Inform about new thread in a single place.
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62
63 #include "memory-map.h"
64
65 /* The size to align memory write packets, when practical. The protocol
66 does not guarantee any alignment, and gdb will generate short
67 writes and unaligned writes, but even as a best-effort attempt this
68 can improve bulk transfers. For instance, if a write is misaligned
69 relative to the target's data bus, the stub may need to make an extra
70 round trip fetching data from the target. This doesn't make a
71 huge difference, but it's easy to do, so we try to be helpful.
72
73 The alignment chosen is arbitrary; usually data bus width is
74 important here, not the possibly larger cache line size. */
75 enum { REMOTE_ALIGN_WRITES = 16 };
76
77 /* Prototypes for local functions. */
78 static void cleanup_sigint_signal_handler (void *dummy);
79 static void initialize_sigint_signal_handler (void);
80 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
81
82 static void handle_remote_sigint (int);
83 static void handle_remote_sigint_twice (int);
84 static void async_remote_interrupt (gdb_client_data);
85 void async_remote_interrupt_twice (gdb_client_data);
86
87 static void remote_files_info (struct target_ops *ignore);
88
89 static void remote_prepare_to_store (struct regcache *regcache);
90
91 static void remote_fetch_registers (struct regcache *regcache, int regno);
92
93 static void remote_resume (ptid_t ptid, int step,
94 enum target_signal siggnal);
95 static void remote_async_resume (ptid_t ptid, int step,
96 enum target_signal siggnal);
97 static void remote_open (char *name, int from_tty);
98 static void remote_async_open (char *name, int from_tty);
99
100 static void extended_remote_open (char *name, int from_tty);
101 static void extended_remote_async_open (char *name, int from_tty);
102
103 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
104 int async_p);
105
106 static void remote_close (int quitting);
107
108 static void remote_store_registers (struct regcache *regcache, int regno);
109
110 static void remote_mourn (void);
111 static void remote_async_mourn (void);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (void);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static ptid_t remote_wait (ptid_t ptid,
124 struct target_waitstatus *status);
125 static ptid_t remote_async_wait (ptid_t ptid,
126 struct target_waitstatus *status);
127
128 static void remote_kill (void);
129 static void remote_async_kill (void);
130
131 static int tohex (int nib);
132
133 static void remote_detach (char *args, int from_tty);
134
135 static void remote_interrupt (int signo);
136
137 static void remote_interrupt_twice (int signo);
138
139 static void interrupt_query (void);
140
141 static void set_thread (int, int);
142
143 static int remote_thread_alive (ptid_t);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (void);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static unsigned long crc32 (unsigned char *, int, unsigned int);
172
173 static void compare_sections_command (char *, int);
174
175 static void packet_command (char *, int);
176
177 static int stub_unpack_int (char *buff, int fieldlength);
178
179 static ptid_t remote_current_thread (ptid_t oldptid);
180
181 static void remote_find_new_threads (void);
182
183 static void record_currthread (int currthread);
184
185 static int fromhex (int a);
186
187 static int hex2bin (const char *hex, gdb_byte *bin, int count);
188
189 static int bin2hex (const gdb_byte *bin, char *hex, int count);
190
191 static int putpkt_binary (char *buf, int cnt);
192
193 static void check_binary_download (CORE_ADDR addr);
194
195 struct packet_config;
196
197 static void show_packet_config_cmd (struct packet_config *config);
198
199 static void update_packet_config (struct packet_config *config);
200
201 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
202 struct cmd_list_element *c);
203
204 static void show_remote_protocol_packet_cmd (struct ui_file *file,
205 int from_tty,
206 struct cmd_list_element *c,
207 const char *value);
208
209 void _initialize_remote (void);
210
211 /* For "remote". */
212
213 static struct cmd_list_element *remote_cmdlist;
214
215 /* For "set remote" and "show remote". */
216
217 static struct cmd_list_element *remote_set_cmdlist;
218 static struct cmd_list_element *remote_show_cmdlist;
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 struct remote_state
225 {
226 /* A buffer to use for incoming packets, and its current size. The
227 buffer is grown dynamically for larger incoming packets.
228 Outgoing packets may also be constructed in this buffer.
229 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
230 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
231 packets. */
232 char *buf;
233 long buf_size;
234
235 /* If we negotiated packet size explicitly (and thus can bypass
236 heuristics for the largest packet size that will not overflow
237 a buffer in the stub), this will be set to that packet size.
238 Otherwise zero, meaning to use the guessed size. */
239 long explicit_packet_size;
240 };
241
242 /* This data could be associated with a target, but we do not always
243 have access to the current target when we need it, so for now it is
244 static. This will be fine for as long as only one target is in use
245 at a time. */
246 static struct remote_state remote_state;
247
248 static struct remote_state *
249 get_remote_state_raw (void)
250 {
251 return &remote_state;
252 }
253
254 /* Description of the remote protocol for a given architecture. */
255
256 struct packet_reg
257 {
258 long offset; /* Offset into G packet. */
259 long regnum; /* GDB's internal register number. */
260 LONGEST pnum; /* Remote protocol register number. */
261 int in_g_packet; /* Always part of G packet. */
262 /* long size in bytes; == register_size (current_gdbarch, regnum);
263 at present. */
264 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
265 at present. */
266 };
267
268 struct remote_arch_state
269 {
270 /* Description of the remote protocol registers. */
271 long sizeof_g_packet;
272
273 /* Description of the remote protocol registers indexed by REGNUM
274 (making an array gdbarch_num_regs in size). */
275 struct packet_reg *regs;
276
277 /* This is the size (in chars) of the first response to the ``g''
278 packet. It is used as a heuristic when determining the maximum
279 size of memory-read and memory-write packets. A target will
280 typically only reserve a buffer large enough to hold the ``g''
281 packet. The size does not include packet overhead (headers and
282 trailers). */
283 long actual_register_packet_size;
284
285 /* This is the maximum size (in chars) of a non read/write packet.
286 It is also used as a cap on the size of read/write packets. */
287 long remote_packet_size;
288 };
289
290
291 /* Handle for retreving the remote protocol data from gdbarch. */
292 static struct gdbarch_data *remote_gdbarch_data_handle;
293
294 static struct remote_arch_state *
295 get_remote_arch_state (void)
296 {
297 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
298 }
299
300 /* Fetch the global remote target state. */
301
302 static struct remote_state *
303 get_remote_state (void)
304 {
305 /* Make sure that the remote architecture state has been
306 initialized, because doing so might reallocate rs->buf. Any
307 function which calls getpkt also needs to be mindful of changes
308 to rs->buf, but this call limits the number of places which run
309 into trouble. */
310 get_remote_arch_state ();
311
312 return get_remote_state_raw ();
313 }
314
315 static int
316 compare_pnums (const void *lhs_, const void *rhs_)
317 {
318 const struct packet_reg * const *lhs = lhs_;
319 const struct packet_reg * const *rhs = rhs_;
320
321 if ((*lhs)->pnum < (*rhs)->pnum)
322 return -1;
323 else if ((*lhs)->pnum == (*rhs)->pnum)
324 return 0;
325 else
326 return 1;
327 }
328
329 static void *
330 init_remote_state (struct gdbarch *gdbarch)
331 {
332 int regnum, num_remote_regs, offset;
333 struct remote_state *rs = get_remote_state_raw ();
334 struct remote_arch_state *rsa;
335 struct packet_reg **remote_regs;
336
337 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
338
339 /* Use the architecture to build a regnum<->pnum table, which will be
340 1:1 unless a feature set specifies otherwise. */
341 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
342 gdbarch_num_regs (gdbarch),
343 struct packet_reg);
344 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
345 {
346 struct packet_reg *r = &rsa->regs[regnum];
347
348 if (register_size (gdbarch, regnum) == 0)
349 /* Do not try to fetch zero-sized (placeholder) registers. */
350 r->pnum = -1;
351 else
352 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
353
354 r->regnum = regnum;
355 }
356
357 /* Define the g/G packet format as the contents of each register
358 with a remote protocol number, in order of ascending protocol
359 number. */
360
361 remote_regs = alloca (gdbarch_num_regs (gdbarch)
362 * sizeof (struct packet_reg *));
363 for (num_remote_regs = 0, regnum = 0;
364 regnum < gdbarch_num_regs (gdbarch);
365 regnum++)
366 if (rsa->regs[regnum].pnum != -1)
367 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
368
369 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
370 compare_pnums);
371
372 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
373 {
374 remote_regs[regnum]->in_g_packet = 1;
375 remote_regs[regnum]->offset = offset;
376 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
377 }
378
379 /* Record the maximum possible size of the g packet - it may turn out
380 to be smaller. */
381 rsa->sizeof_g_packet = offset;
382
383 /* Default maximum number of characters in a packet body. Many
384 remote stubs have a hardwired buffer size of 400 bytes
385 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
386 as the maximum packet-size to ensure that the packet and an extra
387 NUL character can always fit in the buffer. This stops GDB
388 trashing stubs that try to squeeze an extra NUL into what is
389 already a full buffer (As of 1999-12-04 that was most stubs). */
390 rsa->remote_packet_size = 400 - 1;
391
392 /* This one is filled in when a ``g'' packet is received. */
393 rsa->actual_register_packet_size = 0;
394
395 /* Should rsa->sizeof_g_packet needs more space than the
396 default, adjust the size accordingly. Remember that each byte is
397 encoded as two characters. 32 is the overhead for the packet
398 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
399 (``$NN:G...#NN'') is a better guess, the below has been padded a
400 little. */
401 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
402 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
403
404 /* Make sure that the packet buffer is plenty big enough for
405 this architecture. */
406 if (rs->buf_size < rsa->remote_packet_size)
407 {
408 rs->buf_size = 2 * rsa->remote_packet_size;
409 rs->buf = xrealloc (rs->buf, rs->buf_size);
410 }
411
412 return rsa;
413 }
414
415 /* Return the current allowed size of a remote packet. This is
416 inferred from the current architecture, and should be used to
417 limit the length of outgoing packets. */
418 static long
419 get_remote_packet_size (void)
420 {
421 struct remote_state *rs = get_remote_state ();
422 struct remote_arch_state *rsa = get_remote_arch_state ();
423
424 if (rs->explicit_packet_size)
425 return rs->explicit_packet_size;
426
427 return rsa->remote_packet_size;
428 }
429
430 static struct packet_reg *
431 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
432 {
433 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
434 return NULL;
435 else
436 {
437 struct packet_reg *r = &rsa->regs[regnum];
438 gdb_assert (r->regnum == regnum);
439 return r;
440 }
441 }
442
443 static struct packet_reg *
444 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
445 {
446 int i;
447 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
448 {
449 struct packet_reg *r = &rsa->regs[i];
450 if (r->pnum == pnum)
451 return r;
452 }
453 return NULL;
454 }
455
456 /* FIXME: graces/2002-08-08: These variables should eventually be
457 bound to an instance of the target object (as in gdbarch-tdep()),
458 when such a thing exists. */
459
460 /* This is set to the data address of the access causing the target
461 to stop for a watchpoint. */
462 static CORE_ADDR remote_watch_data_address;
463
464 /* This is non-zero if target stopped for a watchpoint. */
465 static int remote_stopped_by_watchpoint_p;
466
467 static struct target_ops remote_ops;
468
469 static struct target_ops extended_remote_ops;
470
471 /* Temporary target ops. Just like the remote_ops and
472 extended_remote_ops, but with asynchronous support. */
473 static struct target_ops remote_async_ops;
474
475 static struct target_ops extended_async_remote_ops;
476
477 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
478 ``forever'' still use the normal timeout mechanism. This is
479 currently used by the ASYNC code to guarentee that target reads
480 during the initial connect always time-out. Once getpkt has been
481 modified to return a timeout indication and, in turn
482 remote_wait()/wait_for_inferior() have gained a timeout parameter
483 this can go away. */
484 static int wait_forever_enabled_p = 1;
485
486
487 /* This variable chooses whether to send a ^C or a break when the user
488 requests program interruption. Although ^C is usually what remote
489 systems expect, and that is the default here, sometimes a break is
490 preferable instead. */
491
492 static int remote_break;
493
494 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
495 remote_open knows that we don't have a file open when the program
496 starts. */
497 static struct serial *remote_desc = NULL;
498
499 /* This variable sets the number of bits in an address that are to be
500 sent in a memory ("M" or "m") packet. Normally, after stripping
501 leading zeros, the entire address would be sent. This variable
502 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
503 initial implementation of remote.c restricted the address sent in
504 memory packets to ``host::sizeof long'' bytes - (typically 32
505 bits). Consequently, for 64 bit targets, the upper 32 bits of an
506 address was never sent. Since fixing this bug may cause a break in
507 some remote targets this variable is principly provided to
508 facilitate backward compatibility. */
509
510 static int remote_address_size;
511
512 /* Tempoary to track who currently owns the terminal. See
513 target_async_terminal_* for more details. */
514
515 static int remote_async_terminal_ours_p;
516
517 \f
518 /* User configurable variables for the number of characters in a
519 memory read/write packet. MIN (rsa->remote_packet_size,
520 rsa->sizeof_g_packet) is the default. Some targets need smaller
521 values (fifo overruns, et.al.) and some users need larger values
522 (speed up transfers). The variables ``preferred_*'' (the user
523 request), ``current_*'' (what was actually set) and ``forced_*''
524 (Positive - a soft limit, negative - a hard limit). */
525
526 struct memory_packet_config
527 {
528 char *name;
529 long size;
530 int fixed_p;
531 };
532
533 /* Compute the current size of a read/write packet. Since this makes
534 use of ``actual_register_packet_size'' the computation is dynamic. */
535
536 static long
537 get_memory_packet_size (struct memory_packet_config *config)
538 {
539 struct remote_state *rs = get_remote_state ();
540 struct remote_arch_state *rsa = get_remote_arch_state ();
541
542 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
543 law?) that some hosts don't cope very well with large alloca()
544 calls. Eventually the alloca() code will be replaced by calls to
545 xmalloc() and make_cleanups() allowing this restriction to either
546 be lifted or removed. */
547 #ifndef MAX_REMOTE_PACKET_SIZE
548 #define MAX_REMOTE_PACKET_SIZE 16384
549 #endif
550 /* NOTE: 20 ensures we can write at least one byte. */
551 #ifndef MIN_REMOTE_PACKET_SIZE
552 #define MIN_REMOTE_PACKET_SIZE 20
553 #endif
554 long what_they_get;
555 if (config->fixed_p)
556 {
557 if (config->size <= 0)
558 what_they_get = MAX_REMOTE_PACKET_SIZE;
559 else
560 what_they_get = config->size;
561 }
562 else
563 {
564 what_they_get = get_remote_packet_size ();
565 /* Limit the packet to the size specified by the user. */
566 if (config->size > 0
567 && what_they_get > config->size)
568 what_they_get = config->size;
569
570 /* Limit it to the size of the targets ``g'' response unless we have
571 permission from the stub to use a larger packet size. */
572 if (rs->explicit_packet_size == 0
573 && rsa->actual_register_packet_size > 0
574 && what_they_get > rsa->actual_register_packet_size)
575 what_they_get = rsa->actual_register_packet_size;
576 }
577 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
578 what_they_get = MAX_REMOTE_PACKET_SIZE;
579 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
580 what_they_get = MIN_REMOTE_PACKET_SIZE;
581
582 /* Make sure there is room in the global buffer for this packet
583 (including its trailing NUL byte). */
584 if (rs->buf_size < what_they_get + 1)
585 {
586 rs->buf_size = 2 * what_they_get;
587 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
588 }
589
590 return what_they_get;
591 }
592
593 /* Update the size of a read/write packet. If they user wants
594 something really big then do a sanity check. */
595
596 static void
597 set_memory_packet_size (char *args, struct memory_packet_config *config)
598 {
599 int fixed_p = config->fixed_p;
600 long size = config->size;
601 if (args == NULL)
602 error (_("Argument required (integer, `fixed' or `limited')."));
603 else if (strcmp (args, "hard") == 0
604 || strcmp (args, "fixed") == 0)
605 fixed_p = 1;
606 else if (strcmp (args, "soft") == 0
607 || strcmp (args, "limit") == 0)
608 fixed_p = 0;
609 else
610 {
611 char *end;
612 size = strtoul (args, &end, 0);
613 if (args == end)
614 error (_("Invalid %s (bad syntax)."), config->name);
615 #if 0
616 /* Instead of explicitly capping the size of a packet to
617 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
618 instead allowed to set the size to something arbitrarily
619 large. */
620 if (size > MAX_REMOTE_PACKET_SIZE)
621 error (_("Invalid %s (too large)."), config->name);
622 #endif
623 }
624 /* Extra checks? */
625 if (fixed_p && !config->fixed_p)
626 {
627 if (! query (_("The target may not be able to correctly handle a %s\n"
628 "of %ld bytes. Change the packet size? "),
629 config->name, size))
630 error (_("Packet size not changed."));
631 }
632 /* Update the config. */
633 config->fixed_p = fixed_p;
634 config->size = size;
635 }
636
637 static void
638 show_memory_packet_size (struct memory_packet_config *config)
639 {
640 printf_filtered (_("The %s is %ld. "), config->name, config->size);
641 if (config->fixed_p)
642 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
643 get_memory_packet_size (config));
644 else
645 printf_filtered (_("Packets are limited to %ld bytes.\n"),
646 get_memory_packet_size (config));
647 }
648
649 static struct memory_packet_config memory_write_packet_config =
650 {
651 "memory-write-packet-size",
652 };
653
654 static void
655 set_memory_write_packet_size (char *args, int from_tty)
656 {
657 set_memory_packet_size (args, &memory_write_packet_config);
658 }
659
660 static void
661 show_memory_write_packet_size (char *args, int from_tty)
662 {
663 show_memory_packet_size (&memory_write_packet_config);
664 }
665
666 static long
667 get_memory_write_packet_size (void)
668 {
669 return get_memory_packet_size (&memory_write_packet_config);
670 }
671
672 static struct memory_packet_config memory_read_packet_config =
673 {
674 "memory-read-packet-size",
675 };
676
677 static void
678 set_memory_read_packet_size (char *args, int from_tty)
679 {
680 set_memory_packet_size (args, &memory_read_packet_config);
681 }
682
683 static void
684 show_memory_read_packet_size (char *args, int from_tty)
685 {
686 show_memory_packet_size (&memory_read_packet_config);
687 }
688
689 static long
690 get_memory_read_packet_size (void)
691 {
692 long size = get_memory_packet_size (&memory_read_packet_config);
693 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
694 extra buffer size argument before the memory read size can be
695 increased beyond this. */
696 if (size > get_remote_packet_size ())
697 size = get_remote_packet_size ();
698 return size;
699 }
700
701 \f
702 /* Generic configuration support for packets the stub optionally
703 supports. Allows the user to specify the use of the packet as well
704 as allowing GDB to auto-detect support in the remote stub. */
705
706 enum packet_support
707 {
708 PACKET_SUPPORT_UNKNOWN = 0,
709 PACKET_ENABLE,
710 PACKET_DISABLE
711 };
712
713 struct packet_config
714 {
715 const char *name;
716 const char *title;
717 enum auto_boolean detect;
718 enum packet_support support;
719 };
720
721 /* Analyze a packet's return value and update the packet config
722 accordingly. */
723
724 enum packet_result
725 {
726 PACKET_ERROR,
727 PACKET_OK,
728 PACKET_UNKNOWN
729 };
730
731 static void
732 update_packet_config (struct packet_config *config)
733 {
734 switch (config->detect)
735 {
736 case AUTO_BOOLEAN_TRUE:
737 config->support = PACKET_ENABLE;
738 break;
739 case AUTO_BOOLEAN_FALSE:
740 config->support = PACKET_DISABLE;
741 break;
742 case AUTO_BOOLEAN_AUTO:
743 config->support = PACKET_SUPPORT_UNKNOWN;
744 break;
745 }
746 }
747
748 static void
749 show_packet_config_cmd (struct packet_config *config)
750 {
751 char *support = "internal-error";
752 switch (config->support)
753 {
754 case PACKET_ENABLE:
755 support = "enabled";
756 break;
757 case PACKET_DISABLE:
758 support = "disabled";
759 break;
760 case PACKET_SUPPORT_UNKNOWN:
761 support = "unknown";
762 break;
763 }
764 switch (config->detect)
765 {
766 case AUTO_BOOLEAN_AUTO:
767 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
768 config->name, support);
769 break;
770 case AUTO_BOOLEAN_TRUE:
771 case AUTO_BOOLEAN_FALSE:
772 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
773 config->name, support);
774 break;
775 }
776 }
777
778 static void
779 add_packet_config_cmd (struct packet_config *config, const char *name,
780 const char *title, int legacy)
781 {
782 char *set_doc;
783 char *show_doc;
784 char *cmd_name;
785
786 config->name = name;
787 config->title = title;
788 config->detect = AUTO_BOOLEAN_AUTO;
789 config->support = PACKET_SUPPORT_UNKNOWN;
790 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
791 name, title);
792 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
793 name, title);
794 /* set/show TITLE-packet {auto,on,off} */
795 cmd_name = xstrprintf ("%s-packet", title);
796 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
797 &config->detect, set_doc, show_doc, NULL, /* help_doc */
798 set_remote_protocol_packet_cmd,
799 show_remote_protocol_packet_cmd,
800 &remote_set_cmdlist, &remote_show_cmdlist);
801 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
802 if (legacy)
803 {
804 char *legacy_name;
805 legacy_name = xstrprintf ("%s-packet", name);
806 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
807 &remote_set_cmdlist);
808 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
809 &remote_show_cmdlist);
810 }
811 }
812
813 static enum packet_result
814 packet_check_result (const char *buf)
815 {
816 if (buf[0] != '\0')
817 {
818 /* The stub recognized the packet request. Check that the
819 operation succeeded. */
820 if (buf[0] == 'E'
821 && isxdigit (buf[1]) && isxdigit (buf[2])
822 && buf[3] == '\0')
823 /* "Enn" - definitly an error. */
824 return PACKET_ERROR;
825
826 /* Always treat "E." as an error. This will be used for
827 more verbose error messages, such as E.memtypes. */
828 if (buf[0] == 'E' && buf[1] == '.')
829 return PACKET_ERROR;
830
831 /* The packet may or may not be OK. Just assume it is. */
832 return PACKET_OK;
833 }
834 else
835 /* The stub does not support the packet. */
836 return PACKET_UNKNOWN;
837 }
838
839 static enum packet_result
840 packet_ok (const char *buf, struct packet_config *config)
841 {
842 enum packet_result result;
843
844 result = packet_check_result (buf);
845 switch (result)
846 {
847 case PACKET_OK:
848 case PACKET_ERROR:
849 /* The stub recognized the packet request. */
850 switch (config->support)
851 {
852 case PACKET_SUPPORT_UNKNOWN:
853 if (remote_debug)
854 fprintf_unfiltered (gdb_stdlog,
855 "Packet %s (%s) is supported\n",
856 config->name, config->title);
857 config->support = PACKET_ENABLE;
858 break;
859 case PACKET_DISABLE:
860 internal_error (__FILE__, __LINE__,
861 _("packet_ok: attempt to use a disabled packet"));
862 break;
863 case PACKET_ENABLE:
864 break;
865 }
866 break;
867 case PACKET_UNKNOWN:
868 /* The stub does not support the packet. */
869 switch (config->support)
870 {
871 case PACKET_ENABLE:
872 if (config->detect == AUTO_BOOLEAN_AUTO)
873 /* If the stub previously indicated that the packet was
874 supported then there is a protocol error.. */
875 error (_("Protocol error: %s (%s) conflicting enabled responses."),
876 config->name, config->title);
877 else
878 /* The user set it wrong. */
879 error (_("Enabled packet %s (%s) not recognized by stub"),
880 config->name, config->title);
881 break;
882 case PACKET_SUPPORT_UNKNOWN:
883 if (remote_debug)
884 fprintf_unfiltered (gdb_stdlog,
885 "Packet %s (%s) is NOT supported\n",
886 config->name, config->title);
887 config->support = PACKET_DISABLE;
888 break;
889 case PACKET_DISABLE:
890 break;
891 }
892 break;
893 }
894
895 return result;
896 }
897
898 enum {
899 PACKET_vCont = 0,
900 PACKET_X,
901 PACKET_qSymbol,
902 PACKET_P,
903 PACKET_p,
904 PACKET_Z0,
905 PACKET_Z1,
906 PACKET_Z2,
907 PACKET_Z3,
908 PACKET_Z4,
909 PACKET_vFile_open,
910 PACKET_vFile_pread,
911 PACKET_vFile_pwrite,
912 PACKET_vFile_close,
913 PACKET_vFile_unlink,
914 PACKET_qXfer_auxv,
915 PACKET_qXfer_features,
916 PACKET_qXfer_libraries,
917 PACKET_qXfer_memory_map,
918 PACKET_qXfer_spu_read,
919 PACKET_qXfer_spu_write,
920 PACKET_qGetTLSAddr,
921 PACKET_qSupported,
922 PACKET_QPassSignals,
923 PACKET_MAX
924 };
925
926 static struct packet_config remote_protocol_packets[PACKET_MAX];
927
928 static void
929 set_remote_protocol_packet_cmd (char *args, int from_tty,
930 struct cmd_list_element *c)
931 {
932 struct packet_config *packet;
933
934 for (packet = remote_protocol_packets;
935 packet < &remote_protocol_packets[PACKET_MAX];
936 packet++)
937 {
938 if (&packet->detect == c->var)
939 {
940 update_packet_config (packet);
941 return;
942 }
943 }
944 internal_error (__FILE__, __LINE__, "Could not find config for %s",
945 c->name);
946 }
947
948 static void
949 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
950 struct cmd_list_element *c,
951 const char *value)
952 {
953 struct packet_config *packet;
954
955 for (packet = remote_protocol_packets;
956 packet < &remote_protocol_packets[PACKET_MAX];
957 packet++)
958 {
959 if (&packet->detect == c->var)
960 {
961 show_packet_config_cmd (packet);
962 return;
963 }
964 }
965 internal_error (__FILE__, __LINE__, "Could not find config for %s",
966 c->name);
967 }
968
969 /* Should we try one of the 'Z' requests? */
970
971 enum Z_packet_type
972 {
973 Z_PACKET_SOFTWARE_BP,
974 Z_PACKET_HARDWARE_BP,
975 Z_PACKET_WRITE_WP,
976 Z_PACKET_READ_WP,
977 Z_PACKET_ACCESS_WP,
978 NR_Z_PACKET_TYPES
979 };
980
981 /* For compatibility with older distributions. Provide a ``set remote
982 Z-packet ...'' command that updates all the Z packet types. */
983
984 static enum auto_boolean remote_Z_packet_detect;
985
986 static void
987 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
988 struct cmd_list_element *c)
989 {
990 int i;
991 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
992 {
993 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
994 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
995 }
996 }
997
998 static void
999 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1000 struct cmd_list_element *c,
1001 const char *value)
1002 {
1003 int i;
1004 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1005 {
1006 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1007 }
1008 }
1009
1010 /* Should we try the 'ThreadInfo' query packet?
1011
1012 This variable (NOT available to the user: auto-detect only!)
1013 determines whether GDB will use the new, simpler "ThreadInfo"
1014 query or the older, more complex syntax for thread queries.
