* Makefile.in (mingw-hdep.o, posix-hdep.o, remote-fileio.o): Update.
[binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* See the GDB User Guide for details of the GDB remote protocol. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include <ctype.h>
27 #include <fcntl.h>
28 #include "inferior.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "exceptions.h"
32 #include "target.h"
33 /*#include "terminal.h" */
34 #include "gdbcmd.h"
35 #include "objfiles.h"
36 #include "gdb-stabs.h"
37 #include "gdbthread.h"
38 #include "remote.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "gdb_assert.h"
42 #include "observer.h"
43 #include "solib.h"
44 #include "cli/cli-decode.h"
45 #include "cli/cli-setshow.h"
46 #include "target-descriptions.h"
47
48 #include <ctype.h>
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62
63 #include "memory-map.h"
64
65 /* The size to align memory write packets, when practical. The protocol
66 does not guarantee any alignment, and gdb will generate short
67 writes and unaligned writes, but even as a best-effort attempt this
68 can improve bulk transfers. For instance, if a write is misaligned
69 relative to the target's data bus, the stub may need to make an extra
70 round trip fetching data from the target. This doesn't make a
71 huge difference, but it's easy to do, so we try to be helpful.
72
73 The alignment chosen is arbitrary; usually data bus width is
74 important here, not the possibly larger cache line size. */
75 enum { REMOTE_ALIGN_WRITES = 16 };
76
77 /* Prototypes for local functions. */
78 static void cleanup_sigint_signal_handler (void *dummy);
79 static void initialize_sigint_signal_handler (void);
80 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
81
82 static void handle_remote_sigint (int);
83 static void handle_remote_sigint_twice (int);
84 static void async_remote_interrupt (gdb_client_data);
85 void async_remote_interrupt_twice (gdb_client_data);
86
87 static void remote_files_info (struct target_ops *ignore);
88
89 static void remote_prepare_to_store (struct regcache *regcache);
90
91 static void remote_fetch_registers (struct regcache *regcache, int regno);
92
93 static void remote_resume (ptid_t ptid, int step,
94 enum target_signal siggnal);
95 static void remote_async_resume (ptid_t ptid, int step,
96 enum target_signal siggnal);
97 static void remote_open (char *name, int from_tty);
98 static void remote_async_open (char *name, int from_tty);
99
100 static void extended_remote_open (char *name, int from_tty);
101 static void extended_remote_async_open (char *name, int from_tty);
102
103 static void remote_open_1 (char *, int, struct target_ops *, int extended_p,
104 int async_p);
105
106 static void remote_close (int quitting);
107
108 static void remote_store_registers (struct regcache *regcache, int regno);
109
110 static void remote_mourn (void);
111 static void remote_async_mourn (void);
112
113 static void extended_remote_restart (void);
114
115 static void extended_remote_mourn (void);
116
117 static void remote_mourn_1 (struct target_ops *);
118
119 static void remote_send (char **buf, long *sizeof_buf_p);
120
121 static int readchar (int timeout);
122
123 static ptid_t remote_wait (ptid_t ptid,
124 struct target_waitstatus *status);
125 static ptid_t remote_async_wait (ptid_t ptid,
126 struct target_waitstatus *status);
127
128 static void remote_kill (void);
129 static void remote_async_kill (void);
130
131 static int tohex (int nib);
132
133 static void remote_detach (char *args, int from_tty);
134
135 static void remote_interrupt (int signo);
136
137 static void remote_interrupt_twice (int signo);
138
139 static void interrupt_query (void);
140
141 static void set_thread (int, int);
142
143 static int remote_thread_alive (ptid_t);
144
145 static void get_offsets (void);
146
147 static void skip_frame (void);
148
149 static long read_frame (char **buf_p, long *sizeof_buf);
150
151 static int hexnumlen (ULONGEST num);
152
153 static void init_remote_ops (void);
154
155 static void init_extended_remote_ops (void);
156
157 static void remote_stop (void);
158
159 static int ishex (int ch, int *val);
160
161 static int stubhex (int ch);
162
163 static int hexnumstr (char *, ULONGEST);
164
165 static int hexnumnstr (char *, ULONGEST, int);
166
167 static CORE_ADDR remote_address_masked (CORE_ADDR);
168
169 static void print_packet (char *);
170
171 static unsigned long crc32 (unsigned char *, int, unsigned int);
172
173 static void compare_sections_command (char *, int);
174
175 static void packet_command (char *, int);
176
177 static int stub_unpack_int (char *buff, int fieldlength);
178
179 static ptid_t remote_current_thread (ptid_t oldptid);
180
181 static void remote_find_new_threads (void);
182
183 static void record_currthread (int currthread);
184
185 static int fromhex (int a);
186
187 static int hex2bin (const char *hex, gdb_byte *bin, int count);
188
189 static int bin2hex (const gdb_byte *bin, char *hex, int count);
190
191 static int putpkt_binary (char *buf, int cnt);
192
193 static void check_binary_download (CORE_ADDR addr);
194
195 struct packet_config;
196
197 static void show_packet_config_cmd (struct packet_config *config);
198
199 static void update_packet_config (struct packet_config *config);
200
201 static void set_remote_protocol_packet_cmd (char *args, int from_tty,
202 struct cmd_list_element *c);
203
204 static void show_remote_protocol_packet_cmd (struct ui_file *file,
205 int from_tty,
206 struct cmd_list_element *c,
207 const char *value);
208
209 void _initialize_remote (void);
210
211 /* For "remote". */
212
213 static struct cmd_list_element *remote_cmdlist;
214
215 /* For "set remote" and "show remote". */
216
217 static struct cmd_list_element *remote_set_cmdlist;
218 static struct cmd_list_element *remote_show_cmdlist;
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 struct remote_state
225 {
226 /* A buffer to use for incoming packets, and its current size. The
227 buffer is grown dynamically for larger incoming packets.
228 Outgoing packets may also be constructed in this buffer.
229 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
230 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
231 packets. */
232 char *buf;
233 long buf_size;
234
235 /* If we negotiated packet size explicitly (and thus can bypass
236 heuristics for the largest packet size that will not overflow
237 a buffer in the stub), this will be set to that packet size.
238 Otherwise zero, meaning to use the guessed size. */
239 long explicit_packet_size;
240
241 /* remote_wait is normally called when the target is running and
242 waits for a stop reply packet. But sometimes we need to call it
243 when the target is already stopped. We can send a "?" packet
244 and have remote_wait read the response. Or, if we already have
245 the response, we can stash it in BUF and tell remote_wait to
246 skip calling getpkt. This flag is set when BUF contains a
247 stop reply packet and the target is not waiting. */
248 int cached_wait_status;
249 };
250
251 /* This data could be associated with a target, but we do not always
252 have access to the current target when we need it, so for now it is
253 static. This will be fine for as long as only one target is in use
254 at a time. */
255 static struct remote_state remote_state;
256
257 static struct remote_state *
258 get_remote_state_raw (void)
259 {
260 return &remote_state;
261 }
262
263 /* Description of the remote protocol for a given architecture. */
264
265 struct packet_reg
266 {
267 long offset; /* Offset into G packet. */
268 long regnum; /* GDB's internal register number. */
269 LONGEST pnum; /* Remote protocol register number. */
270 int in_g_packet; /* Always part of G packet. */
271 /* long size in bytes; == register_size (current_gdbarch, regnum);
272 at present. */
273 /* char *name; == gdbarch_register_name (current_gdbarch, regnum);
274 at present. */
275 };
276
277 struct remote_arch_state
278 {
279 /* Description of the remote protocol registers. */
280 long sizeof_g_packet;
281
282 /* Description of the remote protocol registers indexed by REGNUM
283 (making an array gdbarch_num_regs in size). */
284 struct packet_reg *regs;
285
286 /* This is the size (in chars) of the first response to the ``g''
287 packet. It is used as a heuristic when determining the maximum
288 size of memory-read and memory-write packets. A target will
289 typically only reserve a buffer large enough to hold the ``g''
290 packet. The size does not include packet overhead (headers and
291 trailers). */
292 long actual_register_packet_size;
293
294 /* This is the maximum size (in chars) of a non read/write packet.
295 It is also used as a cap on the size of read/write packets. */
296 long remote_packet_size;
297 };
298
299
300 /* Handle for retreving the remote protocol data from gdbarch. */
301 static struct gdbarch_data *remote_gdbarch_data_handle;
302
303 static struct remote_arch_state *
304 get_remote_arch_state (void)
305 {
306 return gdbarch_data (current_gdbarch, remote_gdbarch_data_handle);
307 }
308
309 /* Fetch the global remote target state. */
310
311 static struct remote_state *
312 get_remote_state (void)
313 {
314 /* Make sure that the remote architecture state has been
315 initialized, because doing so might reallocate rs->buf. Any
316 function which calls getpkt also needs to be mindful of changes
317 to rs->buf, but this call limits the number of places which run
318 into trouble. */
319 get_remote_arch_state ();
320
321 return get_remote_state_raw ();
322 }
323
324 static int
325 compare_pnums (const void *lhs_, const void *rhs_)
326 {
327 const struct packet_reg * const *lhs = lhs_;
328 const struct packet_reg * const *rhs = rhs_;
329
330 if ((*lhs)->pnum < (*rhs)->pnum)
331 return -1;
332 else if ((*lhs)->pnum == (*rhs)->pnum)
333 return 0;
334 else
335 return 1;
336 }
337
338 static void *
339 init_remote_state (struct gdbarch *gdbarch)
340 {
341 int regnum, num_remote_regs, offset;
342 struct remote_state *rs = get_remote_state_raw ();
343 struct remote_arch_state *rsa;
344 struct packet_reg **remote_regs;
345
346 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
347
348 /* Use the architecture to build a regnum<->pnum table, which will be
349 1:1 unless a feature set specifies otherwise. */
350 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
351 gdbarch_num_regs (gdbarch),
352 struct packet_reg);
353 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
354 {
355 struct packet_reg *r = &rsa->regs[regnum];
356
357 if (register_size (gdbarch, regnum) == 0)
358 /* Do not try to fetch zero-sized (placeholder) registers. */
359 r->pnum = -1;
360 else
361 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
362
363 r->regnum = regnum;
364 }
365
366 /* Define the g/G packet format as the contents of each register
367 with a remote protocol number, in order of ascending protocol
368 number. */
369
370 remote_regs = alloca (gdbarch_num_regs (gdbarch)
371 * sizeof (struct packet_reg *));
372 for (num_remote_regs = 0, regnum = 0;
373 regnum < gdbarch_num_regs (gdbarch);
374 regnum++)
375 if (rsa->regs[regnum].pnum != -1)
376 remote_regs[num_remote_regs++] = &rsa->regs[regnum];
377
378 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
379 compare_pnums);
380
381 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
382 {
383 remote_regs[regnum]->in_g_packet = 1;
384 remote_regs[regnum]->offset = offset;
385 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
386 }
387
388 /* Record the maximum possible size of the g packet - it may turn out
389 to be smaller. */
390 rsa->sizeof_g_packet = offset;
391
392 /* Default maximum number of characters in a packet body. Many
393 remote stubs have a hardwired buffer size of 400 bytes
394 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
395 as the maximum packet-size to ensure that the packet and an extra
396 NUL character can always fit in the buffer. This stops GDB
397 trashing stubs that try to squeeze an extra NUL into what is
398 already a full buffer (As of 1999-12-04 that was most stubs). */
399 rsa->remote_packet_size = 400 - 1;
400
401 /* This one is filled in when a ``g'' packet is received. */
402 rsa->actual_register_packet_size = 0;
403
404 /* Should rsa->sizeof_g_packet needs more space than the
405 default, adjust the size accordingly. Remember that each byte is
406 encoded as two characters. 32 is the overhead for the packet
407 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
408 (``$NN:G...#NN'') is a better guess, the below has been padded a
409 little. */
410 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
411 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
412
413 /* Make sure that the packet buffer is plenty big enough for
414 this architecture. */
415 if (rs->buf_size < rsa->remote_packet_size)
416 {
417 rs->buf_size = 2 * rsa->remote_packet_size;
418 rs->buf = xrealloc (rs->buf, rs->buf_size);
419 }
420
421 return rsa;
422 }
423
424 /* Return the current allowed size of a remote packet. This is
425 inferred from the current architecture, and should be used to
426 limit the length of outgoing packets. */
427 static long
428 get_remote_packet_size (void)
429 {
430 struct remote_state *rs = get_remote_state ();
431 struct remote_arch_state *rsa = get_remote_arch_state ();
432
433 if (rs->explicit_packet_size)
434 return rs->explicit_packet_size;
435
436 return rsa->remote_packet_size;
437 }
438
439 static struct packet_reg *
440 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
441 {
442 if (regnum < 0 && regnum >= gdbarch_num_regs (current_gdbarch))
443 return NULL;
444 else
445 {
446 struct packet_reg *r = &rsa->regs[regnum];
447 gdb_assert (r->regnum == regnum);
448 return r;
449 }
450 }
451
452 static struct packet_reg *
453 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
454 {
455 int i;
456 for (i = 0; i < gdbarch_num_regs (current_gdbarch); i++)
457 {
458 struct packet_reg *r = &rsa->regs[i];
459 if (r->pnum == pnum)
460 return r;
461 }
462 return NULL;
463 }
464
465 /* FIXME: graces/2002-08-08: These variables should eventually be
466 bound to an instance of the target object (as in gdbarch-tdep()),
467 when such a thing exists. */
468
469 /* This is set to the data address of the access causing the target
470 to stop for a watchpoint. */
471 static CORE_ADDR remote_watch_data_address;
472
473 /* This is non-zero if target stopped for a watchpoint. */
474 static int remote_stopped_by_watchpoint_p;
475
476 static struct target_ops remote_ops;
477
478 static struct target_ops extended_remote_ops;
479
480 /* Temporary target ops. Just like the remote_ops and
481 extended_remote_ops, but with asynchronous support. */
482 static struct target_ops remote_async_ops;
483
484 static struct target_ops extended_async_remote_ops;
485
486 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
487 ``forever'' still use the normal timeout mechanism. This is
488 currently used by the ASYNC code to guarentee that target reads
489 during the initial connect always time-out. Once getpkt has been
490 modified to return a timeout indication and, in turn
491 remote_wait()/wait_for_inferior() have gained a timeout parameter
492 this can go away. */
493 static int wait_forever_enabled_p = 1;
494
495
496 /* This variable chooses whether to send a ^C or a break when the user
497 requests program interruption. Although ^C is usually what remote
498 systems expect, and that is the default here, sometimes a break is
499 preferable instead. */
500
501 static int remote_break;
502
503 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
504 remote_open knows that we don't have a file open when the program
505 starts. */
506 static struct serial *remote_desc = NULL;
507
508 /* This variable sets the number of bits in an address that are to be
509 sent in a memory ("M" or "m") packet. Normally, after stripping
510 leading zeros, the entire address would be sent. This variable
511 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
512 initial implementation of remote.c restricted the address sent in
513 memory packets to ``host::sizeof long'' bytes - (typically 32
514 bits). Consequently, for 64 bit targets, the upper 32 bits of an
515 address was never sent. Since fixing this bug may cause a break in
516 some remote targets this variable is principly provided to
517 facilitate backward compatibility. */
518
519 static int remote_address_size;
520
521 /* Tempoary to track who currently owns the terminal. See
522 target_async_terminal_* for more details. */
523
524 static int remote_async_terminal_ours_p;
525
526 /* The executable file to use for "run" on the remote side. */
527
528 static char *remote_exec_file = "";
529
530 \f
531 /* User configurable variables for the number of characters in a
532 memory read/write packet. MIN (rsa->remote_packet_size,
533 rsa->sizeof_g_packet) is the default. Some targets need smaller
534 values (fifo overruns, et.al.) and some users need larger values
535 (speed up transfers). The variables ``preferred_*'' (the user
536 request), ``current_*'' (what was actually set) and ``forced_*''
537 (Positive - a soft limit, negative - a hard limit). */
538
539 struct memory_packet_config
540 {
541 char *name;
542 long size;
543 int fixed_p;
544 };
545
546 /* Compute the current size of a read/write packet. Since this makes
547 use of ``actual_register_packet_size'' the computation is dynamic. */
548
549 static long
550 get_memory_packet_size (struct memory_packet_config *config)
551 {
552 struct remote_state *rs = get_remote_state ();
553 struct remote_arch_state *rsa = get_remote_arch_state ();
554
555 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
556 law?) that some hosts don't cope very well with large alloca()
557 calls. Eventually the alloca() code will be replaced by calls to
558 xmalloc() and make_cleanups() allowing this restriction to either
559 be lifted or removed. */
560 #ifndef MAX_REMOTE_PACKET_SIZE
561 #define MAX_REMOTE_PACKET_SIZE 16384
562 #endif
563 /* NOTE: 20 ensures we can write at least one byte. */
564 #ifndef MIN_REMOTE_PACKET_SIZE
565 #define MIN_REMOTE_PACKET_SIZE 20
566 #endif
567 long what_they_get;
568 if (config->fixed_p)
569 {
570 if (config->size <= 0)
571 what_they_get = MAX_REMOTE_PACKET_SIZE;
572 else
573 what_they_get = config->size;
574 }
575 else
576 {
577 what_they_get = get_remote_packet_size ();
578 /* Limit the packet to the size specified by the user. */
579 if (config->size > 0
580 && what_they_get > config->size)
581 what_they_get = config->size;
582
583 /* Limit it to the size of the targets ``g'' response unless we have
584 permission from the stub to use a larger packet size. */
585 if (rs->explicit_packet_size == 0
586 && rsa->actual_register_packet_size > 0
587 && what_they_get > rsa->actual_register_packet_size)
588 what_they_get = rsa->actual_register_packet_size;
589 }
590 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
591 what_they_get = MAX_REMOTE_PACKET_SIZE;
592 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
593 what_they_get = MIN_REMOTE_PACKET_SIZE;
594
595 /* Make sure there is room in the global buffer for this packet
596 (including its trailing NUL byte). */
597 if (rs->buf_size < what_they_get + 1)
598 {
599 rs->buf_size = 2 * what_they_get;
600 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
601 }
602
603 return what_they_get;
604 }
605
606 /* Update the size of a read/write packet. If they user wants
607 something really big then do a sanity check. */
608
609 static void
610 set_memory_packet_size (char *args, struct memory_packet_config *config)
611 {
612 int fixed_p = config->fixed_p;
613 long size = config->size;
614 if (args == NULL)
615 error (_("Argument required (integer, `fixed' or `limited')."));
616 else if (strcmp (args, "hard") == 0
617 || strcmp (args, "fixed") == 0)
618 fixed_p = 1;
619 else if (strcmp (args, "soft") == 0
620 || strcmp (args, "limit") == 0)
621 fixed_p = 0;
622 else
623 {
624 char *end;
625 size = strtoul (args, &end, 0);
626 if (args == end)
627 error (_("Invalid %s (bad syntax)."), config->name);
628 #if 0
629 /* Instead of explicitly capping the size of a packet to
630 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
631 instead allowed to set the size to something arbitrarily
632 large. */
633 if (size > MAX_REMOTE_PACKET_SIZE)
634 error (_("Invalid %s (too large)."), config->name);
635 #endif
636 }
637 /* Extra checks? */
638 if (fixed_p && !config->fixed_p)
639 {
640 if (! query (_("The target may not be able to correctly handle a %s\n"
641 "of %ld bytes. Change the packet size? "),
642 config->name, size))
643 error (_("Packet size not changed."));
644 }
645 /* Update the config. */
646 config->fixed_p = fixed_p;
647 config->size = size;
648 }
649
650 static void
651 show_memory_packet_size (struct memory_packet_config *config)
652 {
653 printf_filtered (_("The %s is %ld. "), config->name, config->size);
654 if (config->fixed_p)
655 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
656 get_memory_packet_size (config));
657 else
658 printf_filtered (_("Packets are limited to %ld bytes.\n"),
659 get_memory_packet_size (config));
660 }
661
662 static struct memory_packet_config memory_write_packet_config =
663 {
664 "memory-write-packet-size",
665 };
666
667 static void
668 set_memory_write_packet_size (char *args, int from_tty)
669 {
670 set_memory_packet_size (args, &memory_write_packet_config);
671 }
672
673 static void
674 show_memory_write_packet_size (char *args, int from_tty)
675 {
676 show_memory_packet_size (&memory_write_packet_config);
677 }
678
679 static long
680 get_memory_write_packet_size (void)
681 {
682 return get_memory_packet_size (&memory_write_packet_config);
683 }
684
685 static struct memory_packet_config memory_read_packet_config =
686 {
687 "memory-read-packet-size",
688 };
689
690 static void
691 set_memory_read_packet_size (char *args, int from_tty)
692 {
693 set_memory_packet_size (args, &memory_read_packet_config);
694 }
695
696 static void
697 show_memory_read_packet_size (char *args, int from_tty)
698 {
699 show_memory_packet_size (&memory_read_packet_config);
700 }
701
702 static long
703 get_memory_read_packet_size (void)
704 {
705 long size = get_memory_packet_size (&memory_read_packet_config);
706 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
707 extra buffer size argument before the memory read size can be
708 increased beyond this. */
709 if (size > get_remote_packet_size ())
710 size = get_remote_packet_size ();
711 return size;
712 }
713
714 \f
715 /* Generic configuration support for packets the stub optionally
716 supports. Allows the user to specify the use of the packet as well
717 as allowing GDB to auto-detect support in the remote stub. */
718
719 enum packet_support
720 {
721 PACKET_SUPPORT_UNKNOWN = 0,
722 PACKET_ENABLE,
723 PACKET_DISABLE
724 };
725
726 struct packet_config
727 {
728 const char *name;
729 const char *title;
730 enum auto_boolean detect;
731 enum packet_support support;
732 };
733
734 /* Analyze a packet's return value and update the packet config
735 accordingly. */
736
737 enum packet_result
738 {
739 PACKET_ERROR,
740 PACKET_OK,
741 PACKET_UNKNOWN
742 };
743
744 static void
745 update_packet_config (struct packet_config *config)
746 {
747 switch (config->detect)
748 {
749 case AUTO_BOOLEAN_TRUE:
750 config->support = PACKET_ENABLE;
751 break;
752 case AUTO_BOOLEAN_FALSE:
753 config->support = PACKET_DISABLE;
754 break;
755 case AUTO_BOOLEAN_AUTO:
756 config->support = PACKET_SUPPORT_UNKNOWN;
757 break;
758 }
759 }
760
761 static void
762 show_packet_config_cmd (struct packet_config *config)
763 {
764 char *support = "internal-error";
765 switch (config->support)
766 {
767 case PACKET_ENABLE:
768 support = "enabled";
769 break;
770 case PACKET_DISABLE:
771 support = "disabled";
772 break;
773 case PACKET_SUPPORT_UNKNOWN:
774 support = "unknown";
775 break;
776 }
777 switch (config->detect)
778 {
779 case AUTO_BOOLEAN_AUTO:
780 printf_filtered (_("Support for the `%s' packet is auto-detected, currently %s.\n"),
781 config->name, support);
782 break;
783 case AUTO_BOOLEAN_TRUE:
784 case AUTO_BOOLEAN_FALSE:
785 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
786 config->name, support);
787 break;
788 }
789 }
790
791 static void
792 add_packet_config_cmd (struct packet_config *config, const char *name,
793 const char *title, int legacy)
794 {
795 char *set_doc;
796 char *show_doc;
797 char *cmd_name;
798
799 config->name = name;
800 config->title = title;
801 config->detect = AUTO_BOOLEAN_AUTO;
802 config->support = PACKET_SUPPORT_UNKNOWN;
803 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
804 name, title);
805 show_doc = xstrprintf ("Show current use of remote protocol `%s' (%s) packet",
806 name, title);
807 /* set/show TITLE-packet {auto,on,off} */
808 cmd_name = xstrprintf ("%s-packet", title);
809 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
810 &config->detect, set_doc, show_doc, NULL, /* help_doc */
811 set_remote_protocol_packet_cmd,
812 show_remote_protocol_packet_cmd,
813 &remote_set_cmdlist, &remote_show_cmdlist);
814 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
815 if (legacy)
816 {
817 char *legacy_name;
818 legacy_name = xstrprintf ("%s-packet", name);
819 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
820 &remote_set_cmdlist);
821 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
822 &remote_show_cmdlist);
823 }
824 }
825
826 static enum packet_result
827 packet_check_result (const char *buf)
828 {
829 if (buf[0] != '\0')
830 {
831 /* The stub recognized the packet request. Check that the
832 operation succeeded. */
833 if (buf[0] == 'E'
834 && isxdigit (buf[1]) && isxdigit (buf[2])
835 && buf[3] == '\0')
836 /* "Enn" - definitly an error. */
837 return PACKET_ERROR;
838
839 /* Always treat "E." as an error. This will be used for
840 more verbose error messages, such as E.memtypes. */
841 if (buf[0] == 'E' && buf[1] == '.')
842 return PACKET_ERROR;
843
844 /* The packet may or may not be OK. Just assume it is. */
845 return PACKET_OK;
846 }
847 else
848 /* The stub does not support the packet. */
849 return PACKET_UNKNOWN;
850 }
851
852 static enum packet_result
853 packet_ok (const char *buf, struct packet_config *config)
854 {
855 enum packet_result result;
856
857 result = packet_check_result (buf);
858 switch (result)
859 {
860 case PACKET_OK:
861 case PACKET_ERROR:
862 /* The stub recognized the packet request. */
863 switch (config->support)
864 {
865 case PACKET_SUPPORT_UNKNOWN:
866 if (remote_debug)
867 fprintf_unfiltered (gdb_stdlog,
868 "Packet %s (%s) is supported\n",
869 config->name, config->title);
870 config->support = PACKET_ENABLE;
871 break;
872 case PACKET_DISABLE:
873 internal_error (__FILE__, __LINE__,
874 _("packet_ok: attempt to use a disabled packet"));
875 break;
876 case PACKET_ENABLE:
877 break;
878 }
879 break;
880 case PACKET_UNKNOWN:
881 /* The stub does not support the packet. */
882 switch (config->support)
883 {
884 case PACKET_ENABLE:
885 if (config->detect == AUTO_BOOLEAN_AUTO)
886 /* If the stub previously indicated that the packet was
887 supported then there is a protocol error.. */
888 error (_("Protocol error: %s (%s) conflicting enabled responses."),
889 config->name, config->title);
890 else
891 /* The user set it wrong. */
892 error (_("Enabled packet %s (%s) not recognized by stub"),
893 config->name, config->title);
894 break;
895 case PACKET_SUPPORT_UNKNOWN:
896 if (remote_debug)
897 fprintf_unfiltered (gdb_stdlog,
898 "Packet %s (%s) is NOT supported\n",
899 config->name, config->title);
900 config->support = PACKET_DISABLE;
901 break;
902 case PACKET_DISABLE:
903 break;
904 }
905 break;
906 }
907
908 return result;
909 }
910
911 enum {
912 PACKET_vCont = 0,
913 PACKET_X,
914 PACKET_qSymbol,
915 PACKET_P,
916 PACKET_p,
917 PACKET_Z0,
918 PACKET_Z1,
919 PACKET_Z2,
920 PACKET_Z3,
921 PACKET_Z4,
922 PACKET_vFile_open,
923 PACKET_vFile_pread,
924 PACKET_vFile_pwrite,
925 PACKET_vFile_close,
926 PACKET_vFile_unlink,
927 PACKET_qXfer_auxv,
928 PACKET_qXfer_features,
929 PACKET_qXfer_libraries,
930 PACKET_qXfer_memory_map,
931 PACKET_qXfer_spu_read,
932 PACKET_qXfer_spu_write,
933 PACKET_qGetTLSAddr,
934 PACKET_qSupported,
935 PACKET_QPassSignals,
936 PACKET_vAttach,
937 PACKET_vRun,
938 PACKET_MAX
939 };
940
941 static struct packet_config remote_protocol_packets[PACKET_MAX];
942
943 static void
944 set_remote_protocol_packet_cmd (char *args, int from_tty,
945 struct cmd_list_element *c)
946 {
947 struct packet_config *packet;
948
949 for (packet = remote_protocol_packets;
950 packet < &remote_protocol_packets[PACKET_MAX];
951 packet++)
952 {
953 if (&packet->detect == c->var)
954 {
955 update_packet_config (packet);
956 return;
957 }
958 }
959 internal_error (__FILE__, __LINE__, "Could not find config for %s",
960 c->name);
961 }
962
963 static void
964 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
965 struct cmd_list_element *c,
966 const char *value)
967 {
968 struct packet_config *packet;
969
970 for (packet = remote_protocol_packets;
971 packet < &remote_protocol_packets[PACKET_MAX];
972 packet++)
973 {
974 if (&packet->detect == c->var)
975 {
976 show_packet_config_cmd (packet);
977 return;
978 }
979 }
980 internal_error (__FILE__, __LINE__, "Could not find config for %s",
981 c->name);
982 }
983
984 /* Should we try one of the 'Z' requests? */
985
986 enum Z_packet_type
987 {
988 Z_PACKET_SOFTWARE_BP,
989 Z_PACKET_HARDWARE_BP,
990 Z_PACKET_WRITE_WP,
991 Z_PACKET_READ_WP,
992 Z_PACKET_ACCESS_WP,
993 NR_Z_PACKET_TYPES
994 };
995
996 /* For compatibility with older distributions. Provide a ``set remote
997 Z-packet ...'' command that updates all the Z packet types. */
998
999 static enum auto_boolean remote_Z_packet_detect;
1000
1001 static void
1002 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1003 struct cmd_list_element *c)
1004 {
1005 int i;
1006 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1007 {
1008 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1009 update_packet_config (&remote_protocol_packets[PACKET_Z0 + i]);
1010 }
1011 }
1012
1013 static void
1014 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1015 struct cmd_list_element *c,
1016 const char *value)
1017 {
1018 int i;
1019 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1020 {
1021 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1022 }
1023 }
1024
1025 /* Should we try the 'ThreadInfo' query packet?
1026
1027 This variable (NOT available to the user: auto-detect only!)
1028 determines whether GDB will use the new, simpler "ThreadInfo"
1029 query or the older, more complex syntax for thread queries.
1030 This is an auto-detect variable (set to true at each connect,
1031 and set to false when the target fails to recognize it). */
1032
1033 static int use_threadinfo_query;
1034 static int use_threadextra_query;
1035
1036 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1037 static struct async_signal_handler *sigint_remote_twice_token;
1038 static struct async_signal_handler *sigint_remote_token;
1039
1040 /* These are pointers to hook functions that may be set in order to
1041 modify resume/wait behavior for a particular architecture. */
1042
1043 void (*deprecated_target_resume_hook) (void);
1044 void (*deprecated_target_wait_loop_hook) (void);
1045 \f
1046
1047
1048 /* These are the threads which we last sent to the remote system.
