* remote.c (init_remote_ops, init_remote_cisco_ops,
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "target.h"
32 /*#include "terminal.h" */
33 #include "gdbcmd.h"
34 #include "objfiles.h"
35 #include "gdb-stabs.h"
36 #include "gdbthread.h"
37 #include "remote.h"
38 #include "regcache.h"
39
40 #include <ctype.h>
41 #include <sys/time.h>
42 #ifdef USG
43 #include <sys/types.h>
44 #endif
45
46 #include "event-loop.h"
47 #include "event-top.h"
48 #include "inf-loop.h"
49
50 #include <signal.h>
51 #include "serial.h"
52
53 #include "gdbcore.h" /* for exec_bfd */
54
55 /* Prototypes for local functions */
56 static void cleanup_sigint_signal_handler (void *dummy);
57 static void initialize_sigint_signal_handler (void);
58 static int getpkt_sane (char *buf, long sizeof_buf, int forever);
59
60 static void handle_remote_sigint (int);
61 static void handle_remote_sigint_twice (int);
62 static void async_remote_interrupt (gdb_client_data);
63 void async_remote_interrupt_twice (gdb_client_data);
64
65 static void build_remote_gdbarch_data (void);
66
67 static int remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len);
68
69 static int remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len);
70
71 static void remote_files_info (struct target_ops *ignore);
72
73 static int remote_xfer_memory (CORE_ADDR memaddr, char *myaddr,
74 int len, int should_write,
75 struct mem_attrib *attrib,
76 struct target_ops *target);
77
78 static void remote_prepare_to_store (void);
79
80 static void remote_fetch_registers (int regno);
81
82 static void remote_resume (ptid_t ptid, int step,
83 enum target_signal siggnal);
84 static void remote_async_resume (ptid_t ptid, int step,
85 enum target_signal siggnal);
86 static int remote_start_remote (PTR);
87
88 static void remote_open (char *name, int from_tty);
89 static void remote_async_open (char *name, int from_tty);
90
91 static void extended_remote_open (char *name, int from_tty);
92 static void extended_remote_async_open (char *name, int from_tty);
93
94 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
95 static void remote_async_open_1 (char *, int, struct target_ops *,
96 int extended_p);
97
98 static void remote_close (int quitting);
99
100 static void remote_store_registers (int regno);
101
102 static void remote_mourn (void);
103 static void remote_async_mourn (void);
104
105 static void extended_remote_restart (void);
106
107 static void extended_remote_mourn (void);
108
109 static void extended_remote_create_inferior (char *, char *, char **);
110 static void extended_remote_async_create_inferior (char *, char *, char **);
111
112 static void remote_mourn_1 (struct target_ops *);
113
114 static void remote_send (char *buf, long sizeof_buf);
115
116 static int readchar (int timeout);
117
118 static ptid_t remote_wait (ptid_t ptid,
119 struct target_waitstatus *status);
120 static ptid_t remote_async_wait (ptid_t ptid,
121 struct target_waitstatus *status);
122
123 static void remote_kill (void);
124 static void remote_async_kill (void);
125
126 static int tohex (int nib);
127
128 static void remote_detach (char *args, int from_tty);
129 static void remote_async_detach (char *args, int from_tty);
130
131 static void remote_interrupt (int signo);
132
133 static void remote_interrupt_twice (int signo);
134
135 static void interrupt_query (void);
136
137 static void set_thread (int, int);
138
139 static int remote_thread_alive (ptid_t);
140
141 static void get_offsets (void);
142
143 static long read_frame (char *buf, long sizeof_buf);
144
145 static int remote_insert_breakpoint (CORE_ADDR, char *);
146
147 static int remote_remove_breakpoint (CORE_ADDR, char *);
148
149 static int hexnumlen (ULONGEST num);
150
151 static void init_remote_ops (void);
152
153 static void init_extended_remote_ops (void);
154
155 static void init_remote_cisco_ops (void);
156
157 static struct target_ops remote_cisco_ops;
158
159 static void remote_stop (void);
160
161 static int ishex (int ch, int *val);
162
163 static int stubhex (int ch);
164
165 static int remote_query (int /*char */ , char *, char *, int *);
166
167 static int hexnumstr (char *, ULONGEST);
168
169 static int hexnumnstr (char *, ULONGEST, int);
170
171 static CORE_ADDR remote_address_masked (CORE_ADDR);
172
173 static void print_packet (char *);
174
175 static unsigned long crc32 (unsigned char *, int, unsigned int);
176
177 static void compare_sections_command (char *, int);
178
179 static void packet_command (char *, int);
180
181 static int stub_unpack_int (char *buff, int fieldlength);
182
183 static ptid_t remote_current_thread (ptid_t oldptid);
184
185 static void remote_find_new_threads (void);
186
187 static void record_currthread (int currthread);
188
189 static int fromhex (int a);
190
191 static int hex2bin (const char *hex, char *bin, int count);
192
193 static int bin2hex (const char *bin, char *hex, int count);
194
195 static int putpkt_binary (char *buf, int cnt);
196
197 static void check_binary_download (CORE_ADDR addr);
198
199 struct packet_config;
200
201 static void show_packet_config_cmd (struct packet_config *config);
202
203 static void update_packet_config (struct packet_config *config);
204
205 /* Define the target subroutine names */
206
207 void open_remote_target (char *, int, struct target_ops *, int);
208
209 void _initialize_remote (void);
210
211 /* */
212
213 static struct target_ops remote_ops;
214
215 static struct target_ops extended_remote_ops;
216
217 /* Temporary target ops. Just like the remote_ops and
218 extended_remote_ops, but with asynchronous support. */
219 static struct target_ops remote_async_ops;
220
221 static struct target_ops extended_async_remote_ops;
222
223 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
224 ``forever'' still use the normal timeout mechanism. This is
225 currently used by the ASYNC code to guarentee that target reads
226 during the initial connect always time-out. Once getpkt has been
227 modified to return a timeout indication and, in turn
228 remote_wait()/wait_for_inferior() have gained a timeout parameter
229 this can go away. */
230 static int wait_forever_enabled_p = 1;
231
232
233 /* This variable chooses whether to send a ^C or a break when the user
234 requests program interruption. Although ^C is usually what remote
235 systems expect, and that is the default here, sometimes a break is
236 preferable instead. */
237
238 static int remote_break;
239
240 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
241 remote_open knows that we don't have a file open when the program
242 starts. */
243 static struct serial *remote_desc = NULL;
244
245 /* This is set by the target (thru the 'S' message)
246 to denote that the target is in kernel mode. */
247 static int cisco_kernel_mode = 0;
248
249 /* This variable sets the number of bits in an address that are to be
250 sent in a memory ("M" or "m") packet. Normally, after stripping
251 leading zeros, the entire address would be sent. This variable
252 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
253 initial implementation of remote.c restricted the address sent in
254 memory packets to ``host::sizeof long'' bytes - (typically 32
255 bits). Consequently, for 64 bit targets, the upper 32 bits of an
256 address was never sent. Since fixing this bug may cause a break in
257 some remote targets this variable is principly provided to
258 facilitate backward compatibility. */
259
260 static int remote_address_size;
261
262 /* Tempoary to track who currently owns the terminal. See
263 target_async_terminal_* for more details. */
264
265 static int remote_async_terminal_ours_p;
266
267 \f
268 /* This is the size (in chars) of the first response to the ``g''
269 packet. It is used as a heuristic when determining the maximum
270 size of memory-read and memory-write packets. A target will
271 typically only reserve a buffer large enough to hold the ``g''
272 packet. The size does not include packet overhead (headers and
273 trailers). */
274
275 static long actual_register_packet_size;
276
277 /* This is the maximum size (in chars) of a non read/write packet. It
278 is also used as a cap on the size of read/write packets. */
279
280 static long remote_packet_size;
281 /* compatibility. */
282 #define PBUFSIZ (remote_packet_size)
283
284 /* User configurable variables for the number of characters in a
285 memory read/write packet. MIN (PBUFSIZ, g-packet-size) is the
286 default. Some targets need smaller values (fifo overruns, et.al.)
287 and some users need larger values (speed up transfers). The
288 variables ``preferred_*'' (the user request), ``current_*'' (what
289 was actually set) and ``forced_*'' (Positive - a soft limit,
290 negative - a hard limit). */
291
292 struct memory_packet_config
293 {
294 char *name;
295 long size;
296 int fixed_p;
297 };
298
299 /* Compute the current size of a read/write packet. Since this makes
300 use of ``actual_register_packet_size'' the computation is dynamic. */
301
302 static long
303 get_memory_packet_size (struct memory_packet_config *config)
304 {
305 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
306 law?) that some hosts don't cope very well with large alloca()
307 calls. Eventually the alloca() code will be replaced by calls to
308 xmalloc() and make_cleanups() allowing this restriction to either
309 be lifted or removed. */
310 #ifndef MAX_REMOTE_PACKET_SIZE
311 #define MAX_REMOTE_PACKET_SIZE 16384
312 #endif
313 /* NOTE: 16 is just chosen at random. */
314 #ifndef MIN_REMOTE_PACKET_SIZE
315 #define MIN_REMOTE_PACKET_SIZE 16
316 #endif
317 long what_they_get;
318 if (config->fixed_p)
319 {
320 if (config->size <= 0)
321 what_they_get = MAX_REMOTE_PACKET_SIZE;
322 else
323 what_they_get = config->size;
324 }
325 else
326 {
327 what_they_get = remote_packet_size;
328 /* Limit the packet to the size specified by the user. */
329 if (config->size > 0
330 && what_they_get > config->size)
331 what_they_get = config->size;
332 /* Limit it to the size of the targets ``g'' response. */
333 if (actual_register_packet_size > 0
334 && what_they_get > actual_register_packet_size)
335 what_they_get = actual_register_packet_size;
336 }
337 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
338 what_they_get = MAX_REMOTE_PACKET_SIZE;
339 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
340 what_they_get = MIN_REMOTE_PACKET_SIZE;
341 return what_they_get;
342 }
343
344 /* Update the size of a read/write packet. If they user wants
345 something really big then do a sanity check. */
346
347 static void
348 set_memory_packet_size (char *args, struct memory_packet_config *config)
349 {
350 int fixed_p = config->fixed_p;
351 long size = config->size;
352 if (args == NULL)
353 error ("Argument required (integer, `fixed' or `limited').");
354 else if (strcmp (args, "hard") == 0
355 || strcmp (args, "fixed") == 0)
356 fixed_p = 1;
357 else if (strcmp (args, "soft") == 0
358 || strcmp (args, "limit") == 0)
359 fixed_p = 0;
360 else
361 {
362 char *end;
363 size = strtoul (args, &end, 0);
364 if (args == end)
365 error ("Invalid %s (bad syntax).", config->name);
366 #if 0
367 /* Instead of explicitly capping the size of a packet to
368 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
369 instead allowed to set the size to something arbitrarily
370 large. */
371 if (size > MAX_REMOTE_PACKET_SIZE)
372 error ("Invalid %s (too large).", config->name);
373 #endif
374 }
375 /* Extra checks? */
376 if (fixed_p && !config->fixed_p)
377 {
378 if (! query ("The target may not be able to correctly handle a %s\n"
379 "of %ld bytes. Change the packet size? ",
380 config->name, size))
381 error ("Packet size not changed.");
382 }
383 /* Update the config. */
384 config->fixed_p = fixed_p;
385 config->size = size;
386 }
387
388 static void
389 show_memory_packet_size (struct memory_packet_config *config)
390 {
391 printf_filtered ("The %s is %ld. ", config->name, config->size);
392 if (config->fixed_p)
393 printf_filtered ("Packets are fixed at %ld bytes.\n",
394 get_memory_packet_size (config));
395 else
396 printf_filtered ("Packets are limited to %ld bytes.\n",
397 get_memory_packet_size (config));
398 }
399
400 static struct memory_packet_config memory_write_packet_config =
401 {
402 "memory-write-packet-size",
403 };
404
405 static void
406 set_memory_write_packet_size (char *args, int from_tty)
407 {
408 set_memory_packet_size (args, &memory_write_packet_config);
409 }
410
411 static void
412 show_memory_write_packet_size (char *args, int from_tty)
413 {
414 show_memory_packet_size (&memory_write_packet_config);
415 }
416
417 static long
418 get_memory_write_packet_size (void)
419 {
420 return get_memory_packet_size (&memory_write_packet_config);
421 }
422
423 static struct memory_packet_config memory_read_packet_config =
424 {
425 "memory-read-packet-size",
426 };
427
428 static void
429 set_memory_read_packet_size (char *args, int from_tty)
430 {
431 set_memory_packet_size (args, &memory_read_packet_config);
432 }
433
434 static void
435 show_memory_read_packet_size (char *args, int from_tty)
436 {
437 show_memory_packet_size (&memory_read_packet_config);
438 }
439
440 static long
441 get_memory_read_packet_size (void)
442 {
443 long size = get_memory_packet_size (&memory_read_packet_config);
444 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
445 extra buffer size argument before the memory read size can be
446 increased beyond PBUFSIZ. */
447 if (size > PBUFSIZ)
448 size = PBUFSIZ;
449 return size;
450 }
451
452 /* Register packet size initialization. Since the bounds change when
453 the architecture changes (namely REGISTER_BYTES) this all needs to
454 be multi-arched. */
455
456 static void
457 register_remote_packet_sizes (void)
458 {
459 REGISTER_GDBARCH_SWAP (remote_packet_size);
460 REGISTER_GDBARCH_SWAP (actual_register_packet_size);
461 }
462
463 static void
464 build_remote_packet_sizes (void)
465 {
466 /* Default maximum number of characters in a packet body. Many
467 remote stubs have a hardwired buffer size of 400 bytes
468 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
469 as the maximum packet-size to ensure that the packet and an extra
470 NUL character can always fit in the buffer. This stops GDB
471 trashing stubs that try to squeeze an extra NUL into what is
472 already a full buffer (As of 1999-12-04 that was most stubs. */
473 remote_packet_size = 400 - 1;
474 /* Should REGISTER_BYTES needs more space than the default, adjust
475 the size accordingly. Remember that each byte is encoded as two
476 characters. 32 is the overhead for the packet header /
477 footer. NOTE: cagney/1999-10-26: I suspect that 8
478 (``$NN:G...#NN'') is a better guess, the below has been padded a
479 little. */
480 if (REGISTER_BYTES > ((remote_packet_size - 32) / 2))
481 remote_packet_size = (REGISTER_BYTES * 2 + 32);
482
483 /* This one is filled in when a ``g'' packet is received. */
484 actual_register_packet_size = 0;
485 }
486 \f
487 /* Generic configuration support for packets the stub optionally
488 supports. Allows the user to specify the use of the packet as well
489 as allowing GDB to auto-detect support in the remote stub. */
490
491 enum packet_support
492 {
493 PACKET_SUPPORT_UNKNOWN = 0,
494 PACKET_ENABLE,
495 PACKET_DISABLE
496 };
497
498 struct packet_config
499 {
500 char *name;
501 char *title;
502 enum cmd_auto_boolean detect;
503 enum packet_support support;
504 };
505
506 /* Analyze a packet's return value and update the packet config
507 accordingly. */
508
509 enum packet_result
510 {
511 PACKET_ERROR,
512 PACKET_OK,
513 PACKET_UNKNOWN
514 };
515
516 static void
517 update_packet_config (struct packet_config *config)
518 {
519 switch (config->detect)
520 {
521 case CMD_AUTO_BOOLEAN_TRUE:
522 config->support = PACKET_ENABLE;
523 break;
524 case CMD_AUTO_BOOLEAN_FALSE:
525 config->support = PACKET_DISABLE;
526 break;
527 case CMD_AUTO_BOOLEAN_AUTO:
528 config->support = PACKET_SUPPORT_UNKNOWN;
529 break;
530 }
531 }
532
533 static void
534 show_packet_config_cmd (struct packet_config *config)
535 {
536 char *support = "internal-error";
537 switch (config->support)
538 {
539 case PACKET_ENABLE:
540 support = "enabled";
541 break;
542 case PACKET_DISABLE:
543 support = "disabled";
544 break;
545 case PACKET_SUPPORT_UNKNOWN:
546 support = "unknown";
547 break;
548 }
549 switch (config->detect)
550 {
551 case CMD_AUTO_BOOLEAN_AUTO:
552 printf_filtered ("Support for remote protocol `%s' (%s) packet is auto-detected, currently %s.\n",
553 config->name, config->title, support);
554 break;
555 case CMD_AUTO_BOOLEAN_TRUE:
556 case CMD_AUTO_BOOLEAN_FALSE:
557 printf_filtered ("Support for remote protocol `%s' (%s) packet is currently %s.\n",
558 config->name, config->title, support);
559 break;
560 }
561 }
562
563 static void
564 add_packet_config_cmd (struct packet_config *config,
565 char *name,
566 char *title,
567 void (*set_func) (char *args, int from_tty,
568 struct cmd_list_element *
569 c),
570 void (*show_func) (char *name,
571 int from_tty),
572 struct cmd_list_element **set_remote_list,
573 struct cmd_list_element **show_remote_list,
574 int legacy)
575 {
576 struct cmd_list_element *set_cmd;
577 struct cmd_list_element *show_cmd;
578 char *set_doc;
579 char *show_doc;
580 char *cmd_name;
581 config->name = name;
582 config->title = title;
583 config->detect = CMD_AUTO_BOOLEAN_AUTO;
584 config->support = PACKET_SUPPORT_UNKNOWN;
585 xasprintf (&set_doc, "Set use of remote protocol `%s' (%s) packet",
586 name, title);
587 xasprintf (&show_doc, "Show current use of remote protocol `%s' (%s) packet",
588 name, title);
589 /* set/show TITLE-packet {auto,on,off} */
590 xasprintf (&cmd_name, "%s-packet", title);
591 set_cmd = add_set_auto_boolean_cmd (cmd_name, class_obscure,
592 &config->detect, set_doc,
593 set_remote_list);
594 set_cmd->function.sfunc = set_func;
595 show_cmd = add_cmd (cmd_name, class_obscure, show_func, show_doc,
596 show_remote_list);
597 /* set/show remote NAME-packet {auto,on,off} -- legacy */
598 if (legacy)
599 {
600 char *legacy_name;
601 xasprintf (&legacy_name, "%s-packet", name);
602 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
603 set_remote_list);
604 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
605 show_remote_list);
606 }
607 }
608
609 static enum packet_result
610 packet_ok (const char *buf, struct packet_config *config)
611 {
612 if (buf[0] != '\0')
613 {
614 /* The stub recognized the packet request. Check that the
615 operation succeeded. */
616 switch (config->support)
617 {
618 case PACKET_SUPPORT_UNKNOWN:
619 if (remote_debug)
620 fprintf_unfiltered (gdb_stdlog,
621 "Packet %s (%s) is supported\n",
622 config->name, config->title);
623 config->support = PACKET_ENABLE;
624 break;
625 case PACKET_DISABLE:
626 internal_error (__FILE__, __LINE__,
627 "packet_ok: attempt to use a disabled packet");
628 break;
629 case PACKET_ENABLE:
630 break;
631 }
632 if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\0')
633 /* "OK" - definitly OK. */
634 return PACKET_OK;
635 if (buf[0] == 'E'
636 && isxdigit (buf[1]) && isxdigit (buf[2])
637 && buf[3] == '\0')
638 /* "Enn" - definitly an error. */
639 return PACKET_ERROR;
640 /* The packet may or may not be OK. Just assume it is */
641 return PACKET_OK;
642 }
643 else
644 {
645 /* The stub does not support the packet. */
646 switch (config->support)
647 {
648 case PACKET_ENABLE:
649 if (config->detect == CMD_AUTO_BOOLEAN_AUTO)
650 /* If the stub previously indicated that the packet was
651 supported then there is a protocol error.. */
652 error ("Protocol error: %s (%s) conflicting enabled responses.",
653 config->name, config->title);
654 else
655 /* The user set it wrong. */
656 error ("Enabled packet %s (%s) not recognized by stub",
657 config->name, config->title);
658 break;
659 case PACKET_SUPPORT_UNKNOWN:
660 if (remote_debug)
661 fprintf_unfiltered (gdb_stdlog,
662 "Packet %s (%s) is NOT supported\n",
663 config->name, config->title);
664 config->support = PACKET_DISABLE;
665 break;
666 case PACKET_DISABLE:
667 break;
668 }
669 return PACKET_UNKNOWN;
670 }
671 }
672
673 /* Should we try the 'qSymbol' (target symbol lookup service) request? */
674 static struct packet_config remote_protocol_qSymbol;
675
676 static void
677 set_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty,
678 struct cmd_list_element *c)
679 {
680 update_packet_config (&remote_protocol_qSymbol);
681 }
682
683 static void
684 show_remote_protocol_qSymbol_packet_cmd (char *args, int from_tty)
685 {
686 show_packet_config_cmd (&remote_protocol_qSymbol);
687 }
688
689 /* Should we try the 'e' (step over range) request? */
690 static struct packet_config remote_protocol_e;
691
692 static void
693 set_remote_protocol_e_packet_cmd (char *args, int from_tty,
694 struct cmd_list_element *c)
695 {
696 update_packet_config (&remote_protocol_e);
697 }
698
699 static void
700 show_remote_protocol_e_packet_cmd (char *args, int from_tty)
701 {
702 show_packet_config_cmd (&remote_protocol_e);
703 }
704
705
706 /* Should we try the 'E' (step over range / w signal #) request? */
707 static struct packet_config remote_protocol_E;
708
709 static void
710 set_remote_protocol_E_packet_cmd (char *args, int from_tty,
711 struct cmd_list_element *c)
712 {
713 update_packet_config (&remote_protocol_E);
714 }
715
716 static void
717 show_remote_protocol_E_packet_cmd (char *args, int from_tty)
718 {
719 show_packet_config_cmd (&remote_protocol_E);
720 }
721
722
723 /* Should we try the 'P' (set register) request? */
724
725 static struct packet_config remote_protocol_P;
726
727 static void
728 set_remote_protocol_P_packet_cmd (char *args, int from_tty,
729 struct cmd_list_element *c)
730 {
731 update_packet_config (&remote_protocol_P);
732 }
733
734 static void
735 show_remote_protocol_P_packet_cmd (char *args, int from_tty)
736 {
737 show_packet_config_cmd (&remote_protocol_P);
738 }
739
740 /* Should we try one of the 'Z' requests? */
741
742 enum Z_packet_type
743 {
744 Z_PACKET_SOFTWARE_BP,
745 Z_PACKET_HARDWARE_BP,
746 Z_PACKET_WRITE_WP,
747 Z_PACKET_READ_WP,
748 Z_PACKET_ACCESS_WP,
749 NR_Z_PACKET_TYPES
750 };
751
752 static struct packet_config remote_protocol_Z[NR_Z_PACKET_TYPES];
753
754 /* FIXME: Instead of having all these boiler plate functions, the
755 command callback should include a context argument. */
756
757 static void
758 set_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty,
759 struct cmd_list_element *c)
760 {
761 update_packet_config (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
762 }
763
764 static void
765 show_remote_protocol_Z_software_bp_packet_cmd (char *args, int from_tty)
766 {
767 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP]);
768 }
769
770 static void
771 set_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty,
772 struct cmd_list_element *c)
773 {
774 update_packet_config (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
775 }
776
777 static void
778 show_remote_protocol_Z_hardware_bp_packet_cmd (char *args, int from_tty)
779 {
780 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP]);
781 }
782
783 static void
784 set_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty,
785 struct cmd_list_element *c)
786 {
787 update_packet_config (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
788 }
789
790 static void
791 show_remote_protocol_Z_write_wp_packet_cmd (char *args, int from_tty)
792 {
793 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP]);
794 }
795
796 static void
797 set_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty,
798 struct cmd_list_element *c)
799 {
800 update_packet_config (&remote_protocol_Z[Z_PACKET_READ_WP]);
801 }
802
803 static void
804 show_remote_protocol_Z_read_wp_packet_cmd (char *args, int from_tty)
805 {
806 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP]);
807 }
808
809 static void
810 set_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty,
811 struct cmd_list_element *c)
812 {
813 update_packet_config (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
814 }
815
816 static void
817 show_remote_protocol_Z_access_wp_packet_cmd (char *args, int from_tty)
818 {
819 show_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP]);
820 }
821
822 /* For compatibility with older distributions. Provide a ``set remote
823 Z-packet ...'' command that updates all the Z packet types. */
824
825 static enum cmd_auto_boolean remote_Z_packet_detect;
826
827 static void
828 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
829 struct cmd_list_element *c)
830 {
831 int i;
832 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
833 {
834 remote_protocol_Z[i].detect = remote_Z_packet_detect;
835 update_packet_config (&remote_protocol_Z[i]);
836 }
837 }
838
839 static void
840 show_remote_protocol_Z_packet_cmd (char *args, int from_tty)
841 {
842 int i;
843 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
844 {
845 show_packet_config_cmd (&remote_protocol_Z[i]);
846 }
847 }
848
849 /* Should we try the 'X' (remote binary download) packet?