1015 This is an auto-detect variable (set to true at each connect,
1016 and set to false when the target fails to recognize it). */
1017
1018 static int use_threadinfo_query;
1019 static int use_threadextra_query;
1020
1021 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1022 static struct async_signal_handler *sigint_remote_twice_token;
1023 static struct async_signal_handler *sigint_remote_token;
1024
1025 /* These are pointers to hook functions that may be set in order to
1026 modify resume/wait behavior for a particular architecture. */
1027
1028 void (*deprecated_target_resume_hook) (void);
1029 void (*deprecated_target_wait_loop_hook) (void);
1030 \f
1031
1032
1033 /* These are the threads which we last sent to the remote system.
1034 -1 for all or -2 for not sent yet. */
1035 static int general_thread;
1036 static int continue_thread;
1037
1038 /* Call this function as a result of
1039 1) A halt indication (T packet) containing a thread id
1040 2) A direct query of currthread
1041 3) Successful execution of set thread
1042 */
1043
1044 static void
1045 record_currthread (int currthread)
1046 {
1047 general_thread = currthread;
1048
1049 /* If this is a new thread, add it to GDB's thread list.
1050 If we leave it up to WFI to do this, bad things will happen. */
1051 if (!in_thread_list (pid_to_ptid (currthread)))
1052 add_thread (pid_to_ptid (currthread));
1053 }
1054
1055 static char *last_pass_packet;
1056
1057 /* If 'QPassSignals' is supported, tell the remote stub what signals
1058 it can simply pass through to the inferior without reporting. */
1059
1060 static void
1061 remote_pass_signals (void)
1062 {
1063 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1064 {
1065 char *pass_packet, *p;
1066 int numsigs = (int) TARGET_SIGNAL_LAST;
1067 int count = 0, i;
1068
1069 gdb_assert (numsigs < 256);
1070 for (i = 0; i < numsigs; i++)
1071 {
1072 if (signal_stop_state (i) == 0
1073 && signal_print_state (i) == 0
1074 && signal_pass_state (i) == 1)
1075 count++;
1076 }
1077 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1078 strcpy (pass_packet, "QPassSignals:");
1079 p = pass_packet + strlen (pass_packet);
1080 for (i = 0; i < numsigs; i++)
1081 {
1082 if (signal_stop_state (i) == 0
1083 && signal_print_state (i) == 0
1084 && signal_pass_state (i) == 1)
1085 {
1086 if (i >= 16)
1087 *p++ = tohex (i >> 4);
1088 *p++ = tohex (i & 15);
1089 if (count)
1090 *p++ = ';';
1091 else
1092 break;
1093 count--;
1094 }
1095 }
1096 *p = 0;
1097 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1098 {
1099 struct remote_state *rs = get_remote_state ();
1100 char *buf = rs->buf;
1101
1102 putpkt (pass_packet);
1103 getpkt (&rs->buf, &rs->buf_size, 0);
1104 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1105 if (last_pass_packet)
1106 xfree (last_pass_packet);
1107 last_pass_packet = pass_packet;
1108 }
1109 else
1110 xfree (pass_packet);
1111 }
1112 }
1113
1114 #define MAGIC_NULL_PID 42000
1115
1116 static void
1117 set_thread (int th, int gen)
1118 {
1119 struct remote_state *rs = get_remote_state ();
1120 char *buf = rs->buf;
1121 int state = gen ? general_thread : continue_thread;
1122
1123 if (state == th)
1124 return;
1125
1126 buf[0] = 'H';
1127 buf[1] = gen ? 'g' : 'c';
1128 if (th == MAGIC_NULL_PID)
1129 {
1130 buf[2] = '0';
1131 buf[3] = '\0';
1132 }
1133 else if (th < 0)
1134 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1135 else
1136 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1137 putpkt (buf);
1138 getpkt (&rs->buf, &rs->buf_size, 0);
1139 if (gen)
1140 general_thread = th;
1141 else
1142 continue_thread = th;
1143 }
1144 \f
1145 /* Return nonzero if the thread TH is still alive on the remote system. */
1146
1147 static int
1148 remote_thread_alive (ptid_t ptid)
1149 {
1150 struct remote_state *rs = get_remote_state ();
1151 int tid = PIDGET (ptid);
1152
1153 if (tid < 0)
1154 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1155 else
1156 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1157 putpkt (rs->buf);
1158 getpkt (&rs->buf, &rs->buf_size, 0);
1159 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1160 }
1161
1162 /* About these extended threadlist and threadinfo packets. They are
1163 variable length packets but, the fields within them are often fixed
1164 length. They are redundent enough to send over UDP as is the
1165 remote protocol in general. There is a matching unit test module
1166 in libstub. */
1167
1168 #define OPAQUETHREADBYTES 8
1169
1170 /* a 64 bit opaque identifier */
1171 typedef unsigned char threadref[OPAQUETHREADBYTES];
1172
1173 /* WARNING: This threadref data structure comes from the remote O.S.,
1174 libstub protocol encoding, and remote.c. it is not particularly
1175 changable. */
1176
1177 /* Right now, the internal structure is int. We want it to be bigger.
1178 Plan to fix this.
1179 */
1180
1181 typedef int gdb_threadref; /* Internal GDB thread reference. */
1182
1183 /* gdb_ext_thread_info is an internal GDB data structure which is
1184 equivalent to the reply of the remote threadinfo packet. */
1185
1186 struct gdb_ext_thread_info
1187 {
1188 threadref threadid; /* External form of thread reference. */
1189 int active; /* Has state interesting to GDB?
1190 regs, stack. */
1191 char display[256]; /* Brief state display, name,
1192 blocked/suspended. */
1193 char shortname[32]; /* To be used to name threads. */
1194 char more_display[256]; /* Long info, statistics, queue depth,
1195 whatever. */
1196 };
1197
1198 /* The volume of remote transfers can be limited by submitting
1199 a mask containing bits specifying the desired information.
1200 Use a union of these values as the 'selection' parameter to
1201 get_thread_info. FIXME: Make these TAG names more thread specific.
1202 */
1203
1204 #define TAG_THREADID 1
1205 #define TAG_EXISTS 2
1206 #define TAG_DISPLAY 4
1207 #define TAG_THREADNAME 8
1208 #define TAG_MOREDISPLAY 16
1209
1210 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1211
1212 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1213
1214 static char *unpack_nibble (char *buf, int *val);
1215
1216 static char *pack_nibble (char *buf, int nibble);
1217
1218 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1219
1220 static char *unpack_byte (char *buf, int *value);
1221
1222 static char *pack_int (char *buf, int value);
1223
1224 static char *unpack_int (char *buf, int *value);
1225
1226 static char *unpack_string (char *src, char *dest, int length);
1227
1228 static char *pack_threadid (char *pkt, threadref *id);
1229
1230 static char *unpack_threadid (char *inbuf, threadref *id);
1231
1232 void int_to_threadref (threadref *id, int value);
1233
1234 static int threadref_to_int (threadref *ref);
1235
1236 static void copy_threadref (threadref *dest, threadref *src);
1237
1238 static int threadmatch (threadref *dest, threadref *src);
1239
1240 static char *pack_threadinfo_request (char *pkt, int mode,
1241 threadref *id);
1242
1243 static int remote_unpack_thread_info_response (char *pkt,
1244 threadref *expectedref,
1245 struct gdb_ext_thread_info
1246 *info);
1247
1248
1249 static int remote_get_threadinfo (threadref *threadid,
1250 int fieldset, /*TAG mask */
1251 struct gdb_ext_thread_info *info);
1252
1253 static char *pack_threadlist_request (char *pkt, int startflag,
1254 int threadcount,
1255 threadref *nextthread);
1256
1257 static int parse_threadlist_response (char *pkt,
1258 int result_limit,
1259 threadref *original_echo,
1260 threadref *resultlist,
1261 int *doneflag);
1262
1263 static int remote_get_threadlist (int startflag,
1264 threadref *nextthread,
1265 int result_limit,
1266 int *done,
1267 int *result_count,
1268 threadref *threadlist);
1269
1270 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1271
1272 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1273 void *context, int looplimit);
1274
1275 static int remote_newthread_step (threadref *ref, void *context);
1276
1277 /* Encode 64 bits in 16 chars of hex. */
1278
1279 static const char hexchars[] = "0123456789abcdef";
1280
1281 static int
1282 ishex (int ch, int *val)
1283 {
1284 if ((ch >= 'a') && (ch <= 'f'))
1285 {
1286 *val = ch - 'a' + 10;
1287 return 1;
1288 }
1289 if ((ch >= 'A') && (ch <= 'F'))
1290 {
1291 *val = ch - 'A' + 10;
1292 return 1;
1293 }
1294 if ((ch >= '0') && (ch <= '9'))
1295 {
1296 *val = ch - '0';
1297 return 1;
1298 }
1299 return 0;
1300 }
1301
1302 static int
1303 stubhex (int ch)
1304 {
1305 if (ch >= 'a' && ch <= 'f')
1306 return ch - 'a' + 10;
1307 if (ch >= '0' && ch <= '9')
1308 return ch - '0';
1309 if (ch >= 'A' && ch <= 'F')
1310 return ch - 'A' + 10;
1311 return -1;
1312 }
1313
1314 static int
1315 stub_unpack_int (char *buff, int fieldlength)
1316 {
1317 int nibble;
1318 int retval = 0;
1319
1320 while (fieldlength)
1321 {
1322 nibble = stubhex (*buff++);
1323 retval |= nibble;
1324 fieldlength--;
1325 if (fieldlength)
1326 retval = retval << 4;
1327 }
1328 return retval;
1329 }
1330
1331 char *
1332 unpack_varlen_hex (char *buff, /* packet to parse */
1333 ULONGEST *result)
1334 {
1335 int nibble;
1336 ULONGEST retval = 0;
1337
1338 while (ishex (*buff, &nibble))
1339 {
1340 buff++;
1341 retval = retval << 4;
1342 retval |= nibble & 0x0f;
1343 }
1344 *result = retval;
1345 return buff;
1346 }
1347
1348 static char *
1349 unpack_nibble (char *buf, int *val)
1350 {
1351 *val = fromhex (*buf++);
1352 return buf;
1353 }
1354
1355 static char *
1356 pack_nibble (char *buf, int nibble)
1357 {
1358 *buf++ = hexchars[(nibble & 0x0f)];
1359 return buf;
1360 }
1361
1362 static char *
1363 pack_hex_byte (char *pkt, int byte)
1364 {
1365 *pkt++ = hexchars[(byte >> 4) & 0xf];
1366 *pkt++ = hexchars[(byte & 0xf)];
1367 return pkt;
1368 }
1369
1370 static char *
1371 unpack_byte (char *buf, int *value)
1372 {
1373 *value = stub_unpack_int (buf, 2);
1374 return buf + 2;
1375 }
1376
1377 static char *
1378 pack_int (char *buf, int value)
1379 {
1380 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1381 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1382 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1383 buf = pack_hex_byte (buf, (value & 0xff));
1384 return buf;
1385 }
1386
1387 static char *
1388 unpack_int (char *buf, int *value)
1389 {
1390 *value = stub_unpack_int (buf, 8);
1391 return buf + 8;
1392 }
1393
1394 #if 0 /* Currently unused, uncomment when needed. */
1395 static char *pack_string (char *pkt, char *string);
1396
1397 static char *
1398 pack_string (char *pkt, char *string)
1399 {
1400 char ch;
1401 int len;
1402
1403 len = strlen (string);
1404 if (len > 200)
1405 len = 200; /* Bigger than most GDB packets, junk??? */
1406 pkt = pack_hex_byte (pkt, len);
1407 while (len-- > 0)
1408 {
1409 ch = *string++;
1410 if ((ch == '\0') || (ch == '#'))
1411 ch = '*'; /* Protect encapsulation. */
1412 *pkt++ = ch;
1413 }
1414 return pkt;
1415 }
1416 #endif /* 0 (unused) */
1417
1418 static char *
1419 unpack_string (char *src, char *dest, int length)
1420 {
1421 while (length--)
1422 *dest++ = *src++;
1423 *dest = '\0';
1424 return src;
1425 }
1426
1427 static char *
1428 pack_threadid (char *pkt, threadref *id)
1429 {
1430 char *limit;
1431 unsigned char *altid;
1432
1433 altid = (unsigned char *) id;
1434 limit = pkt + BUF_THREAD_ID_SIZE;
1435 while (pkt < limit)
1436 pkt = pack_hex_byte (pkt, *altid++);
1437 return pkt;
1438 }
1439
1440
1441 static char *
1442 unpack_threadid (char *inbuf, threadref *id)
1443 {
1444 char *altref;
1445 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1446 int x, y;
1447
1448 altref = (char *) id;
1449
1450 while (inbuf < limit)
1451 {
1452 x = stubhex (*inbuf++);
1453 y = stubhex (*inbuf++);
1454 *altref++ = (x << 4) | y;
1455 }
1456 return inbuf;
1457 }
1458
1459 /* Externally, threadrefs are 64 bits but internally, they are still
1460 ints. This is due to a mismatch of specifications. We would like
1461 to use 64bit thread references internally. This is an adapter
1462 function. */
1463
1464 void
1465 int_to_threadref (threadref *id, int value)
1466 {
1467 unsigned char *scan;
1468
1469 scan = (unsigned char *) id;
1470 {
1471 int i = 4;
1472 while (i--)
1473 *scan++ = 0;
1474 }
1475 *scan++ = (value >> 24) & 0xff;
1476 *scan++ = (value >> 16) & 0xff;
1477 *scan++ = (value >> 8) & 0xff;
1478 *scan++ = (value & 0xff);
1479 }
1480
1481 static int
1482 threadref_to_int (threadref *ref)
1483 {
1484 int i, value = 0;
1485 unsigned char *scan;
1486
1487 scan = *ref;
1488 scan += 4;
1489 i = 4;
1490 while (i-- > 0)
1491 value = (value << 8) | ((*scan++) & 0xff);
1492 return value;
1493 }
1494
1495 static void
1496 copy_threadref (threadref *dest, threadref *src)
1497 {
1498 int i;
1499 unsigned char *csrc, *cdest;
1500
1501 csrc = (unsigned char *) src;
1502 cdest = (unsigned char *) dest;
1503 i = 8;
1504 while (i--)
1505 *cdest++ = *csrc++;
1506 }
1507
1508 static int
1509 threadmatch (threadref *dest, threadref *src)
1510 {
1511 /* Things are broken right now, so just assume we got a match. */
1512 #if 0
1513 unsigned char *srcp, *destp;
1514 int i, result;
1515 srcp = (char *) src;
1516 destp = (char *) dest;
1517
1518 result = 1;
1519 while (i-- > 0)
1520 result &= (*srcp++ == *destp++) ? 1 : 0;
1521 return result;
1522 #endif
1523 return 1;
1524 }
1525
1526 /*
1527 threadid:1, # always request threadid
1528 context_exists:2,
1529 display:4,
1530 unique_name:8,
1531 more_display:16
1532 */
1533
1534 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1535
1536 static char *
1537 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1538 {
1539 *pkt++ = 'q'; /* Info Query */
1540 *pkt++ = 'P'; /* process or thread info */
1541 pkt = pack_int (pkt, mode); /* mode */
1542 pkt = pack_threadid (pkt, id); /* threadid */
1543 *pkt = '\0'; /* terminate */
1544 return pkt;
1545 }
1546
1547 /* These values tag the fields in a thread info response packet. */
1548 /* Tagging the fields allows us to request specific fields and to
1549 add more fields as time goes by. */
1550
1551 #define TAG_THREADID 1 /* Echo the thread identifier. */
1552 #define TAG_EXISTS 2 /* Is this process defined enough to
1553 fetch registers and its stack? */
1554 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1555 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1556 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1557 the process. */
1558
1559 static int
1560 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1561 struct gdb_ext_thread_info *info)
1562 {
1563 struct remote_state *rs = get_remote_state ();
1564 int mask, length;
1565 int tag;
1566 threadref ref;
1567 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1568 int retval = 1;
1569
1570 /* info->threadid = 0; FIXME: implement zero_threadref. */
1571 info->active = 0;
1572 info->display[0] = '\0';
1573 info->shortname[0] = '\0';
1574 info->more_display[0] = '\0';
1575
1576 /* Assume the characters indicating the packet type have been
1577 stripped. */
1578 pkt = unpack_int (pkt, &mask); /* arg mask */
1579 pkt = unpack_threadid (pkt, &ref);
1580
1581 if (mask == 0)
1582 warning (_("Incomplete response to threadinfo request."));
1583 if (!threadmatch (&ref, expectedref))
1584 { /* This is an answer to a different request. */
1585 warning (_("ERROR RMT Thread info mismatch."));
1586 return 0;
1587 }
1588 copy_threadref (&info->threadid, &ref);
1589
1590 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1591
1592 /* Packets are terminated with nulls. */
1593 while ((pkt < limit) && mask && *pkt)
1594 {
1595 pkt = unpack_int (pkt, &tag); /* tag */
1596 pkt = unpack_byte (pkt, &length); /* length */
1597 if (!(tag & mask)) /* Tags out of synch with mask. */
1598 {
1599 warning (_("ERROR RMT: threadinfo tag mismatch."));
1600 retval = 0;
1601 break;
1602 }
1603 if (tag == TAG_THREADID)
1604 {
1605 if (length != 16)
1606 {
1607 warning (_("ERROR RMT: length of threadid is not 16."));
1608 retval = 0;
1609 break;
1610 }
1611 pkt = unpack_threadid (pkt, &ref);
1612 mask = mask & ~TAG_THREADID;
1613 continue;
1614 }
1615 if (tag == TAG_EXISTS)
1616 {
1617 info->active = stub_unpack_int (pkt, length);
1618 pkt += length;
1619 mask = mask & ~(TAG_EXISTS);
1620 if (length > 8)
1621 {
1622 warning (_("ERROR RMT: 'exists' length too long."));
1623 retval = 0;
1624 break;
1625 }
1626 continue;
1627 }
1628 if (tag == TAG_THREADNAME)
1629 {
1630 pkt = unpack_string (pkt, &info->shortname[0], length);
1631 mask = mask & ~TAG_THREADNAME;
1632 continue;
1633 }
1634 if (tag == TAG_DISPLAY)
1635 {
1636 pkt = unpack_string (pkt, &info->display[0], length);
1637 mask = mask & ~TAG_DISPLAY;
1638 continue;
1639 }
1640 if (tag == TAG_MOREDISPLAY)
1641 {
1642 pkt = unpack_string (pkt, &info->more_display[0], length);
1643 mask = mask & ~TAG_MOREDISPLAY;
1644 continue;
1645 }
1646 warning (_("ERROR RMT: unknown thread info tag."));
1647 break; /* Not a tag we know about. */
1648 }
1649 return retval;
1650 }
1651
1652 static int
1653 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1654 struct gdb_ext_thread_info *info)
1655 {
1656 struct remote_state *rs = get_remote_state ();
1657 int result;
1658
1659 pack_threadinfo_request (rs->buf, fieldset, threadid);
1660 putpkt (rs->buf);
1661 getpkt (&rs->buf, &rs->buf_size, 0);
1662 result = remote_unpack_thread_info_response (rs->buf + 2,
1663 threadid, info);
1664 return result;
1665 }
1666
1667 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1668
1669 static char *
1670 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1671 threadref *nextthread)
1672 {
1673 *pkt++ = 'q'; /* info query packet */
1674 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1675 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1676 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1677 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1678 *pkt = '\0';
1679 return pkt;
1680 }
1681
1682 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1683
1684 static int
1685 parse_threadlist_response (char *pkt, int result_limit,
1686 threadref *original_echo, threadref *resultlist,
1687 int *doneflag)
1688 {
1689 struct remote_state *rs = get_remote_state ();
1690 char *limit;
1691 int count, resultcount, done;
1692
1693 resultcount = 0;
1694 /* Assume the 'q' and 'M chars have been stripped. */
1695 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1696 /* done parse past here */
1697 pkt = unpack_byte (pkt, &count); /* count field */
1698 pkt = unpack_nibble (pkt, &done);
1699 /* The first threadid is the argument threadid. */
1700 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1701 while ((count-- > 0) && (pkt < limit))
1702 {
1703 pkt = unpack_threadid (pkt, resultlist++);
1704 if (resultcount++ >= result_limit)
1705 break;
1706 }
1707 if (doneflag)
1708 *doneflag = done;
1709 return resultcount;
1710 }
1711
1712 static int
1713 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1714 int *done, int *result_count, threadref *threadlist)
1715 {
1716 struct remote_state *rs = get_remote_state ();
1717 static threadref echo_nextthread;
1718 int result = 1;
1719
1720 /* Trancate result limit to be smaller than the packet size. */
1721 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1722 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1723
1724 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1725 putpkt (rs->buf);
1726 getpkt (&rs->buf, &rs->buf_size, 0);
1727
1728 *result_count =
1729 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1730 threadlist, done);
1731
1732 if (!threadmatch (&echo_nextthread, nextthread))
1733 {
1734 /* FIXME: This is a good reason to drop the packet. */
1735 /* Possably, there is a duplicate response. */
1736 /* Possabilities :
1737 retransmit immediatly - race conditions
1738 retransmit after timeout - yes
1739 exit
1740 wait for packet, then exit
1741 */
1742 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1743 return 0; /* I choose simply exiting. */
1744 }
1745 if (*result_count <= 0)
1746 {
1747 if (*done != 1)
1748 {
1749 warning (_("RMT ERROR : failed to get remote thread list."));
1750 result = 0;
1751 }
1752 return result; /* break; */
1753 }
1754 if (*result_count > result_limit)
1755 {
1756 *result_count = 0;
1757 warning (_("RMT ERROR: threadlist response longer than requested."));
1758 return 0;
1759 }
1760 return result;
1761 }
1762
1763 /* This is the interface between remote and threads, remotes upper
1764 interface. */
1765
1766 /* remote_find_new_threads retrieves the thread list and for each
1767 thread in the list, looks up the thread in GDB's internal list,
1768 ading the thread if it does not already exist. This involves
1769 getting partial thread lists from the remote target so, polling the
1770 quit_flag is required. */
1771
1772
1773 /* About this many threadisds fit in a packet. */
1774
1775 #define MAXTHREADLISTRESULTS 32
1776
1777 static int
1778 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1779 int looplimit)
1780 {
1781 int done, i, result_count;
1782 int startflag = 1;
1783 int result = 1;
1784 int loopcount = 0;
1785 static threadref nextthread;
1786 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1787
1788 done = 0;
1789 while (!done)
1790 {
1791 if (loopcount++ > looplimit)
1792 {
1793 result = 0;
1794 warning (_("Remote fetch threadlist -infinite loop-."));
1795 break;
1796 }
1797 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1798 &done, &result_count, resultthreadlist))
1799 {
1800 result = 0;
1801 break;
1802 }
1803 /* Clear for later iterations. */
1804 startflag = 0;
1805 /* Setup to resume next batch of thread references, set nextthread. */
1806 if (result_count >= 1)
1807 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1808 i = 0;
1809 while (result_count--)
1810 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1811 break;
1812 }
1813 return result;
1814 }
1815
1816 static int
1817 remote_newthread_step (threadref *ref, void *context)
1818 {
1819 ptid_t ptid;
1820
1821 ptid = pid_to_ptid (threadref_to_int (ref));
1822
1823 if (!in_thread_list (ptid))
1824 add_thread (ptid);
1825 return 1; /* continue iterator */
1826 }
1827
1828 #define CRAZY_MAX_THREADS 1000
1829
1830 static ptid_t
1831 remote_current_thread (ptid_t oldpid)
1832 {
1833 struct remote_state *rs = get_remote_state ();
1834
1835 putpkt ("qC");
1836 getpkt (&rs->buf, &rs->buf_size, 0);
1837 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1838 /* Use strtoul here, so we'll correctly parse values whose highest
1839 bit is set. The protocol carries them as a simple series of
1840 hex digits; in the absence of a sign, strtol will see such
1841 values as positive numbers out of range for signed 'long', and
1842 return LONG_MAX to indicate an overflow. */
1843 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1844 else
1845 return oldpid;
1846 }
1847
1848 /* Find new threads for info threads command.
1849 * Original version, using John Metzler's thread protocol.
1850 */
1851
1852 static void
1853 remote_find_new_threads (void)
1854 {
1855 remote_threadlist_iterator (remote_newthread_step, 0,
1856 CRAZY_MAX_THREADS);
1857 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1858 inferior_ptid = remote_current_thread (inferior_ptid);
1859 }
1860
1861 /*
1862 * Find all threads for info threads command.
1863 * Uses new thread protocol contributed by Cisco.
1864 * Falls back and attempts to use the older method (above)
1865 * if the target doesn't respond to the new method.
1866 */
1867
1868 static void
1869 remote_threads_info (void)
1870 {
1871 struct remote_state *rs = get_remote_state ();
1872 char *bufp;
1873 int tid;
1874
1875 if (remote_desc == 0) /* paranoia */
1876 error (_("Command can only be used when connected to the remote target."));
1877
1878 if (use_threadinfo_query)
1879 {
1880 putpkt ("qfThreadInfo");
1881 getpkt (&rs->buf, &rs->buf_size, 0);
1882 bufp = rs->buf;
1883 if (bufp[0] != '\0') /* q packet recognized */
1884 {
1885 while (*bufp++ == 'm') /* reply contains one or more TID */
1886 {
1887 do
1888 {
1889 /* Use strtoul here, so we'll correctly parse values
1890 whose highest bit is set. The protocol carries
1891 them as a simple series of hex digits; in the
1892 absence of a sign, strtol will see such values as
1893 positive numbers out of range for signed 'long',
1894 and return LONG_MAX to indicate an overflow. */
1895 tid = strtoul (bufp, &bufp, 16);
1896 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1897 add_thread (pid_to_ptid (tid));
1898 }
1899 while (*bufp++ == ','); /* comma-separated list */
1900 putpkt ("qsThreadInfo");
1901 getpkt (&rs->buf, &rs->buf_size, 0);
1902 bufp = rs->buf;
1903 }
1904 return; /* done */
1905 }
1906 }
1907
1908 /* Else fall back to old method based on jmetzler protocol. */
1909 use_threadinfo_query = 0;
1910 remote_find_new_threads ();
1911 return;
1912 }
1913
1914 /*
1915 * Collect a descriptive string about the given thread.
1916 * The target may say anything it wants to about the thread
1917 * (typically info about its blocked / runnable state, name, etc.).
1918 * This string will appear in the info threads display.
1919 *
1920 * Optional: targets are not required to implement this function.
