnum))
3655 return;
3656 else
3657 error ("Protocol error: P packet not recognized by stub");
3658 case PACKET_SUPPORT_UNKNOWN:
3659 if (store_register_using_P (regnum))
3660 {
3661 /* The stub recognized the 'P' packet. Remember this. */
3662 remote_protocol_P.support = PACKET_ENABLE;
3663 return;
3664 }
3665 else
3666 {
3667 /* The stub does not support the 'P' packet. Use 'G'
3668 instead, and don't try using 'P' in the future (it
3669 will just waste our time). */
3670 remote_protocol_P.support = PACKET_DISABLE;
3671 break;
3672 }
3673 }
3674 }
3675
3676 /* Extract all the registers in the regcache copying them into a
3677 local buffer. */
3678 {
3679 int i;
3680 regs = alloca (rs->sizeof_g_packet);
3681 memset (regs, rs->sizeof_g_packet, 0);
3682 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
3683 {
3684 struct packet_reg *r = &rs->regs[i];
3685 if (r->in_g_packet)
3686 regcache_collect (r->regnum, regs + r->offset);
3687 }
3688 }
3689
3690 /* Command describes registers byte by byte,
3691 each byte encoded as two hex characters. */
3692 buf = alloca (rs->remote_packet_size);
3693 p = buf;
3694 *p++ = 'G';
3695 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3696 bin2hex (regs, p, register_bytes_found);
3697 remote_send (buf, (rs->remote_packet_size));
3698 }
3699 \f
3700
3701 /* Return the number of hex digits in num. */
3702
3703 static int
3704 hexnumlen (ULONGEST num)
3705 {
3706 int i;
3707
3708 for (i = 0; num != 0; i++)
3709 num >>= 4;
3710
3711 return max (i, 1);
3712 }
3713
3714 /* Set BUF to the minimum number of hex digits representing NUM. */
3715
3716 static int
3717 hexnumstr (char *buf, ULONGEST num)
3718 {
3719 int len = hexnumlen (num);
3720 return hexnumnstr (buf, num, len);
3721 }
3722
3723
3724 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3725
3726 static int
3727 hexnumnstr (char *buf, ULONGEST num, int width)
3728 {
3729 int i;
3730
3731 buf[width] = '\0';
3732
3733 for (i = width - 1; i >= 0; i--)
3734 {
3735 buf[i] = "0123456789abcdef"[(num & 0xf)];
3736 num >>= 4;
3737 }
3738
3739 return width;
3740 }
3741
3742 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3743
3744 static CORE_ADDR
3745 remote_address_masked (CORE_ADDR addr)
3746 {
3747 if (remote_address_size > 0
3748 && remote_address_size < (sizeof (ULONGEST) * 8))
3749 {
3750 /* Only create a mask when that mask can safely be constructed
3751 in a ULONGEST variable. */
3752 ULONGEST mask = 1;
3753 mask = (mask << remote_address_size) - 1;
3754 addr &= mask;
3755 }
3756 return addr;
3757 }
3758
3759 /* Determine whether the remote target supports binary downloading.
3760 This is accomplished by sending a no-op memory write of zero length
3761 to the target at the specified address. It does not suffice to send
3762 the whole packet, since many stubs strip the eighth bit and subsequently
3763 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3764
3765 NOTE: This can still lose if the serial line is not eight-bit
3766 clean. In cases like this, the user should clear "remote
3767 X-packet". */
3768
3769 static void
3770 check_binary_download (CORE_ADDR addr)
3771 {
3772 struct remote_state *rs = get_remote_state ();
3773 switch (remote_protocol_binary_download.support)
3774 {
3775 case PACKET_DISABLE:
3776 break;
3777 case PACKET_ENABLE:
3778 break;
3779 case PACKET_SUPPORT_UNKNOWN:
3780 {
3781 char *buf = alloca (rs->remote_packet_size);
3782 char *p;
3783
3784 p = buf;
3785 *p++ = 'X';
3786 p += hexnumstr (p, (ULONGEST) addr);
3787 *p++ = ',';
3788 p += hexnumstr (p, (ULONGEST) 0);
3789 *p++ = ':';
3790 *p = '\0';
3791
3792 putpkt_binary (buf, (int) (p - buf));
3793 getpkt (buf, (rs->remote_packet_size), 0);
3794
3795 if (buf[0] == '\0')
3796 {
3797 if (remote_debug)
3798 fprintf_unfiltered (gdb_stdlog,
3799 "binary downloading NOT suppported by target\n");
3800 remote_protocol_binary_download.support = PACKET_DISABLE;
3801 }
3802 else
3803 {
3804 if (remote_debug)
3805 fprintf_unfiltered (gdb_stdlog,
3806 "binary downloading suppported by target\n");
3807 remote_protocol_binary_download.support = PACKET_ENABLE;
3808 }
3809 break;
3810 }
3811 }
3812 }
3813
3814 /* Write memory data directly to the remote machine.
3815 This does not inform the data cache; the data cache uses this.
3816 MEMADDR is the address in the remote memory space.
3817 MYADDR is the address of the buffer in our space.
3818 LEN is the number of bytes.
3819
3820 Returns number of bytes transferred, or 0 (setting errno) for
3821 error. Only transfer a single packet. */
3822
3823 int
3824 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3825 {
3826 unsigned char *buf;
3827 unsigned char *p;
3828 unsigned char *plen;
3829 long sizeof_buf;
3830 int plenlen;
3831 int todo;
3832 int nr_bytes;
3833 int payload_size;
3834 unsigned char *payload_start;
3835
3836 /* Verify that the target can support a binary download. */
3837 check_binary_download (memaddr);
3838
3839 /* Compute the size, and then allocate space for the largest
3840 possible packet. Include space for an extra trailing NUL. */
3841 sizeof_buf = get_memory_write_packet_size () + 1;
3842 buf = alloca (sizeof_buf);
3843
3844 /* Compute the size of the actual payload by subtracting out the
3845 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
3846 payload_size = (get_memory_write_packet_size () - (strlen ("$M,:#NN")
3847 + hexnumlen (memaddr)
3848 + hexnumlen (len)));
3849
3850 /* Construct the packet header: "[MX]<memaddr>,<len>:". */
3851
3852 /* Append "[XM]". Compute a best guess of the number of bytes
3853 actually transfered. */
3854 p = buf;
3855 switch (remote_protocol_binary_download.support)
3856 {
3857 case PACKET_ENABLE:
3858 *p++ = 'X';
3859 /* Best guess at number of bytes that will fit. */
3860 todo = min (len, payload_size);
3861 break;
3862 case PACKET_DISABLE:
3863 *p++ = 'M';
3864 /* num bytes that will fit */
3865 todo = min (len, payload_size / 2);
3866 break;
3867 case PACKET_SUPPORT_UNKNOWN:
3868 internal_error (__FILE__, __LINE__,
3869 "remote_write_bytes: bad internal state");
3870 default:
3871 internal_error (__FILE__, __LINE__, "bad switch");
3872 }
3873
3874 /* Append "<memaddr>". */
3875 memaddr = remote_address_masked (memaddr);
3876 p += hexnumstr (p, (ULONGEST) memaddr);
3877
3878 /* Append ",". */
3879 *p++ = ',';
3880
3881 /* Append <len>. Retain the location/size of <len>. It may need to
3882 be adjusted once the packet body has been created. */
3883 plen = p;
3884 plenlen = hexnumstr (p, (ULONGEST) todo);
3885 p += plenlen;
3886
3887 /* Append ":". */
3888 *p++ = ':';
3889 *p = '\0';
3890
3891 /* Append the packet body. */
3892 payload_start = p;
3893 switch (remote_protocol_binary_download.support)
3894 {
3895 case PACKET_ENABLE:
3896 /* Binary mode. Send target system values byte by byte, in
3897 increasing byte addresses. Only escape certain critical
3898 characters. */
3899 for (nr_bytes = 0;
3900 (nr_bytes < todo) && (p - payload_start) < payload_size;
3901 nr_bytes++)
3902 {
3903 switch (myaddr[nr_bytes] & 0xff)
3904 {
3905 case '$':
3906 case '#':
3907 case 0x7d:
3908 /* These must be escaped */
3909 *p++ = 0x7d;
3910 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3911 break;
3912 default:
3913 *p++ = myaddr[nr_bytes] & 0xff;
3914 break;
3915 }
3916 }
3917 if (nr_bytes < todo)
3918 {
3919 /* Escape chars have filled up the buffer prematurely,
3920 and we have actually sent fewer bytes than planned.
3921 Fix-up the length field of the packet. Use the same
3922 number of characters as before. */
3923 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3924 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3925 }
3926 break;
3927 case PACKET_DISABLE:
3928 /* Normal mode: Send target system values byte by byte, in
3929 increasing byte addresses. Each byte is encoded as a two hex
3930 value. */
3931 nr_bytes = bin2hex (myaddr, p, todo);
3932 p += 2 * nr_bytes;
3933 break;
3934 case PACKET_SUPPORT_UNKNOWN:
3935 internal_error (__FILE__, __LINE__,
3936 "remote_write_bytes: bad internal state");
3937 default:
3938 internal_error (__FILE__, __LINE__, "bad switch");
3939 }
3940
3941 putpkt_binary (buf, (int) (p - buf));
3942 getpkt (buf, sizeof_buf, 0);
3943
3944 if (buf[0] == 'E')
3945 {
3946 /* There is no correspondance between what the remote protocol
3947 uses for errors and errno codes. We would like a cleaner way
3948 of representing errors (big enough to include errno codes,
3949 bfd_error codes, and others). But for now just return EIO. */
3950 errno = EIO;
3951 return 0;
3952 }
3953
3954 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3955 bytes than we'd planned. */
3956 return nr_bytes;
3957 }
3958
3959 /* Read memory data directly from the remote machine.
3960 This does not use the data cache; the data cache uses this.
3961 MEMADDR is the address in the remote memory space.
3962 MYADDR is the address of the buffer in our space.
3963 LEN is the number of bytes.
3964
3965 Returns number of bytes transferred, or 0 for error. */
3966
3967 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3968 remote targets) shouldn't attempt to read the entire buffer.