850
851 This variable (available to the user via "set remote X-packet")
852 dictates whether downloads are sent in binary (via the 'X' packet).
853 We assume that the stub can, and attempt to do it. This will be
854 cleared if the stub does not understand it. This switch is still
855 needed, though in cases when the packet is supported in the stub,
856 but the connection does not allow it (i.e., 7-bit serial connection
857 only). */
858
859 static struct packet_config remote_protocol_binary_download;
860
861 /* Should we try the 'ThreadInfo' query packet?
862
863 This variable (NOT available to the user: auto-detect only!)
864 determines whether GDB will use the new, simpler "ThreadInfo"
865 query or the older, more complex syntax for thread queries.
866 This is an auto-detect variable (set to true at each connect,
867 and set to false when the target fails to recognize it). */
868
869 static int use_threadinfo_query;
870 static int use_threadextra_query;
871
872 static void
873 set_remote_protocol_binary_download_cmd (char *args,
874 int from_tty,
875 struct cmd_list_element *c)
876 {
877 update_packet_config (&remote_protocol_binary_download);
878 }
879
880 static void
881 show_remote_protocol_binary_download_cmd (char *args,
882 int from_tty)
883 {
884 show_packet_config_cmd (&remote_protocol_binary_download);
885 }
886
887
888 /* Tokens for use by the asynchronous signal handlers for SIGINT */
889 PTR sigint_remote_twice_token;
890 PTR sigint_remote_token;
891
892 /* These are pointers to hook functions that may be set in order to
893 modify resume/wait behavior for a particular architecture. */
894
895 void (*target_resume_hook) (void);
896 void (*target_wait_loop_hook) (void);
897 \f
898
899
900 /* These are the threads which we last sent to the remote system.
901 -1 for all or -2 for not sent yet. */
902 static int general_thread;
903 static int continue_thread;
904
905 /* Call this function as a result of
906 1) A halt indication (T packet) containing a thread id
907 2) A direct query of currthread
908 3) Successful execution of set thread
909 */
910
911 static void
912 record_currthread (int currthread)
913 {
914 general_thread = currthread;
915
916 /* If this is a new thread, add it to GDB's thread list.
917 If we leave it up to WFI to do this, bad things will happen. */
918 if (!in_thread_list (pid_to_ptid (currthread)))
919 {
920 add_thread (pid_to_ptid (currthread));
921 #ifdef UI_OUT
922 ui_out_text (uiout, "[New ");
923 ui_out_text (uiout, target_pid_to_str (pid_to_ptid (currthread)));
924 ui_out_text (uiout, "]\n");
925 #else
926 printf_filtered ("[New %s]\n",
927 target_pid_to_str (pid_to_ptid (currthread)));
928 #endif
929 }
930 }
931
932 #define MAGIC_NULL_PID 42000
933
934 static void
935 set_thread (int th, int gen)
936 {
937 char *buf = alloca (PBUFSIZ);
938 int state = gen ? general_thread : continue_thread;
939
940 if (state == th)
941 return;
942
943 buf[0] = 'H';
944 buf[1] = gen ? 'g' : 'c';
945 if (th == MAGIC_NULL_PID)
946 {
947 buf[2] = '0';
948 buf[3] = '\0';
949 }
950 else if (th < 0)
951 sprintf (&buf[2], "-%x", -th);
952 else
953 sprintf (&buf[2], "%x", th);
954 putpkt (buf);
955 getpkt (buf, PBUFSIZ, 0);
956 if (gen)
957 general_thread = th;
958 else
959 continue_thread = th;
960 }
961 \f
962 /* Return nonzero if the thread TH is still alive on the remote system. */
963
964 static int
965 remote_thread_alive (ptid_t ptid)
966 {
967 int tid = PIDGET (ptid);
968 char buf[16];
969
970 if (tid < 0)
971 sprintf (buf, "T-%08x", -tid);
972 else
973 sprintf (buf, "T%08x", tid);
974 putpkt (buf);
975 getpkt (buf, sizeof (buf), 0);
976 return (buf[0] == 'O' && buf[1] == 'K');
977 }
978
979 /* About these extended threadlist and threadinfo packets. They are
980 variable length packets but, the fields within them are often fixed
981 length. They are redundent enough to send over UDP as is the
982 remote protocol in general. There is a matching unit test module
983 in libstub. */
984
985 #define OPAQUETHREADBYTES 8
986
987 /* a 64 bit opaque identifier */
988 typedef unsigned char threadref[OPAQUETHREADBYTES];
989
990 /* WARNING: This threadref data structure comes from the remote O.S., libstub
991 protocol encoding, and remote.c. it is not particularly changable */
992
993 /* Right now, the internal structure is int. We want it to be bigger.
994 Plan to fix this.
995 */
996
997 typedef int gdb_threadref; /* internal GDB thread reference */
998
999 /* gdb_ext_thread_info is an internal GDB data structure which is
1000 equivalint to the reply of the remote threadinfo packet */
1001
1002 struct gdb_ext_thread_info
1003 {
1004 threadref threadid; /* External form of thread reference */
1005 int active; /* Has state interesting to GDB? , regs, stack */
1006 char display[256]; /* Brief state display, name, blocked/syspended */
1007 char shortname[32]; /* To be used to name threads */
1008 char more_display[256]; /* Long info, statistics, queue depth, whatever */
1009 };
1010
1011 /* The volume of remote transfers can be limited by submitting
1012 a mask containing bits specifying the desired information.
1013 Use a union of these values as the 'selection' parameter to
1014 get_thread_info. FIXME: Make these TAG names more thread specific.
1015 */
1016
1017 #define TAG_THREADID 1
1018 #define TAG_EXISTS 2
1019 #define TAG_DISPLAY 4
1020 #define TAG_THREADNAME 8
1021 #define TAG_MOREDISPLAY 16
1022
1023 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES*2)
1024
1025 char *unpack_varlen_hex (char *buff, int *result);
1026
1027 static char *unpack_nibble (char *buf, int *val);
1028
1029 static char *pack_nibble (char *buf, int nibble);
1030
1031 static char *pack_hex_byte (char *pkt, int /*unsigned char */ byte);
1032
1033 static char *unpack_byte (char *buf, int *value);
1034
1035 static char *pack_int (char *buf, int value);
1036
1037 static char *unpack_int (char *buf, int *value);
1038
1039 static char *unpack_string (char *src, char *dest, int length);
1040
1041 static char *pack_threadid (char *pkt, threadref * id);
1042
1043 static char *unpack_threadid (char *inbuf, threadref * id);
1044
1045 void int_to_threadref (threadref * id, int value);
1046
1047 static int threadref_to_int (threadref * ref);
1048
1049 static void copy_threadref (threadref * dest, threadref * src);
1050
1051 static int threadmatch (threadref * dest, threadref * src);
1052
1053 static char *pack_threadinfo_request (char *pkt, int mode, threadref * id);
1054
1055 static int remote_unpack_thread_info_response (char *pkt,
1056 threadref * expectedref,
1057 struct gdb_ext_thread_info
1058 *info);
1059
1060
1061 static int remote_get_threadinfo (threadref * threadid, int fieldset, /*TAG mask */
1062 struct gdb_ext_thread_info *info);
1063
1064 static int adapt_remote_get_threadinfo (gdb_threadref * ref,
1065 int selection,
1066 struct gdb_ext_thread_info *info);
1067
1068 static char *pack_threadlist_request (char *pkt, int startflag,
1069 int threadcount,
1070 threadref * nextthread);
1071
1072 static int parse_threadlist_response (char *pkt,
1073 int result_limit,
1074 threadref * original_echo,
1075 threadref * resultlist, int *doneflag);
1076
1077 static int remote_get_threadlist (int startflag,
1078 threadref * nextthread,
1079 int result_limit,
1080 int *done,
1081 int *result_count, threadref * threadlist);
1082
1083 typedef int (*rmt_thread_action) (threadref * ref, void *context);
1084
1085 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1086 void *context, int looplimit);
1087
1088 static int remote_newthread_step (threadref * ref, void *context);
1089
1090 /* encode 64 bits in 16 chars of hex */
1091
1092 static const char hexchars[] = "0123456789abcdef";
1093
1094 static int
1095 ishex (int ch, int *val)
1096 {
1097 if ((ch >= 'a') && (ch <= 'f'))
1098 {
1099 *val = ch - 'a' + 10;
1100 return 1;
1101 }
1102 if ((ch >= 'A') && (ch <= 'F'))
1103 {
1104 *val = ch - 'A' + 10;
1105 return 1;
1106 }
1107 if ((ch >= '0') && (ch <= '9'))
1108 {
1109 *val = ch - '0';
1110 return 1;
1111 }
1112 return 0;
1113 }
1114
1115 static int
1116 stubhex (int ch)
1117 {
1118 if (ch >= 'a' && ch <= 'f')
1119 return ch - 'a' + 10;
1120 if (ch >= '0' && ch <= '9')
1121 return ch - '0';
1122 if (ch >= 'A' && ch <= 'F')
1123 return ch - 'A' + 10;
1124 return -1;
1125 }
1126
1127 static int
1128 stub_unpack_int (char *buff, int fieldlength)
1129 {
1130 int nibble;
1131 int retval = 0;
1132
1133 while (fieldlength)
1134 {
1135 nibble = stubhex (*buff++);
1136 retval |= nibble;
1137 fieldlength--;
1138 if (fieldlength)
1139 retval = retval << 4;
1140 }
1141 return retval;
1142 }
1143
1144 char *
1145 unpack_varlen_hex (char *buff, /* packet to parse */
1146 int *result)
1147 {
1148 int nibble;
1149 int retval = 0;
1150
1151 while (ishex (*buff, &nibble))
1152 {
1153 buff++;
1154 retval = retval << 4;
1155 retval |= nibble & 0x0f;
1156 }
1157 *result = retval;
1158 return buff;
1159 }
1160
1161 static char *
1162 unpack_nibble (char *buf, int *val)
1163 {
1164 ishex (*buf++, val);
1165 return buf;
1166 }
1167
1168 static char *
1169 pack_nibble (char *buf, int nibble)
1170 {
1171 *buf++ = hexchars[(nibble & 0x0f)];
1172 return buf;
1173 }
1174
1175 static char *
1176 pack_hex_byte (char *pkt, int byte)
1177 {
1178 *pkt++ = hexchars[(byte >> 4) & 0xf];
1179 *pkt++ = hexchars[(byte & 0xf)];
1180 return pkt;
1181 }
1182
1183 static char *
1184 unpack_byte (char *buf, int *value)
1185 {
1186 *value = stub_unpack_int (buf, 2);
1187 return buf + 2;
1188 }
1189
1190 static char *
1191 pack_int (char *buf, int value)
1192 {
1193 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1194 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1195 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1196 buf = pack_hex_byte (buf, (value & 0xff));
1197 return buf;
1198 }
1199
1200 static char *
1201 unpack_int (char *buf, int *value)
1202 {
1203 *value = stub_unpack_int (buf, 8);
1204 return buf + 8;
1205 }
1206
1207 #if 0 /* currently unused, uncomment when needed */
1208 static char *pack_string (char *pkt, char *string);
1209
1210 static char *
1211 pack_string (char *pkt, char *string)
1212 {
1213 char ch;
1214 int len;
1215
1216 len = strlen (string);
1217 if (len > 200)
1218 len = 200; /* Bigger than most GDB packets, junk??? */
1219 pkt = pack_hex_byte (pkt, len);
1220 while (len-- > 0)
1221 {
1222 ch = *string++;
1223 if ((ch == '\0') || (ch == '#'))
1224 ch = '*'; /* Protect encapsulation */
1225 *pkt++ = ch;
1226 }
1227 return pkt;
1228 }
1229 #endif /* 0 (unused) */
1230
1231 static char *
1232 unpack_string (char *src, char *dest, int length)
1233 {
1234 while (length--)
1235 *dest++ = *src++;
1236 *dest = '\0';
1237 return src;
1238 }
1239
1240 static char *
1241 pack_threadid (char *pkt, threadref *id)
1242 {
1243 char *limit;
1244 unsigned char *altid;
1245
1246 altid = (unsigned char *) id;
1247 limit = pkt + BUF_THREAD_ID_SIZE;
1248 while (pkt < limit)
1249 pkt = pack_hex_byte (pkt, *altid++);
1250 return pkt;
1251 }
1252
1253
1254 static char *
1255 unpack_threadid (char *inbuf, threadref *id)
1256 {
1257 char *altref;
1258 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1259 int x, y;
1260
1261 altref = (char *) id;
1262
1263 while (inbuf < limit)
1264 {
1265 x = stubhex (*inbuf++);
1266 y = stubhex (*inbuf++);
1267 *altref++ = (x << 4) | y;
1268 }
1269 return inbuf;
1270 }
1271
1272 /* Externally, threadrefs are 64 bits but internally, they are still
1273 ints. This is due to a mismatch of specifications. We would like
1274 to use 64bit thread references internally. This is an adapter
1275 function. */
1276
1277 void
1278 int_to_threadref (threadref *id, int value)
1279 {
1280 unsigned char *scan;
1281
1282 scan = (unsigned char *) id;
1283 {
1284 int i = 4;
1285 while (i--)
1286 *scan++ = 0;
1287 }
1288 *scan++ = (value >> 24) & 0xff;
1289 *scan++ = (value >> 16) & 0xff;
1290 *scan++ = (value >> 8) & 0xff;
1291 *scan++ = (value & 0xff);
1292 }
1293
1294 static int
1295 threadref_to_int (threadref *ref)
1296 {
1297 int i, value = 0;
1298 unsigned char *scan;
1299
1300 scan = (char *) ref;
1301 scan += 4;
1302 i = 4;
1303 while (i-- > 0)
1304 value = (value << 8) | ((*scan++) & 0xff);
1305 return value;
1306 }
1307
1308 static void
1309 copy_threadref (threadref *dest, threadref *src)
1310 {
1311 int i;
1312 unsigned char *csrc, *cdest;
1313
1314 csrc = (unsigned char *) src;
1315 cdest = (unsigned char *) dest;
1316 i = 8;
1317 while (i--)
1318 *cdest++ = *csrc++;
1319 }
1320
1321 static int
1322 threadmatch (threadref *dest, threadref *src)
1323 {
1324 /* things are broken right now, so just assume we got a match */
1325 #if 0
1326 unsigned char *srcp, *destp;
1327 int i, result;
1328 srcp = (char *) src;
1329 destp = (char *) dest;
1330
1331 result = 1;
1332 while (i-- > 0)
1333 result &= (*srcp++ == *destp++) ? 1 : 0;
1334 return result;
1335 #endif
1336 return 1;
1337 }
1338
1339 /*
1340 threadid:1, # always request threadid
1341 context_exists:2,
1342 display:4,
1343 unique_name:8,
1344 more_display:16
1345 */
1346
1347 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1348
1349 static char *
1350 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1351 {
1352 *pkt++ = 'q'; /* Info Query */
1353 *pkt++ = 'P'; /* process or thread info */
1354 pkt = pack_int (pkt, mode); /* mode */
1355 pkt = pack_threadid (pkt, id); /* threadid */
1356 *pkt = '\0'; /* terminate */
1357 return pkt;
1358 }
1359
1360 /* These values tag the fields in a thread info response packet */
1361 /* Tagging the fields allows us to request specific fields and to
1362 add more fields as time goes by */
1363
1364 #define TAG_THREADID 1 /* Echo the thread identifier */
1365 #define TAG_EXISTS 2 /* Is this process defined enough to
1366 fetch registers and its stack */
1367 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1368 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is */
1369 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1370 the process */
1371
1372 static int
1373 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1374 struct gdb_ext_thread_info *info)
1375 {
1376 int mask, length;
1377 unsigned int tag;
1378 threadref ref;
1379 char *limit = pkt + PBUFSIZ; /* plausable parsing limit */
1380 int retval = 1;
1381
1382 /* info->threadid = 0; FIXME: implement zero_threadref */
1383 info->active = 0;
1384 info->display[0] = '\0';
1385 info->shortname[0] = '\0';
1386 info->more_display[0] = '\0';
1387
1388 /* Assume the characters indicating the packet type have been stripped */
1389 pkt = unpack_int (pkt, &mask); /* arg mask */
1390 pkt = unpack_threadid (pkt, &ref);
1391
1392 if (mask == 0)
1393 warning ("Incomplete response to threadinfo request\n");
1394 if (!threadmatch (&ref, expectedref))
1395 { /* This is an answer to a different request */
1396 warning ("ERROR RMT Thread info mismatch\n");
1397 return 0;
1398 }
1399 copy_threadref (&info->threadid, &ref);
1400
1401 /* Loop on tagged fields , try to bail if somthing goes wrong */
1402
1403 while ((pkt < limit) && mask && *pkt) /* packets are terminated with nulls */
1404 {
1405 pkt = unpack_int (pkt, &tag); /* tag */
1406 pkt = unpack_byte (pkt, &length); /* length */
1407 if (!(tag & mask)) /* tags out of synch with mask */
1408 {
1409 warning ("ERROR RMT: threadinfo tag mismatch\n");
1410 retval = 0;
1411 break;
1412 }
1413 if (tag == TAG_THREADID)
1414 {
1415 if (length != 16)
1416 {
1417 warning ("ERROR RMT: length of threadid is not 16\n");
1418 retval = 0;
1419 break;
1420 }
1421 pkt = unpack_threadid (pkt, &ref);
1422 mask = mask & ~TAG_THREADID;
1423 continue;
1424 }
1425 if (tag == TAG_EXISTS)
1426 {
1427 info->active = stub_unpack_int (pkt, length);
1428 pkt += length;
1429 mask = mask & ~(TAG_EXISTS);
1430 if (length > 8)
1431 {
1432 warning ("ERROR RMT: 'exists' length too long\n");
1433 retval = 0;
1434 break;
1435 }
1436 continue;
1437 }
1438 if (tag == TAG_THREADNAME)
1439 {
1440 pkt = unpack_string (pkt, &info->shortname[0], length);
1441 mask = mask & ~TAG_THREADNAME;
1442 continue;
1443 }
1444 if (tag == TAG_DISPLAY)
1445 {
1446 pkt = unpack_string (pkt, &info->display[0], length);
1447 mask = mask & ~TAG_DISPLAY;
1448 continue;
1449 }
1450 if (tag == TAG_MOREDISPLAY)
1451 {
1452 pkt = unpack_string (pkt, &info->more_display[0], length);
1453 mask = mask & ~TAG_MOREDISPLAY;
1454 continue;
1455 }
1456 warning ("ERROR RMT: unknown thread info tag\n");
1457 break; /* Not a tag we know about */
1458 }
1459 return retval;
1460 }
1461
1462 static int
1463 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1464 struct gdb_ext_thread_info *info)
1465 {
1466 int result;
1467 char *threadinfo_pkt = alloca (PBUFSIZ);
1468
1469 pack_threadinfo_request (threadinfo_pkt, fieldset, threadid);
1470 putpkt (threadinfo_pkt);
1471 getpkt (threadinfo_pkt, PBUFSIZ, 0);
1472 result = remote_unpack_thread_info_response (threadinfo_pkt + 2, threadid,
1473 info);
1474 return result;
1475 }
1476
1477 /* Unfortunately, 61 bit thread-ids are bigger than the internal
1478 representation of a threadid. */
1479
1480 static int
1481 adapt_remote_get_threadinfo (gdb_threadref *ref, int selection,
1482 struct gdb_ext_thread_info *info)
1483 {
1484 threadref lclref;
1485
1486 int_to_threadref (&lclref, *ref);
1487 return remote_get_threadinfo (&lclref, selection, info);
1488 }
1489
1490 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1491
1492 static char *
1493 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1494 threadref *nextthread)
1495 {
1496 *pkt++ = 'q'; /* info query packet */
1497 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1498 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1499 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1500 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1501 *pkt = '\0';
1502 return pkt;
1503 }
1504
1505 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1506
1507 static int
1508 parse_threadlist_response (char *pkt, int result_limit,
1509 threadref *original_echo, threadref *resultlist,
1510 int *doneflag)
1511 {
1512 char *limit;
1513 int count, resultcount, done;
1514
1515 resultcount = 0;
1516 /* Assume the 'q' and 'M chars have been stripped. */
1517 limit = pkt + (PBUFSIZ - BUF_THREAD_ID_SIZE); /* done parse past here */
1518 pkt = unpack_byte (pkt, &count); /* count field */
1519 pkt = unpack_nibble (pkt, &done);
1520 /* The first threadid is the argument threadid. */
1521 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1522 while ((count-- > 0) && (pkt < limit))
1523 {
1524 pkt = unpack_threadid (pkt, resultlist++);
1525 if (resultcount++ >= result_limit)
1526 break;
1527 }
1528 if (doneflag)
1529 *doneflag = done;
1530 return resultcount;
1531 }
1532
1533 static int
1534 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1535 int *done, int *result_count, threadref *threadlist)
1536 {
1537 static threadref echo_nextthread;
1538 char *threadlist_packet = alloca (PBUFSIZ);
1539 char *t_response = alloca (PBUFSIZ);
1540 int result = 1;
1541
1542 /* Trancate result limit to be smaller than the packet size */
1543 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= PBUFSIZ)
1544 result_limit = (PBUFSIZ / BUF_THREAD_ID_SIZE) - 2;
1545
1546 pack_threadlist_request (threadlist_packet,
1547 startflag, result_limit, nextthread);
1548 putpkt (threadlist_packet);
1549 getpkt (t_response, PBUFSIZ, 0);
1550
1551 *result_count =
1552 parse_threadlist_response (t_response + 2, result_limit, &echo_nextthread,
1553 threadlist, done);
1554
1555 if (!threadmatch (&echo_nextthread, nextthread))
1556 {
1557 /* FIXME: This is a good reason to drop the packet */
1558 /* Possably, there is a duplicate response */
1559 /* Possabilities :
1560 retransmit immediatly - race conditions
1561 retransmit after timeout - yes
1562 exit
1563 wait for packet, then exit
1564 */
1565 warning ("HMM: threadlist did not echo arg thread, dropping it\n");
1566 return 0; /* I choose simply exiting */
1567 }
1568 if (*result_count <= 0)
1569 {
1570 if (*done != 1)
1571 {
1572 warning ("RMT ERROR : failed to get remote thread list\n");
1573 result = 0;
1574 }
1575 return result; /* break; */
1576 }
1577 if (*result_count > result_limit)
1578 {
1579 *result_count = 0;
1580 warning ("RMT ERROR: threadlist response longer than requested\n");
1581 return 0;
1582 }
1583 return result;
1584 }
1585
1586 /* This is the interface between remote and threads, remotes upper interface */
1587
1588 /* remote_find_new_threads retrieves the thread list and for each
1589 thread in the list, looks up the thread in GDB's internal list,
1590 ading the thread if it does not already exist. This involves
1591 getting partial thread lists from the remote target so, polling the
1592 quit_flag is required. */
1593
1594
1595 /* About this many threadisds fit in a packet. */
1596
1597 #define MAXTHREADLISTRESULTS 32
1598
1599 static int
1600 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1601 int looplimit)
1602 {
1603 int done, i, result_count;
1604 int startflag = 1;
1605 int result = 1;
1606 int loopcount = 0;
1607 static threadref nextthread;
1608 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1609
1610 done = 0;
1611 while (!done)
1612 {
1613 if (loopcount++ > looplimit)
1614 {
1615 result = 0;
1616 warning ("Remote fetch threadlist -infinite loop-\n");
1617 break;
1618 }
1619 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1620 &done, &result_count, resultthreadlist))
1621 {
1622 result = 0;
1623 break;
1624 }
1625 /* clear for later iterations */
1626 startflag = 0;
1627 /* Setup to resume next batch of thread references, set nextthread. */
1628 if (result_count >= 1)
1629 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1630 i = 0;
1631 while (result_count--)
1632 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1633 break;
1634 }
1635 return result;
1636 }
1637
1638 static int
1639 remote_newthread_step (threadref *ref, void *context)
1640 {
1641 ptid_t ptid;
1642
1643 ptid = pid_to_ptid (threadref_to_int (ref));
1644
1645 if (!in_thread_list (ptid))
1646 add_thread (ptid);
1647 return 1; /* continue iterator */
1648 }
1649
1650 #define CRAZY_MAX_THREADS 1000
1651
1652 static ptid_t
1653 remote_current_thread (ptid_t oldpid)
1654 {
1655 char *buf = alloca (PBUFSIZ);
1656
1657 putpkt ("qC");
1658 getpkt (buf, PBUFSIZ, 0);
1659 if (buf[0] == 'Q' && buf[1] == 'C')
1660 return pid_to_ptid (strtol (&buf[2], NULL, 16));
1661 else
1662 return oldpid;
1663 }
1664
1665 /* Find new threads for info threads command.
