* remote.c (remote_wait): Include beginning of malformed packet
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62
63 #include "memory-map.h"
64
65 /* The size to align memory write packets, when practical. The protocol
66 does not guarantee any alignment, and gdb will generate short
67 writes and unaligned writes, but even as a best-effort attempt this
68 can improve bulk transfers. For instance, if a write is misaligned
69 relative to the target's data bus, the stub may need to make an extra
70 round trip fetching data from the target. This doesn't make a
71 huge difference, but it's easy to do, so we try to be helpful.
72
73 The alignment chosen is arbitrary; usually data bus width is
74 important here, not the possibly larger cache line size. */
75 enum { REMOTE_ALIGN_WRITES = 16 };
76
77 /* Prototypes for local functions. */
78 static void cleanup_sigint_signal_handler (void *dummy);
79 static void initialize_sigint_signal_handler (void);
80 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
81
82 static void handle_remote_sigint (int);
83 static void handle_remote_sigint_twice (int);
84 static void async_remote_interrupt (gdb_client_data);
85 void async_remote_interrupt_twice (gdb_client_data);
86
87 static void remote_files_info (struct target_ops *ignore);
88
89 static void remote_prepare_to_store (struct regcache *regcache);
90
91 static void remote_fetch_registers (struct regcache *regcache, int regno);
92
93 static void remote_resume (ptid_t ptid, int step,
94 enum target_signal siggnal);
95 static void remote_open (char *name, int from_tty);
96
97 static void extended_remote_open (char *name, int from_tty);
98
99 static void remote_open_1 (char *, int, struct target_ops *, int extended_p);
100
101 static void remote_close (int quitting);
102
103 static void remote_store_registers (struct regcache *regcache, int regno);
104
105 static void remote_mourn (void);
106
107 static void extended_remote_restart (void);
108
109 static void extended_remote_mourn (void);
110
111 static void remote_mourn_1 (struct target_ops *);
112
113 static void remote_send (char **buf, long *sizeof_buf_p);
114
115 static int readchar (int timeout);
116
117 static ptid_t remote_wait (ptid_t ptid,
118 struct target_waitstatus *status);
119
120 static void remote_kill (void);
121
122 static int tohex (int nib);
123
124 static int remote_can_async_p (void);
125
126 static int remote_is_async_p (void);
127
128 static void remote_async (void (*callback) (enum inferior_event_type event_type,
129 void *context), void *context);
130
131 static int remote_async_mask (int new_mask);
132
133 static void remote_detach (char *args, int from_tty);
134
135 static void remote_interrupt (int signo);
136
137 static void remote_interrupt_twice (int signo);
138
139 static void interrupt_query (void);
140
141 static void set_thread (int, int);
142
143 static int remote_thread_alive (ptid_t);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (void);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static unsigned long crc32 (unsigned char *, int, unsigned int);
172
173 static void compare_sections_command (char *, int);
174
175 static void packet_command (char *, int);
176
177 static int stub_unpack_int (char *buff, int fieldlength);
178
179 static ptid_t remote_current_thread (ptid_t oldptid);
180
181 static void remote_find_new_threads (void);
182
183 static void record_currthread (int currthread);
184
185 static int fromhex (int a);
186
187 static int hex2bin (const char *hex, gdb_byte *bin, int count);
188
189 static int bin2hex (const gdb_byte *bin, char *hex, int count);
190
191 static int putpkt_binary (char *buf, int cnt);
192
193 static void check_binary_download (CORE_ADDR addr);
194
195 struct packet_config;
196
197 static void show_packet_config_cmd (struct packet_config *config);
198
199 static void update_packet_config (struct packet_config *config);
200
201 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
202 struct cmd_list_element *c);
203
204 static void show_remote_protocol_packet_cmd (struct ui_file *file,
205 int from_tty,
206 struct cmd_list_element *c,
207 const char *value);
208
209 void _initialize_remote (void);
210
211 /* Controls if async mode is permitted. */
212 static int remote_async_permitted = 0;
213
214 static int remote_async_permitted_set = 0;
215
216 static void
217 set_maintenance_remote_async_permitted (char *args, int from_tty,
218 struct cmd_list_element *c)
219 {
220 if (target_has_execution)
221 {
222 remote_async_permitted_set = remote_async_permitted; /* revert */
223 error (_("Cannot change this setting while the inferior is running."));
224 }
225
226 remote_async_permitted = remote_async_permitted_set;
227 }
228
229 static void
230 show_maintenance_remote_async_permitted (struct ui_file *file, int from_tty,
231 struct cmd_list_element *c, const char *value)
232 {
233 fprintf_filtered (file, _("\
234 Controlling the remote inferior in asynchronous mode is %s.\n"),
235 value);
236 }
237
238 /* For "remote". */
239
240 static struct cmd_list_element *remote_cmdlist;
241
242 /* For "set remote" and "show remote". */
243
244 static struct cmd_list_element *remote_set_cmdlist;
245 static struct cmd_list_element *remote_show_cmdlist;
246
247 /* Description of the remote protocol state for the currently
248 connected target. This is per-target state, and independent of the
249 selected architecture. */
250
251 struct remote_state
252 {
253 /* A buffer to use for incoming packets, and its current size. The
254 buffer is grown dynamically for larger incoming packets.
255 Outgoing packets may also be constructed in this buffer.
256 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
257 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
258 packets. */
259 char *buf;
260 long buf_size;
261
262 /* If we negotiated packet size explicitly (and thus can bypass
263 heuristics for the largest packet size that will not overflow
264 a buffer in the stub), this will be set to that packet size.
265 Otherwise zero, meaning to use the guessed size. */
266 long explicit_packet_size;
267
268 /* remote_wait is normally called when the target is running and
269 waits for a stop reply packet. But sometimes we need to call it
270 when the target is already stopped. We can send a "?" packet
271 and have remote_wait read the response. Or, if we already have
272 the response, we can stash it in BUF and tell remote_wait to
273 skip calling getpkt. This flag is set when BUF contains a
274 stop reply packet and the target is not waiting. */
275 int cached_wait_status;
276 };
277
278 /* This data could be associated with a target, but we do not always
279 have access to the current target when we need it, so for now it is
280 static. This will be fine for as long as only one target is in use
281 at a time. */
282 static struct remote_state remote_state;
283
284 static struct remote_state *
285 get_remote_state_raw (void)
286 {
287 return &remote_state;
288 }
289
290 /* Description of the remote protocol for a given architecture. */
291
292 struct packet_reg
293 {
294 long offset; /* Offset into G packet. */
295 long regnum; /* GDB's internal register number. */
296 LONGEST pnum; /* Remote protocol register number. */
297 int in_g_packet; /* Always part of G packet. */
298 /* long size in bytes; == register_size (current_gdbarch, regnum);
299 at present. */
300 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
301 at present. */
302 };
303
304 struct remote_arch_state
305 {
306 /* Description of the remote protocol registers. */
307 long sizeof_g_packet;
308
309 /* Description of the remote protocol registers indexed by REGNUM
310 (making an array gdbarch_num_regs in size). */
311 struct packet_reg *regs;
312
313 /* This is the size (in chars) of the first response to the ``g''
314 packet. It is used as a heuristic when determining the maximum
315 size of memory-read and memory-write packets. A target will
316 typically only reserve a buffer large enough to hold the ``g''
317 packet. The size does not include packet overhead (headers and
318 trailers). */
319 long actual_register_packet_size;
320
321 /* This is the maximum size (in chars) of a non read/write packet.
322 It is also used as a cap on the size of read/write packets. */
323 long remote_packet_size;
324 };
325
326
327 /* Handle for retreving the remote protocol data from gdbarch. */
328 static struct gdbarch_data *remote_gdbarch_data_handle;
329
330 static struct remote_arch_state *
331 get_remote_arch_state (void)
332 {
333 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
334 }
335
336 /* Fetch the global remote target state. */
337
338 static struct remote_state *
339 get_remote_state (void)
340 {
341 /* Make sure that the remote architecture state has been
342 initialized, because doing so might reallocate rs->buf. Any
343 function which calls getpkt also needs to be mindful of changes
344 to rs->buf, but this call limits the number of places which run
345 into trouble. */
346 get_remote_arch_state ();
347
348 return get_remote_state_raw ();
349 }
350
351 static int
352 compare_pnums (const void *lhs_, const void *rhs_)
353 {
354 const struct packet_reg * const *lhs = lhs_;
355 const struct packet_reg * const *rhs = rhs_;
356
357 if ((*lhs)->pnum < (*rhs)->pnum)
358 return -1;
359 else if ((*lhs)->pnum == (*rhs)->pnum)
360 return 0;
361 else
362 return 1;
363 }
364
365 static void *
366 init_remote_state (struct gdbarch *gdbarch)
367 {
368 int regnum, num_remote_regs, offset;
369 struct remote_state *rs = get_remote_state_raw ();
370 struct remote_arch_state *rsa;
371 struct packet_reg **remote_regs;
372
373 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
374
375 /* Use the architecture to build a regnum<->pnum table, which will be
376 1:1 unless a feature set specifies otherwise. */
377 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
378 gdbarch_num_regs (gdbarch),
379 struct packet_reg);
380 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
381 {
382 struct packet_reg *r = &rsa->regs[regnum];
383
384 if (register_size (gdbarch, regnum) == 0)
385 /* Do not try to fetch zero-sized (placeholder) registers. */
386 r->pnum = -1;
387 else
388 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
389
390 r->regnum = regnum;
391 }
392
393 /* Define the g/G packet format as the contents of each register
394 with a remote protocol number, in order of ascending protocol
395 number. */
396
397 remote_regs = alloca (gdbarch_num_regs (gdbarch)
398 * sizeof (struct packet_reg *));
399 for (num_remote_regs = 0, regnum = 0;
400 regnum < gdbarch_num_regs (gdbarch);
401 regnum++)
402 if (rsa->regs[regnum].pnum != -1)
403 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
404
405 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
406 compare_pnums);
407
408 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
409 {
410 remote_regs[regnum]->in_g_packet = 1;
411 remote_regs[regnum]->offset = offset;
412 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
413 }
414
415 /* Record the maximum possible size of the g packet - it may turn out
416 to be smaller. */
417 rsa->sizeof_g_packet = offset;
418
419 /* Default maximum number of characters in a packet body. Many
420 remote stubs have a hardwired buffer size of 400 bytes
421 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
422 as the maximum packet-size to ensure that the packet and an extra
423 NUL character can always fit in the buffer. This stops GDB
424 trashing stubs that try to squeeze an extra NUL into what is
425 already a full buffer (As of 1999-12-04 that was most stubs). */
426 rsa->remote_packet_size = 400 - 1;
427
428 /* This one is filled in when a ``g'' packet is received. */
429 rsa->actual_register_packet_size = 0;
430
431 /* Should rsa->sizeof_g_packet needs more space than the
432 default, adjust the size accordingly. Remember that each byte is
433 encoded as two characters. 32 is the overhead for the packet
434 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
435 (``$NN:G...#NN'') is a better guess, the below has been padded a
436 little. */
437 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
438 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
439
440 /* Make sure that the packet buffer is plenty big enough for
441 this architecture. */
442 if (rs->buf_size < rsa->remote_packet_size)
443 {
444 rs->buf_size = 2 * rsa->remote_packet_size;
445 rs->buf = xrealloc (rs->buf, rs->buf_size);
446 }
447
448 return rsa;
449 }
450
451 /* Return the current allowed size of a remote packet. This is
452 inferred from the current architecture, and should be used to
453 limit the length of outgoing packets. */
454 static long
455 get_remote_packet_size (void)
456 {
457 struct remote_state *rs = get_remote_state ();
458 struct remote_arch_state *rsa = get_remote_arch_state ();
459
460 if (rs->explicit_packet_size)
461 return rs->explicit_packet_size;
462
463 return rsa->remote_packet_size;
464 }
465
466 static struct packet_reg *
467 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
468 {
469 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
470 return NULL;
471 else
472 {
473 struct packet_reg *r = &rsa->regs[regnum];
474 gdb_assert (r->regnum == regnum);
475 return r;
476 }
477 }
478
479 static struct packet_reg *
480 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
481 {
482 int i;
483 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
484 {
485 struct packet_reg *r = &rsa->regs[i];
486 if (r->pnum == pnum)
487 return r;
488 }
489 return NULL;
490 }
491
492 /* FIXME: graces/2002-08-08: These variables should eventually be
493 bound to an instance of the target object (as in gdbarch-tdep()),
494 when such a thing exists. */
495
496 /* This is set to the data address of the access causing the target
497 to stop for a watchpoint. */
498 static CORE_ADDR remote_watch_data_address;
499
500 /* This is non-zero if target stopped for a watchpoint. */
501 static int remote_stopped_by_watchpoint_p;
502
503 static struct target_ops remote_ops;
504
505 static struct target_ops extended_remote_ops;
506
507 static int remote_async_mask_value = 1;
508
509 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
510 ``forever'' still use the normal timeout mechanism. This is
511 currently used by the ASYNC code to guarentee that target reads
512 during the initial connect always time-out. Once getpkt has been
513 modified to return a timeout indication and, in turn
514 remote_wait()/wait_for_inferior() have gained a timeout parameter
515 this can go away. */
516 static int wait_forever_enabled_p = 1;
517
518
519 /* This variable chooses whether to send a ^C or a break when the user
520 requests program interruption. Although ^C is usually what remote
521 systems expect, and that is the default here, sometimes a break is
522 preferable instead. */
523
524 static int remote_break;
525
526 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
527 remote_open knows that we don't have a file open when the program
528 starts. */
529 static struct serial *remote_desc = NULL;
530
531 /* This variable sets the number of bits in an address that are to be
532 sent in a memory ("M" or "m") packet. Normally, after stripping
533 leading zeros, the entire address would be sent. This variable
534 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
535 initial implementation of remote.c restricted the address sent in
536 memory packets to ``host::sizeof long'' bytes - (typically 32
537 bits). Consequently, for 64 bit targets, the upper 32 bits of an
538 address was never sent. Since fixing this bug may cause a break in
539 some remote targets this variable is principly provided to
540 facilitate backward compatibility. */
541
542 static int remote_address_size;
543
544 /* Temporary to track who currently owns the terminal. See
545 remote_terminal_* for more details. */
546
547 static int remote_async_terminal_ours_p;
548
549 /* The executable file to use for "run" on the remote side. */
550
551 static char *remote_exec_file = "";
552
553 \f
554 /* User configurable variables for the number of characters in a
555 memory read/write packet. MIN (rsa->remote_packet_size,
556 rsa->sizeof_g_packet) is the default. Some targets need smaller
557 values (fifo overruns, et.al.) and some users need larger values
558 (speed up transfers). The variables ``preferred_*'' (the user
559 request), ``current_*'' (what was actually set) and ``forced_*''
560 (Positive - a soft limit, negative - a hard limit). */
561
562 struct memory_packet_config
563 {
564 char *name;
565 long size;
566 int fixed_p;
567 };
568
569 /* Compute the current size of a read/write packet. Since this makes
570 use of ``actual_register_packet_size'' the computation is dynamic. */
571
572 static long
573 get_memory_packet_size (struct memory_packet_config *config)
574 {
575 struct remote_state *rs = get_remote_state ();
576 struct remote_arch_state *rsa = get_remote_arch_state ();
577
578 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
579 law?) that some hosts don't cope very well with large alloca()
580 calls. Eventually the alloca() code will be replaced by calls to
581 xmalloc() and make_cleanups() allowing this restriction to either
582 be lifted or removed. */
583 #ifndef MAX_REMOTE_PACKET_SIZE
584 #define MAX_REMOTE_PACKET_SIZE 16384
585 #endif
586 /* NOTE: 20 ensures we can write at least one byte. */
587 #ifndef MIN_REMOTE_PACKET_SIZE
588 #define MIN_REMOTE_PACKET_SIZE 20
589 #endif
590 long what_they_get;
591 if (config->fixed_p)
592 {
593 if (config->size <= 0)
594 what_they_get = MAX_REMOTE_PACKET_SIZE;
595 else
596 what_they_get = config->size;
597 }
598 else
599 {
600 what_they_get = get_remote_packet_size ();
601 /* Limit the packet to the size specified by the user. */
602 if (config->size > 0
603 && what_they_get > config->size)
604 what_they_get = config->size;
605
606 /* Limit it to the size of the targets ``g'' response unless we have
607 permission from the stub to use a larger packet size. */
608 if (rs->explicit_packet_size == 0
609 && rsa->actual_register_packet_size > 0
610 && what_they_get > rsa->actual_register_packet_size)
611 what_they_get = rsa->actual_register_packet_size;
612 }
613 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
614 what_they_get = MAX_REMOTE_PACKET_SIZE;
615 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
616 what_they_get = MIN_REMOTE_PACKET_SIZE;
617
618 /* Make sure there is room in the global buffer for this packet
619 (including its trailing NUL byte). */
620 if (rs->buf_size < what_they_get + 1)
621 {
622 rs->buf_size = 2 * what_they_get;
623 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
624 }
625
626 return what_they_get;
627 }
628
629 /* Update the size of a read/write packet. If they user wants
630 something really big then do a sanity check. */
631
632 static void
633 set_memory_packet_size (char *args, struct memory_packet_config *config)
634 {
635 int fixed_p = config->fixed_p;
636 long size = config->size;
637 if (args == NULL)
638 error (_("Argument required (integer, `fixed' or `limited')."));
639 else if (strcmp (args, "hard") == 0
640 || strcmp (args, "fixed") == 0)
641 fixed_p = 1;
642 else if (strcmp (args, "soft") == 0
643 || strcmp (args, "limit") == 0)
644 fixed_p = 0;
645 else
646 {
647 char *end;
648 size = strtoul (args, &end, 0);
649 if (args == end)
650 error (_("Invalid %s (bad syntax)."), config->name);
651 #if 0
652 /* Instead of explicitly capping the size of a packet to
653 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
654 instead allowed to set the size to something arbitrarily
655 large. */
656 if (size > MAX_REMOTE_PACKET_SIZE)
657 error (_("Invalid %s (too large)."), config->name);
658 #endif
659 }
660 /* Extra checks? */
661 if (fixed_p && !config->fixed_p)
662 {
663 if (! query (_("The target may not be able to correctly handle a %s\n"
664 "of %ld bytes. Change the packet size? "),
665 config->name, size))
666 error (_("Packet size not changed."));
667 }
668 /* Update the config. */
669 config->fixed_p = fixed_p;
670 config->size = size;
671 }
672
673 static void
674 show_memory_packet_size (struct memory_packet_config *config)
675 {
676 printf_filtered (_("The %s is %ld. "), config->name, config->size);
677 if (config->fixed_p)
678 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
679 get_memory_packet_size (config));
680 else
681 printf_filtered (_("Packets are limited to %ld bytes.\n"),
682 get_memory_packet_size (config));
683 }
684
685 static struct memory_packet_config memory_write_packet_config =
686 {
687 "memory-write-packet-size",
688 };
689
690 static void
691 set_memory_write_packet_size (char *args, int from_tty)
692 {
693 set_memory_packet_size (args, &memory_write_packet_config);
694 }
695
696 static void
697 show_memory_write_packet_size (char *args, int from_tty)
698 {
699 show_memory_packet_size (&memory_write_packet_config);
700 }
701
702 static long
703 get_memory_write_packet_size (void)
704 {
705 return get_memory_packet_size (&memory_write_packet_config);
706 }
707
708 static struct memory_packet_config memory_read_packet_config =
709 {
710 "memory-read-packet-size",
711 };
712
713 static void
714 set_memory_read_packet_size (char *args, int from_tty)
715 {
716 set_memory_packet_size (args, &memory_read_packet_config);
717 }
718
719 static void
720 show_memory_read_packet_size (char *args, int from_tty)
721 {
722 show_memory_packet_size (&memory_read_packet_config);
723 }
724
725 static long
726 get_memory_read_packet_size (void)
727 {
728 long size = get_memory_packet_size (&memory_read_packet_config);
729 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
730 extra buffer size argument before the memory read size can be
731 increased beyond this. */
732 if (size > get_remote_packet_size ())
733 size = get_remote_packet_size ();
734 return size;
735 }
736
737 \f
738 /* Generic configuration support for packets the stub optionally
739 supports. Allows the user to specify the use of the packet as well
740 as allowing GDB to auto-detect support in the remote stub. */
741
742 enum packet_support
743 {
744 PACKET_SUPPORT_UNKNOWN = 0,
745 PACKET_ENABLE,
746 PACKET_DISABLE
747 };
748
749 struct packet_config
750 {
751 const char *name;
752 const char *title;
753 enum auto_boolean detect;
754 enum packet_support support;
755 };
756
757 /* Analyze a packet's return value and update the packet config
758 accordingly. */
759
760 enum packet_result
761 {
762 PACKET_ERROR,
763 PACKET_OK,
764 PACKET_UNKNOWN
765 };
766
767 static void
768 update_packet_config (struct packet_config *config)
769 {
770 switch (config->detect)
771 {
772 case AUTO_BOOLEAN_TRUE:
773 config->support = PACKET_ENABLE;
774 break;
775 case AUTO_BOOLEAN_FALSE:
776 config->support = PACKET_DISABLE;
777 break;
778 case AUTO_BOOLEAN_AUTO:
779 config->support = PACKET_SUPPORT_UNKNOWN;
780 break;
781 }
782 }
783
784 static void
785 show_packet_config_cmd (struct packet_config *config)
786 {
787 char *support = "internal-error";
788 switch (config->support)
789 {
790 case PACKET_ENABLE:
791 support = "enabled";
792 break;
793 case PACKET_DISABLE:
794 support = "disabled";
795 break;
796 case PACKET_SUPPORT_UNKNOWN:
797 support = "unknown";
798 break;
799 }
800 switch (config->detect)
801 {
802 case AUTO_BOOLEAN_AUTO:
803 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
804 config->name, support);
805 break;
806 case AUTO_BOOLEAN_TRUE:
807 case AUTO_BOOLEAN_FALSE:
808 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
809 config->name, support);
810 break;
811 }
812 }
813
814 static void
815 add_packet_config_cmd (struct packet_config *config, const char *name,
816 const char *title, int legacy)
817 {
818 char *set_doc;
819 char *show_doc;
820 char *cmd_name;
821
822 config->name = name;
823 config->title = title;
824 config->detect = AUTO_BOOLEAN_AUTO;
825 config->support = PACKET_SUPPORT_UNKNOWN;
826 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
827 name, title);
828 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
829 name, title);
830 /* set/show TITLE-packet {auto,on,off} */
831 cmd_name = xstrprintf ("%s-packet", title);
832 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
833 &config->detect, set_doc, show_doc, NULL, /* help_doc */
834 set_remote_protocol_packet_cmd,
835 show_remote_protocol_packet_cmd,
836 &remote_set_cmdlist, &remote_show_cmdlist);
837 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
838 if (legacy)
839 {
840 char *legacy_name;
841 legacy_name = xstrprintf ("%s-packet", name);
842 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
843 &remote_set_cmdlist);
844 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
845 &remote_show_cmdlist);
846 }
847 }
848
849 static enum packet_result
850 packet_check_result (const char *buf)
851 {
852 if (buf[0] != '\0')
853 {
854 /* The stub recognized the packet request. Check that the
855 operation succeeded. */
856 if (buf[0] == 'E'
857 && isxdigit (buf[1]) && isxdigit (buf[2])
858 && buf[3] == '\0')
859 /* "Enn" - definitly an error. */
860 return PACKET_ERROR;
861
862 /* Always treat "E." as an error. This will be used for
863 more verbose error messages, such as E.memtypes. */
864 if (buf[0] == 'E' && buf[1] == '.')
865 return PACKET_ERROR;
866
867 /* The packet may or may not be OK. Just assume it is. */
868 return PACKET_OK;
869 }
870 else
871 /* The stub does not support the packet. */
872 return PACKET_UNKNOWN;
873 }
874
875 static enum packet_result
876 packet_ok (const char *buf, struct packet_config *config)
877 {
878 enum packet_result result;
879
880 result = packet_check_result (buf);
881 switch (result)
882 {
883 case PACKET_OK:
884 case PACKET_ERROR:
885 /* The stub recognized the packet request. */
886 switch (config->support)
887 {
888 case PACKET_SUPPORT_UNKNOWN:
889 if (remote_debug)
890 fprintf_unfiltered (gdb_stdlog,
891 "Packet %s (%s) is supported\n",
892 config->name, config->title);
893 config->support = PACKET_ENABLE;
894 break;
895 case PACKET_DISABLE:
896 internal_error (__FILE__, __LINE__,
897 _("packet_ok: attempt to use a disabled packet"));
898 break;
899 case PACKET_ENABLE:
900 break;
901 }
902 break;
903 case PACKET_UNKNOWN:
904 /* The stub does not support the packet. */
905 switch (config->support)
906 {
907 case PACKET_ENABLE:
908 if (config->detect == AUTO_BOOLEAN_AUTO)
909 /* If the stub previously indicated that the packet was
910 supported then there is a protocol error.. */
911 error (_("Protocol error: %s (%s) conflicting enabled responses."),
912 config->name, config->title);
913 else
914 /* The user set it wrong. */
915 error (_("Enabled packet %s (%s) not recognized by stub"),
916 config->name, config->title);
917 break;
918 case PACKET_SUPPORT_UNKNOWN:
919 if (remote_debug)
920 fprintf_unfiltered (gdb_stdlog,
921 "Packet %s (%s) is NOT supported\n",
922 config->name, config->title);
923 config->support = PACKET_DISABLE;
924 break;
925 case PACKET_DISABLE:
926 break;
927 }
928 break;
929 }
930
931 return result;
932 }
933
934 enum {
935 PACKET_vCont = 0,
936 PACKET_X,
937 PACKET_qSymbol,
938 PACKET_P,
939 PACKET_p,
940 PACKET_Z0,
941 PACKET_Z1,
942 PACKET_Z2,
943 PACKET_Z3,
944 PACKET_Z4,
945 PACKET_vFile_open,
946 PACKET_vFile_pread,
947 PACKET_vFile_pwrite,
948 PACKET_vFile_close,
949 PACKET_vFile_unlink,
950 PACKET_qXfer_auxv,
951 PACKET_qXfer_features,
952 PACKET_qXfer_libraries,
953 PACKET_qXfer_memory_map,
954 PACKET_qXfer_spu_read,
955 PACKET_qXfer_spu_write,
956 PACKET_qGetTLSAddr,
957 PACKET_qSupported,
958 PACKET_QPassSignals,
959 PACKET_qSearch_memory,
960 PACKET_vAttach,
961 PACKET_vRun,
962 PACKET_MAX
963 };
964
965 static struct packet_config remote_protocol_packets[PACKET_MAX];
966
967 static void
968 set_remote_protocol_packet_cmd (char *args, int from_tty,
969 struct cmd_list_element *c)
970 {
971 struct packet_config *packet;
972
973 for (packet = remote_protocol_packets;
974 packet < &remote_protocol_packets[PACKET_MAX];
975 packet++)
976 {
977 if (&packet->detect == c->var)
978 {
979 update_packet_config (packet);
980 return;
981 }
982 }
983 internal_error (__FILE__, __LINE__, "Could not find config for %s",
984 c->name);
985 }
986
987 static void
988 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
989 struct cmd_list_element *c,
990 const char *value)
991 {
992 struct packet_config *packet;
993
994 for (packet = remote_protocol_packets;
995 packet < &remote_protocol_packets[PACKET_MAX];
996 packet++)
997 {
998 if (&packet->detect == c->var)
999 {
1000 show_packet_config_cmd (packet);
1001 return;
1002 }
1003 }
1004 internal_error (__FILE__, __LINE__, "Could not find config for %s",
1005 c->name);
1006 }
1007
1008 /* Should we try one of the 'Z' requests? */
1009
1010 enum Z_packet_type
1011 {
1012 Z_PACKET_SOFTWARE_BP,
1013 Z_PACKET_HARDWARE_BP,
1014 Z_PACKET_WRITE_WP,
1015 Z_PACKET_READ_WP,
1016 Z_PACKET_ACCESS_WP,
1017 NR_Z_PACKET_TYPES
1018 };
1019
1020 /* For compatibility with older distributions. Provide a ``set remote
1021 Z-packet ...'' command that updates all the Z packet types. */
1022
1023 static enum auto_boolean remote_Z_packet_detect;
1024
1025 static void
1026 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1027 struct cmd_list_element *c)
1028 {
1029 int i;
1030 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1031 {
1032 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1033 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1034 }
1035 }
1036
1037 static void
1038 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1039 struct cmd_list_element *c,
1040 const char *value)
1041 {
1042 int i;
1043 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1044 {
1045 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1046 }
1047 }
1048
1049 /* Should we try the 'ThreadInfo' query packet?