3969 Instead it should read a single packet worth of data and then
3970 return the byte size of that packet to the caller. The caller (its
3971 caller and its callers caller ;-) already contains code for
3972 handling partial reads. */
3973
3974 int
3975 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3976 {
3977 char *buf;
3978 int max_buf_size; /* Max size of packet output buffer */
3979 long sizeof_buf;
3980 int origlen;
3981
3982 /* Create a buffer big enough for this packet. */
3983 max_buf_size = get_memory_read_packet_size ();
3984 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3985 buf = alloca (sizeof_buf);
3986
3987 origlen = len;
3988 while (len > 0)
3989 {
3990 char *p;
3991 int todo;
3992 int i;
3993
3994 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3995
3996 /* construct "m"<memaddr>","<len>" */
3997 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3998 memaddr = remote_address_masked (memaddr);
3999 p = buf;
4000 *p++ = 'm';
4001 p += hexnumstr (p, (ULONGEST) memaddr);
4002 *p++ = ',';
4003 p += hexnumstr (p, (ULONGEST) todo);
4004 *p = '\0';
4005
4006 putpkt (buf);
4007 getpkt (buf, sizeof_buf, 0);
4008
4009 if (buf[0] == 'E'
4010 && isxdigit (buf[1]) && isxdigit (buf[2])
4011 && buf[3] == '\0')
4012 {
4013 /* There is no correspondance between what the remote protocol uses
4014 for errors and errno codes. We would like a cleaner way of
4015 representing errors (big enough to include errno codes, bfd_error
4016 codes, and others). But for now just return EIO. */
4017 errno = EIO;
4018 return 0;
4019 }
4020
4021 /* Reply describes memory byte by byte,
4022 each byte encoded as two hex characters. */
4023
4024 p = buf;
4025 if ((i = hex2bin (p, myaddr, todo)) < todo)
4026 {
4027 /* Reply is short. This means that we were able to read
4028 only part of what we wanted to. */
4029 return i + (origlen - len);
4030 }
4031 myaddr += todo;
4032 memaddr += todo;
4033 len -= todo;
4034 }
4035 return origlen;
4036 }
4037 \f
4038 /* Read or write LEN bytes from inferior memory at MEMADDR,
4039 transferring to or from debugger address BUFFER. Write to inferior if
4040 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
4041 for error. TARGET is unused. */
4042
4043 static int
4044 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
4045 int should_write, struct mem_attrib *attrib,
4046 struct target_ops *target)
4047 {
4048 CORE_ADDR targ_addr;
4049 int targ_len;
4050 int res;
4051
4052 /* Should this be the selected frame? */
4053 gdbarch_remote_translate_xfer_address (current_gdbarch, current_regcache,
4054 mem_addr, mem_len,
4055 &targ_addr, &targ_len);
4056 if (targ_len <= 0)
4057 return 0;
4058
4059 if (should_write)
4060 res = remote_write_bytes (targ_addr, buffer, targ_len);
4061 else
4062 res = remote_read_bytes (targ_addr, buffer, targ_len);
4063
4064 return res;
4065 }
4066
4067 static void
4068 remote_files_info (struct target_ops *ignore)
4069 {
4070 puts_filtered ("Debugging a target over a serial line.\n");
4071 }
4072 \f
4073 /* Stuff for dealing with the packets which are part of this protocol.
4074 See comment at top of file for details. */
4075
4076 /* Read a single character from the remote end, masking it down to 7 bits. */
4077
4078 static int
4079 readchar (int timeout)
4080 {
4081 int ch;
4082
4083 ch = serial_readchar (remote_desc, timeout);
4084
4085 if (ch >= 0)
4086 return (ch & 0x7f);
4087
4088 switch ((enum serial_rc) ch)
4089 {
4090 case SERIAL_EOF:
4091 target_mourn_inferior ();
4092 error ("Remote connection closed");
4093 /* no return */
4094 case SERIAL_ERROR:
4095 perror_with_name ("Remote communication error");
4096 /* no return */
4097 case SERIAL_TIMEOUT:
4098 break;
4099 }
4100 return ch;
4101 }
4102
4103 /* Send the command in BUF to the remote machine, and read the reply
4104 into BUF. Report an error if we get an error reply. */
4105
4106 static void
4107 remote_send (char *buf,
4108 long sizeof_buf)
4109 {
4110 putpkt (buf);
4111 getpkt (buf, sizeof_buf, 0);
4112
4113 if (buf[0] == 'E')
4114 error ("Remote failure reply: %s", buf);
4115 }
4116
4117 /* Display a null-terminated packet on stdout, for debugging, using C
4118 string notation. */
4119
4120 static void
4121 print_packet (char *buf)
4122 {
4123 puts_filtered ("\"");
4124 fputstr_filtered (buf, '"', gdb_stdout);
4125 puts_filtered ("\"");
4126 }
4127
4128 int
4129 putpkt (char *buf)
4130 {
4131 return putpkt_binary (buf, strlen (buf));
4132 }
4133
4134 /* Send a packet to the remote machine, with error checking. The data
4135 of the packet is in BUF. The string in BUF can be at most (rs->remote_packet_size) - 5
4136 to account for the $, # and checksum, and for a possible /0 if we are
4137 debugging (remote_debug) and want to print the sent packet as a string */
4138
4139 static int
4140 putpkt_binary (char *buf, int cnt)
4141 {
4142 struct remote_state *rs = get_remote_state ();
4143 int i;
4144 unsigned char csum = 0;
4145 char *buf2 = alloca (cnt + 6);
4146 long sizeof_junkbuf = (rs->remote_packet_size);
4147 char *junkbuf = alloca (sizeof_junkbuf);
4148
4149 int ch;
4150 int tcount = 0;
4151 char *p;
4152
4153 /* Copy the packet into buffer BUF2, encapsulating it
4154 and giving it a checksum. */
4155
4156 p = buf2;
4157 *p++ = '$';
4158
4159 for (i = 0; i < cnt; i++)
4160 {
4161 csum += buf[i];
4162 *p++ = buf[i];
4163 }
4164 *p++ = '#';
4165 *p++ = tohex ((csum >> 4) & 0xf);
4166 *p++ = tohex (csum & 0xf);
4167
4168 /* Send it over and over until we get a positive ack. */
4169
4170 while (1)
4171 {
4172 int started_error_output = 0;
4173
4174 if (remote_debug)
4175 {
4176 *p = '\0';
4177 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4178 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4179 fprintf_unfiltered (gdb_stdlog, "...");
4180 gdb_flush (gdb_stdlog);
4181 }
4182 if (serial_write (remote_desc, buf2, p - buf2))
4183 perror_with_name ("putpkt: write failed");
4184
4185 /* read until either a timeout occurs (-2) or '+' is read */
4186 while (1)
4187 {
4188 ch = readchar (remote_timeout);
4189
4190 if (remote_debug)
4191 {
4192 switch (ch)
4193 {
4194 case '+':
4195 case '-':
4196 case SERIAL_TIMEOUT:
4197 case '$':
4198 if (started_error_output)
4199 {
4200 putchar_unfiltered ('\n');
4201 started_error_output = 0;
4202 }
4203 }
4204 }
4205
4206 switch (ch)
4207 {
4208 case '+':
4209 if (remote_debug)
4210 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4211 return 1;
4212 case '-':
4213 if (remote_debug)
4214 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4215 case SERIAL_TIMEOUT:
4216 tcount++;
4217 if (tcount > 3)
4218 return 0;
4219 break; /* Retransmit buffer */
4220 case '$':
4221 {
4222 if (remote_debug)
4223 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4224 /* It's probably an old response, and we're out of sync.
4225 Just gobble up the packet and ignore it. */
4226 read_frame (junkbuf, sizeof_junkbuf);
4227 continue; /* Now, go look for + */
4228 }
4229 default:
4230 if (remote_debug)
4231 {
4232 if (!started_error_output)
4233 {
4234 started_error_output = 1;
4235 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4236 }
4237 fputc_unfiltered (ch & 0177, gdb_stdlog);
4238 }
4239 continue;
4240 }
4241 break; /* Here to retransmit */
4242 }
4243
4244 #if 0
4245 /* This is wrong. If doing a long backtrace, the user should be
4246 able to get out next time we call QUIT, without anything as
4247 violent as interrupt_query. If we want to provide a way out of
4248 here without getting to the next QUIT, it should be based on
4249 hitting ^C twice as in remote_wait. */
4250 if (quit_flag)
4251 {
4252 quit_flag = 0;
4253 interrupt_query ();
4254 }
4255 #endif
4256 }
4257 }
4258
4259 static int remote_cisco_mode;
4260
4261 /* Come here after finding the start of the frame. Collect the rest
4262 into BUF, verifying the checksum, length, and handling run-length
4263 compression. No more than sizeof_buf-1 characters are read so that
4264 the buffer can be NUL terminated.