1666 * Original version, using John Metzler's thread protocol.
1667 */
1668
1669 static void
1670 remote_find_new_threads (void)
1671 {
1672 remote_threadlist_iterator (remote_newthread_step, 0,
1673 CRAZY_MAX_THREADS);
1674 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1675 inferior_ptid = remote_current_thread (inferior_ptid);
1676 }
1677
1678 /*
1679 * Find all threads for info threads command.
1680 * Uses new thread protocol contributed by Cisco.
1681 * Falls back and attempts to use the older method (above)
1682 * if the target doesn't respond to the new method.
1683 */
1684
1685 static void
1686 remote_threads_info (void)
1687 {
1688 char *buf = alloca (PBUFSIZ);
1689 char *bufp;
1690 int tid;
1691
1692 if (remote_desc == 0) /* paranoia */
1693 error ("Command can only be used when connected to the remote target.");
1694
1695 if (use_threadinfo_query)
1696 {
1697 putpkt ("qfThreadInfo");
1698 bufp = buf;
1699 getpkt (bufp, PBUFSIZ, 0);
1700 if (bufp[0] != '\0') /* q packet recognized */
1701 {
1702 while (*bufp++ == 'm') /* reply contains one or more TID */
1703 {
1704 do
1705 {
1706 tid = strtol (bufp, &bufp, 16);
1707 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1708 add_thread (pid_to_ptid (tid));
1709 }
1710 while (*bufp++ == ','); /* comma-separated list */
1711 putpkt ("qsThreadInfo");
1712 bufp = buf;
1713 getpkt (bufp, PBUFSIZ, 0);
1714 }
1715 return; /* done */
1716 }
1717 }
1718
1719 /* Else fall back to old method based on jmetzler protocol. */
1720 use_threadinfo_query = 0;
1721 remote_find_new_threads ();
1722 return;
1723 }
1724
1725 /*
1726 * Collect a descriptive string about the given thread.
1727 * The target may say anything it wants to about the thread
1728 * (typically info about its blocked / runnable state, name, etc.).
1729 * This string will appear in the info threads display.
1730 *
1731 * Optional: targets are not required to implement this function.
1732 */
1733
1734 static char *
1735 remote_threads_extra_info (struct thread_info *tp)
1736 {
1737 int result;
1738 int set;
1739 threadref id;
1740 struct gdb_ext_thread_info threadinfo;
1741 static char display_buf[100]; /* arbitrary... */
1742 char *bufp = alloca (PBUFSIZ);
1743 int n = 0; /* position in display_buf */
1744
1745 if (remote_desc == 0) /* paranoia */
1746 internal_error (__FILE__, __LINE__,
1747 "remote_threads_extra_info");
1748
1749 if (use_threadextra_query)
1750 {
1751 sprintf (bufp, "qThreadExtraInfo,%x", PIDGET (tp->ptid));
1752 putpkt (bufp);
1753 getpkt (bufp, PBUFSIZ, 0);
1754 if (bufp[0] != 0)
1755 {
1756 n = min (strlen (bufp) / 2, sizeof (display_buf));
1757 result = hex2bin (bufp, display_buf, n);
1758 display_buf [result] = '\0';
1759 return display_buf;
1760 }
1761 }
1762
1763 /* If the above query fails, fall back to the old method. */
1764 use_threadextra_query = 0;
1765 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1766 | TAG_MOREDISPLAY | TAG_DISPLAY;
1767 int_to_threadref (&id, PIDGET (tp->ptid));
1768 if (remote_get_threadinfo (&id, set, &threadinfo))
1769 if (threadinfo.active)
1770 {
1771 if (*threadinfo.shortname)
1772 n += sprintf(&display_buf[0], " Name: %s,", threadinfo.shortname);
1773 if (*threadinfo.display)
1774 n += sprintf(&display_buf[n], " State: %s,", threadinfo.display);
1775 if (*threadinfo.more_display)
1776 n += sprintf(&display_buf[n], " Priority: %s",
1777 threadinfo.more_display);
1778
1779 if (n > 0)
1780 {
1781 /* for purely cosmetic reasons, clear up trailing commas */
1782 if (',' == display_buf[n-1])
1783 display_buf[n-1] = ' ';
1784 return display_buf;
1785 }
1786 }
1787 return NULL;
1788 }
1789
1790 \f
1791
1792 /* Restart the remote side; this is an extended protocol operation. */
1793
1794 static void
1795 extended_remote_restart (void)
1796 {
1797 char *buf = alloca (PBUFSIZ);
1798
1799 /* Send the restart command; for reasons I don't understand the
1800 remote side really expects a number after the "R". */
1801 buf[0] = 'R';
1802 sprintf (&buf[1], "%x", 0);
1803 putpkt (buf);
1804
1805 /* Now query for status so this looks just like we restarted
1806 gdbserver from scratch. */
1807 putpkt ("?");
1808 getpkt (buf, PBUFSIZ, 0);
1809 }
1810 \f
1811 /* Clean up connection to a remote debugger. */
1812
1813 /* ARGSUSED */
1814 static void
1815 remote_close (int quitting)
1816 {
1817 if (remote_desc)
1818 serial_close (remote_desc);
1819 remote_desc = NULL;
1820 }
1821
1822 /* Query the remote side for the text, data and bss offsets. */
1823
1824 static void
1825 get_offsets (void)
1826 {
1827 char *buf = alloca (PBUFSIZ);
1828 char *ptr;
1829 int lose;
1830 CORE_ADDR text_addr, data_addr, bss_addr;
1831 struct section_offsets *offs;
1832
1833 putpkt ("qOffsets");
1834
1835 getpkt (buf, PBUFSIZ, 0);
1836
1837 if (buf[0] == '\000')
1838 return; /* Return silently. Stub doesn't support
1839 this command. */
1840 if (buf[0] == 'E')
1841 {
1842 warning ("Remote failure reply: %s", buf);
1843 return;
1844 }
1845
1846 /* Pick up each field in turn. This used to be done with scanf, but
1847 scanf will make trouble if CORE_ADDR size doesn't match
1848 conversion directives correctly. The following code will work
1849 with any size of CORE_ADDR. */
1850 text_addr = data_addr = bss_addr = 0;
1851 ptr = buf;
1852 lose = 0;
1853
1854 if (strncmp (ptr, "Text=", 5) == 0)
1855 {
1856 ptr += 5;
1857 /* Don't use strtol, could lose on big values. */
1858 while (*ptr && *ptr != ';')
1859 text_addr = (text_addr << 4) + fromhex (*ptr++);
1860 }
1861 else
1862 lose = 1;
1863
1864 if (!lose && strncmp (ptr, ";Data=", 6) == 0)
1865 {
1866 ptr += 6;
1867 while (*ptr && *ptr != ';')
1868 data_addr = (data_addr << 4) + fromhex (*ptr++);
1869 }
1870 else
1871 lose = 1;
1872
1873 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
1874 {
1875 ptr += 5;
1876 while (*ptr && *ptr != ';')
1877 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
1878 }
1879 else
1880 lose = 1;
1881
1882 if (lose)
1883 error ("Malformed response to offset query, %s", buf);
1884
1885 if (symfile_objfile == NULL)
1886 return;
1887
1888 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1889 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1890
1891 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
1892
1893 /* This is a temporary kludge to force data and bss to use the same offsets
1894 because that's what nlmconv does now. The real solution requires changes
1895 to the stub and remote.c that I don't have time to do right now. */
1896
1897 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
1898 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
1899
1900 objfile_relocate (symfile_objfile, offs);
1901 }
1902
1903 /*
1904 * Cisco version of section offsets:
1905 *
1906 * Instead of having GDB query the target for the section offsets,
1907 * Cisco lets the target volunteer the information! It's also in
1908 * a different format, so here are the functions that will decode
1909 * a section offset packet from a Cisco target.
1910 */
1911
1912 /*
1913 * Function: remote_cisco_section_offsets
1914 *
1915 * Returns: zero for success, non-zero for failure
1916 */
1917
1918 static int
1919 remote_cisco_section_offsets (bfd_vma text_addr,
1920 bfd_vma data_addr,
1921 bfd_vma bss_addr,
1922 bfd_signed_vma *text_offs,
1923 bfd_signed_vma *data_offs,
1924 bfd_signed_vma *bss_offs)
1925 {
1926 bfd_vma text_base, data_base, bss_base;
1927 struct minimal_symbol *start;
1928 asection *sect;
1929 bfd *abfd;
1930 int len;
1931
1932 if (symfile_objfile == NULL)
1933 return -1; /* no can do nothin' */
1934
1935 start = lookup_minimal_symbol ("_start", NULL, NULL);
1936 if (start == NULL)
1937 return -1; /* Can't find "_start" symbol */
1938
1939 data_base = bss_base = 0;
1940 text_base = SYMBOL_VALUE_ADDRESS (start);
1941
1942 abfd = symfile_objfile->obfd;
1943 for (sect = abfd->sections;
1944 sect != 0;
1945 sect = sect->next)
1946 {
1947 const char *p = bfd_get_section_name (abfd, sect);
1948 len = strlen (p);
1949 if (strcmp (p + len - 4, "data") == 0) /* ends in "data" */
1950 if (data_base == 0 ||
1951 data_base > bfd_get_section_vma (abfd, sect))
1952 data_base = bfd_get_section_vma (abfd, sect);
1953 if (strcmp (p + len - 3, "bss") == 0) /* ends in "bss" */
1954 if (bss_base == 0 ||
1955 bss_base > bfd_get_section_vma (abfd, sect))
1956 bss_base = bfd_get_section_vma (abfd, sect);
1957 }
1958 *text_offs = text_addr - text_base;
1959 *data_offs = data_addr - data_base;
1960 *bss_offs = bss_addr - bss_base;
1961 if (remote_debug)
1962 {
1963 char tmp[128];
1964
1965 sprintf (tmp, "VMA: text = 0x");
1966 sprintf_vma (tmp + strlen (tmp), text_addr);
1967 sprintf (tmp + strlen (tmp), " data = 0x");
1968 sprintf_vma (tmp + strlen (tmp), data_addr);
1969 sprintf (tmp + strlen (tmp), " bss = 0x");
1970 sprintf_vma (tmp + strlen (tmp), bss_addr);
1971 fprintf_filtered (gdb_stdlog, tmp);
1972 fprintf_filtered (gdb_stdlog,
1973 "Reloc offset: text = 0x%s data = 0x%s bss = 0x%s\n",
1974 paddr_nz (*text_offs),
1975 paddr_nz (*data_offs),
1976 paddr_nz (*bss_offs));
1977 }
1978
1979 return 0;
1980 }
1981
1982 /*
1983 * Function: remote_cisco_objfile_relocate
1984 *
1985 * Relocate the symbol file for a remote target.
1986 */
1987
1988 void
1989 remote_cisco_objfile_relocate (bfd_signed_vma text_off, bfd_signed_vma data_off,
1990 bfd_signed_vma bss_off)
1991 {
1992 struct section_offsets *offs;
1993
1994 if (text_off != 0 || data_off != 0 || bss_off != 0)
1995 {
1996 /* FIXME: This code assumes gdb-stabs.h is being used; it's
1997 broken for xcoff, dwarf, sdb-coff, etc. But there is no
1998 simple canonical representation for this stuff. */
1999
2000 offs = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
2001 memcpy (offs, symfile_objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
2002
2003 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_off;
2004 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_off;
2005 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = bss_off;
2006
2007 /* First call the standard objfile_relocate. */
2008 objfile_relocate (symfile_objfile, offs);
2009
2010 /* Now we need to fix up the section entries already attached to
2011 the exec target. These entries will control memory transfers
2012 from the exec file. */
2013
2014 exec_set_section_offsets (text_off, data_off, bss_off);
2015 }
2016 }
2017
2018 /* Stub for catch_errors. */
2019
2020 static int
2021 remote_start_remote_dummy (void *dummy)
2022 {
2023 start_remote (); /* Initialize gdb process mechanisms */
2024 return 1;
2025 }
2026
2027 static int
2028 remote_start_remote (PTR dummy)
2029 {
2030 immediate_quit++; /* Allow user to interrupt it */
2031
2032 /* Ack any packet which the remote side has already sent. */
2033 serial_write (remote_desc, "+", 1);
2034
2035 /* Let the stub know that we want it to return the thread. */
2036 set_thread (-1, 0);
2037
2038 inferior_ptid = remote_current_thread (inferior_ptid);
2039
2040 get_offsets (); /* Get text, data & bss offsets */
2041
2042 putpkt ("?"); /* initiate a query from remote machine */
2043 immediate_quit--;
2044
2045 return remote_start_remote_dummy (dummy);
2046 }
2047
2048 /* Open a connection to a remote debugger.
2049 NAME is the filename used for communication. */
2050
2051 static void
2052 remote_open (char *name, int from_tty)
2053 {
2054 remote_open_1 (name, from_tty, &remote_ops, 0);
2055 }
2056
2057 /* Just like remote_open, but with asynchronous support. */
2058 static void
2059 remote_async_open (char *name, int from_tty)
2060 {
2061 remote_async_open_1 (name, from_tty, &remote_async_ops, 0);
2062 }
2063
2064 /* Open a connection to a remote debugger using the extended
2065 remote gdb protocol. NAME is the filename used for communication. */
2066
2067 static void
2068 extended_remote_open (char *name, int from_tty)
2069 {
2070 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */ );
2071 }
2072
2073 /* Just like extended_remote_open, but with asynchronous support. */
2074 static void
2075 extended_remote_async_open (char *name, int from_tty)
2076 {
2077 remote_async_open_1 (name, from_tty, &extended_async_remote_ops, 1 /*extended_p */ );
2078 }
2079
2080 /* Generic code for opening a connection to a remote target. */
2081
2082 static void
2083 init_all_packet_configs (void)
2084 {
2085 int i;
2086 update_packet_config (&remote_protocol_e);
2087 update_packet_config (&remote_protocol_E);
2088 update_packet_config (&remote_protocol_P);
2089 update_packet_config (&remote_protocol_qSymbol);
2090 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2091 update_packet_config (&remote_protocol_Z[i]);
2092 /* Force remote_write_bytes to check whether target supports binary
2093 downloading. */
2094 update_packet_config (&remote_protocol_binary_download);
2095 }
2096
2097 /* Symbol look-up. */
2098
2099 static void
2100 remote_check_symbols (struct objfile *objfile)
2101 {
2102 char *msg, *reply, *tmp;
2103 struct minimal_symbol *sym;
2104 int end;
2105
2106 if (remote_protocol_qSymbol.support == PACKET_DISABLE)
2107 return;
2108
2109 msg = alloca (PBUFSIZ);
2110 reply = alloca (PBUFSIZ);
2111
2112 /* Invite target to request symbol lookups. */
2113
2114 putpkt ("qSymbol::");
2115 getpkt (reply, PBUFSIZ, 0);
2116 packet_ok (reply, &remote_protocol_qSymbol);
2117
2118 while (strncmp (reply, "qSymbol:", 8) == 0)
2119 {
2120 tmp = &reply[8];
2121 end = hex2bin (tmp, msg, strlen (tmp) / 2);
2122 msg[end] = '\0';
2123 sym = lookup_minimal_symbol (msg, NULL, NULL);
2124 if (sym == NULL)
2125 sprintf (msg, "qSymbol::%s", &reply[8]);
2126 else
2127 sprintf (msg, "qSymbol:%s:%s",
2128 paddr_nz (SYMBOL_VALUE_ADDRESS (sym)),
2129 &reply[8]);
2130 putpkt (msg);
2131 getpkt (reply, PBUFSIZ, 0);
2132 }
2133 }
2134
2135 static void
2136 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2137 int extended_p)
2138 {
2139 if (name == 0)
2140 error ("To open a remote debug connection, you need to specify what\n\
2141 serial device is attached to the remote system\n\
2142 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2143
2144 /* See FIXME above */
2145 wait_forever_enabled_p = 1;
2146
2147 target_preopen (from_tty);
2148
2149 unpush_target (target);
2150
2151 remote_desc = serial_open (name);
2152 if (!remote_desc)
2153 perror_with_name (name);
2154
2155 if (baud_rate != -1)
2156 {
2157 if (serial_setbaudrate (remote_desc, baud_rate))
2158 {
2159 serial_close (remote_desc);
2160 perror_with_name (name);
2161 }
2162 }
2163
2164 serial_raw (remote_desc);
2165
2166 /* If there is something sitting in the buffer we might take it as a
2167 response to a command, which would be bad. */
2168 serial_flush_input (remote_desc);
2169
2170 if (from_tty)
2171 {
2172 puts_filtered ("Remote debugging using ");
2173 puts_filtered (name);
2174 puts_filtered ("\n");
2175 }
2176 push_target (target); /* Switch to using remote target now */
2177
2178 init_all_packet_configs ();
2179
2180 general_thread = -2;
2181 continue_thread = -2;
2182
2183 /* Probe for ability to use "ThreadInfo" query, as required. */
2184 use_threadinfo_query = 1;
2185 use_threadextra_query = 1;
2186
2187 /* Without this, some commands which require an active target (such
2188 as kill) won't work. This variable serves (at least) double duty
2189 as both the pid of the target process (if it has such), and as a
2190 flag indicating that a target is active. These functions should
2191 be split out into seperate variables, especially since GDB will
2192 someday have a notion of debugging several processes. */
2193
2194 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2195 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2196 /* First delete any symbols previously loaded from shared libraries. */
2197 no_shared_libraries (NULL, 0);
2198 #endif
2199
2200 /* Start the remote connection; if error (0), discard this target.
2201 In particular, if the user quits, be sure to discard it
2202 (we'd be in an inconsistent state otherwise). */
2203 if (!catch_errors (remote_start_remote, NULL,
2204 "Couldn't establish connection to remote target\n",
2205 RETURN_MASK_ALL))
2206 {
2207 pop_target ();
2208 return;
2209 }
2210
2211 if (extended_p)
2212 {
2213 /* Tell the remote that we are using the extended protocol. */
2214 char *buf = alloca (PBUFSIZ);
2215 putpkt ("!");
2216 getpkt (buf, PBUFSIZ, 0);
2217 }
2218 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2219 /* FIXME: need a master target_open vector from which all
2220 remote_opens can be called, so that stuff like this can
2221 go there. Failing that, the following code must be copied
2222 to the open function for any remote target that wants to
2223 support svr4 shared libraries. */
2224
2225 /* Set up to detect and load shared libraries. */
2226 if (exec_bfd) /* No use without an exec file. */
2227 {
2228 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2229 remote_check_symbols (symfile_objfile);
2230 }
2231 #endif
2232 }
2233
2234 /* Just like remote_open but with asynchronous support. */
2235 static void
2236 remote_async_open_1 (char *name, int from_tty, struct target_ops *target,
2237 int extended_p)
2238 {
2239 if (name == 0)
2240 error ("To open a remote debug connection, you need to specify what\n\
2241 serial device is attached to the remote system\n\
2242 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
2243
2244 target_preopen (from_tty);
2245
2246 unpush_target (target);
2247
2248 remote_desc = serial_open (name);
2249 if (!remote_desc)
2250 perror_with_name (name);
2251
2252 if (baud_rate != -1)
2253 {
2254 if (serial_setbaudrate (remote_desc, baud_rate))
2255 {
2256 serial_close (remote_desc);
2257 perror_with_name (name);
2258 }
2259 }
2260
2261 serial_raw (remote_desc);
2262
2263 /* If there is something sitting in the buffer we might take it as a
2264 response to a command, which would be bad. */
2265 serial_flush_input (remote_desc);
2266
2267 if (from_tty)
2268 {
2269 puts_filtered ("Remote debugging using ");
2270 puts_filtered (name);
2271 puts_filtered ("\n");
2272 }
2273
2274 push_target (target); /* Switch to using remote target now */
2275
2276 init_all_packet_configs ();
2277
2278 general_thread = -2;
2279 continue_thread = -2;
2280
2281 /* Probe for ability to use "ThreadInfo" query, as required. */
2282 use_threadinfo_query = 1;
2283 use_threadextra_query = 1;
2284
2285 /* Without this, some commands which require an active target (such
2286 as kill) won't work. This variable serves (at least) double duty
2287 as both the pid of the target process (if it has such), and as a
2288 flag indicating that a target is active. These functions should
2289 be split out into seperate variables, especially since GDB will
2290 someday have a notion of debugging several processes. */
2291 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2292
2293 /* With this target we start out by owning the terminal. */
2294 remote_async_terminal_ours_p = 1;
2295
2296 /* FIXME: cagney/1999-09-23: During the initial connection it is
2297 assumed that the target is already ready and able to respond to
2298 requests. Unfortunately remote_start_remote() eventually calls
2299 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2300 around this. Eventually a mechanism that allows
2301 wait_for_inferior() to expect/get timeouts will be
2302 implemented. */
2303 wait_forever_enabled_p = 0;
2304
2305 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2306 /* First delete any symbols previously loaded from shared libraries. */
2307 no_shared_libraries (NULL, 0);
2308 #endif
2309
2310 /* Start the remote connection; if error (0), discard this target.
2311 In particular, if the user quits, be sure to discard it
2312 (we'd be in an inconsistent state otherwise). */
2313 if (!catch_errors (remote_start_remote, NULL,
2314 "Couldn't establish connection to remote target\n",
2315 RETURN_MASK_ALL))
2316 {
2317 pop_target ();
2318 wait_forever_enabled_p = 1;
2319 return;
2320 }
2321
2322 wait_forever_enabled_p = 1;
2323
2324 if (extended_p)
2325 {
2326 /* Tell the remote that we are using the extended protocol. */
2327 char *buf = alloca (PBUFSIZ);
2328 putpkt ("!");
2329 getpkt (buf, PBUFSIZ, 0);
2330 }
2331 #ifdef SOLIB_CREATE_INFERIOR_HOOK
2332 /* FIXME: need a master target_open vector from which all
2333 remote_opens can be called, so that stuff like this can
2334 go there. Failing that, the following code must be copied
2335 to the open function for any remote target that wants to
2336 support svr4 shared libraries. */
2337
2338 /* Set up to detect and load shared libraries. */
2339 if (exec_bfd) /* No use without an exec file. */
2340 {
2341 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
2342 remote_check_symbols (symfile_objfile);
2343 }
2344 #endif
2345 }
2346
2347 /* This takes a program previously attached to and detaches it. After
2348 this is done, GDB can be used to debug some other program. We
2349 better not have left any breakpoints in the target program or it'll
2350 die when it hits one. */
2351
2352 static void
2353 remote_detach (char *args, int from_tty)
2354 {
2355 char *buf = alloca (PBUFSIZ);
2356
2357 if (args)
2358 error ("Argument given to \"detach\" when remotely debugging.");
2359
2360 /* Tell the remote target to detach. */
2361 strcpy (buf, "D");
2362 remote_send (buf, PBUFSIZ);
2363
2364 target_mourn_inferior ();
2365 if (from_tty)
2366 puts_filtered ("Ending remote debugging.\n");
2367
2368 }
2369
2370 /* Same as remote_detach, but with async support. */
2371 static void
2372 remote_async_detach (char *args, int from_tty)
2373 {
2374 char *buf = alloca (PBUFSIZ);
2375
2376 if (args)
2377 error ("Argument given to \"detach\" when remotely debugging.");
2378
2379 /* Tell the remote target to detach. */
2380 strcpy (buf, "D");
2381 remote_send (buf, PBUFSIZ);
2382
2383 /* Unregister the file descriptor from the event loop. */
2384 if (target_is_async_p ())
2385 serial_async (remote_desc, NULL, 0);
2386
2387 target_mourn_inferior ();
2388 if (from_tty)
2389 puts_filtered ("Ending remote debugging.\n");
2390 }
2391
2392 /* Convert hex digit A to a number. */
2393
2394 static int
2395 fromhex (int a)
2396 {
2397 if (a >= '0' && a <= '9')
2398 return a - '0';
2399 else if (a >= 'a' && a <= 'f')
2400 return a - 'a' + 10;
2401 else if (a >= 'A' && a <= 'F')
2402 return a - 'A' + 10;
2403 else
2404 error ("Reply contains invalid hex digit %d", a);
2405 }
2406
2407 static int
2408 hex2bin (const char *hex, char *bin, int count)
2409 {
2410 int i;
2411
2412 for (i = 0; i < count; i++)
2413 {
2414 if (hex[0] == 0 || hex[1] == 0)
2415 {
2416 /* Hex string is short, or of uneven length.