1050
1051 This variable (NOT available to the user: auto-detect only!)
1052 determines whether GDB will use the new, simpler "ThreadInfo"
1053 query or the older, more complex syntax for thread queries.
1054 This is an auto-detect variable (set to true at each connect,
1055 and set to false when the target fails to recognize it). */
1056
1057 static int use_threadinfo_query;
1058 static int use_threadextra_query;
1059
1060 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1061 static struct async_signal_handler *sigint_remote_twice_token;
1062 static struct async_signal_handler *sigint_remote_token;
1063
1064 \f
1065
1066
1067 /* These are the threads which we last sent to the remote system.
1068 -1 for all or -2 for not sent yet. */
1069 static int general_thread;
1070 static int continue_thread;
1071
1072 /* Call this function as a result of
1073 1) A halt indication (T packet) containing a thread id
1074 2) A direct query of currthread
1075 3) Successful execution of set thread
1076 */
1077
1078 static void
1079 record_currthread (int currthread)
1080 {
1081 general_thread = currthread;
1082
1083 /* If this is a new thread, add it to GDB's thread list.
1084 If we leave it up to WFI to do this, bad things will happen. */
1085 if (!in_thread_list (pid_to_ptid (currthread)))
1086 add_thread (pid_to_ptid (currthread));
1087 }
1088
1089 static char *last_pass_packet;
1090
1091 /* If 'QPassSignals' is supported, tell the remote stub what signals
1092 it can simply pass through to the inferior without reporting. */
1093
1094 static void
1095 remote_pass_signals (void)
1096 {
1097 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1098 {
1099 char *pass_packet, *p;
1100 int numsigs = (int) TARGET_SIGNAL_LAST;
1101 int count = 0, i;
1102
1103 gdb_assert (numsigs < 256);
1104 for (i = 0; i < numsigs; i++)
1105 {
1106 if (signal_stop_state (i) == 0
1107 && signal_print_state (i) == 0
1108 && signal_pass_state (i) == 1)
1109 count++;
1110 }
1111 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1112 strcpy (pass_packet, "QPassSignals:");
1113 p = pass_packet + strlen (pass_packet);
1114 for (i = 0; i < numsigs; i++)
1115 {
1116 if (signal_stop_state (i) == 0
1117 && signal_print_state (i) == 0
1118 && signal_pass_state (i) == 1)
1119 {
1120 if (i >= 16)
1121 *p++ = tohex (i >> 4);
1122 *p++ = tohex (i & 15);
1123 if (count)
1124 *p++ = ';';
1125 else
1126 break;
1127 count--;
1128 }
1129 }
1130 *p = 0;
1131 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1132 {
1133 struct remote_state *rs = get_remote_state ();
1134 char *buf = rs->buf;
1135
1136 putpkt (pass_packet);
1137 getpkt (&rs->buf, &rs->buf_size, 0);
1138 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1139 if (last_pass_packet)
1140 xfree (last_pass_packet);
1141 last_pass_packet = pass_packet;
1142 }
1143 else
1144 xfree (pass_packet);
1145 }
1146 }
1147
1148 #define MAGIC_NULL_PID 42000
1149
1150 static void
1151 set_thread (int th, int gen)
1152 {
1153 struct remote_state *rs = get_remote_state ();
1154 char *buf = rs->buf;
1155 int state = gen ? general_thread : continue_thread;
1156
1157 if (state == th)
1158 return;
1159
1160 buf[0] = 'H';
1161 buf[1] = gen ? 'g' : 'c';
1162 if (th == MAGIC_NULL_PID)
1163 {
1164 buf[2] = '0';
1165 buf[3] = '\0';
1166 }
1167 else if (th < 0)
1168 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1169 else
1170 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1171 putpkt (buf);
1172 getpkt (&rs->buf, &rs->buf_size, 0);
1173 if (gen)
1174 general_thread = th;
1175 else
1176 continue_thread = th;
1177 }
1178 \f
1179 /* Return nonzero if the thread TH is still alive on the remote system. */
1180
1181 static int
1182 remote_thread_alive (ptid_t ptid)
1183 {
1184 struct remote_state *rs = get_remote_state ();
1185 int tid = PIDGET (ptid);
1186
1187 if (tid < 0)
1188 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1189 else
1190 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1191 putpkt (rs->buf);
1192 getpkt (&rs->buf, &rs->buf_size, 0);
1193 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1194 }
1195
1196 /* About these extended threadlist and threadinfo packets. They are
1197 variable length packets but, the fields within them are often fixed
1198 length. They are redundent enough to send over UDP as is the
1199 remote protocol in general. There is a matching unit test module
1200 in libstub. */
1201
1202 #define OPAQUETHREADBYTES 8
1203
1204 /* a 64 bit opaque identifier */
1205 typedef unsigned char threadref[OPAQUETHREADBYTES];
1206
1207 /* WARNING: This threadref data structure comes from the remote O.S.,
1208 libstub protocol encoding, and remote.c. it is not particularly
1209 changable. */
1210
1211 /* Right now, the internal structure is int. We want it to be bigger.
1212 Plan to fix this.
1213 */
1214
1215 typedef int gdb_threadref; /* Internal GDB thread reference. */
1216
1217 /* gdb_ext_thread_info is an internal GDB data structure which is
1218 equivalent to the reply of the remote threadinfo packet. */
1219
1220 struct gdb_ext_thread_info
1221 {
1222 threadref threadid; /* External form of thread reference. */
1223 int active; /* Has state interesting to GDB?
1224 regs, stack. */
1225 char display[256]; /* Brief state display, name,
1226 blocked/suspended. */
1227 char shortname[32]; /* To be used to name threads. */
1228 char more_display[256]; /* Long info, statistics, queue depth,
1229 whatever. */
1230 };
1231
1232 /* The volume of remote transfers can be limited by submitting
1233 a mask containing bits specifying the desired information.
1234 Use a union of these values as the 'selection' parameter to
1235 get_thread_info. FIXME: Make these TAG names more thread specific.
1236 */
1237
1238 #define TAG_THREADID 1
1239 #define TAG_EXISTS 2
1240 #define TAG_DISPLAY 4
1241 #define TAG_THREADNAME 8
1242 #define TAG_MOREDISPLAY 16
1243
1244 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1245
1246 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1247
1248 static char *unpack_nibble (char *buf, int *val);
1249
1250 static char *pack_nibble (char *buf, int nibble);
1251
1252 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1253
1254 static char *unpack_byte (char *buf, int *value);
1255
1256 static char *pack_int (char *buf, int value);
1257
1258 static char *unpack_int (char *buf, int *value);
1259
1260 static char *unpack_string (char *src, char *dest, int length);
1261
1262 static char *pack_threadid (char *pkt, threadref *id);
1263
1264 static char *unpack_threadid (char *inbuf, threadref *id);
1265
1266 void int_to_threadref (threadref *id, int value);
1267
1268 static int threadref_to_int (threadref *ref);
1269
1270 static void copy_threadref (threadref *dest, threadref *src);
1271
1272 static int threadmatch (threadref *dest, threadref *src);
1273
1274 static char *pack_threadinfo_request (char *pkt, int mode,
1275 threadref *id);
1276
1277 static int remote_unpack_thread_info_response (char *pkt,
1278 threadref *expectedref,
1279 struct gdb_ext_thread_info
1280 *info);
1281
1282
1283 static int remote_get_threadinfo (threadref *threadid,
1284 int fieldset, /*TAG mask */
1285 struct gdb_ext_thread_info *info);
1286
1287 static char *pack_threadlist_request (char *pkt, int startflag,
1288 int threadcount,
1289 threadref *nextthread);
1290
1291 static int parse_threadlist_response (char *pkt,
1292 int result_limit,
1293 threadref *original_echo,
1294 threadref *resultlist,
1295 int *doneflag);
1296
1297 static int remote_get_threadlist (int startflag,
1298 threadref *nextthread,
1299 int result_limit,
1300 int *done,
1301 int *result_count,
1302 threadref *threadlist);
1303
1304 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1305
1306 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1307 void *context, int looplimit);
1308
1309 static int remote_newthread_step (threadref *ref, void *context);
1310
1311 /* Encode 64 bits in 16 chars of hex. */
1312
1313 static const char hexchars[] = "0123456789abcdef";
1314
1315 static int
1316 ishex (int ch, int *val)
1317 {
1318 if ((ch >= 'a') && (ch <= 'f'))
1319 {
1320 *val = ch - 'a' + 10;
1321 return 1;
1322 }
1323 if ((ch >= 'A') && (ch <= 'F'))
1324 {
1325 *val = ch - 'A' + 10;
1326 return 1;
1327 }
1328 if ((ch >= '0') && (ch <= '9'))
1329 {
1330 *val = ch - '0';
1331 return 1;
1332 }
1333 return 0;
1334 }
1335
1336 static int
1337 stubhex (int ch)
1338 {
1339 if (ch >= 'a' && ch <= 'f')
1340 return ch - 'a' + 10;
1341 if (ch >= '0' && ch <= '9')
1342 return ch - '0';
1343 if (ch >= 'A' && ch <= 'F')
1344 return ch - 'A' + 10;
1345 return -1;
1346 }
1347
1348 static int
1349 stub_unpack_int (char *buff, int fieldlength)
1350 {
1351 int nibble;
1352 int retval = 0;
1353
1354 while (fieldlength)
1355 {
1356 nibble = stubhex (*buff++);
1357 retval |= nibble;
1358 fieldlength--;
1359 if (fieldlength)
1360 retval = retval << 4;
1361 }
1362 return retval;
1363 }
1364
1365 char *
1366 unpack_varlen_hex (char *buff, /* packet to parse */
1367 ULONGEST *result)
1368 {
1369 int nibble;
1370 ULONGEST retval = 0;
1371
1372 while (ishex (*buff, &nibble))
1373 {
1374 buff++;
1375 retval = retval << 4;
1376 retval |= nibble & 0x0f;
1377 }
1378 *result = retval;
1379 return buff;
1380 }
1381
1382 static char *
1383 unpack_nibble (char *buf, int *val)
1384 {
1385 *val = fromhex (*buf++);
1386 return buf;
1387 }
1388
1389 static char *
1390 pack_nibble (char *buf, int nibble)
1391 {
1392 *buf++ = hexchars[(nibble & 0x0f)];
1393 return buf;
1394 }
1395
1396 static char *
1397 pack_hex_byte (char *pkt, int byte)
1398 {
1399 *pkt++ = hexchars[(byte >> 4) & 0xf];
1400 *pkt++ = hexchars[(byte & 0xf)];
1401 return pkt;
1402 }
1403
1404 static char *
1405 unpack_byte (char *buf, int *value)
1406 {
1407 *value = stub_unpack_int (buf, 2);
1408 return buf + 2;
1409 }
1410
1411 static char *
1412 pack_int (char *buf, int value)
1413 {
1414 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1415 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1416 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1417 buf = pack_hex_byte (buf, (value & 0xff));
1418 return buf;
1419 }
1420
1421 static char *
1422 unpack_int (char *buf, int *value)
1423 {
1424 *value = stub_unpack_int (buf, 8);
1425 return buf + 8;
1426 }
1427
1428 #if 0 /* Currently unused, uncomment when needed. */
1429 static char *pack_string (char *pkt, char *string);
1430
1431 static char *
1432 pack_string (char *pkt, char *string)
1433 {
1434 char ch;
1435 int len;
1436
1437 len = strlen (string);
1438 if (len > 200)
1439 len = 200; /* Bigger than most GDB packets, junk??? */
1440 pkt = pack_hex_byte (pkt, len);
1441 while (len-- > 0)
1442 {
1443 ch = *string++;
1444 if ((ch == '\0') || (ch == '#'))
1445 ch = '*'; /* Protect encapsulation. */
1446 *pkt++ = ch;
1447 }
1448 return pkt;
1449 }
1450 #endif /* 0 (unused) */
1451
1452 static char *
1453 unpack_string (char *src, char *dest, int length)
1454 {
1455 while (length--)
1456 *dest++ = *src++;
1457 *dest = '\0';
1458 return src;
1459 }
1460
1461 static char *
1462 pack_threadid (char *pkt, threadref *id)
1463 {
1464 char *limit;
1465 unsigned char *altid;
1466
1467 altid = (unsigned char *) id;
1468 limit = pkt + BUF_THREAD_ID_SIZE;
1469 while (pkt < limit)
1470 pkt = pack_hex_byte (pkt, *altid++);
1471 return pkt;
1472 }
1473
1474
1475 static char *
1476 unpack_threadid (char *inbuf, threadref *id)
1477 {
1478 char *altref;
1479 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1480 int x, y;
1481
1482 altref = (char *) id;
1483
1484 while (inbuf < limit)
1485 {
1486 x = stubhex (*inbuf++);
1487 y = stubhex (*inbuf++);
1488 *altref++ = (x << 4) | y;
1489 }
1490 return inbuf;
1491 }
1492
1493 /* Externally, threadrefs are 64 bits but internally, they are still
1494 ints. This is due to a mismatch of specifications. We would like
1495 to use 64bit thread references internally. This is an adapter
1496 function. */
1497
1498 void
1499 int_to_threadref (threadref *id, int value)
1500 {
1501 unsigned char *scan;
1502
1503 scan = (unsigned char *) id;
1504 {
1505 int i = 4;
1506 while (i--)
1507 *scan++ = 0;
1508 }
1509 *scan++ = (value >> 24) & 0xff;
1510 *scan++ = (value >> 16) & 0xff;
1511 *scan++ = (value >> 8) & 0xff;
1512 *scan++ = (value & 0xff);
1513 }
1514
1515 static int
1516 threadref_to_int (threadref *ref)
1517 {
1518 int i, value = 0;
1519 unsigned char *scan;
1520
1521 scan = *ref;
1522 scan += 4;
1523 i = 4;
1524 while (i-- > 0)
1525 value = (value << 8) | ((*scan++) & 0xff);
1526 return value;
1527 }
1528
1529 static void
1530 copy_threadref (threadref *dest, threadref *src)
1531 {
1532 int i;
1533 unsigned char *csrc, *cdest;
1534
1535 csrc = (unsigned char *) src;
1536 cdest = (unsigned char *) dest;
1537 i = 8;
1538 while (i--)
1539 *cdest++ = *csrc++;
1540 }
1541
1542 static int
1543 threadmatch (threadref *dest, threadref *src)
1544 {
1545 /* Things are broken right now, so just assume we got a match. */
1546 #if 0
1547 unsigned char *srcp, *destp;
1548 int i, result;
1549 srcp = (char *) src;
1550 destp = (char *) dest;
1551
1552 result = 1;
1553 while (i-- > 0)
1554 result &= (*srcp++ == *destp++) ? 1 : 0;
1555 return result;
1556 #endif
1557 return 1;
1558 }
1559
1560 /*
1561 threadid:1, # always request threadid
1562 context_exists:2,
1563 display:4,
1564 unique_name:8,
1565 more_display:16
1566 */
1567
1568 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1569
1570 static char *
1571 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1572 {
1573 *pkt++ = 'q'; /* Info Query */
1574 *pkt++ = 'P'; /* process or thread info */
1575 pkt = pack_int (pkt, mode); /* mode */
1576 pkt = pack_threadid (pkt, id); /* threadid */
1577 *pkt = '\0'; /* terminate */
1578 return pkt;
1579 }
1580
1581 /* These values tag the fields in a thread info response packet. */
1582 /* Tagging the fields allows us to request specific fields and to
1583 add more fields as time goes by. */
1584
1585 #define TAG_THREADID 1 /* Echo the thread identifier. */
1586 #define TAG_EXISTS 2 /* Is this process defined enough to
1587 fetch registers and its stack? */
1588 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1589 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1590 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1591 the process. */
1592
1593 static int
1594 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1595 struct gdb_ext_thread_info *info)
1596 {
1597 struct remote_state *rs = get_remote_state ();
1598 int mask, length;
1599 int tag;
1600 threadref ref;
1601 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1602 int retval = 1;
1603
1604 /* info->threadid = 0; FIXME: implement zero_threadref. */
1605 info->active = 0;
1606 info->display[0] = '\0';
1607 info->shortname[0] = '\0';
1608 info->more_display[0] = '\0';
1609
1610 /* Assume the characters indicating the packet type have been
1611 stripped. */
1612 pkt = unpack_int (pkt, &mask); /* arg mask */
1613 pkt = unpack_threadid (pkt, &ref);
1614
1615 if (mask == 0)
1616 warning (_("Incomplete response to threadinfo request."));
1617 if (!threadmatch (&ref, expectedref))
1618 { /* This is an answer to a different request. */
1619 warning (_("ERROR RMT Thread info mismatch."));
1620 return 0;
1621 }
1622 copy_threadref (&info->threadid, &ref);
1623
1624 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1625
1626 /* Packets are terminated with nulls. */
1627 while ((pkt < limit) && mask && *pkt)
1628 {
1629 pkt = unpack_int (pkt, &tag); /* tag */
1630 pkt = unpack_byte (pkt, &length); /* length */
1631 if (!(tag & mask)) /* Tags out of synch with mask. */
1632 {
1633 warning (_("ERROR RMT: threadinfo tag mismatch."));
1634 retval = 0;
1635 break;
1636 }
1637 if (tag == TAG_THREADID)
1638 {
1639 if (length != 16)
1640 {
1641 warning (_("ERROR RMT: length of threadid is not 16."));
1642 retval = 0;
1643 break;
1644 }
1645 pkt = unpack_threadid (pkt, &ref);
1646 mask = mask & ~TAG_THREADID;
1647 continue;
1648 }
1649 if (tag == TAG_EXISTS)
1650 {
1651 info->active = stub_unpack_int (pkt, length);
1652 pkt += length;
1653 mask = mask & ~(TAG_EXISTS);
1654 if (length > 8)
1655 {
1656 warning (_("ERROR RMT: 'exists' length too long."));
1657 retval = 0;
1658 break;
1659 }
1660 continue;
1661 }
1662 if (tag == TAG_THREADNAME)
1663 {
1664 pkt = unpack_string (pkt, &info->shortname[0], length);
1665 mask = mask & ~TAG_THREADNAME;
1666 continue;
1667 }
1668 if (tag == TAG_DISPLAY)
1669 {
1670 pkt = unpack_string (pkt, &info->display[0], length);
1671 mask = mask & ~TAG_DISPLAY;
1672 continue;
1673 }
1674 if (tag == TAG_MOREDISPLAY)
1675 {
1676 pkt = unpack_string (pkt, &info->more_display[0], length);
1677 mask = mask & ~TAG_MOREDISPLAY;
1678 continue;
1679 }
1680 warning (_("ERROR RMT: unknown thread info tag."));
1681 break; /* Not a tag we know about. */
1682 }
1683 return retval;
1684 }
1685
1686 static int
1687 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1688 struct gdb_ext_thread_info *info)
1689 {
1690 struct remote_state *rs = get_remote_state ();
1691 int result;
1692
1693 pack_threadinfo_request (rs->buf, fieldset, threadid);
1694 putpkt (rs->buf);
1695 getpkt (&rs->buf, &rs->buf_size, 0);
1696 result = remote_unpack_thread_info_response (rs->buf + 2,
1697 threadid, info);
1698 return result;
1699 }
1700
1701 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1702
1703 static char *
1704 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1705 threadref *nextthread)
1706 {
1707 *pkt++ = 'q'; /* info query packet */
1708 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1709 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1710 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1711 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1712 *pkt = '\0';
1713 return pkt;
1714 }
1715
1716 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1717
1718 static int
1719 parse_threadlist_response (char *pkt, int result_limit,
1720 threadref *original_echo, threadref *resultlist,
1721 int *doneflag)
1722 {
1723 struct remote_state *rs = get_remote_state ();
1724 char *limit;
1725 int count, resultcount, done;
1726
1727 resultcount = 0;
1728 /* Assume the 'q' and 'M chars have been stripped. */
1729 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1730 /* done parse past here */
1731 pkt = unpack_byte (pkt, &count); /* count field */
1732 pkt = unpack_nibble (pkt, &done);
1733 /* The first threadid is the argument threadid. */
1734 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1735 while ((count-- > 0) && (pkt < limit))
1736 {
1737 pkt = unpack_threadid (pkt, resultlist++);
1738 if (resultcount++ >= result_limit)
1739 break;
1740 }
1741 if (doneflag)
1742 *doneflag = done;
1743 return resultcount;
1744 }
1745
1746 static int
1747 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1748 int *done, int *result_count, threadref *threadlist)
1749 {
1750 struct remote_state *rs = get_remote_state ();
1751 static threadref echo_nextthread;
1752 int result = 1;
1753
1754 /* Trancate result limit to be smaller than the packet size. */
1755 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1756 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1757
1758 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1759 putpkt (rs->buf);
1760 getpkt (&rs->buf, &rs->buf_size, 0);
1761
1762 if (*rs->buf == '\0')
1763 *result_count = 0;
1764 else
1765 *result_count =
1766 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1767 threadlist, done);
1768
1769 if (!threadmatch (&echo_nextthread, nextthread))
1770 {
1771 /* FIXME: This is a good reason to drop the packet. */
1772 /* Possably, there is a duplicate response. */
1773 /* Possabilities :
1774 retransmit immediatly - race conditions
1775 retransmit after timeout - yes
1776 exit
1777 wait for packet, then exit
1778 */
1779 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1780 return 0; /* I choose simply exiting. */
1781 }
1782 if (*result_count <= 0)
1783 {
1784 if (*done != 1)
1785 {
1786 warning (_("RMT ERROR : failed to get remote thread list."));
1787 result = 0;
1788 }
1789 return result; /* break; */
1790 }
1791 if (*result_count > result_limit)
1792 {
1793 *result_count = 0;
1794 warning (_("RMT ERROR: threadlist response longer than requested."));
1795 return 0;
1796 }
1797 return result;
1798 }
1799
1800 /* This is the interface between remote and threads, remotes upper
1801 interface. */
1802
1803 /* remote_find_new_threads retrieves the thread list and for each
1804 thread in the list, looks up the thread in GDB's internal list,
1805 ading the thread if it does not already exist. This involves
1806 getting partial thread lists from the remote target so, polling the
1807 quit_flag is required. */
1808
1809
1810 /* About this many threadisds fit in a packet. */
1811
1812 #define MAXTHREADLISTRESULTS 32
1813
1814 static int
1815 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1816 int looplimit)
1817 {
1818 int done, i, result_count;
1819 int startflag = 1;
1820 int result = 1;
1821 int loopcount = 0;
1822 static threadref nextthread;
1823 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1824
1825 done = 0;
1826 while (!done)
1827 {
1828 if (loopcount++ > looplimit)
1829 {
1830 result = 0;
1831 warning (_("Remote fetch threadlist -infinite loop-."));
1832 break;
1833 }
1834 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1835 &done, &result_count, resultthreadlist))
1836 {
1837 result = 0;
1838 break;
1839 }
1840 /* Clear for later iterations. */
1841 startflag = 0;
1842 /* Setup to resume next batch of thread references, set nextthread. */
1843 if (result_count >= 1)
1844 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1845 i = 0;
1846 while (result_count--)
1847 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1848 break;
1849 }
1850 return result;
1851 }
1852
1853 static int
1854 remote_newthread_step (threadref *ref, void *context)
1855 {
1856 ptid_t ptid;
1857
1858 ptid = pid_to_ptid (threadref_to_int (ref));
1859
1860 if (!in_thread_list (ptid))
1861 add_thread (ptid);
1862 return 1; /* continue iterator */
1863 }
1864
1865 #define CRAZY_MAX_THREADS 1000
1866
1867 static ptid_t
1868 remote_current_thread (ptid_t oldpid)
1869 {
1870 struct remote_state *rs = get_remote_state ();
1871
1872 putpkt ("qC");
1873 getpkt (&rs->buf, &rs->buf_size, 0);
1874 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1875 /* Use strtoul here, so we'll correctly parse values whose highest
1876 bit is set. The protocol carries them as a simple series of
1877 hex digits; in the absence of a sign, strtol will see such
1878 values as positive numbers out of range for signed 'long', and
1879 return LONG_MAX to indicate an overflow. */
1880 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1881 else
1882 return oldpid;
1883 }
1884
1885 /* Find new threads for info threads command.
1886 * Original version, using John Metzler's thread protocol.
1887 */
1888
1889 static void
1890 remote_find_new_threads (void)
1891 {
1892 remote_threadlist_iterator (remote_newthread_step, 0,
1893 CRAZY_MAX_THREADS);
1894 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1895 inferior_ptid = remote_current_thread (inferior_ptid);
1896 }
1897
1898 /*
1899 * Find all threads for info threads command.
1900 * Uses new thread protocol contributed by Cisco.
1901 * Falls back and attempts to use the older method (above)
1902 * if the target doesn't respond to the new method.
1903 */
1904
1905 static void
1906 remote_threads_info (void)
1907 {
1908 struct remote_state *rs = get_remote_state ();
1909 char *bufp;
1910 int tid;
1911
1912 if (remote_desc == 0) /* paranoia */
1913 error (_("Command can only be used when connected to the remote target."));
1914
1915 if (use_threadinfo_query)
1916 {
1917 putpkt ("qfThreadInfo");
1918 getpkt (&rs->buf, &rs->buf_size, 0);
1919 bufp = rs->buf;
1920 if (bufp[0] != '\0') /* q packet recognized */
1921 {
1922 while (*bufp++ == 'm') /* reply contains one or more TID */
1923 {
1924 do
1925 {
1926 /* Use strtoul here, so we'll correctly parse values
1927 whose highest bit is set. The protocol carries
1928 them as a simple series of hex digits; in the
1929 absence of a sign, strtol will see such values as
1930 positive numbers out of range for signed 'long',
1931 and return LONG_MAX to indicate an overflow. */
1932 tid = strtoul (bufp, &bufp, 16);
1933 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1934 add_thread (pid_to_ptid (tid));
1935 }
1936 while (*bufp++ == ','); /* comma-separated list */
1937 putpkt ("qsThreadInfo");
1938 getpkt (&rs->buf, &rs->buf_size, 0);
1939 bufp = rs->buf;
1940 }
1941 return; /* done */
1942 }
1943 }
1944
1945 /* Else fall back to old method based on jmetzler protocol. */
1946 use_threadinfo_query = 0;
1947 remote_find_new_threads ();
1948 return;
1949 }
1950
1951 /*
1952 * Collect a descriptive string about the given thread.
1953 * The target may say anything it wants to about the thread
1954 * (typically info about its blocked / runnable state, name, etc.).
1955 * This string will appear in the info threads display.
1956 *
1957 * Optional: targets are not required to implement this function.
