move some statics from remote_read_qxfer into struct remote_state
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include <fcntl.h>
26 #include "inferior.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "exceptions.h"
30 #include "target.h"
31 /*#include "terminal.h" */
32 #include "gdbcmd.h"
33 #include "objfiles.h"
34 #include "gdb-stabs.h"
35 #include "gdbthread.h"
36 #include "remote.h"
37 #include "remote-notif.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "gdb_assert.h"
41 #include "observer.h"
42 #include "solib.h"
43 #include "cli/cli-decode.h"
44 #include "cli/cli-setshow.h"
45 #include "target-descriptions.h"
46 #include "gdb_bfd.h"
47 #include "filestuff.h"
48
49 #include <ctype.h>
50 #include <sys/time.h>
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include "gdb_stat.h"
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73
74 /* Temp hacks for tracepoint encoding migration. */
75 static char *target_buf;
76 static long target_buf_size;
77
78 /* The size to align memory write packets, when practical. The protocol
79 does not guarantee any alignment, and gdb will generate short
80 writes and unaligned writes, but even as a best-effort attempt this
81 can improve bulk transfers. For instance, if a write is misaligned
82 relative to the target's data bus, the stub may need to make an extra
83 round trip fetching data from the target. This doesn't make a
84 huge difference, but it's easy to do, so we try to be helpful.
85
86 The alignment chosen is arbitrary; usually data bus width is
87 important here, not the possibly larger cache line size. */
88 enum { REMOTE_ALIGN_WRITES = 16 };
89
90 /* Prototypes for local functions. */
91 static void async_cleanup_sigint_signal_handler (void *dummy);
92 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
93 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
94 int forever, int *is_notif);
95
96 static void async_handle_remote_sigint (int);
97 static void async_handle_remote_sigint_twice (int);
98
99 static void remote_files_info (struct target_ops *ignore);
100
101 static void remote_prepare_to_store (struct regcache *regcache);
102
103 static void remote_open (char *name, int from_tty);
104
105 static void extended_remote_open (char *name, int from_tty);
106
107 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
108
109 static void remote_close (void);
110
111 static void remote_mourn (struct target_ops *ops);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (struct target_ops *);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static void remote_serial_write (const char *str, int len);
124
125 static void remote_kill (struct target_ops *ops);
126
127 static int tohex (int nib);
128
129 static int remote_can_async_p (void);
130
131 static int remote_is_async_p (void);
132
133 static void remote_async (void (*callback) (enum inferior_event_type event_type,
134 void *context), void *context);
135
136 static void remote_detach (struct target_ops *ops, char *args, int from_tty);
137
138 static void sync_remote_interrupt_twice (int signo);
139
140 static void interrupt_query (void);
141
142 static void set_general_thread (struct ptid ptid);
143 static void set_continue_thread (struct ptid ptid);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (ptid_t);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static void compare_sections_command (char *, int);
172
173 static void packet_command (char *, int);
174
175 static int stub_unpack_int (char *buff, int fieldlength);
176
177 static ptid_t remote_current_thread (ptid_t oldptid);
178
179 static void remote_find_new_threads (void);
180
181 static int fromhex (int a);
182
183 static int putpkt_binary (char *buf, int cnt);
184
185 static void check_binary_download (CORE_ADDR addr);
186
187 struct packet_config;
188
189 static void show_packet_config_cmd (struct packet_config *config);
190
191 static void update_packet_config (struct packet_config *config);
192
193 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
194 struct cmd_list_element *c);
195
196 static void show_remote_protocol_packet_cmd (struct ui_file *file,
197 int from_tty,
198 struct cmd_list_element *c,
199 const char *value);
200
201 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
202 static ptid_t read_ptid (char *buf, char **obuf);
203
204 static void remote_set_permissions (void);
205
206 struct remote_state;
207 static int remote_get_trace_status (struct trace_status *ts);
208
209 static int remote_upload_tracepoints (struct uploaded_tp **utpp);
210
211 static int remote_upload_trace_state_variables (struct uploaded_tsv **utsvp);
212
213 static void remote_query_supported (void);
214
215 static void remote_check_symbols (void);
216
217 void _initialize_remote (void);
218
219 struct stop_reply;
220 static void stop_reply_xfree (struct stop_reply *);
221 static void remote_parse_stop_reply (char *, struct stop_reply *);
222 static void push_stop_reply (struct stop_reply *);
223 static void discard_pending_stop_replies (struct inferior *);
224 static int peek_stop_reply (ptid_t ptid);
225
226 static void remote_async_inferior_event_handler (gdb_client_data);
227
228 static void remote_terminal_ours (void);
229
230 static int remote_read_description_p (struct target_ops *target);
231
232 static void remote_console_output (char *msg);
233
234 static int remote_supports_cond_breakpoints (void);
235
236 static int remote_can_run_breakpoint_commands (void);
237
238 /* For "remote". */
239
240 static struct cmd_list_element *remote_cmdlist;
241
242 /* For "set remote" and "show remote". */
243
244 static struct cmd_list_element *remote_set_cmdlist;
245 static struct cmd_list_element *remote_show_cmdlist;
246
247 /* Stub vCont actions support.
248
249 Each field is a boolean flag indicating whether the stub reports
250 support for the corresponding action. */
251
252 struct vCont_action_support
253 {
254 /* vCont;t */
255 int t;
256
257 /* vCont;r */
258 int r;
259 };
260
261 /* Controls whether GDB is willing to use range stepping. */
262
263 static int use_range_stepping = 1;
264
265 /* Description of the remote protocol state for the currently
266 connected target. This is per-target state, and independent of the
267 selected architecture. */
268
269 struct remote_state
270 {
271 /* A buffer to use for incoming packets, and its current size. The
272 buffer is grown dynamically for larger incoming packets.
273 Outgoing packets may also be constructed in this buffer.
274 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
275 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
276 packets. */
277 char *buf;
278 long buf_size;
279
280 /* True if we're going through initial connection setup (finding out
281 about the remote side's threads, relocating symbols, etc.). */
282 int starting_up;
283
284 /* If we negotiated packet size explicitly (and thus can bypass
285 heuristics for the largest packet size that will not overflow
286 a buffer in the stub), this will be set to that packet size.
287 Otherwise zero, meaning to use the guessed size. */
288 long explicit_packet_size;
289
290 /* remote_wait is normally called when the target is running and
291 waits for a stop reply packet. But sometimes we need to call it
292 when the target is already stopped. We can send a "?" packet
293 and have remote_wait read the response. Or, if we already have
294 the response, we can stash it in BUF and tell remote_wait to
295 skip calling getpkt. This flag is set when BUF contains a
296 stop reply packet and the target is not waiting. */
297 int cached_wait_status;
298
299 /* True, if in no ack mode. That is, neither GDB nor the stub will
300 expect acks from each other. The connection is assumed to be
301 reliable. */
302 int noack_mode;
303
304 /* True if we're connected in extended remote mode. */
305 int extended;
306
307 /* True if the stub reported support for multi-process
308 extensions. */
309 int multi_process_aware;
310
311 /* True if we resumed the target and we're waiting for the target to
312 stop. In the mean time, we can't start another command/query.
313 The remote server wouldn't be ready to process it, so we'd
314 timeout waiting for a reply that would never come and eventually
315 we'd close the connection. This can happen in asynchronous mode
316 because we allow GDB commands while the target is running. */
317 int waiting_for_stop_reply;
318
319 /* True if the stub reports support for non-stop mode. */
320 int non_stop_aware;
321
322 /* The status of the stub support for the various vCont actions. */
323 struct vCont_action_support supports_vCont;
324
325 /* True if the stub reports support for conditional tracepoints. */
326 int cond_tracepoints;
327
328 /* True if the stub reports support for target-side breakpoint
329 conditions. */
330 int cond_breakpoints;
331
332 /* True if the stub reports support for target-side breakpoint
333 commands. */
334 int breakpoint_commands;
335
336 /* True if the stub reports support for fast tracepoints. */
337 int fast_tracepoints;
338
339 /* True if the stub reports support for static tracepoints. */
340 int static_tracepoints;
341
342 /* True if the stub reports support for installing tracepoint while
343 tracing. */
344 int install_in_trace;
345
346 /* True if the stub can continue running a trace while GDB is
347 disconnected. */
348 int disconnected_tracing;
349
350 /* True if the stub reports support for enabling and disabling
351 tracepoints while a trace experiment is running. */
352 int enable_disable_tracepoints;
353
354 /* True if the stub can collect strings using tracenz bytecode. */
355 int string_tracing;
356
357 /* True if the stub supports qXfer:libraries-svr4:read with a
358 non-empty annex. */
359 int augmented_libraries_svr4_read;
360
361 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
362 responded to that. */
363 int ctrlc_pending_p;
364
365 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
366 remote_open knows that we don't have a file open when the program
367 starts. */
368 struct serial *remote_desc;
369
370 /* These are the threads which we last sent to the remote system. The
371 TID member will be -1 for all or -2 for not sent yet. */
372 ptid_t general_thread;
373 ptid_t continue_thread;
374
375 /* This is the traceframe which we last selected on the remote system.
376 It will be -1 if no traceframe is selected. */
377 int remote_traceframe_number;
378
379 char *last_pass_packet;
380
381 /* The last QProgramSignals packet sent to the target. We bypass
382 sending a new program signals list down to the target if the new
383 packet is exactly the same as the last we sent. IOW, we only let
384 the target know about program signals list changes. */
385 char *last_program_signals_packet;
386
387 enum gdb_signal last_sent_signal;
388
389 int last_sent_step;
390
391 char *finished_object;
392 char *finished_annex;
393 ULONGEST finished_offset;
394 };
395
396 /* Private data that we'll store in (struct thread_info)->private. */
397 struct private_thread_info
398 {
399 char *extra;
400 int core;
401 };
402
403 static void
404 free_private_thread_info (struct private_thread_info *info)
405 {
406 xfree (info->extra);
407 xfree (info);
408 }
409
410 /* Returns true if the multi-process extensions are in effect. */
411 static int
412 remote_multi_process_p (struct remote_state *rs)
413 {
414 return rs->multi_process_aware;
415 }
416
417 /* This data could be associated with a target, but we do not always
418 have access to the current target when we need it, so for now it is
419 static. This will be fine for as long as only one target is in use
420 at a time. */
421 static struct remote_state *remote_state;
422
423 static struct remote_state *
424 get_remote_state_raw (void)
425 {
426 return remote_state;
427 }
428
429 /* Allocate a new struct remote_state with xmalloc, initialize it, and
430 return it. */
431
432 static struct remote_state *
433 new_remote_state (void)
434 {
435 struct remote_state *result = XCNEW (struct remote_state);
436
437 /* The default buffer size is unimportant; it will be expanded
438 whenever a larger buffer is needed. */
439 result->buf_size = 400;
440 result->buf = xmalloc (result->buf_size);
441 result->remote_traceframe_number = -1;
442 result->last_sent_signal = GDB_SIGNAL_0;
443
444 return result;
445 }
446
447 /* Description of the remote protocol for a given architecture. */
448
449 struct packet_reg
450 {
451 long offset; /* Offset into G packet. */
452 long regnum; /* GDB's internal register number. */
453 LONGEST pnum; /* Remote protocol register number. */
454 int in_g_packet; /* Always part of G packet. */
455 /* long size in bytes; == register_size (target_gdbarch (), regnum);
456 at present. */
457 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
458 at present. */
459 };
460
461 struct remote_arch_state
462 {
463 /* Description of the remote protocol registers. */
464 long sizeof_g_packet;
465
466 /* Description of the remote protocol registers indexed by REGNUM
467 (making an array gdbarch_num_regs in size). */
468 struct packet_reg *regs;
469
470 /* This is the size (in chars) of the first response to the ``g''
471 packet. It is used as a heuristic when determining the maximum
472 size of memory-read and memory-write packets. A target will
473 typically only reserve a buffer large enough to hold the ``g''
474 packet. The size does not include packet overhead (headers and
475 trailers). */
476 long actual_register_packet_size;
477
478 /* This is the maximum size (in chars) of a non read/write packet.
479 It is also used as a cap on the size of read/write packets. */
480 long remote_packet_size;
481 };
482
483 long sizeof_pkt = 2000;
484
485 /* Utility: generate error from an incoming stub packet. */
486 static void
487 trace_error (char *buf)
488 {
489 if (*buf++ != 'E')
490 return; /* not an error msg */
491 switch (*buf)
492 {
493 case '1': /* malformed packet error */
494 if (*++buf == '0') /* general case: */
495 error (_("remote.c: error in outgoing packet."));
496 else
497 error (_("remote.c: error in outgoing packet at field #%ld."),
498 strtol (buf, NULL, 16));
499 default:
500 error (_("Target returns error code '%s'."), buf);
501 }
502 }
503
504 /* Utility: wait for reply from stub, while accepting "O" packets. */
505 static char *
506 remote_get_noisy_reply (char **buf_p,
507 long *sizeof_buf)
508 {
509 do /* Loop on reply from remote stub. */
510 {
511 char *buf;
512
513 QUIT; /* Allow user to bail out with ^C. */
514 getpkt (buf_p, sizeof_buf, 0);
515 buf = *buf_p;
516 if (buf[0] == 'E')
517 trace_error (buf);
518 else if (strncmp (buf, "qRelocInsn:", strlen ("qRelocInsn:")) == 0)
519 {
520 ULONGEST ul;
521 CORE_ADDR from, to, org_to;
522 char *p, *pp;
523 int adjusted_size = 0;
524 volatile struct gdb_exception ex;
525
526 p = buf + strlen ("qRelocInsn:");
527 pp = unpack_varlen_hex (p, &ul);
528 if (*pp != ';')
529 error (_("invalid qRelocInsn packet: %s"), buf);
530 from = ul;
531
532 p = pp + 1;
533 unpack_varlen_hex (p, &ul);
534 to = ul;
535
536 org_to = to;
537
538 TRY_CATCH (ex, RETURN_MASK_ALL)
539 {
540 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
541 }
542 if (ex.reason >= 0)
543 {
544 adjusted_size = to - org_to;
545
546 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
547 putpkt (buf);
548 }
549 else if (ex.reason < 0 && ex.error == MEMORY_ERROR)
550 {
551 /* Propagate memory errors silently back to the target.
552 The stub may have limited the range of addresses we
553 can write to, for example. */
554 putpkt ("E01");
555 }
556 else
557 {
558 /* Something unexpectedly bad happened. Be verbose so
559 we can tell what, and propagate the error back to the
560 stub, so it doesn't get stuck waiting for a
561 response. */
562 exception_fprintf (gdb_stderr, ex,
563 _("warning: relocating instruction: "));
564 putpkt ("E01");
565 }
566 }
567 else if (buf[0] == 'O' && buf[1] != 'K')
568 remote_console_output (buf + 1); /* 'O' message from stub */
569 else
570 return buf; /* Here's the actual reply. */
571 }
572 while (1);
573 }
574
575 /* Handle for retreving the remote protocol data from gdbarch. */
576 static struct gdbarch_data *remote_gdbarch_data_handle;
577
578 static struct remote_arch_state *
579 get_remote_arch_state (void)
580 {
581 return gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle);
582 }
583
584 /* Fetch the global remote target state. */
585
586 static struct remote_state *
587 get_remote_state (void)
588 {
589 /* Make sure that the remote architecture state has been
590 initialized, because doing so might reallocate rs->buf. Any
591 function which calls getpkt also needs to be mindful of changes
592 to rs->buf, but this call limits the number of places which run
593 into trouble. */
594 get_remote_arch_state ();
595
596 return get_remote_state_raw ();
597 }
598
599 static int
600 compare_pnums (const void *lhs_, const void *rhs_)
601 {
602 const struct packet_reg * const *lhs = lhs_;
603 const struct packet_reg * const *rhs = rhs_;
604
605 if ((*lhs)->pnum < (*rhs)->pnum)
606 return -1;
607 else if ((*lhs)->pnum == (*rhs)->pnum)
608 return 0;
609 else
610 return 1;
611 }
612
613 static int
614 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
615 {
616 int regnum, num_remote_regs, offset;
617 struct packet_reg **remote_regs;
618
619 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
620 {
621 struct packet_reg *r = &regs[regnum];
622
623 if (register_size (gdbarch, regnum) == 0)
624 /* Do not try to fetch zero-sized (placeholder) registers. */
625 r->pnum = -1;
626 else
627 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
628
629 r->regnum = regnum;
630 }
631
632 /* Define the g/G packet format as the contents of each register
633 with a remote protocol number, in order of ascending protocol
634 number. */
635
636 remote_regs = alloca (gdbarch_num_regs (gdbarch)
637 * sizeof (struct packet_reg *));
638 for (num_remote_regs = 0, regnum = 0;
639 regnum < gdbarch_num_regs (gdbarch);
640 regnum++)
641 if (regs[regnum].pnum != -1)
642 remote_regs[num_remote_regs++] = &regs[regnum];
643
644 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
645 compare_pnums);
646
647 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
648 {
649 remote_regs[regnum]->in_g_packet = 1;
650 remote_regs[regnum]->offset = offset;
651 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
652 }
653
654 return offset;
655 }
656
657 /* Given the architecture described by GDBARCH, return the remote
658 protocol register's number and the register's offset in the g/G
659 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
660 If the target does not have a mapping for REGNUM, return false,
661 otherwise, return true. */
662
663 int
664 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
665 int *pnum, int *poffset)
666 {
667 int sizeof_g_packet;
668 struct packet_reg *regs;
669 struct cleanup *old_chain;
670
671 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
672
673 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
674 old_chain = make_cleanup (xfree, regs);
675
676 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
677
678 *pnum = regs[regnum].pnum;
679 *poffset = regs[regnum].offset;
680
681 do_cleanups (old_chain);
682
683 return *pnum != -1;
684 }
685
686 static void *
687 init_remote_state (struct gdbarch *gdbarch)
688 {
689 struct remote_state *rs = get_remote_state_raw ();
690 struct remote_arch_state *rsa;
691
692 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
693
694 /* Use the architecture to build a regnum<->pnum table, which will be
695 1:1 unless a feature set specifies otherwise. */
696 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
697 gdbarch_num_regs (gdbarch),
698 struct packet_reg);
699
700 /* Record the maximum possible size of the g packet - it may turn out
701 to be smaller. */
702 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
703
704 /* Default maximum number of characters in a packet body. Many
705 remote stubs have a hardwired buffer size of 400 bytes
706 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
707 as the maximum packet-size to ensure that the packet and an extra
708 NUL character can always fit in the buffer. This stops GDB
709 trashing stubs that try to squeeze an extra NUL into what is
710 already a full buffer (As of 1999-12-04 that was most stubs). */
711 rsa->remote_packet_size = 400 - 1;
712
713 /* This one is filled in when a ``g'' packet is received. */
714 rsa->actual_register_packet_size = 0;
715
716 /* Should rsa->sizeof_g_packet needs more space than the
717 default, adjust the size accordingly. Remember that each byte is
718 encoded as two characters. 32 is the overhead for the packet
719 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
720 (``$NN:G...#NN'') is a better guess, the below has been padded a
721 little. */
722 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
723 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
724
725 /* Make sure that the packet buffer is plenty big enough for
726 this architecture. */
727 if (rs->buf_size < rsa->remote_packet_size)
728 {
729 rs->buf_size = 2 * rsa->remote_packet_size;
730 rs->buf = xrealloc (rs->buf, rs->buf_size);
731 }
732
733 return rsa;
734 }
735
736 /* Return the current allowed size of a remote packet. This is
737 inferred from the current architecture, and should be used to
738 limit the length of outgoing packets. */
739 static long
740 get_remote_packet_size (void)
741 {
742 struct remote_state *rs = get_remote_state ();
743 struct remote_arch_state *rsa = get_remote_arch_state ();
744
745 if (rs->explicit_packet_size)
746 return rs->explicit_packet_size;
747
748 return rsa->remote_packet_size;
749 }
750
751 static struct packet_reg *
752 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
753 {
754 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
755 return NULL;
756 else
757 {
758 struct packet_reg *r = &rsa->regs[regnum];
759
760 gdb_assert (r->regnum == regnum);
761 return r;
762 }
763 }
764
765 static struct packet_reg *
766 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
767 {
768 int i;
769
770 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
771 {
772 struct packet_reg *r = &rsa->regs[i];
773
774 if (r->pnum == pnum)
775 return r;
776 }
777 return NULL;
778 }
779
780 /* FIXME: graces/2002-08-08: These variables should eventually be
781 bound to an instance of the target object (as in gdbarch-tdep()),
782 when such a thing exists. */
783
784 /* This is set to the data address of the access causing the target
785 to stop for a watchpoint. */
786 static CORE_ADDR remote_watch_data_address;
787
788 /* This is non-zero if target stopped for a watchpoint. */
789 static int remote_stopped_by_watchpoint_p;
790
791 static struct target_ops remote_ops;
792
793 static struct target_ops extended_remote_ops;
794
795 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
796 ``forever'' still use the normal timeout mechanism. This is
797 currently used by the ASYNC code to guarentee that target reads
798 during the initial connect always time-out. Once getpkt has been
799 modified to return a timeout indication and, in turn
800 remote_wait()/wait_for_inferior() have gained a timeout parameter
801 this can go away. */
802 static int wait_forever_enabled_p = 1;
803
804 /* Allow the user to specify what sequence to send to the remote
805 when he requests a program interruption: Although ^C is usually
806 what remote systems expect (this is the default, here), it is
807 sometimes preferable to send a break. On other systems such
808 as the Linux kernel, a break followed by g, which is Magic SysRq g
809 is required in order to interrupt the execution. */
810 const char interrupt_sequence_control_c[] = "Ctrl-C";
811 const char interrupt_sequence_break[] = "BREAK";
812 const char interrupt_sequence_break_g[] = "BREAK-g";
813 static const char *const interrupt_sequence_modes[] =
814 {
815 interrupt_sequence_control_c,
816 interrupt_sequence_break,
817 interrupt_sequence_break_g,
818 NULL
819 };
820 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
821
822 static void
823 show_interrupt_sequence (struct ui_file *file, int from_tty,
824 struct cmd_list_element *c,
825 const char *value)
826 {
827 if (interrupt_sequence_mode == interrupt_sequence_control_c)
828 fprintf_filtered (file,
829 _("Send the ASCII ETX character (Ctrl-c) "
830 "to the remote target to interrupt the "
831 "execution of the program.\n"));
832 else if (interrupt_sequence_mode == interrupt_sequence_break)
833 fprintf_filtered (file,
834 _("send a break signal to the remote target "
835 "to interrupt the execution of the program.\n"));
836 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
837 fprintf_filtered (file,
838 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
839 "the remote target to interrupt the execution "
840 "of Linux kernel.\n"));
841 else
842 internal_error (__FILE__, __LINE__,
843 _("Invalid value for interrupt_sequence_mode: %s."),
844 interrupt_sequence_mode);
845 }
846
847 /* This boolean variable specifies whether interrupt_sequence is sent
848 to the remote target when gdb connects to it.
849 This is mostly needed when you debug the Linux kernel: The Linux kernel
850 expects BREAK g which is Magic SysRq g for connecting gdb. */
851 static int interrupt_on_connect = 0;
852
853 /* This variable is used to implement the "set/show remotebreak" commands.
854 Since these commands are now deprecated in favor of "set/show remote
855 interrupt-sequence", it no longer has any effect on the code. */
856 static int remote_break;
857
858 static void
859 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
860 {
861 if (remote_break)
862 interrupt_sequence_mode = interrupt_sequence_break;
863 else
864 interrupt_sequence_mode = interrupt_sequence_control_c;
865 }
866
867 static void
868 show_remotebreak (struct ui_file *file, int from_tty,
869 struct cmd_list_element *c,
870 const char *value)
871 {
872 }
873
874 /* This variable sets the number of bits in an address that are to be
875 sent in a memory ("M" or "m") packet. Normally, after stripping
876 leading zeros, the entire address would be sent. This variable
877 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
878 initial implementation of remote.c restricted the address sent in
879 memory packets to ``host::sizeof long'' bytes - (typically 32
880 bits). Consequently, for 64 bit targets, the upper 32 bits of an
881 address was never sent. Since fixing this bug may cause a break in
882 some remote targets this variable is principly provided to
883 facilitate backward compatibility. */
884
885 static unsigned int remote_address_size;
886
887 /* Temporary to track who currently owns the terminal. See
888 remote_terminal_* for more details. */
889
890 static int remote_async_terminal_ours_p;
891
892 /* The executable file to use for "run" on the remote side. */
893
894 static char *remote_exec_file = "";
895
896 \f
897 /* User configurable variables for the number of characters in a
898 memory read/write packet. MIN (rsa->remote_packet_size,
899 rsa->sizeof_g_packet) is the default. Some targets need smaller
900 values (fifo overruns, et.al.) and some users need larger values
901 (speed up transfers). The variables ``preferred_*'' (the user
902 request), ``current_*'' (what was actually set) and ``forced_*''
903 (Positive - a soft limit, negative - a hard limit). */
904
905 struct memory_packet_config
906 {
907 char *name;
908 long size;
909 int fixed_p;
910 };
911
912 /* Compute the current size of a read/write packet. Since this makes
913 use of ``actual_register_packet_size'' the computation is dynamic. */
914
915 static long
916 get_memory_packet_size (struct memory_packet_config *config)
917 {
918 struct remote_state *rs = get_remote_state ();
919 struct remote_arch_state *rsa = get_remote_arch_state ();
920
921 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
922 law?) that some hosts don't cope very well with large alloca()
923 calls. Eventually the alloca() code will be replaced by calls to
924 xmalloc() and make_cleanups() allowing this restriction to either
925 be lifted or removed. */
926 #ifndef MAX_REMOTE_PACKET_SIZE
927 #define MAX_REMOTE_PACKET_SIZE 16384
928 #endif
929 /* NOTE: 20 ensures we can write at least one byte. */
930 #ifndef MIN_REMOTE_PACKET_SIZE
931 #define MIN_REMOTE_PACKET_SIZE 20
932 #endif
933 long what_they_get;
934 if (config->fixed_p)
935 {
936 if (config->size <= 0)
937 what_they_get = MAX_REMOTE_PACKET_SIZE;
938 else
939 what_they_get = config->size;
940 }
941 else
942 {
943 what_they_get = get_remote_packet_size ();
944 /* Limit the packet to the size specified by the user. */
945 if (config->size > 0
946 && what_they_get > config->size)
947 what_they_get = config->size;
948
949 /* Limit it to the size of the targets ``g'' response unless we have
950 permission from the stub to use a larger packet size. */
951 if (rs->explicit_packet_size == 0
952 && rsa->actual_register_packet_size > 0
953 && what_they_get > rsa->actual_register_packet_size)
954 what_they_get = rsa->actual_register_packet_size;
955 }
956 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
957 what_they_get = MAX_REMOTE_PACKET_SIZE;
958 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
959 what_they_get = MIN_REMOTE_PACKET_SIZE;
960
961 /* Make sure there is room in the global buffer for this packet
962 (including its trailing NUL byte). */
963 if (rs->buf_size < what_they_get + 1)
964 {
965 rs->buf_size = 2 * what_they_get;
966 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
967 }
968
969 return what_they_get;
970 }
971
972 /* Update the size of a read/write packet. If they user wants
973 something really big then do a sanity check. */
974
975 static void
976 set_memory_packet_size (char *args, struct memory_packet_config *config)
977 {
978 int fixed_p = config->fixed_p;
979 long size = config->size;
980
981 if (args == NULL)
982 error (_("Argument required (integer, `fixed' or `limited')."));
983 else if (strcmp (args, "hard") == 0
984 || strcmp (args, "fixed") == 0)
985 fixed_p = 1;
986 else if (strcmp (args, "soft") == 0
987 || strcmp (args, "limit") == 0)
988 fixed_p = 0;
989 else
990 {
991 char *end;
992
993 size = strtoul (args, &end, 0);
994 if (args == end)
995 error (_("Invalid %s (bad syntax)."), config->name);
996 #if 0
997 /* Instead of explicitly capping the size of a packet to
998 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
999 instead allowed to set the size to something arbitrarily
1000 large. */
1001 if (size > MAX_REMOTE_PACKET_SIZE)
1002 error (_("Invalid %s (too large)."), config->name);
1003 #endif
1004 }
1005 /* Extra checks? */
1006 if (fixed_p && !config->fixed_p)
1007 {
1008 if (! query (_("The target may not be able to correctly handle a %s\n"
1009 "of %ld bytes. Change the packet size? "),
1010 config->name, size))
1011 error (_("Packet size not changed."));
1012 }
1013 /* Update the config. */
1014 config->fixed_p = fixed_p;
1015 config->size = size;
1016 }
1017
1018 static void
1019 show_memory_packet_size (struct memory_packet_config *config)
1020 {
1021 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1022 if (config->fixed_p)
1023 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1024 get_memory_packet_size (config));
1025 else
1026 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1027 get_memory_packet_size (config));
1028 }
1029
1030 static struct memory_packet_config memory_write_packet_config =
1031 {
1032 "memory-write-packet-size",
1033 };
1034
1035 static void
1036 set_memory_write_packet_size (char *args, int from_tty)
1037 {
1038 set_memory_packet_size (args, &memory_write_packet_config);
1039 }
1040
1041 static void
1042 show_memory_write_packet_size (char *args, int from_tty)
1043 {
1044 show_memory_packet_size (&memory_write_packet_config);
1045 }
1046
1047 static long
1048 get_memory_write_packet_size (void)
1049 {
1050 return get_memory_packet_size (&memory_write_packet_config);
1051 }
1052
1053 static struct memory_packet_config memory_read_packet_config =
1054 {
1055 "memory-read-packet-size",
1056 };
1057
1058 static void
1059 set_memory_read_packet_size (char *args, int from_tty)
1060 {
1061 set_memory_packet_size (args, &memory_read_packet_config);
1062 }
1063
1064 static void
1065 show_memory_read_packet_size (char *args, int from_tty)
1066 {
1067 show_memory_packet_size (&memory_read_packet_config);
1068 }
1069
1070 static long
1071 get_memory_read_packet_size (void)
1072 {
1073 long size = get_memory_packet_size (&memory_read_packet_config);
1074
1075 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1076 extra buffer size argument before the memory read size can be
1077 increased beyond this. */
1078 if (size > get_remote_packet_size ())
1079 size = get_remote_packet_size ();
1080 return size;
1081 }
1082
1083 \f
1084 /* Generic configuration support for packets the stub optionally
1085 supports. Allows the user to specify the use of the packet as well
1086 as allowing GDB to auto-detect support in the remote stub. */
1087
1088 enum packet_support
1089 {
1090 PACKET_SUPPORT_UNKNOWN = 0,
1091 PACKET_ENABLE,
1092 PACKET_DISABLE
1093 };
1094
1095 struct packet_config
1096 {
1097 const char *name;
1098 const char *title;
1099 enum auto_boolean detect;
1100 enum packet_support support;
1101 };
1102
1103 /* Analyze a packet's return value and update the packet config
1104 accordingly. */
1105
1106 enum packet_result
1107 {
1108 PACKET_ERROR,
1109 PACKET_OK,
1110 PACKET_UNKNOWN
1111 };
1112
1113 static void
1114 update_packet_config (struct packet_config *config)
1115 {
1116 switch (config->detect)
1117 {
1118 case AUTO_BOOLEAN_TRUE:
1119 config->support = PACKET_ENABLE;
1120 break;
1121 case AUTO_BOOLEAN_FALSE:
1122 config->support = PACKET_DISABLE;
1123 break;
1124 case AUTO_BOOLEAN_AUTO:
1125 config->support = PACKET_SUPPORT_UNKNOWN;
1126 break;
1127 }
1128 }
1129
1130 static void
1131 show_packet_config_cmd (struct packet_config *config)
1132 {
1133 char *support = "internal-error";
1134
1135 switch (config->support)
1136 {
1137 case PACKET_ENABLE:
1138 support = "enabled";
1139 break;
1140 case PACKET_DISABLE:
1141 support = "disabled";
1142 break;
1143 case PACKET_SUPPORT_UNKNOWN:
1144 support = "unknown";
1145 break;
1146 }
1147 switch (config->detect)
1148 {
1149 case AUTO_BOOLEAN_AUTO:
1150 printf_filtered (_("Support for the `%s' packet "
1151 "is auto-detected, currently %s.\n"),
1152 config->name, support);
1153 break;
1154 case AUTO_BOOLEAN_TRUE:
1155 case AUTO_BOOLEAN_FALSE:
1156 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1157 config->name, support);
1158 break;
1159 }
1160 }
1161
1162 static void
1163 add_packet_config_cmd (struct packet_config *config, const char *name,
1164 const char *title, int legacy)
1165 {
1166 char *set_doc;
1167 char *show_doc;
1168 char *cmd_name;
1169
1170 config->name = name;
1171 config->title = title;
1172 config->detect = AUTO_BOOLEAN_AUTO;
1173 config->support = PACKET_SUPPORT_UNKNOWN;
1174 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1175 name, title);
1176 show_doc = xstrprintf ("Show current use of remote "
1177 "protocol `%s' (%s) packet",
1178 name, title);
1179 /* set/show TITLE-packet {auto,on,off} */
1180 cmd_name = xstrprintf ("%s-packet", title);
1181 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1182 &config->detect, set_doc,
1183 show_doc, NULL, /* help_doc */
1184 set_remote_protocol_packet_cmd,
1185 show_remote_protocol_packet_cmd,
1186 &remote_set_cmdlist, &remote_show_cmdlist);
1187 /* The command code copies the documentation strings. */
1188 xfree (set_doc);
1189 xfree (show_doc);
1190 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1191 if (legacy)
1192 {
1193 char *legacy_name;
1194
1195 legacy_name = xstrprintf ("%s-packet", name);
1196 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1197 &remote_set_cmdlist);
1198 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1199 &remote_show_cmdlist);
1200 }
1201 }
1202
1203 static enum packet_result
1204 packet_check_result (const char *buf)
1205 {
1206 if (buf[0] != '\0')
1207 {
1208 /* The stub recognized the packet request. Check that the
1209 operation succeeded. */
1210 if (buf[0] == 'E'
1211 && isxdigit (buf[1]) && isxdigit (buf[2])
1212 && buf[3] == '\0')
1213 /* "Enn" - definitly an error. */
1214 return PACKET_ERROR;
1215
1216 /* Always treat "E." as an error. This will be used for
1217 more verbose error messages, such as E.memtypes. */
1218 if (buf[0] == 'E' && buf[1] == '.')
1219 return PACKET_ERROR;
1220
1221 /* The packet may or may not be OK. Just assume it is. */
1222 return PACKET_OK;
1223 }
1224 else
1225 /* The stub does not support the packet. */
1226 return PACKET_UNKNOWN;
1227 }
1228
1229 static enum packet_result
1230 packet_ok (const char *buf, struct packet_config *config)
1231 {
1232 enum packet_result result;
1233
1234 result = packet_check_result (buf);
1235 switch (result)
1236 {
1237 case PACKET_OK:
1238 case PACKET_ERROR:
1239 /* The stub recognized the packet request. */
1240 switch (config->support)
1241 {
1242 case PACKET_SUPPORT_UNKNOWN:
1243 if (remote_debug)
1244 fprintf_unfiltered (gdb_stdlog,
1245 "Packet %s (%s) is supported\n",
1246 config->name, config->title);
1247 config->support = PACKET_ENABLE;
1248 break;
1249 case PACKET_DISABLE:
1250 internal_error (__FILE__, __LINE__,
1251 _("packet_ok: attempt to use a disabled packet"));
1252 break;
1253 case PACKET_ENABLE:
1254 break;
1255 }
1256 break;
1257 case PACKET_UNKNOWN:
1258 /* The stub does not support the packet. */
1259 switch (config->support)
1260 {
1261 case PACKET_ENABLE:
1262 if (config->detect == AUTO_BOOLEAN_AUTO)
1263 /* If the stub previously indicated that the packet was
1264 supported then there is a protocol error.. */
1265 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1266 config->name, config->title);
1267 else
1268 /* The user set it wrong. */
1269 error (_("Enabled packet %s (%s) not recognized by stub"),
1270 config->name, config->title);
1271 break;
1272 case PACKET_SUPPORT_UNKNOWN:
1273 if (remote_debug)
1274 fprintf_unfiltered (gdb_stdlog,
1275 "Packet %s (%s) is NOT supported\n",
1276 config->name, config->title);
1277 config->support = PACKET_DISABLE;
1278 break;
1279 case PACKET_DISABLE:
1280 break;
1281 }
1282 break;
1283 }
1284
1285 return result;
1286 }
1287
1288 enum {
1289 PACKET_vCont = 0,
1290 PACKET_X,
1291 PACKET_qSymbol,
1292 PACKET_P,
1293 PACKET_p,
1294 PACKET_Z0,
1295 PACKET_Z1,
1296 PACKET_Z2,
1297 PACKET_Z3,
1298 PACKET_Z4,
1299 PACKET_vFile_open,
1300 PACKET_vFile_pread,
1301 PACKET_vFile_pwrite,
1302 PACKET_vFile_close,
1303 PACKET_vFile_unlink,
1304 PACKET_vFile_readlink,
1305 PACKET_qXfer_auxv,
1306 PACKET_qXfer_features,
1307 PACKET_qXfer_libraries,
1308 PACKET_qXfer_libraries_svr4,
1309 PACKET_qXfer_memory_map,
1310 PACKET_qXfer_spu_read,
1311 PACKET_qXfer_spu_write,
1312 PACKET_qXfer_osdata,
1313 PACKET_qXfer_threads,
1314 PACKET_qXfer_statictrace_read,
1315 PACKET_qXfer_traceframe_info,
1316 PACKET_qXfer_uib,
1317 PACKET_qGetTIBAddr,
1318 PACKET_qGetTLSAddr,
1319 PACKET_qSupported,
1320 PACKET_qTStatus,
1321 PACKET_QPassSignals,
1322 PACKET_QProgramSignals,
1323 PACKET_qSearch_memory,
1324 PACKET_vAttach,
1325 PACKET_vRun,
1326 PACKET_QStartNoAckMode,
1327 PACKET_vKill,
1328 PACKET_qXfer_siginfo_read,
1329 PACKET_qXfer_siginfo_write,
1330 PACKET_qAttached,
1331 PACKET_ConditionalTracepoints,
1332 PACKET_ConditionalBreakpoints,
1333 PACKET_BreakpointCommands,
1334 PACKET_FastTracepoints,
1335 PACKET_StaticTracepoints,
1336 PACKET_InstallInTrace,
1337 PACKET_bc,
1338 PACKET_bs,
1339 PACKET_TracepointSource,
1340 PACKET_QAllow,
1341 PACKET_qXfer_fdpic,
1342 PACKET_QDisableRandomization,
1343 PACKET_QAgent,
1344 PACKET_QTBuffer_size,
1345 PACKET_Qbtrace_off,
1346 PACKET_Qbtrace_bts,
1347 PACKET_qXfer_btrace,
1348 PACKET_MAX
1349 };
1350
1351 static struct packet_config remote_protocol_packets[PACKET_MAX];
1352
1353 static void
1354 set_remote_protocol_packet_cmd (char *args, int from_tty,
1355 struct cmd_list_element *c)
1356 {
1357 struct packet_config *packet;
1358
1359 for (packet = remote_protocol_packets;
1360 packet < &remote_protocol_packets[PACKET_MAX];
1361 packet++)
1362 {
1363 if (&packet->detect == c->var)
1364 {
1365 update_packet_config (packet);
1366 return;
1367 }
1368 }
1369 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1370 c->name);
1371 }
1372
1373 static void
1374 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1375 struct cmd_list_element *c,
1376 const char *value)
1377 {
1378 struct packet_config *packet;
1379
1380 for (packet = remote_protocol_packets;
1381 packet < &remote_protocol_packets[PACKET_MAX];
1382 packet++)
1383 {
1384 if (&packet->detect == c->var)
1385 {
1386 show_packet_config_cmd (packet);
1387 return;
1388 }
1389 }
1390 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1391 c->name);
1392 }
1393
1394 /* Should we try one of the 'Z' requests? */
1395
1396 enum Z_packet_type
1397 {
1398 Z_PACKET_SOFTWARE_BP,
1399 Z_PACKET_HARDWARE_BP,
1400 Z_PACKET_WRITE_WP,
1401 Z_PACKET_READ_WP,
1402 Z_PACKET_ACCESS_WP,
1403 NR_Z_PACKET_TYPES
1404 };
1405
1406 /* For compatibility with older distributions. Provide a ``set remote
1407 Z-packet ...'' command that updates all the Z packet types. */
1408
1409 static enum auto_boolean remote_Z_packet_detect;
1410
1411 static void
1412 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1413 struct cmd_list_element *c)
1414 {
1415 int i;
1416
1417 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1418 {
1419 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1420 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1421 }
1422 }
1423
1424 static void
1425 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1426 struct cmd_list_element *c,
1427 const char *value)
1428 {
1429 int i;
1430
1431 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1432 {
1433 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1434 }
1435 }
1436
1437 /* Should we try the 'ThreadInfo' query packet?
1438
1439 This variable (NOT available to the user: auto-detect only!)
1440 determines whether GDB will use the new, simpler "ThreadInfo"
1441 query or the older, more complex syntax for thread queries.
1442 This is an auto-detect variable (set to true at each connect,
1443 and set to false when the target fails to recognize it). */
1444
1445 static int use_threadinfo_query;
1446 static int use_threadextra_query;
1447
1448 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1449 static struct async_signal_handler *async_sigint_remote_twice_token;
1450 static struct async_signal_handler *async_sigint_remote_token;
1451
1452 \f
1453 /* Asynchronous signal handle registered as event loop source for
1454 when we have pending events ready to be passed to the core. */
1455
1456 static struct async_event_handler *remote_async_inferior_event_token;
1457
1458 \f
1459
1460 static ptid_t magic_null_ptid;
1461 static ptid_t not_sent_ptid;
1462 static ptid_t any_thread_ptid;
1463
1464 /* Find out if the stub attached to PID (and hence GDB should offer to
1465 detach instead of killing it when bailing out). */
1466
1467 static int
1468 remote_query_attached (int pid)
1469 {
1470 struct remote_state *rs = get_remote_state ();
1471 size_t size = get_remote_packet_size ();
1472
1473 if (remote_protocol_packets[PACKET_qAttached].support == PACKET_DISABLE)
1474 return 0;
1475
1476 if (remote_multi_process_p (rs))
1477 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1478 else
1479 xsnprintf (rs->buf, size, "qAttached");
1480
1481 putpkt (rs->buf);
1482 getpkt (&rs->buf, &rs->buf_size, 0);
1483
1484 switch (packet_ok (rs->buf,
1485 &remote_protocol_packets[PACKET_qAttached]))
1486 {
1487 case PACKET_OK:
1488 if (strcmp (rs->buf, "1") == 0)
1489 return 1;
1490 break;
1491 case PACKET_ERROR:
1492 warning (_("Remote failure reply: %s"), rs->buf);
1493 break;
1494 case PACKET_UNKNOWN:
1495 break;
1496 }
1497
1498 return 0;
1499 }
1500
1501 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1502 has been invented by GDB, instead of reported by the target. Since
1503 we can be connected to a remote system before before knowing about
1504 any inferior, mark the target with execution when we find the first
1505 inferior. If ATTACHED is 1, then we had just attached to this
1506 inferior. If it is 0, then we just created this inferior. If it
1507 is -1, then try querying the remote stub to find out if it had
1508 attached to the inferior or not. */
1509
1510 static struct inferior *
1511 remote_add_inferior (int fake_pid_p, int pid, int attached)
1512 {
1513 struct inferior *inf;
1514
1515 /* Check whether this process we're learning about is to be
1516 considered attached, or if is to be considered to have been
1517 spawned by the stub. */
1518 if (attached == -1)
1519 attached = remote_query_attached (pid);
1520
1521 if (gdbarch_has_global_solist (target_gdbarch ()))
1522 {
1523 /* If the target shares code across all inferiors, then every
1524 attach adds a new inferior. */
1525 inf = add_inferior (pid);
1526
1527 /* ... and every inferior is bound to the same program space.
1528 However, each inferior may still have its own address
1529 space. */
1530 inf->aspace = maybe_new_address_space ();
1531 inf->pspace = current_program_space;
1532 }
1533 else
1534 {
1535 /* In the traditional debugging scenario, there's a 1-1 match
1536 between program/address spaces. We simply bind the inferior
1537 to the program space's address space. */
1538 inf = current_inferior ();
1539 inferior_appeared (inf, pid);
1540 }
1541
1542 inf->attach_flag = attached;
1543 inf->fake_pid_p = fake_pid_p;
1544
1545 return inf;
1546 }
1547
1548 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1549 according to RUNNING. */
1550
1551 static void
1552 remote_add_thread (ptid_t ptid, int running)
1553 {
1554 add_thread (ptid);
1555
1556 set_executing (ptid, running);
1557 set_running (ptid, running);
1558 }
1559
1560 /* Come here when we learn about a thread id from the remote target.
1561 It may be the first time we hear about such thread, so take the
1562 opportunity to add it to GDB's thread list. In case this is the
1563 first time we're noticing its corresponding inferior, add it to
1564 GDB's inferior list as well. */
1565
1566 static void
1567 remote_notice_new_inferior (ptid_t currthread, int running)
1568 {
1569 /* If this is a new thread, add it to GDB's thread list.
1570 If we leave it up to WFI to do this, bad things will happen. */
1571
1572 if (in_thread_list (currthread) && is_exited (currthread))
1573 {
1574 /* We're seeing an event on a thread id we knew had exited.