2417 Return the count that has been converted so far. */
2418 return i;
2419 }
2420 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2421 hex += 2;
2422 }
2423 return i;
2424 }
2425
2426 /* Convert number NIB to a hex digit. */
2427
2428 static int
2429 tohex (int nib)
2430 {
2431 if (nib < 10)
2432 return '0' + nib;
2433 else
2434 return 'a' + nib - 10;
2435 }
2436
2437 static int
2438 bin2hex (const char *bin, char *hex, int count)
2439 {
2440 int i;
2441 /* May use a length, or a nul-terminated string as input. */
2442 if (count == 0)
2443 count = strlen (bin);
2444
2445 for (i = 0; i < count; i++)
2446 {
2447 *hex++ = tohex ((*bin >> 4) & 0xf);
2448 *hex++ = tohex (*bin++ & 0xf);
2449 }
2450 *hex = 0;
2451 return i;
2452 }
2453 \f
2454 /* Tell the remote machine to resume. */
2455
2456 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
2457
2458 static int last_sent_step;
2459
2460 static void
2461 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
2462 {
2463 char *buf = alloca (PBUFSIZ);
2464 int pid = PIDGET (ptid);
2465 char *p;
2466
2467 if (pid == -1)
2468 set_thread (0, 0); /* run any thread */
2469 else
2470 set_thread (pid, 0); /* run this thread */
2471
2472 last_sent_signal = siggnal;
2473 last_sent_step = step;
2474
2475 /* A hook for when we need to do something at the last moment before
2476 resumption. */
2477 if (target_resume_hook)
2478 (*target_resume_hook) ();
2479
2480
2481 /* The s/S/c/C packets do not return status. So if the target does
2482 not support the S or C packets, the debug agent returns an empty
2483 string which is detected in remote_wait(). This protocol defect
2484 is fixed in the e/E packets. */
2485
2486 if (step && step_range_end)
2487 {
2488 /* If the target does not support the 'E' packet, we try the 'S'
2489 packet. Ideally we would fall back to the 'e' packet if that
2490 too is not supported. But that would require another copy of
2491 the code to issue the 'e' packet (and fall back to 's' if not
2492 supported) in remote_wait(). */
2493
2494 if (siggnal != TARGET_SIGNAL_0)
2495 {
2496 if (remote_protocol_E.support != PACKET_DISABLE)
2497 {
2498 p = buf;
2499 *p++ = 'E';
2500 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2501 *p++ = tohex (((int) siggnal) & 0xf);
2502 *p++ = ',';
2503 p += hexnumstr (p, (ULONGEST) step_range_start);
2504 *p++ = ',';
2505 p += hexnumstr (p, (ULONGEST) step_range_end);
2506 *p++ = 0;
2507
2508 putpkt (buf);
2509 getpkt (buf, PBUFSIZ, 0);
2510
2511 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2512 return;
2513 }
2514 }
2515 else
2516 {
2517 if (remote_protocol_e.support != PACKET_DISABLE)
2518 {
2519 p = buf;
2520 *p++ = 'e';
2521 p += hexnumstr (p, (ULONGEST) step_range_start);
2522 *p++ = ',';
2523 p += hexnumstr (p, (ULONGEST) step_range_end);
2524 *p++ = 0;
2525
2526 putpkt (buf);
2527 getpkt (buf, PBUFSIZ, 0);
2528
2529 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2530 return;
2531 }
2532 }
2533 }
2534
2535 if (siggnal != TARGET_SIGNAL_0)
2536 {
2537 buf[0] = step ? 'S' : 'C';
2538 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2539 buf[2] = tohex (((int) siggnal) & 0xf);
2540 buf[3] = '\0';
2541 }
2542 else
2543 strcpy (buf, step ? "s" : "c");
2544
2545 putpkt (buf);
2546 }
2547
2548 /* Same as remote_resume, but with async support. */
2549 static void
2550 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
2551 {
2552 char *buf = alloca (PBUFSIZ);
2553 int pid = PIDGET (ptid);
2554 char *p;
2555
2556 if (pid == -1)
2557 set_thread (0, 0); /* run any thread */
2558 else
2559 set_thread (pid, 0); /* run this thread */
2560
2561 last_sent_signal = siggnal;
2562 last_sent_step = step;
2563
2564 /* A hook for when we need to do something at the last moment before
2565 resumption. */
2566 if (target_resume_hook)
2567 (*target_resume_hook) ();
2568
2569 /* The s/S/c/C packets do not return status. So if the target does
2570 not support the S or C packets, the debug agent returns an empty
2571 string which is detected in remote_wait(). This protocol defect
2572 is fixed in the e/E packets. */
2573
2574 if (step && step_range_end)
2575 {
2576 /* If the target does not support the 'E' packet, we try the 'S'
2577 packet. Ideally we would fall back to the 'e' packet if that
2578 too is not supported. But that would require another copy of
2579 the code to issue the 'e' packet (and fall back to 's' if not
2580 supported) in remote_wait(). */
2581
2582 if (siggnal != TARGET_SIGNAL_0)
2583 {
2584 if (remote_protocol_E.support != PACKET_DISABLE)
2585 {
2586 p = buf;
2587 *p++ = 'E';
2588 *p++ = tohex (((int) siggnal >> 4) & 0xf);
2589 *p++ = tohex (((int) siggnal) & 0xf);
2590 *p++ = ',';
2591 p += hexnumstr (p, (ULONGEST) step_range_start);
2592 *p++ = ',';
2593 p += hexnumstr (p, (ULONGEST) step_range_end);
2594 *p++ = 0;
2595
2596 putpkt (buf);
2597 getpkt (buf, PBUFSIZ, 0);
2598
2599 if (packet_ok (buf, &remote_protocol_E) == PACKET_OK)
2600 goto register_event_loop;
2601 }
2602 }
2603 else
2604 {
2605 if (remote_protocol_e.support != PACKET_DISABLE)
2606 {
2607 p = buf;
2608 *p++ = 'e';
2609 p += hexnumstr (p, (ULONGEST) step_range_start);
2610 *p++ = ',';
2611 p += hexnumstr (p, (ULONGEST) step_range_end);
2612 *p++ = 0;
2613
2614 putpkt (buf);
2615 getpkt (buf, PBUFSIZ, 0);
2616
2617 if (packet_ok (buf, &remote_protocol_e) == PACKET_OK)
2618 goto register_event_loop;
2619 }
2620 }
2621 }
2622
2623 if (siggnal != TARGET_SIGNAL_0)
2624 {
2625 buf[0] = step ? 'S' : 'C';
2626 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
2627 buf[2] = tohex ((int) siggnal & 0xf);
2628 buf[3] = '\0';
2629 }
2630 else
2631 strcpy (buf, step ? "s" : "c");
2632
2633 putpkt (buf);
2634
2635 register_event_loop:
2636 /* We are about to start executing the inferior, let's register it
2637 with the event loop. NOTE: this is the one place where all the
2638 execution commands end up. We could alternatively do this in each
2639 of the execution commands in infcmd.c.*/
2640 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
2641 into infcmd.c in order to allow inferior function calls to work
2642 NOT asynchronously. */
2643 if (event_loop_p && target_can_async_p ())
2644 target_async (inferior_event_handler, 0);
2645 /* Tell the world that the target is now executing. */
2646 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
2647 this? Instead, should the client of target just assume (for
2648 async targets) that the target is going to start executing? Is
2649 this information already found in the continuation block? */
2650 if (target_is_async_p ())
2651 target_executing = 1;
2652 }
2653 \f
2654
2655 /* Set up the signal handler for SIGINT, while the target is
2656 executing, ovewriting the 'regular' SIGINT signal handler. */
2657 static void
2658 initialize_sigint_signal_handler (void)
2659 {
2660 sigint_remote_token =
2661 create_async_signal_handler (async_remote_interrupt, NULL);
2662 signal (SIGINT, handle_remote_sigint);
2663 }
2664
2665 /* Signal handler for SIGINT, while the target is executing. */
2666 static void
2667 handle_remote_sigint (int sig)
2668 {
2669 signal (sig, handle_remote_sigint_twice);
2670 sigint_remote_twice_token =
2671 create_async_signal_handler (async_remote_interrupt_twice, NULL);
2672 mark_async_signal_handler_wrapper (sigint_remote_token);
2673 }
2674
2675 /* Signal handler for SIGINT, installed after SIGINT has already been
2676 sent once. It will take effect the second time that the user sends
2677 a ^C. */
2678 static void
2679 handle_remote_sigint_twice (int sig)
2680 {
2681 signal (sig, handle_sigint);
2682 sigint_remote_twice_token =
2683 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
2684 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
2685 }
2686
2687 /* Perform the real interruption of the target execution, in response
2688 to a ^C. */
2689 static void
2690 async_remote_interrupt (gdb_client_data arg)
2691 {
2692 if (remote_debug)
2693 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2694
2695 target_stop ();
2696 }
2697
2698 /* Perform interrupt, if the first attempt did not succeed. Just give
2699 up on the target alltogether. */
2700 void
2701 async_remote_interrupt_twice (gdb_client_data arg)
2702 {
2703 if (remote_debug)
2704 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
2705 /* Do something only if the target was not killed by the previous
2706 cntl-C. */
2707 if (target_executing)
2708 {
2709 interrupt_query ();
2710 signal (SIGINT, handle_remote_sigint);
2711 }
2712 }
2713
2714 /* Reinstall the usual SIGINT handlers, after the target has
2715 stopped. */
2716 static void
2717 cleanup_sigint_signal_handler (void *dummy)
2718 {
2719 signal (SIGINT, handle_sigint);
2720 if (sigint_remote_twice_token)
2721 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_twice_token);
2722 if (sigint_remote_token)
2723 delete_async_signal_handler ((struct async_signal_handler **) & sigint_remote_token);
2724 }
2725
2726 /* Send ^C to target to halt it. Target will respond, and send us a
2727 packet. */
2728 static void (*ofunc) (int);
2729
2730 /* The command line interface's stop routine. This function is installed
2731 as a signal handler for SIGINT. The first time a user requests a
2732 stop, we call remote_stop to send a break or ^C. If there is no
2733 response from the target (it didn't stop when the user requested it),
2734 we ask the user if he'd like to detach from the target. */
2735 static void
2736 remote_interrupt (int signo)
2737 {
2738 /* If this doesn't work, try more severe steps. */
2739 signal (signo, remote_interrupt_twice);
2740
2741 if (remote_debug)
2742 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
2743
2744 target_stop ();
2745 }
2746
2747 /* The user typed ^C twice. */
2748
2749 static void
2750 remote_interrupt_twice (int signo)
2751 {
2752 signal (signo, ofunc);
2753 interrupt_query ();
2754 signal (signo, remote_interrupt);
2755 }
2756
2757 /* This is the generic stop called via the target vector. When a target
2758 interrupt is requested, either by the command line or the GUI, we
2759 will eventually end up here. */
2760 static void
2761 remote_stop (void)
2762 {
2763 /* Send a break or a ^C, depending on user preference. */
2764 if (remote_debug)
2765 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
2766
2767 if (remote_break)
2768 serial_send_break (remote_desc);
2769 else
2770 serial_write (remote_desc, "\003", 1);
2771 }
2772
2773 /* Ask the user what to do when an interrupt is received. */
2774
2775 static void
2776 interrupt_query (void)
2777 {
2778 target_terminal_ours ();
2779
2780 if (query ("Interrupted while waiting for the program.\n\
2781 Give up (and stop debugging it)? "))
2782 {
2783 target_mourn_inferior ();
2784 return_to_top_level (RETURN_QUIT);
2785 }
2786
2787 target_terminal_inferior ();
2788 }
2789
2790 /* Enable/disable target terminal ownership. Most targets can use
2791 terminal groups to control terminal ownership. Remote targets are
2792 different in that explicit transfer of ownership to/from GDB/target
2793 is required. */
2794
2795 static void
2796 remote_async_terminal_inferior (void)
2797 {
2798 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
2799 sync_execution here. This function should only be called when
2800 GDB is resuming the inferior in the forground. A background
2801 resume (``run&'') should leave GDB in control of the terminal and
2802 consequently should not call this code. */
2803 if (!sync_execution)
2804 return;
2805 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
2806 calls target_terminal_*() idenpotent. The event-loop GDB talking
2807 to an asynchronous target with a synchronous command calls this
2808 function from both event-top.c and infrun.c/infcmd.c. Once GDB
2809 stops trying to transfer the terminal to the target when it
2810 shouldn't this guard can go away. */
2811 if (!remote_async_terminal_ours_p)
2812 return;
2813 delete_file_handler (input_fd);
2814 remote_async_terminal_ours_p = 0;
2815 initialize_sigint_signal_handler ();
2816 /* NOTE: At this point we could also register our selves as the
2817 recipient of all input. Any characters typed could then be
2818 passed on down to the target. */
2819 }
2820
2821 static void
2822 remote_async_terminal_ours (void)
2823 {
2824 /* See FIXME in remote_async_terminal_inferior. */
2825 if (!sync_execution)
2826 return;
2827 /* See FIXME in remote_async_terminal_inferior. */
2828 if (remote_async_terminal_ours_p)
2829 return;
2830 cleanup_sigint_signal_handler (NULL);
2831 add_file_handler (input_fd, stdin_event_handler, 0);
2832 remote_async_terminal_ours_p = 1;
2833 }
2834
2835 /* If nonzero, ignore the next kill. */
2836
2837 int kill_kludge;
2838
2839 void
2840 remote_console_output (char *msg)
2841 {
2842 char *p;
2843
2844 for (p = msg; p[0] && p[1]; p += 2)
2845 {
2846 char tb[2];
2847 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
2848 tb[0] = c;
2849 tb[1] = 0;
2850 fputs_unfiltered (tb, gdb_stdtarg);
2851 }
2852 gdb_flush (gdb_stdtarg);
2853 }
2854
2855 /* Wait until the remote machine stops, then return,
2856 storing status in STATUS just as `wait' would.
2857 Returns "pid", which in the case of a multi-threaded
2858 remote OS, is the thread-id. */
2859
2860 static ptid_t
2861 remote_wait (ptid_t ptid, struct target_waitstatus *status)
2862 {
2863 unsigned char *buf = alloca (PBUFSIZ);
2864 int thread_num = -1;
2865
2866 status->kind = TARGET_WAITKIND_EXITED;
2867 status->value.integer = 0;
2868
2869 while (1)
2870 {
2871 unsigned char *p;
2872
2873 ofunc = signal (SIGINT, remote_interrupt);
2874 getpkt (buf, PBUFSIZ, 1);
2875 signal (SIGINT, ofunc);
2876
2877 /* This is a hook for when we need to do something (perhaps the
2878 collection of trace data) every time the target stops. */
2879 if (target_wait_loop_hook)
2880 (*target_wait_loop_hook) ();
2881
2882 switch (buf[0])
2883 {
2884 case 'E': /* Error of some sort */
2885 warning ("Remote failure reply: %s", buf);
2886 continue;
2887 case 'T': /* Status with PC, SP, FP, ... */
2888 {
2889 int i;
2890 long regno;
2891 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
2892
2893 /* Expedited reply, containing Signal, {regno, reg} repeat */
2894 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
2895 ss = signal number
2896 n... = register number
2897 r... = register contents
2898 */
2899 p = &buf[3]; /* after Txx */
2900
2901 while (*p)
2902 {
2903 unsigned char *p1;
2904 char *p_temp;
2905 int fieldsize;
2906
2907 /* Read the register number */
2908 regno = strtol ((const char *) p, &p_temp, 16);
2909 p1 = (unsigned char *) p_temp;
2910
2911 if (p1 == p) /* No register number present here */
2912 {
2913 p1 = (unsigned char *) strchr ((const char *) p, ':');
2914 if (p1 == NULL)
2915 warning ("Malformed packet(a) (missing colon): %s\n\
2916 Packet: '%s'\n",
2917 p, buf);
2918 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
2919 {
2920 p_temp = unpack_varlen_hex (++p1, &thread_num);
2921 record_currthread (thread_num);
2922 p = (unsigned char *) p_temp;
2923 }
2924 }
2925 else
2926 {
2927 p = p1;
2928
2929 if (*p++ != ':')
2930 warning ("Malformed packet(b) (missing colon): %s\n\
2931 Packet: '%s'\n",
2932 p, buf);
2933
2934 if (regno >= NUM_REGS)
2935 warning ("Remote sent bad register number %ld: %s\n\
2936 Packet: '%s'\n",
2937 regno, p, buf);
2938
2939 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (regno));
2940 p += 2 * fieldsize;
2941 if (fieldsize < REGISTER_RAW_SIZE (regno))
2942 warning ("Remote reply is too short: %s", buf);
2943 supply_register (regno, regs);
2944 }
2945
2946 if (*p++ != ';')
2947 {
2948 warning ("Remote register badly formatted: %s", buf);
2949 warning (" here: %s", p);
2950 }
2951 }
2952 }
2953 /* fall through */
2954 case 'S': /* Old style status, just signal only */
2955 status->kind = TARGET_WAITKIND_STOPPED;
2956 status->value.sig = (enum target_signal)
2957 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2958
2959 if (buf[3] == 'p')
2960 {
2961 /* Export Cisco kernel mode as a convenience variable
2962 (so that it can be used in the GDB prompt if desired). */
2963
2964 if (cisco_kernel_mode == 1)
2965 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
2966 value_from_string ("PDEBUG-"));
2967 cisco_kernel_mode = 0;
2968 thread_num = strtol ((const char *) &buf[4], NULL, 16);
2969 record_currthread (thread_num);
2970 }
2971 else if (buf[3] == 'k')
2972 {
2973 /* Export Cisco kernel mode as a convenience variable
2974 (so that it can be used in the GDB prompt if desired). */
2975
2976 if (cisco_kernel_mode == 1)
2977 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
2978 value_from_string ("KDEBUG-"));
2979 cisco_kernel_mode = 1;
2980 }
2981 goto got_status;
2982 case 'N': /* Cisco special: status and offsets */
2983 {
2984 bfd_vma text_addr, data_addr, bss_addr;
2985 bfd_signed_vma text_off, data_off, bss_off;
2986 unsigned char *p1;
2987
2988 status->kind = TARGET_WAITKIND_STOPPED;
2989 status->value.sig = (enum target_signal)
2990 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
2991
2992 if (symfile_objfile == NULL)
2993 {
2994 warning ("Relocation packet received with no symbol file. \
2995 Packet Dropped");
2996 goto got_status;
2997 }
2998
2999 /* Relocate object file. Buffer format is NAATT;DD;BB
3000 * where AA is the signal number, TT is the new text
3001 * address, DD * is the new data address, and BB is the
3002 * new bss address. */
3003
3004 p = &buf[3];
3005 text_addr = strtoul (p, (char **) &p1, 16);
3006 if (p1 == p || *p1 != ';')
3007 warning ("Malformed relocation packet: Packet '%s'", buf);
3008 p = p1 + 1;
3009 data_addr = strtoul (p, (char **) &p1, 16);
3010 if (p1 == p || *p1 != ';')
3011 warning ("Malformed relocation packet: Packet '%s'", buf);
3012 p = p1 + 1;
3013 bss_addr = strtoul (p, (char **) &p1, 16);
3014 if (p1 == p)
3015 warning ("Malformed relocation packet: Packet '%s'", buf);
3016
3017 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3018 &text_off, &data_off, &bss_off)
3019 == 0)
3020 if (text_off != 0 || data_off != 0 || bss_off != 0)
3021 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3022
3023 goto got_status;
3024 }
3025 case 'W': /* Target exited */
3026 {
3027 /* The remote process exited. */
3028 status->kind = TARGET_WAITKIND_EXITED;
3029 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3030 goto got_status;
3031 }
3032 case 'X':
3033 status->kind = TARGET_WAITKIND_SIGNALLED;
3034 status->value.sig = (enum target_signal)
3035 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3036 kill_kludge = 1;
3037
3038 goto got_status;
3039 case 'O': /* Console output */
3040 remote_console_output (buf + 1);
3041 continue;
3042 case '\0':
3043 if (last_sent_signal != TARGET_SIGNAL_0)
3044 {
3045 /* Zero length reply means that we tried 'S' or 'C' and
3046 the remote system doesn't support it. */
3047 target_terminal_ours_for_output ();
3048 printf_filtered
3049 ("Can't send signals to this remote system. %s not sent.\n",
3050 target_signal_to_name (last_sent_signal));
3051 last_sent_signal = TARGET_SIGNAL_0;
3052 target_terminal_inferior ();
3053
3054 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3055 putpkt ((char *) buf);
3056 continue;
3057 }
3058 /* else fallthrough */
3059 default:
3060 warning ("Invalid remote reply: %s", buf);
3061 continue;
3062 }
3063 }
3064 got_status:
3065 if (thread_num != -1)
3066 {
3067 return pid_to_ptid (thread_num);
3068 }
3069 return inferior_ptid;
3070 }
3071
3072 /* Async version of remote_wait. */
3073 static ptid_t
3074 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3075 {
3076 unsigned char *buf = alloca (PBUFSIZ);
3077 int thread_num = -1;
3078
3079 status->kind = TARGET_WAITKIND_EXITED;
3080 status->value.integer = 0;
3081
3082 while (1)
3083 {
3084 unsigned char *p;
3085
3086 if (!target_is_async_p ())
3087 ofunc = signal (SIGINT, remote_interrupt);
3088 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3089 _never_ wait for ever -> test on target_is_async_p().