1958 */
1959
1960 static char *
1961 remote_threads_extra_info (struct thread_info *tp)
1962 {
1963 struct remote_state *rs = get_remote_state ();
1964 int result;
1965 int set;
1966 threadref id;
1967 struct gdb_ext_thread_info threadinfo;
1968 static char display_buf[100]; /* arbitrary... */
1969 int n = 0; /* position in display_buf */
1970
1971 if (remote_desc == 0) /* paranoia */
1972 internal_error (__FILE__, __LINE__,
1973 _("remote_threads_extra_info"));
1974
1975 if (use_threadextra_query)
1976 {
1977 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1978 PIDGET (tp->ptid));
1979 putpkt (rs->buf);
1980 getpkt (&rs->buf, &rs->buf_size, 0);
1981 if (rs->buf[0] != 0)
1982 {
1983 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1984 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1985 display_buf [result] = '\0';
1986 return display_buf;
1987 }
1988 }
1989
1990 /* If the above query fails, fall back to the old method. */
1991 use_threadextra_query = 0;
1992 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1993 | TAG_MOREDISPLAY | TAG_DISPLAY;
1994 int_to_threadref (&id, PIDGET (tp->ptid));
1995 if (remote_get_threadinfo (&id, set, &threadinfo))
1996 if (threadinfo.active)
1997 {
1998 if (*threadinfo.shortname)
1999 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
2000 " Name: %s,", threadinfo.shortname);
2001 if (*threadinfo.display)
2002 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2003 " State: %s,", threadinfo.display);
2004 if (*threadinfo.more_display)
2005 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
2006 " Priority: %s", threadinfo.more_display);
2007
2008 if (n > 0)
2009 {
2010 /* For purely cosmetic reasons, clear up trailing commas. */
2011 if (',' == display_buf[n-1])
2012 display_buf[n-1] = ' ';
2013 return display_buf;
2014 }
2015 }
2016 return NULL;
2017 }
2018 \f
2019
2020 /* Restart the remote side; this is an extended protocol operation. */
2021
2022 static void
2023 extended_remote_restart (void)
2024 {
2025 struct remote_state *rs = get_remote_state ();
2026
2027 /* Send the restart command; for reasons I don't understand the
2028 remote side really expects a number after the "R". */
2029 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2030 putpkt (rs->buf);
2031
2032 remote_fileio_reset ();
2033 }
2034 \f
2035 /* Clean up connection to a remote debugger. */
2036
2037 static void
2038 remote_close (int quitting)
2039 {
2040 if (remote_desc)
2041 serial_close (remote_desc);
2042 remote_desc = NULL;
2043 }
2044
2045 /* Query the remote side for the text, data and bss offsets. */
2046
2047 static void
2048 get_offsets (void)
2049 {
2050 struct remote_state *rs = get_remote_state ();
2051 char *buf;
2052 char *ptr;
2053 int lose, num_segments = 0, do_sections, do_segments;
2054 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2055 struct section_offsets *offs;
2056 struct symfile_segment_data *data;
2057
2058 if (symfile_objfile == NULL)
2059 return;
2060
2061 putpkt ("qOffsets");
2062 getpkt (&rs->buf, &rs->buf_size, 0);
2063 buf = rs->buf;
2064
2065 if (buf[0] == '\000')
2066 return; /* Return silently. Stub doesn't support
2067 this command. */
2068 if (buf[0] == 'E')
2069 {
2070 warning (_("Remote failure reply: %s"), buf);
2071 return;
2072 }
2073
2074 /* Pick up each field in turn. This used to be done with scanf, but
2075 scanf will make trouble if CORE_ADDR size doesn't match
2076 conversion directives correctly. The following code will work
2077 with any size of CORE_ADDR. */
2078 text_addr = data_addr = bss_addr = 0;
2079 ptr = buf;
2080 lose = 0;
2081
2082 if (strncmp (ptr, "Text=", 5) == 0)
2083 {
2084 ptr += 5;
2085 /* Don't use strtol, could lose on big values. */
2086 while (*ptr && *ptr != ';')
2087 text_addr = (text_addr << 4) + fromhex (*ptr++);
2088
2089 if (strncmp (ptr, ";Data=", 6) == 0)
2090 {
2091 ptr += 6;
2092 while (*ptr && *ptr != ';')
2093 data_addr = (data_addr << 4) + fromhex (*ptr++);
2094 }
2095 else
2096 lose = 1;
2097
2098 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2099 {
2100 ptr += 5;
2101 while (*ptr && *ptr != ';')
2102 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2103
2104 if (bss_addr != data_addr)
2105 warning (_("Target reported unsupported offsets: %s"), buf);
2106 }
2107 else
2108 lose = 1;
2109 }
2110 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2111 {
2112 ptr += 8;
2113 /* Don't use strtol, could lose on big values. */
2114 while (*ptr && *ptr != ';')
2115 text_addr = (text_addr << 4) + fromhex (*ptr++);
2116 num_segments = 1;
2117
2118 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2119 {
2120 ptr += 9;
2121 while (*ptr && *ptr != ';')
2122 data_addr = (data_addr << 4) + fromhex (*ptr++);
2123 num_segments++;
2124 }
2125 }
2126 else
2127 lose = 1;
2128
2129 if (lose)
2130 error (_("Malformed response to offset query, %s"), buf);
2131 else if (*ptr != '\0')
2132 warning (_("Target reported unsupported offsets: %s"), buf);
2133
2134 offs = ((struct section_offsets *)
2135 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2136 memcpy (offs, symfile_objfile->section_offsets,
2137 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2138
2139 data = get_symfile_segment_data (symfile_objfile->obfd);
2140 do_segments = (data != NULL);
2141 do_sections = num_segments == 0;
2142
2143 if (num_segments > 0)
2144 {
2145 segments[0] = text_addr;
2146 segments[1] = data_addr;
2147 }
2148 /* If we have two segments, we can still try to relocate everything
2149 by assuming that the .text and .data offsets apply to the whole
2150 text and data segments. Convert the offsets given in the packet
2151 to base addresses for symfile_map_offsets_to_segments. */
2152 else if (data && data->num_segments == 2)
2153 {
2154 segments[0] = data->segment_bases[0] + text_addr;
2155 segments[1] = data->segment_bases[1] + data_addr;
2156 num_segments = 2;
2157 }
2158 /* If the object file has only one segment, assume that it is text
2159 rather than data; main programs with no writable data are rare,
2160 but programs with no code are useless. Of course the code might
2161 have ended up in the data segment... to detect that we would need
2162 the permissions here. */
2163 else if (data && data->num_segments == 1)
2164 {
2165 segments[0] = data->segment_bases[0] + text_addr;
2166 num_segments = 1;
2167 }
2168 /* There's no way to relocate by segment. */
2169 else
2170 do_segments = 0;
2171
2172 if (do_segments)
2173 {
2174 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2175 offs, num_segments, segments);
2176
2177 if (ret == 0 && !do_sections)
2178 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2179
2180 if (ret > 0)
2181 do_sections = 0;
2182 }
2183
2184 if (data)
2185 free_symfile_segment_data (data);
2186
2187 if (do_sections)
2188 {
2189 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2190
2191 /* This is a temporary kludge to force data and bss to use the same offsets
2192 because that's what nlmconv does now. The real solution requires changes
2193 to the stub and remote.c that I don't have time to do right now. */
2194
2195 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2196 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2197 }
2198
2199 objfile_relocate (symfile_objfile, offs);
2200 }
2201
2202 /* Stub for catch_exception. */
2203
2204 struct start_remote_args
2205 {
2206 int from_tty;
2207
2208 /* The current target. */
2209 struct target_ops *target;
2210
2211 /* Non-zero if this is an extended-remote target. */
2212 int extended_p;
2213 };
2214
2215 static void
2216 remote_start_remote (struct ui_out *uiout, void *opaque)
2217 {
2218 struct remote_state *rs = get_remote_state ();
2219 struct start_remote_args *args = opaque;
2220 char *wait_status = NULL;
2221
2222 immediate_quit++; /* Allow user to interrupt it. */
2223
2224 /* Ack any packet which the remote side has already sent. */
2225 serial_write (remote_desc, "+", 1);
2226
2227 /* Check whether the target is running now. */
2228 putpkt ("?");
2229 getpkt (&rs->buf, &rs->buf_size, 0);
2230
2231 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2232 {
2233 if (args->extended_p)
2234 {
2235 /* We're connected, but not running. Drop out before we
2236 call start_remote. */
2237 target_mark_exited (args->target);
2238 return;
2239 }
2240 else
2241 error (_("The target is not running (try extended-remote?)"));
2242 }
2243 else
2244 {
2245 if (args->extended_p)
2246 target_mark_running (args->target);
2247
2248 /* Save the reply for later. */
2249 wait_status = alloca (strlen (rs->buf) + 1);
2250 strcpy (wait_status, rs->buf);
2251 }
2252
2253 /* Let the stub know that we want it to return the thread. */
2254 set_thread (-1, 0);
2255
2256 /* Without this, some commands which require an active target
2257 (such as kill) won't work. This variable serves (at least)
2258 double duty as both the pid of the target process (if it has
2259 such), and as a flag indicating that a target is active.
2260 These functions should be split out into seperate variables,
2261 especially since GDB will someday have a notion of debugging
2262 several processes. */
2263 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2264
2265 /* Now, if we have thread information, update inferior_ptid. */
2266 inferior_ptid = remote_current_thread (inferior_ptid);
2267
2268 get_offsets (); /* Get text, data & bss offsets. */
2269
2270 /* Use the previously fetched status. */
2271 gdb_assert (wait_status != NULL);
2272 strcpy (rs->buf, wait_status);
2273 rs->cached_wait_status = 1;
2274
2275 immediate_quit--;
2276 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2277 }
2278
2279 /* Open a connection to a remote debugger.
2280 NAME is the filename used for communication. */
2281
2282 static void
2283 remote_open (char *name, int from_tty)
2284 {
2285 remote_open_1 (name, from_tty, &remote_ops, 0);
2286 }
2287
2288 /* Open a connection to a remote debugger using the extended
2289 remote gdb protocol. NAME is the filename used for communication. */
2290
2291 static void
2292 extended_remote_open (char *name, int from_tty)
2293 {
2294 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
2295 }
2296
2297 /* Generic code for opening a connection to a remote target. */
2298
2299 static void
2300 init_all_packet_configs (void)
2301 {
2302 int i;
2303 for (i = 0; i < PACKET_MAX; i++)
2304 update_packet_config (&remote_protocol_packets[i]);
2305 }
2306
2307 /* Symbol look-up. */
2308
2309 static void
2310 remote_check_symbols (struct objfile *objfile)
2311 {
2312 struct remote_state *rs = get_remote_state ();
2313 char *msg, *reply, *tmp;
2314 struct minimal_symbol *sym;
2315 int end;
2316
2317 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2318 return;
2319
2320 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2321 because we need both at the same time. */
2322 msg = alloca (get_remote_packet_size ());
2323
2324 /* Invite target to request symbol lookups. */
2325
2326 putpkt ("qSymbol::");
2327 getpkt (&rs->buf, &rs->buf_size, 0);
2328 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2329 reply = rs->buf;
2330
2331 while (strncmp (reply, "qSymbol:", 8) == 0)
2332 {
2333 tmp = &reply[8];
2334 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2335 msg[end] = '\0';
2336 sym = lookup_minimal_symbol (msg, NULL, NULL);
2337 if (sym == NULL)
2338 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2339 else
2340 {
2341 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2342
2343 /* If this is a function address, return the start of code
2344 instead of any data function descriptor. */
2345 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2346 sym_addr,
2347 &current_target);
2348
2349 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2350 paddr_nz (sym_addr), &reply[8]);
2351 }
2352
2353 putpkt (msg);
2354 getpkt (&rs->buf, &rs->buf_size, 0);
2355 reply = rs->buf;
2356 }
2357 }
2358
2359 static struct serial *
2360 remote_serial_open (char *name)
2361 {
2362 static int udp_warning = 0;
2363
2364 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2365 of in ser-tcp.c, because it is the remote protocol assuming that the
2366 serial connection is reliable and not the serial connection promising
2367 to be. */
2368 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2369 {
2370 warning (_("\
2371 The remote protocol may be unreliable over UDP.\n\
2372 Some events may be lost, rendering further debugging impossible."));
2373 udp_warning = 1;
2374 }
2375
2376 return serial_open (name);
2377 }
2378
2379 /* This type describes each known response to the qSupported
2380 packet. */
2381 struct protocol_feature
2382 {
2383 /* The name of this protocol feature. */
2384 const char *name;
2385
2386 /* The default for this protocol feature. */
2387 enum packet_support default_support;
2388
2389 /* The function to call when this feature is reported, or after
2390 qSupported processing if the feature is not supported.
2391 The first argument points to this structure. The second
2392 argument indicates whether the packet requested support be
2393 enabled, disabled, or probed (or the default, if this function
2394 is being called at the end of processing and this feature was
2395 not reported). The third argument may be NULL; if not NULL, it
2396 is a NUL-terminated string taken from the packet following
2397 this feature's name and an equals sign. */
2398 void (*func) (const struct protocol_feature *, enum packet_support,
2399 const char *);
2400
2401 /* The corresponding packet for this feature. Only used if
2402 FUNC is remote_supported_packet. */
2403 int packet;
2404 };
2405
2406 static void
2407 remote_supported_packet (const struct protocol_feature *feature,
2408 enum packet_support support,
2409 const char *argument)
2410 {
2411 if (argument)
2412 {
2413 warning (_("Remote qSupported response supplied an unexpected value for"
2414 " \"%s\"."), feature->name);
2415 return;
2416 }
2417
2418 if (remote_protocol_packets[feature->packet].support
2419 == PACKET_SUPPORT_UNKNOWN)
2420 remote_protocol_packets[feature->packet].support = support;
2421 }
2422
2423 static void
2424 remote_packet_size (const struct protocol_feature *feature,
2425 enum packet_support support, const char *value)
2426 {
2427 struct remote_state *rs = get_remote_state ();
2428
2429 int packet_size;
2430 char *value_end;
2431
2432 if (support != PACKET_ENABLE)
2433 return;
2434
2435 if (value == NULL || *value == '\0')
2436 {
2437 warning (_("Remote target reported \"%s\" without a size."),
2438 feature->name);
2439 return;
2440 }
2441
2442 errno = 0;
2443 packet_size = strtol (value, &value_end, 16);
2444 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2445 {
2446 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2447 feature->name, value);
2448 return;
2449 }
2450
2451 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2452 {
2453 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2454 packet_size, MAX_REMOTE_PACKET_SIZE);
2455 packet_size = MAX_REMOTE_PACKET_SIZE;
2456 }
2457
2458 /* Record the new maximum packet size. */
2459 rs->explicit_packet_size = packet_size;
2460 }
2461
2462 static struct protocol_feature remote_protocol_features[] = {
2463 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2464 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2465 PACKET_qXfer_auxv },
2466 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2467 PACKET_qXfer_features },
2468 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2469 PACKET_qXfer_libraries },
2470 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2471 PACKET_qXfer_memory_map },
2472 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2473 PACKET_qXfer_spu_read },
2474 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2475 PACKET_qXfer_spu_write },
2476 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2477 PACKET_QPassSignals },
2478 };
2479
2480 static void
2481 remote_query_supported (void)
2482 {
2483 struct remote_state *rs = get_remote_state ();
2484 char *next;
2485 int i;
2486 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2487
2488 /* The packet support flags are handled differently for this packet
2489 than for most others. We treat an error, a disabled packet, and
2490 an empty response identically: any features which must be reported
2491 to be used will be automatically disabled. An empty buffer
2492 accomplishes this, since that is also the representation for a list
2493 containing no features. */
2494
2495 rs->buf[0] = 0;
2496 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2497 {
2498 putpkt ("qSupported");
2499 getpkt (&rs->buf, &rs->buf_size, 0);
2500
2501 /* If an error occured, warn, but do not return - just reset the
2502 buffer to empty and go on to disable features. */
2503 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2504 == PACKET_ERROR)
2505 {
2506 warning (_("Remote failure reply: %s"), rs->buf);
2507 rs->buf[0] = 0;
2508 }
2509 }
2510
2511 memset (seen, 0, sizeof (seen));
2512
2513 next = rs->buf;
2514 while (*next)
2515 {
2516 enum packet_support is_supported;
2517 char *p, *end, *name_end, *value;
2518
2519 /* First separate out this item from the rest of the packet. If
2520 there's another item after this, we overwrite the separator
2521 (terminated strings are much easier to work with). */
2522 p = next;
2523 end = strchr (p, ';');
2524 if (end == NULL)
2525 {
2526 end = p + strlen (p);
2527 next = end;
2528 }
2529 else
2530 {
2531 *end = '\0';
2532 next = end + 1;
2533
2534 if (end == p)
2535 {
2536 warning (_("empty item in \"qSupported\" response"));
2537 continue;
2538 }
2539 }
2540
2541 name_end = strchr (p, '=');
2542 if (name_end)
2543 {
2544 /* This is a name=value entry. */
2545 is_supported = PACKET_ENABLE;
2546 value = name_end + 1;
2547 *name_end = '\0';
2548 }
2549 else
2550 {
2551 value = NULL;
2552 switch (end[-1])
2553 {
2554 case '+':
2555 is_supported = PACKET_ENABLE;
2556 break;
2557
2558 case '-':
2559 is_supported = PACKET_DISABLE;
2560 break;
2561
2562 case '?':
2563 is_supported = PACKET_SUPPORT_UNKNOWN;
2564 break;
2565
2566 default:
2567 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2568 continue;
2569 }
2570 end[-1] = '\0';
2571 }
2572
2573 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2574 if (strcmp (remote_protocol_features[i].name, p) == 0)
2575 {
2576 const struct protocol_feature *feature;
2577
2578 seen[i] = 1;
2579 feature = &remote_protocol_features[i];
2580 feature->func (feature, is_supported, value);
2581 break;
2582 }
2583 }
2584
2585 /* If we increased the packet size, make sure to increase the global
2586 buffer size also. We delay this until after parsing the entire
2587 qSupported packet, because this is the same buffer we were
2588 parsing. */
2589 if (rs->buf_size < rs->explicit_packet_size)
2590 {
2591 rs->buf_size = rs->explicit_packet_size;
2592 rs->buf = xrealloc (rs->buf, rs->buf_size);
2593 }
2594
2595 /* Handle the defaults for unmentioned features. */
2596 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2597 if (!seen[i])
2598 {
2599 const struct protocol_feature *feature;
2600
2601 feature = &remote_protocol_features[i];
2602 feature->func (feature, feature->default_support, NULL);
2603 }
2604 }
2605
2606
2607 static void
2608 remote_open_1 (char *name, int from_tty, struct target_ops *target, int extended_p)
2609 {
2610 struct remote_state *rs = get_remote_state ();
2611 if (name == 0)
2612 error (_("To open a remote debug connection, you need to specify what\n"
2613 "serial device is attached to the remote system\n"
2614 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2615
2616 /* See FIXME above. */
2617 if (!remote_async_permitted)
2618 wait_forever_enabled_p = 1;
2619
2620 /* If we're connected to a running target, target_preopen will kill it.
2621 But if we're connected to a target system with no running process,
2622 then we will still be connected when it returns. Ask this question
2623 first, before target_preopen has a chance to kill anything. */
2624 if (remote_desc != NULL && !target_has_execution)
2625 {
2626 if (!from_tty
2627 || query (_("Already connected to a remote target. Disconnect? ")))
2628 pop_target ();
2629 else
2630 error (_("Still connected."));
2631 }
2632
2633 target_preopen (from_tty);
2634
2635 unpush_target (target);
2636
2637 /* This time without a query. If we were connected to an
2638 extended-remote target and target_preopen killed the running
2639 process, we may still be connected. If we are starting "target
2640 remote" now, the extended-remote target will not have been
2641 removed by unpush_target. */
2642 if (remote_desc != NULL && !target_has_execution)
2643 pop_target ();
2644
2645 /* Make sure we send the passed signals list the next time we resume. */
2646 xfree (last_pass_packet);
2647 last_pass_packet = NULL;
2648
2649 remote_fileio_reset ();
2650 reopen_exec_file ();
2651 reread_symbols ();
2652
2653 remote_desc = remote_serial_open (name);
2654 if (!remote_desc)
2655 perror_with_name (name);
2656
2657 if (baud_rate != -1)
2658 {
2659 if (serial_setbaudrate (remote_desc, baud_rate))
2660 {
2661 /* The requested speed could not be set. Error out to
2662 top level after closing remote_desc. Take care to
2663 set remote_desc to NULL to avoid closing remote_desc
2664 more than once. */
2665 serial_close (remote_desc);
2666 remote_desc = NULL;
2667 perror_with_name (name);
2668 }
2669 }
2670
2671 serial_raw (remote_desc);
2672
2673 /* If there is something sitting in the buffer we might take it as a
2674 response to a command, which would be bad. */
2675 serial_flush_input (remote_desc);
2676
2677 if (from_tty)
2678 {
2679 puts_filtered ("Remote debugging using ");
2680 puts_filtered (name);
2681 puts_filtered ("\n");
2682 }
2683 push_target (target); /* Switch to using remote target now. */
2684
2685 /* Assume that the target is running, unless we learn otherwise. */
2686 target_mark_running (target);
2687
2688 /* Reset the target state; these things will be queried either by
2689 remote_query_supported or as they are needed. */
2690 init_all_packet_configs ();
2691 rs->explicit_packet_size = 0;
2692
2693 general_thread = -2;
2694 continue_thread = -2;
2695
2696 /* Probe for ability to use "ThreadInfo" query, as required. */
2697 use_threadinfo_query = 1;
2698 use_threadextra_query = 1;
2699
2700 /* The first packet we send to the target is the optional "supported
2701 packets" request. If the target can answer this, it will tell us
2702 which later probes to skip. */
2703 remote_query_supported ();
2704
2705 /* Next, if the target can specify a description, read it. We do
2706 this before anything involving memory or registers. */
2707 target_find_description ();
2708
2709 if (remote_async_permitted)
2710 {
2711 /* With this target we start out by owning the terminal. */
2712 remote_async_terminal_ours_p = 1;
2713
2714 /* FIXME: cagney/1999-09-23: During the initial connection it is
2715 assumed that the target is already ready and able to respond to
2716 requests. Unfortunately remote_start_remote() eventually calls
2717 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2718 around this. Eventually a mechanism that allows
2719 wait_for_inferior() to expect/get timeouts will be
2720 implemented. */
2721 wait_forever_enabled_p = 0;
2722 }
2723
2724 /* First delete any symbols previously loaded from shared libraries. */
2725 no_shared_libraries (NULL, 0);
2726
2727 /* Start the remote connection. If error() or QUIT, discard this
2728 target (we'd otherwise be in an inconsistent state) and then
2729 propogate the error on up the exception chain. This ensures that
2730 the caller doesn't stumble along blindly assuming that the
2731 function succeeded. The CLI doesn't have this problem but other
2732 UI's, such as MI do.
2733
2734 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2735 this function should return an error indication letting the
2736 caller restore the previous state. Unfortunately the command
2737 ``target remote'' is directly wired to this function making that
2738 impossible. On a positive note, the CLI side of this problem has
2739 been fixed - the function set_cmd_context() makes it possible for
2740 all the ``target ....'' commands to share a common callback
2741 function. See cli-dump.c. */
2742 {
2743 struct gdb_exception ex;
2744 struct start_remote_args args;
2745
2746 args.from_tty = from_tty;
2747 args.target = target;
2748 args.extended_p = extended_p;
2749
2750 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
2751 if (ex.reason < 0)
2752 {
2753 pop_target ();
2754 if (remote_async_permitted)
2755 wait_forever_enabled_p = 1;
2756 throw_exception (ex);
2757 }
2758 }
2759
2760 if (remote_async_permitted)
2761 wait_forever_enabled_p = 1;
2762
2763 if (extended_p)
2764 {
2765 /* Tell the remote that we are using the extended protocol. */
2766 putpkt ("!");
2767 getpkt (&rs->buf, &rs->buf_size, 0);
2768 }
2769
2770 /* If we connected to a live target, do some additional setup. */
2771 if (target_has_execution)
2772 {
2773 if (exec_bfd) /* No use without an exec file. */
2774 remote_check_symbols (symfile_objfile);
2775 }
2776 }
2777
2778 /* This takes a program previously attached to and detaches it. After
2779 this is done, GDB can be used to debug some other program. We
2780 better not have left any breakpoints in the target program or it'll
2781 die when it hits one. */
2782
2783 static void
2784 remote_detach_1 (char *args, int from_tty, int extended)
2785 {
2786 struct remote_state *rs = get_remote_state ();
2787
2788 if (args)
2789 error (_("Argument given to \"detach\" when remotely debugging."));
2790
2791 if (!target_has_execution)
2792 error (_("No process to detach from."));
2793
2794 /* Tell the remote target to detach. */
2795 strcpy (rs->buf, "D");
2796 putpkt (rs->buf);
2797 getpkt (&rs->buf, &rs->buf_size, 0);
2798
2799 if (rs->buf[0] == 'E')
2800 error (_("Can't detach process."));
2801
2802 /* Unregister the file descriptor from the event loop. */
2803 if (target_is_async_p ())
2804 serial_async (remote_desc, NULL, 0);
2805
2806 target_mourn_inferior ();
2807 if (from_tty)
2808 {
2809 if (extended)
2810 puts_filtered ("Detached from remote process.\n");
2811 else
2812 puts_filtered ("Ending remote debugging.\n");
2813 }
2814 }
2815
2816 static void
2817 remote_detach (char *args, int from_tty)
2818 {
2819 remote_detach_1 (args, from_tty, 0);
2820 }
2821
2822 static void
2823 extended_remote_detach (char *args, int from_tty)
2824 {
2825 remote_detach_1 (args, from_tty, 1);
2826 }
2827
2828 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2829
2830 static void
2831 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2832 {
2833 if (args)
2834 error (_("Argument given to \"disconnect\" when remotely debugging."));
2835
2836 /* Unregister the file descriptor from the event loop. */
2837 if (target_is_async_p ())
2838 serial_async (remote_desc, NULL, 0);
2839
2840 /* Make sure we unpush even the extended remote targets; mourn
2841 won't do it. So call remote_mourn_1 directly instead of
2842 target_mourn_inferior. */
2843 remote_mourn_1 (target);
2844
2845 if (from_tty)
2846 puts_filtered ("Ending remote debugging.\n");
2847 }
2848
2849 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
2850 be chatty about it. */
2851
2852 static void
2853 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
2854 {
2855 struct remote_state *rs = get_remote_state ();
2856 int pid;
2857 char *dummy;
2858 char *wait_status = NULL;
2859
2860 if (!args)
2861 error_no_arg (_("process-id to attach"));
2862
2863 dummy = args;
2864 pid = strtol (args, &dummy, 0);
2865 /* Some targets don't set errno on errors, grrr! */
2866 if (pid == 0 && args == dummy)
2867 error (_("Illegal process-id: %s."), args);
2868
2869 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2870 error (_("This target does not support attaching to a process"));
2871
2872 sprintf (rs->buf, "vAttach;%x", pid);
2873 putpkt (rs->buf);
2874 getpkt (&rs->buf, &rs->buf_size, 0);
2875
2876 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
2877 {
2878 if (from_tty)
2879 printf_unfiltered (_("Attached to %s\n"),
2880 target_pid_to_str (pid_to_ptid (pid)));
2881
2882 /* Save the reply for later. */
2883 wait_status = alloca (strlen (rs->buf) + 1);
2884 strcpy (wait_status, rs->buf);
2885 }
2886 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2887 error (_("This target does not support attaching to a process"));
2888 else
2889 error (_("Attaching to %s failed"),
2890 target_pid_to_str (pid_to_ptid (pid)));
2891
2892 target_mark_running (target);
2893 inferior_ptid = pid_to_ptid (pid);
2894 attach_flag = 1;
2895
2896 /* Next, if the target can specify a description, read it. We do
2897 this before anything involving memory or registers. */
2898 target_find_description ();
2899
2900 /* Use the previously fetched status. */
2901 gdb_assert (wait_status != NULL);
2902 strcpy (rs->buf, wait_status);
2903 rs->cached_wait_status = 1;
2904 }
2905
2906 static void
2907 extended_remote_attach (char *args, int from_tty)
2908 {
2909 extended_remote_attach_1 (&extended_remote_ops, args, from_tty);
2910 }
2911
2912 /* Convert hex digit A to a number. */
2913
2914 static int
2915 fromhex (int a)
2916 {
2917 if (a >= '0' && a <= '9')
2918 return a - '0';
2919 else if (a >= 'a' && a <= 'f')
2920 return a - 'a' + 10;
2921 else if (a >= 'A' && a <= 'F')
2922 return a - 'A' + 10;
2923 else
2924 error (_("Reply contains invalid hex digit %d"), a);
2925 }
2926
2927 static int
2928 hex2bin (const char *hex, gdb_byte *bin, int count)
2929 {
2930 int i;
2931
2932 for (i = 0; i < count; i++)
2933 {
2934 if (hex[0] == 0 || hex[1] == 0)
2935 {
2936 /* Hex string is short, or of uneven length.