1921 */
1922
1923 static char *
1924 remote_threads_extra_info (struct thread_info *tp)
1925 {
1926 struct remote_state *rs = get_remote_state ();
1927 int result;
1928 int set;
1929 threadref id;
1930 struct gdb_ext_thread_info threadinfo;
1931 static char display_buf[100]; /* arbitrary... */
1932 int n = 0; /* position in display_buf */
1933
1934 if (remote_desc == 0) /* paranoia */
1935 internal_error (__FILE__, __LINE__,
1936 _("remote_threads_extra_info"));
1937
1938 if (use_threadextra_query)
1939 {
1940 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1941 PIDGET (tp->ptid));
1942 putpkt (rs->buf);
1943 getpkt (&rs->buf, &rs->buf_size, 0);
1944 if (rs->buf[0] != 0)
1945 {
1946 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1947 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1948 display_buf [result] = '\0';
1949 return display_buf;
1950 }
1951 }
1952
1953 /* If the above query fails, fall back to the old method. */
1954 use_threadextra_query = 0;
1955 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1956 | TAG_MOREDISPLAY | TAG_DISPLAY;
1957 int_to_threadref (&id, PIDGET (tp->ptid));
1958 if (remote_get_threadinfo (&id, set, &threadinfo))
1959 if (threadinfo.active)
1960 {
1961 if (*threadinfo.shortname)
1962 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1963 " Name: %s,", threadinfo.shortname);
1964 if (*threadinfo.display)
1965 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1966 " State: %s,", threadinfo.display);
1967 if (*threadinfo.more_display)
1968 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1969 " Priority: %s", threadinfo.more_display);
1970
1971 if (n > 0)
1972 {
1973 /* For purely cosmetic reasons, clear up trailing commas. */
1974 if (',' == display_buf[n-1])
1975 display_buf[n-1] = ' ';
1976 return display_buf;
1977 }
1978 }
1979 return NULL;
1980 }
1981 \f
1982
1983 /* Restart the remote side; this is an extended protocol operation. */
1984
1985 static void
1986 extended_remote_restart (void)
1987 {
1988 struct remote_state *rs = get_remote_state ();
1989
1990 /* Send the restart command; for reasons I don't understand the
1991 remote side really expects a number after the "R". */
1992 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
1993 putpkt (rs->buf);
1994
1995 remote_fileio_reset ();
1996
1997 /* Now query for status so this looks just like we restarted
1998 gdbserver from scratch. */
1999 putpkt ("?");
2000 getpkt (&rs->buf, &rs->buf_size, 0);
2001 }
2002 \f
2003 /* Clean up connection to a remote debugger. */
2004
2005 static void
2006 remote_close (int quitting)
2007 {
2008 if (remote_desc)
2009 serial_close (remote_desc);
2010 remote_desc = NULL;
2011 }
2012
2013 /* Query the remote side for the text, data and bss offsets. */
2014
2015 static void
2016 get_offsets (void)
2017 {
2018 struct remote_state *rs = get_remote_state ();
2019 char *buf;
2020 char *ptr;
2021 int lose, num_segments = 0, do_sections, do_segments;
2022 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2023 struct section_offsets *offs;
2024 struct symfile_segment_data *data;
2025
2026 if (symfile_objfile == NULL)
2027 return;
2028
2029 putpkt ("qOffsets");
2030 getpkt (&rs->buf, &rs->buf_size, 0);
2031 buf = rs->buf;
2032
2033 if (buf[0] == '\000')
2034 return; /* Return silently. Stub doesn't support
2035 this command. */
2036 if (buf[0] == 'E')
2037 {
2038 warning (_("Remote failure reply: %s"), buf);
2039 return;
2040 }
2041
2042 /* Pick up each field in turn. This used to be done with scanf, but
2043 scanf will make trouble if CORE_ADDR size doesn't match
2044 conversion directives correctly. The following code will work
2045 with any size of CORE_ADDR. */
2046 text_addr = data_addr = bss_addr = 0;
2047 ptr = buf;
2048 lose = 0;
2049
2050 if (strncmp (ptr, "Text=", 5) == 0)
2051 {
2052 ptr += 5;
2053 /* Don't use strtol, could lose on big values. */
2054 while (*ptr && *ptr != ';')
2055 text_addr = (text_addr << 4) + fromhex (*ptr++);
2056
2057 if (strncmp (ptr, ";Data=", 6) == 0)
2058 {
2059 ptr += 6;
2060 while (*ptr && *ptr != ';')
2061 data_addr = (data_addr << 4) + fromhex (*ptr++);
2062 }
2063 else
2064 lose = 1;
2065
2066 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2067 {
2068 ptr += 5;
2069 while (*ptr && *ptr != ';')
2070 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2071
2072 if (bss_addr != data_addr)
2073 warning (_("Target reported unsupported offsets: %s"), buf);
2074 }
2075 else
2076 lose = 1;
2077 }
2078 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2079 {
2080 ptr += 8;
2081 /* Don't use strtol, could lose on big values. */
2082 while (*ptr && *ptr != ';')
2083 text_addr = (text_addr << 4) + fromhex (*ptr++);
2084 num_segments = 1;
2085
2086 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2087 {
2088 ptr += 9;
2089 while (*ptr && *ptr != ';')
2090 data_addr = (data_addr << 4) + fromhex (*ptr++);
2091 num_segments++;
2092 }
2093 }
2094 else
2095 lose = 1;
2096
2097 if (lose)
2098 error (_("Malformed response to offset query, %s"), buf);
2099 else if (*ptr != '\0')
2100 warning (_("Target reported unsupported offsets: %s"), buf);
2101
2102 offs = ((struct section_offsets *)
2103 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2104 memcpy (offs, symfile_objfile->section_offsets,
2105 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2106
2107 data = get_symfile_segment_data (symfile_objfile->obfd);
2108 do_segments = (data != NULL);
2109 do_sections = num_segments == 0;
2110
2111 if (num_segments > 0)
2112 {
2113 segments[0] = text_addr;
2114 segments[1] = data_addr;
2115 }
2116 /* If we have two segments, we can still try to relocate everything
2117 by assuming that the .text and .data offsets apply to the whole
2118 text and data segments. Convert the offsets given in the packet
2119 to base addresses for symfile_map_offsets_to_segments. */
2120 else if (data && data->num_segments == 2)
2121 {
2122 segments[0] = data->segment_bases[0] + text_addr;
2123 segments[1] = data->segment_bases[1] + data_addr;
2124 num_segments = 2;
2125 }
2126 /* There's no way to relocate by segment. */
2127 else
2128 do_segments = 0;
2129
2130 if (do_segments)
2131 {
2132 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2133 offs, num_segments, segments);
2134
2135 if (ret == 0 && !do_sections)
2136 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2137
2138 if (ret > 0)
2139 do_sections = 0;
2140 }
2141
2142 if (data)
2143 free_symfile_segment_data (data);
2144
2145 if (do_sections)
2146 {
2147 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2148
2149 /* This is a temporary kludge to force data and bss to use the same offsets
2150 because that's what nlmconv does now. The real solution requires changes
2151 to the stub and remote.c that I don't have time to do right now. */
2152
2153 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2154 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2155 }
2156
2157 objfile_relocate (symfile_objfile, offs);
2158 }
2159
2160 /* Stub for catch_exception. */
2161
2162 static void
2163 remote_start_remote (struct ui_out *uiout, void *from_tty_p)
2164 {
2165 int from_tty = * (int *) from_tty_p;
2166
2167 immediate_quit++; /* Allow user to interrupt it. */
2168
2169 /* Ack any packet which the remote side has already sent. */
2170 serial_write (remote_desc, "+", 1);
2171
2172 /* Let the stub know that we want it to return the thread. */
2173 set_thread (-1, 0);
2174
2175 inferior_ptid = remote_current_thread (inferior_ptid);
2176
2177 get_offsets (); /* Get text, data & bss offsets. */
2178
2179 putpkt ("?"); /* Initiate a query from remote machine. */
2180 immediate_quit--;
2181
2182 start_remote (from_tty); /* Initialize gdb process mechanisms. */
2183 }
2184
2185 /* Open a connection to a remote debugger.
2186 NAME is the filename used for communication. */
2187
2188 static void
2189 remote_open (char *name, int from_tty)
2190 {
2191 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2192 }
2193
2194 /* Just like remote_open, but with asynchronous support. */
2195 static void
2196 remote_async_open (char *name, int from_tty)
2197 {
2198 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2199 }
2200
2201 /* Open a connection to a remote debugger using the extended
2202 remote gdb protocol. NAME is the filename used for communication. */
2203
2204 static void
2205 extended_remote_open (char *name, int from_tty)
2206 {
2207 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2208 0 /* async_p */);
2209 }
2210
2211 /* Just like extended_remote_open, but with asynchronous support. */
2212 static void
2213 extended_remote_async_open (char *name, int from_tty)
2214 {
2215 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2216 1 /*extended_p */, 1 /* async_p */);
2217 }
2218
2219 /* Generic code for opening a connection to a remote target. */
2220
2221 static void
2222 init_all_packet_configs (void)
2223 {
2224 int i;
2225 for (i = 0; i < PACKET_MAX; i++)
2226 update_packet_config (&remote_protocol_packets[i]);
2227 }
2228
2229 /* Symbol look-up. */
2230
2231 static void
2232 remote_check_symbols (struct objfile *objfile)
2233 {
2234 struct remote_state *rs = get_remote_state ();
2235 char *msg, *reply, *tmp;
2236 struct minimal_symbol *sym;
2237 int end;
2238
2239 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2240 return;
2241
2242 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2243 because we need both at the same time. */
2244 msg = alloca (get_remote_packet_size ());
2245
2246 /* Invite target to request symbol lookups. */
2247
2248 putpkt ("qSymbol::");
2249 getpkt (&rs->buf, &rs->buf_size, 0);
2250 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2251 reply = rs->buf;
2252
2253 while (strncmp (reply, "qSymbol:", 8) == 0)
2254 {
2255 tmp = &reply[8];
2256 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2257 msg[end] = '\0';
2258 sym = lookup_minimal_symbol (msg, NULL, NULL);
2259 if (sym == NULL)
2260 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2261 else
2262 {
2263 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2264
2265 /* If this is a function address, return the start of code
2266 instead of any data function descriptor. */
2267 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2268 sym_addr,
2269 &current_target);
2270
2271 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2272 paddr_nz (sym_addr), &reply[8]);
2273 }
2274
2275 putpkt (msg);
2276 getpkt (&rs->buf, &rs->buf_size, 0);
2277 reply = rs->buf;
2278 }
2279 }
2280
2281 static struct serial *
2282 remote_serial_open (char *name)
2283 {
2284 static int udp_warning = 0;
2285
2286 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2287 of in ser-tcp.c, because it is the remote protocol assuming that the
2288 serial connection is reliable and not the serial connection promising
2289 to be. */
2290 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2291 {
2292 warning (_("\
2293 The remote protocol may be unreliable over UDP.\n\
2294 Some events may be lost, rendering further debugging impossible."));
2295 udp_warning = 1;
2296 }
2297
2298 return serial_open (name);
2299 }
2300
2301 /* This type describes each known response to the qSupported
2302 packet. */
2303 struct protocol_feature
2304 {
2305 /* The name of this protocol feature. */
2306 const char *name;
2307
2308 /* The default for this protocol feature. */
2309 enum packet_support default_support;
2310
2311 /* The function to call when this feature is reported, or after
2312 qSupported processing if the feature is not supported.
2313 The first argument points to this structure. The second
2314 argument indicates whether the packet requested support be
2315 enabled, disabled, or probed (or the default, if this function
2316 is being called at the end of processing and this feature was
2317 not reported). The third argument may be NULL; if not NULL, it
2318 is a NUL-terminated string taken from the packet following
2319 this feature's name and an equals sign. */
2320 void (*func) (const struct protocol_feature *, enum packet_support,
2321 const char *);
2322
2323 /* The corresponding packet for this feature. Only used if
2324 FUNC is remote_supported_packet. */
2325 int packet;
2326 };
2327
2328 static void
2329 remote_supported_packet (const struct protocol_feature *feature,
2330 enum packet_support support,
2331 const char *argument)
2332 {
2333 if (argument)
2334 {
2335 warning (_("Remote qSupported response supplied an unexpected value for"
2336 " \"%s\"."), feature->name);
2337 return;
2338 }
2339
2340 if (remote_protocol_packets[feature->packet].support
2341 == PACKET_SUPPORT_UNKNOWN)
2342 remote_protocol_packets[feature->packet].support = support;
2343 }
2344
2345 static void
2346 remote_packet_size (const struct protocol_feature *feature,
2347 enum packet_support support, const char *value)
2348 {
2349 struct remote_state *rs = get_remote_state ();
2350
2351 int packet_size;
2352 char *value_end;
2353
2354 if (support != PACKET_ENABLE)
2355 return;
2356
2357 if (value == NULL || *value == '\0')
2358 {
2359 warning (_("Remote target reported \"%s\" without a size."),
2360 feature->name);
2361 return;
2362 }
2363
2364 errno = 0;
2365 packet_size = strtol (value, &value_end, 16);
2366 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2367 {
2368 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2369 feature->name, value);
2370 return;
2371 }
2372
2373 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2374 {
2375 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2376 packet_size, MAX_REMOTE_PACKET_SIZE);
2377 packet_size = MAX_REMOTE_PACKET_SIZE;
2378 }
2379
2380 /* Record the new maximum packet size. */
2381 rs->explicit_packet_size = packet_size;
2382 }
2383
2384 static struct protocol_feature remote_protocol_features[] = {
2385 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2386 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2387 PACKET_qXfer_auxv },
2388 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2389 PACKET_qXfer_features },
2390 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2391 PACKET_qXfer_libraries },
2392 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2393 PACKET_qXfer_memory_map },
2394 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2395 PACKET_qXfer_spu_read },
2396 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2397 PACKET_qXfer_spu_write },
2398 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2399 PACKET_QPassSignals },
2400 };
2401
2402 static void
2403 remote_query_supported (void)
2404 {
2405 struct remote_state *rs = get_remote_state ();
2406 char *next;
2407 int i;
2408 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2409
2410 /* The packet support flags are handled differently for this packet
2411 than for most others. We treat an error, a disabled packet, and
2412 an empty response identically: any features which must be reported
2413 to be used will be automatically disabled. An empty buffer
2414 accomplishes this, since that is also the representation for a list
2415 containing no features. */
2416
2417 rs->buf[0] = 0;
2418 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2419 {
2420 putpkt ("qSupported");
2421 getpkt (&rs->buf, &rs->buf_size, 0);
2422
2423 /* If an error occured, warn, but do not return - just reset the
2424 buffer to empty and go on to disable features. */
2425 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2426 == PACKET_ERROR)
2427 {
2428 warning (_("Remote failure reply: %s"), rs->buf);
2429 rs->buf[0] = 0;
2430 }
2431 }
2432
2433 memset (seen, 0, sizeof (seen));
2434
2435 next = rs->buf;
2436 while (*next)
2437 {
2438 enum packet_support is_supported;
2439 char *p, *end, *name_end, *value;
2440
2441 /* First separate out this item from the rest of the packet. If
2442 there's another item after this, we overwrite the separator
2443 (terminated strings are much easier to work with). */
2444 p = next;
2445 end = strchr (p, ';');
2446 if (end == NULL)
2447 {
2448 end = p + strlen (p);
2449 next = end;
2450 }
2451 else
2452 {
2453 *end = '\0';
2454 next = end + 1;
2455
2456 if (end == p)
2457 {
2458 warning (_("empty item in \"qSupported\" response"));
2459 continue;
2460 }
2461 }
2462
2463 name_end = strchr (p, '=');
2464 if (name_end)
2465 {
2466 /* This is a name=value entry. */
2467 is_supported = PACKET_ENABLE;
2468 value = name_end + 1;
2469 *name_end = '\0';
2470 }
2471 else
2472 {
2473 value = NULL;
2474 switch (end[-1])
2475 {
2476 case '+':
2477 is_supported = PACKET_ENABLE;
2478 break;
2479
2480 case '-':
2481 is_supported = PACKET_DISABLE;
2482 break;
2483
2484 case '?':
2485 is_supported = PACKET_SUPPORT_UNKNOWN;
2486 break;
2487
2488 default:
2489 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2490 continue;
2491 }
2492 end[-1] = '\0';
2493 }
2494
2495 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2496 if (strcmp (remote_protocol_features[i].name, p) == 0)
2497 {
2498 const struct protocol_feature *feature;
2499
2500 seen[i] = 1;
2501 feature = &remote_protocol_features[i];
2502 feature->func (feature, is_supported, value);
2503 break;
2504 }
2505 }
2506
2507 /* If we increased the packet size, make sure to increase the global
2508 buffer size also. We delay this until after parsing the entire
2509 qSupported packet, because this is the same buffer we were
2510 parsing. */
2511 if (rs->buf_size < rs->explicit_packet_size)
2512 {
2513 rs->buf_size = rs->explicit_packet_size;
2514 rs->buf = xrealloc (rs->buf, rs->buf_size);
2515 }
2516
2517 /* Handle the defaults for unmentioned features. */
2518 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2519 if (!seen[i])
2520 {
2521 const struct protocol_feature *feature;
2522
2523 feature = &remote_protocol_features[i];
2524 feature->func (feature, feature->default_support, NULL);
2525 }
2526 }
2527
2528
2529 static void
2530 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2531 int extended_p, int async_p)
2532 {
2533 struct remote_state *rs = get_remote_state ();
2534 if (name == 0)
2535 error (_("To open a remote debug connection, you need to specify what\n"
2536 "serial device is attached to the remote system\n"
2537 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2538
2539 /* See FIXME above. */
2540 if (!async_p)
2541 wait_forever_enabled_p = 1;
2542
2543 target_preopen (from_tty);
2544
2545 unpush_target (target);
2546
2547 /* Make sure we send the passed signals list the next time we resume. */
2548 xfree (last_pass_packet);
2549 last_pass_packet = NULL;
2550
2551 remote_fileio_reset ();
2552 reopen_exec_file ();
2553 reread_symbols ();
2554
2555 remote_desc = remote_serial_open (name);
2556 if (!remote_desc)
2557 perror_with_name (name);
2558
2559 if (baud_rate != -1)
2560 {
2561 if (serial_setbaudrate (remote_desc, baud_rate))
2562 {
2563 /* The requested speed could not be set. Error out to
2564 top level after closing remote_desc. Take care to
2565 set remote_desc to NULL to avoid closing remote_desc
2566 more than once. */
2567 serial_close (remote_desc);
2568 remote_desc = NULL;
2569 perror_with_name (name);
2570 }
2571 }
2572
2573 serial_raw (remote_desc);
2574
2575 /* If there is something sitting in the buffer we might take it as a
2576 response to a command, which would be bad. */
2577 serial_flush_input (remote_desc);
2578
2579 if (from_tty)
2580 {
2581 puts_filtered ("Remote debugging using ");
2582 puts_filtered (name);
2583 puts_filtered ("\n");
2584 }
2585 push_target (target); /* Switch to using remote target now. */
2586
2587 /* Reset the target state; these things will be queried either by
2588 remote_query_supported or as they are needed. */
2589 init_all_packet_configs ();
2590 rs->explicit_packet_size = 0;
2591
2592 general_thread = -2;
2593 continue_thread = -2;
2594
2595 /* Probe for ability to use "ThreadInfo" query, as required. */
2596 use_threadinfo_query = 1;
2597 use_threadextra_query = 1;
2598
2599 /* The first packet we send to the target is the optional "supported
2600 packets" request. If the target can answer this, it will tell us
2601 which later probes to skip. */
2602 remote_query_supported ();
2603
2604 /* Next, if the target can specify a description, read it. We do
2605 this before anything involving memory or registers. */
2606 target_find_description ();
2607
2608 /* Without this, some commands which require an active target (such
2609 as kill) won't work. This variable serves (at least) double duty
2610 as both the pid of the target process (if it has such), and as a
2611 flag indicating that a target is active. These functions should
2612 be split out into seperate variables, especially since GDB will
2613 someday have a notion of debugging several processes. */
2614
2615 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2616
2617 if (async_p)
2618 {
2619 /* With this target we start out by owning the terminal. */
2620 remote_async_terminal_ours_p = 1;
2621
2622 /* FIXME: cagney/1999-09-23: During the initial connection it is
2623 assumed that the target is already ready and able to respond to
2624 requests. Unfortunately remote_start_remote() eventually calls
2625 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2626 around this. Eventually a mechanism that allows
2627 wait_for_inferior() to expect/get timeouts will be
2628 implemented. */
2629 wait_forever_enabled_p = 0;
2630 }
2631
2632 /* First delete any symbols previously loaded from shared libraries. */
2633 no_shared_libraries (NULL, 0);
2634
2635 /* Start the remote connection. If error() or QUIT, discard this
2636 target (we'd otherwise be in an inconsistent state) and then
2637 propogate the error on up the exception chain. This ensures that
2638 the caller doesn't stumble along blindly assuming that the
2639 function succeeded. The CLI doesn't have this problem but other
2640 UI's, such as MI do.
2641
2642 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2643 this function should return an error indication letting the
2644 caller restore the previous state. Unfortunately the command
2645 ``target remote'' is directly wired to this function making that
2646 impossible. On a positive note, the CLI side of this problem has
2647 been fixed - the function set_cmd_context() makes it possible for
2648 all the ``target ....'' commands to share a common callback
2649 function. See cli-dump.c. */
2650 {
2651 struct gdb_exception ex
2652 = catch_exception (uiout, remote_start_remote, &from_tty,
2653 RETURN_MASK_ALL);
2654 if (ex.reason < 0)
2655 {
2656 pop_target ();
2657 if (async_p)
2658 wait_forever_enabled_p = 1;
2659 throw_exception (ex);
2660 }
2661 }
2662
2663 if (async_p)
2664 wait_forever_enabled_p = 1;
2665
2666 if (extended_p)
2667 {
2668 /* Tell the remote that we are using the extended protocol. */
2669 putpkt ("!");
2670 getpkt (&rs->buf, &rs->buf_size, 0);
2671 }
2672
2673 if (exec_bfd) /* No use without an exec file. */
2674 remote_check_symbols (symfile_objfile);
2675 }
2676
2677 /* This takes a program previously attached to and detaches it. After
2678 this is done, GDB can be used to debug some other program. We
2679 better not have left any breakpoints in the target program or it'll
2680 die when it hits one. */
2681
2682 static void
2683 remote_detach (char *args, int from_tty)
2684 {
2685 struct remote_state *rs = get_remote_state ();
2686
2687 if (args)
2688 error (_("Argument given to \"detach\" when remotely debugging."));
2689
2690 /* Tell the remote target to detach. */
2691 strcpy (rs->buf, "D");
2692 putpkt (rs->buf);
2693 getpkt (&rs->buf, &rs->buf_size, 0);
2694
2695 if (rs->buf[0] == 'E')
2696 error (_("Can't detach process."));
2697
2698 /* Unregister the file descriptor from the event loop. */
2699 if (target_is_async_p ())
2700 serial_async (remote_desc, NULL, 0);
2701
2702 target_mourn_inferior ();
2703 if (from_tty)
2704 puts_filtered ("Ending remote debugging.\n");
2705 }
2706
2707 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2708
2709 static void
2710 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2711 {
2712 if (args)
2713 error (_("Argument given to \"detach\" when remotely debugging."));
2714
2715 /* Unregister the file descriptor from the event loop. */
2716 if (target_is_async_p ())
2717 serial_async (remote_desc, NULL, 0);
2718
2719 target_mourn_inferior ();
2720 if (from_tty)
2721 puts_filtered ("Ending remote debugging.\n");
2722 }
2723
2724 /* Convert hex digit A to a number. */
2725
2726 static int
2727 fromhex (int a)
2728 {
2729 if (a >= '0' && a <= '9')
2730 return a - '0';
2731 else if (a >= 'a' && a <= 'f')
2732 return a - 'a' + 10;
2733 else if (a >= 'A' && a <= 'F')
2734 return a - 'A' + 10;
2735 else
2736 error (_("Reply contains invalid hex digit %d"), a);
2737 }
2738
2739 static int
2740 hex2bin (const char *hex, gdb_byte *bin, int count)
2741 {
2742 int i;
2743
2744 for (i = 0; i < count; i++)
2745 {
2746 if (hex[0] == 0 || hex[1] == 0)
2747 {
2748 /* Hex string is short, or of uneven length.
2749 Return the count that has been converted so far. */
2750 return i;
2751 }
2752 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2753 hex += 2;
2754 }
2755 return i;
2756 }
2757
2758 /* Convert number NIB to a hex digit. */
2759
2760 static int
2761 tohex (int nib)
2762 {
2763 if (nib < 10)
2764 return '0' + nib;
2765 else
2766 return 'a' + nib - 10;
2767 }
2768
2769 static int
2770 bin2hex (const gdb_byte *bin, char *hex, int count)
2771 {
2772 int i;
2773 /* May use a length, or a nul-terminated string as input. */
2774 if (count == 0)
2775 count = strlen ((char *) bin);
2776
2777 for (i = 0; i < count; i++)
2778 {
2779 *hex++ = tohex ((*bin >> 4) & 0xf);
2780 *hex++ = tohex (*bin++ & 0xf);
2781 }
2782 *hex = 0;
2783 return i;
2784 }
2785 \f
2786 /* Check for the availability of vCont. This function should also check
2787 the response. */
2788
2789 static void
2790 remote_vcont_probe (struct remote_state *rs)
2791 {
2792 char *buf;
2793
2794 strcpy (rs->buf, "vCont?");
2795 putpkt (rs->buf);
2796 getpkt (&rs->buf, &rs->buf_size, 0);
2797 buf = rs->buf;
2798
2799 /* Make sure that the features we assume are supported. */
2800 if (strncmp (buf, "vCont", 5) == 0)
2801 {
2802 char *p = &buf[5];
2803 int support_s, support_S, support_c, support_C;
2804
2805 support_s = 0;
2806 support_S = 0;
2807 support_c = 0;
2808 support_C = 0;
2809 while (p && *p == ';')
2810 {
2811 p++;
2812 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2813 support_s = 1;
2814 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2815 support_S = 1;
2816 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2817 support_c = 1;
2818 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2819 support_C = 1;
2820
2821 p = strchr (p, ';');
2822 }
2823
2824 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2825 BUF will make packet_ok disable the packet. */
2826 if (!support_s || !support_S || !support_c || !support_C)
2827 buf[0] = 0;
2828 }
2829
2830 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
2831 }
2832
2833 /* Resume the remote inferior by using a "vCont" packet. The thread
2834 to be resumed is PTID; STEP and SIGGNAL indicate whether the
2835 resumed thread should be single-stepped and/or signalled. If PTID's
2836 PID is -1, then all threads are resumed; the thread to be stepped and/or
2837 signalled is given in the global INFERIOR_PTID. This function returns
2838 non-zero iff it resumes the inferior.