3090 However, before we do that we need to ensure that the caller
3091 knows how to take the target into/out of async mode. */
3092 getpkt (buf, PBUFSIZ, wait_forever_enabled_p);
3093 if (!target_is_async_p ())
3094 signal (SIGINT, ofunc);
3095
3096 /* This is a hook for when we need to do something (perhaps the
3097 collection of trace data) every time the target stops. */
3098 if (target_wait_loop_hook)
3099 (*target_wait_loop_hook) ();
3100
3101 switch (buf[0])
3102 {
3103 case 'E': /* Error of some sort */
3104 warning ("Remote failure reply: %s", buf);
3105 continue;
3106 case 'T': /* Status with PC, SP, FP, ... */
3107 {
3108 int i;
3109 long regno;
3110 char* regs = (char*) alloca (MAX_REGISTER_RAW_SIZE);
3111
3112 /* Expedited reply, containing Signal, {regno, reg} repeat */
3113 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3114 ss = signal number
3115 n... = register number
3116 r... = register contents
3117 */
3118 p = &buf[3]; /* after Txx */
3119
3120 while (*p)
3121 {
3122 unsigned char *p1;
3123 char *p_temp;
3124 int fieldsize;
3125
3126 /* Read the register number */
3127 regno = strtol ((const char *) p, &p_temp, 16);
3128 p1 = (unsigned char *) p_temp;
3129
3130 if (p1 == p) /* No register number present here */
3131 {
3132 p1 = (unsigned char *) strchr ((const char *) p, ':');
3133 if (p1 == NULL)
3134 warning ("Malformed packet(a) (missing colon): %s\n\
3135 Packet: '%s'\n",
3136 p, buf);
3137 if (strncmp ((const char *) p, "thread", p1 - p) == 0)
3138 {
3139 p_temp = unpack_varlen_hex (++p1, &thread_num);
3140 record_currthread (thread_num);
3141 p = (unsigned char *) p_temp;
3142 }
3143 }
3144 else
3145 {
3146 p = p1;
3147
3148 if (*p++ != ':')
3149 warning ("Malformed packet(b) (missing colon): %s\n\
3150 Packet: '%s'\n",
3151 p, buf);
3152
3153 if (regno >= NUM_REGS)
3154 warning ("Remote sent bad register number %ld: %s\n\
3155 Packet: '%s'\n",
3156 regno, p, buf);
3157
3158 fieldsize = hex2bin (p, regs, REGISTER_RAW_SIZE (regno));
3159 p += 2 * fieldsize;
3160 if (fieldsize < REGISTER_RAW_SIZE (regno))
3161 warning ("Remote reply is too short: %s", buf);
3162 supply_register (regno, regs);
3163 }
3164
3165 if (*p++ != ';')
3166 {
3167 warning ("Remote register badly formatted: %s", buf);
3168 warning (" here: %s", p);
3169 }
3170 }
3171 }
3172 /* fall through */
3173 case 'S': /* Old style status, just signal only */
3174 status->kind = TARGET_WAITKIND_STOPPED;
3175 status->value.sig = (enum target_signal)
3176 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3177
3178 if (buf[3] == 'p')
3179 {
3180 /* Export Cisco kernel mode as a convenience variable
3181 (so that it can be used in the GDB prompt if desired). */
3182
3183 if (cisco_kernel_mode == 1)
3184 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3185 value_from_string ("PDEBUG-"));
3186 cisco_kernel_mode = 0;
3187 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3188 record_currthread (thread_num);
3189 }
3190 else if (buf[3] == 'k')
3191 {
3192 /* Export Cisco kernel mode as a convenience variable
3193 (so that it can be used in the GDB prompt if desired). */
3194
3195 if (cisco_kernel_mode == 1)
3196 set_internalvar (lookup_internalvar ("cisco_kernel_mode"),
3197 value_from_string ("KDEBUG-"));
3198 cisco_kernel_mode = 1;
3199 }
3200 goto got_status;
3201 case 'N': /* Cisco special: status and offsets */
3202 {
3203 bfd_vma text_addr, data_addr, bss_addr;
3204 bfd_signed_vma text_off, data_off, bss_off;
3205 unsigned char *p1;
3206
3207 status->kind = TARGET_WAITKIND_STOPPED;
3208 status->value.sig = (enum target_signal)
3209 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3210
3211 if (symfile_objfile == NULL)
3212 {
3213 warning ("Relocation packet recieved with no symbol file. \
3214 Packet Dropped");
3215 goto got_status;
3216 }
3217
3218 /* Relocate object file. Buffer format is NAATT;DD;BB
3219 * where AA is the signal number, TT is the new text
3220 * address, DD * is the new data address, and BB is the
3221 * new bss address. */
3222
3223 p = &buf[3];
3224 text_addr = strtoul (p, (char **) &p1, 16);
3225 if (p1 == p || *p1 != ';')
3226 warning ("Malformed relocation packet: Packet '%s'", buf);
3227 p = p1 + 1;
3228 data_addr = strtoul (p, (char **) &p1, 16);
3229 if (p1 == p || *p1 != ';')
3230 warning ("Malformed relocation packet: Packet '%s'", buf);
3231 p = p1 + 1;
3232 bss_addr = strtoul (p, (char **) &p1, 16);
3233 if (p1 == p)
3234 warning ("Malformed relocation packet: Packet '%s'", buf);
3235
3236 if (remote_cisco_section_offsets (text_addr, data_addr, bss_addr,
3237 &text_off, &data_off, &bss_off)
3238 == 0)
3239 if (text_off != 0 || data_off != 0 || bss_off != 0)
3240 remote_cisco_objfile_relocate (text_off, data_off, bss_off);
3241
3242 goto got_status;
3243 }
3244 case 'W': /* Target exited */
3245 {
3246 /* The remote process exited. */
3247 status->kind = TARGET_WAITKIND_EXITED;
3248 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3249 goto got_status;
3250 }
3251 case 'X':
3252 status->kind = TARGET_WAITKIND_SIGNALLED;
3253 status->value.sig = (enum target_signal)
3254 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3255 kill_kludge = 1;
3256
3257 goto got_status;
3258 case 'O': /* Console output */
3259 remote_console_output (buf + 1);
3260 /* Return immediately to the event loop. The event loop will
3261 still be waiting on the inferior afterwards. */
3262 status->kind = TARGET_WAITKIND_IGNORE;
3263 goto got_status;
3264 case '\0':
3265 if (last_sent_signal != TARGET_SIGNAL_0)
3266 {
3267 /* Zero length reply means that we tried 'S' or 'C' and
3268 the remote system doesn't support it. */
3269 target_terminal_ours_for_output ();
3270 printf_filtered
3271 ("Can't send signals to this remote system. %s not sent.\n",
3272 target_signal_to_name (last_sent_signal));
3273 last_sent_signal = TARGET_SIGNAL_0;
3274 target_terminal_inferior ();
3275
3276 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3277 putpkt ((char *) buf);
3278 continue;
3279 }
3280 /* else fallthrough */
3281 default:
3282 warning ("Invalid remote reply: %s", buf);
3283 continue;
3284 }
3285 }
3286 got_status:
3287 if (thread_num != -1)
3288 {
3289 return pid_to_ptid (thread_num);
3290 }
3291 return inferior_ptid;
3292 }
3293
3294 /* Number of bytes of registers this stub implements. */
3295
3296 static int register_bytes_found;
3297
3298 /* Read the remote registers into the block REGS. */
3299 /* Currently we just read all the registers, so we don't use regno. */
3300
3301 /* ARGSUSED */
3302 static void
3303 remote_fetch_registers (int regno)
3304 {
3305 char *buf = alloca (PBUFSIZ);
3306 int i;
3307 char *p;
3308 char *regs = alloca (REGISTER_BYTES);
3309
3310 set_thread (PIDGET (inferior_ptid), 1);
3311
3312 sprintf (buf, "g");
3313 remote_send (buf, PBUFSIZ);
3314
3315 /* Save the size of the packet sent to us by the target. Its used
3316 as a heuristic when determining the max size of packets that the
3317 target can safely receive. */
3318 if (actual_register_packet_size == 0)
3319 actual_register_packet_size = strlen (buf);
3320
3321 /* Unimplemented registers read as all bits zero. */
3322 memset (regs, 0, REGISTER_BYTES);
3323
3324 /* We can get out of synch in various cases. If the first character
3325 in the buffer is not a hex character, assume that has happened
3326 and try to fetch another packet to read. */
3327 while ((buf[0] < '0' || buf[0] > '9')
3328 && (buf[0] < 'a' || buf[0] > 'f')
3329 && buf[0] != 'x') /* New: unavailable register value */
3330 {
3331 if (remote_debug)
3332 fprintf_unfiltered (gdb_stdlog,
3333 "Bad register packet; fetching a new packet\n");
3334 getpkt (buf, PBUFSIZ, 0);
3335 }
3336
3337 /* Reply describes registers byte by byte, each byte encoded as two
3338 hex characters. Suck them all up, then supply them to the
3339 register cacheing/storage mechanism. */
3340
3341 p = buf;
3342 for (i = 0; i < REGISTER_BYTES; i++)
3343 {
3344 if (p[0] == 0)
3345 break;
3346 if (p[1] == 0)
3347 {
3348 warning ("Remote reply is of odd length: %s", buf);
3349 /* Don't change register_bytes_found in this case, and don't
3350 print a second warning. */
3351 goto supply_them;
3352 }
3353 if (p[0] == 'x' && p[1] == 'x')
3354 regs[i] = 0; /* 'x' */
3355 else
3356 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3357 p += 2;
3358 }
3359
3360 if (i != register_bytes_found)
3361 {
3362 register_bytes_found = i;
3363 if (REGISTER_BYTES_OK_P ()
3364 && !REGISTER_BYTES_OK (i))
3365 warning ("Remote reply is too short: %s", buf);
3366 }
3367
3368 supply_them:
3369 for (i = 0; i < NUM_REGS; i++)
3370 {
3371 supply_register (i, &regs[REGISTER_BYTE (i)]);
3372 if (buf[REGISTER_BYTE (i) * 2] == 'x')
3373 set_register_cached (i, -1);
3374 }
3375 }
3376
3377 /* Prepare to store registers. Since we may send them all (using a
3378 'G' request), we have to read out the ones we don't want to change
3379 first. */
3380
3381 static void
3382 remote_prepare_to_store (void)
3383 {
3384 /* Make sure the entire registers array is valid. */
3385 switch (remote_protocol_P.support)
3386 {
3387 case PACKET_DISABLE:
3388 case PACKET_SUPPORT_UNKNOWN:
3389 read_register_bytes (0, (char *) NULL, REGISTER_BYTES);
3390 break;
3391 case PACKET_ENABLE:
3392 break;
3393 }
3394 }
3395
3396 /* Helper: Attempt to store REGNO using the P packet. Return fail IFF
3397 packet was not recognized. */
3398
3399 static int
3400 store_register_using_P (int regno)
3401 {
3402 /* Try storing a single register. */
3403 char *buf = alloca (PBUFSIZ);
3404 char *regp;
3405 char *p;
3406 int i;
3407
3408 sprintf (buf, "P%x=", regno);
3409 p = buf + strlen (buf);
3410 regp = register_buffer (regno);
3411 bin2hex (regp, p, REGISTER_RAW_SIZE (regno));
3412 remote_send (buf, PBUFSIZ);
3413
3414 return buf[0] != '\0';
3415 }
3416
3417
3418 /* Store register REGNO, or all registers if REGNO == -1, from the contents
3419 of the register cache buffer. FIXME: ignores errors. */
3420
3421 static void
3422 remote_store_registers (int regno)
3423 {
3424 char *buf = alloca (PBUFSIZ);
3425 int i;
3426 char *p;
3427 char *regs;
3428
3429 set_thread (PIDGET (inferior_ptid), 1);
3430
3431 if (regno >= 0)
3432 {
3433 switch (remote_protocol_P.support)
3434 {
3435 case PACKET_DISABLE:
3436 break;
3437 case PACKET_ENABLE:
3438 if (store_register_using_P (regno))
3439 return;
3440 else
3441 error ("Protocol error: P packet not recognized by stub");
3442 case PACKET_SUPPORT_UNKNOWN:
3443 if (store_register_using_P (regno))
3444 {
3445 /* The stub recognized the 'P' packet. Remember this. */
3446 remote_protocol_P.support = PACKET_ENABLE;
3447 return;
3448 }
3449 else
3450 {
3451 /* The stub does not support the 'P' packet. Use 'G'
3452 instead, and don't try using 'P' in the future (it
3453 will just waste our time). */
3454 remote_protocol_P.support = PACKET_DISABLE;
3455 break;
3456 }
3457 }
3458 }
3459
3460 buf[0] = 'G';
3461
3462 /* Command describes registers byte by byte,
3463 each byte encoded as two hex characters. */
3464
3465 regs = register_buffer (-1);
3466 p = buf + 1;
3467 /* remote_prepare_to_store insures that register_bytes_found gets set. */
3468 bin2hex (regs, p, register_bytes_found);
3469 remote_send (buf, PBUFSIZ);
3470 }
3471 \f
3472
3473 /* Return the number of hex digits in num. */
3474
3475 static int
3476 hexnumlen (ULONGEST num)
3477 {
3478 int i;
3479
3480 for (i = 0; num != 0; i++)
3481 num >>= 4;
3482
3483 return max (i, 1);
3484 }
3485
3486 /* Set BUF to the minimum number of hex digits representing NUM. */
3487
3488 static int
3489 hexnumstr (char *buf, ULONGEST num)
3490 {
3491 int len = hexnumlen (num);
3492 return hexnumnstr (buf, num, len);
3493 }
3494
3495
3496 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3497
3498 static int
3499 hexnumnstr (char *buf, ULONGEST num, int width)
3500 {
3501 int i;
3502
3503 buf[width] = '\0';
3504
3505 for (i = width - 1; i >= 0; i--)
3506 {
3507 buf[i] = "0123456789abcdef"[(num & 0xf)];
3508 num >>= 4;
3509 }
3510
3511 return width;
3512 }
3513
3514 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
3515
3516 static CORE_ADDR
3517 remote_address_masked (CORE_ADDR addr)
3518 {
3519 if (remote_address_size > 0
3520 && remote_address_size < (sizeof (ULONGEST) * 8))
3521 {
3522 /* Only create a mask when that mask can safely be constructed
3523 in a ULONGEST variable. */
3524 ULONGEST mask = 1;
3525 mask = (mask << remote_address_size) - 1;
3526 addr &= mask;
3527 }
3528 return addr;
3529 }
3530
3531 /* Determine whether the remote target supports binary downloading.
3532 This is accomplished by sending a no-op memory write of zero length
3533 to the target at the specified address. It does not suffice to send
3534 the whole packet, since many stubs strip the eighth bit and subsequently
3535 compute a wrong checksum, which causes real havoc with remote_write_bytes.
3536
3537 NOTE: This can still lose if the serial line is not eight-bit
3538 clean. In cases like this, the user should clear "remote
3539 X-packet". */
3540
3541 static void
3542 check_binary_download (CORE_ADDR addr)
3543 {
3544 switch (remote_protocol_binary_download.support)
3545 {
3546 case PACKET_DISABLE:
3547 break;
3548 case PACKET_ENABLE:
3549 break;
3550 case PACKET_SUPPORT_UNKNOWN:
3551 {
3552 char *buf = alloca (PBUFSIZ);
3553 char *p;
3554
3555 p = buf;
3556 *p++ = 'X';
3557 p += hexnumstr (p, (ULONGEST) addr);
3558 *p++ = ',';
3559 p += hexnumstr (p, (ULONGEST) 0);
3560 *p++ = ':';
3561 *p = '\0';
3562
3563 putpkt_binary (buf, (int) (p - buf));
3564 getpkt (buf, PBUFSIZ, 0);
3565
3566 if (buf[0] == '\0')
3567 {
3568 if (remote_debug)
3569 fprintf_unfiltered (gdb_stdlog,
3570 "binary downloading NOT suppported by target\n");
3571 remote_protocol_binary_download.support = PACKET_DISABLE;
3572 }
3573 else
3574 {
3575 if (remote_debug)
3576 fprintf_unfiltered (gdb_stdlog,
3577 "binary downloading suppported by target\n");
3578 remote_protocol_binary_download.support = PACKET_ENABLE;
3579 }
3580 break;
3581 }
3582 }
3583 }
3584
3585 /* Write memory data directly to the remote machine.
3586 This does not inform the data cache; the data cache uses this.
3587 MEMADDR is the address in the remote memory space.
3588 MYADDR is the address of the buffer in our space.
3589 LEN is the number of bytes.
3590
3591 Returns number of bytes transferred, or 0 (setting errno) for
3592 error. Only transfer a single packet. */
3593
3594 static int
3595 remote_write_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3596 {
3597 unsigned char *buf;
3598 int max_buf_size; /* Max size of packet output buffer */
3599 unsigned char *p;
3600 unsigned char *plen;
3601 long sizeof_buf;
3602 int plenlen;
3603 int todo;
3604 int nr_bytes;
3605
3606 /* Verify that the target can support a binary download */
3607 check_binary_download (memaddr);
3608
3609 /* Determine the max packet size. */
3610 max_buf_size = get_memory_write_packet_size ();
3611 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3612 buf = alloca (sizeof_buf);
3613
3614 /* Subtract header overhead from max payload size - $M<memaddr>,<len>:#nn */
3615 max_buf_size -= 2 + hexnumlen (memaddr + len - 1) + 1 + hexnumlen (len) + 4;
3616
3617 /* construct "M"<memaddr>","<len>":" */
3618 /* sprintf (buf, "M%lx,%x:", (unsigned long) memaddr, todo); */
3619 p = buf;
3620
3621 /* Append [XM]. Compute a best guess of the number of bytes
3622 actually transfered. */
3623 switch (remote_protocol_binary_download.support)
3624 {
3625 case PACKET_ENABLE:
3626 *p++ = 'X';
3627 /* Best guess at number of bytes that will fit. */
3628 todo = min (len, max_buf_size);
3629 break;
3630 case PACKET_DISABLE:
3631 *p++ = 'M';
3632 /* num bytes that will fit */
3633 todo = min (len, max_buf_size / 2);
3634 break;
3635 case PACKET_SUPPORT_UNKNOWN:
3636 internal_error (__FILE__, __LINE__,
3637 "remote_write_bytes: bad internal state");
3638 default:
3639 internal_error (__FILE__, __LINE__, "bad switch");
3640 }
3641
3642 /* Append <memaddr> */
3643 memaddr = remote_address_masked (memaddr);
3644 p += hexnumstr (p, (ULONGEST) memaddr);
3645 *p++ = ',';
3646
3647 /* Append <len>. Retain the location/size of <len>. It may
3648 need to be adjusted once the packet body has been created. */
3649 plen = p;
3650 plenlen = hexnumstr (p, (ULONGEST) todo);
3651 p += plenlen;
3652 *p++ = ':';
3653 *p = '\0';
3654
3655 /* Append the packet body. */
3656 switch (remote_protocol_binary_download.support)
3657 {
3658 case PACKET_ENABLE:
3659 /* Binary mode. Send target system values byte by byte, in
3660 increasing byte addresses. Only escape certain critical
3661 characters. */
3662 for (nr_bytes = 0;
3663 (nr_bytes < todo) && (p - buf) < (max_buf_size - 2);
3664 nr_bytes++)
3665 {
3666 switch (myaddr[nr_bytes] & 0xff)
3667 {
3668 case '$':
3669 case '#':
3670 case 0x7d:
3671 /* These must be escaped */
3672 *p++ = 0x7d;
3673 *p++ = (myaddr[nr_bytes] & 0xff) ^ 0x20;
3674 break;
3675 default:
3676 *p++ = myaddr[nr_bytes] & 0xff;
3677 break;
3678 }
3679 }
3680 if (nr_bytes < todo)
3681 {
3682 /* Escape chars have filled up the buffer prematurely,
3683 and we have actually sent fewer bytes than planned.
3684 Fix-up the length field of the packet. Use the same
3685 number of characters as before. */
3686
3687 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
3688 *plen = ':'; /* overwrite \0 from hexnumnstr() */
3689 }
3690 break;
3691 case PACKET_DISABLE:
3692 /* Normal mode: Send target system values byte by byte, in
3693 increasing byte addresses. Each byte is encoded as a two hex
3694 value. */
3695 nr_bytes = bin2hex (myaddr, p, todo);
3696 p += 2 * nr_bytes;
3697 break;
3698 case PACKET_SUPPORT_UNKNOWN:
3699 internal_error (__FILE__, __LINE__,
3700 "remote_write_bytes: bad internal state");
3701 default:
3702 internal_error (__FILE__, __LINE__, "bad switch");
3703 }
3704
3705 putpkt_binary (buf, (int) (p - buf));
3706 getpkt (buf, sizeof_buf, 0);
3707
3708 if (buf[0] == 'E')
3709 {
3710 /* There is no correspondance between what the remote protocol
3711 uses for errors and errno codes. We would like a cleaner way
3712 of representing errors (big enough to include errno codes,
3713 bfd_error codes, and others). But for now just return EIO. */
3714 errno = EIO;
3715 return 0;
3716 }
3717
3718 /* Return NR_BYTES, not TODO, in case escape chars caused us to send fewer
3719 bytes than we'd planned. */
3720 return nr_bytes;
3721 }
3722
3723 /* Read memory data directly from the remote machine.
3724 This does not use the data cache; the data cache uses this.
3725 MEMADDR is the address in the remote memory space.
3726 MYADDR is the address of the buffer in our space.
3727 LEN is the number of bytes.
3728
3729 Returns number of bytes transferred, or 0 for error. */
3730
3731 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
3732 remote targets) shouldn't attempt to read the entire buffer.
3733 Instead it should read a single packet worth of data and then
3734 return the byte size of that packet to the caller. The caller (its
3735 caller and its callers caller ;-) already contains code for
3736 handling partial reads. */
3737
3738 static int
3739 remote_read_bytes (CORE_ADDR memaddr, char *myaddr, int len)
3740 {
3741 char *buf;
3742 int max_buf_size; /* Max size of packet output buffer */
3743 long sizeof_buf;
3744 int origlen;
3745
3746 /* Create a buffer big enough for this packet. */
3747 max_buf_size = get_memory_read_packet_size ();
3748 sizeof_buf = max_buf_size + 1; /* Space for trailing NUL */
3749 buf = alloca (sizeof_buf);
3750
3751 origlen = len;
3752 while (len > 0)
3753 {
3754 char *p;
3755 int todo;
3756 int i;
3757
3758 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
3759
3760 /* construct "m"<memaddr>","<len>" */
3761 /* sprintf (buf, "m%lx,%x", (unsigned long) memaddr, todo); */
3762 memaddr = remote_address_masked (memaddr);
3763 p = buf;
3764 *p++ = 'm';
3765 p += hexnumstr (p, (ULONGEST) memaddr);
3766 *p++ = ',';
3767 p += hexnumstr (p, (ULONGEST) todo);
3768 *p = '\0';
3769
3770 putpkt (buf);
3771 getpkt (buf, sizeof_buf, 0);
3772
3773 if (buf[0] == 'E')
3774 {
3775 /* There is no correspondance between what the remote protocol uses
3776 for errors and errno codes. We would like a cleaner way of
3777 representing errors (big enough to include errno codes, bfd_error
3778 codes, and others). But for now just return EIO. */
3779 errno = EIO;
3780 return 0;
3781 }
3782
3783 /* Reply describes memory byte by byte,
3784 each byte encoded as two hex characters. */
3785
3786 p = buf;
3787 if ((i = hex2bin (p, myaddr, todo)) < todo)
3788 {
3789 /* Reply is short. This means that we were able to read
3790 only part of what we wanted to. */
3791 return i + (origlen - len);
3792 }
3793 myaddr += todo;
3794 memaddr += todo;
3795 len -= todo;
3796 }
3797 return origlen;
3798 }
3799 \f
3800 /* Read or write LEN bytes from inferior memory at MEMADDR,
3801 transferring to or from debugger address BUFFER. Write to inferior if
3802 SHOULD_WRITE is nonzero. Returns length of data written or read; 0
3803 for error. TARGET is unused. */
3804
3805 /* ARGSUSED */
3806 static int
3807 remote_xfer_memory (CORE_ADDR mem_addr, char *buffer, int mem_len,
3808 int should_write,
3809 struct mem_attrib *attrib ATTRIBUTE_UNUSED,
3810 struct target_ops *target)
3811 {
3812 CORE_ADDR targ_addr;
3813 int targ_len;
3814 int res;
3815
3816 REMOTE_TRANSLATE_XFER_ADDRESS (mem_addr, mem_len, &targ_addr, &targ_len);
3817 if (targ_len <= 0)
3818 return 0;
3819
3820 if (should_write)
3821 res = remote_write_bytes (targ_addr, buffer, targ_len);
3822 else
3823 res = remote_read_bytes (targ_addr, buffer, targ_len);
3824
3825 return res;
3826 }
3827
3828
3829 #if 0
3830 /* Enable after 4.12. */
3831
3832 void
3833 remote_search (int len, char *data, char *mask, CORE_ADDR startaddr,
3834 int increment, CORE_ADDR lorange, CORE_ADDR hirange,
3835 CORE_ADDR *addr_found, char *data_found)
3836 {
3837 if (increment == -4 && len == 4)
3838 {
3839 long mask_long, data_long;
3840 long data_found_long;
3841 CORE_ADDR addr_we_found;
3842 char *buf = alloca (PBUFSIZ);
3843 long returned_long[2];
3844 char *p;
3845
3846 mask_long = extract_unsigned_integer (mask, len);
3847 data_long = extract_unsigned_integer (data, len);
3848 sprintf (buf, "t%x:%x,%x", startaddr, data_long, mask_long);
3849 putpkt (buf);
3850 getpkt (buf, PBUFSIZ, 0);
3851 if (buf[0] == '\0')
3852 {
3853 /* The stub doesn't support the 't' request. We might want to
3854 remember this fact, but on the other hand the stub could be
3855 switched on us. Maybe we should remember it only until
3856 the next "target remote". */
3857 generic_search (len, data, mask, startaddr, increment, lorange,
3858 hirange, addr_found, data_found);
3859 return;
3860 }
3861
3862 if (buf[0] == 'E')
3863 /* There is no correspondance between what the remote protocol uses
3864 for errors and errno codes. We would like a cleaner way of
3865 representing errors (big enough to include errno codes, bfd_error
3866 codes, and others). But for now just use EIO. */
3867 memory_error (EIO, startaddr);
3868 p = buf;
3869 addr_we_found = 0;
3870 while (*p != '\0' && *p != ',')
3871 addr_we_found = (addr_we_found << 4) + fromhex (*p++);
3872 if (*p == '\0')
3873 error ("Protocol error: short return for search");
3874
3875 data_found_long = 0;
3876 while (*p != '\0' && *p != ',')
3877 data_found_long = (data_found_long << 4) + fromhex (*p++);
3878 /* Ignore anything after this comma, for future extensions. */
3879
3880 if (addr_we_found < lorange || addr_we_found >= hirange)
3881 {
3882 *addr_found = 0;
3883 return;
3884 }
3885
3886 *addr_found = addr_we_found;
3887 *data_found = store_unsigned_integer (data_we_found, len);
3888 return;
3889 }
3890 generic_search (len, data, mask, startaddr, increment, lorange,
3891 hirange, addr_found, data_found);
3892 }
3893 #endif /* 0 */
3894 \f
3895 static void
3896 remote_files_info (struct target_ops *ignore)
3897 {
3898 puts_filtered ("Debugging a target over a serial line.\n");
3899 }
3900 \f
3901 /* Stuff for dealing with the packets which are part of this protocol.