2937 Return the count that has been converted so far. */
2938 return i;
2939 }
2940 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2941 hex += 2;
2942 }
2943 return i;
2944 }
2945
2946 /* Convert number NIB to a hex digit. */
2947
2948 static int
2949 tohex (int nib)
2950 {
2951 if (nib < 10)
2952 return '0' + nib;
2953 else
2954 return 'a' + nib - 10;
2955 }
2956
2957 static int
2958 bin2hex (const gdb_byte *bin, char *hex, int count)
2959 {
2960 int i;
2961 /* May use a length, or a nul-terminated string as input. */
2962 if (count == 0)
2963 count = strlen ((char *) bin);
2964
2965 for (i = 0; i < count; i++)
2966 {
2967 *hex++ = tohex ((*bin >> 4) & 0xf);
2968 *hex++ = tohex (*bin++ & 0xf);
2969 }
2970 *hex = 0;
2971 return i;
2972 }
2973 \f
2974 /* Check for the availability of vCont. This function should also check
2975 the response. */
2976
2977 static void
2978 remote_vcont_probe (struct remote_state *rs)
2979 {
2980 char *buf;
2981
2982 strcpy (rs->buf, "vCont?");
2983 putpkt (rs->buf);
2984 getpkt (&rs->buf, &rs->buf_size, 0);
2985 buf = rs->buf;
2986
2987 /* Make sure that the features we assume are supported. */
2988 if (strncmp (buf, "vCont", 5) == 0)
2989 {
2990 char *p = &buf[5];
2991 int support_s, support_S, support_c, support_C;
2992
2993 support_s = 0;
2994 support_S = 0;
2995 support_c = 0;
2996 support_C = 0;
2997 while (p && *p == ';')
2998 {
2999 p++;
3000 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
3001 support_s = 1;
3002 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
3003 support_S = 1;
3004 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
3005 support_c = 1;
3006 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
3007 support_C = 1;
3008
3009 p = strchr (p, ';');
3010 }
3011
3012 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
3013 BUF will make packet_ok disable the packet. */
3014 if (!support_s || !support_S || !support_c || !support_C)
3015 buf[0] = 0;
3016 }
3017
3018 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3019 }
3020
3021 /* Resume the remote inferior by using a "vCont" packet. The thread
3022 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3023 resumed thread should be single-stepped and/or signalled. If PTID's
3024 PID is -1, then all threads are resumed; the thread to be stepped and/or
3025 signalled is given in the global INFERIOR_PTID. This function returns
3026 non-zero iff it resumes the inferior.
3027
3028 This function issues a strict subset of all possible vCont commands at the
3029 moment. */
3030
3031 static int
3032 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3033 {
3034 struct remote_state *rs = get_remote_state ();
3035 int pid = PIDGET (ptid);
3036 char *outbuf;
3037 struct cleanup *old_cleanup;
3038
3039 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3040 remote_vcont_probe (rs);
3041
3042 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3043 return 0;
3044
3045 /* If we could generate a wider range of packets, we'd have to worry
3046 about overflowing BUF. Should there be a generic
3047 "multi-part-packet" packet? */
3048
3049 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
3050 {
3051 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
3052 don't have any PID numbers the inferior will understand. Make sure
3053 to only send forms that do not specify a PID. */
3054 if (step && siggnal != TARGET_SIGNAL_0)
3055 outbuf = xstrprintf ("vCont;S%02x", siggnal);
3056 else if (step)
3057 outbuf = xstrprintf ("vCont;s");
3058 else if (siggnal != TARGET_SIGNAL_0)
3059 outbuf = xstrprintf ("vCont;C%02x", siggnal);
3060 else
3061 outbuf = xstrprintf ("vCont;c");
3062 }
3063 else if (pid == -1)
3064 {
3065 /* Resume all threads, with preference for INFERIOR_PTID. */
3066 if (step && siggnal != TARGET_SIGNAL_0)
3067 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
3068 PIDGET (inferior_ptid));
3069 else if (step)
3070 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
3071 else if (siggnal != TARGET_SIGNAL_0)
3072 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
3073 PIDGET (inferior_ptid));
3074 else
3075 outbuf = xstrprintf ("vCont;c");
3076 }
3077 else
3078 {
3079 /* Scheduler locking; resume only PTID. */
3080 if (step && siggnal != TARGET_SIGNAL_0)
3081 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
3082 else if (step)
3083 outbuf = xstrprintf ("vCont;s:%x", pid);
3084 else if (siggnal != TARGET_SIGNAL_0)
3085 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
3086 else
3087 outbuf = xstrprintf ("vCont;c:%x", pid);
3088 }
3089
3090 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
3091 old_cleanup = make_cleanup (xfree, outbuf);
3092
3093 putpkt (outbuf);
3094
3095 do_cleanups (old_cleanup);
3096
3097 return 1;
3098 }
3099
3100 /* Tell the remote machine to resume. */
3101
3102 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3103
3104 static int last_sent_step;
3105
3106 static void
3107 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3108 {
3109 struct remote_state *rs = get_remote_state ();
3110 char *buf;
3111 int pid = PIDGET (ptid);
3112
3113 last_sent_signal = siggnal;
3114 last_sent_step = step;
3115
3116 /* Update the inferior on signals to silently pass, if they've changed. */
3117 remote_pass_signals ();
3118
3119 /* The vCont packet doesn't need to specify threads via Hc. */
3120 if (remote_vcont_resume (ptid, step, siggnal))
3121 goto done;
3122
3123 /* All other supported resume packets do use Hc, so call set_thread. */
3124 if (pid == -1)
3125 set_thread (0, 0); /* Run any thread. */
3126 else
3127 set_thread (pid, 0); /* Run this thread. */
3128
3129 buf = rs->buf;
3130 if (siggnal != TARGET_SIGNAL_0)
3131 {
3132 buf[0] = step ? 'S' : 'C';
3133 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3134 buf[2] = tohex (((int) siggnal) & 0xf);
3135 buf[3] = '\0';
3136 }
3137 else
3138 strcpy (buf, step ? "s" : "c");
3139
3140 putpkt (buf);
3141
3142 done:
3143 /* We are about to start executing the inferior, let's register it
3144 with the event loop. NOTE: this is the one place where all the
3145 execution commands end up. We could alternatively do this in each
3146 of the execution commands in infcmd.c. */
3147 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3148 into infcmd.c in order to allow inferior function calls to work
3149 NOT asynchronously. */
3150 if (target_can_async_p ())
3151 target_async (inferior_event_handler, 0);
3152 /* Tell the world that the target is now executing. */
3153 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
3154 this? Instead, should the client of target just assume (for
3155 async targets) that the target is going to start executing? Is
3156 this information already found in the continuation block? */
3157 if (target_is_async_p ())
3158 target_executing = 1;
3159 }
3160 \f
3161
3162 /* Set up the signal handler for SIGINT, while the target is
3163 executing, ovewriting the 'regular' SIGINT signal handler. */
3164 static void
3165 initialize_sigint_signal_handler (void)
3166 {
3167 signal (SIGINT, handle_remote_sigint);
3168 }
3169
3170 /* Signal handler for SIGINT, while the target is executing. */
3171 static void
3172 handle_remote_sigint (int sig)
3173 {
3174 signal (sig, handle_remote_sigint_twice);
3175 mark_async_signal_handler_wrapper (sigint_remote_token);
3176 }
3177
3178 /* Signal handler for SIGINT, installed after SIGINT has already been
3179 sent once. It will take effect the second time that the user sends
3180 a ^C. */
3181 static void
3182 handle_remote_sigint_twice (int sig)
3183 {
3184 signal (sig, handle_remote_sigint);
3185 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3186 }
3187
3188 /* Perform the real interruption of the target execution, in response
3189 to a ^C. */
3190 static void
3191 async_remote_interrupt (gdb_client_data arg)
3192 {
3193 if (remote_debug)
3194 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3195
3196 target_stop ();
3197 }
3198
3199 /* Perform interrupt, if the first attempt did not succeed. Just give
3200 up on the target alltogether. */
3201 void
3202 async_remote_interrupt_twice (gdb_client_data arg)
3203 {
3204 if (remote_debug)
3205 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3206
3207 interrupt_query ();
3208 }
3209
3210 /* Reinstall the usual SIGINT handlers, after the target has
3211 stopped. */
3212 static void
3213 cleanup_sigint_signal_handler (void *dummy)
3214 {
3215 signal (SIGINT, handle_sigint);
3216 }
3217
3218 /* Send ^C to target to halt it. Target will respond, and send us a
3219 packet. */
3220 static void (*ofunc) (int);
3221
3222 /* The command line interface's stop routine. This function is installed
3223 as a signal handler for SIGINT. The first time a user requests a
3224 stop, we call remote_stop to send a break or ^C. If there is no
3225 response from the target (it didn't stop when the user requested it),
3226 we ask the user if he'd like to detach from the target. */
3227 static void
3228 remote_interrupt (int signo)
3229 {
3230 /* If this doesn't work, try more severe steps. */
3231 signal (signo, remote_interrupt_twice);
3232
3233 gdb_call_async_signal_handler (sigint_remote_token, 1);
3234 }
3235
3236 /* The user typed ^C twice. */
3237
3238 static void
3239 remote_interrupt_twice (int signo)
3240 {
3241 signal (signo, ofunc);
3242 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3243 signal (signo, remote_interrupt);
3244 }
3245
3246 /* This is the generic stop called via the target vector. When a target
3247 interrupt is requested, either by the command line or the GUI, we
3248 will eventually end up here. */
3249 static void
3250 remote_stop (void)
3251 {
3252 /* Send a break or a ^C, depending on user preference. */
3253 if (remote_debug)
3254 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3255
3256 if (remote_break)
3257 serial_send_break (remote_desc);
3258 else
3259 serial_write (remote_desc, "\003", 1);
3260 }
3261
3262 /* Ask the user what to do when an interrupt is received. */
3263
3264 static void
3265 interrupt_query (void)
3266 {
3267 target_terminal_ours ();
3268
3269 if (query ("Interrupted while waiting for the program.\n\
3270 Give up (and stop debugging it)? "))
3271 {
3272 target_mourn_inferior ();
3273 signal (SIGINT, handle_sigint);
3274 deprecated_throw_reason (RETURN_QUIT);
3275 }
3276
3277 target_terminal_inferior ();
3278 }
3279
3280 /* Enable/disable target terminal ownership. Most targets can use
3281 terminal groups to control terminal ownership. Remote targets are
3282 different in that explicit transfer of ownership to/from GDB/target
3283 is required. */
3284
3285 static void
3286 remote_terminal_inferior (void)
3287 {
3288 if (!remote_async_permitted)
3289 /* Nothing to do. */
3290 return;
3291
3292 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3293 sync_execution here. This function should only be called when
3294 GDB is resuming the inferior in the forground. A background
3295 resume (``run&'') should leave GDB in control of the terminal and
3296 consequently should not call this code. */
3297 if (!sync_execution)
3298 return;
3299 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3300 calls target_terminal_*() idenpotent. The event-loop GDB talking
3301 to an asynchronous target with a synchronous command calls this
3302 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3303 stops trying to transfer the terminal to the target when it
3304 shouldn't this guard can go away. */
3305 if (!remote_async_terminal_ours_p)
3306 return;
3307 delete_file_handler (input_fd);
3308 remote_async_terminal_ours_p = 0;
3309 initialize_sigint_signal_handler ();
3310 /* NOTE: At this point we could also register our selves as the
3311 recipient of all input. Any characters typed could then be
3312 passed on down to the target. */
3313 }
3314
3315 static void
3316 remote_terminal_ours (void)
3317 {
3318 if (!remote_async_permitted)
3319 /* Nothing to do. */
3320 return;
3321
3322 /* See FIXME in remote_terminal_inferior. */
3323 if (!sync_execution)
3324 return;
3325 /* See FIXME in remote_terminal_inferior. */
3326 if (remote_async_terminal_ours_p)
3327 return;
3328 cleanup_sigint_signal_handler (NULL);
3329 add_file_handler (input_fd, stdin_event_handler, 0);
3330 remote_async_terminal_ours_p = 1;
3331 }
3332
3333 void
3334 remote_console_output (char *msg)
3335 {
3336 char *p;
3337
3338 for (p = msg; p[0] && p[1]; p += 2)
3339 {
3340 char tb[2];
3341 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3342 tb[0] = c;
3343 tb[1] = 0;
3344 fputs_unfiltered (tb, gdb_stdtarg);
3345 }
3346 gdb_flush (gdb_stdtarg);
3347 }
3348
3349 /* Wait until the remote machine stops, then return,
3350 storing status in STATUS just as `wait' would.
3351 Returns "pid", which in the case of a multi-threaded
3352 remote OS, is the thread-id. */
3353
3354 static ptid_t
3355 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3356 {
3357 struct remote_state *rs = get_remote_state ();
3358 struct remote_arch_state *rsa = get_remote_arch_state ();
3359 ULONGEST thread_num = -1;
3360 ULONGEST addr;
3361 int solibs_changed = 0;
3362
3363 status->kind = TARGET_WAITKIND_EXITED;
3364 status->value.integer = 0;
3365
3366 while (1)
3367 {
3368 char *buf, *p;
3369
3370 if (rs->cached_wait_status)
3371 /* Use the cached wait status, but only once. */
3372 rs->cached_wait_status = 0;
3373 else
3374 {
3375 if (!target_is_async_p ())
3376 {
3377 ofunc = signal (SIGINT, remote_interrupt);
3378 /* If the user hit C-c before this packet, or between packets,
3379 pretend that it was hit right here. */
3380 if (quit_flag)
3381 {
3382 quit_flag = 0;
3383 remote_interrupt (SIGINT);
3384 }
3385 }
3386 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3387 _never_ wait for ever -> test on target_is_async_p().
3388 However, before we do that we need to ensure that the caller
3389 knows how to take the target into/out of async mode. */
3390 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3391 if (!target_is_async_p ())
3392 signal (SIGINT, ofunc);
3393 }
3394
3395 buf = rs->buf;
3396
3397 remote_stopped_by_watchpoint_p = 0;
3398
3399 switch (buf[0])
3400 {
3401 case 'E': /* Error of some sort. */
3402 /* We're out of sync with the target now. Did it continue or not?
3403 Not is more likely, so report a stop. */
3404 warning (_("Remote failure reply: %s"), buf);
3405 status->kind = TARGET_WAITKIND_STOPPED;
3406 status->value.sig = TARGET_SIGNAL_0;
3407 goto got_status;
3408 case 'F': /* File-I/O request. */
3409 remote_fileio_request (buf);
3410 continue;
3411 case 'T': /* Status with PC, SP, FP, ... */
3412 {
3413 gdb_byte regs[MAX_REGISTER_SIZE];
3414
3415 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3416 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3417 ss = signal number
3418 n... = register number
3419 r... = register contents
3420 */
3421 p = &buf[3]; /* after Txx */
3422
3423 while (*p)
3424 {
3425 char *p1;
3426 char *p_temp;
3427 int fieldsize;
3428 LONGEST pnum = 0;
3429
3430 /* If the packet contains a register number, save it
3431 in pnum and set p1 to point to the character
3432 following it. Otherwise p1 points to p. */
3433
3434 /* If this packet is an awatch packet, don't parse the
3435 'a' as a register number. */
3436
3437 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3438 {
3439 /* Read the ``P'' register number. */
3440 pnum = strtol (p, &p_temp, 16);
3441 p1 = p_temp;
3442 }
3443 else
3444 p1 = p;
3445
3446 if (p1 == p) /* No register number present here. */
3447 {
3448 p1 = strchr (p, ':');
3449 if (p1 == NULL)
3450 error (_("Malformed packet(a) (missing colon): %s\n\
3451 Packet: '%s'\n"),
3452 p, buf);
3453 if (strncmp (p, "thread", p1 - p) == 0)
3454 {
3455 p_temp = unpack_varlen_hex (++p1, &thread_num);
3456 record_currthread (thread_num);
3457 p = p_temp;
3458 }
3459 else if ((strncmp (p, "watch", p1 - p) == 0)
3460 || (strncmp (p, "rwatch", p1 - p) == 0)
3461 || (strncmp (p, "awatch", p1 - p) == 0))
3462 {
3463 remote_stopped_by_watchpoint_p = 1;
3464 p = unpack_varlen_hex (++p1, &addr);
3465 remote_watch_data_address = (CORE_ADDR)addr;
3466 }
3467 else if (strncmp (p, "library", p1 - p) == 0)
3468 {
3469 p1++;
3470 p_temp = p1;
3471 while (*p_temp && *p_temp != ';')
3472 p_temp++;
3473
3474 solibs_changed = 1;
3475 p = p_temp;
3476 }
3477 else
3478 {
3479 /* Silently skip unknown optional info. */
3480 p_temp = strchr (p1 + 1, ';');
3481 if (p_temp)
3482 p = p_temp;
3483 }
3484 }
3485 else
3486 {
3487 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3488 p = p1;
3489
3490 if (*p != ':')
3491 error (_("Malformed packet(b) (missing colon): %s\n\
3492 Packet: '%s'\n"),
3493 p, buf);
3494 ++p;
3495
3496 if (reg == NULL)
3497 error (_("Remote sent bad register number %s: %s\n\
3498 Packet: '%s'\n"),
3499 phex_nz (pnum, 0), p, buf);
3500
3501 fieldsize = hex2bin (p, regs,
3502 register_size (current_gdbarch,
3503 reg->regnum));
3504 p += 2 * fieldsize;
3505 if (fieldsize < register_size (current_gdbarch,
3506 reg->regnum))
3507 warning (_("Remote reply is too short: %s"), buf);
3508 regcache_raw_supply (get_current_regcache (),
3509 reg->regnum, regs);
3510 }
3511
3512 if (*p != ';')
3513 error (_("Remote register badly formatted: %s\nhere: %s"),
3514 buf, p);
3515 ++p;
3516 }
3517 }
3518 /* fall through */
3519 case 'S': /* Old style status, just signal only. */
3520 if (solibs_changed)
3521 status->kind = TARGET_WAITKIND_LOADED;
3522 else
3523 {
3524 status->kind = TARGET_WAITKIND_STOPPED;
3525 status->value.sig = (enum target_signal)
3526 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3527 }
3528
3529 if (buf[3] == 'p')
3530 {
3531 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3532 record_currthread (thread_num);
3533 }
3534 goto got_status;
3535 case 'W': /* Target exited. */
3536 {
3537 /* The remote process exited. */
3538 status->kind = TARGET_WAITKIND_EXITED;
3539 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3540 goto got_status;
3541 }
3542 case 'X':
3543 status->kind = TARGET_WAITKIND_SIGNALLED;
3544 status->value.sig = (enum target_signal)
3545 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3546
3547 goto got_status;
3548 case 'O': /* Console output. */
3549 remote_console_output (buf + 1);
3550 if (target_can_async_p ())
3551 {
3552 /* Return immediately to the event loop. The event loop
3553 will still be waiting on the inferior afterwards. */
3554 status->kind = TARGET_WAITKIND_IGNORE;
3555 goto got_status;
3556 }
3557 else
3558 continue;
3559 case '\0':
3560 if (last_sent_signal != TARGET_SIGNAL_0)
3561 {
3562 /* Zero length reply means that we tried 'S' or 'C' and
3563 the remote system doesn't support it. */
3564 target_terminal_ours_for_output ();
3565 printf_filtered
3566 ("Can't send signals to this remote system. %s not sent.\n",
3567 target_signal_to_name (last_sent_signal));
3568 last_sent_signal = TARGET_SIGNAL_0;
3569 target_terminal_inferior ();
3570
3571 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3572 putpkt ((char *) buf);
3573 continue;
3574 }
3575 /* else fallthrough */
3576 default:
3577 warning (_("Invalid remote reply: %s"), buf);
3578 continue;
3579 }
3580 }
3581 got_status:
3582 if (thread_num != -1)
3583 {
3584 return pid_to_ptid (thread_num);
3585 }
3586 return inferior_ptid;
3587 }
3588
3589 /* Fetch a single register using a 'p' packet. */
3590
3591 static int
3592 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3593 {
3594 struct remote_state *rs = get_remote_state ();
3595 char *buf, *p;
3596 char regp[MAX_REGISTER_SIZE];
3597 int i;
3598
3599 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3600 return 0;
3601
3602 if (reg->pnum == -1)
3603 return 0;
3604
3605 p = rs->buf;
3606 *p++ = 'p';
3607 p += hexnumstr (p, reg->pnum);
3608 *p++ = '\0';
3609 remote_send (&rs->buf, &rs->buf_size);
3610
3611 buf = rs->buf;
3612
3613 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3614 {
3615 case PACKET_OK:
3616 break;
3617 case PACKET_UNKNOWN:
3618 return 0;
3619 case PACKET_ERROR:
3620 error (_("Could not fetch register \"%s\""),
3621 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
3622 }
3623
3624 /* If this register is unfetchable, tell the regcache. */
3625 if (buf[0] == 'x')
3626 {
3627 regcache_raw_supply (regcache, reg->regnum, NULL);
3628 return 1;
3629 }
3630
3631 /* Otherwise, parse and supply the value. */
3632 p = buf;
3633 i = 0;
3634 while (p[0] != 0)
3635 {
3636 if (p[1] == 0)
3637 error (_("fetch_register_using_p: early buf termination"));
3638
3639 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3640 p += 2;
3641 }
3642 regcache_raw_supply (regcache, reg->regnum, regp);
3643 return 1;
3644 }
3645
3646 /* Fetch the registers included in the target's 'g' packet. */
3647
3648 static int
3649 send_g_packet (void)
3650 {
3651 struct remote_state *rs = get_remote_state ();
3652 int i, buf_len;
3653 char *p;
3654 char *regs;
3655
3656 sprintf (rs->buf, "g");
3657 remote_send (&rs->buf, &rs->buf_size);
3658
3659 /* We can get out of synch in various cases. If the first character
3660 in the buffer is not a hex character, assume that has happened
3661 and try to fetch another packet to read. */
3662 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3663 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3664 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3665 && rs->buf[0] != 'x') /* New: unavailable register value. */
3666 {
3667 if (remote_debug)
3668 fprintf_unfiltered (gdb_stdlog,
3669 "Bad register packet; fetching a new packet\n");
3670 getpkt (&rs->buf, &rs->buf_size, 0);
3671 }
3672
3673 buf_len = strlen (rs->buf);
3674
3675 /* Sanity check the received packet. */
3676 if (buf_len % 2 != 0)
3677 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3678
3679 return buf_len / 2;
3680 }
3681
3682 static void
3683 process_g_packet (struct regcache *regcache)
3684 {
3685 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3686 struct remote_state *rs = get_remote_state ();
3687 struct remote_arch_state *rsa = get_remote_arch_state ();
3688 int i, buf_len;
3689 char *p;
3690 char *regs;
3691
3692 buf_len = strlen (rs->buf);
3693
3694 /* Further sanity checks, with knowledge of the architecture. */
3695 if (buf_len > 2 * rsa->sizeof_g_packet)
3696 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3697
3698 /* Save the size of the packet sent to us by the target. It is used
3699 as a heuristic when determining the max size of packets that the
3700 target can safely receive. */
3701 if (rsa->actual_register_packet_size == 0)
3702 rsa->actual_register_packet_size = buf_len;
3703
3704 /* If this is smaller than we guessed the 'g' packet would be,
3705 update our records. A 'g' reply that doesn't include a register's
3706 value implies either that the register is not available, or that
3707 the 'p' packet must be used. */
3708 if (buf_len < 2 * rsa->sizeof_g_packet)
3709 {
3710 rsa->sizeof_g_packet = buf_len / 2;
3711
3712 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3713 {
3714 if (rsa->regs[i].pnum == -1)
3715 continue;
3716
3717 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3718 rsa->regs[i].in_g_packet = 0;
3719 else
3720 rsa->regs[i].in_g_packet = 1;
3721 }
3722 }
3723
3724 regs = alloca (rsa->sizeof_g_packet);
3725
3726 /* Unimplemented registers read as all bits zero. */
3727 memset (regs, 0, rsa->sizeof_g_packet);
3728
3729 /* Reply describes registers byte by byte, each byte encoded as two
3730 hex characters. Suck them all up, then supply them to the
3731 register cacheing/storage mechanism. */
3732
3733 p = rs->buf;
3734 for (i = 0; i < rsa->sizeof_g_packet; i++)
3735 {
3736 if (p[0] == 0 || p[1] == 0)
3737 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3738 internal_error (__FILE__, __LINE__,
3739 "unexpected end of 'g' packet reply");
3740
3741 if (p[0] == 'x' && p[1] == 'x')
3742 regs[i] = 0; /* 'x' */
3743 else
3744 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3745 p += 2;
3746 }
3747
3748 {
3749 int i;
3750 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3751 {
3752 struct packet_reg *r = &rsa->regs[i];
3753 if (r->in_g_packet)
3754 {
3755 if (r->offset * 2 >= strlen (rs->buf))
3756 /* This shouldn't happen - we adjusted in_g_packet above. */
3757 internal_error (__FILE__, __LINE__,
3758 "unexpected end of 'g' packet reply");
3759 else if (rs->buf[r->offset * 2] == 'x')
3760 {
3761 gdb_assert (r->offset * 2 < strlen (rs->buf));
3762 /* The register isn't available, mark it as such (at
3763 the same time setting the value to zero). */
3764 regcache_raw_supply (regcache, r->regnum, NULL);
3765 }
3766 else
3767 regcache_raw_supply (regcache, r->regnum,
3768 regs + r->offset);
3769 }
3770 }
3771 }
3772 }
3773
3774 static void
3775 fetch_registers_using_g (struct regcache *regcache)
3776 {
3777 send_g_packet ();
3778 process_g_packet (regcache);
3779 }
3780
3781 static void
3782 remote_fetch_registers (struct regcache *regcache, int regnum)
3783 {
3784 struct remote_state *rs = get_remote_state ();
3785 struct remote_arch_state *rsa = get_remote_arch_state ();
3786 int i;
3787
3788 set_thread (PIDGET (inferior_ptid), 1);
3789
3790 if (regnum >= 0)
3791 {
3792 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3793 gdb_assert (reg != NULL);
3794
3795 /* If this register might be in the 'g' packet, try that first -
3796 we are likely to read more than one register. If this is the
3797 first 'g' packet, we might be overly optimistic about its
3798 contents, so fall back to 'p'. */
3799 if (reg->in_g_packet)
3800 {
3801 fetch_registers_using_g (regcache);
3802 if (reg->in_g_packet)
3803 return;
3804 }
3805
3806 if (fetch_register_using_p (regcache, reg))
3807 return;
3808
3809 /* This register is not available. */
3810 regcache_raw_supply (regcache, reg->regnum, NULL);
3811
3812 return;
3813 }
3814
3815 fetch_registers_using_g (regcache);
3816
3817 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3818 if (!rsa->regs[i].in_g_packet)
3819 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
3820 {
3821 /* This register is not available. */
3822 regcache_raw_supply (regcache, i, NULL);
3823 }
3824 }
3825
3826 /* Prepare to store registers. Since we may send them all (using a
3827 'G' request), we have to read out the ones we don't want to change
3828 first. */
3829
3830 static void
3831 remote_prepare_to_store (struct regcache *regcache)
3832 {
3833 struct remote_arch_state *rsa = get_remote_arch_state ();
3834 int i;
3835 gdb_byte buf[MAX_REGISTER_SIZE];
3836
3837 /* Make sure the entire registers array is valid. */
3838 switch (remote_protocol_packets[PACKET_P].support)
3839 {
3840 case PACKET_DISABLE:
3841 case PACKET_SUPPORT_UNKNOWN:
3842 /* Make sure all the necessary registers are cached. */
3843 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3844 if (rsa->regs[i].in_g_packet)
3845 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
3846 break;
3847 case PACKET_ENABLE:
3848 break;
3849 }
3850 }
3851
3852 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
3853 packet was not recognized. */
3854
3855 static int
3856 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
3857 {
3858 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3859 struct remote_state *rs = get_remote_state ();
3860 struct remote_arch_state *rsa = get_remote_arch_state ();
3861 /* Try storing a single register. */
3862 char *buf = rs->buf;
3863 gdb_byte regp[MAX_REGISTER_SIZE];
3864 char *p;
3865
3866 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
3867 return 0;
3868
3869 if (reg->pnum == -1)
3870 return 0;
3871
3872 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
3873 p = buf + strlen (buf);
3874 regcache_raw_collect (regcache, reg->regnum, regp);
3875 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
3876 remote_send (&rs->buf, &rs->buf_size);
3877
3878 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
3879 {
3880 case PACKET_OK:
3881 return 1;
3882 case PACKET_ERROR:
3883 error (_("Could not write register \"%s\""),
3884 gdbarch_register_name (gdbarch, reg->regnum));
3885 case PACKET_UNKNOWN:
3886 return 0;
3887 default:
3888 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
3889 }
3890 }
3891
3892 /* Store register REGNUM, or all registers if REGNUM == -1, from the
3893 contents of the register cache buffer. FIXME: ignores errors. */
3894
3895 static void
3896 store_registers_using_G (const struct regcache *regcache)
3897 {
3898 struct remote_state *rs = get_remote_state ();
3899 struct remote_arch_state *rsa = get_remote_arch_state ();
3900 gdb_byte *regs;
3901 char *p;
3902
3903 /* Extract all the registers in the regcache copying them into a
3904 local buffer. */
3905 {
3906 int i;
3907 regs = alloca (rsa->sizeof_g_packet);
3908 memset (regs, 0, rsa->sizeof_g_packet);
3909 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3910 {
3911 struct packet_reg *r = &rsa->regs[i];
3912 if (r->in_g_packet)
3913 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
3914 }
3915 }
3916
3917 /* Command describes registers byte by byte,
3918 each byte encoded as two hex characters. */
3919 p = rs->buf;
3920 *p++ = 'G';
3921 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
3922 updated. */
3923 bin2hex (regs, p, rsa->sizeof_g_packet);
3924 remote_send (&rs->buf, &rs->buf_size);
3925 }
3926
3927 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
3928 of the register cache buffer. FIXME: ignores errors. */
3929
3930 static void
3931 remote_store_registers (struct regcache *regcache, int regnum)
3932 {
3933 struct remote_state *rs = get_remote_state ();
3934 struct remote_arch_state *rsa = get_remote_arch_state ();
3935 int i;
3936
3937 set_thread (PIDGET (inferior_ptid), 1);
3938
3939 if (regnum >= 0)
3940 {
3941 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
3942 gdb_assert (reg != NULL);
3943
3944 /* Always prefer to store registers using the 'P' packet if
3945 possible; we often change only a small number of registers.