1575 This has to be a new thread reusing the old id. Add it. */
1576 remote_add_thread (currthread, running);
1577 return;
1578 }
1579
1580 if (!in_thread_list (currthread))
1581 {
1582 struct inferior *inf = NULL;
1583 int pid = ptid_get_pid (currthread);
1584
1585 if (ptid_is_pid (inferior_ptid)
1586 && pid == ptid_get_pid (inferior_ptid))
1587 {
1588 /* inferior_ptid has no thread member yet. This can happen
1589 with the vAttach -> remote_wait,"TAAthread:" path if the
1590 stub doesn't support qC. This is the first stop reported
1591 after an attach, so this is the main thread. Update the
1592 ptid in the thread list. */
1593 if (in_thread_list (pid_to_ptid (pid)))
1594 thread_change_ptid (inferior_ptid, currthread);
1595 else
1596 {
1597 remote_add_thread (currthread, running);
1598 inferior_ptid = currthread;
1599 }
1600 return;
1601 }
1602
1603 if (ptid_equal (magic_null_ptid, inferior_ptid))
1604 {
1605 /* inferior_ptid is not set yet. This can happen with the
1606 vRun -> remote_wait,"TAAthread:" path if the stub
1607 doesn't support qC. This is the first stop reported
1608 after an attach, so this is the main thread. Update the
1609 ptid in the thread list. */
1610 thread_change_ptid (inferior_ptid, currthread);
1611 return;
1612 }
1613
1614 /* When connecting to a target remote, or to a target
1615 extended-remote which already was debugging an inferior, we
1616 may not know about it yet. Add it before adding its child
1617 thread, so notifications are emitted in a sensible order. */
1618 if (!in_inferior_list (ptid_get_pid (currthread)))
1619 {
1620 struct remote_state *rs = get_remote_state ();
1621 int fake_pid_p = !remote_multi_process_p (rs);
1622
1623 inf = remote_add_inferior (fake_pid_p,
1624 ptid_get_pid (currthread), -1);
1625 }
1626
1627 /* This is really a new thread. Add it. */
1628 remote_add_thread (currthread, running);
1629
1630 /* If we found a new inferior, let the common code do whatever
1631 it needs to with it (e.g., read shared libraries, insert
1632 breakpoints). */
1633 if (inf != NULL)
1634 notice_new_inferior (currthread, running, 0);
1635 }
1636 }
1637
1638 /* Return the private thread data, creating it if necessary. */
1639
1640 static struct private_thread_info *
1641 demand_private_info (ptid_t ptid)
1642 {
1643 struct thread_info *info = find_thread_ptid (ptid);
1644
1645 gdb_assert (info);
1646
1647 if (!info->private)
1648 {
1649 info->private = xmalloc (sizeof (*(info->private)));
1650 info->private_dtor = free_private_thread_info;
1651 info->private->core = -1;
1652 info->private->extra = 0;
1653 }
1654
1655 return info->private;
1656 }
1657
1658 /* Call this function as a result of
1659 1) A halt indication (T packet) containing a thread id
1660 2) A direct query of currthread
1661 3) Successful execution of set thread */
1662
1663 static void
1664 record_currthread (struct remote_state *rs, ptid_t currthread)
1665 {
1666 rs->general_thread = currthread;
1667 }
1668
1669 /* If 'QPassSignals' is supported, tell the remote stub what signals
1670 it can simply pass through to the inferior without reporting. */
1671
1672 static void
1673 remote_pass_signals (int numsigs, unsigned char *pass_signals)
1674 {
1675 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1676 {
1677 char *pass_packet, *p;
1678 int count = 0, i;
1679 struct remote_state *rs = get_remote_state ();
1680
1681 gdb_assert (numsigs < 256);
1682 for (i = 0; i < numsigs; i++)
1683 {
1684 if (pass_signals[i])
1685 count++;
1686 }
1687 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1688 strcpy (pass_packet, "QPassSignals:");
1689 p = pass_packet + strlen (pass_packet);
1690 for (i = 0; i < numsigs; i++)
1691 {
1692 if (pass_signals[i])
1693 {
1694 if (i >= 16)
1695 *p++ = tohex (i >> 4);
1696 *p++ = tohex (i & 15);
1697 if (count)
1698 *p++ = ';';
1699 else
1700 break;
1701 count--;
1702 }
1703 }
1704 *p = 0;
1705 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
1706 {
1707 char *buf = rs->buf;
1708
1709 putpkt (pass_packet);
1710 getpkt (&rs->buf, &rs->buf_size, 0);
1711 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1712 if (rs->last_pass_packet)
1713 xfree (rs->last_pass_packet);
1714 rs->last_pass_packet = pass_packet;
1715 }
1716 else
1717 xfree (pass_packet);
1718 }
1719 }
1720
1721 /* If 'QProgramSignals' is supported, tell the remote stub what
1722 signals it should pass through to the inferior when detaching. */
1723
1724 static void
1725 remote_program_signals (int numsigs, unsigned char *signals)
1726 {
1727 if (remote_protocol_packets[PACKET_QProgramSignals].support != PACKET_DISABLE)
1728 {
1729 char *packet, *p;
1730 int count = 0, i;
1731 struct remote_state *rs = get_remote_state ();
1732
1733 gdb_assert (numsigs < 256);
1734 for (i = 0; i < numsigs; i++)
1735 {
1736 if (signals[i])
1737 count++;
1738 }
1739 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1740 strcpy (packet, "QProgramSignals:");
1741 p = packet + strlen (packet);
1742 for (i = 0; i < numsigs; i++)
1743 {
1744 if (signal_pass_state (i))
1745 {
1746 if (i >= 16)
1747 *p++ = tohex (i >> 4);
1748 *p++ = tohex (i & 15);
1749 if (count)
1750 *p++ = ';';
1751 else
1752 break;
1753 count--;
1754 }
1755 }
1756 *p = 0;
1757 if (!rs->last_program_signals_packet
1758 || strcmp (rs->last_program_signals_packet, packet) != 0)
1759 {
1760 char *buf = rs->buf;
1761
1762 putpkt (packet);
1763 getpkt (&rs->buf, &rs->buf_size, 0);
1764 packet_ok (buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1765 xfree (rs->last_program_signals_packet);
1766 rs->last_program_signals_packet = packet;
1767 }
1768 else
1769 xfree (packet);
1770 }
1771 }
1772
1773 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1774 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1775 thread. If GEN is set, set the general thread, if not, then set
1776 the step/continue thread. */
1777 static void
1778 set_thread (struct ptid ptid, int gen)
1779 {
1780 struct remote_state *rs = get_remote_state ();
1781 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
1782 char *buf = rs->buf;
1783 char *endbuf = rs->buf + get_remote_packet_size ();
1784
1785 if (ptid_equal (state, ptid))
1786 return;
1787
1788 *buf++ = 'H';
1789 *buf++ = gen ? 'g' : 'c';
1790 if (ptid_equal (ptid, magic_null_ptid))
1791 xsnprintf (buf, endbuf - buf, "0");
1792 else if (ptid_equal (ptid, any_thread_ptid))
1793 xsnprintf (buf, endbuf - buf, "0");
1794 else if (ptid_equal (ptid, minus_one_ptid))
1795 xsnprintf (buf, endbuf - buf, "-1");
1796 else
1797 write_ptid (buf, endbuf, ptid);
1798 putpkt (rs->buf);
1799 getpkt (&rs->buf, &rs->buf_size, 0);
1800 if (gen)
1801 rs->general_thread = ptid;
1802 else
1803 rs->continue_thread = ptid;
1804 }
1805
1806 static void
1807 set_general_thread (struct ptid ptid)
1808 {
1809 set_thread (ptid, 1);
1810 }
1811
1812 static void
1813 set_continue_thread (struct ptid ptid)
1814 {
1815 set_thread (ptid, 0);
1816 }
1817
1818 /* Change the remote current process. Which thread within the process
1819 ends up selected isn't important, as long as it is the same process
1820 as what INFERIOR_PTID points to.
1821
1822 This comes from that fact that there is no explicit notion of
1823 "selected process" in the protocol. The selected process for
1824 general operations is the process the selected general thread
1825 belongs to. */
1826
1827 static void
1828 set_general_process (void)
1829 {
1830 struct remote_state *rs = get_remote_state ();
1831
1832 /* If the remote can't handle multiple processes, don't bother. */
1833 if (!rs->extended || !remote_multi_process_p (rs))
1834 return;
1835
1836 /* We only need to change the remote current thread if it's pointing
1837 at some other process. */
1838 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
1839 set_general_thread (inferior_ptid);
1840 }
1841
1842 \f
1843 /* Return nonzero if the thread PTID is still alive on the remote
1844 system. */
1845
1846 static int
1847 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1848 {
1849 struct remote_state *rs = get_remote_state ();
1850 char *p, *endp;
1851
1852 if (ptid_equal (ptid, magic_null_ptid))
1853 /* The main thread is always alive. */
1854 return 1;
1855
1856 if (ptid_get_pid (ptid) != 0 && ptid_get_tid (ptid) == 0)
1857 /* The main thread is always alive. This can happen after a
1858 vAttach, if the remote side doesn't support
1859 multi-threading. */
1860 return 1;
1861
1862 p = rs->buf;
1863 endp = rs->buf + get_remote_packet_size ();
1864
1865 *p++ = 'T';
1866 write_ptid (p, endp, ptid);
1867
1868 putpkt (rs->buf);
1869 getpkt (&rs->buf, &rs->buf_size, 0);
1870 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1871 }
1872
1873 /* About these extended threadlist and threadinfo packets. They are
1874 variable length packets but, the fields within them are often fixed
1875 length. They are redundent enough to send over UDP as is the
1876 remote protocol in general. There is a matching unit test module
1877 in libstub. */
1878
1879 #define OPAQUETHREADBYTES 8
1880
1881 /* a 64 bit opaque identifier */
1882 typedef unsigned char threadref[OPAQUETHREADBYTES];
1883
1884 /* WARNING: This threadref data structure comes from the remote O.S.,
1885 libstub protocol encoding, and remote.c. It is not particularly
1886 changable. */
1887
1888 /* Right now, the internal structure is int. We want it to be bigger.
1889 Plan to fix this. */
1890
1891 typedef int gdb_threadref; /* Internal GDB thread reference. */
1892
1893 /* gdb_ext_thread_info is an internal GDB data structure which is
1894 equivalent to the reply of the remote threadinfo packet. */
1895
1896 struct gdb_ext_thread_info
1897 {
1898 threadref threadid; /* External form of thread reference. */
1899 int active; /* Has state interesting to GDB?
1900 regs, stack. */
1901 char display[256]; /* Brief state display, name,
1902 blocked/suspended. */
1903 char shortname[32]; /* To be used to name threads. */
1904 char more_display[256]; /* Long info, statistics, queue depth,
1905 whatever. */
1906 };
1907
1908 /* The volume of remote transfers can be limited by submitting
1909 a mask containing bits specifying the desired information.
1910 Use a union of these values as the 'selection' parameter to
1911 get_thread_info. FIXME: Make these TAG names more thread specific. */
1912
1913 #define TAG_THREADID 1
1914 #define TAG_EXISTS 2
1915 #define TAG_DISPLAY 4
1916 #define TAG_THREADNAME 8
1917 #define TAG_MOREDISPLAY 16
1918
1919 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1920
1921 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1922
1923 static char *unpack_nibble (char *buf, int *val);
1924
1925 static char *pack_nibble (char *buf, int nibble);
1926
1927 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1928
1929 static char *unpack_byte (char *buf, int *value);
1930
1931 static char *pack_int (char *buf, int value);
1932
1933 static char *unpack_int (char *buf, int *value);
1934
1935 static char *unpack_string (char *src, char *dest, int length);
1936
1937 static char *pack_threadid (char *pkt, threadref *id);
1938
1939 static char *unpack_threadid (char *inbuf, threadref *id);
1940
1941 void int_to_threadref (threadref *id, int value);
1942
1943 static int threadref_to_int (threadref *ref);
1944
1945 static void copy_threadref (threadref *dest, threadref *src);
1946
1947 static int threadmatch (threadref *dest, threadref *src);
1948
1949 static char *pack_threadinfo_request (char *pkt, int mode,
1950 threadref *id);
1951
1952 static int remote_unpack_thread_info_response (char *pkt,
1953 threadref *expectedref,
1954 struct gdb_ext_thread_info
1955 *info);
1956
1957
1958 static int remote_get_threadinfo (threadref *threadid,
1959 int fieldset, /*TAG mask */
1960 struct gdb_ext_thread_info *info);
1961
1962 static char *pack_threadlist_request (char *pkt, int startflag,
1963 int threadcount,
1964 threadref *nextthread);
1965
1966 static int parse_threadlist_response (char *pkt,
1967 int result_limit,
1968 threadref *original_echo,
1969 threadref *resultlist,
1970 int *doneflag);
1971
1972 static int remote_get_threadlist (int startflag,
1973 threadref *nextthread,
1974 int result_limit,
1975 int *done,
1976 int *result_count,
1977 threadref *threadlist);
1978
1979 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1980
1981 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1982 void *context, int looplimit);
1983
1984 static int remote_newthread_step (threadref *ref, void *context);
1985
1986
1987 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
1988 buffer we're allowed to write to. Returns
1989 BUF+CHARACTERS_WRITTEN. */
1990
1991 static char *
1992 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
1993 {
1994 int pid, tid;
1995 struct remote_state *rs = get_remote_state ();
1996
1997 if (remote_multi_process_p (rs))
1998 {
1999 pid = ptid_get_pid (ptid);
2000 if (pid < 0)
2001 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2002 else
2003 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2004 }
2005 tid = ptid_get_tid (ptid);
2006 if (tid < 0)
2007 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2008 else
2009 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2010
2011 return buf;
2012 }
2013
2014 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
2015 passed the last parsed char. Returns null_ptid on error. */
2016
2017 static ptid_t
2018 read_ptid (char *buf, char **obuf)
2019 {
2020 char *p = buf;
2021 char *pp;
2022 ULONGEST pid = 0, tid = 0;
2023
2024 if (*p == 'p')
2025 {
2026 /* Multi-process ptid. */
2027 pp = unpack_varlen_hex (p + 1, &pid);
2028 if (*pp != '.')
2029 error (_("invalid remote ptid: %s"), p);
2030
2031 p = pp;
2032 pp = unpack_varlen_hex (p + 1, &tid);
2033 if (obuf)
2034 *obuf = pp;
2035 return ptid_build (pid, 0, tid);
2036 }
2037
2038 /* No multi-process. Just a tid. */
2039 pp = unpack_varlen_hex (p, &tid);
2040
2041 /* Since the stub is not sending a process id, then default to
2042 what's in inferior_ptid, unless it's null at this point. If so,
2043 then since there's no way to know the pid of the reported
2044 threads, use the magic number. */
2045 if (ptid_equal (inferior_ptid, null_ptid))
2046 pid = ptid_get_pid (magic_null_ptid);
2047 else
2048 pid = ptid_get_pid (inferior_ptid);
2049
2050 if (obuf)
2051 *obuf = pp;
2052 return ptid_build (pid, 0, tid);
2053 }
2054
2055 /* Encode 64 bits in 16 chars of hex. */
2056
2057 static const char hexchars[] = "0123456789abcdef";
2058
2059 static int
2060 ishex (int ch, int *val)
2061 {
2062 if ((ch >= 'a') && (ch <= 'f'))
2063 {
2064 *val = ch - 'a' + 10;
2065 return 1;
2066 }
2067 if ((ch >= 'A') && (ch <= 'F'))
2068 {
2069 *val = ch - 'A' + 10;
2070 return 1;
2071 }
2072 if ((ch >= '0') && (ch <= '9'))
2073 {
2074 *val = ch - '0';
2075 return 1;
2076 }
2077 return 0;
2078 }
2079
2080 static int
2081 stubhex (int ch)
2082 {
2083 if (ch >= 'a' && ch <= 'f')
2084 return ch - 'a' + 10;
2085 if (ch >= '0' && ch <= '9')
2086 return ch - '0';
2087 if (ch >= 'A' && ch <= 'F')
2088 return ch - 'A' + 10;
2089 return -1;
2090 }
2091
2092 static int
2093 stub_unpack_int (char *buff, int fieldlength)
2094 {
2095 int nibble;
2096 int retval = 0;
2097
2098 while (fieldlength)
2099 {
2100 nibble = stubhex (*buff++);
2101 retval |= nibble;
2102 fieldlength--;
2103 if (fieldlength)
2104 retval = retval << 4;
2105 }
2106 return retval;
2107 }
2108
2109 char *
2110 unpack_varlen_hex (char *buff, /* packet to parse */
2111 ULONGEST *result)
2112 {
2113 int nibble;
2114 ULONGEST retval = 0;
2115
2116 while (ishex (*buff, &nibble))
2117 {
2118 buff++;
2119 retval = retval << 4;
2120 retval |= nibble & 0x0f;
2121 }
2122 *result = retval;
2123 return buff;
2124 }
2125
2126 static char *
2127 unpack_nibble (char *buf, int *val)
2128 {
2129 *val = fromhex (*buf++);
2130 return buf;
2131 }
2132
2133 static char *
2134 pack_nibble (char *buf, int nibble)
2135 {
2136 *buf++ = hexchars[(nibble & 0x0f)];
2137 return buf;
2138 }
2139
2140 static char *
2141 pack_hex_byte (char *pkt, int byte)
2142 {
2143 *pkt++ = hexchars[(byte >> 4) & 0xf];
2144 *pkt++ = hexchars[(byte & 0xf)];
2145 return pkt;
2146 }
2147
2148 static char *
2149 unpack_byte (char *buf, int *value)
2150 {
2151 *value = stub_unpack_int (buf, 2);
2152 return buf + 2;
2153 }
2154
2155 static char *
2156 pack_int (char *buf, int value)
2157 {
2158 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2159 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2160 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2161 buf = pack_hex_byte (buf, (value & 0xff));
2162 return buf;
2163 }
2164
2165 static char *
2166 unpack_int (char *buf, int *value)
2167 {
2168 *value = stub_unpack_int (buf, 8);
2169 return buf + 8;
2170 }
2171
2172 #if 0 /* Currently unused, uncomment when needed. */
2173 static char *pack_string (char *pkt, char *string);
2174
2175 static char *
2176 pack_string (char *pkt, char *string)
2177 {
2178 char ch;
2179 int len;
2180
2181 len = strlen (string);
2182 if (len > 200)
2183 len = 200; /* Bigger than most GDB packets, junk??? */
2184 pkt = pack_hex_byte (pkt, len);
2185 while (len-- > 0)
2186 {
2187 ch = *string++;
2188 if ((ch == '\0') || (ch == '#'))
2189 ch = '*'; /* Protect encapsulation. */
2190 *pkt++ = ch;
2191 }
2192 return pkt;
2193 }
2194 #endif /* 0 (unused) */
2195
2196 static char *
2197 unpack_string (char *src, char *dest, int length)
2198 {
2199 while (length--)
2200 *dest++ = *src++;
2201 *dest = '\0';
2202 return src;
2203 }
2204
2205 static char *
2206 pack_threadid (char *pkt, threadref *id)
2207 {
2208 char *limit;
2209 unsigned char *altid;
2210
2211 altid = (unsigned char *) id;
2212 limit = pkt + BUF_THREAD_ID_SIZE;
2213 while (pkt < limit)
2214 pkt = pack_hex_byte (pkt, *altid++);
2215 return pkt;
2216 }
2217
2218
2219 static char *
2220 unpack_threadid (char *inbuf, threadref *id)
2221 {
2222 char *altref;
2223 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2224 int x, y;
2225
2226 altref = (char *) id;
2227
2228 while (inbuf < limit)
2229 {
2230 x = stubhex (*inbuf++);
2231 y = stubhex (*inbuf++);
2232 *altref++ = (x << 4) | y;
2233 }
2234 return inbuf;
2235 }
2236
2237 /* Externally, threadrefs are 64 bits but internally, they are still
2238 ints. This is due to a mismatch of specifications. We would like
2239 to use 64bit thread references internally. This is an adapter
2240 function. */
2241
2242 void
2243 int_to_threadref (threadref *id, int value)
2244 {
2245 unsigned char *scan;
2246
2247 scan = (unsigned char *) id;
2248 {
2249 int i = 4;
2250 while (i--)
2251 *scan++ = 0;
2252 }
2253 *scan++ = (value >> 24) & 0xff;
2254 *scan++ = (value >> 16) & 0xff;
2255 *scan++ = (value >> 8) & 0xff;
2256 *scan++ = (value & 0xff);
2257 }
2258
2259 static int
2260 threadref_to_int (threadref *ref)
2261 {
2262 int i, value = 0;
2263 unsigned char *scan;
2264
2265 scan = *ref;
2266 scan += 4;
2267 i = 4;
2268 while (i-- > 0)
2269 value = (value << 8) | ((*scan++) & 0xff);
2270 return value;
2271 }
2272
2273 static void
2274 copy_threadref (threadref *dest, threadref *src)
2275 {
2276 int i;
2277 unsigned char *csrc, *cdest;
2278
2279 csrc = (unsigned char *) src;
2280 cdest = (unsigned char *) dest;
2281 i = 8;
2282 while (i--)
2283 *cdest++ = *csrc++;
2284 }
2285
2286 static int
2287 threadmatch (threadref *dest, threadref *src)
2288 {
2289 /* Things are broken right now, so just assume we got a match. */
2290 #if 0
2291 unsigned char *srcp, *destp;
2292 int i, result;
2293 srcp = (char *) src;
2294 destp = (char *) dest;
2295
2296 result = 1;
2297 while (i-- > 0)
2298 result &= (*srcp++ == *destp++) ? 1 : 0;
2299 return result;
2300 #endif
2301 return 1;
2302 }
2303
2304 /*
2305 threadid:1, # always request threadid
2306 context_exists:2,
2307 display:4,
2308 unique_name:8,
2309 more_display:16
2310 */
2311
2312 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2313
2314 static char *
2315 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2316 {
2317 *pkt++ = 'q'; /* Info Query */
2318 *pkt++ = 'P'; /* process or thread info */
2319 pkt = pack_int (pkt, mode); /* mode */
2320 pkt = pack_threadid (pkt, id); /* threadid */
2321 *pkt = '\0'; /* terminate */
2322 return pkt;
2323 }
2324
2325 /* These values tag the fields in a thread info response packet. */
2326 /* Tagging the fields allows us to request specific fields and to
2327 add more fields as time goes by. */
2328
2329 #define TAG_THREADID 1 /* Echo the thread identifier. */
2330 #define TAG_EXISTS 2 /* Is this process defined enough to
2331 fetch registers and its stack? */
2332 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2333 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2334 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2335 the process. */
2336
2337 static int
2338 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2339 struct gdb_ext_thread_info *info)
2340 {
2341 struct remote_state *rs = get_remote_state ();
2342 int mask, length;
2343 int tag;
2344 threadref ref;
2345 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2346 int retval = 1;
2347
2348 /* info->threadid = 0; FIXME: implement zero_threadref. */
2349 info->active = 0;
2350 info->display[0] = '\0';
2351 info->shortname[0] = '\0';
2352 info->more_display[0] = '\0';
2353
2354 /* Assume the characters indicating the packet type have been
2355 stripped. */
2356 pkt = unpack_int (pkt, &mask); /* arg mask */
2357 pkt = unpack_threadid (pkt, &ref);
2358
2359 if (mask == 0)
2360 warning (_("Incomplete response to threadinfo request."));
2361 if (!threadmatch (&ref, expectedref))
2362 { /* This is an answer to a different request. */
2363 warning (_("ERROR RMT Thread info mismatch."));
2364 return 0;
2365 }
2366 copy_threadref (&info->threadid, &ref);
2367
2368 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2369
2370 /* Packets are terminated with nulls. */
2371 while ((pkt < limit) && mask && *pkt)
2372 {
2373 pkt = unpack_int (pkt, &tag); /* tag */
2374 pkt = unpack_byte (pkt, &length); /* length */
2375 if (!(tag & mask)) /* Tags out of synch with mask. */
2376 {
2377 warning (_("ERROR RMT: threadinfo tag mismatch."));
2378 retval = 0;
2379 break;
2380 }
2381 if (tag == TAG_THREADID)
2382 {
2383 if (length != 16)
2384 {
2385 warning (_("ERROR RMT: length of threadid is not 16."));
2386 retval = 0;
2387 break;
2388 }
2389 pkt = unpack_threadid (pkt, &ref);
2390 mask = mask & ~TAG_THREADID;
2391 continue;
2392 }
2393 if (tag == TAG_EXISTS)
2394 {
2395 info->active = stub_unpack_int (pkt, length);
2396 pkt += length;
2397 mask = mask & ~(TAG_EXISTS);
2398 if (length > 8)
2399 {
2400 warning (_("ERROR RMT: 'exists' length too long."));
2401 retval = 0;
2402 break;
2403 }
2404 continue;
2405 }
2406 if (tag == TAG_THREADNAME)
2407 {
2408 pkt = unpack_string (pkt, &info->shortname[0], length);
2409 mask = mask & ~TAG_THREADNAME;
2410 continue;
2411 }
2412 if (tag == TAG_DISPLAY)
2413 {
2414 pkt = unpack_string (pkt, &info->display[0], length);
2415 mask = mask & ~TAG_DISPLAY;
2416 continue;
2417 }
2418 if (tag == TAG_MOREDISPLAY)
2419 {
2420 pkt = unpack_string (pkt, &info->more_display[0], length);
2421 mask = mask & ~TAG_MOREDISPLAY;
2422 continue;
2423 }
2424 warning (_("ERROR RMT: unknown thread info tag."));
2425 break; /* Not a tag we know about. */
2426 }
2427 return retval;
2428 }
2429
2430 static int
2431 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2432 struct gdb_ext_thread_info *info)
2433 {
2434 struct remote_state *rs = get_remote_state ();
2435 int result;
2436
2437 pack_threadinfo_request (rs->buf, fieldset, threadid);
2438 putpkt (rs->buf);
2439 getpkt (&rs->buf, &rs->buf_size, 0);
2440
2441 if (rs->buf[0] == '\0')
2442 return 0;
2443
2444 result = remote_unpack_thread_info_response (rs->buf + 2,
2445 threadid, info);
2446 return result;
2447 }
2448
2449 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2450
2451 static char *
2452 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2453 threadref *nextthread)
2454 {
2455 *pkt++ = 'q'; /* info query packet */
2456 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2457 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2458 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2459 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2460 *pkt = '\0';
2461 return pkt;
2462 }
2463
2464 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2465
2466 static int
2467 parse_threadlist_response (char *pkt, int result_limit,
2468 threadref *original_echo, threadref *resultlist,
2469 int *doneflag)
2470 {
2471 struct remote_state *rs = get_remote_state ();
2472 char *limit;
2473 int count, resultcount, done;
2474
2475 resultcount = 0;
2476 /* Assume the 'q' and 'M chars have been stripped. */
2477 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2478 /* done parse past here */
2479 pkt = unpack_byte (pkt, &count); /* count field */
2480 pkt = unpack_nibble (pkt, &done);
2481 /* The first threadid is the argument threadid. */
2482 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2483 while ((count-- > 0) && (pkt < limit))
2484 {
2485 pkt = unpack_threadid (pkt, resultlist++);
2486 if (resultcount++ >= result_limit)
2487 break;
2488 }
2489 if (doneflag)
2490 *doneflag = done;
2491 return resultcount;
2492 }
2493
2494 static int
2495 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2496 int *done, int *result_count, threadref *threadlist)
2497 {
2498 struct remote_state *rs = get_remote_state ();
2499 static threadref echo_nextthread;
2500 int result = 1;
2501
2502 /* Trancate result limit to be smaller than the packet size. */
2503 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2504 >= get_remote_packet_size ())
2505 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2506
2507 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2508 putpkt (rs->buf);
2509 getpkt (&rs->buf, &rs->buf_size, 0);
2510
2511 if (*rs->buf == '\0')
2512 return 0;
2513 else
2514 *result_count =
2515 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
2516 threadlist, done);
2517
2518 if (!threadmatch (&echo_nextthread, nextthread))
2519 {
2520 /* FIXME: This is a good reason to drop the packet. */
2521 /* Possably, there is a duplicate response. */
2522 /* Possabilities :
2523 retransmit immediatly - race conditions
2524 retransmit after timeout - yes
2525 exit
2526 wait for packet, then exit
2527 */
2528 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2529 return 0; /* I choose simply exiting. */
2530 }
2531 if (*result_count <= 0)
2532 {
2533 if (*done != 1)
2534 {
2535 warning (_("RMT ERROR : failed to get remote thread list."));
2536 result = 0;
2537 }
2538 return result; /* break; */
2539 }
2540 if (*result_count > result_limit)
2541 {
2542 *result_count = 0;
2543 warning (_("RMT ERROR: threadlist response longer than requested."));
2544 return 0;
2545 }
2546 return result;
2547 }
2548
2549 /* This is the interface between remote and threads, remotes upper
2550 interface. */
2551
2552 /* remote_find_new_threads retrieves the thread list and for each
2553 thread in the list, looks up the thread in GDB's internal list,
2554 adding the thread if it does not already exist. This involves
2555 getting partial thread lists from the remote target so, polling the
2556 quit_flag is required. */
2557
2558
2559 /* About this many threadisds fit in a packet. */
2560
2561 #define MAXTHREADLISTRESULTS 32
2562
2563 static int
2564 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2565 int looplimit)
2566 {
2567 int done, i, result_count;
2568 int startflag = 1;
2569 int result = 1;
2570 int loopcount = 0;
2571 static threadref nextthread;
2572 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
2573
2574 done = 0;
2575 while (!done)
2576 {
2577 if (loopcount++ > looplimit)
2578 {
2579 result = 0;
2580 warning (_("Remote fetch threadlist -infinite loop-."));
2581 break;
2582 }
2583 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
2584 &done, &result_count, resultthreadlist))
2585 {
2586 result = 0;
2587 break;
2588 }
2589 /* Clear for later iterations. */
2590 startflag = 0;
2591 /* Setup to resume next batch of thread references, set nextthread. */
2592 if (result_count >= 1)
2593 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
2594 i = 0;
2595 while (result_count--)
2596 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
2597 break;
2598 }
2599 return result;
2600 }
2601
2602 static int
2603 remote_newthread_step (threadref *ref, void *context)
2604 {
2605 int pid = ptid_get_pid (inferior_ptid);
2606 ptid_t ptid = ptid_build (pid, 0, threadref_to_int (ref));
2607
2608 if (!in_thread_list (ptid))
2609 add_thread (ptid);
2610 return 1; /* continue iterator */
2611 }
2612
2613 #define CRAZY_MAX_THREADS 1000
2614
2615 static ptid_t
2616 remote_current_thread (ptid_t oldpid)
2617 {
2618 struct remote_state *rs = get_remote_state ();
2619
2620 putpkt ("qC");
2621 getpkt (&rs->buf, &rs->buf_size, 0);
2622 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2623 return read_ptid (&rs->buf[2], NULL);
2624 else
2625 return oldpid;
2626 }
2627
2628 /* Find new threads for info threads command.
2629 * Original version, using John Metzler's thread protocol.
2630 */
2631
2632 static void
2633 remote_find_new_threads (void)
2634 {
2635 remote_threadlist_iterator (remote_newthread_step, 0,
2636 CRAZY_MAX_THREADS);
2637 }
2638
2639 #if defined(HAVE_LIBEXPAT)
2640
2641 typedef struct thread_item
2642 {
2643 ptid_t ptid;
2644 char *extra;
2645 int core;
2646 } thread_item_t;
2647 DEF_VEC_O(thread_item_t);
2648
2649 struct threads_parsing_context
2650 {
2651 VEC (thread_item_t) *items;
2652 };
2653
2654 static void
2655 start_thread (struct gdb_xml_parser *parser,
2656 const struct gdb_xml_element *element,
2657 void *user_data, VEC(gdb_xml_value_s) *attributes)
2658 {
2659 struct threads_parsing_context *data = user_data;
2660
2661 struct thread_item item;
2662 char *id;
2663 struct gdb_xml_value *attr;
2664
2665 id = xml_find_attribute (attributes, "id")->value;
2666 item.ptid = read_ptid (id, NULL);
2667
2668 attr = xml_find_attribute (attributes, "core");
2669 if (attr != NULL)
2670 item.core = *(ULONGEST *) attr->value;
2671 else
2672 item.core = -1;
2673
2674 item.extra = 0;
2675
2676 VEC_safe_push (thread_item_t, data->items, &item);
2677 }
2678
2679 static void
2680 end_thread (struct gdb_xml_parser *parser,
2681 const struct gdb_xml_element *element,
2682 void *user_data, const char *body_text)
2683 {
2684 struct threads_parsing_context *data = user_data;
2685
2686 if (body_text && *body_text)
2687 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2688 }
2689
2690 const struct gdb_xml_attribute thread_attributes[] = {
2691 { "id", GDB_XML_AF_NONE, NULL, NULL },
2692 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2693 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2694 };
2695
2696 const struct gdb_xml_element thread_children[] = {
2697 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2698 };
2699
2700 const struct gdb_xml_element threads_children[] = {
2701 { "thread", thread_attributes, thread_children,
2702 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2703 start_thread, end_thread },
2704 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2705 };
2706
2707 const struct gdb_xml_element threads_elements[] = {
2708 { "threads", NULL, threads_children,
2709 GDB_XML_EF_NONE, NULL, NULL },
2710 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2711 };
2712
2713 /* Discard the contents of the constructed thread info context. */
2714
2715 static void
2716 clear_threads_parsing_context (void *p)
2717 {
2718 struct threads_parsing_context *context = p;
2719 int i;
2720 struct thread_item *item;
2721
2722 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2723 xfree (item->extra);
2724
2725 VEC_free (thread_item_t, context->items);
2726 }
2727
2728 #endif
2729
2730 /*
2731 * Find all threads for info threads command.
2732 * Uses new thread protocol contributed by Cisco.
2733 * Falls back and attempts to use the older method (above)
2734 * if the target doesn't respond to the new method.
2735 */
2736
2737 static void
2738 remote_threads_info (struct target_ops *ops)
2739 {
2740 struct remote_state *rs = get_remote_state ();
2741 char *bufp;
2742 ptid_t new_thread;
2743
2744 if (rs->remote_desc == 0) /* paranoia */
2745 error (_("Command can only be used when connected to the remote target."));
2746
2747 #if defined(HAVE_LIBEXPAT)
2748 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2749 {
2750 char *xml = target_read_stralloc (&current_target,
2751 TARGET_OBJECT_THREADS, NULL);
2752
2753 struct cleanup *back_to = make_cleanup (xfree, xml);
2754
2755 if (xml && *xml)
2756 {
2757 struct threads_parsing_context context;
2758
2759 context.items = NULL;
2760 make_cleanup (clear_threads_parsing_context, &context);
2761
2762 if (gdb_xml_parse_quick (_("threads"), "threads.dtd",
2763 threads_elements, xml, &context) == 0)
2764 {
2765 int i;
2766 struct thread_item *item;
2767
2768 for (i = 0;
2769 VEC_iterate (thread_item_t, context.items, i, item);
2770 ++i)
2771 {
2772 if (!ptid_equal (item->ptid, null_ptid))
2773 {
2774 struct private_thread_info *info;
2775 /* In non-stop mode, we assume new found threads
2776 are running until proven otherwise with a
2777 stop reply. In all-stop, we can only get
2778 here if all threads are stopped. */
2779 int running = non_stop ? 1 : 0;
2780
2781 remote_notice_new_inferior (item->ptid, running);
2782
2783 info = demand_private_info (item->ptid);
2784 info->core = item->core;
2785 info->extra = item->extra;
2786 item->extra = NULL;
2787 }
2788 }
2789 }
2790 }
2791
2792 do_cleanups (back_to);
2793 return;
2794 }
2795 #endif
2796
2797 if (use_threadinfo_query)
2798 {
2799 putpkt ("qfThreadInfo");
2800 getpkt (&rs->buf, &rs->buf_size, 0);
2801 bufp = rs->buf;
2802 if (bufp[0] != '\0') /* q packet recognized */
2803 {
2804 struct cleanup *old_chain;
2805 char *saved_reply;
2806
2807 /* remote_notice_new_inferior (in the loop below) may make
2808 new RSP calls, which clobber rs->buf. Work with a
2809 copy. */
2810 bufp = saved_reply = xstrdup (rs->buf);
2811 old_chain = make_cleanup (free_current_contents, &saved_reply);
2812
2813 while (*bufp++ == 'm') /* reply contains one or more TID */
2814 {
2815 do
2816 {
2817 new_thread = read_ptid (bufp, &bufp);
2818 if (!ptid_equal (new_thread, null_ptid))
2819 {
2820 /* In non-stop mode, we assume new found threads
2821 are running until proven otherwise with a
2822 stop reply. In all-stop, we can only get
2823 here if all threads are stopped. */
2824 int running = non_stop ? 1 : 0;
2825
2826 remote_notice_new_inferior (new_thread, running);
2827 }
2828 }
2829 while (*bufp++ == ','); /* comma-separated list */
2830 free_current_contents (&saved_reply);
2831 putpkt ("qsThreadInfo");
2832 getpkt (&rs->buf, &rs->buf_size, 0);
2833 bufp = saved_reply = xstrdup (rs->buf);
2834 }
2835 do_cleanups (old_chain);
2836 return; /* done */
2837 }
2838 }
2839
2840 /* Only qfThreadInfo is supported in non-stop mode. */
2841 if (non_stop)
2842 return;
2843
2844 /* Else fall back to old method based on jmetzler protocol. */
2845 use_threadinfo_query = 0;
2846 remote_find_new_threads ();
2847 return;
2848 }
2849
2850 /*
2851 * Collect a descriptive string about the given thread.
2852 * The target may say anything it wants to about the thread
2853 * (typically info about its blocked / runnable state, name, etc.).
2854 * This string will appear in the info threads display.
2855 *
2856 * Optional: targets are not required to implement this function.
2857 */
2858
2859 static char *
2860 remote_threads_extra_info (struct thread_info *tp)
2861 {
2862 struct remote_state *rs = get_remote_state ();
2863 int result;
2864 int set;
2865 threadref id;
2866 struct gdb_ext_thread_info threadinfo;
2867 static char display_buf[100]; /* arbitrary... */
2868 int n = 0; /* position in display_buf */
2869
2870 if (rs->remote_desc == 0) /* paranoia */
2871 internal_error (__FILE__, __LINE__,
2872 _("remote_threads_extra_info"));
2873
2874 if (ptid_equal (tp->ptid, magic_null_ptid)
2875 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_tid (tp->ptid) == 0))
2876 /* This is the main thread which was added by GDB. The remote
2877 server doesn't know about it. */
2878 return NULL;
2879
2880 if (remote_protocol_packets[PACKET_qXfer_threads].support == PACKET_ENABLE)
2881 {
2882 struct thread_info *info = find_thread_ptid (tp->ptid);
2883
2884 if (info && info->private)
2885 return info->private->extra;
2886 else
2887 return NULL;
2888 }
2889
2890 if (use_threadextra_query)
2891 {
2892 char *b = rs->buf;
2893 char *endb = rs->buf + get_remote_packet_size ();
2894
2895 xsnprintf (b, endb - b, "qThreadExtraInfo,");
2896 b += strlen (b);
2897 write_ptid (b, endb, tp->ptid);
2898
2899 putpkt (rs->buf);
2900 getpkt (&rs->buf, &rs->buf_size, 0);
2901 if (rs->buf[0] != 0)
2902 {
2903 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
2904 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
2905 display_buf [result] = '\0';
2906 return display_buf;
2907 }
2908 }
2909
2910 /* If the above query fails, fall back to the old method. */
2911 use_threadextra_query = 0;
2912 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
2913 | TAG_MOREDISPLAY | TAG_DISPLAY;
2914 int_to_threadref (&id, ptid_get_tid (tp->ptid));
2915 if (remote_get_threadinfo (&id, set, &threadinfo))
2916 if (threadinfo.active)
2917 {
2918 if (*threadinfo.shortname)
2919 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2920 " Name: %s,", threadinfo.shortname);
2921 if (*threadinfo.display)
2922 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2923 " State: %s,", threadinfo.display);
2924 if (*threadinfo.more_display)
2925 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2926 " Priority: %s", threadinfo.more_display);
2927
2928 if (n > 0)
2929 {
2930 /* For purely cosmetic reasons, clear up trailing commas. */
2931 if (',' == display_buf[n-1])
2932 display_buf[n-1] = ' ';
2933 return display_buf;
2934 }
2935 }
2936 return NULL;
2937 }
2938 \f
2939
2940 static int
2941 remote_static_tracepoint_marker_at (CORE_ADDR addr,
2942 struct static_tracepoint_marker *marker)
2943 {
2944 struct remote_state *rs = get_remote_state ();
2945 char *p = rs->buf;
2946
2947 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
2948 p += strlen (p);
2949 p += hexnumstr (p, addr);
2950 putpkt (rs->buf);
2951 getpkt (&rs->buf, &rs->buf_size, 0);
2952 p = rs->buf;
2953
2954 if (*p == 'E')
2955 error (_("Remote failure reply: %s"), p);
2956
2957 if (*p++ == 'm')
2958 {
2959 parse_static_tracepoint_marker_definition (p, &p, marker);
2960 return 1;
2961 }
2962
2963 return 0;
2964 }
2965
2966 static VEC(static_tracepoint_marker_p) *
2967 remote_static_tracepoint_markers_by_strid (const char *strid)
2968 {
2969 struct remote_state *rs = get_remote_state ();
2970 VEC(static_tracepoint_marker_p) *markers = NULL;
2971 struct static_tracepoint_marker *marker = NULL;
2972 struct cleanup *old_chain;
2973 char *p;
2974
2975 /* Ask for a first packet of static tracepoint marker
2976 definition. */
2977 putpkt ("qTfSTM");
2978 getpkt (&rs->buf, &rs->buf_size, 0);
2979 p = rs->buf;
2980 if (*p == 'E')
2981 error (_("Remote failure reply: %s"), p);
2982
2983 old_chain = make_cleanup (free_current_marker, &marker);
2984
2985 while (*p++ == 'm')
2986 {
2987 if (marker == NULL)
2988 marker = XCNEW (struct static_tracepoint_marker);
2989
2990 do
2991 {
2992 parse_static_tracepoint_marker_definition (p, &p, marker);
2993
2994 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
2995 {
2996 VEC_safe_push (static_tracepoint_marker_p,
2997 markers, marker);
2998 marker = NULL;
2999 }
3000 else
3001 {
3002 release_static_tracepoint_marker (marker);
3003 memset (marker, 0, sizeof (*marker));
3004 }
3005 }
3006 while (*p++ == ','); /* comma-separated list */
3007 /* Ask for another packet of static tracepoint definition. */
3008 putpkt ("qTsSTM");
3009 getpkt (&rs->buf, &rs->buf_size, 0);
3010 p = rs->buf;
3011 }
3012
3013 do_cleanups (old_chain);
3014 return markers;
3015 }
3016
3017 \f
3018 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3019
3020 static ptid_t
3021 remote_get_ada_task_ptid (long lwp, long thread)
3022 {
3023 return ptid_build (ptid_get_pid (inferior_ptid), 0, lwp);
3024 }
3025 \f
3026
3027 /* Restart the remote side; this is an extended protocol operation. */
3028
3029 static void
3030 extended_remote_restart (void)
3031 {
3032 struct remote_state *rs = get_remote_state ();
3033
3034 /* Send the restart command; for reasons I don't understand the
3035 remote side really expects a number after the "R". */
3036 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3037 putpkt (rs->buf);
3038
3039 remote_fileio_reset ();
3040 }
3041 \f
3042 /* Clean up connection to a remote debugger. */
3043
3044 static void
3045 remote_close (void)
3046 {
3047 struct remote_state *rs = get_remote_state ();
3048
3049 if (rs->remote_desc == NULL)
3050 return; /* already closed */
3051
3052 /* Make sure we leave stdin registered in the event loop, and we
3053 don't leave the async SIGINT signal handler installed. */
3054 remote_terminal_ours ();
3055
3056 serial_close (rs->remote_desc);
3057 rs->remote_desc = NULL;
3058
3059 /* We don't have a connection to the remote stub anymore. Get rid
3060 of all the inferiors and their threads we were controlling.
3061 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3062 will be unable to find the thread corresponding to (pid, 0, 0). */
3063 inferior_ptid = null_ptid;
3064 discard_all_inferiors ();
3065
3066 /* Stop replies may from inferiors which are still unknown to GDB.
3067 We are closing the remote target, so we should discard
3068 everything, including the stop replies from GDB-unknown
3069 inferiors. */
3070 discard_pending_stop_replies (NULL);
3071
3072 if (remote_async_inferior_event_token)
3073 delete_async_event_handler (&remote_async_inferior_event_token);
3074
3075 remote_notif_unregister_async_event_handler ();
3076
3077 trace_reset_local_state ();
3078 }
3079
3080 /* Query the remote side for the text, data and bss offsets. */
3081
3082 static void
3083 get_offsets (void)
3084 {
3085 struct remote_state *rs = get_remote_state ();
3086 char *buf;
3087 char *ptr;
3088 int lose, num_segments = 0, do_sections, do_segments;
3089 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3090 struct section_offsets *offs;
3091 struct symfile_segment_data *data;
3092
3093 if (symfile_objfile == NULL)
3094 return;
3095
3096 putpkt ("qOffsets");
3097 getpkt (&rs->buf, &rs->buf_size, 0);
3098 buf = rs->buf;
3099
3100 if (buf[0] == '\000')
3101 return; /* Return silently. Stub doesn't support
3102 this command. */
3103 if (buf[0] == 'E')
3104 {
3105 warning (_("Remote failure reply: %s"), buf);
3106 return;
3107 }
3108
3109 /* Pick up each field in turn. This used to be done with scanf, but
3110 scanf will make trouble if CORE_ADDR size doesn't match
3111 conversion directives correctly. The following code will work
3112 with any size of CORE_ADDR. */
3113 text_addr = data_addr = bss_addr = 0;
3114 ptr = buf;
3115 lose = 0;
3116
3117 if (strncmp (ptr, "Text=", 5) == 0)
3118 {
3119 ptr += 5;
3120 /* Don't use strtol, could lose on big values. */
3121 while (*ptr && *ptr != ';')
3122 text_addr = (text_addr << 4) + fromhex (*ptr++);
3123
3124 if (strncmp (ptr, ";Data=", 6) == 0)
3125 {
3126 ptr += 6;
3127 while (*ptr && *ptr != ';')
3128 data_addr = (data_addr << 4) + fromhex (*ptr++);
3129 }
3130 else
3131 lose = 1;
3132
3133 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
3134 {
3135 ptr += 5;
3136 while (*ptr && *ptr != ';')
3137 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3138
3139 if (bss_addr != data_addr)
3140 warning (_("Target reported unsupported offsets: %s"), buf);
3141 }
3142 else
3143 lose = 1;
3144 }
3145 else if (strncmp (ptr, "TextSeg=", 8) == 0)
3146 {
3147 ptr += 8;
3148 /* Don't use strtol, could lose on big values. */
3149 while (*ptr && *ptr != ';')
3150 text_addr = (text_addr << 4) + fromhex (*ptr++);
3151 num_segments = 1;
3152
3153 if (strncmp (ptr, ";DataSeg=", 9) == 0)
3154 {
3155 ptr += 9;
3156 while (*ptr && *ptr != ';')
3157 data_addr = (data_addr << 4) + fromhex (*ptr++);
3158 num_segments++;
3159 }
3160 }
3161 else
3162 lose = 1;
3163
3164 if (lose)
3165 error (_("Malformed response to offset query, %s"), buf);
3166 else if (*ptr != '\0')
3167 warning (_("Target reported unsupported offsets: %s"), buf);
3168
3169 offs = ((struct section_offsets *)
3170 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3171 memcpy (offs, symfile_objfile->section_offsets,
3172 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3173
3174 data = get_symfile_segment_data (symfile_objfile->obfd);
3175 do_segments = (data != NULL);
3176 do_sections = num_segments == 0;
3177
3178 if (num_segments > 0)
3179 {
3180 segments[0] = text_addr;
3181 segments[1] = data_addr;
3182 }
3183 /* If we have two segments, we can still try to relocate everything
3184 by assuming that the .text and .data offsets apply to the whole
3185 text and data segments. Convert the offsets given in the packet
3186 to base addresses for symfile_map_offsets_to_segments. */
3187 else if (data && data->num_segments == 2)
3188 {
3189 segments[0] = data->segment_bases[0] + text_addr;
3190 segments[1] = data->segment_bases[1] + data_addr;
3191 num_segments = 2;
3192 }
3193 /* If the object file has only one segment, assume that it is text
3194 rather than data; main programs with no writable data are rare,
3195 but programs with no code are useless. Of course the code might
3196 have ended up in the data segment... to detect that we would need
3197 the permissions here. */
3198 else if (data && data->num_segments == 1)
3199 {
3200 segments[0] = data->segment_bases[0] + text_addr;
3201 num_segments = 1;
3202 }
3203 /* There's no way to relocate by segment. */
3204 else
3205 do_segments = 0;
3206
3207 if (do_segments)
3208 {
3209 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3210 offs, num_segments, segments);
3211
3212 if (ret == 0 && !do_sections)
3213 error (_("Can not handle qOffsets TextSeg "
3214 "response with this symbol file"));
3215
3216 if (ret > 0)
3217 do_sections = 0;
3218 }
3219
3220 if (data)
3221 free_symfile_segment_data (data);
3222
3223 if (do_sections)
3224 {
3225 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3226
3227 /* This is a temporary kludge to force data and bss to use the
3228 same offsets because that's what nlmconv does now. The real
3229 solution requires changes to the stub and remote.c that I
3230 don't have time to do right now. */
3231
3232 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3233 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3234 }
3235
3236 objfile_relocate (symfile_objfile, offs);
3237 }
3238
3239 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3240 threads we know are stopped already. This is used during the
3241 initial remote connection in non-stop mode --- threads that are
3242 reported as already being stopped are left stopped. */
3243
3244 static int
3245 set_stop_requested_callback (struct thread_info *thread, void *data)
3246 {
3247 /* If we have a stop reply for this thread, it must be stopped. */
3248 if (peek_stop_reply (thread->ptid))
3249 set_stop_requested (thread->ptid, 1);
3250
3251 return 0;
3252 }
3253
3254 /* Send interrupt_sequence to remote target. */
3255 static void
3256 send_interrupt_sequence (void)
3257 {
3258 struct remote_state *rs = get_remote_state ();
3259
3260 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3261 remote_serial_write ("\x03", 1);
3262 else if (interrupt_sequence_mode == interrupt_sequence_break)
3263 serial_send_break (rs->remote_desc);
3264 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3265 {
3266 serial_send_break (rs->remote_desc);
3267 remote_serial_write ("g", 1);
3268 }
3269 else
3270 internal_error (__FILE__, __LINE__,
3271 _("Invalid value for interrupt_sequence_mode: %s."),
3272 interrupt_sequence_mode);
3273 }
3274
3275
3276 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3277 and extract the PTID. Returns NULL_PTID if not found. */
3278
3279 static ptid_t
3280 stop_reply_extract_thread (char *stop_reply)
3281 {
3282 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3283 {
3284 char *p;
3285
3286 /* Txx r:val ; r:val (...) */
3287 p = &stop_reply[3];
3288
3289 /* Look for "register" named "thread". */
3290 while (*p != '\0')
3291 {
3292 char *p1;
3293
3294 p1 = strchr (p, ':');
3295 if (p1 == NULL)
3296 return null_ptid;
3297
3298 if (strncmp (p, "thread", p1 - p) == 0)
3299 return read_ptid (++p1, &p);
3300
3301 p1 = strchr (p, ';');
3302 if (p1 == NULL)
3303 return null_ptid;
3304 p1++;
3305
3306 p = p1;
3307 }
3308 }
3309
3310 return null_ptid;
3311 }
3312
3313 /* Query the remote target for which is the current thread/process,
3314 add it to our tables, and update INFERIOR_PTID. The caller is
3315 responsible for setting the state such that the remote end is ready
3316 to return the current thread.