3902 See comment at top of file for details. */
3903
3904 /* Read a single character from the remote end, masking it down to 7 bits. */
3905
3906 static int
3907 readchar (int timeout)
3908 {
3909 int ch;
3910
3911 ch = serial_readchar (remote_desc, timeout);
3912
3913 if (ch >= 0)
3914 return (ch & 0x7f);
3915
3916 switch ((enum serial_rc) ch)
3917 {
3918 case SERIAL_EOF:
3919 target_mourn_inferior ();
3920 error ("Remote connection closed");
3921 /* no return */
3922 case SERIAL_ERROR:
3923 perror_with_name ("Remote communication error");
3924 /* no return */
3925 case SERIAL_TIMEOUT:
3926 break;
3927 }
3928 return ch;
3929 }
3930
3931 /* Send the command in BUF to the remote machine, and read the reply
3932 into BUF. Report an error if we get an error reply. */
3933
3934 static void
3935 remote_send (char *buf,
3936 long sizeof_buf)
3937 {
3938 putpkt (buf);
3939 getpkt (buf, sizeof_buf, 0);
3940
3941 if (buf[0] == 'E')
3942 error ("Remote failure reply: %s", buf);
3943 }
3944
3945 /* Display a null-terminated packet on stdout, for debugging, using C
3946 string notation. */
3947
3948 static void
3949 print_packet (char *buf)
3950 {
3951 puts_filtered ("\"");
3952 fputstr_filtered (buf, '"', gdb_stdout);
3953 puts_filtered ("\"");
3954 }
3955
3956 int
3957 putpkt (char *buf)
3958 {
3959 return putpkt_binary (buf, strlen (buf));
3960 }
3961
3962 /* Send a packet to the remote machine, with error checking. The data
3963 of the packet is in BUF. The string in BUF can be at most PBUFSIZ - 5
3964 to account for the $, # and checksum, and for a possible /0 if we are
3965 debugging (remote_debug) and want to print the sent packet as a string */
3966
3967 static int
3968 putpkt_binary (char *buf, int cnt)
3969 {
3970 int i;
3971 unsigned char csum = 0;
3972 char *buf2 = alloca (cnt + 6);
3973 long sizeof_junkbuf = PBUFSIZ;
3974 char *junkbuf = alloca (sizeof_junkbuf);
3975
3976 int ch;
3977 int tcount = 0;
3978 char *p;
3979
3980 /* Copy the packet into buffer BUF2, encapsulating it
3981 and giving it a checksum. */
3982
3983 p = buf2;
3984 *p++ = '$';
3985
3986 for (i = 0; i < cnt; i++)
3987 {
3988 csum += buf[i];
3989 *p++ = buf[i];
3990 }
3991 *p++ = '#';
3992 *p++ = tohex ((csum >> 4) & 0xf);
3993 *p++ = tohex (csum & 0xf);
3994
3995 /* Send it over and over until we get a positive ack. */
3996
3997 while (1)
3998 {
3999 int started_error_output = 0;
4000
4001 if (remote_debug)
4002 {
4003 *p = '\0';
4004 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4005 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4006 fprintf_unfiltered (gdb_stdlog, "...");
4007 gdb_flush (gdb_stdlog);
4008 }
4009 if (serial_write (remote_desc, buf2, p - buf2))
4010 perror_with_name ("putpkt: write failed");
4011
4012 /* read until either a timeout occurs (-2) or '+' is read */
4013 while (1)
4014 {
4015 ch = readchar (remote_timeout);
4016
4017 if (remote_debug)
4018 {
4019 switch (ch)
4020 {
4021 case '+':
4022 case '-':
4023 case SERIAL_TIMEOUT:
4024 case '$':
4025 if (started_error_output)
4026 {
4027 putchar_unfiltered ('\n');
4028 started_error_output = 0;
4029 }
4030 }
4031 }
4032
4033 switch (ch)
4034 {
4035 case '+':
4036 if (remote_debug)
4037 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4038 return 1;
4039 case '-':
4040 if (remote_debug)
4041 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4042 case SERIAL_TIMEOUT:
4043 tcount++;
4044 if (tcount > 3)
4045 return 0;
4046 break; /* Retransmit buffer */
4047 case '$':
4048 {
4049 if (remote_debug)
4050 fprintf_unfiltered (gdb_stdlog, "Packet instead of Ack, ignoring it\n");
4051 /* It's probably an old response, and we're out of sync.
4052 Just gobble up the packet and ignore it. */
4053 read_frame (junkbuf, sizeof_junkbuf);
4054 continue; /* Now, go look for + */
4055 }
4056 default:
4057 if (remote_debug)
4058 {
4059 if (!started_error_output)
4060 {
4061 started_error_output = 1;
4062 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4063 }
4064 fputc_unfiltered (ch & 0177, gdb_stdlog);
4065 }
4066 continue;
4067 }
4068 break; /* Here to retransmit */
4069 }
4070
4071 #if 0
4072 /* This is wrong. If doing a long backtrace, the user should be
4073 able to get out next time we call QUIT, without anything as
4074 violent as interrupt_query. If we want to provide a way out of
4075 here without getting to the next QUIT, it should be based on
4076 hitting ^C twice as in remote_wait. */
4077 if (quit_flag)
4078 {
4079 quit_flag = 0;
4080 interrupt_query ();
4081 }
4082 #endif
4083 }
4084 }
4085
4086 static int remote_cisco_mode;
4087
4088 /* Come here after finding the start of the frame. Collect the rest
4089 into BUF, verifying the checksum, length, and handling run-length
4090 compression. No more than sizeof_buf-1 characters are read so that
4091 the buffer can be NUL terminated.
4092
4093 Returns -1 on error, number of characters in buffer (ignoring the
4094 trailing NULL) on success. (could be extended to return one of the
4095 SERIAL status indications). */
4096
4097 static long
4098 read_frame (char *buf,
4099 long sizeof_buf)
4100 {
4101 unsigned char csum;
4102 long bc;
4103 int c;
4104
4105 csum = 0;
4106 bc = 0;
4107
4108 while (1)
4109 {
4110 /* ASSERT (bc < sizeof_buf - 1) - space for trailing NUL */
4111 c = readchar (remote_timeout);
4112 switch (c)
4113 {
4114 case SERIAL_TIMEOUT:
4115 if (remote_debug)
4116 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4117 return -1;
4118 case '$':
4119 if (remote_debug)
4120 fputs_filtered ("Saw new packet start in middle of old one\n",
4121 gdb_stdlog);
4122 return -1; /* Start a new packet, count retries */
4123 case '#':
4124 {
4125 unsigned char pktcsum;
4126 int check_0 = 0;
4127 int check_1 = 0;
4128
4129 buf[bc] = '\0';
4130
4131 check_0 = readchar (remote_timeout);
4132 if (check_0 >= 0)
4133 check_1 = readchar (remote_timeout);
4134
4135 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4136 {
4137 if (remote_debug)
4138 fputs_filtered ("Timeout in checksum, retrying\n", gdb_stdlog);
4139 return -1;
4140 }
4141 else if (check_0 < 0 || check_1 < 0)
4142 {
4143 if (remote_debug)
4144 fputs_filtered ("Communication error in checksum\n", gdb_stdlog);
4145 return -1;
4146 }
4147
4148 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4149 if (csum == pktcsum)
4150 return bc;
4151
4152 if (remote_debug)
4153 {
4154 fprintf_filtered (gdb_stdlog,
4155 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4156 pktcsum, csum);
4157 fputs_filtered (buf, gdb_stdlog);
4158 fputs_filtered ("\n", gdb_stdlog);
4159 }
4160 /* Number of characters in buffer ignoring trailing
4161 NUL. */
4162 return -1;
4163 }
4164 case '*': /* Run length encoding */
4165 {
4166 int repeat;
4167 csum += c;
4168
4169 if (remote_cisco_mode == 0)
4170 {
4171 c = readchar (remote_timeout);
4172 csum += c;
4173 repeat = c - ' ' + 3; /* Compute repeat count */
4174 }
4175 else
4176 {
4177 /* Cisco's run-length encoding variant uses two
4178 hex chars to represent the repeat count. */
4179
4180 c = readchar (remote_timeout);
4181 csum += c;
4182 repeat = fromhex (c) << 4;
4183 c = readchar (remote_timeout);
4184 csum += c;
4185 repeat += fromhex (c);
4186 }
4187
4188 /* The character before ``*'' is repeated. */
4189
4190 if (repeat > 0 && repeat <= 255
4191 && bc > 0
4192 && bc + repeat < sizeof_buf - 1)
4193 {
4194 memset (&buf[bc], buf[bc - 1], repeat);
4195 bc += repeat;
4196 continue;
4197 }
4198
4199 buf[bc] = '\0';
4200 printf_filtered ("Repeat count %d too large for buffer: ", repeat);
4201 puts_filtered (buf);
4202 puts_filtered ("\n");
4203 return -1;
4204 }
4205 default:
4206 if (bc < sizeof_buf - 1)
4207 {
4208 buf[bc++] = c;
4209 csum += c;
4210 continue;
4211 }
4212
4213 buf[bc] = '\0';
4214 puts_filtered ("Remote packet too long: ");
4215 puts_filtered (buf);
4216 puts_filtered ("\n");
4217
4218 return -1;
4219 }
4220 }
4221 }
4222
4223 /* Read a packet from the remote machine, with error checking, and
4224 store it in BUF. If FOREVER, wait forever rather than timing out;
4225 this is used (in synchronous mode) to wait for a target that is is
4226 executing user code to stop. */
4227 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4228 don't have to change all the calls to getpkt to deal with the
4229 return value, because at the moment I don't know what the right
4230 thing to do it for those. */
4231 void
4232 getpkt (char *buf,
4233 long sizeof_buf,
4234 int forever)
4235 {
4236 int timed_out;
4237
4238 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4239 }
4240
4241
4242 /* Read a packet from the remote machine, with error checking, and
4243 store it in BUF. If FOREVER, wait forever rather than timing out;
4244 this is used (in synchronous mode) to wait for a target that is is
4245 executing user code to stop. If FOREVER == 0, this function is
4246 allowed to time out gracefully and return an indication of this to
4247 the caller. */
4248 static int
4249 getpkt_sane (char *buf,
4250 long sizeof_buf,
4251 int forever)
4252 {
4253 int c;
4254 int tries;
4255 int timeout;
4256 int val;
4257
4258 strcpy (buf, "timeout");
4259
4260 if (forever)
4261 {
4262 timeout = watchdog > 0 ? watchdog : -1;
4263 }
4264
4265 else
4266 timeout = remote_timeout;
4267
4268 #define MAX_TRIES 3
4269
4270 for (tries = 1; tries <= MAX_TRIES; tries++)
4271 {
4272 /* This can loop forever if the remote side sends us characters
4273 continuously, but if it pauses, we'll get a zero from readchar
4274 because of timeout. Then we'll count that as a retry. */
4275
4276 /* Note that we will only wait forever prior to the start of a packet.
4277 After that, we expect characters to arrive at a brisk pace. They
4278 should show up within remote_timeout intervals. */
4279
4280 do
4281 {
4282 c = readchar (timeout);
4283
4284 if (c == SERIAL_TIMEOUT)
4285 {
4286 if (forever) /* Watchdog went off? Kill the target. */
4287 {
4288 QUIT;
4289 target_mourn_inferior ();
4290 error ("Watchdog has expired. Target detached.\n");
4291 }
4292 if (remote_debug)
4293 fputs_filtered ("Timed out.\n", gdb_stdlog);
4294 goto retry;
4295 }
4296 }
4297 while (c != '$');
4298
4299 /* We've found the start of a packet, now collect the data. */
4300
4301 val = read_frame (buf, sizeof_buf);
4302
4303 if (val >= 0)
4304 {
4305 if (remote_debug)
4306 {
4307 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
4308 fputstr_unfiltered (buf, 0, gdb_stdlog);
4309 fprintf_unfiltered (gdb_stdlog, "\n");
4310 }
4311 serial_write (remote_desc, "+", 1);
4312 return 0;
4313 }
4314
4315 /* Try the whole thing again. */
4316 retry:
4317 serial_write (remote_desc, "-", 1);
4318 }
4319
4320 /* We have tried hard enough, and just can't receive the packet. Give up. */
4321
4322 printf_unfiltered ("Ignoring packet error, continuing...\n");
4323 serial_write (remote_desc, "+", 1);
4324 return 1;
4325 }
4326 \f
4327 static void
4328 remote_kill (void)
4329 {
4330 /* For some mysterious reason, wait_for_inferior calls kill instead of
4331 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4332 if (kill_kludge)
4333 {
4334 kill_kludge = 0;
4335 target_mourn_inferior ();
4336 return;
4337 }
4338
4339 /* Use catch_errors so the user can quit from gdb even when we aren't on
4340 speaking terms with the remote system. */
4341 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4342
4343 /* Don't wait for it to die. I'm not really sure it matters whether
4344 we do or not. For the existing stubs, kill is a noop. */
4345 target_mourn_inferior ();
4346 }
4347
4348 /* Async version of remote_kill. */
4349 static void
4350 remote_async_kill (void)
4351 {
4352 /* Unregister the file descriptor from the event loop. */
4353 if (target_is_async_p ())
4354 serial_async (remote_desc, NULL, 0);
4355
4356 /* For some mysterious reason, wait_for_inferior calls kill instead of
4357 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
4358 if (kill_kludge)
4359 {
4360 kill_kludge = 0;
4361 target_mourn_inferior ();
4362 return;
4363 }
4364
4365 /* Use catch_errors so the user can quit from gdb even when we aren't on
4366 speaking terms with the remote system. */
4367 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
4368
4369 /* Don't wait for it to die. I'm not really sure it matters whether
4370 we do or not. For the existing stubs, kill is a noop. */
4371 target_mourn_inferior ();
4372 }
4373
4374 static void
4375 remote_mourn (void)
4376 {
4377 remote_mourn_1 (&remote_ops);
4378 }
4379
4380 static void
4381 remote_async_mourn (void)
4382 {
4383 remote_mourn_1 (&remote_async_ops);
4384 }
4385
4386 static void
4387 extended_remote_mourn (void)
4388 {
4389 /* We do _not_ want to mourn the target like this; this will
4390 remove the extended remote target from the target stack,
4391 and the next time the user says "run" it'll fail.
4392
4393 FIXME: What is the right thing to do here? */
4394 #if 0
4395 remote_mourn_1 (&extended_remote_ops);
4396 #endif
4397 }
4398
4399 /* Worker function for remote_mourn. */
4400 static void
4401 remote_mourn_1 (struct target_ops *target)
4402 {
4403 unpush_target (target);
4404 generic_mourn_inferior ();
4405 }
4406
4407 /* In the extended protocol we want to be able to do things like
4408 "run" and have them basically work as expected. So we need
4409 a special create_inferior function.
4410
4411 FIXME: One day add support for changing the exec file
4412 we're debugging, arguments and an environment. */
4413
4414 static void
4415 extended_remote_create_inferior (char *exec_file, char *args, char **env)
4416 {
4417 /* Rip out the breakpoints; we'll reinsert them after restarting
4418 the remote server. */
4419 remove_breakpoints ();
4420
4421 /* Now restart the remote server. */
4422 extended_remote_restart ();
4423
4424 /* Now put the breakpoints back in. This way we're safe if the
4425 restart function works via a unix fork on the remote side. */
4426 insert_breakpoints ();
4427
4428 /* Clean up from the last time we were running. */
4429 clear_proceed_status ();
4430
4431 /* Let the remote process run. */
4432 proceed (-1, TARGET_SIGNAL_0, 0);
4433 }
4434
4435 /* Async version of extended_remote_create_inferior. */
4436 static void
4437 extended_remote_async_create_inferior (char *exec_file, char *args, char **env)
4438 {
4439 /* Rip out the breakpoints; we'll reinsert them after restarting
4440 the remote server. */
4441 remove_breakpoints ();
4442
4443 /* If running asynchronously, register the target file descriptor
4444 with the event loop. */
4445 if (event_loop_p && target_can_async_p ())
4446 target_async (inferior_event_handler, 0);
4447
4448 /* Now restart the remote server. */
4449 extended_remote_restart ();
4450
4451 /* Now put the breakpoints back in. This way we're safe if the
4452 restart function works via a unix fork on the remote side. */
4453 insert_breakpoints ();
4454
4455 /* Clean up from the last time we were running. */
4456 clear_proceed_status ();
4457
4458 /* Let the remote process run. */
4459 proceed (-1, TARGET_SIGNAL_0, 0);
4460 }
4461 \f
4462
4463 /* On some machines, e.g. 68k, we may use a different breakpoint instruction
4464 than other targets; in those use REMOTE_BREAKPOINT instead of just
4465 BREAKPOINT. Also, bi-endian targets may define LITTLE_REMOTE_BREAKPOINT
4466 and BIG_REMOTE_BREAKPOINT. If none of these are defined, we just call
4467 the standard routines that are in mem-break.c. */
4468
4469 /* FIXME, these ought to be done in a more dynamic fashion. For instance,
4470 the choice of breakpoint instruction affects target program design and
4471 vice versa, and by making it user-tweakable, the special code here
4472 goes away and we need fewer special GDB configurations. */
4473
4474 #if defined (LITTLE_REMOTE_BREAKPOINT) && defined (BIG_REMOTE_BREAKPOINT) && !defined(REMOTE_BREAKPOINT)
4475 #define REMOTE_BREAKPOINT
4476 #endif
4477
4478 #ifdef REMOTE_BREAKPOINT
4479
4480 /* If the target isn't bi-endian, just pretend it is. */
4481 #if !defined (LITTLE_REMOTE_BREAKPOINT) && !defined (BIG_REMOTE_BREAKPOINT)
4482 #define LITTLE_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4483 #define BIG_REMOTE_BREAKPOINT REMOTE_BREAKPOINT
4484 #endif
4485
4486 static unsigned char big_break_insn[] = BIG_REMOTE_BREAKPOINT;
4487 static unsigned char little_break_insn[] = LITTLE_REMOTE_BREAKPOINT;
4488
4489 #endif /* REMOTE_BREAKPOINT */
4490
4491 /* Insert a breakpoint on targets that don't have any better breakpoint
4492 support. We read the contents of the target location and stash it,
4493 then overwrite it with a breakpoint instruction. ADDR is the target
4494 location in the target machine. CONTENTS_CACHE is a pointer to
4495 memory allocated for saving the target contents. It is guaranteed
4496 by the caller to be long enough to save sizeof BREAKPOINT bytes (this
4497 is accomplished via BREAKPOINT_MAX). */
4498
4499 static int
4500 remote_insert_breakpoint (CORE_ADDR addr, char *contents_cache)
4501 {
4502 #ifdef REMOTE_BREAKPOINT
4503 int val;
4504 #endif
4505 int bp_size;
4506
4507 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
4508 If it succeeds, then set the support to PACKET_ENABLE. If it
4509 fails, and the user has explicitly requested the Z support then
4510 report an error, otherwise, mark it disabled and go on. */
4511
4512 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4513 {
4514 char *buf = alloca (PBUFSIZ);
4515 char *p = buf;
4516 CORE_ADDR addr2;
4517
4518 addr2 = remote_address_masked (addr);
4519 if (ADJUST_REMOTE_Z_BREAKPOINT_P ())
4520 ADJUST_REMOTE_Z_BREAKPOINT (&addr2);
4521
4522 *(p++) = 'Z';
4523 *(p++) = '0';
4524 *(p++) = ',';
4525 p += hexnumstr (p, (ULONGEST) addr2);
4526 BREAKPOINT_FROM_PC (&addr2, &bp_size);
4527 sprintf (p, ",%d", bp_size);
4528
4529 putpkt (buf);
4530 getpkt (buf, PBUFSIZ, 0);
4531
4532 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_SOFTWARE_BP]))
4533 {
4534 case PACKET_ERROR:
4535 return -1;
4536 case PACKET_OK:
4537 return 0;
4538 case PACKET_UNKNOWN:
4539 break;
4540 }
4541 }
4542
4543 #ifdef REMOTE_BREAKPOINT
4544 val = target_read_memory (addr, contents_cache, sizeof big_break_insn);
4545
4546 if (val == 0)
4547 {
4548 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
4549 val = target_write_memory (addr, (char *) big_break_insn,
4550 sizeof big_break_insn);
4551 else
4552 val = target_write_memory (addr, (char *) little_break_insn,
4553 sizeof little_break_insn);
4554 }
4555
4556 return val;
4557 #else
4558 return memory_insert_breakpoint (addr, contents_cache);
4559 #endif /* REMOTE_BREAKPOINT */
4560 }
4561
4562 static int
4563 remote_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
4564 {
4565 int bp_size;
4566
4567 if (remote_protocol_Z[Z_PACKET_SOFTWARE_BP].support != PACKET_DISABLE)
4568 {
4569 char *buf = alloca (PBUFSIZ);
4570 char *p = buf;
4571 CORE_ADDR addr2;
4572
4573 *(p++) = 'z';
4574 *(p++) = '0';
4575 *(p++) = ',';
4576
4577 addr2 = remote_address_masked (addr);
4578 if (ADJUST_REMOTE_Z_BREAKPOINT_P ())
4579 ADJUST_REMOTE_Z_BREAKPOINT (&addr2);
4580
4581 p += hexnumstr (p, (ULONGEST) addr2);
4582 BREAKPOINT_FROM_PC (&addr2, &bp_size);
4583 sprintf (p, ",%d", bp_size);
4584
4585 putpkt (buf);
4586 getpkt (buf, PBUFSIZ, 0);
4587
4588 return (buf[0] == 'E');
4589 }
4590
4591 #ifdef REMOTE_BREAKPOINT
4592 return target_write_memory (addr, contents_cache, sizeof big_break_insn);
4593 #else
4594 return memory_remove_breakpoint (addr, contents_cache);
4595 #endif /* REMOTE_BREAKPOINT */
4596 }
4597
4598 static int
4599 watchpoint_to_Z_packet (int type)
4600 {
4601 switch (type)
4602 {
4603 case hw_write:
4604 return 2;
4605 break;
4606 case hw_read:
4607 return 3;
4608 break;
4609 case hw_access:
4610 return 4;
4611 break;
4612 default:
4613 internal_error (__FILE__, __LINE__,
4614 "hw_bp_to_z: bad watchpoint type %d", type);
4615 }
4616 }
4617
4618 /* FIXME: This function should be static and a member of the remote
4619 target vector. */
4620
4621 int
4622 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
4623 {
4624 char *buf = alloca (PBUFSIZ);
4625 char *p;
4626 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4627
4628 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4629 error ("Can't set hardware watchpoints without the '%s' (%s) packet\n",
4630 remote_protocol_Z[packet].name,
4631 remote_protocol_Z[packet].title);
4632
4633 sprintf (buf, "Z%x,", packet);
4634 p = strchr (buf, '\0');
4635 addr = remote_address_masked (addr);
4636 p += hexnumstr (p, (ULONGEST) addr);
4637 sprintf (p, ",%x", len);
4638
4639 putpkt (buf);
4640 getpkt (buf, PBUFSIZ, 0);
4641
4642 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4643 {
4644 case PACKET_ERROR:
4645 case PACKET_UNKNOWN:
4646 return -1;
4647 case PACKET_OK:
4648 return 0;
4649 }
4650 internal_error (__FILE__, __LINE__,
4651 "remote_insert_watchpoint: reached end of function");
4652 }
4653
4654 /* FIXME: This function should be static and a member of the remote
4655 target vector. */
4656
4657 int
4658 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
4659 {
4660 char *buf = alloca (PBUFSIZ);
4661 char *p;
4662 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
4663
4664 if (remote_protocol_Z[packet].support == PACKET_DISABLE)
4665 error ("Can't clear hardware watchpoints without the '%s' (%s) packet\n",
4666 remote_protocol_Z[packet].name,
4667 remote_protocol_Z[packet].title);
4668
4669 sprintf (buf, "z%x,", packet);
4670 p = strchr (buf, '\0');
4671 addr = remote_address_masked (addr);
4672 p += hexnumstr (p, (ULONGEST) addr);
4673 sprintf (p, ",%x", len);
4674 putpkt (buf);
4675 getpkt (buf, PBUFSIZ, 0);
4676
4677 switch (packet_ok (buf, &remote_protocol_Z[packet]))
4678 {
4679 case PACKET_ERROR:
4680 case PACKET_UNKNOWN:
4681 return -1;
4682 case PACKET_OK:
4683 return 0;
4684 }
4685 internal_error (__FILE__, __LINE__,
4686 "remote_remove_watchpoint: reached end of function");
4687 }
4688
4689 /* FIXME: This function should be static and a member of the remote
4690 target vector. */
4691
4692 int
4693 remote_insert_hw_breakpoint (CORE_ADDR addr, int len)
4694 {
4695 char *buf = alloca (PBUFSIZ);
4696 char *p = buf;
4697
4698 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4699 error ("Can't set hardware breakpoint without the '%s' (%s) packet\n",
4700 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4701 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4702
4703 *(p++) = 'Z';
4704 *(p++) = '1';
4705 *(p++) = ',';
4706
4707 addr = remote_address_masked (addr);
4708 p += hexnumstr (p, (ULONGEST) addr);
4709 sprintf (p, ",%x", len);
4710
4711 putpkt (buf);
4712 getpkt (buf, PBUFSIZ, 0);
4713
4714 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4715 {
4716 case PACKET_ERROR:
4717 case PACKET_UNKNOWN:
4718 return -1;
4719 case PACKET_OK:
4720 return 0;
4721 }
4722 internal_error (__FILE__, __LINE__,
4723 "remote_remove_watchpoint: reached end of function");
4724 }
4725
4726 /* FIXME: This function should be static and a member of the remote
4727 target vector. */
4728
4729 int
4730 remote_remove_hw_breakpoint (CORE_ADDR addr, int len)
4731 {
4732 char *buf = alloca (PBUFSIZ);
4733 char *p = buf;
4734
4735 if (remote_protocol_Z[Z_PACKET_HARDWARE_BP].support == PACKET_DISABLE)
4736 error ("Can't clear hardware breakpoint without the '%s' (%s) packet\n",
4737 remote_protocol_Z[Z_PACKET_HARDWARE_BP].name,
4738 remote_protocol_Z[Z_PACKET_HARDWARE_BP].title);
4739
4740 *(p++) = 'z';
4741 *(p++) = '1';
4742 *(p++) = ',';
4743
4744 addr = remote_address_masked (addr);
4745 p += hexnumstr (p, (ULONGEST) addr);
4746 sprintf (p, ",%x", len);
4747
4748 putpkt(buf);
4749 getpkt (buf, PBUFSIZ, 0);
4750
4751 switch (packet_ok (buf, &remote_protocol_Z[Z_PACKET_HARDWARE_BP]))
4752 {
4753 case PACKET_ERROR:
4754 case PACKET_UNKNOWN:
4755 return -1;
4756 case PACKET_OK:
4757 return 0;
4758 }
4759 internal_error (__FILE__, __LINE__,
4760 "remote_remove_watchpoint: reached end of function");
4761 }
4762
4763 /* Some targets are only capable of doing downloads, and afterwards
4764 they switch to the remote serial protocol. This function provides
4765 a clean way to get from the download target to the remote target.