2839
2840 This function issues a strict subset of all possible vCont commands at the
2841 moment. */
2842
2843 static int
2844 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
2845 {
2846 struct remote_state *rs = get_remote_state ();
2847 int pid = PIDGET (ptid);
2848 char *buf = NULL, *outbuf;
2849 struct cleanup *old_cleanup;
2850
2851 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
2852 remote_vcont_probe (rs);
2853
2854 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
2855 return 0;
2856
2857 /* If we could generate a wider range of packets, we'd have to worry
2858 about overflowing BUF. Should there be a generic
2859 "multi-part-packet" packet? */
2860
2861 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
2862 {
2863 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
2864 don't have any PID numbers the inferior will understand. Make sure
2865 to only send forms that do not specify a PID. */
2866 if (step && siggnal != TARGET_SIGNAL_0)
2867 outbuf = xstrprintf ("vCont;S%02x", siggnal);
2868 else if (step)
2869 outbuf = xstrprintf ("vCont;s");
2870 else if (siggnal != TARGET_SIGNAL_0)
2871 outbuf = xstrprintf ("vCont;C%02x", siggnal);
2872 else
2873 outbuf = xstrprintf ("vCont;c");
2874 }
2875 else if (pid == -1)
2876 {
2877 /* Resume all threads, with preference for INFERIOR_PTID. */
2878 if (step && siggnal != TARGET_SIGNAL_0)
2879 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
2880 PIDGET (inferior_ptid));
2881 else if (step)
2882 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
2883 else if (siggnal != TARGET_SIGNAL_0)
2884 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
2885 PIDGET (inferior_ptid));
2886 else
2887 outbuf = xstrprintf ("vCont;c");
2888 }
2889 else
2890 {
2891 /* Scheduler locking; resume only PTID. */
2892 if (step && siggnal != TARGET_SIGNAL_0)
2893 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
2894 else if (step)
2895 outbuf = xstrprintf ("vCont;s:%x", pid);
2896 else if (siggnal != TARGET_SIGNAL_0)
2897 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
2898 else
2899 outbuf = xstrprintf ("vCont;c:%x", pid);
2900 }
2901
2902 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
2903 old_cleanup = make_cleanup (xfree, outbuf);
2904
2905 putpkt (outbuf);
2906
2907 do_cleanups (old_cleanup);
2908
2909 return 1;
2910 }
2911
2912 /* Tell the remote machine to resume. */
2913
2914 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2915
2916 static int last_sent_step;
2917
2918 static void
2919 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2920 {
2921 struct remote_state *rs = get_remote_state ();
2922 char *buf;
2923 int pid = PIDGET (ptid);
2924
2925 last_sent_signal = siggnal;
2926 last_sent_step = step;
2927
2928 /* A hook for when we need to do something at the last moment before
2929 resumption. */
2930 if (deprecated_target_resume_hook)
2931 (*deprecated_target_resume_hook) ();
2932
2933 /* Update the inferior on signals to silently pass, if they've changed. */
2934 remote_pass_signals ();
2935
2936 /* The vCont packet doesn't need to specify threads via Hc. */
2937 if (remote_vcont_resume (ptid, step, siggnal))
2938 return;
2939
2940 /* All other supported resume packets do use Hc, so call set_thread. */
2941 if (pid == -1)
2942 set_thread (0, 0); /* Run any thread. */
2943 else
2944 set_thread (pid, 0); /* Run this thread. */
2945
2946 buf = rs->buf;
2947 if (siggnal != TARGET_SIGNAL_0)
2948 {
2949 buf[0] = step ? 'S' : 'C';
2950 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2951 buf[2] = tohex (((int) siggnal) & 0xf);
2952 buf[3] = '\0';
2953 }
2954 else
2955 strcpy (buf, step ? "s" : "c");
2956
2957 putpkt (buf);
2958 }
2959
2960 /* Same as remote_resume, but with async support. */
2961 static void
2962 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2963 {
2964 remote_resume (ptid, step, siggnal);
2965
2966 /* We are about to start executing the inferior, let's register it
2967 with the event loop. NOTE: this is the one place where all the
2968 execution commands end up. We could alternatively do this in each
2969 of the execution commands in infcmd.c. */
2970 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2971 into infcmd.c in order to allow inferior function calls to work
2972 NOT asynchronously. */
2973 if (target_can_async_p ())
2974 target_async (inferior_event_handler, 0);
2975 /* Tell the world that the target is now executing. */
2976 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2977 this? Instead, should the client of target just assume (for
2978 async targets) that the target is going to start executing? Is
2979 this information already found in the continuation block? */
2980 if (target_is_async_p ())
2981 target_executing = 1;
2982 }
2983 \f
2984
2985 /* Set up the signal handler for SIGINT, while the target is
2986 executing, ovewriting the 'regular' SIGINT signal handler. */
2987 static void
2988 initialize_sigint_signal_handler (void)
2989 {
2990 sigint_remote_token =
2991 create_async_signal_handler (async_remote_interrupt, NULL);
2992 signal (SIGINT, handle_remote_sigint);
2993 }
2994
2995 /* Signal handler for SIGINT, while the target is executing. */
2996 static void
2997 handle_remote_sigint (int sig)
2998 {
2999 signal (sig, handle_remote_sigint_twice);
3000 sigint_remote_twice_token =
3001 create_async_signal_handler (async_remote_interrupt_twice, NULL);
3002 mark_async_signal_handler_wrapper (sigint_remote_token);
3003 }
3004
3005 /* Signal handler for SIGINT, installed after SIGINT has already been
3006 sent once. It will take effect the second time that the user sends
3007 a ^C. */
3008 static void
3009 handle_remote_sigint_twice (int sig)
3010 {
3011 signal (sig, handle_sigint);
3012 sigint_remote_twice_token =
3013 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
3014 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3015 }
3016
3017 /* Perform the real interruption of the target execution, in response
3018 to a ^C. */
3019 static void
3020 async_remote_interrupt (gdb_client_data arg)
3021 {
3022 if (remote_debug)
3023 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3024
3025 target_stop ();
3026 }
3027
3028 /* Perform interrupt, if the first attempt did not succeed. Just give
3029 up on the target alltogether. */
3030 void
3031 async_remote_interrupt_twice (gdb_client_data arg)
3032 {
3033 if (remote_debug)
3034 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3035 /* Do something only if the target was not killed by the previous
3036 cntl-C. */
3037 if (target_executing)
3038 {
3039 interrupt_query ();
3040 signal (SIGINT, handle_remote_sigint);
3041 }
3042 }
3043
3044 /* Reinstall the usual SIGINT handlers, after the target has
3045 stopped. */
3046 static void
3047 cleanup_sigint_signal_handler (void *dummy)
3048 {
3049 signal (SIGINT, handle_sigint);
3050 if (sigint_remote_twice_token)
3051 delete_async_signal_handler (&sigint_remote_twice_token);
3052 if (sigint_remote_token)
3053 delete_async_signal_handler (&sigint_remote_token);
3054 }
3055
3056 /* Send ^C to target to halt it. Target will respond, and send us a
3057 packet. */
3058 static void (*ofunc) (int);
3059
3060 /* The command line interface's stop routine. This function is installed
3061 as a signal handler for SIGINT. The first time a user requests a
3062 stop, we call remote_stop to send a break or ^C. If there is no
3063 response from the target (it didn't stop when the user requested it),
3064 we ask the user if he'd like to detach from the target. */
3065 static void
3066 remote_interrupt (int signo)
3067 {
3068 /* If this doesn't work, try more severe steps. */
3069 signal (signo, remote_interrupt_twice);
3070
3071 if (remote_debug)
3072 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3073
3074 target_stop ();
3075 }
3076
3077 /* The user typed ^C twice. */
3078
3079 static void
3080 remote_interrupt_twice (int signo)
3081 {
3082 signal (signo, ofunc);
3083 interrupt_query ();
3084 signal (signo, remote_interrupt);
3085 }
3086
3087 /* This is the generic stop called via the target vector. When a target
3088 interrupt is requested, either by the command line or the GUI, we
3089 will eventually end up here. */
3090 static void
3091 remote_stop (void)
3092 {
3093 /* Send a break or a ^C, depending on user preference. */
3094 if (remote_debug)
3095 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3096
3097 if (remote_break)
3098 serial_send_break (remote_desc);
3099 else
3100 serial_write (remote_desc, "\003", 1);
3101 }
3102
3103 /* Ask the user what to do when an interrupt is received. */
3104
3105 static void
3106 interrupt_query (void)
3107 {
3108 target_terminal_ours ();
3109
3110 if (query ("Interrupted while waiting for the program.\n\
3111 Give up (and stop debugging it)? "))
3112 {
3113 target_mourn_inferior ();
3114 deprecated_throw_reason (RETURN_QUIT);
3115 }
3116
3117 target_terminal_inferior ();
3118 }
3119
3120 /* Enable/disable target terminal ownership. Most targets can use
3121 terminal groups to control terminal ownership. Remote targets are
3122 different in that explicit transfer of ownership to/from GDB/target
3123 is required. */
3124
3125 static void
3126 remote_async_terminal_inferior (void)
3127 {
3128 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3129 sync_execution here. This function should only be called when
3130 GDB is resuming the inferior in the forground. A background
3131 resume (``run&'') should leave GDB in control of the terminal and
3132 consequently should not call this code. */
3133 if (!sync_execution)
3134 return;
3135 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3136 calls target_terminal_*() idenpotent. The event-loop GDB talking
3137 to an asynchronous target with a synchronous command calls this
3138 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3139 stops trying to transfer the terminal to the target when it
3140 shouldn't this guard can go away. */
3141 if (!remote_async_terminal_ours_p)
3142 return;
3143 delete_file_handler (input_fd);
3144 remote_async_terminal_ours_p = 0;
3145 initialize_sigint_signal_handler ();
3146 /* NOTE: At this point we could also register our selves as the
3147 recipient of all input. Any characters typed could then be
3148 passed on down to the target. */
3149 }
3150
3151 static void
3152 remote_async_terminal_ours (void)
3153 {
3154 /* See FIXME in remote_async_terminal_inferior. */
3155 if (!sync_execution)
3156 return;
3157 /* See FIXME in remote_async_terminal_inferior. */
3158 if (remote_async_terminal_ours_p)
3159 return;
3160 cleanup_sigint_signal_handler (NULL);
3161 add_file_handler (input_fd, stdin_event_handler, 0);
3162 remote_async_terminal_ours_p = 1;
3163 }
3164
3165 /* If nonzero, ignore the next kill. */
3166
3167 int kill_kludge;
3168
3169 void
3170 remote_console_output (char *msg)
3171 {
3172 char *p;
3173
3174 for (p = msg; p[0] && p[1]; p += 2)
3175 {
3176 char tb[2];
3177 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3178 tb[0] = c;
3179 tb[1] = 0;
3180 fputs_unfiltered (tb, gdb_stdtarg);
3181 }
3182 gdb_flush (gdb_stdtarg);
3183 }
3184
3185 /* Wait until the remote machine stops, then return,
3186 storing status in STATUS just as `wait' would.
3187 Returns "pid", which in the case of a multi-threaded
3188 remote OS, is the thread-id. */
3189
3190 static ptid_t
3191 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3192 {
3193 struct remote_state *rs = get_remote_state ();
3194 struct remote_arch_state *rsa = get_remote_arch_state ();
3195 ULONGEST thread_num = -1;
3196 ULONGEST addr;
3197 int solibs_changed = 0;
3198
3199 status->kind = TARGET_WAITKIND_EXITED;
3200 status->value.integer = 0;
3201
3202 while (1)
3203 {
3204 char *buf, *p;
3205
3206 ofunc = signal (SIGINT, remote_interrupt);
3207 getpkt (&rs->buf, &rs->buf_size, 1);
3208 signal (SIGINT, ofunc);
3209
3210 buf = rs->buf;
3211
3212 /* This is a hook for when we need to do something (perhaps the
3213 collection of trace data) every time the target stops. */
3214 if (deprecated_target_wait_loop_hook)
3215 (*deprecated_target_wait_loop_hook) ();
3216
3217 remote_stopped_by_watchpoint_p = 0;
3218
3219 switch (buf[0])
3220 {
3221 case 'E': /* Error of some sort. */
3222 warning (_("Remote failure reply: %s"), buf);
3223 continue;
3224 case 'F': /* File-I/O request. */
3225 remote_fileio_request (buf);
3226 continue;
3227 case 'T': /* Status with PC, SP, FP, ... */
3228 {
3229 gdb_byte regs[MAX_REGISTER_SIZE];
3230
3231 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3232 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3233 ss = signal number
3234 n... = register number
3235 r... = register contents
3236 */
3237 p = &buf[3]; /* after Txx */
3238
3239 while (*p)
3240 {
3241 char *p1;
3242 char *p_temp;
3243 int fieldsize;
3244 LONGEST pnum = 0;
3245
3246 /* If the packet contains a register number save it in
3247 pnum and set p1 to point to the character following
3248 it. Otherwise p1 points to p. */
3249
3250 /* If this packet is an awatch packet, don't parse the
3251 'a' as a register number. */
3252
3253 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3254 {
3255 /* Read the ``P'' register number. */
3256 pnum = strtol (p, &p_temp, 16);
3257 p1 = p_temp;
3258 }
3259 else
3260 p1 = p;
3261
3262 if (p1 == p) /* No register number present here. */
3263 {
3264 p1 = strchr (p, ':');
3265 if (p1 == NULL)
3266 error (_("Malformed packet(a) (missing colon): %s\n\
3267 Packet: '%s'\n"),
3268 p, buf);
3269 if (strncmp (p, "thread", p1 - p) == 0)
3270 {
3271 p_temp = unpack_varlen_hex (++p1, &thread_num);
3272 record_currthread (thread_num);
3273 p = p_temp;
3274 }
3275 else if ((strncmp (p, "watch", p1 - p) == 0)
3276 || (strncmp (p, "rwatch", p1 - p) == 0)
3277 || (strncmp (p, "awatch", p1 - p) == 0))
3278 {
3279 remote_stopped_by_watchpoint_p = 1;
3280 p = unpack_varlen_hex (++p1, &addr);
3281 remote_watch_data_address = (CORE_ADDR)addr;
3282 }
3283 else if (strncmp (p, "library", p1 - p) == 0)
3284 {
3285 p1++;
3286 p_temp = p1;
3287 while (*p_temp && *p_temp != ';')
3288 p_temp++;
3289
3290 solibs_changed = 1;
3291 p = p_temp;
3292 }
3293 else
3294 {
3295 /* Silently skip unknown optional info. */
3296 p_temp = strchr (p1 + 1, ';');
3297 if (p_temp)
3298 p = p_temp;
3299 }
3300 }
3301 else
3302 {
3303 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3304 p = p1;
3305
3306 if (*p++ != ':')
3307 error (_("Malformed packet(b) (missing colon): %s\n\
3308 Packet: '%s'\n"),
3309 p, buf);
3310
3311 if (reg == NULL)
3312 error (_("Remote sent bad register number %s: %s\n\
3313 Packet: '%s'\n"),
3314 phex_nz (pnum, 0), p, buf);
3315
3316 fieldsize = hex2bin (p, regs,
3317 register_size (current_gdbarch,
3318 reg->regnum));
3319 p += 2 * fieldsize;
3320 if (fieldsize < register_size (current_gdbarch,
3321 reg->regnum))
3322 warning (_("Remote reply is too short: %s"), buf);
3323 regcache_raw_supply (get_current_regcache (),
3324 reg->regnum, regs);
3325 }
3326
3327 if (*p++ != ';')
3328 error (_("Remote register badly formatted: %s\nhere: %s"),
3329 buf, p);
3330 }
3331 }
3332 /* fall through */
3333 case 'S': /* Old style status, just signal only. */
3334 if (solibs_changed)
3335 status->kind = TARGET_WAITKIND_LOADED;
3336 else
3337 {
3338 status->kind = TARGET_WAITKIND_STOPPED;
3339 status->value.sig = (enum target_signal)
3340 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3341 }
3342
3343 if (buf[3] == 'p')
3344 {
3345 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3346 record_currthread (thread_num);
3347 }
3348 goto got_status;
3349 case 'W': /* Target exited. */
3350 {
3351 /* The remote process exited. */
3352 status->kind = TARGET_WAITKIND_EXITED;
3353 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3354 goto got_status;
3355 }
3356 case 'X':
3357 status->kind = TARGET_WAITKIND_SIGNALLED;
3358 status->value.sig = (enum target_signal)
3359 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3360 kill_kludge = 1;
3361
3362 goto got_status;
3363 case 'O': /* Console output. */
3364 remote_console_output (buf + 1);
3365 continue;
3366 case '\0':
3367 if (last_sent_signal != TARGET_SIGNAL_0)
3368 {
3369 /* Zero length reply means that we tried 'S' or 'C' and
3370 the remote system doesn't support it. */
3371 target_terminal_ours_for_output ();
3372 printf_filtered
3373 ("Can't send signals to this remote system. %s not sent.\n",
3374 target_signal_to_name (last_sent_signal));
3375 last_sent_signal = TARGET_SIGNAL_0;
3376 target_terminal_inferior ();
3377
3378 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3379 putpkt ((char *) buf);
3380 continue;
3381 }
3382 /* else fallthrough */
3383 default:
3384 warning (_("Invalid remote reply: %s"), buf);
3385 continue;
3386 }
3387 }
3388 got_status:
3389 if (thread_num != -1)
3390 {
3391 return pid_to_ptid (thread_num);
3392 }
3393 return inferior_ptid;
3394 }
3395
3396 /* Async version of remote_wait. */
3397 static ptid_t
3398 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3399 {
3400 struct remote_state *rs = get_remote_state ();
3401 struct remote_arch_state *rsa = get_remote_arch_state ();
3402 ULONGEST thread_num = -1;
3403 ULONGEST addr;
3404 int solibs_changed = 0;
3405
3406 status->kind = TARGET_WAITKIND_EXITED;
3407 status->value.integer = 0;
3408
3409 remote_stopped_by_watchpoint_p = 0;
3410
3411 while (1)
3412 {
3413 char *buf, *p;
3414
3415 if (!target_is_async_p ())
3416 ofunc = signal (SIGINT, remote_interrupt);
3417 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3418 _never_ wait for ever -> test on target_is_async_p().
3419 However, before we do that we need to ensure that the caller
3420 knows how to take the target into/out of async mode. */
3421 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3422 if (!target_is_async_p ())
3423 signal (SIGINT, ofunc);
3424
3425 buf = rs->buf;
3426
3427 /* This is a hook for when we need to do something (perhaps the
3428 collection of trace data) every time the target stops. */
3429 if (deprecated_target_wait_loop_hook)
3430 (*deprecated_target_wait_loop_hook) ();
3431
3432 switch (buf[0])
3433 {
3434 case 'E': /* Error of some sort. */
3435 warning (_("Remote failure reply: %s"), buf);
3436 continue;
3437 case 'F': /* File-I/O request. */
3438 remote_fileio_request (buf);
3439 continue;
3440 case 'T': /* Status with PC, SP, FP, ... */
3441 {
3442 gdb_byte regs[MAX_REGISTER_SIZE];
3443
3444 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3445 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3446 ss = signal number
3447 n... = register number
3448 r... = register contents
3449 */
3450 p = &buf[3]; /* after Txx */
3451
3452 while (*p)
3453 {
3454 char *p1;
3455 char *p_temp;
3456 int fieldsize;
3457 long pnum = 0;
3458
3459 /* If the packet contains a register number, save it
3460 in pnum and set p1 to point to the character
3461 following it. Otherwise p1 points to p. */
3462
3463 /* If this packet is an awatch packet, don't parse the 'a'
3464 as a register number. */
3465
3466 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3467 {
3468 /* Read the register number. */
3469 pnum = strtol (p, &p_temp, 16);
3470 p1 = p_temp;
3471 }
3472 else
3473 p1 = p;
3474
3475 if (p1 == p) /* No register number present here. */
3476 {
3477 p1 = strchr (p, ':');
3478 if (p1 == NULL)
3479 error (_("Malformed packet(a) (missing colon): %s\n\
3480 Packet: '%s'\n"),
3481 p, buf);
3482 if (strncmp (p, "thread", p1 - p) == 0)
3483 {
3484 p_temp = unpack_varlen_hex (++p1, &thread_num);
3485 record_currthread (thread_num);
3486 p = p_temp;
3487 }
3488 else if ((strncmp (p, "watch", p1 - p) == 0)
3489 || (strncmp (p, "rwatch", p1 - p) == 0)
3490 || (strncmp (p, "awatch", p1 - p) == 0))
3491 {
3492 remote_stopped_by_watchpoint_p = 1;
3493 p = unpack_varlen_hex (++p1, &addr);
3494 remote_watch_data_address = (CORE_ADDR)addr;
3495 }
3496 else if (strncmp (p, "library", p1 - p) == 0)
3497 {
3498 p1++;
3499 p_temp = p1;
3500 while (*p_temp && *p_temp != ';')
3501 p_temp++;
3502
3503 solibs_changed = 1;
3504 p = p_temp;
3505 }
3506 else
3507 {
3508 /* Silently skip unknown optional info. */
3509 p_temp = strchr (p1 + 1, ';');
3510 if (p_temp)
3511 p = p_temp;
3512 }
3513 }
3514
3515 else
3516 {
3517 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3518 p = p1;
3519 if (*p++ != ':')
3520 error (_("Malformed packet(b) (missing colon): %s\n\
3521 Packet: '%s'\n"),
3522 p, buf);
3523
3524 if (reg == NULL)
3525 error (_("Remote sent bad register number %ld: %s\n\
3526 Packet: '%s'\n"),
3527 pnum, p, buf);
3528
3529 fieldsize = hex2bin (p, regs,
3530 register_size (current_gdbarch,
3531 reg->regnum));
3532 p += 2 * fieldsize;
3533 if (fieldsize < register_size (current_gdbarch,
3534 reg->regnum))
3535 warning (_("Remote reply is too short: %s"), buf);
3536 regcache_raw_supply (get_current_regcache (),
3537 reg->regnum, regs);
3538 }
3539
3540 if (*p++ != ';')
3541 error (_("Remote register badly formatted: %s\nhere: %s"),
3542 buf, p);
3543 }
3544 }
3545 /* fall through */
3546 case 'S': /* Old style status, just signal only. */
3547 if (solibs_changed)
3548 status->kind = TARGET_WAITKIND_LOADED;
3549 else
3550 {
3551 status->kind = TARGET_WAITKIND_STOPPED;
3552 status->value.sig = (enum target_signal)
3553 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3554 }
3555
3556 if (buf[3] == 'p')
3557 {
3558 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3559 record_currthread (thread_num);
3560 }
3561 goto got_status;
3562 case 'W': /* Target exited. */
3563 {
3564 /* The remote process exited. */
3565 status->kind = TARGET_WAITKIND_EXITED;
3566 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3567 goto got_status;
3568 }
3569 case 'X':
3570 status->kind = TARGET_WAITKIND_SIGNALLED;
3571 status->value.sig = (enum target_signal)
3572 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3573 kill_kludge = 1;
3574
3575 goto got_status;
3576 case 'O': /* Console output. */
3577 remote_console_output (buf + 1);
3578 /* Return immediately to the event loop. The event loop will
3579 still be waiting on the inferior afterwards. */
3580 status->kind = TARGET_WAITKIND_IGNORE;
3581 goto got_status;
3582 case '\0':
3583 if (last_sent_signal != TARGET_SIGNAL_0)
3584 {
3585 /* Zero length reply means that we tried 'S' or 'C' and
3586 the remote system doesn't support it. */
3587 target_terminal_ours_for_output ();
3588 printf_filtered
3589 ("Can't send signals to this remote system. %s not sent.\n",
3590 target_signal_to_name (last_sent_signal));
3591 last_sent_signal = TARGET_SIGNAL_0;
3592 target_terminal_inferior ();
3593
3594 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3595 putpkt ((char *) buf);
3596 continue;
3597 }
3598 /* else fallthrough */
3599 default:
3600 warning (_("Invalid remote reply: %s"), buf);
3601 continue;
3602 }
3603 }
3604 got_status:
3605 if (thread_num != -1)
3606 {
3607 return pid_to_ptid (thread_num);
3608 }
3609 return inferior_ptid;
3610 }
3611
3612 /* Fetch a single register using a 'p' packet. */
3613
3614 static int
3615 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3616 {
3617 struct remote_state *rs = get_remote_state ();
3618 char *buf, *p;
3619 char regp[MAX_REGISTER_SIZE];
3620 int i;
3621
3622 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3623 return 0;
3624
3625 if (reg->pnum == -1)
3626 return 0;
3627
3628 p = rs->buf;
3629 *p++ = 'p';
3630 p += hexnumstr (p, reg->pnum);
3631 *p++ = '\0';
3632 remote_send (&rs->buf, &rs->buf_size);
3633
3634 buf = rs->buf;
3635
3636 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3637 {
3638 case PACKET_OK:
3639 break;
3640 case PACKET_UNKNOWN:
3641 return 0;
3642 case PACKET_ERROR:
3643 error (_("Could not fetch register \"%s\""),
3644 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
3645 }
3646
3647 /* If this register is unfetchable, tell the regcache. */
3648 if (buf[0] == 'x')
3649 {
3650 regcache_raw_supply (regcache, reg->regnum, NULL);
3651 return 1;
3652 }
3653
3654 /* Otherwise, parse and supply the value. */
3655 p = buf;
3656 i = 0;
3657 while (p[0] != 0)
3658 {
3659 if (p[1] == 0)
3660 error (_("fetch_register_using_p: early buf termination"));
3661
3662 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3663 p += 2;
3664 }
3665 regcache_raw_supply (regcache, reg->regnum, regp);
3666 return 1;
3667 }
3668
3669 /* Fetch the registers included in the target's 'g' packet. */
3670
3671 static int
3672 send_g_packet (void)
3673 {
3674 struct remote_state *rs = get_remote_state ();
3675 int i, buf_len;
3676 char *p;
3677 char *regs;
3678
3679 sprintf (rs->buf, "g");
3680 remote_send (&rs->buf, &rs->buf_size);
3681
3682 /* We can get out of synch in various cases. If the first character
3683 in the buffer is not a hex character, assume that has happened
3684 and try to fetch another packet to read. */
3685 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3686 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3687 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3688 && rs->buf[0] != 'x') /* New: unavailable register value. */
3689 {
3690 if (remote_debug)
3691 fprintf_unfiltered (gdb_stdlog,
3692 "Bad register packet; fetching a new packet\n");
3693 getpkt (&rs->buf, &rs->buf_size, 0);
3694 }
3695
3696 buf_len = strlen (rs->buf);
3697
3698 /* Sanity check the received packet. */
3699 if (buf_len % 2 != 0)
3700 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3701
3702 return buf_len / 2;
3703 }
3704
3705 static void
3706 process_g_packet (struct regcache *regcache)
3707 {
3708 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3709 struct remote_state *rs = get_remote_state ();
3710 struct remote_arch_state *rsa = get_remote_arch_state ();
3711 int i, buf_len;
3712 char *p;
3713 char *regs;
3714
3715 buf_len = strlen (rs->buf);
3716
3717 /* Further sanity checks, with knowledge of the architecture. */
3718 if (buf_len > 2 * rsa->sizeof_g_packet)
3719 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3720
3721 /* Save the size of the packet sent to us by the target. It is used
3722 as a heuristic when determining the max size of packets that the
3723 target can safely receive. */
3724 if (rsa->actual_register_packet_size == 0)
3725 rsa->actual_register_packet_size = buf_len;
3726
3727 /* If this is smaller than we guessed the 'g' packet would be,
3728 update our records. A 'g' reply that doesn't include a register's
3729 value implies either that the register is not available, or that
3730 the 'p' packet must be used. */
3731 if (buf_len < 2 * rsa->sizeof_g_packet)
3732 {
3733 rsa->sizeof_g_packet = buf_len / 2;
3734
3735 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3736 {
3737 if (rsa->regs[i].pnum == -1)
3738 continue;
3739
3740 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3741 rsa->regs[i].in_g_packet = 0;
3742 else
3743 rsa->regs[i].in_g_packet = 1;
3744 }
3745 }
3746
3747 regs = alloca (rsa->sizeof_g_packet);
3748
3749 /* Unimplemented registers read as all bits zero. */
3750 memset (regs, 0, rsa->sizeof_g_packet);
3751
3752 /* Reply describes registers byte by byte, each byte encoded as two
3753 hex characters. Suck them all up, then supply them to the
3754 register cacheing/storage mechanism. */
3755
3756 p = rs->buf;
3757 for (i = 0; i < rsa->sizeof_g_packet; i++)
3758 {
3759 if (p[0] == 0 || p[1] == 0)
3760 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3761 internal_error (__FILE__, __LINE__,
3762 "unexpected end of 'g' packet reply");
3763
3764 if (p[0] == 'x' && p[1] == 'x')
3765 regs[i] = 0; /* 'x' */
3766 else
3767 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3768 p += 2;
3769 }
3770
3771 {
3772 int i;
3773 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3774 {
3775 struct packet_reg *r = &rsa->regs[i];
3776 if (r->in_g_packet)
3777 {
3778 if (r->offset * 2 >= strlen (rs->buf))
3779 /* This shouldn't happen - we adjusted in_g_packet above. */
3780 internal_error (__FILE__, __LINE__,
3781 "unexpected end of 'g' packet reply");
3782 else if (rs->buf[r->offset * 2] == 'x')
3783 {
3784 gdb_assert (r->offset * 2 < strlen (rs->buf));
3785 /* The register isn't available, mark it as such (at
3786 the same time setting the value to zero). */
3787 regcache_raw_supply (regcache, r->regnum, NULL);
3788 }
3789 else
3790 regcache_raw_supply (regcache, r->regnum,
3791 regs + r->offset);
3792 }
3793 }
3794 }
3795 }
3796
3797 static void
3798 fetch_registers_using_g (struct regcache *regcache)
3799 {
3800 send_g_packet ();
3801 process_g_packet (regcache);
3802 }
3803
3804 static void
3805 remote_fetch_registers (struct regcache *regcache, int regnum)
3806 {
3807 struct remote_state *rs = get_remote_state ();
3808 struct remote_arch_state *rsa = get_remote_arch_state ();
3809 int i;
3810
3811 set_thread (PIDGET (inferior_ptid), 1);
3812
3813 if (regnum >= 0)
3814 {
3815 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3816 gdb_assert (reg != NULL);
3817
3818 /* If this register might be in the 'g' packet, try that first -
3819 we are likely to read more than one register. If this is the
3820 first 'g' packet, we might be overly optimistic about its
3821 contents, so fall back to 'p'. */
3822 if (reg->in_g_packet)
3823 {
3824 fetch_registers_using_g (regcache);
3825 if (reg->in_g_packet)
3826 return;
3827 }
3828
3829 if (fetch_register_using_p (regcache, reg))
3830 return;
3831
3832 /* This register is not available. */
3833 regcache_raw_supply (regcache, reg->regnum, NULL);
3834
3835 return;
3836 }
3837
3838 fetch_registers_using_g (regcache);
3839
3840 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3841 if (!rsa->regs[i].in_g_packet)
3842 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3843 {
3844 /* This register is not available. */
3845 regcache_raw_supply (regcache, i, NULL);
3846 }
3847 }
3848
3849 /* Prepare to store registers. Since we may send them all (using a
3850 'G' request), we have to read out the ones we don't want to change
3851 first. */
3852
3853 static void
3854 remote_prepare_to_store (struct regcache *regcache)
3855 {
3856 struct remote_arch_state *rsa = get_remote_arch_state ();
3857 int i;
3858 gdb_byte buf[MAX_REGISTER_SIZE];
3859
3860 /* Make sure the entire registers array is valid. */
3861 switch (remote_protocol_packets[PACKET_P].support)
3862 {
3863 case PACKET_DISABLE:
3864 case PACKET_SUPPORT_UNKNOWN:
3865 /* Make sure all the necessary registers are cached. */
3866 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3867 if (rsa->regs[i].in_g_packet)
3868 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3869 break;
3870 case PACKET_ENABLE:
3871 break;
3872 }
3873 }
3874
3875 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3876 packet was not recognized. */
3877
3878 static int
3879 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3880 {
3881 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3882 struct remote_state *rs = get_remote_state ();
3883 struct remote_arch_state *rsa = get_remote_arch_state ();
3884 /* Try storing a single register. */
3885 char *buf = rs->buf;
3886 gdb_byte regp[MAX_REGISTER_SIZE];
3887 char *p;
3888
3889 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3890 return 0;
3891
3892 if (reg->pnum == -1)
3893 return 0;
3894
3895 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3896 p = buf + strlen (buf);
3897 regcache_raw_collect (regcache, reg->regnum, regp);
3898 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
3899 remote_send (&rs->buf, &rs->buf_size);
3900
3901 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3902 {
3903 case PACKET_OK:
3904 return 1;
3905 case PACKET_ERROR:
3906 error (_("Could not write register \"%s\""),
3907 gdbarch_register_name (gdbarch, reg->regnum));
3908 case PACKET_UNKNOWN:
3909 return 0;
3910 default:
3911 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3912 }
3913 }
3914
3915 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3916 contents of the register cache buffer. FIXME: ignores errors. */
3917
3918 static void
3919 store_registers_using_G (const struct regcache *regcache)
3920 {
3921 struct remote_state *rs = get_remote_state ();
3922 struct remote_arch_state *rsa = get_remote_arch_state ();
3923 gdb_byte *regs;
3924 char *p;
3925
3926 /* Extract all the registers in the regcache copying them into a
3927 local buffer. */
3928 {
3929 int i;
3930 regs = alloca (rsa->sizeof_g_packet);
3931 memset (regs, 0, rsa->sizeof_g_packet);
3932 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3933 {
3934 struct packet_reg *r = &rsa->regs[i];
3935 if (r->in_g_packet)
3936 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3937 }
3938 }
3939
3940 /* Command describes registers byte by byte,
3941 each byte encoded as two hex characters. */
3942 p = rs->buf;
3943 *p++ = 'G';
3944 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3945 updated. */
3946 bin2hex (regs, p, rsa->sizeof_g_packet);
3947 remote_send (&rs->buf, &rs->buf_size);
3948 }
3949
3950 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3951 of the register cache buffer. FIXME: ignores errors. */
3952
3953 static void
3954 remote_store_registers (struct regcache *regcache, int regnum)
3955 {
3956 struct remote_state *rs = get_remote_state ();
3957 struct remote_arch_state *rsa = get_remote_arch_state ();
3958 int i;
3959
3960 set_thread (PIDGET (inferior_ptid), 1);
3961
3962 if (regnum >= 0)
3963 {
3964 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3965 gdb_assert (reg != NULL);
3966
3967 /* Always prefer to store registers using the 'P' packet if
3968 possible; we often change only a small number of registers.