3317
3318 This function is called after handling the '?' or 'vRun' packets,
3319 whose response is a stop reply from which we can also try
3320 extracting the thread. If the target doesn't support the explicit
3321 qC query, we infer the current thread from that stop reply, passed
3322 in in WAIT_STATUS, which may be NULL. */
3323
3324 static void
3325 add_current_inferior_and_thread (char *wait_status)
3326 {
3327 struct remote_state *rs = get_remote_state ();
3328 int fake_pid_p = 0;
3329 ptid_t ptid = null_ptid;
3330
3331 inferior_ptid = null_ptid;
3332
3333 /* Now, if we have thread information, update inferior_ptid. First
3334 if we have a stop reply handy, maybe it's a T stop reply with a
3335 "thread" register we can extract the current thread from. If
3336 not, ask the remote which is the current thread, with qC. The
3337 former method avoids a roundtrip. Note we don't use
3338 remote_parse_stop_reply as that makes use of the target
3339 architecture, which we haven't yet fully determined at this
3340 point. */
3341 if (wait_status != NULL)
3342 ptid = stop_reply_extract_thread (wait_status);
3343 if (ptid_equal (ptid, null_ptid))
3344 ptid = remote_current_thread (inferior_ptid);
3345
3346 if (!ptid_equal (ptid, null_ptid))
3347 {
3348 if (!remote_multi_process_p (rs))
3349 fake_pid_p = 1;
3350
3351 inferior_ptid = ptid;
3352 }
3353 else
3354 {
3355 /* Without this, some commands which require an active target
3356 (such as kill) won't work. This variable serves (at least)
3357 double duty as both the pid of the target process (if it has
3358 such), and as a flag indicating that a target is active. */
3359 inferior_ptid = magic_null_ptid;
3360 fake_pid_p = 1;
3361 }
3362
3363 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1);
3364
3365 /* Add the main thread. */
3366 add_thread_silent (inferior_ptid);
3367 }
3368
3369 static void
3370 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3371 {
3372 struct remote_state *rs = get_remote_state ();
3373 struct packet_config *noack_config;
3374 char *wait_status = NULL;
3375
3376 immediate_quit++; /* Allow user to interrupt it. */
3377 QUIT;
3378
3379 if (interrupt_on_connect)
3380 send_interrupt_sequence ();
3381
3382 /* Ack any packet which the remote side has already sent. */
3383 serial_write (rs->remote_desc, "+", 1);
3384
3385 /* Signal other parts that we're going through the initial setup,
3386 and so things may not be stable yet. */
3387 rs->starting_up = 1;
3388
3389 /* The first packet we send to the target is the optional "supported
3390 packets" request. If the target can answer this, it will tell us
3391 which later probes to skip. */
3392 remote_query_supported ();
3393
3394 /* If the stub wants to get a QAllow, compose one and send it. */
3395 if (remote_protocol_packets[PACKET_QAllow].support != PACKET_DISABLE)
3396 remote_set_permissions ();
3397
3398 /* Next, we possibly activate noack mode.
3399
3400 If the QStartNoAckMode packet configuration is set to AUTO,
3401 enable noack mode if the stub reported a wish for it with
3402 qSupported.
3403
3404 If set to TRUE, then enable noack mode even if the stub didn't
3405 report it in qSupported. If the stub doesn't reply OK, the
3406 session ends with an error.
3407
3408 If FALSE, then don't activate noack mode, regardless of what the
3409 stub claimed should be the default with qSupported. */
3410
3411 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3412
3413 if (noack_config->detect == AUTO_BOOLEAN_TRUE
3414 || (noack_config->detect == AUTO_BOOLEAN_AUTO
3415 && noack_config->support == PACKET_ENABLE))
3416 {
3417 putpkt ("QStartNoAckMode");
3418 getpkt (&rs->buf, &rs->buf_size, 0);
3419 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3420 rs->noack_mode = 1;
3421 }
3422
3423 if (extended_p)
3424 {
3425 /* Tell the remote that we are using the extended protocol. */
3426 putpkt ("!");
3427 getpkt (&rs->buf, &rs->buf_size, 0);
3428 }
3429
3430 /* Let the target know which signals it is allowed to pass down to
3431 the program. */
3432 update_signals_program_target ();
3433
3434 /* Next, if the target can specify a description, read it. We do
3435 this before anything involving memory or registers. */
3436 target_find_description ();
3437
3438 /* Next, now that we know something about the target, update the
3439 address spaces in the program spaces. */
3440 update_address_spaces ();
3441
3442 /* On OSs where the list of libraries is global to all
3443 processes, we fetch them early. */
3444 if (gdbarch_has_global_solist (target_gdbarch ()))
3445 solib_add (NULL, from_tty, target, auto_solib_add);
3446
3447 if (non_stop)
3448 {
3449 if (!rs->non_stop_aware)
3450 error (_("Non-stop mode requested, but remote "
3451 "does not support non-stop"));
3452
3453 putpkt ("QNonStop:1");
3454 getpkt (&rs->buf, &rs->buf_size, 0);
3455
3456 if (strcmp (rs->buf, "OK") != 0)
3457 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3458
3459 /* Find about threads and processes the stub is already
3460 controlling. We default to adding them in the running state.
3461 The '?' query below will then tell us about which threads are
3462 stopped. */
3463 remote_threads_info (target);
3464 }
3465 else if (rs->non_stop_aware)
3466 {
3467 /* Don't assume that the stub can operate in all-stop mode.
3468 Request it explicitly. */
3469 putpkt ("QNonStop:0");
3470 getpkt (&rs->buf, &rs->buf_size, 0);
3471
3472 if (strcmp (rs->buf, "OK") != 0)
3473 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3474 }
3475
3476 /* Upload TSVs regardless of whether the target is running or not. The
3477 remote stub, such as GDBserver, may have some predefined or builtin
3478 TSVs, even if the target is not running. */
3479 if (remote_get_trace_status (current_trace_status ()) != -1)
3480 {
3481 struct uploaded_tsv *uploaded_tsvs = NULL;
3482
3483 remote_upload_trace_state_variables (&uploaded_tsvs);
3484 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3485 }
3486
3487 /* Check whether the target is running now. */
3488 putpkt ("?");
3489 getpkt (&rs->buf, &rs->buf_size, 0);
3490
3491 if (!non_stop)
3492 {
3493 ptid_t ptid;
3494 int fake_pid_p = 0;
3495 struct inferior *inf;
3496
3497 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3498 {
3499 if (!extended_p)
3500 error (_("The target is not running (try extended-remote?)"));
3501
3502 /* We're connected, but not running. Drop out before we
3503 call start_remote. */
3504 rs->starting_up = 0;
3505 return;
3506 }
3507 else
3508 {
3509 /* Save the reply for later. */
3510 wait_status = alloca (strlen (rs->buf) + 1);
3511 strcpy (wait_status, rs->buf);
3512 }
3513
3514 /* Let the stub know that we want it to return the thread. */
3515 set_continue_thread (minus_one_ptid);
3516
3517 add_current_inferior_and_thread (wait_status);
3518
3519 /* init_wait_for_inferior should be called before get_offsets in order
3520 to manage `inserted' flag in bp loc in a correct state.
3521 breakpoint_init_inferior, called from init_wait_for_inferior, set
3522 `inserted' flag to 0, while before breakpoint_re_set, called from
3523 start_remote, set `inserted' flag to 1. In the initialization of
3524 inferior, breakpoint_init_inferior should be called first, and then
3525 breakpoint_re_set can be called. If this order is broken, state of
3526 `inserted' flag is wrong, and cause some problems on breakpoint
3527 manipulation. */
3528 init_wait_for_inferior ();
3529
3530 get_offsets (); /* Get text, data & bss offsets. */
3531
3532 /* If we could not find a description using qXfer, and we know
3533 how to do it some other way, try again. This is not
3534 supported for non-stop; it could be, but it is tricky if
3535 there are no stopped threads when we connect. */
3536 if (remote_read_description_p (target)
3537 && gdbarch_target_desc (target_gdbarch ()) == NULL)
3538 {
3539 target_clear_description ();
3540 target_find_description ();
3541 }
3542
3543 /* Use the previously fetched status. */
3544 gdb_assert (wait_status != NULL);
3545 strcpy (rs->buf, wait_status);
3546 rs->cached_wait_status = 1;
3547
3548 immediate_quit--;
3549 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3550 }
3551 else
3552 {
3553 /* Clear WFI global state. Do this before finding about new
3554 threads and inferiors, and setting the current inferior.
3555 Otherwise we would clear the proceed status of the current
3556 inferior when we want its stop_soon state to be preserved
3557 (see notice_new_inferior). */
3558 init_wait_for_inferior ();
3559
3560 /* In non-stop, we will either get an "OK", meaning that there
3561 are no stopped threads at this time; or, a regular stop
3562 reply. In the latter case, there may be more than one thread
3563 stopped --- we pull them all out using the vStopped
3564 mechanism. */
3565 if (strcmp (rs->buf, "OK") != 0)
3566 {
3567 struct notif_client *notif = &notif_client_stop;
3568
3569 /* remote_notif_get_pending_replies acks this one, and gets
3570 the rest out. */
3571 notif_client_stop.pending_event
3572 = remote_notif_parse (notif, rs->buf);
3573 remote_notif_get_pending_events (notif);
3574
3575 /* Make sure that threads that were stopped remain
3576 stopped. */
3577 iterate_over_threads (set_stop_requested_callback, NULL);
3578 }
3579
3580 if (target_can_async_p ())
3581 target_async (inferior_event_handler, 0);
3582
3583 if (thread_count () == 0)
3584 {
3585 if (!extended_p)
3586 error (_("The target is not running (try extended-remote?)"));
3587
3588 /* We're connected, but not running. Drop out before we
3589 call start_remote. */
3590 rs->starting_up = 0;
3591 return;
3592 }
3593
3594 /* Let the stub know that we want it to return the thread. */
3595
3596 /* Force the stub to choose a thread. */
3597 set_general_thread (null_ptid);
3598
3599 /* Query it. */
3600 inferior_ptid = remote_current_thread (minus_one_ptid);
3601 if (ptid_equal (inferior_ptid, minus_one_ptid))
3602 error (_("remote didn't report the current thread in non-stop mode"));
3603
3604 get_offsets (); /* Get text, data & bss offsets. */
3605
3606 /* In non-stop mode, any cached wait status will be stored in
3607 the stop reply queue. */
3608 gdb_assert (wait_status == NULL);
3609
3610 /* Report all signals during attach/startup. */
3611 remote_pass_signals (0, NULL);
3612 }
3613
3614 /* If we connected to a live target, do some additional setup. */
3615 if (target_has_execution)
3616 {
3617 if (exec_bfd) /* No use without an exec file. */
3618 remote_check_symbols ();
3619 }
3620
3621 /* Possibly the target has been engaged in a trace run started
3622 previously; find out where things are at. */
3623 if (remote_get_trace_status (current_trace_status ()) != -1)
3624 {
3625 struct uploaded_tp *uploaded_tps = NULL;
3626
3627 if (current_trace_status ()->running)
3628 printf_filtered (_("Trace is already running on the target.\n"));
3629
3630 remote_upload_tracepoints (&uploaded_tps);
3631
3632 merge_uploaded_tracepoints (&uploaded_tps);
3633 }
3634
3635 /* The thread and inferior lists are now synchronized with the
3636 target, our symbols have been relocated, and we're merged the
3637 target's tracepoints with ours. We're done with basic start
3638 up. */
3639 rs->starting_up = 0;
3640
3641 /* If breakpoints are global, insert them now. */
3642 if (gdbarch_has_global_breakpoints (target_gdbarch ())
3643 && breakpoints_always_inserted_mode ())
3644 insert_breakpoints ();
3645 }
3646
3647 /* Open a connection to a remote debugger.
3648 NAME is the filename used for communication. */
3649
3650 static void
3651 remote_open (char *name, int from_tty)
3652 {
3653 remote_open_1 (name, from_tty, &remote_ops, 0);
3654 }
3655
3656 /* Open a connection to a remote debugger using the extended
3657 remote gdb protocol. NAME is the filename used for communication. */
3658
3659 static void
3660 extended_remote_open (char *name, int from_tty)
3661 {
3662 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3663 }
3664
3665 /* Generic code for opening a connection to a remote target. */
3666
3667 static void
3668 init_all_packet_configs (void)
3669 {
3670 int i;
3671
3672 for (i = 0; i < PACKET_MAX; i++)
3673 update_packet_config (&remote_protocol_packets[i]);
3674 }
3675
3676 /* Symbol look-up. */
3677
3678 static void
3679 remote_check_symbols (void)
3680 {
3681 struct remote_state *rs = get_remote_state ();
3682 char *msg, *reply, *tmp;
3683 struct minimal_symbol *sym;
3684 int end;
3685
3686 /* The remote side has no concept of inferiors that aren't running
3687 yet, it only knows about running processes. If we're connected
3688 but our current inferior is not running, we should not invite the
3689 remote target to request symbol lookups related to its
3690 (unrelated) current process. */
3691 if (!target_has_execution)
3692 return;
3693
3694 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
3695 return;
3696
3697 /* Make sure the remote is pointing at the right process. Note
3698 there's no way to select "no process". */
3699 set_general_process ();
3700
3701 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3702 because we need both at the same time. */
3703 msg = alloca (get_remote_packet_size ());
3704
3705 /* Invite target to request symbol lookups. */
3706
3707 putpkt ("qSymbol::");
3708 getpkt (&rs->buf, &rs->buf_size, 0);
3709 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3710 reply = rs->buf;
3711
3712 while (strncmp (reply, "qSymbol:", 8) == 0)
3713 {
3714 tmp = &reply[8];
3715 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3716 msg[end] = '\0';
3717 sym = lookup_minimal_symbol (msg, NULL, NULL);
3718 if (sym == NULL)
3719 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3720 else
3721 {
3722 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
3723 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
3724
3725 /* If this is a function address, return the start of code
3726 instead of any data function descriptor. */
3727 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3728 sym_addr,
3729 &current_target);
3730
3731 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3732 phex_nz (sym_addr, addr_size), &reply[8]);
3733 }
3734
3735 putpkt (msg);
3736 getpkt (&rs->buf, &rs->buf_size, 0);
3737 reply = rs->buf;
3738 }
3739 }
3740
3741 static struct serial *
3742 remote_serial_open (char *name)
3743 {
3744 static int udp_warning = 0;
3745
3746 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3747 of in ser-tcp.c, because it is the remote protocol assuming that the
3748 serial connection is reliable and not the serial connection promising
3749 to be. */
3750 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
3751 {
3752 warning (_("The remote protocol may be unreliable over UDP.\n"
3753 "Some events may be lost, rendering further debugging "
3754 "impossible."));
3755 udp_warning = 1;
3756 }
3757
3758 return serial_open (name);
3759 }
3760
3761 /* Inform the target of our permission settings. The permission flags
3762 work without this, but if the target knows the settings, it can do
3763 a couple things. First, it can add its own check, to catch cases
3764 that somehow manage to get by the permissions checks in target
3765 methods. Second, if the target is wired to disallow particular
3766 settings (for instance, a system in the field that is not set up to
3767 be able to stop at a breakpoint), it can object to any unavailable
3768 permissions. */
3769
3770 void
3771 remote_set_permissions (void)
3772 {
3773 struct remote_state *rs = get_remote_state ();
3774
3775 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
3776 "WriteReg:%x;WriteMem:%x;"
3777 "InsertBreak:%x;InsertTrace:%x;"
3778 "InsertFastTrace:%x;Stop:%x",
3779 may_write_registers, may_write_memory,
3780 may_insert_breakpoints, may_insert_tracepoints,
3781 may_insert_fast_tracepoints, may_stop);
3782 putpkt (rs->buf);
3783 getpkt (&rs->buf, &rs->buf_size, 0);
3784
3785 /* If the target didn't like the packet, warn the user. Do not try
3786 to undo the user's settings, that would just be maddening. */
3787 if (strcmp (rs->buf, "OK") != 0)
3788 warning (_("Remote refused setting permissions with: %s"), rs->buf);
3789 }
3790
3791 /* This type describes each known response to the qSupported
3792 packet. */
3793 struct protocol_feature
3794 {
3795 /* The name of this protocol feature. */
3796 const char *name;
3797
3798 /* The default for this protocol feature. */
3799 enum packet_support default_support;
3800
3801 /* The function to call when this feature is reported, or after
3802 qSupported processing if the feature is not supported.
3803 The first argument points to this structure. The second
3804 argument indicates whether the packet requested support be
3805 enabled, disabled, or probed (or the default, if this function
3806 is being called at the end of processing and this feature was
3807 not reported). The third argument may be NULL; if not NULL, it
3808 is a NUL-terminated string taken from the packet following
3809 this feature's name and an equals sign. */
3810 void (*func) (const struct protocol_feature *, enum packet_support,
3811 const char *);
3812
3813 /* The corresponding packet for this feature. Only used if
3814 FUNC is remote_supported_packet. */
3815 int packet;
3816 };
3817
3818 static void
3819 remote_supported_packet (const struct protocol_feature *feature,
3820 enum packet_support support,
3821 const char *argument)
3822 {
3823 if (argument)
3824 {
3825 warning (_("Remote qSupported response supplied an unexpected value for"
3826 " \"%s\"."), feature->name);
3827 return;
3828 }
3829
3830 if (remote_protocol_packets[feature->packet].support
3831 == PACKET_SUPPORT_UNKNOWN)
3832 remote_protocol_packets[feature->packet].support = support;
3833 }
3834
3835 static void
3836 remote_packet_size (const struct protocol_feature *feature,
3837 enum packet_support support, const char *value)
3838 {
3839 struct remote_state *rs = get_remote_state ();
3840
3841 int packet_size;
3842 char *value_end;
3843
3844 if (support != PACKET_ENABLE)
3845 return;
3846
3847 if (value == NULL || *value == '\0')
3848 {
3849 warning (_("Remote target reported \"%s\" without a size."),
3850 feature->name);
3851 return;
3852 }
3853
3854 errno = 0;
3855 packet_size = strtol (value, &value_end, 16);
3856 if (errno != 0 || *value_end != '\0' || packet_size < 0)
3857 {
3858 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
3859 feature->name, value);
3860 return;
3861 }
3862
3863 if (packet_size > MAX_REMOTE_PACKET_SIZE)
3864 {
3865 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
3866 packet_size, MAX_REMOTE_PACKET_SIZE);
3867 packet_size = MAX_REMOTE_PACKET_SIZE;
3868 }
3869
3870 /* Record the new maximum packet size. */
3871 rs->explicit_packet_size = packet_size;
3872 }
3873
3874 static void
3875 remote_multi_process_feature (const struct protocol_feature *feature,
3876 enum packet_support support, const char *value)
3877 {
3878 struct remote_state *rs = get_remote_state ();
3879
3880 rs->multi_process_aware = (support == PACKET_ENABLE);
3881 }
3882
3883 static void
3884 remote_non_stop_feature (const struct protocol_feature *feature,
3885 enum packet_support support, const char *value)
3886 {
3887 struct remote_state *rs = get_remote_state ();
3888
3889 rs->non_stop_aware = (support == PACKET_ENABLE);
3890 }
3891
3892 static void
3893 remote_cond_tracepoint_feature (const struct protocol_feature *feature,
3894 enum packet_support support,
3895 const char *value)
3896 {
3897 struct remote_state *rs = get_remote_state ();
3898
3899 rs->cond_tracepoints = (support == PACKET_ENABLE);
3900 }
3901
3902 static void
3903 remote_cond_breakpoint_feature (const struct protocol_feature *feature,
3904 enum packet_support support,
3905 const char *value)
3906 {
3907 struct remote_state *rs = get_remote_state ();
3908
3909 rs->cond_breakpoints = (support == PACKET_ENABLE);
3910 }
3911
3912 static void
3913 remote_breakpoint_commands_feature (const struct protocol_feature *feature,
3914 enum packet_support support,
3915 const char *value)
3916 {
3917 struct remote_state *rs = get_remote_state ();
3918
3919 rs->breakpoint_commands = (support == PACKET_ENABLE);
3920 }
3921
3922 static void
3923 remote_fast_tracepoint_feature (const struct protocol_feature *feature,
3924 enum packet_support support,
3925 const char *value)
3926 {
3927 struct remote_state *rs = get_remote_state ();
3928
3929 rs->fast_tracepoints = (support == PACKET_ENABLE);
3930 }
3931
3932 static void
3933 remote_static_tracepoint_feature (const struct protocol_feature *feature,
3934 enum packet_support support,
3935 const char *value)
3936 {
3937 struct remote_state *rs = get_remote_state ();
3938
3939 rs->static_tracepoints = (support == PACKET_ENABLE);
3940 }
3941
3942 static void
3943 remote_install_in_trace_feature (const struct protocol_feature *feature,
3944 enum packet_support support,
3945 const char *value)
3946 {
3947 struct remote_state *rs = get_remote_state ();
3948
3949 rs->install_in_trace = (support == PACKET_ENABLE);
3950 }
3951
3952 static void
3953 remote_disconnected_tracing_feature (const struct protocol_feature *feature,
3954 enum packet_support support,
3955 const char *value)
3956 {
3957 struct remote_state *rs = get_remote_state ();
3958
3959 rs->disconnected_tracing = (support == PACKET_ENABLE);
3960 }
3961
3962 static void
3963 remote_enable_disable_tracepoint_feature (const struct protocol_feature *feature,
3964 enum packet_support support,
3965 const char *value)
3966 {
3967 struct remote_state *rs = get_remote_state ();
3968
3969 rs->enable_disable_tracepoints = (support == PACKET_ENABLE);
3970 }
3971
3972 static void
3973 remote_string_tracing_feature (const struct protocol_feature *feature,
3974 enum packet_support support,
3975 const char *value)
3976 {
3977 struct remote_state *rs = get_remote_state ();
3978
3979 rs->string_tracing = (support == PACKET_ENABLE);
3980 }
3981
3982 static void
3983 remote_augmented_libraries_svr4_read_feature
3984 (const struct protocol_feature *feature,
3985 enum packet_support support, const char *value)
3986 {
3987 struct remote_state *rs = get_remote_state ();
3988
3989 rs->augmented_libraries_svr4_read = (support == PACKET_ENABLE);
3990 }
3991
3992 static const struct protocol_feature remote_protocol_features[] = {
3993 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
3994 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
3995 PACKET_qXfer_auxv },
3996 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
3997 PACKET_qXfer_features },
3998 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
3999 PACKET_qXfer_libraries },
4000 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4001 PACKET_qXfer_libraries_svr4 },
4002 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4003 remote_augmented_libraries_svr4_read_feature, -1 },
4004 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4005 PACKET_qXfer_memory_map },
4006 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4007 PACKET_qXfer_spu_read },
4008 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4009 PACKET_qXfer_spu_write },
4010 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4011 PACKET_qXfer_osdata },
4012 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4013 PACKET_qXfer_threads },
4014 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4015 PACKET_qXfer_traceframe_info },
4016 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4017 PACKET_QPassSignals },
4018 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4019 PACKET_QProgramSignals },
4020 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4021 PACKET_QStartNoAckMode },
4022 { "multiprocess", PACKET_DISABLE, remote_multi_process_feature, -1 },
4023 { "QNonStop", PACKET_DISABLE, remote_non_stop_feature, -1 },
4024 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4025 PACKET_qXfer_siginfo_read },
4026 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4027 PACKET_qXfer_siginfo_write },
4028 { "ConditionalTracepoints", PACKET_DISABLE, remote_cond_tracepoint_feature,
4029 PACKET_ConditionalTracepoints },
4030 { "ConditionalBreakpoints", PACKET_DISABLE, remote_cond_breakpoint_feature,
4031 PACKET_ConditionalBreakpoints },
4032 { "BreakpointCommands", PACKET_DISABLE, remote_breakpoint_commands_feature,
4033 PACKET_BreakpointCommands },
4034 { "FastTracepoints", PACKET_DISABLE, remote_fast_tracepoint_feature,
4035 PACKET_FastTracepoints },
4036 { "StaticTracepoints", PACKET_DISABLE, remote_static_tracepoint_feature,
4037 PACKET_StaticTracepoints },
4038 {"InstallInTrace", PACKET_DISABLE, remote_install_in_trace_feature,
4039 PACKET_InstallInTrace},
4040 { "DisconnectedTracing", PACKET_DISABLE, remote_disconnected_tracing_feature,
4041 -1 },
4042 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4043 PACKET_bc },
4044 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4045 PACKET_bs },
4046 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4047 PACKET_TracepointSource },
4048 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4049 PACKET_QAllow },
4050 { "EnableDisableTracepoints", PACKET_DISABLE,
4051 remote_enable_disable_tracepoint_feature, -1 },
4052 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4053 PACKET_qXfer_fdpic },
4054 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4055 PACKET_qXfer_uib },
4056 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4057 PACKET_QDisableRandomization },
4058 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4059 { "QTBuffer:size", PACKET_DISABLE,
4060 remote_supported_packet, PACKET_QTBuffer_size},
4061 { "tracenz", PACKET_DISABLE,
4062 remote_string_tracing_feature, -1 },
4063 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4064 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4065 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4066 PACKET_qXfer_btrace }
4067 };
4068
4069 static char *remote_support_xml;
4070
4071 /* Register string appended to "xmlRegisters=" in qSupported query. */
4072
4073 void
4074 register_remote_support_xml (const char *xml)
4075 {
4076 #if defined(HAVE_LIBEXPAT)
4077 if (remote_support_xml == NULL)
4078 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4079 else
4080 {
4081 char *copy = xstrdup (remote_support_xml + 13);
4082 char *p = strtok (copy, ",");
4083
4084 do
4085 {
4086 if (strcmp (p, xml) == 0)
4087 {
4088 /* already there */
4089 xfree (copy);
4090 return;
4091 }
4092 }
4093 while ((p = strtok (NULL, ",")) != NULL);
4094 xfree (copy);
4095
4096 remote_support_xml = reconcat (remote_support_xml,
4097 remote_support_xml, ",", xml,
4098 (char *) NULL);
4099 }
4100 #endif
4101 }
4102
4103 static char *
4104 remote_query_supported_append (char *msg, const char *append)
4105 {
4106 if (msg)
4107 return reconcat (msg, msg, ";", append, (char *) NULL);
4108 else
4109 return xstrdup (append);
4110 }
4111
4112 static void
4113 remote_query_supported (void)
4114 {
4115 struct remote_state *rs = get_remote_state ();
4116 char *next;
4117 int i;
4118 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4119
4120 /* The packet support flags are handled differently for this packet
4121 than for most others. We treat an error, a disabled packet, and
4122 an empty response identically: any features which must be reported
4123 to be used will be automatically disabled. An empty buffer
4124 accomplishes this, since that is also the representation for a list
4125 containing no features. */
4126
4127 rs->buf[0] = 0;
4128 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
4129 {
4130 char *q = NULL;
4131 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4132
4133 q = remote_query_supported_append (q, "multiprocess+");
4134
4135 if (remote_support_xml)
4136 q = remote_query_supported_append (q, remote_support_xml);
4137
4138 q = remote_query_supported_append (q, "qRelocInsn+");
4139
4140 q = reconcat (q, "qSupported:", q, (char *) NULL);
4141 putpkt (q);
4142
4143 do_cleanups (old_chain);
4144
4145 getpkt (&rs->buf, &rs->buf_size, 0);
4146
4147 /* If an error occured, warn, but do not return - just reset the
4148 buffer to empty and go on to disable features. */
4149 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4150 == PACKET_ERROR)
4151 {
4152 warning (_("Remote failure reply: %s"), rs->buf);
4153 rs->buf[0] = 0;
4154 }
4155 }
4156
4157 memset (seen, 0, sizeof (seen));
4158
4159 next = rs->buf;
4160 while (*next)
4161 {
4162 enum packet_support is_supported;
4163 char *p, *end, *name_end, *value;
4164
4165 /* First separate out this item from the rest of the packet. If
4166 there's another item after this, we overwrite the separator
4167 (terminated strings are much easier to work with). */
4168 p = next;
4169 end = strchr (p, ';');
4170 if (end == NULL)
4171 {
4172 end = p + strlen (p);
4173 next = end;
4174 }
4175 else
4176 {
4177 *end = '\0';
4178 next = end + 1;
4179
4180 if (end == p)
4181 {
4182 warning (_("empty item in \"qSupported\" response"));
4183 continue;
4184 }
4185 }
4186
4187 name_end = strchr (p, '=');
4188 if (name_end)
4189 {
4190 /* This is a name=value entry. */
4191 is_supported = PACKET_ENABLE;
4192 value = name_end + 1;
4193 *name_end = '\0';
4194 }
4195 else
4196 {
4197 value = NULL;
4198 switch (end[-1])
4199 {
4200 case '+':
4201 is_supported = PACKET_ENABLE;
4202 break;
4203
4204 case '-':
4205 is_supported = PACKET_DISABLE;
4206 break;
4207
4208 case '?':
4209 is_supported = PACKET_SUPPORT_UNKNOWN;
4210 break;
4211
4212 default:
4213 warning (_("unrecognized item \"%s\" "
4214 "in \"qSupported\" response"), p);
4215 continue;
4216 }
4217 end[-1] = '\0';
4218 }
4219
4220 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4221 if (strcmp (remote_protocol_features[i].name, p) == 0)
4222 {
4223 const struct protocol_feature *feature;
4224
4225 seen[i] = 1;
4226 feature = &remote_protocol_features[i];
4227 feature->func (feature, is_supported, value);
4228 break;
4229 }
4230 }
4231
4232 /* If we increased the packet size, make sure to increase the global
4233 buffer size also. We delay this until after parsing the entire
4234 qSupported packet, because this is the same buffer we were
4235 parsing. */
4236 if (rs->buf_size < rs->explicit_packet_size)
4237 {
4238 rs->buf_size = rs->explicit_packet_size;
4239 rs->buf = xrealloc (rs->buf, rs->buf_size);
4240 }
4241
4242 /* Handle the defaults for unmentioned features. */
4243 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4244 if (!seen[i])
4245 {
4246 const struct protocol_feature *feature;
4247
4248 feature = &remote_protocol_features[i];
4249 feature->func (feature, feature->default_support, NULL);
4250 }
4251 }
4252
4253 /* Remove any of the remote.c targets from target stack. Upper targets depend
4254 on it so remove them first. */
4255
4256 static void
4257 remote_unpush_target (void)
4258 {
4259 pop_all_targets_above (process_stratum - 1);
4260 }
4261
4262 static void
4263 remote_open_1 (char *name, int from_tty,
4264 struct target_ops *target, int extended_p)
4265 {
4266 struct remote_state *rs = get_remote_state ();
4267
4268 if (name == 0)
4269 error (_("To open a remote debug connection, you need to specify what\n"
4270 "serial device is attached to the remote system\n"
4271 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4272
4273 /* See FIXME above. */
4274 if (!target_async_permitted)
4275 wait_forever_enabled_p = 1;
4276
4277 /* If we're connected to a running target, target_preopen will kill it.
4278 Ask this question first, before target_preopen has a chance to kill
4279 anything. */
4280 if (rs->remote_desc != NULL && !have_inferiors ())
4281 {
4282 if (from_tty
4283 && !query (_("Already connected to a remote target. Disconnect? ")))
4284 error (_("Still connected."));
4285 }
4286
4287 /* Here the possibly existing remote target gets unpushed. */
4288 target_preopen (from_tty);
4289
4290 /* Make sure we send the passed signals list the next time we resume. */
4291 xfree (rs->last_pass_packet);
4292 rs->last_pass_packet = NULL;
4293
4294 /* Make sure we send the program signals list the next time we
4295 resume. */
4296 xfree (rs->last_program_signals_packet);
4297 rs->last_program_signals_packet = NULL;
4298
4299 remote_fileio_reset ();
4300 reopen_exec_file ();
4301 reread_symbols ();
4302
4303 rs->remote_desc = remote_serial_open (name);
4304 if (!rs->remote_desc)
4305 perror_with_name (name);
4306
4307 if (baud_rate != -1)
4308 {
4309 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4310 {
4311 /* The requested speed could not be set. Error out to
4312 top level after closing remote_desc. Take care to
4313 set remote_desc to NULL to avoid closing remote_desc
4314 more than once. */
4315 serial_close (rs->remote_desc);
4316 rs->remote_desc = NULL;
4317 perror_with_name (name);
4318 }
4319 }
4320
4321 serial_raw (rs->remote_desc);
4322
4323 /* If there is something sitting in the buffer we might take it as a
4324 response to a command, which would be bad. */
4325 serial_flush_input (rs->remote_desc);
4326
4327 if (from_tty)
4328 {
4329 puts_filtered ("Remote debugging using ");
4330 puts_filtered (name);
4331 puts_filtered ("\n");
4332 }
4333 push_target (target); /* Switch to using remote target now. */
4334
4335 /* Register extra event sources in the event loop. */
4336 remote_async_inferior_event_token
4337 = create_async_event_handler (remote_async_inferior_event_handler,
4338 NULL);
4339 remote_notif_register_async_event_handler ();
4340
4341 /* Reset the target state; these things will be queried either by
4342 remote_query_supported or as they are needed. */
4343 init_all_packet_configs ();
4344 rs->cached_wait_status = 0;
4345 rs->explicit_packet_size = 0;
4346 rs->noack_mode = 0;
4347 rs->multi_process_aware = 0;
4348 rs->extended = extended_p;
4349 rs->non_stop_aware = 0;
4350 rs->waiting_for_stop_reply = 0;
4351 rs->ctrlc_pending_p = 0;
4352
4353 rs->general_thread = not_sent_ptid;
4354 rs->continue_thread = not_sent_ptid;
4355 rs->remote_traceframe_number = -1;
4356
4357 /* Probe for ability to use "ThreadInfo" query, as required. */
4358 use_threadinfo_query = 1;
4359 use_threadextra_query = 1;
4360
4361 if (target_async_permitted)
4362 {
4363 /* With this target we start out by owning the terminal. */
4364 remote_async_terminal_ours_p = 1;
4365
4366 /* FIXME: cagney/1999-09-23: During the initial connection it is
4367 assumed that the target is already ready and able to respond to
4368 requests. Unfortunately remote_start_remote() eventually calls
4369 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4370 around this. Eventually a mechanism that allows
4371 wait_for_inferior() to expect/get timeouts will be
4372 implemented. */
4373 wait_forever_enabled_p = 0;
4374 }
4375
4376 /* First delete any symbols previously loaded from shared libraries. */
4377 no_shared_libraries (NULL, 0);
4378
4379 /* Start afresh. */
4380 init_thread_list ();
4381
4382 /* Start the remote connection. If error() or QUIT, discard this
4383 target (we'd otherwise be in an inconsistent state) and then
4384 propogate the error on up the exception chain. This ensures that
4385 the caller doesn't stumble along blindly assuming that the
4386 function succeeded. The CLI doesn't have this problem but other
4387 UI's, such as MI do.
4388
4389 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4390 this function should return an error indication letting the
4391 caller restore the previous state. Unfortunately the command
4392 ``target remote'' is directly wired to this function making that
4393 impossible. On a positive note, the CLI side of this problem has
4394 been fixed - the function set_cmd_context() makes it possible for
4395 all the ``target ....'' commands to share a common callback
4396 function. See cli-dump.c. */
4397 {
4398 volatile struct gdb_exception ex;
4399
4400 TRY_CATCH (ex, RETURN_MASK_ALL)
4401 {
4402 remote_start_remote (from_tty, target, extended_p);
4403 }
4404 if (ex.reason < 0)
4405 {
4406 /* Pop the partially set up target - unless something else did
4407 already before throwing the exception. */
4408 if (rs->remote_desc != NULL)
4409 remote_unpush_target ();
4410 if (target_async_permitted)
4411 wait_forever_enabled_p = 1;
4412 throw_exception (ex);
4413 }
4414 }
4415
4416 if (target_async_permitted)
4417 wait_forever_enabled_p = 1;
4418 }
4419
4420 /* This takes a program previously attached to and detaches it. After
4421 this is done, GDB can be used to debug some other program. We
4422 better not have left any breakpoints in the target program or it'll
4423 die when it hits one. */
4424
4425 static void
4426 remote_detach_1 (char *args, int from_tty, int extended)
4427 {
4428 int pid = ptid_get_pid (inferior_ptid);
4429 struct remote_state *rs = get_remote_state ();
4430
4431 if (args)
4432 error (_("Argument given to \"detach\" when remotely debugging."));
4433
4434 if (!target_has_execution)
4435 error (_("No process to detach from."));
4436
4437 if (from_tty)
4438 {
4439 char *exec_file = get_exec_file (0);
4440 if (exec_file == NULL)
4441 exec_file = "";
4442 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4443 target_pid_to_str (pid_to_ptid (pid)));
4444 gdb_flush (gdb_stdout);
4445 }
4446
4447 /* Tell the remote target to detach. */
4448 if (remote_multi_process_p (rs))
4449 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4450 else
4451 strcpy (rs->buf, "D");
4452
4453 putpkt (rs->buf);
4454 getpkt (&rs->buf, &rs->buf_size, 0);
4455
4456 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4457 ;
4458 else if (rs->buf[0] == '\0')
4459 error (_("Remote doesn't know how to detach"));
4460 else
4461 error (_("Can't detach process."));
4462
4463 if (from_tty && !extended)
4464 puts_filtered (_("Ending remote debugging.\n"));
4465
4466 target_mourn_inferior ();
4467 }
4468
4469 static void
4470 remote_detach (struct target_ops *ops, char *args, int from_tty)
4471 {
4472 remote_detach_1 (args, from_tty, 0);
4473 }
4474
4475 static void
4476 extended_remote_detach (struct target_ops *ops, char *args, int from_tty)
4477 {
4478 remote_detach_1 (args, from_tty, 1);
4479 }
4480
4481 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4482
4483 static void
4484 remote_disconnect (struct target_ops *target, char *args, int from_tty)
4485 {
4486 if (args)
4487 error (_("Argument given to \"disconnect\" when remotely debugging."));
4488
4489 /* Make sure we unpush even the extended remote targets; mourn
4490 won't do it. So call remote_mourn_1 directly instead of
4491 target_mourn_inferior. */
4492 remote_mourn_1 (target);
4493
4494 if (from_tty)
4495 puts_filtered ("Ending remote debugging.\n");
4496 }
4497
4498 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4499 be chatty about it. */
4500
4501 static void
4502 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
4503 {
4504 struct remote_state *rs = get_remote_state ();
4505 int pid;
4506 char *wait_status = NULL;
4507
4508 pid = parse_pid_to_attach (args);
4509
4510 /* Remote PID can be freely equal to getpid, do not check it here the same
4511 way as in other targets. */
4512
4513 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4514 error (_("This target does not support attaching to a process"));
4515
4516 if (from_tty)
4517 {
4518 char *exec_file = get_exec_file (0);
4519
4520 if (exec_file)
4521 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4522 target_pid_to_str (pid_to_ptid (pid)));
4523 else
4524 printf_unfiltered (_("Attaching to %s\n"),
4525 target_pid_to_str (pid_to_ptid (pid)));
4526
4527 gdb_flush (gdb_stdout);
4528 }
4529
4530 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4531 putpkt (rs->buf);
4532 getpkt (&rs->buf, &rs->buf_size, 0);
4533
4534 if (packet_ok (rs->buf,
4535 &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
4536 {
4537 if (!non_stop)
4538 {
4539 /* Save the reply for later. */
4540 wait_status = alloca (strlen (rs->buf) + 1);
4541 strcpy (wait_status, rs->buf);
4542 }
4543 else if (strcmp (rs->buf, "OK") != 0)
4544 error (_("Attaching to %s failed with: %s"),
4545 target_pid_to_str (pid_to_ptid (pid)),
4546 rs->buf);
4547 }
4548 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
4549 error (_("This target does not support attaching to a process"));
4550 else
4551 error (_("Attaching to %s failed"),
4552 target_pid_to_str (pid_to_ptid (pid)));
4553
4554 set_current_inferior (remote_add_inferior (0, pid, 1));
4555
4556 inferior_ptid = pid_to_ptid (pid);
4557
4558 if (non_stop)
4559 {
4560 struct thread_info *thread;
4561
4562 /* Get list of threads. */
4563 remote_threads_info (target);
4564
4565 thread = first_thread_of_process (pid);
4566 if (thread)
4567 inferior_ptid = thread->ptid;
4568 else
4569 inferior_ptid = pid_to_ptid (pid);
4570
4571 /* Invalidate our notion of the remote current thread. */
4572 record_currthread (rs, minus_one_ptid);
4573 }
4574 else
4575 {
4576 /* Now, if we have thread information, update inferior_ptid. */
4577 inferior_ptid = remote_current_thread (inferior_ptid);
4578
4579 /* Add the main thread to the thread list. */
4580 add_thread_silent (inferior_ptid);
4581 }
4582
4583 /* Next, if the target can specify a description, read it. We do
4584 this before anything involving memory or registers. */
4585 target_find_description ();
4586
4587 if (!non_stop)
4588 {
4589 /* Use the previously fetched status. */
4590 gdb_assert (wait_status != NULL);
4591
4592 if (target_can_async_p ())
4593 {
4594 struct notif_event *reply
4595 = remote_notif_parse (&notif_client_stop, wait_status);
4596
4597 push_stop_reply ((struct stop_reply *) reply);
4598
4599 target_async (inferior_event_handler, 0);
4600 }
4601 else
4602 {
4603 gdb_assert (wait_status != NULL);
4604 strcpy (rs->buf, wait_status);
4605 rs->cached_wait_status = 1;
4606 }
4607 }
4608 else
4609 gdb_assert (wait_status == NULL);
4610 }
4611
4612 static void
4613 extended_remote_attach (struct target_ops *ops, char *args, int from_tty)
4614 {
4615 extended_remote_attach_1 (ops, args, from_tty);
4616 }
4617
4618 /* Convert hex digit A to a number. */
4619
4620 static int
4621 fromhex (int a)
4622 {
4623 if (a >= '0' && a <= '9')
4624 return a - '0';
4625 else if (a >= 'a' && a <= 'f')
4626 return a - 'a' + 10;
4627 else if (a >= 'A' && a <= 'F')
4628 return a - 'A' + 10;
4629 else
4630 error (_("Reply contains invalid hex digit %d"), a);
4631 }
4632
4633 int
4634 hex2bin (const char *hex, gdb_byte *bin, int count)
4635 {
4636 int i;
4637
4638 for (i = 0; i < count; i++)
4639 {
4640 if (hex[0] == 0 || hex[1] == 0)
4641 {
4642 /* Hex string is short, or of uneven length.