4766 It's basically just a wrapper so that we don't have to expose any
4767 of the internal workings of remote.c.
4768
4769 Prior to calling this routine, you should shutdown the current
4770 target code, else you will get the "A program is being debugged
4771 already..." message. Usually a call to pop_target() suffices. */
4772
4773 void
4774 push_remote_target (char *name, int from_tty)
4775 {
4776 printf_filtered ("Switching to remote protocol\n");
4777 remote_open (name, from_tty);
4778 }
4779
4780 /* Other targets want to use the entire remote serial module but with
4781 certain remote_ops overridden. */
4782
4783 void
4784 open_remote_target (char *name, int from_tty, struct target_ops *target,
4785 int extended_p)
4786 {
4787 printf_filtered ("Selecting the %sremote protocol\n",
4788 (extended_p ? "extended-" : ""));
4789 remote_open_1 (name, from_tty, target, extended_p);
4790 }
4791
4792 /* Table used by the crc32 function to calcuate the checksum. */
4793
4794 static unsigned long crc32_table[256] =
4795 {0, 0};
4796
4797 static unsigned long
4798 crc32 (unsigned char *buf, int len, unsigned int crc)
4799 {
4800 if (!crc32_table[1])
4801 {
4802 /* Initialize the CRC table and the decoding table. */
4803 int i, j;
4804 unsigned int c;
4805
4806 for (i = 0; i < 256; i++)
4807 {
4808 for (c = i << 24, j = 8; j > 0; --j)
4809 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
4810 crc32_table[i] = c;
4811 }
4812 }
4813
4814 while (len--)
4815 {
4816 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
4817 buf++;
4818 }
4819 return crc;
4820 }
4821
4822 /* compare-sections command
4823
4824 With no arguments, compares each loadable section in the exec bfd
4825 with the same memory range on the target, and reports mismatches.
4826 Useful for verifying the image on the target against the exec file.
4827 Depends on the target understanding the new "qCRC:" request. */
4828
4829 /* FIXME: cagney/1999-10-26: This command should be broken down into a
4830 target method (target verify memory) and generic version of the
4831 actual command. This will allow other high-level code (especially
4832 generic_load()) to make use of this target functionality. */
4833
4834 static void
4835 compare_sections_command (char *args, int from_tty)
4836 {
4837 asection *s;
4838 unsigned long host_crc, target_crc;
4839 extern bfd *exec_bfd;
4840 struct cleanup *old_chain;
4841 char *tmp;
4842 char *sectdata;
4843 const char *sectname;
4844 char *buf = alloca (PBUFSIZ);
4845 bfd_size_type size;
4846 bfd_vma lma;
4847 int matched = 0;
4848 int mismatched = 0;
4849
4850 if (!exec_bfd)
4851 error ("command cannot be used without an exec file");
4852 if (!current_target.to_shortname ||
4853 strcmp (current_target.to_shortname, "remote") != 0)
4854 error ("command can only be used with remote target");
4855
4856 for (s = exec_bfd->sections; s; s = s->next)
4857 {
4858 if (!(s->flags & SEC_LOAD))
4859 continue; /* skip non-loadable section */
4860
4861 size = bfd_get_section_size_before_reloc (s);
4862 if (size == 0)
4863 continue; /* skip zero-length section */
4864
4865 sectname = bfd_get_section_name (exec_bfd, s);
4866 if (args && strcmp (args, sectname) != 0)
4867 continue; /* not the section selected by user */
4868
4869 matched = 1; /* do this section */
4870 lma = s->lma;
4871 /* FIXME: assumes lma can fit into long */
4872 sprintf (buf, "qCRC:%lx,%lx", (long) lma, (long) size);
4873 putpkt (buf);
4874
4875 /* be clever; compute the host_crc before waiting for target reply */
4876 sectdata = xmalloc (size);
4877 old_chain = make_cleanup (xfree, sectdata);
4878 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
4879 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
4880
4881 getpkt (buf, PBUFSIZ, 0);
4882 if (buf[0] == 'E')
4883 error ("target memory fault, section %s, range 0x%08x -- 0x%08x",
4884 sectname, lma, lma + size);
4885 if (buf[0] != 'C')
4886 error ("remote target does not support this operation");
4887
4888 for (target_crc = 0, tmp = &buf[1]; *tmp; tmp++)
4889 target_crc = target_crc * 16 + fromhex (*tmp);
4890
4891 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
4892 sectname, paddr (lma), paddr (lma + size));
4893 if (host_crc == target_crc)
4894 printf_filtered ("matched.\n");
4895 else
4896 {
4897 printf_filtered ("MIS-MATCHED!\n");
4898 mismatched++;
4899 }
4900
4901 do_cleanups (old_chain);
4902 }
4903 if (mismatched > 0)
4904 warning ("One or more sections of the remote executable does not match\n\
4905 the loaded file\n");
4906 if (args && !matched)
4907 printf_filtered ("No loaded section named '%s'.\n", args);
4908 }
4909
4910 static int
4911 remote_query (int query_type, char *buf, char *outbuf, int *bufsiz)
4912 {
4913 int i;
4914 char *buf2 = alloca (PBUFSIZ);
4915 char *p2 = &buf2[0];
4916
4917 if (!bufsiz)
4918 error ("null pointer to remote bufer size specified");
4919
4920 /* minimum outbuf size is PBUFSIZ - if bufsiz is not large enough let
4921 the caller know and return what the minimum size is */
4922 /* Note: a zero bufsiz can be used to query the minimum buffer size */
4923 if (*bufsiz < PBUFSIZ)
4924 {
4925 *bufsiz = PBUFSIZ;
4926 return -1;
4927 }
4928
4929 /* except for querying the minimum buffer size, target must be open */
4930 if (!remote_desc)
4931 error ("remote query is only available after target open");
4932
4933 /* we only take uppercase letters as query types, at least for now */
4934 if ((query_type < 'A') || (query_type > 'Z'))
4935 error ("invalid remote query type");
4936
4937 if (!buf)
4938 error ("null remote query specified");
4939
4940 if (!outbuf)
4941 error ("remote query requires a buffer to receive data");
4942
4943 outbuf[0] = '\0';
4944
4945 *p2++ = 'q';
4946 *p2++ = query_type;
4947
4948 /* we used one buffer char for the remote protocol q command and another
4949 for the query type. As the remote protocol encapsulation uses 4 chars
4950 plus one extra in case we are debugging (remote_debug),
4951 we have PBUFZIZ - 7 left to pack the query string */
4952 i = 0;
4953 while (buf[i] && (i < (PBUFSIZ - 8)))
4954 {
4955 /* bad caller may have sent forbidden characters */
4956 if ((!isprint (buf[i])) || (buf[i] == '$') || (buf[i] == '#'))
4957 error ("illegal characters in query string");
4958
4959 *p2++ = buf[i];
4960 i++;
4961 }
4962 *p2 = buf[i];
4963
4964 if (buf[i])
4965 error ("query larger than available buffer");
4966
4967 i = putpkt (buf2);
4968 if (i < 0)
4969 return i;
4970
4971 getpkt (outbuf, *bufsiz, 0);
4972
4973 return 0;
4974 }
4975
4976 static void
4977 remote_rcmd (char *command,
4978 struct ui_file *outbuf)
4979 {
4980 int i;
4981 char *buf = alloca (PBUFSIZ);
4982 char *p = buf;
4983
4984 if (!remote_desc)
4985 error ("remote rcmd is only available after target open");
4986
4987 /* Send a NULL command across as an empty command */
4988 if (command == NULL)
4989 command = "";
4990
4991 /* The query prefix */
4992 strcpy (buf, "qRcmd,");
4993 p = strchr (buf, '\0');
4994
4995 if ((strlen (buf) + strlen (command) * 2 + 8/*misc*/) > PBUFSIZ)
4996 error ("\"monitor\" command ``%s'' is too long\n", command);
4997
4998 /* Encode the actual command */
4999 bin2hex (command, p, 0);
5000
5001 if (putpkt (buf) < 0)
5002 error ("Communication problem with target\n");
5003
5004 /* get/display the response */
5005 while (1)
5006 {
5007 /* XXX - see also tracepoint.c:remote_get_noisy_reply() */
5008 buf[0] = '\0';
5009 getpkt (buf, PBUFSIZ, 0);
5010 if (buf[0] == '\0')
5011 error ("Target does not support this command\n");
5012 if (buf[0] == 'O' && buf[1] != 'K')
5013 {
5014 remote_console_output (buf + 1); /* 'O' message from stub */
5015 continue;
5016 }
5017 if (strcmp (buf, "OK") == 0)
5018 break;
5019 if (strlen (buf) == 3 && buf[0] == 'E'
5020 && isdigit (buf[1]) && isdigit (buf[2]))
5021 {
5022 error ("Protocol error with Rcmd");
5023 }
5024 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
5025 {
5026 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
5027 fputc_unfiltered (c, outbuf);
5028 }
5029 break;
5030 }
5031 }
5032
5033 static void
5034 packet_command (char *args, int from_tty)
5035 {
5036 char *buf = alloca (PBUFSIZ);
5037
5038 if (!remote_desc)
5039 error ("command can only be used with remote target");
5040
5041 if (!args)
5042 error ("remote-packet command requires packet text as argument");
5043
5044 puts_filtered ("sending: ");
5045 print_packet (args);
5046 puts_filtered ("\n");
5047 putpkt (args);
5048
5049 getpkt (buf, PBUFSIZ, 0);
5050 puts_filtered ("received: ");
5051 print_packet (buf);
5052 puts_filtered ("\n");
5053 }
5054
5055 #if 0
5056 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------------- */
5057
5058 static void display_thread_info (struct gdb_ext_thread_info *info);
5059
5060 static void threadset_test_cmd (char *cmd, int tty);
5061
5062 static void threadalive_test (char *cmd, int tty);
5063
5064 static void threadlist_test_cmd (char *cmd, int tty);
5065
5066 int get_and_display_threadinfo (threadref * ref);
5067
5068 static void threadinfo_test_cmd (char *cmd, int tty);
5069
5070 static int thread_display_step (threadref * ref, void *context);
5071
5072 static void threadlist_update_test_cmd (char *cmd, int tty);
5073
5074 static void init_remote_threadtests (void);
5075
5076 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid */
5077
5078 static void
5079 threadset_test_cmd (char *cmd, int tty)
5080 {
5081 int sample_thread = SAMPLE_THREAD;
5082
5083 printf_filtered ("Remote threadset test\n");
5084 set_thread (sample_thread, 1);
5085 }
5086
5087
5088 static void
5089 threadalive_test (char *cmd, int tty)
5090 {
5091 int sample_thread = SAMPLE_THREAD;
5092
5093 if (remote_thread_alive (pid_to_ptid (sample_thread)))
5094 printf_filtered ("PASS: Thread alive test\n");
5095 else
5096 printf_filtered ("FAIL: Thread alive test\n");
5097 }
5098
5099 void output_threadid (char *title, threadref * ref);
5100
5101 void
5102 output_threadid (char *title, threadref *ref)
5103 {
5104 char hexid[20];
5105
5106 pack_threadid (&hexid[0], ref); /* Convert threead id into hex */
5107 hexid[16] = 0;
5108 printf_filtered ("%s %s\n", title, (&hexid[0]));
5109 }
5110
5111 static void
5112 threadlist_test_cmd (char *cmd, int tty)
5113 {
5114 int startflag = 1;
5115 threadref nextthread;
5116 int done, result_count;
5117 threadref threadlist[3];
5118
5119 printf_filtered ("Remote Threadlist test\n");
5120 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
5121 &result_count, &threadlist[0]))
5122 printf_filtered ("FAIL: threadlist test\n");
5123 else
5124 {
5125 threadref *scan = threadlist;
5126 threadref *limit = scan + result_count;
5127
5128 while (scan < limit)
5129 output_threadid (" thread ", scan++);
5130 }
5131 }
5132
5133 void
5134 display_thread_info (struct gdb_ext_thread_info *info)
5135 {
5136 output_threadid ("Threadid: ", &info->threadid);
5137 printf_filtered ("Name: %s\n ", info->shortname);
5138 printf_filtered ("State: %s\n", info->display);
5139 printf_filtered ("other: %s\n\n", info->more_display);
5140 }
5141
5142 int
5143 get_and_display_threadinfo (threadref *ref)
5144 {
5145 int result;
5146 int set;
5147 struct gdb_ext_thread_info threadinfo;
5148
5149 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
5150 | TAG_MOREDISPLAY | TAG_DISPLAY;
5151 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
5152 display_thread_info (&threadinfo);
5153 return result;
5154 }
5155
5156 static void
5157 threadinfo_test_cmd (char *cmd, int tty)
5158 {
5159 int athread = SAMPLE_THREAD;
5160 threadref thread;
5161 int set;
5162
5163 int_to_threadref (&thread, athread);
5164 printf_filtered ("Remote Threadinfo test\n");
5165 if (!get_and_display_threadinfo (&thread))
5166 printf_filtered ("FAIL cannot get thread info\n");
5167 }
5168
5169 static int
5170 thread_display_step (threadref *ref, void *context)
5171 {
5172 /* output_threadid(" threadstep ",ref); *//* simple test */
5173 return get_and_display_threadinfo (ref);
5174 }
5175
5176 static void
5177 threadlist_update_test_cmd (char *cmd, int tty)
5178 {
5179 printf_filtered ("Remote Threadlist update test\n");
5180 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
5181 }
5182
5183 static void
5184 init_remote_threadtests (void)
5185 {
5186 add_com ("tlist", class_obscure, threadlist_test_cmd,
5187 "Fetch and print the remote list of thread identifiers, one pkt only");
5188 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
5189 "Fetch and display info about one thread");
5190 add_com ("tset", class_obscure, threadset_test_cmd,
5191 "Test setting to a different thread");
5192 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
5193 "Iterate through updating all remote thread info");
5194 add_com ("talive", class_obscure, threadalive_test,
5195 " Remote thread alive test ");
5196 }
5197
5198 #endif /* 0 */
5199
5200 /* Convert a thread ID to a string. Returns the string in a static
5201 buffer. */
5202
5203 static char *
5204 remote_pid_to_str (ptid_t ptid)
5205 {
5206 static char buf[30];
5207
5208 sprintf (buf, "Thread %d", PIDGET (ptid));
5209 return buf;
5210 }
5211
5212 static void
5213 init_remote_ops (void)
5214 {
5215 remote_ops.to_shortname = "remote";
5216 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
5217 remote_ops.to_doc =
5218 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5219 Specify the serial device it is connected to\n\
5220 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
5221 remote_ops.to_open = remote_open;
5222 remote_ops.to_close = remote_close;
5223 remote_ops.to_detach = remote_detach;
5224 remote_ops.to_resume = remote_resume;
5225 remote_ops.to_wait = remote_wait;
5226 remote_ops.to_fetch_registers = remote_fetch_registers;
5227 remote_ops.to_store_registers = remote_store_registers;
5228 remote_ops.to_prepare_to_store = remote_prepare_to_store;
5229 remote_ops.to_xfer_memory = remote_xfer_memory;
5230 remote_ops.to_files_info = remote_files_info;
5231 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
5232 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
5233 remote_ops.to_kill = remote_kill;
5234 remote_ops.to_load = generic_load;
5235 remote_ops.to_mourn_inferior = remote_mourn;
5236 remote_ops.to_thread_alive = remote_thread_alive;
5237 remote_ops.to_find_new_threads = remote_threads_info;
5238 remote_ops.to_pid_to_str = remote_pid_to_str;
5239 remote_ops.to_extra_thread_info = remote_threads_extra_info;
5240 remote_ops.to_stop = remote_stop;
5241 remote_ops.to_query = remote_query;
5242 remote_ops.to_rcmd = remote_rcmd;
5243 remote_ops.to_stratum = process_stratum;
5244 remote_ops.to_has_all_memory = 1;
5245 remote_ops.to_has_memory = 1;
5246 remote_ops.to_has_stack = 1;
5247 remote_ops.to_has_registers = 1;
5248 remote_ops.to_has_execution = 1;
5249 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5250 remote_ops.to_magic = OPS_MAGIC;
5251 }
5252
5253 /* Set up the extended remote vector by making a copy of the standard
5254 remote vector and adding to it. */
5255
5256 static void
5257 init_extended_remote_ops (void)
5258 {
5259 extended_remote_ops = remote_ops;
5260
5261 extended_remote_ops.to_shortname = "extended-remote";
5262 extended_remote_ops.to_longname =
5263 "Extended remote serial target in gdb-specific protocol";
5264 extended_remote_ops.to_doc =
5265 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5266 Specify the serial device it is connected to (e.g. /dev/ttya).",
5267 extended_remote_ops.to_open = extended_remote_open;
5268 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
5269 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
5270 }
5271
5272 /*
5273 * Command: info remote-process
5274 *
5275 * This implements Cisco's version of the "info proc" command.
5276 *
5277 * This query allows the target stub to return an arbitrary string
5278 * (or strings) giving arbitrary information about the target process.
5279 * This is optional; the target stub isn't required to implement it.
5280 *
5281 * Syntax: qfProcessInfo request first string
5282 * qsProcessInfo request subsequent string
5283 * reply: 'O'<hex-encoded-string>
5284 * 'l' last reply (empty)
5285 */
5286
5287 static void
5288 remote_info_process (char *args, int from_tty)
5289 {
5290 char *buf = alloca (PBUFSIZ);
5291
5292 if (remote_desc == 0)
5293 error ("Command can only be used when connected to the remote target.");
5294
5295 putpkt ("qfProcessInfo");
5296 getpkt (buf, PBUFSIZ, 0);
5297 if (buf[0] == 0)
5298 return; /* Silently: target does not support this feature. */
5299
5300 if (buf[0] == 'E')
5301 error ("info proc: target error.");
5302
5303 while (buf[0] == 'O') /* Capitol-O packet */
5304 {
5305 remote_console_output (&buf[1]);
5306 putpkt ("qsProcessInfo");
5307 getpkt (buf, PBUFSIZ, 0);
5308 }
5309 }
5310
5311 /*
5312 * Target Cisco
5313 */
5314
5315 static void
5316 remote_cisco_open (char *name, int from_tty)
5317 {
5318 if (name == 0)
5319 error (
5320 "To open a remote debug connection, you need to specify what \n\
5321 device is attached to the remote system (e.g. host:port).");
5322
5323 /* See FIXME above */
5324 wait_forever_enabled_p = 1;
5325
5326 target_preopen (from_tty);
5327
5328 unpush_target (&remote_cisco_ops);
5329
5330 remote_desc = serial_open (name);
5331 if (!remote_desc)
5332 perror_with_name (name);
5333
5334 /*
5335 * If a baud rate was specified on the gdb command line it will
5336 * be greater than the initial value of -1. If it is, use it otherwise
5337 * default to 9600
5338 */
5339
5340 baud_rate = (baud_rate > 0) ? baud_rate : 9600;
5341 if (serial_setbaudrate (remote_desc, baud_rate))
5342 {
5343 serial_close (remote_desc);
5344 perror_with_name (name);
5345 }
5346
5347 serial_raw (remote_desc);
5348
5349 /* If there is something sitting in the buffer we might take it as a
5350 response to a command, which would be bad. */
5351 serial_flush_input (remote_desc);
5352
5353 if (from_tty)
5354 {
5355 puts_filtered ("Remote debugging using ");
5356 puts_filtered (name);
5357 puts_filtered ("\n");
5358 }
5359
5360 remote_cisco_mode = 1;
5361
5362 push_target (&remote_cisco_ops); /* Switch to using cisco target now */
5363
5364 init_all_packet_configs ();
5365
5366 general_thread = -2;
5367 continue_thread = -2;
5368
5369 /* Probe for ability to use "ThreadInfo" query, as required. */
5370 use_threadinfo_query = 1;
5371 use_threadextra_query = 1;
5372
5373 /* Without this, some commands which require an active target (such
5374 as kill) won't work. This variable serves (at least) double duty
5375 as both the pid of the target process (if it has such), and as a
5376 flag indicating that a target is active. These functions should
5377 be split out into seperate variables, especially since GDB will
5378 someday have a notion of debugging several processes. */
5379 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5380
5381 /* Start the remote connection; if error (0), discard this target. */
5382
5383 if (!catch_errors (remote_start_remote_dummy, (char *) 0,
5384 "Couldn't establish connection to remote target\n",
5385 RETURN_MASK_ALL))
5386 {
5387 pop_target ();
5388 return;
5389 }
5390 }
5391
5392 static void
5393 remote_cisco_close (int quitting)
5394 {
5395 remote_cisco_mode = 0;
5396 remote_close (quitting);
5397 }
5398
5399 static void
5400 remote_cisco_mourn (void)
5401 {
5402 remote_mourn_1 (&remote_cisco_ops);
5403 }
5404
5405 enum
5406 {
5407 READ_MORE,
5408 FATAL_ERROR,
5409 ENTER_DEBUG,
5410 DISCONNECT_TELNET
5411 }
5412 minitelnet_return;
5413
5414 /* shared between readsocket() and readtty() */
5415 static char *tty_input;
5416
5417 static int escape_count;
5418 static int echo_check;
5419 extern int quit_flag;
5420
5421 static int
5422 readsocket (void)
5423 {
5424 int data;
5425
5426 /* Loop until the socket doesn't have any more data */
5427
5428 while ((data = readchar (0)) >= 0)
5429 {
5430 /* Check for the escape sequence */
5431 if (data == '|')
5432 {
5433 /* If this is the fourth escape, get out */
5434 if (++escape_count == 4)
5435 {
5436 return ENTER_DEBUG;
5437 }
5438 else
5439 { /* This is a '|', but not the fourth in a row.