1049 -1 for all or -2 for not sent yet. */
1050 static int general_thread;
1051 static int continue_thread;
1052
1053 /* Call this function as a result of
1054 1) A halt indication (T packet) containing a thread id
1055 2) A direct query of currthread
1056 3) Successful execution of set thread
1057 */
1058
1059 static void
1060 record_currthread (int currthread)
1061 {
1062 general_thread = currthread;
1063
1064 /* If this is a new thread, add it to GDB's thread list.
1065 If we leave it up to WFI to do this, bad things will happen. */
1066 if (!in_thread_list (pid_to_ptid (currthread)))
1067 add_thread (pid_to_ptid (currthread));
1068 }
1069
1070 static char *last_pass_packet;
1071
1072 /* If 'QPassSignals' is supported, tell the remote stub what signals
1073 it can simply pass through to the inferior without reporting. */
1074
1075 static void
1076 remote_pass_signals (void)
1077 {
1078 if (remote_protocol_packets[PACKET_QPassSignals].support != PACKET_DISABLE)
1079 {
1080 char *pass_packet, *p;
1081 int numsigs = (int) TARGET_SIGNAL_LAST;
1082 int count = 0, i;
1083
1084 gdb_assert (numsigs < 256);
1085 for (i = 0; i < numsigs; i++)
1086 {
1087 if (signal_stop_state (i) == 0
1088 && signal_print_state (i) == 0
1089 && signal_pass_state (i) == 1)
1090 count++;
1091 }
1092 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1093 strcpy (pass_packet, "QPassSignals:");
1094 p = pass_packet + strlen (pass_packet);
1095 for (i = 0; i < numsigs; i++)
1096 {
1097 if (signal_stop_state (i) == 0
1098 && signal_print_state (i) == 0
1099 && signal_pass_state (i) == 1)
1100 {
1101 if (i >= 16)
1102 *p++ = tohex (i >> 4);
1103 *p++ = tohex (i & 15);
1104 if (count)
1105 *p++ = ';';
1106 else
1107 break;
1108 count--;
1109 }
1110 }
1111 *p = 0;
1112 if (!last_pass_packet || strcmp (last_pass_packet, pass_packet))
1113 {
1114 struct remote_state *rs = get_remote_state ();
1115 char *buf = rs->buf;
1116
1117 putpkt (pass_packet);
1118 getpkt (&rs->buf, &rs->buf_size, 0);
1119 packet_ok (buf, &remote_protocol_packets[PACKET_QPassSignals]);
1120 if (last_pass_packet)
1121 xfree (last_pass_packet);
1122 last_pass_packet = pass_packet;
1123 }
1124 else
1125 xfree (pass_packet);
1126 }
1127 }
1128
1129 #define MAGIC_NULL_PID 42000
1130
1131 static void
1132 set_thread (int th, int gen)
1133 {
1134 struct remote_state *rs = get_remote_state ();
1135 char *buf = rs->buf;
1136 int state = gen ? general_thread : continue_thread;
1137
1138 if (state == th)
1139 return;
1140
1141 buf[0] = 'H';
1142 buf[1] = gen ? 'g' : 'c';
1143 if (th == MAGIC_NULL_PID)
1144 {
1145 buf[2] = '0';
1146 buf[3] = '\0';
1147 }
1148 else if (th < 0)
1149 xsnprintf (&buf[2], get_remote_packet_size () - 2, "-%x", -th);
1150 else
1151 xsnprintf (&buf[2], get_remote_packet_size () - 2, "%x", th);
1152 putpkt (buf);
1153 getpkt (&rs->buf, &rs->buf_size, 0);
1154 if (gen)
1155 general_thread = th;
1156 else
1157 continue_thread = th;
1158 }
1159 \f
1160 /* Return nonzero if the thread TH is still alive on the remote system. */
1161
1162 static int
1163 remote_thread_alive (ptid_t ptid)
1164 {
1165 struct remote_state *rs = get_remote_state ();
1166 int tid = PIDGET (ptid);
1167
1168 if (tid < 0)
1169 xsnprintf (rs->buf, get_remote_packet_size (), "T-%08x", -tid);
1170 else
1171 xsnprintf (rs->buf, get_remote_packet_size (), "T%08x", tid);
1172 putpkt (rs->buf);
1173 getpkt (&rs->buf, &rs->buf_size, 0);
1174 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
1175 }
1176
1177 /* About these extended threadlist and threadinfo packets. They are
1178 variable length packets but, the fields within them are often fixed
1179 length. They are redundent enough to send over UDP as is the
1180 remote protocol in general. There is a matching unit test module
1181 in libstub. */
1182
1183 #define OPAQUETHREADBYTES 8
1184
1185 /* a 64 bit opaque identifier */
1186 typedef unsigned char threadref[OPAQUETHREADBYTES];
1187
1188 /* WARNING: This threadref data structure comes from the remote O.S.,
1189 libstub protocol encoding, and remote.c. it is not particularly
1190 changable. */
1191
1192 /* Right now, the internal structure is int. We want it to be bigger.
1193 Plan to fix this.
1194 */
1195
1196 typedef int gdb_threadref; /* Internal GDB thread reference. */
1197
1198 /* gdb_ext_thread_info is an internal GDB data structure which is
1199 equivalent to the reply of the remote threadinfo packet. */
1200
1201 struct gdb_ext_thread_info
1202 {
1203 threadref threadid; /* External form of thread reference. */
1204 int active; /* Has state interesting to GDB?
1205 regs, stack. */
1206 char display[256]; /* Brief state display, name,
1207 blocked/suspended. */
1208 char shortname[32]; /* To be used to name threads. */
1209 char more_display[256]; /* Long info, statistics, queue depth,
1210 whatever. */
1211 };
1212
1213 /* The volume of remote transfers can be limited by submitting
1214 a mask containing bits specifying the desired information.
1215 Use a union of these values as the 'selection' parameter to
1216 get_thread_info. FIXME: Make these TAG names more thread specific.
1217 */
1218
1219 #define TAG_THREADID 1
1220 #define TAG_EXISTS 2
1221 #define TAG_DISPLAY 4
1222 #define TAG_THREADNAME 8
1223 #define TAG_MOREDISPLAY 16
1224
1225 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
1226
1227 char *unpack_varlen_hex (char *buff, ULONGEST *result);
1228
1229 static char *unpack_nibble (char *buf, int *val);
1230
1231 static char *pack_nibble (char *buf, int nibble);
1232
1233 static char *pack_hex_byte (char *pkt, int /* unsigned char */ byte);
1234
1235 static char *unpack_byte (char *buf, int *value);
1236
1237 static char *pack_int (char *buf, int value);
1238
1239 static char *unpack_int (char *buf, int *value);
1240
1241 static char *unpack_string (char *src, char *dest, int length);
1242
1243 static char *pack_threadid (char *pkt, threadref *id);
1244
1245 static char *unpack_threadid (char *inbuf, threadref *id);
1246
1247 void int_to_threadref (threadref *id, int value);
1248
1249 static int threadref_to_int (threadref *ref);
1250
1251 static void copy_threadref (threadref *dest, threadref *src);
1252
1253 static int threadmatch (threadref *dest, threadref *src);
1254
1255 static char *pack_threadinfo_request (char *pkt, int mode,
1256 threadref *id);
1257
1258 static int remote_unpack_thread_info_response (char *pkt,
1259 threadref *expectedref,
1260 struct gdb_ext_thread_info
1261 *info);
1262
1263
1264 static int remote_get_threadinfo (threadref *threadid,
1265 int fieldset, /*TAG mask */
1266 struct gdb_ext_thread_info *info);
1267
1268 static char *pack_threadlist_request (char *pkt, int startflag,
1269 int threadcount,
1270 threadref *nextthread);
1271
1272 static int parse_threadlist_response (char *pkt,
1273 int result_limit,
1274 threadref *original_echo,
1275 threadref *resultlist,
1276 int *doneflag);
1277
1278 static int remote_get_threadlist (int startflag,
1279 threadref *nextthread,
1280 int result_limit,
1281 int *done,
1282 int *result_count,
1283 threadref *threadlist);
1284
1285 typedef int (*rmt_thread_action) (threadref *ref, void *context);
1286
1287 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
1288 void *context, int looplimit);
1289
1290 static int remote_newthread_step (threadref *ref, void *context);
1291
1292 /* Encode 64 bits in 16 chars of hex. */
1293
1294 static const char hexchars[] = "0123456789abcdef";
1295
1296 static int
1297 ishex (int ch, int *val)
1298 {
1299 if ((ch >= 'a') && (ch <= 'f'))
1300 {
1301 *val = ch - 'a' + 10;
1302 return 1;
1303 }
1304 if ((ch >= 'A') && (ch <= 'F'))
1305 {
1306 *val = ch - 'A' + 10;
1307 return 1;
1308 }
1309 if ((ch >= '0') && (ch <= '9'))
1310 {
1311 *val = ch - '0';
1312 return 1;
1313 }
1314 return 0;
1315 }
1316
1317 static int
1318 stubhex (int ch)
1319 {
1320 if (ch >= 'a' && ch <= 'f')
1321 return ch - 'a' + 10;
1322 if (ch >= '0' && ch <= '9')
1323 return ch - '0';
1324 if (ch >= 'A' && ch <= 'F')
1325 return ch - 'A' + 10;
1326 return -1;
1327 }
1328
1329 static int
1330 stub_unpack_int (char *buff, int fieldlength)
1331 {
1332 int nibble;
1333 int retval = 0;
1334
1335 while (fieldlength)
1336 {
1337 nibble = stubhex (*buff++);
1338 retval |= nibble;
1339 fieldlength--;
1340 if (fieldlength)
1341 retval = retval << 4;
1342 }
1343 return retval;
1344 }
1345
1346 char *
1347 unpack_varlen_hex (char *buff, /* packet to parse */
1348 ULONGEST *result)
1349 {
1350 int nibble;
1351 ULONGEST retval = 0;
1352
1353 while (ishex (*buff, &nibble))
1354 {
1355 buff++;
1356 retval = retval << 4;
1357 retval |= nibble & 0x0f;
1358 }
1359 *result = retval;
1360 return buff;
1361 }
1362
1363 static char *
1364 unpack_nibble (char *buf, int *val)
1365 {
1366 *val = fromhex (*buf++);
1367 return buf;
1368 }
1369
1370 static char *
1371 pack_nibble (char *buf, int nibble)
1372 {
1373 *buf++ = hexchars[(nibble & 0x0f)];
1374 return buf;
1375 }
1376
1377 static char *
1378 pack_hex_byte (char *pkt, int byte)
1379 {
1380 *pkt++ = hexchars[(byte >> 4) & 0xf];
1381 *pkt++ = hexchars[(byte & 0xf)];
1382 return pkt;
1383 }
1384
1385 static char *
1386 unpack_byte (char *buf, int *value)
1387 {
1388 *value = stub_unpack_int (buf, 2);
1389 return buf + 2;
1390 }
1391
1392 static char *
1393 pack_int (char *buf, int value)
1394 {
1395 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
1396 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
1397 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
1398 buf = pack_hex_byte (buf, (value & 0xff));
1399 return buf;
1400 }
1401
1402 static char *
1403 unpack_int (char *buf, int *value)
1404 {
1405 *value = stub_unpack_int (buf, 8);
1406 return buf + 8;
1407 }
1408
1409 #if 0 /* Currently unused, uncomment when needed. */
1410 static char *pack_string (char *pkt, char *string);
1411
1412 static char *
1413 pack_string (char *pkt, char *string)
1414 {
1415 char ch;
1416 int len;
1417
1418 len = strlen (string);
1419 if (len > 200)
1420 len = 200; /* Bigger than most GDB packets, junk??? */
1421 pkt = pack_hex_byte (pkt, len);
1422 while (len-- > 0)
1423 {
1424 ch = *string++;
1425 if ((ch == '\0') || (ch == '#'))
1426 ch = '*'; /* Protect encapsulation. */
1427 *pkt++ = ch;
1428 }
1429 return pkt;
1430 }
1431 #endif /* 0 (unused) */
1432
1433 static char *
1434 unpack_string (char *src, char *dest, int length)
1435 {
1436 while (length--)
1437 *dest++ = *src++;
1438 *dest = '\0';
1439 return src;
1440 }
1441
1442 static char *
1443 pack_threadid (char *pkt, threadref *id)
1444 {
1445 char *limit;
1446 unsigned char *altid;
1447
1448 altid = (unsigned char *) id;
1449 limit = pkt + BUF_THREAD_ID_SIZE;
1450 while (pkt < limit)
1451 pkt = pack_hex_byte (pkt, *altid++);
1452 return pkt;
1453 }
1454
1455
1456 static char *
1457 unpack_threadid (char *inbuf, threadref *id)
1458 {
1459 char *altref;
1460 char *limit = inbuf + BUF_THREAD_ID_SIZE;
1461 int x, y;
1462
1463 altref = (char *) id;
1464
1465 while (inbuf < limit)
1466 {
1467 x = stubhex (*inbuf++);
1468 y = stubhex (*inbuf++);
1469 *altref++ = (x << 4) | y;
1470 }
1471 return inbuf;
1472 }
1473
1474 /* Externally, threadrefs are 64 bits but internally, they are still
1475 ints. This is due to a mismatch of specifications. We would like
1476 to use 64bit thread references internally. This is an adapter
1477 function. */
1478
1479 void
1480 int_to_threadref (threadref *id, int value)
1481 {
1482 unsigned char *scan;
1483
1484 scan = (unsigned char *) id;
1485 {
1486 int i = 4;
1487 while (i--)
1488 *scan++ = 0;
1489 }
1490 *scan++ = (value >> 24) & 0xff;
1491 *scan++ = (value >> 16) & 0xff;
1492 *scan++ = (value >> 8) & 0xff;
1493 *scan++ = (value & 0xff);
1494 }
1495
1496 static int
1497 threadref_to_int (threadref *ref)
1498 {
1499 int i, value = 0;
1500 unsigned char *scan;
1501
1502 scan = *ref;
1503 scan += 4;
1504 i = 4;
1505 while (i-- > 0)
1506 value = (value << 8) | ((*scan++) & 0xff);
1507 return value;
1508 }
1509
1510 static void
1511 copy_threadref (threadref *dest, threadref *src)
1512 {
1513 int i;
1514 unsigned char *csrc, *cdest;
1515
1516 csrc = (unsigned char *) src;
1517 cdest = (unsigned char *) dest;
1518 i = 8;
1519 while (i--)
1520 *cdest++ = *csrc++;
1521 }
1522
1523 static int
1524 threadmatch (threadref *dest, threadref *src)
1525 {
1526 /* Things are broken right now, so just assume we got a match. */
1527 #if 0
1528 unsigned char *srcp, *destp;
1529 int i, result;
1530 srcp = (char *) src;
1531 destp = (char *) dest;
1532
1533 result = 1;
1534 while (i-- > 0)
1535 result &= (*srcp++ == *destp++) ? 1 : 0;
1536 return result;
1537 #endif
1538 return 1;
1539 }
1540
1541 /*
1542 threadid:1, # always request threadid
1543 context_exists:2,
1544 display:4,
1545 unique_name:8,
1546 more_display:16
1547 */
1548
1549 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
1550
1551 static char *
1552 pack_threadinfo_request (char *pkt, int mode, threadref *id)
1553 {
1554 *pkt++ = 'q'; /* Info Query */
1555 *pkt++ = 'P'; /* process or thread info */
1556 pkt = pack_int (pkt, mode); /* mode */
1557 pkt = pack_threadid (pkt, id); /* threadid */
1558 *pkt = '\0'; /* terminate */
1559 return pkt;
1560 }
1561
1562 /* These values tag the fields in a thread info response packet. */
1563 /* Tagging the fields allows us to request specific fields and to
1564 add more fields as time goes by. */
1565
1566 #define TAG_THREADID 1 /* Echo the thread identifier. */
1567 #define TAG_EXISTS 2 /* Is this process defined enough to
1568 fetch registers and its stack? */
1569 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
1570 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
1571 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
1572 the process. */
1573
1574 static int
1575 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
1576 struct gdb_ext_thread_info *info)
1577 {
1578 struct remote_state *rs = get_remote_state ();
1579 int mask, length;
1580 int tag;
1581 threadref ref;
1582 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
1583 int retval = 1;
1584
1585 /* info->threadid = 0; FIXME: implement zero_threadref. */
1586 info->active = 0;
1587 info->display[0] = '\0';
1588 info->shortname[0] = '\0';
1589 info->more_display[0] = '\0';
1590
1591 /* Assume the characters indicating the packet type have been
1592 stripped. */
1593 pkt = unpack_int (pkt, &mask); /* arg mask */
1594 pkt = unpack_threadid (pkt, &ref);
1595
1596 if (mask == 0)
1597 warning (_("Incomplete response to threadinfo request."));
1598 if (!threadmatch (&ref, expectedref))
1599 { /* This is an answer to a different request. */
1600 warning (_("ERROR RMT Thread info mismatch."));
1601 return 0;
1602 }
1603 copy_threadref (&info->threadid, &ref);
1604
1605 /* Loop on tagged fields , try to bail if somthing goes wrong. */
1606
1607 /* Packets are terminated with nulls. */
1608 while ((pkt < limit) && mask && *pkt)
1609 {
1610 pkt = unpack_int (pkt, &tag); /* tag */
1611 pkt = unpack_byte (pkt, &length); /* length */
1612 if (!(tag & mask)) /* Tags out of synch with mask. */
1613 {
1614 warning (_("ERROR RMT: threadinfo tag mismatch."));
1615 retval = 0;
1616 break;
1617 }
1618 if (tag == TAG_THREADID)
1619 {
1620 if (length != 16)
1621 {
1622 warning (_("ERROR RMT: length of threadid is not 16."));
1623 retval = 0;
1624 break;
1625 }
1626 pkt = unpack_threadid (pkt, &ref);
1627 mask = mask & ~TAG_THREADID;
1628 continue;
1629 }
1630 if (tag == TAG_EXISTS)
1631 {
1632 info->active = stub_unpack_int (pkt, length);
1633 pkt += length;
1634 mask = mask & ~(TAG_EXISTS);
1635 if (length > 8)
1636 {
1637 warning (_("ERROR RMT: 'exists' length too long."));
1638 retval = 0;
1639 break;
1640 }
1641 continue;
1642 }
1643 if (tag == TAG_THREADNAME)
1644 {
1645 pkt = unpack_string (pkt, &info->shortname[0], length);
1646 mask = mask & ~TAG_THREADNAME;
1647 continue;
1648 }
1649 if (tag == TAG_DISPLAY)
1650 {
1651 pkt = unpack_string (pkt, &info->display[0], length);
1652 mask = mask & ~TAG_DISPLAY;
1653 continue;
1654 }
1655 if (tag == TAG_MOREDISPLAY)
1656 {
1657 pkt = unpack_string (pkt, &info->more_display[0], length);
1658 mask = mask & ~TAG_MOREDISPLAY;
1659 continue;
1660 }
1661 warning (_("ERROR RMT: unknown thread info tag."));
1662 break; /* Not a tag we know about. */
1663 }
1664 return retval;
1665 }
1666
1667 static int
1668 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
1669 struct gdb_ext_thread_info *info)
1670 {
1671 struct remote_state *rs = get_remote_state ();
1672 int result;
1673
1674 pack_threadinfo_request (rs->buf, fieldset, threadid);
1675 putpkt (rs->buf);
1676 getpkt (&rs->buf, &rs->buf_size, 0);
1677 result = remote_unpack_thread_info_response (rs->buf + 2,
1678 threadid, info);
1679 return result;
1680 }
1681
1682 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
1683
1684 static char *
1685 pack_threadlist_request (char *pkt, int startflag, int threadcount,
1686 threadref *nextthread)
1687 {
1688 *pkt++ = 'q'; /* info query packet */
1689 *pkt++ = 'L'; /* Process LIST or threadLIST request */
1690 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
1691 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
1692 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
1693 *pkt = '\0';
1694 return pkt;
1695 }
1696
1697 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
1698
1699 static int
1700 parse_threadlist_response (char *pkt, int result_limit,
1701 threadref *original_echo, threadref *resultlist,
1702 int *doneflag)
1703 {
1704 struct remote_state *rs = get_remote_state ();
1705 char *limit;
1706 int count, resultcount, done;
1707
1708 resultcount = 0;
1709 /* Assume the 'q' and 'M chars have been stripped. */
1710 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
1711 /* done parse past here */
1712 pkt = unpack_byte (pkt, &count); /* count field */
1713 pkt = unpack_nibble (pkt, &done);
1714 /* The first threadid is the argument threadid. */
1715 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
1716 while ((count-- > 0) && (pkt < limit))
1717 {
1718 pkt = unpack_threadid (pkt, resultlist++);
1719 if (resultcount++ >= result_limit)
1720 break;
1721 }
1722 if (doneflag)
1723 *doneflag = done;
1724 return resultcount;
1725 }
1726
1727 static int
1728 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
1729 int *done, int *result_count, threadref *threadlist)
1730 {
1731 struct remote_state *rs = get_remote_state ();
1732 static threadref echo_nextthread;
1733 int result = 1;
1734
1735 /* Trancate result limit to be smaller than the packet size. */
1736 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10) >= get_remote_packet_size ())
1737 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
1738
1739 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
1740 putpkt (rs->buf);
1741 getpkt (&rs->buf, &rs->buf_size, 0);
1742
1743 if (*rs->buf == '\0')
1744 *result_count = 0;
1745 else
1746 *result_count =
1747 parse_threadlist_response (rs->buf + 2, result_limit, &echo_nextthread,
1748 threadlist, done);
1749
1750 if (!threadmatch (&echo_nextthread, nextthread))
1751 {
1752 /* FIXME: This is a good reason to drop the packet. */
1753 /* Possably, there is a duplicate response. */
1754 /* Possabilities :
1755 retransmit immediatly - race conditions
1756 retransmit after timeout - yes
1757 exit
1758 wait for packet, then exit
1759 */
1760 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
1761 return 0; /* I choose simply exiting. */
1762 }
1763 if (*result_count <= 0)
1764 {
1765 if (*done != 1)
1766 {
1767 warning (_("RMT ERROR : failed to get remote thread list."));
1768 result = 0;
1769 }
1770 return result; /* break; */
1771 }
1772 if (*result_count > result_limit)
1773 {
1774 *result_count = 0;
1775 warning (_("RMT ERROR: threadlist response longer than requested."));
1776 return 0;
1777 }
1778 return result;
1779 }
1780
1781 /* This is the interface between remote and threads, remotes upper
1782 interface. */
1783
1784 /* remote_find_new_threads retrieves the thread list and for each
1785 thread in the list, looks up the thread in GDB's internal list,
1786 ading the thread if it does not already exist. This involves
1787 getting partial thread lists from the remote target so, polling the
1788 quit_flag is required. */
1789
1790
1791 /* About this many threadisds fit in a packet. */
1792
1793 #define MAXTHREADLISTRESULTS 32
1794
1795 static int
1796 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
1797 int looplimit)
1798 {
1799 int done, i, result_count;
1800 int startflag = 1;
1801 int result = 1;
1802 int loopcount = 0;
1803 static threadref nextthread;
1804 static threadref resultthreadlist[MAXTHREADLISTRESULTS];
1805
1806 done = 0;
1807 while (!done)
1808 {
1809 if (loopcount++ > looplimit)
1810 {
1811 result = 0;
1812 warning (_("Remote fetch threadlist -infinite loop-."));
1813 break;
1814 }
1815 if (!remote_get_threadlist (startflag, &nextthread, MAXTHREADLISTRESULTS,
1816 &done, &result_count, resultthreadlist))
1817 {
1818 result = 0;
1819 break;
1820 }
1821 /* Clear for later iterations. */
1822 startflag = 0;
1823 /* Setup to resume next batch of thread references, set nextthread. */
1824 if (result_count >= 1)
1825 copy_threadref (&nextthread, &resultthreadlist[result_count - 1]);
1826 i = 0;
1827 while (result_count--)
1828 if (!(result = (*stepfunction) (&resultthreadlist[i++], context)))
1829 break;
1830 }
1831 return result;
1832 }
1833
1834 static int
1835 remote_newthread_step (threadref *ref, void *context)
1836 {
1837 ptid_t ptid;
1838
1839 ptid = pid_to_ptid (threadref_to_int (ref));
1840
1841 if (!in_thread_list (ptid))
1842 add_thread (ptid);
1843 return 1; /* continue iterator */
1844 }
1845
1846 #define CRAZY_MAX_THREADS 1000
1847
1848 static ptid_t
1849 remote_current_thread (ptid_t oldpid)
1850 {
1851 struct remote_state *rs = get_remote_state ();
1852
1853 putpkt ("qC");
1854 getpkt (&rs->buf, &rs->buf_size, 0);
1855 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
1856 /* Use strtoul here, so we'll correctly parse values whose highest
1857 bit is set. The protocol carries them as a simple series of
1858 hex digits; in the absence of a sign, strtol will see such
1859 values as positive numbers out of range for signed 'long', and
1860 return LONG_MAX to indicate an overflow. */
1861 return pid_to_ptid (strtoul (&rs->buf[2], NULL, 16));
1862 else
1863 return oldpid;
1864 }
1865
1866 /* Find new threads for info threads command.
1867 * Original version, using John Metzler's thread protocol.
1868 */
1869
1870 static void
1871 remote_find_new_threads (void)
1872 {
1873 remote_threadlist_iterator (remote_newthread_step, 0,
1874 CRAZY_MAX_THREADS);
1875 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID) /* ack ack ack */
1876 inferior_ptid = remote_current_thread (inferior_ptid);
1877 }
1878
1879 /*
1880 * Find all threads for info threads command.
1881 * Uses new thread protocol contributed by Cisco.
1882 * Falls back and attempts to use the older method (above)
1883 * if the target doesn't respond to the new method.
1884 */
1885
1886 static void
1887 remote_threads_info (void)
1888 {
1889 struct remote_state *rs = get_remote_state ();
1890 char *bufp;
1891 int tid;
1892
1893 if (remote_desc == 0) /* paranoia */
1894 error (_("Command can only be used when connected to the remote target."));
1895
1896 if (use_threadinfo_query)
1897 {
1898 putpkt ("qfThreadInfo");
1899 getpkt (&rs->buf, &rs->buf_size, 0);
1900 bufp = rs->buf;
1901 if (bufp[0] != '\0') /* q packet recognized */
1902 {
1903 while (*bufp++ == 'm') /* reply contains one or more TID */
1904 {
1905 do
1906 {
1907 /* Use strtoul here, so we'll correctly parse values
1908 whose highest bit is set. The protocol carries
1909 them as a simple series of hex digits; in the
1910 absence of a sign, strtol will see such values as
1911 positive numbers out of range for signed 'long',
1912 and return LONG_MAX to indicate an overflow. */
1913 tid = strtoul (bufp, &bufp, 16);
1914 if (tid != 0 && !in_thread_list (pid_to_ptid (tid)))
1915 add_thread (pid_to_ptid (tid));
1916 }
1917 while (*bufp++ == ','); /* comma-separated list */
1918 putpkt ("qsThreadInfo");
1919 getpkt (&rs->buf, &rs->buf_size, 0);
1920 bufp = rs->buf;
1921 }
1922 return; /* done */
1923 }
1924 }
1925
1926 /* Else fall back to old method based on jmetzler protocol. */
1927 use_threadinfo_query = 0;
1928 remote_find_new_threads ();
1929 return;
1930 }
1931
1932 /*
1933 * Collect a descriptive string about the given thread.
1934 * The target may say anything it wants to about the thread
1935 * (typically info about its blocked / runnable state, name, etc.).
1936 * This string will appear in the info threads display.
1937 *
1938 * Optional: targets are not required to implement this function.