4643 Return the count that has been converted so far. */
4644 return i;
4645 }
4646 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
4647 hex += 2;
4648 }
4649 return i;
4650 }
4651
4652 /* Convert number NIB to a hex digit. */
4653
4654 static int
4655 tohex (int nib)
4656 {
4657 if (nib < 10)
4658 return '0' + nib;
4659 else
4660 return 'a' + nib - 10;
4661 }
4662
4663 int
4664 bin2hex (const gdb_byte *bin, char *hex, int count)
4665 {
4666 int i;
4667
4668 /* May use a length, or a nul-terminated string as input. */
4669 if (count == 0)
4670 count = strlen ((char *) bin);
4671
4672 for (i = 0; i < count; i++)
4673 {
4674 *hex++ = tohex ((*bin >> 4) & 0xf);
4675 *hex++ = tohex (*bin++ & 0xf);
4676 }
4677 *hex = 0;
4678 return i;
4679 }
4680 \f
4681 /* Check for the availability of vCont. This function should also check
4682 the response. */
4683
4684 static void
4685 remote_vcont_probe (struct remote_state *rs)
4686 {
4687 char *buf;
4688
4689 strcpy (rs->buf, "vCont?");
4690 putpkt (rs->buf);
4691 getpkt (&rs->buf, &rs->buf_size, 0);
4692 buf = rs->buf;
4693
4694 /* Make sure that the features we assume are supported. */
4695 if (strncmp (buf, "vCont", 5) == 0)
4696 {
4697 char *p = &buf[5];
4698 int support_s, support_S, support_c, support_C;
4699
4700 support_s = 0;
4701 support_S = 0;
4702 support_c = 0;
4703 support_C = 0;
4704 rs->supports_vCont.t = 0;
4705 rs->supports_vCont.r = 0;
4706 while (p && *p == ';')
4707 {
4708 p++;
4709 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4710 support_s = 1;
4711 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4712 support_S = 1;
4713 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4714 support_c = 1;
4715 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4716 support_C = 1;
4717 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4718 rs->supports_vCont.t = 1;
4719 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
4720 rs->supports_vCont.r = 1;
4721
4722 p = strchr (p, ';');
4723 }
4724
4725 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4726 BUF will make packet_ok disable the packet. */
4727 if (!support_s || !support_S || !support_c || !support_C)
4728 buf[0] = 0;
4729 }
4730
4731 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4732 }
4733
4734 /* Helper function for building "vCont" resumptions. Write a
4735 resumption to P. ENDP points to one-passed-the-end of the buffer
4736 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4737 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4738 resumed thread should be single-stepped and/or signalled. If PTID
4739 equals minus_one_ptid, then all threads are resumed; if PTID
4740 represents a process, then all threads of the process are resumed;
4741 the thread to be stepped and/or signalled is given in the global
4742 INFERIOR_PTID. */
4743
4744 static char *
4745 append_resumption (char *p, char *endp,
4746 ptid_t ptid, int step, enum gdb_signal siggnal)
4747 {
4748 struct remote_state *rs = get_remote_state ();
4749
4750 if (step && siggnal != GDB_SIGNAL_0)
4751 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4752 else if (step
4753 /* GDB is willing to range step. */
4754 && use_range_stepping
4755 /* Target supports range stepping. */
4756 && rs->supports_vCont.r
4757 /* We don't currently support range stepping multiple
4758 threads with a wildcard (though the protocol allows it,
4759 so stubs shouldn't make an active effort to forbid
4760 it). */
4761 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4762 {
4763 struct thread_info *tp;
4764
4765 if (ptid_equal (ptid, minus_one_ptid))
4766 {
4767 /* If we don't know about the target thread's tid, then
4768 we're resuming magic_null_ptid (see caller). */
4769 tp = find_thread_ptid (magic_null_ptid);
4770 }
4771 else
4772 tp = find_thread_ptid (ptid);
4773 gdb_assert (tp != NULL);
4774
4775 if (tp->control.may_range_step)
4776 {
4777 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4778
4779 p += xsnprintf (p, endp - p, ";r%s,%s",
4780 phex_nz (tp->control.step_range_start,
4781 addr_size),
4782 phex_nz (tp->control.step_range_end,
4783 addr_size));
4784 }
4785 else
4786 p += xsnprintf (p, endp - p, ";s");
4787 }
4788 else if (step)
4789 p += xsnprintf (p, endp - p, ";s");
4790 else if (siggnal != GDB_SIGNAL_0)
4791 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4792 else
4793 p += xsnprintf (p, endp - p, ";c");
4794
4795 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4796 {
4797 ptid_t nptid;
4798
4799 /* All (-1) threads of process. */
4800 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
4801
4802 p += xsnprintf (p, endp - p, ":");
4803 p = write_ptid (p, endp, nptid);
4804 }
4805 else if (!ptid_equal (ptid, minus_one_ptid))
4806 {
4807 p += xsnprintf (p, endp - p, ":");
4808 p = write_ptid (p, endp, ptid);
4809 }
4810
4811 return p;
4812 }
4813
4814 /* Append a vCont continue-with-signal action for threads that have a
4815 non-zero stop signal. */
4816
4817 static char *
4818 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4819 {
4820 struct thread_info *thread;
4821
4822 ALL_THREADS (thread)
4823 if (ptid_match (thread->ptid, ptid)
4824 && !ptid_equal (inferior_ptid, thread->ptid)
4825 && thread->suspend.stop_signal != GDB_SIGNAL_0
4826 && signal_pass_state (thread->suspend.stop_signal))
4827 {
4828 p = append_resumption (p, endp, thread->ptid,
4829 0, thread->suspend.stop_signal);
4830 thread->suspend.stop_signal = GDB_SIGNAL_0;
4831 }
4832
4833 return p;
4834 }
4835
4836 /* Resume the remote inferior by using a "vCont" packet. The thread
4837 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4838 resumed thread should be single-stepped and/or signalled. If PTID
4839 equals minus_one_ptid, then all threads are resumed; the thread to
4840 be stepped and/or signalled is given in the global INFERIOR_PTID.
4841 This function returns non-zero iff it resumes the inferior.
4842
4843 This function issues a strict subset of all possible vCont commands at the
4844 moment. */
4845
4846 static int
4847 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
4848 {
4849 struct remote_state *rs = get_remote_state ();
4850 char *p;
4851 char *endp;
4852
4853 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
4854 remote_vcont_probe (rs);
4855
4856 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
4857 return 0;
4858
4859 p = rs->buf;
4860 endp = rs->buf + get_remote_packet_size ();
4861
4862 /* If we could generate a wider range of packets, we'd have to worry
4863 about overflowing BUF. Should there be a generic
4864 "multi-part-packet" packet? */
4865
4866 p += xsnprintf (p, endp - p, "vCont");
4867
4868 if (ptid_equal (ptid, magic_null_ptid))
4869 {
4870 /* MAGIC_NULL_PTID means that we don't have any active threads,
4871 so we don't have any TID numbers the inferior will
4872 understand. Make sure to only send forms that do not specify
4873 a TID. */
4874 append_resumption (p, endp, minus_one_ptid, step, siggnal);
4875 }
4876 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
4877 {
4878 /* Resume all threads (of all processes, or of a single
4879 process), with preference for INFERIOR_PTID. This assumes
4880 inferior_ptid belongs to the set of all threads we are about
4881 to resume. */
4882 if (step || siggnal != GDB_SIGNAL_0)
4883 {
4884 /* Step inferior_ptid, with or without signal. */
4885 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
4886 }
4887
4888 /* Also pass down any pending signaled resumption for other
4889 threads not the current. */
4890 p = append_pending_thread_resumptions (p, endp, ptid);
4891
4892 /* And continue others without a signal. */
4893 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
4894 }
4895 else
4896 {
4897 /* Scheduler locking; resume only PTID. */
4898 append_resumption (p, endp, ptid, step, siggnal);
4899 }
4900
4901 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
4902 putpkt (rs->buf);
4903
4904 if (non_stop)
4905 {
4906 /* In non-stop, the stub replies to vCont with "OK". The stop
4907 reply will be reported asynchronously by means of a `%Stop'
4908 notification. */
4909 getpkt (&rs->buf, &rs->buf_size, 0);
4910 if (strcmp (rs->buf, "OK") != 0)
4911 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
4912 }
4913
4914 return 1;
4915 }
4916
4917 /* Tell the remote machine to resume. */
4918
4919 static void
4920 remote_resume (struct target_ops *ops,
4921 ptid_t ptid, int step, enum gdb_signal siggnal)
4922 {
4923 struct remote_state *rs = get_remote_state ();
4924 char *buf;
4925
4926 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
4927 (explained in remote-notif.c:handle_notification) so
4928 remote_notif_process is not called. We need find a place where
4929 it is safe to start a 'vNotif' sequence. It is good to do it
4930 before resuming inferior, because inferior was stopped and no RSP
4931 traffic at that moment. */
4932 if (!non_stop)
4933 remote_notif_process (&notif_client_stop);
4934
4935 rs->last_sent_signal = siggnal;
4936 rs->last_sent_step = step;
4937
4938 /* The vCont packet doesn't need to specify threads via Hc. */
4939 /* No reverse support (yet) for vCont. */
4940 if (execution_direction != EXEC_REVERSE)
4941 if (remote_vcont_resume (ptid, step, siggnal))
4942 goto done;
4943
4944 /* All other supported resume packets do use Hc, so set the continue
4945 thread. */
4946 if (ptid_equal (ptid, minus_one_ptid))
4947 set_continue_thread (any_thread_ptid);
4948 else
4949 set_continue_thread (ptid);
4950
4951 buf = rs->buf;
4952 if (execution_direction == EXEC_REVERSE)
4953 {
4954 /* We don't pass signals to the target in reverse exec mode. */
4955 if (info_verbose && siggnal != GDB_SIGNAL_0)
4956 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
4957 siggnal);
4958
4959 if (step
4960 && remote_protocol_packets[PACKET_bs].support == PACKET_DISABLE)
4961 error (_("Remote reverse-step not supported."));
4962 if (!step
4963 && remote_protocol_packets[PACKET_bc].support == PACKET_DISABLE)
4964 error (_("Remote reverse-continue not supported."));
4965
4966 strcpy (buf, step ? "bs" : "bc");
4967 }
4968 else if (siggnal != GDB_SIGNAL_0)
4969 {
4970 buf[0] = step ? 'S' : 'C';
4971 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
4972 buf[2] = tohex (((int) siggnal) & 0xf);
4973 buf[3] = '\0';
4974 }
4975 else
4976 strcpy (buf, step ? "s" : "c");
4977
4978 putpkt (buf);
4979
4980 done:
4981 /* We are about to start executing the inferior, let's register it
4982 with the event loop. NOTE: this is the one place where all the
4983 execution commands end up. We could alternatively do this in each
4984 of the execution commands in infcmd.c. */
4985 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
4986 into infcmd.c in order to allow inferior function calls to work
4987 NOT asynchronously. */
4988 if (target_can_async_p ())
4989 target_async (inferior_event_handler, 0);
4990
4991 /* We've just told the target to resume. The remote server will
4992 wait for the inferior to stop, and then send a stop reply. In
4993 the mean time, we can't start another command/query ourselves
4994 because the stub wouldn't be ready to process it. This applies
4995 only to the base all-stop protocol, however. In non-stop (which
4996 only supports vCont), the stub replies with an "OK", and is
4997 immediate able to process further serial input. */
4998 if (!non_stop)
4999 rs->waiting_for_stop_reply = 1;
5000 }
5001 \f
5002
5003 /* Set up the signal handler for SIGINT, while the target is
5004 executing, ovewriting the 'regular' SIGINT signal handler. */
5005 static void
5006 async_initialize_sigint_signal_handler (void)
5007 {
5008 signal (SIGINT, async_handle_remote_sigint);
5009 }
5010
5011 /* Signal handler for SIGINT, while the target is executing. */
5012 static void
5013 async_handle_remote_sigint (int sig)
5014 {
5015 signal (sig, async_handle_remote_sigint_twice);
5016 mark_async_signal_handler (async_sigint_remote_token);
5017 }
5018
5019 /* Signal handler for SIGINT, installed after SIGINT has already been
5020 sent once. It will take effect the second time that the user sends
5021 a ^C. */
5022 static void
5023 async_handle_remote_sigint_twice (int sig)
5024 {
5025 signal (sig, async_handle_remote_sigint);
5026 mark_async_signal_handler (async_sigint_remote_twice_token);
5027 }
5028
5029 /* Perform the real interruption of the target execution, in response
5030 to a ^C. */
5031 static void
5032 async_remote_interrupt (gdb_client_data arg)
5033 {
5034 if (remote_debug)
5035 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
5036
5037 target_stop (inferior_ptid);
5038 }
5039
5040 /* Perform interrupt, if the first attempt did not succeed. Just give
5041 up on the target alltogether. */
5042 static void
5043 async_remote_interrupt_twice (gdb_client_data arg)
5044 {
5045 if (remote_debug)
5046 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
5047
5048 interrupt_query ();
5049 }
5050
5051 /* Reinstall the usual SIGINT handlers, after the target has
5052 stopped. */
5053 static void
5054 async_cleanup_sigint_signal_handler (void *dummy)
5055 {
5056 signal (SIGINT, handle_sigint);
5057 }
5058
5059 /* Send ^C to target to halt it. Target will respond, and send us a
5060 packet. */
5061 static void (*ofunc) (int);
5062
5063 /* The command line interface's stop routine. This function is installed
5064 as a signal handler for SIGINT. The first time a user requests a
5065 stop, we call remote_stop to send a break or ^C. If there is no
5066 response from the target (it didn't stop when the user requested it),
5067 we ask the user if he'd like to detach from the target. */
5068 static void
5069 sync_remote_interrupt (int signo)
5070 {
5071 /* If this doesn't work, try more severe steps. */
5072 signal (signo, sync_remote_interrupt_twice);
5073
5074 gdb_call_async_signal_handler (async_sigint_remote_token, 1);
5075 }
5076
5077 /* The user typed ^C twice. */
5078
5079 static void
5080 sync_remote_interrupt_twice (int signo)
5081 {
5082 signal (signo, ofunc);
5083 gdb_call_async_signal_handler (async_sigint_remote_twice_token, 1);
5084 signal (signo, sync_remote_interrupt);
5085 }
5086
5087 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
5088 thread, all threads of a remote process, or all threads of all
5089 processes. */
5090
5091 static void
5092 remote_stop_ns (ptid_t ptid)
5093 {
5094 struct remote_state *rs = get_remote_state ();
5095 char *p = rs->buf;
5096 char *endp = rs->buf + get_remote_packet_size ();
5097
5098 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
5099 remote_vcont_probe (rs);
5100
5101 if (!rs->supports_vCont.t)
5102 error (_("Remote server does not support stopping threads"));
5103
5104 if (ptid_equal (ptid, minus_one_ptid)
5105 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5106 p += xsnprintf (p, endp - p, "vCont;t");
5107 else
5108 {
5109 ptid_t nptid;
5110
5111 p += xsnprintf (p, endp - p, "vCont;t:");
5112
5113 if (ptid_is_pid (ptid))
5114 /* All (-1) threads of process. */
5115 nptid = ptid_build (ptid_get_pid (ptid), 0, -1);
5116 else
5117 {
5118 /* Small optimization: if we already have a stop reply for
5119 this thread, no use in telling the stub we want this
5120 stopped. */
5121 if (peek_stop_reply (ptid))
5122 return;
5123
5124 nptid = ptid;
5125 }
5126
5127 write_ptid (p, endp, nptid);
5128 }
5129
5130 /* In non-stop, we get an immediate OK reply. The stop reply will
5131 come in asynchronously by notification. */
5132 putpkt (rs->buf);
5133 getpkt (&rs->buf, &rs->buf_size, 0);
5134 if (strcmp (rs->buf, "OK") != 0)
5135 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
5136 }
5137
5138 /* All-stop version of target_stop. Sends a break or a ^C to stop the
5139 remote target. It is undefined which thread of which process
5140 reports the stop. */
5141
5142 static void
5143 remote_stop_as (ptid_t ptid)
5144 {
5145 struct remote_state *rs = get_remote_state ();
5146
5147 rs->ctrlc_pending_p = 1;
5148
5149 /* If the inferior is stopped already, but the core didn't know
5150 about it yet, just ignore the request. The cached wait status
5151 will be collected in remote_wait. */
5152 if (rs->cached_wait_status)
5153 return;
5154
5155 /* Send interrupt_sequence to remote target. */
5156 send_interrupt_sequence ();
5157 }
5158
5159 /* This is the generic stop called via the target vector. When a target
5160 interrupt is requested, either by the command line or the GUI, we
5161 will eventually end up here. */
5162
5163 static void
5164 remote_stop (ptid_t ptid)
5165 {
5166 if (remote_debug)
5167 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5168
5169 if (non_stop)
5170 remote_stop_ns (ptid);
5171 else
5172 remote_stop_as (ptid);
5173 }
5174
5175 /* Ask the user what to do when an interrupt is received. */
5176
5177 static void
5178 interrupt_query (void)
5179 {
5180 target_terminal_ours ();
5181
5182 if (target_can_async_p ())
5183 {
5184 signal (SIGINT, handle_sigint);
5185 quit ();
5186 }
5187 else
5188 {
5189 if (query (_("Interrupted while waiting for the program.\n\
5190 Give up (and stop debugging it)? ")))
5191 {
5192 remote_unpush_target ();
5193 quit ();
5194 }
5195 }
5196
5197 target_terminal_inferior ();
5198 }
5199
5200 /* Enable/disable target terminal ownership. Most targets can use
5201 terminal groups to control terminal ownership. Remote targets are
5202 different in that explicit transfer of ownership to/from GDB/target
5203 is required. */
5204
5205 static void
5206 remote_terminal_inferior (void)
5207 {
5208 if (!target_async_permitted)
5209 /* Nothing to do. */
5210 return;
5211
5212 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5213 idempotent. The event-loop GDB talking to an asynchronous target
5214 with a synchronous command calls this function from both
5215 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5216 transfer the terminal to the target when it shouldn't this guard
5217 can go away. */
5218 if (!remote_async_terminal_ours_p)
5219 return;
5220 delete_file_handler (input_fd);
5221 remote_async_terminal_ours_p = 0;
5222 async_initialize_sigint_signal_handler ();
5223 /* NOTE: At this point we could also register our selves as the
5224 recipient of all input. Any characters typed could then be
5225 passed on down to the target. */
5226 }
5227
5228 static void
5229 remote_terminal_ours (void)
5230 {
5231 if (!target_async_permitted)
5232 /* Nothing to do. */
5233 return;
5234
5235 /* See FIXME in remote_terminal_inferior. */
5236 if (remote_async_terminal_ours_p)
5237 return;
5238 async_cleanup_sigint_signal_handler (NULL);
5239 add_file_handler (input_fd, stdin_event_handler, 0);
5240 remote_async_terminal_ours_p = 1;
5241 }
5242
5243 static void
5244 remote_console_output (char *msg)
5245 {
5246 char *p;
5247
5248 for (p = msg; p[0] && p[1]; p += 2)
5249 {
5250 char tb[2];
5251 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5252
5253 tb[0] = c;
5254 tb[1] = 0;
5255 fputs_unfiltered (tb, gdb_stdtarg);
5256 }
5257 gdb_flush (gdb_stdtarg);
5258 }
5259
5260 typedef struct cached_reg
5261 {
5262 int num;
5263 gdb_byte data[MAX_REGISTER_SIZE];
5264 } cached_reg_t;
5265
5266 DEF_VEC_O(cached_reg_t);
5267
5268 typedef struct stop_reply
5269 {
5270 struct notif_event base;
5271
5272 /* The identifier of the thread about this event */
5273 ptid_t ptid;
5274
5275 struct target_waitstatus ws;
5276
5277 /* Expedited registers. This makes remote debugging a bit more
5278 efficient for those targets that provide critical registers as
5279 part of their normal status mechanism (as another roundtrip to
5280 fetch them is avoided). */
5281 VEC(cached_reg_t) *regcache;
5282
5283 int stopped_by_watchpoint_p;
5284 CORE_ADDR watch_data_address;
5285
5286 int solibs_changed;
5287 int replay_event;
5288
5289 int core;
5290 } *stop_reply_p;
5291
5292 DECLARE_QUEUE_P (stop_reply_p);
5293 DEFINE_QUEUE_P (stop_reply_p);
5294 /* The list of already fetched and acknowledged stop events. This
5295 queue is used for notification Stop, and other notifications
5296 don't need queue for their events, because the notification events
5297 of Stop can't be consumed immediately, so that events should be
5298 queued first, and be consumed by remote_wait_{ns,as} one per
5299 time. Other notifications can consume their events immediately,
5300 so queue is not needed for them. */
5301 static QUEUE (stop_reply_p) *stop_reply_queue;
5302
5303 static void
5304 stop_reply_xfree (struct stop_reply *r)
5305 {
5306 if (r != NULL)
5307 {
5308 VEC_free (cached_reg_t, r->regcache);
5309 xfree (r);
5310 }
5311 }
5312
5313 static void
5314 remote_notif_stop_parse (struct notif_client *self, char *buf,
5315 struct notif_event *event)
5316 {
5317 remote_parse_stop_reply (buf, (struct stop_reply *) event);
5318 }
5319
5320 static void
5321 remote_notif_stop_ack (struct notif_client *self, char *buf,
5322 struct notif_event *event)
5323 {
5324 struct stop_reply *stop_reply = (struct stop_reply *) event;
5325
5326 /* acknowledge */
5327 putpkt ((char *) self->ack_command);
5328
5329 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
5330 /* We got an unknown stop reply. */
5331 error (_("Unknown stop reply"));
5332
5333 push_stop_reply (stop_reply);
5334 }
5335
5336 static int
5337 remote_notif_stop_can_get_pending_events (struct notif_client *self)
5338 {
5339 /* We can't get pending events in remote_notif_process for
5340 notification stop, and we have to do this in remote_wait_ns
5341 instead. If we fetch all queued events from stub, remote stub
5342 may exit and we have no chance to process them back in
5343 remote_wait_ns. */
5344 mark_async_event_handler (remote_async_inferior_event_token);
5345 return 0;
5346 }
5347
5348 static void
5349 stop_reply_dtr (struct notif_event *event)
5350 {
5351 struct stop_reply *r = (struct stop_reply *) event;
5352
5353 VEC_free (cached_reg_t, r->regcache);
5354 }
5355
5356 static struct notif_event *
5357 remote_notif_stop_alloc_reply (void)
5358 {
5359 struct notif_event *r
5360 = (struct notif_event *) XMALLOC (struct stop_reply);
5361
5362 r->dtr = stop_reply_dtr;
5363
5364 return r;
5365 }
5366
5367 /* A client of notification Stop. */
5368
5369 struct notif_client notif_client_stop =
5370 {
5371 "Stop",
5372 "vStopped",
5373 remote_notif_stop_parse,
5374 remote_notif_stop_ack,
5375 remote_notif_stop_can_get_pending_events,
5376 remote_notif_stop_alloc_reply,
5377 NULL,
5378 };
5379
5380 /* A parameter to pass data in and out. */
5381
5382 struct queue_iter_param
5383 {
5384 void *input;
5385 struct stop_reply *output;
5386 };
5387
5388 /* Remove all queue elements meet the condition it checks. */
5389
5390 static int
5391 remote_notif_remove_all (QUEUE (stop_reply_p) *q,
5392 QUEUE_ITER (stop_reply_p) *iter,
5393 stop_reply_p event,
5394 void *data)
5395 {
5396 struct queue_iter_param *param = data;
5397 struct inferior *inf = param->input;
5398
5399 if (inf == NULL || ptid_get_pid (event->ptid) == inf->pid)
5400 {
5401 stop_reply_xfree (event);
5402 QUEUE_remove_elem (stop_reply_p, q, iter);
5403 }
5404
5405 return 1;
5406 }
5407
5408 /* Discard all pending stop replies of inferior INF. If INF is NULL,
5409 discard everything. */
5410
5411 static void
5412 discard_pending_stop_replies (struct inferior *inf)
5413 {
5414 int i;
5415 struct queue_iter_param param;
5416 struct stop_reply *reply
5417 = (struct stop_reply *) notif_client_stop.pending_event;
5418
5419 /* Discard the in-flight notification. */
5420 if (reply != NULL
5421 && (inf == NULL
5422 || ptid_get_pid (reply->ptid) == inf->pid))
5423 {
5424 stop_reply_xfree (reply);
5425 notif_client_stop.pending_event = NULL;
5426 }
5427
5428 param.input = inf;
5429 param.output = NULL;
5430 /* Discard the stop replies we have already pulled with
5431 vStopped. */
5432 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5433 remote_notif_remove_all, &param);
5434 }
5435
5436 /* A parameter to pass data in and out. */
5437
5438 static int
5439 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
5440 QUEUE_ITER (stop_reply_p) *iter,
5441 stop_reply_p event,
5442 void *data)
5443 {
5444 struct queue_iter_param *param = data;
5445 ptid_t *ptid = param->input;
5446
5447 if (ptid_match (event->ptid, *ptid))
5448 {
5449 param->output = event;
5450 QUEUE_remove_elem (stop_reply_p, q, iter);
5451 return 0;
5452 }
5453
5454 return 1;
5455 }
5456
5457 /* Remove the first reply in 'stop_reply_queue' which matches
5458 PTID. */
5459
5460 static struct stop_reply *
5461 remote_notif_remove_queued_reply (ptid_t ptid)
5462 {
5463 struct queue_iter_param param;
5464
5465 param.input = &ptid;
5466 param.output = NULL;
5467
5468 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5469 remote_notif_remove_once_on_match, &param);
5470 if (notif_debug)
5471 fprintf_unfiltered (gdb_stdlog,
5472 "notif: discard queued event: 'Stop' in %s\n",
5473 target_pid_to_str (ptid));
5474
5475 return param.output;
5476 }
5477
5478 /* Look for a queued stop reply belonging to PTID. If one is found,
5479 remove it from the queue, and return it. Returns NULL if none is
5480 found. If there are still queued events left to process, tell the
5481 event loop to get back to target_wait soon. */
5482
5483 static struct stop_reply *
5484 queued_stop_reply (ptid_t ptid)
5485 {
5486 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
5487
5488 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
5489 /* There's still at least an event left. */
5490 mark_async_event_handler (remote_async_inferior_event_token);
5491
5492 return r;
5493 }
5494
5495 /* Push a fully parsed stop reply in the stop reply queue. Since we
5496 know that we now have at least one queued event left to pass to the
5497 core side, tell the event loop to get back to target_wait soon. */
5498
5499 static void
5500 push_stop_reply (struct stop_reply *new_event)
5501 {
5502 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
5503
5504 if (notif_debug)
5505 fprintf_unfiltered (gdb_stdlog,
5506 "notif: push 'Stop' %s to queue %d\n",
5507 target_pid_to_str (new_event->ptid),
5508 QUEUE_length (stop_reply_p,
5509 stop_reply_queue));
5510
5511 mark_async_event_handler (remote_async_inferior_event_token);
5512 }
5513
5514 static int
5515 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
5516 QUEUE_ITER (stop_reply_p) *iter,
5517 struct stop_reply *event,
5518 void *data)
5519 {
5520 ptid_t *ptid = data;
5521
5522 return !(ptid_equal (*ptid, event->ptid)
5523 && event->ws.kind == TARGET_WAITKIND_STOPPED);
5524 }
5525
5526 /* Returns true if we have a stop reply for PTID. */
5527
5528 static int
5529 peek_stop_reply (ptid_t ptid)
5530 {
5531 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
5532 stop_reply_match_ptid_and_ws, &ptid);
5533 }
5534
5535 /* Parse the stop reply in BUF. Either the function succeeds, and the
5536 result is stored in EVENT, or throws an error. */
5537
5538 static void
5539 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5540 {
5541 struct remote_arch_state *rsa = get_remote_arch_state ();
5542 ULONGEST addr;
5543 char *p;
5544
5545 event->ptid = null_ptid;
5546 event->ws.kind = TARGET_WAITKIND_IGNORE;
5547 event->ws.value.integer = 0;
5548 event->solibs_changed = 0;
5549 event->replay_event = 0;
5550 event->stopped_by_watchpoint_p = 0;
5551 event->regcache = NULL;
5552 event->core = -1;
5553
5554 switch (buf[0])
5555 {
5556 case 'T': /* Status with PC, SP, FP, ... */
5557 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5558 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5559 ss = signal number
5560 n... = register number
5561 r... = register contents
5562 */
5563
5564 p = &buf[3]; /* after Txx */
5565 while (*p)
5566 {
5567 char *p1;
5568 char *p_temp;
5569 int fieldsize;
5570 LONGEST pnum = 0;
5571
5572 /* If the packet contains a register number, save it in
5573 pnum and set p1 to point to the character following it.
5574 Otherwise p1 points to p. */
5575
5576 /* If this packet is an awatch packet, don't parse the 'a'
5577 as a register number. */
5578
5579 if (strncmp (p, "awatch", strlen("awatch")) != 0
5580 && strncmp (p, "core", strlen ("core") != 0))
5581 {
5582 /* Read the ``P'' register number. */
5583 pnum = strtol (p, &p_temp, 16);
5584 p1 = p_temp;
5585 }
5586 else
5587 p1 = p;
5588
5589 if (p1 == p) /* No register number present here. */
5590 {
5591 p1 = strchr (p, ':');
5592 if (p1 == NULL)
5593 error (_("Malformed packet(a) (missing colon): %s\n\
5594 Packet: '%s'\n"),
5595 p, buf);
5596 if (strncmp (p, "thread", p1 - p) == 0)
5597 event->ptid = read_ptid (++p1, &p);
5598 else if ((strncmp (p, "watch", p1 - p) == 0)
5599 || (strncmp (p, "rwatch", p1 - p) == 0)
5600 || (strncmp (p, "awatch", p1 - p) == 0))
5601 {
5602 event->stopped_by_watchpoint_p = 1;
5603 p = unpack_varlen_hex (++p1, &addr);
5604 event->watch_data_address = (CORE_ADDR) addr;
5605 }
5606 else if (strncmp (p, "library", p1 - p) == 0)
5607 {
5608 p1++;
5609 p_temp = p1;
5610 while (*p_temp && *p_temp != ';')
5611 p_temp++;
5612
5613 event->solibs_changed = 1;
5614 p = p_temp;
5615 }
5616 else if (strncmp (p, "replaylog", p1 - p) == 0)
5617 {
5618 /* NO_HISTORY event.
5619 p1 will indicate "begin" or "end", but
5620 it makes no difference for now, so ignore it. */
5621 event->replay_event = 1;
5622 p_temp = strchr (p1 + 1, ';');
5623 if (p_temp)
5624 p = p_temp;
5625 }
5626 else if (strncmp (p, "core", p1 - p) == 0)
5627 {
5628 ULONGEST c;
5629
5630 p = unpack_varlen_hex (++p1, &c);
5631 event->core = c;
5632 }
5633 else
5634 {
5635 /* Silently skip unknown optional info. */
5636 p_temp = strchr (p1 + 1, ';');
5637 if (p_temp)
5638 p = p_temp;
5639 }
5640 }
5641 else
5642 {
5643 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5644 cached_reg_t cached_reg;
5645
5646 p = p1;
5647
5648 if (*p != ':')
5649 error (_("Malformed packet(b) (missing colon): %s\n\
5650 Packet: '%s'\n"),
5651 p, buf);
5652 ++p;
5653
5654 if (reg == NULL)
5655 error (_("Remote sent bad register number %s: %s\n\
5656 Packet: '%s'\n"),
5657 hex_string (pnum), p, buf);
5658
5659 cached_reg.num = reg->regnum;
5660
5661 fieldsize = hex2bin (p, cached_reg.data,
5662 register_size (target_gdbarch (),
5663 reg->regnum));
5664 p += 2 * fieldsize;
5665 if (fieldsize < register_size (target_gdbarch (),
5666 reg->regnum))
5667 warning (_("Remote reply is too short: %s"), buf);
5668
5669 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5670 }
5671
5672 if (*p != ';')
5673 error (_("Remote register badly formatted: %s\nhere: %s"),
5674 buf, p);
5675 ++p;
5676 }
5677 /* fall through */
5678 case 'S': /* Old style status, just signal only. */
5679 if (event->solibs_changed)
5680 event->ws.kind = TARGET_WAITKIND_LOADED;
5681 else if (event->replay_event)
5682 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5683 else
5684 {
5685 event->ws.kind = TARGET_WAITKIND_STOPPED;
5686 event->ws.value.sig = (enum gdb_signal)
5687 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
5688 }
5689 break;
5690 case 'W': /* Target exited. */
5691 case 'X':
5692 {
5693 char *p;
5694 int pid;
5695 ULONGEST value;
5696
5697 /* GDB used to accept only 2 hex chars here. Stubs should
5698 only send more if they detect GDB supports multi-process
5699 support. */
5700 p = unpack_varlen_hex (&buf[1], &value);
5701
5702 if (buf[0] == 'W')
5703 {
5704 /* The remote process exited. */
5705 event->ws.kind = TARGET_WAITKIND_EXITED;
5706 event->ws.value.integer = value;
5707 }
5708 else
5709 {
5710 /* The remote process exited with a signal. */
5711 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
5712 event->ws.value.sig = (enum gdb_signal) value;
5713 }
5714
5715 /* If no process is specified, assume inferior_ptid. */
5716 pid = ptid_get_pid (inferior_ptid);
5717 if (*p == '\0')
5718 ;
5719 else if (*p == ';')
5720 {
5721 p++;
5722
5723 if (p == '\0')
5724 ;
5725 else if (strncmp (p,
5726 "process:", sizeof ("process:") - 1) == 0)
5727 {
5728 ULONGEST upid;
5729
5730 p += sizeof ("process:") - 1;
5731 unpack_varlen_hex (p, &upid);
5732 pid = upid;
5733 }
5734 else
5735 error (_("unknown stop reply packet: %s"), buf);
5736 }
5737 else
5738 error (_("unknown stop reply packet: %s"), buf);
5739 event->ptid = pid_to_ptid (pid);
5740 }
5741 break;
5742 }
5743
5744 if (non_stop && ptid_equal (event->ptid, null_ptid))
5745 error (_("No process or thread specified in stop reply: %s"), buf);
5746 }
5747
5748 /* When the stub wants to tell GDB about a new notification reply, it
5749 sends a notification (%Stop, for example). Those can come it at
5750 any time, hence, we have to make sure that any pending
5751 putpkt/getpkt sequence we're making is finished, before querying
5752 the stub for more events with the corresponding ack command
5753 (vStopped, for example). E.g., if we started a vStopped sequence
5754 immediately upon receiving the notification, something like this
5755 could happen:
5756
5757 1.1) --> Hg 1
5758 1.2) <-- OK
5759 1.3) --> g
5760 1.4) <-- %Stop
5761 1.5) --> vStopped
5762 1.6) <-- (registers reply to step #1.3)
5763
5764 Obviously, the reply in step #1.6 would be unexpected to a vStopped
5765 query.
5766
5767 To solve this, whenever we parse a %Stop notification successfully,
5768 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
5769 doing whatever we were doing:
5770
5771 2.1) --> Hg 1
5772 2.2) <-- OK
5773 2.3) --> g
5774 2.4) <-- %Stop
5775 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
5776 2.5) <-- (registers reply to step #2.3)
5777
5778 Eventualy after step #2.5, we return to the event loop, which
5779 notices there's an event on the
5780 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
5781 associated callback --- the function below. At this point, we're
5782 always safe to start a vStopped sequence. :
5783
5784 2.6) --> vStopped
5785 2.7) <-- T05 thread:2
5786 2.8) --> vStopped
5787 2.9) --> OK
5788 */
5789
5790 void
5791 remote_notif_get_pending_events (struct notif_client *nc)
5792 {
5793 struct remote_state *rs = get_remote_state ();
5794
5795 if (nc->pending_event)
5796 {
5797 if (notif_debug)
5798 fprintf_unfiltered (gdb_stdlog,
5799 "notif: process: '%s' ack pending event\n",
5800 nc->name);
5801
5802 /* acknowledge */
5803 nc->ack (nc, rs->buf, nc->pending_event);
5804 nc->pending_event = NULL;
5805
5806 while (1)
5807 {
5808 getpkt (&rs->buf, &rs->buf_size, 0);
5809 if (strcmp (rs->buf, "OK") == 0)
5810 break;
5811 else
5812 remote_notif_ack (nc, rs->buf);
5813 }
5814 }
5815 else
5816 {
5817 if (notif_debug)
5818 fprintf_unfiltered (gdb_stdlog,
5819 "notif: process: '%s' no pending reply\n",
5820 nc->name);
5821 }
5822 }
5823
5824 /* Called when it is decided that STOP_REPLY holds the info of the
5825 event that is to be returned to the core. This function always
5826 destroys STOP_REPLY. */
5827
5828 static ptid_t
5829 process_stop_reply (struct stop_reply *stop_reply,
5830 struct target_waitstatus *status)
5831 {
5832 ptid_t ptid;
5833
5834 *status = stop_reply->ws;
5835 ptid = stop_reply->ptid;
5836
5837 /* If no thread/process was reported by the stub, assume the current
5838 inferior. */
5839 if (ptid_equal (ptid, null_ptid))
5840 ptid = inferior_ptid;
5841
5842 if (status->kind != TARGET_WAITKIND_EXITED
5843 && status->kind != TARGET_WAITKIND_SIGNALLED)
5844 {
5845 /* Expedited registers. */
5846 if (stop_reply->regcache)
5847 {
5848 struct regcache *regcache
5849 = get_thread_arch_regcache (ptid, target_gdbarch ());
5850 cached_reg_t *reg;
5851 int ix;
5852
5853 for (ix = 0;
5854 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
5855 ix++)
5856 regcache_raw_supply (regcache, reg->num, reg->data);
5857 VEC_free (cached_reg_t, stop_reply->regcache);
5858 }
5859
5860 remote_stopped_by_watchpoint_p = stop_reply->stopped_by_watchpoint_p;
5861 remote_watch_data_address = stop_reply->watch_data_address;
5862
5863 remote_notice_new_inferior (ptid, 0);
5864 demand_private_info (ptid)->core = stop_reply->core;
5865 }
5866
5867 stop_reply_xfree (stop_reply);
5868 return ptid;
5869 }
5870
5871 /* The non-stop mode version of target_wait. */
5872
5873 static ptid_t
5874 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
5875 {
5876 struct remote_state *rs = get_remote_state ();
5877 struct stop_reply *stop_reply;
5878 int ret;
5879 int is_notif = 0;
5880
5881 /* If in non-stop mode, get out of getpkt even if a
5882 notification is received. */
5883
5884 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5885 0 /* forever */, &is_notif);
5886 while (1)
5887 {
5888 if (ret != -1 && !is_notif)
5889 switch (rs->buf[0])
5890 {
5891 case 'E': /* Error of some sort. */
5892 /* We're out of sync with the target now. Did it continue
5893 or not? We can't tell which thread it was in non-stop,
5894 so just ignore this. */
5895 warning (_("Remote failure reply: %s"), rs->buf);
5896 break;
5897 case 'O': /* Console output. */
5898 remote_console_output (rs->buf + 1);
5899 break;
5900 default:
5901 warning (_("Invalid remote reply: %s"), rs->buf);
5902 break;
5903 }
5904
5905 /* Acknowledge a pending stop reply that may have arrived in the
5906 mean time. */
5907 if (notif_client_stop.pending_event != NULL)
5908 remote_notif_get_pending_events (&notif_client_stop);
5909
5910 /* If indeed we noticed a stop reply, we're done. */
5911 stop_reply = queued_stop_reply (ptid);
5912 if (stop_reply != NULL)
5913 return process_stop_reply (stop_reply, status);
5914
5915 /* Still no event. If we're just polling for an event, then
5916 return to the event loop. */
5917 if (options & TARGET_WNOHANG)
5918 {
5919 status->kind = TARGET_WAITKIND_IGNORE;
5920 return minus_one_ptid;
5921 }
5922
5923 /* Otherwise do a blocking wait. */
5924 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5925 1 /* forever */, &is_notif);
5926 }
5927 }
5928
5929 /* Wait until the remote machine stops, then return, storing status in
5930 STATUS just as `wait' would. */
5931
5932 static ptid_t
5933 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
5934 {
5935 struct remote_state *rs = get_remote_state ();
5936 ptid_t event_ptid = null_ptid;
5937 char *buf;
5938 struct stop_reply *stop_reply;
5939
5940 again:
5941
5942 status->kind = TARGET_WAITKIND_IGNORE;
5943 status->value.integer = 0;
5944
5945 stop_reply = queued_stop_reply (ptid);
5946 if (stop_reply != NULL)
5947 return process_stop_reply (stop_reply, status);
5948
5949 if (rs->cached_wait_status)
5950 /* Use the cached wait status, but only once. */
5951 rs->cached_wait_status = 0;
5952 else
5953 {
5954 int ret;
5955 int is_notif;
5956
5957 if (!target_is_async_p ())
5958 {
5959 ofunc = signal (SIGINT, sync_remote_interrupt);
5960 /* If the user hit C-c before this packet, or between packets,
5961 pretend that it was hit right here. */
5962 if (check_quit_flag ())
5963 {
5964 clear_quit_flag ();
5965 sync_remote_interrupt (SIGINT);
5966 }
5967 }
5968
5969 /* FIXME: cagney/1999-09-27: If we're in async mode we should
5970 _never_ wait for ever -> test on target_is_async_p().