4265
4266 Returns -1 on error, number of characters in buffer (ignoring the
4267 trailing NULL) on success. (could be extended to return one of the
4268 SERIAL status indications). */
4269
4270 static long
4271 read_frame (char *buf,
4272 long sizeof_buf)
4273 {
4274 unsigned char csum;
4275 long bc;
4276 int c;
4277
4278 csum = 0;
4279 bc = 0;
4280
4281 while (1)
4282 {
4283 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4284 c = readchar (remote_timeout);
4285 switch (c)
4286 {
4287 case SERIAL_TIMEOUT:
4288 if (remote_debug)
4289 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4290 return -1;
4291 case '$':
4292 if (remote_debug)
4293 fputs_filtered ("Saw new packet start in middle of old one\n",
4294 gdb_stdlog);
4295 return -1; /* Start a new packet, count retries */
4296 case '#':
4297 {
4298 unsigned char pktcsum;
4299 int check_0 = 0;
4300 int check_1 = 0;
4301
4302 buf[bc] = '\0';
4303
4304 check_0 = readchar (remote_timeout);
4305 if (check_0 >= 0)
4306 check_1 = readchar (remote_timeout);
4307
4308 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4309 {
4310 if (remote_debug)
4311 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4312 return -1;
4313 }
4314 else if (check_0 < 0 || check_1 < 0)
4315 {
4316 if (remote_debug)
4317 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4318 return -1;
4319 }
4320
4321 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4322 if (csum == pktcsum)
4323 return bc;
4324
4325 if (remote_debug)
4326 {
4327 fprintf_filtered (gdb_stdlog,
4328 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4329 pktcsum, csum);
4330 fputs_filtered (buf, gdb_stdlog);
4331 fputs_filtered ("\n", gdb_stdlog);
4332 }
4333 /* Number of characters in buffer ignoring trailing
4334 NUL. */
4335 return -1;
4336 }
4337 case '*': /* Run length encoding */
4338 {
4339 int repeat;
4340 csum += c;
4341
4342 if (remote_cisco_mode == 0)
4343 {
4344 c = readchar (remote_timeout);
4345 csum += c;
4346 repeat = c - ' ' + 3; /* Compute repeat count */
4347 }
4348 else
4349 {
4350 /* Cisco's run-length encoding variant uses two
4351 hex chars to represent the repeat count. */
4352
4353 c = readchar (remote_timeout);
4354 csum += c;
4355 repeat = fromhex (c) << 4;
4356 c = readchar (remote_timeout);
4357 csum += c;
4358 repeat += fromhex (c);
4359 }
4360
4361 /* The character before ``*'' is repeated. */
4362
4363 if (repeat > 0 && repeat <= 255
4364 && bc > 0
4365 && bc + repeat - 1 < sizeof_buf - 1)
4366 {
4367 memset (&buf[bc], buf[bc - 1], repeat);
4368 bc += repeat;
4369 continue;
4370 }
4371
4372 buf[bc] = '\0';
4373 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4374 puts_filtered (buf);
4375 puts_filtered ("\n");
4376 return -1;
4377 }
4378 default:
4379 if (bc < sizeof_buf - 1)
4380 {
4381 buf[bc++] = c;
4382 csum += c;
4383 continue;
4384 }
4385
4386 buf[bc] = '\0';
4387 puts_filtered ("Remote packet too long: ");
4388 puts_filtered (buf);
4389 puts_filtered ("\n");
4390
4391 return -1;
4392 }
4393 }
4394 }
4395
4396 /* Read a packet from the remote machine, with error checking, and
4397 store it in BUF. If FOREVER, wait forever rather than timing out;
4398 this is used (in synchronous mode) to wait for a target that is is
4399 executing user code to stop. */
4400 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4401 don't have to change all the calls to getpkt to deal with the
4402 return value, because at the moment I don't know what the right
4403 thing to do it for those. */
4404 void
4405 getpkt (char *buf,
4406 long sizeof_buf,
4407 int forever)
4408 {
4409 int timed_out;
4410
4411 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4412 }
4413
4414
4415 /* Read a packet from the remote machine, with error checking, and
4416 store it in BUF. If FOREVER, wait forever rather than timing out;
4417 this is used (in synchronous mode) to wait for a target that is is
4418 executing user code to stop. If FOREVER == 0, this function is
4419 allowed to time out gracefully and return an indication of this to
4420 the caller. */
4421 static int
4422 getpkt_sane (char *buf,
4423 long sizeof_buf,
4424 int forever)
4425 {
4426 int c;
4427 int tries;
4428 int timeout;
4429 int val;
4430
4431 strcpy (buf, "timeout");
4432
4433 if (forever)
4434 {
4435 timeout = watchdog > 0 ? watchdog : -1;
4436 }
4437
4438 else
4439 timeout = remote_timeout;
4440
4441 #define MAX_TRIES 3
4442
4443 for (tries = 1; tries <= MAX_TRIES; tries++)
4444 {
4445 /* This can loop forever if the remote side sends us characters
4446 continuously, but if it pauses, we'll get a zero from readchar
4447 because of timeout. Then we'll count that as a retry. */
4448
4449 /* Note that we will only wait forever prior to the start of a packet.
4450 After that, we expect characters to arrive at a brisk pace. They
4451 should show up within remote_timeout intervals. */
4452
4453 do
4454 {
4455 c = readchar (timeout);
4456
4457 if (c == SERIAL_TIMEOUT)
4458 {
4459 if (forever) /* Watchdog went off? Kill the target. */
4460 {
4461 QUIT;
4462 target_mourn_inferior ();
4463 error ("Watchdog has expired. Target detached.\n");
4464 }
4465 if (remote_debug)
4466 fputs_filtered ("Timed out.\n", gdb_stdlog);
4467 goto retry;
4468 }
4469 }
4470 while (c != '$');
4471
4472 /* We've found the start of a packet, now collect the data. */
4473
4474 val = read_frame (buf, sizeof_buf);
4475
4476 if (val >= 0)
4477 {
4478 if (remote_debug)
4479 {
4480 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4481 fputstr_unfiltered (buf, 0, gdb_stdlog);
4482 fprintf_unfiltered (gdb_stdlog, "\n");
4483 }
4484 serial_write (remote_desc, "+", 1);
4485 return 0;
4486 }
4487
4488 /* Try the whole thing again. */
4489 retry:
4490 serial_write (remote_desc, "-", 1);
4491 }
4492
4493 /* We have tried hard enough, and just can't receive the packet. Give up. */
4494
4495 printf_unfiltered ("Ignoring packet error, continuing...\n");
4496 serial_write (remote_desc, "+", 1);
4497 return 1;
4498 }
4499 \f
4500 static void
4501 remote_kill (void)
4502 {
4503 /* For some mysterious reason, wait_for_inferior calls kill instead of
4504 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4505 if (kill_kludge)
4506 {
4507 kill_kludge = 0;
4508 target_mourn_inferior ();
4509 return;
4510 }
4511
4512 /* Use catch_errors so the user can quit from gdb even when we aren't on
4513 speaking terms with the remote system. */
4514 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4515
4516 /* Don't wait for it to die. I'm not really sure it matters whether
4517 we do or not. For the existing stubs, kill is a noop. */
4518 target_mourn_inferior ();
4519 }
4520
4521 /* Async version of remote_kill. */
4522 static void
4523 remote_async_kill (void)
4524 {
4525 /* Unregister the file descriptor from the event loop. */
4526 if (target_is_async_p ())
4527 serial_async (remote_desc, NULL, 0);
4528
4529 /* For some mysterious reason, wait_for_inferior calls kill instead of
4530 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4531 if (kill_kludge)
4532 {
4533 kill_kludge = 0;
4534 target_mourn_inferior ();
4535 return;
4536 }
4537
4538 /* Use catch_errors so the user can quit from gdb even when we aren't on
4539 speaking terms with the remote system. */
4540 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4541
4542 /* Don't wait for it to die. I'm not really sure it matters whether
4543 we do or not. For the existing stubs, kill is a noop. */
4544 target_mourn_inferior ();
4545 }
4546
4547 static void
4548 remote_mourn (void)
4549 {
4550 remote_mourn_1 (&remote_ops);
4551 }
4552
4553 static void
4554 remote_async_mourn (void)
4555 {
4556 remote_mourn_1 (&remote_async_ops);
4557 }
4558
4559 static void
4560 extended_remote_mourn (void)
4561 {
4562 /* We do _not_ want to mourn the target like this; this will
4563 remove the extended remote target from the target stack,
4564 and the next time the user says "run" it'll fail.
4565
4566 FIXME: What is the right thing to do here? */
4567 #if 0
4568 remote_mourn_1 (&extended_remote_ops);
4569 #endif
4570 }
4571
4572 /* Worker function for remote_mourn. */
4573 static void
4574 remote_mourn_1 (struct target_ops *target)
4575 {
4576 unpush_target (target);
4577 generic_mourn_inferior ();
4578 }
4579
4580 /* In the extended protocol we want to be able to do things like
4581 "run" and have them basically work as expected. So we need
4582 a special create_inferior function.
4583
4584 FIXME: One day add support for changing the exec file
4585 we're debugging, arguments and an environment. */
4586
4587 static void
4588 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4589 {
4590 /* Rip out the breakpoints; we'll reinsert them after restarting
4591 the remote server. */
4592 remove_breakpoints ();
4593
4594 /* Now restart the remote server. */
4595 extended_remote_restart ();
4596
4597 /* Now put the breakpoints back in. This way we're safe if the
4598 restart function works via a unix fork on the remote side. */
4599 insert_breakpoints ();
4600
4601 /* Clean up from the last time we were running. */
4602 clear_proceed_status ();
4603
4604 /* Let the remote process run. */
4605 proceed (-1, TARGET_SIGNAL_0, 0);
4606 }
4607
4608 /* Async version of extended_remote_create_inferior. */
4609 static void
4610 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4611 {
4612 /* Rip out the breakpoints; we'll reinsert them after restarting
4613 the remote server. */
4614 remove_breakpoints ();
4615
4616 /* If running asynchronously, register the target file descriptor
4617 with the event loop. */
4618 if (event_loop_p && target_can_async_p ())
4619 target_async (inferior_event_handler, 0);
4620
4621 /* Now restart the remote server. */
4622 extended_remote_restart ();
4623
4624 /* Now put the breakpoints back in. This way we're safe if the
4625 restart function works via a unix fork on the remote side. */
4626 insert_breakpoints ();
4627
4628 /* Clean up from the last time we were running. */
4629 clear_proceed_status ();
4630
4631 /* Let the remote process run. */
4632 proceed (-1, TARGET_SIGNAL_0, 0);
4633 }
4634 \f
4635
4636 /* On some machines, e.g. 68k, we may use a different breakpoint
4637 instruction than other targets; in those use
4638 DEPRECATED_REMOTE_BREAKPOINT instead of just BREAKPOINT_FROM_PC.
4639 Also, bi-endian targets may define
4640 DEPRECATED_LITTLE_REMOTE_BREAKPOINT and
4641 DEPRECATED_BIG_REMOTE_BREAKPOINT. If none of these are defined, we
4642 just call the standard routines that are in mem-break.c. */
4643
4644 /* NOTE: cagney/2003-06-08: This is silly. A remote and simulator
4645 target should use an identical BREAKPOINT_FROM_PC. As for native,
4646 the ARCH-OS-tdep.c code can override the default. */
4647
4648 #if defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && defined (DEPRECATED_BIG_REMOTE_BREAKPOINT) && !defined(DEPRECATED_REMOTE_BREAKPOINT)
4649 #define DEPRECATED_REMOTE_BREAKPOINT
4650 #endif
4651
4652 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4653
4654 /* If the target isn't bi-endian, just pretend it is. */
4655 #if !defined (DEPRECATED_LITTLE_REMOTE_BREAKPOINT) && !defined (DEPRECATED_BIG_REMOTE_BREAKPOINT)
4656 #define DEPRECATED_LITTLE_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4657 #define DEPRECATED_BIG_REMOTE_BREAKPOINT DEPRECATED_REMOTE_BREAKPOINT
4658 #endif
4659
4660 static unsigned char big_break_insn[] = DEPRECATED_BIG_REMOTE_BREAKPOINT;
4661 static unsigned char little_break_insn[] = DEPRECATED_LITTLE_REMOTE_BREAKPOINT;
4662
4663 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4664
4665 /* Insert a breakpoint on targets that don't have any better
4666 breakpoint support. We read the contents of the target location
4667 and stash it, then overwrite it with a breakpoint instruction.
4668 ADDR is the target location in the target machine. CONTENTS_CACHE
4669 is a pointer to memory allocated for saving the target contents.