3946 Sometimes we change a larger number; we'd need help from a
3947 higher layer to know to use 'G'. */
3948 if (store_register_using_P (regcache, reg))
3949 return;
3950
3951 /* For now, don't complain if we have no way to write the
3952 register. GDB loses track of unavailable registers too
3953 easily. Some day, this may be an error. We don't have
3954 any way to read the register, either... */
3955 if (!reg->in_g_packet)
3956 return;
3957
3958 store_registers_using_G (regcache);
3959 return;
3960 }
3961
3962 store_registers_using_G (regcache);
3963
3964 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
3965 if (!rsa->regs[i].in_g_packet)
3966 if (!store_register_using_P (regcache, &rsa->regs[i]))
3967 /* See above for why we do not issue an error here. */
3968 continue;
3969 }
3970 \f
3971
3972 /* Return the number of hex digits in num. */
3973
3974 static int
3975 hexnumlen (ULONGEST num)
3976 {
3977 int i;
3978
3979 for (i = 0; num != 0; i++)
3980 num >>= 4;
3981
3982 return max (i, 1);
3983 }
3984
3985 /* Set BUF to the minimum number of hex digits representing NUM. */
3986
3987 static int
3988 hexnumstr (char *buf, ULONGEST num)
3989 {
3990 int len = hexnumlen (num);
3991 return hexnumnstr (buf, num, len);
3992 }
3993
3994
3995 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
3996
3997 static int
3998 hexnumnstr (char *buf, ULONGEST num, int width)
3999 {
4000 int i;
4001
4002 buf[width] = '\0';
4003
4004 for (i = width - 1; i >= 0; i--)
4005 {
4006 buf[i] = "0123456789abcdef"[(num & 0xf)];
4007 num >>= 4;
4008 }
4009
4010 return width;
4011 }
4012
4013 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4014
4015 static CORE_ADDR
4016 remote_address_masked (CORE_ADDR addr)
4017 {
4018 int address_size = remote_address_size;
4019 /* If "remoteaddresssize" was not set, default to target address size. */
4020 if (!address_size)
4021 address_size = gdbarch_addr_bit (current_gdbarch);
4022
4023 if (address_size > 0
4024 && address_size < (sizeof (ULONGEST) * 8))
4025 {
4026 /* Only create a mask when that mask can safely be constructed
4027 in a ULONGEST variable. */
4028 ULONGEST mask = 1;
4029 mask = (mask << address_size) - 1;
4030 addr &= mask;
4031 }
4032 return addr;
4033 }
4034
4035 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4036 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4037 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4038 (which may be more than *OUT_LEN due to escape characters). The
4039 total number of bytes in the output buffer will be at most
4040 OUT_MAXLEN. */
4041
4042 static int
4043 remote_escape_output (const gdb_byte *buffer, int len,
4044 gdb_byte *out_buf, int *out_len,
4045 int out_maxlen)
4046 {
4047 int input_index, output_index;
4048
4049 output_index = 0;
4050 for (input_index = 0; input_index < len; input_index++)
4051 {
4052 gdb_byte b = buffer[input_index];
4053
4054 if (b == '$' || b == '#' || b == '}')
4055 {
4056 /* These must be escaped. */
4057 if (output_index + 2 > out_maxlen)
4058 break;
4059 out_buf[output_index++] = '}';
4060 out_buf[output_index++] = b ^ 0x20;
4061 }
4062 else
4063 {
4064 if (output_index + 1 > out_maxlen)
4065 break;
4066 out_buf[output_index++] = b;
4067 }
4068 }
4069
4070 *out_len = input_index;
4071 return output_index;
4072 }
4073
4074 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4075 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4076 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4077
4078 This function reverses remote_escape_output. It allows more
4079 escaped characters than that function does, in particular because
4080 '*' must be escaped to avoid the run-length encoding processing
4081 in reading packets. */
4082
4083 static int
4084 remote_unescape_input (const gdb_byte *buffer, int len,
4085 gdb_byte *out_buf, int out_maxlen)
4086 {
4087 int input_index, output_index;
4088 int escaped;
4089
4090 output_index = 0;
4091 escaped = 0;
4092 for (input_index = 0; input_index < len; input_index++)
4093 {
4094 gdb_byte b = buffer[input_index];
4095
4096 if (output_index + 1 > out_maxlen)
4097 {
4098 warning (_("Received too much data from remote target;"
4099 " ignoring overflow."));
4100 return output_index;
4101 }
4102
4103 if (escaped)
4104 {
4105 out_buf[output_index++] = b ^ 0x20;
4106 escaped = 0;
4107 }
4108 else if (b == '}')
4109 escaped = 1;
4110 else
4111 out_buf[output_index++] = b;
4112 }
4113
4114 if (escaped)
4115 error (_("Unmatched escape character in target response."));
4116
4117 return output_index;
4118 }
4119
4120 /* Determine whether the remote target supports binary downloading.
4121 This is accomplished by sending a no-op memory write of zero length
4122 to the target at the specified address. It does not suffice to send
4123 the whole packet, since many stubs strip the eighth bit and
4124 subsequently compute a wrong checksum, which causes real havoc with
4125 remote_write_bytes.
4126
4127 NOTE: This can still lose if the serial line is not eight-bit
4128 clean. In cases like this, the user should clear "remote
4129 X-packet". */
4130
4131 static void
4132 check_binary_download (CORE_ADDR addr)
4133 {
4134 struct remote_state *rs = get_remote_state ();
4135
4136 switch (remote_protocol_packets[PACKET_X].support)
4137 {
4138 case PACKET_DISABLE:
4139 break;
4140 case PACKET_ENABLE:
4141 break;
4142 case PACKET_SUPPORT_UNKNOWN:
4143 {
4144 char *p;
4145
4146 p = rs->buf;
4147 *p++ = 'X';
4148 p += hexnumstr (p, (ULONGEST) addr);
4149 *p++ = ',';
4150 p += hexnumstr (p, (ULONGEST) 0);
4151 *p++ = ':';
4152 *p = '\0';
4153
4154 putpkt_binary (rs->buf, (int) (p - rs->buf));
4155 getpkt (&rs->buf, &rs->buf_size, 0);
4156
4157 if (rs->buf[0] == '\0')
4158 {
4159 if (remote_debug)
4160 fprintf_unfiltered (gdb_stdlog,
4161 "binary downloading NOT suppported by target\n");
4162 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4163 }
4164 else
4165 {
4166 if (remote_debug)
4167 fprintf_unfiltered (gdb_stdlog,
4168 "binary downloading suppported by target\n");
4169 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4170 }
4171 break;
4172 }
4173 }
4174 }
4175
4176 /* Write memory data directly to the remote machine.
4177 This does not inform the data cache; the data cache uses this.
4178 HEADER is the starting part of the packet.
4179 MEMADDR is the address in the remote memory space.
4180 MYADDR is the address of the buffer in our space.
4181 LEN is the number of bytes.
4182 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4183 should send data as binary ('X'), or hex-encoded ('M').
4184
4185 The function creates packet of the form
4186 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4187
4188 where encoding of <DATA> is termined by PACKET_FORMAT.
4189
4190 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4191 are omitted.
4192
4193 Returns the number of bytes transferred, or 0 (setting errno) for
4194 error. Only transfer a single packet. */
4195
4196 static int
4197 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4198 const gdb_byte *myaddr, int len,
4199 char packet_format, int use_length)
4200 {
4201 struct remote_state *rs = get_remote_state ();
4202 char *p;
4203 char *plen = NULL;
4204 int plenlen = 0;
4205 int todo;
4206 int nr_bytes;
4207 int payload_size;
4208 int payload_length;
4209 int header_length;
4210
4211 if (packet_format != 'X' && packet_format != 'M')
4212 internal_error (__FILE__, __LINE__,
4213 "remote_write_bytes_aux: bad packet format");
4214
4215 if (len <= 0)
4216 return 0;
4217
4218 payload_size = get_memory_write_packet_size ();
4219
4220 /* The packet buffer will be large enough for the payload;
4221 get_memory_packet_size ensures this. */
4222 rs->buf[0] = '\0';
4223
4224 /* Compute the size of the actual payload by subtracting out the
4225 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4226 */
4227 payload_size -= strlen ("$,:#NN");
4228 if (!use_length)
4229 /* The comma won't be used. */
4230 payload_size += 1;
4231 header_length = strlen (header);
4232 payload_size -= header_length;
4233 payload_size -= hexnumlen (memaddr);
4234
4235 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4236
4237 strcat (rs->buf, header);
4238 p = rs->buf + strlen (header);
4239
4240 /* Compute a best guess of the number of bytes actually transfered. */
4241 if (packet_format == 'X')
4242 {
4243 /* Best guess at number of bytes that will fit. */
4244 todo = min (len, payload_size);
4245 if (use_length)
4246 payload_size -= hexnumlen (todo);
4247 todo = min (todo, payload_size);
4248 }
4249 else
4250 {
4251 /* Num bytes that will fit. */
4252 todo = min (len, payload_size / 2);
4253 if (use_length)
4254 payload_size -= hexnumlen (todo);
4255 todo = min (todo, payload_size / 2);
4256 }
4257
4258 if (todo <= 0)
4259 internal_error (__FILE__, __LINE__,
4260 _("minumum packet size too small to write data"));
4261
4262 /* If we already need another packet, then try to align the end
4263 of this packet to a useful boundary. */
4264 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4265 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4266
4267 /* Append "<memaddr>". */
4268 memaddr = remote_address_masked (memaddr);
4269 p += hexnumstr (p, (ULONGEST) memaddr);
4270
4271 if (use_length)
4272 {
4273 /* Append ",". */
4274 *p++ = ',';
4275
4276 /* Append <len>. Retain the location/size of <len>. It may need to
4277 be adjusted once the packet body has been created. */
4278 plen = p;
4279 plenlen = hexnumstr (p, (ULONGEST) todo);
4280 p += plenlen;
4281 }
4282
4283 /* Append ":". */
4284 *p++ = ':';
4285 *p = '\0';
4286
4287 /* Append the packet body. */
4288 if (packet_format == 'X')
4289 {
4290 /* Binary mode. Send target system values byte by byte, in
4291 increasing byte addresses. Only escape certain critical
4292 characters. */
4293 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4294 payload_size);
4295
4296 /* If not all TODO bytes fit, then we'll need another packet. Make
4297 a second try to keep the end of the packet aligned. Don't do
4298 this if the packet is tiny. */
4299 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4300 {
4301 int new_nr_bytes;
4302
4303 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4304 - memaddr);
4305 if (new_nr_bytes != nr_bytes)
4306 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4307 p, &nr_bytes,
4308 payload_size);
4309 }
4310
4311 p += payload_length;
4312 if (use_length && nr_bytes < todo)
4313 {
4314 /* Escape chars have filled up the buffer prematurely,
4315 and we have actually sent fewer bytes than planned.
4316 Fix-up the length field of the packet. Use the same
4317 number of characters as before. */
4318 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4319 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4320 }
4321 }
4322 else
4323 {
4324 /* Normal mode: Send target system values byte by byte, in
4325 increasing byte addresses. Each byte is encoded as a two hex
4326 value. */
4327 nr_bytes = bin2hex (myaddr, p, todo);
4328 p += 2 * nr_bytes;
4329 }
4330
4331 putpkt_binary (rs->buf, (int) (p - rs->buf));
4332 getpkt (&rs->buf, &rs->buf_size, 0);
4333
4334 if (rs->buf[0] == 'E')
4335 {
4336 /* There is no correspondance between what the remote protocol
4337 uses for errors and errno codes. We would like a cleaner way
4338 of representing errors (big enough to include errno codes,
4339 bfd_error codes, and others). But for now just return EIO. */
4340 errno = EIO;
4341 return 0;
4342 }
4343
4344 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4345 fewer bytes than we'd planned. */
4346 return nr_bytes;
4347 }
4348
4349 /* Write memory data directly to the remote machine.
4350 This does not inform the data cache; the data cache uses this.
4351 MEMADDR is the address in the remote memory space.
4352 MYADDR is the address of the buffer in our space.
4353 LEN is the number of bytes.
4354
4355 Returns number of bytes transferred, or 0 (setting errno) for
4356 error. Only transfer a single packet. */
4357
4358 int
4359 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4360 {
4361 char *packet_format = 0;
4362
4363 /* Check whether the target supports binary download. */
4364 check_binary_download (memaddr);
4365
4366 switch (remote_protocol_packets[PACKET_X].support)
4367 {
4368 case PACKET_ENABLE:
4369 packet_format = "X";
4370 break;
4371 case PACKET_DISABLE:
4372 packet_format = "M";
4373 break;
4374 case PACKET_SUPPORT_UNKNOWN:
4375 internal_error (__FILE__, __LINE__,
4376 _("remote_write_bytes: bad internal state"));
4377 default:
4378 internal_error (__FILE__, __LINE__, _("bad switch"));
4379 }
4380
4381 return remote_write_bytes_aux (packet_format,
4382 memaddr, myaddr, len, packet_format[0], 1);
4383 }
4384
4385 /* Read memory data directly from the remote machine.
4386 This does not use the data cache; the data cache uses this.
4387 MEMADDR is the address in the remote memory space.
4388 MYADDR is the address of the buffer in our space.
4389 LEN is the number of bytes.
4390
4391 Returns number of bytes transferred, or 0 for error. */
4392
4393 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4394 remote targets) shouldn't attempt to read the entire buffer.
4395 Instead it should read a single packet worth of data and then
4396 return the byte size of that packet to the caller. The caller (its
4397 caller and its callers caller ;-) already contains code for
4398 handling partial reads. */
4399
4400 int
4401 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4402 {
4403 struct remote_state *rs = get_remote_state ();
4404 int max_buf_size; /* Max size of packet output buffer. */
4405 int origlen;
4406
4407 if (len <= 0)
4408 return 0;
4409
4410 max_buf_size = get_memory_read_packet_size ();
4411 /* The packet buffer will be large enough for the payload;
4412 get_memory_packet_size ensures this. */
4413
4414 origlen = len;
4415 while (len > 0)
4416 {
4417 char *p;
4418 int todo;
4419 int i;
4420
4421 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4422
4423 /* construct "m"<memaddr>","<len>" */
4424 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4425 memaddr = remote_address_masked (memaddr);
4426 p = rs->buf;
4427 *p++ = 'm';
4428 p += hexnumstr (p, (ULONGEST) memaddr);
4429 *p++ = ',';
4430 p += hexnumstr (p, (ULONGEST) todo);
4431 *p = '\0';
4432
4433 putpkt (rs->buf);
4434 getpkt (&rs->buf, &rs->buf_size, 0);
4435
4436 if (rs->buf[0] == 'E'
4437 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4438 && rs->buf[3] == '\0')
4439 {
4440 /* There is no correspondance between what the remote
4441 protocol uses for errors and errno codes. We would like
4442 a cleaner way of representing errors (big enough to
4443 include errno codes, bfd_error codes, and others). But
4444 for now just return EIO. */
4445 errno = EIO;
4446 return 0;
4447 }
4448
4449 /* Reply describes memory byte by byte,
4450 each byte encoded as two hex characters. */
4451
4452 p = rs->buf;
4453 if ((i = hex2bin (p, myaddr, todo)) < todo)
4454 {
4455 /* Reply is short. This means that we were able to read
4456 only part of what we wanted to. */
4457 return i + (origlen - len);
4458 }
4459 myaddr += todo;
4460 memaddr += todo;
4461 len -= todo;
4462 }
4463 return origlen;
4464 }
4465 \f
4466 /* Read or write LEN bytes from inferior memory at MEMADDR,
4467 transferring to or from debugger address BUFFER. Write to inferior
4468 if SHOULD_WRITE is nonzero. Returns length of data written or
4469 read; 0 for error. TARGET is unused. */
4470
4471 static int
4472 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4473 int should_write, struct mem_attrib *attrib,
4474 struct target_ops *target)
4475 {
4476 int res;
4477
4478 if (should_write)
4479 res = remote_write_bytes (mem_addr, buffer, mem_len);
4480 else
4481 res = remote_read_bytes (mem_addr, buffer, mem_len);
4482
4483 return res;
4484 }
4485
4486 /* Sends a packet with content determined by the printf format string
4487 FORMAT and the remaining arguments, then gets the reply. Returns
4488 whether the packet was a success, a failure, or unknown. */
4489
4490 enum packet_result
4491 remote_send_printf (const char *format, ...)
4492 {
4493 struct remote_state *rs = get_remote_state ();
4494 int max_size = get_remote_packet_size ();
4495
4496 va_list ap;
4497 va_start (ap, format);
4498
4499 rs->buf[0] = '\0';
4500 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4501 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4502
4503 if (putpkt (rs->buf) < 0)
4504 error (_("Communication problem with target."));
4505
4506 rs->buf[0] = '\0';
4507 getpkt (&rs->buf, &rs->buf_size, 0);
4508
4509 return packet_check_result (rs->buf);
4510 }
4511
4512 static void
4513 restore_remote_timeout (void *p)
4514 {
4515 int value = *(int *)p;
4516 remote_timeout = value;
4517 }
4518
4519 /* Flash writing can take quite some time. We'll set
4520 effectively infinite timeout for flash operations.
4521 In future, we'll need to decide on a better approach. */
4522 static const int remote_flash_timeout = 1000;
4523
4524 static void
4525 remote_flash_erase (struct target_ops *ops,
4526 ULONGEST address, LONGEST length)
4527 {
4528 int saved_remote_timeout = remote_timeout;
4529 enum packet_result ret;
4530
4531 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4532 &saved_remote_timeout);
4533 remote_timeout = remote_flash_timeout;
4534
4535 ret = remote_send_printf ("vFlashErase:%s,%s",
4536 paddr (address),
4537 phex (length, 4));
4538 switch (ret)
4539 {
4540 case PACKET_UNKNOWN:
4541 error (_("Remote target does not support flash erase"));
4542 case PACKET_ERROR:
4543 error (_("Error erasing flash with vFlashErase packet"));
4544 default:
4545 break;
4546 }
4547
4548 do_cleanups (back_to);
4549 }
4550
4551 static LONGEST
4552 remote_flash_write (struct target_ops *ops,
4553 ULONGEST address, LONGEST length,
4554 const gdb_byte *data)
4555 {
4556 int saved_remote_timeout = remote_timeout;
4557 int ret;
4558 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4559 &saved_remote_timeout);
4560
4561 remote_timeout = remote_flash_timeout;
4562 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4563 do_cleanups (back_to);
4564
4565 return ret;
4566 }
4567
4568 static void
4569 remote_flash_done (struct target_ops *ops)
4570 {
4571 int saved_remote_timeout = remote_timeout;
4572 int ret;
4573 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4574 &saved_remote_timeout);
4575
4576 remote_timeout = remote_flash_timeout;
4577 ret = remote_send_printf ("vFlashDone");
4578 do_cleanups (back_to);
4579
4580 switch (ret)
4581 {
4582 case PACKET_UNKNOWN:
4583 error (_("Remote target does not support vFlashDone"));
4584 case PACKET_ERROR:
4585 error (_("Error finishing flash operation"));
4586 default:
4587 break;
4588 }
4589 }
4590
4591 static void
4592 remote_files_info (struct target_ops *ignore)
4593 {
4594 puts_filtered ("Debugging a target over a serial line.\n");
4595 }
4596 \f
4597 /* Stuff for dealing with the packets which are part of this protocol.
4598 See comment at top of file for details. */
4599
4600 /* Read a single character from the remote end. */
4601
4602 static int
4603 readchar (int timeout)
4604 {
4605 int ch;
4606
4607 ch = serial_readchar (remote_desc, timeout);
4608
4609 if (ch >= 0)
4610 return ch;
4611
4612 switch ((enum serial_rc) ch)
4613 {
4614 case SERIAL_EOF:
4615 target_mourn_inferior ();
4616 error (_("Remote connection closed"));
4617 /* no return */
4618 case SERIAL_ERROR:
4619 perror_with_name (_("Remote communication error"));
4620 /* no return */
4621 case SERIAL_TIMEOUT:
4622 break;
4623 }
4624 return ch;
4625 }
4626
4627 /* Send the command in *BUF to the remote machine, and read the reply
4628 into *BUF. Report an error if we get an error reply. Resize
4629 *BUF using xrealloc if necessary to hold the result, and update
4630 *SIZEOF_BUF. */
4631
4632 static void
4633 remote_send (char **buf,
4634 long *sizeof_buf)
4635 {
4636 putpkt (*buf);
4637 getpkt (buf, sizeof_buf, 0);
4638
4639 if ((*buf)[0] == 'E')
4640 error (_("Remote failure reply: %s"), *buf);
4641 }
4642
4643 /* Display a null-terminated packet on stdout, for debugging, using C
4644 string notation. */
4645
4646 static void
4647 print_packet (char *buf)
4648 {
4649 puts_filtered ("\"");
4650 fputstr_filtered (buf, '"', gdb_stdout);
4651 puts_filtered ("\"");
4652 }
4653
4654 int
4655 putpkt (char *buf)
4656 {
4657 return putpkt_binary (buf, strlen (buf));
4658 }
4659
4660 /* Send a packet to the remote machine, with error checking. The data
4661 of the packet is in BUF. The string in BUF can be at most
4662 get_remote_packet_size () - 5 to account for the $, # and checksum,
4663 and for a possible /0 if we are debugging (remote_debug) and want
4664 to print the sent packet as a string. */
4665
4666 static int
4667 putpkt_binary (char *buf, int cnt)
4668 {
4669 struct remote_state *rs = get_remote_state ();
4670 int i;
4671 unsigned char csum = 0;
4672 char *buf2 = alloca (cnt + 6);
4673
4674 int ch;
4675 int tcount = 0;
4676 char *p;
4677
4678 /* We're sending out a new packet. Make sure we don't look at a
4679 stale cached response. */
4680 rs->cached_wait_status = 0;
4681
4682 /* Copy the packet into buffer BUF2, encapsulating it
4683 and giving it a checksum. */
4684
4685 p = buf2;
4686 *p++ = '$';
4687
4688 for (i = 0; i < cnt; i++)
4689 {
4690 csum += buf[i];
4691 *p++ = buf[i];
4692 }
4693 *p++ = '#';
4694 *p++ = tohex ((csum >> 4) & 0xf);
4695 *p++ = tohex (csum & 0xf);
4696
4697 /* Send it over and over until we get a positive ack. */
4698
4699 while (1)
4700 {
4701 int started_error_output = 0;
4702
4703 if (remote_debug)
4704 {
4705 *p = '\0';
4706 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4707 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4708 fprintf_unfiltered (gdb_stdlog, "...");
4709 gdb_flush (gdb_stdlog);
4710 }
4711 if (serial_write (remote_desc, buf2, p - buf2))
4712 perror_with_name (_("putpkt: write failed"));
4713
4714 /* Read until either a timeout occurs (-2) or '+' is read. */
4715 while (1)
4716 {
4717 ch = readchar (remote_timeout);
4718
4719 if (remote_debug)
4720 {
4721 switch (ch)
4722 {
4723 case '+':
4724 case '-':
4725 case SERIAL_TIMEOUT:
4726 case '$':
4727 if (started_error_output)
4728 {
4729 putchar_unfiltered ('\n');
4730 started_error_output = 0;
4731 }
4732 }
4733 }
4734
4735 switch (ch)
4736 {
4737 case '+':
4738 if (remote_debug)
4739 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4740 return 1;
4741 case '-':
4742 if (remote_debug)
4743 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4744 case SERIAL_TIMEOUT:
4745 tcount++;
4746 if (tcount > 3)
4747 return 0;
4748 break; /* Retransmit buffer. */
4749 case '$':
4750 {
4751 if (remote_debug)
4752 fprintf_unfiltered (gdb_stdlog,
4753 "Packet instead of Ack, ignoring it\n");
4754 /* It's probably an old response sent because an ACK
4755 was lost. Gobble up the packet and ack it so it
4756 doesn't get retransmitted when we resend this
4757 packet. */
4758 skip_frame ();
4759 serial_write (remote_desc, "+", 1);
4760 continue; /* Now, go look for +. */
4761 }
4762 default:
4763 if (remote_debug)
4764 {
4765 if (!started_error_output)
4766 {
4767 started_error_output = 1;
4768 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4769 }
4770 fputc_unfiltered (ch & 0177, gdb_stdlog);
4771 }
4772 continue;
4773 }
4774 break; /* Here to retransmit. */
4775 }
4776
4777 #if 0
4778 /* This is wrong. If doing a long backtrace, the user should be
4779 able to get out next time we call QUIT, without anything as
4780 violent as interrupt_query. If we want to provide a way out of
4781 here without getting to the next QUIT, it should be based on
4782 hitting ^C twice as in remote_wait. */
4783 if (quit_flag)
4784 {
4785 quit_flag = 0;
4786 interrupt_query ();
4787 }
4788 #endif
4789 }
4790 }
4791
4792 /* Come here after finding the start of a frame when we expected an
4793 ack. Do our best to discard the rest of this packet. */
4794
4795 static void
4796 skip_frame (void)
4797 {
4798 int c;
4799
4800 while (1)
4801 {
4802 c = readchar (remote_timeout);
4803 switch (c)
4804 {
4805 case SERIAL_TIMEOUT:
4806 /* Nothing we can do. */
4807 return;
4808 case '#':
4809 /* Discard the two bytes of checksum and stop. */
4810 c = readchar (remote_timeout);
4811 if (c >= 0)
4812 c = readchar (remote_timeout);
4813
4814 return;
4815 case '*': /* Run length encoding. */
4816 /* Discard the repeat count. */
4817 c = readchar (remote_timeout);
4818 if (c < 0)
4819 return;
4820 break;
4821 default:
4822 /* A regular character. */
4823 break;
4824 }
4825 }
4826 }
4827
4828 /* Come here after finding the start of the frame. Collect the rest
4829 into *BUF, verifying the checksum, length, and handling run-length
4830 compression. NUL terminate the buffer. If there is not enough room,
4831 expand *BUF using xrealloc.