5971 However, before we do that we need to ensure that the caller
5972 knows how to take the target into/out of async mode. */
5973 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
5974 wait_forever_enabled_p, &is_notif);
5975
5976 if (!target_is_async_p ())
5977 signal (SIGINT, ofunc);
5978
5979 /* GDB gets a notification. Return to core as this event is
5980 not interesting. */
5981 if (ret != -1 && is_notif)
5982 return minus_one_ptid;
5983 }
5984
5985 buf = rs->buf;
5986
5987 remote_stopped_by_watchpoint_p = 0;
5988
5989 /* We got something. */
5990 rs->waiting_for_stop_reply = 0;
5991
5992 /* Assume that the target has acknowledged Ctrl-C unless we receive
5993 an 'F' or 'O' packet. */
5994 if (buf[0] != 'F' && buf[0] != 'O')
5995 rs->ctrlc_pending_p = 0;
5996
5997 switch (buf[0])
5998 {
5999 case 'E': /* Error of some sort. */
6000 /* We're out of sync with the target now. Did it continue or
6001 not? Not is more likely, so report a stop. */
6002 warning (_("Remote failure reply: %s"), buf);
6003 status->kind = TARGET_WAITKIND_STOPPED;
6004 status->value.sig = GDB_SIGNAL_0;
6005 break;
6006 case 'F': /* File-I/O request. */
6007 remote_fileio_request (buf, rs->ctrlc_pending_p);
6008 rs->ctrlc_pending_p = 0;
6009 break;
6010 case 'T': case 'S': case 'X': case 'W':
6011 {
6012 struct stop_reply *stop_reply
6013 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
6014 rs->buf);
6015
6016 event_ptid = process_stop_reply (stop_reply, status);
6017 break;
6018 }
6019 case 'O': /* Console output. */
6020 remote_console_output (buf + 1);
6021
6022 /* The target didn't really stop; keep waiting. */
6023 rs->waiting_for_stop_reply = 1;
6024
6025 break;
6026 case '\0':
6027 if (rs->last_sent_signal != GDB_SIGNAL_0)
6028 {
6029 /* Zero length reply means that we tried 'S' or 'C' and the
6030 remote system doesn't support it. */
6031 target_terminal_ours_for_output ();
6032 printf_filtered
6033 ("Can't send signals to this remote system. %s not sent.\n",
6034 gdb_signal_to_name (rs->last_sent_signal));
6035 rs->last_sent_signal = GDB_SIGNAL_0;
6036 target_terminal_inferior ();
6037
6038 strcpy ((char *) buf, rs->last_sent_step ? "s" : "c");
6039 putpkt ((char *) buf);
6040
6041 /* We just told the target to resume, so a stop reply is in
6042 order. */
6043 rs->waiting_for_stop_reply = 1;
6044 break;
6045 }
6046 /* else fallthrough */
6047 default:
6048 warning (_("Invalid remote reply: %s"), buf);
6049 /* Keep waiting. */
6050 rs->waiting_for_stop_reply = 1;
6051 break;
6052 }
6053
6054 if (status->kind == TARGET_WAITKIND_IGNORE)
6055 {
6056 /* Nothing interesting happened. If we're doing a non-blocking
6057 poll, we're done. Otherwise, go back to waiting. */
6058 if (options & TARGET_WNOHANG)
6059 return minus_one_ptid;
6060 else
6061 goto again;
6062 }
6063 else if (status->kind != TARGET_WAITKIND_EXITED
6064 && status->kind != TARGET_WAITKIND_SIGNALLED)
6065 {
6066 if (!ptid_equal (event_ptid, null_ptid))
6067 record_currthread (rs, event_ptid);
6068 else
6069 event_ptid = inferior_ptid;
6070 }
6071 else
6072 /* A process exit. Invalidate our notion of current thread. */
6073 record_currthread (rs, minus_one_ptid);
6074
6075 return event_ptid;
6076 }
6077
6078 /* Wait until the remote machine stops, then return, storing status in
6079 STATUS just as `wait' would. */
6080
6081 static ptid_t
6082 remote_wait (struct target_ops *ops,
6083 ptid_t ptid, struct target_waitstatus *status, int options)
6084 {
6085 ptid_t event_ptid;
6086
6087 if (non_stop)
6088 event_ptid = remote_wait_ns (ptid, status, options);
6089 else
6090 event_ptid = remote_wait_as (ptid, status, options);
6091
6092 if (target_can_async_p ())
6093 {
6094 /* If there are are events left in the queue tell the event loop
6095 to return here. */
6096 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6097 mark_async_event_handler (remote_async_inferior_event_token);
6098 }
6099
6100 return event_ptid;
6101 }
6102
6103 /* Fetch a single register using a 'p' packet. */
6104
6105 static int
6106 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
6107 {
6108 struct remote_state *rs = get_remote_state ();
6109 char *buf, *p;
6110 char regp[MAX_REGISTER_SIZE];
6111 int i;
6112
6113 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
6114 return 0;
6115
6116 if (reg->pnum == -1)
6117 return 0;
6118
6119 p = rs->buf;
6120 *p++ = 'p';
6121 p += hexnumstr (p, reg->pnum);
6122 *p++ = '\0';
6123 putpkt (rs->buf);
6124 getpkt (&rs->buf, &rs->buf_size, 0);
6125
6126 buf = rs->buf;
6127
6128 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
6129 {
6130 case PACKET_OK:
6131 break;
6132 case PACKET_UNKNOWN:
6133 return 0;
6134 case PACKET_ERROR:
6135 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
6136 gdbarch_register_name (get_regcache_arch (regcache),
6137 reg->regnum),
6138 buf);
6139 }
6140
6141 /* If this register is unfetchable, tell the regcache. */
6142 if (buf[0] == 'x')
6143 {
6144 regcache_raw_supply (regcache, reg->regnum, NULL);
6145 return 1;
6146 }
6147
6148 /* Otherwise, parse and supply the value. */
6149 p = buf;
6150 i = 0;
6151 while (p[0] != 0)
6152 {
6153 if (p[1] == 0)
6154 error (_("fetch_register_using_p: early buf termination"));
6155
6156 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
6157 p += 2;
6158 }
6159 regcache_raw_supply (regcache, reg->regnum, regp);
6160 return 1;
6161 }
6162
6163 /* Fetch the registers included in the target's 'g' packet. */
6164
6165 static int
6166 send_g_packet (void)
6167 {
6168 struct remote_state *rs = get_remote_state ();
6169 int buf_len;
6170
6171 xsnprintf (rs->buf, get_remote_packet_size (), "g");
6172 remote_send (&rs->buf, &rs->buf_size);
6173
6174 /* We can get out of synch in various cases. If the first character
6175 in the buffer is not a hex character, assume that has happened
6176 and try to fetch another packet to read. */
6177 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
6178 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
6179 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
6180 && rs->buf[0] != 'x') /* New: unavailable register value. */
6181 {
6182 if (remote_debug)
6183 fprintf_unfiltered (gdb_stdlog,
6184 "Bad register packet; fetching a new packet\n");
6185 getpkt (&rs->buf, &rs->buf_size, 0);
6186 }
6187
6188 buf_len = strlen (rs->buf);
6189
6190 /* Sanity check the received packet. */
6191 if (buf_len % 2 != 0)
6192 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
6193
6194 return buf_len / 2;
6195 }
6196
6197 static void
6198 process_g_packet (struct regcache *regcache)
6199 {
6200 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6201 struct remote_state *rs = get_remote_state ();
6202 struct remote_arch_state *rsa = get_remote_arch_state ();
6203 int i, buf_len;
6204 char *p;
6205 char *regs;
6206
6207 buf_len = strlen (rs->buf);
6208
6209 /* Further sanity checks, with knowledge of the architecture. */
6210 if (buf_len > 2 * rsa->sizeof_g_packet)
6211 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
6212
6213 /* Save the size of the packet sent to us by the target. It is used
6214 as a heuristic when determining the max size of packets that the
6215 target can safely receive. */
6216 if (rsa->actual_register_packet_size == 0)
6217 rsa->actual_register_packet_size = buf_len;
6218
6219 /* If this is smaller than we guessed the 'g' packet would be,
6220 update our records. A 'g' reply that doesn't include a register's
6221 value implies either that the register is not available, or that
6222 the 'p' packet must be used. */
6223 if (buf_len < 2 * rsa->sizeof_g_packet)
6224 {
6225 rsa->sizeof_g_packet = buf_len / 2;
6226
6227 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6228 {
6229 if (rsa->regs[i].pnum == -1)
6230 continue;
6231
6232 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
6233 rsa->regs[i].in_g_packet = 0;
6234 else
6235 rsa->regs[i].in_g_packet = 1;
6236 }
6237 }
6238
6239 regs = alloca (rsa->sizeof_g_packet);
6240
6241 /* Unimplemented registers read as all bits zero. */
6242 memset (regs, 0, rsa->sizeof_g_packet);
6243
6244 /* Reply describes registers byte by byte, each byte encoded as two
6245 hex characters. Suck them all up, then supply them to the
6246 register cacheing/storage mechanism. */
6247
6248 p = rs->buf;
6249 for (i = 0; i < rsa->sizeof_g_packet; i++)
6250 {
6251 if (p[0] == 0 || p[1] == 0)
6252 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6253 internal_error (__FILE__, __LINE__,
6254 _("unexpected end of 'g' packet reply"));
6255
6256 if (p[0] == 'x' && p[1] == 'x')
6257 regs[i] = 0; /* 'x' */
6258 else
6259 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6260 p += 2;
6261 }
6262
6263 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6264 {
6265 struct packet_reg *r = &rsa->regs[i];
6266
6267 if (r->in_g_packet)
6268 {
6269 if (r->offset * 2 >= strlen (rs->buf))
6270 /* This shouldn't happen - we adjusted in_g_packet above. */
6271 internal_error (__FILE__, __LINE__,
6272 _("unexpected end of 'g' packet reply"));
6273 else if (rs->buf[r->offset * 2] == 'x')
6274 {
6275 gdb_assert (r->offset * 2 < strlen (rs->buf));
6276 /* The register isn't available, mark it as such (at
6277 the same time setting the value to zero). */
6278 regcache_raw_supply (regcache, r->regnum, NULL);
6279 }
6280 else
6281 regcache_raw_supply (regcache, r->regnum,
6282 regs + r->offset);
6283 }
6284 }
6285 }
6286
6287 static void
6288 fetch_registers_using_g (struct regcache *regcache)
6289 {
6290 send_g_packet ();
6291 process_g_packet (regcache);
6292 }
6293
6294 /* Make the remote selected traceframe match GDB's selected
6295 traceframe. */
6296
6297 static void
6298 set_remote_traceframe (void)
6299 {
6300 int newnum;
6301 struct remote_state *rs = get_remote_state ();
6302
6303 if (rs->remote_traceframe_number == get_traceframe_number ())
6304 return;
6305
6306 /* Avoid recursion, remote_trace_find calls us again. */
6307 rs->remote_traceframe_number = get_traceframe_number ();
6308
6309 newnum = target_trace_find (tfind_number,
6310 get_traceframe_number (), 0, 0, NULL);
6311
6312 /* Should not happen. If it does, all bets are off. */
6313 if (newnum != get_traceframe_number ())
6314 warning (_("could not set remote traceframe"));
6315 }
6316
6317 static void
6318 remote_fetch_registers (struct target_ops *ops,
6319 struct regcache *regcache, int regnum)
6320 {
6321 struct remote_arch_state *rsa = get_remote_arch_state ();
6322 int i;
6323
6324 set_remote_traceframe ();
6325 set_general_thread (inferior_ptid);
6326
6327 if (regnum >= 0)
6328 {
6329 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6330
6331 gdb_assert (reg != NULL);
6332
6333 /* If this register might be in the 'g' packet, try that first -
6334 we are likely to read more than one register. If this is the
6335 first 'g' packet, we might be overly optimistic about its
6336 contents, so fall back to 'p'. */
6337 if (reg->in_g_packet)
6338 {
6339 fetch_registers_using_g (regcache);
6340 if (reg->in_g_packet)
6341 return;
6342 }
6343
6344 if (fetch_register_using_p (regcache, reg))
6345 return;
6346
6347 /* This register is not available. */
6348 regcache_raw_supply (regcache, reg->regnum, NULL);
6349
6350 return;
6351 }
6352
6353 fetch_registers_using_g (regcache);
6354
6355 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6356 if (!rsa->regs[i].in_g_packet)
6357 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6358 {
6359 /* This register is not available. */
6360 regcache_raw_supply (regcache, i, NULL);
6361 }
6362 }
6363
6364 /* Prepare to store registers. Since we may send them all (using a
6365 'G' request), we have to read out the ones we don't want to change
6366 first. */
6367
6368 static void
6369 remote_prepare_to_store (struct regcache *regcache)
6370 {
6371 struct remote_arch_state *rsa = get_remote_arch_state ();
6372 int i;
6373 gdb_byte buf[MAX_REGISTER_SIZE];
6374
6375 /* Make sure the entire registers array is valid. */
6376 switch (remote_protocol_packets[PACKET_P].support)
6377 {
6378 case PACKET_DISABLE:
6379 case PACKET_SUPPORT_UNKNOWN:
6380 /* Make sure all the necessary registers are cached. */
6381 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6382 if (rsa->regs[i].in_g_packet)
6383 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6384 break;
6385 case PACKET_ENABLE:
6386 break;
6387 }
6388 }
6389
6390 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6391 packet was not recognized. */
6392
6393 static int
6394 store_register_using_P (const struct regcache *regcache,
6395 struct packet_reg *reg)
6396 {
6397 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6398 struct remote_state *rs = get_remote_state ();
6399 /* Try storing a single register. */
6400 char *buf = rs->buf;
6401 gdb_byte regp[MAX_REGISTER_SIZE];
6402 char *p;
6403
6404 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
6405 return 0;
6406
6407 if (reg->pnum == -1)
6408 return 0;
6409
6410 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6411 p = buf + strlen (buf);
6412 regcache_raw_collect (regcache, reg->regnum, regp);
6413 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6414 putpkt (rs->buf);
6415 getpkt (&rs->buf, &rs->buf_size, 0);
6416
6417 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6418 {
6419 case PACKET_OK:
6420 return 1;
6421 case PACKET_ERROR:
6422 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6423 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6424 case PACKET_UNKNOWN:
6425 return 0;
6426 default:
6427 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6428 }
6429 }
6430
6431 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6432 contents of the register cache buffer. FIXME: ignores errors. */
6433
6434 static void
6435 store_registers_using_G (const struct regcache *regcache)
6436 {
6437 struct remote_state *rs = get_remote_state ();
6438 struct remote_arch_state *rsa = get_remote_arch_state ();
6439 gdb_byte *regs;
6440 char *p;
6441
6442 /* Extract all the registers in the regcache copying them into a
6443 local buffer. */
6444 {
6445 int i;
6446
6447 regs = alloca (rsa->sizeof_g_packet);
6448 memset (regs, 0, rsa->sizeof_g_packet);
6449 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6450 {
6451 struct packet_reg *r = &rsa->regs[i];
6452
6453 if (r->in_g_packet)
6454 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6455 }
6456 }
6457
6458 /* Command describes registers byte by byte,
6459 each byte encoded as two hex characters. */
6460 p = rs->buf;
6461 *p++ = 'G';
6462 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6463 updated. */
6464 bin2hex (regs, p, rsa->sizeof_g_packet);
6465 putpkt (rs->buf);
6466 getpkt (&rs->buf, &rs->buf_size, 0);
6467 if (packet_check_result (rs->buf) == PACKET_ERROR)
6468 error (_("Could not write registers; remote failure reply '%s'"),
6469 rs->buf);
6470 }
6471
6472 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6473 of the register cache buffer. FIXME: ignores errors. */
6474
6475 static void
6476 remote_store_registers (struct target_ops *ops,
6477 struct regcache *regcache, int regnum)
6478 {
6479 struct remote_arch_state *rsa = get_remote_arch_state ();
6480 int i;
6481
6482 set_remote_traceframe ();
6483 set_general_thread (inferior_ptid);
6484
6485 if (regnum >= 0)
6486 {
6487 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6488
6489 gdb_assert (reg != NULL);
6490
6491 /* Always prefer to store registers using the 'P' packet if
6492 possible; we often change only a small number of registers.
6493 Sometimes we change a larger number; we'd need help from a
6494 higher layer to know to use 'G'. */
6495 if (store_register_using_P (regcache, reg))
6496 return;
6497
6498 /* For now, don't complain if we have no way to write the
6499 register. GDB loses track of unavailable registers too
6500 easily. Some day, this may be an error. We don't have
6501 any way to read the register, either... */
6502 if (!reg->in_g_packet)
6503 return;
6504
6505 store_registers_using_G (regcache);
6506 return;
6507 }
6508
6509 store_registers_using_G (regcache);
6510
6511 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6512 if (!rsa->regs[i].in_g_packet)
6513 if (!store_register_using_P (regcache, &rsa->regs[i]))
6514 /* See above for why we do not issue an error here. */
6515 continue;
6516 }
6517 \f
6518
6519 /* Return the number of hex digits in num. */
6520
6521 static int
6522 hexnumlen (ULONGEST num)
6523 {
6524 int i;
6525
6526 for (i = 0; num != 0; i++)
6527 num >>= 4;
6528
6529 return max (i, 1);
6530 }
6531
6532 /* Set BUF to the minimum number of hex digits representing NUM. */
6533
6534 static int
6535 hexnumstr (char *buf, ULONGEST num)
6536 {
6537 int len = hexnumlen (num);
6538
6539 return hexnumnstr (buf, num, len);
6540 }
6541
6542
6543 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6544
6545 static int
6546 hexnumnstr (char *buf, ULONGEST num, int width)
6547 {
6548 int i;
6549
6550 buf[width] = '\0';
6551
6552 for (i = width - 1; i >= 0; i--)
6553 {
6554 buf[i] = "0123456789abcdef"[(num & 0xf)];
6555 num >>= 4;
6556 }
6557
6558 return width;
6559 }
6560
6561 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6562
6563 static CORE_ADDR
6564 remote_address_masked (CORE_ADDR addr)
6565 {
6566 unsigned int address_size = remote_address_size;
6567
6568 /* If "remoteaddresssize" was not set, default to target address size. */
6569 if (!address_size)
6570 address_size = gdbarch_addr_bit (target_gdbarch ());
6571
6572 if (address_size > 0
6573 && address_size < (sizeof (ULONGEST) * 8))
6574 {
6575 /* Only create a mask when that mask can safely be constructed
6576 in a ULONGEST variable. */
6577 ULONGEST mask = 1;
6578
6579 mask = (mask << address_size) - 1;
6580 addr &= mask;
6581 }
6582 return addr;
6583 }
6584
6585 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
6586 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
6587 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
6588 (which may be more than *OUT_LEN due to escape characters). The
6589 total number of bytes in the output buffer will be at most
6590 OUT_MAXLEN. */
6591
6592 static int
6593 remote_escape_output (const gdb_byte *buffer, int len,
6594 gdb_byte *out_buf, int *out_len,
6595 int out_maxlen)
6596 {
6597 int input_index, output_index;
6598
6599 output_index = 0;
6600 for (input_index = 0; input_index < len; input_index++)
6601 {
6602 gdb_byte b = buffer[input_index];
6603
6604 if (b == '$' || b == '#' || b == '}')
6605 {
6606 /* These must be escaped. */
6607 if (output_index + 2 > out_maxlen)
6608 break;
6609 out_buf[output_index++] = '}';
6610 out_buf[output_index++] = b ^ 0x20;
6611 }
6612 else
6613 {
6614 if (output_index + 1 > out_maxlen)
6615 break;
6616 out_buf[output_index++] = b;
6617 }
6618 }
6619
6620 *out_len = input_index;
6621 return output_index;
6622 }
6623
6624 /* Convert BUFFER, escaped data LEN bytes long, into binary data
6625 in OUT_BUF. Return the number of bytes written to OUT_BUF.
6626 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
6627
6628 This function reverses remote_escape_output. It allows more
6629 escaped characters than that function does, in particular because
6630 '*' must be escaped to avoid the run-length encoding processing
6631 in reading packets. */
6632
6633 static int
6634 remote_unescape_input (const gdb_byte *buffer, int len,
6635 gdb_byte *out_buf, int out_maxlen)
6636 {
6637 int input_index, output_index;
6638 int escaped;
6639
6640 output_index = 0;
6641 escaped = 0;
6642 for (input_index = 0; input_index < len; input_index++)
6643 {
6644 gdb_byte b = buffer[input_index];
6645
6646 if (output_index + 1 > out_maxlen)
6647 {
6648 warning (_("Received too much data from remote target;"
6649 " ignoring overflow."));
6650 return output_index;
6651 }
6652
6653 if (escaped)
6654 {
6655 out_buf[output_index++] = b ^ 0x20;
6656 escaped = 0;
6657 }
6658 else if (b == '}')
6659 escaped = 1;
6660 else
6661 out_buf[output_index++] = b;
6662 }
6663
6664 if (escaped)
6665 error (_("Unmatched escape character in target response."));
6666
6667 return output_index;
6668 }
6669
6670 /* Determine whether the remote target supports binary downloading.
6671 This is accomplished by sending a no-op memory write of zero length
6672 to the target at the specified address. It does not suffice to send
6673 the whole packet, since many stubs strip the eighth bit and
6674 subsequently compute a wrong checksum, which causes real havoc with
6675 remote_write_bytes.
6676
6677 NOTE: This can still lose if the serial line is not eight-bit
6678 clean. In cases like this, the user should clear "remote
6679 X-packet". */
6680
6681 static void
6682 check_binary_download (CORE_ADDR addr)
6683 {
6684 struct remote_state *rs = get_remote_state ();
6685
6686 switch (remote_protocol_packets[PACKET_X].support)
6687 {
6688 case PACKET_DISABLE:
6689 break;
6690 case PACKET_ENABLE:
6691 break;
6692 case PACKET_SUPPORT_UNKNOWN:
6693 {
6694 char *p;
6695
6696 p = rs->buf;
6697 *p++ = 'X';
6698 p += hexnumstr (p, (ULONGEST) addr);
6699 *p++ = ',';
6700 p += hexnumstr (p, (ULONGEST) 0);
6701 *p++ = ':';
6702 *p = '\0';
6703
6704 putpkt_binary (rs->buf, (int) (p - rs->buf));
6705 getpkt (&rs->buf, &rs->buf_size, 0);
6706
6707 if (rs->buf[0] == '\0')
6708 {
6709 if (remote_debug)
6710 fprintf_unfiltered (gdb_stdlog,
6711 "binary downloading NOT "
6712 "supported by target\n");
6713 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6714 }
6715 else
6716 {
6717 if (remote_debug)
6718 fprintf_unfiltered (gdb_stdlog,
6719 "binary downloading supported by target\n");
6720 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6721 }
6722 break;
6723 }
6724 }
6725 }
6726
6727 /* Write memory data directly to the remote machine.
6728 This does not inform the data cache; the data cache uses this.
6729 HEADER is the starting part of the packet.
6730 MEMADDR is the address in the remote memory space.
6731 MYADDR is the address of the buffer in our space.
6732 LEN is the number of bytes.
6733 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6734 should send data as binary ('X'), or hex-encoded ('M').
6735
6736 The function creates packet of the form
6737 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6738
6739 where encoding of <DATA> is termined by PACKET_FORMAT.
6740
6741 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6742 are omitted.
6743
6744 Returns the number of bytes transferred, or 0 (setting errno) for
6745 error. Only transfer a single packet. */
6746
6747 static int
6748 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
6749 const gdb_byte *myaddr, ssize_t len,
6750 char packet_format, int use_length)
6751 {
6752 struct remote_state *rs = get_remote_state ();
6753 char *p;
6754 char *plen = NULL;
6755 int plenlen = 0;
6756 int todo;
6757 int nr_bytes;
6758 int payload_size;
6759 int payload_length;
6760 int header_length;
6761
6762 if (packet_format != 'X' && packet_format != 'M')
6763 internal_error (__FILE__, __LINE__,
6764 _("remote_write_bytes_aux: bad packet format"));
6765
6766 if (len <= 0)
6767 return 0;
6768
6769 payload_size = get_memory_write_packet_size ();
6770
6771 /* The packet buffer will be large enough for the payload;
6772 get_memory_packet_size ensures this. */
6773 rs->buf[0] = '\0';
6774
6775 /* Compute the size of the actual payload by subtracting out the
6776 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
6777
6778 payload_size -= strlen ("$,:#NN");
6779 if (!use_length)
6780 /* The comma won't be used. */
6781 payload_size += 1;
6782 header_length = strlen (header);
6783 payload_size -= header_length;
6784 payload_size -= hexnumlen (memaddr);
6785
6786 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
6787
6788 strcat (rs->buf, header);
6789 p = rs->buf + strlen (header);
6790
6791 /* Compute a best guess of the number of bytes actually transfered. */
6792 if (packet_format == 'X')
6793 {
6794 /* Best guess at number of bytes that will fit. */
6795 todo = min (len, payload_size);
6796 if (use_length)
6797 payload_size -= hexnumlen (todo);
6798 todo = min (todo, payload_size);
6799 }
6800 else
6801 {
6802 /* Num bytes that will fit. */
6803 todo = min (len, payload_size / 2);
6804 if (use_length)
6805 payload_size -= hexnumlen (todo);
6806 todo = min (todo, payload_size / 2);
6807 }
6808
6809 if (todo <= 0)
6810 internal_error (__FILE__, __LINE__,
6811 _("minimum packet size too small to write data"));
6812
6813 /* If we already need another packet, then try to align the end
6814 of this packet to a useful boundary. */
6815 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
6816 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6817
6818 /* Append "<memaddr>". */
6819 memaddr = remote_address_masked (memaddr);
6820 p += hexnumstr (p, (ULONGEST) memaddr);
6821
6822 if (use_length)
6823 {
6824 /* Append ",". */
6825 *p++ = ',';
6826
6827 /* Append <len>. Retain the location/size of <len>. It may need to
6828 be adjusted once the packet body has been created. */
6829 plen = p;
6830 plenlen = hexnumstr (p, (ULONGEST) todo);
6831 p += plenlen;
6832 }
6833
6834 /* Append ":". */
6835 *p++ = ':';
6836 *p = '\0';
6837
6838 /* Append the packet body. */
6839 if (packet_format == 'X')
6840 {
6841 /* Binary mode. Send target system values byte by byte, in
6842 increasing byte addresses. Only escape certain critical
6843 characters. */
6844 payload_length = remote_escape_output (myaddr, todo, (gdb_byte *) p,
6845 &nr_bytes, payload_size);
6846
6847 /* If not all TODO bytes fit, then we'll need another packet. Make
6848 a second try to keep the end of the packet aligned. Don't do
6849 this if the packet is tiny. */
6850 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
6851 {
6852 int new_nr_bytes;
6853
6854 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
6855 - memaddr);
6856 if (new_nr_bytes != nr_bytes)
6857 payload_length = remote_escape_output (myaddr, new_nr_bytes,
6858 (gdb_byte *) p, &nr_bytes,
6859 payload_size);
6860 }
6861
6862 p += payload_length;
6863 if (use_length && nr_bytes < todo)
6864 {
6865 /* Escape chars have filled up the buffer prematurely,
6866 and we have actually sent fewer bytes than planned.
6867 Fix-up the length field of the packet. Use the same
6868 number of characters as before. */
6869 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
6870 *plen = ':'; /* overwrite \0 from hexnumnstr() */
6871 }
6872 }
6873 else
6874 {
6875 /* Normal mode: Send target system values byte by byte, in
6876 increasing byte addresses. Each byte is encoded as a two hex
6877 value. */
6878 nr_bytes = bin2hex (myaddr, p, todo);
6879 p += 2 * nr_bytes;
6880 }
6881
6882 putpkt_binary (rs->buf, (int) (p - rs->buf));
6883 getpkt (&rs->buf, &rs->buf_size, 0);
6884
6885 if (rs->buf[0] == 'E')
6886 {
6887 /* There is no correspondance between what the remote protocol
6888 uses for errors and errno codes. We would like a cleaner way
6889 of representing errors (big enough to include errno codes,
6890 bfd_error codes, and others). But for now just return EIO. */
6891 errno = EIO;
6892 return 0;
6893 }
6894
6895 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
6896 fewer bytes than we'd planned. */
6897 return nr_bytes;
6898 }
6899
6900 /* Write memory data directly to the remote machine.
6901 This does not inform the data cache; the data cache uses this.
6902 MEMADDR is the address in the remote memory space.
6903 MYADDR is the address of the buffer in our space.
6904 LEN is the number of bytes.
6905
6906 Returns number of bytes transferred, or 0 (setting errno) for
6907 error. Only transfer a single packet. */
6908
6909 static int
6910 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
6911 {
6912 char *packet_format = 0;
6913
6914 /* Check whether the target supports binary download. */
6915 check_binary_download (memaddr);
6916
6917 switch (remote_protocol_packets[PACKET_X].support)
6918 {
6919 case PACKET_ENABLE:
6920 packet_format = "X";
6921 break;
6922 case PACKET_DISABLE:
6923 packet_format = "M";
6924 break;
6925 case PACKET_SUPPORT_UNKNOWN:
6926 internal_error (__FILE__, __LINE__,
6927 _("remote_write_bytes: bad internal state"));
6928 default:
6929 internal_error (__FILE__, __LINE__, _("bad switch"));
6930 }
6931
6932 return remote_write_bytes_aux (packet_format,
6933 memaddr, myaddr, len, packet_format[0], 1);
6934 }
6935
6936 /* Read memory data directly from the remote machine.
6937 This does not use the data cache; the data cache uses this.
6938 MEMADDR is the address in the remote memory space.
6939 MYADDR is the address of the buffer in our space.
6940 LEN is the number of bytes.
6941
6942 Returns number of bytes transferred, or 0 for error. */
6943
6944 static int
6945 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
6946 {
6947 struct remote_state *rs = get_remote_state ();
6948 int max_buf_size; /* Max size of packet output buffer. */
6949 char *p;
6950 int todo;
6951 int i;
6952
6953 if (len <= 0)
6954 return 0;
6955
6956 max_buf_size = get_memory_read_packet_size ();
6957 /* The packet buffer will be large enough for the payload;
6958 get_memory_packet_size ensures this. */
6959
6960 /* Number if bytes that will fit. */
6961 todo = min (len, max_buf_size / 2);
6962
6963 /* Construct "m"<memaddr>","<len>". */
6964 memaddr = remote_address_masked (memaddr);
6965 p = rs->buf;
6966 *p++ = 'm';
6967 p += hexnumstr (p, (ULONGEST) memaddr);
6968 *p++ = ',';
6969 p += hexnumstr (p, (ULONGEST) todo);
6970 *p = '\0';
6971 putpkt (rs->buf);
6972 getpkt (&rs->buf, &rs->buf_size, 0);
6973 if (rs->buf[0] == 'E'
6974 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
6975 && rs->buf[3] == '\0')
6976 {
6977 /* There is no correspondance between what the remote protocol
6978 uses for errors and errno codes. We would like a cleaner way
6979 of representing errors (big enough to include errno codes,
6980 bfd_error codes, and others). But for now just return
6981 EIO. */
6982 errno = EIO;
6983 return 0;
6984 }
6985 /* Reply describes memory byte by byte, each byte encoded as two hex
6986 characters. */
6987 p = rs->buf;
6988 i = hex2bin (p, myaddr, todo);
6989 /* Return what we have. Let higher layers handle partial reads. */
6990 return i;
6991 }
6992
6993 \f
6994 /* Read or write LEN bytes from inferior memory at MEMADDR,
6995 transferring to or from debugger address BUFFER. Write to inferior
6996 if SHOULD_WRITE is nonzero. Returns length of data written or
6997 read; 0 for error. TARGET is unused. */
6998
6999 static int
7000 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
7001 int should_write, struct mem_attrib *attrib,
7002 struct target_ops *target)
7003 {
7004 int res;
7005
7006 set_remote_traceframe ();
7007 set_general_thread (inferior_ptid);
7008
7009 if (should_write)
7010 res = remote_write_bytes (mem_addr, buffer, mem_len);
7011 else
7012 res = remote_read_bytes (mem_addr, buffer, mem_len);
7013
7014 return res;
7015 }
7016
7017 /* Sends a packet with content determined by the printf format string
7018 FORMAT and the remaining arguments, then gets the reply. Returns
7019 whether the packet was a success, a failure, or unknown. */
7020
7021 static enum packet_result
7022 remote_send_printf (const char *format, ...)
7023 {
7024 struct remote_state *rs = get_remote_state ();
7025 int max_size = get_remote_packet_size ();
7026 va_list ap;
7027
7028 va_start (ap, format);
7029
7030 rs->buf[0] = '\0';
7031 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
7032 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
7033
7034 if (putpkt (rs->buf) < 0)
7035 error (_("Communication problem with target."));
7036
7037 rs->buf[0] = '\0';
7038 getpkt (&rs->buf, &rs->buf_size, 0);
7039
7040 return packet_check_result (rs->buf);
7041 }
7042
7043 static void
7044 restore_remote_timeout (void *p)
7045 {
7046 int value = *(int *)p;
7047
7048 remote_timeout = value;
7049 }
7050
7051 /* Flash writing can take quite some time. We'll set
7052 effectively infinite timeout for flash operations.
7053 In future, we'll need to decide on a better approach. */
7054 static const int remote_flash_timeout = 1000;
7055
7056 static void
7057 remote_flash_erase (struct target_ops *ops,
7058 ULONGEST address, LONGEST length)
7059 {
7060 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
7061 int saved_remote_timeout = remote_timeout;
7062 enum packet_result ret;
7063 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7064 &saved_remote_timeout);
7065
7066 remote_timeout = remote_flash_timeout;
7067
7068 ret = remote_send_printf ("vFlashErase:%s,%s",
7069 phex (address, addr_size),
7070 phex (length, 4));
7071 switch (ret)
7072 {
7073 case PACKET_UNKNOWN:
7074 error (_("Remote target does not support flash erase"));
7075 case PACKET_ERROR:
7076 error (_("Error erasing flash with vFlashErase packet"));
7077 default:
7078 break;
7079 }
7080
7081 do_cleanups (back_to);
7082 }
7083
7084 static LONGEST
7085 remote_flash_write (struct target_ops *ops,
7086 ULONGEST address, LONGEST length,
7087 const gdb_byte *data)
7088 {
7089 int saved_remote_timeout = remote_timeout;
7090 int ret;
7091 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7092 &saved_remote_timeout);
7093
7094 remote_timeout = remote_flash_timeout;
7095 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
7096 do_cleanups (back_to);
7097
7098 return ret;
7099 }
7100
7101 static void
7102 remote_flash_done (struct target_ops *ops)
7103 {
7104 int saved_remote_timeout = remote_timeout;
7105 int ret;
7106 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7107 &saved_remote_timeout);
7108
7109 remote_timeout = remote_flash_timeout;
7110 ret = remote_send_printf ("vFlashDone");
7111 do_cleanups (back_to);
7112
7113 switch (ret)
7114 {
7115 case PACKET_UNKNOWN:
7116 error (_("Remote target does not support vFlashDone"));
7117 case PACKET_ERROR:
7118 error (_("Error finishing flash operation"));
7119 default:
7120 break;
7121 }
7122 }
7123
7124 static void
7125 remote_files_info (struct target_ops *ignore)
7126 {
7127 puts_filtered ("Debugging a target over a serial line.\n");
7128 }
7129 \f
7130 /* Stuff for dealing with the packets which are part of this protocol.
7131 See comment at top of file for details. */
7132
7133 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
7134 error to higher layers. Called when a serial error is detected.
7135 The exception message is STRING, followed by a colon and a blank,
7136 the system error message for errno at function entry and final dot
7137 for output compatibility with throw_perror_with_name. */
7138
7139 static void
7140 unpush_and_perror (const char *string)
7141 {
7142 int saved_errno = errno;
7143
7144 remote_unpush_target ();
7145 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
7146 safe_strerror (saved_errno));
7147 }
7148
7149 /* Read a single character from the remote end. */
7150
7151 static int
7152 readchar (int timeout)
7153 {
7154 int ch;
7155 struct remote_state *rs = get_remote_state ();
7156
7157 ch = serial_readchar (rs->remote_desc, timeout);
7158
7159 if (ch >= 0)
7160 return ch;
7161
7162 switch ((enum serial_rc) ch)
7163 {
7164 case SERIAL_EOF:
7165 remote_unpush_target ();
7166 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
7167 /* no return */
7168 case SERIAL_ERROR:
7169 unpush_and_perror (_("Remote communication error. "
7170 "Target disconnected."));
7171 /* no return */
7172 case SERIAL_TIMEOUT:
7173 break;
7174 }
7175 return ch;
7176 }
7177
7178 /* Wrapper for serial_write that closes the target and throws if
7179 writing fails. */
7180
7181 static void
7182 remote_serial_write (const char *str, int len)
7183 {
7184 struct remote_state *rs = get_remote_state ();
7185
7186 if (serial_write (rs->remote_desc, str, len))
7187 {
7188 unpush_and_perror (_("Remote communication error. "
7189 "Target disconnected."));
7190 }
7191 }
7192
7193 /* Send the command in *BUF to the remote machine, and read the reply
7194 into *BUF. Report an error if we get an error reply. Resize
7195 *BUF using xrealloc if necessary to hold the result, and update
7196 *SIZEOF_BUF. */
7197
7198 static void
7199 remote_send (char **buf,
7200 long *sizeof_buf)
7201 {
7202 putpkt (*buf);
7203 getpkt (buf, sizeof_buf, 0);
7204
7205 if ((*buf)[0] == 'E')
7206 error (_("Remote failure reply: %s"), *buf);
7207 }
7208
7209 /* Return a pointer to an xmalloc'ed string representing an escaped
7210 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
7211 etc. The caller is responsible for releasing the returned
7212 memory. */
7213
7214 static char *
7215 escape_buffer (const char *buf, int n)
7216 {
7217 struct cleanup *old_chain;
7218 struct ui_file *stb;
7219 char *str;
7220
7221 stb = mem_fileopen ();
7222 old_chain = make_cleanup_ui_file_delete (stb);
7223
7224 fputstrn_unfiltered (buf, n, 0, stb);
7225 str = ui_file_xstrdup (stb, NULL);
7226 do_cleanups (old_chain);
7227 return str;
7228 }
7229
7230 /* Display a null-terminated packet on stdout, for debugging, using C
7231 string notation. */
7232
7233 static void
7234 print_packet (char *buf)
7235 {
7236 puts_filtered ("\"");
7237 fputstr_filtered (buf, '"', gdb_stdout);
7238 puts_filtered ("\"");
7239 }
7240
7241 int
7242 putpkt (char *buf)
7243 {
7244 return putpkt_binary (buf, strlen (buf));
7245 }
7246
7247 /* Send a packet to the remote machine, with error checking. The data
7248 of the packet is in BUF. The string in BUF can be at most
7249 get_remote_packet_size () - 5 to account for the $, # and checksum,
7250 and for a possible /0 if we are debugging (remote_debug) and want
7251 to print the sent packet as a string. */
7252
7253 static int
7254 putpkt_binary (char *buf, int cnt)
7255 {
7256 struct remote_state *rs = get_remote_state ();
7257 int i;
7258 unsigned char csum = 0;
7259 char *buf2 = alloca (cnt + 6);
7260
7261 int ch;
7262 int tcount = 0;
7263 char *p;
7264 char *message;
7265
7266 /* Catch cases like trying to read memory or listing threads while
7267 we're waiting for a stop reply. The remote server wouldn't be
7268 ready to handle this request, so we'd hang and timeout. We don't
7269 have to worry about this in synchronous mode, because in that
7270 case it's not possible to issue a command while the target is
7271 running. This is not a problem in non-stop mode, because in that
7272 case, the stub is always ready to process serial input. */
7273 if (!non_stop && target_can_async_p () && rs->waiting_for_stop_reply)
7274 error (_("Cannot execute this command while the target is running."));
7275
7276 /* We're sending out a new packet. Make sure we don't look at a
7277 stale cached response. */
7278 rs->cached_wait_status = 0;
7279
7280 /* Copy the packet into buffer BUF2, encapsulating it
7281 and giving it a checksum. */
7282
7283 p = buf2;
7284 *p++ = '$';
7285
7286 for (i = 0; i < cnt; i++)
7287 {
7288 csum += buf[i];
7289 *p++ = buf[i];
7290 }
7291 *p++ = '#';
7292 *p++ = tohex ((csum >> 4) & 0xf);
7293 *p++ = tohex (csum & 0xf);
7294
7295 /* Send it over and over until we get a positive ack. */
7296
7297 while (1)
7298 {
7299 int started_error_output = 0;
7300
7301 if (remote_debug)
7302 {
7303 struct cleanup *old_chain;
7304 char *str;
7305
7306 *p = '\0';
7307 str = escape_buffer (buf2, p - buf2);
7308 old_chain = make_cleanup (xfree, str);
7309 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7310 gdb_flush (gdb_stdlog);
7311 do_cleanups (old_chain);
7312 }
7313 remote_serial_write (buf2, p - buf2);
7314
7315 /* If this is a no acks version of the remote protocol, send the
7316 packet and move on. */
7317 if (rs->noack_mode)
7318 break;
7319
7320 /* Read until either a timeout occurs (-2) or '+' is read.
7321 Handle any notification that arrives in the mean time. */
7322 while (1)
7323 {
7324 ch = readchar (remote_timeout);
7325
7326 if (remote_debug)
7327 {
7328 switch (ch)
7329 {
7330 case '+':
7331 case '-':
7332 case SERIAL_TIMEOUT:
7333 case '$':
7334 case '%':
7335 if (started_error_output)
7336 {
7337 putchar_unfiltered ('\n');
7338 started_error_output = 0;
7339 }
7340 }
7341 }
7342
7343 switch (ch)
7344 {
7345 case '+':
7346 if (remote_debug)
7347 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7348 return 1;
7349 case '-':
7350 if (remote_debug)
7351 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7352 /* FALLTHROUGH */
7353 case SERIAL_TIMEOUT:
7354 tcount++;
7355 if (tcount > 3)
7356 return 0;
7357 break; /* Retransmit buffer. */
7358 case '$':
7359 {
7360 if (remote_debug)
7361 fprintf_unfiltered (gdb_stdlog,
7362 "Packet instead of Ack, ignoring it\n");
7363 /* It's probably an old response sent because an ACK
7364 was lost. Gobble up the packet and ack it so it
7365 doesn't get retransmitted when we resend this
7366 packet. */
7367 skip_frame ();
7368 remote_serial_write ("+", 1);
7369 continue; /* Now, go look for +. */
7370 }
7371
7372 case '%':
7373 {
7374 int val;
7375
7376 /* If we got a notification, handle it, and go back to looking
7377 for an ack. */
7378 /* We've found the start of a notification. Now
7379 collect the data. */
7380 val = read_frame (&rs->buf, &rs->buf_size);
7381 if (val >= 0)
7382 {
7383 if (remote_debug)
7384 {
7385 struct cleanup *old_chain;
7386 char *str;
7387
7388 str = escape_buffer (rs->buf, val);
7389 old_chain = make_cleanup (xfree, str);
7390 fprintf_unfiltered (gdb_stdlog,
7391 " Notification received: %s\n",
7392 str);
7393 do_cleanups (old_chain);
7394 }
7395 handle_notification (rs->buf);
7396 /* We're in sync now, rewait for the ack. */
7397 tcount = 0;
7398 }
7399 else
7400 {
7401 if (remote_debug)
7402 {
7403 if (!started_error_output)
7404 {
7405 started_error_output = 1;
7406 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7407 }
7408 fputc_unfiltered (ch & 0177, gdb_stdlog);
7409 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7410 }
7411 }
7412 continue;
7413 }
7414 /* fall-through */
7415 default:
7416 if (remote_debug)
7417 {
7418 if (!started_error_output)
7419 {
7420 started_error_output = 1;
7421 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7422 }
7423 fputc_unfiltered (ch & 0177, gdb_stdlog);
7424 }
7425 continue;
7426 }
7427 break; /* Here to retransmit. */
7428 }
7429
7430 #if 0
7431 /* This is wrong. If doing a long backtrace, the user should be
7432 able to get out next time we call QUIT, without anything as
7433 violent as interrupt_query. If we want to provide a way out of
7434 here without getting to the next QUIT, it should be based on
7435 hitting ^C twice as in remote_wait. */
7436 if (quit_flag)
7437 {
7438 quit_flag = 0;
7439 interrupt_query ();
7440 }
7441 #endif
7442 }
7443 return 0;
7444 }
7445
7446 /* Come here after finding the start of a frame when we expected an
7447 ack. Do our best to discard the rest of this packet. */
7448
7449 static void
7450 skip_frame (void)
7451 {
7452 int c;
7453
7454 while (1)
7455 {
7456 c = readchar (remote_timeout);
7457 switch (c)
7458 {
7459 case SERIAL_TIMEOUT:
7460 /* Nothing we can do. */
7461 return;
7462 case '#':
7463 /* Discard the two bytes of checksum and stop. */
7464 c = readchar (remote_timeout);
7465 if (c >= 0)
7466 c = readchar (remote_timeout);
7467
7468 return;
7469 case '*': /* Run length encoding. */
7470 /* Discard the repeat count. */
7471 c = readchar (remote_timeout);
7472 if (c < 0)
7473 return;
7474 break;
7475 default:
7476 /* A regular character. */
7477 break;
7478 }
7479 }
7480 }
7481
7482 /* Come here after finding the start of the frame. Collect the rest
7483 into *BUF, verifying the checksum, length, and handling run-length
7484 compression. NUL terminate the buffer. If there is not enough room,
7485 expand *BUF using xrealloc.
7486
7487 Returns -1 on error, number of characters in buffer (ignoring the
7488 trailing NULL) on success. (could be extended to return one of the
7489 SERIAL status indications). */
7490
7491 static long
7492 read_frame (char **buf_p,
7493 long *sizeof_buf)
7494 {
7495 unsigned char csum;
7496 long bc;
7497 int c;
7498 char *buf = *buf_p;
7499 struct remote_state *rs = get_remote_state ();
7500
7501 csum = 0;
7502 bc = 0;
7503
7504 while (1)
7505 {
7506 c = readchar (remote_timeout);
7507 switch (c)
7508 {
7509 case SERIAL_TIMEOUT:
7510 if (remote_debug)
7511 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7512 return -1;
7513 case '$':
7514 if (remote_debug)
7515 fputs_filtered ("Saw new packet start in middle of old one\n",
7516 gdb_stdlog);
7517 return -1; /* Start a new packet, count retries. */
7518 case '#':
7519 {
7520 unsigned char pktcsum;
7521 int check_0 = 0;
7522 int check_1 = 0;
7523
7524 buf[bc] = '\0';
7525
7526 check_0 = readchar (remote_timeout);
7527 if (check_0 >= 0)
7528 check_1 = readchar (remote_timeout);
7529
7530 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7531 {
7532 if (remote_debug)
7533 fputs_filtered ("Timeout in checksum, retrying\n",
7534 gdb_stdlog);
7535 return -1;
7536 }
7537 else if (check_0 < 0 || check_1 < 0)
7538 {
7539 if (remote_debug)
7540 fputs_filtered ("Communication error in checksum\n",
7541 gdb_stdlog);
7542 return -1;
7543 }
7544
7545 /* Don't recompute the checksum; with no ack packets we
7546 don't have any way to indicate a packet retransmission
7547 is necessary. */
7548 if (rs->noack_mode)
7549 return bc;
7550
7551 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7552 if (csum == pktcsum)
7553 return bc;
7554
7555 if (remote_debug)
7556 {
7557 struct cleanup *old_chain;
7558 char *str;
7559
7560 str = escape_buffer (buf, bc);
7561 old_chain = make_cleanup (xfree, str);
7562 fprintf_unfiltered (gdb_stdlog,
7563 "Bad checksum, sentsum=0x%x, "
7564 "csum=0x%x, buf=%s\n",
7565 pktcsum, csum, str);
7566 do_cleanups (old_chain);
7567 }
7568 /* Number of characters in buffer ignoring trailing
7569 NULL. */
7570 return -1;
7571 }
7572 case '*': /* Run length encoding. */
7573 {
7574 int repeat;
7575
7576 csum += c;
7577 c = readchar (remote_timeout);
7578 csum += c;
7579 repeat = c - ' ' + 3; /* Compute repeat count. */
7580
7581 /* The character before ``*'' is repeated. */
7582
7583 if (repeat > 0 && repeat <= 255 && bc > 0)
7584 {
7585 if (bc + repeat - 1 >= *sizeof_buf - 1)
7586 {
7587 /* Make some more room in the buffer. */
7588 *sizeof_buf += repeat;
7589 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7590 buf = *buf_p;
7591 }
7592
7593 memset (&buf[bc], buf[bc - 1], repeat);
7594 bc += repeat;
7595 continue;
7596 }
7597
7598 buf[bc] = '\0';
7599 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7600 return -1;
7601 }
7602 default:
7603 if (bc >= *sizeof_buf - 1)
7604 {
7605 /* Make some more room in the buffer. */
7606 *sizeof_buf *= 2;
7607 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7608 buf = *buf_p;
7609 }
7610
7611 buf[bc++] = c;
7612 csum += c;
7613 continue;
7614 }
7615 }
7616 }
7617
7618 /* Read a packet from the remote machine, with error checking, and
7619 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7620 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7621 rather than timing out; this is used (in synchronous mode) to wait
7622 for a target that is is executing user code to stop. */
7623 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7624 don't have to change all the calls to getpkt to deal with the
7625 return value, because at the moment I don't know what the right
7626 thing to do it for those. */
7627 void
7628 getpkt (char **buf,
7629 long *sizeof_buf,
7630 int forever)
7631 {
7632 int timed_out;
7633
7634 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7635 }
7636
7637
7638 /* Read a packet from the remote machine, with error checking, and
7639 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7640 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7641 rather than timing out; this is used (in synchronous mode) to wait
7642 for a target that is is executing user code to stop. If FOREVER ==
7643 0, this function is allowed to time out gracefully and return an
7644 indication of this to the caller. Otherwise return the number of
7645 bytes read. If EXPECTING_NOTIF, consider receiving a notification
7646 enough reason to return to the caller. *IS_NOTIF is an output
7647 boolean that indicates whether *BUF holds a notification or not
7648 (a regular packet). */
7649
7650 static int
7651 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
7652 int expecting_notif, int *is_notif)
7653 {
7654 struct remote_state *rs = get_remote_state ();
7655 int c;
7656 int tries;
7657 int timeout;
7658 int val = -1;
7659
7660 /* We're reading a new response. Make sure we don't look at a
7661 previously cached response. */
7662 rs->cached_wait_status = 0;
7663
7664 strcpy (*buf, "timeout");
7665
7666 if (forever)
7667 timeout = watchdog > 0 ? watchdog : -1;
7668 else if (expecting_notif)
7669 timeout = 0; /* There should already be a char in the buffer. If
7670 not, bail out. */
7671 else
7672 timeout = remote_timeout;
7673
7674 #define MAX_TRIES 3
7675
7676 /* Process any number of notifications, and then return when
7677 we get a packet. */
7678 for (;;)
7679 {
7680 /* If we get a timeout or bad checksm, retry up to MAX_TRIES
7681 times. */
7682 for (tries = 1; tries <= MAX_TRIES; tries++)
7683 {
7684 /* This can loop forever if the remote side sends us
7685 characters continuously, but if it pauses, we'll get
7686 SERIAL_TIMEOUT from readchar because of timeout. Then
7687 we'll count that as a retry.
7688
7689 Note that even when forever is set, we will only wait
7690 forever prior to the start of a packet. After that, we
7691 expect characters to arrive at a brisk pace. They should
7692 show up within remote_timeout intervals. */
7693 do
7694 c = readchar (timeout);
7695 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
7696
7697 if (c == SERIAL_TIMEOUT)
7698 {
7699 if (expecting_notif)
7700 return -1; /* Don't complain, it's normal to not get
7701 anything in this case. */
7702
7703 if (forever) /* Watchdog went off? Kill the target. */
7704 {
7705 QUIT;
7706 remote_unpush_target ();
7707 throw_error (TARGET_CLOSE_ERROR,
7708 _("Watchdog timeout has expired. "
7709 "Target detached."));
7710 }
7711 if (remote_debug)
7712 fputs_filtered ("Timed out.\n", gdb_stdlog);
7713 }
7714 else
7715 {
7716 /* We've found the start of a packet or notification.