5440 Continue without echoing it. If it isn't actually
5441 one of four in a row, it'll be echoed later. */
5442 continue;
5443 }
5444 }
5445 else
5446 /* Not a '|' */
5447 {
5448 /* Ensure any pending '|'s are flushed. */
5449
5450 for (; escape_count > 0; escape_count--)
5451 putchar ('|');
5452 }
5453
5454 if (data == '\r') /* If this is a return character, */
5455 continue; /* - just supress it. */
5456
5457 if (echo_check != -1) /* Check for echo of user input. */
5458 {
5459 if (tty_input[echo_check] == data)
5460 {
5461 echo_check++; /* Character matched user input: */
5462 continue; /* Continue without echoing it. */
5463 }
5464 else if ((data == '\n') && (tty_input[echo_check] == '\r'))
5465 { /* End of the line (and of echo checking). */
5466 echo_check = -1; /* No more echo supression */
5467 continue; /* Continue without echoing. */
5468 }
5469 else
5470 { /* Failed check for echo of user input.
5471 We now have some suppressed output to flush! */
5472 int j;
5473
5474 for (j = 0; j < echo_check; j++)
5475 putchar (tty_input[j]);
5476 echo_check = -1;
5477 }
5478 }
5479 putchar (data); /* Default case: output the char. */
5480 }
5481
5482 if (data == SERIAL_TIMEOUT) /* Timeout returned from readchar. */
5483 return READ_MORE; /* Try to read some more */
5484 else
5485 return FATAL_ERROR; /* Trouble, bail out */
5486 }
5487
5488 static int
5489 readtty (void)
5490 {
5491 int tty_bytecount;
5492
5493 /* First, read a buffer full from the terminal */
5494 tty_bytecount = read (fileno (stdin), tty_input, sizeof (tty_input) - 1);
5495 if (tty_bytecount == -1)
5496 {
5497 perror ("readtty: read failed");
5498 return FATAL_ERROR;
5499 }
5500
5501 /* Remove a quoted newline. */
5502 if (tty_input[tty_bytecount - 1] == '\n' &&
5503 tty_input[tty_bytecount - 2] == '\\') /* line ending in backslash */
5504 {
5505 tty_input[--tty_bytecount] = 0; /* remove newline */
5506 tty_input[--tty_bytecount] = 0; /* remove backslash */
5507 }
5508
5509 /* Turn trailing newlines into returns */
5510 if (tty_input[tty_bytecount - 1] == '\n')
5511 tty_input[tty_bytecount - 1] = '\r';
5512
5513 /* If the line consists of a ~, enter debugging mode. */
5514 if ((tty_input[0] == '~') && (tty_bytecount == 2))
5515 return ENTER_DEBUG;
5516
5517 /* Make this a zero terminated string and write it out */
5518 tty_input[tty_bytecount] = 0;
5519 if (serial_write (remote_desc, tty_input, tty_bytecount))
5520 {
5521 perror_with_name ("readtty: write failed");
5522 return FATAL_ERROR;
5523 }
5524
5525 return READ_MORE;
5526 }
5527
5528 static int
5529 minitelnet (void)
5530 {
5531 fd_set input; /* file descriptors for select */
5532 int tablesize; /* max number of FDs for select */
5533 int status;
5534 int quit_count = 0;
5535
5536 extern int escape_count; /* global shared by readsocket */
5537 extern int echo_check; /* ditto */
5538
5539 escape_count = 0;
5540 echo_check = -1;
5541
5542 tablesize = 8 * sizeof (input);
5543
5544 for (;;)
5545 {
5546 /* Check for anything from our socket - doesn't block. Note that
5547 this must be done *before* the select as there may be
5548 buffered I/O waiting to be processed. */
5549
5550 if ((status = readsocket ()) == FATAL_ERROR)
5551 {
5552 error ("Debugging terminated by communications error");
5553 }
5554 else if (status != READ_MORE)
5555 {
5556 return (status);
5557 }
5558
5559 fflush (stdout); /* Flush output before blocking */
5560
5561 /* Now block on more socket input or TTY input */
5562
5563 FD_ZERO (&input);
5564 FD_SET (fileno (stdin), &input);
5565 FD_SET (deprecated_serial_fd (remote_desc), &input);
5566
5567 status = select (tablesize, &input, 0, 0, 0);
5568 if ((status == -1) && (errno != EINTR))
5569 {
5570 error ("Communications error on select %d", errno);
5571 }
5572
5573 /* Handle Control-C typed */
5574
5575 if (quit_flag)
5576 {
5577 if ((++quit_count) == 2)
5578 {
5579 if (query ("Interrupt GDB? "))
5580 {
5581 printf_filtered ("Interrupted by user.\n");
5582 return_to_top_level (RETURN_QUIT);
5583 }
5584 quit_count = 0;
5585 }
5586 quit_flag = 0;
5587
5588 if (remote_break)
5589 serial_send_break (remote_desc);
5590 else
5591 serial_write (remote_desc, "\003", 1);
5592
5593 continue;
5594 }
5595
5596 /* Handle console input */
5597
5598 if (FD_ISSET (fileno (stdin), &input))
5599 {
5600 quit_count = 0;
5601 echo_check = 0;
5602 status = readtty ();
5603 if (status == READ_MORE)
5604 continue;
5605
5606 return status; /* telnet session ended */
5607 }
5608 }
5609 }
5610
5611 static ptid_t
5612 remote_cisco_wait (ptid_t ptid, struct target_waitstatus *status)
5613 {
5614 if (minitelnet () != ENTER_DEBUG)
5615 {
5616 error ("Debugging session terminated by protocol error");
5617 }
5618 putpkt ("?");
5619 return remote_wait (ptid, status);
5620 }
5621
5622 static void
5623 init_remote_cisco_ops (void)
5624 {
5625 remote_cisco_ops.to_shortname = "cisco";
5626 remote_cisco_ops.to_longname = "Remote serial target in cisco-specific protocol";
5627 remote_cisco_ops.to_doc =
5628 "Use a remote machine via TCP, using a cisco-specific protocol.\n\
5629 Specify the serial device it is connected to (e.g. host:2020).";
5630 remote_cisco_ops.to_open = remote_cisco_open;
5631 remote_cisco_ops.to_close = remote_cisco_close;
5632 remote_cisco_ops.to_detach = remote_detach;
5633 remote_cisco_ops.to_resume = remote_resume;
5634 remote_cisco_ops.to_wait = remote_cisco_wait;
5635 remote_cisco_ops.to_fetch_registers = remote_fetch_registers;
5636 remote_cisco_ops.to_store_registers = remote_store_registers;
5637 remote_cisco_ops.to_prepare_to_store = remote_prepare_to_store;
5638 remote_cisco_ops.to_xfer_memory = remote_xfer_memory;
5639 remote_cisco_ops.to_files_info = remote_files_info;
5640 remote_cisco_ops.to_insert_breakpoint = remote_insert_breakpoint;
5641 remote_cisco_ops.to_remove_breakpoint = remote_remove_breakpoint;
5642 remote_cisco_ops.to_kill = remote_kill;
5643 remote_cisco_ops.to_load = generic_load;
5644 remote_cisco_ops.to_mourn_inferior = remote_cisco_mourn;
5645 remote_cisco_ops.to_thread_alive = remote_thread_alive;
5646 remote_cisco_ops.to_find_new_threads = remote_threads_info;
5647 remote_cisco_ops.to_pid_to_str = remote_pid_to_str;
5648 remote_cisco_ops.to_extra_thread_info = remote_threads_extra_info;
5649 remote_cisco_ops.to_stratum = process_stratum;
5650 remote_cisco_ops.to_has_all_memory = 1;
5651 remote_cisco_ops.to_has_memory = 1;
5652 remote_cisco_ops.to_has_stack = 1;
5653 remote_cisco_ops.to_has_registers = 1;
5654 remote_cisco_ops.to_has_execution = 1;
5655 remote_cisco_ops.to_magic = OPS_MAGIC;
5656 }
5657
5658 static int
5659 remote_can_async_p (void)
5660 {
5661 /* We're async whenever the serial device is. */
5662 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
5663 }
5664
5665 static int
5666 remote_is_async_p (void)
5667 {
5668 /* We're async whenever the serial device is. */
5669 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
5670 }
5671
5672 /* Pass the SERIAL event on and up to the client. One day this code
5673 will be able to delay notifying the client of an event until the
5674 point where an entire packet has been received. */
5675
5676 static void (*async_client_callback) (enum inferior_event_type event_type, void *context);
5677 static void *async_client_context;
5678 static serial_event_ftype remote_async_serial_handler;
5679
5680 static void
5681 remote_async_serial_handler (struct serial *scb, void *context)
5682 {
5683 /* Don't propogate error information up to the client. Instead let
5684 the client find out about the error by querying the target. */
5685 async_client_callback (INF_REG_EVENT, async_client_context);
5686 }
5687
5688 static void
5689 remote_async (void (*callback) (enum inferior_event_type event_type, void *context), void *context)
5690 {
5691 if (current_target.to_async_mask_value == 0)
5692 internal_error (__FILE__, __LINE__,
5693 "Calling remote_async when async is masked");
5694
5695 if (callback != NULL)
5696 {
5697 serial_async (remote_desc, remote_async_serial_handler, NULL);
5698 async_client_callback = callback;
5699 async_client_context = context;
5700 }
5701 else
5702 serial_async (remote_desc, NULL, NULL);
5703 }
5704
5705 /* Target async and target extended-async.
5706
5707 This are temporary targets, until it is all tested. Eventually
5708 async support will be incorporated int the usual 'remote'
5709 target. */
5710
5711 static void
5712 init_remote_async_ops (void)
5713 {
5714 remote_async_ops.to_shortname = "async";
5715 remote_async_ops.to_longname = "Remote serial target in async version of the gdb-specific protocol";
5716 remote_async_ops.to_doc =
5717 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
5718 Specify the serial device it is connected to (e.g. /dev/ttya).";
5719 remote_async_ops.to_open = remote_async_open;
5720 remote_async_ops.to_close = remote_close;
5721 remote_async_ops.to_detach = remote_async_detach;
5722 remote_async_ops.to_resume = remote_async_resume;
5723 remote_async_ops.to_wait = remote_async_wait;
5724 remote_async_ops.to_fetch_registers = remote_fetch_registers;
5725 remote_async_ops.to_store_registers = remote_store_registers;
5726 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
5727 remote_async_ops.to_xfer_memory = remote_xfer_memory;
5728 remote_async_ops.to_files_info = remote_files_info;
5729 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
5730 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
5731 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
5732 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
5733 remote_async_ops.to_kill = remote_async_kill;
5734 remote_async_ops.to_load = generic_load;
5735 remote_async_ops.to_mourn_inferior = remote_async_mourn;
5736 remote_async_ops.to_thread_alive = remote_thread_alive;
5737 remote_async_ops.to_find_new_threads = remote_threads_info;
5738 remote_async_ops.to_pid_to_str = remote_pid_to_str;
5739 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
5740 remote_async_ops.to_stop = remote_stop;
5741 remote_async_ops.to_query = remote_query;
5742 remote_async_ops.to_rcmd = remote_rcmd;
5743 remote_async_ops.to_stratum = process_stratum;
5744 remote_async_ops.to_has_all_memory = 1;
5745 remote_async_ops.to_has_memory = 1;
5746 remote_async_ops.to_has_stack = 1;
5747 remote_async_ops.to_has_registers = 1;
5748 remote_async_ops.to_has_execution = 1;
5749 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
5750 remote_async_ops.to_can_async_p = remote_can_async_p;
5751 remote_async_ops.to_is_async_p = remote_is_async_p;
5752 remote_async_ops.to_async = remote_async;
5753 remote_async_ops.to_async_mask_value = 1;
5754 remote_async_ops.to_magic = OPS_MAGIC;
5755 }
5756
5757 /* Set up the async extended remote vector by making a copy of the standard
5758 remote vector and adding to it. */
5759
5760 static void
5761 init_extended_async_remote_ops (void)
5762 {
5763 extended_async_remote_ops = remote_async_ops;
5764
5765 extended_async_remote_ops.to_shortname = "extended-async";
5766 extended_async_remote_ops.to_longname =
5767 "Extended remote serial target in async gdb-specific protocol";
5768 extended_async_remote_ops.to_doc =
5769 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
5770 Specify the serial device it is connected to (e.g. /dev/ttya).",
5771 extended_async_remote_ops.to_open = extended_remote_async_open;
5772 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
5773 extended_async_remote_ops.to_mourn_inferior = extended_remote_mourn;
5774 }
5775
5776 static void
5777 set_remote_cmd (char *args, int from_tty)
5778 {
5779 }
5780
5781 static void
5782 show_remote_cmd (char *args, int from_tty)
5783 {
5784
5785 show_remote_protocol_Z_packet_cmd (args, from_tty);
5786 show_remote_protocol_e_packet_cmd (args, from_tty);
5787 show_remote_protocol_E_packet_cmd (args, from_tty);
5788 show_remote_protocol_P_packet_cmd (args, from_tty);
5789 show_remote_protocol_qSymbol_packet_cmd (args, from_tty);
5790 show_remote_protocol_binary_download_cmd (args, from_tty);
5791 }
5792
5793 static void
5794 build_remote_gdbarch_data (void)
5795 {
5796 build_remote_packet_sizes ();
5797
5798 /* Cisco stuff */
5799 tty_input = xmalloc (PBUFSIZ);
5800 remote_address_size = TARGET_ADDR_BIT;
5801 }
5802
5803 /* Saved pointer to previous owner of the new_objfile event. */
5804 static void (*remote_new_objfile_chain) (struct objfile *);
5805
5806 /* Function to be called whenever a new objfile (shlib) is detected. */
5807 static void
5808 remote_new_objfile (struct objfile *objfile)
5809 {
5810 if (remote_desc != 0) /* Have a remote connection */
5811 {
5812 remote_check_symbols (objfile);
5813 }
5814 /* Call predecessor on chain, if any. */
5815 if (remote_new_objfile_chain != 0 &&
5816 remote_desc == 0)
5817 remote_new_objfile_chain (objfile);
5818 }
5819
5820 void
5821 _initialize_remote (void)
5822 {
5823 static struct cmd_list_element *remote_set_cmdlist;
5824 static struct cmd_list_element *remote_show_cmdlist;
5825 struct cmd_list_element *tmpcmd;
5826
5827 /* architecture specific data */
5828 build_remote_gdbarch_data ();
5829 register_gdbarch_swap (&tty_input, sizeof (&tty_input), NULL);
5830 register_remote_packet_sizes ();
5831 register_gdbarch_swap (&remote_address_size,
5832 sizeof (&remote_address_size), NULL);
5833 register_gdbarch_swap (NULL, 0, build_remote_gdbarch_data);
5834
5835 init_remote_ops ();
5836 add_target (&remote_ops);
5837
5838 init_extended_remote_ops ();
5839 add_target (&extended_remote_ops);
5840
5841 init_remote_async_ops ();
5842 add_target (&remote_async_ops);
5843
5844 init_extended_async_remote_ops ();
5845 add_target (&extended_async_remote_ops);
5846
5847 init_remote_cisco_ops ();
5848 add_target (&remote_cisco_ops);
5849
5850 /* Hook into new objfile notification. */
5851 remote_new_objfile_chain = target_new_objfile_hook;
5852 target_new_objfile_hook = remote_new_objfile;
5853
5854 #if 0
5855 init_remote_threadtests ();
5856 #endif
5857
5858 /* set/show remote ... */
5859
5860 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, "\
5861 Remote protocol specific variables\n\
5862 Configure various remote-protocol specific variables such as\n\
5863 the packets being used",
5864 &remote_set_cmdlist, "set remote ",
5865 0/*allow-unknown*/, &setlist);
5866 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, "\
5867 Remote protocol specific variables\n\
5868 Configure various remote-protocol specific variables such as\n\
5869 the packets being used",
5870 &remote_show_cmdlist, "show remote ",
5871 0/*allow-unknown*/, &showlist);
5872
5873 add_cmd ("compare-sections", class_obscure, compare_sections_command,
5874 "Compare section data on target to the exec file.\n\
5875 Argument is a single section name (default: all loaded sections).",
5876 &cmdlist);
5877
5878 add_cmd ("packet", class_maintenance, packet_command,
5879 "Send an arbitrary packet to a remote target.\n\
5880 maintenance packet TEXT\n\
5881 If GDB is talking to an inferior via the GDB serial protocol, then\n\
5882 this command sends the string TEXT to the inferior, and displays the\n\
5883 response packet. GDB supplies the initial `$' character, and the\n\
5884 terminating `#' character and checksum.",
5885 &maintenancelist);
5886
5887 add_show_from_set
5888 (add_set_cmd ("remotebreak", no_class,
5889 var_boolean, (char *) &remote_break,
5890 "Set whether to send break if interrupted.\n",
5891 &setlist),
5892 &showlist);
5893
5894 /* Install commands for configuring memory read/write packets. */
5895
5896 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size,
5897 "Set the maximum number of bytes per memory write packet (deprecated).\n",
5898 &setlist);
5899 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size,
5900 "Show the maximum number of bytes per memory write packet (deprecated).\n",
5901 &showlist);
5902 add_cmd ("memory-write-packet-size", no_class,
5903 set_memory_write_packet_size,
5904 "Set the maximum number of bytes per memory-write packet.\n"
5905 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5906 "default packet size. The actual limit is further reduced\n"
5907 "dependent on the target. Specify ``fixed'' to disable the\n"
5908 "further restriction and ``limit'' to enable that restriction\n",
5909 &remote_set_cmdlist);
5910 add_cmd ("memory-read-packet-size", no_class,
5911 set_memory_read_packet_size,
5912 "Set the maximum number of bytes per memory-read packet.\n"
5913 "Specify the number of bytes in a packet or 0 (zero) for the\n"
5914 "default packet size. The actual limit is further reduced\n"
5915 "dependent on the target. Specify ``fixed'' to disable the\n"
5916 "further restriction and ``limit'' to enable that restriction\n",
5917 &remote_set_cmdlist);
5918 add_cmd ("memory-write-packet-size", no_class,
5919 show_memory_write_packet_size,
5920 "Show the maximum number of bytes per memory-write packet.\n",
5921 &remote_show_cmdlist);
5922 add_cmd ("memory-read-packet-size", no_class,
5923 show_memory_read_packet_size,
5924 "Show the maximum number of bytes per memory-read packet.\n",
5925 &remote_show_cmdlist);
5926
5927 add_show_from_set
5928 (add_set_cmd ("remoteaddresssize", class_obscure,
5929 var_integer, (char *) &remote_address_size,
5930 "Set the maximum size of the address (in bits) \
5931 in a memory packet.\n",
5932 &setlist),
5933 &showlist);
5934
5935 add_packet_config_cmd (&remote_protocol_binary_download,
5936 "X", "binary-download",
5937 set_remote_protocol_binary_download_cmd,
5938 show_remote_protocol_binary_download_cmd,
5939 &remote_set_cmdlist, &remote_show_cmdlist,
5940 1);
5941 #if 0
5942 /* XXXX - should ``set remotebinarydownload'' be retained for
5943 compatibility. */
5944 add_show_from_set
5945 (add_set_cmd ("remotebinarydownload", no_class,
5946 var_boolean, (char *) &remote_binary_download,
5947 "Set binary downloads.\n", &setlist),
5948 &showlist);
5949 #endif
5950
5951 add_info ("remote-process", remote_info_process,
5952 "Query the remote system for process info.");
5953
5954 add_packet_config_cmd (&remote_protocol_qSymbol,
5955 "qSymbol", "symbol-lookup",
5956 set_remote_protocol_qSymbol_packet_cmd,
5957 show_remote_protocol_qSymbol_packet_cmd,
5958 &remote_set_cmdlist, &remote_show_cmdlist,
5959 0);
5960
5961 add_packet_config_cmd (&remote_protocol_e,
5962 "e", "step-over-range",
5963 set_remote_protocol_e_packet_cmd,
5964 show_remote_protocol_e_packet_cmd,
5965 &remote_set_cmdlist, &remote_show_cmdlist,
5966 0);
5967
5968 add_packet_config_cmd (&remote_protocol_E,
5969 "E", "step-over-range-w-signal",
5970 set_remote_protocol_E_packet_cmd,
5971 show_remote_protocol_E_packet_cmd,
5972 &remote_set_cmdlist, &remote_show_cmdlist,
5973 0);
5974
5975 add_packet_config_cmd (&remote_protocol_P,
5976 "P", "set-register",
5977 set_remote_protocol_P_packet_cmd,
5978 show_remote_protocol_P_packet_cmd,
5979 &remote_set_cmdlist, &remote_show_cmdlist,
5980 1);
5981
5982 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_SOFTWARE_BP],
5983 "Z0", "software-breakpoint",
5984 set_remote_protocol_Z_software_bp_packet_cmd,
5985 show_remote_protocol_Z_software_bp_packet_cmd,
5986 &remote_set_cmdlist, &remote_show_cmdlist,
5987 0);
5988
5989 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_HARDWARE_BP],
5990 "Z1", "hardware-breakpoint",
5991 set_remote_protocol_Z_hardware_bp_packet_cmd,
5992 show_remote_protocol_Z_hardware_bp_packet_cmd,
5993 &remote_set_cmdlist, &remote_show_cmdlist,
5994 0);
5995
5996 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_WRITE_WP],
5997 "Z2", "write-watchpoint",
5998 set_remote_protocol_Z_write_wp_packet_cmd,
5999 show_remote_protocol_Z_write_wp_packet_cmd,
6000 &remote_set_cmdlist, &remote_show_cmdlist,
6001 0);
6002
6003 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_READ_WP],
6004 "Z3", "read-watchpoint",
6005 set_remote_protocol_Z_read_wp_packet_cmd,
6006 show_remote_protocol_Z_read_wp_packet_cmd,
6007 &remote_set_cmdlist, &remote_show_cmdlist,
6008 0);
6009
6010 add_packet_config_cmd (&remote_protocol_Z[Z_PACKET_ACCESS_WP],
6011 "Z4", "access-watchpoint",
6012 set_remote_protocol_Z_access_wp_packet_cmd,
6013 show_remote_protocol_Z_access_wp_packet_cmd,
6014 &remote_set_cmdlist, &remote_show_cmdlist,
6015 0);
6016
6017 /* Keep the old ``set remote Z-packet ...'' working. */
6018 tmpcmd = add_set_auto_boolean_cmd ("Z-packet", class_obscure,
6019 &remote_Z_packet_detect,
6020 "\
6021 Set use of remote protocol `Z' packets", &remote_set_cmdlist);
6022 tmpcmd->function.sfunc = set_remote_protocol_Z_packet_cmd;
6023 add_cmd ("Z-packet", class_obscure, show_remote_protocol_Z_packet_cmd,
6024 "Show use of remote protocol `Z' packets ",
6025 &remote_show_cmdlist);
6026 }