4670 It is guaranteed by the caller to be long enough to save the number
4671 of bytes returned by BREAKPOINT_FROM_PC. */
4672
4673 static int
4674 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4675 {
4676 struct remote_state *rs = get_remote_state ();
4677 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4678 int val;
4679 #endif
4680 int bp_size;
4681
4682 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4683 If it succeeds, then set the support to PACKET_ENABLE. If it
4684 fails, and the user has explicitly requested the Z support then
4685 report an error, otherwise, mark it disabled and go on. */
4686
4687 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4688 {
4689 char *buf = alloca (rs->remote_packet_size);
4690 char *p = buf;
4691
4692 addr = remote_address_masked (addr);
4693 *(p++) = 'Z';
4694 *(p++) = '0';
4695 *(p++) = ',';
4696 p += hexnumstr (p, (ULONGEST) addr);
4697 BREAKPOINT_FROM_PC (&addr, &bp_size);
4698 sprintf (p, ",%d", bp_size);
4699
4700 putpkt (buf);
4701 getpkt (buf, (rs->remote_packet_size), 0);
4702
4703 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4704 {
4705 case PACKET_ERROR:
4706 return -1;
4707 case PACKET_OK:
4708 return 0;
4709 case PACKET_UNKNOWN:
4710 break;
4711 }
4712 }
4713
4714 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4715 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4716
4717 if (val == 0)
4718 {
4719 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4720 val = target_write_memory (addr, (char *) big_break_insn,
4721 sizeof big_break_insn);
4722 else
4723 val = target_write_memory (addr, (char *) little_break_insn,
4724 sizeof little_break_insn);
4725 }
4726
4727 return val;
4728 #else
4729 return memory_insert_breakpoint (addr, contents_cache);
4730 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4731 }
4732
4733 static int
4734 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4735 {
4736 struct remote_state *rs = get_remote_state ();
4737 int bp_size;
4738
4739 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4740 {
4741 char *buf = alloca (rs->remote_packet_size);
4742 char *p = buf;
4743
4744 *(p++) = 'z';
4745 *(p++) = '0';
4746 *(p++) = ',';
4747
4748 addr = remote_address_masked (addr);
4749 p += hexnumstr (p, (ULONGEST) addr);
4750 BREAKPOINT_FROM_PC (&addr, &bp_size);
4751 sprintf (p, ",%d", bp_size);
4752
4753 putpkt (buf);
4754 getpkt (buf, (rs->remote_packet_size), 0);
4755
4756 return (buf[0] == 'E');
4757 }
4758
4759 #ifdef DEPRECATED_REMOTE_BREAKPOINT
4760 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4761 #else
4762 return memory_remove_breakpoint (addr, contents_cache);
4763 #endif /* DEPRECATED_REMOTE_BREAKPOINT */
4764 }
4765
4766 static int
4767 watchpoint_to_Z_packet (int type)
4768 {
4769 switch (type)
4770 {
4771 case hw_write:
4772 return 2;
4773 break;
4774 case hw_read:
4775 return 3;
4776 break;
4777 case hw_access:
4778 return 4;
4779 break;
4780 default:
4781 internal_error (__FILE__, __LINE__,
4782 "hw_bp_to_z: bad watchpoint type %d", type);
4783 }
4784 }
4785
4786 static int
4787 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4788 {
4789 struct remote_state *rs = get_remote_state ();
4790 char *buf = alloca (rs->remote_packet_size);
4791 char *p;
4792 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4793
4794 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4795 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4796 remote_protocol_Z[packet].name,
4797 remote_protocol_Z[packet].title);
4798
4799 sprintf (buf, "Z%x,", packet);
4800 p = strchr (buf, '\0');
4801 addr = remote_address_masked (addr);
4802 p += hexnumstr (p, (ULONGEST) addr);
4803 sprintf (p, ",%x", len);
4804
4805 putpkt (buf);
4806 getpkt (buf, (rs->remote_packet_size), 0);
4807
4808 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4809 {
4810 case PACKET_ERROR:
4811 case PACKET_UNKNOWN:
4812 return -1;
4813 case PACKET_OK:
4814 return 0;
4815 }
4816 internal_error (__FILE__, __LINE__,
4817 "remote_insert_watchpoint: reached end of function");
4818 }
4819
4820
4821 static int
4822 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4823 {
4824 struct remote_state *rs = get_remote_state ();
4825 char *buf = alloca (rs->remote_packet_size);
4826 char *p;
4827 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4828
4829 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4830 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4831 remote_protocol_Z[packet].name,
4832 remote_protocol_Z[packet].title);
4833
4834 sprintf (buf, "z%x,", packet);
4835 p = strchr (buf, '\0');
4836 addr = remote_address_masked (addr);
4837 p += hexnumstr (p, (ULONGEST) addr);
4838 sprintf (p, ",%x", len);
4839 putpkt (buf);
4840 getpkt (buf, (rs->remote_packet_size), 0);
4841
4842 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4843 {
4844 case PACKET_ERROR:
4845 case PACKET_UNKNOWN:
4846 return -1;
4847 case PACKET_OK:
4848 return 0;
4849 }
4850 internal_error (__FILE__, __LINE__,
4851 "remote_remove_watchpoint: reached end of function");
4852 }
4853
4854
4855 int remote_hw_watchpoint_limit = -1;
4856 int remote_hw_breakpoint_limit = -1;
4857
4858 static int
4859 remote_check_watch_resources (int type, int cnt, int ot)
4860 {
4861 if (type == bp_hardware_breakpoint)
4862 {
4863 if (remote_hw_breakpoint_limit == 0)
4864 return 0;
4865 else if (remote_hw_breakpoint_limit < 0)
4866 return 1;
4867 else if (cnt <= remote_hw_breakpoint_limit)
4868 return 1;
4869 }
4870 else
4871 {
4872 if (remote_hw_watchpoint_limit == 0)
4873 return 0;
4874 else if (remote_hw_watchpoint_limit < 0)
4875 return 1;
4876 else if (ot)
4877 return -1;
4878 else if (cnt <= remote_hw_watchpoint_limit)
4879 return 1;
4880 }
4881 return -1;
4882 }
4883
4884 static int
4885 remote_stopped_by_watchpoint (void)
4886 {
4887 return remote_stopped_by_watchpoint_p;
4888 }
4889
4890 static CORE_ADDR
4891 remote_stopped_data_address (void)
4892 {
4893 if (remote_stopped_by_watchpoint ())
4894 return remote_watch_data_address;
4895 return (CORE_ADDR)0;
4896 }
4897
4898
4899 static int
4900 remote_insert_hw_breakpoint (CORE_ADDR addr, char *shadow)
4901 {
4902 int len = 0;
4903 struct remote_state *rs = get_remote_state ();
4904 char *buf = alloca (rs->remote_packet_size);
4905 char *p = buf;
4906
4907 /* The length field should be set to the size of a breakpoint
4908 instruction. */
4909
4910 BREAKPOINT_FROM_PC (&addr, &len);
4911
4912 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4913 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4914 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4915 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4916
4917 *(p++) = 'Z';
4918 *(p++) = '1';
4919 *(p++) = ',';
4920
4921 addr = remote_address_masked (addr);
4922 p += hexnumstr (p, (ULONGEST) addr);
4923 sprintf (p, ",%x", len);
4924
4925 putpkt (buf);
4926 getpkt (buf, (rs->remote_packet_size), 0);
4927
4928 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4929 {
4930 case PACKET_ERROR:
4931 case PACKET_UNKNOWN:
4932 return -1;
4933 case PACKET_OK:
4934 return 0;
4935 }
4936 internal_error (__FILE__, __LINE__,
4937 "remote_insert_hw_breakpoint: reached end of function");
4938 }
4939
4940
4941 static int
4942 remote_remove_hw_breakpoint (CORE_ADDR addr, char *shadow)
4943 {
4944 int len;
4945 struct remote_state *rs = get_remote_state ();
4946 char *buf = alloca (rs->remote_packet_size);
4947 char *p = buf;
4948
4949 /* The length field should be set to the size of a breakpoint
4950 instruction. */
4951
4952 BREAKPOINT_FROM_PC (&addr, &len);
4953
4954 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4955 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4956 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4957 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4958
4959 *(p++) = 'z';
4960 *(p++) = '1';
4961 *(p++) = ',';
4962
4963 addr = remote_address_masked (addr);
4964 p += hexnumstr (p, (ULONGEST) addr);
4965 sprintf (p, ",%x", len);
4966
4967 putpkt(buf);
4968 getpkt (buf, (rs->remote_packet_size), 0);
4969
4970 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4971 {
4972 case PACKET_ERROR:
4973 case PACKET_UNKNOWN:
4974 return -1;
4975 case PACKET_OK:
4976 return 0;
4977 }
4978 internal_error (__FILE__, __LINE__,
4979 "remote_remove_hw_breakpoint: reached end of function");
4980 }
4981
4982 /* Some targets are only capable of doing downloads, and afterwards
4983 they switch to the remote serial protocol. This function provides
4984 a clean way to get from the download target to the remote target.
4985 It's basically just a wrapper so that we don't have to expose any
4986 of the internal workings of remote.c.
4987
4988 Prior to calling this routine, you should shutdown the current
4989 target code, else you will get the "A program is being debugged
4990 already..." message. Usually a call to pop_target() suffices. */
4991
4992 void
4993 push_remote_target (char *name, int from_tty)
4994 {
4995 printf_filtered ("Switching to remote protocol\n");
4996 remote_open (name, from_tty);
4997 }
4998
4999 /* Table used by the crc32 function to calcuate the checksum. */
5000
5001 static unsigned long crc32_table[256] =
5002 {0, 0};
5003
5004 static unsigned long
5005 crc32 (unsigned char *buf, int len, unsigned int crc)
5006 {
5007 if (!crc32_table[1])
5008 {
5009 /* Initialize the CRC table and the decoding table. */
5010 int i, j;
5011 unsigned int c;
5012
5013 for (i = 0; i < 256; i++)
5014 {
5015 for (c = i << 24, j = 8; j > 0; --j)
5016 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5017 crc32_table[i] = c;
5018 }
5019 }
5020
5021 while (len--)
5022 {
5023 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5024 buf++;
5025 }
5026 return crc;
5027 }
5028
5029 /* compare-sections command
5030
5031 With no arguments, compares each loadable section in the exec bfd
5032 with the same memory range on the target, and reports mismatches.