7717 Now collect the data. */
7718 val = read_frame (buf, sizeof_buf);
7719 if (val >= 0)
7720 break;
7721 }
7722
7723 remote_serial_write ("-", 1);
7724 }
7725
7726 if (tries > MAX_TRIES)
7727 {
7728 /* We have tried hard enough, and just can't receive the
7729 packet/notification. Give up. */
7730 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
7731
7732 /* Skip the ack char if we're in no-ack mode. */
7733 if (!rs->noack_mode)
7734 remote_serial_write ("+", 1);
7735 return -1;
7736 }
7737
7738 /* If we got an ordinary packet, return that to our caller. */
7739 if (c == '$')
7740 {
7741 if (remote_debug)
7742 {
7743 struct cleanup *old_chain;
7744 char *str;
7745
7746 str = escape_buffer (*buf, val);
7747 old_chain = make_cleanup (xfree, str);
7748 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
7749 do_cleanups (old_chain);
7750 }
7751
7752 /* Skip the ack char if we're in no-ack mode. */
7753 if (!rs->noack_mode)
7754 remote_serial_write ("+", 1);
7755 if (is_notif != NULL)
7756 *is_notif = 0;
7757 return val;
7758 }
7759
7760 /* If we got a notification, handle it, and go back to looking
7761 for a packet. */
7762 else
7763 {
7764 gdb_assert (c == '%');
7765
7766 if (remote_debug)
7767 {
7768 struct cleanup *old_chain;
7769 char *str;
7770
7771 str = escape_buffer (*buf, val);
7772 old_chain = make_cleanup (xfree, str);
7773 fprintf_unfiltered (gdb_stdlog,
7774 " Notification received: %s\n",
7775 str);
7776 do_cleanups (old_chain);
7777 }
7778 if (is_notif != NULL)
7779 *is_notif = 1;
7780
7781 handle_notification (*buf);
7782
7783 /* Notifications require no acknowledgement. */
7784
7785 if (expecting_notif)
7786 return val;
7787 }
7788 }
7789 }
7790
7791 static int
7792 getpkt_sane (char **buf, long *sizeof_buf, int forever)
7793 {
7794 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
7795 }
7796
7797 static int
7798 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
7799 int *is_notif)
7800 {
7801 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
7802 is_notif);
7803 }
7804
7805 \f
7806 /* A helper function that just calls putpkt; for type correctness. */
7807
7808 static int
7809 putpkt_for_catch_errors (void *arg)
7810 {
7811 return putpkt (arg);
7812 }
7813
7814 static void
7815 remote_kill (struct target_ops *ops)
7816 {
7817 /* Use catch_errors so the user can quit from gdb even when we
7818 aren't on speaking terms with the remote system. */
7819 catch_errors (putpkt_for_catch_errors, "k", "", RETURN_MASK_ERROR);
7820
7821 /* Don't wait for it to die. I'm not really sure it matters whether
7822 we do or not. For the existing stubs, kill is a noop. */
7823 target_mourn_inferior ();
7824 }
7825
7826 static int
7827 remote_vkill (int pid, struct remote_state *rs)
7828 {
7829 if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7830 return -1;
7831
7832 /* Tell the remote target to detach. */
7833 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
7834 putpkt (rs->buf);
7835 getpkt (&rs->buf, &rs->buf_size, 0);
7836
7837 if (packet_ok (rs->buf,
7838 &remote_protocol_packets[PACKET_vKill]) == PACKET_OK)
7839 return 0;
7840 else if (remote_protocol_packets[PACKET_vKill].support == PACKET_DISABLE)
7841 return -1;
7842 else
7843 return 1;
7844 }
7845
7846 static void
7847 extended_remote_kill (struct target_ops *ops)
7848 {
7849 int res;
7850 int pid = ptid_get_pid (inferior_ptid);
7851 struct remote_state *rs = get_remote_state ();
7852
7853 res = remote_vkill (pid, rs);
7854 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
7855 {
7856 /* Don't try 'k' on a multi-process aware stub -- it has no way
7857 to specify the pid. */
7858
7859 putpkt ("k");
7860 #if 0
7861 getpkt (&rs->buf, &rs->buf_size, 0);
7862 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
7863 res = 1;
7864 #else
7865 /* Don't wait for it to die. I'm not really sure it matters whether
7866 we do or not. For the existing stubs, kill is a noop. */
7867 res = 0;
7868 #endif
7869 }
7870
7871 if (res != 0)
7872 error (_("Can't kill process"));
7873
7874 target_mourn_inferior ();
7875 }
7876
7877 static void
7878 remote_mourn (struct target_ops *ops)
7879 {
7880 remote_mourn_1 (ops);
7881 }
7882
7883 /* Worker function for remote_mourn. */
7884 static void
7885 remote_mourn_1 (struct target_ops *target)
7886 {
7887 unpush_target (target);
7888
7889 /* remote_close takes care of doing most of the clean up. */
7890 generic_mourn_inferior ();
7891 }
7892
7893 static void
7894 extended_remote_mourn_1 (struct target_ops *target)
7895 {
7896 struct remote_state *rs = get_remote_state ();
7897
7898 /* In case we got here due to an error, but we're going to stay
7899 connected. */
7900 rs->waiting_for_stop_reply = 0;
7901
7902 /* If the current general thread belonged to the process we just
7903 detached from or has exited, the remote side current general
7904 thread becomes undefined. Considering a case like this:
7905
7906 - We just got here due to a detach.
7907 - The process that we're detaching from happens to immediately
7908 report a global breakpoint being hit in non-stop mode, in the
7909 same thread we had selected before.
7910 - GDB attaches to this process again.
7911 - This event happens to be the next event we handle.
7912
7913 GDB would consider that the current general thread didn't need to
7914 be set on the stub side (with Hg), since for all it knew,
7915 GENERAL_THREAD hadn't changed.
7916
7917 Notice that although in all-stop mode, the remote server always
7918 sets the current thread to the thread reporting the stop event,
7919 that doesn't happen in non-stop mode; in non-stop, the stub *must
7920 not* change the current thread when reporting a breakpoint hit,
7921 due to the decoupling of event reporting and event handling.
7922
7923 To keep things simple, we always invalidate our notion of the
7924 current thread. */
7925 record_currthread (rs, minus_one_ptid);
7926
7927 /* Unlike "target remote", we do not want to unpush the target; then
7928 the next time the user says "run", we won't be connected. */
7929
7930 /* Call common code to mark the inferior as not running. */
7931 generic_mourn_inferior ();
7932
7933 if (!have_inferiors ())
7934 {
7935 if (!remote_multi_process_p (rs))
7936 {
7937 /* Check whether the target is running now - some remote stubs
7938 automatically restart after kill. */
7939 putpkt ("?");
7940 getpkt (&rs->buf, &rs->buf_size, 0);
7941
7942 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
7943 {
7944 /* Assume that the target has been restarted. Set
7945 inferior_ptid so that bits of core GDB realizes
7946 there's something here, e.g., so that the user can
7947 say "kill" again. */
7948 inferior_ptid = magic_null_ptid;
7949 }
7950 }
7951 }
7952 }
7953
7954 static void
7955 extended_remote_mourn (struct target_ops *ops)
7956 {
7957 extended_remote_mourn_1 (ops);
7958 }
7959
7960 static int
7961 extended_remote_supports_disable_randomization (void)
7962 {
7963 return (remote_protocol_packets[PACKET_QDisableRandomization].support
7964 == PACKET_ENABLE);
7965 }
7966
7967 static void
7968 extended_remote_disable_randomization (int val)
7969 {
7970 struct remote_state *rs = get_remote_state ();
7971 char *reply;
7972
7973 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
7974 val);
7975 putpkt (rs->buf);
7976 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
7977 if (*reply == '\0')
7978 error (_("Target does not support QDisableRandomization."));
7979 if (strcmp (reply, "OK") != 0)
7980 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
7981 }
7982
7983 static int
7984 extended_remote_run (char *args)
7985 {
7986 struct remote_state *rs = get_remote_state ();
7987 int len;
7988
7989 /* If the user has disabled vRun support, or we have detected that
7990 support is not available, do not try it. */
7991 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
7992 return -1;
7993
7994 strcpy (rs->buf, "vRun;");
7995 len = strlen (rs->buf);
7996
7997 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
7998 error (_("Remote file name too long for run packet"));
7999 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
8000
8001 gdb_assert (args != NULL);
8002 if (*args)
8003 {
8004 struct cleanup *back_to;
8005 int i;
8006 char **argv;
8007
8008 argv = gdb_buildargv (args);
8009 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
8010 for (i = 0; argv[i] != NULL; i++)
8011 {
8012 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
8013 error (_("Argument list too long for run packet"));
8014 rs->buf[len++] = ';';
8015 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
8016 }
8017 do_cleanups (back_to);
8018 }
8019
8020 rs->buf[len++] = '\0';
8021
8022 putpkt (rs->buf);
8023 getpkt (&rs->buf, &rs->buf_size, 0);
8024
8025 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
8026 {
8027 /* We have a wait response. All is well. */
8028 return 0;
8029 }
8030 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
8031 /* It wasn't disabled before, but it is now. */
8032 return -1;
8033 else
8034 {
8035 if (remote_exec_file[0] == '\0')
8036 error (_("Running the default executable on the remote target failed; "
8037 "try \"set remote exec-file\"?"));
8038 else
8039 error (_("Running \"%s\" on the remote target failed"),
8040 remote_exec_file);
8041 }
8042 }
8043
8044 /* In the extended protocol we want to be able to do things like
8045 "run" and have them basically work as expected. So we need
8046 a special create_inferior function. We support changing the
8047 executable file and the command line arguments, but not the
8048 environment. */
8049
8050 static void
8051 extended_remote_create_inferior_1 (char *exec_file, char *args,
8052 char **env, int from_tty)
8053 {
8054 int run_worked;
8055 char *stop_reply;
8056 struct remote_state *rs = get_remote_state ();
8057
8058 /* If running asynchronously, register the target file descriptor
8059 with the event loop. */
8060 if (target_can_async_p ())
8061 target_async (inferior_event_handler, 0);
8062
8063 /* Disable address space randomization if requested (and supported). */
8064 if (extended_remote_supports_disable_randomization ())
8065 extended_remote_disable_randomization (disable_randomization);
8066
8067 /* Now restart the remote server. */
8068 run_worked = extended_remote_run (args) != -1;
8069 if (!run_worked)
8070 {
8071 /* vRun was not supported. Fail if we need it to do what the
8072 user requested. */
8073 if (remote_exec_file[0])
8074 error (_("Remote target does not support \"set remote exec-file\""));
8075 if (args[0])
8076 error (_("Remote target does not support \"set args\" or run <ARGS>"));
8077
8078 /* Fall back to "R". */
8079 extended_remote_restart ();
8080 }
8081
8082 if (!have_inferiors ())
8083 {
8084 /* Clean up from the last time we ran, before we mark the target
8085 running again. This will mark breakpoints uninserted, and
8086 get_offsets may insert breakpoints. */
8087 init_thread_list ();
8088 init_wait_for_inferior ();
8089 }
8090
8091 /* vRun's success return is a stop reply. */
8092 stop_reply = run_worked ? rs->buf : NULL;
8093 add_current_inferior_and_thread (stop_reply);
8094
8095 /* Get updated offsets, if the stub uses qOffsets. */
8096 get_offsets ();
8097 }
8098
8099 static void
8100 extended_remote_create_inferior (struct target_ops *ops,
8101 char *exec_file, char *args,
8102 char **env, int from_tty)
8103 {
8104 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
8105 }
8106 \f
8107
8108 /* Given a location's target info BP_TGT and the packet buffer BUF, output
8109 the list of conditions (in agent expression bytecode format), if any, the
8110 target needs to evaluate. The output is placed into the packet buffer
8111 started from BUF and ended at BUF_END. */
8112
8113 static int
8114 remote_add_target_side_condition (struct gdbarch *gdbarch,
8115 struct bp_target_info *bp_tgt, char *buf,
8116 char *buf_end)
8117 {
8118 struct agent_expr *aexpr = NULL;
8119 int i, ix;
8120 char *pkt;
8121 char *buf_start = buf;
8122
8123 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
8124 return 0;
8125
8126 buf += strlen (buf);
8127 xsnprintf (buf, buf_end - buf, "%s", ";");
8128 buf++;
8129
8130 /* Send conditions to the target and free the vector. */
8131 for (ix = 0;
8132 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
8133 ix++)
8134 {
8135 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
8136 buf += strlen (buf);
8137 for (i = 0; i < aexpr->len; ++i)
8138 buf = pack_hex_byte (buf, aexpr->buf[i]);
8139 *buf = '\0';
8140 }
8141
8142 VEC_free (agent_expr_p, bp_tgt->conditions);
8143 return 0;
8144 }
8145
8146 static void
8147 remote_add_target_side_commands (struct gdbarch *gdbarch,
8148 struct bp_target_info *bp_tgt, char *buf)
8149 {
8150 struct agent_expr *aexpr = NULL;
8151 int i, ix;
8152
8153 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
8154 return;
8155
8156 buf += strlen (buf);
8157
8158 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
8159 buf += strlen (buf);
8160
8161 /* Concatenate all the agent expressions that are commands into the
8162 cmds parameter. */
8163 for (ix = 0;
8164 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
8165 ix++)
8166 {
8167 sprintf (buf, "X%x,", aexpr->len);
8168 buf += strlen (buf);
8169 for (i = 0; i < aexpr->len; ++i)
8170 buf = pack_hex_byte (buf, aexpr->buf[i]);
8171 *buf = '\0';
8172 }
8173
8174 VEC_free (agent_expr_p, bp_tgt->tcommands);
8175 }
8176
8177 /* Insert a breakpoint. On targets that have software breakpoint
8178 support, we ask the remote target to do the work; on targets
8179 which don't, we insert a traditional memory breakpoint. */
8180
8181 static int
8182 remote_insert_breakpoint (struct gdbarch *gdbarch,
8183 struct bp_target_info *bp_tgt)
8184 {
8185 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
8186 If it succeeds, then set the support to PACKET_ENABLE. If it
8187 fails, and the user has explicitly requested the Z support then
8188 report an error, otherwise, mark it disabled and go on. */
8189
8190 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8191 {
8192 CORE_ADDR addr = bp_tgt->placed_address;
8193 struct remote_state *rs;
8194 char *p, *endbuf;
8195 int bpsize;
8196 struct condition_list *cond = NULL;
8197
8198 /* Make sure the remote is pointing at the right process, if
8199 necessary. */
8200 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8201 set_general_process ();
8202
8203 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
8204
8205 rs = get_remote_state ();
8206 p = rs->buf;
8207 endbuf = rs->buf + get_remote_packet_size ();
8208
8209 *(p++) = 'Z';
8210 *(p++) = '0';
8211 *(p++) = ',';
8212 addr = (ULONGEST) remote_address_masked (addr);
8213 p += hexnumstr (p, addr);
8214 xsnprintf (p, endbuf - p, ",%d", bpsize);
8215
8216 if (remote_supports_cond_breakpoints ())
8217 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8218
8219 if (remote_can_run_breakpoint_commands ())
8220 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8221
8222 putpkt (rs->buf);
8223 getpkt (&rs->buf, &rs->buf_size, 0);
8224
8225 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
8226 {
8227 case PACKET_ERROR:
8228 return -1;
8229 case PACKET_OK:
8230 bp_tgt->placed_address = addr;
8231 bp_tgt->placed_size = bpsize;
8232 return 0;
8233 case PACKET_UNKNOWN:
8234 break;
8235 }
8236 }
8237
8238 return memory_insert_breakpoint (gdbarch, bp_tgt);
8239 }
8240
8241 static int
8242 remote_remove_breakpoint (struct gdbarch *gdbarch,
8243 struct bp_target_info *bp_tgt)
8244 {
8245 CORE_ADDR addr = bp_tgt->placed_address;
8246 struct remote_state *rs = get_remote_state ();
8247
8248 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
8249 {
8250 char *p = rs->buf;
8251 char *endbuf = rs->buf + get_remote_packet_size ();
8252
8253 /* Make sure the remote is pointing at the right process, if
8254 necessary. */
8255 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8256 set_general_process ();
8257
8258 *(p++) = 'z';
8259 *(p++) = '0';
8260 *(p++) = ',';
8261
8262 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8263 p += hexnumstr (p, addr);
8264 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8265
8266 putpkt (rs->buf);
8267 getpkt (&rs->buf, &rs->buf_size, 0);
8268
8269 return (rs->buf[0] == 'E');
8270 }
8271
8272 return memory_remove_breakpoint (gdbarch, bp_tgt);
8273 }
8274
8275 static int
8276 watchpoint_to_Z_packet (int type)
8277 {
8278 switch (type)
8279 {
8280 case hw_write:
8281 return Z_PACKET_WRITE_WP;
8282 break;
8283 case hw_read:
8284 return Z_PACKET_READ_WP;
8285 break;
8286 case hw_access:
8287 return Z_PACKET_ACCESS_WP;
8288 break;
8289 default:
8290 internal_error (__FILE__, __LINE__,
8291 _("hw_bp_to_z: bad watchpoint type %d"), type);
8292 }
8293 }
8294
8295 static int
8296 remote_insert_watchpoint (CORE_ADDR addr, int len, int type,
8297 struct expression *cond)
8298 {
8299 struct remote_state *rs = get_remote_state ();
8300 char *endbuf = rs->buf + get_remote_packet_size ();
8301 char *p;
8302 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8303
8304 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8305 return 1;
8306
8307 /* Make sure the remote is pointing at the right process, if
8308 necessary. */
8309 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8310 set_general_process ();
8311
8312 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8313 p = strchr (rs->buf, '\0');
8314 addr = remote_address_masked (addr);
8315 p += hexnumstr (p, (ULONGEST) addr);
8316 xsnprintf (p, endbuf - p, ",%x", len);
8317
8318 putpkt (rs->buf);
8319 getpkt (&rs->buf, &rs->buf_size, 0);
8320
8321 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8322 {
8323 case PACKET_ERROR:
8324 return -1;
8325 case PACKET_UNKNOWN:
8326 return 1;
8327 case PACKET_OK:
8328 return 0;
8329 }
8330 internal_error (__FILE__, __LINE__,
8331 _("remote_insert_watchpoint: reached end of function"));
8332 }
8333
8334 static int
8335 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8336 CORE_ADDR start, int length)
8337 {
8338 CORE_ADDR diff = remote_address_masked (addr - start);
8339
8340 return diff < length;
8341 }
8342
8343
8344 static int
8345 remote_remove_watchpoint (CORE_ADDR addr, int len, int type,
8346 struct expression *cond)
8347 {
8348 struct remote_state *rs = get_remote_state ();
8349 char *endbuf = rs->buf + get_remote_packet_size ();
8350 char *p;
8351 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8352
8353 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
8354 return -1;
8355
8356 /* Make sure the remote is pointing at the right process, if
8357 necessary. */
8358 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8359 set_general_process ();
8360
8361 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8362 p = strchr (rs->buf, '\0');
8363 addr = remote_address_masked (addr);
8364 p += hexnumstr (p, (ULONGEST) addr);
8365 xsnprintf (p, endbuf - p, ",%x", len);
8366 putpkt (rs->buf);
8367 getpkt (&rs->buf, &rs->buf_size, 0);
8368
8369 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8370 {
8371 case PACKET_ERROR:
8372 case PACKET_UNKNOWN:
8373 return -1;
8374 case PACKET_OK:
8375 return 0;
8376 }
8377 internal_error (__FILE__, __LINE__,
8378 _("remote_remove_watchpoint: reached end of function"));
8379 }
8380
8381
8382 int remote_hw_watchpoint_limit = -1;
8383 int remote_hw_watchpoint_length_limit = -1;
8384 int remote_hw_breakpoint_limit = -1;
8385
8386 static int
8387 remote_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
8388 {
8389 if (remote_hw_watchpoint_length_limit == 0)
8390 return 0;
8391 else if (remote_hw_watchpoint_length_limit < 0)
8392 return 1;
8393 else if (len <= remote_hw_watchpoint_length_limit)
8394 return 1;
8395 else
8396 return 0;
8397 }
8398
8399 static int
8400 remote_check_watch_resources (int type, int cnt, int ot)
8401 {
8402 if (type == bp_hardware_breakpoint)
8403 {
8404 if (remote_hw_breakpoint_limit == 0)
8405 return 0;
8406 else if (remote_hw_breakpoint_limit < 0)
8407 return 1;
8408 else if (cnt <= remote_hw_breakpoint_limit)
8409 return 1;
8410 }
8411 else
8412 {
8413 if (remote_hw_watchpoint_limit == 0)
8414 return 0;
8415 else if (remote_hw_watchpoint_limit < 0)
8416 return 1;
8417 else if (ot)
8418 return -1;
8419 else if (cnt <= remote_hw_watchpoint_limit)
8420 return 1;
8421 }
8422 return -1;
8423 }
8424
8425 static int
8426 remote_stopped_by_watchpoint (void)
8427 {
8428 return remote_stopped_by_watchpoint_p;
8429 }
8430
8431 static int
8432 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8433 {
8434 int rc = 0;
8435
8436 if (remote_stopped_by_watchpoint ())
8437 {
8438 *addr_p = remote_watch_data_address;
8439 rc = 1;
8440 }
8441
8442 return rc;
8443 }
8444
8445
8446 static int
8447 remote_insert_hw_breakpoint (struct gdbarch *gdbarch,
8448 struct bp_target_info *bp_tgt)
8449 {
8450 CORE_ADDR addr;
8451 struct remote_state *rs;
8452 char *p, *endbuf;
8453 char *message;
8454
8455 /* The length field should be set to the size of a breakpoint
8456 instruction, even though we aren't inserting one ourselves. */
8457
8458 gdbarch_remote_breakpoint_from_pc
8459 (gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
8460
8461 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8462 return -1;
8463
8464 /* Make sure the remote is pointing at the right process, if
8465 necessary. */
8466 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8467 set_general_process ();
8468
8469 rs = get_remote_state ();
8470 p = rs->buf;
8471 endbuf = rs->buf + get_remote_packet_size ();
8472
8473 *(p++) = 'Z';
8474 *(p++) = '1';
8475 *(p++) = ',';
8476
8477 addr = remote_address_masked (bp_tgt->placed_address);
8478 p += hexnumstr (p, (ULONGEST) addr);
8479 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8480
8481 if (remote_supports_cond_breakpoints ())
8482 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8483
8484 if (remote_can_run_breakpoint_commands ())
8485 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8486
8487 putpkt (rs->buf);
8488 getpkt (&rs->buf, &rs->buf_size, 0);
8489
8490 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8491 {
8492 case PACKET_ERROR:
8493 if (rs->buf[1] == '.')
8494 {
8495 message = strchr (rs->buf + 2, '.');
8496 if (message)
8497 error (_("Remote failure reply: %s"), message + 1);
8498 }
8499 return -1;
8500 case PACKET_UNKNOWN:
8501 return -1;
8502 case PACKET_OK:
8503 return 0;
8504 }
8505 internal_error (__FILE__, __LINE__,
8506 _("remote_insert_hw_breakpoint: reached end of function"));
8507 }
8508
8509
8510 static int
8511 remote_remove_hw_breakpoint (struct gdbarch *gdbarch,
8512 struct bp_target_info *bp_tgt)
8513 {
8514 CORE_ADDR addr;
8515 struct remote_state *rs = get_remote_state ();
8516 char *p = rs->buf;
8517 char *endbuf = rs->buf + get_remote_packet_size ();
8518
8519 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
8520 return -1;
8521
8522 /* Make sure the remote is pointing at the right process, if
8523 necessary. */
8524 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8525 set_general_process ();
8526
8527 *(p++) = 'z';
8528 *(p++) = '1';
8529 *(p++) = ',';
8530
8531 addr = remote_address_masked (bp_tgt->placed_address);
8532 p += hexnumstr (p, (ULONGEST) addr);
8533 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
8534
8535 putpkt (rs->buf);
8536 getpkt (&rs->buf, &rs->buf_size, 0);
8537
8538 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8539 {
8540 case PACKET_ERROR:
8541 case PACKET_UNKNOWN:
8542 return -1;
8543 case PACKET_OK:
8544 return 0;
8545 }
8546 internal_error (__FILE__, __LINE__,
8547 _("remote_remove_hw_breakpoint: reached end of function"));
8548 }
8549
8550 /* Verify memory using the "qCRC:" request. */
8551
8552 static int
8553 remote_verify_memory (struct target_ops *ops,
8554 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
8555 {
8556 struct remote_state *rs = get_remote_state ();
8557 unsigned long host_crc, target_crc;
8558 char *tmp;
8559
8560 /* Make sure the remote is pointing at the right process. */
8561 set_general_process ();
8562
8563 /* FIXME: assumes lma can fit into long. */
8564 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
8565 (long) lma, (long) size);
8566 putpkt (rs->buf);
8567
8568 /* Be clever; compute the host_crc before waiting for target
8569 reply. */
8570 host_crc = xcrc32 (data, size, 0xffffffff);
8571
8572 getpkt (&rs->buf, &rs->buf_size, 0);
8573 if (rs->buf[0] == 'E')
8574 return -1;
8575
8576 if (rs->buf[0] != 'C')
8577 error (_("remote target does not support this operation"));
8578
8579 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
8580 target_crc = target_crc * 16 + fromhex (*tmp);
8581
8582 return (host_crc == target_crc);
8583 }
8584
8585 /* compare-sections command
8586
8587 With no arguments, compares each loadable section in the exec bfd
8588 with the same memory range on the target, and reports mismatches.
8589 Useful for verifying the image on the target against the exec file. */
8590
8591 static void
8592 compare_sections_command (char *args, int from_tty)
8593 {
8594 asection *s;
8595 struct cleanup *old_chain;
8596 gdb_byte *sectdata;
8597 const char *sectname;
8598 bfd_size_type size;
8599 bfd_vma lma;
8600 int matched = 0;
8601 int mismatched = 0;
8602 int res;
8603
8604 if (!exec_bfd)
8605 error (_("command cannot be used without an exec file"));
8606
8607 /* Make sure the remote is pointing at the right process. */
8608 set_general_process ();
8609
8610 for (s = exec_bfd->sections; s; s = s->next)
8611 {
8612 if (!(s->flags & SEC_LOAD))
8613 continue; /* Skip non-loadable section. */
8614
8615 size = bfd_get_section_size (s);
8616 if (size == 0)
8617 continue; /* Skip zero-length section. */
8618
8619 sectname = bfd_get_section_name (exec_bfd, s);
8620 if (args && strcmp (args, sectname) != 0)
8621 continue; /* Not the section selected by user. */
8622
8623 matched = 1; /* Do this section. */
8624 lma = s->lma;
8625
8626 sectdata = xmalloc (size);
8627 old_chain = make_cleanup (xfree, sectdata);
8628 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
8629
8630 res = target_verify_memory (sectdata, lma, size);
8631
8632 if (res == -1)
8633 error (_("target memory fault, section %s, range %s -- %s"), sectname,
8634 paddress (target_gdbarch (), lma),
8635 paddress (target_gdbarch (), lma + size));
8636
8637 printf_filtered ("Section %s, range %s -- %s: ", sectname,
8638 paddress (target_gdbarch (), lma),
8639 paddress (target_gdbarch (), lma + size));
8640 if (res)
8641 printf_filtered ("matched.\n");
8642 else
8643 {
8644 printf_filtered ("MIS-MATCHED!\n");
8645 mismatched++;
8646 }
8647
8648 do_cleanups (old_chain);
8649 }
8650 if (mismatched > 0)
8651 warning (_("One or more sections of the remote executable does not match\n\
8652 the loaded file\n"));
8653 if (args && !matched)
8654 printf_filtered (_("No loaded section named '%s'.\n"), args);
8655 }
8656
8657 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
8658 into remote target. The number of bytes written to the remote
8659 target is returned, or -1 for error. */
8660
8661 static LONGEST
8662 remote_write_qxfer (struct target_ops *ops, const char *object_name,
8663 const char *annex, const gdb_byte *writebuf,
8664 ULONGEST offset, LONGEST len,
8665 struct packet_config *packet)
8666 {
8667 int i, buf_len;
8668 ULONGEST n;
8669 struct remote_state *rs = get_remote_state ();
8670 int max_size = get_memory_write_packet_size ();
8671
8672 if (packet->support == PACKET_DISABLE)
8673 return -1;
8674
8675 /* Insert header. */
8676 i = snprintf (rs->buf, max_size,
8677 "qXfer:%s:write:%s:%s:",
8678 object_name, annex ? annex : "",
8679 phex_nz (offset, sizeof offset));
8680 max_size -= (i + 1);
8681
8682 /* Escape as much data as fits into rs->buf. */
8683 buf_len = remote_escape_output
8684 (writebuf, len, (gdb_byte *) rs->buf + i, &max_size, max_size);
8685
8686 if (putpkt_binary (rs->buf, i + buf_len) < 0
8687 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
8688 || packet_ok (rs->buf, packet) != PACKET_OK)
8689 return -1;
8690
8691 unpack_varlen_hex (rs->buf, &n);
8692 return n;
8693 }
8694
8695 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
8696 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
8697 number of bytes read is returned, or 0 for EOF, or -1 for error.
8698 The number of bytes read may be less than LEN without indicating an
8699 EOF. PACKET is checked and updated to indicate whether the remote
8700 target supports this object. */
8701
8702 static LONGEST
8703 remote_read_qxfer (struct target_ops *ops, const char *object_name,
8704 const char *annex,
8705 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
8706 struct packet_config *packet)
8707 {
8708 struct remote_state *rs = get_remote_state ();
8709 LONGEST i, n, packet_len;
8710
8711 if (packet->support == PACKET_DISABLE)
8712 return -1;
8713
8714 /* Check whether we've cached an end-of-object packet that matches
8715 this request. */
8716 if (rs->finished_object)
8717 {
8718 if (strcmp (object_name, rs->finished_object) == 0
8719 && strcmp (annex ? annex : "", rs->finished_annex) == 0
8720 && offset == rs->finished_offset)
8721 return 0;
8722
8723 /* Otherwise, we're now reading something different. Discard
8724 the cache. */
8725 xfree (rs->finished_object);
8726 xfree (rs->finished_annex);
8727 rs->finished_object = NULL;
8728 rs->finished_annex = NULL;
8729 }
8730
8731 /* Request only enough to fit in a single packet. The actual data
8732 may not, since we don't know how much of it will need to be escaped;
8733 the target is free to respond with slightly less data. We subtract
8734 five to account for the response type and the protocol frame. */
8735 n = min (get_remote_packet_size () - 5, len);
8736 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
8737 object_name, annex ? annex : "",
8738 phex_nz (offset, sizeof offset),
8739 phex_nz (n, sizeof n));
8740 i = putpkt (rs->buf);
8741 if (i < 0)
8742 return -1;
8743
8744 rs->buf[0] = '\0';
8745 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
8746 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
8747 return -1;
8748
8749 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
8750 error (_("Unknown remote qXfer reply: %s"), rs->buf);
8751
8752 /* 'm' means there is (or at least might be) more data after this
8753 batch. That does not make sense unless there's at least one byte
8754 of data in this reply. */
8755 if (rs->buf[0] == 'm' && packet_len == 1)
8756 error (_("Remote qXfer reply contained no data."));
8757
8758 /* Got some data. */
8759 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
8760 packet_len - 1, readbuf, n);
8761
8762 /* 'l' is an EOF marker, possibly including a final block of data,
8763 or possibly empty. If we have the final block of a non-empty
8764 object, record this fact to bypass a subsequent partial read. */
8765 if (rs->buf[0] == 'l' && offset + i > 0)
8766 {
8767 rs->finished_object = xstrdup (object_name);
8768 rs->finished_annex = xstrdup (annex ? annex : "");
8769 rs->finished_offset = offset + i;
8770 }
8771
8772 return i;
8773 }
8774
8775 static LONGEST
8776 remote_xfer_partial (struct target_ops *ops, enum target_object object,
8777 const char *annex, gdb_byte *readbuf,
8778 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
8779 {
8780 struct remote_state *rs;
8781 int i;
8782 char *p2;
8783 char query_type;
8784
8785 set_remote_traceframe ();
8786 set_general_thread (inferior_ptid);
8787
8788 rs = get_remote_state ();
8789
8790 /* Handle memory using the standard memory routines. */
8791 if (object == TARGET_OBJECT_MEMORY)
8792 {
8793 int xfered;
8794
8795 errno = 0;
8796
8797 /* If the remote target is connected but not running, we should
8798 pass this request down to a lower stratum (e.g. the executable
8799 file). */
8800 if (!target_has_execution)
8801 return 0;
8802
8803 if (writebuf != NULL)
8804 xfered = remote_write_bytes (offset, writebuf, len);
8805 else
8806 xfered = remote_read_bytes (offset, readbuf, len);
8807
8808 if (xfered > 0)
8809 return xfered;
8810 else if (xfered == 0 && errno == 0)
8811 return 0;
8812 else
8813 return -1;
8814 }
8815
8816 /* Handle SPU memory using qxfer packets. */
8817 if (object == TARGET_OBJECT_SPU)
8818 {
8819 if (readbuf)
8820 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
8821 &remote_protocol_packets
8822 [PACKET_qXfer_spu_read]);
8823 else
8824 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
8825 &remote_protocol_packets
8826 [PACKET_qXfer_spu_write]);
8827 }
8828
8829 /* Handle extra signal info using qxfer packets. */
8830 if (object == TARGET_OBJECT_SIGNAL_INFO)
8831 {
8832 if (readbuf)
8833 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
8834 &remote_protocol_packets
8835 [PACKET_qXfer_siginfo_read]);
8836 else
8837 return remote_write_qxfer (ops, "siginfo", annex,
8838 writebuf, offset, len,
8839 &remote_protocol_packets
8840 [PACKET_qXfer_siginfo_write]);
8841 }
8842
8843 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
8844 {
8845 if (readbuf)
8846 return remote_read_qxfer (ops, "statictrace", annex,
8847 readbuf, offset, len,
8848 &remote_protocol_packets
8849 [PACKET_qXfer_statictrace_read]);
8850 else
8851 return -1;
8852 }
8853
8854 /* Only handle flash writes. */
8855 if (writebuf != NULL)
8856 {
8857 LONGEST xfered;
8858
8859 switch (object)
8860 {
8861 case TARGET_OBJECT_FLASH:
8862 xfered = remote_flash_write (ops, offset, len, writebuf);
8863
8864 if (xfered > 0)
8865 return xfered;
8866 else if (xfered == 0 && errno == 0)
8867 return 0;
8868 else
8869 return -1;
8870
8871 default:
8872 return -1;
8873 }
8874 }
8875
8876 /* Map pre-existing objects onto letters. DO NOT do this for new
8877 objects!!! Instead specify new query packets. */
8878 switch (object)
8879 {
8880 case TARGET_OBJECT_AVR:
8881 query_type = 'R';
8882 break;
8883
8884 case TARGET_OBJECT_AUXV:
8885 gdb_assert (annex == NULL);
8886 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
8887 &remote_protocol_packets[PACKET_qXfer_auxv]);
8888
8889 case TARGET_OBJECT_AVAILABLE_FEATURES:
8890 return remote_read_qxfer
8891 (ops, "features", annex, readbuf, offset, len,
8892 &remote_protocol_packets[PACKET_qXfer_features]);
8893
8894 case TARGET_OBJECT_LIBRARIES:
8895 return remote_read_qxfer
8896 (ops, "libraries", annex, readbuf, offset, len,
8897 &remote_protocol_packets[PACKET_qXfer_libraries]);
8898
8899 case TARGET_OBJECT_LIBRARIES_SVR4:
8900 return remote_read_qxfer
8901 (ops, "libraries-svr4", annex, readbuf, offset, len,
8902 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
8903
8904 case TARGET_OBJECT_MEMORY_MAP:
8905 gdb_assert (annex == NULL);
8906 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
8907 &remote_protocol_packets[PACKET_qXfer_memory_map]);
8908
8909 case TARGET_OBJECT_OSDATA:
8910 /* Should only get here if we're connected. */
8911 gdb_assert (rs->remote_desc);
8912 return remote_read_qxfer
8913 (ops, "osdata", annex, readbuf, offset, len,
8914 &remote_protocol_packets[PACKET_qXfer_osdata]);
8915
8916 case TARGET_OBJECT_THREADS:
8917 gdb_assert (annex == NULL);
8918 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
8919 &remote_protocol_packets[PACKET_qXfer_threads]);
8920
8921 case TARGET_OBJECT_TRACEFRAME_INFO:
8922 gdb_assert (annex == NULL);
8923 return remote_read_qxfer
8924 (ops, "traceframe-info", annex, readbuf, offset, len,
8925 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
8926
8927 case TARGET_OBJECT_FDPIC:
8928 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
8929 &remote_protocol_packets[PACKET_qXfer_fdpic]);
8930
8931 case TARGET_OBJECT_OPENVMS_UIB:
8932 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
8933 &remote_protocol_packets[PACKET_qXfer_uib]);
8934
8935 case TARGET_OBJECT_BTRACE:
8936 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
8937 &remote_protocol_packets[PACKET_qXfer_btrace]);
8938
8939 default:
8940 return -1;
8941 }
8942
8943 /* Note: a zero OFFSET and LEN can be used to query the minimum
8944 buffer size. */
8945 if (offset == 0 && len == 0)
8946 return (get_remote_packet_size ());
8947 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
8948 large enough let the caller deal with it. */
8949 if (len < get_remote_packet_size ())
8950 return -1;
8951 len = get_remote_packet_size ();
8952
8953 /* Except for querying the minimum buffer size, target must be open. */
8954 if (!rs->remote_desc)
8955 error (_("remote query is only available after target open"));
8956
8957 gdb_assert (annex != NULL);
8958 gdb_assert (readbuf != NULL);
8959
8960 p2 = rs->buf;
8961 *p2++ = 'q';
8962 *p2++ = query_type;
8963
8964 /* We used one buffer char for the remote protocol q command and
8965 another for the query type. As the remote protocol encapsulation
8966 uses 4 chars plus one extra in case we are debugging
8967 (remote_debug), we have PBUFZIZ - 7 left to pack the query
8968 string. */
8969 i = 0;
8970 while (annex[i] && (i < (get_remote_packet_size () - 8)))
8971 {
8972 /* Bad caller may have sent forbidden characters. */
8973 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
8974 *p2++ = annex[i];
8975 i++;
8976 }
8977 *p2 = '\0';
8978 gdb_assert (annex[i] == '\0');
8979
8980 i = putpkt (rs->buf);
8981 if (i < 0)
8982 return i;
8983
8984 getpkt (&rs->buf, &rs->buf_size, 0);
8985 strcpy ((char *) readbuf, rs->buf);
8986
8987 return strlen ((char *) readbuf);
8988 }
8989
8990 static int
8991 remote_search_memory (struct target_ops* ops,
8992 CORE_ADDR start_addr, ULONGEST search_space_len,
8993 const gdb_byte *pattern, ULONGEST pattern_len,
8994 CORE_ADDR *found_addrp)
8995 {
8996 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8997 struct remote_state *rs = get_remote_state ();
8998 int max_size = get_memory_write_packet_size ();
8999 struct packet_config *packet =
9000 &remote_protocol_packets[PACKET_qSearch_memory];
9001 /* Number of packet bytes used to encode the pattern;
9002 this could be more than PATTERN_LEN due to escape characters. */
9003 int escaped_pattern_len;
9004 /* Amount of pattern that was encodable in the packet. */
9005 int used_pattern_len;
9006 int i;
9007 int found;
9008 ULONGEST found_addr;
9009
9010 /* Don't go to the target if we don't have to.
9011 This is done before checking packet->support to avoid the possibility that
9012 a success for this edge case means the facility works in general. */
9013 if (pattern_len > search_space_len)
9014 return 0;
9015 if (pattern_len == 0)
9016 {
9017 *found_addrp = start_addr;
9018 return 1;
9019 }
9020
9021 /* If we already know the packet isn't supported, fall back to the simple
9022 way of searching memory. */
9023
9024 if (packet->support == PACKET_DISABLE)
9025 {
9026 /* Target doesn't provided special support, fall back and use the
9027 standard support (copy memory and do the search here). */
9028 return simple_search_memory (ops, start_addr, search_space_len,
9029 pattern, pattern_len, found_addrp);
9030 }
9031
9032 /* Make sure the remote is pointing at the right process. */
9033 set_general_process ();
9034
9035 /* Insert header. */
9036 i = snprintf (rs->buf, max_size,
9037 "qSearch:memory:%s;%s;",
9038 phex_nz (start_addr, addr_size),
9039 phex_nz (search_space_len, sizeof (search_space_len)));
9040 max_size -= (i + 1);
9041
9042 /* Escape as much data as fits into rs->buf. */
9043 escaped_pattern_len =
9044 remote_escape_output (pattern, pattern_len, (gdb_byte *) rs->buf + i,
9045 &used_pattern_len, max_size);
9046
9047 /* Bail if the pattern is too large. */
9048 if (used_pattern_len != pattern_len)
9049 error (_("Pattern is too large to transmit to remote target."));
9050
9051 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
9052 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
9053 || packet_ok (rs->buf, packet) != PACKET_OK)
9054 {
9055 /* The request may not have worked because the command is not
9056 supported. If so, fall back to the simple way. */
9057 if (packet->support == PACKET_DISABLE)
9058 {
9059 return simple_search_memory (ops, start_addr, search_space_len,
9060 pattern, pattern_len, found_addrp);
9061 }
9062 return -1;
9063 }
9064
9065 if (rs->buf[0] == '0')
9066 found = 0;
9067 else if (rs->buf[0] == '1')
9068 {
9069 found = 1;
9070 if (rs->buf[1] != ',')
9071 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9072 unpack_varlen_hex (rs->buf + 2, &found_addr);
9073 *found_addrp = found_addr;
9074 }
9075 else
9076 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9077
9078 return found;
9079 }
9080
9081 static void
9082 remote_rcmd (char *command,
9083 struct ui_file *outbuf)
9084 {
9085 struct remote_state *rs = get_remote_state ();
9086 char *p = rs->buf;
9087
9088 if (!rs->remote_desc)
9089 error (_("remote rcmd is only available after target open"));
9090
9091 /* Send a NULL command across as an empty command. */
9092 if (command == NULL)
9093 command = "";
9094
9095 /* The query prefix. */
9096 strcpy (rs->buf, "qRcmd,");
9097 p = strchr (rs->buf, '\0');
9098
9099 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
9100 > get_remote_packet_size ())
9101 error (_("\"monitor\" command ``%s'' is too long."), command);
9102
9103 /* Encode the actual command. */
9104 bin2hex ((gdb_byte *) command, p, 0);
9105
9106 if (putpkt (rs->buf) < 0)
9107 error (_("Communication problem with target."));
9108
9109 /* get/display the response */
9110 while (1)
9111 {
9112 char *buf;
9113
9114 /* XXX - see also remote_get_noisy_reply(). */
9115 QUIT; /* Allow user to bail out with ^C. */
9116 rs->buf[0] = '\0';
9117 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
9118 {
9119 /* Timeout. Continue to (try to) read responses.
9120 This is better than stopping with an error, assuming the stub
9121 is still executing the (long) monitor command.