1939 */
1940
1941 static char *
1942 remote_threads_extra_info (struct thread_info *tp)
1943 {
1944 struct remote_state *rs = get_remote_state ();
1945 int result;
1946 int set;
1947 threadref id;
1948 struct gdb_ext_thread_info threadinfo;
1949 static char display_buf[100]; /* arbitrary... */
1950 int n = 0; /* position in display_buf */
1951
1952 if (remote_desc == 0) /* paranoia */
1953 internal_error (__FILE__, __LINE__,
1954 _("remote_threads_extra_info"));
1955
1956 if (use_threadextra_query)
1957 {
1958 xsnprintf (rs->buf, get_remote_packet_size (), "qThreadExtraInfo,%x",
1959 PIDGET (tp->ptid));
1960 putpkt (rs->buf);
1961 getpkt (&rs->buf, &rs->buf_size, 0);
1962 if (rs->buf[0] != 0)
1963 {
1964 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
1965 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
1966 display_buf [result] = '\0';
1967 return display_buf;
1968 }
1969 }
1970
1971 /* If the above query fails, fall back to the old method. */
1972 use_threadextra_query = 0;
1973 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
1974 | TAG_MOREDISPLAY | TAG_DISPLAY;
1975 int_to_threadref (&id, PIDGET (tp->ptid));
1976 if (remote_get_threadinfo (&id, set, &threadinfo))
1977 if (threadinfo.active)
1978 {
1979 if (*threadinfo.shortname)
1980 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
1981 " Name: %s,", threadinfo.shortname);
1982 if (*threadinfo.display)
1983 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1984 " State: %s,", threadinfo.display);
1985 if (*threadinfo.more_display)
1986 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
1987 " Priority: %s", threadinfo.more_display);
1988
1989 if (n > 0)
1990 {
1991 /* For purely cosmetic reasons, clear up trailing commas. */
1992 if (',' == display_buf[n-1])
1993 display_buf[n-1] = ' ';
1994 return display_buf;
1995 }
1996 }
1997 return NULL;
1998 }
1999 \f
2000
2001 /* Restart the remote side; this is an extended protocol operation. */
2002
2003 static void
2004 extended_remote_restart (void)
2005 {
2006 struct remote_state *rs = get_remote_state ();
2007
2008 /* Send the restart command; for reasons I don't understand the
2009 remote side really expects a number after the "R". */
2010 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
2011 putpkt (rs->buf);
2012
2013 remote_fileio_reset ();
2014 }
2015 \f
2016 /* Clean up connection to a remote debugger. */
2017
2018 static void
2019 remote_close (int quitting)
2020 {
2021 if (remote_desc)
2022 serial_close (remote_desc);
2023 remote_desc = NULL;
2024 }
2025
2026 /* Query the remote side for the text, data and bss offsets. */
2027
2028 static void
2029 get_offsets (void)
2030 {
2031 struct remote_state *rs = get_remote_state ();
2032 char *buf;
2033 char *ptr;
2034 int lose, num_segments = 0, do_sections, do_segments;
2035 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
2036 struct section_offsets *offs;
2037 struct symfile_segment_data *data;
2038
2039 if (symfile_objfile == NULL)
2040 return;
2041
2042 putpkt ("qOffsets");
2043 getpkt (&rs->buf, &rs->buf_size, 0);
2044 buf = rs->buf;
2045
2046 if (buf[0] == '\000')
2047 return; /* Return silently. Stub doesn't support
2048 this command. */
2049 if (buf[0] == 'E')
2050 {
2051 warning (_("Remote failure reply: %s"), buf);
2052 return;
2053 }
2054
2055 /* Pick up each field in turn. This used to be done with scanf, but
2056 scanf will make trouble if CORE_ADDR size doesn't match
2057 conversion directives correctly. The following code will work
2058 with any size of CORE_ADDR. */
2059 text_addr = data_addr = bss_addr = 0;
2060 ptr = buf;
2061 lose = 0;
2062
2063 if (strncmp (ptr, "Text=", 5) == 0)
2064 {
2065 ptr += 5;
2066 /* Don't use strtol, could lose on big values. */
2067 while (*ptr && *ptr != ';')
2068 text_addr = (text_addr << 4) + fromhex (*ptr++);
2069
2070 if (strncmp (ptr, ";Data=", 6) == 0)
2071 {
2072 ptr += 6;
2073 while (*ptr && *ptr != ';')
2074 data_addr = (data_addr << 4) + fromhex (*ptr++);
2075 }
2076 else
2077 lose = 1;
2078
2079 if (!lose && strncmp (ptr, ";Bss=", 5) == 0)
2080 {
2081 ptr += 5;
2082 while (*ptr && *ptr != ';')
2083 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
2084
2085 if (bss_addr != data_addr)
2086 warning (_("Target reported unsupported offsets: %s"), buf);
2087 }
2088 else
2089 lose = 1;
2090 }
2091 else if (strncmp (ptr, "TextSeg=", 8) == 0)
2092 {
2093 ptr += 8;
2094 /* Don't use strtol, could lose on big values. */
2095 while (*ptr && *ptr != ';')
2096 text_addr = (text_addr << 4) + fromhex (*ptr++);
2097 num_segments = 1;
2098
2099 if (strncmp (ptr, ";DataSeg=", 9) == 0)
2100 {
2101 ptr += 9;
2102 while (*ptr && *ptr != ';')
2103 data_addr = (data_addr << 4) + fromhex (*ptr++);
2104 num_segments++;
2105 }
2106 }
2107 else
2108 lose = 1;
2109
2110 if (lose)
2111 error (_("Malformed response to offset query, %s"), buf);
2112 else if (*ptr != '\0')
2113 warning (_("Target reported unsupported offsets: %s"), buf);
2114
2115 offs = ((struct section_offsets *)
2116 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
2117 memcpy (offs, symfile_objfile->section_offsets,
2118 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
2119
2120 data = get_symfile_segment_data (symfile_objfile->obfd);
2121 do_segments = (data != NULL);
2122 do_sections = num_segments == 0;
2123
2124 if (num_segments > 0)
2125 {
2126 segments[0] = text_addr;
2127 segments[1] = data_addr;
2128 }
2129 /* If we have two segments, we can still try to relocate everything
2130 by assuming that the .text and .data offsets apply to the whole
2131 text and data segments. Convert the offsets given in the packet
2132 to base addresses for symfile_map_offsets_to_segments. */
2133 else if (data && data->num_segments == 2)
2134 {
2135 segments[0] = data->segment_bases[0] + text_addr;
2136 segments[1] = data->segment_bases[1] + data_addr;
2137 num_segments = 2;
2138 }
2139 /* There's no way to relocate by segment. */
2140 else
2141 do_segments = 0;
2142
2143 if (do_segments)
2144 {
2145 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
2146 offs, num_segments, segments);
2147
2148 if (ret == 0 && !do_sections)
2149 error (_("Can not handle qOffsets TextSeg response with this symbol file"));
2150
2151 if (ret > 0)
2152 do_sections = 0;
2153 }
2154
2155 if (data)
2156 free_symfile_segment_data (data);
2157
2158 if (do_sections)
2159 {
2160 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
2161
2162 /* This is a temporary kludge to force data and bss to use the same offsets
2163 because that's what nlmconv does now. The real solution requires changes
2164 to the stub and remote.c that I don't have time to do right now. */
2165
2166 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
2167 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
2168 }
2169
2170 objfile_relocate (symfile_objfile, offs);
2171 }
2172
2173 /* Stub for catch_exception. */
2174
2175 struct start_remote_args
2176 {
2177 int from_tty;
2178
2179 /* The current target. */
2180 struct target_ops *target;
2181
2182 /* Non-zero if this is an extended-remote target. */
2183 int extended_p;
2184 };
2185
2186 static void
2187 remote_start_remote (struct ui_out *uiout, void *opaque)
2188 {
2189 struct remote_state *rs = get_remote_state ();
2190 struct start_remote_args *args = opaque;
2191 char *wait_status = NULL;
2192
2193 immediate_quit++; /* Allow user to interrupt it. */
2194
2195 /* Ack any packet which the remote side has already sent. */
2196 serial_write (remote_desc, "+", 1);
2197
2198 /* Check whether the target is running now. */
2199 putpkt ("?");
2200 getpkt (&rs->buf, &rs->buf_size, 0);
2201
2202 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
2203 {
2204 if (args->extended_p)
2205 {
2206 /* We're connected, but not running. Drop out before we
2207 call start_remote. */
2208 target_mark_exited (args->target);
2209 return;
2210 }
2211 else
2212 error (_("The target is not running (try extended-remote?)"));
2213 }
2214 else
2215 {
2216 if (args->extended_p)
2217 target_mark_running (args->target);
2218
2219 /* Save the reply for later. */
2220 wait_status = alloca (strlen (rs->buf) + 1);
2221 strcpy (wait_status, rs->buf);
2222 }
2223
2224 /* Let the stub know that we want it to return the thread. */
2225 set_thread (-1, 0);
2226
2227 /* Without this, some commands which require an active target
2228 (such as kill) won't work. This variable serves (at least)
2229 double duty as both the pid of the target process (if it has
2230 such), and as a flag indicating that a target is active.
2231 These functions should be split out into seperate variables,
2232 especially since GDB will someday have a notion of debugging
2233 several processes. */
2234 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
2235
2236 /* Now, if we have thread information, update inferior_ptid. */
2237 inferior_ptid = remote_current_thread (inferior_ptid);
2238
2239 get_offsets (); /* Get text, data & bss offsets. */
2240
2241 /* Use the previously fetched status. */
2242 gdb_assert (wait_status != NULL);
2243 strcpy (rs->buf, wait_status);
2244 rs->cached_wait_status = 1;
2245
2246 immediate_quit--;
2247 start_remote (args->from_tty); /* Initialize gdb process mechanisms. */
2248 }
2249
2250 /* Open a connection to a remote debugger.
2251 NAME is the filename used for communication. */
2252
2253 static void
2254 remote_open (char *name, int from_tty)
2255 {
2256 remote_open_1 (name, from_tty, &remote_ops, 0, 0);
2257 }
2258
2259 /* Just like remote_open, but with asynchronous support. */
2260 static void
2261 remote_async_open (char *name, int from_tty)
2262 {
2263 remote_open_1 (name, from_tty, &remote_async_ops, 0, 1);
2264 }
2265
2266 /* Open a connection to a remote debugger using the extended
2267 remote gdb protocol. NAME is the filename used for communication. */
2268
2269 static void
2270 extended_remote_open (char *name, int from_tty)
2271 {
2272 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */,
2273 0 /* async_p */);
2274 }
2275
2276 /* Just like extended_remote_open, but with asynchronous support. */
2277 static void
2278 extended_remote_async_open (char *name, int from_tty)
2279 {
2280 remote_open_1 (name, from_tty, &extended_async_remote_ops,
2281 1 /*extended_p */, 1 /* async_p */);
2282 }
2283
2284 /* Generic code for opening a connection to a remote target. */
2285
2286 static void
2287 init_all_packet_configs (void)
2288 {
2289 int i;
2290 for (i = 0; i < PACKET_MAX; i++)
2291 update_packet_config (&remote_protocol_packets[i]);
2292 }
2293
2294 /* Symbol look-up. */
2295
2296 static void
2297 remote_check_symbols (struct objfile *objfile)
2298 {
2299 struct remote_state *rs = get_remote_state ();
2300 char *msg, *reply, *tmp;
2301 struct minimal_symbol *sym;
2302 int end;
2303
2304 if (remote_protocol_packets[PACKET_qSymbol].support == PACKET_DISABLE)
2305 return;
2306
2307 /* Allocate a message buffer. We can't reuse the input buffer in RS,
2308 because we need both at the same time. */
2309 msg = alloca (get_remote_packet_size ());
2310
2311 /* Invite target to request symbol lookups. */
2312
2313 putpkt ("qSymbol::");
2314 getpkt (&rs->buf, &rs->buf_size, 0);
2315 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
2316 reply = rs->buf;
2317
2318 while (strncmp (reply, "qSymbol:", 8) == 0)
2319 {
2320 tmp = &reply[8];
2321 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
2322 msg[end] = '\0';
2323 sym = lookup_minimal_symbol (msg, NULL, NULL);
2324 if (sym == NULL)
2325 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
2326 else
2327 {
2328 CORE_ADDR sym_addr = SYMBOL_VALUE_ADDRESS (sym);
2329
2330 /* If this is a function address, return the start of code
2331 instead of any data function descriptor. */
2332 sym_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
2333 sym_addr,
2334 &current_target);
2335
2336 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
2337 paddr_nz (sym_addr), &reply[8]);
2338 }
2339
2340 putpkt (msg);
2341 getpkt (&rs->buf, &rs->buf_size, 0);
2342 reply = rs->buf;
2343 }
2344 }
2345
2346 static struct serial *
2347 remote_serial_open (char *name)
2348 {
2349 static int udp_warning = 0;
2350
2351 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
2352 of in ser-tcp.c, because it is the remote protocol assuming that the
2353 serial connection is reliable and not the serial connection promising
2354 to be. */
2355 if (!udp_warning && strncmp (name, "udp:", 4) == 0)
2356 {
2357 warning (_("\
2358 The remote protocol may be unreliable over UDP.\n\
2359 Some events may be lost, rendering further debugging impossible."));
2360 udp_warning = 1;
2361 }
2362
2363 return serial_open (name);
2364 }
2365
2366 /* This type describes each known response to the qSupported
2367 packet. */
2368 struct protocol_feature
2369 {
2370 /* The name of this protocol feature. */
2371 const char *name;
2372
2373 /* The default for this protocol feature. */
2374 enum packet_support default_support;
2375
2376 /* The function to call when this feature is reported, or after
2377 qSupported processing if the feature is not supported.
2378 The first argument points to this structure. The second
2379 argument indicates whether the packet requested support be
2380 enabled, disabled, or probed (or the default, if this function
2381 is being called at the end of processing and this feature was
2382 not reported). The third argument may be NULL; if not NULL, it
2383 is a NUL-terminated string taken from the packet following
2384 this feature's name and an equals sign. */
2385 void (*func) (const struct protocol_feature *, enum packet_support,
2386 const char *);
2387
2388 /* The corresponding packet for this feature. Only used if
2389 FUNC is remote_supported_packet. */
2390 int packet;
2391 };
2392
2393 static void
2394 remote_supported_packet (const struct protocol_feature *feature,
2395 enum packet_support support,
2396 const char *argument)
2397 {
2398 if (argument)
2399 {
2400 warning (_("Remote qSupported response supplied an unexpected value for"
2401 " \"%s\"."), feature->name);
2402 return;
2403 }
2404
2405 if (remote_protocol_packets[feature->packet].support
2406 == PACKET_SUPPORT_UNKNOWN)
2407 remote_protocol_packets[feature->packet].support = support;
2408 }
2409
2410 static void
2411 remote_packet_size (const struct protocol_feature *feature,
2412 enum packet_support support, const char *value)
2413 {
2414 struct remote_state *rs = get_remote_state ();
2415
2416 int packet_size;
2417 char *value_end;
2418
2419 if (support != PACKET_ENABLE)
2420 return;
2421
2422 if (value == NULL || *value == '\0')
2423 {
2424 warning (_("Remote target reported \"%s\" without a size."),
2425 feature->name);
2426 return;
2427 }
2428
2429 errno = 0;
2430 packet_size = strtol (value, &value_end, 16);
2431 if (errno != 0 || *value_end != '\0' || packet_size < 0)
2432 {
2433 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
2434 feature->name, value);
2435 return;
2436 }
2437
2438 if (packet_size > MAX_REMOTE_PACKET_SIZE)
2439 {
2440 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
2441 packet_size, MAX_REMOTE_PACKET_SIZE);
2442 packet_size = MAX_REMOTE_PACKET_SIZE;
2443 }
2444
2445 /* Record the new maximum packet size. */
2446 rs->explicit_packet_size = packet_size;
2447 }
2448
2449 static struct protocol_feature remote_protocol_features[] = {
2450 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
2451 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
2452 PACKET_qXfer_auxv },
2453 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
2454 PACKET_qXfer_features },
2455 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
2456 PACKET_qXfer_libraries },
2457 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
2458 PACKET_qXfer_memory_map },
2459 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
2460 PACKET_qXfer_spu_read },
2461 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
2462 PACKET_qXfer_spu_write },
2463 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
2464 PACKET_QPassSignals },
2465 };
2466
2467 static void
2468 remote_query_supported (void)
2469 {
2470 struct remote_state *rs = get_remote_state ();
2471 char *next;
2472 int i;
2473 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
2474
2475 /* The packet support flags are handled differently for this packet
2476 than for most others. We treat an error, a disabled packet, and
2477 an empty response identically: any features which must be reported
2478 to be used will be automatically disabled. An empty buffer
2479 accomplishes this, since that is also the representation for a list
2480 containing no features. */
2481
2482 rs->buf[0] = 0;
2483 if (remote_protocol_packets[PACKET_qSupported].support != PACKET_DISABLE)
2484 {
2485 putpkt ("qSupported");
2486 getpkt (&rs->buf, &rs->buf_size, 0);
2487
2488 /* If an error occured, warn, but do not return - just reset the
2489 buffer to empty and go on to disable features. */
2490 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
2491 == PACKET_ERROR)
2492 {
2493 warning (_("Remote failure reply: %s"), rs->buf);
2494 rs->buf[0] = 0;
2495 }
2496 }
2497
2498 memset (seen, 0, sizeof (seen));
2499
2500 next = rs->buf;
2501 while (*next)
2502 {
2503 enum packet_support is_supported;
2504 char *p, *end, *name_end, *value;
2505
2506 /* First separate out this item from the rest of the packet. If
2507 there's another item after this, we overwrite the separator
2508 (terminated strings are much easier to work with). */
2509 p = next;
2510 end = strchr (p, ';');
2511 if (end == NULL)
2512 {
2513 end = p + strlen (p);
2514 next = end;
2515 }
2516 else
2517 {
2518 *end = '\0';
2519 next = end + 1;
2520
2521 if (end == p)
2522 {
2523 warning (_("empty item in \"qSupported\" response"));
2524 continue;
2525 }
2526 }
2527
2528 name_end = strchr (p, '=');
2529 if (name_end)
2530 {
2531 /* This is a name=value entry. */
2532 is_supported = PACKET_ENABLE;
2533 value = name_end + 1;
2534 *name_end = '\0';
2535 }
2536 else
2537 {
2538 value = NULL;
2539 switch (end[-1])
2540 {
2541 case '+':
2542 is_supported = PACKET_ENABLE;
2543 break;
2544
2545 case '-':
2546 is_supported = PACKET_DISABLE;
2547 break;
2548
2549 case '?':
2550 is_supported = PACKET_SUPPORT_UNKNOWN;
2551 break;
2552
2553 default:
2554 warning (_("unrecognized item \"%s\" in \"qSupported\" response"), p);
2555 continue;
2556 }
2557 end[-1] = '\0';
2558 }
2559
2560 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2561 if (strcmp (remote_protocol_features[i].name, p) == 0)
2562 {
2563 const struct protocol_feature *feature;
2564
2565 seen[i] = 1;
2566 feature = &remote_protocol_features[i];
2567 feature->func (feature, is_supported, value);
2568 break;
2569 }
2570 }
2571
2572 /* If we increased the packet size, make sure to increase the global
2573 buffer size also. We delay this until after parsing the entire
2574 qSupported packet, because this is the same buffer we were
2575 parsing. */
2576 if (rs->buf_size < rs->explicit_packet_size)
2577 {
2578 rs->buf_size = rs->explicit_packet_size;
2579 rs->buf = xrealloc (rs->buf, rs->buf_size);
2580 }
2581
2582 /* Handle the defaults for unmentioned features. */
2583 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
2584 if (!seen[i])
2585 {
2586 const struct protocol_feature *feature;
2587
2588 feature = &remote_protocol_features[i];
2589 feature->func (feature, feature->default_support, NULL);
2590 }
2591 }
2592
2593
2594 static void
2595 remote_open_1 (char *name, int from_tty, struct target_ops *target,
2596 int extended_p, int async_p)
2597 {
2598 struct remote_state *rs = get_remote_state ();
2599 if (name == 0)
2600 error (_("To open a remote debug connection, you need to specify what\n"
2601 "serial device is attached to the remote system\n"
2602 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
2603
2604 /* See FIXME above. */
2605 if (!async_p)
2606 wait_forever_enabled_p = 1;
2607
2608 /* If we're connected to a running target, target_preopen will kill it.
2609 But if we're connected to a target system with no running process,
2610 then we will still be connected when it returns. Ask this question
2611 first, before target_preopen has a chance to kill anything. */
2612 if (remote_desc != NULL && !target_has_execution)
2613 {
2614 if (!from_tty
2615 || query (_("Already connected to a remote target. Disconnect? ")))
2616 pop_target ();
2617 else
2618 error (_("Still connected."));
2619 }
2620
2621 target_preopen (from_tty);
2622
2623 unpush_target (target);
2624
2625 /* This time without a query. If we were connected to an
2626 extended-remote target and target_preopen killed the running
2627 process, we may still be connected. If we are starting "target
2628 remote" now, the extended-remote target will not have been
2629 removed by unpush_target. */
2630 if (remote_desc != NULL && !target_has_execution)
2631 pop_target ();
2632
2633 /* Make sure we send the passed signals list the next time we resume. */
2634 xfree (last_pass_packet);
2635 last_pass_packet = NULL;
2636
2637 remote_fileio_reset ();
2638 reopen_exec_file ();
2639 reread_symbols ();
2640
2641 remote_desc = remote_serial_open (name);
2642 if (!remote_desc)
2643 perror_with_name (name);
2644
2645 if (baud_rate != -1)
2646 {
2647 if (serial_setbaudrate (remote_desc, baud_rate))
2648 {
2649 /* The requested speed could not be set. Error out to
2650 top level after closing remote_desc. Take care to
2651 set remote_desc to NULL to avoid closing remote_desc
2652 more than once. */
2653 serial_close (remote_desc);
2654 remote_desc = NULL;
2655 perror_with_name (name);
2656 }
2657 }
2658
2659 serial_raw (remote_desc);
2660
2661 /* If there is something sitting in the buffer we might take it as a
2662 response to a command, which would be bad. */
2663 serial_flush_input (remote_desc);
2664
2665 if (from_tty)
2666 {
2667 puts_filtered ("Remote debugging using ");
2668 puts_filtered (name);
2669 puts_filtered ("\n");
2670 }
2671 push_target (target); /* Switch to using remote target now. */
2672
2673 /* Assume that the target is running, unless we learn otherwise. */
2674 target_mark_running (target);
2675
2676 /* Reset the target state; these things will be queried either by
2677 remote_query_supported or as they are needed. */
2678 init_all_packet_configs ();
2679 rs->explicit_packet_size = 0;
2680
2681 general_thread = -2;
2682 continue_thread = -2;
2683
2684 /* Probe for ability to use "ThreadInfo" query, as required. */
2685 use_threadinfo_query = 1;
2686 use_threadextra_query = 1;
2687
2688 /* The first packet we send to the target is the optional "supported
2689 packets" request. If the target can answer this, it will tell us
2690 which later probes to skip. */
2691 remote_query_supported ();
2692
2693 /* Next, if the target can specify a description, read it. We do
2694 this before anything involving memory or registers. */
2695 target_find_description ();
2696
2697 if (async_p)
2698 {
2699 /* With this target we start out by owning the terminal. */
2700 remote_async_terminal_ours_p = 1;
2701
2702 /* FIXME: cagney/1999-09-23: During the initial connection it is
2703 assumed that the target is already ready and able to respond to
2704 requests. Unfortunately remote_start_remote() eventually calls
2705 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
2706 around this. Eventually a mechanism that allows
2707 wait_for_inferior() to expect/get timeouts will be
2708 implemented. */
2709 wait_forever_enabled_p = 0;
2710 }
2711
2712 /* First delete any symbols previously loaded from shared libraries. */
2713 no_shared_libraries (NULL, 0);
2714
2715 /* Start the remote connection. If error() or QUIT, discard this
2716 target (we'd otherwise be in an inconsistent state) and then
2717 propogate the error on up the exception chain. This ensures that
2718 the caller doesn't stumble along blindly assuming that the
2719 function succeeded. The CLI doesn't have this problem but other
2720 UI's, such as MI do.
2721
2722 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
2723 this function should return an error indication letting the
2724 caller restore the previous state. Unfortunately the command
2725 ``target remote'' is directly wired to this function making that
2726 impossible. On a positive note, the CLI side of this problem has
2727 been fixed - the function set_cmd_context() makes it possible for
2728 all the ``target ....'' commands to share a common callback
2729 function. See cli-dump.c. */
2730 {
2731 struct gdb_exception ex;
2732 struct start_remote_args args;
2733
2734 args.from_tty = from_tty;
2735 args.target = target;
2736 args.extended_p = extended_p;
2737
2738 ex = catch_exception (uiout, remote_start_remote, &args, RETURN_MASK_ALL);
2739 if (ex.reason < 0)
2740 {
2741 pop_target ();
2742 if (async_p)
2743 wait_forever_enabled_p = 1;
2744 throw_exception (ex);
2745 }
2746 }
2747
2748 if (async_p)
2749 wait_forever_enabled_p = 1;
2750
2751 if (extended_p)
2752 {
2753 /* Tell the remote that we are using the extended protocol. */
2754 putpkt ("!");
2755 getpkt (&rs->buf, &rs->buf_size, 0);
2756 }
2757
2758 /* If we connected to a live target, do some additional setup. */
2759 if (target_has_execution)
2760 {
2761 if (exec_bfd) /* No use without an exec file. */
2762 remote_check_symbols (symfile_objfile);
2763 }
2764 }
2765
2766 /* This takes a program previously attached to and detaches it. After
2767 this is done, GDB can be used to debug some other program. We
2768 better not have left any breakpoints in the target program or it'll
2769 die when it hits one. */
2770
2771 static void
2772 remote_detach_1 (char *args, int from_tty, int extended)
2773 {
2774 struct remote_state *rs = get_remote_state ();
2775
2776 if (args)
2777 error (_("Argument given to \"detach\" when remotely debugging."));
2778
2779 if (!target_has_execution)
2780 error (_("No process to detach from."));
2781
2782 /* Tell the remote target to detach. */
2783 strcpy (rs->buf, "D");
2784 putpkt (rs->buf);
2785 getpkt (&rs->buf, &rs->buf_size, 0);
2786
2787 if (rs->buf[0] == 'E')
2788 error (_("Can't detach process."));
2789
2790 /* Unregister the file descriptor from the event loop. */
2791 if (target_is_async_p ())
2792 serial_async (remote_desc, NULL, 0);
2793
2794 target_mourn_inferior ();
2795 if (from_tty)
2796 {
2797 if (extended)
2798 puts_filtered ("Detached from remote process.\n");
2799 else
2800 puts_filtered ("Ending remote debugging.\n");
2801 }
2802 }
2803
2804 static void
2805 remote_detach (char *args, int from_tty)
2806 {
2807 remote_detach_1 (args, from_tty, 0);
2808 }
2809
2810 static void
2811 extended_remote_detach (char *args, int from_tty)
2812 {
2813 remote_detach_1 (args, from_tty, 1);
2814 }
2815
2816 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
2817
2818 static void
2819 remote_disconnect (struct target_ops *target, char *args, int from_tty)
2820 {
2821 if (args)
2822 error (_("Argument given to \"disconnect\" when remotely debugging."));
2823
2824 /* Unregister the file descriptor from the event loop. */
2825 if (target_is_async_p ())
2826 serial_async (remote_desc, NULL, 0);
2827
2828 /* Make sure we unpush even the extended remote targets; mourn
2829 won't do it. So call remote_mourn_1 directly instead of
2830 target_mourn_inferior. */
2831 remote_mourn_1 (target);
2832
2833 if (from_tty)
2834 puts_filtered ("Ending remote debugging.\n");
2835 }
2836
2837 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
2838 be chatty about it. */
2839
2840 static void
2841 extended_remote_attach_1 (struct target_ops *target, char *args, int from_tty)
2842 {
2843 struct remote_state *rs = get_remote_state ();
2844 pid_t pid;
2845 char *dummy;
2846
2847 if (!args)
2848 error_no_arg (_("process-id to attach"));
2849
2850 dummy = args;
2851 pid = strtol (args, &dummy, 0);
2852 /* Some targets don't set errno on errors, grrr! */
2853 if (pid == 0 && args == dummy)
2854 error (_("Illegal process-id: %s."), args);
2855
2856 if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2857 error (_("This target does not support attaching to a process"));
2858
2859 sprintf (rs->buf, "vAttach;%x", pid);
2860 putpkt (rs->buf);
2861 getpkt (&rs->buf, &rs->buf_size, 0);
2862
2863 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vAttach]) == PACKET_OK)
2864 {
2865 if (from_tty)
2866 printf_unfiltered (_("Attached to %s\n"),
2867 target_pid_to_str (pid_to_ptid (pid)));
2868
2869 /* We have a wait response; reuse it. */
2870 rs->cached_wait_status = 1;
2871 }
2872 else if (remote_protocol_packets[PACKET_vAttach].support == PACKET_DISABLE)
2873 error (_("This target does not support attaching to a process"));
2874 else
2875 error (_("Attaching to %s failed"),
2876 target_pid_to_str (pid_to_ptid (pid)));
2877
2878 target_mark_running (target);
2879 inferior_ptid = pid_to_ptid (pid);
2880 attach_flag = 1;
2881 }
2882
2883 static void
2884 extended_remote_attach (char *args, int from_tty)
2885 {
2886 extended_remote_attach_1 (&extended_remote_ops, args, from_tty);
2887 }
2888
2889 static void
2890 extended_async_remote_attach (char *args, int from_tty)
2891 {
2892 extended_remote_attach_1 (&extended_async_remote_ops, args, from_tty);
2893 }
2894
2895 /* Convert hex digit A to a number. */
2896
2897 static int
2898 fromhex (int a)
2899 {
2900 if (a >= '0' && a <= '9')
2901 return a - '0';
2902 else if (a >= 'a' && a <= 'f')
2903 return a - 'a' + 10;
2904 else if (a >= 'A' && a <= 'F')
2905 return a - 'A' + 10;
2906 else
2907 error (_("Reply contains invalid hex digit %d"), a);
2908 }
2909
2910 static int
2911 hex2bin (const char *hex, gdb_byte *bin, int count)
2912 {
2913 int i;
2914
2915 for (i = 0; i < count; i++)
2916 {
2917 if (hex[0] == 0 || hex[1] == 0)
2918 {
2919 /* Hex string is short, or of uneven length.
2920 Return the count that has been converted so far. */
2921 return i;
2922 }
2923 *bin++ = fromhex (hex[0]) * 16 + fromhex (hex[1]);
2924 hex += 2;
2925 }
2926 return i;
2927 }
2928
2929 /* Convert number NIB to a hex digit. */
2930
2931 static int
2932 tohex (int nib)
2933 {
2934 if (nib < 10)
2935 return '0' + nib;
2936 else
2937 return 'a' + nib - 10;
2938 }
2939
2940 static int
2941 bin2hex (const gdb_byte *bin, char *hex, int count)
2942 {
2943 int i;
2944 /* May use a length, or a nul-terminated string as input. */
2945 if (count == 0)
2946 count = strlen ((char *) bin);
2947
2948 for (i = 0; i < count; i++)
2949 {
2950 *hex++ = tohex ((*bin >> 4) & 0xf);
2951 *hex++ = tohex (*bin++ & 0xf);
2952 }
2953 *hex = 0;
2954 return i;
2955 }
2956 \f
2957 /* Check for the availability of vCont. This function should also check
2958 the response. */
2959
2960 static void
2961 remote_vcont_probe (struct remote_state *rs)
2962 {
2963 char *buf;
2964
2965 strcpy (rs->buf, "vCont?");
2966 putpkt (rs->buf);
2967 getpkt (&rs->buf, &rs->buf_size, 0);
2968 buf = rs->buf;
2969
2970 /* Make sure that the features we assume are supported. */
2971 if (strncmp (buf, "vCont", 5) == 0)
2972 {
2973 char *p = &buf[5];
2974 int support_s, support_S, support_c, support_C;
2975
2976 support_s = 0;
2977 support_S = 0;
2978 support_c = 0;
2979 support_C = 0;
2980 while (p && *p == ';')
2981 {
2982 p++;
2983 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
2984 support_s = 1;
2985 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
2986 support_S = 1;
2987 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
2988 support_c = 1;
2989 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
2990 support_C = 1;
2991
2992 p = strchr (p, ';');
2993 }
2994
2995 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
2996 BUF will make packet_ok disable the packet. */
2997 if (!support_s || !support_S || !support_c || !support_C)
2998 buf[0] = 0;
2999 }
3000
3001 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
3002 }
3003
3004 /* Resume the remote inferior by using a "vCont" packet. The thread
3005 to be resumed is PTID; STEP and SIGGNAL indicate whether the
3006 resumed thread should be single-stepped and/or signalled. If PTID's
3007 PID is -1, then all threads are resumed; the thread to be stepped and/or
3008 signalled is given in the global INFERIOR_PTID. This function returns
3009 non-zero iff it resumes the inferior.