4832
4833 Returns -1 on error, number of characters in buffer (ignoring the
4834 trailing NULL) on success. (could be extended to return one of the
4835 SERIAL status indications). */
4836
4837 static long
4838 read_frame (char **buf_p,
4839 long *sizeof_buf)
4840 {
4841 unsigned char csum;
4842 long bc;
4843 int c;
4844 char *buf = *buf_p;
4845
4846 csum = 0;
4847 bc = 0;
4848
4849 while (1)
4850 {
4851 c = readchar (remote_timeout);
4852 switch (c)
4853 {
4854 case SERIAL_TIMEOUT:
4855 if (remote_debug)
4856 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
4857 return -1;
4858 case '$':
4859 if (remote_debug)
4860 fputs_filtered ("Saw new packet start in middle of old one\n",
4861 gdb_stdlog);
4862 return -1; /* Start a new packet, count retries. */
4863 case '#':
4864 {
4865 unsigned char pktcsum;
4866 int check_0 = 0;
4867 int check_1 = 0;
4868
4869 buf[bc] = '\0';
4870
4871 check_0 = readchar (remote_timeout);
4872 if (check_0 >= 0)
4873 check_1 = readchar (remote_timeout);
4874
4875 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
4876 {
4877 if (remote_debug)
4878 fputs_filtered ("Timeout in checksum, retrying\n",
4879 gdb_stdlog);
4880 return -1;
4881 }
4882 else if (check_0 < 0 || check_1 < 0)
4883 {
4884 if (remote_debug)
4885 fputs_filtered ("Communication error in checksum\n",
4886 gdb_stdlog);
4887 return -1;
4888 }
4889
4890 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
4891 if (csum == pktcsum)
4892 return bc;
4893
4894 if (remote_debug)
4895 {
4896 fprintf_filtered (gdb_stdlog,
4897 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
4898 pktcsum, csum);
4899 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
4900 fputs_filtered ("\n", gdb_stdlog);
4901 }
4902 /* Number of characters in buffer ignoring trailing
4903 NULL. */
4904 return -1;
4905 }
4906 case '*': /* Run length encoding. */
4907 {
4908 int repeat;
4909 csum += c;
4910
4911 c = readchar (remote_timeout);
4912 csum += c;
4913 repeat = c - ' ' + 3; /* Compute repeat count. */
4914
4915 /* The character before ``*'' is repeated. */
4916
4917 if (repeat > 0 && repeat <= 255 && bc > 0)
4918 {
4919 if (bc + repeat - 1 >= *sizeof_buf - 1)
4920 {
4921 /* Make some more room in the buffer. */
4922 *sizeof_buf += repeat;
4923 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4924 buf = *buf_p;
4925 }
4926
4927 memset (&buf[bc], buf[bc - 1], repeat);
4928 bc += repeat;
4929 continue;
4930 }
4931
4932 buf[bc] = '\0';
4933 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
4934 return -1;
4935 }
4936 default:
4937 if (bc >= *sizeof_buf - 1)
4938 {
4939 /* Make some more room in the buffer. */
4940 *sizeof_buf *= 2;
4941 *buf_p = xrealloc (*buf_p, *sizeof_buf);
4942 buf = *buf_p;
4943 }
4944
4945 buf[bc++] = c;
4946 csum += c;
4947 continue;
4948 }
4949 }
4950 }
4951
4952 /* Read a packet from the remote machine, with error checking, and
4953 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4954 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4955 rather than timing out; this is used (in synchronous mode) to wait
4956 for a target that is is executing user code to stop. */
4957 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
4958 don't have to change all the calls to getpkt to deal with the
4959 return value, because at the moment I don't know what the right
4960 thing to do it for those. */
4961 void
4962 getpkt (char **buf,
4963 long *sizeof_buf,
4964 int forever)
4965 {
4966 int timed_out;
4967
4968 timed_out = getpkt_sane (buf, sizeof_buf, forever);
4969 }
4970
4971
4972 /* Read a packet from the remote machine, with error checking, and
4973 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
4974 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
4975 rather than timing out; this is used (in synchronous mode) to wait
4976 for a target that is is executing user code to stop. If FOREVER ==
4977 0, this function is allowed to time out gracefully and return an
4978 indication of this to the caller. Otherwise return the number
4979 of bytes read. */
4980 static int
4981 getpkt_sane (char **buf, long *sizeof_buf, int forever)
4982 {
4983 struct remote_state *rs = get_remote_state ();
4984 int c;
4985 int tries;
4986 int timeout;
4987 int val;
4988
4989 /* We're reading a new response. Make sure we don't look at a
4990 previously cached response. */
4991 rs->cached_wait_status = 0;
4992
4993 strcpy (*buf, "timeout");
4994
4995 if (forever)
4996 {
4997 timeout = watchdog > 0 ? watchdog : -1;
4998 }
4999
5000 else
5001 timeout = remote_timeout;
5002
5003 #define MAX_TRIES 3
5004
5005 for (tries = 1; tries <= MAX_TRIES; tries++)
5006 {
5007 /* This can loop forever if the remote side sends us characters
5008 continuously, but if it pauses, we'll get a zero from
5009 readchar because of timeout. Then we'll count that as a
5010 retry. */
5011
5012 /* Note that we will only wait forever prior to the start of a
5013 packet. After that, we expect characters to arrive at a
5014 brisk pace. They should show up within remote_timeout
5015 intervals. */
5016
5017 do
5018 {
5019 c = readchar (timeout);
5020
5021 if (c == SERIAL_TIMEOUT)
5022 {
5023 if (forever) /* Watchdog went off? Kill the target. */
5024 {
5025 QUIT;
5026 target_mourn_inferior ();
5027 error (_("Watchdog timeout has expired. Target detached."));
5028 }
5029 if (remote_debug)
5030 fputs_filtered ("Timed out.\n", gdb_stdlog);
5031 goto retry;
5032 }
5033 }
5034 while (c != '$');
5035
5036 /* We've found the start of a packet, now collect the data. */
5037
5038 val = read_frame (buf, sizeof_buf);
5039
5040 if (val >= 0)
5041 {
5042 if (remote_debug)
5043 {
5044 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5045 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5046 fprintf_unfiltered (gdb_stdlog, "\n");
5047 }
5048 serial_write (remote_desc, "+", 1);
5049 return val;
5050 }
5051
5052 /* Try the whole thing again. */
5053 retry:
5054 serial_write (remote_desc, "-", 1);
5055 }
5056
5057 /* We have tried hard enough, and just can't receive the packet.
5058 Give up. */
5059
5060 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5061 serial_write (remote_desc, "+", 1);
5062 return -1;
5063 }
5064 \f
5065 static void
5066 remote_kill (void)
5067 {
5068 /* Unregister the file descriptor from the event loop. */
5069 if (target_is_async_p ())
5070 serial_async (remote_desc, NULL, 0);
5071
5072 /* Use catch_errors so the user can quit from gdb even when we
5073 aren't on speaking terms with the remote system. */
5074 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5075
5076 /* Don't wait for it to die. I'm not really sure it matters whether
5077 we do or not. For the existing stubs, kill is a noop. */
5078 target_mourn_inferior ();
5079 }
5080
5081 static void
5082 remote_mourn (void)
5083 {
5084 remote_mourn_1 (&remote_ops);
5085 }
5086
5087 /* Worker function for remote_mourn. */
5088 static void
5089 remote_mourn_1 (struct target_ops *target)
5090 {
5091 unpush_target (target);
5092 generic_mourn_inferior ();
5093 }
5094
5095 static void
5096 extended_remote_mourn_1 (struct target_ops *target)
5097 {
5098 struct remote_state *rs = get_remote_state ();
5099
5100 /* Unlike "target remote", we do not want to unpush the target; then
5101 the next time the user says "run", we won't be connected. */
5102
5103 /* Call common code to mark the inferior as not running. */
5104 generic_mourn_inferior ();
5105
5106 /* Check whether the target is running now - some remote stubs
5107 automatically restart after kill. */
5108 putpkt ("?");
5109 getpkt (&rs->buf, &rs->buf_size, 0);
5110
5111 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
5112 {
5113 /* Assume that the target has been restarted. Set inferior_ptid
5114 so that bits of core GDB realizes there's something here, e.g.,
5115 so that the user can say "kill" again. */
5116 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5117 }
5118 else
5119 {
5120 /* Mark this (still pushed) target as not executable until we
5121 restart it. */
5122 target_mark_exited (target);
5123 }
5124 }
5125
5126 static void
5127 extended_remote_mourn (void)
5128 {
5129 extended_remote_mourn_1 (&extended_remote_ops);
5130 }
5131
5132 static int
5133 extended_remote_run (char *args)
5134 {
5135 struct remote_state *rs = get_remote_state ();
5136 char *p;
5137 int len;
5138
5139 /* If the user has disabled vRun support, or we have detected that
5140 support is not available, do not try it. */
5141 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5142 return -1;
5143
5144 strcpy (rs->buf, "vRun;");
5145 len = strlen (rs->buf);
5146
5147 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
5148 error (_("Remote file name too long for run packet"));
5149 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
5150
5151 if (*args)
5152 {
5153 struct cleanup *back_to;
5154 int i;
5155 char **argv;
5156
5157 argv = buildargv (args);
5158 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
5159 for (i = 0; argv[i] != NULL; i++)
5160 {
5161 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
5162 error (_("Argument list too long for run packet"));
5163 rs->buf[len++] = ';';
5164 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
5165 }
5166 do_cleanups (back_to);
5167 }
5168
5169 rs->buf[len++] = '\0';
5170
5171 putpkt (rs->buf);
5172 getpkt (&rs->buf, &rs->buf_size, 0);
5173
5174 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
5175 {
5176 /* We have a wait response; we don't need it, though. All is well. */
5177 return 0;
5178 }
5179 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5180 /* It wasn't disabled before, but it is now. */
5181 return -1;
5182 else
5183 {
5184 if (remote_exec_file[0] == '\0')
5185 error (_("Running the default executable on the remote target failed; "
5186 "try \"set remote exec-file\"?"));
5187 else
5188 error (_("Running \"%s\" on the remote target failed"),
5189 remote_exec_file);
5190 }
5191 }
5192
5193 /* In the extended protocol we want to be able to do things like
5194 "run" and have them basically work as expected. So we need
5195 a special create_inferior function. We support changing the
5196 executable file and the command line arguments, but not the
5197 environment. */
5198
5199 static void
5200 extended_remote_create_inferior_1 (char *exec_file, char *args,
5201 char **env, int from_tty)
5202 {
5203 /* If running asynchronously, register the target file descriptor
5204 with the event loop. */
5205 if (target_can_async_p ())
5206 target_async (inferior_event_handler, 0);
5207
5208 /* Now restart the remote server. */
5209 if (extended_remote_run (args) == -1)
5210 {
5211 /* vRun was not supported. Fail if we need it to do what the
5212 user requested. */
5213 if (remote_exec_file[0])
5214 error (_("Remote target does not support \"set remote exec-file\""));
5215 if (args[0])
5216 error (_("Remote target does not support \"set args\" or run <ARGS>"));
5217
5218 /* Fall back to "R". */
5219 extended_remote_restart ();
5220 }
5221
5222 /* Clean up from the last time we ran, before we mark the target
5223 running again. This will mark breakpoints uninserted, and
5224 get_offsets may insert breakpoints. */
5225 init_thread_list ();
5226 init_wait_for_inferior ();
5227
5228 /* Now mark the inferior as running before we do anything else. */
5229 attach_flag = 0;
5230 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5231 target_mark_running (&extended_remote_ops);
5232
5233 /* Get updated offsets, if the stub uses qOffsets. */
5234 get_offsets ();
5235 }
5236
5237 static void
5238 extended_remote_create_inferior (char *exec_file, char *args,
5239 char **env, int from_tty)
5240 {
5241 extended_remote_create_inferior_1 (exec_file, args, env, from_tty);
5242 }
5243 \f
5244
5245 /* Insert a breakpoint. On targets that have software breakpoint
5246 support, we ask the remote target to do the work; on targets
5247 which don't, we insert a traditional memory breakpoint. */
5248
5249 static int
5250 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5251 {
5252 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5253 If it succeeds, then set the support to PACKET_ENABLE. If it
5254 fails, and the user has explicitly requested the Z support then
5255 report an error, otherwise, mark it disabled and go on. */
5256
5257 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5258 {
5259 CORE_ADDR addr;
5260 struct remote_state *rs;
5261 char *p;
5262
5263 gdbarch_breakpoint_from_pc
5264 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5265
5266 rs = get_remote_state ();
5267 p = rs->buf;
5268
5269 *(p++) = 'Z';
5270 *(p++) = '0';
5271 *(p++) = ',';
5272 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5273 p += hexnumstr (p, addr);
5274 sprintf (p, ",%d", bp_tgt->placed_size);
5275
5276 putpkt (rs->buf);
5277 getpkt (&rs->buf, &rs->buf_size, 0);
5278
5279 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5280 {
5281 case PACKET_ERROR:
5282 return -1;
5283 case PACKET_OK:
5284 return 0;
5285 case PACKET_UNKNOWN:
5286 break;
5287 }
5288 }
5289
5290 return memory_insert_breakpoint (bp_tgt);
5291 }
5292
5293 static int
5294 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5295 {
5296 CORE_ADDR addr = bp_tgt->placed_address;
5297 struct remote_state *rs = get_remote_state ();
5298 int bp_size;
5299
5300 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5301 {
5302 char *p = rs->buf;
5303
5304 *(p++) = 'z';
5305 *(p++) = '0';
5306 *(p++) = ',';
5307
5308 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5309 p += hexnumstr (p, addr);
5310 sprintf (p, ",%d", bp_tgt->placed_size);
5311
5312 putpkt (rs->buf);
5313 getpkt (&rs->buf, &rs->buf_size, 0);
5314
5315 return (rs->buf[0] == 'E');
5316 }
5317
5318 return memory_remove_breakpoint (bp_tgt);
5319 }
5320
5321 static int
5322 watchpoint_to_Z_packet (int type)
5323 {
5324 switch (type)
5325 {
5326 case hw_write:
5327 return Z_PACKET_WRITE_WP;
5328 break;
5329 case hw_read:
5330 return Z_PACKET_READ_WP;
5331 break;
5332 case hw_access:
5333 return Z_PACKET_ACCESS_WP;
5334 break;
5335 default:
5336 internal_error (__FILE__, __LINE__,
5337 _("hw_bp_to_z: bad watchpoint type %d"), type);
5338 }
5339 }
5340
5341 static int
5342 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5343 {
5344 struct remote_state *rs = get_remote_state ();
5345 char *p;
5346 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5347
5348 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5349 return -1;
5350
5351 sprintf (rs->buf, "Z%x,", packet);
5352 p = strchr (rs->buf, '\0');
5353 addr = remote_address_masked (addr);
5354 p += hexnumstr (p, (ULONGEST) addr);
5355 sprintf (p, ",%x", len);
5356
5357 putpkt (rs->buf);
5358 getpkt (&rs->buf, &rs->buf_size, 0);
5359
5360 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5361 {
5362 case PACKET_ERROR:
5363 case PACKET_UNKNOWN:
5364 return -1;
5365 case PACKET_OK:
5366 return 0;
5367 }
5368 internal_error (__FILE__, __LINE__,
5369 _("remote_insert_watchpoint: reached end of function"));
5370 }
5371
5372
5373 static int
5374 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5375 {
5376 struct remote_state *rs = get_remote_state ();
5377 char *p;
5378 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5379
5380 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5381 return -1;
5382
5383 sprintf (rs->buf, "z%x,", packet);
5384 p = strchr (rs->buf, '\0');
5385 addr = remote_address_masked (addr);
5386 p += hexnumstr (p, (ULONGEST) addr);
5387 sprintf (p, ",%x", len);
5388 putpkt (rs->buf);
5389 getpkt (&rs->buf, &rs->buf_size, 0);
5390
5391 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5392 {
5393 case PACKET_ERROR:
5394 case PACKET_UNKNOWN:
5395 return -1;
5396 case PACKET_OK:
5397 return 0;
5398 }
5399 internal_error (__FILE__, __LINE__,
5400 _("remote_remove_watchpoint: reached end of function"));
5401 }
5402
5403
5404 int remote_hw_watchpoint_limit = -1;
5405 int remote_hw_breakpoint_limit = -1;
5406
5407 static int
5408 remote_check_watch_resources (int type, int cnt, int ot)
5409 {
5410 if (type == bp_hardware_breakpoint)
5411 {
5412 if (remote_hw_breakpoint_limit == 0)
5413 return 0;
5414 else if (remote_hw_breakpoint_limit < 0)
5415 return 1;
5416 else if (cnt <= remote_hw_breakpoint_limit)
5417 return 1;
5418 }
5419 else
5420 {
5421 if (remote_hw_watchpoint_limit == 0)
5422 return 0;
5423 else if (remote_hw_watchpoint_limit < 0)
5424 return 1;
5425 else if (ot)
5426 return -1;
5427 else if (cnt <= remote_hw_watchpoint_limit)
5428 return 1;
5429 }
5430 return -1;
5431 }
5432
5433 static int
5434 remote_stopped_by_watchpoint (void)
5435 {
5436 return remote_stopped_by_watchpoint_p;
5437 }
5438
5439 static int
5440 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5441 {
5442 int rc = 0;
5443 if (remote_stopped_by_watchpoint ())
5444 {
5445 *addr_p = remote_watch_data_address;
5446 rc = 1;
5447 }
5448
5449 return rc;
5450 }
5451
5452
5453 static int
5454 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5455 {
5456 CORE_ADDR addr;
5457 struct remote_state *rs;
5458 char *p;
5459
5460 /* The length field should be set to the size of a breakpoint
5461 instruction, even though we aren't inserting one ourselves. */
5462
5463 gdbarch_breakpoint_from_pc
5464 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5465
5466 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5467 return -1;
5468
5469 rs = get_remote_state ();
5470 p = rs->buf;
5471
5472 *(p++) = 'Z';
5473 *(p++) = '1';
5474 *(p++) = ',';
5475
5476 addr = remote_address_masked (bp_tgt->placed_address);
5477 p += hexnumstr (p, (ULONGEST) addr);
5478 sprintf (p, ",%x", bp_tgt->placed_size);
5479
5480 putpkt (rs->buf);
5481 getpkt (&rs->buf, &rs->buf_size, 0);
5482
5483 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5484 {
5485 case PACKET_ERROR:
5486 case PACKET_UNKNOWN:
5487 return -1;
5488 case PACKET_OK:
5489 return 0;
5490 }
5491 internal_error (__FILE__, __LINE__,
5492 _("remote_insert_hw_breakpoint: reached end of function"));
5493 }
5494
5495
5496 static int
5497 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5498 {
5499 CORE_ADDR addr;
5500 struct remote_state *rs = get_remote_state ();
5501 char *p = rs->buf;
5502
5503 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5504 return -1;
5505
5506 *(p++) = 'z';
5507 *(p++) = '1';
5508 *(p++) = ',';
5509
5510 addr = remote_address_masked (bp_tgt->placed_address);
5511 p += hexnumstr (p, (ULONGEST) addr);
5512 sprintf (p, ",%x", bp_tgt->placed_size);
5513
5514 putpkt (rs->buf);
5515 getpkt (&rs->buf, &rs->buf_size, 0);
5516
5517 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5518 {
5519 case PACKET_ERROR:
5520 case PACKET_UNKNOWN:
5521 return -1;
5522 case PACKET_OK:
5523 return 0;
5524 }
5525 internal_error (__FILE__, __LINE__,
5526 _("remote_remove_hw_breakpoint: reached end of function"));
5527 }
5528
5529 /* Some targets are only capable of doing downloads, and afterwards
5530 they switch to the remote serial protocol. This function provides
5531 a clean way to get from the download target to the remote target.
5532 It's basically just a wrapper so that we don't have to expose any
5533 of the internal workings of remote.c.
5534
5535 Prior to calling this routine, you should shutdown the current
5536 target code, else you will get the "A program is being debugged
5537 already..." message. Usually a call to pop_target() suffices. */
5538
5539 void
5540 push_remote_target (char *name, int from_tty)
5541 {
5542 printf_filtered (_("Switching to remote protocol\n"));
5543 remote_open (name, from_tty);
5544 }
5545
5546 /* Table used by the crc32 function to calcuate the checksum. */
5547
5548 static unsigned long crc32_table[256] =
5549 {0, 0};
5550
5551 static unsigned long
5552 crc32 (unsigned char *buf, int len, unsigned int crc)
5553 {
5554 if (!crc32_table[1])
5555 {
5556 /* Initialize the CRC table and the decoding table. */
5557 int i, j;
5558 unsigned int c;
5559
5560 for (i = 0; i < 256; i++)
5561 {
5562 for (c = i << 24, j = 8; j > 0; --j)
5563 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5564 crc32_table[i] = c;
5565 }
5566 }
5567
5568 while (len--)
5569 {
5570 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5571 buf++;
5572 }
5573 return crc;
5574 }
5575
5576 /* compare-sections command
5577
5578 With no arguments, compares each loadable section in the exec bfd
5579 with the same memory range on the target, and reports mismatches.
5580 Useful for verifying the image on the target against the exec file.
5581 Depends on the target understanding the new "qCRC:" request. */
5582
5583 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5584 target method (target verify memory) and generic version of the
5585 actual command. This will allow other high-level code (especially
5586 generic_load()) to make use of this target functionality. */
5587
5588 static void
5589 compare_sections_command (char *args, int from_tty)
5590 {
5591 struct remote_state *rs = get_remote_state ();
5592 asection *s;
5593 unsigned long host_crc, target_crc;
5594 extern bfd *exec_bfd;
5595 struct cleanup *old_chain;
5596 char *tmp;
5597 char *sectdata;
5598 const char *sectname;
5599 bfd_size_type size;
5600 bfd_vma lma;
5601 int matched = 0;
5602 int mismatched = 0;
5603
5604 if (!exec_bfd)
5605 error (_("command cannot be used without an exec file"));
5606 if (!current_target.to_shortname ||
5607 strcmp (current_target.to_shortname, "remote") != 0)
5608 error (_("command can only be used with remote target"));
5609
5610 for (s = exec_bfd->sections; s; s = s->next)
5611 {
5612 if (!(s->flags & SEC_LOAD))
5613 continue; /* skip non-loadable section */
5614
5615 size = bfd_get_section_size (s);
5616 if (size == 0)
5617 continue; /* skip zero-length section */
5618
5619 sectname = bfd_get_section_name (exec_bfd, s);
5620 if (args && strcmp (args, sectname) != 0)
5621 continue; /* not the section selected by user */
5622
5623 matched = 1; /* do this section */
5624 lma = s->lma;
5625 /* FIXME: assumes lma can fit into long. */
5626 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5627 (long) lma, (long) size);
5628 putpkt (rs->buf);
5629
5630 /* Be clever; compute the host_crc before waiting for target
5631 reply. */
5632 sectdata = xmalloc (size);
5633 old_chain = make_cleanup (xfree, sectdata);
5634 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5635 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5636
5637 getpkt (&rs->buf, &rs->buf_size, 0);
5638 if (rs->buf[0] == 'E')
5639 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5640 sectname, paddr (lma), paddr (lma + size));
5641 if (rs->buf[0] != 'C')
5642 error (_("remote target does not support this operation"));
5643
5644 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5645 target_crc = target_crc * 16 + fromhex (*tmp);
5646
5647 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5648 sectname, paddr (lma), paddr (lma + size));
5649 if (host_crc == target_crc)
5650 printf_filtered ("matched.\n");
5651 else
5652 {
5653 printf_filtered ("MIS-MATCHED!\n");
5654 mismatched++;
5655 }
5656
5657 do_cleanups (old_chain);
5658 }
5659 if (mismatched > 0)
5660 warning (_("One or more sections of the remote executable does not match\n\
5661 the loaded file\n"));
5662 if (args && !matched)
5663 printf_filtered (_("No loaded section named '%s'.\n"), args);
5664 }
5665
5666 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5667 into remote target. The number of bytes written to the remote
5668 target is returned, or -1 for error. */
5669
5670 static LONGEST
5671 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5672 const char *annex, const gdb_byte *writebuf,
5673 ULONGEST offset, LONGEST len,
5674 struct packet_config *packet)
5675 {
5676 int i, buf_len;
5677 ULONGEST n;
5678 gdb_byte *wbuf;
5679 struct remote_state *rs = get_remote_state ();
5680 int max_size = get_memory_write_packet_size ();
5681
5682 if (packet->support == PACKET_DISABLE)
5683 return -1;
5684
5685 /* Insert header. */
5686 i = snprintf (rs->buf, max_size,
5687 "qXfer:%s:write:%s:%s:",
5688 object_name, annex ? annex : "",
5689 phex_nz (offset, sizeof offset));
5690 max_size -= (i + 1);
5691
5692 /* Escape as much data as fits into rs->buf. */
5693 buf_len = remote_escape_output
5694 (writebuf, len, (rs->buf + i), &max_size, max_size);
5695
5696 if (putpkt_binary (rs->buf, i + buf_len) < 0
5697 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5698 || packet_ok (rs->buf, packet) != PACKET_OK)
5699 return -1;
5700
5701 unpack_varlen_hex (rs->buf, &n);
5702 return n;
5703 }
5704
5705 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5706 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5707 number of bytes read is returned, or 0 for EOF, or -1 for error.