9122 If needed, the user can interrupt gdb using C-c, obtaining
9123 an effect similar to stop on timeout. */
9124 continue;
9125 }
9126 buf = rs->buf;
9127 if (buf[0] == '\0')
9128 error (_("Target does not support this command."));
9129 if (buf[0] == 'O' && buf[1] != 'K')
9130 {
9131 remote_console_output (buf + 1); /* 'O' message from stub. */
9132 continue;
9133 }
9134 if (strcmp (buf, "OK") == 0)
9135 break;
9136 if (strlen (buf) == 3 && buf[0] == 'E'
9137 && isdigit (buf[1]) && isdigit (buf[2]))
9138 {
9139 error (_("Protocol error with Rcmd"));
9140 }
9141 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
9142 {
9143 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
9144
9145 fputc_unfiltered (c, outbuf);
9146 }
9147 break;
9148 }
9149 }
9150
9151 static VEC(mem_region_s) *
9152 remote_memory_map (struct target_ops *ops)
9153 {
9154 VEC(mem_region_s) *result = NULL;
9155 char *text = target_read_stralloc (&current_target,
9156 TARGET_OBJECT_MEMORY_MAP, NULL);
9157
9158 if (text)
9159 {
9160 struct cleanup *back_to = make_cleanup (xfree, text);
9161
9162 result = parse_memory_map (text);
9163 do_cleanups (back_to);
9164 }
9165
9166 return result;
9167 }
9168
9169 static void
9170 packet_command (char *args, int from_tty)
9171 {
9172 struct remote_state *rs = get_remote_state ();
9173
9174 if (!rs->remote_desc)
9175 error (_("command can only be used with remote target"));
9176
9177 if (!args)
9178 error (_("remote-packet command requires packet text as argument"));
9179
9180 puts_filtered ("sending: ");
9181 print_packet (args);
9182 puts_filtered ("\n");
9183 putpkt (args);
9184
9185 getpkt (&rs->buf, &rs->buf_size, 0);
9186 puts_filtered ("received: ");
9187 print_packet (rs->buf);
9188 puts_filtered ("\n");
9189 }
9190
9191 #if 0
9192 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
9193
9194 static void display_thread_info (struct gdb_ext_thread_info *info);
9195
9196 static void threadset_test_cmd (char *cmd, int tty);
9197
9198 static void threadalive_test (char *cmd, int tty);
9199
9200 static void threadlist_test_cmd (char *cmd, int tty);
9201
9202 int get_and_display_threadinfo (threadref *ref);
9203
9204 static void threadinfo_test_cmd (char *cmd, int tty);
9205
9206 static int thread_display_step (threadref *ref, void *context);
9207
9208 static void threadlist_update_test_cmd (char *cmd, int tty);
9209
9210 static void init_remote_threadtests (void);
9211
9212 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
9213
9214 static void
9215 threadset_test_cmd (char *cmd, int tty)
9216 {
9217 int sample_thread = SAMPLE_THREAD;
9218
9219 printf_filtered (_("Remote threadset test\n"));
9220 set_general_thread (sample_thread);
9221 }
9222
9223
9224 static void
9225 threadalive_test (char *cmd, int tty)
9226 {
9227 int sample_thread = SAMPLE_THREAD;
9228 int pid = ptid_get_pid (inferior_ptid);
9229 ptid_t ptid = ptid_build (pid, 0, sample_thread);
9230
9231 if (remote_thread_alive (ptid))
9232 printf_filtered ("PASS: Thread alive test\n");
9233 else
9234 printf_filtered ("FAIL: Thread alive test\n");
9235 }
9236
9237 void output_threadid (char *title, threadref *ref);
9238
9239 void
9240 output_threadid (char *title, threadref *ref)
9241 {
9242 char hexid[20];
9243
9244 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
9245 hexid[16] = 0;
9246 printf_filtered ("%s %s\n", title, (&hexid[0]));
9247 }
9248
9249 static void
9250 threadlist_test_cmd (char *cmd, int tty)
9251 {
9252 int startflag = 1;
9253 threadref nextthread;
9254 int done, result_count;
9255 threadref threadlist[3];
9256
9257 printf_filtered ("Remote Threadlist test\n");
9258 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
9259 &result_count, &threadlist[0]))
9260 printf_filtered ("FAIL: threadlist test\n");
9261 else
9262 {
9263 threadref *scan = threadlist;
9264 threadref *limit = scan + result_count;
9265
9266 while (scan < limit)
9267 output_threadid (" thread ", scan++);
9268 }
9269 }
9270
9271 void
9272 display_thread_info (struct gdb_ext_thread_info *info)
9273 {
9274 output_threadid ("Threadid: ", &info->threadid);
9275 printf_filtered ("Name: %s\n ", info->shortname);
9276 printf_filtered ("State: %s\n", info->display);
9277 printf_filtered ("other: %s\n\n", info->more_display);
9278 }
9279
9280 int
9281 get_and_display_threadinfo (threadref *ref)
9282 {
9283 int result;
9284 int set;
9285 struct gdb_ext_thread_info threadinfo;
9286
9287 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9288 | TAG_MOREDISPLAY | TAG_DISPLAY;
9289 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9290 display_thread_info (&threadinfo);
9291 return result;
9292 }
9293
9294 static void
9295 threadinfo_test_cmd (char *cmd, int tty)
9296 {
9297 int athread = SAMPLE_THREAD;
9298 threadref thread;
9299 int set;
9300
9301 int_to_threadref (&thread, athread);
9302 printf_filtered ("Remote Threadinfo test\n");
9303 if (!get_and_display_threadinfo (&thread))
9304 printf_filtered ("FAIL cannot get thread info\n");
9305 }
9306
9307 static int
9308 thread_display_step (threadref *ref, void *context)
9309 {
9310 /* output_threadid(" threadstep ",ref); *//* simple test */
9311 return get_and_display_threadinfo (ref);
9312 }
9313
9314 static void
9315 threadlist_update_test_cmd (char *cmd, int tty)
9316 {
9317 printf_filtered ("Remote Threadlist update test\n");
9318 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9319 }
9320
9321 static void
9322 init_remote_threadtests (void)
9323 {
9324 add_com ("tlist", class_obscure, threadlist_test_cmd,
9325 _("Fetch and print the remote list of "
9326 "thread identifiers, one pkt only"));
9327 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9328 _("Fetch and display info about one thread"));
9329 add_com ("tset", class_obscure, threadset_test_cmd,
9330 _("Test setting to a different thread"));
9331 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9332 _("Iterate through updating all remote thread info"));
9333 add_com ("talive", class_obscure, threadalive_test,
9334 _(" Remote thread alive test "));
9335 }
9336
9337 #endif /* 0 */
9338
9339 /* Convert a thread ID to a string. Returns the string in a static
9340 buffer. */
9341
9342 static char *
9343 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9344 {
9345 static char buf[64];
9346 struct remote_state *rs = get_remote_state ();
9347
9348 if (ptid_equal (ptid, null_ptid))
9349 return normal_pid_to_str (ptid);
9350 else if (ptid_is_pid (ptid))
9351 {
9352 /* Printing an inferior target id. */
9353
9354 /* When multi-process extensions are off, there's no way in the
9355 remote protocol to know the remote process id, if there's any
9356 at all. There's one exception --- when we're connected with
9357 target extended-remote, and we manually attached to a process
9358 with "attach PID". We don't record anywhere a flag that
9359 allows us to distinguish that case from the case of
9360 connecting with extended-remote and the stub already being
9361 attached to a process, and reporting yes to qAttached, hence
9362 no smart special casing here. */
9363 if (!remote_multi_process_p (rs))
9364 {
9365 xsnprintf (buf, sizeof buf, "Remote target");
9366 return buf;
9367 }
9368
9369 return normal_pid_to_str (ptid);
9370 }
9371 else
9372 {
9373 if (ptid_equal (magic_null_ptid, ptid))
9374 xsnprintf (buf, sizeof buf, "Thread <main>");
9375 else if (rs->extended && remote_multi_process_p (rs))
9376 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9377 ptid_get_pid (ptid), ptid_get_tid (ptid));
9378 else
9379 xsnprintf (buf, sizeof buf, "Thread %ld",
9380 ptid_get_tid (ptid));
9381 return buf;
9382 }
9383 }
9384
9385 /* Get the address of the thread local variable in OBJFILE which is
9386 stored at OFFSET within the thread local storage for thread PTID. */
9387
9388 static CORE_ADDR
9389 remote_get_thread_local_address (struct target_ops *ops,
9390 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9391 {
9392 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
9393 {
9394 struct remote_state *rs = get_remote_state ();
9395 char *p = rs->buf;
9396 char *endp = rs->buf + get_remote_packet_size ();
9397 enum packet_result result;
9398
9399 strcpy (p, "qGetTLSAddr:");
9400 p += strlen (p);
9401 p = write_ptid (p, endp, ptid);
9402 *p++ = ',';
9403 p += hexnumstr (p, offset);
9404 *p++ = ',';
9405 p += hexnumstr (p, lm);
9406 *p++ = '\0';
9407
9408 putpkt (rs->buf);
9409 getpkt (&rs->buf, &rs->buf_size, 0);
9410 result = packet_ok (rs->buf,
9411 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9412 if (result == PACKET_OK)
9413 {
9414 ULONGEST result;
9415
9416 unpack_varlen_hex (rs->buf, &result);
9417 return result;
9418 }
9419 else if (result == PACKET_UNKNOWN)
9420 throw_error (TLS_GENERIC_ERROR,
9421 _("Remote target doesn't support qGetTLSAddr packet"));
9422 else
9423 throw_error (TLS_GENERIC_ERROR,
9424 _("Remote target failed to process qGetTLSAddr request"));
9425 }
9426 else
9427 throw_error (TLS_GENERIC_ERROR,
9428 _("TLS not supported or disabled on this target"));
9429 /* Not reached. */
9430 return 0;
9431 }
9432
9433 /* Provide thread local base, i.e. Thread Information Block address.
9434 Returns 1 if ptid is found and thread_local_base is non zero. */
9435
9436 static int
9437 remote_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
9438 {
9439 if (remote_protocol_packets[PACKET_qGetTIBAddr].support != PACKET_DISABLE)
9440 {
9441 struct remote_state *rs = get_remote_state ();
9442 char *p = rs->buf;
9443 char *endp = rs->buf + get_remote_packet_size ();
9444 enum packet_result result;
9445
9446 strcpy (p, "qGetTIBAddr:");
9447 p += strlen (p);
9448 p = write_ptid (p, endp, ptid);
9449 *p++ = '\0';
9450
9451 putpkt (rs->buf);
9452 getpkt (&rs->buf, &rs->buf_size, 0);
9453 result = packet_ok (rs->buf,
9454 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9455 if (result == PACKET_OK)
9456 {
9457 ULONGEST result;
9458
9459 unpack_varlen_hex (rs->buf, &result);
9460 if (addr)
9461 *addr = (CORE_ADDR) result;
9462 return 1;
9463 }
9464 else if (result == PACKET_UNKNOWN)
9465 error (_("Remote target doesn't support qGetTIBAddr packet"));
9466 else
9467 error (_("Remote target failed to process qGetTIBAddr request"));
9468 }
9469 else
9470 error (_("qGetTIBAddr not supported or disabled on this target"));
9471 /* Not reached. */
9472 return 0;
9473 }
9474
9475 /* Support for inferring a target description based on the current
9476 architecture and the size of a 'g' packet. While the 'g' packet
9477 can have any size (since optional registers can be left off the
9478 end), some sizes are easily recognizable given knowledge of the
9479 approximate architecture. */
9480
9481 struct remote_g_packet_guess
9482 {
9483 int bytes;
9484 const struct target_desc *tdesc;
9485 };
9486 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
9487 DEF_VEC_O(remote_g_packet_guess_s);
9488
9489 struct remote_g_packet_data
9490 {
9491 VEC(remote_g_packet_guess_s) *guesses;
9492 };
9493
9494 static struct gdbarch_data *remote_g_packet_data_handle;
9495
9496 static void *
9497 remote_g_packet_data_init (struct obstack *obstack)
9498 {
9499 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
9500 }
9501
9502 void
9503 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
9504 const struct target_desc *tdesc)
9505 {
9506 struct remote_g_packet_data *data
9507 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
9508 struct remote_g_packet_guess new_guess, *guess;
9509 int ix;
9510
9511 gdb_assert (tdesc != NULL);
9512
9513 for (ix = 0;
9514 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9515 ix++)
9516 if (guess->bytes == bytes)
9517 internal_error (__FILE__, __LINE__,
9518 _("Duplicate g packet description added for size %d"),
9519 bytes);
9520
9521 new_guess.bytes = bytes;
9522 new_guess.tdesc = tdesc;
9523 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
9524 }
9525
9526 /* Return 1 if remote_read_description would do anything on this target
9527 and architecture, 0 otherwise. */
9528
9529 static int
9530 remote_read_description_p (struct target_ops *target)
9531 {
9532 struct remote_g_packet_data *data
9533 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9534
9535 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9536 return 1;
9537
9538 return 0;
9539 }
9540
9541 static const struct target_desc *
9542 remote_read_description (struct target_ops *target)
9543 {
9544 struct remote_g_packet_data *data
9545 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
9546
9547 /* Do not try this during initial connection, when we do not know
9548 whether there is a running but stopped thread. */
9549 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
9550 return NULL;
9551
9552 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
9553 {
9554 struct remote_g_packet_guess *guess;
9555 int ix;
9556 int bytes = send_g_packet ();
9557
9558 for (ix = 0;
9559 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
9560 ix++)
9561 if (guess->bytes == bytes)
9562 return guess->tdesc;
9563
9564 /* We discard the g packet. A minor optimization would be to
9565 hold on to it, and fill the register cache once we have selected
9566 an architecture, but it's too tricky to do safely. */
9567 }
9568
9569 return NULL;
9570 }
9571
9572 /* Remote file transfer support. This is host-initiated I/O, not
9573 target-initiated; for target-initiated, see remote-fileio.c. */
9574
9575 /* If *LEFT is at least the length of STRING, copy STRING to
9576 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9577 decrease *LEFT. Otherwise raise an error. */
9578
9579 static void
9580 remote_buffer_add_string (char **buffer, int *left, char *string)
9581 {
9582 int len = strlen (string);
9583
9584 if (len > *left)
9585 error (_("Packet too long for target."));
9586
9587 memcpy (*buffer, string, len);
9588 *buffer += len;
9589 *left -= len;
9590
9591 /* NUL-terminate the buffer as a convenience, if there is
9592 room. */
9593 if (*left)
9594 **buffer = '\0';
9595 }
9596
9597 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
9598 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9599 decrease *LEFT. Otherwise raise an error. */
9600
9601 static void
9602 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
9603 int len)
9604 {
9605 if (2 * len > *left)
9606 error (_("Packet too long for target."));
9607
9608 bin2hex (bytes, *buffer, len);
9609 *buffer += 2 * len;
9610 *left -= 2 * len;
9611
9612 /* NUL-terminate the buffer as a convenience, if there is
9613 room. */
9614 if (*left)
9615 **buffer = '\0';
9616 }
9617
9618 /* If *LEFT is large enough, convert VALUE to hex and add it to
9619 *BUFFER, update *BUFFER to point to the new end of the buffer, and
9620 decrease *LEFT. Otherwise raise an error. */
9621
9622 static void
9623 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
9624 {
9625 int len = hexnumlen (value);
9626
9627 if (len > *left)
9628 error (_("Packet too long for target."));
9629
9630 hexnumstr (*buffer, value);
9631 *buffer += len;
9632 *left -= len;
9633
9634 /* NUL-terminate the buffer as a convenience, if there is
9635 room. */
9636 if (*left)
9637 **buffer = '\0';
9638 }
9639
9640 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
9641 value, *REMOTE_ERRNO to the remote error number or zero if none
9642 was included, and *ATTACHMENT to point to the start of the annex
9643 if any. The length of the packet isn't needed here; there may
9644 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
9645
9646 Return 0 if the packet could be parsed, -1 if it could not. If
9647 -1 is returned, the other variables may not be initialized. */
9648
9649 static int
9650 remote_hostio_parse_result (char *buffer, int *retcode,
9651 int *remote_errno, char **attachment)
9652 {
9653 char *p, *p2;
9654
9655 *remote_errno = 0;
9656 *attachment = NULL;
9657
9658 if (buffer[0] != 'F')
9659 return -1;
9660
9661 errno = 0;
9662 *retcode = strtol (&buffer[1], &p, 16);
9663 if (errno != 0 || p == &buffer[1])
9664 return -1;
9665
9666 /* Check for ",errno". */
9667 if (*p == ',')
9668 {
9669 errno = 0;
9670 *remote_errno = strtol (p + 1, &p2, 16);
9671 if (errno != 0 || p + 1 == p2)
9672 return -1;
9673 p = p2;
9674 }
9675
9676 /* Check for ";attachment". If there is no attachment, the
9677 packet should end here. */
9678 if (*p == ';')
9679 {
9680 *attachment = p + 1;
9681 return 0;
9682 }
9683 else if (*p == '\0')
9684 return 0;
9685 else
9686 return -1;
9687 }
9688
9689 /* Send a prepared I/O packet to the target and read its response.
9690 The prepared packet is in the global RS->BUF before this function
9691 is called, and the answer is there when we return.
9692
9693 COMMAND_BYTES is the length of the request to send, which may include
9694 binary data. WHICH_PACKET is the packet configuration to check
9695 before attempting a packet. If an error occurs, *REMOTE_ERRNO
9696 is set to the error number and -1 is returned. Otherwise the value
9697 returned by the function is returned.
9698
9699 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
9700 attachment is expected; an error will be reported if there's a
9701 mismatch. If one is found, *ATTACHMENT will be set to point into
9702 the packet buffer and *ATTACHMENT_LEN will be set to the
9703 attachment's length. */
9704
9705 static int
9706 remote_hostio_send_command (int command_bytes, int which_packet,
9707 int *remote_errno, char **attachment,
9708 int *attachment_len)
9709 {
9710 struct remote_state *rs = get_remote_state ();
9711 int ret, bytes_read;
9712 char *attachment_tmp;
9713
9714 if (!rs->remote_desc
9715 || remote_protocol_packets[which_packet].support == PACKET_DISABLE)
9716 {
9717 *remote_errno = FILEIO_ENOSYS;
9718 return -1;
9719 }
9720
9721 putpkt_binary (rs->buf, command_bytes);
9722 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9723
9724 /* If it timed out, something is wrong. Don't try to parse the
9725 buffer. */
9726 if (bytes_read < 0)
9727 {
9728 *remote_errno = FILEIO_EINVAL;
9729 return -1;
9730 }
9731
9732 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
9733 {
9734 case PACKET_ERROR:
9735 *remote_errno = FILEIO_EINVAL;
9736 return -1;
9737 case PACKET_UNKNOWN:
9738 *remote_errno = FILEIO_ENOSYS;
9739 return -1;
9740 case PACKET_OK:
9741 break;
9742 }
9743
9744 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
9745 &attachment_tmp))
9746 {
9747 *remote_errno = FILEIO_EINVAL;
9748 return -1;
9749 }
9750
9751 /* Make sure we saw an attachment if and only if we expected one. */
9752 if ((attachment_tmp == NULL && attachment != NULL)
9753 || (attachment_tmp != NULL && attachment == NULL))
9754 {
9755 *remote_errno = FILEIO_EINVAL;
9756 return -1;
9757 }
9758
9759 /* If an attachment was found, it must point into the packet buffer;
9760 work out how many bytes there were. */
9761 if (attachment_tmp != NULL)
9762 {
9763 *attachment = attachment_tmp;
9764 *attachment_len = bytes_read - (*attachment - rs->buf);
9765 }
9766
9767 return ret;
9768 }
9769
9770 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
9771 remote file descriptor, or -1 if an error occurs (and set
9772 *REMOTE_ERRNO). */
9773
9774 static int
9775 remote_hostio_open (const char *filename, int flags, int mode,
9776 int *remote_errno)
9777 {
9778 struct remote_state *rs = get_remote_state ();
9779 char *p = rs->buf;
9780 int left = get_remote_packet_size () - 1;
9781
9782 remote_buffer_add_string (&p, &left, "vFile:open:");
9783
9784 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9785 strlen (filename));
9786 remote_buffer_add_string (&p, &left, ",");
9787
9788 remote_buffer_add_int (&p, &left, flags);
9789 remote_buffer_add_string (&p, &left, ",");
9790
9791 remote_buffer_add_int (&p, &left, mode);
9792
9793 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
9794 remote_errno, NULL, NULL);
9795 }
9796
9797 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
9798 Return the number of bytes written, or -1 if an error occurs (and
9799 set *REMOTE_ERRNO). */
9800
9801 static int
9802 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
9803 ULONGEST offset, int *remote_errno)
9804 {
9805 struct remote_state *rs = get_remote_state ();
9806 char *p = rs->buf;
9807 int left = get_remote_packet_size ();
9808 int out_len;
9809
9810 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
9811
9812 remote_buffer_add_int (&p, &left, fd);
9813 remote_buffer_add_string (&p, &left, ",");
9814
9815 remote_buffer_add_int (&p, &left, offset);
9816 remote_buffer_add_string (&p, &left, ",");
9817
9818 p += remote_escape_output (write_buf, len, (gdb_byte *) p, &out_len,
9819 get_remote_packet_size () - (p - rs->buf));
9820
9821 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
9822 remote_errno, NULL, NULL);
9823 }
9824
9825 /* Read up to LEN bytes FD on the remote target into READ_BUF
9826 Return the number of bytes read, or -1 if an error occurs (and
9827 set *REMOTE_ERRNO). */
9828
9829 static int
9830 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
9831 ULONGEST offset, int *remote_errno)
9832 {
9833 struct remote_state *rs = get_remote_state ();
9834 char *p = rs->buf;
9835 char *attachment;
9836 int left = get_remote_packet_size ();
9837 int ret, attachment_len;
9838 int read_len;
9839
9840 remote_buffer_add_string (&p, &left, "vFile:pread:");
9841
9842 remote_buffer_add_int (&p, &left, fd);
9843 remote_buffer_add_string (&p, &left, ",");
9844
9845 remote_buffer_add_int (&p, &left, len);
9846 remote_buffer_add_string (&p, &left, ",");
9847
9848 remote_buffer_add_int (&p, &left, offset);
9849
9850 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
9851 remote_errno, &attachment,
9852 &attachment_len);
9853
9854 if (ret < 0)
9855 return ret;
9856
9857 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9858 read_buf, len);
9859 if (read_len != ret)
9860 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
9861
9862 return ret;
9863 }
9864
9865 /* Close FD on the remote target. Return 0, or -1 if an error occurs
9866 (and set *REMOTE_ERRNO). */
9867
9868 static int
9869 remote_hostio_close (int fd, int *remote_errno)
9870 {
9871 struct remote_state *rs = get_remote_state ();
9872 char *p = rs->buf;
9873 int left = get_remote_packet_size () - 1;
9874
9875 remote_buffer_add_string (&p, &left, "vFile:close:");
9876
9877 remote_buffer_add_int (&p, &left, fd);
9878
9879 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
9880 remote_errno, NULL, NULL);
9881 }
9882
9883 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
9884 occurs (and set *REMOTE_ERRNO). */
9885
9886 static int
9887 remote_hostio_unlink (const char *filename, int *remote_errno)
9888 {
9889 struct remote_state *rs = get_remote_state ();
9890 char *p = rs->buf;
9891 int left = get_remote_packet_size () - 1;
9892
9893 remote_buffer_add_string (&p, &left, "vFile:unlink:");
9894
9895 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9896 strlen (filename));
9897
9898 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
9899 remote_errno, NULL, NULL);
9900 }
9901
9902 /* Read value of symbolic link FILENAME on the remote target. Return
9903 a null-terminated string allocated via xmalloc, or NULL if an error
9904 occurs (and set *REMOTE_ERRNO). */
9905
9906 static char *
9907 remote_hostio_readlink (const char *filename, int *remote_errno)
9908 {
9909 struct remote_state *rs = get_remote_state ();
9910 char *p = rs->buf;
9911 char *attachment;
9912 int left = get_remote_packet_size ();
9913 int len, attachment_len;
9914 int read_len;
9915 char *ret;
9916
9917 remote_buffer_add_string (&p, &left, "vFile:readlink:");
9918
9919 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
9920 strlen (filename));
9921
9922 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
9923 remote_errno, &attachment,
9924 &attachment_len);
9925
9926 if (len < 0)
9927 return NULL;
9928
9929 ret = xmalloc (len + 1);
9930
9931 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
9932 (gdb_byte *) ret, len);
9933 if (read_len != len)
9934 error (_("Readlink returned %d, but %d bytes."), len, read_len);
9935
9936 ret[len] = '\0';
9937 return ret;
9938 }
9939
9940 static int
9941 remote_fileio_errno_to_host (int errnum)
9942 {
9943 switch (errnum)
9944 {
9945 case FILEIO_EPERM:
9946 return EPERM;
9947 case FILEIO_ENOENT:
9948 return ENOENT;
9949 case FILEIO_EINTR:
9950 return EINTR;
9951 case FILEIO_EIO:
9952 return EIO;
9953 case FILEIO_EBADF:
9954 return EBADF;
9955 case FILEIO_EACCES:
9956 return EACCES;
9957 case FILEIO_EFAULT:
9958 return EFAULT;
9959 case FILEIO_EBUSY:
9960 return EBUSY;
9961 case FILEIO_EEXIST:
9962 return EEXIST;
9963 case FILEIO_ENODEV:
9964 return ENODEV;
9965 case FILEIO_ENOTDIR:
9966 return ENOTDIR;
9967 case FILEIO_EISDIR:
9968 return EISDIR;
9969 case FILEIO_EINVAL:
9970 return EINVAL;
9971 case FILEIO_ENFILE:
9972 return ENFILE;
9973 case FILEIO_EMFILE:
9974 return EMFILE;
9975 case FILEIO_EFBIG:
9976 return EFBIG;
9977 case FILEIO_ENOSPC:
9978 return ENOSPC;
9979 case FILEIO_ESPIPE:
9980 return ESPIPE;
9981 case FILEIO_EROFS:
9982 return EROFS;
9983 case FILEIO_ENOSYS:
9984 return ENOSYS;
9985 case FILEIO_ENAMETOOLONG:
9986 return ENAMETOOLONG;
9987 }
9988 return -1;
9989 }
9990
9991 static char *
9992 remote_hostio_error (int errnum)
9993 {
9994 int host_error = remote_fileio_errno_to_host (errnum);
9995
9996 if (host_error == -1)
9997 error (_("Unknown remote I/O error %d"), errnum);
9998 else
9999 error (_("Remote I/O error: %s"), safe_strerror (host_error));
10000 }
10001
10002 static void
10003 remote_hostio_close_cleanup (void *opaque)
10004 {
10005 int fd = *(int *) opaque;
10006 int remote_errno;
10007
10008 remote_hostio_close (fd, &remote_errno);
10009 }
10010
10011
10012 static void *
10013 remote_bfd_iovec_open (struct bfd *abfd, void *open_closure)
10014 {
10015 const char *filename = bfd_get_filename (abfd);
10016 int fd, remote_errno;
10017 int *stream;
10018
10019 gdb_assert (remote_filename_p (filename));
10020
10021 fd = remote_hostio_open (filename + 7, FILEIO_O_RDONLY, 0, &remote_errno);
10022 if (fd == -1)
10023 {
10024 errno = remote_fileio_errno_to_host (remote_errno);
10025 bfd_set_error (bfd_error_system_call);
10026 return NULL;
10027 }
10028
10029 stream = xmalloc (sizeof (int));
10030 *stream = fd;
10031 return stream;
10032 }
10033
10034 static int
10035 remote_bfd_iovec_close (struct bfd *abfd, void *stream)
10036 {
10037 int fd = *(int *)stream;
10038 int remote_errno;
10039
10040 xfree (stream);
10041
10042 /* Ignore errors on close; these may happen if the remote
10043 connection was already torn down. */
10044 remote_hostio_close (fd, &remote_errno);
10045
10046 /* Zero means success. */
10047 return 0;
10048 }
10049
10050 static file_ptr
10051 remote_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
10052 file_ptr nbytes, file_ptr offset)
10053 {
10054 int fd = *(int *)stream;
10055 int remote_errno;
10056 file_ptr pos, bytes;
10057
10058 pos = 0;
10059 while (nbytes > pos)
10060 {
10061 bytes = remote_hostio_pread (fd, (gdb_byte *) buf + pos, nbytes - pos,
10062 offset + pos, &remote_errno);
10063 if (bytes == 0)
10064 /* Success, but no bytes, means end-of-file. */
10065 break;
10066 if (bytes == -1)
10067 {
10068 errno = remote_fileio_errno_to_host (remote_errno);
10069 bfd_set_error (bfd_error_system_call);
10070 return -1;
10071 }
10072
10073 pos += bytes;
10074 }
10075
10076 return pos;
10077 }
10078
10079 static int
10080 remote_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
10081 {
10082 /* FIXME: We should probably implement remote_hostio_stat. */
10083 sb->st_size = INT_MAX;
10084 return 0;
10085 }
10086
10087 int
10088 remote_filename_p (const char *filename)
10089 {
10090 return strncmp (filename, "remote:", 7) == 0;
10091 }
10092
10093 bfd *
10094 remote_bfd_open (const char *remote_file, const char *target)
10095 {
10096 bfd *abfd = gdb_bfd_openr_iovec (remote_file, target,
10097 remote_bfd_iovec_open, NULL,
10098 remote_bfd_iovec_pread,
10099 remote_bfd_iovec_close,
10100 remote_bfd_iovec_stat);
10101
10102 return abfd;
10103 }
10104
10105 void
10106 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
10107 {
10108 struct cleanup *back_to, *close_cleanup;
10109 int retcode, fd, remote_errno, bytes, io_size;
10110 FILE *file;
10111 gdb_byte *buffer;
10112 int bytes_in_buffer;
10113 int saw_eof;
10114 ULONGEST offset;
10115 struct remote_state *rs = get_remote_state ();
10116
10117 if (!rs->remote_desc)
10118 error (_("command can only be used with remote target"));
10119
10120 file = gdb_fopen_cloexec (local_file, "rb");
10121 if (file == NULL)
10122 perror_with_name (local_file);
10123 back_to = make_cleanup_fclose (file);
10124
10125 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
10126 | FILEIO_O_TRUNC),
10127 0700, &remote_errno);
10128 if (fd == -1)
10129 remote_hostio_error (remote_errno);
10130
10131 /* Send up to this many bytes at once. They won't all fit in the
10132 remote packet limit, so we'll transfer slightly fewer. */
10133 io_size = get_remote_packet_size ();
10134 buffer = xmalloc (io_size);
10135 make_cleanup (xfree, buffer);
10136
10137 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10138
10139 bytes_in_buffer = 0;
10140 saw_eof = 0;
10141 offset = 0;
10142 while (bytes_in_buffer || !saw_eof)
10143 {
10144 if (!saw_eof)
10145 {
10146 bytes = fread (buffer + bytes_in_buffer, 1,
10147 io_size - bytes_in_buffer,
10148 file);
10149 if (bytes == 0)
10150 {
10151 if (ferror (file))
10152 error (_("Error reading %s."), local_file);
10153 else
10154 {
10155 /* EOF. Unless there is something still in the
10156 buffer from the last iteration, we are done. */
10157 saw_eof = 1;
10158 if (bytes_in_buffer == 0)
10159 break;
10160 }
10161 }
10162 }
10163 else
10164 bytes = 0;
10165
10166 bytes += bytes_in_buffer;
10167 bytes_in_buffer = 0;
10168
10169 retcode = remote_hostio_pwrite (fd, buffer, bytes,
10170 offset, &remote_errno);
10171
10172 if (retcode < 0)
10173 remote_hostio_error (remote_errno);
10174 else if (retcode == 0)
10175 error (_("Remote write of %d bytes returned 0!"), bytes);
10176 else if (retcode < bytes)
10177 {
10178 /* Short write. Save the rest of the read data for the next
10179 write. */
10180 bytes_in_buffer = bytes - retcode;
10181 memmove (buffer, buffer + retcode, bytes_in_buffer);
10182 }
10183
10184 offset += retcode;
10185 }
10186
10187 discard_cleanups (close_cleanup);
10188 if (remote_hostio_close (fd, &remote_errno))
10189 remote_hostio_error (remote_errno);
10190
10191 if (from_tty)
10192 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
10193 do_cleanups (back_to);
10194 }
10195
10196 void
10197 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
10198 {
10199 struct cleanup *back_to, *close_cleanup;
10200 int fd, remote_errno, bytes, io_size;
10201 FILE *file;
10202 gdb_byte *buffer;
10203 ULONGEST offset;
10204 struct remote_state *rs = get_remote_state ();
10205
10206 if (!rs->remote_desc)
10207 error (_("command can only be used with remote target"));
10208
10209 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
10210 if (fd == -1)
10211 remote_hostio_error (remote_errno);
10212
10213 file = gdb_fopen_cloexec (local_file, "wb");
10214 if (file == NULL)
10215 perror_with_name (local_file);
10216 back_to = make_cleanup_fclose (file);
10217
10218 /* Send up to this many bytes at once. They won't all fit in the
10219 remote packet limit, so we'll transfer slightly fewer. */
10220 io_size = get_remote_packet_size ();
10221 buffer = xmalloc (io_size);
10222 make_cleanup (xfree, buffer);
10223
10224 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10225
10226 offset = 0;
10227 while (1)
10228 {
10229 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
10230 if (bytes == 0)
10231 /* Success, but no bytes, means end-of-file. */
10232 break;
10233 if (bytes == -1)
10234 remote_hostio_error (remote_errno);
10235
10236 offset += bytes;
10237
10238 bytes = fwrite (buffer, 1, bytes, file);
10239 if (bytes == 0)
10240 perror_with_name (local_file);
10241 }
10242
10243 discard_cleanups (close_cleanup);
10244 if (remote_hostio_close (fd, &remote_errno))
10245 remote_hostio_error (remote_errno);
10246
10247 if (from_tty)
10248 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
10249 do_cleanups (back_to);
10250 }
10251
10252 void
10253 remote_file_delete (const char *remote_file, int from_tty)
10254 {
10255 int retcode, remote_errno;
10256 struct remote_state *rs = get_remote_state ();
10257
10258 if (!rs->remote_desc)
10259 error (_("command can only be used with remote target"));
10260
10261 retcode = remote_hostio_unlink (remote_file, &remote_errno);
10262 if (retcode == -1)
10263 remote_hostio_error (remote_errno);
10264
10265 if (from_tty)
10266 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
10267 }
10268
10269 static void
10270 remote_put_command (char *args, int from_tty)
10271 {
10272 struct cleanup *back_to;
10273 char **argv;
10274
10275 if (args == NULL)
10276 error_no_arg (_("file to put"));
10277
10278 argv = gdb_buildargv (args);
10279 back_to = make_cleanup_freeargv (argv);
10280 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10281 error (_("Invalid parameters to remote put"));
10282
10283 remote_file_put (argv[0], argv[1], from_tty);
10284
10285 do_cleanups (back_to);
10286 }
10287
10288 static void
10289 remote_get_command (char *args, int from_tty)
10290 {
10291 struct cleanup *back_to;
10292 char **argv;
10293
10294 if (args == NULL)
10295 error_no_arg (_("file to get"));
10296
10297 argv = gdb_buildargv (args);
10298 back_to = make_cleanup_freeargv (argv);
10299 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10300 error (_("Invalid parameters to remote get"));
10301
10302 remote_file_get (argv[0], argv[1], from_tty);
10303
10304 do_cleanups (back_to);
10305 }
10306
10307 static void
10308 remote_delete_command (char *args, int from_tty)
10309 {
10310 struct cleanup *back_to;
10311 char **argv;
10312
10313 if (args == NULL)
10314 error_no_arg (_("file to delete"));
10315
10316 argv = gdb_buildargv (args);
10317 back_to = make_cleanup_freeargv (argv);
10318 if (argv[0] == NULL || argv[1] != NULL)
10319 error (_("Invalid parameters to remote delete"));
10320
10321 remote_file_delete (argv[0], from_tty);
10322
10323 do_cleanups (back_to);
10324 }
10325
10326 static void
10327 remote_command (char *args, int from_tty)
10328 {
10329 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
10330 }
10331
10332 static int
10333 remote_can_execute_reverse (void)
10334 {
10335 if (remote_protocol_packets[PACKET_bs].support == PACKET_ENABLE
10336 || remote_protocol_packets[PACKET_bc].support == PACKET_ENABLE)
10337 return 1;
10338 else
10339 return 0;
10340 }
10341
10342 static int
10343 remote_supports_non_stop (void)
10344 {
10345 return 1;
10346 }
10347
10348 static int
10349 remote_supports_disable_randomization (void)
10350 {
10351 /* Only supported in extended mode. */
10352 return 0;
10353 }
10354
10355 static int
10356 remote_supports_multi_process (void)
10357 {
10358 struct remote_state *rs = get_remote_state ();
10359
10360 /* Only extended-remote handles being attached to multiple
10361 processes, even though plain remote can use the multi-process
10362 thread id extensions, so that GDB knows the target process's
10363 PID. */
10364 return rs->extended && remote_multi_process_p (rs);
10365 }
10366
10367 static int
10368 remote_supports_cond_tracepoints (void)
10369 {
10370 struct remote_state *rs = get_remote_state ();
10371
10372 return rs->cond_tracepoints;
10373 }
10374
10375 static int
10376 remote_supports_cond_breakpoints (void)
10377 {
10378 struct remote_state *rs = get_remote_state ();
10379
10380 return rs->cond_breakpoints;
10381 }
10382
10383 static int
10384 remote_supports_fast_tracepoints (void)
10385 {
10386 struct remote_state *rs = get_remote_state ();
10387
10388 return rs->fast_tracepoints;
10389 }
10390
10391 static int
10392 remote_supports_static_tracepoints (void)
10393 {
10394 struct remote_state *rs = get_remote_state ();
10395
10396 return rs->static_tracepoints;
10397 }
10398
10399 static int
10400 remote_supports_install_in_trace (void)
10401 {
10402 struct remote_state *rs = get_remote_state ();
10403
10404 return rs->install_in_trace;
10405 }
10406
10407 static int
10408 remote_supports_enable_disable_tracepoint (void)
10409 {
10410 struct remote_state *rs = get_remote_state ();
10411
10412 return rs->enable_disable_tracepoints;
10413 }
10414
10415 static int
10416 remote_supports_string_tracing (void)
10417 {
10418 struct remote_state *rs = get_remote_state ();
10419
10420 return rs->string_tracing;
10421 }
10422
10423 static int
10424 remote_can_run_breakpoint_commands (void)
10425 {
10426 struct remote_state *rs = get_remote_state ();
10427
10428 return rs->breakpoint_commands;
10429 }
10430
10431 static void
10432 remote_trace_init (void)
10433 {
10434 putpkt ("QTinit");
10435 remote_get_noisy_reply (&target_buf, &target_buf_size);
10436 if (strcmp (target_buf, "OK") != 0)
10437 error (_("Target does not support this command."));
10438 }
10439
10440 static void free_actions_list (char **actions_list);
10441 static void free_actions_list_cleanup_wrapper (void *);
10442 static void
10443 free_actions_list_cleanup_wrapper (void *al)
10444 {
10445 free_actions_list (al);
10446 }
10447
10448 static void
10449 free_actions_list (char **actions_list)
10450 {
10451 int ndx;
10452
10453 if (actions_list == 0)
10454 return;
10455
10456 for (ndx = 0; actions_list[ndx]; ndx++)
10457 xfree (actions_list[ndx]);
10458
10459 xfree (actions_list);
10460 }
10461
10462 /* Recursive routine to walk through command list including loops, and
10463 download packets for each command. */
10464
10465 static void
10466 remote_download_command_source (int num, ULONGEST addr,
10467 struct command_line *cmds)
10468 {
10469 struct remote_state *rs = get_remote_state ();
10470 struct command_line *cmd;
10471
10472 for (cmd = cmds; cmd; cmd = cmd->next)
10473 {
10474 QUIT; /* Allow user to bail out with ^C. */
10475 strcpy (rs->buf, "QTDPsrc:");
10476 encode_source_string (num, addr, "cmd", cmd->line,
10477 rs->buf + strlen (rs->buf),
10478 rs->buf_size - strlen (rs->buf));
10479 putpkt (rs->buf);
10480 remote_get_noisy_reply (&target_buf, &target_buf_size);
10481 if (strcmp (target_buf, "OK"))
10482 warning (_("Target does not support source download."));
10483
10484 if (cmd->control_type == while_control
10485 || cmd->control_type == while_stepping_control)
10486 {
10487 remote_download_command_source (num, addr, *cmd->body_list);
10488
10489 QUIT; /* Allow user to bail out with ^C. */
10490 strcpy (rs->buf, "QTDPsrc:");
10491 encode_source_string (num, addr, "cmd", "end",
10492 rs->buf + strlen (rs->buf),
10493 rs->buf_size - strlen (rs->buf));
10494 putpkt (rs->buf);
10495 remote_get_noisy_reply (&target_buf, &target_buf_size);
10496 if (strcmp (target_buf, "OK"))
10497 warning (_("Target does not support source download."));
10498 }
10499 }
10500 }
10501
10502 static void
10503 remote_download_tracepoint (struct bp_location *loc)
10504 {
10505 #define BUF_SIZE 2048
10506
10507 CORE_ADDR tpaddr;
10508 char addrbuf[40];
10509 char buf[BUF_SIZE];
10510 char **tdp_actions;
10511 char **stepping_actions;
10512 int ndx;
10513 struct cleanup *old_chain = NULL;
10514 struct agent_expr *aexpr;
10515 struct cleanup *aexpr_chain = NULL;
10516 char *pkt;
10517 struct breakpoint *b = loc->owner;
10518 struct tracepoint *t = (struct tracepoint *) b;
10519
10520 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
10521 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
10522 tdp_actions);
10523 (void) make_cleanup (free_actions_list_cleanup_wrapper,
10524 stepping_actions);
10525
10526 tpaddr = loc->address;
10527 sprintf_vma (addrbuf, tpaddr);
10528 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
10529 addrbuf, /* address */
10530 (b->enable_state == bp_enabled ? 'E' : 'D'),
10531 t->step_count, t->pass_count);
10532 /* Fast tracepoints are mostly handled by the target, but we can
10533 tell the target how big of an instruction block should be moved
10534 around. */
10535 if (b->type == bp_fast_tracepoint)
10536 {
10537 /* Only test for support at download time; we may not know
10538 target capabilities at definition time. */
10539 if (remote_supports_fast_tracepoints ())
10540 {
10541 int isize;
10542
10543 if (gdbarch_fast_tracepoint_valid_at (target_gdbarch (),
10544 tpaddr, &isize, NULL))
10545 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
10546 isize);
10547 else
10548 /* If it passed validation at definition but fails now,
10549 something is very wrong. */
10550 internal_error (__FILE__, __LINE__,
10551 _("Fast tracepoint not "
10552 "valid during download"));
10553 }
10554 else
10555 /* Fast tracepoints are functionally identical to regular
10556 tracepoints, so don't take lack of support as a reason to
10557 give up on the trace run. */
10558 warning (_("Target does not support fast tracepoints, "
10559 "downloading %d as regular tracepoint"), b->number);
10560 }
10561 else if (b->type == bp_static_tracepoint)
10562 {
10563 /* Only test for support at download time; we may not know
10564 target capabilities at definition time. */
10565 if (remote_supports_static_tracepoints ())
10566 {
10567 struct static_tracepoint_marker marker;
10568
10569 if (target_static_tracepoint_marker_at (tpaddr, &marker))
10570 strcat (buf, ":S");
10571 else
10572 error (_("Static tracepoint not valid during download"));
10573 }
10574 else
10575 /* Fast tracepoints are functionally identical to regular
10576 tracepoints, so don't take lack of support as a reason
10577 to give up on the trace run. */
10578 error (_("Target does not support static tracepoints"));
10579 }
10580 /* If the tracepoint has a conditional, make it into an agent
10581 expression and append to the definition. */
10582 if (loc->cond)
10583 {
10584 /* Only test support at download time, we may not know target
10585 capabilities at definition time. */
10586 if (remote_supports_cond_tracepoints ())
10587 {
10588 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
10589 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
10590 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
10591 aexpr->len);
10592 pkt = buf + strlen (buf);
10593 for (ndx = 0; ndx < aexpr->len; ++ndx)
10594 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
10595 *pkt = '\0';
10596 do_cleanups (aexpr_chain);
10597 }
10598 else
10599 warning (_("Target does not support conditional tracepoints, "
10600 "ignoring tp %d cond"), b->number);
10601 }
10602
10603 if (b->commands || *default_collect)
10604 strcat (buf, "-");
10605 putpkt (buf);
10606 remote_get_noisy_reply (&target_buf, &target_buf_size);
10607 if (strcmp (target_buf, "OK"))
10608 error (_("Target does not support tracepoints."));
10609
10610 /* do_single_steps (t); */
10611 if (tdp_actions)
10612 {
10613 for (ndx = 0; tdp_actions[ndx]; ndx++)
10614 {
10615 QUIT; /* Allow user to bail out with ^C. */
10616 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
10617 b->number, addrbuf, /* address */
10618 tdp_actions[ndx],
10619 ((tdp_actions[ndx + 1] || stepping_actions)
10620 ? '-' : 0));
10621 putpkt (buf);
10622 remote_get_noisy_reply (&target_buf,
10623 &target_buf_size);
10624 if (strcmp (target_buf, "OK"))
10625 error (_("Error on target while setting tracepoints."));
10626 }
10627 }
10628 if (stepping_actions)
10629 {
10630 for (ndx = 0; stepping_actions[ndx]; ndx++)
10631 {
10632 QUIT; /* Allow user to bail out with ^C. */
10633 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
10634 b->number, addrbuf, /* address */
10635 ((ndx == 0) ? "S" : ""),
10636 stepping_actions[ndx],
10637 (stepping_actions[ndx + 1] ? "-" : ""));
10638 putpkt (buf);
10639 remote_get_noisy_reply (&target_buf,
10640 &target_buf_size);
10641 if (strcmp (target_buf, "OK"))
10642 error (_("Error on target while setting tracepoints."));
10643 }
10644 }
10645
10646 if (remote_protocol_packets[PACKET_TracepointSource].support
10647 == PACKET_ENABLE)
10648 {
10649 if (b->addr_string)
10650 {
10651 strcpy (buf, "QTDPsrc:");
10652 encode_source_string (b->number, loc->address,
10653 "at", b->addr_string, buf + strlen (buf),
10654 2048 - strlen (buf));
10655
10656 putpkt (buf);
10657 remote_get_noisy_reply (&target_buf, &target_buf_size);
10658 if (strcmp (target_buf, "OK"))
10659 warning (_("Target does not support source download."));
10660 }
10661 if (b->cond_string)
10662 {
10663 strcpy (buf, "QTDPsrc:");
10664 encode_source_string (b->number, loc->address,
10665 "cond", b->cond_string, buf + strlen (buf),
10666 2048 - strlen (buf));
10667 putpkt (buf);
10668 remote_get_noisy_reply (&target_buf, &target_buf_size);
10669 if (strcmp (target_buf, "OK"))
10670 warning (_("Target does not support source download."));
10671 }
10672 remote_download_command_source (b->number, loc->address,
10673 breakpoint_commands (b));
10674 }
10675
10676 do_cleanups (old_chain);
10677 }
10678
10679 static int
10680 remote_can_download_tracepoint (void)
10681 {
10682 struct remote_state *rs = get_remote_state ();
10683 struct trace_status *ts;
10684 int status;
10685
10686 /* Don't try to install tracepoints until we've relocated our
10687 symbols, and fetched and merged the target's tracepoint list with
10688 ours. */
10689 if (rs->starting_up)
10690 return 0;
10691
10692 ts = current_trace_status ();
10693 status = remote_get_trace_status (ts);
10694
10695 if (status == -1 || !ts->running_known || !ts->running)
10696 return 0;
10697
10698 /* If we are in a tracing experiment, but remote stub doesn't support
10699 installing tracepoint in trace, we have to return. */
10700 if (!remote_supports_install_in_trace ())
10701 return 0;
10702
10703 return 1;
10704 }
10705
10706
10707 static void
10708 remote_download_trace_state_variable (struct trace_state_variable *tsv)
10709 {
10710 struct remote_state *rs = get_remote_state ();
10711 char *p;
10712
10713 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
10714 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
10715 tsv->builtin);
10716 p = rs->buf + strlen (rs->buf);
10717 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
10718 error (_("Trace state variable name too long for tsv definition packet"));
10719 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, 0);
10720 *p++ = '\0';
10721 putpkt (rs->buf);
10722 remote_get_noisy_reply (&target_buf, &target_buf_size);
10723 if (*target_buf == '\0')
10724 error (_("Target does not support this command."));
10725 if (strcmp (target_buf, "OK") != 0)
10726 error (_("Error on target while downloading trace state variable."));
10727 }
10728
10729 static void
10730 remote_enable_tracepoint (struct bp_location *location)
10731 {
10732 struct remote_state *rs = get_remote_state ();
10733 char addr_buf[40];
10734
10735 sprintf_vma (addr_buf, location->address);
10736 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
10737 location->owner->number, addr_buf);
10738 putpkt (rs->buf);
10739 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10740 if (*rs->buf == '\0')
10741 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
10742 if (strcmp (rs->buf, "OK") != 0)
10743 error (_("Error on target while enabling tracepoint."));
10744 }
10745
10746 static void
10747 remote_disable_tracepoint (struct bp_location *location)
10748 {
10749 struct remote_state *rs = get_remote_state ();
10750 char addr_buf[40];
10751
10752 sprintf_vma (addr_buf, location->address);
10753 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
10754 location->owner->number, addr_buf);
10755 putpkt (rs->buf);
10756 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
10757 if (*rs->buf == '\0')
10758 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
10759 if (strcmp (rs->buf, "OK") != 0)
10760 error (_("Error on target while disabling tracepoint."));
10761 }
10762
10763 static void
10764 remote_trace_set_readonly_regions (void)
10765 {
10766 asection *s;
10767 bfd *abfd = NULL;
10768 bfd_size_type size;
10769 bfd_vma vma;
10770 int anysecs = 0;
10771 int offset = 0;
10772
10773 if (!exec_bfd)
10774 return; /* No information to give. */
10775
10776 strcpy (target_buf, "QTro");
10777 offset = strlen (target_buf);
10778 for (s = exec_bfd->sections; s; s = s->next)
10779 {
10780 char tmp1[40], tmp2[40];
10781 int sec_length;
10782
10783 if ((s->flags & SEC_LOAD) == 0 ||
10784 /* (s->flags & SEC_CODE) == 0 || */
10785 (s->flags & SEC_READONLY) == 0)
10786 continue;
10787
10788 anysecs = 1;
10789 vma = bfd_get_section_vma (abfd, s);
10790 size = bfd_get_section_size (s);
10791 sprintf_vma (tmp1, vma);
10792 sprintf_vma (tmp2, vma + size);
10793 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
10794 if (offset + sec_length + 1 > target_buf_size)
10795 {
10796 if (remote_protocol_packets[PACKET_qXfer_traceframe_info].support
10797 != PACKET_ENABLE)
10798 warning (_("\
10799 Too many sections for read-only sections definition packet."));
10800 break;
10801 }
10802 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
10803 tmp1, tmp2);
10804 offset += sec_length;
10805 }
10806 if (anysecs)
10807 {
10808 putpkt (target_buf);
10809 getpkt (&target_buf, &target_buf_size, 0);
10810 }
10811 }
10812
10813 static void
10814 remote_trace_start (void)
10815 {
10816 putpkt ("QTStart");
10817 remote_get_noisy_reply (&target_buf, &target_buf_size);
10818 if (*target_buf == '\0')
10819 error (_("Target does not support this command."));