3010
3011 This function issues a strict subset of all possible vCont commands at the
3012 moment. */
3013
3014 static int
3015 remote_vcont_resume (ptid_t ptid, int step, enum target_signal siggnal)
3016 {
3017 struct remote_state *rs = get_remote_state ();
3018 int pid = PIDGET (ptid);
3019 char *outbuf;
3020 struct cleanup *old_cleanup;
3021
3022 if (remote_protocol_packets[PACKET_vCont].support == PACKET_SUPPORT_UNKNOWN)
3023 remote_vcont_probe (rs);
3024
3025 if (remote_protocol_packets[PACKET_vCont].support == PACKET_DISABLE)
3026 return 0;
3027
3028 /* If we could generate a wider range of packets, we'd have to worry
3029 about overflowing BUF. Should there be a generic
3030 "multi-part-packet" packet? */
3031
3032 if (PIDGET (inferior_ptid) == MAGIC_NULL_PID)
3033 {
3034 /* MAGIC_NULL_PTID means that we don't have any active threads, so we
3035 don't have any PID numbers the inferior will understand. Make sure
3036 to only send forms that do not specify a PID. */
3037 if (step && siggnal != TARGET_SIGNAL_0)
3038 outbuf = xstrprintf ("vCont;S%02x", siggnal);
3039 else if (step)
3040 outbuf = xstrprintf ("vCont;s");
3041 else if (siggnal != TARGET_SIGNAL_0)
3042 outbuf = xstrprintf ("vCont;C%02x", siggnal);
3043 else
3044 outbuf = xstrprintf ("vCont;c");
3045 }
3046 else if (pid == -1)
3047 {
3048 /* Resume all threads, with preference for INFERIOR_PTID. */
3049 if (step && siggnal != TARGET_SIGNAL_0)
3050 outbuf = xstrprintf ("vCont;S%02x:%x;c", siggnal,
3051 PIDGET (inferior_ptid));
3052 else if (step)
3053 outbuf = xstrprintf ("vCont;s:%x;c", PIDGET (inferior_ptid));
3054 else if (siggnal != TARGET_SIGNAL_0)
3055 outbuf = xstrprintf ("vCont;C%02x:%x;c", siggnal,
3056 PIDGET (inferior_ptid));
3057 else
3058 outbuf = xstrprintf ("vCont;c");
3059 }
3060 else
3061 {
3062 /* Scheduler locking; resume only PTID. */
3063 if (step && siggnal != TARGET_SIGNAL_0)
3064 outbuf = xstrprintf ("vCont;S%02x:%x", siggnal, pid);
3065 else if (step)
3066 outbuf = xstrprintf ("vCont;s:%x", pid);
3067 else if (siggnal != TARGET_SIGNAL_0)
3068 outbuf = xstrprintf ("vCont;C%02x:%x", siggnal, pid);
3069 else
3070 outbuf = xstrprintf ("vCont;c:%x", pid);
3071 }
3072
3073 gdb_assert (outbuf && strlen (outbuf) < get_remote_packet_size ());
3074 old_cleanup = make_cleanup (xfree, outbuf);
3075
3076 putpkt (outbuf);
3077
3078 do_cleanups (old_cleanup);
3079
3080 return 1;
3081 }
3082
3083 /* Tell the remote machine to resume. */
3084
3085 static enum target_signal last_sent_signal = TARGET_SIGNAL_0;
3086
3087 static int last_sent_step;
3088
3089 static void
3090 remote_resume (ptid_t ptid, int step, enum target_signal siggnal)
3091 {
3092 struct remote_state *rs = get_remote_state ();
3093 char *buf;
3094 int pid = PIDGET (ptid);
3095
3096 last_sent_signal = siggnal;
3097 last_sent_step = step;
3098
3099 /* A hook for when we need to do something at the last moment before
3100 resumption. */
3101 if (deprecated_target_resume_hook)
3102 (*deprecated_target_resume_hook) ();
3103
3104 /* Update the inferior on signals to silently pass, if they've changed. */
3105 remote_pass_signals ();
3106
3107 /* The vCont packet doesn't need to specify threads via Hc. */
3108 if (remote_vcont_resume (ptid, step, siggnal))
3109 return;
3110
3111 /* All other supported resume packets do use Hc, so call set_thread. */
3112 if (pid == -1)
3113 set_thread (0, 0); /* Run any thread. */
3114 else
3115 set_thread (pid, 0); /* Run this thread. */
3116
3117 buf = rs->buf;
3118 if (siggnal != TARGET_SIGNAL_0)
3119 {
3120 buf[0] = step ? 'S' : 'C';
3121 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
3122 buf[2] = tohex (((int) siggnal) & 0xf);
3123 buf[3] = '\0';
3124 }
3125 else
3126 strcpy (buf, step ? "s" : "c");
3127
3128 putpkt (buf);
3129 }
3130
3131 /* Same as remote_resume, but with async support. */
3132 static void
3133 remote_async_resume (ptid_t ptid, int step, enum target_signal siggnal)
3134 {
3135 remote_resume (ptid, step, siggnal);
3136
3137 /* We are about to start executing the inferior, let's register it
3138 with the event loop. NOTE: this is the one place where all the
3139 execution commands end up. We could alternatively do this in each
3140 of the execution commands in infcmd.c. */
3141 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
3142 into infcmd.c in order to allow inferior function calls to work
3143 NOT asynchronously. */
3144 if (target_can_async_p ())
3145 target_async (inferior_event_handler, 0);
3146 /* Tell the world that the target is now executing. */
3147 /* FIXME: cagney/1999-09-23: Is it the targets responsibility to set
3148 this? Instead, should the client of target just assume (for
3149 async targets) that the target is going to start executing? Is
3150 this information already found in the continuation block? */
3151 if (target_is_async_p ())
3152 target_executing = 1;
3153 }
3154 \f
3155
3156 /* Set up the signal handler for SIGINT, while the target is
3157 executing, ovewriting the 'regular' SIGINT signal handler. */
3158 static void
3159 initialize_sigint_signal_handler (void)
3160 {
3161 signal (SIGINT, handle_remote_sigint);
3162 }
3163
3164 /* Signal handler for SIGINT, while the target is executing. */
3165 static void
3166 handle_remote_sigint (int sig)
3167 {
3168 signal (sig, handle_remote_sigint_twice);
3169 mark_async_signal_handler_wrapper (sigint_remote_token);
3170 }
3171
3172 /* Signal handler for SIGINT, installed after SIGINT has already been
3173 sent once. It will take effect the second time that the user sends
3174 a ^C. */
3175 static void
3176 handle_remote_sigint_twice (int sig)
3177 {
3178 signal (sig, handle_remote_sigint);
3179 mark_async_signal_handler_wrapper (sigint_remote_twice_token);
3180 }
3181
3182 /* Perform the real interruption of the target execution, in response
3183 to a ^C. */
3184 static void
3185 async_remote_interrupt (gdb_client_data arg)
3186 {
3187 if (remote_debug)
3188 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
3189
3190 target_stop ();
3191 }
3192
3193 /* Perform interrupt, if the first attempt did not succeed. Just give
3194 up on the target alltogether. */
3195 void
3196 async_remote_interrupt_twice (gdb_client_data arg)
3197 {
3198 if (remote_debug)
3199 fprintf_unfiltered (gdb_stdlog, "remote_interrupt_twice called\n");
3200
3201 interrupt_query ();
3202 }
3203
3204 /* Reinstall the usual SIGINT handlers, after the target has
3205 stopped. */
3206 static void
3207 cleanup_sigint_signal_handler (void *dummy)
3208 {
3209 signal (SIGINT, handle_sigint);
3210 }
3211
3212 /* Send ^C to target to halt it. Target will respond, and send us a
3213 packet. */
3214 static void (*ofunc) (int);
3215
3216 /* The command line interface's stop routine. This function is installed
3217 as a signal handler for SIGINT. The first time a user requests a
3218 stop, we call remote_stop to send a break or ^C. If there is no
3219 response from the target (it didn't stop when the user requested it),
3220 we ask the user if he'd like to detach from the target. */
3221 static void
3222 remote_interrupt (int signo)
3223 {
3224 /* If this doesn't work, try more severe steps. */
3225 signal (signo, remote_interrupt_twice);
3226
3227 gdb_call_async_signal_handler (sigint_remote_token, 1);
3228 }
3229
3230 /* The user typed ^C twice. */
3231
3232 static void
3233 remote_interrupt_twice (int signo)
3234 {
3235 signal (signo, ofunc);
3236 gdb_call_async_signal_handler (sigint_remote_twice_token, 1);
3237 signal (signo, remote_interrupt);
3238 }
3239
3240 /* This is the generic stop called via the target vector. When a target
3241 interrupt is requested, either by the command line or the GUI, we
3242 will eventually end up here. */
3243 static void
3244 remote_stop (void)
3245 {
3246 /* Send a break or a ^C, depending on user preference. */
3247 if (remote_debug)
3248 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
3249
3250 if (remote_break)
3251 serial_send_break (remote_desc);
3252 else
3253 serial_write (remote_desc, "\003", 1);
3254 }
3255
3256 /* Ask the user what to do when an interrupt is received. */
3257
3258 static void
3259 interrupt_query (void)
3260 {
3261 target_terminal_ours ();
3262
3263 if (query ("Interrupted while waiting for the program.\n\
3264 Give up (and stop debugging it)? "))
3265 {
3266 target_mourn_inferior ();
3267 signal (SIGINT, handle_sigint);
3268 deprecated_throw_reason (RETURN_QUIT);
3269 }
3270
3271 target_terminal_inferior ();
3272 }
3273
3274 /* Enable/disable target terminal ownership. Most targets can use
3275 terminal groups to control terminal ownership. Remote targets are
3276 different in that explicit transfer of ownership to/from GDB/target
3277 is required. */
3278
3279 static void
3280 remote_async_terminal_inferior (void)
3281 {
3282 /* FIXME: cagney/1999-09-27: Shouldn't need to test for
3283 sync_execution here. This function should only be called when
3284 GDB is resuming the inferior in the forground. A background
3285 resume (``run&'') should leave GDB in control of the terminal and
3286 consequently should not call this code. */
3287 if (!sync_execution)
3288 return;
3289 /* FIXME: cagney/1999-09-27: Closely related to the above. Make
3290 calls target_terminal_*() idenpotent. The event-loop GDB talking
3291 to an asynchronous target with a synchronous command calls this
3292 function from both event-top.c and infrun.c/infcmd.c. Once GDB
3293 stops trying to transfer the terminal to the target when it
3294 shouldn't this guard can go away. */
3295 if (!remote_async_terminal_ours_p)
3296 return;
3297 delete_file_handler (input_fd);
3298 remote_async_terminal_ours_p = 0;
3299 initialize_sigint_signal_handler ();
3300 /* NOTE: At this point we could also register our selves as the
3301 recipient of all input. Any characters typed could then be
3302 passed on down to the target. */
3303 }
3304
3305 static void
3306 remote_async_terminal_ours (void)
3307 {
3308 /* See FIXME in remote_async_terminal_inferior. */
3309 if (!sync_execution)
3310 return;
3311 /* See FIXME in remote_async_terminal_inferior. */
3312 if (remote_async_terminal_ours_p)
3313 return;
3314 cleanup_sigint_signal_handler (NULL);
3315 add_file_handler (input_fd, stdin_event_handler, 0);
3316 remote_async_terminal_ours_p = 1;
3317 }
3318
3319 /* If nonzero, ignore the next kill. */
3320
3321 int kill_kludge;
3322
3323 void
3324 remote_console_output (char *msg)
3325 {
3326 char *p;
3327
3328 for (p = msg; p[0] && p[1]; p += 2)
3329 {
3330 char tb[2];
3331 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
3332 tb[0] = c;
3333 tb[1] = 0;
3334 fputs_unfiltered (tb, gdb_stdtarg);
3335 }
3336 gdb_flush (gdb_stdtarg);
3337 }
3338
3339 /* Wait until the remote machine stops, then return,
3340 storing status in STATUS just as `wait' would.
3341 Returns "pid", which in the case of a multi-threaded
3342 remote OS, is the thread-id. */
3343
3344 static ptid_t
3345 remote_wait (ptid_t ptid, struct target_waitstatus *status)
3346 {
3347 struct remote_state *rs = get_remote_state ();
3348 struct remote_arch_state *rsa = get_remote_arch_state ();
3349 ULONGEST thread_num = -1;
3350 ULONGEST addr;
3351 int solibs_changed = 0;
3352
3353 status->kind = TARGET_WAITKIND_EXITED;
3354 status->value.integer = 0;
3355
3356 while (1)
3357 {
3358 char *buf, *p;
3359
3360 if (rs->cached_wait_status)
3361 /* Use the cached wait status, but only once. */
3362 rs->cached_wait_status = 0;
3363 else
3364 {
3365 ofunc = signal (SIGINT, remote_interrupt);
3366 /* If the user hit C-c before this packet, or between packets,
3367 pretend that it was hit right here. */
3368 if (quit_flag)
3369 {
3370 quit_flag = 0;
3371 remote_interrupt (SIGINT);
3372 }
3373 getpkt (&rs->buf, &rs->buf_size, 1);
3374 signal (SIGINT, ofunc);
3375 }
3376
3377 buf = rs->buf;
3378
3379 /* This is a hook for when we need to do something (perhaps the
3380 collection of trace data) every time the target stops. */
3381 if (deprecated_target_wait_loop_hook)
3382 (*deprecated_target_wait_loop_hook) ();
3383
3384 remote_stopped_by_watchpoint_p = 0;
3385
3386 switch (buf[0])
3387 {
3388 case 'E': /* Error of some sort. */
3389 /* We're out of sync with the target now. Did it continue or not?
3390 Not is more likely, so report a stop. */
3391 warning (_("Remote failure reply: %s"), buf);
3392 status->kind = TARGET_WAITKIND_STOPPED;
3393 status->value.sig = TARGET_SIGNAL_0;
3394 goto got_status;
3395 case 'F': /* File-I/O request. */
3396 remote_fileio_request (buf);
3397 continue;
3398 case 'T': /* Status with PC, SP, FP, ... */
3399 {
3400 gdb_byte regs[MAX_REGISTER_SIZE];
3401
3402 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3403 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3404 ss = signal number
3405 n... = register number
3406 r... = register contents
3407 */
3408 p = &buf[3]; /* after Txx */
3409
3410 while (*p)
3411 {
3412 char *p1;
3413 char *p_temp;
3414 int fieldsize;
3415 LONGEST pnum = 0;
3416
3417 /* If the packet contains a register number save it in
3418 pnum and set p1 to point to the character following
3419 it. Otherwise p1 points to p. */
3420
3421 /* If this packet is an awatch packet, don't parse the
3422 'a' as a register number. */
3423
3424 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3425 {
3426 /* Read the ``P'' register number. */
3427 pnum = strtol (p, &p_temp, 16);
3428 p1 = p_temp;
3429 }
3430 else
3431 p1 = p;
3432
3433 if (p1 == p) /* No register number present here. */
3434 {
3435 p1 = strchr (p, ':');
3436 if (p1 == NULL)
3437 error (_("Malformed packet(a) (missing colon): %s\n\
3438 Packet: '%s'\n"),
3439 p, buf);
3440 if (strncmp (p, "thread", p1 - p) == 0)
3441 {
3442 p_temp = unpack_varlen_hex (++p1, &thread_num);
3443 record_currthread (thread_num);
3444 p = p_temp;
3445 }
3446 else if ((strncmp (p, "watch", p1 - p) == 0)
3447 || (strncmp (p, "rwatch", p1 - p) == 0)
3448 || (strncmp (p, "awatch", p1 - p) == 0))
3449 {
3450 remote_stopped_by_watchpoint_p = 1;
3451 p = unpack_varlen_hex (++p1, &addr);
3452 remote_watch_data_address = (CORE_ADDR)addr;
3453 }
3454 else if (strncmp (p, "library", p1 - p) == 0)
3455 {
3456 p1++;
3457 p_temp = p1;
3458 while (*p_temp && *p_temp != ';')
3459 p_temp++;
3460
3461 solibs_changed = 1;
3462 p = p_temp;
3463 }
3464 else
3465 {
3466 /* Silently skip unknown optional info. */
3467 p_temp = strchr (p1 + 1, ';');
3468 if (p_temp)
3469 p = p_temp;
3470 }
3471 }
3472 else
3473 {
3474 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3475 p = p1;
3476
3477 if (*p++ != ':')
3478 error (_("Malformed packet(b) (missing colon): %s\n\
3479 Packet: '%s'\n"),
3480 p, buf);
3481
3482 if (reg == NULL)
3483 error (_("Remote sent bad register number %s: %s\n\
3484 Packet: '%s'\n"),
3485 phex_nz (pnum, 0), p, buf);
3486
3487 fieldsize = hex2bin (p, regs,
3488 register_size (current_gdbarch,
3489 reg->regnum));
3490 p += 2 * fieldsize;
3491 if (fieldsize < register_size (current_gdbarch,
3492 reg->regnum))
3493 warning (_("Remote reply is too short: %s"), buf);
3494 regcache_raw_supply (get_current_regcache (),
3495 reg->regnum, regs);
3496 }
3497
3498 if (*p++ != ';')
3499 error (_("Remote register badly formatted: %s\nhere: %s"),
3500 buf, p);
3501 }
3502 }
3503 /* fall through */
3504 case 'S': /* Old style status, just signal only. */
3505 if (solibs_changed)
3506 status->kind = TARGET_WAITKIND_LOADED;
3507 else
3508 {
3509 status->kind = TARGET_WAITKIND_STOPPED;
3510 status->value.sig = (enum target_signal)
3511 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3512 }
3513
3514 if (buf[3] == 'p')
3515 {
3516 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3517 record_currthread (thread_num);
3518 }
3519 goto got_status;
3520 case 'W': /* Target exited. */
3521 {
3522 /* The remote process exited. */
3523 status->kind = TARGET_WAITKIND_EXITED;
3524 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3525 goto got_status;
3526 }
3527 case 'X':
3528 status->kind = TARGET_WAITKIND_SIGNALLED;
3529 status->value.sig = (enum target_signal)
3530 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3531 kill_kludge = 1;
3532
3533 goto got_status;
3534 case 'O': /* Console output. */
3535 remote_console_output (buf + 1);
3536 continue;
3537 case '\0':
3538 if (last_sent_signal != TARGET_SIGNAL_0)
3539 {
3540 /* Zero length reply means that we tried 'S' or 'C' and
3541 the remote system doesn't support it. */
3542 target_terminal_ours_for_output ();
3543 printf_filtered
3544 ("Can't send signals to this remote system. %s not sent.\n",
3545 target_signal_to_name (last_sent_signal));
3546 last_sent_signal = TARGET_SIGNAL_0;
3547 target_terminal_inferior ();
3548
3549 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3550 putpkt ((char *) buf);
3551 continue;
3552 }
3553 /* else fallthrough */
3554 default:
3555 warning (_("Invalid remote reply: %s"), buf);
3556 continue;
3557 }
3558 }
3559 got_status:
3560 if (thread_num != -1)
3561 {
3562 return pid_to_ptid (thread_num);
3563 }
3564 return inferior_ptid;
3565 }
3566
3567 /* Async version of remote_wait. */
3568 static ptid_t
3569 remote_async_wait (ptid_t ptid, struct target_waitstatus *status)
3570 {
3571 struct remote_state *rs = get_remote_state ();
3572 struct remote_arch_state *rsa = get_remote_arch_state ();
3573 ULONGEST thread_num = -1;
3574 ULONGEST addr;
3575 int solibs_changed = 0;
3576
3577 status->kind = TARGET_WAITKIND_EXITED;
3578 status->value.integer = 0;
3579
3580 remote_stopped_by_watchpoint_p = 0;
3581
3582 while (1)
3583 {
3584 char *buf, *p;
3585
3586 if (rs->cached_wait_status)
3587 /* Use the cached wait status, but only once. */
3588 rs->cached_wait_status = 0;
3589 else
3590 {
3591 if (!target_is_async_p ())
3592 {
3593 ofunc = signal (SIGINT, remote_interrupt);
3594 /* If the user hit C-c before this packet, or between packets,
3595 pretend that it was hit right here. */
3596 if (quit_flag)
3597 {
3598 quit_flag = 0;
3599 remote_interrupt (SIGINT);
3600 }
3601 }
3602 /* FIXME: cagney/1999-09-27: If we're in async mode we should
3603 _never_ wait for ever -> test on target_is_async_p().
3604 However, before we do that we need to ensure that the caller
3605 knows how to take the target into/out of async mode. */
3606 getpkt (&rs->buf, &rs->buf_size, wait_forever_enabled_p);
3607 if (!target_is_async_p ())
3608 signal (SIGINT, ofunc);
3609 }
3610
3611 buf = rs->buf;
3612
3613 /* This is a hook for when we need to do something (perhaps the
3614 collection of trace data) every time the target stops. */
3615 if (deprecated_target_wait_loop_hook)
3616 (*deprecated_target_wait_loop_hook) ();
3617
3618 switch (buf[0])
3619 {
3620 case 'E': /* Error of some sort. */
3621 /* We're out of sync with the target now. Did it continue or not?
3622 Not is more likely, so report a stop. */
3623 warning (_("Remote failure reply: %s"), buf);
3624 status->kind = TARGET_WAITKIND_STOPPED;
3625 status->value.sig = TARGET_SIGNAL_0;
3626 goto got_status;
3627 case 'F': /* File-I/O request. */
3628 remote_fileio_request (buf);
3629 continue;
3630 case 'T': /* Status with PC, SP, FP, ... */
3631 {
3632 gdb_byte regs[MAX_REGISTER_SIZE];
3633
3634 /* Expedited reply, containing Signal, {regno, reg} repeat. */
3635 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
3636 ss = signal number
3637 n... = register number
3638 r... = register contents
3639 */
3640 p = &buf[3]; /* after Txx */
3641
3642 while (*p)
3643 {
3644 char *p1;
3645 char *p_temp;
3646 int fieldsize;
3647 long pnum = 0;
3648
3649 /* If the packet contains a register number, save it
3650 in pnum and set p1 to point to the character
3651 following it. Otherwise p1 points to p. */
3652
3653 /* If this packet is an awatch packet, don't parse the 'a'
3654 as a register number. */
3655
3656 if (strncmp (p, "awatch", strlen("awatch")) != 0)
3657 {
3658 /* Read the register number. */
3659 pnum = strtol (p, &p_temp, 16);
3660 p1 = p_temp;
3661 }
3662 else
3663 p1 = p;
3664
3665 if (p1 == p) /* No register number present here. */
3666 {
3667 p1 = strchr (p, ':');
3668 if (p1 == NULL)
3669 error (_("Malformed packet(a) (missing colon): %s\n\
3670 Packet: '%s'\n"),
3671 p, buf);
3672 if (strncmp (p, "thread", p1 - p) == 0)
3673 {
3674 p_temp = unpack_varlen_hex (++p1, &thread_num);
3675 record_currthread (thread_num);
3676 p = p_temp;
3677 }
3678 else if ((strncmp (p, "watch", p1 - p) == 0)
3679 || (strncmp (p, "rwatch", p1 - p) == 0)
3680 || (strncmp (p, "awatch", p1 - p) == 0))
3681 {
3682 remote_stopped_by_watchpoint_p = 1;
3683 p = unpack_varlen_hex (++p1, &addr);
3684 remote_watch_data_address = (CORE_ADDR)addr;
3685 }
3686 else if (strncmp (p, "library", p1 - p) == 0)
3687 {
3688 p1++;
3689 p_temp = p1;
3690 while (*p_temp && *p_temp != ';')
3691 p_temp++;
3692
3693 solibs_changed = 1;
3694 p = p_temp;
3695 }
3696 else
3697 {
3698 /* Silently skip unknown optional info. */
3699 p_temp = strchr (p1 + 1, ';');
3700 if (p_temp)
3701 p = p_temp;
3702 }
3703 }
3704
3705 else
3706 {
3707 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
3708 p = p1;
3709 if (*p++ != ':')
3710 error (_("Malformed packet(b) (missing colon): %s\n\
3711 Packet: '%s'\n"),
3712 p, buf);
3713
3714 if (reg == NULL)
3715 error (_("Remote sent bad register number %ld: %s\n\
3716 Packet: '%s'\n"),
3717 pnum, p, buf);
3718
3719 fieldsize = hex2bin (p, regs,
3720 register_size (current_gdbarch,
3721 reg->regnum));
3722 p += 2 * fieldsize;
3723 if (fieldsize < register_size (current_gdbarch,
3724 reg->regnum))
3725 warning (_("Remote reply is too short: %s"), buf);
3726 regcache_raw_supply (get_current_regcache (),
3727 reg->regnum, regs);
3728 }
3729
3730 if (*p++ != ';')
3731 error (_("Remote register badly formatted: %s\nhere: %s"),
3732 buf, p);
3733 }
3734 }
3735 /* fall through */
3736 case 'S': /* Old style status, just signal only. */
3737 if (solibs_changed)
3738 status->kind = TARGET_WAITKIND_LOADED;
3739 else
3740 {
3741 status->kind = TARGET_WAITKIND_STOPPED;
3742 status->value.sig = (enum target_signal)
3743 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3744 }
3745
3746 if (buf[3] == 'p')
3747 {
3748 thread_num = strtol ((const char *) &buf[4], NULL, 16);
3749 record_currthread (thread_num);
3750 }
3751 goto got_status;
3752 case 'W': /* Target exited. */
3753 {
3754 /* The remote process exited. */
3755 status->kind = TARGET_WAITKIND_EXITED;
3756 status->value.integer = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
3757 goto got_status;
3758 }
3759 case 'X':
3760 status->kind = TARGET_WAITKIND_SIGNALLED;
3761 status->value.sig = (enum target_signal)
3762 (((fromhex (buf[1])) << 4) + (fromhex (buf[2])));
3763 kill_kludge = 1;
3764
3765 goto got_status;
3766 case 'O': /* Console output. */
3767 remote_console_output (buf + 1);
3768 /* Return immediately to the event loop. The event loop will
3769 still be waiting on the inferior afterwards. */
3770 status->kind = TARGET_WAITKIND_IGNORE;
3771 goto got_status;
3772 case '\0':
3773 if (last_sent_signal != TARGET_SIGNAL_0)
3774 {
3775 /* Zero length reply means that we tried 'S' or 'C' and
3776 the remote system doesn't support it. */
3777 target_terminal_ours_for_output ();
3778 printf_filtered
3779 ("Can't send signals to this remote system. %s not sent.\n",
3780 target_signal_to_name (last_sent_signal));
3781 last_sent_signal = TARGET_SIGNAL_0;
3782 target_terminal_inferior ();
3783
3784 strcpy ((char *) buf, last_sent_step ? "s" : "c");
3785 putpkt ((char *) buf);
3786 continue;
3787 }
3788 /* else fallthrough */
3789 default:
3790 warning (_("Invalid remote reply: %s"), buf);
3791 continue;
3792 }
3793 }
3794 got_status:
3795 if (thread_num != -1)
3796 {
3797 return pid_to_ptid (thread_num);
3798 }
3799 return inferior_ptid;
3800 }
3801
3802 /* Fetch a single register using a 'p' packet. */
3803
3804 static int
3805 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
3806 {
3807 struct remote_state *rs = get_remote_state ();
3808 char *buf, *p;
3809 char regp[MAX_REGISTER_SIZE];
3810 int i;
3811
3812 if (remote_protocol_packets[PACKET_p].support == PACKET_DISABLE)
3813 return 0;
3814
3815 if (reg->pnum == -1)
3816 return 0;
3817
3818 p = rs->buf;
3819 *p++ = 'p';
3820 p += hexnumstr (p, reg->pnum);
3821 *p++ = '\0';
3822 remote_send (&rs->buf, &rs->buf_size);
3823
3824 buf = rs->buf;
3825
3826 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
3827 {
3828 case PACKET_OK:
3829 break;
3830 case PACKET_UNKNOWN:
3831 return 0;
3832 case PACKET_ERROR:
3833 error (_("Could not fetch register \"%s\""),
3834 gdbarch_register_name (get_regcache_arch (regcache), reg->regnum));
3835 }
3836
3837 /* If this register is unfetchable, tell the regcache. */
3838 if (buf[0] == 'x')
3839 {
3840 regcache_raw_supply (regcache, reg->regnum, NULL);
3841 return 1;
3842 }
3843
3844 /* Otherwise, parse and supply the value. */
3845 p = buf;
3846 i = 0;
3847 while (p[0] != 0)
3848 {
3849 if (p[1] == 0)
3850 error (_("fetch_register_using_p: early buf termination"));
3851
3852 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
3853 p += 2;
3854 }
3855 regcache_raw_supply (regcache, reg->regnum, regp);
3856 return 1;
3857 }
3858
3859 /* Fetch the registers included in the target's 'g' packet. */
3860
3861 static int
3862 send_g_packet (void)
3863 {
3864 struct remote_state *rs = get_remote_state ();
3865 int i, buf_len;
3866 char *p;
3867 char *regs;
3868
3869 sprintf (rs->buf, "g");
3870 remote_send (&rs->buf, &rs->buf_size);
3871
3872 /* We can get out of synch in various cases. If the first character
3873 in the buffer is not a hex character, assume that has happened
3874 and try to fetch another packet to read. */
3875 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
3876 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
3877 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
3878 && rs->buf[0] != 'x') /* New: unavailable register value. */
3879 {
3880 if (remote_debug)
3881 fprintf_unfiltered (gdb_stdlog,
3882 "Bad register packet; fetching a new packet\n");
3883 getpkt (&rs->buf, &rs->buf_size, 0);
3884 }
3885
3886 buf_len = strlen (rs->buf);
3887
3888 /* Sanity check the received packet. */
3889 if (buf_len % 2 != 0)
3890 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
3891
3892 return buf_len / 2;
3893 }
3894
3895 static void
3896 process_g_packet (struct regcache *regcache)
3897 {
3898 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3899 struct remote_state *rs = get_remote_state ();
3900 struct remote_arch_state *rsa = get_remote_arch_state ();
3901 int i, buf_len;
3902 char *p;
3903 char *regs;
3904
3905 buf_len = strlen (rs->buf);
3906
3907 /* Further sanity checks, with knowledge of the architecture. */
3908 if (buf_len > 2 * rsa->sizeof_g_packet)
3909 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
3910
3911 /* Save the size of the packet sent to us by the target. It is used
3912 as a heuristic when determining the max size of packets that the
3913 target can safely receive. */
3914 if (rsa->actual_register_packet_size == 0)
3915 rsa->actual_register_packet_size = buf_len;
3916
3917 /* If this is smaller than we guessed the 'g' packet would be,
3918 update our records. A 'g' reply that doesn't include a register's
3919 value implies either that the register is not available, or that
3920 the 'p' packet must be used. */
3921 if (buf_len < 2 * rsa->sizeof_g_packet)
3922 {
3923 rsa->sizeof_g_packet = buf_len / 2;
3924
3925 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3926 {
3927 if (rsa->regs[i].pnum == -1)
3928 continue;
3929
3930 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
3931 rsa->regs[i].in_g_packet = 0;
3932 else
3933 rsa->regs[i].in_g_packet = 1;
3934 }
3935 }
3936
3937 regs = alloca (rsa->sizeof_g_packet);
3938
3939 /* Unimplemented registers read as all bits zero. */
3940 memset (regs, 0, rsa->sizeof_g_packet);
3941
3942 /* Reply describes registers byte by byte, each byte encoded as two
3943 hex characters. Suck them all up, then supply them to the
3944 register cacheing/storage mechanism. */
3945
3946 p = rs->buf;
3947 for (i = 0; i < rsa->sizeof_g_packet; i++)
3948 {
3949 if (p[0] == 0 || p[1] == 0)
3950 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
3951 internal_error (__FILE__, __LINE__,
3952 "unexpected end of 'g' packet reply");
3953
3954 if (p[0] == 'x' && p[1] == 'x')
3955 regs[i] = 0; /* 'x' */
3956 else
3957 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
3958 p += 2;
3959 }
3960
3961 {
3962 int i;
3963 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
3964 {
3965 struct packet_reg *r = &rsa->regs[i];
3966 if (r->in_g_packet)
3967 {
3968 if (r->offset * 2 >= strlen (rs->buf))
3969 /* This shouldn't happen - we adjusted in_g_packet above. */
3970 internal_error (__FILE__, __LINE__,
3971 "unexpected end of 'g' packet reply");
3972 else if (rs->buf[r->offset * 2] == 'x')
3973 {
3974 gdb_assert (r->offset * 2 < strlen (rs->buf));
3975 /* The register isn't available, mark it as such (at
3976 the same time setting the value to zero). */
3977 regcache_raw_supply (regcache, r->regnum, NULL);
3978 }
3979 else
3980 regcache_raw_supply (regcache, r->regnum,
3981 regs + r->offset);
3982 }
3983 }
3984 }
3985 }
3986
3987 static void
3988 fetch_registers_using_g (struct regcache *regcache)
3989 {
3990 send_g_packet ();
3991 process_g_packet (regcache);
3992 }
3993
3994 static void
3995 remote_fetch_registers (struct regcache *regcache, int regnum)
3996 {
3997 struct remote_state *rs = get_remote_state ();
3998 struct remote_arch_state *rsa = get_remote_arch_state ();
3999 int i;
4000
4001 set_thread (PIDGET (inferior_ptid), 1);
4002
4003 if (regnum >= 0)
4004 {
4005 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4006 gdb_assert (reg != NULL);
4007
4008 /* If this register might be in the 'g' packet, try that first -
4009 we are likely to read more than one register. If this is the
4010 first 'g' packet, we might be overly optimistic about its
4011 contents, so fall back to 'p'. */
4012 if (reg->in_g_packet)
4013 {
4014 fetch_registers_using_g (regcache);
4015 if (reg->in_g_packet)
4016 return;
4017 }
4018
4019 if (fetch_register_using_p (regcache, reg))
4020 return;
4021
4022 /* This register is not available. */
4023 regcache_raw_supply (regcache, reg->regnum, NULL);
4024
4025 return;
4026 }
4027
4028 fetch_registers_using_g (regcache);
4029
4030 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4031 if (!rsa->regs[i].in_g_packet)
4032 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
4033 {
4034 /* This register is not available. */
4035 regcache_raw_supply (regcache, i, NULL);
4036 }
4037 }
4038
4039 /* Prepare to store registers. Since we may send them all (using a
4040 'G' request), we have to read out the ones we don't want to change
4041 first. */
4042
4043 static void
4044 remote_prepare_to_store (struct regcache *regcache)
4045 {
4046 struct remote_arch_state *rsa = get_remote_arch_state ();
4047 int i;
4048 gdb_byte buf[MAX_REGISTER_SIZE];
4049
4050 /* Make sure the entire registers array is valid. */
4051 switch (remote_protocol_packets[PACKET_P].support)
4052 {
4053 case PACKET_DISABLE:
4054 case PACKET_SUPPORT_UNKNOWN:
4055 /* Make sure all the necessary registers are cached. */
4056 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4057 if (rsa->regs[i].in_g_packet)
4058 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
4059 break;
4060 case PACKET_ENABLE:
4061 break;
4062 }
4063 }
4064
4065 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
4066 packet was not recognized. */
4067
4068 static int
4069 store_register_using_P (const struct regcache *regcache, struct packet_reg *reg)
4070 {
4071 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4072 struct remote_state *rs = get_remote_state ();
4073 struct remote_arch_state *rsa = get_remote_arch_state ();
4074 /* Try storing a single register. */
4075 char *buf = rs->buf;
4076 gdb_byte regp[MAX_REGISTER_SIZE];
4077 char *p;
4078
4079 if (remote_protocol_packets[PACKET_P].support == PACKET_DISABLE)
4080 return 0;
4081
4082 if (reg->pnum == -1)
4083 return 0;
4084
4085 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
4086 p = buf + strlen (buf);
4087 regcache_raw_collect (regcache, reg->regnum, regp);
4088 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
4089 remote_send (&rs->buf, &rs->buf_size);
4090
4091 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
4092 {
4093 case PACKET_OK:
4094 return 1;
4095 case PACKET_ERROR:
4096 error (_("Could not write register \"%s\""),
4097 gdbarch_register_name (gdbarch, reg->regnum));
4098 case PACKET_UNKNOWN:
4099 return 0;
4100 default:
4101 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
4102 }
4103 }
4104
4105 /* Store register REGNUM, or all registers if REGNUM == -1, from the
4106 contents of the register cache buffer. FIXME: ignores errors. */
4107
4108 static void
4109 store_registers_using_G (const struct regcache *regcache)
4110 {
4111 struct remote_state *rs = get_remote_state ();
4112 struct remote_arch_state *rsa = get_remote_arch_state ();
4113 gdb_byte *regs;
4114 char *p;
4115
4116 /* Extract all the registers in the regcache copying them into a
4117 local buffer. */
4118 {
4119 int i;
4120 regs = alloca (rsa->sizeof_g_packet);
4121 memset (regs, 0, rsa->sizeof_g_packet);
4122 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4123 {
4124 struct packet_reg *r = &rsa->regs[i];
4125 if (r->in_g_packet)
4126 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
4127 }
4128 }
4129
4130 /* Command describes registers byte by byte,
4131 each byte encoded as two hex characters. */
4132 p = rs->buf;
4133 *p++ = 'G';
4134 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
4135 updated. */
4136 bin2hex (regs, p, rsa->sizeof_g_packet);
4137 remote_send (&rs->buf, &rs->buf_size);
4138 }
4139
4140 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
4141 of the register cache buffer. FIXME: ignores errors. */
4142
4143 static void
4144 remote_store_registers (struct regcache *regcache, int regnum)
4145 {
4146 struct remote_state *rs = get_remote_state ();
4147 struct remote_arch_state *rsa = get_remote_arch_state ();
4148 int i;
4149
4150 set_thread (PIDGET (inferior_ptid), 1);
4151
4152 if (regnum >= 0)
4153 {
4154 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
4155 gdb_assert (reg != NULL);
4156
4157 /* Always prefer to store registers using the 'P' packet if
4158 possible; we often change only a small number of registers.