3969 Sometimes we change a larger number; we'd need help from a
3970 higher layer to know to use 'G'. */
3971 if (store_register_using_P (regcache, reg))
3972 return;
3973
3974 /* For now, don't complain if we have no way to write the
3975 register. GDB loses track of unavailable registers too
3976 easily. Some day, this may be an error. We don't have
3977 any way to read the register, either... */
3978 if (!reg->in_g_packet)
3979 return;
3980
3981 store_registers_using_G (regcache);
3982 return;
3983 }
3984
3985 store_registers_using_G (regcache);
3986
3987 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3988 if (!rsa->regs[i].in_g_packet)
3989 if (!store_register_using_P (regcache, &rsa->regs[i]))
3990 /* See above for why we do not issue an error here. */
3991 continue;
3992 }
3993 \f
3994
3995 /* Return the number of hex digits in num. */
3996
3997 static int
3998 hexnumlen (ULONGEST num)
3999 {
4000 int i;
4001
4002 for (i = 0; num != 0; i++)
4003 num >>= 4;
4004
4005 return max (i, 1);
4006 }
4007
4008 /* Set BUF to the minimum number of hex digits representing NUM. */
4009
4010 static int
4011 hexnumstr (char *buf, ULONGEST num)
4012 {
4013 int len = hexnumlen (num);
4014 return hexnumnstr (buf, num, len);
4015 }
4016
4017
4018 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4019
4020 static int
4021 hexnumnstr (char *buf, ULONGEST num, int width)
4022 {
4023 int i;
4024
4025 buf[width] = '\0';
4026
4027 for (i = width - 1; i >= 0; i--)
4028 {
4029 buf[i] = "0123456789abcdef"[(num & 0xf)];
4030 num >>= 4;
4031 }
4032
4033 return width;
4034 }
4035
4036 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4037
4038 static CORE_ADDR
4039 remote_address_masked (CORE_ADDR addr)
4040 {
4041 int address_size = remote_address_size;
4042 /* If "remoteaddresssize" was not set, default to target address size. */
4043 if (!address_size)
4044 address_size = gdbarch_addr_bit (current_gdbarch);
4045
4046 if (address_size > 0
4047 && address_size < (sizeof (ULONGEST) * 8))
4048 {
4049 /* Only create a mask when that mask can safely be constructed
4050 in a ULONGEST variable. */
4051 ULONGEST mask = 1;
4052 mask = (mask << address_size) - 1;
4053 addr &= mask;
4054 }
4055 return addr;
4056 }
4057
4058 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4059 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4060 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4061 (which may be more than *OUT_LEN due to escape characters). The
4062 total number of bytes in the output buffer will be at most
4063 OUT_MAXLEN. */
4064
4065 static int
4066 remote_escape_output (const gdb_byte *buffer, int len,
4067 gdb_byte *out_buf, int *out_len,
4068 int out_maxlen)
4069 {
4070 int input_index, output_index;
4071
4072 output_index = 0;
4073 for (input_index = 0; input_index < len; input_index++)
4074 {
4075 gdb_byte b = buffer[input_index];
4076
4077 if (b == '$' || b == '#' || b == '}')
4078 {
4079 /* These must be escaped. */
4080 if (output_index + 2 > out_maxlen)
4081 break;
4082 out_buf[output_index++] = '}';
4083 out_buf[output_index++] = b ^ 0x20;
4084 }
4085 else
4086 {
4087 if (output_index + 1 > out_maxlen)
4088 break;
4089 out_buf[output_index++] = b;
4090 }
4091 }
4092
4093 *out_len = input_index;
4094 return output_index;
4095 }
4096
4097 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4098 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4099 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4100
4101 This function reverses remote_escape_output. It allows more
4102 escaped characters than that function does, in particular because
4103 '*' must be escaped to avoid the run-length encoding processing
4104 in reading packets. */
4105
4106 static int
4107 remote_unescape_input (const gdb_byte *buffer, int len,
4108 gdb_byte *out_buf, int out_maxlen)
4109 {
4110 int input_index, output_index;
4111 int escaped;
4112
4113 output_index = 0;
4114 escaped = 0;
4115 for (input_index = 0; input_index < len; input_index++)
4116 {
4117 gdb_byte b = buffer[input_index];
4118
4119 if (output_index + 1 > out_maxlen)
4120 {
4121 warning (_("Received too much data from remote target;"
4122 " ignoring overflow."));
4123 return output_index;
4124 }
4125
4126 if (escaped)
4127 {
4128 out_buf[output_index++] = b ^ 0x20;
4129 escaped = 0;
4130 }
4131 else if (b == '}')
4132 escaped = 1;
4133 else
4134 out_buf[output_index++] = b;
4135 }
4136
4137 if (escaped)
4138 error (_("Unmatched escape character in target response."));
4139
4140 return output_index;
4141 }
4142
4143 /* Determine whether the remote target supports binary downloading.
4144 This is accomplished by sending a no-op memory write of zero length
4145 to the target at the specified address. It does not suffice to send
4146 the whole packet, since many stubs strip the eighth bit and
4147 subsequently compute a wrong checksum, which causes real havoc with
4148 remote_write_bytes.
4149
4150 NOTE: This can still lose if the serial line is not eight-bit
4151 clean. In cases like this, the user should clear "remote
4152 X-packet". */
4153
4154 static void
4155 check_binary_download (CORE_ADDR addr)
4156 {
4157 struct remote_state *rs = get_remote_state ();
4158
4159 switch (remote_protocol_packets[PACKET_X].support)
4160 {
4161 case PACKET_DISABLE:
4162 break;
4163 case PACKET_ENABLE:
4164 break;
4165 case PACKET_SUPPORT_UNKNOWN:
4166 {
4167 char *p;
4168
4169 p = rs->buf;
4170 *p++ = 'X';
4171 p += hexnumstr (p, (ULONGEST) addr);
4172 *p++ = ',';
4173 p += hexnumstr (p, (ULONGEST) 0);
4174 *p++ = ':';
4175 *p = '\0';
4176
4177 putpkt_binary (rs->buf, (int) (p - rs->buf));
4178 getpkt (&rs->buf, &rs->buf_size, 0);
4179
4180 if (rs->buf[0] == '\0')
4181 {
4182 if (remote_debug)
4183 fprintf_unfiltered (gdb_stdlog,
4184 "binary downloading NOT suppported by target\n");
4185 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4186 }
4187 else
4188 {
4189 if (remote_debug)
4190 fprintf_unfiltered (gdb_stdlog,
4191 "binary downloading suppported by target\n");
4192 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4193 }
4194 break;
4195 }
4196 }
4197 }
4198
4199 /* Write memory data directly to the remote machine.
4200 This does not inform the data cache; the data cache uses this.
4201 HEADER is the starting part of the packet.
4202 MEMADDR is the address in the remote memory space.
4203 MYADDR is the address of the buffer in our space.
4204 LEN is the number of bytes.
4205 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4206 should send data as binary ('X'), or hex-encoded ('M').
4207
4208 The function creates packet of the form
4209 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4210
4211 where encoding of <DATA> is termined by PACKET_FORMAT.
4212
4213 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4214 are omitted.
4215
4216 Returns the number of bytes transferred, or 0 (setting errno) for
4217 error. Only transfer a single packet. */
4218
4219 static int
4220 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4221 const gdb_byte *myaddr, int len,
4222 char packet_format, int use_length)
4223 {
4224 struct remote_state *rs = get_remote_state ();
4225 char *p;
4226 char *plen = NULL;
4227 int plenlen = 0;
4228 int todo;
4229 int nr_bytes;
4230 int payload_size;
4231 int payload_length;
4232 int header_length;
4233
4234 if (packet_format != 'X' && packet_format != 'M')
4235 internal_error (__FILE__, __LINE__,
4236 "remote_write_bytes_aux: bad packet format");
4237
4238 if (len <= 0)
4239 return 0;
4240
4241 payload_size = get_memory_write_packet_size ();
4242
4243 /* The packet buffer will be large enough for the payload;
4244 get_memory_packet_size ensures this. */
4245 rs->buf[0] = '\0';
4246
4247 /* Compute the size of the actual payload by subtracting out the
4248 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4249 */
4250 payload_size -= strlen ("$,:#NN");
4251 if (!use_length)
4252 /* The comma won't be used. */
4253 payload_size += 1;
4254 header_length = strlen (header);
4255 payload_size -= header_length;
4256 payload_size -= hexnumlen (memaddr);
4257
4258 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4259
4260 strcat (rs->buf, header);
4261 p = rs->buf + strlen (header);
4262
4263 /* Compute a best guess of the number of bytes actually transfered. */
4264 if (packet_format == 'X')
4265 {
4266 /* Best guess at number of bytes that will fit. */
4267 todo = min (len, payload_size);
4268 if (use_length)
4269 payload_size -= hexnumlen (todo);
4270 todo = min (todo, payload_size);
4271 }
4272 else
4273 {
4274 /* Num bytes that will fit. */
4275 todo = min (len, payload_size / 2);
4276 if (use_length)
4277 payload_size -= hexnumlen (todo);
4278 todo = min (todo, payload_size / 2);
4279 }
4280
4281 if (todo <= 0)
4282 internal_error (__FILE__, __LINE__,
4283 _("minumum packet size too small to write data"));
4284
4285 /* If we already need another packet, then try to align the end
4286 of this packet to a useful boundary. */
4287 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4288 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4289
4290 /* Append "<memaddr>". */
4291 memaddr = remote_address_masked (memaddr);
4292 p += hexnumstr (p, (ULONGEST) memaddr);
4293
4294 if (use_length)
4295 {
4296 /* Append ",". */
4297 *p++ = ',';
4298
4299 /* Append <len>. Retain the location/size of <len>. It may need to
4300 be adjusted once the packet body has been created. */
4301 plen = p;
4302 plenlen = hexnumstr (p, (ULONGEST) todo);
4303 p += plenlen;
4304 }
4305
4306 /* Append ":". */
4307 *p++ = ':';
4308 *p = '\0';
4309
4310 /* Append the packet body. */
4311 if (packet_format == 'X')
4312 {
4313 /* Binary mode. Send target system values byte by byte, in
4314 increasing byte addresses. Only escape certain critical
4315 characters. */
4316 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4317 payload_size);
4318
4319 /* If not all TODO bytes fit, then we'll need another packet. Make
4320 a second try to keep the end of the packet aligned. Don't do
4321 this if the packet is tiny. */
4322 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4323 {
4324 int new_nr_bytes;
4325
4326 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4327 - memaddr);
4328 if (new_nr_bytes != nr_bytes)
4329 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4330 p, &nr_bytes,
4331 payload_size);
4332 }
4333
4334 p += payload_length;
4335 if (use_length && nr_bytes < todo)
4336 {
4337 /* Escape chars have filled up the buffer prematurely,
4338 and we have actually sent fewer bytes than planned.
4339 Fix-up the length field of the packet. Use the same
4340 number of characters as before. */
4341 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4342 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4343 }
4344 }
4345 else
4346 {
4347 /* Normal mode: Send target system values byte by byte, in
4348 increasing byte addresses. Each byte is encoded as a two hex
4349 value. */
4350 nr_bytes = bin2hex (myaddr, p, todo);
4351 p += 2 * nr_bytes;
4352 }
4353
4354 putpkt_binary (rs->buf, (int) (p - rs->buf));
4355 getpkt (&rs->buf, &rs->buf_size, 0);
4356
4357 if (rs->buf[0] == 'E')
4358 {
4359 /* There is no correspondance between what the remote protocol
4360 uses for errors and errno codes. We would like a cleaner way
4361 of representing errors (big enough to include errno codes,
4362 bfd_error codes, and others). But for now just return EIO. */
4363 errno = EIO;
4364 return 0;
4365 }
4366
4367 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4368 fewer bytes than we'd planned. */
4369 return nr_bytes;
4370 }
4371
4372 /* Write memory data directly to the remote machine.
4373 This does not inform the data cache; the data cache uses this.
4374 MEMADDR is the address in the remote memory space.
4375 MYADDR is the address of the buffer in our space.
4376 LEN is the number of bytes.
4377
4378 Returns number of bytes transferred, or 0 (setting errno) for
4379 error. Only transfer a single packet. */
4380
4381 int
4382 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4383 {
4384 char *packet_format = 0;
4385
4386 /* Check whether the target supports binary download. */
4387 check_binary_download (memaddr);
4388
4389 switch (remote_protocol_packets[PACKET_X].support)
4390 {
4391 case PACKET_ENABLE:
4392 packet_format = "X";
4393 break;
4394 case PACKET_DISABLE:
4395 packet_format = "M";
4396 break;
4397 case PACKET_SUPPORT_UNKNOWN:
4398 internal_error (__FILE__, __LINE__,
4399 _("remote_write_bytes: bad internal state"));
4400 default:
4401 internal_error (__FILE__, __LINE__, _("bad switch"));
4402 }
4403
4404 return remote_write_bytes_aux (packet_format,
4405 memaddr, myaddr, len, packet_format[0], 1);
4406 }
4407
4408 /* Read memory data directly from the remote machine.
4409 This does not use the data cache; the data cache uses this.
4410 MEMADDR is the address in the remote memory space.
4411 MYADDR is the address of the buffer in our space.
4412 LEN is the number of bytes.
4413
4414 Returns number of bytes transferred, or 0 for error. */
4415
4416 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4417 remote targets) shouldn't attempt to read the entire buffer.
4418 Instead it should read a single packet worth of data and then
4419 return the byte size of that packet to the caller. The caller (its
4420 caller and its callers caller ;-) already contains code for
4421 handling partial reads. */
4422
4423 int
4424 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4425 {
4426 struct remote_state *rs = get_remote_state ();
4427 int max_buf_size; /* Max size of packet output buffer. */
4428 int origlen;
4429
4430 if (len <= 0)
4431 return 0;
4432
4433 max_buf_size = get_memory_read_packet_size ();
4434 /* The packet buffer will be large enough for the payload;
4435 get_memory_packet_size ensures this. */
4436
4437 origlen = len;
4438 while (len > 0)
4439 {
4440 char *p;
4441 int todo;
4442 int i;
4443
4444 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4445
4446 /* construct "m"<memaddr>","<len>" */
4447 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4448 memaddr = remote_address_masked (memaddr);
4449 p = rs->buf;
4450 *p++ = 'm';
4451 p += hexnumstr (p, (ULONGEST) memaddr);
4452 *p++ = ',';
4453 p += hexnumstr (p, (ULONGEST) todo);
4454 *p = '\0';
4455
4456 putpkt (rs->buf);
4457 getpkt (&rs->buf, &rs->buf_size, 0);
4458
4459 if (rs->buf[0] == 'E'
4460 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4461 && rs->buf[3] == '\0')
4462 {
4463 /* There is no correspondance between what the remote
4464 protocol uses for errors and errno codes. We would like
4465 a cleaner way of representing errors (big enough to
4466 include errno codes, bfd_error codes, and others). But
4467 for now just return EIO. */
4468 errno = EIO;
4469 return 0;
4470 }
4471
4472 /* Reply describes memory byte by byte,
4473 each byte encoded as two hex characters. */
4474
4475 p = rs->buf;
4476 if ((i = hex2bin (p, myaddr, todo)) < todo)
4477 {
4478 /* Reply is short. This means that we were able to read
4479 only part of what we wanted to. */
4480 return i + (origlen - len);
4481 }
4482 myaddr += todo;
4483 memaddr += todo;
4484 len -= todo;
4485 }
4486 return origlen;
4487 }
4488 \f
4489 /* Read or write LEN bytes from inferior memory at MEMADDR,
4490 transferring to or from debugger address BUFFER. Write to inferior
4491 if SHOULD_WRITE is nonzero. Returns length of data written or
4492 read; 0 for error. TARGET is unused. */
4493
4494 static int
4495 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4496 int should_write, struct mem_attrib *attrib,
4497 struct target_ops *target)
4498 {
4499 int res;
4500
4501 if (should_write)
4502 res = remote_write_bytes (mem_addr, buffer, mem_len);
4503 else
4504 res = remote_read_bytes (mem_addr, buffer, mem_len);
4505
4506 return res;
4507 }
4508
4509 /* Sends a packet with content determined by the printf format string
4510 FORMAT and the remaining arguments, then gets the reply. Returns
4511 whether the packet was a success, a failure, or unknown. */
4512
4513 enum packet_result
4514 remote_send_printf (const char *format, ...)
4515 {
4516 struct remote_state *rs = get_remote_state ();
4517 int max_size = get_remote_packet_size ();
4518
4519 va_list ap;
4520 va_start (ap, format);
4521
4522 rs->buf[0] = '\0';
4523 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4524 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4525
4526 if (putpkt (rs->buf) < 0)
4527 error (_("Communication problem with target."));
4528
4529 rs->buf[0] = '\0';
4530 getpkt (&rs->buf, &rs->buf_size, 0);
4531
4532 return packet_check_result (rs->buf);
4533 }
4534
4535 static void
4536 restore_remote_timeout (void *p)
4537 {
4538 int value = *(int *)p;
4539 remote_timeout = value;
4540 }
4541
4542 /* Flash writing can take quite some time. We'll set
4543 effectively infinite timeout for flash operations.
4544 In future, we'll need to decide on a better approach. */
4545 static const int remote_flash_timeout = 1000;
4546
4547 static void
4548 remote_flash_erase (struct target_ops *ops,
4549 ULONGEST address, LONGEST length)
4550 {
4551 int saved_remote_timeout = remote_timeout;
4552 enum packet_result ret;
4553
4554 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4555 &saved_remote_timeout);
4556 remote_timeout = remote_flash_timeout;
4557
4558 ret = remote_send_printf ("vFlashErase:%s,%s",
4559 paddr (address),
4560 phex (length, 4));
4561 switch (ret)
4562 {
4563 case PACKET_UNKNOWN:
4564 error (_("Remote target does not support flash erase"));
4565 case PACKET_ERROR:
4566 error (_("Error erasing flash with vFlashErase packet"));
4567 default:
4568 break;
4569 }
4570
4571 do_cleanups (back_to);
4572 }
4573
4574 static LONGEST
4575 remote_flash_write (struct target_ops *ops,
4576 ULONGEST address, LONGEST length,
4577 const gdb_byte *data)
4578 {
4579 int saved_remote_timeout = remote_timeout;
4580 int ret;
4581 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4582 &saved_remote_timeout);
4583
4584 remote_timeout = remote_flash_timeout;
4585 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4586 do_cleanups (back_to);
4587
4588 return ret;
4589 }
4590
4591 static void
4592 remote_flash_done (struct target_ops *ops)
4593 {
4594 int saved_remote_timeout = remote_timeout;
4595 int ret;
4596 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4597 &saved_remote_timeout);
4598
4599 remote_timeout = remote_flash_timeout;
4600 ret = remote_send_printf ("vFlashDone");
4601 do_cleanups (back_to);
4602
4603 switch (ret)
4604 {
4605 case PACKET_UNKNOWN:
4606 error (_("Remote target does not support vFlashDone"));
4607 case PACKET_ERROR:
4608 error (_("Error finishing flash operation"));
4609 default:
4610 break;
4611 }
4612 }
4613
4614 static void
4615 remote_files_info (struct target_ops *ignore)
4616 {
4617 puts_filtered ("Debugging a target over a serial line.\n");
4618 }
4619 \f
4620 /* Stuff for dealing with the packets which are part of this protocol.