5033 Useful for verifying the image on the target against the exec file.
5034 Depends on the target understanding the new "qCRC:" request. */
5035
5036 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5037 target method (target verify memory) and generic version of the
5038 actual command. This will allow other high-level code (especially
5039 generic_load()) to make use of this target functionality. */
5040
5041 static void
5042 compare_sections_command (char *args, int from_tty)
5043 {
5044 struct remote_state *rs = get_remote_state ();
5045 asection *s;
5046 unsigned long host_crc, target_crc;
5047 extern bfd *exec_bfd;
5048 struct cleanup *old_chain;
5049 char *tmp;
5050 char *sectdata;
5051 const char *sectname;
5052 char *buf = alloca (rs->remote_packet_size);
5053 bfd_size_type size;
5054 bfd_vma lma;
5055 int matched = 0;
5056 int mismatched = 0;
5057
5058 if (!exec_bfd)
5059 error ("command cannot be used without an exec file");
5060 if (!current_target.to_shortname ||
5061 strcmp (current_target.to_shortname, "remote") != 0)
5062 error ("command can only be used with remote target");
5063
5064 for (s = exec_bfd->sections; s; s = s->next)
5065 {
5066 if (!(s->flags & SEC_LOAD))
5067 continue; /* skip non-loadable section */
5068
5069 size = bfd_get_section_size_before_reloc (s);
5070 if (size == 0)
5071 continue; /* skip zero-length section */
5072
5073 sectname = bfd_get_section_name (exec_bfd, s);
5074 if (args && strcmp (args, sectname) != 0)
5075 continue; /* not the section selected by user */
5076
5077 matched = 1; /* do this section */
5078 lma = s->lma;
5079 /* FIXME: assumes lma can fit into long */
5080 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
5081 putpkt (buf);
5082
5083 /* be clever; compute the host_crc before waiting for target reply */
5084 sectdata = xmalloc (size);
5085 old_chain = make_cleanup (xfree, sectdata);
5086 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5087 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5088
5089 getpkt (buf, (rs->remote_packet_size), 0);
5090 if (buf[0] == 'E')
5091 error ("target memory fault, section %s, range 0x%s -- 0x%s",
5092 sectname, paddr (lma), paddr (lma + size));
5093 if (buf[0] != 'C')
5094 error ("remote target does not support this operation");
5095
5096 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
5097 target_crc = target_crc * 16 + fromhex (*tmp);
5098
5099 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5100 sectname, paddr (lma), paddr (lma + size));
5101 if (host_crc == target_crc)
5102 printf_filtered ("matched.\n");
5103 else
5104 {
5105 printf_filtered ("MIS-MATCHED!\n");
5106 mismatched++;
5107 }
5108
5109 do_cleanups (old_chain);
5110 }
5111 if (mismatched > 0)
5112 warning ("One or more sections of the remote executable does not match\n\
5113 the loaded file\n");
5114 if (args && !matched)
5115 printf_filtered ("No loaded section named '%s'.\n", args);
5116 }
5117
5118 static LONGEST
5119 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5120 const char *annex, void *readbuf, const void *writebuf,
5121 ULONGEST offset, LONGEST len)
5122 {
5123 struct remote_state *rs = get_remote_state ();
5124 int i;
5125 char *buf2 = alloca (rs->remote_packet_size);
5126 char *p2 = &buf2[0];
5127 char query_type;
5128
5129 /* Only handle reads. */
5130 if (writebuf != NULL || readbuf == NULL)
5131 return -1;
5132
5133 /* Map pre-existing objects onto letters. DO NOT do this for new
5134 objects!!! Instead specify new query packets. */
5135 switch (object)
5136 {
5137 case TARGET_OBJECT_KOD:
5138 query_type = 'K';
5139 break;
5140 case TARGET_OBJECT_AVR:
5141 query_type = 'R';
5142 break;
5143 default:
5144 return -1;
5145 }
5146
5147 /* Note: a zero OFFSET and LEN can be used to query the minimum
5148 buffer size. */
5149 if (offset == 0 && len == 0)
5150 return (rs->remote_packet_size);
5151 /* Minimum outbuf size is (rs->remote_packet_size) - if bufsiz is
5152 not large enough let the caller. */
5153 if (len < (rs->remote_packet_size))
5154 return -1;
5155 len = rs->remote_packet_size;
5156
5157 /* except for querying the minimum buffer size, target must be open */
5158 if (!remote_desc)
5159 error ("remote query is only available after target open");
5160
5161 gdb_assert (annex != NULL);
5162 gdb_assert (readbuf != NULL);
5163
5164 *p2++ = 'q';
5165 *p2++ = query_type;
5166
5167 /* we used one buffer char for the remote protocol q command and another
5168 for the query type. As the remote protocol encapsulation uses 4 chars
5169 plus one extra in case we are debugging (remote_debug),
5170 we have PBUFZIZ - 7 left to pack the query string */
5171 i = 0;
5172 while (annex[i] && (i < ((rs->remote_packet_size) - 8)))
5173 {
5174 /* Bad caller may have sent forbidden characters. */
5175 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5176 *p2++ = annex[i];
5177 i++;
5178 }
5179 *p2 = '\0';
5180 gdb_assert (annex[i] == '\0');
5181
5182 i = putpkt (buf2);
5183 if (i < 0)
5184 return i;
5185
5186 getpkt (readbuf, len, 0);
5187
5188 return strlen (readbuf);
5189 }
5190
5191 static void
5192 remote_rcmd (char *command,
5193 struct ui_file *outbuf)
5194 {
5195 struct remote_state *rs = get_remote_state ();
5196 int i;
5197 char *buf = alloca (rs->remote_packet_size);
5198 char *p = buf;
5199
5200 if (!remote_desc)
5201 error ("remote rcmd is only available after target open");
5202
5203 /* Send a NULL command across as an empty command */
5204 if (command == NULL)
5205 command = "";
5206
5207 /* The query prefix */
5208 strcpy (buf, "qRcmd,");
5209 p = strchr (buf, '\0');
5210
5211 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > (rs->remote_packet_size))
5212 error ("\"monitor\" command ``%s'' is too long\n", command);
5213
5214 /* Encode the actual command */
5215 bin2hex (command, p, 0);
5216
5217 if (putpkt (buf) < 0)
5218 error ("Communication problem with target\n");
5219
5220 /* get/display the response */
5221 while (1)
5222 {
5223 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5224 buf[0] = '\0';
5225 getpkt (buf, (rs->remote_packet_size), 0);
5226 if (buf[0] == '\0')
5227 error ("Target does not support this command\n");
5228 if (buf[0] == 'O' && buf[1] != 'K')
5229 {
5230 remote_console_output (buf + 1); /* 'O' message from stub */
5231 continue;
5232 }
5233 if (strcmp (buf, "OK") == 0)
5234 break;
5235 if (strlen (buf) == 3 && buf[0] == 'E'
5236 && isdigit (buf[1]) && isdigit (buf[2]))
5237 {
5238 error ("Protocol error with Rcmd");
5239 }
5240 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5241 {
5242 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5243 fputc_unfiltered (c, outbuf);
5244 }
5245 break;
5246 }
5247 }
5248
5249 static void
5250 packet_command (char *args, int from_tty)
5251 {
5252 struct remote_state *rs = get_remote_state ();
5253 char *buf = alloca (rs->remote_packet_size);
5254
5255 if (!remote_desc)
5256 error ("command can only be used with remote target");
5257
5258 if (!args)
5259 error ("remote-packet command requires packet text as argument");
5260
5261 puts_filtered ("sending: ");
5262 print_packet (args);
5263 puts_filtered ("\n");
5264 putpkt (args);
5265
5266 getpkt (buf, (rs->remote_packet_size), 0);
5267 puts_filtered ("received: ");
5268 print_packet (buf);
5269 puts_filtered ("\n");
5270 }
5271
5272 #if 0
5273 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5274
5275 static void display_thread_info (struct gdb_ext_thread_info *info);
5276
5277 static void threadset_test_cmd (char *cmd, int tty);
5278
5279 static void threadalive_test (char *cmd, int tty);
5280
5281 static void threadlist_test_cmd (char *cmd, int tty);
5282
5283 int get_and_display_threadinfo (threadref * ref);
5284
5285 static void threadinfo_test_cmd (char *cmd, int tty);
5286
5287 static int thread_display_step (threadref * ref, void *context);
5288
5289 static void threadlist_update_test_cmd (char *cmd, int tty);
5290
5291 static void init_remote_threadtests (void);
5292
5293 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5294
5295 static void
5296 threadset_test_cmd (char *cmd, int tty)
5297 {
5298 int sample_thread = SAMPLE_THREAD;
5299
5300 printf_filtered ("Remote threadset test\n");
5301 set_thread (sample_thread, 1);
5302 }
5303
5304
5305 static void
5306 threadalive_test (char *cmd, int tty)
5307 {
5308 int sample_thread = SAMPLE_THREAD;
5309
5310 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5311 printf_filtered ("PASS: Thread alive test\n");
5312 else
5313 printf_filtered ("FAIL: Thread alive test\n");
5314 }
5315
5316 void output_threadid (char *title, threadref * ref);
5317
5318 void
5319 output_threadid (char *title, threadref *ref)
5320 {
5321 char hexid[20];
5322
5323 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5324 hexid[16] = 0;
5325 printf_filtered ("%s %s\n", title, (&hexid[0]));
5326 }
5327
5328 static void
5329 threadlist_test_cmd (char *cmd, int tty)
5330 {
5331 int startflag = 1;
5332 threadref nextthread;
5333 int done, result_count;
5334 threadref threadlist[3];
5335
5336 printf_filtered ("Remote Threadlist test\n");
5337 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5338 &result_count, &threadlist[0]))
5339 printf_filtered ("FAIL: threadlist test\n");
5340 else
5341 {
5342 threadref *scan = threadlist;
5343 threadref *limit = scan + result_count;
5344
5345 while (scan < limit)
5346 output_threadid (" thread ", scan++);
5347 }
5348 }
5349
5350 void
5351 display_thread_info (struct gdb_ext_thread_info *info)
5352 {
5353 output_threadid ("Threadid: ", &info->threadid);
5354 printf_filtered ("Name: %s\n ", info->shortname);
5355 printf_filtered ("State: %s\n", info->display);
5356 printf_filtered ("other: %s\n\n", info->more_display);
5357 }
5358
5359 int
5360 get_and_display_threadinfo (threadref *ref)
5361 {
5362 int result;
5363 int set;
5364 struct gdb_ext_thread_info threadinfo;
5365
5366 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5367 | TAG_MOREDISPLAY | TAG_DISPLAY;
5368 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5369 display_thread_info (&threadinfo);
5370 return result;
5371 }
5372
5373 static void
5374 threadinfo_test_cmd (char *cmd, int tty)
5375 {
5376 int athread = SAMPLE_THREAD;
5377 threadref thread;
5378 int set;
5379
5380 int_to_threadref (&thread, athread);