4159 Sometimes we change a larger number; we'd need help from a
4160 higher layer to know to use 'G'. */
4161 if (store_register_using_P (regcache, reg))
4162 return;
4163
4164 /* For now, don't complain if we have no way to write the
4165 register. GDB loses track of unavailable registers too
4166 easily. Some day, this may be an error. We don't have
4167 any way to read the register, either... */
4168 if (!reg->in_g_packet)
4169 return;
4170
4171 store_registers_using_G (regcache);
4172 return;
4173 }
4174
4175 store_registers_using_G (regcache);
4176
4177 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
4178 if (!rsa->regs[i].in_g_packet)
4179 if (!store_register_using_P (regcache, &rsa->regs[i]))
4180 /* See above for why we do not issue an error here. */
4181 continue;
4182 }
4183 \f
4184
4185 /* Return the number of hex digits in num. */
4186
4187 static int
4188 hexnumlen (ULONGEST num)
4189 {
4190 int i;
4191
4192 for (i = 0; num != 0; i++)
4193 num >>= 4;
4194
4195 return max (i, 1);
4196 }
4197
4198 /* Set BUF to the minimum number of hex digits representing NUM. */
4199
4200 static int
4201 hexnumstr (char *buf, ULONGEST num)
4202 {
4203 int len = hexnumlen (num);
4204 return hexnumnstr (buf, num, len);
4205 }
4206
4207
4208 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
4209
4210 static int
4211 hexnumnstr (char *buf, ULONGEST num, int width)
4212 {
4213 int i;
4214
4215 buf[width] = '\0';
4216
4217 for (i = width - 1; i >= 0; i--)
4218 {
4219 buf[i] = "0123456789abcdef"[(num & 0xf)];
4220 num >>= 4;
4221 }
4222
4223 return width;
4224 }
4225
4226 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
4227
4228 static CORE_ADDR
4229 remote_address_masked (CORE_ADDR addr)
4230 {
4231 int address_size = remote_address_size;
4232 /* If "remoteaddresssize" was not set, default to target address size. */
4233 if (!address_size)
4234 address_size = gdbarch_addr_bit (current_gdbarch);
4235
4236 if (address_size > 0
4237 && address_size < (sizeof (ULONGEST) * 8))
4238 {
4239 /* Only create a mask when that mask can safely be constructed
4240 in a ULONGEST variable. */
4241 ULONGEST mask = 1;
4242 mask = (mask << address_size) - 1;
4243 addr &= mask;
4244 }
4245 return addr;
4246 }
4247
4248 /* Convert BUFFER, binary data at least LEN bytes long, into escaped
4249 binary data in OUT_BUF. Set *OUT_LEN to the length of the data
4250 encoded in OUT_BUF, and return the number of bytes in OUT_BUF
4251 (which may be more than *OUT_LEN due to escape characters). The
4252 total number of bytes in the output buffer will be at most
4253 OUT_MAXLEN. */
4254
4255 static int
4256 remote_escape_output (const gdb_byte *buffer, int len,
4257 gdb_byte *out_buf, int *out_len,
4258 int out_maxlen)
4259 {
4260 int input_index, output_index;
4261
4262 output_index = 0;
4263 for (input_index = 0; input_index < len; input_index++)
4264 {
4265 gdb_byte b = buffer[input_index];
4266
4267 if (b == '$' || b == '#' || b == '}')
4268 {
4269 /* These must be escaped. */
4270 if (output_index + 2 > out_maxlen)
4271 break;
4272 out_buf[output_index++] = '}';
4273 out_buf[output_index++] = b ^ 0x20;
4274 }
4275 else
4276 {
4277 if (output_index + 1 > out_maxlen)
4278 break;
4279 out_buf[output_index++] = b;
4280 }
4281 }
4282
4283 *out_len = input_index;
4284 return output_index;
4285 }
4286
4287 /* Convert BUFFER, escaped data LEN bytes long, into binary data
4288 in OUT_BUF. Return the number of bytes written to OUT_BUF.
4289 Raise an error if the total number of bytes exceeds OUT_MAXLEN.
4290
4291 This function reverses remote_escape_output. It allows more
4292 escaped characters than that function does, in particular because
4293 '*' must be escaped to avoid the run-length encoding processing
4294 in reading packets. */
4295
4296 static int
4297 remote_unescape_input (const gdb_byte *buffer, int len,
4298 gdb_byte *out_buf, int out_maxlen)
4299 {
4300 int input_index, output_index;
4301 int escaped;
4302
4303 output_index = 0;
4304 escaped = 0;
4305 for (input_index = 0; input_index < len; input_index++)
4306 {
4307 gdb_byte b = buffer[input_index];
4308
4309 if (output_index + 1 > out_maxlen)
4310 {
4311 warning (_("Received too much data from remote target;"
4312 " ignoring overflow."));
4313 return output_index;
4314 }
4315
4316 if (escaped)
4317 {
4318 out_buf[output_index++] = b ^ 0x20;
4319 escaped = 0;
4320 }
4321 else if (b == '}')
4322 escaped = 1;
4323 else
4324 out_buf[output_index++] = b;
4325 }
4326
4327 if (escaped)
4328 error (_("Unmatched escape character in target response."));
4329
4330 return output_index;
4331 }
4332
4333 /* Determine whether the remote target supports binary downloading.
4334 This is accomplished by sending a no-op memory write of zero length
4335 to the target at the specified address. It does not suffice to send
4336 the whole packet, since many stubs strip the eighth bit and
4337 subsequently compute a wrong checksum, which causes real havoc with
4338 remote_write_bytes.
4339
4340 NOTE: This can still lose if the serial line is not eight-bit
4341 clean. In cases like this, the user should clear "remote
4342 X-packet". */
4343
4344 static void
4345 check_binary_download (CORE_ADDR addr)
4346 {
4347 struct remote_state *rs = get_remote_state ();
4348
4349 switch (remote_protocol_packets[PACKET_X].support)
4350 {
4351 case PACKET_DISABLE:
4352 break;
4353 case PACKET_ENABLE:
4354 break;
4355 case PACKET_SUPPORT_UNKNOWN:
4356 {
4357 char *p;
4358
4359 p = rs->buf;
4360 *p++ = 'X';
4361 p += hexnumstr (p, (ULONGEST) addr);
4362 *p++ = ',';
4363 p += hexnumstr (p, (ULONGEST) 0);
4364 *p++ = ':';
4365 *p = '\0';
4366
4367 putpkt_binary (rs->buf, (int) (p - rs->buf));
4368 getpkt (&rs->buf, &rs->buf_size, 0);
4369
4370 if (rs->buf[0] == '\0')
4371 {
4372 if (remote_debug)
4373 fprintf_unfiltered (gdb_stdlog,
4374 "binary downloading NOT suppported by target\n");
4375 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
4376 }
4377 else
4378 {
4379 if (remote_debug)
4380 fprintf_unfiltered (gdb_stdlog,
4381 "binary downloading suppported by target\n");
4382 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
4383 }
4384 break;
4385 }
4386 }
4387 }
4388
4389 /* Write memory data directly to the remote machine.
4390 This does not inform the data cache; the data cache uses this.
4391 HEADER is the starting part of the packet.
4392 MEMADDR is the address in the remote memory space.
4393 MYADDR is the address of the buffer in our space.
4394 LEN is the number of bytes.
4395 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
4396 should send data as binary ('X'), or hex-encoded ('M').
4397
4398 The function creates packet of the form
4399 <HEADER><ADDRESS>,<LENGTH>:<DATA>
4400
4401 where encoding of <DATA> is termined by PACKET_FORMAT.
4402
4403 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
4404 are omitted.
4405
4406 Returns the number of bytes transferred, or 0 (setting errno) for
4407 error. Only transfer a single packet. */
4408
4409 static int
4410 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
4411 const gdb_byte *myaddr, int len,
4412 char packet_format, int use_length)
4413 {
4414 struct remote_state *rs = get_remote_state ();
4415 char *p;
4416 char *plen = NULL;
4417 int plenlen = 0;
4418 int todo;
4419 int nr_bytes;
4420 int payload_size;
4421 int payload_length;
4422 int header_length;
4423
4424 if (packet_format != 'X' && packet_format != 'M')
4425 internal_error (__FILE__, __LINE__,
4426 "remote_write_bytes_aux: bad packet format");
4427
4428 if (len <= 0)
4429 return 0;
4430
4431 payload_size = get_memory_write_packet_size ();
4432
4433 /* The packet buffer will be large enough for the payload;
4434 get_memory_packet_size ensures this. */
4435 rs->buf[0] = '\0';
4436
4437 /* Compute the size of the actual payload by subtracting out the
4438 packet header and footer overhead: "$M<memaddr>,<len>:...#nn".
4439 */
4440 payload_size -= strlen ("$,:#NN");
4441 if (!use_length)
4442 /* The comma won't be used. */
4443 payload_size += 1;
4444 header_length = strlen (header);
4445 payload_size -= header_length;
4446 payload_size -= hexnumlen (memaddr);
4447
4448 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
4449
4450 strcat (rs->buf, header);
4451 p = rs->buf + strlen (header);
4452
4453 /* Compute a best guess of the number of bytes actually transfered. */
4454 if (packet_format == 'X')
4455 {
4456 /* Best guess at number of bytes that will fit. */
4457 todo = min (len, payload_size);
4458 if (use_length)
4459 payload_size -= hexnumlen (todo);
4460 todo = min (todo, payload_size);
4461 }
4462 else
4463 {
4464 /* Num bytes that will fit. */
4465 todo = min (len, payload_size / 2);
4466 if (use_length)
4467 payload_size -= hexnumlen (todo);
4468 todo = min (todo, payload_size / 2);
4469 }
4470
4471 if (todo <= 0)
4472 internal_error (__FILE__, __LINE__,
4473 _("minumum packet size too small to write data"));
4474
4475 /* If we already need another packet, then try to align the end
4476 of this packet to a useful boundary. */
4477 if (todo > 2 * REMOTE_ALIGN_WRITES && todo < len)
4478 todo = ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
4479
4480 /* Append "<memaddr>". */
4481 memaddr = remote_address_masked (memaddr);
4482 p += hexnumstr (p, (ULONGEST) memaddr);
4483
4484 if (use_length)
4485 {
4486 /* Append ",". */
4487 *p++ = ',';
4488
4489 /* Append <len>. Retain the location/size of <len>. It may need to
4490 be adjusted once the packet body has been created. */
4491 plen = p;
4492 plenlen = hexnumstr (p, (ULONGEST) todo);
4493 p += plenlen;
4494 }
4495
4496 /* Append ":". */
4497 *p++ = ':';
4498 *p = '\0';
4499
4500 /* Append the packet body. */
4501 if (packet_format == 'X')
4502 {
4503 /* Binary mode. Send target system values byte by byte, in
4504 increasing byte addresses. Only escape certain critical
4505 characters. */
4506 payload_length = remote_escape_output (myaddr, todo, p, &nr_bytes,
4507 payload_size);
4508
4509 /* If not all TODO bytes fit, then we'll need another packet. Make
4510 a second try to keep the end of the packet aligned. Don't do
4511 this if the packet is tiny. */
4512 if (nr_bytes < todo && nr_bytes > 2 * REMOTE_ALIGN_WRITES)
4513 {
4514 int new_nr_bytes;
4515
4516 new_nr_bytes = (((memaddr + nr_bytes) & ~(REMOTE_ALIGN_WRITES - 1))
4517 - memaddr);
4518 if (new_nr_bytes != nr_bytes)
4519 payload_length = remote_escape_output (myaddr, new_nr_bytes,
4520 p, &nr_bytes,
4521 payload_size);
4522 }
4523
4524 p += payload_length;
4525 if (use_length && nr_bytes < todo)
4526 {
4527 /* Escape chars have filled up the buffer prematurely,
4528 and we have actually sent fewer bytes than planned.
4529 Fix-up the length field of the packet. Use the same
4530 number of characters as before. */
4531 plen += hexnumnstr (plen, (ULONGEST) nr_bytes, plenlen);
4532 *plen = ':'; /* overwrite \0 from hexnumnstr() */
4533 }
4534 }
4535 else
4536 {
4537 /* Normal mode: Send target system values byte by byte, in
4538 increasing byte addresses. Each byte is encoded as a two hex
4539 value. */
4540 nr_bytes = bin2hex (myaddr, p, todo);
4541 p += 2 * nr_bytes;
4542 }
4543
4544 putpkt_binary (rs->buf, (int) (p - rs->buf));
4545 getpkt (&rs->buf, &rs->buf_size, 0);
4546
4547 if (rs->buf[0] == 'E')
4548 {
4549 /* There is no correspondance between what the remote protocol
4550 uses for errors and errno codes. We would like a cleaner way
4551 of representing errors (big enough to include errno codes,
4552 bfd_error codes, and others). But for now just return EIO. */
4553 errno = EIO;
4554 return 0;
4555 }
4556
4557 /* Return NR_BYTES, not TODO, in case escape chars caused us to send
4558 fewer bytes than we'd planned. */
4559 return nr_bytes;
4560 }
4561
4562 /* Write memory data directly to the remote machine.
4563 This does not inform the data cache; the data cache uses this.
4564 MEMADDR is the address in the remote memory space.
4565 MYADDR is the address of the buffer in our space.
4566 LEN is the number of bytes.
4567
4568 Returns number of bytes transferred, or 0 (setting errno) for
4569 error. Only transfer a single packet. */
4570
4571 int
4572 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
4573 {
4574 char *packet_format = 0;
4575
4576 /* Check whether the target supports binary download. */
4577 check_binary_download (memaddr);
4578
4579 switch (remote_protocol_packets[PACKET_X].support)
4580 {
4581 case PACKET_ENABLE:
4582 packet_format = "X";
4583 break;
4584 case PACKET_DISABLE:
4585 packet_format = "M";
4586 break;
4587 case PACKET_SUPPORT_UNKNOWN:
4588 internal_error (__FILE__, __LINE__,
4589 _("remote_write_bytes: bad internal state"));
4590 default:
4591 internal_error (__FILE__, __LINE__, _("bad switch"));
4592 }
4593
4594 return remote_write_bytes_aux (packet_format,
4595 memaddr, myaddr, len, packet_format[0], 1);
4596 }
4597
4598 /* Read memory data directly from the remote machine.
4599 This does not use the data cache; the data cache uses this.
4600 MEMADDR is the address in the remote memory space.
4601 MYADDR is the address of the buffer in our space.
4602 LEN is the number of bytes.
4603
4604 Returns number of bytes transferred, or 0 for error. */
4605
4606 /* NOTE: cagney/1999-10-18: This function (and its siblings in other
4607 remote targets) shouldn't attempt to read the entire buffer.
4608 Instead it should read a single packet worth of data and then
4609 return the byte size of that packet to the caller. The caller (its
4610 caller and its callers caller ;-) already contains code for
4611 handling partial reads. */
4612
4613 int
4614 remote_read_bytes (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
4615 {
4616 struct remote_state *rs = get_remote_state ();
4617 int max_buf_size; /* Max size of packet output buffer. */
4618 int origlen;
4619
4620 if (len <= 0)
4621 return 0;
4622
4623 max_buf_size = get_memory_read_packet_size ();
4624 /* The packet buffer will be large enough for the payload;
4625 get_memory_packet_size ensures this. */
4626
4627 origlen = len;
4628 while (len > 0)
4629 {
4630 char *p;
4631 int todo;
4632 int i;
4633
4634 todo = min (len, max_buf_size / 2); /* num bytes that will fit */
4635
4636 /* construct "m"<memaddr>","<len>" */
4637 /* sprintf (rs->buf, "m%lx,%x", (unsigned long) memaddr, todo); */
4638 memaddr = remote_address_masked (memaddr);
4639 p = rs->buf;
4640 *p++ = 'm';
4641 p += hexnumstr (p, (ULONGEST) memaddr);
4642 *p++ = ',';
4643 p += hexnumstr (p, (ULONGEST) todo);
4644 *p = '\0';
4645
4646 putpkt (rs->buf);
4647 getpkt (&rs->buf, &rs->buf_size, 0);
4648
4649 if (rs->buf[0] == 'E'
4650 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
4651 && rs->buf[3] == '\0')
4652 {
4653 /* There is no correspondance between what the remote
4654 protocol uses for errors and errno codes. We would like
4655 a cleaner way of representing errors (big enough to
4656 include errno codes, bfd_error codes, and others). But
4657 for now just return EIO. */
4658 errno = EIO;
4659 return 0;
4660 }
4661
4662 /* Reply describes memory byte by byte,
4663 each byte encoded as two hex characters. */
4664
4665 p = rs->buf;
4666 if ((i = hex2bin (p, myaddr, todo)) < todo)
4667 {
4668 /* Reply is short. This means that we were able to read
4669 only part of what we wanted to. */
4670 return i + (origlen - len);
4671 }
4672 myaddr += todo;
4673 memaddr += todo;
4674 len -= todo;
4675 }
4676 return origlen;
4677 }
4678 \f
4679 /* Read or write LEN bytes from inferior memory at MEMADDR,
4680 transferring to or from debugger address BUFFER. Write to inferior
4681 if SHOULD_WRITE is nonzero. Returns length of data written or
4682 read; 0 for error. TARGET is unused. */
4683
4684 static int
4685 remote_xfer_memory (CORE_ADDR mem_addr, gdb_byte *buffer, int mem_len,
4686 int should_write, struct mem_attrib *attrib,
4687 struct target_ops *target)
4688 {
4689 int res;
4690
4691 if (should_write)
4692 res = remote_write_bytes (mem_addr, buffer, mem_len);
4693 else
4694 res = remote_read_bytes (mem_addr, buffer, mem_len);
4695
4696 return res;
4697 }
4698
4699 /* Sends a packet with content determined by the printf format string
4700 FORMAT and the remaining arguments, then gets the reply. Returns
4701 whether the packet was a success, a failure, or unknown. */
4702
4703 enum packet_result
4704 remote_send_printf (const char *format, ...)
4705 {
4706 struct remote_state *rs = get_remote_state ();
4707 int max_size = get_remote_packet_size ();
4708
4709 va_list ap;
4710 va_start (ap, format);
4711
4712 rs->buf[0] = '\0';
4713 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
4714 internal_error (__FILE__, __LINE__, "Too long remote packet.");
4715
4716 if (putpkt (rs->buf) < 0)
4717 error (_("Communication problem with target."));
4718
4719 rs->buf[0] = '\0';
4720 getpkt (&rs->buf, &rs->buf_size, 0);
4721
4722 return packet_check_result (rs->buf);
4723 }
4724
4725 static void
4726 restore_remote_timeout (void *p)
4727 {
4728 int value = *(int *)p;
4729 remote_timeout = value;
4730 }
4731
4732 /* Flash writing can take quite some time. We'll set
4733 effectively infinite timeout for flash operations.
4734 In future, we'll need to decide on a better approach. */
4735 static const int remote_flash_timeout = 1000;
4736
4737 static void
4738 remote_flash_erase (struct target_ops *ops,
4739 ULONGEST address, LONGEST length)
4740 {
4741 int saved_remote_timeout = remote_timeout;
4742 enum packet_result ret;
4743
4744 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4745 &saved_remote_timeout);
4746 remote_timeout = remote_flash_timeout;
4747
4748 ret = remote_send_printf ("vFlashErase:%s,%s",
4749 paddr (address),
4750 phex (length, 4));
4751 switch (ret)
4752 {
4753 case PACKET_UNKNOWN:
4754 error (_("Remote target does not support flash erase"));
4755 case PACKET_ERROR:
4756 error (_("Error erasing flash with vFlashErase packet"));
4757 default:
4758 break;
4759 }
4760
4761 do_cleanups (back_to);
4762 }
4763
4764 static LONGEST
4765 remote_flash_write (struct target_ops *ops,
4766 ULONGEST address, LONGEST length,
4767 const gdb_byte *data)
4768 {
4769 int saved_remote_timeout = remote_timeout;
4770 int ret;
4771 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4772 &saved_remote_timeout);
4773
4774 remote_timeout = remote_flash_timeout;
4775 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 'X', 0);
4776 do_cleanups (back_to);
4777
4778 return ret;
4779 }
4780
4781 static void
4782 remote_flash_done (struct target_ops *ops)
4783 {
4784 int saved_remote_timeout = remote_timeout;
4785 int ret;
4786 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
4787 &saved_remote_timeout);
4788
4789 remote_timeout = remote_flash_timeout;
4790 ret = remote_send_printf ("vFlashDone");
4791 do_cleanups (back_to);
4792
4793 switch (ret)
4794 {
4795 case PACKET_UNKNOWN:
4796 error (_("Remote target does not support vFlashDone"));
4797 case PACKET_ERROR:
4798 error (_("Error finishing flash operation"));
4799 default:
4800 break;
4801 }
4802 }
4803
4804 static void
4805 remote_files_info (struct target_ops *ignore)
4806 {
4807 puts_filtered ("Debugging a target over a serial line.\n");
4808 }
4809 \f
4810 /* Stuff for dealing with the packets which are part of this protocol.