4621 See comment at top of file for details. */
4622
4623 /* Read a single character from the remote end. */
4624
4625 static int
4626 readchar (int timeout)
4627 {
4628 int ch;
4629
4630 ch = serial_readchar (remote_desc, timeout);
4631
4632 if (ch >= 0)
4633 return ch;
4634
4635 switch ((enum serial_rc) ch)
4636 {
4637 case SERIAL_EOF:
4638 target_mourn_inferior ();
4639 error (_("Remote connection closed"));
4640 /* no return */
4641 case SERIAL_ERROR:
4642 perror_with_name (_("Remote communication error"));
4643 /* no return */
4644 case SERIAL_TIMEOUT:
4645 break;
4646 }
4647 return ch;
4648 }
4649
4650 /* Send the command in *BUF to the remote machine, and read the reply
4651 into *BUF. Report an error if we get an error reply. Resize
4652 *BUF using xrealloc if necessary to hold the result, and update
4653 *SIZEOF_BUF. */
4654
4655 static void
4656 remote_send (char **buf,
4657 long *sizeof_buf)
4658 {
4659 putpkt (*buf);
4660 getpkt (buf, sizeof_buf, 0);
4661
4662 if ((*buf)[0] == 'E')
4663 error (_("Remote failure reply: %s"), *buf);
4664 }
4665
4666 /* Display a null-terminated packet on stdout, for debugging, using C
4667 string notation. */
4668
4669 static void
4670 print_packet (char *buf)
4671 {
4672 puts_filtered ("\"");
4673 fputstr_filtered (buf, '"', gdb_stdout);
4674 puts_filtered ("\"");
4675 }
4676
4677 int
4678 putpkt (char *buf)
4679 {
4680 return putpkt_binary (buf, strlen (buf));
4681 }
4682
4683 /* Send a packet to the remote machine, with error checking. The data
4684 of the packet is in BUF. The string in BUF can be at most
4685 get_remote_packet_size () - 5 to account for the $, # and checksum,
4686 and for a possible /0 if we are debugging (remote_debug) and want
4687 to print the sent packet as a string. */
4688
4689 static int
4690 putpkt_binary (char *buf, int cnt)
4691 {
4692 int i;
4693 unsigned char csum = 0;
4694 char *buf2 = alloca (cnt + 6);
4695
4696 int ch;
4697 int tcount = 0;
4698 char *p;
4699
4700 /* Copy the packet into buffer BUF2, encapsulating it
4701 and giving it a checksum. */
4702
4703 p = buf2;
4704 *p++ = '$';
4705
4706 for (i = 0; i < cnt; i++)
4707 {
4708 csum += buf[i];
4709 *p++ = buf[i];
4710 }
4711 *p++ = '#';
4712 *p++ = tohex ((csum >> 4) & 0xf);
4713 *p++ = tohex (csum & 0xf);
4714
4715 /* Send it over and over until we get a positive ack. */
4716
4717 while (1)
4718 {
4719 int started_error_output = 0;
4720
4721 if (remote_debug)
4722 {
4723 *p = '\0';
4724 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4725 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4726 fprintf_unfiltered (gdb_stdlog, "...");
4727 gdb_flush (gdb_stdlog);
4728 }
4729 if (serial_write (remote_desc, buf2, p - buf2))
4730 perror_with_name (_("putpkt: write failed"));
4731
4732 /* Read until either a timeout occurs (-2) or '+' is read. */
4733 while (1)
4734 {
4735 ch = readchar (remote_timeout);
4736
4737 if (remote_debug)
4738 {
4739 switch (ch)
4740 {
4741 case '+':
4742 case '-':
4743 case SERIAL_TIMEOUT:
4744 case '$':
4745 if (started_error_output)
4746 {
4747 putchar_unfiltered ('\n');
4748 started_error_output = 0;
4749 }
4750 }
4751 }
4752
4753 switch (ch)
4754 {
4755 case '+':
4756 if (remote_debug)
4757 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4758 return 1;
4759 case '-':
4760 if (remote_debug)
4761 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4762 case SERIAL_TIMEOUT:
4763 tcount++;
4764 if (tcount > 3)
4765 return 0;
4766 break; /* Retransmit buffer. */
4767 case '$':
4768 {
4769 if (remote_debug)
4770 fprintf_unfiltered (gdb_stdlog,
4771 "Packet instead of Ack, ignoring it\n");
4772 /* It's probably an old response sent because an ACK
4773 was lost. Gobble up the packet and ack it so it
4774 doesn't get retransmitted when we resend this
4775 packet. */
4776 skip_frame ();
4777 serial_write (remote_desc, "+", 1);
4778 continue; /* Now, go look for +. */
4779 }
4780 default:
4781 if (remote_debug)
4782 {
4783 if (!started_error_output)
4784 {
4785 started_error_output = 1;
4786 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4787 }
4788 fputc_unfiltered (ch & 0177, gdb_stdlog);
4789 }
4790 continue;
4791 }
4792 break; /* Here to retransmit. */
4793 }
4794
4795 #if 0
4796 /* This is wrong. If doing a long backtrace, the user should be
4797 able to get out next time we call QUIT, without anything as
4798 violent as interrupt_query. If we want to provide a way out of
4799 here without getting to the next QUIT, it should be based on
4800 hitting ^C twice as in remote_wait. */
4801 if (quit_flag)
4802 {
4803 quit_flag = 0;
4804 interrupt_query ();
4805 }
4806 #endif
4807 }
4808 }
4809
4810 /* Come here after finding the start of a frame when we expected an
4811 ack. Do our best to discard the rest of this packet. */
4812
4813 static void
4814 skip_frame (void)
4815 {
4816 int c;
4817
4818 while (1)
4819 {
4820 c = readchar (remote_timeout);
4821 switch (c)
4822 {
4823 case SERIAL_TIMEOUT:
4824 /* Nothing we can do. */
4825 return;
4826 case '#':
4827 /* Discard the two bytes of checksum and stop. */
4828 c = readchar (remote_timeout);
4829 if (c >= 0)
4830 c = readchar (remote_timeout);
4831
4832 return;
4833 case '*': /* Run length encoding. */
4834 /* Discard the repeat count. */
4835 c = readchar (remote_timeout);
4836 if (c < 0)
4837 return;
4838 break;
4839 default:
4840 /* A regular character. */
4841 break;
4842 }
4843 }
4844 }
4845
4846 /* Come here after finding the start of the frame. Collect the rest
4847 into *BUF, verifying the checksum, length, and handling run-length
4848 compression. NUL terminate the buffer. If there is not enough room,
4849 expand *BUF using xrealloc.
4850
4851 Returns -1 on error, number of characters in buffer (ignoring the
4852 trailing NULL) on success. (could be extended to return one of the
4853 SERIAL status indications). */
4854
4855 static long
4856 read_frame (char **buf_p,
4857 long *sizeof_buf)
4858 {
4859 unsigned char csum;
4860 long bc;
4861 int c;
4862 char *buf = *buf_p;
4863
4864 csum = 0;
4865 bc = 0;
4866
4867 while (1)
4868 {
4869 c = readchar (remote_timeout);
4870 switch (c)
4871 {
4872 case SERIAL_TIMEOUT:
4873 if (remote_debug)
4874 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4875 return -1;
4876 case '$':
4877 if (remote_debug)
4878 fputs_filtered ("Saw new packet start in middle of old one\n",
4879 gdb_stdlog);
4880 return -1; /* Start a new packet, count retries. */
4881 case '#':
4882 {
4883 unsigned char pktcsum;
4884 int check_0 = 0;
4885 int check_1 = 0;
4886
4887 buf[bc] = '\0';
4888
4889 check_0 = readchar (remote_timeout);
4890 if (check_0 >= 0)
4891 check_1 = readchar (remote_timeout);
4892
4893 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4894 {
4895 if (remote_debug)
4896 fputs_filtered ("Timeout in checksum, retrying\n",
4897 gdb_stdlog);
4898 return -1;
4899 }
4900 else if (check_0 < 0 || check_1 < 0)
4901 {
4902 if (remote_debug)
4903 fputs_filtered ("Communication error in checksum\n",
4904 gdb_stdlog);
4905 return -1;
4906 }
4907
4908 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4909 if (csum == pktcsum)
4910 return bc;
4911
4912 if (remote_debug)
4913 {
4914 fprintf_filtered (gdb_stdlog,
4915 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4916 pktcsum, csum);
4917 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4918 fputs_filtered ("\n", gdb_stdlog);
4919 }
4920 /* Number of characters in buffer ignoring trailing
4921 NULL. */
4922 return -1;
4923 }
4924 case '*': /* Run length encoding. */
4925 {
4926 int repeat;
4927 csum += c;
4928
4929 c = readchar (remote_timeout);
4930 csum += c;
4931 repeat = c - ' ' + 3; /* Compute repeat count. */
4932
4933 /* The character before ``*'' is repeated. */
4934
4935 if (repeat > 0 && repeat <= 255 && bc > 0)
4936 {
4937 if (bc + repeat - 1 >= *sizeof_buf - 1)
4938 {
4939 /* Make some more room in the buffer. */
4940 *sizeof_buf += repeat;
4941 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4942 buf = *buf_p;
4943 }
4944
4945 memset (&buf[bc], buf[bc - 1], repeat);
4946 bc += repeat;
4947 continue;
4948 }
4949
4950 buf[bc] = '\0';
4951 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4952 return -1;
4953 }
4954 default:
4955 if (bc >= *sizeof_buf - 1)
4956 {
4957 /* Make some more room in the buffer. */
4958 *sizeof_buf *= 2;
4959 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4960 buf = *buf_p;
4961 }
4962
4963 buf[bc++] = c;
4964 csum += c;
4965 continue;
4966 }
4967 }
4968 }
4969
4970 /* Read a packet from the remote machine, with error checking, and
4971 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4972 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4973 rather than timing out; this is used (in synchronous mode) to wait
4974 for a target that is is executing user code to stop. */
4975 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4976 don't have to change all the calls to getpkt to deal with the
4977 return value, because at the moment I don't know what the right
4978 thing to do it for those. */
4979 void
4980 getpkt (char **buf,
4981 long *sizeof_buf,
4982 int forever)
4983 {
4984 int timed_out;
4985
4986 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4987 }
4988
4989
4990 /* Read a packet from the remote machine, with error checking, and
4991 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4992 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4993 rather than timing out; this is used (in synchronous mode) to wait
4994 for a target that is is executing user code to stop. If FOREVER ==
4995 0, this function is allowed to time out gracefully and return an
4996 indication of this to the caller. Otherwise return the number
4997 of bytes read. */
4998 static int
4999 getpkt_sane (char **buf, long *sizeof_buf, int forever)
5000 {
5001 int c;
5002 int tries;
5003 int timeout;
5004 int val;
5005
5006 strcpy (*buf, "timeout");
5007
5008 if (forever)
5009 {
5010 timeout = watchdog > 0 ? watchdog : -1;
5011 }
5012
5013 else
5014 timeout = remote_timeout;
5015
5016 #define MAX_TRIES 3
5017
5018 for (tries = 1; tries <= MAX_TRIES; tries++)
5019 {
5020 /* This can loop forever if the remote side sends us characters
5021 continuously, but if it pauses, we'll get a zero from
5022 readchar because of timeout. Then we'll count that as a
5023 retry. */
5024
5025 /* Note that we will only wait forever prior to the start of a
5026 packet. After that, we expect characters to arrive at a
5027 brisk pace. They should show up within remote_timeout
5028 intervals. */
5029
5030 do
5031 {
5032 c = readchar (timeout);
5033
5034 if (c == SERIAL_TIMEOUT)
5035 {
5036 if (forever) /* Watchdog went off? Kill the target. */
5037 {
5038 QUIT;
5039 target_mourn_inferior ();
5040 error (_("Watchdog timeout has expired. Target detached."));
5041 }
5042 if (remote_debug)
5043 fputs_filtered ("Timed out.\n", gdb_stdlog);
5044 goto retry;
5045 }
5046 }
5047 while (c != '$');
5048
5049 /* We've found the start of a packet, now collect the data. */
5050
5051 val = read_frame (buf, sizeof_buf);
5052
5053 if (val >= 0)
5054 {
5055 if (remote_debug)
5056 {
5057 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5058 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5059 fprintf_unfiltered (gdb_stdlog, "\n");
5060 }
5061 serial_write (remote_desc, "+", 1);
5062 return val;
5063 }
5064
5065 /* Try the whole thing again. */
5066 retry:
5067 serial_write (remote_desc, "-", 1);
5068 }
5069
5070 /* We have tried hard enough, and just can't receive the packet.
5071 Give up. */
5072
5073 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5074 serial_write (remote_desc, "+", 1);
5075 return -1;
5076 }
5077 \f
5078 static void
5079 remote_kill (void)
5080 {
5081 /* For some mysterious reason, wait_for_inferior calls kill instead of
5082 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5083 if (kill_kludge)
5084 {
5085 kill_kludge = 0;
5086 target_mourn_inferior ();
5087 return;
5088 }
5089
5090 /* Use catch_errors so the user can quit from gdb even when we aren't on
5091 speaking terms with the remote system. */
5092 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5093
5094 /* Don't wait for it to die. I'm not really sure it matters whether
5095 we do or not. For the existing stubs, kill is a noop. */
5096 target_mourn_inferior ();
5097 }
5098
5099 /* Async version of remote_kill. */
5100 static void
5101 remote_async_kill (void)
5102 {
5103 /* Unregister the file descriptor from the event loop. */
5104 if (target_is_async_p ())
5105 serial_async (remote_desc, NULL, 0);
5106
5107 /* For some mysterious reason, wait_for_inferior calls kill instead of
5108 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5109 if (kill_kludge)
5110 {
5111 kill_kludge = 0;
5112 target_mourn_inferior ();
5113 return;
5114 }
5115
5116 /* Use catch_errors so the user can quit from gdb even when we
5117 aren't on speaking terms with the remote system. */
5118 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5119
5120 /* Don't wait for it to die. I'm not really sure it matters whether
5121 we do or not. For the existing stubs, kill is a noop. */
5122 target_mourn_inferior ();
5123 }
5124
5125 static void
5126 remote_mourn (void)
5127 {
5128 remote_mourn_1 (&remote_ops);
5129 }
5130
5131 static void
5132 remote_async_mourn (void)
5133 {
5134 remote_mourn_1 (&remote_async_ops);
5135 }
5136
5137 static void
5138 extended_remote_mourn (void)
5139 {
5140 /* We do _not_ want to mourn the target like this; this will
5141 remove the extended remote target from the target stack,
5142 and the next time the user says "run" it'll fail.
5143
5144 FIXME: What is the right thing to do here? */
5145 #if 0
5146 remote_mourn_1 (&extended_remote_ops);
5147 #endif
5148 }
5149
5150 /* Worker function for remote_mourn. */
5151 static void
5152 remote_mourn_1 (struct target_ops *target)
5153 {
5154 unpush_target (target);
5155 generic_mourn_inferior ();
5156 }
5157
5158 /* In the extended protocol we want to be able to do things like
5159 "run" and have them basically work as expected. So we need
5160 a special create_inferior function.
5161
5162 FIXME: One day add support for changing the exec file
5163 we're debugging, arguments and an environment. */
5164
5165 static void
5166 extended_remote_create_inferior (char *exec_file, char *args,
5167 char **env, int from_tty)
5168 {
5169 /* Rip out the breakpoints; we'll reinsert them after restarting
5170 the remote server. */
5171 remove_breakpoints ();
5172
5173 /* Now restart the remote server. */
5174 extended_remote_restart ();
5175
5176 /* NOTE: We don't need to recheck for a target description here; but
5177 if we gain the ability to switch the remote executable we may
5178 need to, if for instance we are running a process which requested
5179 different emulated hardware from the operating system. A
5180 concrete example of this is ARM GNU/Linux, where some binaries
5181 will have a legacy FPA coprocessor emulated and others may have
5182 access to a hardware VFP unit. */
5183
5184 /* Now put the breakpoints back in. This way we're safe if the
5185 restart function works via a unix fork on the remote side. */
5186 insert_breakpoints ();
5187
5188 /* Clean up from the last time we were running. */
5189 clear_proceed_status ();
5190 }
5191
5192 /* Async version of extended_remote_create_inferior. */
5193 static void
5194 extended_remote_async_create_inferior (char *exec_file, char *args,
5195 char **env, int from_tty)
5196 {
5197 /* Rip out the breakpoints; we'll reinsert them after restarting
5198 the remote server. */
5199 remove_breakpoints ();
5200
5201 /* If running asynchronously, register the target file descriptor
5202 with the event loop. */
5203 if (target_can_async_p ())
5204 target_async (inferior_event_handler, 0);
5205
5206 /* Now restart the remote server. */
5207 extended_remote_restart ();
5208
5209 /* NOTE: We don't need to recheck for a target description here; but
5210 if we gain the ability to switch the remote executable we may
5211 need to, if for instance we are running a process which requested
5212 different emulated hardware from the operating system. A
5213 concrete example of this is ARM GNU/Linux, where some binaries
5214 will have a legacy FPA coprocessor emulated and others may have
5215 access to a hardware VFP unit. */
5216
5217 /* Now put the breakpoints back in. This way we're safe if the
5218 restart function works via a unix fork on the remote side. */
5219 insert_breakpoints ();
5220
5221 /* Clean up from the last time we were running. */
5222 clear_proceed_status ();
5223 }
5224 \f
5225
5226 /* Insert a breakpoint. On targets that have software breakpoint
5227 support, we ask the remote target to do the work; on targets
5228 which don't, we insert a traditional memory breakpoint. */
5229
5230 static int
5231 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5232 {
5233 CORE_ADDR addr = bp_tgt->placed_address;
5234 struct remote_state *rs = get_remote_state ();
5235
5236 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5237 If it succeeds, then set the support to PACKET_ENABLE. If it
5238 fails, and the user has explicitly requested the Z support then
5239 report an error, otherwise, mark it disabled and go on. */
5240
5241 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5242 {
5243 char *p = rs->buf;
5244
5245 *(p++) = 'Z';
5246 *(p++) = '0';
5247 *(p++) = ',';
5248 gdbarch_breakpoint_from_pc
5249 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5250 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5251 p += hexnumstr (p, addr);
5252 sprintf (p, ",%d", bp_tgt->placed_size);
5253
5254 putpkt (rs->buf);
5255 getpkt (&rs->buf, &rs->buf_size, 0);
5256
5257 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5258 {
5259 case PACKET_ERROR:
5260 return -1;
5261 case PACKET_OK:
5262 return 0;
5263 case PACKET_UNKNOWN:
5264 break;
5265 }
5266 }
5267
5268 return memory_insert_breakpoint (bp_tgt);
5269 }
5270
5271 static int
5272 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5273 {
5274 CORE_ADDR addr = bp_tgt->placed_address;
5275 struct remote_state *rs = get_remote_state ();
5276 int bp_size;
5277
5278 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5279 {
5280 char *p = rs->buf;
5281
5282 *(p++) = 'z';
5283 *(p++) = '0';
5284 *(p++) = ',';
5285
5286 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5287 p += hexnumstr (p, addr);
5288 sprintf (p, ",%d", bp_tgt->placed_size);
5289
5290 putpkt (rs->buf);
5291 getpkt (&rs->buf, &rs->buf_size, 0);
5292
5293 return (rs->buf[0] == 'E');
5294 }
5295
5296 return memory_remove_breakpoint (bp_tgt);
5297 }
5298
5299 static int
5300 watchpoint_to_Z_packet (int type)
5301 {
5302 switch (type)
5303 {
5304 case hw_write:
5305 return Z_PACKET_WRITE_WP;
5306 break;
5307 case hw_read:
5308 return Z_PACKET_READ_WP;
5309 break;
5310 case hw_access:
5311 return Z_PACKET_ACCESS_WP;
5312 break;
5313 default:
5314 internal_error (__FILE__, __LINE__,
5315 _("hw_bp_to_z: bad watchpoint type %d"), type);
5316 }
5317 }
5318
5319 static int
5320 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5321 {
5322 struct remote_state *rs = get_remote_state ();
5323 char *p;
5324 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5325
5326 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5327 return -1;
5328
5329 sprintf (rs->buf, "Z%x,", packet);
5330 p = strchr (rs->buf, '\0');
5331 addr = remote_address_masked (addr);
5332 p += hexnumstr (p, (ULONGEST) addr);
5333 sprintf (p, ",%x", len);
5334
5335 putpkt (rs->buf);
5336 getpkt (&rs->buf, &rs->buf_size, 0);
5337
5338 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5339 {
5340 case PACKET_ERROR:
5341 case PACKET_UNKNOWN:
5342 return -1;
5343 case PACKET_OK:
5344 return 0;
5345 }
5346 internal_error (__FILE__, __LINE__,
5347 _("remote_insert_watchpoint: reached end of function"));
5348 }
5349
5350
5351 static int
5352 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5353 {
5354 struct remote_state *rs = get_remote_state ();
5355 char *p;
5356 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5357
5358 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5359 return -1;
5360
5361 sprintf (rs->buf, "z%x,", packet);
5362 p = strchr (rs->buf, '\0');
5363 addr = remote_address_masked (addr);
5364 p += hexnumstr (p, (ULONGEST) addr);
5365 sprintf (p, ",%x", len);
5366 putpkt (rs->buf);
5367 getpkt (&rs->buf, &rs->buf_size, 0);
5368
5369 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5370 {
5371 case PACKET_ERROR:
5372 case PACKET_UNKNOWN:
5373 return -1;
5374 case PACKET_OK:
5375 return 0;
5376 }
5377 internal_error (__FILE__, __LINE__,
5378 _("remote_remove_watchpoint: reached end of function"));
5379 }
5380
5381
5382 int remote_hw_watchpoint_limit = -1;
5383 int remote_hw_breakpoint_limit = -1;
5384
5385 static int
5386 remote_check_watch_resources (int type, int cnt, int ot)
5387 {
5388 if (type == bp_hardware_breakpoint)
5389 {
5390 if (remote_hw_breakpoint_limit == 0)
5391 return 0;
5392 else if (remote_hw_breakpoint_limit < 0)
5393 return 1;
5394 else if (cnt <= remote_hw_breakpoint_limit)
5395 return 1;
5396 }
5397 else
5398 {
5399 if (remote_hw_watchpoint_limit == 0)
5400 return 0;
5401 else if (remote_hw_watchpoint_limit < 0)
5402 return 1;
5403 else if (ot)
5404 return -1;
5405 else if (cnt <= remote_hw_watchpoint_limit)
5406 return 1;
5407 }
5408 return -1;
5409 }
5410
5411 static int
5412 remote_stopped_by_watchpoint (void)
5413 {
5414 return remote_stopped_by_watchpoint_p;
5415 }
5416
5417 static int
5418 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5419 {
5420 int rc = 0;
5421 if (remote_stopped_by_watchpoint ())
5422 {
5423 *addr_p = remote_watch_data_address;
5424 rc = 1;
5425 }
5426
5427 return rc;
5428 }
5429
5430
5431 static int
5432 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5433 {
5434 CORE_ADDR addr;
5435 struct remote_state *rs = get_remote_state ();
5436 char *p = rs->buf;
5437
5438 /* The length field should be set to the size of a breakpoint
5439 instruction, even though we aren't inserting one ourselves. */
5440
5441 gdbarch_breakpoint_from_pc
5442 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5443
5444 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5445 return -1;
5446
5447 *(p++) = 'Z';
5448 *(p++) = '1';
5449 *(p++) = ',';
5450
5451 addr = remote_address_masked (bp_tgt->placed_address);
5452 p += hexnumstr (p, (ULONGEST) addr);
5453 sprintf (p, ",%x", bp_tgt->placed_size);
5454
5455 putpkt (rs->buf);
5456 getpkt (&rs->buf, &rs->buf_size, 0);
5457
5458 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5459 {
5460 case PACKET_ERROR:
5461 case PACKET_UNKNOWN:
5462 return -1;
5463 case PACKET_OK:
5464 return 0;
5465 }
5466 internal_error (__FILE__, __LINE__,
5467 _("remote_insert_hw_breakpoint: reached end of function"));
5468 }
5469
5470
5471 static int
5472 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5473 {
5474 CORE_ADDR addr;
5475 struct remote_state *rs = get_remote_state ();
5476 char *p = rs->buf;
5477
5478 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5479 return -1;
5480
5481 *(p++) = 'z';
5482 *(p++) = '1';
5483 *(p++) = ',';
5484
5485 addr = remote_address_masked (bp_tgt->placed_address);
5486 p += hexnumstr (p, (ULONGEST) addr);
5487 sprintf (p, ",%x", bp_tgt->placed_size);
5488
5489 putpkt (rs->buf);
5490 getpkt (&rs->buf, &rs->buf_size, 0);
5491
5492 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5493 {
5494 case PACKET_ERROR:
5495 case PACKET_UNKNOWN:
5496 return -1;
5497 case PACKET_OK:
5498 return 0;
5499 }
5500 internal_error (__FILE__, __LINE__,
5501 _("remote_remove_hw_breakpoint: reached end of function"));
5502 }
5503
5504 /* Some targets are only capable of doing downloads, and afterwards
5505 they switch to the remote serial protocol. This function provides
5506 a clean way to get from the download target to the remote target.
5507 It's basically just a wrapper so that we don't have to expose any
5508 of the internal workings of remote.c.
5509
5510 Prior to calling this routine, you should shutdown the current
5511 target code, else you will get the "A program is being debugged
5512 already..." message. Usually a call to pop_target() suffices. */
5513
5514 void
5515 push_remote_target (char *name, int from_tty)
5516 {
5517 printf_filtered (_("Switching to remote protocol\n"));
5518 remote_open (name, from_tty);
5519 }
5520
5521 /* Table used by the crc32 function to calcuate the checksum. */
5522
5523 static unsigned long crc32_table[256] =
5524 {0, 0};
5525
5526 static unsigned long
5527 crc32 (unsigned char *buf, int len, unsigned int crc)
5528 {
5529 if (!crc32_table[1])
5530 {
5531 /* Initialize the CRC table and the decoding table. */
5532 int i, j;
5533 unsigned int c;
5534
5535 for (i = 0; i < 256; i++)
5536 {
5537 for (c = i << 24, j = 8; j > 0; --j)
5538 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5539 crc32_table[i] = c;
5540 }
5541 }
5542
5543 while (len--)
5544 {
5545 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5546 buf++;
5547 }
5548 return crc;
5549 }
5550
5551 /* compare-sections command
5552
5553 With no arguments, compares each loadable section in the exec bfd
5554 with the same memory range on the target, and reports mismatches.
5555 Useful for verifying the image on the target against the exec file.
5556 Depends on the target understanding the new "qCRC:" request. */
5557
5558 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5559 target method (target verify memory) and generic version of the
5560 actual command. This will allow other high-level code (especially
5561 generic_load()) to make use of this target functionality. */
5562
5563 static void
5564 compare_sections_command (char *args, int from_tty)
5565 {
5566 struct remote_state *rs = get_remote_state ();
5567 asection *s;
5568 unsigned long host_crc, target_crc;
5569 extern bfd *exec_bfd;
5570 struct cleanup *old_chain;
5571 char *tmp;
5572 char *sectdata;
5573 const char *sectname;
5574 bfd_size_type size;
5575 bfd_vma lma;
5576 int matched = 0;
5577 int mismatched = 0;
5578
5579 if (!exec_bfd)
5580 error (_("command cannot be used without an exec file"));
5581 if (!current_target.to_shortname ||
5582 strcmp (current_target.to_shortname, "remote") != 0)
5583 error (_("command can only be used with remote target"));
5584
5585 for (s = exec_bfd->sections; s; s = s->next)
5586 {
5587 if (!(s->flags & SEC_LOAD))
5588 continue; /* skip non-loadable section */
5589
5590 size = bfd_get_section_size (s);
5591 if (size == 0)
5592 continue; /* skip zero-length section */
5593
5594 sectname = bfd_get_section_name (exec_bfd, s);
5595 if (args && strcmp (args, sectname) != 0)
5596 continue; /* not the section selected by user */
5597
5598 matched = 1; /* do this section */
5599 lma = s->lma;
5600 /* FIXME: assumes lma can fit into long. */
5601 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5602 (long) lma, (long) size);
5603 putpkt (rs->buf);
5604
5605 /* Be clever; compute the host_crc before waiting for target
5606 reply. */
5607 sectdata = xmalloc (size);
5608 old_chain = make_cleanup (xfree, sectdata);
5609 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5610 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5611
5612 getpkt (&rs->buf, &rs->buf_size, 0);
5613 if (rs->buf[0] == 'E')
5614 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5615 sectname, paddr (lma), paddr (lma + size));
5616 if (rs->buf[0] != 'C')
5617 error (_("remote target does not support this operation"));
5618
5619 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5620 target_crc = target_crc * 16 + fromhex (*tmp);
5621
5622 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5623 sectname, paddr (lma), paddr (lma + size));
5624 if (host_crc == target_crc)
5625 printf_filtered ("matched.\n");
5626 else
5627 {
5628 printf_filtered ("MIS-MATCHED!\n");
5629 mismatched++;
5630 }
5631
5632 do_cleanups (old_chain);
5633 }
5634 if (mismatched > 0)
5635 warning (_("One or more sections of the remote executable does not match\n\
5636 the loaded file\n"));
5637 if (args && !matched)
5638 printf_filtered (_("No loaded section named '%s'.\n"), args);
5639 }
5640
5641 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5642 into remote target. The number of bytes written to the remote
5643 target is returned, or -1 for error. */
5644
5645 static LONGEST
5646 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5647 const char *annex, const gdb_byte *writebuf,
5648 ULONGEST offset, LONGEST len,
5649 struct packet_config *packet)
5650 {
5651 int i, buf_len;
5652 ULONGEST n;
5653 gdb_byte *wbuf;
5654 struct remote_state *rs = get_remote_state ();
5655 int max_size = get_memory_write_packet_size ();
5656
5657 if (packet->support == PACKET_DISABLE)
5658 return -1;
5659
5660 /* Insert header. */
5661 i = snprintf (rs->buf, max_size,
5662 "qXfer:%s:write:%s:%s:",
5663 object_name, annex ? annex : "",
5664 phex_nz (offset, sizeof offset));
5665 max_size -= (i + 1);
5666
5667 /* Escape as much data as fits into rs->buf. */
5668 buf_len = remote_escape_output
5669 (writebuf, len, (rs->buf + i), &max_size, max_size);
5670
5671 if (putpkt_binary (rs->buf, i + buf_len) < 0
5672 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5673 || packet_ok (rs->buf, packet) != PACKET_OK)
5674 return -1;
5675
5676 unpack_varlen_hex (rs->buf, &n);
5677 return n;
5678 }
5679
5680 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5681 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5682 number of bytes read is returned, or 0 for EOF, or -1 for error.