10820 if (strcmp (target_buf, "OK") != 0)
10821 error (_("Bogus reply from target: %s"), target_buf);
10822 }
10823
10824 static int
10825 remote_get_trace_status (struct trace_status *ts)
10826 {
10827 /* Initialize it just to avoid a GCC false warning. */
10828 char *p = NULL;
10829 /* FIXME we need to get register block size some other way. */
10830 extern int trace_regblock_size;
10831 volatile struct gdb_exception ex;
10832 enum packet_result result;
10833
10834 if (remote_protocol_packets[PACKET_qTStatus].support == PACKET_DISABLE)
10835 return -1;
10836
10837 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
10838
10839 putpkt ("qTStatus");
10840
10841 TRY_CATCH (ex, RETURN_MASK_ERROR)
10842 {
10843 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
10844 }
10845 if (ex.reason < 0)
10846 {
10847 if (ex.error != TARGET_CLOSE_ERROR)
10848 {
10849 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
10850 return -1;
10851 }
10852 throw_exception (ex);
10853 }
10854
10855 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
10856
10857 /* If the remote target doesn't do tracing, flag it. */
10858 if (result == PACKET_UNKNOWN)
10859 return -1;
10860
10861 /* We're working with a live target. */
10862 ts->filename = NULL;
10863
10864 if (*p++ != 'T')
10865 error (_("Bogus trace status reply from target: %s"), target_buf);
10866
10867 /* Function 'parse_trace_status' sets default value of each field of
10868 'ts' at first, so we don't have to do it here. */
10869 parse_trace_status (p, ts);
10870
10871 return ts->running;
10872 }
10873
10874 static void
10875 remote_get_tracepoint_status (struct breakpoint *bp,
10876 struct uploaded_tp *utp)
10877 {
10878 struct remote_state *rs = get_remote_state ();
10879 char *reply;
10880 struct bp_location *loc;
10881 struct tracepoint *tp = (struct tracepoint *) bp;
10882 size_t size = get_remote_packet_size ();
10883
10884 if (tp)
10885 {
10886 tp->base.hit_count = 0;
10887 tp->traceframe_usage = 0;
10888 for (loc = tp->base.loc; loc; loc = loc->next)
10889 {
10890 /* If the tracepoint was never downloaded, don't go asking for
10891 any status. */
10892 if (tp->number_on_target == 0)
10893 continue;
10894 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
10895 phex_nz (loc->address, 0));
10896 putpkt (rs->buf);
10897 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10898 if (reply && *reply)
10899 {
10900 if (*reply == 'V')
10901 parse_tracepoint_status (reply + 1, bp, utp);
10902 }
10903 }
10904 }
10905 else if (utp)
10906 {
10907 utp->hit_count = 0;
10908 utp->traceframe_usage = 0;
10909 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
10910 phex_nz (utp->addr, 0));
10911 putpkt (rs->buf);
10912 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
10913 if (reply && *reply)
10914 {
10915 if (*reply == 'V')
10916 parse_tracepoint_status (reply + 1, bp, utp);
10917 }
10918 }
10919 }
10920
10921 static void
10922 remote_trace_stop (void)
10923 {
10924 putpkt ("QTStop");
10925 remote_get_noisy_reply (&target_buf, &target_buf_size);
10926 if (*target_buf == '\0')
10927 error (_("Target does not support this command."));
10928 if (strcmp (target_buf, "OK") != 0)
10929 error (_("Bogus reply from target: %s"), target_buf);
10930 }
10931
10932 static int
10933 remote_trace_find (enum trace_find_type type, int num,
10934 CORE_ADDR addr1, CORE_ADDR addr2,
10935 int *tpp)
10936 {
10937 struct remote_state *rs = get_remote_state ();
10938 char *endbuf = rs->buf + get_remote_packet_size ();
10939 char *p, *reply;
10940 int target_frameno = -1, target_tracept = -1;
10941
10942 /* Lookups other than by absolute frame number depend on the current
10943 trace selected, so make sure it is correct on the remote end
10944 first. */
10945 if (type != tfind_number)
10946 set_remote_traceframe ();
10947
10948 p = rs->buf;
10949 strcpy (p, "QTFrame:");
10950 p = strchr (p, '\0');
10951 switch (type)
10952 {
10953 case tfind_number:
10954 xsnprintf (p, endbuf - p, "%x", num);
10955 break;
10956 case tfind_pc:
10957 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
10958 break;
10959 case tfind_tp:
10960 xsnprintf (p, endbuf - p, "tdp:%x", num);
10961 break;
10962 case tfind_range:
10963 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
10964 phex_nz (addr2, 0));
10965 break;
10966 case tfind_outside:
10967 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
10968 phex_nz (addr2, 0));
10969 break;
10970 default:
10971 error (_("Unknown trace find type %d"), type);
10972 }
10973
10974 putpkt (rs->buf);
10975 reply = remote_get_noisy_reply (&(rs->buf), &sizeof_pkt);
10976 if (*reply == '\0')
10977 error (_("Target does not support this command."));
10978
10979 while (reply && *reply)
10980 switch (*reply)
10981 {
10982 case 'F':
10983 p = ++reply;
10984 target_frameno = (int) strtol (p, &reply, 16);
10985 if (reply == p)
10986 error (_("Unable to parse trace frame number"));
10987 /* Don't update our remote traceframe number cache on failure
10988 to select a remote traceframe. */
10989 if (target_frameno == -1)
10990 return -1;
10991 break;
10992 case 'T':
10993 p = ++reply;
10994 target_tracept = (int) strtol (p, &reply, 16);
10995 if (reply == p)
10996 error (_("Unable to parse tracepoint number"));
10997 break;
10998 case 'O': /* "OK"? */
10999 if (reply[1] == 'K' && reply[2] == '\0')
11000 reply += 2;
11001 else
11002 error (_("Bogus reply from target: %s"), reply);
11003 break;
11004 default:
11005 error (_("Bogus reply from target: %s"), reply);
11006 }
11007 if (tpp)
11008 *tpp = target_tracept;
11009
11010 rs->remote_traceframe_number = target_frameno;
11011 return target_frameno;
11012 }
11013
11014 static int
11015 remote_get_trace_state_variable_value (int tsvnum, LONGEST *val)
11016 {
11017 struct remote_state *rs = get_remote_state ();
11018 char *reply;
11019 ULONGEST uval;
11020
11021 set_remote_traceframe ();
11022
11023 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
11024 putpkt (rs->buf);
11025 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11026 if (reply && *reply)
11027 {
11028 if (*reply == 'V')
11029 {
11030 unpack_varlen_hex (reply + 1, &uval);
11031 *val = (LONGEST) uval;
11032 return 1;
11033 }
11034 }
11035 return 0;
11036 }
11037
11038 static int
11039 remote_save_trace_data (const char *filename)
11040 {
11041 struct remote_state *rs = get_remote_state ();
11042 char *p, *reply;
11043
11044 p = rs->buf;
11045 strcpy (p, "QTSave:");
11046 p += strlen (p);
11047 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
11048 error (_("Remote file name too long for trace save packet"));
11049 p += 2 * bin2hex ((gdb_byte *) filename, p, 0);
11050 *p++ = '\0';
11051 putpkt (rs->buf);
11052 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11053 if (*reply == '\0')
11054 error (_("Target does not support this command."));
11055 if (strcmp (reply, "OK") != 0)
11056 error (_("Bogus reply from target: %s"), reply);
11057 return 0;
11058 }
11059
11060 /* This is basically a memory transfer, but needs to be its own packet
11061 because we don't know how the target actually organizes its trace
11062 memory, plus we want to be able to ask for as much as possible, but
11063 not be unhappy if we don't get as much as we ask for. */
11064
11065 static LONGEST
11066 remote_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
11067 {
11068 struct remote_state *rs = get_remote_state ();
11069 char *reply;
11070 char *p;
11071 int rslt;
11072
11073 p = rs->buf;
11074 strcpy (p, "qTBuffer:");
11075 p += strlen (p);
11076 p += hexnumstr (p, offset);
11077 *p++ = ',';
11078 p += hexnumstr (p, len);
11079 *p++ = '\0';
11080
11081 putpkt (rs->buf);
11082 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11083 if (reply && *reply)
11084 {
11085 /* 'l' by itself means we're at the end of the buffer and
11086 there is nothing more to get. */
11087 if (*reply == 'l')
11088 return 0;
11089
11090 /* Convert the reply into binary. Limit the number of bytes to
11091 convert according to our passed-in buffer size, rather than
11092 what was returned in the packet; if the target is
11093 unexpectedly generous and gives us a bigger reply than we
11094 asked for, we don't want to crash. */
11095 rslt = hex2bin (target_buf, buf, len);
11096 return rslt;
11097 }
11098
11099 /* Something went wrong, flag as an error. */
11100 return -1;
11101 }
11102
11103 static void
11104 remote_set_disconnected_tracing (int val)
11105 {
11106 struct remote_state *rs = get_remote_state ();
11107
11108 if (rs->disconnected_tracing)
11109 {
11110 char *reply;
11111
11112 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
11113 putpkt (rs->buf);
11114 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11115 if (*reply == '\0')
11116 error (_("Target does not support this command."));
11117 if (strcmp (reply, "OK") != 0)
11118 error (_("Bogus reply from target: %s"), reply);
11119 }
11120 else if (val)
11121 warning (_("Target does not support disconnected tracing."));
11122 }
11123
11124 static int
11125 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
11126 {
11127 struct thread_info *info = find_thread_ptid (ptid);
11128
11129 if (info && info->private)
11130 return info->private->core;
11131 return -1;
11132 }
11133
11134 static void
11135 remote_set_circular_trace_buffer (int val)
11136 {
11137 struct remote_state *rs = get_remote_state ();
11138 char *reply;
11139
11140 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
11141 putpkt (rs->buf);
11142 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11143 if (*reply == '\0')
11144 error (_("Target does not support this command."));
11145 if (strcmp (reply, "OK") != 0)
11146 error (_("Bogus reply from target: %s"), reply);
11147 }
11148
11149 static struct traceframe_info *
11150 remote_traceframe_info (void)
11151 {
11152 char *text;
11153
11154 text = target_read_stralloc (&current_target,
11155 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
11156 if (text != NULL)
11157 {
11158 struct traceframe_info *info;
11159 struct cleanup *back_to = make_cleanup (xfree, text);
11160
11161 info = parse_traceframe_info (text);
11162 do_cleanups (back_to);
11163 return info;
11164 }
11165
11166 return NULL;
11167 }
11168
11169 /* Handle the qTMinFTPILen packet. Returns the minimum length of
11170 instruction on which a fast tracepoint may be placed. Returns -1
11171 if the packet is not supported, and 0 if the minimum instruction
11172 length is unknown. */
11173
11174 static int
11175 remote_get_min_fast_tracepoint_insn_len (void)
11176 {
11177 struct remote_state *rs = get_remote_state ();
11178 char *reply;
11179
11180 /* If we're not debugging a process yet, the IPA can't be
11181 loaded. */
11182 if (!target_has_execution)
11183 return 0;
11184
11185 /* Make sure the remote is pointing at the right process. */
11186 set_general_process ();
11187
11188 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
11189 putpkt (rs->buf);
11190 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11191 if (*reply == '\0')
11192 return -1;
11193 else
11194 {
11195 ULONGEST min_insn_len;
11196
11197 unpack_varlen_hex (reply, &min_insn_len);
11198
11199 return (int) min_insn_len;
11200 }
11201 }
11202
11203 static void
11204 remote_set_trace_buffer_size (LONGEST val)
11205 {
11206 if (remote_protocol_packets[PACKET_QTBuffer_size].support
11207 != PACKET_DISABLE)
11208 {
11209 struct remote_state *rs = get_remote_state ();
11210 char *buf = rs->buf;
11211 char *endbuf = rs->buf + get_remote_packet_size ();
11212 enum packet_result result;
11213
11214 gdb_assert (val >= 0 || val == -1);
11215 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
11216 /* Send -1 as literal "-1" to avoid host size dependency. */
11217 if (val < 0)
11218 {
11219 *buf++ = '-';
11220 buf += hexnumstr (buf, (ULONGEST) -val);
11221 }
11222 else
11223 buf += hexnumstr (buf, (ULONGEST) val);
11224
11225 putpkt (rs->buf);
11226 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
11227 result = packet_ok (rs->buf,
11228 &remote_protocol_packets[PACKET_QTBuffer_size]);
11229
11230 if (result != PACKET_OK)
11231 warning (_("Bogus reply from target: %s"), rs->buf);
11232 }
11233 }
11234
11235 static int
11236 remote_set_trace_notes (const char *user, const char *notes,
11237 const char *stop_notes)
11238 {
11239 struct remote_state *rs = get_remote_state ();
11240 char *reply;
11241 char *buf = rs->buf;
11242 char *endbuf = rs->buf + get_remote_packet_size ();
11243 int nbytes;
11244
11245 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
11246 if (user)
11247 {
11248 buf += xsnprintf (buf, endbuf - buf, "user:");
11249 nbytes = bin2hex ((gdb_byte *) user, buf, 0);
11250 buf += 2 * nbytes;
11251 *buf++ = ';';
11252 }
11253 if (notes)
11254 {
11255 buf += xsnprintf (buf, endbuf - buf, "notes:");
11256 nbytes = bin2hex ((gdb_byte *) notes, buf, 0);
11257 buf += 2 * nbytes;
11258 *buf++ = ';';
11259 }
11260 if (stop_notes)
11261 {
11262 buf += xsnprintf (buf, endbuf - buf, "tstop:");
11263 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, 0);
11264 buf += 2 * nbytes;
11265 *buf++ = ';';
11266 }
11267 /* Ensure the buffer is terminated. */
11268 *buf = '\0';
11269
11270 putpkt (rs->buf);
11271 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11272 if (*reply == '\0')
11273 return 0;
11274
11275 if (strcmp (reply, "OK") != 0)
11276 error (_("Bogus reply from target: %s"), reply);
11277
11278 return 1;
11279 }
11280
11281 static int
11282 remote_use_agent (int use)
11283 {
11284 if (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE)
11285 {
11286 struct remote_state *rs = get_remote_state ();
11287
11288 /* If the stub supports QAgent. */
11289 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
11290 putpkt (rs->buf);
11291 getpkt (&rs->buf, &rs->buf_size, 0);
11292
11293 if (strcmp (rs->buf, "OK") == 0)
11294 {
11295 use_agent = use;
11296 return 1;
11297 }
11298 }
11299
11300 return 0;
11301 }
11302
11303 static int
11304 remote_can_use_agent (void)
11305 {
11306 return (remote_protocol_packets[PACKET_QAgent].support != PACKET_DISABLE);
11307 }
11308
11309 struct btrace_target_info
11310 {
11311 /* The ptid of the traced thread. */
11312 ptid_t ptid;
11313 };
11314
11315 /* Check whether the target supports branch tracing. */
11316
11317 static int
11318 remote_supports_btrace (void)
11319 {
11320 if (remote_protocol_packets[PACKET_Qbtrace_off].support != PACKET_ENABLE)
11321 return 0;
11322 if (remote_protocol_packets[PACKET_Qbtrace_bts].support != PACKET_ENABLE)
11323 return 0;
11324 if (remote_protocol_packets[PACKET_qXfer_btrace].support != PACKET_ENABLE)
11325 return 0;
11326
11327 return 1;
11328 }
11329
11330 /* Enable branch tracing. */
11331
11332 static struct btrace_target_info *
11333 remote_enable_btrace (ptid_t ptid)
11334 {
11335 struct btrace_target_info *tinfo = NULL;
11336 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
11337 struct remote_state *rs = get_remote_state ();
11338 char *buf = rs->buf;
11339 char *endbuf = rs->buf + get_remote_packet_size ();
11340
11341 if (packet->support != PACKET_ENABLE)
11342 error (_("Target does not support branch tracing."));
11343
11344 set_general_thread (ptid);
11345
11346 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11347 putpkt (rs->buf);
11348 getpkt (&rs->buf, &rs->buf_size, 0);
11349
11350 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11351 {
11352 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11353 error (_("Could not enable branch tracing for %s: %s"),
11354 target_pid_to_str (ptid), rs->buf + 2);
11355 else
11356 error (_("Could not enable branch tracing for %s."),
11357 target_pid_to_str (ptid));
11358 }
11359
11360 tinfo = xzalloc (sizeof (*tinfo));
11361 tinfo->ptid = ptid;
11362
11363 return tinfo;
11364 }
11365
11366 /* Disable branch tracing. */
11367
11368 static void
11369 remote_disable_btrace (struct btrace_target_info *tinfo)
11370 {
11371 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
11372 struct remote_state *rs = get_remote_state ();
11373 char *buf = rs->buf;
11374 char *endbuf = rs->buf + get_remote_packet_size ();
11375
11376 if (packet->support != PACKET_ENABLE)
11377 error (_("Target does not support branch tracing."));
11378
11379 set_general_thread (tinfo->ptid);
11380
11381 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
11382 putpkt (rs->buf);
11383 getpkt (&rs->buf, &rs->buf_size, 0);
11384
11385 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
11386 {
11387 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
11388 error (_("Could not disable branch tracing for %s: %s"),
11389 target_pid_to_str (tinfo->ptid), rs->buf + 2);
11390 else
11391 error (_("Could not disable branch tracing for %s."),
11392 target_pid_to_str (tinfo->ptid));
11393 }
11394
11395 xfree (tinfo);
11396 }
11397
11398 /* Teardown branch tracing. */
11399
11400 static void
11401 remote_teardown_btrace (struct btrace_target_info *tinfo)
11402 {
11403 /* We must not talk to the target during teardown. */
11404 xfree (tinfo);
11405 }
11406
11407 /* Read the branch trace. */
11408
11409 static VEC (btrace_block_s) *
11410 remote_read_btrace (struct btrace_target_info *tinfo,
11411 enum btrace_read_type type)
11412 {
11413 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
11414 struct remote_state *rs = get_remote_state ();
11415 VEC (btrace_block_s) *btrace = NULL;
11416 const char *annex;
11417 char *xml;
11418
11419 if (packet->support != PACKET_ENABLE)
11420 error (_("Target does not support branch tracing."));
11421
11422 #if !defined(HAVE_LIBEXPAT)
11423 error (_("Cannot process branch tracing result. XML parsing not supported."));
11424 #endif
11425
11426 switch (type)
11427 {
11428 case btrace_read_all:
11429 annex = "all";
11430 break;
11431 case btrace_read_new:
11432 annex = "new";
11433 break;
11434 default:
11435 internal_error (__FILE__, __LINE__,
11436 _("Bad branch tracing read type: %u."),
11437 (unsigned int) type);
11438 }
11439
11440 xml = target_read_stralloc (&current_target,
11441 TARGET_OBJECT_BTRACE, annex);
11442 if (xml != NULL)
11443 {
11444 struct cleanup *cleanup = make_cleanup (xfree, xml);
11445
11446 btrace = parse_xml_btrace (xml);
11447 do_cleanups (cleanup);
11448 }
11449
11450 return btrace;
11451 }
11452
11453 static int
11454 remote_augmented_libraries_svr4_read (void)
11455 {
11456 struct remote_state *rs = get_remote_state ();
11457
11458 return rs->augmented_libraries_svr4_read;
11459 }
11460
11461 static void
11462 init_remote_ops (void)
11463 {
11464 remote_ops.to_shortname = "remote";
11465 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
11466 remote_ops.to_doc =
11467 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11468 Specify the serial device it is connected to\n\
11469 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
11470 remote_ops.to_open = remote_open;
11471 remote_ops.to_close = remote_close;
11472 remote_ops.to_detach = remote_detach;
11473 remote_ops.to_disconnect = remote_disconnect;
11474 remote_ops.to_resume = remote_resume;
11475 remote_ops.to_wait = remote_wait;
11476 remote_ops.to_fetch_registers = remote_fetch_registers;
11477 remote_ops.to_store_registers = remote_store_registers;
11478 remote_ops.to_prepare_to_store = remote_prepare_to_store;
11479 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
11480 remote_ops.to_files_info = remote_files_info;
11481 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
11482 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
11483 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
11484 remote_ops.to_stopped_data_address = remote_stopped_data_address;
11485 remote_ops.to_watchpoint_addr_within_range =
11486 remote_watchpoint_addr_within_range;
11487 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
11488 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
11489 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
11490 remote_ops.to_region_ok_for_hw_watchpoint
11491 = remote_region_ok_for_hw_watchpoint;
11492 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
11493 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
11494 remote_ops.to_kill = remote_kill;
11495 remote_ops.to_load = generic_load;
11496 remote_ops.to_mourn_inferior = remote_mourn;
11497 remote_ops.to_pass_signals = remote_pass_signals;
11498 remote_ops.to_program_signals = remote_program_signals;
11499 remote_ops.to_thread_alive = remote_thread_alive;
11500 remote_ops.to_find_new_threads = remote_threads_info;
11501 remote_ops.to_pid_to_str = remote_pid_to_str;
11502 remote_ops.to_extra_thread_info = remote_threads_extra_info;
11503 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
11504 remote_ops.to_stop = remote_stop;
11505 remote_ops.to_xfer_partial = remote_xfer_partial;
11506 remote_ops.to_rcmd = remote_rcmd;
11507 remote_ops.to_log_command = serial_log_command;
11508 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
11509 remote_ops.to_stratum = process_stratum;
11510 remote_ops.to_has_all_memory = default_child_has_all_memory;
11511 remote_ops.to_has_memory = default_child_has_memory;
11512 remote_ops.to_has_stack = default_child_has_stack;
11513 remote_ops.to_has_registers = default_child_has_registers;
11514 remote_ops.to_has_execution = default_child_has_execution;
11515 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
11516 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
11517 remote_ops.to_magic = OPS_MAGIC;
11518 remote_ops.to_memory_map = remote_memory_map;
11519 remote_ops.to_flash_erase = remote_flash_erase;
11520 remote_ops.to_flash_done = remote_flash_done;
11521 remote_ops.to_read_description = remote_read_description;
11522 remote_ops.to_search_memory = remote_search_memory;
11523 remote_ops.to_can_async_p = remote_can_async_p;
11524 remote_ops.to_is_async_p = remote_is_async_p;
11525 remote_ops.to_async = remote_async;
11526 remote_ops.to_terminal_inferior = remote_terminal_inferior;
11527 remote_ops.to_terminal_ours = remote_terminal_ours;
11528 remote_ops.to_supports_non_stop = remote_supports_non_stop;
11529 remote_ops.to_supports_multi_process = remote_supports_multi_process;
11530 remote_ops.to_supports_disable_randomization
11531 = remote_supports_disable_randomization;
11532 remote_ops.to_fileio_open = remote_hostio_open;
11533 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
11534 remote_ops.to_fileio_pread = remote_hostio_pread;
11535 remote_ops.to_fileio_close = remote_hostio_close;
11536 remote_ops.to_fileio_unlink = remote_hostio_unlink;
11537 remote_ops.to_fileio_readlink = remote_hostio_readlink;
11538 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
11539 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
11540 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
11541 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
11542 remote_ops.to_trace_init = remote_trace_init;
11543 remote_ops.to_download_tracepoint = remote_download_tracepoint;
11544 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
11545 remote_ops.to_download_trace_state_variable
11546 = remote_download_trace_state_variable;
11547 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
11548 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
11549 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
11550 remote_ops.to_trace_start = remote_trace_start;
11551 remote_ops.to_get_trace_status = remote_get_trace_status;
11552 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
11553 remote_ops.to_trace_stop = remote_trace_stop;
11554 remote_ops.to_trace_find = remote_trace_find;
11555 remote_ops.to_get_trace_state_variable_value
11556 = remote_get_trace_state_variable_value;
11557 remote_ops.to_save_trace_data = remote_save_trace_data;
11558 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
11559 remote_ops.to_upload_trace_state_variables
11560 = remote_upload_trace_state_variables;
11561 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
11562 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
11563 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
11564 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
11565 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
11566 remote_ops.to_set_trace_notes = remote_set_trace_notes;
11567 remote_ops.to_core_of_thread = remote_core_of_thread;
11568 remote_ops.to_verify_memory = remote_verify_memory;
11569 remote_ops.to_get_tib_address = remote_get_tib_address;
11570 remote_ops.to_set_permissions = remote_set_permissions;
11571 remote_ops.to_static_tracepoint_marker_at
11572 = remote_static_tracepoint_marker_at;
11573 remote_ops.to_static_tracepoint_markers_by_strid
11574 = remote_static_tracepoint_markers_by_strid;
11575 remote_ops.to_traceframe_info = remote_traceframe_info;
11576 remote_ops.to_use_agent = remote_use_agent;
11577 remote_ops.to_can_use_agent = remote_can_use_agent;
11578 remote_ops.to_supports_btrace = remote_supports_btrace;
11579 remote_ops.to_enable_btrace = remote_enable_btrace;
11580 remote_ops.to_disable_btrace = remote_disable_btrace;
11581 remote_ops.to_teardown_btrace = remote_teardown_btrace;
11582 remote_ops.to_read_btrace = remote_read_btrace;
11583 remote_ops.to_augmented_libraries_svr4_read =
11584 remote_augmented_libraries_svr4_read;
11585 }
11586
11587 /* Set up the extended remote vector by making a copy of the standard
11588 remote vector and adding to it. */
11589
11590 static void
11591 init_extended_remote_ops (void)
11592 {
11593 extended_remote_ops = remote_ops;
11594
11595 extended_remote_ops.to_shortname = "extended-remote";
11596 extended_remote_ops.to_longname =
11597 "Extended remote serial target in gdb-specific protocol";
11598 extended_remote_ops.to_doc =
11599 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
11600 Specify the serial device it is connected to (e.g. /dev/ttya).";
11601 extended_remote_ops.to_open = extended_remote_open;
11602 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
11603 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
11604 extended_remote_ops.to_detach = extended_remote_detach;
11605 extended_remote_ops.to_attach = extended_remote_attach;
11606 extended_remote_ops.to_kill = extended_remote_kill;
11607 extended_remote_ops.to_supports_disable_randomization
11608 = extended_remote_supports_disable_randomization;
11609 }
11610
11611 static int
11612 remote_can_async_p (void)
11613 {
11614 struct remote_state *rs = get_remote_state ();
11615
11616 if (!target_async_permitted)
11617 /* We only enable async when the user specifically asks for it. */
11618 return 0;
11619
11620 /* We're async whenever the serial device is. */
11621 return serial_can_async_p (rs->remote_desc);
11622 }
11623
11624 static int
11625 remote_is_async_p (void)
11626 {
11627 struct remote_state *rs = get_remote_state ();
11628
11629 if (!target_async_permitted)
11630 /* We only enable async when the user specifically asks for it. */
11631 return 0;
11632
11633 /* We're async whenever the serial device is. */
11634 return serial_is_async_p (rs->remote_desc);
11635 }
11636
11637 /* Pass the SERIAL event on and up to the client. One day this code
11638 will be able to delay notifying the client of an event until the
11639 point where an entire packet has been received. */
11640
11641 static void (*async_client_callback) (enum inferior_event_type event_type,
11642 void *context);
11643 static void *async_client_context;
11644 static serial_event_ftype remote_async_serial_handler;
11645
11646 static void
11647 remote_async_serial_handler (struct serial *scb, void *context)
11648 {
11649 /* Don't propogate error information up to the client. Instead let
11650 the client find out about the error by querying the target. */
11651 async_client_callback (INF_REG_EVENT, async_client_context);
11652 }
11653
11654 static void
11655 remote_async_inferior_event_handler (gdb_client_data data)
11656 {
11657 inferior_event_handler (INF_REG_EVENT, NULL);
11658 }
11659
11660 static void
11661 remote_async (void (*callback) (enum inferior_event_type event_type,
11662 void *context), void *context)
11663 {
11664 struct remote_state *rs = get_remote_state ();
11665
11666 if (callback != NULL)
11667 {
11668 serial_async (rs->remote_desc, remote_async_serial_handler, NULL);
11669 async_client_callback = callback;
11670 async_client_context = context;
11671 }
11672 else
11673 serial_async (rs->remote_desc, NULL, NULL);
11674 }
11675
11676 static void
11677 set_remote_cmd (char *args, int from_tty)
11678 {
11679 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
11680 }
11681
11682 static void
11683 show_remote_cmd (char *args, int from_tty)
11684 {
11685 /* We can't just use cmd_show_list here, because we want to skip
11686 the redundant "show remote Z-packet" and the legacy aliases. */
11687 struct cleanup *showlist_chain;
11688 struct cmd_list_element *list = remote_show_cmdlist;
11689 struct ui_out *uiout = current_uiout;
11690
11691 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
11692 for (; list != NULL; list = list->next)
11693 if (strcmp (list->name, "Z-packet") == 0)
11694 continue;
11695 else if (list->type == not_set_cmd)
11696 /* Alias commands are exactly like the original, except they
11697 don't have the normal type. */
11698 continue;
11699 else
11700 {
11701 struct cleanup *option_chain
11702 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
11703
11704 ui_out_field_string (uiout, "name", list->name);
11705 ui_out_text (uiout, ": ");
11706 if (list->type == show_cmd)
11707 do_show_command ((char *) NULL, from_tty, list);
11708 else
11709 cmd_func (list, NULL, from_tty);
11710 /* Close the tuple. */
11711 do_cleanups (option_chain);
11712 }
11713
11714 /* Close the tuple. */
11715 do_cleanups (showlist_chain);
11716 }
11717
11718
11719 /* Function to be called whenever a new objfile (shlib) is detected. */
11720 static void
11721 remote_new_objfile (struct objfile *objfile)
11722 {
11723 struct remote_state *rs = get_remote_state ();
11724
11725 if (rs->remote_desc != 0) /* Have a remote connection. */
11726 remote_check_symbols ();
11727 }
11728
11729 /* Pull all the tracepoints defined on the target and create local
11730 data structures representing them. We don't want to create real
11731 tracepoints yet, we don't want to mess up the user's existing
11732 collection. */
11733
11734 static int
11735 remote_upload_tracepoints (struct uploaded_tp **utpp)
11736 {
11737 struct remote_state *rs = get_remote_state ();
11738 char *p;
11739
11740 /* Ask for a first packet of tracepoint definition. */
11741 putpkt ("qTfP");
11742 getpkt (&rs->buf, &rs->buf_size, 0);
11743 p = rs->buf;
11744 while (*p && *p != 'l')
11745 {
11746 parse_tracepoint_definition (p, utpp);
11747 /* Ask for another packet of tracepoint definition. */
11748 putpkt ("qTsP");
11749 getpkt (&rs->buf, &rs->buf_size, 0);
11750 p = rs->buf;
11751 }
11752 return 0;
11753 }
11754
11755 static int
11756 remote_upload_trace_state_variables (struct uploaded_tsv **utsvp)
11757 {
11758 struct remote_state *rs = get_remote_state ();
11759 char *p;
11760
11761 /* Ask for a first packet of variable definition. */
11762 putpkt ("qTfV");
11763 getpkt (&rs->buf, &rs->buf_size, 0);
11764 p = rs->buf;
11765 while (*p && *p != 'l')
11766 {
11767 parse_tsv_definition (p, utsvp);
11768 /* Ask for another packet of variable definition. */
11769 putpkt ("qTsV");
11770 getpkt (&rs->buf, &rs->buf_size, 0);
11771 p = rs->buf;
11772 }
11773 return 0;
11774 }
11775
11776 /* The "set/show range-stepping" show hook. */
11777
11778 static void
11779 show_range_stepping (struct ui_file *file, int from_tty,
11780 struct cmd_list_element *c,
11781 const char *value)
11782 {
11783 fprintf_filtered (file,
11784 _("Debugger's willingness to use range stepping "
11785 "is %s.\n"), value);
11786 }
11787
11788 /* The "set/show range-stepping" set hook. */
11789
11790 static void
11791 set_range_stepping (char *ignore_args, int from_tty,
11792 struct cmd_list_element *c)
11793 {
11794 struct remote_state *rs = get_remote_state ();
11795
11796 /* Whene enabling, check whether range stepping is actually
11797 supported by the target, and warn if not. */
11798 if (use_range_stepping)
11799 {
11800 if (rs->remote_desc != NULL)
11801 {
11802 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
11803 remote_vcont_probe (rs);
11804
11805 if (remote_protocol_packets[PACKET_vCont].support == PACKET_ENABLE
11806 && rs->supports_vCont.r)
11807 return;
11808 }
11809
11810 warning (_("Range stepping is not supported by the current target"));
11811 }
11812 }
11813
11814 void
11815 _initialize_remote (void)
11816 {
11817 struct remote_state *rs;
11818 struct cmd_list_element *cmd;
11819 const char *cmd_name;
11820
11821 /* architecture specific data */
11822 remote_gdbarch_data_handle =
11823 gdbarch_data_register_post_init (init_remote_state);
11824 remote_g_packet_data_handle =
11825 gdbarch_data_register_pre_init (remote_g_packet_data_init);
11826
11827 /* Initialize the per-target state. At the moment there is only one
11828 of these, not one per target. Only one target is active at a
11829 time. */
11830 remote_state = new_remote_state ();
11831
11832 init_remote_ops ();
11833 add_target (&remote_ops);
11834
11835 init_extended_remote_ops ();
11836 add_target (&extended_remote_ops);
11837
11838 /* Hook into new objfile notification. */
11839 observer_attach_new_objfile (remote_new_objfile);
11840 /* We're no longer interested in notification events of an inferior
11841 when it exits. */
11842 observer_attach_inferior_exit (discard_pending_stop_replies);
11843
11844 /* Set up signal handlers. */
11845 async_sigint_remote_token =
11846 create_async_signal_handler (async_remote_interrupt, NULL);
11847 async_sigint_remote_twice_token =
11848 create_async_signal_handler (async_remote_interrupt_twice, NULL);
11849
11850 #if 0
11851 init_remote_threadtests ();
11852 #endif
11853
11854 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
11855 /* set/show remote ... */
11856
11857 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
11858 Remote protocol specific variables\n\
11859 Configure various remote-protocol specific variables such as\n\
11860 the packets being used"),
11861 &remote_set_cmdlist, "set remote ",
11862 0 /* allow-unknown */, &setlist);
11863 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
11864 Remote protocol specific variables\n\
11865 Configure various remote-protocol specific variables such as\n\
11866 the packets being used"),
11867 &remote_show_cmdlist, "show remote ",
11868 0 /* allow-unknown */, &showlist);
11869
11870 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
11871 Compare section data on target to the exec file.\n\
11872 Argument is a single section name (default: all loaded sections)."),
11873 &cmdlist);
11874
11875 add_cmd ("packet", class_maintenance, packet_command, _("\
11876 Send an arbitrary packet to a remote target.\n\
11877 maintenance packet TEXT\n\
11878 If GDB is talking to an inferior via the GDB serial protocol, then\n\
11879 this command sends the string TEXT to the inferior, and displays the\n\
11880 response packet. GDB supplies the initial `$' character, and the\n\
11881 terminating `#' character and checksum."),
11882 &maintenancelist);
11883
11884 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
11885 Set whether to send break if interrupted."), _("\
11886 Show whether to send break if interrupted."), _("\
11887 If set, a break, instead of a cntrl-c, is sent to the remote target."),
11888 set_remotebreak, show_remotebreak,
11889 &setlist, &showlist);
11890 cmd_name = "remotebreak";
11891 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
11892 deprecate_cmd (cmd, "set remote interrupt-sequence");
11893 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
11894 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
11895 deprecate_cmd (cmd, "show remote interrupt-sequence");
11896
11897 add_setshow_enum_cmd ("interrupt-sequence", class_support,
11898 interrupt_sequence_modes, &interrupt_sequence_mode,
11899 _("\
11900 Set interrupt sequence to remote target."), _("\
11901 Show interrupt sequence to remote target."), _("\
11902 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
11903 NULL, show_interrupt_sequence,
11904 &remote_set_cmdlist,
11905 &remote_show_cmdlist);
11906
11907 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
11908 &interrupt_on_connect, _("\
11909 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11910 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
11911 If set, interrupt sequence is sent to remote target."),
11912 NULL, NULL,
11913 &remote_set_cmdlist, &remote_show_cmdlist);
11914
11915 /* Install commands for configuring memory read/write packets. */
11916
11917 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
11918 Set the maximum number of bytes per memory write packet (deprecated)."),
11919 &setlist);
11920 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
11921 Show the maximum number of bytes per memory write packet (deprecated)."),
11922 &showlist);
11923 add_cmd ("memory-write-packet-size", no_class,
11924 set_memory_write_packet_size, _("\
11925 Set the maximum number of bytes per memory-write packet.\n\
11926 Specify the number of bytes in a packet or 0 (zero) for the\n\
11927 default packet size. The actual limit is further reduced\n\
11928 dependent on the target. Specify ``fixed'' to disable the\n\
11929 further restriction and ``limit'' to enable that restriction."),
11930 &remote_set_cmdlist);
11931 add_cmd ("memory-read-packet-size", no_class,
11932 set_memory_read_packet_size, _("\
11933 Set the maximum number of bytes per memory-read packet.\n\
11934 Specify the number of bytes in a packet or 0 (zero) for the\n\
11935 default packet size. The actual limit is further reduced\n\
11936 dependent on the target. Specify ``fixed'' to disable the\n\
11937 further restriction and ``limit'' to enable that restriction."),
11938 &remote_set_cmdlist);
11939 add_cmd ("memory-write-packet-size", no_class,
11940 show_memory_write_packet_size,
11941 _("Show the maximum number of bytes per memory-write packet."),
11942 &remote_show_cmdlist);
11943 add_cmd ("memory-read-packet-size", no_class,
11944 show_memory_read_packet_size,
11945 _("Show the maximum number of bytes per memory-read packet."),
11946 &remote_show_cmdlist);
11947
11948 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
11949 &remote_hw_watchpoint_limit, _("\
11950 Set the maximum number of target hardware watchpoints."), _("\
11951 Show the maximum number of target hardware watchpoints."), _("\
11952 Specify a negative limit for unlimited."),
11953 NULL, NULL, /* FIXME: i18n: The maximum
11954 number of target hardware
11955 watchpoints is %s. */
11956 &remote_set_cmdlist, &remote_show_cmdlist);
11957 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
11958 &remote_hw_watchpoint_length_limit, _("\
11959 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
11960 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
11961 Specify a negative limit for unlimited."),
11962 NULL, NULL, /* FIXME: i18n: The maximum
11963 length (in bytes) of a target
11964 hardware watchpoint is %s. */
11965 &remote_set_cmdlist, &remote_show_cmdlist);
11966 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
11967 &remote_hw_breakpoint_limit, _("\
11968 Set the maximum number of target hardware breakpoints."), _("\
11969 Show the maximum number of target hardware breakpoints."), _("\
11970 Specify a negative limit for unlimited."),
11971 NULL, NULL, /* FIXME: i18n: The maximum
11972 number of target hardware
11973 breakpoints is %s. */
11974 &remote_set_cmdlist, &remote_show_cmdlist);
11975
11976 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
11977 &remote_address_size, _("\
11978 Set the maximum size of the address (in bits) in a memory packet."), _("\
11979 Show the maximum size of the address (in bits) in a memory packet."), NULL,
11980 NULL,
11981 NULL, /* FIXME: i18n: */
11982 &setlist, &showlist);
11983
11984 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
11985 "X", "binary-download", 1);
11986
11987 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
11988 "vCont", "verbose-resume", 0);
11989
11990 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
11991 "QPassSignals", "pass-signals", 0);
11992
11993 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
11994 "QProgramSignals", "program-signals", 0);
11995
11996 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
11997 "qSymbol", "symbol-lookup", 0);
11998
11999 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
12000 "P", "set-register", 1);
12001
12002 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
12003 "p", "fetch-register", 1);
12004
12005 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
12006 "Z0", "software-breakpoint", 0);
12007
12008 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
12009 "Z1", "hardware-breakpoint", 0);
12010
12011 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
12012 "Z2", "write-watchpoint", 0);
12013
12014 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
12015 "Z3", "read-watchpoint", 0);
12016
12017 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
12018 "Z4", "access-watchpoint", 0);
12019
12020 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
12021 "qXfer:auxv:read", "read-aux-vector", 0);
12022
12023 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
12024 "qXfer:features:read", "target-features", 0);
12025
12026 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
12027 "qXfer:libraries:read", "library-info", 0);
12028
12029 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
12030 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
12031
12032 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
12033 "qXfer:memory-map:read", "memory-map", 0);
12034
12035 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
12036 "qXfer:spu:read", "read-spu-object", 0);
12037
12038 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
12039 "qXfer:spu:write", "write-spu-object", 0);
12040
12041 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
12042 "qXfer:osdata:read", "osdata", 0);
12043
12044 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
12045 "qXfer:threads:read", "threads", 0);
12046
12047 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
12048 "qXfer:siginfo:read", "read-siginfo-object", 0);
12049
12050 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
12051 "qXfer:siginfo:write", "write-siginfo-object", 0);
12052
12053 add_packet_config_cmd
12054 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
12055 "qXfer:traceframe-info:read", "traceframe-info", 0);
12056
12057 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
12058 "qXfer:uib:read", "unwind-info-block", 0);
12059
12060 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
12061 "qGetTLSAddr", "get-thread-local-storage-address",
12062 0);
12063
12064 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
12065 "qGetTIBAddr", "get-thread-information-block-address",
12066 0);
12067
12068 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
12069 "bc", "reverse-continue", 0);
12070
12071 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
12072 "bs", "reverse-step", 0);
12073
12074 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
12075 "qSupported", "supported-packets", 0);
12076
12077 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
12078 "qSearch:memory", "search-memory", 0);
12079
12080 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
12081 "qTStatus", "trace-status", 0);
12082
12083 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
12084 "vFile:open", "hostio-open", 0);
12085
12086 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
12087 "vFile:pread", "hostio-pread", 0);
12088
12089 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
12090 "vFile:pwrite", "hostio-pwrite", 0);
12091
12092 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
12093 "vFile:close", "hostio-close", 0);
12094
12095 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
12096 "vFile:unlink", "hostio-unlink", 0);
12097
12098 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
12099 "vFile:readlink", "hostio-readlink", 0);
12100
12101 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
12102 "vAttach", "attach", 0);
12103
12104 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
12105 "vRun", "run", 0);
12106
12107 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
12108 "QStartNoAckMode", "noack", 0);
12109
12110 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
12111 "vKill", "kill", 0);
12112
12113 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
12114 "qAttached", "query-attached", 0);
12115
12116 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
12117 "ConditionalTracepoints",
12118 "conditional-tracepoints", 0);
12119
12120 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
12121 "ConditionalBreakpoints",
12122 "conditional-breakpoints", 0);
12123
12124 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
12125 "BreakpointCommands",
12126 "breakpoint-commands", 0);
12127
12128 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
12129 "FastTracepoints", "fast-tracepoints", 0);
12130
12131 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
12132 "TracepointSource", "TracepointSource", 0);
12133
12134 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
12135 "QAllow", "allow", 0);
12136
12137 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
12138 "StaticTracepoints", "static-tracepoints", 0);
12139
12140 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
12141 "InstallInTrace", "install-in-trace", 0);
12142
12143 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
12144 "qXfer:statictrace:read", "read-sdata-object", 0);
12145
12146 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
12147 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
12148
12149 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
12150 "QDisableRandomization", "disable-randomization", 0);
12151
12152 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
12153 "QAgent", "agent", 0);
12154
12155 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
12156 "QTBuffer:size", "trace-buffer-size", 0);
12157
12158 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
12159 "Qbtrace:off", "disable-btrace", 0);
12160
12161 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
12162 "Qbtrace:bts", "enable-btrace", 0);
12163
12164 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
12165 "qXfer:btrace", "read-btrace", 0);
12166
12167 /* Keep the old ``set remote Z-packet ...'' working. Each individual
12168 Z sub-packet has its own set and show commands, but users may
12169 have sets to this variable in their .gdbinit files (or in their
12170 documentation). */
12171 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
12172 &remote_Z_packet_detect, _("\
12173 Set use of remote protocol `Z' packets"), _("\
12174 Show use of remote protocol `Z' packets "), _("\
12175 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
12176 packets."),
12177 set_remote_protocol_Z_packet_cmd,
12178 show_remote_protocol_Z_packet_cmd,
12179 /* FIXME: i18n: Use of remote protocol
12180 `Z' packets is %s. */
12181 &remote_set_cmdlist, &remote_show_cmdlist);
12182
12183 add_prefix_cmd ("remote", class_files, remote_command, _("\
12184 Manipulate files on the remote system\n\
12185 Transfer files to and from the remote target system."),
12186 &remote_cmdlist, "remote ",
12187 0 /* allow-unknown */, &cmdlist);
12188
12189 add_cmd ("put", class_files, remote_put_command,
12190 _("Copy a local file to the remote system."),
12191 &remote_cmdlist);
12192
12193 add_cmd ("get", class_files, remote_get_command,
12194 _("Copy a remote file to the local system."),
12195 &remote_cmdlist);
12196
12197 add_cmd ("delete", class_files, remote_delete_command,
12198 _("Delete a remote file."),
12199 &remote_cmdlist);
12200
12201 remote_exec_file = xstrdup ("");
12202 add_setshow_string_noescape_cmd ("exec-file", class_files,
12203 &remote_exec_file, _("\
12204 Set the remote pathname for \"run\""), _("\
12205 Show the remote pathname for \"run\""), NULL, NULL, NULL,
12206 &remote_set_cmdlist, &remote_show_cmdlist);
12207
12208 add_setshow_boolean_cmd ("range-stepping", class_run,
12209 &use_range_stepping, _("\
12210 Enable or disable range stepping."), _("\
12211 Show whether target-assisted range stepping is enabled."), _("\
12212 If on, and the target supports it, when stepping a source line, GDB\n\
12213 tells the target to step the corresponding range of addresses itself instead\n\
12214 of issuing multiple single-steps. This speeds up source level\n\
12215 stepping. If off, GDB always issues single-steps, even if range\n\
12216 stepping is supported by the target. The default is on."),
12217 set_range_stepping,
12218 show_range_stepping,
12219 &setlist,
12220 &showlist);
12221
12222 /* Eventually initialize fileio. See fileio.c */
12223 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
12224
12225 /* Take advantage of the fact that the LWP field is not used, to tag
12226 special ptids with it set to != 0. */
12227 magic_null_ptid = ptid_build (42000, 1, -1);
12228 not_sent_ptid = ptid_build (42000, 1, -2);
12229 any_thread_ptid = ptid_build (42000, 1, 0);
12230
12231 target_buf_size = 2048;
12232 target_buf = xmalloc (target_buf_size);
12233 }
12234