4811 See comment at top of file for details. */
4812
4813 /* Read a single character from the remote end. */
4814
4815 static int
4816 readchar (int timeout)
4817 {
4818 int ch;
4819
4820 ch = serial_readchar (remote_desc, timeout);
4821
4822 if (ch >= 0)
4823 return ch;
4824
4825 switch ((enum serial_rc) ch)
4826 {
4827 case SERIAL_EOF:
4828 target_mourn_inferior ();
4829 error (_("Remote connection closed"));
4830 /* no return */
4831 case SERIAL_ERROR:
4832 perror_with_name (_("Remote communication error"));
4833 /* no return */
4834 case SERIAL_TIMEOUT:
4835 break;
4836 }
4837 return ch;
4838 }
4839
4840 /* Send the command in *BUF to the remote machine, and read the reply
4841 into *BUF. Report an error if we get an error reply. Resize
4842 *BUF using xrealloc if necessary to hold the result, and update
4843 *SIZEOF_BUF. */
4844
4845 static void
4846 remote_send (char **buf,
4847 long *sizeof_buf)
4848 {
4849 putpkt (*buf);
4850 getpkt (buf, sizeof_buf, 0);
4851
4852 if ((*buf)[0] == 'E')
4853 error (_("Remote failure reply: %s"), *buf);
4854 }
4855
4856 /* Display a null-terminated packet on stdout, for debugging, using C
4857 string notation. */
4858
4859 static void
4860 print_packet (char *buf)
4861 {
4862 puts_filtered ("\"");
4863 fputstr_filtered (buf, '"', gdb_stdout);
4864 puts_filtered ("\"");
4865 }
4866
4867 int
4868 putpkt (char *buf)
4869 {
4870 return putpkt_binary (buf, strlen (buf));
4871 }
4872
4873 /* Send a packet to the remote machine, with error checking. The data
4874 of the packet is in BUF. The string in BUF can be at most
4875 get_remote_packet_size () - 5 to account for the $, # and checksum,
4876 and for a possible /0 if we are debugging (remote_debug) and want
4877 to print the sent packet as a string. */
4878
4879 static int
4880 putpkt_binary (char *buf, int cnt)
4881 {
4882 struct remote_state *rs = get_remote_state ();
4883 int i;
4884 unsigned char csum = 0;
4885 char *buf2 = alloca (cnt + 6);
4886
4887 int ch;
4888 int tcount = 0;
4889 char *p;
4890
4891 /* We're sending out a new packet. Make sure we don't look at a
4892 stale cached response. */
4893 rs->cached_wait_status = 0;
4894
4895 /* Copy the packet into buffer BUF2, encapsulating it
4896 and giving it a checksum. */
4897
4898 p = buf2;
4899 *p++ = '$';
4900
4901 for (i = 0; i < cnt; i++)
4902 {
4903 csum += buf[i];
4904 *p++ = buf[i];
4905 }
4906 *p++ = '#';
4907 *p++ = tohex ((csum >> 4) & 0xf);
4908 *p++ = tohex (csum & 0xf);
4909
4910 /* Send it over and over until we get a positive ack. */
4911
4912 while (1)
4913 {
4914 int started_error_output = 0;
4915
4916 if (remote_debug)
4917 {
4918 *p = '\0';
4919 fprintf_unfiltered (gdb_stdlog, "Sending packet: ");
4920 fputstrn_unfiltered (buf2, p - buf2, 0, gdb_stdlog);
4921 fprintf_unfiltered (gdb_stdlog, "...");
4922 gdb_flush (gdb_stdlog);
4923 }
4924 if (serial_write (remote_desc, buf2, p - buf2))
4925 perror_with_name (_("putpkt: write failed"));
4926
4927 /* Read until either a timeout occurs (-2) or '+' is read. */
4928 while (1)
4929 {
4930 ch = readchar (remote_timeout);
4931
4932 if (remote_debug)
4933 {
4934 switch (ch)
4935 {
4936 case '+':
4937 case '-':
4938 case SERIAL_TIMEOUT:
4939 case '$':
4940 if (started_error_output)
4941 {
4942 putchar_unfiltered ('\n');
4943 started_error_output = 0;
4944 }
4945 }
4946 }
4947
4948 switch (ch)
4949 {
4950 case '+':
4951 if (remote_debug)
4952 fprintf_unfiltered (gdb_stdlog, "Ack\n");
4953 return 1;
4954 case '-':
4955 if (remote_debug)
4956 fprintf_unfiltered (gdb_stdlog, "Nak\n");
4957 case SERIAL_TIMEOUT:
4958 tcount++;
4959 if (tcount > 3)
4960 return 0;
4961 break; /* Retransmit buffer. */
4962 case '$':
4963 {
4964 if (remote_debug)
4965 fprintf_unfiltered (gdb_stdlog,
4966 "Packet instead of Ack, ignoring it\n");
4967 /* It's probably an old response sent because an ACK
4968 was lost. Gobble up the packet and ack it so it
4969 doesn't get retransmitted when we resend this
4970 packet. */
4971 skip_frame ();
4972 serial_write (remote_desc, "+", 1);
4973 continue; /* Now, go look for +. */
4974 }
4975 default:
4976 if (remote_debug)
4977 {
4978 if (!started_error_output)
4979 {
4980 started_error_output = 1;
4981 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
4982 }
4983 fputc_unfiltered (ch & 0177, gdb_stdlog);
4984 }
4985 continue;
4986 }
4987 break; /* Here to retransmit. */
4988 }
4989
4990 #if 0
4991 /* This is wrong. If doing a long backtrace, the user should be
4992 able to get out next time we call QUIT, without anything as
4993 violent as interrupt_query. If we want to provide a way out of
4994 here without getting to the next QUIT, it should be based on
4995 hitting ^C twice as in remote_wait. */
4996 if (quit_flag)
4997 {
4998 quit_flag = 0;
4999 interrupt_query ();
5000 }
5001 #endif
5002 }
5003 }
5004
5005 /* Come here after finding the start of a frame when we expected an
5006 ack. Do our best to discard the rest of this packet. */
5007
5008 static void
5009 skip_frame (void)
5010 {
5011 int c;
5012
5013 while (1)
5014 {
5015 c = readchar (remote_timeout);
5016 switch (c)
5017 {
5018 case SERIAL_TIMEOUT:
5019 /* Nothing we can do. */
5020 return;
5021 case '#':
5022 /* Discard the two bytes of checksum and stop. */
5023 c = readchar (remote_timeout);
5024 if (c >= 0)
5025 c = readchar (remote_timeout);
5026
5027 return;
5028 case '*': /* Run length encoding. */
5029 /* Discard the repeat count. */
5030 c = readchar (remote_timeout);
5031 if (c < 0)
5032 return;
5033 break;
5034 default:
5035 /* A regular character. */
5036 break;
5037 }
5038 }
5039 }
5040
5041 /* Come here after finding the start of the frame. Collect the rest
5042 into *BUF, verifying the checksum, length, and handling run-length
5043 compression. NUL terminate the buffer. If there is not enough room,
5044 expand *BUF using xrealloc.
5045
5046 Returns -1 on error, number of characters in buffer (ignoring the
5047 trailing NULL) on success. (could be extended to return one of the
5048 SERIAL status indications). */
5049
5050 static long
5051 read_frame (char **buf_p,
5052 long *sizeof_buf)
5053 {
5054 unsigned char csum;
5055 long bc;
5056 int c;
5057 char *buf = *buf_p;
5058
5059 csum = 0;
5060 bc = 0;
5061
5062 while (1)
5063 {
5064 c = readchar (remote_timeout);
5065 switch (c)
5066 {
5067 case SERIAL_TIMEOUT:
5068 if (remote_debug)
5069 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
5070 return -1;
5071 case '$':
5072 if (remote_debug)
5073 fputs_filtered ("Saw new packet start in middle of old one\n",
5074 gdb_stdlog);
5075 return -1; /* Start a new packet, count retries. */
5076 case '#':
5077 {
5078 unsigned char pktcsum;
5079 int check_0 = 0;
5080 int check_1 = 0;
5081
5082 buf[bc] = '\0';
5083
5084 check_0 = readchar (remote_timeout);
5085 if (check_0 >= 0)
5086 check_1 = readchar (remote_timeout);
5087
5088 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
5089 {
5090 if (remote_debug)
5091 fputs_filtered ("Timeout in checksum, retrying\n",
5092 gdb_stdlog);
5093 return -1;
5094 }
5095 else if (check_0 < 0 || check_1 < 0)
5096 {
5097 if (remote_debug)
5098 fputs_filtered ("Communication error in checksum\n",
5099 gdb_stdlog);
5100 return -1;
5101 }
5102
5103 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
5104 if (csum == pktcsum)
5105 return bc;
5106
5107 if (remote_debug)
5108 {
5109 fprintf_filtered (gdb_stdlog,
5110 "Bad checksum, sentsum=0x%x, csum=0x%x, buf=",
5111 pktcsum, csum);
5112 fputstrn_filtered (buf, bc, 0, gdb_stdlog);
5113 fputs_filtered ("\n", gdb_stdlog);
5114 }
5115 /* Number of characters in buffer ignoring trailing
5116 NULL. */
5117 return -1;
5118 }
5119 case '*': /* Run length encoding. */
5120 {
5121 int repeat;
5122 csum += c;
5123
5124 c = readchar (remote_timeout);
5125 csum += c;
5126 repeat = c - ' ' + 3; /* Compute repeat count. */
5127
5128 /* The character before ``*'' is repeated. */
5129
5130 if (repeat > 0 && repeat <= 255 && bc > 0)
5131 {
5132 if (bc + repeat - 1 >= *sizeof_buf - 1)
5133 {
5134 /* Make some more room in the buffer. */
5135 *sizeof_buf += repeat;
5136 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5137 buf = *buf_p;
5138 }
5139
5140 memset (&buf[bc], buf[bc - 1], repeat);
5141 bc += repeat;
5142 continue;
5143 }
5144
5145 buf[bc] = '\0';
5146 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
5147 return -1;
5148 }
5149 default:
5150 if (bc >= *sizeof_buf - 1)
5151 {
5152 /* Make some more room in the buffer. */
5153 *sizeof_buf *= 2;
5154 *buf_p = xrealloc (*buf_p, *sizeof_buf);
5155 buf = *buf_p;
5156 }
5157
5158 buf[bc++] = c;
5159 csum += c;
5160 continue;
5161 }
5162 }
5163 }
5164
5165 /* Read a packet from the remote machine, with error checking, and
5166 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5167 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5168 rather than timing out; this is used (in synchronous mode) to wait
5169 for a target that is is executing user code to stop. */
5170 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
5171 don't have to change all the calls to getpkt to deal with the
5172 return value, because at the moment I don't know what the right
5173 thing to do it for those. */
5174 void
5175 getpkt (char **buf,
5176 long *sizeof_buf,
5177 int forever)
5178 {
5179 int timed_out;
5180
5181 timed_out = getpkt_sane (buf, sizeof_buf, forever);
5182 }
5183
5184
5185 /* Read a packet from the remote machine, with error checking, and
5186 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
5187 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
5188 rather than timing out; this is used (in synchronous mode) to wait
5189 for a target that is is executing user code to stop. If FOREVER ==
5190 0, this function is allowed to time out gracefully and return an
5191 indication of this to the caller. Otherwise return the number
5192 of bytes read. */
5193 static int
5194 getpkt_sane (char **buf, long *sizeof_buf, int forever)
5195 {
5196 struct remote_state *rs = get_remote_state ();
5197 int c;
5198 int tries;
5199 int timeout;
5200 int val;
5201
5202 /* We're reading a new response. Make sure we don't look at a
5203 previously cached response. */
5204 rs->cached_wait_status = 0;
5205
5206 strcpy (*buf, "timeout");
5207
5208 if (forever)
5209 {
5210 timeout = watchdog > 0 ? watchdog : -1;
5211 }
5212
5213 else
5214 timeout = remote_timeout;
5215
5216 #define MAX_TRIES 3
5217
5218 for (tries = 1; tries <= MAX_TRIES; tries++)
5219 {
5220 /* This can loop forever if the remote side sends us characters
5221 continuously, but if it pauses, we'll get a zero from
5222 readchar because of timeout. Then we'll count that as a
5223 retry. */
5224
5225 /* Note that we will only wait forever prior to the start of a
5226 packet. After that, we expect characters to arrive at a
5227 brisk pace. They should show up within remote_timeout
5228 intervals. */
5229
5230 do
5231 {
5232 c = readchar (timeout);
5233
5234 if (c == SERIAL_TIMEOUT)
5235 {
5236 if (forever) /* Watchdog went off? Kill the target. */
5237 {
5238 QUIT;
5239 target_mourn_inferior ();
5240 error (_("Watchdog timeout has expired. Target detached."));
5241 }
5242 if (remote_debug)
5243 fputs_filtered ("Timed out.\n", gdb_stdlog);
5244 goto retry;
5245 }
5246 }
5247 while (c != '$');
5248
5249 /* We've found the start of a packet, now collect the data. */
5250
5251 val = read_frame (buf, sizeof_buf);
5252
5253 if (val >= 0)
5254 {
5255 if (remote_debug)
5256 {
5257 fprintf_unfiltered (gdb_stdlog, "Packet received: ");
5258 fputstrn_unfiltered (*buf, val, 0, gdb_stdlog);
5259 fprintf_unfiltered (gdb_stdlog, "\n");
5260 }
5261 serial_write (remote_desc, "+", 1);
5262 return val;
5263 }
5264
5265 /* Try the whole thing again. */
5266 retry:
5267 serial_write (remote_desc, "-", 1);
5268 }
5269
5270 /* We have tried hard enough, and just can't receive the packet.
5271 Give up. */
5272
5273 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
5274 serial_write (remote_desc, "+", 1);
5275 return -1;
5276 }
5277 \f
5278 static void
5279 remote_kill (void)
5280 {
5281 /* For some mysterious reason, wait_for_inferior calls kill instead of
5282 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5283 if (kill_kludge)
5284 {
5285 kill_kludge = 0;
5286 target_mourn_inferior ();
5287 return;
5288 }
5289
5290 /* Use catch_errors so the user can quit from gdb even when we aren't on
5291 speaking terms with the remote system. */
5292 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5293
5294 /* Don't wait for it to die. I'm not really sure it matters whether
5295 we do or not. For the existing stubs, kill is a noop. */
5296 target_mourn_inferior ();
5297 }
5298
5299 /* Async version of remote_kill. */
5300 static void
5301 remote_async_kill (void)
5302 {
5303 /* Unregister the file descriptor from the event loop. */
5304 if (target_is_async_p ())
5305 serial_async (remote_desc, NULL, 0);
5306
5307 /* For some mysterious reason, wait_for_inferior calls kill instead of
5308 mourn after it gets TARGET_WAITKIND_SIGNALLED. Work around it. */
5309 if (kill_kludge)
5310 {
5311 kill_kludge = 0;
5312 target_mourn_inferior ();
5313 return;
5314 }
5315
5316 /* Use catch_errors so the user can quit from gdb even when we
5317 aren't on speaking terms with the remote system. */
5318 catch_errors ((catch_errors_ftype *) putpkt, "k", "", RETURN_MASK_ERROR);
5319
5320 /* Don't wait for it to die. I'm not really sure it matters whether
5321 we do or not. For the existing stubs, kill is a noop. */
5322 target_mourn_inferior ();
5323 }
5324
5325 static void
5326 remote_mourn (void)
5327 {
5328 remote_mourn_1 (&remote_ops);
5329 }
5330
5331 static void
5332 remote_async_mourn (void)
5333 {
5334 remote_mourn_1 (&remote_async_ops);
5335 }
5336
5337 /* Worker function for remote_mourn. */
5338 static void
5339 remote_mourn_1 (struct target_ops *target)
5340 {
5341 unpush_target (target);
5342 generic_mourn_inferior ();
5343 }
5344
5345 static void
5346 extended_remote_mourn_1 (struct target_ops *target)
5347 {
5348 struct remote_state *rs = get_remote_state ();
5349
5350 /* Unlike "target remote", we do not want to unpush the target; then
5351 the next time the user says "run", we won't be connected. */
5352
5353 /* Call common code to mark the inferior as not running. */
5354 generic_mourn_inferior ();
5355
5356 /* Check whether the target is running now - some remote stubs
5357 automatically restart after kill. */
5358 putpkt ("?");
5359 getpkt (&rs->buf, &rs->buf_size, 0);
5360
5361 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
5362 {
5363 /* Assume that the target has been restarted. Set inferior_ptid
5364 so that bits of core GDB realizes there's something here, e.g.,
5365 so that the user can say "kill" again. */
5366 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5367 }
5368 else
5369 {
5370 /* Mark this (still pushed) target as not executable until we
5371 restart it. */
5372 target_mark_exited (target);
5373 }
5374 }
5375
5376 static void
5377 extended_remote_mourn (void)
5378 {
5379 extended_remote_mourn_1 (&extended_remote_ops);
5380 }
5381
5382 static void
5383 extended_async_remote_mourn (void)
5384 {
5385 extended_remote_mourn_1 (&extended_async_remote_ops);
5386 }
5387
5388 static int
5389 extended_remote_run (char *args)
5390 {
5391 struct remote_state *rs = get_remote_state ();
5392 char *p;
5393 int len;
5394
5395 /* If the user has disabled vRun support, or we have detected that
5396 support is not available, do not try it. */
5397 if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5398 return -1;
5399
5400 strcpy (rs->buf, "vRun;");
5401 len = strlen (rs->buf);
5402
5403 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
5404 error (_("Remote file name too long for run packet"));
5405 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len, 0);
5406
5407 if (*args)
5408 {
5409 struct cleanup *back_to;
5410 int i;
5411 char **argv;
5412
5413 argv = buildargv (args);
5414 back_to = make_cleanup ((void (*) (void *)) freeargv, argv);
5415 for (i = 0; argv[i] != NULL; i++)
5416 {
5417 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
5418 error (_("Argument list too long for run packet"));
5419 rs->buf[len++] = ';';
5420 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len, 0);
5421 }
5422 do_cleanups (back_to);
5423 }
5424
5425 rs->buf[len++] = '\0';
5426
5427 putpkt (rs->buf);
5428 getpkt (&rs->buf, &rs->buf_size, 0);
5429
5430 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]) == PACKET_OK)
5431 {
5432 /* We have a wait response; we don't need it, though. All is well. */
5433 return 0;
5434 }
5435 else if (remote_protocol_packets[PACKET_vRun].support == PACKET_DISABLE)
5436 /* It wasn't disabled before, but it is now. */
5437 return -1;
5438 else
5439 {
5440 if (remote_exec_file[0] == '\0')
5441 error (_("Running the default executable on the remote target failed; "
5442 "try \"set remote exec-file\"?"));
5443 else
5444 error (_("Running \"%s\" on the remote target failed"),
5445 remote_exec_file);
5446 }
5447 }
5448
5449 /* In the extended protocol we want to be able to do things like
5450 "run" and have them basically work as expected. So we need
5451 a special create_inferior function. We support changing the
5452 executable file and the command line arguments, but not the
5453 environment. */
5454
5455 static void
5456 extended_remote_create_inferior_1 (char *exec_file, char *args,
5457 char **env, int from_tty,
5458 int async_p)
5459 {
5460 /* If running asynchronously, register the target file descriptor
5461 with the event loop. */
5462 if (async_p && target_can_async_p ())
5463 target_async (inferior_event_handler, 0);
5464
5465 /* Now restart the remote server. */
5466 if (extended_remote_run (args) == -1)
5467 {
5468 /* vRun was not supported. Fail if we need it to do what the
5469 user requested. */
5470 if (remote_exec_file[0])
5471 error (_("Remote target does not support \"set remote exec-file\""));
5472 if (args[0])
5473 error (_("Remote target does not support \"set args\" or run <ARGS>"));
5474
5475 /* Fall back to "R". */
5476 extended_remote_restart ();
5477 }
5478
5479 /* Now mark the inferior as running before we do anything else. */
5480 attach_flag = 0;
5481 inferior_ptid = pid_to_ptid (MAGIC_NULL_PID);
5482 if (async_p)
5483 target_mark_running (&extended_async_remote_ops);
5484 else
5485 target_mark_running (&extended_remote_ops);
5486
5487 /* Get updated offsets, if the stub uses qOffsets. */
5488 get_offsets ();
5489
5490 /* Clean up from the last time we were running. */
5491 init_thread_list ();
5492 init_wait_for_inferior ();
5493 }
5494
5495 static void
5496 extended_remote_create_inferior (char *exec_file, char *args,
5497 char **env, int from_tty)
5498 {
5499 extended_remote_create_inferior_1 (exec_file, args, env, from_tty, 0);
5500 }
5501
5502 static void
5503 extended_remote_async_create_inferior (char *exec_file, char *args,
5504 char **env, int from_tty)
5505 {
5506 extended_remote_create_inferior_1 (exec_file, args, env, from_tty, 1);
5507 }
5508 \f
5509
5510 /* Insert a breakpoint. On targets that have software breakpoint
5511 support, we ask the remote target to do the work; on targets
5512 which don't, we insert a traditional memory breakpoint. */
5513
5514 static int
5515 remote_insert_breakpoint (struct bp_target_info *bp_tgt)
5516 {
5517 CORE_ADDR addr = bp_tgt->placed_address;
5518 struct remote_state *rs = get_remote_state ();
5519
5520 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
5521 If it succeeds, then set the support to PACKET_ENABLE. If it
5522 fails, and the user has explicitly requested the Z support then
5523 report an error, otherwise, mark it disabled and go on. */
5524
5525 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5526 {
5527 char *p = rs->buf;
5528
5529 *(p++) = 'Z';
5530 *(p++) = '0';
5531 *(p++) = ',';
5532 gdbarch_breakpoint_from_pc
5533 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5534 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5535 p += hexnumstr (p, addr);
5536 sprintf (p, ",%d", bp_tgt->placed_size);
5537
5538 putpkt (rs->buf);
5539 getpkt (&rs->buf, &rs->buf_size, 0);
5540
5541 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
5542 {
5543 case PACKET_ERROR:
5544 return -1;
5545 case PACKET_OK:
5546 return 0;
5547 case PACKET_UNKNOWN:
5548 break;
5549 }
5550 }
5551
5552 return memory_insert_breakpoint (bp_tgt);
5553 }
5554
5555 static int
5556 remote_remove_breakpoint (struct bp_target_info *bp_tgt)
5557 {
5558 CORE_ADDR addr = bp_tgt->placed_address;
5559 struct remote_state *rs = get_remote_state ();
5560 int bp_size;
5561
5562 if (remote_protocol_packets[PACKET_Z0].support != PACKET_DISABLE)
5563 {
5564 char *p = rs->buf;
5565
5566 *(p++) = 'z';
5567 *(p++) = '0';
5568 *(p++) = ',';
5569
5570 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
5571 p += hexnumstr (p, addr);
5572 sprintf (p, ",%d", bp_tgt->placed_size);
5573
5574 putpkt (rs->buf);
5575 getpkt (&rs->buf, &rs->buf_size, 0);
5576
5577 return (rs->buf[0] == 'E');
5578 }
5579
5580 return memory_remove_breakpoint (bp_tgt);
5581 }
5582
5583 static int
5584 watchpoint_to_Z_packet (int type)
5585 {
5586 switch (type)
5587 {
5588 case hw_write:
5589 return Z_PACKET_WRITE_WP;
5590 break;
5591 case hw_read:
5592 return Z_PACKET_READ_WP;
5593 break;
5594 case hw_access:
5595 return Z_PACKET_ACCESS_WP;
5596 break;
5597 default:
5598 internal_error (__FILE__, __LINE__,
5599 _("hw_bp_to_z: bad watchpoint type %d"), type);
5600 }
5601 }
5602
5603 static int
5604 remote_insert_watchpoint (CORE_ADDR addr, int len, int type)
5605 {
5606 struct remote_state *rs = get_remote_state ();
5607 char *p;
5608 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5609
5610 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5611 return -1;
5612
5613 sprintf (rs->buf, "Z%x,", packet);
5614 p = strchr (rs->buf, '\0');
5615 addr = remote_address_masked (addr);
5616 p += hexnumstr (p, (ULONGEST) addr);
5617 sprintf (p, ",%x", len);
5618
5619 putpkt (rs->buf);
5620 getpkt (&rs->buf, &rs->buf_size, 0);
5621
5622 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5623 {
5624 case PACKET_ERROR:
5625 case PACKET_UNKNOWN:
5626 return -1;
5627 case PACKET_OK:
5628 return 0;
5629 }
5630 internal_error (__FILE__, __LINE__,
5631 _("remote_insert_watchpoint: reached end of function"));
5632 }
5633
5634
5635 static int
5636 remote_remove_watchpoint (CORE_ADDR addr, int len, int type)
5637 {
5638 struct remote_state *rs = get_remote_state ();
5639 char *p;
5640 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
5641
5642 if (remote_protocol_packets[PACKET_Z0 + packet].support == PACKET_DISABLE)
5643 return -1;
5644
5645 sprintf (rs->buf, "z%x,", packet);
5646 p = strchr (rs->buf, '\0');
5647 addr = remote_address_masked (addr);
5648 p += hexnumstr (p, (ULONGEST) addr);
5649 sprintf (p, ",%x", len);
5650 putpkt (rs->buf);
5651 getpkt (&rs->buf, &rs->buf_size, 0);
5652
5653 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
5654 {
5655 case PACKET_ERROR:
5656 case PACKET_UNKNOWN:
5657 return -1;
5658 case PACKET_OK:
5659 return 0;
5660 }
5661 internal_error (__FILE__, __LINE__,
5662 _("remote_remove_watchpoint: reached end of function"));
5663 }
5664
5665
5666 int remote_hw_watchpoint_limit = -1;
5667 int remote_hw_breakpoint_limit = -1;
5668
5669 static int
5670 remote_check_watch_resources (int type, int cnt, int ot)
5671 {
5672 if (type == bp_hardware_breakpoint)
5673 {
5674 if (remote_hw_breakpoint_limit == 0)
5675 return 0;
5676 else if (remote_hw_breakpoint_limit < 0)
5677 return 1;
5678 else if (cnt <= remote_hw_breakpoint_limit)
5679 return 1;
5680 }
5681 else
5682 {
5683 if (remote_hw_watchpoint_limit == 0)
5684 return 0;
5685 else if (remote_hw_watchpoint_limit < 0)
5686 return 1;
5687 else if (ot)
5688 return -1;
5689 else if (cnt <= remote_hw_watchpoint_limit)
5690 return 1;
5691 }
5692 return -1;
5693 }
5694
5695 static int
5696 remote_stopped_by_watchpoint (void)
5697 {
5698 return remote_stopped_by_watchpoint_p;
5699 }
5700
5701 static int
5702 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
5703 {
5704 int rc = 0;
5705 if (remote_stopped_by_watchpoint ())
5706 {
5707 *addr_p = remote_watch_data_address;
5708 rc = 1;
5709 }
5710
5711 return rc;
5712 }
5713
5714
5715 static int
5716 remote_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
5717 {
5718 CORE_ADDR addr;
5719 struct remote_state *rs = get_remote_state ();
5720 char *p = rs->buf;
5721
5722 /* The length field should be set to the size of a breakpoint
5723 instruction, even though we aren't inserting one ourselves. */
5724
5725 gdbarch_breakpoint_from_pc
5726 (current_gdbarch, &bp_tgt->placed_address, &bp_tgt->placed_size);
5727
5728 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5729 return -1;
5730
5731 *(p++) = 'Z';
5732 *(p++) = '1';
5733 *(p++) = ',';
5734
5735 addr = remote_address_masked (bp_tgt->placed_address);
5736 p += hexnumstr (p, (ULONGEST) addr);
5737 sprintf (p, ",%x", bp_tgt->placed_size);
5738
5739 putpkt (rs->buf);
5740 getpkt (&rs->buf, &rs->buf_size, 0);
5741
5742 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5743 {
5744 case PACKET_ERROR:
5745 case PACKET_UNKNOWN:
5746 return -1;
5747 case PACKET_OK:
5748 return 0;
5749 }
5750 internal_error (__FILE__, __LINE__,
5751 _("remote_insert_hw_breakpoint: reached end of function"));
5752 }
5753
5754
5755 static int
5756 remote_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
5757 {
5758 CORE_ADDR addr;
5759 struct remote_state *rs = get_remote_state ();
5760 char *p = rs->buf;
5761
5762 if (remote_protocol_packets[PACKET_Z1].support == PACKET_DISABLE)
5763 return -1;
5764
5765 *(p++) = 'z';
5766 *(p++) = '1';
5767 *(p++) = ',';
5768
5769 addr = remote_address_masked (bp_tgt->placed_address);
5770 p += hexnumstr (p, (ULONGEST) addr);
5771 sprintf (p, ",%x", bp_tgt->placed_size);
5772
5773 putpkt (rs->buf);
5774 getpkt (&rs->buf, &rs->buf_size, 0);
5775
5776 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
5777 {
5778 case PACKET_ERROR:
5779 case PACKET_UNKNOWN:
5780 return -1;
5781 case PACKET_OK:
5782 return 0;
5783 }
5784 internal_error (__FILE__, __LINE__,
5785 _("remote_remove_hw_breakpoint: reached end of function"));
5786 }
5787
5788 /* Some targets are only capable of doing downloads, and afterwards
5789 they switch to the remote serial protocol. This function provides
5790 a clean way to get from the download target to the remote target.
5791 It's basically just a wrapper so that we don't have to expose any
5792 of the internal workings of remote.c.
5793
5794 Prior to calling this routine, you should shutdown the current
5795 target code, else you will get the "A program is being debugged
5796 already..." message. Usually a call to pop_target() suffices. */
5797
5798 void
5799 push_remote_target (char *name, int from_tty)
5800 {
5801 printf_filtered (_("Switching to remote protocol\n"));
5802 remote_open (name, from_tty);
5803 }
5804
5805 /* Table used by the crc32 function to calcuate the checksum. */
5806
5807 static unsigned long crc32_table[256] =
5808 {0, 0};
5809
5810 static unsigned long
5811 crc32 (unsigned char *buf, int len, unsigned int crc)
5812 {
5813 if (!crc32_table[1])
5814 {
5815 /* Initialize the CRC table and the decoding table. */
5816 int i, j;
5817 unsigned int c;
5818
5819 for (i = 0; i < 256; i++)
5820 {
5821 for (c = i << 24, j = 8; j > 0; --j)
5822 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
5823 crc32_table[i] = c;
5824 }
5825 }
5826
5827 while (len--)
5828 {
5829 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
5830 buf++;
5831 }
5832 return crc;
5833 }
5834
5835 /* compare-sections command
5836
5837 With no arguments, compares each loadable section in the exec bfd
5838 with the same memory range on the target, and reports mismatches.