5683 The number of bytes read may be less than LEN without indicating an
5684 EOF. PACKET is checked and updated to indicate whether the remote
5685 target supports this object. */
5686
5687 static LONGEST
5688 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5689 const char *annex,
5690 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5691 struct packet_config *packet)
5692 {
5693 static char *finished_object;
5694 static char *finished_annex;
5695 static ULONGEST finished_offset;
5696
5697 struct remote_state *rs = get_remote_state ();
5698 unsigned int total = 0;
5699 LONGEST i, n, packet_len;
5700
5701 if (packet->support == PACKET_DISABLE)
5702 return -1;
5703
5704 /* Check whether we've cached an end-of-object packet that matches
5705 this request. */
5706 if (finished_object)
5707 {
5708 if (strcmp (object_name, finished_object) == 0
5709 && strcmp (annex ? annex : "", finished_annex) == 0
5710 && offset == finished_offset)
5711 return 0;
5712
5713 /* Otherwise, we're now reading something different. Discard
5714 the cache. */
5715 xfree (finished_object);
5716 xfree (finished_annex);
5717 finished_object = NULL;
5718 finished_annex = NULL;
5719 }
5720
5721 /* Request only enough to fit in a single packet. The actual data
5722 may not, since we don't know how much of it will need to be escaped;
5723 the target is free to respond with slightly less data. We subtract
5724 five to account for the response type and the protocol frame. */
5725 n = min (get_remote_packet_size () - 5, len);
5726 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5727 object_name, annex ? annex : "",
5728 phex_nz (offset, sizeof offset),
5729 phex_nz (n, sizeof n));
5730 i = putpkt (rs->buf);
5731 if (i < 0)
5732 return -1;
5733
5734 rs->buf[0] = '\0';
5735 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5736 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5737 return -1;
5738
5739 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5740 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5741
5742 /* 'm' means there is (or at least might be) more data after this
5743 batch. That does not make sense unless there's at least one byte
5744 of data in this reply. */
5745 if (rs->buf[0] == 'm' && packet_len == 1)
5746 error (_("Remote qXfer reply contained no data."));
5747
5748 /* Got some data. */
5749 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5750
5751 /* 'l' is an EOF marker, possibly including a final block of data,
5752 or possibly empty. If we have the final block of a non-empty
5753 object, record this fact to bypass a subsequent partial read. */
5754 if (rs->buf[0] == 'l' && offset + i > 0)
5755 {
5756 finished_object = xstrdup (object_name);
5757 finished_annex = xstrdup (annex ? annex : "");
5758 finished_offset = offset + i;
5759 }
5760
5761 return i;
5762 }
5763
5764 static LONGEST
5765 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5766 const char *annex, gdb_byte *readbuf,
5767 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5768 {
5769 struct remote_state *rs = get_remote_state ();
5770 int i;
5771 char *p2;
5772 char query_type;
5773
5774 /* Handle memory using the standard memory routines. */
5775 if (object == TARGET_OBJECT_MEMORY)
5776 {
5777 int xfered;
5778 errno = 0;
5779
5780 if (writebuf != NULL)
5781 xfered = remote_write_bytes (offset, writebuf, len);
5782 else
5783 xfered = remote_read_bytes (offset, readbuf, len);
5784
5785 if (xfered > 0)
5786 return xfered;
5787 else if (xfered == 0 && errno == 0)
5788 return 0;
5789 else
5790 return -1;
5791 }
5792
5793 /* Handle SPU memory using qxfer packets. */
5794 if (object == TARGET_OBJECT_SPU)
5795 {
5796 if (readbuf)
5797 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
5798 &remote_protocol_packets
5799 [PACKET_qXfer_spu_read]);
5800 else
5801 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
5802 &remote_protocol_packets
5803 [PACKET_qXfer_spu_write]);
5804 }
5805
5806 /* Only handle flash writes. */
5807 if (writebuf != NULL)
5808 {
5809 LONGEST xfered;
5810
5811 switch (object)
5812 {
5813 case TARGET_OBJECT_FLASH:
5814 xfered = remote_flash_write (ops, offset, len, writebuf);
5815
5816 if (xfered > 0)
5817 return xfered;
5818 else if (xfered == 0 && errno == 0)
5819 return 0;
5820 else
5821 return -1;
5822
5823 default:
5824 return -1;
5825 }
5826 }
5827
5828 /* Map pre-existing objects onto letters. DO NOT do this for new
5829 objects!!! Instead specify new query packets. */
5830 switch (object)
5831 {
5832 case TARGET_OBJECT_AVR:
5833 query_type = 'R';
5834 break;
5835
5836 case TARGET_OBJECT_AUXV:
5837 gdb_assert (annex == NULL);
5838 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5839 &remote_protocol_packets[PACKET_qXfer_auxv]);
5840
5841 case TARGET_OBJECT_AVAILABLE_FEATURES:
5842 return remote_read_qxfer
5843 (ops, "features", annex, readbuf, offset, len,
5844 &remote_protocol_packets[PACKET_qXfer_features]);
5845
5846 case TARGET_OBJECT_LIBRARIES:
5847 return remote_read_qxfer
5848 (ops, "libraries", annex, readbuf, offset, len,
5849 &remote_protocol_packets[PACKET_qXfer_libraries]);
5850
5851 case TARGET_OBJECT_MEMORY_MAP:
5852 gdb_assert (annex == NULL);
5853 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5854 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5855
5856 default:
5857 return -1;
5858 }
5859
5860 /* Note: a zero OFFSET and LEN can be used to query the minimum
5861 buffer size. */
5862 if (offset == 0 && len == 0)
5863 return (get_remote_packet_size ());
5864 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5865 large enough let the caller deal with it. */
5866 if (len < get_remote_packet_size ())
5867 return -1;
5868 len = get_remote_packet_size ();
5869
5870 /* Except for querying the minimum buffer size, target must be open. */
5871 if (!remote_desc)
5872 error (_("remote query is only available after target open"));
5873
5874 gdb_assert (annex != NULL);
5875 gdb_assert (readbuf != NULL);
5876
5877 p2 = rs->buf;
5878 *p2++ = 'q';
5879 *p2++ = query_type;
5880
5881 /* We used one buffer char for the remote protocol q command and
5882 another for the query type. As the remote protocol encapsulation
5883 uses 4 chars plus one extra in case we are debugging
5884 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5885 string. */
5886 i = 0;
5887 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5888 {
5889 /* Bad caller may have sent forbidden characters. */
5890 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5891 *p2++ = annex[i];
5892 i++;
5893 }
5894 *p2 = '\0';
5895 gdb_assert (annex[i] == '\0');
5896
5897 i = putpkt (rs->buf);
5898 if (i < 0)
5899 return i;
5900
5901 getpkt (&rs->buf, &rs->buf_size, 0);
5902 strcpy ((char *) readbuf, rs->buf);
5903
5904 return strlen ((char *) readbuf);
5905 }
5906
5907 static void
5908 remote_rcmd (char *command,
5909 struct ui_file *outbuf)
5910 {
5911 struct remote_state *rs = get_remote_state ();
5912 char *p = rs->buf;
5913
5914 if (!remote_desc)
5915 error (_("remote rcmd is only available after target open"));
5916
5917 /* Send a NULL command across as an empty command. */
5918 if (command == NULL)
5919 command = "";
5920
5921 /* The query prefix. */
5922 strcpy (rs->buf, "qRcmd,");
5923 p = strchr (rs->buf, '\0');
5924
5925 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
5926 error (_("\"monitor\" command ``%s'' is too long."), command);
5927
5928 /* Encode the actual command. */
5929 bin2hex ((gdb_byte *) command, p, 0);
5930
5931 if (putpkt (rs->buf) < 0)
5932 error (_("Communication problem with target."));
5933
5934 /* get/display the response */
5935 while (1)
5936 {
5937 char *buf;
5938
5939 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
5940 rs->buf[0] = '\0';
5941 getpkt (&rs->buf, &rs->buf_size, 0);
5942 buf = rs->buf;
5943 if (buf[0] == '\0')
5944 error (_("Target does not support this command."));
5945 if (buf[0] == 'O' && buf[1] != 'K')
5946 {
5947 remote_console_output (buf + 1); /* 'O' message from stub. */
5948 continue;
5949 }
5950 if (strcmp (buf, "OK") == 0)
5951 break;
5952 if (strlen (buf) == 3 && buf[0] == 'E'
5953 && isdigit (buf[1]) && isdigit (buf[2]))
5954 {
5955 error (_("Protocol error with Rcmd"));
5956 }
5957 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5958 {
5959 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5960 fputc_unfiltered (c, outbuf);
5961 }
5962 break;
5963 }
5964 }
5965
5966 static VEC(mem_region_s) *
5967 remote_memory_map (struct target_ops *ops)
5968 {
5969 VEC(mem_region_s) *result = NULL;
5970 char *text = target_read_stralloc (&current_target,
5971 TARGET_OBJECT_MEMORY_MAP, NULL);
5972
5973 if (text)
5974 {
5975 struct cleanup *back_to = make_cleanup (xfree, text);
5976 result = parse_memory_map (text);
5977 do_cleanups (back_to);
5978 }
5979
5980 return result;
5981 }
5982
5983 static void
5984 packet_command (char *args, int from_tty)
5985 {
5986 struct remote_state *rs = get_remote_state ();
5987
5988 if (!remote_desc)
5989 error (_("command can only be used with remote target"));
5990
5991 if (!args)
5992 error (_("remote-packet command requires packet text as argument"));
5993
5994 puts_filtered ("sending: ");
5995 print_packet (args);
5996 puts_filtered ("\n");
5997 putpkt (args);
5998
5999 getpkt (&rs->buf, &rs->buf_size, 0);
6000 puts_filtered ("received: ");
6001 print_packet (rs->buf);
6002 puts_filtered ("\n");
6003 }
6004
6005 #if 0
6006 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6007
6008 static void display_thread_info (struct gdb_ext_thread_info *info);
6009
6010 static void threadset_test_cmd (char *cmd, int tty);
6011
6012 static void threadalive_test (char *cmd, int tty);
6013
6014 static void threadlist_test_cmd (char *cmd, int tty);
6015
6016 int get_and_display_threadinfo (threadref *ref);
6017
6018 static void threadinfo_test_cmd (char *cmd, int tty);
6019
6020 static int thread_display_step (threadref *ref, void *context);
6021
6022 static void threadlist_update_test_cmd (char *cmd, int tty);
6023
6024 static void init_remote_threadtests (void);
6025
6026 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6027
6028 static void
6029 threadset_test_cmd (char *cmd, int tty)
6030 {
6031 int sample_thread = SAMPLE_THREAD;
6032
6033 printf_filtered (_("Remote threadset test\n"));
6034 set_thread (sample_thread, 1);
6035 }
6036
6037
6038 static void
6039 threadalive_test (char *cmd, int tty)
6040 {
6041 int sample_thread = SAMPLE_THREAD;
6042
6043 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6044 printf_filtered ("PASS: Thread alive test\n");
6045 else
6046 printf_filtered ("FAIL: Thread alive test\n");
6047 }
6048
6049 void output_threadid (char *title, threadref *ref);
6050
6051 void
6052 output_threadid (char *title, threadref *ref)
6053 {
6054 char hexid[20];
6055
6056 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6057 hexid[16] = 0;
6058 printf_filtered ("%s %s\n", title, (&hexid[0]));
6059 }
6060
6061 static void
6062 threadlist_test_cmd (char *cmd, int tty)
6063 {
6064 int startflag = 1;
6065 threadref nextthread;
6066 int done, result_count;
6067 threadref threadlist[3];
6068
6069 printf_filtered ("Remote Threadlist test\n");
6070 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6071 &result_count, &threadlist[0]))
6072 printf_filtered ("FAIL: threadlist test\n");
6073 else
6074 {
6075 threadref *scan = threadlist;
6076 threadref *limit = scan + result_count;
6077
6078 while (scan < limit)
6079 output_threadid (" thread ", scan++);
6080 }
6081 }
6082
6083 void
6084 display_thread_info (struct gdb_ext_thread_info *info)
6085 {
6086 output_threadid ("Threadid: ", &info->threadid);
6087 printf_filtered ("Name: %s\n ", info->shortname);
6088 printf_filtered ("State: %s\n", info->display);
6089 printf_filtered ("other: %s\n\n", info->more_display);
6090 }
6091
6092 int
6093 get_and_display_threadinfo (threadref *ref)
6094 {
6095 int result;
6096 int set;
6097 struct gdb_ext_thread_info threadinfo;
6098
6099 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6100 | TAG_MOREDISPLAY | TAG_DISPLAY;
6101 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6102 display_thread_info (&threadinfo);
6103 return result;
6104 }
6105
6106 static void
6107 threadinfo_test_cmd (char *cmd, int tty)
6108 {
6109 int athread = SAMPLE_THREAD;
6110 threadref thread;
6111 int set;
6112
6113 int_to_threadref (&thread, athread);
6114 printf_filtered ("Remote Threadinfo test\n");
6115 if (!get_and_display_threadinfo (&thread))
6116 printf_filtered ("FAIL cannot get thread info\n");
6117 }
6118
6119 static int
6120 thread_display_step (threadref *ref, void *context)
6121 {
6122 /* output_threadid(" threadstep ",ref); *//* simple test */
6123 return get_and_display_threadinfo (ref);
6124 }
6125
6126 static void
6127 threadlist_update_test_cmd (char *cmd, int tty)
6128 {
6129 printf_filtered ("Remote Threadlist update test\n");
6130 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6131 }
6132
6133 static void
6134 init_remote_threadtests (void)
6135 {
6136 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6137 Fetch and print the remote list of thread identifiers, one pkt only"));
6138 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6139 _("Fetch and display info about one thread"));
6140 add_com ("tset", class_obscure, threadset_test_cmd,
6141 _("Test setting to a different thread"));
6142 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6143 _("Iterate through updating all remote thread info"));
6144 add_com ("talive", class_obscure, threadalive_test,
6145 _(" Remote thread alive test "));
6146 }
6147
6148 #endif /* 0 */
6149
6150 /* Convert a thread ID to a string. Returns the string in a static
6151 buffer. */
6152
6153 static char *
6154 remote_pid_to_str (ptid_t ptid)
6155 {
6156 static char buf[32];
6157
6158 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6159 return buf;
6160 }
6161
6162 /* Get the address of the thread local variable in OBJFILE which is
6163 stored at OFFSET within the thread local storage for thread PTID. */
6164
6165 static CORE_ADDR
6166 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6167 {
6168 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6169 {
6170 struct remote_state *rs = get_remote_state ();
6171 char *p = rs->buf;
6172 enum packet_result result;
6173
6174 strcpy (p, "qGetTLSAddr:");
6175 p += strlen (p);
6176 p += hexnumstr (p, PIDGET (ptid));
6177 *p++ = ',';
6178 p += hexnumstr (p, offset);
6179 *p++ = ',';
6180 p += hexnumstr (p, lm);
6181 *p++ = '\0';
6182
6183 putpkt (rs->buf);
6184 getpkt (&rs->buf, &rs->buf_size, 0);
6185 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6186 if (result == PACKET_OK)
6187 {
6188 ULONGEST result;
6189
6190 unpack_varlen_hex (rs->buf, &result);
6191 return result;
6192 }
6193 else if (result == PACKET_UNKNOWN)
6194 throw_error (TLS_GENERIC_ERROR,
6195 _("Remote target doesn't support qGetTLSAddr packet"));
6196 else
6197 throw_error (TLS_GENERIC_ERROR,
6198 _("Remote target failed to process qGetTLSAddr request"));
6199 }
6200 else
6201 throw_error (TLS_GENERIC_ERROR,
6202 _("TLS not supported or disabled on this target"));
6203 /* Not reached. */
6204 return 0;
6205 }
6206
6207 /* Support for inferring a target description based on the current
6208 architecture and the size of a 'g' packet. While the 'g' packet
6209 can have any size (since optional registers can be left off the
6210 end), some sizes are easily recognizable given knowledge of the
6211 approximate architecture. */
6212
6213 struct remote_g_packet_guess
6214 {
6215 int bytes;
6216 const struct target_desc *tdesc;
6217 };
6218 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6219 DEF_VEC_O(remote_g_packet_guess_s);
6220
6221 struct remote_g_packet_data
6222 {
6223 VEC(remote_g_packet_guess_s) *guesses;
6224 };
6225
6226 static struct gdbarch_data *remote_g_packet_data_handle;
6227
6228 static void *
6229 remote_g_packet_data_init (struct obstack *obstack)
6230 {
6231 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6232 }
6233
6234 void
6235 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6236 const struct target_desc *tdesc)
6237 {
6238 struct remote_g_packet_data *data
6239 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6240 struct remote_g_packet_guess new_guess, *guess;
6241 int ix;
6242
6243 gdb_assert (tdesc != NULL);
6244
6245 for (ix = 0;
6246 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6247 ix++)
6248 if (guess->bytes == bytes)
6249 internal_error (__FILE__, __LINE__,
6250 "Duplicate g packet description added for size %d",
6251 bytes);
6252
6253 new_guess.bytes = bytes;
6254 new_guess.tdesc = tdesc;
6255 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6256 }
6257
6258 static const struct target_desc *
6259 remote_read_description (struct target_ops *target)
6260 {
6261 struct remote_g_packet_data *data
6262 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6263
6264 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6265 {
6266 struct remote_g_packet_guess *guess;
6267 int ix;
6268 int bytes = send_g_packet ();
6269
6270 for (ix = 0;
6271 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6272 ix++)
6273 if (guess->bytes == bytes)
6274 return guess->tdesc;
6275
6276 /* We discard the g packet. A minor optimization would be to
6277 hold on to it, and fill the register cache once we have selected
6278 an architecture, but it's too tricky to do safely. */
6279 }
6280
6281 return NULL;
6282 }
6283
6284 /* Remote file transfer support. This is host-initiated I/O, not
6285 target-initiated; for target-initiated, see remote-fileio.c. */
6286
6287 /* If *LEFT is at least the length of STRING, copy STRING to
6288 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6289 decrease *LEFT. Otherwise raise an error. */
6290
6291 static void
6292 remote_buffer_add_string (char **buffer, int *left, char *string)
6293 {
6294 int len = strlen (string);
6295
6296 if (len > *left)
6297 error (_("Packet too long for target."));
6298
6299 memcpy (*buffer, string, len);
6300 *buffer += len;
6301 *left -= len;
6302
6303 /* NUL-terminate the buffer as a convenience, if there is
6304 room. */
6305 if (*left)
6306 **buffer = '\0';
6307 }
6308
6309 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
6310 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6311 decrease *LEFT. Otherwise raise an error. */
6312
6313 static void
6314 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
6315 int len)
6316 {
6317 if (2 * len > *left)
6318 error (_("Packet too long for target."));
6319
6320 bin2hex (bytes, *buffer, len);
6321 *buffer += 2 * len;
6322 *left -= 2 * len;
6323
6324 /* NUL-terminate the buffer as a convenience, if there is
6325 room. */
6326 if (*left)
6327 **buffer = '\0';
6328 }
6329
6330 /* If *LEFT is large enough, convert VALUE to hex and add it to
6331 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6332 decrease *LEFT. Otherwise raise an error. */
6333
6334 static void
6335 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
6336 {
6337 int len = hexnumlen (value);
6338
6339 if (len > *left)
6340 error (_("Packet too long for target."));
6341
6342 hexnumstr (*buffer, value);
6343 *buffer += len;
6344 *left -= len;
6345
6346 /* NUL-terminate the buffer as a convenience, if there is
6347 room. */
6348 if (*left)
6349 **buffer = '\0';
6350 }
6351
6352 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
6353 value, *REMOTE_ERRNO to the remote error number or zero if none
6354 was included, and *ATTACHMENT to point to the start of the annex
6355 if any. The length of the packet isn't needed here; there may
6356 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
6357
6358 Return 0 if the packet could be parsed, -1 if it could not. If
6359 -1 is returned, the other variables may not be initialized. */
6360
6361 static int
6362 remote_hostio_parse_result (char *buffer, int *retcode,
6363 int *remote_errno, char **attachment)
6364 {
6365 char *p, *p2;
6366
6367 *remote_errno = 0;
6368 *attachment = NULL;
6369
6370 if (buffer[0] != 'F')
6371 return -1;
6372
6373 errno = 0;
6374 *retcode = strtol (&buffer[1], &p, 16);
6375 if (errno != 0 || p == &buffer[1])
6376 return -1;
6377
6378 /* Check for ",errno". */
6379 if (*p == ',')
6380 {
6381 errno = 0;
6382 *remote_errno = strtol (p + 1, &p2, 16);
6383 if (errno != 0 || p + 1 == p2)
6384 return -1;
6385 p = p2;
6386 }
6387
6388 /* Check for ";attachment". If there is no attachment, the
6389 packet should end here. */
6390 if (*p == ';')
6391 {
6392 *attachment = p + 1;
6393 return 0;
6394 }
6395 else if (*p == '\0')
6396 return 0;
6397 else
6398 return -1;
6399 }
6400
6401 /* Send a prepared I/O packet to the target and read its response.
6402 The prepared packet is in the global RS->BUF before this function
6403 is called, and the answer is there when we return.
6404
6405 COMMAND_BYTES is the length of the request to send, which may include
6406 binary data. WHICH_PACKET is the packet configuration to check
6407 before attempting a packet. If an error occurs, *REMOTE_ERRNO
6408 is set to the error number and -1 is returned. Otherwise the value
6409 returned by the function is returned.