5381 printf_filtered ("Remote Threadinfo test\n");
5382 if (!get_and_display_threadinfo (&thread))
5383 printf_filtered ("FAIL cannot get thread info\n");
5384 }
5385
5386 static int
5387 thread_display_step (threadref *ref, void *context)
5388 {
5389 /* output_threadid(" threadstep ",ref); *//* simple test */
5390 return get_and_display_threadinfo (ref);
5391 }
5392
5393 static void
5394 threadlist_update_test_cmd (char *cmd, int tty)
5395 {
5396 printf_filtered ("Remote Threadlist update test\n");
5397 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5398 }
5399
5400 static void
5401 init_remote_threadtests (void)
5402 {
5403 add_com ("tlist", class_obscure, threadlist_test_cmd,
5404 "Fetch and print the remote list of thread identifiers, one pkt only");
5405 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5406 "Fetch and display info about one thread");
5407 add_com ("tset", class_obscure, threadset_test_cmd,
5408 "Test setting to a different thread");
5409 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5410 "Iterate through updating all remote thread info");
5411 add_com ("talive", class_obscure, threadalive_test,
5412 " Remote thread alive test ");
5413 }
5414
5415 #endif /* 0 */
5416
5417 /* Convert a thread ID to a string. Returns the string in a static
5418 buffer. */
5419
5420 static char *
5421 remote_pid_to_str (ptid_t ptid)
5422 {
5423 static char buf[30];
5424
5425 sprintf (buf, "Thread %d", PIDGET (ptid));
5426 return buf;
5427 }
5428
5429 static void
5430 init_remote_ops (void)
5431 {
5432 remote_ops.to_shortname = "remote";
5433 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5434 remote_ops.to_doc =
5435 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5436 Specify the serial device it is connected to\n\
5437 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5438 remote_ops.to_open = remote_open;
5439 remote_ops.to_close = remote_close;
5440 remote_ops.to_detach = remote_detach;
5441 remote_ops.to_disconnect = remote_disconnect;
5442 remote_ops.to_resume = remote_resume;
5443 remote_ops.to_wait = remote_wait;
5444 remote_ops.to_fetch_registers = remote_fetch_registers;
5445 remote_ops.to_store_registers = remote_store_registers;
5446 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5447 remote_ops.to_xfer_memory = remote_xfer_memory;
5448 remote_ops.to_files_info = remote_files_info;
5449 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5450 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5451 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5452 remote_ops.to_stopped_data_address = remote_stopped_data_address;
5453 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5454 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5455 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5456 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
5457 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
5458 remote_ops.to_kill = remote_kill;
5459 remote_ops.to_load = generic_load;
5460 remote_ops.to_mourn_inferior = remote_mourn;
5461 remote_ops.to_thread_alive = remote_thread_alive;
5462 remote_ops.to_find_new_threads = remote_threads_info;
5463 remote_ops.to_pid_to_str = remote_pid_to_str;
5464 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5465 remote_ops.to_stop = remote_stop;
5466 remote_ops.to_xfer_partial = remote_xfer_partial;
5467 remote_ops.to_rcmd = remote_rcmd;
5468 remote_ops.to_stratum = process_stratum;
5469 remote_ops.to_has_all_memory = 1;
5470 remote_ops.to_has_memory = 1;
5471 remote_ops.to_has_stack = 1;
5472 remote_ops.to_has_registers = 1;
5473 remote_ops.to_has_execution = 1;
5474 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5475 remote_ops.to_magic = OPS_MAGIC;
5476 }
5477
5478 /* Set up the extended remote vector by making a copy of the standard
5479 remote vector and adding to it. */
5480
5481 static void
5482 init_extended_remote_ops (void)
5483 {
5484 extended_remote_ops = remote_ops;
5485
5486 extended_remote_ops.to_shortname = "extended-remote";
5487 extended_remote_ops.to_longname =
5488 "Extended remote serial target in gdb-specific protocol";
5489 extended_remote_ops.to_doc =
5490 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5491 Specify the serial device it is connected to (e.g. /dev/ttya).",
5492 extended_remote_ops.to_open = extended_remote_open;
5493 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5494 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5495 }
5496
5497 /*
5498 * Command: info remote-process
5499 *
5500 * This implements Cisco's version of the "info proc" command.
5501 *
5502 * This query allows the target stub to return an arbitrary string
5503 * (or strings) giving arbitrary information about the target process.
5504 * This is optional; the target stub isn't required to implement it.
5505 *
5506 * Syntax: qfProcessInfo request first string
5507 * qsProcessInfo request subsequent string
5508 * reply: 'O'<hex-encoded-string>
5509 * 'l' last reply (empty)
5510 */
5511
5512 static void
5513 remote_info_process (char *args, int from_tty)
5514 {
5515 struct remote_state *rs = get_remote_state ();
5516 char *buf = alloca (rs->remote_packet_size);
5517
5518 if (remote_desc == 0)
5519 error ("Command can only be used when connected to the remote target.");
5520
5521 putpkt ("qfProcessInfo");
5522 getpkt (buf, (rs->remote_packet_size), 0);
5523 if (buf[0] == 0)
5524 return; /* Silently: target does not support this feature. */
5525
5526 if (buf[0] == 'E')
5527 error ("info proc: target error.");
5528
5529 while (buf[0] == 'O') /* Capitol-O packet */
5530 {
5531 remote_console_output (&buf[1]);
5532 putpkt ("qsProcessInfo");
5533 getpkt (buf, (rs->remote_packet_size), 0);
5534 }
5535 }
5536
5537 /*
5538 * Target Cisco
5539 */
5540
5541 static void
5542 remote_cisco_open (char *name, int from_tty)
5543 {
5544 int ex;
5545 if (name == 0)
5546 error ("To open a remote debug connection, you need to specify what \n"
5547 "device is attached to the remote system (e.g. host:port).");
5548
5549 /* See FIXME above */
5550 wait_forever_enabled_p = 1;
5551
5552 target_preopen (from_tty);
5553
5554 unpush_target (&remote_cisco_ops);
5555
5556 remote_desc = remote_serial_open (name);
5557 if (!remote_desc)
5558 perror_with_name (name);
5559
5560 /*
5561 * If a baud rate was specified on the gdb command line it will
5562 * be greater than the initial value of -1. If it is, use it otherwise
5563 * default to 9600
5564 */
5565
5566 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5567 if (serial_setbaudrate (remote_desc, baud_rate))
5568 {
5569 serial_close (remote_desc);
5570 perror_with_name (name);
5571 }
5572
5573 serial_raw (remote_desc);
5574
5575 /* If there is something sitting in the buffer we might take it as a
5576 response to a command, which would be bad. */
5577 serial_flush_input (remote_desc);
5578
5579 if (from_tty)
5580 {
5581 puts_filtered ("Remote debugging using ");
5582 puts_filtered (name);
5583 puts_filtered ("\n");
5584 }
5585
5586 remote_cisco_mode = 1;
5587
5588 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5589
5590 init_all_packet_configs ();
5591
5592 general_thread = -2;
5593 continue_thread = -2;
5594
5595 /* Probe for ability to use "ThreadInfo" query, as required. */
5596 use_threadinfo_query = 1;
5597 use_threadextra_query = 1;
5598
5599 /* Without this, some commands which require an active target (such
5600 as kill) won't work. This variable serves (at least) double duty
5601 as both the pid of the target process (if it has such), and as a
5602 flag indicating that a target is active. These functions should
5603 be split out into seperate variables, especially since GDB will
5604 someday have a notion of debugging several processes. */
5605 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5606
5607 /* Start the remote connection; if error, discard this target. See
5608 the comments in remote_open_1() for further details such as the
5609 need to re-throw the exception. */
5610 ex = catch_exceptions (uiout,
5611 remote_start_remote_dummy, NULL,
5612 "Couldn't establish connection to remote"
5613 " target\n",
5614 RETURN_MASK_ALL);
5615 if (ex < 0)
5616 {
5617 pop_target ();
5618 throw_exception (ex);
5619 }
5620 }
5621
5622 static void
5623 remote_cisco_close (int quitting)
5624 {
5625 remote_cisco_mode = 0;
5626 remote_close (quitting);
5627 }
5628
5629 static void
5630 remote_cisco_mourn (void)
5631 {
5632 remote_mourn_1 (&remote_cisco_ops);
5633 }
5634
5635 enum
5636 {
5637 READ_MORE,
5638 FATAL_ERROR,
5639 ENTER_DEBUG,
5640 DISCONNECT_TELNET
5641 }
5642 minitelnet_return;
5643
5644 /* Shared between readsocket() and readtty(). The size is arbitrary,
5645 however all targets are known to support a 400 character packet. */
5646 static char tty_input[400];
5647
5648 static int escape_count;
5649 static int echo_check;
5650 extern int quit_flag;
5651
5652 static int
5653 readsocket (void)
5654 {
5655 int data;
5656
5657 /* Loop until the socket doesn't have any more data */
5658
5659 while ((data = readchar (0)) >= 0)
5660 {
5661 /* Check for the escape sequence */
5662 if (data == '|')
5663 {
5664 /* If this is the fourth escape, get out */
5665 if (++escape_count == 4)
5666 {
5667 return ENTER_DEBUG;
5668 }
5669 else
5670 { /* This is a '|', but not the fourth in a row.
5671 Continue without echoing it. If it isn't actually
5672 one of four in a row, it'll be echoed later. */
5673 continue;
5674 }
5675 }
5676 else
5677 /* Not a '|' */
5678 {
5679 /* Ensure any pending '|'s are flushed. */
5680
5681 for (; escape_count > 0; escape_count--)
5682 putchar ('|');
5683 }
5684
5685 if (data == '\r') /* If this is a return character, */
5686 continue; /* - just supress it. */
5687
5688 if (echo_check != -1) /* Check for echo of user input. */
5689 {
5690 if (tty_input[echo_check] == data)
5691 {
5692 gdb_assert (echo_check <= sizeof (tty_input));
5693 echo_check++; /* Character matched user input: */
5694 continue; /* Continue without echoing it. */
5695 }
5696 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5697 { /* End of the line (and of echo checking). */
5698 echo_check = -1; /* No more echo supression */
5699 continue; /* Continue without echoing. */
5700 }
5701 else
5702 { /* Failed check for echo of user input.