5839 Useful for verifying the image on the target against the exec file.
5840 Depends on the target understanding the new "qCRC:" request. */
5841
5842 /* FIXME: cagney/1999-10-26: This command should be broken down into a
5843 target method (target verify memory) and generic version of the
5844 actual command. This will allow other high-level code (especially
5845 generic_load()) to make use of this target functionality. */
5846
5847 static void
5848 compare_sections_command (char *args, int from_tty)
5849 {
5850 struct remote_state *rs = get_remote_state ();
5851 asection *s;
5852 unsigned long host_crc, target_crc;
5853 extern bfd *exec_bfd;
5854 struct cleanup *old_chain;
5855 char *tmp;
5856 char *sectdata;
5857 const char *sectname;
5858 bfd_size_type size;
5859 bfd_vma lma;
5860 int matched = 0;
5861 int mismatched = 0;
5862
5863 if (!exec_bfd)
5864 error (_("command cannot be used without an exec file"));
5865 if (!current_target.to_shortname ||
5866 strcmp (current_target.to_shortname, "remote") != 0)
5867 error (_("command can only be used with remote target"));
5868
5869 for (s = exec_bfd->sections; s; s = s->next)
5870 {
5871 if (!(s->flags & SEC_LOAD))
5872 continue; /* skip non-loadable section */
5873
5874 size = bfd_get_section_size (s);
5875 if (size == 0)
5876 continue; /* skip zero-length section */
5877
5878 sectname = bfd_get_section_name (exec_bfd, s);
5879 if (args && strcmp (args, sectname) != 0)
5880 continue; /* not the section selected by user */
5881
5882 matched = 1; /* do this section */
5883 lma = s->lma;
5884 /* FIXME: assumes lma can fit into long. */
5885 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
5886 (long) lma, (long) size);
5887 putpkt (rs->buf);
5888
5889 /* Be clever; compute the host_crc before waiting for target
5890 reply. */
5891 sectdata = xmalloc (size);
5892 old_chain = make_cleanup (xfree, sectdata);
5893 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
5894 host_crc = crc32 ((unsigned char *) sectdata, size, 0xffffffff);
5895
5896 getpkt (&rs->buf, &rs->buf_size, 0);
5897 if (rs->buf[0] == 'E')
5898 error (_("target memory fault, section %s, range 0x%s -- 0x%s"),
5899 sectname, paddr (lma), paddr (lma + size));
5900 if (rs->buf[0] != 'C')
5901 error (_("remote target does not support this operation"));
5902
5903 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
5904 target_crc = target_crc * 16 + fromhex (*tmp);
5905
5906 printf_filtered ("Section %s, range 0x%s -- 0x%s: ",
5907 sectname, paddr (lma), paddr (lma + size));
5908 if (host_crc == target_crc)
5909 printf_filtered ("matched.\n");
5910 else
5911 {
5912 printf_filtered ("MIS-MATCHED!\n");
5913 mismatched++;
5914 }
5915
5916 do_cleanups (old_chain);
5917 }
5918 if (mismatched > 0)
5919 warning (_("One or more sections of the remote executable does not match\n\
5920 the loaded file\n"));
5921 if (args && !matched)
5922 printf_filtered (_("No loaded section named '%s'.\n"), args);
5923 }
5924
5925 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
5926 into remote target. The number of bytes written to the remote
5927 target is returned, or -1 for error. */
5928
5929 static LONGEST
5930 remote_write_qxfer (struct target_ops *ops, const char *object_name,
5931 const char *annex, const gdb_byte *writebuf,
5932 ULONGEST offset, LONGEST len,
5933 struct packet_config *packet)
5934 {
5935 int i, buf_len;
5936 ULONGEST n;
5937 gdb_byte *wbuf;
5938 struct remote_state *rs = get_remote_state ();
5939 int max_size = get_memory_write_packet_size ();
5940
5941 if (packet->support == PACKET_DISABLE)
5942 return -1;
5943
5944 /* Insert header. */
5945 i = snprintf (rs->buf, max_size,
5946 "qXfer:%s:write:%s:%s:",
5947 object_name, annex ? annex : "",
5948 phex_nz (offset, sizeof offset));
5949 max_size -= (i + 1);
5950
5951 /* Escape as much data as fits into rs->buf. */
5952 buf_len = remote_escape_output
5953 (writebuf, len, (rs->buf + i), &max_size, max_size);
5954
5955 if (putpkt_binary (rs->buf, i + buf_len) < 0
5956 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
5957 || packet_ok (rs->buf, packet) != PACKET_OK)
5958 return -1;
5959
5960 unpack_varlen_hex (rs->buf, &n);
5961 return n;
5962 }
5963
5964 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
5965 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
5966 number of bytes read is returned, or 0 for EOF, or -1 for error.
5967 The number of bytes read may be less than LEN without indicating an
5968 EOF. PACKET is checked and updated to indicate whether the remote
5969 target supports this object. */
5970
5971 static LONGEST
5972 remote_read_qxfer (struct target_ops *ops, const char *object_name,
5973 const char *annex,
5974 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
5975 struct packet_config *packet)
5976 {
5977 static char *finished_object;
5978 static char *finished_annex;
5979 static ULONGEST finished_offset;
5980
5981 struct remote_state *rs = get_remote_state ();
5982 unsigned int total = 0;
5983 LONGEST i, n, packet_len;
5984
5985 if (packet->support == PACKET_DISABLE)
5986 return -1;
5987
5988 /* Check whether we've cached an end-of-object packet that matches
5989 this request. */
5990 if (finished_object)
5991 {
5992 if (strcmp (object_name, finished_object) == 0
5993 && strcmp (annex ? annex : "", finished_annex) == 0
5994 && offset == finished_offset)
5995 return 0;
5996
5997 /* Otherwise, we're now reading something different. Discard
5998 the cache. */
5999 xfree (finished_object);
6000 xfree (finished_annex);
6001 finished_object = NULL;
6002 finished_annex = NULL;
6003 }
6004
6005 /* Request only enough to fit in a single packet. The actual data
6006 may not, since we don't know how much of it will need to be escaped;
6007 the target is free to respond with slightly less data. We subtract
6008 five to account for the response type and the protocol frame. */
6009 n = min (get_remote_packet_size () - 5, len);
6010 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
6011 object_name, annex ? annex : "",
6012 phex_nz (offset, sizeof offset),
6013 phex_nz (n, sizeof n));
6014 i = putpkt (rs->buf);
6015 if (i < 0)
6016 return -1;
6017
6018 rs->buf[0] = '\0';
6019 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6020 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
6021 return -1;
6022
6023 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
6024 error (_("Unknown remote qXfer reply: %s"), rs->buf);
6025
6026 /* 'm' means there is (or at least might be) more data after this
6027 batch. That does not make sense unless there's at least one byte
6028 of data in this reply. */
6029 if (rs->buf[0] == 'm' && packet_len == 1)
6030 error (_("Remote qXfer reply contained no data."));
6031
6032 /* Got some data. */
6033 i = remote_unescape_input (rs->buf + 1, packet_len - 1, readbuf, n);
6034
6035 /* 'l' is an EOF marker, possibly including a final block of data,
6036 or possibly empty. If we have the final block of a non-empty
6037 object, record this fact to bypass a subsequent partial read. */
6038 if (rs->buf[0] == 'l' && offset + i > 0)
6039 {
6040 finished_object = xstrdup (object_name);
6041 finished_annex = xstrdup (annex ? annex : "");
6042 finished_offset = offset + i;
6043 }
6044
6045 return i;
6046 }
6047
6048 static LONGEST
6049 remote_xfer_partial (struct target_ops *ops, enum target_object object,
6050 const char *annex, gdb_byte *readbuf,
6051 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
6052 {
6053 struct remote_state *rs = get_remote_state ();
6054 int i;
6055 char *p2;
6056 char query_type;
6057
6058 /* Handle memory using the standard memory routines. */
6059 if (object == TARGET_OBJECT_MEMORY)
6060 {
6061 int xfered;
6062 errno = 0;
6063
6064 /* If the remote target is connected but not running, we should
6065 pass this request down to a lower stratum (e.g. the executable
6066 file). */
6067 if (!target_has_execution)
6068 return 0;
6069
6070 if (writebuf != NULL)
6071 xfered = remote_write_bytes (offset, writebuf, len);
6072 else
6073 xfered = remote_read_bytes (offset, readbuf, len);
6074
6075 if (xfered > 0)
6076 return xfered;
6077 else if (xfered == 0 && errno == 0)
6078 return 0;
6079 else
6080 return -1;
6081 }
6082
6083 /* Handle SPU memory using qxfer packets. */
6084 if (object == TARGET_OBJECT_SPU)
6085 {
6086 if (readbuf)
6087 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
6088 &remote_protocol_packets
6089 [PACKET_qXfer_spu_read]);
6090 else
6091 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
6092 &remote_protocol_packets
6093 [PACKET_qXfer_spu_write]);
6094 }
6095
6096 /* Only handle flash writes. */
6097 if (writebuf != NULL)
6098 {
6099 LONGEST xfered;
6100
6101 switch (object)
6102 {
6103 case TARGET_OBJECT_FLASH:
6104 xfered = remote_flash_write (ops, offset, len, writebuf);
6105
6106 if (xfered > 0)
6107 return xfered;
6108 else if (xfered == 0 && errno == 0)
6109 return 0;
6110 else
6111 return -1;
6112
6113 default:
6114 return -1;
6115 }
6116 }
6117
6118 /* Map pre-existing objects onto letters. DO NOT do this for new
6119 objects!!! Instead specify new query packets. */
6120 switch (object)
6121 {
6122 case TARGET_OBJECT_AVR:
6123 query_type = 'R';
6124 break;
6125
6126 case TARGET_OBJECT_AUXV:
6127 gdb_assert (annex == NULL);
6128 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
6129 &remote_protocol_packets[PACKET_qXfer_auxv]);
6130
6131 case TARGET_OBJECT_AVAILABLE_FEATURES:
6132 return remote_read_qxfer
6133 (ops, "features", annex, readbuf, offset, len,
6134 &remote_protocol_packets[PACKET_qXfer_features]);
6135
6136 case TARGET_OBJECT_LIBRARIES:
6137 return remote_read_qxfer
6138 (ops, "libraries", annex, readbuf, offset, len,
6139 &remote_protocol_packets[PACKET_qXfer_libraries]);
6140
6141 case TARGET_OBJECT_MEMORY_MAP:
6142 gdb_assert (annex == NULL);
6143 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
6144 &remote_protocol_packets[PACKET_qXfer_memory_map]);
6145
6146 default:
6147 return -1;
6148 }
6149
6150 /* Note: a zero OFFSET and LEN can be used to query the minimum
6151 buffer size. */
6152 if (offset == 0 && len == 0)
6153 return (get_remote_packet_size ());
6154 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
6155 large enough let the caller deal with it. */
6156 if (len < get_remote_packet_size ())
6157 return -1;
6158 len = get_remote_packet_size ();
6159
6160 /* Except for querying the minimum buffer size, target must be open. */
6161 if (!remote_desc)
6162 error (_("remote query is only available after target open"));
6163
6164 gdb_assert (annex != NULL);
6165 gdb_assert (readbuf != NULL);
6166
6167 p2 = rs->buf;
6168 *p2++ = 'q';
6169 *p2++ = query_type;
6170
6171 /* We used one buffer char for the remote protocol q command and
6172 another for the query type. As the remote protocol encapsulation
6173 uses 4 chars plus one extra in case we are debugging
6174 (remote_debug), we have PBUFZIZ - 7 left to pack the query
6175 string. */
6176 i = 0;
6177 while (annex[i] && (i < (get_remote_packet_size () - 8)))
6178 {
6179 /* Bad caller may have sent forbidden characters. */
6180 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
6181 *p2++ = annex[i];
6182 i++;
6183 }
6184 *p2 = '\0';
6185 gdb_assert (annex[i] == '\0');
6186
6187 i = putpkt (rs->buf);
6188 if (i < 0)
6189 return i;
6190
6191 getpkt (&rs->buf, &rs->buf_size, 0);
6192 strcpy ((char *) readbuf, rs->buf);
6193
6194 return strlen ((char *) readbuf);
6195 }
6196
6197 static void
6198 remote_rcmd (char *command,
6199 struct ui_file *outbuf)
6200 {
6201 struct remote_state *rs = get_remote_state ();
6202 char *p = rs->buf;
6203
6204 if (!remote_desc)
6205 error (_("remote rcmd is only available after target open"));
6206
6207 /* Send a NULL command across as an empty command. */
6208 if (command == NULL)
6209 command = "";
6210
6211 /* The query prefix. */
6212 strcpy (rs->buf, "qRcmd,");
6213 p = strchr (rs->buf, '\0');
6214
6215 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/) > get_remote_packet_size ())
6216 error (_("\"monitor\" command ``%s'' is too long."), command);
6217
6218 /* Encode the actual command. */
6219 bin2hex ((gdb_byte *) command, p, 0);
6220
6221 if (putpkt (rs->buf) < 0)
6222 error (_("Communication problem with target."));
6223
6224 /* get/display the response */
6225 while (1)
6226 {
6227 char *buf;
6228
6229 /* XXX - see also tracepoint.c:remote_get_noisy_reply(). */
6230 rs->buf[0] = '\0';
6231 getpkt (&rs->buf, &rs->buf_size, 0);
6232 buf = rs->buf;
6233 if (buf[0] == '\0')
6234 error (_("Target does not support this command."));
6235 if (buf[0] == 'O' && buf[1] != 'K')
6236 {
6237 remote_console_output (buf + 1); /* 'O' message from stub. */
6238 continue;
6239 }
6240 if (strcmp (buf, "OK") == 0)
6241 break;
6242 if (strlen (buf) == 3 && buf[0] == 'E'
6243 && isdigit (buf[1]) && isdigit (buf[2]))
6244 {
6245 error (_("Protocol error with Rcmd"));
6246 }
6247 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
6248 {
6249 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
6250 fputc_unfiltered (c, outbuf);
6251 }
6252 break;
6253 }
6254 }
6255
6256 static VEC(mem_region_s) *
6257 remote_memory_map (struct target_ops *ops)
6258 {
6259 VEC(mem_region_s) *result = NULL;
6260 char *text = target_read_stralloc (&current_target,
6261 TARGET_OBJECT_MEMORY_MAP, NULL);
6262
6263 if (text)
6264 {
6265 struct cleanup *back_to = make_cleanup (xfree, text);
6266 result = parse_memory_map (text);
6267 do_cleanups (back_to);
6268 }
6269
6270 return result;
6271 }
6272
6273 static void
6274 packet_command (char *args, int from_tty)
6275 {
6276 struct remote_state *rs = get_remote_state ();
6277
6278 if (!remote_desc)
6279 error (_("command can only be used with remote target"));
6280
6281 if (!args)
6282 error (_("remote-packet command requires packet text as argument"));
6283
6284 puts_filtered ("sending: ");
6285 print_packet (args);
6286 puts_filtered ("\n");
6287 putpkt (args);
6288
6289 getpkt (&rs->buf, &rs->buf_size, 0);
6290 puts_filtered ("received: ");
6291 print_packet (rs->buf);
6292 puts_filtered ("\n");
6293 }
6294
6295 #if 0
6296 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
6297
6298 static void display_thread_info (struct gdb_ext_thread_info *info);
6299
6300 static void threadset_test_cmd (char *cmd, int tty);
6301
6302 static void threadalive_test (char *cmd, int tty);
6303
6304 static void threadlist_test_cmd (char *cmd, int tty);
6305
6306 int get_and_display_threadinfo (threadref *ref);
6307
6308 static void threadinfo_test_cmd (char *cmd, int tty);
6309
6310 static int thread_display_step (threadref *ref, void *context);
6311
6312 static void threadlist_update_test_cmd (char *cmd, int tty);
6313
6314 static void init_remote_threadtests (void);
6315
6316 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
6317
6318 static void
6319 threadset_test_cmd (char *cmd, int tty)
6320 {
6321 int sample_thread = SAMPLE_THREAD;
6322
6323 printf_filtered (_("Remote threadset test\n"));
6324 set_thread (sample_thread, 1);
6325 }
6326
6327
6328 static void
6329 threadalive_test (char *cmd, int tty)
6330 {
6331 int sample_thread = SAMPLE_THREAD;
6332
6333 if (remote_thread_alive (pid_to_ptid (sample_thread)))
6334 printf_filtered ("PASS: Thread alive test\n");
6335 else
6336 printf_filtered ("FAIL: Thread alive test\n");
6337 }
6338
6339 void output_threadid (char *title, threadref *ref);
6340
6341 void
6342 output_threadid (char *title, threadref *ref)
6343 {
6344 char hexid[20];
6345
6346 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
6347 hexid[16] = 0;
6348 printf_filtered ("%s %s\n", title, (&hexid[0]));
6349 }
6350
6351 static void
6352 threadlist_test_cmd (char *cmd, int tty)
6353 {
6354 int startflag = 1;
6355 threadref nextthread;
6356 int done, result_count;
6357 threadref threadlist[3];
6358
6359 printf_filtered ("Remote Threadlist test\n");
6360 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
6361 &result_count, &threadlist[0]))
6362 printf_filtered ("FAIL: threadlist test\n");
6363 else
6364 {
6365 threadref *scan = threadlist;
6366 threadref *limit = scan + result_count;
6367
6368 while (scan < limit)
6369 output_threadid (" thread ", scan++);
6370 }
6371 }
6372
6373 void
6374 display_thread_info (struct gdb_ext_thread_info *info)
6375 {
6376 output_threadid ("Threadid: ", &info->threadid);
6377 printf_filtered ("Name: %s\n ", info->shortname);
6378 printf_filtered ("State: %s\n", info->display);
6379 printf_filtered ("other: %s\n\n", info->more_display);
6380 }
6381
6382 int
6383 get_and_display_threadinfo (threadref *ref)
6384 {
6385 int result;
6386 int set;
6387 struct gdb_ext_thread_info threadinfo;
6388
6389 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
6390 | TAG_MOREDISPLAY | TAG_DISPLAY;
6391 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
6392 display_thread_info (&threadinfo);
6393 return result;
6394 }
6395
6396 static void
6397 threadinfo_test_cmd (char *cmd, int tty)
6398 {
6399 int athread = SAMPLE_THREAD;
6400 threadref thread;
6401 int set;
6402
6403 int_to_threadref (&thread, athread);
6404 printf_filtered ("Remote Threadinfo test\n");
6405 if (!get_and_display_threadinfo (&thread))
6406 printf_filtered ("FAIL cannot get thread info\n");
6407 }
6408
6409 static int
6410 thread_display_step (threadref *ref, void *context)
6411 {
6412 /* output_threadid(" threadstep ",ref); *//* simple test */
6413 return get_and_display_threadinfo (ref);
6414 }
6415
6416 static void
6417 threadlist_update_test_cmd (char *cmd, int tty)
6418 {
6419 printf_filtered ("Remote Threadlist update test\n");
6420 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
6421 }
6422
6423 static void
6424 init_remote_threadtests (void)
6425 {
6426 add_com ("tlist", class_obscure, threadlist_test_cmd, _("\
6427 Fetch and print the remote list of thread identifiers, one pkt only"));
6428 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
6429 _("Fetch and display info about one thread"));
6430 add_com ("tset", class_obscure, threadset_test_cmd,
6431 _("Test setting to a different thread"));
6432 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
6433 _("Iterate through updating all remote thread info"));
6434 add_com ("talive", class_obscure, threadalive_test,
6435 _(" Remote thread alive test "));
6436 }
6437
6438 #endif /* 0 */
6439
6440 /* Convert a thread ID to a string. Returns the string in a static
6441 buffer. */
6442
6443 static char *
6444 remote_pid_to_str (ptid_t ptid)
6445 {
6446 static char buf[32];
6447
6448 xsnprintf (buf, sizeof buf, "Thread %d", ptid_get_pid (ptid));
6449 return buf;
6450 }
6451
6452 /* Get the address of the thread local variable in OBJFILE which is
6453 stored at OFFSET within the thread local storage for thread PTID. */
6454
6455 static CORE_ADDR
6456 remote_get_thread_local_address (ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
6457 {
6458 if (remote_protocol_packets[PACKET_qGetTLSAddr].support != PACKET_DISABLE)
6459 {
6460 struct remote_state *rs = get_remote_state ();
6461 char *p = rs->buf;
6462 enum packet_result result;
6463
6464 strcpy (p, "qGetTLSAddr:");
6465 p += strlen (p);
6466 p += hexnumstr (p, PIDGET (ptid));
6467 *p++ = ',';
6468 p += hexnumstr (p, offset);
6469 *p++ = ',';
6470 p += hexnumstr (p, lm);
6471 *p++ = '\0';
6472
6473 putpkt (rs->buf);
6474 getpkt (&rs->buf, &rs->buf_size, 0);
6475 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_qGetTLSAddr]);
6476 if (result == PACKET_OK)
6477 {
6478 ULONGEST result;
6479
6480 unpack_varlen_hex (rs->buf, &result);
6481 return result;
6482 }
6483 else if (result == PACKET_UNKNOWN)
6484 throw_error (TLS_GENERIC_ERROR,
6485 _("Remote target doesn't support qGetTLSAddr packet"));
6486 else
6487 throw_error (TLS_GENERIC_ERROR,
6488 _("Remote target failed to process qGetTLSAddr request"));
6489 }
6490 else
6491 throw_error (TLS_GENERIC_ERROR,
6492 _("TLS not supported or disabled on this target"));
6493 /* Not reached. */
6494 return 0;
6495 }
6496
6497 /* Support for inferring a target description based on the current
6498 architecture and the size of a 'g' packet. While the 'g' packet
6499 can have any size (since optional registers can be left off the
6500 end), some sizes are easily recognizable given knowledge of the
6501 approximate architecture. */
6502
6503 struct remote_g_packet_guess
6504 {
6505 int bytes;
6506 const struct target_desc *tdesc;
6507 };
6508 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
6509 DEF_VEC_O(remote_g_packet_guess_s);
6510
6511 struct remote_g_packet_data
6512 {
6513 VEC(remote_g_packet_guess_s) *guesses;
6514 };
6515
6516 static struct gdbarch_data *remote_g_packet_data_handle;
6517
6518 static void *
6519 remote_g_packet_data_init (struct obstack *obstack)
6520 {
6521 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
6522 }
6523
6524 void
6525 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
6526 const struct target_desc *tdesc)
6527 {
6528 struct remote_g_packet_data *data
6529 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
6530 struct remote_g_packet_guess new_guess, *guess;
6531 int ix;
6532
6533 gdb_assert (tdesc != NULL);
6534
6535 for (ix = 0;
6536 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6537 ix++)
6538 if (guess->bytes == bytes)
6539 internal_error (__FILE__, __LINE__,
6540 "Duplicate g packet description added for size %d",
6541 bytes);
6542
6543 new_guess.bytes = bytes;
6544 new_guess.tdesc = tdesc;
6545 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
6546 }
6547
6548 static const struct target_desc *
6549 remote_read_description (struct target_ops *target)
6550 {
6551 struct remote_g_packet_data *data
6552 = gdbarch_data (current_gdbarch, remote_g_packet_data_handle);
6553
6554 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
6555 {
6556 struct remote_g_packet_guess *guess;
6557 int ix;
6558 int bytes = send_g_packet ();
6559
6560 for (ix = 0;
6561 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
6562 ix++)
6563 if (guess->bytes == bytes)
6564 return guess->tdesc;
6565
6566 /* We discard the g packet. A minor optimization would be to
6567 hold on to it, and fill the register cache once we have selected
6568 an architecture, but it's too tricky to do safely. */
6569 }
6570
6571 return NULL;
6572 }
6573
6574 /* Remote file transfer support. This is host-initiated I/O, not
6575 target-initiated; for target-initiated, see remote-fileio.c. */
6576
6577 /* If *LEFT is at least the length of STRING, copy STRING to
6578 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6579 decrease *LEFT. Otherwise raise an error. */
6580
6581 static void
6582 remote_buffer_add_string (char **buffer, int *left, char *string)
6583 {
6584 int len = strlen (string);
6585
6586 if (len > *left)
6587 error (_("Packet too long for target."));
6588
6589 memcpy (*buffer, string, len);
6590 *buffer += len;
6591 *left -= len;
6592
6593 /* NUL-terminate the buffer as a convenience, if there is
6594 room. */
6595 if (*left)
6596 **buffer = '\0';
6597 }
6598
6599 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
6600 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6601 decrease *LEFT. Otherwise raise an error. */
6602
6603 static void
6604 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
6605 int len)
6606 {
6607 if (2 * len > *left)
6608 error (_("Packet too long for target."));
6609
6610 bin2hex (bytes, *buffer, len);
6611 *buffer += 2 * len;
6612 *left -= 2 * len;
6613
6614 /* NUL-terminate the buffer as a convenience, if there is
6615 room. */
6616 if (*left)
6617 **buffer = '\0';
6618 }
6619
6620 /* If *LEFT is large enough, convert VALUE to hex and add it to
6621 *BUFFER, update *BUFFER to point to the new end of the buffer, and
6622 decrease *LEFT. Otherwise raise an error. */
6623
6624 static void
6625 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
6626 {
6627 int len = hexnumlen (value);
6628
6629 if (len > *left)
6630 error (_("Packet too long for target."));
6631
6632 hexnumstr (*buffer, value);
6633 *buffer += len;
6634 *left -= len;
6635
6636 /* NUL-terminate the buffer as a convenience, if there is
6637 room. */
6638 if (*left)
6639 **buffer = '\0';
6640 }
6641
6642 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
6643 value, *REMOTE_ERRNO to the remote error number or zero if none
6644 was included, and *ATTACHMENT to point to the start of the annex
6645 if any. The length of the packet isn't needed here; there may
6646 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
6647
6648 Return 0 if the packet could be parsed, -1 if it could not. If
6649 -1 is returned, the other variables may not be initialized. */
6650
6651 static int
6652 remote_hostio_parse_result (char *buffer, int *retcode,
6653 int *remote_errno, char **attachment)
6654 {
6655 char *p, *p2;
6656
6657 *remote_errno = 0;
6658 *attachment = NULL;
6659
6660 if (buffer[0] != 'F')
6661 return -1;
6662
6663 errno = 0;
6664 *retcode = strtol (&buffer[1], &p, 16);
6665 if (errno != 0 || p == &buffer[1])
6666 return -1;
6667
6668 /* Check for ",errno". */
6669 if (*p == ',')
6670 {
6671 errno = 0;
6672 *remote_errno = strtol (p + 1, &p2, 16);
6673 if (errno != 0 || p + 1 == p2)
6674 return -1;
6675 p = p2;
6676 }
6677
6678 /* Check for ";attachment". If there is no attachment, the
6679 packet should end here. */
6680 if (*p == ';')
6681 {
6682 *attachment = p + 1;
6683 return 0;
6684 }
6685 else if (*p == '\0')
6686 return 0;
6687 else
6688 return -1;
6689 }
6690
6691 /* Send a prepared I/O packet to the target and read its response.
6692 The prepared packet is in the global RS->BUF before this function
6693 is called, and the answer is there when we return.
6694
6695 COMMAND_BYTES is the length of the request to send, which may include
6696 binary data. WHICH_PACKET is the packet configuration to check
6697 before attempting a packet. If an error occurs, *REMOTE_ERRNO
6698 is set to the error number and -1 is returned. Otherwise the value
6699 returned by the function is returned.
6700
6701 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
6702 attachment is expected; an error will be reported if there's a
6703 mismatch. If one is found, *ATTACHMENT will be set to point into
6704 the packet buffer and *ATTACHMENT_LEN will be set to the
6705 attachment's length. */
6706
6707 static int
6708 remote_hostio_send_command (int command_bytes, int which_packet,
6709 int *remote_errno, char **attachment,
6710 int *attachment_len)
6711 {
6712 struct remote_state *rs = get_remote_state ();
6713 int ret, bytes_read;
6714 char *attachment_tmp;
6715
6716 if (remote_protocol_packets[which_packet].support == PACKET_DISABLE)
6717 {
6718 *remote_errno = FILEIO_ENOSYS;
6719 return -1;
6720 }
6721
6722 putpkt_binary (rs->buf, command_bytes);
6723 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
6724
6725 /* If it timed out, something is wrong. Don't try to parse the
6726 buffer. */
6727 if (bytes_read < 0)
6728 {
6729 *remote_errno = FILEIO_EINVAL;
6730 return -1;
6731 }
6732
6733 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
6734 {
6735 case PACKET_ERROR:
6736 *remote_errno = FILEIO_EINVAL;
6737 return -1;
6738 case PACKET_UNKNOWN:
6739 *remote_errno = FILEIO_ENOSYS;
6740 return -1;
6741 case PACKET_OK:
6742 break;
6743 }
6744
6745 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
6746 &attachment_tmp))
6747 {
6748 *remote_errno = FILEIO_EINVAL;
6749 return -1;
6750 }
6751
6752 /* Make sure we saw an attachment if and only if we expected one. */
6753 if ((attachment_tmp == NULL && attachment != NULL)
6754 || (attachment_tmp != NULL && attachment == NULL))
6755 {
6756 *remote_errno = FILEIO_EINVAL;
6757 return -1;
6758 }
6759
6760 /* If an attachment was found, it must point into the packet buffer;
6761 work out how many bytes there were. */
6762 if (attachment_tmp != NULL)
6763 {
6764 *attachment = attachment_tmp;
6765 *attachment_len = bytes_read - (*attachment - rs->buf);
6766 }
6767
6768 return ret;
6769 }
6770
6771 /* Open FILENAME on the remote target, using FLAGS and MODE. Return a
6772 remote file descriptor, or -1 if an error occurs (and set
6773 *REMOTE_ERRNO). */
6774
6775 static int
6776 remote_hostio_open (const char *filename, int flags, int mode,
6777 int *remote_errno)
6778 {
6779 struct remote_state *rs = get_remote_state ();
6780 char *p = rs->buf;
6781 int left = get_remote_packet_size () - 1;
6782
6783 remote_buffer_add_string (&p, &left, "vFile:open:");
6784
6785 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6786 strlen (filename));
6787 remote_buffer_add_string (&p, &left, ",");
6788
6789 remote_buffer_add_int (&p, &left, flags);
6790 remote_buffer_add_string (&p, &left, ",");
6791
6792 remote_buffer_add_int (&p, &left, mode);
6793
6794 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
6795 remote_errno, NULL, NULL);
6796 }
6797
6798 /* Write up to LEN bytes from WRITE_BUF to FD on the remote target.