6410
6411 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
6412 attachment is expected; an error will be reported if there's a
6413 mismatch. If one is found, *ATTACHMENT will be set to point into
6414 the packet buffer and *ATTACHMENT_LEN will be set to the
6415 attachment's length. */
6416
6417 static int
6418 remote_hostio_send_command (int command_bytes, int which_packet,
6419 int *remote_errno, char **attachment,
6420 int *attachment_len)
6421 {
6422 struct remote_state *rs = get_remote_state ();
6423 int ret, bytes_read;
6424 char *attachment_tmp;
6425
6426 if (remote_protocol_packets[which_packet].support == PACKET_DISABLE)
6427 {
6428 *remote_errno = FILEIO_ENOSYS;
6429 return -1;
6430 }
6431
6432 putpkt_binary (rs->buf, command_bytes);
6433 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6434
6435 /* If it timed out, something is wrong. Don't try to parse the
6436 buffer. */
6437 if (bytes_read < 0)
6438 {
6439 *remote_errno = FILEIO_EINVAL;
6440 return -1;
6441 }
6442
6443 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
6444 {
6445 case PACKET_ERROR:
6446 *remote_errno = FILEIO_EINVAL;
6447 return -1;
6448 case PACKET_UNKNOWN:
6449 *remote_errno = FILEIO_ENOSYS;
6450 return -1;
6451 case PACKET_OK:
6452 break;
6453 }
6454
6455 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
6456 &attachment_tmp))
6457 {
6458 *remote_errno = FILEIO_EINVAL;
6459 return -1;
6460 }
6461
6462 /* Make sure we saw an attachment if and only if we expected one. */
6463 if ((attachment_tmp == NULL && attachment != NULL)
6464 || (attachment_tmp != NULL && attachment == NULL))
6465 {
6466 *remote_errno = FILEIO_EINVAL;
6467 return -1;
6468 }
6469
6470 /* If an attachment was found, it must point into the packet buffer;
6471 work out how many bytes there were. */
6472 if (attachment_tmp != NULL)
6473 {
6474 *attachment = attachment_tmp;
6475 *attachment_len = bytes_read - (*attachment - rs->buf);
6476 }
6477
6478 return ret;
6479 }
6480
6481 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
6482 remote file descriptor, or -1 if an error occurs (and set
6483 *REMOTE_ERRNO). */
6484
6485 static int
6486 remote_hostio_open (const char *filename, int flags, int mode,
6487 int *remote_errno)
6488 {
6489 struct remote_state *rs = get_remote_state ();
6490 char *p = rs->buf;
6491 int left = get_remote_packet_size () - 1;
6492
6493 remote_buffer_add_string (&p, &left, "vFile:open:");
6494
6495 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6496 strlen (filename));
6497 remote_buffer_add_string (&p, &left, ",");
6498
6499 remote_buffer_add_int (&p, &left, flags);
6500 remote_buffer_add_string (&p, &left, ",");
6501
6502 remote_buffer_add_int (&p, &left, mode);
6503
6504 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
6505 remote_errno, NULL, NULL);
6506 }
6507
6508 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
6509 Return the number of bytes written, or -1 if an error occurs (and
6510 set *REMOTE_ERRNO). */
6511
6512 static int
6513 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
6514 ULONGEST offset, int *remote_errno)
6515 {
6516 struct remote_state *rs = get_remote_state ();
6517 char *p = rs->buf;
6518 int left = get_remote_packet_size ();
6519 int out_len;
6520
6521 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
6522
6523 remote_buffer_add_int (&p, &left, fd);
6524 remote_buffer_add_string (&p, &left, ",");
6525
6526 remote_buffer_add_int (&p, &left, offset);
6527 remote_buffer_add_string (&p, &left, ",");
6528
6529 p += remote_escape_output (write_buf, len, p, &out_len,
6530 get_remote_packet_size () - (p - rs->buf));
6531
6532 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
6533 remote_errno, NULL, NULL);
6534 }
6535
6536 /* Read up to LEN bytes FD on the remote target into READ_BUF
6537 Return the number of bytes read, or -1 if an error occurs (and
6538 set *REMOTE_ERRNO). */
6539
6540 static int
6541 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
6542 ULONGEST offset, int *remote_errno)
6543 {
6544 struct remote_state *rs = get_remote_state ();
6545 char *p = rs->buf;
6546 char *attachment;
6547 int left = get_remote_packet_size ();
6548 int ret, attachment_len;
6549 int read_len;
6550
6551 remote_buffer_add_string (&p, &left, "vFile:pread:");
6552
6553 remote_buffer_add_int (&p, &left, fd);
6554 remote_buffer_add_string (&p, &left, ",");
6555
6556 remote_buffer_add_int (&p, &left, len);
6557 remote_buffer_add_string (&p, &left, ",");
6558
6559 remote_buffer_add_int (&p, &left, offset);
6560
6561 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
6562 remote_errno, &attachment,
6563 &attachment_len);
6564
6565 if (ret < 0)
6566 return ret;
6567
6568 read_len = remote_unescape_input (attachment, attachment_len,
6569 read_buf, len);
6570 if (read_len != ret)
6571 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
6572
6573 return ret;
6574 }
6575
6576 /* Close FD on the remote target. Return 0, or -1 if an error occurs
6577 (and set *REMOTE_ERRNO). */
6578
6579 static int
6580 remote_hostio_close (int fd, int *remote_errno)
6581 {
6582 struct remote_state *rs = get_remote_state ();
6583 char *p = rs->buf;
6584 int left = get_remote_packet_size () - 1;
6585
6586 remote_buffer_add_string (&p, &left, "vFile:close:");
6587
6588 remote_buffer_add_int (&p, &left, fd);
6589
6590 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
6591 remote_errno, NULL, NULL);
6592 }
6593
6594 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
6595 occurs (and set *REMOTE_ERRNO). */
6596
6597 static int
6598 remote_hostio_unlink (const char *filename, int *remote_errno)
6599 {
6600 struct remote_state *rs = get_remote_state ();
6601 char *p = rs->buf;
6602 int left = get_remote_packet_size () - 1;
6603
6604 remote_buffer_add_string (&p, &left, "vFile:unlink:");
6605
6606 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6607 strlen (filename));
6608
6609 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
6610 remote_errno, NULL, NULL);
6611 }
6612
6613 static int
6614 remote_fileio_errno_to_host (int errnum)
6615 {
6616 switch (errnum)
6617 {
6618 case FILEIO_EPERM:
6619 return EPERM;
6620 case FILEIO_ENOENT:
6621 return ENOENT;
6622 case FILEIO_EINTR:
6623 return EINTR;
6624 case FILEIO_EIO:
6625 return EIO;
6626 case FILEIO_EBADF:
6627 return EBADF;
6628 case FILEIO_EACCES:
6629 return EACCES;
6630 case FILEIO_EFAULT:
6631 return EFAULT;
6632 case FILEIO_EBUSY:
6633 return EBUSY;
6634 case FILEIO_EEXIST:
6635 return EEXIST;
6636 case FILEIO_ENODEV:
6637 return ENODEV;
6638 case FILEIO_ENOTDIR:
6639 return ENOTDIR;
6640 case FILEIO_EISDIR:
6641 return EISDIR;
6642 case FILEIO_EINVAL:
6643 return EINVAL;
6644 case FILEIO_ENFILE:
6645 return ENFILE;
6646 case FILEIO_EMFILE:
6647 return EMFILE;
6648 case FILEIO_EFBIG:
6649 return EFBIG;
6650 case FILEIO_ENOSPC:
6651 return ENOSPC;
6652 case FILEIO_ESPIPE:
6653 return ESPIPE;
6654 case FILEIO_EROFS:
6655 return EROFS;
6656 case FILEIO_ENOSYS:
6657 return ENOSYS;
6658 case FILEIO_ENAMETOOLONG:
6659 return ENAMETOOLONG;
6660 }
6661 return -1;
6662 }
6663
6664 static char *
6665 remote_hostio_error (int errnum)
6666 {
6667 int host_error = remote_fileio_errno_to_host (errnum);
6668
6669 if (host_error == -1)
6670 error (_("Unknown remote I/O error %d"), errnum);
6671 else
6672 error (_("Remote I/O error: %s"), safe_strerror (host_error));
6673 }
6674
6675 static void
6676 fclose_cleanup (void *file)
6677 {
6678 fclose (file);
6679 }
6680
6681 static void
6682 remote_hostio_close_cleanup (void *opaque)
6683 {
6684 int fd = *(int *) opaque;
6685 int remote_errno;
6686
6687 remote_hostio_close (fd, &remote_errno);
6688 }
6689
6690 void
6691 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
6692 {
6693 struct cleanup *back_to, *close_cleanup;
6694 int retcode, fd, remote_errno, bytes, io_size;
6695 FILE *file;
6696 gdb_byte *buffer;
6697 int bytes_in_buffer;
6698 int saw_eof;
6699 ULONGEST offset;
6700
6701 if (!remote_desc)
6702 error (_("command can only be used with remote target"));
6703
6704 file = fopen (local_file, "rb");
6705 if (file == NULL)
6706 perror_with_name (local_file);
6707 back_to = make_cleanup (fclose_cleanup, file);
6708
6709 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
6710 | FILEIO_O_TRUNC),
6711 0700, &remote_errno);
6712 if (fd == -1)
6713 remote_hostio_error (remote_errno);
6714
6715 /* Send up to this many bytes at once. They won't all fit in the
6716 remote packet limit, so we'll transfer slightly fewer. */
6717 io_size = get_remote_packet_size ();
6718 buffer = xmalloc (io_size);
6719 make_cleanup (xfree, buffer);
6720
6721 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
6722
6723 bytes_in_buffer = 0;
6724 saw_eof = 0;
6725 offset = 0;
6726 while (bytes_in_buffer || !saw_eof)
6727 {
6728 if (!saw_eof)
6729 {
6730 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
6731 file);
6732 if (bytes == 0)
6733 {
6734 if (ferror (file))
6735 error (_("Error reading %s."), local_file);
6736 else
6737 {
6738 /* EOF. Unless there is something still in the
6739 buffer from the last iteration, we are done. */
6740 saw_eof = 1;
6741 if (bytes_in_buffer == 0)
6742 break;
6743 }
6744 }
6745 }
6746 else
6747 bytes = 0;
6748
6749 bytes += bytes_in_buffer;
6750 bytes_in_buffer = 0;
6751
6752 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
6753
6754 if (retcode < 0)
6755 remote_hostio_error (remote_errno);
6756 else if (retcode == 0)
6757 error (_("Remote write of %d bytes returned 0!"), bytes);
6758 else if (retcode < bytes)
6759 {
6760 /* Short write. Save the rest of the read data for the next
6761 write. */
6762 bytes_in_buffer = bytes - retcode;
6763 memmove (buffer, buffer + retcode, bytes_in_buffer);
6764 }
6765
6766 offset += retcode;
6767 }
6768
6769 discard_cleanups (close_cleanup);
6770 if (remote_hostio_close (fd, &remote_errno))
6771 remote_hostio_error (remote_errno);
6772
6773 if (from_tty)
6774 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
6775 do_cleanups (back_to);
6776 }
6777
6778 void
6779 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
6780 {
6781 struct cleanup *back_to, *close_cleanup;
6782 int retcode, fd, remote_errno, bytes, io_size;
6783 FILE *file;
6784 gdb_byte *buffer;
6785 ULONGEST offset;
6786
6787 if (!remote_desc)
6788 error (_("command can only be used with remote target"));
6789
6790 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
6791 if (fd == -1)
6792 remote_hostio_error (remote_errno);
6793
6794 file = fopen (local_file, "wb");
6795 if (file == NULL)
6796 perror_with_name (local_file);
6797 back_to = make_cleanup (fclose_cleanup, file);
6798
6799 /* Send up to this many bytes at once. They won't all fit in the
6800 remote packet limit, so we'll transfer slightly fewer. */
6801 io_size = get_remote_packet_size ();
6802 buffer = xmalloc (io_size);
6803 make_cleanup (xfree, buffer);
6804
6805 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
6806
6807 offset = 0;
6808 while (1)
6809 {
6810 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
6811 if (bytes == 0)
6812 /* Success, but no bytes, means end-of-file. */
6813 break;
6814 if (bytes == -1)
6815 remote_hostio_error (remote_errno);
6816
6817 offset += bytes;
6818
6819 bytes = fwrite (buffer, 1, bytes, file);
6820 if (bytes == 0)
6821 perror_with_name (local_file);
6822 }
6823
6824 discard_cleanups (close_cleanup);
6825 if (remote_hostio_close (fd, &remote_errno))
6826 remote_hostio_error (remote_errno);
6827
6828 if (from_tty)
6829 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
6830 do_cleanups (back_to);
6831 }
6832
6833 void
6834 remote_file_delete (const char *remote_file, int from_tty)
6835 {
6836 int retcode, remote_errno;
6837
6838 if (!remote_desc)
6839 error (_("command can only be used with remote target"));
6840
6841 retcode = remote_hostio_unlink (remote_file, &remote_errno);
6842 if (retcode == -1)
6843 remote_hostio_error (remote_errno);
6844
6845 if (from_tty)
6846 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
6847 }
6848
6849 static void
6850 remote_put_command (char *args, int from_tty)
6851 {
6852 struct cleanup *back_to;
6853 char **argv;
6854
6855 argv = buildargv (args);
6856 if (argv == NULL)
6857 nomem (0);
6858 back_to = make_cleanup_freeargv (argv);
6859 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
6860 error (_("Invalid parameters to remote put"));
6861
6862 remote_file_put (argv[0], argv[1], from_tty);
6863
6864 do_cleanups (back_to);
6865 }
6866
6867 static void
6868 remote_get_command (char *args, int from_tty)
6869 {
6870 struct cleanup *back_to;
6871 char **argv;
6872
6873 argv = buildargv (args);
6874 if (argv == NULL)
6875 nomem (0);
6876 back_to = make_cleanup_freeargv (argv);
6877 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
6878 error (_("Invalid parameters to remote get"));
6879
6880 remote_file_get (argv[0], argv[1], from_tty);
6881
6882 do_cleanups (back_to);
6883 }
6884
6885 static void
6886 remote_delete_command (char *args, int from_tty)
6887 {
6888 struct cleanup *back_to;
6889 char **argv;
6890
6891 argv = buildargv (args);
6892 if (argv == NULL)
6893 nomem (0);
6894 back_to = make_cleanup_freeargv (argv);
6895 if (argv[0] == NULL || argv[1] != NULL)
6896 error (_("Invalid parameters to remote delete"));
6897
6898 remote_file_delete (argv[0], from_tty);
6899
6900 do_cleanups (back_to);
6901 }
6902
6903 static void
6904 remote_command (char *args, int from_tty)
6905 {
6906 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
6907 }
6908
6909 static void
6910 init_remote_ops (void)
6911 {
6912 remote_ops.to_shortname = "remote";
6913 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
6914 remote_ops.to_doc =
6915 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6916 Specify the serial device it is connected to\n\
6917 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
6918 remote_ops.to_open = remote_open;
6919 remote_ops.to_close = remote_close;
6920 remote_ops.to_detach = remote_detach;
6921 remote_ops.to_disconnect = remote_disconnect;
6922 remote_ops.to_resume = remote_resume;
6923 remote_ops.to_wait = remote_wait;
6924 remote_ops.to_fetch_registers = remote_fetch_registers;
6925 remote_ops.to_store_registers = remote_store_registers;
6926 remote_ops.to_prepare_to_store = remote_prepare_to_store;
6927 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
6928 remote_ops.to_files_info = remote_files_info;
6929 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
6930 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
6931 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
6932 remote_ops.to_stopped_data_address = remote_stopped_data_address;
6933 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
6934 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
6935 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
6936 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
6937 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
6938 remote_ops.to_kill = remote_kill;
6939 remote_ops.to_load = generic_load;
6940 remote_ops.to_mourn_inferior = remote_mourn;
6941 remote_ops.to_thread_alive = remote_thread_alive;
6942 remote_ops.to_find_new_threads = remote_threads_info;
6943 remote_ops.to_pid_to_str = remote_pid_to_str;
6944 remote_ops.to_extra_thread_info = remote_threads_extra_info;
6945 remote_ops.to_stop = remote_stop;
6946 remote_ops.to_xfer_partial = remote_xfer_partial;
6947 remote_ops.to_rcmd = remote_rcmd;
6948 remote_ops.to_log_command = serial_log_command;
6949 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
6950 remote_ops.to_stratum = process_stratum;
6951 remote_ops.to_has_all_memory = 1;
6952 remote_ops.to_has_memory = 1;
6953 remote_ops.to_has_stack = 1;
6954 remote_ops.to_has_registers = 1;
6955 remote_ops.to_has_execution = 1;
6956 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
6957 remote_ops.to_magic = OPS_MAGIC;
6958 remote_ops.to_memory_map = remote_memory_map;
6959 remote_ops.to_flash_erase = remote_flash_erase;
6960 remote_ops.to_flash_done = remote_flash_done;
6961 remote_ops.to_read_description = remote_read_description;
6962 }
6963
6964 /* Set up the extended remote vector by making a copy of the standard
6965 remote vector and adding to it. */
6966
6967 static void
6968 init_extended_remote_ops (void)
6969 {
6970 extended_remote_ops = remote_ops;
6971
6972 extended_remote_ops.to_shortname = "extended-remote";
6973 extended_remote_ops.to_longname =
6974 "Extended remote serial target in gdb-specific protocol";
6975 extended_remote_ops.to_doc =
6976 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
6977 Specify the serial device it is connected to (e.g. /dev/ttya).",
6978 extended_remote_ops.to_open = extended_remote_open;
6979 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
6980 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
6981 }
6982
6983 static int
6984 remote_can_async_p (void)
6985 {
6986 /* We're async whenever the serial device is. */
6987 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
6988 }
6989
6990 static int
6991 remote_is_async_p (void)
6992 {
6993 /* We're async whenever the serial device is. */
6994 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
6995 }
6996
6997 /* Pass the SERIAL event on and up to the client. One day this code
6998 will be able to delay notifying the client of an event until the
6999 point where an entire packet has been received. */
7000
7001 static void (*async_client_callback) (enum inferior_event_type event_type,
7002 void *context);
7003 static void *async_client_context;
7004 static serial_event_ftype remote_async_serial_handler;
7005
7006 static void
7007 remote_async_serial_handler (struct serial *scb, void *context)
7008 {
7009 /* Don't propogate error information up to the client. Instead let
7010 the client find out about the error by querying the target. */
7011 async_client_callback (INF_REG_EVENT, async_client_context);
7012 }
7013
7014 static void
7015 remote_async (void (*callback) (enum inferior_event_type event_type,
7016 void *context), void *context)
7017 {
7018 if (current_target.to_async_mask_value == 0)
7019 internal_error (__FILE__, __LINE__,
7020 _("Calling remote_async when async is masked"));
7021
7022 if (callback != NULL)
7023 {
7024 serial_async (remote_desc, remote_async_serial_handler, NULL);
7025 async_client_callback = callback;
7026 async_client_context = context;
7027 }
7028 else
7029 serial_async (remote_desc, NULL, NULL);
7030 }
7031
7032 /* Target async and target extended-async.
7033
7034 This are temporary targets, until it is all tested. Eventually
7035 async support will be incorporated int the usual 'remote'
7036 target. */
7037
7038 static void
7039 init_remote_async_ops (void)
7040 {
7041 remote_async_ops.to_shortname = "async";
7042 remote_async_ops.to_longname =
7043 "Remote serial target in async version of the gdb-specific protocol";
7044 remote_async_ops.to_doc =
7045 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7046 Specify the serial device it is connected to (e.g. /dev/ttya).";
7047 remote_async_ops.to_open = remote_async_open;
7048 remote_async_ops.to_close = remote_close;
7049 remote_async_ops.to_detach = remote_detach;
7050 remote_async_ops.to_disconnect = remote_disconnect;
7051 remote_async_ops.to_resume = remote_async_resume;
7052 remote_async_ops.to_wait = remote_async_wait;
7053 remote_async_ops.to_fetch_registers = remote_fetch_registers;
7054 remote_async_ops.to_store_registers = remote_store_registers;
7055 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
7056 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
7057 remote_async_ops.to_files_info = remote_files_info;
7058 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
7059 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
7060 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7061 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7062 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7063 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
7064 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
7065 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7066 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
7067 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
7068 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
7069 remote_async_ops.to_kill = remote_async_kill;
7070 remote_async_ops.to_load = generic_load;
7071 remote_async_ops.to_mourn_inferior = remote_async_mourn;
7072 remote_async_ops.to_thread_alive = remote_thread_alive;
7073 remote_async_ops.to_find_new_threads = remote_threads_info;
7074 remote_async_ops.to_pid_to_str = remote_pid_to_str;
7075 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
7076 remote_async_ops.to_stop = remote_stop;
7077 remote_async_ops.to_xfer_partial = remote_xfer_partial;
7078 remote_async_ops.to_rcmd = remote_rcmd;
7079 remote_async_ops.to_stratum = process_stratum;
7080 remote_async_ops.to_has_all_memory = 1;
7081 remote_async_ops.to_has_memory = 1;
7082 remote_async_ops.to_has_stack = 1;
7083 remote_async_ops.to_has_registers = 1;
7084 remote_async_ops.to_has_execution = 1;
7085 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7086 remote_async_ops.to_can_async_p = remote_can_async_p;
7087 remote_async_ops.to_is_async_p = remote_is_async_p;
7088 remote_async_ops.to_async = remote_async;
7089 remote_async_ops.to_async_mask_value = 1;
7090 remote_async_ops.to_magic = OPS_MAGIC;
7091 remote_async_ops.to_memory_map = remote_memory_map;
7092 remote_async_ops.to_flash_erase = remote_flash_erase;
7093 remote_async_ops.to_flash_done = remote_flash_done;
7094 remote_async_ops.to_read_description = remote_read_description;
7095 }
7096
7097 /* Set up the async extended remote vector by making a copy of the standard
7098 remote vector and adding to it. */
7099
7100 static void
7101 init_extended_async_remote_ops (void)
7102 {
7103 extended_async_remote_ops = remote_async_ops;
7104
7105 extended_async_remote_ops.to_shortname = "extended-async";
7106 extended_async_remote_ops.to_longname =
7107 "Extended remote serial target in async gdb-specific protocol";
7108 extended_async_remote_ops.to_doc =
7109 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
7110 Specify the serial device it is connected to (e.g. /dev/ttya).",
7111 extended_async_remote_ops.to_open = extended_remote_async_open;
7112 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
7113 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
7114 }
7115
7116 static void
7117 set_remote_cmd (char *args, int from_tty)
7118 {
7119 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
7120 }
7121
7122 static void
7123 show_remote_cmd (char *args, int from_tty)
7124 {
7125 /* We can't just use cmd_show_list here, because we want to skip
7126 the redundant "show remote Z-packet" and the legacy aliases. */
7127 struct cleanup *showlist_chain;
7128 struct cmd_list_element *list = remote_show_cmdlist;
7129
7130 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
7131 for (; list != NULL; list = list->next)
7132 if (strcmp (list->name, "Z-packet") == 0)
7133 continue;
7134 else if (list->type == not_set_cmd)
7135 /* Alias commands are exactly like the original, except they
7136 don't have the normal type. */
7137 continue;
7138 else
7139 {
7140 struct cleanup *option_chain
7141 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
7142 ui_out_field_string (uiout, "name", list->name);
7143 ui_out_text (uiout, ": ");
7144 if (list->type == show_cmd)
7145 do_setshow_command ((char *) NULL, from_tty, list);
7146 else
7147 cmd_func (list, NULL, from_tty);
7148 /* Close the tuple. */
7149 do_cleanups (option_chain);
7150 }
7151
7152 /* Close the tuple. */
7153 do_cleanups (showlist_chain);
7154 }
7155
7156
7157 /* Function to be called whenever a new objfile (shlib) is detected. */
7158 static void
7159 remote_new_objfile (struct objfile *objfile)
7160 {
7161 if (remote_desc != 0) /* Have a remote connection. */
7162 remote_check_symbols (objfile);
7163 }
7164
7165 void
7166 _initialize_remote (void)
7167 {
7168 struct remote_state *rs;
7169
7170 /* architecture specific data */
7171 remote_gdbarch_data_handle =
7172 gdbarch_data_register_post_init (init_remote_state);
7173 remote_g_packet_data_handle =
7174 gdbarch_data_register_pre_init (remote_g_packet_data_init);
7175
7176 /* Initialize the per-target state. At the moment there is only one
7177 of these, not one per target. Only one target is active at a
7178 time. The default buffer size is unimportant; it will be expanded
7179 whenever a larger buffer is needed. */
7180 rs = get_remote_state_raw ();
7181 rs->buf_size = 400;
7182 rs->buf = xmalloc (rs->buf_size);
7183
7184 init_remote_ops ();
7185 add_target (&remote_ops);
7186
7187 init_extended_remote_ops ();
7188 add_target (&extended_remote_ops);
7189
7190 init_remote_async_ops ();
7191 add_target (&remote_async_ops);
7192
7193 init_extended_async_remote_ops ();
7194 add_target (&extended_async_remote_ops);
7195
7196 /* Hook into new objfile notification. */
7197 observer_attach_new_objfile (remote_new_objfile);
7198
7199 #if 0
7200 init_remote_threadtests ();
7201 #endif
7202
7203 /* set/show remote ... */
7204
7205 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
7206 Remote protocol specific variables\n\
7207 Configure various remote-protocol specific variables such as\n\
7208 the packets being used"),
7209 &remote_set_cmdlist, "set remote ",
7210 0 /* allow-unknown */, &setlist);
7211 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
7212 Remote protocol specific variables\n\
7213 Configure various remote-protocol specific variables such as\n\
7214 the packets being used"),
7215 &remote_show_cmdlist, "show remote ",
7216 0 /* allow-unknown */, &showlist);
7217
7218 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
7219 Compare section data on target to the exec file.\n\
7220 Argument is a single section name (default: all loaded sections)."),
7221 &cmdlist);
7222
7223 add_cmd ("packet", class_maintenance, packet_command, _("\
7224 Send an arbitrary packet to a remote target.\n\
7225 maintenance packet TEXT\n\
7226 If GDB is talking to an inferior via the GDB serial protocol, then\n\
7227 this command sends the string TEXT to the inferior, and displays the\n\
7228 response packet. GDB supplies the initial `$' character, and the\n\
7229 terminating `#' character and checksum."),
7230 &maintenancelist);
7231
7232 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
7233 Set whether to send break if interrupted."), _("\
7234 Show whether to send break if interrupted."), _("\
7235 If set, a break, instead of a cntrl-c, is sent to the remote target."),
7236 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
7237 &setlist, &showlist);
7238
7239 /* Install commands for configuring memory read/write packets. */
7240
7241 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
7242 Set the maximum number of bytes per memory write packet (deprecated)."),
7243 &setlist);
7244 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
7245 Show the maximum number of bytes per memory write packet (deprecated)."),
7246 &showlist);
7247 add_cmd ("memory-write-packet-size", no_class,
7248 set_memory_write_packet_size, _("\
7249 Set the maximum number of bytes per memory-write packet.\n\
7250 Specify the number of bytes in a packet or 0 (zero) for the\n\
7251 default packet size. The actual limit is further reduced\n\
7252 dependent on the target. Specify ``fixed'' to disable the\n\
7253 further restriction and ``limit'' to enable that restriction."),
7254 &remote_set_cmdlist);
7255 add_cmd ("memory-read-packet-size", no_class,
7256 set_memory_read_packet_size, _("\
7257 Set the maximum number of bytes per memory-read packet.\n\
7258 Specify the number of bytes in a packet or 0 (zero) for the\n\
7259 default packet size. The actual limit is further reduced\n\
7260 dependent on the target. Specify ``fixed'' to disable the\n\
7261 further restriction and ``limit'' to enable that restriction."),
7262 &remote_set_cmdlist);
7263 add_cmd ("memory-write-packet-size", no_class,
7264 show_memory_write_packet_size,
7265 _("Show the maximum number of bytes per memory-write packet."),
7266 &remote_show_cmdlist);
7267 add_cmd ("memory-read-packet-size", no_class,
7268 show_memory_read_packet_size,
7269 _("Show the maximum number of bytes per memory-read packet."),
7270 &remote_show_cmdlist);
7271
7272 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
7273 &remote_hw_watchpoint_limit, _("\
7274 Set the maximum number of target hardware watchpoints."), _("\
7275 Show the maximum number of target hardware watchpoints."), _("\
7276 Specify a negative limit for unlimited."),
7277 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
7278 &remote_set_cmdlist, &remote_show_cmdlist);
7279 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
7280 &remote_hw_breakpoint_limit, _("\
7281 Set the maximum number of target hardware breakpoints."), _("\
7282 Show the maximum number of target hardware breakpoints."), _("\
7283 Specify a negative limit for unlimited."),
7284 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
7285 &remote_set_cmdlist, &remote_show_cmdlist);
7286
7287 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
7288 &remote_address_size, _("\
7289 Set the maximum size of the address (in bits) in a memory packet."), _("\
7290 Show the maximum size of the address (in bits) in a memory packet."), NULL,
7291 NULL,
7292 NULL, /* FIXME: i18n: */
7293 &setlist, &showlist);
7294
7295 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
7296 "X", "binary-download", 1);
7297
7298 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
7299 "vCont", "verbose-resume", 0);
7300
7301 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
7302 "QPassSignals", "pass-signals", 0);
7303
7304 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
7305 "qSymbol", "symbol-lookup", 0);
7306
7307 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
7308 "P", "set-register", 1);
7309
7310 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
7311 "p", "fetch-register", 1);
7312
7313 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
7314 "Z0", "software-breakpoint", 0);
7315
7316 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
7317 "Z1", "hardware-breakpoint", 0);
7318
7319 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
7320 "Z2", "write-watchpoint", 0);
7321
7322 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
7323 "Z3", "read-watchpoint", 0);
7324
7325 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
7326 "Z4", "access-watchpoint", 0);
7327
7328 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
7329 "qXfer:auxv:read", "read-aux-vector", 0);
7330
7331 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
7332 "qXfer:features:read", "target-features", 0);
7333
7334 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
7335 "qXfer:libraries:read", "library-info", 0);
7336
7337 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
7338 "qXfer:memory-map:read", "memory-map", 0);
7339
7340 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
7341 "qXfer:spu:read", "read-spu-object", 0);
7342
7343 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
7344 "qXfer:spu:write", "write-spu-object", 0);
7345
7346 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
7347 "qGetTLSAddr", "get-thread-local-storage-address",
7348 0);
7349
7350 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
7351 "qSupported", "supported-packets", 0);
7352
7353 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
7354 "vFile:open", "hostio-open", 0);
7355
7356 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
7357 "vFile:pread", "hostio-pread", 0);
7358
7359 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
7360 "vFile:pwrite", "hostio-pwrite", 0);
7361
7362 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
7363 "vFile:close", "hostio-close", 0);
7364
7365 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
7366 "vFile:unlink", "hostio-unlink", 0);
7367
7368 /* Keep the old ``set remote Z-packet ...'' working. Each individual
7369 Z sub-packet has its own set and show commands, but users may
7370 have sets to this variable in their .gdbinit files (or in their
7371 documentation). */
7372 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
7373 &remote_Z_packet_detect, _("\
7374 Set use of remote protocol `Z' packets"), _("\
7375 Show use of remote protocol `Z' packets "), _("\
7376 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
7377 packets."),
7378 set_remote_protocol_Z_packet_cmd,
7379 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
7380 &remote_set_cmdlist, &remote_show_cmdlist);
7381
7382 add_prefix_cmd ("remote", class_files, remote_command, _("\
7383 Manipulate files on the remote system\n\
7384 Transfer files to and from the remote target system."),
7385 &remote_cmdlist, "remote ",
7386 0 /* allow-unknown */, &cmdlist);
7387
7388 add_cmd ("put", class_files, remote_put_command,
7389 _("Copy a local file to the remote system."),
7390 &remote_cmdlist);
7391
7392 add_cmd ("get", class_files, remote_get_command,
7393 _("Copy a remote file to the local system."),
7394 &remote_cmdlist);
7395
7396 add_cmd ("delete", class_files, remote_delete_command,
7397 _("Delete a remote file."),
7398 &remote_cmdlist);
7399
7400 /* Eventually initialize fileio. See fileio.c */
7401 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
7402 }