5708 The number of bytes read may be less than LEN without indicating an
5709 EOF. PACKET is checked and updated to indicate whether the remote
5710 target supports this object. */
5711
5712 static LONGEST
5713 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5714 const char *annex,
5715 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5716 struct packet_config *packet)
5717 {
5718 static char *finished_object;
5719 static char *finished_annex;
5720 static ULONGEST finished_offset;
5721
5722 struct remote_state *rs = get_remote_state ();
5723 unsigned int total = 0;
5724 LONGEST i, n, packet_len;
5725
5726 if (packet->support == PACKET_DISABLE)
5727 return -1;
5728
5729 /* Check whether we've cached an end-of-object packet that matches
5730 this request. */
5731 if (finished_object)
5732 {
5733 if (strcmp (object_name, finished_object) == 0
5734 && strcmp (annex ? annex : "", finished_annex) == 0
5735 && offset == finished_offset)
5736 return 0;
5737
5738 /* Otherwise, we're now reading something different. Discard
5739 the cache. */
5740 xfree (finished_object);
5741 xfree (finished_annex);
5742 finished_object = NULL;
5743 finished_annex = NULL;
5744 }
5745
5746 /* Request only enough to fit in a single packet. The actual data
5747 may not, since we don't know how much of it will need to be escaped;
5748 the target is free to respond with slightly less data. We subtract
5749 five to account for the response type and the protocol frame. */
5750 n = min (get_remote_packet_size () - 5, len);
5751 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
5752 object_name, annex ? annex : "",
5753 phex_nz (offset, sizeof offset),
5754 phex_nz (n, sizeof n));
5755 i = putpkt (rs->buf);
5756 if (i < 0)
5757 return -1;
5758
5759 rs->buf[0] = '\0';
5760 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
5761 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
5762 return -1;
5763
5764 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
5765 error (_("Unknown remote qXfer reply: %s"), rs->buf);
5766
5767 /* 'm' means there is (or at least might be) more data after this
5768 batch. That does not make sense unless there's at least one byte
5769 of data in this reply. */
5770 if (rs->buf[0] == 'm' && packet_len == 1)
5771 error (_("Remote qXfer reply contained no data."));
5772
5773 /* Got some data. */
5774 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
5775
5776 /* 'l' is an EOF marker, possibly including a final block of data,
5777 or possibly empty. If we have the final block of a non-empty
5778 object, record this fact to bypass a subsequent partial read. */
5779 if (rs->buf[0] == 'l' && offset + i > 0)
5780 {
5781 finished_object = xstrdup (object_name);
5782 finished_annex = xstrdup (annex ? annex : "");
5783 finished_offset = offset + i;
5784 }
5785
5786 return i;
5787 }
5788
5789 static LONGEST
5790 remote_xfer_partial (struct target_ops *ops, enum target_object object,
5791 const char *annex, gdb_byte *readbuf,
5792 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
5793 {
5794 struct remote_state *rs = get_remote_state ();
5795 int i;
5796 char *p2;
5797 char query_type;
5798
5799 /* Handle memory using the standard memory routines. */
5800 if (object == TARGET_OBJECT_MEMORY)
5801 {
5802 int xfered;
5803 errno = 0;
5804
5805 /* If the remote target is connected but not running, we should
5806 pass this request down to a lower stratum (e.g. the executable
5807 file). */
5808 if (!target_has_execution)
5809 return 0;
5810
5811 if (writebuf != NULL)
5812 xfered = remote_write_bytes (offset, writebuf, len);
5813 else
5814 xfered = remote_read_bytes (offset, readbuf, len);
5815
5816 if (xfered > 0)
5817 return xfered;
5818 else if (xfered == 0 && errno == 0)
5819 return 0;
5820 else
5821 return -1;
5822 }
5823
5824 /* Handle SPU memory using qxfer packets. */
5825 if (object == TARGET_OBJECT_SPU)
5826 {
5827 if (readbuf)
5828 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
5829 &remote_protocol_packets
5830 [PACKET_qXfer_spu_read]);
5831 else
5832 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
5833 &remote_protocol_packets
5834 [PACKET_qXfer_spu_write]);
5835 }
5836
5837 /* Only handle flash writes. */
5838 if (writebuf != NULL)
5839 {
5840 LONGEST xfered;
5841
5842 switch (object)
5843 {
5844 case TARGET_OBJECT_FLASH:
5845 xfered = remote_flash_write (ops, offset, len, writebuf);
5846
5847 if (xfered > 0)
5848 return xfered;
5849 else if (xfered == 0 && errno == 0)
5850 return 0;
5851 else
5852 return -1;
5853
5854 default:
5855 return -1;
5856 }
5857 }
5858
5859 /* Map pre-existing objects onto letters. DO NOT do this for new
5860 objects!!! Instead specify new query packets. */
5861 switch (object)
5862 {
5863 case TARGET_OBJECT_AVR:
5864 query_type = 'R';
5865 break;
5866
5867 case TARGET_OBJECT_AUXV:
5868 gdb_assert (annex == NULL);
5869 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
5870 &remote_protocol_packets[PACKET_qXfer_auxv]);
5871
5872 case TARGET_OBJECT_AVAILABLE_FEATURES:
5873 return remote_read_qxfer
5874 (ops, "features", annex, readbuf, offset, len,
5875 &remote_protocol_packets[PACKET_qXfer_features]);
5876
5877 case TARGET_OBJECT_LIBRARIES:
5878 return remote_read_qxfer
5879 (ops, "libraries", annex, readbuf, offset, len,
5880 &remote_protocol_packets[PACKET_qXfer_libraries]);
5881
5882 case TARGET_OBJECT_MEMORY_MAP:
5883 gdb_assert (annex == NULL);
5884 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
5885 &remote_protocol_packets[PACKET_qXfer_memory_map]);
5886
5887 default:
5888 return -1;
5889 }
5890
5891 /* Note: a zero OFFSET and LEN can be used to query the minimum
5892 buffer size. */
5893 if (offset == 0 && len == 0)
5894 return (get_remote_packet_size ());
5895 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
5896 large enough let the caller deal with it. */
5897 if (len < get_remote_packet_size ())
5898 return -1;
5899 len = get_remote_packet_size ();
5900
5901 /* Except for querying the minimum buffer size, target must be open. */
5902 if (!remote_desc)
5903 error (_("remote query is only available after target open"));
5904
5905 gdb_assert (annex != NULL);
5906 gdb_assert (readbuf != NULL);
5907
5908 p2 = rs->buf;
5909 *p2++ = 'q';
5910 *p2++ = query_type;
5911
5912 /* We used one buffer char for the remote protocol q command and
5913 another for the query type. As the remote protocol encapsulation
5914 uses 4 chars plus one extra in case we are debugging
5915 (remote_debug), we have PBUFZIZ - 7 left to pack the query
5916 string. */
5917 i = 0;
5918 while (annex[i] && (i < (get_remote_packet_size () - 8)))
5919 {
5920 /* Bad caller may have sent forbidden characters. */
5921 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
5922 *p2++ = annex[i];
5923 i++;
5924 }
5925 *p2 = '\0';
5926 gdb_assert (annex[i] == '\0');
5927
5928 i = putpkt (rs->buf);
5929 if (i < 0)
5930 return i;
5931
5932 getpkt (&rs->buf, &rs->buf_size, 0);
5933 strcpy ((char *) readbuf, rs->buf);
5934
5935 return strlen ((char *) readbuf);
5936 }
5937
5938 static int
5939 remote_search_memory (struct target_ops* ops,
5940 CORE_ADDR start_addr, ULONGEST search_space_len,
5941 const gdb_byte *pattern, ULONGEST pattern_len,
5942 CORE_ADDR *found_addrp)
5943 {
5944 struct remote_state *rs = get_remote_state ();
5945 int max_size = get_memory_write_packet_size ();
5946 struct packet_config *packet =
5947 &remote_protocol_packets[PACKET_qSearch_memory];
5948 /* number of packet bytes used to encode the pattern,
5949 this could be more than PATTERN_LEN due to escape characters */
5950 int escaped_pattern_len;
5951 /* amount of pattern that was encodable in the packet */
5952 int used_pattern_len;
5953 int i;
5954 int found;
5955 ULONGEST found_addr;
5956
5957 /* Don't go to the target if we don't have to.
5958 This is done before checking packet->support to avoid the possibility that
5959 a success for this edge case means the facility works in general. */
5960 if (pattern_len > search_space_len)
5961 return 0;
5962 if (pattern_len == 0)
5963 {
5964 *found_addrp = start_addr;
5965 return 1;
5966 }
5967
5968 /* If we already know the packet isn't supported, fall back to the simple
5969 way of searching memory. */
5970
5971 if (packet->support == PACKET_DISABLE)
5972 {
5973 /* Target doesn't provided special support, fall back and use the
5974 standard support (copy memory and do the search here). */
5975 return simple_search_memory (ops, start_addr, search_space_len,
5976 pattern, pattern_len, found_addrp);
5977 }
5978
5979 /* Insert header. */
5980 i = snprintf (rs->buf, max_size,
5981 "qSearch:memory:%s;%s;",
5982 paddr_nz (start_addr),
5983 phex_nz (search_space_len, sizeof (search_space_len)));
5984 max_size -= (i + 1);
5985
5986 /* Escape as much data as fits into rs->buf. */
5987 escaped_pattern_len =
5988 remote_escape_output (pattern, pattern_len, (rs->buf + i),
5989 &used_pattern_len, max_size);
5990
5991 /* Bail if the pattern is too large. */
5992 if (used_pattern_len != pattern_len)
5993 error ("Pattern is too large to transmit to remote target.");
5994
5995 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
5996 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5997 || packet_ok (rs->buf, packet) != PACKET_OK)
5998 {
5999 /* The request may not have worked because the command is not
6000 supported. If so, fall back to the simple way. */
6001 if (packet->support == PACKET_DISABLE)
6002 {
6003 return simple_search_memory (ops, start_addr, search_space_len,
6004 pattern, pattern_len, found_addrp);
6005 }
6006 return -1;
6007 }
6008
6009 if (rs->buf[0] == '0')
6010 found = 0;
6011 else if (rs->buf[0] == '1')
6012 {
6013 found = 1;
6014 if (rs->buf[1] != ',')
6015 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
6016 unpack_varlen_hex (rs->buf + 2, &found_addr);
6017 *found_addrp = found_addr;
6018 }
6019 else
6020 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
6021
6022 return found;
6023 }
6024
6025 static void
6026 remote_rcmd (char *command,
6027 struct ui_file *outbuf)
6028 {
6029 struct remote_state *rs = get_remote_state ();
6030 char *p = rs->buf;
6031
6032 if (!remote_desc)
6033 error (_("remote rcmd is only available after target open"));
6034
6035 /* Send a NULL command across as an empty command. */
6036 if (command == NULL)
6037 command = "";
6038
6039 /* The query prefix. */
6040 strcpy (rs->buf, "qRcmd,");
6041 p = strchr (rs->buf, '\0');
6042
6043 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
6044 error (_("\"monitor\" command ``%s'' is too long."), command);
6045
6046 /* Encode the actual command. */
6047 bin2hex ((gdb_byte *) command, p, 0);
6048
6049 if (putpkt (rs->buf) < 0)
6050 error (_("Communication problem with target."));
6051
6052 /* get/display the response */
6053 while (1)
6054 {
6055 char *buf;
6056
6057 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
6058 rs->buf[0] = '\0';
6059 getpkt (&rs->buf, &rs->buf_size, 0);
6060 buf = rs->buf;
6061 if (buf[0] == '\0')
6062 error (_("Target does not support this command."));
6063 if (buf[0] == 'O' && buf[1] != 'K')
6064 {
6065 remote_console_output (buf + 1); /* 'O' message from stub. */
6066 continue;
6067 }
6068 if (strcmp (buf, "OK") == 0)
6069 break;
6070 if (strlen (buf) == 3 && buf[0] == 'E'
6071 && isdigit (buf[1]) && isdigit (buf[2]))
6072 {
6073 error (_("Protocol error with Rcmd"));
6074 }
6075 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
6076 {
6077 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
6078 fputc_unfiltered (c, outbuf);
6079 }
6080 break;
6081 }
6082 }
6083
6084 static VEC(mem_region_s) *
6085 remote_memory_map (struct target_ops *ops)
6086 {
6087 VEC(mem_region_s) *result = NULL;
6088 char *text = target_read_stralloc (&current_target,
6089 TARGET_OBJECT_MEMORY_MAP, NULL);
6090
6091 if (text)
6092 {
6093 struct cleanup *back_to = make_cleanup (xfree, text);
6094 result = parse_memory_map (text);
6095 do_cleanups (back_to);
6096 }
6097
6098 return result;
6099 }
6100
6101 static void
6102 packet_command (char *args, int from_tty)
6103 {
6104 struct remote_state *rs = get_remote_state ();
6105
6106 if (!remote_desc)
6107 error (_("command can only be used with remote target"));
6108
6109 if (!args)
6110 error (_("remote-packet command requires packet text as argument"));
6111
6112 puts_filtered ("sending: ");
6113 print_packet (args);
6114 puts_filtered ("\n");
6115 putpkt (args);
6116
6117 getpkt (&rs->buf, &rs->buf_size, 0);
6118 puts_filtered ("received: ");
6119 print_packet (rs->buf);
6120 puts_filtered ("\n");
6121 }
6122
6123 #if 0
6124 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6125
6126 static void display_thread_info (struct gdb_ext_thread_info *info);
6127
6128 static void threadset_test_cmd (char *cmd, int tty);
6129
6130 static void threadalive_test (char *cmd, int tty);
6131
6132 static void threadlist_test_cmd (char *cmd, int tty);
6133
6134 int get_and_display_threadinfo (threadref *ref);
6135
6136 static void threadinfo_test_cmd (char *cmd, int tty);
6137
6138 static int thread_display_step (threadref *ref, void *context);
6139
6140 static void threadlist_update_test_cmd (char *cmd, int tty);
6141
6142 static void init_remote_threadtests (void);
6143
6144 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6145
6146 static void
6147 threadset_test_cmd (char *cmd, int tty)
6148 {
6149 int sample_thread = SAMPLE_THREAD;
6150
6151 printf_filtered (_("Remote threadset test\n"));
6152 set_thread (sample_thread, 1);
6153 }
6154
6155
6156 static void
6157 threadalive_test (char *cmd, int tty)
6158 {
6159 int sample_thread = SAMPLE_THREAD;
6160
6161 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6162 printf_filtered ("PASS: Thread alive test\n");
6163 else
6164 printf_filtered ("FAIL: Thread alive test\n");
6165 }
6166
6167 void output_threadid (char *title, threadref *ref);
6168
6169 void
6170 output_threadid (char *title, threadref *ref)
6171 {
6172 char hexid[20];
6173
6174 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6175 hexid[16] = 0;
6176 printf_filtered ("%s %s\n", title, (&hexid[0]));
6177 }
6178
6179 static void
6180 threadlist_test_cmd (char *cmd, int tty)
6181 {
6182 int startflag = 1;
6183 threadref nextthread;
6184 int done, result_count;
6185 threadref threadlist[3];
6186
6187 printf_filtered ("Remote Threadlist test\n");
6188 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6189 &result_count, &threadlist[0]))
6190 printf_filtered ("FAIL: threadlist test\n");
6191 else
6192 {
6193 threadref *scan = threadlist;
6194 threadref *limit = scan + result_count;
6195
6196 while (scan < limit)
6197 output_threadid (" thread ", scan++);
6198 }
6199 }
6200
6201 void
6202 display_thread_info (struct gdb_ext_thread_info *info)
6203 {
6204 output_threadid ("Threadid: ", &info->threadid);
6205 printf_filtered ("Name: %s\n ", info->shortname);
6206 printf_filtered ("State: %s\n", info->display);
6207 printf_filtered ("other: %s\n\n", info->more_display);
6208 }
6209
6210 int
6211 get_and_display_threadinfo (threadref *ref)
6212 {
6213 int result;
6214 int set;
6215 struct gdb_ext_thread_info threadinfo;
6216
6217 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6218 | TAG_MOREDISPLAY | TAG_DISPLAY;
6219 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6220 display_thread_info (&threadinfo);
6221 return result;
6222 }
6223
6224 static void
6225 threadinfo_test_cmd (char *cmd, int tty)
6226 {
6227 int athread = SAMPLE_THREAD;
6228 threadref thread;
6229 int set;
6230
6231 int_to_threadref (&thread, athread);
6232 printf_filtered ("Remote Threadinfo test\n");
6233 if (!get_and_display_threadinfo (&thread))
6234 printf_filtered ("FAIL cannot get thread info\n");
6235 }
6236
6237 static int
6238 thread_display_step (threadref *ref, void *context)
6239 {
6240 /* output_threadid(" threadstep ",ref); *//* simple test */
6241 return get_and_display_threadinfo (ref);
6242 }
6243
6244 static void
6245 threadlist_update_test_cmd (char *cmd, int tty)
6246 {
6247 printf_filtered ("Remote Threadlist update test\n");
6248 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6249 }
6250
6251 static void
6252 init_remote_threadtests (void)
6253 {
6254 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6255 Fetch and print the remote list of thread identifiers, one pkt only"));
6256 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6257 _("Fetch and display info about one thread"));
6258 add_com ("tset", class_obscure, threadset_test_cmd,
6259 _("Test setting to a different thread"));
6260 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6261 _("Iterate through updating all remote thread info"));
6262 add_com ("talive", class_obscure, threadalive_test,
6263 _(" Remote thread alive test "));
6264 }
6265
6266 #endif /* 0 */
6267
6268 /* Convert a thread ID to a string. Returns the string in a static
6269 buffer. */
6270
6271 static char *
6272 remote_pid_to_str (ptid_t ptid)
6273 {
6274 static char buf[32];
6275
6276 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6277 return buf;
6278 }
6279
6280 /* Get the address of the thread local variable in OBJFILE which is
6281 stored at OFFSET within the thread local storage for thread PTID. */
6282
6283 static CORE_ADDR
6284 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6285 {
6286 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6287 {
6288 struct remote_state *rs = get_remote_state ();
6289 char *p = rs->buf;
6290 enum packet_result result;
6291
6292 strcpy (p, "qGetTLSAddr:");
6293 p += strlen (p);
6294 p += hexnumstr (p, PIDGET (ptid));
6295 *p++ = ',';
6296 p += hexnumstr (p, offset);
6297 *p++ = ',';
6298 p += hexnumstr (p, lm);
6299 *p++ = '\0';
6300
6301 putpkt (rs->buf);
6302 getpkt (&rs->buf, &rs->buf_size, 0);
6303 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6304 if (result == PACKET_OK)
6305 {
6306 ULONGEST result;
6307
6308 unpack_varlen_hex (rs->buf, &result);
6309 return result;
6310 }
6311 else if (result == PACKET_UNKNOWN)
6312 throw_error (TLS_GENERIC_ERROR,
6313 _("Remote target doesn't support qGetTLSAddr packet"));
6314 else
6315 throw_error (TLS_GENERIC_ERROR,
6316 _("Remote target failed to process qGetTLSAddr request"));
6317 }
6318 else
6319 throw_error (TLS_GENERIC_ERROR,
6320 _("TLS not supported or disabled on this target"));
6321 /* Not reached. */
6322 return 0;
6323 }
6324
6325 /* Support for inferring a target description based on the current
6326 architecture and the size of a 'g' packet. While the 'g' packet
6327 can have any size (since optional registers can be left off the
6328 end), some sizes are easily recognizable given knowledge of the
6329 approximate architecture. */
6330
6331 struct remote_g_packet_guess
6332 {
6333 int bytes;
6334 const struct target_desc *tdesc;
6335 };
6336 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6337 DEF_VEC_O(remote_g_packet_guess_s);
6338
6339 struct remote_g_packet_data
6340 {
6341 VEC(remote_g_packet_guess_s) *guesses;
6342 };
6343
6344 static struct gdbarch_data *remote_g_packet_data_handle;
6345
6346 static void *
6347 remote_g_packet_data_init (struct obstack *obstack)
6348 {
6349 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6350 }
6351
6352 void
6353 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6354 const struct target_desc *tdesc)
6355 {
6356 struct remote_g_packet_data *data
6357 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6358 struct remote_g_packet_guess new_guess, *guess;
6359 int ix;
6360
6361 gdb_assert (tdesc != NULL);
6362
6363 for (ix = 0;
6364 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6365 ix++)
6366 if (guess->bytes == bytes)
6367 internal_error (__FILE__, __LINE__,
6368 "Duplicate g packet description added for size %d",
6369 bytes);
6370
6371 new_guess.bytes = bytes;
6372 new_guess.tdesc = tdesc;
6373 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6374 }
6375
6376 static const struct target_desc *
6377 remote_read_description (struct target_ops *target)
6378 {
6379 struct remote_g_packet_data *data
6380 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6381
6382 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6383 {
6384 struct remote_g_packet_guess *guess;
6385 int ix;
6386 int bytes = send_g_packet ();
6387
6388 for (ix = 0;
6389 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6390 ix++)
6391 if (guess->bytes == bytes)
6392 return guess->tdesc;
6393
6394 /* We discard the g packet. A minor optimization would be to
6395 hold on to it, and fill the register cache once we have selected
6396 an architecture, but it's too tricky to do safely. */
6397 }
6398
6399 return NULL;
6400 }
6401
6402 /* Remote file transfer support. This is host-initiated I/O, not
6403 target-initiated; for target-initiated, see remote-fileio.c. */
6404
6405 /* If *LEFT is at least the length of STRING, copy STRING to
6406 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6407 decrease *LEFT. Otherwise raise an error. */
6408
6409 static void
6410 remote_buffer_add_string (char **buffer, int *left, char *string)
6411 {
6412 int len = strlen (string);
6413
6414 if (len > *left)
6415 error (_("Packet too long for target."));
6416
6417 memcpy (*buffer, string, len);
6418 *buffer += len;
6419 *left -= len;
6420
6421 /* NUL-terminate the buffer as a convenience, if there is
6422 room. */
6423 if (*left)
6424 **buffer = '\0';
6425 }
6426
6427 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
6428 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6429 decrease *LEFT. Otherwise raise an error. */
6430
6431 static void
6432 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
6433 int len)
6434 {
6435 if (2 * len > *left)
6436 error (_("Packet too long for target."));
6437
6438 bin2hex (bytes, *buffer, len);
6439 *buffer += 2 * len;
6440 *left -= 2 * len;
6441
6442 /* NUL-terminate the buffer as a convenience, if there is
6443 room. */
6444 if (*left)
6445 **buffer = '\0';
6446 }
6447
6448 /* If *LEFT is large enough, convert VALUE to hex and add it to
6449 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6450 decrease *LEFT. Otherwise raise an error. */
6451
6452 static void
6453 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
6454 {
6455 int len = hexnumlen (value);
6456
6457 if (len > *left)
6458 error (_("Packet too long for target."));
6459
6460 hexnumstr (*buffer, value);
6461 *buffer += len;
6462 *left -= len;
6463
6464 /* NUL-terminate the buffer as a convenience, if there is
6465 room. */
6466 if (*left)
6467 **buffer = '\0';
6468 }
6469
6470 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
6471 value, *REMOTE_ERRNO to the remote error number or zero if none
6472 was included, and *ATTACHMENT to point to the start of the annex
6473 if any. The length of the packet isn't needed here; there may
6474 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
6475
6476 Return 0 if the packet could be parsed, -1 if it could not. If
6477 -1 is returned, the other variables may not be initialized. */
6478
6479 static int
6480 remote_hostio_parse_result (char *buffer, int *retcode,
6481 int *remote_errno, char **attachment)
6482 {
6483 char *p, *p2;
6484
6485 *remote_errno = 0;
6486 *attachment = NULL;
6487
6488 if (buffer[0] != 'F')
6489 return -1;
6490
6491 errno = 0;
6492 *retcode = strtol (&buffer[1], &p, 16);
6493 if (errno != 0 || p == &buffer[1])
6494 return -1;
6495
6496 /* Check for ",errno". */
6497 if (*p == ',')
6498 {
6499 errno = 0;
6500 *remote_errno = strtol (p + 1, &p2, 16);
6501 if (errno != 0 || p + 1 == p2)
6502 return -1;
6503 p = p2;
6504 }
6505
6506 /* Check for ";attachment". If there is no attachment, the
6507 packet should end here. */
6508 if (*p == ';')
6509 {
6510 *attachment = p + 1;
6511 return 0;
6512 }
6513 else if (*p == '\0')
6514 return 0;
6515 else
6516 return -1;
6517 }
6518
6519 /* Send a prepared I/O packet to the target and read its response.
6520 The prepared packet is in the global RS->BUF before this function
6521 is called, and the answer is there when we return.
6522
6523 COMMAND_BYTES is the length of the request to send, which may include
6524 binary data. WHICH_PACKET is the packet configuration to check
6525 before attempting a packet. If an error occurs, *REMOTE_ERRNO
6526 is set to the error number and -1 is returned. Otherwise the value
6527 returned by the function is returned.