5703 We now have some suppressed output to flush! */
5704 int j;
5705
5706 for (j = 0; j < echo_check; j++)
5707 putchar (tty_input[j]);
5708 echo_check = -1;
5709 }
5710 }
5711 putchar (data); /* Default case: output the char. */
5712 }
5713
5714 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5715 return READ_MORE; /* Try to read some more */
5716 else
5717 return FATAL_ERROR; /* Trouble, bail out */
5718 }
5719
5720 static int
5721 readtty (void)
5722 {
5723 int tty_bytecount;
5724
5725 /* First, read a buffer full from the terminal */
5726 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5727 if (tty_bytecount == -1)
5728 {
5729 perror ("readtty: read failed");
5730 return FATAL_ERROR;
5731 }
5732
5733 /* Remove a quoted newline. */
5734 if (tty_input[tty_bytecount - 1] == '\n' &&
5735 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5736 {
5737 tty_input[--tty_bytecount] = 0; /* remove newline */
5738 tty_input[--tty_bytecount] = 0; /* remove backslash */
5739 }
5740
5741 /* Turn trailing newlines into returns */
5742 if (tty_input[tty_bytecount - 1] == '\n')
5743 tty_input[tty_bytecount - 1] = '\r';
5744
5745 /* If the line consists of a ~, enter debugging mode. */
5746 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5747 return ENTER_DEBUG;
5748
5749 /* Make this a zero terminated string and write it out */
5750 tty_input[tty_bytecount] = 0;
5751 if (serial_write (remote_desc, tty_input, tty_bytecount))
5752 {
5753 perror_with_name ("readtty: write failed");
5754 return FATAL_ERROR;
5755 }
5756
5757 return READ_MORE;
5758 }
5759
5760 static int
5761 minitelnet (void)
5762 {
5763 fd_set input; /* file descriptors for select */
5764 int tablesize; /* max number of FDs for select */
5765 int status;
5766 int quit_count = 0;
5767
5768 escape_count = 0;
5769 echo_check = -1;
5770
5771 tablesize = 8 * sizeof (input);
5772
5773 for (;;)
5774 {
5775 /* Check for anything from our socket - doesn't block. Note that
5776 this must be done *before* the select as there may be
5777 buffered I/O waiting to be processed. */
5778
5779 if ((status = readsocket ()) == FATAL_ERROR)
5780 {
5781 error ("Debugging terminated by communications error");
5782 }
5783 else if (status != READ_MORE)
5784 {
5785 return (status);
5786 }
5787
5788 fflush (stdout); /* Flush output before blocking */
5789
5790 /* Now block on more socket input or TTY input */
5791
5792 FD_ZERO (&input);
5793 FD_SET (fileno (stdin), &input);
5794 FD_SET (deprecated_serial_fd (remote_desc), &input);
5795
5796 status = select (tablesize, &input, 0, 0, 0);
5797 if ((status == -1) && (errno != EINTR))
5798 {
5799 error ("Communications error on select %d", errno);
5800 }
5801
5802 /* Handle Control-C typed */
5803
5804 if (quit_flag)
5805 {
5806 if ((++quit_count) == 2)
5807 {
5808 if (query ("Interrupt GDB? "))
5809 {
5810 printf_filtered ("Interrupted by user.\n");
5811 throw_exception (RETURN_QUIT);
5812 }
5813 quit_count = 0;
5814 }
5815 quit_flag = 0;
5816
5817 if (remote_break)
5818 serial_send_break (remote_desc);
5819 else
5820 serial_write (remote_desc, "\003", 1);
5821
5822 continue;
5823 }
5824
5825 /* Handle console input */
5826
5827 if (FD_ISSET (fileno (stdin), &input))
5828 {
5829 quit_count = 0;
5830 echo_check = 0;
5831 status = readtty ();
5832 if (status == READ_MORE)
5833 continue;
5834
5835 return status; /* telnet session ended */
5836 }
5837 }
5838 }
5839
5840 static ptid_t
5841 remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5842 {
5843 if (minitelnet () != ENTER_DEBUG)
5844 {
5845 error ("Debugging session terminated by protocol error");
5846 }
5847 putpkt ("?");
5848 return remote_wait (ptid, status);
5849 }
5850
5851 static void
5852 init_remote_cisco_ops (void)
5853 {
5854 remote_cisco_ops.to_shortname = "cisco";
5855 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5856 remote_cisco_ops.to_doc =
5857 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5858 Specify the serial device it is connected to (e.g. host:2020).";
5859 remote_cisco_ops.to_open = remote_cisco_open;
5860 remote_cisco_ops.to_close = remote_cisco_close;
5861 remote_cisco_ops.to_detach = remote_detach;
5862 remote_cisco_ops.to_disconnect = remote_disconnect;
5863 remote_cisco_ops.to_resume = remote_resume;
5864 remote_cisco_ops.to_wait = remote_cisco_wait;
5865 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5866 remote_cisco_ops.to_store_registers = remote_store_registers;
5867 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5868 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5869 remote_cisco_ops.to_files_info = remote_files_info;
5870 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5871 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5872 remote_cisco_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5873 remote_cisco_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5874 remote_cisco_ops.to_insert_watchpoint = remote_insert_watchpoint;
5875 remote_cisco_ops.to_remove_watchpoint = remote_remove_watchpoint;
5876 remote_cisco_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5877 remote_cisco_ops.to_stopped_data_address = remote_stopped_data_address;
5878 remote_cisco_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5879 remote_cisco_ops.to_kill = remote_kill;
5880 remote_cisco_ops.to_load = generic_load;
5881 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5882 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5883 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5884 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5885 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5886 remote_cisco_ops.to_stratum = process_stratum;
5887 remote_cisco_ops.to_has_all_memory = 1;
5888 remote_cisco_ops.to_has_memory = 1;
5889 remote_cisco_ops.to_has_stack = 1;
5890 remote_cisco_ops.to_has_registers = 1;
5891 remote_cisco_ops.to_has_execution = 1;
5892 remote_cisco_ops.to_magic = OPS_MAGIC;
5893 }
5894
5895 static int
5896 remote_can_async_p (void)
5897 {
5898 /* We're async whenever the serial device is. */
5899 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5900 }
5901
5902 static int
5903 remote_is_async_p (void)
5904 {
5905 /* We're async whenever the serial device is. */
5906 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5907 }
5908
5909 /* Pass the SERIAL event on and up to the client. One day this code
5910 will be able to delay notifying the client of an event until the
5911 point where an entire packet has been received. */
5912
5913 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5914 static void *async_client_context;
5915 static serial_event_ftype remote_async_serial_handler;
5916
5917 static void
5918 remote_async_serial_handler (struct serial *scb, void *context)
5919 {
5920 /* Don't propogate error information up to the client. Instead let
5921 the client find out about the error by querying the target. */
5922 async_client_callback (INF_REG_EVENT, async_client_context);
5923 }
5924
5925 static void
5926 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5927 {
5928 if (current_target.to_async_mask_value == 0)
5929 internal_error (__FILE__, __LINE__,
5930 "Calling remote_async when async is masked");
5931
5932 if (callback != NULL)
5933 {
5934 serial_async (remote_desc, remote_async_serial_handler, NULL);
5935 async_client_callback = callback;
5936 async_client_context = context;
5937 }
5938 else
5939 serial_async (remote_desc, NULL, NULL);
5940 }
5941
5942 /* Target async and target extended-async.
5943
5944 This are temporary targets, until it is all tested. Eventually
5945 async support will be incorporated int the usual 'remote'
5946 target. */
5947
5948 static void
5949 init_remote_async_ops (void)
5950 {
5951 remote_async_ops.to_shortname = "async";
5952 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5953 remote_async_ops.to_doc =
5954 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5955 Specify the serial device it is connected to (e.g. /dev/ttya).";
5956 remote_async_ops.to_open = remote_async_open;
5957 remote_async_ops.to_close = remote_close;
5958 remote_async_ops.to_detach = remote_detach;
5959 remote_async_ops.to_disconnect = remote_disconnect;
5960 remote_async_ops.to_resume = remote_async_resume;
5961 remote_async_ops.to_wait = remote_async_wait;
5962 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5963 remote_async_ops.to_store_registers = remote_store_registers;
5964 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5965 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5966 remote_async_ops.to_files_info = remote_files_info;
5967 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5968 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5969 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
5970 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
5971 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
5972 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
5973 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
5974 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
5975 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
5976 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5977 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5978 remote_async_ops.to_kill = remote_async_kill;
5979 remote_async_ops.to_load = generic_load;
5980 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5981 remote_async_ops.to_thread_alive = remote_thread_alive;
5982 remote_async_ops.to_find_new_threads = remote_threads_info;
5983 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5984 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5985 remote_async_ops.to_stop = remote_stop;
5986 remote_async_ops.to_xfer_partial = remote_xfer_partial;
5987 remote_async_ops.to_rcmd = remote_rcmd;
5988 remote_async_ops.to_stratum = process_stratum;
5989 remote_async_ops.to_has_all_memory = 1;
5990 remote_async_ops.to_has_memory = 1;
5991 remote_async_ops.to_has_stack = 1;
5992 remote_async_ops.to_has_registers = 1;
5993 remote_async_ops.to_has_execution = 1;
5994 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5995 remote_async_ops.to_can_async_p = remote_can_async_p;
5996 remote_async_ops.to_is_async_p = remote_is_async_p;
5997 remote_async_ops.to_async = remote_async;
5998 remote_async_ops.to_async_mask_value = 1;
5999 remote_async_ops.to_magic = OPS_MAGIC;
6000 }
6001
6002 /* Set up the async extended remote vector by making a copy of the standard
6003 remote vector and adding to it. */
6004
6005 static void
6006 init_extended_async_remote_ops (void)
6007 {
6008 extended_async_remote_ops = remote_async_ops;
6009
6010 extended_async_remote_ops.to_shortname = "extended-async";
6011 extended_async_remote_ops.to_longname =
6012 "Extended remote serial target in async gdb-specific protocol";
6013 extended_async_remote_ops.to_doc =
6014 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
6015 Specify the serial device it is connected to (e.g. /dev/ttya).",