6799 Return the number of bytes written, or -1 if an error occurs (and
6800 set *REMOTE_ERRNO). */
6801
6802 static int
6803 remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
6804 ULONGEST offset, int *remote_errno)
6805 {
6806 struct remote_state *rs = get_remote_state ();
6807 char *p = rs->buf;
6808 int left = get_remote_packet_size ();
6809 int out_len;
6810
6811 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
6812
6813 remote_buffer_add_int (&p, &left, fd);
6814 remote_buffer_add_string (&p, &left, ",");
6815
6816 remote_buffer_add_int (&p, &left, offset);
6817 remote_buffer_add_string (&p, &left, ",");
6818
6819 p += remote_escape_output (write_buf, len, p, &out_len,
6820 get_remote_packet_size () - (p - rs->buf));
6821
6822 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
6823 remote_errno, NULL, NULL);
6824 }
6825
6826 /* Read up to LEN bytes FD on the remote target into READ_BUF
6827 Return the number of bytes read, or -1 if an error occurs (and
6828 set *REMOTE_ERRNO). */
6829
6830 static int
6831 remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
6832 ULONGEST offset, int *remote_errno)
6833 {
6834 struct remote_state *rs = get_remote_state ();
6835 char *p = rs->buf;
6836 char *attachment;
6837 int left = get_remote_packet_size ();
6838 int ret, attachment_len;
6839 int read_len;
6840
6841 remote_buffer_add_string (&p, &left, "vFile:pread:");
6842
6843 remote_buffer_add_int (&p, &left, fd);
6844 remote_buffer_add_string (&p, &left, ",");
6845
6846 remote_buffer_add_int (&p, &left, len);
6847 remote_buffer_add_string (&p, &left, ",");
6848
6849 remote_buffer_add_int (&p, &left, offset);
6850
6851 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
6852 remote_errno, &attachment,
6853 &attachment_len);
6854
6855 if (ret < 0)
6856 return ret;
6857
6858 read_len = remote_unescape_input (attachment, attachment_len,
6859 read_buf, len);
6860 if (read_len != ret)
6861 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
6862
6863 return ret;
6864 }
6865
6866 /* Close FD on the remote target. Return 0, or -1 if an error occurs
6867 (and set *REMOTE_ERRNO). */
6868
6869 static int
6870 remote_hostio_close (int fd, int *remote_errno)
6871 {
6872 struct remote_state *rs = get_remote_state ();
6873 char *p = rs->buf;
6874 int left = get_remote_packet_size () - 1;
6875
6876 remote_buffer_add_string (&p, &left, "vFile:close:");
6877
6878 remote_buffer_add_int (&p, &left, fd);
6879
6880 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
6881 remote_errno, NULL, NULL);
6882 }
6883
6884 /* Unlink FILENAME on the remote target. Return 0, or -1 if an error
6885 occurs (and set *REMOTE_ERRNO). */
6886
6887 static int
6888 remote_hostio_unlink (const char *filename, int *remote_errno)
6889 {
6890 struct remote_state *rs = get_remote_state ();
6891 char *p = rs->buf;
6892 int left = get_remote_packet_size () - 1;
6893
6894 remote_buffer_add_string (&p, &left, "vFile:unlink:");
6895
6896 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
6897 strlen (filename));
6898
6899 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
6900 remote_errno, NULL, NULL);
6901 }
6902
6903 static int
6904 remote_fileio_errno_to_host (int errnum)
6905 {
6906 switch (errnum)
6907 {
6908 case FILEIO_EPERM:
6909 return EPERM;
6910 case FILEIO_ENOENT:
6911 return ENOENT;
6912 case FILEIO_EINTR:
6913 return EINTR;
6914 case FILEIO_EIO:
6915 return EIO;
6916 case FILEIO_EBADF:
6917 return EBADF;
6918 case FILEIO_EACCES:
6919 return EACCES;
6920 case FILEIO_EFAULT:
6921 return EFAULT;
6922 case FILEIO_EBUSY:
6923 return EBUSY;
6924 case FILEIO_EEXIST:
6925 return EEXIST;
6926 case FILEIO_ENODEV:
6927 return ENODEV;
6928 case FILEIO_ENOTDIR:
6929 return ENOTDIR;
6930 case FILEIO_EISDIR:
6931 return EISDIR;
6932 case FILEIO_EINVAL:
6933 return EINVAL;
6934 case FILEIO_ENFILE:
6935 return ENFILE;
6936 case FILEIO_EMFILE:
6937 return EMFILE;
6938 case FILEIO_EFBIG:
6939 return EFBIG;
6940 case FILEIO_ENOSPC:
6941 return ENOSPC;
6942 case FILEIO_ESPIPE:
6943 return ESPIPE;
6944 case FILEIO_EROFS:
6945 return EROFS;
6946 case FILEIO_ENOSYS:
6947 return ENOSYS;
6948 case FILEIO_ENAMETOOLONG:
6949 return ENAMETOOLONG;
6950 }
6951 return -1;
6952 }
6953
6954 static char *
6955 remote_hostio_error (int errnum)
6956 {
6957 int host_error = remote_fileio_errno_to_host (errnum);
6958
6959 if (host_error == -1)
6960 error (_("Unknown remote I/O error %d"), errnum);
6961 else
6962 error (_("Remote I/O error: %s"), safe_strerror (host_error));
6963 }
6964
6965 static void
6966 fclose_cleanup (void *file)
6967 {
6968 fclose (file);
6969 }
6970
6971 static void
6972 remote_hostio_close_cleanup (void *opaque)
6973 {
6974 int fd = *(int *) opaque;
6975 int remote_errno;
6976
6977 remote_hostio_close (fd, &remote_errno);
6978 }
6979
6980 void
6981 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
6982 {
6983 struct cleanup *back_to, *close_cleanup;
6984 int retcode, fd, remote_errno, bytes, io_size;
6985 FILE *file;
6986 gdb_byte *buffer;
6987 int bytes_in_buffer;
6988 int saw_eof;
6989 ULONGEST offset;
6990
6991 if (!remote_desc)
6992 error (_("command can only be used with remote target"));
6993
6994 file = fopen (local_file, "rb");
6995 if (file == NULL)
6996 perror_with_name (local_file);
6997 back_to = make_cleanup (fclose_cleanup, file);
6998
6999 fd = remote_hostio_open (remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
7000 | FILEIO_O_TRUNC),
7001 0700, &remote_errno);
7002 if (fd == -1)
7003 remote_hostio_error (remote_errno);
7004
7005 /* Send up to this many bytes at once. They won't all fit in the
7006 remote packet limit, so we'll transfer slightly fewer. */
7007 io_size = get_remote_packet_size ();
7008 buffer = xmalloc (io_size);
7009 make_cleanup (xfree, buffer);
7010
7011 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7012
7013 bytes_in_buffer = 0;
7014 saw_eof = 0;
7015 offset = 0;
7016 while (bytes_in_buffer || !saw_eof)
7017 {
7018 if (!saw_eof)
7019 {
7020 bytes = fread (buffer + bytes_in_buffer, 1, io_size - bytes_in_buffer,
7021 file);
7022 if (bytes == 0)
7023 {
7024 if (ferror (file))
7025 error (_("Error reading %s."), local_file);
7026 else
7027 {
7028 /* EOF. Unless there is something still in the
7029 buffer from the last iteration, we are done. */
7030 saw_eof = 1;
7031 if (bytes_in_buffer == 0)
7032 break;
7033 }
7034 }
7035 }
7036 else
7037 bytes = 0;
7038
7039 bytes += bytes_in_buffer;
7040 bytes_in_buffer = 0;
7041
7042 retcode = remote_hostio_pwrite (fd, buffer, bytes, offset, &remote_errno);
7043
7044 if (retcode < 0)
7045 remote_hostio_error (remote_errno);
7046 else if (retcode == 0)
7047 error (_("Remote write of %d bytes returned 0!"), bytes);
7048 else if (retcode < bytes)
7049 {
7050 /* Short write. Save the rest of the read data for the next
7051 write. */
7052 bytes_in_buffer = bytes - retcode;
7053 memmove (buffer, buffer + retcode, bytes_in_buffer);
7054 }
7055
7056 offset += retcode;
7057 }
7058
7059 discard_cleanups (close_cleanup);
7060 if (remote_hostio_close (fd, &remote_errno))
7061 remote_hostio_error (remote_errno);
7062
7063 if (from_tty)
7064 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
7065 do_cleanups (back_to);
7066 }
7067
7068 void
7069 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
7070 {
7071 struct cleanup *back_to, *close_cleanup;
7072 int retcode, fd, remote_errno, bytes, io_size;
7073 FILE *file;
7074 gdb_byte *buffer;
7075 ULONGEST offset;
7076
7077 if (!remote_desc)
7078 error (_("command can only be used with remote target"));
7079
7080 fd = remote_hostio_open (remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
7081 if (fd == -1)
7082 remote_hostio_error (remote_errno);
7083
7084 file = fopen (local_file, "wb");
7085 if (file == NULL)
7086 perror_with_name (local_file);
7087 back_to = make_cleanup (fclose_cleanup, file);
7088
7089 /* Send up to this many bytes at once. They won't all fit in the
7090 remote packet limit, so we'll transfer slightly fewer. */
7091 io_size = get_remote_packet_size ();
7092 buffer = xmalloc (io_size);
7093 make_cleanup (xfree, buffer);
7094
7095 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
7096
7097 offset = 0;
7098 while (1)
7099 {
7100 bytes = remote_hostio_pread (fd, buffer, io_size, offset, &remote_errno);
7101 if (bytes == 0)
7102 /* Success, but no bytes, means end-of-file. */
7103 break;
7104 if (bytes == -1)
7105 remote_hostio_error (remote_errno);
7106
7107 offset += bytes;
7108
7109 bytes = fwrite (buffer, 1, bytes, file);
7110 if (bytes == 0)
7111 perror_with_name (local_file);
7112 }
7113
7114 discard_cleanups (close_cleanup);
7115 if (remote_hostio_close (fd, &remote_errno))
7116 remote_hostio_error (remote_errno);
7117
7118 if (from_tty)
7119 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
7120 do_cleanups (back_to);
7121 }
7122
7123 void
7124 remote_file_delete (const char *remote_file, int from_tty)
7125 {
7126 int retcode, remote_errno;
7127
7128 if (!remote_desc)
7129 error (_("command can only be used with remote target"));
7130
7131 retcode = remote_hostio_unlink (remote_file, &remote_errno);
7132 if (retcode == -1)
7133 remote_hostio_error (remote_errno);
7134
7135 if (from_tty)
7136 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
7137 }
7138
7139 static void
7140 remote_put_command (char *args, int from_tty)
7141 {
7142 struct cleanup *back_to;
7143 char **argv;
7144
7145 argv = buildargv (args);
7146 if (argv == NULL)
7147 nomem (0);
7148 back_to = make_cleanup_freeargv (argv);
7149 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7150 error (_("Invalid parameters to remote put"));
7151
7152 remote_file_put (argv[0], argv[1], from_tty);
7153
7154 do_cleanups (back_to);
7155 }
7156
7157 static void
7158 remote_get_command (char *args, int from_tty)
7159 {
7160 struct cleanup *back_to;
7161 char **argv;
7162
7163 argv = buildargv (args);
7164 if (argv == NULL)
7165 nomem (0);
7166 back_to = make_cleanup_freeargv (argv);
7167 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
7168 error (_("Invalid parameters to remote get"));
7169
7170 remote_file_get (argv[0], argv[1], from_tty);
7171
7172 do_cleanups (back_to);
7173 }
7174
7175 static void
7176 remote_delete_command (char *args, int from_tty)
7177 {
7178 struct cleanup *back_to;
7179 char **argv;
7180
7181 argv = buildargv (args);
7182 if (argv == NULL)
7183 nomem (0);
7184 back_to = make_cleanup_freeargv (argv);
7185 if (argv[0] == NULL || argv[1] != NULL)
7186 error (_("Invalid parameters to remote delete"));
7187
7188 remote_file_delete (argv[0], from_tty);
7189
7190 do_cleanups (back_to);
7191 }
7192
7193 static void
7194 remote_command (char *args, int from_tty)
7195 {
7196 help_list (remote_cmdlist, "remote ", -1, gdb_stdout);
7197 }
7198
7199 static void
7200 init_remote_ops (void)
7201 {
7202 remote_ops.to_shortname = "remote";
7203 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
7204 remote_ops.to_doc =
7205 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7206 Specify the serial device it is connected to\n\
7207 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
7208 remote_ops.to_open = remote_open;
7209 remote_ops.to_close = remote_close;
7210 remote_ops.to_detach = remote_detach;
7211 remote_ops.to_disconnect = remote_disconnect;
7212 remote_ops.to_resume = remote_resume;
7213 remote_ops.to_wait = remote_wait;
7214 remote_ops.to_fetch_registers = remote_fetch_registers;
7215 remote_ops.to_store_registers = remote_store_registers;
7216 remote_ops.to_prepare_to_store = remote_prepare_to_store;
7217 remote_ops.deprecated_xfer_memory = remote_xfer_memory;
7218 remote_ops.to_files_info = remote_files_info;
7219 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
7220 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
7221 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7222 remote_ops.to_stopped_data_address = remote_stopped_data_address;
7223 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7224 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7225 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7226 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
7227 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
7228 remote_ops.to_kill = remote_kill;
7229 remote_ops.to_load = generic_load;
7230 remote_ops.to_mourn_inferior = remote_mourn;
7231 remote_ops.to_thread_alive = remote_thread_alive;
7232 remote_ops.to_find_new_threads = remote_threads_info;
7233 remote_ops.to_pid_to_str = remote_pid_to_str;
7234 remote_ops.to_extra_thread_info = remote_threads_extra_info;
7235 remote_ops.to_stop = remote_stop;
7236 remote_ops.to_xfer_partial = remote_xfer_partial;
7237 remote_ops.to_rcmd = remote_rcmd;
7238 remote_ops.to_log_command = serial_log_command;
7239 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
7240 remote_ops.to_stratum = process_stratum;
7241 remote_ops.to_has_all_memory = 1;
7242 remote_ops.to_has_memory = 1;
7243 remote_ops.to_has_stack = 1;
7244 remote_ops.to_has_registers = 1;
7245 remote_ops.to_has_execution = 1;
7246 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7247 remote_ops.to_magic = OPS_MAGIC;
7248 remote_ops.to_memory_map = remote_memory_map;
7249 remote_ops.to_flash_erase = remote_flash_erase;
7250 remote_ops.to_flash_done = remote_flash_done;
7251 remote_ops.to_read_description = remote_read_description;
7252 }
7253
7254 /* Set up the extended remote vector by making a copy of the standard
7255 remote vector and adding to it. */
7256
7257 static void
7258 init_extended_remote_ops (void)
7259 {
7260 extended_remote_ops = remote_ops;
7261
7262 extended_remote_ops.to_shortname = "extended-remote";
7263 extended_remote_ops.to_longname =
7264 "Extended remote serial target in gdb-specific protocol";
7265 extended_remote_ops.to_doc =
7266 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7267 Specify the serial device it is connected to (e.g. /dev/ttya).",
7268 extended_remote_ops.to_open = extended_remote_open;
7269 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
7270 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
7271 extended_remote_ops.to_detach = extended_remote_detach;
7272 extended_remote_ops.to_attach = extended_remote_attach;
7273 }
7274
7275 static int
7276 remote_can_async_p (void)
7277 {
7278 /* We're async whenever the serial device is. */
7279 return (current_target.to_async_mask_value) && serial_can_async_p (remote_desc);
7280 }
7281
7282 static int
7283 remote_is_async_p (void)
7284 {
7285 /* We're async whenever the serial device is. */
7286 return (current_target.to_async_mask_value) && serial_is_async_p (remote_desc);
7287 }
7288
7289 /* Pass the SERIAL event on and up to the client. One day this code
7290 will be able to delay notifying the client of an event until the
7291 point where an entire packet has been received. */
7292
7293 static void (*async_client_callback) (enum inferior_event_type event_type,
7294 void *context);
7295 static void *async_client_context;
7296 static serial_event_ftype remote_async_serial_handler;
7297
7298 static void
7299 remote_async_serial_handler (struct serial *scb, void *context)
7300 {
7301 /* Don't propogate error information up to the client. Instead let
7302 the client find out about the error by querying the target. */
7303 async_client_callback (INF_REG_EVENT, async_client_context);
7304 }
7305
7306 static void
7307 remote_async (void (*callback) (enum inferior_event_type event_type,
7308 void *context), void *context)
7309 {
7310 if (current_target.to_async_mask_value == 0)
7311 internal_error (__FILE__, __LINE__,
7312 _("Calling remote_async when async is masked"));
7313
7314 if (callback != NULL)
7315 {
7316 serial_async (remote_desc, remote_async_serial_handler, NULL);
7317 async_client_callback = callback;
7318 async_client_context = context;
7319 }
7320 else
7321 serial_async (remote_desc, NULL, NULL);
7322 }
7323
7324 /* Target async and target extended-async.
7325
7326 This are temporary targets, until it is all tested. Eventually
7327 async support will be incorporated int the usual 'remote'
7328 target. */
7329
7330 static void
7331 init_remote_async_ops (void)
7332 {
7333 remote_async_ops.to_shortname = "async";
7334 remote_async_ops.to_longname =
7335 "Remote serial target in async version of the gdb-specific protocol";
7336 remote_async_ops.to_doc =
7337 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
7338 Specify the serial device it is connected to (e.g. /dev/ttya).";
7339 remote_async_ops.to_open = remote_async_open;
7340 remote_async_ops.to_close = remote_close;
7341 remote_async_ops.to_detach = remote_detach;
7342 remote_async_ops.to_disconnect = remote_disconnect;
7343 remote_async_ops.to_resume = remote_async_resume;
7344 remote_async_ops.to_wait = remote_async_wait;
7345 remote_async_ops.to_fetch_registers = remote_fetch_registers;
7346 remote_async_ops.to_store_registers = remote_store_registers;
7347 remote_async_ops.to_prepare_to_store = remote_prepare_to_store;
7348 remote_async_ops.deprecated_xfer_memory = remote_xfer_memory;
7349 remote_async_ops.to_files_info = remote_files_info;
7350 remote_async_ops.to_insert_breakpoint = remote_insert_breakpoint;
7351 remote_async_ops.to_remove_breakpoint = remote_remove_breakpoint;
7352 remote_async_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
7353 remote_async_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
7354 remote_async_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
7355 remote_async_ops.to_insert_watchpoint = remote_insert_watchpoint;
7356 remote_async_ops.to_remove_watchpoint = remote_remove_watchpoint;
7357 remote_async_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
7358 remote_async_ops.to_stopped_data_address = remote_stopped_data_address;
7359 remote_async_ops.to_terminal_inferior = remote_async_terminal_inferior;
7360 remote_async_ops.to_terminal_ours = remote_async_terminal_ours;
7361 remote_async_ops.to_kill = remote_async_kill;
7362 remote_async_ops.to_load = generic_load;
7363 remote_async_ops.to_mourn_inferior = remote_async_mourn;
7364 remote_async_ops.to_thread_alive = remote_thread_alive;
7365 remote_async_ops.to_find_new_threads = remote_threads_info;
7366 remote_async_ops.to_pid_to_str = remote_pid_to_str;
7367 remote_async_ops.to_extra_thread_info = remote_threads_extra_info;
7368 remote_async_ops.to_stop = remote_stop;
7369 remote_async_ops.to_xfer_partial = remote_xfer_partial;
7370 remote_async_ops.to_rcmd = remote_rcmd;
7371 remote_async_ops.to_stratum = process_stratum;
7372 remote_async_ops.to_has_all_memory = 1;
7373 remote_async_ops.to_has_memory = 1;
7374 remote_async_ops.to_has_stack = 1;
7375 remote_async_ops.to_has_registers = 1;
7376 remote_async_ops.to_has_execution = 1;
7377 remote_async_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
7378 remote_async_ops.to_can_async_p = remote_can_async_p;
7379 remote_async_ops.to_is_async_p = remote_is_async_p;
7380 remote_async_ops.to_async = remote_async;
7381 remote_async_ops.to_async_mask_value = 1;
7382 remote_async_ops.to_magic = OPS_MAGIC;
7383 remote_async_ops.to_memory_map = remote_memory_map;
7384 remote_async_ops.to_flash_erase = remote_flash_erase;
7385 remote_async_ops.to_flash_done = remote_flash_done;
7386 remote_async_ops.to_read_description = remote_read_description;
7387 }
7388
7389 /* Set up the async extended remote vector by making a copy of the standard
7390 remote vector and adding to it. */
7391
7392 static void
7393 init_extended_async_remote_ops (void)
7394 {
7395 extended_async_remote_ops = remote_async_ops;
7396
7397 extended_async_remote_ops.to_shortname = "extended-async";
7398 extended_async_remote_ops.to_longname =
7399 "Extended remote serial target in async gdb-specific protocol";
7400 extended_async_remote_ops.to_doc =
7401 "Use a remote computer via a serial line, using an async gdb-specific protocol.\n\
7402 Specify the serial device it is connected to (e.g. /dev/ttya).",
7403 extended_async_remote_ops.to_open = extended_remote_async_open;
7404 extended_async_remote_ops.to_create_inferior = extended_remote_async_create_inferior;
7405 extended_async_remote_ops.to_mourn_inferior = extended_async_remote_mourn;
7406 extended_async_remote_ops.to_detach = extended_remote_detach;
7407 extended_async_remote_ops.to_attach = extended_async_remote_attach;
7408 }
7409
7410 static void
7411 set_remote_cmd (char *args, int from_tty)
7412 {
7413 help_list (remote_set_cmdlist, "set remote ", -1, gdb_stdout);
7414 }
7415
7416 static void
7417 show_remote_cmd (char *args, int from_tty)
7418 {
7419 /* We can't just use cmd_show_list here, because we want to skip
7420 the redundant "show remote Z-packet" and the legacy aliases. */
7421 struct cleanup *showlist_chain;
7422 struct cmd_list_element *list = remote_show_cmdlist;
7423
7424 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
7425 for (; list != NULL; list = list->next)
7426 if (strcmp (list->name, "Z-packet") == 0)
7427 continue;
7428 else if (list->type == not_set_cmd)
7429 /* Alias commands are exactly like the original, except they
7430 don't have the normal type. */
7431 continue;
7432 else
7433 {
7434 struct cleanup *option_chain
7435 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
7436 ui_out_field_string (uiout, "name", list->name);
7437 ui_out_text (uiout, ": ");
7438 if (list->type == show_cmd)
7439 do_setshow_command ((char *) NULL, from_tty, list);
7440 else
7441 cmd_func (list, NULL, from_tty);
7442 /* Close the tuple. */
7443 do_cleanups (option_chain);
7444 }
7445
7446 /* Close the tuple. */
7447 do_cleanups (showlist_chain);
7448 }
7449
7450
7451 /* Function to be called whenever a new objfile (shlib) is detected. */
7452 static void
7453 remote_new_objfile (struct objfile *objfile)
7454 {
7455 if (remote_desc != 0) /* Have a remote connection. */
7456 remote_check_symbols (objfile);
7457 }
7458
7459 void
7460 _initialize_remote (void)
7461 {
7462 struct remote_state *rs;
7463
7464 /* architecture specific data */
7465 remote_gdbarch_data_handle =
7466 gdbarch_data_register_post_init (init_remote_state);
7467 remote_g_packet_data_handle =
7468 gdbarch_data_register_pre_init (remote_g_packet_data_init);
7469
7470 /* Initialize the per-target state. At the moment there is only one
7471 of these, not one per target. Only one target is active at a
7472 time. The default buffer size is unimportant; it will be expanded
7473 whenever a larger buffer is needed. */
7474 rs = get_remote_state_raw ();
7475 rs->buf_size = 400;
7476 rs->buf = xmalloc (rs->buf_size);
7477
7478 init_remote_ops ();
7479 add_target (&remote_ops);
7480
7481 init_extended_remote_ops ();
7482 add_target (&extended_remote_ops);
7483
7484 init_remote_async_ops ();
7485 add_target (&remote_async_ops);
7486
7487 init_extended_async_remote_ops ();
7488 add_target (&extended_async_remote_ops);
7489
7490 /* Hook into new objfile notification. */
7491 observer_attach_new_objfile (remote_new_objfile);
7492
7493 /* Set up signal handlers. */
7494 sigint_remote_token =
7495 create_async_signal_handler (async_remote_interrupt, NULL);
7496 sigint_remote_twice_token =
7497 create_async_signal_handler (inferior_event_handler_wrapper, NULL);
7498
7499 #if 0
7500 init_remote_threadtests ();
7501 #endif
7502
7503 /* set/show remote ... */
7504
7505 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
7506 Remote protocol specific variables\n\
7507 Configure various remote-protocol specific variables such as\n\
7508 the packets being used"),
7509 &remote_set_cmdlist, "set remote ",
7510 0 /* allow-unknown */, &setlist);
7511 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
7512 Remote protocol specific variables\n\
7513 Configure various remote-protocol specific variables such as\n\
7514 the packets being used"),
7515 &remote_show_cmdlist, "show remote ",
7516 0 /* allow-unknown */, &showlist);
7517
7518 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
7519 Compare section data on target to the exec file.\n\
7520 Argument is a single section name (default: all loaded sections)."),
7521 &cmdlist);
7522
7523 add_cmd ("packet", class_maintenance, packet_command, _("\
7524 Send an arbitrary packet to a remote target.\n\
7525 maintenance packet TEXT\n\
7526 If GDB is talking to an inferior via the GDB serial protocol, then\n\
7527 this command sends the string TEXT to the inferior, and displays the\n\
7528 response packet. GDB supplies the initial `$' character, and the\n\
7529 terminating `#' character and checksum."),
7530 &maintenancelist);
7531
7532 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
7533 Set whether to send break if interrupted."), _("\
7534 Show whether to send break if interrupted."), _("\
7535 If set, a break, instead of a cntrl-c, is sent to the remote target."),
7536 NULL, NULL, /* FIXME: i18n: Whether to send break if interrupted is %s. */
7537 &setlist, &showlist);
7538
7539 /* Install commands for configuring memory read/write packets. */
7540
7541 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
7542 Set the maximum number of bytes per memory write packet (deprecated)."),
7543 &setlist);
7544 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
7545 Show the maximum number of bytes per memory write packet (deprecated)."),
7546 &showlist);
7547 add_cmd ("memory-write-packet-size", no_class,
7548 set_memory_write_packet_size, _("\
7549 Set the maximum number of bytes per memory-write packet.\n\
7550 Specify the number of bytes in a packet or 0 (zero) for the\n\
7551 default packet size. The actual limit is further reduced\n\
7552 dependent on the target. Specify ``fixed'' to disable the\n\
7553 further restriction and ``limit'' to enable that restriction."),
7554 &remote_set_cmdlist);
7555 add_cmd ("memory-read-packet-size", no_class,
7556 set_memory_read_packet_size, _("\
7557 Set the maximum number of bytes per memory-read packet.\n\
7558 Specify the number of bytes in a packet or 0 (zero) for the\n\
7559 default packet size. The actual limit is further reduced\n\
7560 dependent on the target. Specify ``fixed'' to disable the\n\
7561 further restriction and ``limit'' to enable that restriction."),
7562 &remote_set_cmdlist);
7563 add_cmd ("memory-write-packet-size", no_class,
7564 show_memory_write_packet_size,
7565 _("Show the maximum number of bytes per memory-write packet."),
7566 &remote_show_cmdlist);
7567 add_cmd ("memory-read-packet-size", no_class,
7568 show_memory_read_packet_size,
7569 _("Show the maximum number of bytes per memory-read packet."),
7570 &remote_show_cmdlist);
7571
7572 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
7573 &remote_hw_watchpoint_limit, _("\
7574 Set the maximum number of target hardware watchpoints."), _("\
7575 Show the maximum number of target hardware watchpoints."), _("\
7576 Specify a negative limit for unlimited."),
7577 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware watchpoints is %s. */
7578 &remote_set_cmdlist, &remote_show_cmdlist);
7579 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
7580 &remote_hw_breakpoint_limit, _("\
7581 Set the maximum number of target hardware breakpoints."), _("\
7582 Show the maximum number of target hardware breakpoints."), _("\
7583 Specify a negative limit for unlimited."),
7584 NULL, NULL, /* FIXME: i18n: The maximum number of target hardware breakpoints is %s. */
7585 &remote_set_cmdlist, &remote_show_cmdlist);
7586
7587 add_setshow_integer_cmd ("remoteaddresssize", class_obscure,
7588 &remote_address_size, _("\
7589 Set the maximum size of the address (in bits) in a memory packet."), _("\
7590 Show the maximum size of the address (in bits) in a memory packet."), NULL,
7591 NULL,
7592 NULL, /* FIXME: i18n: */
7593 &setlist, &showlist);
7594
7595 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
7596 "X", "binary-download", 1);
7597
7598 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
7599 "vCont", "verbose-resume", 0);
7600
7601 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
7602 "QPassSignals", "pass-signals", 0);
7603
7604 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
7605 "qSymbol", "symbol-lookup", 0);
7606
7607 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
7608 "P", "set-register", 1);
7609
7610 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
7611 "p", "fetch-register", 1);
7612
7613 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
7614 "Z0", "software-breakpoint", 0);
7615
7616 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
7617 "Z1", "hardware-breakpoint", 0);
7618
7619 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
7620 "Z2", "write-watchpoint", 0);
7621
7622 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
7623 "Z3", "read-watchpoint", 0);
7624
7625 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
7626 "Z4", "access-watchpoint", 0);
7627
7628 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
7629 "qXfer:auxv:read", "read-aux-vector", 0);
7630
7631 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
7632 "qXfer:features:read", "target-features", 0);
7633
7634 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
7635 "qXfer:libraries:read", "library-info", 0);
7636
7637 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
7638 "qXfer:memory-map:read", "memory-map", 0);
7639
7640 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
7641 "qXfer:spu:read", "read-spu-object", 0);
7642
7643 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
7644 "qXfer:spu:write", "write-spu-object", 0);
7645
7646 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
7647 "qGetTLSAddr", "get-thread-local-storage-address",
7648 0);
7649
7650 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
7651 "qSupported", "supported-packets", 0);
7652
7653 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
7654 "vFile:open", "hostio-open", 0);
7655
7656 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
7657 "vFile:pread", "hostio-pread", 0);
7658
7659 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
7660 "vFile:pwrite", "hostio-pwrite", 0);
7661
7662 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
7663 "vFile:close", "hostio-close", 0);
7664
7665 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
7666 "vFile:unlink", "hostio-unlink", 0);
7667
7668 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
7669 "vAttach", "attach", 0);
7670
7671 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
7672 "vRun", "run", 0);
7673
7674 /* Keep the old ``set remote Z-packet ...'' working. Each individual
7675 Z sub-packet has its own set and show commands, but users may
7676 have sets to this variable in their .gdbinit files (or in their
7677 documentation). */
7678 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
7679 &remote_Z_packet_detect, _("\
7680 Set use of remote protocol `Z' packets"), _("\
7681 Show use of remote protocol `Z' packets "), _("\
7682 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
7683 packets."),
7684 set_remote_protocol_Z_packet_cmd,
7685 show_remote_protocol_Z_packet_cmd, /* FIXME: i18n: Use of remote protocol `Z' packets is %s. */
7686 &remote_set_cmdlist, &remote_show_cmdlist);
7687
7688 add_prefix_cmd ("remote", class_files, remote_command, _("\
7689 Manipulate files on the remote system\n\
7690 Transfer files to and from the remote target system."),
7691 &remote_cmdlist, "remote ",
7692 0 /* allow-unknown */, &cmdlist);
7693
7694 add_cmd ("put", class_files, remote_put_command,
7695 _("Copy a local file to the remote system."),
7696 &remote_cmdlist);
7697
7698 add_cmd ("get", class_files, remote_get_command,
7699 _("Copy a remote file to the local system."),
7700 &remote_cmdlist);
7701
7702 add_cmd ("delete", class_files, remote_delete_command,
7703 _("Delete a remote file."),
7704 &remote_cmdlist);
7705
7706 remote_exec_file = xstrdup ("");
7707 add_setshow_string_noescape_cmd ("exec-file", class_files,
7708 &remote_exec_file, _("\
7709 Set the remote pathname for \"run\""), _("\
7710 Show the remote pathname for \"run\""), NULL, NULL, NULL,
7711 &remote_set_cmdlist, &remote_show_cmdlist);
7712
7713 /* Eventually initialize fileio. See fileio.c */
7714 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
7715 }