6528
6529 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
6530 attachment is expected; an error will be reported if there's a
6531 mismatch. If one is found, *ATTACHMENT will be set to point into
6532 the packet buffer and *ATTACHMENT_LEN will be set to the
6533 attachment's length. */
6534
6535 static int
6536 remote_hostio_send_command (int command_bytes, int which_packet,
6537 int *remote_errno, char **attachment,
6538 int *attachment_len)
6539 {
6540 struct remote_state *rs = get_remote_state ();
6541 int ret, bytes_read;
6542 char *attachment_tmp;
6543
6544 if (remote_protocol_packets[which_packet].support == PACKET_DISABLE)
6545 {
6546 *remote_errno = FILEIO_ENOSYS;
6547 return -1;
6548 }
6549
6550 putpkt_binary (rs->buf, command_bytes);
6551 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6552
6553 /* If it timed out, something is wrong. Don't try to parse the
6554 buffer. */
6555 if (bytes_read < 0)
6556 {
6557 *remote_errno = FILEIO_EINVAL;
6558 return -1;
6559 }
6560
6561 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
6562 {
6563 case PACKET_ERROR:
6564 *remote_errno = FILEIO_EINVAL;
6565 return -1;
6566 case PACKET_UNKNOWN:
6567 *remote_errno = FILEIO_ENOSYS;
6568 return -1;
6569 case PACKET_OK:
6570 break;
6571 }
6572
6573 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
6574 &attachment_tmp))
6575 {
6576 *remote_errno = FILEIO_EINVAL;
6577 return -1;
6578 }
6579
6580 /* Make sure we saw an attachment if and only if we expected one. */
6581 if ((attachment_tmp == NULL && attachment != NULL)
6582 || (attachment_tmp != NULL && attachment == NULL))
6583 {
6584 *remote_errno = FILEIO_EINVAL;
6585 return -1;
6586 }
6587
6588 /* If an attachment was found, it must point into the packet buffer;
6589 work out how many bytes there were. */
6590 if (attachment_tmp != NULL)
6591 {
6592 *attachment = attachment_tmp;
6593 *attachment_len = bytes_read - (*attachment - rs->buf);
6594 }
6595
6596 return ret;
6597 }
6598
6599 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
6600 remote file descriptor, or -1 if an error occurs (and set
6601 *REMOTE_ERRNO). */
6602
6603 static int
6604 remote_hostio_open (const char *filename, int flags, int mode,
6605 int *remote_errno)
6606 {
6607 struct remote_state *rs = get_remote_state ();
6608 char *p = rs->buf;
6609 int left = get_remote_packet_size () - 1;
6610
6611 remote_buffer_add_string (&p, &left, "vFile:open:");
6612
6613 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6614 strlen (filename));
6615 remote_buffer_add_string (&p, &left, ",");
6616
6617 remote_buffer_add_int (&p, &left, flags);
6618 remote_buffer_add_string (&p, &left, ",");
6619
6620 remote_buffer_add_int (&p, &left, mode);
6621
6622 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
6623 remote_errno, NULL, NULL);
6624 }
6625
6626 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
6627 Return the number of bytes written, or -1 if an error occurs (and
6628 set *REMOTE_ERRNO). */
6629
6630 static int
6631 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
6632 ULONGEST offset, int *remote_errno)
6633 {
6634 struct remote_state *rs = get_remote_state ();
6635 char *p = rs->buf;
6636 int left = get_remote_packet_size ();
6637 int out_len;
6638
6639 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
6640
6641 remote_buffer_add_int (&p, &left, fd);
6642 remote_buffer_add_string (&p, &left, ",");
6643
6644 remote_buffer_add_int (&p, &left, offset);
6645 remote_buffer_add_string (&p, &left, ",");
6646
6647 p += remote_escape_output (write_buf, len, p, &out_len,
6648 get_remote_packet_size () - (p - rs->buf));
6649
6650 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
6651 remote_errno, NULL, NULL);
6652 }
6653
6654 /* Read up to LEN bytes FD on the remote target into READ_BUF
6655 Return the number of bytes read, or -1 if an error occurs (and
6656 set *REMOTE_ERRNO). */
6657
6658 static int
6659 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
6660 ULONGEST offset, int *remote_errno)
6661 {
6662 struct remote_state *rs = get_remote_state ();
6663 char *p = rs->buf;
6664 char *attachment;
6665 int left = get_remote_packet_size ();
6666 int ret, attachment_len;
6667 int read_len;
6668
6669 remote_buffer_add_string (&p, &left, "vFile:pread:");
6670
6671 remote_buffer_add_int (&p, &left, fd);
6672 remote_buffer_add_string (&p, &left, ",");
6673
6674 remote_buffer_add_int (&p, &left, len);
6675 remote_buffer_add_string (&p, &left, ",");
6676
6677 remote_buffer_add_int (&p, &left, offset);
6678
6679 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
6680 remote_errno, &attachment,
6681 &attachment_len);
6682
6683 if (ret < 0)
6684 return ret;
6685
6686 read_len = remote_unescape_input (attachment, attachment_len,
6687 read_buf, len);
6688 if (read_len != ret)
6689 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
6690
6691 return ret;
6692 }
6693
6694 /* Close FD on the remote target. Return 0, or -1 if an error occurs
6695 (and set *REMOTE_ERRNO). */
6696
6697 static int
6698 remote_hostio_close (int fd, int *remote_errno)
6699 {
6700 struct remote_state *rs = get_remote_state ();
6701 char *p = rs->buf;
6702 int left = get_remote_packet_size () - 1;
6703
6704 remote_buffer_add_string (&p, &left, "vFile:close:");
6705
6706 remote_buffer_add_int (&p, &left, fd);
6707
6708 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
6709 remote_errno, NULL, NULL);
6710 }
6711
6712 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
6713 occurs (and set *REMOTE_ERRNO). */
6714
6715 static int
6716 remote_hostio_unlink (const char *filename, int *remote_errno)
6717 {
6718 struct remote_state *rs = get_remote_state ();
6719 char *p = rs->buf;
6720 int left = get_remote_packet_size () - 1;
6721
6722 remote_buffer_add_string (&p, &left, "vFile:unlink:");
6723
6724 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6725 strlen (filename));
6726
6727 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
6728 remote_errno, NULL, NULL);
6729 }
6730
6731 static int
6732 remote_fileio_errno_to_host (int errnum)
6733 {
6734 switch (errnum)
6735 {
6736 case FILEIO_EPERM:
6737 return EPERM;
6738 case FILEIO_ENOENT:
6739 return ENOENT;
6740 case FILEIO_EINTR:
6741 return EINTR;
6742 case FILEIO_EIO:
6743 return EIO;
6744 case FILEIO_EBADF:
6745 return EBADF;
6746 case FILEIO_EACCES:
6747 return EACCES;
6748 case FILEIO_EFAULT:
6749 return EFAULT;
6750 case FILEIO_EBUSY:
6751 return EBUSY;
6752 case FILEIO_EEXIST:
6753 return EEXIST;
6754 case FILEIO_ENODEV:
6755 return ENODEV;
6756 case FILEIO_ENOTDIR:
6757 return ENOTDIR;
6758 case FILEIO_EISDIR:
6759 return EISDIR;
6760 case FILEIO_EINVAL:
6761 return EINVAL;
6762 case FILEIO_ENFILE:
6763 return ENFILE;
6764 case FILEIO_EMFILE:
6765 return EMFILE;
6766 case FILEIO_EFBIG:
6767 return EFBIG;
6768 case FILEIO_ENOSPC:
6769 return ENOSPC;
6770 case FILEIO_ESPIPE:
6771 return ESPIPE;
6772 case FILEIO_EROFS:
6773 return EROFS;
6774 case FILEIO_ENOSYS:
6775 return ENOSYS;
6776 case FILEIO_ENAMETOOLONG:
6777 return ENAMETOOLONG;
6778 }
6779 return -1;
6780 }
6781
6782 static char *
6783 remote_hostio_error (int errnum)
6784 {
6785 int host_error = remote_fileio_errno_to_host (errnum);
6786
6787 if (host_error == -1)
6788 error (_("Unknown remote I/O error %d"), errnum);
6789 else
6790 error (_("Remote I/O error: %s"), safe_strerror (host_error));
6791 }
6792
6793 static void
6794 fclose_cleanup (void *file)
6795 {
6796 fclose (file);
6797 }
6798
6799 static void
6800 remote_hostio_close_cleanup (void *opaque)
6801 {
6802 int fd = *(int *) opaque;
6803 int remote_errno;
6804
6805 remote_hostio_close (fd, &remote_errno);
6806 }
6807
6808 void
6809 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
6810 {
6811 struct cleanup *back_to, *close_cleanup;
6812 int retcode, fd, remote_errno, bytes, io_size;
6813 FILE *file;
6814 gdb_byte *buffer;
6815 int bytes_in_buffer;
6816 int saw_eof;
6817 ULONGEST offset;
6818
6819 if (!remote_desc)
6820 error (_("command can only be used with remote target"));
6821
6822 file = fopen (local_file, "rb");
6823 if (file == NULL)
6824 perror_with_name (local_file);
6825 back_to = make_cleanup (fclose_cleanup, file);
6826
6827 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
6828 | FILEIO_O_TRUNC),
6829 0700, &remote_errno);
6830 if (fd == -1)
6831 remote_hostio_error (remote_errno);
6832
6833 /* Send up to this many bytes at once. They won't all fit in the
6834 remote packet limit, so we'll transfer slightly fewer. */
6835 io_size = get_remote_packet_size ();
6836 buffer = xmalloc (io_size);
6837 make_cleanup (xfree, buffer);
6838
6839 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
6840
6841 bytes_in_buffer = 0;
6842 saw_eof = 0;
6843 offset = 0;
6844 while (bytes_in_buffer || !saw_eof)
6845 {
6846 if (!saw_eof)
6847 {
6848 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
6849 file);
6850 if (bytes == 0)
6851 {
6852 if (ferror (file))
6853 error (_("Error reading %s."), local_file);
6854 else
6855 {
6856 /* EOF. Unless there is something still in the
6857 buffer from the last iteration, we are done. */
6858 saw_eof = 1;
6859 if (bytes_in_buffer == 0)
6860 break;
6861 }
6862 }
6863 }
6864 else
6865 bytes = 0;
6866
6867 bytes += bytes_in_buffer;
6868 bytes_in_buffer = 0;
6869
6870 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
6871
6872 if (retcode < 0)
6873 remote_hostio_error (remote_errno);
6874 else if (retcode == 0)
6875 error (_("Remote write of %d bytes returned 0!"), bytes);
6876 else if (retcode < bytes)
6877 {
6878 /* Short write. Save the rest of the read data for the next
6879 write. */
6880 bytes_in_buffer = bytes - retcode;
6881 memmove (buffer, buffer + retcode, bytes_in_buffer);
6882 }
6883
6884 offset += retcode;
6885 }
6886
6887 discard_cleanups (close_cleanup);
6888 if (remote_hostio_close (fd, &remote_errno))
6889 remote_hostio_error (remote_errno);
6890
6891 if (from_tty)
6892 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
6893 do_cleanups (back_to);
6894 }
6895
6896 void
6897 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
6898 {
6899 struct cleanup *back_to, *close_cleanup;
6900 int retcode, fd, remote_errno, bytes, io_size;
6901 FILE *file;
6902 gdb_byte *buffer;
6903 ULONGEST offset;
6904
6905 if (!remote_desc)
6906 error (_("command can only be used with remote target"));
6907
6908 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
6909 if (fd == -1)
6910 remote_hostio_error (remote_errno);
6911
6912 file = fopen (local_file, "wb");
6913 if (file == NULL)
6914 perror_with_name (local_file);
6915 back_to = make_cleanup (fclose_cleanup, file);
6916
6917 /* Send up to this many bytes at once. They won't all fit in the
6918 remote packet limit, so we'll transfer slightly fewer. */
6919 io_size = get_remote_packet_size ();
6920 buffer = xmalloc (io_size);
6921 make_cleanup (xfree, buffer);
6922
6923 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
6924
6925 offset = 0;
6926 while (1)
6927 {
6928 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
6929 if (bytes == 0)
6930 /* Success, but no bytes, means end-of-file. */
6931 break;
6932 if (bytes == -1)
6933 remote_hostio_error (remote_errno);
6934
6935 offset += bytes;
6936
6937 bytes = fwrite (buffer, 1, bytes, file);
6938 if (bytes == 0)
6939 perror_with_name (local_file);
6940 }
6941
6942 discard_cleanups (close_cleanup);
6943 if (remote_hostio_close (fd, &remote_errno))
6944 remote_hostio_error (remote_errno);
6945
6946 if (from_tty)
6947 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
6948 do_cleanups (back_to);
6949 }
6950
6951 void
6952 remote_file_delete (const char *remote_file, int from_tty)
6953 {
6954 int retcode, remote_errno;
6955
6956 if (!remote_desc)
6957 error (_("command can only be used with remote target"));
6958
6959 retcode = remote_hostio_unlink (remote_file, &remote_errno);
6960 if (retcode == -1)
6961 remote_hostio_error (remote_errno);
6962
6963 if (from_tty)
6964 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
6965 }
6966
6967 static void
6968 remote_put_command (char *args, int from_tty)
6969 {
6970 struct cleanup *back_to;
6971 char **argv;
6972
6973 argv = buildargv (args);
6974 if (argv == NULL)
6975 nomem (0);
6976 back_to = make_cleanup_freeargv (argv);
6977 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
6978 error (_("Invalid parameters to remote put"));
6979
6980 remote_file_put (argv[0], argv[1], from_tty);
6981
6982 do_cleanups (back_to);
6983 }
6984
6985 static void
6986 remote_get_command (char *args, int from_tty)
6987 {
6988 struct cleanup *back_to;
6989 char **argv;
6990
6991 argv = buildargv (args);
6992 if (argv == NULL)
6993 nomem (0);
6994 back_to = make_cleanup_freeargv (argv);
6995 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
6996 error (_("Invalid parameters to remote get"));
6997
6998 remote_file_get (argv[0], argv[1], from_tty);
6999
7000 do_cleanups (back_to);
7001 }
7002
7003 static void
7004 remote_delete_command (char *args, int from_tty)
7005 {
7006 struct cleanup *back_to;
7007 char **argv;
7008
7009 argv = buildargv (args);
7010 if (argv == NULL)
7011 nomem (0);
7012 back_to = make_cleanup_freeargv (argv);
7013 if (argv[0] == NULL || argv[1] != NULL)
7014 error (_("Invalid parameters to remote delete"));
7015
7016 remote_file_delete (argv[0], from_tty);
7017
7018 do_cleanups (back_to);
7019 }
7020
7021 static void
7022 remote_command (char *args, int from_tty)
7023 {
7024 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
7025 }
7026
7027 static void
7028 init_remote_ops (void)
7029 {
7030 remote_ops.to_shortname = "remote";
7031 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
7032 remote_ops.to_doc =
7033 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7034 Specify the serial device it is connected to\n\
7035 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
7036 remote_ops.to_open = remote_open;
7037 remote_ops.to_close = remote_close;
7038 remote_ops.to_detach = remote_detach;
7039 remote_ops.to_disconnect = remote_disconnect;
7040 remote_ops.to_resume = remote_resume;
7041 remote_ops.to_wait = remote_wait;
7042 remote_ops.to_fetch_registers = remote_fetch_registers;
7043 remote_ops.to_store_registers = remote_store_registers;
7044 remote_ops.to_prepare_to_store = remote_prepare_to_store;
7045 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
7046 remote_ops.to_files_info = remote_files_info;
7047 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
7048 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
7049 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7050 remote_ops.to_stopped_data_address = remote_stopped_data_address;
7051 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7052 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7053 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7054 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
7055 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
7056 remote_ops.to_kill = remote_kill;
7057 remote_ops.to_load = generic_load;
7058 remote_ops.to_mourn_inferior = remote_mourn;
7059 remote_ops.to_thread_alive = remote_thread_alive;
7060 remote_ops.to_find_new_threads = remote_threads_info;
7061 remote_ops.to_pid_to_str = remote_pid_to_str;
7062 remote_ops.to_extra_thread_info = remote_threads_extra_info;
7063 remote_ops.to_stop = remote_stop;
7064 remote_ops.to_xfer_partial = remote_xfer_partial;
7065 remote_ops.to_rcmd = remote_rcmd;
7066 remote_ops.to_log_command = serial_log_command;
7067 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
7068 remote_ops.to_stratum = process_stratum;
7069 remote_ops.to_has_all_memory = 1;
7070 remote_ops.to_has_memory = 1;
7071 remote_ops.to_has_stack = 1;
7072 remote_ops.to_has_registers = 1;
7073 remote_ops.to_has_execution = 1;
7074 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7075 remote_ops.to_magic = OPS_MAGIC;
7076 remote_ops.to_memory_map = remote_memory_map;
7077 remote_ops.to_flash_erase = remote_flash_erase;
7078 remote_ops.to_flash_done = remote_flash_done;
7079 remote_ops.to_read_description = remote_read_description;
7080 remote_ops.to_search_memory = remote_search_memory;
7081 remote_ops.to_can_async_p = remote_can_async_p;
7082 remote_ops.to_is_async_p = remote_is_async_p;
7083 remote_ops.to_async = remote_async;
7084 remote_ops.to_async_mask = remote_async_mask;
7085 remote_ops.to_terminal_inferior = remote_terminal_inferior;
7086 remote_ops.to_terminal_ours = remote_terminal_ours;
7087 }
7088
7089 /* Set up the extended remote vector by making a copy of the standard
7090 remote vector and adding to it. */
7091
7092 static void
7093 init_extended_remote_ops (void)
7094 {
7095 extended_remote_ops = remote_ops;
7096
7097 extended_remote_ops.to_shortname = "extended-remote";
7098 extended_remote_ops.to_longname =
7099 "Extended remote serial target in gdb-specific protocol";
7100 extended_remote_ops.to_doc =
7101 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7102 Specify the serial device it is connected to (e.g. /dev/ttya).";
7103 extended_remote_ops.to_open = extended_remote_open;
7104 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
7105 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
7106 extended_remote_ops.to_detach = extended_remote_detach;
7107 extended_remote_ops.to_attach = extended_remote_attach;
7108 }
7109
7110 static int
7111 remote_can_async_p (void)
7112 {
7113 if (!remote_async_permitted)
7114 /* We only enable async when the user specifically asks for it. */
7115 return 0;
7116
7117 /* We're async whenever the serial device is. */
7118 return remote_async_mask_value && serial_can_async_p (remote_desc);
7119 }
7120
7121 static int
7122 remote_is_async_p (void)
7123 {
7124 if (!remote_async_permitted)
7125 /* We only enable async when the user specifically asks for it. */
7126 return 0;
7127
7128 /* We're async whenever the serial device is. */
7129 return remote_async_mask_value && serial_is_async_p (remote_desc);
7130 }
7131
7132 /* Pass the SERIAL event on and up to the client. One day this code
7133 will be able to delay notifying the client of an event until the
7134 point where an entire packet has been received. */
7135
7136 static void (*async_client_callback) (enum inferior_event_type event_type,
7137 void *context);
7138 static void *async_client_context;
7139 static serial_event_ftype remote_async_serial_handler;
7140
7141 static void
7142 remote_async_serial_handler (struct serial *scb, void *context)
7143 {
7144 /* Don't propogate error information up to the client. Instead let
7145 the client find out about the error by querying the target. */
7146 async_client_callback (INF_REG_EVENT, async_client_context);
7147 }
7148
7149 static void
7150 remote_async (void (*callback) (enum inferior_event_type event_type,
7151 void *context), void *context)
7152 {
7153 if (remote_async_mask_value == 0)
7154 internal_error (__FILE__, __LINE__,
7155 _("Calling remote_async when async is masked"));
7156
7157 if (callback != NULL)
7158 {
7159 serial_async (remote_desc, remote_async_serial_handler, NULL);
7160 async_client_callback = callback;
7161 async_client_context = context;
7162 }
7163 else
7164 serial_async (remote_desc, NULL, NULL);
7165 }
7166
7167 static int
7168 remote_async_mask (int new_mask)
7169 {
7170 int curr_mask = remote_async_mask_value;
7171 remote_async_mask_value = new_mask;
7172 return curr_mask;
7173 }
7174
7175 static void
7176 set_remote_cmd (char *args, int from_tty)
7177 {
7178 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
7179 }
7180
7181 static void
7182 show_remote_cmd (char *args, int from_tty)
7183 {
7184 /* We can't just use cmd_show_list here, because we want to skip
7185 the redundant "show remote Z-packet" and the legacy aliases. */
7186 struct cleanup *showlist_chain;
7187 struct cmd_list_element *list = remote_show_cmdlist;
7188
7189 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
7190 for (; list != NULL; list = list->next)
7191 if (strcmp (list->name, "Z-packet") == 0)
7192 continue;
7193 else if (list->type == not_set_cmd)
7194 /* Alias commands are exactly like the original, except they
7195 don't have the normal type. */
7196 continue;
7197 else
7198 {
7199 struct cleanup *option_chain
7200 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
7201 ui_out_field_string (uiout, "name", list->name);
7202 ui_out_text (uiout, ": ");
7203 if (list->type == show_cmd)
7204 do_setshow_command ((char *) NULL, from_tty, list);
7205 else
7206 cmd_func (list, NULL, from_tty);
7207 /* Close the tuple. */
7208 do_cleanups (option_chain);
7209 }
7210
7211 /* Close the tuple. */
7212 do_cleanups (showlist_chain);
7213 }
7214
7215
7216 /* Function to be called whenever a new objfile (shlib) is detected. */
7217 static void
7218 remote_new_objfile (struct objfile *objfile)
7219 {
7220 if (remote_desc != 0) /* Have a remote connection. */
7221 remote_check_symbols (objfile);
7222 }
7223
7224 void
7225 _initialize_remote (void)
7226 {
7227 struct remote_state *rs;
7228
7229 /* architecture specific data */
7230 remote_gdbarch_data_handle =
7231 gdbarch_data_register_post_init (init_remote_state);
7232 remote_g_packet_data_handle =
7233 gdbarch_data_register_pre_init (remote_g_packet_data_init);
7234
7235 /* Initialize the per-target state. At the moment there is only one
7236 of these, not one per target. Only one target is active at a
7237 time. The default buffer size is unimportant; it will be expanded
7238 whenever a larger buffer is needed. */
7239 rs = get_remote_state_raw ();
7240 rs->buf_size = 400;
7241 rs->buf = xmalloc (rs->buf_size);
7242
7243 init_remote_ops ();
7244 add_target (&remote_ops);
7245
7246 init_extended_remote_ops ();
7247 add_target (&extended_remote_ops);
7248
7249 /* Hook into new objfile notification. */
7250 observer_attach_new_objfile (remote_new_objfile);
7251
7252 /* Set up signal handlers. */
7253 sigint_remote_token =
7254 create_async_signal_handler (async_remote_interrupt, NULL);
7255 sigint_remote_twice_token =
7256 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
7257
7258 #if 0
7259 init_remote_threadtests ();
7260 #endif
7261
7262 /* set/show remote ... */
7263
7264 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
7265 Remote protocol specific variables\n\
7266 Configure various remote-protocol specific variables such as\n\
7267 the packets being used"),
7268 &remote_set_cmdlist, "set remote ",
7269 0 /* allow-unknown */, &setlist);
7270 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
7271 Remote protocol specific variables\n\
7272 Configure various remote-protocol specific variables such as\n\
7273 the packets being used"),
7274 &remote_show_cmdlist, "show remote ",
7275 0 /* allow-unknown */, &showlist);
7276
7277 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
7278 Compare section data on target to the exec file.\n\
7279 Argument is a single section name (default: all loaded sections)."),
7280 &cmdlist);
7281
7282 add_cmd ("packet", class_maintenance, packet_command, _("\
7283 Send an arbitrary packet to a remote target.\n\
7284 maintenance packet TEXT\n\
7285 If GDB is talking to an inferior via the GDB serial protocol, then\n\
7286 this command sends the string TEXT to the inferior, and displays the\n\
7287 response packet. GDB supplies the initial `$' character, and the\n\
7288 terminating `#' character and checksum."),
7289 &maintenancelist);
7290
7291 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
7292 Set whether to send break if interrupted."), _("\
7293 Show whether to send break if interrupted."), _("\
7294 If set, a break, instead of a cntrl-c, is sent to the remote target."),
7295 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
7296 &setlist, &showlist);
7297
7298 /* Install commands for configuring memory read/write packets. */
7299
7300 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
7301 Set the maximum number of bytes per memory write packet (deprecated)."),
7302 &setlist);
7303 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
7304 Show the maximum number of bytes per memory write packet (deprecated)."),
7305 &showlist);
7306 add_cmd ("memory-write-packet-size", no_class,
7307 set_memory_write_packet_size, _("\
7308 Set the maximum number of bytes per memory-write packet.\n\
7309 Specify the number of bytes in a packet or 0 (zero) for the\n\
7310 default packet size. The actual limit is further reduced\n\
7311 dependent on the target. Specify ``fixed'' to disable the\n\
7312 further restriction and ``limit'' to enable that restriction."),
7313 &remote_set_cmdlist);
7314 add_cmd ("memory-read-packet-size", no_class,
7315 set_memory_read_packet_size, _("\
7316 Set the maximum number of bytes per memory-read packet.\n\
7317 Specify the number of bytes in a packet or 0 (zero) for the\n\
7318 default packet size. The actual limit is further reduced\n\
7319 dependent on the target. Specify ``fixed'' to disable the\n\
7320 further restriction and ``limit'' to enable that restriction."),
7321 &remote_set_cmdlist);
7322 add_cmd ("memory-write-packet-size", no_class,
7323 show_memory_write_packet_size,
7324 _("Show the maximum number of bytes per memory-write packet."),
7325 &remote_show_cmdlist);
7326 add_cmd ("memory-read-packet-size", no_class,
7327 show_memory_read_packet_size,
7328 _("Show the maximum number of bytes per memory-read packet."),
7329 &remote_show_cmdlist);
7330
7331 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
7332 &remote_hw_watchpoint_limit, _("\
7333 Set the maximum number of target hardware watchpoints."), _("\
7334 Show the maximum number of target hardware watchpoints."), _("\
7335 Specify a negative limit for unlimited."),
7336 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
7337 &remote_set_cmdlist, &remote_show_cmdlist);
7338 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
7339 &remote_hw_breakpoint_limit, _("\
7340 Set the maximum number of target hardware breakpoints."), _("\
7341 Show the maximum number of target hardware breakpoints."), _("\
7342 Specify a negative limit for unlimited."),
7343 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
7344 &remote_set_cmdlist, &remote_show_cmdlist);
7345
7346 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
7347 &remote_address_size, _("\
7348 Set the maximum size of the address (in bits) in a memory packet."), _("\
7349 Show the maximum size of the address (in bits) in a memory packet."), NULL,
7350 NULL,
7351 NULL, /* FIXME: i18n: */
7352 &setlist, &showlist);
7353
7354 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
7355 "X", "binary-download", 1);
7356
7357 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
7358 "vCont", "verbose-resume", 0);
7359
7360 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
7361 "QPassSignals", "pass-signals", 0);
7362
7363 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
7364 "qSymbol", "symbol-lookup", 0);
7365
7366 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
7367 "P", "set-register", 1);
7368
7369 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
7370 "p", "fetch-register", 1);
7371
7372 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
7373 "Z0", "software-breakpoint", 0);
7374
7375 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
7376 "Z1", "hardware-breakpoint", 0);
7377
7378 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
7379 "Z2", "write-watchpoint", 0);
7380
7381 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
7382 "Z3", "read-watchpoint", 0);
7383
7384 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
7385 "Z4", "access-watchpoint", 0);
7386
7387 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
7388 "qXfer:auxv:read", "read-aux-vector", 0);
7389
7390 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
7391 "qXfer:features:read", "target-features", 0);
7392
7393 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
7394 "qXfer:libraries:read", "library-info", 0);
7395
7396 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
7397 "qXfer:memory-map:read", "memory-map", 0);
7398
7399 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
7400 "qXfer:spu:read", "read-spu-object", 0);
7401
7402 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
7403 "qXfer:spu:write", "write-spu-object", 0);
7404
7405 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
7406 "qGetTLSAddr", "get-thread-local-storage-address",
7407 0);
7408
7409 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
7410 "qSupported", "supported-packets", 0);
7411
7412 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
7413 "qSearch:memory", "search-memory", 0);
7414
7415 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
7416 "vFile:open", "hostio-open", 0);
7417
7418 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
7419 "vFile:pread", "hostio-pread", 0);
7420
7421 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
7422 "vFile:pwrite", "hostio-pwrite", 0);
7423
7424 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
7425 "vFile:close", "hostio-close", 0);
7426
7427 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
7428 "vFile:unlink", "hostio-unlink", 0);
7429
7430 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
7431 "vAttach", "attach", 0);
7432
7433 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
7434 "vRun", "run", 0);
7435
7436 /* Keep the old ``set remote Z-packet ...'' working. Each individual
7437 Z sub-packet has its own set and show commands, but users may
7438 have sets to this variable in their .gdbinit files (or in their
7439 documentation). */
7440 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
7441 &remote_Z_packet_detect, _("\
7442 Set use of remote protocol `Z' packets"), _("\
7443 Show use of remote protocol `Z' packets "), _("\
7444 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
7445 packets."),
7446 set_remote_protocol_Z_packet_cmd,
7447 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
7448 &remote_set_cmdlist, &remote_show_cmdlist);
7449
7450 add_prefix_cmd ("remote", class_files, remote_command, _("\
7451 Manipulate files on the remote system\n\
7452 Transfer files to and from the remote target system."),
7453 &remote_cmdlist, "remote ",
7454 0 /* allow-unknown */, &cmdlist);
7455
7456 add_cmd ("put", class_files, remote_put_command,
7457 _("Copy a local file to the remote system."),
7458 &remote_cmdlist);
7459
7460 add_cmd ("get", class_files, remote_get_command,
7461 _("Copy a remote file to the local system."),
7462 &remote_cmdlist);
7463
7464 add_cmd ("delete", class_files, remote_delete_command,
7465 _("Delete a remote file."),
7466 &remote_cmdlist);
7467
7468 remote_exec_file = xstrdup ("");
7469 add_setshow_string_noescape_cmd ("exec-file", class_files,
7470 &remote_exec_file, _("\
7471 Set the remote pathname for \"run\""), _("\
7472 Show the remote pathname for \"run\""), NULL, NULL, NULL,
7473 &remote_set_cmdlist, &remote_show_cmdlist);
7474
7475 add_setshow_boolean_cmd ("remote-async", class_maintenance,
7476 &remote_async_permitted_set, _("\
7477 Set whether gdb controls the remote inferior in asynchronous mode."), _("\
7478 Show whether gdb controls the remote inferior in asynchronous mode."), _("\
7479 Tells gdb whether to control the remote inferior in asynchronous mode."),
7480 set_maintenance_remote_async_permitted,
7481 show_maintenance_remote_async_permitted,
7482 &maintenance_set_cmdlist,
7483 &maintenance_show_cmdlist);
7484
7485
7486 /* Eventually initialize fileio. See fileio.c */
7487 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
7488 }