6016 extended_async_remote_ops.to_open = extended_remote_async_open;
6017 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
6018 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
6019 }
6020
6021 static void
6022 set_remote_cmd (char *args, int from_tty)
6023 {
6024 }
6025
6026 static void
6027 show_remote_cmd (char *args, int from_tty)
6028 {
6029 /* FIXME: cagney/2002-06-15: This function should iterate over
6030 remote_show_cmdlist for a list of sub commands to show. */
6031 show_remote_protocol_Z_packet_cmd (args, from_tty, NULL);
6032 show_remote_protocol_e_packet_cmd (args, from_tty, NULL);
6033 show_remote_protocol_E_packet_cmd (args, from_tty, NULL);
6034 show_remote_protocol_P_packet_cmd (args, from_tty, NULL);
6035 show_remote_protocol_qSymbol_packet_cmd (args, from_tty, NULL);
6036 show_remote_protocol_vcont_packet_cmd (args, from_tty, NULL);
6037 show_remote_protocol_binary_download_cmd (args, from_tty, NULL);
6038 }
6039
6040 static void
6041 build_remote_gdbarch_data (void)
6042 {
6043 remote_address_size = TARGET_ADDR_BIT;
6044 }
6045
6046 /* Saved pointer to previous owner of the new_objfile event. */
6047 static void (*remote_new_objfile_chain) (struct objfile *);
6048
6049 /* Function to be called whenever a new objfile (shlib) is detected. */
6050 static void
6051 remote_new_objfile (struct objfile *objfile)
6052 {
6053 if (remote_desc != 0) /* Have a remote connection */
6054 {
6055 remote_check_symbols (objfile);
6056 }
6057 /* Call predecessor on chain, if any. */
6058 if (remote_new_objfile_chain != 0 &&
6059 remote_desc == 0)
6060 remote_new_objfile_chain (objfile);
6061 }
6062
6063 void
6064 _initialize_remote (void)
6065 {
6066 static struct cmd_list_element *remote_set_cmdlist;
6067 static struct cmd_list_element *remote_show_cmdlist;
6068 struct cmd_list_element *tmpcmd;
6069
6070 /* architecture specific data */
6071 remote_gdbarch_data_handle = register_gdbarch_data (init_remote_state);
6072
6073 /* Old tacky stuff. NOTE: This comes after the remote protocol so
6074 that the remote protocol has been initialized. */
6075 register_gdbarch_swap (&remote_address_size,
6076 sizeof (&remote_address_size), NULL);
6077 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
6078
6079 init_remote_ops ();
6080 add_target (&remote_ops);
6081
6082 init_extended_remote_ops ();
6083 add_target (&extended_remote_ops);
6084
6085 init_remote_async_ops ();
6086 add_target (&remote_async_ops);
6087
6088 init_extended_async_remote_ops ();
6089 add_target (&extended_async_remote_ops);
6090
6091 init_remote_cisco_ops ();
6092 add_target (&remote_cisco_ops);
6093
6094 /* Hook into new objfile notification. */
6095 remote_new_objfile_chain = target_new_objfile_hook;
6096 target_new_objfile_hook = remote_new_objfile;
6097
6098 #if 0
6099 init_remote_threadtests ();
6100 #endif
6101
6102 /* set/show remote ... */
6103
6104 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
6105 Remote protocol specific variables\n\
6106 Configure various remote-protocol specific variables such as\n\
6107 the packets being used",
6108 &remote_set_cmdlist, "set remote ",
6109 0/*allow-unknown*/, &setlist);
6110 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
6111 Remote protocol specific variables\n\
6112 Configure various remote-protocol specific variables such as\n\
6113 the packets being used",
6114 &remote_show_cmdlist, "show remote ",
6115 0/*allow-unknown*/, &showlist);
6116
6117 add_cmd ("compare-sections", class_obscure, compare_sections_command,
6118 "Compare section data on target to the exec file.\n\
6119 Argument is a single section name (default: all loaded sections).",
6120 &cmdlist);
6121
6122 add_cmd ("packet", class_maintenance, packet_command,
6123 "Send an arbitrary packet to a remote target.\n\
6124 maintenance packet TEXT\n\
6125 If GDB is talking to an inferior via the GDB serial protocol, then\n\
6126 this command sends the string TEXT to the inferior, and displays the\n\
6127 response packet. GDB supplies the initial `$' character, and the\n\
6128 terminating `#' character and checksum.",
6129 &maintenancelist);
6130
6131 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break,
6132 "Set whether to send break if interrupted.\n",
6133 "Show whether to send break if interrupted.\n",
6134 NULL, NULL,
6135 &setlist, &showlist);
6136
6137 /* Install commands for configuring memory read/write packets. */
6138
6139 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
6140 "Set the maximum number of bytes per memory write packet (deprecated).\n",
6141 &setlist);
6142 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
6143 "Show the maximum number of bytes per memory write packet (deprecated).\n",
6144 &showlist);
6145 add_cmd ("memory-write-packet-size", no_class,
6146 set_memory_write_packet_size,
6147 "Set the maximum number of bytes per memory-write packet.\n"
6148 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6149 "default packet size. The actual limit is further reduced\n"
6150 "dependent on the target. Specify ``fixed'' to disable the\n"
6151 "further restriction and ``limit'' to enable that restriction\n",
6152 &remote_set_cmdlist);
6153 add_cmd ("memory-read-packet-size", no_class,
6154 set_memory_read_packet_size,
6155 "Set the maximum number of bytes per memory-read packet.\n"
6156 "Specify the number of bytes in a packet or 0 (zero) for the\n"
6157 "default packet size. The actual limit is further reduced\n"
6158 "dependent on the target. Specify ``fixed'' to disable the\n"
6159 "further restriction and ``limit'' to enable that restriction\n",
6160 &remote_set_cmdlist);
6161 add_cmd ("memory-write-packet-size", no_class,
6162 show_memory_write_packet_size,
6163 "Show the maximum number of bytes per memory-write packet.\n",
6164 &remote_show_cmdlist);
6165 add_cmd ("memory-read-packet-size", no_class,
6166 show_memory_read_packet_size,
6167 "Show the maximum number of bytes per memory-read packet.\n",
6168 &remote_show_cmdlist);
6169
6170 add_setshow_cmd ("hardware-watchpoint-limit", no_class,
6171 var_zinteger, &remote_hw_watchpoint_limit, "\
6172 Set the maximum number of target hardware watchpoints.\n\
6173 Specify a negative limit for unlimited.", "\
6174 Show the maximum number of target hardware watchpoints.\n",
6175 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6176 add_setshow_cmd ("hardware-breakpoint-limit", no_class,
6177 var_zinteger, &remote_hw_breakpoint_limit, "\
6178 Set the maximum number of target hardware breakpoints.\n\
6179 Specify a negative limit for unlimited.", "\
6180 Show the maximum number of target hardware breakpoints.\n",
6181 NULL, NULL, &remote_set_cmdlist, &remote_show_cmdlist);
6182
6183 add_show_from_set
6184 (add_set_cmd ("remoteaddresssize", class_obscure,
6185 var_integer, (char *) &remote_address_size,
6186 "Set the maximum size of the address (in bits) \
6187 in a memory packet.\n",
6188 &setlist),
6189 &showlist);
6190
6191 add_packet_config_cmd (&remote_protocol_binary_download,
6192 "X", "binary-download",
6193 set_remote_protocol_binary_download_cmd,
6194 show_remote_protocol_binary_download_cmd,
6195 &remote_set_cmdlist, &remote_show_cmdlist,
6196 1);
6197 #if 0
6198 /* XXXX - should ``set remotebinarydownload'' be retained for
6199 compatibility. */
6200 add_show_from_set
6201 (add_set_cmd ("remotebinarydownload", no_class,
6202 var_boolean, (char *) &remote_binary_download,
6203 "Set binary downloads.\n", &setlist),
6204 &showlist);
6205 #endif
6206
6207 add_info ("remote-process", remote_info_process,
6208 "Query the remote system for process info.");
6209
6210 add_packet_config_cmd (&remote_protocol_vcont,
6211 "vCont", "verbose-resume",
6212 set_remote_protocol_vcont_packet_cmd,
6213 show_remote_protocol_vcont_packet_cmd,
6214 &remote_set_cmdlist, &remote_show_cmdlist,
6215 0);
6216
6217 add_packet_config_cmd (&remote_protocol_qSymbol,
6218 "qSymbol", "symbol-lookup",
6219 set_remote_protocol_qSymbol_packet_cmd,
6220 show_remote_protocol_qSymbol_packet_cmd,
6221 &remote_set_cmdlist, &remote_show_cmdlist,
6222 0);
6223
6224 add_packet_config_cmd (&remote_protocol_e,
6225 "e", "step-over-range",
6226 set_remote_protocol_e_packet_cmd,
6227 show_remote_protocol_e_packet_cmd,
6228 &remote_set_cmdlist, &remote_show_cmdlist,
6229 0);
6230 /* Disable by default. The ``e'' packet has nasty interactions with
6231 the threading code - it relies on global state. */
6232 remote_protocol_e.detect = AUTO_BOOLEAN_FALSE;
6233 update_packet_config (&remote_protocol_e);
6234
6235 add_packet_config_cmd (&remote_protocol_E,
6236 "E", "step-over-range-w-signal",
6237 set_remote_protocol_E_packet_cmd,
6238 show_remote_protocol_E_packet_cmd,
6239 &remote_set_cmdlist, &remote_show_cmdlist,
6240 0);
6241 /* Disable by default. The ``e'' packet has nasty interactions with
6242 the threading code - it relies on global state. */
6243 remote_protocol_E.detect = AUTO_BOOLEAN_FALSE;
6244 update_packet_config (&remote_protocol_E);
6245
6246 add_packet_config_cmd (&remote_protocol_P,
6247 "P", "set-register",
6248 set_remote_protocol_P_packet_cmd,
6249 show_remote_protocol_P_packet_cmd,
6250 &remote_set_cmdlist, &remote_show_cmdlist,
6251 1);
6252
6253 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
6254 "Z0", "software-breakpoint",
6255 set_remote_protocol_Z_software_bp_packet_cmd,
6256 show_remote_protocol_Z_software_bp_packet_cmd,
6257 &remote_set_cmdlist, &remote_show_cmdlist,
6258 0);
6259
6260 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
6261 "Z1", "hardware-breakpoint",
6262 set_remote_protocol_Z_hardware_bp_packet_cmd,
6263 show_remote_protocol_Z_hardware_bp_packet_cmd,
6264 &remote_set_cmdlist, &remote_show_cmdlist,
6265 0);
6266
6267 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
6268 "Z2", "write-watchpoint",
6269 set_remote_protocol_Z_write_wp_packet_cmd,
6270 show_remote_protocol_Z_write_wp_packet_cmd,
6271 &remote_set_cmdlist, &remote_show_cmdlist,
6272 0);
6273
6274 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6275 "Z3", "read-watchpoint",
6276 set_remote_protocol_Z_read_wp_packet_cmd,
6277 show_remote_protocol_Z_read_wp_packet_cmd,
6278 &remote_set_cmdlist, &remote_show_cmdlist,
6279 0);
6280
6281 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6282 "Z4", "access-watchpoint",
6283 set_remote_protocol_Z_access_wp_packet_cmd,
6284 show_remote_protocol_Z_access_wp_packet_cmd,
6285 &remote_set_cmdlist, &remote_show_cmdlist,
6286 0);
6287
6288 /* Keep the old ``set remote Z-packet ...'' working. */
6289 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
6290 &remote_Z_packet_detect, "\
6291 Set use of remote protocol `Z' packets",
6292 "Show use of remote protocol `Z' packets ",
6293 set_remote_protocol_Z_packet_cmd,
6294 show_remote_protocol_Z_packet_cmd,
6295 &remote_set_cmdlist, &remote_show_cmdlist);
6296
6297 /* Eventually initialize fileio. See fileio.c */
6298 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
6299 }